From 697f73f77007b272758c6c9e0d89bed25c767960 Mon Sep 17 00:00:00 2001
From: b380490 <nicole.albern@kit.edu>
Date: Mon, 21 Jun 2021 11:45:26 +0200
Subject: [PATCH] Initial commit of python scripts and ICON runscripts

---
 ...ignificance_bootstrapping-checkpoint.ipynb | 1092 +++++++++++++++++
 .../figure1_robust_response-checkpoint.ipynb  |  793 ++++++++++++
 .../figure2_jetresponse-checkpoint.ipynb      |  738 +++++++++++
 ...n_mpi_ipsl_total_vs_cloud-checkpoint.ipynb |  635 ++++++++++
 ...gure4_cloudheating_change-checkpoint.ipynb |  506 ++++++++
 .../figure5_tr_ml_po-checkpoint.ipynb         |  440 +++++++
 ...re6_tropical_cloudimpacts-checkpoint.ipynb |  471 +++++++
 ...free_vs_locked_watervapor-checkpoint.ipynb |  392 ++++++
 .../figure_S2_schematics-checkpoint.ipynb     |  355 ++++++
 .../figure_S3_cloudcover-checkpoint.ipynb     |  387 ++++++
 .../figure_S4_streamfunction-checkpoint.ipynb |  327 +++++
 ...cmip5_data_to_common_grid-checkpoint.ipynb |  444 +++++++
 pythonscripts/BlueYellowRed.rgb               |  256 ++++
 .../helper_functions.cpython-36.pyc           |  Bin 0 -> 14187 bytes
 ...calculate_significance_bootstrapping.ipynb | 1092 +++++++++++++++++
 pythonscripts/figure1_robust_response.ipynb   |  793 ++++++++++++
 pythonscripts/figure1a_1f.pdf                 |  Bin 0 -> 842594 bytes
 pythonscripts/figure2_jetresponse.ipynb       |  738 +++++++++++
 pythonscripts/figure2a_2f.pdf                 |  Bin 0 -> 61185 bytes
 ...3_du850_icon_mpi_ipsl_total_vs_cloud.ipynb |  635 ++++++++++
 pythonscripts/figure3a_3f.pdf                 |  Bin 0 -> 163206 bytes
 .../figure4_cloudheating_change.ipynb         |  506 ++++++++
 pythonscripts/figure4a_4f.pdf                 |  Bin 0 -> 408850 bytes
 pythonscripts/figure5_tr_ml_po.ipynb          |  440 +++++++
 pythonscripts/figure5a_5c.pdf                 |  Bin 0 -> 170887 bytes
 .../figure6_tropical_cloudimpacts.ipynb       |  471 +++++++
 pythonscripts/figure6a_6f.pdf                 |  Bin 0 -> 329392 bytes
 pythonscripts/figure_S1.pdf                   |  Bin 0 -> 84438 bytes
 .../figure_S1_free_vs_locked_watervapor.ipynb |  392 ++++++
 pythonscripts/figure_S2.pdf                   |  Bin 0 -> 84431 bytes
 pythonscripts/figure_S2_schematics.ipynb      |  355 ++++++
 pythonscripts/figure_S3.pdf                   |  Bin 0 -> 172435 bytes
 pythonscripts/figure_S3_cloudcover.ipynb      |  387 ++++++
 pythonscripts/figure_S4.pdf                   |  Bin 0 -> 163759 bytes
 pythonscripts/figure_S4_streamfunction.ipynb  |  327 +++++
 pythonscripts/helper_functions.py             |  587 +++++++++
 ...nterpolate_cmip5_data_to_common_grid.ipynb |  444 +++++++
 runscripts_ICON/exp.nanw0005.run              |  762 ++++++++++++
 runscripts_ICON/exp.nanw0006.run              |  762 ++++++++++++
 runscripts_ICON/exp.nanw0007.run              |  778 ++++++++++++
 runscripts_ICON/exp.nanw0008.run              |  778 ++++++++++++
 runscripts_ICON/exp.nanw0009.run              |  778 ++++++++++++
 runscripts_ICON/exp.nanw0010.run              |  778 ++++++++++++
 runscripts_ICON/exp.nanw0015.run              |  781 ++++++++++++
 runscripts_ICON/exp.nanw0016.run              |  792 ++++++++++++
 runscripts_ICON/exp.nanw0017.run              |  791 ++++++++++++
 runscripts_ICON/exp.nanw0018.run              |  781 ++++++++++++
 runscripts_ICON/exp.nanw0019.run              |  780 ++++++++++++
 runscripts_ICON/exp.nanw0020.run              |  791 ++++++++++++
 runscripts_ICON/exp.nanw0021.run              |  791 ++++++++++++
 runscripts_ICON/exp.nanw0022.run              |  781 ++++++++++++
 runscripts_ICON/exp.nanw0023.run              |  844 +++++++++++++
 runscripts_ICON/exp.nanw0031.run              |  796 ++++++++++++
 runscripts_ICON/exp.nanw0032.run              |  796 ++++++++++++
 runscripts_ICON/exp.nanw0033.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0034.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0044.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0045.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0046.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0047.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0048.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0049.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0050.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0051.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0052.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0053.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0054.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0055.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0056.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0057.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0058.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0059.run              |  798 ++++++++++++
 runscripts_ICON/exp.nanw0060.run              |  800 ++++++++++++
 runscripts_ICON/exp.nanw0061.run              |  800 ++++++++++++
 runscripts_ICON/exp.nanw0062.run              |  800 ++++++++++++
 runscripts_ICON/exp.nanw0063.run              |  800 ++++++++++++
 runscripts_ICON/exp.nanw0064.run              |  800 ++++++++++++
 runscripts_ICON/exp.nanw0065.run              |  800 ++++++++++++
 runscripts_ICON/exp.nanw0066.run              |  800 ++++++++++++
 runscripts_ICON/exp.nanw0067.run              |  800 ++++++++++++
 runscripts_ICON/exp.nanw0068.run              |  800 ++++++++++++
 runscripts_ICON/exp.nanw0069.run              |  800 ++++++++++++
 runscripts_ICON/exp.nanw0070.run              |  800 ++++++++++++
 runscripts_ICON/exp.nanw0071.run              |  800 ++++++++++++
 runscripts_ICON/simulations_overview.txt      |   68 +
 85 files changed, 51395 insertions(+)
 create mode 100644 pythonscripts/.ipynb_checkpoints/calculate_significance_bootstrapping-checkpoint.ipynb
 create mode 100644 pythonscripts/.ipynb_checkpoints/figure1_robust_response-checkpoint.ipynb
 create mode 100644 pythonscripts/.ipynb_checkpoints/figure2_jetresponse-checkpoint.ipynb
 create mode 100644 pythonscripts/.ipynb_checkpoints/figure3_du850_icon_mpi_ipsl_total_vs_cloud-checkpoint.ipynb
 create mode 100644 pythonscripts/.ipynb_checkpoints/figure4_cloudheating_change-checkpoint.ipynb
 create mode 100644 pythonscripts/.ipynb_checkpoints/figure5_tr_ml_po-checkpoint.ipynb
 create mode 100644 pythonscripts/.ipynb_checkpoints/figure6_tropical_cloudimpacts-checkpoint.ipynb
 create mode 100644 pythonscripts/.ipynb_checkpoints/figure_S1_free_vs_locked_watervapor-checkpoint.ipynb
 create mode 100644 pythonscripts/.ipynb_checkpoints/figure_S2_schematics-checkpoint.ipynb
 create mode 100644 pythonscripts/.ipynb_checkpoints/figure_S3_cloudcover-checkpoint.ipynb
 create mode 100644 pythonscripts/.ipynb_checkpoints/figure_S4_streamfunction-checkpoint.ipynb
 create mode 100644 pythonscripts/.ipynb_checkpoints/interpolate_cmip5_data_to_common_grid-checkpoint.ipynb
 create mode 100644 pythonscripts/BlueYellowRed.rgb
 create mode 100644 pythonscripts/__pycache__/helper_functions.cpython-36.pyc
 create mode 100644 pythonscripts/calculate_significance_bootstrapping.ipynb
 create mode 100644 pythonscripts/figure1_robust_response.ipynb
 create mode 100644 pythonscripts/figure1a_1f.pdf
 create mode 100644 pythonscripts/figure2_jetresponse.ipynb
 create mode 100644 pythonscripts/figure2a_2f.pdf
 create mode 100644 pythonscripts/figure3_du850_icon_mpi_ipsl_total_vs_cloud.ipynb
 create mode 100644 pythonscripts/figure3a_3f.pdf
 create mode 100644 pythonscripts/figure4_cloudheating_change.ipynb
 create mode 100644 pythonscripts/figure4a_4f.pdf
 create mode 100644 pythonscripts/figure5_tr_ml_po.ipynb
 create mode 100644 pythonscripts/figure5a_5c.pdf
 create mode 100644 pythonscripts/figure6_tropical_cloudimpacts.ipynb
 create mode 100644 pythonscripts/figure6a_6f.pdf
 create mode 100644 pythonscripts/figure_S1.pdf
 create mode 100644 pythonscripts/figure_S1_free_vs_locked_watervapor.ipynb
 create mode 100644 pythonscripts/figure_S2.pdf
 create mode 100644 pythonscripts/figure_S2_schematics.ipynb
 create mode 100644 pythonscripts/figure_S3.pdf
 create mode 100644 pythonscripts/figure_S3_cloudcover.ipynb
 create mode 100644 pythonscripts/figure_S4.pdf
 create mode 100644 pythonscripts/figure_S4_streamfunction.ipynb
 create mode 100644 pythonscripts/helper_functions.py
 create mode 100644 pythonscripts/interpolate_cmip5_data_to_common_grid.ipynb
 create mode 100755 runscripts_ICON/exp.nanw0005.run
 create mode 100755 runscripts_ICON/exp.nanw0006.run
 create mode 100755 runscripts_ICON/exp.nanw0007.run
 create mode 100755 runscripts_ICON/exp.nanw0008.run
 create mode 100755 runscripts_ICON/exp.nanw0009.run
 create mode 100755 runscripts_ICON/exp.nanw0010.run
 create mode 100755 runscripts_ICON/exp.nanw0015.run
 create mode 100755 runscripts_ICON/exp.nanw0016.run
 create mode 100755 runscripts_ICON/exp.nanw0017.run
 create mode 100755 runscripts_ICON/exp.nanw0018.run
 create mode 100755 runscripts_ICON/exp.nanw0019.run
 create mode 100755 runscripts_ICON/exp.nanw0020.run
 create mode 100755 runscripts_ICON/exp.nanw0021.run
 create mode 100755 runscripts_ICON/exp.nanw0022.run
 create mode 100755 runscripts_ICON/exp.nanw0023.run
 create mode 100755 runscripts_ICON/exp.nanw0031.run
 create mode 100755 runscripts_ICON/exp.nanw0032.run
 create mode 100755 runscripts_ICON/exp.nanw0033.run
 create mode 100755 runscripts_ICON/exp.nanw0034.run
 create mode 100755 runscripts_ICON/exp.nanw0044.run
 create mode 100755 runscripts_ICON/exp.nanw0045.run
 create mode 100755 runscripts_ICON/exp.nanw0046.run
 create mode 100755 runscripts_ICON/exp.nanw0047.run
 create mode 100755 runscripts_ICON/exp.nanw0048.run
 create mode 100755 runscripts_ICON/exp.nanw0049.run
 create mode 100755 runscripts_ICON/exp.nanw0050.run
 create mode 100755 runscripts_ICON/exp.nanw0051.run
 create mode 100755 runscripts_ICON/exp.nanw0052.run
 create mode 100755 runscripts_ICON/exp.nanw0053.run
 create mode 100755 runscripts_ICON/exp.nanw0054.run
 create mode 100755 runscripts_ICON/exp.nanw0055.run
 create mode 100755 runscripts_ICON/exp.nanw0056.run
 create mode 100755 runscripts_ICON/exp.nanw0057.run
 create mode 100755 runscripts_ICON/exp.nanw0058.run
 create mode 100755 runscripts_ICON/exp.nanw0059.run
 create mode 100755 runscripts_ICON/exp.nanw0060.run
 create mode 100755 runscripts_ICON/exp.nanw0061.run
 create mode 100755 runscripts_ICON/exp.nanw0062.run
 create mode 100755 runscripts_ICON/exp.nanw0063.run
 create mode 100755 runscripts_ICON/exp.nanw0064.run
 create mode 100755 runscripts_ICON/exp.nanw0065.run
 create mode 100755 runscripts_ICON/exp.nanw0066.run
 create mode 100755 runscripts_ICON/exp.nanw0067.run
 create mode 100755 runscripts_ICON/exp.nanw0068.run
 create mode 100755 runscripts_ICON/exp.nanw0069.run
 create mode 100755 runscripts_ICON/exp.nanw0070.run
 create mode 100755 runscripts_ICON/exp.nanw0071.run
 create mode 100644 runscripts_ICON/simulations_overview.txt

diff --git a/pythonscripts/.ipynb_checkpoints/calculate_significance_bootstrapping-checkpoint.ipynb b/pythonscripts/.ipynb_checkpoints/calculate_significance_bootstrapping-checkpoint.ipynb
new file mode 100644
index 0000000..afe9638
--- /dev/null
+++ b/pythonscripts/.ipynb_checkpoints/calculate_significance_bootstrapping-checkpoint.ipynb
@@ -0,0 +1,1092 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Get masks with significant responses based on bootstrapping.\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Functions for calculation of significance based on bootstrapping"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# calculate bootstrap distribution of annual-mean or seasonal-mean\n",
+    "# time series with 1000 samplings with replacement\n",
+    "def calc_bootstrap_dist(data_ym, lats, lons, nreps):\n",
+    "    # decide which years to use\n",
+    "    ntime = data_ym.shape[0] # number of years in simulation\n",
+    "    #nreps = 1000 # number of resamples \n",
+    "    time = np.arange(ntime) # artificial time vector\n",
+    "    time_bs = np.random.choice(time, (ntime, nreps))\n",
+    "\n",
+    "    # find u850 profiles according to time_bs\n",
+    "    data_bs = np.full((ntime, nreps, lats.size, lons.size), np.nan, dtype=float)\n",
+    "    for l in range(nreps): # number of resamples\n",
+    "        for k in range(ntime): # number of years\n",
+    "            data_bs[k, l, :, :] = data_ym[time_bs[k, l], :, :]\n",
+    "        del k\n",
+    "    del l\n",
+    "\n",
+    "    # mean over years for each resampling\n",
+    "    if np.isnan(data_bs).any() == False:\n",
+    "        print(\"No NaN's. Calculation worked.\")\n",
+    "        u850_bs_mean = np.mean(data_bs, axis=0)\n",
+    "    else:\n",
+    "        print(\"Bootstrap array contains NaN's. Exit function.\")\n",
+    "        return\n",
+    "\n",
+    "    return u850_bs_mean"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated (total response, SST impact, global cloud impact, regional cloud impacts)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# simulations with global cloud changes\n",
+    "runs_glo = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "\n",
+    "# simulations with regional cloud changes\n",
+    "runs_reg_TR = ['T1C2TR', 'T1C1TR', 'T2C2TR', 'T2C1TR']\n",
+    "runs_reg_ML = ['T1C2ML', 'T1C1ML', 'T2C2ML', 'T2C1ML']\n",
+    "runs_reg_PO = ['T1C2PO', 'T1C1PO', 'T2C2PO', 'T2C1PO']\n",
+    "runs_reg_TA = ['T1C2TA', 'T1C1TA', 'T2C2TA', 'T2C1TA']\n",
+    "runs_reg_IO = ['T1C2IO', 'T1C1IO', 'T2C2IO', 'T2C1IO']\n",
+    "runs_reg_WP = ['T1C2WP', 'T1C1WP', 'T2C2WP', 'T2C1WP']\n",
+    "runs_reg_EP = ['T1C2EP', 'T1C1EP', 'T2C2EP', 'T2C1EP']\n",
+    "\n",
+    "runs_reg = runs_reg_TR + runs_reg_ML + runs_reg_PO + \\\n",
+    "           runs_reg_TA + runs_reg_IO + runs_reg_WP + runs_reg_EP\n",
+    "runs_all = runs_glo + runs_reg\n",
+    "\n",
+    "# responses\n",
+    "response_all = ['total', 'SST', 'cloud',\n",
+    "                'cloud TR', 'cloud notTR', 'cloud ML', 'cloud notML',\n",
+    "                'cloud PO', 'cloud notPO',\n",
+    "                'cloud TA', 'cloud notTA', 'cloud IO', 'cloud notIO',\n",
+    "                'cloud WP', 'cloud notWP', 'cloud EP', 'cloud notEP']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Number of samplings / reputations in bootstrap function"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "nreps=1000"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal wind and do bootstrap calculations for ICON (locked clouds, interactive water vapor)\n",
+    "\n",
+    "Get the seasonal-mean zonal-mean zonal wind with Climate Data Operators (cdo): cdo seasmean -selvar,u ifile ofile"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "###############\n",
+      "T1C1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2TR\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1TR\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2TR\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1TR\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2ML\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1ML\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2ML\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1ML\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2PO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1PO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2PO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1PO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2TA\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1TA\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2TA\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1TA\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2IO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1IO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2IO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1IO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2WP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1WP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2WP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1WP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2EP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1EP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2EP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1EP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n"
+     ]
+    }
+   ],
+   "source": [
+    "u850_tmym_bs = {}; u850_smym_bs = {}\n",
+    "for run in runs_all:\n",
+    "    # time-mean\n",
+    "    print('###############')\n",
+    "    print(run)\n",
+    "    # read zonal wind for each month\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset('../../ICON-NWP_lockedclouds/' + ifile, 'r')\n",
+    "    lats = ncfile.variables['lat'][:].data\n",
+    "    lons = ncfile.variables['lon'][:].data\n",
+    "    levs = ncfile.variables['lev'][:].data\n",
+    "    uwind = ncfile.variables['u'][:].data\n",
+    "    ncfile.close()\n",
+    "\n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "    u850 = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "\n",
+    "    # calculate yearly-mean u850 for each year\n",
+    "    u850_tmym = np.full((int(u850.shape[0]/12), lats.size, lons.size), np.nan,\n",
+    "                        dtype=float)\n",
+    "    for i in range(u850_tmym.shape[0]):\n",
+    "        u850_tmym[i,:,:] = np.nanmean(u850[i*12:i*12+12,:,:], axis=0)\n",
+    "    del i\n",
+    "    del u850\n",
+    "\n",
+    "    # do bootstrap calculations\n",
+    "    print('##### time-mean #####')\n",
+    "    u850_tmym_bs[run] = calc_bootstrap_dist(u850_tmym, lats, lons, nreps)\n",
+    "    del u850_tmym\n",
+    "    \n",
+    "    ##########################################################################\n",
+    "    # seasonal-mean\n",
+    "    # read seasonal-mean zonal wind for each year\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.uwind.seasmean.nc'\n",
+    "    ncfile = nc.Dataset('../../ICON-NWP_lockedclouds/' + ifile, 'r')\n",
+    "    levs_sm = ncfile.variables['lev'][:].data\n",
+    "    u_wind_sm = np.squeeze(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()\n",
+    "    del ifile, ncfile\n",
+    "\n",
+    "    levind850 = (np.abs(levs_sm-85000)).argmin() # index of 850 hPa level\n",
+    "    # DJF: do not read last timestep, because it only contains the value from\n",
+    "    #      Dec of the last year (note: first value only contains values from\n",
+    "    #      Jan and Feb of first year)\n",
+    "    # other seasons: read all available time steps\n",
+    "    u850_smym = {'DJF': u_wind_sm[0:-1:4, levind850, :, :],\n",
+    "                 'MAM': u_wind_sm[1::4, levind850, :, :],\n",
+    "                 'JJA': u_wind_sm[2::4, levind850, :, :],\n",
+    "                 'SON': u_wind_sm[3::4, levind850, :, :],\n",
+    "                 }\n",
+    "    del levs_sm, u_wind_sm, levind850\n",
+    "\n",
+    "    # do bootstrap calculations\n",
+    "    print('##### seasonal-mean #####')\n",
+    "    u850_smym_bs1 = {}\n",
+    "    for s in seasons:\n",
+    "        u850_smym_bs1[s] = calc_bootstrap_dist(u850_smym[s], lats, lons, nreps)\n",
+    "    u850_smym_bs[run] = u850_smym_bs1.copy()\n",
+    "    del s, u850_smym_bs1\n",
+    "    del u850_smym\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate responses and store significance masks for ICON (locked clouds, interactive water vapor)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Calculate response\n",
+      "    T1C2TR T1C1TR T2C2TR T2C1TR\n",
+      "Calculate percentiles\n",
+      "    cloud TR cloud notTR\n",
+      "Calculate response\n",
+      "    T1C2ML T1C1ML T2C2ML T2C1ML\n",
+      "Calculate percentiles\n",
+      "    cloud ML cloud notML\n",
+      "Calculate response\n",
+      "    T1C2PO T1C1PO T2C2PO T2C1PO\n",
+      "Calculate percentiles\n",
+      "    cloud PO cloud notPO\n",
+      "Calculate response\n",
+      "    T1C2TA T1C1TA T2C2TA T2C1TA\n",
+      "Calculate percentiles\n",
+      "    cloud TA cloud notTA\n",
+      "Calculate response\n",
+      "    T1C2IO T1C1IO T2C2IO T2C1IO\n",
+      "Calculate percentiles\n",
+      "    cloud IO cloud notIO\n",
+      "Calculate response\n",
+      "    T1C2WP T1C1WP T2C2WP T2C1WP\n",
+      "Calculate percentiles\n",
+      "    cloud WP cloud notWP\n",
+      "Calculate response\n",
+      "    T1C2EP T1C1EP T2C2EP T2C1EP\n",
+      "Calculate percentiles\n",
+      "    cloud EP cloud notEP\n"
+     ]
+    }
+   ],
+   "source": [
+    "# calculate total response, SST impact and cloud impact\n",
+    "# time-mean\n",
+    "du850_tmym_glo = np.full((3, nreps, len(lats), len(lons)), np.nan, dtype=float)\n",
+    "du850_tmym_glo[0, :, :, :], du850_tmym_glo[1, :, :, :], \\\n",
+    "du850_tmym_glo[2, :, :, :] = \\\n",
+    "   fct.calc_impacts_timmean(u850_tmym_bs['T1C1'], u850_tmym_bs['T2C2'],\n",
+    "                            u850_tmym_bs['T1C2'], u850_tmym_bs['T2C1'])\n",
+    "\n",
+    "# seasonal-mean\n",
+    "du850_smym_glo = np.full((len(seasons), 3, nreps, len(lats), len(lons)), np.nan,\n",
+    "                         dtype=float)\n",
+    "for s, seas in enumerate(seasons):\n",
+    "    du850_smym_glo[s, 0, :, :, :], du850_smym_glo[s, 1, :, :, :], \\\n",
+    "    du850_smym_glo[s, 2, :, :, :] = \\\n",
+    "       fct.calc_impacts_timmean(u850_smym_bs['T1C1'][seas],\n",
+    "                                u850_smym_bs['T2C2'][seas],\n",
+    "                                u850_smym_bs['T1C2'][seas],\n",
+    "                                u850_smym_bs['T2C1'][seas])\n",
+    "del s, seas\n",
+    "\n",
+    "# calculate percentiles of bootstrap distributions\n",
+    "lp = 5; up = 95 # 5th-95th percentile range\n",
+    "# set axis to calculate percentiles over nreps=1000\n",
+    "# time-mean dimensions: 3, nreps, lats, lons\n",
+    "du850_tmym_perc = np.percentile(du850_tmym_glo, [lp, up], axis=1)\n",
+    "# seasonal-mean dimensions: seasons, 3, nreps, lats, lons\n",
+    "du850_smym_perc = np.percentile(du850_smym_glo, [lp, up], axis=2)\n",
+    "# new dimensions:\n",
+    "# time-mean: 2, 3, lats, lons\n",
+    "# seasonal-mean: 2, seasons, 3, lats, lons\n",
+    "del lp, up\n",
+    "\n",
+    "# create mask based on percentiles\n",
+    "# true if significant: both percentile values have the same sig and, thus, 0\n",
+    "#                      is not included\n",
+    "# true if sign is the same and response is \n",
+    "du850_mask_tm_bs = {'total': np.sign(du850_tmym_perc[0, 0, :, :]) == \\\n",
+    "                             np.sign(du850_tmym_perc[1, 0, :, :]),\n",
+    "                    'SST': np.sign(du850_tmym_perc[0, 1, :, :]) == \\\n",
+    "                           np.sign(du850_tmym_perc[1, 1, :, :]),\n",
+    "                    'cloud': np.sign(du850_tmym_perc[0, 2, :, :]) == \\\n",
+    "                             np.sign(du850_tmym_perc[1, 2, :, :])}\n",
+    "du850_mask_sm_bs = {'total': np.sign(du850_smym_perc[0, :, 0, :, :]) == \\\n",
+    "                             np.sign(du850_smym_perc[1, :, 0, :, :]),\n",
+    "                    'SST': np.sign(du850_smym_perc[0, :, 1, :, :]) == \\\n",
+    "                           np.sign(du850_smym_perc[1, :, 1, :, :]),\n",
+    "                    'cloud': np.sign(du850_smym_perc[0, :, 2, :, :]) == \\\n",
+    "                             np.sign(du850_smym_perc[1, :, 2, :, :])}\n",
+    "\n",
+    "del du850_tmym_glo, du850_smym_glo, du850_tmym_perc, du850_smym_perc\n",
+    "\n",
+    "##############################################################################\n",
+    "##############################################################################\n",
+    "# regional cloud impacts\n",
+    "for r in range(int(len(runs_reg)/4)):\n",
+    "    # calculate u850 response for bootstrap distribtions\n",
+    "    print('Calculate response')\n",
+    "    print('   ', runs_reg[r*4], runs_reg[r*4+1], runs_reg[r*4+2], runs_reg[r*4+3])\n",
+    "    # time-mean response\n",
+    "    du850_tmym_reg = np.full((2, nreps, len(lats), len(lons)), np.nan,\n",
+    "                             dtype=float)\n",
+    "    _, _, du850_tmym_reg[0, :, :, :], du850_tmym_reg[1, :, :, :] = \\\n",
+    "          fct.calc_3impacts_timmean(u850_tmym_bs['T1C1'],\n",
+    "                                    u850_tmym_bs['T2C2'],\n",
+    "                                    u850_tmym_bs['T1C2'],\n",
+    "                                    u850_tmym_bs['T2C1'],\n",
+    "                                    u850_tmym_bs[runs_reg[r*4]],\n",
+    "                                    u850_tmym_bs[runs_reg[r*4+1]],\n",
+    "                                    u850_tmym_bs[runs_reg[r*4+2]],\n",
+    "                                    u850_tmym_bs[runs_reg[r*4+3]])\n",
+    "          \n",
+    "    # seasonal-mean response\n",
+    "    du850_smym_reg = np.full((len(seasons), 2, nreps, len(lats), len(lons)), np.nan,\n",
+    "                             dtype=float)\n",
+    "    for s, seas in enumerate(seasons):\n",
+    "        _, _, du850_smym_reg[s, 0, :, :, :], du850_smym_reg[s, 1, :, :, :] = \\\n",
+    "              fct.calc_3impacts_timmean(u850_smym_bs['T1C1'][seas],\n",
+    "                                        u850_smym_bs['T2C2'][seas],\n",
+    "                                        u850_smym_bs['T1C2'][seas],\n",
+    "                                        u850_smym_bs['T2C1'][seas],\n",
+    "                                        u850_smym_bs[runs_reg[r*4]][seas],\n",
+    "                                        u850_smym_bs[runs_reg[r*4+1]][seas],\n",
+    "                                        u850_smym_bs[runs_reg[r*4+2]][seas],\n",
+    "                                        u850_smym_bs[runs_reg[r*4+3]][seas])\n",
+    "    del s, seas\n",
+    "    \n",
+    "    ##############################################################################\n",
+    "    # calculate percentiles of bootstrap distributions\n",
+    "    print('Calculate percentiles')\n",
+    "    lp = 5; up = 95 # 5th-95th percentile range\n",
+    "    # set axis to calculate percentiles over nreps=1000\n",
+    "    # time-mean dimensions: 2, nreps, lats, lons\n",
+    "    du850_tmym_perc = np.percentile(du850_tmym_reg, [lp, up], axis=1)\n",
+    "    # seasonal-mean dimensions: seasons, 2, nreps, lats, lons\n",
+    "    du850_smym_perc = np.percentile(du850_smym_reg, [lp, up], axis=2)\n",
+    "    # new dimensions:\n",
+    "    # time-mean: 2(perc), 2(response), lats, lons\n",
+    "    # seasonal-mean: 2(perc), seasons, 2(response), lats, lons\n",
+    "    del lp, up\n",
+    "\n",
+    "    ##############################################################################\n",
+    "    # create mask based on percentiles\n",
+    "    # true if significant: both percentile values have the same sig and, thus, 0\n",
+    "    #                      is not included\n",
+    "    # true if sign is the same and response is\n",
+    "    print('   ', response_all[r*2+3], response_all[r*2+4])\n",
+    "    du850_mask_tm_bs.update({response_all[r*2+3]: \\\n",
+    "      np.sign(du850_tmym_perc[0, 0, :, :]) == \\\n",
+    "      np.sign(du850_tmym_perc[1, 0, :, :])})\n",
+    "    du850_mask_tm_bs.update({response_all[r*2+4]: \\\n",
+    "      np.sign(du850_tmym_perc[0, 1, :, :]) == \\\n",
+    "      np.sign(du850_tmym_perc[1, 1, :, :])})\n",
+    "    du850_mask_sm_bs.update({response_all[r*2+3]: \\\n",
+    "      np.sign(du850_smym_perc[0, :, 0, :, :]) == \\\n",
+    "      np.sign(du850_smym_perc[1, :, 0, :, :])})\n",
+    "    du850_mask_sm_bs.update({response_all[r*2+4]: \\\n",
+    "      np.sign(du850_smym_perc[0, :, 1, :, :]) == \\\n",
+    "      np.sign(du850_smym_perc[1, :, 1, :, :])})\n",
+    "    \n",
+    "    del du850_tmym_reg, du850_smym_reg, du850_tmym_perc, du850_smym_perc\n",
+    "del r\n",
+    "\n",
+    "del u850_tmym_bs, u850_smym_bs"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Save masks as numpy arrays"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "np.save('../../ICON-NWP_lockedclouds/du850_mask_tm_bs.npy', du850_mask_tm_bs)\n",
+    "np.save('../../ICON-NWP_lockedclouds/du850_mask_sm_bs.npy', du850_mask_sm_bs)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Delete masks"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "del du850_mask_tm_bs, du850_mask_sm_bs"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal wind, do bootstrap calculations, and store masks for MPI-ESM and IPSL-CM5A (locked clouds and locked water vapor)\n",
+    "\n",
+    "Get the seasonal-mean zonal-mean zonal wind with Climate Data Operators (cdo): cdo seasmean -selvar,u ifile ofile"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "MPI-ESM\n",
+      "###############\n",
+      "T1C1W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "##############################\n",
+      "##############################\n",
+      "IPSL-CM5A\n",
+      "###############\n",
+      "T1C1W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "##############################\n",
+      "##############################\n",
+      "###########\n",
+      "## Done! ##\n"
+     ]
+    }
+   ],
+   "source": [
+    "runs = ['T1C1W1', 'T2C2W2', 'T1C2W1', 'T1C1W2',\n",
+    "        'T1C2W2', 'T2C1W1', 'T2C2W1', 'T2C1W2']\n",
+    "\n",
+    "models = ['MPI-ESM', 'IPSL-CM5A']\n",
+    "\n",
+    "for m, model in enumerate(models):\n",
+    "    u850_tmym_bs = {}\n",
+    "    u850_smym_bs = {}\n",
+    "\n",
+    "    print(model)\n",
+    "    for run in runs:\n",
+    "        print('###############')\n",
+    "        print(run)\n",
+    "\n",
+    "        # time-mean\n",
+    "        # read zonal wind for each month\n",
+    "        if model == 'MPI-ESM':\n",
+    "            ifile = model + '_' + run + '_3d_mm.uwind.nc'\n",
+    "        elif model == 'IPSL-CM5A':\n",
+    "            ifile = model + '_' + run + '_3d_mm.remapcon.uwind.nc'\n",
+    "        ncfile = nc.Dataset('../../' + model + '/' + ifile, 'r')\n",
+    "        lats = ncfile.variables['lat'][:].data\n",
+    "        lons = ncfile.variables['lon'][:].data\n",
+    "        # pressure levels and zonal wind are named differently\n",
+    "        # in the two models\n",
+    "        if model == 'MPI-ESM':\n",
+    "            levs = ncfile.variables['plev'][:].data\n",
+    "            uwind = ncfile.variables['u'][:].data\n",
+    "        elif model == 'IPSL-CM5A':\n",
+    "            levs = ncfile.variables['presnivs'][:].data\n",
+    "            uwind = ncfile.variables['vitu'][:].data\n",
+    "        ncfile.close()\n",
+    "\n",
+    "        # get zonal wind at 850 hPa\n",
+    "        levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "        u850 = uwind[:, levind850, :, :]\n",
+    "        del levs, uwind, levind850\n",
+    "        del ifile, ncfile\n",
+    "\n",
+    "        # calculate yearly-mean u850 for each year\n",
+    "        u850_tmym = np.full((int(u850.shape[0]/12), lats.size, lons.size), np.nan,\n",
+    "                            dtype=float)\n",
+    "        for i in range(u850_tmym.shape[0]):\n",
+    "            u850_tmym[i,:,:] = np.nanmean(u850[i*12:i*12+12,:,:], axis=0)\n",
+    "        del i\n",
+    "        del u850\n",
+    "\n",
+    "        # do bootstrap calculations\n",
+    "        print('##### time-mean #####')\n",
+    "        u850_tmym_bs[run] = calc_bootstrap_dist(u850_tmym, lats, lons, nreps)\n",
+    "        del u850_tmym\n",
+    "\n",
+    "        ##########################################################################\n",
+    "        # seasonal-mean\n",
+    "        # read seasonal-mean zonal wind for each year\n",
+    "        if model == 'MPI-ESM':\n",
+    "            ifile = model + '_' + run + '_3d_mm.uwind.seasmean.nc'\n",
+    "        elif model == 'IPSL-CM5A':\n",
+    "            ifile = model + '_' + run + '_3d_mm.remapcon.uwind.seasmean.nc'\n",
+    "        ncfile = nc.Dataset('../../' + model + '/' + ifile, 'r')\n",
+    "        # pressure levels and zonal wind are named differently\n",
+    "        # in the two models\n",
+    "        if model == 'MPI-ESM':\n",
+    "            levs_sm = ncfile.variables['plev'][:].data\n",
+    "            u_wind_sm = np.squeeze(ncfile.variables['u'][:].data)\n",
+    "        elif model == 'IPSL-CM5A':\n",
+    "            levs_sm = ncfile.variables['presnivs'][:].data\n",
+    "            u_wind_sm = np.squeeze(ncfile.variables['vitu'][:].data)\n",
+    "        ncfile.close()\n",
+    "        del ifile, ncfile\n",
+    "\n",
+    "        levind850 = (np.abs(levs_sm-85000)).argmin() # index of 850 hPa level\n",
+    "        # DJF: do not read last timestep, because it only contains the value from\n",
+    "        #      Dec of the last year (note: first value only contains values from\n",
+    "        #      Jan and Feb of first year)\n",
+    "        # other seasons: read all available time steps\n",
+    "        u850_smym = {'DJF': u_wind_sm[0:-1:4, levind850, :, :],\n",
+    "                     'MAM': u_wind_sm[1::4, levind850, :, :],\n",
+    "                     'JJA': u_wind_sm[2::4, levind850, :, :],\n",
+    "                     'SON': u_wind_sm[3::4, levind850, :, :],\n",
+    "                     }\n",
+    "        del levs_sm, u_wind_sm, levind850\n",
+    "\n",
+    "        # do bootstrap calculations\n",
+    "        print('##### seasonal-mean #####')\n",
+    "        u850_smym_bs1 = {}\n",
+    "        for s in seasons:\n",
+    "            u850_smym_bs1[s] = calc_bootstrap_dist(u850_smym[s], lats, lons, nreps)\n",
+    "        u850_smym_bs[run] = u850_smym_bs1.copy()\n",
+    "        del s, u850_smym_bs1\n",
+    "        del u850_smym\n",
+    "    del run\n",
+    "    \n",
+    "    ##########################################################################\n",
+    "    ##########################################################################\n",
+    "    # Calculate responses and store significance masks\n",
+    "    \n",
+    "    # calculate responses\n",
+    "    # time-mean\n",
+    "    du850_tmym = np.full((4, nreps, len(lats), len(lons)), np.nan, dtype=float)\n",
+    "\n",
+    "    du850_tmym[0, :, :, :], du850_tmym[1, :, :, :], du850_tmym[2, :, :, :], \\\n",
+    "    du850_tmym[3, :, :, :] = \\\n",
+    "        fct.calc_3impacts_timmean(u850_tmym_bs['T1C1W1'], u850_tmym_bs['T2C2W2'],\n",
+    "                                  u850_tmym_bs['T1C2W2'], u850_tmym_bs['T2C1W1'],\n",
+    "                                  u850_tmym_bs['T1C2W1'], u850_tmym_bs['T1C1W2'],\n",
+    "                                  u850_tmym_bs['T2C2W1'], u850_tmym_bs['T2C1W2'])\n",
+    "\n",
+    "    # seasonal-mean\n",
+    "    du850_smym = np.full((len(seasons), 4, nreps, len(lats), len(lons)), np.nan,\n",
+    "                         dtype=float)\n",
+    "    for s, seas in enumerate(seasons):\n",
+    "        du850_smym[s, 0, :, :, :], du850_smym[s, 1, :, :, :], \\\n",
+    "        du850_smym[s, 2, :, :, :], du850_smym[s, 3, :, :, :] = \\\n",
+    "           fct.calc_3impacts_timmean(u850_smym_bs['T1C1W1'][seas],\n",
+    "                                     u850_smym_bs['T2C2W2'][seas],\n",
+    "                                     u850_smym_bs['T1C2W2'][seas],\n",
+    "                                     u850_smym_bs['T2C1W1'][seas],\n",
+    "                                     u850_smym_bs['T1C2W1'][seas],\n",
+    "                                     u850_smym_bs['T1C1W2'][seas],\n",
+    "                                     u850_smym_bs['T2C2W1'][seas],\n",
+    "                                     u850_smym_bs['T2C1W2'][seas])\n",
+    "    del s, seas\n",
+    "\n",
+    "    # calculate percentiles of bootstrap distributions\n",
+    "    lp = 5; up = 95 # 5th-95th percentile range\n",
+    "    # set axis to calculate percentiles over nreps=1000\n",
+    "    # time-mean dimensions: 3, nreps, lats, lons\n",
+    "    du850_tmym_perc = np.percentile(du850_tmym, [lp, up], axis=1)\n",
+    "    # seasonal-mean dimensions: seasons, 3, nreps, lats, lons\n",
+    "    du850_smym_perc = np.percentile(du850_smym, [lp, up], axis=2)\n",
+    "    # new dimensions:\n",
+    "    # time-mean: 2, 3, lats, lons\n",
+    "    # seasonal-mean: 2, seasons, 3, lats, lons\n",
+    "    del lp, up\n",
+    "\n",
+    "    # create mask based on percentiles\n",
+    "    # true if significant: both percentile values have the same sig and, thus, 0\n",
+    "    #                      is not included\n",
+    "    # true if sign is the same and response is \n",
+    "    du850_mask_tm_bs = {'total': np.sign(du850_tmym_perc[0, 0, :, :]) == \\\n",
+    "                                 np.sign(du850_tmym_perc[1, 0, :, :]),\n",
+    "                        'SST': np.sign(du850_tmym_perc[0, 1, :, :]) == \\\n",
+    "                               np.sign(du850_tmym_perc[1, 1, :, :]),\n",
+    "                        'cloud': np.sign(du850_tmym_perc[0, 2, :, :]) == \\\n",
+    "                                 np.sign(du850_tmym_perc[1, 2, :, :]),\n",
+    "                        'water vapor' : np.sign(du850_tmym_perc[0, 3, :, :]) == \\\n",
+    "                                        np.sign(du850_tmym_perc[1, 3, :, :])}\n",
+    "    du850_mask_sm_bs = {'total': np.sign(du850_smym_perc[0, :, 0, :, :]) == \\\n",
+    "                                 np.sign(du850_smym_perc[1, :, 0, :, :]),\n",
+    "                        'SST': np.sign(du850_smym_perc[0, :, 1, :, :]) == \\\n",
+    "                               np.sign(du850_smym_perc[1, :, 1, :, :]),\n",
+    "                        'cloud': np.sign(du850_smym_perc[0, :, 2, :, :]) == \\\n",
+    "                                 np.sign(du850_smym_perc[1, :, 2, :, :]),\n",
+    "                        'water vapor': np.sign(du850_smym_perc[0, :, 3, :, :]) == \\\n",
+    "                                       np.sign(du850_smym_perc[1, :, 3, :, :])}\n",
+    "\n",
+    "    ##############################################################################\n",
+    "    # save masks as numpy arrays\n",
+    "    np.save('../../' + model + '/' + model + '_du850_mask_tm_bs.npy', du850_mask_tm_bs)\n",
+    "    np.save('../../' + model + '/' + model + '_du850_mask_sm_bs.npy', du850_mask_sm_bs)\n",
+    "\n",
+    "    del u850_tmym_bs, u850_smym_bs\n",
+    "    del du850_tmym, du850_smym, du850_tmym_perc, du850_smym_perc\n",
+    "    del du850_mask_tm_bs, du850_mask_sm_bs\n",
+    "    del lats, lons\n",
+    "    \n",
+    "    print('##############################')\n",
+    "    print('##############################')\n",
+    "\n",
+    "del model, models\n",
+    "print('###########')\n",
+    "print('## Done! ##')\n"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/.ipynb_checkpoints/figure1_robust_response-checkpoint.ipynb b/pythonscripts/.ipynb_checkpoints/figure1_robust_response-checkpoint.ipynb
new file mode 100644
index 0000000..09183b9
--- /dev/null
+++ b/pythonscripts/.ipynb_checkpoints/figure1_robust_response-checkpoint.ipynb
@@ -0,0 +1,793 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Robust zonal wind response\n",
+    "\n",
+    "This script generates figure 1: maps of zonal wind response during DJF for\n",
+    "- coupled CMIP5 models (RCP8.5)\n",
+    "- atmosphere CMIP5 models (amipFuture and amip4K)\n",
+    "- ICON, MPI-ESM and IPSL-CM5A.\n",
+    "\n",
+    "Note: for ICON, we investigate simulations with locked clouds and interactive water vapor. For MPI-ESM and IPSL-CM5A, we investigate simulations with both locked clouds and locked water vapor."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load own colorbar"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mymap, mymap2 = fct.generate_mymap()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify CMIP5 models and simulations that are analyzed"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# models\n",
+    "models_amip = ['bcc-csm1-1', 'CanAM4', 'CCSM4', 'CNRM-CM5', 'HadGEM2-A',\n",
+    "               'IPSL-CM5A-LR', 'IPSL-CM5B-LR', 'MIROC5', 'MPI-ESM-LR',\n",
+    "               'MPI-ESM-MR', 'MRI-CGCM3']\n",
+    "models_cmip = ['ACCESS1-0', 'ACCESS1-3', 'bcc-csm1-1-m', 'bcc-csm1-1',\n",
+    "               'BNU-ESM', 'CanESM2', 'CCSM4', 'CESM1-BGC',\n",
+    "               'CESM1-CAM5', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS',\n",
+    "               'CNRM-CM5', 'CSIRO-Mk3-6-0', 'EC-EARTH', 'FGOALS-g2',\n",
+    "               'FIO-ESM', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M',\n",
+    "               'GISS-E2-H', 'GISS-E2-R', 'HadGEM2-AO', 'HadGEM2-CC',\n",
+    "               'HadGEM2-ES', 'inmcm4', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR',\n",
+    "               'IPSL-CM5B-LR', 'MIROC5', 'MIROC-ESM-CHEM', 'MIROC-ESM',\n",
+    "               'MPI-ESM-LR', 'MPI-ESM-MR', 'MRI-CGCM3', 'NorESM1-ME',\n",
+    "               'NorESM1-M']\n",
+    "\n",
+    "# simulations\n",
+    "sims_cmip = ['historical', 'rcp85']\n",
+    "sims_amip = ['amip', 'amip4K', 'amipFuture']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (ICON, MPI-ESM, IPSL-CM5A)\n",
+    "\n",
+    "The zonal wind fields were extracted from the data in the archive with Climate Data Operators (cdo; https://www.mpimet.mpg.de/cdo):\n",
+    "\n",
+    "cdo selvar,u file.nc file.uwind.nc"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T1C1W1\n",
+      "reading T2C2W2\n"
+     ]
+    }
+   ],
+   "source": [
+    "# ICON simulations with locked clouds and interactive water vapor\n",
+    "runs_cld = ['T1C1', 'T2C2']\n",
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "u850_icon = {}\n",
+    "for run in runs_cld:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    u850_icon[run], lats, lons = fct.read_var_onelevel(ipath + ifile,\n",
+    "                                                       'u', 'lev', 850)\n",
+    "    del ifile\n",
+    "del run, ipath\n",
+    "\n",
+    "##############################################################################\n",
+    "# MPI-ESM and IPSL-CM5A simulations with locked clouds and locked water vapor\n",
+    "runs_cldvap = ['T1C1W1', 'T2C2W2']\n",
+    "u850_mpi = {}; u850_ipsl = {}\n",
+    "for run in runs_cldvap:\n",
+    "    print('reading ' + run)\n",
+    "    # MPI-ESM\n",
+    "    #print('   MPI-ESM')\n",
+    "    ifile = 'MPI-ESM_' + run + '_3d_mm.uwind.nc'\n",
+    "    u850_mpi[run], lats_mpi, lons_mpi = fct.read_var_onelevel('../../MPI-ESM/' + ifile,\n",
+    "                                                              'u', 'plev', 850)\n",
+    "    del ifile\n",
+    "    \n",
+    "    # IPSL-CM5A\n",
+    "    #print('   IPSL-CM5A')\n",
+    "    ifile = 'IPSL-CM5A_' + run + '_3d_mm.remapcon.uwind.nc'\n",
+    "    u850_ipsl[run], lats_ipsl, lons_ipsl = fct.read_var_onelevel('../../IPSL-CM5A/' + ifile,\n",
+    "                                                                 'vitu', 'presnivs', 850)\n",
+    "    del ifile\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (CMIP5 models)\n",
+    "\n",
+    "Note: All simulations were interpolated to the same grid and stored in numpy arrays with the jupyter notebook \"interpolate_cmip5_data_to_common_grid.ipynb\"."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ipath = '../../cmip5/'\n",
+    "ntime = 360 # length of cmip/amip simulations in months (30 years)\n",
+    "\n",
+    "# coupled models: historical and RCP8.5 simulations\n",
+    "# create arrays with dimensions (ntime, number of models, lats, lons)\n",
+    "u850_hist = np.full((ntime, len(models_cmip), len(lats), len(lons)),\n",
+    "                    np.nan, dtype=float)\n",
+    "u850_rcp85 = np.full((ntime, len(models_cmip), len(lats), len(lons)),\n",
+    "                     np.nan, dtype=float)\n",
+    "for m, model in enumerate(models_cmip):\n",
+    "    u850_hist[:, m, :, :] = np.load(ipath + model + '_u850_historical.npy')\n",
+    "    u850_rcp85[:, m, :, :] = np.load(ipath + model + '_u850_rcp85.npy')\n",
+    "del m, model\n",
+    "\n",
+    "# atmosphere models: amip, amip4K and amipFuture simulations\n",
+    "# create arrays with dimensions (ntime, number of models, lats, lons)\n",
+    "u850_amip = np.full((ntime, len(models_amip), len(lats), len(lons)),\n",
+    "                    np.nan, dtype=float)\n",
+    "u850_amip4k = np.full((ntime, len(models_amip), len(lats), len(lons)),\n",
+    "                      np.nan, dtype=float)\n",
+    "u850_amipfut = np.full((ntime, len(models_amip), len(lats), len(lons)),\n",
+    "                       np.nan, dtype=float)\n",
+    "for m, model in enumerate(models_amip):\n",
+    "    u850_amip[:, m, :, :] = np.load(ipath + model + '_u850_amip.npy')\n",
+    "    u850_amip4k[:, m, :, :] = np.load(ipath + model + '_u850_amip4k.npy')\n",
+    "    u850_amipfut[:, m, :, :] = np.load(ipath + model + '_u850_amipfut.npy')\n",
+    "del m, model\n",
+    "del ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean for all simulations"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/mnt/lustre02/work/bb1018/b380490/outputdata/ERL2021_data/pythonscripts/helper_functions.py:64: RuntimeWarning: Mean of empty slice\n",
+      "  monthly_mean[month] = np.nanmean(monthly_data[month], axis=0)\n",
+      "/mnt/lustre02/work/bb1018/b380490/outputdata/ERL2021_data/pythonscripts/helper_functions.py:71: RuntimeWarning: Mean of empty slice\n",
+      "  seasons_dict[season] ], axis=0)\n"
+     ]
+    }
+   ],
+   "source": [
+    "# ICON\n",
+    "u850_icon_djf = {}\n",
+    "for run in runs_cld:\n",
+    "    u850_icon_djf[run] = fct.calcMonthlyandSeasonMean(u850_icon[run],\n",
+    "                                                      months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "# MPI-ESM and IPSL-CM5A\n",
+    "u850_mpi_djf = {}; u850_ipsl_djf = {}\n",
+    "for run in runs_cldvap:\n",
+    "    u850_mpi_djf[run] = fct.calcMonthlyandSeasonMean(u850_mpi[run],\n",
+    "                                                     months, seasons)[1]['DJF']\n",
+    "    u850_ipsl_djf[run] = fct.calcMonthlyandSeasonMean(u850_ipsl[run],\n",
+    "                                                      months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "# coupled CMIP5 models\n",
+    "u850_cmip_djf = np.full((len(sims_cmip), len(models_cmip), len(lats),\n",
+    "                         len(lons)), np.nan, dtype=float)\n",
+    "u850_cmip_djf[0, :, :, :] = fct.calcMonthlyandSeasonMean(u850_hist, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "u850_cmip_djf[1, :, :, :] = fct.calcMonthlyandSeasonMean(u850_rcp85, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "\n",
+    "# atmosphere CMIP5 models\n",
+    "u850_amip_djf = np.full((len(sims_amip), len(models_amip), len(lats),\n",
+    "                         len(lons)), np.nan, dtype=float)\n",
+    "u850_amip_djf[0, :, :, :] = fct.calcMonthlyandSeasonMean(u850_amip, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "u850_amip_djf[1, :, :, :] = fct.calcMonthlyandSeasonMean(u850_amip4k, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "u850_amip_djf[2, :, :, :] = fct.calcMonthlyandSeasonMean(u850_amipfut, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "\n",
+    "# model mean for historical and amip simulations\n",
+    "u850_cmip_djf_mm = np.nanmean(u850_cmip_djf, axis=1)\n",
+    "u850_amip_djf_mm = np.nanmean(u850_amip_djf, axis=1)\n",
+    "\n",
+    "# delete variables with time information\n",
+    "del u850_icon, u850_mpi, u850_ipsl\n",
+    "del u850_hist, u850_rcp85, u850_amip, u850_amip4k, u850_amipfut"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF responses"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# ICON\n",
+    "du850_icon = u850_icon_djf['T2C2'] - u850_icon_djf['T1C1']\n",
+    "# MPI-ESM\n",
+    "du850_mpi = u850_mpi_djf['T2C2W2'] - u850_mpi_djf['T1C1W1']\n",
+    "# IPSL-CM5A\n",
+    "du850_ipsl = u850_ipsl_djf['T2C2W2'] - u850_ipsl_djf['T1C1W1']\n",
+    "\n",
+    "# CMIP5\n",
+    "du850_rcp85 = u850_cmip_djf[1, :, :, :] - u850_cmip_djf[0, :, :, :]\n",
+    "du850_amip4k = u850_amip_djf[1, :, :, :] - u850_amip_djf[0, :, :, :]\n",
+    "du850_amipfut = u850_amip_djf[2, :, :, :] - u850_amip_djf[0, :, :, :]\n",
+    "\n",
+    "# model mean\n",
+    "du850_rcp85_mm = np.nanmean(du850_rcp85, axis=0)\n",
+    "du850_amip4k_mm = np.nanmean(du850_amip4k, axis=0)\n",
+    "du850_amipfut_mm = np.nanmean(du850_amipfut, axis=0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Determine where responses are robust (CMIP simulations) and where ICON, MPI-ESM and IPSL-CM5A disagree with the robust amip4K response"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:58: RuntimeWarning: invalid value encountered in less\n",
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:60: RuntimeWarning: invalid value encountered in greater\n",
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:63: RuntimeWarning: invalid value encountered in less\n",
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:65: RuntimeWarning: invalid value encountered in greater\n",
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:68: RuntimeWarning: invalid value encountered in less\n",
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:70: RuntimeWarning: invalid value encountered in greater\n"
+     ]
+    }
+   ],
+   "source": [
+    "# find indices, where 9 or more AMIP models agree on response\n",
+    "# 9 or more models should agree on the sign: set threshold to 7 (9-2)\n",
+    "# (because we sum over all models and positive and negative signs might cancel\n",
+    "#  each other out)\n",
+    "# 9 models agree on sign: sum = 7 or sum = -7\n",
+    "mask_thd = 7\n",
+    "mask_model_amip4k = np.sign(du850_amip4k)\n",
+    "mask_model_amipfut = np.sign(du850_amipfut)\n",
+    "\n",
+    "# calculate sum over mask_model arrays along axis of models\n",
+    "# -> how many models agree on the sign\n",
+    "mask_sum_amip4k = np.nansum(mask_model_amip4k, axis=0)\n",
+    "mask_sum_amipfut = np.nansum(mask_model_amipfut, axis=0)\n",
+    "\n",
+    "# apply threshold to mask_sum arrays\n",
+    "mask_u850_amip4k = np.logical_or(mask_sum_amip4k >= mask_thd,\n",
+    "                                 mask_sum_amip4k <= -1*mask_thd) * 1\n",
+    "mask_u850_amipfut = np.logical_or(mask_sum_amipfut >= mask_thd,\n",
+    "                                  mask_sum_amipfut <= -1*mask_thd) * 1\n",
+    "\n",
+    "del mask_model_amip4k, mask_model_amipfut\n",
+    "del mask_sum_amip4k, mask_sum_amipfut\n",
+    "del mask_thd\n",
+    "\n",
+    "##############################################################################\n",
+    "# find indices, where 30 or more coupled CMIP5 models agree on response\n",
+    "# 30 or more models should agree on the sign: set threshold to 23 (30-7)\n",
+    "# (37 models in total)\n",
+    "# (because we sum over all models and positive and negative signs might cancel\n",
+    "#  each other out)\n",
+    "# 30 models agree on sign: sum = 23 or sum = -23\n",
+    "mask_thd = 23\n",
+    "mask_model_rcp85 = np.sign(du850_rcp85)\n",
+    "\n",
+    "# calculate sum over mask_model arrays along axis of models\n",
+    "# -> how many models agree on the sign\n",
+    "mask_sum_rcp85 = np.nansum(mask_model_rcp85, axis=0)\n",
+    "\n",
+    "# apply threshold to mask_sum arrays\n",
+    "mask_u850_rcp85 = np.logical_or(mask_sum_rcp85 >= mask_thd,\n",
+    "                                mask_sum_rcp85 <= -1*mask_thd) * 1\n",
+    "\n",
+    "del mask_model_rcp85, mask_sum_rcp85, mask_thd\n",
+    "\n",
+    "##############################################################################\n",
+    "# find indices, where sign of robust response in amip4K simulations does not\n",
+    "# agree with ICON, MPI-ESM and IPSL-CM5A\n",
+    "mask_model_icon = np.full((len(models_amip), len(lats), len(lons)),\n",
+    "                          np.nan, dtype=float)\n",
+    "mask_model_mpi = np.full((len(models_amip), len(lats), len(lons)),\n",
+    "                         np.nan, dtype=float)\n",
+    "mask_model_ipsl = np.full((len(models_amip), len(lats), len(lons)),\n",
+    "                          np.nan, dtype=float)\n",
+    "\n",
+    "for m in range(len(models_amip)):\n",
+    "    mask_model_icon[m, :, :] = \\\n",
+    "      np.logical_or(np.logical_and(du850_icon * mask_u850_amip4k > 0,\n",
+    "                                   du850_amip4k[m, :, :] * mask_u850_amip4k < 0),\n",
+    "                    np.logical_and(du850_icon * mask_u850_amip4k < 0,\n",
+    "                                   du850_amip4k[m, :, :] * mask_u850_amip4k > 0)) * 1\n",
+    "    mask_model_mpi[m, :, :] = \\\n",
+    "      np.logical_or(np.logical_and(du850_mpi * mask_u850_amip4k > 0,\n",
+    "                                   du850_amip4k[m, :, :] * mask_u850_amip4k < 0),\n",
+    "                    np.logical_and(du850_mpi * mask_u850_amip4k < 0,\n",
+    "                                   du850_amip4k[m, :, :] * mask_u850_amip4k > 0)) * 1\n",
+    "    mask_model_ipsl[m, :, :] = \\\n",
+    "      np.logical_or(np.logical_and(du850_ipsl * mask_u850_amip4k > 0,\n",
+    "                                   du850_amip4k[m, :, :] * mask_u850_amip4k < 0),\n",
+    "                    np.logical_and(du850_ipsl * mask_u850_amip4k < 0,\n",
+    "                                   du850_amip4k[m, :, :] * mask_u850_amip4k > 0)) * 1\n",
+    "del m\n",
+    "\n",
+    "mask_thd = 9 # icon should agree with 9 or more models\n",
+    "mask_u850_icon_na = (np.nansum(mask_model_icon, axis=0) >= mask_thd) * 1\n",
+    "mask_u850_mpi_na = (np.nansum(mask_model_mpi, axis=0) >= mask_thd) * 1\n",
+    "mask_u850_ipsl_na = (np.nansum(mask_model_ipsl, axis=0) >= mask_thd) * 1\n",
+    "\n",
+    "del mask_model_icon, mask_model_mpi, mask_model_ipsl\n",
+    "del mask_thd"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate jet latitude in model-mean historical, model-mean amip, ICON, MPI-ESM, and IPSL-CM5A control simulations for the Northern Hemisphere"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# latitudes in Northern Hemisphere\n",
+    "latind0 = (np.abs(lats-0)).argmin() + 1\n",
+    "lats_NH = lats[latind0:]\n",
+    "\n",
+    "# shift longitudes from 0deg...360deg to -270deg...90deg for visualization reasons\n",
+    "# and look at NH\n",
+    "u850_cmip_mm_shift, lons_shift = fct.shiftgrid_copy(90.,\n",
+    "                                                    u850_cmip_djf_mm[0, latind0:, :],\n",
+    "                                                    lons, start=False)\n",
+    "u850_amip_mm_shift, _ = fct.shiftgrid_copy(90.,\n",
+    "                                           u850_amip_djf_mm[0, latind0:, :],\n",
+    "                                           lons, start=False)\n",
+    "u850_icon_shift, _ = fct.shiftgrid_copy(90.,\n",
+    "                                        u850_icon_djf['T1C1'][latind0:, :],\n",
+    "                                        lons, start=False)\n",
+    "u850_mpi_shift, _ = fct.shiftgrid_copy(90.,\n",
+    "                                       u850_mpi_djf['T1C1W1'][latind0:, :],\n",
+    "                                       lons, start=False)\n",
+    "u850_ipsl_shift, _ = fct.shiftgrid_copy(90.,\n",
+    "                                        u850_ipsl_djf['T1C1W1'][latind0:, :],\n",
+    "                                        lons, start=False)\n",
+    "\n",
+    "jetlat_hist_mm_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "jetlat_amip_mm_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "jetlat_icon_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "jetlat_mpi_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "jetlat_ipsl_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "for lo in range(lons_shift.size):\n",
+    "    # historical simulation\n",
+    "    jetlat_hist_mm_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH_nan(u850_cmip_mm_shift[:, lo],\n",
+    "                                     lats_NH, lons_shift[lo])\n",
+    "    # amip simulation\n",
+    "    jetlat_amip_mm_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH_nan(u850_amip_mm_shift[:, lo],\n",
+    "                                    lats_NH, lons_shift[lo])\n",
+    "    # ICON\n",
+    "    jetlat_icon_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH(u850_icon_shift[:, lo], lats_NH)\n",
+    "    # MPI-ESM\n",
+    "    jetlat_mpi_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH(u850_mpi_shift[:, lo], lats_NH)\n",
+    "    # IPSL-CM5A\n",
+    "    jetlat_ipsl_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH_nan(u850_ipsl_shift[:, lo],\n",
+    "                                    lats_NH, lons_shift[lo])\n",
+    "del lo\n",
+    "\n",
+    "del u850_cmip_mm_shift, u850_amip_mm_shift, \\\n",
+    "    u850_icon_shift, u850_mpi_shift, u850_ipsl_shift\n",
+    "del lons_shift"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Prepare plot of u850 response\n",
+    "\n",
+    "Shift the longitudes from 0deg...360deg to -90deg...270deg for visualization reasons and select the North Atlantic region (otherwise it is very slow to add the dots for the regions, in which the response is significant in the CMIP5 models, and the hatching for the regions, in which the response in ICON, MPI-ESM and IPSL-CM5A does not agree with the robust amip4K response)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# shift longitudes\n",
+    "lons_plot = fct.shiftgrid_copy(90., du850_icon, lons, start=False)[1]\n",
+    "\n",
+    "# North Atlantic region\n",
+    "lonind_west = (np.abs(lons_plot--90)).argmin() # find index of 90°W\n",
+    "lonind_east = (np.abs(lons_plot-35)).argmin()  # find index of 35°E\n",
+    "latind_sout = (np.abs(lats-20)).argmin()       # find index of 20°N\n",
+    "latind_nort = (np.abs(lats-80)).argmin()       # find index of 80°N\n",
+    "\n",
+    "lons_plot = lons_plot[lonind_west:lonind_east+1]\n",
+    "lats_plot = lats[latind_sout:latind_nort+1]\n",
+    "\n",
+    "# MPI-ESM uses slightly different latitudes\n",
+    "latind_sout_mpi = (np.abs(lats_mpi-20)).argmin() # find index of 20°N\n",
+    "latind_nort_mpi = (np.abs(lats_mpi-80)).argmin() # find index of 80°N\n",
+    "lats_mpi_plot = lats_mpi[latind_sout_mpi:latind_nort_mpi+1]\n",
+    "\n",
+    "# shift zonal wind fields and masks\n",
+    "du850_rcp85_plot = fct.shiftgrid_copy(90., du850_rcp85_mm, lons,\n",
+    "                                      start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                      lonind_west:lonind_east+1]\n",
+    "mask_rcp85_plot = fct.shiftgrid_copy(90., mask_u850_rcp85, lons,\n",
+    "                                     start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                     lonind_west:lonind_east+1]\n",
+    "du850_amipfut_plot = fct.shiftgrid_copy(90., du850_amipfut_mm, lons,\n",
+    "                                        start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                        lonind_west:lonind_east+1]\n",
+    "mask_amipfut_plot = fct.shiftgrid_copy(90., mask_u850_amipfut, lons,\n",
+    "                                       start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                       lonind_west:lonind_east+1]\n",
+    "du850_amip4k_plot = fct.shiftgrid_copy(90., du850_amip4k_mm, lons,\n",
+    "                                       start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                       lonind_west:lonind_east+1]\n",
+    "mask_amip4k_plot = fct.shiftgrid_copy(90., mask_u850_amip4k, lons,\n",
+    "                                      start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                      lonind_west:lonind_east+1]\n",
+    "\n",
+    "du850_icon_plot = fct.shiftgrid_copy(90., du850_icon, lons,\n",
+    "                                     start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                     lonind_west:lonind_east+1]\n",
+    "mask_icon_plot = fct.shiftgrid_copy(90., mask_u850_icon_na, lons,\n",
+    "                                    start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                    lonind_west:lonind_east+1]\n",
+    "\n",
+    "du850_mpi_plot = fct.shiftgrid_copy(90., du850_mpi, lons,\n",
+    "                                    start=False)[0][latind_sout_mpi:latind_nort_mpi+1,\n",
+    "                                                    lonind_west:lonind_east+1]\n",
+    "mask_mpi_plot = fct.shiftgrid_copy(90., mask_u850_mpi_na, lons,\n",
+    "                                   start=False)[0][latind_sout_mpi:latind_nort_mpi+1,\n",
+    "                                                   lonind_west:lonind_east+1]\n",
+    "\n",
+    "du850_ipsl_plot = fct.shiftgrid_copy(90., du850_ipsl, lons,\n",
+    "                                    start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                    lonind_west:lonind_east+1]\n",
+    "mask_ipsl_plot = fct.shiftgrid_copy(90., mask_u850_ipsl_na, lons,\n",
+    "                                   start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                   lonind_west:lonind_east+1]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot maps of u850 response in DJF for RCP8.5, amipFuture, amip4K, ICON, MPI-ESM and IPSL-CM5A"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAGoCAYAAABMsNRRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydZ3gVRReA35NKQhFCUzpIEZHyAVJEBBFBERRBsQFSFRFRVETpHaQICEoRFBBBBRFBOggivUmRzk1ChwAJIaEkJJnvx2xuNjf3JvcGQoLu+zz7ZHb2TNnN3bNTzpwRpRQWFhYWFhYWFhYWFhYW7uOV2RWwsLCwsLCwsLCwsLC417A6UhYWFhYWFhYWFhYWFh5idaQsLCwsLCwsLCwsLCw8xOpIWVhYWFhYWFhYWFhYeIjVkbKwsLCwsLCwsLCwsPAQqyNlYWFhYWFhYWFhYWHhIVZHKoMRkdoi8rOInBWRWBG5LCKrReRNEfE2ZOqLiDKORk7yKCEiCcb1Tqb4dkZcaVPcTFNeSkQuisgGEXnGIc9QB7nEo7kb97TeIU2UiGwSkeddyIuIvCEia437vyUip0XkRxF50iQ30CHfKyKyXURed8gvUEQGichREbkhIqdEZLaIlHCj7u3E+X3vSSuthcXt8m/UB6Y8AkQk0khXOX1PKNX8E59L/XSkdfXeKxFp6GFeuQ1dVdXTelhYZEUsvZR+bkcvOclrhZHXUBdlNHSIL2U8o1ARKXW75VukD6sjlYGIyAfAJiAI6AU0BDoAR4HJQFOHJFFAGydZtQWiPSj6IlDbODoDAiwTkacc5Faa5BKPP90sY58pTUcgO7BQRGqahQwl/DMwCwg1ZJ9CP49swFoRuc8h78eNfF8HzgA/iEgH0/XpQE/gG6AJ0Bd4wsgrh5v1f5nk9+3suVtY3DH+5foAoAWQy1THO81udJ1230Yeju99bWC7h3nkBgYAVkfK4p7H0ku3zZ3QS4jIa4DbHT0RKQdsAOKAJ5RSwbdTvsVtoJSyjgw40A37BOBLF9cfBCoZ4fqAAmaiFVF2B9ljwHeGTCdTfDsjrrQpbiZw2iF9LuAKsNgUFwrMSee9rQc2OsQVMe53ikN8X6OOLV3k1QgINMIDDVkf03Uf4/73GecBaMUx3CGfZ4y0jdOoe4pnZh3WkdHHv1kfmPJYBVwGtgLnAe/Mfu6pPZvbyKuE47O/Q3X0z+znZB3/rcPSS1njQA/OnAdeM57VUIfric++oXFewZA/BBTK7Pr/1w9rRirj+BQIBz5xdlEpZVNK7XOIXoh+WVokRojIY2hl9n16K6KUuooeXSqdluxtlHEaPcJULDFORPyAj4ClSqlfXKRbpZS6nkq+ccDfJNXdB/AGrjqIXjH+Wr9pi6zIv1ofiEhh9Ezzj+gZ44JAYydyoSIyR0TaiMgR0aa5f4lIGRHJLiJTDbOiCyIyVkR8TGlTmNCINjPeKCIviMg/IhIjIodFpFU67iHRBKmEQ/xAEVFGuAQQYlz6xmRq1M50fzOd5K1EZKBjniLyiIisFJFo9Mx94vUWIrJVRK6LNnGeLyLFHPO1sLhNLL1EltBLo4ADSql5btxTFfRgdhhQTyl11v0nYpERWI3ODMAwZ6sPrFJK3fQg6XXgF5JPm7dFT7une9rWeOmLktTZSKSZ8aGOMT7abtsdOykjJ5AXsJmiq6NHWhanN1+Dkhh1V0pFoZV1dxF5UkRyiEgFYDSwF1jrZp4bRSReRM6JyBQRCbrNOlpYOOU/og/aoL8ns9EdgpvAmy5knwC6os2I3kQ3wH4BfkCbDb0KTAM+BN5yo+zSwJfAWHTj7jiQbP2lCW8R8TEd3u7dnp1zJDUgR5BkarTUw3wS+Q1tpvQ8MA5ARLqgn8dB4CXgbeAR4E9Dz1pY3DaWXkpBpuglEXkc/fy6upHno8AfwCngSaVUmBtpLDIYn7RFLNJBPrQJ2ol0pJ0NrDZGUi4BrdAvtkeYRkzuB/oZfz83iSwBdqBHVwsC3YBfRaSNUmqOh2UURY+ohGM0Bkzx4Plz8BYR0Dbb76A7ZBNM19ujFdQfprhtwNNKqdg08j4HDDbkbwB10M+3jog86uEHxcLCHf4L+qAtcEQptc0obxHwoojkVko5NoxyAM8opSIN2fvR7/d2pdTHhsxqEXkOvabp6zTKLgjUVkptNfJbARxAv+d1HWQPO5xvQq/JdAulVIyI/G2cBieWeRt8qZSy6zbRazw/B75TSnUwxW9Dj9Z3BMbfZpkWFmDppUzXSyLiC0wFxiiljrhxP8OBSHRb57Ib8hZ3AasjlfVYB5xGO1oIQSu6n4E8HuRRGLhlOo8G+qM7HwAopd4zJxCRX9E2xCMAdxRUHYcyYtAv951Y8GjuzMSiGw6fmeKGAq2Bj9FKthh68fdyEamnlLrmKmOl1Er04tVE1onIfmCRkef0O1B/C4s7RZbXByJSAyiPXg+ZyCz0CG4r9CiumS2JjRWDxM7NSge5w0CN1Mo2OGXu0Cil4kVkPvCJiHgppRJMsi+in2ciUW7kn5H86nBeG71W5Aez+RC6zofRo+ZWR8ois7H0Utq4o5d6oZ/dMDfyAz3z/RwwWkQ6KqUXTFlkLlZHKmO4jJ7tKO5pQqWUEpEf0FPSJ9ALLyNFxBMFFYZ+2ZRRl1NKqfg0yk18yT8XkQeUUufSKGMv0Am9XqkCehRpvohUVEpdNGROGX89fQ61gHggAjiplLIrW8OM71P0YtYZpvjEEdtOJJ+9cofFwDX0tLnVkbK40/zb9UGiqcwSEclthHeg10y+ScoGS4TDeWwq8dlSq6fBBRdxfkB+h+v/KKWOu5Hn3cLxuRYw/q5xIe/4jCws0oull5JzV/WSiPgDfdBtFn/jPBF/o85RDs9kPNrL6CD04PU7btTDIoOxOlIZgFIqTkTWA0+LiL9SKsbDLGajZ2AqoG3nPeWWUmpnOtKJ8dedUY5oUxnbRCQEbWo3EHjXiN+JtnduRkqllRq7DCcTzqho/N1hjlRKHRORK+gRqPRije5Y3HH+zfpAtEOZV43TvU5E8otI6QzuvBR0EReLbjS5S+JMuJ9DfF4P80iWPo31l47PNtFcpx3aDMiRzJ5Bs/iXYOmlTNdLT6A7ZM5m1j42jv8Byfa4VEoNNjpdvUXkplKqxx2ttYXHWM4mMo6R6A/waGcXRaSkiFRydk0pdRj4ClhAymnlDMEwI3kZPQN03tP0Sql1aDOVTiJSxIiLRS+0bCoiLV2U+7SIBHpQVGLdkk2ti0hZtGOLM57WHWiO3gdrWzrSWli4w79VHzRDr2UcBDzpcCQ2ZDJi7xYzRUWkVuKJsYj+ZfTahgTXyVKQuFbkEVNePugtGswkNjgDXOTxiEOc4z48qbEZ3VkqrZTa6eRwZx2FhYW7WHop40hLL+1xUrdERxRzjLDTjp5Sqg/wBfCBiIzIsDuwcAtrRiqDUEptEJEPgS9EpDx634STaBvip9DTua+jN7Z1lr5bRtVN9MZvLwDL0OZ3BdGzSNXQ+xikl/5Gvr2ARNvmEehN5n4S7RZ4CdopRRGgJdqbjSfmAH+hR5jGGmYEO9FrpPqiF2HOShQUkf5GnR5USp0w4laj7bv/IcnZxMdGnnM9vWELC3f4F+uDN9FrG8YopVJsxikiPYC2IjIgA+35L6D1ywD0SO87QFk8N3vZgfY6OlpEvNAdpq6Av4PcBfTM0asisg9tFhxiLP7+EfhWRMYBv6N1Xzt3K6CUuioiPYGvRCQ/sByt1woD9YD1SilLT1ncESy9lHl6yXB2sd5J3QBOKKVSXDOjlPrImJn6VERilFID72TlLdzH6khlIEqp8SKyHegBjEF7yYlCN/7fRncqMoMQtC3+aPSozXV0I+IZwxlDulBK/SMiP6FnpYYrpc4ZNs2tgDfQHqdmor3jXEB3iuo5LPBMq4x40Tuf90a7IB2M9hq0GeivlDppEvdCr+ESU9wBtF13EXQD6RQwBRiSDtMGCwu3+bfpA6Oh/yww21ljxWAG2qy3Hk4aDXeI42ivocOBMuhNPF8zZsndxjB1egE9yj4TPeAzHj1TPcAklyAinYzy1qC/o+2NNLPQ3ko7ov+nf6EdXLhtQqSUmioip4Ce6EasL3qmfQMOZj4WFreLpZeytl5Kg/fQ7ZgBInJDKfV5Wgks7jxiOf2wsLCwsLgXMdZ4+Cil3HZhbmFhYZGRWHrpv4W1RsrCwsLCwsLCwsLCwsJDrI6UhYWFhYWFhYWFhYWFh1imfRYWFhYWFhYWFhYWFh5izUhZWFhYWFhYWFhYWFh4iNWRsrCwsLCwsLCwsLCw8JB7uiMlmr0i8qYHab4SkRkZWS9PEJGJIrLEdF5cRH4TkRMickNELonIehF51iHdQBFRLo6bd/9O3EdEQo09pTxNN1BEPLJFNZ7lV56WZfHfxVGvGL/XMWmkqS4il0XkvrtTy9Rx1CtG3HARWWXUU4lIOxdp3xSRXwwdpNLzrmYG6dEPRroSqT0PF2leFJHzIpLD0/Is/nt42lbJau2URCy94lE6S6/8R7inO1JAK/TGcZ5sUDgaeENESmdMldxHRB5E79MwyBSdA70vUl+gCXo/kmhgmYi0MMlNB2o7HA2BOGBxhlf+3mEg0FlEymZ2RSzuGTzWK0qpneg9fnpkVKXcxYVeAb3nSAB6o9jUaA08CKwGrt7xCv47WAScR+/1ZGGRFp7qlCzTTknE0it3BUuv3IPc6x2p7sD3Sqlb7iZQSoUCG/F81/uM4ANgr9EIA0ApdUAp1VEp9b1Sap1S6jegOXAaveljotxppdRW8wEUQm8OOesu30eWRSn1N7qB+0Fm18XinsFjvWLwHdBFRDJ7o/MUesXgPqVUXWBIGukbK6WqKKU6oTfmtHBAaS9N04BuIpIts+tjkeXxSKdksXZKIpZeyWAsvXJvcs92pIyRmseABaa4tiKyUUTCRSRCRNaJSHUnyX9Bj/Zk2v2LiD96hCbNESqlVBwQCaSlhN8ELgAud/02la9EZKiIfGRMtV8TkaUiUsA4fhaRSBE5JSK9nKSvISJrRCTaSLtWRGo4kXvfMI26KSI7RaSui/qUFJEfROSiiMSIyB4RedGN+3hfRA6JNoOMMMpwTPcj+v8dkFZ+Fv9tnOkV07V+htlFtPFbdTTjWwwEAY3vQlWdkppeUUoluJOHu3Iuyp8pIqcNU8fNxnt5RESeM65/aOiDq6LNbvM7pM8lIpNE5KyhB46ISA8REQe5/4nIX4ZeOSMi/YBkMoacj4h8JiKHjfzOisjYtBopIvKoiKw2zJWui0iwiHztIPYzkBto4SQLCwvAtU4Rkc4ist/4DV8QkQUOOiXT2ymJWHolRX0svWJhJ9Nf0NvgKeAasNcUVwKYDbwMvI6exdkgIqUc0m4GCgIVM76aLqmFfln+cnZRRLyMl/V+42UuC7hc6yMiRYAngR+Mjpc7tAEaAF3R0/N10c/vV2Af0BJYBowUkSamsioBf6JNFdoBbYFcwJ8iUtkk1xEYD6xDz6rNBOYZ6cx1LwpsAyqjTaOeB3YDv4jI86nc8xvAWCPPJsAb6I9VkIPoBqN+td14Jhb/bZzpFYDX0KaznYEPgefQ5rV2lFJXgQOGXGaRql65S+RC65HpwItAGPpdHovWUe+iR7efxKTTjAbjUvTM+1igGbAC+AIYZpLLB/wB5EMPHr0LPAN0cFKXOWgz6bno/9kItLn0D64qL3p9wkogHq3fmgCD0bP9dpRSl4BDRtkWFq5IoVNEpC8wFf0dbY6eeYpEm/YnkhXaKYlYeiU5ll6xSEIpdU8e6OnPHalc90L/QA8D/R2u+aDXEnXOxPr3AhIAPxfXxwDKOKKAFmnk95khW8nN8hVwFPAxxX1hxPd1eFZhwHemuAXAFSC3KS4XEA4sND3/U8AKh3JfMcqYaYqbAVwE8jrIrgb2mM4HYsx+G+eTgN1u3KsvWnn1zuzfrXVk7cOZXgFCjd92DlPcG8b7W95BdiawKRPrn6peMWRKG+9gOzfyO21+V92Qn2nk/YQprpIRdwTwNsV/gZ5l9zbOmzqrF7rhFAPkM86HAbFAMZNMdvTaUmWKq2vk19YhvzeM+CrGeQlzuUB1d3Up8D1wNLN/t9aRdQ9HnYLukFwHvkgjXaa3U0x1sfRKUpylV6wj2XEvz0jdj/6B2xGR8iLyq4hcQDecbwHl0LM5dpSesbli5JFZFAKuKqViXVwfDzyKHj1ZDswVkaap5NcW+Fsptc+DOqxWyWevDht/7aaBxvXjQFGT3BPA70qpKya5q2jTpnpGVBHj+NmhzF/QHwczz6BnviKNWTgf0etMVgKVRSSXi/rvAKqI9iTUUEQCnQkpbZceiX7mFhapkUKvGKxWSkWbzheiTT4edZC7RNbWK3eDa0qpDabzRL2yRikV7xDvAzxgnD+BbqzNc8hvDuBH0oxybWCrUupkooBS6hqwxCHdM+iG0S8OemWVqTxnHEN/H6aKSGtjxtwVF7H0ikXqOOqU2mjnDN+lliiLtFMSsfRKEpZesUjGvdyRyoYeTQBARHKif8hF0aY3ddGNnL2GrCMxLuLvFsnq74jSziR2KqV+V0q1AraiZ6lSIHpt0kN47mQiwuE8NpV487MKAs45ye88SWZ7iUrsglnA+DhcdkhXAN0RvOVwjDau53VR/9lok4ia6E5XuIgsFJESTmRvoD9eFhap4eq9DDOfKKVuoL1pPuAgl6X1yl3iivnE1PhypW8Sn1cQEK6Ucqz/edN10M/8AilxjCuAbihFk1yvJP4vneoVpVQk2jzoLPA1cFJE/hGRlk7Eb5C5/2+LrI/jO5n4u3P2DXUks/VJIpZeScLSKxbJyGzvUrdDOMlHamqjZ0CeVkoljlQgrvd1yW3kkVlcxmGtUBrsxLXnuTfRszyeuIG/HRyffSL3k/RMEz8SBc0CxsiNo6K5jLa9/txFeWedRSqlFNrOfKqI5AEaoW2gf0J3rswE4XymwcLCjKvfdgHziWjHJTlI2Ri61/RKViIcCBIRP4eR78T/R+IAzDkc9IqBY9xl4CZ6UM0ZTvUKgFJqD9DS0FfV0abTP4tIZaXUPybRIFIODFlYmHHUKYm/lwdI+5uU2fokEUuvJGHpFYtk3MszUkeAkqbzxNkG8yzVY2g71WQYHl0C0WuEMovDgK/hJCJVjMWSjwM2J9f8gFeBZUqpi3e8ls75E3jOmAVMrEdOtBnin0bUafQaqVYOaVuSsgO/Am3vfMCYhXM80hwJU0pFKKV+QpsSPmK+JiL3o0d3jrh9hxb/VRz1SiJPS/JNElug7d0dXQGX4B7RK1mQP9HfpJcd4t9AjzJvNc63ALXMpjEikh2tf8ysQL/397nQKy4bPIkopeKU3lqin1G38g4iJbH0ikXqOOqULegZh1Q3580i7ZRELL2ShKVXLJJxL89IbQL6i0h+owOxFT3V+o2IjELPTg0EzjhJm7job/NdqqszEm19a6A7HYDeRRs9GrEJPfV8P9obTA20J0JHmhryd3PvqCFGuWtF5HP0s+yFVvqDQbs6FZFBwHQR+Q7tgrw0egTGcTO+/sB2tIfFSejF/XnQHaJSSilnXnMQkWloRxxb0NPqZdGeCFc5iCbOTm3AwiJ1HPVKIjeApSIyGj2SPBr4VSl10CF9dVzPrN4NnOoVABGpB+QnaSS2uohEAyilzNtIPAw8bJwGAMVF5CXj/M8MHLBZjt47Z4rRiDyA9mzVCRihtDcrgHFoT6OrDH0Zg97A8oY5M6XUehGZBywQkS/QOiYB3dltAvRSSqVopBprUd9Cb44Zgl5w3p0kXZMol7hGbvIduHeLfy/JdIpS6oqIDAGGGQOhywB/tPe3QUqpxDZLVminJGLpFQNLr1ikILO9XaT3QNuoXgbamOKeAf5B//D3oX/U64EFDmknAOuywD1sw+QNz4h7Hu2CMwz9Ip9AO3Go4yKP34zn4NKbjot0ChjqENfOiC/tEL8e2OgQVxNYg+68XgPWAjWclPO+cQ830aP3j6M7SjMd5IqgveicQY8SnUN77WttkhlIcu85bxp1S3xWIWhlmMsh72+AnZn9/7aOrH+40CuhaJPRgWh7+Wvohcu5HdL+D+ODmsn3kEKvGPHrSfIEmuxwkBvoSg6on0bZM4HTTuLd0jdo75+TjPc/Fj0a3wMQh7RV0ebANw2d0Q8Y5ORevAwdtNeQjTTCo9AjypDSu1Y5tHlwiJHmIrqxW9Mh7zpGukcy+3drHVn3cKZTjPi3gYPGt+s82poil+l6lminmOpj6ZUkOUuvWIf9EOMfd08iIhPQL8tzHqTxRjfsP1VKzcmwyrlXl3ZoZfmAUup6Ztbl34qxQd454GOl1IzMro9F1ic9esVINwJ4VCmVmftIWXrlLiEik9GNHVdrJSwsAM91SlZqpyRi6ZW7g6VX7j3SXCMlerdo5eRYapLpKiIhoneD3iUidV3k4Rg/UETMC+w8ZTRQX0TKpimZxMvoGasfb6PcO8X36FGPrpldkX8xb6NnrO6m6aPFvY3HesWwpe8MDM2wWrmPpVcyGGPd5ZtAn8yui8U9gac6JSu1UxKx9EoGY+mVexN3nE08il4TkHhURU87/gwgIq+gRymGo01bNgPLRaSYQz43ucNrB5RSp9HrhxxdEKeGAB1V8v2TMgWl9z7ogN6czyJjiEFPrWf6/9vi3iCdeqUYMFgptT5DKuUBll65K5QAPlLJ97WxsHBKOnRKlmmnJGLplbtCCSy9cs/hsWmfiPRBL8ArpJS6LiLbgH1Kqc4mmWPodUmfGeeh6LU8bwFvKKUWGvEDgZeUUo9gYWFhYWFhYWFhYWFxj+CR+3PDm0hHYI7RifIDqpHSS9oq4DGHuFPARGCE4UPfwsIikxFNexHxzey6WFhY/DsQET9Dr0hm18XCwuLfgYjkEpHXMrsejnjaoXka7d9+unGeD/Am5c7PFwBnC65HoF1OdgKmpFWYiLyFnsUid1BQtSvhWWFfOguLLMUJpVSJ9CZuXjBnwsaI61TJle1btDnJf4r8+XKrS5cjM7saFhZZjdvSKw3yZo/ZF3WTukGB/0m9UqJ4AXXi5N3a1tHC4p7htvTKo/cFRIbciOXNonnmzjoVkWX0iqcdqc7ADqV3ZzbjaB8oTuJQSkUYnq0GiMj3aRWmlJoGTAMQEbX5QhQiQoLJHDFeKT5t04pmbdpTs2FjIi5d5NDunaz//TcO7d5Bpz6DKPNIJfI9UAgvLy972luxsXw7fBAnjx9lwMx5ya4ZZSfdjGlQzc/b2x4e2O416jRuQrM27fH18nIq42VK62OS8TXJABTMps8/eb8b61b+yrAhnbkQFsG48T/zeJ2KHDl6iiED2/JM4xpGpZLSH7qe5MMjLiHBHr4VH28Pm+8twcGc01wvc33N4VhTXrmyZbOH452UF3rsCB93bEPegvfT84tJ5C+QtDG4uX7mPB3PzXW/cSspHG+qekKCc7NUL6+kenubXjV/H+f/I2+v5BOzPi7+l+b/mZ9JxsfL+cSu+Tkn3vea335hXO+ejP1pEaUrVHT5PwLXvx1vU3ydgjmLOy3cDUSkRCF/H94tHsTM01d4v2ReNSHkcpZRTneDS5cjSQifQIqBc/GmWr2RTJvwOtWqluHM2Qi27Qxm9rytnDoTzvABLan4SCkeuD+3TuvlD8DNm7F06DIZf39fvp3aLdm1xHxTCyulqFbjbQYPaE/TprXB1eS91+NOo8NvORd/s1VLjh49Sve+gwg5doTZX39JoxdasGH1CibMmc9DFSsDUD6nt/MMXJRxKdaki03vtvm37OXwbB3ft0TKRn2adJKrmj249Zp2dHZoz24GvNOBCtUe5cPhYwjImSupDFM+rnSYYz3MuHrXxEV8or4GCDLP5SZsNIVN+4gnxDqPT/Vacv2YGl9NW8voCctZt7QXJUvkdzudKyRn+3Trle4l86rg67G8WzyIaScjEJFiSqmTt12pe4gTJy8m6RVJ/k4Veqg3O9d9wgMPBBF64jLbdoYwbdYmlIIBnz3Pww8VI3++nMl0x7VrN3m+1Rhq1SjLsEGtk+sUAC8/U9isb/S/MTY2lgdL12XRr99QrVol1xVP2os2Gc7e+fj4eN5oXA+UokvP3uzdsY2530zm1Y5v8/2UiazZd5yg/Pq3WDa7OM3LjFmXuPouqlTaMWau30oq5Not5wXejNPLz/Zu/ovxH73HY882pe0nffDzT2rfuHr/XekLx7aAWc7bw7zM8b4u2ivm55oMsx4CSMdSO6UU/fp/y29LNvPHmvHkz5/H4zwcEe+66dYrHYrlUdHxCbxdLIhvT0UgInmUUhG3Xak7gNumfSJSAHgBvSdPIpfQ2v5+B/ECpJylSmQi2o//h+5XU/PGE48yf0bKiaxbt2Lx9dVfszz58vNYo2f5ZPzXvPx2N8Z/8gE3rkXj5fAD9/Xzo2OfgVyNCGfRN57ve6aUolzl/7Fo1p31qD1qwiSmTu7JxK9+Yffuo3w/qy9zvu9PePhVihcrmHYGmcitW7f4bsIY3nzmSZq83pZhs34kT77b/6j/W3DsRGUmIiKlA/1CmhXMSTZvL168Pxe/no/iv2jiV7RCfx6pPRxbyEVsIRdp8PxEgkMvEn0thnc+/JHgkDBu3rzFpGnrGDP8FZ58ojzPv/IlJ05dJDgkjAZNhmELPo8t+DxNXhzOZz1bsHbdXh6p2h1b8DlswWdp0PhTbDYj3OgTbLaz3LiR1Gi+cCGcBg0/5OjRU1SqWIqvp/x2R+9x5k8LeK/PQKZ98TmnT4QybeFS+oyewOWLYRQqmu5v213h5o0bTBk+kI9eb0GnT/rSb+I0sufMxfXoKM6EBvN+i+c4ExrC6dBg3ksMhwTTrUUTTgXbOB0STNcXn+V0SDCnQ4J5p7kOnzKFT4cE8/YLz3DKiO/0fGNOhdg4FRJMx2aN7OH2TRtyMthGaHAwLzRqQIjNRnBwMA0aNMBms3Hu3KW0b+gO8uOCbQwYtogRY5fyyos17J2o7TuDsQWHYQsOo1Xbr+3hZq0m2MMNnvvcZTi9iIjfr+ev8uL9ucjm7UXTgjkpk93vxH/RxK9g2T7M+XkH7bt+b9ctnbrN4ebNWKRjQ48AACAASURBVM6cu0Ln9+aQkKB4tGoJihXNR8ni+Xjz7Rm832sOwSFh2IIv8Grb8diCz3P+whV8fbyZPG0Fc+aup1ETz5y6KaWoXr0SkydrT+qXLoVjs4XS4KlXCQ4+aQ+HhYW5nae3tzdzV23g5Xad+HLYQK5FR/HD6g20e+9DEuLjyZMvn0d1vNvMHj2cse+/w9juXShWphzPte3I5fPnmdSrB+dOhHLuRCgTer7PuRMhnDsRwpgPunIuNIRzoSEM79qRs6EhnA0NYfDb7TP7Vu44SZ2oTXesE3U7iMh9K8KiaX5/TnL4eFE/b3b+lytbljFR82SNVDu0BzS7O06lVCywC23yZ+ZpXOzGrZS6CfRHO6zwqJVd9pHKzB4/hs2rVySLj7sVh7dvyvZfkzfepGrd+hzbv89pfsf/2UvwwX+Ii7tFgmk0NS0O7NhGjxcas3nVct4bPNKTW3CLhg2rs+mvycya2Ye6dSuzbdsBEhIUZcsWueNl3Sn279rBGw0eY+uffzBnzV+88GbHlKP8/2HWLFrAuN49Gf/Tb5neiQJt0lfQ34cSgXoks6C/Dw/n9KdhvuyxaST91/F4rVIctV1kz/4zyeLj4uJT/IZFhHc6PklggB/Hbeed5rdl2xFOnwknQSk8ceZz+XIkzZr34dix0wwd3MHzG0kFEaHRCy2Yv34rg7+cwsOV/8e6ZUsoU74CuXLnvqNl3UnWrttPm/q1OB0SzOx1W2nYvGVmVylLsWLNfr6dvYEfpr9FnjzZM7s6NMibPaZizmwU8NczqaUC/cjn582L9+d0/wP7L+GZp8rzwWcLibx6I1l87K14fH2Sz1J5eQl9ejbDx9uL69ccZiwNzl+4wpXI68TEupjScYJSip9+Wkz5hxsQFxfHJ5908fxGUsHLy4uWbdqz8K8d9P58HCXLlGPZgh95rMHTWfr7v3HZEpbOmk58fBz9Z84l7/2eOGj9d6OUom+/GSz+fTN/rP4i0ztRAI/eF3ClblAguYz3plKubNxSijeL5skSG+G65bXPGE06Avxp9s5nXHsFvb9AV2AT0AXtkKKCUuqEIRMKTFJKjTHOvYA9QBnA5o7XPhFRG06Hc2TfHnq2eZnZ67eRt0BBYmJjeanaw0z6bQX3Fy9pl080pRrYsQ01Gzbi2dfaAMmng29ci2bxrG9Z+8tP3Lx+jYYvv8aLb7+Lf7YAl6Z9Eh/Pa1XLU7hkKcb/8jsBgfrjdadM+wCCvPW07K1bcUyfvoQhw2YxaEAHOndsbHogWcO079LFMKaOHs7SBT/x4eCRPNfqNUSEyzeSPh7m/P+Lpn2rfl3AF30SO1GPEKfSNmEAt037UEp59MUyTPpC3i4ehJ/pWcUrxTcnI3ihYE7cMfETkW7oAZaKwDylVDsXcu2AGeh9URJpmhVchYuISgifwO8r/uGtHj8R/Hd/AgL8uBIZQ4lK/QnZN5g8QaYPiXijlKJ2g6H0/6wlTRpX0fEmc5pLl6/x9bTlzP5hPb6+3rzVsQndujbD19fHpWnfpcvRFC72Mg2fqsqihUO1LNwx0z5IMp25eeMGsyd/ybcTxjLs6+nUf7apXSarmPadiS5Jn4E/sm7DAd4bMZnHGz2bIl9zy/y/aNr35eTVjPtqFeuW9qJE8Ts7+i8523usV7qXzKuWXIiic7E8yb8dCYqpJ8I5GxNX3BMTPxEpA+xHewBu7UldMhsRUSriS6bP3szYr9ZxcFs/RITg0EvUaDCK80dH4OOb3BwvLi6eMlU+5de571OlUnF7fCKnz17lq6nL+X7unxQokJuubz9Hh3aNtLWNC9O+Q4djeaTi07Rt25IZ00ensMxJWXH3TfsciYqM5Jtxo/hxxlQm//wb1WrXsV/LKqZ9Z0NDmDakP6dsR+k6fCwVatRKka+Z/5ppn1KKPn2n8/uyraxdNZb8+XO7/galA/Gu67Fe6VAsj9oacYM2he9L9v+Ijkvg21MRnIuJC/LExC8j9Iq7M1L10Z2ebxwvKKV+Aj4A+qI7R48DTRI7Uc5QSiUAvYBsrmSc4evnR4VqjxIfn4AY61e3rF1F4RIlKVLywRTyezdv5Nj+PTzR9AWn+QVkz0H1Bg15utVrdBk8khNHD9PjuYYc2+e4BCx5HSav3kCBIkXp8GTtFLNjd4rr129SpWp7Fv32F78v/pzOnZ/PkHI85VpUFH+uXMbIzz6i+WNVaVSpDNFRUSzetpemr7yepUehMoPl839kXN9PGP+z7kRlNokmfU0L5kzWiQKt6D008TuL3oD2WzdktyilcpiO9Z7XPmMY8+VaGjxRlsuXo5kweT0And+fS/GieciTO5DxX69i9ITlAHwxaQWtO07j2vUY/jlwktHjfwdg7PjfGP2FNsebMWs1ly5d5e1OjahVoyxTvllGnfof0/PTGYwZNx+A0WPns+AXvVXIkt+38NtvG9m/ZwbHjp2hVJnX2bBhL0uWbGb5iq1aZskmVqzYZg9v3bo1Xfd66cIFnq1ann9272Lu6r946rmsoVeuhIfz67KjvNdnDRXqzaBijY/Jkzs7B3aOtXeiHIm4dJF/duhncmDXDnv4n5072G+E9+/cbg/v3b6VfUZ4345tzJ08EYDZE7/g+0nj7eGNa1fa5ffv3G4P7zXS7tm2hZ3bdHjH1i1sM8Jbtmzh4MEQp3W9eVN3lpb8vo3Fv+s8lyzdwZKlO3R42S6WLNtlhP9mybK/jfAelizbkyLcseu3DB/zO+uX9WL+rzsYPX55CpnR45fb490KT1hmD3uKiPgtOh/Fi/fnStFh9fMSnkufid9XwI50VSgLMHrCGmzBF4mKjmHMl2sYPWE1383ZQvmyBRn31R+GzCpGT9BOj198bSI+3l5UrliM0eOXMnr8Ui0zbjGjxy2mUKEgIiOvUaVScQb1a83oL36has3unD59id+XbmXJ71sAWLp0M0uWbAIgNPQ0Y8f05dCh49So2Yw9ew4Y8afYskX/3rZv/9settls6brX4KNHaFylHGHnz7Fw0y6q1Kydzqd2ZwkPC2Pdb78w7pMPaFenGu+/0JhSD1dg8soNVKhRi8O7dnB4l/6JLZw6iYVTJ6UIm2UO7drBISN8cNcODu66Z3+eKVBK0evTqSxbsc2YiXLfUuHKlShAf5uWLt1sDy9e/Jc9nPib9ASzSZ+j6rgNE787rlfc6moqpdaRiucdpdTXwNepXC/hJG55ank6IyY+nrAzp/Hx9SV73rzExMez5IdZNHrlDW7GxSWb7QBYMO0rmnfqgn/2HPZrZiW/cdliJvX5hP89Xo9fpkxi6Mx5nD0RwpD2r9Nt6CjqP/8ikHLko2ChIvSb8h27N6xjUt9ezJ/2NQ2ef5HaTz9DPocpYvOMhmP9zFyKTerTBgXAggXrKV7sfpYt+9keH66SRouCYpPiy/ubvM97ByTJJ9S3hy/cTBrhSTHqHLfWVMZTKer224L5fNKjOzeuXyMhIYEKVR/l0br1+PjzcZSuWBkfw6wyMiZpNNU8guJjeub+pvjsTswx7VUyz6y5GOk2k2zkxzxC5GJE2t0ZqWTPSp0yhU3jBJK0xiQ8Lul/NGXGt0wa3I8Zi1dSrEw5e7z53lzVL7U6upoBc5O3Cvj7UDLQz+nFRBO/Uzdv9QYGpZaRaT+46kDWtTtNg4grVzlwMJT8+XJwNeo6JMSwZXswj9cqCQkxxNy8QWTkTYi/TuzNGP7YcJBxw1/GFnKZazdiIeEGUVevEnsrDuKjWPvH32zbYeOZpyuxYvU+3nilDhXKF6Fn33m80qI23LpCxOVLxMVeh1uV2LJpN7lz56BsyZy0bF6D02fCeaPNUAICfKlapTSPVinCls27yZ07J888XZEtm/+mbNnL1Kp+Td+AmGezTSpdkq99CvKBhT99xTMNazPjmy7AeX2YRxyTTfOYZr1MI5xBPkn5BvmaR7CT6mEedQ5yfM3j1wMwZepi+vafTUxMDCJCjcfqULf+q0x8qwEFylXE29ubU0B20/tiHjnOUagwxQsVBqDWY0l1rV0nKfxYnaTZ+hcbPmkPl3qqPud2baJ63gAWxl4jMDCQqkHZWBATTeOKV3kw52YqPQXEXwPWULEeEH8dWET5OuiZo1gbjasCKhaiD1G7oiETZZiSxyftW3rrahTZcvizZcN6ULE8X9dLh4FmtW+y5U/9fJvWvMnmDboh8lytW2zeoBvHTWsre/yBPTv5dfFOXmtejuK5zxFxIVQXEn2ILRt1p65Z/fuIuGiYqt44ScSlc2mGoyMucOtWPFx33hlMg94VcvrbTfocKRXoxz9RNzl2jU44GZB1REReBa6glwiUTk+FMpuIiEiO2S5R+eGCRERcISFB8cOCPTRuUI6IiKsQf52ICMNjaFwU6/86zAtNKiLqRlJ8fBQREXqwvW//b/lpwUbyBuWg56fTePrJh9l/4DRVa75L82Y1yJc3J80alWXX9t3cvBlLs0al+XvnGqKjb7B53QAGD/+Zxs+8RoP6lXmxeV0aN6oO8UepUc0wCY0/yoMlvCHe+M6Z9ILrd17z1czJvPP2W/ToP8Qe52rmKoU+sJP0/bsUm6RLzLNTMWlY2SQkJPDduFHMnTyR+Lg4vH18qFyrDlUff4KXO79D0TLl7A3yBKXsHT4vEWKjowHI6e/PrWtat+bOlo1ahg7xFrHrGR8vL+oY8anNSJnbQS5nsQ19qCtlmp1WphlpV7Pb0dedyyiH2WzHWfBEjP+xUooevRfx15bj/LHoPYICzsM1w3Q9mWMT5xYV18KvkjtbEFs2bsXP14fnnirBlo1bEYHnGz3Ilo3pG/h79L6AKyUCfe0mfY5UzOnP/qibiEhTpdTvaeWXUXrF4w15MwsRUevPRXJ4z276d2rD7I27OP7PPvp1eIOZG3cSYOosJbJt9QqmDxvA1ys34OuvfwzmxuqA9q9Tr9mLNGzZiunDBpItMJC2H/bi4M7tDHmnA7M37cbXzy/VxntsTAwbly9h25qVbF+3htbvf0zrru/bZdwx8wPIZupUlA3YRL0nu/H+ey/TomVbe7y5kR50K6kjhU/OpPAd7kiNHzWS76ZNZuS3cylV9iH8AwJIcGHyF+/CHDK1zoIr7vWO1Mqlv9Pj3S5889sKSpV9KNnHwHxv5nB6OlIP5/LxaKpcRP7qXyb/4wHerjtj8UrR90jYaZI7jJlmeNF0ludQoEgapn1foU37wtGmwCOUSocroTuMiCh1aSRLVhxk4Oi17FjTnSUrDtJz4DIObe2Ft7dX8o6Glx9Tv93A9z9tY8OKXkmmMqaPSrW6gxg15BWeql+BNp2n8ESd8nRu34CFv+1g6KhF7No0MqU3L4dwdPQN5v+yiSXLdrJ23R6+mtCV1m887VI+Key6I6WUotxD9Zk18wtq18ztPI0ZFx2pZPm6YQrkrCP1fo+JrF6zi/nzl1KsWDECAgK4qpLqYdZXcS46UmbExXtuDpsbMk7rZapfUthkjRrvqtES61wmmbwLGYcyVHzSK6ENNzTaGh6mz/uHMVP/Zu1PLSn8QA57PABe5t+pydhDnDdCUmBqfEnBwZ7qlb+HlStQJTX9fj0+gSHHLh4FokzRKfSKiOQCdgJPoZcJlL4nTfsuDmPqrO0sWXmE3+e1Y8p3W5m7cC8bfu9qCCV/bweOXMaBw+eZP7tLsnjQHYSi5T9hzeKelH+oEA2bjeaDro1p+uz/mDR1NctX/8PShZ+mzNds8ic+hIdH8fOCDSxZtoONm/5h/o/9afR0dZOMG7rE4Z2PiYmhSJEibN++nfuKJC2vMHekXJqgmXBlPpisIxWX9H44dqQSEhLo91Y7zp85Rb+vppM7Xz78AwLB9JuMc8P82B2Teledp7vekUq4Mx2pIaNXsGTFAVYu7Eae3IEOv6G0O1Lumv9J9lc80iv3Z/NV75cIStXS6XxMHBNCLu8guYXdXdUrtzW0nRmUq/w/SleoyHejhjGqx7u8O2QkAdlzOJWt+fQz3BeUj51/rnV6fe/mjVSrp0cpL50/h4+P/jE8XL0GeQs+wL6tTv1lJMPP358GzV+i39czmLFmE/MmjefQ37vSeXeaY8dOcfjwSZo2ddzT+O7y966dTJ04nlUbt1Gpeg1y5Mpl945o4ZqYmBh6f/Q+wyZ/S6myD2V2dVKQzVvh65Xg8sjmrQDClFLVTYfTTpSbbAAeQXvzbAm8hnY2kyWwhVzmi8l/ER+fQM8BS2nVcQ6DP21M6MlwGrzwNcEhl+ze/GwhF3mybjl27znJb0v3aC9nTcdgC76ALTiMJxoPZ/+BUxQplIcGz43guO0CEVeu0aDJMCo9UpQLYZHUqtfH7uWvwbMDsQWfJzj4PA2e6ae9/NnO8nzLoTzxeAXGjOxIubKF6f7hFP5Yt8fu8e/cucse3+dff23H19eHWrWqZsBTdJ+lS7ewbPk2tm76igoVKpAzZ0677r2bhIaG2r3t2Ww2e9jsTfFOER+fQIMXZ2ALuYwtNIIGLedgC43AFhpB07a/Ygu9gi30Cq26LLOH236wCtuJSGwnIunw0Wp27bvApyM283DZIG7GxGELvUKnj1fZ5Tv0WGbPs223X7GFhmMLDadV55+whYRjCwmnWesf7OEGLb4zhWfa5Ru0mJ2uW/R3T6+cd0OvDAFmKGUeubr3sIVcpk6NYmzYEkL/EavoPXQl+fNmxxZyCVvIJTp1/8ke7tBtLi+/UIVVfxymZZsp2IIvYgu+yKvtp2ILDmPt+kOER1zDz8+HY8fPs2W7jYuXorAFX2D+ou1s2HSIHbuO0+DZwRy3nTPplnPYbOdo0LgP0dE3CArKSZe3nmPp4uEs+mUw7TqOJizs9jxIL1q0iMqVK1OyZMm0hTOQJT/M5tzpk0xetIJCJUoSmCMn3t7uDSIs+m6a3Qvf6I/f40xoCGdCQ5hrmPz+mwk9eZkJU/7k1zlv6U5UOoiJuUWDZwebvms6fNx2Llm8p/gI+KWlV7wSAIIzU6/ccx0pEeGDkV+wdO4sSpR7iCeaNk9VXqkEcuUOcnqtWJmyrPzxB777fCgHdmzludZJbixLln+YI3s86xAVKFyED0aOZeA7HbkWHZV2Ahd8P2clr77yFH5+mddpSUhIoOd7Xek7dAQF73f0bm+RGlMnTuChhx+hVv0GmV0Vp/h6J6R53EmUUsFKqRClVIJSaj8wGHjpjhZym4gII/s3YeI3m8ifNzs1qhVzKevlJSiluO++gBTXfHy8yRuUg58Xbufo8fNEXr1Ok0ZV7GWUK1OIq1E3UqRLjRw5AujWpRkf9pzq0sGKO8ye/QttWrfI1HWMN27coHuPSUya0J1cuTLfy9y9xKSZ+2hcrxhBuT1aWnzXuBN6RUSqAA2BcRle4btAQDZf6tQozpCxf9DhjerkcaIzEvHz8+FmzC38/VIOKhQpnIdbt+L5benf9Oz7M9n8fahVQ68L9/byoljRfPxz0LP24ZP1q9C2dUM6vjXWI++ijsyePZu2bdumLZiBRIZfZvKIgfQaNR4/f/+0E1jY6TVwMe93qUfhQlnPe6ug0tQpPt5uOczLUL1yz5n2gZ6StR3YT8EiRclm2pTRPG0bHxfHzM+H8NfSxUxavp4c990HJJ+2XfHjHLavWUXe+++nZeeuFClZCtCeXbo1bciUlX9SoHARt8zJzFO6Yz7sxknbMSrWqEWBgg/QpNVr5M6bz23TviNrRvHOu2PZsmkyRYvVsMffTdO+2TO+Yd7smSxd9xdeXl6cuZ40726eXrdM+0hm9nD4jB91qlRgxYYtBJrMHLKSad8XjwQ97uhowpFu+y7vVkpVS1UoKc9UTfucyL8C9FJKZe7UCEmmffrEm+27TlLx4QcICDSbRiU1bG7EQNeP5rFrz0l2behn8q6X9L8aNW4F23baKFokiM8+akbBgnogZ/tOGy+88gWHdn9B7tzZ09yc11y2Uornmg8kPj6Bav8rTaFC+Wn3ZmNy5Ahw27Rv+vR5jB4zla1bFpHnvsvO05jJANO+QYMGsX/fHyz42Vh+513faRrLtC+5ad8R2xWeeGkBB9a2Jn/+JAuMLGTat3NSpbyp6ouYBMVH/4RvUErVSyWfD4BhJJn/5UDbEx3KCvrCXRJN+/SJN5u2hVKzWtHknvpM/5crV2Np22UO167HsnaJaYtN07v56YCFBIdepGTxfPTp2ZxcufS3fvHS3fTs9xP7to3G3983VdM+x/jY2Fs8Vvd9ihcvQPmHilG0aEE6tG9ieBh1z7Rv8ODBLFu2jPXr13Pd2+TR9y6a9g37sBu+vn58PHKsvi9zW9DF99Yy7YONW0/weufZHN7eh8Dspk5+FjHtKxboo3qVSb2DFxYTz+AjV35SSr3qstwM1iv33IxUIg9WqEiO+3KjlOLY/r3JPrARF8Po80ZLQg8f4sula+2dKEeeebU1A2d8z3vDRlOohG70KqWY1O8TXunanQKF07d+vsfwMTzfpj0578vN7IlfcDgVL4DOaNasDlX/V5Y//tidrvJvlx3btjJ8QF9Gf/l12u5S7yC3YmMJPnKIK5cvebSvV1ZixMB+vNrmTR4sUyazq+KS1KbJEw93EBEfEcmGVkjeIpJNJKVGFZFnRaSgEX4I6Afc2R1nb4PeQ7XnzdET17Fo2QECAnz5fPxaOr6nt8wbNWENvQcvITj0Eg9W6cf2naFsWf0Jo8avoPeghQAMGr6I3gMXABB59TrlyjzA+M9b8+XkVfQfMp/4+AReeGUsj9UsS+7c2ekz8EdGjNZp+wyYy6ixieE5jP7CCPf/ntFjdZ59B8ym5qPleOXlemzeepCPe00lJOScR/fZqdNr5MqVg507ne+rl9GsXLmSiRMnMm7su3e13BvXr2M7coiI8PBk34lhw3RDt0+fPgwdOtQettnOOM3ndoiK1g2ZPsNW0Xu49tjWZ8Q6eg9fp8MjN9J7hO6s9hm1md6fa7PyvqO20GfUFnoO3Uil8vkYN11/S/p8voneIzelTDtiA72Ha2+QfYb/Qe9ha43wGnoPW5NqeMCo9Xb59JCmXhG39Mo04EGginFMAZYCjVNLlBXpM2wVvYdqR1DL1hyh/8jVxMTE0fmD+fQeor0j9hm6jE7df6T6k2M4d/4q1avoTkqfwYvoPWiREV5I70ELGTn4Zco8WBBvby9y5Qqgz6D59Owzj+6fzKFGtQcZNFzriqEjF9C7/w8AjBw1n979tKnmvv0pnYj4+fny+29Dafx0dfz8fOnSdRxXr17z6D779evH6dOnOX78eDqe0u2zYsFP/LViKW9/1u+28vl25BBmjBgMwIyRQ5huhF0RfTWSE8ePEnU18rZm9DKLhIQEPui9kM8HPk+gC+dT7nLmrHac12fgjwwcOt8e7jNwnj3ce8A8j/MV0tYrPu61VzJUr9x9w/Q7TMihg7z77JNUq/ckT774Mof/3sXm5b/T+LXWvP7BJ27byCayeeUyLpw+TYtO76QqdybYxo51a7Ad2M9zrdtR6dGa9mvZAgN5ttXrJCQkMGfiOMpVrOzxfR08FMqI6m97nO52iIuLZ8zIIUyfPImxX03lkcqe19tM2NkzbF69gsN/7+JWTAw9R40j1316dCE+Pp7jB/ZTtmJlvb/GkUP0e7sd16KiuBYVxdWIcOZt3k2xB7Nuh8SRvXsPsnzJb2z750hmVyVVfLwS8E1jRspN+gIDTOetgUEi8i1wEHjY2DfmKWCmiORAO7CYAwy/ExW4EwQG6OFBLxECA7RKPB5yiW9/2E70tVjES7AFX2L691uoXaMU1asUI3t2f7y9vQnMpj9APr7eeBublvn7+dj3MgvI5gteXkydsZZs/r48WrWUPd7H2NcsIMBPO7UAIiOvs2//CQ4eOkXOnNkICsplly9dpiivtqrPE48/QuXq71C+fPIZp7SIi4vjyJFgqlWrBHi+xiq93Lx5k88++4xffvmFBQsWUNT5JJbbnAw+zsY1K9m/cwcBgQH0GjmObAF6NDU2JoYTx49StkJFRIS927fySSdtdhQZcZmrkZHsDzlNocKF6dxZb4nYvXt3e97du3cnT660O5o7dwdTvWopJny1gsBAbzq3q8eEr1cR4AdvtX+cCZPX4eeTwDsdajNh6l+Iiqf7W48RkM2XBGOEPSBb0uc3Wdg/efzx0CscCY7g9ebl8DF+J44ydyLs5+uFr0/6B87SGoBJbd+fRJRS1wH7MLuIRAM3lVIX012xTCIgm68prJ/z3AV/M/377VSvUoTSpbaxfPVBjhy/yDcTXiM49JLztP5+KfJJlNm05Si1a5SmXNlCYDxeHx8vAgP1LIK3tzeBgX5s33GUYSPncz4sgl9+7MuK1X9z7VoM73dvQXDwOd7q3JRjx07z7cwV5M3rfODZFVeuXCEyMpKHHnqIq3exPxEddZXRvT7kwO6djJu3kJz33Z5pWtUn6rNvyyYGv92enHny0PqDpGW8169Fc/nsGUoYa563rlvD0O5d8M8WQMSli1yLjmKd7SxBQXlvqw53ioSEBCZO/ZP333mSCZPX4SXxvPdWXSZM2YCvrxddOz5Omy5zCY+4zqstqzJhynoCA/zp3E7rruzZ/en0Zl0mTF5L9uzZ6WTot8DAADq3q8+Er1cSEODPWx2eYsJXK/Dx8eXdLo0JyOaLmL59iabo5t+zJwgqTb3izgBNRuuVe8q0b80ZvSjSrJB/nvwlZ0KCKVyiFAd3befh6jWp+kR9Sj2ctGdPqlOvDtfeaf4srTp14almSWuvkpliGWW/Wb8WDz78CIVLlmLp3Nl8s3IDufMl3xRx//atDH/vLeZt0x/mZBusOdQj0GTaVyQhmsKFCxMdHU1kQsqNegG4tDopHBedFPYzvciBJu+O/gXswaM3k1tWFI5byoEDJ/iw52SyZfNn1nefUrhw/mTTteHxSWY+p68lTS1HxyaFzRvfXY+N5b1GT1CifAUq1qxN8KEDVTc91gAAIABJREFUHNv7N6PmLQSE4d06c2zv3xQsUoQ6DRuz6PuZ9Bg4jBZt2iMivP5UHT4cNJwadevjCrO5Wz6/pGfrcoNMs5M4V1Po4J4JD8mnvpVSPNVkCC+/VJd33mpiiAQmk7FjNpMwmwga5Z4+fZGIiGgqVijkvI5mE5zAlzw27ZteNcfj/t6pJ2mzI8pt0757GRFR6vJo4yTpf9qjz2ICA/zw8hIOHwujbu0HafzUw5QrU9CU2D3TBqUUD1Xry8zJHahdq6wLKZ1XvuJdeaVlLQID/Vm2cg/bNwwne/Zsycqbv3AzE75axsY/RqSsR7LfWfJBpH8OnqHp870IDZ6f/Ddu/m35mfZsMpuyJrjYX8Zs+ubghPHq1evs2RtMtx7TKFe2CFO/eo+goJyuTY+8THsBujAZvHHjBqVKlaJp06bUqlWLlStXEh4ezqJfJxEREclLL3fh2DEb5R8qRq2a5Zkzdw2TJ75Li+Z1ICGGYmU6s3rpQMqVLezwDEzvdpxpfatZJlm8c3O8hPhbTuNVgikcl3xH0oS4WFMa83ueQFxcArVe+4MB7z5Ms/qFSIHJtE/MHmJ9/FLI2E5GER+vKFsyyRzeFf7lZ3ts2vf9ozlT1Rc34xWdd0enatr3b8HRtC+RVzvNpWa1opw4fYWwS9d4onYpnm34EMWLudhQOZl5XfL3+dateO4v+xm71veiRIkCOEV8uH49hnwle9C105NEX4vhwKEzrFveD59El9KGzvjy66Vs3HKUn3/olXrZDuHVq3fSf+B3bNn0lYP5YFKbIVUvns4wfbf3RyUNUiuluHolgv07tzPs4+7UfrIhHw0dRbbA9DlJsNfvYhgv1qzMsy+9QsVqj7Lkxx/IHRTEyGmzOBli44PWrYi4FMYjVR+laImS/LXid2bNmkWDBg1IiNtAYI6nCTu/mFyOJowuTX1NetPcxnCll12Z9rkyC05I3qYxXwOIvnaLh5/+kflfN6JmlYKkwLwxsHfSP0zM22sYy0gOHL5IzpwBFCvipAPu8JuVAgM80isls3urIRVSX0t7/mYCPfdfS9W0L6O5Z037QI8+Lp45nSIlH+SZ19rQf/r3vNSlW7JOlCdcvRLB4T27qf1UozRlw86cpvvQz2n30ac83aIVw957K5k52s3r1xn1YTc69x6QSi7Oue+++6hUqRJTp071OK27KKXYs30rn3XpQOHir9LhrTG82PxxVq0YrTtRt8m2VcvJlj07H385hSZt2vPusNFUrfckPVo8R9dn6/PgwxVYeSiUdz4bQPjFMKYvXUvLth3sax1OhQRTpESp267H3WLRkh2EXYykc4f0zRQnJCQwa/ZqGjT6hMrV36Hhs5/Sf9APxMXFp53YQ7xEpXn8l7CFXKLBC1PsHrTqNpnIzLnbyJHdjz83HePzgc15rvEjvPPhj9hCLmoPfs0m6HDwRRo0HYctOMzkwS95eM36g5w4eZn8+XJgCwmjwXOfaxlTODgkjHrPDCMq+iY9uj3Dzt3BlCvzAG92/tru9SgsLJJLl67y/sffMXTgGx7fZ6lShfD19eHXXzdkwFPUJCQk8Me6vbzSehRFS3eg+0ff0KN7c36e+5nuRN0m3377LTVr1uSbb76hY8eOzJs3j2LFilH/yVbUqNmMli2eJezsAt57tznR0TfYvfVL3YlCe5Y6ey6cEsVdNDo94ErkTRq8PB9b6BWCT1zhqVcX6vDJSBq+/pvd297TrX/HduIqthNXadR2ObaTV7GdjKJx+9XYTkZhOxnFi+/+RfCpaIJPRfNGz632cIe+O/h8+hFyBPqwZN1Ze/w7g3cnhQftsoff6r/dHm7/6SZsJ6M4HBxJrZZLqNFiCXVfWUa1FxYz8Ms9HD9xlUbtVtrr0LjdKoIT69ZuVdoPwAmWXkmOLeQytpDLtO82H1vIZf7cFMyvSw/g7+dDp9aPEhjgx9P1yxAXF0+HbvPs+qftO3Pt4Vc7fGfXOS+8PsUebvjCl/z06y4K3Z+LDt3mYAsJs+ui48FJYVtIGFt3BKOUomvnBnz0XmMOHD5L949nYQu+QIMmwwgPjyI45AJDRv5C/96et0WrVClN6InzbNq0PwOeoiYuLo4/V/yfvbMObyr53vgnSQ1KaYsVd11k0cWtuBdfYHGX4l6gQKFA0ba4LO7u7u5SoUCbChWoW5Jacn9/pKQJ1Cn7ZX/s+zx9ntPJ3Llzb+49mTPzznvOY/1ndzrUqMj6pQuZvtSB+Ws3kNv4+0VrDmxZT9vuvZjtsI6u/Qay/vAp4hQKhnVpw5AOlgyxnsJdz0DadeuBnp4er1+/xtJSLSbl768OJExMvi+Yy0kIgoCXbxSt+53CyzcKT59IWg84i5dvFFLfKGq0P0Kd6gUpmM8opdwvWqdOih/T8m++kVj2PorL2xDmLL2BSTkHWvXeT81WW/ityUa18qe3WvnTyyccT2mYWhE0WR00O/g3+JV/dSB18cAeTMzNObzRkVGtGqFUZn/QGR8Xxyf/jyhVSoI++qZbVxAEchkb4/JEnWRs2Kx5KGQyDjiv0dTZar+QijV+x7Jbzyz3RSKRsGfPHhYsWIDXhw9ZPj49REXF4rx0Ie1rVWbmyEGUqViJ9+67cH21nWlTeufYnqibJ48SJ5Nx2HkNLo/uk5SQwOCZ8+g2ZDhjbJcyat5i9PT1adquI/MdN1OqvC6Fr0nrdmxcbpdG6z8X5PJ4pszag/PqoSmzfFnE1q1nWLnmKOPHdCHA5wCvn23iwSMP2ndZmOP7xfTFQoZ/vzL8AiIpXTIfK52v8/JNwHfdf4UigdCwWBKTlIRHpL/3QBAEcucy4NUbP0QiEYtsevLaxYegTxGaz8dM3Er/vk1o0Szrk0W5cxuxe+dcxk1YTXBwZLauJy18/hzBLJtdlK44gskzttO08W/4vt/OqyeODB3cNseUAvfu3UtAQAArVqzg4cOHqFQqtm/fTs8eHdi/z4mZM8eipyfhz74t2bJpCsWKpcz0Gxjo0aJZNZYsP5ojffnRiItXsumwF3NHVc72/dt88D2+gTLGDqjMjf3taVS7IGev+zHL4ftSdKSG//xK+nDe9gAzUyPm2V/BevaZ79pXk5SkIipKQUBQJEplBtQnPQlJSUqk3iGIxWJ+q1SEk2eecfvuW0AtzT94pDNzpnenWtWs0YUBChY0Y+P6yQwetpzYWHnGB2QB3t6BLJ85hdZVSrN11TIsO3fj6lsfDt58iGWnbjl2nvOHD+D93oN9G51wf/USfQMD1uw9Qr0mzdl07Cw9Bw3DwMCAPkNHMm+VE/nypShBFy6cj2LFCrJp86kc68+PhPfHaAKD5cwYVTPbbSxxfMz9p/6UL5OPu6cHscfZCp+Pkaxwvp+DPVWnAMvIp+j9BIHUv5baF6eQM6RJXepbtiFfIQuuHjtETGQEE5evpaWVbvDyNbUvIjSE+cMGEBUejjIpifg4BTGREVgUK0GxUqWxXriUilWra45Jjdrn9vwps/7qzdrj5yhb+TeCAwOw7tae5p27UrtJc1bPnMzf1+9jYmauOTaz1L4aZmpahrOzM3v2H+DCrXtIJJIcofYNGmJPUKQxo6fPpnqdeohEIioa3tC60anTlbJK7QsLD8f96SNcnzzkxa0bVKjxO5NXOWOklS/G9CuZ0lxa90Ahk9G3RQOGT5lB9wGDSQ0/C7Vvnt1JpN7BHNg1UUc1MbPUvoCAEGrWHsrNKw5Uq1Y6pRuJcgqVGIT7y/VYFNKi43wnte9QfaMMqX3dHyh+SWrf5+AYfmu4graWlWn0RxlmLTyDoYEeR3YNp03LKl8drPuufPD8TP/h24iJjSMxUUmsLI7omDhKl8xP+bKF2LB6ACVLprUaom7r3MWXjJ60i0c3F1GieH5c3QNp3XkJk8d3pGjR/Kxcd4and5dr9gR90490qH1fPptrswV3Ny9OHV+oLv9Oap8gCLTtaEPxYvmZOqkb1bWe4S/3Rvf/7FP7QkNDuXPnDnfu3OH8+fP06dNHLRqh3Vfle61+aytcxfP5cyR1Gk1n+6ZxtG+llePtJ6T2jbZ9Sj5TA5ZNqU6aSIfa5/4hkjZDrvLkZBeKWaT4IrkiiUL1DxH1sr9mb97XyA6172SjXBlS+/o9jvslqX0eH4Jp1mULNasVoU+3GoydcQpzs1xcPDyCOjWLp62sKNLjyXNfRk0+hCIukcREJTGx8cgVCZQtXYCK5Qqxw3kAZuZprPYmv3s79txlxdpLPL45H3NzY+4+kNKj/zrsF/YhPDKOS1dfcf2CLWK91NVKM6MwOmTYcnLlMmLTxunqgu+k9iUmJlH3jxH83qQzfUeMpmTZ8mkGn5nZf5ceQj4F8ez+HV48uMfdKxcZNmk6/UaN0x2zab1fOiqEqnt8+PCRRk3GcvHsEurW0aJv/2TUPkEQ6Dj0Am2blmDK8BqkiXSofbcffuQv64u43h6Nad4U2rnUJ4JmVrvwfzUFrQN0ms0qta9cHrGw+vf00z0EKlSMfxn/P6X2/WvFJp5cv0rpSpWJiYygVtPmTFi6Ur3Bbs40PF1eM3jGXAyMUv8Czu/fTeHiJZmxyhkjQwMMDI3Ib1EYwywkm61apx4TFi9nel8rZq/byB8tW7P18m2WTRzNsa0bcThwXCeIyg7Gjx/PqjVr8Hz/nkpVqmR8QAa4evUZd+6+4eTjDxjnST2JcU4ht4kJ8tgYYiMjiZPLUciypgRknCcP3foP5Piev9MMpH4GvP8QxOYd13jz2CHbbSxavJORI7roBFEAO3dfR6lUkdNzHRKxQBrjp18Sc+0uYj+/AyudbnD11ns6t/uN2/e90BOL2bl+AOcuu2HVfws209sDECuLx35BN5auuohMFo+9rRWLlp3h7MXXNGlYAYVCLVCxYFYX1m+9jp5EwuJ5VtgsPoGRkQHzZ3XDZtFx8hgbMmd6Z2wWHcc0rzEzp3Ti4RNPatcsRbN2djRvUpmqVUry9K49jVrO53NIFE/uLMfI6PsUlhbaDiNfgY5ERsZiZvb9fmDfgRuEhcdw8YxttldkMwszMzMiIiIIDw9HLpcTE5O1fH0WFmb0tGrAzj03dAOpLOL2w480b1gCm+X3MDHWY9a4utg4PMA4l4TZ42ozb+VjjAxF2IyvzfzVT9GTwIKJtZi/5jmCUondlFosWPcKQRBYZF0VWycXtT2hKrbrXfH/pOD202B6tyvOAmc3FltXxXa9G4KArj2xOrbrXREEsJv8u6adJdPq0sv6NjWrmFPMIjcL1r1EEAQWT66F1dgb6IlFJCYJLHJWl9tNqc1i51ckJqmwm5I9NWBJBitOkn/JpG1OwWbpFQQB7Od3YNjEY5QvnZ/3XqG8eBNIO8uK9LWqSdNOG2nWsAwXj41m3tKLCIKA/fxO2Cy5oLYXdGPQmL1YFDLh0N/DcNpyC309MeuW92bekrMIgoCZWW5s7c+SmKjE3taKJSsvIJcnYG9rxfLVF4iOjcPetgd7Dj6kYq3Z3L40m0dPPenRtS6OGy/j6xeK6/O1381GWeUwlpJl+qYEUt+JNWsPU6RwfqYvdfjhue/y5DUlOiKC6MhIEuLikMtiMz5ICxUqlKBF81rsO3BdN5D6H0GlEpi/6hFLZzZk3spHiEUCi6bUo8/4q7x2D+XMtvbMW/WEPMb6zB5bi3mrnpA3jwEzx9Rk3qonmJoaMmN0LeatfIy5WS5mjKmDjcMDTPMaceTse/6oWZiNO58zZ1JjbJbdxMBAj1hZInJ5IgtX3mLhjBbY2N8AkYilc1tjY38tW+MYEZnwKz/BSve/MpBSqVRcOLCbxu07c2b3dkqUr0i536qhEgSq1KmH89zpjO/QgnF2K6jVRHfyS6lUcnbvLhbv2EupipU0K0OCIHDs76106NMP4zyZ4/K36dmHAkWKsHTCKNr37sfw2fOx33MY6Vs3yldNZxYxkxCLxVgULkJkRPa4pV9jreMxliwe/sODKIB4hZzjm5zxe+9Bv8kz6TNhcpaOd3/1gl3Oa9lz6eYP6uH3QxAErGfsZe50K4oWST3pc2aQkJBIubLFdMpWrTnK1u0XeHBrBYULm3+7avYdyEHVvv8X+KKep1SqcHEPYtzwxhw9/ZpChUzo26M2fv4R5DM35sad93h8+Ex7S/WkhghBc2xiUhLuHoGcPDCebbtuAyKKFjEDAZ6/8iU+PhGJWKyZ4ZRIxJrBgXpVQNDYzRtXYdjAFgwcsYmISDkzpnRl0IBmmJubUPP3MshkcSCSYGxslGyLMTbOpbbFKo0tICJPntzIZOpZS2MTQ41dsKAp4eExmkBKJotT18lGjLbG8SSrV4z44UEUQEhICPb29gQEBLB27VrGjBmTpeOvXHvF0RMPeHpvZabqx8cnYWioh0yWAEkJGBsbIJMlkJSkZilIJGKNQqOeRKyZoNCTiNATf/l+RZofez2JCBXJ5WIRpGKLgOuPPrNyeg3eSqM1fZForSLr2OKvbfX/KpVA/uTkvRIxCALMcnjOO2kUw3qXx8hQktxfdX2xWIReBivV6SEjdS3lLxZIfVnti46Jw/1dMFYdqvDCJZD85rkokC83A/vW4cFTX05fcKN1981ULFeAgvnV7+OX7zEgMBJf/3C6dapO5YqFKZBP/XlUlILXLgHUrK5O0SIWpfgxtPySSIRG6bFjuxqY5s1N8/bLaWtZnXJlLXhyezH7jzyiQH71mCc+PlGdiyobyJ8/L0qlCoUinly5vj8p7pq1h7l1w4mkfyCBeKCfL9vXrCBOJmP+ug2079EnS8fv3XuJ12882b7Z6Yf0LylJSXy8UuN/gBRbJMI4tz6y5Fyfxrn1iZUlaJ4BiUSERAQyeSLXHwTQq0MZ9PUl6ElEiEjxS19us55EhFi7nC/lal+XkKgkf75cGr8nQsTJ8+8oWCA3Q/v9rvFHah/1xb9lL0hXU/vS9yt6P0Eg9a+i9t35pP5R2bN2JY+uX8bp5EV61qrMrhsPKGBRWFNXEATuXjyH04I5tO3ZhzFagg+xUZF0q1WFxZv/pl6zlkR+CiTwox8fpV7Yz5hEqXLlWbPrIC3q19Uco50cUjsh3BfKX3hIMGN7dKT/2El0+nNAppLGGnwly66T+E3LHtu7K72GjKBFh846SXvLfU6RZ9ehjWglcdQ31aLH5GtGq7YzmDu7H60apdwr9cm1AkfDFHbGe3lKHi3t61ZoUfi0E999fW9UKhUPLp/noKM6c/rs9VspX/k3TZ1cerpxvLGBehQX4OvD2G5tcXBwoHfv3joJg9NMcpkWBS+tJHU6tq6ijc5nXyfP1MLOgy9ZvekBL29OQl8/+ftMiwKRVvuqBGYsvEgeYwNsp6mpEOt3PGHN5kfcOTWQ4kWTKX2CFjdCpLXUXnhplql955pKmhhlMGBqfSvp16H2hav3No6fcQL/wEiO7hpK7qIzSAheo56lTf4eVSoVew89Yfai09hMa8eEUS007XhKg6nbwoHzR8ZSs3pxfD+G4/sxnBevPzJvyVlqVi/Oob+HUal8Wupc3z43vn5hNOu4mq2Og2jXulra9XWgVS75avOzFo2uToPJbHEeRd065XXaeq9M2XfwNX0lxdZ9p6pUH8GJIwuoUlHr2tJLApuZ5I3a7+RX70tSkpIDh++xZMVxChXMy5E9EyhaWGvDeRp0GhcXb9r02cehLT1p0bi0DiVah16nRb1TKVMvT5O2p0XN0/bFaNnC13vuBN3/HXZ6cutpGGedammCbVVsyj0XElLOJ9JaWhYZSLRsPUYsdqNxTTOGdCoCgN12KZcfhnFmbU3y5f12sKzdVt6mN7JM7bvWQi9df6FQCnS5q/ylqH2CINBz6EEKFcjDvGmW1G+7gQDXuTp1k5KUbPz7EXarb7BhRTf6WKVQrh488cVq0B6unxhJqRJm+H6MxPdjBLfuS1m98S7NG5Vh3+Y/KV4kjcnRVPyK69tPWFpt4dLRUdT+vXjadODMJGIV6wZMRcqM4Pl9B4oWzafjb8LFXTR2WtS+9zLdBL6mpqb4+vpiZpYJWXNtai/oquHqlKdN74+LS2DHzsssX3mEalVLcmjPNExNtDqrQ69L8St3772lx6Dt3DhtTfXKX/VVh7aXwsoREuNSqqRBB9bxGZnxKzr1vxrTAJPtXxAZncCuZX9k2K52om+RXso9EOsZ0G7oVSYOrkKnliVRqQTGzn+IT0AspzZbkstIT/fYr8a5+hV2ZMmvVDQRCZvqpv974S8XGPJE+Z9qX2Zx+/wZ9qxbycld21i8fS96+vpER0Zgaq67GvDszi2q1a3Poi07uXvpPK8fPdBsGM9rZs764+ewnzKeNhWKMaGvFTsdV+H26gU2DuuYvGAJI7t3ZJPj2kxvBs1XsBBTljhwdPumHL/mQkWK4ifNmUR3SUnKfzTBrlgspkmHLnQbOpKI0BD0DdKfpQoOCmTp9In82aIB1tbW6iDqJ8W1217MtrvK0e19UoKobODx84/sOvSCjq0rAbB93wtWbnzIjeODUoKoHIa+RMjw71fC+m13KVVjMReuurNodgcsu67H1MQIb98wLLs6I/UOxcs7hJpNlvF79WIsmNmB+UvPcez0C42CnwhYu6wnzTutI3/ZmXTuu4kBI3fxxi2A5Qu7IVck0LDNKlY5X8Oyq3OK+l+yLdVRAgzGsvNakpJUTB7bmgEjtmmU/TSqgGmo/3l6fcKy0zK8pJ/xkn7CssNCvKSf8JJ+opPVYry8gvDyCsLc3BhP6ScAps3aiZc0CC9pEA9vZj0ha5JSyT8waayBnp6EQQOaM2RAUz6HRGOgn/4PrdQnjEHjDtOq115WzG+tDqIyic+hCo3anvRjitqe9GMM7YbfwOtjDNKPsbQfcTtZMU9Gh1FqFT5vfxkdRt9H+lGmLh/zAKm/DKm/jI5jH2nsnlOfaewWQx+w7Zgf80dXYNRiN6T+cqT+csaveod3oALvQAUTnbzwDorDOygO63UfNOXjVr5DGqhAGqig88QXXH8STumiRgxe6Mac9Z6cuBlCQXN9ImOSkAYo6DzlJdIARbL9Cm9/OdIAOZ0nZS8R/H9+RRdOWx8wYPQR7j7yYeKoRrxyCUQRl6hR8xsx+Rie0lA273rM89f+jB/WgJ0Hn9Gp305NHaet95kzqQX12qwnX/lF9Bi8l5Xr73Do5GuclnWlzu/FKFvHgW17nuLlHYZl9x14eodq7C/tWFptReodhpd3KBNnn2LYgD9wcLqBZbeNSH1SlEiDQ6IzvrB0UKxoPo1f+R4IgkBSUtI/Ol4xMjJg3JjOWHWpT0hoNPoZ+BUXtwC6D9jEnyN28bdzf910JTmMmNhEvPyiaTv4ko66po4K6MdkBc6h15N9VCzth99C+jEWW6c37D3lzeTBldL0V9Kv/VVyudfHGE07q3e48fBlCAXMDfHyjaJcy+O8eRfOyjl1sRpzI1kFVN1PL79oPH2iaDPwgka5NKsQif4dfuVfFUhdPnqQkMBAlu85TMEiRbl05AAlypVH3yBl5uPJ7RtMH9ATx/mzKFKiFFER4SwcN5yVMydrgqmqtety9vV7bvuFcu7FW7advszi9VsZNG4iHXv24citRxw/fJCBvboTGRHxTT8iwkK/KavZsAlBH/0IDgzI0Wtu1cWKSye+X2VKJlPw+o0XVX/LuirP9yAyLJR1s6ZgUaw4j69dxsvN5RsVtMiwUJwX2tCjYS0MDY04/dSFqVOn/qP9zAreuH2i/9jjHN3RhyoVsy8V7/E+mG4D97HTqSf1ahXn4AlXFq66zbWjf1G65PclF0wP/wY50X8S5y67o1QKbF3XFxMTI4I+R1O5om5ujdMX3uDiHojT5luULpkPuSKBCdOP4LTllqZOs0bladKgHK4Pbbh6ypqa1Ytjv6ArvbrVolgRM/ZtHcymv+/j8f4zCkUiXyMh8Vv6ZsumlYiMUqBQJHzz2fegXevfOXT0+xWWAgJCCQuLpnTpwhlXzkG4v/XHZvExShbPz7HTT3n7LvCbiS//gAhGTz1BvTYbKFsqHx8eTWBw3+9LMv4j8cwtkjcfYnCeWw2L/NmnRr3xjOWxaxRrp1ekVJFceH6Uc+5eKFvmVsZA/8f95P/nV3Rx8fp7DA0ltGxcFkMDPY6ecSG/ue4q8Y59T5k45wzu74MpVzo/L10CuXHHi4MnXmnqdG3/Gy9uWNOxdWUuHRnG3069qFyhEB1bV2LcsIZUq2KBrcN1Vjjd0SRA/QKVSiAiUsHXaNOyIjfven6XcmBq6NGtfo74lZcvX2JhYYGJyfenTMgKrt94xfrNFyheND+Hjt7FS/rpm3v0wfMT/YfvoHW3dTRtWAHP5/Pp0uH7t3L8KFy+F8Tuk95Ur2hG3jzZo20C3H4SzJq/3alR2ZwC5kas2uFGjCyRzXaNMM7143YJZeRTRD+BX/lXUvtEIhGebq6M7tCC4mXKUa95SyYuXs7bVy+Y3r8nCzZsY8U0a2o3aUarbj2RRUexePxIDt5/Qaly5XXa1VaR06bO5SWRcUMHIZfJWHsoRdZSHh9P68ql6PLnX4yeswDDZEGLJJUK2zHD+L1BI6wGD0/1GrJD7YtPSKBt1bJsOnaO32unMCeySu07eCWJPfuucvHcMogL1O3YD6L2fUFoUCAujx7w5tF9XB49ICo8lOp/NKROo6aEfv7E+UP7aN2tB2Nn2mBRVL1XqLqp1gv/E1H7/AOjaNRpByvmt6Ffj2TnmRY1Ih1qn+/HCJp32cTCGZYM6Vcbb99w6rXdyM3jg6j+m0Uqfcw5at+tVjQxymARrcEVfjlqHyI9rt9+R5vuG6lVoxg9Ov+OzfR2XL31ngEjd3H47+H0GbqD3la16GNVm9euAcxZfJrAt/aYmWUuh0hsjByrv7ZRrnQBtqxLYSKER8ZRqvp8Zk9uy6wp7VP2G4n0sOy8isnjWtO1o5Zc7XdS+6IjIylZaQxuz9ZSrLhWsu41N01IAAAgAElEQVQsUvtWrzmM+1s/dmydqvuu/EBq3xd4S/25fc+DW3ffcvu+B3J5PM0aV6RZw9K4vf3EkVMvGTmwHjOtm5E/n/G3NN2fiNr3VhpDx3FP+Nvud1rWK5B8bq1+ZJLa5yaVYTXzDRvmVKFdwwK8fBdNrxmvubm5DiUs0le/+l5q36O2pE/tS4KWN/ilqH3qfyQcPP6K/qMPUb9OCYb2q8voIfU5cOwVMxddYPeGPvQetp8hf9ahb/canDzvxt8HnhHkZpOmquLXCA2Npm3vnXRtX4WFM1tpyj9II6ht6YSDbUfGDGuUItogklC5/nL2bupPvbpaqUe+k9rn4xtMvaaz8XJdT14tSl5WqX1bbWdgZGTEkiVL0r5obeQAtQ/UK2Hv33lz644rt++6ceuOKxKJmGaNK9OkYXnuP/rApatvmDzOkkljLDExMfpKRe8rH/M/pvY9eBlK38n3Obu5GTWrmGe63a+pffeehdBv2gNObmzJH78X4NKdACbaPeXRsU7kM9N9BnKS2lc5r0jY3TD9On4y6HOf/1T7sgN9A30GT5lFsVKlWTF9IqUrVGLLskXMWuVM/Zat2XbpFtdPHWf3WgdCggJZf/ICJcqWy7jhZBgYGKBUKilcVHe5ViKRsGDdRqYO7MODG1dZvGkHFaupOc11m7Xg6e0baQZS2YGenh5jZtqwdJo1h67fy9ZSt59/FLNtDrLe0TrH+pUVFChSlJbde9Gyey8MJBJCPwXh8vghbo8fYJgrN7uv36dw8RKaPVI/K67c9GT4lNNMHtUgJYjKBry8Q2nVfSvTxjVjSL/aqFQqhk8+yawJjVOCqB8IiYFIZ7N66sjZ3FU/M+bancd+fidWOl3HzSMI+/mdefbSj+XrrmJkpM/C5Rfp1qk6LZtVZPhfDXn83IepNifwD4igX6+6mJnlZtHy88QnJGG/oBs2dmc0ils2dmeQiMUstumMjd0ZjAwkxMUl8fb9Z5atvcKcKW2xsTuHad5cOCyyYty0w2zbfZ/rZ6bw9777mJnloVXzyixdeQ6P90HMnNwBm8UnMMmTm9nTOmGz6Di5c+ljM7MrNouOo6enxyKbHtgsOoqAHvaLB2Bje0DdnyVDsVmwV20v+hPrMR2wnraDE4fnYGO7D0GAIbaZz83i6uqNw+qjnDmx6Ad+O2mjTOmClCldkCF/NQUhAR/fUO7cf8+d++4ULWyKxxMbCuX7PgGMI+el9OlUlvlrnmNqLGHa8KosWPcKU2MJU4dVYYHTG0xyS5g+rBK2zq4YG4mZMawStuvdMDIUM3tEJRZucEdPAvNGV2bhhreoVCoWja/Cwo0eAFSvYMJYOxea181Hy3oFWLjpPQgCC0aXZfFmTwRg/l8lsNvpgyDA/L+KY7fHD0EA22GlsdvliwB0a1GQDlNe07K2Oe0aFsB2kyd7LwRhP64cO88GquuPLMvi7dJU7aU7pCQlCdiOzvzvpDYkBun/NqkFN/4dE7c5AW3VvrNX3mLZtBwdWlXC1uEquw89J/BzNB1aVeL6HU8eXhzHiCnH2XP4BWVL56NXl+rMX3YF+3ntsVl6Wf3OpmM7b3+It28ERQubsGT1TeSKROznteX4WRd+r1aEcTNP4bj1Pm1bVsRpuRUrnW5gnFuf2/e9uPXAh4hIOfYLunHizEt6dK2V7WsuXaoQ3TrVY67tAdY7jstWG8/u32X37t08fPgw2/3ILkQiEZUqFqNSxWKMHtEOQRmPp9cnbt9z5959d6r/VpwNqwdh+s8ulPHCNZQTV3xZMrUOK7e5EB2biN2U2izb7IJckYTdlFos2eBCfKISu8k1sXV6zUv3SF64R9CyvgVnrvtTs4o5tk4uGBmImDP6t2/8lYmxhGlDKrJwgzumeQyYOqQituvdCItK5MyNQCwbWHDn6Scqlc3LX9Pu0rN9afKZGbJg3UuMDCXMHVuDBeteoq8nZoF1LeavfYFIBHbT6jF/zbPsqfaJM+FXEv73fuVfRe3TRqkKlRg0ZQZtevSm/G9VObDREecTF2nWsQufPvoRHhJMveaWbDh9mZMv3lKzQeMsn2PxilU8vHeXFXOm6ST7bdmpKwPGWOPn9YHxPTuz22k1CfHxBPn5Uqx0mZy8TAB6DR2JSCzm4Las78EKDpHRps8+Jlv3oEvnDEL7fwgFChehZbcezHBYx8RF9hQunnrOmJ8FcnkC1nPOM3zKaXY6WjFtXNafpS949yGYFl03M3eKJdaj1OISl298ICxCztQxDXKqy+lCLBEj0Uv/71dF0cKmzJ7Shj/qlEIiEXPg2DPGj2xGyeL58JQGo4hLoGL5Qjy/PYtJY1pgUVD9i6rtxrVX+VOzN6/pw2vXAG7fU1NrvpSPGdaUKpUKE/Q5igatV/DitR9KpQofvzDMTHNrtZOZc2Vcx2ZWT9w9/Dlx6mGWf+Sk0kDad57D2pWjqf9H9mXEcxKlSxVgUP9GbHfqz+K5nShUMOdGO5m752ndfy1bq824eCXn73xmyZYPdLe0oGo5k28O0H2u0m4zKCyBXnNcaVXXnEql1M+Km1SGcS4JfdpYpH1sDo4/MvIpv5pf0b63pUuYU79OCSaOakREhILAT9E8vTqBAvlzExouIz4hiaqVCzFyUD2eXJ2AmamRVjuZe966tKvMguXXefY6ZXuBShBoUr80LRqXxdc/gr/3P+XwyVeoVAJR0XGUK6OVd/KrNrOLlfYDOXH6MQ8evs3yse6vX2I9oBcHDhygfPnyGR/wgyESiahQvggjhrRi15ZRzJraGVPTzLEPfhTSfpfV/wSFKDh2yZ8376O4tsuSMsWNv6nzrZ16m9KPMg5d8OPA6oaUKqq+7o3731GyqDHlSppk0Gbq7WcV/wa/8q+l9n2BGPj00Q8TMzOMTfLi9vwp0/r1wKJYcTzdXVm++xDNO3ROqf/Vrui0qH1fErxGRkTw15+9iYqIwGblOn6ro1Y8SUxIYGhHS6rUrE2Qny/vXN+gb2DAVPtVNGrTPtVryA61T5lMA/HyeMuwTq04/fAlhYsVzxS1L17PgmbddtG5TQUWr0hRLvynqX3a0L7utFT74Oeh9j17/oGB409Qq3oRNizvhLlZLr5BJql9/gGR1G+7jiVz2jN0QD3NNfQdcYiWTcowZtBXmcZ/ELXvQVe9Jrn00j+k1onEX5Lap40PXsEUL2pGrty5OHfJhYGjd1OimDku7oE8uTGTerWzsd8w+TsNCIzE6q/tGOc2wGl5T2pULwlAdLSCui0d6Nm1FvcfexEQGIVckcD5oxOpXVPrfN9J7fvy7ty9706/wY64PnfEzMw4U9S+4E+faNh0ItOn9Gbs6E4pdf5hal+a73xaSTB/ImrfzSehjLV7TcdmFiyZUIncqXBtM0vtc/eR0XW2GxtmVKR9Q/XAWGSgR/sJz7HuW5KOjXQHy2nhe6l9L3voZ0DtE2h0JumXpPZpw/3dZyqWK4CenoRte54wd+llChfKg+vbz/i7zKFYEdOsnzD5HXnnGUK3gfuoWK4Aa+06Uq6smrYb9CmaOq3WM2ZoA06edyUpSYWffyRvH82iaDGtJOHfSe37giPHH7DI/igvHq3D0FA/U9S+ay6e9G/TlAVr1jOhf89MXbYGOUTtU5enkfw2DdW+n4nad+rqRybZPWVYr7LMGfUb+qnticwkte/e81AGzHzMYccmNKypphuLJPr81v40e1c1oW6N1JPL5yS17zdzkXDAMv19Xb6xAlZXkv6j9mUWxsmBjnZAIhaJKJ+870kQBBaOHspC5y3EKxSsXTiX2nXqkVtfn5ioKDzfulGrQSOUSiXbVi3j3rXLtO1iRYeefSlRugwVjUU8ffqU6OhoKlqqk6rlKwj3r1/l4MGDzBzSj7rNLJm6yJ6ChYuwatdBBrZpit2mHZjnL8Dp/Xto0KQ5JoYpzsVQL3O3OFHrgda2E5LtYuUr0Gv4aOZNGovDnsPE5UvJV1DDTGuApLylMc8+MuFz1EH+tL0B2v34Sin1bUzK+ZLitV/MlBdcOzDSCQi1gj4DrUBIu05aQWKx3LovSD49LWeYqDWblRiZYiu1EnAmaanAJGmVp+GwdB1QxhMI76WRtO97HKdFTejbpQKCMizllELqgaKOY9IZYCVx/OAHLOvlo18LiAt4qvns1t33LBxdgrhP7hn2CVCvd38HxBIR4u/IF/P/DV7eoYycfIRtjv0AGDnpENud+iEWi+jUdwsbVvam34idVChbkPatqxAdE8dUm2Ps2jCAsAgZ46Yd5fCOIcQnJNGu5yYsCpnQvlUVbt77wJ5Nf1G6hCn3HkkxNNCjQV316muxwrk4sbM/rXtup2VXZzq1qYS3Xzi7nPvguKQj3Qbu4diuv4hTxDPN9iK59aKRvnNnxJRTbFtjBSgZOfUM21Z3BZHAyKln2ba6KwISRk1LriPWZ+TkY2xb1wuAiXPO4LS8OwCzF19k+cJuFC0ADeqVZrbNdjY7DuaIfTv69VAH9Mfe+NOra7Lsutbg6dltdwrl02PsnxaQ8K3wTobQyYmWxgAmrYGNUmvjvNagRUjSeufTCHi0g6Kv62kHUgGBkQyb94IN82qCMoHx9q6sn1sNITEBawcPnGZWBnkC1o5eOE0sh6ASmOTshaN1OVCqmLTBG8fxZQCBSRt81LZExCRnKY7W5XgjlTFy5QfWTihL4+qm/DX9KSvGqJkMC//2wXaIOmBetsuHWT3VIh6rjvgzpZ1andbxQiiTLNWDbadb0ehLRHSqasSpc36UTlQHhw7nQnn8RsayTpEMmuLN3K7qYGr+8RDseqoFcqYd+Mzq/moq8bSDwawZpJZJn7o3e6prGfmUn2BP+D8KL+8wAJasucW8qS0AWOZ4mzmTmuPrF8ZCh2scPu3G2b39mb7wEtWrFCImOoZBdhcY9VcdoqLj2Hv0DbMnNmHJmtvcfujDpJH1ad+qHLOXXGeLQ0duP/Bl854XHNykniweO/0yx7d3ZddhF6o0Wseov35n9KDfmTT/Bqttm2Ftc50KZc0ZPawWj14E8teonWxf1Q4BGDn9Moc296BQweQVjLQmBbUnQr6eMEn+v3eHwuzbn5cVy7ayYGY78unvSqmTpDVxqzW58/juZ2r+0ZC23XqA7EDGNzjd3IqZmDRNK0hKa7JWy/foTLyotH7zk3R9jJdPOCoVjFvwkI22dRCAcQufsmGemj453u4F6+dURQAmLHXBeXYlBAEmLn+L00y1ku9EBw+cpieXr3qH84yKCIJIbU+viIDa7tGqECt2+lCkgAG9m+bBy+MjE1e9w2l6JRAEJq5+r7bjEpnolOy7EpUafyWoVEze6MO6caURicUMnOPO0LYFMVdF03bgc5ymVCA4Jgm/QBm5EsPxeB2p8YciiRjrZW9xml0FkVgP62WuOM+pBiIR1vaurLfJ7laIjMcq/6CwY9p9+F93ICeRlJhIkL8fz+7dZs2C2Ww5cQGLYupVlTkjB2Hd14rDO7Zw/vABbp4/w5iZNvj7+tC7eX26/FGD7t2706VLF4YOHcqcOcs16nIikYj+/fvj4eFBwcKF6VS3KiOtOnDv2iWmLXFg3phhlKtSlZnLV5Mn74+RrAYYOHEa7968QuqRuQF3hd+qERURTlQqyoP/IX2oVAIjZ91gnnUd+napkPEBmcD9FyE0q/ftLE7NKua89ohM5Ygfg3/DUvnPBLk8gdjYeD4HR7Pv8FP2bvkLfT0JSqWKYeMP8MolgKs3Pdix7xGxsnhGDW7E2/efePLcl679t9G1/w4GjjmA1cCdrN10R0N5kEjEFCuSl8tHhqFUqnj41I/R007i6vGZMqXMmWF7gbo1i1OhbAH0f2CyW+sxrTl0/DEhmZQ+rl+nBG4ewSQl5VyS6F8F8YkqFu3ypVyxXDSuno2Vh1Tw+mM8tUvqrgyIxSLKFtLnw+dv1SF/FP7zK1mDIk49qN+46wmBn2LY6dgdfT0JSUkq+o0+Rr8xxwgLl7Nm80Ni5YmULmnGg2f+tOy+l6cvAxlsfYbFa+7xyvUzJy9+0LRraCBhzKCa1KtZGL+AaBp3PYCbRyghYXIG9KzCO69wmjUowYxxf6TVte+GSCTCeUV31m66Q3z8tzmNUkOtPxri4fr6h/Xp/zMSk1TY7/DGfkJ58hrnzPpIlExJnYq6s+6F8hkgEkFQaM6qyKYFkSgzfuV/Pyn8r6L2PQ9Tzwh8vSKljYc3r/Hm2RNad+lOucpVAAgL/kzbqmXpOWQEZvnyU6ZiJW6cO82qXQcx1NMjMTGRd65viPrgQocOHZBIJFhZdaBa1Ups3rwMkbikpv23MUrkMhl3r17i8unj3Lt6mdjoKI4/fEXZSuq9AtqrLjm1IgVqvvNamxmYFyjIuJk2mvK0VqTeypsyvFs7Bo6xZmyftDeR66xIqbRXpIRUy7UTDmcm+XC2VqSS/rcrUofOfMB552vuHOuuyeCd1rK7NtJakVIlJVKu9Rmu7rKkrBZnGWDljrd8Colj9axMSjNrrUjlqnEky9S+Z30NM6T2Vd0f98tT+7Rx6rxa/nxQ3z8oVVK9MvDGNYDW3TfQqllFmjcuj0yewMeACNYtU9NS4uISefnGn7fvAunRpQaRUQo6/7mNXl1rsHBW229mVCOjFJy77MGJ865cvfWBWFkC4R/mpU4n/ZqOqrkgrWsQfyXekhYlR5Kb3gM30LFtDYb2qah1DmXqxwpKqjZxZM+GXtTJxt7Tn31FSpWoRaPTLk9IKdeh2im1fIEyDZGWZNrchpOBPHSPYf+CKqlW025LFZVyrcqIFBqioCWdHy+IqDzPlzcLS5L3qyS7NsdCsDDVY2Ib89T79BVEBinPTsFRHlmm9rkNMErXX8iTBOodjv/1qH1pQUhi75HX+AVEMmpgXQoWUP8uXLnpybSFl8lvnpupYxpy56EvBfPnZpZ1IwBksgSevw5A6htB326/4eUTQeeBh5k9oT5jBn8rFBEcKuPMZU9OXPjArQd+6jakU3S2SKR0XOsZ+o4VqS92kw7OzJvWmvYdGqWUS1JfkfJI6EjD0oU4+8SFJoVvfdu3r/EvWJFSafsibV+i7Xu0aX5J2v3QpuClL/5ks9ETRYLA2mmVMqyv7T+0acLaxwRHJ9Fgwhu89tZBYpzyWyEykDDI1o0OjfLTv6OWEJu2eqhYT8vWfT7y/HE+S36lan6xcLRD+qkgfKNVdDyb8F9C3pxEw5atGT1jriaIAnXC3ApVq3Niz9+0696LghZFCPmcQl/Q19enWq06DB06lMKFC1OwYEEuXdzLGxcPJk60/WYDZm5jY9pZ9WTZtj1cf+fHtrNXKP4DRCZSQ7MOnblz8Vym68fHxenk2foPmUNUTDzVK+fXBFHfC58AGSqVQNni32agb1izAE/ehOXIeTIDsZ44w79fCXPtzgOw0uk6cxef/cZ2cLzGk+e+zJ/RnkMnnmvKT51/Q1xcImcuueLlE8KdB54EfY7Gxu4scxefxchIn3OX3ejbvSZmprkoXTIfN06N4fDJ1yxbe4Md+9T0Tpull3FwuoWZaS7efgimYd2SfHKfR/9eNdm290udKzg439HYy53uqm37ayxde1tj2664rqkz1+6C2l5ykbl2F5PtC5rrtbE7w9zFpwGw6lybU+deaPozd8mldO9ZXHwShgb/KmZ4prH7lHp/xcIN7qzZ46W2N71n3QF1+eKtXjge9QfAbpcv646pN/fb7fFjzdFke+9HVh3219jL9qsnic49DCc8OlFz7OJdvt/ae/xYvFs94F1yJAi7w+o9rfZnwlh6Ru0n7C9GsPRiBK8/xpPHUITT9chv6gSEJ3HgQfS3x6ZhrzgTwpKTIdm+bxn6lUxKef9/gc3SK8xdciVd28MzBJk8kYIFjLGxv8bcpdeoX6c4Xt7hPH7uT7uW5XnlGsSxc2oWio39DZauu0uzhiX54B2O3dp7VKtSiC5tyzNzyW12HnJhydoHzLVX+4rlzo9Yt/U5Iwb8TvOGxRkzqCaXD/Zm1aYnmjorNz7W2CfOe+ToPbDqWI1TF1wzVVelUpGUlISeXvZzHf1sWLbpDfPXqv2q/WZX5juqV9xW7vBggbP6vqzd46lR8HQ64MOizZ4AOB70ZdEWtf9xPOTHom1SANbs99XYq/aq7WiZkoDgOE19u+1STZ3F26Us2eGtsR0OqH2L3S5f1hxL8VeOJ4IAWLLfn/k7/fijsglL9/vjeETtu+x2+rD2gC8NquVl03F/Vu/1Ube51QuHncnn2uzJ0u3q1dFFm95rrmvhRg+NnVVk5FdEP8F45X/fg38AIpGILScvsHLnfspXqUqBwoUJ/ZQ+D9zEJA+XLu7h8pXb3Lp1K816BoaG1G3cDAPD7CdQzAp+b9CYQD8f3ru6ZFhXIZfz9s0ramVn1vgXh1leQyKjc275+sHLEBrVKpjqLGBSkopcGSV2ykH8F0hlDQKpqw9JJGKG9KvP8d3DMM5tSB5jQ4I+Raep8AZQqGAerp8chePWuwQmi+ekpnRkbGxAqeJmmuclM6prmbNTV1Xq2LYGt+69wz8wKkPlro8BkUTHxFG1cuqbjf+/QOc2pKVwlUZ9nXIt21BfTHyCKt06aX5fqdR/4h1HEVO9VOsoBYEvjNA0z0XO4T+/oovsvqemeY0Y8mctenSugqGhHsa5DZDJEpLrpP4cmpsa0s+qClNsbxAj01r5+CpBr5GhHk0bpK2Sm9MEJatO1Th53oWICFmGdd1fvaBoiVLkK1AgZzvxP0RW76cqdR2Jr3yRdrn6H9M8esTFp84myoyC6Nf+xy84ngZVTFL1S4lKAT2tCebMtJldiESif8UEzf87al8m2kEWE0PLSiV4HBCho9Sno1KVrAKzdu12nJz3UKtWLQoXLkyDLr2o10TNTNBWqdPGj6T2AVw4fIBda5az//p9TM3zpUnt23kxEecltuy/epcqJmkP1P+j9n2Ly7f9WLv9FRf3pCg+fg+17/p9f6Ytf8HzEx2+ycR98Jwvl+8FsWtZJjnr30ntcxmWp0ku/fQPKb8l5j9qXxbx7sNnOv+5lQ/P5+t+kIoC3cyF5zhz0Z1qVSwoXMiE4QPqUqtGsW8bTYu+ksPUPoAVa85z7OQj7pwdTa5c+mlS+/Ydec6pC+4c29kfcpVOvR/p4Rem9u2/Gsx9txg2TUt932VWqX3HXso5+DSG42OLIDLQ9fHOVyMIjVGyqEfmBqbfS+3zHG2SPrUvUaDG37H/Ufu+IK13+Cvcuu/NghU3uXN6sNaxX/mFZGGov8afw/VdKJXKmVO4YB6sh9emfJnMUTvVHc9Zah/ApNknee8dybmjk9UJhtOg9s1Y6c7nAH/mrXKiIgcz7ut/1D4NVu71RRGv0uSA+15qn9PpT7j7ytkypTyiXCnfkchAwpz1nhQrZIh1Py0V2R9E7atWUCKc7mmcbh2fKBWtD8n+o/b90zA2MdEEVBlh4sSh7N27l/79+xMREcHF40f/gR6mj459+9O8fSf6NP2D/paNqF+/Pq1bt+bjR10J0Gf371KncdP/US//3TDLa0BUdHzGFTOJlvUtMDSQcPFO4DefBQTLKVzAKJWjfgxEYlGGf78SpD6hDJ94CE9psNq2PoCnt5atXe4VorG9tOp4+4aSO5cB/gERREUpiIpScOr8G6KiFKmu8CyZ256lNm0Ji5Dj8vYTe4+8ZPikY0h9wvD0DtWywxg+6YTa9tGypWEMn3wKqU84Xt4ptlSrvtQnjOGTjmjskZMOI/UJReoTythpB5H6hCD1CWGl4wVCQ2MYNrApBgYSfmu8htotnfi9hTNdBuwhIlKh0/c7D71p1rD0P/TtpI24uCRCw+Q4bntCSKic0HAFjttfEhKmtp3+fk1ouEJt73QhNDyO0PA4nHe7ERoeR0h4HM57PQiNUNvr970nNCIev0AZYxe9RPoxFu+AWMYtcUEaIEcaIGf88rd4B8jxDpQzYe0HfIIUSAPjsHb0xCdIgVeQHGtnKT6f4pAGKVLsADnWjp7EJygJCovXHOsTpGCSY4o9baOXxp6x8yM+wfH4BMcz90gwPqGJ+IQmMvdUGD5hifiEJfLcR8GHz4lcdJExW6vO7MPBvP+UgIGeiBkHU8qnHvyssSft/aSxJ+/7jPdn9bkm7Q7K1vfxn1/RxZf3znr2WY09ca6WPeeC+p31Ccdayx4/65zGHjfzrFqqPCCSUdPOIvWJQOoTwYgpKfbwKefw8lbbYjHMHFePRnWLcfCUO8fPvVPXmXoRL+/wFNsnxfbUsv0CorTeKZna3vqY0DAZoWEyHLc+TLG3PNCy7xEaJiMkNAbHLXeTy2Nx3HyH2ZMtiYtLoNof86jXfBH1m83mz0FrUCh0f1+f3b9L3cbN/kff1o+Bj38M0o/RjJ73AO+PMUg/xjJmwWOkyfbYRc+Q+sciDZAxbslrvANkeAfIGW/vjtRfrraXv0WaXD7BwQOv5PIJDh5IA9T2lYeh+H1SaOp7B6TU8Q6QI/WXaWyfIIXG/3hr+SvvoDgmblDbLWvm5dT9cB64RavbWfMen0AF0gAZ5++FIhaBl3/KuaT+6j57B8iRfoxl/NIvPlN9XdIAGdKAjFclU0OGPuUncCv/KpL7l5UNURZXpLTrWCRTqMqVK0+MnycNS9RPqaidiyA5D4FEDE0aARQmMMACT88oquRJHgyLSqR+bKIWJzhRSzEvlVlgDYxSNpSHq1po7AC51sZirRWw8QvtadvrT5RKJSJB4P61y7Tp3JXdF2+S21gdwT9/sJjhk6cjEYsJT0e8yUKLVpZPP4sUs6/zN2jKtfI4ZCYnDEC8lmPVWWGKSb08MTylSlxKuSpea+ZIe0UqM/le1BXJpYwlIkJGXLCPVne1ZqS1Z3UUCRmWA1i3zMO85U+oZ1SB3IbJz7JETClRDM6n/alvoaRdnRQlry95XaJkSTzzkhMcmUhwRCI1KppgWZWaGJoAACAASURBVNuM7OI/+XNdCEjw9o1AJBIhCALevmGIReJUbZEYjQ3a9VUUL2pK3rxGREfHUqK4OVYdf1OfQJWQwnNIfv4N9KBhncJs2CFQuXw+9MRKvH1CEZQKRKp4vH2CERIjEakS8fb5jCo+HFRKvL0/oVSEIELA2zsYpUK9v+WLLagEdR15MIhEeHsFopSpefCBAZ9Rxar37YR++owq1geA1y/ciGqlfp4WTGlIgXy5USpVCMCeIy70Gb6fiwcHoJdMzbrz0IdxQ+qq3+s4rfc/vdxROjc8M6tQWu9tGrmcFJGxhIXFceq8K+3rq2kopy++o219tXLqqUsfaFPPGJFIxOnLH2hbT+0Xz1yW0u4PU1RJ8Zy5IqVt3dwIiQmcveZDm9pGCPIEvH2jSAqLQCVPwFsaRWJAGIIsDm+vKBK8QxHk8fh4RxPvHQJKAW/vGHV5YhLe0mjiPfVAqcJbGkX8O7G6/EMMDfLEE/VJTmK4HPkT9bX4ecQQdUvts4I8FETcVM+Ih/rEEfFIXR4WmECki7p+5OcEIt+pfVlUSCI9yohZey6UsmYiYjzU9zD8czxlzCQcuB9LGTMxci+1jwsMUCD3Uj+MH3zl3LyrJFwhcNc9gWYFlFQrrI+PX/YGPBnKFKc/qf7/Dl/mT2JlCRpbLkvQrGDI4xI15TJ5PELy8x8TG4egUn/X4REyihQ0IjhERuCnSITk98LHPwJVkvo58fYNQ1DGIwjgHxhN3WrmiET5WOYEYiEJZYICb59wVAlyBNQBnlIRgyCA1DsUlTwKZbKtiPyMQoBT513p0DgfgqDeC9qhsXpV69S5N3RonA9EcOr8Szo2NQNEnD73ko5NzEAk4vTZ53RsYoogCJw++5SOTUw4ur4pXr5R6usViVm77QUjR9ix17kDIpEIpVLFq4fXOORQGouYZyDWmljMrF/RuflprFal5Vd08sKlvsKU1dUlgPioSFQqAal3GHHBnwHwkoYT/zEIRCD1DCdeagQCSD9EkPBWDwHwfh9BvLsYEOH9PoIEN/U9kL6PJNFVBIII6bsI4l8BiIgIUWCqTED+yAupexSxN+WIRCK8XGOR3YpDEAS8XGXIbsUBAlIPGbKHCcltxiJ/lohYIsLbM5a4NyoMjPQomFvE2l1S7Kzy4f0hkvi3EkS59BASk9hy2JeSoji8PaOI9wxOPjaSBM9gPkcn8exlKEcMEglXCLi8iyXBN3sKpSJRJvzKTzCW+VdR+15HxH+xNeXZDaSmjR9DxcpVmDN1UkrFVAIpbaxec4iAgHjWrFmQ3CndQOrp09fYLlzD+ZPTU/qY2UBKkrVASptSpydWD/Rsx48kXiFn1a6DKJOSaFq2MHfefcTE1FSTYDgjpJUsL03kZCCl+nkCqc9h8dTvdwvvi620uvt9gZQgCIzd6g9iEZtGl0AkEmmCpUfvYhm8zofjNuWpVkr9bPiHJ7L5fDAHb4VSvUxuiuQ3oKCpHsfuhrN0RGl6Ni+AeeeHWab2eYw3y5DaV2pdxK9D7YtwyrhiRkh+xrsN2MGAXnXo010ruXJaiR+Tj5m24BJFLIyZPi5Z2eqrH/vLt3zYd9yDPetaax2bCb/9lW/UTpSonXxDJNGiAIp0HUBSkoouAw9Tvkx+nJd14HNwLJUabyTs3Sw1TSetZNTpIYcCqcwl0dUeLOkOrnQoNWnQ9nTsaLlWuXb/tPYjaFFldKg5CepzuwQlMvlUJNeGp9CtEmQpxygTU45RJmnR/JK0zqG170UkFqFUCYy8GkfVghJmNVAPQL/sR7ruk8iMawou9MtDkTzqMq8IJdtfxnPBK4nfC0kolEeEuZGYkx4JrO+ch6al9Cm+KjzL1D7fyeYZUvuqbIj8tal9adH50koWn4x67f5m7aKWNKlfPLnK17+duolZAQZYX6ajZSkGWFXSKVcfn8T+Ux944RrKapv6pArtxKpp+Y6vcxpmYjwmkuihUCTRvNdRenSowBzrP3jlGkzfced5d29k8jn+fwRS2lQ9Xb8Sl2q5INPqnw7tTsvfp0L5u+ah4O/7MewfmC+5zazv7xZpBSSiXPooEgW6bg+ld10TxjTLqykHOPw4mkWnwni6tCx5jCSIJGJe+yrYcDmMm64yapfNhYWpHnny6HPyYQSHZpWnZtnc5P/zRZb8SnULPeF8//RTCnlHKGmxO/q/hLz/C9St35AbVy4BkzKs+wUmeXITHZ26ulpCQgLDhk/Hzy+QW7ff0LJFJqWscwgikQibNesZ270DLSuWICYqksaWbTAxzZlcJb8aTPPoERWThCAIqcvEZgMikYg1Q4pRZ+Z73vgq+L10SjDdoFIerLtYYHcwkKZVTbj+OhoXHzn9WxbgzqqqFLdIGbD2bW1B66kuVCyRiix2JiDRE/0UuRd+FsxdfBb7BV1Y6XSdiEj5N7aD4zUioxTYL+jCinVXiYqOw35BF5auuoxMnqAud7zOrEmtaFivNI+e+eoGUmlgx/7nDB9QhycvAzA0EDN9XCNs7G9gllfCjHH1sVl2BwN92H7AleBQOYUKGLFqXhPmOTwkj7E+s8fVYd7KR+Q2kjDXuh7zVj5CTyJi4dT6zFv5CEEQWDqrEfMcHiIA9rMaY+PwAEEA+zlNsFlxH0GAZTYtsVl2R11u00qnj3p6Yg5t6U6DTruxqLqa8EgFg/vWVAdR/2O8cA3lxCVvlkyvh8PWN0THJrJkah2Wb3ZBFqfEbnJN7Da6kZikYvHE6tiud0MQYLF1VWzXuyERKZk3qiILN73HSE/FzMFlWLzVi9wSgal9S2C3y5c8EoFJ3Yuw5IA/JhIV1h0KsPREMCYSFRNamWF/Lpw8BiKsW5lhfyGc3BKBSS1NWXY5EkMJTG2Zl2VXopAIAjNamrD/hZyPUeqB2vLbMgQBptUzZOUDBQJqe9XjOBBgSl0D1jyNRwCm1DJg7fOEZFufdS/U9tS6hji9TKS8mZjdronEKyG3noiZjXOx6lEcggA9q+gz+IwMcyMRKgHcQpRULSjh5kAT/n6lbn9mo1yEx6n461gMj0Zlb7U7I58i+cVWpGyWXlG/U/Paptg2ltjYX0u2W6fYc1tiY38DQRCwn9sCm/9j76zjrKj+N/6eubHddKN0CYiUYmCiIrZiIChggIEIBiWxdAnSYYsBGKCEhIB0LJ3bCWznzZnz+2Pu3jsLe5ddBP3yk8/rNa99du6ZM+fOzHnuiWeeM2GzZ/+EzQgEuw6ksmZTLEJA5Psd3fV3/Ae38vH0XdgdKuPf70zkrL0UWZ0EBZpZ/ls0x09nETm0E1PmR5GTbyNySEdGTN/LJ0uPYDYZCA404nAKxg1ux9SFh8nJtzNucDsmLzhIXr6Dce/dwoS5BygochD5XgfGfrIXq10hckhHD88M7cTwKbswGGRGD+7A8Mk78fExMOLt9gyfvJOXn23GDXU8bRE/PyM/Le5Ox+7fMWPRfrJzbbw/wEuH7hqOyZ/Fau8uvdaAyV8nYLULRr5cjxkrUimwqIx4oRazVp8nz6Iw/KnqfLo+i5wileGPVmLOphxyClWGdQ/XsEVl2EPhzNqUS75NZVi3MGZsysViF9zb1I8T5xyM/yOPj+4NZtLWQlQkPrzdn4lbizBIMKSLhn2N8E5nDQeY4c2OGg7ylRjYyZ+JWwoJDjAyoEsgbWqaGL06m1duDWLK+hyCg0y8eW8YMeccVAkxMHZlOkeTbCRmOpAkaFDVTK87QhnxVHUiV5wDo8yo52ry4KhT9L2vcoWvn7aO1CVmpP4H2jL/2Y6U0WgkMzOjQsfUqVOVH1fsLPWzb775mapVK9Gvb08WLln7j3ekAHx8fVmy6g8yz5+jUtVqBPr7X/qg61Fq+PoYkGWw2FT8r6CjXnqeE1UImtS8+J2o3vdWYv2BXOLO2ej/QGVubxVCkU3ldIqF8FAj/j4GVFUw9+c0bmsZfNkdqf/i+wp/J7y59pVI49pvNMhkZFVMGhUS5EPa+XxXPiXPtXN/Gnd1rk10fA57D55zlUd/3gtd+KSL95dSzrLwReUL9mXfur7k5FmpUingf3I5BW/OUSXT6K+PG5Y4uHyuVuVwxPKSj9koUbw+qdcyl6cMF+Bcm6BGoISffrkvV6L+bXz47YwDP6PE4I4+bE9yYnVCdLaKUxUYZAm7IjiQpnBjuEzVwMvjhktxyoWTF//f4+85apZMI0sSGVmWEuoab/kUq1Xq1AjiZLRHtaGPP3el0qpJBI1uCOHA0QxaNonQ8vHy8Hnnkwv5p5Q0pZYAalYP5Njml7BYnVSO8MNg+t/jlb8bFdV76dPrHRcvxeHBvjI256Wvf7mw7p+MQpXaYQZMBumi9F0a+3MgzoaK4O4WAUx9sQYffptGRr6CUxEIIXA4VJauT6d5HT9Ml9nhuSSvXKGB7r8T/0lpn6Io3Nq6BZFTZ/DUww94El5C2nfiRDw9HhvJ6VNbXIXySPs6d27HB++/Tpcu7al/QydOH11ElSqh/5i0rzhMBs8vqd4x8Lq0r2LSPoDmPTby08x2NKwT4CpuSWnf+C8TaNckiHtbBpbY787GcvH0+pRfzpNRoDCpl+bQJulH9l3YYlf5ZnMmn21IJzXTwY3VfYhOs9Gqvj+ZeU5CgoysGNOUAF/DZUn7ot+vfJv/JaR9Ncadvy7tq0gIJ4WFNhq0G8+aH/rTuqXOge8S0r5N22IZM+1P/vzJ5crlkp+oqqBBpwV8P+8hwkN96dh9GfE7e+Pna/zHpH26RKXj69K+Ckn7VCFoMOEcB98MJ8j1nqRe2uewK4zdbqNHQyMtIzz3qCxpH8CoHTZqBsu80Va7H3qr8eLHIN8u+PqIjR+OO8izCaoHySTnqTSpJHO+UNCokoH53QMxGaTLkvalDq9StrTPLmgwOf26tK+0KEPad/Z8Ac1uX8ChDb2pXTPYleTS0r6vV57i903xfDv7vhL7iywO6nX+in2/Pk7S2UJeGfInx9Y/efGaiVdR2ld6vnrH0evSvopI+3KKVNpNSuX0R1WRJOkiaZ9dEby/rpABHfxoEFH69bxQ2gfQ+9ssurUKpOctgSX2g8flMzPfycJNOXy/MwenAhFBBtLznDSq4UtihoO7WgUxvV8dJEmqsLSvVXWTWNc3vMw0sVlObpubdd2175+O5cu+JTwigq733V+h4+rUqUpSUiqqWrLhffToURISknnwwa6EhYXy7FO3M3vur1eyyNfjX4iGdQM4k1BQ6mffrD/H0lVpDJsfi6KUbzBCCMH327N59jbvdrTpuQ7avX2MzYfzmN6vLjFLW7NxYjP2z2nJ4CerM3tgPX4e14yAvzFLJpkMSOayt/9SxMSl0/WR2cTEpbtxbHyGB8dllJpGjxOSspizZDtdOt5QshNVRqSezaPr45+7ypBN18e/JCY+i5j4bLo++R1fLT+Kn6+RoeO2IoSgVZNKtH1gGTEJucQm5nJPz5+JScglJsGDo+NySu5/9ic3frj3r8TE5xATn8PTr/7mxi8MWE1MfDYx8dls3BZ3Fa/0lY38AjsxCXnc+8JqYhPziEnM476X1hKTmE9MYj7399lITKLmjvVA3y3EJhUQm1RAt/7bNJxcyINv7CY2WXPEevjtA5oLVpqF7h8cJS7VQtxZKz0+PkXcWSvx6XYenRJP3Hk78RkOHv80lTiX693jc9M0B7xMB08sPE98ppP4TCdPLEnXcJaDJ7/IIjFboVawgae+zSU+WyE+W6HPrwUk5Cgk5Cg89EMhv552MOYvK+9ttpKYp5KYp/LhNpsbD9/uwcP+shKdrfB7nJMTGQoJuSoJuSrv/lFIQq5CQq7CgLWFbE100OWLPL44bOfDW31Y/qQ/wWZY/LA/zzQzE2iW+LCLLyn5Kk9/n3fpi19KXIpTJPN/q7kRE5dJTFwmfd5c4cZ93/mFmLgsYuKy6DvIg19+51dX3c+i15u/uuvjs6+u5MPIzfS4vxEDh/3h3n9vzxXu+nv308uJSXDhZ1cSHZ9DTEIuMxdHcTo2280PsS4eaN99Oa2ahGN3qIyctgdfXwOLvjvJvS/+TkxinlanXvxdq1Ou+uXmk+dXERPvws/9op03IbdUzomOz3Fji7V8Vu//3yI+1UJschEPD9yv8Umqhe5DDhOXZtW4ZeRJ4s7biDtn49EJMcSn24lLt/PYjCTiMuzEuXgmXs8zmS7+mX/W5d7p5JWvMzDKsC/JzpOfZRKX5SQ+W+Gp7zSeGbKmgJXHbYz9s5D4bKd7vz5NQrbi4aUsJ48szmB7rJ2WNUzauTIcxGfYeXxWCnHpDuLO27l7bBzth8cSl26naoiRVe/X5YuBdahTyczzXUKZ0LsWMWetxJ+zE3f2MlyQpXLwSkUN0q5C/LeYDVAUhSmRo/lo9LgKTwkGBPhRvXoVej43kEOHjrv3L1y4kJf7PIPRNQP03qAnmLfwd/Lzi7xldT2ugWhYN5DT8RfLtA6dzmfkolhWTWlJeLCJn7eXLp/QR+w5GwMWpxDoa6B1fe+SvOwChQAfmW+G3EjHpkEYXKNElUJM3HlTCDc3DMT3bzZIJINmclHW9l+L8LAAt74hPCzAPVgSHhbglruEhwWADhfPDISHBZCba2HyJ5twOBSSkrNJSs6mz4BlGk7Jps+bP5KUkkNSSg593lxBUkoOVquT8FBfqlcLIr/QRlxiNvFJOYAgPMyXZT+f5OmHGxIR7gcS9H++OclnC3E6FYQqCA/1AQRCqG4sybixlo8HBweYNDmbBP5+Bjf28fH8EK1af4aklDySUvJYtznmql/3vx+C8FBf112RCA/xcUuMwkPMrhQeDBBWjIUgPNjkSqMSFmQEoQ3uhwUZtesjBKGB2vURqkpYgAEJUFWVUH8ZSbiO9Zdd+QjC/CWK70uYn6yVQAjC/LS6XCdURhv81+5LoGuQd1+qk4RclbkP+JJRJMizqtrMoxCYJNWd3igLkLStwK4SudtO4zCZYB9PnmbZDfEzQFaRSr0QmfY1ZBqHG5CRCPGBKgEyN1c3UitIxiSDJARhvpcpwbkUp/zXeMVVv8xm2Y1NJsmDjXJJ7Aof3UCWqgh+XnOKV3u1JSjA8wyHBpndx4aH+brPp6/7Nar5cyY+l9Ez9+Dna0Cgya3OZ1p4qlt9QBAR5kf/ZxqzcNkJwoLN2qGSIDzEB1XRnrnwUF/teQMiQn102NdV14RXzinG59KLePm9DSSl5lNkKcNC+H84Dp/MIimtkKS0Qt6bdICks4UknS3k7cgDJJ8tIvlsEa+POUTyOQvJ5yy8NuaQexYwLNiI6sYml6JIEBpoBFUgAWGBBkAgCQgNMCBUF/aXEbiO9ZdRXbLkMH/ZpUzQOKdumIGEbMXFM679vjLrom3sTHZwe10T+1KcJGQ7CfPVCEIVqgejEuqrHXsk1UZshpM7G/oQYJa0c0nabHiov4zk4jfZINGxgR8fPlqZmuEmZElCIKgRbqT9jf40qelDeJARCUFJcWD5otiQq8xN/vd55ZqS9l1qQV5vkj+93K2+2UmDBg2YNWsWPXr0KClNU3UNBy9T7ZkZ2Sz5bB3zF63hxOEFzF/4G5OmLWf3thnUru16mc6Zz7MvzeSWtjcy+I1Onnz0Mhj5gsa0t4U0Sxyjl+B46YV7k855k9eV9n9p+8sjSfAaXmQL6gUjFN6kfY5cTxLdYpmK1dPJUeyeTqstP5feIw7ha5bxM6jEploZ068+rep45AL6Ren00+wAqmt6/fNtuWw8nM9nL1ZCliXUAhvZFpVuS7J4/1Y/Hmnsww/HbGyKsfPpA5pUU9XLfFwNbSEEHb4s5IUWJnq38iE80HPvjLpOkWySySxS6Tw/m6iB4QSE6BfC8zwfcqDnmagyMLrC0r64yNq3+V+iM1Z1SMJ1aV9xlGPhzOzsfBp3mMwvX/em0801vB+vXyxaJy1JS8tn5pKD/Lkzme0rH2fU9D18v+oMe399nJAg7X4LoXJXz1W8+lxTnnmonpfvU8Z99fJZuWU7ng880FD6a7ZllaOElLYUSRKUlNfo05SQ7SleJDg6jiix0K6zJN+UkNTonTf1Ehyd1CY3LZ/XlmUSESAj2xWS8lSmPRBAjQDPd3XYdIub23XY6sEz99rItMGw1jKSJGErcHDWAi/vhhHNZdqGS3wVr5JlgzcaaFyhlFLFLYrguZ1Oet8g8UhNiVCz5zqZdDPWslHmdK7g3Z1Ofu1mwuiScBmMJe+RQccJTb8oqrC079yUumXyRaFd5YZhSf8daV/GRO0fb7+j5ZCfxcVncsuD37D952dpdKPHBKTE4vBcIEfTfRabkM2k+Yc5n2Xhuxl38vbY3ew7msGO7x9wL2fgdDpp/chvfDqqPXe0r6r7Dt7qf/karl6Pl6XS05RDSvh3o8R1E3pXTJ1sT/8KgFcJn54j9JLfMjjGqucYzz1Ojs9n8KpcqgcZsNsUzhWozO8eSKBOfq/qHTx1bQyn3bP/oz8tVPOXeKOV0b3/dI5K/y1OFtxupFGIxIQoher+0Luxxg/694+K+SC5QOWptXbea2fm0RsNBAZ55HwGk1wi/eY4OzN2WljdO9Td/vbWVgGoOiShQrxyUy0f8cc71ctME5vuoNPk1OvSvn8yTCYTy5Yto3///iQmJlb4+IiIYIa+9xQtW9Sj/a3vsPizdezcMs3TiXLF+4N6MOPT37HZrs3Rl2s5Vm05R2KahdvahlMlzMyuo7lUj6j4i6yPtAkkq0jl5a8zybeq7E608/IPuTzQ2IdHGmsE0bGWkd2pzlIXXS2OAjvYFMHbt/gS4lM2h0T4y3RrZKbZzEzm/lW6rPDvxqUlOP/+VPk/GR+NWQXAlFkbS8WTZ23io7G/ATBp5kY3jpz2hxvPWvgXt3e6gZ79vuXdEb/x0bj1gObcNXLiJg2P38DY6Ts0PGErEz/do+FJ2/lq5QkmfNCZ5LMF1O30Bdv2pNL9nnosWnYCgOFT9zB14UGG9L+JweN2Mmn+IQBGTN/PhLkH3Xj0JwdceB/Dp+3V4X0anraX4VP3XoSHT93DsKm7NTxlN8Om7Lpi1/dqRdSxTEbM0L7vlMXHGPGJdk0mLjrJyNnHAIhcdIqP554EYPT8M4yeHw3AmPnRjP9Ce49z7GfxTPlBW2tr7FdJzPhFM/UY90Mas9ZqLq2RP6Uz4LtMHIrgfL5CTJaT4+edfHbAyty92gDfpL+KmLtfayBN3WVlzgGtETV9r41PD2qNqJlRDnJsKgczVZ7d5GTGYSe7MqDPbqgfCG3DJRbFqCQUCA7nCJbGKiyJ1RrJn8UpLNXhBdEKET6Q54Cv4jT+mXdG2wDmnFD59ITWoFqbpB3X8ScHb//lYNYRrbH4ySEHMw9pv1Gzo+zMOFBx2+TiuBISHEmSfCRJWiJJUoIkSfmSJEVJktTtsgv1L8awyHV8NG6tC6/3cML4DXwUucGFN/FR5MaL8YStfDR+K/XrhHDLTdW4/YkfsFqdDJu0nY8mbgdg+OSdDJusmV+NnrHHXWfHf3rAXa9//C2O0BAzx05l0+Du5fy5O41NX3Xjky9OMGJGFACffHGSG2oHMm3JcaYtOc6ImRqfTF18zJ1m4oIjbjxuziF3vRs544AHz4xi9KwoN46c4+KlGQeYtOCwGx8+eWkFx/9qfDznOKM+1dRIo+ed5uN5pwEYsySO0Ys1WfTYr5IY85U2QD9heRpjv9fWHZ26Kp1xKzRumflHNpGrtOsw8KccknIUWlQzEp2lcPicQqBZYsF+K5O3a9yy4ICNKTs1bpl3wMrUXS4cZWP6Po1nTLLgi5NOpkc5mHHIzrs7HAza4aRVhMQfyRoPpFsFP8VrePZRhSUnNF6YfcTJ4uMaD8w67CTEB55uZGTuIQcLo7T8p+62Mn+fdt4pOyx8usdCp9omUvJV6k7OZFu8nYlbCpn6pzYIPmFjPuPXaN9x/JpsItfo/ALKG1dI2ne1eeU/15EC6Ny5M4MGDeKll1667DymTerLbZ2bsWPLNOrWrXrR521a16dZk1p8t2L/3ynq9biMmPNdPO/2uoHePWojSfDsPVWpElbxjlR4oIEV/apQOVCm5bhUhv6ez/2NfRjW1WMuUTtYxixDbI53b99zRSpV/Mtf1SY+oL3wnZxTntm+iodkNl5yux6e8OashU6qIISg0Y2V6dGtOes2n/FybNlYliXuv70ODeuHsP7rHpqphPtMWqJud9ZGFRCTkO81n8vC+u9yGRKMfzsu5aao/VMq9O7Up/tAEYI9CXbeuyeEljXMOFTo3cYXo+4F7XLlCQSaJL6804hNgW9iBPOjoUkQNA/2HBvhAykWsOmduy64dxYFIsxlfHcdlpC4s7qEQ4UiZ+lp/m5cIV4xAknAHUAIMAL4QZKkelewqP9IlM/d0YvrnS5N6+aVCQ/xYcSUnWU8qx6s/yVShcBokJk79laaNQjlsfvqEhR4saFMs4YhHDmVw9l0z+yKt/JQ4e9SOr4WozzX39v+0qLQpnIwxUHnumb6tA+gwC5oXd2gSeRUL5lS+u4wX4nHbpA5kin46gwczRIMbGGgQYjObM0P0oo0PvPm2lfoEO7ZsBKnLaU4vkaJbg3NOFXItYpyuZ5WKCTp0pxSvoHfq8or/zlpX6MAbb+iKNStW5e1az6nRQttwbrySPvKJWVzydJWr9nPmPHfs2fTUFehrkv7rra079iZXB59YwtHV96Bwylo8sgmBjxei0qhJgJM8FiXCCRJKpe0T/tMO19KjpNqBqf7GVOKnMRlK8RmK/x8wkb7GkZ6NjeXKu3bnuxkXpSdb3po7n/66fFiaZ8QgpWnHNQNM9C+lokP1xbQsLqZVzpqx1xJaV/C7Ea3+fuU3bGr3P/kdWlfcZRD2lf8XBcW2qnZYiyndg6iapXAi4/3Iu0rIXHzItMplr4t+u4EazYnsmJeyTWf4Lq0D66OtG/zsULGLT/LuoFVyShUuWViKsPv9MfX6Vd9dQAAIABJREFUKBHuI3HvjRo3l0faZ3O59AkhOGeBMJ2UyKYYOJMvKHDCF7GCJ2pJdKwklyrt++OsyqFcleHNtWvtY/Cco1japwrBj4nQvrLMjcES7+5y8nBdA/fUkq+4tC99YZOypX02lXpvnq6wtE+SpMPAaCHEiooc92/GlZL24Xo2klPzaXXPlyTv64efn7Hc0j69TA19p1y9mFfGzT3CuQwLs0e2d32H69K+qy3t+25PPqv35vFFzzBOpzu5f2EGY+7yR0KiRpDEbXVMrnNfWtrndBl6OFXB+XyVKn66QR5VEJWhYjbAiL0KkbcYaRomlSrtW3LcSa4ThrTTOM3s7+H44raLQxEsPWTn0aZmagQZeGRZHqPvCaBdLdOVlfbV9RUbh9cvM03MOTsdR8RWWNp3JXnlPzkjBWAwGHjhhRf46qurx83d7mtDZlYhu/ddO05Y13ocPJFNp5vCMBplth3IoqBIYceRXHYdy+OVyWew2r3PHJUVNUONJTrqW+IdPPhNLgv3W+lQw8juFO+N7fNFgmqB3quaogreW1fI+D+LGLa+ACEEqfkq1YOvjsROMhkvuf2XonyufRl07TGXGK84k5i4DLo/t5S7bq3Pp0t20vWxJdr++Cy6Pv655tDlcuSLic8mtthxKz6H2ATNcUtz4vK4YMUm5mlOWS587wur6di6Ktv2nqXL06s0l63EPO7rtYaYxDyiE3I1960Ej/tWMX6k71o3fnbgBjfu9e5Gt+PWK0M2ufHy36P/7VtTZuQXOjR3vt7riU3KJyYpn/tf2URsUqHbnS+m2J3v9V3EJhe5HbRik4s8DlqpFuLSLDwy/ITmpnXORo/IaOLO2Yg7b+exaYlsOV5Ii+omnlyUzrK9hUjAtO0Wfj9l5601BTzzYx7xOQqJuQrP/1xAQq6Ge622aA57+Qp91ttIzFdJKhD03+YkuRAcKgw+AMlF2vbaXoXX96r8kKiS6xBszxCkWgTTTjpJtWh4+ikNxxcKYvIFKUXaNu6oJ58RBxSi81QG7FSZeURlwkGFpALB3vPaS+hJBYKXN2rlScxXeXmjncQ8hcQ8ld7rrJe69KVGOXmluiRJ+3Rb/zLzlKSqQCPg2GUV6l+MS7v2eZz6Srr2/eZx7XttNTHxOdjsCgaDxOJvjxATn8O9z5fuzHnPc7+4XPUucLPstaaEs2VsUrGz5R/EulwuN25P4/vfEog6nsX9fTYSm5TnTqPxzAW49/oLcD6xiXluHJNQ7KKZR2yiBxcUXpuvO+w5kuXilkJeGh7l5pNnhx8lNtVCbKqFHiOOaxySZuWR4SeIPavjk/N24s5rzp/x6Zoj34TfsmhSxUh8lpMXv83GKMNvZ+yM31bEsE1FJOQoPLs83+3A+dxPBSTmau6cz/9S6K6zvX63kJSn1eV+mxxYnVod7/ung6QCwafHnPTZorA8VqVxqMTQ3U6SCgRJBao7TZKLB2JytQ5X73Waa2hCrsLzvxRqjqA5Ck8tz+fJ5QUs3G+l+7ca7yXlKozZVEh8tkJclpMnv8giPstJXLpd5/h3Gfddki7NK0YDwI3/Jq/8ZztSAL169eLrb366atPNBoPMG6904dOFW65K/tfj4jgRm0fjetpMwL2dKpH0c2eWj2/BBy/WoUaEGT+fv9c5SclV+HK/hcHrCnimuQ8GCW6tJbM10UmmRS31WTpbqFLFX0JRBXk2gaKqKKog16aiCsG2BAeHzips6x+KELAh2kFqvkLN0KvUkbou7bso/P1M7okWfz8TxWKEC7EkafU6JNgXgyx7sEvi5e9v5rGHmvHLmhOuY7WZB38/lwscaNiVazEG8PfV0kgSLlmf1uh1p3Hl4+9n4NH76nA+0+peU9bP11hs4qXlU3ysDvv6GNzYbPLYuhl1bmoG3Qil06GiKNqWk2fz4FxrqTi/4PLfr7msEJoTlJ9r9kUSuBbP1gZL/HwNSK4rpGHt+vj5ypohnwp+Pp4ZYQ9W8S9ed08I/MwSsel26kUY8TNLdG/py5peQbStbuSZlmZqBcv4GiUQmpOVhrUTaJdfgMCDEfjK4L4XMqRaYE0qROfDnVXALEFlH4jK0Zy1PEIbQbE/YLZduBbgde3XjfMagL/OCSwK3FEN4vMF0XkqdhUq+WrH+Bg8XOVZmkzge5nV/5K8or3LkCaEaKfbFnrNT5JMwDfAF0KIk5dXqn8/DDr5p2zwuPYZ9PVON0hn1C1catTV0/p1gvllfSwA/j6eeu13AYdILkfIYt7QnnktvRsLXHXHqBn1IQgNNtOlXRV+3ZCo1SN9GnddM5asdzpc7MpWjIvPdSFHqeoFfOLCTmfp+y8Le+GonFxb6dhLPtm5NhRFoCgCq2622aS7dz4mudhEs4Sjrp+P7PlNMUuuGTCBn8tSU0JgcwjqhWnHNKwks7pnIOPu8qdmsEzNIC2dnxHtWIGLW1z5FGOhpRHFPKPjBKcqWBmr8GOsoKofmGVoEyHIc7jSCNWdXqDxVaZVEOHj4itXOf2MxU6AKhlFggg/ic8f9SfLIkjJVcixCoJcrqGSEOiWm3J938sLqRzSPld7Jebf5JVrStp36z33M3DUOOo1burer1+YVj/XoL91+gVr/Uwl9cHtqwWTlZWFn58fXhfk9bZopLcpe8WzIGxWehq1mg4lI26GZjlc0ZAq+KvmTTpQlkyvPNLF8kj4ynNu3bXRy260w71MnesXztRL++yevJQ8TTLVc9Qxnu4QwiMdtbWa1GzNsGHLiUJm/JbByteqaelzdeW4YI0Lu8VTXrvuhQJ7kZMXNtip6idxR1XYnS6oHyTxYn14ebvKKw0lbq2i+9F0tWzGHFRpFibx9I3a/ddL+0y+BoZus9GykszLbXxZH+fg7Q1WDDLs7B1EqNbiKuHCZQj2TJdXH5lWYWlf0hetLynti3j2wH9G2vfM47cw4ePHqV9Xt76XN1msPrw849nZBdS/eSo5MSNceeklqwW6Q7wsAulF+qaPE9FZdO25itQ9L5ZeNi3Tkv+XR9pXnriSdrNevl9JmZ+XhbTLIcHR71csnjoPXCDv9bJYpmsR3vumpjDm3gBuqa3JXWzZWpoVJ+xsibMz/W5Nqq3nC4dOzufUNcKKikr+5ubaDLyyx0GrUJk2oSbWnXXSpZKBjuEmBh0qYlAjX2rrGsuyy3560ikL91U10j5c+8zX6DmHj0Hh/UNOHq4h07WqxK8pKrPPqAQaYfUdWsPddIHxjUk3yNR6haPC0r7M79qWLe2zKtTpfahc0j5Jeyi/BYKBHkKIa2oaQ5Ik0ffFDowb9iBVK+nkTeWR+ZXAnq997EQaT736G8c297pY2udNmuatvnjhmD/3pjN00n72rHywBC9ctGj9VY5ycVJFeQtKcKI3CaT+mnmTBpdHFgylvyagYW1/26nnWPlMELVDtLpXLPudf8BGlkXl/Q4+rnPr2rk6mZ9e2qc49PsVipyCRzYK7q0Bd1aCGafg7UbQJFjm8b9UvuwoU1m37rFJ1o5/cScMby3TIkyr/kYdLxhMEo+stjO6g4lbapmYdcDOwsMO6oXKrH064KL0pgvWu6w5ObNCvNL6Bn+xaULTMtPEpFlpP+h4uaR9V4tXrqkZqU5338frj3bjz9+u3GK3wcHB5ObmXjrhZUZ6ZgER4QH4+VXc7OB6VDzyi5RS+fXXAwV0usH34g8qEHF5KmeLBJM7GXGocDBTEGiEL6NV/AywIVUQlVmykSSEYFe6IMJXYvZRjaAXH3fyyWGNML864WBnqkLX2hrh3FffxIHegRx+OdDdibrSIZnl6659ukg9m0Oneybw2jtf89HonwHvrn1fLNtbah55+Va3Q9fk2VvJy7cihNBc+yZtBjRXrrEzNJetYRP/YuKnWl7DJu9g8jzN+Wr4lF1MXRDlwruZulBzvho+dQ9TdHjGksPUqRnIiGl7GT9HSz9i2l5Gz9zvxpft2lcerHP2+7dc/qKOZ3kcxpacZOSsIwBMWnzK7awVueg0H889BcCYRTGMXqSN6I9ZHMv4rzTX1rGfJzB1ueasNe7bZGauPq8du+IcszZoTlMJmQ5WHtE6YhM25rvdq2bvsWJxNXKm7bGx8Ij2uzwzysGC41odn33EyfyTWt2fc0JlwRmtwbIwWmVBtMqRHIFdhXAztAszklCksjdbQZIkQkwSn8VpDbAfk238kKzhZYlWjucpNAs2sCzRzreJWmPuq3gHX8Y7UITgUI7gZJ7LrcsmeKIm/HYHLIqB+We0Ms89qTLnpJZm3jGFWUcv3+DmSrmBSpqGeglQFXjiWutEFcfh42k0umUCB4+kVtzBb8JmPhrv4g2Xg19woJmk1PzSXftm7nXXzfFzotz1ffLCwwyfrnGC3oVv+lKPO9/0z064HS+X/hhNkWtgUZ9+0oKj7vSRc4+48ciZBz34k0OMmX3IjcfPO+LGkxcec+NpSzx4+tLjpWJ3mpkHmbLoqBtPmH/Ejcd+WlyGKEZM9zgH6l0ES8cH3d9r5KzD7u8+avZRN4eM+vSY2/nz47kn3c6fY+ZHu50/x34Wz5il8RrWOfWN+8Hj1Dfxl3TG/ZSuXef12UT+prnYzdqaT+T6XPJtgq8OWZm4TRuwWXTQxpSdFn6PcZBjEUzbq9X3xUfsTN+v1fFFRx3MiNKqxKJjnrbE/ONOdxtj7kmV4VGClmEQZIL9WZDrgLVn4btEQedKEhOOq3wV5+GiL+Mg0wYJhbAnXds/54TKZyc9PPbJQSfZNsHWFCcLDtl5s42JXs2NPHSDVren7bExY5fGk1N2WJi4VRvgnri1iAlbL2NdVUm6YgvyXk1euaY6Us/0e51PvvuJaR8O5q/1a/52fpaiIqxWK2bz1evkrFl/hLvvaFrhxX+vx+VFrweqsXhteol95/Oc/LI/n96dg/5W3qdzBC0jZAyyJmJoEQazjqmctUDdQNh6Dhy6taOEEMS7JiBq+HvP16pAkNnzfPiZpBJmKVc6JNN1aZ8+buvUkK8X9eXr7/eQkpZz0efeXftKj8IiG2aTAVUVXo8tl4uXFyc9geB0XC733Frrqrv2VRT/W/F33LS8uUvp70XzGmb2JjlKpDmTqXCuUKV5pWJJYDnyLAXHFWpSmuJoHCizN0sh3aZSw08mxapJhgUeXsm0C4KMEoFGqdQ8Har2Tn+xZEwIMMouXrm0GdhlxRWUDM8DmgLdhRCWSyX+X427b29I1y4NuPfJJWRm60xmyuV6d3Ga9CyLe+0n8P48q15weeJUXB51awSWqzwXY/H/CFNqlI9bRKn7LwxJkujZ1p99qboZMAEpBQKLE+qHlKMMXjACsm3QKszDD/1uhHVpWhvlrqoS8Z5HElVo32dPJlTz1fHGBfk7heY6WqxZlCQJoyy527f/hmtfeTtSXEVeuaakfXsztB7t3u1bGdm/N0vWbaFSdc/ilxWV9v2+/Ds2//gNa9dqI0VXQ9q3Y0cUj/acw+fz+vDgfc3K/I6lxnVpX4WkfQ6nSrWHt5PyZRtMRgk1u4Dxv2SQlOVg9hNhbrnd5Uj7Vp+ysTZRZfqtJpw2hQ/2KqxPEay5B9amSPwYL5hws0SzUIl5J1W+i4MQM3SoLDGq3cXON6BNfbf5uojtz/gRElTyXl+Yzr3/b0r7Un/tfJu/b9nkE3rftv+MtE/kLQbgx5W7GTb2F3ZteJ/wUJ0EuILSvmlztnD0xDk+m/2EtuMqSPtWbYjj1Y+2sXzevXRqe/HyC65MS/5/XdpX8hwVkPal5Ti5a1ISx4Zo19qWbWXIhiLCfCWGtDO5GxKXI+37Jk4i1SJ4vYGRfLuJoYctxBepLGjrz9o0O+vOO5nYIoAws8yiOAv7sp34GiTuqGSkZx3PIKBe2ucQTl7c5eSn20yYZFFqmist7ctZ36VsaZ9FoWaPHWVK+yRJqgvEAzZAX/FeFUJ8U97y/NshSZIQWdMB+GTeJr7/+TB/LO9LgL+Odyso7Rv88QZ8zAYi37/1qkn7Pv85jnFzjrBqwV00axhWevp/IP4r0r6DKXbeXZnDHy9pvSZboZM+qwu5tZaR3s09BleXI+2bfUIl0CTRp4GEzapyx0ZQBPx6u8y38SrLk2D9XRImWWJwlMrpPDBI0PdGeLqh5znVS/USLPD2Vgeru/tg0M0wG3XvQV1RaV/DILFlbpsy08SkWLi5z74ypX1Xm1euqRmp4mjT6Taefe1NXrizI9M+HEzW+fMVzkMIwfLPFvPii2W8Y3AFonOHBvz63UBeHvA5P/50fU2pqx0mo4zZKPHZhnRU13BcoU1l26kiukxNRanoEJ0uDJJnhO9YlsqWNEE1X3hhG6xKEqRa4ESONmK8NhVmdpAZ21bm9SYShQ7hdutKKtCcu17ZbCetUMXHCJZyOGxfqZAM0iW3/1LExJ6n68NTaXtTbe7q0oiqDYfw2qDviDqcdJFrX9rZvFLzcDoVYuIyufORBcz/fA93d7nhAte+L12uXDl0fepHl1NfrtupLzYhx+3U53bfutC1L8GDmzUMo2olX3r0W8c3P5/m3hdWE5OQR3R8rhtflmvf0M1u3P+DLTr8pxv31aXprTv2tQ//vGr3SAhwiECK1NrkqU3JUtuRaruDM3l38cWW1kRbuhNteYRlu28l1vYosdaHWLT5JmKL7iS2oD2jvgomLvcGYrOq8OLYVGJTHZpr3wdHNde+s1Z6fHyKuLNW4s7beHRSHHHnbcRlOHj801QyChVyrYLb56QTn+UkMUdhc5yD74/ZefLnIl5YVURCrkpSnupx58vXOWIVqry6QyGpUHPYe3u/6nbb+z1NIc8BqRbB2OMWzlpV7qlsYGBUEX9lKlgVWBRnIaVIYW+Wk2bBBp6tZebmUCPzY6yctaqctap8ctpOmkUlzaIy+7QTuwrJRSqjjzpJsQhSLIIhUYLkIm17bYdKcqEguVDw+k7VzUv9tl4eGV0JXhFCJAghJCGErxAiULddM52o4ih29Yw6nErNasHUbTORdvfM4diJs5qD3yCPg19J175fPa59r/5CTHw2h46dY85nh7ijY82yXfueX+Vx7Xvx95JOfYk6pz63a9/GEo6XXdpVYeCLjWn/5BpWb07SOfV50sfoji2xPzGfWP3+hDzP/qTS05S9/w8XztOV4QJc7BBYAufT41VP2Xq+86cb9x76lxv3G76b6KQColONjP/STkxWI2Jy2/Hd7tbEFN1PjPUhfjt1P7HOJ4l1PMHq0w8R53ycOPuDfHmgPfGOW4m33MSon4OJy6tKXKYfT06K09w+XU59sec9zp/FznWPz00jPstJfJaTj1bnkZav8lmUlae/zyMxV6HQAZN32XjV5Zrndv7MU3lpjcedT+8C+spmu7v+FrcxCp3wc4JWv1elaI39h6rDczu0ThRAVJbgjb0qR3Mg8iZNXtwqlBJ8peexLIsgpUBobp95Ci+tsbid/Yo5MD5HoefKAhJyNAe/p77LJT5bIT77MmTDUjl4Rf73eeWa1fA8P+BtHnjyWb6cPZ1+D97FlK9+pF7T8s/4fD13FlZLEU899dRVLKUWHdvfyLqfBnHPI9No2bwmTRpVu+rn/P8cAhknwdjlqqiSDwIfFD+BJKzIqoVGTfP4IzGClgUtaFqvCh8MUflQtTHn92T2nttDx+qXodVF60gVDwb9nCjoVlti21nBQ7XgsToST2wWRGVBzQCNtNpGeNY2s5TRf6vuL3G2SFAtzHuaKxnalPh/6z2o8sbQt+/n8LFUMrIKebrPZ1SKCLz0QbqITciiQb1wOrarzdJlB65SKbWICPNlcL+bGDJ+Fw3qBV/Vc/2ToQgfipQq2NRKWEUlbGoEDhGKuPDnyugE2UbT5oWaHRWCejdUAV8fkEzcevtNSH6aprb3q57DImdqf4ViYcz0bAz+VmR7Ia+9l4OhjhHZWkC3J2KRa9ogIwHZkIXZIKGocCZDISrFQYtAaBhhIPJOX55aUUitv6EaltAWyARItQoeqGbkeJ5KvQCZV+v7MOSIhTyH4GCuk2q+MoFGiQaBZddfgyThZyh25/pn4lLSPUn5bw3QFIckSUwc2Y3ouEz6v7uCFwcsZ/7UHuU+XgjByCnbqVrZjxvrhl7FkmrRvWstvlgZy6Bxe1kx586rfr5/KoQcQMOm7VGDOiFM1Xjl7dcQlaqBZOTp3h75Wev2VjA4QDipXtsCPkZAolY9J1KQP8i+3PWQRxXS713POWZ9A8JRCI58htbLxCfEDoqdVyrlYapiRxSl0/72GORK6aiZ0cgS5FgFozYVcVNVrU5P6erH+5uK2HNWIdf29wZ+i49elQI1/eFQjmY48WsKHM2FmALIssNNoVDVF4JNUJaxcYSfJhtWVME/0YIodu0rM8ov7btqcU1K+5z6BRqFYP2KH5g5fAg3Nm1BSEQE4ZWr0qBZc9rf0ZVqtetcJO07emAfA57uwTcbttHtpsaek1wFaR+KZ2HZBUs2MX/pNr5Z3IdmTTySxLK/+P8/aZ8ijDhVf+wOE4rwRRVmFGFGVWVUYUBgRFUlhDAgMKAKCRUzKlp6B+Hlvy6qHZBA1qRaOemp3Hj0Qzif7ElSTmlf7HkHL2yws+ERM4P/cnB3DYksG+w8p/JRK4ln/tTeYwgzQ68GEk/V9zx3sk7bXmJBXh+ZV/6w8VwTI90alVy87mpJ+879ee8lpX1BHdf+56R9JZ5f1c4n8/8kctp6WjWvTqXwAGpUC+GmFjV44O4mVK0SdNEzvmbDKfq/u5KoTQOoFBGgy+vKS/v0aUbP3M9f+9JYMP52bqij61BdQ9I+uxpMntKAAqUeFrUaxWIJo5SHj5SOWcrGLGVjVLMxSvkYKURSC932wl4XznQ6UPFFlQJw2I0oUiCqHIQiB6Io/qhyAKociCp8EbIJIZlRZT9Uk6fB6sg/T2jycho/vxhZdfDlc2F0CPP8bn68qZBgH4m32vlclrRvd7rMp2cU5rUz8dYBJz1rm4nKUchxCO6rYmLyaQsOFYJNEs/W8qFDhIf7vMn2zLKTV/c5ebexgZahUqlprrS0L3/XA5eQ9jmpdteGCi/Iey2GXtqndwBVFQcjJmxg6bf7adm0KpUi/KlVPZjWzavQ7e4GhIX6XSTtW7rsMNPm72XPb896llS4StI+fd1+4+M9ZOfamfZhO2pU+XtGTRWNKyXts4kICkQjCtQG2PAMYJvIwsx5zGRhIhujmoGRPIwUIHl5/UAv7VMK7KiSP6ociOL01f4agjROMQahGoJQjYGo+CJkM0I2oxoCEGbPi0+2rAR8jn9L64HfI1SFP14Kpp6fp+wD1xbRuZaBZ5qYLkvatyFV8EuSYHYHmYc3qMxoC5/HQmUfieYhEp+cVilwQJgPDG0q0T7Ccw59e0Mv1cMocedKGz9286FWmIeHrpa0r02TELHti85lpolOLKTN09sqvCDvlYxrakZKLaXTpwL3PPE0zW/pQGJsNHnZWWSkpbFuxQ/s2bqZYXOXuF/cVxSFb+Z/yhczJjF02myCqtfkQJZHw2oyeCqaj7GWGzcK8HLf1b88WNHNcpQgQk/N6P/yXZxLL+S+x2ZTOcKfd16/k5d6dnDlVVJbW/r5vFgyl+N9pLKiXPrncjTo9G8aqk4FuwjDqlbCqoRjFyE4XJuKTyk5FeehIuFAwunaFCTVjoQNSdgwOrPwdUZhdKYj559DVopYviWZxb+lUCUikNYNInipcwTPzDzBj32MhBRkaGvGSDIJjvqYHp5KVuvRmH58DcmquTUqFyzSO22PDQG83crIpwftOAS82czAzyedSAK2x9qx2OHzU4I5NxtYFg3PbRF0qSxRPwDyndCtiszSEwr5DnitocSyJIVMG7zeROKHkxKFTri9usRHexUKnFDPTzB9pwWngEFtzcw8YEcyyLzXwYdpe2wM6OBHoMuQQrb8vWFmSTYgyf/+KM7/TBhc0wn6OiXbeXtgdx584Bbi4s+TmVVAUkoW0+ZuZc6SHezZ/CGRU36jsMjGqPcf5IEnFrB7fwLrlr/BjAW7EALGj+jGsHFrMMiCMR/cw7DI9fiaJUYMvp1h4zcR6C/x4VudGDZhK8GBBoa+cQvDJm0nNNDEe6+1ZfjknYSGmHnv1ZsZPnknwUFmhr6u4cBAMx+8oWEfs5HWzavQ5qEVhIf68MnoO9h36BxCCCKHdmL4lF3lxuOGdGD4lN0IBJFDOl4aD27P8Kl7EAjGDb6FEdP2IgSMe68kLhEuzlCEmXylMblKUyxC41sf6RwRhj3s3rObffuPMurNpkxffISsXDvjBt/MtKWHyM61M3ZQW6YtPU52vp2x77Rm6tJT5BU4GPN2KyYtPk2RVWHMm80Zv+QMDodg9ICmRC46ikDi49cbMXruaQxC4aOX6zNmcSw+qAx5tjZjv0zEH5V3Hq3FS/PzMAXX4/kXXqRJ8zfYuvFJPv/qW/Ym/E5UTDavtfNlyg4LdkWwKtqJzaniKwT9mpv45JADEyr9mxqZfVRBFiqvNTEw54SK3S54taHMwmgVAfSsbeCcTTDrtIMWIQZ+TLbTMFAisUgw6ZSFGn4y41r4sSzRTqJF4TZZc+oTwEv1jCyNs2OUoM8NJr6Kd5BmFZy1CnIdsOmcSvMQA0tjFQTwRiPJfd63mknMPaXdizcay8w9puBU4c0Wl8cNl+IUSb42Bm2vWBhdgxq633ZZthE5sgc9n2xPcmoW85buZHdUGr9tOMOSZYfpcHNtxg+7l2GR67HZFBTVyaKv9tPzsZYEBIUybMJmhIDIoe0ZNmm7xjMf3MrH03fjcKpEDu1E5Mz9FFmdRL7XgUnzD5Ff6GDc4HZMWXSY3Hyt7kxfcoycPDtjB7Vh2hcnyMl1Yd3+2tX82Xc4g5t7rCY02EyHmyrxxZTbGDf3MDabwthBbRg5MwohcOGDGAww6s3WjJx5EB+zxEevt2TkJ4cI9DUwtF8zRs46THCAgcGVtsVwAAAgAElEQVQvN2XUrCOEBJl4t08TRs06QmiQiUEuHBxoYHCfJoyafZQgfxPv9dXS+/nJfNCvOaNmHcFklBkxoCUjZx1GqIKx79zEyFmHMfsEMPDVZzhxrgGVqt4ICM6nnSY5bjPdO1mZOm8zDruFMW+1YNTsowghGD2gGaM+PYYQMHpAYz6ecwIBjHq1AaPnnUYAI/vUYcziWISAkS/UZvznRxHA8GeqM+6bZISA4U9UZdwPaQghGPFMDSZ8l4xTEQx/oipTVqThEGaspkpkmW7gmed70+C2D9m09nk+//IbGtfcxpzN58m1wZBOvvgYYF6UnWeamFh82EaeXWsbLDrqoMABg9qYWHTciUWBd24yMfeEE7sq8VYLA/NOaWvGHcmGGce1ZQ8O50CoGX5JEWxNF9QNgLah0OsGifnRgpN50Ks+zDsDwT4K3WtLfBMrCPUT9G5kYPAuJ1GZ2pIvXx+3E+LrdHOdn1ni9Zu0dovZLPF2O1+m7bEhG2BIZ3+m7LBcnuGEVB5e+ffbMtdUR6qsqF6nLlVq1Xb/L5uMJJ457f4/OyOd4b17YvbxYe6qP6jToNE/XkZJkhj5QXeGDXmIrdsO0/etZdjtCv1eKrvHfS2EU/WhyFkNi1KNIrUqVqWyToqjYJZyMUm5+EkpGMnHKBVgUHMwYEHGhowNSSlAclmGeDOVKPHCZqGFgzGFfLzwDGuG1adKiKDbuN2EFwRSHQvPzVZ4uJGZXu38CPSBGoXH+WDU27w/cQ70mIHppzeR7DrrGld4q/DFs03JRRBggCQFTLLE3VVgdRrcW1UiuuBi5x+HKtifCfszYXWyoH6QoE2ExMDtKu2rStQNkqgbJANKiXNJF+RzpUKSJaQrOavw/zgaNqhGwxsru/+PjTvPidNntX+EIDuniLZ3TMTpVHj5+Y506Xwja/44TPHdK9vh6hJpKB82yBLTRnbBZDKQmJLHgGF/cust1WlYL0R3LsqP/46Dn5fvog+rWokcpRW5ShMEZsxSFpWN2wk2nMQkaTP4hdnROOza4JT+tcYS4zb66+DNZevC8hTPYF2YRiqJNx/KZMueePrdeZ6mcad4a24N3nmjLwPfegeb7TUObluLxb4Dg89OqlOIQ4GzRcI9olzeewcgSxKhJihwQm0/iYOKwCTLvN/YzNAjFmr5yaUe61QF3yY6WHtWQZbAzyhhUwW7MlU+aGrkdJ7icdPyUoYrGZfilOuc44kWzarTomkVtu6IAyDtXC7nMzyz1Wnn8lm5+hg9ujWh7ws36xb39uRRUSe98oQ+ucko88DtNRn2Rite/nA7v25MYmdUeokHyDunXYgvLs+VxhZq0vneLtRr2JF0zEhSLHu3fM7Td+Tw5Q87AHi6U0scuvaEV2dCvGBvabxc8wsv/5GEfBIys+jeLJ6fJmwkv8qtvNa3D+8O/ZC0ojepG7SazGNbEYaT1A8p5Pc4QWJeyYHeston+n9MskQtf0G+AwKNmrW5nwHurwY7M6GuX+kH2xTYcg4Wn9EWVW5fRRCbJ9hxTtCttsyodga3zfpF18HbNfFS5kvHpdsq5XlH6mrHNSXt252uNXr1M1NOHVZ0syaLJ41DNhjo9e77yJJE1vlzvHT7LSxcs7lEJ8rfqJNJGDw9Wx/d/grPSHnDqqXE/sNHU+j29HxSjo+95makFGGiyFmdAmcNCp01sKkRxZ/gJ2fgK6fhJ6fjI2dgFulIkuoqns4RR7nQtU83jV6OjlR6Uh5dPzjBmBdr0b2l9i7E3ugi+nyawL6RdfjrjIW567NoWsXIx/cHY8+1sSnOwfLCNoyfMgvZmo1x7+eIqJ+R1EtLcqyFCtNPCmr6QdswA4OiFFqESLzdUCbfCQtiVPo1kLgxUHteTLLK4RzBxOOa/fm7zSX8DPD8NkGTUIl0q+Cnbp7ZuQunwb1Nr5sDPM9mjQkZFZb2ZWzvfpu/X9ljKP5tf/rvSPsKv9f+KVGn9HXN8wz0HfAZHdrVo1/vLiAUTpw6S6d7p3Jq7zCqVrl4BFr7X5eX/jPVMxsudHXhQtlORWPtnwmMmrab3b9W/P3PCrtz6XihrGOFgCK1DhnOdljUWkg4CTacItRwBF/pLBe6/XvLy6tUSS+T9CJz0kv+AFRr6Y5acWdyeODjMyx+sx4dXSKFVVEFfPJ7BiveuZnEqg8T3Ow+fP38QXEgpR1m65eT+WjlcT5oa+Lhelpdddo9ZdXLbi6U9hXYjUQed9ClskyI0UjkCRu3hBvoU9eHZIvKyhQHL9U1U0W3rlxUtpPFcXaaBMv0qmvCIQRvR9loEiwjSzCxlV7+5zm3j1GHL1j1Q883bVZWXNpXdOCxS0r7Kt+66r8j7SuWDJeo86W/JvDQM4t5vU9HHr6/KQiFLdvj6Pnq95zZ9RYBAa4bpeMR4Sw5AFjh5/8yXPg+XxHNqk3J5X5vypt8sFwco09ThiRZAIU0JotbsVEdGRtBHCGEKHy42ISspIJG7+BXOq+UkAnr+KKE46fOtU9coBYRVs9nh07m8vTcNFYOrEGjAO18S3YVsuWUhU/63EJqnUcJb343JrMZnDbk5P2snBfJ1I2JTLvdh1trGFzl0yt/dG3hUvjm5W0KbzaTySlSGXMEutWAgY1gXxasToFBjSHcJfGVEPxxFmaegruqw2uNJRILYeAuQYMQibqBENnB42Zr0L+uYC79NQTjBS9c1ZuVUzFpX9MwsePbu8pME51YQKtH//hXpX3/b4eIrEVF+Ph5utzhVarSa9BQZo/88F8sVclo2bwGdruTlNSL1675XwshwKqEkW69ibiChzmZ14vEovvJtjfFKFmo7LOHen4/0yRwKfUDfqKa+S9CjKfwlTPdnagrGU5F8MqMWB7vHE6PTuHu/XtjirizsR9mo0TXpv588mgI3x+0cL5AI5mu9U30jTjI8Lf6IOUm47xrCMorP6K2fxFRrRlCMmguW8VOOIUqSYWC/n8ppBQJgk3wVTzICCbdJHMgWzDuuMKgKIXT+Zob1/cJKm/tVxhzVPDhQW1c7r3m2sufow4KRrSRub2ahI9MCQe/xHyFxDyV3i63noRc1e2E83fcBi8MyWC45HY9So/cfAt5+Va6PjyDmLh0zGYDwUG+DBy6nJi4dLo+Mtvt1tW1x3wXztQ5+GXrHPyy6frkd8TEZxObkMPdTy8nJj6HmHiPE1dsQo4O55aK9c5d0XE5TJqzj6OnMjl+OquEE2D3Pqvd+Jk31rrxi+/84XHtG7LJ49T3vs7B730vrn3vedL3fGuj2wnwsf7rNBfBhDwGT80iwfYMSfZHcaihVDZupYHPIqqb/sBPvrgTBXAuw6K5jfVa43Eec+N87u+9/iLnsdikAh545U9ikwqJTSqgW/9txCQVEJtcSLfXdhCbXERschEPDdhDbHIRcSkWHh50kNgUC3FpFh756BjH44t4dkosgb4yNcJNxGXYeXxWChuPF9Gmpone86Lw3/8Jxyfcz2v9+pK/exnO0Ho0fXkGQ+6owo/RTl7eaHe79vXb6ryka9/Iow5CTBKHcwS/pjoY1czMyTyVQYcsjD9pxSzDoEMWNp13EFug8GZUEQvj7Dxd24SPDA7XYGLLEImO4RKP1TAw5aSDVIsg1SIYc8zpxu8f9Jz39V06177dagnXr8uJS/LK/4AE538pvvnxgJsr9h9OISfXQkxcJr0G/EitGsHc0rom7e9f6Hb26/HSD243v3t7rnBxhYs39DwQ73Hwi030uHeWXnf+KOHmF5Ood/bL0+3P44Y6Qaz7K5XohNwS+/XHxurzudC175VNxCRpWKunBSVxsn5/AQ/03XJRmphEDcckFRGdeSPbUl8gjSexOYws+3IGIjmS/KTlPPPGj5q7YFI+z7273Y37fLjLnX//EXvd+PUxB9z4jbEH+T/2zjs8iqpt47+Z2ZZeCF16772pIE0UQUBfLCBF6SjSsSFNKSKgFFFRUcSGgoiKiAoo0qR3CCWFhJZeNsm2mTnfH7PZbIDQLPi+H/d1cXHn7JSzu3OePeU+9xN7NpfYs7kMn37YFzeGzjxO7DkHseccPDUr2nD7PO+g96yThtvnRScPzTxV2LUvyXDt6zIrjj7vXWTc/RFMXJ3qc+2bvzmH+iVNZJw5xuSXX2LzpA5MHv80v3z3FWqp+nQZ8walQgNYeUL19Q0ude1LsOsM2Ogm0V7gupmQY/RbzubBLq+Mr2IQ/HIRJh6ECUY+Yvr9AU/+ITiUIXhmD8w8ChNqQd/K8OJeQaQFXmgok+sRdK8gk5jj50TqvW++g19Bv8XPwS9D9Tn4ncm8cdc+SbqeuHLrhzH/M9K+S1GyXHkST58sVNa171MsnT0dTdNQ/gWdRUmSaNGkIht/P0m/Rxvc6upcBiHAoZUg212JbE95PLox426TU4myHiLIdI4A+QKypBWc8A9h4VdnkSR4uVfZQuXf7c5iXMeCDZ2lQhQ6VLfywzEnT9QwHvd6JRR+XX2AvM+GE1q9JZ7mg9DbjDBOcOVSKuMCktnGPGEm1GYG2cTbKCiqk0cS46kcHUex3ONk7v2ZEFMmgQqMqCbz/XlB7wqC6ccEHh0CFZjXCN46RaHOYrUwiWphEr9euEWrwZJ8czk4boMKd0ReNvFRtnQY23fG3aIaXQ5FkalcPow9h248LcRfCd1SHS2oNYOfKY1GJqXMGwlVopH5B63kbhCLVp+nSmkr2XmFf/R/OZLLgm4hnPYaHlUK0TiybhcbbQdpfXwjYX3fo+Mzs3ntscHUDLn+DoNbEzg0EEhkeww5VKBJonaozJEsnYFVrJQNkMnT3Hxyxk2IWcIkwfjqVqyKxAl7wb0iLBJNI2/h79q1YsrtmFMkgoMsnL1QOLVCr4frM+KF729RjS5HmRLGxPTpM3afbPifhkCiWcuOiNKDwFwcPTEWKfVzyDvMts27eKJds2tf5BbgdJKbznUD6VA7kHWHjNVEVROk5+m0r1ywytMw0sP877dyat82mjj3EtHrDca9/ApTXnruhu7nUAVpbmMSN8Nt9DPMsuHOF2iC6iEwtCrsSYM3T8Ckw9CmhNGFq3aJA2mjYhJrbRIlA26FhE76r4gr/7PSvu0bfuLrD95l9udf+8wmAB5vWodFa9ZTpkJF4NZK+wC+XXeIYWO/omObqnzybq8r38d3/j8j7XNq4WS6apDlroQqgpDQCDKdI8SUQIg5AbOce+Vz/bXB15Ps7k9I+2Z8HI+W5+Hl3nd4y41l9zsnnuL9vsWpWtLM7jgnJfEw7Rc73evYeKBcQYPrsyqbx2uZubeiCc2tIwIjEeUaIco1RrdGguoE1U1ajpscl4edF1XMAUFUqFiJBjWqYAoOR7iduPb9RO7mFahnowEwK4JtKYLobMGQqsL37Pk7ZJn8rMeLcua79O+/UtqXvufRa0r7bHU+vy3t8/GCZ3bpx5vZsuMUy9550leuaTrBZceSHjuLgADLLZf2AXz45TFemLWdpx6txewXr38P5l8h7cvV7iDFcxdOURKzlEmUaRehygkkyRsfruMet0raN2phDHVKmxnUydgXp2UY+1aqjI9l58gorAocOK9SQvIwan0ez98VQKNI0Grej9ppCutWfU75HfOoV0y+qrTvUKYgyQlvRAtyvFX8uLmZUL/fHY9euIOwKdlDngZdSxd0vPxle4qfmYN/+T8l7XMe7X11aV+eSrFmX92W9uXDL668OudnHE4PM1++31eenJJDzTvnk3bieWOv2y2W9gHMXXqU1987wovD6jHmqaunm/krpX35Er402uORorCIJIpJWwjiBDfSvb9V0r7H5yfQu1kQXRsYbq5aloM8t6DWrIvEjo0kyyU4kaJRyip49OsclncP4o4AUBs/gXb3CJa8NZ+H0z6jdJBcpLTP41LZlSJIzIF5hzTyzYd/vV8moJDTdeFP7PN4QbgFuvrNSftL9fz7K7JfLrh/QtrXuE6k2LGy81WPOX0mm7oPrL3t2vd3oEzFypyLi7msvFyVaiTGnPINpG41uj9Qn/s71KJak1fZsz+Rpo3KXfukvwFCQI56B2nOuuSqZZHQCDYnEmreTYglAUVcxx6ufxCt6oQx55P4y8pLh5u4kKWy9mAOizdlERkgcSFbp2V5MyDzS4zhdtWstMKqEx4koF0ZmV+jkxHRP9Gh/EaWHnDh0QTpLolv4zSK26BbeRl7ns5WB1SvL/GjqEGt+x6hTtsuWJs/yLblC6i2dzkrEzQ8usTAKrKXC/pUkvgiVsejQ7+qMp+c9KAKmadqKCyP9qAJiadqmfjwsAsdiUH1LCw97EYyywxtaOX9A24qFpPpXNXKL7EezDaNTtWs/HTq5r4TSTYhyf+zTf9vRakSIew7aKRJ2PBbNPsOJPDc6E6Ehdh46ZXveXPWf3h9wSaQJJ4b2Y45i34DoTFhRGvmvLUFSVIZP/xO5izejiJpjB3WjDlv70SRdcYMbsLcd/agyILRgxoxd8k+TIrM6EENmbtkH2ZFYpS3XJElxgw2uCQJxg1pwtwl+wDB+KFNSM908nTfuixefhiTIhEWauG5YU2Yu2Q/utCL5BOGNmLekv3oAiYMuw4+pAHz3j+ArsOzg9ryR0w9St7RAJOUzcHtH3I2ZjvjhtTn+w1nEELQ7d6KrN14Bl1At44V+GFTApou6NaxAut+TUDVDP7hyhOkZ7oYP7g+C5YdwePRGT+4PouWH8Pl1hg/qB4Llx/H4xGMG1ibhctP4NEE456qyYLlp1B1nXFP1mD+J6fRdRjbvypvLo8BSWJM38rM/zQO4fEwqld5Fq5IQHhUnn2oLHaHyie/ZTOoU3EWrU1CdroZ1iECm1nira12qhc389I6OyZJ4FRhyxkPB8/qPMl6DokqPNCzD3v1dD76fim6qtK/hpllJzSEptOvmsJ7JzQ2nTOMJcwyNImA3hXMrErU2Jys82AZ+OacBwE8WNrKd+eMeNW9rIUcT4GtR355z3Im3/GPlDOx+qzBHy+vsCpRQwjoXVHiywTDta9/ZYnP43WEgAE1ZD6JNXi/KjIfn/CgY8Slm8G1Ysr/O9e+68CcRb8hhKBa5Shmzv+V8FAbzz1rxApd1xFCMHXOrwQFWHjumebMeXsHQhdMGNaAue/sQRfw3NNNmfvuXoMPb8Ib7x9A02HC0IbM//AwqioYP6Q+C5Ydw6Pmt51juN2C8YPqsPDjY7g9Bl/08XFcHt0oX3YMt2qUz192FFWF8YPqkJnlZNqigzz1n6q8/9VJJCTGD6rDvA+Pgg7jvFxGMPqp2rzx4TEUCUb1r8kbHx1HkWFkvxq8+VE0JpPEs30v54oiGNm3Bm8uO0FkySp0eGAQTqkCOZnnqBq2kvc/+hZkwdgna/PGR8fRNMGEQQYXQjBuwJX52Kdq8uZH0ejAuCer8+ayE+gCxvarypvLT6LrgrH9qjB/+Wl0AaOfqGDECiEY9UgZFq5IQBcwqkdpFq46iy5gZNcSLFpzASHg2fujWLQ2CSFg5IMleWt9KrqAltUCeX9zJnGpbp7tEMGSbTmoOgSYJRZsy2P3BY3jySq5boFbg9LBMsv2O/Ec+Igni1dn8NMj+XpxFo+71vHxUQ8eAYPqmvn4uAdVwIMVTQzcqJLpgVrhEu1KQZAZ7isrsyZBoHmgTyX4NA5A0LuixGdxAlnCx1fEw+MVjWNMJp0nqsgsP61jNQueqGbi4xMaJkXQ1xvTzLJGv1pmPjrmQTbBgLpWlh52YzJLDGpo4/0DbpAFw5sFsmSv8yYFS9K1+yo3miLob8Ctr8ENwKFefabWf6WqdPkK5GZnk3rhPFGlC3I23VG5KnGnTtD4nvYA5PqdI/ld3+QumGXY4/TLB+S3umWSm/u44qfTLO032x9p9ctN5TnixzN81GqGLvfVZef+izRtWuMqq1t+K0H+M9j+M1D+M1NFzL74QxcK2VoN0rUmuEUxTNgpbtpGmHIYk+Q0/OWdoF7HDHHhGZ4r16OomR/jfRS8J81RhFOflzcqpXAwNpe85GysZtlXLmk6OZlOdp/Ko1KkwvreoczakktKporqktl71visOpWVeO+ARsVgaBNlZn+SUa+2pWQyHTrfnhG0KCHxcAUwyRL9q0osOWqYRsiSICk2mrjFr1Lut/kkd5nE3U+OwVWnKvLcqTjy3JhlHaFIOARYA2RUWZCrGblaNFkiTzW4C4FTN/Iw5GoSqjAydWerEvkTyVkuwfFUnc5VYf9FlSCbzL2VLew9++f2MtyGF/k5g4rKF+eHu+5uSnzCR+S5A6ldpwabtp4BUzgREcHEn7WDKYTM/GZqjiDDLjDJEpjDybDrBFhNXi4ICbKAOZIMu0R4SCCStTgZOQoRYRbkgOJk5ipEhAX4eHiYzcdDQ6w+HhSgINsiycyRMJtlZGsYmTmAULi7RTlOxudQo0okstlKpt14ZiSTmQy70RYkWSEj22h7stlKhnc/YZFcMZORfx3FhIcI6jXvQZyrFRHFHezbsYLH26WxbP8f3s9SZ+eBJAC6dSzP3iOpeFRjwHTgeBoOp0a3jhU4fCIDe66Hbh0rkJ7pJsuuIkkyHo8g05tZ1q0KsnI0JEVBVWWyctzIigW3KmHPVZFNFpweyHMJZLOVXCd4VB3ZbCXbmxVbNlvJytUxyRJKQABZDrAqMnKwlYgIK2f2ZCIFWcjySASbTMhBNnTAIZk4kydT9w4LnSooDGsZwOzNeeiyhDXIzJaVb6EFRdHk0RFEVm/AliWTsQbnkScJFFlCWE18FqtRLghWtTexNNpo4I1KaOzI0NGBqEAXundPaVQA6F7ZdFSA8PGSQTrCGxyiAjXf8SUCVfLneiNsGiqABMEW8Kp7sNkkHN5yk0Umxzu7bbLIOJBQ9cKr5DeCa8UUSfnr98r+qyF792hLfkt/SmABFxoZduPzf7hpLeLOrDb+NoWQkW181zWqliA2IYdyZcO95br3khFk5Eg+nuNUUDUd2RqGQ5VxOjUUWxAuVSYnz4NsCUDDjN2hYwoIQRNmsh0uFGsQGiay89zIlgDcukJ2nublMtl5HmSzFadbItehIpnM2GxWwkIsnIzPIdsbEyTZRGa2ikkBJJnMbA82i4zk5cFBZiTFRKZdJSzEgmyykJmjER5qlGfkqESEWnw8PNiMWy5DgzadKV+1OR5y2LHxPS7E/k6jwbXIsLuxeFdEMrLdPlu4/Djmz4XQychyXVZ+Gc/y9qMkuSC+yQpZ3iVj2WYj09stkQLMZDq98STYRpbbm5okLIAsVfbxHF1B0wUdG4XxwaZ07KqMHGzDbTZhd+iYTRIOk4lkh8q4jmFkZbrIdApCQ80Ik5s8NwTtmMNeRyiPPDsFEd0CKXY6eXYHlkATbkUl3Sl45Gc3lUIl2hdXmNDMyrydDpAkWlU0szPTg2QSBISZcCgqVhkCQxUcikaQqYCbLPiOCbXIBISYcMgeLGYJa5CJXEkQagJLoIlcoRMkS5hsCnahESCMXJl2TcKbpYUsl0AxFfCbgiRdR1y5Le27bkiSJH67kHXVY/wHUroQzBwxmPot76Jrnyd95WuWLiEh5hSjZ80DKJSsV/IfJBUaMBU1kPJb2ixqIGW69kAKYMyEDyhXNoKxIzr8IwMpXZjJ0OqRoTZGJRirlEKkaS+h8skrmkNcj9TmnxxICSGoO/ww34wtR9VSVvQcF0nZKq1nn2Pv2OK8sy2XXLdgYssCVzy3o+B+TrubsVs8bD+v0f4OmanNzZi9NprRKSqjtqv80NlcSJLj7+bnL7vRhYTt3kEEdhmBduYQee8/A3lZWAOKSMLrv1Rukvx44YBwPUnubjTBnSRJW7IO9b+mtM9cben/H2mf+yfjj+sYSKG7add5GuNGdqXr/QX7Gl+c/BlBQVZefq7b5ecWJe3RrywfvCxh9rVQZOJtD48P+44e91fj8R614AYTchYJXxLdEFKcDcj01EBCI8J8hGKW/ZgkZ2F54k3KiK5Y10L18JMSFyXzu4q070rxxqPqlLl/C6c+aUxooAktPZejiU56vRnPnol38NyqNKqWMDOkTsHn5PFL4G23u/lU6cYjQ8fjzE4n/OBnSEnH0c6dYEdCLh+ckFnSMQxMNuOzlhU8mZmQa/weuPweCY925e/CX8InSwXcX8JXFPwlOMql8cYvxtT/0nXD0j7PqYHXkPZ5CG+w/P+PtC/nM+OPQvGgqLaqUrPpFD57fwBNGpT2Ffcfvpw2rSozsG/LoiXCUPi1IhLKFim9L6p9+f9uF4oXgvZ9fmTqyEa0aV6q8CnXMXlb5PFeuEQU6eJOcqiDjJNwdhLBLmTcV7jCtXFd78+/X1JUP8YvaXohmZ+fhFe4L+nTeKV+SRkemj57iDNv1zLOz3Gy6Xges35I56dhxem7PI2HGwTQrWJBm/RPtptm11kT1ouH+w3DnpxI8eivkFNOIFJO883xXLZdNPF6x0hQLCAraJoEuelILvtl1xJFGFf524j7xwb/Por/MUVxxe/4Py3tqxsldq3pcdVjTsVnUfveVbdd+/4utOx4Hzs3/FSoLKpMGZLPnb1FNSoaNpsZp+vv34StCSupagtOuwaQorbBIqdTzryaipbPCFOi/xaHvb8Dh+MdWBSJKiULZvu+2p1Dl/qBbDzlotEdZr46kMeoH+3EZ2rEZ2qM3WA4yZzJ0hm7xc2YRiaWdLDwXZxOXFaB+82PiTr1IiXDccvr2jd0u8bZPCOH1DO74Wye7nPfOp+nE/Pt+yyYOAqpTA2UAW8x9oiNs/7n5hQ46iT6Oe0k2DWfA8+ZbMO1r/+Pjstc+85kaj73m/gMlUdWZBGfceMuOJCfkNd01X+3UTS63t+YtT/uw+XyEBObRPsHZmC1mjly7Bztu8wmJjaZmNhk2neda/C4FNo/uICYuBSvm9/bBW5+Pd4jJi6NWH9nv7g02j+8jJi4dGLj06/IYy7jhhPg6dh02v/nU5+713klXe8AACAASURBVOYdiSScyyYmPoMu/b7xOX09OvQHH+876icfHzD2Zx8fNP4XHx/sx8fMOER0cgtOZT9CqqMqsnM/5owljB43jTMJScScyfK59hmOYT/48XVehzGvk9iZS1zFiuJFOvhl06n/+kscxgyHrvsGbvI6huU7gOUSm5hL56HbDH42lwee3kns2VzizuXRdcwBPl9/kZrlA+gz8xRxF5zEJbt4/M14OjcOJTHDw/4EJ8u2ZROb7uGRz402eCZT4/FVds5kalzM0fnt+6+IXjyAtOw89A7j0Hp/gBi3mSbz/mDpz3swPbcR09gfMI3+HtPINQRM/g1l/Pd4/jOdtaUf5LzHyrk8wcxjGuccgnMOwevHC/jsYwXOe/58+hF8MWrq4QL+0sECPnZXgVPfkC0qibnC50qa7/o18Neb67BeK6bcjiuF8dmXf/hixYBnlnN3y6osX/EH/YZ94o0VKezel8iBI+eJiUule5/lvvjQsefHPje/9g8v87X39v/5lNNxGcTEZ9L+kZXE+rn5xZ7JNHivNcQm+Dv7edtjn7UFbbPP2kJtMMav3cUkZBsSuBk7C8r7rycmIZvYhGzue/JnP9e+Xwpc+67g7GeUG85+MecD+XLnnSToA8nRq7J+7aeIs7PJSvyRzgPXG857CQXufzF+ToCXlvd4enOBa9+47T5Hvuty7Xtlvy9WDH/1oM/Bb/C0gz4HvyenHfU5+PWafNTn4Nd94lEjblxw0u2lo8ReMNz8uk2NpnnVQOKS3fSYE098ipv3N2eR49Q5k+ahVSULL3yXyZlMlfgMjUdWZPmc7h5fZSfTodL24qe8MnYIbsmCp91zuB5dimv4Ru6fv4OZq/5AHbYOdfAa1IFfI4asQozZxNleK7B3nEhqlY4M3Sq8jsR+bqJ+/GxRjnx+DoGJfq7CCdmar6+SkK3Rb53jr3ft80r7rvrvtrTv70XTezow//mxOPJyCQg0NvnFHj1CpZpX3yR5K2AxK7hcf36TeVFQhY0MtTEZWgN0rATLMRQz7SZAvvi33fPvxKqt6TzcPNS3inj0nIulW7P5oH8Jzl50GFpjFdLyrr7ialMMRz2b3yzK/lTBfeUkNpy7sdXavVs2cX7p85QdMo8Rr8yDr0aBfnODnb8TkmJCUv6nm/7fiq6dm9Chy6u8Mau3ryz65AVqVC1Fckr2Vc785yFJ4Hb/Nc+gLoWh2Voy4OlaaJKO4jrA24uWMGZglb/k+tcLIdkoV6E6uq02AoWmLQPQA6qA7qF6TSfCXAb0jGtf6ApYty2Nzs0j2H7UmMndH+cgJUvlwaahgAchIDFDJSHz6hNO7gsnGNa7B/UqluTFB+thKlmdNYlm7gzPI0Lk8H2Mk65ldYTQ2JJTjPtaNCCwZiv6NH8QNXcCmdvWUOyTFcCFm3oftwLXiimS8t+hfrlVaNu6OrPeWE/j+gW7/jOzHNSoWvwqZ90amM1yIQXQn0GZspXQI3tDYF1qheWCfTOyfQtrv9nMAw3+ORc+IQeBuRg16haH4DsAidoNy0BQOOh5lCztAdlWyCToepGcqTK4fYTv7y0nHeyKc1KnjMWXwDfLKch26oRYi5ayHT+4hzG9O7PgoUp8lVGZvm1rs+a0wKrlcV8ZJ0J183W0kx4VwRRZhpSQepSs35agpj2Y23kCYt9q7NtXAkk3/B5uCSTpOuLKrd+m8D8t7QN4beQwAoKCGOWV8o1/tBuPDnuWlh06Af8OaV9sXDJ33zuVZW/3pVP7Wn+ptE8VNtLVxmSo9RGYCZFPUcy0C5ucyo3g3yTt03RB/WeO8MnwMjSoYOODXzOY930qr3QvRs+mwWw9nMWgFRm83i2M+8pIvu/VX9rnyjE+sw+OeNhyTuejDsbKlksTtF7tYn1nE6EW6bqlffkwyzrmlv/B9ugUtP1r0b6eBEJcJu1LcwqK2aRbIu3LOTH87sAA81WPk8svvC3tuxJ0N0II7u06nbata/Ly8w8BULPROFYsG07D+uX/NdK+/YfOcl+vlaz/vCeN65e6aWmfRw8i2dGITHc1JHQiLMeJsh7ELDsKyV2KksT8GWmfJizkaWVwilI49FK4REk0Aq59IqBgxyKSCRCJBHECk5pYyOHr0niTk6dS4z872Lm4PiXCzcxbeY4P1yUx/6mydGoQwtebkpj8bTqLehXn7ki/BN5+0j5XrhFXpm93kZ6nM6eNIS2+mKXRfZ2L3x+yIjyFP49CCcDLNsLauhfm+u1B17GveBXX7h8Kv69/qbRPTxh5TWlfSM13bkv78nFJm/d4NJrcM5NRQ9swsG8rNE0nqsqLRO98gZIlQv410r5N287Rb/zvbP2yCxXvKOyVfSPSPreIJFW/ixxqI+MinN2ES7tRJGfhmPQncaX3pxGAQ5TDKZXFRVlclEKXrjOu6BmY1fNYPTEEeg6jOM754sqVpH3n0ty0Gn2Eo29UR5Fh2spk1u/P5u2+JWhR2caSn9P48I8cFj8SSYPQgrr6y/FUl4YQgpG/OCgdJPFiKxsAR5JVxmxy8tOjQYUc/DR/uSESWrnmSM0eg2p3gTsPfdWLcGpbobr+G6V9TeqVEHvWXd3N+lRcJjXuWX7bte/vxIjpsxnWqQ3bflpH83Ydid6/j7rNWtzqavmQlJTF/T1m07JpRc6eu7lZ1CtBExbSPI1IVxsgMBMqn6CYaRdWOf0vu8etgtOtU7GEhe5zEygRaiIsSOGHkWWoVNwYHFSINOHwCNYdc9KmRACLduYhgLFNLMzd6QQBz9ZVmL/fw4qTKotaW1hw0HC7alxcJtgEy07qjKyr8G60jipgRC2Zj2LBqcHwavBJnE6eBkOrynx+RifHA0OqynwWL7CfWsXIkGJYO49g68FoWp36lI9OaCQ7BM83NNHrZxeH0wSPVVUoESSR4RK81MzCwn0uVCExtomFN/e6kWSJ8S2szNvlwmyWGNsygDnbHQTaZEbfGchrv+dd9XMqErJ8fXthbuOKkCSJj99/hkatnuNkzEXmvNqb+IRUVqzaScP65Zk4bTUCmDnlYSa+shpFErwysSsTX/0Om0Vi0oROTJy+juBAhRdHt2PijJ8IC7bw3Mg2TJzxM+GhFiaMuJuJMzcQHhrAhBF3MXHmBsJCbTznLQ8JtvLCyNZMnLmBQJvCxDFtmDhzEyYTTJtwD8OfX8enq47w4L1VmT5/BzWrFmPmC3cy8bWtCAEzXriTibO3IQTMfK4VE1/fbvAX7/aVv/p8W77+LYoadTtiNsmcOLyRIwfWMXlEbd/xMya04OU5fyCEYPqEFrw8ZycCwfSxTZk0bzdCwPRxTZj0xh4vb8q0BXvxqILp45oyY/F+HE6N6eOaMvvdg9hzPUwd25o1W0MoXqYRJctWBxR0XSNASSPu1C5Sks/y4D3BfLF6DxlZuYx5qg7vfXEMl0dhWJ+GrPzxApbAErRtXZ8zKSFEFG9DutSWXFcqpw5v4KGmR5m2+CiKpPPykOpMfeckVlmj7wOlCQpQaDj4AKWKmUFA79bhdGoQwoyvk8jOdGI1Sazca2dfoM7Iu4J4bXMugZJgeLMAXt/mwCo0hja08MVxD7287nfz97k5kabRoqTM4sMqmqrzbF0Tbx01XPWGVYW3TxidpoHu/cz/ZS9BkSUY/PJrhPadzq9aFHX3fczSWOP4odVk3o8x3PaGVZNYcELHpsCI6vBGNAQoRozy5++cMp7dEXXg7WgdAYysK/PWMcPN79naCouPqKg6jKp/k92Ca8WU2zHnMkx8ZbXR7iZ3Y+qs72nRpCLPT/2O3fsS8KgaJUuEsPC9LQghmDnxXibO+MngL7Vj4swNxrkTOzLl9c14VJ2ZL7Vj+vw/yHOozHzxbl5bvBd7rpsZz7Xi9Xf2kWV3MeO5Vsx97wAZ2S5mjG/BvPcPkpHlZvr4Zsx97yCZ2QZ/fclBsnM8TB/XlNfeOUhOnsrD91Xg4eEbqVQuhJNx2SxdedJo12ObMOnNfSiyYMrIRkyevx+rWWLi0/WZPP8AQYEmnh9Sl8nzDxAVFcljvQca6hjNTXHzNt5970MCLW7GDqjN5AUHCQsyMW5ALSYvPERIoIkJg2ozeeEhAm0KLwypw+SFhzArEpOeqcfkhYcQuuDV0Q0MLgSvjirgr4ysx5SFhwkIimDIwMc4cfEOokpVRZJlNE0lIyWOysUPs3HLEbIzk+jfJZhFn0YbA5felXhn5Xks1iD6dKvO+l0QHlWBmtWrkRXUjSy6YQpOZtum1Rzb/R2T+tzBq8sTEAIm9y/PrC/PkZTh4Y7iFqqNPIHFJNGuThA9mwax4WgeLSrbOHTeTY5LIEnw1h+52N0SL7YxnO6ynILn7grg/f0uknN1fo5TGd7IzNydLsa3sDJ7p4sgszEueWu/C7du9B8WHHAjkBjd0MzCA27Yt4VnYnbwSUoZHhg7h6he8/nlnWnEb/mWgTUVFh3RCLbAgJomFh1WUWSJZxuYWXDQQ6hNokdlE59Eq4RY4KGqZj457iHQLDG0gdFXsZng6UZW3tzjwmyCUU1tzNvlQlZgwp2BzNnu4KaWbCTp2nHjShnd/2H8zw+kgkPDeGHREqYN7k+DVnfRoNVdBIfemmRy/tA0nVXf7OTlV1aimGR27I7jyPELDOh7/TlfrgQhZDLUuqR6mqFhI0Q5SZRpF1Yp7S+q+a1HkE3hh2k1yE3NYcY3KZQKN1GpuJklm40Vy8FNrLSsYOH3GDd1jjq5s5yJ5mWNQZbNr01aFagcKrH9ooZVhqQ8wbTdHhpFgdUrQzFLgvwJFgWwes9XpAIuCVHAvce4f3kPT7OehFesDafgt/M6B9MhR1U5nGZc+8vTGrUj4Vg6qLqbUkFg8s5tWRWQlYJ6mvy5d0baepOtV5ItSMrVV6Ru4+ooWyaSt+c/xbgXP+Op4Uvo2b0pY5+9D4CRwzv4VkFHDe/omz0eNaxdAR/a2reqPGrIXb7V2VFD7kToxqrGqMEtfbKPUYNbkj/tOWpwS189Rg1u6VsVGjW4BanpdpZ+foDPvj6KxSzz244ELGaFRnVLAmDze2hsfrOF/jzAZqFS9dacynqYOg0DSIjZQYdGCXy9b4Nv5rWoc21+DczqV271M1gxW2Ty1Rgmk4zNakyWlyxbhyZV2nDa1YS6zRQy0xKIVPax7seNXDh3mheG1Wb1H4dxuDRC2jckJzMR1aVhkTJx5iXjcukESsVISjyEquo83jqBj745hMUayqB+XTiQVo6Gdz5OiraXANtJ3yx+gEVCFhKlo6wM6l4azeWhY6MINuzNwOb9bK1mKBum8HDjID7aZifHqVMqRMGqSCje78imgKwJJEmiUpjE2RxjcHQxT2dnkuDdtmZ2J2mo3vZr8UndJF/8ALDI4MlMJmvx07gGL6Fx50dw7/sYs4TvGbBIAiSYFy1YcxZqhsLrx2D1WagdCnZPAR9ejcuu7/te/LhZ0lHkm++USIrlGq/f9KX/ZzFqeEcft9nMlC8XySsvPsD0uT+hmGSe6tUMs9m/rZmuyM0mBZP3R0JRIMBmvKbIEOBVMMhyQbksFXAksHmPkfy4LBW0bVXTOHg8jQ+/OoHZLHPmfA7LvzlNzcqhvtUIm1UG7wqpzSJjUgrKFRl0YaJBix7UbNiNLGEl9vhGYg9/wzO9y6EIB8YvLARYZF+O1QCLce6VeP59AyyyL04G+D3cxjEKOdSgY48ulCrXkHRJRpZPc2zPajo1yWLhB5vQdZUWg2oQf8zIBWkR1fE4jGTmZhGKIysBBxCkuTh98DQA7UrewaKvsylTuTl3t+5Ei07DCA6NRLABm39OJROUjbKwfVhdZnwcR1qOxpw+pVn47UXyF42qRSnEpio89Wkaabk63Wp525EQFIhPBGFWicYlFc5ma5QPVVgX4+FAss5/qhvfo0kSvjxPZkn4Ph+LAgIjFuUlJ7B2aj+enPsl9To+ROLv3wAKFsWwQgfYkaRzNAMy3VDcBhsSVObtU6lXTEKR8PFOFY3KWRXj3vn3yl8xtyoFuXKvola8BqTriCu3vi/zXyXt+zbucl2nch2yO1mSWLF4PtH79/LCoiXYAgosSIvS+RZV7n8Pf27x02ma/e4daC74kuuHGw/Ejz/+yLMjBlCyRDg1a9zB2XOpVKsUQUR4EK9O6gFuP9mdavdR/yR8/nI+XXUbeaD0yiR77sIjIgiUEyiu/I5NTs5/QwXnXrrUXaQ7zw267vhfx98ZplD5ld21AHTNT6Lol+SukLTPL+GdyPVPqFnAtSwHOS6d9otTaVfRxNi7AikeJOPO85PjuDR0IRj6k5PSQRLpTsHBZJ0JzS10rVTwA6WrV35P/m873W3I9AAyPBLFAiQEEtPy7ufLlV/zUFWFb04XLLX/p6aZr6M9vv/zsXuAIZOICjSeH//lcn+ZnxJUEFhKT7t4w9K+3LgX7w4MvHrwkUq+8v9H2netGCj85Lm6X246oTF2/DvY7Xm8vXA4ZrP3ublUmlekq951yPmKkhj6S4S8g7MvVu1mwqRV1K1VmrDQAKxmcLpU2t5VmacHtCpauujlQoDdXZaLuQ1wa6EEmi5SOngvAaZLVrGvQyJYVKLuS19TNRuZai0y1Tp4RCgKDsJMJwg3Hbuh1fPrSbSpqW7Sxd2k05oQDlNC/wbJO0/q7+inuQribKHYk+XgYoabeyYco9edYYx6IIqwQOWy2ONSBQ8tTaNVOYUjFzUSMjWmtQ2kfWWj3aqX7Fnzlw9rfvKc1FydsF5vIIKKkf1Bf4oFGM08zSEoFiCR5hDcteLaq9JbHw3wnesfw6RLBk3+kuGqS+w3LO0TSZOvLu3LdRNc+bX/P9K+fMlwUe28iFggNCd9Br5NuTuKMWtqz4ItB4WShF8lxhTVzouSBvof4ycLzP99fmvZQV5dsIvWzcuQk+umXo1Idh5IYsyA+nTvVKlwNa4goxMCsrWapKitUEUIwXIsxc1bscqZlxxYxPaB63HtvOQYjwglS69PlqiHRjAKdsKkw4RKh7BIWZefU2TsunafRtc1Uk3dsSvNCfNsJsLzg2/CSXcX0Xe5pH9z8ryTB6ad4ulOkQztWIxAq1wo0a+e4yLbqXP/W0n0bBDAxpNOHB7BrC5hNK9gxBV/90DdWfj58I8rydkqgX2XIeWmkLt6gq+/kea1c2/6QcE+3439Q+nw8ZX3/R4YHk5UkHzpx1EIirXwalKZWak3Ju1rUEbs/WXwVY85FZtG9VaL/92ufZIkTZUkSVzy76Lf65L3mPOSJDkkSfpNkqQ6l1xDSJLkliSp8iXlyyRJWvvXvZ2i8fgzo5n6wSeFBlG3AnFxcfTr1493Fg7n5x9e4Yf1e5gxrS9frt7Nk0/c3GqUU48i0f0Q59xdkRDcYV5DOfPqgkHUPwwNK07uwC41IF1uR5LSk/NKf84qQ0kwjyXRPJpz5mFctA4k1dyDHKURHinihpd+5/+QSlyym7hkN2O+SCEu1UNcqodx32Yy8Yds6pcx4dLgol3jWLLKmF9y+TXezcxtDh5YmcszvzhJdeisPKFSKUzmg/tsrDyhel1o8t3zClz1DqV4+QY3h1IN3n6NkzZfu3hum5t2q53c/ZWDCb+7eHZ3KF+u/BqAb05r3FfJ6KSUDJQY0dTK6p6BnLfrdPfOJpUMkpi+1UGzD+20/CibM1naZU59j36ZbTgQpqv0/Did+PSbNCeRZGN6+Gr/buO68Mbc4by/ZFzBIOoWYd+BBEY9/xUrlw0gJ8fFTxuP8/hDDfhm7VFaNilPTFwaXXp/6nP6emTQSmLiDce/Ps+s4WRiKMeS2pGQ3RqPR8XiXMfMV8dy/mwMMfEZDBr7o88ZbMDYApe//qPW+/hjT6/z8e4D8x3AsujY6xs/vobTZ7I5dT6KL36vz6m8/qR4WnH0eCym7NXIKQt44qnnOXc2/hJXsXyeXcDPZF9Snu88VuA2dvpMlp+zn53Msz/y/TcfYaceMXld6Tz4d8Ot62yBm1/cuTy6jthL7Nk84i44eHDCIeLOO4hPctJm/DG6Ng+nX5twei9I4MR5F3Epbu6de5bJ36Qx+ccsGs9NwmaG5fucnMvW+fiRUCpHyDy20mi/Z7I0en+TY7TxLI3+a3N9bqJDf84jIVtn/G9O7lqRx9T3VjFt7mLuWpHH+M1Oxm92+niuR1A5zOiTPFjFVIhXDDV418oK03d6Y1e2ztObnD4nrifXO3yx7smfnN76GE6hN4VrxZTbcaVIrFu/j5jYi8TEXqT/0Hd55eWeDH6yHb2eepuY2CRiYpPo/vgin8tfx27ziYlNISY2hfZd3yQmrsAd9HSsvztompe/S2y+I+hDS4mNL3D7jPVz/Mtvv/mOf8u+OsqE6VtZ/mZHBj1em193nOOuJiU5fjqDBR8dLmjXT3xfyPEv5kw2p+OzeX5BDidyenHB04mY2HMoGctxJ31O136fEnPGcPnLPz42Id/V83Ke7xYYcyn3ugXGJGTzwMBNnE4ux8mcHsR4BpOut0BznuOzpdMQ5+aQdXYdQ57/wXAITLAzeOIOHx82eZfP5W/4lAI3v6GT9/j4oJcLyvs+v8vHHxv7B/b4zyHrd7LM9xDn7OTnCJpH7Lk8uo7a53P2e3DCoQJnv5ePE3PBwfC3zxARrPBQs1COnnXS/fU4YpJcfL3bTtMp8Uz+PoNeH6aQ5dB4f3sOPeoFEh4gUSJYNvoDH6URn64Sn67yyCcZxGWo7L/g8fUZ9p938/gqO6N+zKHZh3ZeenMZk+Z/5OtvjP45l6YfZNPlCzvdqxuTrCWDJCyKRA/vCtlDtSw85Mdz3IIen2cZMS1T88W3+EzVx+PSVZ+76c26DP83xJXr/fU/AbT1+9v/E3kOGAc86T1uMvCLJEk1hBD2S86ZAVx959j/MDRNo2/fvjz//PPc27EGn6/YTOOGVUhITKFOrTJUqVzihq6n6jaS3c3J9NRCxklJ82+Ey4d8FuZ/92KjADyE4qK08U8qhZsSqFJYwRBd6JjIRBE5KORiEqmAjC5Z0Qkgx9QYu2QMIE1aEqGezQR59iDdZM4IgNQcnb2JHj7rG8HSbXbG/GjklMp06GxP1Ghd3oQASgdJdK5kYfJWFz2rX3mFJtMlCLdJxGXr9PpZp0tFmfhsnd6/6HS8QyLZO4H3Q3zBlMzaOI1e95bjsXpt+PLLLykRKPF8SyuDG8DcXcYMVYRXAjWmuY0n6+vM2Ork25PGwCgpV5Dh0IkM/JsChGwF+erL5bfx3wOHw02fIR8y/7VHaNaoPBeT7dzbria79iUSGRlAWKjtiucJJDSlEv2HdMRtq4KkZ/PzD+/Tra3mW6n5KyHkcLp0748nvAsooVSpmoni2I3s3M+ieWt4b1abv+Gul+OntZ/RrX0ZRNh9PPTYcAQ7r+u83w5lk+vUGHR/CZw5Dg6ecfLU24nkOXVSczTqlLVi0SHIIvNgHRtuj8BmkjArEpcsvuPRjHf65k4n287pLNhjxIXfEnUssoufzxg/sat+2OA7Z22sVoj3rSVoXFLhtTZmImwS7x5w+/iivS5mtzb4wJ8cPLbORddKf3OHQ7Ze4/Vbv5fhNq4fGVlOXnxtOzWrRlClQhizFu+lTIkgft5ylm4dKxKXaL/ieSaTGd3WAC2wFU8NiQI1GSV7NfNmLeGd6a3hL34MhKkEekBDXp07Dj0kHLQsNq7/nPuaJCFpWZw8thfp/kZ/7U0vrwWkfs3m3anc0/FhhGYHjlzzLIDVf2SiCygdYSYjR6PXggQ0DbovOE9ogIyug1sTNK9gJTNPo2qUmXtr2lgf7bjsWul5Rj9k3jYHa6I9lAySmLvNwZrjbooHwg5v5p9vv/ved05SrijU93iqgYVBTazM2mqstI+/O4Cz2Rrj7w5EAhK9fM6WPPac15i7zcH4Vtdn1HHjkK8dV6Rb35e5prRPkqSpQE8hRN0rvCYB54G3hBAzvGUBQDIwXgixxFsmgDkYA67mQoi93vJlQJQQous1K/onpX1F4c9K+xy5OSx/YzYJJ0+QnZGOrChYrVaq1KpDncbNaNKiJVarjSP797Lvp+84d+4cGzZsQPb8QO9+c2l3Tz3W/bSXGlXCeW1aT+PC15D2CSGR5qhBiqspOmYilINEmXehSK6ryPT+vLRPIOOkLA7K46QMTsqgEey7hoUUrFzEIlIwi2TMIhUzWUjCb0n7EmmfQMIjlcSpVMKuNMWtlEPWcwjJ20xI3gZk3Dck7XOrgo6zE6lb2szeRDdRARImGZ5sbCNcETQtrSBLEh6X0SlZG+Php1iVhR0KAkFqrk6xAIlpO1x8Ea3So7LMmtgrr113ryTzbZzOY9WMTsqXpzQer2Fi0vDe6B0mkD2/M1FkFnKy8Xfn8380J/3m4NMjbvrUtfBq24C/T9p39rW7AwOvoTuOHHtb2pePq0j7CsqvU3ZzndK+5OQspr++huiT58nOdiDLEgEBFhrVr0CLZlVo3qQCui7YtTeWz7/aTlCglc+XDgTdTduuCxk/oj1TX/uBgU80Y/gA754qr5xH1S1k5JUnzVEVVQ/EotgpHniMcGs8kuQvXykir90NSPtU3YrdU5EstTp5WhlAJ0hJJNx8nBAlHulGHQqLwPVI+3R/p1MBKXo7sqSWFNN/IUzd7HvtStK+7FyVloP20LZ+KH8czyE8QKJCcQv31gumarhEg3IWJElCyzI6N+9uyyEx1cP0TsHeaxbU6cWfc/j0iJueNc2sir7yZ/xQNRPfnFJ5rOfDkB7Pl5v20aumMe/5RbRKr5omprSyXibPK/gIjO/xUvnflp42n8zvL5f2pb9xDWmfi+ByL96W9vl4EbGgSAnun5f2xZ1JZ/ai3zkVk0JungdZlggOMtOkfmlaNC5D8/qR2HPc7D54kQ8+P0zjeiWYN6k1Qteo1f4zPl1wLw/0/56lr7elS7sKharg0YPIUOuQqdZFIxCrlEIx88tCGQAAIABJREFU825C5NPX5wdwA9I+VQRhV6uRJWrjEqUAjWAphjDpEIHSpXHsOq77J6R9hZJ+axoplt7kmhoQ5VpBkGNHwWtXkPadT3PTZtQhOjUKY/epXGwmuLN6EHXKWWlU1kTN0sYgIj8OTVuXSYRNYuQ9xjYAoRXU44VvM/l4r4NH69v46tCVLdp71raw6pibxx57DDnpCF/8dpQ+dY2+wKdH3PSpZ2F6u8AiXfvykZqr02BxgTna/mHhPomgP/60tK9hObH317FXPeZUTArVm836r3DtqyxJ0jnADewEXhJCxAKVgFLAz/kHCiEckiT9DtwJLPG7xi7ga+B1oMNfUPd/Bb569y3ioo/znwFDCIuM5OAf28lMSSE0IoLN677jnelTcLtd1G3clA53tmDu3LnIsoyqaqz/ZR+TJz7OkGcWAxAZEcRzoztf9X65nlJcyGuFS48kSEmklHU7ZvH35AQQgJso8qhCHpVwUA6BBRBYSCWQGKziPDbOYyEZWfh3VK5vbllCYBEXsagXCXL9jkupTLa5LVnBXcgJuIvw3G+x5WwtcoZ8xupkhBC8dF8YM9emk+vSSc3VWXvUQYfqVjpVMnPwgsrhJI1xTS3M2WEEmNGNzbyw2cGGeI3xzazM3OHEZpbIdgm+iFapHiFxMsO455pYnR6VFdbEatSKkKgfJfPlKYPPaGmhdKAHDRjd0EyxAAlVgAgvj8eZx/I9SYxtamXJfhd2N4xvYeXtPU5yPTChlY1Fu504VYNHBsCT9S1MaRPAnB1O8lTB1HsMxxuzWWL8XYHM3pKHrjh5+d5QZm288ozgNXF7Repfj5dfWUm23cHop+8jMiKIH38+iMPpISjIyqcrtvHs+OUoikzzJpVp2bQyzww2+qZnEtPYezCRb388zN6D5zh49AI/bIimfu1STBzfk193B1CuUiMUxczFc9GcOLKRp5+I4uXXNhkOYC+1Y+KsXwsc/Gb97i1vU8Cv4f5nCwznmcHd2XsyklJlayMrJrIzLxIbvZJHOjiZPn8jHlVnxoSWzFi0lzynyozxLXjtnX3Ycz3MGN+COUsOkGkvcBVLz3Jexv2dx2a/ewB7jofp45sx8+0D5DlUpo9ryiuL9uP26Ewf24TJ8w8ggFdHN2TKwoOYpAMMfmYSafK9rPs9ml5tkpi6+BiBFp1x/SrxyrunCTLDmMfKMeWDODLsKr/sy6JN3RBUl8qcPqVZ/FMaF5I1Gpa3MnNtOgFCpVFZC3N/zeHeqsYq92ubc5F1Qf+GNhbtNCZLAFZFe6hRTOZEmk6dKBkh4FiaTu1iMiUCJbY+EUrYC9PY8eVbjCwRzfJjhrPotscDWX7Mwxt73YxrZjhlCWBs0wI+prHhpiWAx2uYWHFCpXaksX9z1m43NpPh7jV/n9t3/PzdLlTdiFE3hWuuSN3cZf+/YOKUzw1Hvqk9mTj1KwSCmVN6MnHaSqN9TeleyOVv4itrvOU9mDJzLR5VY+bk7kyf+zN5Dg8zJ3XhtfmbyLa7mDmpM7MX/s77n+zm3rZVqVwhArdbo0TxQPYevMCWP85w4MhFnvgjAbNJptM9FQkONKN4zQvGvbqF80m5ZNndpKY7efTpX1ixqCM7D6RQqlwduvfoSbanApIkEaLEseabr8hMPcHLIxozad5uggNNPD+8EZPm7SY02MyEoQ2ZNG83YaEWxg9uwKR5uwkPMTNucH0mvbGHsGAz44c0YNIbewgOVHhuaANmf5BAxSpNaHVXW/L0skiSjJVkdv++nLgTW3l5eDUmz99vuPaNaVzARzc02r4QvDqmkY+/MroBkxccNMpH1r/M5c/gdZmy6AhCCKaNqMuUt44gBLwyojZT3jqKEDDtmRpMXXwcAUwdVo1333qVjg9PhnKP8OX3x0iM2ceUoVV4/dMzON2CyQMq8saqc+Q4dO5vFk6uU2ft7kw+H1eZpT8lYTbBE60jWPR9El/vzmFit2Is3pzN3gQXO+PddKljY+bPWbzUKYz5m+2k5uiMvieYj/cakzhfHXJSK0rmeKpOvwZW9l9QOZys0ae+lTCrxNiO5Xnq5ZfZ9ME0IuynmNDK6G+MaGpl/J2GM3BYgMzwZgHM3ppHWIDE0y0Ml+AQKzzTIpAP9jppVEph/0WNeiUUPj/kpHd9G0v3OTHLMPbOQGZvzUNW4IW2wby2OfcmFVLSdcSVW9+XuZ6B1E4M2V40UAJ4Gdju3QdVynvMpT35JKAsl+Ml4JgkSfcLIdZf68aSJA0BhlxHHW8JMlKSWfPhe7z9469UqGRs/xr7SHecjjxCwiN4ZOBQ3vh4BbJ3dSzfbAJg+47jVKpYkvR0ozM8Y/JDbPsjBo9HRbhVLJbCX42qW7mQ25Qsd1XMsp1SpnWYtdNYFQuOXK2QQ9afhUeEkSUaYacOKqEAWEghlIMEEk8AZ1AwZkjy3WD+CkiATYvFpsXitJclI6QnaaH9sZhbUvzCm0hcPnsdaC2wslIUCA2UWT8sijmb7JQNU+hZx+rT5o79JQ9NQIVQiQ8PufkxVuOecgrH0zS+iFapGSkRnW609pMZgoeqmvjmtEqdSImZd1mIsrkwyxIjGpgJMwsU7zRboFngUL3cBFJocUT5JtiTE8mf2JEkgdn7oyRJArN3NlhGYMrnEoRaDb4lwcPhFB1Vh2IBEi6PUa/N8R4OJWnkuAWlQ2/yO/+X6Ipv48o4cfI833y/h5MH5hERbkMIQasOrwBQPCqEiRO6sWbFswWb0P1moDf9fop77qyK3W6UPTvoTpIzg3ngoVHEZdxB2fIOzpzeQadWDlYu+w4ASWrtc/wCLuHyNbnZJBMYHEWKswGde95HRLHyXHBCaEQKJ4/8TOdWecz+wMiFZL63BSZZQjLlO4NJWK7AQRRwcW0uSUaSUOM6ArO3fooiYSGfg+y1kTIrErIkKCnWcPqsoFm74bj0JZiUaCRvTDOZJF+ephIRFgbdX5z/3B3Ful0ZBKISHqRgkuGLnXbuqhYAkmDzaRcf7czj/ppWqoYb349Jho0xHub/4aR+SYV6xWUOp+jUKy7TrqKZ5V1MfHrUm9fuPhOfHfdgtgUS0epRdPg/9s47PKqibeO/sz29hxZ6DRDpUhREBCmCIl2KqBTpRUGBQESkgwUERNSXovQqvfcmvXdSSO+bTXaz/Xx/nLC7gQQCr/V7fa5rLh5m58xOTrl3zjz33A9mvZaAvMg6kM8HHEpmj/oP23zWSIVGLuKuFJjym5k1d2zU8Bf4qN4jxwoigvy/4F09DVP+xZwnmoeHumDf/em+u5sKW15UxU2jdMw5NBol9rxISkKSjvRMA99MfYMly0+h1eUSMesICoUMdzcFC6a34fVXSqPNMvH5mCbMXHCa3Lzci7cjtVQu78PZS8n4eCkpXdKL5JwQOvT8GG/fEuTaDNy+spuoW4f46P0ypCffQpUXyVAoZMhkTv8hbCkUMse7tUIhc1D+FHKZA9v8A0KoULURUeamdOwTAICNdK6f30JC1BmG9wxixY2LiHl/u6QUKDzuKwr2lS5tlIW0ce1HKc+Pew/NFQ/l2Di+fRa9Bs2h2Zvj2LFsmFQvF3i4lVaW990vVvOib4sArHaRJqGenLuVhcEkYraKLDueRYtQd3LNdnZcMxCZZmX1B0Ecv5uLMS+4tfeWkYvxUtqC2iUVXEqw0reeG35KO83KwaTmHnx5wkCTEDkTmrmz8IqS2q0k5pNFr8VL5cSoh0QX6U8RXXxnvSA669tUUrL0bS+WXzKy/76FOSclfGtVQelsL+Oxfp7NhCLgyl+/QvPMqn2CIHgCkcBM4DRwAigjik7+iyAIS4ESoii2yfu/CHQVRXGDIAgLgZeAusB/eAZq39Lr0lfICqEzuP4GuMq4Kp6Dm211CeMq8vUlXbSs9DS+GjmY8qHVGRAxFU+VdBfG3LnN6K7t6fL+QH47fIASpUKY+f0yVGo1oR7OMO/Yj+fi4aFh8kQpGhk+6Qc2bb1AcJA3CYkZLP22Gy83Ko9oziIjtxLJhjBEUU6A+gpB6ov5smvnS67nmuS2MDrfI6HuhxQ7PRXJEutioBIg4s49PLiNO5EoxUcUdp5ihYbBnzIOZzsREYFsRSMy1J3wNu7Fz7jjico3jnqja73zPL35dTwXYk3ULa2WVsTbelHKR07Y3FRHm4dh8b713Zj5hg9pehuBHnkTPR8n/U/m6fwRE/LAVZSpyPF9FX25dxAFGZ4Xv0ETeyBvrM5xCy4vya6hefL8NL2dF+Y7Fcu6halZd9VEt3rurDvvpOnc/LoKoaPvPDu1L3nxy+7uT17lEbze/5+h9l3MkO6RwijAQiH1hSl4FtPkB37/Z1BnffDgAZ06tad7tw6MHTsIxBgATp68SsdOE/h4dBdWrjrAK01r8s2XA5HL5fmSdvd+fy5Nm1Thww9exWqxsWG3jZphTUhNTWbLppX0616CF2oWf6qCn+Q/mYZktrmjM5Umy1SGXKs0yXFTpOGtjsNLGYtarpUmTY8m3i6KMuh/k3PIlaZTSMJgwJGQ1yaquWfqj7fsBsXl+/NTAF0Smroq+7nWh3U6TLrWTKUyHvh7yPju48oE+aoQzVZStdIxVfpecLS/tUjSYgryyX9jiIDFswp6v1cwer+IKNegzL1PQNw8hBxn+gp7Zo7Td8VD12SgNvGx+kdx5dJgXwCH8lamUkWQp3TvFg+Pf3ZqX/bSp1P7ig/6n6H2pZula1Do8+9KGc57ziW/CPS/R9U8n3LMjZuxdOw+m4hxnen9TlPH879t50UGjviJMcNbsWDJYT7o1YCJY1pJmOei4Nei4w+M/rAhHVpXxWyRsfFwScJqNeZBTBT796xlaC8vKpb1zj8me8G03cJV+KR6k80HnaUCWZYKmOz+gIi7PAEvRTSeigeohCwEoYg48qTvK4oVNndxbWJzPd/ONmbRh2j7h/gLxwkQjheapNz1+IfzN1EUCW66Cy8PBf4+SmpWcOer0VXw9lCAzU5qpoQ/lbqcdhx7d3UDAAf2OPpEwORRHb3nS+S61wFBiTr3OgGp3yGYnL8drnMobE++RoBDVTA120qN8dGO+mufhUjj8JQj83EjVWclyFua8wQNvPVs1L465cTzxyY/sc3de0lUqTP+763a96iJopgDXAcqAw/V+4o/0iyYx6NUD+1zoCLQ61m/++9idy9fZMybralSqzYNWrzOrKH9GdCqKd3q1UCfk838NVs4uX8PmWlp7N60nh0b1uQ73m63s3XHWdq3re+omzrpbSZ90oGw6qWYFdGOVp2XkJCq4V5maxL19XBXpFPRcyPFNOeQCTbSM42SWk7PX0nPLJgPWxSziF6k05RohpFId0wUx49jlGM+JVmLD5dQUrD85R9tAiLe1lN4mH5Dp26JSV6m0LZL96cRlWwiKtnEqGXxDjW/katSHGp+CVlW2oe5U7eMirQcG21+yOCzPdmEeEuPwds11MRn2djRz59BjT3osjyDHJPoVMlLsxCdZqHTokRH/52+jiNGrE5cyUFE11hMTqUPsKZeZ9Lw7iRd3uNQ1InJU63puirLoa7zUHnvodJOdIaV6Ewbg3/N5u3q0otOkLvAuqsSwK07b+CNGtLL3PvN/Rzg9OwnVvX08q/96bZv3z5efPFFunfrQOXK5enc5UNeqN2XSlV6EBjow/o1k/hl5X7sosiC77Zx4ODlfMebTBZ277vGG61rYTRruJdUm5phjXgQeYJDe+ZRq6qRJm3mYrPZ+WD4Ou5HpXE/Ko3eg9bkqXul8/6IjQ6//+gtDpW//qO3cj86g7sxVhatEbme9Cp3Mt4kSV8Ho8mGwnyK+XOGQtZ6dCmn6NbvP0TG5KmBdV2XTw3sof9atw1Ov8cmImOyXHxnmyL50VnOPmOcfd6L0jrUAh0KYz1/dfit+uwk+kEq5N4gMbsC9x7oiYzNpvX7B7j/IJvIuBza9D/ymLJfZPxDVS49xfxVeHsoeL1xALMGlaf3F7eISshl4Jf3qNL3AuE/xdDlZX8AurzsT47RTv8FMQ686jk3khixNvHlPietwiQMXg2wJp3gp9mD0P82kQfxqQz/IdbRfvRqJ6Z9tDGD6HQr0elWRm/WOvBk+Can/+FmHdGZUhQ7JE/Nr2M1Fa1XZFH7Oy3DduRQ77tMwmYkMWRdBp1/Sn3s3iySPRVX/vp8L/+LtnbDCV5p/RnjP34Lu93OW93mUL3+OMIaTqBBvfJ8/00vFv5wBG9vDREzdrN7/00Xxb90mrZfwpmL8ZQv60u/MWe4k/EGYS/UZ9nS7zi+ZwaC+TY1m//oUPVs0WUN96MzuReV6fK8O/3IGOez/9C/+0DG7eTq7LvRkns53Ugx1efGnUQUhv2otYvo368f2qQTxMU+oFXPvGc5Ov+z7FQOzKJDv50Ov8ew/Q4lz74fH3L4/T497PAHjj9aoD9gnNN/f+xRh0Jgr1GHHH7noQcd6n+tP9jn8Dt8sAGM98kwh9L6/QNExmYTGZtDm36HHYp/bfofITJOT2RsDm0HHpP8OD3tBp+iRKCajq8Ww24XmfB+Oe7EGGg/+hL9p9+kUpfTNP3wAl1bBAFQIkBFtsFGjsFGh3HXiEzIJSrJwvS95Ykr/jlpxUaTJlbDlnQQy+Xx9Os/kJgEHVGJRt6KuEVUkpGoFBMdZ9wnKtlEdIqJjrOiiEoxSfV5fnSKmY5zoolKMROdaqbT/HhyjCKdakvzkk613YnYmkHNz+MYsiqVQT/GU33MPQb9mEBUyvMIiAn/iPnKM8/EBEHQANWAQ0AU0stUK+Csy+dNgbEFHS+KYoogCHOBL4BTBbX5O5vNauXr0UN5d9wkRKuFuSMH0WfMeGoMHUlCTDQR/fuwbM9h/rP7MEd3bef6ud+o0zC/rPkPP2zDz9eTunWcavCCINCzW0N6dmtIZloa4eGTyLA0RynTU8b7GF6qeLA8556YR8wuyskRq6ATwzBQDgB3IgliD+7ccVBb/i7mn7sJo7IKae69KJ4zvUCKX0GWpLVwI8HMmLWpNKygQS4X8HWT0b6mG4uOSudy01UjzcopWdzJG393GWN3ZONfwKbJx0zphaJsS75Y8Dqq4JKIFj3nj+6nvvwktrTrpCWnwEMhjuewsc3c6ddAw4zDBl72kLH5honi3jImtfNlxnshlHyWMMejJlM/nXf8r/2plpOTQ+/evVm9ejXnzx1g+IgIZkz/lBrVu3Dq9HU6vDWO08fnc+n896xZe5grV+5Ss0b+zd4z5mzi5caV8QsoQ2RSJWTYqVj8CjXLQLvmb3D3bhyB/p7I5c+2fiYK7jRo3AGj5lVEWRDNXgNsKSjMp1j0/RpGflANgCztc07A/2BzXWgqzJflXsHdvxaiqTJC7tUn9heTYGDboTiu389m0/5EvD0UaNRyerQpwbTv7vDbjWwifopm20kp+rP+aDr7plcjNtXE+O4lES3OFWhZUD3GzpiNslQ57PoENi+fTbuy18FmIj46EV4s+XudBgCqBcpZ9IY06dlyS5rYbLnpnOBsupxLg7LPiS1P3cvwz8hZ+f/JEhIyGDzyBw7siGDV2mNs3XmOqRHdqVopkI2/nqNjj3kc3jGKW+cms2zlKe7cjadEsfyRpfvRGbzVtioqj0oMHTUAQTSgyt3Khd+288Pc1vx2IRGV8tkjyHaZL3ZVdSZ81hWzVxkQRQyGaygMB1BY7jBvzlaWzGwBf4qW57NbeqaRAD9JETVdayLAV/2YLxguIfp3oWz5ak/tL8dg5ctl90hIMZKSbsLfR0n1ip7cjMph+tJo1u9PIdhfybGLUhQ6Md3MoI4lGdSxJJN/is7Xlyy4KfIyXXi3SSBiTjTWu4sYP209Xw4qzR9xPj9p5UNspo3+TTxpt0hKu7PxojPatfGMjgEt/J6j5yKo9v0N9kgVRbVvLrANeIAUaZoENAPCRFGMEQThUyAcaR/VHaQ9VM0Ah/y5K7Uv7/+ewD3ABzjwT6L2Hf91I/vWrKRmoyYc2bKRyUtXUbpyFTxVKkRRZEj7lnTp2483e/UFwEPlvMihHqdISkonrFZfDu3+PP9EyCJRN7L0fsQkh2AXVRw/sp0h3S3IhLyEmWbni1S+5LVFoPbZ7XaMlERnr0G2WA07GhRk4S1cxVu8hJICktS52jOGx38Pap/Dt5jJVVQlxXMIXjn78M3eLNU/gdp3N9FEyy+i6FzPg4YVNBy6lcvuq3reruXOnE7+fLohjeXnculb340ZbbzyjUMoZKIp83FDFBToK3TDUK4TyFSosq7hnrIPjfYcgmjNl0TPluGSQPkZqH0FWbrcSbtRBDnHG9jvxrNT+9LXPJ3a5/b2v9Q+Z5sC639Pat+sWbM4e/YsQUFBnDx5hB3blxESUgLEGGw2G5WrvsPC+cNp2+ZF6QBXlUCbgVu342naahJnji3CYAtDKTdTLvgaKoXzuVi74TTvDv6Znl3qs/TbLs7jC0vOawok01CebHNxQMBNkYaPJg5vVSwqufPeLtBcFf/+AmpfSpqB4EB3hkw4yOJfrjGod01AZPEv1xnUW6LWLf7lOh/2rMaCz18iKVlPts8o3IR4SggbnWN9hNp37HwaPT4+Q683SvFCFS92Hkthz4lURvcpR/+3Q6jY/qijfc8Wgaw6mMYHbYOZ+4Ezmi6arYiCHF3xHuiD2qDIjcUrZQuarLP59ii54lC+5JzPSe2D/OqB4Qf0rLhs4t1aEhasuGyi74sezHrL9/mofbmbn0LtM+IZ+M6/1L6H9idQ+0Z+/ANms5W0dB3JKVq2rBmLv78n2E0YDCZKVB7BkR0fUfuF0tIBLjRhbLkcPx3NOx+u4/SBOWRaG+Km0FLWez8KmRNXvv7+LONnHGX0gPrMCHe5tAVQ++yiDJ25NJmmquitpQA7HookvJXReCkiUcoel/QuLLn3X0HtS0nPJTjAjeGTT/H9qlt82LMaot3OkjV3GNijCoDD/zbiRRJSrej9P8GbywSJuwru12Zj/Z44xs65Qt+3SlO+lAe/Hkrk4G+pfDW2Bm80C6ZC24OO9j1bF2PVnmT6vVmCL4dVcvZps2MXVGT69sTg0QiV8T5emdvR5F4tdE7jig3PS+179Nhxv2ay7FQO7zX2RFApWHpEy/uv+DK7V/Fnp/bVrSieP/nlE9vcvZdAlbChf3vVvhBgNRAIpCLti2okio4nfzbgBiwE/JDEKV5/JIdUPhNFMUcQhM+BRf/F2P90s1mtrPv2awAuHj3E3M078Qty5n46sn0Lhuxs2nQp/HoaDCZEER6dyNrsMhIzyqLVB6MQ0tmxbQFz5m1iWI9RBfaz63AMx88mMm1sI/YciaX1K6ULbGcV3dHZq6O118RCAAIWPIU7eAtXcSdG4ho/muTkb2apmWaC/G7jaTpOtmcrFNYUPHNPPNZu6rpERFFk4luBLNidjrtaYG73IKZvz6CUr4JrE0sxa6+W6bu1zHzDB6VMwC1vs+XMQzmIIoxv4cmMA9mIwITXvJhzOBuLTfKXXvOnUbdwAkpVJubyfs7tX8nQJjl8uzcDncHGxM7FWLg/E63BLintHM8mK1dkQitvFp4yoDOJjG/uwfxjOeSYRSa85sXXx3IwWqTvnXtMj8UG45t7OFRuHvoKNzOftPJhxh4tA9prKO7730SkVP9GpP5GlpOTw9y5c/Hx8aFixYocO7oBb2/ny/KChZsoXTqY1q/XL7SP7ByRL76Ygd5aCzeVnrLF7qIQTPnaVK0czOAPXubw8XsAhE/dJal+TXyd8Gl7JPWq8W1Zuc1IldBmeHoHkmvI4v6dPXR6zc7ns7ZJqmITmjuV/VxV/gpT/HNR+Zs+/mUmf3kKs8XO9HEvMXXeGQxGK9M/bcLMBWfR6S1M/7QJsxedRaszM33cS8xdfJ4MrTHPP0eG1sT0cS8x57tzZGZJ/swFZ0hMMTBvSnMadVjLmcvJ9O0SyvINNwFY/Iszp8viX647/O9X3eLk+WSu3s7k3e4pfDR+LmtWRTG6b3ki5l3Gy01gzAfV+Ozba3i7ywit4IWfj5LigWp6vRHC3QcGalTyYGTPssxZGkW9qp6cv51DrYoelC+u5s7yuizelsTMdfGM61aKqavicPMMoM/QCCwelbl+chMtvbYybW0coigyqWcIU9fEI4oQ0bs0U1fFIQLhbwczbX0SIiITWnoxfXuGhA8tvZixR+vErv06RBEmtPBy4Nj4pm4OPPmksaTEJQLTW3mglIObUmBcU3fcPeUOgYDnsn8jUn8rS0jI4MdlByhezJeGDSqzb9tE1Grn78bnM7bQpmWY8yUKOHcxlk3brzB90hvMmn+U6ASRWbPnkWmtR2LcdVrUvs3ULw9iMtkcSp4xcTp6d67Oum23UCplTPmkKeEzjqJWCUSMbkz4zOP4+/vTp887RKdVwN3DF6Usm8tnN5EWf4YR71cmfNYJfL1UjB1Uj/DZJ/HxUvPJYMn39FAwbkh9Js4+hbubggnD6jNxzmkUCvhs1ItMnPMbot3OtLENmTj3DCIi08Y4/akfN2DSl2cRRZg65hn9j+vx0dRTuLsp0epMfL/qFjWq+HH9jiT9/f2qW45zt2TNnXx+rtHKz1siads6kS/nzuKnH77GYDAzZeQLzPnpJtl6K1NGhPHlsjscO59G22bF8fVSEhmvZ9O8hsz84SaRsXqC/dU0qO7N2Rs6+r1VkpBAFYPeLsmsYZWY83MMBqOdiA/KsWiXyMsdP8bPvTQXDy/n0tE1TOpdii9+jkUmFwjvU4YvVjxAo5IxtkcIX6x4IKmSdi7J1JVxeMhFRraXcMZbIzC8XRDTNibj7SZz+F4agRFtA5m2KQV3mZ2Rrf2ZvjUdlWjjo9ek+Umgh5xrn4XwwzEdglrGjbmVWHIgk6mbn4ex8M/II/XUZT9RFHuIolhSFEWVKIqlRFHsLIriDZfPRVEUJ4uiWEIURY0oiq+IonjtkT62y+l9AAAgAElEQVSEh9Eol7rv8uqfGo36u9jxbVtIjI7EbrcxZeWGfC9Roigyf+KnjP3yW1Tqwi+82WxBECA727nyYjCquZ9YE60+iCDveEJLnePjQTXRG8xk6Qre/+QaSHz050kUQW8vS7y1A/etA0m1v4KcXIrJdlFBvogSsu14CDFFy+3wJ1pKhnPil5rnj559nYpvHmf0l7fxz92EPuEEmb69yHF76bHjXaNYKgXkmkVsdtFxrjRKwaGcBzheoqRjXfopYGyGyl1oM/wH3Lz88bk0lVMbppGZHFW0gwuvLtTydVmI/9wmUz29FMEEQfAXBGGzIAh6QRBiBEHoWUg7QRCEWYIgpOeV2UJhYZ7/QVu0aBFpaWn4+/uzffv2fC9ROp2ez6csZcniTxxKXK5mtcpIzghA49OcevUaoBbuUL7ELRTyxxdHaoeFEPFJG6Ji0rHb7fnuJaXSjVr1O3A79XXqNuyEQa+ltM9ptqwO58q5rajk+vxR4iLcn7/Xfesa3S5kcZote+7z7X8u8f7ovZy5LG3PXb7hJrVCJRGMQb1rUqdGYJ5fw+G/26kSV29Lk6IVaw+i1erwDKiZ17/r3yv5Pl5KDLk252eiiFopw00tRwTaNfbn7uoGvFZforEE+SrzPfsaTz/aD5iHVRPCgdWfc3rHQgTRVvi5dT0PPOP55+n1bkrnY+iu+i/Vr56KK0Vb/CkqrvxrT7bZX23GYDBRvVoIv/xnRL6XqOiYVH5acYT5c/oUeKzFpia0VgcGDZ9F+QqVOXdyNYd3L0Aus+W7gUQRypTyZvTABmRmmfLVA1jsbtRr0pOWb08nJbcu2vRYzhxeQGXvdVy7sB2TMStf+yf6uNa7PAsUwX9OvBr22Qm+XX6DHQcfOF6art/J5N1OUiSodvUARySqdnV/h1+jsg8/b4kEYNeeI6SkG3H3rUxhplbJSEk35RuDSilzyM+3bxrIoM6l+Gq01L97HuvBcZ7lQbzeew4aN2+C0uZx6chKRySuUBwo9Dw/jntP9AvoP8hT7qgP8lb8F2RC4R+BK8+s2vdX2V9N7bNaLIxq/QrJD6IZu+AHmrTrgFLupPB4qlR0CC3Lz8cvUKq4U3vjUWrfyFHzEASBaRGdUCjdSUn3J0vvg0wwUTY4EqspmfmLtvPJ8Fd5vcsPhI9oyOvNpb1UT6P2iaKMLGslMmwNMIsByDHgLbuBj+wqKlyS/D6RUvfnUvtSMkwE+6sZNfMKP2yIoX9niQLz48YH9GpXkpU7ExzNe7UtzspdSbzT9Q0mRMyk+INPUVglSuSj1D6zVaTLVzFk6qx89pY/r1ZzQzS6/J2ulJhHwtgOFT7AElwHQ/V3sQbWRJ18Eq+bC5FZsgtU7QP+MGqfq2Lgf03t0+162d1d8+R2ilefSu0TBGE10mJMP6A2sANoIori9UfafQh8hJQ/TgT2AfNFUVxc1HH/UfZXU/uys7MpVaoU2dnZHD9+nJdeeikf5SfXcAe/gHbos/ciF5z3r9ViJS3Di3StJ6Io49rVsyQnnGFAn9poNEosFhtxsckEB3nh5aUhIVHLz6tPMGb4a1R7cRqbV7xLzdDiiKJAuj6ElOwq2EUFPpp4Aj3u46bMKhrFqDD7k6h9KWkSFal47SWOur5dQ1m+/iaD+oSx8ItmDpqfKDopfwDJyVkEB7gx7LMTfL/qFgN6hKETq7F27XoGdq/M/IgGj1H7tNkW2gw8jrtaxrQR1Wj0gl8+LLZnORfI8ilnmW1YlQGkh4zCpgwi4P5UVLnRj/9BLljyR1P7HlUNVvg5Mea5qH3WQ0+h9uXi6dPuqdS+ouLK39n+ampfQkIGpSr2A+D25flUqVwy3zGR92N59Y0ZxNz4GuxOOp/ZZCMtpzyZ+lKICBw7sgcv+RU6tw1Bo1FgNFqJi08lpIQXbm5Kbt9LZ9/RGAb3rY1/6HzunxpIYIA7dlFOmqEaqblhiMjxU98lUHMdtTzrqap9j52mv4Dal5IuPcelGv7iqHu3UyVWbLrHhz2r8e3kxg6an2izOXxEOynpRoIDNAyfcoYla+7Qr/sL5BDK2rVrGditIvMm1nuM2hebaKDdoOOUD3Fn6ojqhFX2zjcvs+W6UB5trseKmBUlSfMbjCioKJYyC4UtLT8WQP48B67n5g+g9rniluu8BZ5Dta9eFfH8mSVPbHP3bhxVQvs8ldr3R+LKXy/A/gyWY7KRY7KhN1kLLOl6i6MkZpkdJTbT5CgJWflLks7sKK71aTkWR0nXW9iyfBnJD6KpXKcBoc1bo821YLJaHcVotVK8dFmiI+9ittkcxWq3OwpCWZo3f50dO88zZfZ5rt4pSWqmO5s2rqdt2/Z8s2At4V9sIWLGXnYfvEv92qU5fzXF8eYtKDWOIpMrHQWZCq09jEhTH5KsbRCwU0K5h4rqnyimOo5GkYUglzsKgixfEeSKpxeFqsAiU2qcReXuKHKNR4FF4eblKKPn3KL863sZ9MU1ftgg/ZD8uPEBP258AMDKnQn0eas8AH3eLMvKXZJI5Or1OzCkniVbBaqQ4qhCiqOuVMJRVKEl8Qwrxa7/NGbSsKqEb8/imyvg1qiioyRXKk1SXnlvn4XkSmVIrlSG7ttMUn3liuwrMwFds9lYfEqyaukcTDlrSSsdSNdVOsSqZXCrVR63WuVRlgt0FK2gIiZXTqeFicRki8RkQ5dlGTwwyXhgktN1rY4HFjkPLAq6rNQSr3QnTuVOt3XZxHl4EefhTbdNBuI8vIn39qXbZgPx3r7Eu/vQ9Wct8R4+UKk4qtCSqEKfcyO6rALIKj65PMUEQfAAOgOTRFHMEUXxOLAVKGiJsy/wpSiKcaIoxgNfIu2p/FtYptH4xJKRm1tgSTMYHCVFr3eU6xnZ+crxlBxHOelSzqQZGBHxBdnZ2bz25tuoq9XlXHoul7TBjnLP2gwf/0AO3A7hjqkFtw3NuJFYgztRpUnL9Mbb249K5dPQZlzm82krCSg7AoVvf7xKDOG1t+ZRqU4Ei346zYhPNzLu822cv5pO/boVGDL2V27H+nMj4SWSdDXAlo7aspeIiEkkJMRyP0ZH/9HbuB+Tw/2YHPp/tMPhz1p4DuTuUilklTBda+f+AwP3Hxho0W0j9+PM3I8z06LbJiLjTETGmXmt+2YiE0UiE+289s5WIhPtDj8q3k5kvMhrPX4lKkF0+olyzl4z8lqPrfQZeYjitZdQt80aenauBUDJ4t5M+qQtv+0exO0oPZFJcvQ2b1r23kl0soDB5kGrPD9X9OD19/YxdnhTTm4fwps9p7B27XoAlqy9y8V7ZuKyNLQbdIrYLDcScrzoPf4y6xa3p1P7UN4Yeoav1qWTZA7mzY9vkGgOJlkdQsfPI0lShZDkEcLbM2JI8gghMaAJ94LCsSoDEDJW8c6s0yQHlic5sDy9l6Q6/AH/SSXJpxRJPqUYsjSZBHUACeoARq5MJlZQEyuo+Wizlgc2NQ9saj7emUOs3J1YuTsf7zcR7+lLvKcvI/abiPfxI97Hj8H7TBKGePvSb7+ZRH9fEv196bHDRGKxIBKLBdFjh4mEoCASgoPpuvZ5E30/BVNkFZ7axTPiyt/a7mUZuJdl4Fx6rqNcyDA6S2aQo1zKauAsusbOkv2yo1zRN3eUq7kt85XrpraOctPSgaER0l69gcNGEBg6nAxFZ3Dv5ihlqtYjKVmHSV4K3MpjUVYkQVeLu8lNydSH4OedTZWQWyTHn2L4+I34VZ2DvMRU/KrOoVWPTVRo/BM1mq+g++BdDA/fT9NOG6hauRg7jqQR8a2eG2kdScmty4XzZ1CbtmLM+o22PZdzP0FOVIKM13psJTJBRlSi3OknCbzWcxuRiQJRiaIDE6ISbbTsuY2oRDtRiRZa9tpGVKKZ6AQTrXptJzrBRFSiiVZ9dhCVKPlvDtjj8N8ZeZiYZBsxyTbe++SYwx8QfoqYVIhJhb5jjzv8sLabKNXwF8bOuki1SlJEu2enGohyN37b+R5jR7Sg95hTGPHiQbqCriNPYJL7EqtV0/bDo5gUfsRmuXE31siJHR/RZ9Ac1q5dC8CSdfdp+cEx4rM9icv2pN3g0yTk+iDzKUFIKV+aNKrAG0N+o2HvkyRaipFoKUaH0VdJkZUmWVaajuPvkqwIIUkewlsT75Hg1pTkgLGkZ4vItKtIk6no+Hkkie6l8uFPkroEb0+NIklTkiRlMd7+IopEZXHiZV50nB5JvMyLeJU7nb55QJzKnXg3Lzp9G0ecmydxHl50+jaeOA9v4ty8eHtBArEaL+LUXnRekkKc2ot4L1+6/qKVcMY/gC6/aEnwDyDeL4jO36eQ4B9Mgn9woc9K4aYuAq4Urub80P5oXHlO/eT/LdNnadn8zUwAenwyqdAV6hJly5MYEwOPqPQ9NLPZTsOGr7BlS2NEUcTHK4dA33TqjmtAWOVMOvVagFqtoGL5AIIDPYmJzaReWOHhYJuoQGuuSpopDKvohUaWTLDyKJ6yKIm2999ssvyd7eEqzUMfpMkKwM+/RtGnY3l+3hLFwO6VHZ8N7F6J+RPrM3VUGMEBGhQaP5auu0TPbu344bvp/Lj+HgO6lOOb8bUK/E5BEGjfLIj61b156YMztG7oT52qXgW2zWdyL+QVRlDbrTz2lM2IGfs5cfgqPZvV+R3OxN/AhBAQ3J/WKlAQhHMu/18iiqLr0lAVwCaK4h2XustAQavNNfI+c21X4xlG/P/SEmKiWfbNHACGTfqi0HalypUn8UE0Ib6e2LPSQbTj4+NDUFAQGo0GrHcY9GEHBn3YAWwGKQebKCKz61n4/V6GfrSMcmWDCPD3JDjIGx+/8nwwIAKLvAyCqGXd6q95t0sp/q5cy7QMAwF+0v0aMXM/KzdepliQJ4eOS9SZhCQdIwc0ZuSAxoybuheAAP+n3t8Os8nL4FWmHZZMLe+8XYvVmy9TspgHAX5uFETKlctldGpbkY277vPVj5d5qf6j2T/ymyh4YA/ohTEtE5/cFQi29Ce2/8eaUPA+XefneoASvyOu/GsF2LUL59iycjkqtZqx4REFtlEoFISEBBEdnYa3dxkytB6IIvh56wjyy0SltILNwuTwzkwO7wz2XOx50Qi71cjIcetZ9OMxaoYWRyGXoVYpqFCpPrUaDaWeyheZPQWF+RhLf/yOJt90KXAMf7Xl5jFUIuYcZ9XmmyDAyH71uHVXej5XbbpOj47VWT6/AwH+7nz+5bFnwpW69V/Bu3QfBHsW5csGERWTSs+OVUlMKVioRyYTeLdLKNUr+/PuyD1kaI34+xbOHAkKLonNpytYU5k7/SNmjakGf1sUf15TFQFXjAAV/0pc+UdR+769EA0UGqXE4kJnKCwy+eixrpQcu8u5cK2f178b9y6coUG7txgyZ4Gj3lvjfA/1UKlYNmsqcVH3ibp+jXW/SfNGL7Ua7HauH9lLaPkyKBRyfH2VBHpHolY5w6r1G4/g/MVo/rPoA8Z9to6Lhz/mxZbfcPTX96hQzj/vj5IeQKtdQ5q+Ehmm6thR4yZLIFB1Hg95bH4aTSGUunwJ5J7QrigmuPJDCskwPfzz0wWq2iCKeS9MEo0m38tWqsHhi6IdIyWIpw+69CiK29dQ4TWnslbUvjYEebtcRxeqzcMbYeXORJZvi2fPgrr56kEKjz80izyINP9h2OQ+BGQtw0N+0/GZXOXmcoxL2D3HCYyWeGfiYmtC5mPjABDcnHRPmZsL7+ORmzNfiNzbCeCKUr4O37vJ/mem9l1KyXnZzf3JPwhVPWVPpPYJgtAUWC+KYnGXugFAL1EUmz/S1gbUEEXxVt7/KyMpfMrEvxiABEEQDyZI16wwat+z2qP9uC68uF7hDjUrkpGaQs8hIxg9ZaajXuFCa5OLdo5tXMWLdWujUasR3L2R+wVRLY+GFRERQdVKVnr1fE06wEV1y2bKolz1kcTFZ7B13cdMnnmAtasWYLT4oJDpKeH3AG+3VARc8KAoiXpdTSxEqOZJ9D/XzwrJWp+SlktwkCdDPtnOd8vOMvi9Bkwe25xiNeY42rzXow7L1lxk8Psvsmj2W08fn6vSIYBoIcNYiYSchqjlmZT13ItSZiA5Weeg/7lSAQva6DVj4TkuXU9jzcLX8/60xxVUEy1t0NmrUk6+DJWQ8Vgf+Ybkgt92s/NaWDKcG7WtSc68fq7U4EKVuVwSlOdrr8m/F1Lu7+Hw/dqfemZq3+0c+xOpfQa9njrFvJ5I7XsWXPk7myAI4m+p0u9CYRRgVysK9ri2eXQx9+FnoigS5itd10+mz+HTMWMcbVwphmbjCZYuO8+LDZsil8vx9zUSHJCNSi5FIwcN/47Ob9alVYsw6QC7k1qmzcik3AsRZOly+XXlB/yw6gGzZ36GDV/UCh3Fve/gqU7Lvwf7WbGkUEpjwZThJ81bXOcoDjXP8Qf4bsVl+narwfJ1TmZX8tWhTJ57iu+WX2Bw37osmtW2kLFaCq5HgonU3JqkGOrgrkiirOcB5DIzyak5BeNKATZ84iFkMoF5U5pLfebDFRuiCA+MHTDagqmg+RmFYCjyPM51/mfVO+cottxClFhdcKUwKqBrvcxlfiP3y79w7dVo9zPhSs069cRNx889sU30vbu0rl31idS+PxpX/o1IFcFKVqxCzZdfpUWvD57YrnxoDXauXI4uM4M7Vy9TpeYLYMgGbQo1K5Xn9q1rdHizsZRz4REOa/iY9qSk6ejb6yUWLtlL70ErMVtslC/r1N432zxIy61OprESInK8FVEEqK+gEZz7iP5Or8UPecYP1WweVbV5cLQTE4eGOV6YHv77qG/GnwTeQY6Bmr47UAADulbgh/WRDOhSDj//EtzU1qGC9zXUdhfeuYt1f70YM5ZGse+3dFo1lML1U36KktSx3i/HF0ujUao8eHfUFPRmJfvXj2NIWxPTV8ZisYp8NqgSs366g8Fo4/Ohodx7oKdSGY/HvufAlWxO3c5hYtcSLDyiIyvXzoQ2viw4mo3OaGfC6z7M268lx2Qn/A1/vtyZTq5ZZGLHQGZtTcVig4lvBzFtcyoIMLFzMaZtSkHhpmR8d0n1a9D7bhQPfH7VPZvdju0JnPIiWg7wSCp7vIGCeEGPtvUGcv7ql6g/zUQRQbQjs1mRiSKiTIYok1Oz/os0bd2Odt0LyE1utSDLyQSDjpcbvci+ffv4fvFiftx+gOIq6dnQ6/XMnz+f0SMLfokQBJg5pQcqtS8167Rh+fL3SEnTsnHjAuZG1GLi1F8lFb5J7Qn/YrvkT3y9QDW/6eGtCJ+211FfFAuffjDv2Nfy+Z/NPoLFamf6hFeZ+tVRDLkWqc2Mg4h2Ea3OxHfLzlEzNJhrN6WcJN8tO8vksc1pXL80p87FMvj9Fylfxo8RAxozb3p7Zs47gi7bxPSJrzPtq0PoDRamT3ydyXMOYTbbmB7e8hF1wcPUbvAWobUakxh7jXPHlzBuSC3CZ53A003OuKH1qf/GWi5eS2VQ75r4+ajx8VIxdlBdJs457fAztCZ2HIwhKlbHT2tu4uEmY9zgOkz68iwalcDIwR3Q2atz/fxmqjTMIOKbi5I64ui6BfpTRr5AxLzLiKLI50NC+WzBNUQRJvUq5sCr8PYBToXSLsUdan6TepRy1E/qXjKfium0TSmIokh4RwlbRGDSO6Ucx07sWoIZeVgX0ffpVJmC7GmYUkTMeRZc+d82UQS7DawW6XdfLkdERr3GL9F3+Ee0aNfhsUNMJhOpqalotd40avwKmzdv5qeffuLaxfmoVB5gg8TEDH5adoB6tQqOBFgsNl5qWJ6hgzoh17zAjJmhJKcls2LZVEKCMpgyXsIQtVpBxNhWhE/dhaeHkvGjXiV82h68PVV8OqIZ4dP24uujYeywPN9bxdhhLxM+fb+k2jesCeHTD+LloWTciCaEzziEu0ZG+KgmhM84ilIOk8dIiqB2UWT6uJcIn3UiTynU6Y8eUI95P15g16FoLl5LISw0kKs3pT3jy9ddJ6xaEFdvpVI3rBjfLDnPolltUalkuOe9EDxVlTRPvVAUYdr4V9h6oiwVq9XBRx3Ff76fjclkZvr4l1nyy1UMRitanYnFK65Qp2YQ53f3YvbCs2izzflUST8dUp+qzZYjlwl8NfkV5iy+gFZnYtonjZn13QUCStTnpZaluXhyOSsuHmHqmAZ8Mf88JovI1I/rE/H1eex2SXVw0lfnkcsEJo+qy6SvzqNRCUwYXIuIby7iprAw9v3KTF54E0+1ndG9yjFlyX28PRSM6lVW8r2UjOpdjimL7+GpERjdsyxTfozEQyYyupuk/qeRi4zpWoqpK+NQaRSM612GL5bFIGiUfDa4Kp9/d+e55qYi/wxc+fdFqgjWc+K0IrWrHFYLi0Va/Zv0fk8iIiJo3Kgh2blGhn44kOrVy9G58+NqcwBvv+lczDuxawSrN16gZmgJBEHAZPUkVV8VrbE0AiK+6kgClBdRyyXFG3sR9n7/WebIs+AShRrYo0qBESnXl6XCzIoXCfRCAEqyCkXefT9vQh0mDKxCoL8HA2elsnrdCLp368bscR3wsW1HRv7VZ4VCRslAFV0+vUq/t0ry1YhKj6nWNGk3Apvcj/3rxpCacBson6+Pokz7C1WzeUYYEXEG6Qvr83nNsWfvv7M7gEIQhMqiKN7Nq6sFFLRx83reZ2ee0u7/jQl2GyqTAZVRj9xqKpBwsWD2DJDJEbVJiDK55MtkyEQRITcP3z28uXY3ii+mTScrI5129WsQVKw4JYOD+OCDD8jKykKvL1jZ02rT8EqLHmhzfMk12fFxi+HMsV/p17MsgiA+QZGJp9YXxQrrvyAb8unOvJenIK7dlKIv126m8F732ixbe4k6YSUIDvKkY7vqNKgTwrzp7Zn97VE83FXPMH7pqRJFaNjsXSpUaYKf5g6rdy9Ao7bnOzYlzcDFa9I4Fv9yjeHvv+AQMMqnDqqU0aBWELMWXSDAX+PyXSCTK0m2tkSnTeLmhV95u2GNoqlgFUkdsTB1smdU2fodl96ehilFxJxnwZX/PbNaIDdbWqC1PI4rArBsyWKQKxCToklXKpHJ5cjkcnLsVnQ6HYIg4O9v5tSJ/Sxc+A1paVmUq/wuAQFehFUvQ726FbFabegNpoJGAHJfho2cSOmyYRhzczh1bD2i6TYaeSwgRVmKdN8WST3vv1Pe23M4mpkLzlKzWiDXbkkvT1dvphFWLZCrt9KoE1aMNs3Ls399N75Zct5xrLtLVKWo3yWTKXiga07FaiFcu7Cd7q0ysdnyR670BguLV1wB4OK1VFLSDOToXUQb8h6RkJJeVKvkx5lLSY99mVLpQb2XeqKRJRF587BzDC7f8xDrnjzmJyvvPeYXpc0j7QUX/3lMFMWn4oataCyqPxRX/qX2FYHa5yqZrVY4O3iU2me32+nXrAEtW7zK4AEDUKvV7D10hD0HDlKqbHn2blzFsaMbqFq1IpgvPTJ4F968RQq3mizuJGeVRWcqhYANP809At2uo5IbEC3OyVNhyXn/DGpfaobZ8UL0UKWmT8cKDulPgNhjEkfadY9UcIDmyd9ltyMiI54eGMWSlGIFGpLyjV20W7mZ1YL6LUY66g4fPkywn0Axw0KUYobjRkjNNFPxzeOOdvc2NCLIL28SZhPJcXuJTN9e+Og242Pc72jnSsP7/0LtOxmX8VRqXx1/TVFU+9YgYWR/JBWcnRSs2jcIGAm0zGu/D/j276La97tR+0QRpTkXjUmP0pyLAFjlSqxqN+wyBWKe0ItgtyHY7ShEO9htCHYbMrsN7HaEvFUR0d0bu6cvcpUaQ04Ob9QNxc3dHR8/fzQaN5o1asDRo0d59dVXWbNmOWdOLqBEiQCwGbBaZaRk+JGR5YUgiAR4pxHok4rCNdmla+JN8a+j9qWkSThWrKYz6eJ73WuxbO1lBr/XgEWz25OSmkNwkKf0ofCMa3+PUPvsoozEnHpkGisS5HaZYPcrebn0XOlv0jFDww+7JPPF4S+c+kre2CV6Tt/R+/hl8x3e71qNJTOaOvpJNTcg3daYEOUG3MWoog33H0ztu5hhfCJe5Or1NCkdUBTVviLhyt/Zfldqn92OYNQjM2SBScIVUaUBtTsoFCBXSlQ/uw1sEp5gtyLabChFG3abVGQC+Pv7ExAQgEJ2mvj4VGq+8C7eXm6UL1+CrCw9Pbo2YeHiXfTo+jI7dp3l1MHJeHu7gz0Xs1VFijYErT4QmWAj0CuOAI9ISRL9oRWKE38uta8gNc/3ulVn2bobDH63FotmvCYpBgc+zipBKIKc9iPUPruoIDb7JbLNZSjpcRp/t7uFjnHIhIMsXnGFQe++AODwF01vkY/y133QDtZvv8vAXmF8N935yCQYXkZrDaW823rUJLuM6f8fta967briqkOnntgm5v49OjaoWRTVvj8MV/5Rqn1/lV0/cZjsjHSyM9KJvn6l0HYyQWD11h188tFHxMUnMGTkKFavW8fls78xfNIUWrduxoyZC5/6faIIGfpS3EtpRI65GIHud6gatIeSnmdRyQ1PPf6PtodiESOmnKV00w0Mn3KGlHSjg7r385ZI+nSUlN8eRp4Ko+0VZKIooKMmMXxILuUJZD8akh5vhxxNYFO6d+sMwAedq1DZ6zg2mT+xuvzRpCA/Ff3eklTuXq3vh1olQ6e3otNb2XveSKZ3JxSGGxzfv9ZRv/NkOroci+QfSyUmQU9knJ7BUy6RlJZLaqaJBaujSNOaSdOa+XZ9LJtOZXI9JpcRP8YSnW4hOt3C6A0Zkp9hYfSmTCJTzUSnWRi1JpXIZBPRqWZG/pxE9EN/eSLRqWaiU02MWBpPdKqJrBwLu85q0Rls2PIWDGy251sEsYviU0sRbQhSMu4UpKTdg0VRvC4IQlNBEHJc2n0PbAOuAteQZEe/f67B/wGmTU9j/ZKFaNPS0Kalsf77hWSmpzp8rYufmeZSn6G2zL4AACAASURBVOcfXPMzyrR4/NJj8c5OQ2Y2koWS9fsPE2tXkWi08/OKFaRkG0jT6fll2TJSDCZSzXZWrF5Dsk1OsqBh2cZfSVJ4kqryZsWq1WRotWSkpbJx+U8sWPcrSpWKlKREUpMSOXbsGFlZWcycOZMqlUOYv2CzhBtZXtyNCSEjywt/rwyqhNyiuH8SCnn+ycv4yb8SGZVKZFQqy1aeRqfLRafLZee+m+h0RnQ6I7v23UKXbUSXbWTX/tsO/+KVhELOpNOMRiu6bBO6bBNbd99y8W9zPzoDXbaJdj3XUKzml0yYfpC2LSS86NW5JjKZwG+7+zNmSBP6jdpCdo6ZyOgM+o3awr2odMkfuYn70S5+VIbDvxfpWi/5/Uf/yu24ktxMaUemsSIK8wVyUo/Q/6NdREZruR+dSb8x+4iM0RIZk0n/sQf4eGAdTm/pIlFx8hL6Lv7lGmcvJdN75F5K1F9K10G7+GWzhHtL19/izOVkBow7wv0HJtKt9dGlXsBmuEdWtpltB2PR5ZjR5ZgZGH6SyNhsImOzGTzJ6Q+fcsbhj5p+kcjYHG5H6nhn0jVuRucQlWDg0+WxElYkmxj3c5zTd6kfu/SBwx/zcwLRqSaiU02M/jkhD1vMDF8S42gz4sdYohIMRCUaGfTl3UKv65Psj8aV5xrUX2iZaalkpqWycdmPDn/Tiv8465f/5OL/SEZaKhlpqWxY+gMZqSlkpySScP4E8sT7yDOT0GdmkCvXkKHy5ueNv5JhhQyjlZ//8xOZ+lwyc838/PMKtHYZWlHJL+s24luyDMUqVKFE5VBCQ0MpVqwYCoW0GFGqVBBHDy8AQUCrzcZoNLN2w3HKlA5k5lRJzGz5ymPYRYHUrBLcTXiBLEMAAZ6xlPA8yukT29Hn6NHpjGzddS0PN3LZuuv6Y35WVi5bd92QMERnZOvum3l+rsPPysrNwwojWVlGtu6+LeGGzsTWPXfQZZvI0hnZuudunm9i6977DmzpOWwXkTFaeg/fRfHaS/jo8yP0fLsqAL3ersakUY14r1t1xgyqR2SMli++PEFktJbIaC0jwvc7/OHhe4iMlvBk+ASnP3TcLoc/+NM9ebihY8kGFTfSOpJtLsOhPcvQJp8lMlpLv9G7iIzJJDJGS7+P9xD1QEtkjBaT2cbpbd14v1uoIzq1eMUVqjRdRvHaS+g9fBc9h+1i/XbpOVyy8iq/XUwkMiaLMdOvobVUR557juETNnA/WktkTJaEOdFZRD7QMWD8MaLyMGTghOMSnsRkOfyoBzoGhp/k2p1MVu2M5cPJF4mM0xMVp2fozJtExRuIijc4/Mg4A0OnX5f8eD3DZt8iKsFAZGIuw+fdIyrRKPkLo4hOMhIZb2DY13eJSjASFW9gyLSrRMYZOH0ls4Cn5Mkm8nRceYZg0B+GK/8oal+OSZoMuC68KYqQb8QVwK3Wwk96/pUjZ33MjWsEli4HQEpsDOVqvPBYvzablcDcLNxldvQqd3b9dp5azVrwQu16VK9Tl6N7dnL48FlOnTqVp5qWL2exSz9y4jNrocsNxlOdQSmfCyjleW/+oo+jnSB3rqTIXTdR21zymLhETfJFrWSPrCK7rl4UIhiRmm4iONCNYRHHWLzyBn27VGP5hrwHfc0dPh/7MoPefSHf6sqcyU/eUFmQGW1+xOubYrQFoZGnU0KzF09lEoJQgNS33U45606mfDaawUOGExAQQAYwdepU1q5dK608zXmLlFQ9wUEe/PjDK0RlLOOjQU0IaVTF0U3T6pVJy9VQruQ9qg18wxHt614b7Bbp3HepAFFRSYgWOzFJZiTWg52dx1JpU88Tiw2+XReHaIcUrYX6VTxQVyyNiEDcbgOqKiUAiNsbhaZaCRAhbkc26qolQIC4LVrU1ctK/qYs1KFlkCnUxG/UoaleieIVi9G1sXRt5G7S6vzqX10FaIputt+H2ocoihlAxwLqjwGeLv8XgU/yyt/OohKTOLJrB1Vebo4AHNq9ndBmzRFFOLx7B9WbtQBEjuzeQY3mLUCEI3t28HLLVoS4Kena8hWsdivJZivLFn/HK336IwKb162hZJ0XEQSBI7t3ENa8BXJBxpE9O6j9akvkMhmHdu2g9qutUMhlHNq9nbqvvY5CJuPQru00aNUalUzGwV3baNSqDdOXrGB07y60ePNtatauw0uvtWbSV9+SmGRkxKivuBedg8lkwt3dQsniOjRyHdLvRp65YENymgFRJn32Qlg5vH0lbGnXurajTdvWLzj918Mcfp1aBaziPmIadwUPl0vebFfLEVXafTiKt/qupW+POuw6eB+An1ZdJPnmRJJS9Hh4qBgwagOBQcGIQFRsNoLKG1GEqNgcZA4/G0HpiygKRMXmgMrX0UZQ+zl8URmAXfClY/dmWNRVkImpLJj/JR8PqQmaUkTFmxA1JRGA6PhT4F4OQbQRnXgGwbMcQV5ykjOv0LNrfVatP0fJEr4I3qGs/lXKL79pdySd33qRjb+eoe3rtSlWuRkxKXcRAzqAoKTOC0rcVK+CVUfnSnknxJzOg+RTKL0lTEhKP49MIe15TM90JuXU6c0YjWY+nn2V01e07Dx5gWPLGmNWq5GHSHtnLRodyvLFADCq9agqSH3mqrJRVSgl9aPQoq5WFoCMHTloapQDIGFLNm7VpRfY+HWZuJeriAicu3/vqde3IPudqH2F4so/zWJSpGjBud9OUvnFxg6/Yv2GAJw/c5pKDRoBcPb0SSo1kNoYtel4GDL/j73zjo6q+t7+506fSZv0hBR6FVGxothQFOkWEEWaCBpAFFFAQi+hd0goIr2IghQBQbCgiIIoKNLT+6T36ff94yZTICFE8fvTV/daWWzO7HvumVueOeU5z8ZDIUPp7YnBZKXAbGfR1CkMrVT3PHpwH7c/2gGAL/bv5c4OHQGRL/bv5a4OTyEIUnmnvgPQaKX33LWvpJLfJzn172PTlx35cPE8QsLCeejee7jz7nsYPXUmvv6hvNj/fa6k27BYRLw8jIQGF6GSmYFIuj8b6RBw6V45cYrdRPceDSrPYqN7j8p9VqKrb6V79zBnebdQF7+eM6ZbiLO8a3Bl/Wa6dwl2fI8H7vfG29+TqPf2sH33JcwWObv2XwJg66eX+PHQMIrL5UyN7iblhRS1iGqp3lKzGlEt1VVuViNqpHNXmM8hqiW/zKxG1EjtLjGeQdRK3y2/9CesuruxCLfz4GNeyEQDCvtZdu87SOeOgwBIzPgWu64VggCJGScQPVuDKJKU8SMB9e8DUaRe6CEyMgt5rsf97Nrzo6PdDz3Yipf7PMbW7V8TEqwnuOkTiED9lq1AEFFqjCRlyVD4S+K3ydlnUPhIexuTs04jqDyQCQLJGRXI1Z7YTBUkpZUhCApEwc7V5GIGv3+cywlFlBttjIm6C6Xag5ScJBQ+gQgCpOQkVvpyUnMSUHoHI2AnNS8FlV8o6K2kFmWgDqsn9WdKDKgbRCJTaUgrzkRTvwGCXEVq7lU0AeFs3fEzdbWbofb9HXDlH0Xtm3VC+uH9MwOpG82K1bQEr3HJ/q5VOlWm1IKNn78+Str5c/Tr2onw0BC2fLKLTq+/5Zj18VQqOfjJduaNf4+vjnzBnXdWdlTMB93OLZqyKS73JTMvEqtdTrBPAgGeqQj2Gig4NalR3cxAynZzA6mq/U4jJn3Hqq0XGPB8MzbsdHbepcHURYnuMvMxBLmiVjWamkwUBXJNt5NT0RaZYCZU9wPeygRuyLaqkmMVFRht/pjtXuTmFdLsfqfkq5MmdA+xc7vxSPcPmT6uA48+2AAAi03D5dyn8FalEuEtUf/caJMW5/K11ejcl2gtK3L4tpISPvsul9kbk1kxoiEdx/zO+y+HM+CpIPSe189V1ETtk6ndk9fJlM6VO4XWuUReNZBq1+NjTp7JrjO172hidntNLdS+h4K9aqX2/f9ggiCImy+mATUn8XbDBcDDZsbXUo7GbsUiyChSaClWarBXvjs3Uu1zxauafIuxghNfHOLXH0+Qn51JeVkpej9/Zq3Z6IwXBD5au5Kjn37Mug/WYLPZUKlUBAfm4u1llt4b6zX7aF2wwTUJpxudzxVLbjIxqCv1rjp/2Jg9xK07yYA+d7Fh+y+OQ52qew8QO6+nu4Kfm6+oobx6xT/HVxEFcooiyCkOQy6zEaq/io8u58aYcu33czmHId9KUKC0X3nYqC3EfXCEqNeeJHbJEBq2GsGhPeNp1tgfUYQr6S1RyC00CjkvHWx10vEwu8uf28qcydJdMcZmLGP1jkR2f5nBu/0bMmDCGcYNbkK/LiF4aKV2CTLntZEpXChJrhNiNdB8ZCp3vJGrJExo9NgO0rLK60ztO55dUiu178lGIbVS+/5/MEEQxL1JklCK67tdI7UP0Jor8DSWoLBbscrklGk8KVNqEavBlWvrcVP6dMUVl7iyokKOf/E5Z388QUFuDhVlpTRo2pwJ85c6YvxkNhbPmcW5M6dZMC8Gq1VAo5EREpCDp0clTrjSgq9VwnTFEmrCjJvBFSuGnBKCAr3cMcZu/t/iSjUxNruM7IIw8kuCUMrN1PNPw0vn8n7X0Qx5FoKCfBj21hri1hwiamgXYpcNB0Cn74khbRueOhl2u8ClpAZ4aEqIDJZybWJ1biXA4vRFU47rKbCbnNhvt5iYvORnElJK6PxoPSYtPsPY11vzSvcGqFTXY6orxrgnEq6e1u3aj6nqw1QYrYTft4GiEnOdcKXFHXeJH37x7Q1jUhOu0qfdXbVS+/5K+5dT+0S0gp1guZWmSjMtlSbqKywEyqxocP/x2bNsHnuWznUr+/X4MQ6vWcGIvi8SEhzEu2PGciEtwzGIunLuVwZ3eYJNK5awbPunzkHUNWa2yEkxNCE1pzEKhZnGQacJ9Eqt/Qf/L7Aqpb0Rk74j7P7NDB7zNau2ShLgG3ZeZsDz0krOG6+05sP5T5B5+lVWzHzMcfwfGURZ7RqSSjtjqLgXL2UKTbx34aOqZRDlYjLBik6RjV51lSahuUT1l/JKDejVivUfSTL0cet/wpBTSlm5GQ+ds8NhKGsJCAR7nKmuajeL3XKJiYuluPnrrzIl9iIAi7ensuOIgbBANXtP5GOyiCz4OIN2b/7KtE2SiuCSXRkOf+G2FKZ9mATA3A2JTF0lTRDMXH3ZUeeU2ItMWiatWk5efo6SUudA2Gazs2nXRc787g6WN2s2Uaz1799kHy2UpMf3rYlj+4JZAOxZE8fW+ZL/6eoVbJkfg9ZmwSvtCqGmYmSinc++PcGsuNUUqnRsXbqQzfNiANg0L4ZN82Y6/C2V9W+aF8PWJfMB2DB3JtuWLwJg3ZwZbF+xGIC1s6cTM/IN4qZPJOnyRRBFzv54grzsbDYslfYRTXzjVV585F7qeWpYszIOgNDQUJo2bYqPt/mm35voqTsZP+WTP3TNDDkSc3PYmD0Et5rFsDF7qvUHvvkJceskjZEN239hYB8pF1vUoPtYt+wFsi9MkDo7wNrNJxk/XZpgmrvkKOOn7wdg/tKjjJ+2r9I/wvhpewCYt+Qw46fuBmD2ws8d/sx5B5i3/BTxWXeQUxxB4tVfaBr6M/MWriV6unRs9PS9TI75zOHPmHfQ4c9adLjS/4w5Dn8v6zd/57huDeoHkJ0Qi6/egzkL92A0Wli+8hCz5u+jzOiF2arhp5NfVnvtqiYvo2d9xfiYrwCYMP8k0fOlGelJS846cObAt5kUFJnx81GSX2Rhcuwl+k/4lWkrrzJ1pbRyNDXuMlPipAmuKSsuMHnFhUr/PJOXn6+m3OlPXvobk5ZI9KIJC0/TbegXZBj+GH38P1xxt03zYtg4V8KBDXNnsn7ODADWz5nButnTHf5329YTWJyNvryAvBwDBR5+zFu1luWLFiEKMrf4dXNm8GGl/+Hs6aydNU0qnxfDmpipUp0L57Bq5hRAylVXZTs+WMn6JQto0KwFd93fjp+Of0vrtvc4Pv/m0AGee7oDbVo2Z86sWYCMsDAtjRt5OgdRf7EZcqSJhGHvfkJw88kMe/cThr27i+AWUxn27q4acWXAixKutG1Tj9Bgb7IvTMBXr2X8jM8BiJ5x0IEt0TMOOLAlevpnDmyJnr7XgS3R03Y78CR62i7GT90FwJKVP3Pq9/rklwRx6cIJtmyYiZeumOipHzN+ipTM29WfPGOnw58+Z4/DnzV/n8Nft+lLxk/aQuySIUyOfgm9Xlrxnzv/EyoqzOh0auYt/JS1G3/FZpdz6PN9jJ8iJfidOf+go81T5x5lfGUevQlzjzN+9nGpPXOOM3nRKal8/kliYs8gEwTSsso4fDyD5Iwy3p39E4/3+wKQ8GfB2vMuvtQPmbT4F+Z/UOWfYe4aiRU3aemvzFp1zuFPWyoNaicuPM2EeT9QUGSi52sHKS2rWTK+JhP5Z+DKP4radytMQMRPZidYbiNIbkMrk26CXZTmT6oWn0QRMmwK4q0qQO4uR1JpHqKVVXGxqD08mDRtBjK/QIZOnonZZGLFlPF889keho+fTI9XBiKXXz/St9sFcgu8yMn3AkRCfFPx985GsJVeF/u/sBGTj7Nq60X6P9eUjbsk2t7GXVfo/3wzNu68zBt9W7F82sPMfv8hx4DpjwycXK3C6k9q6ZNYRQ1huq/xUcX/6QFk7KwnmDK6HUEBOnQeOuLW/0TUwHsICvSkrNziUPoyWr0oqGiAv+YiKnnt19ztEbhGqcZqE1EqZXhp5eg95YzuFcaMzanY7eL1x9bRrj32t4t5DBx1pPrgm7A67lf415unRssz991NhKmIIpWSXUe+ok33Xvx2Nb7a+yuKosszXFeVNpGKslIiGzelQfMWfLlnF68MfxurxYLJZCT69YF4KwQ2rV+HRq0GL1+ahYdUiy+1WV3ZCI6Z4Pd2E7fuBwb0uZsN2yWlq6pOzbV+1eDJNd/TnEmdHKtWDhGJG5g7o8B1Q/X1il6iKND8tido1upRbHYb3361jtSk83Tr0PMPKObd2A8K8nGo3pWVm1BUshXySgIwGsswZF0Eak7W665wVf25LFYRmUygTTNvFHKBdm18SUyv4PYmno6VzhpgqWbFLbcY5/+S00s5dCy9xvbWZrVhiv1vlZzjr7fanh+5zUrvTh1pWj8CCwIfHzrC5aQUXh030ZH89mbqudanmnJRFMnPMdDqzrY83rUHr3fryNjZC+nW5xVyDdlMGjGUtre1ZFVcHHK5HE+/QCKCjMhkf+1srmPVCRg2egdxH37HgJfuY8M2CUPiPvzeERu3zik6cC2uLJvVjbmTO7F4lRQfFOhZByXP6nzcfLlcSUZeBE90uoeS4lwahlxi6/q9NcY7/Ju9EJWm89BgLpREH0xmC0qlHJlMhihC0+b3olaayc1JuonvVVN7pP9UGK3IZAJNIqUV9nZ3BpKQWlJNPTfyr1cxvbYNAvDJ/niOHk+7yStwjd1EX+Xv0JX5V1H7/GVWWinN6GQiNhFybHJy7TKK7TJK7DIQZCgR0Ql2QhU2IuRSfoZ0UUWOqKAcGVqlArVoQ5ZyieahQRjtMC82jvy8fEYtXE5FaSmzXx+Ij58/YxYspV6Qk897p6/EgxdFkZL8b8jM0WOxKvD2LCdEfxWVonKZ3JWSU5O61i2k9hlypRc37IGtjrKqwdPrL7dk+bT2jj1SAILcdbnbJUmgvG7j8iJzA9LLHkUhGInwPIJWkVf7Qa5WAzfWrR0KT8ceKQQ54Xcs4MSB14gI8yGp4EHKLX408/0UhcxF2eoG1L6ycisHj6XT7UEf5JVqjraSEjbsz+TYmULWvNVIqkMUeXrseQZ3DubFxwLc2/cnqX0Hv88hbuM5GoR7sXLzuTpT+z67mt5eo73xAPjJMN//qH2Ap81MPXMpIFKg0FKo8kCsZaT/Z6h9n6yJ5dO1q1my8zMWjB1F4xYtGTklhtzsLKYPe5Uxo9+lWeOGoNaCXyiCUsVt3i7Pu+1rp38LqX3DRn9M3LoTDOhzDxu2OxMkunZmQBpEXevHzu3hrrzndnFqotTUndpntGhJy22G0eKJXmcg1O8mFcWutZoSBstd3hnBRR4ZOQrvlzAVbMFuF7icdhsBPtmE6JOd8bVQ+/ILjRz7MZMuj/g7nhebsYxZqy9RXGYh5k2JCWC12rmr9zGWjm3Jo/f43VJq37pPUzn5ay5qlYxV2y7Vmdp3JL3gxtS+8jK6NQ3/j9oH6Ezl6CsKEREo0XhRrvGkuhnEmpSE60LtE0WRuBmT+eHLL4jdtZ9hz3WhW5++DBgxiqSrl5kx8nVmTJ9OveAgNJ5e+ATVQ65U4qdwyclodSamv1XUvmHvbCVu7TGiBj/MlHFdCG46zhEy8KV7Wb/tFFGvPgiiSNy6E0QNagfY/re4IigoN3mQltsYs1WLv1c2wb7pyGSu71TdJ7HczBVXXPzs7AJuv3sYhrRtVJRDfFoEoQE5+HtlOuNrofZlZJVy5vccOrV3TujYLSaGT/6eJvW9eXtgCwBKyyw067ibLzY8QasmTlVg+PPUvqmLT2GzieQXGlm5+fc64UqzNneKcZ9/fcOYtIR4Bj58z3/Uvr/a5Ii0Vpq4R23CDvxsUnGkQssvZjWpViVFdjn2ytG1BYEiUc5lq5rvzTpy7AoiZWbulpdzt1hESE4it9mLaRLkT0aFhQzvQC6fP8+TvaR7OGNIPxq2aMnUNRvw0vte1xaLxUJSUhIpmQHIZHYahBuIrJfnHET9j8yNwvfAVqYt/ZnXX5ZeqtdfbsnaOY+S/uMrLJ/WHsAxiLoVZhdlGCruJK3sCbTyXBp576n7IKoOFhTo3BxfRe0rNQVSag4h0OOS2yDqRpaYVsLDLx1i8Psn6PnWj5y7UkTnqB9IzCinSYSW3d/kciVVUr7qMfEigT4KPv46l+4TLpCYaSQx01jpV5CYUUG3934lIa2chPRyur71Mwmpkipg56gfSEgrIyG1lGeGHiMhtRSbi2xxelYZYSEebpTKulhVHqkb/f2bLDsliZgBvclKSSI7JYnp/XuRnZKEwpBOPWMRZRYrP+WVMWLQADJSk8lMTmJi3+fJTE5y8ROvK5/w8nMOP/ql58hMTiQjKZFxfXqSmST57/XuQUZSIvHnz/H8Hc3YvW4N7y+JY/bbw0hNuMr9j3YgqsfTrJo0hmULF9AgIoxcq0CuXYmgVNX+5WqwV6PWEp9gID7BwM9nUqqNqaLZGHJKHLPBG7b/xMA+Un85atADEj3v/PvEzu1B7Nwe1fpwcytPGZlFxCfm0qHHShIScyv9WBKScohPzKFD92VOv9sSEhINxCfk0Om5WC4m6bmacQe5+TZUth8xFX9Px+7zuRqfTXxCDh26LiI+0XlsrX73ZcRXqhpWlSckGujQZQ7xCQYSErLp0Hkm8QnZXLyYjihCckoOCala7HaRkoJLpKXn1/hdOzy/mfikAuKTCug8aD9tu37CyCnf0fLpvVy4Wkh8SgmDJ56mZWMvPvs6i9ennSUhrYyUrAoqTDa2HsggIa2cEZWKWAlp5bwxVVLfSkgr47WJpyU8SS2j37ifHOW9Rp10+J0Gf0VCaikJqaV0Gvw1564UoNXIuZRQVGO7b2S1YcotSAL+jzIJExJZOHoEmUmJZCYlsui9kQhZKfhWFHIlMYlfi4xczsphwbtvklGJCXPfinL4McNec/iTX+3r8Mf06enw3+3VnfSkRNKTEhj1QlfSEhNIT0rgree6kJ2exnv9evPz998S++kB9P4BZKam8Gy/QRTm57FlQQyr42KpFxIC/qH41otErrwJ+e8/YYacYgw5xcStPQZA3FppD0zUq+0d/65b8RLZl6YSO/8FYuc/R/bFycTOf65GXBFFkQ7PriU+MY/4xDy69Fnn8HsN2kR8JZ688voWhz9o+BbH+/7aiM0u/kbiE3K4mlDIh9sLSMhshcUC2zcvoLzoNIlJWbw4INaBnz1eXER8QjbxCdk80XW2w+/QZVYl/kh+fKKhWj8hIYv4hCw6PDOFhIRM4uMz6fD0OM5fSEGtUtLh6XEkpSkBG/0GjiU+sbLOzjOvwS7p+3Z4di1XEwv44XQGjdp9yODRXzB84jE6vLyX+GRJ2e/7nw3sOpRMQmoJTw/6guw8I14eCp4ffoz4lJLK8qPEp5QQn1zM0wMPu5R/4fQHf0l8agnxKa5+MU/1P0h8SjFXkwr5YNt5VEoZo167o87PishN4EodU/b8FfaPHEgZS0v4aOq7FGRlUJCZwdYpoynISqckP/e6WAUi96gqCJWZ+b3AyGfJBSydNI68rEwKsjL4JGa8VE9WBp/Om0xBVjoFWensXjiDjMxMjqXmseHEr1yyKDAUlyIzm9h3+Ag/mVWUB4VjF2TIFQqsFgs7Vy5DEGSMnDEXWTUrZUajkYSEBCoqKggNKqBJ/Ww8df8b7jE4cytUt/9p1daLTBrZ1n3w5H/rBk9VVmKJIL74OXKMd+OjjKe+1+coZNUnFL1ZyzKUYTLVkM/GxTKyihFF0Ok8SSu+B5W8FH9d/E2dQxRFdh9Ow1+v5vTuLkQEa+n51ilmj2pJWKCG+1p582hbPYt3ZRIWoGTFW40Y0TOUCynlLBzWgLAAFeGBKla81Qh/byUiInovBVTuxdN7KR3L4r6VKwwRITpWT72HiBCdG8UiPbOUsJDaldNqsv8GUteagM5bX8nDEPD08aWhTkUTLw2/nDvP2cJyjKKIp4/ekYfH00fvoEl4+ugd9AJPH30l40GKl8gUIp4+kiqeiIiXjx5RkJ4pL72eM98f4/1+vVGp1Uxdu5mgevXw0utRyBWYzRba3t6a6ZMnIVNpmLcsjiIbmExGxr8xiMzUFLKyrk8NUJvNnPw8kRF+REb40apFqKPcsUdh9A7HHoWgQK/K2WCIGtSOdct7ue1tch0k1eTfjAUFehIZ7sv6FS8SHuZT6b+El6caRPDV67DbRKePDIvQhCkzo/nrSAAAIABJREFU4rDKbkMmGohdFo1GkU1khB/r4wYQGeHv9MP9iAz3Y31sPyLD/YgI863B17N+RV/kchkhwV7O8nA/1q98jcgIP8LD/Vm/6nUiI/wpLTcSHuaHf2ADrEJDVHIDDSJ0BAd51/hdffUaQMRut5OSVsKdLf35bP0z2EWRHlHfYLbYUasEWjfxwstDwe9XnauLtzX25PSFYux2EblCQHpwRVRKmdNXOcs1ame5h87p+3qriAjRSTgz417Kyqy0bKTng1nt63Tfquw/XKne5EoVogAI0Kd7N+ppFBhMNtZ98ikWpHK5QinhhgAKtcrhq9Vqp6/TOXydlw+iICIKIp56CWeAyslbEdEuUl5WyqCODxMQHEp4g0aYKirISkvFbDKSnpjEsR0bmRg9HrtciUFUET36bdLTUklLSWHYqwPIybl1k5uGHGlFdtiozQQ3GcOUWZ8RNfgRAKIGP0xQoBexC3qTfXkmsQt6Azgof5J/Y1wRBIH1y54nMlxPZLieuPk9Hf6C6V2JDPclMtyXmImdHf7U9zs7MGHSWKc/ccyz6PR3YVY+zX3tOuGty6Fx6FmGDLjNgZlzp/d2+EvnvVKJM/58GDvY4a9fOYT6kU4/IsyXyAh/Yia/QFioj6M8PNyfyIgA1q8eTkREAJGRgaxf8w7FJWVERgayZuV0bITg61XEyqVDiAjzk45d9bpUZyWm1QuRrpevjxabXWRe3Gnqh3uzZ313fr2Yz28X80GQVjkbRXhiyKtg274EfL0lplT/ng0pq6jsR4ng6105UScKlX4l9lbG20XRESPi4tvtDl8QBOx2keDAP9aXrFLt+7vjyj+K2jfze2lzreuytivN79qlbyUibVUVeAp2zpjV5NgV1/Eta0rce20S3vPHv2bL1DH0nzidezp2RhAE9Bpp5iZm6ACsJhPxv/9G7MGvaNjAmcPIS11J56soQ5aXikwmUD/SA638N/cTuizLutNu6q6i5TzW5KC1DRuzl7gNZxjQ+zY27HBK5w98sTXrPzpH1IA7iZ39lHsyOpnLjLdMXXv5DZbNrTYFmXmRFJX7oVYaCfFNw0t3DfWopuNdz+caI1Pz3fFzdO05CUEQePqpewkM1GMXQ7n99tt54YUXOF9oory0FJ2HB9s/XE1OViaTJk1CKCuC4PoIai23ef7g3g6jS54ck7RnYPSEPezef5Y963vRumUQormEx3p9wqS37+exByrlVMssPNrrUwb1as7w/rchyBU8N/Qg7dqGMHb4fY4q3ZLluTyPgsJ9JlDQuOyv0DasDBd5stscXh30DH1f7oigeLzO1L6PLyS1V9dC7eveIOhfQ+2bf1JKHl2FGa2VRgLkNtJsSi7bVDjzs7vjQk1Umxsl/b4WV77a+RE7ly9mWMw87nr4MQA0lWI1I7t25NUB/XjmyScoF+TYA8KhcoKmKkaqx+m39HR5dl3pOOBG9TNkpTsU6AzZOQQFejuoNq57FACyL00lKEBXPY2mJhpcTe/yzca50fbc40UR8kv8MRQEY7Mr8NSWEuSXh05TzYSMG3bcZDuA3XuO07f/LLRaFc90uh+93hO7He67tyU9ez5MSVlrTCYTnp6eTJkyhebNm/PUU0+hVCpp1KiRtGetJpplJdaLokjfwXH8di6ZAzveICLcF2zlNL13Hvu2DqBFoyr1wzIe6PwB8yY+xvNdmyOi4P5n1jHytXt55QWnLL1rklDXBMOuFGjBhS6M2okvNpudOx5ZxLL5fXn8kZYIXoPqTO3bm2S4IV4Yy8vo3arhv4bat/KsRO2UCQIq7DSjHC/BRqqoJg21G5XY1dxwxSXGBTpQK9xBRnYNffjjFYv57rM9jJyziBZ3SbdFVbmPst8DdzBp0iTaP3A/FQoNFt9gB61Q5bLXUl0DxjTzcGmI6zMOGLIMBAXpK/1sgoL0DBsZR9zqgwx45TE2bHbGZyeuBtFKUJAP15kbDfcmKbluVsO7XVN/RabGboe8Qi9y8r2x22V4e1YQFGhEo6k8vxs+1XfxIxxufi16CuvXrCJ69Nv4+vrSqVMndDodRjs82P4RnnymM1cyc7BZreg8PZk88g2e792HR9reDmodsuAIBEFGSy+XdleDMTabjac6T6DCaObAzvfQ6z0Q7Sa86w0j7eICfCohPD4xh4eeXsAn61+lfbvGmC0iLe6dxgdL+9LhkSbOel37nW70cJdFAFd6osq5laHcKKNJm3f4cn80LZrXQ/DsWydcaXL7HeKiz268HzwjMYE3Hn/g/5Ta948Um0j85SQN77qPQyvno/Py4rF+r/N53HwCIhpwX7deAKiw01ZlRCfY+bFYpFil4GDsfGx2O52Hv8fncfMRRXjqjXc5tHI+iPB0lNPvOuI9DsbOR0Tk2ZFj+XrbOrqPHMu9T3W5rj2DJ07j3HfH6P/OWILCwt0+E0URSgugwIBKLSMy0gOVSgZ/IZPPsSl87AHi1v/EgBfvYEOlet2GHb9fN3iaM+HR6jN83wITRSgq8yMzPxK7XUaQPoNAn+xbokj4++9JPP/idD7eFs3tbZpz8PMfKSkpR5A345tvvmH06NGotTo8vbwpLy/Dbrezae9BaRDl5Yegvn6W5OrVNGbHrObQkV95/JFWdOvYEJtNZOe+X/nli1fx1TuPadJQz5XEQsdAytNDyZIpD/Lm5OMM7y/ld4gZ+wBPv7KP7Dwjc95/CKVSztWkQtbtuMDMMe2YuewU5RVWZo5px+QFJ7BY7MSMe4joOceJmfz8de079MVZ0jNy6d3r8T983Wz/QprNjexA7Dw6D3uP+MO76PP4g3ipPdnz3Um+PnmabiPe48iGVVSUFNNtxHsc/jCOitISeowcw8E1yzBVVNBz5Bj2xS3Cajbz7Ftj2blkLogiz789ll1L5iKXy3n2zXfZuWQOao2GZ4e9zY5Fc/Dw8OD7g3tpcsddJJz7jbsefoxN82Lw0et58Y0RTJk0gduaNsFQYWb9lm14+fjQb8QoVsZMwdvLh1dHvcfyGZMICQ2j7+vDb/r7OmR2X5OeobgPvmLAyw+wYas0obBh20kGvnwf67eeJOrVBx0SxHVdYbpVduDQWb47cZmYKb1Yv/U8TVo+jl4fTF5uCj/9eJDRbz7M7AV7KS4uJ2ZaX5bHHWRE1DN/+HzfffcbQ6MWcezLhQQG+XHo8CmMRjN2UeDT3cd4PWo+er0vOp2O0tJSwsPDGTFiBHK5nAYNGlQr/PHrb4nMnPMxP568TMcOLenW6S5WrD7Cmd9SSP51MtPnHUIURWKin0AURSbGHObjD54jOuZLRFFkzoRHGTPja07/mk1M9BO0ahbA6+8dJDmtiLJyMyAQ8357omcdQxRh5tgHiJ5zHFGEmDHtiJ77PaIIsyZ0cMTETO3taN/G7T/hq9fx2MMt/vB1qw1T/m2Ys3vZXBDh1bfeob4pH5kg47LKhw+WLgZR5IVREj6ILlghiiK9Ro1j55I5iKJI73fe55PFkt/nnXHsWCT5/ceMZ+uC2SCKvPzu+2xfPA+b1ULfd8ezbfE8dn8Qx7xdBzj95Rf8cPggA8dOYPuKxYhmMx9/uhsftZIvv/+Bu7r3ZnvsEkoKC3kjegobly2kpKiQ4ROmsXfbJrq/1O+mv++wEYuIW7mXqNe7AhC36jMG9OvAhk2SeuWGzV8z8JXHWL/5a6KGdJQGUGLtTJK/2kQRiku0ZFXuWffyrCA4oASN2uo+EfMnbf+e3cydMZXvfjmHl8zG0aNHsVqtFJusbF6/ltcH9MUvMAilSkV5aSlt7riTh9u2AaUKWVA4QjU5Pk+c+J0ZMZu4dDmVDo+2pri4nGZNw0hIzObFF9qh13sQPWUHcrmdJo2CGDVuGw0j9Uwc8wwfbj7BPXdGsG7rjxw8cgFvLy3L5/Wm64txdHqiJbs2v0b09M/w8VYxZmQHomccwNtDztiRjxA98zCeOjnvv9We6Jgv0eq0TBj9BNEzD6FUezJlfA+ip+3i+A8JtG/XnE3bvnMT1LlZE/ln4Mo/ciDlsBqUSVSI3K2qQCuI/GLRYLBUoFFdq4xUfT1udVb+Jy8jlZTzv/La/FXVNiM4oj6NBgyupn12KMiG0kLQetKwvswhUHCr7Ua5FTZ8dPaGg6e/ahBltcnJyG9Icbk/WnUpYf5JaFR1l8CszioqTDzTfQIL5gyl45N3g0zFoIGVnSf5Y7z55pvY7XYulTlvqNVmhawkSU3GJ+C6Oj/4YB/vR69i+NCOHPx0HMeOX+DDLd9z+mwan24c5BhEZeeU8t33V2lSX8+VpEK3Ou6/I4jUjFIyDeXUC/WmRWNffj7Qm5ffPMK42d+zYOLDN/X9aloo/mT3DwyP6olS+cdfXavdjvxvAD5/F5PJZDRWmHmy65PkFxVz0qzl5IUrzoBboJpVnZ+XlYGxrJxAl8kXURTx8fTAvziHoMaNOPbzWW7r2PUaFS+qrbM2MxikvS9xaw5J/37wleOzDVt/YODL7Vi/9QRRr7YndkFv5kzu4kav+b8yURTR+4aQlNWYe9rdRUlxHpFBSRzYvY3ConJHjCO+jj/YJrOc0jItZquckhIblxM82btnA40a+6PRiAwaFIJcJiLIFLw1spd0L2TtqaiooKysjIKCAux2O/Xr10dZzf6SmTGbWR67i9Fv9WTCuN4cPnyCxbGHOHU6gZd6tUOjkWi9hUUVHPryMr56LfmFFW7fq+MjDXhl+H6sVuk5qBfixaA+bdh14BJ6bzX3tw2rjHe9brX7VfbJ3rO8PfwpN2GUulrtiTP/GeyXW2UKmZzO7e+npVBOenEJm/d/wSMDo+qMJ3XFmfSEeDy8fYhs1oJTRw47ygN99XR56AG81UoOnzjFL79f5K4e19zvP4AtBkMBAHErJRW7uFWfOT7bsOlLBvbrwPpNXxI15GlilwxhzvSXq1+F+j+w8goNmXn+VBi1aFRmwsINeHrcmsGdxViBqbwMm9VCUX4+xoIc9nx2gOBAf/x1aoYOHYpcLiffAlFvjcJut2Mw2sBUgWgqQywplFYKA8MRZNdPzowYMYL9+3cybsxL3H9fKz7ddYQDn//EyZ+u0K1zW8dqpiGnCIvVTJNGQeTll9IwUloxFEWR5k2C+Gj3L/TrfS8AnZ9qTb8+97Fz7xm2fvzTTaoa1hxz8XIGs6b2Yd/BuifjraqvNlz5O+yR+v+O2qdA5F61EQ/Bzi9mLQWi/IYJeW+G2vfTnu0knP2JftMW4q11dmCrqH0AHirnzIWHUolgtaApMiC3msHbD3wCae3tspfBfE3eojpS+wyGIscM8bB3d14nRwzXJKOd1QFDblntg6ZbRO0rNfqRltcYq01BsD6DAJ+sylWoGyjc1IHaZzSaqd/sNY4dnU/z5hHuMfLHHO6FEmlZXhRFbAXZCCUFiIHhyLTO2fUqal/fV6bR6en76NerjbMuk4scsDkPq9XOEy9sITO7mNVzOvD6uC/59dCLKCqpFqLNyovDj9Dx4XCG9G3tOLSg2Mo9Xbbz1qt3MvLVNs4OSx2pfS3uGsX2rVO5884mlcfUndq3/uzV9mrtjTnLLzUL+9dQ+749+zt6mZ1Mm4ILFjU2hOvoeVVWPbVPRC/YkSNShhybILgpcNVE7duzYiFmk4lXxkQ7qDM6i5FAk7SfoMDDHzROyoTaZaWjrtS+YW8uI27VZ0QNeRrguhWpqMGPELvwZQzZec7BU01UYlf7i6l9FquS7MJwCkv9kMtsBOoN+HnnIRPEG1ABXewG1L5yo4acfE9KSjWAgCCIyGRmLlxIolmzprhuIZbJ7CgUIqIoYLdJSTmrTKPRUK9ePXTXJrmupN10ePIdxr/3LE8+UZlH0OI++YK1kLIyEw90XIi/r4Y3Bj7A8rXf8+2e/k6csBt5qPsWxo98gC4dnatGyalF3PfMOhZOfZK+zzV3lNeF2me32/FvPJGLP88iuLKD+0eofdsup9dC7Stn0J1N/zXUvh9//R2dYCdTVJGMBhH3y1kTxshcfhv0gvR+lQtyRJd91zei9q2eMIaIps3pNmgISrmUusXDUoFvRTF2mYxCT383ZTW5y7F1pfYNi+ohrUK90R3guhWpqKHPELs0CkNWjnPwVJP6sKv9xdQ+s0VJVl4QxWWeKORWggKK8fUuk2DbLb4G/KiB2pdnFjGVl1Kan4u5XFJDFgQZNlEkMf4qjRs3dmulTCaTVIZFEbvdhug6aFBpwT8EQal2u79V1L4WLVqw6+NxtGrVQPrAlT5c6efkFNO2fTTt2zXl3rYN+eFUPDvWDXSEiXYrje6cys6Ng2l7ZwNH+Zlfk+n47Ao2rexHpyeaOeutA7WvuLiCes3fJT91NSqVdO3qSu1r1LqNGPPp5zeMyUxK4J2nHv5Pta+uVlFSzJoRfclLSyYvLZlVwyS/LM/A3WojnoKdsxYNBaL0wNltNuKi+pJ7TXxeWjIb3h3i8LdOeNPhb5v8DrlpyeSmJZN26Txar5o3Dl9rCmMpuvx0ZDYrBIQh6IP+1Exflbklq6tMUGfIKSVuXSUlZ/tp94SXS3uQfW40sXM6A3/dypOr2UWBrML6JBlaIBNsNA75nUB91i2h8tlFKC7VkpnjR1p2A7744hvKzG24nBBEQpIPGZke5BdoKCsro6ysjNLSUuxlxdjzMrGnX5EGUTpv0FR/HQyGAoKCrldadLUvvkkgPauE7NxyHrk/jIhQLz7c4b4X5c2BtzFj2c8UFTuBxt9Xy9c7nmft9t8ZOekYV5MKebLPp8QnFxKfXMSTL+2uVPEq5InenxB/zUoXgMVi5Wp8Fi1bRv6Bq+c0s02s9e/fZFrRyrwVq/g6MZvstBRio14mNy2F3NRklr/+soQDlX5Oago5qcksHvISOanJlGemoj33PbcJZbQQyrlbKOEOWyGBxdkseaMfhpQkDClJzBn0IoZKVcCYAb3JTkmiICebEwc/Iys5CUNKIulf7CXYWESF1cbo8RNISs8gPSmJUS90JT0pgbSkBEY815m0xARSExMY2uNpUhPjyUqvOUeHwVCIwVDomCWOW3OIKdG9yU5YQuyi/sQu6k/21bnELnwZ4G+xAgVSjj1DYQhX0ltTWOqLQkzivdFDKM77ncTELDp0nklCQnal2tU04l2Ur9LSbrxJ3mhSkpgWSEJKIOXlagL9S2nWOIdWzQy0bFrItq1L+enHLTRtmEtkWDEhQaX4+pjQaGx46Kz4+FgIDAwkMjKSFi1a0KRJk+sHUS5myCkgONhdUrhDl1kOda+uL65kxQffUlRcwc+/ZtC2TT1ycst4/LmNxCflE5+Uz6C3D/BSzxa8Pekog97a61D8m77oW9Yv6crY6V9yz9MbHOX9R35OfFIh8UmFvBh1wOF367/TEfNETymZc3pGEQqFzDGI+qNWG6ZY/mW4ItisHM8uYfLECWSnJmNITWLD5PcwpCZhSE1i/aQxDnxYN+Fdh7/m/bepyEylkTGPJvZSmthLaWMrIiInEc/8TAwpSUzr/yJZyUlkJScx5ZVeZFb6k/u+QEFuDlaLhQkvP0duSiJeeen4VRRRarVxvsjI2y+94FD5e+v5rqQnJZKWlMCbz3UhNTGetMQEono+Q05WZo3fzWAwYDAYnKtQK/cyZdJAstM+InbZm8Que5PslI3ELo0C+NusQNnsMrLyAriS0oCSch1Bfnk0rZ+Mn0/Zn+6jlJWVkZuSQH5aMlaTCa+AYIIbNyekaUvCm9/GrLnzuJicTmCDJkRERBASEoJer0ep0aDSeaDz1iP4BCALikAW0QwhpD6CUl3j+QwGg1t/xWq1VSr+RXM1Pov4hGweeHwyiJCUnMOe/T9z7PglPv3sjFOJNCkXpULOG+98xNX4bEe5t6eGyHBf+kdtZtaiI3ToEUt8Yi4JSXlOdcSkfDo4MCqPDj1XS+UJBjp0nc+Rr84TEeZHp55zHFhXV7OL/wxc+UcNpMqLC7HbbNhsNlSVM7UioNLqEIEH/NV4CzbOGJUYzFBWJMXbbTaqZuBd40VA7rKS5JqHQ+YyMyNXKclOjCfl/K+1tlFnLEFTlINdoaLcPwxBd2s6JlUqWgOHb3UkqauSJI4a9IDjX1c5YnCX/v4rTRShuNyXhKw25BaH4+tpoEnoObTq8toPvom6i0o8uZoSSUpmCPlFXsjldi6c/4H0tEtoNRJdsLBYTUaWJ4mJiSQmJpKUlISYm45YVoyg1iH6hYDfDRJkItaa2PTot0kMfLENRpMVo8nGnPEPMXXRKXLznTM17e8N5ZnHI4ie96PbsfXDvfluVy9Onc1m865L6H3UyOUy5DLB6csFfH001VJAlUoFrVqEc+bM1bpcvuvMarPX+vdvsv3Jhfx07ry0Wi2CSqN1rFyrtFqqroZKq3XQxlRaHZEeKjrU86ZF06b8ll/OsawS1u/4hFyjlQaeamZNGI+i8tfZgT+iSJXQh1KtwWKswJKbzZ0+Wtrdew+pFRYullopKXdSuzQ6D6rkujQ6DxAkNSQvH1/kcvl1CqEGg6ReOuzNZQSHv8iU6Zscs8RRQ54mKMjHITQBuPn/12a3y8grDuZKemsMheF4aIoJ8jyNRnYFtYrKd0SGr94DmVyQfF8P9/IaNvGbLXLSsny5mhyM0agkJLCIZo2zCQ4oQaW0OzpSOq0aQQC12oa3t5kAfyOhIWVEhpcTHlZOvdAKgoOD8fb2RqGonWJrt4vX3SNfvbPNPt5avj+ZSN/e92AyWVGp5Lz/9mP88lsWZrMNuUyGp05JlycbExnmzaWr+chlAnKZgIdOScumAez68Hnikwv5/KtE5HIZXp4q5HIBuVyo9KVzOXFGhq+P9EyG1ZM6uSmpf06l7T9ccbcvM4vJMVor7730/kr9CskXXMoFl/LOjz9K+yBPPBQyNu7aw4+5pVwoqiA5LYPGXhru9vNA5+Hh6MNoXPo2ap0OlVrDlbO/0LZNG1p7qfFWyNi661OuVtiwiKDR6RwJVbUOH7Q6HQKCVGdluc1mo6ggH6vViiErk8L8fKKioggODmbKlCmOlaioN7oTFOTrEJoA3Pz/a7PZZeQUBnIlpSG5hf74eJbQrH4yQX4FyGV/riNuNBpJSUkhMTERm9WCT3A9ghs1w8s/ELlC6ZhE1+p0CIKAUq3Bx8eHgIAA6tWrh1+9SHxDw/EJrgfe/thVWooKi7BardL1z8/HVtnvLXTxJbq3e9slPPREoZDe8eKSCl55qT15+WUE+HsxavjTTJ19AL2PFrlMimndKhSTycrOfWfx1euQy2TI5AINIv356MOBLF31LTarHblchkwm4UZVv8VXr5Hqkcnw1WsrMUeGr15Hi2ahpKTm4eWpcWBO3U2sFVNsfwPK8D+K2lelrlVdpuNguZW2ajMXzCpSbDXnQbh29FpT1mSt0tmhNuakMr6zJNW59fcE1BoJuFzpfDqlEpnVjHdBJna1DotvCAiC25J4mM7ZLj/5d+4ntFWfINOQKdEBgxsOdZQN7Psw67d8S9RrjxO7qD+INgw5xVKH6GboOLJrZjnc6DU3QedzWca1C2qKilTk5qkxmeQolQIhIVp8fBo5YlyVbLKNzjZdy311fRarPhNMFciKcpFbTdgUSio8fLGqNCDIWBT9HsHhEfQaOhyzzQaiiNxuw242SfLSCBhtdkyCHFEQ3FZafF2S4uo1Et1l7Cu96PrKQJ7q2sPxmSvVQRAEPlg4h+yMdPZs2cCp9AJUKhWLo0eTm5PDyvWb8Ku8xYWFhdx2Wwvq1w+n3yvPETVsvKOez499z5B+L/HlD6dpGurcq3W5zP1ZLDY6VciKTNIzsXziWPTBIbzwxpsAdK0fWGdq39IfLrZX1ULte+OO+v8aat+kby4D7gpZdhdwdi2vouYFyW3crzWTa5fxm0mN6RraTqDMRlu1iSybnN8saqqU/1wpOVnnTsOln+nTpw9mZKQoPTHKFHionDjhSuFzo/O5PJdapZK8HAP+gUEsGvsW61bF0af/ALZv3OCIyc7YBdZSZ+fGlQZid6Fr3Ax+uFpdVfdqOMZmk5FXHEBekR6bXYFWbSTYPw9PXcXNncONbuxCnxEipE6gwUB+vrSXQ+bti1wfiNXlnllszu/63qCXeaJbT556tpcbRpldfNd4N+qmy4Cp6n69/Hg7JixYRuu7pX0I1f3mzB07CkEm4+i+3Rw5nwjAuMH9CI2I4N3pcwjWSN81LSWFDve3pVmzZowaNYpevXo56vhkx3Smz9zAieMr0WlcnkfX+6h8yuH+VuQE5tED+vBIp6507v0SAHf7a+tM7Vt5NvmGeGEqL+etdi3/NdS+ad9dP+FVU4Ldqj5mhMLKXVoLGVY5v5tVbs8oQJjcShu1mSSrkitW5++zK2U4/ttDhBoL6dy5MxXISVZ4YBLkeKgULvHOd8c1ma/r751SLqcgJwffwEAWj3uHnevW0KXPK+zfvtkR881VifruHxh0Xb1u6n52l/5OXSnDrlYThbeGcotVIC/fg/wCNXa7gIeHguAgNTqdoka1Pdc+iut77ooFdlFEsFpQlBYgqygBQcCi86Fc541rMmxXIYQ3e3TitXETuaPdQ27PgWu9rv61SoxVVnWPet7ehDWHjxFUL+y6710VHT34FQJD6vHbqR/YcOQ77HY7w599hse7dOflN9503K9Lv51lcLenaNS8BW9GT+X+R51iVvs+jGP/7l3s+vwIgWoX6rjoTDieb3OmTEgrc9KK+z/9KMPGT+a+R6T67vLT1AlX6re6XRy/ff8NY7KTE5nc/bH/qH11sYOx8/l6kyT68Hmc5AuIRJQbyMwrIMUmqfMdWbvcEX9o1SKH/3nsPAAOrZzPobj5ABxeuYDDK6/3D8TOY/+KeXj7+ePl53/jhokiHiV5iIIMi08Qt4LLNmxkHMENhzIl5mOihnQEIOq1DqxbOcRBzamy//Wsst0OeflaLl/xJj1DGliFhWkRSSUcAAAgAElEQVRp1tQLH+9bkNDPakaRn4kyLx3BbsXoHUCFXxhWtc4BVHK5HLvrLKcgYJMrKFeoqJCrMMqVGGUKxJu4F6nxVzj/8ymatW5zw7hGzVpw4OPtNG7eElXlQPr9KdM5eeI4+/fsdsTp9XpO/riPV/o+y5y5cW513PtAO+574EG2blh3s1fDYQ2ateDymZ/rJDJwrdlFsda/f5MdXb0AgONb13BkVaW/7QNH+XdbVjvKv9m0ijMfreFurZmM3DxmL1uJCYHDHyzlYKyEGwfj5rNx+SKuWpTUU9gwnjqKDJGDsfM5uGYJckRyj+3nmaZh9OrVi40bN7Jky0cYZQo+WjibXask7No0L4YdcUsBWDdnBluXLwZgzaxpfLZtk6P9M0a/yeNNw5kw7DXWrZKete0bNzBwgLQfqrrZ4r+L2e0COQX+XEptiqEgAJ3GSMN6KTQKT5MGUX/CLBY7WVlZXLp0ifz8fGReepQRTVH4h0r7EmowuUKB1XprNpyfPXmC3Ows6jdpesO4Bs1asP+jrbRsc6ejbPy8xezZuomffzjuKAuPjOTUqVM888wzLFq0yK2O5557FD8/bz799Fid29m4RSvO/Xyqzse5Wq248gdUu/7JdmTVAr5YNf86/+jqhQ48cS2/vGczrZVGcm0y5i1dzr5YKebzuPkObFm7fDHHfvmNBgoLhq/2cDBOitkft4ija5YSLjPTp91dPPnkk6xYsYKFGzazcZHU59m1cjmb58UAsHPlcjbMnQHAx3HLWDd7OgDbYhfzwaxpALzeuQPdWzciZuQb7Fy3RjrP9s20vEPaPtDr1aH4BwY5BlF/J7PaBLIMOi5f9SM3T42Xp4XGDUto2MBDGkT9qcotKIpyUOWkIKsoxaLzpiwgArOnr9sg6lqTyeXY7TeenDp59DDr50j35ZOVyx335aO4paytvC+bly5gwquv4OHtzTef7blhffWbNufzj7fRvBJXZDIZExbF8sGCOSRevuSIa377HWw58i233XU329a491cGvDaU3Jwcjh/75obnqs4at2jFb6f/OK6I1I4rf4fFoH/cQKo65b1IhZVAXz37T5wGBPeYGnx3TL9etq+ssICc1GTOH/+S0Y/fi1yhoN/EmY7VqGtNXVGMwmqm3NMPaqGH1WaOfQ2rDwIQt+YLpozvRXbCcmIXDQT+7+g4drsgDaASAsg0eKNS2akfWUqTRiX46lV/fi+Y3Y5QmIPSkIJgKsfq5Ud5QDhWrdd1g9OAkFAyU5L+3PmQ8i7MeWcEA94ZS3B4xA1j2z7YnpKiQoJC6znKPDw8WL1pG+8MG8qJEyewVc5ihYWFEB4egtFo4uzZs454QRAQRZGg4JpphjXZQ526kJmcyMJRw6koK63z8SCtytb295+5mvN6qBUKhj7bGbsI6w4exVLV4a5GTSvequBiUio9HmnH45pyBnTtyLMP38/9QhEvPPEIaclJDH/nHY6cPuuopy7KXfk5BvJzDOxYK00s7d26kZf6DwRg0OtRrFs7juyMXcQuH3XrLsUtMlGEvGJpAJVdEIyHppzG4UnUD03HQ1vxp+ahjCYbaenlXL5SQm5uLt7e3jRt2hRFQL3rBF2qs6DQeqQnJ/3xBlSayWhk2sgoxsxegJfPjQexDz7xFCVFhUQ2cuZv8Q8MYsaKNYwe+DIXzp1zKDc2bNiQ4OBgsrOzSUxMdMTLZDJsNjshIX51bmu3Pn05fuQQiyaNo6L8j9Gx/8MVd6uxH1KNwqRaEBnSsxNFpaWcMand6ErXQsueb76n2C6j7zNPMP2NAdymNNK7w0NMGtqPJnITv//2G/1fHYz2rvaO36I6NBpjeTkFuTmcr+wAH/xoC81uvwOA5wcNoWPP5zl6KYXx85fWre7/gdntkJOr5fJVX3LztHh7mWjauISI8HK02j8iWuE0wWxEnp+F0pCMvLwYm84bU1AkZi9/qEZV71oLDAkloxZccX027DXgv7G8glPffMnYhSvctqBUZ4927kZJUSFNWt7mKKvfpCkjJ89gdL/epCUlOOpu2LQ53npf0pMTycsxOOLVajVms4ngkNDr6q/NXhg0hI8+WMm6JfMxGavJ81eLieJN4Mp/1L6bt5qofQpEHtVWUGyXcdosqS/dyG6G2vflh8s4+sESAO58sguvTp2FR+UPoV57vVKf0momsDQXi0pHmXcAWhcJ3LpS+xzqWkMlKe+41QeJGtKR2MWvuaukuCrZ1KSCcwupfaKgorhUR1auHxarEp3WTFBAKZ5eLmPxm0hSVyO1TxQRy4sRCnMQ7DZsWi9s3v4gV0i0vapjXO7X2ZM/sPj90aw+fMwtpsLiPKHR6iy/ltpXXlLCxysWc2zvLhq1aMXsTTuQy+VoXe6Z6hqgKirIZ+Kw16gXHsGUxbEABKikZ27Hls3Mmz4ZvV7PqVOnkAkS7WHHjn2MeHMK27dvp0OHDuRboMdTHXhnXDTPPv2Eo+5rqX2GggLkcjlKlYoikwmbzcaJwwe5cv53tiyc7XLp6kbtizn2e3tVDRMCVfbufY3+o/ZVmrNc5CFPC0FyOycqVBTfRPYIAZEAuZ0gmQ0fYyFKuYzPP/+c+KIKHugzALVO2sOoUzmfs5uh9i15fzQ7163h+UFDkMtk7Fi7it6DXycubiU5BgOBQUH4yb52b0w1qk7Sl/3fUftEEYorfMnOD8VsVaPTlBHiZ0CnuZbCV8ekvTIV5eUKcvK0lJRKe5x89Sr8A+qjrkyKfu375UrbcfWP7NvNni0bWLJt1x+i9uUbDGxcMp+je3by0JNPM2X5areYa39z7HY7Rfl5jOr7Ao926sKQ0eOkuiqxZ1PsUjYsX8htt7dh+579DvrwihUriImJYd++fbRt2xbs39GiVV8+3TmTls1dOj3XUPvKysrQaDScL5W+j9lk4sv9e/j19Ck2r1iCXC7HZrPVmdo3/2TCjal9FeVEP9r6P2pfpVU9EzJEHvY04S0T+bZcjbEm+pqLqWTC/2PvvKOjqroo/puW3hMIhN6LNBEQAaVK711AkF6kNxEQUVEpglJFekc6AtJ7kd5BOsmk10mm9/e+PyZMJpAQEqzrc6+VtW7eu3NfmffO3HPOvvsQLLWTT2LF36JBsNvZu3cvSQpfanboisLN8cy7Uolfhdq3ZOpE9qxdSds+/ZFKJOxes4L2Hw3g0znzUSUlEpQv/wv0P1f8XdQ+ERlpancSkryw2WT4+lgIzad3FNPNZSHdTNQ+mw3MBiTaVCRmA6JEiuDth9XLH9Kz2pmoeS+oQmfs27V6OU/u3mb8dwvyRO2LVUawedH3nN2/h3a9+zNo8ufZBq6lOALEqqRERnRoSd+xE2nVradzLIAlX09n94Y1vNesJV8s/AlpeoB38Tdf8Ou2n/lpxz6KlipNQU85xUP8ufUkkuLBGpebnpnap9Vq8fHxIcbguJl6rZbj+/dw9dwZdq1fjTw9058bu1K4QmVxzLo9L+2TFBnOrM6N/6P2vSqcynsxkU7lvTBTCnJR4EJUMinRUc4+ydERGe0oZSbVPlfFv1Wj+mQo9U0dyfWDu51OFIBMoSDibvYiEzK7jWC9CkEqx+AblGdK3wvqWssOMH3qBySEL3M4UX8jjGZ3wqMLEhUfilQqUrxIKiWLpeLj/cfUhMJigqQopKp4kMkR8hXBHhjqNFTZwcc/AFMeo6cAZ/bt5t7VS8zeuJ05m3bkKDTx9ME93itZkISYaA7u2o7FbM60v2vPXjx+/Bi5XM7ixYudkZ6uXduwdetWunfvzqlTjvS4Vq3Gzz9rJaPUlBTmTZ9M6yplaFWlDCO7tSMuUsmuFUtZPftrNKmOReEzNu7I03X/FznODFVMJOtG9yYlWokqRsmaUR+iiol0bne0lagPbqCAXOBSgpbZQ/tkqQL6fDs5OpIHkTF81KE179atQ926dfn888+JSkxGnZLMnH7d09X8lHzVuwsJkRHERoQz5YOOxCnDiVNGMKFrO2IjwomJCGdYm6b8fu2Kk2qzY/Vyhk76jBOPopk6dyEA+fL/86g2AAazF+HxZYhKLI5EIlIsNJwSBZUOJ+o1oDO48VTpz1NlAAajgnz53ClX1pewME+nE5Ub+PoHYEyXLs4Ldq9bSWxkBKv2H2f6omU59r9y5hRNyhVFrlCw9+cNL1BVPhw2kmsPnvLw/j327Mx45z/++GMWLlxI8+bNuX37NgBqtQ5//6wLJ8fEJDNy5EgKFixIsWLFGNG9A+pUFQu+msbahd8jpDuHm09fytN152RTbP93dsVhT3Z+PdHZ/mXmp8727vR2KZuKIJnI6Rg1EZFR/Dx9vNOGbJgy0tleM2GQs7344w+5FxnD17PnUK9uXerXr8/MmTPZu34VqfEOZb85/bqT4KIUGq9UEqeM4LOenYhTRhCnDGdy9w7EKSO4f/0qYzu0YM/alQDsWbuSFt168tOB40Q+ekh0RDgGnY5hHVoQG6XM4cr/Wuj0bjwJDyAmzheFXKBE0TSKFdE4nKg8QhRFRIMWSWIk0uQYsJqx+QVjDS2O3S8kx7lJVngVu6JWpRAXEc6k7u2JVYYTGxHOJ93aEasMZ/Wsr7hw5CDfrt1Cqx4fMqpTaxJjY7Id68jOrbSvWpZ8BcPYu3HdC/uHTZnO3it3Obl/L1d/czi6EomE4VOm02/UOPq0bERcdBSCIKDX6fD2ydquPHoUxYiB/ahQOJS3ypdi/EcfYLVYmDF2ODvXrXIKLR36PTzLz78MopjzXOWfUJ/uX+VIPQ9vuZTyAZ6cOHeeNMurvzT29IzFkeU/8OTyOafjJIoi278cD4CXfyCdPvmKpgNGZjuORBAI1quQIKLzz4/4CundrDDs47kvqmsNakH+/AF/q2yo3S4lNik/T6KLYbYqCMufTOmiMfh4W3L+8CsdwAaqeEhQgtWCEJAfMX9RcH95tuQZdOo0vLJ5uV8Fdy6c451mrSjlkvZ+GQoWKYaHpycbj/9G+cpVOZoFP1kikbB8+XKWLl3KjBkZ1IfAwEB+/PFHevbsSWJCAoIgvBBNstvtnD9xjK2rl3Hol52sOXKG1YdOoVapOLN/D0u/nErbPv0oX70mHl5eVKxRK0/X/d8aqdwjv6eC3p07EK4xcy8164m/Xp2a5XaLyUiS8gmiKFK4QmXCylSgXudeuT6HlbO/5s7lC2xf8SMtuznkyjv1HfiPXafwDBarG1GJxXkaVw6LzZ2w4GhKF3qIr5f2tSh8eoMb4VHBRESFYLFIKRCqo1xpFaH5PZx13fICbVoq3j55V1u9du4MTTt1o0jJUjl3BsKKFSd/wTCW7z2CTCbj+oXfXuijUChYvHIt0z4Zx4oVK5zbixUrxowZM+jatSs6ncFRbPy5e2o2Wzh1+hazvtvKpUuXePDgAceOHePJ/Xvs27KJdYu+p8fgjylZviLBoQUoWa5Cnq77P7uSexT1caNSsBeHz11EqTVn2Sc7u6JTpXDm59XY7XZKVn+bvjMX4x+Sezuw7rtvGd22KQlRkTTu4BAvCS5QEP+gYPxzWhv+N8JklhERFUBEVCB2QUKRQhpKFlfj/RoFdUVRRDTqEOIjEJKiQRAQAkMRC5ZA8AkE6WvYFXUaXt55m68Idjv3b1wjOH8Bgl9xSUDBosWoUO0t5v28i4jHD4h6+uSFPj5+fnyxaBkT+vbg5EGHqIMoipSrXIXuA4YwoV9PLBZLlpkvrdbAhQt3+XTyTyQlJnA7PJoN23/h/PGj7Fy3iv3bf6b7wGGEhhWiQtU3CQrJl7drz9Gu5GnYPxT/amrfGwoLYXIbp00emEVpplTo89CqkvENCmHbzM+4uHMj1Vt24tr+jOjep/su4unnx5dNqtFx8rfUbtXBuc/fM8NBcqX2FbIZ8LIYSPYJRu5S4NUzm0J2z1P7nlUEDy3Y1rk9IXoLCOaMheHZFUD7E6l9Jos7Km0wabpABEFKkF8aoSEaZLL0tLNr8bVMBXlfLW0u2qyIGhWCLtXB9fEJBP9gRJeFmpkoNdlQ+/ZuWse1s6eYvHBZrql9upgIJndrz08nLxKWL/MLnh21TyKR0LxKWZbt3s+udasICApm0NhPnNQ+wEm7uXHjBp06tePB/ZPYbDby5a+OQqFAJpPRvE07YqKj6DtoKB92bu/87Jp9R+jbpinr9h9ndO9uLN75K6UrVmLl3JksTV9o+mbd9/D08+ONWrVp129wnlT7Jh+5lSO1b/q7Zf6j9qVDKpXQyMeMmwROGdydSloKmQSdKhmfoBB2zZ7G+R0beadTTzpM/NK5HcCi1zG1UVWGLNnIG7XrOsf1cpO6tLOn9qUmJwHQrVpGwdUD6dG9oHz5M1GJM9mYv5HaJyJDZ/QjVZcPjSEAiUQkxC+BEP/EzNL+2VH1smmLyNHpPUhK9cVg9EAus5MvWEdgoDVjjvOcat8zvCq1b8XcWeg0akZO/zrX1L7b58/x7ZiP2XzuKj4uypg5UfvqFg7i+ONYvh03gncaNqZN916ZaFLPVPuOHNjP/JkzOHv2LImJiRQtWhR/f3+sVisjR7Rn1+4zrFz+CbVqZNyDVav303/QPM6enEfbjjO4desWhQoVovvAoWxZsRSAOo3ex8vXl3rvt6DNB73ypNo3/cyjl9oLi9HAN02r/kftS4dUAi18TRhFCecM7gi5sCtyqRR1UgJftKzNpG1HKVQqY22dq13JjtqnT1UREJKPtOQker1V0bl9x61HAASG5Mv0/Lm9RNnPFX82tU9EhkbrTqraE53eDalUJH+wnqAgc/Y+zisW0jVpNehSk7GajCBTIAkIwe7h44xMPK/a9wyvSu37YfJ4ChUvSZdBw3JN7Tu9Zye7Vi5jwZ5DmeaUL6P2qVUpdH27KoceRTOqc2v6jBpPrfqNMlE5n31fO9et5szhA/ywYSsPbt+ke6M6BAQFo9Oo+Wr2XL6d/hknL12ncomMY0yZMoVvvl3PyeML6NbjGy7ceYCfnx+dO7TjxK8OOl6dxk3x8fWjRZfuNGjROteqfWHlKomDV+5+aZ+UqAgW9nj/b6X2vaZ8yV8LPw85uxbMxsPHl2Z9h6BQRfHYYIIC5TiyeA5uHt407juM/UvmIHfzoEn/4RxY8h0PLpwh+v5tCpQqR/wTh1LJtf07CC1VjoQnDwgr+wa/bV1Nm+ET8fT148mlMzTp2DnTcZ8hE7fYbMMic8Mid8+k8uT6MhhdtmvNZqec6LxJ65xrHDr1HciO1cvp0m8QsV7tUMhkJJlfPF6I+4sT9leFqzOTbHnxZRdFEQxa7FoVErMREQmipw+CTyCJbmWJNeZsROyZFkpqXugjs1nxNGrwsjombnqFB2o3H2xSOWh1mcZ1NUCuzpDJmrH99r0HuIUU5H5iGgZLxnbXttmW9XmfXbWawMLF+Om772gzfCLZ4flJj00m5+TDKO5Hx1PQ3Y+DD5SZpGefGT9REoh34dK803YU77TpTMGyFekx5Wu+6PQ+Zy5docmHAxg3bgzJhcqm1wmC608d0qKTx45EkMr5bMJ4es9dxbX7T5HK5ZSoURfPEhVwc3enYKOuzJzyWbbn/TLY7CKS/zOazctwdNlcGg4cx9kNyzDpNDQcOI7fNi/HpNXQYOBYzm9cRstBH6AUPDi8ZikmvY7Gg8axpH8XYu7dpFqLjtw4sBOA8zs28uT6FRKfPqBG+x54+vqjkMvwCwnlxrEDKG9dofnAkexbPAdvHx9aDhjOrgWz8Qvwo82AYWz9fhZuCgUfjJnAxu++5feLv3H/2hVKVapCheo1uHftCmUqV+X0kYO07N4LiyAgdbExMa5MV68Gma4zyC0q4x/Zw4y24JJhzq0j9RxsdimpGj9Uan+sNgUymY2QADXBgRoUcjvwnEjOqzhSUncEAdLUbqSofDCbhfQyC6EEBQUhlUozOUmuTo7d5doszy28d/3f6mJvnjx5RLlq1UkxGjP1MbvcZ50LA+LpnVsUr1iZHfNnce/COZr3HUiswUjyk6cEhhZg6/ezEKVS2n88jp3zZ2O1C7QfOZFfFs4BUaT18IkIosjUTyaSmpTMjh3bOXvlGl3GfMLO+bMRRZEe4z9l6/ezsNlsJBstlH3zLfwCg6jVtAUyuYLTv+zg9G0tMv/CNG83jTXnbyBLn3DdSLsDwKAJW7GKIp0HDCGsRAnqtu/MlhVLKV7hDcYtX8fW+d9x5/fbvKlxWQeRC+RECf5/owwfWDIHURSp138sZ1Z9D6JI3b5jOLv6BxBFGvQfjYc/7Dl2BmOlhs4+Fr2W63s2k69EWZLCHe/p+R0b0eoM3Dm0i9DSFRm8cjfHNqxCIpUhDSjArkVzEWw2mg0dz4HlC7CYTLQZPoG9yxZh0utpP3IiW36YjWC3Y9BoOLFlPcUqVuLrnQcp++ZbPLx+laY9+rB74zoMGjW9Jkxm97LFGLQa+kycyvbF8zEZ9PSb9Bmbvp+DxWJmwKfTWDvnGwZMyvgdcnW4rpkz2nJpBntC5tInswR89tke0WbFrk1F0KY6mCwyORL/APANJEkmJ+k5HYPssp/2TM6Q2SFuZVAj0aUhtdsQZAosvsFOcSubS1DW1a64jm/JRiL9+c9cOn2CIrGx1PugN9sXL8Bk0NF59CT2LF+MUaul/ciJHFj9EwZ1Gm1HTOTo2p/Qa9S0GT6BZd98SZEKlXiSouXAysWYdDrajZzI/mWLMBsNtB0xkV+X/oDNaqHN8An8umQuNosZs8XMF59O4tH9+0Qb7fz66UQ8PTxpO3QUO+bPwsvbm7aDR3Dh6hUunz/DrG+/5OqJo5SpWp0WvT5i3uihrNu0kfqdutGscX36fvIZ9Vo5Av9R1sIAjJm+E41Wx7bT57h87DCkB2kr1nybIhXeoO8nU1kzawYXfntOF+AVIJKz3fiP2pcXpD/AUkTyBwUSl6xy3ZyprVUlYzbqib7v4I/HP3lAaMmyAISVrUj5ug35dN9FytR+F3CkT41aNZ5+r0ank4l27NnQ+Z5FkQFSkxzt7z4ZQ+tKJfnaRU50x+rlDJo45W9TwREFAUGrQoh9gpAcAzYbon8IhJVECCoAbrlfY/A8FFYzAdpkQjQJeFpN6N28SfDLT4pnALY8cI2fISUmCr/gkJw7ZoHI29cIKPBi/YWc4JBct2Ex6nH38sq2n0Qiof8387l9+jjht67hHRBIWOmy1GjWmirvNaZmi7Z4+wXw4GKGtHHBUmXx8PblnY496PbZTAqWdUQKZe5uyOQKGg4cl+lBz2s2+T8KTu6gkMnwdHfDJDiKVVpMRvSpKcTccygx3jiwk9DS5QGo2qIjiU8dwZoruzdhNhqwWS0YNKm4e2YUx850i0URk97Bnb955gTbF81j2bRJmAx67l+7AsCTO7d4670GbLv5kBr1G/35F51LGM1uRCfk50FEcRJSQnBTWClSII5yxSMokC813YnKPWw2CQmJHjx45EdsnBcSCRROL7MQEhLyQqHbPwLxUZEE5oEqKYoiCZERmbKOz7Zn1XZ9CCQSKaIoYDbokbkoCz7/WZlMxvA5PxDz+BHq5CR8AwLJF1aIoNACVKvXgNJVqmEy6Hly97bzc8XKlie0SFHea9uBT5auJqyEI6zsGxiEm7sH5fNIEX4e/9mVzMjuu37W9kh/dHXpxbetRgNWk5HrezYDkBT+kErNHMyYfMXLcufQLgASHv+OPjUFo1aDwsMTuZtbtr8LpnRl101fT2Hv0gXcOHmME1scpROUv99BnZJMraYtaNmnPwO//DbriZTjnyzH/zMZTaIoIpj02BKjsEY9REhLQuLmgTy0KIoiZZEG5HtpGYOXwmZFqk5CFh+OTJ0MUjmWwAJY8hXB5uX3h5Svef5a9GlpL50zAA7ZwWdN0dG222ykJsYTVLCQcyzXcbNqI4pIJFIEm91RWNlqcQgbZeqS8Y/C3Z1a7zfnt1/3oE5Owt3Tk3pt2uPp7U3BYiX4cMIUEiIj0aZl0EyLlatAqTcq83aT5nyyZAXlq9dwFJz38MQ/JIQy6TL5L5xbbiD+O+zKv4rat+xWJOC4sT7YqSrVc9vqQZKYXtTRJRiwbeZUZ0occLZbj/sCnSoFHxfub2pcDN91qk+XqTO5sGszo1bvypSFCvTKgqonihTXJRKpMyIvXAqpREJqchKBIflYNGVChvINsHvtSlp07cGBrZuc47Tu3ot9P2+gU9+BTJozP8t06/PtrChkr4rnM1LPHCh7WjIIdnDzROofhN3d22lE7NmknF8pIyUIKKwmPA0aFDYzgkSKwcMHrcILIf1an4/e5CYjlZoQx2cdmjJt11F8g0JylZGyWy1837YW0w5cxN3LO9O9fx7Pv6TzerWm22ezOLpyITVbdaRqo2ZZZqSetWf16Ujjnv04sGIx9Tp2p2H3Ps4xf106H3VKEt0nO2pFGC0Ccz5oQZsRk6hQtwE6s+O6L+5Yz8OLZ+j6jYOG48qM+rJ+2VxT+0btu15PkQO177sm5f9vqH1TTj58YbsgiuhTU/AODMZLKvKuGM9jt/wsnTWDK79soka7HkgkcHn3Jmq270GrcV+gS03BJzCYfXM/58ruTZR/rylPr5yj0UcfE3nnOh/OWpqJdmPVpOIXHMLGGVM4tXU973bowpld25z7V128zfaF89i/YTUte/Vl7Kx5zn2u9A4PFxuRHZUYIEjukpGyv35GShRBo/cmJS0Ag8kTqUQgwFdLkL8aD3eXMV+mQpZNRspiU5Cc4k2q2hNRlODrYyU42Iy3d1gGnSUb2l7mjFTWFOHn/3+WkXry+x0m9OjEmrNX8PD0eqWM1DMaqDopkSltG7Hs0h2HFLlLpNTVDrm2HecIk5vUYNKWAywfM5Cun3xOySrVM9kVV4qWm0zC8EbvMOjLmSyfNok+n37OO81bOSP6S6ZMIF/BMLqNGAuAyWhk4Hs1mbZ6E0XLZ9C4Ns2diTZVxeAZs4HM6m3tSoTmmjQiMtsAACAASURBVNo3/uj9HKl9C9pU/7+h9n1y7D4ArgF1XUoyXoGOuUeIQqSOJJFrknys/W4GN/dupmqbD5BK4PqezbzZ9gOajvrcaYcOz/+C63s2U7xGXfTJCZSs+S52i5mWY6fj6UINtutU+AaFsPXbzzi3fQO123bmwp7tzv1123fh3O5tNP6gN30//ybTs5XdPMSVzpddH8ickZJn084pIyWKAoJOg6BJQbSYQCpF6huIzDcIiSJDVdj+3PzBFdlmpMxGJNpUMDiyrs9YNzZ5xrjZUfVeJyN148xJVs34nNl7jyKVyTIxa1ztgWv25dkxou/fZf1no5m+69gLx3ad8z6vCCkIAqNrlmLB1XCmtXiHCWt3EFSwUKbvO9PcRbAx4O0qfLpiHfOGD2L8ouVUrPm283uZMaA3dZq3pGlXx/rcNFUKg+q/zcKDJwl2KQczf8IoQgsXofuo8S+oHjcvEpwru1Kg7Bvihz/ufGmf1OgIVn7U/D/VvlfF3P7dSYyKIClKyYX0oryRcXEsGtyD5CglydGRLBjQBeWdG5zfsRFwOFDVW3akWJW3eK9Hf1KilWyZNsqpfrPoo7Y8uugoYLhtxiSkMhnJ0Up+P59R1FCdkuxsp6VnmqSIfD1jBq3fqcWiyeNZMHk83aqVY86YjzMp3+xObx/YuomW6fKTHT4awOeLlnHoXgST5mQoBP4VEEUBuzoFa/Qj7KoEJG4eSEOLIStYHMkfEYkRRRRmA/5p8fhpkpAKNjReASQFFEDv6ed0ol4XkQ/uUeyNKvgG5T4jZTbokUgkqBPiSIlWsnrCkFf+rEyh4JfvZ3D75GE8X2FBetX6TXhw6Ty1W3ckUZlZtaZsrXd4dOWCM1ojkUio3b4bv+10PLuqGCWrR/YiqFBRom5fZe3w7qTGRJIao3SqyeUF/6n2ZcbuGePYMKY30XdvkhoTyYYxvfllxngWdKzDwi7vsvubiTRo0ICverfnyi+OYMiVXzZRrWVHBi3bTnLkU1QxSiwGHWtGfUid7v14p3t/kiOfYjHoObhkNhE3L5MSrSTizg0WDe7BuimjGd+wOuMbvsWprY4I8Zld26jxvqPsQVBoAYx6HR0GDaNijVp0GDSUWGU447u0JTYinOSE+L/tftntUpJTA3ioLEZUfEGsNjkFQpIoVzyCsPxJmZ2oXMJikREdF8DDJyGkpnni72eidCkNxYrq8fG2vX6duhxw/8Y1ajZohIdnDpFjFxj1Omb17Yby/l3cvbyc52i1mPmmT1cSIiOcKmqJkY7frx8GfkBSlJKkKCVLR/ZFIpGwbMxAIu7cwKjTkhSlZPmkUSSmf3bZp2OdCmxLJ4+nYs3aXD91AndPLx7euEacMoL5E0YRpwyncOkyHNq8wXl+Cnd3GnXqysGNa9GmqohXRhCvjODqiWNcPnaYiPu/83nPzulKbhFM7dExT/fu36Cu9Vdi7zfjSY2NZO9XY0mLjeTXb8aztFs99s+cQFpsJGtG9aRBgwasmjaWm3sdWaibezdjVKfSZ/FW3u7aj1++GoPFqCc1NhJtcgJVW3WlcOW3SIp4zMVtq1EnxrJudG8i794gJVrJt23rMPX9mqwcP5Rz2x3PwIU92/ELdqwDrt2qPSmxMUzfuo+WfQc51PwiHc/D9F5diIsId1H2C3cq+8VGOBTkJnRtR0zEU2IiwhnbpQ2xEblXYssOot2GPTURa9Qj7MkxIIrIgguiKFIOeVCBTE5Urse2mBGTYpAkKMGoBZ8A7KHFEYIKgpvHH3YN2eHRjWu8UbsOSTFRfNW7C4lRjvd6Vt9uJEU77MD3A7qTnG4TFgz6wDGnjVKy6YsJKNzcnX2SoiJfsCELBn1AcnQEyVFKFg3uQWJkBCkxUYiiyNw+HUhNiGPVp6NIilI6j5voouiYEBlBSnwccoWCe5cuUrpKNZZMGe9Ud5zyQUeKlSvPlRNHndfkFxhErSZNObptM1az2ak0W7x8BXb+tJjoJ4+ICX/qUB1Mf35yC/FfUkfqX+VIuSIkKBCLXUBvE5w81oM/zSPi5hXObFnDm80cPM43m7XF2z8QuSLrFE7cw985vWG583/lrWv8unAmPwzuxcYZU9g4YwoD3q7C8mmfsnzap/Su8QY/Tp2INjGBLVu2ALBv/Wr2rVsFwJFtm2mW7rG37dOf9n36A9C+T3+mLFjKvjtPGT/LUZE+6C9U2hJFEaNWQ2L4Y+yqeCQKN+QFi6MoWByJx6tPGl5yABRmPb6pcfhokpCIIjqfINICwzB6+Ly04ndeYNJp8cijspaXfyDBhYsR+fvNnDs/h1ptuhDz4C5j1uykVPWcKTHFKlbh1qmjXNq/m6Cwwpn2lX6zJoIo8Phahtzwo0vnKFE1c2A3uEhxCleqjj5d9vx1YbMLOf79P+Hu0b0kK5+w9uMunFo9H7vVyu/H9gKgS07k6iHHwlnl44eUf68pAL4hoXj5B+LlH5jlmOd/XokhTeX836BO48DiWXzfpwPx4Y+5etCh+KhJSeLNJg7nKTB/KB9MmMLMHb8SViJDLED+GhOIPxKCICFJFciDiOLEp4SgkNsoWiCOssWUhASoM8Ro8gCLVUZ0vD8Pw/Oj1noSHGigbKlkChfU4OH+1z2PBq0WL9+8FTsPLVocRJHoxy9mOHNCtfdboYqLoXzteuQrXCzH/kXLlufq8SMkx8UQ9JyKV7V69VGrkokJz1DpunH2NBXeymyvfPz9CSkYxu8Xz+f6fLPCf3YlM34/to+Ty+bw4NR+Ti2bw73jjtIm94/vIzVGycNb1wG4c+oQAWFFAajQqDVyN3c8s7ErN3/dijYpwfn/o/MnSVI+4ccBndi/aBaa9H23ThzEN915qtWyPQVLluazzXvpMHwcAL6BWY//d0AU7AipiVijHmJ/Rt8rUAx5oVLI/IKQvEbwVbSaEZNjID4cTHrwDUIsUAIxID+8QnHuPwoGnQ7PPCr2efj4kRgZgS4ta/XGl8EvJD8GjZoRS9Y510y+DJ4+Ppzdt5tHN6/j9lzpiNrNWnLt1Ak0qRm/a1nZlZqNmiIIAuG/38n1+T4PkZztiv0fEPj9V1H76nf9kJ5Tv2bDjMmc3rqB9l27kyTIObd9AzVbd+byvoz09ecHHZNT36CQTCnP56PtU+qUpsSbtbCazUT/fpMarTpx5dec6/NsvXidHfNmsmXLFlp/2BckEvatW0Xr3v0YO3Oek+Ynl0qdAhMyl2jq8ynPP4vaJ4oier2e2IRELEYDcjd3CAxF4unjjJxmR+F7JWqf3Y7cbMDdkIbMZsUuk2Py8sfk5pWl2k127efHzYnad/nQPk7v3s6wBY6MX27FJnZ8OoDKDZvzdvvuuaL2ObjOKgJDMjJhL6P27fzhW05sXkv52vUYOGsRbh4emcY8umElyjs36fvtfExWkVvHD3JoxXzGrd+HwYVltfDDlrQaP4NCb1R7bWrfgB1XcqT2/djqjf8bal/l5h25fTCDPjB613lOrV7gpNf4yURO7fqZWu0+oPnYL5xUG7ks47l5/jmZ/m4Z3unenyeXzpD49OELKqG12nTi0t4dPLNpVq0K//T1fp6KrKl6Htmogf7Z1D5RBLXOh4SUYKw2Bb5eevIHqfD0yFqu+QW8hNpnE9xIVvmSkuYIigT56wkJ1qFQuDzSr6AM+kdR+3asWMqT+78zOj3YlRtqnyAIfNmlBV3HfEL1hk1yRe0TBAGDOo3AkAzKeXbUPne5lEUTRnHh0K+827o9Q2bMRiaXZ6JMrZv1FYJdoN+U6dgFgV/XruTS0UNMXbPZafcFQaD/21WYtfsA+QsVeW1q39Bf777UXlhNBlZ0qvl/Q+2r1KyDc10TwBtNO3D38C6qtu5O45Gfc/3H6ZzYtYVqrbvTZPR0p11x/d5d1UNtFjNzW1Sl1aRZnFu3iLTYKKo278hNF9v1zM7U7dyLrp9+hVmtcq4jzo7S9XdR+0RRQKLXIKYlgWBH6u2PLCAfkldcl/0yap/dagFNCujSHEFc30DwDULIRj0z2znKH0TtWz/7a2Ru7nR+RrfNBbXPajYzo30Dhi1YSdEKlV6Z2ue4D1bMRgP+gQHOfS97Dr7s041HN67Rqs8Aeo6bhEQiyWRXfhg7nJJvVKLjQIfy4LrZX5McH8vouYucfQw6HX3frsyaS7fxf05vILfUvnyl3xC7LNj20j5pMUo2D2r5n2rfq+LU1vXIPTw4vdWRst699Wfnvsv7tlO2Vj0eXjpLscpvcmX/Lhr2GsiJdT8hAA0/HMTJ9cuw2gQa9B7M6Q3LnRF+5a1rlHzrHWp3+IDgQkUpWulNIu9cp37XD53HbdqjDwCHN62lRa+PCAoOZurUqXQbNxmvgoWRSiR8OPYTAtO18gNdNPMD8+VNP/91YLVaSU1NJTU1FavVilQmxz80DC//QFL+iDq6goDcqMFDr0Eq2LDL5Oh9g7E8W2P1Jzvo5Wq+w6ppE7lx/BDVGjV7Yf+900cAKFmnMQ/OONpl6jXh4dmjJDy+R0p0JLo0FSfXL6NJnyHcPnkYgMoNmmZq3z11BFEUqdSgKXfPHEO0251tu81OlYZNuX3mOHarlWqNmnHr9DEEm42qDZtyevsmrh8/hNlooFDpstz97RRvuvSp1qgZPgFB3DxxGKNWw92LF0AiwTcohHWTR1CgXBXq9RzI0Z/mkhYXRcHylTm/eTlSqZQ63ftzbvPyF677VSAI4j8iivNPQb5ipajergfXftlEoYrV8A4MJqhQcer2HsZ7fUch3jrFF6OGYPUNYdW2rSSmqan7wUDO/rwC7CL1eg7k3OYViIKjvX/+DABifr+Jm6c3pWrUoctns0mKfErUnevU7dyL4LDCtBk6ljZDR3Nw9VI83BW0/Ggg+1YswcPdnTb9BrF72WLc3NzpMGAI25cuxNPDg04DhrJlyQL8/P1p36c/p/fvJSggkBrv/vFzU1GENK0vSamBWKxueLiZKRQWg4/X6xXQBbBaZSSn+aNS+yKKEgL8DOQP0eKmeDYzyFtNvtfFW+82YN33s2nYrhNV69TLtE/54B7FylXg4uEDWJFSrUETrh49iNlooHarDiydMByDTku1+o24fOQgVrOFt1u2Yd+KJdgEaNFvCAdWLcVis9G83zAOr3aseWzcZwjH1jsK97bsN5RD6dtbDxjKgVWOdvtBw9i3YgmiKFKr8ftcP3Ucs8HA+917sWelg+beeegIdi51TGje79qTse2aUa56DWo3a0lA/nzERjzl4IY1mI0OacdKtesikUj47dc9tB/0MTt/cny24+Dhebp3OdmU/zebE1y0FGEVqhJ77yYFK1QluFgphmw5y90ju7i8dQX9xk/j81FDUaq0PJaKXDrscLrq9hjIhZ8dtcJqde3vbBeuXB2AG3u3UKBUeUJLlSOkeClqtOvBlV82UaTSm3T5bDb5CxfmWXmLS/t2YxdsNOs7hENrV2C3W2nZbygH163AZrHQesAw9q1egd1mpt3Aj9m7ahk2q5UOgz9m94ql2GxWOg8ZwfafliDYbXQdNpKtPy5AEES6fzyKzYvn88HHo3J1X0RRAJ0aNCmIdhu4eyINDEXuIsaTV4hWC+IzBwqcpVWcohQvcb7+DFw9cQyb1ULVuu/x3fCB6NRpfDT1Sw6uXY5gt9Gy31CObliB3er4jk5sXIXNZuH9Po62YLMiiiLe/v7cu3CWohUqcXT9CgSbjaZ9h3B8/XLsgp33+wzh+LrliKJA4z6DObL6R5BKeL/PEM5t2oxcKqHpR0M4tHopCrmUFn2HsH/Vj7gpFLT4aCB7li3CkKoi/M5tTHo9UpkUiUTCrp8WI3dzo33/wexcuoiAfPk4snUzBYoWRyKV0nnoSAbWr8WKr6Yx4LMv2bl0EcpHDyhbrToH1q9BikjXj0ez7ce8C6nlZDeEfwC171/lSDXt0QdvLw+q1m/EzVPH6dytG0miglNbN1C/64e816Mfnj6+nNi4CrvZES016jTYkWGyimjVaux2AbNVQKdOI/qeQ9lIsNt4fPksLQdu5t5vpylX8x0mLF3tjOR8OG6CM1rcfdR4/ENC0IgiwUgI83YnxuKI6Mp9/dCazdnWs3Ld/jzXX57NAkzXdo71xEURhdWEt9mAh82hB2qWu2HwCsAg90A0iWBSvfAx10hGTrKhCsGOn9WAv82MFBGDVE6qmw9aqRs2iwgWh0qQa80m1wc9q4hLVv+79nNtO6M3Mh9ajv2CX1csocBbDTG4RHh0Rhv3r191nG+ZOty/dg0A9zJ1uX/lKvF3LlG4XluiYhyp8osP07h15iIAhrBa3Dx9wTFOgZrcPXcVwW5FX7AWd3+7it1iRlegJvfOXcdmMqDOX4OH525g0WvZOPMr7GYTMncP1nwxGYtOg2BzPBsRKVaeHvuN5OC3+P30NWwmPcnBb3H3ygMk7t7sOXSN2BuXsJkMFGk+jLPf9EXvFor8rorw8DgEEa7cjkOpTELh4cHNxxoiIzPW7uUG9v/kzzPBotfSdvwXeAcEINjsjoyfaAe7HYVUwm+/P0RiNdPl/QZM6Naa87fvYVOIWIwmrCYjNruASa/HbrNitYtEXHNQpSJvORT33unUC4VMQpkatalQ4206jvmU3Qtm4+3rg0ImwaxTo5A5Ind6jQZ5YACCKKJTq/ELCMQuOOyVlEAsdjvqtFREwY7VbufutSvkLxhGpfRJv+s7FKnLPGmIkWZQwOTSjMXBrhHHEDcJouioqaJPScBiseDh4UGRAvnw8/Nz2C3RJbMluBR5fAW5dLNFRnKKD2lqd0QgwN9MSLARD3c7SDPqZL2sDp3z0C7Zs+yy5y/LgFuzyFaFlS5Dp2Ej2bFyKeVq1c6UhXr0OAKPsJLcvHwF0d2HwMr1uH7pCu7evhRUmYi4f4+QUhV5kGDk4m+XQOGOe5WGhMckg0zBrRg9ETHJSCTwONFIbILDFj9OMhIb72jfjdUTGed4r29E6XgcEcOd/Vs5tWcXZp0WvSqJXT8uwGJwqDzGeRblvtJRZ+XcExX3lY61cwUJxGK1cujAUYQy73Ds6BmCy1Rh99rVlK7d0HGLCyRisdp4EpXA7VgdMclpCDYbj5L0WX95OeCvcqQkEok7sARoAgQBj4HJoige+EMO8AdBr9EQVuVtmn22kJu716NTq5H4BKJLl5e/phYJf/SAdu/WopLMhl+typy5+TtpBhtpqQ5HQGOyo1GrATj0g6OWYMzda0ikUqq374VerabxyGnIPdyRK9wx2wSsggRjWho6sx2t0YDFYEBjsqEzmDDqtKQabGj1ZgwataNtMGHQqEnRW1HrjRi1GlQGCxq9AaNOS5rRjFavxWw0oDWbSdNqsFksaM1mUlJVaM0ZmWnXeYxrFksmlYIo4mbS4aFPQyrYsSncsfmFILh5AhIwZgRospsDucLV1kmsZuS6NKQmHSDB7uWH3TsAUa5AsAtgt7zwGVumzE7WzBVLNlmoV2HuANy/eQOL2UTn0Z9QoGRp7l2+hNZkR6szYjboSTXYSNOaMOm0xGssJKn1mHVawpONJKYZMOs1xN+7SUCpykTFpXAv3kBMkhaLycDtGD0xyRpsZhP34/XEpagRrFaeJpuIT3LMbcKTjcQnqJDKZA47k5CCwt2DizcesGvhXDz9Azh35AhRt644VBJtVjz9A1FZ5FyP0vAkOhEvP39uRGt4EpOIp7cP0U8ec/rkWTz9/LAXKENYxWqcO7SfeoMmoIxLIlmVhl5vJCo+CXeFjBi1nrjEvM1VRDHnoO8/wa78q6h92x476uwYrAKypBiqBnpxQ/QhIcWhfpUdfcKV6vU8T/vX2Z9yNZ3KN//KU6ecrp9nho/ppcjayQm0GshnNaB098csU2TZxxWv60hlC1HE02LA26RDIdiwS6QY3LzQu3lhT4/EvEwi8lUcKbnVTKDVgLfdgghoZe6kKTwxutB2XBcT/+mOFBDz5DFbJg/l4w2HXnCknsHgMvF69sKdnD2SkvXbU7hmw/TjZr7W7CIc2b0rMpkUk1rFgYkdqT/pRwwp8QQWK0f87fPc/3UdJd5rS/k2/bIcx24Xubh4IoVqvk9o9cY82reSp0c3Iwp2mv5wwtnv1tqvkHv6ULHrGBQuqflf+tfINbWv18YL9eTuL6f2relc9f+G2jf9jKMIZU6RLQ+JSGUvO0XcHM6W2iYhwiJFaZZhEDK+Ak+FhDWjP+LxZYe0/bNC4gA+7q40vJypNtkVv3Sl+b1K4UzI7DBlp6LlZzeiSYrHYjTg7u5OaGgovr6+me1VHhwpo0lOUoo3Gq07EgkEBpgICTLi5uZij7MppJu9I5X1ROh1HCmAS6dP8vP87/hmy+5MjlSSLoMCmazL2P7sPH7q354WY6ZTuGJVgEw2ydWGyZ57W13nAc8/g0lP7nFo1gSajv8WQ2oy+cu8wd2D27l/fC9vdR1A1RYZ9Q4zUYylEtYN707DweMp9MZbHJ7/BfdO7McrMJiBq/cD4KGQsmF8f0q+9Q51ewzM9GyOr1Uy19S+j7bfzJHat7HXO69N7ZNIJN7ABGANEAm0BDYDlUVRjHidsf8oSCQScdShe0DmOYfr1/us/refXKS2v0hxT8e2BDPc10t4bACzi12RigKbP+6ASvkYr4AgRuz4zbnPVbXP9TlwbWem5GXdJzs75Eo3fhm1LztHyt1mxlOnQmazYpO7Y/YJwK7wQC7LOvP8qo6UxGJErktDZjYgSiTYvfyxefuDiyx6dvObv8KRcrUBp3fv4Pbp4wyYtdCpyAugMWXYEo3L3MVqFxFFkdW9GtBt/hZ88xd0nJPLHMilhnwmqvnzNsa12LxMAk8unubiz8toMHAcRq2asPJVOL3qByKunqfpiKmUr9swy3EVMgmzOrzHgIXrCS5cjPWfDCH8xmXCypRn8BKHSJZCIjL3w3Y07DWABh06ZTqP/pWK5squhJSqKLaZ/fNL+2jilOwc0fa1qX2vY1f+VWIT03t1IV4ZgS41FWmI46EKwObMHFmMRhYMciiZJEdH8OPQniSnq/OtHtkLVYwSVUykU/FMFRNJ1F2H4EBoiTKs+XSEUwUl/O6tHM9HLffAjoRg2+tTXfICiSjgbdKSXx1PgCENJKDyCiDeLxSNp5/TicozRBEPm5kCBhVFTGl42q2kKjwJ9wwiwd0Xs/TvTWjK5HJs1hcVwh6fOYg6LhJ1XCTnlnyONj4KbXwUZxdO4sz3E0h+fIcnJ3ehTYhCmxDF6Tkj0SVEoUuI4sTXg5ztk988106MRpcQxalvB5P8+Dba+EhOfTsYbUI0usRorAYdyY9uEVCkNJeWTSfh7mWKvtOchDsX0SVEu4yZMY4uIQo3nwDubluIPjEKmYc3NpOBgtUboU+K5uK8oeiToinyXgcijm9BE/sEfWI05+YMQZ8Ynaf7Jog5//0/QRWjZM2oD1FFR75gH9aN7k1qrKO9bFQfjjyOY/39RBatXofJYqaql51WfkZqKzSUF1Tku3eCNyVqhvbvS6FChajcuBXJ0UqnLcpQXlKSGOWqnqR0qic9U9CKV0YQF+lQUXumqDape3vi0hWQxnZpQ0xEOImxMa99D0S7DVtSDMmRT7FZLPiHhlG6dOmMLFQeYTDKiYgK4ElEMDq9GyFBBsqVVhFWQJ/ZifoHQa7I2q7o0lKdSlmqmEjnb0rCkwfMbl0LgyYNuYeH8/lJi41ky/g+pMU62jsmfuRsb5uQ0f7lsyGkxTrUOPd8Pgx1bCTq2EgOz/kEfUoihtRkLqxbSFCx0tgsZu4c3E619h9SuEotDs+b6hxn/5zJpMZGOpTivpmAd2AwUTevsPvLMXj4+qPw9EIUBGeftaN6U7tLH85tXsHqkb1IjlY6n9W84K+yK6Io6kVRnC6KYoQoioIoivuAcOAfFfh59r0cmzfF+Xt0Yv5nzvbxH6ahjoskKiqKSZ9NY8n1OI4r0zAmx1E/SKRPmEDV5OvUUKh511PLW+q7fDx4MCEhIXj4+ju/x83j+pASo3TaseToCFKilawc3ouU6EhSopX8NKyn8/tdMrRHJnW4pOhIp11KdFGYTHBRdXum9Ph5z85OZb9ndullkNpt+GiS8ElLQCII6P3yYQgsgN3N87UUgiVmA24pMbinxCK1mrD6BGHOXwybX3AmJ+rvRlJ0JAmREcz8qCt6dRo6dSpz+3cnOTrS+V04fmsc311aXJTTPsQ/uMX2sT2wpNcifGZD1HFRqOMi+eXTvs5nafekvpnsTGqM0jlOanQEsfduOm1Ramwkp1fOQxUVgUGdyuVtq7EY9MTcuY6Hrx8hxUpl/h10mT+nRCsx67U8uXqBlOhIYh7cwds/kGJV3uKnYT1JiVaiiotCFAWOrF5CgjLcqVaaGBmR6/snvoJN+SfYlX/OE5dLWCVSjEgJwEYcr1E0Nv1lrtu9L+FXzuXQOTMEiZRUhSchVgNugg3LX+RYSEQBL7Meb5MOmShglruR5uGLRe7OHzI1EUW8bGYCLHrcBRs2iZQkN280cg9EifQfUQANQJ+qwjsgCICkpw8ILFzCUZwwGxhUiVh0GhpP/pHbu1a80jGsBh0pj29hUquw6DUoPLzQJUZz6usBeOcLw80nAKtRj4dfIAHFynF/zyo0UY8QBQGJVIoo5Ex38itcmpjLx7AatNzbvgAP/xBKt+ybyUC4+QQg9/BEHXEPj/LVX+ncs8N/1L7Xg1UQOXTyDIoazQhwlyF9cIkWzZpRyMeN1ArlkCukNHr7LRr/+iuPktQordI/XbY7rxBFEbtGhT01EQQ7PkEh+ATnQyqVvVYlBKNJTmKyN1qdBzKpQP4QLcGBRmQy8eV1pf4BSEtJxj84BFEUCb97m6LlKrxU8ere6cOIokDP2cuRvqLCot1qIfzyGUfNHLsNu9XCxQ2LUV4+xQFVIvWHTkGw2wksXIL6Q6dwfP407hzYRsX3OyCRSBDsxthJ5wAAIABJREFUOduV/CXLkfj0AWa9jktbV1Gzy0ckPc2sKBhcpDhyN3esptcPBua4liFvNZlzhEQiCQXKAnf/nCP8NTDaBK4m6Fm8cQktB4ykSogXb5QphaeXF0abQKopgOpvVKB9s0YcO3eeNE85yS4ZjH8URBEPgwYvg4OWaPQOwOzlBxLpa0XvJWYjMq0KqcWIKJVh9QvB7uX7h6sC/xnQqVPxCQgkLTGR+KcPCS1e6qX97x3ZjVdgCDI3d4dy4SvMu7RJ8RjSUoi4cpai1d5GsNs5vngGUTcv4e7tg16VjHdAIB6+/lRp1YVfZ32KV2BQxnzlFY7h7u1D/OP7KNzc0SQl0mzIOKo0bo7y1lVnH08fP6Lu30GnTsv5xuSAv2vtZW7syr+W2gdQyG4gn2DmMn4ISPJE7bt7eBe7Z03lixN38PfOcMhehdoHjnR7CWMqepmCeHe/LPtk9dk8UftEAW8XB8okd0fn6YtVnnHe2Tk5r0TtE0U8rCanA2WVyEhz80Kn8MxcbDe7VPlfTO27deIwW6YMo2ydRoRfu4BMoaDx8KkUqdPC2ceV2ndo+kBKNWxPiXotM53Ts6bVqEcbr0SfnIBZnYJ/kdJcXvEFXkEFHOtG0pKRe3ghVbhRe/hMjk3rhVGVQIn67ag1aDoAJo2KKytnkBp+j+DSlfEvUpo3OgzKdLznqX1GVQLHP+/J+3MPcGh0Exp9sws3n4AX1sU+2rcCm0lPle5jnNvyQu3rtOq3HKl9W3q++R+1Lwu4UiRc+7vaci83Kde3r6G0J3Tt1g2FBMyihCS7DI1UQRpyRCR/O7VPtJoRUuLAbETi4YU8uCD5fDKei2yVQV9C7bNapSQk+ZCm8UAqFQkJMhAcaHA4UM+QnSP1D6H2bV+xlGXTJ/NWg8bcvXwBd08vRsyZT9ibdZx9nlH7RFFkYa/mtBr3BSXefDvTM/Hsd8qkVZMUGYEuJQGjOpWQIiXYP3Mi+UuVx6zXYrWYEaxW/MOK0HjM16zoXhfBZqN2n1HU7D4YAF1yHEfmTkGfkohfaCFKv9uUSs07Z6LwPE/ti713i/3fTaHnD5tY3PU9Ru+5hNQlWv+MDrbvu2kEFS5O0z4DnfvyQu3rtvH6S+2FzWRkR/86jwCNy+Zloigue9XjZHFcBXAAeCKK4uC8jvNHIzfUPkc745/s6m3JpRLu/byIBpVK06rZ+8gloLNDtFlKoiAjySYFJH87tU9hs+BvSEVht2Fx80TvHZipBpT0uf5Z4YU5kM2CXJOC1KRHlMqw+wRie0UH6p9C7dvw7ZccWbeM8m/XJfz2Dbz8/Plo1o/4l8wokv2M2mezWFjeqxEdZ68lqEjJTL87z6h9RrUKbVwkupQELHod/qFhHJr9CWFvvIkuMQ65hyd6VRKFq9Skbu/hLO/VBMFuo83kOVRs3AaAFOVj9s2ahFQmRwLU6z2M0rUbZLIrz1P7fj99hAs7N9Jm7OesGtWHT3adxqWL87lZPnYgdVq15+2WbZ37ckvtCypRUWz69aaX9tHGK9k/rv0VwHXcv9Su/OsyUpvmzqREtRpUfa8RGomCUImZfKKFBNxJjAwnf9ES7F00B6nCnSb9h3NgyXfYkNJ4wGiO/jQXm91Ok8HjOb58HqIo0mzgKPbO+4Jfvvuc3p/PZO+iOYiiSK+Jk1/pfASJFLXcgyCbEY3dgkH2B9d8EUXkdiseVhNeZn16BsqdVE8/rPI/6FiiiJfNhL9Z78isSWQkefihk3tkpN//gQ53gTIVaTlmOvo0FTW6D0SvSuba7g0UqdOC86vmorxyCs+A/OgSYxAEG3arldTIh6g3P6ZKtxHc3LIIszYNiUxO1MUjWPQa/AuXwmoyIJMr0CVGk69cdQJLVKBSl+H8Nn88SCTUHvYNDw9scApJWPRabm1ZSJVuI4g4vRe/sBIUrFaPKyu+cjpN9/etwWrQUrnrCO7tXY3NpKdyl+Hc37MSu8WEb1gJfpszFLmnD+rIB6Q8uIooQLkOw3iwewkSqYx8lepwcd4wEq6fJKxGY8hjfQ1BEP8RSjf/FBz9aS5NBo/j3OblmLQaGg8ax7nNKzBp1TQeNI7fNi/HmL797IafMOl1NBk8jjPrf8RiNNB40DhOr1mI3Wqh4cBxHF46F5vFzM5t67gclcxblSrQ5P33CbEbKCx3wyrCjXv3eRKbQJn327JtwWy8/fxoM2AYW7+fhV+AP+0GDmPT3Jn4+QfQcfDHrJ/zDX7+AXQeOoK1s7/G19eXHiPGsnLmV+QrUJBO/XMxh7RZEPQaRI0KpBJkIYWQ+vi/VtbMZpOQrPIhReWoSRcSZCBfsD6zA/UvQZW67zJ85jzilBH0mjSNuxfOcWrXdippTZSo8ibf9e6IXRQJKlSMhKcPsFttFK9Wi2PL5qHw8KReryHsmTWZuEf3sJpNpMVG4ukXQGi5KqRGh5MWo6TZ+G9QRT1FsNvxK1CYqBsX8StQGHdvX2RyBYLNRkjxspxf8wMiIvX6jaVg+arE3LmK8soZvIPyoY6N4r3+Yzi7+gcQRRoOHMvpld8jiiINB43jwenD6JITuXvkF2QKBYd+mE6LcTOcfZoPm8CxZfPQpap4cO44l3euJyisMEN/fPnEJTvkZFPS98fltEZKIpGcBLLrc04UxXrp/aTAesAC5E1q8E/Eb6t/QBRF3u4zigtr56e3R3Nx7XxEROp8NNq5vW7fMc7vulbvjD61XfrX6zuGhJRUPps0AXP12xgvH6ZqmRJUKlOS8hIBtc5AisKXIwf38/vjpzQeNJYTa3/EpNfTYth4jq9dilGnpdXHEzi69icMGjVtR0zk8BpHu/3IiRxY+SMGrYZOoz9h7/LFGLRauo2dxI4l8//H3lmHyVGlXfxX1TI+ycRdgGzQxXVhWT5sgUUWlsUdFndbPHjc3Z0YkIQkxJW4u0xGe6a7x3qm3Uq+P6pTXZNMZ2aSsCSE8zz1zJnbt6Srq966t+655yUU8PPIOx8ypV9PopEwj737EeN7fsvj73wAgFmOkhkKkhr2owginowmRJO0eHDMY9BSFFPAjeh3gyAgZTRCSWuoPftOwjbJ4Zg1pB+RUJD73/wvoYCPC677P1p0PIuWnS8gb9tGti6agzn9F6qcxVQ5iqgoLkSRZZIzG5KUms6+JbO45sk32Tx9FCGvhw6XX8vyId/iLSlGVVUsyalYklNo2LYjhZtWceY1N3P7R735ZWQPynP3c9Prn1OwZQ2bfxiPJSWVsM9D4Y5NnHvjnawc1QdrahpPDpnBmOfvpSR7D83POodlI3uTkpbBXx5+jqUjepOSkcl1j/yHxcN6kZqRwRX3PMS0z99myah+BD1u5vT9irSGDbnp6VeYP6QnFquV259/AykcZsKXH7Ji+iSsySm07XxOvc+fSu1tlVjfNae2OVK/Zlw55TpSFmsSJTFd7g8Tx/HkbTdxRhbIRbls2rWTZu06Yk5KQo299TRZraixCZsmqxU1lpPIFHtDYklKIi2rMVJEc54xG5KQzR+rdWjvfe4FfopZzN797AvMHqVZ0t71zAsAVFpSSJfDtAl78JmsVFjTiB6HzE9UFKxSmGQpTHI0jEmVUYGIOYnKw0agjgeiIpMeCZAWCWBWFaKiidLkTPzGDtRJjAbNW3HZPVry40BUYe2kIdh3b0WKhLFtXY0gipx39xPkLJ+NIJq44P6XyFv5k76+23YQ5671nHPnk7S+5HqSs5pywb9eZNf32u/e+Y7H2T9vAqgqgiCQ1fE8VEVCNFtAEGl79W3Y1s4nq8M5oGp3s4qAyZLEmTfcS8XBXaQ0jOWbEgRMFi2DuhCrAyCIIqLVypUvd2fRh/chh4P4HPmIZqv+9lIwWxEEkYYdz6fFpTdiMpkp27sBS+qxJQ79Q9pXHeZY3hJBMOkcQdC5moAjiDoXTSY00x8wWSyYrVYat2mPz+9je04Bzf6WzJLRIzn/zHb8/da/c/4ZHbn83LORVA+B6/7C9rx8/VgOdWgs1iSE2JtIa1KS/grbkmQlK5bM+1/PvUSStQ5J5aSolpAy6EWIhFABITUDoVELPRYeC0JhExUVKVR5klBVaJARpnlT70k7/6kuaNepM+06aQ6CYUlCEGDm8EGcd+MdjHr/FVIyM2nc8WzOue4mdi2dR2bzVlq+FYsVwSTyy6Rh7F46lzZ/vpxrn3qdg2uWooomrnz4RdZPGowSjXDuTXexbuJgsMAFdzxAoCqebLvT9beTu3YpHa64nrLcvXq5yWql7cVXcdkDz1Kyf6eeqNSYsNkoLbQkp3DezXezZtJQIsEA4ZjTn7GOyWKl2RmduPSuf7Nv2Tz2rFrMxjm151GsCbVKcOr48kZV1b/VVkfQbpJRQHPgdlVVT0RSjxMKk9V4ni2GckuCcmvNdQw8NasxomjC4/WyaW8Oa/fmcP3jL+HfsIBL/9SRP3dK5fm7b8XtD+A0R9mRloZ8yDBFEAztGwFL8qHnkRZrQHseWZKSY1XiXBBNOhfNJqyCxps3aUxmyEtKNIRVkVCBoDUVT0oDLJY6JrusAUIkhNnvjrnwgZKaiZzR6KSa/5QIh9qKdz7zPIIgYI2dt8at25DVrCX/eOF1Zg0fRJN2HcjduoEzr7mJvSsXctldD2LNaooaiXDuLfdg27XV8B5boHjnBvYunkmTTufT/JwLue75j9j6/WhUKcLlD7/ExsmDdbM0a3Iqrc+7hHYXXYl912YQU7jlrS9YMawHmc00x1bRYkUQTQiCQKdrbqT5meeQ3rgZZovW3gAtPoiGtjSCSEpGJhfeejdbf/4RRZYJB/1kxNL9mK1JmM1a/bbnXUjDxo254ra7GPbeq6Q1iOeyqjPUukiGf/u4ckpJ+37M1axd/ZG4LjgYkWlBhDaEEIFSxYxTNlMUBiU20hc2DK8ah0gBMpPNjH3/RS66+R9cf2d8CNI4nGlEdUmYQa6lqLQkTCvCmAA3JqqwUKmaCKANudcEEZUkFNJQyBQkMpBJQ0EQQFKhCjMu1YRLNROtp7o4USL5dGTamCI0EyREASoUE8WKFZdqSnicRiS2SK+5TiI53+HHV20IPoFsygijzM8fc8GZ9/lLCNZ0Svds4o7eM/GH4+/CQgannIKNKymc2YMzH+uGtVHrmncAWAyShkAgPgE9FAgTch7AtXIUTf/5jeG4az7pxpu9mhQganAVDHpRAi7EjBYIJgui4Ro8/LqV/RW453VBDVbWW9p3x+BfrjUfelgmwKxnLjttpH3d12vytETXrxGJ7imjJCbVqv1ufZ66j7tf/4BzLotnftflMqpKQ1GmiRKmQSxW+wUzlaYkQpZk1EOdqQSJMBMlyNTle6qKVZEwhQOYQ35MsdFTxZKEnJyGmpIBZq2hY5TRmBJIjA9PDB4JBvC5ygj5vNpLhqwsGjeKkJRUh3fPBtmeEcakunVJEp5IapNIvnP4sy6R5Mco5wlGtTwu7959K407nIU9ex//nfwTpT5jMt/4upvmzWTjd0O5+5uRmDOaxbdvqHP4vRw1xLFgSKZ401LyV83hyld7xr+HnPh7HEKiEcWor4qwu4KMVh0xWwySUEv154nFLFBVlMPCT58k4vfWW9p396hNR5f2hYPMfem6E5KQVxCEocBFwE2qqvqOd3snGoIgqC/P06ZWyNWef/E6ag3y8sNhMRvuwVjsGPfkzfy75zgatmwT/ywWfwRU2iSpnJWk0MKioAJOSSQ/bKJCNaEiVKsP1eNHsiERdrVEvaZ4XMkyq2TIEdLlCMkxp86gaMZnTiZoSUYWTUdsN9HUhWrlgDkaIjngwRINoQoC4ZQMwimZqPXsQKkJ7u3E0xJqjyv13aa2fs3THfxhCSkaoctdN9DmgsvwV7l4uPtIqoJyjetumT6avLWLuPWjQZjTqie5PQSz4TeVDms0RSWF/Qum4rYd5PJnPoofb4K4ZAwlxnJj6Aq5y4n6fTRo0xGrIZYkWY0SdG2Fop2bmfre00iRcL3iSsMO56h/+3TiUev4SgpZ8uG9JyQh77HGlZN/hp4BnzxyH46C6g5XJbZC3nnmCRYVV5HtDpESqOQia4hbUgM4fhypuYgUFxicuGIOXTGXm5FvPoMgipQV5jPk7Rd1d5Fh77+uu9aM/PAtnY/+9F29zvKpE/RjUxAoJpmtZFBMElZUOgghLhb9XC14uVTwcoHg53zBz58FPxcKPi4XvFwterlE9NNZDNKMKFEEClQr2+RU1irp7FVSKFGt9e5EHQmVJkKUi0wBLrMEaCpIOBQL66Np7JRTcalm6tKJOlmxe95U3I5COlx5A/m/zKVh+z8RrCxj+7gv8ZcV4S8rYvf4LlTsWceeiV+QO/kjWvztCQTRRN6UTwm77IRddnImvF+Nh1zFhF12Dox9l0ilnUilg4LvPiBS5UCJhgiX5RIuy0NyOymb3QXJXYLkcVI+5wskT5xHY9w170skTwmyp4Sqn79C9pYge0vwLvoGJewDkxXf0m5IVUV6uewtQfKU4F4Y577Vw8i8+f1jOleKoiDXspxOOORqVRFz+BzxyiO4iguPcL4a9cqjegwZ89qjulPWmNcerbZuua2AclsBpfm5OHOzqzv1Fcac+mwF5BYV8/wzT7OyxEOeL0ygzElbyU9Hfzn+dcuwlhUTsBfS++VncBTkVXPtqyhxxr+AqiJKUazhAEn+KtKqSsgst5FaUUyST8snEk7PIty0HZEmbZDTs/ROVH2hBP2UF+ZSXphLOBCgWbNmdO7cmVatWtWtE3UKQhAEbnnoMTbM+UHLt2MvquZqVWkvZMwL9zLzizdZMfgrLMmpyNEIHkch8z55Bo/DhsdZyM+fPYPHacPjsMXLHTaWfPuK7iy6tv97yNEIVYX72TD0Q80ptLSIbWM+x19ahL+0iO3jvqqRbx3zhc63jPxM5zsmdsNkTaYybw+re7+Or9SGr9TGUoND6bKv/4OnxIbJbKVB207HdJ5qiyknKq4IgtAeeB6tweMUBMEXW47NbvBXgu7U1/djna8Y8CkeRyEeRyErB36mXwMrB3yi8xX9PtT5om7v6Ov+9PnLuO2FmKzJzPn6Td2lbeo7T1BZXEhlcSGT3nqCPXlFzN7v4Pl3P2RnhZ+GRLkmPcrNKQEupIrKeRMxuRwEHDaGv/xoNQe5Mls+ZbYC3Z0y6Chk9ZCeZFY6aOcr5Ry/k45hN42jAfL27yPHHyEvpRHFKVm4LSl6J6peUFUskSAZVU4y3KWY5CjB9CzcjdsSSm9U707UbwlZknSHQ815NY+Swny+fPz+mDur5uBXZiug0ukAQWDHwlm0veBSJrz5hObIZy/kx/8+hdteyIHlcxj7yF/ZNmMklz/6Bot7vK3FEKctFk8Kde6OXTNzPnkGt6PQUEeLPwcWTqUseyduRwGLv3xOizklNpZ89Z+Yg3FRtfJFX2jc47SxsMuzOp/f5Vk8ThtyOMya4V9Tum8blcV5zP7oadyO6g6lruICvnv7CdIaN+XRgVPrf0LVUyOunDpXaC2IKCpbygPM+PZDXvmiO50aJPH844+w1ullRy0JBq3JKYQDJ+alloSIjWRsJGNVFTLVKCmCghUVa2yMTAIURPwIhBSRMCIBRPyxkasT6YpnQqWFGKWNGCFFUAmpAjlyEg7FgnQKd5wSwb5rEylZTSk/sB2PowA5HESRJUSTGSkcYM+ELjS75GbSOlxEevsLjmtflsxmiJYUIiX7SWl70Qn6BqB4nYQ2TyD5vH+gRkOoihzPzG6AYDrGxrAKwunVV/pNIJpMupzqaAgrKnn+CCM++Zj3u/WiRbKVpk0a0yZmfjOg6zcoqkpEUfnm449okmFFNElYqhyIqoJoHHUBFJOFaFIqqjUZ2ZqiN0QSTeyuC5RQALmyFDXkRzSbyWzWgtQGjWiSdEq9iztmbFmxjHP/cj3716/GXV6K1xvR31CX5WVTmrOf9hddxR2fDWLDxIHHta+sjudisliJ+D21V64HdkzqRsRbideeh2i2JBzZEhPk9qkNtbVnTtT7GVVVCziV3/odJyzJyXVybXSUlrGhxM/GEh/ORdN58KlnaZps5okH4rl9/jFsIGFMyKrKlV0+plGLBlhEgVsH9iMtVTOeuf6F51BVFa+ksHLVatpeeiVVUZn+PXrxStfetDiWzhPoHaiUgBuLFEEWzfjTGxFJTtdlq793BNxVnHnFdWyaOYmsVu3xVZSSlqVNB3Ds3szaMb2wpmVww+vfkpyZdVz7SspshLvwIMHKshNx6DqW9XqP9lf8lUjAj7fUQaNWNSt8rCmp9d62Su1xQz0J4sopL+0zOvIZk5yFohKXJUdoaVHY5DeTF5N4HS6ryEgy0f2BW7j/g6+5+Jqr9fL6SvsSSX6OpVN0IjpSFhRaEaWVGMEsgFsRKVKslKtmfXj/WHEyS/umvXIvlz71MVW2A2wc+TWW9AaIZivtb7ifonU/0/qau2nz1/txlXsN+0p8Jx5N2gfg+LEL6RfdTXKbPx91W3WR9imxE+L96T0UXwlYkhEQUaMBMm56H2urIzt+FeMfrbe076a+K641WY8u7Vvw0pWnjbRv+MYDVCmmEyrtk6IRPrvtGl4fPZ22Z8Td6BI59ZkMcckaiz2iqpCGikWRMKsyVlXR5uuhyWMUQdDmgooiismMZLKANUl3sjIfgzPo4dI+NRKCqjJtfpVowtSwKc0aN9IbOtWc/YxufkfDKSjte/KK83l/8hzWzprO3KF9ScloQEpmQy6752HWThvDjS++z9nX/71aQs1Q2HBM9ZD2Acx//z6ueKkbma3P0L7HcUj7REFAVVXmvnQdciREUmZjIv4qVFnmlm+mkNVemw9mlJFNfOCiekv7bh28vlZp35I3/3ZCpH0nOwRBUD9etIvKqHBCpX0hbxXjnrqV5yYsIiUzPuekmvOeUYpl4IfqWAWVxmaVVFEhRVBJFbUpBgAmESRVQEJAFQ+95DUhmcy63NjoYnz4y5lESb8Pjz2WaJj0oBurFEEWTQRTGxBNTtc1ZcebLuJUkPZFgkHeu+ES3p61joWDurJl7jSS0jLIaNqSc27+JxunDOOWD3rT6vzLkAzTUw6X7R1CbdI+gGlPX8dd/eaSlK7Nrz4eaZ/JJBIJ+JjwiNZuzmjWGm+pltPwqfGLyWzeWpf2HUK3G8+uV1xp0O5s9eoPxh+1jr+0kF+63H9CpH3HilOu2z+x57fMGTkYgGl9ujF/zBAAfuzfnSVjtPJ5g3uwdMxgNoes7Mop4JLUKB2sMktH9GbRUE13vmR4bxYP60X+js14XeXsWb0cgB/6def7vt0AmNG3G9P7dD2Cf9+vGzP6dv2ffef6IBmFs4QQV4h+2ooRXKqZLVIqW+U0ylTLcXeiTmb8MqwrVUV5ZHXojK/UTufbH+OmngtofPblODYspPklNxFyl5Pzk3bNOJaOwb5kNADOZWNxLB1zBLcvHUfx4lEAlK2ZQumKcQBUbfoe15qJKGEvwYJNuNdrTlfe7bPxbPhO49vi3LdjNt5NGvdvn4Vvs5atO7hzJsGt0zS+40dC26eTctWziA3bQjSEuZnWyAnE6gS2TiOw/cdqZfWFLKu1LqcTLrcEaGeOsmLicBYM0eLDqokjWBiLFSsnDjfwYSwapvEV4wbrfMmo/vq6cwb1YOx/X6XFGZ3Y8NMMZg/qBcDMAd2ZNaQvoMWQ2cO0kYtpfboxe/ggAKb27srM4Vocm9CrG5NHDcdrTaV//wEMGzeRirRG9Bo0hKnzFuJJb4w3raGWoyU5HdkS70QdN6IR1HI7OPMhHMSU1QxL206YGjQ+bd4WH0LhgX2kpKZRtH8vt//nNW56/D9c9cAz3P7W52ydN4Pmnc7h7Ov/zoqRfdg8dQQA68b1Y+s0zZRo08T+bJ2q/aabJ/Vn44R+evmmiRrfOnkAWyb3B2Dn9IEEKpxY0zLZ/f0gds/Qro29Pwxm7w8a3/fjYPb9MPgIbqxTjf84mOYXXkfrK24m7KkgpVELALZN7MWOqQMA2D5tCFu/63/M56m2mFLXSeG/F9zTKIK8YS4A68f3Y/147d7fMKEfG2J848SarwcjN647/9u3SW/cjJTMhqwa3YdVo3oDsHJMf5aPiPHxg1kyXIs5qyYMZfEwja+cOIyFQ3sSUQVmjBvFsP792B+10n/0OL7pO5Dt0RT6jp5Aj34DyFWTGTlqNMP79SEomJg9bIDe/pk+oBeTe34LwOTe3ep1TsxSlIbechp5yzDJEv60LKqyWhE2dKJOdUzu1VU/P9P79WRKL43PGtJXP4cLRg1mQpd3adP5XDb8MIGk9Aw+mL+dS/71DJkt21KSvYs2F11F4eZfANj+4xj9Otn+w0g2T4rxGSN0vmnKYL3O5skD9PLNk/qzbeogFEUmEvCxf77WDtk2ZQC7Z2ltm+1TB7J71mhD+Rid74rxrZMHsHOmxrdMHsC270dgSUmj/ZU3ktG8Dd7SYlIbafNCSw7sYs2YvqwY1QeAlaP6sGJk73qfS5VTI66cctI+s9msNxZMZrPeLTCZzaix7rJotqAKAgoCY+Yu5tm7buXyDm2ouP5q5q/bEqtjosppZ+qX79PuvIv0RK6iIT+LKQEXDfMLgn5NEmhNSScU48lpcW5NTaux/HAe8HkRBYHktHSCsQncyWnpyJJ01GSQoE0wbYREM1GiMZpzTolqIS8i4glFSE4zVdumkYf8PpLT0ut49k8+RA5JMk0peEuLyWjRBtFsQTSZ9ZwpKY1bkNK4Be1ueZLceSPiK4umeLcyAVdFES2lAICAoLsxiqiKhOQpw9r2UoNNPKDXEeJcBQSzXizUVEcQQDBjbvonLG0uRU7Jwty8M5gsmBq0jNUxxfPwHGNi02hURhF+peyYpyAOFBZzXsd2PH3bDazdsUd7OyuA6dB9Lgg6FwycBLy8yEb2xjU89Gk3HDkHEM2H4pUFU+ya1JwfY2518XlaAAAgAElEQVSiZrOBW3RxgdliQcBYB52LCUbMjwuqCuEA+Kog4NWOKbMxZDY6Lme/Ux2bli7m0htu0h0ULTFX2I6XXMXZ192MKZaTTTSb4s8gkxk5dn8K5vj8U9Fs1t9sC4a4LhieZdGAD1WRsaY3QDS4vxpzQAkJuJiAC6KZ9BYdOO/e51nlqUQ0W7jksXdw5e5GiEmzBFFEFI7daS0aPXpMkWv5/PeGwpJyXr7vNrL9KpHOZ7IrVxuxTfgbmWvmokm7ZvYtnY1jzzY6/fXvR64riphiRiKag6QhLlnizxeToe0SdwyM1xcEDLz6dsw6N+m8trYJoBnfREOkhf0kR0MogoA3JZNAcjrmU2j+09EQ9GntkKS0NK2NGoPm5hq79wXRcA4FyottXPi3W/BLYLZatTaoAI3bn8WVj77CpumjiYYCsS0J8XanIOpcFePloiCiHnpOiSJCLP6IZjOoIuX7t2NJTUeISXdFU7wtrXHhCC4Y6hjjmGAyIwjad8vq8Ceannk2iixRlr2bthddxVnX3kJFfjaCEI91x9JNVtXa44pxRP+3wikl7ZuVVwJAIBqXT3hDRhlGnBtlX2YBzrVEaG2WCKkCdsVC7v69LJ48jr/c9wCdL75Mc4wxm/CLWidMTiAtMybXSyRZS5RMNlGduq5T3U9fpZlFpWOySrskhSQRgjLkhET2B0WCSt0v28OlJnq5UfJTh80Zv1Li4665/tFg3LfxWI3nyROQWNztbdpeei1trrlTL6+oCuvc543zvTsLdR40SPYAlEi8HnKcq8H4nAXV70LKWQCWVMzNL675wC2GpLfGnF+KITBIkZrLAazx9YUE2wov/7ze0r6rv15Yq7Tvl3f/evpI+3YU0IoILQljFVRkFVyqmTLVjAszUoJ7qaYkhMunTWTBmGE8/XlXzr/mumqfQQKHPRI7WSXipsPcrmqqkygx+OGfiYqMEPAiBjwIUgRVECEtE6FBE72Rnkj+Z0QTa/0fleURY9wzOFjWV8JnLE+wr8OfdYnkQ8Z9B6JR3rn3Dh56/W06Xh5PyGuUkVf44w652fb4nDi3N15ufNgfLrsJBuLPM583QPb4/5J51uVkXBSPY0oCTamxQ22UhybqaKekxlNnJCdX7xxbDWYhi16+qt7Svmt7rDxqvJAjQdZ+dOtpI+17Z+EeLs5Q6JyqkiRCWIG8AGQHBIpCICVoH5oMDzxrLHasmzCQ3NWL+Ps7X9Hq7D8fMfWgWjLmam6btfNEcmPjPqzGYzLVHJOgemywqDJpkSBpkSBmVUYWRAJJaQSTM1Bj9RJJjI8XiaTZ9ZX2JYpDibZ/+Hcw/m9cxx2K8u4tf+G1gSNp3OFPenkoamjThOJxoaA0GF/XEFeM6hHjsUaj1Y8vEomyscdTtL/pMZpceGONx268/03VrgOj5K/mcrPhGkqyGq4Bc/XrY8x9f65XXElv01m9+I2RR60TLLOxufsjf0j76oqPH7435tqnuaCUFOZTaiug1zMPUmrLp8xWyMDnH9Zcs4rydSeuUlshLz/7NItsVYQiUc4wRbjp3DPp+tUX3HnxefyJIGcRpIPko3PIReMqJytGDKjRtW+swbVvQpf3KLMVUGYrYPxn7+h8widv6s5d4z94hfKiAsqLChj91rO6u9fIl+MuYaNeeRRXzF1w7OuPUVlcQGVxIRPffJxoOGQ4AyoNzSoXpcnc01jiliyZDkkK9ojAkioTP1SY2eY36Z2oaChIpb2Q795+gkp7oYEXVCs/VbF+8jDduWhZ3w+xbV1NwzYdWTfsc90Fa8f4LwmUFREoK2L/d18RLC8mWF6Md0V/3TEv9EtfFF8piq+U0IruKP4yFH8ZkTV9UPzlKP5yIusGoQQqUAMuIlvGoASrUKoKULzFKGE3athD9OBclJDHwKtQQ26i+36M8Sqiu6fF+d4ZGg+7iR6YhRJyazz7J9SwW6+jhqpQgpVEdk5GDVaiBFxEto1DDbqO6bxFo3Kty+mEUlsBbz/zBPMKKvjF6WXRsuVkqBHONYW4OFxK+1A5YWcR/f/zEGW2QspsBTFeoDtcldjyKTqwj+++/YxH/vspTdu01Z1FHbqDk8YPuY86CvL56KF7Y458eXz44D9xFORhz8/j/Qfuxp6fhz0/n3fuv0vjBXm8+a9/UJyfS7nRte9YoCiIQS/mCjsmZx4mT7k21yqrOWrLM1AbNqvR4OR0g6u0hPz9e7jgymvwVlbqv6nRibGiqDDm7lhQzdXKX1rEqm4v4Cstwl9qY23PF/GXarFoQ5+X9Li0c8S7BMuLCJYXcXDK53hyt5J55iUU/9STSKWDSKUDx/y+RKocRKocOBf017n95356naK5fQhXOghXOiic2UN3Hy34/mud7xv3IaGKYkIVxWwb/Kq+3+2DX9WPZ1O/l4/pXP0RV6rDZbexZH8xT77XhRn7yzlQ4aeNGOTOZiqPt5Q4q3gdoqsYj6OQFf0/1t38lvT6QHfqm/f1Wzj37WDbj+NJbdSElMyGVNoLmfT2k7pT38Q3H9cdRMe+/hgVRfkGN9FC3U20ItYOGfJi3Fl04PMPU1ZUqF/Ph9o2PZ5+sJrLnLMw3u5yFOThLMjns0f+hbMwv9p3FlSFtEiAZn4XLb1lNAj7kEwmKtOyKG3QAl9Kpt6J+r3AXVGuO/V99uj9emz/5JH7sOdrbquH2q6HyrevWEIkFGLSN59RVhR/jpQXF+gOii7Db2p06jvkurmq2/O6M+fqHofiTFEsztgIlBWxsa8WZ9z5u/E5cklvezbB8mK2x+79gJHH7v1AWRH+smI9Rhljl7+0iDUGfii+eUttLP9GcwH1OOOOf26Hwa3UWcc5tAaoqlprTJFOghGp0+pJWRqS+GFnHuP/+zLtO3XmkQ+/ZM20sfzfI08jqyrb5/7Avx95hKZJFl578lHKQlH2eYK1b/hXRqZJpZ1VoV2STEOzNjHVERHY5hOxhQXk3/G8p7pAVVWcu7fQ+s9XktKg0f9sv0JSBmo0iBpL2HuqQI5KqIJUe8XTDCpQHpaYOHEywTMupGmyiejBXVx7zdV0SLeS9NzTBMwi/hpeJZcX2/i+d1eS0zNoE0vmetJBVRDDQUxBH2LYj6CqqKIZNT0LOTUTLNYT+lb4VIcUjdL9tee549GnsCYffQT3REEQBKwNmuLJ3fI/2d+JhBQ9ekyRa/n89wpZlslzh8lzh9kyYxT3PfsS5zZO5cYrL+EWk5ltpX7yMzNqXDfkdbOo14d0vOoGpOBJly4L0DpPqVKEdClMqhxGAKKiCU9SOn5rCrJoPi7H0N8bZFlmSvcvuf7+h8jesvF/sk9LekNAxVOwh4y25/5P9nlCoNYeVyTpt48rp4W0z9g4mPjBy2Q0asKdr7xLSkamnjwTIPVQIjFVJUsK0UIJIgAOMZlSQUuS+b+R9ilkmVRaWxXaWBUamlVUFUqjAvkhgcKwSLjuo6O14lSW9qmqyorh3SnYvok7vx6DOSkZv0Eq82tK++Tyfci2XzC3vhqxQfsjD/wklfb9+YPZ14qWozcMt31xy2kk7dOuhUTSDUFRaSdGaC1GEIBy1YxDseARtATWiqLQ95l/c+7V1/H3p14gMyOt2j5+U2mfoiCGA5hC/njnSRBRUtJRUtJRrSmICY4j0fGdDtI+WZbp+vqLVFVW8OmoSZhMJlyBuDrg15T2la6fhWP5BNrc/zkpLbScTqeCtO+iTxfWKu3b2fXu00ba99bCvUD1Z7vRxS0ZhcsawnkZ2lyQA37Y44VSSQAE5GiE6a/cy0X3PMZ5f7+PtJT4b/dbS/tEVSFNjpApR0iRI4iAJIgEzMn4LclETJZqcaUujqGng7QvEg7R9fmnSG/SjGe+6okgCPjDBqfPX0naF5UU8haMoXDxRC7/72SSGjQ94thPRmlfaqtOaufnBh+1TriimL2DnvpD2lcfTOjxDT+N0E7s1N5dq7n2LYq59s0Z1IMlozVHrPlDerJgmOYcMrPXF+xatYR/vvURi8cNY/aA7kB1p76pvbsypXdXyk3J9Bwzib05ebRWQnSsKiLn5x9AVavVnzmgOzP7a9uZNaAHs2J8zqAe/DSwBwA/D+7JvME99OP5ebDm7rVwaC/dDWz1uEGULP6ei1Oi3Gp1cWvDKOemyPhDITb6TPzosrCoykx2yFTnTpSrKF93SlkzcbDOV40doPOVMVeVUxWTX3uAPYt/4rbPhrJl2jDdDWnblAFsizlQHZg5hAMztWsj/+cR5P88HIg54G3RksRFdn1PZOf3AET3ziK6d6bGD/xMdN8cAKS8FUg5iwCQ7RtQgxWYml2AVLINya69WZJKduhcdmxGKlqj8eINSIWrtDrFG5FsqzXu2IRUvE7j9o1I9vUxviFex7YaqWClxvNXIOWv0HjukmM6Z1JUqnU5nfBjP+1eXjBmqH4vLxo7TL+X548bRt9+/VgvpbFm517Swj4uNAc5P+CkQe422vhK+Pcdf+eua6/igmSFFs4cOlQWcV60is7+ElqWFdA67KFo2XzWTZsIqsrEnt8yfbDmqjShxzfMGKJdq+O7f830IZqL2thuXzE1Vj6665dMHqRd2yO//YJ5UxJke1dVxEgIs68Ki8tOUkk+1qoSxEgAOTmdSKOWhJt3QG7YDDUp9XfjlHUioaoq3772Aq6yEj4YMhpTbHL21uXa/TatTzcWjtEc+WYO6M6KicMALZ7v+EHT82+ZPIB9szW++/tB7J+lxZx9Pw5m/49aLDLGpbx5w8idq20z6q3A0qApvoMbKV05TncKLVs1nrJV44/gxjolK8bhXD4WSOxEals4EtuCEUfsN2fOCLJnDTnm81ZbTDndzCZ+GdOXX0Zrz9e1Y/uyZqzG14/rx7pxffHLAj369ufd/mPY54OO1gj/agUPtVS5zLefs52beeOVl7j/qvO4Vi7izkZR7kip5O50D/c1CnOjqZSzSndxdrJE3rzvWBJz51s+dqDuJrp8/BDdTXTp+KF6O2TJuGF6+2Th2GF63Pt51BC9bTNnxCDdZW72sAGsnTyGplIQ68GddPSV0zLiQ3ZX4rWkYE9pSGFqYypTMomYraddXJnU81sm9fwG0JylJ/bQ+OQ+3ZjQ42sAvuvbg1dv+StpmQ1o2rYdM/oeeu4M0Z81SycMZ+4g7XdZ/d1I3XFx58wxugvf/jlj2DVjYIyPYs/3mjPn/tnDdffOA7OHcGCWxrNnDSF37nA63voU1szGZM/Qroe8ecMoWDxe53kLNX5w9hByF0zQtjNzCAfna+X7fhxM9s9anNn7w2D2z9Hiye7vB7FnlhZPdk4fyPbpWgzZNmUAmyZpz6/Nk/rrx18fqGod2isnwYjUKSjtS5BPo1q+kBqLsWfvpWHzlliSkqutm4i7fT4mzVvIk6+/TWqglPtvvoEAPkouPJ/t2TmHH07iY+DIcqugcm7HtnRs1YLLUsLc9vITWMxmJFVmt62cmSvW0eCa27HbHDRqnaFv6VhR/QVKgnN4iqEsdz/l+Qf58+33k5zRIPEPTwJe/UdKUD9BeYyKTc9DdmxFkQtQm52Pqio1Ci3rf5rrcAzHiGhURuT0atQcDw79dhFEFq7dxOxlq3ji5dcwuWw0a5RFkknh7jvvRFJVRFSKq9wEQ2E6XHAh+3Zvp0F6Gp0zMrnpqssBkAIV/OOvfyHPWYKgKtXjT4J7syYuKDKiHMUsSYhSBJMUxiRFEGKfK2YLclomclIaqjX5tGvcHCs2rVjKwV07GPrzMhTd2SwOtQ5x44g6Qj3qo5LW6k9U7ViIObUBqe0uQJGiJES1kFb79UOi8uNEbXOglNOsI0Wi+/qwZ1BZlYdlFQJ9vxvJFed14rZbbqZ108Z0bNaIjMwMAqEIlR4fbkmgIKcASZZpde7F+JxldGjVnCZpMhc9/E9cHi8VSVHsrVuSY9Pmo6iJElQdBRlpqaSrEhd1OoOmmRl0ljz8+bEHMZtMqHIQp9XKmu3baX/13xg7dBSPvvPBsZ+j3w1qv78K9u1BkSTe6D2QKbGXZUduxrCuUvM2E7dzEhyOIQA16HA+pduXk/fzcGQpihBTt6gJ2q41tXmOWn7Yd4+PYB1bnDk0R+poOBnmSJ020r6Dm9cx6aPXeHfibLJatNI/q1HaB0e69qkqDdUozZUgaTHxSFgVCCISQZPaSYCCQFTRLlsRFVQVM1rHyYxKiqiQKqgcylOmqOBRBMqiIk5JpFwSMahG6iSRO16cqtK+Od0/JrN5K65+9EU8BnnM/0rap/NAJbJzC0rFPlBlxAYdMLW8HCG9WXw7CaR9arAS2bYGxWdHzGyLmNUJMSN2ff5K0r6OL0+9VrQkHbVeTt97/pD2xZAoCa9JhE0LfmL2gB58OnUOaQ20BJlJh8kZDv0vqgoZqky6FCZNDutyAEkQiYpmFEFEFkQwSvgEAUFVEFQVE6rWeYotxh9dRUC2WFEtSSiWZGRrcrU0DYejLvKa01Xa9+7D93Hd7Xdyx8OPE4jGOzD/K2nfIXgrKihZNgrPvlWgKmSe8zeaXPso5rQsvU4iaV/U7cCxeATBklwyO11F1gU3ktq6868q7TvzjZlHjRdKNETeoAf/kPbFkChfn8kksGPWBPYvmc0DfSdjtmq/mTG5qVF2lySotE5SaWOVaW5W9OelXxEIKAIRVVuUavew9hbdjIpVBAsKVlQsglpNpiQDAcFMSDQTEMwERHM1y/OjufYlkiufjtI+VVV58x838cg7H3Dp327EY5Dz/a+kfYcQqCjh4A99cO1fjyCaaHHFHXS49RlSGzbQ6ySS9nlsB9gzvT/BCgetLv0b7a65g8w2Z/1q0r6k5meqbR8+ev6pSKUd27iX/pD21RUfP3wfzsJ8XMWFfP34v3EVFRIoLaLvfx4kUGojUl7M0JceIVxeDJUOxrz2GFQ5CNv2M/K1J3j0/Y9onCzQqkGSvjRJiy9pVou+ZCTFl3SrifQkM1JyCnlJDcm2NMBpSsErmDEL0ECQaC1E6ChGOFMMc7Y5TGdzmE7mCJ0sUdqZozQSZZIFhaAiYIua2RYws9JnYbY7iSXeJBYddLAjx8ao1x7THQLHv/EYjvx87Pn5THjjcYry8ijOz2Pim49jy8vHlpfHhKPwwoO5FObkxsrz4uUGbsvLw5aby/jXH8OWm0tRbh4T3nic4tw83L4gvrB8xBKIKjUukhxforKqL7JKjYsiy0x95wndec/If/joBZ3/+MUbVBQXUlFcyMyvNHdEZ95Bdi38kabnX0VRTi6Len+M7UAOtgM5rBjwKUUHcyk6mMvaQR+TvWUn2Vt2smnYRxzYvJUDm7fimvc13r1r8O5dQ2DhZ0T3LCS6ZyHB+R8j7ZqLtGsu4cWfEd31M9Kunwkv/RopZzVyzmoiawcgO/egOPcS3TEJxeNETG0F1gzE1tcDItG905DyVqKUHiC6awqyfReKfRfRbeORnXtRnHuJbJ9IdP9PqFIYRCuqoiLlzieyZxqKKz++fede5JJ9RLaOQSnZh1yRS2TzKJSKvGO6jxRZqXU5naBWOhjw/MNQ6USocjLohUcQ3SWIVSUMefERLJ4SLJ4Shr/8CBZvnFfu28q0bz6hYaNGpMphcJXQ7z8PI5WXIJWX0OPph5DKSwiVlvD1Ew8QKCvDlJyG1KgF7iZt8TVoTjCtIYo1BasokKJKZEghMsM+MsM+MsI+UkNeUiJBkuUIFlXGbDIjJqdCRhZqw2aoTVqjtugIbTphatEBc+OWWDOzSElOIclsTrhYTCZ9MYmivgiCoC+Kqta4RGW5xsURlPSlJCTXaZEVRV+MMB6HEaIg1L6Avqiqqi9H+x62gnxe/eftbF2/lh0b1jFv6mT2H9jH5p17ePO+O9m8Yw9rNu/jo4f+xZrN+1ixfg9fPHY/K9bvZv3GffR/7iHWb9hL9q5sZn34NNm7sjmwdTeLv3iW7G272bNxB0u/fJa9G3ewd8M2Vnz9LHs3bGPvhm1s6P8aOdu2k7NtO7vHfoJt7x5se/eQ/9MAhLP+Tsb/vYOp1cUE/GFyR79C7uSPKMk5QEnOAfJ/7ElZbjZludnk/tCd8vwcynL2cWDkayjJjWlw7bO4c7eRM/G/OPdtY9fI93AePIDz4AE29XsJ58H9OA/uZ1O/lyjNPUhp7kHW93rxmO6jP+JKdSiVdpRKO6v6f4zgtiO47awZ9BlClQOhysG6oV0QPQ5Ej4N1Qz7T+aIvX2LLlKHc/uoHrOjzEUKVHaHKzuwuLyO77MguO9Peewq10o5aaWf8209SUFLCals5j730KmtLveytCrJ143osSoSGQoTmkpczLVHOtETpaArTTozQXAgjuBxY5TDRaIR1a9dgD0TI8UXo2rc/m90h1rsCPP/cc+SUV+EoK+OrJx/CU+IkxWIhxWI5Iq5YTaYaF7Mo6ovxXq0v6nT/C0LC/dW3vjE2GssdebmUFBZQUljAt/95Qnft++TRf1GUl0tRXi4fP3wfBTkHKczN4a27b8Vd6SK9ZVs+fOhesvfncHD/Qb567H527M5mx65suj31AOs372X9pr30ePoBtmzex5bN+xjywsNk787m4K5sZn3wFHl79pO3Zx+Lv3yWg9t3k7NjN0u/epac7XvI2b6H5V8/R97OXeTv2s0v3f5D/q7d2HbvYn2v57Ht2UOZo4yAu5I293Whzb2f4dy8mPVdHyVn5c+s6/kCjgP7ceYcZE2PFyjJPUiFrZDV3V+k9MAe1vd7g0CFk07/fJWQz8/Szx6hNCeb8sJ8ln71HOWF+ZQVFrCgy7OUF+ZTWpDH3E+eoawwn7LDHB7rBLX2uKIqv31cOQWlffXH4u/Gk57ViM6XXnFCthcWTYTFFEKq0XhCQVDBhIokKahoo1OBGAeh2pup8EkwHHkqw+8qx2SxapK+kwSCYEIwWREanIkSLEepOgDqUYal5RCIZsSss1HKtiJmdkCRw6i+YtRoAMGS+qsc5x/SvhODmSOG8Ld776dg3976ryyISEkpSLFkrmbj21tBiCdHTPBW91RyiTyVUFpcRPO27RBNx5bs+teAmJqFYLKSdO4dmJp1JrRxLNGS/Via1+wO6duzCNGaQvoFtyEIApZGbTBnNse9dmLdEqgeI/6Q9h0/VFXFsX83V97/JJnNWtZ7/VAojDMYpSQoMXHYSJ78ojuoKuO6/JdnvuyBisqYT9/j+a97AirDP/6Yl7/tBSoMHTOOV779MwgCO/bs4a+/kgLmdEQkFKLVGZ2qGXD81rBkNAEgqXEbMv70Fwpm9SapUeJrrmDJJBqdfTnhylIyWp1JRqszcWxaxIHZQzj7nud/lWOsi7QvGv3t29KnlLRvdn4pUF0CEjG85YrUMFTuq6rkvVuvpce8ZWQ1a14tmRwkbpyoCYZ9jfsLRY0dqZo7SUZ+tI5UonrVZAGycZiZWmHU2AoJ5HsAxo+qDbUbPkgkrzPCWKeusr1jRf7m1ayeMIQ7vxkLQKU7Ls8zSvvycst07q6M28dW7Nupc9UbrwPVJXzI1WV/9YHiKUTxFWNudXWNn0tFKxEbdkJMjwcvVY6gVB5AcecipDTF1OQ8BGsmQlJ6fMWUTJ1GNg6ot7Sv+RPjrhXMR5f2OUc9eNpI+w7FFSNqi4uO/Dze/9c/GL5yAylp6Qnd9Q7/P1G8MSfoMJ0sHan6vj0+lrfNiaWVtctrEkpzjiLHqWlbC6dPYe2Shbw7QDOQsLvjkhpbZVzmW+GNxwWvPx5vSivi8j9XuVfnAYN8WDqsYWA0dwmH47KdcCha4zrRA/NRfOWkXfkEFotBZmXROn/O716jyS1vYm12pv6Z7K/EvXEagZy1pLa7kCbXP01m87jEHao7+q3/8IZ6S/taPDOlVmlf6fgnTxtp3xe/HAQSu/XWJA+z7dzEvO4f8dK4eYhmczUJXyKnvcM/S8Trm2DXGGPqKsc7HtneiapzOBLFjF9D5pdI8vfj0AG4yit46P1PAagKxO9tpyceG8oN7ZiAYdpKuSseezzeeEyKhGqW+SmHjdIYR4PlBI3HipWjMadm0vKvD2NNjsvC01KTUWSJlR/ezl8+nkRyw/iUhUBZEdk/DaMyewtNz72S8x58i4yshvrnh0v7vnv44nrFFUuTM9Qm93x71DqS20H5jDf/kPbVBxN6fMPMYZpLyaSe3zJ7hMan9u7KT8M1J5MZfbsxa4jmEDL0vVdp2KwZWc2aM7V3V91Z5WTDmolDWT5C04KunTiEVaM0vnHKcFbHnH+2TB/F2rGac9fWGaNZNy7mUPd9nG+dMUrnW6aPZH3MxW7zd8P08o2TBul8/bh++jbXjevHugnaOVw7ti9+V/UOxolGJKjNJ1g1uo/+fevK108eRuMzzmHDhH66U9/O6QPZOU2bxLl/Ztwdy+hq5dkwBc+G7wCQ8pYh5S3VuH2D7pgnl21HLtuu8Yo9yOW7YnxvnLv2Gfj+OK88oHMl7EYNlKCqavU6FfuQynaihiqQQxV6uVSxG6XyAKYm5yNktEOVgsil25GKVxHNX4KqSEglW5CKN2j1i9Ye03k3yqkSLacTxnfXXJV+GDbQwAfpbks/DBuo8++HDmBCj69Z9uN0WrbvwPRBWpyZ1KcHY7t9BcDobl8xuuuXAIzp9hVjYuuO6volrrIjO21/4LfHDyM157pZY4bj97gB7VmzYLQWQ2YO6M7a7zRnqmUje7P1+9EArB/fj92zNb5tygByF2hx5uDsITiWTwKgePFoSldpvHTlON1tr/yXCZT/onHX2km41mhOjMYYZXQWDW2fQWj7dMzNzyZcsF4v926agneTVr9q9VgkbymWph2pWjeJqrXafr075yEmpdPu0b5EKgopnvEJ5Zt+Im/qZ9gXa+6CtsVjdDe/Y0FtMeXwxt3vHYuH9dLd85YM7607sC0b2ZtlIzS+YmQf/bm/YmQfFvb7kovvuJ/lY/qzZHivI7azYJiBAIcAACAASURBVGhP3YVv3uAeusPb3CF9dBfiecP76y58c0cMirvwjYy78P00YjBTemkN1JnDB+vtImOsmzGkvx4Ppw7sw7juWnybHnMSPd1hdOczuvZN7tWVyT21czu1bw8m9/yWvN27KLcX6ed/0ejBumvi2u+G69fAjplj2ThBe6bs+Wms7jyct3CC7sJXtGwShfO1+9S+YhLFi0cB4FgxAfsSLRY5DnPsLFmpxZmSFeMoW63FitKV4yhfO1XnUb8bX8FOihePpni5Vqdw/kjyF08gUFoIqop9w3wg5gQ4fyypTduQ0qglLS+7ibDXxdoeL7Cq52vY1i9k57SBbJ+qtSe3Tx3I9ikJDDaOCvWUaK+cch2pw92Naio3ckfuQdp2OruGdX8/SGSmQgKnoDq5hJ0Ad7g6oy6ONIdxv6ucpmedd5Q61MwTfnCCvq/hGASTFQQRxZ1b80R3U3JC6Z8gmhGSGyNY01GlMGrEQzR7JmrIYHgRObYEjVJUrnX5A3HUFFvW/DyH9mefV2OdRK5Nv9f483tCRWkJjVpoI8QJ3fkSOYIel/NV7ds8VG5u1B41EkB221FVpXp9kwVUUKVIjeHNktmUlDbnI5ithErzCZXmU7l9Ab787XrVqv3rOBbUGldqSGT9e0aiZ2ui+KAoChWFuVxw052Jn8WJLg2M2zFWql8jU01wnSd2qjyNUac4oPHcXTvIata89k0aOgWJT3kdYkWd3DurbyapYXN8tj2EK+2GetrfpMzGyNGQXl7tmhTAmt6Ac//1GgBhbyXZ8ydT8MtPBKvK9eOpKjxQ85c+ClS19rginwTTZH730r53bvkLH46eRIv2HQH+kPbVgFNR2jfmmX9w/ZtdaXKG1kk+GaV9AEqwAqViN6oUxNTsEsTUeCI8qWiV5tKX1qLW7QhJ6Sg+B5J9HWJaM8QWFyPlLoCwp97SvrT7htYq7fNNfeoPaV8CqKrKv8/tyITNu0lJ0ySXf0j7jq8+nBzSvnvO7cDgJWto2ES7T09GaZ/ZYiJi30lg63QEFBpc+zyWJh3j0r6pb2rSviYdOBxJSXHJTkqqFVVV8RxYi33+YLLOvorGF93EwSlfEPW66i3tS39gzFHjhSqF8X//wh/SvhgOvx5DPg+DH7yB9+dt0cv+kPbVv87h+K2lfeFQkCcvPocR2w7qc6RORmlfaqqVyt0rsC+bgCW9IWf+611SmrQhLTUZgOXv3cx1XaZjzcg6Yl2LJf67JCeZUBWFgtVz2Dl1AGdcfxfNzr2MdYM/JuytqldcMTXqoKbe0uWodRSvk8C8D05uaZ8gCC8LgrBDEARPbFkrCMIdhs8FQRC6CIJgFwQhKAjCckEQzjtsG6ogCBFBEM44rHysIAhz6nqwG5csJOD14ve62bR0EQGvl4DXw5Zliwj4vAS8XrYtW0zQ5yXo9bJ16SKqSp0kpaRWq3MyospZRKXdxtzuH1JZnE+V3cb8nh9SFeOLen1Elb0Qt8PGkr6fUFWs8WV9P6HKXmDgtjh3aHx5v0+osufr5W5DHXeszpIYr7LbWNznY9x2Gz5XKVtmjCFQ5SJQWc6mGPdXVbBx+miNVxp5ORumHVkeqHTFuXFdV7n2He22+PeN8QV9PtH5wr5ddL64/+dU2W2YzBa2Th2G22nD7bSxZXx3fCVF+EqK2DWlF/6yIvxlRTgWDiFc5SBc5aDyl1FE3SVE3SVE9s9FCbhQAi4i+ctRQm6UkBupYDlKxIsS8SLZ1yGFvSgRH1LJpsO4L0F5dY4pCSypkHkWsnM90fwFRENu5LAXNVyJLIVqXFeJ+KpxKeRGqcrF1PYGFNGCtHc6YpNzj+la+2NEqjoCXi8blyzE7/UYuLvG8oDXQ7ndDqioiqKX+zxa/fWLF+D3evB7Pawz8LWL5uP3ek47edPJDLfLxbShA6iqKMdemE/Pt14lKTmFwuz99H/vdZwF+ZQW5jH+s3cpsxXgKi5kTrcPcNltuO0FLO+nxUxviY11Q7vgLbHhLy1i14SvCJQVEaqwkz+zJyGXnVClHfu8voSrHESqnJQs6E+kykmkyknZksFE3U6ibieVq0bqMcq3biyytwTZW0Jg03id+zaMx5TRjPTrXkKwpuOa/zXuNaOpWDmSiKsIJeTFvekHfZsVy4fq3LlgoL7fgtm9iFQ6SG7agbT2FxANeNg3+l1SmrY/pvP5R1ypDldxAa7iAub2+RxXcSGu4kLm9/sCl92Gy25j4YAvqbTbqLTbWNDvC4r37CAlM4t5fbrodX7q8Ym+nR+6fkhFcQEVxQVM+eI9yosKKC/SeKktn7KiAiZ9/h6ltgLKbAWM/+xdnAX5lNkKGPPJu5TY8iixFTDyo7c1Z2BbAUM/eAtHQQHOgnwGvf8W5U5HtVh3eAzcsGQhQf+xKSF+T7Dn5uhOfUM+eEfng95/E2dBAc6CAob89y0c+fm4nCXIskRxTrZ+/sts+ZQXFTD58/dwFdv0tt+h9syKAZ/iMcQWX1kRgTIttgTLiwlV2Dk4vRuhCjshlxZngi47YZedwtm9CMe47afehF12Qq5iiub2JVzpIOyKxyIjD1XYcWdv5IwHu5DR8QK293mKwgWjCJQVsXPcp6iqgq/crsc3Y6zzlRSxbeyX+MuK8DoK2Tz6S5r86RL++k4fCtbMZ3W/97j48XfrfZ5VVa3DSPdv/0yti4VPEfA+kI3W8XoCmCkIwqWqqu4A3gPeBp4E9gOfAosEQeisqqqx1yIDXwMPHevBXv/3O4iEQghAmzvuQopG8Xs83HbnPXqdzm00LgoCf2p9DwPf+A9/atuW8886C9DysiSCnOCtRPURqfjDINks11gnYBipCkbidQKRxD+4RRBQBBWPsziWi0HjgiCiouIpKY7VVPE6izSmKHhKilAVARUFj7MIJXZRuZ1FKLKCgIC7pBhZEhBQcDuLkBUtaawnVkcBPI4iJEkrdzuLiMoyij9A7vrltL/qBsyiSO76FXS8+kYsJoHc9Svo9JebMJsE8jes4JzrbkYUBfI2rOS862/BIgoUbFzJhTfcggo6FxEo3LiSi//vVlQV/KV20pO0/ryv1E5qLBdNuLJc5xGfm0Mv4AJeH6GohDWjIb6qSipjeaI8lR7sDm0kyVVSgXLACYDf40FxVsW248XrjuVpkYIIh2QPkh9B0rajht2IcuwtT9SHKAhavp5o4DCuIiDUUF4zN2WdDamNkIt/gYodkNoSVAUxuXGN9fWrNMYFQUCO+jQb1vbXEo16MTe/gEjxMchwJIlTUNX7q+HMli1pddOtWCwWrElJtL/tH4SDARpkNeLsNvfr9Q5xV3kZ/8/eeYc5Ua1//HOSbC8UKdLEiuVar+Vnb1iwXSteG6Bi12tXFFR67yBI7xZ6EVARBOkgSFdBtvfeS3aTnN8fZzKZhIQtLMjCfJ5nn30zc2bmZJJ5c86c73xPWFg4F7ZqDcCFjz6h3ym94NEn9LlULnj0CUDlovO0uHmoxw2usXGaJ5lkiBMMcYBZ24UhdQtDw1e00cNcnzlcjXM2BdKVV2dUyKsaAfKpcdva2hzrscFBz7hfGeAYxjLlhnztcHo35LPzctn0809c1f4eiu2VJMbHEtGwEfsOpxJzOI4/0otIz68gPiaeAynFlJY7SU9MJCWzlIpKFzkpSeQV2HG5VM4sK3ciBJTnpmn1tlCRn6HuQjsllfkZSKcLp8NBRUE6Tof6bCuKcigvU3eiHSX52MtVXFlWjCxReclZUU5FhSrvsntiEX4GEZc/Rtlvs8BhpyQkEmv0mQir5/sh7SX6HFOusjzcch1HgWcktrIolwv++zFt7upE/PLxR/toAnO0SYOrs/4Uo0V0MPbSUoIcZbRqEExFeTnBjlLObqTm79qPg7ZavJdKmoYLQoJt2Bx2zoxWyUHYi2kRrcq4ivJo3VApCcpzM2jdUI0UlGan0rqhcv8syUylZXQoAkFxZiqtGkQAUJSRSsuoSKRUcdOICFQbI5Um4WFIJHlpKTSNiqZR06a0NrSpWj34sOc9PfCfYz4v1VFBeY2GBShT3bwScE6pAHUKNDpljC0Wi67Myc/O0rfJSE6mWBtVTk1MJK3QjhACq9XG3r9TiTyjGfEx8TRNVs+HJ8TG0zijFKQkLT6BZnnq2s9NSaK4tAIQ5Kcl0dylppEpzU7F6XSBhPKcND0PlOem4TDEdnslQgjsuelUVDhwOV3Y81R56XJhz0vHYa9ECAsV+ek4K51UCEF5bhqVlS7OuPJeCg7tJHvPL1BZTn7MHhq1u4bgyGhKc1JxSYnFKijLTUVYlMlsWXaqkhVjoSRLlQmNakRk89Zc3fkjgkJr4UKstH1HL+MI8Bt5AqmVtE8IkQt8CkwCUoEvpZT9tXVhQCbwoZRyorZMAkNRHa7rpJQ7teUzgCZSygercUx53Z13s2fzRoTFwlnnX0BybAwAb/cfwj0dVf/M5XKpL7l2kT113WWMnL+MVmerwbC67EgZJYY17Uj5SvuM5Yzryh3+pX1ew7hekuhqJKlqyvysAWQBAWUEho2rM8mvL4ESnvF8FJapi2bd2N7YmpzDee2fBCAl1SPHy0zL0+P8PM8EmUapjDP9bz2W+alex5P243fHTbqcONO2Issysba6BUtYk2ptZ3TtEw08Wmv7piE1lvaFdBhys7AGH7Vc+Yp3Txtp35XX38ife3Zhs9o467wLiD98kKCgYPpNnM4td3fQ5yFyyzKklNzQqhFr/04hLEI1VI42Ya1xXX3tSAX6naiOxPB4TbQZSH4dqCNl9/nBNU62W6h1Xka88SIX3vUoF996NwDJuR6pnlEybDfka2MuLjaUMeaewnzPRLsVdu8PxjghuFHaV1Zqxx9uCR+gu/bJyjJKfhmKoyCFxg/2JqKFR/xhnKjXZnD5Cwv3zgERUaF6vKXb7TWW9oU+MKpKaZ/9p26njbTvrIv+RXp8DNagYJq1aUt6XAwh4RH8b8xkzr/yahxOpz5XmtMFJQX5dL//ZkZv2q/vx/j7GhrkySuhNm97fmsA+XCgOJDs7kRIhk+FjlRFgLxinEQXoKBMlRvZ+WFufr0HLS66HIBcg5yvpMzwqIqhjWjM0eXlnrigwJNXykrshvKG9+AzZ5vxuTmXT4fQTUiIITdEqA57ZXEuh6Z9iKO8hH+/O5mo5h6H4UCT9gYb8lNYqPf39OunrqxRXrE0aCNDbvnwqGVcJVlUrOt/ckv7jAghrEKIp4BIYDNwDnAmsMpdRkpZBqwHbvTZfDuwEBhS28pmJCex+EAsC3b/xZu9B/LNtr2MW7Ga8b26k5YYz+hPP6TLLdeQmZKsb9O8VRvSkxJre8gTxobZX+kuPZvmfMWvU47u2rd70TTdkW/Poum6c92exdN015fdC6fo8e/zJurxjm/G6eWNrnfbZ4/mt6+VC+K2WaP57VvlZLV15mh++24SAJunj2Lbd8oxZsO0kWz9Vjk+/TplJJs0V6tfJo9gw9eq/JpJI1g/+ys9XjdDubisnjicNVNH6bE/dyNjbHQ32jpzNDkJh7EX5nJgwTj2L1D7TFo1RXedMrpgle2eT9mueQBU7F9Ixb6FADjif8URv07FGb/jSFfadGf2foPDXu1d+7yWa7GwWCGkESLqLCxhTXDk/unl2qeXN9Yhez+OjN2eeiZtVnHCemqDdFRU+Xc6YbMFsS42neV7DvLBgCH8dCCO0d8u4vPXXiQ3O4tuLz7Hc+1vojBfddCFEDRv1ZrUepBXTAIz70uVV2cPHcCS8So35qSmsOsHlR9WTxzO7gXKEWv77NEcWDYDUO58B1cod77988dxaKWKDywc5+Xal7J2NgDJP08la9M3AGRtmEWOlpeMOcrovGfMV5UHFlG5f9ERsX3vQux7F+jly/d/T6MO3Qk990bKYzYCeLn2GY9ldAtMN7h7Ja2apruB1Yaq88rpNSLlqKzgrmdfYODydbQ6vx13PPUcz/caxPBXnuPbwb0Y/tIzdLv3JuYNU854P82YSEVZKaWFBSweM4TFo5Xb3sLRg1kwSrm9zR0xSHfbM7rGfTNysO6w9+2Y4bqD6LdfjtQdRL8dN4opA/uoePxoJg/orbYdN5pJWvzriqXH/bycKsweOkA/50anvkWjh+hOiT9MHMmKcUOJOqMJuxbPZqPWltu7aCo7v1aOfH8tn6G7DR/+cRZ/LFRtsJifZvPXIjU6HL96DoeXqXZU6q/fkLxKtbsyN31L+roZKt74te5OnLVhtu4OmrVhFtmbVB7I3jib3G3KqS9n0xxyt83Xl2duUTkn49eZpK3/TsVbFtPkyvZc9fZEUjcvJm6VymmHl31FzA/quIeWfMWh5SpP/rV4PH8sVlNHHFgwjl2aU9/u78bqDoQ1Q9aL9kq1OlJCiMuEEMWAHZgAPCql3IfqRAFk+GySYVhnpDtwixCiQzWP+4oQYocQYgdAQW4OwaGhhEdGcdn/3UB0o0a0veBC7n+mC51uupqYP/Zzza138q1mSQzQtt2FxB2sxYSZJzte5iuBnVj8b1u104tx48CuL1WXCRhXx1HwKHFJTgYRTVv5vPfqxOD3RV2ZY1TrbpsFYT262UPg/dduMy+clVX/nUYUFuRhCwoiumEjrrr+JiKiorjy/27glnvv4+6L2mK3l9Pm3POZP22Svs25F15M7KmYV05DdCcqKcnNSCNMm+S7OrmlWo5qgXJCdZz6AubzI8tbgsOwhEQE2Lbq3H7MVJVTXKdXXqmsqEBYLDRo0pRGzc/EagviqjvvIaJBQ36ePY0mrdoAkrRYpY4QQGTDxqTGHKqm61qAMsbR5hp+vvXEe+ykoDqfBVLicjpJ/ms/IZENarTPQA7V3hv4fxHYdTnQPgPX3xocSmjjM33qFmCfAdultfxiSVmNvFJPpH1CiGDgLKAh8DjwMnA7EA1sAs6S0qNNEUJMB1pIKTtoryXQUUq5QAgxDrgJ+DcwjRpI+0JCw1j6VwLBwd6ShOKCfJbMmMLjL71GcWEhL7W/ke+27yMiKpqlM6dwaO8euo1QoxamtK/+S/uyYv5kRa83uXvwUiw2pY+qL9K+2lKX0r7g2z6rUtpn/+WL00ba17Lt2SzZccBLHmMRgsy0VJbP/ZpOb7xD7ME/eefpx1i++yA2m41x/XshhOCN7j318m5MaZ839UXat2f9L8wdPpCuU5bp76u+SPvA25HPOKHmiZL2hdzZ5+jSPmcFFb/2O22kfe2uvo5PZy08Yl16Qhx71q2m/XMvcmDTryweO5Tu365ACMGsnh9z1iWXcft/OwGmtA/qv7Rv27J57P55BQ/0magvry/SPoDwcE9eCA7xfO9OiLQvuqUMvvb1o5ZxleZQuXX0yS/tk1JWSCkPSyl3SCk/BXYD7wHpWhHf0admHDlK5aY3cB7wbE0ray8vIycj7YjlkQ0a8tw7HxIWEUnTFi25+pY7+HGuklKce/GlHN6/74htTjby05LJTUlk1rudyUtNJC81kW8/6EJBaiL5qYks/Ph5zbUvkSWfvKC57SWyrMeLFKYlUZiWyHI9TmL5510pSEs0xL7L3eW944JUtc8CLVbHUrG7Dvmpicz9sAv5Wj2/eb8zeZor0ax3O+sORTPe6USu5jLkjnOTE5j+9nNquSHONZZJSeCbbq/o8eLe75KXkkheSiI/D/2EbbPH0u6OB9g1cwDFmUkUZyYRu2go5TkplOekeLlgFW+ZrLtd2bdPxlWcias4k4o/FyPL8pBleVQkrEHaC5H2QirjfkJWFCMrinEkr8cVMC6qRpnax9IndrnrZi/EVZZHxf7vkGV5VX+x/OGoBEfF0f9OI1IT4ikrKTliebMWLXnx3Y8ICg7mwsuuoOVZbVm7YhkA7f51GQf37z3RVTWpQzKSEunx9GOkJcSRnhDHuA/e4uaHnyAvNUnPS4VpSXpuLMpIYnXflylKT6I4I5lfB75KsebUt2HwaxRnKmetHaPf1F37/pr6AeU5qVTkpZE0twcV+WlUFqSTtvgLPUflrhqMozAdR2E6xevH6Pmq4rcpnny1c7oel2/3xCVbpujl89dP0PeT/fMYff8ZPwzT49QlfanIT6MiP42Y2d10d6+Y2d0o0/LngUnv1e6EVpVTTrO8cmjndjIT45nS430yE+PJTIxn2ucfYRGCq+64m1m9PqFpm7YU5+cz9q0XyEyKp0GzZqyePYXMpHgyk+L56oM39G2HvfaCcttLjKdnpydJS4gnLSGez599nLSEONIS4ujx9GOkxseSFh/HJ089Qmp8HKnxcXz05MOkJsSREh/H+x0fIiU+jpT4WN574kFStfidxx8kLyur6jdmQkpsjH7OB7/yvO7aN6zr0/rnNfTFp0iPO8zq6eMpys3W207zP3qewvQkCtOT+LHXSxRnJlOckcS6Aa9Qkqnc8DYNfY2STJVbtgx7ndJslVt2jnlTuYBqucWel4Y9L424bz6hIi+Nirw0Er79FHteKhX5npxTkZdK8nwt/+SnkbLgcyrzVXn3cvd+7HlplOd6cldZdjJ7xv+PsuxkSrM9+a0kK5ntI9/QHfy2DHudkkzl4Ldh8KsUZ6p2qTtnFqUnVX1ifZGy6pxyEihoamvdZQFCgDhUZ+pu9wohRChwC+oZqiOQUmYCw4C+2j6qzeQ1m2je+qwqy931+JNsWrUSgAuvuIrkuBgKcnNqcqgTTlTT5jRo3oJHug8hulkLopu14IFPBmMJUncWQyKjQUiQEBLZQA2bSkFIRLR2B0UQHBmNyz2BWkS0PlQVEhGtD7KGRERrd19UeSUo8MRSSrWtFLhQx0KqXYVERmt1acD93QYT1awFwWERhEY20PYvCY1SZaSUhEY1QCLAEFuCgnjss6E0aN6SBs1bGOKWPNpjiB4/8H4vPQ5v2BiJGjUuzEghN+EwF9x2P1gMdzuExX9s+IpLYdP3I0WQbiIAVn051mBPGUsQLin9xy5jGQIsD7Sty7Dc5beMsQ4S7S6ZVjeXBKyhtVf5OSuq/juNmLf5d8IjI6ssd/+TT/Prj2q2hn/feDO/b95IZWXNknh6Whqvv9CZ5MREEhMT6dy5M4mJiSQmptC5y7skJqaQmJRB5y79SEzMIDEpk87PD1BxYoYeZ2XVshNtoiORRDZQcpufv56JEIIrb7/Lk7ukwIXLkyelJDgiWgslQREq17mki6CIKLVPl4ug8Cjt+pVYw6IAqVyuQpVTGoAl2DDCbAvFnYcxjBRLQ36TwhhbkFK1MaRx9NNi8ezHmButhqFPm+fusgjxuGhZwyKVmkGi1bkWmHnFi4+mfgcIbEFBuD8Xi83qFVusVq68424KMtMBwTmXXUVhTqamhBLYQkL08iFh4XocERVN05ataNqyFe8MG0vTlq1p2rI17434kmat2tC0VWs+HDmeZq1a06xVaz4eNZ6mLVvTvFVrPh09gWatWtO8VRs+HTORJi1b0bxVG3qMnUh048b/zMmqZzRr3UY/5//94GP9sguLilIWdkIQHh3Nz1PH0ujMlpzRso2nDRYVrSvdQiKidSlmsNY2k4At3HMNBoVH6SNmtvAofRJua5i2XEqsoZHaSJOKtdaDJ+cIsGiqFpcES2iEakvgWS61/SAlUs8DEonEFq7akNKFnt9wSYLCovT2SZBWZ4mLoHCVGxHoOZPaDHZKWS/ySpXSPiHEIGAFkAREAc+g7NAfkFL+IIToBvRA2Z8fAj4DbgV0+3OjtE97HQkcBhoAa6or7dubr05YiM0zBNkk2PPpuKUyubm5nH12W3Jz9mKz2Xj4ka489d//8PTTD3vLZiCgLObPIv8SPuOQbiDZSLkhLvOSj3iW+1qhl1X6lwAGkgZWOqqW+QXCV3VnHKK1Bpj0LyzY6nd5aJD/8sbYOARvlCr4yv+Mw8/GiQvd5620sICBj9/JsyNn0/ScC0jJNkx+me8Z4s7P9ywvLvLExokvS4o9y40SHIDS5MOeOmXGeFZUlnFcsXgPg4uwaE8c6ZnIVzQ7T4/LF71UY2lf0HVv3yyMjSs/VGwZftpI+2TlavVCGuyxnR4pFi6Vd/74M5mHOg4hZr96aPbaW7ozdEAnbr/1Uu9tXb6SLMM6Y7lqVdAgvzI0prEY7kFZDbaylmD/ZQAsN+vhoRL/Mr/qSPsCWZsHkgUdbdJOoyTJmMuNNA7wVTVKF42yxcoA8utSn05vifY6PSmRN+67nSHLf6FRs+bEGybVNU6caZRZVxjybyCldLndIMcxTOCbX+Bdj+wsjyw5O7NAj/WpGoDKAHMwBRlkNFENPN+DsHDPZ2+U7IQYJH+RUd52xFFRnnXLX76uxtK+4Bs+qELaV0nl9jGnjbRvXVrBEcv9ydF2bljH1CED+HLZT0gp6Xj1JYyc/z1tzjvf6/oIruak314TfVv83ys37vdYZL4On22rmpz2aMcwEmgi8kBlarKuJvUIJO2zB8grBeWe3B+7fy9DXn2e7gtXExoR6TWhd6FBAmxsvzkNkrxA+dTY9jPKjY2yYqNcGLzbQYEkw8ZcYswTjRp7OnXBwYY2niG22fwvDw/znmFp0n8urZm0L7K5DLq801HLyLI8KndPO+mlfWcCc1BzRK0BrgXuk1L+oK0fAowAxgE7gBbAPT5zSHkhpSxGSfxCA5U5FiIiIqioqNQv+BtvuJqdO09+eZ8/9v6wUHfw2zl/CptnKNcXL9e+xdN1R769i6exY46K9yycose75k/U453fjtfL/zZnjL6fbbNGs22OepZs68zRbP1aucRsnD6KTV8rfe/aKSNIO3RAr9+fm9YC8ONXw1gzSz2Mv3zcUH6cprZdMnYIK6eofS4eM4Sf50yr1Xn4Yfwwpr73Iu1uas8fa5brDn67vhnL799o7jeLx3tcbn6YTPwPqj5pv0wndY06bsavM3WXm0DOfo7YNThi1wDgzNyDM2OXiuvAtU/tx7Otl2tf9j6cWUou5sza/qKKbwAAIABJREFUhyP1N7U87Tfdoc8R/yuVf34PKBevWmFKcGpFVFQoZWWec3Pj9Reyc1dsjfYxatzPAPTos4iBw1fq8ZCRP+jx0NE/euJRK1Tcez5DRqrPvUevecyYvfbY3owJ34xRjqA9X3iGNu0uplGz5swdMYh1M1Xu+mnCMLZqTqTrp45kxzzllLV5+ih2aW5+22aO5vf5Kt46czQ7507W413zlOvpjjljOLBIxfvnj+PvZSpHHf7+K92Jy5ijCrZ9Q8E2JU0v37OA8j3KWcvoOGqMjWWM2xrd+Yx5L2X1NFJWqzrHrZxI7ApVt4NLJ+n5s1aYecWLKQP76M54xnjywD66S97kgX34af53VJSXMWVgH6YM7MO/rr6WCX0/18tPGtCbif17AfBV/16M79fzxL8Zk6Myc0h/3SnR7aw4d8QgWl5wMT9PV9f45jnj2TBVa7fMn6y7Je9dNFVvm+1fOkN389u3dAY7v1bL9y2Zrsf7l0xjl+aAd/D7qRxYoFz+Dq+YzN9L1bGM7Z/4HyaTtnYGoPJM9mblyJe1YRY5W+frsdG1L32jcvZLWT2N+NWaU9/3XxHzo8onB5eM5+Dy6YByK/1jqcp7++Z/yZ75qg67vxvLdq2daXSHrhH1RNpX5YS8Usrnq1gvgV7aX6AyR/RApZRfAV9VdfzaEB8fT5s2LQjSZHHBwcE1luCc9AS62ePfiMXH5MnHTUUcWSiQI00g95VqmP/V2rnlj42/sG3ZPOylxTz42Uh+X/qtYffGA3vVyHDY2r+vGlNntkdVv69aa/ucFXVYz9OHwzHpXHC+53HQ4GAbDkcNR5g0qmUwGSiuM4vJ05uYA/t46Y7ryU5P557b7wK0/ODOhwFyZkD30aM6bokjygfMyV4EuN4D5YQA2wZyAKtT176qOkonQYPnRFJdB9qignxanXuevjwoOIQKw8hG4O+VycmC8XM5vHc3sfv30KRFK9rdeEet9+PtIuY/rlbeqOH1HtAtsBpty6O5F9YKd0fqaJwE0yrUakLef4KaSPs2btzIhx++zdYtak6EhQtXMnPWApYtnWZK+6hf0r7SwgI+f/hOnvi0PxfdeBsGBZ8p7aOW0r5LO98sLEe/h1Kxd1qdSPuEEG+hZL+XAd8e7caMEOJ5YCpgPNEPSinXHWs9jnLMakv75i3cwncLNrHoWzVB4NgJP3HgjyQmjH3VlPZRv6R9GSnJPN/+JnpOmc0l11xHvt3zY21K+2op7bv8xaNL+1yVVO6fXafSPiHEBcA+YIGU8rm62u+xUhNp3/zJ40mKOcy7A9UI6eQBvQkKCeH5Dz4xpX3UL2nf3l2/M+DFZ/h06te0vfhfZBV71pnSvlpI+8KbyKALHj5qGWkvoPLgwjqV9tU0r9TWbOKkpl27dhw8GKPbPF555SXs3v3HP1yr2lGUnaE7+OWnKve8xX5d+5QjnzteaXDtW/l5VwrSj1zuLu/eT0GacpVxO/W5HWbyUxPJTU1kznvKnc9e6rEHLynIY+Ibz5KTnEB2ciJfvvoM2UkJZCYlMPKlp8hKSiAzMZ7hXZ8iMymenLTUo7zbI9ny/UKCQsNofu4F5KWnsmzAR7qD36bxPXU3mD0z++mON3/PH0JZdgpl2SkkLhumO1MlLRumu9wYnayK1g7Xna+Kfh6ALMtFluVSsXsmLnshsqIIR/zPJ861L2mdcu2zF1J5eIXHqW/fN8iyPOXitWEYruLM2n2pXM6q/+qOVKAfaqqD6rBFShlp+FtXl5U5Fi68oAV/HfJ8f6+8/Gx2742v0T6SknO588FhxMRmEhOXqcexhjgm1rA8NoM7HxhITGyGiu/vT0xsBmlpptnEsbBo2iRu6vAgs4YPIiMpkYyEePp27khGYjw5yYlMfkvlNHfuzUtNpCAtyeCemsTSTzVH07Qkj7upIS5MS2SllmOLM5J0lz+3+1ZplnLiivn2Mz1H5awajqMgHUdBOqVbJngcR3+bqjv12Xd4XPtKt03Vy+SuHadvm75yhO7Ol7h4gJ73/v76c/1YuzUnLrcrlzt/bhl2dLvhgJzYvOJmHPDb8djxsZISH0tKfCyD3n1djwe//9YRcXhEJBtWLteX79u+lf3bt5ISH0vPV57Xl3/U6UmS42JJjovljcerfKzc5ARRkJNNWnwcafFxDHzpOe7o+DRhkZH06/IkWYnxZCcl8OWrz3g5Hns5LRvaZkY3P3f8Q8+u3nGGavP83Odl5ZKnuYaW+riGlmWnsG/CO5RlKzfOw7M+wp7r6+bniY2uffbcNA7NUOVLDPmqJDOZbSNep0SL3W6lRZnKdbA4Q9Xz5z7Kqa8gNcHLHbrGSFmNvOL/RsAxUqO8ckp2pJo1a0azZk3Ys0d1ns455yzy8wvJzc3/h2tWcywW5ewTFt0QYbEgBQSFhuMeTw0KDdcdotwxQhIUFq5GU92xy+WJvcp79uM+Xmh0Q4TFhrBYCI1uiMVqxWJRdbBY3a5DCiEshDdohMVqw2K1EtGgIRabFavFSkTDRlisVqw2KxENG2K12rBYa/aV279hLWeee4G2fxsh4VGqPlYrQaHhCKsVYbViC43QY0twmHdssSIsViwhYQiLBWGxYAkOcxvbgMXb1crtiKVc8rQzZLHprnoqJsDyasQu/8uVY48EYTMcN0j/vLBqDn5IqO2EvnBCZwqXUi6SUi4BTlrbTIfDSXZ2AQ6Hw09cqMfNmzUgPT2fpORssrMLueSi1uw7kEhGRj5Op8tQ3qnFRTgcTpxOlx5LKYmMCAGhTcDpjoUnBpceSySREepRUokkMlLFLuk5ltN5XBqoJw0ulwuHw0F2drb2WXjHOYY41xDn5WQHPDdb1qzi2vZ3Ed2oEVabDYvNRlRDTx4Lj1axEBaCw1RulC4XQVqMlHrOlNKz3OWSnlhqsVByQZu7PGANCfOkH5vhWrZ4nEW9lPfC4CwqLF6x3zJWm2GxZ5TSYgvW85s1OExfbg0Jw50Q3fWsKVXnlbqV4AghngLyUc9un3RYrTasVhvhkVF6HBYRYVgeidVq46Ir/01BXg5OhxOr1Uazlq1IPHwIq9VGZHS0Xj6yQUOsNhtWm42GprveSYOwWLDYbGCxUFKQz+U33QYSQsMjwKKu1ZDwcH3UKzgsXP/dP7KdZmjXudT1GBSqldFit5TOFhqujQ7KI3KL+1rWY4tQbR5AuiQiWPsdwRNLKbEEqTIu6cQSrNpCSOnJV1JiDQkHzfHY5m6LSq0+qN8yY308bc6aI6WsOq/UsWS4NnmlXkn7ZOkC9cJLdnOkBAfg7W7zaHlmAz55tz1IJzffP44+n9xL27POYOXPf/J+j6VM+/IpOj11vWd7o0TGarCAtfmP/yy5QY+NEr4SQ1xcUeG3jO/EbcV2p9/YS9oXYKLf6kj7Ak20C4ElfOGGIdpIw0Rsxjg61CAbMUgug61Wv3EgCYIvdocDe1kZT1zRjimbfycyWtkUZxR5hqXTDZPa5ZQYzrlhiLvS4f9uhfF8GCfEA0hL94y47d7hkfZVpnliL8nfMdhvimjP5Loiqqn3uqgmehzV5Aw9btHK8yO6t1+Hmkpwlljb3PGwJTTwD7GsKMaR8NNhwKhNmSSlnFTd4/g5bj+gdTWkfeNQ0r5cYDYwUMpAs9IeO0IIKfPUg7tekjxjjnF6pJ9PdF3MQ3efS5cn/wXAeTdOZfnMR3A4nKzekMj7vdezcVFHbrymRdUHN14LxgmSrRGGMgEkfMacZDHmrTD/ZQCst+uhURaXUe5/YvGa/jb4Tmjsbzn4l2MD4NroiY0fuSGvB5RGeskejfJGjwz2UGlrADJSU/jP9Vew+mASVi03FdgNshtDbJRsGycGN6Rcgo0TUxoSizFfZxmkfTFZ3hLh3PwKQ+w5dnyMZ8Q5P8+Tk4yTbRolOFHRnu9Bw8Yee/WoKM93IthLduMtJY6K8Oxr+uOX11gybDu7w80iKCJgGVd5Ls6ktbvwngu1VnlFCBGNMrdqD3QFzj/ZpH0Hi9XbDPh9N0zCfdPNj9Kr53vcffetOJ1OGjT8F8lJ2zj453rWrtvFpz2mcHD/VNq1U9/hI+TDxuvCGAvvz1jHmFeMZQLJhw2y4EC5AwLnj+pI/qozSbD3YwIB3hvQLiLAV9c48Xl1CDDBeYpB8uvOEX/u/p3PXnuRGeu36+sKyg2PHxjkdl6PaTj9nw/jYxDG2Hj+Cgxtl8QAk4cDFBR66puT6/ltM0r+jIRFeHJogwae/BEZ7mnjhRragSHGdqNhEt5G4d7Svj63tatZXglpIG2tb0Uc5caxqzgFZ9rWdShXcTcnNK+ckiNSAB3aX8SPa/7SX5/ZLIrs3BLue3Iyk2ZuweF00fn1b4hLOGlvlB/BX+t+0F1ffl8wjS0zlAvK7kXTdee93Yum6e4ouxZM0eOdcyfqZbbPGadvu3XmaDZOU06AG6ePoqL0yIlJ/yl2rF/L+Zdepnei6prfvxnrcciZ/yX75o0FvB1v7PsWY9+rOvCOhA044n4BwJnzB86sPSo+Fte+tB04UrYCUBm3VncLdMSuofJPNflr5Z/fU7xL1aFk51wyNnwNQLrmxFNDurkydyMDyGyklDgzfwfoJKW8xvBX605UDVgPXIqa0Ptx4Gngo+N90O59lBve0LFr6d5XuecN/XIT3furZ6eGjNtG9wHKNVFKyeDxasS//5ht2O1OcvLKufyuOQybsBOAmx+bz3u9VfkeQzbTc/hWPe47erseD/pSiwdvYsiX21Q8cD1Dv1Qdih4DVjP0y19V3P8nhozWHP/6LmfQcLeb30K+nPDjcTkvJwsrf9hO98+UMnTYiIV0/3wGAENHLNDjQUO+08v0HzCb7j2Ui9SgQeOO2N+aFcu48Y679U7U0di0Qj1n+83wQSyfohzt5o0czAotXjBqMMsmqWPMHTGIxV+N0csv/WqUXuanSSr+Yfwwtmq5d9vM0WydqTl3zfuSvXNV/jm87CvdfcvovFeycy7FO5XjVumueZT+rpy1Crd/R+F2ZcCTtWEWWRtU+aRVU0j6SZ0Ho0PgwSXjObhY1X///HHsm69cVX//bpzuDFYLujkzdgbsfEuXE1fmboD/1lFe6QtMlbKmLeOTkw733s6PP6pr3Wq10rTpGaSmZnD9TW+yeInKBxde2pWyMv/Pt5j88/z6w3KuvaM9Uwf1ZcrAPgB8O3IIc4YOAOD7CaNZOGowAKumjWfZ2CEA/DJzAivGDVXx7El6vHrWJL3MqukTWDJGxT9NG89SLf5l+jh++moYAL99PU7PJ79/63Ez3vXNWP5crJw5/1g0jsTVMwHVzknfqPJG2i/Tydj4nR6nrFPLE3+cQuxPyrXv0JKv+Gv5DEDljf2LlfPn7u/Gsmu+cnXeMWcMWzXn5y0zRrFGc1f+ZfII1kwaXuNzaj3jEpyZewKul84KnDl/Ajz1T+aVU7YjdduN57FzTzKFharHXVHpJCTYSvOmkaRlFPHIA5cBsGNXLXSbJwMBnFKqEwdymjqZnNyyUlMY0/1D/vv628ftGIHfezXOQ6BzdVzOYTU+u+ruScqDIqo1rty//K53FcQgQhshpdxa1b6EEOuEEDLA38aqtvdTt1gpZZyU0iWl3Af0AZ6o6X7qGuNZvuCcRsQnFaqHgqXE6ZIEB1lo1CCEwqIKHr1PjYDk5KlRh2Ny5/OK/X/u9UVRcCx439k23vEmQBz4/Pz9xwHG9u/F82+9W9NKVLn/QPkkoMsfgcp7HbjK8gHzlbfVo9+4rhwgpZSbRUhDXAX+pwNw5f6JiGqDlPLvqvZVVV4RQlwJ3AWMrJPKnwR06HA7P/60Tn9dUVFBZGQEYWEhZGbl88jDakQoLS33H6qhydHYvXUzi2ZO5T+dux5bfvZy7TPkumq4g8oA1/sxORsHcv+rjiNoHbiDOlK3KLF7cYrf9c6svVgbX4iUMqOqfR3PvHLKSvuQDu55bAJvdL2JR+6/hA4dJ/POq7dww3XnEhkRzJ79qVxz50g2//QeN1x3jtrGlPadNNK+4Z9+QEhoKC/36E2J4Rya0r5jk/YBCCGsIrSJw9L0ciyhjfTlsqIYZ/o2pD0/XEpZpxaF1ZH2+dnmv0A3KeW/67IuPseokbQPl4NL75zJ1GH38H//bsEVd81i5qgOtGkZScMGIaxYE8fDLywjbvPztG3tcV30iyntO+HSvref7cjVN95MlzffodSQV0xp37FJ+wCEEGGENCy1tbgeo8TPVZ6LK3sfsizbJmVNbSv9HuddoD/gnqsyErACfx7PXFETairtc7lcND/z3+zcsYKzzmpF02ZXcmD/aqwikcaNo5kwcRlvvDWK8qLvCQkJNqV9nFzSvq7338lTr7zJ9fc/5LW5Ke07NmkfgBCiCcENsmytb/GS+LlK0nAVJiCLUyyyDjoyx5JXTtkRKYD7776YWXN3qLkaiu1ERYbQsEEYNpuV1i0bAnBO2zOq2MvJQ0letu764nbtW+LXwU+5wRSkJnritES9TL4W+3Pnc50kD67/vuFXbnvo0eO2/6KMZN0JZ+PwtynOUM5a6wa8ojv+7ZvwDs4i5Y5VtnYwrrI85ea3Z7bm2leEI3HNsTn1lecr+85DS3GVetwCZVkurpIsKjaPwVWShaMwg/wf+uEszKA8L5WY2d2w59bMAdGNlNIpy7MvcmXu0iV+bkmfpemV1GUnSghhE0KEohKSVQgRKoTw670uhLhPCNFciy8CPgeW1lVdAhETl8Wd/xlLTFw2MXHZ3PnwBGLjc4mJy+XOx2YQm5BHTHwedz7xHTHx+dx4dUsef/l7YuLzyc0v5/VP15BXUE5cYgH9RyuJXlm5g/ZPLSImPp+YhHxPHO+JY+Pzaf/kAhUnuPefR0xcDnc+NoOYuFxi43O485FJxMTlEBuXrdUzSzn+PTCYmNhMklPqjzy5NuTkFBITk8qd93xMbGwaMTFp3HnvJ15xTGyqXiYmJpWYmBTuvOt94uM9DSen08m2DWvp8FjHah87PzuLXs91JD0hnozEBAZ0eZKMxHgyExMY9LyKMxITdMe/9MR4vXxmYrxeJjspga9ef5bs5AQK0hINjn+JrB/qyT97pnTX3fzSf/A47xVumICzMANnYQbFmyfrTn15v07AUZiOozCdtB9H6eUPzxtAeY5y69o71bPPHeM+UI5bWcms01wE3Y6ChWkeZ7DaIKUssza9EqPEzy3pk2XZ7eqiE6UxCTgPuFL7mwCsAO6to/2fcCwWC/feexuzZy9CSklhYTFRUZGccUYDhBCce4565jIkJLiKPZmcaIoLCzh8YD+33Hs/ToeDlPg4UuLjeL/jQ6TGx5GWEM/nzz5OZpLKCUNfVG7GWUkJjHnlabKTE8hOTmD868+QneKJjWUytVg5ISeSlZTAqJefJiclgZzkBCa/9azeDlz66QsUpiVSlJ7Eql4vUZSurvFNQ1+jJNPbzc+em6q7+ZXnpelxWXYKBya9R3lOCiWZyWwf+QalWcoh0O0+WpjhceczOpTmu52lUxPJSU5g1rudyU1JJDelduovKWW29YyLvSR+0lmBM/sAsjjlzLroRGnUOq+c0h2pV7rcwL4/0ti8PZ5DMdmc29ZzJ795sygqM4dyZvMq7hqbnHCKCvLJSk3h/Esv/6ercsriK/FzS/ocSWtrNgFH1XyGMo/4BHhOiz8DEEKcJYQoFkKcpZVtD+wVQpQAK4FFwIA6rs8x8/Kzl5GZXcqh2Dyycsq87sZFhAfx5y/PEWQ7pVNrvST+70M0aNSY5i1a/tNVOWVxJK0VRolfTSR91UVKWSqlTHf/AcVAuZQyq66O8U/Qt88HDBk6gf37D9K4cQPCwkL1dffeex2VpSv/wdqZBOKP3b9z4WVXEBoWVnVhk1rhK/GriaSvuhxLXjmlpX0Ar70/H4Fk4fJ9ZPzVE2GxYbc7WL85hrvvuBCMN8dNad9JIe3LSkvl5XtvY+7vfwKY0j7qVtqn798t8Wt4Hq68g8dF0neyUxtpH8B/nl9CqzMj2bIzjd0/d0JKF7l55fwVk8uN/z6zegc3pX0nVNq3cGM6Pd95nUUblFmIKe2rW2mfG7fEz9roQlwFMXUm6atP1FTa5+aaax/g2muuID4hmR9WzgJXDElJmeTmFnLFZWd5CprSvpNG2rfq+yUsmT2dkd8spKjCuy1gSvuOXdrnxi3xsza6AFdJWp1J+uoCvxKbk5YyJWGRZbFgU40Vlz0RgtQdRlmeCMGtVFl7EgS3osvjV/HKh3P53ws34ixzgD2Bu55Zwcbt8ZTG9iWILIS2jXAl6jGkIIK1O5f2LLBpDd7KIrCqRu3FoevBohzlEu0XgFA/XjaLIET7vQqyCMK0iyCrTBBhU18ymygnyvDlSy2y0yBYfRwpRXYaaz+QKYV2zghTcXJhOU3D1Rd87aqfyPlrFw+/+TELpozDWl7Cf978mEWTxmGrKOGhNz5m0eQxBDnK+c+bH7NwwkhCXA4eeetj5o8bTphw8fjbn7Bw7GCeff8TvR4lDgdNwtQx7NLFGVo9KiQ0DFaxA0FUkKqrQ6K/JycWwrVOWVSQlVDtfYeLPdjcl44rH9AairJQP2fqA1D7PJAeQ8OoCK5tpuSXKSUV+vZnhNn1/WZElxGpzcadXFhGtHb+kgrtNArRzl+R55ylFtlppsXJheU005LF31kl7P56LBK479UPWbxsIhLJbZ3fI37lZKKDBVc+/BrLp66kUQicd0cXti74jTMiLJx7/aNs/34qTaKCOOeK9vy27nuaNAzlnMtv57f1K2nSMFzFG36iScMwVea3DTSJDuXcGx5jx4blNIkK5vw7u7Dn51k0iQzisgdfYd+KyQQ7E7j68TfYuWg8ZRkW7u/6Ppu/Ho29KIiHX36XX6aP4FiQUjqFEBc5M/P/sra8GUfS2tOqE+Xm0y+W0r/7/QwdvZS84iD6f9KBoWN/JL84mH7d7mHomHXkl4bQ76O7GDx2GUVlYbz63I08/+58rr68DRX2KPoOX8agCXtwOF18/PJlYIum74ft+WLYL1hkIb0+eoQvhv1CiK2Uz95/mM+HriYyzM4n7zzM50NWER1Rycf/e5jPBv9IoygnH739KD0GrqBhNHz8bkd69FtCgyj4+L2n6NF3AVGRVj75qBM9en9NizMjeev1p9WbcdnBoj335rTr+Um93qRfb41t54NQ12Gxw9O4LnFIPXeVOdCvtXKn1GO7C9y/lRUuCNU6D5UIQrS4eTCEuH/8fW8ayiRAa1FW5ur1mDplPjGxOQzo+wpDhk4lv9DJgD5dGTZ8Jrn5Tgb0fp5hI2aSW+BkQK/ODB0xi7xCyYBezzFo2NcUFsOAXp3pP3gyJWUWBvTuQq9+71NRaWVAnxdZOLYfRdlJtLNtoMcXk+ne/RkiIlVejy8/H3deKgwJwd1GKKxwEKbNfffjyuXcfd/9jO3Xi6CIKF56533G9e9NUEQEL7/zAeMH9IGQUF569wMmDuyL02bjpfc/Zsrg/pQ44YX3uzF7+EAyi+w89e4nLB03FJBc8Ngb7PtuHFJK2tz/KrFLJyCRnHtLFzJWTwUpaXr9cxRtnIUEIv7vWUq2zkFKaHzHCxRqrn5nX/M66aumIKXk/KveIG7ZBEDStuObHFr0FUjJhU//jz/mj0NKuKTLO+z5eixSSh5842OWThhGuAUef/sTplfnwgmAlLLM1uYOnKkbweW48HTrRLlpZ1MufFRk0aO3kuwN+OIBevT5HolkwOf30aPvSiQw4LN76dHvR1qfGcrPq37iqivOo/tH7zLgs/acdc6bhIUGU5oylB4DflH76XE7PQas0/b5JD37zaLSFcqAL56k3+BvKbXbGNDzvwwaPo/CEgsDej7D4JHfUVAEA3o9x+aNW7jxRvfUL4WenEEJCPW7i6vMkz9c6z25w9pQv2YbRzYC4Wl0J5Z5ckmZw+XJJU6pX1N2J37jQLkkzIoeh1sxtCUMbm7GdgVARZ6nbeHMBaHdVHLled6TM48evReoc9jzUc9n1OsxevRerOLeHcGizkdjw7lpHObJrbscCbRuHMI1jQuJLYkG4ekt5wUH6XWfOHs0JbnZvPlZL8YPG4KzrITXe/Rk0qjhVBYX8Vr3L5g6dhQVRYW82v1zpo8drcdTR4+koriIlz/5jCmjhuMsK6Vrtx5MGDoUUWmn04fdWT15DEHSwaP/68bUIf2JsFno8OqH/DhpGHmlTh565UN+mT6CPDt06Pw/Ns4ZTbnDxt3Pvc6Wb8ZQTDD3PPM6m78ZTZE1lPs6vc6G2aPIDgnnoRfeYPW0ERQGh/HIS2/x48RhOIJDeeKVd1j+1VCc1iCeeut9Fn85BIfFwvPvdWPuqEHESslrn3zGrGEDqd1MUh6klNm2ljfgzNwFTntdSvqOmXo1IvVP18HE5CQkQUp59j9difqKmVdMTPxi5pVjwMwrJiZ+OSXzSr3pSJmYmJiYmJiYmJiYmJwsmE9Em5iYmJiYmJiYmJiY1BCzI2ViYmJiYmJiYmJiYlJDzI6UiYmJiYmJiYmJiYlJDTE7UiYmJiYmJiYmJiYmJjXE7EiZmJiYmJiYmJiYmJjUELMjZWJiYmJiYmJiYmJiUkPMjpSJiYmJiYmJiYmJiUkNMTtSJiYmJiYmJiYmJiYmNcTsSJmYmJiYmJiYmJiYmNQQsyNlYmJiYmJiYmJiYmJSQ8yOlImJiYmJiYmJiYmJSQ2p1x0podgjhOhylDJvCSGk4fU1QogcIUSDE1PLkwchxPNCCCmEON+wTAghnhVCrNHOS6UQIlkI8Z0Q4g4/+3hKCPGrECJfCFEqhNgnhOguhAjzU1Zqfy/6WTdHCBFf52/SxOQYqU5e8bPNOCHE1ONZr+ONIT9IIUQ7P+tvN6y/S1vWy7BManlhuxDiGZ9t44UQc2pYB9+/fJ+ytwkhfhRCpAohyrW89aMQ4llDmbMN27/i53gRQohHlR/SAAAgAElEQVQibX2/mpwvE5Pq4ptTtO/dd9pvrtS+9x8JIdb803WtCb5tCiHEDJ9rNksIsV4I0cFnu3O1srFCCLsQIlMIsUUI0denXLXyxlHqd4kQYroQIkE7ToEQYoMQ4m0hRKhWplY5wmc737+GAerznLb+99q+J5OTj3rdkQKeBBoB31R3AynlDmA38N7xqlR9QQhhBeYBM4F4oCvQHugGhAJrhKHDKYSYiDrXMcCzwAPAAuBT4FchRHSAQ/UUQgQfp7dhYlLX1DivAEOBZ4XhJkU9pgjo5Gd5Z22dP24GbgCeAVKAr/3dQKkBHbX9Gf/ucq8UQjwCrAXKgbeADkAPIBu438/+Ar2nxwHpZ7mJSV3im1NeBx4CXkF9t1cAE4B/CyFu/ycqWIdk4blmXwYEsFII0R5ACNEW2AlcCfQB7gX+B2wGnqirSgghOgK/A5cBfYF7gKe14/QGXvXZpLY5YiBH5qpAedJ9c+4qIcRlVb8Lk/qA7Z+uwDHyNjBbSllZw+2mA8OEEP2klI7jUK/6wqeoxPWElHKhz7qvhRD3AJWg7jyhkv67UsrRhnJrhRArgY3AaOAFn/2sQiWwV4Gxdf4OTEzqnhrnFSllvBBiI6qB9MFxq9mJYRHwnBDiCymlBBBqxPlxYCHwvJ9ttrlzqRBiFfAn8C4wrZZ12C2lPHyU9e8Du4BH3XXUmCmE8HeDcBHQWQhxjpQyzrC8M4Hfk4lJXeGbUy4CDvr+7gohFqI6FetObPXqlAop5Vb3CyHEL0Ai8A6wBnXDNhJoL6XMMWw3VwjxUV1UQAhxATAL+AHo6NPOWymEGAb4jrrXNkfEGt/vUerUGrgTWIm62dMF+LAab8fkJKfejkhpd35vRI2IuJeFCCG+1OQluUKIkUCQn82XAY1Rd0JOS7QRog+AFX46UQBIKVdJKUu1l92AA8AYP+V+A6YCnYQQLX1W/wYsAXoIIcLrqv4mJscDf3lFW/6SEOKAJg9JEEJ87GfzhahRqXqbVzVmA21Ro0xuHgWsqPd4VLRGyy7geI7ONQYyfTpR7uO7/JTfCMQCz7kXaA2bO1ANLhOT44JvThFK0t4VNSohheHRA9T19aAQovEJr+hxQkpZCBzCkw8ao0aS8/2U9Xft1ob3UAMFb/i7WS6lzJJSbvJZfLxzRCdUm7sXsAn1W2Gtg/2a/MPU5x/89kAJsMewbBDwEmoY91lUY+CIu8PahX0Ag1TkNOQaoCGqU3lUtM7RRcD3/houGstQDa3b/Kz7DGiKuitnYnIyc0Re0e6SfoW6IfCgFvcVQrzls+1moDlKSlKfSQDW4y1z6QwsBoqruY9z8NNQqgFWIYTN58/4e7UduEcI0U8IcbkQQlRjn3Pwfk/PAcnU77v/Jic/vjnlUdSoxF94pGBuNqNu/t5yIit4PBFC2IA2ePLBdtSI1FwhxK1CiJDjcNi7gN+klGk13K42OWKgEMKhPX+17CiSvc7An9qN51nAmSi1jkk9pz53pK5GfSldAEKIM4DXgJ5SyuFSyh9QsrVAP/x7gOtOSE1PTtpo/xNqUDb+KGXc69r4rpBSHkBpwz8Wp6HJh0m9wjevRAM9gX5Syh5Syp+llIOAwcBnPncUDwBOTo28MgvoKIQIFUK0QDVMjnZX1t3xaSaE6Im6UTPvGI7/F0pWbPwz3vT5BHVXtwcql+cLIZYIIZ48yj5nARcIIa7XXncC5hzl5pCJSV3glVOklLtQzxGVSCm3GmVhUsoClAyuXucQw82P1sA4VKfBnQ9mAxOBx4BfgULNAOIDtwFEHdCG6rVtfKlJjrCj3serqFGrD1E30TYLIS42FhRC/B/qZvRsbdFc1KhctQ2NTE5e6nNH6kzUg8VuLkMZJCx1L9AS11L8k63tw6RqqnO3t6oyPVF3oepEA21icpzwzSs3ABHAfOPoCPALavSptbugJiHJ59TIK/OBENQD8c8C6ajnGwJRjursZADdgVGozo5f/Iw2+eaPR4Frff7eda+UUmZKKW9FNTi/ADagOntzhRCT/R1TShmL6nx1EkJcA1yCKeszOf745pSqqO9tk1Z4bn4koQxovkB7LEAqXgPOQz0PthAl+xsGbBd+HIADIYTwHbmuTlslIDXJEVLKNCnla1LKRVLKDVLKycCtKGOKHj7FuwAu1IiXu8O8FHjYvLlc/6nPZhOhQKnhtTvxZPqU833txq7t43QlSfvftgZlzz5KGfd+kvytlFLGCmUP/Y4QYrS/MiYmJwG+eaWJ9v9AgPK+dz5PibwipSwSQixB3ZE9G/haSuk6SjvletRoXB6QWA2jDt/1d+Atn9lfhdmEu56/oZ7DRLMcXgC8JIQYLaXc72eTWcAAlAx5u5TyYFXHMDE5RnxzSlXU9xySiXL0lUAOkCSldPoW0gwdvgS+1Eb2BwAfo54f+7Kax4rBuw3zAjAD1Q6pTtvGH7XOEVLKJM106Fr3Mk26+F9gC1AkPNboi7XlTwJ+b/6Y1A/q84hULuoZHzfp2v9mPuV8X7tpqO3jdGUH6u75Q1UVlFKmAAeBh45yx+c/qIbUr0fZVV9Ucupes6qamJwwfPOKO0c8yJEjJNfi/YwmnFp5ZRaqQXQZVY/c7JRS7pBSxlTT7dD3PO48ppoCUsp8PGY4lwQoNg81wvgy5miUyYnBN6dURX3PIZVaLtgppYz314nyRSvTX3sZ6Nr1x0N455HvteWrgWuEELUZ2TvWHCHwtkt/CGWwcRPqRpP77zttvSnvq+fU5xGpg3g/pLkPJS95GKWvR3s4+eEA25+NcpI5LZFSVgghhqMemn/cn3OfEOJuYJPm3DcUmIIaih/jU+5a1F2kr6WUqUc5ZqoQYpy2jyrtQk1M/gF888oWoAxoKaVccbQNhRBNgXBOnbzyM6pRka8951hnaPP51RohRBsppb/R74u0/34fMpdS5gshBgJX4WnImJgcT3xzSkC0NstZnDo55AiEEK2AVD/PHR312vWHlHJfgFUjUaNT44UQHX07c0KIJsCFfpz7jilHCCHOQnWYFhsWd0GNSLpvNuOz7nkhxHlSypiaHMvk5KE+d6Q2AV8IIZpqVpY5QohJQG8hhAMlxXkZ9VyOP65BPTB+OjMQuAL1XMEM1N2cXNRzH4+jHgZtBCClnCqEuBEYJYS4AqVrLkO5C30I7EfNE1EVg1DzUd1G7R4GNTE5nvjmlXwhRC9gtFATSa5HjeS3A+6QUj5q2PYa1J3IzSe60scDrfHx9D90+Cu1xo4vO7Rn0VYKITJRD20fBMJQzyd8gOr8HtFAciOl7HMc6mtiEgivnFJF2QtRbZaA399TgE+B9lqbYxdK5ns5StaXg5rn08hZQgh/E/Vu0dQyRyCl/FsI0Rn1TNJWIcQE4G/USNMtKIOIPgQ4z9XJEdqNaAsq32ShPrtPUc9CDdDKNENNFj5HSnnEM6ZCiHTU/FSdUc+Rm9RD6nNHah2q0d8BjxPKxyjr0C/wPNg3Ahhu3FAIcRXKjnvRCarrSYmU0qm5XD2LGlGagUriGaiHt2/THop0l+8qhFiDckf8DnWuY4AhwAjDnFNHO2aOEGIEai4FE5OTjXX45BUp5RAhRCpqbpIPUCPfh1CNeCMdgF99Jpk0qR3zAyxvinoYvx/qZk83oAVKThOHyvUD63A+GhOTY2UdR7ZVAtEB9T3edZzr9E8yG9X27ITqeESgRqF+BvpKKZN9yt+Cfzv4jvjM92dESjlfCPEHyuCqJ+o5+jJgL/A5au7LY+EAagL254EoVF76BehteK7qWdR79TsxuZTyLyHEZtREwL1MB9H6iajPn5tmWnC+lPKBGm43ELhWSnk6zyNlYmLih9rkFe1h6QTgEynlnONWORMTk3pHdXOKEGILsEJK2e/E1MzExORYqdJsQggRL7TZt33+VhjKvCGEiBNClAshdgohbgmwD9/lvYQQ/pyVqstQ4HYhRLvqbiCEcD9EaCYqExMTf9Q4r6DujpZhPndjYmJyJFXmFMNcQ9V1rDMxMTkJqI5r37Uo6YT779+o5wDmAQgh/guMRmlCr0I9H/CD9tCdkXLq+JkkbQi4q1av6nIW0EdKua4u62JiYnJqUMu8IoCu2vM7JiYmJjrVzCmNgS6a+6SJiUk9ocbSPiFED5TmtKWUslQIsQ3YK6V82VDmb2CBlPJT7XU8avKxV4BnpZSLtOW9gCeklJfWwXsxMTExMTExMTExMTE5IdRoHiltDqGuKAeSUiFEMHA1sMqn6CrgRp9lScBYYKAQoj6bXJiYnDIIxdPmNWliYlJXCCGCtLwScAZnExMTk5oghIgUQjxadckTS00bT3cD56DmEwJogppgNcOnXAbgz8hhIPCS9jehqoMJIV5BjWJxRuMGV+fkFlSxhYnJaUeClPLs2m78+JnRrl9ySriuYdg3KHnaacXZZ7eWCQl+HXRNTE5njimv3N0komJHQTntz4g4PfPKWU1kQpJp3mli4sMx5ZXrG4YVHSqp4MU2jZiWlHfS5JWadqReBn6TUu72We6rD/Sd2VkVkjJPc8zrKYSoygYUKeUkYBKAEELKEs1t2BrmKWQJ4aFHvuDlrvfx0H9uJTk5i23b/2T+gl/Ztz+Wfn1eovXFT9L2nHPYtnkTXf77BGPmzOeyq69l6Gcfk5aSzPjvFmOxWCgpLiYi8shpp5oE+/+8Hr6/A/c91pEnOr8IwLb163in05PMnreIG25RvhqNg4xvyN/8kRouNRfby68OY8OGPQzq35WMzDyGjVzIlVecR2xsGv36vMB9Ha5T5Z0Gp3FXheEYhvnebFGeOMijnsx1tPE6dGKx3bOrAFLPIKvVs1uLZyDz4ijP8qSEhfz7mq6MHvkOX45fQWRkODOmD6dlSzW5+Lp1W/jwoy8YNuRNbr/9KvB5nGTd2t/o+HR/5n/bg9tvNag9je/V+P4qs/2XCXBupKPEEFd6Yl+nZJfntcvp2d5Z7tneVVGmx9aQCL/7CmnomVRdNFCTtS9dsZuX357Dyrkvc81VbcA4EOTyfA5qZ07/sfCcc9Hkk7bUEiFEmxYhNv53dmOmJ+UjhLhUSnks5i/1joSEFGTlar/rrr7udSaOf5err7mYuLg0tm77g9lzVpObV8gXnz3Pxf96grZt22LVro1169bx+OOPc97Fl3JuuwvpM3YiAJVOz2fnNHy3KgzLHdpyKSWd7riB1z7rzf/debfX9bhn62a+6PocvSbP5KobPb49VsP1aJQYWAyDAR88+wQ5Gem89ukXJBz+m2/Gj+Gmu+5h+/q1jP1mIRdddgUAF0d65tM+VNpaj9uFGaZbqcwzxIbHOVwBrlNLCF5YPPk7N/gZ/GHMm/sK1LV6aP9ePn6pE+deeAndho0mJCpaL1Pu8OQS43m1G5aXVXrPhVnplIZyns+ltMLld5tiu9NvGXuF4fM17NPh9J9LLZbq/f67XFXL7t37OvjzQnbN/YoH+k6lQcu2CMMxrFZPbDMsD7J618P4enD7i2qdV4KCgi5rFST439mNmZyYhxCiVaD5fk5VEpJykJm9j1whnbS8fAS//fQSLZpHcSgmh22/pzBp9u+EhQXR7a2bufD8M2jdMhqLxaL/PuTll/Fwpzm0v/V8en58l9dvAOD92vd6A+z2Ss69sicr5r3FlZe38b4+AxFon5ZwAJxOF9ff8QWRkWF89slTbPvtIKPGLuf5Lk8wYeLXrNobQ+OmTQEor/T83vrLewBlhmu11FA+v8zzu1hY7ilTUOb0uxygsMzzuqTUEBu2cS/PPbyb3VN7csbF13P+o29TWu6pU3FRuR6Xl3rq8f/snXVYVFsXxn+HoZEUlbDAAFvsFq+t12v39WIHYnejWNiigIooKoqKomI3EgKKhV3Yik1IMzPfH6PMUCJh3fu9z8PzHM7Ze5+9Z87ss9+113pXUpK8f0mJKVmeB0hNkNeXpijMjyny80iy+S6UFD5/xXe+uny9oaSw9tDR1Uw71lY4ll2Tz7n6BvJ1oZamfP2hqSG/h7qa7Piq93oeBRyhw8JNaBkUQUVZ/oZRnC80VOV11RTKaKqmd3qbWMc8z/PKkJIG0o8pYoaV0sdDtl7RVUzP8zPxza59nxOLdQTcFE6/Q5ap2ShD8aJk3qX6gjVAMjD+27spQ40GU9iwKfOiJzklFVVVZQRBoESJonTr2pSdXnOxHdGZESNXIJVKCT0fxMDe3XHy9KZuE2s0tbSY5riSNy9fsNXViVB/P149e/rNfZFKpdSo14Dt650BePs6kjH9erB62+40EpUXbFg3geVLhjJ/0Q7OnL2K69rReO+cTUxsPKVKFstzuz8C+/b706tnC0aPXU33bu05dnRbOhLVvccIViyzk5GoDPDzuyonUU2r/eiu/xAcOHyVoWO2y0nUT4QgCEJ5LdWn7YtqoyFSorORNqU0VK7/F138LCr154Bv5ryMyckpqKqqIAgC5uYm9OndgsOHltC2TT1GjFyOlpZWGolKSkqie/fu7N27l3V7DhJ45iRH9u7OdV+kUilV6tTDZ9OGdOevnA/Ac/XSTCTqW7HM05u+tqNxnj+b+zfCWeqxg5krnfn4/h0mJfL8bvshSE5KYp3jfIZ0bEM/u3HMd9uCjp7+z+7WL4M7J/akI1E/E4IgqJioCOGdjHTQECnRrmghLLRUn/8XXfzMaq0kMCRzzvnkFDGqKiKUlAQsyxli07MaZ/f1x6JMYUbPOIKhgaaMRClAX0+D3e59WbPxPOeCInLdFyUlJerXNsfZzS+vw8kEkUiJYP8V9OjamDET1vPs2VtOn/JixoxRpKamom+YVT7tXwepifHc2r2Sy+unUr7rOCx6Tkakqv6zu/XL4Kr3eiIUSNTPhCAIhQ6/iaWzkQ46yiIaG2hSW1fjlxFlyc2iqT+QhIK8r1QqTRYE4RIylz/FBIotgb1ZNSKVShMFQZiNjFDluCuliDLmxZjtsBszs+K0bCFfjKekpKKqqpKurCAI2I3sSlDQdS6GBmM/dRKbvLyxrN80rcyd69e4d+sGEXfu4Oq4gDO3Hn1TP65cCmP25Am8ffeeaY4rALgYcI7V23ZTt4l1boaUCYIg0L5dXdq3q/v5hIhLl+6RlJRM+fLFv175JyI8PJzNm4+go6tFoL8zlhWapF3z9w+le48ReO92pUkTk0x1/fyu0r2X/b+aRO0/dJVhY7dzxNuOmlV/7qQEMpe+F4kplNFSBcBYXYVyWqpYFlJL4T/milOvTgUGD1tBieJFqVGjXNr5lFQxqqrpp0glJSXs5wzE79wVbty4QbFiMuPGhw8f8Pb2xtraGjefw7x69pTkZJkFMyUlBRWV9PNTVrgUeA6nOdMRKSszZsGStPNXzgdgP8SGee6eVKuXMfT02yAIAq279qR1154AqIpE+B8/QulyFujo6eWpzR+BwMBAbAYPoYRZGXadC0W3WEab3X8bd054c9V7A+0cNqFrklEo98ejlaFWMoCRmux3U1ZLjRuxSXQz1pHwH5tXWjQxp/vg3QQdGoR5aYO088nJYlRV0+8oqaoq4+z4J+XrOfHkeTQVymd+Rxw9fZePUQkkp3zDbtJnSKVSfI+EM3nOfkoWN2Du9A55H1AWUFYWMWJYe0YM+5weS8USN7cdtGjRiF+ZO7+6Gsglj0UYlLOiyZydSFS0c670H8LV3euICDxKm7nuP51Egcylz1RdBV0V2e+muo46N2KTGFhCX/oruPh9047UZ2vSYGCnVCqNzXB5BdBfEITBgiBU+Jx4zoSvx0BtAx4DA3PTWU/3UXh7jqPvgBW8eSMjo6mpYu7cfUZx06ytH8nJqUR9+MAmL28aNbVOd828nAUdevTFe8tG1DU02OHmQnJSUpbtyNtLpmvbliQlJeF9LpSGf7QEoHbjplmSqLCwsNwMMR3EYjGbPY7Rqdscpk7qhbKyKOdKPxgxMTFMmzaNFi1aMNK2C2dPO2Gp4BXi5xfMrNnL8N7tirV1/Uz100jUTvt/LYnad+yhnERZ/XzrvyAIJc5/jKdN0fRurNaFtbgVm4QgCLlS0RQEodznHHK/ZSLaze6TWO8ylr+6zCIxUebKGRMTR2TkB4oWzUwypFIpycmpJCbK3TMMDAywtrYGoFL1mgwZP5mV9jNoWbU8213XIBZ/ffET9f4dY3p0xLCYEc4HT1KxRm0AXj9/hv0QG+zdtuSZRGVEclISO9atZe7o4QwYM7FA2ixovHv3jhEjRtCzZ09GTrfHycsHo+I/dxf3V8PdE3tkJGqeOzrGP59EqaioVLkbl0yTwlrpzrctUoigD/EIgmCam/Z+93llw/K/mDW+KR1tvPiijvzkWRQqKiK0NFUzlReLJaSmSkhMyjqDQrNG5owe0oC/R+yiQZu1eO6+RE6qy3fuvaZT3w00rGvOif1jqFQhsyGzoPDpUwIODquZNt2RSROHfbf75AfxH14TsnYqV7YtoUq/GVQbYI9qoV/XkPQzcMNnPRFBx2gz1x1N/Z+/q/jFpa+mrny3UBAEOhppc+ztJwRB0M1Ne99jXvlW1z5roBzp3foAkEqlu4CxwEzgKtAIaCeVSjPvacvrSIApQK72UdXUVGjUwBKxWIJYLPNjPXb8IqVKFstyt2bXrtOcPHWReg0bZyJRAHduhPPi6WP62Y5m1vI1XAoOolvTuty5EQ7A04iHOM2fQ8TDh2l1VFVV8btwhSJFi/FXvWqcPytzNSyShaX0xbNnPHjwIDdDTENCQhI169qxectxvL1mYTuiY57aKWgkJiQQ7HeaVfNm0rt5Q0xMTHj69Cnh4eEMHtwhnUtCQGAoS5a4Mt9hUpYk6unT19y89YjLFzdgbV39Rw7jh2HP4fvYzjjL0T2jfhUSlebSp5bBfUQkCHl18XMGLhZoR38glJSUaNO6Nu/fx6TFnOzcdZbmf1hhYKCTqbyPzzk+foylRQu5no6amjyGoHDRovzZvQ8t/uzE+7evOXv0EAPaN+fZo+xdcvQKG7L1zHni4z4xvN0f3Los+zgDjh7KsztfVvj47i29GtUkxO806/YdocVfv4YAUmxsLCePHmH2lIk0q1MDc3NzAG7evEnLjl1+aev2z8Dtozu5tteNdvM2/RIkStGlT5Thu1LLu4vfbz2vCIJAuxbleP8hIe353bzzKn06V0ZZOfPSy2XzBYqb6FCtUtYu/KVK6NO3mxUzxzdjgm0TVrgG8FffzUS+jsm2DxUsjAg5NZGr11/wR4eV3LrzMtuy+cGDBy8pX3kIt+88IDTkAI0b1/0u98ktEmOjeBJ6mlD3xewf14UT03qgWcSEVgt3YVihzs/u3i8FqVRKuLcLT4JP0MZ+Y75J1IcXTzi+fiXvnmdLBXKEoktfxqkjHy5+BT6vfNNiSSqVnuUr2/JSqdQFcPnK9dJZnDv6tTazbiiVFy/eo6yshJGRzEfefct5Bg3qD8oVQJBbLK+8jqWfTXO62QyiRYPaaecNVGS39PPzY3jXvxAEAVNDfRzGjuDQoUOEh4cz6M8WjB07llWrVuHt7U0tyzLpumFQrjRTJoxjzboN2I8ehkWFivTt2YN27dphaGjIh8/xhqYlSqBWrCf34mRWI7FEbg3KKOoglsgnT3UVFXz3bKeQYRncDhxDEATuJaUXvTBQVRCukMiJXrogUpE8ibpi4LhhBmOYmrL8MVAMzi5ZSLY4PHboINPHjSIuLo74+HjKV6lG3SbNGDN7PlZ166Omrs5H4GOcfAvYIO4aXboMw3u3K43riCDpkuxCilzJqKRBEiP/sQDewad32QtoJMvrSFLl5yUp8t1DcZKCEESSXAhCKpGPRyqWH0uSkxTOpxebkCbIA0bF0fK2JDHy/qVGymMc1WuUTjvWNJc/K7sOPWCcvT/Ht3elcvH3iN+9z9RXRYg00rsXiNQV/ldSsDlkDDTOHQYYqIjSXPoy4ouL35OElEnIVDa/CkEQegFRyBJxl81Px34mbt58jEX5Emkuwu6bjzFnVr8syy5esp3ZM/unI0+K2LVpAyvnzgSpFE1NLeatXc/ZI4fo07whK7buokaDRsREfeT2zeuUsayYFu9jblkRl/3HOOLtxYwBfalatwE1GzelXOWqme7x8skjTEqZ5Xqch3Z6Uq1OfRas25TrugUND89zTHeYTHJSEokJCVjVqk1j6z9YvGoNzevXRlVV9ow+i07JoaX/Fm4e8uTWYU/aznNHxzhvu3SJsdFEPrlHEXML1LVzZdDNDpMttVTTXPoy4ouLH2ADeOTU2L9iXlE15NrdFzJxB1VDJBIJm3de58COYaCWgSwJIhavOc+OjYNQ0lDI2atgz7Jf6MtWr/NYlDPixcuPHNs3AdeNZ6huvZpTB6dSuWLxtLYU69etb8jFwJqs23iKpu1X8WebmnTqUJsWf1RFS+srtuxsBI6yOnbZcASbv1uyaLHd57pPKK8lfzY/pGT9vlEUlbkZI38/Kwr0FFKV141WUxBpQP5uTvgs+CKVSgne6U7Qrk1IUlORpCZjULYaRSvWpsYgewR9cwQlEbEJEPlSLlYVEyNvKzZa/p5PSVFYMyiIxygpCC2oqChneQygpiZ/h0skcg8QicKaQ0mkIBakIAajpi7/cJQV2tUqJP/OFAUmFAUlNNXT90NRSEJTQ35N9bMYhFQqJWzbaiKvnqPnim3oFi4sH5PCWNWyE5tQUWhfVYm7F4PZOMkWu5XrqFBB7i6fW2R06cuILy5+giC0lkqlx3Nq73vNK79dYPmryCg0NdRITRVzLfwR589fYuuWlZnKvXjymBFTZnDYe2emGAU/Pz+6d+9OlSpVGDp0KDY2NkyaNIlDhw4xZ84cYmNjmTx5MocOHUpz11HEl/rHAkIwMjHBZ/dO9u/fz6hRo3BwcODvEaPzPc49WzbRe/Dwn26JdV29EudVy/Havp0KFSpQqFAhHqXKJzalbPp37lyI3J3vC4n6D+F4wEvGz1xdej0AACAASURBVA3lpFdXKlsaplP8+8no36JIZmVKRVgX1uLUuzhbQRC6Kpze8FlFMw2CIOgA84DmyPLL/Z4Qx/Pq5StUVUVIxUkcPRbG+w/RtG5plVndSlCmv01b1rsdoFfvgfLfp4IRx9NlNeLUFDz3HmCbuxthgf4MHD0eY9PiLJs5mXFzFzFpQB+Wbd2JgYHshZVmWBEEajZswo7AME76eBNw9BAuc2cyaZkTzTp2SbuHIolSVAKUKvweM2hRIpJK8d2+hekrnNOdj0uWGyfOv5WLOKgry40NtyXyHWVFZT8EBZFHRdVJ9U7y4/gMohsiDabM8GDfgRAOHvClZMmSaGtrcy9R/pK+EJWMTJMIEhQUvBSP4xUWOfEKynmKanyKx5mNV2R5TbGOYhnFuU5xESFRWFwISvK6ytmExSlnUO3LTsVPUbUv9fPxnVP7uXN0Bx0XeaBdNL2blqJSn+I91FTk/VNTVuLJlVB87EfTY54TRsXkVucvY4q4HJJ1x7+Obhld+jKipWEhQqMSpgmCYKdw+t87rwCvXseg8tklf7NnCKYmejJilQUG9G3A+s0BNG1UPtM1iUTCpm0BHPUZT6UKpjT/cwlXrj1h/uyuGBbWZrq9N767x2XbD5FIiZHD29K9SwN27A7AyfUI/wxZy76dk/jDukq+xpicnILnjtME+6/KVzv5hVQq5cDCybx9/IA/HdxR19VHVVOb6Dj5jzjq/0aZLHHFeyNPwgLp6uiBhm7+hHzuhYXgNsmWIUtdqFA3f+7oj+KT+atY9vFrgiDQwlCLW5+SHARBWKBw6YfOK7lKyPsroFYNcypYlmDegp0MGOrEyhWz0dbOvDA0LVUa2ykz0dHT4+jRo2nnv5Agb29vrl27Rtu2bQF4+/YtysrK+Pn54eDggJmZWZoilyICAgLS6puVKYOGhgZ9bQbg4+PD1atXcXBw4NqVy/ka49OIh9y/dYPm7f/KVzv5xfWrV1m9dDHHA0Jo2rQpRYsWRVNTM+eKQNOm9bJ05wu7/LiAe/nrITlZzLgFF9m0vBWVLX++j3EGCJoiKSpKkmz/1EVSgDdSqbSWwt+GLNpyANyl0q/p+v8eaNemFhKJhBWr9jHMbg1urmOz/P0DDB/WkWfP3nDpUnima4cPH+b+3Tts2e1Do6bWvHv3FtHnHd/Wnbvx6vkzxv/Tg2UeXtSo3yhT/UtB/gSdPEYhHV069x/M0h17cdp3hFXTJ/Lq6eN8jTH8gmyBXLVu5t/lj8SJk1fY43Oe0IBl1KxZkyJFiqCu/n+1rJyQ9CmGkM0raDV1ZSYS9a0QpyTjYz+aLvZOmNfM/BxEXA5hx4xReWpaPYd5RUNZChD5X5pX+vWsw/VbL9ngEcjUuQdYv7J3tmWnT2jLkZM3ePHyY6Zr9x++AUjbdXr7LjYtZnrYQGv8Am/z4cOnHPtTtKguY+3+5PQRe7w9x2MzZC3v32cMe88dfA+GUKliKcqU+X7xV9+C8OP7ePfkIf3XeqFfsgwaugaIvkHk57+O2DcvueqzmT/t1+abRD24FMJ2h+kMWeqCRe38v2eUlQRUc5pXZOuViJ85r/x2REoQBDY4j8TJ5RBlzI3o3Tvr2CGtQoVk1mJBQF9f9nD4+fnRrVu3NHUtS0tLtm/fjoODA2fOnKFy5cppJKlx48YEBwena9PPz49Fixal1c8IMzMzVq9ezdB+fYiLy/sOxAGvbbTr2gPVbFyHfgQkEgmTx4xk+tz5mBbPvVpgsWKZlV78/G8wYUbuJaF/N7jsuEvZUtq0aZZ716sfARWRJMe/nCAIQnVkSbczbwf/hlBWFrHZbRzTZnnwZ9s6NPtKzJ5IJEIikaKnl94lys/PDxsbGwwKG/Li+TNmT5lI5MuXtO7UDYCwIH+SkxLpajOY2o2bZmr3UpA/0wf1o2HLNunOl69Sjb6jxrPAbiipqVkHon8Lju7eTtsefX7qLndSUgp249bjtGII+vpf3xn9P9Lj0s71lKpjjWGZCnluIyE2hi72TpSyyhzDEnE5lB0zRtFnwZo8tf3/eSUztLTUcHPqw7CxXoweZk2VStnrbairK5OUlIqebmZjZemShfnwMY69B8IYYreZwgaFaNbEEgANDVXKlTHi4uXcyaK3alGdHl0bMGSka46iFV/Dlm0nsenXMs/1CwIJsdGcXr+cduPnoqL2f6NMbhC6ZRWV2/dGJ4/GmS94cCmELVNH0nfWwixJ1O0L53PdpoA0xzlFWZTzs/u955XfzrUPoHhxQ04fdcDczCjbRYFYLGbNAntePXtK5cqV03ai9uzZk0aCBg0ahK+vLyYmJsyfPx8HBwe8vb0pXbo0Pj4+XLwoj0f7Ut/Hx4fGX8kT1adPHw4cOUafzh2o37AxmobFaN+tF7r63870LSpXZeGUcQydOI1ixj/HynPQaxupqan8PaBgdkD9/G/Qve9Sju7Jv9vjr4x3HxNZ6naTU1tb/eyuZAuRIPvLJ6yB0sDTz7/BQoBIEISKUqm0Rr5b/wmoUtmMM8cXYVW9TLZlkpKSGTvOCXV1VUqWNFE4n5Q2v5w4F4jvXm9Mi5fA+/BxRIUKcSHAj1F9uqGkJGLAmAmZ2r1yPpDpg/qx0H0bRU0yL7Z6DBvJhbOnmD3ob8pXrY5hMSNadOmB+jfuEAOUr1yNvZs30G3gUNQNCudc4Ttg2eqDVLAsTvu2tXMu/H+kIfrlE+6e3k9P5/35akdDWydLEvXocggHHKfTZ8EazGvUy1PbOc0p3zjnWPMvm1eaN7Xk9IHRNG6QfUhGbGwiA0dupXaNUmhpZTagqqmpMHSANVu2B2FW2pD9XqNRU5Ptthw9EU50TDxNG1nmum8L5/ahXtNp9B2wmgoWppQobsjfvZvkSiG4erUyuG8+Ru+e1qjlYj4qSPi5r8KiUQtMLPPnpvhfQ+Ttq7y8HkZTuzn5aicx7hNbpo7EZrEz5Wtlnj9uXziP89jhuW5X+Ia1yq8wr/x2O1JfUKtmOQw+Z2i+deteOovKu3fvGNqlPZeCg9jrf5Hw8PC0nSbFnaQRI0Zw9OhR+vXrx4QJE1i+fDnW1taMGTOGcePGYWYm21FQdOf7Gon6gmVrXenSoxeCILB24VzCL13I1dhadeyCZZVqBJ0+kat6BYXb166wxmE2S9e4ZEoMmBf4B8hIlPf2SdRSEGbIiNRUMRGP3/Pp09cl6H9lzFsbTo92palQpkACuL8LvrZN/uXvG7ABKANU//y3DjgMtP5+Pf/+aNSwElpa6kilUm7fTp+g++nT1zSxtuP164+EBq9PE0OA9HmkJk6fyc4Dh1nuvA4TU1MuBJ5jbL+eFClmxAQHR/QykJiwwHNsWuHIQvdt1GzYhKygpKTELNdN1GnWHIlYzNo503n55Nvy3n1B5/6DUVVT5+alvKdkyA/8/G+ycu0RVi8b8kPvm5KUyLvnT0lOSMi58C+K4E3Lqda5P5r5zOkiUskc9P/ocgi7Zo+i6/TFeSZR8A3zivDfnVf+aGqBioqIlBRxmpveF9y+G0mdPxajr6fJiX1jsm1j5eLe+O4ew+olfdHTkxGWhIRk7CZ6smZpP9TVsxZ0+BrU1FQ4uGca9eqUIyEhmQHDnImKyp03zdw5/Xj0+DX37r3I9f0LAldOHeWW3zH+GJJ9jNj3gDQlEUncO6Ti5JwL/4KQSiQEuTlS12YMKhpfj2/MCe9fPMVmsTNla2ZPokau+lpGpKwhkPO8ovwLrFd+yx0pRdy4cZcqVVvy118t6ddvKCEhIezatYvW3Xox3n4hiQkJaOjoEBERgbZ25qC12NhY9PT00q4fOnSIO3fusHv37rTrOlnUf/z4MT5HjuN36iTPnz1l4/p11KghI7ZaWlrYDB6KVCpl3drVVKxqlem+OeHR/btUtqqVx08lb5BIJGxxWsGWtSuZsngF1WvUzFd7kZFv2L//OGdOH6VNSytqWpUB4tPudfduJJbliyEIAvcfvqHPIHeev4omOiaRhIQUHlwYTxmzn2M5zwtuPY7H5/gTrh36ubFtOUFZSYJKNgHu3wqpVBrPly8TEAThE5AolUrf5rN7vwROnrpM6/bT+efvFrRvV4/AoBvs3nOOCeN7MXFC70w74Yp5pBQReM6P2XZD6dSnH9cuhtKx7z/procFnmPSgL4s3rQdqwaNeHz/LiF+Z3h09za9htthYibfHdM1MKBT/yHEf4pl97q1lCybOSj9a5BIJDyLeIhF1R+bry05OZXZDrvZ5uXPjk2jKF06a3nnb8Wb58+4GuDHrcuXUNXQ4O8pswCZBT01JYXXT59SrLRMPv3Z7Rt4zBhNUlwccdEfSU1OZt6xUHSLFM3vsH4Ynl0N4V3EHVpMXlrgbX8hUT3nrcG8Rv4kq3MywGQU+8gK//Z5ZYf3RQaM9GTU0KbUrVUa//MP2Ot7Fce5nRnYr2Gu23NceQSrqqVo2+rrv+mr1x5zNuAW9x9EMmtqN4yN5R4yxYsXZrRtex48fIXnzgAMDTOnfPgaYmLiiY6Ow9Lyx+Z5S0qIZ89SB+5eCKLnwnVo6OQvH1TKxxckPg8n7vkdlDQNUK8m11qSpiYjiY9CSUtmyEh9c4ekUDeQSolPigGJGN0e61BSzR8hKWhEPb7NzT1rqNF3DIXNK6a79jDgCCnxcdw5dQCDkmUxrZB5Ny/y3g2uH96FVYdeGFtkTi/54s4NjrssocOoyVmSqDsXQ9i9bCF2ThuwzGKnKicISHOcV77FQPO955Xfk0gpSGMfP+zDgH/+wKy0Ie5ui2hYvwJ7vcZSp05F4BRo8Fnv+wKkkkmFS1sdqlcCeAMpsGrlLObbd0dNORjEoK0J1aqWAaJAGpWmztWpUyeKFy/OmTNn0NHRQde0dJrs+asEWRxDeFgoWto6qOjoEJOYmO6+qZL0X76WgnX7/bt3vHr+jNLlLSivlc2CV/GdpKTgiqSgHkayXGSjvIqCupaSXCYTQCvlCXfvv2LcFE9SUlK5cm4apUpKIclDXkhhk6hSdptUiXI1L0l8Mi2bu1LOrDBNGlkSfvMlLdtN4+ie0QiCwD/DPTgbcJeKFka0a1mJtW7+2I+vg62N7IVQq/VWHt66SUkdY5Jj5M+6OF5uLVOUKZco7GIpypRLEuTPiqAgM5ryQp56QByfPu4k5rWC/Gmi/HnRM5VPksqq8rYkn5KQSqXMWB/B+M7FUI98TFwkiM0UZNgVrFaKMuyCcmYr4ut3CUTFJmNhruAOKpU/L4JS/n62KkqSdKpjBQGpVGpfoA3+ZBw/Gcak8d2RImXb9lM0blSFk0cdqVJNHp+SlJTEggVrsbHpSpmymRcRwYEBOC1bgoPLRuaOsWWuk2u6Hd7LwUF4rF7O8q07qVxH5lM+/K9WNGzZFjUNTSb360mbHn1o9lcnTD8TA4BL/n6UqVQZ5VwGUj+5fxdtPT30Cv8YAZSEhASuX7+O7fBZmBjrczV4CUWK5G6RlhHJSYlM6fYnVRs0xqxqda4H+rPcdhDDVqwjPjaadRNseXrnFqUrVcWsag0CfXbSddJsarXpiFgiYU7b+iR+iv2liFR05HN0jTLHoUa9fMrtE/t4GHSC+gMnoKya3uUr+tVTHoecpXS9ZuhmkUsq+uVTbp86QNU2ndA3LUXMm1eoCFL0jGX3enz1AgE73Oi9wIVS1fLvaplTDJSY3Mfh/NbzivrnOUFBwvz4OW8WzR/Ao8eR7Dl0nyaNK3N+4kDKlc99LrDUVDHObn6EBK4BdYUQgAyy5QkJSTRoPpuB/dsQnyil7yBnTh5zlIvpfC5/4qwftWuVB9Fn9zxpNvGYiu1Lkgi7eJPKlUqiIhJDqoJwhdLptEMDkcKzKyjmU8yafCmS7mQFKfTYpBQS4+KIuHGNDbOmUKKyFSM2H+BtogpvYuTv2A9R8vXA23fytdf7t/K0Je/eyPNvRb95Q8LxaYhMayJoFCPlxWWSPzxH2bITJEaREr4DacIHlPTMEDT0EL+9hXKl7oiKWIKqFkkH7UiMjUNdL/3aSjFFhrKChLeitLmqmvxYUyFRs4amvK6iu6eilLmWpvzZKqR4rKHM06uhXHAaS4dZq7CsLf99q6kokZwQz06PpWgbFqH9sNGYZzCaq4gEHlwKYd90OwYtW0cZK9kmgaLM+dNrF9g2YSh9p9lT1cKMwoaan8vIxnPtfCDrxo/Afr0HVg3zlgdREHKeV74lRiojCnpe+T2J1GckJ6fgvP4oo23bMah/S2ZNz14R51sQFfWJ0At38fWZm2PZJ0+e0Lt3byZOnMjBgwcZOdCG7ft80yzVSYmJzBo5lOHTcu97WkhHhzKWFfHZtpnKo75fhvCrVx+w3u0gO3edorCBNgP+bsLU8e0RifLvznfoxD1UlEXs3dwTQdUAqVTKhJn7sP5zBfHxybRtWZm3Dxw5dPw6+w5dw+/QGCqVlBOPZ6/iKFMye9nLXw3HL0fz/H0yA1vnzfVGKpWy+8hjPA9EEHL1LSrKSozpX5GJgytnK4+cVygJUgq4yd8bXxYGSrKXVXR0HFu2nWLFMlu6dW2KZqFK8rIKhooLN8Op1bQT+qUacztW/rKXSKVcCDjHBJteLN+yE33DIsRGR1G5Vt00qfKwwHO4LJrH8KmzqV6vIakSCYnx8cTFxjJ9lQuXg/zx9dzMrUsXsPkcUyUIAjEfP7Bm1hSmrnJJk+NWNMooHmdMTWBYvASCoMS540do2rpd2vnY5KxdU5IUFjDxCiIXIYkGaccpErnyoEgQkEql3AgL5bBnP84cPkARI2N6DhlN1wFDeCIIPEmAOAUJ80/J8lwu6aXNFcakoEF+2ssT0/IV6WW/jBSxlGrteuBpPxHHAb34EPmC+p37MMhpK5eP+/LwUii27j7oGxfnU5KYhIREYj+8R9nAmOgEcbrFmqLU+LdA0Q6RTl48mzLKCnNqRiOGka5clObLdxZxOYQAt1WYWlZGt7AhTf7skPZuURIEIi6H4DtjFH0XOmNWxSJTu0/CL7J34ghsFjoRG3EV3zVzeHH/DoKSEl1HT6ZYKTO8Z9kx1mk9FT9LFKvmc95XEr7+GeZ0/d+Op0/fcOx4GH16NWPcmC5pOevyiqDzNyhRvEiOanmvXr2nWDF91jqNQiwW07LNFBwWeGI/2yZd3+wdtnHyyIKvtJQ1KlcqRcSjSEIv3KVu3Uo5V8gDJBIJV4P88fFwJzzAD0PT4jQfPJaqLdrLCmQwVOcWKQ9OITKtiVrN/ohj36FkYkXKla2kXPFA+uk1yuZ/oFS0CpJXl5HEvUG1/jgEtc9iOYlRoKoFyhpfv8kPhFQq5aCDjESVrJ55p9l32RwS42Lpu8gFs+qZjSgRVy6ybZod/RatpYxV5us3gs6xa9EstPUN2OE4Dy9HKcPmOdKwXQdARqLmDx/APLeteSZRX/A7zCu/NZHatOUMOtoazF24m2WrfHn6wD3PMT2pqWIiIz8gkUh4/vwd5S2zt5xKpVLU1dUxMTHB2tqaBg0a0KBxE5xXLsdu/ETu3gjH12sbZSwq0LZ7r1z3RVlZmUXrN9O/XXP+bt8Sc3PznCt9Iz59SmDtun1s9zpFdHQcgwa043roYoqbfnahy5g3J4/w2HmV1FQJy5yDaNK4CjWqlWD5/M6sdA3A2EiX3t1qg1RMt4416Nbxc6xfnDyxsHU9I5ZsuM5a+58r1fwtSEiWMH3Lc5YPKolKFhnrvwVbDzxllWcE04dXwWtlEz5EJ2EzOYjAsDccWP9HLjNXfx0qSlJUftvoyO+P5Sv3UMbchDHj1rLGeR8XQk9kKWpT0syMSlUzJ8tVJFFWdetz/XIYsdFRRH/8gK5B4TR3vqVb0kugiyVi1NQ1OOi5BdeFc1i0eQerZ03hxN7dtOraA4AVUyfQuG0HajVplutxaWoVYrqTK/bDBlCtVp0C3ZmKev+efZvWc2LvbpRESnS3GcR4h8UYGBZJZ1HOL4J994AAp7dvwqx6bUzLVaDfvBUcXr+aUpWtqNDQGolUSp0O3anToXu6nFAiFVVKVLEicIcb1v3tvnKXn4svEuRdpi/CZ9F0BqzySPf8Pbp6IU1dz8yqTqb6Dy6FcNJtFQMcnYm4epGb/qdoM2gklRs3IzbyBStt+/PxdSRTN25LI1GKuBGSe3UtkM0rX4M4H8pw/wY4LPLC0qIE/QYspXHDyhzwsc+zgmZSUjLR0XE8f/GOxMTkr8ZHKSkpERMTx4MHLyhb1pTtW6dRs64tjRpWpkXzmkgkEmwGLWX8mK5Uq5r7tYaRkT5rVw7jn0GruHJhDZqaBaeaF/niGR4uazh7YC+6BoVp1LUXg+cvRVNbhycf8keeFCF+HIigbUTKw7OgWRRBqygqNfojvnsEpTItUNIrBanJiIrXlTkRqym48KlqI6hpI34aBBV/DZEpqUScLYm6dsKXK8f203PeqqxJ1OUQ/D030G/R2izd9e5eDMZl7GBMzcvRY/wUKtdvzNsHd1g2ehiPb9+kjnUz5g8fwMx1m/NNogQh53lF+f9EKu9ISEhivuNe2rWuyZ/tarF1ux9Fivdjg/NIunb+ehKwd++i6dl3Ie/fx5CSkkpCYjIvX76naFE9ateyID7+62IHgiDg7e1Nly5dqF27NpaWlrhv30Vb64bcCL/Go8dPeProIT7nL+d5oixXoRJDJkzBxsYGPz+/bHPa5BZjJqwn8nU0zk5jaNSoiox4KrjkFRTcVvzF2aBH+Ac/wcbWk0b1zNno1Ifxdi2+qb7L3AbU73YQr4MRdG36a+9MOR2IpJqZJs2q5c1tKfJdIrPX3uKoe0uqWsrc+bQ0lTnh0YrijXbz9kMiRQ0KTgpfpQBipP6tePs2Cud1B2ndqjZ9ejdn2oyNGJvUYtdOZ5o2Tf9SyRhz+exRBKP6dOHhndsUMy3OjBEDefc6kiJGxlSvW5/4uE88uH1LRqI2b8+UR0qrkDa9R9ixfPoE5rhspGHLNhQ2MmZcj458ePsGg6LFuH/jGu4nA/M8vur1G9Gyaw+WTB7LQnfPPLejCKlUygK7Iejo6TN33SYsq9dA+zulbhi+cj13LwZz/9IFTm/bSJ0/u9J+xHjaDMs50FwQBLrbr2L9oM6UqFwDsyzyKP1sPLoiJ0lXjvtStcWfGJeTu5NGXA4hYLtbtup6Dy6FsG2aHQOXuaKtX5hzXh7M2HkIA2OZEmT0+7fEx8YglYipUDtz/Rsh51k+Km9iIDnFMvyXidT9+y/Y7xtMDatyOC4chN0YZ0qY/83h/fOoVi17lVCAy5fvYztqNQkJyaSkphIbm8Dbt1GUKFGU2rXKk5CQ9FUiVbq0EfPnDuCvLrMIDnDC2Lgwnlum0rPPfFYsHc7btx9JSREzaUK3PI+ve9dG7PcNZeoMD5xW5l6dLSukpqYyoV9PylWvwUJPb0pbVODNp/icK+YBatZTkby9jfjtPcQ396NcpgWikvVRLt82x7qCSAWVWkNIDlqB2NgCkX6pHOt8bwhKoixJ1OMroRxYOptaf/WgavP2ma5/MeLYOLpinsVO1L3LF3AZOxg1dU2me+xES1cWl1aumhX2W3YxuWt7zh89yMx1m6nWIHOexFyP4xtipL5RbOK74rclUsdOXMWivAkfPn7iD+sqrFo6ELEE7Mat58rVCGbP7Jvt1rn75mMUNtBm2eIhqKoqo66uiqmpYa5Ubxo1asSSJUto3rw527dvp2pDaxavXMPgvj0RSyQ479qPnkHhdO4qucU/tmPYuW4N9+7do0KFvOcO+YKzftc4efoKN8M90Nb+vjKlBvoaiJSU0lxmPnzM3QSoq63KwO7lWbfjDl2b/rpSyY+jxGw88Ra/RXn/fhZtuEvfP0umkagv2H3kMWKxFLG4YBcgIiUpBeC9+a+E994A2rWpQ8SjSIYP/Yt1LuMQKRvTrftwpk6xZew4+2yNGstmT+XJgwfMWulM9Tr1UNfQpJhpcZQ+l78YeI5lMyazdPN2ajVqmin4/lKQP7vd1tGuZ19c59tjWsqM8lWq4Xb0LLOG2vDw1g1cDp5EXVMzX3lfBk+ZRYcKpfkUE00hnfyrS545sJe3ka9Ysm13ruO2cgttA0OkUinSzzGDcdFROdRIDx3DYlRu3o6w/Tt+OSIVcTmEo2sW0WfBGpTV1Ll7/ixjth9Ld91r5ij+XuSCWfXMO1ERV+XuOGWt6uA2fggtB9qmkai7F4PZPm8a9dp2JPjwPlJTklEVyd2RboTKSNSENW7M6ds1U/s5QZSD5Vj0HyZSWzxPMeCflnj7BPKHdTXWrLJFSUmgRdtpLFk0iP42bbM1ui5e6kXrVrXp3LEhqqoqaGmpY2pqmCuJ8hHD/+L2nac0azGRXTtm8kczK86cWEr33g5ERn7gcqizbF7Lh0fKyqWDMLMcUmBEaucGZ7R1dLGbv+S7574T1HVB4fmUpuRuvaKkbYySoQXJEQFo1PwFiFQWn9fjK6HsnD4cDW0dOozPHHKiuNOdFYm6HxbCGQ9XdA2L0mHEuDQSBbJ0Q16rlxEb9ZHZGzZTtV5mEnUlKCD34+Ab5pUcrv8I/JZESiqVstHjNJ071GX9ppNYWhSnejUzEEQ0bliJIbZrqd1gLC5OtjRskN5nVyKRsH7jEXZ6TsPKqmy6NjdvOU7P7k2/eWu6f//+GBsb07t3b1q0bc/ZkyfYffAoiaoaVKmZ+UWXWygpKWFqasqHDx/y3RbA8lU+OMzp991JFEB8fArTFpzifsR77Ke2ZerY3CXsC7/7gRXuNzju0QaZSsivB6lUyuzT8dj9WQxTw9xLz35BQpKYGpXSKw45e97BaesdTm9rjXFRzXRiE/lFQaj2/RuRkpLK5i0nmDqpB0NtnbC0LEmTJtVAqQz169eg/4AJ7Nt/FmdnZ6pVS6+SFXjyOKd897F0kydtuvSQt5mczD5PD4yKl2Da4H9Y6uFFzSzcHRTzSFk1aMzJfd6M7dmR+/Bm/gAAIABJREFUIVNn0+mfgQydNoeD27dgWT3/qXTU1NXRMzQk5uPHAiFSXi5OjLRf8N1JFEDM+3fsX+1I7McPdB4/k0Zd++SqfsTlYK6fOsTQDT7fqYd5QxpJWuhCqao1cRnchdYjJqGhLdvlfnztIl4zR9F7/pqsSdTlEM5tdU3njpOSmIiRmewdd/diMBsmjqBKo6bcuxTK7J0HUVWXk6hboedxmzGJCWvcqFzv6x4d2eH/O1JZ49OnBHbs9MPFaSROzr6YmRkxrKxsN6BubUv6DVjC7j0BOC4aTKWKpdMZal69es/JU5dZ5zwWVVVlNDTUEIlExMTE4XswmD69/0BJSQmxWJzm4pedkWz1ypG4rvOlQZMxuK4dQ7euTbgY7MyTx68wNzfO9ziLFNElNVWco6vht2Lr2lW47D30QxKISz+9Jvn6HpCIUa7YCSWj3Cmbil+EIY16jFq9gd+nf1Ip4uTEz+kLMhNoiURMcnwSymrqaYY7RTy6Esr+BZNQ1dCky/TFKGdIgxBxOQS/reuy3em+HxaC5+zxDHZ0Ysf8mRibl1O4t4T5g2wIDw5g8lq3LEnUtZDzLBydtzxSOe9I/fx55fciUgmPAVi2NpA3r98wuGdp5jt+oJj2R4gXgyDCSAd8t/Vip084PfvOZ6hNA2ZP7ZjWRPTHON68+cjHyAekxirz4tUnnjx7z/2Hrxlst4Wly3ay08OWqtUUktspKwRjK8njeMJjG2BctxkTHVcya8RgbEaOpWKjP0hKTU2zNpvryF9WBl9ZZ3xQ2Lh6lyx/MPT19eVESvpMXkh8L5uWFM4rqu6kxpIQH0/xYmrw+mC6GqnxciUbSYqC+l2K3AdZqhDnIJXI2xUnywUixB8U8k+IJQQtMccnUJdlW85wYLcfLralMS8k/1FIsskX9Soqle4ur5jbTp/iD8OJvaygfpcsv7dEISBdkWekJiv0VZr1ed3yCrLq4vR5M4zayb97pUJyFyX10nKhAUFZFa9Dj3gh3GT8uLqofg46Sol+n1Ym6elz+S3eydWMRMXki1eRgRaGuko8exFD0nuZi6WH7wtWbn3MIcfKlFL/SMLjj0jFBUek/u/alzWmTHfH0FCHP9vXJTr6E4aG8u/J3LwUZ8/sYqP7cVq1asW8efPoPlAmBBN4zo954+1Q19CgeCkzUpKTiXzxnFfPnnLz6mWWz5qCSFmZ+a7uWZKosED/dHmkJFIpLTt3p0L1mth2akNCXByea5az9sDxAhurtq4eMVEfMSlVOt9tJSUkUMToxyQO1ytajHmHzhHiu5ejG9dy7cwxbOavREM/Z5GXd08j2Dt3Al1nLUfPyOSb5Lh/BJ6EX5KTJKs6+HtuQEVNneptOgGfSdIWV3rPz3qRk+aOs8QVc4WYB+3ChnyMfMH9S6G4TbKlatMWPL15jSke3mjrywVDboWeZ9XoYUx0dqNyFjFT34qcFjypv8jn/cOg1gGpVEqnju15+SqKl58s0NE35KG4DXx+Falbwtj55swdb0dD60kscHGneYdOaU1cvhWIBGXMLAayfLMXpqVK8vLZE0L9z+O23JF1Wy/RfcAQVs6eitMGdxo1tc52nSFIn2FrN4n6DdvSqnVvyluYUbVqWSpXVXBRlmSTE0mi8K5Op9qnoIoL6Otp8fHtc4yN9OXqfwAihToq8vdoeJS8foyC6E10YiKJCfFIdfR4ES1/P7+Pky+UPiqo7aakpn+2FMmXurp8mautl7URWUu7KpLyG4kJP8bHsP0oxzxAz3okKRJ53aQk+b1FCrH40ujHxN7YjU6LKWgZpo87VVNQ5NMqJDfQayio8OnqyuOtNBQU+TQ15Pd+dfEYmvpFMa5cO506n76mMo+vhOIzZzT9HV0pW7Nu2vkvuHMhmOPLZ1KhRk0QBNq1T2/Uvhlynp0zRzHJxZ0KtWX1VRXI2J1LF9g6zY6pLu7Ua2LN6Y1rUIv7SLnC+kilUib905M7YaGs2bGXxi3bUElHgVakyHKhNm4nYPdoI4Jq7tI2fZNr3/9jpHKHIyfvcvv+W5a7BnDhhB1qasp8+JhAYYP0P47AkEe0bGbBnlIDGTZuF+1aVaemVUkEQUBfX4vjPqPo3Hc9UdHxFC2iQ6kSBpQqURjHeT0xNtKj+Z+OzJvVi+FDWuVoDbkYeI4F40cxeuZcDu/Zybg5DumuX7kUhlXNvOeDMjEx4eHDhzkX/AaIxZICV4D7GkQige5NDZEki5m59Tk5GZbefRKz9kwUOy98wraZLt1qFvoxHc0D/C++ZrLjZY5s/CONROUFV+/GsP3wS7wcZRYwr2OvWOzxmEOrrSilXzBxcRmhIpKi8n2a/i1x6MhFwi4/ZL/vecKC1xATE4+eXqFMwjVnzgTRt29fihQpgqurKxZWdYiJjWHmpPHMd3UnLjaawZ3akJSYSBEjY4yLl0BVTR3TUqVp1LItS6ZOQElJRKvO8liES4H+rJg5mXELHLGqn55kFTczp22PPmxevgjHrbsoVc6iwMZsaGTM88cRWFbLfY67jBCLUxEKIHH3t0JFVY3G3foQFxuL/+6t5DSxRL1+yZnNa7npd4IWwyZQpnbu8/XkFS/vhHPGZRGt7GZgUiGzMMnzW9c44exI7wVrMbeqy42zxwjavYXh63cjCAIRV0I54rSQP8fMonQW7jYRV0I5vHoBfRasTUei7oYGcickAIu6jTi03gmr5m25dzGYaVsykqhgti2ay1inDfkiUSCbV76G1DzIn//OOHDgAGfPnuVK2AW27T2AkZEx+hmScYf6+zHq7+6s9fLhwe2bHN+3h5JlylKuoixnj0QiITUlldTUFGx7dsTIpDjGJUpgUqIUizds4fyZk4z7pxf2ixxp1NQ6Ux+ioqLQ00vv7WBlVZkJ43vh4rqfda4TC3TMJsb6PIx4IyNS+YBUKkWcmppn8bC8QElFHd0aHUmMekvSi+s5zivimFckXd9H6ps7aNUbiHLh0t+tb8aV66CZhbHo8bWL7Jkzmm5zndJIlCLuXAjGefxwGnbozDX/s8zxOpDu+q2LISwfNZQJazakkShFXA8JYt96Z6a6uFO1fkNO79vD84cPKV+1OlKplOmD+3H+1HHW7vShccs2BTfgz5DJn3993sjp+o/Ab0Wk1mwMxriYNvu3/kPJ4np47b2KWUkDVFXlw/ALfEDrbuvp0cmKJXM78uxFFH/1dqF7pxqsWtwDQRBoWK8sT24sQFlZhIpibg5Btt1Zr3YZeti4cC7wJhvWDkfHIH1QeXT0J3R1CxH5/BmT+vdhqccO6jVqyrqlC3j96iV6n3OUXAw4h/sSBw6ePpfnMXfu3BkHBwfGjh2b5zYA4uOTuHbjCRUsTYGCIWbfgnfRKYx0eUzNsloE3IxFXFKZMsVU0xHU6AQxrn4xeATF0NlKi3OTTSmm8+s+mnciYvh7QhAeSxpSxUIfSfLXxUmyw6NXifSYdpNVkytQt4oeB05HMtv1IYdWW1G2hGa2O3b5xf/lz9PDdcMxTIz1OegzFwMDHZav3EOVKmXk+V+EEnh7e9OzZz/sxk2ke5+/Cbt0iY6t/yAlORnn3b5Y1Zctzk/eegzKyigrK3Mp0J+pg/5mgfs2ajRoTNtefZkx+B9CA89hZ7+QW1cvMWNgXxzctlGpbkM+RMlc7b7EP10JCuDm5TBSU1MpV60GSQoS5NnlWVE8nzGOSvE3V6tFa47u3Y1Vq3bEJilYghPk9zDWUc+y7ttP8p3qF89f8f7tWyKVtIiLlLsgK0pxp2SI8VP8P+O1L1BXkddXzF2i8Tl/24sH99i/aiGVGjThYeg5zK3qUti0BIIgEJ8ss2DGvn/L8U0uXDm2n9ode2K34wSaOnppn1FuJc8Vx6Sp8M5RPK+ssPB7cu0C+2aMYOASZyrWrZ2p/J0LweycOgK7VeupUKc+96+E4bt0FrM8vDCrVJY7YaF4zxrFhDVuVFcI3FZTlt37WnAg17w3MXGhI9UbNE6TTr977Qo7Zo1j0PgpeKxcRJtuvQg4epgNvscxMpXnq7oSFMCascNx3LSdWo2apOt7XvA7yBT/SLi7u2Nqaoqb506sm7dg9pSJlK8kT3oaFhTAsG4dSIiP4+71a5SxrIDzonmcP3uKifMdMSlZmpVzprF2134qW9VEQ1MzndvfhQA/Ak4eY/KCJbg6rSA2JobJs+bwxUrm5+eHsrIyVatWRUcnvRBS505NaN5yLFKptEAVYTt3qMWuvSE0apA/o8+j2zfRMSiMRqFCxMV9n/dgVkh4Fk7c9cOom9Ul8UkYGJRDpGmQrowk7h1JN31JfXkVVYvW6DccgqBScEqFWSErEvU8/AKhm5fTba4Tpa2yJ1Gt+g3mjNcWZu/wQVtfTnBvhpxn56olTFizgUpZuPNeDwliycghzNjgQaXa9bjsfxaXOdNYtvsAhYsZMdduKOcO++K4xYvGLXMW5cgrcpo3hF9gXvl1V6tZ4Oiu/rIDQcTNO68ZNHYvFmWLMHXuERbPaUf4zZf0HLQV7802jJi4F/vFR9mzZSAfopLoOWAjdkOtKVemGAAaGtn78JYra0Sw30L+HuhEv0FOHNgnz60gFospa/E3Qwf/SYp2dZZ67KB2o6aoqKjQqHlrzh07TMd+A7gYcI6J/Xvjfehotvf5FrRs2ZL+/ftz8+ZNKlXMezLLQ0evULuGOUbF9CA65/IFBUNdFS6srETQrVgCb31ipU8MSalSGpTXpF5JVV7HpLItOJaWlTQ5Md6Ekl/zf/wF8OptAp1GBrJgfHWa1zfKczsv3yXRdfYtpg405y/rojyLTGTssrvsX1Edi9LfNzu6TP78508+vwoO75suO1DW5px/OJOnuVOrlgVLl+1g0sQ+nDt3DltbW44cOULfv/8mJTWFafYOrFq2hLevXmFZRe5Pr6mlRbJYnEaiFrt7pqkXWVStzqaT/ky16cXsoTbEREfh4LYNq4aNiY36SLealRgwcSrdh47kWnAQs4f8g8MmT9wdF3A5yJ/af8hdMiJu3cS8Yt5ztjRo24GN82fz8c1rlHXzbj2+cvIQVZq2RFX9+y4kMsK0bHkW+J7hblgIN4LOsWeVIyJlFcrXrEvJarWJjLjPpaP7qNaqI2O2H0W7cJFsSdv3wINLIRxyWsTAJc6Uq5VZ1OLOhWBcJ4xgxHJXKtSpT+SjCNaMHsKoZU6YVarCzZDz7F69NNuYpWvBgSwcPhD7jduopnD9yf17TLfpRbchtnisdGTYdHs2LLTH/dg5ipqYppW7FOTP9EH90khUQSBH176fL671Q+Hr6wvI3PYP7PHGeeVyajVozJ6tmyhR2pxF0yagpq7O6m27mDT4H7oPGIy773GO79/L4qnjUVZWYZXnbmo1lH0/innhQv3PMt6mNyu37qROY2v69/ub7u1by1KnzJ2Nn58f3bt359ixY5QoUYJVq1bR36Z5mkHEwqIkmppqXLlyjxpWX1cNzA369mxIvWZzWDS3J4V08x6Lfe6AD007dvkh8VGK0ChRlSJdHUl6eYvEiBCSAjcjqGmiUqwC6JdB/O4+qS8uo1auOdp/OiKoaiH8BPeO5+EXOLpgHD3mr6V0Fsm0b184j8v4EXS2m8i+tcuYtGErRUvIRTBuhpxn+aihTHTZSMUs1DtvXgxhycghTHZ2o1Ltety5HMayMSOY574NM8uK7HJ14tT+vSzc5Enj1pnV/woKAt8QI/ULGIV/KyKVERNtG2Ne2pDR0w5Q0aIoE2YfwnlJV/5qW5ka1Uqx3TuMSbP38+JVDCf2jUkjUd8CdXVVBAFMjNNbI0QiES5rx9Kj11zKVrjK0s3b067Vb9acEL8zFC9Tlon9e7PMwytfbn0AKioqzJw5E1tbW86e2Zqnre6XL98zzX4XyxbkLjC7oFC6mBqli6nRt5khkph4nrxLJvheAkG3YtFUVeLwaBPMivzaBAogIOwtQ2ZdZEAXM/p1yntur6dvkug04yYD2hoxsFNxpFIpoxbfYmSPElQr//2l3kWqAiJRTrPPf2zV8xmqqsrMntGXwkUKs9hxO5qa6sxz2I6XlxctWrTgeEAIKxYvYPr4MRgYFsHzpD86enppiXZBFvM07TOJqtmoSbokuYV0dIn+8IHbVy6xbOc+qtWT7WRp6+kzZOosVs+czIk9u4h89pT5m7ZTtW4Daja25kqgnEhdPR/Iwa3uzHDdlOdxFtLVpd3f/dkwdwa2K1zy1MariAec9ljHgCV5q59fmJQph0mZcjTr2Y/EFDGvn0RwPyyU2xdD0C1qxMQdR1H7htipgsaDSyFsmTqSwctcKVsjs6X4duh51k20ZcRyVyzr1Ofy6eN42E+j65jJWDX9I22RM9nVPctFzo3QYBYOH8j0dZvSkaiIO7eY1KszrXv0IezcGexdN+MybyYjZ89PFwv3hUQtdvfMkkRdDMybB4VI9evvJpm61n/TgKOto8OMeQuIF0vZuHIpr54/Q0NLC/cDx6hsVZMtR05zaPcORvfthiAooaSkxIqtu9JIlCIuBPgxaVC/NBIFULRYMWJjYzAyMcHf35/u3bvj7e1NzZo1sbW1ZeDAgfj6tmbD+sUUKSJzL2zRvBZn/a4UKJEyNytK21bVmOXgzcplw/LUxs2wC5zy9sLR+2DOhQsYgiCgUrg0KoVLQ5V2JCYkIY56Qcrr2yS/uoGSjjFa7RahrJF/kZ684sX1ixxdMI62M1ZmSaIeXAph6zQ7mnTpxb61yxjksIwyVaqnXb8ZGpzmzpcliQo5j6+bC5Od3ahSryE3LgSzaPhAxi1fQ9W6DQg5fZwNC+wZOWse1u3+ylQ/ODiY+vULRhFVUPqGeSX5588rvy2RqmRZjHnTWoEgYp1HCHMcT3DSZzjVq5jyKjKGuPgUuneyYtLo5ggitTxZNhY7/E3bTguYPnMT8+f1TyMx3btZM9L2Ghs2HmFAu+YMnTSNf4aPIvL5MwRBwHmBPcs8vKjduGmBjHXkyJHs2LGDjRu9GDq0b67qvn8fQ8v2sxnyP/bOOyqqswnjv7u79CoigmJBFGOv2FusMRqT2JLYY69RY9eoqLH33nsXS4ppflFBmoANu6JiQUDpnV12935/rLC77lKiaGLicw7nXO5bbt25M+/MPDPgQz7v8s+gES/naEo5R1N61ny7q9ivCnm2mu/3RXI0IJENs+rRscWrMxw9jFXQdeV9Rn7qwrAumnnOhCQQHStnbK+yRXXK+UIQhLeaK/cuoXGjqjRuVBVRYsGSpQfYvOVHAgMDcXd358mTJyQlJvDbzz9y9NdTVGzY3ECuhPr7Mn1w31wj6mVcDvTnefRTzC0suRN2hZoNm+TO0W3wcM7+/APXLwRjaWVNTORjaqjVxEZF4vZBVUBjRM0bNoDFh3547Wv9atwkRrdvwaWz/6Puh3+NVTMuKpIVQ/vQefRkKtR+vcWiooAgCDiXd8e5vDv1umiLoGdmF10x4MIgPTmJ3VNH0X/ReqNG1J3QILZO0hhR5arVYNesydwOCWT0qk141GvAzZDz+So5184H8MPm9RojSqcOWfi1MKb17UnnPv35cdd2vt+xn+jHD7Gxs6fTl31y+10K8MtlhzT2fQr192XSgFdbcCtIpmg+n/9NQ6p1+w60bt+Bn0+dZuWc76hUtTo7fvoDJ2cXnjyMwNTUjF5DR9G0TXvWL5zH3HVbaGDk+YT4+TC+35es2H0w14jKwerN2+nfsxv2drZ4e3vTqpWmfd68efj5+XH2bBC1andg44YFdPnEgydPntOmdb0iv9blC3pTvcEUen3ZGs/6lQoeoIP7N28wrf+XjFu2Blf3igUPeMMQBAmyYmWQFSuDxO2vF0EvakRfD+Xa0U10nLES15rGi3HvmjyC0hUrcdXvDJO3H6JMZW1plpvBgRxcPDfPcL6cRZxpm3dSzbMRVwP9WDpmGJPXbqZ2s5ZcPR/InKFfU6dJc/qONqzdF+Lny4qp47h27VqRXfO7IFf+FdVk9m36iotnxlG7RmkuhUVSpdEiuvTainuduZz8/cYru4fdKzgTeGY+/oE3aNryWy5eCs9tW7ZkBBWrVKND1x74/HaSDrU8OLp3J9FPI5m6ZFWRGVGg8YJt3bqVGd8tJTr6WaHHZWTI+fizuXT+2JOpEwxXDt6jYFx/mEHrCdd5GJNFyJF2r2VERSdm8+mSh4zrXjrXiALY/2sUg7q6YiJ7Oz9HiUxS4N9/HYIg8PuvywgK2IS7uzt//PEH1atXp1/PriQlJmJja2vUiJo0oBcLtu01akRdCjjHmllTWbjzINtPnePXQ/uY8OXnPAq/A2iMpId3b+Hg6ESXfgM5sXMrA1o2JOjPP6haz5NrwUHMGzaAmZt3vVZYXw7MzC0YvXAFO7ymk5mWVuhxqYkJrBjSm/b9B9Owy6sX8fw3IuruTY0RVc/QCMoxooYv24BUJmVON01y9rwfTuFRrwG3QgLZNX92gTkLX44er2dEPQq/w9Te3flswBB+3LUdr627qd24Kb8d2k/XQUNz39NLAedYOGFMLjvkywj1P5eb8/sqeC9X8keQvx+Htm1i/oZtHPe/gJOzCyf276Zrs3oM79GF1lXKs3ruLEbP8DJqRF0I9GfDou9Zs8+bhi0MlXqZTEaFihXJzs5mw4YNPH78OHf/oUOHMDU1oXXrpkyesgDPhkPw879Ko0avL0dehqOjDcsX9mbwyA1kZxe+dEn040dM6tWVb+Yt1gtj/rdAmZFM6oOLKDNSjLYr0pOJvRmCIs14bbyYmxe5cmQTDft+Y9yIuhTCiWVeIAhUrFWPWYdP6hlRt0ODObF+FQO+m2tUvtwKPY/3uhVM2rCNap6NuHUxlGXfDGPaxu3UbtaSh7dv4v/7SeyLF2fglO8Mxt+9cY1ju7fh7e1dyDtSMAShYLki/APkyjvlkVJnRBvdX8EJIB1VynN6DtjHxgUtkcqkjJ3lQ013FaTdJT0jm9v3EqhbqxSiCEs3hPDbmQd81sGdnp94UMrZGqQWhN14RmqagmaNygPgaAY+hzuy+8h1OneZQue2bsyf0oQSxS05vqQMLXvtYt/yplhY1WL3sbssnFweO+t18FxzbiZWOvkH5jpKuKAfV+uQxzZKDRlGjbIw7OsmjBk5gqP7RulTkGY91blHz3O3b9+MIyYqmgVj2pFx+5C2+x0dGnX0Kb5VyVqqcXWijnKlU5xCzNTSgOrRkevsz07Tbqt0aMqzs3QS418KmlcptP8Lefw2lDp91Do5D7rU5nnNmSzXhg+a3NPes/JV9XOSrEprWI4ePM3kc68rLJrsSd/P3DEtoRVKYlZM7nbmswjtecRohaTyiZYKHeDXwFSalDejb3VZbpsyKhHf83FMbmlFRkC4Xn9dsgl1lvY+C6/pTZJIBSQFhva9R9WqbgDI5XJ69erF1q1buXrnHvt2bsOtgjuZQHJiIs+iIkmMj2fBxG9o/GFbdqxYzKPwO7Tp8jn2xTV0uMd2buXAhtVMW7WBuk007HzbTp3j2PbNjOrSnnrNP+TejWt8v+MAVjY2fNvzU1YdO0lC7HN8T/5IemoK3ls2MnvLbmo2blpk1N21mjanRtMWHFqxiK9nfV+oMRHXrmBlX4x2fQeTJn+7Hp83BaVCQXpSPFZ2DsjMzAzb5XIyUhKwsi+OiZH2bLmc9KR4nNwqYufoZNB+50IQhxbOZOiyjZhbWrJqZH8GzFlCndbtkUkl3AoNYu+87xgyZwHVjLDnXQ8JYvOsaUzZsI3qDfXDZk6f8KZ+y9Y8uH2DBXsOU62eJ8rsbK4GB7Jk/1HN+AshrJo5lVnrtlCjvqESdi00mPXzZ7Pm4HFqGmHvKgwKkin/gJzwt4q76ZoLVqnVWk/S3iPUa9IMEYiNi8Vr3Ej2/enPrjUrePooguFTv6NO46Y8j4kmNTmJshU9yExPZ9qQfoSc8+HLoSOoULU62S8IZoLPnaVESWcCY2OZ9CKdoJZnQ7avWkqtOnXpP2osg8ZO5Mq1cFxKl+XX33w5G3yJhzeu4OPjQ+kyn+uftOCv3dYtn6Krr+RFhQ65EeG9vmjBvsPnWbbqJ6ZN7qE3/kaKdt40Hcpz/zP/o2LNOnh+/IkeoU2KzrcvQ+d7rkf+Yq6vT+l+InVZdW2stSpvlg7bs1xn3swM7TnpUp5n56Fj6MLCSj/33sJCIysSwy9x/8QaqvYch2PlCpibac/X2lJG9PVQgldMovPMNZSqrMlltNWhP4+/fZFzyyfQZ8FaajXRso5amWn63AoJ5PDscSjkcqZv3mEQEno75Dxrxw7Fa+tuGul4MnNozi/4n+PXzev5dsYcPJu3pLSlCd5zTzBl+kymdi8O3AZXCZ9WqEONI7sZ2SYVQXVEewBFHNUqw+eb6kH2Pnix3i8qtGVfXg0F6ypvkdgxT7xThlRByM5Wc/9RMhevPmffiTv8vv9zyrlqCBp6j/6V0/6PWeHVGlNTKfuP38RrQlN+PhXO3FVBuJezp6JbcU77PcTERMLQvvWYNaFFbhjU11/W4POOlZi99BwVm+6iVWNXPmnpxLKpdek/KZAI/140qqPJwdKts1SU+G5yF9xrTub2nWg+8DD8WL+Mah4OJCRlkZQix6LA3u+hC7Va5Jtld5g0pAb9Pi+aEIPzEVm0qGT4JKqVMefWUzlly70diSCVSZD+EzI0/ynIUQZ0lQIdJeL+/fskJCRw6NAhgi9cZM9vZ1Fa2aNUKBjWrRPhN65hV8yBZu0+IiL8Dj0GDefMyR9ZO3cmFT6oglQmI+x8INa2dkTcuZ3rTRCkUroPHYmTqyurp08iPTWF4zs20/zjTxgwcRrfjx7K9j/9kUileA3pz9zt+3JzYvIypHTzsV7uo5vHJddh+usxYQYT2zWhy8jxqMy0OXphT7UfQd0QuWwnDyLD73LjaSomMq1CYKazMmimo7yYvPQh1GWH02fCk+hsa+c11zka8jx2AAAgAElEQVSGJI/oAt3r1jtXlUxnO29NfumA3nw2eiLuVdz0jmEiFbgZHMjaccOZvGE7Vd08NNcn084bfjGU+YP7MnPzLho00HoSpLmeID+OLviO6UvXUMOzIYPaN2fywmV06PYFAFeCAtg0fgSLd+ynUYtWueNzPEmhfr78snkd81dvpGGLVnhYBGhPXJXB3MunmDKxJx+1rwsogAAQlVSt4opt5F4aeHrQqDUMvvA9iEnAKYPrr9sS+p/5Fs0K4KvlpkgLWBmW/kfD+i4E+jO+35es3HOIujrsi/HPn6HMzmaV1wwuBvqxbPdBGn/YFnlWFv0/akVCXCybf/idHSuXEHD6f3z9zQTCb16jQ3V3KteohZWNDfdu3SAlKQlTM9PcdAKJIDBq2iw+69WPZTMm07h8SbIVCibPnIU8S87EMSP432+/8umnmvqaDx48oEKFV8/5NQZBEFi/ajj1m37LhHGfYVoIBcSjTj28N64p0vP4JyAx/BLXd8yg3ohFOFY2LKgec+siPism0erbpZSqbhhq+ehyMCGHNtNnwVrcjXi6b4UEsm7sUCQSKRPXbqFaA/2FlrAgf1ZPGovX1t3UaWK8juGUgb1Z+cLIz0GQvx9DRo7hwYM7VKigqRNYunRxZDIpkZHxlHF58+aDIBRCrsj+/nzuf4AtV3QwNZXy047OmJpI+H3/59Sqqkk0fhabzi+nIxjQsxqPn6ZgaiKhSiUHunbyYOfKDkRdHMaqOa1o0agsl/43iAt/DOTXP8MZO+MPPQpheztzVs1pxaPggfToXIlffCIZ5RVCdGwmdyPePBWeubkJn39Slx9OXipUfxMTKQ1qlSTwQkzBnd9DDz/4xpKWoeKb/lWLbM6Qh3IauRmuZjfxsCDwbkaRHacgCJKC/95Di7CwMGbOnEmVKlXY/ctpypTXeKru3bzOo3vhqNUibT/tSrmKHlStVZc2n3Zl/tbd/HLtHq27fE7Endss3HWQbX/4cHTbRvatXZE79+VAP5ZPGsesTTs4FHyN+i1bc8r7EFvme3H/xjXOnz6F15D+eG3drUcsUJSwti9GtcbNCPM9Xaj+lvYOWDs6Efvgzhs5n78DX0yaxQcNDBOk71wIZu244YxZtYmqDQyVmKtBAexbtZSZm3fpUZTn4FKAHzOH9GXKsjXUbdqcE7u24exalvZdewIa4od5Y4fnyZ6Xw/46aspMGuoYWTlQKLIJvXCXxo0M5VTL5tXx9btemMsvEryXK4YIPufDhkXz9IghclC+UmV6DR/DBX9fFm7eRetOGsPmYqAfpmbmVK1dj6Az/yPgz1N82qsvo7/zYvWBY/x+7R6DJ0yhRYePmb5sDYIgIIrw9NFDvflLlytP/9HjkMlkfDFoKD6n/2TdiqUEnvPN1Wt8fHw4ePDgG7n2ChWcqexRGt9zhXsHy1aqTGpiIonPC5++8E9H0oMwru+YQfWB840aUc9vXSDMezOtvl2KS3XDHPZHl4M57vUNrb8eZdSIun3hPOvHDadakxY0aPcRNV+SQTnsnpNXrDdqRF0K8mfKwN4s3rFfz4iKff6c2OfPiI+P48DB/+XuFwSBFk2r4uv/luSKUAi58g9YE/5XeaQAOrUpT6c25RGk2ktzcrSkaiUHth28RvAvfUlIyiL6mbZatrm5jKaepWnaSOt5+ONwH9r22MukOf9j6Uz9pHJ7O3P6dKtCz7bFSc9QEnjpOW5l3jzbGsBnnesyY+5xpn5buOJnSpUa2Xvvw19GYko2tTyskUqL5uv/JFGJXCni5mj4k2tY0ZK5x54Db6cAsSa2+P07UVh8+OGHfPXVV4A2XAcgIS6WtJQUTM1M+XrsREL9fLhx+WJu+80rF9m9ahnzt+/N/YitOnqSMZ93xMTElMq1ausYSZpwjc69+9O5d3/SUpL5ac8Ojm/fnOdKYlGibpsOXPjfb1Rv/1mh+qtVKiTSf09VZzcdCvsc3A4J4petazVGlJFwu6tBASwaOYg52/ZSo6GhEXY5yJ+ZQ/pqKO5fPL/kxASq1qmHIAhaCvKdB6jf1PD5Xgz0z2V/NdYOcPFSOJUqlsbOzsogzKpZk6oc8vYr1PUXBQrKgZIUUTjqu4Lgcz6M7duT1fuPUt+YkR3kz88H97L+yE96RnT1uvWJjYkm+slj0tJS6PJVH0zNtMRMNnZ2NGndLjcnc+W+I5RwdmFIlw6YmJrwyRcaQqoQP1/Wz/di7YFjNGzRCkdTgbjYWK6FXUEQhFyK9ODg4Dd2Dz77pBEnfjpPuw4FF8EW1WpEUf1Wi3u/adzaP5/qA+dTrJJxI+r8uim0nrwC5yqGnqjHV0M57vUNXb3WUKGOYTju3dAgflqzmFGrNhH403Eq1ayt155jRE3ftCOPRZ5zbF38vdFFnPMB/lTy+IAhfb4kJGi9XluzJlUICr5Dnx76x3tTKEiuCP8AK+bf88bmA0EQ+N+h7uxe+RE1qpTAxcmK6Of5J1fb25lz6nAffvjtDn7nI/PsZ2Upo12zUpibvZ2n2bJZZe7df8bN21EF9s3KUnLxWixN6786QcJ/FXbWMpLTii5EMzgii4blzY0Sn6jVIqZv0bB5nxT+1+DsbFgvLPicD6vnzmTxtr0s2b4Px5LOOJZ0Ju6ZJo8zR0leoGNEATg6u7Dq6El2r1jM+tkz8jSSwq9f5fDGtfQZO8Fo+/2bRbsiWKtlG24FB5Ic+7zAvqlxz5CnJuNY/q8xcr1LyClm+fnIcUaNqBuh51k0chBTN2w3bkQF+LFu9gzmbd1LXR0jyMbOjtTkJL33w5iRFOrvy7rvZxXI/uofcIOmTYx7zVUqNWZmb6+sxHu5oo+xfXuyeu8Ro0ZUqJ8v21cuNfp8be2LMXnRciQSCRPmLaZO46bEPtOPKgnx88klBvFs1hK3SpXZfOJXFkwcS3JCAiF+vkzo/yXjvebreTIdS5Tgw7bt8PPzy6VIL+qwPl181qUhx38MIiUlvcC+D25ep7hzKewd337JgjeFKr1nGDWiYm9f4vy6KTQavdioERV5NYTA/Zvp6rWGckaK7d4NDWLb5FF8Mfk7qjRogqWtHekp2qiosECtEaVLTJODSwHnmDG4L6O+m2PUE37C+zA3b1xjx0Hv3LC+HKhUasxM345cEQShYLlSRIvdr4O//wzeEpwcLenZpTKCIOBS0lrPI5UXHIpZMKxfPQZP/J1eI39m/KzTBIQWbMC8SZiYyFg8twdde28gOTn/cLDzl2OoUdkBa6u8iw+/h3HYF7Eh5Wgl5UFctl6oaA5ikpW4FHt7Co9UKiCV5f/3HnkjZ6V5wrxFfNStBx920jBiOpZ0Ie5ZDBf9tUqyMXa0qIcRKORyUpIS+GX/HjZ4zdAzjK4GB+Z6qmoaUeIvB/qxf/XyIr0ma/tidPx6GDsmj0CpkOfbNzIsBNeanv+qlWNd3LkQzPpvhzNqxSYq1zdUYq6fD+TIulVM3bCdmo0NV9ovB/gxa0g/Rs+Zr2dEgaaO2MPwO/m+HzmehtHfzTVqRD15og19ciphT/g949+kp1HxlC7lYLTtTaAgmfJfkyur9x4xGo6ZE645aPwko8/3UqA/y2dMZtWBo9Rr0lxvgQY078e0If1zjagcuH9QlaZt29OnQwuGd+1Ew5atcS7tajC/v68PCxYs0KNIf1Oo7OHK510a0af/ItTq/HNZrgUFUOMNhS//XbCvYOjpjrtzketH19No9GKcqhiWjsgpttuk9zDjRtTFYLZNHsXgJev5oL4m3M/K1o70FA3R1fXzASwcNTgfI8qPGYP7Mn/bXuoaaQ/18+V62GUaN2tBs5atDNqjohMoXap4gddeJBDeDbny7/wSFgAba1NEEVLT8lcYAMYPa8TGRe3p1KYCkdFp7Dt+6y2cYf4YPKAlbVtVoW7zeTTvsJiWn+6gc+/9RMXo02r6hUTRvGHpPGZ5j/xQ1B6plh7mCAKcuZNl0BadqMTZ7u35pwWJUODfexhHaICfdqX5JSXY0dmZZ1FPmT4kbyX5SlAAs4b0Y8Gug3y7eCUNWrXh/q3rBPz+K6AxkvatXp6np+pyoB9eQ/rTe+yEIr+2T4Z/g62jE0t6dWb1oB5sH/0Vh78bTVaaPvNS5LULuNb4+2tHvQncDgni+JoljFqxyWjO1PXzgSwfM4Seo8cZNaLCzgcya0g/5m7dQx0jSsrz6Cgu+vnm+X5cCPDL9TTUM+LJCD7nw8mTgbn/f/lFS27cfMTly/cM+moMqbek8PBerrwMY0bUhUB/dq5exsp9R6iXR87Kgc3rWbH3cK6RlLNAk9O+c/VyluzYp2dE5eDTXv2wtStG/9HjiHz4gPM++nmPQf5+rFm2hOnTpxs1ou7ff8qs2du4f/+pQdurYvXyISQlpVHXcwTNW41jwMetmTFiIAq5vv51PSTIgJHy34b4u1e4//seqncfZdSIirp2kUve2+k0cw1laxrmTEVcCcX34C6GLt+Mh6f2Xlna2JKeksyN0GCOb17PjI3GjajnTyN5/OAeu/4MoK4R+RMT+YT7d26x8/AxLoUG8zTSMBrraVQCpVze3gJNgTLlHyBW/gHRhYVHDv++UJis1QKEdoWy1ly7ch/PGo65+3TZ9kSVdrtZNSlUs+PZU2vuP0pBkagRalILbV6URKb1+kjMtJTnqiytEiJm3M7dFmR5e4nU2VplW1Rq6TeVmdq55n4q57MqLmSr1GQnqjgdlkjnzzawq7kE8xcW+qk/MhlYy4xHS+7r0YNbFdMnPBB0WbV0ac51xigyjNNv61KQ69KZ69Kc50V5rn6JRUtUi0bH6EKu0uZlqNTa80jL1rn/Ojy7cqW2f5ZKe22PU7SU52nZ+kQhCcGXiMpU8fRBJslntUqLeR0dyvPgu7nbqbfjtHPFaZ+dUocaWq0W6eUs4uX9HPf4BMxe3HNBImAbrWbjZSU1M5NpVFLn/r+4jAylyLVYFfFyiM+CyvYC9R1fXXq8pz9/Ndy9e5czv/zIuoPHqd+kGXKlvqF99/pVVEolkxevMm5EnQ/kyOZ1zN+5n5oNm+Sy6kXcvYXURMbV4EAOrltJ73ETqdXAcGU27Lymfd6OfbhXrW7QHh8TTei5M9Rp1orizobhvPHPYrh87ix1WnyIXQlD1s/kuOd0GjmBjOQk1GoVaVkqwv74AW+vcXT9fmNuTtSTqxeo2aln4W7aO4S7F4P5bfsGuo6dTOV6hivBETdvcPHsn8w/8hNulSobtEfev8eVQD82/HyKMu6GYY+P74fz4PZNPGrUMvp+PLoXTojvGXb9fpbyFT0Mjx9+F58/fmHZzLa5+8zMTPl2bFcmT9/G7z/PRaqTt1bR3YWVa36iedNqRgujJiamceVqBDExSUTHJNCyWRXq1XXP+wYVgAJpiv9+cq23Cg8rzf1IyNY8E39fH3asWMzg8ZNo0LSFPqumIOSG463YezjXyJIKAq7lyvM86ilBZ/5k2tD+L3Lm9N8fyYvx04d9zaq9R/Bs1oJnQ58ikcpy2Tp/PxvA6F7dWL33CNUaNSchW28K/H19WL90B9OmTcO9Uiv9Rl1adEkhI1wkmnfJ1BR+/S2Qy5cvI4oid1PkHNi0jjnjRjJhxToEQUCtVnMzNJhvFi5HIghYmxnPv9Rl+czK1vYpZqn/cmVl6+oAauPbOmVZlDq6h1J3v46OYiyaBNAL1zcx0ddNddlLE+9c5MyWKXT1WkPNJlr5bm+hiUa5ExpE2C87GfztOKo3aoqFiTZKxdLEhMsBfhyYNopFOw/ksj/m0JdHlilNuN8Zlo8cxMo9h+j/cRv9k5S/YOIsBj0qWwNBmv8VWt2FzFhqFId2vUEt38zA7uVYPKENOxc3y71GdbYct+LJLFiwg6r2DajspmHFVsm1ZXOexSRz434aMfEKnsdm0aGRAx5ltVTzfwWCUAi58g/QZd4pQ6oo0bBWCULCYvUMqYKgVKqR5ROPefl6LN+vvcDxnd1euQhwYSGVCnhW0RhyylgJTSpbMXTjY2b4p7OspRlKEcKeqaj/Figq/42wlAlk5EOX/CpoXwp8YmDBZRVe9aS570g7Vwm2JjKmnFeytYVARTvN/thMkUP31Rx/qKaMFTiZg4Mp7LonMq2mhNalXu0de0828RJy6qKodRQE3bopEk3dNY9KFiydPQMHB81q3K1UrSy4GHCOSf2/olrtephKpZjr0GOrRZEL/r7MGNibpbsO5NaRylGkJGqRhOgoZg3qy6Lt+/SUbIkgEOJ7ln0b1qBWKxkyfjL1jaxEX/D3ZdLXvVm8Yx9V3TWkObqU4BcDzjF/3CimrlhHZbcKevTnZrLsXOKEhT/9iV11Tb20+PRsanh6snHMAPy2Leej0dNIT4wnPf4Zrh5VDWLTdZUGXUXIwkSaZz/db6AufbouRbpUZ1uXmly3j4XOfjtzocD+mmNr28LDLrP52xEs2r6Pxi21xU7NXygzwed8sHwczI9bpmkaskO1EylfLHDVg/51KgJXNX+65A+ClCY1wGNSTQaNukgD82N6bQB1q8HnVT8ALmv+RG09GxQpeJSDDrNLgzIUckrUiSq+6e3Ezz8k4DVjEfOmtModMvqrErjYNOWjT77jus8QXEpqvhcRj5JYuSWYfceuU72yI6WcrSlezIJFS49wdFs3WjQuy6vgPdlE3vD39WHgVz1Yte+oUU/jxSB/JvT/kuW7Dxl4qswtLChZypU540bkmTOXY4Qt330Izxc5LyqlEukLORTi58OWZYv0wg1/8D7ClUsX8Vq4OPf8Thw/TvPmRU9sY21tnTuvbaKcqrXq8vXHrTm8eR1fDh9DxO1b2BYrhkNJw3zUfwMir4YQuG1JnjlPd0KD2DxxBNM27aCqpyE7X1iQ1tNd18j7ExP5hLDQYDZ6/2jADvmq8BrfgKZdj7HpwC1G9NbmYc4ZW4uypazoMMiX6yc7Ym35opbVg1TW7H/Azz4x1KhoTcniZlibCaydEMmxRdWp4f4KZFovcqTyg0T698uV/6yW3aiOE38GRDGqT5WCO7+ApaWM1Ixso23Z2SoGTz5D+MMk/IMjad6oTFGdaqEgCAJrBpeh49SbtDqcQbJcpI6zFFuz9wrzq8BSqjGkRFEsMqNYEARm1oLPzorcSYYP7LVtDUtK6OchYd0NFY2cBAKeiYTFi3QsI2FPKxkuplqluEs5GOSvZo/1q0XmSiSa2mjv8deRY0TpIsTPh7njRrJ89yGuBAcRFnqedp92zW2/EHCOSV/3ZunO/blGlC6S4uO4fD5AY0S9lPibnprKd8O/Jv75c+Zv2WnciNKd34inI4fY4Ptte4yGC94ICcolTrB7KdFbamLC14vXs6zfZ9w4+xvpifF80LLDv4qxD2DVrKlG7z9oc+LCLp187ePY21mSmFS0pQ5kMgmHt3SnXP3VjPq6Ps5OWoWlW+cP8At+zPQFPlT/oAS/nbnPlRvPGNyrNtfPfk0pZ21URed2HnTsdYjwoBGvdB4FyZR/aUpdgQjy92PgVz3YcdCbSg0NleAQP1+2rVjM8t2HaNC8pUH9t1A/X2Iin/Bp7/5GjahQP19mjxmaOz4HltbWpKel5hYDXnfgWC6xSUx0NFPGjUYul9O4aXPGDP2aHQe934gRZQyW1tas3O9Nv/Yt8d6ygcTY53w6cNhbOfbbRk7OU/e5ayhX21jOUwibJ45g2LKNeRhR/hzdsFoTLmyEmOaCvy87Vy+ndNlyRWZEAVhZmnBoXQfqdDzE4J4f5HrbBEFgcM9KnA58ytz1Nyhub8offlHcf5LBsB7luHywMcXtNAtQokJJvV+j6TLxKjcO/vVC3wKFkSt/vy7znzWkzMykPI/LLLijDsq5WPHDqcdG2w79fA87G1PmftuQzXvD3rohBWBhKmFfJwuepYuUsBSwt/kPPV6JVBMLJ6pBIsXU1QOzCjWxK+lOasgfZIZf+UvTmb74cWZmi1iaFt0PNSUb1CK4GWHL71lBwpkoFTeTRDqXkzC/voAIPEwTcZSJmEgERFHk+COo6QBlrQznKAwkMuG9R6qIkKOkrNhzCM9mLbkVdon451rmu1B/X+Z+M5ylO/dTv5mhknTR/xxnTv5I7YaNjSrxq72mk5KURPuu3bl77Sofd/9Sr/2Cvy+rvKbnPb8OO5yxmPkrgX7sWboglzghKdMwb9TKzp7h234gIzkRawdHRBNzgz7vOsbNXUS1uoY5Cxd0cuLKlCllZORfg8aQKpjo6K/iUWQSpZ1tKFnCUChMGtmILv29MTeT8c1gT1o3K09mZjYRj+NxcrRCJpOQna1i897LdGpb0egchUFBMuW/FtoHmjpNS7+fz46D3jRr2YpnL4Ws53iSVu33pp6R3+fFQD8mDviKlh07Y2lt+FxyiCteNqIAXMqU5VJQAGu/n83KPYf02CFXL13EF336cePqVWZPn5x7fm8TpcqUY7fPeTLT0ylWwgnFP6EgUBEj6sYlfps/no4zVho1ou5fPM+5PRsZvmwjdTw9scnOQimRkC1IQZQRdj6ABcMH8v32/dRqbBjufTHQj0lf92bigiXsWbOyyM//zoNEPGuVMAhZBJg+tAqDvwulaT1HpgysRLO6DiQkZ/MkJoViNjIkEoGMLBUH/nhG99ZOWJi9wkqKULBcEd6H9v09UKtFFm8K4/sJfy1huoyLFY+jja8mbjt4g3GDatOyUSnmtthHXHwGjsVfLS70dWAhEyhv9/e/WG8FJmaY1fgQ80ZdcPRoiCCRIKrVgIgg0ayYq7Pl2DX/jKQzR4g8tgmxAEYyXdibCEQnKXF3Mh4Tvvp/idQqY4YheWne+DUS2peW5OZI6cLKRGDvhzKy1SInH4kM81fxKE2ktCU8y4Sq9iJJCk041MYmxucoFEylCCb/kXfkDSLU35fx/b7UKCnNWpKVmcnudatYfeBYbvukAb1YsuuAQU4DaOoMTR3Uh2GTZ+B36jfD+c/58Mvh/Uz4fgkNW7VmUKc2jJg2CzNzjSGTE863NI/5L/qfY/pgLfGF8iXWrCuBfswZOoDpm3dSzQixgi7MrW0wt9ZY/7p5Bv8WGDOiQv192bFyiU44VN5lMAoLe3tLlEoVqamZ2NhYGLSLosiUmYf5oltD6tUuPFHQrsNh9O9Zw6j3vLSLLRdPDSI9XcHW/VeYsXAXT6JSKO1sTVxCJnWqlyQyOpWype04sqXrK9fOE0zz91JqloX+O8ip07TryHEaNzPiSQjw04bz5cGettJrOrNXb2T2mGEc9g02aM+pM/ayEQWQmZFOwOlTBsWAszIzOXpwP4tWrWPvjm3Y2trRpLmh/Lh27Ro1atR4hSsvPOwcimPnoCFEeZl84t+A0ytn0HHGSlxr6teBMkUkM+IW1hFhrF6+DCcbK6RCOuhE86ozRDJNRQ79+DMOrmVRqNWIEv1w8g1zZ7J0534qVavB0mkT84ygUSpVjBm/mYnjPse9bOFZnPccu0Pfz42XuahWyY6gw21JSlGwYd9tJi67QUKKAgdbEzLlKqq4WRERmUnDarYsHuX+apE9glCwXDH9++XKf9KQ8v41AisLEz5u5cpfke1lS1nxJDrD4GW9GZ7IvYfJdG5TDhMTKT06V2b9rsvMnlBwEbr3+OuQlquOeZMemNT4EImlLar4KJL/txdRngkyEyQCKKLuIX9wlczkNBy7jqJY2y+xrNGUx1tmk/mwcMyLzuYS7j9TGDWkjl9MY/2ZZEraSjn5mbleLkZeEEWRXyJF5jfIW1FJkIv0PqOkvLXAN9Ul1HMUMJEIRCUruZMCVjKoVkzA4jU8SoKJFKEIvWz/Rfj4+LDsuym5SopaFDm8fRM16jWgau26uUbU0l0HjLOz+Z9j48K5LNq+D6dSpTmyY7Ne+0X/c0wa8CWOJV3oPnAIgiBQtXZdfjm8n679B3EpyD83nM+YEXXB/1y+7IFh5wOYM3QAs7fswsNIOMl/HTnPTzccqiggkUioWKEkd+/FUK+Om0H7ynW/s22PL5fCHvLnT98Wak65XMnhH29w4feBefYJf5BAsy57aNbQlU1LOtKwbmlkUhUPHiVxKzwee1szPOuUxbQApSU/FGxI/fsM8PyQU6epppH3J8TPh+2rlhn1JIHWSFqx9zBnfz1Jx+5fUKpsOe34cz5M+rpXPjlTPhzcugkXV1eDcK8/fjyGm3tFpo0fwx7vE8yaPIH//fYrHTp1zu3j4+PD5s2bOXjw4GvcgfdoM34+papp6kiZCiJuZirKm6kpJhOhWnnUVcuRgZTnyEgVpZhZmiMV1Ty/d4eom9do0KQpxW2skaYlYp6RQrqNI1hY5UYaLNt9MDenztTUjLhnMZRwdsHX15eWLbXvxdTvdnP4qD9paVns3dK/UOcel5DJ2cBIti3MW48NvhpP19EBfNS0BLvm16Gmhy1kZ3E7Ip1HMZkUs5BQt7LNq4ffCYWQKybvDam3DpVKzdy1l1kzq7HGGPoLCbBWljJKOJgx+LtgJnxdhRo1NCu0O47cZkCPDzB5kVQ9aWQDmn16gIkjPDH/j8aFFymkMiSlKiMpVwvTmu0xca+HOjMVxVUfskJ+JvveBdIU2h+bLmufqJQSe2g5aZfOUnLALNynbOTJ9rlwpuBq7i7mUu49U9D+pUW5G/dSmXEsjuOjXZh0OI7fHyj52D3/OlAxmSLbw0VkEqheLG+hkiwHEwlsbC7TezWdLAScXixgv25MsCAVEP4BRezeVeSsNC/fo6UozkhPZ8fq5Wz94Tc9I8rTSLjdBf9zTBnYmyW7DlCncTNNTanERBZPHkff0eN5FhXJ1EF9qFKzDq07f5q7aDNg7ATmfDMc1/JubFm2MDec72XkzL9gm3Ej6lKAHxtmT2f2ll3UbtKcjGzjeZ//VVwK9M99fkVpROWgciUX7oRHGxhSPudusmTVr4Sc9aL9Z0sIOB9O00b5Fz2+HR7HzMVnqVPdmfJl7fPs9+Jb05sAACAASURBVCQqhQ8qFufY9u7anaKKCuXsqVDuxTjh9fLeCpQp/660ugLx4MEDbGxsDNjx0lNTsbUvxrKdB7CyMYzxTktNxdbenl+v3CEjPY0f9u3ieNDll8Zr2vMeXwxvn/P0aNWQJTMmMWjcJJxeEDkc3LqJrt170nfQEGxsbPhm4hRWL12Ua0idO3eOyZMns2PHjiK8G1okJyZgV+zt0WcXNeLu3+T6j7uo/ukAHN0Ni2HH3rtB8K4VNBzwLWWq1aGUmYiHpYibpQqZAFHJ6fz85/+wqlgT60rVsLXQLtSWkMhISUsjXi3Bo2NXsm1siBFFbAQRq9Q4rJOfkZ5hiY2dPccvXKeYnfY371bJg4jwO1haWWNvr93v7e3NsROBXApaiWezCYTf60ClivmTely89pzpS87zSTs37Gzy9mA9eJJOm8Yl2eJVM3efGvjAzYoP3KwQFa9XQkYQCtZV/gn1DN8pQ0qZ8YKmWsxjZUuHFj0vinSFQkl6uoKMlGSyU8315tKlPFfrhICJKm2f02tqsutkNN1HnyV4e332/h7DgROPOL22Nql3rwJQUqWm8QcWrF3yI8M/0b6wZqW1MfYyC30BqJKn6Wxrc7dUqVrKc1WCNqxQnaLdVkRoKSwt7bQvvS7luamFDouYUl+xUyt076dx2nFdynNFpvY+yfJYLdBlWtFNqVArtfOoXjoPUS1CSQ+o1BSpY0UE6+II1sWhWCmEF5OI8U9Q/rIU9YUTSBQZWAJYg7VSe95pWbDwpoipBEwEgahMkQGK8ygWDKDUyCWUGzEfU6eNxP66B4Bkub4RZC7V3I8ylgJH/kjF5LrkhTJ7mSyVmnUPE2jjaE3wT0rKy83YGiQn7XFOmI5huA7A/PBY6tlZ8FVJK3zuaK/bzkz7lTWTqUjOVhOXqeTyI1MsdEL3THQSDEykBT+v/CCYyhBM/37h8y5CoVCQlZXFrVu3iNUpc5Atl6NWqYh//gyFQsGJ4DCKFTdkBE2Mj0Mhz+Jo0OXckBZTMzMO+AZzYNNapg7szYjpXnTp1Y9TJ7z5uOdXuWPrNm6GjZ09wed8WLrzIMUc85/fxoiyciUogJ3LFzFqzgJqNjJcaYy4eZXfdm7lk8EjsXSt+Er36O9GzJPHZKSlUqFKtb88Nik+DrlCbvT5paWlM+DrbynhWBypkMTDR8/YsGYUZUsZ/83nhcqVnAkKuUevntqch6dRCfQauJ49W4ZS0b0kA/u24PhPl/I1pNLS5DTsuJ0po5swelCDPPsBFC9mwdOYVFQq9SuH7hUEwTR/deK/5pGysQoDNTjItJ4kB2vAGuq7lAChmPGBtg7gqvnt3r+fiKlMSnkTJe4vEvixc6CRaz6GiE0qni4a0pgLwT8yf8FaVk4axOHDPzFu3DgUaclMGTcGkxeMlP2/6MbC2TO4GeyPKIp069YNb29vqlfXKbEg0Qk9FJ8U7gYIhnniPj4+XIuKp+0nnxm0yXSiOix1qL+LW+pQk+uEJ7+8QKUL3ba8+unuF/Po//L2jfOBHFs0iokbthklhrgTcp5fVk9h3vrNVK7ojpVSjkxUo0ZAYW7NxdvhTOj/Fcv2HMothmuRnsTE0SMo5epKVuINkpLT2b97Mrbm57QTK5NQWUqJSvJAyHCmRelUXK12IlFo9cZaZROJ9PmOvtXro7aWo7wPt+4lMnLYSX7e0goX1Vm6tinJ0d37GNtXI9tVGbr6pSZ38/FzOW3HXmNqDxf6tbEg+VyQ9j7pGEaiQonFowwe3kkkzeealiI9Uyc+8XUhCAXLlfceqbcPExMJO+fXo+/UCwTsa0mpEmYFD9JBSQdTpvQrR+itFNqPvUJ6poo/1tSmbEn9BOxxPUrTb/5tBnV0wqQA+sb/IkSpKThXBkc3KOYKxcoglKmFYKP5AIjxjxFT4xCf3Ue8648YeQ3xyVXEpGcFzh0QCw/TRT52EYjJhMuJIuM8QJWWROSK0ZTsPwOXbiNAVBP7274852nkIOOPGDkHo5Lp7mLHM7mSP2LTqGRlSh07jfLkZmnCqbi0fNn9slRqFGqRDiWsX/TJ2/ixlQnUspMx6nI6PVxN6ehc+HjmwkIwlb62ISUIghmwAWgLOAD3gOmiKBom+7wrUOnkP+pSV6u1RCWmgoyPWgOE4qi7gl8atqwbzpRvB3IpeD12dteNH8NGShs3K+CO/n57KZ3WdsWz0Sn2LJmMRCJw6fwaXFz0C60unNWdOfN2sm3JRwhCuOG52qCdX6Iv2wKCBGYP7oO3tzcl62k9LZkvPFIX/M/x46ql9B07kToNG5Km0H4Q03W2M3TqrKh16q+Y6yQkm8u098bkJYa//CjJje3Xo0LXGatLMa97DMfyblhZa5jrcmr5AKDy0T+IMtVwuzS0dU4FXpAKybV9Nmz5k4SY2zSr5cG9B88ICrqLgyoYVYzO/cjWWYDTrUuos2DXuw10GRbMiJRHLJlcl/NhcUxdeplhPcvSstJT5I+f0rhSMpMXXUT+qLjB+Bzcj0jBycGUCb1KQuYj5PK8f9OVSqgp62xKiSrLWTvbk+4flcuz76uiwBAcsWBP+r9SrrwG3N3dmTlzJl9++SXLly+nRQtDD3N+qFzZnc2bFlGlamsaN26Mg4MD/v7+uUYUgEwmY9KkSUyaNAlbW1u8vb2NFut9XeR48k8EXy3yud8GUhMTWD5mKBPWbtEaUaKIiajGQq0kKzqSapYSfvv5J01trOxM5DIzkkwtyJSZE34xlFmD+2oozHVy4rZt0NTSUilV3H8QzfPYZKyszPS/R4BUosK12C0spHHEpFbnYUIjytn6IpVo5PeYr2vRZeBJFNkqpg6ryenAp0z4PoiFUxpQp6rG8G7u6cTBn+7nGlLG8Cgmi+rlLBjWUVNrUMwnYKFxRXMyT4pUmxPJ1r4laOpexEREhQrtK3iB5k3Llf+kht+sriNDu7sxzOtywZ3zwMKR7lSvYM3/1tbBvbThimTdyjZUKGXBCb94I6P/WxAB0dYF9QftUbedgLrfLsRvfRAG7EDoPBMa9YGSleDxZdQ/zEa9vD3ZK7qg3DoQ5aFJqP9YiXjjT0h5XuCxAI4+UdOrnEDXMhLMpdC6pEDxFzTwolJBzPbZpF47j2PbLyAfGmdbE4FhZR2QCQLz78VyKCoZd0sTOpXUehMdTKQIQHx23sZRilKNrYmkUMmWgiAwxM0MuRqiMt/MCq7GI5X/XyEgA54ALQE7YCZwRBCE8m/kpN8BdO/WnPZt6zL2242vNF4ikbBh7TgaNayKz5m1uLgYepw6d25CZqYcH5+/xkIJMHDgwDyVpJxwwP7fTjZKsfsuIceIKkqo1WpWbQ1lzqQWjBvaALVaZES/GlhZ5h/Sawxurtb4H+rAo6h0SjU9xth5F+jdxY3JQ7QeNM8axbn7MJXk1LxXd6OfZ+JSonCKi1QqYd/yZiSmKHgcVfSsgfBerrwpjBkzBjMzM7p3715wZyOwsDBn44b5tGvXjl9++UUv7CsHbm5uBAcH06dPnzdiRF25ciU3Z6y4kWLg7wIe3bzOvG27aVK/Lk6KdMrKk6mUlYi7PIlS2Wk4mcuwdXIm0cyapxb2PLQqQZyVA5kmFlw9H8C62dMMKMyzMjPZs30LnT/ryk/HvbG1teLbsZ/rFdbWhSCAo9UDXO0ukpHtQERSa7JVGhlQq6ojwT/14E+/JzjV38Oc1ReZPLw2A7pri4c3r+9E0JV4VPnUyIxKyMalWOHkmqWphD2DnYlPVxOX9tejYwrEC49UvjKlcHmdb1Su/Oc8UjmYNLASlTtFcDsilQ+McVEXgEplLFk30bD6vC6GferCqsOR9PywRL79/o0QBSli6VqoK7ZCXaE52L4IcVRkQvQNCNmP+OQaPA+H5BgQ1ZrQvtfEg1SRqExoUUJArhL56amabmUknH6mRhCVeBbTFMKNO+ON29jl2NVpSWLo2TznM5EI9HCxpXW2CgcTqd5qeqJCRVy2EjdLUyIysnHMQ1FIUaqwLYRX8nx8NiXMJLhbS/mwhAmlLd4QIYREAq8Z3iOKYjrgpbPrpCAIEUA94OFrTf4OY8nCwZSp0IfY2CRKlMg7ZyUvNGxYlYaNaubZLpFIGDOqG+s2nODDD+v8pbl37NhB06aG4XyXgvyZMrA3i3fsp0rD/Nn7/qs463cfK0sTGnpW4lFcaTxbjaNCGXN8rqdgIiTjWSkGmVD4chp2NqYcW9eSiCdpVChrrU9edC+JpJRs6lV3IOhyHB+1ME67HvU8k1JO+TPDiqLIjqP3aV7fCQ83W7q0ccXNtegNTaBgmVIIfee9XDGEr68vN2/eRKVSIZfLMTP7a1E0AB07fkjHj/sZbXv06BG9e/emT58+BAcH07dv39c9ZQN4eXnlLuLcSn0DCndRQhSRiWrM1EpM1ErM1EpM1Soq1amGIADZ6agAuURGitSMBw8fsmrmND4bP9XoItTVIH8WjBjEvG17qfNSMd3TP52gfAV3vps0nnlLVzBx1BB6f9WK/QfPUtbZlOZNKxvMB2Bv8RSpRMGTxPo8SGpHObtzmJKMs5MVpw99zpPIBNzK2OqNuXAtHhOZhBLFzLh+L4Vale2Mzh2ToMC5AENKpRbZ5pNMlzpWuDrIqFvWlFJ2byAJUqBguVKIHKk3LVf+kx4p0BQx/KJjGQ7++vqUtnnhowYORCcouByeVnDnfwFEUyuUFdugaDuL7KG/oOy+HnW1TxCe3Uby51Kke/ohrPwQycERSHzXw11fSIrKO+ftFXA7BWrYC8gkApcTIUUJIfEiIfFqFt9RkJMOlnrtPIq4aIq3+rzAOQVBwNFUpmdE3U9XsPZhPD7x6VSwNOFBRt4rxylKNbayvIWMWhTZ+ziTXY/k7HwoRxRFEhRqHN5QHpNgIivwD3AUBOGCzt/QfOcUhJKAB3DjjZz0OwIbG0s6dWzAoSO+b+wYfft24KzPFR4/LjjMVRfGjKgQPx82zPdi8Y791DdSx+pdR2Bg4GvPIYrw5LktCxet5G7Cp6SKDbCzs0OhtsXasTb2rp14kNmLVKUhC19+kEgE3MvZ6BlRx/94TNMv/mDTwbs0r+/EuQt5e+GfPs+klFPe+VlyhYq+EwPwWhPGtGWa6IunMRmUKvlmynIUUq64vJcrhUdqaio9evTg+PHj1KtXj5MnX78o9Ms4ceIE3t7eLFy4kAMHDpCSklLkx/Dy8nojnq6igFStwlIpp5g8DZfMRCpkxFM+MwEXeQqO2RmYqZVkS6TEm1jw1NSa+2b2hJs78NjMjjOXwpg+ZgSfjZ9KtUaGdZ6uBgWwYMQgpm/cbmBEAfj89jMJ8fHsOOhNWlISbdu246eTF9mz7zTDx+3K97xtzGJxsz+DiIQHSW1IU7oCYGoqNTCith4Op1WfUxw8GUGzesXxuxhnbEoAouMVuDjkbUilZKr4Yu1TVp5KZNnviZoxySpc7N6AX0YQCpYrGt3K/e+UK/9ZjxRAr05l6DY2CK+RH7wax30BkEoFBnVyZuvJGDaMfzcTtwuCCKhL1SG7Rg9UZZuAVAaZSUgiApHc90V4FIyYpY31FYrQaDKGh2ki5Sw1z7JhcTjeVIa5VOB5lsjVJJW29pKoJt73B1y6jcC8lBtZURGFmj9FqSI8TcGpuDRq25oTn62ikqUZp2LTUImiXg6Hdow6X4/UrVQVd9KULK9pxdxbmVxNVpGgECn+hijKC0k2ESeKYqEKrQmCYALsB3aLonj7dc/vXUe/Pm2ZNWcPY0Z9+kbmt7a2pG+fdmza/BML5g955Xlyigkv2X1QL2Y/B3HRUTi6vH4R2r8Lwed8WDxpDNeva/LV1CKIakHLhqmSIJWoMSb6VWoJ8mxL0jMcScgoS/2mFsizkihheQsbkwdUqBGJhbmM85eimbEpgmXLFhOp6IStUI6S0jNIhL/GhBgRmcaZoBhmrQqjdxc3FNlq2jVxZtisEOaPr2V0THRsJhVc846mOPr7Y6JjM7n2yyfU6fILYbcSiYzJwNX5DRlSBSWFq1UA0aIoGlJNGuv/Xq4QERHB8ePHad68OQ8fPmTv3r1069atSOZWKpVkZmby6aef4uamWQRo27Yte/bsYfTo0YSFhVGhQgUsLCyQyV5PVaxdu3ZRnHKRQKpWYaGUY6aUY67KRvZCJxF54WWSmaGQyJBLZGQJEsQXxGUvk1bcCg1m/dTxjFm2lir1DcleboScZ8vsqXy3eRfVjXj6b4QE4mJnzfQtm3F2cqKC84d0bPshgiCSlBjBpg1rC7wWC5NEKtj/j8fJzXmc0ZHiplcpbnoVCZpczVv3Ejkd+JTv11yl58flMDOV0raxE5uPRDC6l7vROWMSsmngnreM2HUuGWtzCT5TXWm+MJJv2toTl6bC2bboPVJCYcgmTFUA90VR/DLfjto5i1yuvFOG1Bff+OM1qDyVyulU+C5EiJIufaIuA98HzhCXqCA1JgELMynqZG1ohh47SZbC6H51pvZjKeowlegeo0cJFQ32x/F9Qwk2pWK1p11MP7xCsNCuAIi68+rMldd5yJy1qw+6D1Q3AEBU5ONOV/0148YcUFmXR+7UgCynZqjsKyDIk7B4cALTqABkCbch80XStQOA9kep1klUf5m1T51HoU+1TjyvSqePSodtMGfsE7mCj1wl2DtonrlluuY+hWeKlLMWcbHWPONstQTh0mHETn0p33MwyVu1NVtSFdpnkdMfIDrNggNPk7GUCrRztOZRpgI3S1OKmUopZiLlfoYCDyvDsIt4hZJS5to5s1RagZOVIeXs82Tq2FqSkmXBh8WlrAjXrAgKanOeZWiuQ5fdT6p337KM3rN8IX390L4cCBp6zL1oSgmOLpJJ3zL6D93M/Nk9cHUtmhDcBp6VuXP3zXm6AYYN+YTW7b59ZUMqNOBcbjHhGkbY+y4H+HH39k069f36dU/17UKtRi3P4MH1qzwI9WPfvn3cvXsXpVKJWv1yzpmGyEEQ1EgEFRJBRBBERBGyVdrfsZVpPCtXLqPvJxaULKNZ9RVfSNrwiCQsZIm4mR8lNtuTeGU9lCobXKVHC33KKpWaToPPUK96cdbO8mTPDw/o2r4sDWoWJz1TyY3wZKpVsjUY9+BxGi09S+Y578GfIxj+lQf2tqZMGlKVlr1PYWYqwdmxiBPCc1BgaF/hQ7f/DXJl9JiVzPEaSPHij7Q7RR06aPFugXPUzGHXVp6mQV01S5ZcBuVpw466xDeCjhYgGCcVuXfvHo0bN8bb25tSni25m655Nl8NGobX1EmU/aA6S+bNYfLM2TRr2Qo9jkBdNr6XGfzU941fnw4hThWLPBTuvK5BF3r3T2V8+6X/RbWSzCwzUjMsSEu3IFOuef9l0mysrDKxNMvEwjwLc1M5Ekk+7+jL5QFKw8zP1qAxwV6UU1FrdbQunWHax9OAROBX1NnJZMjtSJM7kJpoTx1XJ+pMmYKgSsRedhVLWQwSRSypYhWUNtWYOHkJjyOuYi8GIcnUvkOqFG2OY47OWkzyG4nFviLesRnxWVUxf3oaIeJ32k33p7WHCes6WzL/z0g+aWtD/UgYfjWJu9t8cTDTYVF+oZuF303F3kVOsl/Ci/unf08On0tjTnNzLKOS+LKyjGYLnuBqLZAZkZj3vXtVFCq0r/ALzm9KrrxThlSDKrZ8NP4qG6dUpn3DoqlDYGMpJSVdhYXZmylykZypxsZMwOKdutPGIQJZpVqTXqkPagtNwqgs4RbWF5Zj9vgMgs4q7N9FSJmi0NRqehk+MSK1XkpZEdOTyPxzB5advyGjUn2ywy/kO3ecQklCtoohZR0xtbAkPktKVddSlHRxpHd1FWkiOFubEht2AVWWRsCJosi9dAXNHKzynDc8XUEbR41hXcvWjEpWxTEVBCxkb+YuCqaSAplwCjWPxo27HSgJfCyK+fH7/HNRxrU4DVp5cWz/OBo3zL9uT2FgY2NJampmvkyOr4vY2CRKlzYkoygMRFGklmcj/B9EIwhCLmtfDi4H+OE1/GumbTReR+buxRDWjRvOyOXr8ahvSAF8MySInXOmM2zuIqo3NAx3uXY+kEWjBjN1/VbqNDGWUxDAofUr6T3mW2oZ8ZS9uAiEbLnmT6kAZTZkyxFUSpRAWQcbynbrjoW5GSYmJshkMmTSJ0gkIjlPRFTJUaslqNQS1ColoiggihIQFZiZZGJukoG55DmmskzOnDnDwM87G5zGid/v07ZpKQRBjZNpMDIxkWeq9iSLNbCjcGRGAZdisbaUsWdpEwRBYOm2Gzg7miMIAt3al+HoH4+pVqm63hhFtorAy3FsX2A8p02pVOMb8pwjazThmiP/z95Zh0dxaG38NzNr2c3GlSQQ3N2hODWktKVQXEpdLpVLXbl1KlC7daBYoW7ctpQWCVIkaHENIUJ8d7M68v2xIbshCQQJtP36Pg8Pk9mxlTlz3iPvGduUUYNTCTXralH+/AzqWjWM1/1d7ApAl2638u3XL9Ky5dmVfVaFsDAzJSUXRijk448/Lu9ZOkmiAAry8jCaTNw0egRzF39J916V789169bRvfufu5dSUQQcThM2RwiOUhOKKgEaISY3cVEFhFlKMepdVWajL9w1iLjcoTg9FpyeUJxuM6qmA1TM+gLiQ7fTd9DTLJ3dk8SywLoiOwjRjnPzfS/w6IN3okvqiU3ogNn4B5He79FrVYuXiaqbiANvImd+RmniUFx1BkDK1fz4mxdT6RF0+Xto791IQkomJvkI/RvoWbrPy7jWFQO/BS6VYzaVlrFV38u5pSp5To1Oif7X/93VyM3tDFhqa0acINRAta9mJ69Nu/KXcu//NTKZbq3CGD99N+882ISBnc+PTLk8Ch6fil5Xe3fTrwc89GloqDWH6mJB1Ydhb3kXnoSe6Ip2YzmwCEP+JoSCnMBG0qV/j9c21LH4gEz/pICzUOTR+DkbFlRh+90rF2DsMYLIO96i9Nd5OJfNBm/F+0sfEYO5XhMaRDXljdTGtGzZgpDoWK4O2qZz0LLscnJ89XKOLvueg3v3ogJxpzEGXk2rMDPKXO7o1BKR0usuCJEC/gs0BwZqmlbzTvs/GZ59ZgI9urfimpGv8uPXD/kHpQZLzypBMtkVoqBVR0cLcoswm/Uott3odFLF7apDdRFYMUj+PkjO/H/fL+PKfk3AdaRyNLb8mKdI5+v8dfEC0DZYuUvqW764dtshpt82kTmLPqNx14AT5VP859iYtpJfP3qHlz+aR6fLeleY6wKwec0q3px6O89/FBgGHNxbuDltFW8+dC8vfujfv4K0uSiyYfVKnrt9Mp8s+YIevfz7R+mOoWkaLreCw5ZLqVOPy61HVf37CoKGQe/BZPJgNHgw6WwYDS4MOg+CGvQ9BsudA6h2vwCCBKpawkmGpfo8/nil17/sBSZck8Ib//2ND5/r6t/G62LfEQdpGzJ596F6OHP9kXh9yU6MsfXJ0/dEOPIDUtlvp7oqA4ANP52gS7JI6cYdIInc3d/KqH+tZM2LTRlUX+H2/x7m3/2M5c8QwSCxeoeNxolGLEVZuMoCwcElMC4VdBJIJTl4HP7PyQLgEKm2m/M8CdaZS/tq/Hz4W9iVt968j/nzf6L/wKmsX/su9eufX5lsYaEdo/HsVSKrwk033USjRpXbDRbNm8MfO7az6OvvqyRRK1asYOrUqWzbtu2CXMeFhMcrYS81YXcYcTqNaAhIkoLV4sRqcWExu9CJQc/2C/B41TTw+vR4fXo8Pj1er4THZ8DjNSIrJ78rDaPeTYQ5l1BTIRZjEZLit8UDekbxztztvPBwIOCUtimXg4cy6Rj/G5q2gRKhC8VSF1whU4nxLMF0MvtVBXTuHMIPf4Bl11wWHa5PUsMWtG3TGk+9gTz4xDUAFMtuHup3gE3bd+MNO4SUtwux6Ij/3MdkuiXpMFTjy7lksBoCNl0QBCJNwgURCqsSNZojVWNfptbsyl+KSAF0aRHG+4805Y6X9rLyvx2Iq6H8a1X439oCOjSxEhV2YYxTVWiZoOf1VQ5WHfLQL7aW1JJqERoinsTeOJrehGqwYtnzMeYjX5cPV/yzjVgcVE/kyfUaPlVDX5by/eyoRs84iKpqJJPPQ+Hrkwi95l+EXnkzId2GYdyxFskSjmSNpF5sCvpwP2FvqKpkZRylcNd2bBmHWX0og03HcrguVGN/iZMNRQ5GNqlL+6uGkNjncupdMRTjmjSunPMBQvHxaq9ZLe+tOjtjNOfIOZT1cbJH6vyIlCAI9YDbAA+QExQouE3TtAXndfBLgEFXdWDWjPGMv/kd1v/2DGHWs1fGOolFX2zmusFt/CSqltClY33uemA+11/TkU7t616w477/1iw+XvQZl/XpS667IkHbmLaSaZPG8PLcT+nQvYpywHVpPDplfAUSFYzNaat4eMo4Xpq9kE5VqFttWrOaByaO4tW5n9KjV280VcXjLOW404ndLiPLGmDBZJSJCHNjNjowmbwY9T4ENei5qDorHft8MeaaBnS9fleFdW8sOMiEa+piNgW+ZwGIKFpEbvxj2KJvIPLE7DMeWxSECpHx93/Kx+nVCAuR+Gp9Efl2mdximYRIPQ98mMEPG4sJMYqM6B1d7TF9slarAcKqcEaHR6nR+Ie/lV0ZN+5KcnILmTj5eX7+8VVM51H5smDRckbeUKP2sjOiKhL1+6oVZGZkEGq1klgnqdLrJ+dAffvttxfkGs4XmgZujw6b3YjNbsRTVpJvNPiIjrRjDXVhNnkRCA54nfu5vD49Hq8BT9n/bq8Bj9fgz2KXQRQVjHovoSGl/qCO3o7Z4ESSFJCLAwcsM63jR7Tl5nu/qECkXv1wJ3eMbYYkCYCTaG0FZvca8ozjyDNNJNSaRIT9G4TTzKMUvSUc2vYb+XtX0tcdjmz3cOWnIaQ2ackLY9pjNzSiU++rcFv9PZauUjs7t2/nsPw7Q+I2o5GBUMWH67TSegAAIABJREFUJasaurMopTtv1KhH6sw0prbtyl+OSAH07RDJlGvq0PmmTYy7OoH7x9QlOuLsBpdqmsbs77IYPbB2Zxp0r2fgw5GR3LKkmNdCjFzd5q9BpjQEPPHdKW00FsVaD53tIOGbn0Jvr5kow+mPDaolHl9kU1RzDOhMaPoQNMEAkg5N1IOoA1ECQUITdf4BvpIBPA6kbZ8hHK+6bMYgCehF+PaIyvX1/QauyAtrTsCEEpjbTasQIQdQi09g++RxXKsWEzrsXixteqHYC1HsRZRsX4fz6D6cGfv438YDrM8pYnxyBCU+hf8eyqdHpJnnbW70okCeV6GpIx/hwC7ee/o5Hpowmk7DR9P1g7nkpv9O9rqVFO3bTWl2JgQ1ruoEAa+qUX3xX2WU+FSW551bZlqQBITzzB5qmnaU8hj+3wOjR/Rgw6ZDNGx9P3ffNpD7774Kq7V6VbSqIMsKH8//nVefvbaWrtKP64d1QhRFBg1/nS/m30GvHqcfxVBT3Hr3VJq1aFFpffq6NKZNGsOMOQtpXwWJ2rxmFW8+/fgZSdSLH82vkkRtTFvJf1+Yzsx5i+nQrh2FWcfwlNrRVBVRhNBQPVarDqv5KLqTvTbKhSdM1cFq0VNi9/HFz8cYfoW/R6SoxMfnP2exdXchX8/sUL6tQc7C6liOPfwKzLY0jO79pz22JIJc5hPtzHCx/aiLqUNi6f7wXiRRoNStciDLTZRV4ut1RXzxVFMKbDIdGldvMYwGEbdXRVU1xNrj8xVwJptSE5vzd7Qr9907kvT0fTRsPIr77x3B3Xddi9F4dv5KaamL+Qt/4eelL9XKNf6+agVTx49k3mdfcmDfXoYO7MMXP/xM81b+ktJVq1aVz4G6lGV9qgbOUj02hwG7w4DP5y/Zs5i9REWUYLW4MRiUUyoHzu4ciiri9hhxe414vEZcHv//ahBh0kkyJoMXS5gNk9GDUe/DYPAi4a5YLqh6Kp8gCNZQAyfyXXz3y2GGDvSXf5Y4vDzxejpbdubywX/8tS56rYhE9zsUGoZgDx2I29iSSNsSDFQ/T1AS/DLlACsOesjKzOWy6Fx6T/kBn6LhUwV+vrsF4fVa8WNxE4b06UTn7v5ecaerCF3GOqTDaYgZGxBkf6DKIAm45YvYuCHUwK7UgNjVtl35SxIpgH+Prcuoy+N4dVEm/e9M5/MX29C4bs3ViD78Ootiu8z1fWp/xlP3egbmj41k3MITNE000CD27IzoxYY3ogWOZjcjRzRBchwjbOuLGHPWVBmhqAk0QLUm403shC+uI3JsS7SQyIobqTIoXlB8CIrPbwjVk/9kkD0Iigc1qg1qo34IWdsQ1s1BOLyu0nW5FZixy0C7a8bTsO/1PLblBx765T1Gr/CyvRjanXLqk/Ad2UHRrCkVxCZKgpZll4hSRoDWFjnpEmHGJqt0jTTTN9rCM/tOcMjpJUIvYbPZKF76OSt+W0rqVdfSYOhw4jv4y4K8DjuZK35i/5cL8dltROglSmSFyBpmiUp8KuF6kQGx+nMiUxciI/V3hCAIzHx5PHfeMpCnnvucy654lh8+f4DkpKrnbVSFp19cSkK8lQF9LgyxOR2uHdoBk0nPjZPeY+uap4iLrSxIcLaoikRtWL2CD1+fwYw5C+l8WZ8qy/kenTKeF2cvoH0VPU2b0lbxSBmJ6liFxPr29Wls/t/XvDlrFlaTAQqy8EoSIdZwTKFhyLZd1E0pK4s6zSDJ2oTRIOGTVcb9ex2Jc0Po1tLCgpc7oSgaja7+mQPHnDRKCTx/wmw/4DS1pzDxDmKPPYtE9VL1kigglzk8by/NY9q18fy208ETIxMY2TOSOjftYOP+UvJKfDRJMtG+0ZlDLiaDSJhFR16xj/hq+h0uNC5ERurvCEmSWLjgKbZu3c8jj77Lt9+t4asv/kNUZM1DZ/dMfYsB/drTsmXqBb++TWtWM3X8SGbNW0L3y3rR/bJe6HR6Jt44nN82pLNl00aee+yhaod51zY0DVwuiaISAyUl/pJeQdAItXiJjXYQFupBJ9WgfLoKqKqA22vE5THhcptwekx4fYFqBFFUMBk8RIaVYDJ6MRr8GXBJqqYW5yxLdIwGHTl5TobfupQ/lo+lQYKO3xYMwubw0qDvEl6e1pbIML+/KKAQ7f0Go307RWEjyIueismwCWv+d+g9GZWOrROF8gDNu2tLefqKMN5Mc/DW4FDaxEu0fbuY7XsPU7DlEBuyZMblm1HN0SjJnVFSuiKn9kJuOghkD9LRtUj7fyHu0BrynA4UVUO6CJmpmqj2UfPSvlrDX5ZIASTHmXj9/ibMW5rNVf/aQvumVqLD9cRFGWjVwELvDpEkxlQu0dm+384Lc46w7O32GGtpVs+paFdHzwNXRXH77Fzem5xAo2qc+UsJDShtNAZnozGI7nysO17HdPy38jK+s4VqCMOTOhBPw6tRIv2lBKL9OPrj65Hy9yDm7kKw5yD4nKD60Gqg2idrOtQWQ5A7jkMb/jrk7kVc/TYHN68h36XRPlakffv2zJgxg/j4eNSsvegH3IoQncLAPQ+yLKd6InUmxBoljrtlVE0j36vQ2mrEJqscdnopCTOhahrpJW72Orz0ibYgCAKK28XBrxdx8JtPCU1KIbJxC2LadKD+oOuo07MfKx+4hVBdESU+hZpMrPzkqItf83wMiNUzKdV0bkRKbzibuuL/d2jSOJGFH9/BjJlL6dznKTq2SyUmOpQ6iRG0bZXEgL7NiYmuLDv9y4o9zF6wjvQV0xBrMCTwQuCqy1szcUwPxt/yER+/M4mkOhfWsJyUSH9t3uIqJdKDy/mqIlGb16zisZsnVCZRsg/RZcdTcIJ2yXG0u+MO0BshJBRCQokP9w+pTVu5guP71nLHHRd+SOiZoGka2/cUUmzz0rOjv3LBaBApdQacNkkSuLZ/HF/+ksODkxuUrxc1D9FZb5CX/AgFde4lZv90RLXqsvwmdYzM/s2vkHUwx8PYPlGcKJH5fZ+TlikhhJslXvwsi5gwPf8ZX7nkqrprj4vUk3nCQ/x5lL+fDQT96QOEgnxuzu7fBe3aNeaH715g2oPv0q7jLbRr25CY6DCSk2Np17YhAwd0ICysMrlasHA5a9b9webf/3vW58zPL2TTpu106tSGmNiUSq+vWrWKee++yRsLPqdL0P05esJE0lb+xrjhw/C43cyYMYPevSsHQQoKioiOrh1nRlWhuMRAQaERj0dCEDTCrB7Cw7yEWryIwtlnnTQNPF4DdqcZe6kZl9uEVjZOVSfJhBhdRFhtmAweTAYPep0cyDCdqtp3jlAUla3bsvB4ZBrVjyq/Lpdb5qRLHhZqoF/XeL5dfpyJ11UUKgnx7MSUtwe7ZQC20KtwWzsheXMw5a4ipGAdksuvGNs4Xs+STf4ZpgcLZNon6WmZoGfjcR+yqhEfKvDAz05izAIzLvf/7kRnAeK+H9Hv+xFNlFAT2iCn9kZu1B+lYT9wFnHDiVc54VxOYuhFCIwIwpntiu7Sa9H8pYhUlVF0RWX8lfF0b2HlQKaLQpuP7AIvs7/N4qd1BXz8ePPy5l5V1Zj9zXGe+ySDV+5qSINoPaoj0GdSQfI8WOY8aBulMFBO4i0JpG0VX9UkwBv00B0VL5EZC4NezqBeRCY3tTcxrJmf6EnmwFcRLNcuBfVVBTNzMSTw4xJMVf/QxNAgEhl0TOHUpmJJRAOKrcNxhg7A4lpHpH0JYrwX4lMq7V8BVUin+6Q4is2DcZnagqBH78vAWrKEEM9OJFcO6IFEIE7DL6DiRwWp9yC59uDvwn++dLT923BZu+KoOxLlhjfwtNhJlF7CVyeJTyxhZGQcRVg2leisrbjaTsbdbhITx/zE0Bm/MqNpWAXKcsp4iAoy7B5HoDW7WZ6N7/Ig0nqCHnESx50+bm2i4+FtMguyCukWrWNEYlh5U7hRCvw+VE3Ak7ufkhP7sa39jhM/N6PNE29humEyhU88Tv3QihLnACZd4DPQixolPpVfy4jT8jwfN1c9BuKMEEQJ4WLV+/xFIQgCD943mEFXtuXwkVzyC+wcO17ISzN/5PdNh3nthRvLt/X5FF5982deefMXPptzM/Fx558ZOhtMf2wYUx/8lNbdnqJdm7pM+9eVXH1F6/M+7r4/drDw/Xf46NufaNiiVeXXd25n2Vdf8Obn39GkVZsqX//sw/d4K+h1QfYi2YuQ3A40TSMjOwtzbCJxDZogGQL2ShAEdm7bxofvvMVH7z5+3u/lXPCfN9KZ/dkeJElkwnUN2fTFlfQa+wv9usZVKNm5YWAC/3ppN9MmVXR49N7jRGW/TUHSfRQn30xURtVzYbo2NpNnkzmQ46FHs1DW7y1l2rXxDHr2AJsOlDK+bxRPjE2uVrDI5pSxGKXyh/nq7SVMn3MUVYXkuHPv9TtbnMmmCKeTlv47QqwcWBCFY7z62quMGbudzGPbyc8v4WhGDo88/hGHDmfz7/tHlm/rcnl4ZvpcPp77E8uWvkCoNagt4FRxmqBzFZY9RtJWrmD6k3cz9YnpFJrbkGurSGQ3rF7JAxP9QZK23XrgkWWyg7KG/a4byT2jrkfS63j2xZe4T5Po2qMnJ2e1rlixgtGjR5Kdtbnq9x8kBV6hxC24JLdCb6N/G59soMAeT1FpEopmwKQroU7YYcJNx5FwlgvBoAb5br6K/cKaGnh2+nwaTjWZUqUepUpdfPiFdozkEiHsxCRkYtSy0ak2BDdoZSNTVOD0hXmVoSmnyrAHjWgpu8a7n9/Jio15eLwqD0+uz5fPNGPq24dI9RzGtiHweQxN9vHJwj+4LqwQJS8glOOxn/QT0pGUt9Ea90NtdgWO5BsoTRmJVnwcdc9q2iasZXrBFv5Yfow2VpUfVxdwSzzctEbjmx0wOgXGNpH8dkV1Y8sJfPeiTsTm1QjNXYthz++IwmtsDWmPoc8tPPr0s6gHB+NZ/hKCLbvyZ3AhhSeEmtiVS+/L/KWI1OnQKMVcsbTCrGP30YBUaEGJj3FP/YHPp/HdS61okXo2HSkXBoIgMK27iXu7GFmfo/LocideBUa0vHgPu+pgCx2CI3QAVuevRDi+OKdiUkUwY7NcjT2kD4LmJdS5GotzHQY5ILRwoW4xQVMIObGCg1uXs+BYN+6edD16xcbSX34kVZ/Lxws/p6DYwZCGOkYp8xDrDyDsigdI/XgNvx2RGZh6bj/9pmGQ4YQ4o8COYr+gxQNNQnh6l5NeMboqnR1F0/gtz8P3OW4EoHuUkWu03cydM5ubbrmVmVuWY9+9hVPrAk6W8J1EuF7k8jgdy07IDE4UiTjHgb2CKCBcpIzJXwLGMjIfrOpW9rBv1boJrVoGZrF4PDIhIXp/dFKTOXI0n2vHvkt8rJWNvz5I/dSYynXx1c07Cd4u2OkIVmUVgoRwgiOiQcfRA+8815PXnujK978cZPIdHzJ71jVcfcUpg1yVoCxa8HuVvihfjAo6x7B2MOzT8UAGCEFiKWVOXIduMKrHSKAUWFdBVRDxMrr07ca4vl/5L1fTyMvLIy8/D0EQiI6NJTIyktYtS8r231LRwZLt9G4JvReMBmWHfxOoKCRRQVnRVeV6zRt4n4q3YkZI8QTNY/EEXlN9blZsKuCDRX+w6j1/71Pf2zbTPNJNgwQjw6Ys45qOYYzqFYVeJ9AWFyVFbn7/4QBtY4JmFrq8iGRhdsTjbDYBx6YI9AW7Ks3001SNVlECezdkk+BW2ZOpYEj18fFVJm78zM7gSA+eLYHSnZMBRbes8d4mN++sdmA2CNzSK4zxXUMZ/fxxZoyK49qOoUi5+XiLgoJ0+qDlU0tmzle17ww25R+bE0DHjm3o2CFQMpx5LIfIiMD9uX37IYbf+Awd2zdiR/p7xMefXdYnbeUKbho9glkLvqBzFT2Jm9emlQu7dKxiBMGG1Sv58LWXef+rH2jZvhPrl37FhBHXsfDr77m8R5dy4YnPP3vnrK7rdHB7LeTbkylxxqIhEGY6QXToMcxSViArVMPiGK8ahl2uh11OxakkABICXsziMaLEjVjEw+iUwNwj7SLJZi35KYu09ALWzO5CTr6HK+9KZ+6DjVAUjfEv7GNIu1Cu7xaBKAoMbB7C/YvzOVboozq9R8FtQ9jxDeKOb/BKkWiNe0GjyxA7DCO02yh+mgTunENM2JFO7t6txLu38krHDB7YrDEgUajSX3H4ND7YKbP4gEK0CW5tradTnMrdi1fz7L4NNB8yErHvXSiTFiJ+9yji4XW1+Imd2VepSY9UbeNvQ6ROxYkiL3GRgUyN16ey42ApK95oS8Oks2sgv9DQSwL96ht4f6jIlG8cl5xI2SwDsFkHYXGuOScSpSHiCLmMEstgVMFMqHstYbbvkFT7mXc+DxSVKkz+bwYPDy0lMX0tAM1y3dwyJ5d1DySwcj+8t8pGtt3GgykzcVz+Kk/fNYaJz8xmahcjE9qc/eduFP09WE1DBfbYVV7d62Nsio6HmppYeMzL5TEKCUEqXkecMnMznFgkkQcaWTGK8Pw+O9kehZLZHzB62BAajrmDrU/cWuE8C445WZHvLS/hO0mqptQ3cVMDzzmTKABB0CGIf9tbv1aRe6KELh0DJVyOUg+Hj+az7Ku7iY2pXO53MWEy6bhhaAtMRh1Pz1hZmUhdIrhcLo4fP47b7SY8PJyYmBhCQsps8J9N9hM4luNiypPb+PDpNsRH+23EC3c3YsaCo/zv5VYs21TEG59lUupWuP3qOB5elEt2scLQl4/y5phYhrWrKChkPvglrnqDsfV9BdOhHzDuWITkzKuwjUkHTp9Gi1iJV9b659s80dvMB0MtvLnBzRP9RJLCAnYl7bCXB5faaZGo55e743DLGle8fYI1B9y0TzEyvPPF/y2eyaYI//CoapF7oqgCWcovKKG01M3HH9yP2Xx2pZmbN27gptEj+HjRZzTrXjVJ+njmDF6d+yldevVBPaUk42SmataCz+hURrLGTJiEz+tl5ksvYLj/3nLhiT59zrEsogyaBnZXBAX2BErd4YiCQmRoNjGWwxh0ZcGN6sXpyqFqEk45EbucjENOxqv6P0ujWEiUbgsWMYMQMRtBCwSvLnZ+dOcBO9Ne28V3b3bBatZhratj2sRU3vo6m7RZbfhxYxEzFmeikwSu7RpBiEHkXwPCufy1LN4bFsplqWforbfnQfqXkP4lPp+IkNSSL7S2XNm9A027X07ry28AoE1BJu8vW8iHS77knsbuCr7E8uMqL25V6JEgsnSwgcN2jXtW+2gRJXJZHYl+ySJs/Rzt4GrU4a+hXv0kwpwxCM5aGMYL+InUmezKpfdlLv0V1BJKXQrx0YEfXmKMkQfG1OXR9w+z+JnKDdWXAq3iJNyyRo5DJanmOhkXFA5zD0rChhPi2kxkycKzLgN26xtTZB2BT5eE0buXSPvnGJSs2psrUAZF1bj942yuamtheJcw1LI5LVuPeejVyEiIXuCqFiG0sChc8YmN2ztvQNdmBw16DOP9IUt4coXznIhUihkOOGBgnMgHnQw884eP9w+5OViq0jJMYubBEkYmWWgdZuDbHBfrCr2MTAqhc0Rgltjt9UPJ96jEGSWOfT2PJrc+RGS7bji2+8mgzaeyIt+foVie58OraqwukLk8TseU+qbzIlEAgiQhSJc+Hf5XhKPUg8US+N20apHE5LE9ePzZ73hv5phLeGUB9OuZyo23foHHI2M0XloTX1hYSHZ2NpIkUbduXdLT0zGbzQEi9SeD26Mw9uEt3DM6lX5dYlBcfmcufa+d3m3DsZolru8dQ8NwgRtnHGJw5whmr/TLGntkmLfWXolICYqb8OVTcbUch7vRNbgbDkUq2u/PMAoSmiDy4AAVAYjVlbJy0E5e+nwDz6zbzs+7iulbX8/geSW8OcRKuwSJ6T+XsuKQlxeutnJlkArsvMlx5NoUWta5NGJGZ7Ip/+9K+84CDocbszlgV/r3a89lPVsy49XPeeqJcWd1rMceuLd8hEG+t2qSNHP+Z3TsUUVP47pApqrTKZmqvgMu5z+PP8rt+/YEhCe0Y2d1bSehqgJFjigKSqLxyiZ0kof48ENEheYgifIZ1e4AVE2H3VsHm6cedm8SKnoEZCy6bCL1u7DqjmAQ7ahyINt/ahn/xUKRzcuYh9J5+b7mtGkShur1v7/03Tb6tAkn0qpjdP9YovUaTy7K4prO/mzlPQMiMOoFvtpVemYiFQzZi3Z0C1vTN6Ou+pjr64kcD6vPYrU91w0dRMNRD/Lo0Dv59svPaPHHJ8QoRby0Q2F/icZLXSU6JfifG9EmmHGZgRKvv//8JAR7LtIPT6CMn4t6+SOI3zxYK5J4glATu3LpIzR/WyJVN8HEgcyKpRy3XFuHFz85iqJoZRr9lxaCINAuQcf6TB/D4y7+w89jaEhR5FiMnt1EF88pU7+r2eeiIVJsHoY9pD+SUkhMyQeEeLZeNN3ad37KxyNrPHVdRdXF77aV8q9eAeeiTphE9xQd3+/1MmLfj3h6TaN1yxZkfLOBErdGuKlmV6yoGjkuEAU4UVaObdYJtI8UOWAXuLOhkZZhOrYUSrx9yMbyPDeRBni6mZUwvYiqBc7T0KKnYVll6Yk1P1H32gnUu24Sf2xfi82nEqYX6RtjYEW+l17ROlYX+Gu2l52QuSFZJfx8E5iC+E94+ByRWjeGIxn5FdbdfUtfBg6beYmuqDIsFgONG0SxbuNR+l52fhHjc4WqqmRnZ1NUVERoaCjJycmkpaUxYsQIsrKyLsk11QRPvfUHqUkhTB1Xsd/py19PsOiJpuV/t04107iOiW2HnUzu4ydTo3qE8UO6HVnR0J3yfJFKswndMIOQnXNxNRqOEl4PQZXRVBmPV8FWouKWNWLrJyC2HckjHcbi87q5be1cUo8uYd0xN3d8ayc+VKRtHT2/3RaF1VjxHu7T5BKT0zPZlH9sTrWoVzeOo0crKjvefee1PPzoB2dNpJ57dSYdO3eptL5iOV9lErVx9Uo+ev3l8kzVqcg4eoTiokLemDXznNX7ZFmioDieQls0iqojxOAgJWY/YeYiBO3McxFl1YjNUwe7pw4ObxwaOiTBTbjhAFbdUSy6LERBqdAj9WfA1Oe3clXPWG68KiAWI8sqP6zOZ/q7gcqB/q1DeWwBbDnsol1Z5edljUL4eGXxqYc8LXyqxgkXGCXIcQGaRnTJIbLSDzB3zWeM69WS1CsnMGLsBFyukXy5cC6pWfN5rrMLY5DtEgSBfilV37dCwWHEtHdR+05FazkY4Y8fzuoaawbhL2FX/rZEqkFSCD9vKKywLjREIsqqIzPfQ734i6NkdCaMamXkkeWlrMtSeGXIxWtSl8UI8qNvRScXEFP04WmHu50KRbCSb52MR9+YUOcKIhxfI3JxlVPsTpUuDUIqOSyFpSpJERI5JTJZNpWPVjn4334fDo/GmEO/ktV0HAnNB9EuIZ0N2TKX1z/9MOb9xSrZpRpp0VfTdcRAGun1XB+tQ3I5sC37hFHswhEkkZ4SouPGJAtHnDIjk42VZladCk1ROPbtfBrfPI3PSkP5eV8mfWMMjE0xc0OynnC9iEF0szzPx+Vxugo9U+cKQdIhSH/bW79W0ahBHGvWH6iwLrVeNDknbLhcXkJC/hyjDW6f2JHrJs7jrindefbRKy/quX2yQMaxw7hcLmJiYoiPj2flypXl5UB6fe0NQD9flDhkLmsfVal3oMgmUyfagMuj8McRJ0kmDZ+sERmq4+WxCUwbGkNsmI4thw6yM8tLu5Sqox2S8wSWTW+xLVvmuF1h2o+lFLvLRircHI51l4QmGVBimuFpPhx939uwF19F1w2vM61wPSUejXt6WaoVnriUOJNNuUCiZ39LNGqUxIGDFQMMTZuksHdf5lkfqyoS9fuqFfz35eeqJUkbV6/k35NGM3PBZ3SsQn1z7epVTBkzktETJnH33XdTVFTEPffcU+Nr8skS+UWRFNrC0DSBMLON6PA8zPqCQP9TNdkiTQOHN5ZCZyp2TzwgohdLiTLtx2o4hkV/AuSqFTH/LChxyAwfGF9hncen4ZVVYsN12JwyB467SQ7RkBWNcLPEyZrGZgl6it0a2XaFROvpb6IteSrHHBrPbVZxlbl0y68K+AzPdhD9+hdFu/F9+gjaqg/I7nIH4265E23MaLTlb6Glf1Xj9yVs/hQa9kLt/wDCsc0Itpwa71uzE9TErlx6w/K39aYa1DFxMLPyzdUoOYQDma4/DZEa1MRAv/p6+swpYUeOj9YJte9kaEBh1EQ0wUhMwUxEreZGSBHMnAi7B1mKJto+F4trQ+1d6GnQtYmZWd+dKP87z64Qa5VIDJd4/qcSlu31+AfSlRnn1Rky037I5fNXruDGYVfSNUlifWb1RMoja8za5OWLvV4ua5nKs28+h+IopjjnGBbJB8kdCGnZk6ynroV8W4V920cYaR9hrCjPehrs/3UpEYPG8HPZQ3NFvpehCSbiQvwGcFKqiZEp+gtCosBfU/xnqCv+K6JRw3jmLFhTYZ1OJ9EgNYYDh/Jo3bJm8tS1jdsndmL4NR1o1v01bpvYlZSkiItyXpdLIuOYBVlxk5KSQnh4OJqmlZOoSzGH5mzQo100y9dlc+sN9SqsT4ozkl3gY/vBUh754DCSAIV2hdQ4A6ASG+a/n3o0NLFmv6taImX3qEz/ycGvh300iBSZ1stMlzoSh4tU6kZIaCoIihdd7nZ0udvx7e+Kq/u92C9/jRtDX8Z48Mc/JYmCmvRI/VPaVxUOHMikuNhB5vGKfXNxcREoikp+fgkxMeHIsoJOV9lpPHAgk/kLn2bcuHE0atSo0usb16zmg9df5o6HHq8yE5W+Lo3Zs17htXmLqyRRm9asZvG7bzBn8Zf06NWLpx97hO7duzNx4kTCztCK53LrKSi2UmIzowERVjuxYdkYDWWle6fpkVQ1kWJnIgWOZDy1BWDRAAAgAElEQVRyGJLoIca8j3BjBiZdSYUMVm39sjQEvMThJgkPiagYAAENARDLl/UUE8IRTBxConJmrUe7aNZtLWJonwCZsoRImI0SRXaZT5bl8fY32ciyhturkhStB5u/JFEUBbqm6Fl71MfwVlWThgKXxtNrfOwpVkkwCzzZTiDWJOBTIcIgoFbXapF/hLpLH0LeOhfp6vsRr3kCxZYLR9bX6PMRNBXpf9NRJn+K2mks0q+v1mi/muPMPVKVFCwvAS79FZwF9OHRAGhKUM1r0HBIVQ7U1davJ1LskMmxKSREBpzlxilm9h93M6CL3ymtdthXsFy4L2huSFRgE0tqTGCboEi072AgRW8sqTpdrQZNhw7RCwxooGfTES+tokR0dQOZKdESIHxiaNByeEjQ+qABcrogCeEgJi/qgobMSl3xaM2JE/6HtY4BCMyXEILTpEHLgiShaSKZvuuRtViS9V9jiS1CEJtX+f6qRXA96ymDPbUgqdBg2dDg9SflRfu19DL5nc8wdm3Lv1/awvuLM7h1ZAPEcCvLNvkfSIoGYwclsmBpNmMGJbJwqV+qc/E3P/HNy6351+v7eWlIa/SnqL5oskL/qdtJibOy7r16hNbpSAEQl/EqyY59AHgyrBT2epfGd9xDyKpXyvf1uQPkSfYElj0OHwVujWiTgNseyN49m67wVSbc+PFshndpyhcb9nJtMnRJcKAXA+9b1AU+N0PI+UVg/umROne0bZXC9j+O+bNPQb5y00bx7D2Q+6chUgCxMaH07FKPTVsza51IKYpAXp6J/AIjOp1GgwYNyvugNE0jPT2dlJTKc2wuFDQNLgS/6NE+mmff3VVpvU4ScLgUDmW7uHVoInl5Lmb/UsDr3+by8shAefGA5mZm/lLM7X3DOTXs4ZY1rvigkJ519fx2U3h5aZ6majSvZi68/vjv6L6aROnA5yjtNg1dzlZ0vryqN77EOGMvQ3VDTP+m2F7s91OCia8oJJYv66Vkfl+1gqnj72Hh/HlMmTIFTepfvr0ANG3akn2Hk4hJ7MGhUg3KXBFf2XPQ3/N0Dy/NXoAjOoWtRZ4KA7M3r13Nw5PH8vxH82jSsTN2j99H0pU9hzenrWLeW68z4Z77adO1B0rwM1kUy3uq3lz4OU26Xka+V6NJ48bUr1+fXbt24fF46NMnKMMl+sfM2Gw+CgpLcLkMiIJKZLidmMgSDHoZfM4A85GDgpC+4rL3ZqLAkUyRtzmKZsIo5JGo/5kwaR+apxQ84CMgJw6g+ir2VCmuIEVOh6fqZVeQH+n2oiEim+viDWmIHNoAX2gqsqUeSH5DL3hLEH32skYrDTQVQVNB03Ba2lCi6wKSir5gJ6aMnzBmp0GZUmgbl4dnV9qxN/b/rXn98yh1qkL2rwfYm+7mvo4GRjXV4VM0vJszsDsCfkIns8yXm3z0EF14nIHvqMSjp9ircWe6j/5xErPaGjCIAj5F5GSnRkZ+xVEqxqD70HrSx8jYiTj/Trj3B8RONyBl/l6+TbAqXnDve/lycRZk/4EW37zC6BgART5PiisINbAr/5T21Rp0OpEBXaL4eV0BEwYllK9vmBzCweN/vjSwSSfgUWo/YucjgnytPyEcJoytZ7XvCaUPTq0uifqfsEhnX3JwIfH4a+k43Qrj/r2Wb3/1SzO/v+QQYRYdE4elMPebY7RuEsZ/H2/J9DsbExtlQG+KYe6XO5h0fQv6dIigYZKJpiPXM6xXDNPGplAnxk9U1+20kV/i49dZbcjLc6Po/ARe8gQyYDpXDiHHfsSVchUG6yIku/8a8p0qMebAjV3gUokOEZm+wcfi/Qo3NpZ4sDkUevzf9VdlH+PixYv5fkwLJpoEIs9TTOJMEASxImH+f46tJZ0BMOoC5rB5cAlFUEN1pOkg7ds14bf1hQy6qkP5+ibNGrLviAdMKRUlzqGitLlSWWK90nJ1jdanHvdM26gezCESHrfbf8zgMTIV5roEMcLq6q+Co35CIGikYqKgJIq8kmhUVSLCaiMhJh+ddNw/6wUQBYmUBMC3+/TXHnxNFd5rUHBCFin1hFPqCcflsSCrRhRVh6rpENAQBR+i4EUSvEiCG1FzosOBXrQhyXmYyEYn+IdUKu6As3VSCj0pSuVEgYfCY4WEWXSoDg+7j7koLPLSNlxhflYpiRF6Zv9SAMDsXwq4v51IjMX/ufWwepnlU2j31FGub2bg4Z5+Mqn4VNZkykQZBZ7qrAeHD4ej7NxBcujBAbbALepE+HY63PIlttTrMa0N9OPpjIHfls4gkl+qEmMREfWB5QpBwaBZjKcGEasNKtYQZ7Ip/9icijiecZSp40cya94SrrqqHxaLha1bt9K+ffvybZo0acLevXvp0aNHpf1PkpxX535K+6qEI9JW8d8XnuH5j+bRsWfvSup8m9NW8fCUccyYu6jKYdub164uP37nnhWH8YaEhLB+/XpeeuklsrOz0TQNt9tNcZGL4hIfiqJh0IskxNmIDHcjUVrp+KfCLVvJdzalxF0XDRGr7ijRxh0YlcPlQZIL6SEpugh85gb4LA3wmhrgC22MpvOrfgk+O3rHYczHf0Rn34++ZB+iLavKHnBNUdEEHb6Ipvii2+JJ6ou9wzQcvjsxHv0J896FNI4tYu+JinO80o74iLeKJIeJnCjVCDP6j66von9/QB2BTw+pDPlZ4bpkGJca2GZzkUqLMIHJ9c/TnVdl2Pod9BiPFhqL4DiLgE32bug4Ak2UEC5wf9pfwa78bYkUwFU9Yvj6txMViFRynJGVW86uce9iwKTzl5PVJjQgVxiGgEq8sPSsIrjFSmuKlfZESpsIl87gENUiThT4SfD7n/ozQ9/+epzxw+oz75vDdG0bRZN6Vt55og0jr0piyhNbcHsUYqP8jt9Tj/6LKXcn01b/KvfP+INfNxVz48A45izNYfYPOUwZ4o8WfvR9Nk1TQvj324f46Iccxl1r5KHpIykoKCAuSILYfGgxrqSBuNpOJjTtWR752cEnWz2Ma23g2X5mnlztZuEuH9c30fHlfr9xWbxfwemG747BDakC1yX7ydTIETcQXvAd1DKJgpMDef/Wt36tYsjg7ny/dF0FIlU3JZZt2w9fwquqGkaDhNsjn3nDs4SqChTaY8i3JSArOqxmO/HRRZiCHPsLBVnRUVIaSUlpFE6Pv5ZIEBTM+mIshkIk0YeoOdEQUDU9igKKZkBRjfjUaBxaPTTlJPlTsGq7iRR+R0fl72vFpkJaN7QQZgncH/OX5zO6bzQ6SWBoxzCeWpLLxB5W5q61M6mHtZxEARgkga9Gh7E9R2bkYls5kQJIOybTK+XcMsGC4wTCrh/RWl+Dlj4HwR14hp0M3jy6rJRPtnmY0NaIIArM3eJmYnsTLwy+OL23/5T2nR2WffcVs+YtoWvvvgAMHjyY77//vgKRqlu3LkeOHKm07++rVvDvSaPLe558pwyCPUmSXpy9gPZVkKQt69f4X/9ofpUkamPaSt57qfqeKpfLxXPPPcc333xDZmYmDocDWZYRBLBa9URFGrCYDgV8jGp8a00TsLljKSxNptQTjYBMZMhhoqTNGCV/tkq5AIlMDQmfPgl3RDLekMZ4zY1R9GUVRZqCznkMU/5qDPY96At3IbpP+ElT0MlP9+sVNBlD0R8Y8ndg3jsfX1Qr3PWuxt1gGJ56V3Lgt0/o33x+hX0WbXMzuo0JQRC4upGeJX94GJRatXxzuEFgcT+J1bkar21XGZcaeC29SKND5IUhE9qWrxEvmwxthsLaj8vXF7g0okOEapeFnN1oOiPENIAT+y/ItQAINZE//6e0r3YxsGs0D7y2F6dbwVw222fX4VKa1btEWuOngV4S8Nay0EwJ3XALqcQL36MXbGfc/iRcWhK5Sn/MwhFipdXUVNnvQuOep9fx3sI93DqqCW2bRbJtTxG33tiINx7vxMRhdZn06Aaev68NAOGhelxuhfU7SujTKRqnrg1OQxuSw/8g/7ibj74tK/P7JZBl+uj7wJTuvcdc7D3mJ23zv16HQ3mYr7/by+S+kcwY7ydckqcIc8Z3HAvvT7gaySdb/VHq+Tu8TGhjYOEuf2r+y30y1zYQ+fqQyrD6It8c9hvnz49ofN8H7nn+LaIiwrG/8WUtf4J+/CM2cX4YMrg7Vw56kLdm3oFYViKzY+dRWraoe4mvrDKMRh2eC0ikVE2gyB5LXkk8sqLHYiolJf4YFpMLxAsntCErIvbSMEpKw3C4LICAUe8iLuwIoaYiQgwOBDUoyh00YFjzBWyb4i5F0/yZM7fHgF1rQQltsWutsEjbiVM+K1Mr9WPJTzmM6Beos9u038HiVQUse74ZoKLXCezP8fD+uBimXRlJrFVCLalc4RBqECpkpgHSMmWe7nXuvbnixvkorQYjt7kB/YYPAXj8Nyfzd3i5obmez3f77c0n2wKZvblb3DzQ169iGmOp3cjtmZvC/yFSwbh86HUk1Q304g0ZMoSHH36Yxx9/vLy8b8eOHYwbV1G17/dVK3jo5vHVkpz0tWnlJKkqEpW+ZhXz33qdFz+aT8fLeld6fWPaSqZNGsPM+UuqHNa7Zs0aRowYwRVXXIFOp8NmsxEaGorVasUaakN3sgz9NP6MrEgU2mMotDVHVk3oJRdxlh1EhRxCJ3rRPDX3T6qCIljw6Bri1jXEY07Fq08qH24u+oowuvajz/0feudB9M6j4HKU76t5z89eCoChcCeGwp349i7E2fJmGl9xB092GIS6bhqip4gVh7ysOOzjhStDAQ2zXiAtQ6bYrRFRjZKwIAhYdBBlFBDCYhEiEzGa61AnzsSVDc1YQ4wIOj2CzoAq6vFk7KM0fXmNr7vArRFdlIl2aD0FdfsQs24OgqbyzHovn+6VGdVUB5rGp/sURjXx+9Mnlx8P301BQQExCc0vKJHyl/b9IzZxSREdrufybtFM/+AQL97TGPCXbd1xXXVzoi8NjtsUFm338PKVllo7h5cYCoQBWLQ9WIUdNd5P0ULIVoaix04d/Q8IQs0l0i8UTmah3lu4B/BnoxJjQ/jh/T7075bAR58f5MlZ2/jP1Nb0aB/D6g1Z3PjARl59sDWdu/Yl23g1PikBnZJLmHs5hkgDU65J5KNvs+nSIoyjOS5yC31MGZKIomrMWZrDuCviMOpFPvohh+sG9+Or734GYPaKIh4cFsvJVrlnXvuYT1ZOZ1yv+kxoZyzPSDWJ1jGmhZ6Fu3yMaaHnsfYS97f390jpNQ+fH9G4IVUgKkRPaKtu+NI+vXgfqCBcmIaS/6do1qwuDeon8sprn/Pgv0cCsCrtD26dcnHV8c6EHbty+fp/e7hlXMcLcjy7K5zswnp45RAsJjspsUewmC+cWqcsi9hKLdgcZhzOEEBAr/MSE55DhKUQo96FoDrPeJxTIQgg4cYkFGASsonS0ijSulEk9aCIIqKUZYB/9uDS1Xk8Pb49qqrxxufHefvL47x+Wz3qJ5j4+tccHl6Yw9y7UmgSX/2jM79UZcF2Dy3jAg/4fKdKpk2lbZwEp6k8ONlHWWnZpRFdeARh/0pykweQtGUBhbZS5u/wZwA/3+1jREsDn/3hrZSRenVVKXM3u5jYMYQXh9Vir9yZbMo/NqcCgkkUQO/evXE6ncyfP5/x48ejqippaWm899575dv4e6pG8sqcRVWSqE1pK3n1sQfLSdKp5Xzpa1bx2M3jeXnup7Tv1rPS/unr0pg2aQwz5iysRKI0RebEnm1EhofTs2dPjEYjycnJhIaGBvrANEelYwbD7dFTUJhCcWkUmiYSaswnyrIbqykfQT63SiEN8ApxuIVU3GIKHqEuPqM/GCJoXgzeI1gdv2HwHkVXvA/Jl4/AKT1S53TmM0NnP4bz58d5YEMjZs2aSXGvF/jgmdtZ/LuDD66zEhEi8sG6Uj5M97BkRCiyWtm/0gChTgto2IXI6E581KI9hhB/MsACPFTFeTVFRpB0uA/tIG/xq5BZtc9X6NGIMgq8uEPli6MqIxuKcPg/LNmUwY3t47mrQTGf7vUTy5P/g59ABS+75EN881ZfbuzfiScTK53m/PAXsCt/ayIF8NoDTbls8gb6d46ib8dINu+x063lxZMZPxMKXSrjvrTTvo6OEnft3M4aIrnCtQh4idW+r/HvTtMgR70ahRDq6hchCWceknehcKLARVx0CHc/tYb3Fu7htjHNuG1MM95buIfJNzRix94iRk5dQ0qiGb1O5JfZfWnWwP+9piSEIIkCrbqMJN88BL2SQ4zrE8ye9PLo82tTG/PIhHpcMXUrHz/anCYpIcRGGli+qYj0vTbeus9PvB8aWQdfm+mYDY+y4KvVTO4bSWyYDqXQQ55D4ZOV/ian+asPs+2uSP7VyVgeiZ7ey8TUTgaiQ0Q8Dl+5U/RIG5HbWkhEJdZDa34Fgt6IcnTbRfts/8lInR8EQeCTOY/Qudvt9O/XjropcRzPKqBtm9RLfWnlOJJRzKDR87m8dwOyc+1n3uE08MoGsooa4XBFYtC5qBd3EKv5ZMT4/IaaaRrYS40UFltwlBoBAYPeR0x4AeGhNkwGN4J29uTpdJAEDzHCSmSfnmKpDwY1ixA2UOLwkZJgosstW4iP0hMbYWD5C81JjvW/x6QoHRajSHy4rspZUUB5eZ1OhGXjApJmKzJkuibp0IkCcjVu2/TfvXy6T+HGRn4CtviAv6cS/CXBo5rqYMdzfJqey+ju9flPGxfjWhuYv8PLuNYGXrwylMd6B3qkHujld7bavOEfAzJ3s4t/D7ASE1o7Edx/MlLnB71ez6JFixgwYAA9evTA6XQSExNDYqLfM/V6POU9VR16Vs4UbUpbybTJY3lp9kI6VNEztXXdGh67eTzPfTivShK1KW0Vc2bNYMachXS+LEDSNE1DsRfhyc3EohP58MMPcTqdjBo1iubNzyw2pWlgs5spKAnD6QpBQCUitJDosDxMwrn1WmsauEjGIbSilCbIhkgAJM2BUc3A4lqPST6AQTmG5gjYj1NFKS4Gil0qh3f+zr1TpzJj5tv0v+0VprS6j+gQ//2QECoSHSIwd5uH7/f5GNtSz/TeZUI9UamoVz+OLslfaSPu349v4zeoJw6iFmWzZPsJcgptTEhWkH0+NNkLioxPEbF2H0z0tXeR8sgcHGu+onjRc6BpFHk1Ig0CM/cqfJulMThZ44eyr2HJQRXIAGDxllzuamBkVFPdaTNS/mqbstaFXzdx13Bjua9z3qhJRkr8JyNV64i06nn3kebcNH0X/TtH0rm5lQjrpZ9jomoayw76eDHNf5NvzPSx+4TM9S3Pd9pqZRRIg/AISSSoS9BRCtSsBMehNaVUa0isuByTWPtKUeXk6ck03lu4mwnXN+KTL/0ze95buIfMdaN4/M7WxEX7jUxJcSnb9hTRqVUUpqC3lJIYyofvvoAl6Qq+/eZrhLz53H1jCqfGnWIjDVzZNZpVW4vp2SacHQcd3DtrP9NvSg1sE6EnW/Px5KP38VjvXOLKZI7zHAqxoRITL4tlbloeYy7vSIzlCL5TnIXoMglzzRQGdTui1euILqk98bH1EST/71AtzEI+sPFCfpSnhSAays/9D84NdevG89bMuxg9/gVaNq/Hddd0Q/oTlBjIssrib3bx6PO/YTbr+WXVIY5l2bjmqmbndLzi0hiyChsCAgmRR4my5iKK5//b0TQoLDaTXxiKT9ah0ynERhUTHlqK0eBDUIPK5WrJ/45RvscrxJOnu55E8Qh1Yk+wfn53CjJt7DripGuLMMSgqHWH+iFc3S6USW9nUuiQmTEihhs6BoZ/55cq5WV1sgo/H/RxW0eJDcdlZqz3MPPyqgfmFrj8b/BklHfxgUC0d/H+oMjvXhnwK8IuWneYextbeLafmXu7msqDN8HleyeXJ3YMKc9I1RaJAhCk0z9X/pkjVT0yMzMZP348M2bM4PHHH2f06NGYTCaGDx8OwKZNm/g/9s47PIpy++Ofmdm+6WUDhF5C772jgiJY7lUpNopIFRUrCKgIiKAioiId6SABURGvqGggNAGliPReEtLr9t2Z3x+bZGdJIAG5gvfn93l4mMy8807ZmTPv9z3nfM/Lr0/goxVradWhU7GcqL3bE5nx5ljeX7KKxiWQpH07t7Fy9kdMWVRyztRvOxKZOWEsL02eRguVJ0qRvZB5Ga8tjyNHDjPlnXew5uVhtVrJycnhzjvvLPF6FEXBZtOSnWsgN8+A1yui1biJicwk3HQRjVRw/tfp0HYo5chT6pKn1MEjhiAoboycJsydgFE+iYYsBPziMfDf8zaVFXVitOwYZSEt5yTpCTOp1u1lQs7Xh/RDADS0SNSIEFlXEJq74g83z7XQEwykRzYkIrYR3q2fIW9fxsRNaTxWCdpHwfZ0mP8HTG2oQc4XURQVeVEULiRsIP/Xn6jxUQL26i0RdAY+PpTHxmSZe2JgU4G49MaLcF9F+OYiPo+UOYI1B9Pp06UJkYajvNlGx8jGWiKNAoqs8Ewjf45U4bJecvnEtB64l0jDzzfx7gllsCu3fizztyJS+nCfaITsUblkPf430euylbi+SwczQ3rb2f17Fiunt0ajSiQOlNlWSTu6VUnTlVWa5yooqo+sWlbT0LJ60bKgmrVUCpKgtuzL5tVZJzFoRVrWD+VCuovO5fUEG0X0dcshRfhD/NTLol4lea5VSaHrVPLnWtWypCPLU59cVxsitfuJMGQCMcVcoWrVE6GgX1mRSM/qikGTjSUiB0FTz7+DRlU8QlQTP9WXskzqX/42I56fz+z5m+j/RGeWrPSJWSz94iQDnujM4uVbGP50V2Ib3h/QVXRFF10bFPxRoPglKwIX0uKoUT+KtfErOH9yM5Ne60VwhdBAZTR3DrKskGS9hBwUwvDZmfy8/SxTXuvGgEf9lcYVjxWv4wTJ9nZU6vEEZulCAdG7yJA+tZgyZzQD0+rSLHIlWmoUybMDKLIHD0FkS12wSy0BCQEXweJlDOIB9GImctbv6LRJCKNb4D6THnB9npQcf1+quO2AGO51yVw3RAPchMHw/3f0eqQTCVsPcvpMMhcvWdm95zitWsYVa3e1+i83G+u+OcrLb/1IlYqhtG4Wi6SRUBRo3+r6Zce9skRyVnWyrRZMulwqRp1Gp/3zs7mKAnn5Bi6nheByazAZnZSz5BIS5EBQ/trZYgEvMZ5VXNC+QK62I5HOdYBv8q19w1AgsMyNIAg8e28Ua3/J5Yk2wdxZJ5AYRZkl+jXWs/SAk2iTQJZdYdDX+RzN8DKps4G2sX7bV6jmOWG7g1VHPfSNk+gbJ5XukUJg9TE3fXp0IdL4q++4pmvnPr1zbzAvdTIXEav0fO9/h1CJpeR/3QbqWn8l8l0FdYCuEgKiUZUCWbPxBx594TXE6g3oUK0+GzYnYKkQy79fHM/crzYxZtATTF6wlOpNm5NuteJVjVX2bU9k6gvP8MoHH1O9WUuyHH5ZcFEQ2L9jG5OGDuCthcuo07INdo8HrWrS549fdjJm4GNMWbiMJm3a++XTXXaEjGQUt4uPP/6YvQcPEWYpT/vOd3DowH7ufah3wPV4vV7yc5PIy9eSl6/B641AEGRCghyEBmUTbLL5hh5uu5/dqBRNA3IbVUTIZcsnnwbkCC1xCrGgeDB6jxGS8wtGx0FExYEnLQ8PfmFSOcsfYujN9H/3PXn+47lV5UnUZUvUKppquW+1lLd6vewteb1vn0CljJCMrdDtZdKzQvAeyGTaIZl156FbDOhEcMnQswI4LtqZeFhh47I19P5d5tlO9Tl4JI80m8DedC3zT7ixeuHZGnpCNRoyHWCQZHLcCqFagQVnnPznspee1XSYJ01izZo1dC8H3xXUy92UEkiexjXTMEaQiAjS4+23iBH5DqLXj0BwCcgemXCtT1HU45IJEcDt8CmRmgFHHoxpbmbYnHVEnPwR9/c/ctMgiKXbFfHmOx+uF6USKUEQJgBvXrE6RVGUcgXbhYLtQ4Bw4BfgGUVR/lD1oeCbe6ijKMpp1frFQJSiKPf9ucsoHWOe9g1wFPnW1rK4kOpk0LTjfPhULJ3qmWn5yjGWPV+Vx2ecYcNr1Uvv4Dpg85bnsqsTZvEcFv0vpe+gQpqtPm7ZRMXQPf/VENTUVB9ZmD1/EwBLlm/xk6fB3fj0w6eZNrEPFktomfq7nFWNPEcUOxPjOXnkR5bP6UNengO73Y1RB8dPpfPtjydwOawcP51FcoqVhJ0XGT2yLXPfu5fgoOIvZZj+GOmORqR7WmPNPs7cAqI37/MTDBgeTWykDS05AfvIaMiS7iBHbIuCRAgHCOF3DCShNfiJqE2+BTLygvjP9LAKKVbfR9ugkj/Pcfjvj0b014sThWjVepFmPQVWDXiMD5d+TnDjzhxxQYzBv++2LQl0aFqDiOCC3BTlnP/AarlvtUR6gDS5ivxfRRIc4Pc/LjBs9CbWr3yG2rXKUaf5eBK+fYWO3acxa8bTYAgCxVNyX1fIqtucwVzIqIPbayA65DyW0AsIkp6iiRL1h0stMKF+pgKO5Vt2uLQkp0ZitRvRaV1ULn+Z4CC3376oJ1mkkr03AVCft+i/fwETQ1dZLoSGPEzKceyaBijOdQj45IyLDnHFBMa4Fcn0ahnM63eYyLG7cSkeRKebw6letp51ERss0rWaBqcXVhxyMrSpnk/uMSHJMql5HiKNIm9uc7D6mId/1ZD48pTvGlYf95L4iIGRTXRFs72j2vg92i939IlXuGv3ZFjDIVQ6MAPdOS2ixm+chRJCDQFkh4cICWSHzNgNOUXKflN7BFZTFYx/cnKlNJvyj825Klp27EJ0OV8InyAIvLt4FeDzNBUKRzRsW4KnaXsibwzux5vzFtO8dRuM+ZmIXjdOrQGH1sCBvXuZNHQAr89dTKPWxSXU921PZPWsmUUS6QB4XEh5WQj2PKw2O8OGDKHXkGd4aPiLPHFPZxOPZIwAACAASURBVCa9/Q69Vq/knp73sWXLFpo0aUJOTg55eXkoihlJkgkK8hBiyic4yIkoKoF2rIxwyNHkeOuRI9RGFkxolTQinF9g9uxDwoHX/udClm8FlKwkFNmLEFmJTKfCOl8UHT+kwNPV4b5YEVGADKfMxmQfKVsTvxa73c6GfQ5i9LD+kgu3Al0tGuqFaMhxy4RqReaddrEpxUOXaImENJ9d2XgmF86sAXwkqnt5+C4ZHq4CYxqKvNhUKgrDizQKeNs9DZHViN78HIKrdMn6QgjV2xBlKYd341YAMh0KETctvO/2tytl9UgdA7qo/lZ/eV8FXgIGFLR7A/hBEITaiqLkXbHP28CjN3qyf3fIssKID04w4t8V6N40hC92ZVO/koHL2W5qxOipWe7mMWunHMlF973ohDxi9d8XiESUcV9vMOn2BoTqL2DWZdy0cypEamoOFktokRdq+OB7GD74noLlAvI06fEi8lRWEpVjiyQzvzwe2x+Mf3MGh3aMQZZluvdeQG6eE4Ne5GJSLg92r0OIGSLCDLzzWgdGjPuZ154r/pEqhCjIRBgOkWJvQ7nwWIY+Vpe5K48wqE8DgiPrEKRsCmjvxcBlqS8OoSpB3gOEezdj0N1GtctE/U1VWPv/ir3btxYlZrcsIfF725YEnnq0F8mXrm8S43rhcLh5fNA83pvchw5ta/HBJ9/zQI/GbN91knvuqk9kZFDpneCTIk7LrUxqbhW0kpNqlkOYDX9OPQvAKwukZYaRnhWKKMqUj04nIjTPR6BuA+lao3wCq6YBbrEcOvnyVdv9cCif38462PJ6FRxZNnrOSSNIL2B3yuS7FO6upUOLQlykhkYxIsczvLz/i5Nkq4LilVl5xMNDtaSiUghfnvIWkam+cZJPRlhV/LKQRIHP6ySbonC2HYkl6zTac9uu+zrTrXJR6OHSA05e7my+uUp+pc0Mi7c+Kfx2RSGJUmPvtq189Na4IuEI1xXhfIUk6oMlq2gUVwN99mVAwCNpCLHnEmLPpUGInpVffk1Ipap4ZC+KKp9k3/ZEXh/8JNM+W0XTtu1B9iLlpiPackEQuJieRd9/3c9TL47moScH8t74V3lkwCC+/fpLXnj5Vc4e+R2j0ciFCxfQaDSEh4cTGnwOk8nre7e9Dq4XLm8QOe7q5Dir4lSiEfBg5igh8q8YOYvXc20xi9seXjfkXCZLE06EXuDhyj4yFaaF/tUh2wX9d8lUMoFRArsXaseEsuGbjQCkqObYfkz14JQdJKZ76BQlsTXd93wkpHm50yLyU6pM74cfwpORzBcJO3kwVuDFOiIvNJCJKKhZpc5lUsrVRWn5BMLBrxDO7rquyxJqd0Kx56Gc38+UfV7iT8v0qi4yrumfJTli6XZFuPVjmbJ+xTyKohT7whR4o0YBUxVFWVewrj+QCjwGzFU1/xh4SRCE9xVF+fXPnfbtA5vDywerLnDkZB4ZuR4kEQwGDfWqmWleJ5iW9UMw6ER+O5rHV1tS8XgUnn8kFiUzn+/359KjeShrd2TTrvbNU+xzyFFcdD+CIChU1H9TIBJRtp9aUSA5vyWC4KVccNnV/UpDEXkatYDZ83/whfAt3wL4vFEpZxcyYezD102eCuF0G7iUURODNpe+Q1/lnjvrcOcDnxATbUYURUY/14WYSB13dKjqC7Ny+zxIn391jPq1o0rpHcJ0p0ixtyLHW4dPJmYyblhdNBGdyVDAzNGidh5CSJKewE0kFs8aguSDBVvKMMP+V0HU/UOk/iQKBzlXJmYXopBELVoVj1Z7/TP9GRm5TJu+nqPHzpOTY0MUBUxGHU0bV6F1ixq0blkVr1dm997TLP98J3E1y9H/8faAzDffHWTUiK68M/1bBjx+9QkCNazOUJKz43C4gwg1pVIh/AR/NuXLKwtk5oSQnhWK1ysRFpJHuchMNJpbGxVwJUyyLw/TIdW+KpHKd3h5dVUqneuY6D7tPCFaqB2j4Y5aBmoEKbSsqEEUBNx232Bm5i47KVbf5NWKQ35v2RcnVOSptoY32+h4qalc5IW6GhTA2ekVELWYtk8LkGwvK6LMYlHoYb/GeqLMqqK9NwOl2ZR/6kiVGXu3bWX0U1cXjvht21a+XzyXDf/5jnCTAdllx24IxmYMxo3A0d07+e2bdfQbPIyYIBNifiYKYJdhz549/Lx5M99+tZ6K1WuyYtaHZJ87RbcObRA1GvJkkfh161n00fu06NiFgc+9BMCW775l+oLF6PMzqVSpEvn5+YgaDVWrVsVsNvuU++TTxc71WlAUcHqCyHNayLM1x+b1pW8YhGRiND8RIh1DsaeW0svfC5OmTCX+uwQergyDagn8kKTQMRqe2gWSKNMhWqB6EAyqJhGlg3C9nUVt7iP+q2+oahKQBIFTVpnOURJb0n0e863pXu6Ilvg5zcs9MRqeqaXh2SceoObA17k0tT/9OoqEF9SoLCRRAZC0eLu/AfnpiAkzr++CQiwIdbqgnNxOps1N/GmffY8/LTO8rvjnPFOCUAa7cuvTFMpKpKoLgnAJX636X4CxBSF61YBywPeFDRVFsQuCsBVoRyCR2g2sA94F7roJ535bYNbai+w+nMuArlFEBmv49UQ+afkyeq3Ayu9TePGjk7g9Mk1rB9OsppmxT1ZGkgQcXoXNB/J46QELLy++BEBksMTQu0sf1F8LDjmGC+6HEXFTRf8lOjGn9J1UyHVVJt8dS3nzbrTS9c8olYQRoz5j9oIf6f94J5as8Ll+fSF8XVi8PIHhg+/xEacrQozKClkRuJBeGwCT+Ctnz2dw5lw6s6f3Jicnn+531aZSbFix8IKDh9N4c/oOnh3UqtRjaEQHZvEcud7aRGt2YIk0cF6ug55ktPhm7d2EcFEaiIye8vJyjPJNrKdwM/GPR+pPoXCQM33JKlq0L16HRU2iOnTuAly47mO8MWkVly9nM/CJToSHmfl562HsdieKovDJvB/oN/Q0oiDQqkV1WjWvxqgRdyMIAjnZNvb8doZaNSzs2nOavfvOEWTW83ifNiUex+UxkJJTmRxbObSSg0qRhwkxpheE290Yk3K5NWTlBpGZHYJXljCb7MREZGEy/vWKWWWBhhw0cip2TRwh7i0ltknKdJNnl9l00MrMfjEkXbLRo76BSLMUkB8LsPuSm9V/OOlYSUPiBQ+PN9AVeaQeq6vh9VY6Xm7uT9gujUQBeGrdjbdKe3Q7PkLKvXTD1zqlm5kX2xmJMou89l2+v2hv96A/nztVqkfqxrv+/4Tfdm7zkahFK0okUUf37KSy6GbaO1OQRQmbMRibzoxSkHN1cEcik4YMYPycz5Ar1yJNUdB6XOg9Ti4fOUjHls3p3Lolr49+haTUdDweN9UqVeTs+fOMGzuWs+fOY7NaefCxJ3n1nekAnDt1krq146gWaiRbNvHSSy/R7o6uvDnmleu+PlkRsDpCyLOHkWdriNvrU5c0SBlYDHsJ1Z1GciUVtb/55cRvPtShbIWS4iUtA8T/kADAuvPQNlpBBnZmwLj6cNEm0DVGwKQRsLn9L8xzd7di6LDh9HnoQZ6tqqW8QSBUK6IVHfyY6qGrRcPwGjqerOLLkUKAKj0H4Dh1ANe5w4SXRJ7UaPsERFVHXDcKwWUt+zSNzojmiZkgSshbFhBhEOhVXSzySEUYhD8Z5ieUwa7c+rFMWYjUL/jC9o4CFmA8sEMQhPr4SBQUSgn5kQLEltDXWOCwIAjdFUX5rrQDC4IwBF/u1W2JjBw3n667xI+fNKVaqO+h7z3pGA6XQmSohmceqsjqyfUQBAFBEIrEJgD2nrRRMVJLRp5v3diHLCQctvJ010jwKkhXiXe/FuxKLEnuR5BwUFEXj068PiLkVTQkW1tgkDKIMBwHSi5cbLe70GqlEhPoPR4vNpsLo8lAVpYvxnb2Al/y4ZIVW+n3WCeWrtzK0EFdmfPxMKZNfjLA++Tb34nRqEOrLf54Fm43mfQUHj4jJwaHO4jKUUcw6SR++mokaRn53NW5dkC+yaBRX9Lnwfq0bl6RJSt/Y9KHv/DBm515sk9zVf8yNrsbk1HrLyxYgFDpKEnue7noehDZ68UpVCBS+Nk3q0Ys6dyJFxMVvQvQc/mWqwVdFYJ0W8QV/x2Rk5VZNMgpiUTtTkzg5QGPqkjU9ePkqWQ+X7udYwc+ITJMg6Io3NHjbQAqlA/njTEP8t36FwH89VsK8P1Ph+nYtha/7fcF3z879E62bD9O74daIIkyoiiiKGB1hJKRH0uePRIBmejgs0QHn0O8AbsDPu9TrjWI7NwgrHaf9zXIZMMSkX3bEig1jJ5j5GtboVyFPMZVMLDhpUrY3TLNqhrxxvrv06B1uTzf3kR9i8TMXXaWHXQyrZuZLhUl0m0yUSYRj8vLs819AhNeV+keKDWUIAuuds8jXv4d7aG1oP1zIXKFnqgl+3zfhyX7HNg9Cmt+d9K/pYmp919fNEAR/ga5DLc79u3azmcz3uP9pb46TwF1oGSZzBOHaFwuAkFjwRociUtvBkEoyv3+/ZedLJo6iTcXLKNBq4LJE0HArdVz8OBBXh84kMioKKbMnk/VShXJSPmdypUrs2T5ciJq1Wfk5Pd5Y/hTvLd0NW06dik69MU/9vPO25O5nJrKgH79iatXD5vVisvlQqvVFrNDV8LrFcmzmcjNDyLfVg1ZkRAEmSBdGtHmUwQZUtG6z/rb36wb+l9EYZ23Kfu8xJ+R6VVNBBTizyj0qua7H/FnFB6u4vsN153z5Sb1aluX+J1HeLi6jk4xHmY0kzFKUD1IoFm4b8zhkRXG/+5mRE0NUXr4evNW+nX6N0unvYWy/2dsJw8gO+0MrGrgoViZUIMWXWxlYi2V0ESWx1S9PlpLJbK++rT0C7HURGjXH+HkVsQzO8t8/ULNtoh3DAVLTeSVoyDN540c11Qq8kS9/afD/IQy2JVbP0MjKMr1DfcEQQgCTgNTgV3AdqCyoigXVG0+A8oritK94G8F6KUoylpBEGYB7YFmwCLKKDYhCIKipPkGE4FJ2n6yoLj9y+p6AbJXlch9JVQqK4qsSixWq/mpVALlAjXArFwXA8fuoWoFEzNerV+k+PfHyTzue3YPw/tU47ttKcRVDebT15uh1Qb+2OM/PIBGEnhjmE8EY9xHR/lhVxoxEXqS0pzMe6sZLRqEozH6E4LVinyCxs/CRUmL1VOe89Z70Ih2qob+gE6ygUb1QVQnb0tXEKQCxn85syLpueWoXv4kJoMNtOH+NiqlviPHIovqRxy3+u/frsQtjHqiF9OXrOa79fGsWTiX3oOGgqKwZtE8utx7H6nJSTz90mjuuu9fXInCiurvLV7pT3yFoo/J3m1bmTN1EoNHjyvaLrrs6DOTkfVmdh0+zphBT/DektU0K0jMVasTPdy+GSf+OES9Js1QFIV3Fy2nSo1aRb9d4fFnLF1Nq4KPSF1jgv88ZLh0OQSHQwuCL2TQZDKRmWdDcdnxyjKnT2zn3w/U8O1gO1nsHgOBhsFzjYRZlQfNk33Kfx4uf76Vvt5ylADd02tDEIREa8qcDibTtWd5hOCBvymKcnMqud7GEARB+e6CLw9QLTahVz03anWtg7t3IokSDVu2DlivlSQO7N7FxJeeZcYnn9Kytd8DFKFReaRKEZtISsrg4T6TuK9HC8aN7lX0DGxJPEKvJ2fy8nM9+Gz5Vu7r3phpk3ohioF2pf+QebRuUZ0Rg+8A4MnBCzhzLh2324vBYODTj8agM9fB6TYhiW4izMlEBF1AKxXYOPWzqV4OEJjw2w+7O4iM7DBy8oNQFBGd1k1YSD5hwfnotGWYS75ajpRarMKryi9UF+RVvzvqZZc/r9Pr8CdMq5XAADyqZPU8bzXSjIOIsX2CNu1g0Xo5x39sOdd/bG+mv6/W7yWT41CIi5KQgJndzcQEiXjd/m+Ix6VWBQsMbVQrfQmigBJsQanQCKFCPeTI6ijlG4AoYfriacTs82h0/t+lTGIT7pJDKcdttrFkn4PeDfSsOeR/Fn9/1ULDd1Ov167sVfI+u6a9sFqdBJUbtlVRlOKxsP9jEARB+fFSVrH1VxbILWm9etkjy6AoBLvthDnz0aCQL+lI1prxqgaQpSkDJp05zZQh/fn3kBHc3edxdAX2LXHj18x+8zV6DX2GdfPn0Kh1Wx54YgDNO3Qq2ld02tCmXyIpNZ1BAwcwd8ly3nt7IgaDgXOnfqdK5XIsXDCaSpViwO27ZkUBuw3y7WasdjM2hxEFEY3kIsSQQrAhHbMuE9GbWXSuXpu/xIrH5o+kcef527iT/O+2J8l/fz2XA3M5ndn+59mR51dwdtn8dsVl9y+rhA5xevz31eH1v2tur0i2SyFMJ/DpSTc/pHoKwuuuj/Z9PnksUc07cHjcIGS3C/VrKxbksiuKwqjfswjSCARpRCoEGZg8aSKWlp2LVJpd6cm4ks8iBYeij60RMD6U7fm4jmwnZ8l4kD2YtP5z1KtyL8UGXZEemghOK/KSwZDhm4BT2y61oqFT1qBteAfGboPRVKqLNzed3PUfouz7xt9/gbR9phN6qBz8m7oJ3PODcl12pXnTqsqviROu2ebEycvENX3tc0VR+pa135uN6870VRQlXxCEP4BawJcFq8sRGL9iobiXqhBvAaeAx6/32LcLDhzL4bFXdtOzo4X7OlsY8tZBTpzPJzPHzeJJjVk7oxXPTTmI2yOz4psLdGll4fH7KhftrygKG7emMOf1RkXrJo2MI66qmV8OZvPkg1XpPmQ7x769m5gypNbkuStywdYNnZhH1bDNaMXrFzawOcyk58YQHpTpI1HXQElF+H7ZmsD8Ge8yfclqatSpy5qFvqjONQvn8tPxC7S54y4mjXqG6UtXF6uYDoEkqmWHzsU+OIXhVO+owh0Erwd9dgqKpOXXE2eK1I2alaButCdxCxmpqXS6+17qN2vBoBdeRaf3Gx718QtJlOL1kJOrx2rTYbNrcbo0qloNPkNtt9sRdAYuZOXx9GO92bXlnWveu9sCgu62SNC8XZBcMEDWqr5oRq3/A6om47ENmwCQZrMVDUbAN2CJbdCIuZu2IAkCR1XyuxoxsmhZFEoO3RUFgb3btjJuyCv0fXoY4fWa0rPfKi6cPoXDZmP2mq9YsaIOI599A6MxnPc/+o67772Lbt1aFIXEulxuvv3hMBMnDgdDDMhOFi8azaw53xNdriF167VC0egRBBuxkecINWf5FLUwUeR9vip5Uj0vkgmrTUtahq+IrihCeJiOsDAtRqOEIERdnTCWFYpaAVCtMKgiWNfr4RDEolp1AGnZHiwRPmnd3NTTUBHcUgV00iHVoeUSl5H8g5HKERriLBpiQySGtDYhFYgqBJQpwB/Hf6U6nhgRjDusHg5LJ5yRzZB1Bc+L7ELjTEZrP0BQ0pdo4gSgSoC0c0BYoeqc1McWr1KsZ+q/w3m5my+cz2jMYckeGwPahxATG4Qvzfk6UZpNEW6v3LjbHoqC2W0n3GlFq3ixiVqSdWackhbvdagP79z0LZ+OfZknXhyNwWRi2jNPk3z2DKIkMXnp54yc+A6zJowjPDKKH9fH03+UP1xPcDvRZV3mxMmTPDfqBSbP+Yz2nTrTovW3fPDO23RsUx6Px8udXUfxx6HV5GaFYLUZsToMyLLveTToHESGpBJiysKotyJ4VATzb+B6KiRPc0+5+C7Fyx3RIj+n+e7/lnQvHSM1JGZ4uCtai6wI/Jzu4o4o37vwc7qLjpE+O5qY4aRjpJ7q7e8g9/RxZPfVJ/gFQSBKJ9IoVEu0XqJTpIazcydx/rN3iahTH3P1ehgqVMMYWxVvfg5ZP8XjvXQU9+WzeDKSMLiKk/jAA4hIdw1HumMw8vmDeFe/jGhLL7mtKCFWbohUpyOGRl2RYqrjTTtP1vIJ2Pd8C14PhhKYRITe54Er9MT5QhyvN05HKINdufVjmesmUoIgGIA6wM/AGeAy0A3Yo9reESgxeFZRlFRBEN4HJgFl9yPeJvB6FQaO3ctrg2ujk2SeHLufMYNq0u+BWM5esvPo6H0kLOnI9uWdWL85mR37s2heLyygj6VfncNkkGhez+8xEgSBfvdXpN/9FbG6RAQBQoNK/3lyPTVIcnRFL2ZRxfwt2htQRpJlgYvpVdFKLspFJpW+wxX4ZWsCzz/Zmw+Xx1O1VhyR0RZ6Dxpa5JE6e/wYk0Y94/M0lYFEXYlftycWhVM1KYwZV2R02SmgKPx29gILPnivSN2oEOkpl/lx/VoS/vMNf+z7lTZ33EVc/YY889obAURt7zaV+lr7TigOG0peFootjwuEIQoyRqObiDAbkqQgigqStg4GgwG9Xs/qH7cx8rGHmblsDZUqXWeFwVsBQXNbqKX9Az/sVitjB/djwqz5XDp9ignPDWPE2DfpN+xZ9u/eybBeD/Drrnj+OPQjS5eu48CBndStWyWgj/emr6F1q9pUqRID+N7rjJwIunYfiiyLiEoKo16YyPdfjbwhcqMokG8zkpYVjs2uQ5JkYix6IiL0NxSK/FchNd2OJcrIs2/tYt7q4wzp64sCmLf6OIN7+UpOzI8/TZ/eOt4d06XU/i5kulm7PZcjl910q2MgwiQSF62hX0szeMs+UFAkPfaaD+OocT+yPhLBa0efdxBd2kZ0thNoXZcQCkaagaTs5qEwJ2rq/aG8+mA00cF/IvyuNJvyj80pEwRFxuyyEey0oVG8OEUNlw1h5AuaYjUgS0NWWiqfjH6BCUtWs2fz93wx71Mee+EVqtaMY9u3G5g4uB8z4jfQttu9fLN8Mc3adySqnC9jQ/C6MWRdJisrizHjxjNp9qIidVK9Xs9rEyYSIW1ja+LvmINqcOJkCIoi+LzSwfmY9TmYjTZf8V35+uXPbyWyXArhBZ6nb5Nl7rIIbE71vds/p8l0jtKwJd1DN4uGflWM9KnkkyB3e0UeLK8npCACqbvFRHDBco8YE5ZKVTFElePslyuKHTPF4WVPtoNMt0zjEB0hWpEaZg2NQ3VFqsuyy0n+4T3kH94DgF7yE2qDRsVKr/WqmcLQ9H4HsVZb5L1f4P1mqk9NsAQbLjbuganHywhBESheD56zB7Fveg3X/u9xuEq3dWMaigyJU0oWuCgThDLYlVsfMlyWOlLvAxuA8/g8Ta8DZmCJoiiKIAgfAuMEQTgKHMeXQ5UPrLxGt9OB4cC/gM1/6gr+Yqz74RLhoTqS0xwsWHuGbz5uSYNaISiKQvsmsHD9eTZtS2HAv6rwcLcKPHJP5YD9UzOdvPHxH3z1UUvEq5Ce34/n4vbIPP7qHtbN7nrVc8l01yfF2QmTlEJl8yYkwQWUUrysBKRkx+LyGKkacwxJvL5Zw80bNzBuxCBmLlvDxrWr+XzhXPoMGsr46R8zfMzrnD56hFlT3roqSSqNRO3dtoUZr4/x5aR06IRHlhE8bvTZKYgeF38kp/NCv0d5d8lqmrbx18k4d/IET9zZjqZt2/PHvl+p26QpOzZ/T2RUdED/exK38Nbzw4pIlJCRhOywgiAiBIdRMfgoIcElfL80vrDHhIQEPp02hZnL1tC6Uxfgh+u6f7cE/6j23XZYu3g+jVq2Zufm79n50w8s+S6BilWroddoaNyyNcvnziIxcTc9e97FU0/1AblFwP4nTlxkxsx1/PbLrKKit8mpFtweDcFmKzGRWXz91Sa2Ju5i6LM65s7sX+ZzUxTIzg0iPSsUp0uHVuOlvCWX8DA7orZ4AeLbAanpNixRJka+kcicFYfp/3AcS9YdB3wEqhDz4/0qY5+vWcuLQ7vhynYRHVby+7HrpJ3H5yTz78ZG2lXXs/6AjS0nHNSMKjtJUABXxS5Y6z+NbLKgy9iL8dQi9Bl70YSqPX9/bez/nyJRUAZ1rX88UteEohDktBLsyENEwSHpSNcFY5d0vg/QDdTAXD93Fu17PsCGz+Zz+fxZ3l//LWFR0egkiWp16tGnWR3OHjtCrYaNefjpYWgLw/ncLvS5abidDgY9NYhRb79XrMSDoijs2pWMOag5PXqYOHPmD+7uEuIP6fXeRiU/rgMzj3vZkKRwdwx8XxBXtTlVKVLF6x4jMaCqgccqF5AnGUJVqRshquVg9bJGJKJRSwAyD+4JOOZv2U4+v2SlTYSeaiYNWzMcHM/30OIqduhGIVVtgvbJqRAUiWf9Wyi/fVlyQ70Z6YGxSE164j2zD/cXU/Ae34kzXx0eXTb7dOMkiv8p1b6KwCogCkjDlxfVRlGKYjfexaftPAt/Qd67r6ghFYCC8MC3gDJkwt0+8HoVps4/BsAXPybx04K2VLD4icvXCSlk5brpe2/Fq/aRl+9GViAs+Oo/viVSz/C+1Vn1bcnFWhUF0p0tSXe3JEg6QyXzz4jCjfnIrY4QMnJjiAhOJciYB5T9xX3wwQf5+uuvubPnA9SsU4/PC8L5Pl84l2EFJOrlAY8yfclqmrcv7okK8ARdhUS9MvBx3v1sZdH+kj0fXW4aIHAkJZNhj/ZiysJlASQKwGbNJzKmHLLXy8er19OyY2ccVisej39md0/iFl4e8CjvL15Fiw6dELLTEBxWhLBohOAI9mzfiqVpNkJIoEexEAkJCfTq1YuZK9bRooTru20h6m6LauD/wAe71crSj2cQHBpGbnYWy77fSkiYPz9x1YI5RMeUo3v3LlftIz09F71ei9EUzPlLEeRZDeh1LqpVTMJcIPZQvZqFgU92YdfusqlJemWBrNwwMnLCcXu06HUuYmPSCAuT/6tFum8UqWn5WKKDGPHaZmYvPUD/XvVYEn8YgCXrjvPkv2qw7MtTV/VIPd6rKx/O/YZVa/YwqGc5po+sUewYuXaZ1jUMvPvvCAD6tQ4iO8eFpoycRzaEk9/+ddyWpkhZJwjdOxWDckbV4m88wVGqutZtK7/zX4HkdeOVSh/kibIXvdtBiCMPjezFrtGTqw/CpdH5cqRuEFlpqWxaDDMecgAAIABJREFUtZQISzkq167D26u+wGD05zeu/PgDmrbvTK2Gjf07KQp6azY6Ww5uj5dnn32OfIeD1p3vDOjbZbdx8eQxgkLq4nblsGzpR/z+++/c123sDZ/vrUShByrLpbAhyfecfp8Cd1lENqfK9CgvMriajn5VfGF+Tm8geSorwhu1xJZ0Hkd6YJkFu1ehcaiOhyv4fp/OUQbsXi/6m1R7TQgrh/6+UWib9UDJSsIzfyDKpcMBdeuKUL0V2vvGQ1h5PD9+inPTPJALx5d/tffnf6SOVGkJXIovU39Cwb+rtSn2aymKMhuYXeoZ3kZY+/0Fjp3Np3J5I1uWdiJIrxKqUBRemX6YhRMbY9Bf+2ETgMwcF5XLl5wAVbNyEJOfq8/8+LPkWd0EmwONcYa3NemeloRqjlBen4B4gyETNmcQ59Nro9W4iAkvmbSVhNTUVLZv387XX38NwE8bv4aP59Fn0NAij9S5E8eLSEpJJGrPti1MfH74NcP5Xhn4OO99toJm7Tv6igXmpCPZ8/Bq9fx68ixz358aWJFdhbMnjnPx7Gne+mgOLQrC/UxB/sKke7dvDSBR2HIR8rNQzKFIoVHsTkzghX59efT8shLvwYEDB+jVqxfx8fFUaPk3IlFw0zxSgiBEAAuBu4F04DVFUa7lif4HJWDd4gVkpqViqRDLJ/EbMJv8g538vDw+mvwGKzZtRbpGYSeNRqJ378dJyaiGIEC56BwiQzMDCE+LZjWoVsVCjYbPIctyMaGKQsiyQEZuFOk5FryyhMlgo4IlgyCTvaCIbslqnrcCqWl5WKKDGfHqV8z+bDf9+zZlyeoDACyJ93uihj1ej5njWzDl5WZFOVJjB9cqypF6bWAVsnR30bzrawAs3HiZMU9UwpPrITrEb19DTSIZ+V4URSlSKgs1lm1A5Y5uRF6HN1C0Zsz7ZmI4+x8EZIi4eTUEbylKnTku22Tf/4pdicpJwSNqcOoMuDR63Fo9KKCRPejcTvQeJ1qPC6lA2MolaUg3R2LX3JyB4VfzP8Vhs1GuSlVenbUAnaqeXeqli2xc9hlzf0gsWqdxOzHnZyJ53VzOtTJxwps0vfNujs2dhdNhR28wgKKQk5pMfmY6tvw83JrLtGldAa2mAw/3KlWI+bZCoTT51N9l1p2Df1VUeKmOyP0VYEOSwv0VBIbW0DKwmo88ub0QprtxYiNodYTVbUJywsZi24ySQL4nkDQHlXV25lrQ6jF3HYC52wAAnN/PQdixGNwlKDqHxCDc8wJi/btRMs7jmT8I5fx+FYm6Fbh5Hqn/pl259bqBfxN4PDJT5hwBYOKz9YqRGwCr3Uvd6kHF1qsx+/PTPNqzEg1rhQAgywqX0x3kWn2ekjyrhxlLT+CVFZrWDWX3gcAEwCxPI9I9bQnVHKW8/uei2Nnrhduj42xqA0RBpmrM8YCQvvT0PP7z/X7S04vXoBrxzHRiYmIYOXIk//qXT3nv0aeHEWmx8PoHn7Dl5CV6PNKX5XM+5oNla4qFAwD8unMbc9+dwoSP55ZMonZuY9GMd5m+dDUt2rRDyk5Dm3IO0Z6H2xzGL8fP8unUt3n6pTElkqj9u7bzxdKFVK0Vx/TXR7MnMbA2zK87trHp8xUsXvcVLZs0RMhORchMQdEZUcIs/LojkdnTJvPRinh0uuK/c3p6DuvWrePnn3+mS5cuJW7/z3d7SE8v2Smbk3OL48UL5c+v9a9smIWvtlwMPvGY2QVlEf5BGWG3Wln0wTQAXpw0LUAABUCSJGxWK9Vr1ylxf0WB3Dw9dnddBg0aTLDZQa1qaYSH5pKUlIHN5vNGpaRkMXPWt4SHm4mMCObIseK5kIoCWXlhnLhYm5Ss8hgNdqrHnqN67AWCzfbbzgs14qXVxNQaw4ARS5n92W4Alqzex4De9QAY3q8xC9+9g6Rf+vHJRN9kRyGJAopIFEB0hJ5yYU769OkDwKCe5Zi6/AJ1Rx7mlcX+uk1x5XRYnTKPzE/jwMVrqMGqIGuDsDXsT+5dHyC4bYRteQ7j2Y0+EvW/hH/sSgByTWF4RQmTI5/w/Ayis5KIyblMdG4qofYcNF43Lq2eHGMoaUGRpAVF49TenEiBrLRUNhREiDw1/q1ikzAetxuj2UxkufKgKBjseYTkpCAoMqdyHbw/40OGvz6ZxO++ZeSbkwkK8eVzy7mZWLMy2LptG/mygCVaYeHCDdSpU5nk5AwyM6+hQnsb4e3fPNzzg8KE/T4SBfDlRZ9n6vk4ifh2Es/H+e7ZnyFPalS+/1EkvYGsK8L6ACqbNFy0e5lzJo8Ux00gLhotxg69iHr9S4J6DMNz6Ges7zyA67tPSyRRQsPuiM+sRYjrhPzTp7g/esRHom41BP4WduXvlf2pLQixuoqKk6D1f9gk1c0NuM3yNT5+akUot59EyG4ni5Yf4vjZPFo1sfB47+YIghAgsa7IHqpXDuFilo4K1fzKXIJKolQQNXRqV42nXk3gk5WnkCRffamwYB0K8OqwZiSlWPlw4WEaNK5B61ZV2X/ay733+ZLKM5z1SHE0Ilh/mdjIi4hCrYILVM0Qq6SJ1ZLlAe5RyUjaZTOyIlKzqg2d8dGiTcu/S+C5J3oxc9kaks0dSC4Ic3Z6PGSmpTJ7ji+mNikpicFvf8DASdMJj44mJT8fjyyzf/9vvDVkAG8uWEqlxk1JtVoDhB0O7NzO5KEDGDtnERUaNSU5X6VApSgc3LmNKcMHMXbOIqrVqYOQeg5RUbBqDeTqzOzdvZtpIwbx6qz56GvW42i6T51GLpAQPrp7JxsXfMo9T42kVvPW7P/hG0YPe4rOvR7jgaHPcmT3Dv5Yv5LJEyf6JGOz01AAt85IflAEv/38I28NGcC0RSuo17IN+/P8RrRykL6g2OpQjh/9iYiIUFAuEKe65b8eq8E9HduwaFU8KdEdiqQrRXz97E5MYMOi2axduxaATJU2RYRwRbqgStJZE1SPkrH8KuuvAbE6iGWQg7wGBEEwAw8DDRRFyQe2CYLwNfAkMOZPdf7/CEs//oC8nGy69Li/RM+t0WQiNDyClKRL1IkL/KC73SKXkoPIt+rQ6zJ55pnhJCZuL6rvFhERhCiKTHrjMX786QCr4xNp1yaOVs1rsPe3M9Sv6w9Bdrr0XMqojM0ZhFFnIzb6AkHm4gIHly5lsGX7Tjp3akxsbHEFwkuXLrNp0xbuubs6sbGWEranExkZgsFw47Puqak+2zx7oW82fcnKXxjQtymLV+9j+MBWfDq5A9PGdcISZcLrsGKJKv1ZVxBwibGMH/8wbzxiR+dJptajvgHPZz9l8OpDMUQC4WaJhNcqsyIhkyeXpPHaPaH0bVRyXqoianHUfgh7/cdRdMHozv2M+Zf3kbR/A0GaG4FYPBQycHvpE0j/S3YlQ9KDUY+gKOi9bgxeFxrZi0PSYpd0OPC/zy63DAXjCZdKsMSjUopUi0ZeqWqrVhwVBYGl700FoOtj/YisUh2b24NOlXMXVq48Dms+HmseIXgwu2w4tAbsIdFERIqM+2QeWlGkafsOTH35Od56ZjDhERF89eWXnDlzlokTJzLtw0+YMm4y23cc4t7uLWjapCZ7fz3O3V2bFJyk6vd2q1Tk3Nn+63Co5M9V5Qg8VpX8uUry3H02XbXe38aaFTiuc+T6/7bn+Jcv5Pts45pTvpu58SJFuU/dLBpsTgPpbl+bPAfYPP4hskMli+6Wy+6DMEZZqNd/GOXbdOLStp84t/c3kAOH3no0jKoWxc4sG++fzOWR8qE0DPFP4kaZ/GPNUL27xGVRUBCCItC1fQR9+16IoRa8Z/ZhWzkW18lfC1oJqNOcHF6JkAeeJahbfxwn95Gx5E08GUm4vSKFYcbqa9WqJty1KqELraqEw82N/tOXwa6U/lv8t+3K34tI3SJk5zgZM3UHAO+PbXvV4nPVKwVx5mI+rZpdva9HetTgkR41kL1uXC4ZBQWDXsOXmy/Ra9h3aLUi1SqHEBVh5GJSHs0a+QY7GfaaJOf7SFSlsD2IwvWLShTC5RbJyjYQHuZAp/O/DAkJCYwfOaRIOMGpyifKTEvlzLGj6PQGXE4HDw14mohoC25VDPfBX3b6SNS8xTRqHZizBHBgxzbmTXqDsXMW0bht8YrtRSRq9kI6NGlEiC0Lt6jhsjkMj6jh4M7trPxgGq/Omk/DNu3JdgQOSI7u3smsF4cxbMZc4pq1BqB1jweJa96KNx+5l9CoaNJ/3cHkiROxixouSGY8CJQPDQFBYN+ORCYM7s+7n60sCgdUY0fiVp56tBeLVsUTEVFy3tSaFcuKirEm2wMHooXhgj9v/rHEfXfs+IN27f6CiVehYlnCs6IEQdir+nueoijzVH/HAV5FUY6r1h0A/nY1YjKsxQe26oGJXhVioV6+WhvNFYZde5WaVOlJl1jwvk8uf8CYN8gqKGYSUJ9KFClfuQqHjhwmOLqLb6WioHUYIDsNUNBExBBWtR7zv91KLRM4nU4EQUCv3cMns9bx9PAPqVw5hoiIYKLLV+FCUg6VqtUEfQyKAmmZIaRlmBEFhdgKNsJCXQhCJAgqVUChUkFO4FN8uGId1qiOHHeC26sqMr59Ky882YfpS1ZjjbiT4wWTMHFm333y7T+SpKQk0BQMEuRt/mOolARTL6dgsfjesdSUzKKi3SNGLWT2gp8Y/vSdDB/UkdkLExk+qCOfTuvJtDd7YokOAncmFovP4y9I/k+ccMWsvFhwDjJa0sXeWMV6hHh3ERZrQyCUQf+uyML1F3mqRwzlqoYW1ZSSgIH/NtOmZTT/eucUd7SLoWKB3LFQMFhVBA1pNd/CY6yMPvcAIRfWonWch/pRSFeE8okqOXS1xLq6hpXX7lK1UdWd0qmuT1VfSlGtJ8hQYhvRHPgNCTyv01w3hEqlbLcClP//YlcKoQgCDo0Oh0ZXVLMQuCHxiGtBUhQMeMm+cA7XpTO0aNmSAc+/hEH2oCCgx4tB9mCU3RhlD9u2bgWXr/5Svj6IPGMIhits17CxExg2dgJGjQY58zJaex5V6zXi8cNHGdj3EZo0qYkkiURGhnLhYhqVKkaWdGq3FJlOnxT3u4fhi4te7q8gcH8FgQ1JCt1jJIbW0NG3knBDOU/XgmQwUOPBvtR4oBcoCkdXLuTkl6t9rv8SoBUFOkWaqWjQ8nlyDjXM4ZjKKDgjRlXG2O0pdM17IGh0eI5sw7FqPN7juwpaFB+zCqZQIp54B0O9dli3riE9/gPw/nfUQW8cujLYFQdAjVtpV/4hUmVAn5GbyMt380jPGrRrXu6q7apXCmbD5gu8t+Awe79+MGDbgs+P4nAqPDugIeCTO9ercqnem/0bAB+91YkJM3ZTJTaEnb8mM2VcV9JtcVy2NiNYn0ylsL1FRdtuFOnpRlAgOsr/oS4UTpixLJ5WBeF4GWmpREZbmPzSs6xZOBed3sBHn39JpVpxREQHzjbv257Iyk9m8Oa8xTRp17HYjNmBHduYPGwg4+cupmGbEkhWAYmaOH8J7erVwujMx6o1kmUMxQsc3LmdqSMGMfrThTRo3bbY/sd+3c2sF4fxzAdzqFFAogoRHlOe9g88QtqebUyeNBGboOWMFIRcSIhVJGrC/CUlkqi927Ywa8K4IpIUWDbNj96PP0m1GsVnUPbuSOSFfn2ZsXQ1jRs3LrZ925YERj87nSO/Lyqx35uJE1YFY+mFuNMVRWlxje1BwJWxnzlAcAlt/0EJeOkRXx3yfw8aSsUaNa/arkLVaqxfvIBVn87k48XLkXIzEDwuFL2R1evWE12+Ij0e8YWkCYKAweAbIHvdXt6fvhqADz94jj6PvonFEsb+A6do2SIOq01HUkooTpeWkGAHFWLy0JQQygpw/vz5a+YE7k7cwvQ3RjN9yeoi+6FGoX2Jj49Hq712TPuIkTOZPXcDw4fcC8Dsef9h+OB7mDCuN7MX/ORbt+AnUk5MZcKYnliig8GT5yNR1wkPZpLojVMoR6R3I2HyLxQOJWa8UofRD5cjOqzk861b0cDT3aKYuOYy80YEqrNaI7vhMVYm/NwsjDm7/nIFvlsBdXH2kmDzbU8upSDvP3alDAjHTajgRY+MHgWDIqMtrNFTMYr28+f7G7sDi9W6BRGnpGNd/Oek5+SQa7MzYNzEgDYzx7/KHT3up3lB6L0ge9A48lGMwXgVWDx/DgBvjO/HiJEfkpOTT1ZWHrXjYv97F30dyHAoRBoE3v7Nw5pT0KM8fJvs27YhSSG+ncRDFbRFYXs3jUQJApF1G1GxSzfKt+mExmji0rafOLJ8Po6MtNL3B6qbddQN0vNjmo0Hyl3bpomWKhi7DUbX/F7wuHHt+gJn4iqEtDNX30kQ0bd9CGPPkQh6M9krJ2HbsR6uw8v2V8Epl25XztoUgFOl6Dn8V+3KP0SqDKhgMTP+uRa8OuwariagUZ1wFq09SUa2k0PHs2gQ51PekmWF9+cdpGuHqzPr5wc1IS3DxtN96zF72SEGv/IDDqeXEEs7LlubEKI/T6WwAzecE1UIt1siK9tAWJgDndY3I6Ye5FRo6TOcE0aNYNWCOTzwWD++XrkUAJfTQbXadQiJDAzp2bc9kTcG9+OthctpVALJObhrh49Ezfns6iRq2FPMXrWGBhViwOMm0xCCVWcCQeD3nduYOmIQYz5dSP0S+j+yewcb53/KMx/MoU6rtrivqOVydPdOXElneGfau2TYnVwKDg/wKu7fsa2IRDUtoc5VoXrgsjXraNexOMlSoyQStTtxCwumT2XG0tVFxX7V8IUL9uLrda9fs++bBa8sX1dBx6sgHwi5Yl0I8PcIkr8NUKFKNXoNHcm9j/W7Zrta9Rvy/erlvPziC2gzk1EkDUpkeRxo+GTaFPo/83yJ+wmCwBvjByDLMvfe25qYmHAe6jWBpk3qkpNfgexcE1qth8qxWYQEXzvf58svvyQ+Pp4uXboU+7DtTtzCS/37MmPZ57QoIWdRbV9KyiksRGqqL/xn9twNvv/n/ado2+z5m5gwrjfDn76zyCNlif5z30AnUSTRBy8mynlXYVaOFWujJlFpOW6iQwNJ1dC7o2j+0lEupruKvFJeKYi8mAfR5x7wkaj/JyjNppTR5vxjV64BHTLVsBMhevAq4ETEiUAWGhxI2BWBOWNfpMODj1C/dTsMWsmXZoKCRhRxiBo8ooReo+HQ+Ut8ucCn99XnhdEYTT6PZGZaKl8tWUhcvQZ+IpWTAQoooVHoDRpemzCJiIhI2rfT4fF4eaLfFFq1rHNVAZu/Ahl2mUijyITtDlYd9fBAFYGvz/ls1bfJ0LMCbEyC+ysIhOsENCV4aW4Eok5HVIOmxLRoS0zzNhgionDbrCTtSOD8jxvJPlncrpSGLpFmPj6bQbdoE8YSJmFEcyjh9w0huOND4HHjSFiOK2EJSp4vDPJqZf00ca0x3PcCmkp1cZ/cS9aa9/AklU3F9VZA4e9hV/4hUmXAZ9PvKlpWruH6bFIvApfbF+rSqc83VK3o+9C/80pLTp3Po43t6rHxfR+oVbS84+s+LFt3jMmTxpFqa0Ko/iwVg39BEP5cXgtAelYwChAd6fdGqQc5x60KGamprFrgm3H6euVSdHo9LqeThwcOJiLaEiDJemDXDt4Y3I+J85fSsASSs3/HNpa8/w7j53xG43Ydinuqdm5j0YSx/8feeYc3VbZ//HNOdtI9wi6FsvcWQRT3RFFeZCrILoqigAiIVhEVBAEVyhTKnqKo4EDZGxmy917dK0mTnPH7I22S0paW5au/1+919eKQc54nJycn93m+9/jefPvjaiICzORodKSag5FFz63557bNzProfd6ZMot697Ys8KM5snMrkwf249VJM6jeuFmB9z++ewdrvhzD7K9nkZKRyaiJX9Lj4wneNN7DO7aSEPdOkSTKXz2wOBJVGPIWmZMWLKNJIfNnZ2d70wVbtPhr1HEkRbktWd1cHAe0giBUVVU1zxLXBw7d7sT/b6CqmBQ3FklGq3j+BMCt0eLW6Bi3YGnx8siqyqMP3E/3Zx7H4XDw+YSJbNu1m8CQUJ7t2JXM9DQcdluhQ0VRpEePp73/3//HTLZsTyG6UiMyMkUiw7KIDM9GLEG0pG3btkRFRRV4fffWTQzq1pHxCYsLJVE7Nq5nULcORZKoxMQ0rNZQ+r86nvip3xLbtw2xfdsUGpGyWoOZMqE7ccNfwBoZBPKtPwPtSnku8SwCEuWZh97bzaNwDJpymq9XX+OVR8IZ94rPIRZk1tCxVSjTfklmVOeyAGSXeh5VNBJ05R8nNHdbKM6mlNDm/GtXCoOqUgoXUbmVVWcVA5fRo+aSAV2ejLUAXcZMBjwrR8nvt62/7ndetV4DgkLDyExLpWuzeoSVKkXl6rWoWqcuktvttStaRzaCPRM1IBS0OgwGPT379QfgwKaJHNj3NUuW/s5TTza/u9egECTbFCIsPvL0fBUNK096nqOrzqk8W1Fk1TmFF8rD27Wge7SG0DskHgEQUqUGjQe9hynCittuI2n/bq7u2MzVXVtRXDff9Nw7r05DdYueHek5tA7Pn4Yf+EB7Qtv0RTQF4NyyHMdPU1FtaUVnKokadPUfx/Bgd7Tla6CkXyM74W1ce39Bkv5+USh/qKparN2Q1f++XfmXSN1BVIkKJDTYQGS4CYNeQ1mrGYtJx6wlx+jbuQYrfz7HqXMZxFQMvuE8OkMQjz03FLtUmjDjccoE7L3tSBSAJImkZlgICXbmq43yX+SkJCYSbrXSqVc/Fs2cisFgZMry7ylfpWqBdL49WzYy/8sJfDhjLg1btipww+/buplRfbszcnoC9QqJRP25bQuH13zL4oULETUaUo2B3iiUZ78n3W9Y/CzqNm9ZYPyx3Ts8JGri1EJJ1LFd29ixfB7Tps8AjZbz5gh2//4rz12+hLVcOQ7v2MqXA/sxauY8GrQoWLO1e/NGRr/5Kp/NXkCTQtQFi8MfWzf7FpmFkCiAi+fP+6UL/jW9qe9EREpVVZsgCN8AHwqC0AtoADwHFPyi/8dgkN0ESjkESE60uek2kiAiiRpAwOxyIGIHB9j1ZrJMQaApaIq1rhwstjSCwoP5de1aZnw9B0GjwWixUKVGLZbOnk7nPq+yZsVSegwYRLi1oLgD5KrxpetJTK1IpcqVCQrMoVREBgZ9yYl7YSRqx8b1fDU6rsh0vh0b1/PGSy/yzfLCSVT//v2Jj4+nW7cnSUjwRJ/ip33PtUvLiBvR3lsjFTf8P94aKcBDom4DbjWQS+42aMimHIvQkXlD/bykdDdfr/bIxsxem8LQF0oTEeBLy+77WAQPjjzBkLalsESUxRb+EObU9eicBZUR/z+jOJuilMDm/GtXCiJQlYjCgUVQSFe1nMaI4w4ILtdqeg+yLBNRpizlKsWQnZFO5Zq1WDVvDu169uWHhfN4oUMnLDkZqAYTanD+TJTNG9bT96VRXLm4gjde/4/nRT8hibuFpCyZyEANw3+1MXe/k/a19Cw76nFwrzwp83xVLStPSLwYIzKikZZ+0S7CcrW27hiJEgSiHnqS2j1fw5mWwo7Rw0g+uBdVunM1Rg+Em5hzIZNWYR4Huqg3Et1rBKFNH8JxZAcpyydgTjla9CkGRaJr+hy6Fi8ihpZGvnYa++I4cnb9CPI/R/Cm+IhU8Wvju21X/t509AY4eTqJEaN+4NTp5ML3n0lmxEdrOFnU/tMpjBj9CydPpxS+/0waIz7dzMkzaYXuLwyiKLBx0eOEBunRagROnsskJSOHzbuv8cmQpjzaqjyjv9pzwzncioWzWc/gkMIpZ1lH2cA9d4REAWTaTKiqSHhY/o7jtWp5FOH69+9Pi8qliRvYn35DhvPQ088x7dvVNG31QAEStW/7VuZ9OYGur79Fw0LUxg7u3MaSKZOImzmvUBJ16c891A02Mvitt5AMJhKDIrEZLF4SdWDHVpbFf8m70+cUSqIO79rB2vmzGfDFDGo2Kzj/yT07kU8dZNInH2Ey6DgpWNAEBFG9yT2c+nMvR3ft4IeZ8bzx5YxCSdTebVtI+GI8730xtVASdfjwMUaMGMvJk2e9r6mqyo6tW7Db7WzbvImF06cwaf6yQheZJ0+eZMSIEYiQS6IKYsT78zl56kqh+06eusywd+cWuq84KKpa7F8J0R9PM+5EPE27Y1VV/d/0HKsqgbKTKGcGFXLSCZJyyNHouGII4nyglUuBVq5ZwkkOjOBKcGmuBlrJNgRgctmJzLyG2ZGJzu1EUBREWSIgM5ngzEQEVcUebKXcvQ9is9uRJInUxESOHfqT1KQkhnwyjgqVYpgzeUKhp5WdreXk6UAuXzGj08pUjkolqtzNkajCkEeSXns37oYkatK8pQVIVGJiIomJicTHe9KKEhLW0L2bJ/oU27cNVmuol0QB+UjU7UJRNVx2PwWIlGUpOjKLHRMZoqPHU6UAeOWR8ALpfeUj9FQqpefwhRwyS3dEUNwEXv3mjp2zJKtsP27DJd12FLlEsDtv7d74167cWWhVhaqqjZrY0KJyTDVzBDPOOySLFlm2HKMXrkBVFLLSU3Hl5LB97c+ERUby+kdjqRQdhSUrBUWjQw0vi3//g0sXL3Ly+DF2bZ96R86lOCSlexb+Q5cnU+f987y+MJG5+z0Rn2WHXTxf1eOI6lRDy6f3G/m9jY4RjTyvhd3h3vORjVtw/9ip1Ov3FqlHDrBp6Ksk7dt1R0kUQHmTp+ot3a2gsQRSdcgkQho/QMqKSVz94jXcl08VOk5TsR6m3pOxvPcrhqdfR0k8Q/bM18ka8wKuHSu9JMopqxzKUJBL/ru8LaQ4b/59VIq3K+rfwK78syJSBk/qxKZN+3ih80SWzXuTmOoFi7TXbzrCkBFL+Wx0Z6rUrJVf+lvQsH7jQdp3mcmyBUOoUremb59s945//6ONfDDsKarUrup9PW98HjSF6NdXLA2b1rbmwzE/otdraVj5fY7dAAAgAElEQVS3HPc0iWbjH2dZtyORrb+8jSYiHAppouuW9Jy9VhNZ1VKp9FHMBjOIfrLX/mP8m5T5y59rfZ8nVfKloFxxSKiuVCCRY47G4PKc+8eDX2fZ19N5qkMXVi9ZAMCimVPpNPBtXuj/OuXreSTM/aNNe7dt5pN+PRg6eSbl6zUkxe65PnnHHNq+lRXxX9C23wBK16nPlSzf9dOqCoGJ52kWVZpsp5vTooV0VQd2N0quNP3RnduYEzeU7nFjiKzZgKTsHO/YYEHm5NHDJHwwnBeGfkDVRs1QFJU0u8+IJR/ZT0OjRJ1OL5IkiRyw6chWZEw6sDucnDl5im+mfsljrw5DW7EeV7J8EuwAu/b94a3pauYnPJHs8vxgd2xcz6SPPqT/sPdwWJvzZ4aKoiiMHjSA339cRWpSIoEhoXw+fxm1mzXHKUn5lNvmrNnAWy91YNycRVSr5ff9an0ppAD3PKohrFprUiFfb4ntG9czqNu7dOjVj1uBfGdS+1BVNRVoe9sT/UMhqCoBqkSw4iLY7UaLiksQSdJbyNIaUXJbH+iE6/xVgoCs0ZJlDsZuMBNszyDQ4VvQe+4yAbs5GMkSDIJI+UoxzP11I9PHjiY4NJxa9RtQv1lzVs6bzdVLF5g4d0m+t7Db7SQmWsjO1qHTyVQobyPIkn1HekGlpaTgdrtYs+cIASEF1SvTU337Q8Pzq3jlRaFiY2OJjY31bPdry5TJgxjzcQ+s1tDbP8EiIKkWLrmfJUctQxntD+ilkjvJxvevzNvPRBQgUXlwSSoWi4Wc4MYEJH6PRi6eoJUETrdC7/En2bg/gwy7wokvaxRI9L/TmPtLyYrir8cdSu37f2NX8lRvJT+PeUmkzZ2SQqggUUOTgwaVE5Ke87IOSQXwPAeuJ6WiIBS6bdb7bI/JX7Ex95iKterwxQ9rWfzVBCLKlKVmvQbUbtKMH76eygcjR6LRG3CFlcGs9d33YToIq1Seuv37gvP7fG06kPwiUi4/J7bLd0/Jdl/N/+VLSVjDPeI4UnYaialOrGEGXJeSSUp3Exmi461xR5mzNYsOTSws2e1JN1yy20bbGA3fnpLpWF3LkOoq/SuLhBlUspMcaOyQnrvsyHD61Cntbt8aKsvl23bKmkJf90d4rfrU6NKT0Gq1yL58kb1ffMKlLevuuPpiHsw6GRkVqzWU2sPHoY2sQMrMoZiO/Ywxd8lnCvatA5XStRAfjEWs2gLVloqyfgbyvh8h5TyqQ/HQbwGckohdUnn3gMLhTJBUWNnSgN3t+44V1XcPyX7bYUbfOsRfej0gyHf9DBZfCYrG756bttMJ3FwkrCSpfX8Hu/LPIlLA+o0HGTv+O5bNe5PW99fOJ5kLHhLU/qWvWLHgDe6/r2ah49t3+YxlC4bQ+v46+XtS+Y3/Zu4rtGpRkKRduJROhXKexYPbLbN2/XE2bT/N2fOp2OwuNBqRpQn9+CTuecDTX+qbVfvo99ZiVi97jYpRhcuDuiUdZ67VRJa1RJc6itlQeN3DbSHP+AqeglKAZV97FCJXL1ngJVNtu/ciNDISc2jBRc3+bZtZ8uUEhk6eSd1CapYObd/K+AF9eOurmdRo6lPPE1SVSNWJ1Z0NgSYOXknGXb4K6nUruzwJ8zzhiLzzjsRFOdWBVoVK1Sry6OJFnv5PSgZORGw6AaOgYJBdmBrGYHe52Zuj54JbxF/6MzPpKr/PmUrHT+KJbphf3Q88NVNfvNHPW9N1PfI87Z/PXZKv78+Gn35g345txI74gNEDY3miXQeq1a5bYPyuTRuY/MkHjJuzqNBmxf4oLFK1c9N6xr37Np/NWcgXH96aOMUdqpH6fwNnIZ5+p1T4frNWIFyUiBRkwkUJreB5EKWjIxkdaaoWnSSCJJO36NFpfJNpRN+9mFezkK4LwKi3oFdkdIqMILvZuvsPdm/ZTMrVKzhsNoLDwnh7whR6jBwFeFIJVi2ax6wxHzH1+1+QjUaSs7PJynSjzU5H47SjigbU4DCcASGcQ0SwF86i/D16ShHb4GviqAsIoEFulNa/RUKesyAoNIz7Hn4s33skJnrsTV4UKj4+nmtXVhE3orUn+iTbsYYKvtQgf7uu+glh+Ntrf0eWvzPJ7xhR8CwOXLKF87bWSKqRCpa1BOmvoUrhfkN8n0Mb4COHSqAveh9VNn/fQN95iDjUU4TWqwOAOSwHU2ilfMf4z3997YTi8C0uVD+Zc8XhZv6vSaSmu5nVrzy9p13iu50ZdGgeiDFXZUzwr3vR+R7nosm3wBL85NX95dL9ZdcBNGZPTe+UH/7kVnCnFjz/yxBQqSzmEKVxk62K/OkyYVPzvuPbixw4srM4sHkDJ/bswp6WjMNmo1zlGPrHfcyrH40FQKuqrF08l+ceaIkpIBBXeFnUQtKObxaJyTasEZbcbQfWCBOvvbeJqQsO06dDVb54rykDxx5i5orz9GoXhZLt4Oufk+jUOpxFWz1EbcluG/+ppWf5YRdd6xkY0VDD4MYq4SYBe5qTMMPd6RhuKVuemi/1oXSTFjiSE9kfP56LG35Ble9+TXNopJUWcV+hCQsjefLrOE/sxnR95xtTMMLDA9A2eh7Vlob8yyTkbYvB5Sh0ToClFxRC9AKvV9Uy75ybDYkKjUJUNHep67pTUll67NbSCe9QjdRdxT8qtS+PBA0b/JyHRF2HTVuO0v6lr1g277UiSdR/Oo/1kajrsGGzb3xhJGr95lN8/9Nh7/9/WXeMrv0WoNWItG5ZhU3bTmONCPA2xDx89DKPPf8V73/6Iyvn96Zp4+hCP1ceiZJkHdGljt1REpWUu4ABSEnyeIU+HjKQh6tHMXXMR7Tv0QeAF7r3YuSX01h18DSDxhSeJpSnrtdhwJvUvbdgut2RXTsYP6APg76c7iNRqkqI4qKWnEl5xcG+ffv56cQFXBWqlohEGVWZGmo2FVUHSZk2Roz+hLUnznFWNHNZMJKZ6wsIFGSyMzP5afVqNp2+yiZXEJckLf4k6uSeHVw9fYJnXh9aJIma+HrfIknUrs0bvelKhTVPtQQG8tOyRQD8uHg+/do+mX/8pg0M7t6JAe9+UCiJ2rp1a4HX/JHXh+qtDz8lIy2NcydvTW1HVtVi//5FfmhRqapzcZ/ORh2tk1BRJhkdhxUTO9VATmAmDR2F9esoFoKAJGqxaw1k6M2sWPUD44cOwhwYRM1GTdm7aQOlK/h6Oh3d+wevPvMIqxfNY9zilVSIikJvS8eSeglDymVEVw7uwDDU0pUhMAyuj4j9RUjJtT39+/enVKlSxMXFERsbC0Bsv7YFUvjuFpxyAGfSH0JR9VQKXE2Q/sbCErcCm0PCaPYQM20Bld3bQ5WyRkIsGtJsMqO/SaTXtLtTe+V0ySz96SLXUm6tSP5fu3J70KNQGxtRGjeXZB17JLMfibp9/JQwgxWTxhISaSW6Zh32bVpPuRifyNWeTesZ1aMzz953L6bAINwR5VG1xYjh3ACJSZ5Mj/6Dv6FU3cn0f+cX+r/zC2XvmUvPt9cxdYFnLTV9yQkOn0xn5orzAMxccZ6vf/asVRatT6FDU48EePcWgYx/zMIffYIZ/ZDHcRJuujsLfwCtyUztV17lgfEzCa9VnyPzprPu9W5c+H3NX0Ki9BGlmfH1HPTBISR/2R/nid0FD6rzJEL/FdCgDcqWucgT26BuSbghicpDtEXArIEkJ8w642bO2VsXx7gRslwq352UyLmFzEeVf4Zd+UdFpPIiSa1aViuwb/2mI8R9vJJl816jdasiIlFdP2f5wrcLJVHrNx5k8PCFvvFS/qLJ9ZtP0b7nQvasG+h9LSXVRmlrIMPfeoQ2nWbR5onaTBnXDpdLYvgH35KwaDvvvf0ksT1becmVP1QV0m0RXE2LQlVFoq1HMRuyCxx3s0hMTMZqjWDwgP7MnhbPK31jsUsKS2ZN47nnnuO7774DPNGo346dp/ugd7w1UKGRkYXOeWDHNj7u14PhU7+mZrOC6nwHt29h5dSvGPTldGo3b4GkqJgVN6UkBxZVIt2Rw9sjRnDPS32oUb9ge6IjO7fmJ1GqSimclFNzkBHYcuYyg7t1YsCk6YTVbEAqHln5vHXr7m1bmfN2LN0+nYzOWrnA/Kf3bGf9rC8IiihFzA1I1MAvphVOojZtYMJ77xTarBjgyP59HN63h8nfrGZ4z6682DuWeV9OQJZlNBoNe7ZuZnD3Toybs4jGhQhPePpIxXLkyJFCr//OzRu9fajMgcH0evYxXnljMLMnjSv0+BvhJusV/sehUlkrUVnnRifAVVnLJUVHhipi8PtN38nHeVZ6OuUrV6FNt14M7/wCz/fsS5eBQ3DYspn83jB2rVtLv3c/4Kmnn8HosqNPuQSApDPiDghFNgaAKKL5L0oR57VPeL5LN1YuSAByo1DXrhH33pN3NYXPH04pkDMZD3rsa8BqjNrUu/I+doeM3hSGG9CqdyatD8DpVtFooH5Fjxv6zacjmLex5CmJN4P1u5J5ZcQffPpWHd75/OBNjy/Opii3GVH5/4xg3FTFgYjKIclIkppHYO7cNbNlpFO5XkNaPNeOT1/+D92Gvc9jHbuSkZrCF++8hZSVweQvvkCrN5AZYsVwGySq/5tziZ+5jm4dm5Cw2EMA4hP2efcnrDhOt3bVSFhxnD4dqlKrSgi92kUViEj1eDySTx4PYOQzYUQGasg5n06E+e7btcj6TajX7y2MYeGcW7ua40sScGXefSGNPBjDwqk/8ktyNHoOfPwmkWkHChyjbd0Nsc1g1Av7UX/8GOVKyR2rLgUsWmgY6rmWL1bQsj3l7vw+15yWGLnlFklaCdYqf4elzD+KSHkjSUr+nifedLwFA2jVskaBcRs2eUjUsvlvFUmi2nf9nOXzXuOB+wqO37TtDO17LmTZrM7etL7lq/5kyPvfs2ZpH15/ZyWhISZmfdEBm81Fu+6zMBi0HN75PpHXSVfmwek2cjk1GltOMCZDFuXCzmDUF+9FKAqJielYrSH07z+C+Knz6NbtPyQkLAdg9rR473Hfffcdz3bqyqpF82nfow9hkVZyiimS9EiYf8zwqV9T/977cF3njTm4fQufvdabwZNnUbPpPRgUibJuO0GKGzcCO85fZXC3zvQbP5kaTQtKpHolzHNJlF6VqaTaCUQmDS2/7T/C+AG9PPsLGX905zZ+mz2Fbp9Opkrj5gVStU7v2c6idwfQfUw8C0e+id6UX0b+8E4fiap1T0HhirxI0pcLllOvSTN++3EVLR59wtszY8+2zcybPIlGLe6jYfMWrD7oKQLdsPp71n63gnBraeZM/KzIdD5vH6lcglvY/vdf7+vtQ/Xb6u9p+fBjDIwbfUtESlL/Te0rCURUGhldlNUpJMoix116XHcgzeVGWDN/Dj/MncUni1cybmAstRs3o8ew90hPSWZkt45EV6vBonWbKaU4EW2pyKKGHEsIbmMAqkaLXnNnCtFvFSm5KcN57RNWLkige/fuzJkzh9jYWKxWKyh/DYmyu0I5l94UgEoh6zBwd0iUqqpkOyQ0es+zQXsLrUkybRLbD2XySB1Lvh53mXYZi0FEEASSZtZEVmDW76lsOWanZfXCny23isvXHLz0bBQDusTcEpH6N7XvFqCqlMVJOZzYETmOhQz1zkZZVFXlh/gJHNq6maGzF/N5v2480r4zbV7pzdXz5/ioR2eead+Rfl07IYoiGcFWlOLaMhSBxCSPEyF+5joAEhbvpnunJsxZtJvYbg08+xL20a9LLb76sBWj3qjjrZGa+HZthveq4q2RGtqhHJEhOtxnk4kM/GvsmsZool6PAUQ9/BRZF8+xZcQbpJ8sWhnvbqFOz9fRBQTRq2sX+hqSibxOb0f3UE/0Tw9EPfQL6sqRoBS+hkt1qpzMhPrX9fW1SRCm98jmf9fSgEOGJRecXHYolDXdWaKaaFfpV19HhlNl0dGbC0up/DPsyj+KSBVGgjb6p+MVQqLWbzxMn9e/LpZELZv/Fg+0LBjJWL/5BB+P/41lszrT+r4Y3G6Z9z75mblL/uCnZX1oWK88p86mMGzgw4iiwPMvz6ZSRSvxEzp7olDX1WApisjV9GhSs0sjijJlw84QGpB4W0Xg/Qd8Sfy0H+j28qMkzP0VgISE5XR6uTuL5s7JF5Hq0KED70yeyRtxHxdQ4isMeRLm705PKLRP1OFd2/nstd4M+WoGDRs1IsyZRaDiQkbgmsbE5r37WDThM/qNn1youp6XRE2cSvXGzYlUnZRXHajAGcHMll1/sPizUflrpvyQlw7YbUw8MQ0LSqCf2b+LRe8OoNNHX1Kl0T04HTb0Jgt538qZvTv4afzIIknU7s0bvZGkRve2pNMj93H5wnka3duSUVNmcWD3TmZ+PoaREyczdthgJElCq/X8rMpXqszyr2dw+vhRJs5bSqNCIl1bNm7w6yNV8P3zSNb4uUu9wheJVy5jLXvrHeT/rZEqHhpUmplcRGoVjrh0nJU8C4s7LADlhdNhZ+aHIzmwfQufLv6WMtGVuHLuDL1HxOF2uRjWuR2tnnia/n37YnbZkDQ6si3huHXGfEImdxOpSYlem1HY9keDBrB01jRe7NnX2z6hU69+zJ4Rz5gxYzwk6i9ChqMsFzMaohPtVAzeiEGbhXpnRbW8cLoUtBoRVROCRs1C4ObSfuw5Mg++tg+bQ6bNvaGM7hGFTutZzLSuG8ibM87z3nPhCIKAVgPlw3T8sDfrzhOppBzKRl5fgFFyFFvL8K/NyQdBVYnBThgSSeg4jQkFAW4oxn9zsGVmMP+DoSRfPM87c5YQHBFJ4vmzPNG1G7bMDN7r0o4ebw2h0+OPAJARdPMkyuvEfT3e0/Ot14PE9nqQ+JnriH3lXqaMe4Exw+/x1kiN7F8Pa4THmZlHovJg9ZPY82+G/VcguGYDqvUchKlUWU58s5ATy+ehuP96mfAyLVpTullLDs6bwsXTJ6Fm/vTnPBIl7VmN+GNcgTVmHtKcKp3We+LAz5eD7pV9IiONwwR+uKzyVBlP43azFgI0An+kSZT1q6+8E7hmV6gZruHNJjoWHb25jKuSEKm/Q43UP4pIXY/s7BxCQy2cOTiegICCD4Ds7BwiwgPZs3UsAQEFm9lmZzsICwvkzOHJnv3+6nzAxq0nGTLyW8Z/+AT3t4hh554L9Bv8LaWtgexd/yYXr2TRus1knC4Jt1vm88kbyMmRvCRq955zjJm4hqEDH6NJw4ooisi5pJrYnMGEBV7DGnwJrebWnu55xisxMZ34aT8AkDD3V7p3a8+chGXE9nuJj76YzfsfjyHSauWKQyJ2wADCNSqS01EiEpXjsBMcFsb87fvQmQo+tB22bIJDQlm6YSsRgoLBlYmMQLLWRKJowG53YA4O5c34OZgCAgvOb7MRGBLGuF+3EWI2EiVnE4BMBlrOCmay7A4CQkMZOmcZJoul4PtnZxMQGkrc0tWoAQVFPJx2G6aAIAYvX4/BbCErJQlFUTBaLNgkz35zcCiffPtz4fPbsokfM4rP5y2hcYtWLJ41Da1Wx28HTzH81d48Ua8qkaXKMHTs5zS+9z7WLF/CuGGDGDp2IoIgUK9pcyaOfIdJS74plET9sXUTs8d9zJwlKwpt9rt100bef2cIc5asIKaprybt2uVLWMuU5Y+tmwp+aSXAv0TqxhBRudfsJERU2evQcVW9uw/0/Vs2MvO9YVSp34DPV/1KcK4SnkarQ5IkZo8ZRc269RjYszsalw2bMYAcSyh3RILvBvAnS58MfoPls6fzn1c8NZXXbz/T8SV+WDwPgKWzprH19FUGDI/z9rb6q0iUrGhIyqpJsq0qZl0KUUEb0Iqu4gcWguTUHEJMKqJ44+t84nw2Za0mXIL1ptP6VFXl88UXqBtjYdKbVenz8RFavXGAjRProgUaV7Vg1ItM+DGZt57xpF33eDCESWtSUFX1jqaUXk7MoWHNW5ea/yd4jv9OKIeTMCTOY+QSeu5kgrCqqvy57idWfT6K+g8+Ro+PJxIU6HnGaXU6JLebmR+MoMlDj/L8M88guBwkBUagvcl0vjzy1O2lh0iY9zvgiUZdOz2JuMH3Y430hELySJRnu+Ba7L8JS6XqVG8fS2idxuQkX2Pb+4NIPVryiKy5dFkCylZAZ7agNQegNZvRmkxojWakHDtpx4+Qdvww7iyPbciWFCwaIV/kOQ/Wxs1p8NrbpJ04wpYVCwnS5o8OGeu0yiVRP+JcOBxTUOFLeEVV+eqIyqPlBLpXERiyU2FXKsR7AvQ0DROYeUrh16sSj5b2zPFoKR0HM2XalPiTlwzXbCqtK9zavX0nVfvuJv5RROq4/BwA1SyeLyXADAaLSl7prdsv5UxRVTAC1eG0qkJuima+ugE91Gvqdwnk9d7NTesv0a7bHJYtGMr991Vh7e9/0rXnfMZ/+gqdO97Phk2HGDthE3EfxDJh0gomJxxk564j7Nw+HW1oc9av30b7F4ezYsVKmtx/P263m/Pnz+NwOihXrhyhISGekysMqq8YOjExrUA9Qf9XxxM/9VtiY2OZMmUKnXrt8Hp/B4yZQJdh4wiLtHI4LRt0ZpLSsj01PRFlkNOvIqddI9ES7l2I+V+3fDelIBIWXRkXkO3wqXa5ZBWTKhGpuqleJgwNbrIVDWdkI4mqFsUtoKgSoMNQpjLZskp2lsv3veRdbkWLaI0mFInqUiZuFfa69FySNCiqG9AiWiuRrQpkZ3vGa/2+P7PRTHaWjdFdX0Cv09H04UcJDotALwpUrlmbB55qg6tsEA67HZNZy8rvVvFgm7Y0jIok1JhHvKtjK8LrZAwOodNb71CmbgNGj3ib379ZxuiERSS7XDzeqStrViyh82tvUrtpc3IkiffjZ9Hn6UdYmTCLilWqsfnXn6hWrz7HDx2i4X2t8829Z8tGRvR6iQlzl1CpSQuuOCT8f46bN6ynZ6f2uc2S7+dAhu8c9+zYRrX6DXnzpQ6FnndxUP+tkbohKupkwjQqux06LktadHcx4LPh2+UsHP8pfT/4hGaPPJ5vn06vZ974MZw/foSVq1YhKjLpgRG4dEa0d5BEpSQlEn5ddCmvLcJ/XulD36EjWD7bo+6Z9+/12z8snseznV9m1cK5vNizb5HNge8WVBXS7aW4lhGDpBgINZ2jTNABRKV4EqWqIKsGBCRvNGnN+gt0fH0dwQE6nnygLCGBemRJokntUJ66vzQ2hxOXS8Fi1rLgx0Ti4yfjFKMIk3++qfPu/8kRdhzIYMXHdQi2aFn8bnUa9d3HuWtOYsK1aESBBUNieHzEUWqWN/Jkg0CeaRjIpDUpfPdHFs/fc2fEOhRFZfehNNo9VvbW5yiuRup/zOZk5lbXu/0kz/OugQWZMqKTS7KWY5IWyS81y/94p9v3PL4RoddphHzb6+dNZ/cPK3j5o4lUaeypCc6TW9fq9cS/+zaXTp3ks5WrMbns2HQmcgQN/hlg/s/afFFv6TcSEz11evHTPY20E+b9TvcurZizYBOxPVpgDZHBJXlVOOUcX7qr7PSJack5vm0p1eeEkJP9jk/1HeN2+F0nv5YgTkf+xXSOpPXb9p17juz7TEJIKaLb96ZUq8dxZqRxaPYUzq39AcVVMsdLWM26xDz7IqWaFMyUUWQZyWFHazQh5maoZF++yIk/9/Hd1p0kXjhP7TJWwiMjCY20UjGqAqXKliM4OoaMsyfY/clg9qRn8XgZkfKBdkqFKRBcGm23D+DaUQwbPsVY2og51BfBU3Nl9hVV5ZVVNlIcKvOftxBiFPmmsky9mVmYowIIz627m2VV6PqjnRbVtTS0ahgcLfDESjdKmJtG4YLfvL7PpfGT0xe1Pue6weK73oZQX1DDZTZwbNlF6jQKJ6S0Hrh5DYB/a6T+oVi/fh/vx81n2YKhtH6gLsgOJk5ewycfdKJLpwe86oHfLPuAVvfVpVzZCH5Ys5shgzsRHV2GTZt20P7FWJYtjef+++/HZrNx4cIFFEWhQoUKBAcHg1r8DeUlTLl9VrzGa+q3nn/j44mLiyNu4hSv9zfb6Sw62iSI2ExBBNnTMbtzsOtvwjOkqhhUhQDFTaDsJAAZBUhGx1VVjw0tzpsMsZoFhQZGF2EahSuShj9z9Li9Xrnifx1Xz54ifmBven4yicaNG7L791+x27Ix63Rs/ulHxg19E61WhzkwkBy7DUVRGLd01Q3nvHbxAgsnT2Tn+t9o1PJ+Gj/0KFt/+pHfvlnKjF82ERwezr6tm5g7/lOa3P8gJrPPmAQEBjF07ERGvdGPrIwMxsxZRFBICK+1e4bU5CR6D30XrVbLvm1bGNHrJUbPnEfTQpr95qXzLV+2rEAz0+3rf+PsiWMcP7CfD2bO5c12zxR7na6HrCj/ptn4wX8RokGlmsFNsiRyVdYiCkK+Hi/+i5yiUnAc1/FyuYhLrRVh5YxptB82msr3tibZ5vH2BBk9Zrnvx+M4uGUjH30YhwGVa6YQHGjgOuLvv+Dx3xavI1uF9ZqZ8M5bfJcwi7bdegLwbcIsnuzQhTW5PeWWz57Oy4Pe4fnuvVg5ZybPd++FKAismD2Ddq/0RhQEln09nfY9+vDRF1N556OxhFutVDNt8bto+SP9+aTNZUfhrxeVHicWtFkut44LyVE4nBZMejtRYUcwG21A6XxpL8J1rTIEVcbmDOZKelVy3L6IuSrbOZ6xjg0/PUmQ/gK/rDtKjlNCkXJY8PMFer73BxazjqpVKtGg0b0816E/5aMqUsa8hVDtWcCTdqu4fe93+NAlxs46zK4/U3j4ngieaFWai1cd/HE0m60LWmE2ehZ7islJTEULZ7Kgeg3PsrZ8JHzYL4b5vyXSpk00Or2GsYNNdBl5iERDIAM6RxfwbguinxCKX12f4KfgKBp813LBqjNYLAYee7h6oZ7ykqA4m/KvzfGhguBCAo5Ldz5ZWJYktixN4JXxM4mpXfgEru4AACAASURBVLCcIfbzqZzdu4POg4cRoRMR3ZClLz5NNCUxkXCrlf6vTSJ+2vfE9m1DbK9HiJ+5lthejzBl4iuMee8RrJEFs0/+ThCNZko/2QXr4x0RBIHzq+ZzePlSJIe9+MGAtdE9VG3XhdBqtXBmpnNsSQJJ+3bittuQ7Dbcdru3xYGoNxASU43Q6rXRxdSg0j0tiXsi/zNbliSuXb7M4fPnObtlOwkzp5GamU2AVmVA1dwIoahF8+KnIGrQfD8CQfaQvQOJEl/tzOF0mkzrijoerqRj12UJh1vl2w4BaHPJtyAIRAWLnM1QqBnsea1yiEjvenq+OSHR0KpBrxEY3kzH6+ucDGqo5fmY26cHMzZm0qiigeqlby1dUOWfYVf+JVLXYf36fbTvGMc3i9+h1X0eifULF5PZtvM4S+cNZNOWwz71wPs8fYKqVi3Pm9VjcsfvJe7DBSxbGk/z5s1ITEwkMTERvV5PdHQ0RmPJctATE9N8hGnqtzgcTuYkrCG2X1ti+7X1RqSsVivpNrXEHmCHwYLeaSfMkY4kanBpi7jBVRWdqmBS3Jhkz58+d+HoQOSiaCJF0GO/hcxEAZVorURVnRsF2JvjiULdTGqDKyeHL2Nf5rkBQ6h7/8NYQ8w89dIrAN5ok9vlQtVovAuD4kLAa5YsYHLccJ7p0p33479m//atfDMjnpMH9vH+1wu8JOr9Xi/T+dU3UFWVC2fydxeXZJkLZ04zdvZCGjT31DzNW7eN4b1eYvqno2j+4MPMGDOa0TPn0ahlwXS+PBL19aKCJApgfvyXiILABzPn0rAQ9b+SQFIUNH8D4/N3REWthEGAXa5blDK/CVw4cgBbZjo17i14HwBUrF6T5lWiCXY7SDIE4NDe2UVXWnIS3yXMAjwEKg9rlizwkqm8nnKDx0yg5+DhhEZGohVFeg0ZTlikFb1GQ7+h73qdN391JCrLHsDFpChUBMpFXCAkIA2B4j3KLsnA1fRKZDqs6DQ5lAryKF5lZUt8/9t5Hn3kYTRaI25UHmvrQK/JRitk0fFlLZKsRyIAt+JZMBo0qZQ2/UyA7nKh5Qrjpu/n85n76d+5GrGdqrJ280VGTzvKiXPZ/DT9Pi+JunDVwckz6cSUN3Pqgh2a+qJNDzYK4Y2JJ3C6FIx6DffWC+H3qY3oMvIwOq1AbIfo27qOK346x+vdayMIAgPitt3SHMWn4PwNXMd/AxhRiBAkzso6pLtgY45t20BIqTKUrVZQvRggpn4jGt7jqScOdGbiFjW4xRsvBfOrcH4PQPy077l2egpxw1/AavWkhP6tSZSoIaJ1W8q27YkuOIzEbb9xdsl0nMlXkZzFpzSWanIvVf/TlZCY6tgTr3BgxiQurP+lQF84fyguJ6lHDnBs/16mnUvl5fIh1IyJwWwtjTM9DWd6Cs7MDFAUJFWljF7mnQp6IIxKwb5InPjIq4hR9ZGWDEWXfhGAMbtcrDkn07exkb6Njaw74+LDjQ6S7QorXwz0kqiTqTIZdpnoYJGz6Qo1g31OlvvLaUg45Pb2EnwkSktUoEj/35yYtQKPV7y9dIxV+2181NZTdqHobv7eKElq3781Uv8l+Key+GPXrqO07xjHssVxtLovxvv6T7/u56nHGrJz90nGTvihyD5U69fvpUOn91n943eYLWGcPJUNZBMYGEj58uXZsWNHoYIChcFqDfUSpm7dnmROgieEHj/1W08jyw+m3VrdgSCQag4h0pZCpC2VZEsobsFzG2gUGZPkxCy7MStudLk3qIxAtqglSTSSLeqwKf55uzd3EweLMnX0LoJElauShoNOHTm32CvD6bBTtXFBKfM86PR63DdBGHZvXMercR/zZIcuANRo0Ig2Pft6ahEEgT+3byGudzfKRFVk9eL5DBozkQnDBzFg5Ci0Wi1/bNnI/C8n0OCee8nK8EmlhltL8fGs+XRu1ZTls6by+cJvaFBIHy5/4YnCmvHu2rSBzWt/5s0xE26ZRAFICmj+XdQUgBaVyjo31yQN6crdF3A4uOl3Gj36tFf90R8aVaGU20aQ7CJdZyJLZ76jS6605CRCIyJ5rlvPAhGptt17MWjMBGJHjsrXDsF/2z/qXZJ6yzsNVYWkDCuJaaUw6nOoYD2HQZdLoIq5tV2SkdOJ9ZEVLdagM0QEnEcUPGPVnCzi3v+Uk7uHYbSUJdsRgEsOwCVbsMtWNIIbjejEJCYToT1IoO4COvHGKn2/bLrI7E/u5ZEWpQFoWM3MkB7VvHZFlVw4cmQ6DPmDYIuGl58pS8L3l+n/fBmvEyg0SEeNimY27U/n0Zae7yG6jIkFnzbk4d7bKRNppO1DpW/pWiqKyra9ycSPbkViioNpC29Npaw4ovQvkfKgvOBCBc5Ld6f28siWddR/5OlijxNVBbPiJlNvuWG9ZWpSYn4VzpcfY87cX4jt28ZLoP7uMEZVp8zLwzFWrE7W0b2cnDSE5OMnSzQ2om4jqnd6hdCqNbFdvcS+yZ9xadPam+olpaogIlDWqMN2+QK2yxcKHFNUunZQ6xfRtOqOvHMZ6sFfINjj/N54SWbe84FUj/A8qxqW0vBWc7x2BSA9R6H7KhsNrSL1rRp+O+vmST9yVClYQACOpSlUD/E8h6qFinzeSke/dS6CDXCP9daehdlOhZOJbhpEeRyAzshmwM03+/4n2JX/OSI16q3XPOp1Pfsy8vOv8u0bNCSeZYvjaN26AUi+h6Pd7sRmd9L+pQmeSFXLWgXm3bhpH+07jGTVdzMwGEOxWLQEBmixBFRAp9OxYcMG+vfvz+HDhwuMLQpTJg8i7v0eWK2hmE0Gb5qf1RoK4q0vXmRRQ6IlHKsthQhbKkatEaPsRp/rTpURsGt0pIk67BodLkGDK9/NevM3ria3oWmURsKpCuxx6rnsvvXbT2800uTxNuz59Uee6PnqLc/jj7TkpEIXhYIgsH/bZmZ99D4dX32DVQmzyM7IoNF99xMSHsHqxQsoV6kSw3u+xNiExchuN3Gv9ebBZ5/Hkiuyce7kcWRZIigklC2//kT95i3ypdDs3LSBUW/0K5JE7d68kUHdOoKq8vh/Ot7W53TJKoL83zc+fzfk9Yo64b65BU6wIBOj8XglExUtiYoWVwl6nbtzHJiCCi5ELLKLMq5sNKik6i2k6+6sOtvEYYNYlTCL57r15M1PP6dHbqQJoMeQEd7tonrK/behKAKXksuTYQsl2JJGuYiLiGLJ7meXZOBMYj1UVSQm8g+M+lyvb+5wa2QgD7WK4YefD9GtkwmL5rxvsFR4OnZxOfqJKQ5KhRfMRPD//X/7+1XSMt04nTLtHrLy2dyz/LozjcfuCfMe07dtWd6fdZbW94R7Vf0qlzfz7cQmdBiyhwtXHQzoXKkEVyE/Ll2zo9EIlLF67rO+nWvcEplyFWNT3P/aHHQolBLcXFN1JbIRAmrurVlyN0pRduV6BMouBMCuKzpLJq9mMp8KZ/x/GPNJb886xHmtxOf134CgM2J9pj9hj3ZEzkrn1OQRpO9en7v3xuuP4MpVqdm1NxF1G+FITmT/lHFc3PAL6i1kc1gNWkL1Gs7YXVS1lDyzIOiRroS3ewPl8O8oqz/Lty8lRyXCXPC+8Lcriw+5kBWVZIdKlzp6Hl6YzaFkmdq55EsQBLrW0jFmp4tZjxq8Y+uEe8jU4M1uBjeANpVunkydSJaIDtdh0HrmdFqbAzNvag5F/WfYlf9ex8a/GClJiaQkJbJk1jQAlsya5u15kodJE17zkKjrcOlyKj/9uo/PPupaKInavPkA48cvZuWKjwkLq47JpKFCeROhoXr0ej1btmyhZ8+ezJ49u8jzS0xM9tv2NVzME5qYMnkQ166sYsrkQTf3wYuAkkumJI2OAMmJJGpI0QdwzhjCKVMYVwxBpOtMuETtbaqDqZTSSLQ0OIjSSJyXtGzKMXJNvn0ObzAXVNq7HSiygkZb8LwO7tzOxMFv8NqoMaQnJ/Nkx644cxy4nE76v/cRX40ayagBfRkzZxENm7egSasHaPbAg0z9+AMA9m3fyoLJk/hs7lISft/Kro3r+Gb2DO/8e7Zt5r3X+vDlzNmFkqjNmzfz2YghTFywnErVa3D6yM33ePGHJCvF/v2vQY9KRa3EZUlDVgkjpHoUamlyaKxzYBRUNEA1rYv79HZqaHIozuGgMxi5cvIYiefPIKoqkaqLWmo2FVxZSILIWUMw6cV4i28GaclJpCUnsSo3je+7hFmeyFQRUae/IyRZw9mrlcmwhVIq9ArlIy+UmES5ZT1nk+ohK1qiIw/4SNR1CLiJhU5JIMsqWu2Nv8O1O5Lp85+KXEt1odWKjIqtwrApp8hx+X6L7VpHUjpMz1dLL+YbW796EGtn3MPMby7w/YabX9iWK2VGVeHiVc/1+DKuYPF8SfCvXSkeZQVPFfBFtfiaEb2g8nSIiyeDXVhKeI8DaPUGzh/cR0bi1RseFyi7cAui5xlfCD4Z/AaP1qjIJ4Pf4N1xX7DxxEXiJk4B+Msaat8yRA2mZk8TOWIp4U90JX3LD5x6r6MfiSoagVGVaPjGcFqNiSewYmUOfv0V6wZ048K6n0pEogwhYUTUbUSlp56n0tPtCK9VH63Zgl4QSuyC1pgshLV/i/B2b5C16xfS5w9BcudPWVYUT53tjbDhnES3+gaS7SoWncDrTQyM2ubMJ+Dwci0tGU747nT+CFuzUhpmP6Ln8/1u9iXf/G+3aoSWsylu7C4FVdDgCiu4ti4earE2Rf43InVzuJSZmfuv7zX//En/RrH+BWiz44Z7Ula69aR9jz7e4uigsHB+OXrOG4XQV+nGn7mBKKPO55V+4KUYPpv4Pa/0i6d6m48x5Nbg5N2MxrotGPF1HwTJhTv5IlnmUHak5OWD2tBWb8iC7X+iAtuTPA8rUfDJdY99e6C3eBvwbr89dmK+z69oVE6n5H5uP7EKp19DXf/muv5qfDZX4apAV7DgVhWQBJBAURWKS9fzH+9w+94jx+17XZIVgjUKDcwSVp1KmiSwKVvLJQdA4Sp5/o4F/4euVuOn1OenGpNtc6ANCCXNLuH08xaXDfbNn+30nV9+z0XBdBxJ1HLyShIBib60PKekYKhUm+HfrkcjQo52LdcuXEIQRS5kZGKpVJUWTz+HM8dBRK06JNk9Batdho4k9tFWHDt0gAefb89HcxZ553ztw08ZPaAvD7Zth9FairrN7uX7PYdxyTInM3wFr1ezcz9T+Wq8vXAVKhDdsBnbN26gTI3ahV7DkkCSVcS/gRfn74RonRuRkkejNKg00znQonJW1nFW1qMgYEahnMZNBY2bDFXDFaXo+ao2ac6a6ZMwZCbzwtSpaAE7Itd0ZtI1RlRBoKQluunJSYREeEhQXtqe//akYYP4fu7XPNutJ8926+mNSOUd93eHogik28JJyiiLJGupYD1HsCWjxOPtTgsXkmKQFT3RkX9i0mcXyXNznBJGY8kejalpDg4cS6ZOtXDCQgt69lPTc5BlhStJDmrGFB0lCA7QcjXZiUHnsW9Ptoxg/o+X+Wz+OUb28ESZBEFg/IAqPDhgL7/tSiW2XXnaPFIegPKlTLzXtypjZp3i0eYRmEwl9yCLosD9Ta1s2nWVTm1iih9QBIrzDP8dPMd/JWZ/MJwOwz7K1yDeqJNIFwSu2JX86nx+x+S9XtWkkNcbtazGzUGHnzKaVsSWloIlNHcd4SeYU7XJvSwYOZBtKxYwZd9Z7+v+YjNaQfCk9WmN6P2ch7rcNOO0pKR8Sp1jRrxEq5iKwEVw+j075eueo37iMarLt0+VfCRA8dv2f10tgmgLfs9/jc5PSdDou8dNgbmfQRAQ6j6F5YHeiBFRyJeOkjypN64TfxAICLqi7bG5bEWi2vUg8p7WSA47p79dyPGVS5DshTtc8t4vsn4TwmvXJ7hSFYIrVUVfRDSwwcULuK+cRbx2Dve1c7jTU3BnpKKxJSNlpoGqYDFrCGr9IsGPd0NjCebS2oV0GTaW8S1FmlhzexkGeP416gT2p8PDVTz/F02+zyboPdcjLMRFqqjBaFYIqBpOrxiVVeev8F2GkVdaBiHoPddwUqkcXpx8mdVJGgY/HU6LXKEbK/BGYDoz/8xiacdoRD+j6f99CUbfk0rM7UNlAOpUyeGQLpj76oWgU33BgpJCVf8ZduUfRaRuBenJSd5C6m8TZvHbsfPe4ug8id92r/Tmnc8mFTlHmfJRhISFk56agnIDj4SY6zFQtPp8PVj8cX0jS/AQJ/9/87bzCrrvPu5swatOUKljdlPFoOBSYWe2hlM5IuodbjYoiCKKcnPNL4tC4vmznPpzDx3f+eCGx5WqFMNv82dSpnIVdHqP57rL4GEMfLI1f6xby32PPQlAUGgYE779ie2/rmHhpHG07drdO0e9e+6lRv2G/LBwHn0GDr6p8yxXpRon9+zIlwd9s1D+lT/PB4NWoIxWJkURsedGo/wXNoqfxytvmRCtl9ELKpuydSRKGpySj7wfcSu8aAW928W5dDmfbLHBz4VojqrOCy+8wMiRI7ErIofdejIUkQBFC3gcHya97zz81kpoRIGMlGSCwyOYHTecXxYm8FjnbggC/Lwggce7dEMAflqQwIPtXmTdiqUArEqYxdzdh+j4xmBCIiKxu93o/aSN/VX/NEUoABYli5zXlgIA2U+FpoiGkQAIfgt+TcEURrekIS0rnJSMIGRZg9HgokLZFMwmHQilip43760VmeQ0C9eSgtBpZaLLJ2M2RQAR5OvQ63eOoi4ASQwHU6XrlATzY/3Gw7R/aQbfzO9DeFRVz8fxSwnfvOUYz3ZdiiiK3NOyLoZQj0qe6s7JN4+qyNSpm82Hk3bRrH4pTGU8ZOar0RE0abuK55+rR9N6HsJbKwo2LYti8fen+WLFJdp39EWPOvynFDO/u8rq3U46POEjyPmU+vyUWkWdL/JWp1Zp9h7N4qUOt17zUqz8+S2khP+TsXnZfJ7qOxB9kC890yioZCsls9tRBoVMCXIUKGdQOegncLn68zh2f7eQJs915qm34shOTSEgzEOqKjcqum7Yex6KhAg4NAVdNWlJnij1iz37ehtsV65csUTn/N+EEN0E8fE3EcrWRL54BMes15EOrcfluvEyVx9emvLP9cHa8lFkZw6nls/l7OrlSLZsJKXwkI+g1VLuvoeIefZFAitEo0huss6fJWn3ZrLPnyb74llsF86g1ygERFclILoal8MrUrNqDMENmyNe169LVWSkzDRErRZNQAj2g1s4vnwSA1YdYXR9vCQqD7+dcSMKEL/NxsNVio6gV7Fqmbc9myfremyrKAp83iGCtl9d4YFqJmLKeexv/SgjKwdWYO7mdKb/nu4lUgDdWocxd0MaW47ZaHWTTcBrRJvZcyyLVg1CiMi4ubQ+8Pi6ipc//+/blf/3RCokIpK23Xp6I1L+JGbZ1x6Py4rZM+jz9ghKly7jHZedmcnBvX/w87fLWbkgAb3ByNBPx+eTu74eouQpIh0z4m2+mTOLF7r3YsjYiV7y9NnbA/lmzkxe6N4LwU9CuN0rvQuNSP03irhvDyrReplaBjd6AU45RQ46tNjvDNcpgKAIK6mXLxZ/YDFQFIW5HwzlyZ6vElE+6obHVmnYFFt6GlXrN/K+ZgoI4M0JUxjbvydlypajcu26CIJA6QpRRJYph9vl4uyxo0RXrwF4PMsarYbQiIibPteGDz3GukUJxI8YQu/3R9/0ePB4cP6tkfLBjIpZUDlzE+mmlY0ymbJAolTYg1Yg2S0QqSt4jR2Z6Vw5dpCDa1fxQPX/Y++8w6Mouzb+m60pm7ophBBagNBrkA6hCYLSQ+hFQUBEBEWKgDQRBAVUFER6J4KgCBaU0HsHqaGGEtLb9p35/tiQ7JIOqPC93te1Vza7zzMzOzt75rlPuU9Jpk6dytX7cdzyLIW1CA6NpVPGs2vdKpp2CWfvlkgAflu3Muv9X9dmP9+9eRPNu0awe/NGXukzAE8fXwcy9LxBkiBd70JSqiepGRpAQOOiw8crBVdXqdCZjjqdkgdxnuj0atw1egL9E5DLC77uA4t7c/NWXL5jbt+JJ7zvF0SufocmDYNyvB+1P5r3Ju3Ay9OZmR++jLdX/q0m2jQryTsf7SO4pHvWawF+Lnw9rQE9Rkbx64o2BJd0QxAEQsp64ufjRHyigTv30gkqblv0yOUyBAF8vQunDGuPXp0q0Lbvj2hcVEx696Uiz4cXw3P8T6JxeB/cvH2If/gQN2+brXeWScRbC/7tKQSJAJXEpQwBkyRQUyOiEiSSEhMBOL5tXdZfs9HAmV+2UKFBMxQqNZcP7EYbWJKOoyfluX1nq22topcrsb8y544dldXmYOr8rxk2blKmMFf+aYL/JiTf8sg6DEFWoQlS8n2s309Ad+jnAosX5S5uFHu1H36tuiFJEjE7NhKzfT2pSXm3ppE7OVGyRTvKvtYNZx8/Um9Gc2rBTO4f3odoMeMkd1zsCAqRpLNHSTp7lBW306jspqCxnwsuvn4oPbxQemhx9vRC6eGDwlOLUq0idd9mjh8/wfYHZj6uAXW8HY8h1Sgx9k89ZqvE5Fb5K+G1reLCgj9TqRiQTZgr+Kv4oK0XA5bHEvl2IMU8bfe9KiXUeDjLOXnTQGK6FW+NjWQ5q2RYrBK+eTT/zQ8D2hejx8QLqJUyBnUs+u+/UBGp/1L7/hmMnj2PgXYF1WBTmnqU5vc4aVn99QLmfvgBAC936MKv567hnZkCY59G9zgEi4n45FS2rLBFwLas+A6DXs+OjWtpF9GbHZm9WbasyGbmm5cvYedfNxyiT/9cJOrZwUtmpaLGhKdcIs4i41SGnJSsG8bfc6GXrFab07/l3xcqPxh0Gfy2YjFHfv4B72KBtOz9eoFzlE5O1GjRFt8AR4WsiqEv0XvMBKYM7IVvYAnmbtmBTC6n0SuvotdlMKrbq0z9bjXV69k8yEnx8fjYEffcYDaZkMnlyDO9/qIocvvSX4R17sbqTz/m1/Wrn+hzm8X/iJQ9fGW233SstXDpUB5yEa1C4oxOQV7R3DiTQCknCZUgYUFAkiT2fDuH45HLAJg6fyFdWjblhlHOOecSuBaBRKUkxLNr3SoA9m6JJKxrd6I2b8ozItW2d3+GTJ/NwPGTs9L/nlcYjGruxfujMzgjl1nw8UjCy1OHWpUZ8RMKrl/S6RU8jNeQnqFGLrdS3D8ZLw8dha1QaFgvhOWrd+c7ZutPx4lc/Q5hTSvnSG/atuM8PQevQ6NR0bJJMD06Vwdrah5bsnlU/bQuNKobQDFfR0ddx1aluHozlWY9d9Cgth/ff9UCgKG9KmEwWmna/Ud+XNqWaiG21dbDBAPF/fOvHTUarSiVsqwCaZPJysVrSUR0CGHGgiPMWngs3/l54T8i5YiI8TPY+MlE9keuoUHX3nQfOw2lAPpCRKSKqyTkAtw2ClglgVpuEPXFVPZt3UCtDj0J7diL49vWUb1NZ878sgWAK4f20LjXIMZt/hOvgMB8t+9iNWOUKRDtopVJ8XH8kLk2+WHFd7zz4ZRc1Y0PHb5Eg/oVi3Iq/hZInkGIjd5EqvQygi4F628LkI6sB4spfxIll+PZrCtlXx2E3MWNhAM7iY5cjinxkfMk531A6aqh9CudKdOuMyo3dxIunOHs4nnEnS78byXYVcH1DCuNrFZMcXcxxd0FwCDPzjpwUVo4l2xl9iUzn9aEmnYk6n6GxPKLFrbfMmC0wvLXXKkekHeqoihKlNYqqOCnxNvF8TP1b+jGrQQLTT6+TedQDZ9G2L7nca9psYgS7WffYuPIEpT0sRGwuFQLAV75p70bTCJqZfa1nWGwcifWSPtGPoxdGM2kb68X7kTZQaJgu2F5DuzK8+uWfAZIjs/2KuZWRD1h7hf8evGmQ1rfyYP7s0gU2PqieBdy8SGzmPAqFkCXAYMAHMjTIzIF0GXAoKzo0yMS92/LCT8p1IJIdZWR+k5GVAIc1SnZn6GyI1F/H1zcPTEVsolebji280f+OriXwZ9+xejv1ucqNGGP+9FXGd2wCrE3r3Fk509YHuuA3jK8J6uOnsNiNjuQnFZdI5jw5WImv9GH88eOAJCRmoqrmzu5IS0lme/mfsIbDWsyqFFtZg4ZQMK9u/y5fiXrZ03h4R2bkthHdnVXRcGj1L78Hv9L8JFZSBVlGAspMhGstmKV4JbZ8eaUkZSQ9Tw+c93vkxmVuvjn9iwSVaZMGTqENeKOScZJvSIz5bXw8ND60KpXPwBa9erH8Nnz+e7IWQZP+4Q3p81i2ZFzvDltFkOmz2b50XMMmT4b4LkmUVZR4H68L9diSmE0KSnu+4CQ0tEU84nLJlEFwGSWceeuB9dvadEblPj7phFS9iHenroi6XV4eWlIzzDkO6bTa6E2EvUY9h26Tq8311GtcjF2//AG67+NKDAFd/ehu3hVW4LJZGX1D1dzpKq8P6gaN6LCOf1XAj/vtskmC4LAqNerMWtcPdr228HFazaBotR0Ex6a3Bc8D+L0jJt9hOL1VlOx5UYi3vqFpBQDU+YdYcrnR0hNt9mzI9ufTBW0IJvyPKTg/JNIS4xnf+QaAA5tXospKZ6EhAQMUsEXY5BaxChCrEng9sME7sclsG/rBgBO/bieZgNH8N7WQ/iUdFRpvHvxHB93bMLm2XlHo2SShJNoRi93vE68fHzpnLl26TxgUK4kKirqEEPfWVzg8f+dkOQqjKGDsA5cjxTcGOHQMqwLXkM6sNJGovKBa7VGlP5oHX493kN36woXpwzk1rKZdiTKEUqNOyE9BtLi67WERPQn8dJ59n84gkNT3isSiQJwlQsYCoie3NOLzL5kZmxFpQOJAvj2LwvXU0XKeMpY/por9QPzX69sOZVBpSkxeDjLWHfU0dkjCAIfdfDm+NRS/HgynRM3bfZOJhOY3NmXgWGevDbnNg+SzYiiRIZBROOUSetYnAAAIABJREFU+/3xdryJMSvuUv6tCzQcd4WhX1zHbBH54LvbfBUZk/W7P7P6CSLdhVirPA/rlf+3RGrRpLH0r1uVRZPG5jvOnrTExz5gYPuWAIRUrc5ny9Yyce4XhduhKCKzWhAVKsZ8Op+fL1xn0peLs0hVlwGDmPTlYn6+cJ0xn87ng0/ns/OvGzkEJV4UCEgEyYw0dTJQTG7lmlnBrjQ1d815e+mfNfTpqaicn1wa+trJo9Ru3Y7SVWoUqt7IK6A4SrWaCRt3UDy4PCf//C3HGEEQeGfW52z+diEbF2Z/t37FS/DuJ3OZNvR1khMSEEVrjv5Boihy+vBBNi9bwi+RG5i5cRvT135P/L27nNi1k7UzJ9Om/5vUDmuBk6srVeo9mbqW2SoV+PhfgodMJE4sXHBejkRJtcgdkwyzJJCeSZ5+mTeFL7o05Jd5UwC4/dCWguOjsskR7/hkDAAlqtbmy+WrsQpyzuiL3vQ3JcFWsPvGlE9YdOgMb0z5xPYZtNlpoh52KaPPM3l6BKNJyfWYUiSkeOPlnkL5kjfwdk9BVshTI0kQG+fK1es+pKar8dWmUyE4Hl+trtCKfvZITs7A1SX/yFfJoJxpuVH7LjNp5q9UquDHyCFNqFKx4BougFKBbgQWc+XQVluK0aFTD3OMUankLJnZmBFTD7Fqy9Ws1yuX92LSO7Xp+c4f6PQWRBGHmjywRZyOnIlj1uLz7Dlyn5M/dyXy69YcOxPLhh+vMvvrk4wbHkrDOgH4+7pQs8qTXTP/2RVHuHn70Di8DwANuvbmlyULCAsLY9ns7DrcdDvnyyMISLikxxNjFNj1xTS+iWjCvIXf0CU8AoBaHXri6qVFkiT+XPI5YBMh6jXzK26csjnqDm1eS1pi7sX9msw2wHpZdrpXUqbT+f3Z89h+/jrvz56XY15U1CHCuw9j0RdDnuBsPD0kwBJUH134Ksx1BiBc2oX8u67IDywGQ97peABybXG8hy4gcMTngMDdL0dzde676O/k3ktK6epGuYjXafn1Gsp17knc6ePseW8wxz+dTPKVi090/DqrhLoAo/ZHrJWxFZVU83R00omSxMH7Vs4nSoxr6FwgiQIo4aWgZgkVm4f6c+m+iZsJOR1SHi5y5vTwo+/i++w6ny2q0bCCC70beTDku3u2UgAh550qwyhy5paByZEPuRVn5PjciiwcEsSO48ms35PA+j0JjO5VkoqlXKlWzpXivkVXQ30UkcrvYXkOxED/X6b2JcfHsXPNCgB2rlnB0LGTCpT1nTVmZJbYw0dfLKLnwMFZi2tzIRqvCVbbRSplenkeEbQxn87nDbtUvRc18vQIAhIBgolSchNOgkSsRc4lsxKdJMP6DxcTx92Mxq90uSeaG3vzOuf27yZi7JRCz3FyccXN24ekB/cJrl6TB7dv5jquXLUajPtqCbOGD6bb0BFYzWaGtW+JQqlEJpOxZNY0PLRa4h7cd5h38sBehndpz9dbd7J+8VeIokjJ8iG81Lot6zNvvge2fY+XtxcRb49G7ZR/3UVe+K9GKifipcKl9ZVUiygFiDbK2f7ZRxzfuo4ar3ThzE5bes2pH9dj1Ov56/et3AmPYNAHkxAz04G7zPyW9s2bUEpj4Wi6AmMhPNP2WD51An+sX0XLnv0YNPUTB/L0oiItw5U7DwMQkCgdcAeNS9EizCaTjDv3PNAbVHi46/H3TUelfLo766Urd6lUsUSR5kTtu0x4/yVM+aAVc77aQ7cO1bAX1jl47C4N6+aeblUmyJ34RAN6g4U61Xy5djOFhrVzkrDm9QP48qMGzF16nr6dyxGXaKBepx/w8XJCp7fw2Xfn0HqpuRerw98ru3Zi446bDJpwiD9Xv8zGHTdRq+TUqKSlTbOSvD1xDwCLVp/Dw92Jae83eGIRm/9S+3IiYvwMWr7xDgBT29o88ns3r6fRwHf5/bsFHN+6jtBOvWg98qMsFb49X05lzrYNNGjXiTM7tgKwc/NGoqKiKNtzBHIP2+/+kV0ZsuxHSla0RUdf6tyLoz+so0HX3rh5+5CWGJ9Vn/UIXpIZK0JWROqLCe+zfdUyXu33OuPnLMh1rZSWls70GQvYsvlbGrz09zcrt4fV2RdjqVYYS7XG6haEkHwbp5/ewXL5SMGTndxwazsITVhPJEkkLnIBSX9uyhTDybn8VWg8KN+2JyVf7oDCxZV7B6O4Erma9JhbT/05LqZZKOmSe+wi1SxxLd1KEx8ZpTU5z+/i82aSjbCwqYJ6uZCoBJ3I2dt6apZQoXW1za/gr+RGggW1QqCcn5ItJ9Lp39Ad7WPbf62WhpgkM/N/TaBWaSceJFto9cktinkoSEi3suFAMm5OMjYdSqZ9TQ1umYqgX/ySwOc/J/DD6CCGLbvPkSsZNKqkoUkVd95dZDtfX38fg7urgqGdA/n1cE6nQUEoTI3U85Da90IRqYRMaWl7RS2dKZebplLDK30GsHPNCl7pMwA//+ybUpLBMWXDZLWSHB/noJgnc/fkZnK2BHZeoUNRkrJkh2WSiHNCAgq1hqTHc6BdNVmy2IWBfQqEmMdzk530pMEs5jomN0nVx58/PicvyJEoobBQRmHBWSGRZJVx2qTirvHRZxUd9me0OyYHBTS7XVnz+QFIdgPNdl5le1n0mJs3cfINJC7NMZx//k62d8rHw67I0i87evXz2tXUaB9BnEVN6l1Hb5b9scvtpNKsVglRruL8rWTuxaXg4+LLubvp+Lpl70Ojth2LMjAYbWAJPnlnKI07dqVUxUq8OWUmo15txeVzZ3it/yC+mT6Jmo2a4pQpYJKaeY18OW0Samdnzh46QPHg8jTu0IXIr+ZT6aUGjF26lhIe+ReYFgTLf0TKAQZJIEOSUZhaPj+FyL24BO6kqji+1VbwfWbnFqq16cy5X3+gapvOnP/1BwC2Rm5k0NBhqDXF0Pj4oy1ZlorOVuLNAteNMpR29zP7BU9qQjzudiQpNTMK9cf6VVl/w99574UmUgajkoeJXqSmu+KkMlCy2F1UyrzrTx+HJEFCkjMP4zQgQFDxZDzc81bYKwqu34gltHa2DPi16AesWLOXgX2bEly2WI7x+w5cYfb839iyZgiLlv7JmLeboVIpQLTZgn2HbvL510eYM7k55crk7L9z/XYKIHHpWhIZOjNuro4pV9dupbL191t0al2Klg0DmL7wDBPmHCOkrCcdWpaibbMgBo/fy8kLCfTuGMx7Hx/h9xUtkGfKRj9aaEz76iwyQeDwqVg6vVyGwT2r8O3aC3R5JZiKwV4MiKiS6/EVFv8RKUekGmzXs+TsCUDTzj3Y+8MG6nfsQbLekmU/jm9dR1q6jsu7thLSsiOX/9gGwKEdW6nYqiOXdm2jc3gEuGuRTHLMVgmZTELt5YNcqcI9sHTWPjuOmUaHt0bh5u3Dpk8mceD7NYRF9KXvpI9xz5T0VxkFEuISUXkUIzk+ju2rbCnH21ctY+SEj7IcvGq7VPfoSweYNCGcJo20YM5eGyE8toS0i3IJdo1+HzmaAWR2r0t2aqcyTXbEQu6lweRUhnTvtujd6oAgR5lyAecTc1DHRCGIZix2Ta5VLo7HofKQIdXujlSvH5KTG9LZnUh/fIVb3D3cbF8HOn32vd2ocEPTog+uLfogqJxIP/EHSTtXYIiJpjiAF1jtHF9KWfYaQWlX4/S42ISLMvt/yy2JRv5QzdeI3K6Ny5kkiQ9OScwOlfFSMTlgm+PkZlsXHH1gZc1VI0PqqAmr6ozaJ9uBqgz0Yv+lDN74Nobl7wcTUMVWLiD3dsHTYMUk3uOYzIPTMbeJ6FqWoJdLOSgGypRq9h57yII/buHspGR7ggcZeivDertQs5I3gyYc4GSKCwarwIbTFoaOD8ua637uBJDAd6cF0oyQ7luKcu2rM8rzLjt7b2XCiLp8PKE5UQdvEz54G5FLOgIXKAoKVSP1n9jE34dhMz6l57tjCpXa4unjy6t9B7J99XIUKhUhNfJuHGbfr+XrDz9gx5rltOszEIAda5bTtUdP+s/KW0r9RYMMiZIKC8FKmxJfolXGWb2KOKsMnrGceVGR+uAuxSpWf6K5MRdO0ez1kUWeJ8gVSKIVk16HKp+GwIIg8M78b3gnrB5+QaXw9PGjTOWq1G3RmrKVq9Kya3d+XP4tJ/fvoWGmZHqZkEq4aNxo1aU7foElqNQkDLClbbl6etJ99Lgn+qyP43nJK35eYBAFdCYpa+EDkG6wuwHaGepP501jz9aN1Hw1girtIriwYyNV2kVQ5/UJVO4+AmcPLWaUXP51E606dUfr7U1ydCr6lCRk7n64yiRiDDYVJENyPK5e2iwp47qdegFwbKvNo9z5g2msnv4hB75fQ6NufWgc3of9kWtoHN4HmasXaZnHqLQj+/bP1Y91a5TlEWnIy1lj77e0V/nLS/7cAfYLLEU28dcbZMTFqUlNUyGTSfj66DJT8Dwc5wh2csuCoyqeXq/n7t27GAwGNBoNxYsXR6UqbMetgnHr7ue071AXnF5i394f6NJtGpEbphBcqZrdMdk+d1TUaT75fA/jxw2kSbOa9H9rLRMnvw3utuOP2nOa8Nc38f368ZSrY7NVgp2ketTe8wwathG1Wk2Z6i1JN5/HM7AaCr8qYNURtf8q4QMi2bKyH5VCywKwdmkpWndeSMd2nqDyYPzck5QppaVjh0a80bc+36ybwsU4f+rUtEXVatbzpXTJK3TsUI9JVUvRolkIACUqpOPu9iO7D91nxPAOlK/x5L3poBDy5//jNqfDe1OYNnIo5+R+3DLKqPZqD85t30Cl1p24+Lst8nT5j22EtOrE5V1biYiIoMabk9CMHEXz0lp+jpc71FOmPLiLi6c3CpVjytSjSNSB7231WVEbV9PxrVEITko8fHyYM20K2zaso32fgQyfOSdXVePHERxcHDe3nGn0e/ZfplnjkGd1irDIPNGrqpNRsgYmlwoIVh0ud7fj8uBXFIZYLHE5+z/aQxJkWCu2Rwx9Hdz8IHo/4u9fwYMruU9QqHBqHIFHq9eRa7zQn/ydh9uWYH5wM3PAsylTkCSJDDNoH8tuOxEvseyajUSF+uTc19EHVkbuNmIUoX/NnKlxBy9n8MY3MSwdVoLGVRxrrhVyAbNFov+0i/hp1TSu7Z1j/v4TcfQec5j1nzVAkimZNO80gf4uhFb3pW/ncrwz/QiXopPZsqg1Hd/8jdh4Hf4+tuugagVvalbWElY/kFGDatG8oc3eFPd3xVfrzJghtYk6cIvwN38kcklHwhrmr4ic+4l7MezK/zsiZe/NLWx9wMO7Mfy6cS3vz1vI1mXf5unpXfjhGH5evZz2fQfSe5SNRAFZfwE2b1hPp/c+xOMFTNtzhIS/3EqI0oxrpmTrNbOSJFHO89CgPiMxjugjUTQZ9F6R51rMZmKvXSKgYrWCBz8GmUyOaLVi1utQFlCfpfHwpESFEIIqhHD89x38tn41E5euyVp81m3RmuN7/swiUr7FA/ENKE5QcHlCmzUnSW9rHLJn6/eUqVyNMlWKfry5wWyVHLsf/49j7sfTqD96ZoHjdMkJ7Nm6EYDT2zfSf+1eQnsPx8VTi15vwdnD1selweAPqdl9KM19QDJkcGHnZkrUaoCLUkZyYjwZKl9+WzCVUz+up0bbLlmqW8cyPdRgq3Fo2K1P1mLowPdrmLnrOO2GvJsjVed5hyhCSqqSxCQ1er0CmUzEV6tH661HoSj8dWixWHj48CGJiYkoFAqCgoJwd3d/4lS03HDhwgXOnr1E69ZNiIo6xMyZq4jcMIWwsJo5+mFFRZ0mvMcUtkROoUnjajx8mERiYhohITbit3fvGcJ7TCdywySaNckpTBG19zzhvefw/eoRdO/3JRaLSHq6EY2rzdO+7+A1wgcsI3LF6zRpkL0ICSnvh1wuo2SQF0vXHGbi+2358P22Wcf3SuvK/Prn5SwiVaNqcQxGMy2blada1Wxxgg8mbcFosvDL5hGENXn6xfB/Ean8oRMFtFotmjTbeWgx4iPq930bF08tMqU6yynTdPhkGg4cxeDK3sgFCbWvlqsZ8NBsu86vHdjFsY1LKFe/GcEvNc11X27ePjTKtB9hEX3Z9vU8ojauzlL4BPh5zXJ6j/4gV1XjHNvLhURF7T1Pz4Hfcv/qZ091XiTkpAnVSHGvhUlpuz4Vxnt4xK7HJWUv0sOcNYO5wRpQA1PjkUi+IXD3LLKfJiHEnMKqyyXSLchQ1X0V53ZvIfcKwHDxEIk/foX5zkXM5me/LD6RaLvlVrTjOifiJcadlJhbV6CWNqcNOxFr5d0oI+/VUbLikhUPtaNj7OANIzN2J9lIVMWcTt1D51KwWCVWTq7E0E+v4Ors+Ln2Ho9n+uIrrJ1Tn6Z1/TCLci7fSGXm+7XoPXo/bq5KXJzkzJ1Qn8Z1A3i5cQl+ibpD/242W9G4bjFu3U0n4tVgAotn95/7/LtTDOtbjVMX4ugx/JcnJ1GARMG1lc9Dat//K7GJtTM+5P3mtVk748NCzzmwczu3r1zGbDIxd9RwOr3+Zq435uT4OH5ebSNMj/4+ikS16zMw63lERAT+Xp5P+1H+VbgIInXVRmqrTYjAMYOaY0YnksR/Njc6P8RHX6JYhaq4ehe9MNqQkY4gE3J48goDmULBkZWfc2X/76hdC06xq928NRePHqZVeC9uX73s8F71Bo04e/hAViqnIAi81ncg21YscRhXsU5drp87TWpi0XOMc8N/ReGO2Ba5kfTEeAfVvcehS07AxVNL1fa2gu+2XSNw8dTi4qnNdXzMyf1kpKcx7/PPObR0LiCwd+F0wsLCWDz9Q079aFNcPPPLFmq07QJA3U69sqJSDbr2xr9sBRp1sxWrN+pm60nzIpEoSYKkZCVXrrlz954rVqtAMX89IeWS8PfTFZpEWSwWHjx4wJUrV0hMTESr1VK+fHk8PDyeKYkCOHz4MK+8EsaxY2cI7z6MSRP72UjUY9i//yzhPaYQucFGogAePkzGy8vW6ylqz2ne+2AxkRsmEdYs5/xHJCpy7RiaNamMUimn/5BFHDl+HQ8PZ6L2XWLixz8TueJ1whqXd5grCAK1a5Rg6qyddGpfHcVjkcewRuXY/lt2QbyTk5IBPevyzbKD2fvfd4VtO87g5enCS3Ucld+eFAUXhf9v2ZXHYZEETCK42t1GH9mPpsMn03/tXpoOnwyAk6cPx1MEXOS2RtyHU2zX+YnNK9AlJ3L/0ln2rfiS0K5989xf9/HTmbfnJB3fGkXURpuKbNTmTbzcuSsAr2b2lIPcVY3zw6Prd8PyN4s0zx5WyYkkWTNuKUYTp+iCJDjhofuJgOQZ+N/4EE3Sb8jE/NUzAURXf4ytp2Ls/DU4e6L6bTKytYMQYk7lOl5W9iVUb69H03s6UloiqQvfJHHhcMx3nkxEojA4lwJh/tlN1U8liIw7KTGrtkAtbc5l+PE4kcVnzcwPUxOgkeHp5GjnDt4wMnhjMlO7++dKovadTmLgjEvIBFiw8Q4xsQbcXLOJ1N7j8fQdd4KpI6rStK7N6a9SyWnZoBjX76RRLcSLDz87wfr5YTSua2vT0qxeAHuP3svaho+3M6+2KMWyTZcc9t2sXiDrt10hfOjPbFz02hOTKMiukcr38RzYlf8XEalHNQR7Nq3O+vvGB+MKFZGa/mZ/SlXI7onQ9LXOuY7z9PGlfd+BWREpTx9f3vr4U3qNyk4f7PPue1RVSyRbTRgUzy7V5J+CgEQZhYVySjMicMGk5I6l6PLM/wRMujTUmierFdJ4eqEtWZY7Z49TunbRlO/KN3+No6vm0/PzVQRWqVXg+HI1arF4/Ghu+vnTqF0Hh/eq1muIyWjkwrEjVH2pPgAn9kVRJdSxM33pipWpXL8RB7f/QNt+g4p0vLnBYhURnoew4nOCV8N7sGvpFxzZspZaHXrSdtQUIJs87V04LctbHPb2ZEa+NYxaJbQsi5Hy/G0cWDiZOp5TiYy0Ncu9dTSKR+XKR3ZuzaqlCu3Yi3ajp9Bm+Fg0XrZF1StDRqLJJEzdx0/nlSEjXygCBZCRIed+rDMGgwJnJwuBxXVoXC02GfJCpmJYLCLxCSYSE68giiIeHh74+fmhVhfdAVJYpKamYjKZCe8+jMhN39CkcS4S0HtO8+ncTTkiVVWqlMZisbJq9W+8P/ZbNm+cTNOmNXLM373nHN37zCVy7RjCmlYFq45+vZqwfPVeDv8xgdiHKXTvv5gtq16nScOcYjr7Dl7j96jL+Pu5c+b8XTq84pje7KN15cSZGKJvxBNcxnbd7NpzlRGDG9uOf98VwgcsZeu6oUyZ9TM//3qO8M51sj/fPseFUWFhKcCmFPT+/wIyRHDNQ0nycafM5QwAAZ0IGVYBtQL2LJ5Nw34jssb4lqmQ7/4eZeeERfQlauNq2vTuz6jJU5kwcgTmUiEUrrGAI/bYOwEa5N8LMTdYJWeSxDokS7UR5Wqcxat4WregSDmeZU0LlvcCSeGMoXpvjFW6gyShOLYM5ak1CBZj7vO9g1C2ehd55eZISXdJXzkW06lfM9/8e2MKGRbwylwSnkiEJddhVm2BOrmk8x2PExlzxMpXLdTU8ZdjsEhcSbCSpBfxcpZx6KaNRC2J8KRhSE4Stf9CKm/Mv87KyZVZ92ssJy6lcXB1Q7zcbbVR+07YSNTqWXVoXMdxjVy3upb5yy9yIyaDGaNq06xe9vfbu3N5KrfaxJwJBrw9bVHzPw7G0KtTc4dtBBXXEH0rhXkfNSGsUSmeBhIF2438au3/KbzwEalHUaifvplHs+4270yz7n2LJPvrofVhwAcf8kqvfqjyuUkP/3gO605eZPjHc7Jes9+Pu68/JpkCJ2v+vQyeR2gEkQZOBkJUZuKscvYZnLhtUT6XJAoAQYbV9OTn2cXDi8QnUOKp0r4XEd9sp2SNl5Ar8m9QB3D+4D7SkpNw8/Kmbe9+Du/JZDJe7TOAn+xSQ1t3jSDqpx+wPqYUee/6NcpWzbkoexKIUsGP/yX0GjKcI1ts/d5O/biejKQEor6axtKeTdj12QQu7LCl813YsRFdcgJpLj6oZeBfgK/E2UNLRIQtglWlXQRNOtqeh3boQfsPPuG9rYdoN3oKQBaJArJI1CO8SCRKkiRiY2O5cUuD1SqjRGAGZcuk46axFLqXk8Uq8OCBnitX04iPN+Lm5ka5cuUICgr6W0kU2H6TBw+eIHLTN4SF5XSyRO05TXiP6UwY1zvXSJWzk4oR7y4kcsOkXElU1J6zdO8zJ5tEZWLaxG6cPDADo8lC9/6LiVw1NFcSFbU/mk/m/U7jemV5GJ9G3Vql6Naxlt37V+n95ip6dK7JklVHs17v3a02G7acwmg0Ez5gKZEr3qBZ4wpcuvKA0FrZi52ofZcI77eo8CfMDv/ZlYKRYRVwlRfuRIgIXNYJ3DHYfjgWk622zr1YIBUat+KV92cUer99J32c1V/OKsjQarXIxcLQFUdERZ1m2MjFOa7fwkCUFMSbanHd+iaJUn1chBuUMC+kuHU1LlJ0oVcaEmAMDCO16xqMNfqivLUHp/U9UR1bimDJRXBG6YTQ4i1kb0UiC34J8y8LMH7eyY5E/f0QBDCJNhL14Rl4K4RcSdSpTBI1p56cOv620KVMAI1KICZN5FCMmTl/ptlIVJmctnD/hVQGfnad5ZMq0aSmJ/NHlWfHvOpUK2/LKdx3IoGxn19g9aw6NA3NeV/Z/MttLkan0qFlSUb0d0xH9tM60yi0GGt+yG6/0KtjeTZtz5aQjzp0lyHjdqNWyenfrdKTnSw7SIWwKc+DXXmhiVRKQrxDFOq1YaOYu/skvSd+XKj5927dBODy6ZMAONnVvNg387V/XhBBMyhUOFnNyJ7ASP0bUCJRWWmikZMBZ0HilFHFKZO60M1J/y0EVq/LnTNHuX50T5HnXjxykITb16nWplOR5wqCgKu2cP1hEu7f5dLxoxh1Olp264FTLuIUL4f35OBvO8lISwWg2Wud0Li7s3rep9nbeXCfxPv3CK5ecASsMBBFCas1/8f/Ety8fKjXxdYsu1aHngCc+9nW/PLirq2EtLJdJ1Xa2dL5Yow24x3iKiHLRekv+U40AApjOhMnTqTZwHdpOnwygz+YSFRUFK1GfgSAq1fuaYEvKoxGIzdu3CAuLg5PTxPlg1Px9DAXmkBJEiQmqbh6zY34BBNubkrKl9MQFBSEk5NTwRt4BmjZsiWpqWkolTmTNfbtO5tV89S4cU6Rm0kfLefBg0R++H5K7ul8e84S3msmm9bkXIQqFHIuX7nPqPEbiFw1lLAmFXPO3x9Nt4Gr6BtRl1t3EsnIMDFkYGOUmfKP+w5FZ9VUjX+3BSs3Hsea6c19641G3I5J5svFe4hc8QZhTSpw6swdvL1cKVPatqDas99GoiJXDS36iYMCbcr/ml3JDTYi9WRzE27aFqwPr11EEGRFTk1/1F/OItju7c7mgtPm7LFv/1lmz1nP4q+GFYlEmayuPDTW52pGP+JMDXARblFKvpzi8p9QE1vo7UiAqVg9ksMWkvbSBGS6BDTbh+G692Nk6TnrqCSZHLFmF2TvbEPWdBDShd8xftYB655lBTbufdYI9YYfYmDxVZhVk1zT+U7Fi2y4buWz+nJCfbPfX3PRQmUfOXqzxKITRsY2d8uVRB28kMqCrQ9Y9X4wTWra1DfVKhk+njaP38HTicxbc4NP36uSg0RJksTabdGcvWxr7D1jdO0cadP7j9natSxe91fWa+OG1WLX/rv8+PsNYu6nc+VGMuPeqkP92sVwd3M8xph7+QuF5IWCbIr4HDCpFyq170Gq7eLPUulw8nBQstL6ZZMce2WphMyifYB7KdnPd6yzFXcb9TrWffEZ7y1aSXyGPqtfS/MIW4Rr98bVWRKiBSFZklEdkGekESs43vwLm9mQl4qW/fzCvJ7XGLNVQiMTCVZZKKlP37R/AAAgAElEQVSyIgNumuRcNCoxiFCQEp/9hWufn5qXxLr9dW4va/54bzr7cSo7eVB7tTG1MvMm4OdHu3cnc2zdN1Rv0sLhOGSa7EhRUnp28sLmazZD8FfkT5QN68zDNAnS9Dg/VoRZu1R2yqCH3XsX72c3rLPfn84kIkkSX/V9BZWzCx5+xbh/5S/SEuKwZsq7qsrV5vx9myHRqLPvpGqFEm2JUuw/dorilapj1GXQZuREvnqzJ9V72Bof3r8di0KlQjSbUKkKjoIVBOs/JH8uCIIa+BpoBXgD14AJkiTt/Nt3XgQoBYlOY6ZRr8/wLHJTrX0Pzv28gWrte9D4rUnUHzg6K/XGKApE6ySquEEpZ4kzaXDSaPM4+qjBLfEvtmzZQvny5YmJiaFE/RYA6K22YvPyaSJX9M9PveHTQjTqEVPiuZqRikwmIzAwEC+PosncpqUrefBQg9Eox8XZQvHi7jg5/fPnqGrVqnwwZiiffb6ERo3qZr2u0xkICNByK3otLi45SZ1OZ+DsuRvM+fRNWraonev7JQJ9uHV1BS5OOZmlTmekRKA3+34Zi4tdM+C0NAPVG8/C39cVN40TSoWcN95Zj15vsyv1QktnzjcR4O/GrbNTcXFRgWhEQOD+g1RKlNCiN5j5YlZn3p2wjfffaQVAYlIGggAWixWTyUrxAC9uXZjtsP+ioCCi9KyI1ItiV1L1NpGDdGO2UzVBEglxgYwMMwZL9vmwb3nySLbe9jz7Wtn56VgATm5ZiUyu4JX3pmXdG+0VOu3vL57O2fcLVztlS71gRaNPRRJdkMuz5bQVstwdqGm6OnTpFk5kZCRNGufjJM5Us5QkyDB6k5BRijSDHyDhropB63wVJ+ujWuHHHIuC3T3fznEieLiicw4lzbU1ZmUgctNDPGO+xenenwh+EvgVQ2W3rpMQkHvUI6NyfyRNIMrYszjv/whl/F+Yfa3ga4vOWOy+F4tdGx2rKft1+/WK/bpHrsj+XuSq7DWC4jH1UHnmesX/jhnxoo5iWgVtG2iQ231fggwO3jbzwal0vuvsRr0Stm3IPWzn4OC+OFrVdGfYr0l893oxmtTLTjeW+9rWKvvOJPPeilvMH1uNpnW0KJwdyx4OnE2n9/izbPiyJS2bh3D7bioNO2ygbGkfPNyd2Hf4JqlpBiQJQsoXo3zDntmTVVqbsM6ITWza9ANt2rTBWuILoo1ykuWJvDOjFZ+uWcHXmxdTPwR+WLuSFNZw1GkmZvs07hIA31AUSFLBDpjnwa68UEQqN0SMn/HESlbtBr9N7PXLHPp5GyaDgUovNSAlIT6rX8vuzAJNyJYQdS+gd4tRkJMmydFi5p6kptDu2H8InjIrwWozAUoRqwR3zHKuGRWkiY9+2P8+uy8sileshiEzklMUZMTeotQziu48gi45kfSEOPrNXULyg3u8POQ9bp87we6V31CrTUec3dzznKsNCCTx/l2KV6pO1Lpl7N24EqslW2koIDiEag2bsOXr+fQaU3ghlbwgiv+YF0cB3AGaAbeBdsAmQRCqSZJ08584gMJAI1iJSzNhUrpjyiTeoa9PoErXITh7aMnQWUDlYfubia0ZNhJV30dGIy8IdRcQJXBWCFC6I9E3bzNhwgR27tzJ4G1nADidBiVdBEI1IikWgQTRbtFi5+kwy+ydCNnfk1qRuy2R2Xkk7BdUjy+K5LLcnRN5yaLbz7YfIwiCbaVkyMAUnwyGDBBkyDy0yD18iJMrkKyNc90mQLzJbgFpMWNNfICYkQoKJfj4oXPWEG0WyC7gyD7v9sdh/3msYsFeqsdlcvOSzfWt0oKYHYe4kBaATCiePb64xA0AHRjtfp+mzDTcq3cmIZV6jX0Jtsar9h5dF4UCikGqCGqT421XKZeDCxAMMXav+zgJnL92BoXTUubMW8L9+/cJDQ1l7dq1LFu2jA8++AC59zDb9j3A2wcM2B6xBit+Jb9nz4OXqV6yATOmj2DXjz/g4eXFOQYDENAcPIqdZ+K3evq+NRJZsEB2snPRazELsinP0Oa8EHYlN6RlXjZuCjAUvm0aAL0XbWXVG+1JuX8btasGV8+cctaFhc7FA4XZgCY9EYPaBamANPXo6GgiIyMJCwsDyx/5b9vgyv3EIPQmDXKZCR/NdbxVF1DJbX0Srfp8p2dBQka6og7Jvi2xKrQozPfwjPkW55TDCFiRclmrmLyqk15hABb3cshTruN+cCLy6P3/aoHC4RgLb/+qp1dVNXfSctqpI3fMDP0pnUWvabJIlD0uPrBgFdL57vViNKqQUz1x35lkBsy4yJpZoTSpkzPLYc+xWIZNOc6GL1vSrL7Nnv11JYEyJT2YOrY1ew9d58DRW3RoV4Pjp27xyZQuDvPthXXCmjcnICCAmJgY8C3FpLcHc/rIIcpWzE7ja9OtB+u++YI/tm2haYfcNQeKghfBrjzf+Vv5IC0xPuv509QQlK1qS9EoVbEyMpkMD60PLXvaalmaR/TNikqFRfQtkEQ9QgIqnBFxLVTJ5D8BCa3cSn0nA41djGjlIpcMCn5Nc+KUXmVHol4syFUqLObCh+gl0cq5tZ+SdP0CPuWfTkrckO5I4ESrFUkSyUhOpHrrV/EtHUzMX2dpFDGA1m+OyndbPkGliL1pSwfzL21rBBrarqPDmJ5jPuT3dSsxGYuWjpEbrKJU4ONZQJKkDEmSpkiSdFOSJFGSpO3ADaBOQXP/SXgoQCXk/MyP5MzzwvV0WHdTZHm0lb+SJS6nSmy7bWXxNZEJ327kp59+onSTV+1mCBxIlZNqhaYeVjR5FJ0/1xBFSE2A+9cR4u+C2YDg6YsssBwK72II8sL55iRJwpoSjznmGqIuDbmnHwSUQXBxe+ZKfEWFUq3CZCj878yg1zN5yACSExMoE/J0dQGpdo3gHyEpU62ze/fulC1blmPHjjFnzhyGDRtGdHR0ntsqWbYcN67a+ueUrVARZxdXWryabVcEQWDMzDks/+Jzh4jIk+I/u1Iw7IlUUSGTK/AtZ7u+mgx4++kORBBId/NBQkCdHAsFlCIEBwfbSNRj2LPvfNZzg0nJ7Ydluf6gEmariuIe5wnxj6KY+9UsElUYSAiky2ty1/l9EtTdkYup+CR+TbH4GbikHEDIZV1lcQ0iueYkkkNnICrd0Ryfjeefb6GKPfqvkqjj9y0M/0XHwrYuVPKVY3yMPB+6Y2b+YT2LXtPQsKQjmU3UWXnlm4ek6EXGttfmSqIOnrWRqBUTK+VJonqNPsC8SQ2zSBTYnG8376Rw604SXy09zJYVfYi5l8ymlUPp/Fp2RD1q73lmzlqXLawDlCtXjsuXbVHFMhVC8PDW0qhlm6w5CoWCtyfPYM3C+UU/YY9Bkgq2K8+qj9TT2JUXcgW96ZNJTGxdl02fTHrqbSmUtos3/N0xWa8N/GgmC/aeot/kmfSbPJN5e04WKq3vERJRIgLaJ9LEeZaQ8JFZqa820sDZiEYmccGo5Jc0Jy4alRil5ytaVlRkJCXi6mHLBU64fR3Rmr+L7+G5gyRFnyVs+qZC1znp0tM4uXsXx37/BX1aCpIosmfFVyzo1IDlQ7qQnhiHUZeBm48ffeYu5ce5H/HHdwtsBO+R574AlK5Sg5vnz5CRkszqSaMIfaUT4eOmO4zx8vMnqEJFLh8/msdWCo9/q5ZBEAR/oAJFbW/+D8BH+eSfOdYAP98V2R4jci5ZItUC1szC8MqvOQqMmCWBqBTbKqqJmxllLgTuuYQkIdOloXx4GyElHhQqJG1xZIHlkXn4IOTVmDcXiPoMLHejsSbGIji5oAwsh9zLF0F4Pm5HiXFxWY1Joy9fRCwg2rVz0zqSExJYt/cYLoVUEk2MjyPql5/ZveMndBkZmM1mpr83gnolfRjwamsS4+MxGAxUrVGDb5avplu3bnz55ZdYrVYEQUCSJKKiolizZk2e+6haO5Szx49y48ol5n00nq79X2fkZEeBggpVqqFUqoi+9FceWyk8Cqxl+Jv8is+zXXkcT0OkANLjbOnpVVq+9tTHIsoVpGu8ESwmnOPuoEhPtjlKcoGbW87rOmrPaQYP/46EZA+i75Tg2u1SpOs98PO8S4XA83i7xiATCq/UKCGQJlTljvwt4p16I0hm/AzL8UuYg7PxfK6EyKLyIbnMMBIbfInZsxKuV1agPTgMpzt/IBRQovBPYMwuPQvbulC/hIIEnYTWRUCUbCp8B2+bGLo9nXfrO+cgUQBTd6Zw4b6Ztf1zJ1H7/0pj4pIbNhJVw9Zy526snh37Ytm59x67Dt2n1+gDVKvgSddhv9F31J88TNBjtYq83Kw0/cOrMHj0Ft7s9xLNGpVFQHCI7kTtPU94n8+ZMK6Xg7BO3bp1OXr0KJtXLWP9km/oP3wk/d8Z7XBsoU3CuHXtKinPoGXLi7BeeeFS++w7dh/4fg3thz5dg0q1swuCIFCzaQuH1+2jT4WNRD2CVRBIlhR4Y+a25PSvpPd5CFYqqkx4ykX0osA5g03KXMwMiv9/QEZiHPcun+f7j0Zy5dBuVC6uvPzOJMo1aZvr+Jt/bqJs616oXHNPs7MYDaQ+iOHCrRTSEuMpXi6E1R+9j2tmWl5ScgpOGnesZjNvrf+TlcO782XXxtR5rTsdx86kZNXavLVsK1tmjmNBzzYEVamJPr3gAssy1Wux4ZPJOGvckCtVvPxG7t7G6o2acfbAXl5u266QZyh3WArXkNdHEITjdv9/K0nSt0+6T0EQlMBaYKUkSU+mr/w3QZLAV2VLiH5WcPbywclDi2dQcI730q0Ce1PktPS00lBjZm+aEp5XdUxAsJpRJD9AZjIgKtXgEwBq2429KNEjq9lESlwslrQUUChR+AU9FxGox/Hw/l127/iJkb3D2b/rF7y0PsxctIyXmjbPMVaSJL5ftph3p8/G2dUVcy4LUV1GOndj7vDw/j2S4uOpUKkS7w/oTVDZYNJTU1i2YC5mkwmtrx8Hrj+gaflAGpT2Y+L0mYwaO56Wbdpy8OBB+vXrx3fffUdQUBBHjhxh5cqVHD58OM/PUT30JbasXo7PlJnI5HIGjnw/xxhBEGjYohWHdu+iQuWiqbA9joIaY2a+H/C/YldyQ7rFVgv8pETKN7gSosVCKa0HckHkgVngaWyHWe2CQRWIKj0JVXoiki4Fyc0LXD2AvNP99u6/zP5DGWzevJX78QqcVEaK+cTh6XwXhbyIOYtAhliah/JmmAU/lNJDfA2rcbGeQ0DKNa9HlLmQFhROhn8bQML51jZcb36PzGy73z4vK5w5rZwJDbB92XdSRdaeM3EvTeTAHQsWET5p6UK9oJznec8NEz+c0TO7oydh5XPWZO7/K40BC24wbXBZMvRWNv3xkJJlzPT/8BQ1Qty5eltHzAMdAX7OBPg5c3FXBJVabWTDT9Gs/7odxXxdWbzmLIs/68z8xQc4cOQmarWClMxas30HLhLe53Mi14zOIaxTv359PvnkE9Qe3nhpfQgfMMgh1RlAqVJRu2FjTuzbQ4uOjqmCRYEkFWxXMiPdwf+mXXnhiJR9x+5HTSqfBg1f7cSGz2cRe/tmVlrVs0ACKrzR4YGFlHwM0rOGiyBSWmGmhNyCURI4Z1Rx1yrHIj5fi5VnAf/girR+axy6lCQiZn9HRmIcp37cQLkmbbGYjPy+YArpiYnIFEqsZiMpd64S+vZch22kxcZwalck9/86SeLNq2h8AyhWojjOrhpWTfmA7iPH0OHN4TZVm2+X4aRxo2KTl5EUSlSZKnwB5bNlQt20vvT/bCmHN6/mp8+m0nd2wVLCXv4B+JQI4vdlCykRUpmYS+cJqZezxqR646Z89tYbxN+IJqRGLQa8P/6Jzlsha6TiJUkKzW+AIAhR2PKJc8MBSZIaZ46TAasBE/CUOSnPHsmWp4tI5YaQNj04s2kRJl06ri45G3THmmUczxB4SWOhlquFM7p/zkYUBXKTAeeUhwiAxcMP0cUNpaJotw1JFElPjCc9MQ4JkHn6IvfwQcijsP3fRmijpoz/dB4xN2+wcfchDkf9yQ9rVvJS0+akJiczbdRw9DodMrkMXXo6VouF0CZhDtu4fvEvfly9nPPHj3Dn2lWKlyyFX/FAlCoV00cOZfL8r+nSdyBmk4nIZd9SPKgkLdp3QC6X4+rmTnJiAhXs6g6Cg4PZv38/kyZN4uOPP2b//v1s3bqV4OC871mVatRCr9Px69bv8fUP4ObVywRXrJxjXMMWrZk94X0O/rmLxq3a0HfYiFy2VjAKWctwX5KkvGwG8P/HruQGCVtPIbcn/LnX7vY657+ZRJi7GbkA90wyTmY8nSiLpFRj9CqGzGRAnZGMLCUeKTUBi4u7rW5RkriXImG1WhFFkcQEFR5ejejYUcDLPR2tZzLO6swUe0vRSJRB8iNBbEiGVB4lCfhZv0cjXUC0puc6XhRU6Lybk+bTAUnugnP8HtzuRkJcTK7j/208IlEAbcspKeUpY+8tMxV95JT2lHMj2eZ4uZcmMukPm5hVkkHi5D0LlfyV9KzjKMhx4qaB+UsfsutMKkqFwKJt9wn0UWG2SBy6cJWVH9fGzVVBvwknGdi1LO2bBfJy4wDSLSrUKjkWi4WkZAMjJu4mcvGrhDWvw8BeoQx+dzNL1x6nRrUSRO27xOwFu4hcMzpXdUaZTMbx48f5YOZcTh4+QHJiIs7uOZ3T9cJasmTWNHZsWEPrrt1p061Hkc+fRMFrlUzfVbQkSfnu4O+0Ky8Ukdr4yUQixs94pk0q1c7OlChfgYT7954pkUpGgRGBsui5JMnQC3+PApWQmb6nlVnxllnQyCRECW5ZFVw1KbE8x57up4VnQAkaRLwO2FT09KnJ7Jg7EYvJxK4FUzFlpFOpTTesFjNypYqynYohV2YrUkXv+YmjKz+jcttu1B8wCr8K1VA6OVOjhAYAQ0Y6/j62RbAgCIR2zFayMYsS4R8vYtXbEdRs1zXHsdXv2hcv/0CC6zYs8HMIgsDQed8yu29nDOlpxN64liuRKlezDm/OnIu3szNLZ89A4+5RtBOWiWel2idJUlhBYwRbuGEp4A+0kyTp3853zYF4s0CQk4RKANMzSndVa9xxKxaELiEWL5+cRArgulGOm1yikrMVpWDmvE6B4TlJtxVEK2p9KipdCqJcgUVbHIrYZFySJHQpSaRnqlc6adxx9ytGsvR8ksZHqFClGhWq2GooZYKATC5n9aIvEUWRsYP64hdQnNadu2G1WFCq1ZSpVMUhqrZp8VesXvAZ4YPf4t2ZcwipXgtP1+wFkUWvxzUzVUqpUtF/+EiH/X+9cSsThr3OK685NvAWBIHp06cTExPDoEGDaNw4b0EPAJVKxaLvf6Jv2zAMeh3XL1/KlUiFvfIqMrkcmUzGrHGj8S5CD0Z7FKiuVcgaqf8vdiUvxBqhjAs4y0FfxHTHmmVL8PbCr8mwSFw3KajibOUVT5EbFoi2PF1kW1Q5IbmUQDIZENKTEPXpttopQUaKTEBm5/gwGW5Rs7obSiGlyPuRJBmplrIkmauiF4sjYMJHthd3055c658ARMGZdNdmpPk2Q1R4oE4/j9uNlSj1t4HCNfD9JyBJEr1+0jOhgZpqvo5rvjoBCixWiQ3nRT5q5oJZEph7UIfJKjF4axoNSypxU8PGcybGNHKmV+Ps+7soSszansiK/Sn4eSqZM6AEvZppcQrIJjB6pQtnLqcwfv5frPu8EU1Ds8sXPN3VLJ3djBlfnWLzjqtsXvIqTesHATa7suizzrzSti4e7s74+rgRueY9NJpsNcdHSEtLIzg4mD///JNOXbpiMZu5cfUSleu8lGNs+5598CpWDFGUmD/+PbS+hSuncDyhBdsVsZBrmb/TrrxQRGp/5BqaDRiBxtsHucYbnUl0kPq0LzpLMWQ3ZrM34Eq5o6HRmaw4aTxISkomISP7nBktuefX2st6P76tR3iklnVMcCZUpSeEdI4bXUjJ59duL0+e13azIaEWRYKUFkooLPwfe+cdHkXVxeF3Zls22VSSEHpHqiBVIIEoqFjQzxJEsWAXsWCvKPaCihVUrCAKRCx8FvRT2RRAivTeAwkBAiE92TJzvz82yc5md9MIJIG8z5OHYe6dmTu7s2fuuffc3zHJrkitbFVmv01PhlOHTciln4ervVq1q8rOr9MogPmVW9ecSxHuSjrNeo9AjXy59jPTPvMV26FVHNNuBxh8q5I5Kv6AgqLo0GcASR++SNq/qUz6+g+MZu/YYoCcnWtZ/827TP7kG0LadvEoyyuTU9IFkJnrFrMIC3R3ADek5ZG1/xCBkS3JdeigVPTCqXnWQnvHcrQEKLF53OuRfPdz5t4fzG0ffUfOoQyiOnTheJHnyN6B467F79HnDEcvy1z32kzevaV2U+aKwimRPy9lJtAdGCWEqKZe06llYx50NMOoSPjlkEDFU45Ya8jtDvfz7qGWp3neA0tlu83BoUiOAswG3zMvqhCsK5SREXQKUGlntHPAoSNdNVJQmsdN+zvSPvuBRrfdC9TkPDJo1ipVVO0zasq8VPjKjlccGIvy0BcXuMJqzBYcIZHoNape2s/GoUkc7SwLaxOCjJxcyMtGUhwIYwBExVAcEEixA7TvJn/pGrT4UxisGE7iq46WylT7tJ+VotlvU1VaduyMJSSUp++7i4z0Azz/xTfYNXWcqlqeYiPll0Us/GIW035aTEybdgAUqiqOIvdie6NOR2GhO5WCth12RWHL3j3EdOzMisPZPu/pupfephD4PT3b772WfxeRUUxb9AfZhw/RvntPdme7z6m9butzhwHw0IzPmDKudkpbp0qmuJQGb1fySly/DafGZtgcKklHYEIHidhm8Mdh789EmxakTP5cQjAgVNAnUGXTlt1sN8cQFNOaYyWC7kY7nQ0OIvUqOwkkPNA94GE2uH+3gZptg+Z519oFSZLAZAaT2UMVs3uwu46tRIfJ1N71H+dWz8YLTSfH4NnhcSpGjhW2JbuoNYoIwCAXEG1aTrhxGzrJjupwOw66ANfAg1MEkRPUj1zOQWAiUN1BmPM7zKY01M46oAPgSsGgRS1w9//UYvc7PKBYY3sK3YIywu62JUJTR2g7QZptSSN5LmlssRJg4unQImK7udovh7j7H0t3FHDPl7v48rGziBsUic2u8mjSKqZuNxHaMphLrm3Du/PT+fDZrsT1DUMyu7/HjxYe5OdtdiS9jg9eGkxcf9caTp3JUl5nzfocbngqifkzRnP+eRXy3JnbsnzLHnbty+ODD59k+HBXeTYXlldpd3Ex2wE6wSq7HUp1b/Jt7s8yuygXpFCICuXeL36kKD+XzJBW7Nx8oLyOtu9SHOlaWzV08ms8ckMCNUVQdwM01aRWdqVROVKDrxqPpQ5moSoSFBJKYV7NR1aqoljI/Gt3OVP9jcX8U2KiqMaJbgWBkiBcVgiTVYIkFYusYpBcsdaHFR0Zdj3HVNm1/qn+11fWK8OuuYHPH76DXqPG+HSistPTWPPzAjYs/p7rnn2Nll26eeT5qAnGoBAKjmZiLyzAGGSp+oAqCApvRlB4M4rz83DKlSdcjGjRmie/+4unKhrMaqCqarXkok8USZLaAXcBNuCQpsN+lxBi7klvQDU5ZJdIPQ4jIgRXtoTfDkNuzcP8vTBaQrAXVr5GTiDxb6GefQ6JziYn7YwK7aRijikyaU4DhZzk9VNCoHPaMdiK0NuL0TvtCCSc5iDUoHCEoQazUEJAcT7kHkVyuhwoER4NAUENLg1ETZAkiWtuuYOXH7qXGx94BL1ej93hOVC5d+tm/pj3NdYfF/Lcl9+WO1G1ITgsjPTdO3HY7RiMNZsF9EWz5jE0ax5DXvYxzMEh6CoJzWzfrQczk1Zwc7+aqw9WZVPqyuY0Frvij2w7/JsNAyNgez6kVSFoF2MUDI8QRBoV9tlkHn/hZa564iWCYlpjR2K93USRTtCRYs6mgCxFR4nu5M36mkw1yzNWbA8kO7clOUUtEegINmYQYd6JxXAIYffd77KLUI6rg8kTPRHIBLOFcJZjUA74rN9Q0Osod6K0pG7O45nZ6Xz5WBdie7tmkUxGmfGjY3jj6/3cm9CKCS9u4+vnezC0t9uhXLkplzn/zeDHJUeQJIlv3uhf7kRpSVqRyX0vrGT+jNHED2ntXZ66jc/npNK1cwzD405MsbiMiJatiaA1+dlHUQNCPGYsK9Ky9yDGf/4Xs2+ofBbdC9E47EqjcqT+8+gLJ+W8psBAivNqno+oOhRpnKnBJhtr7UbySp0eXwRIKjE6lSBJECSrhMgqAaUzPXYBBapMpqIn1ymRqeixCwldw1xqUC9s/yeFdn0Hs3tVCkfTdmMODcccHIqs05F7+CBf3nc9Z1/0HyZ9NJeWnc86oWuFtmpPRNsu7F+7jM6xF1Z9QDX5+c0pKA4HF056HKEKwlu1xZfAZkA1FcIqogqogZhSrRFCpNGQVRQ0bC6QKHYIRkbBda3h54OQfoLj3IaAQGxVOFJlFAmZDSVGttoEXc0KbXRO+plslAg7x4SebKGnRBgQtXVIhEBWnOgUh8txUhzITgc6xYFE6cif3oTNEo4zIBih0/lNzunr3NiKXA6Uw4YwGBGRrRq9A6XlnyV/Mvi8Ufw89yuuuu0ubIpCaLNIJEli79bNPH391Vx2821M+/E3WrbveELX6jV4KDqdnl0b19O9/8CqD6gmr951C226nsWYW+/EYDTSrGVrn0IfllDfoahVUVV/pq7GbhqTXfHHsmOCDhaJy1tJJB4QHKqgtm+UoE0gdA1W6RLkUvtLztOTbpcQOgPFFfInZmGkEB1nUUTLkhwyTaEU1zAUty5RVInc/GiyC6IosVuQJIXwwAyaWdIwiYzyehXnEkrUKI45+5GvdEFCJUTaRLhYiqF0eqShjxP7+j2lbs7jlrf28OUTnYnt5bmWyLrmOIN6BDPjuwzmvdSTLq3NCCGQJBFUyDcAACAASURBVImUNdlMmLKJMSOi6NU5mKfvOovhviTOV2Ry3WQrCz66mBHnejtR1qX7uP3h3/jhm0lcd+ss0tIO0759TJ3d83u3XUPvC6+gR/xoV58kyPdkR0BIze2KoGq7IRqAXWlUjtTJQAjB1hVLuf7J50/aNQqFzL/2APobixkSYEMVUCgkclWZ44qObFVGLws6GJzE6BVkyRUCVyRkjisy2aqO46qOQuFW6PEKa2sCgL3rVzN68lQyd2xi5i2XYTAGEBTRjEFX3cT6xd8zZNxtDLn2VppZ6mbETghRJ7NRWjJ3bCE7fR+7V6UihMBpK+Huj76l4znecci1Qameat8Zx44COGqDS2MgoY3E8mOCFbVUb1WcDjI3r2bg+Ek1Os4hJPY6jexzGoiWFdoanbSQHLSSHagUUyJk7MioDh0OScYpyciSgirJKJKELLnCgHSqihEVveLEUOo46TRvHEXWoeiNOI1mFIMJpzEAIevQ19TxsZcg5R5FshUhdAZERAsIDD5tHChw/cbXrVjOR7/+zaKvv+Cac7phMpuJbt2WMTffxoIZ73Hncy8T/5+r6ySniSRJqKpKoA/J6doihGDPlo1sWb2C5Yt/Jq80xO+dxVbadDmxAaUyTnFoXyNA4K9f5lBh4QHBuLYSV7WSmHdAkOuALhboHQatzKCTwKbCmlxYnSdhMcsU5+eStWcHMZ26ep2zCB0bCeJsuYgWtlwyCQXDyV2PmJS8gRHD3VERNoeB7NwwjueFogodJkMRLcL3EWbahU4uneb3seqk0NmCLFtfitS2yNgJl1YTLq9GLxUinNXPFdnQWFrqRH3xcEdie3muaS62KazfWcCgHiGMHBjO9c9uIcAo0719IDdcHMMrX6Ux+Ya2vD0njbmv9yf2HG8nKmXVIa6bbOXbd+L9OlEJd3zHd3PuYURsNxxOhdBQ94xZbk4OoWG1GzgBKCnI51h6GtbP32PNzwvIO3IIgNvmWrFE1mJNVEVE1fLmdRzaVyvOeEdq78Z1OGw2zho4hEL7yRvvKBA6UorNROgUgktnmqJ1Cq317rAyu4A9Dj2ZqoEijdPURPUozMkmO2M/Lbr2oHXPvpx90X8wmoPYv2E1a39JpMuQ8zh37C11ek1bQS4BwbU3RL647OHnWfNLIpv+/Jke8aPZYl3Mmt9+aHKkTgHZDpifDsMjYVikTIcgwaIDgpwaLmXfvyqJsFbtCW9Tu9kJgcRhVU++akRGEIpCM52CCdX1pyroy8ZzKwlDFIBT1mMzBCAMJpx6A4rO6JH3qVby44rTlU+qKA9kGTU0Cik4DBpILqi6ZO/2bRhNJpq3bsPtj0/h+kmTwRTAautf/LVwAWMm3E78f7wFZ06Egtwcgms5M+QLSZJ4aPoM/vxuHiv/t5iBoy5i1Z+/s+rP30+ZI1XdReGnC50DYVclYXuFCixMdzlTY9u4BkHMOolcB6zLgX1FkKVIHtErW/78mY4DY7GE+04W7kQmIyCMViU5tLDlkq3XYTN4y2fXBVbrcq674VX275lPXn4AeQVmCouMSECIJZ9mlgOYjQWuMRWHt5ESAgqcrThq60+R0gIdhUTplxKm34jkrN5MfkMmdVshk2cfcjlRPb1V7T5dlImiCp6a0I4hvUMpKFYINOlYlHqUH5OyuOHSlrw9J43ZL/X26UQlrzrCM+9ucTlRg1t4lZc5UYmzrmFEbDcURSU/v6TckbImradIH8i5w2oYbqfBFGRh/AvTSU78mgMb/6Xt2QPYv2E1GZtWc1b8pbU+bxnVWSPVEOzKGe1I7dmwli+fe4zzxt10SnKZ2JE4pOg5VO47CYIkQYROQVElDjp1KEjVEJtowhfblifTecBQdKXrOkyBrpmidn0G0q5P3YXIlFGSm01B1kGCImqncuWPjgOG0nHAUGI6d0dxOug2/AL6xo+qs/OrQiDVUTbw0xG7gN8yBXsLBCObS9zSSebXgyrbqxn9m75uOcs+ncbgmx+ounI1UJE4jp4iyR2qE2jUIQmBHhWLTkYnVGQhMEggJAlFkkFvQJF1iFLnxmNRea0bo0JhDlJ+tqsnZAlHhESArDutZqG0pPzxK7EXXAy4HJKg4BCKHA4GnjeKgeeNcgs71BEH9+3BbishOCy8Ts87+MKLGTDqIr5525XzKu7yqxh0ge+ce7Whqtm4upita0wMDhXsK650nIMch8uZGtNS4nAJbMxVybS7ByP0pUJLQgi2Jf3O0jkz+M+z0yu9riq5nalmhdkUmIIoNAbV2eyUogj++WcjS6wb+fWXn9i+2+XwGw1OosKPERGSg0GvgNOPhLnQkWtrS3ZxZ4qdzdBLBcQEpBLCemTJ1Tlq6CF8VZG6rZAHvjzI+/d08OlELduQw7S5+xk3qjlDz3Z9fsGBru74lSOiiAzV88H3B5n9Um/i+kV4HZ+86gh3T/2XWa/EMnyQLydqL7c9+F8SZ11D/LD2AKxcvZfWrcKRZZnUpZu4Y+I7/G/5nSd0n5Ik0f/i/9Bh2AX8NWs6lohIzr7yZjqee37VB1cHUR27UjeXOhEalSNVFs6mdTSKHYpXOXgqh2iVjcrWE21ZauWb5x/lgnueoNsFl3PguFuZpOIxWrTX9ifsIEvV/WYlCoVEoVMuldn1Xgnjz6nS7tcqDGqVvfzVr3hO7b36e2i1n62Hgp/qWzVRu+1P6bDiGgytOl+Qyf1ohmi2w81uSc6KHZhf1qRy0ZjLGNTe3QEp1iwK1z4Th/Lc4QI7MjwNfnaOu8ygVQl0ahXbYP1X02k1+BJyHBZyDrsW1ASaNappmns1apR9dNrvzu7+bAoriF6cfdWt5ds5TqBUQfBEB2DsNgc6cXLk+E8ntuVDRrHg0hYSV7bRsTxL5c+MypM97lryIxsSPyJu4jO0G1hpupwTRkgSDnTYdNVT7TshnA7kwlykwlwkoSICLIiwyBpLojdGUv+3mAk+ktmeLD6e+hRjJ03GUMNF/dVBkiTGP/wEUPeOjd1W+bStYm80CuV1QrAezo8Q/HrIvU+rimsoVfPMFfDtIff+UIv7N1ymSpw8eyZb/lzEHW/OpNM5A4kJ8fzdBWlESSyl28VmM3LBcSy2Qiy2QkSx0SUAo9Mj642g04NO7w7nFaorn54QCCEIlh04HA5sNhvpucex21XsdhWnUxAa1o5rrmlDoNlBcFAuIZYiTEYnkqqZgtMM/KAPpsRh5nhBDMcLolCFAZO+kJahGwgzZyBLKqgah0DVhPMp7sWqQnG/w1XF4XM/gHBq1PkUu2a/e1vV1PHYrzmvtpOnVfCTNAvTJY0gj85oJnl1FrfP2sXXbwwmfljb8jJZ56qXtCKTl+ftIzjYxAP3DCGwredsU9KKTCa8tJLvPh5N7MAWpce6neCUNfmMf/xXEj8dS/x5mgFioyuUzpq8iWvvnsv8b18gPv4cANblDOC2R4Zy51PTSD0+FHoM5Yuld7KxsBgKswA4VujuA2sVrLXbxwvc2wWa/lR+gZPoCya6tgsdbNrpGnXMPe7bma4uqhBV2hVHA7ArjcqRqitUVeW/77/OtU+/QuuB3tnqm2h82EtKWJ30N3c/9/Ipu+aRjcsY8mjVCXcbGg6Hgio1lMwb9U+ZPLlD08nRl+5zAj8dURkeAUOiZNpYZFKOQpbdXQcgyKQDewl7tqXw6qdziGrRCielax2RyVZkQPKbhkArc242uDtSAZprBOjd+7UOU4BGhc2k2TbWQv5cu18IFYoKoDAXUVIq1222oFrCXRLJFRB+OuaVddj9DVjVtE51nILK6mjLtNc7fjSL7RvW03/YcA9VKq2UdIlGhr3Q7u6Q5RT7lnmviHagqdjm4N+kJSS88C7bDvsOb9I+N9qBM38DYtrza7crDkSVOE7MsXI4KrcpShXlpxvLsiG2GQwMg1U5tT9PYU42y+d/zmNz/0tkqzbVPk7IOmxh0dgVJ/rifAwOG3JxAVKF1fna/x3RbGdptvV6CaNRpiA/mx9+XMQlo8/m3MFt0VG55KCiyuQVhXE8vyNFtlCXgIQ5iwhLBoHGXE/H6zQgeXUWNzy2kq/fGMTwAd6RKmXCEG88OYgpb/1Ln+6es02pqw4x7r6/mff++eVOlBbr8nSef3eNy4ka1sG7PHkTCTe8TeL8F8udKIDsrCOk793DZdeOJ8/eeNacCSGqtCtOP6mKTiVnnCOVn32UeS89id5opNfwUeTUNCNeEw0OIQRvPzaZAfEjadY8xqNjczIJat6GrE3LCW/V/pSEhtYVisOJkE7NZ3Q6oAiJJccg0yaIbwbXtYECJ+wvUVEFhBogVHYQYtRx87tlYTeen2+eIrHXoeegU4/SgNc+CiHAXgyFea71T6rqGrkOaQZBoaA3uEL6zgCcTidTJt7GlTffSoDZjF05+e8KWacjomUbti5Lomd83YXdnQqcPtbBaFGqKD/dWJsHkSYY0gycAtbWIsNK5s4t/HfaFHqed3GNnCgtQqfHYQl3r4tUVfRCBcUJqrNUhEYCSSLU6ArRlSSJYL2EwWDAaDSikw9itS4nYexEvps/hWFD2+DSpva+niqgoCiInLxo8otDEULGoC+medg+woOOoJcKvQ86DUj59xgTnl3v14lKXulyor54PY7n3lvHA7f08ug3JK3IZNonG5j3/vm+1zwtT2fsxF9Z+Pl1DB/a3qs8KWWzy4n6+iHi4/t5lEU2j0FRFTasWkH7Pud4HdtgEVXbFecp6u9VxhnnSH3/5gsEhzfj+uemNarObxO+EULwxesvkbZjG9N/+PWUXrvNsDFs+34GoS3aEtOn9gs2TzWKKhANYIFmY2NbgcS+AkG7IOgQ6FpMrgpXzqnVq1aS4wBz9wGoARZsAvSSy8C2MKp0NDrpE+Cgm3Cwy24gzaGnwYjJCAH2EigugKJ8UByu9U7mYJfzFOA7qfXpjKqqvPTQvaiqyn3PvnRKrx2bcAPzX36Ku1q2pVXXHqf02idCk2pfRST+yhLogLhIMOsgOavKg8pRHXa2fPsRY2+5k65DRhAhOXDNawvCnCo2SUdxbfJFyTLIeigNSZM1M9VlycQBQjSnzs8rIGHsRBIXzGTEcO88RkJAYbGJvDwLuQUhKKoOnewg3HKMsKDjmA1Z7iWU9T+BUOek/HuMG59ex9w3BvueiVp5mMffWMtX04YzY+42unUKZfKtvdzlKzIZd9/fJH44ktiB3tLkKStcTtSCmZf4dKKsKTuY+Eiiy4ka3sur3Ol0csPd93HXVZcwd9laIpvXnfz5yURQtWqf2gDmQs4oR6rg+DG2LrXywuIVGM3eoSlNND6+nPYKy/9czLT5PxHgIwHvyaTN0MsoPprJofWpjcqRcjqcyJUugW7CH8Wqa+3UtvyyheASx/Zu5/eXXuC2r34nHx0WUZqiQLiUfg849Rxw6ojQqZxldNLT5KCDwckep4FDyimeoRLC9eZxOsBRgmS3gb0YSXG61n4FBEFoJARakGSd5rAzpxMshOD5ByZyYM9u3vn2e/SVJLA9GZw3/jaOpO1ha+qSRuVIVTVyrJ5hoX3gEopZfFhQrMCAcDDLsCHXlWbBF0ZJ0N6k0tqk0kLn5Ja339CUapJNOVwnyJONZBlO/ntv9+40EhfMJD5+CKi7XU1wSOTnB1FQGEBBUQCqKiNJKiFBBYRZ8rCYTm/nqQybXeXGp9cx5+W+fp2o8Q+l8vVbw3lv9lYMBplPXx1ePpCfulobzuft4Fj/yeD1metYMPMSn8l2rSk7SJjwGd998ygj4np6l1vXou/YhXufeZ7tmzaw4q8/uPT6m+rgzk8+omlGquGx6ueFdOgzoMmJOk1I27GNX7+Zzad/LyM0wrcc7MmmzbAx/PP2Pfz7+Qv0vnYyZlMoUl0u8j8JOBwKsq+YjCZqiOtFuP2vn2h7zrkeI7u+6mYrOlaU6InUKXQzOuhltNNd2MlSdRyXDOQIPc66dKpUBdlhQ3bYkZ02dE4HKA4PxUah04MxAGG2gNmCpDujXgk+WZliZe0/S5m35B+MgfUzGzf82puZMekmigvyuOjOyeiNJo81Wg2RqtYynImOFLjEaaxHoViBwRESPUNdznqOU5DncCXbLRGCFiZoYQJZUihRYcXqDew6nE2H+EtRgdAAPSoSKhAVbCTUWUIzZzEWm50CHOSZLOUKnXVNx45tMZuDyMtzUFwUSH6hgZIS15SVQe8kNLiI4KASgkzZ6ORS+3KGfN3ZuXbmvNyXOB/JcpNLnai5b8dyMKuE47l2/pw9ulxoJGlFJq/OWOc/nO+fDMZN+oOFH19C3GBvJyp52U4SJnxG4pe3+XWiEq6dwu9bbwPglgceYfINCRw7fJjrJj2AqqoN2q40rZFqYOxZt4olX3/CQ1/+UN9NaaKO+OGzjxlz06315kQBmJvFcP7zc9mc+AG/P3o5qsNOu6EX0WfsPYQ29zaMFSnOOcY/X00nc/Ma2vaPpUv8pcR073tS2+x0quUys02cGHuW/cmepf/jxpkLq33MUUVHarFMlEEQo3MSo1OIkUpc4THIFKgGiiUdJchIQjNjJQQyAp0QGIWCjEvG3qRISEIgCxUDAllxonPakTUxD6pOjzCYwBSIqje4lKYMJtDpm0KcKzB35vvcNGkygRZLnUubV5cWnbry4Jz/smj6S7xwybmoisKAy67mojseIKxZ1fbuaPp+vn/3NTJ2bKNX3EgGXPofWp/k2S2nswpH6hSsMWvIrDgO63ME0SaIMkG0GUL0EG1yhf0dtbvWVR1WdPz5/XzWLvqWOz/5juOKq6Orxz1Q45RkjhkCydWbiHIUEWorxGIrotgQgBAWFJ0eVafHWwfYTfbRLDauXkm/QUOIiHLNpKiqiup0oDidHMjLJi0tjejoaBRFoChl4idmzGYnqOl8Nfsb3nj5OvfM0xkUvnn0uJ1VW/Lo2zPcpxOVuuYo077YxbfvxBLbP5ph1/7BlHv7ljtRKSszefnDtTx73zk+hSVSVx7k5ff/JXHGRb6dqOX7ePOjVSycczvDh3bxKt+0aQ9ffvUrS/56D1EqjtNvyDBm/Z7EW088yLc93wVJ4qLrb2LsvZOBqsNEj+3bwYqv3qEgK5NWA86jQ+ylhLRsV+VxtUUIUaVdqar8VNCoHKkyKVCN8qRfCXItOcdzmP3U/Vz99OsoITEcyXerKWmVwE0ahSytMpI/pa3qUB0Z9Yr1tPfn73hZrrod2ktolcCqK4tcUyWsmsrpVrw3bbu0qmQWjbSrobSOw25nyU8L+fnfLTQLCiKnxB32cLzYLZe644hbFWjTPrcK1rr1B8u3S4o84yy0IyBBFncyQ0uwe1vWfEmhoUF0vPJhYuLGYQ4ysT/5B3554noG3zmF1v3jve67TFJdqCp/vf0kwdGtGPXoGxxYs5Rfn7+H/7w+m/A2nTxk7e2aZNFSNb77ylAVFeT6H8Vp7OQfOUjSB89z6dQZBIbWNOePRI4qk6Pq2OYQxBgFoZJCmKQQjY2yQV20AkvVEFsSkoSq0+M0BoDBhKo3oRqMIOs880g1OU8+yc46wprlS3n9s6/ruykER0Qy/sV3yErbg85oIvmbz3j7hjHc9NLbdO5/rt/jnA47Hz98Nz2HxXPBTXeyzvon791+Lc/+lIQppG5zU2lRq3gZV1V+uhFSmhdI+x7W62RKgAPAEadcrkljNriScGOAgsyd/DP7Ax6b/T09OrpDxYI1cvjBRq38eThO1YlcmEtgcQFSnvv9J+t06PQGdAYDZoOrPUIIjhzZz5Z/1jJ0cD8ipIM4Dx3C4ZA5pHr2DUJDQ5ApIDDQRoDJTmCAjQBDAXKpgZr2wmWgaNQlhSbMStLM0OuCNduaCxj8DAoIbefYvS1p9uu011IrGEdFowaoat7vilvoQjjcfQahGXTSSqkLVbOtGQjIL3Iy6PJEvn3vPDp2a+Vun+z6jK3/HOT6x1axYMZFjDi3NRu2HiU7185lF52FLEskr0hn7H1/M+/DCxk+1C2RLpXOKFqXpzPt4008+8hIVx4ogyY5tyESa8pWEm79joXzn2F4XG8AsqWLy6vsOV4Mrfpz79sJlADHC9wy5DZLKJPe/4zMvbvJswt+n/U+910ykjHPTCemi2uwJVsjeZ5fKnluLyrgl+fvo+PIsbQd1ZP9K/7it2duIu7F/5Kb7/6M83Ldz19xkZ8Y1uoiqrYbop4Gu7Q0KkeqtiTN+Ziug+PoNvQ8Cmz17702ceJkZR4kJDScZtHN67sp5QRGtiIgQOasK+4iutcQ1nw6BWdJMe2HXeyz/o6/f8JeVEDcxKeRdXqiu/TClp9L6sevEn//i4S1aHlS2tkU2udJ63CXg1ydgQDtAMi3n33E+WPHc8H5QzxkqLWS5QBGjdOtHSzQabbLnJxiQJFlZNWJTnGiFyqSqgKuRetCkhGyjE5vAEkGWUav05cuINdh0shydw2q4Cypqe5tbSdE22nRdn7kTuWb2U63YtjhkqqfHe1nWVnAo+cAUtUDPIrmpelvEEdUc3DH12zTnl07adu5C5LRSInTSaEmD50/mXPtOyWvxF0nV6MI66ykM6AdxPfVXjmyDZIkMWLiU7TuF8vnT9zP5U9No33/IRi0kv2lz5n1yw8JbNacIRMmI0kSA27ozoE9e/jy+Se4aPLzmEud/oqTB+oJZrZsCu2rPUIT0vvd2y8zZuKDNG/nLW/tF2MAqjEAwqIwqoorj5LTToBwojgdOO128oqLkCQJm81Gbm4JQ4cOxmIJRFVsGA0KQYEODHonu3bt4/kXP2PKk1cxZHAHZBkPe7F8+TaGDD6rDu++8bHnQD7fvneen3C8g4y773/Me/8CRpzrmknasTeHvj2jkGUJ6/IMnn1rBfM+vJD4c1t5H1+qzvfDF+OIPbetV3ny0m0k3PgBiXPuLXeiaookSbTs2BlToYMbXniL1b/9xLeP3ML1b39F807dfB6z7tv3iOo5iE4XjgcgoFUv8g5sY9uCaTQfeSeyMcDncSdCdUL7HI76d6QabnBkHVGUl8uKH79h1B0P1HdTmqhDMtL20rLtyZtSPlHCO51N77GTSF/1t986u5J/4ZxrbkfWrEvpN/ZOItp1YeHkBP54/RFyMtLqvG2KU8HpqPyvico5mr6fTalLuGDCXXV/cklC1RlwGM3YzcHYgkKxBYVht4TjCArFaQ5GBAQhTGZXuJ6hNLlm0yzTCZORtpcWbRquXek0eDiDrrmZncv+8ltn45+LiJ9wr8es48i7H8cUaOGz2y/nl9cep+DYEb/H15aqbEqTXamatI1rOJq+n9irr6vdCSQZyWRGDgpBDo0kLKYVzVq3J7pDF7p3786hQ4cYNWoUev1x+vZpTudOwXTqkEu7Nvm0jClk29YVXP6fiTzx6MUMG1LqRGmwJm3k7vs/OfEbbeR0bBPsf01TqRMVf657IHTv/jzatw7GujyDayct5qVHB/t0olJXZpSr8/lyoqypu3j2pe9JnHMv8XHd6+x+Blx8Bb0uuILd/yT5LFdVhbTlf3DWZbd57O8+7gkcRXls/vB20v77DkpJ3Urbu8QmKrcpSgMI7TvtHakNf/1K5wFDCY2uer1KE42H7RvWc1bvPvXdjEqJ7taPI9vW+FQ8E0JweNs6WvYa4LE/ICSMYXc8ztXvLMBkCSHlo1fY+scP7Er6Gaf9BKfJS1FUtcq/Jipn1a8/MOCiMZgtwVVXbqLRsH3DOs7qfXZ9N6NS2vQZyIENq32WFeflkns4kxZneUogh0THcNnjr3L927NxOuz8/dHrbPxtIduTFqMqdaN6VZVNUZvsSpWs/nkhsVdei95QC1nzKtiyZQsJCQkkJiYSFzvIq9xqXcdLr8wlcd4U4kd4r9O1Jm0kYfzrfPTenXXetsZGsMX7+0lakcn4B/7ycqIA1mzKIsCk49pJi5n/4WjiBnlHm1iXp/PKB6v9q/Ol7iLhlq944ZmrfDpRq/5ZfgJ3BG36DGD/hlU+y/Iy9mIItGCO8FQVDGrejrNvf43O17+ILTuTjD8/I3fjHxTsXlFHSq+iUfRXTn9H6u/f6Hvh5fXdjCbqmG3r19DznH5VV6xHgiJboDea2Ju0yGuhtSRJmEObUZLvO+V9cHRLBt1wL4ERURzctIodfy9i4f1XcmDt0vI6R/dsq1W7mkaOT5z1f/7GoEv/U9/NaKKO2bpuLd37Nmy7EtOlB8cz0ti5fIlXZ8VkCUZVFJy2Eq/jJEkiok0HRtz+MLJOT/qm1az5fjZzJl7NwS1ry+ul/bvU69jqUKVdaQAjxw0ZIQQb/17MoEuvPCnnnz59OomJicTHx3uVWa3rSBg3lWeeGu/TiUpO2UTC+NdJnPv4GR/W54uyPFBz3x3p5UQBpK7K5Kc/9jD/w9HED/EdznftPYt56t4BPp2o5GW7SbjlKxK/uJnhw7xD76xJG3jonhOLjmjTewDpm9aQtm6ll10xh0Viy8/x6RxJkoS5eQdaX3Qniq2IkoNbyV7+LekLnsSRvb+8XtGOlBq3qXozUvXvSJ32a6SOZRygeaeu9d2MJuqYvdu30uXhJ+q7GVVy7sQXWT//A7b/NoehE6cS3dU92h3Sog15mQcIbeE9hQ9gDo1g5IOuZKB2u8qBf1NInfkiLXr2p/cVN/HXGw/Xqk0OhxNJVLZypYnKEEJwND2Nlk125bRjz7YtdOruLSPckNAZjFw+5W2SP3uH5V9/xJjHXia6g0u1S5Zlwlu25vjBAzTv5LvDG9aiNZc98TqKcD3L262/8tPU++k6fDTdzr+MxW8+Vat2OarI9yKaHKlKKSksQHE6adbCu6NdFzz44IP06OGt3JiSsp6EcVNJnDeVuFjvNTfWpA08/tSXJM59nPgRvb2FHc5wklYeZNx9S5j3/vk+w/X+SNrPwcOFfDX9Cp9OVMrKDK69ZzHzZ4wmdpAPJ2vpPl794B8Sv7iZ+NjO3uVJG0i4q/I7SgAAIABJREFU/hW+/n7xCd1HUFgEFz3wHL9MexpL81YMv3cqIc1d7TFaQgFwFOZitIT5PD4wphMdrn6CvNxihKqQu/EPshZNJajnaEwte5Kz7Isat8m1RqqK/HQNII9UlTNSkiRNkiRpgyRJeaV/yyVJulRTLkmSNFWSpIOSJBVLkmSVJKlnhXMISZLskiR1rLD/S0mSfq672/FECEFe1mGCm3ln4m6icWMOslCiUedrqER378+o5z6nT8JdLHnjQVZ+OQ1VcSKEwFaQV6NztekfxzXvfo/BHMQPD42l56W1i6NvmpE6MUoK8pF1OgKCLPXdlCbqGHNQUKOwK12GnMetn/xA34uvYvYDN5A8ewZCCBSnA1tR9dcpSJJEt/MuZcKsRRTlHGP+Qzcw4s7HatWmJrtyYuRlHSY40juha2Uc2LOLGS89R9ruXT7Ld+/ayQtPP8nunTv9OFEr+HDGj3yf+ALx8d4zUenpR9m56yAL5z3hcqKa8CBlVSbvfLqJBR/6zgOVsiKD6Z+tw6CXGdbfR/nKg3z45Ua+++hinzNRKf+k8fr7S5ny8AU+naiU1I28/mYi3897moHnDjnh++l94RXc/dVvtDp7MAsnj2Xzr/MBcBQXIElStVMYSLKOsD4XE33NNOxHdnBs8WtEjKy5ToEQohoz3Y1jRiodeBzYicvxuhn4UZKk/kKIDcBjwMPABGA78CzwP0mSzhJCaHQxUYCXgVquooRmFgNOhwOEQG80oqoqtqLC8nUKWmWkApuCqgoUpxOdJjN9eKDnLWtVuLTbnlLcGil0jUqSVuVIu9+fQrpW2asiWvUqf0pW2jZp61Rnv87P+WuDVlnK37n8qWVp21Sxjk3zI7Vrtgs0Clm20tGHoIhmLN28jaKY9gAcynPXWbsjt3z70GH3Ixgc7E7EHBLqTrQZGKiVkoWsI74dHGOA77j1wiJ3GI0ku5VrdLL7HloOuICLzxrIsg+eYsn0p+gYOxrFYadlnyGUPUa6SiTxA82lz605hAseeJbYCfdhDg1n2azXfLapUpxOzoCo3hrhtNsQkoxOr0dxOnHYSvw6Sk6HHd1JWMNQkbXLUpg/4z2unzSZc4bFnfTrNQHNoptz7MjhBi1kU4Yky/S/fBxdzo1nwbP3UpJ7nOgOXWjWpoPf2Sh/mEPDueTJNynJy8EcGs6vrz5S8wY5HSdWfprRJtyEw2bDEhiALMs4HXZMssBkdr2HtClJTHo9AccMBJkD6BoVWr5fK3Nu0cifdw1Iwmpdxz2lM0nxfTKADFdhqdy3NWkjU56fw4vPjmNghw1Q5A7fRDixJm8h4cb3+H7uJOIGhEDxPk8FT+GkdSTcMb4HYAebO2VIObKpwg6d7zLZWPV+rWKoVI2uqT/lUfCcNfOQP3fLoktqsWbbdx2P82j3A9alaVx7XzLffXYVI4aU2gvhfsaty/Zz+2NL+PTNC9my8zcOHyumbavSNbWKWq7u991HF7vWTAmBwN2HXbp8F1fd+gOJs64gdmA0OEv7MjpX38Wasp3Hpi7ijZduJG5oJ7I1bbNXcHi0KqPa9D9ZBe79xzT7O42+maizR2Cd9gBZh7JR7DaieseimkIpKlUmzc93f35aZT3tWkhjaBTRY55BtRWiC6jFemJXbF/ldRrAjFSVT6sQ4qcKu56WJGkiMESSpI3AZOA1IcRCAEmSbgaOANcDH2uOex94WJKkN4UQ/9amse/ffwcbUpYg6/S0Oas7B3fvQHE4ufXFaQy+5PKy9parFcmyTFh0c/KyDhPRynf4VBONk7DIKPKOZdV3M2qEKTiMuIffZun0B1ny1qNcOGUmUi2ziptrnLdIg2o7oxInVsXsByewZdUKDCYj7c7qzr5tW9Dp9Dwz83P6D4/HqNOV2xWdJKG2jOCFkmLOCjUTEOh6qWmdXm2+JvAcDPHMSeeuV1Gq3Gq18vJdE/gh8SliY43ACo8X+Yb1Ozi7d3vXf7SdAG2HoqCy0UNtp8VP50fnflFG6N3qkRHBsZWct44QB3zvl9r43J3t512rlWp3VDKaWtbxiIhuTvrBDNraXJ9pRq57dqdY01nwNyjmb2DOpnnXV5RC9/dT9DdQV7GOKSKahNc+Zf6jt7L2t4Xc+O5cjxx02m2H5mIVB/wCjDoCIk8gublShRhOVeWnGdMnXEX69s2YAoNo3q4jGTu3YQ6y8NCMz+nYu0/5epOy/kpky1YczfThrPhAVdXycLz4+L5e4XZlwhDff/MIcbE+ZqKWbSPhxvdInHM/ccO8ZzqaqJz8AhsJd3xP4iyNE6XBumw/CXf8xHefXMaIIW1oHhXE4aNF5Y5Uyiq3RLo/4Yk3P1lP4qwriB/qQ70vZTsJN89i4bePMdzH91sXhLRsz6gpn/DH1Ntx2oqIfarmoXngyo1VKycKXI5UVXajAYSa1miNlCRJOiABsADLgA5ADPBHWR0hRLEkScnAUDwdqZXAQuANYGRtGntwzy7eS12H6nSyb8smWnXuSl72UV67OYHOffvz21ez2LwsmYc++RpDqGuKPDymJccz05scqdOM0MhI8o42LkcKQG8M4IIn3ycnYy+RHetOvrQmCKcdmvyochSng/kbd1JSUMC+7Vvp1LM3B3Zs5/k7buLLlNV8NPVJMvbtZdo3CwkNDUOWZaJbtuZQ+n7ad/Wdc+NE2LVrV7m6Vmysd+ffmrSRmZ/8wvw5D9X5tc90IqKiyT5yuL6bUWMCLCGMf/sr8rMOEVW6XupUI5yVd2jEGTYjFR7TkvtmzcOZl8PhtD207dGbPatSeX/y3bz80x+8+eBEZJ2Ox2Z+jkmvJzgsHMXpoCAvF0tIaKXndjoVtxNVAa0wRFys98ykNXkzr7+9iMQ59xM/vAeI+u+INjb2pOWQOOsq4of5d6ISZ13BiFLhieaRgWQecQ2EWZen8+ybq3yq+5WVX3vPYn74/CpiB/sQnli6g4SbZ5H41R0nzYkqIzCiOcMen4WzpIjAZi0oOeV5WEU17Er9P7/VGg6XJKm3JEkFgA34CLhSCLERlxMFUPHNc1hTpuUpIE6SpNHVvO6dkiStliRpNUBBznHMQRaCQsPoOSSWsKho2p7Vg7irxvH4xcPZtWYVnfr0Y/HnH5Wfo3nHLhzeu7M6l2uiEbFrwzoiTtKi3JON3hRQb04UAKpa9d8ZRGF+PqYAM+FR0ZwTO4KQ8Aj6DBnGgPjzubZ/d3KPHaNZ8xgWzXaPyLXr0pW922unmlgVX375pX91rdKR5qcfu+qkXPtMRgjB1rX/0ry171mvhk6AJbjenCigapsiziy7YisqQm8wEh7Tgm6DhxEYHMKg0ZcR2ao1k4b2JSQigpKiQpb9ughwzUy16dyVfdWwK3q9zqcTZU1az+RHPnULQ1QsT95Mwo3TeerRy11OVAW27zxUizs98+jYLsy3E7U0rdyJKptJstsV1m/Jol2r4HIn6aVHBvpW91t50C084cOJsi7dy7Ov/EziV3cQH3dq1BNNoc0Ial5PNlFQjf5K/Y8KVzeuaDvQFzgXmAl8JUmSNlFFxTuRfOxDCLELmAW8JklSldcWQnwihBgghBgAYCsuQvERDznmznu5+Na7eWjWXMbc/QDLFi2kpLAAgJadu3Fo9/Zq3WQTjYO0bVvZt2Uzgy65or6b0jhR7FX/nUEUFxT4lHW9/cnnGDdpMi998Q033PcQP3wxC2ep/encoxe7t24+Ke2ZMGGCTycqZenm8pHm8rC+JuqMVUlLUBQnA+JrFTDRRJNd8cBeUuRz/4TnXuHKSQ9y77T3uPz2ifz61WflZe279WBPNeyK7CMk3Jq0noTrXuadN2/36USlLN1Kwo3TSZzzIHFDfUhop2xjxqwlVV67CQi2VFwb5nKixk38r1c43rc/bqNb5why8mzlTlLcQF8zURm88uFq5s8Y7TuP1NK9JNy+gBeeusynE3WieaQaJmrVNkWt/5nuajlSQgi7EGKXEGK1EOJJYB3wIFA2fFFx9ika71mqMp4HOgHja9pYW1ER2YczvfZbwsK5+oFHCQwOoVmLVnQfPJRVv3wPQMsu3Ti4Y0tNL9VEA+aHTz7kkptuw2AKqLpyE944HeC0V/53BpGZtpcSH0pn0a1ac/PDT2AKCKBb335EtmjB0j9+BaBTj17s2LThpLSnc2dfErfreOnVBX5Hmps4MYQQzH7/La6/54HyNStN1JCqbMoZZld2/bvC5/5Wnbpw+V33otPp6Bc/kvyc42xf61o23r57D3bWwq6UOVGJ3z7N8Lhe3uXJm3jh1YUkznmQ+OHe8v7WlG0k3Pgh99xxXo2v3UTZTNT3zJs5xsOJcjpV3vx4NReOaMfDL6T4d5KWZ3DtpMU8NclPHqnl+0i4fQGJn45l+DDvtBvW5E0nnEeqQSJE1TZFaSSOlJ/jTMBeXM7UBWUFkiQFAHG41lB5IYQ4ArwJvFh6jmozNfEXolpVPcU4ZMzVbLT+D4C2Pc7maNpeinJ9Jz5tonGx5PsFbFuziotvnFDfTWm8NI0ce/B64iJ2rF9L/vHjPstzs7NZk5rMiEvGkLL4FwD6nDuUdcuX4nQ4yD2ezerUJHKPZ/s8Xj3BUMkNG/Yw46NFvPnqhCYn6iTx9fvTKcjN5cKrxtZ3UxovTXbFgycT/6iyjk6nI+7yq/jnf78B0HvwUNakJnnU2bxmNbdfNoqNa1b7PEdBQTGRkaHs3fEV8SP6+CyPjgrlh3kP+3SiCgpKiI4KZu+maZzVxdeKjCYqI/t4MQ8//yfffeq9ZuqRF5Iwm/TM+2kbbz8X59tJWpnBo6+ksmDGaGJ9CE8kLd/PWzOW8d1n1xI/rIN3efJmHn5yNm+8N6PubqqhIESjsCtVik1IkvQa8AtwAAjGpcYXD1wqhBCSJL2DS8lvG7ADeAYoAL6p5LRvAROB/wB/VbexZ/XxjgnWUqaW1XvQYD576kEC9SCbAuk6YDCZ65czYPQYDyUl8FRf8tx2fzT+5MX9SX/XtE5lZTo/cuae8uw6n/u7B59g0lV/yll+66f53i9pjItGdWtzXoUwTZtbnUUrjZ5fur8wP4/PXprKre/NJq1Ix49/u3NnREW5VWECze777tzRrW4XEeqWWg0PjCjfdlSIsdUqWx057lsxJjfPPQpSWOS+D4PmGdJGXzg159SqcQUGuNta8dnUKnVZTO56IQEnlkdbqApUHVl7xjBt4q2uNUk9DuAyc5QrAVmT1vP+69/w5KMJjLwijCvHLmFoyJ8QAl06RPDvNw/y0uvf893XDzKiVak8rUZFz5qylbN7tiQiwoeUulaNKEfzMtDK+irFnN0WFsy8CNRjkHustE41Fv3Kxgr/r4Ycsc6dFsCfbDDyf30fK/mxN/72V8RDelmz7XH8Dp91Ivx8HhFmzX3qPEdydxS5OjWZ6QeY++E7JKauJsxiIVdjh1qEuD8Pp8YhVjTbkh/FRq0Ny9akSDhe5Gn3tKp6RXb3dqFG6s/hR9pP9fM/7bss0ODeVjSmo6Jqn9l4Yu8LoVb+TIozbO3lkIGu/kqgJlVCkGY7oLSPMfK8kXz61mu0Dwuj3dBYXi0pplXBETp37kzy32/x0HUvkvjt08T324krCw1Q4B4YtgC92ivAfijESxbcooMe7QE1A8p+xpo6FlmhR1uATPCXQs3DRpj9VAJ0wb7rae2K3h06u6PQ/Vxrf1NOP8+KNgS7spljbT+oueYdG2HS9GmcW93bWvvmIX+u+UCcmrQoGqW4EkcJbz0/mhHDOoDDnXpl3aYjzFnoioZKnHkxsedEoNpd51MdLhuTtPIQr328mdce6cewPiEoxQXuSzhsJP1zkHH3/eWSSO8biFp0xGP2I3npDq658RPXmqkRAKkAyNI5Hp+H1hZpP1ubQ6Poqdl2+rE32r5pQIDRZ53K2F/jI0SVdqUhrOmuTo8sBvi69N9cYANwsRDi99LyNwAz8CEQDqwALqyQQ8oDIUSBJEnPAyfFhQ60WHDYbKiqiqzT0anvAPZtXs+A0WNOxuWaOEUs+vQjug6NJ6Zz3SulnVE47a6RniYA3MIOitVjf1m4zPfznyBuWE/S049SUOjuELdvF8XTU7/l54VPMiLOWzzEmrKVhBs/4ODOt0/yHTRRGxwOBwaDgQ9efZ5rbrmdmFbeo8VN1ICqQvcaQAhOQyQ4NIyiAlcHWpIkhg0bxqpVq0hPT+fxJz5xOVEj+oD9aD23tAlfNAsPJH5YiNf+u5/4E0mSWDBjNPFDWqE6SjzKk1Ye4voHU5j/XjyxA5p7HZ+6KpNx9/3FvPdHEjfYx5qqpXt57MUlp1R44pRTFtpXGQ3ArlQnj9SEKsoFMLX0z18dr6EDIcRMXMIVdU5WxgHCm8egLx390RuNPkUqmmgcrEuxMu+daWTu28vdn/1Q381p/ChNjpQWX8IOqambytccxA1zOe67dmfSuaMr9MWavIll/2xn/LVxxA/v5TVDVOZEJc65F4PhxGYQm6h7rNblLN2axzefzOBY1hEWLltT301q/DSCDk9DZP/e3bTt6F4XaTKZ2LBhA/fffz8L5z/B8DjvcN6k1J2MiK1HhcYmyjGZPO37R7PX89qHq0g/mM8vX11K/BBvdeHU1Ye5/sEUvpke59OJSlqRyVufb2be+yPLJdS1lAlPLJxzt881U2uWpdBv6GmQxL06jlQDSKtwWsb35B49SnCzyPL/h8e04NjB9HpsURO1pTA/jw8ff5Axt9zJrGVrCG/RNGp8wihOV6emsr86RpKkLpIklUiS9HWdn7yOsVrX8crr89wjwaUcycolOioUa/ImEsZPI+GqIb7VszROVLyPmaom6herdTlXXX0Xb055gkdefI2/Nu8hJOwEElw34aIqm3IS1LUak13xR/aRI0RERZX/PzIykvfee4/ExESfTpQ1eQvX3V675KhNnFw2bTvKE6+kkJNn4/dvruaCOG+J9KQVmTz7zjq+mR7HiEHea9KSVmRy3WQrj9/d16cTlbysCuEJ61qm3HFz3dxQvSMahV05LYdKYzp05NDe3QghkCSJ1l17sHDHK/XdrCZqwR+J8+jWfxDDLiuTOvdWV2uihqgKrgwFp5QPgVWn+qI1xWpdR8K4qfyw4FliYz3Vr7p0bsGadXtIGD+NxLmPIkuCx5/xtLPW5M2MvanJiWqoWK3LSRg7kYsvjscQ3o5h57t0kmxNEQsnTpVrGU5KMs9GYVcqo23nLqT+8Vv5/wMDA+nfv79rptzhKVhhTd5Cwo3v8d1Xt53iVjZRHR59MQmHU+WX2VcSP7RN+VqoMpJWZDLuvr+Z/67vmajU1Ye5brKVb9+JJ3ZgC69y6/IMXnh/HYmfjvUpPGG1riXh2im8+Om8urup+kSIatiVk7JGqkZ25bSckQqLjMISFk76dtdiwqg27SjMOU5hXm4VRzbR0Fi55E/OHX1pfTfjtEI47VX+1SWSJI0DcqiBsEx9kJK6kYRxU0mcN9XLiQI4diyf9IyjfPzBROKH96JP73Zs2rIfRXEZ+rJklwtmNzlRDREhBAljJ5K4YCZbtuzkwiuuru8mnVZUbVfqduS4sdiVqjh7wCA2rlmFvVTk5PLLLycjI8Or3tLl27nz/s/4cd6DTWF9DZCU5Wn8L2U/n755AfFDvdWlk1cc5M6nUpj//vk+najklYd489ONzHv3PEYM9naikv5J547H/+bFx8/zrd6XtIbb73iN7xa8eHqE9eGy2VXalTqOoKmNXWlUM1KBpWsN/Km1aBVd+o84jz2rUunTry+qELTv1oOC/Tux0JZ1yVa+eGUq974+nfMvv6r8GK3ikla1z+hHLa866nxaqpufRHsurSJf1yDN8Wqqe9tDZUYzAlKsVQKrxKsXfkZjPY7xo6hVQSGoHK3SlrzXva1R7+lp8TQmO3TDyrcLbDZsJSVsWrGcR96ZSZDRpRATE+L+0Vw1sr37tJohAa2qnVbtLszsVh4KMbm3Q02eKvx2xX0fWgWvQrv78yxyuO87eadbQSnrmHtBqfb7NmvV+TQqWhbNfm1bwVPFT3tPUZaaq+VoOE7xMQjwH8okHIUAoZIkafV2PxFCfFLTi0mSFAK8AIwEGuwwanp6Ovv2ZrJ29Sxat47yUGVylR9lz95DjDqvD4WlghOhoUFERYawa/chDmVm88nnf3H0aD5BgTXK6tDEKWTtmt/Q6WTS0tLpO+jc8v379+zmh6+/4MobJhBajRQbTXhhEyU5SIZA/zVKjgOEnCl2pWO4y8b2DNbkvrSvc28rpYpwMdC7WxTZ/zzHyPjuKF0KOHQondy0N9izJx3r0j08NOUXdq+4hx2ptwEKomCn58U0o/JCaEboNX0ij/1+kGT3O0jSud85ktHP+0Kq0IX0UAbVbPtR6itxuN/nWjU5rcqcWov1vNp+WrrmfX7U4F4a0DVI8zuXre5tbd/Foe3TaO5VaNT8FFeUjMWs0KltKNde2rF8Jkqxu/pmSSsyefSVFXz0wmBi+0V4Ck9IMsmrjjD+keXMe3sow/qGoNiLkIU7T2bKykzGTvrTLTxR9n4q7XNZU3Yw8ZHv+fSThxgR14M1eZ59CbNGLVLbl9CqgWqF+vSavod222Z3fx5Go/szNge6zxlkcbdbV1EatKYIBWEvQNL57/OI4mMAMfVpVxqVI1UTzhl+Hos+/5gr77oXgPDoaHKPHeWTKY+j0+spKSzkzXvvpFf/QUQ3qTU1SFYk/U3nnr0IDgur76acTjypZK0bo2s9AsmHBLoQAuXIGoBbhBApdXC9F4HPhBAHGmyi02Ov09oMN15iADbBMUDVvOhUJ63NcOeVAYiCCBb/dzE3XOS6lxaROo7sSWXU2IX07+1a5zAofipH1t5CRFjpC8WflK/qdsar1cnRfl+abVnvfslIevcLU9Kd4EidpJU/14iwajsUUjWc+ory5x4dkmoMxGjxGMSpxsyp7JZgluQcWkfCJ5/9j1Hn9aCHyZUTzJq8iWefnMNbb0wk/uzD7Chxq4LaNIMs/uSZZT8pKrRoB2tCAjw1ph2ajl5Osfs7O5LvPm9eiW8pdG0qBW1HyF/qBM9BOs/fY6DxhAJUnlKOrLHqWg7zOWAohIqStQ7geiHEVq8KNafh25UaMHpULxb/uYmR8d3R6WSiIy1kZObQ7/z3GdTP1T/pNHgGxfseJ+AE0180cXJY9McuLhrR1mt/0opMrrt/Cd9OH87wQT7C+f7NYvwjy5n75hCG9Y/yPn7lIabNqkR4ImUHCRM+47v5zzPCRx6xxowuojtK1nr0MQN9lgvFgXJsC8B1QohMn5VqRq3symkZ2gfQ69xh7NqwjuJC12iB0+HAYDQSHB7O0YMZ9BtxPgDb/CS5a6J+yTqUyWuPPsAN9zxQ3005rRBCbJaCWqBmb/NZrubtRTKGUB0nSpIkqyRJws9fqiRJfYFRwPQ6vo1646L4dvwvZX95B9buUDEadLRuYWHXvlwuG9UegC07fSf3baJ+2b4jgykvzuOBSa5w4TLhkOlv3kN8fOV5CpvwjxAiSTJYEHn7fJar2duQglpSHSfqTLQro0f14ve/NpX/3+5QsAQZCQjQcyAjl0svdDn3GYf8ZpVpoh7559+DfPjFWu4c75nwOHnFIZcT9d55Pp2o5FVHePXjzcx9cwjDB0Z7lSetPMT1k5N48p5z/AhP7CRhwmckfnnbaedEASiHVsgIBbXgoO/yoxvQhXehOk7UybQrp+3QhjkoiK59+rFxeSoDRl6I025HbzDw5MdfYg6ysH/HNtYk/c3/2zvzKDmq6w5/t3v2RaNlpBlpJFBAYCIkFiGBQCs4LD4khyVsMWA7BAMBTEw4kgIKCWBZYMCAAYfNZguywHIIOQlxDmBpJDRoHSGQDBKy9m1mtI5mX7pv/qjqRT2tpWfr7tL9zqlzXr9XXf1+VV2/eq/eq1vFgzv+OY3k8/YLz/AXV13LJX95FXsaG4/9BeO4Ce77Y6bkDGjTgiFIdmS0T9saCNZuhpaD+cezHVWderRyEfkxMBzY5t7dKQD8IjJSVcd0tv7J5OShfSjun0vll9WMO6eU1tYAWVk+lnxwAwP65fD7BVv4n0+2MHTwce1Co5f5l5+8x/T7r2LChWdQ8dnX4cAhkyd7rxHS2wRrNxaQ3bde8koOm+KnzQfRxhq0ed9xtTdORF8ZO2Y4u3bXsmPnfoaW5tDa2k5OThabVk6nZFABr7y5nA8/WkdZaeGxN2b0OtMeK+e5xy5h5Gn9w3nlS3Zyx0OLmfu888xT7DOCi1bUcPO0pcx9ZgIT44xELa6s5rs/XshvnpvCpPPjBJ6o2Mr0n37KvDf/jqmTOkbv8wKqqiJSEmitr5bc4sOm+AUbqiHQQqB65XENCPWkr3h2RApgzNRLWPjB7wBobmwgJz+fPv0HkJmdTf9S549ZOqzjUKyRfJYu+AOXX3N9sqvhSVS1XZv3jQrUfB6eUhaa0ucfeDaq2l0911eBU4Fz3OVl4EPg8m7aflK44uLhvPO+M6JX19BKYX4WJQPzyMjwcerJRQAMGWQdqVQjEAjwyYIvuek651nM2+56kXlzpjnvATO6jKo2+IvPIlCzKvy8smrQ+dy8b6Tq0R7UTQjP+Yrf7+OyS0Yy57fLUFXq6lsoyM9mcGkffD4fJw11bnjZtL7U41BdC5+vrebqKyIBQMqX7OTGe/6PV2dPjBs4YnHlHm6etpQ5T42P24latKKGJ19Zw2+emxI3RHp5xVau/+H7PD3rmridqMqK7piVnxqoao2//xkE9nwRyQu0Edi7Bm3YPUS1216K2Wlf8XRH6rK/+R4b13zB+lUr2bV5EyXDIjH9+w0cxG+/3kr/ko5/UiO5HDp4kKod2znj7HOTXRXPEjvFLzSlr317ebc9cKCqjapaFVqAeqBZVfd0128kgxl3j2XuB+v5esN+qmoaGTq4IFw28vQBNKy7g6ysIzzjYyTVl4XfAAANU0lEQVSNbzbspl/fAsrKBgDw+sv3xu1E1R6waZmdpX3HQome4hfcvw4pKDuuKX3Hi1d95bGZVzH75//L1+ur6FuUS15e5O77lZedQfPWGUmsnXEkVqyu4txRJeTlOc+nhjpR7/3yCiZfEOc9Ucur+NcX1jLnqfFxp/OFAk9Mv3N03E7UoiVOJ2rea9cy+aKO0RvLF67mwdtv7QZlqUPsFL9EpvQdL13xlbS8vbFryybyC/tQFPXS3RC1+/byzepVjDj7XIoGFHPWhMks/u8PAKV/SSm1+/ayrnIFIsL5l17R4fsH9+1l3aqVnDVuPP2KO25/354a/rhqJaPPG8eAgR1PAqPrNDU2kFdQgN/f/Y3R2n17Wb96FWPPH0/f4o53gvbv3cPny5cy6rxx9ItT7iVCU/yC2X0TmtLXWVT1kZ7cfm8xqDiPC84t5aW3v2TE8L7Om+2DQerqW1m/8QBjRvU/9kaMXqehoZm+RZEpZxMu6hiivrx8NTvbhXETJ/dm1TyFM8WvqB5/dmhKX+axv9V5vOIrI04tYcQpA3np9QrOGV0Wzq+qrmP/wUZGnnqUiIhG0mhobKVvkRNMRlV5+z/WMf/dqznz9AHhqH0hFq+s5vGX1/Loj85k4nkd248VlTU88epXzH3mQiaeFycwxYrdvPDOBt5//a+ZNL7jbKpPF69h1uw5/Oz1tH0/dVyip/ihgYSm9HXhNx853nXTqiM1rNBp5wUK+3DKcGd0qak9SG6Gsz+XLF7MQ7fdzNNvvMNpJ51Ert/Hd7/3Ax6+905uvO0O9q9dzbTbbqFkSBnfrF3DsqqDBMRPnvv95RWLmfG3N/Psm3MYXjaEHDfyUZtCtk9Y+ulCXnn2ae5+YDojhg2lNNvJ74BWRdLBzUDoOtIIuGaodUBUu1XrDi8TtyxYC+Le8W46EEm37wGfO186sBd8RVH57nMv7dXg7xfJ9w+ISkc19qIjhrVXQ4bbgWzdDn433bYbMtwTv60aMp2TXFt2hfO1bTdkuHdQ2qog00mLbkLcNFoX2U7TdsiIdFZO9+91qlC7nb4FypjcBU5BYTb4+gCwoei08H5qag+S7T/8GAGo+MP50cdo0R/+jR/cNJN5c2cx9bQ/gYRuZrSAFFC+sJLrb3qIefP+k6nfckxqQ13kFDnQnBne7va6evLcmOtjhhVS6Ibm31DUSP8c53jvrGtmoHtXsaahlUH5TrolGIxKBxiQ66Sbg0H6ZUfaHPlRoxpNAaUw0/ns82VQkNn1TqaqtovIqEDV8rX+som0by8/IR9G04D7/1cgKgpa6LQQFA2657koqsIdt5zFfQ/P54E7xhIMOOsMGftrGhrbaN/09wQ14guiiqrzXxEJhtOogvrdnw4AoWMaIGLN7ZEodxoEyQxVOhwxT1Uj0fNUkah8kagQxBqMWi942HcO/42MqHx/5PfCExiCUXUNRuUrkRc9R8+2iI1IGBueWaPS8b4jMevEWz+0Xui3Q/s4Utfa2gby87OjvheMfCfYTmNjG8PKimmtzyFb6gFoI4ssnxPBccXKNfxsxv3MfPIpRpx9ATmuFzQHNRwNTzWSDqoSCvwkUbXzx0SDagNCAfR8EinP8EWi7PkEsly/aQ8EyHavWU2tAXLc1ym0BJQ8N62q5LkeoarkuunWgIavl+0aSYd2Z25m19smqtqQMXQKgV0VoIGRqkd6v4a3OTPzYydxaHv4+kXL1si1t3lz+PoXbN4BGSXcd9uFzJz9Ic88+lcEGuvR5p0MPvOXDCrOZ8eSWyDLmSamTXVIVmTKmLbsQrKHHD3duhvJcp8Jb68GN5+2msi2dB+SGZ0OjYg0Q0aoYd8EGW5bgrbD2xK0RdoiBEHcNoo2hNs02VF/sTafkOX+95tUwtfXhrZA+PxqCkCum25sD0blazi/JRhZJ/Q5J9w2UHJD504wEG7X7WnxkeWmC3xF4XMQaQNx22K+lqi2WAuIqy3QCj6nbVV7qJ2Cgj7gLwW28OtnndEgBVS3hPfhssqV3PgPi5nz/NVMGK2Q5XSWtWUXkjOURcu28fNfreef7v02ky44CdiPZDvr+Khl4cpGbrhnAb9741YmTbnIqUdGJvicY7Fw4Vquu+lR5r33JGXjzifi0dCekxPet1k+X7jNW9PYRH6Gs972Q830yXK8f9vBZvq67ZgtB5oozo2kB+U715RtB5ooiUoPLoykhxQ6EWur6lsoK4qEQ/+YzqOqNRmDxxOo+RyCrd05pa/LSArV5aiISHpU1DB6l32q2nHoNAFEJFNVu/etdmmC+YphxMV8pQuYrxhGXLrkK+JEgchINV9JpxGpSlUdm+xKdBURWZnuOrygAbyhI+YldJ0i1UyplzFfSRG8oAG8ocN8pcuYr6QIXtAA3tDRVV9xR6FSzlc8HWzCMAzDMAzDMAyjJ7COlGEYhmEYhmEYRoKkU0fq1WRXoJvwgg4vaABv6PCChmTilf3nBR1e0ADe0OEFDcnEK/vPCzq8oAG8ocMLGjqQNsEmDMMwDMMwDMMwUoV0GpEyDMMwDMMwDMNICawjZRiGYRiGYRiGkSDWkTIMwzAMwzAMw0iQpHSkRKRQRJ4Tka0i0iQin4nIuKhyEZFHRGSXW14uImdGlS8VkdditnmriKiIPBCT/1MR2dYDGgaLyFsiskdEmkXkKxGZkmYa7hGRL0XkkLssEZEr00lDZxCRu0Vks3vcKkVkUrLrFKKrx8RdR4+w3NX7inoHL3iKu23zlRTQ0BnMV7yH+Upq6DhRPQXMV9KBZI1I/Qq4HPg+MBr4CPhERMrc8unAA8CPgHFADfCxiBS65fOBi2O2ORXYdoT8Bd1ZeRHpC1QAAlwJ/Llb15qo1VJag8sOYAYwBhjr1ukDETnLLU8HDQkhIjcCvwBmA+cCnwG/F5GTklqxCF09JiF+CAyOWd7q8donj7T2FDBfSTENCWG+4lnMVxySreOE8xQwX+nx2ncXqtqrC5ALtANXxeRXArNwTvbdwMyY79QBd7qfLwUUGBa1zibgLqAW8Lt5+UAr8P1u1jAbqDhKecprOErd9wN3prOGY+hbBrwWk7cBeDzZdeuOY+LmKXBdsuvdi/sn7T3F3bb5SgprOIY+8xWPLeYrqaUjTr097SlufcxX0mBJxohUBuAHmmPym4CJwJ8BpTh3fgBQ1SZgEXCRm1WB82e/GEBETgbKgLeBeuA8d72JQCbdf3fhamCZiLwnIjUislpE7hURccvTQcNhiIhfRG4CCnDueqSdhmMhIlk4dfoopugjIppShk4ekxMRL3gKmK+kpIZjYb7iWcxXUksH7m973lPAfCWd6PWOlKrWAUuAfxaRMnfn3wJciDOcV+quWh3z1epQmao2AsuJDMleDCx38xfG5G9U1e6e73oKcDfOHY3LcYZenwDuccvTQQMAIjJaROqBFuBl4BpVXZNOGhKgGOfCeERNqUBXjkkU/y4i9THL6J6teXLwiKeA+UpKaUgA8xUPYr6SWjpOME8B85W08ZVkPSN1KxDEmV/ZAtwHzAUCUevEvilYYvIWcPifv9xNl8fkz++mOkfjA1ap6oOq+rmqvgE8T8SYQqSyhhDrgXOA8cBLwFsiMiqqPB00JMqxNCWbrh4TgGnuNqKX9T1S29Qg3T0FzFdSTUOimK94D/OVCMnWcSJ6CpivpDxJ6Uip6kZVnYIzBDhMVc/HGU7dDFS5q8X2WAdxeM92PnCyiAzHeTiw3M1fCEwQkf44D8D1xBDtbuCrmLyvgdADgOmgAQBVbVXVP6nqSlV9EFgN3E8aaUiAvTgXwGNpSirdcEwAqtxtRC+tPVz1pOEBTwHzlZTSkADmKx7FfCV1dJxgngLmK2njK0l9j5SqNqjqbhHphzPk/F9EDOrS0HoikgNMwpl3GWIJztzl23EO1GfuNtfjPMz2jzhznHvipKgAvhWTdzqw1U2ng4Yj4QOySW8NcXFPzEqiNLlcyuGaUo1Ej8kJSxp7CpivpLqGuJiveB/zFSD5OmLxrKeA+UpaES8CRU8vOEb0HZyH0S7F6cEuAzLd8hnAIeBaYBTwLrALKIzZznx3vU9j8t9187/qofqPA9qAmcAI4HqcyC/3RK2T0hrc33gC5089HCe06+M40xi+ky4aOqH5RpyHTm/HCQP7C5yHTU9Odt2665jgDJuHLhbRS0Gy9fXgfktrT3F/w3wlRTR0QrP5igcX85XU0HEieopbL/OVNFiStfNvADbizDneDbwIFEWVC/CIW9aMM/Q6Ks52HnYPwk9i8u9y81/sQQ1XAl+49fsGZ+60pJmGN3HuSrXgxPf/BLg8nTR0UvfdwBZXdyUwOdl16s5j4u7zeMusZOvrwf2W9p7i/o75Sgpo6KRu8xWPLeYrqaHjRPUUt27mKym+iCvEMAzDMAzDMAzDOE6S+oyUYRiGYRiGYRhGOmIdKcMwDMMwDMMwjASxjpRhGIZhGIZhGEaCWEfKMAzDMAzDMAwjQawjZRiGYRiGYRiGkSDWkTIMwzAMwzAMw0gQ60gZhmEYhmEYhmEkiHWkDMMwDMMwDMMwEuT/Ac47jlbN2Ys2AAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 864x432 with 12 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(2, 3, figsize=(12, 6),#figsize(10),\n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "ax = ax.reshape(-1)\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].coastlines(rasterized=True)\n",
+    "    ax[i].set_aspect('auto')\n",
+    "    ax[i].tick_params(labelsize=14)  \n",
+    "    # extended North Atlantic region\n",
+    "    ax[i].set_extent([-90, 30, 25, 70], ccrs.PlateCarree())\n",
+    "    # set xticks and yticks for latitudes and longitudes\n",
+    "    # xaxis: longitudes\n",
+    "    if i > 2: # last row\n",
+    "        #ax[i].set_xticks([0, 90, 180, 270], crs=ccrs.PlateCarree())\n",
+    "        ax[i].set_xticks([-90, -60, -30, 0, 30], crs=ccrs.PlateCarree())\n",
+    "        lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                            degree_symbol='',\n",
+    "                                            dateline_direction_label=True)\n",
+    "        ax[i].xaxis.set_major_formatter(lon_formatter)\n",
+    "        del lon_formatter\n",
+    "    # yaxis: latitudes\n",
+    "    if i in [0, 3]:\n",
+    "        #ax[i].set_yticks([-90, -60, -30, 0, 30, 60, 90], crs=ccrs.PlateCarree())\n",
+    "        ax[i].set_yticks([30, 50, 70], crs=ccrs.PlateCarree())\n",
+    "        lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "        ax[i].yaxis.set_major_formatter(lat_formatter)\n",
+    "        del lat_formatter\n",
+    "del i\n",
+    "\n",
+    "# plot contour for 8, 10 and 12 m/s in CTL\n",
+    "levp = [8, 10, 12]\n",
+    "ax[0].contour(lons_plot, lats_plot,\n",
+    "              fct.shiftgrid_copy(90., u850_cmip_djf_mm[0,:,:], lons,\n",
+    "                                 start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                 lonind_west:lonind_east+1],\n",
+    "              levels=levp, colors='lightgrey', transform=ccrs.PlateCarree())\n",
+    "ax[1].contour(lons_plot, lats_plot,\n",
+    "              fct.shiftgrid_copy(90., u850_amip_djf_mm[0,:,:], lons,\n",
+    "                                 start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                 lonind_west:lonind_east+1],\n",
+    "              levels=levp, colors='lightgrey', transform=ccrs.PlateCarree())\n",
+    "ax[2].contour(lons_plot, lats_plot,\n",
+    "              fct.shiftgrid_copy(90., u850_amip_djf_mm[0,:,:], lons,\n",
+    "                                 start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                 lonind_west:lonind_east+1],\n",
+    "              levels=levp, colors='lightgrey', transform=ccrs.PlateCarree())\n",
+    "ax[3].contour(lons_plot, lats_plot,\n",
+    "              fct.shiftgrid_copy(90., u850_icon_djf['T1C1'], lons,\n",
+    "                                 start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                 lonind_west:lonind_east+1],\n",
+    "              levels=levp, colors='lightgrey', transform=ccrs.PlateCarree())\n",
+    "ax[4].contour(lons_plot, lats_mpi_plot,\n",
+    "              fct.shiftgrid_copy(90., u850_mpi_djf['T1C1W1'], lons,\n",
+    "                                 start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                 lonind_west:lonind_east+1],\n",
+    "              levels=levp, colors='lightgrey', transform=ccrs.PlateCarree())\n",
+    "ax[5].contour(lons_plot, lats_plot,\n",
+    "              fct.shiftgrid_copy(90., u850_ipsl_djf['T1C1W1'], lons,\n",
+    "                                 start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                 lonind_west:lonind_east+1],\n",
+    "              levels=levp, colors='lightgrey', transform=ccrs.PlateCarree())\n",
+    "del levp\n",
+    "\n",
+    "# cmip5 coupled models\n",
+    "cf = ax[0].pcolormesh(lons_plot, lats_plot, du850_rcp85_plot,\n",
+    "                      vmin=-1.5, vmax=1.5, cmap=mymap2,\n",
+    "                      rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# jet latitude in control run\n",
+    "ax[0].plot(lons_plot, jetlat_hist_mm_nh[lonind_west:lonind_east+1],\n",
+    "           marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "           markersize=2, transform=ccrs.PlateCarree())\n",
+    "# stippling, where models agree on response\n",
+    "ax[0].pcolor(lons_plot, lats_plot, np.ma.masked_values(mask_rcp85_plot, 0),\n",
+    "             hatch='....', alpha=0., rasterized=True,\n",
+    "             transform=ccrs.PlateCarree())\n",
+    "clevs = np.arange(-1.5, 2, 1.5)\n",
+    "cb = fig.colorbar(cf, ax=ax[0], aspect=15, extend='both', ticks=clevs)\n",
+    "cb.ax.tick_params(labelsize=12)\n",
+    "del clevs, cb, cf\n",
+    "ax[0].set_title('CMIP5 RCP8.5\\n(37 models)', fontsize=16)\n",
+    "# amipfuture\n",
+    "cf = ax[1].pcolormesh(lons_plot, lats_plot, du850_amipfut_plot,\n",
+    "                      vmin=-4, vmax=4, cmap=mymap2,\n",
+    "                      rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# jet latitude in control run\n",
+    "ax[1].plot(lons_plot, jetlat_amip_mm_nh[lonind_west:lonind_east+1],\n",
+    "           marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "           markersize=2, transform=ccrs.PlateCarree())\n",
+    "# stippling, where models agree on response\n",
+    "ax[1].pcolor(lons_plot, lats_plot, np.ma.masked_values(mask_amipfut_plot, 0),\n",
+    "             hatch='....', alpha=0., rasterized=True,\n",
+    "             transform=ccrs.PlateCarree())\n",
+    "clevs = np.arange(-4, 5, 2)\n",
+    "cb = fig.colorbar(cf, ax=ax[1], aspect=15, extend='both', ticks=clevs)\n",
+    "cb.ax.tick_params(labelsize=12)\n",
+    "del clevs, cb, cf\n",
+    "ax[1].set_title('CMIP5 AmipFuture\\n(11 models)', fontsize=16)\n",
+    "# amip4k\n",
+    "cf = ax[2].pcolormesh(lons_plot, lats_plot, du850_amip4k_plot,\n",
+    "                      vmin=-4, vmax=4, cmap=mymap2,\n",
+    "                      rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# jet latitude in control run\n",
+    "ax[2].plot(lons_plot, jetlat_amip_mm_nh[lonind_west:lonind_east+1],\n",
+    "           marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "           markersize=2, transform=ccrs.PlateCarree())\n",
+    "# stippling, where models agree on response\n",
+    "ax[2].pcolor(lons_plot, lats_plot, np.ma.masked_values(mask_amip4k_plot, 0),\n",
+    "             hatch='....', alpha=0., rasterized=True,\n",
+    "             transform=ccrs.PlateCarree())\n",
+    "clevs = np.arange(-4, 5, 2)\n",
+    "cb = fig.colorbar(cf, ax=ax[2], aspect=15, extend='both', ticks=clevs)\n",
+    "cb.ax.tick_params(labelsize=12)\n",
+    "del clevs, cb, cf\n",
+    "ax[2].set_title('CMIP5 Amip4K\\n(11 models)', fontsize=16)\n",
+    "# ICON (locked clouds)\n",
+    "cf = ax[3].pcolormesh(lons_plot, lats_plot, du850_icon_plot,\n",
+    "                      vmin=-4, vmax=4, cmap=mymap2,\n",
+    "                      rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# jet latitude in control run\n",
+    "ax[3].plot(lons_plot, jetlat_icon_nh[lonind_west:lonind_east+1],\n",
+    "           marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "           markersize=2, transform=ccrs.PlateCarree())\n",
+    "# hatching, where response does not agree with robust amip4K response\n",
+    "ax[3].pcolor(lons_plot, lats_plot,\n",
+    "             np.ma.masked_values(mask_icon_plot, 0),\n",
+    "             hatch='///', alpha=0., rasterized=True,\n",
+    "             transform=ccrs.PlateCarree())\n",
+    "clevs = np.arange(-4, 5, 2)\n",
+    "cb = fig.colorbar(cf, ax=ax[3], aspect=15, extend='both', ticks=clevs)\n",
+    "cb.ax.tick_params(labelsize=12)\n",
+    "del clevs, cb, cf\n",
+    "ax[3].set_title('ICON', fontsize=16)\n",
+    "# MPI-ESM\n",
+    "cf = ax[4].pcolormesh(lons_plot, lats_mpi_plot, du850_mpi_plot,\n",
+    "                      vmin=-4, vmax=4, cmap=mymap2,\n",
+    "                      rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# jet latitude in control run\n",
+    "ax[4].plot(lons_plot, jetlat_mpi_nh[lonind_west:lonind_east+1],\n",
+    "           marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "           markersize=2, transform=ccrs.PlateCarree())\n",
+    "# hatching, where response does not agree with robust amip4K response\n",
+    "ax[4].pcolor(lons_plot, lats_mpi_plot,\n",
+    "             np.ma.masked_values(mask_mpi_plot, 0),\n",
+    "             hatch='///', alpha=0., rasterized=True,\n",
+    "             transform=ccrs.PlateCarree())\n",
+    "clevs = np.arange(-4, 5, 2)\n",
+    "cb = fig.colorbar(cf, ax=ax[4], aspect=15, extend='both', ticks=clevs)\n",
+    "cb.ax.tick_params(labelsize=12)\n",
+    "del clevs, cb, cf\n",
+    "ax[4].set_title('MPI-ESM', fontsize=16)\n",
+    "# IPSL-CM5A\n",
+    "cf = ax[5].pcolormesh(lons_plot, lats_plot, du850_ipsl_plot,\n",
+    "                      vmin=-4, vmax=4, cmap=mymap2,\n",
+    "                      rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# jet latitude in control run\n",
+    "ax[5].plot(lons_plot, jetlat_ipsl_nh[lonind_west:lonind_east+1],\n",
+    "           marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "           markersize=2, transform=ccrs.PlateCarree())\n",
+    "# hatching, where response does not agree with robust amip4K response\n",
+    "ax[5].pcolor(lons_plot, lats_plot,\n",
+    "             np.ma.masked_values(mask_ipsl_plot, 0),\n",
+    "             hatch='///', alpha=0., rasterized=True,\n",
+    "             transform=ccrs.PlateCarree())\n",
+    "clevs = np.arange(-4, 5, 2)\n",
+    "cb = fig.colorbar(cf, ax=ax[5], aspect=15, extend='both', ticks=clevs)\n",
+    "cb.ax.tick_params(labelsize=12)\n",
+    "del clevs, cb, cf\n",
+    "ax[5].set_title('IPSL-CM5A', fontsize=16)\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# a), b) etc for subplots\n",
+    "labs = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)']\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].text(0.01, 1.02, labs[i], va='bottom', ha='left',\n",
+    "               rotation_mode='anchor', fontsize=15,\n",
+    "               transform=ax[i].transAxes)\n",
+    "del i\n",
+    "    \n",
+    "fig.savefig('figure1a_1f.pdf', dpi=400, bbox_inches='tight')\n",
+    "\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/pythonscripts/.ipynb_checkpoints/figure2_jetresponse-checkpoint.ipynb b/pythonscripts/.ipynb_checkpoints/figure2_jetresponse-checkpoint.ipynb
new file mode 100644
index 0000000..edd4ac9
--- /dev/null
+++ b/pythonscripts/.ipynb_checkpoints/figure2_jetresponse-checkpoint.ipynb
@@ -0,0 +1,738 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Jet response\n",
+    "\n",
+    "This script generates figure 2: jet shift vs. jet strengthening over the North Atlantic and over Europe for\n",
+    "- coupled CMIP5 models (RCP8.5)\n",
+    "- atmosphere CMIP5 models (amipFuture and amip4K)\n",
+    "- ICON, MPI-ESM and IPSL-CM5A.\n",
+    "\n",
+    "Note: for ICON, we investigate simulations with locked clouds and interactive water vapor. For MPI-ESM and IPSL-CM5A, we investigate simulations with both locked clouds and locked water vapor."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "# inset small plot in large plot\n",
+    "from mpl_toolkits.axes_grid1.inset_locator import inset_axes\n",
+    "import cartopy.mpl.geoaxes\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify CMIP5 models and simulations that are analyzed"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# models\n",
+    "models_amip = ['bcc-csm1-1', 'CanAM4', 'CCSM4', 'CNRM-CM5', 'HadGEM2-A',\n",
+    "               'IPSL-CM5A-LR', 'IPSL-CM5B-LR', 'MIROC5', 'MPI-ESM-LR',\n",
+    "               'MPI-ESM-MR', 'MRI-CGCM3']\n",
+    "models_cmip = ['ACCESS1-0', 'ACCESS1-3', 'bcc-csm1-1-m', 'bcc-csm1-1',\n",
+    "               'BNU-ESM', 'CanESM2', 'CCSM4', 'CESM1-BGC',\n",
+    "               'CESM1-CAM5', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS',\n",
+    "               'CNRM-CM5', 'CSIRO-Mk3-6-0', 'EC-EARTH', 'FGOALS-g2',\n",
+    "               'FIO-ESM', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M',\n",
+    "               'GISS-E2-H', 'GISS-E2-R', 'HadGEM2-AO', 'HadGEM2-CC',\n",
+    "               'HadGEM2-ES', 'inmcm4', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR',\n",
+    "               'IPSL-CM5B-LR', 'MIROC5', 'MIROC-ESM-CHEM', 'MIROC-ESM',\n",
+    "               'MPI-ESM-LR', 'MPI-ESM-MR', 'MRI-CGCM3', 'NorESM1-ME',\n",
+    "               'NorESM1-M']\n",
+    "\n",
+    "# simulations\n",
+    "sims_cmip = ['historical', 'rcp85']\n",
+    "sims_amip = ['amip', 'amip4K', 'amipFuture']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (ICON, MPI-ESM, IPSL-CM5A)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T1C1W1\n",
+      "reading T2C2W2\n"
+     ]
+    }
+   ],
+   "source": [
+    "# ICON simulations with locked clouds and interactive water vapor\n",
+    "runs_cld = ['T1C1', 'T2C2']\n",
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "u850_icon = {}\n",
+    "for run in runs_cld:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats = np.array(ncfile.variables['lat'][:].data)\n",
+    "    lons = np.array(ncfile.variables['lon'][:].data)\n",
+    "    levs = np.array(ncfile.variables['lev'][:].data)\n",
+    "    uwind = np.array(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()    \n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # find index of 850 hPa level\n",
+    "    u850_icon[run] = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "del run, ipath\n",
+    "\n",
+    "##############################################################################\n",
+    "# MPI-ESM and IPSL-CM5A simulations with locked clouds and locked water vapor\n",
+    "runs_cldvap = ['T1C1W1', 'T2C2W2']\n",
+    "u850_mpi = {}; u850_ipsl = {}\n",
+    "for run in runs_cldvap:\n",
+    "    print('reading ' + run)\n",
+    "    # MPI-ESM\n",
+    "    #print('   MPI-ESM')\n",
+    "    ifile = 'MPI-ESM_' + run + '_3d_mm.uwind.nc'\n",
+    "    u850_mpi[run], lats_mpi, lons_mpi = fct.read_var_onelevel('../../MPI-ESM/' + ifile,\n",
+    "                                                              'u', 'plev', 850)\n",
+    "    del ifile\n",
+    "    \n",
+    "    # IPSL-CM5A\n",
+    "    #print('   IPSL-CM5A')\n",
+    "    ifile = 'IPSL-CM5A_' + run + '_3d_mm.remapcon.uwind.nc'\n",
+    "    u850_ipsl[run], lats_ipsl, lons_ipsl = fct.read_var_onelevel('../../IPSL-CM5A/' + ifile,\n",
+    "                                                                 'vitu', 'presnivs', 850)\n",
+    "    del ifile\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (CMIP5 models)¶\n",
+    "\n",
+    "Note: All simulations were interpolated to the same grid and stored in numpy arrays with the jupyter notebook \"interpolate_cmip5_data_to_common_grid.ipynb\"."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ipath = '../../cmip5/'\n",
+    "ntime = 360 # length of cmip/amip simulations in months (30 years)\n",
+    "\n",
+    "# coupled models: historical and RCP8.5 simulations\n",
+    "# create arrays with dimensions (ntime, number of models, lats, lons)\n",
+    "u850_hist = np.full((ntime, len(models_cmip), len(lats), len(lons)),\n",
+    "                    np.nan, dtype=float)\n",
+    "u850_rcp85 = np.full((ntime, len(models_cmip), len(lats), len(lons)),\n",
+    "                     np.nan, dtype=float)\n",
+    "for m, model in enumerate(models_cmip):\n",
+    "    u850_hist[:, m, :, :] = np.load(ipath + model + '_u850_historical.npy')\n",
+    "    u850_rcp85[:, m, :, :] = np.load(ipath + model + '_u850_rcp85.npy')\n",
+    "del m, model\n",
+    "\n",
+    "# atmosphere models: amip, amip4K and amipFuture simulations\n",
+    "# create arrays with dimensions (ntime, number of models, lats, lons)\n",
+    "u850_amip = np.full((ntime, len(models_amip), len(lats), len(lons)),\n",
+    "                    np.nan, dtype=float)\n",
+    "u850_amip4k = np.full((ntime, len(models_amip), len(lats), len(lons)),\n",
+    "                      np.nan, dtype=float)\n",
+    "u850_amipfut = np.full((ntime, len(models_amip), len(lats), len(lons)),\n",
+    "                       np.nan, dtype=float)\n",
+    "for m, model in enumerate(models_amip):\n",
+    "    u850_amip[:, m, :, :] = np.load(ipath + model + '_u850_amip.npy')\n",
+    "    u850_amip4k[:, m, :, :] = np.load(ipath + model + '_u850_amip4k.npy')\n",
+    "    u850_amipfut[:, m, :, :] = np.load(ipath + model + '_u850_amipfut.npy')\n",
+    "del m, model\n",
+    "del ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean for all simulations"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/mnt/lustre02/work/bb1018/b380490/outputdata/ERL2021_data/pythonscripts/helper_functions.py:64: RuntimeWarning: Mean of empty slice\n",
+      "  monthly_mean[month] = np.nanmean(monthly_data[month], axis=0)\n",
+      "/mnt/lustre02/work/bb1018/b380490/outputdata/ERL2021_data/pythonscripts/helper_functions.py:71: RuntimeWarning: Mean of empty slice\n",
+      "  seasons_dict[season] ], axis=0)\n"
+     ]
+    }
+   ],
+   "source": [
+    "# ICON\n",
+    "u850_icon_djf = {}\n",
+    "for run in runs_cld:\n",
+    "    u850_icon_djf[run] = fct.calcMonthlyandSeasonMean(u850_icon[run],\n",
+    "                                                      months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "# MPI-ESM and IPSL-CM5A\n",
+    "u850_mpi_djf = {}; u850_ipsl_djf = {}\n",
+    "for run in runs_cldvap:\n",
+    "    u850_mpi_djf[run] = fct.calcMonthlyandSeasonMean(u850_mpi[run],\n",
+    "                                                     months, seasons)[1]['DJF']\n",
+    "    u850_ipsl_djf[run] = fct.calcMonthlyandSeasonMean(u850_ipsl[run],\n",
+    "                                                      months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "# coupled CMIP5 models\n",
+    "u850_cmip_djf = np.full((len(sims_cmip), len(models_cmip), len(lats),\n",
+    "                         len(lons)), np.nan, dtype=float)\n",
+    "u850_cmip_djf[0, :, :, :] = fct.calcMonthlyandSeasonMean(u850_hist, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "u850_cmip_djf[1, :, :, :] = fct.calcMonthlyandSeasonMean(u850_rcp85, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "\n",
+    "# atmosphere CMIP5 models\n",
+    "u850_amip_djf = np.full((len(sims_amip), len(models_amip), len(lats),\n",
+    "                         len(lons)), np.nan, dtype=float)\n",
+    "u850_amip_djf[0, :, :, :] = fct.calcMonthlyandSeasonMean(u850_amip, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "u850_amip_djf[1, :, :, :] = fct.calcMonthlyandSeasonMean(u850_amip4k, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "u850_amip_djf[2, :, :, :] = fct.calcMonthlyandSeasonMean(u850_amipfut, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "\n",
+    "# model mean for historical and amip simulations\n",
+    "u850_cmip_djf_mm = np.nanmean(u850_cmip_djf, axis=1)\n",
+    "u850_amip_djf_mm = np.nanmean(u850_amip_djf, axis=1)\n",
+    "\n",
+    "# delete variables with time information\n",
+    "del u850_icon, u850_mpi, u850_ipsl\n",
+    "del u850_hist, u850_rcp85, u850_amip, u850_amip4k, u850_amipfut"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate zonal-mean u850 over the North Atlantic (60W-0E) and over Europe (0E-25E)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/mnt/lustre02/work/bb1018/b380490/outputdata/ERL2021_data/pythonscripts/helper_functions.py:354: RuntimeWarning: Mean of empty slice\n",
+      "  var_zm = np.nanmean(var[:, lonind_west:lonind_east+1], axis=1)\n",
+      "/mnt/lustre02/work/bb1018/b380490/outputdata/ERL2021_data/pythonscripts/helper_functions.py:362: RuntimeWarning: Mean of empty slice\n",
+      "  var_zm = np.nanmean(var1[:, lonind_west:lonind_east+1], axis=1)\n"
+     ]
+    }
+   ],
+   "source": [
+    "# boundaries of regions\n",
+    "box_west = [0, -60]\n",
+    "box_east = [25, 0]\n",
+    "\n",
+    "# coupled models\n",
+    "u850_cmip_box = np.full((len(box_west), len(sims_cmip), len(models_cmip),\n",
+    "                         len(lats)), np.nan, dtype=float)\n",
+    "u850_cmip_mm_box = np.full((len(box_west), len(sims_cmip), len(lats)),\n",
+    "                           np.nan, dtype=float)\n",
+    "for b in range(len(box_west)):\n",
+    "    for s in range(len(sims_cmip)):\n",
+    "        for m in range(len(models_cmip)):\n",
+    "            u850_cmip_box[b, s, m, :] = fct.calcBoxZonalmean(u850_cmip_djf[s, m, :, :],\n",
+    "                                                             lats, lons, box_west[b], box_east[b])\n",
+    "        del m\n",
+    "        u850_cmip_mm_box[b, s, :] = fct.calcBoxZonalmean(u850_cmip_djf_mm[s, :, :],\n",
+    "                                                         lats, lons, box_west[b], box_east[b])\n",
+    "    del s\n",
+    "del b\n",
+    "\n",
+    "# amip models\n",
+    "u850_amip_box = np.full((len(box_west), len(sims_amip), len(models_amip),\n",
+    "                         len(lats)), np.nan, dtype=float)\n",
+    "u850_amip_mm_box = np.full((len(box_west), len(sims_amip), len(lats)),\n",
+    "                           np.nan, dtype=float)\n",
+    "for b in range(len(box_west)):\n",
+    "    for s in range(len(sims_amip)):\n",
+    "        for m in range(len(models_amip)):\n",
+    "            u850_amip_box[b, s, m, :] = fct.calcBoxZonalmean(u850_amip_djf[s, m, :, :],\n",
+    "                                                             lats, lons,\n",
+    "                                                             box_west[b], box_east[b])\n",
+    "        del m\n",
+    "        u850_amip_mm_box[b, s, :] = fct.calcBoxZonalmean(u850_amip_djf_mm[s, :, :],\n",
+    "                                                         lats, lons,\n",
+    "                                                         box_west[b], box_east[b])\n",
+    "    del s\n",
+    "del b\n",
+    "\n",
+    "# ICON\n",
+    "u850_icon_box = {}\n",
+    "for run in runs_cld:\n",
+    "    u850icon = np.full((len(box_west), len(lats)), np.nan, dtype=float)\n",
+    "    for b in range(len(box_west)):\n",
+    "        u850icon[b, :] = fct.calcBoxZonalmean(u850_icon_djf[run],\n",
+    "                                              lats, lons,\n",
+    "                                              box_west[b], box_east[b])\n",
+    "    u850_icon_box[run] = u850icon.copy()\n",
+    "    del u850icon, b\n",
+    "del run\n",
+    "\n",
+    "# MPI-ESM, IPSL-CM5A\n",
+    "u850_mpi_box = {}; u850_ipsl_box = {}\n",
+    "for run in runs_cldvap:\n",
+    "    u850mpi = np.full((len(box_west), len(lats)), np.nan, dtype=float)\n",
+    "    u850ipsl = np.full((len(box_west), len(lats)), np.nan, dtype=float)\n",
+    "    for b in range(len(box_west)):\n",
+    "        u850mpi[b, :] = fct.calcBoxZonalmean(u850_mpi_djf[run],\n",
+    "                                             lats_mpi, lons_mpi,\n",
+    "                                             box_west[b], box_east[b])\n",
+    "        u850ipsl[b, :] = fct.calcBoxZonalmean(u850_ipsl_djf[run],\n",
+    "                                              lats, lons,\n",
+    "                                              box_west[b], box_east[b])\n",
+    "    u850_mpi_box[run] = u850mpi.copy()\n",
+    "    u850_ipsl_box[run] = u850ipsl.copy()\n",
+    "    del u850mpi, u850ipsl, b\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate jet latitude and jet strength based on the zonal-mean u850 profiles for the two regions"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Northern Hemisphere\n",
+    "latind0 = (np.abs(lats-0)).argmin() + 1\n",
+    "lats_NH = lats[latind0:]\n",
+    "\n",
+    "# coupled models\n",
+    "jetlat_cmip_box = np.full((len(box_west), len(sims_cmip),\n",
+    "                           len(models_cmip)), np.nan, dtype=float)\n",
+    "jetint_cmip_box = np.full((len(box_west), len(sims_cmip),\n",
+    "                           len(models_cmip)), np.nan, dtype=float)\n",
+    "jetlat_cmip_mm_box = np.full((len(box_west), len(sims_cmip)), np.nan,\n",
+    "                             dtype=float)\n",
+    "jetint_cmip_mm_box = np.full((len(box_west), len(sims_cmip)), np.nan,\n",
+    "                             dtype=float)\n",
+    "for b in range(len(box_west)):\n",
+    "    for s in range(len(sims_cmip)):\n",
+    "        for m in range(len(models_cmip)):\n",
+    "            jetlat_cmip_box[b, s, m], jetint_cmip_box[b, s, m] = \\\n",
+    "               fct.get_eddyjetlatint_NH_nan(u850_cmip_box[b, s, m, latind0:],\n",
+    "                                            lats_NH, -999)\n",
+    "        del m\n",
+    "        jetlat_cmip_mm_box[b, s], jetint_cmip_mm_box[b, s] = \\\n",
+    "           fct.get_eddyjetlatint_NH_nan(u850_cmip_mm_box[b, s, latind0:],\n",
+    "                                        lats_NH, -999)\n",
+    "    del s\n",
+    "del b\n",
+    "\n",
+    "# amip models\n",
+    "jetlat_amip_box = np.full((len(box_west), len(sims_amip),\n",
+    "                           len(models_amip)), np.nan, dtype=float)\n",
+    "jetint_amip_box = np.full((len(box_west), len(sims_amip),\n",
+    "                           len(models_amip)), np.nan, dtype=float)\n",
+    "jetlat_amip_mm_box = np.full((len(box_west), len(sims_amip)),\n",
+    "                             np.nan, dtype=float)\n",
+    "jetint_amip_mm_box = np.full((len(box_west), len(sims_amip)),\n",
+    "                             np.nan, dtype=float)\n",
+    "for b in range(len(box_west)):\n",
+    "    for s in range(len(sims_amip)):\n",
+    "        for m in range(len(models_amip)):\n",
+    "            jetlat_amip_box[b, s, m], jetint_amip_box[b, s, m] = \\\n",
+    "               fct.get_eddyjetlatint_NH_nan(u850_amip_box[b, s, m, latind0:],\n",
+    "                                            lats_NH, -999)\n",
+    "        del m\n",
+    "        jetlat_amip_mm_box[b, s], jetint_amip_mm_box[b, s] = \\\n",
+    "           fct.get_eddyjetlatint_NH_nan(u850_amip_mm_box[b, s, latind0:],\n",
+    "                                        lats_NH, -999)\n",
+    "    del s\n",
+    "del b\n",
+    "\n",
+    "# ICON\n",
+    "jetlat_icon_box = {}; jetint_icon_box = {}\n",
+    "for run in runs_cld:\n",
+    "    jlat = np.full(len(box_west), np.nan, dtype=float)\n",
+    "    jint = np.full(len(box_west), np.nan, dtype=float)\n",
+    "    for b in range(len(box_west)):\n",
+    "        jlat[b], jint[b] = \\\n",
+    "           fct.get_eddyjetlatint_NH(u850_icon_box[run][b, latind0:], lats_NH)\n",
+    "    jetlat_icon_box[run] = jlat.copy()\n",
+    "    jetint_icon_box[run] = jint.copy()\n",
+    "    del jlat, jint, b\n",
+    "del run\n",
+    "\n",
+    "# MPI-ESM, IPSL-CM5A\n",
+    "jetlat_mpi_box = {}; jetint_mpi_box = {}\n",
+    "jetlat_ipsl_box = {}; jetint_ipsl_box = {}\n",
+    "for run in runs_cldvap:\n",
+    "    jlatmpi = np.full(len(box_west), np.nan, dtype=float)\n",
+    "    jintmpi = np.full(len(box_west), np.nan, dtype=float)\n",
+    "    jlatipsl = np.full(len(box_west), np.nan, dtype=float)\n",
+    "    jintipsl = np.full(len(box_west), np.nan, dtype=float)\n",
+    "    for b in range(len(box_west)):\n",
+    "        jlatmpi[b], jintmpi[b] = \\\n",
+    "           fct.get_eddyjetlatint_NH(u850_mpi_box[run][b, latind0:], lats_NH)\n",
+    "        jlatipsl[b], jintipsl[b] = \\\n",
+    "           fct.get_eddyjetlatint_NH_nan(u850_ipsl_box[run][b, latind0:],\n",
+    "                                        lats_NH, -999)\n",
+    "    jetlat_mpi_box[run] = jlatmpi.copy()\n",
+    "    jetint_mpi_box[run] = jintmpi.copy()\n",
+    "    jetlat_ipsl_box[run] = jlatipsl.copy()\n",
+    "    jetint_ipsl_box[run] = jintipsl.copy()\n",
+    "    del jlatmpi, jintmpi, jlatipsl, jintipsl, b\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate jet responses"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# coupled models\n",
+    "djetlat_cmip_box = jetlat_cmip_box[:, 1, :] - jetlat_cmip_box[:, 0, :]\n",
+    "djetint_cmip_box = jetint_cmip_box[:, 1, :] - jetint_cmip_box[:, 0, :]\n",
+    "djetlat_cmip_mm_box = jetlat_cmip_mm_box[:, 1] - jetlat_cmip_mm_box[:, 0]\n",
+    "djetint_cmip_mm_box = jetint_cmip_mm_box[:, 1] - jetint_cmip_mm_box[:, 0]\n",
+    "\n",
+    "# amip models\n",
+    "djetlat_amip4k_box = jetlat_amip_box[:, 1, :] - jetlat_amip_box[:, 0, :]\n",
+    "djetint_amip4k_box = jetint_amip_box[:, 1, :] - jetint_amip_box[:, 0, :]\n",
+    "djetlat_amip4k_mm_box = jetlat_amip_mm_box[:, 1] - jetlat_amip_mm_box[:, 0]\n",
+    "djetint_amip4k_mm_box = jetint_amip_mm_box[:, 1] - jetint_amip_mm_box[:, 0]\n",
+    "\n",
+    "djetlat_amipfut_box = jetlat_amip_box[:, 2, :] - jetlat_amip_box[:, 0, :]\n",
+    "djetint_amipfut_box = jetint_amip_box[:, 2, :] - jetint_amip_box[:, 0, :]\n",
+    "djetlat_amipfut_mm_box = jetlat_amip_mm_box[:, 2] - jetlat_amip_mm_box[:, 0]\n",
+    "djetint_amipfut_mm_box = jetint_amip_mm_box[:, 2] - jetint_amip_mm_box[:, 0]\n",
+    "\n",
+    "# ICON\n",
+    "djetlat_icon_box = jetlat_icon_box['T2C2'] - jetlat_icon_box['T1C1']\n",
+    "djetint_icon_box = jetint_icon_box['T2C2'] - jetint_icon_box['T1C1']\n",
+    "\n",
+    "# MPI-ESM\n",
+    "djetlat_mpi_box = jetlat_mpi_box['T2C2W2'] - jetlat_mpi_box['T1C1W1']\n",
+    "djetint_mpi_box = jetint_mpi_box['T2C2W2'] - jetint_mpi_box['T1C1W1']\n",
+    "\n",
+    "# IPSL-CM5A\n",
+    "djetlat_ipsl_box = jetlat_ipsl_box['T2C2W2'] - jetlat_ipsl_box['T1C1W1']\n",
+    "djetint_ipsl_box = jetint_ipsl_box['T2C2W2'] - jetint_ipsl_box['T1C1W1']\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot jet shift vs. jet strengthening over the North Atlantic and over Europe\n",
+    "\n",
+    "Add maps in which the region is highlighted."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv0AAAG1CAYAAABqJUuIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hUxfrA8e+kQSCBUEOHYKgBpCMoHX4iXTByKQKXKypFEBvYuV5EQa9eFINgo4uCiAJKiYSONIEgTUooARIgAUIC6fP742zCZrMpm7bJ5v08zz7JnjJnziazZ86cd2aU1hohhBBCCCGE43KydwaEEEIIIYQQ+Usq/UIIIYQQQjg4qfQLIYQQQgjh4KTSL4QQQgghhIOTSr8QQgghhBAOTir9QgghhBBCODip9AshhBBCCOHgim2lXxmOKKVG2bDP50qpr/MzXwVBKTVaKaXNXvFKqbNKqZlKqZJWtm+slPpWKXVBKRWnlLqtlNqhlJqUsr1Sqo6VNP9WSn2ilCpnkV5fpdROpVSkUuqmUmqXUmpANvOuM3g1z5tPR9ibZdlUSp1XSn2UxT6tlVIRSqmyBZPLDPPxlen/8eN8SPu8UmphDvfNqNwszUFao5VSY3KSD1F02XrNdJTrJRTecm2RzlBTHkMzOMZSi2VOSqlFSqlkpdTY3B5fFA0u9s6AHT0JlAOW27DPh8BJpdT7Wusz+ZOtAuUPhAKewOPAa6bfn0/ZQCnlDywB/gL+A5wGSgOdgX8DCphjlub7wC9ACeBh4E2ghVKqq9ZaK6V6mdavBt4z7TMW+Ekp1U9rvT4b+V4IzLdY9nf2TlkUATaXTa31AaXUYWAKMD2f8pUppZQ7RpkCGK6UelVrnZiHh3gciMrF/gtJX26u5yCd0RjXjm9ykRdR9NhaLh3ielkEyjVKKS/gEyAsm9u7YFzX/YHRWuvFuTm+KDqKc6V/ErBEa52Q3R201ueVUjuBccBL+ZazgnPY7Mt4s1KqHvAvpdRkrXWy6f1i4DfA3+KL7ldT62t9izTPaa3/MP2+TSnlilEJawH8CYwELgNDtNZJAEqpTcAFYASQnUr/ZbNjCMdjc9k0+Rb4SCk1I48vytn1OFAG+BXoDfQC1uVV4lrrQ7lMotCWG9P3RKKWKeILM5vKpQNdLwt7uQaYDRwBrgI9MtvQVNZWAP2BYVrrH/Lg+KKIKJbhPUopX6ADsMps2UiLkJMgpVRrK7v/iHG374if3Z+AO1DR9H4Kxo3heGuVKK31da31rizS3G/66Wv66QbEpFT4TekkAdEU0/9HcZ+1smm27i2lVJhSKloptcxKKM8vQHng0QLIqjWjgJsYLeH3MG5wUymlppsevzdUSm1USsUopS4qpf5pWv+UUuqk6fyClFIPWOyfJgxA3Q/T66SUWmPaL8IUVuFua+ZNaU23WJYStjfa9H4rxlO+h81ChLaan5+VdBcqpc5bSXO8Umq2UuoKEAd4mdb7mP6+15URTnhYKfW4recj8k5G5VIpNVYpdVQpFauUCldKrbIol45wvSzU5Vop9TBGg9mErE5EKVUC4yl7X4yGPKnwFzNFuSDmRncgBuPOOEUdjFZtf2AYRtjLdqVUXYt9dwPeQNP8z2aBqwPcBiJM73sA+7XWV3ORpo/p5y3TzwWAr1LqDaVURaVUJaXU26Zjz81mmuNMlYG7SqktSqmOucifKFyslU2AoRj/j2OBF4E+wFfmG2ito4BjZNHSlR+UUtVMx/1ea30dWAP0Vxb9WUxWYjzRGggcBL5RSs3EaBGdBvwTaED2wyiWAmeAQRiP+McC86xnU7mYv7J9gveNBw4BwUB702t8DtIBeAPjSeEzGK2psUqpmsBe4EGMRof+GI0RPyql+ufwOCL30pVLpdSbGOFi2zD+l8dhXD88zPYr0tfLwl6uTa32C4APsxFC5Y7RMNIDGKi1XpPNfAhHorUudi+MQrI/k/VOGC3cJ4G3Lda5AInAWHufRy7OfzSgMb6AXDDiNMeYzmui2Xb3gO+ymWYdU5rPmNIsBfTEeNx4BXA327Y3RsuJNr2igN7ZPM4SYAjQEaN14wiQAHSx9+cqr9y/rJVN4DwQCXiYLRsOJAONLLZdCOyyQ76nmv6X25veP2p6/5zZNtNNy0aaLStnKncRQBmz5ZNM29a2+BwWmr1PKcdfWOTlDSAJqG+2TGfw8rXYZrpFWinlerTZsq3ATiufwXTjkpJu+ULgvJU0/wSUxbZfY/QzqGCxfDNGOKLd/0eL48uyXGI8lbkLfJzFfkX6elkEyvWbGDcGJU3vFwKhVs7jvFmZH2Pvz1Ve9nsV15b+KsAN8wVKqUZKqZ+UUuEYBSsBo1KcJmZdG2Eut0xpFHUnMc4zEuNiO19rnd3W9ozMN6UZA2zC+ELqpbW+B6CUegijBeNX4DGM+Mj1wEqlVNesEtdaP6W1/l5rvUNrvRR4BOOmYkYu8y0Kh3Rl02Sz1jra7P1qjE7kbSy2u4F9yuZI4LTWeo/pfSDG/+VIK9v+lvKL1vomcA34QxtPKlKcNP2smY1jWz6iX4HRcNHWYvk3GJ+X+etSNtLPL2u01pbhQL0wvhtuWzyR2Ag8qJQqU+C5FJC+XLbHaDn+NrOdHOB6WWjLtSnk6g2MhrrYbKS3D+Nv+I5SqnY2thcOqLh25C2J0UoBgFLKE6OCGo4ROnABiMUIH0g3hCVG/Km15UXN4xhhTJUwznu8Umqvvt+T/xJg65fDDOBnjM/ootb6tsX6z4BjWuvhZss2KqPD18cYHX6zTWt9Rym1HviXjfkUhVOasmnmmvkbrfU9pVQ0UNViuwIvm0qpNkBjYJYyRtFIsRqYqJSqr7U2H13qpkUS8Rksg+ydS3gG76tbLL+qtT6QjfQKirWwwcoYFSprlSqACuRypBORI5blsoLpZ3ZCP4vk9bIIlOtPgS3AH2b5czOyrryAuJTGNpPTGE/ig4DflVKdtdaXs5EP4UCKa0t/JKZOYybtgRrACK31Mq31TtPFMaMxv71MaRR1f2mtD2itf8Po2PM38KFSqrRpfSDQWillSyvNBVOaR61U+MGI7dxvZfl+oJEtmTejMB5biqLPsmymqGz+xtShzYP0lQ57lM2UccunYlzkU14TTcszqsDmFe8M3tt6QY/DqDSYq2BtwwzEAiilspuGtTIbgdFZ1PKJRMrrig35EXnHslym9PuyvOm2pqheLwt7uW7M/VDZlNdQoJrp9/ctE9RaHwH+D6Oh73ellOUxhIMrrpX+U9zvYArGY0owLnoAKKU6YMSepqGUqoQRr+5Q48JrreOAVzAqVykd8z7BCHUKUEo5W+5j6oj7sI2HCiN9SAYYjyxtbnUwPe7vg9H5TxR9lmUzRU+llHkHwUEYlUbLlus6FGDZNFVw/4Hx/9fVyusw8JRSSuVjNp60eP8PjP4O+2xM5wLQxGJZHyvbxXH/O9Nyf8zTMLU4drAhDxuAZhhPAw9YecVllYDIF5blcg9Gn69MJ+oqqtfLIlKu/2ElXxsxQni6ksHAGKYGzccwnhgEKqUqWttOOKbiGt6zC3hbKVVJGz3y/8AYMvJLpdRsjFb/6VivhLbGqGzsLqC8Fhit9S9Kqf3Ay0qpuVrr00qpkRgx+H8opb7g/uRcHYFngXcxPs/s+gxjLPXlpnTBaDHpAExO2cgUc3gWeFdr/a5p2csY/SyCMFr8agMvY8SLmocLiaLLsmymuAesV0p9iNG6+CHwk9b6uMX+rYFZBZNVwHhCVgF4SWu91XKlUmo+xogbXfIxD71Nn8smjJvnd4DFFqEH2bECeFMp9QbGd2JHjJZDS8cxQgGHYJTRO1rrUxgxzbcxvkffwZig71WM79bsehujUrNdKTUXowNiOYwbibpaa5kJ2D7SlEut9S2l1H+A90wV5F8x/t59gH+bhY0U1etloS/X2sqcG8oYWjfOWp7Naa13K6X6YvzdNimlupv6IQgHV1xb+rdiPG7sBaC1DscYqrMKRjz6C8BzGJ1QLfUCtmmtI6yscwRvYrT2PwegtV4JtMQYCvEdjJCfFRgVgreAL2xJXGv9X4xRdx4AlplePhiThHxqtqkCnEn7P3oK45HmpxijeXwMhACPaK132JIPUWhtxaxsmlmBcbP3NfA/jApmmn4cSqkWGI+tV+d7Lu8bBdzBGK7Pmu/IRotoLo3AGHDgJ4xJkL4kZ8Novo/ROjgRY2jCRsBTVrabBfyO0edpP6ZZfrXWtzAqS8kYnRDfx7jJD8puBrTWFzEqikeAmRjlfB7G3ABbcnBOIm9sxaJcaq3fxxiOsgfGdXM+RijPHbP9iur10pHKtVVa65ShVhsBG6STfPGg0g+eUDwopeZgDFdn7fF1Rvs4YzzCnmYaOUYIkcdyUjZN+70PtNFaF/g4/fZgatX7Fqinsx6jW4hcsbVcyvUyZ6Rci/xUXFv6wQgP6KKUqp/llvf5Y9zdr7D1YOr+rH3mrzBb0xGiGLC5bJo6n49Fhm4VIr/YWi5zfL0UQuSPYlvp11qHYoQHZGf0gRQK+Jdp7OGcOGU6XsqrSM5SKER+ymHZrIXR/2NrvmRKiGIuB+Uyt9dLIUQeK7bhPQVNKTUdeEJrbTk6hhBCCCGEEPmq2Lb020ldpdRlpVSIUmqFUqquvTMkhBBCCCEcX3Fq6bfrif7222/cuXOHhg0bcu3aNWbMmMHJkyc5duwYFSqkn7tmwYIFLFiwAIB79+5x7Nixgs6yKNryc/zovFSkvoCkXIo8IGUzH0jZFLlUVMplrkil306io6OpW7cu06ZN48UXX8x029atW3PggOUcREJkqqh8gRWqcmkLKZcih6Rs5jMpmyIHikq5zBUJ77ETDw8P/Pz8OH36tL2zIoQQQgghHJxU+u0kNjaWkydPUrWqLQOUCCGEEEIIYTup9BeQl19+mW3bthESEsLevXt54okniImJYdSo/JzQTwghhBBCCHCxdwaKi9DQUIYOHcqNGzeoVKkSDz30EH/88Qe1a9e2d9aEEEIIIYSDk0p/AVmxQiYlzA81a9YkNDTU3tkojPK7E94FrXWdfD6GEEIIIfKIVPpFkRYaGsrJkyfp2bMnsbGxuLm5MXPmTEaOHAnAsWPH6N+/PwkJCUyZMoXOnTvTsmXLTNNMSEigY8eO3Lp1iy+++IIuXbrkKG93795l3rx5nD17lrNnz3L06FGcnZ2ZMGECY8eOtTpUa26caNgoT9Mz1+jkiTTvlVLyiEoIIYQoQqTSL4q8xYsXU7FiRQ4dOsSSJUuYMmUK7du3p169eqkjJG3YsIG1a9fy4YcfMnXqVCZNmoRS1kfo+uKLLyhbtix79uzJcJusREdH06VLF+rUqUPnzp3p06cPTZs2pWbNmjlOM7ssK+gZ2b59O0888QQLFixg4MCBVrfJzxsJIYQQQhQc6cgriryePXvi7e3NJ598gqenJ66urnh4eKSuj4yMBODdd99lz549LFiwAFdXV+bOnWs1vdu3b5OcnJzjyvmff/5J7969ad68OStXruT555+nT58+1KpVK02aV69e5ZdffuH48eOA8dQiPj6ejRs38u9//5stW7bk6PjZERISwpAhQ1i2bFmGFX4hhBBCOA5p6RdFXpcuXejSpQtRUVGpLfTmQ6EOGzaMsLAwYmJi2LhxI7/99hudOnWiUSPrrdi+vr6sWrWK2NhYSpYsmeXxo6Ki2LJlC7///ju7du3i2rVrvPLKK4wfPz7DG4fw8HCaNm1KxYoViYiI4MEHH2T//v0kJCTg4+NDly5d6N69O3Fxcbi5ueXsg8nA7du36devH6+//jo9e/a0us3WrVuZP38+b+fpkYUQQghhL9LSL4o8Ly8vXF1dKVu2LAAPPPBAmvWPPPIIsbGxNGnShHbt2tG+fXteeOEFunfvbjW9J554gvr16zNx4sQsjx0ZGUnbtm35/PPPqVGjBnPnzuXMmTNMnjwZV1fXDPeLiooiIiKCU6dOMX78eIYOHcrly5e5cOECR48e5dNPP6Vjx44899xzNnwSWYuPj2fw4MF07tw5w/M7dOgQTz75JF27dk1ddunSpTzNhxBCCCEKlrT0iyKvRo0a1KtXjzVr1gCwbNkynnvuudRW+rfffpsHH3yQqVOn4u/vj7+/f4YVfgAXFxfeeOMNhgwZkuWxAwMDqVOnDhs2bLApz76+vjRr1ozg4GDWrVvHwYMHAWOm5qNHj7J06VJOnDjB66+/blO6mYmKiuKpp56iVKlSfPrpp1afQmitWblyJV26dCExMTF1ebVq1fIsH0IIIe4LCQkhKCiI8PBwvL296dq1Kz4+PvbOlnBA0tIvirxXXnmFIUOGEBgYyI4dO1i8eDHu7u4kJyezfft2lFJcvnyZn3/+mVWrVtGhQ4cs02zcuDGJiYn8+OOPGW4TGxvLkiVL6Ny5s815Vkpx+PBhvL29+fPPP6levTr/93//R5MmTejTpw9KKXbv3k2vXr1sTtuS1prNmzfTpk0bqlevzsqVK3F2dk63XWRkJMOHD+eXX37hxo0bfP3116nrrG0vhBAid9atW8ecOXM4ePAgly5d4uDBg8yZM4d169bZO2vCAUlLvyjyypYtS5kyZWjbti2hoaGsWLGCwYMH07x5c8aNG0flypWZMGECSik8PDzQOush7F1dXVmxYgW9e/emfPnyaUJdwAiTad++Pb6+vkyePDlH+VZKERYWhtaaixcvcuzYMcqWLUv79u1xcsqb+/E9e/YwadIk7t69y3vvvccTTzxhdbtTp07RrVs3nnjiCaZNm8asWbPYvXs3oW3a5kk+hBBCpBUSEkJgYCDx8fGpy7TWxMfHExgYiJ+fn7T4izwllX5R5I0fPx4fHx/+/PNPypQpg1KKzz77jDJlyjB//nxiYmIA48t01apVlCpVKlvptm7dmuXLlzNixAhCQkLSdKhNSEjgzJkz/P7779lOLyNKKWrXrp3nszOHhIQwYMAA5syZw5AhQzK9kfjyyy8ZNWoUM2fO5Ouvv6ZBgwZ4enrmaX6EEELcFxQUREJCgtV1CQkJBAUFSaVf5Cmp9Isir1KlSuzatYvk5GS01hw4cIDBgwfTqVMnevbsyffff09wcDCxsbE8/PDDNqXdo0cPmjZtygsvvMCTTz5J5cqVady4MdHR0Tg7O1OiRIl8OqvcCwsLw8fHh6FDh2a57caNG/n4448BaNmyJf/73//yO3vCziSOWAj7Cg8Pz/DJs9aaa9euFXCOhKOTSn8x5wgX/nPnzhETE0Pp0qUBaNeuHZs3b2b16tW89dZbjBs3jlatWqG1Zt68eQwaNAhvb+9sp//dd9/x/PPPM336dE6ePMnEiROJjo6mX79+qccsjLy9vQkPD8/Wts8++yxTpkxh48aNgDFazw8//EBT0/oBAwYQERFBp06dmD59ev5kWBSYdevWERgYSEJCAlprQkNDCQ4OpkePHvTt29fe2ROiWPD29iY0NNRqxV8pReXKle2QK+HIpCNvMeYoHYjKly9PcHBwmmWNGjXixRdfJCYmJvXx6RdffMH48eN5+eWXbUq/XLlyLF26lK1bt3Lw4EH27t3L3r17mTJlSp6dQ36oUqUKYWFhJCcnpy7bsGEDV69eTbfthAkTKFmyJOvXr6dFixZs3ryZESNGpK4/cOAAJUqU4MMPP+Svv/4qkPyL/GEeR5xS2TCPIw4JCbFzDoUoHrp27Zrh0M6urq7p+pIJkVtS6S+mHOnCX69ePdq1a5duubu7O3Xr1uW5555j//79vPPOO+zevZsdO3bw22+/5ehY1atXZ+3atQQFBdGyZcvcZj1Xtm/fzqJFi/j999+tri9VqhTVq1cnODgYrTX/+c9/8Pf3Z/jw4Wm2i4uLY+LEiVy/fp2RI0cC0KZNGyZNmpS6zeTJk2nZsiW7d++2+3mL3MlOHLEQIv/5+PjQo0cP3NzcUodQVkrh5uZGjx49itxTd1H4SXhPMeVIHYiCg4M5cuQILVq0SLduw4YNPP/88zz22GP897//pX379nzzzTeMHDkydbScoujPP/9k8ODB3LhxAyDDMJ7nn3+eHj16ULFiRTw8PNi9ezcdOnTgxIkTqTMS79u3j61bt7Jr167UuQ2io6Px9fVNTefVV1/N5zMSBUXiiIUoPPr27Yufnx9BQUFcu3aNypUrF8kwW1E0SKW/mHKkC//MmTN5+eWXrbZ416xZk1WrVhEXF5caf9+tWzcee+wx3nzzTT777LOCzm6emD9/Pq+++mpqZXz06NH818p2L7zwAv379+fChQts2bKFZs2aAfDtt98ye/ZswBius23bttSoUQOAy5cv07ZtWxITE9larnyBnI8oOBJHLETh4uPjI5V8USAkvKeY8vb2tjojKxS9C/+gQYPYs2dPhutdXFzSdbgdNmxYaqfVoujcuXN4e3ujtWbo0KE89NBDGW5bt25dNm/ezI4dOwDo2LEjX3/9NZGRkQQHB/Pzzz+nCY9auHAhAwcO5L333sv38xAFT+KIhRCieJJKfzHlSBf+GTNm8Oijj9q0T5UqVUhKSmL06NEZhjkVZoMGDWLUqFHs2bOH7777jtOnT2e6fVhYGP379wfg8OHDREZGMnHiRDp27Mj169fTDOt57949vL29efrpp/P1HIR9SByxEEIUTxLeU0ylXPjNh+1TSuHq6lrkLvzbtm1jw4YNNu3TqFEjjh49ytChQ6lTpw69e/fmww8/xMvLK59ymTd2797N8OHDU59cLF++nKtXr9KyZUteL5Nx/4TGjRuzbNkyKlWqxJ07dyhZsiSnTp3iyy+/pG/fvqxcuZKbN2/i6+vL6tWr6dmzZ0GdkrADiSMWQojiRyr9xZijXPh3796do0mySpUqxZo1azh37hzTpk3j/fffZ9asWfmQw7zx008/8cwzz/DNN98QEBBAo0aNOHjwIFOnTuWjjz6Cd/9jdT+tNQ0bNuTmzZt4eHhw/fp1PD09qVatGrt27WLixIm0adOGqKgodu7cybfffptmuE7hmCSOWAghihep9BdzjnDhd3Nzy/G+SikeeOABpk+fTrdu3XB3dy+0k0998cUXzJw5k379+vHBBx/Qpk0bzp49y86dO1m0aBEnLCr9V69eZcaMGaxevZqwsDA6derE+vXr+fzzz+nRowc//PADV65cYefOndSvX99OZ1V8OMJEeEIIIYouqfSLIu/MmTPUq1cvV2n4+fmxZs0aJk+eXGgr/c2aNePMmTNERERw+vRp6tWrR926dXnrrbfSbNe/f39++eUXJkyYQLly5Vi7di3169endOnSODs7M3XqVABatWplj9MolmQGXCGEEPYmlX5R5FWoUCHXady7d4/PPvuM2NjY1P4NhUlSUhILFy6kQ4cO+Pn5MXbsWGbOnEm9evXStdKHhYVx6dIlgoKCuHjxIp6ennbKtYC0E+GlMJ8Iz8/PT1r8hRBC5Dup9Isir3z5nI8lHxcXx+TJk1m2bBnR0dF5mKu85eTkREBAACdPnuS9996jSZMmbNq0iQMHDjBnzhwGDx6cuu2tW7d48MEHef3116XCXwg40kR4QhQHEoonHJVU+kWxcOTIEWbNmsWNGzdQStG8eXM8PT3ZuHEjlSpVws/Pj7179zJw4MBC18oPRt8Df3//1Pd79uzhwIEDeHp68tprrzF37lw2exgV/NKlS7N161aqVatmr+wKM440EZ4Qjk5C8YQjk3H6hcP7/fff6dKlCxERESQnJ7Np0yZmz55NSEgITz/9NNOmTUsd537NmjUMHTo008m+CgNPT0/8/f356quvOHjwIJcvX05d99///lcq/IWII02EJ4QjMw/FS7lRNw/FCwkJsXMOhcgdqfQLh7Z06VJ69OjBrVu3uHfvHocPH2bEiBEopWjdujX+/v489dRTTJ8+ncTERL755hsuXbpEhw4dSExMtHf2M9SkSRMmTZrEnDlzePLJJ9Os69atm51yJaxxpInwhHBk2QnFE6Iok0q/cFhnzpzhqaeeAmD//v0sXLgQrTWvvfYaycnJjBs3jqNHj/L3339Tr149tm/fTu/evWnfvj0Af/31lz2zn6Xg4GDCw8N5/fXX+eGHH+ydHZEBmQFXiKJBQvGEo5OYfuGQoqKiUofxvHbtGpUqVeLatWskJiZSrlw5wPiCDw0NpX379rzzzjuEh4dz4cIFAMqWLcvx48dp3ry53c4hKyNHjiQyMpLXXnuNBQsW2Ds7IhOOMhGeEI7M29ub0NBQqxV/CcUTjkAq/cIhXblyhapVq7J582YqVaoEkPqFnRLv7unpyZ07d0hOTkYpRXBwMM8++ywuLi7s3LmTHj162C3/2eHh4cGbb75Jz5496d+/P1vL5XwUI1ts27atQI7jaBxhIjwhHFnXrl0JDg5OM7xuCgnFE45AwnuEQ2rYsCFXrlzBz88PgIiICHbt2kX//v1T46vv3LkD3A/jadasGXv27GHHjh0kJycXmVaddu3a2RzHP2vWLJydndm6datN+8XFxTFp0iSb9hFCiKJAQvGEo5OWfuHwIiMjqVixYur7V155hdWrVxMfH8/nn39O06ZN0+1TGIftzEx28puQkICrqyvJycm8/vrrJCcn07VrV44fP06jRo2ydZyePXvi4iJfG0IIxySheMKRSUu/cFg3b95kxowZNGrUiMGDB1OiRAlat27N5s2b+d///kdISAj9+vWzdzZtcvPmTfbs2cP169eJiYlJXZ5ZB7OkpCQ++OAD3NzcGDlyJDExMZQvX565c+fyyCOPMGHChGwdOzY2lh07drB27dpcn4cQQhRWPj4+jBkzhmnTpjFmzBjbK/yX9sOqMTC/s/Hz0v78yagQNpImO+GQtNYMGTKEcuXKERQURI0aNWjevDm1a9dm6dKllCxZ0t5ZtNnhw4fp378/ZcuW5fLly8TGxuLl5UVSUpLR+u5ZJnXb5cuXM3/+/NRQpoiICNavX89LL73E9u3b+fHHHxk4cCCbNm1i0KBBjBkzhrlz51KqVKkMj79gwQK6dOkicwAIIURGgmbC7s8g4R6gISwYTv0GHZ6Hrq/bO3eimJNKv3BIV69eZfPmzdy8eRMvLy8Azp07Z+dc5c6uXbvw8vIiODgYgE2yL18AACAASURBVPj4eMLDw3Fzc6N06dJcat0mdduxY8eybNkyXF1dOX/+PAMGDKBmzZp06NCBDz74gMDAQEaNGsXs2bM5fPgwL730Ek2bNmXp0qWpQ5ZaWrRoER999FGBnKsQQhQ5l/abKvx37y/Tycb73Z+Cb0+o2Sbj/YXIZ1LpFw4nJiaGEydOAFCzZs3UDrtFXcOGDdP0TXBzc6NmzZrptjt16hSJiYn07t0bNzc3gNTPo1WrVly9epUnn3ySr776imHDhlGhQgX27dtHnz596NWrFxcvXqRs2bLp0vXz8+Pnn3/mkUceyaczFEKIImzvPFMLvxWJccZ6qfQLO5KYfuFQunXrhoeHBz169KBv37789ttv9s5SnnnggQc4fvx4lts1b96c+fPnp1b44X6lv0SJEixdupRy5cpRt25dxowZw7PPPkv37t1xd3fn7t27qftFRUWl7j9v3jyCgoKYM2dOmnSFEEKYRJwFrE/uhU42rRfCfgq8pV8pldOpQ1/VWp/Py7wIx6K1Tp0mff369fTu3dvOOcpbMTExeHp6ZrldWFhYupb60NBQAAIDA/nwww9ZuHAhzz77LIMGDWL06NHcuXOHvn37AkYYlJeXFzVq1OB4g4YAjB8/PjWt8+fPU6dOnTw6KyGEcBAVHjBi+HVy+nXKCSr4FnyeBN9//z1XrlxhypQp2d5n/PjxGvAPCAhYlX85K3j2CO95AjgERGW1oYkCOgIfAOfzKU+iiFu7di39+/cHjLHkHbE1evXq1dkKrbEWmlOhQgWANDNNtm/fnuXLl9OtWzfc3NwYOHAgtWrV4pVXXmHVqvTfc/v27aNNG3k0LYQQVrUbZ3TaNY/pT+FSAto9V+BZioqKYsOGDfz111/cunWL0qVLU716dbp06UKTJk0AePPNN4mMjGTUqFG0a9cuzf6zZs3iwoULPP744/Ts2ROATz75hGrVqjFkyBAAFi9ezB9//AGAk5MT5cqVo3nz5vTt25cSJUoU4NmKrNgrpn+c1npfdjZUSrkA6afHE8Lk3r17qRX+p59+2iEr/ABHjx6lQ4cOOdq3bdu2+Pj4MHXqVMAYftPZ2Zm6desCRqfghQsXkpCQQKNGjfjrr79o0KBB6v716tXj9u3buT8JIYTIA2HnbhO85RK3rt3Dq7I7zbrVpErd9A0emQkJCSEoKIjw8HC8vb1zPx5/zTbGKD27PzVi+HWy0cLvUgI6TCrweP6IiAg++ugjSpYsyYABA6hRowbJycmcOnWK7777jvfeey9123LlyrF79+40lf4rV65w9epVSpcuneWxGjZsyKhRo0hKSuLs2bMsXbqU+Ph4hg4dmi/nJnLGHpX+fwOhNmyfZNrnSv5kRxR1hw8fTv19+vTp9stIPhs1ahTDhw/nhRdeSLfu1KlTme5br149zpw5Q0JCAgBNmzblzJkzqevXr1+Pu7s77u7uTJ48mUWLFlG1alW4GgYYN1bm8wKItPK88iCEyNDetec4vPkiiQnJoOHGpTuEBN+gec9atOtXN1tprFu3jsDAQBISEtBaExoaSnBwcGp/sBzr+roxSs/eeUYMf4UHjCcAdujAu2LFCgCmTp2aZpjqqlWr0rZt2zTbtmnThi1btnDjxo3UASN2795NixYtOH36dJbHcnFxSX3KXL58ef7++2+OHDmSYaX/k08+oUqVKri5ubFnzx6cnJzo1asXHTt25Mcff2T//v2ULFmS/v37p7kRuXz5MqtWreLcuXO4urrSrFkz/P39cXd3ByA5OZmffvqJ3bt3A/DQQw+RnJw23EprzebNm9m5cye3b9+mUqVKXLlyZURAQMDSjM5v/PjxbwP/AqoAN4FNAQEBI7P8YAqZAq/0a63/beP2GqPSL4RV5kNMVq9e3Y45yV8tW7bk9u3b9O7dm27dujFp0iQOHTpEfHw8/v7+BHmVA+DQoUOcOnWK8PBwIiMj2bRpE97e3pw5c4Zjx47Ru3dvhgwZwrx584iMjGTChAlp+j907tyZ4cOHc/bsWTDF9C9YsIBXX30VHx8f/Pz87HL+hVW+VR6EEOmEnbttVPjj71fktIbE+GQOb75Ibb8KWaYREhJCYGAg8fH3gwi01sTHxxMYGIifn1/uW/ztPEpPTEwMx48fp1+/flbnpbGck6V06dI0bdqUPXv20K9fPxITE9m3bx9jx47NVqXfkqurK0lJSZlus3//frp168arr75KcHAwq1at4vjx4zRu3JipU6eyd+9eli1bRoMGDfDy8iI+Pp65c+dSu3ZtXn31VWJiYli+fDlLlizhmWeeAYx+a7t27WL48OFUr16dbdu2sX///jQj3f3yyy8cOnSIIUOG4O3tTUhICN9+++388ePH3wwICFhvmc/x48cPBl4GhgJHgcrAQzZ/KIWAjN4jHMIbb7zBxIkT7Z2NfFW+fHnee+89unXrxowZM2jQoAGjR4/mpZdeStNBaejQoaxatYrTp09z/vx53nnnHbp3786HH35I5cqV2bFjBzNmzGDv3r306dOHxx9/PM1x2rRpk65i/+ijj9K4cWMee+wxmjVrViDnWxSYVx5S+kuYVx5CQkLsnEMhHEvwlktGC78VSQnJBG+5lGUaQUFBqU89LSUkJKQOCFGUXb9+Ha01VapUyfY+HTp04I8//iA5OZng4GDc3d2pV6+ezcc+f/48+/fvTxMiak3VqlXp27cvlStXpnv37nh4eODs7Ey3bt2oXLkyvXv3RmudOsfOvn37iIuLY/To0VSvXp369eszbNgwDh8+nDorfVBQED179qRVq1ZUqVIFf39/ypS5P3FlXFwcW7ZsYcSIEfj5+VGxYsWUvmpfAhlNT18buIrRun8xICDgQEBAwFybP5hCoFCM06+UWqC1fsbe+chPn3/+OfPnz+f8+fOAMeb5m2++SZ8+feybMQdRp04dfv/9d3tnI1+VKFGC1183ZnScMWMG58+fZ9y4cTRq1Ijvv/+e/qbtTpw4gVIqzb69evUC4IMPPmDpUuMJpq+vL+vWrUt3HCcnJ9asWcPq1avhjTcBY/SD77//ntu3b/Pjjz/yr3/9K5/OsmjJTuXBWovhoZsRfHvuNCExd/Ap7ck/69ajRbmsWyiFKO5uXbuX8aiY2rQ+C+Hh4WkGNUibhk6tQBZlGZ1fZho1aoTWmpMnT7J79+4MJ2q05vjx40yZMoWkpCSSkpJo1qxZakffjJg/mVdK4enpmWbGd2dnZ0qVKpU6105YWBjVq1dP8+Sibt26KKUICwvD09OT27dvp/ZVA+N6VqdOHW7evAkYE3cmJCQwd+5cy+vkODIeLGYlMBkIGT9+/EZgA/BLQEBAXFafS2FTKCr9QC97ZyC/1ahRg1mzZlGvXj2Sk5NZtGgRAwcO5ODBg/naclocYo1/+ukn3n33XT799FN7Z6VAXL9+HaUUgYGBHDx4kAMHDhg3j4sWA6Sr8JuLiYnJVqcspRT169dPfT9s2DCGDh1K2bJlGTNmjFT6TXJSefjk5DG+PHeK2KQkNHD89i0Cw68wtm4DpjSU0CkhMuNV2Z0bl+5grdgpZazPire3N6GhoVbLrlKKypUr50VW7apy5cqpleHscnJy4qGHHmLDhg2cP3+eESNGZHtfX19fhg0bhrOzM15eXjg7O2e5j7VtLJcppdL8nTK7vmVHSlrjxo2jXLlyqcunT5/uB1htwQkICLg0fvz4BkB3oAfwX+Cd8ePHtwsICChSnd0KrNKvlMoouEuR4X274xgwYECa9++99x7z5s1jz549+VbpLy6xxs899xxLlizh//7v/+ydlXwXExPDhAkTeOKJJ+jevTvdu3dPXXfCVOnPzNdff5060lFWmjZtygnT7zlpNSoObK08HLoZwZfnTnHPLNY1GbiXlMSX507RxbuKtPgLkYlm3WoSEnwjTUx/CmdXJ5p1qwlfZJ5G165dCQ4OThPTn8LV1ZWuXbvmVXbtpnTp0jRq1Iht27bRpUuXdHH9d+/eTRfXD0aIz8aNG/Hz88PLyyvbx3Nzc8v3m6UqVaqwe/duYmNjU8/n3LlzqWFM7u7ulC1blpCQkNTQIq0158+fT+1kXLVqVVxcXIiMjEwTfhQQEHAm/RExXx8LrAfWjx8//gMgDHgY2JQPp5pvCrKl/yrQQmt93XKFUirrIDwHkpSUxMqVK4mOjs7xEIxZyfeOSoVIUFAQjRs3tnc28t2dO3do164dbdq0Yc6cOTlK47XXXmPMmDF4eXnRrFkzOnXqhKura5ptIiIiOHLkCA8++GBeZNuhZVZ5cHZ2Jjo6mvfffz/1Kdu3keHEZtC5LS4piW/PnaZFK6n0C5GRKnXL0rxnLQ5vvkhSQjJaGy38zq5ONO9ZK1vDdvr4+NCjR480jWJKKVxdXenRo4fDXBv/8Y9/8NFHHzFr1iz69etH9erV0Vrz999/s3HjxjRDdqaoWLEis2fPTnddKAzatm3L+vXrWbRoEX379uXu3bssX76c5s2bp95wdO3alY0bN1K5cuXUjrxRUVGplf6SJUvSo0cPVq9ejdYaX19f4uLieP/9958DkgMCAhZYHnf8+PGjMerLe4FoYAjGUwHbezjbWUFW+n8BGgDpKv0Y8VEO7+jRo7Rv357Y2Fg8PDz46aefaNq0qdVtFyxYwIIFxv/e9evWPrLM5TTWuCgqDhV+gLlz59KqVSsWLVqU4zSefPJJateuzaeffsrSpUu5ffs2ixcvTr35PHfuHB07dqR27docO3aMP6pWyyLF4sWyXFqrPIDRyp+UlMSpU6fSPGU73P2RDB9rJgPnY6IL5kSEKMLa9atLbb8KacbpP3fnIBP+/TL8O3vXzL59++Ln50dQUBDXrl2jcuXKDhf+WrFiRV577TU2bNjATz/9xO3bt1Mn5xo2bFiG+2UnBNQe3NzcmDhxIqtWrWL27Nm4uLjw4IMP4u/vn7pN9+7diYqKYtmyZYBxo9CmTZs0YU79+vXD09OTwMBAVqxYkfLUYDAwO4ND3wKmAh8BrsBxYFBAQECRG6lBFaPH9nY/0fj4eC5evMitW7f48ccf+fLLL9m6dWvqrHgZad26NQcOHLDpWO+//z6XLmX8AKVWrVpMmzbNpjQLI8t4P0f26KOP8txzz6UbbSfFiYaNAGh08oTV9dbMmzePZcuWsWrVKqpUqcK0adNITEzko48+Yv369dR96WUA3vRrTP/+/RkyZAjz58/nhRdeQGudu+BKQ5H945mXyyVLlvDHH39k+b8Y3KIJV6pUsnrSTkCfajX5tFWRHAlOZF9elJuC4BBlU4hsKirlMlcKS0feYsHNzQ1fX1/A+FLav38/n3zyCV9//XWeH6s4dFQqbo4cOULr1q2z3C6l8p8dXUyvm126chMYlZLGuvWYT3EzaNAglixZwj//+c90k7oUdyEhIRw8eDBbN5+1Qi5xzbsiCVY6o5VwduafdW0fHk8IIYTIDrtV+pVSX2qtx9rr+IVBcnIycXH5M+JTbjoqFYcRf4qiqlWrcuXKlTSTjBSU4cOHM3z4cC5dukS1atVwcZH2ghSZhdJZ8rp1m6bXb3KiaiXikpJIxmjhL+HszNi6DaQTrxBCiHxjzyt396w3cRzTpk2jT58+1KxZkzt37rB8+XK2bt3K+vXpJn/LEzntqFQUR/zJ7RBeRclDD9kp9CP9Z3zBHtkojDIbttOSUoo+ypU323fm23OnOR8TTZ3SHjJOvxD5LLPGLJk3QxQX0lxXQMLCwhgxYgRhYWGULVuWZs2a8dtvv/Hoo4/m2zFt7ahUFEf8KS7x/NllFsuaZ3dCSqkDWuus44qKqcxC6SylPGXzKVcBr/JRBB05Tnh4OIe8j+MlT9SEyBeZNWad9vWReTNEsSGV/gKycOFCuxzXx8cn2xWJ4jTijxB5JbNQuhSWT9mK4hM1IQqLe4cPE7F4CQkXzuNauw4VRj6Fe/PmVrfNrDHrh31/sI844vT9Mf9l3gzhyKTS74ByGpNfHKYmFyKvZRRK5+zsTKVKlXB1dU3zlK0oPlETorC4/ulnRHzzDTouDrQm9sRJordsocKYMVSa9Hy67TNrzDpTvQpxyUnWwhdl3gwH8vbRP/n7ThQrOnTJ9j4+a1dqwD+kn/+qfMuYHUil38FYtiBeunSJgwcP4unpSf369TO9AZARf4q+Z555Jj+STTdZiUjLllA6eaImRM7cO3zYqPDHxt5fmJyMjo0l4ptv8OjUMV2Lf2aNWTGl3a1W+MFx5s24HhdLwOkTbAm/SljsPcq5udHQ04tRPr509a4KwCOB67l87y4ft2jL4zVqp9l/wI5Agm/d5LXGzXjmAWMG23/s3kp9zzK827QlAC8f2sePoUY3LxelqOpeikerVGdKAz9KyaAPhYo9/xqX7Xhsh2StBRGMVsSoqCgOHjyYaQhBcZia3NHlR6Vfay2V/mzIbiidPFETImciFi8xWvit0PHxRCxeQg2LSn9iYmKG6ZWOucedMp5oKxV/J6BOaY9c5dfeQu/G8MSuLZR2duWVRk1pVMYLrTW7blzjzeCD7Op5vx5QraQ7P1wMSVPpPxV1m9N3oijn6pblsR6uWJlPWrQjQSezP+IG044c4F5SIjOatcqXcxM5Y7dKv9a6o72O7aiyGjowqxCC4jI1uRD2JE/UhMiZhAvnIaMO88nJJFxIO6hYSEhIprPzPhB6lcjqVdPE9KdwhHkz3jr6J1rDL516UNqsxd3XswwDq9dKs23/GrX45txpLsZEU8t0s/PDxRAeq1qDvRFZz3BcwsmZSsbMtgyoUYs9EdfYFHYlw0r/P3ZvxdfDk5LOLqy6FIKzUkys15hhtesy4/gRfg69iKeLCy81bMqgmvdvRE5G3WbGscMciLxBSWdnenhX4+0mLSjj6gpAktZ8cDyYHy4Zk+UOrlGHZIv/Ga0188+e4rsL5wiPvUed0h6cuhM1IqSf/9IsT9TEZ+3KhUBFYAcwBXAH5gGvA28D4zEeGH0S0s9/ltl+ZYEPgYGmff4EXgrp53/AtL4CMBfoCFQAzgEfhfTz/9Ysja0YswLfAp4xHWcx8GpIP//0/8xmnLJ7guaUUo8ppd5SSi1QStUyLeuklKqWk/SspO+VF+kUN9kdOjAlhMCavn37MnnyZFq1akWtWrVo1aoVkydPls6FQuSRrl274mq6QFmSJ2pCZMy1dh1wyqDa4uSEW520oSlBQUEkJSVlmF59t5I869sQd2fn1MqQE+DuAPNm3IqPZ9u1MEb6+Kap8Kco65a29b6cWwm6e1dj5aXzAMQnJ7Pm8gWerJWzxr6Szs4kJmda/+TnyxfxcHHhp0e685xvQ949dphn9++mbmlPfunUg0E16/Ba8AHCY+8BcC8xkdF7t1PK2YU1HXvwReuHOXgzgqmH96em+eXZU3x/8RzvNWvF6oe7kaQ1P1++mOa4H538ix8uhvBu05Zs7tqLcb6NAOb7rF3Zx8bT7AT4YMxx+RzwKvArUAJ4BJgOfOCzdmUrAJ+1KxWwHqgO9AVaANuBLT5rV1ZN+egwbgT6An7AHFPeLIe5Hw4kAh2AicALwJCsMmxTS79Syhv4BWgFnDed7BfAReCfQCwwzob0xgGeWuvZpvfNgXVAVaXUYWCA1jrUljwWZ9kdOjCrEAJbRvwRhUNkZCT/+te/2LRpExUrVuTixYvDtNbLM9tHKVUCCAB6AOWBM8DrWuvflFJ1gBAgxmyXWVrr/5j23Qo8hPGlkyJIa90vr87JUckTNSFypsLIp4jesiVtTL+JcnOj/FNPpVmWVUOYq6srUxr60cW7isPNm3E+JhoN+HqUyfY+T9aswxvBB5nSwI/AsCuUcXWjXYVKNh/78M1Ifgm9SIdKmT+1rOdZhhcaGMOiPl26Pl+cOYmLk0p9wjKpfmPmnznJwcgIelerwZrLF7mbmMjHLdvi4WI0nLzfrBVD92xL/dt9e+40zzzQkL7VjEks32nSnO3Xw1KPeTcxka/P/c3ihzrR1nRuNUuV5oVDe78EJmBUyrPrNjAhpJ9/EnDSZ+3Kl4BqIf38e5nW/+2zduU0oCtw0PSzOVAppJ//PdM2b/msXdkPeAqYHdLP/zLGk4AUC3zWruwGDAV+N1t+PKSf/9tmxxmLMf/Vd5ll2Nbwns8AD6AhRqXfPPg7EHjHxvSeBz41e/8pcAV4GZgKfACMsDHNYis7QweChBA4ogkTJuDm5kZ4eDiHDx+mY8eO85RSR7TWxzLZzQW4BHTGuHHvDfyglGpqto2X1jqjoNiJWuuv8uYMihdb59AQQoB78+ZUGDPG6MwbHw/JyeDkhHJzo8KYMek68WY3lK5FuQoON0qPxvY5bDpVroIGdlwP54eLIfjXrJPtfbddD8Pv19Ukak1icjI9q1RnepMWme7T0PN+UIdSigpuJWngWTZ1mauTE2Vc3YiIN27yzkZH0aCMV2qFH6Bl+Yo4AafvRFHerQTX4mJpWf7+39JJKZp7leeq6WnB6ego4pKTGb13h+VkNuMw6rW2OG6q8KcIxwi5wWJZSoWrFVAKuO6zdqX5NiWBBwB81q50BqZhtNpXx3hq4AZstUg32OL9FbPjZMjWSn8vYJTW+oxSytliXagpg7aoBZwCUEpVAh4Gumuttyql4jHimkQ2mbcgZlbxlxACxxITE8OPP/7IX3/9hYeHB4888ggYT+SewvjysEprHYPx+DHFOqVUCMYX08F8zLJAnqgJkROVJj2PR6eOpnH6L+Bau3aG4/QX58EpfEp7ooAz0VE8ms2qmZNSDKpZh4DTJzh8K5JZzbM/J2Pb8hWZ+WBrXJTCu6Q7rhmFYZlxcUpb7VaKdPspBcmm+xetM551MruzUabE93/V9hGquZdKXd51y29+QMadIq2z3F5nsMw8eiwcI17fUpTp58vAS8Bk4CgQDcwkfYU+s+NkKCcdeTMKkKsI3MtgXUbiMO5gwHjscRejUwRAJCCx/TZKaUFcunQpV69eTbfeyclJQggczN9//42zszP169c3X3wEowU/20zhe/UB86cDF5RSGtgMvKK1vpHb/AohRG64N2+ebpQea4pzKJ2XmxudKlVhccgZRvvUSxfXH5UQTxkro/I8aar0d61cFe+S7tk+nruzS76PduTrWYaVl0KITkxIbe3/M/IGyaZ1ZVxdqVyiJIduRtCholFH1lpz5FYklU3nUs+zDG5OTly+G5O6DUBIP/8z+Zp5w5+AN5Ac0s//XAbbPAKsDennvwRS+wHUJ/0ThByxtdK/A3heKWUe85TyDGkMsMXG9PYBE5RSocAkYIPWOuWmoi7G4wqRAxEREVaXOzk54ecnU4s7kujoaMqWLWu5+Dbgmd00lFKuwDJgkdb6pFLKA2gDHMYYQeBz0/pHzXb7VCn1kdn7z7TWb+XgFIQQIl8U51C6/zRryeCdW+i/PZAXG/rRsIwXaM2eiOvMO30izZCdKWqV9uDPRwdQ0tkymMP+Blavxf9OHeOlQ/uY0qAJtxPieT34IL2qVE+94fhn3XoEnD6JT2lPGpQpy9LzZ7geF5ta6fdwcWXsAw2YeTwYDbStUIm7iYn02b75OYzKeH4OUR0I7AJ+9lm78lXgJFAFI4omMKSf/w7gb2CIz9qVjwA3MMLgfYBDeZEBWyv9U4GdwF/ATxgV/rFKqSZAE4yOfbZ4CSMM4ShGbPEYs3VDMD4cYaPMhu5MSkqSyX8cjIeHB1FRUZaLywB3srO/UsoJWILRR2cigNY6Gjhg2iRcKTURuKqUKqO1TjnYJInpN+R0FmwhRO5Zlr84i7H8zUPpUrZdsWKFw5fVmqVKs65TDz4/fZJZJ44SHnsPL1c3GpXx4r1Mxs/3cst6XH57cHdxYdFDnfjPscMM3BFICWdnepqG7EzxdN36XI+NZdoR4/L1eI3aDKheizPR9y+HLzXwo2KJEnx59hRvHf0TD+MpyGBgdn7mP6Sfv/ZZu7I3MAP4EiNkJxyjrrvYtNkMjEr+bxjRMwsxGtwa50UeVHaGeEyzg1IPYMQBd8cI6YnE6FE8XWt9OkeZUKoCEKnNMmPqTBimtc56gNjssb1XSyHRunVrDhw4kPWGJu+//z6XLl3KcH2tWrWYNi3DUG9RxMTExFCuXDmOHTtGvXrGqAdKqSXAFa11pn9opZQCvgHqAL211lZD9EyhP2EYHXtvm0bvWZoHlf4iXy4tZ8E2Dx+QoW6FFdkNP7a3IlE2rZW/VatW8fXXX6crf1JWRSaKSrnMFZvH6ddan9VaP6W1rqa1dtNaV9FaD89phd+UZoS2uPvQWh/Nwwp/seLt7Y3KYGpxGbnH8ZQuXZpBgwbx9ttvExMTw65duwAGYLTeZ2Ue0AjoZ17hV0q1U0o1UEo5mW7KPwW2aq1v58c5FFXms2CnfIWZT4IXEhJi5xwK4bgyKn9a63TlT8qqEDmcnAtAKVVDKdVGKWXriD0in8nkP8VPQEAA9+7do3LlygwdOhRgXBbDdaKUqg08izFucJhSKtr0Go7Rp2YDRojQXxid7odaJDHXbJ9opVSxG/Ens1C6zCbBE0Lkni3lT8qqEDkYvcc0odbrQDWMxyFaKXUVmKm1Dsjj/IkcKM4jFhRX5cuXZ82aNeaLMp2YC0BrfYHMH2lmOMmH1rpLtjPnwDKb/CerSfCEELljS/mTsiqE7TPyvo0xAdfXwGrgGkZHhMEYI3lU1Fq/m+e5FDYrziMWCFFQsjv5jxAi79lS/qSsCmF7S/8EjBZ9y2H5Niilwk3rpdKfj2wZJcR8xIJdu3bx1VdfER0djYeHB7179+bhhx8uyKwL4XCK8+Q/QtibLeVPyqoQtlf63YHtGazbhjGeqM2UUg0wZvMtablOa/1rTtJ0RJYjD4SGhhIcHJzlyAMff/wxZ87cn3fi5s2bLFu2jL179/Liiy8WRNaFcEgSSieE/WRU/pRS6cqflFUhbK/0rwEGYczOaWkwsM6WuYa53gAAIABJREFUxEzDcn6HMXqItdhiDRS+GSLswHzkgRTmIw/4+flZ/dLatWtXmgq/uTNnzrBr1y5p8RciFySUTgj7sVb+tm/fbrUhrFiW1Z/Gwd0IGP6D8T7uDuyaA8d/gVsXoIQnVGwArf8JfoPAyTS+y/W/YdsHELIdYm+DZxVo1B86vQzu5e6n/20fuLATHl8ADw65v/zQMvj1FXhD5lgtTGyt9P8GzFZK1cG4AUiJ6X8c8ANeVUr1Ttk4G6303wAJQF/gDMbkQMKK7Iw8YO2L69dfM/8T/Prrr1LpFyKXzEPp8pJM+iVE1izLX0BAxmOK5FdZLRLu3YJvekHsLej2JlRvBc5ucHEPbJsNNdpAudoQehAWD4DaHeAfy8GzKoQfg81vw+lN8K/N4O51P12XkrBlBvgNBJcS9js/kSVbK/3LTD+rA49msh6y10rfCBistd5oYz6KnZyOPBAdHZ1pujExMbnOmxAi7+U0nE8IkZ7cQAO/v2u07k88AGXNRluv8AA0ecL4XWv4eQJUqAtDV9xv+feqCVUfhM9awpb/QJ//3t/fbxCcCYR9X0KHiQV3PsJmtlb687qE7ANq5XGaDimnIw94eHhw8+bNDNP18PDIszwKIfJGTsP5hBDpyQ00kJwMf/0ITf3TVvhTuJq6VF49AtdPwKCv7lf4U5SpCk2fgKOroPdHkDIJqFtp6PwqBL0HLUakfQogChWbJufSWl+w5ZWNJJ8BnlFKDVdKVVNKlbJ85ey0HE9OJ9zq3bu31eUpHnvssVznTQiRt2QiISHyhszEa3I3wgjrqdQg8+0iTH0AK9W3vr5SQyOdmBtpl7f6J7iXh52f5D6vIt/YPCOvUspFKTVEKfWZUmqZ6eeTSimbJ/oCbgDngcXAJYzZPy1fgvsjD7i5uaFMd9dKKdzc3DIdeeDhhx/G19fX6jpfX1+J5xeiEJKJhITIG3IDncL690nGMpi3MeV7SVmsd3aB7m/B3vlw+7LNuRMFw9bJuSoDm4BmGJX1cKA9xvj8R5RS/6e1vm5DkktN+3+EdOTNUk5HHnjxxRfZtWsXv/76KzExMZQuXVrG6ReiEJOJhITIG3IDbVKqIpT0guunMt+ugqmR8PpJqNos/fobp4x0SlVIv87vcdj9GWydCbU65D7PIs/Z2jr/MVABaKe13p+yUCnVBvjRtP4pG9LrCozVWi+3MR/FVk5HHnj44Yelki9EESETCQmRN+QG2sTJCZoMgiMroPPU9HH9CbHGzyrNjCE898w1Oveax/VHXYXgldBiePqW/hQ934VF/dMO6ykKDVvDe3oDU80r/ACm968BfWxM7zxw18Z9hBDCoeU0nE8IkVZO+8M5pO5vQ9ka8FV3OLQUrp2AiLPGjcCCzhAdblTmB3wON87AiqFwaR/cDoW/NxrDeHrVNIb7zEidR8C3hzGSjyh0bG3pL0HGcfZ3ADcb03sF+LdS6rDW+ryN+wohhMMqlhMJCZHHZCZeM+7l4OlAY3Kunf+DWxeNybkqNYROr0DZmsZ2NdvA2C2wbRZ8N9Q0OVdVaNQPOr/y/+zdd3RU1drH8e9OhSQQWhotJtIjoBKUIkg0WFGaFxG8ImLhVbHgvYKKiopS7IqK4PWKDUWpUhSRCIiC0kQQRCT0kiChE9L2+8ckuSSkTOpkkt9nrSwy5+x9znOiO3lmzy6F9+LHjoZJncGrelk/kRSRyW+sW56FjfkOR+J/tbX25FnH/XGM9T9trY0twvV+wbFkZ20cvf5Hcpex1l7idIAFK+oslgojOjqa1atXuzoMcS/5fPZa4ahdSlWjtlnG8mqbWev06w205MNd2mWJFLWn/xEgDthtjFmEYyJvMI6NugzQrYjX25j5JSIiIlImqvROvCKZipT0W2vXG2OaAv8C2uNYxWc/MAl4xVp7qKD6eVxvcFHKV1Vnzpzh/fffr9o7CYqIiIhIsTmd9BtjvIFLgHhr7ciyC0nONm/ePBISElizZk3V3UlQREREREqkKD396cASHCv47CvuDY0xDwCfWWudXhw3s86nRf0kwd1l7SRorc1zJ8GoqCj27dvHggULOHHiBAEBAVp/X0RERETO4XTSb63NMMb8CYSU8J6vAj8BTiX9xhjPzDo/4NjBt8oobCfBt99+m5Mns+dTk5SUxCeffMKqVasYPnx4eYUpIiIiIhVcUSfyPgGMN8b8Zq39rZj3NMBYY8zhIpSvkgrbSfDshP9s27ZtY8WKFerxFxERERGg6En/KBw78q43xuzFsXpPjqzUiSU2lwGeQFAR7ruM/PcHqLSydhIsjgULFhQ76c9a2kwTh0VERNzXvpGPcXT2bAJv6kv9MWNynDv44osc/s/7BFx+OY3enUTimxM59NZbjpMeHngFB+N/WWeChw/Hq04dADa3aEmD116j5jVX53vPzS1a5nk8dPTT1O7fH4CkL74g6dNppOzcifHwwLt+fQKuiCH4oYcAODJzFvsffxzv8MY0+eabHNc5sXQpu+8ZivHzo8XaNcX6uVRVRU36S7zEprW2W0nqVyUxMTFs2LChWHWPHy/ee6R58+bl2MREE4dFRETcl1dYGMcXLCTj8cfx8PMDwKalcXTuXLzqh+Uo6xMRQfiHU7EZGST//jv7Rz1J2sEEGk+ZXKR7hj73LDW6dctxzKNGDQCOzJjBwedfIGTkSPw7dsCmpnJm2zZOr1ufo7zx9SXj2HFO/vwz/pf8rz/5yIyZeNUPI/3I0SLFJEVfslNLbJajrJ0Ep02bhjEmx06CHh4eJCcn51s3LS2NefPmFSlRz5o4nJKSkn0s98Rh9fiLiIi4j2rNmpGamMCxhV9Tq28fwNFb7uHji190NOlH/rcvqvHyxCvIMRDDOySEM/+8lcQ33iQjORmPatWcvqdnjZrZ18nt+JI4anTvTu3+N2cf823ShJrXXJPrIp4E3ngjR2fMzE7605KSOPH999QZcgeHp37odDzi4OHqAKRgPXr0IDg4mHbt2tG4cWPatWvHgw8+SN++fQutu3jxYuLj452+V2ETh+Pi4py+loiIiFQMtfr25cjMmdmvj8yYSWCf3mAKnjZpfKtBRgY2Lb3UYvGqV4/kDRtI2b270LK1burLsUWLSD/hmMN4dM4cql90ET6NGpdaPFVJkXr6jTHTCytjre1X/HAkL76+vtxxxx05jkVERLBq1Sq2bduWb72sRN3Z3vnCJg4nJDi9yqqIiIhUEIE9epAw4UVSduzAw9+fk8uXEzrqCRLfeDPfOme2byfps2lUa9MGzwD/It1v34gR7Hv88RzHzps2jWrNm1HvvnvZu2ULf3W/Cu/wxlRv0xb/zp0IvP56jLd3jjq+TZvi27QpxxbMp3a/fhydMZO6d91Zqm9CqpKijunP67OaOkBz4G/gjxJHJHlal/Q3/93+J/EnjxPhX4PBkU0ZPnw4TzzxBElJSXnWKWqinjVxOK/E3xhDcHBwseMXERER1/AMDKRGbCxHZszEo2YN/C65BO/69c8pd+av7Wy5uB2kp2NTUvC75BLCnn0mz2vuf3o0R7/6Kvv12ZNqg//9bwK6XJajvHeYY/6Ad3Aw533+Gclbt3Lql184vW49B54ezeGpH3Lep5/gUb16jnq1+vbl6IyZVGvenNQDB6hx1VUcW7Cw2D+LqqyoY/pj8jpujGkEzMKxnn6JGWOutdbqv2img8mnGfjTUpLT07HA70ePsPjgPu6KbM7555+fvVtvbkVN1LMmDp89pj+Lt7c3MTF5/ucXERGRCq5W3z7sG/kYHn5+BD0wLM8yPo0a0Wjyu+DpiVdwMB4+PvleL+iBYdS9I++pnl716uETHl5gPNWaNaNas2YwcCCn1qxh58BbHfMO+vTOUa7m9ddxcNw4El5+hZrXX1ekuQWSU6mM6bfW7gbGAhNK43rA87kPGGNuLaVru8yyZcu48cYbadCgAcYYPvjgg0LrrEv6m8QzyZzOTPgBMoDT6em8s3UTa/5OxOQzJq+oiXrWxGEfH5/saxpj8PHxITY2VpN4RURE3JRfx44Yb2/Sk5IIiI3Ns4zx8cYnPByfhg0LTPgBvOrWdZTN/CoJ3/PPByDj1KlzznkGBFDzqqs49fPP1Op7U4nuU9UVdXhPQdKBhiW5gDHmbuByoK4x5hpgvbX2QObpkcDHJQvRtU6cOMEFF1zAbbfdxm233eZUnTE/LCWfYfakWsu6mv5cmJGR43jWCj/FSdR79OhBVFQUcXFxJCQkEBwcrHX6RURE3Jwxhog5cwBbaEJfUunHj5GWmJjjmIefHx7+/uwfPdqxB0CHDniHhJCWmMihdyZhqlfHv3OnPK8X+uwzBI8cgVft2mUad2VX1Im8rfI47AO0BJ4DfilhPJ8Du4FYYDBwoTGmBrAPyHvguhu57rrruO666wC4/fbbCywbHx/PV199xbY6/vnvSezhwUm//419yxrO06hRoxIl6hEREUryRUREKpmiTsgtrgNPPsWBXMfqDr2H4Icewr9TJ47OmMmRzz4nPSkJj1qBVG8VReP//AfffHIPD19fPHx9yz7wSs7kt1pLnoWNySDXDrxZp3Ak/AOstX+VOChj2llr12R+7w+cB/xlrc1/YfrCOf+g5SAgIICJEyfmmfzPmzePhQsXkpGRwa8XRrHmxVep/+q4cy+SkUHYgUQu/PV3wJH0t2vX7pyVfqRKKngdtoqjQrXLwkyePJnJkx2b1CQmJrJz504XRyRuSG2zDKhtSgm5S7sskaIO78lrgHgysMdau7cU4gEgK+HP/P4ksKm0rl3RZW2QlbURV/jOPazN53evR4YlfOee7NdaVlOkbN19993cfffdAERHR7s4GhHJorYpUrhCJ/IaYwYYY+oAWGuXWmuXAvHAiszXq6y1e40x9Y0xjxd8NecYY/oYY3YbYzZnvg42xuS9tVslk3uDrNpHjuFzJgWPtHTIGrufkYFHWjoR8buofeRYdlktqykiIiIieXFm9Z6PgCZZL4wxnjiS/ja5yjXCMa6/NDwLXIzjUwRwxPlpKV27Qstrg6xqZ1K45Jf1hB1IpOaRY4QdSOSSX9bTbNuOHOW0rKaIiIiI5MWZ4T15jXMq67FPx6y1iVnLRlprDxhj6pbxPSuE/DbIqn3kGLWP/J5vPS8vLy2rKSIiIiJ5Ks0lO0tTvDGmLZkTiYwx3kCAa0MquRMnTrBt2zYAMjIy2LVrF+vXr6dOnTo0btwYKHiDrLwYYwgNDeXWW29Vwi8iIiIieaqoSf9wHGvyNzDGPAJcA/zo2pBKbvXq1TmG3zz99NM8/fTTDBo0KHujrqwNsr7++msycq2/fzY/Pz9atWqlNfRFREREpFDOJv15LR9TZst5WWsPGmOuBq7DMXfgE9x8Yy6Abt26nTNsJy89evSgdu3afPrpp3mW9/Hx4b777lOyLyIiIiJOcTbp/8YYk5br2He5jpX4UwNjzFRr7SBjzK3AOmCBtXZeSa9bEcXHxxMXF8fBgwcJCQk5p8e+c+fOJCUlsXjx4uxjJdlpV0RERKqW7z74ndMnU+lxX1t+/mo7v8zfAYAx4F/Ll0at6tCx1/lUr+HYoXfv1iR+mb+Dv/ecIC0lHb9AH0IiAuk2oDk+1b04dug0H436iX88Fk1weE2n40hJTmPdol38tTaBY38n41PNk9qh/kR1rU/TdiEYD8Osl9ey788jXHpjBNHX5cxxvp68kb/WJtD68gZ0vaU5QI7nyVK9pg93TLjsnPv/tS6BbyZvpEl0CFcNiSrCT7BycSZRf6bMo/ifJzP/jQbuApoZY3bieAOwFvjJWruxHOMpE/PmzWPx4sWkpqZirWXPnj1s2LCB2NhYevTokV2uR48eREVFMXv2bBo3bkxwcLCG84iIiEix1Arxo9fwi7AZcGj3cZZ8tJmTR85ww7ALObzvJF+9+SsXdGlAl35N8fLx5GjiKeLXHyI9Lf/hxoU5cyqVmS+t5czJVC7tGUnweTXx9PRg/19HWD1/B6ERgdSsVx2AgNq+bP5xP+2uPY+sxVyST6SyY8MhAmqfuyNv1vNk8fDIe52Z33/Yz0VXhbMhbjfJJ1Op5u9d7OdxZ4Um/dbackv6rbW7Mv99KOuYMaYJjuU7LwLuMsYst9Y+Ul4xlbaszbfOnqhrrSUlJYVFixaxfft2Tp48maP3v169eowcOdKFUYuIiIi78/A0+Ac6kueA2r60iWnEz19tJy0lnd2bD1PN35vL+jXNLh8YVJ3GrUq2eOLK2ds5dug0A5/pQEDtatnHa4X40bR9SI6yjS+oS/z6RPZuPULD5rUB+GPVAUIi8v5U4eznyc+JpGT2bk2i++BWHNxxjK0/H6RNTMMSPZO7culEXmNMq8LKWGt/B7YB0zPrrC3ruMpS7s23zpaWlsaWLVsAcvT+ZylsSJCIiIiIs7x8PLAWMjIsfjV9OH0ihT1/JGUn3CVlMyx/rj5Is0tCcyT82ff39szx2tPD0LxDGJt/3Jcdw+Yf93Nh90ZsXrH/nPrHEk/zwYgf8PDyICSiJh16nk9gUPUcZTb/uJ9GLetQLcCb5peG8uuS3Ur6XWQjhU8I9sz1+uoyiqVc5LX5Vl6yev8XL17MmTNnnB4SJCIiIlKYpAMn2bh0L8Hn1cSnmhfntwtm1+9/M+fVdVSv4U3IeTVp0Lw2zS8NzR7zX1SnT6Ry5lQatUP9nK7TslMYX4z9hZT+aRxJOMXxv09z/sXB5yT9IRGBXDGoJbVD/Tl9PIXVC3Yw48U1DHjqUqoFOIbvWGvZ8tN+OvZ27DF7/sVBLPvsDxJ2HivSnITKwtVJf17bx9YBrsr8ejD3SWttYlkHVZby23wrP6mpqRw9erTAIUFRUVHq8RcREZECJe0/ybsPLsVmWNLTMmjQrBbdBrYAHOPhrxzUiktvPJ+9fxzmQPwx1i3axeqFO+j9yMXUrV/wdknHDyfz6TOrsl+3uyacVp3rFznGOmH+1GsYwNZfDnJozwmatA/B2yd3/y+EX5Bz2FFIRE0+fvIntqzcz4Wxjr2P9mxJ4sypNCLa1APAp5oXEW2D+H3FfiX95c1auzSfU7OMMWOAfkClWr2nqJtvZSX3BQ0J+vjjj3nyySfzPC8iIiICUDOoOj3ub4uHh2MsvKe3xzllAmr70rxDGM07hHHpjZF88vRK1i/axZW3Fzwi2z/Qh5ufaJ/9upq/N77VvfD18yLpwKkixdmyU31+W7qHY4eSueGBtk7V8anmRZ0wf44knM4+9vuKfZw5lca7D56VblqLdzUvOt/UJM83E5WZq3v6CxIHzHR1EKUta/Ots4fqFCYjI6PAcgcOHCA+Pl69/SIiIpIvTy8PagU7P9Smmr83/oE+pJ5JL7Ssh2fe124SHcIfK/fT/vrzzhnXn5bquG7usf1NooNZ/sWf1KxbjdCIQKdiTUtNJ+nAKRpkzgVIPplK/PpDXHl7S4Ia1chRds5r6/hrbQItOoQ5de3KoiIn/dcDR1wdRFnIWoozLi6OhIQE/Pz8+PPPP0lPL7xR5cVaS1xcnJJ+ERERKZaNy/ZyaM8JIi+sR2BQddJSM/hj5QH+3nuSi64Kz1H2yMFTmFzLY9YO9TsneQfo0DOSfVuT+HLc6v8t2enlwcHtR1nzzS563Ncme8nOLD7VvLh9XGdM3itwArDiyz85r009atSpxqnMMf2pKek07xAKwB8rD+BdzZNml4Ses5Rn5EXB/P7DPiX95ckYMz2Pwz5AC6Ap8Hj5RlR+IiIiciTpzz33HPv3nzsz3VkJCQla3UdERESKJeS8mhzYfpSln/7ByaMpePk4eu5jb29J80tDc5T99v3fz6nf/8lLqNvg3HH/1fy96TsimnXf7GTtN7s4/ncyPtUdm3O1v+48atQ5d1UfAN/qBaeoJ46cYdF/NpF8IpXqAd6ERAZy06PR1KzreAOx+cd9RF4YlOfa/U0uDmLOsr0cOXiKWiHOf/Lh7oyzE0rL5ObGxOVxOBnYA8yy1i4oxdu57kGdMHbsWHbv3p3nuS+//JKbbrop37rGGEJDQ/n777+zhwydvXuvu6zuozctpaqA/pEKpUK3y4JER0ezevVqV4ch7kdts4ypbUoxuEu7LBFXT+TNa/WebMYYb2tt3jNYK5mQkJB8k/7CeHp6kpiYSFpaWvaxs5f8dIfVfbQkqYiIiEjZOXfatosZhyuMMVOA4o93cTN16xZ9xztjDD4+PgQFBeU7HyA1NZW4uLw+UKk4zt6lOOuTp7PftMTHx7s4QhERERH3VmGSfmPMpcaY14C9wLfArUDpbAlXwc2bN49vv/3W6fLGGEJCQmjXrh0PPvggXl5e+a7uY60lISGhtEItEwXtUuwOb1pEREREKjpXT+S9ALgF6A+cByQBs4DPgFpAXhN9K5WsXu6MjIxCy+Y3Tr+gDb+MMQQHB5dqzKWtoF2K3eFNi4iIiEhFV+5JvzEmEkeSfwsQBRwD5gD3A99aa9Myy/Us79hcoaBe7rP5+fnRqlWrPCe3FrThl7e3NzExBU6dcDl3f9MiIiIiUtG5oqd/G5ABfAk8CSyw1jq3PW0lVFAvdxZjDPfdd1++k3Hz2vDr7E8FKvokXnd/0yIiIiJS0bki6d8JhAOdgX2ZXz+7II4KoaBebnAk/DVr1sxO3PNb1jL3hl/BwcFus+Slu79pEREREanoyj3pt9ZGGGM64hjecwvwoDFmF/A5MN1au7a8Y3Klgnq5PTw8uOWWW1i1ahVQ+LKWuTf8cifu/KZFREREpKJz9eZcHsCVOJL/XkAgsB3HRN5TwBhr7bl7OhdDVFSUrV69euEFXeDo0aMcO3YsR29/Vg9/YGAgmzdvJjIykoSEhALHvfv6+pZn2E5JTEwkKCjI1WEUizvHvmbNmk3W2gtcHUdhKnK7LMzmzZtp2bKlq8MoNnf+/9udY1fbLHvu3Dbd+f9td47dXdplSbl6c64MHMtzfmuMGQpch+MNwMOAH6W4I2D16tUr9A59WcN28urljo6O5t5772XNmjX5Jv3t2rXjjjvuKO+wC+XOOyO6c+zGmGRXx+CMit4uC+LO/3+Ae8fvzrGrbZY9d/7/Q7G7hru0y5JyadJ/tszJvLOB2cYYfxw9//1dG1X5KWxojpa1FBEREZHiqjBJ/9mstSeBTzK/qqys3v8DBw5w4sSJfMtpWUsRERERKUiFTPrLwt133+3qEIrk7Em7KSkpHDlyJN+yFXlZS3f7uZ/NnWMHJrs6AGe4+c/Yrbnzz96dY0dtUwrgzj93d44dN2mXJeXSibzlzG0eND4+ntdffz17RZ8vv/ySm2666Zxy+e3QKwIYVwfgJLdpl7m58/hVcSm1zTKmtinF4C7tskSqTE+/Oylol15jDLVq1aJGjRpa1lJEREREnKKkvwIqbNJujRo1GDlyZDlHJSIiIiLuysPVAci5QkJCMCbvT5o0aVdEREREikpJfwUUExODt7d3nucq8qRdEREREamYlPRXQBEREcTGxuLj45Pd42+MwcfHh9jYWI3hFxEREZEi0Zj+CqpHjx5ERUURFxfHnDlzaNeunSbtioiIiEixKOnPlLUR1sGDBwkJCakQCXbWLr1vv/02d9xxR4muVRGfT0RERETKh5J+cm6EZa1lz549bNiwodKsf1/Zn09EREREClblx/THx8ezePFiUlJSspfJtNaSkpLC4sWLiY+Pd3GEJVPZn09EREREClflk/6CNsJKTU0lLi6unCMqXZX9+URERESkcFU+6S9sI6yEhIRyjqh0VfbnExEREZHCVfmkv7JvhFXZn09EREREClflk/7KvhFWZX8+ERERESlclU/6K/tGWJX9+URERESkcFqyk5wbYSUkJBAcHFyp1rGv7M8nIiIiIgVT0p8payOsyqqyP5+IiIiI5K/KD+8pLzNnzuTqq68mKCgIYwzff/+9q0MSERERkSpCSX85OXnyJJ06deKVV15xdSgiIiIiUsVoeE85+ec//wnAoUOHXByJiIiIiFQ16ukXEREREank1NNfQU2ePJnJkycDkJiY6OJoRATULkUqKrVNkcIZa62rYygv5fagn3zyCffcc0/264ULF9KlSxfAMbwnKCiIuLg4unXr5tT1oqOjWb16dVmEKpVX3tswVzxu+wtI7VKKSW2zjKltSjG4S7ssEfX0l4Ebb7yRSy+9NPt1gwYNXBiNiIiIiFR1SvrLQI0aNahRo4arwxARERERAZT0l6n4+Hji4uI4ePAgtWrVIjIyEl9fXwC2bdtGrVq1CA0NJTQ01MWRioiIiEhlpqS/jMybN4/FixeTmpqKtZbdu3ezdu1a1q9fD8Bdd90FwNNPP83o0aNdGKmIiIiIVHZK+stAfHw8ixcvJiUlJcdxb29vOnfuzPTp04mIiHBRdCIiIiJS1Wid/jIQFxdHampqnudSU1OJi4sr54hEREREpCpT0l8GDh48SH5LoVprSUhIKOeIRERERKQqU9JfBkJCQjAm7yVfjTEEBweXc0QiIiIiUpUp6S8DMTExeHt753nO29ubmJiYco5IRERERKoyJf1lICIigtjYWHx8fLJ7/I0x+Pj4EBsbq0m8IiIiIlKutHpPGenRowdRUVHExcWRkJBAcHAwMTExSvhFREREpNwp6S9DERERSvJFRERExOU0vEdEREREpJJT0i8iIiIiUsmZ/NaTl4rDGPO1tfYaV8chIv+jdilSMaltiuRNSb+IiIiISCWn4T0iIiIiIpWckn4RERERkUpOSb+IiIiISCWnpF9EREREpJJT0i8iIiIiUskp6RcRERERqeSU9IuIiIiIVHJK+kVEREREKrkqm/Qbh1+NMYMKKHO/Mcae9TraGPO3MSawfKIUqXqcaZt51HnLGPOfsoxLpCrL3S6NMf7GmM8y/yZaY8ztxph/G2O+c3WsIpK3Kpv0A/2A2sCnzlaw1q4G1gMPl1VQIlL0tgm8CAw0xjS7Eyf9AAAgAElEQVQpm5BEqrzc7fL/gBuAu4GOwHxgEnCxMaabKwIUkYJV5aT/AeAja21qEev9FxhqjPEqg5hEpBht01q7A/gBRyIiIqUvd7tsAfxhrZ1hrV1prU201h4HZgDDXBaliOSrSib9mb2BnYAvzzrma4yZaIw5Yow5bIx5FfDOo/pcoA5wdflEK1J15NU2M4/faYzZZIw5Y4zZaYx5NI/qM3D09lfJ32siZSV3uzTG7ACGABdlDu2xZxWfAfQwxtQp90BFpEBV9Y/jlcBJ4Nezjo0D7gSeAwYC4cAjuStaa48Bm4DYsg9TpMo5p20aY/4NvAPMBnpkfv+cMeb+XHV/BEKA1uUTqkiVkbtd9gYWAFtwDO3peFbZH3F0mHUpzwBFpHBVdYhKO2CztTYDwBhTFxgKPG2tfTnz2DfA7/nU/xW4pDwCFalicrfNmsDTwBhr7TOZZb41xvgBo4wx71hr0zOPbwLScbTNXxGR0pKjXVpr1xljEoEQa+3Kswtaa48aY3bhaIdzyj9UEclPVe3pDwUOnfW6NVCNs35BZf5yy+8X1qHMa4hI6crdNjsC/sAXxhivrC9gCY5e/YZZBa21acAR1DZFSlvudlkY/Y0UqYCqak9/NeDUWa+zfjkl5CqX+3WWM5nXEJHSlbtt1sv8d1M+5RsBO896rbYpUvpyt8vCqB2KVEBVNek/TM5eiAOZ/wZnnuOs13mplauciJSO3G0zq531AA7mUf6PXK/VNkVKX+52WRi1Q5EKqKom/X+Qc+LRb0Ay0BPHxCQyVwDpmU/984CtZRifSFWVu23+BJwG6ltr5xdU0RgTBPihtilS2nK3y3xl/u1sjNqhSIVTVcf0rwAaZyYJWGv/BiYDzxhjHjHGXAN8AQTkUz868xoiUrpyt80jwGjgdWPMGGPMVcaYa4wxDxhjZuWqGw1YHKuHiEjpydEuC9Ecx99O/Y0UqWCqatL/PY6PHq8569ijwPvAU8A0YB/wSu6KxpiLgCBgZplHKVL1fE+utmmtnYBj189rcUyun4ZjWd3luepeAyzNfBMvIqXne879m5mfa4B4YF1ZBiQiRWestYWXqoSMMa8DTay11xex3ligvbVW6/SLlIHitE1jjCeOCb0jrbUfl1lwIlWUs+3SGPMTMN9aO6Z8IhMRZ1XlpL8hjnGKF1lrnRp7aIzxx5FY3GSt/b4MwxOpsorZNvvj2FivZebSnSJSipxpl8aYS4GvgYjMoXkiUoFU1eE9WGv34NhGPKwI1RoDzxYn4TfGjM7arvysrwOF1xSpWorZNg0wRAm/SNlwsl3WAQYp4RepmKpsT395M8aMBvoD3c46nG6tTXRJQCIiIiJSZVTVJTtdJc1aq959ERERESlXVXZ4j4tEGmP2GmPijTGfGWMiXR2QiIiIiFR+VWl4j0sfdOHChRw/fpwWLVqQkJDAmDFj2LJlC5s2baJu3brnlJ88eTKTJ08G4PTp02zatKm8Qxb3ZlwdgJPc6heQ2qWUArXNMqC2KSXkLu2yRJT0u8iJEyeIjIxk5MiRDB8+vMCy0dHRrF69upwik0rCXX6BVah2WRRql1JMaptlTG1TisFd2mWJaEy/iwQEBBAVFcWff/7p6lDcWkhICAkJCa4OoyIq6z/YO62155XxPURERKSUKOl3keTkZLZs2UJMTIyrQ3FrCQkJxMfHExERQVBQEI888gjDhg3Dz88PgBUrVnDZZZfRvn17li1bRrVq1XLU39yipSvCLlMtt2x2uqy1lpdffpmXXnqJDz/8kKuuusqpesaY8OLGJyIiIuVPSX85+de//sUNN9xA48aNSUhI4LnnnuPkyZMMGjTI1aG5vdWrVxMSEsKpU6dYsmQJ06ZN45dffsHb25uOHTsyd+5cxo4dS+PGjenevTvvvPMONWvWzHGNsxPlbdu20bFjRz799FOuvPJKPDyKN9993rx53HnnnaSlpdGkSROio6OJiYmhV69eeHp6luiZ81LUNzDp6encfPPN7N69m1WrVhEerjxeRESkstLqPeVkz5493HLLLTRv3pw+ffrg6+vLypUrlWiVgnXr1hEWFoanpyeTJ0/m77//zh7P6eHhwQ033MCPP/7ImjVr8PPzo2fPnnzzzTccPnw4z+u9+uqr9OvXj+7duxc74d+wYQODBw9m5syZHDp0iJUrVzJx4kT69u1bJgl/cYwZM4akpCSWL1+u/w9FREQqOfX0l5PPPvvM1SFUWvfeey8RERF06dKFTz75hPDwcNq1a5d9fsOGDcydO5cbbriBSZMmMWrUKIYMGcJ9991Hrzyu17FjR95+++1ixZKens7UqVN54okneP311+nUqVO+ZVesWMGiRYto06YNvXv35ttvvyUyMpIvvviCpUuXEh0dzZgxYzCm9OcXLV26lEmTJrFmzRp8fHxK/foiIiJSsainX9xegwYNGDJkCLVq1eKJJ57gk08+yZHI/t///R+rV6/mqquuYuPGjQwaNIi0tDSuueaaPK/n5+fH0aNHOXHihFP3//vvv3n//ffp06cPQUFB/Pe//2X27NkMGDAg3zq7du2ie/furF+/nhEjRtC0aVMeeeQRLr30UtatW0f//v154YUXSE5OLtoPwwmJiYnceuutvP/++9SvXz/PMrNmzeKyyy4jNDSUiRMnlnoMIiIiUr7U0y9uz9/fn1OnTlGzZk28vb2zJ/Fm6d27N++++y79+/fnyiuvxMfHh3HjxnHRRReR15TX3r17M2/ePB544AHef//9Au999OhROnXqxAUXXMCNN97IxIkTCQsLK7R3PiMjg9OnTzN37lzGjRvHhRdemGM4UUZGBjNmzOD//u//+OCDD4ry4yhQeno6AwYM4NZbb+Xaa6/Ns8z69eu55557eP/990lLS6Nv37706tWLhg0bllocIiIiUr6U9Ivb69ChA506deLdd9/l2LFj/Pbbb1xxxRXZ5//1r3/RuHFjhg8fzr333svFF19Mr155DexxMMZw//33M3jw4ELvvWjRIsLDw5kxY0aRYg4PD6dBgwbs3buX+Ph4RowYkX3u9OnTfPHFF6xevbrYw4zykpGRwUMPPUR6ejrPPfdcvuV++OEHunbtip+fHwMGDOCZZ56hQYMGpRaHiIiIlD8l/eL2oqOj8fLy4tlnnyUtLY0BAwbQqVMnZs6cmT2hduHChcyYMYMBAwYwevToQq/ZvHlz9u3bx5YtW2jRokW+5dauXcsFF1xQ5JiNMezevRsPDw/effddTpw4wUUXXcTu3bv5+OOPad++PdOmTSu1JV1PnjzJkCFD2LdvH3PmzMHLK++mP3XqVJ599ll69+7NgAED+PTTT3O8gRIRERH3pKRf3N748eNzvG7fvj0dOnTg9ddfp0+fPqxdu5aQkBBGjRrFgQMHOHz4MPXq1Svwmv7+/jz77LPcdNNN/PTTT9SoUSPHeWtt9tr2K1asKFbcxhjOnDnD77//zrp161i3bh21a9fml19+ISIioljXzC0tLY3333+fZ555htjYWBYtWnTOXgUAZ86cYdiwYSxdupTJkydz1113ERcXV6w3NCIiIlLxKOkXt9e8eXNq1apF165d2bFjB+3atWPDhg2MGjWKF154IbvHesyYMfTr16/QhD/L0KFDs8e3f/rppznOHT58mMcee4zt27fTuHHjYsfu4+PDhRdeyIUXXujUcKKiSE9P56abbuLw4cPMnj2b9u3b51v2448/ZvPmzaxevZq33nqL3r17K+EXERGpRJT0i9sLCgpizJgxrFixgq5duzJr1iyWLFnCnDlz2LFjBzNnzqRp06bUq1ePzz//3OnrGmN49dVXadSoETt37syxln2dOnWoWbNmmSynWVp+/PFHtmzZwoYNGwpdlnPu3LkMHTqUGjVq0KlTJ7744otyilJERETKg5J+cXsHDx6kW7dudOvWDXAs0dm7d2+aNGlC+/btmT17Nk888USxru3n58dDDz1Ez549ufHGG6lfvz533303GzduJDAwsEKvaBMQEEC1atWcWod/37592cN+vLy8KswGYiIiIlI6lPSL2zt48CCHDx+mTp06gCNpnTlzJr/++muOZSnT0tIYPnw4w4YNo2nTpk5ff9SoUTRu3JgdO3YwdepUli9fjoeHB7169arQPf316tUjMTHRqbLjx49n4MCBtGrVitDQUPbs2cOYMWO45JJLmDVrFgsXLiQxMZHY2Fg++uijMo5cRERESps25xK3V7duXf74448cx7y9vWndujXHjx8nJSUFgNdff50333yTxx57rEjXN8YwaNAgnn76ab777jvq1KmDl5cXw4YNK7VnKAtBQUEcOnSIjIyM7GMLFixg//7955S94ooraNq0KWvWrCEyMpKff/6ZKVOmcPXVVzNp0iTCw8MZPHgw3333HTt37izPxxAREZFSoKRf3F6zZs3o0KHDOcd9fX0JDw/nqaeeYu/evUyYMIGVK1eyatUqli1bVqx7+fn58eabb/Lf//6XyMjIkoZeItu3b2fVqlVs3pzXFmNQrVo16tevz59//gnAu+++S9++fbnrrrtylEtPT+eZZ55h+/bt/OMf/wCgYcOG9O/fn7Zt2/L666/Tu3dvatasyY8//kjr1q3L9sFERESk1Gl4j7i9rVu3sn//furXr3/OudmzZ3PHHXcwceJEnnjiCS699FJeeeUV7r//ftauXeuCaEvH3r17iY6OJikpiQYNGrBnz548y/Xt25fevXvTpk0bfvzxR9auXUvnzp3Zt29f9s9r9erVTJ06lcWLF+Pr65tdt3Xr1kyYMIH27dvTsWPHcnkuERERKRvq6Re316dPn3x3mG3ZsiVz587ll19+yR7Wc9NNN1G7dm2mTp1anmGWqrfffptBgwYBjjcAuXvvs7z44ouMGzeOK664gunTpxMbG0tSUhKzZs3KLrN9+3bat2+fvQlZSkoKt912G1OmTMHf3z97eJSIiIi4LyX94vYefvhhpk+fnu/5oKAgWrZsmf3aGMPo0aN58cUXyyO8MvHzzz9zxRVXsHr1ah5//PEc4/bPZozhxhtvpG7dulx++eXs27ePmJgYpkyZgrUWgI0bN+aY2Pz5558THx+Pp6cnycnJOX52IiIi4p6U9IvbO3z4cI5hKc5ISkri1KlTZRRR2WvdujWLFi2iRYsWvPDCC8TExBRYfv78+bzxxhtUr16dQ4cOkZCQwNKlS7n55pt577336NmzZ3bZTZs2ce211/LNN99w+PBhgoODy/pxREREpIxpTL+4vdtuu42RI0cWqU7Pnj0dK/5M/RAAa22FXn7zbH/88QfBwcE89thjXHHFFVx//fU899xzzDb5v4f39PRk06ZNnDlzht9++w2AwYMHExYWxptvvkl0dHR22YCAAI4ePYq3tzfe3t5l/jwiIiJS9tTTL27vuuuuK/LymZ6enjmW7mzZsiV//fVXaYdW6iZPnsxll13GSy+9BMDHH3/Me++9R40aNQqsFxMTQ1xcHN7e3lx++eUEBAQwZMgQPvroI9q1a8f9999P//79efjhh3nppZdy7D4sIiIi7k9Jv7i9F154ocS99D179uSVV17JHudeEf3nP//h+eef56effqJ79+4MHz6cGjVqcNddd/HGG2/kWy89PZ0aNWpw+vRpunfvztKlS0lNTWX69On861//4tJLL6V27doEBQXx1Vdf8e2333LvvfeW45OJiIhIWdPwHnF7pTE0Z8iQIcTGxlKvXj2eeeaZUoqsdH3++eeMHTuWJk2asGPHDlq2bMny5cs5fPgwnTp1Ivdq/YcPH+b555/no48+IjExkSuvvJIvv/ySzz//nKuuuooPP/yQ3bt38+eff1K7dm2XPJOIiIiUD/X0i9vbsWNHia/RrFkzpk2bxtdff13ygMrIJZdcwrp160hOTmb37t1s3ryZli1bnrNyUVYv/cMPP8y+ffuYP38+x48f55tvvsHX15fbbruN0NBQHn30Ud58800l/CIiIlWAevrF7ZXWZNO//vqLtLS0UrlWacvIyGDGjBn079+fG264gfbt27Nt2zaCgoK4+OKLc5RduXIlp0+fZu7cuWzevJnQ0FAXRS0iIiIVhXr6xe01bNiwxNe4/fbbufPOO1m7dm2+a967krWWSy65hK+++ooePXrw2WefsX37dhYuXMj8+fNzlA0LC2PQoEF06dJFCb+IiIgA6umXKuTAgQMcPXoUPz8/GjRogIfH/97z7tq1i9TUVG655ZYcxysKT0/PHDsIp6SkcN555+Hj48M777zDRx99xNOZ55YtW8aIESN48MEHXROsiIiIVDgVL7sRKQPjxo2jRYsWxMbG0qxZMwICAnL0gq9fvx6AH374oUKv4JNl2rRprF27FoC0tLQcS2z279+fUaNGFbqMp4iIiFQdSvqlUktNTWXkyJE89thj9OzZk65du5KcnMzp06cZNWpUdrnmzZszYMAAdu/ejYeHB2+99ZYLoy7cwIEDWb58OTt27GD8+PFMmDAh+9yrr77qwshERESkIlLSL5XaCy+8wPjx4wE477zzWLVqFY8++igPPPAAzZo1yy43evRoPvnkE/bs2cMDDzzA/fffT3JysqvCLpSXlxeJiYmEhITQqVOnHOcCAgJcFJWIiIhUVEr6pdLaunUro0ePpkmTJhw8eJCBAwdy5MgRHn74YV5//XWuuuqq7LIeHh4sXboUX19fQkJCANi4caOrQndKYmIiTZs2ZcmSJWzatMnV4YiIiEgFpom8UimdOXOG5s2bA7Bq1Srq1KmDtZaMjAzq1KkDwLFjx7LLP/bYY5w+fZrff/8dgKCgIDZv3kx0dHT5B++kW2+9laSkJG644QamT59OiKsDEhERkQpLPf1SKWX1fK9YsSI7yQ8ODubMmTP4+vpy11130blz5+zyq1evZsqUKVSrVo3w8HASExPp2rWrS2J3lp+fHyNGjOCDDz5gyJAh5XbfP/74o9zuJSIiIqXDqaTfGPOAMWZcPufGGmPuL92wRErm4osvxlqbY7y7MYbbbrsNgPfee++c4TudOnXi9OnTbNmyhZ07d+ZYEaciu+6662jSpEmR6mzatIkJEyZw8uTJIt/vueeeK3IdERERcS1ne/rvBbblc25r5nmRCuuuu+4iLCyMSZMmMWHCBGJjY/Hx8cmzbLVq1WjcuHE5R1gyYWFhTpe11tKlSxdGjBhBo0aNOHHihNN1P/74YxYtWlScEEVERMSFnE36w8k/6Y8HziuVaERKWXp6OhMnTuS9997jwIEDXHDBBXz44YccO3aMTz/91NXhlZqjR48WeP7IkSO88cYbJCYmkpaWRlJSEkOHDiUpKYkvv/zSqXtYa/nnP//JE088URohi4iISDlyNulPAprnc645cCyfcyIu88MPP9C6dWumT5/OokWLCAwMJCkpifvuu4+VK1fSt29fV4dYZEuWLOHf//4377//Pl9++SW//fYb69evZ+vWreeUPXHiBCkpKezfv59rr72WKVOmEBkZyf79+7NXLnrttdd46qmnSElJKfTeBw8eJDAwkAceeKDUn0tERETKlrNJ/1fAaGNM67MPGmMuAJ4G5pR2YCIlkZ6ezpAhQ3j88cdZunQpl19+Obfffjvjx49n6NChGGNcHWKRzZ49mwEDBuDr68vSpUuZOnUq/fr1Y9CgQbRq1SpH2eHDh1O/fn3q1KlD27Ztueyyy3jllVdo3749y5cv58svv2ThwoV07tyZDh060LZtW3bt2lXg/ceNG8fAgQPd8mcnIiJS1Tm7ZOdjQCdgnTFmHbAfCAMuAjYCI8smPJHi2bt3L1u3buX666/HGIOPjw+vvfaaq8MqkePHj3PxxRczZsyYPM9vbtEy+/u3336bHTt24OfnR3x8PEFBQTRo0IAuXbowduxYevXqxdChQ3n00UdZsGABU6ZMITo6mg8//JBrrrkmz+svWbKESZMmlcmziYiISNlyKum31h42xrQHBgExQF3gL2Ay8KG19oyzNzTGTC9OoMCj1todxawrVYi1NnuMe7169UhPT3dxRKUjLCzMqV2C4+PjAahTpw4+Pj60bduWLVu2ANC2bVtOnDjBP//5T6ZNm8aqVauoXr06mzdvpnXr1vTq1YsdO3ZQq1atc64bHR3NokWLztkBWERERCo+p9fpt9YmW2vftdb2t9Z2z/x3SlES/kw3AecDQU5+BQN9gTpFvI9UQWPHjsXDw4M2bdrQpUuXSrXSTEREhFNr5EdHR/PSSy/lWJ0oISEBcGw6NmnSJFJTUwkPD2fUqFH069ePa6+9lqCgIE6fPo23tzfgePM0Z84cxowZw/Lly9m9ezfPPPOMhveIiIi4IVftyPt/1tqfnSlojPECCp9lKFWetZbHH38cgJdeeolHHnnExRGVLi8vL6y1hZZbtmwZUVFROY799NNPAMyfP5+nnnqKuXPn8vnnn9O9e3e++OILpk+fzgUXXAA4fo5JSUmEhoaSkpJC+/btefLJJ7Ov9d1333HllVeW4pOJiIhIWcs36TfGJABXW2vXGWMSgQKzDWttsJP3fAbY43yIpGfW2VeEOlLFpKamMmPGDLy8vEhISKB27dquDqnUrVy5MjsxL0juhB+gfv36REREkJGRATg2Kuvfvz+7du0iNjaW4OBgEhISaN++PaNGjeKxxx4jJSWFwMBAPvjgA6KiopgwYQI333yz2+1hICIiIgX39L8FHDzr+8K7GJ1grX2miOUtjqRfJF9ZQ1kaNGhQKRN+gDlz5tCvX79i1a1duzbx8fFERETkOP7QQw8xYsQIEhIS2LdvHwcOHKBHjx6MHTuWOnXq8MILLxAZGUloaCjdunVTwi8iIuKm8k36z07OrbWjyyUakWLYtGlT9veVeXWZwMBAlixZwp133lnkutdddx1ff/119vr8CxYsIDExkd9++w2Avn37EhoaSlhYGO3bt+eDDz5g4MCBfPLJJ9x9990A+Pn5ld7DiIiISLlyaiKvMWaJMaZFPueaGWOWlCQIY8zkktR3B2+99RZt2rShZs2a1KxZk44dOzJ//nxXh1Up1KnzvzneV199tQsjKVtPPPEEM2fOzPNcYbsLZ01u/vnnn7HW8tBDD/Hss8/y8ssvExAQwIQJE7In6Pbs2ZMVK1bw5ptvsnz5cqy1XHTRRcyaNavUn0lERETKh7MTebsBNfM5VxPoWsI48l4YvBJp2LAh48ePp2nTpmRkZDB16lR69erFmjVraNOmjavDc2thYWEANG/ePHvlmcrIWsuZM2eoW7cuvXr14tVXX+Xrr78mOTmZhx9+mB+CHNNq5syZw8aNG7OH63z11VeEhISQnJzMoUOHAJg7dy733nsvAA888ACRkZHZ9+ncuTMjRowA4KOPPsLDw4Px48dz/fXXc+GFF2rJThERETdUlNV7zhnTb4zxAa4ADhRW2RiT32LpJq9rVzY9e/bM8fr555/nnXfe4aefflLSXwpeeOEF9u7d6+owylT9+vWZOXMmfn5+DBw4kLlz59K6dWvq1q3Lm2++Cc8+B8Abb7xBu3btaN68OaGhoUycOJEtW7YQHh7OP/7xD6y13HDDDXTv3p3Ro0fTq1evHPdp2rQp/fr146233uLiiy8GoHXr1txyyy089thjHDlypNyfXUREREqmoNV7ngaeynxpgZUFrM/9ohP32g9cZK1NzONeu52oX2mkp6fzxRdfcOLECfWalpL69evz66+/ujqMMuXp6Unv3r0Bx3CdxMREYmJiaNOmDVOmTOGizHLffffdOXWzPg0ZNmwYH3/8MQDVqlVj3Lhx55Q1xjBx4kRuuukmoqKiGDlyJD169GD8+PE89dRTzJs3j/79+5fNQ4qIiEiZKKinfwFwCEdP/BvAy8COXGVSgC3W2uVO3Gsu0Bw4J+kHvnaivtv77bff6NixI8nJyQQEBDBr1ixat26dZ9nJkyczebJjqkNiYl4/Msny119/MXHiRIYOHerqUMrFqVOnSEtL46OPPuKXX37h5ZdfdizTue2vQuvWqFEDT09Pp+6TtSLSuHHjGDduHNZa/P39ufnmm6ts0q92KVIxqW2KFM44s9mPMWYQMN9ae6jsQyozLh9ClJKSwq5duzhy5AgzZsxgypQpfP/994WuvR4dHc3q1avLKUr3YowhLCyMoUOH8vjjj+PlVbT95ja3aAlAyy2byyK8MjFp0iRmz57N11/nfK/szLO0b9+eO++8k3vuucepeyUnJ7N9+3bCw8Px9/fPPm6MwVpbGlvzurxdFpfapRSTu2xprbYpVYm7tMsScSpDstZOLetAqgIfHx+aNGkCOH4p/fLLL7z66qv85z//cXFk7u3RRx/loYcecnUY5eK1115j/Pjx5yT8zmrdujWvvPIKgwcPzu7JL0i1atVo1apVse4lIiIiFYezS3Z6G2P+ZYz50RizyxiTkPurqDc2xkwperiVS0ZGBmfOnHF1GG6vqiT8P/74Iy+//DIrV66kbdu2xbrG5MmTadWqFY0aNeLqq69m/vz55P6075133uGaa65h7Nix2Tv4ioiIiHtzdizEq8A9wDwgDsdY/pK6shSu4TZGjhzJ9ddfT6NGjTh+/Diffvop33//vdbqF6d9/vnn3H///YSHhxf7Gl5eXsyaNYvffvuNDRs28PDDD/PHH38wfPhwAObNm8fLL7/MhAkTePLJJ1m2bBkjRoygW7dupfQUIiIi4grOJv3/AEZaa18uy2AqswMHDnDrrbdy4MABAgMDadOmDQsXLqzUm0lJ6crq6S8NrVu3pnXr1jRs2JA77riD9u3b06VLF+Li4hg8eDB9+vQhJiaGd999l5iYGOrWrcvNN9/MsGHDGD16dKnEICIiIuXH2aTfABvKMpDK7oMPPnB1CFKArEmwFdmHAHffQ2lOOe7SpQuPPPIIgwcPJjIykoCAAHx9fQGoXbs2I0eOZO8RUWUAACAASURBVNiwYfz999+8/fbbtGzZkiFDhpRiBCIiIlIenBrTD0wBbinLQESk/Hl4eHDvvfeyZcsWOnXqxPr163nwwQdzlPH396dx48aMGzeOtLQ03nvvPRdFKyIiIsXlbE//QWCgMSYO+BbIvSWntda+U6qRiTipgE3jqqYS/jxCQ0OdKbazRDcRERGRcuVs0v9a5r+NgcvzOG+Boib9e4tYXuQczuwzUZjKtKbzWc+id0IiIiKSzdl1+p0dBuQ0a22X0r6miIiIuI8D24+yYclujiScplZwddpc0YjQyEBXhyVSKRVt+9JyYoypZa3NPYRIREREKolVX21n/be7SEvNAAuHdh8nfsMhLuzemEtviHR1eCKVTpGSfmNMQ6AZUC33OWvtgqLe3Bjzf0ANa+2EzNcX4tgLIMwYsx7oaa3dU9TrihTF3Xff7eoQSk1lehYRqbwObD/qSPhT/rcBoLWQlpLB+m93ER5VVz3+IqXM2R15axhjFuKYvPctjsR8HvDVWV/FMQw4dtbrN4B9wMDM2MYV87oiTqtMiXJlehYRqbw2LNnt6OHPQ3pqBhuW7C7niEQqP2d7+sfimMTbBfgB6A0kAbcCV1D85TwbA38AGGOCgM7Aldba740xKcDEYl5XREREKqgjCacdS4DkwdrM8yJSqpydoHsd8DywKvP1PmvtMmvt3cAc4N/FvP8ZwCfz+xjgFLA88/VhoFYxrysiIiIVVK3g6vmuLmyM47yIlC5nk/4QYLe1Nh04CdQ569wC4Kpi3v9n4D5jTBTwAPB15j0AInEM9REpss8++4yWLVvi7+/P+eefz/LljveS3333HS1atMDPz4+YmBh27nQsNz9t2jRatWqV4xrdu3fP89i4cRVv1Nnhw4fp3bs3/v7+hIeHY4wZ4OqYRETy0+aKRnh6552CeHp70OaKRuUckUjl52zSvxuol/n9n0CPs85dCiQX8/6PAK2A34BGwBNnnbsZWFHM60oV9u233zJixAj++9//cvz4cZYtW0ZkZCSHDh2iT58+PPfccxw+fJjo6GhuvvlmAC6//HI2b95MYmIiAGlpafz666+cOnUqx7GffvqJrl27uuzZ8nPffffh4+PDwYMH+eSTTwDeyXwzLSJS4YRGBnJh98Z4+Xhk9/gbA14+HlzYvbEm8YqUAWfH9H8LxAKzgFeBqcaYdjiG53QFXi7Oza21vwNNjDF1gcM2505L/wIOFOe6UrU9/fTTPPXUU3To0AGABg0aADB58mSioqL4xz/+AcDo0aOpV68eW7ZsoUWLFkRGRrJs2TL69u3L2rVriYqKonHjxjmOZWRkEB0d7bJny8vJkyeZMWMGGzduJCAggMsuuwxgLvBPYKRroxMRydulN0QSHlVX6/SLlBNne/pHAE8DWGs/AvoC8Tgm895PCRMLa+3fuRJ+rLW/WWsTS3JdqXrS09NZvXo1iYmJNGnShIYNG3L//fdz+vRpNm3aRNu2bbPLZg392bRpEwBdu3Zl2bJlACxbtowuXbpw2WWX5TjWoUMHfHx8zr2xC23duhVPT0+aNWt29uFfAfX0i0iFFhoZyFV3XkC/x9tz1Z0XKOEXKUNOJf3W2lPW2kNnvZ5lrR1ore1jrX3HWpv3ulsi5ezgwYOkpqby5Zdfsnz5ctavX8+6desYM2YMJ06cIDAw5x+UwMBAjh8/DjiG+GQl+MuXL6dLly506dIlx7HLL7+8fB/ICXk9F3AUqOGCcERERKQCcranX8QtVK/uWPFh2LBhhIWFUa9ePYYPH86CBQsICAjg2LFjOcofO3aMGjUcuXHXrl3ZsGEDSUlJrFy5ko4dO9KiRQv2799PUlISP/zwQ4Ucz5/XcwE1geMuCEdEREQqoHzH9BtjEsl3Fd1zWWuDSyUicVvx8fHExcVx8OBBQkJCiImJISIiolxjqF27Ng0bNsTksRZcVFQUU6dOzX598uRJ/vrrL6KiHKNgIiMjqV+/PpMnT6Zx48YEBAQA0LFjRyZPnsyJEyey5wlUJM2aNSMtLY0///yTpk2bZh1uC2xyYVgiIiJSgRQ0kfctipD0S9U2b948Fi9eTGpqKtZa9uzZw4YNG4iNjaVHjx6FX6AUDR48mDfffJNrrrkGb29vXnvtNXr06EHv3r3597//zYwZM7j++ut59tlnadOmDS1atMiu26VLF1555RUGDhyYfeyyyy5jwoQJREdHZ3+SUJH4+/vTp08fnnrqKd577z3Wr18P0BPo5OLQROT/27v7+KjKM//jnyuQ8AwiD5FVgaEKauwWDPxSH7Y1S1ZdBNt1q8UtPpRVarUrP61tqa4t3W2XX3etLa7aLtZoxQdq1UVlxSo1VKyiEEtZUajI8KTyqAQEMSG5f3/MTJwkM5OZyZmZcybf9+uVV5g5c865E3LNueY+933dIiI+kTTpd87NzVcjzGwccCzQO0E7ns5XOyQ74XCYZcuW0djY2Pqcc47GxkaWLVtGRUVFXnv8b7nlFvbs2cPYsWPp3bs3F198MTfffDO9e/fmscce4xvf+AYzZsygqqqKRYsWtdn385//PA8//HCsAg4Q+SBw4403MnPmzLz9DJm66667mDlzJsOHD2fIkCEAX3fOqadfREREALB2RXMSv8jseeAa59z6BNvGAr9wzv11xic3+zTwMHAykGhtPuec65HpcZMI7F2LiRMnsnr16kI3I6na2lrq6+tJ9LdkZlRWVvo6YS5SSda69B3FpXQ3is0cU2xKFoISl12Sbp3+s4lMDExkIJFa/dmoBZqILPa1EWhM/XLxo507dyZM+CHS479r1648t0ik+PlhDo2IiARHukk/JPjUb2ZlwF+T/SJaJwN/75z7bZb7iw+Ul5ezffv2pD39w4drjreIl/w0h0ZERIIhaclOM/u+mTWbWTORhH9l7HHc8x8B84AHsjz/q8DILPcVn6iurqa0tDThttLSUqqrq/PcIpHiFT+HJvZBO34OTTgcLnALRUTEj1L19D8N7CEyzul24CfA5navaQTWO+dWZHn+WcDDZnYIqAP2tX+Bc+5QlseWPAmFQtTU1LTpeTQzSktLqamp0ZADEQ/V1dXR1NSUcFtTUxN1dXWKOZE80lA7CYpU1XtWAasAzOwAsMQ5tzfRa82s1DmX+CqU2h4iHyTuT/EarybySg5NnTqViooK6urq2LVrF8OHD9cbn0gOaA6NiH9oqJ0ESVpj+p1zv2r/nEVWP6oGLgEuBIZkcf4HgNOBW9FE3sALhUJK8kVyTHNoRPzBb+WqRTqTyUReAMysikiifzFQDrwPLEq5U3LVwFXOuYey3F9EpFuprq5m7dq1bRKNGM2hEckfDbWToEk6kTeemZ1qZj8ys7eBl4CvEUn4bwBGOOeuzfL8mwGN2RcRSVNsDk1ZWRmRG66RHv6ysjLNoRHJIw21k6BJ2tNvZmOA6UR69U8BjgDPAd8Dfg9sBf7onDvShfN/C/iBma1xzm3uwnFERLoNzaERKTwNtZOgSTW8ZyORUp2vEOnZf8w59wGAmQ3y6Pw/IFKy889mtpnE1Xv+j0fnEhHxRDgcZs+ePcybN69g1To0h0aksDTUToImVdK/BRgFnEpkRd73zOy3XezZb+/16JeISCDEqnUcOnSIbdu2qVqHSEB1tdSmylVL0KQq2Rkys9OBfwC+FP3+gZk9DiwlwQq9mXLOfbWrxxARyRdV6xApDl6V2tRQOwmSlNV7nHMvAy+b2WxgMpHx/X8P/CORpP8qMzvknFud85Z2Q7FeiB07dlBbW6s3EpECU7UOkeDz+sO7htpJUKRbp7+FyCTe58zsamAKkUm+fwf8g5n92Tl3cjrHMrPrgEXOubSntUf3ecg5tyfdfYIuvheisbGR+vp6DSEQKTBV6xAJvmw/vGvlXQm6jOv0O+cagcXAYjPrB3yRyAeAdP0UeBlI6+poZj2i+7xIZAXfohekIQR6E5TuRNU6RIIvmw/vWnlXikHGSX8859xB4MHoV7oMmGdm72fw+m4lKEMI9CYo3Y2qdYgEX6Yf3oPUESeSSpeS/iy9APQAhmW4z4HcNMd/gjCEQG+C0h3FV+uI8bJah+6cieReph/eg9IRJ9KZvCf9zrmz833OoCkvL2fbtm0Jt/llCIHeBKW7ilXrWLx4MSNHjvSsWofunInkR6alNoPQESeSjkL09EsnSktLU27zwxACvQlKdxYKhRg6dChz5szx5Hi6cyaSX5mU2tRcHikWSvp9JhwOU19fn3R7ZWWlLy7+ehMU8Y7unInkX7qlNjWXR4pFSaEbIG2luvibWdJt+VZdXZ30joTeBEUyoztnIv4VGw5UVlaGWaS2iJlRVlamlXclUNLq6TezUmA2cCFwHNC7/Wucc+ra9UBQLv5aflzEO7pzJuItryfFa+VdKQbpDu/5KfA1YAlQB3S8x+UhM/tb59zSXJ7Dr/xw8U/3zVJvgiLe0PABEe80NDQwf/58zyfFa+VdCbp0k/6LgDnOuZ/ksjFxfgS0SfrNbIZz7oE8nT8nXnjhBW699Vbq6+t59913uffee7niiivavKbQF/9MK4joTVCk63TnTCR78R1V/fr1Y//+/ZoU7yfbVsErP4e9b8OQT0HV1+H4SV0+rEocZy7dpN+AtblsCICZzQI+Dwwxs/OANc65HdHNc4BAJ/0ffvghp556KpdddhmXXXZZwtckuvgDeRk72JUKIgo+ka7RnTORzLXvqAKSDpHVpPgCqPs3eOk/oekjwMGOtbBhKZzxT1B9U9aHVYnj7KSb9N8NXAI8l8O2APwa2AbUAF8FxpvZAOBd4IMcnzvnpkyZwpQpUwA69PDHa3/x79u3L7Nnz875G1W2FUQUfCLe0J0zkfQl6qhKpZDz4rplx9i2VdGE/9Anz7mWyOOXbocT/iarHn+VOM5e0qTfzK6Je7gD+IqZ1RFJ/Pe1e7lzzv28q41xzjUAS81sinOuPtqOfsBo4O2uHj9I4i/+jz76aF7+gLOZRKzgk2LRLS/KIgGWqqMqES/nxWXyftFtO8Ze+Xm0hz+BIx9HtmeR9KvEcfZS9fTfkeC5kUSG37TngC4n/a0Hiyb80X8fBNZ5deygWLBgAQsWLKBfv3688847zJs3L+eJSDaTiBV8UgzSvSjH4hJg9+7dhWquiJC6oyoRr+bFZZLEd+uOsb1vE0kPE3At0e2ZC0qVQz9KWqffOVeSwVcPLxtlZhea2TYzezP6eLiZDfPyHJkIh8PU1tYyb948amtrCYfDXT7W+eefz8aNG5Mea9asWcydO5cJEybQ3NzMtm3bqK+vZ/78+SxZsiTr86eSTe19BZ8EXfxFOX5McOyiHB+js2bNYvXq1axevZphwwr2liQiRDqqYnXzU/Gypn4m7xeQXsdY0RryKbAkaaaVwJATsjpsqv93lThOLd06/Z8DXnPOfZhgWz+g0jn3goft+hfgNODZ6OMSYCHwNx6eIy1e3paLP9aQIUN4//33mT9/fpd7B7walpBNBRE/lBgV6Qov71Z5OURIw41EUktV7a5nz56ccMIJHDp0yNNJ8QtX/J5XTz6Bg/360O/gR4zasp3B+/YDid8vunXHWNXXI5N248f0x/TsBVVXZ3XYQlc5DLJ0J/LWAacDrybYdlJ0u5e9/fudc7tjn+ScczvMbIiHx0+Ll7flkk04SnasdBMRr8cKZlpBRMEnQefVRTlXHQTdagywSAaSdVSZGeecc47nsfLT9etYOKgPRwb1gZIS9g/oz67hQxkd3srYjZsTvl90646x4ydFqvS8dHtkDL9rifTw9+wFZ1yXddlOlTjOXiYlO5PpDyT4GNclYTP7DNHBYNEVgft7fI5OedkDmOmx0klEcjVWMJMKIgo+CTovLsrZxOIfP9jLvZveInzwAKF+A/jqmBOZMHhI9x4DLJKhRB1VL7zwgucJ/x8/2MvdmzZwpCRuuEpJCc0lEA6NZNie9zm64UCH94tu3zFWfVOkSo/HdfpV4jg7qar3fA44O+6pK6O18+P1Bs4H/tfjdt1ApCb/sWb2TeA84CWPz9EpL2/LZXqsdBIRv0yiVfBJkHlxUc40Fn+6fh13b9rA4eZmHPBGwz6W7XyXq8aMY9BLr/girkWCItZRFRsS98EHH1BbW+vpdejeTW9xuLk54baWEmPLqOMof3Njh/cLdYwRSfA9WIyrPZU4zlyqnv4q4J/iHl8EHGn3mkZgPfAtLxvlnNtpZucCU4C/BB6kAAtzeXlbLtNjpZOILFq0yDdjBRV8ElReXJQz+VAf6zH8KC6BaAE+am7m7k0bOGf/Pt/EtUhQxA+Ja2xspL6+3tMhceGDB5LVoYGSEg7175v0/UIdY+IXSZN+59x/AP8BYGZh4IvOuT/lsjFm9ivn3OVmNgP4I/C0cy43pWrS4OVtuUyPFZ+IxLRPRLryoSTTSYKaVCjFLNuLciwu9u7dm/Q17WMxVY/hx83NbDz2GEa99Xb3HAMskoV8DIkL9RvAGw37aEmwzZyj8vhRTP3c5OT7q2NMfKDTMf1m1hvYCAzOfXO4Jfp9InAVMNbMthD5APAa8LJz7vU8tAPw9rZcNseKJSKLFy9m5MiRHRKRbD+UZDpJMPb62Hm2bdvGa6+9RlVVFZdeemnavwORfMj2A2qmF+WGhgbmz5/fGkfJtI/FVD2GLUDTUYMoLS3tvmOARTLk1VDXj9asYe/9C2naspnSUaMZctml9Bk/HoCvjjmRZTvfbXOHLqZ3z55849Pju/ZDiORBp0m/c+6wmU3E2+o8yc61Nfr9/8aeM7MTiJTvnABcZWYrnHPfzHVbYry8LZfNsUKhEEOHDmXOnDkJt2X6QSLTHpFkVYdaWlp4+eWXAZT4i2/kq+pNOBxm//79CRPzmGSxmKrHsAQYd/QQjQEOAN399A8v5t/tvv0/2Vtbi/v4Y3COw2+u58Pnn2fIzJkMu+6fmDB4CFeNGcfdmzbwcXMzLUTitVePHlw1ZhwTBue9wKBIxtKt3vMk8EXgd16e3MxO6ew1zrk3iNxpeCS6z2tetiEdXt6W8/oWX6YfJFL1iDQ2NvLII4/wne98p83rUyU2K1eu5KyzztLFTgoun1Vv6urqUvbu9+3bl1NOOSVhLKbqMezVo0ekik/lZzUG2MdUUtVfujr/7qM1ayIJ/+HDnzzZ0oI7fJi9tbX0/9xf0Wf8eK4/qYKzy4/h3k1vsfngh4zu17+16pZIEKSb9P8W+A8zGwE8Deyk3drKzrmnszj/6+2Pk0D7OwznZnGeopbJB4nOli3fsmUL3/rWt7jmmmsIhULs3Lkz5fGcc6omIr6Qz2pWncXF0KFDmTlzZsJt6fYYagywP6mkqv90df7d3vsXRnr4E3CNjey9fyHHRYf5TBg8hAmVSvIlmNJN+mOVcy6MfrXnyG74T6JIPBo4J/o1u8OJnNudxXkKwo+3f1P1iMQcPHiQ2267jXPPPZfy8nK2bduW8piqJiJ+kM+VL8vLy5NuS6dnUT2GweWXUsnyifZDXSH58LpEmrZshmTXxJYWmrZs8bjFIoWRbtKfk3cw59zvk2z6bzP7IXAxULDqPV2Rj9u/yRb3SSVVj0i85uZmli1bxkUXXcRrr71GS0uiEcgRqiYifpDPlS+rq6uJrRjeXmc9i/GdAePLy7neB50Bkr58friU9MUPdX3iiSeorKxMu6Ntd2kZ/YjcceugpISy0aO8bq5IQaSV9DvnCvExtw54vADn7bJc3v4Nh8M89dRTLLVm3jp+BM0lJWDWZnGf60+qSLp/rEfk6ac7H43V1NTEhg0bqKqqap20215ZWZmqiYgv5HPly1AoxMCBAykrK8tosq3GggdfPj9cSmZiQ+LuuuuupMPr2guHwyzr3YupJSWUJOrcKi3laBWrkCKRbk8/ZtYT+HvgLCJDcN4HVgCPO+faL9rlhfOBfTk4bs7l6vbvkiVLeOaZZ9g7sD9vTRpPc49PRlTFL+4ztrmFna+sSjqsaOrUqaxYsYIDBw6kPF+s1ypWOWjlypVtLnRlZWWqJiK+ke+VLwcNGsTs2bPTnmyrseDFIZ8fLiX36urqeKdfP14bOZLTtm6lR0sLJUSuqc0lJeyoPI2Tx6scpxSHtJJ+MxsOPEtkddzNRCbyng5cC/zJzM7JZqy9mT2S4Oky4CTgROCmTI/pB7m4/RsOh3n22WdpaWlhy6jjaC5JPLTgcHMz815awWfWrEvZk3jBBRfw4IMPpjxnfK/VpZdeyllnnaVqIuJr+V75MpPJthoLXhzy/eFScit2vX51TIgtQ47mM9u2c9RHh9jXpy9/Ov44eo0dyzmFbqSIR9Lt6b8NGAJUOedWxZ40s0nAY9Ht2dz/GpbgucNE7iDckGVFoILLxe3fp556iiNHIjdUDvbrAyUJRx/igAO9e7WeO1lP4plnnskrr7zCxo0bk56zfa+VqolIEPj171RjwYtHvj9cSu7EX693DhrEs4MGtW4zMyo1XEuKSLpJ/xTgG/EJP4BzbpWZfRf4z2xO7pxLeR/UzEqdc4m7xnzM69u/DQ0NbNiwofVxv4MfsX9A/8SJf0sL/Q591OHp9j2J4XCYo446isGDB9PQ0NBmoq56rUS8p7HgxcWvHy4lMxquJd1Jukl/LyDZAPADRIbkeMIiJTGqgUuAvwOGenXsfPHq9m9s0m5DQ0ObRGHUlu3sGj6U5gQ5f0mLY9SW7R2ej+9JbD+Z0Mzo2bMnw4YNo7S0VL1WIjmg5ELEfzRcS7qTdJP+lcB3zOx559zB2JNm1g/4TnR7l5hZFZFE/2KgHGjEww8T+dbV27+xxDxRgjB4335Gh7cSDo2kpcQiPf4tLfQERm/eyuB9+zvsE+tJTDaZ8MiRI+zYsYNx48Yp4RfJASUXIv6k4VrSXaSb9H+TSAnNbWb2LJGJvMOJrI5rwNnZnNzMTiWS6E8HRgMfAP8NLAKOAhJN9A2MbG//JkrM2xu7cTPD9rzPllHHcahfXz416ChmjjmR5+peJtFesZ7EVJMJnXOsX7+eTZs2qYSgSA4ouRDxJw3Xku4g3Tr9a8zsROBGYBKRKj7vAb8AbnPO7Un3hGY2hkiSfwlQAewHngC+ATwXK/9pZl/I4OcoKqkS83iD9+1nZPM2rr766tY3K9dJT+KiRYtSrsYLqISgSA4puRARkUJIu05/NLGf48E5NxIpgfsocAvwtHMu9fKw3UyqKh/xysrKWhP++FU+x4wZA8ChQ4daexIBamtr2bt3b1ptUAlBERERkeKRdtLvoS3AKOBM4N3o16sFaIdv9evXr9PXxC+MlWhibqx3f+rUqR22pyNZCcH4DxeJFv4SEREREf9JmvSb2fMZHMc55yan+cKQmZ1OZHjPJcBsM9sK/Bp4xDn3WgbnLTpLlixJWTvfzBg3bhzTpk0jFArxhz/8gaVLl7ZJ5mO1+Z999lnWrVvH1q1b007248/TvoRg+w8PyRb+EhERERF/sWTJoJn9Jo39RwBnEEn6e2R8crMSYDKR5P+LwCBgE5GJvIeAH2Zz3EQqKipcnz59vDhUznz88cfs2rWrQ4L+wQcfMHjwYMyMgQMHMii6eEhDQwMNDQ05aUss6e/Vq1fKtiV6bbzdu3czbFiiNdj8L8htr6+vX+ecO7XQ7ehMEOIymTfffJOTTz650M3IWpD/voPcdsVm7gU5NoP8tx3ktgclLrsqaU+/c+6iZNvMbCSRUp1TgT3AT7M5uXOuBXgOeM7MriayCNglwPVAXyILzHqiT58+rF692qvD5cTtt9/O+vXrOzz/6KOP8qUvfYmTTjqJ6667DogMs5k/f37KCj/ZaD80KKa2tpb6+vqkSX9lZSUzZ87ssG3ixIm+/70nE+S2m9nhQrchHUGIy2SC/PcBwW5/kNuu2My9IP99qO2FEZS47KqMxvSb2QnAd4EZwK7ov//LOddxCdgMRSfzLgYWR+v/f5FIlZ9A6OpY9yVLlrRZdTeRQ4cOtf473Qo/6Yr11h9//PEJ255qcnGy8f8iIiIi4g9pJf1mVgHcDFwEbANmA7W5qroTXQDswehX3mSbuHd1rHusLn+qcfftx9inW+EnE8cff3zC3nqA8vJytm/fnnJ4j4iIiIj4U8qk38wqiST7XwD+DFwJPOCca85D2zw1a9aslNuzTdyTrXCbSa37dHrtY4trxaRKwrPRWW99dXU1a9euTTicqH3b4nX2e/ezILcdWFDoBqQj4L/jQAvy7z7IbUexKSkE+fce5LYTkLjsqpJkG8xsKZFSmiFgunPuZOfcr4KY8EPqP8b4xD2WRMcn7uFwOOm+qRL2WK37zqTTax8rzxlTXV1NaWlpwteaGT16ZDb/ubPe+lAoRE1NDWVlZZhZ6z7xpUMTCfKbQJDb7pwLxBtYkH/HQRfk332Q267YlFSC/HsPctuDEpddlaqn/9zo9+OBO83szlQHcs4FdnxHOol7sqQ207HuiYYQddZr37t37w53G2JJeLL6/ECHbT169KClpYWWlpYO50jVWx8zdepUKioqqKurY9euXa0Lf6lOv4iIiIi/pUr6f5C3VhRYVyapZjLWPdkQosrKSkpLSxMOnSkrK2st0dleZ0l4om3r1q1L+kEhneQ9FAopyRcREREJmFQlO7tN0t+VSarpjnVPNfa/vr6eyspK6uvrEybjL774YtLzp0rCE20LhULqrRcRERHpZpKO6Q8SMys1sx+b2VozO2hm75nZQ9H1BJJavnw5ZsZNN92UtN59Z8Ne0h3r3tkQoqamJmbPnk1lZSUjR46ksrKS2bNn52Sl21AoxMyZM5kzZw4zZ87MKuGfN28ekyZNYuDAgQwbNoxp06bx+uuvp9xn8+bNmFmHr2eeeSbbH8Vzc+fO7dC+Y445ptDNajV69OiEv8Pzzz8/6T5m5hJ8XZ3rtnY1Ltt/JVrDQtpSXBaOYlNSKcbYVFwGT0Z1+n2sL3Aa8CNgdvXUWgAADf1JREFUDZGVfX8CPGNmf+mcO5Jq5+eff561a9fy8ssvc+TIkYyHvaQz1j2dIURBGjqzfPlyrrnmGiZNmoRzju9973vU1NTwxhtvcPTRR6fc95lnnuEzn/lM6+POXp9v48aNY/ny5a2PM50UnUurVq2iufmTufTvvfcelZWVXHzxxZ3tehWwJO5xbpZybqtLcblu3bo2fxtBXekxnxSXhaPYlFSKNTYVl8FSFEm/c64B+Jv458zsa8A64GTgf1PtP3z4cKZPn05VVVXWw146S9iLrc79b3/72zaPFy5cyKBBg/jDH/7AtGnTUu47ZMgQ3/UGxOvZs6dv29f+4nrPPfcwcOBALroo6QLaMfucczty1rAEvIjLoUOH5q6BRSg+LsPhMOeddx49e/bkzjvvZMaMGSnfoxSXXaPYlFSK9ZqpuAyWohjek8TA6PcPOnvhxIkTGTFiBFdeeSWhUKhLw16SSVViM53KOX534MABWlpaGDx4cKevvfDCCxk+fDhnnnkmjz76aB5al5lNmzZx7LHHEgqFmD59Ops2bSp0kxJyznHPPfcwY8YM+vbt29nL55vZHjNbZWZXm1mhYj/juJw8eXJapW/lE0uWLGH+/Pn86U9/YtiwYbz33nvMnz+fJUuWJN1HcekdxaZ0pliumYrLYCmKH6I9MysjcqvyKefc9mSvGzFiBD//+c957LHHePzxxxk3bhyTJ0/mhRde8LxN2da5D4rZs2czfvx4Tj/99KSv6d+/P7feeiuPPPIITz/9NJMnT+bLX/4yDzzwQB5bmlpVVRX33XcfS5cu5e6772bHjh2cccYZ7N27t9BN6+C5554jHA5z5ZVXdvbS7wFfBmqARURi46YcN68DP8ZlMUpUNABIuu6I4tJ7ik3pTDFcMxWXwWNereiaT2b2FeC/4p76W+fciui2nsBDQAXwOedc7K8vrR90ypQp9OzZkyeffNLLJreK1enPZAjRxIkTWb16dUbHj18HINcfKG644QYWLVrEiy++yJgxYzLa95prruHFF19k7dq1OWpd13z44YeMGTOGOXPmcMMNNxS6OW1cdNFFbNmyhVdffTXRZku2n5l9G7jZOZe4FmyWghyX2cgkLvOptraW+vr6pEMJKysrmTlzZspjKC67RrFZWH6NzZhivWYqLv0vqGP6nwReiXv8DrS+eT0MfBo4O+7NK21VVVUsWrTIk0YmksvJusnWAaipqclJFSCA66+/nkWLFlFXV5fxmxdEft/33ntvDlrmjf79+1NRUcFbb71V6Ka0sWvXLp544gnuvDPlmnnJvAIMNLNy59xOD5sV2LgsJl1ZdyRGcZk9xaakUszXTMWl/wVyeI9z7oBzbmPc10dmVgr8GvhLoDrbCRhr1qxhxIgRnrY3H+Jv6ccu+LF1ABLd0vfC7Nmzeeihh3j++ec56aSTsjqG33/fhw8fZv369b5r43333UevXr2YPn16NruPBw4D+7xsk+LSH7Zv355w1W1Iv2iA33/ffo1LUGxKcsV+zVRc+l9Qe/rbiPZW/AaYBEwDnJnFppM3OOc+ArjssssAuP/++wH42c9+xujRo6moqKCxsZEHHniAxYsX89hjj+X9Z+iqztYBqKur8/QOw7XXXsvChQtZvHgxgwcPZseOyPWif//+9O/fH4Dvfve7vPrqq/zud78D4Fe/+hWlpaVMmDCBkpISnnrqKe68805+/OMfe9aurrrxxhuZNm0aI0eOZNeuXfzrv/4rBw8e5PLLLy9001o55/jlL3/J9OnTGTBgQJttd9xxB3fccUdr3WwzmwYcA7wMfARUA/8CLHDOfZzLdiou8+/aa69l6dKlnH/++W3K1MWUlpby5ptvMnnyZMVlDig2JZlivGYqLoOnKJJ+4DjgC9F/17fb9lXgPoCtW7e22dDY2MiNN97IO++8Q58+faioqOB//ud/mDJlSq7b6zkvbuln4q677gJg8uTJbZ7//ve/z9y5c4FIPdy33367zfYf/vCHbNmyhR49ejB27Fhqa2uZMWOGp23riu3bt3PJJZewZ88ehg0bxmc/+1lWrlzJqFGjCt20VsuXL+ett95KOJlrz549bNiwIf6pJuAa4DYid/Y2EZmklNU9zgx1+7jMt1hcrly5kvHjx9OjRw9KSiI3dGNFAx599FHFZY4oNiWZYrxmKi6DJ5ATebMU2B80nUlJqSbvQaTqwi233JKL5ok/JZ2U5DNFHZeFlE3RAMkLxWaO+T02xZeCEpddUiw9/d1edXU1a9as4ciRxAsp7t69m3A4rIu+SDcRpBW+RUQk9wI5kVc6CoVCKZdCb25u1iIqIiIiIt2Ukv4i0rNn8hs3uRjXLyIiIiLBoKQ/Tx5//HHOPfdchg0bhpmxfPlyz89RXl7eutpve+mW6hMRERGR4qOkP08OHjzIGWecwW233Zazc1RXV1NaWppwW2lpKdXV1Tk7t4iIiIj4lyby5smll14KRMpD5UooFKKmpqbNqrxmRmlpKTU1NZrUJyIiItJNKekvMlOnTqWiokKl+kRERAIoVm53586dlJeX6xounlHS71MLFixgwYIFQKTcZiZUqk8kN7oSlyKSO8USm0uWLGlzt3779u2sXbuWmpoapk6dWujmScBpTH8OPPjgg61La/fv358VK1ZkfIxZs2axevVqVq9enbIUp4jkj+JSxJ+KITbD4TDLli2jsbGxdaFN5xyNjY0sW7aMcDhc4BZK0KmnPwcuuOACqqqqWh8fe+yxBWyNiIiI+F1dXR1NTU0JtzU1NVFXV6e7+NIlSvpzYMCAAQwYMKDQzRAREZGA2LlzZ2sPf3taa0e8oKQ/T95//322bt3Kvn37ANi4cSNHHXUUxxxzDMccc0yBWyciIiKFVF5ezvbt2xMm/lprR7ygMf158uSTTzJhwoTWWvlXXXUVEyZM4Be/+EWBWyYiIiKFprV2JNeU9OfJFVdcgXOuw9fcuXML3TQREREpsNhaO2VlZZgZEOnhLysr01o74gkN7xERERHxAa21I7mkpF9ERETEJ7TWjuSKhveIiIiIiBQ5Jf0iIiIiIkVOSb+IiIiISJFT0i8iIiIiUuSU9IuIiIiIFDkl/SIiIiIiRU5Jv4iIiIhIkTPnXKHbIJ0ws2ecc+cVuh0i8gnFpYg/KTZFElPSLyIiIiJS5DS8R0RERESkyCnpFxEREREpckr6RURERESKnJJ+EREREZEip6RfRERERKTIKekXERERESlySvpFRERERIqckn4RERERkSKnpL+bMrNfmpkzs9sK3ZZ4ZnZftF3OzJbHPV9qZo+Y2Sozu8fMStrt989x+23Pe8NFPKC4FPEnxaYUAyX93ZCZ9QEuAhzwFTPrWeAmtbcDOB24Ju65TwObnHOTgCZgdLt97o3u83Q+GijiNcWliD8pNqVYKOnvnv4OGAj8OzAcOK+wzengY+fcSufcG3HPvQ6MNbNVQF9gc/wOzrl3nHMrgd35a6aIpxSXIv6k2JSioKS/e7ocCAO3EAn4yxK9yMymmdnLZjbGzB42sw+jtwpPyGdjAZxzjc65C51zk5xzlznnWvLdBpEcU1yK+JNiU4qCkv5uxsz+AqgBHnDONQGLgAvMbHC7130beBJ4CfgC8LfAPwInAgvz2miRIqe4FPEnxaYUEyX93c+lRP7fH4g+vh/oBXw59gIzOwn4EfAz59w3gQuA55xzvybyhvdZM+uf11aLFDfFpYg/KTalaCjp734uA15xzv0ZwDm3GlhP29uVs4AjwC1mZsBpQH102zvR7yUAZtbXzFaYWY9UJzWzkmi1APPuRxEpGopLEX9SbErRUNLfjZjZJOAUOt5qXAicbmZjo4/PBlY45z4ETiAygemP0W1/Aexyzu0HcM4dcs79lXOuuZPTfxr4snPOdf0nESkeiksRf1JsSrFR0t+9XE6kdNev2z3/AJFSZLGei5HAe9F/nxb9vib6vZrIuEUAzOxmM/tR9N8DzOwOM3vJzN40s19EeytOIVIWrNzM1pjZ//P8JxMJLsWliD8pNqWoKOnvJsysDJgOLHXO7Ynf5pzbCvweuDR6K7EBCEU3nwa855zbaWbTgU8BC+J2nwisjv774ejxzyDSOzIKmBItI/Y48G/OufHOuTk5+SFFAkZxKeJPik0pRn5bYEJyZyowBNhmZl9MsH0TkVuUZwO/Ab5tZv8M/BXwnpn9CzAHuMk5typuv4nAdWb2eeAs4LhYLwaRW5yx8YiVdOwtEenuFJci/qTYlKKjpL/7uDz6/droV6rXfQ04Gvg2MIDIBKWewBXOuYdiLzSz4UCZc26bmV0M1Drnbmh/wOiEpVP5ZIyjiEQoLkX8SbEpRUdJfzfhnPtChrvMMrMfAxuBC51zTyV4zSQ+uU25HbjczPo75z40s17Aic6514ERwGHn3MF0T26RZc5dGpOdYq83oAef9JKI+J7iUsSfFJtSjDSmX1KZGP2+OsX22LbfAMuBNWa2BlhBpIoBRCY4rTazDWb2kzTOO4rI5KnfZdDWm6P7JFwpUaSIKC5F/EmxKb5mqgYlyZjZvwNfcc4dm2T7S8AtzrlM3mg6O+doYGj04QHn3IY09xsBxNrZ6Jxb61WbRPxEcSniT4pN8Tsl/ZIxMzsReAR4Ffi6c66lwE0S6fYUlyL+pNgUv1DSLyIiIiJS5DSmX0RERESkyCnpFxEREREpckr6RURERESKnJJ+EREREZEip6RfRERERKTIKekXERERESlySvpFRERERIqckn4RERERkSKnpF9EREREpMj9f1OZlDY7niFvAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 720x432 with 8 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "color_cmip = 'dimgrey'\n",
+    "color_mean = 'lightseagreen'\n",
+    "color_icon = 'tab:orange'\n",
+    "color_mpi = 'tab:red'\n",
+    "color_ipsl = 'tab:purple'\n",
+    "ms = 7.5  # markersize\n",
+    "ylab = ['Europe', 'North Atlantic']\n",
+    "\n",
+    "fig, ax = plt.subplots(len(box_west), 3, figsize=(10, 6))\n",
+    "for b in range(len(box_west)):\n",
+    "    # coupled models\n",
+    "    ax[b, 0].plot(djetlat_cmip_box[b, :], djetint_cmip_box[b, :],\n",
+    "                  linestyle='none', marker='o', color=color_cmip, \n",
+    "                  markersize=ms)\n",
+    "    ax[b, 0].plot(djetlat_cmip_mm_box[b], djetint_cmip_mm_box[b],\n",
+    "                  linestyle='none', marker='o', color=color_mean,\n",
+    "                  markersize=ms)\n",
+    "    # amip models\n",
+    "    # amipFuture\n",
+    "    ax[b, 1].plot(djetlat_amipfut_box[b, :], djetint_amipfut_box[b, :],\n",
+    "                  linestyle='none', marker='o', color=color_cmip, \n",
+    "                  markersize=ms)\n",
+    "    ax[b, 1].plot(djetlat_amipfut_mm_box[b], djetint_amipfut_mm_box[b],\n",
+    "                  linestyle='none', marker='o', color=color_mean,\n",
+    "                  markersize=ms)\n",
+    "    # amip4K\n",
+    "    ax[b, 2].plot(djetlat_amip4k_box[b, :], djetint_amip4k_box[b, :],\n",
+    "                  linestyle='none', marker='o', color=color_cmip, \n",
+    "                  markersize=ms)\n",
+    "    ax[b, 2].plot(djetlat_amip4k_mm_box[b], djetint_amip4k_mm_box[b],\n",
+    "                  linestyle='none', marker='o', color=color_mean,\n",
+    "                  markersize=ms)\n",
+    "    # ICON, MPI-ESM, IPSL-CM5A\n",
+    "    ax[b, 2].plot(djetlat_icon_box[b], djetint_icon_box[b],\n",
+    "                  linestyle='none', marker='o', color=color_icon,\n",
+    "                  markersize=ms)\n",
+    "    ax[b, 2].plot(djetlat_mpi_box[b], djetint_mpi_box[b],\n",
+    "                  linestyle='none', marker='o', color=color_mpi,\n",
+    "                  markersize=ms)\n",
+    "    ax[b, 2].plot(djetlat_ipsl_box[b], djetint_ipsl_box[b],\n",
+    "                  linestyle='none', marker='o', color=color_ipsl,\n",
+    "                  markersize=ms)\n",
+    "    \n",
+    "    # ylabel\n",
+    "    ax[b, 0].set_ylabel(ylab[b] + '\\n$\\Delta$u$_{jet}$ [m s$^{-1}$]', fontsize=15)\n",
+    "    ax[b, 0].yaxis.set_label_coords(-0.05, 0.5)\n",
+    "del b\n",
+    "ax[0, 0].set_title('RCP8.5', fontsize=16)\n",
+    "ax[0, 1].set_title('AmipFuture', fontsize=16)\n",
+    "ax[0, 2].set_title('Amip4K', fontsize=16)\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# plot maps for Europe and North Atlantic as small inserted plot\n",
+    "# Europe\n",
+    "inset_ax = inset_axes(ax[0, 0], \n",
+    "                      width=\"50%\",\n",
+    "                      height=\"50%\",\n",
+    "                      #loc=\"upper right\",\n",
+    "                      bbox_to_anchor=(0.15, 0.1, 1, 1),\n",
+    "                      bbox_transform=ax[0, 0].transAxes,\n",
+    "                      axes_class=cartopy.mpl.geoaxes.GeoAxes,\n",
+    "                      axes_kwargs=dict(map_projection=ccrs.PlateCarree(central_longitude=-90.)))\n",
+    "inset_ax.coastlines()\n",
+    "inset_ax.set_aspect(1.5)\n",
+    "inset_ax.tick_params(labelsize=12)\n",
+    "# extended North Atlantic region\n",
+    "inset_ax.set_extent([-80, 30, 30, 70], ccrs.PlateCarree())\n",
+    "# set xticks and yticks for latitudes and longitudes\n",
+    "# xaxis: longitudes\n",
+    "inset_ax.set_xticks([0, 25], crs=ccrs.PlateCarree())\n",
+    "lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                   degree_symbol='',\n",
+    "                                   dateline_direction_label=True)\n",
+    "inset_ax.xaxis.set_major_formatter(lon_formatter)\n",
+    "del lon_formatter\n",
+    "\n",
+    "# mark west and east boundaries of Europe\n",
+    "lonwest = 0; loneast = 25; latsout=30.8; latnort=69.2\n",
+    "# left vertical line\n",
+    "inset_ax.plot([lonwest, lonwest], [latsout, latnort],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "# right vertical line\n",
+    "inset_ax.plot([loneast, loneast], [latsout, latnort],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "# upper horizontal line\n",
+    "inset_ax.plot([loneast, lonwest], [latnort, latnort],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "# lower horizontal line\n",
+    "inset_ax.plot([lonwest, loneast], [latsout, latsout],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "del inset_ax\n",
+    "\n",
+    "# North Atlantic\n",
+    "inset_ax = inset_axes(ax[1, 0], \n",
+    "                      width=\"50%\",\n",
+    "                      height=\"50%\",\n",
+    "                      #loc=\"upper right\",\n",
+    "                      bbox_to_anchor=(0.15, 0.1, 1, 1),\n",
+    "                      bbox_transform=ax[1, 0].transAxes,\n",
+    "                      axes_class=cartopy.mpl.geoaxes.GeoAxes, \n",
+    "                      axes_kwargs=dict(map_projection=ccrs.PlateCarree(central_longitude=-90.)))\n",
+    "inset_ax.coastlines()\n",
+    "inset_ax.set_aspect(1.7)\n",
+    "inset_ax.tick_params(labelsize=12)\n",
+    "# extended North Atlantic region\n",
+    "inset_ax.set_extent([-80, 30, 30, 70], ccrs.PlateCarree())\n",
+    "# set xticks and yticks for latitudes and longitudes\n",
+    "# xaxis: longitudes\n",
+    "inset_ax.set_xticks([-60, 0], crs=ccrs.PlateCarree())\n",
+    "lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                   degree_symbol='',\n",
+    "                                   dateline_direction_label=True)\n",
+    "inset_ax.xaxis.set_major_formatter(lon_formatter)\n",
+    "del lon_formatter\n",
+    "\n",
+    "# mark west and east boundaries of Europe\n",
+    "lonwest = -60; loneast = 0; latsout=30.8; latnort=69.2\n",
+    "# left vertical line\n",
+    "inset_ax.plot([lonwest, lonwest], [latsout, latnort],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "# right vertical line\n",
+    "inset_ax.plot([loneast, loneast], [latsout, latnort],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "# upper horizontal line\n",
+    "inset_ax.plot([loneast, lonwest], [latnort, latnort],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "# lower horizontal line\n",
+    "inset_ax.plot([lonwest, loneast], [latsout, latsout],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "del inset_ax\n",
+    "\n",
+    "ax = ax.reshape(-1)\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].tick_params(labelsize=14)\n",
+    "    ax[i].spines['right'].set_color('none')\n",
+    "    ax[i].spines['top'].set_color('none')\n",
+    "    ax[i].spines['left'].set_position('zero')\n",
+    "    ax[i].spines['bottom'].set_position('zero')\n",
+    "    # x-ticks\n",
+    "    ax[i].xaxis.set_ticks([-5, -2.5, 2.5, 5, 7.5, 10])#, 15])\n",
+    "    ax[i].xaxis.set_ticklabels([-5, -2.5, 2.5, 5, 7.5, 10])#, 15])\n",
+    "    ax[i].set_xlim(-2.5, 7.5)#7)\n",
+    "    # y-ticks\n",
+    "    ax[i].yaxis.set_ticks([-1, 1, 3, 5])\n",
+    "    ax[i].yaxis.set_ticklabels([-1, 1, 3, 5])\n",
+    "    ax[i].set_ylim(-1.6, 5)\n",
+    "    # labels\n",
+    "    ax[i].set_xlabel(r'$\\Delta \\varphi_{jet}$ [$^{\\circ}$]', fontsize=16)\n",
+    "    ax[i].xaxis.set_label_coords(0.5, -0.05)\n",
+    "    # hide x labels and tick labels for top plots and y ticks for right plots.\n",
+    "    ax[i].label_outer()\n",
+    "del i\n",
+    "\n",
+    "# text for colors\n",
+    "fig.text(0.88, 0.82, 'CMIP models', color=color_cmip, ha='left',\n",
+    "         va='center', fontsize=14)\n",
+    "fig.text(0.88, 0.78, 'CMIP model mean', color=color_mean, ha='left',\n",
+    "         va='center', fontsize=14)\n",
+    "fig.text(0.88, 0.74, 'ICON', color=color_icon, ha='left',\n",
+    "         va='center', fontsize=14)\n",
+    "fig.text(0.88, 0.70, 'MPI-ESM', color=color_mpi, ha='left',\n",
+    "         va='center', fontsize=14)\n",
+    "fig.text(0.88, 0.66, 'IPSL-CM5A', color=color_ipsl, ha='left',\n",
+    "         va='center', fontsize=14)\n",
+    "\n",
+    "# a), b) etc for subplots\n",
+    "labs = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)']\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].text(0.01, 1.02, labs[i], va='bottom', ha='left',\n",
+    "               rotation_mode='anchor', fontsize=15,\n",
+    "               transform=ax[i].transAxes)\n",
+    "del i\n",
+    "\n",
+    "fig.savefig('figure2a_2f.pdf', bbox_inches='tight')\n",
+    "\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax\n",
+    "\n",
+    "del color_cmip, color_mean, color_icon\n",
+    "del color_mpi, color_ipsl, ms\n",
+    "del ylab"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/pythonscripts/.ipynb_checkpoints/figure3_du850_icon_mpi_ipsl_total_vs_cloud-checkpoint.ipynb b/pythonscripts/.ipynb_checkpoints/figure3_du850_icon_mpi_ipsl_total_vs_cloud-checkpoint.ipynb
new file mode 100644
index 0000000..f9cad0b
--- /dev/null
+++ b/pythonscripts/.ipynb_checkpoints/figure3_du850_icon_mpi_ipsl_total_vs_cloud-checkpoint.ipynb
@@ -0,0 +1,635 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Zonal wind response: total response vs. cloud impact\n",
+    "\n",
+    "This script generates figure 3: maps of total zonal wind response vs. cloud impact in ICON, MPI-ESM and IPSL-CM5A.\n",
+    "\n",
+    "Note: for ICON, we investigate simulations with locked clouds and interactive water vapor. For MPI-ESM and IPSL-CM5A, we investigate simulations with both locked clouds and locked water vapor."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load own colorbar"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mymap, mymap2 = fct.generate_mymap()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated\n",
+    "\n",
+    "* xx_cld: locked clouds, interactive water vapor\n",
+    "* xx_cldvap: locked clouds, locked water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "runs_cld = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "runs_cldvap = ['T1C1W1', 'T2C2W2', 'T1C2W1', 'T1C1W2',\n",
+    "               'T1C2W2', 'T2C1W1', 'T2C2W1', 'T2C1W2']\n",
+    "\n",
+    "response_cld = ['total', 'SST', 'cloud']\n",
+    "response_cldvap = ['total', 'SST', 'cloud', 'water vapor']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (MPI-ESM, IPSL-CM5A with locked clouds and locked water vapor)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1W1\n",
+      "reading T2C2W2\n",
+      "reading T1C2W1\n",
+      "reading T1C1W2\n",
+      "reading T1C2W2\n",
+      "reading T2C1W1\n",
+      "reading T2C2W1\n",
+      "reading T2C1W2\n"
+     ]
+    }
+   ],
+   "source": [
+    "u850_mpi = {}; u850_ipsl = {}\n",
+    "for run in runs_cldvap:\n",
+    "    print('reading ' + run)\n",
+    "    # MPI-ESM\n",
+    "    #print('   MPI-ESM')\n",
+    "    ifile = 'MPI-ESM_' + run + '_3d_mm.uwind.nc'\n",
+    "    u850_mpi[run], lats_mpi, lons_mpi = fct.read_var_onelevel('../../MPI-ESM/' + ifile,\n",
+    "                                                              'u', 'plev', 850)\n",
+    "    del ifile\n",
+    "    \n",
+    "    # IPSL-CM5A\n",
+    "    #print('   IPSL-CM5A')\n",
+    "    ifile = 'IPSL-CM5A_' + run + '_3d_mm.remapcon.uwind.nc'\n",
+    "    u850_ipsl[run], lats_ipsl, lons_ipsl = fct.read_var_onelevel('../../IPSL-CM5A/' + ifile,\n",
+    "                                                                 'vitu', 'presnivs', 850)\n",
+    "    del ifile\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (ICON with locked clouds and interactive water vapor)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T2C1\n",
+      "reading T1C2\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "u850_icon = {}\n",
+    "for run in runs_cld:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats_icon = np.array(ncfile.variables['lat'][:].data)\n",
+    "    lons_icon = np.array(ncfile.variables['lon'][:].data)\n",
+    "    levs = np.array(ncfile.variables['lev'][:].data)\n",
+    "    uwind = np.array(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()    \n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "    u850_icon[run] = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "del run, ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "u850_mpi_djf = {}; u850_ipsl_djf = {}\n",
+    "for run in runs_cldvap:\n",
+    "    u850_mpi_djf[run] = fct.calcMonthlyandSeasonMean(u850_mpi[run],\n",
+    "                                                     months, seasons)[1]['DJF']\n",
+    "    u850_ipsl_djf[run] = fct.calcMonthlyandSeasonMean(u850_ipsl[run],\n",
+    "                                                      months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "u850_icon_djf = {}\n",
+    "for run in runs_cld:\n",
+    "    u850_icon_djf[run] = fct.calcMonthlyandSeasonMean(u850_icon[run],\n",
+    "                                                      months,\n",
+    "                                                      seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "del u850_mpi, u850_ipsl, u850_icon"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF responses and decompose the total response into contributions from changes in SST, clouds and water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "du850_mpi = np.full((len(response_cldvap), len(lats_mpi),\n",
+    "                     len(lons_mpi)), np.nan, dtype=float)\n",
+    "du850_ipsl = np.full((len(response_cldvap), len(lats_ipsl),\n",
+    "                     len(lons_ipsl)), np.nan, dtype=float)\n",
+    "\n",
+    "du850_mpi[0, :, :], du850_mpi[1, :, :], du850_mpi[2, :, :], \\\n",
+    "du850_mpi[3, :, :] = \\\n",
+    "  fct.calc_3impacts_timmean(u850_mpi_djf['T1C1W1'], u850_mpi_djf['T2C2W2'],\n",
+    "                            u850_mpi_djf['T1C2W2'], u850_mpi_djf['T2C1W1'],\n",
+    "                            u850_mpi_djf['T1C2W1'], u850_mpi_djf['T1C1W2'],\n",
+    "                            u850_mpi_djf['T2C2W1'], u850_mpi_djf['T2C1W2'])\n",
+    "du850_ipsl[0, :, :], du850_ipsl[1, :, :], du850_ipsl[2, :, :], \\\n",
+    "du850_ipsl[3, :, :] = \\\n",
+    "  fct.calc_3impacts_timmean(u850_ipsl_djf['T1C1W1'], u850_ipsl_djf['T2C2W2'],\n",
+    "                            u850_ipsl_djf['T1C2W2'], u850_ipsl_djf['T2C1W1'],\n",
+    "                            u850_ipsl_djf['T1C2W1'], u850_ipsl_djf['T1C1W2'],\n",
+    "                            u850_ipsl_djf['T2C2W1'], u850_ipsl_djf['T2C1W2'])\n",
+    "\n",
+    "du850_icon = np.full((len(response_cld), len(lats_icon),\n",
+    "                      len(lons_icon)), np.nan, dtype=float)\n",
+    "du850_icon[0, :, :], du850_icon[1, :, :], du850_icon[2, :, :] = \\\n",
+    "  fct.calc_impacts_timmean(u850_icon_djf['T1C1'], u850_icon_djf['T2C2'],\n",
+    "                           u850_icon_djf['T1C2'], u850_icon_djf['T2C1'])\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read masks for significant responses\n",
+    "\n",
+    "These masks are generated with the script \"calculate_significance_bootstrapping.ipynb\" based on time series of the seasonal-mean zonal wind.\n",
+    "\n",
+    "The seasonal-mean zonal wind is calculated with cdo (Climate Data Operators):\n",
+    "\n",
+    "* select zonal wind: cdo selvar,u ICON-NWP_AMIP_run_3d_mm.nc ICON-NWP_AMIP_run_3d_mm.uwind.nc\n",
+    "* calculate the seasonal mean: cdo seasmean ICON-NWP_AMIP_run_3d_mm.uwind.nc ICON-NWP_AMIP_run_3d_mm.uwind.seasmean.nc\n",
+    "\n",
+    "\"run\" can be any of the simulations"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# ICON\n",
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "mask_read = np.load(ipath + 'du850_mask_sm_bs.npy',\n",
+    "                    allow_pickle='TRUE').item()\n",
+    "du850_mask_icon = np.array([mask_read[r][seasons.index('DJF'), :, :] \\\n",
+    "                            for r in response_cld])\n",
+    "del mask_read, ipath\n",
+    "\n",
+    "##############################################################################\n",
+    "# MPI-ESM\n",
+    "mask_read = np.load('../../MPI-ESM/MPI-ESM_du850_mask_sm_bs.npy',\n",
+    "                    allow_pickle='TRUE').item()\n",
+    "du850_mask_mpi = np.array([mask_read[r][seasons.index('DJF'), :, :] \\\n",
+    "                           for r in response_cldvap])\n",
+    "# shift latitudes to go from South to North and not from North to South\n",
+    "du850_mask_mpi = du850_mask_mpi[:, ::-1, :]\n",
+    "del mask_read\n",
+    "\n",
+    "##############################################################################\n",
+    "# IPSL-CM5A\n",
+    "mask_read = np.load('../../IPSL-CM5A/IPSL-CM5A_du850_mask_sm_bs.npy',\n",
+    "                    allow_pickle='TRUE').item()\n",
+    "du850_mask_ipsl = np.array([mask_read[r][seasons.index('DJF'), :, :] \\\n",
+    "                            for r in response_cldvap])\n",
+    "del mask_read"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate jet latitude in the control simulations for the Northern Hemisphere"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# latitudes in Northern Hemisphere\n",
+    "latind0 = (np.abs(lats_icon-0)).argmin() + 1\n",
+    "lats_NH = lats_icon[latind0:]\n",
+    "\n",
+    "# shift longitudes from 0deg...360deg to -270deg...90deg for visualization reasons\n",
+    "# and look at NH\n",
+    "u850_icon_shift, lons_shift = fct.shiftgrid_copy(90.,\n",
+    "                                                 u850_icon_djf['T1C1'][latind0:, :],\n",
+    "                                                 lons_icon, start=False)\n",
+    "u850_mpi_shift, _ = fct.shiftgrid_copy(90.,\n",
+    "                                       u850_mpi_djf['T1C1W1'][latind0:, :],\n",
+    "                                       lons_mpi, start=False)\n",
+    "u850_ipsl_shift, _ = fct.shiftgrid_copy(90.,\n",
+    "                                        u850_ipsl_djf['T1C1W1'][latind0:, :],\n",
+    "                                        lons_ipsl, start=False)\n",
+    "\n",
+    "jetlat_icon_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "jetlat_mpi_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "jetlat_ipsl_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "for lo in range(lons_shift.size):\n",
+    "    # ICON\n",
+    "    jetlat_icon_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH(u850_icon_shift[:, lo], lats_NH)\n",
+    "    # MPI-ESM\n",
+    "    jetlat_mpi_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH(u850_mpi_shift[:, lo], lats_NH)\n",
+    "    # IPSL-CM5A\n",
+    "    jetlat_ipsl_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH_nan(u850_ipsl_shift[:, lo],\n",
+    "                                    lats_NH, lons_shift[lo])\n",
+    "del lo\n",
+    "\n",
+    "del u850_icon_shift, u850_mpi_shift, u850_ipsl_shift, lons_shift"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Prepare plot of total response and cloud impact\n",
+    "\n",
+    "Shift the longitudes from 0deg...360deg to -90deg...270deg for visualization reasons and select the North Atlantic region (otherwise it is very slow to add the dots for the regions, in which the response is significant)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# shift longitudes\n",
+    "lons_plot = fct.shiftgrid_copy(90., du850_icon, lons_icon, start=False)[1]\n",
+    "\n",
+    "# North Atlantic region\n",
+    "lonind_west = (np.abs(lons_plot--90)).argmin() # find index of 90°W\n",
+    "lonind_east = (np.abs(lons_plot-35)).argmin() # find index of 35°E\n",
+    "latind_sout = (np.abs(lats_icon-20)).argmin() # find index of 20°N\n",
+    "latind_nort = (np.abs(lats_icon-80)).argmin() # find index of 80°N\n",
+    "\n",
+    "lons_plot = lons_plot[lonind_west:lonind_east+1]\n",
+    "lats_plot = lats_icon[latind_sout:latind_nort+1]\n",
+    "\n",
+    "# MPI-ESM uses slightly different latitudes\n",
+    "latind_sout_mpi = (np.abs(lats_mpi-20)).argmin() # find index of 20°N\n",
+    "latind_nort_mpi = (np.abs(lats_mpi-80)).argmin() # find index of 80°N\n",
+    "lats_mpi_plot = lats_mpi[latind_sout_mpi:latind_nort_mpi+1]\n",
+    "\n",
+    "# shift zonal wind fields and masks\n",
+    "du850_icon_plot = fct.shiftgrid_copy(90., du850_icon, lons_icon,\n",
+    "                                     start=False)[0][:,\n",
+    "                                                     latind_sout:latind_nort+1,\n",
+    "                                                     lonind_west:lonind_east+1]\n",
+    "mask_icon_plot = fct.shiftgrid_copy(90., du850_mask_icon, lons_icon,\n",
+    "                                    start=False)[0][:,\n",
+    "                                                    latind_sout:latind_nort+1,\n",
+    "                                                    lonind_west:lonind_east+1]\n",
+    "\n",
+    "du850_mpi_plot = fct.shiftgrid_copy(90., du850_mpi, lons_mpi,\n",
+    "                                    start=False)[0][:,\n",
+    "                                                    latind_sout_mpi:latind_nort_mpi+1,\n",
+    "                                                    lonind_west:lonind_east+1]\n",
+    "mask_mpi_plot = fct.shiftgrid_copy(90., du850_mask_mpi, lons_mpi,\n",
+    "                                   start=False)[0][:,\n",
+    "                                                   latind_sout_mpi:latind_nort_mpi+1,\n",
+    "                                                   lonind_west:lonind_east+1]\n",
+    "\n",
+    "du850_ipsl_plot = fct.shiftgrid_copy(90., du850_ipsl, lons_ipsl,\n",
+    "                                     start=False)[0][:,\n",
+    "                                                     latind_sout:latind_nort+1,\n",
+    "                                                     lonind_west:lonind_east+1]\n",
+    "mask_ipsl_plot = fct.shiftgrid_copy(90., du850_mask_ipsl, lons_ipsl,\n",
+    "                                    start=False)[0][:,\n",
+    "                                                    latind_sout:latind_nort+1,\n",
+    "                                                    lonind_west:lonind_east+1]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot the total response and cloud impact on u850"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAIqCAYAAAANXn3jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3gUVdfAfzfZ9N6BkITeO4Tee2/SpEgTFAuIiCCgIqiIgqAoWFBQQHoVISR0QyCQQCDUJJAekk1PdtOz8/0xC4RkA+QVePH95vc8efLs3TNn7szOnDlz7rnnCkmSUFBQUFBQUFBQUFB4Moz+2x1QUFBQUFBQUFBQ+DehONAKCgoKCgoKCgoKFUBxoBUUFBQUFBQUFBQqgOJAKygoKCgoKCgoKFQAxYFWUFBQUFBQUFBQqACKA62goKCgoKCgoKBQARQHWkHhCRFCDBVCvPu8t9VvP0kIIQkhqv2nOhQUFBSeJ0KIk0KIk/+F/S4WQig1ehWeKYoD/QQImctCiIkV2OZ7IcQvz7JfCs+docB/6gT/k20VFF5YSttHIUSUEGLFY7ZpJYRIFULYPZ9eKigoKDxdFAf6yRgFOAB/VGCbr4BxQohaz6ZLCgoKCi8EFbaPkiQFASHA7GfVKQUFBYVnieJAPxkzgU2SJBU+6QaSJEUB/sCMZ9UpheeHEGIjMBFw16dSSEKIKP13dYUQe4UQGUKIXCHEOSFE3yfc1lwIsUoIcVUIoRFCJAoh/hRC1Hvex6ig8B9SYfuoZwPwuhBC9Qz6pPCcEEI01du/VL39uyWE+OAR8o+0l3qZjfdsZKn2MikhQojmQoi/hRB5Qoh4IcSHgHhKh6egUC6KA/0Y9BHk9sCuEm2vCCH8hRBpQoh0IcQJIUQrA5vvRo5CK+f5389S4BCQDLTT/w0TQlRBflFqCryFHI3LAP4SQvR71Lb678wAG+BTYADyC5c5cE4IUenZH5aCwn+OIftY4rsP9S+EGiHEFgPpGgcAR6DPc+iqwjNACNEaOAvURB5NGAB8DVQtR/5J7GVF9u8MHAeckYMUbwJ9gSkV1aWgUFGUN//H0wPQApdLtFUDfgduA6bAWOC0EKKRJEl3SsgFAG5A41LbK/zLkCTpthAiGSiQJOncvXZ9rqcD0E6SpAh92yHgOvAZcLi8bfV6M4FXS+gzBo4AScDLwKpne2QKCv8IQ/YR5Gs3ApgGVAa+BNYDI+8JSJKUJYS4BvQE/nouvVV42qwAUoG2kiTl6NuOP0L+XR5jLyu4/9mAFdBHkqQYvT4/ILqCehQUKowSGX08LYEbkiTp7jVIkrREkqSfJEk6huzsTAZigPGltr0GFAOtn1dnFZ47nYFz9x4GAJIkFQNbgWZCCNvHKRBCjBJCBAohMoAiZIfEGqj7jPqsoPC0KGMf9VgAAyRJ+lOSpJ+QI4MvCSHql5K7jGIf/5UIISyBDsCWEs7z4/jH9rIU7fT6Ykro0wJ/VlCPgkKFURzox1MJSCnZIISor8/hSkJ2kAuRnZ06JeUkSSpCHp5ShuL/d3EE7hpoT0TOw3N41MZCiEHAduAG8khGG8AbOd3D/Kn2VEHh6VPGPurxkyRJU+LzHuT7wbuUXAqKffy34oDsQ8RVYJt/ZC8NUBl5tK40htoUFJ4qSgrH4zEH7r9dCyFsAF/kG/Rd5KGiPOThSUMOT3457Qr/G6Rh2AGoBEj67x/FGCBCkqRJ9xqEECbIDxoFhRedh+xjCdQlP0iSlCuE0CA7PCVR7OO/l3RAB7hXYJsntZd5yOmRpXFCThm5x13kNMnSGGpTUHiqKBHox5MG2Jf43A55gsR4SZK2SJLkry/JVF49U3se70Qp/DvIRx6aLskpoG3JBU70ecyjgUuSJGU/YlsAS+S0jZJMAIyfQn8VFJ41pe3jPVxLfhBCWCCnJZWOPir28V+KPm3DHxiv/32fhCe1l9GAm36S4D25mpRNazur1+dRQs4KGFSxo1FQqDiKA/14bgHVS3y+Zyjy7zUIIdojTyx8CCGEC7KDFPYM+6fw/LgOOAohZgghvIUQjZEn+WUAfkKIsUKIgcj5d3WAhY/ZFsAHqKcvZddDCPE+sESvU0HhRae0fbxHLyGEdYnPw5EjjEGl5Kqh2Md/M+8hR4XPCiEmCCG6CSGmCiHWlCP/pPZyJ/L1skUI0UcIMQ7YT9l0oVXIc0Z8hRCjhRBDkUeIc5/WASoolIfiQD+eM4Cn3hkGOAdogJ+FEL2FEFOAbUC8gW1bIRuBgOfSU4VnzXrk3/pz4DzwpyRJCUBH5Amj65DLeTkiT6DyedS2+vafkWefj9a3DUCOnmQ+64NRUHgKlLaP98hFLk02UAgxDfge2CtJ0vVScq30OhT+hUiSdAF5ImEssAa5XOdcysmLflJ7qZ9kOAI5PWQf8D5yymRYKX0pyJVgUoDfkK8zH+DXp3WMCgrlISRJWS7+UQghTJGHHd+RJGmTvq0vcvmemkA4MB/5Bk+RJGlEiW2/AZpIktTtuXdcQUFB4RlTjn2MQq6Bn41c19wauebzDEmSMkps2xwIBmroF55SUFBQ+NegONBPgN4RriVJ0oAKbGOMnMc1X5Kkzc+scwoKCgr/Rf4T+6jfbhngLUlSz2fTMwUFBYVnxwuTwiGEiCqxzHHJv79KyLwhhIjUL9kZLIToVI6O0u2LhRBX/0H3vgK6CiHqPFbyASORhzG3/YP9KigoKLzoVNg+6id6TUNegVNBQUHhX8cL40Aj1wetXOKvBXL+8A4AIcRo4BvkHNLmyHnFh4UQnqX05AHLn2bHJEmKA6ZStgTToxDAVH0taAUFBYX/Sf5D++gJLJEk6eQz6ZSCgoLCM+aFTeEQQixEnoxQRZKkHCFEIHBFkqRpJWTCgV2SJH2g/xyFPFN3OjBOkqQ9+vbFwAhJkho936NQUFBQUFBQUFD4X+NFikDfRwghkCMam/XOsynykrG+pUR9gfal2u7NBl4mhFAWilFQUFBQUFBQUHiqvKgOZi/k2qLr9Z+dkReWKL08ZxJgaALKMuBV/d8Pj9uZEGI6ctQaB0enlulpqY/ZQkFBQeGFJFqSpGrPSnk1LzcpOkb9eEEFBQWFF4+nah9fVAd6GnBBkqSQUu2l802EgTYkSUrXz/D+WAix6XE7kyTpJ+AnACGElFpgOK1ly45dzH99Mr8fOk7jFq0eqdPZVBhsdzQprxOxj+vmA3S3yzSdPBnCrxsOsmPXaSwtzCgoKKKgsBBrKwvMzExYtGA8336/l5VfvsawEYt5bfoABg1ox+z31nHCbyWjxy6lbx9vbKxU7Nx9hu2b59KtzyJWf/UqW3ecxsrShEH9WzF73kZOHF7M6Fe+ZvCAVhTkF+Jz9DLbf5tFt/5LWL18IhkaHaNGdC7bb5OyGTRpRR5l5YAYTb7B9ltXr7BlnVyjv/fwkXy98H1+3O/Dh69PwbtzVwDOHvdj2fpNLJ35OuNmvM3hXdsB6PvSKL5a8B47T53HwtKyjO76NgYW/9P5A6BWp3Po0FkO/HmGY8eD6dixDaNGDmDIkN7Y25e3CKUeKbqc9nLS43UF5cgXl20rNrSKcjmyAIWl1yF4hI7y2g30TyrSGu5GUaHB9i/WPlhP48ipWLau6UXPsQdYtagdW/+MAGDUwFq891kAvr/3Zdw7J+ndSV4x2PfveLas7sqsxf5MHl6DHYdjABjZ15P3vwrh8Lo2vPLBRXq2l0sTHw1IZvPKTvSZepyv5jVnxyFZflQ/T37ddZtVC1swYe5ZenWQVxj2O5PIjh8H0330HlYt7sy2/XLp2dGje/Duwl347ZtFzyGrycjIRRgJalV3Ytv6CfQc9gOrPx/K1t0XARg/ujVvz9vFiQNvM3rKRvr2qA+A/9lwfvl2FN2G/MDqzwezdXcI1Tzs+fh9A7GA8n5HYeBaFaYIp3e9DG/wdIiOUSPlHTD43abNvkyc9j07N7/Lmh8O07dXcwAuhtxhzcqpdOu3mNVfTmLrjjPY21uy6svJT7zf1d8don69qsx+/1dO+Cxl9IQV9/X7+F1i+6b36Nb3Q1Z/NRW/Y5dISclmzMgO9+1Vv6Gf4uxky7UbcSSpM6hbuwo3bsXj4myDtY0llSs58vYbg1m8dDPJKVm08a5Lp47yWkc+vkFs37KAbr3e57uvJ7Ppj9MAD+mfOecHmjeRp+P4HL3K9o2vMXjMtyxdMIitu+RrfcxLLZm9YDcnDs5l9OQf6duz0UPyr72zjTem92HrjjMP6b9+ycCaJGYtDZ6nsJyqBtvzCsveh5mZmUzs3Zkf9/vwwasTaNe9FwAOjk6MmPRqGfmqVoZW1pbJSE/nqM9hfA4e4JivD/WataD3kJfoNnAIjs4PSoRrDPQDoLC47HVuJAw/QyuCsZHhQfbyUletTMo+oFXl6DA3IAtQx6qcfhcdK9tWnq2viE0uzi7bBpBfOt6o32Ve2YU/jVSGf1up2PAzSlhWMbxPcw90Oh37DwazbOUBsrPzmDerO2NHemNqWsrdLDLc70VL9hKfqGHMkLrMXnySEztHMm3OYdq2kO3zkdOxbP22Jz3H/cmqRW3444DsD40aUIP3Pg/Eb1M/YuM1tGrs/LBiITCtu+Gp2scXLgdaCOGKXIT9TUmSfta3mQI5wMuSJO0sIfs90EiSpC76z1HAd5IkrRBCmCOvkrUeOXr9RDnQJR3onJwcAs/4c+r4MU4fP0pERDgt2nbg7QUf09S7zSP1PG8HGkAqzketzqCoqJiw8DiaN6uFlZU52Zp8HB1tuXs3lQ8WriczK4dNG+dhZWWBWp2Bm5sDaWlZ2NhYQrGW7Ow8HB1tSEpKx9XVHq02D3QFWFmZo1Zn4uZmT1paNjbW8k0ny1uTlJSBq6sdhZIFpqYGDvQpONDFOh25WtlZs7CyIi1ZjZOrG5npaVha2wCQo8nGzsGRrNQUHF1cy8i7VTI816mkAy1JElevXuXPA2v482AAN25E07NHSwYN7MCgQR1wdGpsUIdBFAe6DBptPqYm8oMpW1uIo705Sck5uDqaoc2Rz4uVpQp1ai4uDirSMvKxsTIpIW9GQlwqrk5maHP18hYq1Gn5uNhIpGUWYGOl0ssX4eLqQFJKXhn5pNRc3JzMScvMx8ZSrz+nkMpeXnJ/nC3Q5sjHoHJowJofT/Djhr+p5GrLB3P60rt7AzSZ6Tg6WpGkzsbVxRqtVj4/VtaWqJOzcXO1JS1di421uaw/KxNHh4fljYQOS0sDD7GKO9BIkvTPPY9yEEJI9xzovLwCzp67ybETVzh28jKhV6No0awGHy8YSfOm1bGxkRdtzcrKxcnJ5r590GrzEEJgZWX+xPvNyy/GzMzkYfuj15+dnau3V3r9GvlaLGOv9PJ3IpPIzs7Fwd6aGjXc0ObJ16GlpRlvvP09t8Lj2b39Q9keAtnZOTg62sr20NFYtoel9avjsLHR/7737GGiGlcXW7TafL28mXw9VHIhLU1TVj4NXF3syuqv5FT2hDwFB7pIpyNVnVTGflJcbDDAUNKBliSJiLAwjvz1J0f++pMrIZfo2LkrfQYOot+gIeRaGg4qKA50Kf6HHOjCwmL+OBDD8q//xNranA/mDGbIwJYY6bIM968cBzonIx6dTsLK0gR1Sg5uLlYkJ6aWsv/mJKXk4GxvXOp5kYebswWF+cWYmJT63WQH+qnaxxcxB3oS8jLZ98u/SZJUgFxwv1cp2V6Us8qfJEl5wEfIExFLr5L1WCRJolW9mowY0Ic9O7by2tvvcC46mfV7Dz3Wef5v8fXq3ahUxoybuBwLCzM+/2Ibs979gTVr91HZYxTtO83k4KFAenZvwd79Zxg9dikqlRFde7xLWFgcCz/8lZWr9xMWHk/XXgswMVExevyXbNvxN7v2nmP0hK9RqYzp2ucjwiLu8unyPSxcvI2wiAS69v1Eln9lNSGX7zyzY9z643cc2buTI3t3Mn/qeIxVKqYP7k10RDhrP/uYtZ99TExEONMH90alMmHu5LEc3rODw3t2MHfyWIxVKg7v3lFGr06nIyEhAR8fH9566y2qV6/O4MGDSUxMY8niqSTd3c+unZ8ycWI/HB1tn9nx/X8hMTmHRSvOs2jFecIiM+g+Zj8mJkZMfu8E2w9GsP1gBC/PPIrK2Ihx75wgPCqTD1cF8+GqYMKjMuk5/jAmKsH4uWfZeTiWnYdjGT/3LCpjwfh5QUTEaFn8/U0Wf3+TiBgtw986jYmJYPx7Aew4HMOOwzGMfy8AlZGg95QThEdp+HhNKB+vCSU8SsOEWUcwMTFizBuH+XX7dSa964djtTkcP30LW1tzVn4+gtNnwlm0dD8Rkal0HfQ9JiZGjJ7yO9v2XGLbnku8u3CPfL8M/JawCDULlx5k4dKDhN9OoevgdZiYGDN66ma27Q3B92T4f/snqTAt282me99FrN/oy8Tx3Vn3zXT2bnufpV/sIiziLgsXb2Xh4q1E3Emka5+P5OOd8DXbdp5h/8ELFdrXaf/rjB6/QrZXvRcRFp7Awo+3sPDjLYSFJ9C19yJZ//gV7D1wnm07z5SxVyu/OcDCxVtJz9Dy3oLfcXCwYuio5cxb8CuDhi3G3nUk/gHXKCgoIjwigYUfbmThhxtle9hzLiYmxsyZ/xvbdp4poz/ijpqFS/aycMlewiKS6Nr/S1QqY0ZP/oVte4LZtieY0ZN/QaUyYvKMXwmLSCojb6J6cH5K6i8qKucl6h9yNy7mvv2MKWE/M1LLvmRLkkRSYiKnjh9j0dx3ad2wDsP69iDydgRvz3mfm3FJbNl7gFemTsPF1fWZ9FfhxUSrLWDNz2eo5f0Vm7b6s2bFRAJPLmHYYG+Mynn5eBSHj0eybf8tRr/+FypjI7qO2EF4VCaLVl5g0coLhEVm0n3sAUxURrz3+Xl2/BXJjr8iGfvOSVTGgp7jD6PNNfyi9rR5oSLQ+smDt4BTJatt6L8bDWwC3kBe+vV15ImGDSVJDvGVjEDrPxsBIUBt4HZFI9DpaWmc8PPFz+cQx319sHN0pnPvvnTu3Y9W7TthamZWrp5nGYEuzL/F8eMX6dmzJefOXcfLSx7aSEtJpVGjaoRcvo2Liz2Dhn5EZFQi7ds1xMrKnAXzX+bq1WiaNa2BubkpRUU66tXzICTkNvXre6JWZ4AuF1cXO27cjKNZ0+rcvBWHq4s96PJRJ2dRr647IZejqF/PHbU6HaCEfDVu3krAq0Z1w9GlpxCBvuB/Ghs7OboRceMqvYaOZM9vvzB47CtkpCYD4ODsSmTYTeo2bExoUCB2Do5IkkRy4l1MTE25c/M6WenpJMTGkBAbTXx0NEkJcdjb2VG3bl369evHoEGDaNiwIUIqZ5VhUYGRoKcUgQ4MvEarlrU5eiyE9u3qEx2jxkjKx6OqMwHnbtGze2POnQ/Hy8MFKCY6Jpm2retw9PgV2retS3RMMqI4A8+qjgScv0PPrvU4dyESrypyZC46Lp22rbw4eiqc9t5exMQmIukkvDzsCTgfS88uNTgXFIeXu6VePpO2Ld05ejqSds0diY6TIw1eVW0JCEqgZydPzgfFU7WKtSwfn03b5m4c9Y+jZWNHgkPlB3WzBs7s/Os208c2YPufYTSpK0fcQm+lMWpATdZvu8qw3tUIuSlHTprVc2SXTxRThlRh55F4GtWWr4er4ZmM7FOVX3eGMaR7Za7ckldDb1LXjv2nUpj6Uk12HomhUW17vXwGI3q788uuSIb39uDKTXmRvCb17DkUkEW/7tV4c+FJ/C8k0MG7Mh07NuO9mb34ccPfjBrakpDQWH3/HdmxP5TXJrVl+97LNGkgj3BcC1MzYnAzftwYwKihzQkJlVc3btbQWZaf2Ibt+y7TpH5ljI0gIyuXtq08OXoqgvbeXkTHpePqZIGri3XZi8FgBNoE4TTnuUWgMzO1HD1+mcNHgjl0JBgzUxUD+ragTq3KjBvTCY0+8urqYsuNm/F6+xCPq4sdRkYCR0ebJ95vVnY+cfGpevsTSf16VVGr5d/X1bWkvYrH1Vk+X+rkzIftVXLW/f4EBd/mo6XbCbp4m7Zt6tGxQ0MaNvBiyKA2hF6Npn59rxL67blxM4ZmTWty6/otXJxty+j3qqIiOER/PTT2YMfeIF6b1Ibtey7SpKEcrbtyLYHRw1vw65YLDBvY4sH1o5ef8foQboUl4Opi95B+YaRClI7GlhOBvqmpwpnjfjRv056EGNnuVPH0okiSMLeweEg2W6MhOzODiOtX8ahek1R1IslJiRTk5qFOiCchNpqE2GjuxsaQGBeLtbU1NWrVpnuvPvQZOIgmzZqX7Zee8uy3EoEuxb84Ap2SquW79QGs3XCOTm2rMX9mV7zbl67pABRllG2DciPQGeoYiool1Ck51KvlSMg1NXU8zFCnyiMzrk4W3IhIp1kDZ25GqHF2kK9rdVoe9WrYcflGKk3qOGBsXDoCDaZ1Nz5V+/iiOdDdgONAG0mSzhv4/g3kJbMrA1eB2ZIknS7xfRQlHGh9Wz/gEHDtSR1oQ+dEp9NxPDCYYz6H8fM5xM3r16hZqzY1atWmQZ1a1K5dm6ZNm9K8uZyXl1bOC1BKOfnVxTpd2X2W89vcDruJu1d1fv9uNUPHT+T6pWAAuvTsg6mZGYWFhUwZ1JtGLVvx3pIv2LvlN4a8PIEN367kpQlTuHopiGqVXGjp3bqMbkdVOY68obSR8oaXjQ2vp2BoeLG8F42kPMO6U9PSuBQoDzo0bNaCfVt+Y8Kb7+BpbYaJ3qCF37rFlo2/snPL7+h0OoyMjBBCYGpqioeHB3ZVPKji4UUVD0+qeFajiqcnlat6Ymlg2LI86lsnGP4iP7hsW2E5k1J1hh8y5RnPZHU6v2wJYs4bHflt20W8m1dFFGVwPiSJiSMbsPLHYKaMaUTQ5USMhI5mDZzZsOMG705rxm+7buLd1A2puIALl5N5ZXgdVv1yhUkj63LhYhwg0aKhE7/tuc07k+qzaf8dWtazRpIg+Fo64wd68s3mcF4ZUo3LN1MpKpJo0cCe3w/EMGt8TTYfiKJlfdkxDb6RybgB7ny7JZJxfVy5dEt2XFrUs2XTXwm8PcaTPUcTqV9ddnQu3sxibN9KrNkey/huzlwK1wDQvI41m33VzOjhwLbTaTSvKf8+l27nMKazE78dimdQC1tComXD2szLnD/OZDK9sRE7LufRzF2+HkLiC3llcj2+23uX8b1cH+ivbc2hm4JXR9Zm0/7btGok58z9dTKW6KRitu2/xbjh9ejQqgquzpY0r2vLhl03eXdqE37fE0arJnKk7cq1BEb2rcbqjdeZOLwWwVfl37tlI0f9+WzwkP6QcC3jh9Xh6/WXmTyyHkGhyZiaW9K8sRu/bg1lzuve/LbjKt7NKuPm5kgl1yd0oE1dEPZvPHsHuuBImXZJkrhy5Q6HfC5w+MgFLl6KoGaNytSu5U7tWu7UqlWFRg2r0dq7brlOFwBG5efZPjHGXQ2364MUOp2Ol0a8hqODPT/88DkmpjWeXHfxSYPN+3cdoJqXPNB5IfgOE8d14ps1e3hlTGuCLsk5962ae/Lr5nPMeWcwv205g3fL6nr5SCaO60BkjIY6tQ3klho6JyrDLx/f7NHSsmNnDm3fQv1mspN9IySYz9554/55j4yMZOPGjWzY8AN5eQUYG8v2UaUypqq7C45VG+Pu5SXbSE8v3PX/zUo54AD5RYYdrLxy2iuCucrwFC1LU8PXSB3zU2Uby3NQK0KBgbQ3AF2u4fZyU9/KsfeGKDTsdBpKldPlG+5HcYHh9qKczDJtJlYOBmVN7MqOJkTHZrJy/TU27wjmpUFNeO+tbtSt7Vpuv3W5hp9/usI8g+2Isi8swkDbo5Cksv6UMDZBVX3tU7WPL9QkQkmSTiBPDCzv+7XA2kd8X81A2+FH6XxSjIyMaNHKmxatvJm76COyMjOJCA/jTng4iVERHDt2jI8++ohu3bqxatUqsHH8p7ssl+TEuzg4ORNwzBfvjp0J8pffIbzbdcTUzIzP5s7C0tqa95Z8gbGxMWdPHKPnwKH87XeE1p26Evj3SbR16xh0oF90UpPVBOuP187egYBjvrw0cSrFFipytFrenjaFoMCzjBr3CidOnKBevXpldFzL+neubRMVm47P8XCmv+KN70l5op2pUS6+p6IZ3q8WPiej6NquKifPxuFgq8LW2pQjp6KZNrYhfn/LzoNK6DjqH8ewPtU4cjqOzm0qc+5yMgX5OhzszPA9c5epI2txLCARc2MXcvN1HDunZkj3KvgFqOnc0oWgqxlka4twtDPlaEAyU4Z5cTwwlXu32bHAFAZ3dcPvXAqdmtrif0k2qg62JhwNTGPSYHeCb2aTmy8bueNB6Qzq7MKx82l0bGCDf6jscDvYmHA0KJ3x7e04ceVBHt2JK1kMbG3Pleh8mngWEnBLfmA5WBlz/JqGsXVtOBXx4GF1KiKf4TnFHAvOoGNj2xL6VVy8lkN2/2ocPXMXgDPBanYcimb2tBY0b+TC1DGN2HM4guvhadhZVuXI6VimjamPn3/cff0h11Lo28kdX/8EOrd24/QFOfLj7GiGr38CU0fWvq8fICAknSG9q3PkVCxd2lbh1LkEbG2tsLM1x+dEJNPHN8X3VBQALZqaGHagXzCEEDRtWpOmTWvywbwxZGfnEB4RT3h4POERCfztf5VlX26jSaMarF3zFpUqPTv7+DgWL15FcnIq27Z+d/+l+59y7kIEySlyRM33WCjDB3tz/O9wOratwUl/+V51dLDE59gNpk/tje/xa/e39T1+jeGDW5KkzjTsQFeAqPCb1GvWnMCTD6KdgSePIc2aQU5ODm+88QaHDh1i7Nix/LnvM5o2rVVGR1heF4O6DQV5FP5/sevgLWbM82XK+LZcC5hH5Ur/v9MZX6gI9ItAeRFoKD+qfC8tQ6PRsGDBAnbv3s3yb9fSf/CQMrJPIwJdXGLyR0ZaKlY28kVsplKxZ9MGfvv+G3acOHs/1UGSJFLVapzd3EhPTcXa1hYXMyNUBt7wX/QIdFp6OqbmcnrIvcmCqeokTDUZTBw9nF79BvDJF19hampabrpMeQ50RYYM/xsR6PS0TBzsLUhSa3B1sZInqxWkYmVlen+yRcSIz64AACAASURBVGpaLrY2puiKCh6enKefDKcrLLg/Oc/N2ZLU9DysTAoAcX9yXlJKLq5O5mRnZAMCKwtj1Gn5uDmZk5qRj40FIMR9JzopNR8XOyO0ufJvJssX4OZkRnJyNrb3JvPlFONoa4I6rQBnW+OH5JPTC3F1NCU1SYuNpSyvyS3GwcaEu9FZuNip0OodbiszI5Izi3A2KiRNU4yNuRyd0OTrcLAy5m54Gs7WRuTo7zVLU0F2DXdcHUxJyyrExtL4vn73pvVISsnF0c6U974Ixu9MAnvXdsO1apWHzidARmrG/ckrrk4W9yevmBvn35+8kpqRj63Vg8mIjnYPzuc9eVsnB9Qpubi5yOff1toEY3MbsjUFODpYkJSsxdXZEm1OIaZmVpiaGkrXeLEi0E9Cfn4BSz7dwvoNPqxcPp1xY7uXjUY/4wj0zp0HeW/uZ5wPPICbm35qjDCcRmaQciLQUm78w5MF1Vm4ORaRmqbF9t5kQU2ePHk0VYera+nJhVnlTm6uSAT6XHpb0tRJOJSaPO2YHs/IkSNp3rw569atk0fbyjmWijjQSgTaAP+DEWhJkli6KoD1W66wf+NwmrdqalBeiUAr/MdYW1vz7bffMmLECCZPncq+ndsZ/NJIrKyssLSywsrKGmHnhFsV93+0n6SEeF4f3p/1B3x5f8p42vfoDYB3uw7s37YZO0dH4mOiqNdYvsgDThzls7nv8Puh48yeOIZOvfpQr0Z1ho8e84+P+Xmzed23mOgNaMAxX5b/spmXu7ZFV1TIZytWM3LsuP9yD58d42fs4NdvXqLbsPWs/nQAW/dcwcEG+nStdr/cz+gZf9G3azWsLY3Y9VcEW7/rS48xe/n6405sOxCGtbkx/bt58N5n5/DbMoCxM4/Tv0slCgt1+J65y+YVHegz+RhfzW/JyYA4klLzGdmnKvNWhnL4p468Mv8Cg7u6kZNfzNGAZH5b1pL+rwfwxax67PKTo6wjeldm3qobHFrbhkVrIqhbTU69OBqYxsZPGjFg5kW+nFmbHX5ypHZ4d1cWfB/BwVXNmPFVOB0ayy9+R4PS2fBBXd5cG8UbA9zYHSDn7g1v78jC3+PYO7sq036Kp3tDOUJ7/JqGn6e78+buDN7oaM2+UPkBMqSRBau33mLTwrpMWR5Oj5Zyqsmx4Ay2rvWkxytHsbVWkZCUS2dvV6ITtCz8xo+fv+p1/3wCHD52m61r5PJJKxe1Z7u+3N6Y/h7M/iwI3409GT/nb3p3lKOIYVFZfDq7Ob0nHWXFBy3Z8VcUAC8Pa8C7S89w9I/BvPy2H326eGBlbcXew+Fs/3Ew3V7axuol3dm67wZD+jZgaP+yoyj/RszMTPls6WSGD+vI5FdXsn3nKSZP7I2VlTnW1hZYWZrj4ORwf07Hs2DLH/twdLTnzp2YBw70U+B80G1++EWO+o4Z0Y7Z8zZx4sAMRk/57X75Qp9jN9j+6yTenLuX6VO6snVnoF6+NbPnb+PS2S8xM/tnEXGtJps3h/fnnaVf4rdXLlhV2cOLvb/+wJIlS5gxY8ajU2gUFEqRk1PI5NmHiI7LIvDQBCq7vfgjYs8LJQJdin8SgS5JXGYOq5cv4/rVUHJytORotaSlphITHcWlpOwyQ4cViUAXFBYSeOo47br1JDToPO7V5Fw6K3MLLK2t2fDtSr5btoTghAxMzczIz8vjwpnTdOjei8sXAvGoVoNK1mbY2duXPZYXPAIddusmNra2SJLEmaO+hAQG4O/nw+6DPjRs0uQh2X97BDo7Ow9jYyMsLEwQQnAh+A6tmrnjdzKCLu2rExWbjijMwNPdltOBcfTq7EXgxbvU8LJHV1TAnZgs2jR3w+/vWLq0cScqLgtdYQFeVa35+3wiPTu6ExiixstNfo+OjNPQuokTRwMS6eztSlRUGpIk4VnZEv+LKfRo68qF0HSqVTFDAqLic/BuZM+xwGQ6NrUj+q7ssHpWsuDMpTS6t3HmwuUUvCrLEbjIhFy8G9hy/EIaHRrbEZMoRyA83Mw4cyWT7q0cuBCSTrVK8uTcqLv5tKpnzYkzatrWsyYmWY4meTibcvaGhs7VjAmOzMPLWf6ho1MKaVndnJMBalp7mRGbIV9DVe2MuWTqQNdmdgTd0lCtktyfqMQ83BvUoM+Uo/Tv6s7rY+ugMjbCq4o1F8IK6d7B4/75BAgPT6RNM1f8/OPo0roKUfHykH1VJ8HfwWp6tq/M+SspVK8qRwejEzS0auTE0YC7dPZ2Iypezr2uUaMSp8/fpVenqgSGJFHDwxZjM2vuxGTSpkVl/E5F0aWdB1GxmTg5OeDsZCA3/18YgS5JQUEhK77exYWgMLQ5eWi1eWRkaLh+I4aUpH04OT2mtvqjeEQEuri4mPXrt/L6jAUkq0NwdnZ8KhHogqwYIqPkBWa8PJ05feYmvTpVITAoihrV5Nz3O1EptGlVjRMB8XRoW4uo6JQS8rfo3auclLoKRKDPprXh/MnjNG/fkfMnj3H8z70E/X2KHX9soWvXrk90LP+WCLRWo0EIgYWlJUIIJQJduhtPIQKtzrFg6OS91K3pyPqVfTE31/8mZuW85CoRaIXSJCUlcebMGSLi7pKYkECyOolBw16iZ99+5W5jaWnJgk+WPtS27ptVHPbxQVdczJ7tW6jTUK4lHHYtlL7DR7Fjw8/0HjKcm6GXAajTqAl+B/YwctI0Du/eTu0G8hzI61dC6DNsJKs+/oDhE6Zw+sghAAaNGIOpqSnCyIjeQ166XyUkNvIObbt058aVEGo3aERaSjJ5Kol/8Ih6JHfuRHPz5m2aNm3A7t2HmD59LNu2/Yldna5Iko6wa6EMGDGG7b/+xMujRlK5ypPl/UmSRFZ6GlvWfYu/nw9CGOHdqQvbTp+nvuc/yx38T7l9O4pLl66RkJAk/8XdoLhYx9RJPejWpbHBaI9OpyPoYhTWlgK/Ezd5bXIntu0OonFDd5JTsvlj5znCb6dw8XI8RsaCgvxizMyMMTc3AUki+tJ7rPjeH+8W7lCYxc6D4cya2px5n53m1Zcbc/DobYyNdLRpVon5ywL4cKY3K366eH8S4W6fSGZOasj85eeZOqouh05FI4B2LVxZsDKEhTMaserXG7Sqb4VOEuw9Gs+bL9dk0TfXmDjMC98ANUXFEu2bObDo2+t88GodVm+OoFUD2dHcdyyRN0Z7sei7W7zSz5XDAfIDqF1jez5cF8H8SdX5cU8sDWvKTsC+k2pmjKjKRz/eYUIPJ44EypHmNg1t+ejXKOb0d+K7P5NoXtMKgAPn0nmtnyvLd8Uyso0dvldkx7RtLQs+2a1mVksV685oaOYuP2gPXsvl7dc9+HhDNBN6u3LkvKzf2Fgw7MNDfDKrKZqcIu4myQ+cPUdimPNmx4fOJ0C7Jo7M/+IcH85sycqfL9OqqRzB3H/4Lq+9XIcPVlxiyshaHDop50e3b+7CBysuseiNxnz963W8G8vVRQ6cCOGtSU2Yv+wsU8fU5+DxaEzNzGnXqirzlp7io3fbs2LdebybVSY5vZgIvzTGDG3ET5uCeWlgfS5fS8JYpaJRPVd2H7zO9Akt2bbvKo2a1H2KV/aTk56ezanTodxNTCUhIY3EpDR692zJiJc6lRvtNDU1YcH8lx9q+32TH1u2nfxnzvNjMDY2RqVS0bt3Z9l5fkr8/sdpPD3k62HXvkBmvdGXjz7fwbxZvUhOla/PRvWrEBIaR5eOdbkZloizkxzJux2ppnuX+mzfHUDHdvW4fEWuntG0iRe79wUy/dV+bNvpT+OGcuWf0GvRjHm5Lz/9fIiXhnfi8pXbevmaHNi9EXVCPF/Ne4f83Fw69R3A4rXryzrPz4nEuFhuhlwkOekuKYmJpCYlkpebQ79RY2nXo7fBMmeSJBEWehl7Wzs8a9Z66BpKS1az//BBDu3eQWiwXGcgPy8PcwsLrK1M5XKksbswMVFcm39KUGgKo2ad4s1JzZn3Vpv/6siFRlvIrTuyc371VhqjB9Xk5603GN6vOpevy/a8aX0n9vjcYdrL9dl75A61q+urM91KZ/TAGqzffuOp90u5yp6AyZMno9VqadiwIVWqVKFalSZ88M5b7G3dmtWrV5Pm6FZmm7u5D7+BB546waqvljPujVmkazRcvxqKhZ3scFy/Gkq7vgMJDQmmReduREbKBtGhSlVCL12k10gtN65dxcJefktMS1ZjJAQZqakgoCBffrPV6XQU63Rs/uE75i1beT9i0L9VQwAatG8hd8btEeWjyhuQMKpZtq2cyE1m6ndE3b5BTc8CLl30pyi3MdevBtDDJYfiYh1pYVeoLuyIv3oQ00FOOBqVjUzbE0dkVDLRMSlkZOZw6XIUO/YGUlBQyKhhbZj/x6s0b+qlv6lPQKGBiHU5L/wNK/Iym1dOpDmviJNnIhn56g46t/WiSiUbKrvZUK+DO1ptPm/OWouFuQlz3uzGqJfaYmJiTMRtNZu2B/L71nOYm5uQkZFDZnYuJ/3DUSdnk5mdR3RMGrWr27FoVhv2+VixcGYb/E5HU1BYTEGOls/XXaEoPZI09V3y0iSkvCxSElLQ3rXmbmwS2iRrMpNSMDcqQhubzd3ou2iir5MSl4DGOQdRWExqbCba2yoSoxPJiTYmJzaNYp1Erk0OiZFqcm5GkBqdRJ6JGYXFEql3csi5IpF4W03udR054VnkFUIO6SSGpaMNgvTINLQqOfKSdieX3MsSSbdTyfHPJCtSjgJpM9UkXstBeywXTaiW7ES57GBKXBHZlpncDdWSpEkiMUm+bpNuGxF7rZj4wiTib0hUjpMNeHyKRHx+MjmJxmjDC8mOle81raQlKTYfqZ4lmVlFFOj9sMysIoo1+aSk5qPLKSRXU8i5mxpOXMmiT0tbRjWW+GpnEhobuf+pMdnkJsdxNz6F3NQEslLkfuZnFpGUlE5+RiJpKWnkZsj9ydNqKNSkkazOpFCTjjZLnqRYnG9Fcko2RXkaMjK05OXIVQw02TkUarO5E5WG34nbnLucTNN6juTXMSMpMZWCzCTSktPJzTSlSJNK6OVEBre3IDgonG7NTYm4mYiZqQnuNhqCg8LJ7etI6OUIHM00Fbiwnx6z3l1HWHg8zZrVpkplJ5o2rcPiTzfz+5bjfL9mFp6eZe0j4uFHT2DgNT5aspl1a5cbtjXllYI06li2Tb96aHl8u+ZHXp8+5IFOQ7oN6X0Eubl5FOkjapmZWpAKydQaYe3oiXUJP725oycYmdKw8YPFUdz07/7qlFw0uRJRcbKjULO2J5euxFJUkMf161G4OskvkNevR1GYcoHTJ05hZ6rmzPko7iZmE3Y7hbR0LeNfasDONe1p06IKRkYCOIku+q+yh2hr4DwDdUzKGYU0NlC21aycZ4nKhuDgW7w2cC7t2jbE3d2F2pWd6NKoMsXFOtZ+NZ9fPp3Du++MZPy4XpibmxIbq2bTZl9+3+xLUVExhYVF5Obm06FdQ5o1rYl/wFUuBIXRr3czPnizA317T8fcXHaac3Ly8fe/zOhJ36MqTIAivbNXwRJqhkqLSgXpBkV1hYYfMFLRk0e9i3IN96M83YWpZUvQ6TSGI7kmVQwswAMYmZRffvceOw5FMvvTQNYtbc/gHp4UZSU/rMOsvH6X7Ut5EXLKKQ9oZGyKTicRk6DhekQGicm5tG7qTGKSbJ+vhaVQkOvOpatqerRzITJajnBXq2LKpatJ5Od4cTsyDf3UA67fSqageyUuhsY/9rgripLCUYrSKRySJOHk5MSFCxeoWfOBwcnJyWHJkiX8+uuvLPp0GeMmTXnoDe2eA52bk8OqxQs49uc+PlnzIy27dOfscT9atO/E3Vi5vFFlD08uBwbg3bkbV4Mv4O5VDYCYqDs0bOFN4IljNG/fkcQ4Wb5GjVoEnzlN++69uBJ0nqr6FA4zE1PsHR05sHUzyxe8x+SZ7zJ55hwa2VdgYk5FVkQsx4HOydiLRpPHnchE2rSui6/fRbp0bkxMjBpJAi8vV06dDqV3rxYEXYqhbl0Prl+P5tr1SK6E3uHSpQguXwnHztaSmtVdcbC3olZNN0YOa0Or5l7lvAk/m8UGynOgT/qHM2zSNnb8PIpeXUs8iEzklxydTsdhvxus+O4YEZGpeFZ1IOJOMi+P8Gbiy21p1sSD1NRMsrLzWPeLP0VFxdSp5UrHtjWpXSmbU+fi6d3F66EUgjfn+ZCbX8TUkXXo2aEK0fFairRpeFSywP9iGj3aOnPhagbV3C3R5eYQlZBLqwa2HLuQTsemdsQm5aPLK8TTzZwzoZl0b2FP0E0Nnrby+YxKyqdVbSuOX86iQwMbYqIykQAPJxMCbuXQraEVwXdy8bAGBESnFNGymhknbuTQoZ4VcanyNV/VSUVAeC7d6lty4UIyHvaysxSdXkwLdxWn7hTg7SyIz5bvM3dbI87FFdLFywT/axqq2siGNU4j0cRJ8Hd0IS1cjLirHxmtbAnByRL9WlhzKbEYTztZPiZTR/NKxpxN1NHaXUV8lu6+/hBLR7o2tiXgpoY/TqQSeEvLoperMLSTE8dDsujQ0IbYZPmh5eFixsV0C7q1ceVCaBrVqsqOS2RMJt6N7Dl6LplOLZyI0aeseLia4H8pjR5tHpx/gNjkIlo2sOfo2WQ6tXTiz5N32e0bT2xSPjfvZOHiaIa7myXOjuacPp9Eneq2TB9TF1trE/p1qUp0ggYh6fCsYs3pC0n06vAgRUQYGRMZm03rpi746at/RMVn06T//ueewlGnwRQ2bXyfNm0fpFAVFBTy5VfbWP3tLj5cOIG33hyGsXGJtBO9A11QUMiSpRtZ/8tBvvv2HUaMnGR4x0/Rgd637zSvv7GSqVMG8PFHkw2vmlqeA11eCkdmBJFRspPh5enMKf+b9O7V2rCtKmeipIQRgedvUaO6PDx+z34eOHAaJ0db/g64ya2wBCKj1Vy8dBtbG3PcXKyp5GqDh7sdLZq4M+3lWnqn+WF0+WWH/stzoDFxNtxuZMDxKieVJPhyAn36zWHd93MYObJbiYOUbYQkSRw/fpGVq3Zy8VIY9ep6Eno1klEju/LK+N60bdsAIRUSG6vmTMB1Ll6KoLV3Xfr388bS1HAu5afLtuJ3/CoHd757f9VJxYEuiyEH+l4KR3Gxjo9WX2LHX3fYtbYHTesZHqUxMitb0lDu93/uQF+5mc73W25xPSKLGxEZ2NmY0qCWPY72Zvj5J1Ddw5r+XT2YMrI218Iy6NWxCuevqKnmLo/kRMZqaN3UGb8zCXRu5UJ0gnzNe+ntZ8/2blg02vq/Wwf6RcBQDvS0adM4fPgwy5YtY9y4cQ8NO4WEhDD51WlYWlry2tvv0Ktff8zMzLibW8TlC+dY+PpUGjZvwYKvvsXOwYG0jAwm9urEu599yZE98op4vYeN5I8fvmPxdz+x4NVXaNdDXnAxOOBvPvzmhzKTQgaPGcfyebP55U8/5k4eR4ee8iTCFm3a4d1Rzl+Lj4lm4YwpFBUWsmPz7w85/4/kKTjQ5/5excnTV/DxDWb75vl06z2f1Stew8c3iPQMDWNGduGtd9bRoL4HvkcvYWRkRP36njRsUI3GjWrQvFktmtWzxsnJgHEuL+/6OTvQHyw9zO87LpOcmoOrsxWe7nZ4uNvi4eHGqKHNad3ywUIrF68kkqjOpFe3BpiYPHAijp+8TsP6lek26BtWLxvB1l1BAIwb7M7MD088NCkQ4JBfOLbWJvieSeDjt5sRFpmFrXkxPdu6MG/1dQ6tbcvEhRfp1c4FK1Ux+04ms+HjhgycHcKyt2qx+5gaK1Po09qRBT9G8ufyRkxedou+zWwpLJY4FpLJL7NrMnjxLT6f7MHp4DSSs4oY1tqORdsS2Te3Gq/+GMeARpbkFkocv67lpymVGP5tPEtHurA3SI6ADmtlw4c7k9k7uyofb46ntrPsLJ28XcAPw+0YsTmdJV0s2XNTfkgMrmvKkpM5bB9py8wDWbRyk++vMwnFrOhoynz/fCbUMcYnVnaI+1Y1YsWVYraPtuWtw1q6eMkO0KnoQr7rZ8Vs3xxmtLZg/w29/nqmfBuq48vJngxaEkYVJ1OGtLXnzDUNv8ytxeCPbvL5FE92/62fpNjRkQ2nsvj+o5a8Mi+QXu1lh8bvTAK/LWtF/9cDWD6nITuPyNfGmD5uzFkhT5qcuCiEXm1lByQiNpdP3m5Av+n+tG7ixE6fOBrXsWXMwJr8sC2cY7/3uj/p0MhYsGnvHTyrWOF35i6/fdURP/8EXJ3M6dLajblfBD80SdHC3IT9R2PYsqorvSb6sPKD1uzzi+bn7WHP3YF+f/56ftvsx+KPJjHt1YGoVA+u8Vu3Ynhtxtdoc/KYM3sUgwe1x9LSHISK0NDbvDLpM6q6u/DzT+9TqZJT+QsUPUUHGiAxMZVp078kLj6ZTb8tolGjUrWgK+hAB54+xg+/yN/dmxR46sgnuLgYKPNVjgOdkZnL0JGf07d3C7Q5efz8iy+mpiri4lOpXs0FJLC3t2L4kNacPnWR39eOYvSrf9C3h5y643PsFoc2DcXSsuwLwfN2oJd/fYDvvt9DUlIazs52eHi44unhhkdVZwYP6kDXrs3uy167FknE7Xj69G6NuXmJc1Ne/nI5zm+qOon3Fm7j2KlrrPlqAkMGtlQcaAOU50CnpOcxYc4pJAk2reyCi6OBxdDu6XiKDrQkSfy8PYIl311hztQGtGtRifo17XGwe9DPjKx8Rr19gqg4Dclpebg5m3Nq6wAWfR1M7WryNej7dwKbv+5M70m+rF7ozR8H5BWRR/avxtwvgjmyoTteXfYqDvSzpLxJhGfPnuWdd95BkiRmzpzJkCFDsLGRf7jkvGK2b9nE9k2/cS30CoOHjwBzKw7u+IOFX31D76Ev3deTW1hIqjoJx1JlhtKS1Ti5upGZnoaVtaw3MysTOwfHMmWJnB0cHpK31Msb6xcLuYdOp2PzujX8vOJzLly4QPXq1R9/Ap6CA63L+4viYh3Z2bk4OtqQlJSOq6s9Wm0uIPAPuMbEKV/z5oyBDBrUmaZNa5bNhSsvdeIFcaDvGVqNJp8LIQkEXIjhzPlYzgbF0bdHfbb+MumBbDkPzIL8fExNVSSps3B1sXlQ1oq4+2Xp0tJzsbGWt09LTMLR3pwt+2/z7ueBTBlRm7njq2Jl+aBsXFpmATZWKoq1WrJzH5SNc3EwQZtbjJRbKJeNyyjE1cGU9OxCLPWrTWlydTjYqFBnFOJipyI7WQMIrMwEyVnFuNqpSNcUYykVghBo8uSyceqsIlztTdDmy/eNlZkgObsYV1sV6ohUrE31ZeYKJBwsjEjW6HAQxeToA0mWJpCSI+FiZURMjAYrE9m+aQvB3kyQmFGIo5lAX/UOC2NIy4eaNa3JyNOVkJewNzcivVDC2dLoIf3HJXve3xDH+G5OzBlaCSMjgSavGEdHs/vHq83Tl8kzNyLbzhVXJwv5fOrL6mVl59wv2+fqaHq/DJ+lqVTm/ANo8gUmKiNGv3uegkId33/YDHc3C+wc7e+XvUvLyMfGygSEIEtTSFS8hnGzT/P5ey3o3dEdpGKsLE3KyAsjY7mMYImygxptAU6tnm6EpTTlTSIMCbnN7Lk/kZKayTszX2L4sM44OMh2SZIkduw8wYaNPgSev8GQwR2oWtWNH3/az/JlM5g8uf+DSO1zcqDv9WvDhkPM+2Advj5f07x5icnPFXSgpZzIf1aWDkAYk5aWTejVKCZMWcWQgW14+82BWJlJVKni+LD+mFDcXG1IS8/Bxlp2NLI1+ThaG3amnrcDfa89NzefoKCbBJy9SkDAVQLOhtKsaS38jqwwvN1Dna6YA31v8t7Jv28wdso6hgxowboVQyum4/+pAx0aWczomScY0b86S99pgUr16DzHp+VAFxQUM3n+WcKjstjydUdqV7PFyNjw/ZGtKeB6RAYzl5xjVP/qzHm1ManpubL9hIfLsDqa3i8bKpdtzcPVyQzzhn88VftY8YXK/5/Srl07zp49y/vvv8/27dupWrUqY8aMYf/+/UiSxNhXJrHf7wQnz1/Cq3oNcjTZ7PYPesh5Bji04w9UJiYseHUCvnt34rt3JwtenYCxSsVrg/sQczuCtZ8tZu1ni4m9E8EbQ/tibGLCommvcHTfLo7u28WXH8zBWKViyoCeREWEs2bph6xZ+iE5modzII2MjHjlzVl06dKFCxcuPLdzdfrvqyz86DfCwuPp2mseJiYqRo9bxt79Z5k7fz3DR33K+h9ncfzkZYqKig1OJPk3sPjLE9jU+Jzuwzfy4RcnyMktZPrE9kyfZGA5UwNka/LoOmA1JibGjJ78C9v2BLNtTzCzPz6JytiIriN2EHYnnYXLz7Bw+RnCIrPoOOogOw9FUlCoQyfBgZOJvLLgEipjQd/XzxIRo+WTtbdYsyOW27E5DJh1CZVKMOmT6+w+rubAmVQmL7uFylgw4P1QIuLy+GrXXT7dGk/E3TwGfXwTE2PBlFV38LmUzd7zmbz6QzwqYxj8ZRS3k/JZ45fB53+mcltdyNDVcZgYC6b9cpe9QdnsDcrm1fV3URkJhnwdS1RaMV+c1PLFSS13Uot56fd0VMaw+GQOB27lc+BWPm/8pUVlBCN3ZBGdJfFNSBHfhBQRnS0xyS8fYwHvBxbjEyvhEyvxfmCx3HY0hzvpOlaczWPF2TzupOsYvTsblZFgxp9a9t/MZ9+NPPr8nsWc9bE4WRvTq7kdy3Ym8Nn2eCLu5vPWd5Hy8a68zR7/NPb4pzFl5W2MjIzo8+opIqKzWfz9/7F33mFR3dve/0xjBpihFxERBAWxo9h7NzGxpBmTaIwnMZ70anoxyUliqundxBK7SfTYFVFABZWioqIgvZeB6W3P7PePTVAD3HPOe5Nzz/verOfh0WdY/Oa39157rfVb5bvO8epn5ygqtzBjyTFUShkLn8tm6/4qtu6vDT3ANQAAIABJREFU4qn3z6NUypjx1yzp/n9xieVfXKK40sr0+zIoqbIQHqzmeJ6erfuquPf5YyiVcqbevZ/CMiMvfpjLXU+mM/LWXUy+ax8zJ0axbnsxm3eX8vfUSu58Iv0a/pc/ymPF12cpLDUwZcEeVEo5dzx+hK17O3Ey/w00aFAchw5+wFtv3MfuPVnExM1n7s0vsXlLKk6ni3m3TWLv7ne4kL+aQQN7Ul3dyMmsb1i8eOb/WHOSTCZj8eKZ3DR3PMczz/3jP/gv6PlXt7JxaxYbt2Yx7+4vUCoUzJn37r+0xouvrOPHjYe5fs5rDE3uxZ3zx7Pkgc/w9lYzb+FKNm49ysatR5m3cCVKpZwJs77i0uVGXvjbPl742z4uXW7k592X/lvX8XvSJ59uxVc3lXETHuLZ576kvqGZuxdM57FHbv7Hf/x/SXX1BlatTUOhkDNzeidYxX/SNbR6exk33HeAFc8M5a2nkv+h8/x7UnmNhUPHa0nbMJ1eMR0PZfF4RFb/VMigG7cze2kKZqvAlNFdmbJgD0XlRl5emcvLK3MpLDUydeE+VEo5j//tJJv3lLJ5T2mb/px2z8Hfff+KV1999Xdf9P9lWr58+aud3ROZTEafPn244447WLJkCTabjU8++YTVq75l1NjxBAUH4+fvz4jRYxgy5Xp8tO3xEsOjotH6+ZE8Zjy9ByTRs08/RkycjH9QMCMnTyUqNo7+ycNIGjmasG7dGTV5OgHBIQwZM46EAYOIS+zLkOGjCAgOZsyU6XSP7cmA5OEMGTUW/4CADo1Rxbk8TCYT48aN+yfugPEfs7TdkI675d3OSwT4+9AnsTuC4GbM6L44HS6SBsaSeeIikV1DeHbZbZhNNsaMHUReXhEVFfVotd5s2pxKv3492L1LiiI16c2kH7tIz7hw1qxPp3u3IHLySqmobELrq2bTtiz69enG33fnIJfJWvkv0TMujI1bTxAZEUBOXhkVlfpW/hP069OVHbvykMuv5V+/OZNuXQOv4d/6cyZ9E8LYsbdA4m+2kp5ZSs8eAVwu1fPXRUPRadWovZTkF9Rx5lwNBqONE6fKiI4KoklvIf14MT1jQ1mzIVPa/+lyKir1BAd643K5GTMyDqfTzeBBUURGBKCWmUnqH4bZ7GLc8Ei8vZUE+KnJyKrk76mV3DQtmluvi2H62EjC/DzofFUMTvTDbBMYnRSEt1pBF38Z8TFaBEFkZH8/nC4PA+N1hPsp0fkoSOqlxWRzM7q/H0qPm+hwNQmR3ggekRG9tThdIoldlEQEKPHzljMoxhuLzcPIeF+UokBUsIr4Ll64PSLDYzU4BJFB3TVEBCjRaeQMilZjdngYGiqiUcnpHqCgV6gCwSMyLEqFweymb5iSLlo5Wi8ZA8IVmF0ig/w9aBQyumllxPrLEDwwKFDE6ZHRJ1BGmDf4KqFPIJjkSpK7KtAoZUT5y+kVJEfwwPBuCpxuGeG+ctafdVJnEdmxPB5fjZJRiVq8veREh6lJiNRgtHsYmiBd78A4XyKCvfDzVjB0aFdMVoHRg0Pw1iiIifQlIcYHl1tk1MBAHIKHQb0DiAjVoFKIJCX4YbYKjE4KxFutIKarD/ExOlyCyJ70Ou6f14PkfoFEhGnQ+XozuG8QLUYXtQ02vtlciM3uZvmjSST3D+a5pf1xe0SS+gQTGqzGz9eLIX2DMFkExgwJw1ujoHtXHb1jAxDcHkYPCcPhcjOgdwDfbirk1VdfXf7Pv8T/Gi1fvvzVV19a0LE6kCuJj49i3m0TeWDpLEQRvvl2Fys/3sqokf3o0iUIrdabESP6MHv2eAICOoheytpDa0rUHnpL4u/e/jOx/J+7mFa6eLGc0tIaZkwf/l+vC9isFzlx4kI7faWvr2JgvygiIwLx13mTPDgGk9lN8uD2UV6PKGP730+06h8T6Ucv0DMugpLSehqbjHh7q1l67wz6JEZJ+nNkL5wOgcGDehAZEYS/nw/J/QMxW5yMG9kDb28lsdFB9IkP59z5Cvr1DmXHvqJWfWUjPauS+BhtO9sgU3eCQqLoADYR2jV+Ah1HpVs/H5wUz8zrR5CYGI3W14fTZ4oouFhOc4sZm83BwAH/oKyws2xjB5HpxkYj3/5wkNsXfc7YkfFsWfMQ/fpGgacTqLRO4e06mLbo7ngN0dPZ/v75bKink2h1Z2t7bO2juWajA7lMxsbDTXQL8eJ0sYXKRie6YB+2HayhT6yWXen1yOUy9AYXJ88Z6BHpw+cbi/l8QzEbd1eyYtlQpoyOZMvuEvr2CuTvh8qRy2ToDQ4yTtXRs7sf634pIipCS+75Jqrqbfj6qNi8s4h+8UH8/WBpm/3NOFVHz+ir+PMbqKi14OujZMvecvr29GdnqoQw5RI8fL2xkLtmx7AjpYqoCB9OXzRQUWNG46XgmXdO8uIHOaRm1vLwwkReeGAA8T38mDgiArPFxaikULy9lfSI0pIY6y/pw8FhGE1OBiYG0TXMBz+tpD9bjA4OHqv9XfXjnyUcvyGZTCaKQmqHvztjah9ZFEWRDV9+wk9rf+Cno9ltJRSd4WNGdlCfBp1jFndEneFRdzbl8NT2DXz66aekpaVdmT7YWamG+78fwaivqaamtpmTpwq5e8Ek3l/5C4vvnkJudj5frTpEYkJXdDpvnnzketZ8u47kgVKN6cnTtdx9ax/e/yqbhbO6k50vwZ8N6R/CD1sv8fji/mzccZH+8VLDw6n8RhbMjmPlD+dZcGM3cs5LqbbBfQJZ/Uspj94Zy7qdFQzpK/Fnn2vmrhu6s2rbZeZM6UrO+ZZW/gDW7CjnoVsjWL+nlsGJ0kk454KReSP8+PTnGu6aGkZuoRThT+ql5Ze0BhZND2PDoUaSeklNZodyDKSfNpB6xsiCScFclyw5AwNCYf1RIw9MDWLjcQNJMVJt2fliM7MHafnisIH5w3ScrpDSdgOjvPjqiJFe4SrWZ5mobBYw2Dz0DFXxyR2h7Mm3tvHLbQ76RajYkGtj6UhfNp+2MairCpngJqda4Lb+ar48YWP+AA2nawRkHg/9wpRszHdwf7KGLeccDAxTggxO1wrc0kfN19l25vVTc7baieCB/mEKtlxwcu8gNdsKXAwMUyACZ+rd3JSg4ts8B3Pj5OQ3SvLXP1TO1osCiweoSDVr6NNVeidyKxzMS9byxREjt/WScaZGMhIDI5RsOGNn6TBvfmn2YVAPyYDnFlu5fWwQ36c1c/O4EHKLpDR0Uk9f1h1s4KlHh7Lu72XXPt8bo/lgTRFVtVY27irluvFdeePxJLbuLubB+T3b8c8bp+WTzRUsuD6C3ItSOjUpQcfWXVUsvu7a53sqp5H5owP5fH8Td4wJIK9UMmaDh4bx44EGHpobwYaUBpJ6aRHcImtSm0g5oUfjJeenD5IoKJX23y/Gm2UfF3Km0IxaJeeR+VEMivImp9DE/ClhfPpTNXdNCyP3khmlDPrF+rLuQP0164NIbqGF+ZND2+TzdJGZW18t+ONLOMw/dvzLDtL5oiiyevVeXvnbFvJPvneluasz6iCFLn1xJ4BRHZVDdOYAdlI6sX//SR5/6jOyT3x9pQbX3XHaOfdEZluT3smcEu6+YxTvf7KfxQtGcypHygAkD45h1doMnnz8tg7h1E6fvkREeACncksk/qQerFp7hCfv68Nt925E56vmyQfGcDK3krtvH8z7H+1h0W2JnDoj4UwnDwhjw7YzLJkXz9rtl0nuJ5VcnMpvZOHNCXy46hyLbulF9tkr+tNX54+/37XOrsynE+jPjjDGOyHR1jGyQUe4vfWNVh55KYUtO4tYcHMC3707uc2p79Bh7GR0uEyhpLbeQtqJatKypJ+KGjMTR3Xj9aeG0zf+SumCKHRiLDuhjkonOsIUlvbcsax2VsLh6WAvSu+OS2Dc9vYlNwAKjW97Xg98sOocjy3qy9pfLpPcivBSUOHithvjef+rHBbf3pdTp6XBVb0Toljy1E7y8utIHhjBy0+Nw9dL4NSZujb7u/j2fpw6XYtMsDGwT3Cb/V3zcyHJ/UMQnXZO5jexYFYPVq4u4O65seSc0yMKdgYlSvb00bvi+HFnBcn9QxHFK/r5o7WF3DWrO19tKWHtL6VERfgwaXg4zy/tx9odJQzq7c+BY3V8vr6Q7hE+JMT68fqDvcktkA7Rg/sEsmZ7KY/e1Yut+yvo07PVXp9r4c4bovhoXRF3z4oi+zf2/ZE7ehA4as+fOND/Ljp2LJ/ExOi2Wr6OSCaTcc/DT3Ai/QjffLCCB5996d+4w3+O5s2bx6pVq3jttdd47bXX/vDvq62TnOf9KbncNGcke/fnMGFcP3YfyGPvwTPcNCuZb1cfYck9kzh0tKINOW//kTJuuq4new+XMj45iCNZ0mS7QH81+9IquXdeb7Lzm3A4JWV78GgNc6Z0Z39GNWOSAkk71dDK78WBY7UsntudlMz6tn2lZNYze1JXcgsMDEoMID1bgr8J8vfi4LEG7p4ZzqETV0DfD51o4vqBvqRktzCmvx8ZZ6XofKBOyenLFsw2D6l50kstiiJvb6zE7hRRq2SU1DlZsbUGnbecCfEadmSbuHGIjtRzV8pszpU7mNzbh0MXrMSGKPkxy0x1i0CLzUOjyc3E3t6Y7SLzhuro4q8g87KdEK2C1AIbo+I0HLtsx1eURlmnFjm4a4gPRy5LyluNh7QSJ9cneHG42Mmo7iqOlbvQyEV0ajmHS1zcOUBNWqmAQiYp4bQygRk9vThc6mJkNxVn690YHCIBGhlHygTm9/UivULASw5OD6SXC0yPVZJWLjA0TMWJVoc4QC0jvVJgXm8VeZVOHG7pCR+5ZGdmfx9SL9oYHabhWLlkUAK8ZRwudnLXIA1HL5j59UyfetbEDUP9OXHRzJAELRn5v95/BSm5LdxvETh4vK7tfu7NqKGixsr731/kuvFdueOGHvj6KKlpsJGR3cDC2TGkZF7hT8ms4/pkb1JO6Bk7KID0vJa255tTZOY2W0jb8wU4fN7CjUP8Sck3MzrBh6MXpZrL0O4OUrJbWDQjjEM5LeQVmdmd2YxcKefjZxL56MdS6vRO0nP0FJRYyCsw4hREvn25Dz/urkUUZZwtMXMop4UbRwdz8FQzY/r7k3HWSICvHK2Pom391FxpP15KGam5Bm4cFdQmn5nnO6nr/IPoxKnL9IgO7bhRrpVkMhmLFkzgSMZ5Xly+iY/eW/Tv2+A/SVOnJtO3TwxPPPUZn3/6+H/JW1zaQHOL5NzsP3Sem24czN6D+Uwa15vDGRcBCAr0Ze/BfO6/bxaBge2zkJVVemw2J4fTz1/hP3CGGyeFsTelkIfvHcHJ3Er2Hy7iphv6si+tnHEjIjmSKTmrQQEaTp5pZP4NPTh4tKZt3YNHa5g7I5b96VWMH96FIydqW/nVxMX6tnOg/9005fatnL3QSGQXX8wWF0+/cZTukTqiumqJivCle1ctIUGajrOo1WbST9ZIDvPJWhqabIwZGsG44V1ZdGsig/qEoFT9847//0/kEkT2p1fzl1vjOXjsSs/OxXI7103swb7DpUwY2Y2UjHJOn28k7/x+VEo5h7Yt4G8fZXDhUiN47Ow/Ut5mfyeM7Mbh45XovEV0Wq82+3swQ5JBL5lAyrFa5kzpxv6jNYwbGkbaqXrkCAT4SfZ08dxoUjIb8FKrcDpFUjLrmDWpK5v2lLNmeyk2h5sRg0J4ZEE8L310BpPVxZqfi3m10oyfr4pe0Vo2fjiK+U8cp6zGRvop6UAY5OfFgWP1LL6pBznnW7A7pANOSmY9syZFcPB4PeOTg9vZ93tm/wsDk/5J+jMC/Ru6OgJ94+zn2bf/JFMmD+HWW8bTc9Lj+Ae2T3tpVCqqK8qZO3oI6w+kE5fQ+z8qAh3vK6Ouro4hQ4bw8MMP8/TTTyOXdYKJ+DtEoJ02A06ngK+vhvr6FsLDA8nNu8yiez/k3rsncOe80QQFaamrMxCmLsTS2u3l66Nqa56rq6rDr7V57urmgBA/WbvmgPAQbxoaDPj92kxgFQjy96K23kJYkLqt2cvXW0G93kFYoJKmFid+WmXr+hJ/dXUzYcHX8tcWtxAW6IXe6ELnIylos81NoI+iXfOZWiUj/5IBuxMKKmw0mdxUNTkpq7ZSb3RT3ujC7RGJCFQREaAkyl9OrdFNfpXk9I6MVTMiVsOAbmqSY9Q0mD2EauVYW5+rj5eMBrOHMJ0CvUVynD0GK2Ynrc15bkJ85VhdIh6ngK9K1tacp7d60KlleFzuK/wWDyE+stbmP9k1zXzNNg8a3ICsrTmvweohxFuGxXkVv00k1EdOg1Gg9XFhcUKARkaj1UPswJAO999QaUKnlgxlW3OhxUPksCgsrQrRVy2t2yVS+5v7LzU7GrShhAWrKa+xsj2lio/WFDKodwArnhlCUID6ijxYXAT4QF2TvZ08VJXWEB6kRm9wofNVtMqPmwBRaPd8NWZLWzOl3iyg00j8Vp0vOh8Fa/bV88PeOmQyWDa/Gzde143GFhdhQWqKKy288sVlLpVaePOhnkweFnxNc6fH7LimufPX6/W4PFgcbgJ1KuqbnYQGqFr3I+Kr+S2/krA5mf+2CPSi+79k3cajTBibyC1zhnHTTRMJC+ugBMNto6nJRL+hT/HLpqcYPrRX51/wPxCBBjAYzAwd8VdunjuO119bjFLWSYrfUY25tWmrrVkwzJ8mvRm/VuBZk8lOUJCWhmYZoaEdlLl5HDQ1mfDz827jtztc3Hz728yYHM+Tfx3Tur4X9Q0WQrUmmppt1+hDP5W9rXn0an3YYHATHuJNU7P9Gv6wLu0bA//dEWi320NNbQvlVWbKq01UVJkoqzJRXm1u+7/d4aZbF1+iIrV0j9BiNDvJyqvH6XRLDvOwCMaPjKJ/7+D2cH0dON7/WyLQCoW8nTwEhIdR32hFo1ayZut5Vn6bS0JcIM8/NoGxI6KpqzcTFuor2V/BfI39bdLb8NN5IVgN7ZqVLVYBt93San8dhIdoaGpx4Oerwu20tNnTX5utrQ4Fbo/I4RN1vPPdRewON48viuf2mT2QyeSYrC7UKgUPLD/JybNNvLdsEGOHhuLrraRe7yA8WENjo7mdfa9rsrfpT7hi38ODNTS12K7S/63+QIONuOsO/onC8UfS1Q60KIqsXrOPJ5/+Ar3eiFKlYti4CUyddRMTZ84iMFhSSprWsdx/nTeHsVOmc8d9f/2Pc6ABKioqmD9/PlqtljWr3yIsrINu69/Bgd69K40t245y+21jeeixrxg1ojfrN6UxdVI/xo5KYN/Bs2xa/TATr3+Dj14ZwfpfpMjN7bMTePzVw6RuuZVly1NIiJOM8b60StZ/NImpd+3mwxeS28HT7P9hCouWpTNhWBgAB47VsvadESx9+SQPzI9j815pMtyt07vxzPtn2fPVCBY+m8OUUdLksIPHGlj91hAWPnuSJxfGsPWAFLm5eUoX3ltVxPfPxLN4RSGTh0j7ScluYdVTccx68QJv3hvNtjTppHvT2GC+2lHDx/dHc+9HJUwaJEXmjuS18MVfujL3/XKenx3KpkwDVoeH3qEKdpy2snpxOK9sb2JSomT4L9e7eOGGIG7+vIbX5wTxc46kTOck+fLydj3bHojg/jX1TOztjdotsOeCna9uCeDm1Xpem+HHL/l2QjUwKlrFKwctbL3Tn6W/GJkQ64UXIvuKXHxxo5bbNhl5dZIv+y45sbnFa+DkHthlZkasAqsLjpQJfDLDhzt+tvDSWA1p5QItdpEbe6l4I8POj3N8eWSvhTHdJCcnvVJg5SQNC3bZWHFbKFt/3f8gX17e0cy2peG8/nMDccGSoT5c7OTLOX7c8qOBt+6LYdsxqRTnppEBvLC2ir+/2ZfF7xUyOan1/ue28O79MTz4eQWiCOeKDESEevPwXb34blsx+76fwl1PHWXaaAkFYf/RGta8OZTrlqTxztMD2by3ok0eVm26yHuPxXPP8nNMHiYdjlNO6PnuiVhmvXDt8509wJuXNtW1wflN7qfFKXjYf95GfbMLvUng8VsjKamxIZPJuH1WN57+4BLvP5nAzU/kMijBjykjgjl1zsBnzyYy85Ec3n6kF1sP1qFTy5iaHHgNvOCU5EC0ahm/ZOhZ9UwvZj1/njfvi2FbWiP+PgomDwnkhW9L2fFmHxavKGT6sEBeXlX2b3OgRVFk2y8neOTpNdTUtqBQyBk7ui+33jyam2aPpEuX1vHAreUQf/nrl8REh/LSs/9FE9n/kAMNUF/fzN33vI3JZGXDmqeJap0seDUVF5zm9Xf+DsDtNw/j8ec2kbrrKR5ZtoGkAVLd9N6D+Wz64X5uXvANGSlvtFvDZjFx3dx3mDF1ACaTjdXrM7BY7IQEafj4rRvY/Eu+tP7cATz+0i5S1t/I/If2Mn28hFCy70gZa98ZybRFB3nvuSFs3lUKSPrw+58u89HLI7nzscNMGxsJwP70KlI23YJCca1T++92oOEf1/xarC4qasyUV5mpqDLirVEyIimcHlG6tsi0TNGJLPwvdaCr6u0oFTKmLdrPe88NZfOuEhxON1FRwXy55gwyOXipFMyd0ZPYaH/OFRp4/9VpTLx5DStfn86Gn/ORI3DbjVfs76/wqT4qgW17S9vs7/svDGfjzmJC/BVMHB7O0+/ksu+7Sdz1tKRv5aKLvRn1rH5rCNcvPcbrjyTy2YZSss810yVEg8UmkLZ2Evc8f4KbpnfHbBHYfqgSfYuTxmYH3/xtGEey6jBZBG6d0Z1l7+ax97sJPPjKCYYPlPTzgWP1rHl7KNctyeC9Zf3ZuFvS57dM68azH5xl91ejef7DfBJbJ93+at9n/vUYF4rNfzrQfyR1VAPd0NDCE099zq69uYyeMh2H3cbxQweJ7zeAgcNGkDxiFOGR3bh3zgwOnCnCLyDgP9KBBhAEgVdeeYXVq1exbu1HTJgw8lrm38GB1jfUkX+ujPWb01i/8QgPLp3JhLF9SeofDiIUl9YzfGhPDhw6y/j+NkorpNR8dDc/0rIqmToumsysy0S3AqQXl5sYPiiUgxlVjEkKorRaKoOI7qol/VQdU0ZFkJldTY9fB15UWRjWP4jUzFpGDQqmrFpKtXeP8CEjp5FJw4KuGXhRWmWVBmQcrWL0oMArAzK6aMjIqGXCIH9OXTQT00WKMJXW2knu6UNqnoHR/fwor2sdwBGmJvN0M2P76jhVZCUmTDLYJSUGhvTw5vB5K6Pivalokh5gV7WHzGI74+O9yS5zEB0sCUGF3kVSdzVHLtkYGedNResDjwxQkFXiuIbfY7RR3uJmcKSKI8VORkZ7UdHiBpdApL+CzHIX43uoyKkWiA5Q4HG5KTOIDI5QkFYmMKKbUuJHRqSfnKxKgXHRSnJr3HT1keSpwuhhULiC9AqB4ZFKKg2tA0p0ck5UC4yJUpJd6STKT97KLzIwTM7RKjdTxoZS0SwZx26Bytbr1ZBzzkA3f8lQl7W4GdxVyZESFxOui6a8QbreqBAvjheYmTQyhFOXzPioFRzIbuGXo02U1DhI6hvE4lt6EB+jw0ejlJ5vdgNTxkZx4kwTPbq1AuxXmknurSUls56xQ0KukYejx4oZmxTIqfNGYrpKEcHSahuDI1Xtnm9XhZPjF61M6OtLar6ZQ+csbDpmoH+cLy/d3R2jRWrK/JU/JiGQPUcbefnzQm6fHsGSm6UUYmmlheQ+fhw6qWfMoEDKa214LE6iwjUcO2tgYuuAm5gINaLbQ2mtg+QELam5hmvWjwpTcyzfyMSkVvkM1xC/4NS/vQbaYLDy3Cub2Lgtk2lTklAq5Ozae4reCd0YNaI3I4fGkpgQydhpr3Am6126RXYMrwX8jzrQIEF/vvf+Jj5YuYVvPn+EG28Yfs3v3dZKioqlsrDoqGDSjl5i6qQ+nMwuISZaCkgUlzQwfGgsR45XMWFcvw6+xMGe/Xns3JPL+s3HmDa5Px+uuIuCM7mMHh5NaYV0gIzuFkDa8VImD/MlK7eO2O7Sgby43MiQeDUHj9Uwbmg4pVVX9OHxM3omjojgxOkGekRJDkRJhYnRI9o37P0nOtDXMndeA93Jl7Zf93+BA213iqi95GzbV0Zzi4P1O0s4c0HP5LHd6d0ziGcfTOZCYTOx0VI2pLRaYNjgSA4cKWb8yGhKK1pAsF5jf38d4CXYjNfY33HDIiitMiE6bURF+JKeXc+UkV3a9K3gsFBWbaN3Dy1Pv5/PgWMNxMfoWDQ3hjmTIzma28TkEdKAqtjoAKw2geuXHGbp7T1J7OnPuOQwSqtMIEL3rr5kZDcweWQ4J/LqiYmUrr200sLQ/oGkZNYzJimIspqr7XsTk0eEcipfT3TXa+17yvE6Zj9y8nfVj3+icPyGli9f/mp2ziWiuoWSmppL3ukiuoQHcja/hLn3v8CaTz5EqVSy+PGnMZtM+AUE8MMnH7Dx269IGjEKuUKOr1bHqo8/oH/yMFatfBdBEKgsK2HX5vUMGzqUV59bRmzPXuzZuYOzp/PQanV8+fFKhg0bxooVKxAEgZKSEjZu3MjgwYNZtmwZvXr1YseOHeTl5eGl9ePdN5YzYsxYPn53BS5BoKykhD07thPftz/vvLiMmLhepOzawYUzeYweMqjt9C6Xy5k8eTL9+kawYOFjmM0Wxo4d1gYldyLrKHa7k9feWMvYMf1Y8e4mBEGgrKyWdT+mkDykF8ue/YZePSPZvSeTnNwidDqfa/hVSphzy9+w2Zyk7n+TlNTTzJg2hJRDeZwrqCQxvisvvb6Vvywcz1vvbUfr60WzwcG6bRe4Y25vHnsplbHJYexLq6Tgcgu94wJ4ZWUO99waz6erz+HlpaDF6GTDzmLmXd+DJ986xbjkIA4creNiiYnesTqWf3aOhTd2551VF9H5KGkxutiwp4LbZnTjja8vMKx/IAeON3Cp1ExCD19e+6KABTO78N7qUonfJLDzVSLdAAAgAElEQVRpXy03jQzguW9KGTvAn5TsZgorbcRH+fDZz9XcMj6YD7ZUo/OWY7AIbD7SxJzh/jy/upIxfXSk5BkprLITF6zg7R2N3DnGn5W7m9BqFBisHnbnmLhhgC8v/qJnTC8NqQU2iupd9AxV8vbeFu4YpuWjgy1o1XIMNg8/5ZqZM0h7DX9pvYPYYCUrUs3ckaRhZboFnVqGySaw9ayTuX3UvHTAwqhoFanFTor1LuKCFLybYWN+PzUfZ9nRqkQMDvjpgpM5vb14JdXKyO5KjpY5KdR7iAuU836Wg3mJXnx6yoHWS8Rgh18uOZnVS8XyDDvDu8hJr3RT3OIhLkDOymwnt8QrWXPehVolw2DzsC3HwtwkH17c3szISBmpxS6Kmtz0DFbwzhErdwzU8OlxG74aBQaLmy1H9dw0MoBnvq9ga1oT726qptkkcMekUAJ1Sr59eyQ7UqoI8veS5GFXGbdd152XPjrLqMGh7E+v4WKxkYRYP978Mp8Fs6J559sCdD4qSR52lzN3XCDPflLEmKRAUk40cancSq9oXz7eWMZtE0Kueb6bDtVz84gAXthQy85cM2UNTm4f5c+jd0Tx/Z467poWxgebqtB5KzCYBXZn6Tl+2kCz0cWLS+JIyWriUpmFXlHevPFtCQtnduW9NaXofBQ0tzjYfKiRWyaG8OyXJYwd4M/B7GbKax3EdvXmb+vKr1m/xexiS2ojN48P5rmvJfk8mNPEvpOGPxyFw0ulILJrEIGBkkHTaFTMnJHEuHGDWfPjIVwuNz/+8CRjRibSpDexc88pXl/xEzfPHs6dt4/9B9/QsbNCJw5Zh86evJNoRCeOYUbGWQoLK/lx/UGGJiewfcdRliyexpIHPyHlUB7Jg3vxt7c3MnZMPz77YjtKpYLmFivrNh3njluH89gzG5kwNoG9B89RcKmWxPguvPTGLyxaMIUV7/+CILgpKa3jx41pJA+O440V23jrvR20GKzcd89EHrh3Cu98uJPFt/fjjQ8Po9NqaDbYWbc1jztuGshjL+xhwqhu7D1STsHlZhJ7BrJm6wXuuLEHVrtASKCGAD8vnC43CXGBGM0uYiJ1KBRyvFQKoiJ8kSvV7VE4VJ309nR2rzuiTvCUO4Mm7BS5oqNAXifBPVlnsKcdfWcnTnhn1PH+OgkyduJYd4bCIXawl87Ganfm+MuV7Q+BDXoHC5/O4IsfC3CLInfNjmPlS8O4bXZ/rp/cA7vDTUyUPwqFDC8vBVFRoZjMTvokhGK1CYQE+aDzEXnjo6w2+ztxVHf2ppZSXKqnV4xfm/196/PT6LQqmlusrN9ZyrzronlqRQ7jhoWxP6OGwhID8T20zFh6DLVKzpC+/iyaG4uPRsnG3eXcdl0UT797mnFDQzlysoF3vrtAeLAGl+DhnrlxrPjmHDqtkhaDiw27Srntuu48tSKXcYODOXCsnkslJhJ6aHnt8wvcPSeaTzdcRuOloMXkYuPuCm6bEcnT751l3JAgDhxvvMa+L5wVxXs/XP5d9eOfTYQdUGFBAbNmL0OpkNMl1Ie0/eFcLGpmcp8mbp0ciM3ZwAfPP8z4YeG8/cQoFDUaHrp7GqnHa6D2OyJq96Cuzye+vhJ1fR7hdUcBUNfXEljfhKMuFW29AXmdBLekrT+CqeEyYpMaU0MKjsZSACyNZYh6OYb6YwhN3lgbCwHQGS/iaDxGoOkTBH0qaoO0jq+5ip4OB/Lm40TZfLhkkvgxWNspl2mjfchOe47bF32Jvv4sH71zJwBOcwWCRodBX4toLcPUXIPD6Idc0GNqKEHUH8fQUIygP4m15iwuwYOzqoqWmvO4q3ZgrDmN0Khn5OBQWowWgj0nsbWU4mk6iqMmH4fTg624BHN9EdZL2zCXlGL0kpoDTMVm9Ok2DOVV2IplWKukyLS1yIy5rhFzwQWslTVYFVKzl7nCgik3H3N1I9YTNiyXpMixxdOAuawFc9Y5LGXNWL0kJW8ps2HOEnCWNGLNtGEtkmoZra5GLGUGrEecWIvN2ESJ31riwHbKjKXKjP20gK1EiizYPQbspRZMaTbMxTbMTmmf5koXxmMmTJV2zNkOzJVShMLYIsNU46L5VDXGSifGVsB/a4NAc74DU70TQ4ELY2sTXrNNhrHWTVOOE0OlQItL4jc1eGjKc2CsE2g+58BQ68FLDgYcmJrd6IuNmJoEjEonuEWMeg+NJQKGFjfN5R4MdR4UiDSLAsYWN41lZox6D80eDyIyDE0idUUOWppFGktdmPUido+MZsDYItJULmBqFjGK4BbB0AwNl50Ym6Gy1EN9S2vE2uGhUe+m7LKT2iob2taMQU2zSIHLQl2pB0esL3aru1XmZFjtHuwmAY+vFnmw5JgJ3i52FbrYkt7MA3cmcutcH1RKORNHRHD2m7N4Rw7Go2lBGSRNkfNoFGi6DgZVGV66YGRq6b556YJxuTyIHjdOlxt3q4FzutwIdWZsRgfuRjPOFkke3I1mXHorrqJ67PVmnDrpObqsAp5mK1V1doprXTw80Q+l3IOn1oCtxY5Q2Yyj2YqrQboPrlonPTRwtMWBq7AWe6W0H7vQgqXSiC3zMtYyIzaFBZnDhbXchS3TjqXSjC3Xha3EiYiIzdiIpdyGNd2FpcSGVTCgVMiwlrmwHbVhqbBgO+nEVf0HDRP6DeWcOs0nX+xG7aWgT3wICXGBJMQF0bO7Nz9/Pobt+0uYPvM53lw2gmcWJiL/yzhEUXKcxebj0r/ujqN3cnXH0JioOoG36wjqrFP4s46HUzgbL+OwC5jqyxAbUzHUFTKwu45nlg5kzdbzLHtqBSFB3oiNh3BYGhBtkgPnsurBVobd0gy2KtzW1oZluy92SzNi01GM9YXYGyS9ZKyvxNOYgcNSz7Tx3TlX0ICflxns5dgtTbgMZTjMzQhmKdPlMDcjGMuxmow49NU4DFIpkUMvQ5TJkMkV+OmuHArUahUKlYagQOnvva7yzWR42vl7oqWyw/vRkZMGnUdi/xXezhxDj7uDqK2nE8e1swEmHX1nJ/voNBLubi87nUaaO5Fhj9Dx/jyG9sguLho75PUKD+v488Brswa7Uy7zlycPcN/C0WxZ/yQ+Plc9O29pcFpg61Jtx0pHNb8iSPq1JmuE5jM4XW5E0YPd6UbEg+B2g2DHbbdgs9oR7GYcdjuCw4bcbcdhsyPYjNgsdtw2My67DYVcynhU1trZ+/lwPttYihw3glvE6RQQ3S7sDgHRLeDxCIQGqCgsNxPkp8DtsuNwuHDbbXhEsFsdCDYTNqsDl8WIwypF5QWzFzaLHZexBY/VissovY92kw2XvgWbyY7QbMRpkOyOoFdgM9oRTB1H9f879GcJx29IJpOJ7opHOXayGo8IxWUGTuTVYrMLZGVXUtdkx+XyoPZSEBasYcXTSUyf1JOsvPprUmzDBgRxIKOaccPCKatqncke6cuJ8zYmjY5qS5EAFJe1MHzUYPanXmL8qFjKfk3hdQ/hyNHLTJuUQNapMmJjpNRnaYWeoUnd2X/oIuNHx13hjwrskD8kNKj9sJLWNKdeb6b/iJfY+P1fGTs6HpPRwrkLVQwfGsv+lHOMH5NAWUUTOOqI7ubPkWNlTJsYR1Z2JTFh7rbrHZ4Uzv60CsYP70p5jYXKGhPzHtjLV29PZO6MOLJy64j0NSJyVclEZgNDtTYqGiVlFhXixbECMxP768irFegeKlmA0jo7yfFaDuUaGBGloqKplT/Yi2MFFib213Iyt4noEElFlDW5GBKtJq3IwfA4DZV6SdF1C1JyrNDGhBgV2eVOooOVrfwCQ7p7ceSCheHRaipbWvkDlBy/aGFcrBc5VQLRga0lB81u+vuLpJUJDO+mpMrYWtLgJ+dEuZNR3ZTk1bnbShpKGl0MDFWQUeVmWBcFVWbpneui8XCqTmR0VzmnGz1EaVtLIFrc9AuScazWQ3KYnGqLxN9VC6fqRUZHyDnTJNJNKwNRpNICA4JlHK3xMDRc4ve4PHTxkXGqQWRUuIyzepFIXxket4cqK/QPlHG8XmRIiIyKFgFkMiK8IacJRoRCfgtE+kjNglVW6BcAmQ0wOBiqDSKiDLpoILcZhgdDVoOcCG9p/zV2kd46GdnNIoMDReoc0uGtixpOt4gkB8kwhmiI1P1a8nGlROS6h4ZQ0VqisCujgS9/quKnL6chCJ5rUtLDBoaSfl7F6OHRlFW0tMp/AEeOlTB1pI6snNq2lGVxmYEBkTYOHm9g7JBgyq9K+R3ZXcC435TclNY7GaS2cfiSnZGxGiqbW+UhUMnxYjtfpxvpE+HF0vHS+15lk5EUoyH1gpVRvbypbGrlD/Mi9ZyZZevreX5OCFP6tZaUFBsZHOXF4UI7I3toqGwREC1OIgMUZJY5GX+VvHnsAmUGD4MjFBwpdTEiSkWV0YNMDpF+CjIrXIyPUZFTIxAd6sXADxv/8BKOM4fuoW9CCEUlzVy8rJd+ivQUFDZwqbgFm0PAT+uF2y1SkbUQhVf7kcD/SQ705ZJGBMEj6bfjZUybEMuJU8X06B6A1eZi7NxNfPLGJLw1SsaP7kVZpYSEcjX/ydxqYqJa9Xl5C8MHd2V/yjnGDYukrEo6kEdH6jiSVcX0aUnsO1TEHUu3cviXe7DaXAwf0o39e7MYndyFsl9LMiK1pGXVML6/sl3J2cjhPTqM8iq8OoYJ7LDsoZMo8e/hQHdGnU2l+5cc6E7o/0UHujPqzIH2jrjSgLt6cz4vv5PB2q8XM250B4253p1MHna0n67rMZzF4XBzJLOSaeOj2/Sno7mGkkorwwYEcfBYHWOTQymvtuBxWIjq4k1Grp7Jw0OuyKcIS147w6iBgQzu48+YpCAqG5yIoozuEd6k5zQxZURoK78vgkdk0qJ0PntxIB5RxtghwZRVGBAR6X7V+idy64mJuFJil9zHj5STzYxO1FJR31rSFq7h6BkDk4YEkH3eSHSXVv+hxkFyby2HThu4+blzf5Zw/JG0fPnyV5cuGMCDzx/Cy0uB2eIiM7uGL9+eTNapSl57bBBWu5ugADU3TIjk/VUXuPm6WB586Shmi4u88018vaGAGeMiWfDEEXrHBfD1hgKOZdeh9fXiu00XGT+iG0ufTcFkdpKbX8+X685w/dS+zL/vRxITwvjy+0wyskrx02l4/IXt3Dp7IEuf3IrJ7CD3bBV7UwoYOTSG+fetIzE+nC+/P0ZGZgmBAd48+twv7fhHDI1r10Dya5rT29uLuJgwHnpqLfcuHEfmiSJefnM710/rz/zF35CYEMGX3x0m90wFai8lj7+8l1tv7MvSp3ficDjJPtPA1z+e47oJ0dz5yH569wzk533F7E4to7TCyIncOm6d2YsHXkjF5XSRfb6F77aVMW10OPe8kEN8FxXfpzSRdcmC1lvOC2urmDU8gJXb66hqdHKm2Mr3++qZOiSQ+94rIjFSzfcperIuWdFqFLy4vppZw/x57scajDaR/Eonq48ZmZzow9926gnzU7I63UDWZTu+ajkv/9TIDf19WLZNj9khkl/lZE2miUm9fXhhRzPdAhSsPmHlRJkTrVrGR2lmJvdU88xuE2anSH6twNocGxOiVTy810KvIAU/nnVwqlpCvfg+z8GoKCUvHrZhcYmcb3SzpcDFmG5KnjxsJy5AzsYCFzl1bvxUMt466WR6jJJXjzuxCnBB7yG9ys3AEAXLjrmI9ZOxuchDboOIViVjRbbAtO4KXjvhwiJAqVFk/UWBsV0VPH3URay/jE2FHspMkvP7Xp7A1CgFb+S4sQhQbBTZVCwypouc5066idXJ2Fkukt0EPkoZH54XmdxVxltnJOOV3yLjpzLJCX8xV6SHTsbBGjjRBD5KWHkRJoXD+wUiVjdcNovsqhYZGizn7Qtu4rQytleJ5BtEfBTweZGHcWFy1pd5qDF7ON/oZv05J+OjVTy230Zigj+rtleTedZASbWd8lo7Ty8ZyIOvHMdkcZF3Qc83Gy8yY1w33vw8j+AgH778IYuMrFJ0WjWPv7iTW2bG8ddnUzCZXeTmN/DVujNMHR7MPS+cIqGHjm+3lXI8T4/WR8WqX8oZnajjqW/LMds9nC21sfpAI5N6qfnrj43Eh6lYnWniRKkDXy8Zy37SU2/yYHV6sLTKz8ECG0PjvLn/u1riu3jxQ7qBrMs2AnwUvLK1gZuH+/HpPj1eSjlnKxxsPWFiXE8NSzc2SetnmblQ50Ilh1cOmLkhUdMmb2V6ge9yHEyK9eKhnWZ6BStZm2enoNGDSgGvHrJyQ4KaZ/dbsAmQVuL8w0s43G6RWdN7EhzkTUJcEKOGRjJrek/unhvLk0sGsfSuvkwa1Y2p47rRq0dAx85bJ46NTNne2QZA0cnnHabXO0u5d+xYv/5BGgfTStBpvXj85YPcemNvXlyRRl2DlfyLTRSXG9i0/SKHjpYzsG8XPv8+m4wTFdfwv/xOGrUNFnLz6/hydQ7XT45jydN7iY3256t1Zzl6shqt1osnlqdx6+x+LH16J1W1Jvx0alZtyOX6yb14+Z3DhAV789WGCxzNrkPno+Kpv2UyZ1IXHn3zDCarwOmLBr7bVsasKdF4a9rfV7mi4/KVDsseOnGgZfLOaqD/+8G2zpxOscOD0L+8+j/52b9aStLJwaHT2uhOSjgcndT3d0AKbftaZwCV7kr/wJ6UYnr2CODeRZM6XkQV2PHn7vZlN05zLYePV/LE8jRumdmrTX8WFjfx+fpCpo+N4O5nMukd68c3Wy5TWGZCLpfxzIcXmDMpgkdXnMNsFTh8soktB2r48Jm+3P/aGXrHaNm6v4bUk41ofZQ8+8E55kzuyqNvngEZZJ9r4fxlIxdLzfx0oIqEHjo27a3gyCk9Wh8Fz64sYO6kLrz02SWaDC7OFJr5fkc1U4cH85fXz9Mnxpdv/15D5jkjWm8Fz395mdnjQnn3x3JqmlycuWxh1e5apg4NZMmKizQahD8HqfyRJJPJRE/lY+ib7ei0rTAoZhdBgRrKi8oID9G0g1HrGhmCvsWOzvdX2CAngX7KDmGGmm1qwkN90Tfb0P0KM2R2EhQRS129ibBQLRaLdDr21XpT32AmPEyHvtmCTns1TJJve35frw75VeoOmmp+02hz171fUVbexMfvzCc6KkiCmas3EBbqh8XiAHt1G6xSeJgWfbMVX7mh9XpdBAVoqGuwEhbijcUqcMfD+5gwqht3zkkgPNQHfYsdlbUaZLJrYG78GurawZaF+atoEeXovK+FLatvcRGEq0P+psoWtK2wYma7h0BfBfUWD6E6RSvsGvh6yWgwuQlViTRb3WjVklExOzwE+iioa7QTqlNcA7tW1+ggTKug2eZB63UFdk3rdrfBwLWi8OGjgjqjm1AfOS12D74qib/FJBCgkdNo8xCskdEqDmjw0GSHEG8ZLQ6RVtQdTGY3/ho5jTaRYA3YWvl9vGjPL4pYBBkBalkbv1UAt8uNt0KG3gHBGhkGp4iPEjyCB6tbhr+XjCa7SJAaTDYBkOGtAL0TgtW/8ovIkGERkPgdIkFeYLZJ9+cKP1SYlbSizGF1g59KRrNTJFQtYm+1JxoFNLsgyEuGf6w32tb7czVMXsLCwW2wROv31pJz0cTqj65D3+JAdxUsXVCAGr0nskP5D/OztHt/vZ01HcLYVZwqISxARbNZuEp+3OiaDdSb3O1gBJesa6RnmIolY3Vt8mNRqAjSKqg3CpK8OVrlzUdBg8nN1ynNuD0iz8+WUB0MNSYCfaXfhbSu77Y4JNhBi0ioVt4mb26bC4vrWthBq0sqU/W5Cqaw2eZBp1UR/Vb9Hx6BNlx6FD9d+9pNt73jetiO6jz/kyLQFrMNkV9hNC2Eh2rRN+qv0c+vfZhJ6rEKvnx3Jv0TpejgNfy/1eeB3tRW1RIW4vMbmE4bXaKiWPDANrp20fHGc5MxmR0EBfpQdflSm/6U+JXUN9kIVBrRG5zofK/AboZ1De/wWv6MQP/2w/9/I9Cbtl9g685LbFn3SMeL/AsRaNGYjyiKbTB2v+pPh766FTZOfZX+FHBbTZJ86p2EB6vb5POFjwswWQS+eGnAVTB2MpD9CjN3Nb8kZ++vLqS+ycEz98YTFqTGZJQyhL7eChr0TsKC1TTWGa/Iv9VNkJ+Ker2TEF95G8yor0beBuvZ3OxAezXsrE5FvdlN/K2/L8znnxHo39Dy5ctf3XmwmOFJXfh89WkOHa0gLNiHBY/uY971Udz3fCY2u1uCgvnuAjMnduOuJ9JI7BnIF+vOk3q8mtBgb558I5NZU6K599l0rHaBc4XNvPfNWWbNiGfmgp9J6hfGZz+0rh/iw1PLDzHrur7c8+AmrDYn+RdqWfllOtdPTWTmbd+Q1D+Sz749yqG0Qrp00XHXkh+Zf0sS9zy4oZW/htUbTjJpXK92/JMn9EYURWQyGW0HJpnkXMhkMjweD7NnDsbpdLNgybecu1DNW+/tomdsGA88vo6LhXVkHC/kzZXpTJ0Qxy2LN5HUP4JV67PZn15JWLA3Cx8/wPzZ8Sx+KoWiMgNbdl1GpZAxa1oPbli0k0F9Q1mz9QIHjjcQGqTmLy/nctv0SB5acQ6L3cOFCjsf76xnxmB/5r17mUHxOr7ZVUfaGSMhAUqWfniZW8aFsHxtOY1GNxcq7Xyyq4EZSX7c/n4J/bt6sSrdSMYlGyE6BQ+sreemZB0Pr63D5hQpqHbyyYFmpvfX8uyWBqKCVHx/zEhGkZ0QrZIHNzQyd6A3j25rxuYSKahz8Vmamak9vbhro4F+4Sp+yLZytNRJiI+Cd9PMTOyh4sn9VuyCyMUmN1+ccjA5WsninRb6hipYm+/keJVAkBqePmznhjgVz6XZsQsihc0efi4SGN5Fwf0HHSQGy9lQIJBVIznZzx53MjNawQuZLuxuKDSIrL4oMD5SwdJUJ4lBcjZcdHOmyYOfWs6zR51cH6PgheMu7AKUG0W+LXAzvqucBzMEegfI2FTk4XSTiJ9axgsn3VwXJeflbDcuNxQaYc1lGBsu49EskQR/GXur4Gg9BKllvJwrMj1SxvLTIm4PFJpgbSmMDYUnciDWF/5e7SGvRSTAS8Y7F9xMCJPz7WU3LS4osYhsKhcZGSLjuTNukiJVrDkr3Z9gbzlPHLAyK17FsztbMNvcXCixsOVgHWarh/0ZNfSK8eOL9QWkZtYQFqxh0bJ07rhlKPc8vAWrzUX+hTre+eQIN85IZOGDP5EQF3jN+/vwy+nMnhzJ/a/mYrO7OX/ZyAeri5jWz4fbV1ymf4wP3+2vJ/2ciRB/Fa9vrmFqH28e2dQkyU+ti09SW7hliJYXftETGahk11kLGUV2wgNVLP2+lpuH+vHw6lpsLg8F1Q42ZxoZk+DL/2HvvcOrqtL+78/e+/Rz0nsPgdBD70gHx4aFsXcd2+Coj2MZdXQsMzqOFUdkVBSxY++KIiVACCGFFEpCIKT3nJOT08ve+/1jh2AIvO8z7zM+v98frOva1wUn3+s+66y1973Wvtf9/d4r17Vy5gQbG8vd7Kj2Em+GP2ywc9EkC3d9YscXUjnSEeTlAh/LRhq5ekPvwP1W1R7GZhS563s3F4w2cPcPHvwhlTqHzMu7/SwbYeCaT/sYn6TjvXIve5r+sxGWk/lHZ1+AsxfnDPYngBzy9/uTwb5GlHRDPjtGqBqCFw0ntYFoGuSvBv6mKif97Fj75d8UOXTS7/z02wOUVbXzzCuFLD8zl3Ov2sCU8Qms/oV/fu/zg1x/6TiuueM7fsqv41Cdnadf3kV6SiSX3/YFJqPEqrXFbCtsID01kmv+8BVXnD+SG+7ZhNcXZl9ND8+8WsryZcO45s7v2bj1MONGJbJ9dwOJ8VauWfk5l52bze/+lI/PH2b/ITvPvl7BeYuzuOj3W5gwKorXP6knv7ibhFgjaz6sY+ncoSoapyPQ/z0j/6ci0CcGLE92rwuCAGYzoigMwf8yAu3zh3n30/3ceuOCk3+fLnroswEIsnvIZyFPO1fe/gPLz8zh3Gu/YvK4BNa8XUFphVaP4XcPFXHpOZnc8vAevH6ZI419PPtWHefMT+S3d5cwcWQkr3/aiMMV5Lv8LjZsbOG689O57YkqZAWqDmn+9pz5yay4q4iJo6L4eGMzPxZ0srvSzr7aPm64KJtbH9tLKCSz77CLVe8e5ex5iVz8xxIm5NpY+0Ur28t6SYjWc8tTB7l4SRKPv1FHlyPEwXoPL33czNmz47jkz/uZmGtj7TdtbK9wkhBl4NZnD3Hx4gRe+qj5P+ofT2+gT2iPP/74Y2OG2bj2vBT0gkxmooFRGQZcLj+L5+Xg9spMn5xCWmokZpOeWVPS6HSEWDg7A4NRR3ZGFONHJdDnE1gwbyRun8LMadlkpMdhthiZNjaSzh4vC2cmo9cJZKVZGTs8Eoe9l9nj9PS5PEwdbSYlVsWoV5k2Wk9nt4uF0yLQi0GyUvSMyZToc3mZP9mMq8/DtLFWUuNAUjxMzFHp7OpjwWQTevxkJonY1HZWv7aZqcP8rHtnG4K3lZaDJXz9ZT4jY1p5dtW3DItsxdXTytLxRlqbu6ips7Ov7ABtbXZaGps5XN1CZ2cfq9/cQ5o1zHkZvXh21xLb201S/RGcXW5yjx6kt7WXr7e3cHa2yBidh2H11XS0u8iz1xNodhDvdpHW0Y7T7mdsZwu+oEyeNUyiGsQYDpOn89HdG2aW2YfkDZAmhhiheulzhZih8+BwhhgXKZMkhjAoMhPNQbqcIWbHKuhkhTSzSq5Zwe1TmGzw43LLjLPKxBPGICuM0wfocIaZHKWgCyukGlVyjDIun8LUSBm3T2V8FCToVAyojLXKdHsUZsSBpKikmCDHotDjkhkfqeL2q4yNEojXaySNkcYwPT6VyVEqkqyQbFDJNMh4QjApQsEdgDEREKdTERSFXLOC3Q9TolQkRSXZqJJllHGHYFKUgiekMiYC4vUqYlbIbBUAACAASURBVEhlhF7G7ocJZhlRVomXVNIkzX6eScYdUBllVrAAkgo5BhW7H8ZbQVAgVhJI1gm4QzDaBO4gpBh02EQdIgJpej32gMAIsx5ZFojSiyTqdLjDMNykwxUSSDHosUh6BESSDQbsQYFsswGQiNbriDfo8YS1z+r6TFgEK4psJqTo0MmR2IMCo8QQQZ+KTYYIv0qfTyU5oHK0Poi5wY2/1oXHEWRvo5cLJuiZanUhelyk6nzk0Euf08ecCTLO3j4mZYdJtLrR42diWh9Ne+qYLHUi9DpIUV1kBdrpqOlhXFcLzk4Po/y9RPfYkfq8pLd10uUIMc7Ti+rwEe/3kWzvpbsnSI7XjbMvxHAlQITXD74Qc3Q+OnzwXpmP0VKQ0VKIFK8blzvMKE8fTmeI4bKfSLcPxR0gw+lk7X6ZSI+PDDVANkFS/F5cXpkxYS99LpkRQpCIYAgxrJCjBuh2K+TpQ6gBmahQiCQ5iNOrkKP46XIrxKkhosIhDIrCMCVAt0dhvD6EGlL5oUn51TfQI7MjqT3cxYy8GNZtqEJSw7S3O9lW5mbs2GyeX1vB6NFZ7Cjt4UhzkOjoaF55u5JZ00ew/uNqdAYrnX06vtvayoSJI3n+9XJGjc5hR0kPDfWtRFhEVq8rZuakeN7aUIFOUOhoaeHr78sZnyPx3Opt5KZB/o4D1B5qItLkZ/UbBcwYZ2bd+0VIQQetza1880Ml4zIFnntlO8NTFHYWVHPwQCM2nYfVb+5maq6ede+XMj4TkqJkjJLM5Bzo6HIza6SCpAZIj4PcxDB9Lj+/Oy+WeNmHz+WjpLyV7m4X5SV1dHV7ObS/icZGOzuLWxE6GsmJVpjYtA9ney+jAx3EdLehc/aR23aIV/O7WD7FxpwUPymik2y5lT6Hi+mxHvocXvJiQyQIXgzhAOMtfVx//TjSk80snpnA4pkJpCWZOXNBNtrmcPClhAMo4eCQSw0HUUKBwdfJPgsFkAPek15qKIAS9A+65IAXJegbcsleJ7LfPfQKeE6KV/v7OOiST34N9P3EK+g7+W882RUKoIZDQy4lHECVQ4Mu2etBCQaGXh4/ij8w5JLtHhR3YMgVcPh4/8cOxECYjnYfG3f1kIublz9pIUsKsLOom8PVDixeLx9u7WBsnMw7nx9Fdbtpa7Tz/eYmRlp6CLQ14m9rRHB28PQ7ddx7XQqKt33IdaByLzH6Zp59/hNGJtvJ37yd2v2lmHzVvPyvn5iS0cu69ZtRXUdprKrGQJAJSV46u9zMyZGRwj4Sgy5yDD5cfQFmRPvp6/UxIVYmLuBBHw4xweijqyfArNgQOn+AkREq5+ZZeCffQWbIRapJJi9OJUEIYJDDTLD46erxMzs+DIEAKUaFz3f2YNOrTIkMYlJCTEwQSNSFMSgyk6JkuuwB5mbq0Sky6ZEiI6NF3K4ws9N0OO0+xidKJBkVJEUhx6LQ0hVgZpoOi6iQESkyMkbA7QkzO8PA8193nk7h+DWbIAjqn28bR1qyhWnjNeHukn12rjl/GOu+aubic3IordJKRk/NS2D9JzXcc+tU3v6shgirnuKKDkYNj+HGq6by/KvF3HhFHiUVWmGOaROT+ejzSm6+YgzvfFbDtAnaMU1JZSfXXDCMF9ft4/qLR1JapTFzp01K4a1PqvnjTRMH4atq7Fx23nBeeKOCGy4ZTUl/f6aMiWT9p7XcfeN43v3iMFPzNF3Skop2rrlgOKvWH+C6FSMo3deDIPuZMCqKd75q4K6rR/D+t01MGReN4uiltMbFFUsTWf15K1efmcjeQ25Ul48J2RZe/raTw+0Byo54uXmMxMwUkX09Khfm6nirKsTIGIGHdgZ5coGJKSk6PjkY5KZJRj6vCTEuRnPzVV0KF43Usa4yxLUzLFS0a2/sE5N1bKgKcOt0E18fCjImQTuyKW8Lc2mekVf3+Lh8spnKNi2KMTFFz4flPm6bZeHjMi8TUzR8RVuYS8YbWVfkYflIA1Wdmv28RIlPDga5eYqRzw6GmJCk4Ss7wvx2jIH15X4uOAH/xcEA14438PmhEBMStchMZafM8kyB9QdkVozQsa9Hi0SMjxP5pjbIpSMkvj6qMD5Wi/BUdcsszxJ5t1bhwiyR/Q7tmRsVqfJNI1w9QstDHhej4Wt7FZalCbx3ROWCTIEDGkeOXJPCt61wZRZ81wpj+0+7Dzjh3FT4oAHOS4XqPpBVgdwIge9bVS7LFNjYpjI6UkBRoNoFv0kW+LhJ5ewUgQqHAAiMsIn83CFzYZrElk6ZURECKlDrVlmSKPJFi8yyJIkap4AMjLCJbO4Mc36Kjk0dMjk2bXzq3Arz4nV83x5ihDGS5v7cv3STnhKnj3mxFuyqnSyLFhWrdSssTpT4skVmarSReo82nulmkfuqPDS8NJxP9riZnK1FIffW+7l8diQf1uu4aHEyZdWaCsqU0ZG8820LNw8P8lGxm0mZWupAeWOAcyL9vFkR4uLReqq6+uc3QeLLSh+/zRH5pl5hXP987bernJ2s8F4dg8Z/dKTK101wdQ68Uq2yqRXSrbAwVeDyEdKQ+R0XJ/BlvcqsRIF/VsnUOFXijLA8U+DK3MF4UVAZHSXycZ3MhDiBT+tU+kJQ71JxhyCsas+OVQeSAGEFLsjU0mJuHiXybZPK+HiJyzeHf/UUjiVnpPPdW+fxwtpybrh0DCVVmvrEjBljWffhXu75/Rze/qic6ZO0Qh7l+9q48rcT+NNfN2Ey6pgzPQOdzsCUiems+6CEe1bO4+0NpUyfnI4YclBU3s51l4zl+ddKufHy8ZRUtCMKCpPGxvPWxwf5482TePvTaqZP1NIYiis6uO7i0QP9KatoQZZVpubFs/7TQ9x9Yx7vfFHLtHHRqCqUVPVwzYXDWbV+P9etGEFZRRuKqjJlbAxvf1nPf107kg++qmXCSI20WnrAyVXnpvHPD+q5fLye8qPaUfykYWbez7dz+zmJfLajm3EZJjp6Qzz9ZRcdvSGmJwk8tthKVcdx/7a6yMfnNSHuPS+e2aO0PNe9R31cPieat3f1ceHM6CH2H7hv2pB50FlOnupyqjSLk+oy/ztydaewcWq1jVPpPf/384BP1dRTpHb8O7ZPGQk/SfRY8ftPjg2ePNKsuE+Of+WzFi6ZGzNofj/9uY0bzojioz2uQf7q6ouHsfqrdq5emsDew5oIweQRViS9SGykdsqgqipZlxZzZOdVxEQNTZMKqAb++WY599w6hbc/Ocj0SdrzUlpcy6VnZbLqnRquu3AYZQcchHrtTBkVwbsb27njknQ++LGDKaMjUNqdlNb5uHxuDGt+7ObKeVr/pVCIcekGPix08fsl0XxU1MekTBOCorC3McDoFAPXv9HB8EQ9l8yJIjlaz6QsEx8UOFm5LJYNhU6m5tpQVZWNe/vwBFTeybeTGKXn92fGkRKjZ9IwMx/scLDyN/F8UuRkQrYZX1DhuxInMVYdn+xy4PbJODwy/pCKKIAkCsTaJJxemXOnRHLJ7Ciae0JcPieaNT/b+esnHf9R/3haxu4krcvhp7qub+D/x2q+l+3vZsr4ePKL2gCIiTLy4/Zmbr4qj1ferqSusQ+rWUdivJlLLshj49ajLJyTybZdWqWc2Ggze/d14fKMYNOO4xJCm3Y0c+HSdH7c3sz8GSkD9mPjrPyY38TNV4wdhN9XY+ecRZn8mN/Eglmp5O/WcpriIkR+2tHCTZeNYlPBcYH7LYXtXLg0k5/6VUG2F3dgMypE2nT8XNjJjSuy2bxbWwR1AQ9bynpZPjeOn0scnJEXxc6qPgyhEFEWifJ6H2/fmcW1L9Wzbp+Pdw6AX4aPa0LUOhQkAeZm6CjrkEmwimxvDHPFOAM7GsNIikhQgYJmmTOzdexoDrNgpEJhk3a0Gm0W2HY0yFUTjZS3hjnGudh+NMg5owxsqwtyxjAjuxr68SaRbUeCXD3FTEHjcXmk/PoQZ480UN4hMylZYXdLf2lTk0B+Q5grxhvZ0Xjcge5oDHPWCD0lbTJTkhWKWo/jS9pkfjsKdjYfd5Y7m2UWp+rY0SIzPVlkT/8LQJQRKntUzsuCwg4F6NfW7lJYkiZS0K4yLV6lpFtbAKJ0sKtDYUW2xO7O44vCYSfMTYLCTpVpcQKl/XhLLBR2wwXpGokPQCdo/16YpP1tSgyUOsAqaZutPT0qy9MEiu0AWk5ziV1lXoJAsV1hUrREdZ9KSFWx6QTKHDK/SZbY26tglLT52utQmBMnUupQyIsSqfUo+GSI0EF5r8yyRB37nFoxFoCqPpnpsToqnWFiY2WOerXF1CIJHHIHmBFtptatEOxfe/f2KsyOkyhzyGSZVapd/TnKOgFRgMMdQbYdPC5BtO2gh/Mm26io6WPS6Ch2lNq15zFSz8+FXVyRHsm26uP5htuqfSyYLLC9KczMVImifrm3aKPAAYfK2WEo7Dg+/oUdKvMTho5/hE777KJMgXYfXD8CCrtg1T6VvDh1yPzGmDQllYtzdEQaBP4wTqCwQ+W1gyqjYlR+aFRwB1WKu1W8IfDLCm1eGBuj0heEaQkC8xM1ZZQH8+ChMvjDGIGtbSohFZo8sLMDIvQq+3pBkv53giGNzS5cnhA/5jeyYFbagP9JTEll45bD3HLNVH7admQAv2dvM84+Py+/UURmWhSbd9SxbEEu0dEWNm6u4ZZrZ/DTNk1y06zz8VN+AyvOHsHGbfUsnJ3OtsJmIiwSkTYDP+Y3cPOV49i0o2nA/qYdTaw4ezg/5jewYFYapVXdOF3BAf9802Wj+XlnC0adij+g8POuVi5clslPO1qZPz2ZXXu7CYYVYqIMbNrVzu8uzmF3pYNQWLtBt+zp4fyFSfxc2MXc5HgKDmgqGdFWiS2VfVy3OI49h70Ew9r4Z8breeDCBG56pZHKjj7CCoRkFbNeoMmpcPd58eyu9WEyaP5h234P502JZO8RL5OGWYbYf+BXns/T7X+nbatyMT3XOmh+y+oDXDJNGeKvLvDLbN7byxl5Eezcp+1FYiIkkuNNxGriPwiCQFaykbqmPqZGDa2a6ewL8uO2em65Ko9N2xsGPi+p7OHs+SlsKmhn/rREthd3ovg8xEbq2Vzs4PpzU9hSqil76Vx+tu13c97USDZXuZg72kpBjYdInYLNJLLlgIdr5kay7aDWf1FV2Vbt49wJVoYn6shLN3D/+x1cMC2CGKvElv1urp0fzbYDHixmCV9Q5WBLgOeuTaXkiIcZI6z85aN2zpwYQVNPkA92Ouh2hfm+rI+QDF3OMFaTyPLpUcgKPHZpErtrveglgQumRfLEZ528vTKDhz9qp80R4sqXGhmRbOS8KZFs3ef+j8/p6Qj0CU0QBHV8bhTFn52Fp5+9ZTVrNd9TMxLocfiJtB0nC8ZGm7jvqSLyi1p56/klGPQiy676mr/9aT7XX543UFMeNHJJlDk8iGwHGlmko72PpATzIPvuAEPIecfwnd0+khIs/XjtjdTZ69LwJ5AXLQaVzh4/SfHmgZr1YV+flozfX1P+GLkq1NWN1SQNJOPb+0JEWCTCXS6NnGfT0ekMkRCp4+imwxS1KZgkCCmQYhVRVBifqgOEQeSweLNAn0eTS7PooMenEm8RCRh1RBwj8wXVAbJUQoQ4iJx3jCzV41eJNJ2AdyvE6ZUh+ChBGUT+O9afHp9K3Ankv26fSpxRwOFXBpHbInXQ7VWIMx8n/1l00NGr5e46/Cr904UnBFZVGSDnHSP/GVEGyHy/JAu6AwpRBvE4/hjZTlCP44Mq/dwJnG6FKAP0BCDWoOFVwPILMp8zqG2c/bKATxaI1AvYAyox/XhZAbMkDJD5nCEVVZEAQdsU95P/ovUQVBQQBEwi9IYgxiDQF1KRVHEQvjeoYhRF+rmdGEXoC6tE6UUO2k2Y+hVgAoqKRRJxhWVmJrno534Mst/g0mGWtPH3K/DyYS/3X5HI8sm24+Q8o0YGzVwwkh5nkMhfkKtioww0bDowhDx6tKyTBKt0wvyCzh0YMv5mCTr7wsSZxEHj7w6qg8iUPhnePaJS1APPzpRItoiD5tcnQ5Rx6Px+VSez/pBCmlUgwQRZEQJpFpUks0herEBdn4pPhp6ASopBYUQEuMICcUZtrM2SytZ2eOMQRBngppECcxIFAoLE3K9Dv3oEOjPVRuGXF5OcaB3kfzxKFLExFjo63SQmWAfInWvfK2XNW8V8+fYVGPQSZ1/xLg/ctZAV5+X1439Bhg50amTQfjLTMf8ph4K4vSeSlQeT8zR/6MNm0F7mjpFNj/lDV5+vH6877g8dfmyGkIb3hgf8Yaw5NIhseozM1FbeTKT5ONn0mD+MN3ECuVkmoqWTHw4FMUga4VMQINkmETcmnoQo/eD7uU8mKcmC3RU+Tp7ut28alTFkHk5HoP9ntv9PRKBVX2jI/Eb6vcfJx7/wV47oaJJ+sf5CP5k+ejDB85ona7jy8klccu7QSpMhjJhMOjq6PIPIrDp/F532AElxpoH9QLC7fRA5LyFGj8evEGqyD9zPiVE67O4wESYJxePDHVA1sv4v+x+WNbxLJjFSx7+29vJ+kZvv7stCFRiE9yra/XSi/Z/KXfzjy04So3QMTzaSEKljbKaJ1Fg9o9JMBEIK+xr9qCpEmyAvw4RJL/bvTyQ6ekOUHfXx9FddqCo8dXkSI1NNJMaZiL+u8jSJ8Ndsjz/++GN2Z5CxIyJZ/V4tP+5ow2ySuPZPhaw4K4cr7thMl93H7r0d/H1NOV5fiKde2cuzD8/lvc8PUVDSzm/PHsGdj2xlyoQk7npkM109XgpLWnnypd2cNT+dpVd+zYjsaJ57fS8btzViMup46Jkils5N4/I7t9Bl97N7byer1lWxdO5QvM2i58o7f+a3Z+dw2e0/0WX3UVjWwQdf1jJrciLLrvmB3Owonn+jio3bmzEbJa65t4AVZ2Zy5d3b6bL7qaix89TrNSybk8g5txYwPNPGi+/UUlHjRFbgpqcPccEZcVz3lCb9Un7IzbNfdbJkQgQX/r2O4clG3t3u4JBDZWSsxDPFQa4ep+eRnQECskBRa5g1pQEWZOm46ksPw6JFNhwIsak+jEkS+ONWP2cN03HPZh+dHpXS1jAv7/axKMfAJRv6yI2XWF3oY8uRIGa9wMqvXJw32sjftnqps8uUNIf4504vi4cbufg9BzkxEmv2+NlSF8KkF7j9Gzdn5+i4faMXu1+lrF3mlRKtP49u9xFpFHmtLMC2hjAmncCdG738JkfHHT/66PFp+DWlAeani1z9rZ/sKJG15UHyG8MYdQJr9oaYliRxd34Ahx/KuxReqwxxRpLA77aFyYoQeataZmebglFUeXCPzNI0kfuKZBxBqLSrfN+oMiFW4JYCmUybwNu1KgUdmlrGg6UqS1IEHihRNLwD3j8KM+Lg9hLItMB79ZpesyDAX6pgURI8VKltRo+4BN6qU5kZJ/BfZQoZFoEPG1WqekEU4MkDCvMTBZ7YL+MKwcE+lU+awkyJkXi4KkiqWWBzp0xBt4JBEni2OszceJGnq0P4ZYEDLoXPW0JMjpZ49ICfJKPAt+0hKpwyBlFg9RE/M2N1bGgO0BOSafSF2NrtYaTNwBuNDrKt8FmzTKlDwSDB8zUh5sRLvHw4SG9I5bBH5pu2AKlmka8OeshNNrJ6k4PN+z2YDCK3vtnORWemcO1D5XT1hiiq6uW59Uc4c3YCtzxTg9Uocuv6Tl7f5iQzTscjP/SxOEvHHT/5sPtU9nbIrCkLMCcRbtoWJjNC5K0ahZ3tKkZJYM0Bhenxg8d/Xa3KnET4faFKpk3g+f0qP7XCneNFnihThszvD40qE+IEbtoWGmR/WjwUd6m8MFtiwxEFb1iLbH94RGVdjcIXDSr77Cr5bSrfNMHaQ/BBHXzbrLL2kEb23NerbfRXzRB4uEzrz4Y6lQO96q+eAy1JAhu+ruXS83K5bOVGunp8FJa189HXh5g1NZ1FK9YzMieOZ14pYO27pXz01X7MJj1/+N1Mrr3jCxbOHcaTq/L56vv9rDhvPIsuXMvI4fE8s3o7ZZWtKIrKFbd/z8Xn5nLJbd/S1eOj8mAXj7+4h7MWZrHk8i/IHRbNs6+V8cO2BswmHVfd8RO/PWcEl63ciMcbYkdxO3//VzlnLchg2dXfk5sdybtf1PL5jw2YTBLX3ruDFWdmceXd23H0Bdi1t4dn3jjImWckc9ZN+eRmWXjx3aP8VNiN2Shyw18quHBRMo+9dpjDbQGKaz28+FUHSyZGcsHfDjMy2cg/f+hmc5Ubk17klteaOW+Ejr9t8xJhFGl3q3xYGWDFOCMPfu8i2iKxemM/3iByy+vNnD8jmhtfrqe7LzzIvjUpClEcvOaL+n9H1u8UlQFPQSI8VTt5dcFTBOBOSdL7nyt5nJJc+O/YPiUxcKhxNXyKjbl8io188OT4rp4AN/5z8PwuHmlixeo2chL1vLK5l80HvJj0Ii/+0MOccZFc/0wt3c4we6rdPP9pC5cuShh0L9S3BzjYHOScRZlDvu+rnxuJjzGx+NLPyB0Ww7P/KuWHrfWYDSpX31tIbYOLlY+W4AvIlB2w8/z7TSybHst591QyPN3MPz9qZu8hF6oKt7zWzPJpUdy4ppEel8yBJj/PfGdn8VgLK/7ZQk6igVc2Odh+yIdeErjtnU4yY3XcvaGbq+ZGcbA1yIvfd7NkvI2Lnm8kJ9HIx7udfF3cN/C8HLOfHmcgL8tMQ1eAm5fE88zXnbTaQ6zZ2M0/v+3i44JePi/spaM3xJofe3j+227Wbraz+sce1m9z8Nw33ZTW+UiO0pGbbGBkqolbXm9m+fQoXvmh+3QO9K/ZBEFQp4yL4erzszljSiImo0RmqoWCsm6WLRrBnopOstO03LhvtzTwyPMl/O2+WVyzYhT1zccF81etP8CqtaU8/dB8zl2mVUqrb+xj2rgIft7ZxLzpKYPwBUWNLJqTxp6KLrLTtYIL9W0+Zk5KZnNB8wl4GztL2lkyN12rEX8M32Bn2oR4tuxq5YxpSQOC/BlJRgpKu1g8O5niym6y0qzIfjcNrT6mjY9ha1EXc6fE0dDqJdxtJyPZROF+FwsnRVFa4yIz0YRsd9PQHWRqjoX8/W5mj7JQ8f1hBETSbAIl7Qpz0iQqumSGxUmoCDS7VCYlSRQ0hZmeKtHYE0IVhEH4Gp9IZpT2ht3UpzA5RceOhhCzsnQ0ObV7Mz1SZE9zmHnZeso7wqRHaSHBJqfM5FQ9O44GmZEs0nysoEmEyJ6WMDMTBMo7ZNIjNIdzrD+FrWGmpehodh3HF7fKzEmVhuAnxAnsapaZliIOFEBJtQkUNQaZnaKjskshzabhW9wqYyJUdncoTI3XCpAAJBsU9vbAzESBfQ6VlH4FwVaXzLgYiaIuVStQ0o9PMiqU2wVmJgjs61VJ7VemauxVGRcFxT0wKQbafJq/T7FAhQOmx8F+J6SYIRSGtoDAmEgtZWNiNLT7QZa1SOe+XpgSK3CwTyVSp81Xp19lZIRIRa/C2EiBroCMIIgkGmF/n8qkaJHlO08eWTrd/rOt6AKJVq8mRxhrgC3tMCEGGtyQZtVOINoDAuOjhYH7p80PKzarv3oE+pJzh2O16Fn16DwO1NrJTtf8YXOPnmmT09i8/QjzZmWxKf8I1/3hSz5ddymyrLBk/nD2lDWTnRFDcUUH16z8mI/fvAoBmDc7m/omBwR6yEqPZOeeVpbMy2TP3nayMyJRwkHqm13MmJTE5p1NzJuROsh/7ixuZckZGewp7yAzSTsBq292M2NiApt3tTBvWjJHGxwgCGSmWiko7WTx7BSKK7vJTJRQVWho8zB9fCxbdncya6yRxjYtkpiRbGZXhYNF0+Mo2lRHerwWBWzsCjB1uJX8fS5mDTPSdKyATpyO3bVeZgku9raFBwoqHfNvxYqNGbkWmrpDx/GHfSycHEPpEc9AAalj9slOxWSUkPs3bJIkIEs2TCYdwaCM1H9iI8sqer2APyBjNIiD8IIgDt0An45An8TGvxeBDoYUpP4NrayoJJ5b8N/uw+n2/799ev8wFoyzUVbjIjlGR0tPiGZHiCnZZvbW+/lNnpXWXm0ujz1f8/MiSbx+33/UP57eQJ/QBEFQ33p4NPe9fASnRys1OWmkjbUPjeHZ9xq4+qxkfiyyU3HIzZZSB+NzrLz36Bieea+JMyZqx2o7K5zcf3kaV/21mqojHq45K4mMRCMLJkXx/o8d3HNZOs982MwZeVoy086qPh7543T++Ew5994wiq17tHzkpfOG8ezaKlY9PJO/ralgwYxkAPbua+P2K3P549/3cu/vRrO1SMMvmBzJ828f4bl7x/H0G7XMm6pJ3mzf3cb912Rx/8uHufuKDLaV9WIIhpg5OoJVX7bxjxszefbTVs4YF4EUCLLtgId7lyfw4Adt3HlOPDsOeMDhZlaWgdUFXp48y8YLO7zMThZRVShsDvNfs8w8stXD7dPNFDcF8IVhTrqOV0sDPDbfzD+L/czN1KGoArubw9w5w8Sj+T7+MNPEzv585DMy9bxS7OOvi6y8WeZjbD+JcHdziLtmmnl0m5eV003s7M93npuh518lfh5faOHlPT5mpOkH4Z/f5eXKPCO7mjT7czJ0/KskwJ9n6nilLMSMFG3jvqdN5vYpBl4sDXFtnoGC/hLcc9N1rK8IcN9MI6tLA8xM1fpT1Brm9xP1/K0wyM0TDBT259TOTpX46GCQP0zSs6YixIxkzX5xa4hb8/Q8VRLmpnESu9u1RWdGgsCbB2QenKLj1QMy0xO057raoXBlrsTf98r8brREUYeGnxqtsP4w3J8nsLZGqyIoibCnS+WW0SL/qFS4IVdkT5eKSVTJixVYX6sOwouCSnEX3DxK4JkqletzBYo7FRRVYHocvH1E5d5xAm8cVpkUKRBWYGunysUZAh81qvzc8R971E63/5e2PEXP2EgJg6hQpca8BgAAIABJREFU6VS4JF3Pm0eDXJSmp8opY5RUxkaKfNYsc8twHRsaw0yMFnls/6+fwnHNhcOpOGhn/+FeUhMtzJuexKxJiSyalcSza/fx93unctNDBZRU9XDVBTnYzCL/dd0o7n6qjPt+N4atRR2IKFjMEiufKOOD52axs7SbeVPj0YkyW4q6efDmkdzz7D7uuW4E24q7sUZYmTU5gefW7ufFP0/nyX9VMX96EqLeRH5RK4/cMZW7Ht/J/bdNZmdRI/6AzKLZKTy3dh8v/nkGT66pZNHMOMJhle3FnTx021jNf944mvzCJsKyysLpcbzwdh3P3TuWF9+sYepo7cVgZ4WT+6/O5P5XjnD3ihS2VWj69wsmRrHq0xb+ceswVn9Qz6Qc7c244KCHey9M5C/vtfD7pTFsr9bejOePtvDSRjtPX53Kc990MbefRFhQ4+He8xN44Wcn15yVRH55v/1JUbz4cQvP/Wks/3jrKGdM1gpj7Nzr4IEbc7n3hYP88dph5GsEBxZMj+X979q4/8YRg/z/jtIe/nrn2CFR7FNuoE+VBiIOpUz9J7ShT/Wdx6QO/0c2/gP7GzV08peBouJuoiMkNmzuQhLh7FmxLLqz8n/8fafb/3c78pcUHvrWyR1nxrKzVkvNmpdr4uXNTp5aEcfaAhd5GdqLaEGtj3vOjuWhT7rYsNt1mkT4a7czZ8ay95CbWeMjOdTo47kPGnnpoyY67UH+/nYD3+/qYViqicdvHsauSucp7aQlGFk+N47H1jVw0/Lk/8VfcLqdbv+ZtrUT8rugyqnS/os6AJIACUbIixK4PVdi/RGVsf0nA/v75IEN37nJBvb1nwyMi5T4pi3IdVlGNraHyOzP7TvoCnNRqpF3Gv1clKofwI+PlPiqNYigGChweMm1GhlhNdAbklkcb2Vrt4cpkSYqXAEafEFa/WESDBLXpUeTb/cyzKJFCus8AQ64g8TqRZYnRXK4n9Q4wmKg1OljUbyVLd2eAfxRb5DFcVa+6XSxINY6gN/T60MnwGWpURT3+gbwXYEA8+MsfN7uZkm8mUMe7QVvaozAd+0Brsow83Wbn9ER2vgc9YU4P8XAU9U+ugMqeVESRhFmxep4subk0a7/m1p2uo2XHpnFnU/s5pyF6dz11yLau3ykJ5spruxmwrlfYbPouPmyXGZMTKCksvOkdqaOi2XetARu+UsJi2aevHDE6Xa6/d/cPtvWzatftWIxSqz+7HiBEp0kYDWJ/OvOYRQedHPfJak89NpRbj8rnh0HtZPheWNsvPNzF/edG8vzP9iZm6sdNRbU+rhneQIPfdTJXWfFDnoBe3OHi0cuT+G5zzuYO1Y7eX71y2bKm0PEWyUeWBZBp0tGEATmxKu8XOTj1qlmHvjZQ02PzLm5BlKscPMUM4/m+/j9NCMFjSFeKw1w5Rgdhx0qD88ysKY8xIxkEQnY1SazcqKeJ4uC3Jynp7BNRq8oTIwXWXfweACopFNhWKyEzSDw4BwTj+/wc9tkA6UdCkFFHRJQWzjCSFiBwqYQd8+x8PDPHm6faaa4SyWkqHiDKs9scfHnpREUN4eYm2Pkga9Pvd/6P9FOR6BPaIIgqF8+m8fs8VE0dWiLmV4n8NsH9uEPKiydHsPvzk8hJc5IfZufaWMi2FLsYE7ecXxGkonCCgcLJ0dTUu2mttnLI2/U8/dbc7h4fixbypzMzYs8XsM90Uhpp55FMxIprrKTna5FJpq6VGZMTGBTv3pGQ4umRJAeBztKu1g6J4k9VXaGpWn4ow12po6NZvPubs6YEktj/44nzSazs6KXJdNiKDnoIjvFhNzrpb4jyLRcK1sq+pg7NoKmriB4fKTF6dlV42XROCuldT6yEgyEGnpo6FWYkqYjvy7IrCwDje0BQCAtUmR3c4gFWXr2tsmkWrR7qqlPYVKSxPbGMLPSdLR6VFS0lImiljDzM3VUdClkRWsbqcZehckpEvkNWnS4xaXZSYsUKWoOMz9LR0VHmPTIfrxTYXKyxPaGMDPTdbQcS+Hox8/LkNjbLpMZJQ7C5x8JMDVJGkjJSLMJ7GmTWZijKXf88sh1QpzAjmaZmSkn4FvCzE6VqOhSyOhP+WhyqeTFQEGrwvRkkdZ+fLJJpbhDYW6KSGWPSnp/ykeTU2Z8rMiudpVpiQKtnn68WaW0C+YkCVTZVdKsGr7BESYvRqCwC6bGaSkcggApFk0pYnaiQJVDk1ZTZIVWr8D4GAbhUVUN3wOzE2CfQ0sZEdBSTsZHw+5umBILb9aofN8GL00RaPYJTI+FhVu0MY4zwMoRInPjRUodKjkWA139pKgEo8D+PoVJUSIHnBBv0vrfGVAZYRWpcsqMtEn09Ad24owC1S6ZvEiJBm+YxH6SaKdfZYRNZFObDpsksdvhY7/bT7ROwiKJ+BWFtkAYqySSYzEwIdLIKKuRw54g2RZtow0QrZfY0uOm1hNkeaKNOIN2UmEPhckw6an1BBl2Ar7eG2SE1UCTP0SsXkdYVXm+rpuHRyTQ4AsNwicZVep8YUZZ9TT4wsQZtPszSIBhFon9rjCjbDq6+2VHUs0K1S6FvCiJLV0htneFafQpnJus54tWbfP9znQr3QEVnaCQYDo+nrVuhSSTiE6UaffDqAiBvb0K46NEuoMqt5UEf/UIdF/51Wwv7mDZGansqegiOtLAbY/sorrOye8uySU3O5JLzxlGQ6u2UchM1LOjpIulc5LZU9nDsHQbSjhEfYuH6XmxvLC+hlXv1PLCnyYxcaSVjGQzO8p6WDorgeJ9vWSnWdCZIzja7GbGhHg2FbQxf3oSDa1uJIOFrDQb+UVtnDkvnaLyTjKT9AgCHG1yM2NiPJsKNLWNhsYeVBUyU639/UliT6WdrHjNL9W3eJk+PprNRd3MyjEc989JJgoqnSyeGk3p/l4yE7X84/p2P9NG2dhS5mRWmkhTjzZ3GXEGdlV7WJhroPSon6x47X5r6A4xdZiJHbUBZo48nsKREa9nV7WHZUvTKKl2k52iRc7q2wJMG21ja7WXMybH0NR+LKXExO59LhZOi6N4v5Nh/TleR1t9zMiLHeL/M5PNIIiYTScUSDkdgf7vmT1FBPrT75q5b00dHz0xhqwkE/VtAZb9UYtAJ0TpeGllNsNTTWQkGCnY72LhMP3AegrQ0BVkcpLA1oNe5uSaabb3pwDF6tjTGGT+aOuQ+2f6+Gi2VrmYM9pGU7fWr2SPk6/3+Wiyy7xT7CHKLJKXqudAc4CmPo3DMj9Lz5V5RhKtIskWlaIWmfmZuoH1cdcRP08VhfjpYhNF7QozkiRaPFqtghSbSHG7wtxUkYpuhQybSCgQptmNluLYrjI1AZZ8HeL1s81MTNJR1CozL0NLicyKOZ6i+cv9QEdYAFUgPUpkd1OIBdl6ytrCZKeaEIAGh4xBgnu+clLXI3PdTCtrdmg+5cPr41g4wsjeLpXM2P7x6QkxNcvIthofc0ZbaXYcH89dtT4WjbORdHvtaRLhr9kef/zxx3rdYRJj9Kz7po3d+/pIijOwpdjBxpcmsP47TdO58rCbt75tY9mMWO556TBZSSbWfdc+UJN91SfNLJ0aw90vHyEp1oDZKLHq02Z+Mz2Gu1fXMTLDzFs/dLD7gAubSeKVz1tYPCuJO5/ci9sjU1Ht5L1v6lk6J5Vr7s1ndE40r2+oYVdZJ1E2ifuereCiZenc8bcyXJ4wFdW9bNzZzswJsdzwyF5GZ9t48/NGCisc2Izw0Jo6LpyfwN2ranH5ZGobvKz9oZOlk6O5eVUdI9NNvPVTF3VtWjWxhze0c/60KO55tw2PX6G6ycf6Eh+LRxhZ+WUfuXESn+0LUNAUwmoQeGKbl3NHGnlwswdUKO+QeX9fkIXZeu76ycfwWJFva0PsbJKxGgT+ut3HObkGnsj34Qyo7O+Uea8ywKJhBu743s2oeB3vVgYoaQ1j1Qs8sd3LObkG1pQEaHOp7O+Seb8ywMJsPXds9JAbK/J+VXAQ/twReh7a6sMTQsPv0/Av7/ETYxL48GCI0g4Zq17gqd0Bzhqu55F8P56QyoFumQ/2B5mfLnH35gDDY0Q+PBCktF3GYhD46KC2yX+0IIAnBAd7FDZUh5iXKnHvjiDDo0Q21IQp61Sw6lT+USpzZqbEE3tCeMJw0KGyo0VhUoLIn3aHyYkU+eSwzN5ulQi9wLPlYZZlSPytTMYThupela8bFGYlCPy5VGFYhMBn9Sp1Li0a/Pw+haWpIk+Vy3jDAs1u2HBUZW7iYPyhPhW9KPDCPoWlqQJPVSoEZKjuE/i8UWVOosAj5ZoKxPv1MDEaUswiqw8pLEzU0jgAZsUJ5HeqmHXw6hEFWYEie5gal4JJElhfH2R2nI7PW4LYg9DgVdjSGWJStI7VR/ykmyU2dwU55JYxSQLvNwaYEavj/cYgHhnqvQqbOkNMitGxoSlAsklPeyBMnF4iy2zgoCfA2YkROIIyk6LMWHUiZU4/o2xGvut0EaWX2O3wUunyYxQEKvp8BBU46A6iAq2BMEUOH6OsRj5qc5Jg1LGn10eDL4RRFCjs9TLcauDLdhcBVaXaHaAjEGZmjIWPWgfjrTqBL9o9TIoy8kmrm4Ci0uIPU+0OMdym47V6Hykmka2dAYodIZxhlW/bQ8yM0/FZS5DJ0ToavArOkEJvvzLM6AiJnztDdAQ0JZRj4/na0SA+GVp9Kt+1hZkaK/F8TYgMi0b6POz+9UmE86Yncc/f9/Db32Rz+6OFhGWV3OxI4mOMPHDrBFY+upvRw6NYu+EQu8o6ibTpufcfe1mxLJM//LUYtyfMvtpe1n5Sx5lnJPOn5yq5YcUwHnyxErc3jMWs44EX9nPhklTueqoSlzfM4SY/a96v5jfz0rj23gJGD49k7YZadpV1YrMauPfJXfz27BxWPrIDRVYoqepm7UeH+M38NK69dwejh0fx5U+NbNrVjs2i5/5ny7nozAzu+GspPn+Y8uo+3vyiiTNnJ3DDI+WMybLw5rfH/flDrx7hgvkJvPRxM01dQSrrPLz1QwfLpkVz87O1jEkz8tZmO0WHvNhMEg9/0MryKTbufb8dt1+lqinA29sdLMmz8ew33cRFSKzfZqeo1ovNKPLwhnYunJfA3auP4PYpVB7xsO77dpZNj+Hmv9cwMsvKm180U1jZi82i47VPm1g4LY67/rEfl0+m4pCLdZ838pu5SVx/ov+36Iiw6YiwnlCl8JQkwlMREU+24f5PBeBOVgHw37X9KwUDT5IXXXKgj1v+Xk1GohGzURqYr2MvXTeelcD3e5z8VOqkzR7kHx+3sHxqBPf3r6dVjX7Wb7WzZIyF29Z3kJts5O0dToqO+LEaRd4rcDF7lIV73xt8/yydFMXNqxsYlWbirc09FB3yECEqPL3JxVPnR7PjiJ/xKQYcXhWLqPLaeTY214VYOd3M59UBilvDRBoEntjuY1mOnjs2eukNqHgDKrvbZUySyOuVIXKiRTZUh6lzKoiCwNPFQX6TreOxwiDeMDQ4FT6olZmXKvGn3WFsBoHtrQqIAiadwJO7/Jw9XM8j2/2EFa12won7gU11YbYdDWEzCDy2xcs5Iw2s/NpFTXeYFqfCOyVerphi4YMyHzEWEW9QpcGuzUVlS4jleWZe2e6mpTfMvpYg7xS6WDzGwu/f62J0qpG3fjGef/m8m+VTIljzs+M0ifDXbIIgqDWfzCQpxjC4xrojRGLsYFmZY7IvHV2BAdmXAXxPQKvJ7gph65etef6jZr7a0c07D45keJp5EN5piiMp3qTViLdob/o+xXhSWTqT5B+Qofklvtfh6pdh0mrQH5NhMoW9Q/ov272aLE6Ejs7eEAlROjx+BaXPq/W/X1bG4ZaxmUSC9V24gwzIxsVbBVxOTf7plzJzDp+CCU1G6kQZO607woBsXIJFpC+kYjMMlbGLNXFSGbuTydJ1eRTiT5Sl86rEmwV6/QpW/WB8qz1InGmwLF2PTyU5Wj8Ef0oZO5dCwgmyZZ4QREqqJolnYgBvQqHHj9afX+BdPmWwzNkxvHhcxs4Z1FQ5APrc4aGyaKKmr3wiXlUUvGFBk137JV5VMesG44395ZA9YQZk2p6qUpkeA8uSRcwSOIKaescFO7R7Nsuiyc4ZRAgoUNGrsmqikXijiEkEZwiiDQLdfjD9QpbOphNwhhRs0sll7/yyPEjGzqYTqOwxYZNEgv2+yiAIuGWFCJ2EV1Yw9ud2HpPJaw+E2GX3UuUKEFZVLk2JJNtsoDkQ5odOF3/IjkUShEGyekPshxUi9Mft77J76QiGuTglagg+UqfgllUidCKesDLwew1SEJtepNMvk98dZJc9NCAFeGayjuUpRtxhlbCick+ll1WTLNxWph3XfjjDSkABnaC9YBwbT1dIxSyBXpLxycJg2UEVLtkV+NUj0IGD1w3IwNl7AwMbsz63/xQymgqdPYF+/xYgwqJHCQeHyGiu/aSOF9bXsHXdXARRJCnOqPk3qw7JFInbGx4kS+fxhpGM1n5ZOh9J8RbsvX4s+jAnlbFzukHolyUd8J8BLIJ2lHNMBrGjJ0CsFBzsz/tlPXu6fb+QFZOJidDT6QgSqwRPkLELk2BUcXhkbMdkOgMKMVZJ802RuiGyd6mj4gatF8fsd8siCTGGwbJ6vcqg8QFNxjEuxjzE/1vNEiriANnw+GSejkD/t8yeJAJ9+9MHGZVq5KpliQPzZXeFGHVlCQC5aSZSYvXoJE3LfltlHxsfHk5WvB6b6biMXZQQPqmMXZdfIClKN+T+iUu0DsjIHrt/DG09dHsUEmwSDq+CzajNc2+bl2jz0PUxGJJ5cqefTUdCeMMqfz7DzIVZAkVtMo8UBHn3bBNpNm29UxUFi04Ysn6FfGFtfTFq60tBm8zWFpUXz7Jg0QsDMrW9fpUIE5xsPxDSSwgI6ESVZ3b4+LZGU9wKKHDZJDM3zLQSYxFpdYaZ/3I3O/8rkcnPaCScqgeTSbBJ9CoStmOytn7t+ep0ySTG6gePp0smMdpA4spDpyPQv2Z7/PHHH7vnigz+/OpRPL4whxq9rPu2nUVTY/jzmiOkJ5n44McOCqv6iInQ8edXj3DWrDgefr0Oj0/mUKOXt75rY8HEKG5/8TAj0sx8sKmLwv0ulkyJZuMeO5tLeympduMLKBxq8vHWDx0sOSONWx8rZWR2BO9908Cu8h5iY8zc/49izlucwf3/KMHtDVFd52TDt3XMnZzArY+WMDI7gne/rmfX3m5ibRIPrjrIOfMTeXDVQTxemZp6N29+2cSiqTGsfKaG3AwLH/zYQenBPiItEo+80/T/sPee8XEV1///++7d3rTqvduS5SJZsty7KaFjAqEGCAkEkkAIJZAAoQQSQgkQauih2aYbTMddLrIty1VyUbN6l3al7XvL/8FdSwibX+D1he/3wZ/z8Oqj2blzZ+acOXM+53BquYs7Xm3DF5RpaA/w8vpBFhbZuO7lDsalmFix2U1VvZ8Ys8A9q72cXGDk7i+9+EMKdQMKb+wNMS/bwE2f+8iPE1l1MEJlu0SMSeBvmwKckGvgb5uDBCJQN6idROdl6vnjaj+5Lh3v1IbZ0S7hMuu4d4Ofk/IN/HNrAHdQpX5A5o19IeZlGbj5Sx/jYnW8XRtmR4eEy6Tj3go/J+YZ+FtFAF94LP6u9X4ynSLvHIiwo0PGZRa4ryLAogyBf2yL4I+oNLoVVhyUmJMucndFkCynyLuHIlR1ysSYBB7eFmBRlp77K8P4IyoNboXlByRmpwrcVhEmN0bH+3WaJzvGKPDkrhDz0kQeqIoQiECjR2VFXYTZKTruqIyQ6xRY2ahQ3avi1Ks8vFtmYZrAw7tl/BI0Dql83CxTlihwV5VMjkPgwyMKu/pU7KLKozUqC5Lh0RoVvwwtPpV3mmBmIty9SyHHDqtaVGoHtY3ukRplDL7Zq/LOEVXD79bwH7fCrkFwGuCxAyplcfDIAZgdD+0B+LBde/bYIZUj0XomZ6fpOC1NR71X5ZwMgS19Kjk2kfaAyhfdEiUxOp5sCJNiFtjYJ3HIK2PTC7zREqYsVuTdtjBeWaUjqLC2V2KSU+T5I0FSTWj4YRm7XuC15jD5ZhOf9PoIKyq9YZnt7gDjrEY+7vbiMujY6Q5QOein3h/mk55hqj1BAorCnFgrnSEJn6ww0W5gfb8PWYW9QyGGJAWLKLC2z8s4m5FPer1j2s+3Gnina4gEo0i1J8juoSCZFgPb3AGK7KYx+GpPkHybnuXtXpJMItvdQRr9EWIMKstbA9R4ZWqHJZYkGJnkNAAK2wZlKnolYgwCH3SEiagwJUbP2l7N6PREVIKySndI4bOvjGeaRWBdr0TdsILVAC81ScyM0/Fik0QgolA58MN7oIe8YRbOSOGq2zZRkBvDq+/Xs3lnN/ExRm55oIozFmdwywM78QYkDjZ6eO39BhZMT+TXd26jIMfBqx80sXW3Fvrxp3/u5fQFqfzpkb3kZtrx+iL85YmDXHZWBr//+z7GZ9t5fVUr1Qc8OG0Gbn2wWmv/wZ14/RKHmoZ5bvkBTpibwa9uXU9hrosVH9WxcUc3cU4jtz442p9AKMKB+mFeeLuRJTOTufrOHRTkOHhjVTNbdg/gchq57V8HOG1+Evf8u44hrzSyny8qi+W3Dx9mfJqJZWt6qawdxmXXc8eLzZw6M5b7XmvF41eo6wjxn3X9LJzk4MaX28hNMrJii4dt9QFcVpG73u7h5BIHd77ZhS+kUNcZ4j/rBlg40c7tb7STmWQe0Rcuu57bnz/CaQuSuO2JOnwBhcPNfl5c2cbi6XH89r79jM+28cbH7WzdM0is08DTbx5h0fQE/vFiHRFJpbkjwLJP2lg0I/E4WTh+9EB/K/maBzocUbjuwYNcdnISoijw4aYBdtf5SHQZeDF6Q3327Fh+Uu5iYraVzv4InYMRet1h8lNMrNg8yLY6Hy6byIMf9LJkoo073+vT5kNXmFc2DbGwyML1r3SRnzx2/ty/socTS5zc8UYH/qBMXUeQNza6mZtn4vr33IxLEHmz2s+25jAOncK9GwKclG/gyg+9fFof4e3aEA9sCZDl1OEyCxhEzVHVNCAxLlbksyMy3X6FinYFv6TS7FFYfkhidqqO2zeHyXEKrKyX2N+vYNMzor/u3iGRZBFQBFheG2Fuhp5b1wXIden4qE5iW4d8jD0QkqGuX+aGT3y4QyqJNoF7llgxGHW8UuWndVDmlR0+RJ1AZXOYvAQ9n9ZqYUzXLbBz/XtuxicbWLHDy7amIC6rjrs+HOAnk6w88Okgbv9XxrPQwvWvd3GwM/K97o8/kgiPI6b2PiY7FQr12nWM36lgau8j3xgmuX+ASQbteXL/AEU2GUNNM5P0QcYHtBOhTx/GUNtCkTFEcmcXk9COfildQS6aIPJqVQDJLDPeL0fxEXR7aykyB0hoa6IIrf2EfoEJzhAcOsBEu598RSvZHY6RMPR0MDERksMDTI7V2k8OepgYD8aOXqbEqRSatMnmS9RhHvQyKVFPGmGmJAiIko50o8SkZD2WYIApySJFsSBIIn6fAZsgMznVQIZdpThNj5AeQ06mieJ+EVeWi9IJOkqyzagqqHFBEiY4KWkXyS92EIwLIykqBVkmpoaHSZ7iYpp/iJLUqOs1NkxigZ2SDg/jJtrxObQTfl6mieKhYeLyYigeFJmYqsWKqc4QCbl2SloE8grtDNs0fH6mkZIhkYRcJ6X9IlOjrNuj+MldOsYV2fDZo6SxTCMlw17SJzkoD/oojeLF1hDpk+xM6R5kfK4Zv0kzYsan6Sn26kjKsVHmDjA1muVDcEZIzRApyQ4yIddMyKzhJ6TqKQnqSMs2Uz4UYmq0tLhoC5OeZWJqT5CiPBNhm4YvjBeZGgyTlmlimjdMSbLmmbB1R0hLN1LSG6Iw20jYos2TSUk6SuUImXkmysMRipNFVEVFZ5dJyzRQMhCmMNdA2C6jU1UK4nUUByVSMgyU+iWmJOpQIwqqWSUxSWRKikR+qh6/qN0kjIvXMTkgsz8E+TEyM7O19F4Gi0p6ko4pboV10TLnpYkqhTEqk/2wbVCh2AXlCdo42wyQFyNTHAsl8QrmqEe/0CnTHlIZFxOkxA85dm292A0qec4gk2NUMm0i4WhFw3SLSr4dcmJCTJRUcm3ab9uNKjnOEClDInEGPR4pQFtQoizGQkSB2bEWBiIy7UGJWIPIBJsRsyiSbjGyxGbkuZZBCu0m4gx6Ukx6zKKOdLOeVJP2vWRVxSzqSDMbiDPoiTXIuCWFSXYzh/3hY/BaIXQDySYjNtFIctQDpCp6ArJMX1hiTqyNdJM2n9NNIvPjDDzb7OHtNglFheIYEyhmQItbTTCYsOv02I0R0s0KkmIgzaxiEw2kmXXoBbAIOtLMEcKSkXSzQL5TAb4nj+D/QybnW7GKIaaMs5ORAFPHa9kn0uIUJudbsQgBpo63MjFbWy8RnwmLzs/kPAvpLpmSfBNEwqTbQ0zONmCWhyjOMVCUCkXnJLG3dpCVHzUyOcNAuilEcZqIwa6SavMxKVvEGOqlOFtkQkoEnUHENyhiDPcwOUdPim2Y4nE2JFklM0lkyngHNoNE6QQHE7MtKKpKKGjDbpKYMt5GZqJI6QQnqgrZqRaKC5w4bHpKJsYwZZxG0ooIOmLizZRMcJKTH0OZpBmSuXkOiif4cCZamTo1nsn5Gl62m4kbF0dJWZBxM1MYdmnp9sYVOijp15EwNZ1pnTqmFmlZmJSEIeKnpjKpWSCvMB63qo1bXqGTkslBYmJslBXFUVzo0voj63DFWCme4CIn00lZNB1nTqaTn51iIibGwj3XTR75XmcsTj+u9/i7iiofJxb4O3qxf0gR9MZjn31Tmr1v8G4LuuO8j2FsmewNm7opyHFwxmm5ABSXpX7lr7sBKJ3kYkqBNh8+2O7hJ7PiKEwzkzshHreotZc73s7kdhlXbhz7GFAnAAAgAElEQVSlU1RKxmlcJtnuw5XiZMr4IDm5TkpV7dvl5FopqvNjjYQoTtFTFK/1NZJlwuk0MiXDRFaymalh7Xm2KcykZJnPG8Ls65ZZWmTEaRIoSRC4YYaZ330eQBTg9DwRQRJItwqcky+yskFmcaZIoUuHTgdBVcBh1lEUryPTKTI5DAZRT268jskeCYNNT3cgwvXlBnJjdYRlrZhXUbyODLvAcKKIrGjcp6IEEZteYHKinsI4kU0tEXp8CsvPdfJmTZgMh8isNCiMtfHa7iAN/TK9QzIL801MTBqdw3YDTE7WkxlnoCRDOzhlxhmYnG7EbtYxOdPMxAyNqxBRBJx2A8WFMazcOVrR9vuQH0M4viaCIKh/Pz+RpdMc7G7RDNCpWWaWbR3imjk23qzyUZqpLdRdrWEumG7nhbUDnDvVyp52zZAtSTfw7i4fv5xp463do4bX7vYIGQ6BX7/j4ctfx1PXpxkEJWl6PmhSuWJBzEhNeYB9/XDBvDie+qSHSxbGsbtJU65Ti5wsW9vH785KZvm6fsqiC6+mfphzZsUegy/JMrFs4yC/PTWRFZsGKM2zQjhCdVOQC2fH8PSXA1w8N4bdzUH0isykDNOxNe6BXS1BLpjp5Jk1bi6a7WBfawhF1dr/Kr4s24yiwu6v4fc2BjR8ponl24f5zaIY3toxPGL4Hh3PZ9Z7uHiajd1t2oZdkmlk+XYvv1no5IPdPopSj45/iAvK7TyzYYiLptvY0xYZi1/g4M2do4byUfxrlcOcWWJjT+vY9q+eZuStPUGmpkW/V0eE80st/HuLn4vKLOyJErxK0gx8uNvHz6eaeWvfqKG8u1Pi/ClG/r09yEXFZvZ0aobylASBFfvDXF1u5u2aEFNTotkquiXOLDDyfHWI8ycZ2dutzYcp8QJvHQhz5VQT7x7UDGWA/T0S5xQaeWF3iJ8VGdnXIyOoKhMTRN45GOFXJUbeOxShOElElRX29CqcU6Dnpb0RzivUs69XAVlhYpzIe/USv5ikZ2W9zKRYFRDY369wdp7IvdsjrGtT+N1kkWSLwMRYgZVHFC4r0FH+rjYGr88TqPXAQFDlzWZ4vAyiHFomxMBH7XBxNnzWKZAfJU0eHFI5JVWLoz45SeBQtLJqgUPgs06Vn2UKrGrXkW/XFEC9V2Fxosj7bSqz4g00+bTxybWJbOyLUGJzsnnQz/p+PxelOfFICmUxFrYO+pnqtLCh38dOT4BipxmbKLAkwU61J0BYUdnQ72dhvJWZLgubBgOUx1hoC0bz8poN7BkKMCvWSrUnQO1wCJuoI8uiZ5rLSsWAfyzepKdqKMj8OA2fYdbmT2dIYs9QEJuo47Qkxwg+x6JjhyfEwngLVW7Ns63XKbQEJFZEicL3FcXS4pdwGiWyrNr7npJsZHN/hFybiA6VJr/MvHgDn3aHWZBgoD8S4q4a6QcP4WhafTqvfdDM9ZeO5/VVzUybpKVXq6kf5NwT0/nX6/VcdnY21bVuAErHW3j1o3Z+f3EOb3zczrSJMaihEDsPDnPxKSk88WYrl56Wyq5DwzS3ern/tVauOD2FWy/OZPnqHkoLHIg2Aztrh7n41BSeWNHCpaenUX1wCJ3BRGlRDK+tauX3l+TxxkdtzCxNRlFhZ80gPz8zm8dePczlS3PYU9tLRFIpm+ji1Q9buP7n+bzxUStlExygws4DHi45PZ3H32jiklOS2HVQK6FcNsHJax93cN2FWby3upuiXG2/rT44NNr/nySz67A2oUsL7Lz2WRfXXZjFss+6KJvgHIN/+ZNufrokmeqvtv9Rh9b/T7TxAdhZq/XnyeXN/PzMTHYd0DIQlBbF8O7qTq46L0fr/0TNsK6udXPZ2TnHpqvj+OEX31X+tw3o7xrCIYjHecfvw4D+2jvuPujm7N9tZcVDZcwqjh3zN/vMTwGoe3Mmu+q8rN4xwMdb+jlvcRK3X5zO8jW9lI7XDOtddV4unB/LUx92c8mSBHY3aGt/ar6NlRX9XH5CAis29lOarx1QdzX4OX+KkafXuLl4tnPEPimOF1i+w8dvFjp5s8o7ou/2HxpiYY6BWc+5ef1cB96IZutNcMA7ByOMj9Vxw5oAi7P1nJmto9sPS8eJ/G1bmNUtMreUG4m3ChTFibxbF+GKyQZW1ktMSdCh0wns7VVYOl7P5Z8ESLMLnJlvQKeDKUkibx+M8KtiI+8djkT1o8DeHpmfFhpG9FfdkMpT24KcmG8gLMOvp5l5pzZEWZYRVT2qT038e3uAi2bY2dsR4eevayXGbzvRwTVzbXxULzEhZaw99sx6D5csiD3Gfrv2/CxSLq7+MY3dDy3VR4KUZpvZclgzQGOtImtrfPy83MqGQ6O5vDYcCnD6FCtbmsJMzzKxpUnzHMdadOxoCXP+VCsb6kOj+PoQegHCksr7+4O4A1qAvssiUNUU4mczHCM15QG2NkucXh7D2r1DzC2ys7lW26ATEkys2eXh8pMSWbdnNK1LTYOfk6Y6j8HHmAXW7BvmssVxrI/WgzeqCutrfZxR5mBtjZe5hVa2HPITYwa7WTymxr1eJ7D+QIDTS+ysrfUxZ7yFHY1BgpKKyzoWbzYIBCPqMfhdLSF8YRWXVce6gwEuneVgU10QNepxPDqe6w4GmJ9nZEuDtgBcVh3rDgW4dJadXa0hgpK2EWw4HNTwhwLMyTcdi59pZ8Ph0bRgR/F728MUZxyLv2SygQ0No0piQ0OY0yaZWVcfYk6ukS1N2t9cFh37uiS8YZWNTaP4jU1hTiswsr4xzJwsA1ui+aqdBj3rmyJcUmxi45HRBP613RJLcg1sOBJhVoaeyugBINaoZ0OzxEWTjFS0juIr22VOzlPZ0KyxmCvbJax6cBgFNrZKXDjRyKZoDmuDoLK5TebkHD0VbRIzU0W2d8qYBBWHUaCiXeZnBXq2dMjoFAEZlS2dCidmirQMq1xSKPLIHpnz8gRijCJbuhTOyxtVJLUeePuIik+CdKsWX71L29twGmBbPyzNgENDKpGortoxAAuSYHu/SnGMwB639h0deoEdAwqnp4nUDCkjF7G73Qqz4kTqfTJ5dpGDw9GYTr3APo9EkQXqfGHMOgGPpFDnCzPJYaY5ECHLYiCoKNhEHTvcAbItekKKymFviBSznliDjq2DAUqdFg57Q+RZDTT5wwRlhZ2eAL0hibCism84yGBE4aQEG3W+MJO/hgew6QQOe0PMcFmo843Oh+6QRFBWGYpEGIhII3in3shBb5hZsWYORVPeGXUqB72Rkf/tD8vU+yLERVTMova+ixKN7B8a/b77PDLlsQb2emSKHHoOeP93nCHNHT6+3NLFL8/NZU3laGLwAw1uTp6TzOqtPSwoT6BiZx8AcfYEVm/t5YqzM1i7vR8AnSyxtmqQMxcksmb7APOnuqjY7WbHfjd6UeCDij6uPCOFtdWaEW52mFi7Y4AzFyayetsA80pj2bTLjSDqiXUa+HJrL1cszWLNtj4sVhOhiMrqrd2cfUI6X27pYsH0RHYd8DA4FCEuxsjqLb388pxs1lT2IqCgKLBmWx9nLUrmy8o+5pc42LRL++1Yp4HV2wb4xVnp7Do8TCCkzcOv9n9BSQwVu6N4h541Owa5/Mw01lYNjozPUfzug0OUTnCyKbpgtPb7uOKcrJHxAVi7vZ+zFiWzurKPeWXxVOzsH8FX1bi58FSJNZW9I/g1lb1ceFoWZtPXsm38KN+rTJ3g4oV7p3HBH6uoeX8RduuxZtSRriDPf9DB1v1DPHXzeJ77oBNvQGbdrlF9vW6Xh9PLY1izy8PcSQ421Wg3FS67nr1NPrzBWNbtHRrF7x3itII41tb4mDveMmqfFJpG9ONX9d2BLonx8TpkVUurt7VR21/sGTo2tkoszDLjNAl82iCRbBJp98KJWTpq+xWmJ+t4bl+EM/P12A2avji/0MC6FomPG8Gi17JGDYVV9vQoXF1iZlunjEGEGLOOja0yFxbBpjYZs0FHWIGKFomf5OlHsnDs61Lo8CqEJNjQHOHiKSY2NksYjToiSlSfFmr6dG6BPKJ/AdbVh/h5uZVdLWEC0W1zjP0wyX6M/faL4DdUx/wfyI8e6K+JIAhq7zMFDHhlHJaxwemd3QGSHCL+aHC61SjQ61VI1MsM+GUcI8H+Ki4T9HplEmy6Mfgut0R1u8TTm310D8v8YrqVpVPMZI9zHUMmcCY76B2SSIoxMDAs4ThKLkEgzmEYQ/4DsKrycfHDvgixdv0Y8oEaDI+pWT/glXGYdajhyPFr3KvqcfACCMJo8P5RfEjVyDpHg/ejeLtOGYsflkm0644ZzySHqJEdzV8h31j/C94n4ThKzjiKj/bn+Hj5mPa7uvwk2nT4oyd1q0GgN6BqeL+CI3o17w2puAT5G8iLCom2sfghn0SsRTwGbxLU45IjhwIysV8hW4xpP0q+PIpXZAVfRMBlFsaQHeWIPIbMMRhUsRtBDsn4JAGXSRghO3qDGunTqmcMWeTklSE+OEVPqxfKEjXy4pJVWmdemQOXb9FyQadbNVLhDYUa0dAvg9MgMBBSset1UfIoI2TEOJNAX1DFFiU1HcUPhlVE1UB0Oo+QEQWMeCUFs24sufCwW3u+osPDb3PixpALWwJhXm/3kGsxYBN1xBhEGnxh2oIRDDqBIUnBLgpclx2H06jHJysYBXip1U2sQSTeKOKOyIQVlWKnmXE245j2ffJX+6NgE8XjkhGfbh7gJ4l2Us2GEbysStj0IsPRPoRV0OtkTDqBP+zXimL8vSgWsyjgNIYJKsII+dKp10g2OjSy4lHy5bCksqrTz6ddyg/ugW5bd4ZGzouS/46S1awmdYSc1+8O44yS29xuL/EuEz39IRKj5DYlGNTIcEfJzZ4IDpuI7A3zceUAr33eQ02TjyvPSOHik5OJS7Zgs+hH8P2eCE6biM5kGUP+S4ozEpQNIAjYLOJX+hPCblRA4Bi81xsEjuLDJMeb6O314rSNJYv3DIRJcIpjyXxH+z8YOoZc3uOJHEv+G4yQnGKl3zM6PkfxvYPyyPiM4AfCJCdatfG0f5UsaD4uWTAQUrFajjXofvRAf7u2v40H+qhMOvMLVv5rOr6AREmhdmtw1ANd+XwZc6+uJsFlIDPJTFGOlVsuSCM9wTSGnNrTGyDJZYzq66g+Cii4TMKofv8K2bS72UNSjH6MfeLpCxB3HH1qGPRS2ytz6bvDrPlFzIh+6R+MEJThgvd9TE0WiTEJJJlU9vcr7OxWMOsFOn0aGX3jBWYkVYfLJNDrV7hnaxhRB/kuHd6wSqdP5cx8AzNSRexGreqlL8IYfRRUtSC3MforqBBrF7nmIx8n5hm4aIp5RD+GdF/BH9WPqg6HSUfWPVqMeedfU+n1yiQlW4+r392yMGovRe2N61b0s2JD/48kwh9S7rnnnrsvnx/DlS900ueV2dEY5NFPBzhhko0/v9VLjFXHU2s9rIl6Wn/zei9nTDRx1YpB+n0KVS1hHtswzOLxJs57eYC8eD1Pb/axti6EWa/j8Qovl02z8unBIDOzjXx5OMw/13vJTzZw/es9IzXl19T4sVj1XPVkM2fNdPHLx4/QNySxo87He1vclBfYOevOg+SnmXl8ZRerqz3YTQJXPnEs/vGPelk8xc7S+xvJTzHx5Ce97GzU2P5Xv9DBmdMc/OrZdvqGZQ62h45b435rQxBRB9f8p5szptq58sUuhoIK2xqCPPb5WPzb24f4sNqL2SCMwXuDKpWNQf612sOSIivnPt1JXqLh2PEssXHPqn4a+ySqmkP8a42HJRMsnPvvbsYnGXhi3RBrDgYwG3T85o0+zii28ptl/fQMy2PwN7zdT7xN5Kn1X8dbuOq1Pvq8yhj81cv7SXGKPL3Fz9r6MGa9wF8+HeaEAhO/ftOtfd/WCP/a6GVJrp7zlg2RGyfydGWAtQ0ag/iBDX7m5Ri5euUQfX6VqnaJZ7YFWZhj4Pw3h8iN0/PM9gDrmiJYDXDtpz5OG2fktx/76A+oVHfKfHgoTGmKyMXv+8hx6XiuOsT6ZgmzQeD6zwOcOs7A7z7zMxBUqe1TeLwqxMIsPZd86CfHJfLcrjA1fQqKCjeuC3JKrp7r1wQZCEBtn8LTeyLMTxf5xedBcpw6lh2UWNeuYhLhj5sjnJwlcmNFmIEgfNissKxewaBTeXiPzGBUh0oKXJyrlRC/ajy83Ah73dAXgleaNALitTshywbLmjWPtEkU+Ot+hYVJAs/Wq7QFoHYIljUrzIgXuGm3TKpZYGW7TPWgglEn8EhdmGmxBp5qCDAsqdT7ZFZ1hiiO0bOiLYBBJ7BvOIQ7ImMQBN7s8JBp1vNsyyD5ViPpFgPVniDuiMyAJHNGsgMBUFHxSirNwQh5VgPL2t3UeMMMRmRUVeWURAfr+n0sTLBRMxzisC+MHnizc4jJDhPL2j34ZJWWQITdniBZFgMvtAwSb9JTMeDnsC+MSSew3R3ALOrYNOAfwW8eDDDeZuSZI24STXrW9fk5EoggCAJVbm2AmwMSw5JKd0ji/Q7tfR845CfFLPJJV5iaYQm9TuDphiAz4vQ8Whdg+6CmaH9oEuGRDh9zyxI49aqNjMt28Mgrh/l8cxcOq57L/1zF0hPSuPRPO+gdDLFt7wCvrGxl7tRYTvvddsZl2Xjs9SY2Vg+i1+v41b21nL0wkcvvrqHXHeHAET/LV/fwwq0FrFjdgzcoc9dLzeyv9+FyGPjlPTUsXZTE5Xfup88dZnvNEA+9XM9Js5M47beVjMu08eqqNlZ+2YbFJHL5n7ZxzkkZXPLHSgJBmYrqfh56qZ6T5iRx2jVbyM+y8cybR/i0ogeLWeSKv+xm6ZIUbnyolpauINv3e3j41WZOmhXP6b+vpjDbymPLWvly2wBmkzjS/5sfr6e5K8j22iH+uayVk6bHcdEdNWSkmHl8xdfwS5K4/I599A1G2L7Pw8OvNHHS7Hiuf/AAcTFGHnu9iS+29mEx6bjizj0sXZLKpbdV0zcYZtu+QR56uZ6T5yRx2jVbyc+y8eirDXyxpQezSWT3QQ+Tx8cc892OTwD8jqIex4P3HYmI3+33vlsbxzV+v6kf39D2MURL7eFxsa+vaubjih7+8WIDqqoyvyyev79QD8CBZj/nLkpkXLqVxs4gEUnloeVtTM618fh7Haze6cZsFPnrq60sLHFyxcMNmr4+5OORdztZUuxg6X315KeYeWJVN6t3D2Exitz+RgdLJtn41fOj9snLG93MHafpx7wEw4i+s+lUbvzUizukUtkaoT+gsrND4o19IZ7dFSYgwQ0zzLx7MMLGNpm5aSJtXoUVp1lY3Szji0CvX+WNgxFKEkUu+iiAOwSZDi1V3dwMPasaJH5XauQPa4MMBGFvr8xT1WEWZopcsipAToyONw+G+bxRwqwX+MMXAU7JN3DtZ/4REuFHh8OcM8HEBW8PkRur5/W9IT49rOnT334wzBkTTNz00TAdHoWKRm1/vHy6lXNfHqAgxcATa461H255u5fWAWnEfpuabeamVzuB73d//NED/TU56oGuPhIgM0470bYOSJRmm9m4b4gZOeaRBN3psXp2HAkxN13HrrYImUcThg/KTE0V2dwUYnqmkTaPtvGkx4hUHQkxN9fE7o4IGTEa/v39AZ7bHqQgxcAFMxzEWEQy4vTkj49lW52P+RPt7Gr0k5mgxfq0DcuUjrNTsW+YmRNsIwnV0yywoyFwDL65K0BZvo2KWi8zx9to7Q+jhiJkxBvY3hBgfqGVXUeCZMbrUcMSrQMypdkmKg4HmJlnpm1AQlFUMhMMbG8MMr/Awq7mEBmxIoIgRMdnFN/aLyEIkB6nH4NPt2mbXOtAhNIsE5vqg8zMMdH6tfGcN85MdVOArHhDdPwjlGZq+OlZBto90YImseIoviVIVrxxLL4uwIxcM22D8hj8/PEWqluCZMZ9rf19Q5RnGWlzj36vHR0R5uWatPj1aMGXNrfM1HiBTUfCTM/Q0+YZLeCysz3CnGwjuzslMqIFXJr7wpSmGtncIjE9XaRtSOt/skWhulNlTma0QIxDa7/ZHWFqkp4tbRLlXy0o4xCo6pSZk6Fnb49MukOHJMl0egWKk3RsbZeYlqLhFVkm1a5jV7fCrDSRvb0KGQ4BKSjR4ReYkqBjW5dCaZJARUuE3oCAUVQZCsFlRXr29SvcVRkhzynQG4A8p8DJGTqu2qh9q7cXQIoF9g5CebzAhnaVvx+AOyaDywBFTtg5AIUO6A1pCijJDPvdUBYnsH9QITnqQemOFgTZ7VbJthjojUY9xRvh0LBKlsVEo08hIerR7wup5Nl0bOoWSTPrefzIAAvirEx3WWgORAjICp/3+rg604UgCOz3BlnT56csxsySeCt9YZnX2z1kWvTsGw6jF0AvCNhFHRekOlEFyLQYqfeFyLYYxhRYaQ5EyLcaaQtGiNVH01dFJDItRhr84TF4iwCf9fvxRGROTrSP4IfkMFkWI/X+CDkWPYMRBb1OJs4ocnONdq1/Y56TOKMOuzFMf1ggz6bjwLDEOLvIi0eCbBuQWJSgZ1a8nokOPY0+hYo+P2t6+cE90BtfXcS0yXGs39HLnJJ4Wrq0w3hGooHKvQMsnJ7Izho32dECH43NbsonudhYNcCsEhctnUGUUJDMZDPb9g+xoMzFzoPDZKeYUQJhWntClBU42LjHw6yJDlZu6ue+V1soLXRSmGPlnMVJDAckxqXb0JlMNHcGmDbRxYaqfmaXxNLWpyAIkJliY+vefhZNT6SqZpDMBBFBgOaOANMmudiwo5/ZU2NpbhsCBDJTLFTuHWRheTzb9/SSk6L1v7k7wLQJTjZWDzJrop3m7qMFsEb7X13rIStZ4640dwWZNsHBxt0eZhXH0HK0wFYUv2h2IlW1HrKPtt8VYFqRk92HfEwpcNIXPaUmxBo52ORlSoGL+hYfSfFabGtPf4iCXCd7D3soynOMwXu8MgmxY0lv8KMH+tu2fTwj/NARH42tPob9ErFOIyfO1jKanPXbzdgsIg6bHn9Q5rW/l454oKtemkZibLRS6WCYWIee2b+u5vHr8iiOkk0TYvQcbBhmUo6Vhs4QSdFKrj0eifwEA/ub/RSmW+gb0m79EpwGDhzoZ1K6icaeCInRgmLdXX7yEgzUdkYoSDbQ79X2H4fXS2WbzH0bAizJ03NlmTbfVu338/SuCP9YZGJ6qp6KVpmb1wS4dqqe/Bgd5ck6froqRG6MwJpWBYNOu/00iQJPnWDEbhBQBUi369jVozArVWRfn0K6XUDQqXRE9VFlu0RZqkinTwVBR5pdYGe3zJx0TX+lxuj48LDE8n0hNlwRw5ZWifI0kY6AiiBoBdqq2iXmZhvY06+SEaun+EGtqmnHPSlsbgoxc4KdNndU/0bth1V7fLyyZZgLZzm485yEEfvt0he6+bx66HvdH/+rAS0IQhPf/jipqqqa/z/u1f+hCIKgXjPbyiVlVjZFY27m5Rp5crOPO+cYeXxbkFkZmuFV2Rbh+pkW/rbRxxXFJjZH40/nZuh5bX+Ym2eaeaIqyMw0bWFs65C4eqLIfdsiXFVsoLJDm+iz0kSWHdbSuK2q02J6BoMqDpPAwmwDvojCbfNtbIrG1C4sNPHE5gB/O8XOIxV+5kTZ7jU9MlfOtHL7p8NcO9c20v+F02J4/As3fz8/caRkqN4osvGAn5vOSODPK7pHSoZaTSLl4yw8/kkf91+cysOreplbaEU0Gaio8XLzT5P50yvtXH9mElsPeonIsGCSnX+t6uEfl6fz8HvdLJ4RS0SCTfuHuOWCdG597gh/ODeNykNeQhGVhSUxPPZOOw9cncsjb7cze5JGstm0b4hbLs7klmcaufHCTNZHYxAXlrp49M02HvxdPs9+0EFxlB1fsdvNrZdlc8sT9dzwFfyiMhePLm/lwevH88Crzcyf6hqDf/i1Zi45NZX11YNRfCyPLmvhwd/l8cBrLWPxl2Zxy5MN3HBRJuurR9t//dMubr44iwdfb2Feiebx2bTHwy2XZHLL043ccEEGG6L9WTDJzmPvdvDA1bk8uLyNeVO0993X4OXqM1JGxmdDNN5t4WQHj77XyQNXZvHQ2x3Mm+QAYMv+IW48J4U/vdzK9WensHH/MCZBYUaBjcc/6uX+S9N4eGUPc4ts6FHZUOvj5rMS+fMbnfz+tEQqDnjRKzKzx1n51xcD3Hp6PBc/3U6XWyI7Xo8vpBKWVSRZ5bELE6hvD9I1JPNkhZeTC808cZ6LcfdqV2iv/NTO1laJG2Zb+MsaH1eXGnlhV5jPGiL852wbr+0Nc89CCy/tDjIpQdvoK9slfj/dzN0bA1xTNna9PFMd4u75Fp7aEaA8dXS9XDvNxMObA1xQIFLZpW2Us1J0vFAj8/scmRcbNUP75UY4NQ2uGQePHhDYMagyI05HukVHiUvghUaFwbBKb0ghyaTDLArkWAUWxNl5tzPAyYkWDkVjkAvtWrq6M1PMfNQVpDB6dX5gOMLpyRZeavExwW6IhnMITHCY+Lw7wPnpNlZ2+vFKCp1BmZ6wQrpZRAdcnmUfiXGe7NTxaXeYizIsI+2bRJlqt8SaaBq7ByfbqBmWsIow3q6VNL8ix8SylhBf9IzGxb80Xc/yFoXzM0UO+SQePqD+4Ab07ncX8fB/GvjnHydz//OHmT8tHoD99UNcc34uNz20n5suH8f6HVoM9KLp8fzzlbF4NRRg467o+n28nhsuzmJ99SDmcJjpBQ4eW9nJA7/M4qF3tPkvCwJPftBFjE1k8/5hgmEFl11PepKJGy7I4LNtgzz4u3wefL2FRdNjkZWv7A/R9ncc8uIPyiwqj+OR147w0I2FPPByEwunJ6GqULGznz9dOZ6bH67hpsvzWTfS/wQeeaWBh2+exLNvNTF5nLYeK6oH+NOvxnHzw7Xc/MsC1m0fxf/zlXoeubWE+587xPzyBA1f1Wyr2jUAACAASURBVMeffz2BB148zGVLc1m3TTMGFs9M4uGXDvLMX2eh1x9rwOnEY7NLcByioPZ9jm/Qfqd8zcrx1b2qSMc+k499BsBxvcHfTb7pXb7pMCCI3z72+9scKIa9Ye58ZAdvfdxA2eREHDYDNYcHSE608q+75pKWZGHIGyZvwXI2vnUWM0qSMBW8AEDowGXHtLdhawuX3VLJljdPIjVRM2ZVKXIMDr7b95JDx88sUbG2jSm5Vq75VyOba4a5fmkqDqvIvBwDZz7QxD3np3CgPcTcQhtNbV6eXuvBpBcISyrZ8QZOn2rDKEWYmW3iiY1e/n5GDP9cN8ycXBN6vcDG+hA3neDktg8HuW6Rk4r6IIKikO7S88wmL7ed5GRVTYDF401IisCWphC/nm3jklf7MeoFajojJNh1nDHJgieojrQ/f4INRYUtDUFuOtnFbe/1c/1p8Xyyx8e9K7U1duFsJ/efn8RLW4aZmBUtgX7Axy+WxFF+86GRMbjrskxOnxnLY+928NAtRaSfUvG/TiLczH83oDOAhd8C96N8gxhFgWvKTIRllVnpesKyyrpmiYwYkSe3h3EYA5Sm/sj5/FH+56KqKk29YX7yYAvJMXoePi8es1Er53rtkhjO/3cXV77Sy/w8I3PzTFw23crynX6K/zFKGOvzH7vBT0wUaRiUuWNdAKMInd7/nVRWOTYtvvpo4RpBEMi1ad5rg6Aiq+AyCPwuz8QTDSG8ksqceJH2KIn3v0lQVmkOyOwfktg2OERIUQkp0BGU8UsqE50yJkHD1XkjWEWB8lgjsgInJll4q/2/p076sifCbs+xV+R+eeyWahIFSl0iu9wyeTatuMr/H8Rk1DGtwD5yIP/tWSm8u2mAxu4QNz3RoBUL+fE29Uf5HkRVVT744gg33reFxbPT2PvZ+cTHarcLkqTwzOs1LL7oQ375s0Luu3k6D/55Fhdcu5pBz2jCgAMNboryXWPanV+exC/PzeO86zZxxbl5nDA7mZyUY28Lvm+JsenJTjLR69GKqAmCQIJDz6qqIWxmHZKskpNg4KxSG2U5Fu56r49rT3RR1xPB/C32x4issv5wkA/2+jncE8GkF9DrBP7wnpumAYntzWGumWsnLKk8sdHLgF/hxsUOZEUzGOfnawb6/0se+rif96qOj/H4ZWKi/IMEp55xqSbqO0PMnugYKXLzQ8n/KIRDEIQE4DbgN0AIeERV1b9+T337PxFBENSOO5Opbo+M1HBvHpQpSzewbp+P8nQ97UOjV/bb2iTmpunY3S2T6dROzEdrvle0SsxM09MezdOZ7tBReSTErFSRPb0KmY4oflhhRo5xhJ3aFsVnx2mZFspS9Mx/2cPTp9spTBDpCMHUNAMbGsPMyh4NEcmM1bO1OcKifOOY/rcqRqblmll3wM+c8RbaBiQEg0hGvIEth/0snmhjZ1OQ7AQD6ARa+iJMy7OwrsbHnEIrrf0RdEYDGQlGthz0sniKg6p6PzlJmmfkSE+Y8nFW1u0bZs4EOx0BLcQsM8nE5v1DLCmNoeqwl5w0CyBwpCtIeaGdtdUe5k110dozesW5eZ+HJWUuqut9I1eiR7qClE9wsHanm3lTY0bKpWYmm9m0x80J5bHsqB0mNy2K7wxSXuRg/R4PsyfH0Hr0yjXZxKY9Hk6YHktV7VC0P3CkI0D5RCfrtg8wpziG1qNXrslmtuxxs7g8lqoDw+SkjrY/rcDO2p1u5n4NX7nfw8JSF1UHh8lJ0fBNLV6t/9Ue5k5xjvY/Ts/mmuHR8Ym+b0tXgNJxNtbuHmLuJAet0ZiGdKfI1oM+FhePjr8akWjuCTMt38q6fV7mTNBCdARZiX4vH4sn29nZGCA70Uht4zB/eacXgyjws5lOLp8fQ0uHxlbOiNWztSHIokIL17zWS48nwrMXxtEyIFOWaeCT2gC/WqZ57ZNtAm+c56DLq7Awx8COljBZMSJhWeXVvWE6hhXWHYnwxUV2fFHDNsOhXestyNKzp1sLQfn6eilPEuiI7pPpdq061gyXwt5+lYxoOrw2r0pxvMC6QyGKXdAVhHv3w3mZ4DJCvtXImm6FfR6FQ8MqvSGVa/JM6AWtauPn3RH2eGSMOsi1Gjgp0YKqqiSatQNqX0gm3qjyWU+IrpBMs18mxypS4jRiFgXmxBlp8sskGHUEZZXHG71aRUFVq0Z4ZbYdiygQZxSo80oUOQwcieIBBiWJPKtIzbBEoV1Ps1/igbqxRvZdRVbW9oSp6JeYEStyw3izlm3DKdIXUlGFEOMcOva5VcpiBQ4Oq+Q5FZZu/OFJhOv+M4/pk1ysruxlflk8LZ3a/MlKMVOxa4ATZyWyY7+bnHQt/VZzh5/yr+Elv4+s46xHud/Hke4Q5eNtrN0zxNyJDlp7wwhGHZmJX9tPks0IZgOHWvzc9EQ9F52UzDXnpNM6EEZAOGa95+bYQRVo6ggwfZKTNdsGmFfqor1XRhUEslIsbKoe4IRZCVTVuMlO0/p/pN3P9Mku1lT2MW/qaEhGVoqFTbsGOGFmAjsPeo/Br90+wLyyBFo6tRCXrFQrFTv7OGl+Otv3DpCboaXDa2rzMaM4jl63RHKC5Zgx/9ED/bXnP6AH+lCjmz/8dTPtXT4eu3MuS+akHxd3/9PVvP95E5XvLx2Jm/b6IsSW/AeAlAQLHzy7hKkT40f+R4kEkSSF5R83s2F7D59s6KRy+WIyU63HtP99eKCD7W427B1iyVQnS+8+xAlTY7hocQJHGoewm3Xc9243rX0RGrpDXHeiiysXxvDW9mEaeyO8uW0YvU7gpEIT07OM/LzcysbGMLNzTLS5JXr9Kvs7I7xd7aOxT6IgycCJE8zMzTYg6gSmZRlZXx+iNN3Iz17qo6lfQgUMIqy5NomuIYWsOB0gjOiX9fUhZueYaA9q43lUH01KMzLl7tYx79bz9HjWHfDz8b4Ar64f4KezYnj8ykxN302xs74hREk0VOZId5DyAjvr6oKc+8e9//ckQkEQHPfcc88dwDJgBvAk8DNVVT/7vjr2fyX33HPP3ZdNs3Lrx0N4wyr7uyRerfJzwngTj2z0EWfR8ca+EFUdEjaDwF83+jk1T88dG4L4Iiq1fTLLasIszNbzhy8CjIvV8UZNmKpOGZtR4M3aCNNT9Ny1NYQvonJgQGHFIYnFX6kRv2y/hneYdfx1vZ9ziky8WxtmW5tERIH1RyKUZxj57cohxseLvLozyPbWCC6Ljr98NsSZE83c8tFo/9+o8rN4opVr/tPN+BQTr1R4ONwdRtQJ/OWtHs6c5uTm1zWS35G+CM+tGeDEKQ5+/VwbBakm/rN+kL0tIUwGgdtfa+esmS5ufqmVsKSyuynAK2v7OHGqk6uebKYw3czHOz2sqfZgt4jc/mIzZ8+N58ZnmpBkleo6Hy9/2s1J5S6ueqiOwkwLL33STWXNMHaLyG3PNnH2/AQeebON9t4wext8vPRxFyfNiOPK+w8yMc/GCx90Url/CJtF5LanG1m6IJFbnqrH45PYW+/l5Y86OWlGHPc830RyvImXPuygcp8Hm1XPbU/Vs3RhIjc8cphhv8zeOi8vf9jBSTPjufXJejKSTLy0arT9fy5r4eQZ8dzwWB3DAXm0/emxXHn/QQozrbz0cReVNUPYLSLPvt/OwrJYbvhXPd6AzN4GH69/0c2SMu19CzItvPxpN5W1w8TYRG57YXR8vAGFvY1+Vle7mV7o4KpHGyjIsPDy571UHvDiMIvc/mobZ82M5eYXWvAGFerag7ywup8TSxz8+pkWCtLM/GftAE3dWjmSO1Z0cVZ5DH94uY13Kz08v3YQs0HHW9elc/tbvRSkGHmrcojN9UHsJh13fjBAgkPPY6vdXDzNSk2nxCs7fJxQaOa6d9wMRD3PRYkiz1aFqGyNcOYEE7ev8eMNw8F+hcp2iQdOtPLqnhAtwwq7u2SqOrWsIPdtCnLqOAPP7AzR6VW+sl4M2npx6VhWG2Fnl4zVKPC3LSFOztTx1+0RfBIcGFR5q05ifprIv2tkXAZ4r03L7rG5T0uVNydBx2vNMhOcOvLsAs0+la39Mpv6ZQ4NywRllUKHyElJBna6ZardYTYPhgjKsNMd5pMeP1sGIrQFZWbEGnHoddj0Osbb9HzUFWSay8gbrX5CCnSGFERB4De5DvYOhbkgw8bWgRANPgmrqOPtDj9lLhPL23wEFZXWgMyW/hCTnQaeb/aTahbZOhBBRWVIGjVc2gPyiEe6PagyM07Pc40h0i06VvdE6Amr6AWBZxsl5ieKPFEnE1GhauCHJxEOeyPMLUvgiturKcy188K7zWzdM0BsjIFbHq5h6QlpXP/3vQz7JfYc8vDB2k7mfQ2/64AHs0mMrsekkfXY2OrnuU+6ObHUxVWPNVKQYeblL3qpaw8i6oQx+4k3oLCvyc+rn3Vz3uJEHnithekTnHxY0cfaqsGvrHetfYCqmiFeWtnGybMT+OVd+ynMsfH6J51sqh7AbtVz62O1LF2Syr3/PkTPQIi9h4d48b0WTp6TxBV/2cXkcQ6ef6eFrXsGsdv03ProAZYuSeVvzx2mqz/EnkMeXny3mZPnJnPt33aTm2Hj+Xea2LK7X2v/n/s45+RMrrt3pzY+B9288HYDP5mfSk39MHmZ9mPGXNAdxzD8Bs/gcUlwwHe6HP4m6PGMum8y9L6F5/K/yTe9yzcb1t/eaP96G5GIzB3/3MHv797ML84r5IV/LGRczrFkTICd+3q5/p7NfPzSqcS5zCPPjUaRex+vBuCF++dy6U0V/PSUbFzOaEEwRUKnEyiZEMtZJ2Qw5I3w2aZOzliYepxf+fbfS5WPHwbSemSIax5v5Ow5cTz/SQ9fVnuwmnR8ttPDaWUxPPNFP3+9MIWa1iAf7vLy9Bo3FYcCTMkwoShwRqmdzgGJV7b7eXdPgM9qtdS7t33kYXmVn2BEpXVQ4uPfJrPmUJBxiQY6PfKIvrjmzUEmphiQFJWsOD23nOhke3OYi8tt/PEDLbxxV2tkDL4gSc8b231UNoZG9NEFMxx8tM/HUGB0rv1igYtfPdfJ+lrt8HCgLURRupn73unirBkxPP1pHx39EfY2+nn58x5OmhbLrx88TJ/7+61E+J080IIgmIHfA7cADuBF4F5VVTu/rw79X4sgCGrnXSlj0op5wyqxFh3tHYHjpC1TiTOCO6hgi1Zc+3rN96/iOwciJFh0IzXlNTwkxxmOwTtt4kgal2a3xNIVwziMAuMT9fxmtpW8OD0JNmEk7ZrNLNL3/7H33vFRVVv//3taZlImPZNeSAiQhEBCRwIWQGyo115AsSFgwd7uVUFFQayooCgiSBGwNxQIEGoS0khIgCSk10nPzGT6nO8fZ5gQklz1Ptfnuff3c71eeSWzsmbPOnv2Xmedtdf6LIODIC9ZH/2Nao9+sHQShawPLF2HwY6XUopEJkFvEvDzkqHtshHkLcLSSZQKPFVSF0xeh97m7EEvQW+y94HJM8rkIoyUSkpLlw2Nr4IOnQ0vZy6p3mjHT61A22FBE9AX1qel04rGz02EmXMey+h77Ph5n5V36yvvhJHq6La48DjPwkI1d4ljDQg71W3tBzvV3GJC46cYcPzz5f085Wg7LAT5Dizf0W3F66x8l9l1vX3kFfSdH2dRnU5vFeXPhymUCr3yehteKpkIO2hy9IMpxO4Qv99uOxofOTnlBmYvryJzSTRqd1mf9aDrNCORSFwwQGszuugyOlh2mRetBgcqhRQ3OTR125nytpi3efNIN3aWWfnmVjXDA+W0dtswWQUCPKSu9X+ixcacrw18c6MnQR7SPjBG7UYHXgPsF3+F4ErF8JBDm1FA7RDby+qsAkqphDNdAhtO2dHqHZjsMNpXRPl4JhGSfUFwKNFZBc6e3jWZBLoscrzk4K+Q4kSFQimFSp0CtVzKvlYTPzX3MMRDwQX+Sib6y9DbBNRO2DgAhUSCzibgrZBisIkwcgB6K3gppHRbHX3klVL6yW+r7+FQm5mLAt2YHaJyyStlIu70g8fFaOWaVC+215nY12LjoiA5C2JVdFod+Djl1W5m3GUSOq3g5yZBZxUI9HBwSbr9T49A1+651Alj1x9G7SwMXHuXBbUTpq1bbyXgPHmbXjfgfrRr9eJ6Vsv7rH+Jm6y/PXGXInF3Q99jx10lY9zdOShkEobHeDD3ilCuTAvsM763j1KEsXPB0pkJ8nPDaJVxPozdufr3gb3zkw94vR16O2qnQT8rr+2w9YH5OwurFxKspr3LjNrDKd9jxd9HicUuQenW31n+KwJ9Hv9PiEA3tfQwZOpmcn+4gcR4v0HeJdK76ws5dryFz9++GG2bEU2AO0aTDZPZjmbsRgDm3zKMXzLq+eGTGYyIFR3xpqZONAG9DndHt4VRV/3Mnk+nMSxG3ecz/mgE2mJ1UNNkQuUmRdtuYemH5Wi1Rjr0NqYle7Mrt4uld0Rw04UBdDcbnPcL8f7e0G6lut5ASqSSbpOj1x9QSXF09qAzC2SUm3nq+06SQhTcOcGTi4e74+MhpVXvIEgto6NH9B+wO0QYXA+pC8bXYBE7PXi4SXr9kx4HXm6IsLbnyL+R3s2G7B5un+jFmzcFumDpuuwSTDaBUc9WAtCyZhjabhtv/NrJ+r3tzLnQj7fvjnD5J91SuSt9Q28U7UmrICf+2sP/+xFoiUQiX7p06ULgK+Bq4GvgBkEQNi9ZsuSfJ6/8l9HSpUuXtOptRPjK+KrQRE6tFR+VhNf36ZkaIWHlETN6i8CZDjvbiy1MipTz0n4DEWoZ35ZZyWuy4+0m4b1jJqZGynkj04zeKlDR6eDLk1bGB8HLmRYi1RJ+OGMnX+vA2w1W51uYGilnZebZ8R18dcrMpEgFz+81MCxQhp8SQrykhPnKeHannrGRcj7PM6EzC5S32fm22MiEKCXP/dxNtN85+nvLWf5TO9MTPVj2fTs6s4OKFhubD3eRNtyDp7c0ExOk4MvsLgqqTHi5y3jtGy3TR3nxytda9EYH5VoLWzLaSUtQ89SGOmI0bnx1uIOsMgM+njJe/bKJGaO8eWV7Iz12KK01sjm9lakj1Tz5URUxIUq+OdzG0WIdPl5yXv28lunjfHl5Yw26HjtldUY279aSNsqHJ1dXEBOiZMe+FrJLuvHxVLBsQzUzxvnx+qYaOnQ2ymp72PRLM2mpvjy5qpzoUBU70lvILu7Gx0vOsvVVTB/vz0vrKtEZ7JTV9LDplybSUnx58aMzRGiUbN+tJftENz5eMpZ9WsX0sT689Gk1up5zxh/tzZPvnWFImIrte7Su8d/aUsOFqX68vL7KJb/512ZR/w/OEBPqzva9WrJLulGrJLy6qU683g016I3i9X6V0crkxN752Z7RRvYpPd7uMl7bWsf0VF9e2VyHzihGmrfsbSUtyYun1tcSo1Gy41A7+eV61O4yXvuqmenJal7Z0YTe6KCyyczmg52kJXjy9OcNpMZ6cPS0gaPlPYwMV/LaD21MT/LglW/bMJjs5NWY+TrPwJShSt7b24XVLrAhU8+LO7uparPxws/dfHpUj81p14u1dlRyeHCSO/9IN/BTqYVn9po4WGMjJUTOm0eNXDnUjX2VVg7V2lDKJew4ZWVyuJwXDxiJVkv77Je3skxcFCXnzSwTOou4X7aWWNFZ4JH9ZtaV2PmuwsEXpXb214t75uE4aLFAgxGui4RyPYzxh1WlDoJVUvZpHZzsFghQSvi5wUaKr5wv6iwYbQINRgf7W20McVewo6GHFG83vBUSApQyolRyftUaSfRW8HWDCaMdmkwODrWZCHOX8XWDkUA3GVntFjHSLIUfmowkeSv4rsmIyeGg2WzncKuZ4WoF2+oMBLpJOdhqYl+rmI5T1WNnaoCCn5rMGO3QYrGT1W7njEGc4PF+Mgw2SFBLmBIgZ3udhdE+Mpf+WrOdXc0Co3wlrC63E6KSsK/JTm7nnx+BvuaSEF7+8DSXXqBhyQen6DbYKK3Ss2NXAxek+PHY6ycYEu7Btp31ZBV24Out4KXz5Msqu9m0U9yPT75bJu6v3VryTnWjdpfz6rZ6pqf48MrWenRGBxVNJjbt6WtPtme0kX1aj4+nghWbalj/9xGU1fQQ4KdkxYZqsku6mD010DX+t/tbOHK8E18vOa+srWDGpACWfngGg9FBaZWeTT/UMXWsP4+vLCYm3INtvzSI+qvlvPxRKTMnB7FiXTkdOiul1QY2/VjP1DF+PL6yhCGRXq7r9fFyXu8UDTt+qcfhEPGx92ZqSUnwZdOPNYRrPDiU10p5jR4/bzc2fV/FxJSgQboI/hWB7sv/90egvTwVVNfpOFnewaXTIvvJa1uNeDofeBqaDWQVaDmc08Rti/eibTXy8daTPPbKEazOU6TcE20olTKWPTYGiUTCQ0szmfvkEVraTFw+LQwAd6UMm9XGtp21XD8z4rxP/O3vy2C08fOBJlZ+Ws7i10/y7d5mPvuuni9+aeKO2WHMTPbi1osD2ZTeylsLYpDLJJxpNOOtgG2HOxg/1IMdR7pQyKVgt3O4zERypJLPDnYRFaAgs9xIjdaCt7uUogYrH9zoi1wqYUiAnE6zwP4yE8nhbmw4qifST05WlZnjdRY0ahnb83sYG+nGlwViepdW7yCj3ExymIINWQYi/WR8WWAgs8qCj0rCij06RofJWfy12GimqN5Cc7eNC4erePbrNmKCFfxcYOCgs5FdXbuV6UkeFNZZuG6yL/GhKrYcaCctwYunN9Yzapia7FN6zjSY8PWSs3VfKxNS/Hjz8+p/q338zao0iUQyD3gRiAK+BZ4XBKHk36XAfyINj/EkOsaLTql4s4uOUjK0CULGh5Bs6SRliLOCttJIyDg/Eg2dJEz1x+zEVk6I9WCEsZqgGC9GtssYHeE8wvGyEBouYXiDmeHRSkxK8el9eIicYT1m/HwVJIY4GOksFnRIrajdJAzxkxHhLSM5WNzAKeFySrU2vj5uYlqMguF+ojGQ+qjxjVAzNMpOdJyaToVT/0g1QyPsePt7khBjIWmIOzJPJSaFAd9Qb+JjjMTE+dKJAoW3iiGxnsQ3CPgODSJppMDIYV7IPNywenfjn6hhWIKJ2DGh6L19cQgQl+DD8GYpAaMiGVkjYdSoABwC2Dw7CYgPZ1iCkbiUKAyeehwOgfhEP4ZXQVB8FKNSpaSOFPPE7F5taIbHMiLRzLDUOPRuYuet+KQARlQIBA2NITlFSvIwMUJgd29FEzuEEQlGhqXEo5M75UcGMOKMhOD4oYxOkZCaLFbBOzxaCR46lJGjBIanDkEvFyt6hycHknBGRmhSMinjlIwdpRG/L7WW0KRhJCQLjBg3Ar1S7Po1IjmIkVpPQkcmkDLejXFOeXy0hI0aRuIogYSJIzB4iPJJozUkak8RNnY0qVWeLnnVqVbCxseRWCgncdoIevxE+cRkfxJbSwmbMIqUOi/GjQoSv99gLeFT4kk6rSRxxjCMwa3IpJCY6E+ivoywi0aS2lHO2ORAJIIde2EbYRfGkVhZTMKsoQT+pGN/XgthsVISJ8QQeskIUvSVpB9p5KtddUwdF0T45eMJ2ZtJg9ZIbq2Y7/xTiQmlQkLd/ssJShNhmi6dHMBF4/wJvzGSSH0F2zZUAVDQbCf0qkSS/FqJuiWKeR51vLahmtYIDTFDJEReH06ipJ6kS4OxOFsfj4z3IunXZiJvCGeMdzMp8V5s36vlq8ONaD29mJDiyZM3h1OjFVFlUod6smlPC39L88R8pItU537MrzQy+gJfLvipiUtTPQk+p1V7R0Y7M8eq6DwhYbRzfx1vtHHtUIHaLAk3p0CRVnRUkjWgKpEyK9GBoVTC2a936QEbS07pGBUg4YpREqLbROchzs1Mi1Rg6hAbXXKBJF8J68ocZLSDn7uF0QEwLdyCxgu6HXC0DRK9IS3UgA5I8LYilwj4dsOvYoCfCRoj3ipQyCHe206jHZI0RiqtkOhjR6GUouqA2BAYoYNR4aD0c4PKAaDG/s0UFerB0ChP1J5yEuPUJDlRKaQyOT7ensRH+xAd6UOys1YkOkxNfLQaby8ViUN9GTnMD8HmiVlQ4BfkQ3ysDzFDAugwyZFaTMTEeTK0wohvuBeJw30YOUKNYLHRYwW1WkFchAdRoR6M1DvAZifCC+KCFPhIbEwa5sm4RG+iAxRs2q3FS7ATq3EjQi1j5DBfbDaB6HA18dFe+Hi7kzTUh6R4PwTAbJXg4+3O0Gg1QyL96BAbwxEd5Ud8TDc+Pl6MTAgkcahYHGZxuOEX6E98nD+xcaF0GEU7Hzs0gOFDDfiHhHHvHb2O0dSp4u8Fd0cDEJ/YO6ePJQ4ZGIaNQRzGwVAkBogSD0qDjDEgXN0gegwWKR0Ud3owvaWq/jxZ/9xgUXaAiPxg8pJBPk/oP08W8nnn02y6LWrWfdCLorHosc2sWXeQhfdMZfWbtyDxslFZX8jP+2oA+GjLSTw83Gg4+RK+MX8HYM6Nqbz+4uUoNd5oW/Ss/UKMTK/dfoaXX7wOTZCYqvPEYzGkzPiEtT/pufrSYURH+ogPUcIg6BzO7+az7cUsfiGDiakhXHtZAm8uiyM8tG/6j8Mq3v9n3c55fBPJ14p/L7zkLFPgUuefT10p/h7llNW2mXjyTvH7WXRj79gXO+Ufv0r8/fFrBXz8VSX3Xh/FOy+MAWD+FWDXG2jpsDDNCev38DR47N0y1v2s49Lxvtx14RCGm7UMnxFG2l4zh4q6uTYtgHGpPgQkBxFfLiF2TChdaj18J97jhyX445cYSnKXioRYsZbA5qMjIFHDsEQT8amRJE3oXYMPj4lEohhgjf0P6ffA2DkQH4d2Acd+YzxBEIQX/026/Z+QRCIR6t+MYdsxPSlRYoVsQY2Zmyeo+TzXxDUTfCioFJ+CUoa4s+VgBw9cG8oXB9r79Ky/PtzKh4cN3DLWg+P14mYYHa7gu2PdzBmtQlNfCwAAIABJREFUYscJc58b+Y0j3fjomJlbkpUcbxI3d3KQlG0nLK4e8aNDRPnTbXbUSgkv7+/hm9t8XPJjxwawNVPHwum+bMvqJiVKXDDHm+zcMsWP1b+2cttUPwoqjSg8FSQP8WTz3lYemB3M1ow2xsR5IlOryD2t49aZGt7/sp45s4LJL9Mj81CQMsybz39s4KHbotjycyPjkgNBgNySTm6/KoJVmyuYOzuSE2cMWG0CYxJ92fhdNYvnDGXzj7WMHxWIAOQWdzBndjTvbCxl3g3x5BWL3dfGJAWw4eszPDIvgR07qxk5TLxR5ZxoY+41sbzz2UnmXR9P7glxE40dGcCGr8t5ZF4im76vZKzTEc8pamPutXF8tK2Um6+KJbdIdJTHJgfy2ZdlPHZPMhu/KRf1B3KKWrnjb/Gs3nyK266OJ6dIdGTHJQex+dtSHrxzJBu/LnU5vjmFWu64bhhvrSvkrhtG9JHf9lM5C25L7COfe6KFudcN561PjnPXjb3yY5P8+ezLUh67Z1Qf+ROnWrnxyjjeXlfIvBuHk3tWfqQ/n31ZxqN3J7PxmzKn/gI5ha3M/dtQ3v70BPNuiCe3qBWZBEYn+DnnJ4kPNp3i6ddzXOu8Ys/VbP6hiisvCmfM33a6+HdcE81PGY3cf0scp8s7+WpPI6OHe6NtNzNndiQrPxUbBex4I4UxI3rXwzWL8ziU38nfLg7ikvEB3HZ5CO99UcPtMzWs/baBnUfa0HZY6NTbGBnryczxflw1RZz//FK9a71dPt6XvFI9T31YyffLk8go6OKBqzSs/bGZaaNF+L/8MgO3XhLI+q9ruXqcNwVVzv0Y486WQ53cP07JtlwDqZHi/s2vNXN9tNBvf40OkXPvN90ca7AzKVzGC9PE/VvYbCMtVMK3ZTZuHKGgqMVBt1ngsb29bXKfHCNjUojocC/PtnCsFUb6wtsTpWS1CPwjr9eufjcVjrZCgjOlMqcNrouU8EUNXBkGp7rBTSIwzBuuyBBlnk2ERB+QyKCkS8JV4bC5EmZHwMkucFNKSfCV8G21g7nxUn6oFhgVLOeGneY/PYVj7ZLR3HRZBO9uOsMdV0eRVyLmM45NDmLjt9UsnhvPph+qGZskPugWnu7g5ssieXdTGXdcE0NeSQc4bKSM8OHzH2p5+PZYNv9Yx9hEXwSjgZyTOm6bFcx7O+qYe1kI+aV6pDY7ybGebNqt5cG/hbI1vYXUeC+w2skrN3DrxQF88H0zt18SyIk6M6dqetia3sJ10wJd8hMnhSI4IPdkF7dfGc6qzZXMnR3B8bIeHAJ97NX2XQ2Mctqfs/bq3c/LuPO6WFF/YEyiHxu+reSRO4azY3cjo4aL13vW/qzdcYaH7hzZbw6lioGRF/5yoM+j/0UHWtvSTfDQp1yvm8tfRxPk3Y9/+NfH+ductXz9+X1s3p7Jmk+PcOv1qezcc4r8jMcZkvKKOHzr8j7jL3ryW9asz2ThvPGsfv2q3n84LKQfqOT11ZmUlLbQ3mFiRHwAK/4+lRnThvRTu7m5E5lMQuJFG9m99TpGJYrBFW1rD5rAvtd/1oE+nxxW0wDMgf3AB188xNpt5cy/eSir/jHOxW9q7kbj37uOte1mYmb87HpdsfMS1/8XLytg3feN3HN1KG8tjqelw8LQGzJdssvui2b+1WG8/3UDcy7VkJHbgdpTTmq8l2u/bz/Qzuh4L6YuzAeg5ecpvP9lPXOvDSf/lPikO2aEN5//1MBDt0TR1iMnPLhvQa5EocJj9I5/q338vWceEmAW8I/f8fNfT3qzwP5TRgpqzBTUmNl/yoje5KCw2kh1i4XDpw0cPm2gusVCepFO7HFf2E3+mR7yz/Swr1As4NtbZqKm3c6RSjNHKs3UtNs50WxDbxHIqLJyvNHG8UYbGVVW9BbYX2mhusvO0VorR2ut1HQ62F9lRW8ROFBt43jT2R87cpkErcHRR7623cbeEgN6k4P9J40U1JgoqDFxoMSA3mQnvUjn0j/vTA9VzWbSC7rQGx3sO95N3hkDJyr07M3tQN9jZ09OB1VNJg4d7yKrqIvKBiN7slrR9djZm93G8dNd5JZ0kp7Vis5gY/fRFqrqe8gv6eRgbitV9Qb2HNWi67GRnqmlsLSL3OIO9hxtRtdjY/eRJirrDBzI1nIgW0tlnZ5dhxvRGazkFreRc0L8ST/ShM5gZdfhRqob9Bw41syBY81U1unYdagBncHKvsxGcorayClqY88RkXfseAuVtToyspvIyG6islbHroP16AxW9hyqJ6eolZyiVvYcEnmHjjVSUdtNRlYDGVkNVNR2cyhX1Gf3oTpyCrXkFGrZfagOncHCrwdq+8ln5Wv7ye89LI7/a4ZTPrOBjMwGqusM/Hqgtp98TlGLc/w6Kmq6ychqJCOrkYoaHb8eqOuj//GTbex2jr/rYL3reg/lNlFZq2fXQXEuso5rXQ0WYiM8UalkrrlOTRQdhZlTgvni51pWPDGaUxU6rrgwhOWPJhIX6cn1M8P5YEula48cyu/osx6CfBW8+sBQLhkfwN5j7eh67OzJaufxd8tYuakGiQS2vJTEmGFqTlb1sGJTLc+uqSC/tHe9ffRdA5MWFvDs2koSYzyw22FPTgePrq7kH+trePaTavLLDOxzrtnsMoNzPfdw+HSPuB9P6NGbBTJKTeTXmsmvNZNRakJvEdhdbu6zX443WznmxGLPrLdzpNZKYbON1Tlm0jb3sPGElZpugawGGyfb7MyIFM3l32KlFLaKrW8zm+w44YI50SkWOZZ2wTDR1ydQCUoZZLeLju/JLijTi+3Ls1oFGoyQ3yFwoktMRTlL2W1Q0gUVOshqETDY4GiLQH0P5LYLnGgXqDMIHG4Sc8aPNjsoaf/fgQ3MKuxEZ7Cx54i43w/mtnEwt43qBgO7jzQ593szucUd5BZ3kFXY7tzvWqrqDBzMaeVoQTtV9T3sPtqCzmAjPauV3JJOiisM7M3tQNdjJ/1YB1WNJg4WdJJXpqeqyUR6bqdob/O7yC/Tk1duYN9xcT2k53dR1Wwmv0zPyWoj7TpbH/kTZTpyT3b12qvMVqrqezha0N7PXmUWtLv0T8/stVfVjQYOHNNy4JiWyjoDuw83oeuxcjRP28/+7D/a8L/yffxF/xppW7pdf2uCvEkcIRbzLbhnGpogbxd/4T3i0cG82yZx1wOf8+rzVzNlUhyr37iB5tNL2fLxXF548lIuvnr1oJ+1euW1NBc/2dd5BhY9vZMZN20hLtqX2ryHaSxcTGVNJzNv3sGiZ3b1lX1mFyEpa7nohi+54ap4l/O86Lm9hKSsZdFze/tfY2vP75+PNmO/12u3iQGTtdvK0baJjvfDr+QQM+NnFr9W4JLV+Cu570bR4b/3+iiX86xtN7Pue7FEbt33jbR0WAjyc+Oeq8W5Tkv25tgpPXqj099oNFNab+JQUXef/X70RBf5pb3Zwmf9k5pGE4fyOzmU3+m8H4n3nrauP/8kDv7qRNiPJBKJcOLlKFexHYCnm4QWnZ2QCG/a9TbUqrM91sXiuRazpF/P+obCBjRectp77KiVzh73ZgFvq8XV871PMaIzub7d6EDtLP7r7rHj5y7rJy+VwbIDPRQ02th0o7dL3qzx6VcsCKD2c3cVk53VX+qldCXXn1usI/VR4amS9RbzOYt7pJ5u6IyO84pvxKf7c4tp2jot+HiL0QRdz9niGxMafyVGixQkvcU0wQEq2nUOvL3EiILOYBWLk1qNaAJUGJzVZJ4ecrRtJoID3cXxB5IP9OgnHxLsRVuHqd/42jbzgOOHaNROecU58iqaW3vQBLj3lW81Ehzk8fvkvdwGlteZB5T3cJeibTMSHOjRV3+9ySnfOz+CYMfTQ9E7Px0mXngrj4+3nebO6+JYu2wKza1Gvvqlis++KmfjikkMG+KNts1McKCKM7U69h1pYOtPtRSVdfLc/YnccqVoAHXdBvZmtbLtl3rSM1tIilOTWShG39oOXNK3GMtb3q9YUyKBuKsPufbWsfXjKKkycOfSky5ewYZxRIeoOFXdw+T5eS5+ziepBHgrsNkF4m/tPfjK/2g00cFKHlhVwda9rdw2xYc37whz7kcHfl4yGqu6CFLL6HGufw83CQ9taGJHsYWbk5WsuFQ88tNbBJbvN7CpyMKcZDeeneJOm9HBtA061+f9epMHUU54yvZOK3ZBhGgMUPXiTr+eZebLarghRsLCERKctWdUtjuI9pTQbhbwcwPn9OAmldBhAX+lhC6LgKcc5BKBHgfM2ifKHJ0pykvl4C6T0G6BAKWETouAlxwUKik9dgk+bhLaTAL+SrDI5UzcbvrTI9D6Y1f12e/eruJgKf6+vfvdtR5UEtd+b+s04+2pwGEzi+vnbHGes7jQrjuvuLDLitpThr3HisFk71eMK1hsfYoL23U23NzlfPhdIxt3aSlaP9Ylb/ESU0362KsuCz7eIrzmufYqONCzX/FfcICK9m5b7/51Fv81t5kICfbpZ09CQ30ZiP6KQA/E/9+NQC96dCNr1h1g4T3TWP3WbWz98hgvvvoDO798kLhYjUtOpzPx3U/5bNiaRXZeFYvvv5iX/u50gh1mDhw5w0efHWXnnpPEDQkkJ1+EWzs/An1W/lzStugJTlrpet1c9Ag5hY1cefu2c3gPoAn0RNtqIDj5Axe/ZP8djBjqj7a1h5CUtS5+U8F8VyR60TO7+XBTMQvmJPH+y9N61RggAv3Qi0f4aOtp7r91OO+9ONnFPz8CrW0zEXXRt67/V+25ok8kuqm5q89r6B+BPkt19T34eMn7ggd0W/FydpztAzagccdgchBxzREASrdNROPnRodFBFuAc4uDLYSG9y8E/TMi0P8SjN3/l2np0qVLyrUW/L1kfJDeSXpJDyqFlAUbtVw1zod7VtfSprNz7EwPb/3YwvRkNfNWVRMe4NanZ/0L25q5eJiK+7a202ZwkFNj4Z0MHRfHKLjxi25i/WSszjaxt8KKSiHh1Qwj02IULPhOR1uP2LP+41wTU6MUrh7x72f38HGeiTcOGylstvFEmgfL9htoN0Jug42vikyMG6LiulX1xGrc+GB3B+nFPbirZMz/qI7Z43y4e3UNbTo7J+rMrNjRwIxUH65ecpq4MBWrvmuiqLIHuwPufe0U10wN5M5XTtHaaSW/3MDr6yuYOTmAKx/MIy7Sg3Xf1PJjRjPuShl3PZ/PtZeEMve5PExmBwdyW1n5aSkzL9Bwxf2HiYvyYv031XyXXo+7Usadz2Txt5kR3P1cFk0tRjILWlnxcTGz0kKZdVc6CbE+rFx3kl8PNuKulHHHk0f426WRPPdmAeXV3WQWtLBi7QlmTQ3j0nl7iI9R8+a6Yn49WI9KJeOOJ0QIoVsX76el3URmvpblHxYya1oEj7x0FF+1G298XMQvGXW4q+TMfXQ/182K5ZaHd9PSbuJofjOvrc7nsmkRzJjzI0NjfHhjbQG/ZNSgUsl5dXU+0yaEcvND58tHMmPOD33l3RXMWbyH6y+P5eYHdtHSbuRoXjNbvitl8phgZtzeV97LQ87ti/dy3eVDuOWhdFrajWTmN7N8TQGzLoxk5pyfiY/x5o2Pi8gq0NKps3Dfs4e47rIYrl+Uzvd7xNy84yc7uG5WFLPvT2f7z1WYzHZ2Hmgk+3gbz75VQPrRZp5eWUBVg4GhUV6olDJefHAkl92bwdAoLzb9UM37Wyrp7LbirpTy3fuTeXfTGQA8lDLe2FDpWg+x4e68u7WG3ZltqJQy7l5azG2Xh/LzoRbau22MS1Cz8ecmfjzUhgSw2gTiI9ypajLjrpTx0FulzBzvz4kKA0NCVbgrZbzxRR3XpAXy9f4WdEYH8eEqqprMmK0Olm2uB6Co1owgwPFqE2/91Mr0kV4sWt+ERi3jg/3dpJ8yYrbBinTRKS7W2nEIUNhs571MI0unubO7wsK9qSo+yjOTVW8nxEtCZaeD64bJ+a7MRrtJIL/ZzofHrVwaJeOuPRaivSV8WmLnYIODGaFQ1A5LU6U8k+OgwyK2OD/QDCN94MFciPSEzdVi/rNSBktOwEUaeKFIoNMqoUwH6ypETGuAUb6wqQpOd4MDCc8XCFwSAs/lC3RYJJTq4MOTDtJCJNx3wEaUWsLWMgfF7cKfXkQ4abQf8/6ex7XTw5j7TC4tHWayCjv4clcD45P9ufy+AwyNVvPWhlJ+PdyEl7ucO589xrUzwpjz9DFaOszkFHew4tNyZk7WcMWiTIZGevLO5xUcP92F3QH3LDvFNdMCufPlk7R0WimuMLB8cx0zxvpy9XMlxIW5s+rrBnbndqFyk3Lf22e4fLwfs58/yZvb6ymrN+GulHHJGB9uePEUcWHubE3X8m16E+4qGXc9X8C1l4Qw97kCOrqtHD3e3sdeDY9R8+Znov7uShnzns3m2hnhvLCqiNJqHZnH23j945NcmhbKZffsZ3isL298cqKP/bnxilhX4dm5NKijPEgR3IDFdP+OFtqDjtG/oc+gegxS7DZoMeNgnzmQoyvtP3ei7MBoG9o2I56e5z2cSKRoW7r78LUt3dw8T3Q6c/Kruf+uqVx2/Sp8fdypqGolr6CGEycbWPnuLh588gv0ejNzbh7PR2/fxmUzzklcF+y89UEGWbk17P56Ac88Mp2lK34FYMlTM/oreN68enq6odV2k3O8kYV3jsFosrHgqZ2kTYikorqThXemcNPVCaKshxvNrQZyjjcxZXwYTy0a5+QraG7tIed4MwvuGMVNs4eJ19jawy2LRFThnMIWFsxJcq3F89FUtG1Gbn9EzB3LPdHG/bcOd8lelqZh/s1DueGyKOfnydG2m8gtbue+G4dww6V9ix89Bng2vHSMmnuvDuW6izR9+HuPtfPhd424K6Xcu7yUa9ICuPPV0+h67Bwt1vHmtnrXfh8a6cG72+soOiPC1u3KbueaqYEsWVdJeU0P2Se6eGNjNTMnBXDlw3ncMCsCD1XfdSKRyVn2Ycn/KYxdCGLHwbNlqrVAhiAITf8uhf6vSSKRCF8uCmFirIraDnGhRfjKyakyM21cAHkVPUQGiourttVK6hB3DlWYmTjci1pnhX1EgJIj+2pIi1NRUG8h0lc0DrWdNkapBQ5VWxh/TkOWMG8px+qtpEW5cbzJRoSzx311u5VYPzmbC83oLA6+OGHBVyVBLoVmg4DJJnBpnBsvTRcjao3u7qRGu3O41Mj4WBW17aL+URFeHCvvIS3Bk/xKo6i/u5L6VgupQz05WKwT9deakaqVRAS7k13SzdTRPuSV6ogKViHxUFDbZGZMgjcH8jqYNNKH2lYHEsQGIllFneL8lHQRFeEFSKhpMDA2yY+MnFYmj/KntsWMBCmRIe5kHm/jwgkackp0xDgbClTXGxiXHEBGdjNTxgShc3bg8PZSUNvUw5AIL5paTPioxQhEp85CmMaDyjo9UWFedOms58gbiI32paG5x4XD2dltISzYg+p6A5Ghnn3lGw3ERvvR0Gw4T96Tytpu5/gWp7wbdY16YiK9f5+8t4raRj1DzpPv6DASHuLVT95ktmIy28+RV/LYK0dZt+0U9982gsfvHUVUmKj/U8sz2fBVObdeHcuGNy6kobmHl9/LZ932UuZcE8u65WlU1ukwGm0Ul3fR0NhNW6eFyjo9s6aGMm5kABGas/NpJUzjTlWdgchQD9rbdbR1Wpj7TC6nq/SoPeW0d4lz9uicaBbcGEVokJKqBiORgW50nf2+PGTUac3EhLlTX6/HZhcI9HXjaFEX9712mvXPj2BYuAqlQlznDgG+2t/CZz814uclY/tLiUgkEroMNkIDlFTV6FEqpCidjUjUHjIWvXuGHRlt3DzZh5VzxePArh47oX4KcgraGBUhQjIBqJVSHtjQyLcnrVwxTMFrM8Vim7puO0l+Uo7UWhkbKqO+W3DuRwl7Ss3MilVQpLUT5oxAVzZbSQ6QkN3sICVQgrM/Br52C0UdEsYFSijuFHD206CqXSDRB/LaxfxoZ/8NApVwoguxAUq3QLAKFBLReb47W5TJmC7KS2WgUUFRJ4wLkFDSJRDqDgqVhMYeKUl+Eo5pBUYHgtYKs3/682Hs2g5dTmZRBxeOCyS3pJMoZyOI2maruN+PaZk8ureBSGSwsle+uIOoMA8cNjO1jWbGJPpwIKeNSaP8qGkyYjfoiQx2J7u4m6kpPuSdFu2P3WilVmtmzDAvDhZ2MTHBm9oWMwadGW2nje+OdHCouBsJEjzdpTS1WzFZHFw5yZ/bZwYxMcGbBqsbEqnYsKmPvYpUA9K+9mp0ELVN4pF2ZIg7mYVtXDheQ2mNgahQ0V717hc9UZF+dOvPtVcG4oYEDjiHf0WgB+L//gi0ts2MJqgv7NuiJ75kzadHXBFlF/+xL1izbj8L77mI1W/P6eWfF4E+U9FCeYWWuoZOauvbaWzqZvyYaK6bnYq/3yDFZw4z3d0mZt3wEflF9Xi4K+joFNfMfXMnsPbt6/rJ9x/DgrbFgCbIk/LKdiZfuYFfv7iFiFB3NIHiOtPpzew7XMMr7xxFKoUDX92IQtHXORwoB3qwCHRTUweagL75wYNFoAfMl6Z/DvQ/k7frB270Yui2YLY6UHvIqWsxExOiorHNjFopRSKBLoOd0AA3qptMRIZ70m2wMcSZO12wYTwxoSqaDQ58nCdgXXoboYHi/Sg2NqDfQ9yfEYH+XQ60RCLxAt4F5tIfucMGbAIeEQSh+/z3/reRRCIRGvZcxIr1laSliscAh/I7ePquIbz+STlzLgthf55YNHPRGF/e3lrL8rsieH1bA2kjxbypQye6efrOGJ5aXcGjN0eQkS/KX5jqy5bdzTwxJ5oVG6uZmiIe8R0s6OSpm8N56sNKHr0pnHU/NpFfpqelzUxNi4UxcR5YrAI6kx2FTMLISBVXjFHzwCf1bHsshlP14qK9aFIQ73zVwIr5Mby+rd6lz9EzRp66M4Yn3ynlsTnR7M/tQOWhYvJoP97acIY3nkhi+SdlTB0bgJtKyd5MLc/OT+CxFQU8cddw9mVrcVO6MXWchpWflPD2c2N5dc0JLkmLwG4XyMhu4h8PpPDIy5k8OX8U2YVt9BjtXHJBOK9/mM+7L6bx8nu5TE+LxO4QyMhs4PmHx/Hwiwd5etFY9h6uA+CSKRGsWJPLqqXT+DG9mluvGd7/+xmsklbmOQBvkCNAuXpgvnSgG9sg2KKDREEGlh3kpjHAGIsWf8yaj39l4X0zWf3OvQBotV0ED5nvkmmuXItG49OfX7EajcbH9Z6zf/chYYCb40CGHcDRK7tr70muumUtVqsYRdmy9jZuvT61V9Y+SK6dVYQlEgSBH3ZXcN+Tu3lq4TjiYjUczKwl42g1p8+0M2lsOA/ePZarZw3rZ/gE28AGuLG+td+N4MEXDvHRlpPMvzmeVS+M770Um5U7ns7k+YVJ7MsSoS4unqhh4zcVPH1fAq+tPcnUsaLDczC3lWfuiefxlYU8Pi+e/dlikvP0KRGsXHeSt58bw6sfFjNtnBhRKSw38vBdySxeeoinFqSy94gYHb9guJ23Nlax8rHhfezJkYMNPHJ1MM9sqGfxbA0HivXIDCYmxSmZslx87wMX+3BBnAq5YCejzMzj07157vsOHrrIm4PlJhSCg4kxSt4/qGfZFd68tV9PWqKa2z5u+tMd6OcfHsNj94xi8UtHeOr+0ew9Iub6XjwhkJUfn+Dtv09g2epCpk0IBuBYQQOL58Tz2IrjPHHXMPZltyCXSZk6Log31p/mradTXPOvkEvZm9Xf/qgUApNG+fPmhnJuvSKcZ98uQWew0dBiwt9bwZXTNHy/v5lAXzcmjvLFQylj88/1TB0bwNoXklm+7gwzLgjFahc4mNPKs/NHuPQ5dLwbu93BxZNCXPbt3c/PMH60mGOakdXIPx4cw+KXjrDy72kE+g/QLXAgp9gtoD8PBk9BGMymDGSXBokSDzrGQPxB7dIf0G9Am/lP9BhMfqA5GUB20QNvsubDb1m4YC6rVy8DQKttJThkjEumuSkPjSZwUD4AQjVabQcazXlH/QOgcww61+fwj2aWcPnsf9DVJdqqD1Y9yKIFs/vKD2RnrZ2uP9P3F3P3ok+Yc8sFTJ6YwMHDpzhw+CRFxTWMGxPH/Lumc8vNFyH9vXB9Ct9+17jowbdZ8+H3LFy4kNWrz8nZFmrRalt758el85mBxz5H7z5kG4A/2Pz1VA7IFiy6/jyHOIYsRkxjsVc9IPL/wImLRO6GLPLdf6t9/D0wdiogHRgNfAx8D1QhFhZGA9cAdwMjJRLJNEEQBn5k+e3PWYIIl3cuNQuCEOL8v8T5//mAH5AFPCAIQvE5YwiAFRghCELFOfzPgEBBEPpm8P+HkdXm4LXPa9ib18VFqT4smO7HL3ndPH9zCDNfLCc+TMn8SwM5dELPkxsbuWC4J0Heck7V/19r/hf9Fg3m0J7L12q7WPOxeAS45uPdLHnuRjQaHzQaHxbeN5M1H+9m4X0zXfIajQ8L753Bmk/2sPDeGX3GH9B5/hfIZrOzZPlO1m/JYueOBcy4VjRgt16fSmFxA9GRfvh4i62wG5p0lJxuofi0ltr6LiQSCRLBjFQq4XhJC9V1Oj5fdTnzn9rN8KGBTJsUydsvzWRCahhK5W+aon50vvOsbTPy0RYxv3rttjL+8UByn8YF7so/8NDzF/3HkdliJ7ekk12HtQyP8eLWKyKICVNyKK+DkxU63BRS1r00ir1Zrby+voIli+LJKf6vj+n8/4IGdGbP42u1Haz5UMy/XfPh5yxZ8igaTSAaTSALF8xlzYefs3DBXJcTOBj/LA30eX+UHA4Hb7z1JW++8xUb1j3BtTeI2QGLFsympKQajcaXwEAfBEFA29xBcUkNxSdrqa7RIggCUsGCVCqltLyJ/MJq3l1xO0uXf8vhzDNcPC2RZS/ewuSJw3B3dz5g/METXTDhAAAgAElEQVQGNedeozh/3wOwZs0alixZgkajOUd24BOTv2hw+j0wds8CzwKXCIKQM4jMeGAPsFwQhNf+JUVEB/oW4KJz2HZBEFqc/38aEeVjHnAaeAFIA4YLgqBzygiACfhWEIRbzxn7M36nAy2RSITv3k1l8ihfap0JiZEhKg7ld3LJKC9yTuqICRVvylWNJsYlqNm5r4kx8V7Ut1qQSiBSoyS3ysTMCf7knNIRE+KUbzIxPsmb9JwO0kb7Uus8040MVvHRl3V88mMjidEevHp/DGoPOWdK2hk71IO571SjcpPw5LUaLHaBhWtqSRvhyWu3h5JbYSQ6SNxc9RYZY+I92ZvfxZSR3tRqxSfemOF+HCroZPoEf46VdDMkzB2Jm4qq+h7Gj/QlPbOVtDH+1DQZkSmURIZ4cDC3hRmTgzlW1E5MhCdShRuVdQYmjApgz+FGpo4PplYrHudHh3tyILuZmWlhZB9vIS5ajLxU1HYzMUXDroN1XDgxlNomI4IA0eFqMrIauHRaJFkFWmKjxEh5RU03E1OD2XWghulTovodU8F/ZwR60aOfuZzfs1FlgEWPfOqMNs9i9bv3ibwBItBnaUAnXLANHm0eiP5ABLq2ppnb7tuAu7uCt5ddh5enkpjRSwBYfH8aW77Kx2ZzMHxoEKfKtCgUMhKHBZE0PIiYSF8kEgmC3YjDIRDg584dNyRyMKuep5YdIHf3fb9PXwaPQNtN/fmDRaCNPWaUblKyC9sZ4kwZqqwzMD7Jhz1Hm5k6NsiVchAV6sHhvGYunhDEsRMdxISL8jXNNnH9H2li6jgNNQ3i58fGhZKR3cilUyPE9RwprufTRScZk+BNelY7aam99iTEpOfIKQMXJ6vJKe8hRuOGTdtNdbuNK1eJFevVK6Kp67AhWG1E+Co4WmniongVebUWovzlCBYbNR12xkQo2F9uYXKMGw1WOVOW1/3pEWjdibs4kN3IzLPXe3b/VrUxPjmQ3YcbmDY+hOoGsWo+yNPGvuwWLp4QRH5JJzERnshkUhpbTIxP9u8z/xIJA9qfguIWHn6tiLFJvlx7SShXXRhCTaMRh93KFzsbSM9qZffaieSWdPPcqlNcONafK6YFMz7Jh/SsVtJS/WloFxAE8fs9mNvKjMkajhV1EBsb4FwPepd9u2jKEJf+0eFeHMgSr7ehxUJkWH/78VcE+nfqMVBU+aEPWLP2JxbeP5vV7y8+h/++M9p8Las/eFzkDRCBPksDRlAH4wvVA+v3ByLQLdo27rh7JV1dBta89xBqtQdxI+YB8Pxzt7Fm7U/YbHYSRkRSWlaPw+EgKSGKpMQoYocEI5VKEWw9OBwC3t7u3HlbGmVnmrnmlneoKH5v4EjzYGtnIFL0L2L9ZxHoAemvCPQ/H/N3ONCFwA5BEF7+DbkXELsTjvqXFBEd6BsEQegHnOmMPjcA7wuCsMzJcwe0wBOCIHzk5AnASuBxYIIgCLlO/mf8AQf68imBzL8hki93i6nd188I4dlVpfywciR3v3KKKaO8+fZAK5X1JiQSsNgEVAopVrsACEglEqx2AbWHDKtNIDTADbWHjNYuG3fPDuWjb+pJG+1Dfqkeo9mBQi5B225h1SND2fhLMzPGOVNHctu4d2Ygc96u4uNFUew+riO7zMCZJgtB3jK+eDSG579oZHqyaNDL2uwsnRfF1X8v4dV7o/nqgIiXfOMV4TzzXhk/rRrDvBdPMGOiP55eKr7b18SGZWO4YlEmrz+ayI5dDQQHeTBtXBBPv1HIzo+nccfTWcy8IASlSsGP++vZ9MYUZt2VzspnxrLzYBN6g5WbrozliVez2P355dz+yH6uvyIOvcHKrwdq2bpqBjNu/4E3/3EBuw7W09Fl5ubZ8Tz+8iHSt17LnY/v4eLJYiHCrxnVbH3/Mqbf8g1frL6c5BH9jeF/ugN9vjOr1XYRHLvI9XrQ9Iuqdb2R6Ob2P+AQ/4GcR/jdDnTxyQamXf4GV80aSVSEH6vXHcTD3Y26hkEM51/0b6Vt9wfzTZ6BIA8JF8QpeeHHTr6+T8P8LW1cMlyFUuJg50kzH93ky/Xr23npcm92llnZeFT3pzvQP392OY+/fJTdm6/ktof3MmuauH/LKjt46ZFUZtzxK6FB7hwrbMVsFeskHA4Bd5UMo9mOTCrB4bzvxUR40Kg1MWGUv4h04a8kPlrNV7vquHiShvSjzbgppBiMNiI07vz80QVcseAIKx5PYsevDXR2m8nIaSPIz43dH03ioruPUttsYsakQDq6LWxfOZYrHshmxaMJHMjvQttm5sZZETz9ZhE716ZxxzPHuOLiSGw2B7sON7rs2zsvprHlexHC6+YrY3liWSa7N1/JzxkN3HNzYr95+cuB/n16aFuNaDS9jp1W20lwZG/OcnP9DjQaP7TaDoLDb+zlN37fG4lu8fyfR0v/hw50dXUzk6c+xKQJCYwdM5S3V32Dp6eKmhrt/0yvv+h30X+TA20ArhAEIeM35C4CfhIEYQBP5ncoIjrQTwEdgAUxReM5QRAqJBJJLHAG0Sk+ds57fgJaBUG40/laAG4EbgICBEGY7uR/xj9xoCUSyXzE1BCAsaXfTyU4wO08WC4LQe4Sis7ouXfZKaal+jDvylCGhLnTpTWg8XPDYHJw27LTHCzSkRDjQXKcJ0G+CiI0SjyUUmqbLXQabJjMDoaEq/BTKwj2dyM6VIVaIRAd4kGHzurq4d5S1cGNr1dx5yX+3HVJAFsOdrD4kzrGxbkTEeDGd8e6eGdeGDddIBoWo0qJn7eiDywdgHeYuhcW6iwsnZtqQBgpqVzprLR1wjZ1WVB7yJG6uaEz2PrAzBmtop7nwsy1d5rx8RYd1/Nh3XrMTlhAD4UL1q29y4Ta062vfEsPwUGeA1Zy/yc70IseWe9Kp1j9zl29/D8QgQYGvzkORH+SA93Wruel5T+w7Zs8pk8bxmsvzCYq0h+J38N/7PP+on+Jmt6Mocci4DDb8FRKaNU7CFLL6Oix46WUIphF7Hg/DyktejuBnlKMCiVxz1X/6Q60pexeF8xie2fv/u3q1GGzC8y+L52kYb48dd9IfL3dCPCw0tJhIThAxbznjrH9lzoS48TuhPHRajzcZYRpVNQ1GWlqFYMSak8FQ6O88PKUMyTck+hgBRKppI+90vfYuPahTP42PYQbZoRyukrPFQ8cIy7Cg6lj/fn8h3refCKB2RcGE+TvhsmmAImkLyxdlwUfP7Ho+VxYzNCwgPNg6cTrNdukuKv6O55/OdC/Lbto8UesWfsLC+dfyer3Hujl/4EItDh29MCf+Ufof+hA6/VGXnp5I5u/2Mv4scN4/bV7GTYsAonbrP+5bn/Rb9J/kwPdAdwmCMLO35C7HNgqCMLA4Je/pYj4fjVwCtAgpmuMAJKA4cBhIFoQhJpz3vMpEC4Iwizn67MOdAFQAlwtCMIvfzQCXfXzVJavr2Rsong0mVvSzYO3RPPgsmKKKwykDPNi8kgfLhzryyffN/LK3FBe/6KRMfFeHCjsZntGK0qFFH9vOSOiPcg5pUMmlXDbTA1dPTZeuDeW1zdWM2aE6MjlndLx5E1h/GNdNfdeFeoqOqyv1/NTTjf7XxnKW9+1OHGc7cil4Osh5eUvtTxyVSA2h0BBpRFvbzf0JgerF8ey6mtRHxA7sT19Zwx/X13OvdeGk5HbgdxNztSxgXz8ZTWvLk5k+bpSxib6IXdTkF3YzrPzE3j2rSLm3xTLviwtUoWciycE8+EXZax4MpVXPzzB1AlhjEoIoFHbw4TRQRzIbiI1MYB6rQgtFhXmRV5xKxdOCCPreDPhoeJ8NjT3MDElmIysesYkB1FTLx6VRoWryTvRwoUTw6mq0zFiqH//7+c/yIE+P3+5T6T5nII+JPKB0yzOG8NF/wEOtMgfBIx+APn7H/mCjzflcd2VCSyeP4nSM61s/foEuYX1zJ4Ryy3XDGfmtOjetBxZ/0KsQVX+AykcAHZzf77DZiX9aDMpCX7UnkWHCPWg6FQ7k1MCOFbUTmiQqFNji5FxSd4czG0jZYSPC40hJsqf/JPtTBunIbuwjTCNKN+qlzEuWUNGdgNjkgKpcR79B8pbOF6qJy3Vj5ziLkKCxPW1fmMZD16l4YXNDdwzI5CMYh0Sg4kpQ91Zf1jHkmv8eXNXB6lRSqR2Ozk1Vh6f7s3SnzqZN8mLg2fMSB12Lhii5LNsAy/O8uatDD2pQ9x5cGvbn+5AP3ZPMk8tSOGp1zJZcHsi6UcasFodyKV2Vv4/9s46vKmz/eOfpKmmrpS2FChW3F2Hbww2YLCxMdxdhm2MwZANG8PdXTZ8eHFqUKgApWgLlUg9tTQ5vz9SQtskG/29bIP35XtdXLTPufPk6ZH7fM/33LIhkkGfVSQvX0uDghb0tyMSmTygEtOXRuJXRsqizQ/IU2tpXteVuMQszMzEJCly6NyyFC3quxAVk2HgfyQiLc3ru7DhwFPmj6/Kgg0xZOfmczFYQcembkwfXIGxCyKpW9UBsRjuPMjg0NlE6vnbs+rbGoz/OQpzCwm1qziQm6dh5oiqTF8aydBe5dCILbCyNMPH04awuym0bODOzfsqPN10/kPn39y5HJxA80Y+RkvTvSfQhrYyWapebZbJUvHwfSUqJMXtLqpEK1SGMcliS+Ox0W8Bgf7TcSP4duYW5v+8lw871WfSuG7EJySzZ/8Vrl6PolO7GnzeozGdO9TEyuplrHMJki1NwUgIB8DvR1No3749v/76K7179yY0NBQEBfXr12LfvmOMGzeQLVv2U6NGFdxcVFSrZtgR8d8K4TAYf9uTCIE7QHfgTwk00AMdcf1/oThBF4lEgcBjoB/wsu9jcbYvMjKGIAgPRSLRBuAnkUh0pvj2v4KjswM1KrtSrbIDQeEp3Lynomm/ILzcrVg4qSo5uRrC7qdzMiidp4l5fLdLRtSjLOxcpAzrW4EG9dzQCiJ+2hTDjcgMKvjqyN2GY4lk5WiYMao2Nap7ULOg1a1akoJr+dL4+2fhV92bNLGUeFk2K35P4OuPvfGo40vNeAn1CnoBRz5Mp30TV24rRIQlqbkelkKT2k7UquXKjqNxNB0XRfe2panZUFdtUOuUjVuZMlStkknFquVI19pjbmlBRX8Xqvrn4ebtTa2a2dSu4YqZuTm52ODqVRp/fzkVqpQhVW2NRCKhQmV3qlbJxNXTk1o1UqldpxyVK7jgX7DfPuxcCgBPv1eEsHNZXSWNNu3K6UlTpYJtnbpUAjMb3Mu/2vedCn729zTlmE04EHMjCSEmiXJzo8MPVIYPk2qN8Qt3zsTR7N+0jl6DhvHdkhXgDL0G3dGNDRxKotMgEtWFPuAIicb4qAMkmuCvxaE18rBrbAwgX/v6jkVsomarqXFzM8MbaYXWnjR4upEKzT+m3+QN+FX256PB81nQoTNW1rrjfr+QvakHd2Nz+1tfNGprynlJJG0Nxh6oBCr5QRbwktZkAZ2bnAWgfaGCItUBsh5SUIKVMi83iC3xqq37sd2rfgB6YtG5oLinR5WC8fwMyjXV/dip1ivzhikhlP20LrXiL1Dzi8bkhcViJsqjTg0vwuxD8Rvcgka2N2lQxxtN5nNEd+SU7V6Jmtnh1PysMuoIOSKtmhr+ztSUPsS3T1XqSx9Rt5oz7PkrN/2fo3plFxzsLKns50SCLJtLQQkE3kqiTjVnurQtw+j+1Zn1yy1CwpWkZebxLC6dkXPDUedr+aFHFWpW8+BqaBJnryYQl5hNs3ruWFqY8cflRPaejGP2+Do4uzpTpaIL5cu7k5JlhsRcjF8lZ6pUzsbF0xNf32QWrotg+cwGZGSpcfUsRcO6yfTrXoE79xRUrpRP84berN8bwweDA6lc3p5mdTy5FJRA5IMUqvp74l/FHb9KXji7uWJVoCp7lSsLQBufV8lVLw9n548rmfYpZkbGTZEgUw+PJajWU6IqQKbWUgI/CMZ9oTrPuH+cO2kMh7ZsoMeAIUxb9CtIoceA6/qxp1bdeFoov1NrLvA4pegcErEYzCG22Lgpv2QMEpO1tUsZHTc2d0m+D8DDyvDY1GstpubpaNp1HcLoySvw8fWl++fj+XHLx9ja6c6d2EL26nzj+9WYvzf1N6I2PhyvPk50tghZHsQJVijF1iB4E0c5ZGoHonN8UOKOXFKeXJEj2kzDB5bUHOO1IqTmhg+XtpbGr4NKHsb3q8hIPLYozwS1zCtJyEzJEjBfB6+jQH8O7ALGCYKw0oTNGOAX4CtBEPa+scWJRAHo7ruLKEEIhyAIB0UikXvBZ0YCbSmBAr34mxp82q40I+fcJvJhGkN6liMzK58GVe34cV0MsYnZtKjjjFqjpXkdZ8Lup9OmvjPrD8WRlqlm3pjKJCjUDOtdjrX7nqAVBG7dTSP8QTpe7tbUr+7IqD4VuXVX5xnqVnVi/6k4hn1Wnp3HY1Fl57Ngw30+bO7Gyhk1WL7rCX0/9ibsnq4kWG1/e3Yce8HYPmXZdeIFdf3tEYlE3HuaQ4/2XlT9+Cxzx1XDwU53Mjes68W23x4xvn9Vdhx5RP3qrojNzQkJV/D1pxX5ZXME/XtW4maEAnNLC2r5u7DlwH0mDq7F9kPR1K/pjpmZhOA7SfTr6c+S9WEM7F2V6KcqWjbxMdyJEhPxu8ZuHCa7Tf3zBPrGkyRc3IsWe1drNCjlMlzcXo0r5TJaVfDS/x4Q81y/XSFLKmL7JvFvEmitVkt87DMe3YviSfQ9nsY8wNnNnfKVqlC+chWcXV3p3boxVx4nYl7IiZpa35sg0CZhgkAbQyWLs8bnyHpoOFbShKl8QyUFQKHMZOP2G0wa/QHb9gTRoI4vaLMJCXtOv8/rsWT1FQb2qU/o7eeIcpOo5e/C1gPRTBhUk+2/PaB+TTcEdQ6hkUr6dvNj2da79OtegVtRSroND/jbFegXgX3ZcvA+GZlqNu67x1efVqJTyzIE3Igl5kk6py4/p3Nrb0SIsJVKqOZnz81IJemZakIjlUwdWp1WDT0IjVTyUWtvpi++hZWlGSHhSkQiEStnN+ZSUCITBlRnx+GH1KvhithMRMgdBX0/rcCYH25wIiCOTq28+LSdD/Wqu7Dtt4eF/JszgkDB/inPL1vu0r9HBSIfqcjPF1i6KQJXJ0u2L2nD9t9jGPhlPcOEZUsT1/D/MIFOTEww8G1qjYZkuQznQuPJchltK+sfOzl976l+u0KWVMT2JUpCDN8MgX590eB1vk8QBBKexxETFUFCzD0e3L+Hk7Mzlar4U7FyFcqULUeTmv5EPI7DwfGVMqzIe/2HFSghgTYBZbKSA5s38PXo8Rzbs4NqdeojCAJ3b9/k4y/6sn3lMj75qh93w27iVsoT/1p1DOZ4IwRaamK/GktofEMEWmQ/8I36x7/c8wWEeCOwXCQShYtEonkikWhIwb95BUmGy4Ctb5g8W6F7+E8AngCJQPti21sA102sWwYsBn4ETHgy4wgKT2b47DAiY9Jo38SdF0nZrNj1iHkbYjA3F/HDiEp0buGO1FpC/24+5OZqqFbRntYNXBAEmPrLfa7fTiZDlU9wRAoOtua0aehK9Qp27Pi5IYF3Unj6XMWVUAVXQhU8fa4iODyZjKx8lu+MYcGG+wz8tCwajUCGKp+zgQqevsjiyq1krtxKJjY+m3M35GSo8rkQrOTWvXRu3k0jNDKF67eVxMtzmL36HpMXhnPlpoLHcZmcuRpPhkrNuWsJhEYqiLifzLmrL8hQqTl9+TmPYzO4FJTArUg5j+PSOX0pjgyVmrNXnhMaLuNWlJyzl2N19pee8Tg2jeDbCf+/g/sWYuTIkTQtX4ofxo8sMv7jxNG0quDFjxNH68dc3NzpNWgYAL0GDStyU/m7yPO/jYlffcbADz/g0NaNZKSlUq9pCxycnAi5eomfp02kV6tGZKan8zj63l9P9j+OZ3HJnDp/j4zMHM4E3Cck7Bl3ohI4czGGjMxcTp2P5vGzZC5ee0xYpILHsemcvvycDFUe564+JzRcTnh0CueuJZChUnPmajxPnmdw/dY/k8D0OC6d1TuiOBEQS/0absQnqeg/+QKb9j2gYW036lRzYcLA6vh62+LiZEXTuu4kyLPZOL8p5hIxs5bfIThcwblrCZhLxMQlqOjX3Y92zTzp2dkXBDhzReebzl6L52aEgvD7yZy99oKF68PZefghU4bVwMXJisshSTx5nlHEv4VHpxAaqeT89UTdHNcTefI8k1uRSo6ee8aloAROBsTRovcxzl19QZ66BN37/kfxw/iRBn4QYP7ksbStXIb5k1/lRji7udNjgC6no8eAIUUIszHy/N+Ab0cO5rOWDdmxZgUKuYxGTZvh7lGK4BvX+WH6FJrXqY4qM5M7Ybf+7aUiT0jg+vkzZGVmcCPgHFFhoUTdvsmNgHNkZWZw/fwZXjx9QujVyzy6f/ffXu5bjdfuRCgSifqjS/KrUmxTNLBIEITN/9FCRKLFwDF0bzLcgZlAS6CGIAjPCsrYfYuujN0DdDHSLTEsY/eZIAgHC363BR4CDsD511Wgu33giSI1j8q+thw6F0+n5h6M7lOe0i4SfbIdUJCMkoe7swW3o9OYuOguDrbm/DyhClX8nIok5720l6dq8HCxQpmai71U97SWkZVfkByTw6LN0Rw884JDy5pQu6IVsuQ8PFwsUablYS/VKRTpmWqcHSyQKXNxKzS/nb0NYfdSuXJTiZ+PlIHf3eTx6Y5oJdIiyX+qrHzE5ha6ZL6C5D9lSg72thaIJOZFkvncXa119maSIsl/ypRsHJ0dkEiMPIO9Ywq0TCbDw8ND//v1x4m4uLujlMloWv7Vq75LD1/oCbJWEAyUaTCtrL4J/JsK9NSBX/JBl2507N7LqEosAlKUCpxcXIuoO+8VaEOkpmXh6GBDkiwddzc7VKo80KiQSi2RyTPxcLdDmazC3s4KdcpDMrPyiyTjqrLy0eZlF0neVabmYmcjwa72nr9dge7TtQIPY9OpWcWZgycf0765NwN7VaFNYzfkyblF/AlAWqoKdb7Al5OuoNUKrJ3dGK9SNgbrt5eaIxKbGSQrq7LyQSxCaiPh28U32bQ/mp1LW9G6cWmEfHWR5D93FysyVbpYqeLzOznZIVPmsOXAA1o39uTjwaeJCeiFh5eHoSL5XoHWw5QfLP4m7nx0rJ4g52u1Bso0mPYH77oCPWfCaPyq+PPlsFFGQzgEQUCpUODiWtQ//hsKdGpqKlI7O5QFbwOyVbqcEWuplGS5DBd3D1KTlUjt7DEzM8PMiE9+r0C/nPE1IQjCVkEQqgJeQGOgCeAtCIL/f0qeC+AN7EFHyH8DcoHGgqCP9l8ILAVWAaGAJ9DhJXk2seZMYDZgIvPMOOTJuUTGpHH5poLhvcoSL8vGy8OaSYuiuBCkYPLiu0xefJfzQQo+HBmETJnLx6NDsDAX07SOE+N+iiJJmcOHw69zPkjOpEWRTFoUyblAOZN+vkOSMoc+3wTz684Yft0ZwxeTg0hS5NC63yUOnXmBpbmY5TtjOB+smz9JmcuX08JYvusJy3c9YcaKaGTKXD4cFcyFYCWTl9xj8pJ7BATLGPL9LT7/0JuVux/h5mTJqLm36TPxCkmKbDr0P8e56wlMmBfCnOVhnL36gvZfnSRJkU2v0ef5ZXMEG/bcpefw0yTJs2jX5yhnrzxn3A9XmP7TNc5cjuWD3odIkmfRc9hJtuyNKPFBfhsgkxW96Nzd3RkxYgQAXwwerg/jcHF3p3eB0ty7mNIM/71qszH4lPPj8I6tnD/6O2kpyQbbRSIRzq5uJm9M7/EKA0fvJkmWTpuuKzgbcJ8xUw/y3YKznAmIoc0nG0iSZdCj/06WrL7Cpv3RfDbyHEmKLNp/eYJzV18wbs51flhxh7PXEujQ/xxJimw+H3eJlTvv//WXvwGcvhKHrY05uw7HsHJOc2ysJew99pCLQYm07/sHSYpseo8J4JfNkfyyOZIxc4IZPTuIiOgUpg6txuJNUUxbfMtg/cu23mXj/gf0GnOBJEU27fud4ty1eMbPDdK3p1++NYoalZ2Zs+I2v2yOZNnWu/Qed6mIf5u3JoIJ829y7loCHQec180//grr99xj5+EYAgLjqVjOAZFIxOxfb5Ga9ppJCP9DUBbykS7u7nwxeDhQ1A+6uLnz2UBd8arPBg41IMv/rWqzMZTx8+P4/t2cPLgPucyQ1IlEIlzd3g7/uPqnOShlSQzu2oEbAedYMHUCC6dP5PqFswzu2gGlLIlJX3/O9pXLuPTH8X97uW81XreVtx2gNtVlsCCcwvzPyOy7ApFIJFT0taV6RTsWTq6BxEzMs3gV9as5EXAjnqa1dQ1HAHw8rAkMT6FlPWcGfn8Hn1LWjP6iLLEJ2TSo6cqlEAVNajsTG19g72lNUEQqrRq4ExqVgm9pnfr6LD6L+tWcWLDhPpsOPqV1QzckZiIcbcUkKXMp72NDvCwHMzMxGap8lKm5tKrvgr2thC8/9OKFPIfQqFRmroyhlKsVAVtbEP4gjacvsliwPpqNC5rSoKYbF4MSaVrHnWfxmVjbWOFT2o7U9DycHS1Jz8jDytIMkcScnFwt9nYWJKfm4GhvSU5uPmIzc6wsJaSm5+LsaEV6Ri42drZGm528zQq0vhB/8ULyvH4MNJRcWX0T+DcV6NRkJUd3byf0yiVuB13Hp5wfjVt/QL/RE3Bx9zA5x5tSoO/efUbp0rr0v/h4Jf7+ZUhIUFK6tJF6sG+5Ap2RkYOdnRXJKSocHazJycknLzsdKysJ14Ji+aClHyFhcZT1cUaS8wwQF7seNWjzsrGyNHt1/WbmYWkuwr7Ovr9dgfav4Ejtqq706VqRD5qW5llBFR1vDwnXbylo08STkAiFvgHNk6dpnL+RwO27yWxf1FzfoKSMp5Qbt+W0blSK0AgFvl62WFlaIBKLsLe1IDk1F0d7C3JyNSCGW1FKevPk1jEAACAASURBVAw/zxdd/dAKAlYWZkjEAojA0twMeXIOuXla0jJz8fdzoH0zT/zK2OHhas3lkCSGzQzGzdmKfSs+wNvTlvPXXjBk+hVirg0y7IT5P6xA9xkygj0b1/LF4OH8sOyVj3zdGGgw7X/+WxVoVUYGv+3cSuClC9y8dhkvbx9aftCWEWMn4ONrumrIv6FAp6WnYyOVkpaSjJ2DI7kFarKllRUZaak4ODmTmZ6OpZUVYjMzJBLD8/K9Aq3D6yQRtkbXZbCTIAjnTNi0A04BLQVBMBqT/K5AJBIJrZuUZtWcFly4ruuR/UFTLxauDeOXGQ2Yu/oOrRrqXmddCk7ku5G1mL4ohDrVnPh5XRTjB/jTpnEp1u19yI8T6zF31e0i9jNH1WHcj4FMGVaTCzfidfM3Kc2GvQ+YNa4+X004j5eHFI1W4PGzNJrV9+D4hVia1vMgQZaFlaUZtat5sPXgfeITMzEzE9O1fTmOnHlC6ybeXAp6Ttf25Zk2ugG7fr/PsvVhBP3Rn0Wrg1gxvyNzllyhdVNfXN2caFjXSAKgKedujOiK30CZOJPf19rosCkilJtvWH4oNz+/iHNPlsvo6F9Wv/1E1OMijl9txOm/iRuBKVtTKIm9KVuNiXWn5himZmu1ppy48XGRRs3jiNuEnjlJ8Klj9J/9M3U/aG/U1syEq/J2MH6O2FkYPiC9ePoYTb6G4MsBADRs2YYtyxaxbsNGLIzYO0tMdNUyguR8I9cAkJBteD6ZupH62xknM8kmsuCdRecNxtKUicz7+SDfz+jFmIkbmTa5O+cDwmlQvzIN6lc0MosR5Gcisu3ztxPo7yc259nzNFYu6KT3JwB3op4zun8txs68yNRR9Tl/VXcc2jbxYsr8q9x7mMInHf1o3cQbM3MLLlyL5fuJTRnz7TmmjW7E+auxVK3kQetmRghHgf85eDSS+MR08jVa8vO15KtzUas1um5udpbY21liY+vArfAXbN93EzMzEd9OaMucxedY+GNvRk3aieLpcmxsLElITMW//gziYjZhZ1fMD1mYaNRRgsQ7U9fgm/AHpu7bpvyVsfE8rZYUuRwnNzf9WIpcTtfqr8oiHQqPwcnVzeQcJfWPpmCMBFoZIW4AZiYIo4WRcQsjD+Rg+louybpzjNxzAPLz84kOv83lP45zbNdWxs9dSIfuvUo0t6l1mxovCUztv5LAmNBhCqnZ2UbHTe0PByvDgAF/2/jX/j7T8EYkFv/jZeyGAcdMkWcAQRDOiUSiw8AoTCT1vUuoU63kXY7qVXchXpZFuiqPdXse8ODpX4vx+flajl+IpWFBvVSxWIR/BSdaNSoNwPXQeCYPqUlcgopRfavqCXe7FmXZtPcu6ZlqrK0k3LiVyJLvm/FHQBwtGnrpn67PX4mjVRMvzMzefPmWtw3GVOKfvhlXpJTSy+SWQ1s20L3/4P+pV4xvEhILCyrVa0ileg2p36Ez66eNJy76Lt1GjPvrD7/HO4/pY5sxYmrJyuU5O1qRnplHcmo2v/3xEKmtFVbFVd9i0Gi0fL/wEmMGNaCUp45A9+xarFGtJsvwg+aOhEcloFCqcHezZf32IK6dHMXjF/k0qFsOGxvdg/yyVWf4+otmhuT5vxDGVOIlUydweOtGPuk/mEk//wKAk5sbXfsN4ui2TXTtN0hPnt/j9SGRSKhWtz7V6tbng48/YdaIgdwNu8mY2QveihCO93hzeB0FOg6YIgjCnr+w+xxYKAhCmT+ze9shEokE9cOhBN2WUd5H1/jjcVw6jWq7c+7yU5rVc+fZC13Qva+XlMvBSbRr6k5wuIJlW+6hTM3lVpSSrBwN342uzai+/iQpcvT2N8LktGlcmsAwGcu3RXHw5BPWzmvOoN5VOXPlOa0aeepfiZYpZcXlkETaN/ci6Lac8mV0qt2T+ByOnXtK6B0Z9Wq40adbJSwszDhy9inzVoTQraMfglbg5IWnXD/am9RMEY3reXHm4mNaNfHl2fM0bGzt8PEyUmj9HVSgfxg/kj0b176qyYyOULep6K23KVxKSZaUaJQ8v1egi8KUAm1eTFZOU8j5qV9P2vT+ik79hxbZ9iYUaLFIRHhIEN5ldQX9nz99Qo36DdHKXlDOz8/A/l1UoHMylQBcuhJFh3a1CQp+QPlyHkhtpUilr5nC8Q8p0BmPvkFqY17EnwCUKSXhUuBzOrTyJehWIuV9daFcT5+l0qC2Bz2GniBTlUdQWBKZWWq2/vohDnaWdO1YgaBbCZT3dcDa2ho7W52fmDjrLL+sC+b4jl58VLiQdmEYIdCCxIG5S87x6IkSVxcps6d2RCq1YOv++4ybupvO7Wvg6+PCxm2XuXnlB8r6VTCc979IgV4weRwHt6ynx4AhTFm4DNAR6s5VXzXIOBr5WK9EqzUaUhRyA/L8XoEuClMKdHFkpKUypkcXGrVpx7AZs17rM+8V6KJ4WxXo1yHQecAHgiBc/Qu75ugqXZSoZNzbBpFIJDwP7Eufcefo2FJ3cz19OY49y9sxZuZlBvWqxL4Tug46vT4sx+SfgjmzpS1fTbqKv58Du48/ITtHQ5XyDkQ+SMXSQoy5RIxWKyCRiClfxo7jmzrRrOdR8vO1WFqaYSERc373x7T76jhLvmvKvmO6+MveH5Vj0rwgzu78kD7jLtCxpY4QxjzNZP7UJrT94jBLv2/O3qMxAHzVsyojpp1ncJ/qrNsRQdsWZShfxoHz116wa3U32nTfxbIf27Pn9yiqVinNN6NbGO6At5xAF49TLp4hXrgm8+wJo4oW8y+AKaf/nkAXxesSaICUpATm9+1Bl6GjaNPrK/34myDQmvx8RnT/kKZtOwBw/fwZft60k9vnTjJg6HAD+3eRQD999IjoBy+YMGUzAad+pHffxXRqX4fmzarTvFlVE6svhn+IQN+7MgwnR6si/gTgq08rMGbmRS7s78HnI07SsXVZAMIiklg+pzXNP92PLDmbvDwtjvaWyJVZCICXpx1yRRYSMzE9Pq7CtuVdWbU5lBWbQ6lSwYUPmpdl7LBWxhdkQoE2CgtXEhJT+eNMOEmydOrW9qVjuxogMWL/jhLo4uJAslxG+yqvQmL+uPtEv33BN+MMFGgwHX/7nkAXxesSaIBUpYIRn3SiY4/efD1u8l/avyfQRfEuE2gFMFAQhKN/YdcV2CIIgon+pe8GRCKRkP9oGMmpOdi9LDNXUNYtPj4Fj4KybvCqTJK7sznJqbnY2kgY/n0gR8/FUdbHjvikLFycLPGv4MjdmFTKlJYye0I9wu+nsGD1bS7t7ULgbRljZl3ny08rMbZ/dXy97PTz21ihL8OUnJqrX48qT1yszJzuTm1rb4NMkYWHm5TklBzsbHX2mTnmODtZkyTPxN1ViipLjZm5FGtrw4D/t4lAy2Qy3AuR5ZEjR7JmzRqD5BZjCjQYxkC/xHsCXWyON0CgxWIRSc+esKDfZ/SbtYA6bXQx0W9KgU5LScbGVveZrMwMHJyccRHlI5UatnB/Fwm0Ni8NkUikawnv4UhycgZ2dtaIzSRGy0gZxT9EoNXPpyORiIv4EwAbizyj/ic9LQcXZ2uS5Fn8vDqUjXuj8PW2JzklBwsLM+rXKsW9GCV2Ugs2L+tCxD0F478/w7Vj/Xj8LJWvRh3h447+LJnTGXu7YjfXEhJoo3hHCXTxsLV5k8awf/N6eg4YyvTFrwQDYwo0GI+BhvcE+nVREgINkJQQz6hunRgwaSqde/X5U9v3BLoo3mUCfQ54LAjC0L+w2wCUFwTBMAX+HYJIJBL6f1aJwb2rcuqSrrlmp1ZlWLz+NmtnN2La4ps0r69TPK+GJrJgcj3G/xjIqK+qcOqKLumwblUXFqyPJEmejVgkIjtXQ06ehqwsNY72lni4WbNlYUt8PG2Ji8/k+2W3uBmp4NK+rthJLZDa6BxHRkYOpdysiZdl4epkRaZKd6NycLRFnpxDaQ8pSYpspNY6e1UulHK3IT5JhauTNZlZunqo9g5OyJVZlC5lS5JchdTGHImFLVKpkYoWbwmBHjlmP2vWrNFXyzBVq/kl4hPiDWKgjSUWwnsCXRzZmSrCr1zgwa0QPh01kZ3zv6dTv6FEh4WSm5VF1SYtOLN9PV9M/5Gjq5ZQrVFTNJr8IvadBwwj6vplIq5exKNseXJVKvrOnMvZ7RvxqqBr3h59M5geYyaxfe5MBo6dSMilCwDUa9mG/WtXMm7+IvYtX0q1evUBuB14neHTZrJz5TIGTZpGlkoX2mQjtSVVqaBBZT+jMYWvQ6AFQeDixRus3ngMF1dXyviWpfdXX+Pk7Az88wRak5tKUlIaHh4OxMen4OpqR2ZmDjZSm9cO4di37xyf91v+txNoTfwMXiRkFPEnAJnpaXi4GfofWysJipRsnb+SZ6HKUrPn+GN9GcysbDV5ag0qlRpbW0u8Pe3YsOQjGtfzIiEpg4mzznH64hPOHRxA3VpeRRf0P0qg504czf7N6+k1cCjfLlmBUi7jg0qvHgbP3n9WRDgwFraWZ8oPvifQr4WSEmitILBv3Srinz1lwvxFf2prat15KhXzvxnH16PHExigS0tr2fFDylf2f+11vC6BvhMSyP7N67GR2lK6TFk+7t0HVw8d93kXCfSp01F07tz5H08i3AJsEYlEJwVBOGzMQCQSdQf6oWty8s6jbj1/KlavRVq+7mZasboPjRrl4ly+Hs1aCNSr401GZi5xKTZEK1xwKuVFQrY75vYCgiDQoFUjRlCG/l82IfjmUywtJJTysMfN1Q7zgj3+Ij6VJasvsGVXIGOHteLgng7Y2hY9cZwLyhqV0+UUUpiW+haMeRcSD14WcitT8IOe3oqt8Sm4H5R+WWHOVMkksYkyccYItMT4RVsSVc9UK9g1a9YAsGbNGrqM/gZnN3e69x/MbwWvHDVSKbKCAvAAGpuiv4Np555n4gZh7IZnOqvd+MWfZ0K1LQlMKcIlgVhs4gZhZO50NVh7lMHZN5UsLHAuUwHsXLB098Y8Px+t1BlHnwpkaiU4+lYEJ0/EgoCtdzJKtRl2XuXR2jhh5+2HhivYenhjk68hUyNB6+iJ2kF3slp6+vFcJcLKszxqqS32PmUB0Nja41K2PCn5WtzKlsfBW5dG4VlBQZZITNmKlZBKpUXUZqlUilINYPj3vMgqZTBWWChIfB7H+K8+Iyc7ix4DhhITFcG6FRMwdytFo1ZtsbG1NXqDNXXTiEgzfo542Rh5wwNGy+ylCWDlA2mAtCxkA2a2EJujgTzDKYqTnFO/HWDhjP3Gv+8NQ2xXBZ8CZ1Ta/tW4Q2nd/injAunpWchTkklNU6HWWqJW5xORkI9G48AHrWsyq5kLM+dpuXnzAWKxGA8PJ9zdHbGw1PlAmSyFWSsPs3L1YQYN6MyjTXtxcjJCdEWGvuZehgkCqDF+nLKNvZUx+YCcaXTcqK2JcVOilanvLB6PnKKQs3/zegD2b15Pj7GTcHJ1o8vXAzm+fTMf9R2A2kZKUiF/qLa2ITGz6NpN+bZstfH99yZgbazsKYARsmxqfaYIYElK0JWEAGarjT8JmzpeuSbuLwByWRIObm56m/h04+eTnaVx3yEB3Mv7IdjZ41RWVy3Fxd1IIyBMl7czJiwV/lvSUpKZ8GVP5AnxfDZ4OClyOUtmTsXK1o62n3RHamtncm5j43YmytiZErhUeYYO77rcSJnaP4Gm2LEJDjjH3NF/qgH/v/CXBFoQhF0ikegT4JBIJDqOrlvgy+YmvsDHQBfgoCAIu9/4Cv8FDO/fmG17b9Kgjs45Hz0VxaRRrVi3NZADR24zdtrvIAKf0o5s2R2Mr48T23aHkJ2jxsfLEVsbSyaM6YyZmZgmDXUneU6OmktXH3DqXCSnL9wjPiGN3t3rEhX4LaU8HEpe1/Mth1wmw61YTWVjlTLmTx7Lgc3r+WzgUGYsXg5QhCwXrpbxzcJl9J88w+CV43v8Z9BqNKTJk6jWsh0Xd26k9VeDCTl+iFJVaoIgcO/qeVr0GcSV3Zuo36UnLx7cRavR4N+8HVd3b6J5n0FEnjmMj39N1Lk5JL94zieTZnJx50b8O3QnPlqnNFZu3pbrezfT9POBRFw7h09FXVPTm+fP8NHAYZzYvI5P+/Yn5o6u5mfjDp05uG4VoydPe6N/7+MH9zG3sGD3hevkCwLBlwOIvBnCmd8OMGPw11SuUYvJ8xdRs0HjN/q9fwcy09MRiUSsWziX75auZMKXPf/V9fTqu5zT58PRaLT4eLng6GiDhYUld+/HoVCk4+PtypkTc6ji4IJYLKZBA905kJen5kbgXU6fucnpsyE8ehTPp5+04FbIOnx9S4HYhKr8jsJY6ISxxL1fpk3kyLZNdOs3iAk/LQUoQpa7fD1Q/5mx8xfTZ/w3OL6vnPHWIlmWhFfZcn9taAKn9+2ix9BRnD24l8q16gAQdOkCHT/97E0tkfjYZ6Qo5PweEgliMQ8iwzn9234ibwbz0zdjqeBfjTGz5tKkTbs39p1/F1QZ6Ugk5mxZ8hNDvv2BRcVa0f+neN1gmN7ALKAFsB5dzedTBT+3AL4HvnijK/sXkZGRy5mAB4SExRESFseZgAdkZOYScOUhj54oaVDXh9GDm7N11ec42FuTm6tBIhEz6KtGfDuxHSFhcahUecjk6Sxfe4EPe67AvcI3fD//GHa2lmxc3gfZw59YveRzHXl+hyGTKQzGJo8ZSRVvDyaPGVlkrFUFL34sdAIr5TIOFCgpBzavJ1n+qij6NwuXcSLqMd8UitkD3pPnvwHq3Fwe3QxE+SKO+zcukaNSER10hcRH0Ty/F05M0FVyVSoeBF4mOT6O53fDeRIWRHJ8LDFBl8nNUvEg8Cpxd8NJTYwn6dkjclQq7t+4RGric56GBfE0LIiU+FgeFtg/Cr/Dowjdv/Brl8hRZXLnykUSY59x58ZV7ty4SuKzp4RePE9OlpHX9P8BxLo4OMQFakndJs1xcffg0f17nLn/jOr1GnDq0D+j5v4neBx9j2a+brSrWpYKVatTv7mJRLt/CLFxCmIeJTJ0wAdkJG7i3q1F/Dznc8zNJdhKrVi/ahQP766jSmVdMnRycjpr1x2jW/eZuJfuyeQp6xCLxSxbMhp54mG2bJqqI8/vMFLkcoOxpVMn0K2GH0unTigy9mmNCvwybeKrzyrkHNm2CYAj2zaRong119j5i9l3O5qx8xcXmfs9eX67kaKQ4+zu8deGJhAZfIPszExuXQ4g+k4Y0XfCuHX92htcoc4/arVafQOVClWrU71eQwIDznEi4iHNO37IsT073uh3/h1QJCXSpYovXauVx8HZhSbtO73x73itToR6Y5HIHKgPvHxvFgeECoJgItrv3YNIJBIS7s7Ew90OlSoPQRCIik5i/i8XuBHyjP5fNOCbMW1wdLCm7SdrSE7JYuzQFgzq24icHN0rich7CSxdc5WzAffp9lFNunSsQdtWVXBykoJg4vWO0W5TrxNh8xoQG4kzLmEIh0yZh7t7URVo5NidrFm7gxHD+7J69TydnUyBR6m6epv7z5MAqOL9ymlceviiSKWM4go0/EmRelOvzYzYvw/heL25k1VqtJp8clQqpA6OZCjl2Dq7kpGRAYiwsLYhM0WJnbMrqrQUzK2liESQm6XCxt6RzGQFru7u5GVn8dNn7Ri94QAWlpbYubiRmCTHUmoLFLWvW8WH3AJibGljQ5pSgaOrG5KcbKR2L5MFM7F3csJanYeDk7PBui0LvfZNlssJvBxAjXoNcPc2fK1f2M/tWreS4EsB/Lr7kP5cyM3JISc7CwcnZ549jGFIl3YMmTyd3kNG6D9Xkte+YDqEw9nIsKl46aQc4+eqWqPh4NaN3Lx2hW8WLMbZ1Y18rZZ6LtZ/ewy0kLFd/7sgCNyJiOWXlac4fvoOg75uxaQxH+Hh4UDPL5cRFv6Mb6f2pu+XbTAviF+7E/6ElWtPcfC3K3Tq2ICuXZrQrm1d3NwcTb+JExuWK9QtqAQhHCZDFkoSwmEizMKIorzISJ3l4o1KjkQ8AqBbjVd/3+8RD/WqsjEFGkz7MJP5HUbs36YQDksjIRymYqCN2QJYGbk+TcUSv4kQDlP3qD8L4RjaoSWTFy+nUs3aQMlDOCwlElLkMhxd3cjJ0oXolPco9ZchHOmpqQReukAF/6p4lTcs21j4vP7j4F4ObFrHppMX9KEQ+Wo1GWmpOLm6IUuIZ+hHbfn4i74Mm/qdye98CVP7uiQ5SqbOd1PQCAIXjx/hxK5tTF++Fmc3d/K1Wj4o7fhG/eNfKtAikaj8y3/oiHMSEFrwLwnwKWbzzmPw+ANs2B5Isw9X4VV9Lj36bSfoZiyBp8cSEhbH5l3BLFl1kauBT/jjwFB27A/lwuWHDBm/jxrNF9Htq83cjU7k8Z0f2bqmPz0/qacjz+8oRo5bh4d3b0aOeVXhQiZLZc1a3VPomrU79Eq0u7srA4bpSMeAYSNwc3fHzd1dP9Z70LAiYRwzFi/nfHRsEfL8Hv8scjIzuLhzI1unDCdDKWf1iD48CLrCha2rObZ0NjFBV9g46ksykhXsmj6K4N93c3X3JnZPH0lmsoKNo78kOvAyhxbOIl0hI+HhPVaP6EOGUs6pFQu4vncz1/duZt+3o8hMVrB17FdE3bjK1h+/Y+uP3xF+9RJz+35GqkLOwnHDObhuFQfXrWLOkK9JkcuYN2mMybULgsD6pT/ToXYlDu3YQs+WDRnd+xPOHf2d1GSl0c98+tUAHkRGcHTPDj2xtrSy0pN03woVqdWwMQunTURTQsf9T+JOcCB1mjTD+V9QHR/EJDB34RGqNZhOt8+XUamiJw/vLGXh3D54FLxVu3I9msunZzKwf3vMzSWkp2cxZMRKPvxkNmXLluJ+5Bb27PyWLz7/QEee31EsnjqBLtXLs7iQopwil3N460YADm/dqFeindzc+KTfIAA+6TcIJze3ImPdijUvmfDTUn6PeFiEPL/Hu4sUuew/ak6TnpLM1N7duHX5IqtnTmP1zGncuvHnCvT+LRtoX8OP/ZvX0+/Dtgz7tDOnDu1HKUsyat+uWw8yMzLYs24l2gIyKzE316/b3bM0rTp3Yf3CeaiNxCu/LYgKDaZGoyZ/a8O016nCocVYpo4JCILwTgfzikQiwdfHEUGAHh/X4PPutWlQxwetVsBMYo5Go9Wrew6+M4iN+B5bqQVHTkYyespv9OlZl7nfdsbC2t54B8C3XIGWKbKKKM0yWSoevgP0vyc936ffbkyBBl0SobEY6MhYw0oZpjK+3yYFOuL6FarUa4giQVdlxcWzNPfDbuHfoDGPwm/j7qNLepPFxeJTrRZ3A69RqV4DlPEF9qW9eHAzhKqNm/E44jZuBUlyyvjnlK1W08De0d2Th7dD8W/UjCcRt3EtsFe8iKNc9VrcC7pGxboNUCbEgyDg4lmamLCi9mKxCPnzWMrXqF1kfkELzp6exISFUtqvIme2bcSxTAVcvH3RChr8ajckOugqFeo2JCEuDhECjqW8eXI7mIoNmxMbGYZjaR9EgDI+ljLV6vAw5BpVGzTmjzVLuH/jMuO3HeFRWDCVGzXn7q2bOHkWvLKPj8WnWh0ehVyjQ4dWyF7oqmW4eXlzPySIGs1aIr9/l1K+urq1CU+f4F+vAbE3Q6jTpBkJz3VVcUp5+RB0OQB1VhanDh/i+bMnrNl3GI/SXmRnZXF47y7OHD7InZBANh8/h3+tOgaJW5G3QvlhzDCk9vaMmz2f6vUaFtmuykhnUt9eODq78OOazVhaWWFuZoYgCARdDqBu40Lr8S5DWOA1GrVsQ+StULx8ywLgaW2Oq5GQozehQOfl59O1QXWWbN1Lpeo1AP4xBbqinweZqly6d63PFz0b06RRBV04TDEfVr76eM4cmUaFyhU5czaMISNX0qlDXRYtGIC9k4kqF++AAl1YbU6Ry+lSSFE+XqghiTEFGnQPfcYUa2UJyNV7BdoQb1qBTlUqOXX4IHZOzvhWrIRPOT8sCiXElVSB/mPPDvasWsaWi0GYFfwN/x8FWqPRYGZmpie33g6GYaBqtZqrp08ScPIY4aHBrNp3GF+/CuTl5nLit/2cOrSfW9evsnTnfhq2bGNwvj+6f5fZY4aRn5/PuDkLqNesZZHt+bm5zBjyNbk5OSzcslv/1jDh2RPcPb24HXSdhgX+sEKlKtg7Gj4g/90K9IiP2jJk+izqNm+pn/dNK9CvQ6D7lWRCQRC2/Ucr+pchEomEqFvL8a/ibfhapFh5tvqNRhIZ9QRXV0ekUiu2bJpO06Y1CibyxSiMOHyTEF6/nq3O/pnRYZksBXd3wyzW4uMjRy1hzdrD+tJx+nET9Zczc3ON1lnOMuVYjIybujBKUkrJFPJMZN2bCrPIVRvayxMTsbSR8sf65VSsr0sqiwkNpOOQ0RxcOJt2/YfzIFjXvb5Sw6ZcPbSXjkPHcXbjCvzqNQLg0a0g2g4czZHFs2ndbzgPQ3T25es15dKOtXw8cRYXNq+gXF2dfULMPZp+1o9jS2fTqu9wHoa+tG/C5R3r6DLxewK2rKRcnUaYm5vxMOQ67QaNKTK/lY0NZavX4fy2tXT/5gfObFyOX73GWFtIiLhyAYm5ORf3bMO/aUvSE5+TIpeTlZGBWCzG2lZKjioLibk5FpaWWNnY0KxDZ+6F3aRW46Y8jr6HOi8Pr7LluXszhGadPiI44Bwvnjxm+Ky5PI2+R98JU1j53VSGTZpK0KUAABq2bMPWXxcz5ael7Fi3Er+qurbMt69fpd+kqfw64xv6jJ7A+d8PIk+Mp06zllw7fZLRPy1lz/Il1GzSDIDzh/bz4E4YNra2tOn6Kd0HDcfK5lWVmJc3x7VzZyEWixk6Y5bRElcajYY/9u1izfzZjJu9gE49e+u3aQWBvNxcZo0YRNKLOD4bPJzmHT/kl2+nMHH+YjYv+Ym6zXSNiB5E3KHXkJEsnTGZZLVMZgAAIABJREFUvmMnEnr5IgA9+nyNnZGbm6e1IQEwRqoBItIMyV1OdjbTRw4i/ukTVh47q68TbS4W0czD/m8n0GFhYdSqVcvAPxZf6/AeXQi5chEnVzfEYjHfLVtNo9a6CiSmrmNT5MOUnzBGdE3ZmqockKqQG8QOS8Rio0l9y6dP4viOLXTpO4DRBfHHK2dM5viOLXzUdwCj5r0qT6bWaIzOXVLiasxdGfNVfwZjWo4J92jUtqSwlBifpCQE2tTxKkl5O2PXPZgm1mZiMVmZmexcs5yda1bQqFUbcrKzefrwAQlxsdg56IigVqsFQcDS2ppyFSvjV8UfX78K5ObkkpaajDovD4m5OebmFkjMzclXq9m3aR0bjp2lbMVK+u+zNVGhwlTpN41WS0LsM6LDb+Pg7Ix3OT8snV30+RwAD+6EsXTyWKT29tRp3orug4dja//KD0nNdc5m9+rlxD6KYdqSFUb3hyAIBBz9nV9+mEG/0eP5ctir/CVVXh75+fksnDKeqFsh9B48klYffUxE2E1CLwXo/fmXYyby9ME9Wn3UzWB+JyPl6kzB1AOPsf2Ur1Yzd8p4IgOvs/TYGSytdfcGc7GYzmVc/9kydu86If7/oKr/65Hc0KDVZGXlkChT4eXliqWliRJw/yL0pHj4J6xeNcnkuEyWwpq1uiqFa9as4YcfftA3MVm9ejV9v5lVpO7yS/ydr0fe480iX60mNOAPQk8do16Hj6jZuj1dR09CfvcW2nwNVRs0Zv/KpfT95lsOb1xL4xatUGVmcOPcaRycnElPTSFVqUAiMcfMTILE3AJBEMjKzESj0fD1pKk4OJe8j1Jebi4H1q/m5tVLXDt9EkEQcCvtxYPw2zyLiebGuVNYWttwNzQIkUjM47uRjF+0DKmNlKYdOheZS6vVkp2Tg7VUSotOH7Fw0hiGmmifa2ZmRtcv+1G+ij/ffP05zTt2xtbuVV02C0tL5m7YxtnfD3Du8CEWTZ2Io4trkWSufwNzJ44mX61m2aETr99k5Q2idu3ar2W39tBxcnNyePFC1x208EPO24JV337DCSPkd/mMyfoqFy8T9VIUco7v2ALA8R1b+GriVBxd3Rg9fzF9JkwxmsD3Pqnv3UF+fj77tmxg49Kfqd+8JTvOXsbXr6J+u1qtJkUhRywWIxKJEIvFZKtUPH5wn0f37/EgKhJrGxts7R2Q2tqRr1ajzssjKzcHdZ6aJTv2FSHPr4uc7GwOb9/MnaAbhAffQBAEqtSuS2ZaKs+fPCYzPR1P37KULlseKxsbwq5eYujMH2nX/TODh9yX/trG1pYWnT5kZLdOuocBI35EJBLRuUcvqtSsRd8Orej4SU99HWgAiUTC9CUruHjiKKcP7WfZ99Pwq1qdcpWrlPhvfJNYNfd7Ep89ZeFvJ/Xk+e9CiZII/xcgEokEIft34xtL0iDkLVCgZbIUPDy76n9PSjiKu7uTyXFTCjQYbxSQmZtrdBn/TQp0br6We9cvUaFeI5ILQjicPb14GBZKpYZNeRZ5Gxcv3TFVvoijtH8tHgReoXzdRqQk6uwdPErzOCyISo1aEFvIXhH/HG//WsQEXaFcnUakFtg7lirNk7BgKjZqQVzUbZxLF9g/j8Wnem0eBl2hbIG9xEyMUynD+c3EYpQv4vCtXpvowMv41W1M+IU/2DVrImNXb0MQoGrTljyJCKNm1coAJMY+o3Kdety6HECNRk3JUyjQoqWUdxlu37hKw9ZtiboZgruPL4gg/tlTqtatT8jF81Rv1JSk57rz1cPbhzuB16jf6gPi70ZRuowuBOXF0ydUr9+QGwHnqNKgsd4+4OjvXDj6G33HTcLS2kYfThEf+4SqdRtw/vhhHF3duR8WSkZqKl37D+ZRVCRN27YvcqweRoazbPokLCwtWfH7H2i1WnrUqcLYuQvp2K270WP+sk7snLHDsLVzYOK8hYBxZTMtNYWtvyzk6K5t9B0zkbrNWmDn4KgL4bh+lUZtdPundEEIh62lpUHIEvxnCvSzRzF83aEVO2+EIS1E9uGfU6BN3TOMqeVQsvCqf1KBTlXI6VP3VS373bfu4ejqZjC+73a0Xok2pkCbWkdJfdh7Bboo/mkF+tG9u/RqUZ9FW3bT3oS/KIySNmMxdj68jgJ9ZMdWDm3dwOfDRlGjQWNK+5YtQoyTkpUkPHvKiyePUSYl0uaTHji6uBqsL+5hDMtnTCYtWcGuS8EAfNmqIT0GDOXzQcOMruPlcVn83VSU8iTmr92CSCQyWqs5KzOTVfNmcfa3AzRp24Gh380m6XksvhUqYedo+Ab871CglUmJfN68PsvPXDaodvJ3KNBv4FJ5j7cV7u5OjBj+CQAjhn+iD9cwNb561SSSkpIMyPP/MrQaDb8t+ZGHt4I5u2UNZ7es4eHNIK7/tpuMZAXHVvxM4JEDBB45wLEVP5ORrODIsrk8DgvmwrY1XNi2hsdhwRz7ZR6ZyUr+WL2IkGMHCTl2kBuHdpGZouTEr/N4cjuYSzvWcmnHWp7ducmJX+eRmaLk1OpFhB4/SOjxg5zftBxVipITy+fx9HYwl3esI+j33TwOCzKY/875Pzix8mcykxUc+WUuj8OCeBB8jbLVa/Pbsp84sHgOGckKfv/1ZwJ+O8DZ/bvZ+vOPpCrkbJwzk8jgGxzbs52dK5Zy+8ZVln8/jRS5nLXzZnHhyEFO7tnB+nk/kKKQs2rWDO4EXmPvqmXsXbWMO4HXWPPDt6Qq5OzftJYju7ZxZNc2Vvw4k2S5jKXfTiEyJJBdK5aya8VSbl4JID0lmbrNW3F0+yZO7N3Bib07WDdXN/+JHdvIVql4cu8uioR4HkVFsn7Ot2RnvWoUERkcyIQeXWjd9VOi79xGo9EgFov5acd+ln83hT1rV/7pcR713RxuXDjLnLHDTJbNk9rZ8+XIcdg5OBJyKYARXTsyqU8PTuzdya/fTyVFLmP13O85vmcHx/fsIOJmyJs8FQHYt3EdXft8bUCe36PkcHR146O+uvyOj/oO0KvFjgV1loEidZYBRs9fzN6w+0XI83v8d8DPvyrTFi5j/aL5//ZSiuBBZDidP/ucD3v1watsOQNV2cbWDr9qNWjZpRufDhqGo4thfsGjqAhGf9yORm07EP/sKVkFTXXmb9rJrpXLWPvTjyYb/AAMn/Itj+7dZULf3qSnphq1sbG1RaPRMGzGLK6ePknf5vWZ/vXn7Fu36j/460uGo7u207Jzl/+oVGBJ8F6BLoZ3RYGWyRS4uxe9UGRJt18r1vlPx0vQqvavFGhBEBCJRPr/cwqSdQqP5ebn6x1CYft8rVZ/QRe2V2s0Ru1f/l/YXq0V9NsK2+eoNfpawIXt8/IN7fM0AulKOXbOruRmF5Rds7YhVSHDwdUdVVoqVja6Cis5WSosbB30ZeDyCuwlVtZkJiuxc3HV2Rd01FNlvCwbp8DW2UVvb2Fto7fPSkvFssA+KzNTZ5+swNZJZy8RgaVUajC/mUhMbpZu/sLrlz+8y6ElPzJq5RYcXNzITEulQmkdQchWZWLn6KQvk2RdcAyspVJS5HKc3d1JS0nGQmoLBa8C7Z2cSJbLsHN20RNaaxuprt6pmzsilQqpvX3B+jNwcHJGKUvC0tFJb//D0P588EkPOn32BWkpyUht7fT29k7OPH/xAie3V2WbrGykpCrkeJTy1B+vb3p/Qvuevenw2Rf0aVSLJXt/w6fg9WvS8zimfNkD/1p1mfzTUn3CiyAImBWcByKRCFVGBj9PGUd0RDjzNmyjfJWqRc4HjVaLSCRCKZPh7OZG4vM4Th3Yw+/bNtGgZRu+W76W9NQU/fqlBTHkxeFpLTE4d53NjZ/PkelFr6Xzxw+zev4c1p65rH+V/HKbGdDC0+FfU6DDU/OMXo95Go3B3/by+i5u/7K9dPFtxuYQBAGtkTG1VkuqQo6Di2uRbZnJSoMxQRD0JRQLj5mbmemvgyLrLngwK75GgVelEov7sOL+Jy8/36j/yck3bp+vNfRvOXmaIusqbG8M7xXoYuMmFM2E2GcM/rgDpyJijG4vjDelQBu7f6VkZemP5exRQ6jXvCVdvuhrdO4ME5UwCq9v3shBVK5dj55DRzLmo7aMn7uQmg11OT3JsiSmfN0bt1KefL98bZGSoYWPS15uLou/m8LlM6eYu2Eb/rVflat9idT0dKxsbEhVKDC3tODo9s0c2b4Z/zr1mbl6IxLJK99XUgXaGB8ovJ8EQeB24HV+GDWYlWevYl7ge1/aW5iZ/fMx0P+LuJVlvOB2SWqDagXBaIIdqAxsAaO2YpHxeNKFU8ZzaMsGegwYwpSCRiPGxvSQwNNkI2s2g8fFKn3lm2hVa+w1rKks5LBrl7l58TyNO37EjoVzmbpmM2u/m0KNlm3JV+cRce0yA2Yt4NexQ+gxYRq3zp4CoF77zhz4ZQGjl63n91W/4FXQqe7ujct8+d181k4cxqcTpnPr7EkA6rTtxO+//szwpevYu2AmlRs2LbC/Qp9v57Hvp1m06dOfsPOnitgPWrSGffO/o0pjXRLY/cAr9J4+l51zptLqq6FE/h97bx1d1bU17D/xHI+duBE3QjwhkASCW10vt71toZRSgxYrVlyLQ9Hi7u4WJxBiEBI07u6e/P44IRCSvO/td2/v/cb36xxjD8rh6dxrrzXnPCs7c8516zIALv2GcH3PFt6avoQDkydg46P44eLpnXCGTZrL72M+ZMC4ySSHXgHAMXAwt4/vYfD3szk89Rt6eCv45/ciCf5mFjunf0TfMT/yNPwqALaBQwjb9iuj5qzj2PRvsfBUjL8w9Qk+o79m91cf0eeLH3kWoeAt/QYQtWsNw2at4ejSbzH38EdVXZ206BD6fz+HHdNf8mItbSzcfLi1dSXvzF/PoSkT6OHdl8rsNEpyc6hsgM2ffcDQCVO4snsbTY0N9Aoeytn1y/hixWZWTv+MgGHDaayrJSE8lC/nL2HaqMGMnjKDmNAQ6qqqOqzX7smf4tg7oMN6zRo7jHcnzeDe1fMAeAwYxom1S/l69VbOLpyPiY09ra0tPIyPw8LLn7EjB/POxOnEXrvYgf98+SZWTP9Hp/VaP38cfd75iLjrl8nJzSU6+g5Hd/5OZXkZK2ZOxXPAEADuR4Qybftepr8znA/6euLi1weZrh5+Q4Zz48h+xs6az/qfJ+MR2A8bTx+ePErhy5GDaGyoR6aji1AixSOgHwPefIeti+ay4Pe9zBj7CV5BwUj15PQeOJQHMdEMc7Rk1satxIaFAjD2h5+6rBH4Ysw4vpk1j+mfj2bC7PncOn+aZlU13AP7sWfZIqZv3sGmmVNxCwiiUVmNuBtX+HTOYjZMHMd7E6dTWFjIL+M/540vxnXgh456q0t//HfL9Zyu30BlZqSzctIEZm7ZxcYZk3EP6AdAcnwsf/tpOr9+8yWjp8wg+soFWpRUsXX34sKOTXy7Zit75s/A2T8QJTUNEm5d4W8zF7Hlp/G8/cM04q5fohVlXPsN4sz6ZYz9dQuHF8/EwS+A1tZWUm6H8cHPC9kx9WtGfTeN4yvmkZGUgGvwEGrKyxT2/OmbFGdlYOPpi1hbtwOfHH6DpsZG3AcM4dTaZYxbtYXT65Zh6dILeBlPtvw0nne6iT8n1y7DwtlV8bxRYXw0cyG7ZkxiyLjvSbihiD8v/OuTpZs4vnQW9r4Ke34UHca70xZwatVC/N4dTVJb/HHuN4RLv63g70t+49Ty2dj6KuLJk+hw3pw6j/0/f8vQCVM68DUlhfTsP6TT2qipdHU0fXf7iK43nV1trFW72W2rdNOHvrtNZ1cdkLpju/ve6Urq/8CR0wAFRYWIZLIOKQrdjaPb8f2BtMSIO7eRG5t08Je4sFtMWf0bGgIBra2t1DY2kJOfR2ldXZf37CqdAjqmCkn0DcgvyKeospL8vFxqlFXIqaxU/KNAyMJDp9i1bAEfBvkyZe1mnLwVBe2v/6Dx2ZyFWHl488OHbyHT1aWlpRVrZxd+WrkeTYEQDaGQVkCmp3i599E3Ewkc/gYT3xvJt28MphVYsf8Yv06dyLifpmPn4tp5/rpY3ycZ6dy5prDz+LBbfLVgGcsnjGHkt9OIva74vnjhjzpmlvzyj48IeONtgPbvr99+/KbLefpX5K8N9J8kK6ZObD+K+vXT9F7fLP8RtqSwgOM7twFwfOc2xk6Z0f7fr3723yzu0zM2xcXXHwMzc9wDgxGIxLgF9MPEwZkXHREFYjGuAf2Qm1pg79MbALmpOT379ENTJMbCuRemdi+LETRFYpz7BKFrZIpdWzcMPRNznP2D0BSKsPfpg6XzS2cUiMT06OmGnol5J15DKMbBLwDzV3hNkRjLXt7omphh1dYNQ9fEDIueXmgIRdj49MXE4SWvIRRj7ROAtrEZlu6KnF1tYzNMHHuhLhTRw7svRvYv2ou1oi4UY+kVgJahGaa9FLxU3xhLrwDUhSIsPP0xtFPwymoaqAvFWHgFIDMyw8S1jTcyw9yzD2oCEeYe/ujbuSjaGTU1duIFGmpoGZlh5RPQYTxigQZJmgI0RWLs/ALRMTajpZcnra2t6JqY4dBbMZ8OfgFY2Du0/9QvEEtwC+yHgbkFVj3daG5u7rBejr0D2jccHdbL2BR7b8X66pma49wnCA2hiB7OvZDK9TmzcSXqAgFuwUNpqKtFz8S8E68p6nq9zBxd0DNVrK+mUET0uePI9A2w8/DGY8BgrHq+LHbTlhsw4rMvEYol7FuxGPfAfmjpybHp6YZAJMYjsB92bUfjKikp4d1vICe2bcTI3JLf5kxnwLsfYmxhiU//AQjFEryCgnFoewOjoanJ2OmzmTBqIPER4bj5KzY6QnHXv7Hy8O+LSCLFL3ggJhaWePgHUNHQiIGZBe5B/dv8JQhbV3cq6hppqKtDUySmZ59+6JtZ4D5gCMmRoWQ9e0qvvoHtvF3Pzl9G/0mRaGnhGaTwd/eAfti2zWeLknIH+3H29ef8np2c27oeK1d3ha34B9LDpReNrVBZUohAJMbZPwg9E3Nynz3mQdhNKosLcfR/aZ/mzq5UlZXi4BegsJHeCtvKSEoAIPHGZQZ98Q2NdXUUt7UcfHovmrcmzWzndU3MsHb3orWlFT1Tc5z6KPRbu3lhZu/U/mwvxtNd/LFy88TUzrEDb+PdG10TM2w8FfwL/9IQirD3DcDM6RV7FosxdXJFx9isvRuPjrEZdn6BaIhE2Pr2xdTx1fgjafffV3kN9W6S6f+Sf0oEIhHVFRX/sfuJZVqd/AVATUODqvJy1k6fRObTJ/xj8ox/6T7+w99gxddfoK6hgb6JKeavFfqpaWjw5ZyFuPoHsPjrzwkY+RajJ01DR6fzAVaBI9+kl39fyooKyXz2lIXjPyf4rffo/VpB9wvR0tXl+wXLuHTkIGUlRQjFEryDgjsUJP5voq6hiY3ry3guFEtwDwxG19Sskz/qGBlzYtUiKsvLcPZVvJQSiCX49R9ITFjIP33Pf0b+yoH+E6SksIATbU30T+za3uGI6hVTJzLC2YoVUyf+r+zyqRMZ5tSD5W0sKLpevPv5lwC8+/mX6Mj1u/zsvymaQiE6hkbcvX6FN8eO5/T2zXgPGEx5YR6l+bl4BA/mws4tDP/8K+JvXkVb3xBtfUPibl5lyGfjuLxrK87+gZQV5FFWkEevfoO4umcrgz4dR3JUaDufGHKVQZ9+ydU923ANGkhpQR6lBXm4Bg3i6p5tBH7wCYkhVzvxkScP0jNoIOUF+ZQX5NMzaCDX923D//1PSAq7jkxuiExuSFLYdXzf+5SIg79j33cgFUX5VBTlY993IPfOHqb3h1/wKOI6Ej0DJHoGPIq4jvubH3PnyE5s/YOpLMqnsigfK9/+3Du2C8/3PuPZ7RtIdA2Q6BqQfi8Sz/c+496xXVj7BVNZnE9lcT7mnn2IPb4Lj3c/43nUDcS6Boh1DUiLvoXbO58Rf2IXln79qSouoKakAKvewZ15HTlPIm/g88HnHcajIRbTWF/H+bWLCfjbGJLDryOTG6Clb8CDkGsE/30sN/ZtxyVoIGVFhZTk5+E1cAhnf9/MqDHjibl2GZlcv9N6uQYN7HK9kqJC0NI3REvfkPibV/AcPJJ986eTl/aMrZO/RtvAkCk7j3LnwkkGfTqOxNBr7XzCrasM+nQcYUf3drlefd75mMRb19DSN6BnYDAm9k7kPnuCVE8Pj+DBlObnttvb+V3beWPMeFTV1JiyYRu11VVMeWsImU8fM/fzv6FnaERxXi7Febn4DRpKxKVzjJkxl4qyUhw8vDiycQ1LfhhPv1Fvc3jzevoMGU5RXi5Febn49Avm3IHdqKqqoayijNzIGLmRMbmZGV36h1//gez/bS2jJ/xA2KULyI2M0ZLrc+faZd4a+zWntm/CZ+AQivNzKS8pwr3/IC7v2sqQz8YRd/MqAW9/SP933+foxrWc27WdWX97l6Lc7P/68bpZz57y9pcTOLntN3wHDW2fT/eg4A72o66hQWLoDQCeJ8Zx+rfVuPcfRGlBHqfXLefYrwv59fP3GfTpl9y5cJIHYYo2iNFnj+Ez/B2u79tGz6CBnN2wgo3jR/M8IYYb+7YT/PexpCXG4j5oBAA2nr4MG/cDdy+cxGfUuwA49emP1/C32vkHIdeQ6emjpW9A4q1rDPzkS67t3YZzn36d4smgT78k+XZ4l/HH2T+IsoJ8ygryce03kGt7t9Hv4895EKKwz1f96/bJgzgFDqC8MI/ywjycAgcQsn87Pm993OaPiviTHH6dgL+NIezg7zj2fck79h3AnZP7X/Hfl7yxvfN/Z/H/HxFjix6oqKpyp6315p8tcmOTdn8pys0hLeUhQomUrfNnMWFoENp6ctadvYqheTcpof+kWLm48vaEH7i8fzf93/uoW8534BA2Xgmjoa6Orwf4s3HWNPav/ZWEyPAOnExHFws7B6yde+ITPIiVP33H5nkzyUp91kmnqpo6Jj2sSH/6iNHf/sihTevoO2QE1VVd/7a7K1EXCCjJy6UkLxfvAYM5vX0zb44dT3JUWCd/LM7J5r3vfiTi7Cnmf/ohjxPiWPbVZ0iknVuK/qvy1xvoP0F05Pq889nY9rfKLza0r2+Wx7S9Ke6O7e6t8tTlazq9Ze7qs/+WlBUW8jQxnviwW/gNGU5c6A1c/Px5lhhPXU01YpkWiWG3CP5gNMnRke3/X1JkKJ4Dh3I/4ha23v48uhsFgEiqRVJECIHvjSbtQQKNDYrc64dRYbgPGEZSZAh2Xn48jrmt4GVaJEWGEPDexzyMCmvX/4LPfHgfMwcXnrTxQqmM5MgQPEd9yJPol4HiSXQ4tn0G8zQ6lB7uvqTGRQMgkMjIe5JEQ001z+++PAXq+d0IrPsO4vmdMMzdfMiIV/AqAglpMWH0HP4+6fdePm/h80f08AkkLSYM017eZCUoKqM1pDqkx4TRc9j7ZLzCZydGY+U/gIx7EZi4+pCTeAd1kRh1kaQTLxQKSL0bjn1Ax/GIxSKsPPxIibzJwLE/8CQ6HE0NNVqamki5HYZr8FBSokKw9fIj/34CVRXliGVaxIfeYuBHfychPJRmZTUaGxo6rJe1p18365VIU30DualPuXlgJ0KpFs2NjTj1CcTJPxBtAyNK83Lb+cd3b9Padtz4w6hQPAYOIy0xFksXt07rFfDu30iOCiPm0hlamptJS0pAJNMm/tZ1gt75gOQ7ivGIZVo8vBNF8PsfER8eglvfIPyGjKCxoQEdfX1uX7nI8u+/wsXXH2NLKyRa2jxOiKX27fdJf5zCkI/+TmlBPtePH2b80H4oq6iga2BI2qNkALR19Ii+fpXczHTSHj8iJT4WACsra3rY2Xfyj9ysTG7fuMZbn35B9K3rNDY0kJqZxt3rV7l/O4KUezE0NzWS+jAJfSs7BCIx9yNu4dQ7gBPrltPS0kJzQwP1tbW0tDRTVV6GnpEx+V18ef0nJSftOQZm5twLuUFPvz7cv62wRQ2JrIP99OobiINPb1LuRNH37Q94EncXt34DSQy5wf3Q6wCk3o+jMDuD54lx7b6tZ2qOmqYmyZEhmNg68DBcscm5c/Y4lq4e+L/zMSm3w3AOGICFixtp9+Ooq6kmJSqEUd9NQyY3pLmpkeLsTFKiQtp5VVUVWltaSI4Kw23AUB5GhODg06eLePI3Mh4m0livqPx/Nf7Yevd+hZfxMCIEnzc/IuX2y/jzwr+yUh5g5tiTZ/cU8UEo1SIlKhSPLuKPc9AQntwOw8rdl9TYl3xmUgJuQ97qxHsPfxvlbjo7/CX/u6iqqjL8o9FE37yGT1D/P/1+Lc3N3Au5gbZcn99mTQXAzMYOmY4u3y9ZhVe/4H/5HgdWLqW6vJyE8BBU1dS4ceQgQW++254j/LrIdHT5bukqnt5P4FHMHUqLClny3Ti+mDaLQe9/3CHP3sjcgvk7D5CXmcH5vTv5dtRgHNw8GP39T/Rsy7Gura4mOe4eBTnZ6JsYc3jLetz9A6CxEbMe//vh1Q319aTE3OHU9k1UlBRj5+ZJSswd5CYmPI29Q2N9HQDxN68Se/UiT+7dRl1TQF11Fc1NTdw6fhhtuT6xUeH/y53+uPxVRPiaKCkptd4r7rqJ+b8jB7q7dI2u2F+nTeo+r/lflO6e5Y+c9NddLlpNbS1NjY1oCoWUFxWhJZdTUVpCq7riRMS66irEWtqUFxUi0NKlvq3rgYZQSEVxETI9OSXFJQhEYsW9XymGE2nrdijmqywpQqorp6qstJ2va+PLi4uQ6nTmBVp6VJeVovkan5+bi0RX3qGYryi/EImunJryUjReGY+6SEpVSREibV0a23g1gZDy4kJEOh35yvJKBFItqkuLEGrp0ljXxmsKqSkrRqStR21FKepCBV9bXd0lr6SmSW1ZMUJtPeoqylATilBVUaaxphrN13ihmjJqAiE1pcWIdPTaxyPRUOXsyrkWkvz6AAAgAElEQVTomJjjMeJdxNq6qDTVoaSkeN4X81ldVoqlsS5KvCwufFGYVVxa2Wm9SotL2ufz9eLFmspytkyeQM++/fEd8RZSXTmVZSUIRJIu+dfXS0Om2+V6VZcq+KUfj0TPzILADz5B39yS/b9MxsTajtHT57Tbm1yu1z7+F102NIVC6svL0ZbLiQsPYe2UH1BWUaHPsFGMnTm3/RCMF8WLMomU7NTn3A25we5VSxn49vt89tN0xVqqqfGGsxVXUvOpaxu/gXbnX38C5ObmIBCKqK2p5tTenexctQwzW3scvXyQGxlTVlRETnoqd65eYvTP8/Ed8SYJt65xaMUCho+ZgK2HN9piTUQSGSu+G8c7X32DW0A/bI2M8fsPFBFeyy7t8t9qGxspKypEW65PRWlJewpLSWkJEm2dDvNfXd/cvs4yPYX/aorE7Fk4i7BjBwj84O+MHD+x3R5KC4vQNTHrYJ9nN64g4vgBfN94n7/9svyl/dTUdGnPGiIxSry0nxd8S4Mi3r8aT2rKShG0jf91vqv4U1Fa0in+FBcUIHmlmFj99fgjbvOX6mqEMi1KCgo6FB+rC4RUlRYj0dGjuvyl/b/gXy0mfsHTVI+6ZueTZ/9IDnR3+cF/JAdavRvdmqpdF+91ldvbXeuy7nKPu5LunqW7zzVUVNixcinVlZV8N3fR/3i/f0cOdHl1NSqqqiz5+gtMeljz95+mU1tdhXY3/fT/T3KgF30xGjV1dQZ9/CmufQNZ88N4hGIJ37xyOmZ3pzu+yIHOePKIuWM/pb62hsCRbzJ25rwue9A31dZw88xJdv66BN/+Axk/ez4SmRb1dbWMdLBgX9g9jC0tKS8pxqDtgKXXpaqujvraGkQSKcd3bGXD3BmYWNlg6+aBhb0juemplBbkE3nxHCO/nsSAv48h/sZlTqxahPfwt/Ab+Q4arQ2IpTJ2LZ6Li18f3h7/LeL6OoY5W/1b46PK3Llz/126/p+QefPmzR3z03TysjJpamqirraG0iJFTl52eiqqauqUFRdRU1WJkpIS+dlZCCVS8rIyaW7jS4oK0RQpOhGoqqlRVlJMTVUVSihh4+TCJ9//iIunTztfWlSIjr4BOelpHfiAwcMIGjaSUaP/0UH/i/G8zoMSBdlZCCWSDnxxYQFCcUe+uqoCJV6MX0J+G19T81J/boaCLy8pprK8HCVlJQpzshGKJRRkZ9HQ2EBdbS3lRUUIRCLyM9NRVVMj5uZ1rh89gLKKKjsWzMYjMJjNs6ZSUVbK0/h7XN2/G0ef3mz46Ru09Q25eXgPydERKKuocnDZXHr27cfJdSsoysog7UE8Nw/txs7Lj+3TvkXL0JjQw3t4FB2BsqoKR5bPx8k/iEOLZ1FeVEDagwRuHdqNracfh5fOQSiVEXpkbwfe3i+QI0tmUVFcSHpSAmFH9mDj4cuRxTMQaekQdWI/T2MiUVFR4erWNfTw8OPsr3OoLC4k62Eid07sw7ynFycW/IhUz4CY0wdIjY1CWVmF8L2bMHf15tLqX6guKSI3JZG4MwcxdfXmwuKfEOvpk3DuEBnxt1FRU+PWb4ux9A7g2tp51JQWkffoPo9CLmBg35NLS35CpKfP/XOHyIy/jZKyMuFbl2Hu2ZdbG+ZRU1JE0fMU4k/vw8TVuwOf/+Q+LS3NXNuwGGufgPbx5D1OIuLQDgL//iVnV81HKjfg7tnDPIoOR1lFlZMr5+PgH8SRJbNoqK7kUexdLu/bhZNPb9ZM/BodAyNCTx3lfvitDuu1d8GMtvnvuF4SbV02fj+GmvIyfEe8w7GVC3Hu04/TG37ten31DQk5soeUNns4snwe9v5BHF48s9N6nVqzCE2RmLT78RRlZeLoH8CJXxfxyfRf2D5nCkKJhOf347m6fzcufv6s+WE8OgZGXN6/m/uRbc+7ZQNO3r7sX72CPiPeQM/IhEsH96CsosLhDWvQMzLi/J6dxEeEcnTLBjbNn01Jfh6NDQ0U5GSzf/0qctJS6dUngCOb16NnZMy1E0eJDQvB0sZW0ZVDIiUvK6M9nozu58fZg3uIuHIJj75B3Au7hVimxZDR/+DGscOMmTWP2JAb2PXy5Nbxg9w4tJfb50/SWF9Hyp1IIk4f5cbxI9w8cZTaykr+MX02m2dPo66qkvCrl5g7d+68PzM+Dnr/Y4QiMXkZ6e3xoaaqivzsLNZO/QHPoGB+mzGZksICHifEcvPEEezcvNrt58qB3Ty8cxtNkbjdfvbM+5nyokKkckNaaeX9yXP4ffp3aOkbEnpkL1lPU6ClheO/LsCxt8IeTB2c6eHqQUleDjaevuyZ8T1acgPunj9BclRIJ3uurawgNeEeYUf3duAjTx4m5XY4yioqHFu+ACf/IE6sXkxJXk6HePL79O/QMTIi5NDeTvHn5JrFlORmk/YggZDDe7D19GXfL1OQ6ugRfmwfj+9Gto/H1jeQE8sU8ScjKYHIY3ux8vDlzOqFaIolRJ/Yz7OYSJRUVDi/ZiF2foGcWj6byuJCMh8mcPv4PizdfDg8ZyJSuUEHPj3hLkY2jpTl5dDS3ERjXS1VJcUIRCJKsjNRUVOjuqyU+ppqVFVUUFHrnDPd/Yaxi8+6KRbsroiwu41rV91Duuqq0R3bnfzRza+qsjJr50znvS/GYWxu+T/er7vPu3sJlZWWiqqaaru/KCkpERcVwZ7lC3l4NxrP4IFkPH7E5YN78AoagGoXa1OYk42mUEhBdhbNzU3U19ZSkJ+HQCQmPzMDVTU1KktLqK2uoqW1leLcHCTa2jyOu8eIz8bSWF+HXS8Ptv7yMz4Dhyp+CCwtob6mGiUlJYpyFd/vhW36m+prKSsqwtDMAp/gQfQZOoKze3aQl5mOvZsHRbk57fuB7YvnsnDCl2SnPsPe1Z2ivBx2rVyKSQ9rzh/YQ0F2NpHXLtJ36Ch+nToRPbkBQrH4lf1VGmpqasz+6jO2LJ6Hd78BiKUykuNj0TY0ooeTooYq41EK4+YuISEilKTIUKLOHCfy5GHqa2tIvR9H9NkT3DpxhFsnjtDU0EBzUxPOvv6snDiB7PS0f2t8/GsD/ZrMmzdv7tvf/cjjlGSUBEKqGxrIyEhHKNcnKvQmOuaW5OTlUl5Tg7JQxIOEOFo1NMjMzEBZKKSmsZHMNv5+bAxSIxNy83KpqKlBRSQiJek+Bja2PHmU3M5nZKQj6oJXFop4+jgFqYlph/FkZmci0JWTGHsXiZExObm5lFdXg0BIUkIcUmMTnjx6CJoCqhoaSEtPQ1NPwYsMjMjOzaG0sgqEQh4kxCE2MuFxSjKtmgJKa2vJyEhDXUePxHsxCPQNyc7JpqiimhYNIUkJ8WgamPAkJYVmDSE19Y1kZWaioaPPw7g4hAbG1LUoY+zYE90etkj1jdCytEVmYIyJsydyK3vkljZIjC2R6Mox7umFlqklRg6u6PawR6pvhLalHZpaupi7eiG3skPPwgapiSViXX1MXT3RNrXE2NEVvR72yPSN0O1hh1TfEIte3u28zNQSTakMs55d8fbIDIwx7+WN3MoePUsbZKY9UJNoYdrTC+328Tigoa2LjqUdUgNjTF290ethh66FNUJDS4Ta+hg4eyE1tkBu1xNtSztUJFqITW0QyY3Rd/JEZm6L1KQHYmNLhDpyDJy9kBhZoGfrgsTYGpGeIRJTW0R6Ru28WN8UkYE5Qm05+o5eSAzN0bNxQWZqi1jPCJmZLSK5EYZOnmiZWSMztUJsaNGB17GyR2Zmp9BvZts+HiUVNZ7dvknvL39GoK2PnqMnArkp2tYuCE1sEOgYomFkjUDPkGZDR9DtgZq+BWUahiiLdcG0J1rGpmhbOyMwtUGga4iakTV2tj1w9PbD3N4RExs7TKys0dY3IPTSRVBWYcTUpch6OCHUM0TTxIZGDS2ktm5oGFsjMrKiScsEdZkeKuauqOqaIjR3ArkV6tr6KOlboa5jiNTOHQ1ja4TGPWjWNqVJTYSGhSv1Dc2U5GRgOWIM6tr6INEl+cZ5/MfPRmBsg9ikBzITS4Q6+hg4eyAxtkDfvidSc1skOtpITK2QGhhh3ssbMxd39C16cH7HFsqLixjyxVeYOjhRXV3NvVvXGL9gOb2HjaS0sIC8rAxU1NQIGPUWjr69KSnI58T2zfTqG0j/dz9Ax8iYpIR4dM3MefIoBVWRmLqmJs7s2YGtqxupj1MQSCS0osSjuHsEvfMeDp4+mNk7Ijc2xX/4KPKysqiuKKO5sZE3xn3LlG176D3ibUZ/OZ4vps7Ewc0dp17uGJlZ4OXnz96Na/70DbRN0BBapDokxMSgrGNAZnYORRVVlDWpoGNmhYaxFSK5EQbOnkjNbWjRkKJmbIOmthxtew9EhhZILZ0Qmtgg1DNE3cgaoZ4Rek6eCIwt0bG0Q01ujqa2HF0HT0SG5kgs7BGa2iLUNUDD2AaBnhF6jp7ILJ2QmPZAVc8cDS05WvYeqOoYoW3lgqaJDZq6hqgZWqOpa4iObS8kpradeKFBmz2b2CLQNUDNyAY1mR46Dh6ITG2QmlihrGeGppYeYms3BAbmaFk5o2Fsg6aOIaqGVihL9dC290BgYoPYuAetOmZoynTRaRu/jo0LIlNbhLqGij/1jNB38kJqbovM1AoNAws0xFIMHD2QGpsjt3NB28IOsdwQLUs7JPrGGPf0RsfSDh1za2QmPRDp6mPs4o2WiQUG9j3RtbSnobYGiaEZeanPUBFKaWxWbKK0DI1IT0pEZmRKWXER9fUNiLW0UFJWpbWVDpdqt5tfJZSUOl4aqsqoKCt1ujRVVVBVVu50qSgro6yk1Ol6XW97a7Iurpa29oWvX3+Ep5vPS4oK2b16Gd8t/pUWoLnt8+Yuror6emqbmjpdjc3NXV6PEuPRMzGjuLCA+vp6hFIZx7dupKywkOUnL+Dk5Yu1iyt+g4dT09JKXVNTpyshPhEVbX2eJKfQqCagvLaBtLQslGVyHsbFoq5nRHZOHqWVNZS2CHiYmEirSJd7F09hFvQGxdWNZKWlEn/1PCaeAajqGpGdk09tbR2tmiKSExMRGJjy7NEjWtSF1DY1kZmRjrquPknxsRg6uKBnZsnprRs5tXMrMmNTDGwduHX2JJf272bx4VPoGhnTqqTE3RuKblB6ZuYEjHoHuYkpoWdOoSGV0mfEm5hY2VDf3ERWZgYyA0Pux8agY2rGgQ2rMTK34Nj2zeRmZiDV1ibqykX6vvkOPkOGY2Jti2EPKwzMzBFKtSjJzaauppox85YwePRnfLV4JcFDhvL5jz8zavQ/sHF0wsHRGSNjYy4cOfhvjY9/FRF2IdsX/UJLSzPhF84SfuEsYpmMr4J7s2T8F/z41lBy01PJTU9l36plhJ8/wydezpzZuY2IC2eJuHAWsUyLbfNm4eDpzb5VS8nLSCMvI439q5dh28uddVN+QCzTIvLiWSIvKvjfF8zuxB9atxIHT+9OvEgiZd2UHzrxZ37frOCnTkQk1SLy4jkiL55DoqXFhqkTsffw5sDqZeSlp1GYk8Wh1Suw9/Bm47RJiGQyoi6dIyH0JiKpjC0//4iduxdH1qwgPyOdwqxMTq5fiY2bFztm/YRQKiPh5lVirl5AJJWxc/ZkbNw9ObX+V0pysyjMzODsb6uxcvNk7y9TEEplPAi7Qfy1iwgkUg7Mm0qPXp5c3raO4qx0irPSubxlNZauHhxeMBWBRErijUsk3riEQCrj6IJpWLh6ELb/93b+ytbVWLh6cHTBNARSrU68uZMbl7es7sRf2rQCgUTG/ZuXuH/zEgKJjOOLpmHq7M6N7Wsoyc6gJDuDm7+vwcTRjfPLZ6AplpIScomUkEtoiqWE71iNsbMbkbvXUpabQVluBpG712Fg58qN1bPQEEt5Fn6FZ+FX0BDLuLlmFoaObtzZu46K3EwqcjO5f2YPBg7uhKybjYZYyvPIqzyPvIq6SELIutkYOLhzd996KvIyqcjLJO7IZgwc3Ahdr+BTI6+SfvcWGmJpJ74yP4c7e9dj6OjWPp6nYZe5fWAzcit7rq6a9cr4M9vHb+zsxpWVM9EUy8iMCSM18ioaYimh62dj4OBGzP4NlOdlUZqTSeiOtZi6uHN++QxEUhkxV84Tc+U8QqmMHbN+wsDCisSLJ3AZ9AYVBTmE7FyLqbM755b9jLpIwtPwKzwNv4KGRMr11TMxdHIj9tBv7c8bs38DBg7uRGxbppif8Cs8D7+ChljKzTWzkNv05O6+9dRVltFQXdnO39q2ApGOHo9CL/Mo9DKaEiknls3B0tWDS5tXd7Q3l17smaOwz9hrF4i9dgHLnm54DRqK18AhLB/3D/Iz0gk9eZTG+nqMzC25fuwQH0+aipO3LwKRGNc+gaye/D1jZs7Fq/9A9qxYTGJUBMe2/oaLtw/LJ32DWKZF6LnThJ47jf/g4aSmPOTLn+eQmpKMjXNPfli1gYSw0E7+CIo+xbYe3gz7fBzH1q6gIDONvMx0dq5YhLO3L8smfYNEpsWtC2f/I/FRIJWyY/p3WLl5cnbjKgozMzj260IWvxlAwvULCv+Vyki8cZE9079h7+QxrB89BDMXD663+VdZbkYHe9CUSEkOucSz2yFoiqWcXz4DUxd3QnesoTQnk/K8bCJ2rcPY2Z1Lv85AUyLlcehlHoddRlMs48rKme32XFmQQ1luBrf3rMPIyY2rbfaceie0S748N4uynMyO+sUShf42+7n06wyMnd2JPbG7g7+/8BcNsZQnYZd50qb/6sqZGDu5EbFrLWU5mR30h25f+XL8r+p3dCVs50s+bOc6TJzdu4w/1zctw9TZnZAdayjNyaA0p20+nXpxasl0BFIZD29e5OHNiwikMk6t+AULV48O8TDsyH+36PT/Rrl89CC2Lq5dpif8q+Lo4cWeX5eQm55GbnoaO5Yu4PaVi4ybtwSNLtJuuhIzBxd2z5msiFdXLxB79QICsaT9+/T8plUUZWVQlJVB1NFdmLl4ELZ3My0tLe320NTYiLKyMj16ebbHw4LMdE5vXIm1m2cH/Qkh1xDJtNg+8yds3bw4sXYFzY0NfDF3MXrGpty+eI4tP//I/YhQVFRUiDh/Bmef3pTk5zH2l4XU1lRjZGlFbnoqOWmpLD9+ju0LZlOcl0v0jSuEnjuNWKbF8knf4OLtw87li3Dx8qGutgb7Xm44enhSlJfHL/uOUV9Tw+2L5xDJZPw2fRJ2Ht4U5+VQmJ3Jm+O+Jef5M+zcvdjy849IpFrcOneKW+dOIZFps3TiBFy9fP/ta/rXBroLiQ8PYfI7Iwg5ozhQpaK0hKxnTwFIffiA6opyAOpqa7hyaB8AoWdOtJ/u85f8Jf83Sm5SLEWpj/H5ePx/5H5hJw6hZ2mLQPLvr35+VZRVVWlpUhzSU5rxjKqiAoRaXecf/7OipKTEW+O/pyArk8zHKYwc+zVGlj2Y88n7lOTnAeDg4c3wTz7vkMenLden95ARRFzsfjM7+L0PKS0qJPVRMnaubnj1C+7yqNvKslJCTxzhjXHfIu0mJ/K/IRc2r+Xe5XMcWzEfgJrKCpJeFPSdPtxe1FNfXUVqvOI0xqKM51SXFnet8C/5S/4vkNBzpzm9aztTVq7/j9wv/XEK9u6emFhZ/6n3UVJWprlRkSddVVJERlI8av/khv1/EitXN/LSnlOUk80730zCztObc7u3E3PzGgC+g4YS+MbbqL6SX21gZo5Nz16c37uzW70+/QZQVlxEbkY6b302FnMb2y5PFqyprCTy/Gn8R7yFpZPLv/w8/yfyVxHha6KkpNRhQjZdC6e2qoprxw5zYd9Ohnz8CW9/OQEAfRNTlnz9BXdvXKX30BF8s2gFAHkZ6di6eRAXehMXX38KsrPa+eR7d3H178ujuHvtrWnyMtKxd/fskn8QHYl7YP8OfEF2Jrau7p14PWMTkqKjcA/sx+P4exiYKfic9DTs3T2JD7uFs29vCrOzaGlpRW5qSlJ0FG4B/XgSH4uBmQX1zc0UZmVg08uDxPAQHH38KMrOor6pFT1jE1Lu3salTxDPE+PQMTFDCSjMysDK1Z2kyFDsvXzJzcwCWtExMuHJvWgceweSdj8OmaEZKEFxdiYWLm6kRIVi4eZLaV42ANqGJjyPjcbOL4D0pAR0jEwABW/u4sbj6DCs3H0ozct5ycdFY+cbQMaDOHRNzDvwT+9GYtnLq6P+uGisvQPITIpHx1hxKmRJTiZmzm4k3w7D3NWb8nwFLzMw4VlsNJZefchJTkDLSMGX5Waia9OT9HsRmLp6U5GvGI/UwJi0hBhM3fzIf5SI1NBUwedkYuDQi8zYCIx7elNZoOCFOobkJt3D1N2fglf4yoIc5LYuZMVFYuTiRdULXteQvIf3MHXzp+BxIlIDU5SUlajIy0Lf3rUDr6qmhERuTM79u5h59CH/USJxx3Zg6eGHvq0zRg69uhx/VuJdLDz7kJuSgIqWEUqtUJGfhb6dK1nxkRg5e6FWVwStrcgMTciIv0MP776o5D1C31Qx/y/sYd/CWTx+8IARkxeipKyMzMCE9IQ7WHn35WlCPBIDYwAqcrMwcHAlIzYCPQfP9ucV6xuT+yAGC68+HeazIi8LA3tXMmOjMHDyIO9hLNeWTsIqYCjPwy8jlRtg1suHPp98075evXy8eXw7DCuPjvaWlxyLg08fUu/HoddmP0XZGbj5eJMYHkJNZQUHVixiyqad6Orq8PP7bzJl41ZobW33r5LcbOx6eRAbepOevv48uR/PkgljGTt9DroGBngFBZMcG4ORhSWgOO0s9PxpTu3Yxv6oOKqrqqior0Nu0tkfI65c5ODyhYxZsByBSIyDjx9F2dkYSkQYmJqREBWOd78BPIyNwdbahsGOln96EeGrf194MULRFnHzWmIuncGxTzBfrNpGxoN4dEzMOL9hGTHnjuP91t9wCBiIpZsv5fnZNDS1IjMwbreHnIcJaBmb0dzaQnluFsaOvUi9G465mw/ledk0tSr6pmcm3MHSqy+5yQnIjMxobWmlLC+zgz2X5uWgBEgMjMlOvIu5Zx/yUhLQNlLEq9f5qsIX9m/yUn9KIrI2eyvPzcTIsRdpMeGY9PSiIj+3jX/pL9mv8YYOvciOj8TM1ZuKtnjSQX/b+F/VnxUXhWlPzw7xJyPhDtY+AZ3ij6mTG8/vhmPRy6cDn5cch5Vnb7KS4tFus+fS7Axs3Nzb4udL+zc2N0dNvXMnhu5OEeyq6FBTrbvTArt+g9tdXnNX8keKBbvj/6dc59dl45zpGJtb8v64Cf+Ujpq2k3X/WYkNu4WLtx/52YoThh/Hx7J39XI2XAlDTV39Nd1dF+jHRkZh4+5NamIcem3xNjs9HQuXXqREhWLj6UdJrmI/oCIzJC3hDsYOPVn9fj+c+w/jUfh1BBIprsFDsfHs3R4Pxeoq6Bqb8DgmGif/wHb96mrKFGamY93LgwcRIdh7+1Gck42aihJ6xiZc3ruTi7u28fXyNegamrB52g/0HfkWb40d374/KcrNhlbFfuZ+dCT2bp58P6w/oz75nOF/+4Tc9DQcPbyICblBL78+FOVkc27/bo7/voXJK9Yw9IO/ERERin5bvM1v218lhIVQV1fHlhk/MewfYxk5djzJd27j2jeI8mePMDazBCAnIxUnD2/uh4fw7ftv/FVE+GfKvHnz5g5470NSHyZh7+6JkpIyF/bvYsKCZWQ+fcLADz7m4v5dPIyJRlMkJvTMSRYfOknkxXPUVlfxPOk+F/fvxrPfAFZ+Px4zG1su7d9Nckw0ApGIKwf34ezbm00zp1BbXc3zpAdc6o4Xi/l9wRz8h4/qwMeG3MTew7MTL5bJ2D5/Nn2GjWTTzKmK8Tx8wNXDB/AI7M+qieMxs7Hj8v7dZD59jLKKCrsW/ULvYaPYMlvB56ancWnPDtyCgtnw4zeYWNty7eBe0h4+QFVdnUPL5uM1eAS75/9MU0MD6UmJhBzZT8+A/myd+i1GVrbEXr/Ew8gQNEUijv26AI9Bwzm4cCbNzc1kJCUSeXw/jn36sWfmD+hb2hB1Yj+pCTFoCkWcXrOQXsHDuLF7E+X5eeQ8fsjtkwdx6N2PA7MnYmRjT9SxfaQlxKAhEnF29SJcg4dxeuU86qoqO/AXf1uBVFfO7RMHOvAuwcM4tWw29TXV5Dx+SPTJg9j79+Pc6vnIDIyIOXWQjMR7aAhFhO3bjI1vEJdW/UJDbTX5T5OJO3MIS+9ALiyZjI6ZNYnnD5GTFIu6QETcqX2Yuflxa8N8GmurKXqWTMqVk5h59OHa8ilom1mRdOEweQ9j0RBLiNy+FCv/wYRvmk9jbQ3Fz1PIvBeOgUMvbqyciraZFQ8vHSEvOQ51gYjbvy+nR59BRGxaQGNdNWXZaSSdP4CZZ0AHviI3AyUgfOsybPoO5taG+ZRmpaIuEPE45CI9fF6OP+naKbIS7qAuEHFr81LsAodwfe1cWltaKXhyn5RLRzHz7MvNldPQNrUiNfIyqfciURcIufbbEhyDhnJ+5S/UVlWRkZzEzSP7cA3oz6mNq6goLiDrQSxF6c9QF4q4tnExDkFDidy/haqiPAqfJfPgwmEsvQO4vHQy2mbW7c+rJhAR9fsyrPsOJnTjfBprFPP58OIRzL0CiDm0GYFUi6ehF9CUaVNTXEhrSzOj1+wj7swBGmurKXiaTPy5Qzj36ce+2RMxeM3eok4ews7Ll/0LZ1JfXU1mShKhx/bj0U9h/xpCIY/v3eXZ/Xj2r1xGQ30d73/9PVvm/NzuXzE3r+Hk6cOyb8dhbmvH9eNHkGhpc27fLu6F3iT47fdYPW0SNVVVPH2QyNXjh6mpqiI77Tl2rh5cOryPtEfJqKiqdvJHlFVIvhOJnrEpF3dvx8TKluuH9pL1JAVVVVU2/jKDoFFvsWrqJBrq6oi+df1Pz4HWMzWnpqIcgVSKnVdvwo7uR1lFheDPv+H+rcv0Ch7GsaWzaPaI70oAACAASURBVKipRqSljbK6JkO/m8GxeRORW1pz99RBclLuo6qh0W4PF1fNoaGmmpKcdO4d34u1byCnF/6Errk1cWcPUZz+HCVlZW5uWop90BCurvmlfX0Tzx/uYM9Pwi6Rfi8SdYGI0C1LsQkYwo11c1ECclMSO/FJV0+SmXAHdYGwXX/EzrXUlBZR8DSZhHOHsPIN5NyiyehZ2pFw9mC7v7/wl6jd66kuLaLwWTL3zx/G0juQG6t/QcvYjPhzh8h+EPtSf2DH8b/QH75rHSJtHeLOHiKrjb/x21Icg4Z2ij/WvkGcXvAjehbWxJ45SOb9e6gLRcSdPUwPd1/OrlDEt9zHD4k5fRBH/yAOzJ6EgaV1ezzUkuujbWjcaY27y4HuqjBQ9Q928vgjm+I/UizYHd+djq7GcfHAXuxc3bB+7W1mdzoauzg98X+SxV9/gbGlFef37iTpbjR2bp7cPHUMdU0NHDy8/indO+bOwMmvL/sWzKCuporMlCTuXjqDrXdv9sz8AcMe1kQcP8Dz+BjUxVIurluA29C3eRodRkV+Lo6BgxBJZQz+8vsO8TDt/j00BCKOrJiH5+AR7foLM9K4tm8HroHBbJr8LcbWttw4tJf8VIU/Hl69DICkqAhOb1mPiooKxbm5eAUPat+fhJ09SUJECJoiMdvnz6b/2+9x5/ploi5foCAnm9Dzp/EJHsSiCWMxt7Xn+smj3Ll5DXVNDe7fiSb4zXfYvHAOlSUlpD58wNWDe3HvF8yaiRPwGjiU+xGh5KU9w6iHNXsXz8V36EhObFxLYV4OTx4kcmb3DvwGDGbehLGUFhX+W+PjX2+gXxMlJaXWCxlFZD59ipGF4ieemqoqpNraFOXnoS3Xp7atrZVAKGpv21RZWoqgrS1RbVUVIi0tSgsL0NKTd+BLigrR7YKXaGt3yXelv7qqEpm2Tpd8aWFBZ76yspP+1lbaz6zXlsvb+bqmZuprqpFoaVNeWIhUT9EWqq6xpUPbsqqyUtSFIuCVtnTFhUh19Cgrr0BZSRkNYcc2UsqaCr6+ugqRljYVxYVoynRpaGsrpi58tS1UMZptbc4aaqoQyrSpLFa0lKtve151gZCqkiIkunKqy0vRaGsD94KvKC5AotOxLV1VSRFCbTk1FaWoC9r42iqEUm2K8vM7tZEqLshHoqtPTUUZGm3PW19TjYpASnVJEcLX2tiVFOYj1tGntqKsfX5qqxTjqSktQqD1klfRULSZE2rrUldZhppAwTdUVyKQ6VBTWoxAS6edV9UQUFtW0pFXUqKprhpNiVYHXlVFcfrhi7Z3tRVlJF85QWrkNdzeHI1j/xHUtOlqqK1BqW38L9re1VaUUdeijpKyEo21HfXL1JtppRV1gZCa0iJEOnKM1etftpmrrkJDKGTz5G/JycjkzdkrkegZdODz8grb2/w11Lxs26ci0u4wn7VlJUj09DrM5wu+vLAAkbZeJ97E1KATb26i396G7FV7a6ksQSbXb29z9sI+jQz1yH3+jHU/TuCNLyewd8k8pm/agaG5RSf/aqyrRarV2X+fxsaw9Iev2XzxJppCEcIX/l5dhUgqY/2sqURdvcSXM+Zi3zcQoUjcyR8jrlzm8MpFLDt7g+qKcqS6Cn80lIgQtVWw67S1jZPr6NLbUPqnv4FedjMWWltobW1tbxsH0KImoKK4UNEGrvxlW8aSknLE2jpUlhQi1lb4V31TSwd7eOFfzS2tNNRWI5RqUV1SiLCNb2xqRV3Y0T7VhSJaWlpf2k+bP9ZWK9rYqQlebRNZhqZAiJKyUie+qa2vs3qHto8laLTHn5e8QEuXhrb1fdVfKl+xnxd8XWkBYl39DvHk9fG/yteWFiLS1uvES/TkneKPWKbdYX5e8A1lxUjlinil/iKe1Fajo6uIn6/GN5lU0uXm8P+vb6CvHD3E8a0b+XTSVPoMGd7eBeP/5A10U2MjKm2pC81NTaiqqVFaVIiWrh61NdU0Nzezc8l84sJCmLPzAPqmZh34BpRoamhAVV2dlrb2d8oqKuTkFCDR0W1v+whQUlaOpO379FV/rFfWpLKkEEmbf72wB6WGaiTaOh3ioURTtcP39Qv9Guoq1FZVKvYDRYXt8UdVuZXmpiZWfv0FAz4czbH1q/jk51/oM3gota/tN+prakCp834m99kT5o37B4t2HcLJ04uSwgK023gl4MSOLRzbtolv5i7C0rs3IqkUeNlWtbSwkJy0VNb+8BWLTlxES65PRVERMrkcUVMDIkkbX1WJVFuH2pIShjj9e39D99cb6Ndk3rx5c589eYyOpQ1ndm3nbugtlMUyVk+aQM/BI1g35XvKKqp4kpTE0U3rsOvTn5Xfj0Nm1oOzu7cTExaCikSL7Qtm4xAwgPVTvqe8opqnDx9ybPM67P2DWTxmNHo2Dpzb/Tv3wkJQlWixY9FcbP2DWT/le8oqqnmS9JBT2zdj5RvE4jGj0bVy4Ozu34kJC0FNpsvaSRNwGTiyA3/5yEFM3XxZMvbv6FjZc27PDmLCQlESydgw+VucBozkt6kTKauo5tmTpxz/bS1Wfv1ZPu7vaPVw4MKenTy+f58WNQGbp36PQ/BItv48ifLKatKfPOXctg3Y9A5m3YR/oGvtROiJwySEhaAm0eH3GRNxCh7Jzlk/0dgCaclJXNm5GRv/YDZ/9zlya0dunz3Ow4hbaMh02Tf7R5wHjOLIounUVFeT/fQRN3ZvxqZ3MDsmfYGBXU8iju7lyd0oNKW6HJ77I04DRnFhw3LKiovJfvqYm3u2YN07mJ0/jkHPypHIY3t5fDcSdZkOh+f+hGPwSI4umEptTV0H/szKuYjlJkQd28uTu5FoSHU4Ov8n7PuN4PTiadTX1ZH3/DHh+7Zg6RfM0elfIrd25N6p/aTF3kZTpkPYrvWYefbl8q8/01BfT2HaE+4e3oaFb3/O//I1utaOPDh3gKyEaAQyXa7/Og2bwBHcWDWT5vo6StKf8Pj6aUx7+XBh3nj0rR1JunCQnMRohDr63Fg5DZugEYSsmUlzYx2lGU9JOrcHa79+XJj3NYZ2TiRfOEjJsyREEhk3Vk7HacAIbq6ZCc0N1BZmE3NoCw59B3B69leY2DtT8PgBjZVlpNw8R/LVk/i++SEXl/8MLc2UpCvG7xAwgBMzvsLEwZnnYRfIiQtHW1/O9ZXTcRv6BjfXzKS6vpGcRw+JOrANQ/cgjs8YRxbGXNq7k/BrN0mvUGf35DFUVDegY+1IVVU9mY9SiDywFS2XvpyY+RVyOxcSz+wnM/42GjJdrq6Yxv/H3luGyVllC9t3VUu5dLW7u3u04yQEkiDBGRiBOZyRdxh8YGAIITghBE8gBOJEOu7W6bS7e3fa3V3r/VGV6i46nOvwvcP5fhz2deVHHu5rZT17rb325qm11vZctJrCnW9hYTbOVMcN8o/sYMXa1Vz+6BViIvwpPbOf/vIsgrwdOfn2C0SuWsvlza8gEowz1FxN/uEdhC9dzol3XsLSxZ3so3uoy0lFrrHi+Puv4RO3kh/eeJ7h4WESD+zkyHuvUVNcxOHNb1JfXcmpLz/mwnfbuHZwD3vfe5Nzu3fQ19VJc2MzYoWKsqJirMMX8v4fH8XM0YsT3+0gNSEBrUzFx8/8CY+42/nk+b/S1t1HcUEh+RlpWDm7svO9N7EOiuDwjm0kX73MkJmMD59+ipV//Qel6Umc3b+LvpFJTn3/LU7Ri3j/P36D3MWXU99/S9KRvWhs7EiMP8jCtXfz5T/+zsToKB11tezZ+gHzblvNi4+sxzs4lJO7viUnNekX/wJtE7mEg2+9gv3cVex9/Xk6egepLCkh6fhhFN4R7HruCcwcvLn+w/cUpVxnQqTm2JvPYRO9kuNvv0h37yD15eUk7/nK4A/mdl5kHNlNTWEBI1oRp995AU34bZx9/x909wzSWF1D6p4vUfjN58S/nsLE2ovs+D1UZaQwbqbkwgcvoglfwaXNLzM0rPPPjANfowmYz+nXn0Jk60XJ5ZOUJ19lSqTi/PsvYhN1Gxc3v8zAwDBNFWWk7d+OJngBx199CpmjL9lH91CdmYJWrOLsuy9iH30bSTu30N3WTnNlORkHvsY6dCHHX3sKpbMfucf2cCMrBaFUzYX3X8R1/u2c/+BlhoeGaK0qJ33/19hHLOLKp28gtXYg5+gebmSnYKbUcOadF/BcuJoz7/+DkeERWqsrSN2/HafoJRx55Sks3HzJOrqHmqwUzBQarm7/ENeYRZx85yVGR0ZorS4nee82vOYvZc/zT2Dt6U/akd1UZaUgVmo48eHr+C/S+f/oyAjNVeVknz2Gd2wcU1qM/pj/1AHaVHjLLhy36qrxc9vH3aoTh+lPdOy42c3jx39u9fyn2Ft1A/EKDGJsZIT9X25FJBbjFxqOQCBgYmrqlh07Ricnb/n82w/fYcrUlKM7tpGRcAWhRMoHT/8Jz0Wr+Pi5v9Le08fF+EMkHY/nlX3xfPHSM1i6eXJy59dkXbuKUCLj4Mcf4BkZy5cv/Z3+vn6qiwo5vu0zblu7hg//41HCIyNJOPA9NVmpeLs58c0//sa9Dz3MzlefQW6ipb+hmuTjhwiImcd3z/4e94BgMuJ3U5eTikxjxb5/PUPYbWs48MbzjI2O0FxVxtkdXxCwYBmf/Plxutvb+O6157h2+AClWRkceP9N6ior2L3xFS7s2Un8Z1s49uUndLU2U5adhcrOkeGxSTKuJzJmLueT5/6C+8Lb+eyFv9E9NEpxbh4HP9+Kc/Qi3n7iEeSuPmQnJ9Hf201hXg5Hvv0alwUr+ejZP9PUM0hWVhY5qUmseuo5Pnn2P9HKNSSdOUNWYiJTEjWfv/B/8Fq0mu3PPYWZuTkSuYKT33xB5NIVvPvkbwgICyd+xzayrydgYW3Nm39+kjX3P8jOrR/+W+PjrzcR3mJ4BIdj7eSCb/RcAKydXAhasAixVE7g3Djcg0INrFgmxzdqzizeOywKsVQ2i5fI5QQtWDSL9wiNQCSVETA3Djc9LxAKEcvkBM5fhNUM3tLeicD5i2bxpubmSGRyAuctwsrRZfqOeCcXAuYvQiyV4T93Ia6BIUxphUyOjSGWyfGfp5PvHTUHgYkJlo7O+M3V8X5zFuISGMKkVsDU5ARiuRy/uYuwdHTGNSgCrXYSjaMzfnPjEMlk+MYuxN7L13CbnFgmx3dOHJaOzjj7hzKlnUTj4IzPHB3vHjkXR99gw/yIZHK8YuNQ2zviHq6rmrVwdMErNg6RVIaDfzC2nr6zeAtHF9xu8g463lwixzN6AY7+xvLtfQKxcHDGLTxGzzvjGbMQc5kM9+gF2P9IH/fohajsnXEO1fEqe2dsPP0xk8hwiZiPjc/0T37mUjnOEfNR2jnhEKzjlXZOuEQswEwixTl8LtZ63sRcjJlUhkvEAj0fDehyf50jFmAukeIUPhdrbz1vItTxkXr5ITGYmJigtHfCJWqBkT7mZiZMjI1iPkN/1/A5+MbMpyI1gc66asylMjyi52PjE6Dr96R/X4+YhajtnbHxHUA7MYHK3hn36IWYS2W4Rc1H6eYH6H5ivKm/1MoBS99InQy1NWi1uMbdjUIhQuPqPT0/EhmO4fP0bbmm58c5Yj5mEhk+UbG4BoRMrxeZHJ/wKGycXQmI0fm/jbMroQsXI5Lo9HfwM7aXY1AEantnXMJ0/qC2d8Y1LBaRVIZXzAIc/UJI3L0N79iF+MyJA7SobByQKNTI1Brcw2MoSjhP/vnjCExMMBOLWfL4n2mvr0Ekk+MdG4fGwcXgn5b2TrPWC4BEIkamsqA4+ZrRetQ4OiNRqHjzrsVYO7shkkhQaqxQWdnq11ccGkdnPCNjCZsTxcW9u+hsbmJ0ZISQ+YvwDA7FSiZlYnwMmUJBzJJlOLi6MTFnHv8TQ2nnZOQPdvr1MmViPss/ARQ2jjhFzNf78zysvYKYmJxCOzU17Q+2jtgFRjGFCXIbJxzC5mMmlmIfMhdLz0AmJ2FyfBQziQz7kHnIbZywDtD5m9zGCfuQeZiJpdgGz0Ht6gtavX9KZNiH6vjJ0SGmJidmy/cIMLybuUSGQ9g85DYO2AXqflZX2DriGD4PM4kUS48ALFy8jHjH8Jt8tJ53wjFsPuZSudH6BTCXyrD2DjSaH6WdEy6R838inshwjZyPyt4Zx5Dp+GPvGzJr/gFEUjmeMQtROzjjGqbj1Q7OuIfHGPzfyV/nnyqL2YWr/5uHQCDggaf+wtTUFLUVZf+f5bj4Bd4yXt3cf518/cm5eIaA+XFY2NgTvHAxNs6u+M3gXQODdXv/POPzg0yuIHLRMuxcXAmZOx8AO2dXohYvRSKXExG3BN/QcAA6RrRG+7VnpD7+ODjhq99/vWMX4OwfgshEAAgM54HChIv4zVmI0tIGkUzK6PAQHqFRyFQWeEZEM6UVsve1v2Pp5MLU5CR3Pau7J0ELs84Djj7+uv6I6M4DN/UZGRzATCwh8cB3xK673xA/HX0DKE29RnHCJUb6+xFJZZiZi/CM1MXbmfJX//ZJ0s6e5NyuHSy6534kcgWhCxfj4OxG2LwFADi4uBOzdLnhYqd/5/g1heNHQyAQaL/KqSL52CGD49YU5jFv3XoSDu4heuWd3CjKB8AtMITr8Qe47fE/3pI//902Ftz9gBGfee4Ucfc9PIuPXbOeC99vY/5dD1BbrONdAkJIPnqAFY/9kZTjhwwH5YaKUqJXrpnFOwcEkxz/Aysee5KUE4dwC5yWP2fNvVzctZ15d91PbVEBWqEJzr4BpBz7gWWPPknaycO4BIagRUBdYS4xd97L5d1fM2fdfdQVF6AVCHHyDST9+EEWP/oEGScP4xQQClot9cX5RN15Dwl7viZ6zX00lpcwOTGOs38wGScOEffIH8g8dQRHfx3fUJJPxOp7SNz7DaG330tTWSEADn7BZJ88yPyH/kDBpVPYeegOyo2l+YTdfg9J+74hbPV6msoKDHzOqUPMe/D35J2NNxykGksKCLv9bjLi9xC0fA1Npcb8nPt+R965ab6ptIDQVXeTengXgcvX0qzXx943iPzzRwm/6zcUnT9q2KhaygrwWryWnPidBNx2D23lOt7GJ4jSq6cJXP0AZZeOYaPfOFvLC/Fdupb8+O/wW3E3bZVFAFh5BlB+8Sghdz9O+aVjhoN1Z00lngtXkn/0O3yX3027nrf3C6Lk/BHC7vktZRePYeMThEAopK2sAL/l68g5Mq2PSGSGtac/hWcPE3Xf7wz6S0yFXNmxBSsXT8QKJeGr11NfWoBWq3/fM4eJuf93FJw7irVPMGi1tJQVEHjbXWQe/JagVfdSW1yIdmoSG69ASi/EE3L346TGH0Ks1FB59nt6a0tQuwVg6RdFxLqH6awuBsDSM4CKy0cJWvMYjZmX0LjqDiJtFYX4LltH3pGd3Pv4bwz+7BoQQvLRH7j3P/6Ta/EH8QzW+XNVQR5xd9/H3u3fErB41bQ/+AaTeXwfVh5+NJcW4DV3CabmIprLCoi+416S939DxJ330ViSz8kP/4WZSIyNmyd3/P1VKtISDQeLhpJ8GksK6Gqs48ENH9FQOi0/6+RBFjz8B7JPHzHwPbUVRNx2p9F6AfAKDuXawT1c2buDFb/9I0HzdVcDl2SmYS4Ss2/jSyx59Amaq8oJXbEGv3mLyDhxkEWPPEHmySM4B4RgozSnMjeb2rISStKS+eeug1QX5GEll+EdHMrpfbt44Km/cvaHvYRHxfDI4jm/eArHqhfexn/pnQZ/aNX7v8rdf5Z/ArSUl+AVt5r8Y9/hu0znz5NasPTwN/hD5dUTWHkFMjEpoLOqAI+4NZSc2oXn4rvorC5iChMsXH2pSTiK7+rfUJN4Ao1HIABd1UW4L1xD2elduC+6i566UpicROMRSHXCUfz0vJVXMKCls6rISH5PbQlarRZLzwAqLx8lcM1j3Eg6g8ZNF386KovwWryGwhPf473krlv6c03S2Rl8IV6L11J6di8+S9Ya1q+1VyBlF+OJuPe3uvign5+28kJ8l6+j+MxBvONWGcWT4vNHiFz/O0ouHMXWRxd/WssLCFl196z5t/UJovr6OcLXPED+WeP4FrvmXpL2fUPknffRqPdn77BIZCr1LBvLRbdOvxDdIl1D+hMpHD99m+F/Pzf65+ZR/5wUjv/qefy326ksKuD5D7YC0zf6/Xj8VApH79AwVw8fmBWv9mz5gLriAiqz0lHb2PHHzV9QnZXKsoce5/rRg3gEhwFQXZDLvLXrObdzGwvveYAa/fnBPTCEggsnWPvbJ7l4aD8++oNyTVEhS+5ez+Ftn7HygUcoz88FQGvnabRfOweEMDkxTvb5UwQtXkFFehJz73mY+pICzE2EuAaGGM4Dm+5bwcTYGEGLlqO2sWfJI38wim8Zp49iLpZg5eRqJF+rZdZ5oLWyhKnJSVwCgkk9dpCljz5B+snDuAaFMTk5zmdPPcqfPvuesvRk5qy7j8qcTOqLC7i6exuuQeHYuHuhsrEjcOFywFj+2kcepaogl+STR2mrryNi6Qru/MNTlFw+h5c+l700N5tV9z/M0e2fs/WNV/+t8fHXL9C3GCNDAxSlXDP8vSjlGhErbqe2uBC3wBDKMlIAkKnUFF5PIG79w7P55asovJ6Ab/RcI762pJCRocFZfOjSVRQlJeAbZcwXJSUQt/4RimfwjZVlhCxcOptXW1CUnMDC9Q9TnJJo4EvTrhO2bBXFSQn4RM2hPDMVkUyORCanJDmB+fc8TGmqjjcxN6c0NZGQpasoTUnAO2oOlVmpmJiJkMiVlKYkMOfuhyhLS0RgYsLUxCRlaYkEL1lJaco1PCPm0FBSwHB/L1KlmrLUa8Te9SAVadcRmpozOT5GRdp1AhetpDz1Gi5hMdTkpAEgUaioTLtG1LoHaSopYHJsFIDK9Ov4L1pJZdo13CLmcOMmr9TxkWsfoDor5eb/5FKVcR3/RbfRUJyHY0DoLD7ijvupzkgyzE91RhL+cbdRX5CFY2A4dbnTfENBNoG33cONzGn+RmYSLrHLqMu8jlNwDI0FulZdYoWa1tJ8fJbcSUN28rS98lLxmLucuuzrOARH03STV1pQl30d/1X3UZ+TYuA7aytxjlpIffZ17IOmeZlKRV1WEoG330edXr6JmRl12Ul4zl9upI9MpcZcKqcmI5GQO+436C82N6O5rAi38DkUXTmNW1gs+WeOMNDVjtfcJZQlXiD0jvuoybiOwMycidFRbmQm4b1gBTUZiTiHxtBeXsDY8CBiucqgf2teIj3VBWi8w7AOmEPo714l8/MXGWhfTEtRJgDmchWNOcn4Ll9PW3kBE2O6dmcN2cl4zFtOfXYSHcsXUZ6ZOu3/yQmsfvQ3pF84Q8aFswwP9NPV2kxRahL1tfXYeflTnZXKUE8nOScPUZ58CXvfYDpqK0ndt535j/2JG5nJSMRiKtOu4R4ey43cdAKXrkbj4EzygR1sfXQ15mIJ7hGxWLt60lpdjpWzK6XXL9PVVE9Ndprevioq0q4RfdeDVKZfn7ZXTRkBC5YYrRcAC0tLyjKSiV59F8nxB5HrW+ulHTtIX0cbalt7vKLmIBAK6W5ppKuxntKUa8y5S7e+AEY1cgpSEnn85Q1cPbiP1DPH6WhqwkqtRqZUkX7lEmse/S2ZCZeR3OLmsl9iNBXl4jlnicEf6vPSARBKlbP8E6C1tACX6MU0ZCdhHxRNc2EmCE0wlykN/tCUp/d/ExHN+Sk4xyyjKTcJ24AoWoszMRHJMJPIaM5PxmPpvbQWpE7LL0jFKXoZzfnJWPtH0V1VzNjwAOZyFc15yXguvZfm/FRMzcVMjo/Okt9WmsPUxAQiuYqm3GR8lq+nrTSXqQldJ4SmvBRcY5fRmJOMQ1Dsrf25NNfQSrExNwXX2OU05qdj5x9hWL8iuYr67OsE32E8P3XZyXjMX05reQG23kFG8aQu8zohq++nLmsGn5WMX9xts+ZfrFDRXFFE4NAgNTPiVU1mEmHLVlGRdg33iFhDvLVxcLjlAfp/+6gsLsTRzYPWxgZsHZ3ITkygKDMNVx9f3HwDcPb0+i8LHMdGRshPSjD8PT8pgeB5C7my51vClq5kzrr7MBdLGB0aojo/h/lr76UweXp/L0y+RsSyVRQkXcUvZi5l6bq1IVepKcpIY8V9D5F97aqBL83KwCc0nFO7d1KSlUFLfR1arRb36AXUFeUSvfY+ci+eIvfCSWoLdS3sytOu0VpVjtLKhqqsVMZHhpCp1IbzgKNPANYubtwoyCX5yD5KkhPoaW1CbWNLU2UZY8ND9HW00VF/w3AeAEAgmHUeqC3MYXRIJ780JYF59zxEaWoiZmIx4yMjqG3tubxrO/1dHXhHzSH9+CEqMq4Tsmw1nQ213PHnFzj+8Sbq9R9WZsqfu3gRJRmpqK1tqMrP5frxIyx/8FFKcrKY0F9xnnH1MnGr15By5cK/y0UM49cv0D8aAoFA++GVTFRW1ozqiy1EEuPiOUOx1NAgcpV6Orn+/4Hvbr8VP4BcNaM4YAb/42R/gOHBfmS34M3EEiNeIpMzMaUrRpGp1NPFBMNDTE1pjYr5BvXyZ/I3i1GGhwYR8KNivp5uzKQyBAIYHRxEqlLT39mBXKMr7uEm392JQmNFT1eXQf/RIV3x0EBXBzJ9cdtNfrC7E7nGiv7uTsT6n2L+O/xQ74ziMD3f19GO7EfFf4PdnYjUlkb82NAgpjIVg90dSNWWjI/cnE+dvWQWlkbFQOPDOv5mseCEnjcxlxiK+Ub6ejAz8EOIFTN5XTGTUGTM35Q/NTaERKmeLkYcGUKIQF88N10saC6VITIVMjY8XZx3U3+pqZAdf3mQrvobmIklmJqLMBWJ8Zq3hPbqctqqSole/1vmPvxHBgcGdcVYYimDXe30t7cw0t/HlJkUgVDI+PAQZmIJw71dJH//GVZ+UXjf8XtMRBLG+rsQKS2RvftiQAAAIABJREFUmw4bilfGh4cQKVT0tdRjZjJJb1MdQ51tDPd209fWiHZyEvOxfsbHRhkZGEBgIiRw/mIaivOoys9l/p13YefmjrlYzFB/PwknT9JaXcbk2BhqO0f8F68iat1DaE3MkFpYsv23qxkbHqK/vQWpWsNLJ9Nn+YNCraarsY7agmyqMpKpSLuGS3AEk+PjOPoFMe/+x2esr4Fb+ptGrZi1Xm7aS66yoK60kC1PPswDL20gZPEKuju7eP/hO9hwJoWJUV3x5dikrhhOOmN9jQ0P4aAyRySV0dvZQVlWOgc/fp+n3vkIC5E5Q/39eAeHotVqsbCyxmRsjDg3m1/8C/SzF0qmi/N6uzHXv29fTx/iH/kngFYoZri3E6l62p/HJqaY0PvDcE8nYpWGiZFhxie0mIoljPR2IVFbMqovlh2fmGJidBiRXMVIbycipcZQ/GcqkjDa14VYpePNpTIEwPjIECK5iuHeTsRKDVNjwyAQYCoyli+Sy3X8DH2kao1hPc7UZ6R/uvh4Jj9z/d7kldbWRut3TL/ex/s7jebHTKxbv3KN9ax4Ilao9XNnzI/3demKEWfM/9jQIGqNxuCfM+Pb1EAXCn1x503/N5kcQyJXzrLx//Yv0E+vX0NBegoyhRJzsRiAJWvvob6qgrK8HO589Lc8/uxLRl+gtVotVYX5TIyP0zc4iFShZGRoiKnJSUzNzdj7/ias3by580/PGFIJRoYGsbGxMirOuzluFBcyMT5Gc3UlA7099Ha0M9jTjSlT9HV3MTY6inZqipC5C+hsaSLjyiWW3r0ee1c3RBIpAKcP/kB9SQETY6OobewJXb6aiFV3YePpw0BXJ7tf/gudjXX0tbcC8M6V3FnngckpLQKhkMwz8TSWFlOYeAl7D29kFpaYmJnz4KvvGsWrKa121nlArlQg0L/vTPmjw4MIEDAxMcHGtXHc89xr+M9bzMTkFO+sX8bTO49i4+pBf2e7odgdjM8bSu2QoZg779pldr75Gk+++T6udrYMDQxg4+CIs4cX3R3tuDk6EaYR/1pE+EuODRs2vN7f1YlEoSAp/gfKM9MQCAUc/3wL3pExHProbXrbW6ktLiDp2EE8QyLY987ryNRqI/7MN5/jFR7Nwc1vGfEeQeHs2fQqco3GiD+740s8w6I4PINPOXkY9+Bw9m76JwoLDUlHf6AiKw2EAk58vgWfqDlGfNb5k7j4B7P/rX8it7Ak+ZieR8DpLz/GKzKWo1veprejjYayYlKP/YBrcDgH33kVhcaS1OMHuVGYB9opzmz7GM+IWI5vfYfe9lYaygrJOHEI16BwDr/3GnILDZmnj1CdrdPnwvaP8QyP5eSn7zDQ0019UR5Zpw7jEhhG/Af/QqbWkHPuGNVZqQgEQi598zHuYTGc+/w9+jvaaCorJOf0YZwCwzi5+XWkag05pw9Rm5eBQCDkyo6tuIXFcOXbT+htaaKprJDcM0dwCgjj9ObXkao05J4+TG1eBggFJOzYimtYNBe+eN8g/yZ/6asPEMnk5J45TG1+BkKBgISdn+AcGsuVbe8x0NlOS3kRBeeOYOcXzqWtG5CqLSg8G09DfiYCAWQf+g5bvxCSv/mQwa522iqKKL1wFGvfUBK/2IhEpaH0QjxNhVkAZO37AofAKFJ2bmaoq532ymKqrp/D2jOAxC/fRKzSUHYxnuaiTARCIdn7Psc+MIq0nZsZ1PPll49j6xvMtc/fRKLSUHIhnpbSPLRA2u5PcQyOMujTWVNO4dnD2PuHcmnrGwb9G4uyCV6+hrGRYR585ytaKorxW7wSidKC8ZEhFjz2Z8599Dp2vkGUXjlNfW46XXWVHH/jaarTEii9fIrqlItUJpymMuE0zYUZlF06hsLZDzOpnK6KXAQCIeXHt6PxCafs2HYGO5qpz7xK9r5PKT61h7yDX1KTdoX6zOt03ChDIDShs6YU1+g4BhprsHP3wsrZhZGBfkzNRXTU1/LYPzfQ3dbG8OAg7kEhZFw4y+3PvUVPSyPhq9fjFBhGV8MNPGIWcOGzdxArlLRVlWImljI21I+dtx9eMXGc//xdBjrbDf7mHBjKqY834Rk1j8HuDmzcvTExNaMs5Qor/+M5ruz8jL6ONhpLC8k8eQiXoHCOf/A6MrWG7FOHuJGbgYmpCWe/Ml4v9SUF5F46jYt/MEe3vEPM6rs4/tlmrv2wi+H+PuqKCxBLZWSeOapfX8VknDyIa2A4R95/DZlaQ8bJQ9QV5zE1NcXhTzaz/MFHufLDPpKOx3P99EmuHD/C4W++4trp49i7uHHh8A/kpiX/4kWEjkFRpHz/KU4h0Vzb/gEDnW20lhdRnngea09/I/9sKsxCi5Ds/Xp//l7n/x3VpVRcOYq1dwipX7+FRGlBxZVjtFcWop2aouDwF1j7R5K7dwtD3R103yin5tpRLL2Cydr5NmKlBTUJx2gvzUYgEFB45Eus/SLJ27+F4b4uuquKqbl2HEuvYDK/fRuR0oLa5LO0FKUjEAiN5I/0dNBZVUzV1WNYeYeQ/s1biBUWVF49RmtJFgKBkNwfvsA2IJLcQ9sYbG+is7qYiivHDPqLlBoqr8TTWpyFQCAg98AX2AdHkz5z/V46ho1PCGnfb0EklRvmRygUkr7nMxyCokjZYRxPbP1CuPrZRiRqDcXn42ksyEQgEJB58BscAsKM5r/oXDxOAWGc3bIBmVpD3pnD1OVnIBAIuL77K1xDIjn32bv0dbTTWFpIefJVfGIXzLLxTxUR3qpl3a06c8DPP7je6ovuz2F/6vnPYW8+n3/b7Tz+zEs88tdniF28nAf/8jRzV6xi6V3rmb/qDj58/m/c+ZvfMiUUknPtCtVFhXz0zF84s+c7ijPSuHRwLxnnz5J4/DBp506Rn3iVgd5efvPG+xzb+i69HW3UlRSQevwQ3mERfL/xFcZHR9j//pvEf/IBxz7/iPSzJ2iqLKcoJZGRwUGmJifpbW9j8dq7qSrMZ/G6exkZHqampBA7Z1fkKhVP/HMDV44exsLKGu3UFANjk9z38tv0trWw+k/P0dlYT0tVGQjgwtdb8YlZQGdjHaNDg8SuWU9x0tVZ54HaglxMTIRknzvJ2r/9g476GwhNTKnMSkWqVOMVOcdwHkg/cYjqnIxZ54HBrk7qivL1aRvhHHpXx2edO05FRgoisZjW2hqqctI5//WntNVW09fRSnlqIoFxKzj83mtIVRZknjxEdU66kfzzX2+lo7GBmsJ8ClOTsHfz4NAnH5CVcJXLR49w8KvPqCktIeHkceYsXsr3n370axHhLz38VqxD6RmCr1R3+5fCzpGQO0aZlFgQfucDWDrqGtpbeAQwLlYRuvo+LH1CCVRY6Z7bORJ2+yRaqQVRax8y8FZeQSDXEL3uQWz9wjFTWut4eydCVk0wJVURsXZavqV3AFNSFZFrH8DKL5RglU6+0saBsDVjjItVhK15wHAhiI1vMEK5BVHrHsIuIAxzC2uDPtF3TWKq0BC97iE0js6AAFsvf0QqDTF3PYRjYDgSjQ2TU6CydSBy7QSmCg2Rax9E4+CMUAj2PoFILDTE3vUgzsE6HkBt50jU+CQitSXR6x5Cbe8ECLDzDUKktiRq7YM4BUWgsLIz8FNTk8gtrYi9+yEs9fq7BARjYW3NnLsfwj0sEkvbaV7IlO6/rb0XjZ3+gpWgEGzsbJh/78O4hkVhZW9v4E3RYmFtw5y7H0Lj4GIkP2zVXbiGRGJhq+NVto4I0KLQWBK55iHUen0cfYNRajSEr3kA56BIlNa2Bl4oFGBla0PkugenLzgICMbSxprwOx/EKWRaf5mNA2YmAtS2NoStecBwgcJQexPWDrZErnsQp5BobBx1+lg5OKEUCXFxtcf03ocN+gy0huPs6sjU+kdwC4vB1c0Jc1MhFnYOWEuFeHs6InnwUSwdnTE3EdIZHoyrhyOCBx/FKzIWLw9nJia1WNg7oVIpcHRyYOXv/6TzHwF0hYbhEhRGRmAohSf3E/PAEzQU5ZKy9ysi1tzPsiefpam0AAsHnX27m+pxDAilOjMJ19AYelp0DfzVto7UOkjwiPLES3Q71w58T0NZEV4RsSy8/zFGBwewC46hR3+hg9rOkRu56XjFLKA5Jsrg/zcvxKnJSsE6MBoTC53dVfZORKwZxcnFkWWP/mGaDwvHydEep/l3YuoQSPjjL5Fz4HMC1y3AOTCEYTMl3ivuQ2mvu/BC6uxHr1CJx/J7MXUJwkGkK6pS2DjgOGcFAntvPJevN/AyVz9GzVX4rbwPuUcIHjJdfBBY2+OxfD0dWjluy+412Ffs2kTblAzPFetxColhfeAcqlKuMtBch3vkXNQeAVj5hWHh4AJo0Xj4gdyC0DsfwNovDDO1NRIzITI7R0LvuJ9+UyXrX/sAS0dnTARCOpvqkVto2L/hed559m/Ye04Xa/6SY0Tpg1X0Opr6xGii1mJurbOLRuVF14gM29i7mNT4YRGu+7o5obDBKmYtHSMSLKPWILJy1HU+sPSkf1KO7Zx1YB2AJtyCySktQo0dNjHrGJyUYx2zFomVIxPjUwgs3OmfkGEVtRYs/VCFqjAzFWKqscMudh0jKLCNXYfE0kH3pdnGmyGt7pmpTQB2civQapFa2eO8cBytuQrnhXejsHUCAcic/NCKVLjE3Y3CIxRnhS5+yqzscV88ARILnOfegcxK1ztZ7uwPEgvcF9+LlW8oEn28lVvb4z05iUihwfe29Tr5gKVHAOZKDd6L12DjFzbN2zjgPz6BTGNF0OoHDP5m6x2E1MKKyLUP4BwSiaXtdPyRmAnRWNvo4q0+PvT4h2BtZ8Pcex7CPTwK6xnxUCU2wc7elkX3P2pYL2O9Xbf82nyrL81w66/NP/WV2OwnrsL+Kf5Wz3/uV+xbjZ8if+pwPjo5aUhr0QIuPr6GLhwA9q5uLF57N6/9/lH+8v7H3Cgv5dBnH3PPU3/BPzIav8gY8pOvExAVQ2uD7sIUGycnitJS8fN0Rfj477B11u1HrdFR2KmVTI0McWjz24QtiGPNI48xb9WdFGdnEDx3gdGFaK31tXiFRqC2tSUwZi5B8xcCYOfkQlF6CjKNJSse+o3hwjW34FC8QoKRjv6ewJi5BProng+ILRFqtfjELqSlqgyPsCiW/f4vdDXWzzoPDI5OorJxIHj1GOMiFSF3PoSFgzNxU1p6musZESkJuP0+5J4heMk0CAQC1LaOBK0eZ1yiJuj2B5DY6OKDyNmPXqECn9vWY+YSjKO5BQjAzNaR8PuewCViHun7t9PXUI1nTBzWbt5MSlSE3HE/Vr5hmKp060Vt60jIHeNMSdV4LlmDRr9eJC5+OAeG4TpvBYGxc+hqaqC/q4OU+P0UpyXz3F+NL8j5d4xfr/K+xXAOCOXi9i10NdbR1VjHpa+34BIcwZnP30eiVJF/+Sz5l88iUao4uPFFXIPDOPeV7k75zoZazm/7CNfgcPa/8QJShZL8S2fIv3QGqULJqc/ewy0kkjNfbqajsY6OxjrOfrUZl6AwDm580Vi+XKmTHxJhJP/6/h24BkdweNOLSBQqCq6cpeDKWcRyBQc2voBbSIThjvvOhlrObfsIt5AIDmx8QS//DMXXLyFRqmbx3S2NXNz+0Sz5xQkXp99Xr093UwOdjbWz+PKUBAqvnEGiUHFk00u4BEdwcfuWW/JShdKgv0Sh4vCmF3ENjuD6vm/obKydxYtlitnzHxLBxa8/nsWf+eRtJAoVhVfOGOnjFBDKpa+n7Xv5my04B0VwfutGxAolJQlnKUk4i1ih5MInb+IYGE7itx/T01RPT1M9id9uxd43hNPvv4xYoaTs2jnKrp1DrFBybdt7OASGkfzdx/Q019HTXEfq959iHxDGhQ9fQSxXUZF4jorEc4hkCs5+8DIOgeEk7ZyWn3ZwJ06B4Zx89x9G+kgUKo6+/RLOQREG/bub63X+FhJh5D/FyVeRKJTs3fAC7qGRnPpiMx0NdXQ1N3DuK2N/KEq4QP7lMwZ/ePy9L7mRn83OvzzExS/exTUslkWP/ZkT772CWKGkPOUqxVd183P8nX/gHBjO1R1b6G6qo7WqlMMbn6GhKIdPH17BrlefYXJ8nGWPPcWqP/6NlKMH8AiPJunAt7PW15FNL91yfbkEhs9aL24hkZz+7P1Z62v/Gy9g7R1Mzv7P6G+tZ3J8lMorx7D08OXSR68gUiipvH6eyuvnESmUpO38CDv/MNJ3baWvuZ6+5noydn+CrU/wLF4sV3H+w1dm2Tf78M7/ln37WpqwdvdBrrHi3tc2k3fmCAKhkKLLpym7fhmJQsUxvX0v37RvS+Mt7VuUeBGpQsmFbz7lyY+/xSMsCjtPn/+R+Fh+5js0XiHkfPsGZjIFTZmXaMq8hJlUQc63b6DxCqH06BcMtTUw1NZAzfldqD1CKPx+I6ZSJa3Zl2nNvYqZVEn+dxux8Aih4viXDLU3MNLVQuWJbTp+10bM9HxHcTKmUgUlezeh8gim+vQ2hjsaGWpvmMW3FyTRmn0ZM6mSwl0bUXuEUHHiK4Y6mhlsa6Ak/kssvULI3vEGZlIFTdlXaUy/iLlMQebXG7DyDqXk+A4G2uoZaKun8NAXWPqEkr7tdcylcurTL1KffhFzmZL0ba9j6RNK0dFv6W+tp7+1ntwDn2PtE0bSlxsxlyupSblATcoFzOVKEj99FVufINJ3f0JvSz29LfVk7PkUO/9wkr75cJZ/XvrolVvGHwf/0FnxQaxQcv7LDwzxdub6cg0OY++GF5AolORePEPuxTOGVKNfx88bf974LlPaKZ6YH8G3m15nzsrViKUyFBaWbH3haXzCwtmz+V1a6m7QUneDvZvfwy8yms9ffhYzczMObP2QL//5AvHbPuPxOaHYOrmwaO3dLLlrPUoLDXu3vI9XSBhbX3gamVJN8pmTJJ85iUyp5usNr+AbEc3ej96lpfYGLbU3OPj5Fvwio9n6/N+Qq9QknzlB8pkTSBUKPn3h6Vn81d3bcQuJZP8bLyBRKChLu07Wmfhbngd6mhu5suNjnAPDOf6Ozt+Kr56lKvUqYrmSU++9jFNQONd2bKG7qZ6e5noSvv3YaP+qSrlMuX5/NIqH7c30NNWTtHMrDoHhnPvwFXwWrsAlNBp7nyC85y4mfuNzOPgGkbjrC7qb6uhuqjPWR37r88Pl77fR0VDH6NAQSisbnti8nZ62ln+7L/x6gP51/Dp+HUZjoKuDseEhXMNicPALpiLlKtWZSUyOj9Hb2kRPSyMT+gLPm0M7NUVFagInP3iVlopihnt7kGmsePSNDwlefJvhkoD/6eEZdyfjI4NUJ/37C0j+X4dWq+Xgq38lZf83dDXU0lpdTl97Kw1FOYwM9DH1M246U9nY4RP9P9PG7tfx6/jfPAb7+qgpKSZ0fhzBcxeQePIoVYX5DA8MMDwwQE1xIWOjxvFxamqK5hs1vPHbh8lPusZgXy8eAUHMW7maJ1/biKmZ+U/8a7/siF1zPwKBgBt5Wf+//Pv/1dBqtVRlXmfnXx+hp7mBroZamsuL6WtrobupDu3PiI9OvrqiyH/3+LWI8EdDIBBof/fx97iGRBr/xJyThv+8OOoKc2f9xFyRnoR7WDTdet7CzpG6/Cx8YuZT+yPeNSiMslRddWq3/s56C3snKnPS8YqeZyy/qR6XwDDK0xLxCI81yFfaOFCTk4537ELqi3INKRz9bU04B4RQnppouOP+pj7V2Wn4zFlIXWGuIYWjq7EOl6AwI/5mCkdNTpqRfKEQuvTve1Ofzqbp+ZnJ30zh6GqqwzkwjMq0RNzCY+lrbZrF1xXlGlI4uprqcQ4MoyItEffwGHpaZvNNZfnTKRwz9HENjTWyV01OGp4xC/T6u+jl6/SpyEjBJTiS3lYdr7J15EZuGs4R82kqzpv+SbSpHhvfYGoyr+MSGmPENxRm4xo+h6aSvOkUjuZ6rH1CqM1Kwikk2vC+MhsHGvMzcImcT0tpnlEKh51vMDcyr+McGkOfXr6VgxN1eRl4RC8w0megtUE3n+mJuIXF0tvaaEjhqM5Jwyd2ocF/zE10P/G7BoVRmnINr8g5dDU3GFI4jPzhZgqHfj53PPMk1q7uBK++H61WS29LE/GbntP1lZbIEMvk9LQ2obCyxS08lvGRYdprKjAxNWPBY/+JV/RCbuSl4xm9gMHaYjQOTkb+X5pyDbugKCP73shJwyt2Ic0lebPWV3VmCh5h0UbrpSo7Fd85cbdcX+dOXMDGP5zB9mYAUrZtxD1qPpEP/JHW0nzDT+R9zQ1Y+gRTn52EQ3A0/W06fRQ2DrQXZ+MUPteIH2xrwN4vdLZ9re1pLMj8b9vX3tmF2tx0RDI5O/70ADNjsHNwBMN9vXTUVgEgksr456lUbuRnGtn3ZgrHzHjS19rApnuX/+JFhHd+kURneTbWgXPori5Epk/hGOpoQu0eSHtRKpa+EQx16ubfRGFDV0UOVgGx9NYUItGncAx1NKJ2D6KjOBWNTwTDnS1MTmmRaOzorsjB0j+W3huFhhSO4c4mlG6BdJWmofYKZ6SrBTNTIeIf8/oUjuGORlRuQXSWpGHhHQ5D7YYUjo7SbGyCdPrfTOEYbGtE4xlEa0EKtoHRDHXo9JdZ2dNWmoVd8Fy6qosMKRwDbQ1YegXTUpCCU0i0wd/k1va0FGfiGrmA9vJ8QwpHf2sD1j4htBWlYRcQwYDe3+Q2DjQXZuIevWCWf9r6hdCan4JLaLRR/GkuzsEtYu6seOUVFm6ItzPjYWtxFr6xC4zWy1hvF04+/rNs/L89hePH48dt7Ha+/xYdLc3859sfUpaTyVB/P1+++hJdba2oLC0RCoX0dHZgYW2Du38QDu7upF84h0gq5baHfkP0stsAaK2vIzgqhuxrVwiOnUdboz7lw9GZ/PQUQuYtvGUKR27iVQJj59LeqIuHdk4uFKYlEx63hLKcLEMKR0t9HV4hYbP4AbEl1dlphvh5aefn+MyJw8k3cNZ54GYKx8143lich4WDM+P6FA4H/1BqMq7jEhZDb0ujIYWjNi/dsH/dTOHoba7H3j90Oh62NIIAlLaO1Oel4xa1gOaSPOydXUAgoDY3g0Ov/x+jubfx8MFcLKWhWNeqT2hiwvOHrmBqLjI6PwTEzqG7Wef/GnsnKrNS8Zsbx9NRHr8WEf6SY8OGDa8P9/ei0FiRHr+P2vwsRFIpp7ZuInjp7cS/+yqjQ4M0lReTGr8Pv7mLiX/vNTT2TqQe2cuNvExEMhlXd32F39w4Dr39CqNDgzSWFZNyZA/+8xaz+59/w9bdk+TDe6nJy0QklZKw9xt8YhZwZIb8zNPx+MQsYO+rT2Pr5mmQL5YrObnlTYKW3s7RGXxZ8lXcQiKM7rjXyZdxfMubhC69nUPv/JOxoUHa66q5/sP3+M9bZMR31NciEMCpjzcZyW+rqSDl8G785i426JN97hjVWSmIpDIjHqC+KJeMo/vwnbuYA/96Ghs3T/IvnaIqI8mIP/nRRob7+2gqLyYtfh++8xZz4LWnsfP0I/XIbmrzM434q999QW9ri9H8731VJz8tfq8xv+R2jr2v07+5vNigz5VvP0WqUpNxdB91+VmYS6Wc/WQTfnErObP5X4wNDdJaUUz28f24x8RxYtNzWLp6kHNiPw2F2ZhLpOSd+gGXkGjObfkX48ODtFWWkHtyP25RcZx++zk0zp7kn9pPU1E2ZhIZ1756B6+FK7m89XXGhodoryqhNv0aDoHhnNz0HJYuHuSe3E9jYTZSuZILn27Cb9Eqzmx+zaBP3tkjeMUs4NCGp7F28yTj6D7aayoQmppw4qNNhCy93eA/XY11XNv/Lf7zF/P9K3/Dzt2TpMN7aawowdTMnGMz/GFibJTG0kJSjuzFwtaec9s/ZuEDv6U0+SpV6YlYe3hTl5/Jk9vjuZGTSsjKdTj6h9DTVI9zUDiFF44TtHwNJmbmdNbVYC6Vcf7TtwhYvIrEXV/S09pCQ1kxyYf3GPSx8fAh/cieWevr1MebGO7rNbLvqU/eQWVtY7Rejn30JiHLbr/l+jr9yVvILG0pu/ADrcVZtJXmMNDZhue8ZVz5ZANjw4O0V5VQePoALlELufje81g4e1B0+gAtxdmYSaQUnNyHc1isEV9w6gDuMbPtay5Xcu3Lt2fbNzMRh4CwWfaVyOWc/WQTc9Y/TnVWCs7BEcg1VvS0NNLf0cboYD/aKd1GbmouwiUobJZ922qrSfrhO6N4kn7iEPUlBb94EaGlTwQF+zfjELWMvF1vMTEyRG9dGe1FqVh4BJO57RUU9u7cuHqYroo8TCQySn/4CLvIpRTteZfJ0SH6m6qoSziMTdA8cr95Fbm9G3UJRxhsq0cgEFB66CPsIpZSvO9dJkeGGGyrp+HaQawC5lH03WvIbN1oTIqnpyoPU7HMiEerpfdGEfWJ8VgHziV/x6vI7dxoy7tKW2EqpiIpBfs34xi1jNzv3mJyfJSemhKqrxzGPnQ+aV+8gsrZk8qLB+koz8VUIiV31wc4x66g9MROhjqb6aktperyIRzCFpD66T+wcPGi7PwB2kpzMJVIydz5Ae7zVpD05UbGhwfprCml9NxBnCMXkH3gCyRKC4rP/EBLcQ7mEhnJX7+L94KVXPnU2D/dohdy9t0XsHRxN4o/WUd34xYx1yg+ZB/fr4uf+ng7c/+6/O2nBCxYwg9vvcLI4CANZcUUJV4mbOnKWTa+VbEg3Lpg8KcOoj+n28ZPPf+5hYi3Gj9F/lQR4eQtPihOzXjWVHuDj154mn98ug2BmSlbn/sbIqkUz6AQxkdG2PDdfioL83ns+Vdob2ygu6MNExNT6qsqeGPPYfZveY/hwUFqigs5t/c7opcs592//BEXbx9O7d5JUUYaErmcc/t2ERQzly9eeYHhwQGqiws5t+d7IhYtY/PTT+Hs5cO5Pd9RkpmOVKnimzdeZd5C7ZrDAAAgAElEQVTqNXzxyvMMDw5SXVRITuIVfMOiZvFCiZxjmzcSuux2Dr71Mk0VJcgtLMk5d3zWeaDtRjUCodAQz09tfk23vzTUknlkF56xcRx781ksXTzJObGf5tJ8TEViLn72lmH/mpyYoLWsgLyT+/GIjTPEw4qki9RkXsdcIuXKF+/gu2glF7b8i6nJCZrKCii4eII7n99ETVYyXrGL6Ky/wUBXOyZmZoz09900JFK1huaKEqPzg6OXL9cP7qY6V7dfxG9+k7Dlt3Nl1/Z/a3z89Qv0j4ZAINC+eDwZhaU1o8ODAIgkMga7O7Gwtmaod0ZbIn3bqZltWab5LtRW1gz29iDS8z9uGzeT725vRWllYyR/ZHAAudrC0AbuJm8mltPf1YFCY2XET44MIldb0NfZgWIGL5LI6O/qRGk5zU9ptUwMD+n1n+bHJrSIpTJDm7mbvImJgLHBAaO2dEOD0/Jn8qZSGWi1jA3PbjMnEBjzM9vwGdp46d9tZGhglvzhvlvwnbq2WTPfd6C7E5mFJUN9PYY2ajf16WlvQ66xZkzPm+vta6bUMNTXg0jPjw4PYi5T3rIt1EB3BwqN9SzeTKZisKsD6QxeKJYat7HT81Mjg0jVFrPkK5QKBro6dG34ZsifGh1CPoMfGx7E3FSgs1dXJ4oZ9hWZmTA6ODDL38YntbP9QSYHrZaR/j6+efYJQpffwaKH/0BHZy8CgcDQ5u+mPuZiKQKBgNEf2ffHbQHlGitEE/2IZdNtB2/qI5RrjOx7kx/t75ll30G9rsb+rG8bd4v1lZpbjURtSX9rI9c/exUzkYQVz25CYWVjNP/jw4OYyqfbCM7Uf7SnA7mlMa/VtxH8sX1NJDKGujtm23d0EKlqtn01Fkoj+970z/baSl2bwMkJLOydEZqYoFYpkSiVs+xrIhQyNqsNZT//WBT6i3+BXvdNJiO9nYhVlowN9GIq1rXNGhsZRCxXG9rMTerbzE2aiBjp60SsnOaFAiETI4OYy1WM9HUiUuj4iYlJTMUyRvu7jPjRsUmmxocxl6kY6+vCTGHB5OgwZqZCTEQSI15oLkEoFDAxMmQk31wwgkCg5/Vt78YGevVt3bTTfG8nMo21oW2cqUjCaG8XYrWlURvKiZFBRHI1Iz2dqGysDW22dK0dO1FZ2TDS34OZWO9vI7q2dIY2dsPDen/Tta1UWc/2T7FSzdRA16z1NdLThcJqdvyxsppuYzdzvZhMDCOVKxgbGcFU3y/cXDCFmUg8y8a/foE2Hje/QGu1Wl7+zX2Ezl3Ag39+msGxMfpntp0dHEChtqC7rQ21tTXD+v1RIpPpWtVZWc/irays6W5vQ21lzLe1NKOxsZ3Fy1RqejraUFlaM6Ln5UolPe1tqK1t6NO3qQUY6O1FqdHM4ltGTejrbMdMJGLXy/+H4f4+ntj6HdrJiVnngYGhCcykMqP4L5LIGJucYmxkaFb8FwoFuranM3itqRiBQGBoq2rwz8FBHT9jvxju68FCpUSr1RrtL3KNFV0NN+isv4FMY8XU5CQaRxfMhFNIlbri75nnB1s7G6P95eaZ4tcv0L/w2LBhw+tLH/9PDr/5IpNjo7TXVHBt1zb8Fy7j6Puvo7Z3IuXQLiozU5BaWLL/X88SsmItB994gfHRUVqqKrj6/VcExS1j+9O/w9EngKSDu6jISEZuYcm5rz7Cd+4i9m14jvGRUVqqyrn03ZcELFzOjr//AQefAFIO7aIqMwWFpRX7//Us4bet4Qe9/NbqCnLOHMEnai47nvk9Ln6BpB7eTU1WCkorG/a89nciVq5l/4bnmRgdpbWqgoQ92whdpNPHxT+I5EO7aCotQKZUsve1vxN9+zr2b3iOqbFRepvruLLzM8KXrGDH33+Pe2AQqYd3UZOXhVSpZv/r0/qYaKdoqyojYfdXhC7S8S7+QRRcOE5lylXUVtb88PozRN9+F4fefB6RENqry7i2+ysil6zgm7//Dt+QENKO7KY2JxVrW2v2/esZ4tbezdnP32NyoIfu2kqu7f6KOStW8vXTv8M79P+y997hbZXZov4ryZatYknuRe5x7zW9h9BCCSEwM5RhCjNzp5wzMAxtGCCmBggQQkiAdNJ7792Oe++9yb1Xyd36/SFFtuNw7vD8hnPPcy/f8+x/tl8vrf19a6+99WmVcJKP7KYmKwU7B3v2vvU35j/8GEfefw3h6BBdtRXc3PMNM++5l8PvvYbay8uw05mdgq29PQfX/I25Dz3G0fdeRjQ2TFdtBbf2fkP00uUcfeclPHz9yDq5l4bcVOwdHbi04V1m3fsAp9a+hlg/Sm99JakHthC99F72v/o7fEJCyTm1j8Y8A39jyzoil9zDuY9fw0w/Qm99JbnHdhK77B4Ov/57/MNCKTizj9aCNNSuzpx67+8sfGQVZz56FUtG6W+opPTqSaLmz2f3S78lKCKMrJMG+Z7uThxc8zfuXf04h959GYlglLH2Bq7v3MS9D69g019+RXRsFKnH9jBQV4mnkz1bX/8rv3j2GXb882+ozAQMNddxbddmHl21kg1//iVzZ88k6/QhGrKTaS3JIffWDeI2fsPut/+Os9KSwYZykvdv4dHHH+XbF37N/LmxFFw5QUP2LXw8XDi45iVWPvUk+9e8jIVglL76SpL2f8v8+x9g50u/xdo7mPiD31GcmoS53Jq9b72I/5KHOPjJBzTUt1BZWMzN3d8g9ZvLwdd/R5fYnYSD35F1M57mAQknP3gZZizkxIevUtPQQ2F2IVd2bmZUHcvJT+NoHVVy88AuMm7cpElnyfH3/45NxD0kb3qL/ONbMLeyRWAuQRk4nwvv/AkzOx9yTu2jKiOZEZGCrANfYR88hxvr32BAO0BrVRnZh7fiFL6Qs2v+iNzNj7zT+6jNTsHcyoaLH7+C+7wHubzuHwwMDNBSVUbRpeM4h87i1Jt/wNorgLzTe9HkpGBuZcu5tS/jOe8BLn7yOgM6HS2VZSQf3oVd2DwOvfY7JK5+pB3bjaYwF4mtEze3rSf0kWe5vPEDhsfGadJouLrjK5yiFrL7788jdfMj8fBuSnOyGDKTcjDub7jMvp/D775CS4eW2rQbP/oOtLazDZVvLKkb/orUxZeqq4dpLUoHSxXZ297EJmwZuTviGNQN0KWpoObGEWQeUWRv+htie29qrx+hqyIXkURJ7o63cIhcTt6udxgZHETX1kDVhR3YhSwg66sXsFL7o7l5GG1DKWKZFUXfrcFl5r0U73kP/dgQ2uYqai59h2P4QjI3vojSw4/WzIu0FyUhVdmQu+Nt3OfcR/6udwABPZoyys7twil8IUmf/ycKtwA0CcdpK0zDUmVL2tf/xHPeg+Ts+YQxXR99DZWUnN6Be+xibn70F1z8Q6i4fJD24nTkNnYkf/UGfosfJH3nJ4xoe+mpq6DwhIG/se4l7L18Kb5wgOaCNOTWtlz//DWClj3Etc/fQD86THddBTlHtzFj7jISvorDztWd/DP7acxLRWlnx8WPXyHmgZWcWfsagrFhujQVpB7Ywqzl97Ln5efxCQmb4q9ubv+CmMVLOfTuy5iPj9CtqSB+z7csW7UaidgMmcQCiYUZEgszbOSWSMWi6Ye5GZZmoumHuTlikWjKYWlmNu2cWCTCwswMc5Fo2vF958UiEeZC4bTD7HsOkUDwLx1mQiGiuxyW36OHxMxs2mFhPJ9w9iSJly7w/uZtyCwsKEhKQDA8zIU9OyhJTcLVRc26v/6RB574GZ+/9B8IRkdpqizn2NdfsuTBR3j3d78kICSMC3t2UJSSiIOjE9++9zYxy5bz2Ut/YWhwgJrSYg5v3oDX7CV8+PzT2HoHcOa7bWQmxCOSW7P57X/gGLOYr197gabOPgrzCzm5cxvWIbP45PfPYO7iw+ld20i5cYN+cyWbXv4LDjPv5ZvXXqS+vZf8vAKSThzEKXQWn65egpWTK3beAVTkpCOSWXNgzd/wWfQgh999hf7+Adrra0nYvRnvOUs48OrvsPcJJP34HhpKChFJZJz54GV8Fz3IuY9eZ2hwgOaqCpL3fYvHzEUceu132HgFUHj5BNXpCUhUNpxb+wr+i1dw4ZPXGdXraSkvJu3AFtxnLuH4G7/HxiuQnPNHKE9NwMzKmpPvv4z3wge5+MU7jI6OMajVknvxBEHLHuHI2/+BnW8ISYe/oyw9CTOFNUfiXsJn0YOcWv8hbS3t1JSUcHnn1zhHLWTLi8/T19LwUxm7H3uIpXJ8Z803teoFQw93l4BgbFzc8Ioy9mR3ccNv9kIspLJpvIVMTsCchdio3ab0cFcHhJh6xLsFTeX9Zy/EVu2Gt1G+rYvbtJ71AGILS2OP+zvkO6un9KC/LV8knNqD3id6NiKRCFu1GwFzFpl60LsHh4FAaGruMJkf1YOteqo+ar9g9Bh73Msn+CFdP2OjoxPyjfqo/YNM8Z6WMjmBcxdhp3bHL2Y2AHZqd4LnGvTxCA7H1S9gyvwHz1uErbPrXXn/mfPwDJ6YT4lMjmdoJHau7vje5l3dCZy7CIvJ1ztJvldELLZqN2ZEG3hbtRteETH/+nqp3XALisBCKsNn5oQ9mIkEWN6Ft3ZWT5mf2/IlUkskMjlB8xZh5zoxP/ZuHoQuWIylTE7I3IV4h0YgF5sxOjKCVG5F5MKlOLq5EzJrLkqpFBcPT2YuWYZUbkXMoqUEREQxrtczNjaKzMqK2MXLcPbwxMs/iMvHDlKcmc79P3sauUJBzKIleAYGmRI1pHIrohctxcndA5+wSMbHxnB09yBi4WIkMjmBcxaYWs1PXi+VkytekcbrVbvjM8twv9jNCEHlNsPEm0tkuITPQ2qnxsYv2vCZdmrsg+dgZinDIXg2Kq8gE29mKUfpHnBXXmQhxT54FkO9Hag8AhBbWWMmkeEYOgepgxr7ACPvoMbWKwhzSynOYXOwmxFski+WyVFHzsXKUY1TcAwACidX3KLmI5ZIcY2cg72xVbuZhSXmUhluUfNQOLniEjoTMMS2ukfNx1wixS1yjqlVu0AkmsZbiM1QObnhGbMAsVSGR/RcnPxCQQCjw4OIpXI8YxagcnLDNXwmeoEIpbMbHjELMJfKcI+ei8pzejzrjzFUXqGYSWTYBc1GYqfGxi8KAImtMzaBsxFZyrAJmIWVh0GfMT2ILGVY+8/E0tYF5YwIxGIxEjsX7ALnILKUYRswE4V7EAgEjI8MYWYpwy5wDhI7F6x9oxGaCZHauWAbZOBtAmei9AhCaNzoNJPIsA826DM+rEM/PobUXo1DyBzMLGTYB89C4ebL7XalZpZyHELmIrNXI/CLRM84cgdXnMPmYm4pxcEvEmvPiaom5hIZLhHzkNk7m+zBylGNOnIu5hIpDv7hplbeYPhVSx0207i+sYDBftyj5mNuKcM9ap6plTeAWCrD2T8UlbMb7hEG+1E5u+Edu8DkT9QBk/2PlcnfTvZXboEhWEplBM1ZgGfwxP34X3XO+2n816O/t5ftn33Eib27+GLfUcyNO/h2Ts6obGyJmmsoJ6f28GT20nuQTPK3t4fMyoqoBYtx9vAkfI6h9razhyd+kVFIZHIiFyzGNyzCxN/2n3au7vjHzjF8nqs7HmHR054vIpEZFjI5vrMWYuPibvK3KkcXZsw0+BPv2Hmm1u5CczEWMjkqZzfsPH1w8PLDQq5A5eJm4r1iDLweAaMjw1jI5HjPXGC0z1mMIbyrv9ID6Men+KvhgDDGx8en8Xaefqb3AbFUhnvMfBTOrjgHRqDXT+XdQqNx8pvqn71jF6BwUuMeYbxeZze8jfo7BYThOMN/Cu8WNY/GvLR/m13ATyEc04ZAINA//OJbhN2zgvqSfABcA0LJOHOE+b/4Ldnnj5kMt744j6gHV5F0aBeR96+cwuddPsX8J39JxpljphejuqI8olesIn6foUd8fbGRDwwl6+Ip5q5+hoyzx0wvyvUlBUQ/uJL4vduIfXg1dUbePSiM9NOHWfT081PkN1WWErF8hakH/W35XiFhU3rQG14chWgKc5j50ONTetyLzMxQ+wVO44fH9IYe9CtWmfRpKitGrx/HLTCUtFOHWfzM86SfOYp7SAT68XHqivKIfehxbuzZysxHnqC5vAj9+DjuQaEknzzEsmd+R8a5Y6YX35rCXOY8vJrL321h/mM/o9bYutMjKIzEEwdZ/svfk37hFGrfgGn83JVPTuGTThxi0dOTrxc0hXnMeuhxbh3bR8Q9D6Ipuj2foaScPMzCp54n4+zRKesV9eDd1yvnyllmP/aLKetVV5xH2H2Pkbh/G9EPPUGD0R48gkPJOH2EhU//dgrfVl1OxPIVpvm5vb6+oWEknTzEPc/+jpTTR/Ew6t9SXsTcRx7nws5vWLjq51QX5CK3tMArKJirhw/w6PP/i+vHDuETFoFSIqE4K4P7n3yKg19/yYO/eJbS3Gz0AvAJCefCgT3c9+RTfP7KC+SnJROzaCmBUbE8+qvnOfzNRu7/+TOU5OUyOjqCb1gElw/t47Hf/YmrRw7gERJmyJDOy2HRqic5ve1rIh9cjcao/+T1unL8OE5GR9ZQkkfEA6tI3L8NVfQDdFQVAWDrHUzF9RMEPfQs+RdPoHQ3vHj11BahnvMQ9fFHcJ11P901Bl7lGUTtrVN4LP0FDSlnUXoETeE1Nw6jnnUftfHHqbl+mLFBHa6z7iPyudepTTyDtZfBEXdVFxJwz6MUn9mNz5KVdFQVmvTRpFwk4N4nqLhxGjufCd5/2UryTuzC/57HaKsw8I7+IZRcOkb4ql9RevUkDsYX647qMmYsuJ+847sIWP4YrUbewTeEkstTeUszAc1lBQQtX0nmkZ2E3LeK5vIChCIzHLwDKLh4jOjVv6Lo8gmc/EIZ00NLWT6By1eSdXQnwfetoq4wjwvv/OlHD+FYtPYcjcln8LznaRpTzqIwvij31FXiELUMzbV9uMx+iF5NCQCWjjNoST+HetHPac24gNwtALHYnD5NEc6zVqC5ug+XOQZeIBRh5epLY/IZ3Jc9RVPqWRTuQQiEAnpqC3GZvYLaq/tQz3mIntoSREJQeATSkHQaz+VP05B8FlvvYEBPd00RrnMeouryXtzmPUx/QwX6sVGT/fjc+wx1SWdw9A9BD3RWFeK14GFKz+3GZ+lKOifZZ+WNEwSueJb6tMtYu/sA0F5RiM/ihyk4/R2+S1ZO2POMIMqvnSB69a8pu3rS9MWprawAv2WPUnrpCL4L76e1rMBgD34hFF06xryf/YaCSydwNr7oNJXkE3LfSnKOf0fUitU0Gv2JS0AoZTfOMW/106SfmeqvFj72BFfu4g+t5BKkVlO7DsrFPyzM4m5hGT8kJOO/Oi/6kWKgv48Vf0+IyeTR39vL4R3fsnvzl8xZcg9/+Wcc9s4upr8Pj45yeu93BEYaXpSLs7NY8fOnObRjC4sfeYzS3GwA/MMjObd/N4///s9cOrwf//BIAEpzs5m/cjUntmzmnid/QUV+LgA+oeGcP3aMBY8/RfKpI6aNiZqCXHyWPjLt+aIOCCHzzBHmP/Vbss5NvJ80lJcStOQBkg9uJ/LB1TSWGnhHvxByzx3FNTSao2/9hZEBHXOf+V/IrO0Iu/8xUg9uJ/zB1TSV5oNQhKNPIHnnjzLzyV+Tf/EEzv6hjIzpaS7Nm+avQICTb/AUf+XoH4ZAr6e5LH8K31RRzPjoqMn+I1f9ipIrJ1EHhsEdfMQDq2guN/hPJ78Q8i8cJfaJX1N68wL2XoYvuk2l+YTet5K0QzsIue8xmsum8v4P/5JvH434t/rHn8rY3WXUFeXS2VhHdVYq1VmpdDbWUZYSz7Cun/LUW9QX51FfnEd56i2GtFqqstOm8TV5mQxptZSmJlBXlEddUR6lqQkM67SUJMfT2VBHZWYqlZmpdDbUocnPZkirpTz1FnXFedQV51GZmWyQkRJPR0MdVVmpVGWl0tXUQEly/DT5msJchrTT5bfXayhJvsmgTktJSgKawjway4spSUkwnEu+SUdDHRWZKdQVF9DRUDeNbygtNF3vbX1q87OozEyZ4I36NFaUmK53UDshv7Ygl/KMFNrrNRQnGeSXpiVRU5hLTWEuRckGfQqTbtLRWE9pejKl6cm012soTLzJkE5LTUHuXfn2eg1lGSmUZaTQ3qChMOkmQ7p+k/6awjzT9d6+xorMFCom6T+km75eQ7r+u65XY0nhtPUqT73F8ICW8tR4Ohs1VGenUp1t4EtT4qfxmsKcKfNTmZlimM+meooSDfNTnJxAbWEetYV5FKUkMqjtJz/hBq11tZSkJVOek0VLnYbs+GsMaPvJSbhBRV4OlUUFZNy8hq6/j7TrV2msrSEnKYHizAxqy0o4uXMrv1k0i6qSIp78438StWAxhRlp6Pr7Sb9xlabaGsrzc8hPSaJZU0vmTYP87IQb1BQXUZmXQ+6teMNnxt+gvaHuruvVUJxHQ4nhqEi7xZBOS0VqPP1tjbQUZtBSmEFfSz2NuYmMDOroLM2ip7aIntoi2opSGR3U0lmZj7atgfbSTNpLM9G2NdBakMTooI62otRpfFdlHrq2BkYHtbjOeRDfFb+lPu0S7aXZtOQn01VdSFd1Ia0FKYwO6GjMTaSvpX6KPu0VBYwM6GjMTaa9opD2ikLqc5IZHtBRl3WL3uZ6GvPTacxPp6+lkbqsREYGtNRnJdFaXkBreQFtFUWMDOjQ3MH3ttRP56tKqc1MYlinpSYjge7mOupz02gtL6S7uY6aDIPvqM1Morksn/aqEjSZSYzotNRmJNDTVEdLcfZ/i38c7GiivSiF0UEt7cWp9NYW01tbTJ+mmLFBLZ3FKQy0N9JdkUV3RRaDXc10laYxNqSjuyyd/roS+utK6ChJY2xQS3txMgPtjXSVZ9JbV8xAeyPtxcmMDWrpKEmjV1NEX2M5ncUGvqMoGZ2R7yzLYqC9gbZCgz4dRan01JXRXVNEW2Eqo0NaWguS0bU10F1TfIf9aGktTKGzuoTOqkJa8lMYGdTRlJdksM+iDFqKMuhvracxx2CfHVVFJntozE1mZEBHQ3YS/a2NNBdm0FyYQV9LAw3ZSYzo+qnLTqatrIC2sgLqsg18a0URvU31NOSn05CfTm9TPZoMg++ozkykqSSfppJ8qjMTGdZpqUxLoKthwp90NWhMvuNu/qow6SbtDVP94fDg4H+LbfzfMEZGRvjqgzhWRAZQmp/HxkMniftqy5SXZ4Cx0VFSb1ylODuL4uwsUm9cRdvfR0lulsnf5iQl0FhbQ9r1q+j6+8m4eZ3S3GxKc7PJuHmdgf5+sm5eo1lTS35KIvkpiTRraqktKmBIp6UoOd7wzCvIpSg5nmHdXZ4vjfWUp8YbfGvaxPtJY2nBhP001lGTnUZNdhrdTQ2G5HBPHzwiZhG98mnSDu+k8OoZhrT9VKYl0N1YR21OGk2l+XQ31VGVZvA/1em3aCrNp6367v6qoSBjmr9qqyyhuSx/Gt9aUTTF/kcGtGiyEmmtKJrG9zQ3oMlJQ5OTZtAn3SC/uTSfJuNRnX6LYZ2WqrS78yPGnIB/5/hpB/qOIRAI9B8mV6LtmQjeH9JOTRac0pPdmNx2J6+0sZ7SI97ET+oRbymf4C0VSlNy3lTekDw0Wf6wTodMqfqX5Y8N6qb1uNfrwUIqnUjGMiYr6Jme7Dg8oGNwdByLO/SRyRUIBDCo1U7R53aP+zv1kSusEACDk+Tb2NszZNTfQiKdkhx2Oxlisj6G5JjpfP+k5Inb8jta27C6Yz77jAkJ2snJGUa+q7UVK1v7KXxvR9sPWq+u9jZDcmFPlzE5aWL+7+SlMvld14thLTKl9aTkP2PymUpBb0c7Sjt7+rsMvMLCjAFj8kp3WxtKOzsGdTpUlpZIZDK62tuwsXegp7MTmZUVg0NDvPWbp5BZKXn6ry8xIziUAZ0WAWApldHd3oa1kRdKJAjAJP92sktXTzcgwFIqpaejHZWdPXWNbRP2P2m9tGaKKfNzO1kkr6TelDw3MqjDQq5koLsDnV5uSj4TWUgY7us0JHz2d2NmaZB/O/msr7PNlHw2mZeobKfwI4P9NKWcpfLyAYRm5jiGzsUpbB5W6hnoGktx8I9AKBJNJG8Z12uguwNLpQ2jgwb5UoV8SjKoKXl3SIelQmVKRhw1Jp+JxIbkMJHYgt6mOlRu3ghFIkYHp/OWZkLMJVJ03R3IrA3JsmKpHP24npFBY/JiVztSlS0jgzrGxpnGjwst2fp41I++A73k40uI5UqGejsQT5r/cZEFI31diBU2jGh7EBmT5wZ6ujCXqRju68Rcbs348AAWFmLTelkobBnW9mBmaUg+HhvSYS6bJH94AAR6zCykE3x/D2YSQ3Lz6KAW8SSe0QEECKbK7+/GQmoFCCaSF43JjmYMg8CYLGhMLhzVdSOW3LafCfu0srU12YOZpYTBHoO9DfZ1TfADOiyslIzruozrO8HfThYcmGQ/IwOG5EJTsuDg7WREKbquDhycnab4kyGdFgd727v6/7G+ThR20/2hnb3ttLX8aQd6+hgfH+eNP/yars523li3ATevGdPK2N0eWp0OsYXFlOS/zrZWpDa2Jn8LoOvvQ2FtQ2tLM9Z29gzqDLylVEZTcyMqOwd6uzqRyg38gLYfrVAyzf9bSKRUaxqxsp36fBns70c2JbncwOvNLCeS+SbxOu305O+cs4fJPLWP4YEB/Offg3v4TFwCQ+moq0Fua4+9l99E8vSgjqGRcYN93uGvwJDMN9lf3S4ecCcvEMtAALquNsZHRhGJxchsHWF4wNChcBI/2m9Mdp8sv7Mdua3dtPtFZmNHf1en6Xpv881NLex6ZtFPSYQ/5oiLi1sTu/IXXNz0Cb3trTSUFJB17hhuwRFc2PwJErmcjDNHqc5JRyAUcm3bBjzCY6fx7qERHP9kDTKVNenGHu4CoZCb+7bjHhLBua8+ore9jSjEJacAACAASURBVPqSAjLOHsU1OIKT69YYe74fpTo7HYFAwJXtX+IVOZPzGz+mzyg/79o51AEhd5V/aeuXeEfOnCbfIzSCIx+9jdzahtRTh6kpyEavh4tbNjAjaianv/zIoH9ZMWmnj0zjq3MzAQFXtm0w6dPf2UZdcT7pZ47iERLBsY/fRq6yIevSaSoykhAKRVzcsgHvqJmc2fgR/Z3taIryST19BM/QSA6vfQsrG1u6W5robm1GJDKjLCMFe1cPKrPTGB4cpK+znfqyYmyc1RQkXEeqUNBQVjyNL01LZHRk2MCXFmPrrCbt/AmGdTpSTh6mIisNgUDIhW+/mHK9dSUFpJ0xzM+Jz99HqlCSduYwVdlpCIUiruzahGd4zLT5dA8J58Sd6yUUEr93Kx4hkVzYZFivxtv2EzJ9fYVCEZe2TsxPb3sr9SUF5Fw+i3tQKAc/fAuZtY1Jf6FQyKlN6/GfOZtD6z6gu70FTUkR144cwD8imm/XvI7C2oZrRw5QkZeDfnycXZ9+RPiceXz7/tu0Nzeyac0btNTX8dY3O9nx0fsobW25fPgAucmJCIRC9nz+CWGz57LlgzV0drRRkZfD1SMH8I+MYfObr6G0seXGiSMUpiQhFAo58uVnBMXOYe8n79Pb3oqmOJ+kk0fwDo9k3wdvYqGwJvvsEWpz0xEKhFzf8SWeEbHc3PEl2o5mOquLqbx5GjvfMNK2f4hIoqQ++Qyd5dkIBELKz27F1i+C4qMbGezuoLu2hLrk01h7h1J0dCPmEhn1SVN5G98ISo59xVBPOz2aEuqTz+F779N015XhPu8hWgtSqL11mqqrB2nMSaTk/D6KzuymMTuBrtoy6jPjsfcLIXXbWiwU1lRcP0FLcSZCoYCsg1/jHBxL6q7P0XW10V5ZRGXCBex9Q0jY/B6WCmtKrpygIT+dqsTLxG9cQ+7xXZReOUH2oW8pvniEkkvHGB8fo+jCIRPfXGKoa5qyexOuYTNJ2LaO/o522mtKKbx0DOfACK59+S4SlTWFl47TWJSDAD2pezahDptJ4rZ1BvvMSvjRkwhHBrQoPQIpPrgOsUxJY8oZuiqy0SOk+sI2VD4RVJ4yzH9fXQnNmZeRuwZSdWI95jIlrenn6anJQyAQUH1hOyqfCCpOfsVwbzt9DRU0ppxB6RlM6eFPEctVNKacobemENBTdX471j4RlJ/4iuGednrrSmhMOYvKK4Si/esQy5U0pF+iszQTBELKzmzF1i+S4qNfMdzXSXd1scl+8vZ+jIWVCk3SadqKMxEIBBQe/wb7gGjyD29ioLOFzupiquJPY+cTRvqOD5EorCk32oNAKCT38Nc4BcWQfWAT2o4WOqqKqbhxCnu/MFK2r0VipaTkynGaCjMQCIVk7t+MS2gMyds/Q9fZRltFEcWXT+AYEEHi9k+xkFmRf+E4dXkZCAQCEndvwjtqFpc2f0xfRyuNpQXknD/GjPAYytISkVgpaCwvoae1GZGZCE1BNnYurpTc4Q9dfXynxUGLRT+s1Nzdql/80JfcH3L+++K2f0g89/ex31fJ4+PXX6KmopyNB09ga+8ATC1jN3mk3bxGc0MdZ/bvJjs5EaFQwLZ1HxIyay7fvr+GjpYmyvJyuHhoP0HRsXz5xssobGy5cGAveSlJCIRCDm3aQED0THatfZeu1mYqC3K5euQgbiHh7P/gLaxUNiSePER5ZioCoYDLOzbjERo95fmSe/kUboFhnPosDpnKhsyzR6jJSQeBiPidX+IRHsuVb9bR39FGU1khhdfO4uwfwsUv3kGqtCb3/FGGBnTErHqWrvoaVC5uJO7eTPqRXdTmpJJ2aAeZx/eQe+4II4MDVKXforEkH71+fJq/aikvpOjKiSn+qvjKaerz0kAgMPHxWz+hIvEK8V9/SMaBLVQkXiJ9/9cUXzpG4cVjVKfdRGbnSOoeA39r+3r6O1poKS80hDkFhnP5y3eRqqzJO3/McL8Ihdza9RVu4THc2rmRvramKfyVL9+lu67qpyTCH3s4OTuy8ImnJho0hIbh4OTA3IdW4R0RjYOzM2Ao0C0WjN+Vt7W3Z/6qn+MTFYOtk5OJNxcJsHNwYMHjT2Hnamjw4RUciqOjIwsefwqf6Jk4uhh+KnJwdUViJkDt4sTSnz2NndrAdzU3GM49+TR+MbNQuxoKldur1UjNwN3VieU/fwZ7o/z2iHDULk7c87On8Y818Hq9gZeI9KhdJniBANrCQnFzdWb5L54hIHY2bu6Gwv62LmqUlkJ8PNU88PSzRl5Aa2QEnu7O3PuUgff2dkM/rsdOrUYhhhkezqx4+hncvLwQIKClLgpfLzUPP/tLwmfPw9zCwjT3wf6GxDKPFSsmrYghacf95z8DIMjPexrvtvLRafzDTz6BpUSKv4+7cX5csZWKCJ7hhvlzv8LRzXC+pS4GvxlujDz1NEGxswj0ncTLRIT4uGLxy+dwNBaob9FE4evjjv7ZXxI0cw7Bfh4m3kkhJjTAHfmvfmXimzUx+Pm6wR28o9oNe5nQIP+550wF8zub6vHxcuPRZ39FyKw5+Hsbzru4uaO0MGOGmyuPPfdrnNw9kJmb0xgVjbe7O48/91si5sxnhqc3ZiIhTmo3hHo9To5OrPrlb9Bp++nr6GDtt7sI8vHlqd/+nph5C3FWq0EvwNHVwDs4OrHyl7/G3NYBBOAWEIyFUsnSJ3+BV3gk7UI5ej0IndQE3LealnEpsqgVDDoY7ERm4U5GowBF9EMk18oZkRiS9trqrNA5zOPUrQ76VNEMCuwBGLFXkpnfzbDTXOr7rRmzNsQUDvWrGHOeS03jCLgvRKc03Ee421HdMITMbxEjck8kfhKDHLkjiuDl9AyKsQq5FzNrw31qZeXOsEiB06xHsfaJROJmiBG0tHFC11CArV80zZnX6G+ppTn7BgPtTZhZSHAKX4DKOwxzKzsArF3U+CwdRSRV4rNsFVaOhvvOzicYc5kK/3tWY+8XwejwCGnfrUcskzPruRcJvH817RVFSK3t6G2uo6k4h4Iz+/Cedy9KF09kNg4IRUKsHJwJGBlFJFcRcN8TKJxcGR4eR+biw5hYgc+yx1F4heEps0UgFCK3d8Zv+QgCiRLfe1YjtXMhecsH/NjDc8FDyGxs8Vy0Ehu/COT2jgCYKR0wE40jt7XDY9FjSOwm5keldoalq7DxjcJGbbATia0TIpEeua0dnosfQ2qnRiQSoPP2R+lgj9eSx7D1i0Tp6IhIJERq64SluQAbRwf87nkcmb0akUiIti0EGydH/JY/jn1ANA5Gfyizc0YiFmDr5EjgvasNDUcE0N8Sgp2rI8EPrMYxKAZnTwMvt3fBQizAztmB0PsfN61vb2Aots4OhD74BF5RsTi6Gc5bObogtRDi6OrErEdXo3QyXFd3Uzguns6YPfpzPMJjcfMwnFc5Gvynp7sLZo8/hfVtfx4WjqubE+KVq/EOj8HLyFs7u6KyFOLn6YzZU8+a/HlbfSQBXk4Eej9pWJBAL9PaxIYa4kE9Vz02Zc0s79IJ9AeXoPsBu8TfJ/vfsav8fS+0P0Tu3V6gGzW1XDp6kPLyclQqpel8fs/IXWV4BgajUFlj42jwS06u7gyPjqKys2fF08/h7OEJgG9oBEpbO2atfBK7gBCi5SoA7NRqvJc8Qt2wGJ/lq0wNv3ycfGgcluK5ZBWjzkE4zzPoMubogtuCR+jUy/FYvAqF0d6Ezv60j8vxWPwYApdgnOca5Js7OOO1dBV9QgWeSyZ4C7U/OpEC76WrsPQIxc3SBqFIgNzBheBHn8M1ci6OkQtROLkiNhPS3ahBam1HzrFdVKQl0FFTjlf0PAIWLCPy4SdR2toS+dDPDA3F9HrUASGGcw8/iVtoNAp7J0CPwlGNQD+OfmyEztpKxkZHuefFdxFLZbgER1OdehOZjT3NhZnknN5He1UpvgvuQ6qyIeSB1SiNDYbsfYKxVNkS9uAT2PtFYKE0fNFROLoQfP8oZnIb/Jc/isrYwMh2RhBihQ0hDzxBddK/tyPtTzHQdxkn13+AxEpBzpXz5Fw5j8RKwb64V/AIDufs5s9or9fQXq/h3Nef4RUezZG1b03jj30Sh1d49DTeIyScvWteRqpQkn3lPNlXziNVKDn26bt4h0dzdtMk/psNeEdE891bBj7ryjmyrpxDIlew662/MyMimpMb19FWX0tbfS2Xv9uKT2Q0O978OzKFkozL58i4fA6ZUsX2f76ET0QMxzeso7Wuls7Geo5/+Sk+ETFs/+dLSBVKMi6dJS/hOjKliq1vvIRvRAzHvviEVk0NbfV1HN+wDt+IGLa+8RIypYrs65dJv3h2Gt/eUE9rXQ1HN6zDNzKGb//xElKFisxrV0i+cAaZUslXr76If1Qsh75a/6Oto9RKwb7PP6K5tobm2hr2f/4x/lGx7P7kfeRKJcnnz5B8/gxypZKNr7yAX2Q0+z//mObaWppraznw+Sf4RUSx6bUXkSmVpJw/Q8p5g/771n2AX1QsB9Z/TIumlhZNLQfXf4JveOQ0Xq5Usum1F6fxp7d/g39ULF+9auCTL5wh+cIZpFZKNrzyAgHRsez97COaNTU0a2rYt2EdgdGxfP73/0SuVHLr3GmSLl/ASmnN2hf+REjsLLZ99B4NNVU0azRs+eg9QmNn8f5f/4iVSsWxHVtwdnfHztGRt/78OyJmzmHj+2/TWFNDQ00V2z9+n5DYWax94U9YKa3JunHVdL2T9e9qaqCzQcPVretxD43i2PuvIZYpqEu7Ql3aFcQyBanfrMHOL5yOtGOMdDcx0t1EW8IepOpAms6tRySWoq1IRluRjNBCTvvVjVg6+dObeZjRnhZGe1roST+I2MmP1utbEVnK6StLpK8sEZGlnOYLXyBV+9F4bRdDnY0MdTbSeH0XMrdgNGc3IbK0oqswnq7CeESWVpQc+hildyiVZ79hoL2BgfYGqs5+i8ozmLxd76Fw80UsU+I+/1Gi/vA+7RX5lF8+SO6hr+hvqaO/pY7sA1/h4B9B4qa3sJApqE2+Qm3yFcRSK+K/fBPHgAjSvvuC+I1vY+sdgGvEXPyXPUr8xjgs5ApqMxLoqq/BZ/59WLv5UJN8lX2/f4CbG9eQfWQbFz/8GxZyBdc+/ycWcgWVty5Rn3ULC7nCJD9j70Z6m+roa6knY+9GHAMiubnhTYP81Gs/2r00eZhJrcjd+S7WM8IoPfk12rZ6tG311F47iMo7jILv3sVMqqAl6xotWdcwl8jJ2/Uu1t5hlJ/6Gl1bPbr2BspPfYO1dxh5u97FXKqgOesaLXmJmMusyN3xDjYzwig98TXa1gZ07U0UH/8aW58wsra/g7nUioaMq9SnG+wtY8sa7HzDKTyyif72Rvpb6sg7shk7v3BSv1mDWKagIfsWtSkGPmnTW9j7RZBz4Cv6Whroa64ja/9XOPpHkLDxTcQyK6qSLlOVdBkLuYKbG97EMSCS7GO76G7S0N2kIeW7DTgHRXD50zewlCsojb9IafxFLK0UnPvkH7gGR3B923q6GjV0NWq4vv0L3IIjubz5EyQKJUXXz1N0/TwShZITH76Ge1AE57/+jPYGDe0NGi588xmeYdHsePPlqf5coeTMtm/+W9b6/6WRGn+dJUuWoFKp/iVeZWvHlo/epaGmmoaaarZ+bPC3377/NnKlivgzJ4k/cxK5UsXHL/4Z38gYjnzxCa11Nabno2twOMfefw2JlZKC6+cpuH4eiZWSW9s/wyU4gqRdX5jsLWnXBhz8w7jxheF+r0y8TGXiZcQyuck+0/d8SW9zHb3NdRSc2jPFP9y2Z7HcajrfqCF9z5c4BUZwfb3B/1TdukR16k0kVirS9m5m7m9exCUogkV/fB2RuTkHX/4NzgGhnPvkH1haGey/LPGKyf7VwZEk7PiC3pZ6uhvrSNy5AefAcHb/cRUOMwIIe+QpelsakCptufzpG7iGx1Iefw5rNy+iV/+atAPfcmXD22x9ZhmlNy8Qv/VTMo/uwtJKwYV1/8AlOJKsSfdj0q4NuARHcOnTN5DIFJQlXKQs4SKWciWXPn0Dp6CI//2i/sDx0wv0T+On8f/A0Ov15GekERwZ/X9alf/xQ2LjhENgDKNDA2hbG37Q/3bWliJR2eI5+57/8qdmidKa1V8cIej+J7D28GGor4euumpOv/kHelsa6NRU0tfSSG+T4WH4U67KT+On8eOO43t28sQTT/yfVuN//JAobQhe/ijmFpaU3Ljwg/63/JZhBzj68ecQCr+/EoqVvRMh963i1zsuILd3ZEjbS1tlCdkn91CWcImB3m5aygrpbW2ip7nBVG71v3v8lER4xxAIBPr1GVXUFuRMhGQ01OEREkFZWiLeEbF0Nhl6yk/usX43viQ5Hp/o2VP4mrxM/GLnUpOfbQrhaK/X4BkaaeRn0Wns4e7g6kp5RipBcxdSnZ89JYTDMzicoqR4/GJm0dFo4O3VasoyUwmeu5CqvOyJEI56DTPCoyhIvElA7GzaGxtMIRwl6SmEzFtk4gUCaJvE+8fONsm3dVFTauQrc7MmQjjqaqfw3c2NphCOkrQUQucb+IkQjlp8I6LISbhB+Jx5iO/SDeuHjrv9rNfX3YWFREJbQ71xflwpTE0mYsFiynKyJoVwaPCLiCLnVjyBsTPv4FMIm7+Q8pysSSEcBv1zE24SNGv2FL4kI43QuQum8M2aWvzuwjuq3ShMM+hTnpM1NYQjLJLs+BuEzJ5Da72Bd3FzpyAtmaiFSyjNzpwI4dDUEBQVS/qNq4TPmU9LfZ0phCM76Razlizj8NavObZzCzvOXqWhtoawmJkkXbtMzLyFlFaWmUI4cpNvEbt4GUVZ6aYQjjuvNyO/Ar0eVE5qarJT8Zm1gBtXkrAyhnD0t9Zj6xNKc14yTSPOjPS2AWCudECnyUfmFUVPTSHmVsYQjt4WLBz9GNDkIHIIYKzfwJvJ7RlqKsImYBaDTaWYG0M4RnqasXT2R99WjNw9hOGeFgDESkf6anNR+c1EW1+MhTGEY6irCZfgGDpLUlH5RDLY2QwYQzjq87ELiKW7qgCpveGneV1bA26hkeQf3kRd2hW8Fz+GtYc/LiGRtBZn4hI+l7byfNNP/IOdzdj7hFCfk4Sus42Km2eY94c3UDq60FSYiWvkXFpL80w/ofa01OPoF0Z9dhLOITH0tzaaQjhyju2kIuECo0NDmFlYgkCIrqsNgVCIjbsvvksfReXigblUhtzemaaCDFwj59JclE1N6jXyT+z80ZMI572+HZVXMG2FKdj6RzHQYZhPM6UDXeU52AXNoqe6wBTCMdjZhMozmPaiFGz8JniJrROdZVnYBc2mu7pgIoSjrQGVd8gk+U2mEI72kiwcQmbTVVUwKYSjHpsZobTkJ2MfEM1Ql0G+zM6Z1uJMnMLm0FGRPymEowE731Aac5NwCoph0MjL7V1oLsxAHTGXzsqCiRCO5noc/A3r5R09k76WJsAQwtGQl4579Dy6KvInhXDU4RIYTn12Mp7hsXS3GPynylFNTW4a/rMXUl+YMxHC0aDBNTiCptwUvCJi6TI+L6ydXanMSmHmkiVT/HlbvYaImbF3/YJmcZdQDfgphOPOcWcIR0leDn/++WPUVVeZ6jzfHt8XwlGtqcVKqaK5XgMYQjhykm8RvmAxxVkZphCOptoaAqNiuHjuLAEzZ9PeYLAHO7Wa+Ou38ImdR11hjimEo7NRg9QjmNrMRFzDYultaQQMIQqVWWm4RsyZ4k+6mxtw8Aud4k8A5A7ONBVM9z99LQ3Y38ELRQKsHFxozE/HLWoeLUZebCakp6kOp4BwNJmJqMNi6WtpxMJMSE9LA2c+fIXFv/87ZhaWuIXFIgC6m+txCQynOuMW7uEz6Wpu5HYIR/rh7VSnJbD4D68gc3AFAdPka1snrrc+Lx2P6Hm0lOajdHalubSAG19/iJnY0pjcq0DX3cnI4ACeMfOwsncm9mfP01lfbQrh6G6uw8kvlEsb4ig6f/j/ziRCgUDw57i4uG1xcXEfxcXFvR4XF/dIXFxc85o1a8qNfxfExcWtiYuL2xcXF/deXFzc8ri4uPQ1a9a0TZKhj4uLeyMuLm7vmjVruiad3xkXF/f8mjVr9v3v9IiLi1sz7/GnOfThGwxqtdSXFpF0dC+B8xZzccuXyFXWJB7dN63H+qEPpvPfvfFXnLxmTOGTjh/AJ3oWBz94g0GdlvrSQhKP7iVo7mJ2/eM/cfTy4daRvVTlZCCRyTm87h2ilz/I3vfeYEirpa6kkKLEm8wIj2Lrq3/ByduX+MN7qMhOR6ZQsn/tGmLuXcHud/7BoK4fTUkh8UcPEDp/Md+8/B84e/tw4+BumqoqEIpEHPjoHWLuXcGud15nUKultb6Wy7u3E7ZwKZv//hdcZvhy7cBuaosLMReL2bc2jtj7VrBrzWuMDo9QXZjL9YN7pvCZly+Qd+sGEqmMPWvjmHXfCra//Rr6sTEq8nO4tP87ohYvY/0Lf8TTP9D04vj/Z9zNpdaWFNNYXcnFvbsozkhDIpOz/b23mPvgQ3z9z1cY0GqpLirg4r5dRC9axrZ33sDORc2lfd9RkpGGpUzG0c0biFq8jG/ffJUBbT/VRQVc3r+byEVLWf/in3Cd4cul/d9RkpmGRCrn3HfbCJ27YAp/7ch+IhYsZv0LU3m5UsWOd99kzgMP882br5j47PgbBERGs+6vf8Rthh8X9hn0l1sp+Dbun8xf8Qgb//ESA/1aGqsqObbtW2Yvu5e4//UbPPz8OblrG43VVYCAL956laUPr2TNn36Ll38gQwM6DmzZzILl9/Pq88/i7R/Aqf17yE5MQCqX8+Vbr7P44ZV8+vILjOrHKM/JMlzv4qUm/ZPOnqYiPRELqZSzG94ndOkDXFi/xlBCrraEiqtHcI6YT9LG1zGzcacr6ywD9UUIxRJarm1BETCfjuTDjPZ3MNxWTV/BJaSeUbRd/Bxza1e0RZcYbi5BKJbQnbQThd98Wi5vYnxkgKHWKrpzLyD3jqY9+SDmUgVt6Wfo1xQgtJBQf+FrbIIXUXtyPeNDA+iaKmhLO4N9yFwKdr2FzNGL+lvH6K7KxcxSSv2tE9j5R5G3Zy1jQzp668qovXkMdeR8cvavxzF4JjW3zlJ14zglFw9Sk3QZKwcX8o5tZXRQR2d1CfWZCTgGRnD901dxjZxHwanvGOrrwVKpImnLWrzn3Uv8pncYGdDRXlVC+fUzuIbP5uq6V7B29abo/CE6a8sRmZmRfXQHj36wDU1WIt5zlmLvG85AVzvz//gmhaf30llbTs6RLdSkXkfb0ULBqd2MDQ+RsPFtdB2tDPX3/OhJhKODWmz9Isne8iZWzp7U3jxGZ0Uu5lIFxYc+wyl6KYV7P2JsSEdfXRkt2dex9YskZ9ubyJ090dw8Rk9tMSJzC4oPr8c5eikFew3zr2uro/rqQRxD55K15Z/Inb2ovXGU/uYaBAIR+Qc+Qx2zjJxdHzAyqKNXU0rVtaM4h88jZdM/UKi9qEu7QnN+CuaWUrL2rMNt1nIytr0PAmgvz6fs8hHUkfNJWP8aSlcvKq+forkwHXOJjNTtH+M1dzkZezcy0N1BR1UJxRcO4Ra9gGufvoK9pz+5p/fTWJiFWCIj/pu1+Cy4j5TvvkTb2UZrRTE5Zw4wY+ZCzn/2JtZqdzJP7qcuPxOxVMaljR8QvOR+Tn/yJkM6LU1lRWSc3I/fnMVc3bIeKxtbko7uozrX8Lw4+fl7xN7hz28e2suse+9HbDl94+GHVL/4IfHB38d/368s3yf735EY+EO2/P5V/XZv/hL/kDBWPnDfNLZ16O67m6nxN2htauTErm3kpSUjlcvZ8NZrLFrxKJ+/9iK6/n4qCvI4vXs7M5cu57OX/gNnDy+uHthNWVY6EqmMy3u24RM7j5MfT9hD+on9uEfN59zal7Fxm0He2QMme8s4uAX36PlT/ElFwnlcQmdy7dNXsHbzpujCIZqLs7GQK0jauhbvufdya7OB76gqoTb9Bk6BkVP4luIczC0lJG35iBnz7yX+q3cY0Wnpbaol5+QePGMXcmHt37Fxn0HemQN0N9SgdFJTkXSNYW0/aYe2k31yHzVZyZTdusSMmYs4u/ZVbD28Kb52jtrsZMQSKWkHt9LToKGlsgSBUEhzSR75Zw9OkV9y/TR1OSmIJTJufL0Wv4X3kbB1HQM9Xei6O9B2tfPYu5sounKKRX94lZEBLXIbeyRKa/LPHSbr6E4qE6/QWlFEd4OG9INbKLhwhPrcNPRjY/9W//g/ZgdaIBA8CgwD5RhCS54DXgGi9Xp9nkAgeBX4J/AroBR4C5gP+Ov1+j6jDD0wCJzQ6/W/mCR7J2Cn1+sf+hf00H+RWY22pxsLY5khU1mudkOZsyGdsayMVEpfZwcKW7u787d7yk/mO9pQ2Tui7enCQnq7LFH/1LJlxjI3cis5fR3thrJEPV1Y3ua1fVhZ29Lb3oaV7QQvs5LT095mKHM2iR/WaZGrrOlpb0Nh5AUCIRZSKSPDQ5iLLRgdHkZoZoZQKGB8dBQzsdj0t7HRUQBEZmZTeJG5OXq9fhqvHxtFcBdeLrVEr9czNjqKuVjMyNAQEonkh5jJ94677UqMj48jFAqn6j80hLmFBSPDw4iMuzK39RkcHERsMfV6b5+7G39b1mR+eGhoGj8+NoaZufk03nzSucm8YHz8rvItxGJTmbnerk4kcivkYjG6/j6U1jZ0trVgbefAgFaLSChEZiyrZOvgyMa4fyIQCHjx7ffQ9fWhtLGhvaUFWwcHGjs6EICx7F0rNvaO9HR10ofhITN4u0xeextKWzvyatoQCARTyhpmFtRjZikFYHRS2a/S2iFDGTJAaG7JqLYbc7k1fe2tiCwMvH54EJHEilFdN+NmcvQjhpq1AnNLxgd6UDg4MTbQh0BsOYUXozOWRTPwQrElI/3dflm/wAAAIABJREFUWKpsGdH1IhIbbGtseAA7Z2dTmbPRIcP9aGYhhaEuJCo7Q1m0SfrbOtpNKmOnQ6/XM9rbStWt8zQXpNFdV4U6ch6BDz6FrZsnEqUNuq52alKvkXNkCyvXHcDK1g5dV7uh7F1fD+ZG+cMDhrJKt8vYjQzqEAoM3bhul8kb6O1GLJExNDTG6NAAllZKE6/taKE+N5n6jATqshJwjZyL79KVOIXNY/fPo3/0Hejln13Cwko1bT4F5lKGejsmyswZr3dsaACLSWXvDLwAsyll5gy8QChgfEhnKJPX04FYYeDNhALMLKUM9nYiUU7wZmZCRgcN/O310o8MIAADbywzN9Tfg6VcjgBDWTpLKyUD3e1YKm1hbAj0eswtpQz0dCBV2TGi7ZlS1vD2/Ns6OTJsrCdrbik1rddYf/dEmVHj+g71GEqcjhjLipkbyziq7B0YHRlGKLrtH0YxMxdjIRid5m9Hh4ewVUqn8TZW0ruuz0870P+a3Du/JOz79ivKCvI5vHPrNDa/ZwRdfz8WxmfV0MAAUrmcusZGlDY2U8vYtbcit7Ez+WeAAWMZu6KqapS2dlPK2BWW12Fl54CuZ6Ks4bBOy4BINqVsJRjsra2lFfkd/mRQ249EaT3Fn4ChG+a/6n9EIsEUex7s7cZcIsPcTMjIXXgLkaFMrba7A7nRX2n/P/bOOy6Kq/vDz9DZpUrvIAgqIB2kgyXGRNN7T6wxGmPvXWPvxsRoEk1ijLH3XimKiIK9K4ioKAoqHXZ+f8yClCWa96d5Td558skH9853zt65u3Pm7plzz9zN4+LBvZxL3MntzPM4+gQR9nYnLN2lByHpGig4tukPkn+ex1vTlqCwckAQhHr9qSguQkurbtm7+udX4d3bki+ocT4W5eeha2DIuf3buHI4kSuH9mPj5UvQG59g5uLF4g/jn6h/fGaqcIiiuK5O0zBBED4HwgVBOA58BUwSRXEVgCAIHwO5wHtAzRUVc4F+giBME0Ux7T/py/JRfWn9/ick7tgCQFDb9vw86HO+mP09Pw/7Eu+IGABOJu/no5Ff80P/rnTs2rOWfs2k4XQaO4kfh3+Jb6SkP560n09HTWR2t3d4p98QEtT6kLbtWT9tFJ3HTGTh8C/xi1LbP3SAT4ePZVqXd3h/wFD2b98MQET7jswe2IMB839gwZCe+EfFApB59jRvf9mPKZ3e5sOBw9mzbZOkf74DC/p2Z8iCn5g/qCcB0XFY2dkTEt8GqJrASn9rO5yHk9uHDlFZ/be+czKqo61NvVqfRkZ/yXE+EYyMJAesVNbbpFVVh7km6lqedVGJouZtGtoaGo+GbJRWVkr/qBNhmvBld7qNHMfgt16m05CRJG7ZiL5SSWB0HD9NGsvw75cwrPNHBMbEIejqkbpzK93GTWZQx7YExbdh69Il3K0Q8Y6MZc3syXSfsYClvbrjFBSNqrKSi6mJdOg3huUfvk+b7v1J3r6P8qJ72AW24tSquYT2mErGL/0wcA1BrCyn4Hwqrq/04fzSbni92pNbGXsBsPaL5/z6b/DrPIk7+39AYStVTXmoH4p9m87kZ0jff7NmkVzbMB33t0dxfs0cDBykJwuWZKVjHteNaxsm0yjoZe6fPyANcZNwbq1bgnenr7m86mtMPaWqKwXnDuP2ah8uLh+LffRb5J5MAKCRdzSH10zB460hnFo4pJbe54MhJE3phsfLX5Cbvkfqv388p5bPwPfd/hyaORBrb+lRyXlnUgj5bCg3Tx8l/IsJnNn8KzvGf465szsVJSVYeXhzMXErAW92JfPQXvKzLxL4VjfWDfmE0I/6cPnATgDco9qyY1If2g2bxc4p/XEMjEBXV5crh/YR13MUawd9QsSnfbmYvAMDY1Mc/ULZPbUPHUbMYfeMgTgHRWCor4uOjjaf/bqbTeN6Y25txfn132v8nj1pdIpvkrpoKHH9Z3Bw4Qjs/aRHDedlnsfnlS4kzuqB3ztfkrVXWtTo2rINh38YTGy/GaQsHI5di3B0dLS5djSJll2HsWdqD4I+6E3W/l3oKU2w8w0hdeFgWg2YSfKC4Tj4h6Orr0/mob1EdR/BzsndCfnoKy7v2oWgBY3D25D4zQDaDZ3N/m+G4tYyDlV5GVlHkonrOZItE7oS/mkfMg+mUnq/AI+otuye1Y+OI+ewa85gmrSMQVSpuHw4ief7jGbVyE680HMQJ7dI+Z3NY59j+7Q+vDdxPgmLp2HbWHoS4dmUBN4YNJ7Fgz7hjb5DObJhMQABrZ9n9YSv6D3ne5aM7YeP+npxInk/n4ycyMG1i3ml2xf1xtWwTuqAhDEKDe2GDUyU/8qk+K9OZjVFpi31NGsbaTqUp8y5wvoT61L1j5G6lFf5WDVNfPxY+9svHLxV/2Ebufl3uXL6FIlbNgIQ1b4DP0wcS685CxjbryctIqXr77GkfXQaPZFFgzsR+cb7ZOyWvj9+rZ5nw9zJfDjpW77v2Q2vMOnR32dTEoj9YiRLP3+X2M79OJcg5Qd7RrclbcNyIjr1Z/24PjgHRgCQdSSZoE+HsmbQJwS+35uslF0AOIe15sjSPsT1n0HCpH7V52NB9kX83ujK+iGfEPRBbzIPSnqXsNYc/nU2rQbMYIdar6UF19IPENFtBGsGfkzIh19x5eAuDIyNcWwRxsElM2k3dDa7xvXBKSAcXQMDLh/cQ1zPkaz56kPCP+3DpaQd6OjqENNtIPsWTMHRL4yVQ7tjbGmNa1Akl9OSKX1wD2NrW8oL73E8aScl9wvwjG7LlvFf8urouWyb2Be3sFhUFRVcOZxE296j+KP/R8R36U9awvbq8Vk/Zjqvjp5LwoKJWKqfRHg5NZF2fUazZmQP4rr1pyD7EuYvvYNXzHPs/X46b42b+1jfo7/CMzOBrokgCNrAm0gzsmTADbAFtldpRFEsFgRhPxBB7Qn0IWAVMAVo/Z+8v5tfANZOLjQNlb6I1k4u+EbHYaAwwjsiBjf1ozVBemZ905CW9fSegcEYKI3wjYyhse/D1Z+GRka0iI7DysmFZmq9lZMLnv5BGCqN8IuKwb2FpBe0tDA0MsY/Jg4bZxe8w6QTycrBCf+YeAyVRvhHxeKh1usbGKAwMiYgphU2Ts74qPW2zi4ExrbCUGlEQHQcTVr4Y1Tnsa4yzz7+kdEojIwJjmuNrYsrfuFRiFoCts4uBMW2xlBpRGBMHJ5+AZSrVJSXllR/H/wiY1j5zWzcfAOwdHDGOyIWA4WS5uHRGLk2r34PfaURHmExmNs7Y+raDCorUFo5YO0TgY6BEmvvllSaulYvatPWV2LmGYqhhT3mTaQFioaW9lg2C0fbQInS0at6Al1Tr29mi7GrVE5O39wOU48QtPUVGDh4o2ftXq3X0jXE0L4Zuqa2KJykRxzrmtqidAtEW88QU89gjBybPrRvoMTE1QcDC3tMGkvnhYGFPaZufmjrK+rpdQwUWDQPR2H5sP8KS3vM3byrj9fMTRofXV3QNVRi5xeBhbsPzV78EFVlBaV3cji+bgk6hgqC3++FnW+YpDfQR0+hxCkwChNbR+x9QwAwsXHEKTASXUMljoERWDfxQVuQ7vzoKZQ4B0dhYueIg28I2nq6mNo54RIcja5CiXNQBDae0jhUVpSjpzDCJTgaUzsnHH3/ngWiRlYO2PtHoGuowN4vHAt36VHnorZe9fgYWTti00zqj9LaHnu/SHQNFNi1CMfS3RttbQFRpULPUIlDQATGNg7YegejpaODsY0jDv6R6BoqcPAPx9LDB21tLSrLy9BTKHEMjMTExhE7n2C0tAVMbB1xDoxC11CBU0A4lo29QP39lMYsEhNbR8TSIlSVFZjZOuEaHI2eQolLUAR2Xt7VeQH6SiPcQ6Mxt3fALUD6HBvZO9MkLAZ9hRKnZj7YuntWj4WBkRFNw2OxtHfEM1j6oVV1fhkaGeMTUdv/GxgZ4eT58Psn82zg5dOCS2dOUVFejk6dHyza2jrV/hbA1sWV4LjWGCiNaBEZi7vvw/mAoZExzs1bYOHghEeQ9H2wcHCiaXgsBkolXmHR1Y9eB9BXKmkcEo2ZnRPO/qEAmNk5Yenuja6hEufACKzVj4IH6fts7x+BkY0DNt5SIEBpo/l81NXXl84v/0iMbRyx9Zb8j5G1Iw4BD/WWHt5oCQCCdH4FSHo7n2B0dXXrnV9Wnurzsay01vll3yIUXW0tzGydcG8ZT8ArH6BraEh54X1O7dyA0qwRb09ZxOndmzCzc6KsuBBVRQVmdk40DpHOR7egSKw9mlefv3pKI9xCojG1dag1PlV6Wy/f6kd5S+NpROPQaMxsHXD2D3uoD42ujvA/SZ6ZFA4AQRB8gQOAAfAAeF8UxU2CIEQASYCLKIpZNfQ/Ag6iKLZTvxaRJt7pwCngJVEUtz4qhUMQhK5AV/VLuUyBjIzMP5VMURRdn5ZxtY+VkZGR+SfyRP3jsxaBPgv4A2bA68ASQRDiamyv67wFDW2IonhBEISFwCRBELbX3a5B/z3w99z/lJGRkfmH8jTzq2VkZGT+STxTdaBFUSwTRfGCKIqHRVEcghRJ7gPcUEts6+xiDdxswNwYwB14/6l0VkZGRkZGRkZG5n+SZ2oCrQEtQB+4jDSJblu1QRAEAyAaKUe6HqIo5gLTgHFqGzIyMjIyMjIyMjL/b56ZCbQgCJMEQYgWBMFVEARfQRAmAnHAUlFK1J4FDBYE4TVBEHyAxUh50n9W23k6Uj71K0+39zIyMjIyMjIyMv8rPEs50LbAr+q/BcAxoL0oitvU26cg1VX7BjAHUoDnqmpAa0IUxQeCIIwB5j/NjsvIyMjIyMjIyPzv8ExV4ZCRkZGRkZGRkZF51nlmUjhkZGRkZGRkZGRk/gnIE+jHQJDIUD/98HH03wiC8MPT7peMjIzMf5vH8Y+CIPSsWUNaEIRgQRDyBEEw/Xt6KSMjI/NkkSfQj8dbSHnXf7ZgsSZTgfcFQfB4el2SkZGReSb4q/4RURQP87BMqYyMjMw/DnkC/Xh8CfwiimL544hFUbwCJAKfP81OycjIyDwD/CX/WIOfgO6CIDxLi9llZGRkHgt5Av0I1FHkCGBlnfYugiAcFwShRBCEm4IgrKxzO3IVUhRaHmMZGZl/JZr8oyAI+oIgzBMEIV8QhDuCIMwEdDXsvh5oBLT7e3orIyMj8+SQJ3ePpjVQCGRUNQiCMBxYAOxDqjH9OVLpPaMa+yUDNoDv39ZTGRkZmb+Xev4RmAR0RnqI1fuAC9Cv7o6iKN4DTgJtnn43ZWRkZJ4s8q2zRxMEnBZFUQUgCIIZMBSYJYpi3xq61XX2OwlUAqHUvrjIyMjI/Fuo6x8tgO7AKFEUp6vbtgGnGtg/A8lHysjIyPyjkCPQj8YWuF3jdTjSA11++rOdRFGsAPLV+8vIyMj8G6nrH32Rnv66rqpBPbleh2ZuI/tIGRmZfyDyBPrRGAClNV5bqP9ef4x9S9X7y8jIyPwbqesfqybDuXV0dV9XIftIGRmZfyTyBPrR3AHMarzOU/+1e4x9zdT7y8jIyPwbqesfb6j/WtfR1X1dhewjZWRk/pHIE+hHcxZwq/H6AFAM/OlDVQRBsAIUwLmn1zUZGRmZ/yp1/eNxoAR4uapBXYnoZTTjiuwjZWRk/oHIE+hHkwQ4qyfEiKKYj7S6vK8gCHMEQXheEISXBUH4XhAEhxr7BQMiUjUOGRkZmX8jdf1jHvA9MEYQhH6CIDwPrKB2haKaBKttyMjIyPyjkCfQj2Yv0i3G56saRFGciFS6rg3S4pgFSLci79fY73lgn/qCIiMjI/NvZC91/CMwEPgRGAksA3KAGXV3FAQhALCifgUjGRkZmWceQRTF/3YfABAE4QpSvdC6bBZF8UW1pgcwACn/+CTwlSiKCRpsxNRpHw28IYqiz3/Yt9mAR1U/HkOvDWQCg0VR/PU/eU8ZGRmZfwJ/1T/W2G8iECKKolwHWkZG5h/HsxSBDkGaGFf9H4iUAvEHgCAIbwOzga+BAKTUiC2CIDjXsVMCTH7CfZsKxAmC4PmY+jeR8qR/f8L9kJGRkXnW+Kv+EUEQlEAXYPxT65WMjIzMU+SZmUCLonhLFMUbVf8DLwD3kPLnAPoCi0VRXCiK4mlRFHshlZL7vI6p74EAQRBee4J9ywY68XiVNwAEoJO6FrSMjIzMv5b/wD8COANjRVHc+1Q6JSMjI/OUeWZSOGoiCIIAXERK3+gpCIIeUAS8K4riihq6bwAfURRj1a+vAPOQSia9DHiLoljx/03hkJGRkZGRkZGRkaniWX2Ud1uk0kiL1K8tAW3gZh3dTaSFfHWZCHRW///do95MEISuQFcAE/NGQffuymVJZWRk/pFkiqLo+rSM2zu7iNevZj0t8zIyMjJPkyfqH5/VCXQXIFUUxfQ67XXD5YKGNkRRvKteoDJKEIRfHvVmoih+j5T6gSAI4oHcB/U0ZaWlDP70PQwUSkbMX4SOzsOhU2mI4ldWVtL3zZfoOmw0CZvXAxD9wktsXLqYz0eMY8agPgTHtgLg8L7d9J86m+GfvU/3YWPYp9bHvfgS340fxdc/LmXqwK8IUesvnznFZ/2HMOTT9+gxfCw71qxkz8a1PCgoQE9fnw979WH/1k1YWNty+8Z1zp88jqm5OaIo0qnfYOaMGc7HX/Sm59BR9frdzChH4xidK3Ks1+Zp2ED1qfK7Gps3rt/DjZsFbN99gu9mfcJr789h0qiXWL3hKACvvRTA4NFrWP1Ld8ZMWo+vt1QVcPvu03w3811e+2AhU8a9xcp1hyV9x0AGj17F6l970HPAclrFekv6Xcf5bvZnDJ16iq+nz9LcRw000q3fdrygvPrfoihy+dwZtq9dxdY1K3hw7x6tX3qV1i+/jk9QCIIgUFpZWc9GSYXmTJ4yDVqA0gb0xeX19bdv3GTpxFF8NPJr5n3VlTf7DCFtxxb0jU3xDGnJmtmT6T5jAUvHD6V5eDQVojank/fwxuAJLB7YnRd7DuL4/p1UlJfTPPY5tn87lfcmzmfdlBG4hbeiorSUy6mJPN93DKtH9iKuaz/OpSRRXvwA98i2JP04gw4j5rBzzmgc/cIBuHr0ADFfjGTb170J/agvl5N3AOAa3prUn2fRZvAs0pZ9i7mLBwDX0g8Q0W0Eu6f2IeiDr8g8uBMAl5atSft1Nq0HzST5u3E4+Eeo9clEdh9JypIZNG37GlcO7pLst2xN6i+zaD1wJskLautbdh3Onql9CfqgN5lqvUvL1pzdvorQj/up9eE1+jOc3XX0buFtSP1lFm0GzSLx2zEYmlmQfSSR0vsFBL77BVeStxP6SV+uHJD0jaOeI2XxdNoOmU3i/LE4Bkj2b5w6QmTXQWyb8BVhn/ThcvIO9A0VOAdGkfzTDF4YMZs9c8fgHBiJvoEBFw/spvWXo9gw9kuiOvXlQuIO9BVK3IIj2bdoOq+Onsu2WaPxCIth05ShmhZiPzGuX83i6J2Seu2VlZWM7NGJu7dvM3PpSvQN/vzhglqCoLFdaKC9IX1D7TWpqKjg8zc6kp56kMCWkUS1bouLexMunz/L+dMnyUhOoKioiFdeeYXXXnuNgQMHMmPqR8TF+T/S9p+/8X3N7ZXFmtsbyPi7c7eE7r0X8lzrFgBs33WMH777EmNjw/piLX3NtnWMNWijNGsLf9PcLmiYLuia1Xp58WIOK1Yl8Meqo+Tk5PDGG2/w1ltvERkZiba2NqfvP77Pa8hvlqtUGts16RvyseUNtJdU1G8vKtOsfVCquf1u/n1WTRhMkzBpfM+nJPLKwHEsHfEl8Z16c3rfdgCaxT7HwRU/0673SLbMGIVbcCQAlw8n0bb3KNaM7kVs536cS5D8p2d0Ww4tX8Tz/cazbdZo3IIkffbJo8R2G8i60b2I6dyP84mSvkn0c+xfOI2OI+ewa84YXIIkf3jzwmnCP/qSjeO+JPKzvlxM2oGIgHt4m3r+R9DV48rBPcT1GsmW8V8R/mkfLiXtQE9pgr1fGCmLZ9Ju2Cz2zxuLY2AEgqDF1bREor8Ywfohn6Glo8O9nCysmngT+HY30pZ9W613C29FZWkJWUeSa9nPOpxIZVkJ7hFtq/uTvGgq9t4BAGSmJVf7w5guAzifsE063qi27F80nZdHzyVpyVys3ZsCcOVwEm2/Gs36sb25mp7yRP3jM5fCIQiCNZANfCGK4kJ1219K4RBFcZogCAZIRf4XIUWvHyuFQ9MEuriwkIyUAyTu2MKqHxYwcMY8Orz3UfV2TRPoiooKdHR0KLhzB6Wx5LyKHtzHxLwRd27lYm5pRXFRIQCGCiX38vJoZG1NwZ08lMYm0vs+uI+peSPu5OZibvVQr1QacfdWLo2sbWrpb1zN4syxo+zbvIEH9+7h5OaOi0cTWsa2wtTcHEsbW5J3bWdEj87sOZOJrm79GePTnEAX38ulslKFUqlP7q172FibkncrFxMT6UJw/34JjRopuZl7D2tLBYWFperj1Sf31n1srE24fbcM01p6I27mFmBtY1Nbn3sPXae66fF/jqYJ9JHbRRw9kMS+rZvYt3UTJSXFtH3pNeI6voJPcChaWrWXEfzdE+jSsgoELS3u5d3G1NKKB/l3MVAaUVqhorSoEKWpGffybmHcyJLS4iKKylToGyp4cOc2xhZWFObfRaVniCBAaVEhChMzHty5jdLcgjv59xEE0DVQUHQ3D2UjS4oK7lKpqwCgvKgQAxMzCu/eRlthRkWJNDHQMTCkOD8PhbklD/Lvom+olI63uAgDY1OK8m+ja9Solr6k4A6GZhaU3MtHTyHpy4uL0Dc2pbTgDgZmdfV5GJpZatQX5d/G0NSilr7w7m0UZpaU3M9Hz7C2vjg/DwPTBvpTQ19ZWoyuoYIz21dweusfaGnr4Pvyx7hHt6f0Qb5kv2Z/Soul4717G0Ozh/3RVyqqx6fkXj66CiU6WgLlxYUYGJtV68tLitDVEtA1VFCUn4fS3JLie3fRUxihqy1QVlSIoYkZhXduozC3QFVWwrQXAhBF8dGzyv8QQRDEuhPo0pISMg4d4MDunfw8byY9R4zl0979/9TO3zmBrqLw3j0O7ttN4s5tXMvKpLFXUzyaNuelmJa0aNECQRA4c+YMoaGh3LqxEn19vce2rZEnNIG+mfsAa2vTWv4t/1455uYaSmv/zRPoSi1jDhw8zcZNKWzYdJDbefd47ZVI3nqnHzExMWhra9fS/y9MoO/cKUBfaURZcREAeoYKHtzNQ8+kEUUFd9FXSp9baVEhukrTan9brtbrGioouJWLkYUVxQV30VPr657v5SWSXku/hn+ooS958EDS372NwqwBvdqfqFSiRv+jEkV0Der7K5UKyktq6ytKilCpVGQfPUDa79+hqqzA58V38WrzMlo6uvXsV5YUgfr6UtN+1fjU1JtYWFb3X9fgYf9L7j/UV49PneOt0hs3smRK66ZP1D8+ixHoT4BSalSwEEWxTBCENKTUjhU1tG2BVZqMiKJYIgjCSGAu8MgotIb9WTpvFkk7t3I2Ix2vFn4ERMUyb902mgeFPHL/nCuXMTI1ZUy3TwmNbw3AoT27GLXgJ/q83oGeYyeya63U9VYvv8bKhd8ybM4CRnX7mLB4KSsl/UAiw2cvoNfrL/DluMnsXCMdervX32bmsAF8s3ozw7t+TMtWbQHIPHeWnqPG88O0SfQZP5ntq1dwOuMobk086fvBm3zQ40umDOlHu9feZMe61bzwxtt/dVj+X8yct5XzF2/yzhth9Bn8G3s2D+GjLj8SHy0t3t+66yTLf+pCfIcZzJvyFr8sPwTAO68H0WfoKvZs6M2g0Rto6mkr6XeeYPnibsS/OI1ZUz5m2QrpmTXvvBFOn0G/sHH/O5iZm//lfubl5bFlyxY2btzI5q3bcG7sTuzzLzL1p6U0beGPIAgUl5c/2tDfQG52FreuZvL75LEM/Gk53/bvgW9kHDoKJWnbN9FlyjxmdH6HtwaMInXLerQNFDSPimfdzPH0+PY3fh7aC8+IeCorKjifsp93xs1hUc/3ebH3cM4cSqbwbh7N419g5/yJvD/jZ9aO7YNrRBsqSkvIPJxA+6EzWD3wE1p+NoCLCVsB8IhpT/KiyXSc8CMpP03HzLExANlHkmg1YCqbhncirNNgLu7fBEDjyOdJWTyV9mN+IGHecGybBwNwLT2JuL5T2T93GL4vf8ylhM2SPqo9KT9Oof24H9gzbQCOAepIzNEkWvWfyr6ZQ/B99dNa+iO/f0frQTPZO2MADv6R1fZj+05l66hOhH06kEuJW6r7c3rr70R+Prpar6qo4MK+Dagqyii9n4/fm90ouHaZnOMpKBtZkbxwIi+O/4HdUwfgGCjZL8jJJPSjr9g4/DMiOg/iwn7JvmfciyR9P5GXJv7Ejsn9cQqMRM/AgEvJu3h+yHRWD/qEmG5DOLdvE0aNLHHyC2Pvd5N4c+piNk3oi2twNHoG+pxP2snLw2eyrN/HtP5iCOcTdz3171tN/vhhAbs2ruVEWiruXs0Ji4vnuzWb8QsN/1v78biYmJnx3Muv8dzLtdeXeyoF8vLy2LdvH3369GHu3Ln//8nzE6RNh/FMn/ghy1ZIAYt33ohg1frDfP9Nj/9KfwoKiti2M4ONW9LYsuMY9naN6PhiS35c2I+QYE8pqKAb/1/p27PA7p/m4REaxbEdGwBo0aYDm2ZP4KPZv7BiVG88wmIAuJCyn1dGzmJpnw9p23MYJ3dtBKB5qxc5unEFbXsNZ934PjQOiQbgUmoCL494eL6f2i35z6atOrD7m695e/oSNozrg5tafyf7ClGf9WHFgE+I6z6Es3slfZP4F9n/7URem7KYLV/3xSU4GkTIPJxQz//om5jj5N+SxO8n88qkn9g2qT/OQZHoGCi5lLSdtoOmsX7Ip4R/1p8jKxZyJ/MCCnNpsvv6jN/ZOXUglZUVVJaWcPXGJUErAAAgAElEQVRIUrU+sutgco4doujubZrEtq9lv3HLVlRWlJF1OLG6P/FfDOPsbml8vOJeqPaHST/NwtxBCipfTk2g44iZLO/3Ma17DufULulOftO4F9jz7STenb7kiX/Wz1QEWr148CzSA0i61Nn2NtJEuAfSk6u6I6389hZFMVOtuYI6Aq1+rQWkA02Ai38lAi2KInNHDWXf5g2UlhQT+Vx7Qlu1JSg6tjriW4WmCHTRg/sYKo04deQw9i6uAORkXqF5YDCH9+3GLzyKG+pcQhtHJ04eTiE4Oo5TaanYu0hPxr2edRnvwBAO7dtNQHgU169mAmDv5EL6gSRC41pxMi212v7N7Ks0DwgiZe8uAiOi2bryd9IS93Hu+DGuX80iJCaOgJaRvPTuBygNFZiYmdXr99OMQGddukBxcTkuzhbsTzpL21Y+pKScpLGbJQCXrtwmLNiNHbtPExvZmCtZUi66i1Mj9idfoG18U1KPXsfVxULSX75FWEhjduw+RWyMH1cyb0l6Z0v2J50h6PmJDUa0RFEk9+ZNrmZlcvXKFa5mZXIrO5Njx46RkZFBfHw8HTt2pHH0c1jZ1i8u0NAE+u+OQBcWFiEIAmcPp+AdEcOlY0excnSmrELFrWtZuPkGcPpAAk2Cw8jLyaakTIW5nSOXjqbgGRZN5ol0lNb2gMCdnCycvP25cCgRt4BQrmVdBVHE1NaBrIxU3IIjyTmdgb6FPQgCBdevYtvUj6wjyVg1DeT+zWsAGFnbc/3EYRwDIrhx5jjG1vYA3LuZjbVnC66lH8CyaSCFt6TvmtLKnpun0rD3C+fW+eMY20ipO/dvZmPVpAU3ThzCtnkg93PV9q3suXEqDQe/cG6dO4axjeNDvWcLco6l1NNfP5GGvV9Lbp2vo2/SgpyMA9h6B/NArVda2ZN7Jh0731Byjh3g+vFUzu9ajaljY0I+/IrykiLsvIOr7ZtU9cc/nNxzxzBR239w+zpWTXy4lp6MnU9I9fiY2jlUj8/Ns8cwsXVERwvuXb+GTdMWXD2SjINvCPdyr6GjJWBiY0/2scO4BEVw/UwGZrZO6GgL5F+/in0zP66kJeHUIpTCW9f57qN2f1sE+rtJ49i2ZgX5eXlEt2tPZOt2hLdqg4nZo3+0/jci0Np17hYdTkpgx4Y1pCfu5eLFi0RGRvLhhx/y3nvvQeXex7bbIE8oAr1j9ylioprV8m8nz9wkKNC9vvgJRaBFUeTWrXtkXr1NZtZtMq/e5kpWHidPZZN65CJR4U3p+EIgHTrG4+xsXd+G7nMaTf8vRKAvnjqFlbMbd69L57uZrQOX0w/hHBhB9ql0zO2lyrt3c7Kw8fLj8uEknP1CKbiRDYCpjQOZx9Nw9g8j53QGZnZOAPXO94Kbkl5p5cC146m4BEVy/XQGpmp9wY1sbDx9yUxLxrFFCPduVvk3O66dSMM5MIIbZyS9qlLk3o3sev5HFMHI2o6cE4dxquGvVCLcu5GNuZM7B3+aRmZqAkZWdjR//k3co9tx42RatX8ztXFEFCS9jVcLso8mY+8bUu1vja3ta9mvOt571x/2x8U/hHs3petFTX9489wJTG2l60XB9avYNfMjMy2p1vGa2DiQfUy6fk1t0+yJ+sdnbQIdD+wGwkRRPKRhew+kp1zZASeAPqIo7q+x/Qo1JtDqtvbAZuDkf5LCIYoiWRfPc2DXDpJ2buXk4VSa+gUQGt8G9+beODZ2x9rBCZ066RAqlYopfXvyXs8+HEncC0BgVBxbly/lg6/68/OMyfhHSL8U05MT+LTfEGYN688HvfqSlrAPgJDoWH6ZO4M+X0/jp+mTCFDrL548zpudP2fG0P58+GVfDu+X7IfGtWLJrGn0nzidEd0+4URaKlHPtUdUqRg4cTrThw3g068GcGj/HhycnGn1Qsd6x/80J9AHElO5m1/E3oTTjBz8Cr36/8LgPq3YtfcsAK3jmjJp5jbmTnmbuQt24+cjnRh7E88zcmB7eg1cwZB+Hdi597Ra34xJMzYzd+p7TJi+jegIKedpb8Ipevd4nm4DdmPn4IBKpUIURcpKS7mWfZWrmZlcu5qF0sgIJxdXnJxdcHJxwcvNBS8vL2JiYjA0lNJEauZA1+RZmUDn37nLpoXf8NLnX7H06xG80PkLTh9MRNAzoLFfINt++Ja3h4xh04LZeAa3pFwlcD41mec6f8nqqaNp/XF3TqceQFVZiXtwBPt/WUCHviPZ89M8HPzDqayoICs9haiPv2D7nPGEv9uFS+lpVJSX4uwfTuryhcR9MYwDv3yDnY90ZybneCrB73xO4oKvafFaJ3IyDgJg7xdGxqofiOgylOMblmLu6gXAjZOp+L/ZnYM/TMT31c+4fjxF0vuGcWzNj4R3GUL6Hwuw85Ei09dPHCbgre6kr/yeJq1eJueYWt8ijGOrfyC88xCO1tG3eKMrKT9MosWrn5FTw/75Pevwe70r6Su+w9Y7pLo/Hq1eYe+0fhTl5WLq6IZdizCaxHVU2x/K0T++q7Z/59JpfDp+SPLCr/F7vRM5GZJ9h4Bw0lcuIrLrUNJ+/xZ7X8l+7tl0At/sTMJ3XxPwZmeupR9ER08XB59g0v5YSMznw0j97VscfEPQ1dMl60gyLT/owZ5vJhDydheyjh5AT08PxxZBHFy2kLa9hpP083zcglqyfFCXvz2FI/vKJZJ2bidp5zaOJCfi0dybyDbt8PL1w7mxBw4urujq1Y7o/rcn0Ak7tzG46yd80L0nb7ZrRUhISO2UtmdoAv2gsIKxE1cSFy2t8dibcJIxI9/H0FDDZPkxJ9CFhcWsXJ3D4cOHq/1jeXk5V69eJfPycbKy8zAw0MXFyRIXJ0tcXSxxcbamiYcdsVHNMTJS57jr1g/CSO3/uxPogvvF7Fw4E7fAMAAuH0mh1We9WDdzHJHvduZS2gEAGgeFk7r2d2I+/ZKEn7/BxT8UgMz0Q7R8rzs7v5lAy3e7kHlE8p8ugS05snYpsZ37kvTzfJzV+uxTGYS+3Yld88YT9s5DvbN/Sw4tX0j8F8M4+Ot8HP0k/c1zp/B/7SP2VvmT9AOIIjj5t6znf9DWIftoMsHvfU7Ct18T+FZnstMPUlFRQf7Vy5zduQbnkBh0DQzxiHkBBMg5dojgdz+v9m83TqZRWV6Og39Ljq5YRHT3oRxe9i1OgRGoKiokfQ37N06mUVlRUas/GSt/xLa5n3S8GYeq/WFYnfFJ+X0hrXsOJ231z9h4NAfgasYhwj/swe55EzixbfW/N4VDFMU9SAsDG9o+H5j/J9tdNbRt+TObj0IQBFw8PHHx8OT1Lp9TXFjIkaT9HN6/h7TEvWRfukRe7g2s7R3w8Paly5BRODZ2R0tLiz4Tp6Orr4+ds3SLQVtHh4/7DkLPwIBPBwxDW70QMSAyBi1AW1un1opIUZTaEEFLSxuqLxbS36r8sqqLjqgS0dHR4ezxDFL376Xn6PE4uLgREhGN0siIIdPmoKevj4OLK/oa8p8Bzpy5wNKlaxk8uAf9+4+nb98u7N17gKCO3TEyMdG4z+MSGuyOKIq0im2Gvr4u82d+jK52Cbv3na06YnS0pYuci5M5z7VqBkCrGC/09XWYP/1t9AwUuLpIEWsdHS3mz/gAAwNdRg5+FV1dHdKPZXIt5y7eIYOIjH2Oxu4eaGlrIwgCenp6vPz6mzg6u+Do7IxSqazVP0050E+C8rIyKirKWThuJK936UHGgUQAmodFsGbRt3QaNpoV8+fgHdoSgAsnT9Du/Y9ZMnEMHT/rxskUKTXFPSiMrYsX8u7AEWxY+A1Ng0KpUIGgnhhoaWurvz8CItL3R0tHW/r+CFoICKhEEUHQQkS9Ta2v+mpVtwlaIEoXKkFbS7Kl/mxUiOrVu2J1m4hQvZxX0NJCRJT2U4kPv7ciCNraiOr/qs7Kar2WttqG+vssUt0maAmIajuCliDtr7ZZbUitFzXopb/Stpr2RVFUv7cWCFBRWsK19GTO7VyNwsKaVoNmkZ99qbZ9xFr2RfVYCNrq/le1i2KNY3s4eRPVn89DvdQXRPUYUPWZCuo2LfXYaak7oT5sUf2Zq7epGphYPG0cXRvzdufuvN25O6UlJaQlJXBgz06WL/qOq5cucONaNtZ29rg386bH0FF4+bT4r/SzisvnzzGoy8fM+XUFwZHReCqf2u+NJ4JSqc/YEW+hoz43W8V5o2+gOcVk+Yp9dHghjElT/yA6UooXJSSdYOy4Huoc70xmzFzOylV7iYiIoU2bNujo6CAIAjo6Orzyyiu4WJ3Axdmy/iJFTYsIZeqhq69Pmy590FJfn92DItDR06N97xHo6OljZicFo7S0dWjx/KuSC6g639X/FrS0pP3F6mb1v7Wqz/eaiFVzhBruVoVaJ6rtq+eNVV5CS1vtm1Bv0uB/RFFV7bsEbW0qy8q4mLSdm2eO4xoWh0vLeOJ7j+PI8gXqjghqn/fQv6lEsbrcg6C+RglaWqASa7xXTf3Dg6rqj6q6k9Tyh2KNa1fVPEnypQ/HRtCqGrMnf54/UxHoZwFBEMSUW4Uat1U0cIEqLinhelYmB3dt59c503i/Vz9e7/J5vQUUf8apI4dpFhBUK+XjRtYVmgeGkLp3F37hUdzMvgqArZMz6QcSCY1rXSvlIzc7CxsHRz6Ma0mfCVPxaiH9YvNq2vyxj+XmjRsojI2r7Z9MS8XBxQ1ra+t6x2PYwCS8oSg25SfqNVWWF5GXJ0VqLl2+SVioJ9t3ptPq+eEaFzlS9IdG06KWAQt/2MbwMUsZ1O81Pnq/FVaOH2jUHssv09h+r6x+e0OR5obai8rrR0GKyio5kbSvVooFwI2rV3H18eNU8n48g8PIU9/yM7G250JaCk3DY7hy/CiWan3u1UxcfQM4c2A/HkEtuXM9G5UoYG7rwMUjB/FqGUPmiXQsHJxQiSJ3rl3F2cefcwcTaBwYxt0b16ioVGFm68jloyk0CYvm6sl0KaVBELh7LQtHb38uHErA1T+MWznZUgqHjQOZGYdoHBJFzqkMDNUpH1W3zK4cTsS6eTD3c6XP3djanmvHU3EOjCTnbI0UDvUtvKtHkrDzCebBrevV+pzjqTgFRpJ79hjGto619NczDmLvE1TPvmtwVPUtSKA6peTq0QOSXn3Lz9jGnuyMVJwCI7h55hgm6gvYvevZWHj6cvVIEva+IVw/dZSE+eOwbeaPS2gcbi1bk6u+ZVnVH2v1LUg7n2Ae5D60n3PiME6BkdW3OAGKbl3HxtOHrCNJOPiGVPffwt6R7GOHcA2Oqr7lqq8jkJ+TjX1zPy6lJuLiF0rBzWvoamthZuvAlfQUPEKjyT6ZjrmDMzpacDfnKk7e/pxPScAtIIwHt3KY8mabvz0C/SjKy8vJycrk0P49fDtxLG991pVOfQfVi0rDX49Ma6IhG7ra2twvKODNuJZ89mVf3vpUyhJ8IhNo8Wr9tspzDWg1Ry4bbtcQiS3P1ywtPM/2vReJDXclM1vSuDiaIQp6rN96mp5DNtC7SwSfvR+EvaOD5vfTaSiqrKFdV3O6zrniSI3tRRp8LGiOHv+VSDNojjY3dDevrLIB2+X128srNc+RSis02/gr7ZUqOJ+yH1f/MAqqUrxsHMg6fpjGQRHV5ztQzz8/1NtzJf1QLf8AkH/jGg5NfevpjSxtuZKRintIFNdOZWBu70S5SqxOEbmcmoizfygFN65RoZJSJq5mHMKqsRcrBnXC1NaRyM/6UF5ciF3TmikTNVMs1CklZzKqU1ZqXi+c/EJ5cPMaCOrjzTiEW3AUOaczaOTgBAi1+tM44GH/zWwcuJJxCPeQKK6fPV79g+RuThaOzf25eCgR14DQ6v6Y2kj+0zMsmhFRTZ6of9QePXr0k7L1r2DMmDGjuwwcpnGbplxnkKJAZhYW+ASHEvviSyz/di4bfl2MT3AYZhaWj/W+344dTouwCGYM7EPRg/ucP3GMrSuWERLbijHdP8PF04t1S37g+KEDGJuYMmfEIOI7vMq0gb3V+gwO7trG+l+XcPvmdV54633WLPmBYykHiGvfod4FqKFj2bt5A/l5t5gzcjDxHV5lqtq+l49vvdJUug38QLDSa+DWpSq3XlNxURELFm3jaMZlvlu0jRfaBfHuxzOIj2+HjY1NfRvlJ+vbKC6jW68FrFp7gO0bx9DxxVCUSgPQ8dLYjZslDdxG1OCAG/qh0VC7JqdfWlbB3F6dCH7uRX4ZO5SSogdknTnJ8YQ9uPsH8cPgXti5NWH/H0u5ePQwhsYmrJo2Fv82L7D862GUFBWSffYkh9avxKtlND8P642tmztJq37jxqXzaGlrs27mePxat2flxGGUFhVyOzuThOWLaRYRy68jvsLG1YMDq5eSc+4MOrq6bJo9AZ9W7Vk7eQQVZaXknDnB4XXL8AyPY+WYr7BydefUvu1cSk1AT6Fk5zdf0zT2ebbMGImqUsWNs8fI2Pg7jcNi2DihP+aObpzYvJzrJ4+ga6gkYcEkmkS34/DvCyi8fYPbF09zassfOAdHs3PKABq5enJy0+/cOHUEXUMFyQsn4x71HEkLJ1N6v6CW/sCP0zGysObE5t9r2feMacfuOaMpKy7i1sXTHN+0HNeQGBK+n4yRpS3HNv5Ozskj6BkqSVn6DW5hceyZO4ay4kJuXTzNic3Lq/sjqirZO2ckxtb2+HR4j9PbVuLQIoz988dSXlzE7UtnOLn1D5yDotk1bSDmjo05teUPbpw6ip6xKcnfT8Q96jn2fzOW8qJCbl88Lf1QaObHtkn9aeTkXt1/faUxe76diFdsO3bMGkV5cSF3si5zeM2vuIfFsm5cXyxd3Dmyfhn5OZkgwNa5E/COb8+GqSMoLSokL+sSB1b+gldEHMtHSp/XkU0ryD59gtGjR4/R+OV8AowZM2Z090HD/9I+2tramDVqhHdAEO1ff5vVP//Iknkz8QkKqbe+oKGJ8l+ZQDek1dbSYkj3zzAyNWXQhKnV7RZ6T+J6eq9+k5jXgLahoFVD7Rp8jUrzj5gH+Td4o/NKmnla8t2SNBIPXcXQQIdZ3x9k0dI0Ni79kLdeaYGxkX7D6R5aDZQg1NbQrq2hlB6QV+Gssb2h1AlN/rSha1RDvrdSUznZv6CVbNdv19Cktq15w19pLy8r4/ehn2Pl6k7q2mVkHUtDT6EgbcMfuPqHVp/v18+d4vC6ZTRpGcvKMX1q6fWNjNk6Z3wt/3D93CkuHkrAyTug2p9X21cas33uBJrHPc+mGSMpLSrkxoUzHF3/O+5hMawb3w8LZ3eObvidvKzLCFoCO2aPIWPj76gqKmgS2YaivFscXfsrbqExbJ4o+bdjm37nxtnj6OobsPc7yT/vmj0aVWUFN88er3W9sHBuzIXknVxKTUTPUMHu+ZNoGtOObbNGoaqo4MbZE7X6Y+XqQdq6ZVw9noaeQsn2eV/TPO55kpd9T8HN69w4X3t8bBt7cWjN0urx3Dp3Aj7x7UlctuiJ+kc5Al2H/yQCXfdkVKlUrF2yiB+nfI2tkzOGCiUGCgWGSiVmFpb0Gj+lXjT33t07mJg34t7dOyiMpHy1ksIHGsveKZRG3L11i0bW1rX0pYUPSN6xjXljhhEUFcuAyTPR1tGhkYbFgg0dy4OiInT19OrZVxoY1LswPYkItFhZQoU67+z+/WIaNTLm5s18rJ0/1nwhrBOBvpKZy+vvzaBJE0cWfdsTI6MaDl2/fo43/Hci0AW3b0ll5gryMVCXObt//z5Gpua1yswBaOkZcv/ObUwsrCisoS8qfFCrLF1ZcREVlaCvqFGWriAfA6WSSpVIWVEhClMz7ufdwkitL6sUpTJ2d6WyPkUF+Qj6Co1l7O7ff4CAVFap8G4eRo0sKb6Xj6gnjXHNskHaSvNaZYNqlrHTrS4zV7/sEYBOzTJG9/PRNaytLyvIqy6rVNO+kYVVdVklqF1Wr24ZI+mY6tvXUZpybN0vpC3/nrheo3D0D0dHXbZPYWZByf0CdA3VZfuqyvDVKUunq9Dcf7GkGAMT01ploQCMjI1qlJGSyt7pa2tRViyNZ82yVno6AnqGyurxL7qXj7667F3153vnNkbmFqjKihke5/vMRaDrIooim1csY/rwQdg6OGKgUKBQGmGoUGJqbk7/CVNR1EmvelIR6J0b1vL14L54evsyc/EyDBWKf1UEmqILUtk7KyWFReXcvPWAz3qvR6HQZ+l3b9HIXPFQq2lhIcgR6Lr9eMoR6KrzvVbZO7U/rzrfob5/rqmv6x/+TK+lZ1DLn+splJSrrxd1y+SVV4pcSU1k+8xRtOk9CpfAcPQUSlSVYrW/aqhsXJV/MzDSXGZOVaOMXVWZVI36O7cxtbCsVeavqv8lDwo0Hm/V9bHm+JhYWDI80kOOQD9NHhWBrqioIP/2bfQNDR/mHtfRCYKAl38g7d/+AN+wlviEtsTDpwXFDx6QtG0zr3fuXu+CUF5exoB3X6eJrx9rf/qeI4n7MLeyYvwXXWjz6htM/PJzykpKuHzmNFtXLCMwMpoB772Op48fq3/6nrTEfVha2/LrvJl0HzqKJbOmYe3gwOWzp/H09q03YW/o1/2JtFTmjR5KVLv29H/vdZr4+LHqp+/xDgjCwLB2tOFJRKBVlWUMHbmU3XuPY21lygefzeK9t6NZtHgfYWFh9W2Un+TBgxLWrD/EqPF/MHD4Ur78vD3TJndGX7/OhP5vjkBXlJeTez2HwoIClCam1e1FxSWoKiuZ1f1jnJt5s2fZEs6kJGFsYc2PQ3sT2v5lFo/oR3lpCTkXznJg3Up0dPX4pseH5GZeYu+yH0nbup47N66xfvZEwjq+ydJR/SkvLSE38zI7F3+Dd3QbFvb+FAcvb5JW/My1c6cwUBjx26i+BLZ7id/HDKCitFSyt+RbmkW3ZnHfTth7Nefw+uVcSE3CyMyCVWP74du2I2smDEREKrp/YNlCmkS04vdBXbBt0pzj29dy+VACCjMLNk0cQLNWHdg2bSiVpaXcybxA2opFuLVsxYYR3bBs4s2JDUu5lpGCoZkFu6YNpkncC6QsnkVxwR3uZF4gfcUPuIbFs2lUd6zcm3Fi42+19F5xL7JzxlAqy2rb3zd/AiY29hzb8BvZ6QcxNLNg25SBeMW9yI5pQ6koKyHvynnSli/CLSyODSO7Y+XenOMbfyM7IwVDY3M2jurG9VNHsHDxwNjGobo/LiGxbB7zOVaNm3Fi0zKuHUtBYdqIXdMH0yT2RfbMHEZlWQl3Ms9zdudaHP1asmlUdyzdm3FS3X9lIyu2TxmIZ/yL7Jz+sP/pa3+hcUgMq4Z2xcajOenrfuPG2WMYGJmwbkJ/fNp0YMOkwZSXllBw/Sr7lnxD06jW/NK/E3ZNmpOy+leuncrA0NiE5aP74d+2IyvHDURVXsbJ/Tv/qxHoyspK8vNuo2dgUK9GehWCIODp7curH36KX1g4AS0j8Grhj6AlsH7pz3zU86taD6qq2udx+bMIdGOvprSMbcW3k8fxSc8+6Orq/qsi0LO/2UIzTyvav7uUn5alM2baPvT1tNm/oQtKZZ2I898cga6oqOD6tWzybt3C1LxR7W1/IQJdVlHB6SOpbPx1MUcT9nHmaBoXjmdw+cwpykpKsHJ4uOD9WY9AXz93GgMTU9ZMGEhFWQm5l8+R8OuCeuf7pbQDGJlZsHnWOJrFtK2lT1n9K03CouvpjS2sWTmmT7U/r9If2bQCt6BwflP789Q1S7ly9CBKcws2TBhA89Yd2Kj2P4f++InU5Yt4ecxcDq/4sdpf3Tx/Cj2lEVsmD6Rp/Itsq/K3mRdJXb4Q9/B41gzrhrVHM07tWMuV1NrXiy1ThiBoCeSeP83B3xfSJDyeFWp/eGzrKi4fSqzVn22zx1Ba+IDcy+dJ/m0hnpGt+G1QF+y9fDi06hcupx1AaW7B6nH98W3bkR3zJ1NccLf2eA7oQv717CfqH+VVAY/B2l9+YvXiRdy+eYOCO3noGxji4e3DwKmzcfVs2uB+ZpaWmFlKKRwqlYoty37h1U+7arywGCiURLfvgINr4+onFNq7uBHeph0KI2NCW7XBs4X0ZCx9A0OUxiaEt2mHnYsbgZFSXUk7JxdiX+jIhqVLiO/4Ci3Ui9I0vV/VgqOykhIMFApKS0rQ1tHByt6BsPi21fbt1fYFQVqkVFpSgqFar6u+UFVWVKBvYEBxURH6BgZUVlZqzP+urKxEFKGiohIDAz2KikrQ14Xn2kjH5eFux6svhWFsbEhgoFutfYuKiti8eTPLf5vB9l3HCA/15O3Xw1k4rxuNGhnVWGD5ZFGpVGhpaVGmHp+q40Vbm8J7BSydPpmTqQe5m3uTBwX5GJs3QlVZiWMTT178tBstouOoLC/HQGmEb0wrTCytADiXdoi8mzcwbmTBvdu38A6PRtDW5lTyfk4m7uNSeirWzm6YWFlTXlpMeVkZmScyyD5zEn1DBc0i4nBq5oNKlPpoYGREs6hWWDg44REcjigINHJwollkPPpKJU3DY3Fo6kOFCkSVCgOlEV4RcZjbO+HkGwSImNk74RkRj75CiUdYLFZunoCIlpYW+kojPMLjMLN3wsbLV8qNtnOicVgcegolzkFRWKtXPQtaWugplLiExGBkZYd9C2n1t4mNI87BMegaKrHy9MHCtYmkF7TQVShxDo7B2Nqhvl6hxCU4Gqs69q08mmNq64Sjn/RDy9TWCdfQWPV7R2PdpEqvjZ7SCJeQGExsHXFoEUp5STEpS+dRWVHBq9OWkpW6H6sqvaCFntJY6o+tIw6+Un+Mbav6r8ApKAorD2mRq5aeXnX/TWwcq/tvbG2PS4h0vDX7r6urg57SiMZhcZjaOeHkHyblOts74REujad7aDS2nt7oamtTUVaOvtIIz4h4zOydcAsMQ09PDwtHF7xj26KvVNIsujVOTR9ZZOipsH3NSpbMm8ntGze4czsXA0MFTr5I9O0AACAASURBVG6NGTFrPs38Ahrcz8TMHO+AIECKSu/dtJ43Pun8yKcY/n9ZMn8WH3bvhaFC8WjxP4TS0nK27TzOxh3nGD1tH3Y2RrzRoRnTRrcl61rBX1qP86RQqVTMGjucxJ3byb2ew92825hZWCKKIg4ubnzU8yviXuhYq29lpaUkbt/MjtUr0FcoaREWjm9oOM4eTTiTfoQ969ewe/1qDJVKIp/vgKFSSXFhIXdv5ZKXe5O5g/uy9kJOvapYzyoKM3P0FUqaRrX+P/bOOjqqq2vjv4m7koS4ESSeEEOCuzsUKQXaUihQCtQolCJFirsXd3cIQSIQJSFBQoC4EOLumfn+mBAImaHQlsr78azFIuvMnnPPPffOufs+Z+9nY1i7/sgpKKKgokaLdt3QMTGnibtYblDHxBxr9zYN7OWVVVBUbWivbWhCi3bdGvavpIqiqhrNvbuiY2yGtXsbqoQitI3NaNq2Cwoqqlh5eBPr70P+83TajP8KE0e3euuVQCCDVmNTLGvXWwt3bwxsbMXJegIBCipqWHq0R6uxKZXNHIH6zwtLD2/0zG1AIE4GVFBVw9qzA1qGphjbuoBIiJahKdZeteu5kyeGNmJfS0Ygfh7ZeHVA08AIC1ev2vM1xaZVBxRVVDFzbEljq2Z186moqkYL764k1Cp2/FX4EMLxGiSFcIxq78HY6d/g6NkaHT19BAIBp3bvYOeKxQwe9zmjp81EQbH+2/yr773P01JZOn0ypcVFrDxyuoGONEh+Ay8vL0dGRoZjWzfQY8RoHkeJS143d3bh0qEDDPtiCleOHqK5s/ghpaGphZG5BWPbe2Jta8/XS1eirqmFnATn8nluDn5nT9F16Ecc37qR7iNG8STqLrLycljZ2nPl8AGGTPySq8cO0dTZFTkZGR5FRtB92Ecc3bKBnh+NJuHBPYRCIc2dXLlwaC8jJk3j0pEDeHfrSSODxg2OGRkaRFF+vtj+8D5GfDGVa6eO0Wv4qDqbkqJCnjy4R1LMA2LvRfMsJYmiggJSE+Kxa+lG536D6NC7H1o6uvX6LpEQUlEsZbtQeviFhO276hou7dxE24HDSXwQDYCFnSNBF87w5E4Iz5MT6DlhCuo6OmSmJOHeZyi+e7agoq7B9f07ENbU4P3ReDITnlJTVcXdaxcwaWZP89btyUxKoKaqkkdBflRVVKDRSB9LZzfcB44iMTIU75ETiLh4EpMWYtWC63u2iF9yLJrg2mco6Y/ugUCGxk1tibxwnNYjxnP30imMWzggEglIi4nCqcdAgo78hkuvIaTH3kMgkMGwqR2RF4/Tavh4oi6fwqi5AwDpj+7Vt3/yCGFNFYbNHIi6eBzP4eOJvnwKg2b2IIJnj+5h330AYcd20aLbIDKfiOPTDZrac//yCdyGjiP2xkUa1S5kGbH3sOs2gPBju3DqOZiMx+KQnsZN7bl3+QTuQ8cR43sOw2Z2deNx7DGQyLMHcejSV3y+gFFzByIvHKfdyAlEXno5P6kx0bj2GkTIif04d+tHaq29SXMH7lw6RethY4m4eBJ1HT0urF2Ehn5jPl6xg+Bje2nZZyhptfbGzR24d+0CXoNG1pv/lIdRtOw9mICDO3HrM6Sufws7R8LOHaP9qE8JP38SU1uxfWb8Y1y79eb6/h149R9K0oNoSgvyUVJSIOTcSdS0dXlyJ5iammqau7eikZEJ/SZNx2fPdrwHDSfhQTTKSvKYN7fj5vHD9B4/Ef9Tx7B2cMLM2hpF5foOoJyMDP0tDd57CMednPoybBP796BL/0G06dYTXT19cYz9kQOsnz+HnkM/YuJ3c1B+LSTj1TCL3KxMfpkxhZSEeDafvICuvoTcByl4Fxm7Fztm4/p0QUVVjQUbtqGrpy9xJ01arO7v9f0qGklhtt9Z7adoZ92fJSUVRN1P4e7dOCLvpZKQlEN+QRlxCdk42hkxbJAng/u3pLGBZv0+ZCWEa0hhj6Uy07ISXjikaEk/KKji568mEf/4Ed8tXoGBkTE6evrUIGaib1w4y74Na8jPzWbkF1OxtnPgyokj+J45SRNbO3oO/YjyykruhQRxLyyY7OcZGBib0KnfINr26Y+lhMT4K8cPc/PMSebvPlTXJi2EQ9rOoqQwC2khHNLapTHnktqlRJJIhazkTR2JkNa3pHG8ei4FmRns/m4SusamdP9iJorKKoSdO067URMIv3AS0xaOiBCQ8jAK116D6q2HAoEA42b2hJ8/Xvf8MrNzBBGkxETj1nsQ/gd24t53COlPYsRydS0c6voPPLIHFVU1slOTSLwXibC6msykeBzad6GxlQ0Glk0wt3ci+MwxOo3+lLu+FzFsIi7ElvwgGs8+g7m2fzvdx36GnPxr0pnA507m/7sydv9GiEQiMlJTyXn+HB09/bqtxSETJtKuZx9WfD+DTzq35tvla3Fu1bbBd68cO8TGn39k6OeTGTnl63diAqqrKqmuqq5T4Xghf6al24iwm770Gf0J4f7X6+xtbO0wMrdgy8XrbF44l3GdWvP96k14tW9YFaq0qIg7/jdo07Mv4Tev4dSqDVFBgahraaOiqkb4zWv0GjWWO/43AJCXlyfc/zrevfoSdtMX59ZtuR8eSkV5GRpa2oTc8KXfmHGE+V2nqZ2DRAf6yb1oMlKS0dDWJvS6L65tvDm7fzdJj2NJiI0hIfYRuVmZWLWwxc7JBYeW7vQaMhwNLW2MzMzR0tGVquv5viASCrkf6Ecz91bEhon1O1U1tfA/doCslET0zCyICfZHRVOLZ3FPsG3TmdiQQPpN/Q6nTj3Jy0gj6uoFnsXF0nHMRGzcW2PfTlw5signm26ffcXu7ybRZdyXPA4RX19ZWVkeB/vj0X8ET2rbAPLSksh/nk5aTDQWzh4kRIaI2Qc1NZ6G+NOy33Diwmr7kFcgPuwWLdp1I642CzsxMhR5JSWU1DSICw2gZd/hxIfdQkZWFmFNTQP7Z7H3KC8uRFldi7jQAFz6Dich/BYCWXlqqipJuHOLpt5diQ8LwNjRg5QosXS7kromCWEBOPYexrPYe1RXiV9kEsNvYdO2KwlhAVi6epF896V9fFgATr2HkRQVgqhWPi8h/BbN23Uj9V4kJrZOJEaK9ZWVNTR5GuKP18ARPA19OT9PQwOx69CdpOgIzOxdSIgQ26toaJEYGULLPkOIvHiSjKePaNa2E8LqamoqK3kS4o+lqycJr/Sf+jCKiu79683/k9BA7Dv04HGwP1aunnX9a+ro8ijIH68BHxEbElBnn5n4GNu2HXgU5IdpcztOrVxIQeYzjKybkp+dRdePPyP3eRo2rh6kP47h6v6dhFw8g0gkoqmbB7GhQWjqaqOsqkZUwE06Dx9F9C2xRryBkVEDB/qfwrPUZHIyn6PTSK9OWaPPiNG06dKd1XO/Z4S3G9/+uobWnbs1CK+4fv4MS7+dTp/ho1iyY18DIuJ9YOuJC2xcsoDBbVry0+qNdO838L0f848gPj6ekJAQ7kec5EFMOg9i0kl7lo9tc0NcHIxwcTBh2AAXtLVUMDXWwkBfQ7KT+w9g09KFnNj7G+OmzeDpo4cUFxVSWlKCtkFjlJSV6dp/EF36DSQqJIh9m9ZybNc2ug0cxh7fQAxNxeEfFTU19BszDoCignzUNDQRCARSnwEysrLE3o3g/N7f6Dlq7D/Cuv/XERcRyoG5X9FmyGg6fTKZtMcxFOfmEBvsj+eAl88jWXkFnoQEYte+e731UCAri7K6Zr3nl7yCAtVVlTwJCcShQ3dia+1THz2grDAfFQ0tYm7dIO3xQx7cvIKusRnqjfSpLC+lx+df47N9LfKKSlzbs5Xq6iqcOnYnJy2Z1oM+IvlhNFUV4nCmR8EBOHXqQcxtPzoOG93AgX4f+MBAvwZJDPSTB/dYM/c7cjKfM23+Ujw7dn4Z/ywScePCGdbN/R6tRnp0HzycLgOHgECG5d9MIy0hnjkbt2NTq30qbb6lxYDlZWWiradPQW4uquqSkwvLa5MLNTTqsw4hN3z5dcYUOvTux9T5S+rFFeaXlSEjI0N+dhbaei+TBUVAWXExGtra5GVlolXbv6yMDMoqquRlZ6FTOx5NLS0EiKsuamjrkJuZibaeHlRXS5SoKqusBJGIooJ8Tu3azqld23Hzbo9lc1ssmzXHslkLjC2skJOTQ03C90G6MP77YqArK6uQkZWlOD8PJVVxckN5aQlZaWncv3WTsqJCslOTycvMoCDzOflZz+n6ySQ6fDSuzr6oSJz892oyH4CckvLL5L/8vLrkiaLCIlQ1teuSw17YCxSUeRoaiO/WFSgoK9P3m4VoGZlTWdYwWUQkFNVLtigtyENRVQ1ESExWAxrYyymrgeBlMscL+9LiYgSvJX8U5+ehoCo5WURScklFYT6Ktazkq8kiGo30GoxHW0/v5fh5mSxSUZAjMZlGnHz58npVlJSgoKbOlU2/En31HIN+XIaZvYs4WScvG3Wdhv2rSZh/hVeSL1/tv6a8VOL1VVVTpSg3m5y0FHZ/PwXHjt3p8+UsZEQ1qL2SDFpRVoqCrAyKyso8uOXPvkU/8vG8JTR3b4WSnIDy0hLUtLTJz85CU7cRFaWlqKmpNgjN+qcY6KSnT1g7bzZPHz3gq/mL6dCrXz1HOfiGL79++zUKSkr0HDqC7oOHo66uzvIfZhEVGsT8jdtx9mz9h8bzRxjoF4gIvsWPX0zAvY0381ZvrJfj8U8y0CKRiDVr1rB48WLat2+PvU0ldi2MsWthhI21PvLyclBTKvnL0hzov5mBvnDnAaEBfmSkpZCRmsqz1GQyUlN5/iyNAaM/4Yfla+vZS0wAlHINpD0DKmtqSIp9xIbZs6iurmLa0lUY2UjOg/nAQNdHZbWQwCO7ubZ7Ex/NW0mzVuKw0OqaGsqLCmuT0bNR09Gtn7wuYT2sKKmf3FxTmywoTo7MQV1XbK+oooZAAEn37nJiyWyMmtoyZPZiZGVkEFA/mbKsMA8lFVWePY1l/7yZ9PvqB0xb2KOpq1dvfX6RfC8jrEb2tTCe98FAf0gifA2Skgh19Q3oNWwkeoZGrJv3Ayd2baMwP49GjQ3R1NHB3KYZQz6dhImFFaF+11gz+xtO7tqGR4fOzNuyC30jKXqbr0DitkpVFVP7dqNd734s+OIT8nOyeXgnlOunTmDb0p2ZQ/pibGnN4U1rCbl+FXs3z3pbpSaWVvQaMYrtSxdi2ax5nb40wJNHD4m7H82SKZ/h3bsfiyaOIz8nm6TYGPauXIp7xy58M6wfxpbWHNu8jnshQcjKyvLL5E9p16c/CyaOpaSokOiQ2+xduwKvTt2YNrgXplZNePogGisJW2w+J45w88IZfpkykbLSEmpqhEyYNZteI0Zh0bQ5Wjq6dU6BghT2QFryh6SMbWkLrXQJuoZ9Z6WlUlVZyZYZkyjKyyEu6g4Xtm2gVf+hHFz0I8rqmiQ9jKY4V1x2vKy4CE09fYJOH6EoL4eE6Aiu7d1Gcy9vNk0aiZ6ZBdf3biPm9k0UVVTZN2cajp16sHf2FErycki6F0GkzznM7F3Y8eUodE0tCDiwjcdBfsgqKHF5/SJ6TJlNwP6tpDy4S01VFTd3rcfGqz27p41G19SC2we38+zJQ4RCIScXzKBF+x4c//krSvJzyXj8AP89G2ni2Y6908ega2pB2Kn9xN66jpyiUj37qsoKku+Gcmv/Fqw923Hg6zHomFgQdfE4sQE+yCkqcu6XWTRr152zi2ZQmpdD+sO7BB/cgqVHO47MHIuuuTWhh7eTEOqPnIIi53+ZRdN23fHbvpy81ETSH94l6OAWrNzbcWjmWHTNLAg6tIO4EH/kFJU4s3AGLTr04NhP0yjJzyXlfiQBezdj49Wei2sWoKSmTsCB7TwO8kNeUZEj86Zj37EHB3+cSkleLsn3IvHduY57vud5cPMKfWfOJ8b/ap39jV2bsHTx4NCcl/Z+ezbR1Ks9O6aMrjf/cgqKHJn3NfadetbrP/LSaSwcXdk8eRR6ppbc2LeVR7dvoqyqxvaZnxN8+gjq2rpYOrUk6UEUNw/uorlnG1Z9OgIDM0t8dm0l7m44cXfvcGT5QipKS0m4H0VFSQnpTx9zbN1KnNp1ZNGYoRhaWHFuxyas7BzqJaqC2Jk8vHbFe08inPhaEqGWji7dBw/DomkzNi3+mf0b15CXnYWuvgHajfQwsbRi6Kdf0MTWnojbAaycPYtDWzfS3NGZ5bsPYWoloST1W+JdkgtfL+VtaGLGoNGfsG/zOjS0tLGxtav7TJoT9LZ9A6hIKdyg/AZitKCggOHDhxMUFISPjw8TJ06kg2cpdi2M0GukjuwLD0okmQRARop3LskplmYrrWCKJHuBZLm6GnVdFBQVSYp7SllpKeWlpZSXl1FaXIymjg49Bg+rby/JuZRyDd7UrtWoEbbuHpzbtZ3U+Dja9hkg0Vba9ZWU6CctiVBa+7ukiL4rfynzDq6ftL5fb64oK+XQ/G94HHqLz9fvqwtBA8hMiufw/Fk0a9WerZNHoWdqgd++baQ9uo9IJOTIT9PrrYcpD6K5sXsjTVu1r3t+hZ45zIObPsgrKXFw7nQcOvVk/+ypVFdU8MDvKieXzaHL+KnEBN6gsZUNQScPcv+mD/KKiuyf8xVOnXpyeOG3PA4LIvD4fp4nPMXSyZXjS3+isUUTru7ezMNbN1FQVGLP7Gk4d+lJVnICWvr1d8EFwLktaz7I2L1PvEnGTigSIRKJeHAnDJ+TR/E9fYLGpmZM+GY2rTq/LF1aXlpKdlZmPYf1Bd6Fga4RCrnjf4OW7ToSExGOYW1/makpNHd2JdzvBk6t2pCRkgyARRMbidtWy2dOpZmjM4M++bSuLTM/D1kZWaJDbtOyXUceRYTT2NwCkUjE8+Qkmru6ccf/Bo5ebXiemoycjAwGxqZEBd/Grb14PGaWVoCA9KQEbFu6E+Z3HedWbakoLkK7NlnuVeTm5nBg/Woe34vi14MniAj0o2Vrb4nbtv8WBrqkuAQFJaV6BVCyUpMxtXPm/ObVxIYFkXj/LtVVVTRxccekuR0dRk6gMDuzrgBKRnIS5vYuPA4JwNrVk9z0VAA0GxsRHxlGU8+2JN+/WysgL3baTVo48iQ0ECsXD/JqC6zIqmhwfuVckqPCce41mFbDxoGMzEsB+bBALJw9yM9IQyQCTX0jkqLDsHJrUyeYj0hE3rNUjG2diA+/hbmTB/kZ4vFoGRjXs1c3NEGAgPz0FIxsnUgIv4WZkwc56SmAuMBKSnQYFi3bkPqwfkETwxavCuzXFogxMK4T2M96fA8NA/GL5QvB/MQ7t7B08aQg45WCAtHi+Ul9eLdOkP/F+abcDcHc0bVufsQFR0JpWlsgRsfIlOcJTzg6fxZ2Hbph4+mNtVvrevbJ9yOwcvWqtRf3n5uejLm9S4P512psTMLdUGw82tb1D1CUmY6prSOPQwKxdvUgt9Ze39iYSJ8LnF2/lAkrttbdD0UZaVg4OBMTFIC1ixv+x/YTcOwAKuoaNHf3otdnU8hMSkDPxAxFeRkyU5Jo4uTKvVv+tPDwIis1BSMzMxQU6yfb/VMM9Au8WB9jo+9y5eQxfE4eRVNHl/EzvqNL/0F1dpUVFWSlp/0px/kF/gwD/QLrFsxBWUWVya+8GPxTDPTmzZs5c+YMZ8+eReHFGvhKDHQd/uUMdExRDbevX2XHmuVEhYVQVlKCk7sn3QYNw7tbD0wsrOq9/PwVDHRRSTFHN67hwt5dDJ08jf7jJ1Ij5f74wECLkZWSyM5ZX2DU1I4h3y9C/rUE3sqKctJiH2Jm78yTkECsatc3oUj8vHh9PRTVPl9M7Zzr1s+C5+mACO3GxiREhmJT97wzo6K4kNWj+/CzbwQJEaFYudYWQBGJkyDjIoKpqqjgwsZfEQBeA4bR2MqGFq07EBscgE1tQTEAHUNjnkaE0tzLm+rSIlReJxj46xnod7gcHwBixsPezYMZi1dwNvoJ477+lpXfzWDPmpfC/EoqKhKd53dFVUUFDh6tOLBmBboGBuKEipAgtHQbsenn2di5eXB44xqepybzPDWZxNhHEvsxtbQm6UlsvbaKsjKOblmPrZsHW+b/iJqmFiFXL3PH7zpqmlpsmf8jtm4eHN28jucpKWSkJnN401rs3DzY9PNs1DQ1uX31Mrd8LqGuqcX6n77H3s2Tg7XZ+EUF+WSkplBTU0NqQjzlZWVE3AogPvYhls2as3nBHOzdPDm8ZT1FBfn17RPF9jmZz8nJfE55WRkpCXHU1NTwLCW5oX1CPBXl5eRmZZKblUlFWRlpifHU1NSQmZZKcUEBxQUFZKalUlNTw/PkRCrKy8jPziI/O4uK8jIykhIRCoXkpKdRUlhASWEBOelpyCkocH7rOjT19HkcEcrjiFA09fS5fnA33cdPpmW33kzbvJdRcxejpqVNSsx9fu7TljNrlxIXGUZcZBgajQw4s3oRFg4tub53K7nP0sh9lkbgkT1YOLhydvUilNU1eBhwjYcB11BUUePC2l8wd3Dl6vY1RF46xaWNy1g7ohPySsq0aNcN1z5DeRJ8kye3b6KsrsmV9YsxtXcl8OB28p6lkZ+Rzu3D2zGxc8FnwxKU1DWIvX2dJ8F+KKlr4LNhCSZ2LmIh+ow0CjLSGtjHh/rz+PZ1FNU18N24BGM7F4IObaPweToFGemEHN6Bka0L1zcvQVFdk7jgG8QF30BRXYObm5dgaOvCnZN7KXieTsHzdEKP7MDQ1oWbm5cgr6rO06AbPA26gZKaBtc3L8HI1oWgwzvIz0gjPyONoMPbMbZzwXfbCnFc3a3rPL51ve58jW0d8N+/jbxnaeQ9SyPgwDbMHFy5svlXRDVCDs+bzt5vPqf10LHIyitg4ezRwN64hQM3dm9EXVefxKgwEqPCUNfVJ/DwLiyd3Ak9c4TSgjxKC/IIPXMYSyd3ru/aUGsfTmJUOOq6jfD9bQNWzu4En37F/uIpKivKKc7NQVZO7pX7QY/zW9aQm5HOnF5tCTpznE4fjaV1vyEMnDqLG4f2iO+3O6E8jYpAS8+AU5vW0NzNg+tHDlKcn0dNdUMn4t9AhggEApo7ufDV/MWci3rMVwuWsHXpQlbP/b7ORkFR8S9xnv8qmFvbEP849vcN/waUlZXRokWLl87zfxitO3Xlt7M+hKTkcNw/lF5DRnDL9wr9WtoxqlPrv+R+LczL49aVi2z++UcmdmpNytOnbLh8k8ETp/xnlDj+CZQWFXJ23TJWjR1Im8EjGTFveQPnGaA4LxeNRvpc+20Dls7uhNSuh2WFBYSdPdJgPUy6F4G6rj7Xd214Zf3MF6+HZ49g6ezOtd82oNFIn6R7EQSdPAjAhXVLXvZfWEBxXi4nfp3L2bVLOLFsLh1GjqfnF1+jY2RKYysbfHasx8rFg/DLpykpyKekIJ/bp45g7eLBlR3rkVNo+BL4PlbHD0mEElAp5e20wQ9eRgavbj3Z4OjMhM5t8OzSHWtbsZSUtDdcqdqWEt6qhbWsxqAp0wFw6yau2lVcUEBeXh7FlZUUFBZSXC4OoleuKCevrCE7ZN+hM98N7UuHYaMwayqOCcsrqyA3P5+80nJyc3PJLy8nr7iYGllFVAtKyMjMITG3mGfZuajnF9FITUl8rMpK8vLyKKmsoqi8nJrqKgoqKmr7KCO3IJ+7T+OoeRRLbFgQfSdN5+CShfSaMJn7CanEP41Dy9qW3PRUop/lkpiRxTkfXwAehwfTe+JXHFmyiD6fT+Zh8C0AbD3bcHHnJkbOXoDP3t8wqQ0PeWk/n06ffMHj0NsANPNozdVdm+k/82eu7tyMdUuxzE3cnWC6fTqNq3v24tFnCE/CxPY27q25tmcLH/0wn4t7f6Opm1dd/0OmzqT/JPH869cyxAB9xonZ/F5jJwAgatWG3NREHgb509jCir6fTcbWqw3yikqUVVZTVVKEsqIMNRWlyMuI7w2RsAYZGQHlxUXICAQIq6ooKyrkUdANYoNuEhvkR96zVBpbN8PAuil2HXvSY9ocLq1ZgEgkoqqyElk5eYRCEWVFhYiEIipKShDWVCMjI0dFaSkCoLxYrFFbU1kJtXHw5cWFCICK0tJaSUNRA3sZoKamCnlZAZUlhcjLCqguL0VFQQZhTQ2C6nI0lOUQlpWgqypHnoz4HtZVlUdQUYK+ujxq8qCtJH5PzxVWYKSpiExlKUYaihTKi38LjTUVka0sxURbiUeCanRVxPY5ogpMtBVREdRgqKFAnrx43gw1FJCtKsFESwlFYUWdfZawAl2FGtLvhRN2+jCWtnYMnTId9649uLhnB031VYkSVGGsIX6w5guqcDLRwW32D+KL6vpSkrKLh/h37PH1tLo2hb7iXaa2838WN3iJtzplBAK6uov/bjXza4RCIf4XznD28C609fTZcOYyjrUxvlWVlVw9fpi7l89iYGzM4u17aNm2fb0QAOd5CwBo5+yIXG17G0dx//bTZwLUtb+K96Tk2AClUpQNJDlEjm3aseH8VT7p4IVn1x44tRIX2HgX5hikh2pIYoCk9S2NuXRp256V82YTFOiPg7sE7fm36ENVgsP7rEbyONJKJT8DHDQyCAvzw96uWf3CLEqmDY1lpDjYUsMvJDPF7wst1F9l5GVx8Hbn4c3L3AsLxsTMjG+++wF9ORHKymKnTZI2v4KE+yw3K5PQQH/uBt0iIiiA9KQk7N3ccW3lzaId+2hRK4v4AkpykudD2nVUlpe8EywJ0p7x0vCuYUFvC0na1SA5HKWyohyfA3u4sGMTrp268cuZq+gYGEr4thh66hYANG82CwCTCZ8BICsAvMXPSauZ4s8cba3qvudoK26z+vwz6oj6tuI1cOT0mUT5Xefmb+uQlZNnxsadOLRtD4DpuPEEXzrHmS3rUFJRYdSsH3Du0Bm516j35jPE/VuMGfOy0bsVAJ/MnCVxDZB9DwvkhxCOuu3lDQAAIABJREFU1yAQCEQBz8WFQOZ+OgYTS2s69htYlwQoCUKRiPP7d3Ph4F42nLuKrKzsX+NAS7HNz85CQ0eXSP+b2Hu1IjNVvIVhZGklMYRDRiDA58gBTm/fzLLj51DX0iYrLx8ZWRliQoNxbNuep1ER6JuaU1haRXZ6CpYOLjy87U9TN09ynqWhp6qIvokJ94ODcGnXgcd379DYzAIQhyg0c2lJpP8N7D1bE/s0HkQidI2MiQ0Pwa51O+KjI4nwu8F9/2sMmjUXK2d3HgX5Y+fZipzaLW9dQ2Meh4dg27odqTHRNDISC+JnpSZj5ejCg9v+WDl7kJPR0P7J3Yi6LfLs1GQsHFx4GBSIpbM7ebVbPC+2hJp5tSPp/l10ax3inLQUzO2dSYy4RRMX97oteB1DYzJi79O0ZcOHqsxrwWgikYjz2zeSHveEnGdp5D5LJ+95Bioammg3NkTH0BiRUIiVkytyiopoNtLHwMaeR8EByMjIcN/fl4y4x5QVFWJg3ZQW3l2QlZPHtfcQCrMyAFBtZEhSVBjWHi9DGoRCEfnpKRjbOolDOJw8yH+ehkAgQFPfiMSoUKzd20oM4XjVHsRbcq/a65iYAoKXISKhgZg7e1CanY5IVBsyERlCE09vnsVE1ZtPM3tnHocE0LSlV10IxKvznx4bja6hSb3r9SjIn+YeXnXz/+L6Onm3bxBCY+XoQmzYbZq6upOTnkZNdTUPgwM5vXE1Lu064tm9Fy1qnaHntffn3YCb2Hm2IitNfD/oGZuQnZqCmYREI0UJD15pcfkvFmuhUEjwNR92/foLAhkZJv74M+7tO9U5f3EPH7Bg0nh09PQZP+t7XF5R7ZHm9ElylKW1CwTgqKX43kM4XqyPS6dPRl1Liw59B2Lr6ib1O0KRiICL59i2eD47fANRVFL6RxzoN83xzYvnWP7DTHZf8WtQXvxVvIsDLe140tb1iFPrWfbrZsJCz6Oq+kq4RHVMQ+N/uQMtCevWrSP4TiSpKcmkpSSTlpKCuoYGxqZm6BmbYmhihqGpKY2NTTE0MUXX0IiSoiKiw0OIDgsh4nYgWRnPcPTwwrV1W1xae9Pc0bmOaZZEfEkLxXmX/Jj/BQdaWFPDrXOnOL5uOeYt7Bn69fcYWdv84WNKCe+XPI7aYYhEImJCbnNi3XLKiooY8tUs3Lr0qPttZyQlsPmbqcjIyDLwy69xaNu+7jNZKcHfclLapTnQA6waf5Cx+7vQ/+MJLJ81jf3rVmJsYUX7Pv3p2HcATR2dGyzovUZ+zOWjB/E9cZTuwz56r+OKux+Nla09Oxf9xKdzF+J/7hQAY7+bg7aevsTvdB02kvSEOL7q3Zlv1m1FpKhEbsYz9i3+mTn7jnFoxRKcvDuAggp3rl7gs183cGzFAoZ9M4+wS2fR1lTDvXN3di76iV8OnmDvsl/w6Nqd6soqIvyu882Gbexc+BOf/rSQYL+bFOZk49GzH4eXzeezpevYNH0iZSXFtBkymoubVzF2yXpOrVqEwrfi/gHcevTl2IoFzNhxmBuH92JoKd7mvR/ox8QVGzm8bD7Dv19AyPlTDewvbF5FUw/xG27MbT/GLd2A38HfEImERFw5B4BLtz6cWb2IyVsOcWHDMpq3Er/1Pgry4+PF67m8YyPdx08m/PLL8fgd3MWMrW9mpUD8gO/7+RSEry1aBTlZpMbH8zwpnrMbViASCkl+9IDKslJqamqoKi/HzrszmQlPsfPujLquHhmJcTh378+OKaNoZGZJ9NXzANh26s3l9b/wybr9+G5ZQRPPdsgpKPIo4CqD563BZ8Niuk/9kfu+51HTbYS5syc+Gxbz8Zp9XNu2AmsPb+TkFYi9da2efWygr3gcnXvXs7fr2IOK0lKehvgzdP5aLq//hR7TfiQx7Balhfk4dunNhXW/8OmGA1zevIKmnt4AxAb7M2rROs6t/oVB3/7MnYun68//5oMEHt2PvoVVvet1cuVChn83j9CL9e8HS7sjnFi9FPtaluLF/XDj8H7S455w8+gBstNSaGxhhbK6OmNn/8zqr77gWWI8AHf9bzJz3RZ2/zKPcXMWEHhOPJ42ffoTFxWJ2VeSM/XfFlWVlVw7fZzDm9YhJy/Hx9O/xbtXX+RqHW6RSMSJHVvYvXoZX877hT7DR71T8tu/FX1Hf8KyGVM4vHk9+sYmdOjTn/Z9BmDX0r2BQoh3r75cPLyfM7t3MOyLKf/QiKWjQ6++JD19zOhOrZm/cQdeHTv/bcfOycpk97pVnD+4i5s3jtZ3nv+HMG3aNEa/kn4iFArJyswkNSWZB3GJpKck8Swlhcjg2zxLSSE9NRlFJSUc3DxxdPNg0MfjaebgxN8rZPrfhUgkIjk2htArFwi5eBZ1HV2+XLEBaxf3v3UcNdXVhF+9xMWdm6koK6XvxKm06j0AebmX62PA6eMc+nUhAydPp+vocf+Z9fEDA/0aXmVYQJwQuHvVMg5vXoe6phaq6uoIhSI69OlP6249ae7kgnxt9b2x7dyZtXwdzq3bvlcGurK8HHlFRfKzMtFspEd5qTihRKVWBu11vPo2FnL1Muu/n0GPsZ/S59NJFOXlotVIr06mraCsmorSElRfk9lqrK6IkooqBdlZaOnpU5Sfh4qaODGlrKQYda2XsnepWTmAgLLiIs5sXMWdq5fw6jOQ9mO+QF1bh/JX+m+kr09FrQyN4isyNBXF+SipvJSNU9PUoiA7C2UtXYn2+blimZsX9qqaWuRkZqGu85oM2QvZuIJ8lGoVS8pLxPYVBVniY7/Sf01JIeqvlZ2Fhgx03TWTwAaUV9UgEAjqzSdAjaySxPHk5RegqqldT5YOxDJ2dTJzhfkoqqgirBG9lSxdWWE+Ciqqby1jV1aYL5YlEryUjXthL6osq5vPF/ZVxQV1snR1MkY52Wg10pM4/xXF+Si/cn1f3A86enoNrq+uvj7FBfkoqagiFAqJDQ/m4W1/wi6fQ1FZBZdO3WjZuQdNXFpSmJONoaEBRfl5KNfKKpWVFKOprVMnA/fi96KkokJVaSkq6g0TrN6GgS4pKuTCgT2c2LEF8yZNGfHlV7T07vAKayJ2IrcsmkeY33Xmb9uNiaW1xMJG/0UGGsQvD4c2rWXPqmUoKCmjo6dHWUkJ7Xr3o22P3rRwaYmSiioikYjJfbowYtI02vfp/69joF8gLMCPnyaNp8+I0Uz8fm6DkuJ/JQOdl5PNnvWrOL57J72GjmDFT+MwNm6on/+/wkAD5EoRD5EUwiGtCIpUGbsPDDQikYiEB/cIuXyBkCvnEdYI8ejeC4/uvbFyEBN/UnIf3wlvw0BXlJXhf+ooF3dtQ1vfgF4TJuHUvnPdy/WLPi7+tpWbxw8xdfVmTJu1kHy8fykD/SGJUAJefalQUlHhiznz2eETgJG5BVq6jRj79bfIKcizcd4P9LW15IueHZn/+VjUtbTrYvzeJ0qLi/hxxEBk5eVZPuVzAs6dIuDcKR5FhP/udz279mDVWR9Cr1zgS++WlBYWsGD0EJ4lxnNk9TJ8927neVI8KycMR1ZOnu3ffkn45bPcvnSe5VM+R0ZOjh9HDCQ9IY6j61exb8Vi0uLjmD18AHLy8vw65TMirvmw+etJfNe9DbJychhaWuPVewDBZ45wftMKspITWP/5CGTl5Pnth68Iv3yW8Mtn2f7tl8jIyrFywnAyk5M4te5XTq37leeJ8fz6yTBk5eU5uuxnyfZJ8ZzbuIJzG1eQmRTP2s+GIysny97ZU4j0OUekzzn2zp6CjKwchxd8S1ZyAhc3reBi7Xg2ThyBnJwCO7+dwp3L57hz+Rw7v53yl4jxi0SiBvMZfvksp1fOR0ZWjo0TR9QbT25aMju+HImMnByH504j2vc80b7nOblwFjKysuyaOoqclASubVtF4IFt5KQksuer0cjKyXHi5+ncv36BR4G+nPh5OjKysuz5ajQ5KYlc376agP2bG9g/9LvM/esXGtjfPryTa9tWkZOSwK6po5CRk+PYvK946O9DtO95Ds+dhoysLDu+HElWcgKXN6/k8uaVZCUnsGXSSGTl5Di9cn6D+d84cQTZqUkSrpc8u+fMaHB9t8ycTOS1Kywe2Z/p3s7sXzCbOz4XmbxyEybNWtDYwoq0uMdsnDEJWVk5Vk75nGcJ8RxatZRDq5byLCGeJZ99jKycHCunTeTW+dPcOn+aldMmIvMuae2v4Nqp44zycuZxdBSLdx9ixZHTuLXr2MDRu3n+DNdOH2fl4VOYWP57Euf+DF5dH+UVFPh4+jfsvhlMUwcn5BUUGTfrB7R0dNmxdCED7Jvwade2LPryU4ry82jbs88/OPLfh7t3ew7cCCImKpKJ/buTkZby+1/6A9ixahn93OwpKijgWEAYs5evlew8f8AHvAWSY2M48OsipnduzfqvJwEwZdVmVl29xUffzMHa0eVvZXUjb17j6y6tuH/bn4nL1vLj/pO4dOzaYGfqQfAtLuzayrc7Dkh1nv/N+BDCIQHD3R3w6NQFl9bemNs0w9TKmiZ29mw678vFQ/vY+ss82vfpz6pjZ5GXVyAmKpKHd0Jxbt32b7lJVTU06TdhIirqGvQYPRbD2lhkBQlZtJKgb2zCj3uPsnPe9ywaO5ze4yZi3KQpbRQUKakUoWtsQpcxn6Kspk77oaPRMzVHVVSJrKwcymrqtO7ZBwMzc1q4eYIAGpuZ07pXH5RU1fDo0h1NMxtOJ6yg3ZCPGPHtPPyO7UfPxAxzB2cECNA1NsOpc08UVVSxa9sBk2bipEA5BUWUVNVw7dITXUNjWrQShwTomZjRsltPlFRUsXR0wcimeUN7Y1Oae4lZlkYmZjh37oWiqjqtB4+ui43WNTFHWV0Dpy69aGzZBHmF/uJ2Y1Paj5yAkpoa3sNGoWdiLu7H1KxOHP7PQCAQNJhPAE0jS5TVNWg/ckK98agYGNFmxHiUVNXxHDgSHeNae0MzlNQ0aDV8PHoWTZBTUEQkAm1DU7yGjUNRVZ2W/T9Cx9gMEKDeyAAlNQ28ho2rtVcABGgb1bfXNjJBIJBB28isnr04K1uEtpEprYaLx+M+YCR6puYIAF1jsX2bEeMxsGyCfK0coY6RKd4fjUdJTR3HTj3RqY1lfzH/7UdOwMDMGree/Wrn34xOo8Xz03rAsLpYZz0TcxSUlKipruL0+hU4d+pG78+nYNvKm9iwIKycXOlSXYW+qQUABmbmqGho0H7wUEyaNK0bj4GpOV0/GoOKugbdR46lsbl5rb0FCkpSpLzegLLSEjb9PJtlB0/QzMnljWzqzXOn6f/xeLR0G73zcd4Zf9Nm4mCX5nh06Ixr2/ZYNGuOqVUTTK2asPrYWa6fOcGm+XNwbdueJbsPo6KuTuy9KB6Gh9Jn9Cf/iepwOnr6rDtymj3rVvJxF2+W7NhHyzbef+kxAnwu8eXseYz4bNJf2u8H/P9CTU0NJzet5cr+3XQaNpIZG3dg1txWzDRLE6p+z6iuqmLfLz/xxdI1OHp3eCPjHe5zkTZ9BtLoLWpl/BvxIYTjNQgEAtGum8GE3vDlXkgwKXFPSE9OREfPADPrJpg2sUFLpxGXjx3E0bM136/Z9E79S9vGkbQd9K5hIO+y1VRcKd7CCrpwmlPrV7LwlA+Kysrkl0reY7t76xZ6ljZEnD9Gm48mcPfSSXSbiJUKnsXew6H7AEKP7sKx52DSH8eQeCeQ1Ht3aNK6M+7DxvPA5zTGzR3E9o/uYd99AGHHdtGyz1Cexd4DwKiZA5EXj9Nq+Hge+13CwFocm5oaE41rr0EEHtyJZ/9hpMZEA2DawoGwc8dpN2oCkZdOY9pC3H/Kw2jc+wzm/vVLuPXs3+BcVBQks44qCg0f7kpyb04cextIu45lVZK3Ed9Vd1QSpBGrksYtL63gg7zkc5cU3iAt211a4t3bZESnJsbz02dj0TcyZs6aTQ2c0HcLb5B8PEnnAtBU+VbDxlrt3RWrjhEaFsvRQ7W6wSIpUZmiakLDHjNoxBKe3N+CsvIbylRL6+Md7QUqQ957CMeB2xGEXvclKuQ2yU+fkJYYj6a2DibWTTCztkFHvzHXz5zA0MycJXuPvNPW9buGdkiy/ytJjJAbviydPpm9fiGoa2lLH8dbjg3E9+ftaz6snTebQ/6hdazcu4SeSLN9l3OX1oc0veymqhLshYEN2wBEksMvpEJS6ImUsJPHJZLvJ0khH9Keie8SwiEtUEOa7/RXhBtJ1ZJ+5e+sZ+nMnzQeWVlZfli3FT1Do3q27+I/SDveu/4eAa4cOYDviaMsP3rmjXZCkYjU+KfMHNiLHX6hqGtpvfOx3nV83Ux0PoRwvG9YNmvB8C+msmjXAfb4h3LpaTqrjp1h8GeTMDQ1JysjHX0jE7Jq1QL+y2jVewAWtg6cXL/ijXYpD+6Sl5bM0xB/KkpLeBoayPOnD3kWe4+EsEAqS0uIDw0g/1kKGY/vI6oRkvk0hrig61SWlpAYfovM+Ec8e3SPhDu3xPZhAeSlJ5MYGUpiZCh56SnEhQZQWVpCasw9UmOiSY2J5mloIBWlJTwJ8ScvI5X4iBDiI0LISUshNtifipISnoTdJuVhNCkPo4kNCaC8pISk+3f/pln8gPeBQ5vWYe/myfK9R/4eBvctUFJSzorVJ/jpx9FvZe/h3hQ31yZs2X75PY/s74OZtQ1DPpvEwh372HMzGJ/4DDacucKISdMwtbYhNzMDHX19cjOf/yu0qf8MPDt2oV2vvqz76fvfN34HeHXsQm5WJvGPHv6l/X7A/x+c2bMTfUNjlh8+3cB5/qdQXVXFwXUrGfP1t29lb2LVBK9uPTmxbeN7Htn7wQcG+jUIBALRzWcF763/fxsDDVCYm8Oc/l35dPFKzFpKfuvPLaqgorS4XjJZYWERCEBeSYXSvBxUdRpRWpCHjKIqUReO8DTQl2ErdlOSl42Kli415aUIXrOvKSlAsTZMorL0ZXKbjn795LMXyWqVRXko1SYv/l6ymo6+ZEWSDwx0ffxbGehdq5ZRUVbGlLkLJH7+TzDQDdhneCMDDbBh83nuRiWwY8tUyXZv6uMd7f8OBvrVJMJXIW39+S8z0AClJcV80qEVn//wE10GDZU8jrccG4jvT98zJ9m7biV7fAPrxvuBgX4NHxjoN47l1O4dPLkXxczlayXa/hMM9Nuyz68e8+aZk/idPcm8nfvf6Vh/ZHwfGOi/Aanxcf/0EP5WaOjo8sXy9ez66Vv2zP6K/OfPGthEnD/K4dmTKc7NZte0UcSFBeK3YzU+6xaREBbIgRkfU5Kbzal504g8s5/A31ZTXlxISV42R2aOJenOLQJ3r+Pq+kUkhAdyaOZYSnKzOblwJkFHfiPoyG8cnTuF4txs9k4fQ3xEMOdXLeD8qgU8DQlgx5RRFOdmc37dEvwP7MT/wE72fj+Zopxstk4exeOQQE4u/5mTy38mNtifTZNGUlr4/l6EPuD9w8jMgvSkxH96GPWQnJJFZWU11RIqAUpDWPgTPN2bvsdR/b2Ij/n/xZqqqKrx89Zd7Fi2iB8+Hk5arTziH0V1dTVblixg8pz5/xm5rg/498HI/N+3PmampSISCqmQUNBNGh5HRdLstQI4/xV8YKBfg0AgEA2fNJVJPy16L/3/GxnoF6goLeX4prXcOn5QnKgnENQt8JWVVVRVlGPj1R7DprbYeLYjIzUZRKDZ2JjkqDAs3dqQHhPFkxB/MmLv02rUJAxbOJF05xYmjh4UZ6YBIjQNjEmJDsOiZRuyHkejYyROGsurLQgSH34LGzdP8mtDZLQaG5N4N5QmHm3JeHwPncbihIMXBTuehATS1M2L3PSXBVPiI8UFXCQ9oD4w0PXxb2Wg74eFsGbOd+y+6i/x83+Cga6oqGTAkPloaaqxf8+34qS432GgmzlM4sDuGbi1fEPhgv8QA91zxChmr93S4LP/VQb6BSorKji6dQOHN6/DqrkdAhmZumMJatdKG3sHxkybiYaWttRzuXz0IGcP7GXr2Sv1xvqBgX4NHxjoN44lJf4pM4cP5FBIlETbf4KBrqmpYdm0iRQXFPDzzv0oKErP+3hxzBkDezJy2izc/oD2+j/NQH9Q4ZAABcW3U7N4HS/KK7/ppvk3Q1FFhd6TZ9F60EgykxNAJKpbJFLiE1DW0CL05H7unDuKY9e+NO/cl+LcbGIDfXEbMIqb21fSomMv7pzYg/vQ8SipaxKwcxVeI7/gzondNG5mByIRTwJ9ce0/Cr8dq2jZewhPgv0AMLF34fq2lXiPmUTU5TNYOIsF3xPvhmLp6slD/6vYuLqTUyst1cjUnAd+PjRv05Gnd0Lq1B7iI0OwbulF/N3wv100/gP+OhiZW5KenPBPD6MeFBUVOHn0JwYMmU/7zt+wce2XODlavPE7DvbmdOn1E316uvHJmM506ez8u8epqakh5lEqd6MTKCgopbi4nOKSckpKxP83szHks3Fd0NB4pejG30SG/NH1EcS60fISNJP/C1BQVGT0tJn0HDGahEcx4vXxhfSJSAQiEX4XzjKyTUsmfDOb/mPGNdCRrq6qYseKJcxdu+UD+/wBfwqNTczIzkinuqqqrhrjPw1ZWVm+W7uFpVM/Z3r/7kz9ZTktWr75GWxm04zFX07AtV1HugwejmeX7r/72xAKhaQlxBF//x5FBfmUl5RQVlJMeVkpZSUl6Bub0GfMODQk1HD4K/HBgZYAFSUlVN/hhpQRCCgqLGDprGmEB/qzx8cP41qpsj+Dd2Gr39ReIeFtW1FOstqGrAB0rc1pYl1//DleYvu2ffqREB3BqRULiI8IwrZdN/KSE3geE0nmkweUZGega2qFmpY2CrICyvNzUJSToaqkEFlEiERCKooLkZOVoSw/BwU5AaKqcgAUZAXiNnkZ1NVVsbBpAlD3v2e3nijLy2JsaFA3LmNDsa6scddX3l7txOodRm1aSTxHRbm3Zy5lpbCc71L4QlmKrabSHy/4UDc+KbbSmF9J7UpS7vWmKqkS26mKbNhWLTkuFmGp5HZpjKvg5fhE5iKqK0poVrEPTU0J1dkEUiTRJPUtqpRsW1koub1UwvnU9qsMXNzTkx0HIunaYxYjBtiybE4nlJUlz+PxzR15nuXOsbMxfPbFSiZ/0pJvvnx5b1ZV1ZCUWsCD2CxCItIJiUgn7G46BnqqtHQ0QFdbGTVVeVRV5DHRUUDVRB7/kDtYLT/GxDEuTP/MA71GqtLn4y+GmrIy2hIkM9+0A1ZWWsrqud/hc+o4uy7dwLyp5OqP76vYxJv6ltRe84a1V0O3EU6vydq9WHvt27anx5hxbJk3m2O/bWX89z+ha9CY8pISyktLuRcahL6JGU3cPCioqKjXh7QdFUlrkLTYS2l9vAuLLe06Pihs2Le8rOS6B40UJPet8xf4eRKZcPFoGrRIK9wiDdmVDa/7O5+LNFZeWCGhTcq6JO23/FoBHcPG2lhWFWBlatXANKZI2g7n2xdt+yMqHABr9xzm4rHDLPpiHK07dWXmL7+irqEp8Zi/bNhGwcKlXDt3mt1LFpBwN4KpPy2sc6Krq6t5npZKfGwM9++Ecf9OGA8iwlHT0MDW2RXtRvqoqKmipqKKnq4uyiqqPIgMZ7y3O72Hj2LUl9MwqCXX/mp8COF4DQKBQNS530CW/nbgrb+TGh/HlKF98erYlcbGJvicPs6ui9dRlVDh7F3wPh3o0irJK0t+mYQfOZBTUt9eKBTif+o4gQe3I6egSE11FZr6hgirq2k3fjqahibkp6dgZOtEfFgg5k4eFGSmg0gcwpEUFYqVe1tynrwM4chNT8bUzpmnIQE4tm6LrATHTmpYgbwk51Ki6d/uQL9rZbR/vwN9v2Hbe3CgARy95rJ320ScHSW8kP4VDnS1FAda0vlI6Dc0Io22/XYRff0zmtv8vlJI2rNCOg05QAubRhQVVxKflEf682KMDNRo1kQXTxcjPF2N8XAxopGuCogk/06FIjlWbg7m24XX+fbLViyb2wkEsggMFrz3EA537/bsOu/b4DNpjld6agpThvajiZ09Tu5eHNiynt1X/CQqq/wXHOi3aReJRNy+cpHDG1ZTU1ODkooKyiqqKKuqMnr6N1i1sGvQx7/FgX6XcUgL93ifDvS74H/dge7Y+Wt+nLOcLl26NDD9Jx3oF0h8+pjBrV3Zed4XR3fP3z1mfm4Okwf3QVdPn5qaGtKSEnieloqOnj7m1jbYt3Sv+6erb9Dg+y9QIxRyet8ulsycSt+RY5hbG3Lm3kjl7w3hEAgEklPgJUMkEonm/Ynx/CsQHuiPUChsUDVHEgrz85j+0SDGTPmaoeM/RyQSkZacyOzPx7Jq/7H/ROGAPwIZGRmsPdqSeDcU+869ubz+FwbOXsbRn6aRHnuPxMhg4kIDGDhvDb4bF9N1yo/EhfpTXlSIbafe+G5czKjV+7i2Yx1WruIf1pMQf0YsXMeFdb9gYLShrmDKB/z/hY21AQ9i0iQ70L+DtPRcnmcW4ups8dcPDCgtreKzmedZPb/rWznPAMaGGvifHsM5nyeYGWtiZa6FmbEmiSn5hEamk5hSwKlLsazdEUZBYTlNLLRo3kSHptY6yMoIKK+oJr+wgm37o1GQl+X8vmH06tLkvZyfNNyPCKe8rAwl5d8vQlNWWsrXo4fSbeBQJsz8DoFAQOazdL4d+xEbTpz/z4a7/R4EAgFtevSmTY/eDT77s07JB3zAC9jYGPPgwQOJDvTvITc7i5T4OJw8vN7DyKCqqor50ybx6YzvGjjP0qClo8uWUxe5du40+oZGGJtbYmRmTuazdB5EhJGWmMgt3ysc37WdgrxcTCwssbBphnkTG+Tk5KmsrKC0uJizB/dSWlLC4h376NR3wHs5P3gLBlogEAgR17h6m1+9SCQS/ac9RoFAIDK1tGbZ7oPY2Dm80ba6qoppwwfQ1M6eGYt+rWuvqqzkqxEDadS4MfO9tp3HAAAgAElEQVQ3bP/DTvS/mYEGyCupoqq8rJ7MXGlhPsgrg6C+LJ2qti6VZaUIAPlX7CkrRFFVVTzO0pI6mTyDxvoS46A+MNCvje9/nIHevssP35sPObJnyu/a1g2vsoK1m3xYuuo8ANvWjWNQPyfJx/uDDLRIJGL05FPIysqwZ12fPxTPuu/YPY6diyEoPA1VFXk8XY2wttDG3EQTM2MNNNQVeZqQzaMnOTxJyEMkAiVFWZSU5BjYswW9uzapf9y/iYF2cvdk2tyFeLbvWO+z1xlooVDIN+NGoqiswvyN2+vGKhQK+eHTMVSUl7Ns18F6MdH/Kwz0m/BXML8fGOi3w/86A33qdAAbNt3k2rVrDUylMdDllZWc3PsbGxfPRyQUMn3+YvqPGiv5cH/iZe/XH2aSHB/HmoMnJJKRv/dbv37uNJeOHyYqLOT/2Dvv6Kiqro3/7kympPfe6SRAaCG0QOhVaYINULFgQ8SCFEUFBBQpYgFUlCq9iXQIoQUIEAihQ3ohvdfJzNzvjxsSQmZ8ySugvl+etViLObNnz869d8557r7P2RsBaBUYhGeDRrh4eOLq6YWVjQ0p8fHE37pB/O2b6HU6lGo1KpWaoB696T1keK3vfdgZ6Ach0IVImz+3AKtFUTz6sL78nwhBEMQRL77CrauX6dCtB439W9K174BamRK9Xs9Xk98lPSWZheu21CLJ5aWlvPPMUNw8vfn02+UPlM2+H/90Ap2WkcvVsL3cjjjBEx/MZMP0t+jz+ofcOn+KssICmgX3JfTHr3lq1nfsXfgpjTr1QFehIe7cSfpP+oytMyYw4K0PuXr0AAB+3ftyYOl8npv7A9cO/U73Z1+q9Z31BPq++B4zgRZkXgZt6/FwIaZNr/yPEQYgGDhnj4lAv/bBVI4f2Etw3wE09mtB934DMbOwqEGgRVHku9mfcu7kcZZu31Nr/iwvL2fqy6MRBIG5K9ZWbYKqJ9C1UU+g/3s8bgJdvzH08eB89p+XyTP2W/87CLQZMAIYC4QAycAaJDJ9+2EF8k+BIAjikbg0Th0+yO2r0USGn0Cv1zN/1QbsHJ3Izkjnjw1r2bHmV2wdHFmyaSdW94njQZqcSouLefvpIXg1aMQni3+oM4n+pxPo3CINZcWFlOTlYufhTWbcLew8fMjLzgbAzNqWnJR4HH0ak5OSgJmVLQhQkp+Lnbs3mfG3cPPxpbQgt9LejuzkeJx8G0NxHlYOjrW+s55A3xffIybQiYkpvPf+TMzNzXCwt2Phop8M2tbj4SJs22gaeNsiihXEJeTRNciDfUfiCA7yID4pHzDBx8uG46cT6d+zISfOJOHjZYtP+28fOYE+eyefEwf3cfPqZS6cDicnK4PvN+zAyd2D/Nwc/ti4ji2rViCXyVm+Yy/WRrTOFRoNH730HCYKBXN+Wo2JQlFPoA2gnkD/93jUBDozM5MJEyagUChwdHRk0aJF/02Y9agj/jUEuoaxIHgAoyv/+QFngNXABlEUcx9WUH8nBEEQRe2Rqtd6vZ7PPl/JmnUHadumKaFHzjNieHdefeUJOnTw+493nEVFJQwY9CF+zX1Y+sP7yAQjE21d6sDKjOgGjdTNNPQop9QIgS42Ml6kqf2oqdjAGEBJhZH6k/ra15raAPEF4/WXjU3YhhYDYwuBMRiyN7qYGDnvhuohG4vZaA1iY7vMdWG1x4xJJ4yN6wyMG7HNvJNC8NA1PDW4GY18bMnMLmHyrFBAkhK8P74tsz6QqknoKwzfeBkbF/WG68Su3RlDyyY2AJy7nM2YIQ34dMlFbsYVEnoqjXYt7Bj/bBOir+fSrYMzl2/mEX0zj33HUhk7tAHT3mjBlv2JDOzuTuQV6Uaurb89oyYcJTjQiVkTa0o5dDodC369zgtDfYm8Kk1hbf1s2bI/iVdHNmTt7/G0ayGVQur38hHCVvdm15EUXhjWgMgrOZJ9S3tWbYvl3Rebs2ZnLO1b2ANw5VYeT/X3ZvHKa7wwvGGNeFZti+GJnh48PfE4mgo9crlA9w5OrNgsNXFKPDacyCvZKEwEWja1Y9W2mFr+7x6fu/4vXCtgyPhDj5xAi2W/V70WRZFFS3ay4JsddOvair37zzJ4YBCvvjyAbsEtpflRZqBsnTwEkDLRw4cPx8zMjPXr1xNbbkSWY6Rur6GF0tiaVpeEhLE6wXUh1nXdmGVsrjG0xpjU8eb7r9oas69LzH9m76yufd7rLJEwVHva2LpqTDpRB5lFQV4ePQfPpXNQY9q38SUzq5APpq8HwNralGdHBLJ00XPVH9AZkLMZi8MYDEg7bsUXMeurvfy+N5qe3ZowbnQngtr7cOVmLpcuJxEVncSeA5cY/mQ7Zn8yHFs721o+pny6mZycIn78/vW6xXMP2nT8gKVLXqdj0H0VdozKUYzwmEr75ORM3npnCVeuJmBjY8Er4wbxxlvSDcq9HM2w74YGBj0QZLK/rw60KIrJwDxgniAI7YBXgCVAb6Qs9f8cZDIZMz8fR7t2TUhPL+DXX6ZiZWX+wJ+3sDBjzx/z6dv/PaZ//CNzv3jlEUZbj3o8HBQUlNH/uQ08NbgZs6eEVI3fJdDjR7dk5vsPf/PJsbPplFc2+TkcnsbQ3p4kppbw4av+eLqYcT22gM+/vURcUhHHz2cS0MyWzm0dmTq+BQ29pao3py5k0ryhNcciMgCwtVZhY6lkxeYY3n6+Kc4O1SXYKrR6Dp5Mo1t7J46drbS3UnIuOodnBnlx6FQaALkFGkpKdTjaqzhw8g7dAp04dk6yd7BXc+DkHV4e2YjD4WlVvq/ezqdfsJtk38G5Kh47a1WVvX9ja9ycTdm8J5FrMdV67LjkIo5FZGBro8TCXFnLv1Ihqzo+d/2HR6Y/9PPxnyAIAu9NHEpLf29u3E7n+yVvYWdn9cCfV6lUbN26lSFDhvDGG2/wwaLl9Y/B6/GPR1mZhqHPLqZ9G1+++Wp01TV7l0APGRjA9wueeSyxNG7oxOrlL1BQUMrG7ZHMWbifK9fv0KK5BwEtPQls58v77/TDr5m7UR+TJw2hScA7TH5vCI0autY5huLiMm7evkOb1rXL6f238PBwZOe2WRw9FsWkD5ZhZvbP23D8X5WxEwShAzAGeAYwB+aIovhoWvc9Ztyfga755n9fNjs7O58uwW/y9ptDefutYbUN6jPQNcfrM9C18Rgz0J/M2UdsXBprvx9yTzdKHSqveQCMHNSIlLRi9KKITBBQmAisXdwTV6eaN5d1zUDr9TqKS6T3zM1MyMguw9nBlOy8cqzMpZRUYXEFdjYqiku0mJsZPoZXbuWx92gq2w8k8vFbLRkQ7Mr78yIRBPj6o7ZVdiWlGkzVJjX9l1RgZ60iPbsMJzsVxaVadoWmsGVfMks/74Czg7qmfakOOxsV6VmlONmrDcYfn1LEoZN3WPd7HKII277vToVWj5O9msKiCpr2/Z3I3wfiG7IDgJSTI7AyVyCKeopK/rP/7LxyrCzNsGy15rFmoGvA6LxkPAN9F0VFRYSEhNCp7yAmTP+slnl9Bvo+2/oMdG08xgz0N9/vYf+hC+za9B7yyravoigis5I2440c2pbUtHx0Oj0ymYCJiZyfFz9F44b3yRIfQgYauYEa+X82LijJzCxg49bTrN8SzpT3nuSJwZ2YNXczN26lsvaXiXWLCQg7dpmpM37j1NEvHyxmqDFflJSUsW37SVatPUhubjG/b5+Jm1u19Ktx8xfYvmUWLVuPA/6FGWhBELyRpBtjgCbASWAasEkUxfyHFdD/Kuztrdm352u6BL+Jq6sdI4Z3/7tDqkc9DEIURTZsj+K375+osRCWllXfXA3t3xBPV0tkMoHc/DJGvbEXK4u/3mHuaEQG636Xug+OGuDFh19Gsv/XXoz+4CR9u0iZkQMn77D26y78fjiZV5+ubo+t0ejIydfw69YYvvghmlZNbUhKK+HjRRcJbGHH5Ff8aDtsD+NGNMSvkbRvYdeRVLp3cGLMh6fo08UFgIMn01gzvyP9Xz7K/Mmt2bQ3kfNXcmjrZ0e/l0PZv6Inoz+sjudaXCFz329Nv5cOM39KOzbtSQDg2Sd8eO+Lc8yY0IqxH5yksY8VbfxsOXUhk94vHEJToWPR9ECWr7+FXhS5fCOv6m955t3j9O3iiqW5gq0HEln7dZca/q0tFfTr6lrj+AwM8fzLx//vgoWFBbt37yawU2ec3dwZ9dKrf3dI9aiHUWzYEs6nU4ZUkWeQGiLdxZMDA/DysMPEREZ5uZb+I77F0uLvzaBWVGjJzSth197LfPjxbwzoE0BFhY7cvGIA3n17ME1aTSD89HU6d6xbCdnTEbfo2KHxfzY0gHPnb9J/8HQ6BDbl1XEDuBVzh+693if0wHw8PZ24cyebnJxC/Pz+enO6h40HqQP9ChJp7gLEAuuQNhD+s3rs/gvg4+PKHzvn0G/gZBr4utGmzX93wdWjHo8SFy6loNfrad+65qM8a6tq6cOzQ6p1br/tuEGvLu6Ym/31HUKd2zjg5iTVF/ZyM2f+lHY42auZPak1vh4WAHTr4IyTvZpenaX4ktNKGPhKKDGJhdhZK2nawIq1C7pgqjbhpY/C+eTtVtjbKBEEgdmTAhg7OZwT6/uiVsnp1MYBJzsVsya2wtdDyp53a++Ek52a+ZNbE9zeEU8XU557/xQj+3vx9CBvnOxVzH43oCqexLQSnOzVzJ/Sjm6BTni7SX68XM2Y8noL3ptznq8+astT/aUFIC6pkL3HUlm9PZaVW2OITymiR0cXggOrGwPc+/e28bcz7P/+4+Nlw9T55//yOfi74OzszM/b9zK6X3e8GjSi431l8upRj38CEhIzuRWTRq8QvxrjSmU1nRr9dHXd4wOHr9KutRcuzg8ubXqYyMoqpN+wBURFJ2FrY0YDX2eO75+BTCYQMmA2AS2lykqWlqYsW/Iao8ct4eLpr7GyMpLBNoAjxy4zbmzPOseWm1vIqOe+YNl37/DUiMrunoIcM1MVXUPepXMnf1JSsujSucV/VcnsUeNBIvoRCEDaLDgPSAJ6CIIwztC/Rxns/wIaN/ZArVZSUlL2d4dSj3oYxPHTcTT0sf9Tm1Pn7/DD6kvExOfxzowwBnT3ZMf+OHbsjyMxtZC5P0RSWqZl1dZbnL6QwekLGSz77TqlZVrmLbtEUmoxOw8lsvNQIompxXy5/DKlZVoWr7xGfEoR8SlFLFxxlU6t7flkcRS2Vkr2hKWwJywFWyslk7+6gIu9iqXrbjDo1VC6d3BiwZS23Dw4hK7tnPBrZMN3a27QwMsSL1czZiyOorRMS3m5JId4efpplm+4hb2Vgo/mX8TWWsGeo6nsOZqKrbWCz76NpmOAPQt+uc6GPYkUl2qJuJRJpwAHJs+/gK21ssre0lzB5K8u0Km1PQt+vloV/w/rbrA3LAVPFzN6d3a9J34FxaU6Fk5ri6gXGdzDnaG9PFi44mrV8b379x44Xv333us/IbX6+Ez+6gK2Vkr2Hkl81JfGI4eblzdWNrYUFxmRINWjHn8zToRfx8fL8YG0+tk5RXw4YysvPtfpMURWG6Io8vwry+nV3Q9Nzk9kxn/LmbCZ+Pt5sGtvJG1b++DpXj3XD3miA317BfDWpJ8f+DvCjl3m+o0UnhjYvs7xzZ77G/36tKsmz5WY9O5T/PrzhzwxqCMTJwzjm0UG+gD8A/CgEg4r4MXKf38GEfjlL8Tzz0BhdN3sDWn8jOgB58zaQtNGDnRuYwGl8dVv1EUDLRh5VG6SZXC4uZlN7cH7NIh3kVOhNjieXlY7PmO6xIdR6skY6lL6rS7lmABcTWv/HOxMkgwHortpZNzATmudkZI7xpqM5BsZN6RrNqJ11pcbVlUZ0iTfPza6rznrN+YycfIWvvqwtUE/aQkJRF1MZ9Hys3i7qglqrOXoOUm64GtbyPVryRTeMSfhRhLWWqlaxe2rBRS2hutXkslpqCEhWordW8jh2qU0Cq7JyIlLo0RZBEBufBHF0VCYmE7xFS0Ft6XxYlUuWXGZFJwTCA9LpSC3hB4uGsIjE8j3KCEnLoPiKxW0c9KxLbaI7s8eoE+AJfkX5Ny+mMGYQDVT1qSiySlgaCMtWUnZlN5WUJgoxZOpKKQoI5fS2AQyE7PYejyb1wc7k5eeS2l8AtkpOZQlJlOYKm3607hVkH0nh7LkZPLScyhLk7SYZfmlpKTkYakS0GSlUZQlSTQ0uXpyMvIIbuJA+Glo5yvDxKSE/Jzqc1aRn0lxXi5majkV+ZCTmYcmN4P8nHzK8wXkCjn5eQVoCrLIycqnojCbssLHpKQzpq/HyLihvSPyXQZN9/+0C2uzCsYPUSGTHax+w9AcC4a1joJhKcvNYsOa5DIj+z4MwdgcZmxPhCE8jLKWD0O/bAx1Kd1pbH+H0X0copH5VB9Te6yiDjplMDzPGptjDc3Txsbv0yk/1c+R1WtkvDx+ESuXDDFMpEtiycsvo+/IjfTv7s2ro9wQSwzc4Bq5nkTxwddKQTCSB5XJiE/K58LFWHb93BOhMFrqiFdp/8IT1pw4VoRb4zfZtmIoA3tJv6WF01rQrt8q1q9cybPD/Gq5LSgsx8xUgYmJDK1WzzuTVrFgRhfMKqIg38BTSGO/XbkZyfExDBvUAgov3WMvcaeegSqg8imorACK72l6VXyjhm3tg5JqYOyvSwxruXyAOtB1Ep6IopjwlyL6myEIgijmLqnbh+pAoHfsimTqZ1tQqUx4982+PDsyCJVK8ZAItKXhcUVdCLRhF/UE+j48SgJtbHJ/TAQaIK9Ag2fXTWScGoZKWb1ImrbaBMCxVV159dOLKJUyvv7An9y8YgL9pOssLrWUQH8rDp/JoXMDFUmZkn9PJzUno/Pp2daG89G5eDpKv5H49HLaNzEn9GKBZJ8lXYSeDkrCrxcR4mfO+ZgSvJ0k+4SMcto1NOPY5QLMVTImrEhl9QQvPB0UhF8vpkeAFeduF7M5PJ8NJ3KxNZcTPq8xm0/mo9HqCY0uoqhMh1wm8P5TrnTzt+Tc7RJ8nJRsOp7DrA2p6PUiZmo5FmoZft6mzBnnhZeLKScvF9CzjTXnbhbh4yzdbCblVtC2iSWhkXl0aWlNUob0dMnL3Yzg1yP59v0myGUCPq6SfXxGOe2bW3H4bC5dA6xJSi9HkAt4Oqtx6i31qTq0rB2+bqYgQtydUgL9rDgckUPX1jYkpZeBTIani5oTF/LoFWTH2SsF+LqZ0nDwsUe/ibBoXR0/ZIhAG24DfujIFT6c8jNlZRomThjKmOd7Y26ufuwE2tgmQmNzWF3qV9cTaAMwRKDrstEPHhuBBigp0eDZ+isuHRmPu2u1NENwnglAadx7hIxYj04n8vWMEHy9bPB0NZCcesQEOjGlgK5DN5F49pVa9vO+i+CLJWewslRyJexl7qQXc/JsMsfPJJOWUUxaZjFRh2s2M9u2+ybPvbULrVaPtZUKS3MlDbxtOLz5aelGwlCDpz8h0IOf/YXXxgbx5AD/e+wNcKdKH4K1VGZPzF9m3BYMcyRBiWA+8vFuIvy3E+J/GoY+0ZYnB7XmwOErLP7hAFM+3czM6cN49cWu9eWb6vGPgY2VEmsLBX+EpbLzUDILp7bFwbZ6slq8NhY3JzUR0blM++YaUdfzeWOUJ/bWSg6dyWLlrJZMXXKTr8b7sDE0E4AR3R2YtjyOXV+2YMW+DBq7SyTq8IV8VrzfkOm/JjJntDtbw6V6zMM72TB9TQo7pjZg5qY0erWUbhAPRxfy81terArLJcTfnPS8CpbsyWRYB2s+3pDGDl8zXv0hiQqtyNgQO/44l0/Lidcp1Yh0bW5OUZmeK4mlaPWwbE8GzT1MmfVbCq0bmvHLgSxaeJmyZmojnpxxg7eHuHD6WhGLt6UxPNiOj39J5Pcv/Ph8dRK92kg3DDdTypj5ipppy+OYO96XLUelJ0FP93UmNVNDdEwxO45m0itQqr96+nIB301uxrTvbzP37UZsPZyBlaUJfYKqH6V+tiyG3kF2WJqZsP1IBis/b8HUb28x753GbDmUjrWVgt5BDkxdcpPd37Xls6W36Ne5duOhfxt692pLZMT3HDsezeIl2/nks9VMnfw0EyeOqtXttR71+LtgZqbEycGc0BPx7Nx3g8Wz+uHhVk2kS8u0+DVxIDO7hI+/PMGVm1kcXD+cti2dHmucKqWcsvLaN4OLf4pkxfrLhO98hn1H4mnU6SesLJV07eBBl0B3vv3lPAnJBcTE59LQR5q30jKKeHPqQcK2PktgaxdycsvIzC7B29Pqv+Yu7q5WxCXm/KW/8e/Ef1XGrurDguCH1FDljiiKJx9aVH8jHnUG+n5ERSfy6oSVWFqo+PnbF/D1eYBFsD4D/UDj9RloA+MPmIEG8Ou3jazccgKa2WBuasK274KrMtDpxwZgbionI0eDs72K+SuuseNIOnu/b0d5hYidlYKMnHLsZTqKy6Tzbq6WkZlXgZOtkuyMYixMJUJUVKrH1tKEjLwKHJQixeWV9ioZmQVaHC3k5BZpsagsdVVUpsPWwoSMHA1anZ7gT25zbGYj3OwUZBboOBdXyrS1qez9pBEOViYs2Z3BxbhSvhzrhqutguJyPZ9vvMOhqEICfM1o7K4mt0jHqetFPB9iz3Mh9tjZqcjIq8DR2qQqfgtzEzLztTjZKMgt1GJhKl1HRVpB+ntzNTjaKKrtrRTMX5tIcmY5n73ii6VZZfzlIrZWCjJyNDjaSnpoQS7D3FSOdTepPFP87mAszeSIeunvtbvPnkr7zFwNTnYqcgoqsDQzwb7b4X91Bvr+efPGjSTGv7WEsrIKfvl5Mn5+PvfZ12eg/8p3GkJ9BvrB4ujY7weir2XQpYMnBYXlnN77clUGWrwzuYbt+u1X+ezrk5zb+ywW5ves3484A11cUoFzwHJuHn8RNxdpU/LJs3d46rVdROx+Di93K1ZvvsqKDZc5sGEUKpX0W529KJwVv12idQtn/Js6UFyi4URECv1CfJk9Jdjw90GdM9DrNkeydVc021a/cI/9/1AGWhCE54ABoiiOuW98OVIjlbuvw4H+oigWP6zg/j8goKUX4Yems+i7fbQJnomvtwP+zdzwb+6Of3M32gZ44eFu93eHWY//UcQkFDBjwRnik4soLK7AzdmMeR+2o1UzO15+qgF+Da0ZP+Msq76s2TRly4EUDp/OZPGUVvR/LZwZ431YvSuFQW9H8tWkpny29BZr5wbw0Q+3aeEr7eYOjcxj4dsNGTQ5ms9Hu7PzlJRpHhxky8y1yaye3Ig3lyXQuZk00R+JLuTrlzx45fsEXu/nwB/nJA3c4PZWzNyUwMq3PJm6Lo2WXqa8+H0SnvYmfP2COytDsyko0bF4VwamKhnBfuYs35/F8C/jcLCU066hGVvD82jhpcbNXsnWk7n0b2+Nt6OSjDwNt++Us2J1CvNe9mLcghh6BEgl78Ki8lnwhi+Dp1/l07Ge7KqMf2h3B8bMvs7aT5rx0twbBLeyIiG9nNNXC9FUiMSklDKmvwu/H5cy00+GOPLZ8ljWzGrBi59fpWd7W5RKOftPZVcd39tJJew6momtlYKubWz4bFkMa79oyYufXqFnoB1KpYx94Vks/LAZA986x2dvNGbfScN7IP7NaNrUk9ADX7L85/107f4O7u4O+Pv5SP/8fWjTVoGvr9ffHWY9/keRkprPtFm7uRmbRWFROXY2Znw5ox+dAr148ZkAPN2seHPKXhbN7Punfp4d5seBo7FM+PgIvy7q95iiB3MzBR+83o6X3jvA3rXDkMkEGvvaUFGhr+rLMHxgI7bsuYVf91+YN70bjXxs+ebn82xY9gSHjyeiVsmxs7HirZeceM6AJrqu0Gi0nLuYyrEzqewLvUFqWsF//tA/FA+yiXAMkHnvgCAII4FXgcNInQibAzOBKcAnDznGx46fV4UzdHAroi6nABDQwp0NWyMZ/1JnNu+4SOuWUkefi9EpjBzahhVrj/LU0HZERSdL9i092LornHFjgtm8/SytW0kT/MVLiYwaHsiyFWE8MyKIqMtJlf49sbU2I+7SXL77MQyZXOBWTDobt50lOSWHBj6OfL/weQoKyir9N2DD1tOMH9eDzdsjaN1KkqlbWNnj5fXvf4xbjwdHXn4ZWq2eDTuuMH5sWzbvukZrf2f0FUVcvJLJyEGN+HHdFZ5+sjFRV7MQ9BW0aGrPbztvUVauY+7Si4x7qhGDeniQnFaMhZmCHqP3MXKAD090d6akVItMBp9+G83Q3h5V39vOzwaZTMDSXM6AYCd83U2Z+Jw3M5fHEJdcTP8ujliYymjX1Ax/H+nJiEwmYGEqo3+QHZ6OCrr6S+M+zkr6tbfGXC0Q7GdGKx+JcMsFsFDL6NDIFG9HJV2bS+Pejkr6tbbESi2jV0sLmrmpGLkwgaGBVlioZPQOsEAmCJiqoGtzM1p5mzJpsD2ejmomr04lMraU2c+5olYIjOrhiLu9gqeD7bkYJ937+zgqadfEDHO1QO821gQ0lMrGFZRq2RmeTV6RlonfxWFnaYKnk5L8Qi39g+wwV8twtFHw8U8J+Liq8XRRMXaAC9fii/FxVRPcWiLiPi5q+neyx8JURp8gO1o3tkCUC+hEke1HpG6Fvq5qgtvYYCIX8HVV07+zAxamMnp3tKNNY0v0cgGtHizN5PTv4oivm5qOLY08gfqXQyaT8cbrQ3jxhf5cu5bAlavxXLkSz68r9/H6m0sIDu7AzM/fw9+/6X92Vo96PAD0ej0/rjrDJ3P388aLHRj/QiCWFiqirqTx1Ljf6BvSmC8/7oGpqQkqpZxtu68Tl5j3pz5nvBvEgNE7WL3lKmOf+utE9C50Oj1L10Qz/vkWbN59m9Z+UgOSazF5PNm3AbbWKm7G5vHTumga+drQ2s+JZo1s2bbnFi5O5rT2d2Lu1O78tv0qX3xziivXs/j2i96AQN8QH1o0dRfyisgAACAASURBVGDDzus8P9yPzbtu0NrfCQS4eDmDkU80ZfmaKJ4Z0oyw8CTOX8rgVlwup8+n0LG9OwIwbJA/rVu4cPFyGo72Zjw5Zj2NG9jRvo0X77zalW6dH173wseNB9lEmARME0VxzT1j24FegIcoigWVY3OAJ0VRbPEI433kEARB1CRNYdWmSwS2dgPg7MVUXhjViuWrzzLqyWaci5La6bYPcOGX9dG8/0bn2vZPt2HB0lOMe7YN56JSK+3d2Pz7ZV4b08ag/wXLzjDumQDORd2R7Ft78MPKs4gifPPjGfZveh61yoTo63k8PSyABT8cZ9xz7Tl3USLuvXq2ljYk3g+5gYXVaJeiOugMjdka69hYF6mLka6KdYKxjlV1kUgYs63Lo0FjEg4jvkWNYVmGTlPbT0FuPhv3xDNmSAMWr7zGC8MbEnklG5m+glZNbVi9M56Joxuz9o9E2vnbImrLWb8nhQOnsqio0LNiZgCZmUUgQpumlqzZc4fn+7swcko0hUVaVk5twsFzuZgqZWw/kc3Z61IljKe72vLZs678diyXtwY6MfyLm4TfLKVLU1Oi4stxsJLjZmvCj887EpUkPXIN8FSxPqKQN0Ks2RmRRzNn6Xq4mKxhVFszlp0o4ml/BVF3pCoWAa4K1l8sZXxbJZsvawhwla6rqDtaRrZQse5iKYOaqIhK1zLjcAlzepsRnaHjtbYqXv29iIgUHS2c5NiZCszobsr26xUMb67kt+gybmTpCXAxQSaD1wJN2Xy5vIb/UW1NWXqqBH9nBRsvlXEhtYJijYibtZxxHS1IzNGiVgjEZGnZd62M0UEWXErRkJijZWyQJS3clbRuZMb604W80cuGjWcKaO0lbSK6lFrBqI7W/HAwh+e6WHMxoQwThZyW3qY0n3gdgEUvutHG1xRBIedCbCnPBNvx/Z4Mnu9ux8W4UuQmMlr6mLIuLJu3Bjmz4Vg2bRqY033KtUcv4Sje+Kjc123+AUrKRJb+uIc5X23h1uVl2NlZGp/bTHoZHDbUqdWYPM2YtKMuEo6HgbpKOAzJ2YxJNerUIVV72PAX1lV+YWgTvTFbfR3mU6OdWg1L3MSKMiIupjHhk6MoTGQsn9cTv8Y1JZAFhRomzTzO/qOJJJ4eS2p6Mb8fjOdWXB5LfpUqeE0c15Kvp3Wq0ga/PeM4y9Zd5akBvoRHpmMilzGopxeLP+mITFb7uBqVcBjo5ptfWIapyoTFK6/wwvBGnL8sPclq52/Lqm0xvPuiH+2H/cGbzzejUxtHom/mkpldxqdLLtK5jRPuLmZ0be/MwO7u/Lr1Fi0a2/Ljxps0a2BN/2BX4lKKGTOkIYtXXq3yr1DIadnUhrnLorG2ULLu91hy88sJbOWAq5MZrz3dlO/WXsPJXs2vW27Rr5sH7s7mbN4Ty/ypQZSW63iyb0OcHGr/VmXy2hxGUEhzp+D6lXR87kpkTKwNHydDEjFBiWD79mPvROgA3L+RsAcQdpc8V+IoUPcekP9AFBaVcyCsuk/MgbA4hg9sRmR0Bu0DXAkLlzLHdjam7DsSx2tj2te2H+THviMxhHT2ISw8vso+MjqNwiKNQf/7QmMI6exNWLh0uO3szAkLT2DbL6P4aW0k3684S7dO3kTfyGVgn2bsO3yDkC4NCDsZC0DHjn6GCXQ9/mdRWFzB4fA0hvb25MDJO3Tr4MyxiAxsLASszBUcDM9g3HBfDp/OILdAw46DyVyJLWTxZH9W70pGrxeJuJxPeYWIraUJhyNyGNXHmdiUUoZ2sePCrSKiY0tY+JYvu0/nVn3vwYsFiCIkZ5czuL014TelRe3kjVL6tjRj4gAHRixKYtfFYpLzJEJsYybjyPVSxnS05EJyBXcbG4bdLmegvymht8ro6C4jPEF6w0YtIyxGw/MtFByNr9apHo2vYEATJdHpOlo46zmVpMVSJfBbtIbsEj3PtVBhqpDxTpAJcXl69tyqYMaRUi5naDkYU8HlDC1NHeQUayo4lazlVJKWkgppYdKLIluvaDidouX3q+W4WcmwN5fRwVPBS50smXuogEH+pkzemUdIIxXOlnKyS/VYqWWk5GoZ0dac/FId4TFl2NsrCL1azJguVoRdq170z8SWM7CNJaFXiujS1IzwGyWYm5lgZVZNHsOuSDcqpmYmHIkuZHCgNaGXCujS3IKTV4swM5VjaSYn9GIBL/Ry4MilAgysw//zMDNT8f67w7h8JZFlP+1l2kej/u6Q6vEvRWZWCVO+CGVvaAJzp3RmzIhmCIKAqK9J7k3Vcm7E5PH2iy0RBAF3FwveGCPlDe8S6PDz6bwx/RjfzwomO7ecZeukGu9b9saRfPp58gs1jJl0hC174xg16K9lYEtKdWi1IgeOp9It0IVjEekAONgoOXAilZdHNkYQYPWOGBQKgYvXcvlsQgDbDyYS0tGZnzbe4uT5DE5dyGDX4SR0OhF7WxX5hRp+3HATS3MFKoWc/cdTCA50Yu3vsSSkFBOfXEhRsZYXRzTC19OCj15rgVJpwv7jKTRraENGVikTX/AjO6+cOxmlODuYYmWhoE9Xd975/BSBrV0NEuh/Ex4kA50CvCWK4o7K1y2BKOATURS/uMeuG7BHFEWLRxjvI4cgCOKdS+/g7GhBcYm0aJubKcjIKsbZQUV2TilWllLmrLBIg52tKelZ5Tg5mN9nX4azkwXZOSVYWaqq7W2UpGcW1bbPLK5tX6zFztaM9Iwirt3KYty7vzNzcgiB7RtgbanGxdmK7JxirCyluzNRblGjG1IV6jPQNfE/lIHWlBQikwlkZJfh7GBKdl45VuYK9OWlFJZosbNWkp5dRm6+hpAXj/LyME+mvNyIohIdzvYqsvM1mAsaEAQKS6TNanN/jeNEVB6/TWuMIMhqbP6zHXwKgCvf+dPxw2uEzm6KhamMLzemsPJoHqO7WrNwjAuZhTpOXi/hu71Z7J7oiiAIFJXpsTWXk1Gow0GupUQjzT1mSoGsYj2OFnKyssuwVFVuztOI2JrKSM/R4Gguo/LngkouEhavRa8XSSvU09XbhNlHS8ku0bPjOWvJv1m1/d5b5Wy7pqGtqwneNjK6eyuwNZVRpBFRKgU2Rpez4nwZfk5yrmfqsFIJ9GuqYlgLNVZqGZYqiZmWyEywNZORWaTDwVxWFb+5hYLMIj1OlnJyinVYqqX4i5FjayEno0CLo6Wc4kp7CwsFmYU6nKxMyCmS7AWFnKIyPY0nSBnozF/8KS7XIyjlmKvkZBZocbJWkFOoxdJUDvLK42lhUmOzo/dLUf+vMtB355TLVxLoM2gGi+e/QstWzWja1KN21Y76DHQN1Gegq3EnvQj/kF8YO6IZn00Kwtqqel26n0Cv2XaD+csiubB3VK3ssYnvUgByo16iRb9NbPyuDx3bOFdloMc/15zvZkpr26ETyUz8PJyoPcMxMal5LuqSgRZFPelZEkHNzi3D0lxB5JVsElOK0OlFGvtYsmz9Tc5eyuLEhv5YmCtqrBfHz6bz86ZbNGtoTafWjjTxtaJFExuKS7SUlGk5cjqNmd9domkDK2ITpRv7557wpXuQK0GtHUnPKsXJXk1xiRZBECQ+c9d/bhnW1mpAoLC4AjsbVZW9VjRBqaz9e/9fy0BfQtJB76h8PQqpYcq+++yaAnceVmB/J179YA8TxgWyfvsVAJ4Z6sekGYcI3TyKZ97YRf8evgDsOxLHxuVPMuLlncx4P7iG/Vffn+G3pcN4evxW+vdoWGkfw8blQ+kxfB2LZ/WpYb/oxwhWLXmCp1/bTv+ekv3RU4ms/GYIPUasZtHMvtjbmTJtbihlZQcpK9dy5cQkxry5kf69JO1fp6BmdO9a3x78/xPikouISyriwy8j2f9rL0Z/cJK+XVyxUMG2QymsnhfIgNdOMOsdPzQVepLTyzgVlctHi66x54cgXvj4Iv2DbKjQihyOyOHXT/35cXsKPQPtWLAxlcz8CoYHO/D24tsM7FS9mXXKqmRKyvWolQJDZt9m1khH8op1aPVw5Goxn2zKYOskTz5cp+W9TVk0cVZy5Hopy8c6MeKHO3wx0IotUdJCOLSVKTN257PtFQfe2VlIRy9pAg2L0bBsuDWv7SykkZ2cU0laZAJYqASuZejo6GFCVLqOwkMibVzlmMggs1jPO3uLeb29KTtvSAvwk02VlFSIvNBazZu7i8iorMYQFl/BsiEWrI0qZ0YPM745VYqvrZyX26lYFaVhdFsZr27JJ6ShRNLC4jT8+Kw9w3/OYtYga7ZfkuJ/qr0F03fksvV1Z8avzaRHU2nyjsnR8fEQe4YvSWHWCEe2n5MW8+Edrfl4Uwbb3/fi1R9T6Olvgalazu7I6gd6YVeK2HYmHydbBV39LJm+JoWdHzfilW/j6dnKCrVKzp6zefw80Zchs24xZ6wHf5z9cw3m/zJa+Hvz6fRn2LjlOFM+WUOjhm7s2Po55uZGqn3Uox73wNHeDHtbNUP6NqhBng0hO6eU4A5uNcjz5j9uExGVUfV658F48grK8W8slYD7bmYwn7zTFif76uuxVxd3XJ3MWLP9Ni+NbPJfx349Jp8+L+ynW6AzJ89nYGutJDWjFHNTExp5W3I0Ip3uHZxp09yO9+ac45nBvrw35xwHVvZm9PvH6dvVje5BLhw4nsKHr/jT98VDfD21HZt2x+Ngp6JHR1dkgkBAM1sSU4oZNdAbSwslHy+MZO3CbvR98QBfTw1k0+44lAo5Q/t488G8CA6u6s/zk8IY0teHsnId+48l89s3Pekzeg8LpgdRIcoZ1LNObUb+cXiQDHR3IBSIBDKAfsAJURRD7rM7BGSJovjMown18UAQBPHwlufoEuhJfJK0IHl72HDsdCJ9unlwJvIODbylu57YhHyC2rpy6Hgy3Tp61bA/HpFM724NOBOZQgMvSUMVm5hHUBsXDh6No3unmvYnIhLpFezLmchUGnhV+k8qJKitOwePxtK9k3eVvYuLI31H/kL3Lr4MH+RPA2+J2MhVVtjbGXgAUJ+Brol/aQa6oqwEmUxArxeRyQREUaQoPx+ZTMaJcxn06uxCxKVsfD3METVlxCWXENjSltDTGXRt58Cspde4dCOXDV+15eSFHHoGOXD2ch6etgKCDOJTy2jvZ8WXq+I5EZXPgte8QBBws1fRbOx5Jgx3Ze46SW8/qL01jlYmfD3Og7DoQjp6mZCULaV8PewVnLpZQoifOUv/yOCX8EI2v+5MVqGett4qjt4opaObjKQ8KbPjYWPC6fhyujdScT6mBC9rOWmFOlacLeXiHS3phXoGNFHiaSWjQidipZbhZS2jb0MF51IqKNdCM0c5ifl62riacDxeQwd3JckFkn93KzkRyRqCvZVcSNPiZSVlexIL9LTzUHAsvoKOngqS8yvtreWcS9PS1VdFZEoF3jbSdZ5UKtDWU8nR2+V08lWRlCtJU7ycVJyKLad7EzWRieV42UnXf1KxSFsfU45eL6FTIzOScqSsnKezmlO3SqUGMbGleDsqEExMSMjU0P8LSdqV8qMfSVkaMJHh6ajm1PUiQlpacv52Cd5OSpALJKRraNfYnLBLBXT2syQhvYxOH1z/f5mBvhc6VLw4bj5KpQkrfvqg+o36DHQN1Gega2LlxmhWbbxE6MYRNUO7LwMdfv4OEz45xrndI6vGmnRfx8jBDfnyhwsAPDekEe4uFsydHFTtR5QqX9w9daIIZy6m8eyEUCL/GI6tdWWpNkFAp9Mik8lq2csAvV4kO6+cnzZcZ8fBRJLTimnjZ8ewft7cji/A2lLJ0D5eFBaX087fnuUbbvLSiEYkpkqbpL3czCvXC1ciLmXh62GBKIrEpxTToZUDh8PvEBzoTEJKESIi3m6WnDiXXtMeGfHJRXQIqGkvIODlbsHxs+n07uJGRFQmDXwkPhOXVESHAEcOnUyhW6ArReUi9ramCEL1mqbXi8hNFNV/790xlSmiKCJzmy+d6pQPpTVQbqQG9WPKQD9QHWhBEIYCkwA7IAKYIopi5j3vewB7gFmiKG5+WMH9HRAEQdSmz2HqrH2EdJG0SWEnY5nxQS9mLzjIS8+24fAxSXPcq1sD5i05zrdzBjJzwVFCuvhU2scz471gJkzfy5QJXTh8XFoUewX7snL9BaZP6srMBccJ6SzdfYWFJzDjva5MmH6AKRM632Pvw7xvT/HtnH417C9ezcLbw5ppcw5zYNPYqnjGPN0BS0vjNRRrjhmrn1gXAm2EKBurU/0n9R0fyBbqvsAawuOuI2pkEhcrDJfv0ZUZrgR54+YdvvzxKoumtWPO0st06+CEoCvnSEQWU19tyvtfXeL9FxsTFpGF2qSCDi1sWLgmnvnvNeXLX+No72fFm19cZVg3B+a85svkpbFMGuXO8bM56PQi3VpYsXBbKqk5FRSX6Zj2pAMVOpFtZ/I5H1dGUCNT1p+UFp6ODVQsGOXAt4fzmTPcnq93ZdLZRzpn4fEa3utuzvS9hbzZVsnEPUWkFekJdFeQlK9jYkdTrqRp8HeSJsrTyVre6aDm06OljA9QcDJZy4ooDf6Ocsq0Il93U7I0SkuQq3Tuz9zR8VYbJUvPlzO0oZzTadLjzo4uMn66omVqGznLLusIdJYIwtl0PW+0kjPnnI5X/Gva74jT83orBT9EVdDBRfIfkaZjYgcVM0+WM76NivAUiSgH+ypZeq6cz7ubsiSijI4e0vV/LVvP0OZKFp8q5a0gU05Uarhbupmw9mI5X/S1YOGJEjpXZtbPpmqZ0MWM6fuKeLuLGSfiNCiVMoJ8VAQvkabVN7uY09lXiUIl5+itct7vZcW033OZEGLF8dtlKFUmdGygqjr+Cw7k0bWJKc8uT3v0BFqz/687qkvn1T+Dkbnt2LGLfDzjZ46FfXfPuOGbckP1oY0RaF0datzXtR6+zshabIicGyPQxhpamBgYVxshysZqO/tbGbDXhRm0NUpc61IT39g8bZQU1x43NseK2tq1v7VaPY27rWHDd33oEFDd8OReOYUoijw/MRRLCwXLZncGICaxgOCRf5By+llUTVcC8NozTfj205qlP9/6NJx3xjbjyGmpCEGPji78vOkm5Rodm/cm0dbfFg8XM/ILKvhmWgDTFl/mg5eaciRCymz36ODE0vU3mfl2czo+exQ3JzV9OztRVKzhvbEN+GDBNd4b68vRs1JjkpC2VixYE8/8d5vw5cp4ulY2foq6WcibIz35cPFN3hvtTdh5aW9LSDtbFq5NqGGvUCk5EpHNlJcb1vBvamZCUEtbFq6K4esP/Jn38y2C29kjk8k5er7menTqUj7ZeeU82dOdr1dcZ+HUNsxZfpV2LeyxMFVw7FwG0173Z9KcSD58uTnhUXloKvT06OjK/J+iWfxxEAt+uUpQGyeefEWae3KjXmTizHDmTe2Ks6OBjYhKAwlCmRmC82ePXcJBpf55x5+8nwy0elhB1eM/w8ZKjUbzkBahevy/wNXYYpQmAmqlkcL7wMXYEpxtFHRqVv0kw9JUTrlGz7Xk6gXtdGw5ucUPdv0Na64kIU+PlUrgaoaWt3cXMaSJAn8jTbmiM/XoRJgUqOTHixV1zrY9SpRpa5OZAzEavjpZSkPb6uO687qG6YdLaGhn/FjX49HBxsaCvDwjRKse9TCAiKh0Ssu0uDkZ39g2b+lF4lMKCf1tcNWYg60aOxs1MxZFVo39uOEmn7wdUEOyYQyfT2hJTp4GOxsVyXdKCD2dTugZV6P2RyIyyS2oYO4kPxQmMiIuZRu1fdzIK6x9Y7J+dyLHz2USfTMflUKaDw+fSmfRypv0D3bFr5ERHfO/AH+pE2ENR1I7HBtRFP+9fRmRMiyZNz7BwlxJwl2JhacNR8Pj6NvdizPnk2ngLemaYhNyCWrnwaGjMQR39CYhWcrOeXtYc/x0PL27+XLmfEpN+7YuHAiTJBn32p+ISKJXsE+lhOOu5COXoLbute29HFi+6hwrN15k6VeDq/ybKE2xszV051Wfga6Bf2kG+sy5RNq1sOPQSemRWWJqMfryEjxdzTh+PpvenRw5ezkXH3dz9Jpi4lLKCPS34vCZHHzd1fR+7RxzXvNhSFcHTkbn07OtDeeuF+FpCdFxpaw6lMm1pFI+ftadfu1sSIzPRwQqtCKzt2VwIKqoKpanAy0Y28mSdt4qwm6UEuQIyVWSDDmn4jWENFQSGVOCh5V0zhLy9bRxkdF0SR6hYywo0UrE2N1SxpkULd28TDiZoOG9Q2XM7q7GTi3Q2lnOsfgK2jvLSSmS5ip3C4GINB2dHOFSloiHheQnuUiklYNAeLKOtk4yUiszi27mAucz9TS1FUgppoZ9a2c5J1P1BLrISK3072YhcCxNz4AGCi5m6PGykuxnnCxnf4yWnj4m/DDQnJRCPbmlep7aUn2+Vg23wNNSRs9V1ed26RAL+jVRVUlE1EoZt7N1dG+gJDJFi7etHBQyEnN1DP5JWgzjPnEhOV+HoJDhYaPgVFwZIY3VRCZp8LIzQVDIScjWVh3/Tg3VJBfo6fJFUn0GWqYiJiaFkJ7vkJSw9Z7x+gz0vajPQFcjO7eM9oM38s2MLjzR26dmGHodl67n8NvO22z6I4aTW4fg5myOqJeeTMUnF/LThhvM/zG66jOGMtB6XUWlxE5KTsQlFxHob82h8HSC2ztWSSyefOMY015rxugnfTgbnYOPh3nl9xQT0MSMlsNCmfeuP/6NpNbhHo4mnLiQQ68gB85eycfXTSLtCckFtG1mxeGIHLq2tiEpXeoj4ems5sTFPHp1sOPs1QLJXhSJvFFI3472NewFEwWeLqa1/GcX6Cgs1hLYwobDp7Po2taON2ZdYvOBVF4a5s2Qnm707uTIgfB0hr9zpuoYxIcO4tjZTMZ+FFE1duvAE1yPLaB3pQTR2sYcB1s1cUmFdAhw5OCJVLp38iAhtYgWfSWBw+5f+tMn2IPENA2+XtUt1O/iH5OBFgQhB+gtimJk5WsB2Am8K4pi7D2mgUA48BAYzt+LazczKC2rYP22KACeGRbApI//IHTrWKbMPkT/no0A2Bd6m40/juTzr8OY8X4I67dLP6Bnhrbkq+9O0qq5E1O+OFxrE+GkGYcMbiJs2dyRKbND79lEmMDKb56oYa/T6bG0NGX56nO88WJgjXg6BTage5d/b1Hyevw5Zv8QzfJZQXz4ZSTzp7Rj054EbMwFenV0YsrCaPYs78KMb6/Su5MT5io9O0LTWTmrJVO+uYFMELC2MOF4VB52liZM/zGOBW835I0Ft6RW0oLUOnvt5Ma8+k0slmZyjp3PY8fZAvKKpfeXvuLGGz9LNc0bOSn4Yncuy8c6MWNnDp/1NmfnFWnBG+Kv5tP9BWx9wY6VF8pxtZRhrhTYe1ODykRABGLzRLZfl3SSTzRRMOtYKetHWDA9rAw7U4FbOXqOJWlZ0seUXy5VILaE3bHSgjWwgQlzz5Tzay8lCy9U0NVNymqcSNWzIFjJsisVvIaCvQkSURngLWPa6Qqyy8DRFJ5vKk17J1N1LOwuY/aZcj4JUrE7TvKfWy4SlqxneBMdyYUi3TzlFFeI7I+R3g+N13IotoKwBOl1nwYmHIzVMtJfydKIMkJ8FbRxlXPhjo5RLVUsPFGKtVrGjqvlnE+pICZHj7Va4Njr9swJLSKkoRJTtYy91+7J8Cdo2BFdipOVCZ0bqpjxRx7bXnVi9t58ejZVo1bJ2Xu5pOr4zxpqx57LRsjJ/yNotTpWrfmDz2b+Sv9+Hf7ucOrxL8FLHxwmoLkD7Vs5otPpkctl3IjNY+MfEmkuLdMyalBDDv82GDdn86rPvTvzNOt3xfBELy82f9+TkW+FAtQizwCZOeV8vOgifbtI2eUDJ++w5quOvDcvkkVT2/LrtlgiLmUjEwT2Hk+jb1dXPllymT6dXQA4GJ5GzyB7cvIqsDCXs2DVbQCe6uPElMXX2fN9Bz79/ga9O0nN1G7HF+I53pSp395i3juN2XJIKm/Xp6M9c3+JY/eStny2LIbeQXbsPp7F2asFPDfAhfNXC6rsHexMad3MknkrYqr8l2n0nLuSj4uDipNrgvlo8VWmvdKYzQekteHX7QkcP5/JgZ+DWbTqNp1a23PqYjaujlI1jjnLrzGgmwt7j6XRxMeS67EFfPjVBfav6Mkzk05wJ7OMDgEOqJVy1i0K4YN5ESyeYcJvv1e3e//gi9McXDeIXYcSeWdcwEO+Gh4cD7KJUA90FEUxovK1HKgA2t8l1ZXjQUC4KIr/agItCIJYljIbpVJOcbG0wJubK8nILMLZQUlObgmWFnfL0pVXlZlzcjSvaZ9RgLOTBTm5pVha3FP27j+UsatpX+k/swgbKzXLV0fy9dLTuLlYYWmpwsZKzaA+TXh+hKSeEQWl4TJ29RnomviXZqCzMnKxtVbWKBukKyvB3ExORk45zvZqcvI1WJqZoCsvprBUKksXn1rCx9/dIja5lNSMMopKdFiayTFVyRjYyY5RHW1o4WNKcZlUC/puWbTCzCK2RxSwZG8W/QMsaeSq4v3VUqGd67Ok7pp3y9LZ68qraimbKarL0r27NYeNlzWMbqXC3kzg9xsaNo60xFFFVZk5MwVkluiJTNPx0aESto8wx81CRnEF2KgF0vK12KsFSrSV9iaQXSai1+iRy8C8supRcQUsuVjBhps6nm4k4/3W0hslWpGQHdWbmkKHKbFTCxRXwLfROjbc0PJMEzkftFeSUybSd1tZle2BUWZ4Vm46nBFezuarFYxoruDr3mZV8VuZy7iZpaOpowm5pXoslFKCI6lIpJGDCZnFehzMBJLy9XRcWl1L+9IkB+QysFAKCAoZRRrwmyctcqmfu0hl8hQmmKsEsor0OFrKyS3RYaGqLHtXLlYdf0cLGSVaaPBR/P/LDLRWq2P9hlBmfbEWC0sz3N0cUSoVPPlEF154YUClbX0G+l7UZ6ArQ9LpGft/7J137JjvDwAAIABJREFUeFRV1/Z/U9Nn0nslhEAgCQkJvRdRRESlKCKggAoiAqIgKio2QAERpAhIB0GkSy+BEGpCIJRQU0mbJJNepp7vjxMDMYmPPA++r8/7sa4rV65ZZ80+e++zZ+9732fttSYf4XZqMfdyytGW6HBUWyCRSBjcrwlD+jehXWvXen0rmI0cOHGP8R/HMfy5pni72zDhEzHMZ965F7FXKevZa4t12NVMWGUVBj5deIkft95l7JBAWjSxY/aKZK7t7Ud5uQ43Z6va+Rxg74ls3vkqkfWz29Al0omKKnGMWinM5Gv1uDpZiPY2on1pSRUmk4AggIuDgooqEx8sus3avTkMe8qdZTNC0JYaqNaZaP786dp6nlvbluYBNqL9D3dZuzuLl/t5smxmGLfSy2kz9P7h/JQDvREEcHVUMuGrK6zdlcmYQf7MeD24dj1SqyzJ1+qwtJTXhlV1dbQgPacaF0dLbKzkaAp1SCTg2/2+p/CVfc8R3EQthuhzs6Oi0ohD+BoA7p19GTdna6qNUqyt6oe9+8cw0P8/ikwm4d2Pf6NjW/HQ3unz6cx8rxfTZh1m2POhHDkp7oR6dw1kysyDLPzySd6deZCObX1q7DOZ+W5nRk3cxeQ32nHkZGqNfQBzFiUx451OvPvpETpGiamRT8ffY+aULoyauIfJb7TlyMlUyir02NtZsmrzJVR2FlxIzMbHS0W1zkRKRjHjR0Xz1cKTtGruxvcrzgIwZkTHhgH0Y/mvksKiauxVSjJzKnBztqK0XAR/aRmlfLsqmSWfRjP+k/N0jHBBYq7m1MUiZr0dwsvvnWfSiCAOnc7DUm6ic4QDEzem8/20FjjYKRg/1AWpzkDspRLeHOjB3E2ZDOnhwtGzBRxKLKF3azWLlufy3Rv+TFqeTqcABTIJeDsqkEph6rr7USq7zs1izauu/PBLAfMGO/PerhKifcQF43yGgQ972/LKJi1Hbot135Ck46dnrVkeb+a3W3qyS0z4q6WklZiJzTRiNkN2uZmpbZXsvCUubt185aw4oefT9nI+PmUk0k1c2C/mmTAJsP22kT4+UoJqfI/DnST8fEtcVLbcMROgMmKrkJCYLzCwiZSdKWZ6e0vZdke0CXOU8PNNEZX/fMtEE7URW6WEJmoJKSUCPnYSSvUCSxLFNrzcyoKCCjMfd7Zi+rEqomsONd4sMvN2O0te31XGm9GWHE8V69+rmZKx20uZ+5QN7+2vINpbQSdfOXEZRoaGW/DB/jLGdbDm2B0dSqWUUI/7C8HU3SW09VWiUEo5naLnwyfVjN5QwPiudhy/WY1SKaVzkFVt/7+7tYD2gZaPeij+Y0WrLePsuRucPneTM2eTuRB/k8AmHgiCQElJBYMH9WDh99to3/7RpUx+LP83RSaTsvH7JwAQTEZ0OhN5hZV4udkgk0kRBDOZ2eXY1gDf8goDnm7WZGSV0a2dO7OmtOHarSJmfBNfW2ZAt19IiRkk2lca8XS1YtT7cUx4JZiDsSJT2zbMiR+3ilhixda7zH0vHLlMSt8xMexa3JEhk+Po1d6dbYcySb1XgVQiIaSJLa2aqpjwRRLtW4uumwlXtXw4NojhHyTyzssBHD4jHkS+dqeE3ScKGN7PA5kUQgJtWLtXnMM37c+lsNjAtFH+HDpbSERzOxJvlOHvaYmbkwUT594Q7XdnAbBxXzaFJQbefzWQiOYqEm+UMqCHG5PnXGXRjFAmfHWFDuEOtApSc+1OGXKZtHY9OpGQgd5gpm8nD95ae5MfPm7D+FkJdG/rgcFg5vSlfL54J4y3ZsUzsLc3O4/co00rJ0rK9AydeJylszrwzmdxNAu4nxFSLpMw5K3DzJnRGVsbcd1R2SnJy6/Ex9MWfbURS8u6WOjviJPzj0FbEonkU+CTP6jzBEFwr7kuqbn+OuAAnENM8HLtgTIERHa8+YPuJRKJZA3gLAhCf/6CyB0imL8wovbzoJfF/3O+aQ1AeIf7tms6PAGmSubPC71vPxQQTKxZKerCo+8zH+HR4pfnf3s/4/mgmsB/a1a1Ii29gP0nTpNwKY12bQIY9FwHOrQNpEBbxqRpW1i9dAxPPdGKYa+tYOjzbZn50bD7O2PB2HCDGmJ7HpYBaoj5bYwNbjQ0XQNsc2NlNNqWRvQNSaMMeSP6hkLfPKw01K/ShkM6iccG6svVW8V0auPG1t9SeHVQcy5eFY8VRATbEdXKCZWtJW3DnWkd4oRJX4FODyobOREh9vh5WdOmpQNSczV+HlZENldhZyMjqqWa8GZ2mEur0OlMBHtbEhFki6+LBa19LRGQ4Osgo7W/FTYygTYBVrRwl2AWJGhDrDl6rQIvRzn3tGL/zxuoxsdGoLW7HBvBSGs3GS2dxPYY9DLkJhMRHjJUMgXbbxiI8pQx/4wORysJuWVmfrutR1sNgQ5SPG2ljApVclljpK+/nCv5IkPnaQ0tnaRYSyFAJaG5vTjOi6okzI0XQerhTDO9/WSolBJCHKWEORtJKhCIdpPSzktc8MxSMy+0kOOhMjCilaK2/FAXKdEeAhdyTLTzlNEpUBy3Y5UyejVVsD3ZQKC7BRWIbQ5wUdDez4y9Sk6Ut4KwmtTfSisTals54V4K/J0VRBrEevqo5YR5yLFVSonwVNDKTU4rN1tOpegYFWHJ8vhqvC0Fwl2krLtUzeyj933MWztJCLETkMoFKp0l2Oh0hDlL8JEbCXcEmaUEH0sT4a4yrI16ItxlhHj8efzaRyVanviPyygwNLycNcbw/s7C5ufm8PmUCZyPjaFVRBRh0e14YdxQnjUY+fSdN/lg7gKeGDiI2dMm0yy8HU+MXcCVMnFcSiV/fe5oLCxdY/qGWGV9I23RGRuuR2PM9MMw0MpG2GMa0D9sSL4rJfX1XtbdG7R1VDQSQrSxdachBvph3vIBGMvrqQRTw33dmN5s0qOQg7ebBWDEbALBZOJgTBpRoU4AxF8p5JWBgfx2JJUXnvRDKTURF5+Lj4c1126L55S+eT+c9AzxPEPCtSKGP+NHWFMbfJylRAbbYjCaCfZR0i7UnnNXiolsoWbLb2lYW0pxdVDQ/40TXE+pICunAn8vK3pEeTG8nwe/7s/CUldOZBMLWrqL49pUpKAiW0u4txJvhZ7WnnJKKox8faIAgA37cvh8pDcdvJUM7ODAzjNFjOrtjK+rBV4yIxHucloP9cTP1ZL954uwNuqJDLAiItCa57q7sCMmn1ef8cDX3RJfJykzRvlRaZTSJdKRdXuzsLWSEBWiIizIFolEhpVSgp0VRLRQ4euuJCJYhdEMvh6WRLZQY2spIbqlAyGBNggCGIxG7KylRIbYM3KgP8/18UZtq8TXTUFkCzU2SjPXb2lZuiG59jnZWoipym0sBOIviSC/TagLP++8yeTRYeSXVOLtUTekr+RvIBf/MS4cNQD6RaD7A2rT7+HyJBLJNOAjYBRwE5gJdAaCBUEoq7ERgGpgpyAILz1Q9hr+IoCWSCSCoNvX8MVGX/038INuFKA2rBcEgR9Xx/DRrO28P6kfU97ui0wqPpsTp24yZOQy9m6dSHSbAOZ+t59tOxM4sf99rKweAKWPAkA3Gtu5AX2jQLmRU8wPA6AfhTQGlBuThvrvYV45QsOvFxt75ahv+PR0UX4RSzdeY8roMNZtv0VUmBiuIj7xHi8PaMJ3a64z8vmmJFwtRGKqIizYnnW70nlneFM27s0ksqU9GKqIv17KsH4eLNqUwSv9Pbl4oxQqqgkPtGXDYQ0TnvNg89F8Wtcwn4kplbzYxZEf9ml4uZsjV24UczGtmpXHiwn2ULLpLS983xH97jaNdGLOkVL6BFuSU2LC11bg/D0jWaVm8srMlOgE5FIwmcXkWWpLCb0CFExpb0GXNWWYBejqI2NkmAWhrjJ+SdYzprUFaxOraOclPrcr+WaeayZn+O4qEvPNdPWSMqy5glZOUt46puNygZloNykfRIn1v1po5tlAGSuvGhkarOBqoQhIWjlJ2ZNmZESokh23jIS6SGvLH9JKycILOkaFWXBFI/4mQl1l7Esx8kq4Jduu6wh3F+tzOc/IkFBLll+o5sVQCy7niuOltaeczVd0vNnWiq1XdLSuAdbJ+UaebWHBsvNVvBRmyeUc0T7UWcLPV/W8EWXJL9d0+KmlDP2l7uJ/aZw9l/OMKJVSWrrK2ZxUXad8iYWcS9kGhrS2YllcBS9FWnGlSMqwFX9/GLtC/X/O5RQ0UkZjANpkNrP/1y3Mnv4uQ14dyxvvzUChVGIWBG4kXeKN5/ox96eNtOvWgx3r17Bm0Tw2HD6Fnfr+Cf+HiebSGIhsrH4NgdF/EoBuyC1D2Ugc6IZiRjdWhpd1/dfnAI6yRgC0vqBhvbGBJECGovo6aHw+NdSP7Ww2NkxeNBTGDkQA/UeprtJTUqYn4ao4X7dp5cTa7Xd4Z0QzZi2+woZdqXSNdqVjGxfe+VxkoeO39WHq3Es42VswqK83m/Zm4OFsQcyFfAqKdJSWi2NAIgGjUUBlK+eFPp50j3Ji9CeXMBgFXunvSdtWaiJbiIfkLiaX0ivMli1H8hne143E2+KcsfNYHpuOFTCqrwsRTW2JCBJ9tD9elc6JK2VEBdmwcVpTLt0VXQN9nJUcSCjhrWfc2HyikMhAGwSljEt3KniplwuLd+QwvI8ribfLUdgq8XJWsu90IW8P9WHTgVwim6uQWVoQf62Yl5/24vtNaYzo78XFG6VIpVJaN1ezfk8mE19uwsa994gOc0GgZiPR35eFG24z4ll/rt4pxWAUiAxxYO3ONCaNaMaGPelEh7ogIBB/VcsrAwL4YulV5qy4XueZfDElgkmjWvLrkazaZDXxSfmMeL4ZC1YlMeWNqHpZDiVKFVKPr/5XXDi8JBLJ76fTZA/oHhz13o+gPkZBEHL/qKxhnycBswVB+LVGNxIxscswYPkD5ouAdyUSybeCICQ8gjo1KJcup3IpKRWttgxtYRF6g5jGUiqVIJFIUMiluLmq8HR3wNPDHk8PB9xcVSgU4rMzGIzkaUrJyS0mO6eYJSuPoS2q4MSB6YQ09xJvIpiorjYw9u11rFg0kug2AZw5d5dvFh7kQsxHdcHzY/k/I5rCKg6ezGTsiy04fOperT7mXC4Devlw6FQ2Xdu6cfJCHjZKMypbBUfOaHjteX+OnhVjhiqlBo6dL+SZ7q4cOVdA50gHTiUWYWk2obaRczShmFFPunI8sQSZzlrMIHiljP7Rao4lldK+mQ3fHdByKb2aSX0dWRNbwtRNebV1ef1nLZ4qGWlaIweTq+noI6faCE2dZEzvZs2yc5WsekHNN8craO4iThmx6QY2XdHXZqM9mWnCT23A3lLCyQwjacVmfrlhoK2HiQFNFcTdMxHlJiOxhjE+mWXGy9aI2kKOUgZ7n1GyKMlUC5Tjcsz09pVxq1ggs9zM+VwR1KgtxNjOLwRD3L37QCfunomngyE+20QvfzNna+I921tKuJxr4rkWAifT74Odk+kG+gVbEJOqp4OvnDOZ4iLsZCshJkXP8NaWnEy9vwDfLDDSK1BJTIqejr4KTmeI9mqFnJhUAy+HWXAyzUhXfzmdfOTEZd6/V3qJmTOZRpQKCbbK+uUrLQVO3NHRr4Ulx+/o6Big5HxqI8kr/hfkxvXrJMZfoLhIS3FREbrqapBIauZIKXqJDCcXV1w9PGv/nN3ckdX45RqNRrT5GvJzc9DkZrNz43pSbt1gydZdtIqMqr2PyWTis3fGMenTr2jXrQd3b1xn/szp/PTbkTrg+bE8ln9XjEYzqZnlnDwvzn+OagsOnsyiutrA9+tu8NIz/hRodSz46T5D+uTYE/h52VBUqueLpdcpKNYxdpA/zvZKRjzji71KwbFz+Xw3LYRh0y4y663m7D6ey+qdGRhqQmWu35tNYfH93/T89Wm8nVWFu5OSzuFqTl0uobLaxKZj4qZkzcF88rT3NwYhvlbMHe3LlB/TScvTceqauPEY0M6Bo5dKGNnbheOXRR9xiULG8cQSnunoyNGEYjqHqjh1pRR7ByWqSAeOntcy6hlPjsWLmxorGwuOnS9kQHc3jpzJp0ukI7EJWuQKKfZ2Cg6fyefVgb4cPVeAhaUCvUHg6FkNz/b05PBpDV3buJB4vRhtqR4HtZLDp3MZPagJR87koVDIMRjNHD2dy8De3pxOzGdgHx92Hs6sbduh2GxGD25GfJKGvPxKVLZKjpy6x3N9/Tl48h5vjmjdYJrwRy1/lYH+o5GkMd1/yEC/DxQBekQXjRmCIKTUgPe7QFtBEC488J3fELMfjqz5LACDEdONOwmC0KtGv4ZHyECvWX+MaR+t48k+ETg62OGgVmJhoUAQBO5laUnPKEBlZ4FcIae4uILsGpCsyS/FyVF8bVFUXIGzkx2eHvZ4uKnp2imYyROeQC5/oPsEE598uYsr1++xfeNbaLXlOPlPAsDVxY7nB0QybdJT+Ps519g/ZqDrlv3fyUCXFBZja6Mgr6ASVycrKmpOz1nKdGgKq3FztqKwWIfKRoGxqpSySlOdwxkVVSZMugpsrGTkF+lxdbSgsESPykaOSVtBeZUJBzsFmiI9LvYKyvIqoCYKR36pEVe1giOXSnnp2xQ6B1tzNbOafq1tCXBR8vnORhikx/JI5cpb9syJrWJDko6hYRYseNqu9jBipQG0Rik+jrLaw5raSjNqJ2u830v9X2eg9+7cwZTxr9PziSdxcHTEwcERC0tLBEFAk5tLWmoKcisbFEoFZSWl5OfloMnJplCTh53aHqlMRrG2ELWDI64enri4uRMa1ZbX3pmKhWVdP+/1SxdxZPcOfvrtCNVVVbTzFP0k1Q6O9Hx6ACPfnkyT4BbAYwa6nu1jBrq+fQMMtGAyUVhUjer3w/0VBvIKq4geuIf2rV24nV5KxwgXerR35+1ZF+p9/7E8etEljyCvoIovl15l+aZkXhsSzLIvu6AprMLN2ZqcQj1e7nUzMP9vMdCvPqqb/Qs5h+iecQNwRXTXOC2RSFoC7jU2eX/4Th7g1UBZM4DrEonkSUEQDvyrG0skktcRfav/VARB4IvZv/DT2qOcOPQFzYNrSPcHXDicfd+gUFuOSmWFTCbFylJJ2zZN+HDqAJ56IoxCbQkSiQRXFxUy2Z8nWUi+mc2Slce5FCe6hq/eGAdA7MFpaIsqeGH4UoY+H42/nzOlpVVUV1fh6lI/JuJj+e+S79dcYfTQ5vR+eQ/zPurIlj2i28Tgvt5MnZ3AoTW9Gf5uLE909kQpM7LneA5rv46i3xtxzHk3lF8O3sPVXkbnCAc++P4Wvy2OZNTHV+jdzhmF0cC+s0X8NC2IATOu89VYf/ad1FCpF3i+gz0frs9i10dN+X5vHtOfcSQhVYePk4IPBjjz3IJ7/6Lmj+VRyajtZSTk1ByITNLxRlsr3thRxme9bfj4cDl3tWZ6N7MgvcjEr6868sbWYvqENgwK/idlxZLFLJjzFVv3HqB1ZJt613t3bEti/AWUFhbY2Nohk8loFRnFqLcm0bP/s5SWFGMyGnFydUP+QJSIhkBkbtY9ls/9krUHjiORSDj22y4Alv66F0sra8YOeIKuffvRJLgFlRUVVJWX4eLeeIKKx/JYGhJBEHjxnRM80cUTENnPDfO70qujO/7edthYy7GxVuDvZfMvSnosj0ryCqroOfwAd9LFzdRPW2/Sq6MnXyxKJDrchXXbb/Pm8Fb88GX3v7UejyyRyqMWiURiC6QAs4GzQBzgKwhC5gM2qwEPQRCerPksAIMFQdgmkUh+ADoBkcBP/AcMdGpqLpu2xLBh01HsbK3YvW0G7u6i3011tR5tQT7FxRUENnFDKpWwev1JZs3eTssWXjRv5olMKiHu3G1y80qY8Hov3p3YF2kju/zfxWw20/2p2Qx5LpoJb/Ssd33HnouMn7IRZydbunQIYtuuBPQGI61aePL8MxG88mI7XJxrdmCPGei/Jv8QBvrWzWya+Ko4fiaLTm08SM8Sv+/tLOV0oobu7dyJv1KIn5cNhsoykm6V0LuDGzEXCujY2pGMnCpMugp83K04d6WErm0cSLheip+HFUZtOZkFeiKDbDmZVEr7Frak3ilBKpXg7aTg/O1KuoTYkphSiYfSiFQCmYVGIvwtib1ZSbtAK9JSSpEAXmoZFzL1dG5iwfvbCjmWYqDKIODvIDKjBjO80FxOtKcCX7UMT5WEhGwTHX3kJGTp8bETn31WqZkwNxlnsox4Wwvoah6Dh62ExDwz0c4SrhSY8apJgJJVLhDqLOVcjpHWLlKya9yHPW0gMV+gvaesnn1rTzlns01EukvJLhNqy0/SQkdvOUl5JrxqwtVllZpp42tBXIaeKE85WaWivbejlPgsI518FVzKNeJdY59dLhDuIScu3UC0t5x7JSKT6KWC+CwznfwUXMo24m0v2qcXGIjwUBCXYSDaSyxfEMx4qWV1yl93Sccv1/T0a6ZkxfN2xKUbCHCQEr3kPlu3Yqiap0OsuJRlwNvdkrBZWf/jDHR2Vhbbt2zml00bMBgMbN65F7+AAAB0Oh3FRUUUFxXh4+eHhYUFv/68mS8/m4mnty/BrUKRKxRcSYgnPeUOg0eNEf2bFXWZzYYA9MSXB9GsZSjjP5hZ79q5E8f5+K0xWFhY0K57L47/tpvqqkr8AoPo/cxzPPPiy7h5NsS9NH4/eMxA/1H+GxhoTUElrs5116SqiiokiH1YWW3EQW1BfmEV9nYSqqrFZ2ltJaewWIezWsGFpHz8vMRDaelZ5USFOnP8TBYdI+4nQPHxtOZMYgHdoxy5cFWLn6d4z/TsShKvFzHrh2so5RJ8PKzJ1+owmQXahdozZUQg1Xoz/r8nQMmpJjLYihPxWtqHqcnIvZ8AZf+xHAZ0dubizTJ83cS3MWnppbRpZlc7n2fkiyy6j1rKuZsVdGmlIvFOBT6u4nqdkVdNZJAtsVdLaRdsR2a+Dizl+LhYcO5GOV3DVFy8XY6vqwVSawXpeTraNFdxMrGI9q3E+kiVSnw8rDmbVEy3KEcSrpfg52GFRColPaeaNiFqTsQX0CHckcw8IxIp+Lhbc+ZyId2jXYi/VoS/ly1IJaRnVxLV0oGY8/l0bO1ERm41EonYT2cSC+jezo2LyaX4/qH/Y87lsu1ABiu33GRo/0BWzu7KvpgMhk44Wvuc086MxNZGgYPakoJSGW6hCx/p/PgfAWiJRNIVSBAEoeHAtf+hSCSS44iM9Dc8hAtHDYB2rfnOeKAXDwGgEwpF0JR66yZfTnmL1Fs36fPsCwx48WUsrazYunoFJw/uo0RbiMlkwt7BESsbGwRB4P0v5tJnwHP4Su+yc+dBYmLOEHPiLAUFWnQ6PRUVlSQlriI09A8JTx4AtEajiekzVhJ7KonTJxcg++PEVeNKYjabOXvuJsdiknh+YAcC/ew5evwqk6evZczInrw3eUAd+78kDxNZo7EYzrJGALSs2V+vh5DesP5h2vKw0tCm4qFPgje0EDSgg0YB9KVLGXz3UxILP+nM54sS6NZOZD4OxKTy+aQIJn95nqljW3H8TA7b9qcQG19AM39bTm3sxdc/JtOljTOlpRUkJpcyfXQgU+clM2VEACcuaJHpdXQMVbFgaxZzxzVh7qZMOvopEIC45AqmDnTlg/XZTOzvwvmkYqoMAl2Drfj+UBFfDXFh3n4tHX1kFJSbuZZtYNoTambsLqJnEwUzD5QxvpMNehOcz9Cz5AU1K89U1oZnO52mZ0o3Gz7cX8aEthbEpomMaWd/BYvPVPHlE7Z8f7qStt419hkGpnS2Zk5cFSPb2nAqRXz2nZtYsDi2nK9f9mDeAS2dgsSFJ+52Fe8+5cicQ6W82tuZk9dEZN21pS3LDxbw6XAvvv01h04h4sYy7noZ7/Z34YMNYntja+y7tLRl/YE8pj7lwLwDRXRqKpZ/6noZ7/ZUMWNvCW93tSX2rlifrs0s+T6mjK8GODDvaCkdm4i/lWuZ1Yxub8OH+0qZ0MW2tv6dPKW17Z1/qpKOvmKYwFNpYns/PFTOhA5WnEozYJJL6d7UksWx5XzZT8X8mHJu5hs5ektHKy8lu9/xZMa2Aib2tudMtpl312T/7QD6jEbsp9x7mXw9+S2SLyfS/ekBPDloKI4uruxcv5oT+/ZQXFiA0WDAzt4eG1sVuuoqxn/0GU8OehHBZCL24D7iT50gIS4WTXYWMpmMkiIty3YeoE3nrnXu+yCINJvNrP3uW/b/splNJ86htGh4Iy8IAjcuJ3Lm2GE69OxDs1ZhXIyLZeFnH9K+W08mfvplo+1sDMw+DChuLMpFo3GgG9E3BJZljYDcxgB0Q6C4sXjPDcWMbqyMxu5nqWgYWDezPNGgHp2mvs7QMNjWZKXh6mJbX5+TUw8oj5t2iGUbrops5BfdavUF+SWs3HIDO1sFPTt4Mnd5EgtndmDBqktEhojk2MnzGmaMa8XUr88zaUQwx8+LdezR1pVvV9/k28nBzF51hy5txOgcsQmFTB8TxNcrbvJkZxcuJZdhoZTSLdqRz5bd5uzlIgY/4YFCLsXFUUlegY7pr/nz3vybTHnFn5h4MdpS9yhHNuzN4r0R/sxZk0bnCNEt6VRiMe+/4sv7399h8jBfYi6KG4zu0Y4s2JDON5Oa1bG/llrNG4N968z/AD07uPLtmrvMe68VX6+4RZc2TggSCacSCvlgbDDvzk3i3VFBxJwvwNJCSvtwR+atuc2898P4esVNurRxRi4xc/x8AdPHBDH122tMGRlIzIUCZDIZXaOc69j37OiByQQnL2iY8WYIU75OZOprzTmfpKWy2kSPdm58syqZBTMi+WrZNbq1dUUww8l4DTPebMnkry7y3hthHD8jhuDr0cGDb1dcZcGHbVn68x18PW2wV1lw4lwOH02IpN1zO7iVUkKXtp4MfSaInp28mbM0gUVf90fV9Nt/RhzommgcxxHPVMkBAAAgAElEQVQzEF78F+b/TvmWQPOae6QCuUAf4MID17sA7zX0fUEQNBKJ5Fvgc+DMw97/5pXLvD10IGPenc7TQ4ZxYv9e5n08jezMDAaNHM2qPYdwdvPAytq6drI4c/won0+dyJaffuTkoRW89NKzvPTSswDk5OSRnHwHW+siWrb0b/S+mZkaXhr+Jba2VuzZMas+eH5ApFIpHTu0oGMH0ccPUxVdO7cgN68YGxsLDh6+RN8+rR+26Y/lf1D+yI6M/+AoS9ddJrhJ3QNQSzdcY39MBlXV9xfqsgoDsfHiInMrrZz8IhGgLd96l4On8ggNsmP66MA65ZRV/vVQXg/KPa2BaVvyOXGjklUxZizkUK4XOHC9CoNZwGwyoykzU20U6BdixZ0CY6NJHR7LXxc7i/qg5dW21gztoOJy5v/eocHMlDtMHDyAgSNe46vVGzl3/Ag/zZ9D6o1k+g8bwYKfd+Dq4YWVjU0t2Lty4RzfTJ/Cr6tXsHzXQXo+M5CezwwEQJuvIeVGMhZWVrRoHdnofbX5Gj57ayyV5eV8/8vuRsEziElFWrSOrC1PKpEQ2akLhXm52Ds7c/y33fR4esAj7JXH8qhFk1+Gq8t9X9bx7/7M0lWxjBsVzZK59/mw8e/vZemaC4wbEc6Sr3uJ3y2oZNmGqwAs23CVTyZF186102afZ82vt+gc5UbPDp615VT8m/Pj5ZslHDmbz6lELUm3Sli3J4uySiN21nJ+OWxDUamB0gojxaVGnusteqRqCv85h37/m8VeVXcOaB/hxk/f9ubStb//vM6/zUA3Fs7u366ICHb3ABmIPtAfA12BUEEQ0mvC2H2I6Cd9C9FHuiv1w9gNFgRhW81nW+AOoAaO/lUGes2BGKa8MoRXJ00lPzeHPZs3EBwazouj36Drk0/X8c0DsKj5HHvkIB+8+RovjXmThbMacR03321YX8N+Rka/iVIpJzbmOxTyRgDIn2TSO3IsiQFDviGydQBZ2VpSry9+zED/5Xv+fQy0Jr+8Hmsy/t2tLF13uXbS1xRU4ha+rPb6xoW9eLaPPxevFtB1yK5afUbsINLuVRDgY8sHc8+xYXcGYwcH0L+7J80DVAT3219ru/rzMF7o7cGFayX8tCODjb9l80xHJ9Z9FMyxi8V0ClWTdqMQAfBxUnL6RgU9Qm1JuFuJr5UJAUgvMPL1nkJsLCSM6W6PjdmInaUUNzsZu69U4GgtI+ZGJeU6gbc621BpgEhvBTF39HTwue/S4G0v40yanu6BSi6lV+OtFsdaerGJSE85J1INtPeRc6+0xl4t42yGge4h1ly8Z8DPoca+yESkt4K4fCntAi1rY1N7O8o5fbuK3h1dib9Tib+rOD7TNHqigm05nlRGxxa2ZBbUvOJ0VnLuWgldQsT2+tW84kzX6IhwNHP8RhUdm94v31Np5kyaju5NLbiYacDXUaxPZqmZCG8lMber6RBgyb1i0d7LWuBMmoHuTZV165+rI+L39voquFdiqnWJOZthoFuAgovZRvzsZUgs5bXtjbmjp4O/knslJmS2FmJ771TTo7kVCek6AgLUtJiY/Lcz0BtOnGPS0IG88OpY9DodezauxbtJIM+PGkP3p59Foaw7L/zOoF4+d4aZb75K96cHMOWLuQ+1wfqdgX578DNosrJYe+QUltbWD3UwUCqRkHw5kdH9ehIS0Ybb165y7E5WgyTFYwb6r5XxqBhoTeZtXF3rkgbjJy4WwfLoLiyZ9yKa/DLcgqbXXs+79h6uLrZiluCW39zXX36zFig3xEBrCirxiFpda797xRM82c2bgW8cZt/xTIb08+Oj8aH4etoQeyGPntGOXLiixd9b9HFOu1dBdKgjx09n0T7cgYzcKqYvuI6jSkGrIBUvP+1Byr0qfN0sycyr4vTlYgSzwMkELZ+/3QyFXOxHX3cr4hIL6BHtyIVrpQTUuHCkZlcR3dyWo+e1dG5tT2befReOuMQiekQ5EH+99L7Lh0ZHVAtVPXtfLztOXSqiVztnLlwrqS0/Q2MgqqU9R87m0yXSiYycKpBI8PWwJjahkN4dXLhwtUj06RYE0rIriW7lIEbbaONERk4lmE34uFtx6qKWXu2duXC1GH8va5DKSP+D/b0CIwiI/RmfT++ObpxP0tLER9wYpd4rp22YE0dO59IlypWMnIoH7DX07uhO/PUS/L1r7DPLaRvuzOG4bLp38CW9xofPz8uWk+dy6NPFm/hrxQT4iOfBUjJKaRfhxpEzhTz50s+PdH78c0fcfy2P0oHaG9iMGON5O6BDjD/9O5KaC8wHfgDiAQ/gid/Bc4OVE4Ry4DPgoVJ0TR4+mAHDRrBm4TxMJhOr9x/nh2176Nn/2Xrg+XdZ+d03fDh+DPN+2shb0z9+mNvVitlspt9TbTl/4SYXLtz8t8ro3TOMsry1xB7+jPKKalJS/3ju8rH8naLJrz8cx7+/C7eQrxn//q4H7MpZuu4yAEvXXa5loseNCAdgxAvN+GJRAifP57BqS3ItIy2mh5Xw0fyLrN1+h/BgB9qFOTLjjRCmfZvEzbQymvmLQP3JTi7MXnWXfK2eD75LZuNvYgasPacLuZFeyYzlqZy+UsKPBwuYuz2P0zcq+GhTNvmlRmZtzWXXxXI2nynji10FuKllJKRVYzLDrqRKFsWUEp+hY1lsOVG+FtwpMBLsquDILT1fHi6joMLMJwdKic80sDiugsVxFZxJ0/PJwVIKKsysuVjN5iTx76uYCgoqBT45UsG5TCOLz1Sx+EwVZzMMfHKkgvxyM18eLmPzxSo2X6yqLX99XAln7lTz/aEivj9UxOnbVczcXkB+iZHPt2Sz8YSWjSe0fL4lm/wSIx+uu8eZ5HIW7spl4a5cTieXs/qYtra9m05o2XRCy6ytueSXm5i5o5Azd6v5/kgx3x8p5nRqNTN/K6GgwswXh0r4OaGSnxMqWX26jIJyMzP3FnM2VceimFIWxZRyIcPAJwfE9j5Y/wVxlbXtPZthYPGZKtZerK5tb0GlwFcxFWxOqmbPteo6/Xk2Xc/i2HLWxJVy+k41M3cUkl9m4os9WrbENeIz+ohl4qBn6PvCUHasXUVxYQELf9nN0l0H6fPc4Hrg+XfZtX4N0159iamz5zP5IcHz7yIIAh17PUHa7ZtciI35t+reIjyC2IwCVu49gpOLK8mXHvnL08fyJ6LR1B+j4ycswC3gdcZPWvmAXQlLV8UCsHRVbC0TPW50FwDGjYquJSRcXWwZNypa1I8Ir/NG74cvupET/2od9w1XZ2t6dRJZ57bhLny7Ionrt4vZd1w8XrV1XzqzfrhC7IU83ptzEY22mmnzkli3M511O9P5+PuraLQ6lm9LIy5Ry/y1d8nSVCMA6/few2wS+OSHm2zcn83Ji0UcOKVhWD8v8rQ6cgv0zF+Xyvx1qZxK1PLDlgzyi/R8uvQ26/dms35vNp8uvY1Gq+eDRbeJu1zM/A3pzN+QzqlLxczbmEF+kYFPf0xh/b4c1u/LYf76dPKLDPXsz14pZvp3N8jX6vnkh5us25vFur1ZLP05FY1Wz/T51ziVWMi8tXdYsO6O6IIy/woarY6Zi66zblc6249kM3PRdTRaHdPnX+HUxULmrbnNut2ZnLqoZdp319Fo9cz84Qbr92Sy+bfMevYrt97l259uEBufz/vfXEKj1fHxwiR+PZTB2h0pfPTdZTSFOt6bm0hsgoZlm2/zzapkYuM1vDc3EU2hjjnLr7J2+x3Wbr/DR/Mvoims5r3Z8Zy+mMfc5ZeZu/wyJ8/lMPXLs2gKq/hhbRKrtyazemsyM+acRlNQxdTP7vtGPyr5xzDQ/xSRSCTCgGEjiD20ny+WraZ9j1611xrbsVvI5bw5eABPvTCEZ18cDkAz60YiFvwJA71s+R4+/2oDG9Z+QIf2IchlYppRiUSCIAhUVekoKamgsrwMf3/XOsyJ2Wxm7doDNA/2okM7kemd/vEmyiuqWfztyw/RAY8Z6DryEAz0+EmrWbrySC1jAtRnTa5/UDvx/5GB/l3u3MohwFdVL4xdaUkpIMHN2QptsQ47GwWm6vIGw9jl5Rbh52lFvlaPq5MF2hI9ny29xU877zH8CVcWTw6qDWP39pxkNpwo4tWejrz3nBuuagVF5Uas9WLs3vJqM6duVTFxQx5NXBS081XSoYkF3ZpaUGUAFzsZ2mI9thYiKCrXCThYS8kvN+FsKaGyJuuctUJyP+zag/Z6AQcraZ0wbaI9FFQKuDpbUFRprld+odwCFzsZFTWH2myUEvLLTHj42VNUbsTWUhzL5dUmHNRKNMUGXNRyKnQi02djISW/oBqXmvY+aK82VKMpNdYp30qvr61/nfoYwMFGRn6ZCWdbKZW/22Nq0L6sRIeDlaxOewUEbBQSCioFXGykFFWZsVVKwFJOhZ77/Wkjli9VWYr1LzPhqpJTVGFC5abCY/SVv52B7j9sBKcO/sb7cxfSo8YF489EKpEwa8LrBLUK46U3J9TqHkbMgsDR3TuYPXUinyz+kagu3ZHL5SgUitr5UVddTXlpCVUVFXj4+CJ/gAUVBIHDO37B0dmVtt16ALBu0XySLyfy9cr19e73mIH+a2U8DAP96aTxbF65jHFvDmDJ4smACKjdPJ+vtclL/bGWif4jA/27PIwPtNnQ8HpRWV5OYZEOVycryioMONpbMHraSdZtv82rLwTyzbRIbKzlaAqr+WLxZVb8ksLoFwKYP601ZZVGHNVKcvKKcXUQ59vYhELGfHIJN2cLerV1pk2Iit7tnVHZKiirEO01hdW41MzPADZWMvIKKnFzskBbasDOWuzLskoTjjYyNFo9Lg6KOvaa/GpxPn/QvsqMk72ynr2tqu78b2cjkn8VOknNeqHD1VEp2kukYvlaHW5OlqK9tbymPsZ664tgNIj9o9WL9a8pXyKV17OvMsjEMKlW8gfK16GyEcmgskoDjmoL8grEtlVUGu/bF+pwc7akqFzAriaV+u/PK6+gCnd3de36KD4vMYxdcbkZuwfCDjraW6IpkeIR9v0/5xDh/0WRSCSCl38ACzdtJyC4eZ1rfwagNy7/gauJCXy97Cfg3wPQWVkFdOr2DoWFpRiNJgwGIyaTuTbcnUIhR6WyxkIpp7yimm5dWvFs/3YM6N+W4a/OJyenkKSr6VQWrMfCQsG9rEKCwt6hLOfHuvGl/7QDHgPoOmKqRKMpxtXVvgF9Se1kr9GU4NZkfO3lvNuza333xk9ey9LV5xn3aluWzH32fhn6wgZPiN+6mc3XSxKZ+0F7vlx8kTahLgDEX85h+pthfPBNPGOHNuP42VwkZgNdo1xYuS2FryaHMnvFDfEQjKmahOulvDcqkI8X32T08z7ExBdSUVTJk+2cWL0vl1lj/Jm1Jo01++4f4DkzuxmL9uUzqqcTpy8VYTQLdGlmzdpTJXzwjCMfbSvAZDBxI89IutbIuC525JYaGRlpSVyaOJF1bqJk3YVKZvZV8cPJMkLcajL5ZRt5p6stnx8u45UwBXEZon0nPwXrE6v5uKcNC+MqCKs5dHg5x8g7Ha35Jq6KoZHWnErR1yn/06FuLDhYRLivODYvZ+iY3NeB2YdKebm7U51DhOuOF/LJMG++3ZFD6ybiq9hLKRVM7ufMZ1tzGdXTqc4hws2H85j+tAPzD5UQ7i2O84t3KpjSU8WsA6WMbGtDbIr4qrRzUyvWnSvnk372LDheSnhNCvHkbD3jOtrw+aEyRkTfr39HDwkbLuv4uKcN38VVEu4hBwEu54rt/eJ4Ba9EWBKXbkBuIaW9n0Vtf353ooxwTwUSawWXMw1M7qNm1m4tIzupiM008cUveX87gHbx8GTO2p//1Ff5QZFKJBza8QsHt21h3sZttbqHEbMgUFZSzGt9u1OQm4PJZMRoNGIyGkUiQSJBJpNhY6fC0sqK0uJiWrfrQMc+fek3ZBhfTZ5A6q0bpNy4zv6rd3F2c6e8tJQ+zX05cC0FtYNjnfs9BtB/rQylTEZhvgYnF9c6ekuFgkKNBidXUV+o0dCxiXvt9bzs7bi6iof1xk9YwNJluxk3tg9LvhtzvxBDQT0faKDxSB4NReFoBEBnZRWyfrsYHrRHR09+3HyDOdOi+WTBOdqHi/NtwjUtY4Y0Jbz/b7Xfe390MP27e7JyWwqfvxXEN6vv0LqFuDZcvFZE306ufPnjLUxmuHK7lKiW9nw2Poh1u7P4fEIzvlmTQkRzcc1IvFHC1BG+fLzkDqMHenOi5hBhtyhHft6XxQevNWHuujQig2syEd4sZeowH2YuT+W1AZ6cqDlE2K2NAz/tyeGLcYF17K+nVzFxWECd+R+gZztXVv6awZfvhDBn1S0iWtgjCHDpRgnvj27GRwuvM/oFf2Iu5KOQSegU6cyqX9P4clJL5qy8SUQLeyQSMxevFfPeq035aNENxjzvS8yFQiQyCd2iXOvYtwl1BiRcvKZl2ushzJh/mbFDAom7WIDBINC9nRsrt97h66mt+Xr5NSJbOiIRIOG6lumvt2TGvEuMeTGYmHPi2/Qe7d1ZseUWs9+LYsHaG7RsJo6ji1cK+GB8a6bPOc8bw8M4fkZM8d2zozfLNl7l20+fxDlkwT/jEOH/ZVm4+xD2Ts4UVVfX0Tca3kcqpWXnrvww5ws0ZWUYDQZKq5waDFWnkLnX+VxaXIzK3l70o3aGQ9eG1F5rZiMyKyaTCUEQ7od2Mp/i1Kkknn7mfU6fvclnX23luYFdmPb+MCZNWYKFnXiPo7EJdOrYCrmNJ/XkYYAygMSvAZ1Pg6a3KhrelBkaWVAaEoWs4cSWzWweYuybGwml1AgI1+Tm1QPK4ycuY+mKg4wb25clC8fe109axdKVxxg3pidLFowSXyOO6SnqRnepM+kv+eZ5Pn3/ifqsiVSOq2v9uN2uLnY0a+KASmVFSLAzrZqLE3p1lQ61ypKgAHv8fdWElRiQmg34+6gJ8lejVlkTEuRAq2BHMBmoMshxcLAjKECNv68jYeUSMFbh31RF0yaVqN1taRPmRHGpkZ2ntHQKVRHY3IGmydX4N7WntMqM0Qx+AVYEZppw8banRxszEf6WCIiZC48mlZGuMfLmQCdC1SKICAiwJqhIi0MzF1qWWNDSR/S9M6RU4tTKkaAMGYHtHSlzE6PdBAZYEVStxSnClZZVRYQ2ETcUxruVOEc70VxfQlB3F8p9RYAbFGRLsDEPl7b+tNJaEt5C7GtTchku7dwJzswkINSFYqXouRUQbEdQSjUqRwtaBNgS0lQE0DpBgspCQqCrEh8HOSFe4tj3cZDT1EWBjUJKM1cFzd3E311llQUqlZJANyU+bha01Itj0c/TiqYeRlQOFjT3tqRFDaBHJkPtbE2gpwFfLxtamsXp1t9HSaC2HLWXiuYBUkJ8lEgUUvR2OhyaqGiaKsG/uR0l1joU1koCfK0I0hbhEOhMi1wZLQOskKqtMKgqcGzuTNMbAgHhLpS5G+GXv99la8GuA7h6elOmr3sIqjFQLJdKCe/cja+nvE1xeTkSiQSlUtng/PhH146ykmJsVWpkEglWdio2n677slOCmI1QMJvruI/cupLEpKEDSLpwjp+XLyG8fUc+Wvwj7w8fjI2jE9VGI+fjTuIXFIzE2qZeWxoDv9WNhKBraG5rLBSe0fxwpJXyX+QLeFAeybG0RoB1sSYPxz8A5S/efZtffvqRwa+9zoxvv6/Vf/LOeH5etYwXR7/JzAWLsXd25sXRb/LzqmWMe/MVXN3vZ5NcsmQxn84YVJ+kMFvj6t4AGdMYQWOu33qJqeHnpVZZEdpCjJ7h560iyF+Nna0l0aEutAwSN1NVOjOBPmrahjpw/koRfTu70T7cCV9Pa5r62qG2s6BFoIqWTcU5XKc3062tK7czKnm+twcxFwpYuiWNSXOS6dXeGbXKkhZNVLRsKgLoar0gzs/+avx9HdCWi2Pf39ee5kFV2DuradnMkZY1AF0nyHHydKNZ0zKaNPOg2CDOb01D3Am+YcLJ25tWLfWEtRLbJbcrwdnDneAgLYFB3hTrxHnY319FUEAZ9g5qQpo5E9rCEbPJiN4kxV5tTVN/Ff4+KsLKTMikEvy87Wjqp0Jla0mLQHtaBjkglUKVToq9vR1B/vb4+ToQWgZSmQx/X3uaBqhRq20ICXKkVbATggBVegG1yoogfzV+3mpKyo0YDQJ+njY09bPDzlpBi0A1LQNVCIjhBe2sZQT62eLvZUtoM3Hd9vO0IcjPDjtrGS2bqggJFPuzqlJk5Zv62eHvbUdoc/E5+nnZ0sxfjd3DYIe/KH8lE+G6hyhP+D2k3H+rSCQS4UhWw76EfwagAV7uEsWL4yYye/JbePj4suP8lXo+gQ/u+i9fOMeYZ/qwLS6BZjXZsh6UxsCiUR+Dh9dACgpKcHJSs2zJuwwa1IOvvlrNseOJrPpxKh4ejkS2Hcf8b97kid4RDTT0nw6gG67fowDQmtzcWvbjdxk/YSFLl+9h3OtPseT7caKdphg33xG1Nnlpq3B1VYtss//o+/qUxbUJbDS52fUZk0bjlmobVB+LuUWnKHfmr7jEq0NaEH9FZIgjmtuxZtttJr/WivU77og7e2M1F65oeWVAAN+tvcHI55pw8ZoWKUbCgu1ZtyuNd4YHsWFvBm1aOmDWVZCQXMqwfh4s2pTBK/09uRivoajcSPfW9mw4rGHCcx5sPppPhKccbZmJNI2eF7s48sM+DS93c+RKaiVGs0DrAGs2xhSiN8FPRwtYPs4XJzs5iSmVvNjZkSX783m5hxOXUkWg3DrAio0ntLzVz5WdZ4toUQOsE1Mq75ffw5lLqaJ7TOsmYvkTXwlg82ENEc3EDUjirXJe6uPKusP5DOzhysUbYjrayOYq1v+WzYTB3mw6kEtk8xrm5kYpL3ZQs3hnLsN7u5B4R4y6GdHUhh2HcxjRzZGf44qICKipT2oVg0MULD1Ryktt7bicKU7c4V4KNp8vZ1w3FVviy4nwEX8ryflGBkbasvRYCS+1t+Nyhmgf9rt9dzVbLpQT4SPOBZfv6RgcZcfSmJLa8mVKKaE+Fmw+U8a4XvZsOVdKa19LpNZKElOqeLGTA0sOFjCsiwOXUqtQqC0Ja2LDhiP5TBjozuZjBbSJcKLzmPi/nYE+dK/hcftnABpg4sCn6Pns8yyZ9REIAnuup2FlUzf5xIMAOvVGMuP69+bbzdsJi273l+8pCAJD2rfmXupdbFVq3v7sKwa8PJIda1exZ+M6Pl3+E+5ePkwc1J/nRo6h+8AX6pXxTwfQja1FD8NM/1m856L8fBxcXGp186ZNZuealbzw6ljen/sdIEZEeSokoNbm6M0MHF1c0eZr6BXsW6uPvZtdy1A7VSbh6upc/6b6S/V1hobDfDbOQNc/wC3oG557E5Pu8fvjiU/KZ8TzzViwKokRz/qRcFW8b5tWTqzdfoe3Xwpg6c936N5WbEPCtSKGP+PHql9u0yWq5hAeEBliz7rdGUx8KYCNv92jTYg9giCwYH0KcZe0DH3Sk7eHNSExWWTKI1qo2XY4h9cH+7NxbyaRITVM9vViXn7ah4Ub7zJigC8XrxfXlr/lQA7jXmzKhj3ptGkprmFJd8t56ekAvluTzMjnA7l47ff6O7N2+10mjQph/a67RLUS+z3pRiFDnvSts16YBRNtQhxYuzONSSOa1ZYvEQQuXBXbu3D9bUYM9OPitSLkcilhwWrW7UznnVeC7tvLpCRcLWL4AH++W3eTkQMDSLpdiskkENnSqaY+LVi/K4XoVo4IgkD81brrV+L1QswCRIY4sHZnKpNGBPPz/ntEhIgbg/irBbzybCDfrbnOqMHNSbgqjoc2oc616+MvB+8R1lxs74UkDSNfCOa7NdeZ/uXJ//FDhF0Rw8X91b//b2XA8FfZtmIpIZFRePs34a1B/fnxm6/Yv+1n9mzewK9rVpJyMxmAe2kpTB4+GFuVmtx7D5fhTS6XczN5EzeTN3L96noGDRJ9+p7qG42XpzNR7cdjo+6Pl6cTfXrXzwb2/7OMf2sebl6DGT9hYa1Ooyli6fI9ACz9cT8ajThhubraM25sXwDGje1b667h6qpm3Bgxuc24MT3rZH+sB57/Dbl6s5CyCgMHT2SQklHKibPZnDibTUpGGYdisyirMHA4LouEKwVcvlHM0dO5lFX+P/bOOzzKclv7v0mdZNLLpBEIvYXQO9KLCChVpAoiRWxIESlbAQtNio2iVAuCFEVUpKeSnpAeCOl9StqUlMnMfH+8IRAyOUe+rfvsc7brunLpPLN4st6ZN2ut937WupeOq2HFZBeoCY6RcSe9gpwCDdduy1Bp67kRISM2pZw791TcjFKi0uq5Hqkgu6iayDQVSVlackpquBFbgbpaz634SjZ/W8TUjzLZ/3Mp6ho9NxOryJHVEZupJSxNQ66slpvJapaOc8XNwYJXD+cTmqoiMFmNukbPjSQVeYo6wlLVhKWqyZHVcTOxCnWNnrgsLfENP7eSVI3758rrCEtVEZaqEvTvCKPKb8aWE39PTfw9NTdjy1Fr9dy5pyK7qJrQ+ApC4yvILqrmemQZao2emzHlxKVXEZdexc0YQf9GfAU5pTWEJlcRmlxFTmkNd3KqUdfoCUxRE59dTXx2NYEpatS1Rm6lV5Or1HE7s4bbmTXkKuu5dbcada2BoHs1xOfXEp9fS1xuLeoaAzfTteQqdYTdrybsfjX5ZXpupVejrjEQdLea+Pw64vPrCM+sQV1jaLJ/XE4NuYp6bqZqUNcYCEyr5k5eDWkFtYI9DZ9nrryOsLsaYu6pySmt4UZ8BepqA7fuVHInQ/1P33t/pUyev4gfj3+JZ6vWDBwznrdmTeHozg+4ev4Mv/9wip+/Oc7dRCGRUspKeXv+TGwkEmRFhU/0e0QiEceuBvFDxB1Ohcbw7DwB0+k1ZBgduvuzcsp4RvtJ0dXVMerZaX/6daHx2JkAACAASURBVP5vlz3r3+JZ/3bsWS/UKZfL5fx0QmjwO3/8K8rkwgO9i7uUWS8JA3xnvbSsEZ12cZfywpIVALywZEWT8g6TyfP/gOQWqIlJlBOTKOd6aAEqTR1XggvILVQRHF1KcHQp2QUqroYWodLqiEoqIzalnNiUcm5ElKLS1nPwh2z6zw5i64F0QmKV5BRquX5bLvjbSAWxqRXEpVVSrzfy6gt+HDyTQ3RSOSGxykb96ORyVJp6bkTIiUutIC61ghsRwh7Xb8vJKdQ20b8dr2zw56WN9oTFyFFpHvH/UTKCo2TkFmoE+zU6rocVE5OsICZZQVSColm8CI2Vk12o4drtEuF3hwv7J96rbLzea7dLyCnQEBKrIC61vCG+lDSxJz61nOvhQjy6FlZCdoGGqAQlwVEysgvUXA0rRqXRceN2CSkZFcQklzWLX5GJSoKjZWQXaLgWJrwXGitrtP96wx5XQ4vIKVQTFFVCUFQJ2fkP42PUHRnRicLPtZA8QT8o50+/j/6ugX5M/hkEWlVZwcx+/ki9fcjJuIu5uTl+HTvj27YdmelpFGRnsvebH+g7ZBgLxg9nzrJXSY2PRVVZwdZPDuLu0bS8o0W09b8pTTA01NI1HpGaqu39D0GgZbLyRrRZJivHw+sh72tp4dlH6vCaI9DCHnVNap0bRa9FJq9qPjpd/wSTCFtAoPU1amSKajzcbVGW1+BgJ5QQVJRX4uIkplRRjdRVjEZbj6G2uqF5Qmi2UFbU4iCxxKCrNdn8UV+jQmJjjry8DqmLNcrKOiS1wn2jrtbjbG+JrFw4Cu28ILbRptCdnenayoYyVT1Cb4ZIaM6zs0BWqcPN3px3T5cQlqbmp3faUVtvROpoSZlWj4ONULrwqL67w2PNfFX1jfr2j+krscDd2QpNTYO+2Ax5hQ5PbwnKSh0OkkeabxwsKZVV4/6gOYaGZp28KqROVk2ab9TVBhx0tcgq63F3MG9iT0l+FVJ7C8o0euzFwt+RWluPs605MpUe90eaBSV2Fo3NfI/qq7R6k/q2ViLkagNSe/NGfZGlmdAcKTFv0rxoZmvd8PnokTpaUKaux15sjrmLLepqA872Fo3NkdXWYnwm/rkIy+PyzyDQdbW1PN+vO24enuRm3EVfX0+bjp1p1a49hTnZZKWlsPHTQ4yaMo3Xp01kyPiJVGvUZCQlsmHv53j6tm6295PUUj9AhI1GI0ajsdE/6kzUHv+nINDlCjnObg+R5nKFnBkBHRtf/5ychbO7u0kE+sG+ZXJZs9IOawsLk7XRXe2KTNr3r0ag9XXVqDVCt/KjzWfy0opGf/ugWa2oqAypi7iJP0nNrKL/rOuN+2X8Nhaxtbngb+XaZs2CsrI6Tl8u4NiFPC4fGoS7izUqTT2uzuKmzXyN+kKznbKiDge7hmY+TT2uLnZN/DmAvaMtMmUNHm42jf4fQK3VNzbbPYgXALbWNIsXRkO96WZBvaGhWfCBPQ/3N6UvMjNrpu/oIAZETZr/pK5iNJq6huttGr/sbc1o0lyorMFTav9Ys6BwvWUqPQ5NmgWF/b28XNBoH3y/lsgU1Xj6uGHmvftP9Y/mW7Zs+bP2+j8hW7du3bJwzTsm32vJWZs3rFuLxQwcNQZFcRH5WZm0ad+Rep2OhKgIDHo946bOQFFawqEd7zNk9HiWrdtA/6dGEnL1Mh+ue5NxU6bh4vbwCd3VqoXv2ZjXwrrwByUSiR6rJTThsEUtHD60NP5a5GRizbH5GqDUmd6ipYBiSloKBC19JjKZDMljx8ErV77J7DnvIZOVM2nSECQSG2SycmJi0nll+RSenzWyUXfSM4NYuXQsz8987BDFqEciMcGCaNQhkZh42DCaqEI0UZsnrJseE56YXMxzS35lxsT2zF75O3JlNeFxJew9ksjYoT6MW3CZjn6O7DmSRGSCHBEiFq4PZ9o4X+auCUNeVktKRiUfHEpj/FAPJi4LpUNrO/aezOD2HSVmZma89F4yU0dJeXFzEhUqHRGpavacKWRsXyee3ZhKj3YS0rLUyCrrGd/bgZM3lDw70ImXPs1BU2skPF3D3ksyxgTYM3V7Fu08rYnP0nK/uJa7hbXs/0XOlP6OvHe6mKySWqIzNOy7WMqYng4898F9Onpb8+klOdcTVNhYmbH081yeHejEykN5lJTrBP0fSxjTy4GVn2UjdbLik7MFXIsux8banJe3pzN1lAcvvpuMoqKOqORKPv46l3GDXFn6QRpSFys+PZ3PtcgyxNbmrPn0PhP6O7NoVwaKynqi0tXsOVdIVy8r5n2SSwdPaz6/rOBGkhqxpRk7LsoZ1tGGpSdlKNR6YnJq2X+9gtFdbJlxqJR2bpZ8EVjFjfRq7MRmLDspY3JPCS+fkKFUGYjJruVCrJq+fmJmHCimnbslX9ys5EZaNTZWIlZ8I2dyT0nj/slFdXz8Wxmju9ky/dNC2kmt+OJaOUn5tegNsOxwAVP6OfLSgTyUKj1J+TXsfPB9bUqlvbeYz38sIjFDzZYtW7aavuH+edm6deuWBavXm3yvJWq6B37T3MKCwWMnUCYrJS/jLq3aCkN+kmMiqa2uZsSkZ6nWavh63y7adOzE69t20HPgEFLjYti59nX6Dx+F9LHx209Ch/fA+zzuH035JX2Lye8fH7fdkrd7wvwZc7Pm19hSLGppvapMiY1tU//46ca1vL9iMeUKOYPGCidtNrYSKpUK0u/EMXXRy4x+TmDIGDLuaZ5/aRljHyt3MTcza1aGA0Jybmti3d2qBTBBX9J8rQX/2CIzkqGm+ZretO/Nzi1nw+4ofg/Kx8banAWrbjF9YltWfxhBdr6KiDtydn6ZzISnvHnulWD8fCTsPXmPK2El2Fibs3JrHBOGSUm6V0V/fydqdQZ2H7vPuCFS3tyRhLODFfu/yeLqbTk21uYs/kc8O1Z15fDZXG5GKSir1LH7+H3GD5HyzIpw2reWsO/rTK7eliG2NmfX0QyG9nFlwTuxyMtriUwsZ/ex+w3+PIQObewb7ZHYWrJwbRjTxvsyd3Uo8rIaIu4o+OFyLgMC3Bi/6Dod/OzZezSVKyFFSGwsWPD27SbxIjJJwc6v0hg/zJOnXw4S4sXxuwRGy6itM7Ds3RimjvVh/tuRyMvrSMms5IODqYwf6snEpcGN9gRGybCyNOfF9RFMG9eKeWvDUWnrCY2RsfOrFCYM82LC4ht0aOPAqZ+zOX8lHxuxeZP4VaXWERavYNdXaYwf5sXTSwLp1NaRPUdTuBJShFhswcK1YUwf35rNe+O4l11FRLyMHYcSmTC8FeMWXKZrB1d2HozjcmAeNmIL5r1xlSnjO7D/q9g/1T/+IQRaJBItAlYBHYAK4AywwWg0lS387xaRSGQ8FhiJT9t2VJULSIu9kzOFOVm079yV4rwcHF2EWpzKMiWevm0wMxiaUCYB6LQafj93husXL2BhYYGbpxeuUg+kHp54tGrFmMlTqShT8uWuj7h8/gxL3lzD4jfWPGwU5P8fgW4m/8cR6JUrV3Lw4EFeeeUVDhw4AAgJtYeHR6NOafHPD5FoEzXQgGnH3FLy2yK93T+PQNdXqykoVtPax54SmQbHhklLZcoKPN1tyStS4+NhS5VaR61ag4OdJeEJCkYO8CA6SYmfjx0GXQ25xdX06+5MYJScIb1cyS3Woq9R4+tlQ2RSJcP7OhObWoWPWI9IZEZeaQ19OtkRnFjJoK4O5GZWoFTr6elnS+Q9DcO72xGXqcXH2RwzkYg8hY4+7WwISVUzsJOEPEUd+y/J6OwtpldbG57qZkd8TjWt3QX78+R19GlvS3CKmoEdbchvGFDi62r1cP/salpLH+jX0qe9hLA8HYO6O5L3YKCA1JrIVBWjhrgTk1pJay/hASevuIa+XR0IjlEysLsjeaXC34OvhzXhkXKGBzgQl6HG192akKQqvrhYQm5JDZVaPXoD7F7oxbAudvi6WhIZr2RoRxvi8mpp4yI8VOYpdPT2tSL0fg0D/KzJKxfu5zZSCyKz63iq02P6ch29WlsTer+aAX7iRv3WzuZE5dQwrMNDfaOFiPwyA338rAm5V83AdmLyynRY2Frj42JF1H0NT3Vt+HxcLRE52lCgqKNPRzuCE6vw97Nl1of3iL+r/rdFoB+VWq2WWz//yPWfzoLRiKuHFy7uUlykUtw8vRkx6VlqqrV89+leLn13gmmLlrLwjTWIbZs2kP3/INCPiykEura+ngqFHBD8f1FOFr4dOpGXk419A2NHVbkSj1atKcjMwM23DeoK4eTSztGJktxsvNp1QFaQj0OjfhnSVr7k3b+PZxs/VI/ol+bm4NOhI7L8vMb9VeVluLfyxaqByvRReRIE+sCmt/nt2+NMXvgSb3z0MSAgzbN7dW7UOZ+Y0YhEm6qBBrB6Aho76xbmJfy7IND1tVoqqgTf7mBnSWGpltbedhQVKnG0FxDNSpUOT3cbsnMU+EhtqWpArB0klhTJqmkltSD5fhXtGwasVKp1eLqJiU0uo3t7e3IbaqNbe9kQkVjGiH5urNqRjJWVGesWdyCvSEv/AFduRckZ0tOlqX5CGSP6uxGTUkEbb+Gezy3SMqCnB7ciSxnSy43cYiEGtfF1ICKhjJEDH/p/gPxiDX393bgVUcLQPu7kFAm9H62lVoQnKJvEC6OxntwCLf16OBMYJcNggF1H00hIq0RXb0Bbo+foB/3o0MZesMcAuSXahvgia7RHZGZGay9JQzySEpNUhp+vPYjMyClU07+HK4GRpQzp7UZOgRoR0NrLtkn8au1lg0gkIrdQQ78eLgRGyRja1/Ph9XpJuB0vZ9QgT2JTK2jjI5RN5hSq6R/gxq3wYkYNa4vqwfdlZ0VWXhVrPgzn1+tZ/1oaO5FINAf4DmGiXzzQFugL7DMajWv/LEP+XUQkEhlPJ2dy5tO9+A8aAkByxG1mv7GGc1/so3XHzkTduIq6sgILSyuy01Jo3bET9XU69PU6DAYDG744gk8bP5P712k1xIeFEB14g5sXLzBu+vMsWLUOd6m0mW5Lzqml9SdCY1r43lsKMk+CHj+J/FfUgKbESSNH+shn9V8lyitX7uTg4V94ZflkDnz2+sNNWkpoTT2AtPSMaOqhBMBo4oi3pSS8JTtaSM6N9Zpma2VKFTsOxPGPN/rxxnshrH+lDzdvF2Bjbcag3h7sOhTPJ+8N4/3PYhkx0Bsz6rkZUczmV3ux6v0I1i0LIOh2Lno9jBrowe6jaezb2IePDqUwqr8LunojITEKNizrwuqdCaxd3InweDk1dQZG9ndjz8n77Fnnz44jGQzr68a+kxnY2Vpwcns/1uxKZO1LnbkVKSQiowa48/Hxe+xd35OD32fg31EofwmJVbJhaSfW7E5m9QI/AqOFwDmyvyt7T2ax64327DyRw7DewilIaHwF6xf5sftYFnPHexAULwTOEb2d2HemgJ0vtWLXmSKG+Qv7hyZXsfZZd945UcCbz3ly7Kqc74OUrJ7miVJZw8COEhZ8ns/qSa5ky3UYDEZ2z/Pg3bNy3nzaheB04fsY3t2OT39TsH2uFx9fkjO0sxDYkgrqWDbBjQ3fFPHGZPdGOryRfZzZ91MJO19qze5zRQzrLjj6yMxq3prlw/rD2aya6UNQQiXWYnMG+zuy70wBu15tz65v8xjW0xErGwtuxZSzfpEf6/bfY/X8NgTGlmNta8vQ3i7sOZHBnrcDGDY/iDY+Eq7f/utp7H7PN53YmIlEpMREcj8pEXlRIfKiQtRVldTX69Dr6qnX1aHX61m1az/tu/mb3KNaqyUp4jaxQTe5+dM5Bo17mgWr1+PmZYJJqAV5Uh9m6sG+qKCA3PRUAFKjwpnx6luceH8zE5e+RuptYcBHt8HD+OWrL1iw6X0uH/8SP/8AAO5GhfPsK6s4vXsb4xcuJTUyTNAfOJTfjh5g3sZtXDr4CZ0HDG6i//Oh/YyYOYfU8NAm+7+5e//j5rUYA1RlSpweKcmoUMiZ37db4+szd+42JspfbFrHxZNHee7FJby1Y2+jjmULybnYhE9+Uv/dIihUb2LIhYmEWNBtab3KxFpLPra5LwUwmkCsjfWmj1QN9ab9enV1DVs+iWfEAKEkMyiqhM2v9mLNhxHU1umprtEzcqAnowZ7cfTMXd59rScfHkxieH8hjgVHl7JheTdWb49j3cvduBUhoPOjBnly8Pt7fLCqdxP96EQlq5d0560Po1i71J9b4cUAjBniw64vk9i/eSAfHEhotCc+VckbC7ux6oNI1i3twa2IYjDCqMFe7P4qiaWzOzF24e8smdWJsUM9+fFKPt9czGTkQE86+NljbiYioLMTT/X34OOvUti3qX+jPSKMBEWVsvEVf976KJZ1L3cjLKaUOp2hWXwZPdiDep2R4BgZG1d0562P4li3pCuh8Qp0OgOjBnmy+0gq+zb2Ze/xdAY00AsGR5WyaWUAb30Yxduv9ObmbeF6Rw/xZtfhBD55dwillUY6tXsIkr266Sal8lou/Hb3X95EuAr4EehqNBpnG43GAcA24NWGYSr/UXJq/25y0tMQ20roOXgYvh060rlnH7LSkoWu5DkL8Gj1EJk1GAxkJCfy/ef7WDNzCjN6deH8kYN4tPLl0OWbvP7BTpzc/j0aK/7dRCmTNXm9ZdVKPDw8WLnyId+yVCrllVeEmuVXVkxtgiwf+Ox1SgvONE2e/5a/VCpUOmxt/r3dgoW5CCeJBRP7OWFuJsLHxRKxpYijt8rR1BoITNVwIqiFIP1vJNU1euLTKth7IoPcIi2TR/r89//oL5YjH24h8OcLSBwd6T9qLFNeXELAoKHk3kuntKCAMdOfp03Hh8in0Wgk524a5w5/zjtzp/NC786c/nwf9s7OfHzuEm/t/uSJkuf/JHmAkD+QQ/9Yz/y+3Tiw6e3GNSc3d56ZvxiAyQtfalLv/NaOvfyYdL9J8vy3/LWiKKttrLH+dxVrK3PE1uZMGN4KaytzbGzMcXO2JjJBTmWVjp+v53Pp5pMRH/xPiE6nZ9POMLZ/HsXZSxm8+tKfT6jwRxDocmCO0Wj8/ZE1d6AUaG80GrP/dKv+B0UkEhm3fnuWbv0GIGtgx5C2akXgj+e5Fx9D6G8/s/y9DxkwZjyhv/5M0KUfKSstZd6qtYyeOrOxlKM0P49LXx/l2rkzSOwd6DdyNP1GjKbvsOHNatHA9FP/fwoCbarZZPvaN/j+yCHmvLyCLfsPNCfiLy1tikSXXGpeltFSmcX/IQRaq65GBARFFjF+uC+R8aW0a+2A0VBPVp6Kgb2kXA0pYMRAL3IL1Rj0dbTxsSM4qpRxw7yJSpDTRircs9kFagYEuHL9dglP9ZOSm1+B0WiktZctIbEKxg6WEp1Ujp+3NUYgp1BLf38nrkfIeaqvO3nFWqa/GcE32/uhqNAxdrA7camVtPYW7vecAg39ezhzPVzGsN5OjfRPrb1sCIlTMnaQO9EJCtr4CMjug/1v3C5mSIAT+Q9KODzEhN6pYFQPe2LSVfh5CiUcOSU19Otiz60IBYO72ZMvayjhkFoTFl/GyB4OxNzXEpGu4naamtXTvOjrZcatFA1V1XqS82uYPcSJ0HQNB68oubKhDfdLdbRxEz6fvLJ6+raz4VaKhiGdbclvKPb39RBzO13LqB52xGZqadNQglKoMtC7vYSbCVUM7WZPvly4D1q3tiUsScXoPo7E3FXj5ylGZGneaP/N2AqGBjiSX1qDmbUFvp7C9Y4Z4EJ0ahVtvW0wE0v44fcCDp7Jpktbe955uRNOzhJ6Pff7/wgCXZKfx4XDX3Drp3Ms/cc2nn5hPmlxMXy9Zzt5Gfd44bW3mPD8XKzEwnelKC7i129PcOWHU1hYWgq+ccRoAoYMQ2LfnBv9SeTPQKC1dTpKcrIAcPNpRVpUBAHDRpB+5w7uPgJHvSw/l/Y9+5AcFkTHvgNRNrCFuHn7kB4dQbchw8lKjMe9ldD8KC/Io11Ab9Ijw+jUpz+Kx/QDnhpJZkIcUt82TfbXVZU1QZUBjm3ZyOVvTzBx/iJWvL+TCoWcF/s/RPW/jU1t8m805WVNkmdoOY78jUA/tvaECHRCqoxObR3ILRR+RxsfCcFRpYwd7MGA6b+weWUAg/tIyc5XMyDAhWthxQzv70FukXBy1cbbjrDYUkYN8iAqUUnbVkJJRnaBmoE93Zvr+9gTHF3KuKHeRCUoaOsr6OcVaenXw41roUUMH+Dx0B5viaDf4P/b+gonY9n5Kgb0dGfLJ/GExJRwcNtQEBlo7WXHZ1+noqs3MGawN/dyKtl+MIk9G/ry9HCfpvYYDbT2tiMkupSxQ70E+xtKUB6PL3kPSkq8JYTEyBg7xFPQb20PiB7qhxUzfKA3uUWaxs8nOLqEcUO9iU2rxK+V4C+y8qoY2EvKtZACJoztTGxiKdOWXOKZMW15aXZ3Bg1oj5nXR//yQSqOwONFbw9eOwP/pxJogF+OfYVRb+DWj2dRFBehq63lftIdpr28Ar/OXalQKLhy+ju+3v0hy7duZ9iEZ5A2ONWcu2kc2/E+qTFRTJg9l30XfqNVu/aNe7dUu/a/VUx1YLe0bmrtgzWv88PRwzy/ZDmb93wGgFIu4/sjhwD4/sghXt+4BVeplDkvrxBGwb7ySpPkGTBd0/wfIAXFaqG+6/1Qbnw/lY07w5kwojV2tuacu5zF95+OZe2Ht9mzeQhnLt1HYmvOMyN9WftRJNe+mcimj2N5ZrgHOp2Rq2HFfLt7KOt2xbN7fW8Cw4soVdYya0Ir1u9J4vKXw/jHZyk8O9IDba2e67flnNzel3f2prBjtT/nrhZSWFpDVoGWj75M57fDQzn0QxZd2goO+tptGV/v6M/6PUnsWded7y8LCcTM8d68szeF3w4N4aOj9xnWW6gBvRah4OQHvfj0+zyMRjh3XRgSMmOMBxs+y+DSzh5sOZrDEH8HQhMrSbivZspQN+7na9g4txXng4VEb/pTruw6V0z31ra8f6qQDt7WRKSree+bAk6s8Gbz6RI+fMGT0op6Pv1NwXP9HSitrKfXO5n0bCNmdHchIN1MUXNkhW+j/oUogc915lAXNp8q4qcN7dj2QwljegjXm6nQ8e5cazadyOejxb6cDxXc5swxUjYdyeHnj7qx9UQeY/o6Iba14NcwJcc3dWHjoUy2r2jPuUA5Hu7WPNXbmQ2fZfDrp33YciiTsQNdsLGz5fPvs5gy0oubETIq1fV8++u9f9FdJ0hdTQ3Rt65z6+J5EsJCeGbei3x1KxwXqXC0vHXpQmavfJNtx79v5MMvzs3h2I5txAUHMmrqTD785gf8OndtfPj/qx7Un1RqtVp+/vILAAZPeo5vPtrC5m/OcuvMN3j6CdzHSSGBrNx7kFM7tjJ3wzYifrkAwICJz3J65zbWHjvNmV3v02vUWACSQ4NY/vEX3Dr9DZqKcpJCA5vou3p5c3bvdno8NbJxfzcfX0J/Osv4uS+ydNt2ACqVCi5/ewKAy9+e4IU31+Lk5s7E+Yu4/O0Jnpm/uFnC/Xjy/Lf8dXLqYiZjhnpz5hfhAez5Se1Y+1EkV0+MIyOnirA4GfdyqrgaUsS3e4axbkcsH2/oyw+/5gAw6xk/jp/PoHtHRzbvu8P4oV4AXA0r5rs9TzXTnz25Het2xHD1xHg2741j/FPCic39HBWtve1466NI+nRz5VpoEU4OVryxsCuHTt/l2smn2bQnlvFP+SASibgSXMB3+0by/S9ZlFfWsu3zeHw9bRk12ItvL2Zx9cR45q8OZtwwLywsREx9JZC84BlN7LG0NGPq2Fas2xnHleNj2LzvDs+O9qamxtAsvgRHyShR1PD8xNas2xXPlaOj2bw/gSmjW1Fb16D/8VDW7Yxj7yYLTv+S3fj5PLjer75Pp6OfQGZwJbiAU5+OZu2HEQzo34bw2GImjW3L4Z1j/7Lv+o8g0AZgCBD1yLIFUAMMAJqMhjIajabblP+XiEgkMi7btp20qEhig27QoUcvRkydQY+Bg2nVtj2qinJsJEJAndG1DWeS7mMjtgGjkR8Ofcb5w18wb9U6Js1biNim+cSk/44K71H5d0KgFSamUG1f+ybnjn/JzMXL2PDxJ//luqm1MrmMcV0eNifeyihoRKIfR6AfyOM10A8NN9FY+R+AQNfX1mJmJmqkvSurqMFeYolRX99A6yOmVKFF6moj0N7p65rSAFXUIrHQ0YQ2SFGD1NUaVZUGEDWhVSqrrMNObASRCJXmAY1RLVJXMenZKobOC0IeOglFRR0ermLKq+qxt22gYXqE9sjdybwZzZOHqzXKMi32koe0TS6OVhSXVCF1bkrzJC/X4WYjIiK5kuW77jKmnzMTBriQcF/D0UtFeDpbMqS7A2/N9MLN0ZLSkmqkTpaUq+uxE5uz9mge8Zlatr8gpYOndQONXQMtnbWIrwPLWPNtKefe8mVIR+HvWKMDZzvzR2jvHtDYWTbS8D3YH0CLmUAL2EAz94CGz87ZGnmFDqmzFeUqHXY25oisLFBr9Tg7CDSC7k6WaGoMmIktGq9X6vKQhs/cxo4pr4bz5vwO9OnuhNTFGm2dOdIhP/7lCPTGg8eIunGFiGtXaNu1OyOfm86IKdNwcGrK1DO3X3f2X7yC1KcVBoOBX74+xtd7djBj+as8++ISk0jzn5FA/xkIdE29nhqN8PdmbWtLpVKBk5s7ZcoyxA3+v0ajxs7JmUqFHIPBiHWDv7e2taVKqeCnA/sIPPMNI2bNY+7GbdRoNdg5OnFs0xrCLp5l+Iw5zFn/Hta2thxtWHtq+mwWbdkBgDw/l3cmjWy06UhkIo6uQrnf4wj0A3m8BvqBmIoZfyPQzeXPQKArKrU42Fk2o10TGQ10GnuBjOvTcbS3Evyzo2UzmjmJrQUlci2e7oJ/tpc8pNVzdbZpri+xauLP7R+hsatQ1fHssmsMCHBn9qS2xKUoOX4+A2srUI9HegAAIABJREFUc8YP8+bV+d3w9ZI07v+ABu6zr1P56Vou76/qzbNjfZGX1TbZ/0ZYAc+9EsiV42Pp2t6x0R6j0dAsvtjbPEZL1xBfNNUN9j9CY1dWWYu9nRWP0955uNuZpLGr0BixlzygsatrjHferdyZs/I3nh7lx4uzGnoAzG3/dAT6jybQppREJtaNRqPxf/V4cJFIZOw7cgx1NdUMfnoKtvb2ZCTE8cKbazn9yW7GzpxDfEggAOcPfY60lS+TFy7m+0/34uTqyrSXX0FRUszUxUs59cnHTJg9j5QY4dmje78BhF+5zLTFL/PjsS/p2KMnABlJCcxcspyv9+9m0gvzSYqOBKD3wCH88v03vLR6PT8cPUSXgF6CkXo9I56eZMr2P3ydRqPRZOmEqUT5o7VvcPbYf538XkvPbZxC9fg6YFIXYOfbq5oh0NDAIyqT4fpYsvxEzCT/AQl0jaaG1IwyundyIS5ZTpf2zpTItRgN9Xi625KeWUFffzeS75Xj5izGoNehqKjB292Gd3bFcON2Ea5OVvj5SPDvKEzO8vWSUFiqxdYabMXmuDpZM2GYB/ey1XRqa8e5K3mUKmoZN8SNQ2dy2b3Wn3c/T+PabTmDe7ng4mjFxmWdWb83mZUvtOdGhFDLPmaQlAOnM/l4XQB7jt+lWwcBqY1JrmDj0k6s35vCilm+3IwUkOPRA9049EMOO15rz0fHsunXTUi4olMq6ewn4cMj2dTWGRg3wBn/9naM7uPE4YtFvL/Ah9WHckjLrWZ4gAMWFiLWPStl8zeFLH1aSlBilcAFjIjPLpUwqKMtHo4WDO0iBJK4rGrWPOPCy18WkZxfy/gAO9p7WDK6hz1f3Sjjwzme7Loop087YXJhamEtr0+Wsvm7YpaOcyUwWThaHd3XicOX5Wxf3JodPxTSt6Ow/53cata+0IqNX+ayfIont+IrsbAyY3gvwf4dr7Rj+9d59Otij7nYgqjkSt5Z3JYNn2WwYkYrbsaUoVTByYt5jB8q5dONPfng0F36B7jx8ubovzyB9u3QifGz51Kal8tzLy0jNSYaAP8BA7ly+jvmvrmGiyeOcOnkUbr17Y+5uQXy4kKKc3NYtWs/5XIZIjMzuvbpx9Uzpxr1O/oHgJk59xLimPLiEk5/tpfxz88lNSYaSysrOgb05OoPp5jzxhp+PnGEDv6C/7yfnNBE/27CHep1dXTtO4BrP5zihTdWc+nEUTr27IVeryczOZHJC5dw5vN9jJ01h9TYKAwGA1369ufm2dPMeu0tfv76GGKJBFs7e+4nxDHj9dV88+EWRs1bTNz13xHbSug+5CmufXsMC0srQi6coevAoQybOouspDuMnrOQTVNGN35uE5espM+Yp/n9+CFir/3WuD5/0/vkpiUTcuFM49qkpa827n/47Tcozc1ugkCDkPxWKOTNkuUn4YH+O4FuLg8SaJW6jn1fxXHkVDJSVxs6tXOiczsnfLyEhyeDwYhBX4+NtQWd2zvRtb0Tdg2Ja11tLXfSyvBwEyMSiVCU19KhtT2j5vzGyEGeLHm+EwCebjZkZJfTq6srKRkVuDoLpV/K8lq6trcjPq2Czm0dKFUIpW4ebjZs+yyJf7wewLbPEugfIDxMpWVW8u5rvYhPLaNzO0dKFNXcuF3EifP3yciu4sM1fRnazwM3Z6F8SqaoRltTzzu7Y5gy2pep49tgNICX1Ia7WZX06e5G0r0yEtLK2Xk4ATcXMcd3DEVZUde4f2ySDLWmnnU7Y9m3qT+J6WVCk5/RQHSSkk0rA1i3I5aV8zoRFFlCvd7ImEGeHDh1jz0b+vD+F8kMCnBFbzQSnVTGplf8WbczjpVzO3ErWobBYGTMYE8OfHePPRv78tHBZPr4P5gsqGDzqwGs3R7Dptf78sDdebrbNMQ7d9Jzq5kw70fCfppNh7YND/Z/QQL9R5Ldv4xT9N9Vlu37ktsXz+Hd4KDdVBq0ZtZ4tG2PvYcnPg1jt19Y8w6hl34kLjQE/0FDeW7JCkQiEdrqavRm5ljbOWAhsUPSQHtnIbHDzFpMDSKsHZ2wdhLKDqwdnagVmWEpsQdbCeIGGiOjrS0WEju0gLWDI5YN+tqqKuTa5knWk3CD7n9nNT+dPMrUF5eweuc+APauf0tYW/QyaxrWyuVyzh77EoBzx79k4Zp3cHZ3R+zswrRFL/PjiSNMW/Qyts4u1NTXY+vswozFSzl//CtmLF6KQwNi8mBt1kvLcJM+ZM14/5ODrNq0tXmibBMGbQAymhqua4kD1ETyq2+BR7Qluj/+OM0eZjZ/XLelnjqLFqYWtpCci0zYbSPR07fhoxsiDKTEpTWNifzQhueWfg06GnU1pw+HsO/QDaZN8ufmxWmUlym5e1/J3fsK5Aotivv1iETWiNQ6VOo6UjOKeeX9eFycxGir66lS1YHRyIdf3sPcTMSlIBk6nZ7JY9uxYdUAYhJkeLbvSECAio7d21OpF66zY3cpAT3qcPNtQ6+eWrp3Eu5zvbkcV+9WSD2KCE+pIeROJdkFGoLiKqmp1XPqehnmllY4ONtjJoLQhALCk9XMmeTD63P8SM0UEta2HR3p3rkat9aOPD3ck56KGsITK5k+2gNXPye6dVHTroszlWZCoOvdyQ57VzF3c7UkZ2lYMU+4L+vt1bj38mLsCANvtJXw2q673M6qRWNnj1d7F9z6+tGzxJJe3YSjQ8v7Ktx7etE9RU+HgT5UOQqBvH03Z/wLwbWLF7366OnVMKoXZxXu7bzx99fSPqAVlRZ2WJib0b6LE/4ZOlx9PenVs46e3Z0xs7SmzlyJu28r/LupaN+1DcEpOr79Po2d7wygoqoOFw8PegeoCAiQAtEt3Gx/nkxf8RojnpvBT18dxNreAfuGJmgLWwnW9vbozcyxdXRiyuJl5KSlUJidyZCJU6irq6NV1+7U1tdjALCxxUIiodoI1vYOWDo6oTMYMbdzQKUHkY2EOisbzB0cMZpbUGNpAzYSynVGRBIHjHaOGAxGsHWgrM6I0VqC1lyM0dYe9HpqLMQgllBeJ+jXWTtgNBow2jigqDVisLZFYybGIHHCaDCiNbfBIJagrDUSF3SLe9Hh9B43iS6DnqIaG5zbdODKtyeIunSebkNH0XvyLOzcvbl2TCj1SIsMY/Tilbi364yNeyv8AvqQkxhHt2GjaNOzPxKpN95d/LF1dCLk3Cn6jp+EX89+YGEJZuaEnDvF0Kmz6NhnAACuXq14atpsnp4ztxF5fiAikQhnE6VzLSXFpk4+W0q2WzolNRVHWoo5+hb4su9pTO/tZjWm2ZqLON+kLvoWSpVMJcstgSgt+NjamjoOHb3Jjr2/MmZkN3698A7VWhV3M0q5m1HC7cRKzBp4xEXUo9Fq+OTrDO7el+HkaENNjY7KqhpEIhF6vQFLS3MsLc0QIWLCqLbs2z4Ns0d4vaWthBg1wO1hf097wGg08JS7UIoh9RUAr4zsClS1sGFvEjfCiohLq8TXyx6x2Jzr0RV0aOOMpt6CrZ9Hk3xXyb73nmL4QG9sbZo2Lfq1E/67qc6c/V/dYdNbQ3kw13yIVPDJ/fva079vGxY+35339kXz5oexXP56MiKRCFepM/VGS7zcbbmXV83+E+mUVdRSrTNj8kgfena3wMXFAf8ubrRr60aVFur1Btq2c6V7FzccnR3o2V1Kjx5SDAYjdUZLXNyc8O/qTrv27lTWmGEwQrt27vh3KcfJ2YlePbzo2V14WNQZLHBxc8a/q5TWbTwbEGtBhnm4ERlXzHMv/czWt0fRsdMjw5daAr3+Cfl7EuFjIhKJjHM3bKX/01PISUkEwK97AKE/nmHm8pUEXfiB9g1IcGbiHUZMf56r3xxn5LSZ3E9KAKBDj54E/XyByQuXcPP8GTo26Gck3mHUjNlc/OogY5+f00Q/9NJPTF74EtfPnaZTz94AZCUnMnbGbM4d/oIJL8wjI0HgyuwxcJDJ48+WnFmlUtFs2tS0Hh0aX19MygTguR4Pa7UfTKACGqdQPZpYg0DhYoov1MLMzGS9s7pM2WzN1soKU9LJJszkessk+v/iBFpk2u4nkidFt00i5H8cCU9ILuTpWV8yYkg7tr0zgU4dGr63llCa+oejoevrDRSVqrGztURRVk11jZ7I+GLmTu3MnsOxzH6uE/ezKxCJRPTr6cGx0ymsWd6H0z+l0aNLA3KQUMqLM7uw96s7vDi9HbFJAp9rda2eRWtu4elui9TFilEDPejc1p6opDL8vCVcvJ6HhYUZ93JUVKnreXVuO2yszXlrXhu++62Qvl2FRDY2rRIfqZhTv+Sx441O3Iop4/Vd6UR/M5CfrpeyYro3p66U0qeLkNDHpauYM0bK3tP5nPithBXTvOnqJ6F3RzsuhCpZ8pw3p34voVcne1KzNZy+JiMxQ0XPzg4c3ORPckPi3ruLA9/8Usgbc/347tdC+jYk1qlZGmaM8+bT77JYMMWX+DShZrqPvwtfX8zjzfkd+O6XfPp0d0IkEhGbUsH8ya355NsMFj7nR1xqOdY21vTo7MLJC5msWtSVExcy2fllCuuX98TS0owF0zqw71gyi2Z2ZOmGUC4HFvzlCPTJ6GRunD3N1KWvNPFvuffSGfrMs/x05CBjZz30b+38A7hx9jTPvbyCWxd+oENAL/QGI5mJ8YyY/jyXjh5i9Kw5ZCYlYBCZ0bpLd4LOn+aZxcsJ+eks7Xr0woiIzMR4hk2dxe8nDjN8+gtkJydgMELb7gGEXDjDhEXLCLt4TtA3GslOTmDoczO5cuJLnpo+m6y0FAz19bTpFkDYT2cYt3AZ4T+fw8XHF4mjE7kpiQyaMoNfD+/n9yNfNF7zxrNXSQq+zoBnpvOPiYMa16e+tYnhs1/kk5efJzf5Dt2GjmLY8wto3a0HERfPMnbBUoLOnKTTAIEONS8lkYGTZxD+4yk69x+CslhoUm/TLYDbP/3AU1NnkBQSSNsG4OaB/Q62Vg+nyjZISwivKZQYTCfFLaHHpviewXRy3tIeLQ4da2FvNxMDslws/rUJdFa2jFGTthPQ3ZcP35tJgH9D8mVoifP/4bpeb6CouBJbWyscbXVYWJhjMBjQ6QzodHrqdHqcHcybnxK3EKMerYSNTSzlmQU/Iba2YHAfD6pr6lk+35+YRBnFpRoMBiMFJRoycyspKtXw+qIANr/RH7G4+b1wO6aYhDQFryzogbZah3e/Y2QEL8TdxcSwsAY7dDo9fSed5f21A3luvFD/n1dQybWQAhZO78SeIwn0D5Dy5fdp3AgtYO5z7XF3FbN+eS++/jGDfj1cMRohNknRxF8lpldQX2+gbw83Tpy7x1sv9eDrHzPo31OK0QgxiXIWTu/EvqOJLJ7djZgkgXWmXw93jp9NZ/XLPYlLrWJIf+9H7DXS/5lTvLV8CPNm9mhyLSvf/oWDJ+P+tTR2IpFo9JP8/FmG/U9KVlI88oI87kaHczc6HHlBHsmhQVSr1SSEBpOZeIfMxDskhAZTrVGTHHmb0vxckiNukxwh/H9aTBTVGjXxIYFkJN4hI/EO8SGBVGvUxAXdpCQvl6SIMJIiwijJyyU9Llp4LziQewnx3EuIJ+F2CFq1mpjAG5Tk5pAQHkpCeCiVyhYI5k3I/g1rmNajA/veWd245uzmztQXlwAw9cUlOLu74+z+yNqil5skxWt27uPn5KwmyXPjXu6mm1NMNRaaWvtb/nXi7emIxNaKUcPaP0ye/6BYWJjR2scBF2cbMnMriU4o4XpIHnU6A7fCCyivqCEoopDA8AKyciu5EpiDSq0jJkFGdEIp0QmlXAvJR6XRcSUol9wCNUGRxQRFFnPutyw83GyJ+HEq7Vvb09pbQnWtAZmihgVT2+LlLmbra1154Rlflj3flmeGe3IrSo5KW8+NSAWxaZVEJJWz+3gmy7Ym8luoguyiapIy1LT1suGFDUncjClDpdVzM7acuHQVcekqbsaWo6rWE5xQyZIpXuw7XcClUAU5JTXEpVcJ+jHl3Lmnok5nwNnBkl8+709CehVDFt5m59H7/BpUSl5xNdfD5ag09dyMUhKbWklsaiVxaZWoNPVcC5eTU6glJFZJSKyS3EIt18Nlgv0RMuJSKki8W8mNCGHt2m0ZOQUaQmIUxKWWk12g5mpYMSqNjpMXMrERm2Nra8G1sEJUGh1XQwqJS1ZwOfBfQy0lK8gjLuhmM/+WkXhHWAu61cQfygryiQ8W9O+EBHI/8Q5ZyQmN/vNOcCClebmkRN4mKzkReX4uiSGB1GjUJIUFk5V0h/y7qSTfDhbWQgKR5eeSHhXO3SjBPyeFCfopt4PJu5tCdnICKQ/0wwKRF+SRl5LE3ehwFAV5pIQFUavV8PvRL/hk2VzO7t5GWngINVoNmfEx9Bz9NAA+nbpRo1GTdjsIS7EY745dAOjQdyA5SfHUaDVYWluz4rPjeLbvyP3YCJSF+aSHB1GtUZOTFE9eSiJ5KYmkRwj756UlU6NVcy8mgnsxESgK80i5HYSVtZiU28FkJyc0sd/YApr7t/y54u5mj7OThMEDOjxMnv+gmJub4dvKGVcXCRYWwkOFmZkZ1tYW2NlZ4+Js+0Qllo/K74G5zJ/RldyoJRzaPooqdR3OjmLUGh32dlasWNCDX05MIe3WfCpTl/PB24ObJc86nZ51H4Qya8VlNu+KwGg0YmtjyfJ5/jw9/yJFpaZLWgAsLc3Z994w3twSwp1UAfTIylNxLbSgwf8UILG1xK+VPfOnduBedhUffXGH1R9E8OOVHBLTlcQmKZr4q+x8FfEpCoIii8nKU3ElWNjremghd1KVxCTKuR5agEpTx5XgArILqgiKKCIooois/CquBAmxJO1+01zotxvZ1On0zJnelGdeJtdw8GSTdr0/RZ60BrqlO8DY8J7RaDT+e5PA/jciEomMR5PzUFeUP2wWaWj+0KuUOLlJqWkonxA3NJdIPTypKi/D1k5Atqo1ahycXSiXy3Byc6dGq2nQl1ChkOPsLm2m7+zi2kzfzs7epL6+XmeSCu/xp/5yhZwZAR0bX/+YdL8RiTYTiUyixxUKRYtJcbPf18J6S0eAphCMvxFoU+t/DQINEBp+nxVrzpMc9sgMpD+AQD8q1dU69AYjEltLZAotHu4SFGUaHBqO0lRqHS7OYkrlGtydrdBohSYcQV9odpSXVuLQMPFr8pLLvP6iP/17uuNqW9+sucTNwYiyog4HyWPNiKVVuLtYo6nWs/3IfeLSKvl8oz+D54cSfnIgraTWGAxGNh/I5Eakks/XdmKQv0NjM59EbIZMUYvUxRplZR0XAuXs+CaPd1/yY9HUVsjK6nB3tmxsXrR3liAvq0Pqak1kUjnnrhXzw5ViBvZwYturnXFxsMTd5WGzo53E6mFzZEUdDnaC/eoaGpsppQ32ixAJzTENzZrKilocJJaIrKxRa/WNzTT7T6ShUteza+OgJs00yvIa3t0Xz1en0/9yBPq7+LvYOzs381fWNrZUKuQ4Peav1KoqHJxdqJDLcXRzo0arpd5gaPSfTm7uqMrLsLGzp7be0KQ5z8HVjVqtFr3RiLWthCqlAkc3d9Tl5Yjt7DAYjCb0hebXB818jm7uqCvKMRcLPrNWq0Hi6ETh/btsnT6u8dp23BDKXxxc3alUllFfV4e9iys1DfpVSjkSZ1fKivKxc3bFysYWVZkCB1dhf5tH4oXE0Ul4z8WNumrBZz3Qd5VKTerXVCpxcBGuFx42I/r4PDzefyB/I9Am5E8o4UhLL2TUpB2UZD7sx/kjCPR/aweY7oX5Awj0wjd+Z/QwXxY93x2FQoWrsw3K8upGf6vR1uPk2MIE4QbZf+QO3164y43TU/Efe4rgczNo29oBo9HIzgOxHP4umfOHn6GPf9PY/6gdp3/OYNXWULauHsDCaR0QW1sgU1bj4WaLsrwGBztLjAY9Ko2OiqpaPj2RwtnfsujZ1YWNK3sypK9HE3/laG/N482CUlcxmuoG/2z7cP+yqvpG/uzG5ni5Fi9vlyYPJrsORHMnRcapw7ObfQZ/BQJtvmXLlv9SYevWre8BKuB74B/AV8DJln62bNmS+2cZ9z8hW7du3TJi1jwOrVmJqlxJZkIsv375Of7DRvLth/9A4uDAxa8OEB90EytrG/avWsmQiZPZ/epSKssUpMfFcO6LT+gzcjSb50zHu207Lhz+gtjAG1iJxZz9fD/dBwxi18qXqVQqSY+L4ezn++nYsxdbFs3Fp117zh36nJhbNxDb2PDB8kWMmDKVD5YvpkKpIDU2mrt3YmnVrkOzJLpCqWiyZmMroVwh525CPM+9uIRRz05vfE8kEmEjaZ6Em1prSVq6C5/EebbkgF0tW3CeRtMd0SYdYgtJZMu1UE9QzvSnzBB6QjtM2t2SzaZRq9x8JWGRObw0b8Ajqi0k8i2sf3I0npNnU7ERWzDn1d+YOakjL7zyK6WKasJji/nosygmjvJj9PPn6drBhZ0HY7kcmIuN2IJ5r19lxjMdWL8jnIzsSiLiS7l4NZd+AW68/m4YHdvYs+dYOldCirERm7NwfThTx3ix4J1o5OW1RCaWsfvYPcYNkbJmdzKOdhbs/yabi7dKmDbak22H7iG2MuP3MAVVmnqiU6qITKpk5ih3lm5PR6XV83OwnOtR5Yitzdj9bR5DAxxZ9EE6raRiWntY8/H3BdzL1bDtSBYVKj0nfikmOL4Csdicl95NZOooT1btTCGgsyO9uzoSn1bF4bO5fH+5iM5t7dj/bTZXwxXY21rw4uZ4po72YsHGOBTldUQmlXPgdDYjB7jxzPIw2re2Y9/XGUQkliESiVi0MYapY72Zv1643tRMNdu+SGLCMC8mLL7BrIlt+OBAEoWlGsTWFixYHcj0p/2Y82YgA3tJuR5WyJYtW/6yvpWtW7duKS3Io/uAQc38m43Ejt2vL2foxMnsesQfXjv9Hd0HDOYf8wT9nw5/QXJ4GOYWluxftZJBEyez9/XlVJUpyL2XzvnP9tBz+Cg+fPF5vNq05ZejB0mNCsfCwoKDa1+j//hJfPHWclTlSpLDgvn9xGF6DBvFrsWz8WjTlpAffyD8lwuIJXYcXvc6/cY/w4HVK1ApFWQlxvHbV4I///y1RbTt0RtZbjYefu3w7dKdYxveoPfYiZzZ/i7qCiXZiXFcPfo53YaO5LNlc/Bo14Hg0ydJDQvE0tqarze9Sc8xEzm/6z2URQVkJ8Zx7dgXdB0ygiOrl+Hi5cP1k4dJDQvEylrMyY1v0HvcM3y1biWqMiVZCXFcPtIQX7ZtwM7RicvHDpIUcgtLazGH173OxAWLm30PLYEUT1K/3FIya/4E/rulPVpCW1uKDbbmzddtzEw0BQIYWziBNeWvWooXLfhNhULFxV/jeG35uEdUW4o5Lay35E+fJEY9Yt/V4FycHcUM6OXJrOW/MWaoL7NX/o5cWUN4XAnHf0hlxjMdWthHkI8PxzF3WmcG9/Xiwm+Z9OjqSvs2johEIoYN8MZbasu8N64itjJnQC+PR76/h3b4d3bl2XFt2bgzgm8uZFBQouH/sXfeUVVdzd//XHrvvVhQEaWDNKkqthh7jLEkj0ajxpLEHnvvLRp7L7HHGnsHpCpIEws2qihFqnTu+8chCHJvIokmz+95/a7FWrrvMGeffQ6z586e+c6Y2UE42egxZvZNMnNKuBX7ksUbohnQoznz10axdrY7oVEvWLo5Dg01BX6YH1Zjr4pLKwiMyGDJpmi6+JrTcfA5WjTRYOvB+5y6koSyoixf/nCdPl2bMvLHAFIyigiNesGSDVF08W2E/8DTdPBqhL6uSq056jFhXgBd2jXDUF+tzhp082/GvJVB79U+vksE2hf4CuiLEHQ8AewRi8XX3tck/psgEonE2+OSJBLgJ90Jw8rZlcw04ahU38SUe7fDaePTjgfRURiZC/IZKclYOToTczOA1q4evEwTnEEDEzPu3Y6gUUsrXqQkY9RIqPDaNGMKoRfP4tqhM9M37+RlqiB/Ytsmzh/Yw6dfDqVjvwE18utnTCbo7Gk8u3Rj5qadZGU8Z/eKRVw9fhTPLt2Yv+MXHt+NQ99E4KZ+khCPk5cPcRFhtHJ0JisjHSVlFXRrFfPVuv93XquPEei/iX8hAn3pWgLL193gyomRbwYbGIGuqKiiqkqMvLwMr4srUFWR5/XrMhQUhOdeVlaFsrIcRa/LUVaA8nLBma8jX1CEvLwM4dEvGfjdVdbP96Kdhwmi8kKepQnPuLGJCjejsvBz0uBW/Cua/N6QJb0IFxttboSl42GvQ/LzYvacTiU7rwzn1pos3/mY3XOtsTATDGvS82Kcm6uw+8xzNh5Lo5mZMhMHmmPbTI2wuFx8HLTrNGS5+6yIc2GviHlYgJa6HDdj8tgztxW+7saERL+inasut+/m0tjkd/2viU8sYMbPD9k4wxrrZkLk1dxIhZDYXNq76nH77isaV9NFJWWU4mKrzbXwTLycdElKfw0iEY2NVQi+k017NwMi4nNoaqKKjIIiT1Nf42qvy9XQDLyd9RkxKxxdHWWWTnHh5q0XdPA0ITw6EwtzdczaHvrgEegVJ85j6eBUz77pGpty/1Y49l4+dezh89QkLO2ciLkZSGtXdzLTUiivrMTA1Jx7t8Ox8/QhMToKQ/NGlFSIeXY3FnufdsSHBGHVxo2t0ycQevYUfv0G4tL5U6zbevM45g7XD+/j5smjOPt3ZcxPW7gbGkRLZze2z5xAxLnT+PYbSJtO3bD28GbDDyOJvHIejx798P18EE1tHUkIC8LS2Y3HcTGoaeugY2zC4zu3sHLz4nFMNHqmQkfZrPRkmtg48iD8Jk3s25CbkQ6AdrV8SzcvkuJi0K3uBZCVnkITGwcehgfT3NmVnOqGKdrGJjy5cwubtt48jbuDnqmwPllpyTS1deRJZBgtHNuQlS7sL7ompjyMjMC9Xbt6z+FjBFoC3kPqpl5mAAAgAElEQVQEOvLOU4aN2UF0yMI3g/9iBDo2IZN+I88ybZwLQz635nVRCcpKchSXVKAgL6xlRYUYRcU/DujsOpLAmSvPWDPHG+dPDvEsdAiqKrWKC8ViHiflMXDcJYwMVNi0yA8TQ1UksRIXl1Qwd1U4j5Lyqays4kb4c37b3pW2zoaIqyooK69CWUmw/yrKcpSVVXDswjMmL4lg7veODP/Cqnr+cohE1JMvr966au8XJeViFOSFe6wtr66pXs9nmbMyhJy8StYt7lL3M3ElIqNF/yyNXY2gSKQE9AG+BPyB58B+YK9YLL73vib0b0MkEol9Bw7HrfcXJN4SnLgWLp5c27OJwdPnc3brOizbCIUkD2+H0W3k95xeu5ROXw0jIVSgUmvt4cW1g3v4/IepnNi4hlauHgDciwjldX4e148epO2nPWnp7EpxUSGHVr6hJ+o8+D84+flTlJ/Huglja8YXHTnNs3t3KS4s5JcVi2rGu345BCsnF9aMH1Mz5v1pLwaMn0JsSCAATl5+HNm4lm/nL+HATyux8/BEV08fK8f6rS2lOb+SDJ+cFCMprRJcktG31pBCBFN5Q8q4FKe4IfRxDYGMFEdZRsqR2fuITEt1iv9+lD0xMRWfjrN4em8jSkrV9yb1C0UDUCnNCZc8XlVRwrJ1Qfy0NZjNK3rSu5s1AHOXnsXVUWgccCMkhdkT2jJzyQ1GDbblarCwoXbwNGfZxtusnePFgp9v4+tuQmZ2MWNmBqKvo4SxgTI7lvtxLURwdNq3NeHnnbEsmdyGOWvv8DS1gKBbGUIxyjIvZq6OYvI3tlwPew5AO3djdh17xKxxjgz8/hrnA4TCGB0tRRZMcOX7+SFMGWn/Rr+7Acu3xpGVU0JZRRXjvhJ4R2MSXjJ6YEvGL45k8vDWXA/LEOQ9jFmx7S5rZriwaFMcPi6GyCkpcj0knZljneroV1NXwt3RiGWbIlk3z4cFa29hZqzGwnW3kZUVMXV0G+7EZzL9OxduhKTy7bRrH9yBXnougDPbNvDljAWc2rgGq2r7lnQ/gfYDh3Bg8Ww+GTaahPBq+9nGg4s7N9N/2jzOblmLZRt3KsUiEm+F0nXEdxxdNoeOQ7/lQUQId66c49HtUAwaWzDpl9OcXreMm0f31Vx/xskALm3/Gfde/fl5eL+acYeOn9J/5lLO/LyM4F/fyE87cYNzG1cQc/lszdioLUe4dfow3SfM4drOn7Fw9kAsruJpVDjtvx7Hb6vn4fvVKB7dCgGgeZu2BOzbTPcJcwg9uhej6jzo2vLt/lNL3qUtN/Zsps+UeVzevo5mzsJ+8TgyjE7Dv+ParvW07dWP++GCvJVbWy7u3MR/Zi7k9KafaFm9ng8iQunx7Q/oaqkh+5ZNfR8OtFQWDil2/Z9uAibNCW/IHiXNwZdGp5eVGUPzFj48exqMlpZQDCzVYZcazJGy70iTlwAxMmzcepm5i4+zaskgvhzgJTiDkoIu0vTWGn+V+xo779XIy8vSvVNL1i7+9K05C3tAWVkl81cFsHlvJNO+8+KbQfaoqylIDaxduPaYrgMPMXGUG9O/90RHWwI7VfWePXzSJZo11mLaOOH0U1wpZe+S8BxFclJOxiXsz4+eZNO5/z5UVeQZ+oUDI750QlVV4YM40O/8FyEWi0vEYvEBsVjcFWgErAU+AeJFItH69zWh/2WUFhdz/ehBAELOnKK4qBBlVTXaftoTgPafD6wh41fV0KSptVBFamLRDHVtgcJOWU0N7x69AfDvPwhFZRVUNTRx9hNogDr2H1TTLvcjPuJttGhujLOjBQcOB/2j1y0sLGX9tmBGTTyGd7eN6Fou4uL1RG5fHl3jPP9V5OWXoqoiR3tPM4pLK2ty5SRBXl6Gb/q3ZN73Tjx8mkdL/2McOP2YCYvDKa+oH21p1VyLRZPa8Cy1kO2HHjBpcRi5+ZK/cETFv2m7+1cgFosFDu8/CGo8f1FE6vNCvuhpibKSHBPmBbLv2D1cux1k1oqQv3zt/waUFBXy6HYoAC+TnlD4KhsFZWVaewoRWBPL1qhpC5SgqpraWDi4AODYqTvyioLNU1BWppVX+zry8opKOHTqDkATexdUNP//7Fr6EX8OPT0devXqxLZtB//R65aWlrNl5zXGTtyLX9fF6Dcexa5fAgm+MoevBnr/5QJEgOycIkQiEVtW9aWsrIKmjaW//woKsiyc1p6QM19z/eYzTOzXotJ0OV0HHCS/oL7d69zOgrBzQ3iZ9Zpm7hsZNv4M0fEZEnVHRGfQpV2Tv3wfYrGY5y8KqKyUXlQbHfec2zHpTB3bFovG2kyYcwk1i6VoNl+GhesGqb/3V/GXaOxEIpEC0B0htaMbcFgsFg96z3P7VyASicQrwh+THB+NTvURXk5aCo1sHEiNDqO5YxuynwtHcrrGpjy8HY6zXzsex0RhYC6kWLxMScLSwYmwc6dx9u9MVpogr2dqyvrx3xJ17TIunboybN7SGnnjRo15lnCX1m7uNSkihqbmRFy5gGe3ntVHnIL+zPRU9E3MeHYvHms3jxp5JWUVUh89xNGnHQ/uRNakfGSmJGPl1IaowOvYurXlZVoKaqpqNe3Ha+NjBPot/I9FoBFXMnPuQRQU5Jg9vTqC9w9EoJf+dI3TFxIY2NcRaytDrC11MNCv72yWFmXzLEWge2tspklAaAodPY0Iv5OBRSMhIvQkOQ83RyOu3kzC09kYc/fd5OWX0ayxJv7e5hw9k8jKGe74e1WnMCXn42qjzeWb6fi4GpKUJhS9NTZVJTjyBW1s9ej/3Q0KisoZ0rcFTU3V8Pcx5/LNNHxcjUhKE1JZ5OVlmbMmkuuh6Vi30GblTHcM9VR4mpyLnZU2Og6/kBk5kNQM4R0115cj6PZL/D2NiYh941wnpb3GxU6Xy8HPMdRVYvfxx8Q+yOPuwxwqq8RUicFARwklJTkWTfXAQFcFh9Z6DPruIrdjM7G10kVNRR5DfVV+PZeIv3cjBve2QkNNgba9jnzwCPSsQ6dpZudIfHAALV3cya5OUdA0MOZhZDjWbX3qpMBlJKfQxNaehJBALNu4kf08jYpKMfKKSrx4+ggrDx+exd1Bz6wRJ9cuIeK3Y3h+Nghb3440d3Yn53kqBbm5mLW04XFUGC3dfUiKj0bX1JzC3BxKi4pobOPAg7BAmjm5k52eQlG+IP8kKhxLd2+S46ORVVJFVUubnPQUzK0dSAwPoqmjG68y0hABWkamPL0TTgs3b1LvxqJtYgpQR76Jgyt5L4STh9ry6fdj0DEW3rfs6v3i8a0Qmjm68qqark7b2IzHUWHYe/vW3C9AVmoyTWwdeXo7FEtnF7Kq11PPxJT7t8Lw9K/fivhjBLo+3kcEGnEKP/20nadPU1i7tjpV9h+IQG/ffYP1W68wZJAXNq3NsLFujKGBZn3H+S9EoFt7rODR02wM9dWYMaEDs5de5NTewXi41GIakbYHiCspLCpjyvyrhEWl8cM3rnRt3wx9vfoR4cysIrbtj2bTnkjsWhmwfnEXmjbWqtmzNa3W8zR0WE2U+l0i0E+S8jh0+gFhUS8Ji0ynSiympKSCpo20kJUVsXhGR7p1tKSiopIFqwLY9ksU3u6NUFdVQE1VgSuBT2hsrsn+jX3IzimkufvGf7yRSg1EIpEnQgpHP0AROIXgQF9+XxP6b0BBdhZnNyzHysMHgPuhgXy5aB1BR39BXFXFrfOnAWjTpTtHV86nha0tR1cvwdbbD4C4oBvom5oTdPIojn7+qFU3RvH4pAfyCoosO3ON3fNncOPXQwDEBN1gwtrN7F40h6Ez53HzzEkAvD/tzdGfV2Pj7skvKxbh4CNEYp4/fcKXk2ewc+Fshs1aQNDpEwD49e7HjgWzWXjwOHuXLcTJV4jExAQHMmXdZrbOm8nIuYu4ceo4TVta0f/b7/6ZBf2I/ypExz5lYH/vf+x6gSFPWL0pkFO/DMHDpYkwKGWTCbmdxt6jdwH4omcrxs+5xrVDvZm2NITOvsIXwosBSRza0JWt++9SWSlGV1uJJmYaLJjkxqSFwcwY68io6UHMGOuISCTiYmAq+1d7M2lpBKumuXL47FMAPv+kKTuOPsTGUofy8kpMDFRYt+cuT5ILCTveg0mLwlk1w41DZ54AYGelw7XgNJZPd2Pa8lt4fXaajl6mqCrLMn+CM5VVYgLCX3D84jNh/t0aMXlZFBd3dWDmmmg6eQqpKaeupjKwe1O2HkrEzUGXPcef4O1ixLp5nixef4ejm/z5asIN8gvKWLsjhryCUgqLKkh8mkv3jk15mpyHnJwMr0sqycwq5ruvHZi8IIhu7Zt+oCdYFxd2b+XLGQs4sHQeA6fNJezsKQDcuvXi0LJ5TN55mGNrlmLj5QvA07vxfDFtHkdXzufzyXO4df40T+OjyXiSiLK6BjOPX+X0z8to1daXRq3teJn0lC4jvmf9yIH0mTiLyIu/oaKpTWlRIafWLGT0pgOcXb8MKw9B//3QAL5a/DOn1iyk14RZ3A+/SVFuDmUdu3Pqp4V8u3E/Zzcsx8avC6XFr3kYFsiAhes4u3YR3X6YSULAJSrKSrHz/5SzaxcxfMN+Ag9sw9RKoMKqLd994hyiLwj2ua78DkwthZOUB2GBDFq4jgubV9N11HiiLv4GgGOnTzm1ZiEW1tacXLuM1p7C/BOCAxi2fD1XD+5GLK4i/Jywnq5de3Bo2XyJDvRHfDhExyTg5Gjz54LvCXdinjFr4TF2bhxO104CB/j7KVIX0LOrNeUVlayYJzRCaWSiRt+hB3gaOQlFxT93AdVUFdiwtAu//BrPyQsPGD/nCmFnh9DCQqeO3POXhcjKiNi0tCvXg5Nw6bqTqWM8mDjCHhkZEbKyIomnfG/jZkQaMQlZjBliz7XgFGYuC2HeZB82L++KqbEG+QWlPEvJZeGaYA6diKOJuRZDvjvB7eh0RnzpjLaWMqWl5ZSWVfIyq4iDm/ugpamElob0k8m/incpImyO4DQPBpoAgcBe4KhYLJZcZfR/GCKRSLwy4gmv83JRrGakKC0qQkVTi8qCHIEmqZqWSLGalsjQ2KgO7V1mShI/dvOr0bn6cggaOrooqqhQ9Cq7hlaphiavqBAtHR1yszLR1NWroclTUVV9Q/NUi/ao9HUh6lp1aaEAVNXUamjvasuXF79GXasu7ZSSvAKKyvXzlT5GoN/C/1gEOi83H3PLUaQ92oq6evXz/4AR6Bs3ovl82D4ObBmIv5/lmw+kPBtxee5btHevMdCSJSe3BHXVujRGGS8KMNBT5tDph+w/8ZDfdn3Ky6xiZKigZfvDPI/4slq+DG012Tc0Sa+rafJq0yTlltbon7k6kpuRLxn2eUuG9mvB6+JK8vLLaNvvNL5uxqQ8LyI6IZvPu1lwKSiVTQs86OxjjnOPk7RzN2bKCDtUlOVQlq+soW2qrb+x33FEiPhhSCtGD2rJrDV3OHw+iRuHuqOtqVg9nxJeF1fi1usEZeVV5BeWYd9Kl+4dmyISiVBUlENdVQETI1V6d21BzqsS1FXkUGy2/oNHoDeExtWjmQOQVVR6QxuXl4tSNSNQQV4Batra5Gdnoq6jR1ZaCrO6vfkCt/jKbWRk5VBSUaVSLK6hmftdvqz4NRWVAq1bYU4W6rr6FOXlolRtn0uKqmnjsjNR09GjuKgIkUigjftd/nVeLiJFFUSiN/a8ICcLNW3dOjRzha+yUdfRk2j//0i+pODNfH6Xf139WR35nCz0jQyE+Vevz+80dmX5ORJp7MzNjOs9h48R6Pp4HxHo8rInGBo5ERd7+Q194AeMQEdFP6NL7xVs+mkIfXu6vPlA2j7yFyLQQaFPmDrvHCEXhJqqyvISlMzm8Dp5LvLVhXl/FIF+G2u3RbDjQAyTR7szqK8NMjIiiovLsWu/DU8Xc5LT8oiMzaBnZ0siotNZPsOLHp2a0WXQMUyN1Fg9xw9NDUWpEehW7faRmV3M98MdmTjSiZ+232H5xkiuHh1IG4c3TVMKCkux8dtGQWEZhUVlWDbT5bNPW6OoKIuiggyKCnI0a6JNl/bNa+7lfedAv0sE+iGQDxwHhgO/09QZiESiep0xxGLxk/c1uX8L+2ePx7FzT55EhQFg49eZcxtW8NXcxRxZNpdW7p4A3AsLZsCMhSwfNpA+4yYSeeUCAM7+XdA3a0RmajIGjRpzN1TIN40PvcmwuUuY/+VnDJg4jVuXBHmXTl3YOXc638xfwprvR2HXVthcEm6FM2zWfGYP7MugydMJv3QeAI8u3di3fDhTN+5g1XcjsW8rRMqTHt5nwA+TmP5Fb76aMoOwi+cAaNulG3uWL2Tmlt0sHTMcRy9fDE1McevQ6R9a0Y/4b0FU9FNsrRu9cZ4/IMRiMRNm/cbmlX3rOs9/gKoqcU3r2aoqMYb6qpQXF6Gtqfh7t1m0NRWprKzCUF+FysoqdLSUKK9mBjHUVyEqJg0TQxVkq6mxtDUVqSgtxVBPmcrKKlSU5d7o1xN0aGsq1OhfMN6JX04/YdnmGHS1Fejh34TpK2/h7WLE3tXtqaysIjm9kB7DL5KTW0qr5tpUVlZxdkcnxi8Ip9fIKwQd6UZVeUXNNWvrd7PXw9lal70nH7N4cxwaqvL09G+CqrJcrfkooqUBR7d0YezMQJqYa3BwfWcU5GWENsKycojFYmRlZQR5LUWqKt5/q1pJyHj2lIPLhzJ+4y42ThiNtYcXAI/jYuj7w1SWD+1P3x+mEnVVsG/NnNy5vHszI1dvYfuUsbRy96R5G3ce3Q7DvUc/dk4dS49xU4i5fhFFNXUs23hwZv0Kvl6xid3TxtHSzRMZOUUSbl7js6kL2DBqAN3GTCbu+iUAbNt1YveGFQxZtom908dh5dmOyvJSEiNC6DNlPhtHDeSTMZN5EBFCaVEBrX07cXH6CgYv3sjBWd9h6eZNVVUVj24F03PyfLaOGUiXUVO4G3gRoI78mZ8WYmghcOvXlv9kzGTibwjzsfHtxPmNKxi6fDN7p4/D0k3YLx6GB/PZ1AXsmTUR736DiLkm6Ldv35lT65YzZdt+xFVVKFQHNsRVVWjq6SMWi/9WDuxHvDvu33+Mvr6uRO7tD4Ef5xxh4azP6jrP7xmqKgqUlL5xVl9mFqKjrfzGeW4gxg1zQV9XhcVrQygvr+TrgQ4sWx+KRWNtdq8Tag0yXhbS/csjPEl6VZN6d2D9J0xdHIRTl194FPy1VP1ujkYYGahy4vwjlq6/hYqyHD07W6KtVXfPUldT5PTegXwz8TRqqgqc2P0FmhrV9V8foG23JLxrCocGMAT4zzvI/p9upAKQnZbKzvFfY+nhh2ufwagYmFFWUszcHu2xcHJDr4VQ3NekQszRn5ZxNyQQVV19HPy7AaCoZ4J3///g6N+NhJAb6FkK8hblYirklLFy90FF34wmjkI1qoq+GU3sHKmUU6almzcmrYRjnCqRDCiqYO3pg6axGS2cBXldEzPsvXyRV1bBtq03Te0EeUUVJZRV1XD08cPQvBHWbkI1t0njJjj7tBc+8/bD0t4RdXUNqiScPkgaA8kPtaFcpNKiARIhkvJqyqlLHpfKp9kA3aLGEsbM313vfzmePXvG8DHfM2niSFCqzQP9WPIvSDNCkqIjEmSvXYuipFyWXgMGS6yslgRZCdEbeQnRERmAytfIAKqG9yitSkTeUHDksitvYWZugoLRm7bL8tXRmHqHeFWl9cYUgZFjXLBobc/I8Yf5pNcnuHqUMmXOKYbNjGXlwt60cFQn5Gob7sSk0MxeiHCYG8Evu1yxcl3E7nPFjBoieVMc+Y0yE2ae4vrpH2hkVl3QU+tE4/e3My+vmO/nrcWzrTXrV36BrGytNaz1Dv/+L5n3Qa34Drh4YA+P7tzmwMolNHPxxKClLZd2bODO5bOUV0FzV28U9Uwxs3Ml+Og+LuzcTCMbByrklLBo44mBpR3dLe14dCsEr/5fEbB/O+pGZjRxcEVGTg5NY3Ms3b2RVVKhhYsXplZ2iIGyslLkVFSwdPNGy9iMJo4uVIlB3dCM5q7eiBSVaebiiX4zKxCLqagCkZIKzV29UDc0w9TKlqrKCrSNzWnh6o28igrNXDwxtRLss0gkQklVDUs3H/TMzWjmJPyNGJiZCzZbXZWmNvYYNRO+DMrLyqCpqUFrD19MGzWh0kWwt6ZNmmDt6YuutgZ2nj40qW7NrSQni66OJpb2DjS2sKDqtdDiu7GFBQ4+fmioKtZr2S1c593tZoWUroWS7LqMFNnyBjjr0vaLDwlpkemGyL4sqr/OOS9fMuGL8bTvPZCwrDfpCQqynhJ1SNvnpH3ZeVv+Xmw0sfdfseLIBu6J6/7tGkqhpdORvVl/UBptXvkrAJTUqygpFYOiEL1Nz8nD1EQXFGvR2DbgFFIGGDjYgpbWtnz6+c/07tsJO0cbth2Io9+oC6xe3B/zJk25ccGSoJBEbJyFL5w6qrB1gzV2notZtCmRmRMlN64ePsSPL4bv5+qJkVhZVsdoJew5paUVjJ1+gGZN9dm9vn/ddBRJUXnZv17gLQ3vsqsNrfXz9Tv8/J9HclwkAA9DbyCnoEjsxZOkJsQA8CQqnIwnD8nLzKCJrSPhJ4Rq3YjfjiGvqIiWgSHxAVfw/vwrIs4dx9bXn7yXL8h7+QJbX38Cjx2g41cjiLlxGS0DI7QMjIi5cZn2X/yHi7u34tiuI69eZvDqZQYOfv6c27WFT4aOJOraJbQNjdE2NCbmZgDdh43itx2baePfmZwXGeS8yMDBy4+T2zfRa/i3RFy5iK6hMbqGxoRdvkCfEaM5vnUj7h27kJ3xnLycd28H/hH/G1i5ciV9+3Tl22+//Eeud/JUMN26ukl0Ct4nlJQUyMwq4MWLPAYP28iMBScwNtL823o7trPCvU0T5iw5x5CBbiRGziUqNoWgEOELh7aWCu19W741F3nWL/+MnzbfIDdPcrpRz09s+Kp/G3y6rSc/v0Tq9avEYsSIKSgsoaREWkOIfx4Rvx0DIPjYAZraOZHxOJE71TRxoccP0OaT3twNvIK8giL3gq8DkBwfzaVta2nt04G8zAzys17g1LUnAfu34ztoOAmBV9HUN0JdR5+EwKv4DhpOwP7tNfIF2ZlYe3cgcP8OfAYN426QIK+pb8S9m1fxHjiMoAM7aOXVgYLsTPIzX9DKy5+bB3bgNXAY925eQV1XDw19Q+7dvILXwGHcPLCDVl7+5Ge9JC8zg1ZeHQg6sAPvgcN4EBpQo/9u0FV8Bg0jcP8OLN28yMt8QV7mC6x9/Lnxy3b8Bg8nITQATQNDNA0MiQu4QofB33B1/w7s/TqS+zKD3JcZ2Pt15PLerfh9PriOPY+6dokuQ0aSkfT0X3umHwEn92ynlaMzQydM/Ueud+3saTza+aMgpRfC+4KSkgKvcl+TmZnPN2O3MXbSAYwN/759dHZsQr9ezkyYfpg+PZxJvLOIjBf5XLgSD4CqqiJdOtbNJReJRGz9aQBb9wST8UJyoxxvDwumj2+Pb49NUmUAqqqqqKqqorColOJ/yT7+6c4mFov3NOTnn5j0h4Zjt74ANHF05VV6Mil3o3Hs9hkgpHM8T7zHk6hwSoqK0NATviHpmjUiOzWZ5Lux3A8LorSokHshAWSlJpN4O4zE22FkpSaTkhBP6esiEkIDeRYfw7P4GBJCAykpKiQu+AaZqck8iAjlQUQoL1OSiQ26Uf1ZIE/iomt+iosKiQ68wYvkJO6Gh3A3PISXaSncCbgufBYUQGLsHRJj7xB9M5DiokIiA66SkZxEbGgwTxLi/7X1/Yh/B8+ePcPL68MdFb6NMd/2ZNeeizx9+vyDXsfOxpzmzQwxtxqHnq46E8d2YtJ3nd+L7mnjO7J643UeJL5g7tKzJKXk4NamyR/+zqddbOjcvhV9vtpDWZnkk5Fjv8Vi0UQXFRXphS3aWiqEXJpC2vNcps45/ndu473CqDqFQUPfgJKiQlIfJGBqKXBfa+gZIKeoxIPwILLTkmnm5AaAS/d+PI2JJCcthceR4TyLFv59PzSQ0qIiHoQHkZIQS8aj+zwID6K0qIj7oYE18ikJsWSnpfAgTJBPDL9Jyr1YUu/Fkhh+k9KiIh6GBZKTnkLavTie3gknJz2ZxPBASl8X8SjiJs8f3Sf1XiyPIm5S+rqIxPBActKTSYqN5GlUODnpKTys1v8sNpKUe7Gk1NL/ICyQnOdpPI4M43FkGNlpKdwPDaCkqIinMZEk342tsf8lr4u4HxFKVmoyD26F8uCW8O+7wYJ8fMgbex4fItj/vKysf+2ZfgQ8T0nC3s3jH0uX+ew/wwi8eI4H8bEf9DqNG+nR3rc1ppZjqawUM35MR+ZO6/FedE/+vgt7D4ZyJyaZuUtOc//hc1yd/7iY2cPVgm++8uTTAdspKpIc+T72WxxmJppoqEun5FVWVuD6qVHIycowauKxv3UffxV/icbufxkikUg8+VQoiEQoKAk5NwrKQvGfkrwIkaxsTfHf78Ui2c8SMW5mWadYpOhVNhq6+hTVLhZ8XYSOrk5NcUztYsTi3PrFhZUlRRKLdTQ01N4UF77KQVlNSGuoKC5GQ1ub3MyXaOrp1xQXqqur1xQX5r/KQUVNHXlZWWQlFJw0JP1CSVonKynjSvL1nQWpdEJVEo6q/ggfUzj+FD179qSjfxvGjh1S94MPlMIRF/eEzt2msWLpCAYN7PBuk5RUgCPteLHWMZ1YLCb+bgq2No2gSkLktyEdLKEmpeLrsfvR01EjPSOPKjGMGuqFj2eLurIS7r2ysoo+g7diaKDOltV9627KIlmCQp/Qb+gepv3QgXEjvJCRk5yTnvOqhFauczn/6zicHGrRTkl6h0UKiNS/+uBFhOsin/L88UNMmresY9+eJydj2MSippjvd3tY8lqgDVT/3R6qqSEWQ9nr6uK8OvJiFJRV3xQLVstXVFZRXvy6WgGl2dYAACAASURBVD4LNR2hmK+yqm4xX1HeK+SVVYViwddFqGhoUZiThepbxX9Fr7JR09Hjdd4rlFTV6xUXauq+VSyYk426rh6lBXm1ir/fFC9q6+vXkS/IyULf0LCOPf+9OLIkL7uOPf+9WNDYuH5nWJBsT6UWADaglbe09IaGpEj8X03hkLR+S38YjZGpGcOnzKgzLm0/+7spHEmPHzGiTzcGjxrLl9+Oq/OZodL7S+EAwT7G3U3B1tockVjCqVdDC8mr7ePkmUfJzilEXU2Jp0lZjB3Rnk4d3uL1l6BbLBYzdPQeCgtLObLrq7qnlOJK7sSm0WPQLr75yo1pP7RHXkqU/nVRMa3brmTH2n508K1llyXZexllRHpT3qt9lJ07d+770vU/gXnz5s3NzUhD08CIiGP7eHI7GFk5Oc6smoutfzeOLZpOQXYmyXdjCD68h2bO7hxfPht1XT2CDu/lQXgwMnJynNu0CkuXthxcMJX8rEyexUcTcGgXLV092DJxFDqGplw/uJt7YTeRlZPnt42rsHJty67Zk8nPyuRJ7B2uHd5HKxd31n43Al1jYy7/spv4kCAUFBXZNudHHP382Tx9ErlZmSTG3CH80lks7Z1Y+f0oDM0acfHAXuLDQlBQUmLLnGm4tO/IxplTKMh9RV5WJubNWtS7/4YYnIZUQwPISTBEuhJauAIgTpY8LhV/To9TA5GUgxeRloSxv3/U9d8CW1tbBn85nJOnLtK+fVu0tavvV/xKym9I2Rwlrl9d2YSEJNp1nMTqFaPe3XkGKUwj0lhJ3hzbiUQiDA2qn5WkL1Piukd86c/ziEtIp7i4FBkZEfJyMmS8KODew5eE3U7i4rWHHDwWycFfoxg5xJPte0O5eHwsLZrVq5tG0jrJyIj4tGML5i67hJG+Oq1b1nKORDI0Ntem1yc2LFp1hW17wvispxPKSvW/YE6Zc4IWzQwZMfQt2kEJz0CMLPOWnGDu3LnzJEzyvWDevHlzmzq04dRPi7H2alfHvt0NukYjazt2Tx2NpqExwUf28jAiGCUNDY4vn00rz3YcXTyN/OxMUhLiuHl4F82d3dnz42i0DUwIPrqXlIRYxFVVHF9RV/75o/sEHdhJM2d39v04Bi1DE0J+3cejW8HIyMpxeuUcWrb14/iS6RQX5JEce4fQo3to6uTOwRlj0TQ05s6FkzwIvo6snBy/rZqLpYcfJ5dOpyj3FSnxdwg5ugcLJ3f2Tx+DtpEpwUf3kngrGFlZOU6umIOVpx8XNq0mKzWJpPhogg7vpkUbD3ZPHY2OsSmBh/bwIPwmsnJyHF06GxuvdhxaOpui3FyS78Vz4/AeLF08OL52Gaoamlw/sp/7t0KRV1Bg/+LZeH3aq17HQZBsTxvq/Epy6qQ5eg2JwP4b4beGzE+arKR1amFjx9IJY7hy8hjWTi7oGgh/s9L2s4as9dvyz1NTGNDBk28mTGXgiNH1fkdNTvI1lWUk7IvSWD+q3jjKv9tHoZuhJPtY18ZmZhVwJyaF4pJyZGREKCjI8TIzn/uJLwi//YzL1+9z5MQt9h4MYdzIDixfe5FLp8Zja12/t4Qk+y0SiejaoQXrt92ksqqKNg61A1VijA016N/LnnVbb7JqYyA9u1pLjEYvWn0FWVkRP/7wVj61WEJKh0ieecsvv1f7+DEC/RZEIpH4y9V7MLd1JjdDIMDXMjQlKfYWrTy8SbkbjY6JEAnKSU/G3NqB5KhQLBxdyKlusKJtZEpqXCQt3TzrEea3dHQmITRIaChQ3QBF18SUZ7GRWHt41WnIkp+RSgt7R2JvBtDa1YOXaUIrYyOzRty7FYa9ly8Po6MwNBf0Kykqoq5Vv8uQJEe3IZEKAEVJEWgplEnSil4aQqWkJ82xloKssnd/j8sr/36FbkO+aFRKKdZpKBpS9CkNJa9fM2v0cNx82/H51yMA6fciTXdpRX0DXPbWmm5cOAeAb6bPkahD2iajIuGdkkbZ1ZDiqrffp8F9e5H44D7iygoyMzMpKCjAwMAAc3NzzMzMMDAwYOvWrSgqKqKlpcWGDRvo27evRN05UtLvXpRUcnjnVqLDQ1myZVfNeEVVFTERYYQHXMOrY1cWjB/NhPlLcfH2rafj113b2LBkPku27KZt+zd8wJKeWZVYjI2m/IePQEc84FFkBK08vHkadwc9U8H+ZKen0sTGnnuhQbRo40Z2umDfdIxNJcpnpSXT1NaxjrwY0DEyIbFa/nf7WVEF2dUNR+6HBdHc2Y2c9FSqxGJ0jM14HBVOS3dvkuKj0TM1RyQS1TQo+V0+LyMNEKNjbFpHv75Z43rzae3mXsc+P7gdgXVbb5IT4tCvbkD1MiWJZvZOxIcE4uTRtsY+65uacS8iDCefdhLf87/jeL1PSPv7luYTNMTW/BuR6YZcU6rNKy9j+7yZ6JmY8vnY8UDDHeh3Ka4/vOlnUh4nMm2N5O54kuwgQBMJTqSO6KpEWamOtTRq1loYPmIVAUGxgJisrHzy8orQ09PAzFQfM1M9zMz02Lr9HGKxGFNTPWb8OICR33STMg/pFHm/Hg9h175rnD0xs85HsXHPOH4qjK6dnJi94CAjvu5E394e9VQcPnKDcRN3sXndcPr0dHvzQYXkoJBIc9S/08r7/yeYtLLj+o6feJWezKv0ZK7vXIu5tSMXN61EWV2T+Ovnib9+HmV1TY4v+pHGto5c2LyG7NQkslOTuLhlDU1sHdk/dzIqGprcuXKeO1fOo6KhyfG1y2jm4Myp9SvJTE0iMzWJUxtW0dzeie0zJqKqqcWti2e5dfEsquoabPxxPJZOLhz6aTkvkpN4kZzEbzu30NLJhfVTfkBNU5PQ82cIPX8GWbn3TxT+Ef9bUFFVpaWtPSlPPwzb5IO4GPauW8XZg/toV92i/r8NYrGYkKAAxk2czL1798jLy6OiooKMjAxu3brFiRMncHV1pUuXLuzatYvz589LdZ7/DG4+7Qi9cZXKt75glBQXs37RXH4Y/Bl370RKdVo+/3oEK3buZ/qooZw/duQvzeF949LOzVg4OLN3tmDfoq6cI+rKOVTUNdg7ezIWDs6c3rCKzJQkMlOSuLSrvnz09YuoaGjWk89JT+O3jWuwcHBm35xq+cvnuRt0DRUNTfbPnYyFvTNnN64mKzWZrNRkzm1eTVN7Zw7Mm4KyugZ3g67X2Nva8jnP08hMSa6nP+baJWH+teZzbvsGXqYk8TIliZPrV9Hc0ZldsyahoqHxxj5rarF9xkRaOLTh5NYNNfb58E8rsHRyYcf8mX++mB/xXwUFRSWa2diRkfzsg+h/9vA+Rzb/zImdW/Dp9n7ykD8EbgTGMGrEp8RFbeHVy2NUFJ/jZdoRoiI2cPrEPDp3dMbRoRkH9k3j6MGZjBj+yV+6jp+PDTdD7lFcXNfJrqoSM3/xET4fvJJLV6Kl2sf+n7Xl3IkfGT91L5u2XfpLc/g7+OhAf8RH/H+GzIx09I3e8JyKxWKq3kOUfPdPK5g8uB9ZGc+ZvX4brRyc/rbO2igpLiYnK5Osly/IzHhOxVuR8OyXL9m5bhVf+HsxdkBf1i+eR1Fh/V5PIpGIJavXcXDvbszMzJgwYQLx8fF1jHRAQAD+/v4MGDAAR0fHvzznxs2aY2xmztUzp2rGrp89zU9zpwvz2LqHC7GJOLX1kqrD1duXnw8eZ/n0SRTmS69K/4iP+Ii/j5yXL9DWr5uP/j7s42/7djHxs+6kPXvKuAXLcPFrQGrbO6CkpIzMzFxevHjF8+fZlJXVPRp79aqADZt+w6fdeHr2mcWsObvIzs6TqGv5km84fyECs6aDGPPdeiKjEuvax6A4/Ns70b+fL26uVn+58FJPTwMfr9bsOxBQM3Y9II5R4zYjIyNi7cphpCRuo8en0ovf2zg14/JvM5i14AgvXuT+pXn8VXxM4XgLIpFIPHjVbhrZOpP7QkjJ0DI05VlMBK3b+khM4UiKDMHC0ZVXGe+YwhESKKRwpAvyf5bCERMUQGs3dzKrjxSNzBqREBGKg7ffxxSOanxM4Xg3yIhEfNnZF21dPQyMTbBzcePQtk0kJsTT3Ko1zVvbMGrydMybWjQohePE/j3sWLmELWeuoG/0pnNauZR7r21wxWIxRQX5FBUUIC4upqiwgKKCAuQVFLBzcSMj6Sn7N6/n/PEjyMsrIJKRAbEYDW1tBgwfRWF+Pvdioom4eYMO3XryyWf9KczLY/GPExg8cgwXTx5DVVmJC4Eh9eaR/SyRPXv2sHfvXsrLy/H392fatGlcvXqVsLAw9u/f/6dr+kcpHACXTh1n59qVHLhyExkZGc6f+JWNS+ax92Ig6pp/nGNf+z2b8e3X6BkYMX7e4n89hSPxdjit2/pITOGosW/VKW06xqYS5X9Pmagt/yaFI5xWHj6SUzhCA4UUjudpNSkcjyLDsPLwkZzCUS2f9yKdNykcb/S/ncKREBJIazd3cmrZ5we3w7Fu6yM5hSM4AEePtmRWp6zom5qREB6Gs+/HFI5/Eu8jhUNORobFI/5DWWmpwP/t5ML1Y4e5H3Ub8+YtaNSyFX1HjaVJy1YNSuEIvXSetT9OYO2J85g2tagZl7ZX1k7hEOxjAUUF+WiJyyksLKAgPx+RSISrR1tKnv/KzxtOsveXy8jKyiAjI8xLSUme70b3pLiklLj4Z1y8HEXXzm0YPKgjJSVl/DhjB/37+XIzOJ6U1EweP9hXbx5Jz9LZ+8sV9vxymby817TztWPq5P48fJjK7n2XuXh2sfRF/h1/0uUwICieEWM2cTdqHXJystwIjGfQkDXE3f4JHR0pfR9qdL9JU5k0bR+5eUVs3zjqH0vh+OhAvwWRSCS29GiHS98vib9yBgDrDt24tH4xw9f/wuHZ39PCTej8lxgeyBcL1nFw+hg6Dv+OO5dOA+DYsTsB+7fyn0Vr2fXjWFq1FXIb74UEMHLlRlYP68/nU+Zy67wQlXLp0oNr+3fwzZI1bJzwLbbefoL+2+GMWf4Tcwd9xtCZ87h55iQAfj0/Y/v8GSzYf5yV343A0UdIoLdu44Kte33S948OdF38/+5Ab1gyHwBVNXUiQ4Lw7tiFrn0+58nDe5w+tJ+8Vzms3n2wju6bVy5yeMcWxGIxMrKyyMjKUlVZSWVlJVVVVdyNus2Gk+dp0qIuL3JtB7q0uJiIgGvcvR1B5vN0Mp+nkZmeTmZGOnJy8qiqq6Oqpo6qmhoqauq8Lirk6YP7qKip0X/YSPoN/QY9gzeRoZuXznP93G/o6BvQuFlzOnbvjZqGRs3n3d3sEYlEPIiPpUefz9h16Gi99dCpznoSi8UkJSVx+PBhVq1aRWVlJdu3b6d3795/uqZ/5kBXVlbydfeOvC4qYtKCpdi5taWrvSUbj57G0tr2D3XXfs8yM57T28MRFy9fKisrqKyooKWtHcN/mIKahsY/5kB/v3kfh5fPY8L2Q2ybMhbravv2Mvkpvb6bwurhX/D55DncOi/YQ9duPTm8bG4deRlZWeKCrvHN8vV15NV1dbF08eDXlQv4YdtBdkwZS2tPX+SVVIi+ep6hS9fz84gB9Jk0m8gLpxEDTp0+5cTqhYzdcoA908bh0L4LpSXF3AsJqCOfeDuEguws2nTpXke/nW8HKisquRsSUDOfgdPmE372hDD/rj04tGwek3ce5sS65Rg1EWi64oJuMHr1JpYO+ZxhcxYSdEqg0vLs1ovdi+aw6NAJNHX1/vCZvrW2Esc/OtDv/5p/5Pye2LqRovw8NHR0iA8PxbqNG52+GEzak0cEnz/Do7gYFh88XkfH3YgwTmzfREV5OQoKCsjKyQm2sbKKqqpK7kXeYskvR7F661Su9l5ZXlZGZNANYsJCeJXxnBfpabx8nsaL9DRkZWRRVVdHU0MDNXV11NTVKSstJSE+DiVFGYZ/3ZXRo3pgbv6myPn6tVscOhKInp4GTZsY0qeXp+CQVudAt+84iYwXOTx8mEpbD2sCr6+pvyC1CgBTUzM5fjKYZSuPUFZWweIFQ/hm2DukbvyJAy0Wi+nTfxkPH6WzbOGXdOvaBhvn79nw0wj8fGwk/26N7jcOdF7ea6wcx9PW3ZLKilIqKqpo2cKQ6RO7oKsjMOF8dKA/MEQikXjC8RBUdd6mPcpC19CQ1/m5KCirAlBWLNAkleYJFEpl1bRECioqlOXloKEn0DAp1tDeFaKjp/uGxq4WjVFJXjZa+gYU5L5CuVpepqwYNS0tCvNyUdXQpKxUqKpVVVGlMC8XNU0tigsLUVASCgsaQk330YH+e/i/7ED/0VhRYSGd7Vqwdv9RHN09KczPZ/qooSQm3GXUlOmoa2pRXFpCVWWl4EjLyCIrK0sjSytMm9Tn/yyvquLR3Th+WbeKiOtXaWFjh5O3L0bmjdA3MkHfxAR9IxOUVYW/qbeLZ3JzstHR0pZIY/RnRYRFhYXs+nk1d8JCOHziFEpKSpSXlyNXfY2KigoMVeQpKytDQUGhJk+5qKiIEydOMGjQoBrZP8KfOdAgbBIXjh9lzbwZlJWWkpuTzYjJ0xn6/aQ685GXl6e8rAz56vmIADk5uZqxuMhbpKckIS8njxi4cf4MQZfOM27mPBw9vOjhYvPBHehN0c8oyMmqoen83b4VFxWirqUt0b69LS8SiSgpLED1LfnKqiqUVFXryVdWCfbzbfkqsbie/t9pPd+WLy8pQoSonryqhiZisZjy0hKUVNUoys9DU0uT8lJh45dXVOR1fh6qmlqUFReiqKQCQFlpCcqqahTl5aKnq11jnxUUlSjKz0NLW+ft5QM+OtAfCu/LgX4btW16RXk5I/zcGDl3MR6dulJWUsK6HycQFxbMgO8moqmnh7iikqqqSmRkhECDrKwsphbNsLC0qqdbXlaW5MeJ7PtpBcGXLtC4hSWufh0wb9QEQxNTDExMMTA2QVVdeKffLiLMy83FSCkEZWXFerr/rIiwsLCYPXsvsW//ZS5fWI66ukp9WQkMGsXFpRw7fpO+fbwkX7fePP7YgQbhnTt7/jZTZuzlVW4ReXlFjBzWmTUr/qQ331v3mHAvlbv3UpCXKUFOToaLVxM4dOw20yd2occn9jR3mPXRgf6QEIlE4h/P3eK3FbNp7irkJT6KuEn3SfO5umkZ7r0HEHf9IgC27TpzdsNyRq3ZwqGFM2jlIVBN3QsN4j+zF7Fx/Cj6jv+RqCvnAXDy70rI8UMMmjqT7XN+xM5TiNzEBgcwdtEKln07jK+mziD0wjkAfLv3wtK+fv6lNOdXGl+lJGMhlauyAYaloU64JLwv0npJ77E0g/o+DG1DmSsaokMaGuJAS3s2kvB2+9+Qa5eZNepr2vfsw4OYO1i0sub7RStQUBSM5evy+h7j2zrEYjFZz9O5fPQgZ3Zv5/Ox4/Hp0RstPf0/nIukd1jaey3t3mszgqyd8gMW1rZ0HTyE6QN6M2TqLEIuCF3z2nbpxsWDexk+cz4/T5uEk48fAFGBN5i6bnM9p72hz0tSW+WK8nJW/DCaz8f+wOZZP/KfH2cSeuEciioqOHj7sW/5QqZu2snmmVNw8PZDXlGRiCsXGTl/KSvGDGfw5BmEXTyHUrX8LysW0W/cBFZ/N0roypX76oM70H79B9Pv+6n8/P039JswjcjLgn3z6NqNAysWM2H9tjr27UlcDP0nTGXNuBEMmDSNiEvnkZOXx6mdPwdXLqkjL6eoSOTVSwyds4S1333DFxOncevyeZTV1LHx8OLQqiX88PM2ds6dhq2nDzIiEbHBAQybu6RG/72wEF4X5OPe+RN+WbGIyRt3sGXWVFz9O1NeWkp00A1GLljG8tHD+HLKTBo1t0S11slF9X1KvP+GMi80BA2xVw11UBtiH6W1Ay+tqD9eKWUaVVWSPyiX8gsSW42/B/soDYpSaOLkZetfU1am7tjDO7dZNXoYbp26kpH0FDVNbUYvW4OSiuCAKkvodwCgUmtcLBaT/SKDwN9Osm/tCr749js69xuAvrHQbluhAXu8tECCtMBNSa0UvA0LZqOopMTwydMlyjakL4Q0eamc1hKWqbKykrS0NOTl5dHV1a3p0viwqGHve+0A3P2EBOb8OIm7cbE8T0t7r/bxz8Mr/x9CQVmN5q5emFrZ1YwpqqphamWDjqk5zZwFuhQdU3OsPHxQUlGllYc3ja3fyCupqWPj5Yu+WSNaugj0K/pmjWhibYOSqhp2nr40s7WvkVdRU8fRtx2G5o2xcW8LUJPb/BEf8U/C3a8Dmto6HN+5Vfi/f2eJJxtvo6ykhFM7txB26TzJiQ9QUlahlYsba85cQd/E9ENPWyJc2ndk3Y8TaG5rj7Nve4waNca2+u/LqFFjmts6oKyqhpOPX50vq3JSNsG/Czl5edq098ekaTOc/NoTG3ITZTU1mts5YGjeCEef9iirquHg7UdzOwfECOuqrKaOg49gH6zd2iIjK4OheWMcfNrRqo0bgyZNo7G1HT/27PRB5l0bze2dUVJTw9bbDwPzxli5vrFv9t5+9eybrJw8ymrq2FfLt3YVur0ZmDeuJ19Vc79q2Hn7oW/emFauHsjIyqFv3hi7anlbTx8sbB343d+prb+8qIjKysqa9VFWVcPBy5cmVq1rHEkVNXUcfdpjaN4IecUP20r5I/63YOnYBpOmzbh8UMgZ7j5s5DvZx4ryck7v3cn1U8dJSryPnJw8rZ3asOnsVcwtmn/oaUuEq287Zo4Ygq2LG27vuajxr0BWVpZGjd74Pbt27UJLSwvrTr3+sk6r1q05fFoISkrtO/EX8TEC/RZEIpH4k+9nYeP/Ken34wAwsbIl6sxR/L/6hsizxzFvLTjKKQmxtPm0D+G/7sXt094k3RXkG1vbEnX+NO0H/oeQU7/S1EbYSJ7Gx+Dfrz9nd27B77MveBIXA4CFrT23zp3mky+Hcu3YYVrYCRt5ysP7dOj7eb05foxA18fHCHRd/J0I9JXTx9mzdhWT12ygtLiYLQvnUFVVRStHZ/Jf5ZCfn4d5c0usnNpg5eiMhrYOIZcvsH3+TBpbtabXsJE0btkKdS3tBkfK3ncEGmDxqK9x8m1H+779ufrrIVpUO8qJMXfw7zeAE1s30qn/QBJjowFoYedASVERJm+lpLyPCDRAduZLLh3ej2+PPoz0c0NcVYWlozOlxcUoqaqSl5WFhbUNOoZGGDZqikeXblz99SA9ho3ixvEjNLdzAOBRbDR+fT7n9I7NdPhsAA9io1n2zZcfvogwKIqgE0foMmQkN08excJWmE/G44e4d/20vn2zsefGsUN0+3okgSeOCo61SMTj2Gh8everIy+SlaWRlTUBxw7xydCRBFXrF4lEPI69g3evfpzbtQXfvl/wND4GGZEIC1t7bvz6Rr+VoxOIxfXWJ+n+XSorKmhma8/Vo4foOXwU148foUPf/vW+MH2MQNfHxwi0gITwELbNnMykjTuoKC/n6LpV5Ga+xNq9LQWvXlFaWIBJUwusnFxo6eiMtr4BMcFBbJs3A10DQwaMHY9Fa2u0dPWkRnL/qQg0wLLJ39OkRUv6jxhdT/afjkDXRkFBAaamppSWluLo7omGphZ5r3JQUFJCz8AQZw9PWtk7YuvUpt7vSksB1VUQfYxAf2ik3ovFtJUdT++EA6Csrsmj8EB8PhvAg/CgGrkH4UH8P/bOOzyKav3jn9lkU3Y32fRKGj2kF0iD0JuABQWxd73Wq14VLCggiiBdQUGRIh3EgvSahAAhCWn0lt5IIZBe5/fHLiFlV8i9oOhvPs8zD+Tsd86+MzvnnTPvnPMen4HDOZ8YRxf/IM4lHAVAqVZzPjmB8Psf4uSR6Gb9ySPR9L1nFCkxB+kVEsapY0cAUFlYcDYpgYFjx5EccyOdy7mkRJ0daAmJO0V9fT1LvpjO659Mp4unZknWuZt+Y9vaVZSXleHarTsyI2Myz53hl2XfcjYpkZqqKpw8uvDy9FkERg78i4+gPXmZ6QxzepzqygqSYg42lyfFHKTvPaNJjNqHb1gEqUdiATCzsEQQaNeBvl1czs0hKeoA/n37o1JbUFVezpnEeAACBwymIDODQy3S3rn39CQ5+gBDJzxO8iGNfzCUy0k+FEXI8HtIjj6Ad0g4ZxOP3RF721KUm0NazEEGjHuME4dv+LeCS+fwjxzQ3r9ZWpESc5DBDz9GaqzGfplMRmpsFH2GjWylNzUzx1SpIjXmIIPGP0ZarKZ+uZExabHR9B46ktSYg/TqE8bpY0cQBAGVhUWr+k1MjGmoq2t3fi6eSNXMHbGwJCl6P8MeeZzkmIP0v/eBO/bGQeKfRVNTExvnzeL+l9/ArYcnABOXrCD6l82UFhbg6NYZtYWa3EsX2bF6BfPfeYOq8mvYOnXilamf0XfE6NsWNLpd5KRfJHKEnkVQ/kKqqqqIiIggISGBuOgDAIT2H4Rb5y6sWbqYX9auAiD5cgWmCh3jt/8EpAh0GwRBEKcdukDV1RaT/6o0kwUbyrWTBVtMLqwoLcbe0Z6KFpP/aqoqsbK24mpxEebWNtRq9camChrKr6C2saX8SmnzZJeaygrsbG0pK7qM2saWGu3kGzMzM52NTYpAt0eKQLfmv41Ar1gwm8TYGBZu+IUqHenqoP0Y6MaGBpoEQedv+VdHoFMOxzDt+SdYcSSFutoaLGxsqamqBMBEoeRaSQmWtrZcu1KKQtseqysrUOuYAHa7ItBXrpSiMle3au/XykrZ8u3XpB6KxsHNHbmJCeaWVniFhOMfOQAzC0vKiotQW9s0+wcThYKrJcVYaP2JoamSx73c73gEetGRNFQWljf8W7O/Uray57p/q64ox8zSqtn+2qoqRB32m6rMaGwSqamsaFe/iKj9vYq1/vMKpioVBjKhWX+9/qbaakBoV7/CzByBG5Mdy4qKUNvYINNx7UoR6PZIEWg4sGkd+zeuYer6XzGS644/th0D3djQgCCToTJuP+Hur45An0pKdycEMAAAIABJREFU5I1x97L64FEcOrm00/6VEeiWJOaVsWTODPb9/hvObu6YmasxU6vx7xPK2Mefbqf/syLQBlOmTLlddf0jmDp16pTg+yaw55vZlBdfJu/sCZJ3/IyLlz+7v/0SE6WK+N9/4lJSPIIgsPv7hXQPDuGXBV9wraiQrNNpHNn6E519/Vn7+WTMLK2I/WUT5xKPIQgydq38ju7+gaz98nPKigpJP5lK1JZNeIeG8/vy77CwsSX5UBTZ2jGkaivrdjZ2JAME6L4ZdPQGcbPsDbdS9/+q7Sj63GlHbj367NNXfjvq1oeuuvV9X0duPtdvPDkZ6Ux5/SXm/LgRtaWl3hzObctlMpleO2pqqjmTmMDl3BxkBgYkxRzE3sWV1NgYaqoqKSu6zIW0FGwcnYjbvROVuTmXTqZxOScbmYGM49EHcXJ1JyFqP7XV1Vwpusy51GRsHZ05um83CqWSCydTKczJRiYzIDHqALadXDgefYDdG9ew/ItPGfviq/QM6s1Xk95GbW3N3k3rOHnsCDKZjC3ff4NnUDDLZ0yl9HIhF9JS2Lt5HX7h/YjbuwulmRkXtfYYGGjqd3BxIzH6ALU1GnsunkjDxsGRw7u2ozQz58LJNApzshFkMo5HH8De1ZXjUTf0m79ZSFdfP5Z8/D5qKyv2b17PxRMnCBowmOL8XF6eMZszCcfo7OVNQ309BzZvoFtAIN9/8gHmltbs/2k9Z48nIogiG7+aQ6+QUFbP+oySywUkR+1nypQpU2/5x+8gU6dOnVJdUY6Hty+rPv0IlaUVh37eyNmEOAwMDfjpqzn06hPayr8d3vYrXXz8WD71Q8wsrYjaspGzifEIAvz09dxW+sLsLM4kHKVT957sXPk9amsb0mKjKczKRCaTEbVlAx7evhzcvJbaqkqKcrJIORSFS/ee7FjxHWobW87EHyXr7GkM5Ubs37SOLt5+7N2wlobaGvIzM0iKPoBbd0+2Ll+KhY0NpgoFhvLW46A72u5vR6aMjvir2xH20leHvo5oo45OsV6b9XWs9ZTrKq6tqiQ//QKZp1KxtHcief8uTFXm5Jw7TUluDjKZAacOR2Pj7MrJw1HU1lZTXlx0Q39gF6ZmZuScOUVpfi4yAwNOHdHozx2LpbaqiqvFRWScTMXKwZHj+3ajMFORdfokxXk5CAYyThyKwt7FFQNDOVdLipn32gv8e8G3WNrZ6/3N23YuZTIZgiDo7HTqu2cbdOAer68OfcHR6w9IOzevZ8qrL/DB3K/xCe6jU9vRvoYuvUrPw4rpHydRakWFzJjwgUN4/KVXuXfCY4x44CEGjhyNp3Y4W1sUOh6ERFFk1vSpt9U/SkM4dODu6siQCY/eWAAlwA83F3sGPjCOboHBuLlpEunbODmjMhJwc3HknseeaF4A5XJgAJ1dOzH68afw6hOGu5vmyc7WuROWCiOcnZwZ88TTOLhq9F4BQTjY2vLi+x8D4OmtGWNtrGdiQkeeTqFjEej/puPVlo681ejoG5A7GeG9U3XcrpROtyONlL7juZyXyyevPs8Tr/6bTtqhC3I915lCx+vutuPqrlNrKMfcWvMQqLSwwESpxEBuRKOxElSaRX9Ek3LKGwQaDI2pNDShzkTzJqfSwIQqQU5eVR0VBsaYGmlS3VUYGJNbVceVRhlFopxrhprXd3JRTlmTAZnl9VwVTDiw9VfGvjcNK0dnMsob8Ro5DgMXTzoP0mRckDk403XAKPLqjek5/CGsnDXt1NCpK9lVTZQ2yChslHNFZgqACUZcEw3JqaynXGaMsaHWHpkxeVUNlCPnimBMlVxTfhVjKpBTUNVIlaEpVUaaiKzX0Pu5JlMRMGY8yi4+eJpa0tAkYurQCd9R47mCCu97xmPt7EJjUxNyxy6UiEq8R47DyN2LrsYW1DZAo70T3Yc9RG6dgi5DHkRl9+dM1Bz58KO4Ojsx+rGn8A4Jw81Fc94cXVwxFmjn3wpzsnB2cmb040/jExKOi4srIGLn7IKxTNZKb2Jq2vwm4KX3JwPg6+fXfN36+2tumE+/8TZw3eeNAeD1jzT3xdCgG2MigwI0eXdfeOvdGz5Pu4TyG5M1+dBvx3K8uh41O5oOTl/kV5den1Zf+Z1CX6S5o2//dJYbGqKytqGmugpBLkeuUGKiVqOoqgBRxEStRq5QIsjlmJqrUVtrciDX1dYgNzbGVGmGpbU1TTXVAFhaW6EyM0ehMEFtYYGNgyanvFhfg0Jhipm5GQ729hg0aFKj2drbUWppgY1azbXSEpZ9+B+GjpuAr/aa0uUHQXfKV33U6kmpeqVOTwo6HXT0bej1a2TDsiU8//F0vAcNpaS6WqdWXwRaXwpbXR3/yjrd5yPrf5inc522812uU1jxv7+1uRWkpbx18PO8z1GYqzm+ZwfH9+xAYa7mx0/excPHj58XzuZydiaXszP5+as5dPUPZvnUD1Caq4nb+TtxO39Haa5m2bTJ9Ajszdp5MynIzKAgM4N182bR3S+QBe++gUptQez2rcRu34pKbUFu+qW/+rAl/h9SVVHBsjkzmRDZh4DQCB5/9c3bWn/2ubOtrv8egb35+r03MTUzI2H3NhJ2b0NhruaHj/5DV/9gfls8v7l9/fL1HLoGBLFh1jSU5moS9mwnYc92lOZqlk9+B3dvX35bNIei7EyKsjP5bfFcOvsHsWX2NEzNzLFy7MTvX88idvMaNnw6EXffQHZ+O4+SnExKcjLZtWQerl6+bPj0PUzN1aTu30Hq/h2Ymqv5dcEMPPyC2PbNXIpzsijOyeK3RZr6V338rsY/7N3O8b3bMTUzZ+XH79DFP4hfv55NUU4mRTmZ7F29TLfe3Jw1U96ls18Q2xZr6i/Ny2Hnkrm4+waxftp7KMzMSd23gzOHozA1V7Pp04m4+Qaya4nG/rL8HPYvm4+LdyC/zJiEqbmaM4f23tbfTh8qczUL33uTnkG9WTN3JgVZGRRkZfDrD0vwDOrdzr8pVeYsePcNPIN68+OcL8jPTKcgK4vVc2e201/QTjyUkCgvLWl1/+3sH8TWRXMpycuhKDuLrYvn0dk/iB8/0bSv1IO7Ob53OwpzNas+1ui3Lf26nT9ZPvkdFGo1x3Zt49iubSjMLVj6wX/oFhDML0sXt/JXHl6+vDP2Hl4aHIGjqwePvT3xrz4tt40+Q0fw83eLWTLlA0oK8v9qc/6WSBFoCYn/h1wpKWbd0sVsXLaE3pEDWLX3UHPk+Z9Cz7BIcs+e4kpBHhVXy/5qcyQkJP4m1FRVcS75OG+O6I+RsQmzNv6Ga/ceN9/xb8ToJ59FbWVNckwUK7/8nLfnfPVXm/S3Q5pE2AZBEMRFSelkpCXdGMKRk4W7TwDpiUfpHhhMcV4uoBnCcSb+KMEDBnIh5fiNIRzZmXgH9SY55iBeIWEU5eYAmiEc55MS8Qvvx9mkxOZXnAVZmfj3CW1ny/+HIRwd5XYM4bhbJvrdyUkyfzSW/fD+PUx87gmG3PsAT7/xNs4eXXRq9b0e0zU2Wt8QjmvV1RRkpgOa6/9k3BH8+w0gKT4BGyfNUKiinCw6+wZwIjaKbsEhlGrbl7WTM2cT4vAKj+RSahK22vbYrD98iC4BwZTka/WOzpxLiKNLn75knkjGWjskI/NEMuumTcK6kxvhDz6GnXsXjJUqLB2cSU9JoFvvcLJOJDcP4SjNzaaLXwBnjkTTNSiU0nxN+3V0ceFcQhy9wiNJT0vCxlljz5X8XNy9/Th1OJruwSGUaO23dHDiXGJ7fWFWFm4+/tr6QyjNz6WhScTSoRMXjx+lR2hks/2NTU2U5Gbj6u3PubgYOgeEcKUgl9oGsLB3IiM5jq59+pFzMhmVnTPzxobf8UmEs7Zsp7t/IEnRB/EODeNyzvXz40pa3GECIwe28m+FOVl09wvkePQBfELCuZybw/UhHG31LYdwtETf9azL5+l77azX593Kgd+Eu30Ix52aRNiRSYEd1TfU11Fdfq35/nv6SDTdgkIoLcgDUcTK0ZnziXF4hkWSkZaEbSfN9Vacm4WHTwCnDkfTKyRUpz/JPZWKjXbSXFF2Jl38Akk7FEVgRF/i9+5kyeRJ+EcOwKtPGPc++azOa+dODuHQ50918d8O4bhOxdWrvD6iP249POl/71h6DxqCuXYS9e0YwqGvX/K/pFq9jr57VKOe632Ao1qaRHgnmTp16pTIcY+zbvqH1FRVkn3mJDGb1uDVdwDblyxAZWnFwQ0/cv54PMYKJetnTiN05Gi+/3gSNZUVZJw6wd71qwkaMIi5b76MS9fu7FqzktMJxzBVqtizfjXeIWEs+vAdqisruHQyjR1rVjJk7HhkbS40fRdYRyYYQMcmEXZkYttf8eh1Oybp3S0T/W5H3frQV3daYjzvPPUI89ds5pEXXsbCylr/pKEOdAD0Objiy5fZsGB28/X/w/SPCR85hp++XUhpfh5Zp09yYONqfPsNZMm7r+PUpRsHN67mfFI8JkoV62dOJXj4KH6c+gE1VRVknTlJ1MY1+PQbyNYlC1FZWBK9cQ0XkxIwVijZNHsafoNHsvHzD6mprCTn7CkStv/M018uIXrtMi5nXmLv8kWk7NvGpaRjxG5cRVHmJQ5tXEl1xTUuZ1zgyJa1eEUMYOWH/8bBowuxP63lUnICJgolm+d8StDQe1gz/UNqKzX+4UTMAboGBPH9xNdw6NyN6E2ruZAUj6GREWumvU9JbjZbv5lLemoSF5MTSNq3kx6hfVn14ZvYe3Tl0OY15F88i4GhIb/Om47f4JFsnvEhtVWVFOdkEbtxJT3DBrB28pvYu3fh6Ja1FFzS6Hd+9RleA0ey9cvJ1NfWkJ4Qe8cnEVZVlOPdJ5TZ/34Zly7d2blW49/MLCxYOuVDIu4Z08q/Hd7xO94hYXz5+ku4dOvOjjUrOJ+WgpGJCd9Pm9xK39jQgJN753bfq+961uXzOjq5+XbcTTvSNjs6eU9X6e3IMHQ7JhF2ZFJgR/VXCvKI2/Zz8/33h/ffwMGjK8n7d3LqcDQmSiWbZ39K4NB7WDf9Qxrq68g6lUb05jV49x3Askmv49y1u+Z+3dKfDBvFjuXfUJKXS+bpE+xbvxr/yEEseuc1FCoV33zwLt38Ahj5xDNs/GoOkaPvw0ShbGdfRzJR6EOfj+3IWPaO3ufa/r5GJiaMeuJpZIKMw7u2sXTqh8Qf2Mv5lCR+XvYtp48nUFZchNJcjZnaAuhYBi59/ZK6mhpi9uxk+8a1bN+4jotnT1NWUowogsrcHIMW57ej9yh99+EVc764rf5RikC3QRAEcXFyBhVXrmCi0qalq6hAZWlJY1U5KrUFDdoB/oZGRtRWVaFWq6irqcbQSJOmpqGuFnOVipqqSkwUSuq1ermREQ01NZgqldTWVCPX6uvralHriLpIEehb/05dSBHo1lwru8LYUH+mLPyWyOH3NJfrjzg10NTURH1tLSYKBVUVFZgqlVTV1CAIAoZyOdVVlSiUKq6Wl2OoXXa1vq4WE1MF1ZUVNMmNqK6oAMBEqaSsuBhLW1ty8gsxUV5Pc1aBmaUmbZmZtQ01VRq9samSa6XFqK1vpC1rqS++XIi5lS211ZWt9CZqayrLWqShrKzAyMyC8pIiVFY2lJcWcSHhKBWlxSgsLKkoKSY9OZ705ATsPLri3X8oYfc+hNjUiMrKprl+czOzZnta+ofaynLMLK25WlKEuVZ/Ju4w67/4BBsXN3oEh2JkouBKYR6FGZfIv3QBA0NDXlr4A3auHtRWV1LfKGJsqqSitBgza1sqr17BWKGiQRSprSxHqbZstr+2upKa+vZ6mbGSGUN63fEI9MZTGRibmrbzbyYmJs1lrfxbba1OvdzIqJ3eQJuxoC1SBPrWtP+kCLQoioiiSENdHUYmJtRWV2lSwdbXAyKGcqPmsrqaGk0ub1Fsvl9fLSnCxs5Opz+pvVaGwqy1/ynOy2X6Y2MZ/8bb9B11X7O/cnB01GnzXxGBrqmuwsRUQU11VXP7aqqvx9jUlOrKCkwUSu35AQO5nOrKCkyVqlb66upqTBSKVnqZICDX+u+6mhpSDseQc+kCrl26kZt+kbNJxzl+KApHVzcG3vcgQx94CBt7h3b23WoEOuXYUaa9/iL2Ts4EhEZg5+hETkY6l86dIeP8WWqqqlm97xC2Dppz/0cR6Ov+pOX9qKKyEiPjG/7HRKGgoqKce7o631b/KHWg2yAIgjjogXHc9/TzHNrxOwB9R45m2YxpzF7/c/OP0hJdT1j68inr6+TqeprV14HurtTz+zcd0l0u6miMou6Gi6Cn8cvav+YvbWifNxKgsEZP3R3gdsyY7WgKno6gL8dmRzrQHb3BduRGqouD237jl1U/MH/DL63KK9vkdb5O4uFDHN2zk4iRo1n+xTQ+WrqSr95/B/8Bg2moqyXlUDQvTJvB7Fdf4IE3J3F8zw4AgoaOZNO8Gbw2fykbF87BuVtPAM4cjWH8+9P54b2XGfTSe5w8uBOAXpHD2PPtl0z4fDHb5n+Km19vAC7Fx3LP21PYPm8qoeOe5nT0bgA8I4exb+lsxk77mp1zP8EjOAKA9IRYRrw1hR1zP6HP+Gc4q9X3iBzG4dXfMHrSTI2+d1+NPv4QI9+eyk8fv86gF9/h1MEdlOXnUFddSVbKMSKeeIWiS+ea9RkJhxj19lQ2ffw6g198p9ken0Ej2b14JhM+X8zWLyfT1NhARtIx3Pz7cP+kz1n/4asM/de7nNLqu/UdyubJr6GytqOuqgLfEWNRWNlxMe4gw//9CT9PfYP+z/+HczF7MDZT4+LXh+jv53DflK/YM38K7sERyAwMuRQXxeA3PmbrtH/T97m3uXjkIPHrl9zxDvTB/Ks6P9Pb3jqQy76jeZY7EoG+kxl1dPkDfa+XO9JRBt1Rto6+0tal78ix6NPXNerW6opWg/680beD7d8voqLsCr2HjmT9nBm8+dV3bJzzOd39NVkzWvqrp96fzBHt/T10+Ch+nDWd+55/mUWT3ubpiR8BcDz6AK9/Pps5b77Cl2t/umU79HV+q3X42ap6PR3let3nteJqGV+/8QIPvjWJ43s1/rb38NFsmvMZry/8jhVT38c7PBKAy+nnefCVfzP71Rd47N0PiNutWc6678gxrJo5nUnf/sA3H76Hf7/+yOVyho1/tN33tWx3DfX1JB2K4sCvWzi6ZwdjnnyOZ7Tn6jq62ljbtvvrymWsnDuTNz+fzYDR97XTC4LA8tkziN6+Fb/QCO576jncunXX+QB8eN9uivLyAEiI3s+bM+Yy5YUneP6DqcRs/7X5eL+fMZWPl67iIZ8u0kqEd5qeAUE4uLnjF6a5cTq4uRM8YLC0WpXE35qYXdsJjhxwy3obRyd8wyJwcHUjqP9gTJUqAiMH4OrZq7nzb6oywz9yALbOLvToEwaAbSdXfCIGYKJU4ebli5O2Aw1golTRM6w/Fg6d8AgIAcDS2ZWuIZEYK5S4+4fg2MOrWW+sVNHJKwBLJxfcAzS5Si2dXOjSpx/Gpko8giNw6unTSu/sHYiFowuu/pr6LRxdcPUNwUihxKN3Xxx7tNArVHTp0w8LJxc8gjT2O/bwIf7n1cRvXknEE68062WIGCs1+pb2WDh0arbf1r0rcZtX8fCnX3Gt5DLGShVdQyKxdHZtPl4LRxeC7nsElY09Z6J2cnjtEhBFjJVm7F08A/eAMK39fUBmiNrRBY/e/TBSKHEPjsChhw9NTSKNDfUYKVS4B/fDwsEFJ+/AW/5tJST+aXTxDaCuphpbFzd8+2n8T8+gPnh4eTdrrvsrO2dXvEPCAbB3cSUgchBpR2Lp4R9ID7+AZr1CZUbwXbS6qrFCiXff/th2cqVHb42/snN2wUd7vN7hkXT20aR6NFMqmo/X3tUNr5bH238gpkoV/v360803ALnhzaPmhnI5vQcOoffAIZSVFPNc/xBGPvokDi6ut2x/fnYmy2ZOZ/G2vbh27qpX9+Rb79HJows56Rd544GR1NXWYt/JBffuPXl39gJU5mrtsXfC2s6+eT+lmRm9BwzBwdW1uf/m6OZO7wGDUWjfGN5OpAh0GwRBELenF7Jn07rmJ9dzyccZOu4Rcs6dobuOxN1SBLo1UgT65mXw50agy0qKeSjEj01Hk7G0sW31mb4IdOHlQkoK8jmXksSQhyawZelihj38KCdTkmhqbKSLjx/7N61jzHP/YtfG9Xh4a9pG+okUIu57iF0rluJ/z4NknU4DwLWXD0d/3cSgx58ndttW7Dt3ByD3TCr+I8cSu24ZfiMfJO+sRu/Uw4ek7ZsJG/8sKbt+bu4o551Jw2/EAyRs3Yhn/xHka/WOPXxI2b6Z3uOfIW3XL80d3/yzafgMv59jG5fjO/JB8s+e0Oq9ORu1k4AxD5O6s3X93sPvZ/Ubj+HYw5vOIf019ntq7Xn4WVJa6IszzuMzeBSx65ZRV11J/rlThDz4BE49fTj++yYiHnmO5B1bcO6pye+eeToNn2H3EbfhB/zueYi8M6nUVFVjYmbOvkWfYaxQ0dhQj7FCRZPYRGNdHT6jxnM1P5vAB56k8NwJEGTYdfHkxK4tBD30NKf2/IK5oys/vfe0FIGWItC3pP+nRaALLp2nob6eS2nJ9Lt/HNuXL2HY+Ee4eCIVoJW/itvxO649NA/2F1KTCR85hufC/Jm54ReuXSkFoLuvP7s2rOGJV9/sUPDsTkagD2xcTcT94zn862Y8vP0AyDl3irDRD7BzxRIix04g/YQmFaSnfwAHNmuON2rLRrpo+y6558/Sb/T9/PL9NwwZ9wgX0lKQGxoSPGBwu+/7o/HcK778jNLCQt6evbC57GYR6N9XryA+aj9Tv1vVobkK18quUJiTzcYli7h05hSOLm40NjZQV1dHdWUlXb28GTnhcY4d2Mf4f73Gvp8307mXJhBzNiWJYeMeYc3COfw4d6YUgb7TVFWUk6hdex0gMfoAESPHUJibo7MDLSFxt/PbmpVEjhzdrvP8R5QVFXEuJYnj0QeJGDmaxKh9+IZFcCE1ieqKClRqC5KjDzJkwuOcOhzD9elYJw9HEzRkBGmxB3ENCOFC4lEAlGoLzhyJInzsI+SeSaWhrgaAC8cO4dl/OBfionH160NG0jEATM0suHgshqAxD3MpPrbZrkvxsXhGDqPg3Ekcu3mRmdxa7zdqPOnxNx4m0+MP0aPfUC4di8HVvw9ZyXEavbma/HMn8KoaTXrCjfrTE2Lp1m8oIHBi72+c2r8NlbUdPfsNJf344Xb2XL50lu5hA7gQF43f8PuJ/3UddkndUVhYcSEumuD7JnDh2A17slLi6dF3CBePxeDmH0JWSjwGxiZ4BPfFxEyNz4ixpG7fjLVrF2TGxmSnxHMxdh+X4qM5H7MHE3MLbNy7I1coyUiIwWv4WE7s3EJptpRLXuL/L9nnzlBdUU5abDS9h44kNeYg/uF9ORl3GKCVv7qYlkJdrcb/JMccpLa6Crl2eGbqEU3bNrOwIOHgfh56+nnMLCz/moNqw7nEYwQNG8XJI9HNZZdSEwkYOJS0mIP07B3GmWNHALC1s20+3pRDN/SZp08SPHAISVEH8AkN58TRw8jlcp0d6D/iwRde5aWhfXk2sg+eQb3x7hNK2JDhWLWICLcloG8kP3z5OU1NTe2SJvwRZmoLzNQW/GfWfI7s3YWo3b+i/BoHft1CYvRBdm9aT2NjA1dLiinMy6GutgZBJiP+4H5MlSo2LFrQoeO7Fe6aCLQgCK8CLwHu2qKTwHRRFLdpPxeAT4AXAUsgDnhVFMWTLeoQgXqgpyiKl1qUrwBsRFEcfQt2iOuPn8bS1o6aKs3kIROFkrLiIuwddE8mkCLQrZEi0Dcvgz83Av3FO2/g0b0nD7/4SrvP9EWgK6qrNRMCtde/pa0d166UIl6fjFJZgZmFJWXFRRioLKmtqgLAWKHgWkkxahtb8gqKMNVO5qupqkSptuBaSRFNppbUVWv0RqYKKq+UoLKy4VppSfPkv7qqSkzNLagoLUZpaU29Vi/X6k0tbai6eqWdvrykCIWlNfU1Wr2JgsorxaisbNvplWpLnfWXlxZrJhyWFHGtMJe8UylkJMaSnZaIjVtXeg0YQeegcCydXDBVqZrtL85K5+snRvLOzzHIDAxRtKj/+vGKcpNm/XV7Ghqbmu2vLC1utr+xSWNPVVkJJmZq0uOiyUw+wsUjBxCbRDz69ONSXBRmNvYET3iRrZ+8KkWgpQj0Len/aRHohppqxKamVv6nrrwMU+0E/Zb+ytrWjhqtvzJRKPhh+seYqlSMe/6VdpMLa8vKsLS99cDDnYxAN4kiV4uLMLe2oVbrT5QqVfPxtpzcLNRVNR+v2tqm+XjNzcy4WlyEhdafK1RmyA0MdEbZb5ZRpLGxkcyzZzh1PJ6U2GgSow/g0qU74cNHEjFiFK5du7eqo6qygnGBvViy4wCuXXQP4dAVgdZ3r6yqqmruiJdfvUpu+kX2/byZ4zEHqaoop/fAIZw4dhQDQ0OemfgRU557/B8bgc4BJgLn0UyMfgr4RRCEIFEUU4H3gP8ATwNngY+BPYIg9BBFsbxFPY3AZ8Aj/60hl06fpDNo85VqxtlcOJGKja1dq9QqEhJ/F7r7+HEyMV7nZzVVVSRE7efiqRM8+MLLrJo7k+HjHyU+OorSy/kERg5k68plvPb5HH74fAoefgE0NdRzMS2VxyZ+xHeTJ9L/4ac4eTgKAK/w/uxbt4KnPp7B9m/m4uChcZRZp9O49/WJbJzxEUEPPM75uBgAuvXpx9EtP3LvO5+y55tZOHbTvHrLO5vGkH+9x65FMwgc9RAXj2n0nXv3JX7Laka8PZX9S77Esbt2qMa5NAa99B57F32O36hxXNJGoT2C+5K0dT3D3pjMgaVt9C++y855nxA89gkuxWvrD+5L8s4tDP7XRA5+NxvH7j4IMgNMzC14cdlWtkx7k/QWik55AAAgAElEQVTjRziwbD7mtvaEjn+GSwmxDHzmdVa88QTu/n1I27ed4qxLDHzmdX6bPZnQsU9y/pgmCuQSGMbxX9Yy8u1p7F8yC8fuPoiCZujIwBfeYdf8Twi8/wkyEg4hkxvTyTeYpF9XM/TfUzl/aA/2PbwJevBZMuJjMFGpUTu6EPbYK6QnHL7t142ExN+Fgsx0GupqsXZ0JvP0CTxDwsk8cxoLW80S31eKCukRGEz6yTQqnToR9fMmAPz6DeBMYgIqtZrlsz7DvYdmwZTzqSk898EUvpv6IVOWLL9lO/b+tJHOnl6cTNC86eoV3Ic9m9bx4Ktv8fuK73D37AVAxulTDH7sGbYsmkfk2PGcO67xz90Dgjm2by+DH32K3T8uw7WHJwBZZ0/Tf/zj/PjpBwx65GlOxmr8rW/fSPauXcXTU2awYc5neHhphooVZV7iwdfe4rvJExn55LMkRx8EILj/QLat+oGXp3/JypnT6Orjh6HMgGtXSrn/uX+xZv4sho57hFMJcZiYmNLVx489m9bxxFsT2fL9N3Tu5Y2hXM65lCTGPv8yuzetZdi4RxGbmvDpE46BgYytq1ew5ftvMVUqGfXoU7h27cbJhGOkHTuCnaMT1VWVbN+whrrqarx7h7Bz41qe/s8kNi1dTA8/fxobGrl46gTjXnyF5bNnMGL8Y5yI17zJbKlf983XWFhpclafTU3ixY+mUlyQxxuff8neLZvIzbjEmCefIeVILJ6Bwf/dhfUH3DUdaFEUf21T9KEgCC8DYYIgpAFvAl+IovgTgCAITwGXgUeBJS32+wr4jyAIs0VRTPxvbHn/0Qc1/wm4Mfmp1f/b0rCvfVljlW5tk5417ptq25fpixJXdDTCq6PTrzfS3D7LiKaK6nZFVoaZOqVWZn1v1bC7CzH71rWC7ui7Lkp1B3j1oi+CX68nuqSLtpGobt6+bFnxPVdr219n+VV1qLt54WJqRnGDgFtwOKK1A45BYTiKIkpHZ4Lum0CZzITA+x7Gyd0dRHDo4YNMaUHfhx6na2Awltq0RtZOzjQ2NqKysibi/oew1i6Y0tnHFys7W/qPfxy7XsFY2Wve6Fg4OCPQhIWNDQGjJ2DhpDm3Dj18MLGwxnv4WOx6BmBsqYkCqe2d8RvTgKGZFT6jJqB21OhtunlhaGaJ14gHsfcMxNRKc+M0t3fGu74BQ5Ul3vc8jIWDRm/dtRdycyt8R0/ArmcAJtr6ze2d8WoCI3MrfFvUb9/dC1MbByKeeh0X3z6UZF3gTPQuYlZ9g7HKjBX/fhLPASPp98wbCIKAQ0EuhmaWBIx5BPteAZhYaeo3tnbEt6EJQzPLZvsbGpuw7NwLmZkVXqMewaZnAMaWdsgEMLd3orGhERO1FT6jNfYbyQVcennj5OlHekIsrn7BWDs4krjpu1u+Rv5b1DoyEYH+CK+ut2ueZnr8j7422HRRj15Hm9Dn2/QhdOA2KNPt23S18fxq3dFFfRHejqSm07cWgL7fQFdkWt/3dSRSb6zn1HX0DeLtSJ9q6X9jeKWri8bn2PTrf0PQU9MRDR08jMbGRoY+/BigCZCNevIZVs/5gsfenoiddoEVD29fTC0siHxoAkWVle2+r6JOtz9WdPIAGwccfIIAEKwdcAuOoNrAGI/eEc0LQgkqSzBR0iOsPxad3OmivQ4tnJxx9fZHZqKkR2i/5gWYTC1tMDa3JOLBx3D1DURlo/Fv1k6d6PtQI3IzzWfX9ZVF+RiZW9H/4Sdw9Q1CYa0ZWuHq5sqwhgZUVlYMe+RJ7F3cMDSQUZCViZFSSUDkQBzcOyMYypHJZNg5OeMfORBDhQK/fgNwcHVDJggo1RYYKZUE9h+Eo0dnZHJDBEHA3tkFO1d3vEPCWDN/Fr+tWoaZpRX5Genc8/hT+IX3w7FzVwyMjBEA+04uBPYfhFyh+W5HN3cAzKxtMDRVENh/EA4enRG0b+Rb6kOHDMVBu4BdD/9ALG3suPfJ5/ALCcdee9+x7+RC5x6e2OtIu/e/cjtSYN52BEEwEARhAqACDgMegAOw+7pGFMVqIBoIb7P7MeAnYNZ/+/21+rK968VcxyYHwaL9hiEIVu035CCzbr1hCDKb9htyPeX69AZ6yqx1fKdMt32iAIK69SYCmLXfxPbO5u+BkY5N0F0u6nkQ0oGBoHvT95lcABNZ+00mgMJAaLUZ6Ci7Xq4ylDVvPl5eZJw7g1hfh1pu0GoT6ms5fWAXznY2rPnkPULCwtn5zTyuFeRSfzmP/d8tICQsjM2fTqSTnQ1pUfs4e3AXnexsWDflPULDwvjt67nUFuZSW5jLrm/nExoWxrop72FuruZ81G7OR+2mk50Nmz+dSEhYGEc3/gAleVCSx9GVCwkNC2P7zA8wt7Cg4Og+Co7uw83BlgNzP8LNy5+UtYuQlxUiLyskZe1iQkLDOLx8Hh6OthTH76c4fj8ejrYcWjAZNy9/0lro09YuxtU7gNiFH2v0CfspTtDoD/8wj5DQsPb6Xr4cWjC5Vf1m5mqi5k8mJDSMlLWLMK2+SkDvUALHjGfUs6/i2TuCMU+/RGHcfgqO7kNlZs6BuR/RJzSM46u/wuBKAQZXCkhY+y0hoWGt6s86dpDOjrYc+epjQkJDObV+EUbXCqguzufE+sWEhIW2sv/SkQN42NtycJ7GnqTVX1NdlHtbW4M+ZOi+5gS95WK7a7lG77t8XW3QCDBBp6/R5XtFmR6tnnJR6IBWt2/T1Y6NZGBq0H7T1Y5v1paVhrJWW9v2fX0zEMBMbtBuMxSEdu3eUBBQGxm22wwEAQsjw3abgcAtlVl0sI47Wbe+Os4mxFGel015XjY/LfiS4WPupazoMmJTI8m7t5O8eztO1tYsmfQWngGBWBrL221GMgEbE3m7rVPnzuz6Zl47f7hqisZ/nj24q9l/bv5yOqFhYe30XX392DhtIi52NpyP3s356N242NmwedYUQsLC2L90PvWX86i/nMfuZYsJCQtrp1eambP643cJDQ1jx6K51BTkUFOQw9bvvyE0LIzvPvgPjrbWpOzdwZHtW3GysebbiW9qfP38WZTnZVOcm8XmBbMIDQvjm4lv4mRjzfHd20g8sAcHG2sWvfdvQsLC2DBvJldzsynMymTD/JmEhoeydPK7jH30cR557S28/QP4/LsVVF0pJSIigvVzZ1Ccm0NZbiZr535BaGgYC955HUcba47u3kH8jq042liz4J3XCQ0NY93C2ZTlZrbTm5mrObZjK8d2bMXBxor5/3mNsLAwNn6zkCs5mVzJyWTNnBmEhoUz661X/wtv98fcNWOgAQRB8AGOoPGWFcBjoihuEwQhHIgF3ERRzGqh/wFwFkVxuPZvERgHJAOngHtFUdx5szHQgiC8iGZsNUDQHTk4CQkJiTtPpiiK7neqcq2PlZCQkPg7clv9410zhEPLWcAfsAAeBFYKgjCgxedtnbegowxRFC8IgvAd8IUgCLvbfq5DvxRY+t8aLSEhIfH/gTs5QVFCQkLi78RdNYRDFMU6URQviKKYIIri+2giyW8BBVpJ20EsdkChnuqmAl2Ax+6IsRISEhISEhISEv8vuas60DqQAcZAOppO9NDrHwiCYAL0QzNGuh2iKF4GZgOfauuQkJCQkJCQkJCQ+J+5azrQgiB8IQhCP0EQ3AVB8BEEYQYwAFgjagZqzwcmCYIwVhAEb2AFmnHSa/+g2jloxlPff2etl5CQkJCQkJCQ+P/C3TQG2gFYrf33KpAKjBRFcZf281mAKbCIGwupDGuTA7oVoihWCIIwFVh8Jw2XkJCQkJCQkJD4/8NdlYVDQkJCQkJCQkJC4m7nrhnCcTcjaEjRLt5yq/ssEgRh2Z20S0JCQuKvpq1/FARBKQjCekEQSgRBEAVBeFoQhHcFQdCx4pSEhITE3xMpAn0LCILwMPAl0EUUxVtaV04QBHfgDOAtiuKFO2edhISExF9HW/8oCMI7aLIgPQnkAheBGiALeEAUxYN/la0SEhIStwspAn1rvAH8eKudZwBRFDOAQ8DLd8ooCQkJibuAtv6xJ3BWFMWfRFE8KopikXauyk/A63+ZlRISEhK3EakDfRMEQeiKZrnwzW3KnxcE4aQgCLWCIGQKgvCejt1/Ah4TBEE6zxISEv842vpHQRAygOeAAO3wjZavOH8CRguCYPWnGyohISFxm5E6djdnMFAJpFwvEAThXeAb4BdgtPb/nwqC8FqbfQ8D9oDPn2OqhISExJ9KW//4ALAdzfC1MO12ncOAHE3+fgkJCYm/NXdTGru7lSDgtCiKTQCCIJgDnwDTRVGcqtXsEQRBAXwkCMI3oig2astPAo1AH1p0wCUkJCT+IbTyj6IoJgmCUATYi6J4tKVQFMWrgiBkofGHv/75pkpISEjcPqQI9M1xAIpb/B0GKIFNgiAYXt+A/WiizZ2uC0VRbADKaL8EuYSEhMQ/gbb+8WYUI/lDCQmJfwBSBPrmmABVLf620f57Uo/eBchs8Xettg4JCQmJfxpt/ePNkPyhhITEPwKpA31zSmkdMSnV/jsaKNShP9vmb4sW+0hISEj8k2jrH2+G5A8lJCT+EUgd6JtzltYTYY4A1YCTKIrb/mhHQRBsAQVw7s6ZJyEhIfGX0dY/6kWbjcgVyR9KSEj8A5DGQN+cWMBV2xlGFMUyYAqwQBCE6YIgDBMEYYQgCG8IgvBzm32DARHN7HMJCQmJfxqt/ONN6AGotPtISEhI/K2ROtA35yCaV44jrheIojgLeBEYiWY2+TrgMSCmzb4jgChRFEv+FEslJCQk/lwO0sY//gEjgHQg6U4aJCEhIfFnIC3lfQsIgrAA6CqK4qgO7GOAZjLhJFEUV98x4yQkJCT+Qm7VPwqCcATYJori9D/HMgkJCYk7x10TgRYEIeP6ylVttm0tNK8IgpAuCEKNIAiJgiD001NH2/IpgiCc+B/M+xIYIAhC9w7sMw7NWOn1/8P3SkhISNzt3NQ/CoIQgmaJ76//NKskJCQk7iB3TQca6A04ttgC0Ywf3gggCMLDwALgcyAAzbjiHYIguLappwaYeTsNE0UxB83ytI4d2E0AntPmgpaQkJD4R3KL/tEKeEo7h0RCQkLib89dO4RDEIQPgXfRZLuoEgQhDkgVRfGFFprzwGZRFN/X/p2BZkzyi8Bjoihu0ZZPAR4SRdH7zz0KCQkJCQkJCQmJfxp3UwS6GUEQBDQRjdXazrMRmiVjd7eR7gbC25RlA18BM7QrBEpISEhISEhISEjcNu7WDuZQwAP4Xvu3DWBA+4VLCoEhOvafATyv3b692ZcJgvAimqg1xkaGQbV10qgLCQmJvyWZoii636nK7SzkYtFVyT9KSEj8Lbmt/vFu7UC/AMSLopjcprzteBNBRxmiKF4RBGEG8IkgCD/e7MtEUVwKLAUQBEHc+8vrRIR2ITNbs2CWm4sVUbHnuVZRx7OvrOK39S/j5enEpYxiQoI92Lv/JP3Cu7bSxxy5yJABPYhLyKCzu2b1b43end37T9M/olsr/aGj6Qwe0JO4hPQb+sxrhPTuzO59J+jftyeZWcUAdO7ihlze+qfbsSuJrTvT2LUnkeqaOlw62XDmbA4mJkZERIQyYnh/7r13KJaWamxs/TlwJhtzC4t256Kmvl7nOaprbGxX1tDUpFNb3aD7Blulo+6y6lqd2rLKWoqyMwCwcnTmfGIcnmGRnDyehKWDMwCledm4ePlzPi4Gm15BXC3IBUDt4ExW8jGsvUMpPJuKuUMnAK4V5GDfw5cLxw5j18OfyqJ8AJS2jhSeSkDdPYTSi2kobTX6yqIcjB09KT51FDOX7uQf203J2QRKzydhYuWAU/j9mFg6Yu7WU3PcxXkIVh5cu5CAmbsftWWa5716QzVVWWkoPQKpyTuL3EKzcFvF5WyM7bpRnZWMibMXDeVFADQaWVCXfwrjTn7UXz6Pgbm9pv6iXAxtu1Kfl4bcoSdNFcXU1jUiU1rTePkMBg7eNJVcQlDZ0lBdC1VFCJYeNBWdRmbdDbG6BLGuBkFhiVh6EcGmB2JZFsiVCAKI1aUI5i6IpRcQLNwRq0tBBMFEjViWgWDVFfFaDphYavVXEMw7afRWXRBrNMNbBROLZn3TtTxkCisAxKpSBLULYsl5BEdvqNZc/4KpFU0lF5DZ9oTKQmRKTUrhpsoiZFadMa68iLF9TxorNNe/gcqGuoLTWPcKpSb/xvmsLyvAxLEHQslpVK4+1F3VnH8jtT2UXsCqZx+uZZzE1Map+fdy7OVH0cmjWPcIpKpEcz0orB2pyEzFwTuEkgtpqOw010NdWR623XzJTTpEXXUVqT8tpb66isCHnkdpbYdr70gut7jeqkoKsO/uTdbxWJx9elN+OQ8ASwdnctPicQuKIP9MChYOLpgYySjLy8Gplx+X4g/h5teHq4W5yA1kWDg4k5EcR9c+/cg5mYylsyumcoHS3Gxcvf05dzSGzoEhVBfnMe2BwW46G9RtouhqA/kbg4k9Wc6gADUJ5ypwt9eszP1zbDHTVuUwcYIzL4xyIPuypm27OJgQe6KcQYFqEs5W4O5ggiA3IKOghuCeZuxPLCPCV012YQ0yIwM62RlzKOUqg3tbknDqGu5OpsiMjUnPq6a3l5p9ccX0DbAiq6AamYEcV0dTYo6XMCTUlvgTZXi4qhEEgfTcSvr4WLH3cCGCAOt35BF7/DIVlfVYWxpzubiGpiaR3n52DAxzpmdXC8YMdsMuaCWxm+8HQQDAzVlFVFw+w/p1Ij6lELdOZgBcyrpGiL8de2Jy6BtgQWZepUbvpCI6vpBBwRbEp5Xi3kkJQEZOJb19rDhw7DLh/jZk5WtWQHd1VBCTWKSxP+1KG70l+4+XE9nbgcy8iub6j564xqBwZ+KSC+nsYq6xJ/sa4RF+7D5wkf7hbmTmXNXoO6kRjZ0wNTVq/WMa2en+kY3H6CxOvtLeV1dofXp1ZSXxUfuJ3bWd2N3bcenSjQFjHiBy1L3YOTk363XdRwCaOjCUVKb9XdpiKGv/Ql2f1kCHFnS/ktdVL4CRgYHOcrmeckfT9t0tK8NsnVoaTusub6zSoS3Xo9VTXq9jGkLDVZ1Ssb5GZ3lZaTmnLlwhxN+O3TE59A9xJDO3ArGxDhcnJfOXn2JfbC7n06/x6uPdGX+PO/lF1fTxtWZvbD79etuTmX0FEDTXf0IRQ8LtOZZWipu9EQgCGbmV9Pa2ZO+RIiJ8VWQVVAPg6mDKoaRSBofYEJ9YiJuDxv9k5NcQ7GnGvoQrhHc2IbuoDgAXO2NiT1xjQDcTbB5Pua3+8a7rQAuCYAfcB7zaorgYaKT9krF26F5OGzTDOF4D3u6oDfO/PUBjk8iajccoKq7A2lrJT78lIwgCckMDNmxJxN01g537TrJh+QtMnbmdjyfew7rNCQBMeDCIWQv24OvlxKQpvzJiSC8Adu49xYblz/DWBz8xf8ZDrfTzFh/Ax8uZSVN+ZsRgLwCiYi+yYslzvDVpPfNnPsK6TXEAvP3Gffh4t547OXJ4ACNHRQJw4UIeBYVX8OzpgrW1Ocg1Q79FUeTllz9g0KBwnZ3nu4ny0hJ2/fANAMEjxrB59qe8+d06jv60Glu3LgCcOxrNI9MXsm3BZwx85X1O7dckbOk18B72Lp7BmM9/4MjyebgGRQCQlRjL8EmzObt7E2JjI+mxOwDwiBjBsRWz6TfxW9I2fIWDr2ZUUG7CAay9I7i0cyUiInKFOSaW9ng/OpHcxAPY+Q3kxIqPsPIMBaD09FHcHvyArO2Lcb3nVUpT9wNg2jWCwv3f4fbIDC5HrUDZORCAqsJMrCPsKI1ZjlXks1Se06QRN/II59qRVViP/phrx9Zh7OIHQE3OCVQR/6IqYTWK3k9Ql36YJgNTDBy8qU1ej+nA96hN3YShow9NTQY05h/HKOh5Gk5swtB7HE25CYgyAwxsPWk4/RvykJdpOLcNmXV3EBtpKj6P3GcCDee2Ydh9FI0lF6CuEgN7bxrO70Qe+AwNF/cgs+0FjXU0lV5A7j2ehvM7Meg+iqbCVAAMHHxpOLcNeeDzNGUfQVRpHgCaSs4i93mUhnO/Y2isoCk3HgCZUxANJ7dgFP469ad/xcCmBwCNBScwDv0XVam/I/iI1FzSrEdk0jmca3GrsHD3pOTQKhTu2vOZcRyHUe9SfGgDDhEipWkHALD0GUDRoXWonLty/rdF2HhqFs4rPn0Eq05fkLZ+Lj4T/kPOsV0AdOozjMyoTVi4diNl/UIc/TTXQ35KLB7hw4hfOQeVrSMKK3usPDwxd3Qhdunn2Hbz4ujKebgG9gXgWn4m5nZvEbPkCyJfep9zUZrr03PgaA5++wXjvlzBoWVzcQ/uh4mpKecO7eGBT+azd9HnDH3tQ07u+x21jS3uASHs/Ooznlm4hj3ffknXkEgUClNORO3mic8W8uv86dz31mROR+/6n9rcrXLkVDkfLstkyzRP3vk2A2tzOekFNeQU1eHjoWDp7wV4uSv4KVqT/v6hQbZ8+H0Gv33ei6krshgcZIGhkQG74kpZ/mFPPvj2IjP+1YXNB4uwtzaib4AlHyy6wO/z/Jmy9BKD+1ihMjPm1wOFrJzuz6T5Z5j5liebducjyGQ8NMyJSXNPsv3bcD7+6jT3DXWhqrqBPYcL+HFWKO/NTuHLd/1wtDMlsrc9/UPsmbowhf2rR/DvT+MY2q8TDY0iC5anERWXR21dIzkFFaz99QIA40d35Z3PDrN3zRiWrjtNN3c1ALuic1i7cBDvfHaUuR8EsW5rOgDj7nHn3S8S2bGkL5MXnmBouOa2tedwAatmhvDdpks0NcHGnZrO07jhnZg4O5WdS/sy+auTDA230+ovs+qL3kycmcisScFs3Haj/iXrL+Dd3YoPZsYxvL+Lxp6obDYu68JbH+9k/qcjWPdzGgAT7vfB21+Nc9sO9P9IQU42e3b8zuHdO0iNO4JnQBARw0by7LsfYNOi0yzxzyM6Pp+536ewbuEQ3vnsMHM+Cmfdb+fJLaggM7eC7LxKvny/D5u2p2NsbMCGbRnsjs1n9ewI3p15nC8nBRF1NI/C4hrGjXDhvdkp7Py+P5MXpDEq0p7auib2HrnMyhn/x957h1dVpW//n316S07OOem9kgKhhl4EBFQUxd57naKO4zh2B2fGsY4F2+jYK2JDBEWR3gKEBNJJQnov5+Tk9LrfP3YMIOH7jr+fM6/zvXyuy+sya9+ss/Zq+1n3eu61irjn6QoevyOP1d9IBMcFi+O559lavnpxGm+u6yIrWQvApv023nwgn/teauTxG1JZvVUiXM6ba+H+11tYc1/WT14PPzsRoSAIfwQeRBIPOo5J3wscEkXxpmPS6oBPfyAifEEUxaeG/74ayZF+FzjlXxERCoIgdh1+lNgYA8n599PVM0RKkom7blvEdVfOwecLEhEhrXgcDi9ms56eHhuxMRG4XNIKXa9X09s3RFysEavNRYRhGO/0Yjbp6ekdOhHf7yYuNhKr1XU0f1cYs9lAT6+d2JjIo/gIE8JoK2tFxAlJNpuD7XscbN68i81bdqNWq9i8aRXdivxR3//nwkAPeYN43RKjo9bqcFj7ibTE0Nndj0ZvAMDncqEzRuGw9hPWGgl4pdW5UqPDbRsgpI3C6xhEqZUYnYDHhSYiiv7ObjRGC0GvtKJVaLR47VZ8ITn9hw/SW1NC16Ed+J12YgrnYs6eSNzkhXxf43K1lqH+PtSRFgIuO3KNlH/I68IbUhJwWlHoTYT90urd7YOQexCF3kTI40Cmkga8e3AQuTaCkHsQmdY4str3h+WEPXbkuijCXieCSuoPniEHco2BsMeOoImEoA+vL4CgUCP6hpBpjIg+Jyg1BDxehKAPQaVH9A6BOgJCPsIBN4JcDX4ngjoC0e9GDIel/hTyISh1Uh4qPWLAI72zXAUBF4LKgBhwI8pUx+P9TlBHQsg/XEEq8LsQ1AbCAS+CQir/0fwdCJFxP8A7ENSRgIigHMYHvQgqA3qVX3q3oNRXBIWasNdOVHzicfUZ9nuQayPQyrwoDFEj9S9TadArA6O2V1SMBa99AHWkmZDPM9K+Mr8dbZQFn9OOIMho3PYFh79+D2NiGrlLLiJtxiJCPil/faQez+AAOlM0XocdpVYnld/vRRNpxG3rRxtlGemfOr0e9+AAelM0nqFBVDo9WqUcv8eFNjIKp7UfvclCwONGpRBQafW4bAMYzNG4hwZR6/RolTL87uH+P9CHwRyNPOjl97PHIori6LTbT2CCIIjWNdPoswc596Eaqls8xEQpuOuiJJYUmUiLU9M7GCDGqMDlleYHvV5B32CAWJMKmyOAQStHUClwukOYIpX02vzERClxecMIShl6rZw+W4BYswrrUIAInRxBpcbpCWE2qugd8BFjVuHyhJAplOi1cnqtfuIsaqx2P0ajDhBwuIOYjSp6BrzEmtV4gpIDqdcp6B3wEhetpbXDSeURF1uLO9mypwOfP8zHLy0mP9uEyx08Bu8hLlrHgM1NhF7Kx+HyY47S0NPvJjqCH+C9REeA1e4nQifxVD8sj8sjzalS+X3EmVWj4vtdCmItmuPyH3DJiIvWYR30EqFXDpcnQExSOj29TmJj9Lhc/uH6VxFWJSKX/4BJ/ZEM9K7Wfo7UVrPj26/Z/s1X9HZ2MP3UJcxecgZT5y/EEGkcwYZO8m34hYE+3v5bGeiA14PdIfX/1k4HG3e08+QrB4mKVHHPr8YzdXwMCbE6rIM+9KoQIOBwBTBHqenp9xBr0eB0SPPtSP+3aLDa/ehVYX44fqMjOG689Fn9xFrU9HfZidBJ9e1whzBHKum1+rEow0fnH42MPnuQaEUYy+UHf9L58WflQA+LBw8j3d534w+eXYzkCP8a6SrYW5CEhmNFUWwZxjRzvAMtAw4COcCRf9WB9nQ/w8Yth9Fpleza28g3m2qoPtyFxafqmT4AACAASURBVKxn2enjyc6MJT83nvzcBLbvquecpWPZuOUw6anSVnVzq5VF88ew9utK5s3Kpq6hF4Ax2bEU72/ijMVj2bil9nj8gnzWflXBvNk51DVIpHpOTjI7dtdxzpmT2bi5ivQ0CwDBkIpJEzNOLPwxDrTN5uDci/7KgdIGZs4sYuGCWSxYMIspUwpRKBTUuZNHff+fiwPd0tKGe0ga1AOd7eRNn0P5to1EJGVRs1NidrOLZrHviw85/bf3sOGfK0kYUwhAd10Fs674FRtfeYbseafRWb4PRIjLn0jVV6tInDKfI1vWIlOq8DkGcfV3Ew4GCPp9GGKT0URFE5GYQdrsM2nYvIbc835Dw/o3MKZJiw57Sw1JC6+i8cuXSJx9DrbD0k6CKbeI1h1fkLToOrq2vIcuSToW19ZUTcysi+nd9iamCUtxtUiRSYrYfBzVGzHPugpbyceoY7Ol+utpxDDhbIb2vo8ufxH+DolJEqNzCdRvRTflUjzla5BbMggEQoRtzagKzsJ/6GOUWfMJ9VQTCorIo3MINu9AUXAeofqvEaJSCQf9MNSGPGsRodp1yFNnEOqtRQBk5kxCHfuRZ59OqHkLgj4RQRAJD3UiT59H6MhG5IlFhAabEcQwMlMmoc4S5NlLCDZtQ26U+lTY0YE8fT6hhm8QkmeAVWLyZOZsQu17keecQahjD7IIKZRCHGxFnnM6wZo1yLNPhV7p4yGLLSDYtA3TrCtxH1qDIlrq88H+JgwTz8VbtYbIggW4WyXmW5c6Hnv5BtKX3kLPjg/QJUr17+6sY8yym2hc+yJJc5ZjHW4vc24RfaXfkHfOzdSte52odKl9B5trmHDBDZS+/SQKtYbm3RvQRydQeM7V9NYeZOpVd3Dwk1eJzpJ2iobaG5hw7jXsfftpCk6/iPZDxQCkTZ5B1VefMOv6OylZ9Q9isyV8f2MN0y+5iR2v/Z3xZ11Ea+kelCoF6RNnUPrlKk695Y/sfPclEsaMQ6lU0FF9iHlX/5qNLz1B0fJLaSzZhUqpIHvKDIo/+4Azb7uXTW+8QNaESbx5z63/dgf61nPjuf38RO55tYWsRA3riq00dvqINyvRqmXcf3ky28rtFOVI81FFi4vbz09mxVstXHNGPNsO2pErBeZOjOLNdd38+cYMnvqglYk5BuQqGQdqHfzhijQeeqWR65Ylsu2ADZVWyeyJZt5Y08ZffpvLE28eYVKeEZlcTmnNIH+8PocHVtZw/Xlp7DpoJxgMM39GLK9/0sTfflfIY/+sZerEOMJhKK0c4LZr8pl/2QYGbD4SYnWkp0Ry0ZmZ7C7t4an7ZvDYPw4yMV+abw9U9HPfbyZxz+N7ufGSXDbvlkJxFs5O4tUPa3j87uk8/lIJ43Ol+by0aoB7bh7HfU/u57rzM9iyTwrNWjAthte+L89rtUwuMEn4aht335DHX1+u4vKz0tiyr3cYH8trnzby+D0zefTlciaPk8pTWjnA/bdP457H93LTpQVs2t0OwKmzknl/XTsP37WAvz6znSkTpPF14FAnTz1+LbIfOIKiMgaHw0M4HEYUIRAI0tbeT0tXGi0tLSP/NTc309LSgsfnIzUzm1kLFzPv9KWMnzoDz0m+Ab840Cfaz8WB3rixhNnTUnn7ozKWLhpDRU0PYsjF+LwYvtrcyNUXjuPT9XWMyTIhhP3UNtg4f2k2b39Sw9IF6VTUDtDZPUhWipF7nyimvduFWiXnsnOyGZNhoKzKyr2/msC9T5Zw4yW5bNvdTigsMn9GPK+vrudvd07i0VcqKco3EhJFyqoHufuGPO5/roLrL8hgW3E34TDMnx7D658288htBTzxWg0TcqUFWlmtnbuuzeKhFw5z9enRbC+V/IRTJkfxxrou/nJTJs+808S4dIkoKTvi5M6Lknjo1UY+2D74k86PP7cQjvlIzu4VP3wgiuJHgiBYgAeQzhutBJZ+7zyPZqIohgVBuBv46scUQhORyLKzpcnn1MVzeOgBaXLZvbeBr78t45W3d9PeYaUgL5mcrAQaWlzkZCeg1MWRl5tE4SQpn4svkcIsElKP3i9w7vD/LzvnqANbOAkQQ1x8sbTVl5CcLj0Q5Fx8kZTHsmXH3A0jjD5Av08PBkNccuUTFI7L4Jv1f0OtOzZcowNEGKNPGTULa+Bf3+YzK0dPrxoa3YEOjDJ5GlSj/17EmMxj/pIqNOOii2jo6CVgkxyRtMxUOjIyiDNHEp+RQ0JWDgCu/i5KP3+XIzu+pm7zWqQweQH5+lXIlSr8ARFRpiAiOYeYqBgCriGyTr2Q2s3rSZx2OkOttQCENLEEVNF0dXvwq2JwIn0g/aoYWtrsuImk2yrDL0rpPqsMZziK5uZB/OEo3B5pAPtkZjq7XQQwEhiSERalDydeNSFZFH1WHyF5NIGw1E6iJg6nRySktuARDYQ1Ur9Q6WKQGeIQ5WpkkUnIjEmoEQgRQqWLQDQmoIqKIxRyI8jlKEyp+JzJaGKi8Q2lo7BkEhYh1K9BFZeCbyAdVdIYAiolICI3Z+D3D6BOyCTg7UQRkw2IhPqjUKXm4XM2ocoYT9hmAjGEwpKBLzyIJi2PEDZUsVKb+ftM6MaMxeltInLsZPy90sSnis3GKRskMn8cwQgPmhgpHM3TFUXUuHwGfDUkz5iCu1PaYdAn5dKn6iFnej5dNGFMk0Kh7C2RJE7Pp496EovGMxgjTWNR6QW0+JrJH5eK1jYWc6bUT6yNSrJzYvFmZ5IzNot+jcSqRGdloXblkJpuwZOfS2yOlH9rwMqR9a/RUbKZrNmLOeXmuzHExJOUV0ilz05cvInkMbnE50oOt00vJy7ORHx6JskZacj9juH+mYE1I4OE2ChScnJJypfwemWYhDgTiRkZpGWko/A50KgUJGWm0ZuRSUJMFOljckkpyEerkqERvaTGmUjNyiQ7Kw2lz45WrSQtJ4OunCyS40xk5ecxfvx/5pTOvEQNEXIoSNZw+cJoJmdoCYdFEEVeXN/L4x+2U9fuZWf5EMnRKlQKGRv39KNXCqREyhiXpEKmlJESKSczVoVBCJGboCYvQYVco8TlDBGhFMiK15BiVjI2XYdSqyAlRkFmohqDKkxeqpb8NDUyhQq3J0CERiArSUtKrIpx2REEQyKpcVqyknUYNDLyMgzkpesQRXA5PfzxsX2YjUo2vbWAwy1uwmGYMs5Cf78DnSJIXrKCMYnSd9ZhU6AJ2cmIlxOnsJIbJzG7cYoB0s1BFI42sjRuMoblOIMaN7KmI6QG7JgbGsgeZoLNDXZS/E6E0koyQ07S7RIDNxjyISurIh0n0V2t5IjD/bPLS6rgRt7TTJbRR6ZmCAC70Yc6MEB6rEC8wU1+suTgxRvc5CQJaELd5KbIyE2S5mGnVYbgrBmJ6e7qcfLOJ9W8sfow7Z12FHIZggAKhZzkRCNpaYmkp8aQlhrN3GmZpKVOIz01BktC+jE7nyKwhzrfwlH7yMkc6JORLqM5qSdzcsfo2kdNH9XpPKlzOYojChAeJT3s/3F5BE6S7nSekCSGRv9WhkOjE1li8MSyhAOjk1DhUbAAzq42gt1W+tsawBokMGAjHAoQtg7R19aGv0fBUHc7onkICOPosxPol9Hf0Ylol9Hb2s+3O7rZvM9KSpyGjx4fR3mdk8n5agj5cMaGUbm7SLeEiFcNkhcbJBSGBIWdNHMYlbOHnOgw2aYAYRGcMaB2W0k3QYLCTV4MiCIkKj1kmAU0bjtjLAJjIiT/wWkS0NrtpBsFEsN+8obdmwTRT4ZBQGNzMsYQJlstvb/TEEY7YCdDM/ri7f+P/awY6J+DCYIgiq6PTvLwqOPa3W2jtq6DhiPd1B/pouFIN7uLD7N82TSeeORKIiK0P+6HxVEa9//iKJ9gcmnr+M4/vkJ5RRNff/kICoV8JP04k80ZNQvr6ON2VPspHGi7b/TBb/eOvnW0eeMm9EZpxLRUlTNj2fl89+4/yVp4Lq3l+9n/+fv0NNRgScmk6No/YmupIyZHciz66isZs/AcStasInnaImxN1QCYMgpo3vYFMbMupnvfV0SmSo7UUGs1QspMBvZ9hmn8Ejxd9QBoE3LoKduMYexiXIe3ohpmjv29DYTip+Gv+RpV9jxCA1LMYjgihWDzTpS5pxFs2oXMLDGpIVs78pSpBOu+QZE+l7CtGQB5dAbBph0n4IWhNlSZs/FVH5O/IENuTsPfsB11wRn4j+xEHp2BTJARHDiCOmsu3qqvUGefQnCgCVEUkFuOxwumdAQgZG1EmTEHX+0GVJnzEO1tIIaQWzKOwytjs0AUCQ40juRvGHsqwX7pfZUxmbgPb8Ew/iz8TcUoo9NH6kefO5+hg2uJKVqKr1uqT018DoMV32KZeh6+xp3oh5l7V/thoiefhv3QVyQULcbeIi1sjGl5dOxZR/7SK2nbvZ6oDKm9BpuqSZl1Fu07PyF91hlYG6sAMGeOpb34K8addTn1W9YSnS31h/6GSgqWLOfQ52+Rt+Q8+uqr6CjfR+23nxGTnc+i3/+VttLdxA3vbPTVVzDutHMp+fhNxp1+Pj110uWmSfmFVHz9KdMuupaKb9aQkCvhbS31jDt1KbtXvcGkMy+gs1baSUgtKKR03SfMuex6Sr/6jOT88agVMtqqy5l61vlsfe81pp19IW01Feg0KpLH5LN7zWoWX3Uje778hPSxE1Ar5TRWHGTO8gvZ8NYrzDvvEvoaD/Pnqy7+tzPQta9O4IOt/fxmWRwfbhtgcpa0UKxucbN8hokX1/ewtMjIhgN2emwBREFgR6WDQWeQBIuKFZcnERWlorTexaULo3lhTTdXLIqhrMGFUqekMFPPe9/08NsLkvhwYy+TxhiQaxUcqHZw2RnxPL+qlSvPTKS0dgiZQsmkfCPvftnObZdn8P76DqZNiCUswoEqG1eclcpz79Vz1TnpVBxxEgyK7Cnr5/0vmyn97HQ+/baNqROkGP2Syn6uPCeLZ9+q5oozEyitlra6JxeYeOeLZm6/IofV6+spyJDet7TmaHkumaznYKPkOE3M1PH+1gFunqDgoxInk1LUAJS1+bi4yMC7+12cPcnAoVZp7puQqubDYge/Ps3MqmIHk9KlEKayZi+XzIzklf0+Ll8cS1m95IBNyjHwxSEfN56fzvvr2pg8VpoPS6sGuebS8TzzRhXXXJDDgQopBnRKYTSGKAtqlZw7Vmxl1drDXHBmDtddtZAZU9NODAdUnyR+WWU5IekXB/pHpAd/Hg60zebitU+auP2KHN5b18qUsSbCAT+lNXYuPyuZle83cuWyFMpq7CjkIoU5kSPj655na/hoQyeLplsYl23g1svSeP6DVq48SxqPghhmUm4k767v5NZLUvng624m50gL19JaB5edFsfzH7dz5enxVNQ7CYREJuUYjhvvk7P1iEBZnYNLF8XywmedXDbPxMEGKaRzYpae9zf385uz4/h8cy95ycPjpdHNJXPMvPR1H5dM0nCo7ZjxtcfBzUVqUh7q/F/NQP/XWHy8ifh4E/PnHWV97HYXd97zDoVTf8+rL9zMkkUT/+PleufdjaxdV8zenc9JzvP/Muuoq0Gtkz5gNXt2MPHU06netQ15VAJfP/swEdGxXPSXF9n21vMYE9KoWPP2yL9tL9tD+szFDDbXYErPp6/mAAAqvZHuij1YpixjoHbfCH6gdh/m2Ak4Gg+gTx2PazhUQK6NwN/fSDjgwdt69KAYb+tBlNGFBDrLUcTlE+iRJnRBpiXYVYEy8xRCPVUj+JCtHXlCIaHuSmQxeYT6JAdRpo0YFR/uP4wyZcrx+Su0CEodgc5yVDkLCHRJTlpYoSTQWYEqdSr+znIU8QUSXqZCUB2PlyMgiCGCXZUokosIdlWgiM0jZG1C9Euxz8fiBYUSwoHj8g+lFuLrlMoqU+vxtR1Cn7cIX+8RxHBwpH60mdPxth4kMKYIV6tUVrkmAldjKaYJZ+BoPCjRD4C9fj/msXOxN5ZjTB+LrV5qL6U+koHqPQQXnk9vVfFI/fRWFZMweQH9dQeJzi6k5/v2NRjprioh99Rz6Ti4+2hfOribnHmLaSvdRcK4Ig58+DK2tkbm/PoBOkp3odbqaT1wFN9Wupsxc5fQtH8HKROm0XZI6isRJhON+3Yw8ayLaNq/cwRva2kgZ+YpNOzdTvqkaTSXSSLgSJOJ+r3bmbr8Ehr2SXitRsPhvTsoXHA6tXu2kTVlBkcOFGM0mdDo9VTt3sbcCy6jes+OEXzl7u0ULT6Dih1byZs6k7rSklFGzE9vrX0+Nh20c/WiGLYcGhpJr21xs2hiJJsPDjG7IAKrI4hSIbBsppnKZjer783h7D8f5vInjnDhKRYGhoIsm2lmU9kgcwoj2Fk5RFSUmgidnO9KbFyzNJ7NB2wAaPRKNu+3suyUGL7ba2XOJBM7ywYR5HJMkUo2Fvdz7fIUNu3tR6NR4wuE2VTcyzkLE9m4u5d5U2Ioq7JRUmVld2k/mSl6guEw3+3pRqFUEAqLfLeri+WLUvl2ZydzJxrZUSI5oOZIFRt393LdeRkcrHXgHY6tPLY8s1IU7KqWnLUog4LNB4e4bIyRbXVHiYBtdV7OLNRxqN3HhFQ1uxokBjpKL2NzrZur5pvYWuMawW+tcXHWJAObywaZXRjJzgqprk0RCkoqB7nkjGQ2FfeO4DcV93L+2QG+3dHBKdPj2bavWyp/lBqNTcav7t1ERoqRlr03EBmhBu3oYXy/2P9u6+rzjvTn7/uPGA6yaW8/Zy+IZ+OePuZOtrDjwABGg5wInYJv9/ThD4R5e207v7kkndw0LV/v7MPhDvHd3n7mTDaxs8yGXICoCCXf7bVyzdlJbN5vRSmI+ANhNh+wsWxuNJv225g7IYqD9U5sjiCmCMVx410pQCAUZnPpIMtmW/iuxMbsXC07q46Or01ldq5eHENZkwePXxqPWyudnFVkZFOFg1mpcnbVD48vnZzN1S4uL/xpRbTwCwN9gv2rDPT/ZN9sPMhNv/0HixdO4MLzZqLXq9Hr1BgMWswmAxbLiWK/n4qBnjHndjQaFf944Vby8lJH0k+w/1IGun3Qjc8jrfC/Fxc2HjrAuyvuYcENv2PSmRfid0tirMaWTrQ/EAt6BgfwChH4jhEXBr1uyclq7UIdaSHkHxaTqbS01zeiNJgIuoeQq6V6DPk9uAOKE8R/glKDvacbudZI2OdAUEq7EH63E5naQNhrl4Ryw2K4sKAC35B0TNyw+A9ACPtGxSu1kiBQdkz+oggEvRL+GHGhIAgISvVRvNeBoNISCokn4EM+NwICKI7B+5zI1DrpuLrA8Xgh5Jd2g4/BK/EiDIv5RL8XmcZAyD2IKtJyXP18L45Uy/wj9fm9+C/osmFKSDxO/Bd02rAkJ+F32lFoj4r/lHojMp/9BPGfb8iKOT72uPYNeN2YYix4BvtPEI+G3DaUGi3fPv4H/C4Hi+/5OwqVmkiTGZetH93JxH92G6phMavoc6ONjMJl7UdnOoo3GAxHxX92G+phfMjrRm88Khb0e9xolHLUWh1Oaz8RlhhcgzY0BgNahYDPI+GHBvqIMEfjG8ZrdDqGBvoxRsfgtNmwmCK5JD/t385AN7wxEXOE4gSxoE4pHXMXG6XE6ggSoZXmKadfPA6/tXyIu15vZXymnjNnmEi0qAiFRGKilBjNGrRq+QniQplGjl6rGBEXDtgDROrlyFRqHK7vxUY+Ys0qPAEFCMJx4qSBQR9Go44Lb99Jd7+XV/48lfgYrSQu9EtM57Hiwt4uK5GGYXHeMWIms9p7vJhpuDw9tf1H39cbwmRQ0FndQ4xBjtsvfWN1KoE+Z5g4iwqrK0SERjaMD2PSy+nziMREKnD5JLxeLdDnCJE4Nm5ETAng9ISIG5M0qhjR5tcRF61lwOYl0iA5DOu3tHHrw8XcdUsRv795ylHG+WQO9C8M9A/S/ncx0EN2NxF65XH9Jxz0HyfGHRj0E2lQQDhM/6Cfh1+uo7TGzidPT8FsVEl4nYI+m59Ys5oBu59IvQJC4ePEfDEmJU67TxqPGtlRcbA9gEEtA4ETxcTOwFH8sPi4v8d1TP8PYxqeTyzyEC7fsFhQLaNvKEisUUl/l+OE8dXT4aTw0e6fdH6Ur1ix4qfK63+FPfzwwytW3H/h6A+Ff+3ixuyseK6/eiHF++tZs24fX31TxurP9vDK6xv5y2OfcPedy09URJ94nPXJf+9k6TIll1+6kI6Ofq689knu+v0FEgstG8XTFVJPTAM8o89vo5r2JH58n2/0TEYTivhOIirxnUSIWFNRwbqXnqZq51Zcg1ZeueMmaot3ERmbQFRCCu1VZex87x9kT5/HV0/eh9Zo4tBnb9J2YAcKlYbNf/8jCUWnUvzCPfiGbAw0lFPz5RvEj5/FgVfuR22MoeW79xio3oNcpaZx7UoisopoXfMoIbcdd0cNfbs/QpUykd41f0IZlYCj7Au8rWUIChWO/atQxo/Ftf15RK+DUF8DvpqvkMePw7PlCWQRcQRqvybUVYGgUOPb+w8UyUX4il8Gn4PwwBFCrXuRRWfh3vz4MH6DhFeqce16EVXqtJH8g7ZWfOWfo0ycgOO7vyGPiMdbvZ6QrQXEMM4dL6JKm4Zj+0pE7xAhawveH+B9hzcS7JDK79n9MsqUqbh3vQhhP6GeWryVa4/D+49sxd+6H0GuGsnfvu15wh47/p46nGWfo06ZyMC6P6M0p+Ao/Xykfvq/fRZd1kxsu97Bb+vA01nDwJ7VGDKn0PLhvWhjUunavorBur3IlCoaPvor8ZMXUvH6ffidg9ibKmj65i0sBTOpXf0USm0E9RveoadiNwqVmpJX7yd1+qnsWvlHfA4b/fXlVK95nZQpc/j6weuJTEyjYs0btJdK/WH/u89x8LO3GepuI+eUpVib6yld/U/Si+by2d3XEJWUzoHVr9O8fwcKlYr1f/sDY+adxto//w7PoJXO6oNUb1xL8thJvP/7qzAnp1O86nWO7N2OWqfnkz/dTsH801n90G24Bq20VZax9+O3yCqaxWu/vZzolHR2vP9PWitLEQSB9x64nQkLz+Dte3+D02alp7GeL19+mnFz5vP0DZcQl5rBt2++QuOhAwiCwMt/+C1Tl5zJi3fcjN/roWzbFlasWPHwvzaCf7w9/PDDK1p7vczMj+DsFYfJStSw8otuviuzE6GRcf3KZs6eHsV1zzbR7wiyv97Fu5v7mXUM/tOdVjLiNQTDIs9/3k1Fk5tX1vXw4eZ+nl7Vzu5KO6dNN7PsrnKyknQ893E7pYcdiCJc93AVy+fHcvVDlfQP+tlXOcSTbzWyeGYMS3+9l+wUPe9+2c7nmzrRquVcc18JyxclcsXd+/H4QsSYNeyvGODvb9by5ZYOxqRH8tIH9azf0o5Go+CqP+zivCWp3P5ICS1dbvaWW3ni9TqWzI7jjJt2kpum5Zn3W9hYPIBGLR8pz13P19PS52d/vYtnPu/m1ImRXLmylWSTghe3DrGp1oNGKeNX7/ezbJKeG97sZcARpqTJx7MbB1mYr+Wuj/ox6eW8sNHGpioXGpWMm1/v5py50VzzWD399iD7ap38/aMOlsxLYOnNu8hKNfDMO/V8u6sHjVrB46/VMHdqPJfevpXDjXaefLWClW9V8ek/l3HF+QXHh2soI0dvZMVJ0kchYgZCo4jZkY5MHc1OJhYcTex3MgGgRSkx8YFAQCIKvseF+0f5wZM4v+JJmKLR0kcjt35sHicrizj6t1I8STrhE8sijpL2P6U/+Fw543ONnHHTTrJTDTz9dj0bi3vRqORc+2AZyxcmcOV9pfTb/Owpt3Htg4cwG1UMDPopKoji2XebKKsdIhyG6/5UyfIFsVz9QAX9tgAHqu08+XYzi2dYOPO2UrJSdLz1ZRfrdvajUcu4/pFazpkXzdV/qcHrC7Oz3M5TH7axeKppZLy/sb6b9XusaNUybnisjnPmWLj1uSN0DgTYf9jF0592sWiykbMfqmVMgpqV6/vYVO5Ao5Rx08utLJtq5MEPu2juC1LS5OXZb6wsLNBxwctdDLjEn3R+/IWB/oGNxkBbrU72lTTQ1WOns8tGT+8g550z/bjwjX/FXnj5a7bvqmb1e3ee+PAnjIF++tlPKd5bw+oPHzgu/Tj7L2Wg9x84xM7PPqR611Z8bhcZ4ydzyX1/pe5wE6ZEiVGxdbeTlDee0h07ic+fOHKBhSEmgZ7ag2jTJjFwpBJ9TAIArr4uzJljady/h6jMCXit0nmTGnM8jft2YkifiKfz+As7ghFpeNrKkUfE4GuvIOSxQyiIu7sBmcaIPDoHVbIkfvQOdqKwZBHqrUEWnU3Y2Y/o7CFsSETm6kcWm0/Y2oSgj0b0uwi17iZsayLce1iaYOUKkKsQFGoEuYqIZY8TGmhCboghLIYRXQMoojMJdFejiM1BdPYjyGTI9BaCffUo4wsI9jciM0QTComIrv7j8IGhPmQiCHoLof56FHEFhKyNyCJikSEQcvYdn79rAJkAgj56JH/sLSgjpWOxQs5elDHZ+DurUCflEXZK5wErDDH4umvRJBcic7SiNEqxp0G7dAGKq6Wc+IIifINS/aui4nC2VJE8eRb2liq0ZokZ81g7MKaNxdV0EEv2BNwDUvvqLAkMNJSTNnk61oZK9LGSENjV20ly4UQ8gwNojeYRhtjaXMemJ37HpAtuID5/EpEJUv9xdHeQMm4irWXFJI6dxFCPlL85IZGu6oOkTJxOd+0xF6b0dZCQN56WsmKSx00eudAnOjGZ9qoyMibPoKO6nKjhs3FliBijY3EM9A0z0C40imEG2mYlMjoG56AVtVaPVing97gxmMzY+3slBtrtQquUo9bpGLIOEBUTi8NmxWKM4NKxGf92BnrjI3lMztGzo9LB9Fw9NW0eKpo9hEMhDjS40anlpEQruXCuxFi2DgSYkn0U39rnB6WM2HQb4AAAIABJREFU1Bg1ew87mVcYSWm9i0NHnKzeYeWRmzOZkhvB9oN2ZoyNoLXHh6CWkxqvZW+lnXmTpQtW0hK1yJRKWjq9FI01sr1kgBkTTLT2ScdmpcXrKC4f4JSpMZRU2UhLjkQQBF5Z1cCu0j7uvqlAutCkR2LI0hL07DnYx/zp8ewtaSMtUdrBaOlyUzTWxLb9fUzLkdPSPXxBTJxmpDzF2zpIi5VinVt7fUzO1rN5Sxsz0rW02aT5MNmkYH+zj3ljDZQ2e0m1KIbrJ8ikNDU7m/1Mz9TSNjCMtyjYd8TLgkXJlNY5SYmT8m/r8TFzfhZb9/cyc7yFlu8vZInXsX6PnfYeD+98Vk+f1cvS+SksX5LKeWePEk74H2Cg+3q6qS0/SG93F31dnfR0d+HzeFh2yRUUzZk34vz+kIFurKslIiKS+KTjy+iw26na+CarP17Hpk278Pn8aLUa9Hoder0CuVxGbcXrR8MX/4sZ6PKaAfKzo+izSt/CGLOGmsN9jMs10dAyRJxF2vHr6rGTnRpBZd0geZlG+mwS3hIhUNvkYFyOkSOtTmIt0g5nY7ON8blRbNvfx8wJFpq73IhBH6kJevaW25hXZKGkahC3N8jND5ezYJqFF+4dx85SKzMmmGjp8iCG/aTE6dhbMci8Kebh8aiBYIiWLh9FBZFsL7Uxo9BIc6sTgeHxUjXEvElRHKh1kBytRhCgtcd73Hhv6/IgitIFKHtrHMybYGR/hY3UmOH+3+uT5p+KIaYmK2gdHi8pFhX76l3MLTBQWmElZdhBabUGmJSmYfsBGxe+Zf3fe4zdz8EEQRDFwHfHpZ197oP09trIy00lMdFCZKSOF19ey2mLi3jisRsxm0dZsf/AId69p4oLL32Ej967hzmzx46C/xHX455sRTzsWKdmX8czT97A+efOGk4fJdRddpJ4IJn6JHmPcoGPMPpJHidzoEdjlQc8nlGxPQ4Xg329DHS243IM0VJdxd4NX9LT1krahKmkT5yKyzbAwutuZd3Tf2bMsmtoPyTFmCZPmE7ZJ6+Tf/HvqV7zGjH5UwDoqzlAwfIbObDqFeKnLR2JqTXlTKF103uY511H384P0aeOB8DVWo4s9ywce95CP/4c/J2SaEyVOI7Bio3I4sfi37USISJBOiM56EGIKUDsOojoGwKZApk5GyFlBmLLTuTp8wjWrEH02CAchJAPVAZAQBaThzjQgOi1IZgyIRxEMeFyQk3bEKJSIRwg3F2JONSOPLYAec4Swn2HUWp1yGPG4Kteh3bKlXgrv0ARl4dKoybQWYl+0vk49rw5Un6ZUoE6sQBH2Rqi5lzHUMknGNInACLe9kpM0y+mf+s/iSo6n2BfPeGgD33aRAaKPyZ+8S307foQS24RYjiEo7mchFOuoO2rF0hbfBX2Bqk+jdlTaN/yPlnLb6dv7xoiUyRRoLWulKyl11Oz+ikKzr6Ovhophjgmfyp1X73NhMvvovGbt4nNkz72PVUlFF5wM9WfvszYMy46oX1Pu/1B9rz3EikTpgHQdmgfM6/8NcVvPUfR8stoOrAHgIwpMzm07iOW3n7/SP8q+/pzvn7+Uc6771Gqt33LKVfeQkOJFO+cXTSL/Ws/4tTrb2PzG8+TMXk6AM1le1lyw218/tQKFl79K+r37wIgf8YcvnvzZS744wo2/HMl2VOki3V6j9Sy8LJrWfXoQ5x+3a+p3SvhT7vsCmRyOYN9vbTXH8Y5aGPWqYswGE+83EirHH2VqlGcOKY1cjnTYvT/dge6+G/ZPPdVP49ensBTa/uoaPHQ3OcnUitjdq6ePXVu+h1BLAYF5xRFsLTIyMpj8LNz9QgKgZ3VLv6wPJZ73+3kjMmR3PFGO+fNMnH9abE890U3j12bwlOfdjG7IAKFSs62iiHuujCRu19r5XfnxbO93IGgknPKRCPPrO7giV9l8sQHbcyfZiYUhh0HB7n7qjT+uLKBOy5LZX/tEG5vmFc/a8eoV7Dm6Yk8/lYz84rMhEXYWWbj7mszuOvpw9y+xMy2Ssn5mjcukmfXdPH4dam8srqZsYnSHLmrwcOdp5u475N+fjNFxY4mydGak6HihV1uHpqhZOV+HzOSpLYq7ghy21QNL5UHuGS8mp3NElsxJ13JC3s8PHppHE9vtDMrS3J0dh/xcueSKB74xsFtZ8ezfaQ8Eby/z8GN5ybxyGtNZKfqaOv28k3xAMEgmIxK/nBtDk53CLlMYP60aGLioog2aY5rS7laP2oby1WjC+AF9SiXb41y94CUiY6Kqg6WnPcChQWJJCVEkRAfSWJiDKFQmJdf24Jer+bOW0/jwnOnolQq6O0b4oPVxbz9wS76+h34fEH0ejWzZ+QwsTCVnXvq2LKjhgVzcrjo3MksO70Qg0GN2+3H5fazp7iWC697F3/3Y0dZ6dHOPAbCvtHPPR4tHOKkIRInOSNZDI7OQo0WUhEOjp73Jxs6OW2GmcffaWHuRKnedxwc5I+XJPPHlxq54+JktpVJ7zZvnIFnP+nk8ZszeOLDduYUSv5IVb2DG06P5e43Wvnd8gS2V0rM/bw8Hc+u7eWxq5N46rMeZhcYEANBdh1284ezY7j3/S4mpmv588c9XDAjkluWWKTxe1kCT33Zx+xcHQpEttW4ufOsaO5d1cPtp5vZXutGJsCcXB3PbbDy6CVx/H1dP3NztYTCIrvrPNy51MK9q3u5fYmZ/UdcuP0wL1fLym9t/O2iGP7+tZU5GWrCInxX4+bUfC0vbLZz/wI9lT2S/zAnU80LO5w8sjSS13c4yI+R/J49bQHumKXjge9c3DJJxa42CT8rRcHLJT7un65k0luuX0SE/0kTRZHde6rYv+dFMjISRtJ/fcvZ3P/gG4ydcAPPPPUrLr5o/qiXm/h8fv708Lu8/d53vLTyt6M7zz+xPXDPRdxy60t0dln5zS1Lkf3MtYR+n4/2Iw201NXSWFPFkcpy6irLCYdCxKWmoYs0Ep+azhX3ruBwfTM6o3QMXNOg9f9ZmUWPDX/xy8jiClFmSEcMhvpqEZKnE3J0Iy+8iHDzDsID9TBQB+EQ4b5qBE0U8pSZoI9BtLcjM2UROrIBfA6EyCRkCZOQJUwg1LgFQS5dWCLIlSBXgt+BLCr15Nt7v9j/1ULBIN+89AQ12zdy/QvvEZuWSfW2b/8jv23t7uTIwRJKvllLR8NhZDI5yTm5aHR63lxxD4UzZjPv7POYeupi1NpRdo1+plbf5ePXp0XjC4S4fqGFez/o4qbFCfz5416eXj9AQDz5ln4wJFLV6mFD6RBLJkZQmPYjTy/6/2BXn5XIw682svLDVun4vZ+5hcMijd1eDjW66bIFWLPHxqFmD++s60KjklHb4iLGpGJmoZEXHprCPc9UMX28ma37Rglp+A9ZRVUHi5Y/z7OPXsClFxQdfTC8G3rrLYtYv6Gcvz+/gXv+9AnjCpLYvbeBc5ZO4qlHLmbBvDwEQUFdfTe7iusoPdTC+edM5e1XbiIq4vj5z2DQYDBoqKzpZu6MDLzeIFrtSbZHf7H/0cJhkcpWL9+VO7l2oYkx8T+98O5k1tDjZ3utmy1VLtptQXxBqOjw0zUY5NJ3bSQaZUxIUjI5+efTtr8w0D+wHzLQoihyxVWPsmdvNU8+dhPnnTv3OEe5uLiaG295mqSkaO64/XxOXThZ2j4SQxw8eISrrnuS7KxE/vHibcTGRv0P8VQ/HQMNUN/QyVXXP4NBr+GNV39PSkrM8dj/xwy0ta+XlQ8/QNm+YnraW4lPSSVtTB6Z+WPJGjeeqIxszHEJJyxKGnsdWDukw+ej4pNoLttL9vS5lOzaizFBKs9QdzuxueOp3rmD6DETcQ9IIQE6SwJ9tQeQJUzC0VKFxiJtVXoHOohIG0vrvm3oUscSsEvKZKUxlq7yvaiSxhPoa0AeMRyi4OjFXrOdUNN2IIygNiJojQj6OMIBL/K0uQhiEEFrQRRFwt2HEJQ6kEuMtOgdZkUUOrC3IJiyEIc6ELTSwkAM+RCMyYgDdQimTESvdBIBSj3Bsrcg5EeeMR95wkRUOh1hZy9ySxbB7koUsbmEXQNotGrkegv+7prjyq9QyAk6elDF5uBrP4Q6oQBZYBBEUETG4G2vQps2EV93HdqYJAQEAoPdaBJzcTWVokstRO63IQAqYxyOlkNEZhUR7D+CxpI4XJ+dRKQWMFi3n4TCaXit0mkAGnM8tvoyLPnT8XUfRh/9fQhNB6bMcfRWFpM6aRqufqm9DNEJ9FQfIGfmXHoPHw2Z+L59rbUlJI2bzFCPFDIRGZdE26F9FMycR0f1IUyJUn+wdbaROWESLtsAqx68DYVaw0UrnkYXGcVQbxfG2ATaqg5iHsZbO9tIGTuR+r07yJg0ncHhkIyYpGQaS/cyZsZcWisPYk4a7m89HaSNnUDtnu1kT5mBtUsSOSWlpFJ3YC/5M+fyyd//yp4vP2X+RVcydtp00vLHYrREj/Rrmc9D8bdfsf2Lz2iqqeT5b7ZjtET/LBnoDfdnMiVLy5ZKJ7Py9PzujQ62Vbu4/9wY4k0KTh1n4ECjh7QYFYc7fdz9fjdRejmnFOi55bRoegaDIBMIBEWuf7GVRLOSGxZZKMrRIyjlNPf6KcrWsaXcwax8A239fmRKGckxanZVOVg4MZKSOhfpcWpkWiXNXT6K8gxsLh1kdqGRNnsQAYGUODU7D9k5daoU8pGRIt1Q2NTpIcGi4tL7KlAqBB64MZPUBB0p8Rp2lg1y6nQz+7Z2kDocMtHc46MoR8/mQ0NMjwrQ/n1IhlnB7gYvC/K0lByykRIltUmLLcTkJAWbKlxMS1TQ7pAcvuQIGcUdQRaP1VLaGSQtSpqvWwZDTE5UsGtQyfQMNe22IE5vmHeLHWw97KHfGcYSqSA/RcuYJA2WSAUXLk+lvtXN3Ekm2nokJjQlTsP+ej+nTI1hf6WN9CSJYW7ucDFz6olz9b+Tgf7L37fx7MtbcHv8JCdGkZJkIjXZREpKLEuXjGfm9OwRbElpE/VHelh2xkQMhmNZ8pMwPye5IKSnq4fb7v2CA4faeenJc1myIPe/loEO+wJs2m9jzgQjbT3fhwyp2V1qY/7kKEpqHaTHS3XV3O5iyhgDm0vtzC6MpK1XwidHyNhV7WDhhEhK6qXxAtDS4WZylo4tFQ5m5UnjSwwEidTJuWplK3KZwO1nRjM5UwehEC39AaZkatlS5WJWro62gQBCKEySRcnuOjcLCvQcaPKSFq1EFEVaB4JMydCwpdrFrDE62vt8IAokWxTsrvewIF/HgSYvqebh/t8fpKHHx/2fDHDjfCMpRhkZ0UompqgobvQxP1fLzsohjvQF+arGy4H2ABtvsdBkDTM9WqR9SPJhk40yitsCnJKuZH+Lj5RIKf9We5hJ8XI213u5foPvFxHhv9MefvjhFSseumrkb0EQOP+8uRSOy+De+1/no9VbMUbqyMhIkA6eT47hxuuX4nJ6eHblZ6z48zt0dPSxe3cVt9/5MisevIJH/nItBsP3k9LJFiw/hlU8SR7HiAst5giuufJUOjsHuO7m57jo/LlERRmOwZ4svvokmxLCKJOnYDwxjZOLCL+Pizuwawe/vWAZ44umc8Wd93LjA3/mvBtu4ZRl5zJ+5mxSsrIRVZpRGf26qhp2fvAaLeUHUOt0rF/5CIULz2DDc3/B73LQ31hL1YbVpE6Zy/53n0UTFU3j5k/przuIQqPj0AdPYxm/gPpPniTkc+PsqKNzzxdY8mfSuPY5lJGxWMvW426vQqbSMrD3Y9QpExna9RpiwEtwoBl37UYUhZcQ6ixFNfEKRHc/YsADfidi/2HwOwj31UDIh+joJNRfiyJ1DsGqj5HpYwm170McbEFQqAk1bEAeW0Cwbh2E/IjObsLWemRRaQTLP0BmiCPUVoxoa0amjybUdQhF5qkEK1YhDrYhiCH89ZtQJozHs/tlZJGJ+Bs2Izp7QRAY2vsOmozpI+UPDXbgrNyANnUS1k3PojQl4zq8DW97BTKllv7tr2PImU3fppcRBBmerloGD36NIauIji+fQG1JwVG7E8eRA8jUWto3/APT2Hk0f7mSkNeFq6Oe7uK1mPNmcPj9h4lIyqZt+yfYjhxCodFT+8kzxE9eSNM3b+O29jDYepjmLZ8SN342Ja/cjyk5k7qNH9NXW4ZSo+fAO0+RNec0tr/0MAGP+7j2PbDqFbSRURxct4qOylJUWh1bXn6MsaeczvqnH8LndtFdX82BtauIjI7h3btuIn/eYpbf/VdUwwxv3Z5t6E0W1jz+ID63i866avZ+/iG5M0/hoz/dQUx6Fvs+/4CW8hLUWh1rn3uECQvP4JPHHsA/jK/dtYWMCVN45/7bic/IYtenH9B4sASDMYoPH3uQql1bKdv0DXPOuwRtRARFCxcTaT4+ntSg15FZMI6swvHs++5bEjOySMnOOemtZqOdWqCQyfjnk3/7t4sIHd4QM3MN3PRKO2MS1NR1+YjUythY4eTtbYOYDXJe+nYAt0+kyxYkEBZZWBjBU2v7eHXjAN8ecrCp3MHzX/URCsPqP6Tzp1XduDxhmnv9vPp1H4smGrnx+WZykzS8+V0f9Z0+ZDKB+99s5ZxZZu58pQWnN0xFs4c3vupm8VQTNzxWR26KlrU7B9hcYkOvU3Dfiw0sPyWWO56uAwRKqu288UUnFyyK5+0vO5hRaOShlxtp7vQQbVJz78o6li+M5S+vNdE3GKCiyc1bG/tYNCmKG59tJD9eyZs7h9jb6EWvlvHQ5wMsm6jniQ2D9DjDVHYHebfUw8JsNXdvcJBilPFBpZ+SrhA6pcBfd3pZlq/m7m+cOP0ilT1B3i3zsjBLzZPbXMREyHlm4yBPfTuIWS/H6grz3aP57K5xMq8wAp1axuaDQ1x4egLXP1xNbrqe19d0sKfcjkGn4M21HcyZEs3tfzuEwxXk0GE7r3/azOVnZyKTHT+fyhSjkygy+eiLNkGhOTHxJITLKXMLuPt3i7njVwuYNiUdtVpB/ZFePl9XRk1dF1ddOnsEm5hgonBsMirVD789JxHLi6PHJBt0Mi48Zzw5mdFce+tqOjrtnD5/FOIHiaQYNf1HifROQnqd5KSRH5O3wxng6j9VMSZNzxtrOymusKPXKXj6w1YWTzVzx3MNOD0hyo+4+HRbL3PHG7nxyXrGpGh58+seiqsdGHUy7n2zjXNmmrnz1RacnjAVTW42HBhkeq6BG19okcbXpgG+PTjE45/30jcU4tO7MlixuhuXN0xjj49XN9lYVBjBTa9K4/2trTYaevzIBHhwdS/LpkTyh/e6cXpFajp8/4e984yvo7rW/n9mTm/qvViWLMm9925sWuglIQQCKTcJhCRA6EkoJgRSCJDQQ4upphkMmI675S7J3bLVe5dOL9PeD3Ms25F0E+4Fwn1/WZ+kPUujPXv23rPmmfU8i+c29LF0goufPN1KSaaVt3b62FAVwmUTuf31Ls6Z6ubGlztBh521Ee5Y1UV5QwybWeD7CxPZdjRCeWMUl03kjtW9nD3JxX3v95HilHBZRfa0yqS5JR7eFGR0qsSKiig7WxRcFoG71oY4u9TKX7aGaQ/qHOhSeWl/lMUFZq7/OExvhP+QCL9MGyoH+pipqspLL3/Gihc+oaKymvPPncul3z6FpadMGSiTeuRIMy+98hm1ta3c+9vvkZeXfvJJviIE+kS74Fv3cdmlS7j4whOIg/8mBHr9++9y742/4K5H/sbcU04dNge6MzA0EaO+J0wsLmNnsTsGZMKO1rcfly0Lh7C5E2iubx1S5swvO5GDPiRbXJYuEsLs9NBeV4fJmTSALIhmG50NTUiORLRoACEuM6fLEQIRkdi+11GOfmLkMyMgpo4CayJSxkSEhDwwGWOpRwOIFochVWdxghp/AOiAbOgs63IYJOOe6JKEaHGiR/1GjnTcX3CkoPtaUao/Rus5gnnid7AVTBtSxs5mtyKYrWgRL5L9eP8lkwRyGNHmHpDhM0sqAobMnBryYnImokb8WF1uBISTZOYkRyI2k0HSEi02lGA/ZlcSJqLHZf6iIcwODzF/L4kZmSeNf8zfi9WTgqQGMNuOyQgGsbgSiHh7SM5MR4n7m6x2It5e0rIziPi9mONB77H7S7gf5wmycWabg1B/D2np6YR9/VgcTnRdZ+eqFyl7+W9ccNu9jFmw7KT5pEajmG02Qt5+rM545chgEEdCIv7eblxxmTkAp8s5IDN3ov8xWbpjMnPH/BM8bvZt/IxX7ruTW194C2ei8YXBZTefVFZZ0zQObviU1x99iP6ebuac/g0u/MnPSMnM+loi0EcfHk2Sy0SnVyHNIw3ISNklnRc3e3m/3MeOmjDLJri4YIaH6aOcpCea6fQqhGMqKzf3c6g1ym++mYnHIZGeYKYvoOCySQgWyZCdcp0gkxfVEMySIWsVl8nr8yu47CKi3UIgrJLkPi6DFYoHXifKzPX6ZEOWTmCQzNbV9x1mYomLq7+VPyDL1XW4C5d9sGxWUtBHMC5L57QYMnPpHhNdjV5clrhsVkwnyS7S3Boi1S4SigOSDjN0h3VyM6z0hTVcFuEk/x6bnaMdMj9a0cny85K5eJqLroBGdmnqwPiAIZOXXpo60P8TZex6IxbSU2z0emO4HcYc8YcU0jKSBt3LLzsH+rGnN/LLX79JNGo8D2ZNL2Dq5JEsXTyWi86bPvTfnXySoZuHQaBRQ/T2hbjtt+/zzocHeeT353PRmUOrTX3dEWg9pgx5fzs7I6QnWejzybjism6+/qgxn0+QfQRw6Oqg9QLg98aM+eyVSfOYeGVjL3e+3Mo9l2ayeJyb9ATT8fmmqQQiOkku6YT1rqOrqiEbF5//fUHVkKUDAlFDNq7Tp5DmlgiGjOfjMVnGY/5Ok05Nl8w5D7RQcU8BoahGmlsi4DfUVY7JPqa5RFZv7+OprSEaelWWFFu5frELp0UgWVdOXl8hnTSnSGefPLC+grJOok2ktSfG3JdC/0Ggv0z7RwT6RBNFkUmTirjyu6dx+XeW0d3t5Y/3v8bKV9exZPFkEhNdpKR4WLJ4MheeP5eEhKE2qK8GgT7RKirrCAYjLJh/gmrIvwmBfv/1lYyfNoPzL/8eAOFh5OqCsaE3ocamFjRVRVVkvJ1teNIy6Kg5QldnN1WfvU37wXKsTg9bn7uftAnz2LfyIeRICF9rHXXrV5E+bib7Vj6ILSmDjh0f4Kvdi8nhpvadR7GNnEbH2mfQYmGiPU30VnwAaWPwb34S0ZNJ5OgG5I7DYHES3PM2puIz0P1tCO5sEAR0bzO6EkXrOoQuiug9Neh99WgmK9rRDxFSR6Me/QBdjaEHu1DbKxETRqBUvQOOZLT2PejeRnSLG/XIGoS0MahH1qArETRfM8qht1FrPkVXIpgmXY7eX2cg2WYb4cpXMedMJlKxEpQoerCDcNWnWLLH49t0Qv87qxGsTrxbX8BWMI3+rc+jq1Hk3mb8+z/GkTeRrk8fwZyYReDoFkKNe5GsLjrWP4Nr1Cw61z4Nqky4q4HuXWvwFE6hfvUDODLy6dz1Ab66vZjsburWPEbymHk0fPwMcshHsKOe5s1vk1I6g/0v/g539ggaN79Hz9FKLE43+177C5mTFxDqaMBksaApMqGeDhzJ6fhba7G5Ewj3dSOHApjtDvqaa0nNzqWvuR5RFNEUGX9XO67UDPoaq3F4EumoOcxHj9xL7a4tnHfz3YyeN1gxQJQk2qsP40hIJNDTRTQYwOJw0NVQS2JmDt1NdYiihKrI+DrbSMzIpL36iBFg93QRCQawO1101leTnJVLZ2PcX5bxdbWTWVjMu48/wNLLfkDQ108k6CchMRFBENBUle0fvsejN1xDVcVuLvn5L7n6nj8yfckyHC4jMPl8CLTwlSDQZ01zc9dr7Zw+2c0drxpI1dG2KKu2efnuoiQ2Hw7xq/PT2FYd4uXNXt7c7uXTfT7OnZ7An9/tYmyejZJsK+/s8rFonJtrn26iKMPKK5v7qKwN4bZL3PlSC6dPTeDOF1sIhg0k7LmPu1g4IYFrH62lMNvGynXdbDsUINFl5van6zljVjK3P11PWNaoagjy3LttLJqWyM//WMWoXAdvrutgc3kfiR4ztz9azRnzUvn1o0cJRFQO1gbZvt/L4unJ/OzegxSlmXllfQ/bDgdIcEnc+UITp09L5I+vt9IXVDnaEeP5Mj8LSx1c90oXBR6B1/dF2NEkk2ATufuzAKfkSdy7JUIwBjV9Gq8ciDE3z8Q9m0LkeCTDvznuvzbI6ROd/PK1HnKSTIzNsvDCVj8LS+xc91I7RZlWXtnQy7bDARKdEn96rZlTZqbw60ePEgyrHGkI8ew7LSyZlclP766gKN/FS+81UlbZQ6LbzCMv1TBrUip/+NsBgiGFo/V+3vqkkYmjU7jlD9vJy3Ky6sM6du3rYkRuIi7n4Be3z4NAI5qZMDabRfOKGVWYhtVqonJvM51dfiIRGUXVGDs6+5/Mtn8dgfb7I7ywchsXfe95JozJYtWKK5k6KRe0YYLcLxGBfnF1HSaTyFuftbD7YB92m8Tvnz7M7AmJ/OnvNQRDCtWNQV79qJWJxU5uf6SavAwbq9d1Un7Ih90q8uCL9cyfnMhvHq8hGFY40hgy5vOkBH7+wFGKcuy88kkH2/b7SLQL3PFcI6fPSuKOZ4wvM0eaw7yxvpvZY9xc+3idsV6OzWe7wJ2vtDKz2Mk5v63m/d1efrw0mSNtURaNc3Hts83GetzSR0V9GLdN5K7XOzh9kos7XusgGNWo7Yzx9w19LBzj5NoVbRSlW1i5tZ8d1SESHBJ3vdHJ6RNd3PlGJ6GoZqyXTV4WjnZw7QsdFKWbeXuXj/0tMbbVRDjQHOWsSS7ufLubSFSjqkPm+TIfqqZzwWPt7KiXKUqVWFpi5YKJNv66IcippVbuXxegL6JxtEflxT1R5o9yu0UAAAAgAElEQVQwccMHQUYmCLxxKMbOVoUEm8h9m0MszpN4aq/8he6P/yERDmWmpUO3600DP+bkl3D9DXP5xXW3cO+993DBN5ezY9vfMJvjQzocojycJM6QvkMv8mER6GHOPX50Kk89t45br1t2HPkaStoOQBrm3ObBaPPe/mGE2mNDt3sjEfr8flyJibQFDEmfrsDQG1xPcJi3eGfqwKuG2Z6ELwa2nGLsegfJ8ZLO9tRskvJLsDjcJBWMISm/FDAkgyx2Fwl5xSRk5yHIRh882XkERpSQlJ6GUjgGV+5oAKxWAVtuJj35JSSNLCJsiyNtWUWI/kYSRhXgl+djzTDy+UKNewjWVRJtrsSqB7AXzzH67M4jpvZhyy8mKrdjSikEINyVhDmnBDlQhylvIpozHjSlFhINNiLFutFiXvSGOrRQL5InE9fpv0Ju2YM1txjFbsJstWBOzUP0jsSVnIiYPQpLWhEWi5mopOJMSETJKMSdnkOUCDaHFXtGAWJfMcnpqQgjRpNYOA4BCDokUnIyUPJLSR1ZBCl20BQ8+aMxeWvIK8zF1DWJ9NIJ6LpOv9tMbmEO0ZKxFIweRZ/NuO/JI4uhayz5I9Ox9IwjuaAYgG4H5I9IxVc6huKxRSSYDKQ5vWQUsZZxFBSkkWjNwGQ9+aGcWDI1/lPG8cbCDJIcJsibOGiOyKnFrHnmCT57eQULL7yEmx56lISEYZAyoCTj2PlP+FpUEP85a8JAkyUezI7OOoaeGbKGkihCgfFzSaahIKJpGrs+ep8Hb7iK8dNnMm5ENvZ4IRWrIPDp22/w3AN/xJWQwA1338eyM88eMmVpnGeYLVoegvg4hEzWl2G5Dp2xGWYcmsyELBNjUo09RQiKOMIRxqSIjEvU+d50J/o0B4daojy6yY/e0c/4BJ3RNhldVgk5FGytPYx2qmSHfEywKZhEnSyvwmi7jLWhg7G2GCWajhABn1nGWt1KqVUmq7ubcaKxx2a0RSk1RzEdbGSMKUyh1/hCEhBimPfUU2qKkN7USrE/iqpB+tEgJYQRtx5hjBomKig8cyTCssQo4roDFCthPFVBigLGXphQ5aNQkVG21ZAXCZMVlwkbqWhE9rUzQlPxeGVGxoENd7/KSJOK7tMpsunkS0Y/fTYdvFEKbJCiyRQ7DP8UTWaUCyzdAVJNGnZJoMQUI+xUsXb7GW2JkdnVzTjBOE9mV5RCRUbccZQxepiiPmPd+XUZsfwQJeYwaQ0NjImjm2kNYVICIZSdlaT6fCS1xiu6+VRiFVGSwz1Yaw+R6jO+nMiHw/Q3DH5xE+2Dv1oKw5D1RJsRbM9IhxnnwHXn5NPjzeTGPx/muRc3422v4fTiuoE5P1Q6iTDMyyNAvy9GWUU3m3Z3s2lXF4drfcyelMKqv8xi6tgk8O8l4gd9mDoDwxUZGQoR1sPD+IaHfkY5gz7cXpUsjKqSbi+kiVHEpg4yiZAeNdZLJhFMdR2k61E8Xb1kycZ+6OnSyDPL2Np6GZ+oU2o1/k8oUcfe1ceYJMiWg4xPMJ5H2XKIMYlg6+xjXKJGqcW4Bj1Bw+H1MiZJIEcLMyHR8E8KBejrCXPGHUcYnWHmvkuTcQkqezQVW0cfo10a2RE/ExwKoqyQ6VUotSmYG7sZa5UpVoOg6vgsCuaGHkqtChn9XsaKCrquk9arUGJREOu6KTXLjIyq6Aj4TQpifQ/FFpmUnn58rTHePBxjpFug0Kyg13ZTIspkBWNsb9P4+IDMtqoQC7JEfjlB4FCfBnoMV5dCgaQSrfOSo8pkho05NAKdUKNCvqhj642Rrxrt9p4YeQJEWoeRF/xf2H9SOP7BBEHQj41JZWUlxcXFOOOfak8MoE80Xavn9DNuYNmyadx802Xxxs8ZQA8VFH/eAHqYdkWOsuTM33HGqRP59c3nG43DBtDDtJtPG9T0eQPoqiNV3HD+GSxfsZJREyYBnz+AbvcNfe7tq18nZeQYALqr91O85FwqVr9M3uwz6Ks7CEDSyLHUb1xN5vxLaN3+Pp4Rhr+v4RDZs8/iyEcvkTblVALNVQC4cktp3rKGlOnn0rfvU+xZhhxbuO0I1lEL8Ja/g3vcUqId1ei6Tvenj6KG+pE8GUZqRHIeoj0RORzENmoRscad2EqWovTUAaC6clHqN2MuPR35yCcG4bCvHq27Gl0OI9gTMOfNRLA4Ed0ZWDNLiFVvwDbuG0RrNmFKKcRiNRPrqsZRsojA3vdwlC5B7qrFbLVgTS3Af3AtCVPOJXB4HZb0UdidNsKtVSRNWEb3jlUkTTwNtb8edHDmlNC9+0My5n+TnoqPyBg9FXQdX+NBsmadReNnL5M95+x4eW6VxIIxNG5+h6LTLqdj1wckFxovML21Bxi54Byq3n+BsaddSHeNMf6po8Zy9LO3GX/uFbTu+pSUeGDdeWQ/o5edR8Wqv7Psip8g/AO6mugY+iGd5Dg5uJRjUda/9hJrnnqEifMXc9HPbyA1riNrNf1rRZD+O7MM80A/sWKaruvsWvcpL/zpXsxmMz+45XamL1oyEChsXLOap++9m9SMTH54463MWGgcc1qGTqn6vAG04LjoS0/h+Ovl6Vw0w83yt7r54aIEajqNtToxXeSVHUGuXuTh1V0BpuQZL0L7GsOsPRKlw6/y1KXJ7GmREVSViVlmXqkIc9UcJ6/tCTM524wgQEWLzLcm2Xlia5BLp9jZ02oE1uMyB/sjCVS2yHxrsp0ntgS5dKqdAx0qig6Tcsys3B3iqvkuXisPMTlTQtehsvXk81c2RHhgc5jxGRK5iRJXzbTz6s4gY1ON+723U+XCUjPP7IlxTq7OgR7j+TAuRWRVjcr3xkisqVUpTTLmwf5ejfNGSrxwWOacAhMHe43AZWyyyNt1Kj+ebuWtoyoT0gz/fV0aF5SYeP6wxnOVEb432cq4NBMTM028uj/K1XMdvLYvyuQsYy5UtilcMsPJE2UhLp1qZ0+rMf6Tss28W61wxRwPr+4MMCXPmFMVTTEuXZDIY5/18505HiobjT13yugEXt7Yx0/PTGPl5l6mFBp7v2I2MbX4BL5M3P4nAfSJNuuyzRysCZCbYWPhtBRyM+3kZdrJy7CTn+MmL8uB0358vp8YQHf3RdlS3s2m3V1s3tVNTVOAGROSmT81lQXT05gxIRmbdfD6/HcE0Eogxkvru5laZMQN5TVBLl2UwmPvtHHpgmQq64xAefJIO29u6uYHi5NZWdbPlJFG6kxFXZhvz03gsY97+c78RCrr4/4Fdl4v6+e/liSxcquXKQXGGO+rC3LRDA+Pf9bPpXPc7Gk0rmFSjplXtgW4+pQEXt3hZ0KuhY/2h3h6g4/5RVZykySuWeRhT3MMPaowOWeI9RWVqWhT+eZ4K0/ujPDtCVb2tCuIOoxLl3h1f5QfT7PxxsEokzJNaJrOng6Vi8dYeKo8yrfGWdjfoaDpMCFd4rWDMSamS/xqbRgBncvHW3CY4KLRFp7ZEyPHLfCnbVFMIvx0spmOoM4PJlpYdTDK2H9YXysOq5ydpXEwzhMdmySwukHn8lEC79erFHuMbfCgF87OgReqdR6v5j8ydl+V3XTTTZSVlfGNb3yDiy++mLO+MQmXa3BahiAIPPH4jcyc/WMuunAxRUXDCNH/m8xkkli54mdMX3A7Hredn111Gl/aE3YY625v4w8/+xEXX/2LgeD5i7TWvdsHNsuWyjIKZi+jp2YfyUXj6Tq0CwCLy0P73jJSZ5xD96Htx/t2aDvpkxfjr9uHO38cvtpKAEx2N8HmAyROPJVAXfmAf6CuHHP+DEL15dhzxxNpNvSh08+8gZ6dq3CWLMFf+TZqsA+5twnF247ctBst0E3k4IcgmRDMdoSEPNSuKuTqdejhfkRPFoI7Eym1GNu0ywmXPYY5ZzJy027UiA/NmUisdS/WklOQW/cBIFitRJv3Yi+YRbTJUNWIth5AdyYgWuyEGytwjz+VcOMew99uI1BXjqd0Hv7a3TjzJxJuPIiuxDA53HiP7iRtxll4q3fj9HjQ5Cg9h3eQPmkx3Ye2klQ8FV/dfqP8udND1/6tjFh4AR37t3Istahj3zZyZyylbW8Z+VNm035gJwBWt4eWyi2UnnoxnUf2o8aMjb6xfAtF85bRuGsz+uU/GhRA/zMLBwPs/vh93nniL2QVjuLWZ14mr3TM5zrH/9Y0TWP7Jx/yxuMPEw74ufzG21h69nkDgXMo4Ofh39zMgV07ue2Bh5k+f9FX2r8v0nbVhTl9gpNVu/w8u8lLbpKJURkWfjLPybqqMN+d7WLDkeMvxpWNMW5a6mbJXztZdyTC4U4FMzoJNpF11VEun+ZgQ40RpNhMAhtqYnxjjI111VHmFlgoq4/htgq4rIP9EQU2VEeP+4+0UNkSwxc18orXHo1w+Qwn66ujWAQLUUUfdP5dLQqTs02sqYpilQQunWhld7uKEv/UtblZ4fRCMxubFKYlSuzoMA4kWAW2tKp8c5REZbeGHMeitrZpnJorsaNTZ0qqzs4u44DHorOlTeMyGbY0Hw/stjSrzMyUeLYiwqICM74obG1WSLSJrK+X+e50nY11x4O4jXUxzprkGLjesvixRLvIvuYYgYjGhqrj3JINVWHOmeFh7YEg84rtlB0xjqWk2Plsn58rliSzfv/xrxdOj3XIAPp/axuenUNLl0xTe5jmjjBN7WF27utj1adtNHdEaGoP4bBJ5GQ4jMA6y4k/KLNjby8dPRFmT0phwfQ0HvzVZKaNS8Zi/t+/FH8ZFo5prNvjG/h93R4f58xMYsO+AHNKXWw5aIx1olOivCbMt2ZrrD8QHPBffyDI2dPcfLY/wLxSB1uqDOQ0ySmx/WiIb89NYP3B4/47qyOcPsHF2oNB5hbb2XLUuL/JdoG1h0NcPN3JS1v9NPcpuKwC84os/OnCJH7wQg+NvQpltVFQVJIcg9eXWdPYUC9zZomF9XUx5uSb2Nok4zYLuC0C6+tlvjPBysaGOGCow6YGmTNHmdlQLzM710Rlu0IwplPbp/LE7ggei0CKQ+S748zEVIHNzQpLRug8vz+GqsGsTJEMp0BBgsSbR6JcMgbKOzW0f1hfm9tUpiYI7Oo+tr4Eyjo0LiyQOOhlYD1u79JZkiGwveeLv9f/QaD/wU5EoFVV5cknn+TWW2/F7/djs1k588wlfPPiszj77KW43fFNRm8A4PwLbuO002by06sv+Foh0Mf6UlPbwSVXPkxeTgrP/u1akpKG2CS/YAS6t7OTFx9+gA9fe5nTv/Ndrrz5Nyd9qv6iEOheXwwlEief2exEvD3IpgSi/v4BcqESCWFxJdDV0oHFnTSI3BYVHMhBL1Kc3KZGQ0RipgHy3InkwkBPl0G2C/sQLcaYaXKYmGYZIOfpcTQjpojoER+CzY3qbUOPBdFCvUR7WxHtiQjuDMSUIgTVuGbJYkeP+BDtCSeRF0VdRrKdTBa0WM0GWTDsNfoY8SNY7FgsJnQ5gnQCWVCXIzhcVkSzHTXUj8mZhBLy4UxKAgG0aAiTw4Mc6MXkTMJlE0Ew+nOM/BcLenElGuTCY+S/qLeHxIyTyX9RXy+2hBRE2Y/lBHKn1Z1AuL+H1Kz0k8h/4f4eHEmpJNqlQakMQyHQ4YCP+u3r2fXxGg7v2Erx1Bmc+f2rGD1zDmZp8Ovhl4VAx6IRNr79Jm899Rh2l5uLfnINc844G0mScMQJgI1Hj/CrKy9h8twFXHP3faQOUTDl/xIC3fFwEV1+lTS3xHMbvfzh/V76ghpmCRaV2FlUbOObU51YTPFPqKh0BzXu+9hHslPklmUe9JhCIAZJdpGugEqqUyQk6+i6Qc7rDmqkuSR6Qxpuq4COTnAIf0SDbHSiv8cugiAQiOokOY77BwIKggAO88n+LsEgOdX2qvzq4wCaDg8tseKMkwIdJugJ66Q6RNo6IyeQkyDRKtAd1km2QDi+5dtN0BOBZCv0R3WOpROHZCPoDpgkUuwCIQW8UZ2VB2VePiRzwRgr1862kWg7mYzYq0CqQziZLKVJpJ8wPgCBqE5KuoNOv0qaSyQUJzs6LAI9iki6x0RvQMUdJ5MFRXOcDGqQyY6RQd0p9iHTif63CDSAMExRAtFkMb7i9cdobg/T1B6iuSOC3SYxc2IKYwo9SEOs639m/w4E2tsdxu2QBsh8x8ivaQ6BXr+C236cDJpo0k4i5wE4rQKdPoWMBDO9AQX3AHlUI9EuHCfnxf0dgjpAzjt2f4NRjTXlPtYdjrDucIgp+VaunOdh8Wg7Dk2lO2AQ9nqDKm6biB6WB+bbietLDcs4zcIAOa83rOG2CGiKdnz9BrWB+alpmrG+jpH5Aiob6mWeroiiaHD1dBtzciWyXCK+kIogCPSHNX7wfpiSZJEbZ1lJt+ggCCesLw2Ppg5aX6l2gc7+GE5zHKRQIMEi0BPR8Qgace4ldgl6Y5AgwtxP9P+QCL9MW758+V3HxkQURWbMmMEVV1xBfX097e1tjB1bzI4dlVx77V1s2LiN2tpGolF/vGDKs/ztyZux260MSwocLsgdihj4eXz/23ajL8lJLq68bAG7Kmq57ua/M3tmCbm5qSe7isOIlEtFg5o6IkP3L6qq9HV38dz99/H766+haMw47nziWaYtPX3QxhyKDf2iEZaHHr9AdOj/WburjL1vPUNz+SZMFhvrH7iFnBlL2fbwLUT9ffRU7+XQO8+QOWkee178A2a7i7pPXqD7QBmSxcbeZ28nadwCjr58F0qgn0DDAVrWvYijYBr1L9+KJTmH7m1vEKjZhWi20l32KraccXSs+SNq2EekrYq+Ha9jyZ1Mz3t3Y0rMIrDnHaJNFeiimeCmR7GOmEWg7EkEUTJKdntbMRefQqTsMSRPJvLhD1Db9iGYbAb6nDeD0JZH0aN+1O5qYoc/wJw1Ad/Hv0PyZBE58B5KdzUA/Wv/im3kLPo+fQgt4kPpa6Z/+0ocI6bStuoOzEnZeMvfJtJyCEEUaV79BxJGz6fx7fvQo0ECDftp2/AyCSUzOPzMDdhScumu+JjOirVIFiv7V9xB+uQl7Hv2V2ixCD1Hyqle8xzp4+dSdv/VuLPyOfzeCtr2bEGyWNn2yG3kzVpGxYsP4GtrpLNqD3tXPUXulPl8cOcPSckrovz1p2nYtQmT1cZHv7+RUfNPwyKCyXJyDrTNbDxAgt5+Kj95jw+e+DNvP/BbYpEwM047iyvuuJeFF32b1LgusyQO3h9NQ7R9XjsxVSPk97P62Sf587VXE/T5uOLm33DFTb9iRMnoAZ6BWZIIePu54VvncsnVv+B7N96G2WwZMhAfLj0k3TpM4K/VDNEWY/nvXvvSSYQzC2385O8dnDPFxf0f9HLOZBeBqE5PQGVUmpmXdwZ4fKOfF7b7eXtPiP6Qxq/f87K3VSYY1fGGdSqbYzy4McApo6xctKKXwhQTj5WF2NemoOpw9Zv9nD3Wxo9f76cnpHGoU+H+9YP911ZHsZlErn6jn7PH2fjxq/2EZNhWH+OhDX6Wlti48OluClNNvF4R4t2DUWwm4aTz94d1drQoPLMrzCPnunloS5gX98fY2aayq03FZhK47tMwZxaauH97lDo/VHbrPLVfYX62xPc/jVHoEXjmkMqmNg2bCW4uk1mWK3BjmUJfFPb06Dx1UGV+lsg9O2XMItyyPsJfd8tYTAJRReehM138dE2QnrDO7jaFh3dEWFJg5tuv+ShIknhsW5i1NTHsZoE/bggwv9DKj1/tpyeosatJ5i8bA5wy1sFFj7VTmGbm0bVePjsUxmYWuO2NbpaNd/LDp9roDqjsrI3w/IY+5o52cv59tRRlWnnk/S4+2+undISTZPfgFzfBPHiODtUGIAyhEgMgDEN0F0TjxdlpN5GVZqN0pJuZk1KZMjaJ9BTbIAm+f9mGAQiHJwYO0a4M46sM/Yz63QtNIMBfV7fzaYUXm0XkRw/Vcu4MDz94uJ5un8LOo0EeXN3B0nEuzv9TPUUZVh75sJvP9gWwWUQeXNPNnBInP3iimR6/ys6aMA+s6WbpOCcXPNBIYbqVRz7u5bP9QZxm+MnfO1g82sE3H2nlhS0+7n23l/KGKOdOcVLdIXPb2cms2RNk7aEwDjP85JUezhnv4Ecv9dAT1ChviPLQpsHrq7JVRgeueTfAWaUWrlrtpyekc7hb4YGtxvy85HUfI5NMPL4rzJYmBbMocM0HAXxRnZ+sCXKw29Bhjqk6P51h4/K3goxMlHjrsMy7R2UeK4/hjcLfzrRz49oIgSjs7tB4ojLGwjyJK94PU+ASePYf1tepeRIP7VVpCMDeXnimSmNehsCPt6iMcMLzNVDWBVZJ4PZKnSXp8HLD11DGThCEkcAVwBW6rg+OtP4PmSAI+ksvvcSpp55KWtrJxUdWv/0M1153F7NmTeaO26/l6NF6tm0rZ+u2MnbuPMxPr76A+/90jeH8NUSgT7TV7+/jxz97nBuvPY8brjvvn5MLPwcC7Y1GOXdcIbOXncaPbr2D9GwjpcUbGYw2f5EItK4a1ylIJtRYhJBsQo1FEeObuaYoSBYrvT1+JLN1YLMURAlNjhKIaAQaD2FNNghh0d52dM8IAvUVOPLGo/R3AGBKyKCvdg+OvIlE249g8hjkNsXXgeYZQbR5L5assaiBLqPdlIDSWYU5azxKVzWiyyCohfvaMKUUonYcREwtQQ8ZlcMkZxpa9xFMmeNQu2sQ4gVcCHVjSR+F3LYfU/potGA3ZouEyZ1GrO0Q1tyJyJ1HkdwZmCwSmr8Ta0YJkcY9WHPGovi7sNnNWBIyCTXvx1UwhVBLFZ7sXARBINLbjitvDL6a3bhGTMRhVrG4EgfGR7LYUOUoDqcVQQBNVZDMVpRoBHeCc9D4m6x2LKI8oCurqQomixUlGiYh0YUW9xclE0o0gtlmHxKBJtDDW3+6iyM7t1AyYx6Tln2DsfOWkJU+WJoL+EoQ6Ht/fCWCKHLpdTdRNHb8kP4Os5k/33Qtoihy/R8eHGh3DiFN90Ug0LriR3Rc/KUj0H++NBW3VeS8aW7K66Pkpxh9fGd7P8+UBXDbRO47P4l9LTH2t8oc7YhR3hTj3Al2rpzpJD9ZQo+pNPZpTM01s7E2xuwRZpr7VXR0chNMbG+UWVhoobxZJj9JAjQa+/RB/ogCOYkS2xtkFhYZ/iNSJUCgsVdlap6FjTVRZo+w0NgVRUAgJ0E66fx5Lg10gcZ+jak5JjbVy4R8MW5aF+X0QhO3zLZQ2a4xL8/EztowOW5jLjX7dSamimxt15iaAsc4StkOgd1dOrPSBfb2aOS6jNvRHNCZmCJS6RdYXhYjyyXww4lmZmRK7GzXWDbaTkW7Qr7HOH+jT2NKpomyVoVZ+Waa+42ALSdBZFenxvwi2wnjA419KtNHu9l4JMLsQitNxwq+JJnY0SyzaIyT3fURRqTEv4wEYVqRk/UHAkaBjG5jz83Pd1FRE2L2GBf76kLkphkvtK1+jQmFTrYe8DG91E1rdwysEtlpNnYf9jFnQgJ7qwPkpdsQrFaaOyJMLHFTtqePGeMSaemMkJFqPynP+Zh9XhLhv2rDIdByNEpju/HFLDvNyq4DXuZOTmLPoW5yMgz0vLnd6P/WHd1MG+Ompct4HmenWtl92M+sUXb21YbITTP63twVY0Khg827eplR4qQxPp55qWa2HgqwaLSD3dVBRqTHC5p0Rpmaa2b9wQBzS5w09Rj+uckmdtaEmT/aye7aECPi52/oijF1hI0Nh4LMKXYM+NtR+fmLnVQ0RhmbbeXcKU6WjHHgDypMGWFjY1WY2UU2mnqN+ZBt09heL7Ow2Ep5Y8xYjxF5yPWoRmRyPRI7mhUWFJipaFPISxDRZI0mv86UTBObGmRm5Zpo9mnouka2S+LH7wXRdDinxMySERICwsB83tyoMDNHoqFH4dm9Mj0RjcvGmJmfb6ayQyXTohkgj19jUrpEWavKJLc6aH3NyRQpb42S7TTWS0sAJiQLbOvUmejWaI+HFpk2qOyDqQkw79MvNgf6fxxAC4LgBr4FXAnMAwSgTNf1+f/tH37NTRAEfenZ57F94zqy80ZQVDqGkcUljCwpZcrY0eTk5vHM44/y7JOP8cjTf+f0s84m2QyKoiCK4kn6rkOatnno9qEC7uGC7S9CnUOy09jYxbcu/wOLFoznD7/7Xrx96AD6QGhwzuZQATFAXyTCQzf+nLScPC67/uaB9qGCZV9k6BcNb3joawnLQ7cHhkDDI8Og1aFhkPNdLz5EwYJz6DywA4D0cTM5/OFKxlx4DUfee5qU0mkA9FTtZsRpP6Dq9T9TcNoV9FYZOb7JpTOoX7+KEad9n8ZPVpBQZCgy9B4tJ3vxd2l872EyF16Kv9bIp7bnT6Zz80pyzryGjg0v4iowcsND7TWkzTqflg8eJX3eJQTqKgBwjZxC55ZXT/K32q14a3aTu/QK6lb/lZwl38FbXY7N4cIzcjwNn75AycW/pP7DZ0kcNRWbzUT34Z2UnP1f7H/lfkadeSW+2gp0VTWu972/M+W7N3Pw7acYe+r5JOYNfh92DyFx5RnioQiQYB/6IegagvAD4LSefJ7ytR+z4s5bOOPy73HuD6/C7jzOQfg8GsnWYR7GwyG/Q8nH5cRTSfZUlHPZheey61A1NpuNZGmYNR3r5t4/vsG+/Q288vwNx9uVIaqjxYYpuzxMJTU9NlgLV5NlTEWPf+kBdGm2lbY+4+E9rdCBIOikeUycOtrGe5UBSrOs/OXjPn6w0MP8EgcVVQF+NNfJr9d4uXaRm001UYSozJw8C49uD3PPMicPloWYk2dGUDU2Nyr8YqaNOzeEuXq6lbImBbOuMTXTxJMVUe6Yb+OR3VFmZZtQYho72lV+OsnM77bH+NEEMztbZKKqwKwMA7W6baqJJw6qTHGoqDrs7oMfFsKfD8MVI2Fzp4Smw+REkdeaVK4eJbGiViDDKvJBRwxdh1TDnIgAACAASURBVN+McfJiY4R5iS6OxF/ui51m1naHuCDLzcaeELk2Y97VhGROTXPyXoefxSn2Af8Sp5nPusN8f6SZP1aF8JgFTkmzcNivcl62lY87g5yWKbGn33gmT0oUeKNZ5YbRsKJOZ0qScVsr+nSuGqtz/364cpTAzvjUmZEK77fBj0ZLPHlIY3qq4b+rW+enk03ct0vlv8ZJbGs3AvF5+Wae2ivzmzlWHq2IMSvLmPNHvRrfnWBl+aYIV02xUNZi7JcLCy08tjPC8sUO/rI9zOxcMyYzlDUqXD/XwW8+DXLNLDubG2WcdolpeRYe2RLkd2e6eWBDkLkFFibkWcnwDIFkDyqiAoJlmABaGgbFHuIcw9mWqhChmDEOZVUhbjg7ldtWdvDzpQlsiuePLyy189eP+/jdeUk88ImXuUVGYF1WE+GG0xK5/4NevjPDyaZq47m2YJSNh9f7uOc0Fw/GrxegrD7GLxc5uf19L1fPsrO53pgP8wvMvLA7zI3zHDy4NcycPKP/W5sUrp1t4861IWM8G+L+I8w8VxHhtgXH/Q91KTyyPcI3x1rpjWhcP9vB5kbDf16eadD9AtjTEuP7Ey3cvTnCT6ZYKWtRUGMqszMlnjqg8OsZZh7fqzAjUwRZZXunzk/GStxXofLD0RLbOzRMmsqEJIEV1To3jRd4+ojOtBQBXdFZ1wnrO2F2CvywCMp7QdYEpiXDi/U615UK/L1OZ4JHYluPxrYenb/NMPHoUZVL8iXKewQUHSYmiqxqVvivQjOvNqqMchnjc8ivcEG2lecbIyxJcVAVMGKI0S4zH3WG+VaOk0+7IgPrsTooc0a6g9dbguz0frGVCD8XLCMYdrogCC8D7cBTGMHzCmDM//Xg+Zg9tvItttZ3cu/jz7D07HMRBIF177/H9Vf9iGmlhbzw3NNYbTbuvfM3A39jMpn+efD8NbP8/DTeffN2Vry4lu07qr7Qc3/rZ9ezZsUzhAJfjbTWf+z/P/vkped46d47ueXxZ7nkFzecFDz/O+2Pv13OtTfdim2YPM8T7Rc/PYt1G/ezZ2/dV9Czr8bOm5FA+Z9KmFvq4JQJLiRJoKo1yv0f9PFeZZCnN3gxS7Bym59jAI0kCohD5NV+nc1pEjg3y0JPTGO/93MUuvoXbKRTosqvElT+w0H6j/3PbGuTzBM7oywbaeaW+Q4s/4Mc8S/D9nvh/Bz4VzieU5MEggrs6/88dTC+PvYvIdCCIIzDQJovwxA/jQKrgbeBV4DFuq5v/BL7+ZWZIAh6VWDom5lqEdA0jbaWFo4eqSIaiQwg0P+yfY0Q6GP22hubueueVyjf9iA25xAFU/j8CHRT9VFu+eY5PL1pFw6XQVb8uiPQkahCb81+nOlGykmwswVH7hi6DmwjpXQq4Z52AOwpmXQcqiC5dAbe+gM4Uo2CAKHuVizpxfQf2UlC4SQifUbKh+BIwV+/B8+o6QSbD2FNyjLO39WGI7sEf81uXAUTicVTRCwJ6QQa9uEumkao5TCWJCOlJNbXhiNnzEn+NrsFa1I6vto9JJTMINB4EFtKNjablXB3C56CcfQe3k7iqClEetuxWUUcqVn0VJWTNm42/bX7ScrJM0gbnS0kF42nY99W0kZPwyJEsCecXHIavjoE+uXfLycxLZ1v//TnQ/r+OxDof0Sfgf8WgQa4709vUlPbztOPx9O7/o8j0M1PjqGsKsSS8S5214aPf2JuCjA538Kq3QGSnRI1nTJLxjjIFmW2NsRYPMpKeZNMfrKE5ovQ4NWYmmUy2Pp5Zpq9GmpMJdstsr1FYWG+iYp2lfwEESWm0uTTmZwusqlZZVaWREtAR4mqZLsEdrZrzMsW2dOtkWHSEAQhnjIhUNauMz1doK4tho7xSbeiD2alwAEvOEQTAgJtEZ3RboHyPp10s42eOI2/M6LxdH2E3493UuU1kRTP++2NqeTbTRwJyox0mOiP8zaSzBK1IZkxLhMNYYWUOJLaE1MZYTfRpoRIs4jceSjI9aPsFDhNVPlVFmcoVPl1Mm3G7WuP6JS6BQ77ZSYlCXTEt88MGxwNa8xIFdjfDznxj4YtIZiSIbG1Q2damkBb/JN3lgP2egXmZIns7dEHUkraYwIT0yQ2txgqIC0B43rzk0V2tGosyJOo7FDJi6eUtEcFJmVIbGxQmJVrosWnIZkFchMktjXJLCowU96mMCJBQrSbaOhTmZpjZn1NjDkFFpr7VbJSzAMV606aV18xAq2oOvVdxnMxN8VM2ZEQS8Y6KT8aJC+ektTQrTCtwMq6fQHmFNloPiElZmtNhEUjzZQ3xchPNvwbexWm5lnYdDDIjHzjegFyEyW21sdYlCdS3qowItG4roZ+lclp4sD8b/HFU3Q8IjubZeaPMFPepjIiwbheY71IA/6/3xQiGNO5e7GDbS0Ki0aYqWhTyU+MpwD1K0zKMJ10vwDSzSo72jQW5EpUdmrkewRiIYXmAExMFdjSpjEjQ6Q1oKPEVLIcAru6dOZmCOzr1clxCshhmZawwPhE2NYFU1OgLQytPp079sEtY2BJhrG+0q2AINAahrEe2NELkxOhPiACApV9Gp91ajw42cRhv06CZAIEOqI6JS6Byn6NEXYzPfEwJsUqcNivMsEjsa9fIDU+T7pjGgUOiUN+mRF2M33xl9Nks0h1UKbIbuWmQ91fLYlQEIRdwN3AXGAv8Dvg+7quv7x8+fJm4Fbg73fddVfDF9Wpf6ctX778rp//6s4hjzkkAUEQ8CQkUFBYyKgSQxd4mBhhaNMbhzkwRND+eXOdhyMRDuV/Allw7Jg8Nmzax3MrPmXWzLGkpg6uMNglFwxqiw5TRTCiKDz+m5uZe+bZTJ63cKB9KMJgdBgiRnQYZEbRhm6PDeGvqEP7ysOcO+TtZfdzv0MJB+lvqKJ23Zukj5tDxdO3484qoGHDKnqr92CyOmjctJqk4ikcXvkHlGgYf/MRWjavIrF0FlUvLceRPoL2bavx1e9DMNto+uAxkscvpGH1Q2jRMKG2arxHtuPMG0fDqvuwpebRs3sNwaYDSDYXLR89TuLYhTSt+QtaNEy4vYbePR/jLpx2kn+4qwFRlKh/71FSJiyi7q0HUKMhor1tNG98jdSxczmw4g6cGQW0bHmLYGs1omTm4GsPkT39FPa++Hs0NUZ/3SFq171J1qR5bH/817izRxJoqSF5RMmgcbIO8WCzDgM32IZptwyTk3xie3tDHR31dcxaeuqQvp+vSt/Q/0/6HO0es8Rvf3Mb8xcuZsmy432yi8OsadWIYD76pAKPx86SRfGiLENVR1OHEfkfppLaQDn4E0zXNO7+664vnUQ4t9TFr1e2c+70BG5Y0UIworGvMcK6/QGmj7Rz/cudnDLWyYbDIbbXRPBY4PY1Xs6ZYOem1f0EozqH2mM8XxHllEIL17wboDhF4oXKKLV9KoIAv90Y5hvFFn69LkRQhro+jef3yyzON3HdZxGKkkReORhjd7uK0yzw+50xTi8wcddWI+Vif6/O6zUqC7IlbtmmUOgR+bRJY1uPoarxUBWckgF/OAQRFaoD8H6bxoxkkd8fVsi2SaztkjkaUMlzSOzok9njVWgOKwRVndaIwta+CGPcVl5s9pFplSjri1AXkrFJIqvbA0zyWHi9LUBU02mJKJT1RRjrtvJhZ5g9XhVdB58CNknglaYIC9MEHqlWCKtQG9T5oF1lerLEHw+rjHAKrG7R2ecFh0ngzSadGWkC9+3VCakCVT5Y1aAzP1Pgtp0qIz0Cr9dqVPToOE0CfzuksjBH4u4dMkEFDvXpfNyoMjNL4ob1EYoSRVYelinvUEmwCdyzJcqZRWZu3xghKMPBbo2P62Rm5pj5+YdBipMlXtoXpbJdwW4WuGttiLNLrdz6cZBADOr7NZ7eHmJpsZWr3+ynOM3E87vD5CebyBoqhWOIoHioNgCGIRQO6z+ENffKPPB+L9urw7hsIre/1sk50zzc/243HV6V/c0xVmz2snSck2tf6qQwzcyKMj876qK4rCJ3rO7lnPEObnqrj2BMZ3+rzIptQZaW2vnTpz5SnCLP7w6zo0nGaRG48yMfZ5dauOWjAIGYzv4OhRcqIiwZaeZn7wUpTjHxQmWEnS0KTovAy/uizM4zc+snQQKyzv5Oo9LeKYXH/d+rirK/U2NsmsTy9SHOKrFy22dBgjGdA50qG+sVpmSZTrpfu1oVXGaBe8qinFlo4vZNUYKyzqFulVePqizIkbhxc4yiBJGVR1XqvTqCIHB/pcKpeRL3lKsEFWj067xaB3MzBH5ToTPSLfBmg86aFih0GSkcx9aXosNhn8DqZp3ZqQLL9+sUOAU2dcKuXg2fAvu8cFqmyF+PGHKQ1QGNjzpUpiVJPHA0Ro5d5LMumSMBFZsk8FJjlJnJJta0xeiVNZrCKpt6oozzWHi2MUC2zcTm3ii1IQWrKPBWW4iJHhsbesJfLYlQEAQNIzJ7H7hL1/XdJxxLAPr4/wyBvuuhx7j0v64adCzVMvTC/b+OQAPEYjIPP/Yev79/Fd+74jQuPH8BgsAAoasuNhUQKBhVgjvBCLCHQ6B37drB8u9/h79t2I7Ncfyz+9cdgY7GVGIBLyZbvKBAJIRmdhH19WBxJ58ke+fv6cbqSTlZ9i4SRBEMyTezKwktZvjLuiGFZ3Ylo4R8iFbj/JGAH7Pdgxzow+Q8WSZPCfZjdiWhhH1IcZk8JRrC7DjZ3+YwI1nsyIE+LO5k5JAPyerAbrOgRkOYnQnEfL2Y3UmosTAOmzQg23dMls7pcSNwXOYv4u3B6knGYdGRzIPJPV8VAr1nw2d88uKz3P38q0P6/jsQ6HWffsJVV17Gy2+/x7QZM4F/jkAv+8ad/PIX5/KNM4wc+v/rCPSvL0rnsgXJpCeY6AsouOIyW76eoCGLdkxmKy6jZg9HBmTj+kIaLquA6g0PKYMVCxsBRHdYJ80h0h/RcJoF5KhCSBZItAl0h7QBGTg5ohoyc3FZq/6ojkVRQBAGZON6IjrJVujpNvbBY7JWKVbwyhCTDcQrrILbLNAX04nKNuKqblhF6Jc1Kr0qbzRHmeC2MiXBiqLr2ESRkKrhkIy8zWSLRKJJJKDqJJoFgoqGLf5pPaLqOE0ifWqIPx8NsXysE5dJxCqCT9Ep8sj4ZX0AkDnWH1mXSbJwkixXRNRIsYl4YzrO+HQPKpDqNg1c74n+PkRS7eJJsnpRUSLRJtId1kixGeMJ4HGIA7J9/ZHj/hFBHHS/TOa4jGBctqwvrOGyCIh205AyhTa7CdMQqQZfNQINhiwcGLJxAzJwfVFDvjN+PMkp0dEdJc0tnSQL2BXQSLPq9IXUAUQ9ENVIckh0dEVIOyazyHHZxFSLPjA+YMgUJpg4aTwNf+gK6qS7xEH+J47/1iaF5etDfHCZZ9D4A/gj2v9j76zD7CivP/55R67flbuu2Y276yYhJARJsBYoLdLibqVoA4WW4tCgxd2lOIQIxImHuHvW3a7fkd8fc7OS3W2hDW1/fXKeZ59nd+53z33nnXdmzpz5nu8h6bDjBaBqWofjGw1p7WQZUxzEzy8NlyKoi0CKQ9AYNXEpEA3FCGrCko2LxGUcddhUbfKHjXBTP5iaaZ1fKlYcEdQhQRXURUySbVAblhBC8NgOnQGJgtNzZJpiJhhWEfCh9d8QNZFR2p2PTZpJoipREZQ7nF9NMQOHJBGnuGOToFkzcUoKN2+t/rc3UvlN/GcaMF0IsQ14A3gLCPy9f/z/amXF/xPJ9B9lNpvKTb/9OeedN427/vgaN978DKZJC4cxqHswDYOKslKuuu0OfnHR5V36evuxhznr6uvbBc//H8zQYqguL6ZpnXmqy0swEMHm9WHqOnJcXs3UdewJKRhaDMXZilecXiLNQVRPMqahI6kW3ghFUNzJGJql43xIWkm2ezD0GIo7CQy9pRLdNDQrQNbb4xVnR7ykqJiGbgXsWgzF4YE24zG0GKrXGo+s2pFUCVPXsXl91mfOeItrIVBdFt6e4MPUNSS5vZzcv9vS8rpRVdzVG5v/jE2eejxPvvAK5/38VF54812OmTzlH/7P+o37WLpsG/375VHQLf0f4tvauk0VPPrsCp6670TOvvxj7vrdBD7+agdJXsG0yQXc+fBy3ntmGtfftYipRVn/5F79OPvguwYumJTMzx/eyx1nZjBrrdU0Ynp/O5e8UsFLF2dyxasVTOpjPfh9v8vP709I5KyXq7n9+ARmbwshRTWm9rTx0GchnjvNwzVf+JlYoCIZBgv2a9wzycm5Hzdz8zgHc/fGcAqDolyVmfMiPDnVyY3fhijKUdBjBsvLde4cY+PCOWF+O0xl6UGNoC6YkiPx1DKNR8ep3LZcY3SClQ1bVQs394NrVsOVveDbMg0dwbgUidf368zop/DaviDd41JuW5o0fp3vZFVtlHOyPHxdHWRLcwSXLNGg6aSqMg2agU2yAuYUVebS/ASe39/EiWluNjVbgfsgr43Xi4Ok2CFRFWxp0tr5/8u2CNNzFFbUWufv2BSJN7dp3DdYcM9mkxE+a/7X1sGMoXDVcoOr+8BCi/nFsRnw1PYYNw6WuX2Vzph0K7BbWWXwhzEqF38T4fohCvPjTVxO6A6PzQ/z+BQHv1sYpijbClh3NxpcO8LB+Z/7uWm0g3n7rMjrpD52rp7l55npbq77OsiEfAVZFiw5EOPeqW7Ofq+R245xMntXjASXxITudh6c7+f5s5K46uMGjim0YbfLzN8V4b5TkrjivbqW9SBkiZMGuHhgdgMvnJ/KjE/rOH6gm6gGi3aGeODMFC57rYoZpyTz3Z4wTSGTaYPd3P9FLS9enMnvP6xmyiAPugGLtwV54JwMLnuhlBk/S2XWeitMmT7Uw/2fVvPi5TnM/KqaPlnW9W3xtiAPnpvBGTMPMONkH7M2WPhpQ+L+z0/lyreqOKaXlXRavCvEAz9P4Yb3a/j1OA+zN1uJkpMGOnlwTg0vntm6v2A1vrl/WgLnvFfPzRPdzN5prYeTett4eWWQe45zc81XASbmW08qSw7GuO84N7/8oJFbJ7iYs9vCn9jTxvNzmnnwBA/XfBVgWKbC3jqdW+Y2M2Oim1992Mgt413MiTdBObFQ5uFZkXbHC2BjWZTfjnTw6y8C/G60nXn7NPSYxnH5Kk+sizHzGBs3L4kxLktCaDrfVcLvh8lctjDGtYNkFpQaOEwYlWryzA6TB4bDHd/D6DQrD9jdA49sg1f3wO0DYHk1hA2TiWnw4h6TewbBnzbDiESDKIJVdSYOCW5YG+OKnhLLqw1ipmC0T+adHTFu7m3jxb1Benut+dncpHFBNwf3bw9wSrqT9fHzaEiCymflQc7NdfN5lZ88lzX/u/wxzsx289zeI99J5R8G0KZpvgW8JYTIwQqkfw08iEXlONR+7P9X9dw/MNVmRzc6Ugtqol3tpvVAs33rVpYvXcyFl13RqRA9gE/9EXWWoovMltS55NWPMqlztcHM3DxeeOkXHbavr7ey3ru2bubRO27h3Ref45p7HmD0sce1w21f/z17Nm9kxjMvdyga6irr2Jl1JkUGEI517iPZ1fF4hWOdv13pmjbSsSgsEuv8IaArKokW83bc1gWV5Mcq4HS2ptQuKBJdUSo6yxR3lSVO6qJJQpqn4/rrKhvs6mL7D8kI90n0cHdFGT2Tk5E7wffzdrGeIl903Bbr4uLZVeY3VN1hk9Fg3Vh/OQySHhnDlRefTtGILB66dQTZGR3XiRGzzplPni7izU83MmrclwzsncSr948iM7X9Wjv0diMS1dmwo4nVWxpYs7mBtVvrqamP8fns7QRCOktXHsSmCGRZEKgqZ0R3AeVbGdvdoKez82z1kbbsDAdJ+UlMHh2ie98UxscftAoyZCYPM0nKSuTY4XpLa2hZFiRmuBlSGGZJic64/l5oDlOYqTKpl0likp2JvQyGZqsY4RgaEkkehWMKbXRPVRmnC4RuUpgqM7HAJMmrMKGbjcEZCrGQhpAlElwyE3JVuiUrNAVNdCA/QaIoC7wOibFZMgVCw8TKFNslGJli8YkLPTZME7yKzICEGLqhkmmXSI7LL3ZzxAhGHRS6TDIcDqamWesu16GypjHERJ+L9Y1hsh0KDTGdeTUBnj7QSIHThlu2kRdvXOJRVDIcGt83hpiS4sYrrPMo1x6jMezEI0NDwIkHK2BtCKhk2ULsqreRrkYQmnXupqsapXUmPZwa4ZBChmxdz8IhiSwlQkO9TG+nIDWeaOvtlAjXagzxgDuk0zt+SiYGI4xIEBi1IYa6oSBOIxR2gdEQZmQSJEeiDHDFuaTRKKN9ArMhwogkkx6KjmyXCKUIaI4yJk2QoukM8ZrY7QZpsShj0wRSfYjRPuht15EVk2YfyHUBxqZDWjTMUK+BkEzSIyHGpQuUGj+jU6CHFAEVIikGtuomijIgMxSkn01HUyArFGB8hsBe1ci4FJPeRggERJN1bCW1FKVBRlMTI1zWA0NmUxNFaWArqaWfLUY/Ye1vzKdjK65lfBqkNzUz3G1tz2j2Mz5NIJU1MSbJpI+wzudIkolU1khvu46vIcBgR7zPQkOAMckQOdjAcLdBgW7h/W6DWEkTw9wm7togfaV4w5RajR6qRvBgM4PtJrnxN6aD7SYNOxoYYge1tJmehzLHpRG6C6jd3kRfAd2CMUwDMqMaldv89FNN9OIgefEGK6GDOn1kKN4Sortp4KmzHCVFZHZtNymUZRqKBb6wRCDmpLxEIUeS2LjLTpohodUr+KMyXk1jxS4HqSLEnhIHUihG2JTYU6WSIoVYedCF1wzR3BQ/X+wxhntk3i5r5OHNKkMS7LgVmZIGlTQlxPpKF4kiRDhq4cclhWmKmuwNhnlkm8S4ZCcJiow/rJJtD1Hc7CLdFsYtFHTTxCVFmFUmaIxKvHYwjF830EyTb6ojCODh3X50EzTTYEiCgwKXjGna6OFxsjt8ZHO+/5SMnRBiDFZR4dmADysT/T7wimmay47oCP/NJoQwL7zuRm6975EOn3XFl0xR4fWXXuD+u+/E7fFw1Q2/4/JrOi98+snoHj/WugigEXmdbj4UQIMV+C2a/RV/ufM2UrOy8CYmEQ4GCQX8lB08wK+uv4lTfnNxBx+BaEcqSVeNUbqianQVFGudPPD8+AC64/ZIFw1dug6gO+KPBtCdjO8HUipOHNCDd75ZQnZefgfsTxpARzsJoCPtL76BYIz7n17DX1/fxHd/O41+PdsX4B4KoFuGEDN46IXNvPflXt6bOQ5/UGNfaYB9xQH2Hmxk214/W/c00zPfzcgBSYwelESyC/Iy7Hy+uJobz8vng7lVDO/nZc9+P09+UMKOA0Emj0hi5g29WLelkV/cve0np3D8fIKPQT08XPvzLN79tpph8bbPW7c38LMxyfx1VhXnTfKxfp/1UDAo2eCOv9WweEcQWRJMG+zmNwNV1pfFOHuIk+eWBzhnmJMNZRoiEmNAusJ7myNcMdLBh1siDM1U0GMmGyo1zuxn48V1Ec7ub2NTlU4srDMwVeKjnRoXDVL5dJdGP4+BiWBzncHphTKvb9f5eXeZtfsjaKagbwJ8VQa/yoevyyFVsR4A9gQMJqUqfFkeo5fTS0m89VmuU2V1Q5hJKU6+b4iSEacZlYRjDE90sqQuyMhEByVxOlquQ2VOdTPFoRgx0yRZlYkaJgHdQDMhy65wVlYiJeFYC35NY4gJyU7WNYXJdajt/K9oaGasz8HBOMci36WwIxBgarrKkhqN7h7rXN/rNzg5x+DTUoPjM2R2xYvhe3kkltXFODNXMLvcpG+CtTwOhAxOyhG8vQ9OzYVtjdYxHpwu8ekBk1/3kvjigMmAuHzengBML2idzy11BrIqMTBV5qNdMS4aqPLpbo1BqRKqKrG+SueM3iovb4zyi74qm6oNVEXQP03mw21RLh1q56PtMQZnyAhJsLFK56x+Nl78PsLZA2xsq9PRDRiS0X49DMtWMYEN5Rq/GGjn+dVhfjXIzqZKDcOEIZkK722KcMUoBx9vjTAwwzpebfG/HGBjQ2U8c9nG/8dbIvSPPyBtqLTG88KaEGf1tdYbwKB0a/wX9JX5dLfOoFRr/jfVGPysl8I7myKc1E1mS/xNwoAUiY/36JxXSLv53FJvMj3L4K29cHq+YGv8+bd/Esw5YPCzXGud9o+XJG1thOMz4P1iwcnZsL0JHttucmMfwc5mwdl5gjkVrcd3ZxMckybxcYnBCZkSO+NFotk2lQXVGqdkqSyq0ejhlvBHFfYHdcal2JhXGWF8io0DQZ1QTCa7zfpf0xAmz6miG4LiduvfSUk4hgBy4ut5XJKTD8sb2RmI8vPMBDTTbIcvD8fQ26z/8clO/lbexN5gjFPSPVRENTJsCt83hXHLgtKwRn1MJ1mVsUmCkYlOgrpBnkNFlaAyojEyycWSuiCFTpVvawPsC0Y51udGlgQTfS7u3FH1b6dwdDDTNFcCK4UQvwVOBS7Eyk5fBPzr6uf/YVuzdMmPwj/20AN89N47fDl/CXa7nWmTiujRsxfHnXjSTzTC/6wJITh22ikMOWYyy+Z9jRACh8uNw+XC400ktbD7f3qIR+1/xHIKCijet6fTAPo/bW6XSqrPSa/CRArzPP8Qr6oSd14zGIfNZNpli8nNclGY46Yw182YQcmcf0oeQ/smEAjplFSEaPRrlFc0k5ygsHRdA1eelcf81XWYpsm2PX52FQfJTbezryzM/vIwK7Z05EX/FLZsazNVDRoXnpTOgnWNLdu37Q0xdUgC8zc2Mb6fh++2WhKW30WjfL0xwLtXZ/Hc/Aa+WO/HCNlpDJtM7+dgwe4IRQU2lu2P4pUMPHaJhftinDfYzuL9VpCjAEsOapzUU2XRgRhjcxRWlGhoMYNEu2BJicbZfVWWlurIGRAxTJaXGxyfK7O0XGdUusSOJos7maAKVtaYnJYjcnxMwgAAIABJREFUWF1r0sdjWAFZg84Yn8L6Bp1U2WBPnDTqkiW2+6OMTXZQGtaIxR98dwWiDPA62OmP0N2lsi8YjeMFtVGdS/OSeKuskVSbjCIE5WGN49I8rKkPUhfT2uF3+iOMSnKwK9CaZDjkf4c/Ri+Pyu64nrRbEez164RTVTY1tSYaNjXpHJcpWFtvMChRYlOjNU6vYrK+3mRalmB1HRwqNt8ZgIkZsLzaZLhPsLbO2p7igWWVJmcWwooqg0MvmHc0mxyb0zqfqysNFJtpzX+pztl9VL6La0Y7bSZLS3ROLFRZXKwzJlthZZlGgkPCaxcsOqBxzgAbS4oPNVOCJQc0pvVULZWJXIX15Va79yRH+/XgVAVhDRbtjzGtt42F+6KMy1dYU6YR0UySnIKF+6KcN8TOqhINPZ7TaIsvypVZHv/utv7XVWgcyoEsORBjWk+VZcVay/gtvGDxQY2zelgKJodsaanO8QUKW2oNBqZIrKq0HCXaBd+V6fw8V2J5Zet8Lq80mJQGy6tMRqYI1tZY85+oWkWhAd2iGx2yVbUwPg1W1lia4OvqTWQBO5pgTb3BKdkya+pakzJ7mmGUz/psUJJokYpTEk3WN+hMzVDZEFcKCcU0tjTrDE9S2dwco7dXYYdfQ5gmjjbrf0d8DQqkTte/AJzx9Tw6yUmjZmCXJEK6wf5QrB2+NKwRMoyW9T86yYkJ9HHb+KSyGQEUuFSqIhpDExwYdujlttHHbWNOdQCPIlEciuGJizvsCcYYlGCyozmMTVgBtSoEdlmwtdnyf6TtiHQiBBBCpAPnmqb5+BFx+B8yIYTp8nhYsO1AS7HcIessAz3n04948PYbmbt0JVnZlpzZymXf8euzfsYHX85m6PAR7fD/CxnoQ+aPdd4tsDnSeZHj0Qx0ezuage5oh2egH51xC8k+H1ff/ocO2L+Xgfb7Q/z5gfcpLq7h5eevw6l0oUf+L2SgFy4v5dzr5vDd306lW05H6s7hGejW7VaxqK6bbNvbxIr1tSz/vpI1WxsoLg/hdMjkZTrxuhX2HgxQ3xyjR64LwzTRdZNGv4YvQWHGhd0Y1TeBzFQ7dY0x3DKkn778J89ApyYqfDtzEA6bRFqSSiBejOWMRKhu0khPVKlr1vA6ZZZubebKv+7ny5ty8dgl0rwyaw9EOO+vpbz0iyR6pSmkeWTqggZeu0APRDotLtSiulWMFS8uPFQsFQm2LX6yiuEam2IIBM7DigujDVYnwsOLmfY1OhBCYJesoqckm2BrnR1nvFgtYpi4ZIlmzcAuZKLx89YmBH7dwKvIBDQdx+H4mI5HkTrH6waOuJrEP8JnOM0OxYjdvDEaYwYJimhXXGVKUZJtEk0xE1ebYsRst96yv4eKC30uM15MaRVqxftUEJElkuxSh2LEBJfcbj7dKigOudPiM0UVuFTRUqxWHzbxqCCrwsI7JKqDBqlO6/hKioRLpV0xXKJLAKJD8VxQs66FbfF1IQOvjc7xbYrzWvABvdPivGQbHfA+G9SHDTyqhQ/ETJIcEuX1sXbFl1Yxq0mSMNoVax6an4r6GD6HaFfcWe3XSXFINLQpBg1q4DIMaiO0FOcdwleGIcXeWjz65j6TyjDc1FehLmqSrFqqMtZMSDTEINkm2q2HqpCCXRZ8UByjLGxwaYGNmG7DHi+2S1Al/PH11hhWiJq0rH+PLIiaENUFdunvr+ddgQjvlTVyYU4S6Q6lw/q3x0UKWs8vHY8sETFMhLCKDw+EY9RGDfYEIpRHNOpjBpKwpCJVSdAU0/HrBj7VekiNmiYxw0QRgimpbgZ57cRaxq9z/+4jK2N3xALo/xUTQpjjJh/HKWefy6m/PA+lTUX/4QH05nVrufRn0/ho1hyGDBve7rMvP/2Em6+9kg+/nMOgoUNbth8NoA/zcTSA/sH23xBAXz74vy8T/L9oZfNPQFUkVq2r4NE3DnDDefnc/uQurjk7j4Vr6slMljludAp/fmU/H9w7gKse2cnkQV7uePngTx5A56bZOG9qOrNX13H3Bfl8trQOgNOHe/jz++W8c1N3rn3hIP1yHbz6TS3Du9l49oJMzn++nBmnpfDFOj/VNWG+2x8j3SPxyYU+fvtZI0UFNuyGzvx9GjNPcnHhx35um+jkq50xPIrJ+DyVR5eHefk0F7fMCzEu1+pEuLJc54GJdq6cF+bGkTaW7I/ij8HUPJknN2r89RiVO1dqjPQaRAz4vh5m9Ifb1sPlPWFOmYxuCsb4ZN4rjnFbHzvP7NLJia//PYEoZ2d7ebW4iRNS3Wxstq5vA70O5tb4uSAnia+qmsmKUy/2BqOclZnAu2UNTE71sKkp3B6fncDfKv10jxc5HcJ/VtnEmGRXB/yVBR7eKQnQy2P53+WPcW13mb/siXJ2jo1VcX3iUckKy+oiXN5D4fGdGoPj+sEbGw1mDDCZsQEu6yFYVGVdd47Phmd3wcwRcM9GGBGXfC+NwDX9ZW5YpnPNAIlvSi38tAKZxzfqLfM5Ol2gqoJl5SYPTLRx5bwIN45QmbNfJ9kJY3MUZq6O8uJJTm5dGGZctozTLliwX+eRqQ4u/TLEzWPtfL07hiQJTuqp8sjyMK+c5ubmuUGm9FAIa5baRNv18F2xRkPY5OTeNh5aEuT1M73cOCvApAKFmCFYdjDGY9PdXPBRM7dPdPLlTus+1Rb/0KIghT7rutfO/3hHC35afDwvTnNw6/wI43Li+FKdh49zcPeCIGf3tTF7nzX/JxYoXDKnC9nJo3ZEbUaPVF4vbeCkVDfrmsJEDJPuLhsrG0KcmZnA8voAmY7259cbJfWURPR/bwAthEgAms02QCFEH+AOYBTW+6AVwAOmae46UgP7T5kQwvzwg2f5/YyHKC2toG/fntz755uZPn1KS3AZiUT45JNPuOWWW3jiiSc444wzOvX10Ucfcc011zB37lwGDx585AZpFv/rProIlLuybc0dA9q/pwPdmUX0jj6MLtZfZwHx38P/GOyR8NHVedMZ/kiMoyv7MTJsAB5bx+yxu4sscYHXKnTbtWMHLreb9IwMMt1HoID1qP1D++raTLqlKJihqNWQIldlUbwhRXGDDqbVoGHFgSiTetj4viRGfqLM4EePLMfvcBNCmA/d2JuXPirhQHmInnkuzj85mxOLUslxwbJNjUwYnMAzn5Tz6tcVXH5qFqPybQzv6WbhxmaK+ns4WB3FaA6xrzrKlS+X8861OSiyRLdUq5X3/poYIwodLNwWpKiXk+JaDdM0rAYWu8Mc29fJ2v0RuqUqGIFoSwOLRbsijOtu50BJEARWg48DUSZ1t/F9qUaGGcMEipsMhmbILC3RGZ0ts6vYCnqy3YK11SbjMgQr9kXJclrTeKgBxOo6yFQdVMfzA6l2wbYmncGJMpvqBalxObPqqEF3l8zqOpMeLht18WRAsiqzJxhjYILC/qBGaryouiaiU+BS2BOI0tOjUBvX30qxSezya4zwWfzsNLs1nuqIyZAkgw2NBgMSJKriRWNpdsHegMaQJMH2ZpOseEOW8rDJcJ/BmjoYkgwVFjWdXJfB+gYY7bMaXmTHG7JUx6B/omBlDQz3WQ0yAHK88H2tYGwabK6HHDcIRVAWgEE+YVERUgVlQZBkQVab+TzUwEWWoSRAvMGNwah0idKAiSQLsj0SayoMiuINcbolyiCguNlkSJrEd6WWbnWp38Q0IccjWF2hMz5HZkO1QV6CQAgobjIZkm7hR2VKlMZfPrXDV+rkeq3j1db/8BSTsjg+2yNYU2kwKtlsaSACUBowGeQTLD0YY2iy4Ps6E0VA30SYMu9InWlH7e/Z/X3S2RWMUuhUWxoYJaky+0JRerlsFIdj+FQrWVQX08hzqOwKRHi1pPHfHkDrwDjTNFfF/x4IfBf/eCmWBMV4QAPG/n8PooUQpmlY0lmBQJDFi1dyyaW3cMvNVzJt+jm8+OKLvPnmmwwePJjf/va3nHLKKX/X3wcffMANN9zAvHnzGDhw4JEZ5NEA+gfZ0QC6o/3YAPrZJx5j5oP3odps1FRVocePoaoq5OelsXvbyxa4KypEZ5rHAFoXfN1OGorcfs/XvP3JTi44qy8X/KIfPbpZ1CojFsE0Tcoqg7z43jaee3srt14xlKt/VdguMx+LGQw55QuevnMIk0alHfZ1nY/jqVd385sT0nn4/VImDEwA4Ian93L+5BS2l4S445fZLNli3Wkn9bDx+KwaHjg3i0e/qGZ8XL5t8/4glx6bzO8/qOKGE3ws3mHt28TuNp78poHCNJW/ftvARRMSsQmDiiaDN1fGecO3ZLNkdxgHOiPybDy9xM990xOYudBPUaENScDSvVF+d6yHO2Y1ce1ED8v3RLn1qyN7gzjchBDm2nfHMfPN/dxzTU9ufWwni9fWMWmkj+xEGdOEl76ooHe+k0Hd3Qzt5WFCdztPfF7Jgxfl8ehH5Yzv74VQhKXbg4zs4eSKF8t46sJM6oMGThlGdXfyxNw6Hjg7nb/MqqWotxMZk8U7Qtw0zceMD6q5/oRkFu8IYUZiTOzp4KmFTdx/WjJ/+baJiTkSmgnLDsT43UQXd8z2c+14F8u3BwlrUJQj89y6KHdPdPDUmgjDEgxME1ZXm1zZX+aB7zXOzjJYW2dN4wgfvLXf5Ld9BK/tUejmstbW1iaDs3JVXtkf5YQ0B1ubreteP6/CrIoIp6R7mVsdomf8Xf7uQIwT01x8UxtgXLLFbQbo41GZWx3i3FwHX1WG6R3PNO/0xzg5w8lH5X5OybSzJe5/gFfhu9owv8xX+aBYY2A807y50eA3BfDsHoOz82TWxzmvQ5Mkviq3JMJe32fxZwF2NBuc2w1m7oBfF8Aa60UCY9Ph9T1w8wDBS7tNRvgO4eG8HoKHN5lc2EuwqtpEkQWj0iVe2aFz+1CZ57cZjEwVqIpgRVXrfF7cT2ZlpYnLBkPTJF7aojNjpMKzmzRGZ0gISbCq0uDqISr3rYxy2SCV72tMojqMy5Z5cWOUO8fZ+eu6KEXZMroJK8t1rhlm497lES4bbGNNlY5mWPgXNkT5Q5GdlzZEGZJuXQtXletcM9zGn5dFuHyQjWVl1rWsrf9XN0Ton2LN5+oKg6sGKzywIsIFfRVWxjnNYzIkXt6uc2MvgzvWw/o6q211c6y1HZoqQBZwcaFguE/m/YM6F3Wz8UGJ3u54nZxp542DEU497Ph+U6lxUoaLWZUhese5NTv9GuOTvHxZ1cwkn5vdcQ59Q0xjWX2I0UlOIobJwHjioyKsMc7n5OPyJhIVmZUNIQpcKiemeljWEOTUDC/zawIUOFW+qvKTbpf5ZXYiX1S2+lcFdHPaWFQXaMEXumxIwJ5glCmp7hb826UNeBWJCcluNjaHOC0zgfk1AXq4VAwE+w7DHwzFiJomPV3t/Xd3qZgIltcHKY9opKgywxPsNGgm82stGt2IRAenZnhZXhckM/7m53D/h+anrf8/7vz360Af/mX3AbXAMaZplgAIIfKBxcBdWDJ3/xPmdruYNm0yy5d9yqmnXcxDDz/PRRddxPLly+nRowsKxGF29tlnYxgGJ5xwAgsXLqR3746d3Y7aUftvtHfeeI3nnnqchavWkZOXh67rpMcpIGlpicz67CdreNfO7r+tiF+e2pvXPtxG0c8+ZEBvH4P6prJ5ezUbt9ehyBJTJ+Sw5vMzyM3yoB/GVVZViRlX9OFPz2zj21dSu5SY/Hum6SY1TTEuOj6Ve98r+6d8HG6XTUpkS2mUz9f7KanXmNCjo4zif7M57TK5GQ7uv743j7y2j68qwpx3fDpTRiTxx4u7sWh94z/0MamfmzG9nNz2biXnT0yiV9qP4bgdtaP2n7OlVfB9Hfy2L2Q4BWtqTd7eZ33mkGFapugg5fpT2MhEJ7VRHQFsaopwMBQj1SZTFdFZWh8gbJh0d9qY6HPhViTUwzo5CiEYmmBnWX3on07qmKZJfcySjfPZ5CNyfcy0K0z0uXivrJHPq2L0+i98+/lDOxGObZOBbgBuMk3z5cNwVwJ3maaZ/VMN9t9hbTPQbc0wDAwzpx0n+sfYyy+/zH333ceyZcvIzMz81wZ5NAP9g+xoBrqj/dAM9Ooli7j7ygv5dO4Cevft27I9JV548/EHd5Kc5MEwDCRJwiYCjBnVA/nwLmFHIANtRFoDsWhU54tv9rG/uImBvRIZ1NdHZpqrvYt4AB2LGSxeU8WIAT5ccpQx5yzg3uv6c9LE1vOvqwy0Vutn/rpGxg9MoLgqwpb9QR5+r4R7zs9l8mAva3YHKUi35vJAcTPDC5ws2BKgqI+L4tq4PJlXsGxXiMn9XKzdFyY/RWHtvjDldVEuHJ/Agu0hino6KKnTOP+FCp78ZSqn/LUC6JzCsXC3ReEoaWylcCzfH+XYnv9eCse3L45iZP8Evl1Zx4RhSRRXhDFNkwy7yaptzUwZnsSa7X4K4o0q9u1uZHhPNws2NlPUz0NxjUXhyEtVWbYzyOT+bp6cXcfz39bx9pXZ6CaMKHSwIE7hKGlD4WiZz04oHAt3hRlX6OBg6Q+jcCwp1hmTLbOrpJXCsabKpCizcwrHqjiFo6YNhWNrk86QLigcq+IUjvp/gcKx068xsgsKx/oGgwGJEtU/kMKxug6GJFmFaGBRONbVw5iUzikcK+IUjoo2FI61tYJxXVE4Kk1GpAnK21A4Ds1nZxSO78oNRmVIlLWhcKyuMBjfBYVjaanO6EyZskArhWNVhc6ELigcS0t0Rme1p3CsKteZkNs5hWNpqc4In0lZ/Pk72yNYXWkwuhMKhyLgskUaj420ik4BMp0wcY51LM7vJujhljCwCjUL3YL6iGBwktLueK2tEwxMkDsc33TVzrZmS32lLr4efDaJDQ1WxrYdRSGqkedU2RWIku9U2dAUpjaqk+9UiJkwxGunJKK14OujGrlOlR3+CJIQ2CSBU4JPKv3kOVSmp3ta/ZsmdZoep0BEKXTZaIjpgEmSqrAvGKWX28aW5jCfVfq5rlsyDXFpufb4OMUiji8Ox0hWZQSihWKx0x/BJknURDUKXLZ2+Kf31zEpxc27Zda94P4+6XH/h1E42vg/nMKxMxDhtSNM4fhnokE3sL2T7duB1H9tOP+9JkkSkvjngmeASy65hNLSUk4++WQWLlyI19uxav+oHbX/Fnv/xWeY8ad72wXPtTWtNI2bbn2JvLxUJEnCMAwWL9nM3k1/obAgrTN3R8xsNpkzp/cEula5aGiKct8zm3h/1gEamqK88ch4Tp3o464r+/KnZ7dzfFEGcheNeg5ZU0DnjpcPcP+l3fhocS07ikPkpNi4440SPvtDL/78TilThlrUjh37A+T9wsad71Vw368y+XiVdZE/a6SHP3xYzbvXZnP5y+U0hw1UWdAY0tF0k9e/a+bPZ6Tw/spmius1GoKtD5j3zapnch8nbsngiy1hnj87ibtnN3HPtAQ+3RQiwS6Y3MvB3bOb+OgiH/fNa2Zqr39P58in3z3AI7/rw++f3MmDN/Tmb/OsoP/sCcnMeH4fXzw0kD++up+pI5MBWL+1kQcvyuOON0q4/ze5fLSsDrupM22Ylz98UMUnN+Uzf4uf4QVOzn2mjMJ0ldeuyOYPH1Zz7y/S+HhNMz6XxDF9nNz1cQ0fX5/DvZ/VMKW/GzOqMX9HmBfOTeGuLxv48ynJLNoaojZo8rMBdu6e5+dv5ydz/3w/J+RLBGOwuFjjyeOd3LcszJ3jHczaqRPR4aR8mUfWa7w8WeXdA9DHOrysrDH50yDBUztNLsg3WFxjHaeiFJnXD0S5u5+TOVUR8uMyB5ubNK4sdPF1VZBp6YJ1jdY6HZZo59OKAN1cXj6rCNLfko1ga3OUi/O9LKiJYAKrGqxXz6OSbHxYGqR3gpP3SyIMTrT8b2zUKXArvLI/xiWFKkuqrfFMSJWZX63Tza3w6j6dkclWgLim3qDQA0/vNLmut8Q3lVYAd1IWPLkTnh4Bz+62AmmA0jBk9oHHt5nc2E8wt8zCT88XzNxs8HyRxFPbDKvpiWyypAIeHiPz6Eadm4fIzC428DkkxmRILfP5xEaN8VkSbptg3kGdRyfYeGitxu0jFWbtN5AlOKlA4cHVUV470cHMtTFOKDAJ67CkROOxKQ4eWBlhxhg7K8p0asMm07srPLAywhvTnfxldYQp3RRihoV/fIqD+1dEuHOcnS/2WAmdk7sr3L8iwpsnO3l/h0ZBgjU/7fyPVPlinzWf0wtkHlwT48WJMk9s0inKtPDLKgwynJDugJAu+GyPNT+T2+TF3j9o4rPpCGFRO0I6ZDrgsu5Su+M1u1In3+XocHwvyLXxt7IgZ+W4WRMv4B+ZZGNhTYTMHIXZVX56e6zzvTgU42eZXr6qaubkDC/FcX1xhyQxr6qZnm5bO3xZOIq3WWZFvfVklOtUSFMV+nvszKn2U+RztuBtAjY3RzgnJ7HF/8amMG5ZoofLxldVzVyan8zc6gBuWbCuOcIOf3v8Tn+EsGEy2Otowc+u8jMwwU7UgB3NYbq7bSyqDeJWJMK6Sbpd5vhUD19VNXNRXhIVEY2KSGtizq8bfFXVzKkZXtbHi27b+l9eH2rRa98ZH8+sqi6UmP4F+6EZ6PuA+MsJHgCuME3z08NwvwCeM00z5YiP8t9oXWWgrQ9/XNb2cDNNkyuuuIIDBw7w5ZdfonbBPf3Hjo5moH+IHc1Ad7QfkoH2NzUxfXAvNu7eT1JycrvPDmWgzcislm3r1u/h7HPvZee6hzu+utMaMOLHUpIkNE1HUWT0SANSXNXGMExkOf6ZiGDEFU4kSaBpBpLejK4bSPFXj4fw0VAIRZEwDJNP5uxjy856quvCzFtykEmjM7j+N305/6alPHzbcCYNSyAW0zntmhUcOyaVWy7qjSQJIk2NKIqErpscEtkxDKAxSFVDlLRElUBY59on9zJ1sJepQxNJT1Kp92t4HNY/NNUE8HlVqhpjpCUoLbJuLsmguknnvs9rKK6NMeO0FAbn2dm4N8glr1Vx8YQETh3qZsH2EJ+t9fPJVRlk3mpde7b/MRePXWCGojRHTZJdMtXNOqkeiWDExMTEbZeo8RukeWXqgzpuBbrd+9NnoPd9NZGUZDtVtRHSfDYCcZ0tVyxGVX2U9GQb9U0xPPGAsqGiGZ/XRlVDjLREa36MpgBuh0x1k056okJ9QMNjl7j/4yqW7Azx+U15+EMGaQkygYiBoel4HNYcpCe04g1/xJIhc8lUN2ukemSaaoNIkmTJ3gUM0jzW/Mj+MCAIRCHJ2SqjVl0VAgQuRVAbNkl1Shwoi7TKihmQqErURgyiMTehuFqPQxY0xkySbBLlfnAq1noIG+BRJA76BQmKTCS+nu2SoFkzSHFIBDQdexvZL7ciE4xFSbC1xzdpBlkuE3/MwBE/pcM6ZLoMGqIGiaogHFf5cciCkBHFZ1doihktsmVBHTJdJrURA59NEIrjE9RWGbvGmEmc2k1YQLJdojZs4LO34j12ibqISYpDojFq+ZdViYAOSTapRUYwqJlIMrhUuWU+GyIGbgVkGQKaIMlxGF6R2s1/Q9jA6xAgWmXvaoIGKU5BMKqDFMfHZfIawgZum4noDK9Z42+Lrw9ouG3WDrfFJ8lGe3zYJFGYNEQN3PH5bIyZnDlH57ER0D+pdX6csmDM19bvHxbJLfN/IGDy+00Gjw5WSbHJ7Y5XWVCQaFM6HF/TtNMU0/EqUrv1UOIXJNhUgpqOLb5+ooaBS1HaycBZ/i3pNq8is6ExRGVUI6Sb7AlGyXaojEp08G1NgJGJTvp77dglwRslDaTYFKakuCz/pmnJ2ClyO/+maeCQ5RZZuo/LG/GpMhN8LqKG2Q4f1nSEJLWTvWs7/llVfsojGhN9Lvq6bVRFNN4oa2RUopMebhvNmsHcaj/XFfj4w05LXvSBvhkt+xaOC3239e+PaS2ykm3Hc6Rl7H5oSvWOw/4+Afj0sG3jgN3/8oj+R2xnoPPg6N4nnmHi8MG89t7fOPNX5/xdH11K3nUV/HYVWBt7OsHu7MJH5/Jx/bqQOuvURBfYH5PB70qqr4vxdbq9S+yP8N2VjyNhXc3TjzGjozSgtb3z7GynlIpYfbs/3/56I5PGZFAQvgvKO3cT2/dBy++v/nUlJ49PILKvYwfA5atL2LLHoknMX1XLY7f25/zb1/Gni/L5bInVJeDUCSn88eX9vHVXP257cidF/a23Mws2NPGXy7px8zN7uGKqj6++t/ycPNzLnz+u4pXzfNz6UT2KDIt2hklxS5w53E0qEc5IrOfya+fS0KgT/W49p9/fzGPTPKh1AWa+VEPd2n3srze5d7KTK78McNsEJ7N3W3N5Uk8br68Lc9dEBzcuDDMsU+ab1WEaS5ooitUz/esgt45zMGevlek5qVDhoRURnjnRxQWLQ0zIjWc+6nQKkyQ+XhXhxWlOPp5XxcfAiYUKaTaTD5c18pfZ9bhVwbF5Mhc9V9Yyb5vW1zF3X4xEu2BMtsIjKyM8c4KTSz4KMyFXRpVgwUGdeyY6OP2tELeMsTP/4BGQt/wBVlxv5zd3b+D9xydw8Z/WcFyRlXrburOe2y7ry6k3r+DP1w/ks1nW/pw+OZ2LH97GO4+M5PIHNnLc2DQkHMxdXsPjtw3g57ev456re/P5wkpSeqSi7atg8iOlLHh5HFc8vJUpo1Nw2CRmza7msVv7c8bt6/jTNX34fEElpi5x2sRULnthL2/+eSBXzdzJSSNTiEYM5i9vYOa1PfjFvdv540UFLFpWSUNA55QRCVz3YQWvX5vPTW+UcWxhAoYBi7aHeegMH5e8Uc3tY718sCsuZ9bLxi2Lg7x4egIzFwfoGc/sLi2x5v+auSFuHCwx96B1Iz8+X+axdTEeHiVx/3qDsekWfn6VwYyhMjM3aJxZIDG/3LpHTMkSPLXN4MFh8OBmGJNm3d9XVprcNlDw+7UmV/WCb6qs+Z+JBuwtAAAgAElEQVScDs/thd/1g4e3wuh4ympVLdzUF2ZsjHJVT/g8vpwmpcNTG+HOAXDPFpPRPmv75ka4sqfg6tUmV/Zqlbc7Nh1u22Vw3xDB7WtNRqXEO9s1G1zRAy5drXNVT1hUBbLQmZAGz+7WeWAI3LTWUvWwy7C0WufWfnDBErimFyyoAq8NRqUI/rrD5KHhghuWmYxJEwhMVtbAbYME531jcm0/q+lLIAZTsiWe2qLz6BiZ6xYZHJstEdatJi8zhsqcO0/n+oES31WYRAw4LlvwxGaDmeNkbvtOZ7CvtXHJHcNkzpmjc+NgmW9KreN1XI7EE5t0ZhYp/HGDRt8ka39XVJn8fqjE5at0Lu8lWFB5iHoBUR0ShcQta8w2mf7We/7uJoUVdda9I6BZhWShqIP794QZmGBdHzY3aZyR5ebx3X5OzXSxodG6/gxJtLG4Jsj0dC9vFze1cH93BaKcnuHlhQN1nJTuYUtcTnGAx87s0jrOz03i3bLGFnxlRGNyqoeZe2oIGgYpqowiCUYlONjqj1AWz+pGTIONTWF2B6NMz/DyxL5aklWJJs3Sdu7htjG7tLGdf0UItvn9nJ6ZwHP7a6mJ6fRx2/mmJkB/r70dvq/bjo5pjT8zoWX8ewMxSsIxDoSi+FSZApeN98qb6Ou2MzbJyaLaICsbQgR1g5GJTubVtNa2vHDA2t8vKpvJjFOhDve/JZ5hH9BmPEfafkhEU9jJts7uzgbw3L82nP99W7NyBc3NTRw/bfp/eihH7ah1aumpbtZtqmD77nr69kz+u9gnX9/CrIUlzH35mE4/T/PZGGFvbUiU4FaYOi6N/EwHE4ZY2wsyHUwdmYzHJTOhv5ehPdwteK9TYmQPJ91SVYri6hbdUlWmDPDgsUkMzbPx+LeNPHNOKpXNOr8c6cFp6nRLlhmSpbKvVmfWtgiDMxU8NsGJvVTG5Su88n2YK0c58NhgUoFKfqLE2FzriTU/UWJwhoRbFUzMV1h4IMbUQpUx2TIeVXBMvkJegsSYbOvymeuVOCZPwa3ChFyFwfGqf7sMn++KcWKhQm+fzCHJ87wEwQmFKpcMsfHxjhiD02VMw2Rjtc7Xe+PtmhOswFmRrN+PyZPj/mXLvwkxAzwqHJMnk58gGJmhAF08UB1B65br5oTxWXhdKscVZTJyoBWROVRIcKscX5RJQa6biSMsRl+3LCdTi9LwuhWOG5vG8P5JoFsd4hLcCsePTaUgx8XE4T5KK8OUV0e46Iw8vG6FKaNTGNE/ESEE4ajRsn4Ks51MHOHDjEYpyHZy3GgfXpfMlJHJDOzu4tDLHa9LZurIZAqy7DR2cxDToVuajeMGefE4ZI4d4GFIcmvg43VITO7jJC/RZFyedXy7JUocW6jisQkGpcn08rXy/A/Nf44HRmdY23M9gvHZ1vEamy61tG4GCbcK/ZIEOW4YkWptz3HDuHSBS7GCyf4tp4vAo8CYVMh2woj4qZjttNo7u2UreO7fpt+XW7GoGNkuGHYI74JhSeCSreC2X+Ih73F8qiDbSYs6R6bDZEyqwCVbwW6/OJXFLnX0L4T1+5iU9v5lIGpY+HFtxq8okOOCcWnC8nVofwUgrP0dly7IcUHIEOgm5LqhKEPCpcDYdEGPRMAULfNZlCHIdQmGpJgYpiDXLRifKXApMCxFtATEh/DjM635H5kmxedfUJRp+R/oE/RJbE1QuhUY6bPGfEiNRBKmxaUPmYxMFvRJaMUvrrbWUoZDYkACbGrUWVuvc0yqgkMRDExQKHC1Jk7skqCvx0aKTW5Ra0mxyeQ4VOySoJfb1tLa/RC+t8eOT1UodFnflWyT6e2xd8ArwsogN2oGv8lNaumgmeNQ0IUgWZUxgdKQxmCvnV5uGz5VZliCg4W1QU5O9+CWJXyq0sG/ADTTxCFZhZLdXTYGJTgQ0AGf5WgNMx1txh9xmOwKRjjG50aP71srXsEpSy2tv0ckWl1AF9dZNTKH/Oc6FDLtHf0nqzKFcZ31tuM50tZ5t4U2ZprmgU5+KjrB3Wya5qtHfIT/Y/bmKy+RmJjEiu+WtrzaPmpH7b/Jjj+2Bw/cMZVpv/m8hU7RmT3/7naefmMbc147kez0ztukZqU6KKuOUFYd4eSJ6Tz5zn6uP7eABWvryUqxkZVi4+sVdVx7Vg5P/62UE0ckUV4XpbwuyrSRSfz1i0ounpTE7A1+spIUspIUZm/wc/XxPt5a5adflo0Ut1X1feIAF88uauLCUS7m7IgwsdBG33SFl1YGmdpd5fk1YY7vrpLkEHRLktlTZ/DOpiiXDbczb2+MTI9AlUx+NydAU9jkujlBGsMGK0o1phYoTC1UeWl9hEuH2vl2v0amRyLTI7GkWOOSITZe3hDluAKFioBBRcBgYp7CngaDM/uoFt4tkemWWHBA74CvCRlMLWi9EXyzXyPDLUh1Wr9fMtjGyxujTC1QqAyY1ARNphYovLwxyiWDbXyzXyPN/dNX/APMW1rBby/oy+Ovb+eUY3MoqwxRVhliyth0nnhzFzf8uhdfLSwnO91JdrqTucuruOH8Hjzx1h6mH5NJWVWY8too0yem8+Tb+7j+vEJmLakiO83B8o31SBIM7OHhsbf2cfLEdMqqI1TWhNutn6+WVJGdZicr1c6s72q47pd5PPV+MdPHp1JVF6W8JsK0sT6e/riMa8/I5usVdaQnKmQlK8xe18TVJ6byzJwaThqWQEWTTnmj3rJ+rpqUwML9GlkeiSyPxNw9Ua4Y6eD5NWGKcmQqAyaVgfbzv7TMIN0lSHcJFpToXNhP5p3dOsdmCarCJlVhk2OzBG/uMjijABZVmKQ7LB7togqT83sIPjkIx6RDddj6OSYd3t4H53aDJdWQ5rB+llTDGbnwzgGYmNaKn5gGn5VY+KVVrfilVXBWnoWf0Mb/uDR47yD8Kh+WVluZ1TS7JWf3q3zrswlpUB2xfsamWD7a+k+1W7+f2629/9qoNZ5D+EPjT7HD4io4r9Dat3b7mwFv7YXzu8PiSkhxQLpTsKjc5Pyegrd2m0zKEtSFaTefv+4lsbDcJNUhSHcKFpab/LqXxJu7DCZkCqpCJlWh9vhllSbpTkh3wqIyg9/0lnhjp0FROi34SVnWd57XXbC4zXxWhgV3D4bbN5oMS4aaiElNxGRcauv5t7pO52DQYFG1xokZKuflq8yrjDA0UaEhZtAQMxiaqPBdbYQpaQ42N0VJUiWSVInNTVFGJTpYUhekn8dBo2bQqBn08zhY3hBios/FNn+YREUiUZHY6Y8y0efqgO/ptrGoLohLtgr1DuF3xfEloRg9XDbWNYUpjWj081jfOSXFTbpdZlNzGI8isc0fbvFf4LQxvzbA4rogQd3kvbJGKqMauQ6FREUi4TB8P4+DZk1vGf+SumDL+D2KhABqY1o7fFMn+B3+KIlKa7h6CN/LZWs3P4fwu+L4xLbjqQ10vJj9i/bPV8UdtX/KHnv2BT754H0e+OMfuPPmG7n8uhs478KLcTqPfJ/2o3bU/lm74FdDuW7GlzQ0RaipC9G7e/tM9LY9DVz3pxV0z/Ny9V3LGNzbyz3XD+zAgQ6ENJastQRmkxNUvllezUWn5/L9Dj/hqBWcz19bz6njU/hmTT3jezhYusWiaiR5FL5d38j5I50s3Np68Vu4NcApw71sLInisUs0hg2W7QmT5JJYsCPEeQNVvt4WZm1JjJxEmW7JMksOxHhxTYQX14QJxEzCGmyv1jmuUOH0vjaWHIhhmCavrIsQjJkUJkqsq9SpD5uMzVHYVK2T7ZVYfFDjnAE2lrShS2yt1jm2m8riYo0x2TIr4/qyPofV8jiowdKSVvzqcp3jC9vjXTJ4bK03iKUllg+HLFhaonNiocriYp0x2QoryzRcisBjFywu/j/23ju8ruJa///svU9v6pIly0Uucu/dxjaY6tBbILnUEHITQi4lCaEkYAMOkBAIJYQQIEBCB4MB01ww7paLXCTLlixbktXLUTm97D2/P+ZIR8JSLnwvKff+WM+jBzPnPevMnj0ze83a71pL5/JxEv/PSJkFsH1fK986OY9PtzSwaFY2G3dJbkGaR2XN1ka+d3EB67Y39eB3l3bwrYWDWLu1hUUzMtm0uw2zJkh1mVizvZVrLxjCuh0yQHXxzAwqjwf5w2vVHKjw0dwmMwVkpllwu5LzZ32RpP+IWIz1u9o5d1EW64q8LJyayp5yP11BnTS3mbW72rlmaQ7r93RgHmsjHBNsKPVzzgwP6w74WDDWSdGxMDGdnvlz5VwXO+tixBJc1Y1VcZaOtrDhWIxZmWZ21Mt7mWI194x/cYtBdxHSrQ0Gpw3R2NkimJYp2J3wSqZYYGuT4MJ82N4CsgaZ/PeSXJkJY1wK7PZ2c5QVtrUIzsuT9IxuKWqTNIttrTA9DXYnGFgeM5T7JOe5yNsL75U0jh1tEl+cwLtMMkDyvMEKO9sE3RlrqwIwN1N+Ni1Nobi929MpdVyQn9SvJPSfnNNXv9ssvbfbWuH8/GT/bWbY0SI4JUde2/R0hd1egarI8dnWLLhwqMKOFoHNJL3Y25sFS/IUtjYZzMjUKOsQdEWT43lxgaRzmFTpsd7WZHDqYI0tjYJZmQq7WpPjv6VR4g+2yxzTANuaBKfmy+DAmWlJvMcif/O8PNjRQs/47GgR3D5RQQhBuQ92eg08ZgW3Kbn+itrj7GmXvOmPmmK0Rg3qgoJCt4lDiXzPTpNCVSjOTF1wyJ+s6nvIH2OUXQa/jXCYOZbIZ+zQFKqDMWakSDpEt1QHY4xzW0/AOzWVqmCUuKAPvj4ss3BsbQ+SZzOTYzVxNBjlWCjGsWCUjW0BQkaiOIwrSkUgxgS3jXJ/hMpAhPaYgcekEjYMqoMxzshyURmMYtekQVwRiPbgRzjMHA/HJQ9ZUyj3R5idaqciEMWsKAR1QUM4TsQQSXwolii/ncRXBaMIks6cHrzd0md8uvG14Rh6At/dn95j8HXJlwkivPcr6BNCiHv+Z13618rXFUQ4EAc6szsISwi2b9nMEw//hsojFTz+zHPMmb+gD/Yrlf2Gr8iB/gpcYvhqfN1vONBfTv5NOdDdMmTKbykY4mF7cSN/uP9krrt8PNqwJwGIlF1N+bEu2jsjdPiiLH9sN5d9ayg/uWJ0Hx3Bri667TpfIE56ioXmtgjpplhPsJ3TptLSESM7zUJrbRfuBN/eHzJIc5toqO4gy60RSKR/cloVGVAnYuyuDnPDq21s/nke/ohBmkNjf4WP697o5NrZdq6c4eD+tT52VkW5fqaNwgyVsZkaD20O8cr+CH+90E2eW8FlUXhpX4QPj8RY+W0XbX6DLIdKe9jAZZYXEIgJUm3J4LNg4pln10QyOKkX3h8T/GF3FJsJfjrbSjAx7RwmTsALwyAQU5j5oowUr/iBi2Bc7hNOc6/gp7BA1tkQBGIKqTalV7CUwpTnff/wIMLQ/stobouQk2mjrSOCJ/HqubMzRHqqhaa2MNnp1mRwoUWn2RslJ8NKW0cUj8uEiMfwBXXSUyw0tUXITgQjCiFw2jVavFGON4X57QuV7C/v4tGfjWfWpNSe+dMdvGiEwxLfHiM73YK3M4ZLNRLzRxrRze1RslLNdFa1gwJOq9oTvOj1x3H4A6AoPfOn2aeTGgj03F+HGVqDgiynSkNzBJelez7QM/4uPd73/obBg0FHRJAYHoJxSLEotPjjieC87vkD3gikmqAjKkjUzSDQjQ8YpFvoi49Kb25nlJ5gx4AObpOCNyJI6xev0BkVPfiuuAyO7A/fHoX0L+DDuiDF0r/+L+IVRRryKWZoi9DTf0WTwXnd/em+XkVNXm9bRJBugYiioKD0jE+GLYG3ACg949kWFqRbIaTLIMLe+PZIcj32xmfYTxz/DJtCqz9+Ar6pq5/7FYUbtwssGhzugmsLFM7OU7loiwS9NddOddDAF4eYIVhZF2ek08wZ2RZsiQxAYV0ghIWumIHbpJDIVodFheawitukEdAlDxmk0ehIBAa6NJVownazKMngud74sC5AgYcrW/nVqEy6TfS4IXi6pp2pHhtz0xxs8QYo9UnDs9BpxapCcWeYz71BLhzkZoLLSkfcoCoUY31rgBuHp2NSkMGFX+yPAIvatz9WReaa/mL/I0KwqS1A1BAsynD+t/ioECxLBBHeOSpT4uNGz3h+mfG541DTPz2I8JfIo/KX+VEB/K82oP9ZoigK805ayLyTFvLeyre59juXcvb5F3LG0rMZO34C+UOH8uWG/Bv5Rk4Ur9fPkaNNTJ08jKJdlYwtzKOhqQNF9zEox8Oh8iZmzxjG3gN1+NpbqG/y0djsZ/6sIQgBY0dn4nKacTpMnLFwKKs+PcqVF43p0X+s1k+XP8r0CRnsPNDKY3dN5ZwfbiY3y8bJs7M5fMzHrEnprPqskdZEWq7dpZ38+qax3PhACT86L4dPi6ThftrMNJ5+t57Hbx7N3S8eZ8oIyYHecyTAfVfm88vXm/iPBSmsL5Ve6CUTnPx5fTsPn5/KnzZ10R40uONdL8GIwbJz07n9Q2m0N3bpPLzBz+AUjVe9OlFd8MyuMBOyNVYejOKyKFz8hg9dgEWTf0tHmdlRp/PGgTB3nmTn11vCPZXM9jXFuPMkB3d+FuKayRY+T3ihF+drvHAgyoqT7TywNcLkRNDYEW+cTIfGy6VR5uVpbDwuH66Lh2q8sL8vXkOwpylJ6dpaF2fjcR2nGWYM0nixJMaKRTYe2BZhSraGpkj8HfOs3LUxzNUTzWw+/s8JItxb5uXPb1Sy4papPPxcGdMnSA700ZpOvn/JCO59qpTrLh7Bpl3yYbdoRirPvl3NfT8Zx+9ePML0cSmoGOwq7eRn14zkvj9VcN2FQ9i0x4vDpjJ9fArPv3Oce388hpFDHIwrcHH9vQdIcZm44/ujeHl1HbdeVcC6HW2IeJzTZ6fz9Mo6Hv9ZIXc9VcmcMS7iumD3YR/3X1/Afz12hB+en8embS2EooJTJ7l5Zm0bj16Tx92vNzI9W8UAimsiLDs3nZ++1cb3xqusr5LjuWS4mef2RPjNmQ4e3RVhZGpiPjTrPeP/3ZEKmxPp3k7KU/nbYZ1fThY8UgITE9ziknbBrZNUHjsoODsftsrhYX4WvHZMcMcEeOwQTEjEOpV2wE3jBA+UwmXDpDcXJKf4/VpZwOOxcpiQ4CiXdsENowS/LYNLh8L2BH5uJrxbCz8dK3iinB5Oc4UffjDS4DdlkuKxPeElnpcBbx6H28YJnqyQObABjgXgByMFDx5M6leB2ZnwZg3cPj6p36zC/k64qRAeOAiXDZX9t2owI1PwehXcOUnwWFnf6715gmDFfri8AHa3CaKGwoIchVePCn41VeGREsG0TIgbSs943rvH4LujVHY0GegozM9ReLXS4O7pKk+U6BR2V/5rF/x0ssT/x2iFzQki6oJBKq9U6NwzU+PJgwajPN33C26dqLBsP8zOFOzzSh74+UPh9Sp5UKoPQaEb1jcLqgLJ9Xug06C4Q673aakaFlWwsTVKpT/O1NRE5byAztJslTfqgyzOsFGW8EKPc5nZ7o1xVraLD5v9DElwiI+H45yV6eDdJj8L0hyUB6STpNBpYUt7iItyPX3wzRGdUzIdGAI+aQn0eHDdmkpHTGdWio0Pmny4NYWOmM7+rgiT3FZWNnThjRs4NIVX67t6jD+nppJnM7GnM4QqoDoS51vZLlY2dH2hP1a2tAd7+jPMZsJI9L83/mgwQm04TnvMoDWq9+CH2kySY94Lf1KancO9PMgrG7q4KNfD+pYAWYkgwj74dDuH/dET+vN1y5fxQPuQAYJvAS8JIT7/2nvxbySKoojD/v65ybF+0rANJAOlKBvoNWuX18vzT/yOg8V7OHLoIH5fF2PHjWfqjJnccNOtFPSqfDigZ/qreKD10ADYATyX/RS4wPiKOvpr/6r9MML9NovYie3C6P9+GfH+vbbCONEAEfFYP0gQov85IvR/jhGT/L3+r9EfiHLwSBezJqWxbnszC2dkUl0fxIiFGZrrYEuxl5kTU7nh/gNs3uNl9FAHigK1TWGG5dp56vZxNFZ30twR45rfHOHxG4dz+SlZpF9QBEDZk+Opbo4wY6SDDSV+5mQJ/rK5k2c3dfHxLXmU1EVZXGhn9752hiQMjuoOnel5Jj4/FmN6mqDWJ9dIvltlR32chUNMFFVFGOJObIg+gylZKpuqokzPVKlLvNXJcyrsbhHM9OiUtENbRLBiv+CB6QozMuVr19+WwvdHyzRTuXZ47ajgk3p5ws+1yzK7/zEcxmaq7PUKZmWq1CemeK4D9nfA7CyFA15BfncBhbDCpHRYVSVItYDdBFl2GJamsbtZMD9XZWu9QVGTwd5Wg5JWgyFuhcmZKr+cbabOnwjicSvsahLMTxSMGOJSEQhq/YLvfCjn/b4r7NT5BcIQ5LkUdjUZzM9V2d8qC1KAoNYPkzMVtiYKUtQF4OxV4X+4B1o0fjEpU0IGWMv9rYmB1uZA66emtp17nyimvilIcWkbgVCcYYNdjBvp4bbrJ9LaHua0+bkU7W9laI4FRVE4Vhtg9uR01m1rYuHMLKpqOhBCMDTXweY9bZw6N4udJe0My5YGx7H6ELMmpLC+qI15w03UNMt7MSTbxtYDnZwyPZVdu1oYkimDk6qao8wc5WDDAR9zB6scb5N9z88wsa0ixMIcwZ7jMYamy/lc49WZPsTMplI/s/LNHO+UY5CforG9Jsa8bIXiRp2hCYOvptNg2iCNz49GmT3YRF2X3HMGu1W2V8tD2b4WgyE9BUEMJrgFWxsNZmX3XS9F9XHmZCkcaBfkO+T0qO3SmZCmsL0FZmRIYxAgy2Swt11hTiaUdMgAOqlf9BSUmZYGDSEwBOTYFPZ1wKx0ONglAwYNAfUhhfEeyamekiYLsigIsm0K+ztkcF43HiGoD/fFN4cNQCHHRl/9NgGK0lPgZqcXpqZJXjTIfMt7O2RA46Euud5BXt+EFEknmZ4FjaFkAZRirwzWLPEKchMFQasC0uhfWQujXaAqUkeBE5YMgikejdIuwb2lBg9M1rCqglv2ynv0xlwbzb0KphzsMgjGVJ4+FuHOsXbcJoWWiCDTZJOUDWffgimlHYIRTnO/BUEqglFG2JMFelJNKsfCMUZ/ocBKe0wn32Zie0eQta0BrhqcikNT8ZgUnqxu58xMFx6zDBKsDUX5uNWPioJDk57/c7JkcF+GxUT1F/QLIWjvLrDSpz8CgcIBX5gpbisB3SDDYoJEwZQci4kPmn10xQ2qQzGcmsokt5URTkuP/i8WWKkIRimwy4IpjxyTp7xrh6RKfChOukU7YXy68ZAosBKKMtph4c7DX2+az/82iBDIAW4EhgJrFUU5pijKvYqijPq6OvGNQGpGBrcu+zXPrvqYDYdrWFd6jPt/+wgZGZmccdIclt95+7+6i9/I/yIpregk1WPmP5ftYe6UDO59qoyjtQGqG8Lc96dyWtqjjD77MxQFfnrlUC49PYcnfzGW+VNSmTHOzeyrdvD6hlZMmsKkAge3PVNN7qU7e/T/bUMbKU6N/3q2llmjHTz0kZdR2RZGZJk589EGGjt1fvjXZjw2hQ8ORfjgUIQUm8Itq6Xx8NzeKDWdBjWdBo/sCDNjkInb1oXwWBQ+qYrzSVUcj1Xhzs1RJqUrPFmiU+uXRuYfSnSmZij8oUzgtkBz4uwUNmD5XsGUdLAo8HEd7GoVPH1IcMlQ6Sk6Ixdqg7JIhscCz5ULpmWoPFVmUBsQ1AYEfywzmJgO9+zW8VgUVtfo/OGgzsvlOvPfifHEgTgPFse5bVuc76yJc9WnUcanK9y5NcrblXE21OkUeBReON3C+AyVX8w08/jeODV+QY1f8Mf9caZmq9y1JUqKReGT6jifHddJsST39ceKY9T4BPUBgyf2xpmapXLXthgeC3xao/NZrYHHAndtizE1S+XxvXGO+//necX/XeXAYS8//f4kBmXZObzuEq69dDTXXjIah83Ekis+4c0Pq7j+zq2keix8vKmBd9bUkuYx859372Tu1AyWP1lCTX2Qo7VB7nv6EHOnpPPD5cWkus28/3kT765vItVt4kf3lzBnUiqPvFHHsfowx+rD/PqvNcwe7+HHjx7B49B4r6iT94o6SXVq/OSZ48wqdPLEp16OtUY51hrloffbmDXCzm2rOkixK3xQEuKDkhApdoWbV3YwNdfEbzYGqW43qG43+O3GILPyzTywJUSKTeGjIzE+OhIjxabw87UhpueaeLQoQnWXQXWXwaM7I0zJUrlzcxSPte96+f2+ONMyVZ7YL+fDcb/gyf1xJqXBst06HrPC2jqDtXUGbktyvfzxkKA2IKsEvl4Fk9Pgvv0CjxnWN8o/twlWHIRJKfDnI1AXlAblc0cFE1PggYMCtwk2NEnvtNsED5YJJqTAc5WC+hA0hOH5o7LtwbIEvlmwoflEfEMY6vrRv61N/obbJNsmpsCzlYKGkOzTs5WyjysOSp73+ib55zbD/aUwKRVerZL7QG0Q/lQheq63G/9cJdxbAmsb4S+zpeH93WFwc6GkojxRDstLdfLtCnPSFe4p0bnrQNKp8uejMRrDgsaw4NWaOGPcKkXtcWakmnikIsRrxyPEDcE7DUFGOMysbgrSGtVpjeqsbgoy2G7i7cYu7KrKAV+YA74wdlXl/SYfw+xm1rT6aYvptMV0NniDDLObT8DbVIW3G7uYnmLHpChUhWK0xXS2tIcodFr4sMWHL2awvytEe0znu7kp2DUFAaSaVdriBgFdsL4tcIL+8kAUu6rydmMXeVYTr9d38lGLj2ePd/BkVRuVwShPVHl57ngHL9R2sLcrhFVReLrGS1tUR1Pgohw35+a4EdBHf5k/0nO9bzd2McxuZkNbkLZY8tDdjbdp9Bmfbvwmb7BnfNa2+iW+oZOvW75MFo6gEOKvQojTkSnt/hwZBucAACAASURBVARcBJQrirJNUZQfKYry93NdfSNfWVLS0pgzfwG337OcHSWHef1vL1JWUvKv7tY38r9captCvLO+kd++UMn8qWnc/cNCHLYkF9ukKfzimgLGj3Cyo8yHoiicNMnDween8a3ZyWX+9CetNHhP9M5fPd/D8AwTH+wP8FFJCF/kn5NpxmmSD89uGe2BuAHPVsCb1bCpWXqfC1wyGOr5SrhhhzSwj3adaHi2hgXVPsH9e3SeKBXsahEMcsCcbIX3l5o5c6jGijkmls3UOO4TLH47wqqjBtsbDc4r0BiTpuK2fEPB+keJ1aIxZkQKl5w1jO9dOorNu5tpbuv/7dQ38o18WWkOS7rLuia4ukCWMk/vVeDTpEpj+tIhUJvw2M9MV/h+gcKKScl9dFOr3lOyu7ecmWNmhFPjeMjgkSMhIvo/59BrURQ6exmgkz02NBRWt/j4qMVPTUiWubepCrlWE8VdYd5s6GJ7RxBf3DihcFjEMCj1hakMRHn4aBs14Rg2VWVRuoO5qXauzk9lksfGD4am4Y8bfNjs57EqLy0RnfMGucmyyDR1/9vlv6VwDPhFRZkBfD/x954Q4uKvs2P/KvlXUTj6a8/pZdj87oEVVB2t5Ik/P/8NhaMf+YbC0Vd6UzjWbmtm1sQ07vh9CavW1fGzq0cydoSTM+dns7Okg6FZJhQl8Qp7vIfHX63h8ddq+MvPRpKdamFItpUtJV0smZbSQ+G465JBPPNpK1sfLKT4aIg5WQa17YlX2GkmtlWGebc4AOEYd54iOc29KRzTUkUPpSHfrbK9Ls6iof1TOD4/GmVGtkp9r1fSu5oFs1IkhWOwE96pFqw+Lnh7icr2ZoOp6QoNian1ZpXgw1qZNzndKjmnlwyVGQuOBhRW1QgK3HBdocoxn2BNneBIFyzMVRjphrOGqLjMCnVhhckZClsbBTOzlZ7+DElV2dUsWJCr9nmlXu83mJipsiVBsajvReHY2SRY8HcoHHuvsFPfi8Kxs8lgwQAUjh79/4cpHO0dfg5VdjB7ShZrNtezaHYO1XUBhB5jWJ6LOx7eQ019gNt+MOEECsfarZLCUX08SeHYtLuN0+b1T+FYt6OVecPNHG9JUji2HOhkyQAUjs8O+Jibp1LrTVI4tlaEWDQAhWNjgsJR+yUpHBuORpmTZ6LO9+UpHDO/sF521MWZm90/hWNbgsLR0IvCUdyuMHcACseONknhaAwnKRzdlIn+KBw7vTAlFZrCSQrHFykfvSkc3fiWSJLC0Uf/FygcRV6YmkqPwTrIJjOBzMnon8Kxow2mZ8p0dCApHLvaBAc74JUqmSLw4iHQGpH47a2SItKYeMT4Y3BzMfx+qkZAh1yb1NMQFtxcLO/pjSPNvFgd47YxFgrdKqWdMq1cZcAgyyrxr9REUNGYnGJh9BcoHCUdBiOdlv4pHIEoBQ4LHb0pHKEYo539UzgqAlF8cYNPWvx8f0gqqRaNqmASf9AXoagjREwIUkwaWRaNs7PdeGM6Zf4whwNRNBS+OziFikCEMn+UhkicwTYT0z02zIrCOLct0R9BqtnEsWC0V380uikc+VYTR4IxChyS8qGQoFj0wp9A4QgkKBnxXhSO/FSJ74/CEYgy3GGmszeFI6H/66ZwaMuWLfvKX1IUZTZwNfBtZM70N5ctW7bx6+rUv1KWL1++7Cd39h8H+VVKLw+EPKHU8d9pd/XKezh2/ATuuOW/WPn6a2zftpX8/HwGDx78hW90DdCZfrIsfOUsF/0Ykl9LpoyvqmMAfD/GLwPcr4Ee3vRnFA+Yq3uAOzyAYf0PkwGucfu+VpY/VcYZC3K45s5duF0mHvrzYS46LZdTZmdwx2OHuGBJLjc9VEokEqf4sI/nV9VzxtxMrlteytzJqXR0xlhf3InLrnHns1UsnZvOH9+TkTeLxjtZs8/HxfNSufn5WkZnmXhpq4+iYxFcVpW7V3m58+x07v6gA1WFw606fy0Os2SklRtW+ShMV/nbgSi7GnQcZoX7N4dZOsrM/VsidEYFZV6D1w7HWZRv4uFdUTLsCn89rLOnxcAbgft2x1nXIPjbUcHOFsG6BpnG67Q8hUcOCnLsCm9Xy8CfaelwpAuemQd7vDAuRaEmqLC2AX46SWVNnWBCmsKjJYJDnXB6noJFg7umm3ihXBAXcKhT8NZRnYV5Gr/YHmeER+XNIzrFrYIUm8oDu2KcOczE8qIYgbigrN1gc4PBlCyNn22OMjJF5bUK2X+XWeHBnTHOHG5i2bYowTgc6xS8fCjeY/TMzNZ47XCcap9AUeDBbv07pP6jXYJXDussHJzU/05lnNI2wbJly5b/o6bb8uXLly37Wf9FcwZey/2siYH20gHWzwfrqnjo6f2ctTifK2/dwNiRqTzz6iG27m7G5TTz9CvlVNf7ee7NCtZua+LQsS7e/uQ4Zy7M5epfbGfsCA+r1taydlszLoeZ2x85wAWn5XHTr/cRiugUH+7i+ZU1nDEvi2vv3se4oXaeW93E9lKfnP9/Osb5CzN57M06attiHKgO8eL6Vk6b6uH6J6sZl2fh+Y2d7KgM4bKp/OrNFs6ZYOW2VR0EIoKShhgv7gxw6hgbD6/3kW5Xeak4TFFtHJdF4Z61AZaONHPXZ0ECMSht0Xm5JMLJw83csibEiDSNV0pj7GrUcZoV/loaY26eiXu2RQjEkuvlpEEqt22NM8Kj8MYRg+IWmQXkTwd1Fg5SWVFsEIjL+bymXjAjQ+Gu3QYFboW3qwR7vZIa8WiZrJD4YIkgqCuUd0naxNQ0uKcEhrvgnVoo6wSrSeGJcsEp2QoPl0l8bRBWHhfMyVC4t8RguFNhVZ2gJiidRU+WG5ycrfDIIYOgDkf88F5dX/z6ZsEur8za0Vu/AA52KayqFczNVFheIhjuVPikUab0c2jweDksyYE/HoGOmDwsr6yVAZh3H4BRHnirGva1S/2/OygrK85Ig2EuqPQn8feXwhCnvN79HfKzo364dKjK4+UGIR0qfAYf1BskaPMszTWxsUWnKybwmBWer4oxK83EX6ojhA1BddCgMqBz2K9T4Y+RZ9PY5I1QGYxj1RS2tkcocFh4t9FHRAjqI3F2tIcY47Lyen0nWVYTRR0hqkPS8/tBUxfDHWbeb/LRHjNY0+pnZ2eInR1hirukEZxp0WiN6dg0ldXNPiZ6bLzb6CPNYiLNrKIC1w5NY0t7kCEOM/t9YWyayrxUOwd8YXZ0hDkWjJFnMzE1xUZLROfkTCdvN3b19Kc2FMesKn3060BtONF/d7L/B30RKoJRrF/EC6j7wvVmW03s6AzREJF7TH04xkSPjY3eAB1x44TxGWQ1sSMxPr31b/IGv9b98Ut7oBVFGQZcAVwJFAJbgJeAN4QQXz+55F8k/64eaIBAIMChg6Uc3LmNFStW8M4777BgQa/Ud/9LPdDdBWViMQOr1UQoFMNuNYglTthmsybb7GYiIT9ms5bA6z14m0nviw/HsVkUIhEds1ntpV8j4Atit5uIJU6oZrOawEMkqmNOHFxicQOLahAKx7Hb+uKDwSh2u+lEvCb6xXe39cEn+vOl8XEDq6UvXujxxPXq2G1aD97Q43QF4qSnWHvSip334y2cPiedH3+ngBZvlOwMK97OCE6T/F2ZVszMoy9XUVET5IErB8u0XzaNU39Wyv6jAfTE0ijItqCqsOM3Y2nujJEeDRFI5HV2WmSauWyPiVterMOiKSw/zYk/AmkOlWa/ToowCCQ8Lo5eadoaW8M9+ZDbQoLSNsF7FVF2NMlcsTFDHl2uGaMyPRVaQgbv1sBNEyDbqpBiVWkK6GTaFEJx2R+7SaE1KMi0q3RGDBzdacVikOE20RY2SLcqdEQMLJqCw6TQHjPItJv64MNCJcWq0hoyyLApBBP6U5wmWkNGUn8it5E/apBmN52Ad1pU2sKyPx0RI5EmTBCIK8x7Tbq5Dl5lJxgXGLqO06z14JP6BcG40qc/gajO7Ddi/yc90PFYhFA4jtNhpssfxe00E40ZiHgMi1nFF4hhNqnsKfVy4FAr9z1VypO/msH5p+XT5Y/hdpoIB0KgkMDH8bjMBEJxTAnngC+YTLOYoUbxhxL5em0aLR1RstOstFR3JNMshg3SXCaaO2NkKjH8YXlNTqtKi08nIx6hPaj3pL3zRwVpDo2GhgDZLq3vegkYpCqC9pCRSNMG/iik2VWaOuMyTWFM4h1mhXpvlGyniY6w0ZMmLxADF+KE+eYwKTR2Rk+Yz76QTqpV65n/3XibotAWMciw9l0vnUFItfZNYxc3pP72qCDdqtIZM3BoYOgQFEoiTZ5BmkUhpAuEEDhM6gl46E57l8RHdAMUsGtf0C+LEJ6IjwsUtW9aPV9UJNd7r7R6WU6VYFzuP3ZNwRsVPH4Issxw/ai++JYgpNuSafu2tcL7dXDfJDNdMQO7BveW6uz0Jt0qg20Kvrjgj9Ms2E0qHVGBWbXgjxl0P9bDOrzfYFAbinP9MDfRRNEqi6pQH1TwmE0E4wbd6eGjBjhMKr6Yjssk+38sFKU8EOWgP4KCQlwIDAGLMhzkWTVsmsbaFj9Ls11kWeTGZNWkDrdZ+7v6o4bAEAY2TcMfN7BrKhHdwKrJtJsx1BPwQgismoo/bvToNysyveAX9Yd0HU1RZdq7L4GPGoJlFYk0diMzcZs1/PE4NlU9of9usybnT2I8u/X/09PYKYryfaTRvAA4CryMzMZx7OvqxL+bdIT6fxAMZBSb1BO5PAMZyv1h5RdObG+NfuH3zA6GTZnF6fNnYzKZ+MMf/tDXgB4oT3V/PynK+8d+FY9wfACPd6yfXMOAiJzYHg0FuOthGZx2wRnDueu3O3nzqdP4+e+LmFgo8xut3dLAE/fM4aybPuf+myfwzpo6AM4/dTC/euwArz0yn5tX7OLkWbJ08LrtLfz+9snc+mAxP7xkCO9/LhfduYuzWPZ0JS/dWcitT1SyZLrUv35PB4/cOJL/+l05Pzl/EB/skB77c+ak8djKeh67Lp+fvVDHyRNdAGwo8fPQ5Vl87+k6fnVRNqv3yMIfZ0938+e1bTxwaRY/f62Fk8fJd4ebDgV54JJMvvd8E788N53V+2Q6tnMn2Ll3dTvPX53FbW97WVwow78PNca49bQUrnuphbu+lcaHB+ThZel4Gys+7uT5KzO47Z12Th5tw6wI1hyO8ND5KVz3ipdfnpHC6oMhUq0wv8DKijU+nrs8jcvf72R8usaDz7Sy8ZMqfntuCqe/0c5dp7lZWxYiosO3xlj49YYASwutfLglyEy9i7AOayujVNTFmTFIoyhRJGR6msHpw02cfXspT53p4Jr1AebnyifDlgaDe+aY+d7nUa4eIfh5keBoXYRvj1D5S7nBw3M0VhzQGSmHkyIv/Hws/GA/XDVMY0uroNIvKOsSaApckq8yygnzMqX+4naD+S4Tz5XrnJ5jJces81o5zM3Q+Gt1jLsnmHhgn8H0NDnx97QLbh2jcH2xwfUjNDa1yI11YZbKJ+Vxbhqn8IsigzlZkhqxo8Xgl7NMfH9jnJsmaayrk/gzhivcujXK7xdZuG17jPm5Un95Z5QfT7Fw9acRbp1hZk21HKMzh6jcvCnCY4st3LopxoIEfndznF/MNHPVx2FunWZmTY2OXRMsyEsemG/ZEGF+ropNg/W1Ue6ebebqT8LcksDbVJg/SOWx/VEeXWDmls9jzM/5J3EKM0/rv32At0ZKP4dvZaADvO7rt1mLtdNNRc3IkP+1QM/B3pol207Jh1OWdJIzOJfnXivhssvmYkvgralJ6pY9gbcB9z9WRJc/yoVnFXDl3Tt46+kz+emDW5g1SYLWbKnjyWXzOO8nn7Hi1sn88RPpqDj/9CFc++heXv/9Qm5/ZDfTx8sYgXXbm3nsjilcdVcRv7huFO99JovKnHdKDtf/4TAv3VHIj5+oZMl0iV+/pYNHbhzNL548wrVn5PB8Ir3j2bPTuPGVOp6/Jotbe+0nG/aEeOCMFK59vYO7Tnfz0kF56PrWeBuPbvVx1yIHd6wLsmiYfLxvrI5zzzwH//lpmJ/PsfLpMXlgOC3PxO07Yjx+io1fbosyP1Gavrwtzg/GW7hhS4ybJptZVyXn/5JB8Ktig9/NNbGsWGdutgq6zrYWwS8mKdy0y+DGcQqfHZfBeDMzYFmJzkPTFe4rkevLJGBzi8HPx8LNe3R+NEp6fhVkVcJ7Dug8MAXuLRXMy4SYIYu8/HSswk92GfxwtMIer8AXh8XZCr+sMFgxReGeAxIfF0n8DTsFPy6EDVXyXi/Olh7pB6bAIyUGBd37T5vgtnFQ5YNNQRmMbFbhlGy4vQJ+MwPuLiGxP8AHxwWdMXj0cIwLhiisOy7Y0w6/mwa3FkuduXbB0jSFPV1xdnkFN49RWV4S5YphJtYk0lXOz1BpixrUhw0erexgQaYJmwoHugwuzXPyp2OdXJhnZ0ciDei0FAvv1EX4dp6bP9Z4aQzH8ZhUbKrK1flpfNTs46xsF6W+CFFD4DKZ+KjZxxX5qbzb2MVopzyZ1YfjnJbl4plqbw8eBBPcNj6u83NFfiqv1ncy2mlBU+CQP8r5gzw8f7xd4tsj2FSFkU7LCXgFKA9IfLf+ikCUqCGY4Lb2wY93WYkJWRSmN77cHyEm6IN/u6GLYY4kd1VVFYnPclPql8/T3vj3Grt6Soh36/9zda/qQl+TfJk80M8guQEvAZsTbacoinJKf2AhxPNfU9++kb8jBQUFrF69+l/djf+xqKrC4jm5AIwY6uHMRfm4nRZmTMxgUmEyaM3jNHPGSXkMy3WyaKZ8sBUMdnL6/EG4HSZOnpXJ9PGpSbzLxKzxHgry7Jw0TbYX5Nk5bU46bpvGkumpTCt09+DdDo25Y10Mz7Fy0gTZPjzHytxCJy6bxskTXUwb4Ujqt6ksmeBiWKaZ+WNk+7BMMzOG23DZVE4eZ2fqUGkQK4bAbVNZMtbBsAwzC0bJB2F+qolTxthxWVUWF9qYNkSaCDazgtumcsoYO8MyTMwfKfUMS9dYMsaGy6py8mgbU/MtKEIQ08FtVVky2sbQdI35BVY0DIalaZwyyorLqrB4lJUx2SZeKAoyJtuE26pwyigrw9I0ZuabEEKWtx6XbeL3W4JcMc3GuCwNQ0BVh0ZJi87cfHOPAb10pJlJWRqVHfIV8bxclYkZSQPOaZb5cMekGHyvUD50bttpIAT8dIfOSemy6loP3iQ5izk2hWFOWN1gsGKSiZJOwfmDVTzNgtGu7kOpikODkU6FHKvCxARnNMeqMC1VfjY9TaHQnTzEOjXBrHSVXDtMSeTlzbXDWE/it7MUktNHwWWSBupgp8LMLKk/36WwIE/DaYb5va7XZoaILlg4WGOIS2X2IKnFbhKclKfiNMOCXvhAXPSMT75LYdYgFdXo5jZL6a0/rMvxXJCnke9SmJ2jQgK/IFfFYYZ5OSrj0r4JWuyWgqEeOrq+XFDhvBk5hCM6I4Z4OHPxENxOM/On5TB5XHoPxuOycMbCwQzLc7Fodrb8jXwXZyzIxe00M3dKBpMKkxPa4zSzaEY6BXl2Fs6Qegry7Jw2L2vA/WfaSAfDsy0sGJ/Yf7ItLJnqOWE/Afqs3/kF0jAalqYxMceEy6KwaJiJKYOSj3eXGRYN0RjqUZiTMJTz3HLOOs0wP09jUqacb2YjOWfzXQqzEoZjnkMwP0fBYYK52SoT0hT0GBiJ9TIvW2GwA2ZkKKgIBjtgXpaSXF8poMcgqifXe55D8qmlftnm0CTfebSr26Ob0JGpkGeHgAd0If89J1PBocGsDIVRbpGonJDE59pEv/rHeGBUcvhxmmBRFrxbJ9PEFnokN3tepqwYOCcLxqfIVHmVfnhgGhxN8LeHOaXBnWZJ6lucrTLW03v/gampKoNsCpNSEtxrm8JYt8bSQWb+eDTCW3VRFMBjUmiN6EzwmMm0qBTKyklkWlQK7GYMIWiO6Fya62aQzURNUCfPZqLQZSXdbKLAIUct1axS6LJiVRVGOy3k26QeDQWbqvTBCyFIN5v6xeuCE/AqDIjvDkbsxg+xyWweX8S7TSqORCBhb3ymJY5N0/rghzssDLYl53MSr1LgkAPfG59vM/cY0N340U4LR0P9xzT9v8qXyQP9VUidQgjxNZRX+9eJoihiR0v/NdP/kR5orZ92s9b/UBY6FbZs2cLPf/5ztm7d2i+mj/RH7dAH8ED3R9WA/r3KsdYvj6V/D3TI76esUrbv2t/CVRcV8uhz+7nq/KHsLpEnxhkTM3hx5RFuvmY8r39QwcTR8kG1u7SdK84dxu9fKufKc3LZc1AyiaaPT+Wl92q48aIcXvm4ienj5E65p8zHd5cO4i9v1nD+wgyKy2XVt2mFLv72aTM3nJHBq5+3MX1kopBHZYDLZrt56qNWvrs4nb3H5NhMLXCwaksrVy1M47VtnUwbLh9sxVVhLpvh4I/rO/nOPDf7aiRlZcpgM69u9/OjJSm8XuRj6lBpKJcdD3P+FCd//LyL78x2se+49DRMybfw6k4/P1rs4fVd/h7Dem9NmEunO3l6k4/LZzrZVxvFhMGEXAuv7Q7yw5NcvLEnKA1rQ2dPXZxvT7Xz9JYAl0+z8cM3O7Fo8MSFKbxaHOKH85y8sS/E1CwFgcLGqih/2R1mep6J+0+X/YkbMClb5YbVQQIxQWmLNKA/uNTJ/madi8aYeW5flHPzoTRR8ndiusrKyjjXjDfxXlmE0d2FDLwGc3MULltv8JspyVeiY1PggzqZJmrlcY1trQYpZhjnUTktR+W9eoPFWRoVCWrVaJfKmiadsweZ2NBiMMqVKFziNzglS2NNc4xTslXKE0F7hS6FDc1xLh6i8kmj6HmwHeoSXDzS4OWjCucNgbLE9ByXCutbVC4dqfJ+lcGEdIk/2ClYNFjjvWMGF43UKG2T/fnkuMG7lTrfLtSYmCENkT/tj/Fxtc63R2sMdilcNNJEidfg1cNxNtYZTM5U+OuZVlZV6kzMUBGGQYlXcM8O+QZo48VWStsMTAqMSVdZWalzzTiNVUcl3ogLSryC8wpUXjqsc0GBxkGvwY83xf/xFI74Z/1/OFDcQn97ylf0QA9ULbNf3bFODh/xcu4171K++Xs9zQMFD5cebiEWM9i1v5mrLh7DI8/u4+oLCthdIve3GZMyeeGtCm753kTe+KCCCaPk/rOrpI0rzx/B718o48qz89iTmEDTx6fx0qoqbrwsn5dX1zFjfGK/OtjJf5w9mGdfruDCRZkn7D8/OjWN1zZ6mTZSHsiLK4NcviiDJ9+o5jvzPMn9ZKiVlRvbuHq2kzf2hpg6WBoue+tiXDRc4ZndES6baGV/o5xLkweZeGNviKsmmllZHmNyojDQgYYY54ww8UJpnItGmShJzOexToN3qgyuGiPn+sTE/C9r0zlriMpfKwwuGCZzFYuYzthUhfeOwxUj4INaGJ8qnQYlnQrnDIaXj8G5+ZIvjS4Y7Umu9w/r5UFaCBnw9608eKUazhks/98QCmM9sLoeLh8KHzXAOI8s7VHWBUtz4bUaODsPyrsEBn3xa5sE3eeUss6k/vMS+kEeoj+olxk4DnTAXRNkJcWDnVLvqzVw7hCFPW2S5nHRUBmzdPFgwccNCuM8sLpesK5JUkcA3l6gcTiR536MW+GjBsE5uSbWNRs9joAKv2BOqoXVjXFOzjJR6dcJ6vB2XZTxLjMXD3awzRtlWILjUh3UmeC083R1J+kWjWke+VzIsVrY3RlmYbqDPZ2hHkO2MRJncoL3OzNFlrcGGGwznYAXQlAXiTM9xd4HrwG5NjO7OkN98ApwPBw7AR/WDUY5rX3wFYEoB3wRCuxmrhuaxiZvkJZInD1dYcY4LVySm9KDf66mnWOhGJPcVkY7LT36Z6TYqAvHebFWrrEzs1wsTHewvyvMIKs0lGt79acbD5Dfq/+//JqDCL+MB7rg6/qxb+TrkXA4zCeffEIkMgDX+H+RxHXBrv2SYrF2cy0XnjmcTzbWsnhmBht3ylef6akWPt1cz3WXjmZ3iZdIgju7dlsT5586mDVbGzlpagqbdssI3fQUC2u3tnD10kzW70y+tlm/08u5i7PYe8TPlFEuNh+QO2ia28zaXe1ctTCNz/YlaSmf7evi7MlO1h3wsWCcky1l8mCV5tTYXxPBHzHYcDB52NpwMMDZE+2sPxhg/mg7WyqkkZBqg/WHglw5382GQ0nDofR4lFPH2vnscIj5I21srZQes3SnymeHQ1w518Xn5Ukv2pbKCEsn2Fl/OMz8EVa2Ho3gMoPbqrG+IswVs5xsOCLnhFUTfH4kwrfG2fjsSISuiMGh5hhXTLdT3a7z2ZEIV8xwsK4iwr7jsLs+Tnmrzg1z7eysjVHdoXOgKU5Zq85L+wR7GuOMTEse8vY362yujXPmCDMbj8eZlqqxszER9WxR2FxvcOloKG2nh9u3owVyHBCKy3RQxYnzl8csI+MvyIdNLTqHuuCq4Sp72gULMqGsy2CMW+VAZ6KSlkmwu93g1CzY25E83+/tMJibrnGwy2CsR+FA4jO3SWVfp2BpHuzyJg/Bu7yCpcNgY6MMptrdJj/zWBR2t+icPUxlW1MS//whnWVFOll2mJ2jUtRkEIoL3q1MFE8o12nJF/hjGh8naBxvVOhMzVKYnaOxsVZnY4IOsr9VcNwn2NIg/9+kCD6rTRqgtX5BUZNBqlVyZLfU61w6SmNrAq8J2NZkcFq+zPIxM0uluOX/bh7oryKxmM6H648RiX65mJV9B1sJhuKs2VTLhWeN4JPPj7N4ViafF8mA2fRUK59uquP7l42huLSNUOLBvG5rIxecNoRPtzSwaHoqm3bJCZ3usbBmazNXnT2I9UVtPb+zvqiN807OYd8RP9NGu0/Yf65c4OGz/b32n/1dnDM7lQ1lIeaPdiT3E4dGcV2MiyNyjXfL50cinJFnY0NVjHn5xTHLhAAAIABJREFUZrbVyn6m2lSKGuJcPMbM5l5zrLjZ4JQhsKlOZ9YglaJG+Zl7kMzscskIjW1NBt0cwFKvYFEubG0SzMwS7G4RKAa4LbCtWXDhUIUdLdK4tSiwo0VwSo7CthbB9HSF3V6BU5He3u71XtTrrXqRF07OSWTJSINDnRDQZRDejlbBeYMlPcOqQsSAnW2Cxdnys2lpCiWdspxzb/y+dnriNnrrn5UuAw5B7j8f1UvO86x0KEvcgqI2mJ8JnzbAjjYZkDzKI1PbPVUuWJoD6xoFHzdApa9vWHlDCPYlHAoek8JOr8Gp2YLi9uR4FrcbTHbD3o44490aZT6DzpigLSrwxQVhXXDQl/SYHvTFSNXM1ITinJrpoDJRa96iaJT7ZSnuil7V+poicca4rJT7I4xwmDkWlJ85VeUEvBBwJBhlgtvWB29TFXTECfi4ITgWivXBf9ripyESZ4LLSlA3mJ1qp8wXoSzxnWOhGN6oTpkvTE1iDR0ORKkNRyn3R5jgsnIs4SE+4JN5srv1j3SYOexPzvXu/tSG48QTjs2KwIn9B3Boyev9uuX/OY3d/1X5d/ZAx2Ix3n3lJZ556D4KCwu55ZZbOPXUU7FarSd8t4/8G3ug9WgIf0AuGqfDRHNbiJxMBy1N7XgS0TS+QIz0VCtNrSEyPRBIuC6ddo1mb4ScDBstLV14Eq+6fAEZDFRf5yU7zdIH39IeI9Mi8HbFcCdO9v6QTprbTMNxP9mpJgJhueM6bSpNTUGyU8x4ffFewUM6qSaD5q44WW6NQCJ9ktOq0NwWIdtjwuvXcdvlPfUHYqQ5TUl8gtvuwKDFb5Dt1vAGdNy2BD5skObUaPbpZLlUggm8XRO0+g2yeuPjugw2cqi0+HUynRJv6AZOi0JrwMBmUpj0mybG5ZiZmmciw6GS59FYUx5hS1WUqbkmzh1r5dyxZqKGQpZTxRs0sBk6//VRkHqfwRPfcmI3Kcz8s/Tyf3ucmV8vtvUE/zW1RfsEM6VaFVpDAmcs1uNpfq/a4JnDgrumqExwGLgSx/egDh6zQmtYcNtehdNyVJbkqNhUGUHvMat0xURPsFFIB7dZoSUEKWaFxO3CpkJnDAY5jBPwmTbBMb+M7k/EemHT4NEjOh/USg/ZnZPlmv31fsH7tXDeMJV7Z2mEdPBGBGd/mIwP+OAcC/kJisi9RXFWVupcMFLj1wssBOPw4M4ob1XoXDBCtnVEJG1jRVGMNyp0Li/UuGGymQwbPfi3K5OHgS2XWHGaQRgyq0H3eHbj9biBw6TgjUCGTaEjInCYFGa+Ffn/rQda1w3eWFXKPQ+tJSfLwc3fn87Zp47AlniVO5AH2u8PI0Ri/2kNkZPloKW5Y4D9RyEQTAQXOkw0t4XJybTT0tSBJ7EAuoMR6xs6yE7/wv7jjZKhRvvff6o7yUoxE0jkTndaVVo642TEQ333k7CBJxLus94BHBaFxvowWU41EYyYDF50GDqtQUMGIyamsTmu0xaGTLtCe1j0BC+2++KkWWWga7pVHngBLMLoM9+cZtCjOoE4pFgU2iKC9ERwoaHL+eiNQoZVoSMqedGxmCCUWO+9gxGhb/BfZ1Qayoqi9OwPSbw00r+Id2jiBHymVfSr3xcTieBd6IrDZZsh05rI+2yBVDOUdMLGFukhPykbzsyV19l9vQ0+g78clVUS75oAhW6FRevkvThrkMKtY+T96u5PXUAh1dJ3v6oLmEi1qPhiguKOOC9VR7gk38K8NCddMQO3SaE7lb5FETxyJMgYl4VZqTZsmry/vhg4TRq+uI5LU4km7BSLouDXDdwmjYBuYFMlPmIYOLQT8VFdgEIf/HuNXRR1hpmTaufUTCcuTWVlYxe7erW5TRrNkTiPHkseFu8alYVADIh/q6GT3Z1hZqfaOTPLhUNT8cV11rUG2NERYmaKjYsGeXr6/1Z9J7t7UbIeGJvz9683LrONyOsVPfp/faT1n5vGTlEU6/Lly29Yvny5tmzZstoBMPOXL19+wfLly4uXLVv2T87j9fXK8uXLl11/W/9R5gMdNfozlgdKV/dVsnBoqko4FGLvzh188Oar3PnD73FwXzHpqSkcOnSIl19+mfb2ds4666wBetYt/QT7ibYT26D/dHXQf/5lo39ju+JIHZu3H8dsVnntnRLGF2bx6jslBPxBaup8fLa1ltEFqTz7aikpTo0nXyxl885GFEVhxZPFLJw9iPuf3MPxhiDFB738bdVRZk/O5JYVO0lPNfO3VdVs2dOKosADfzrESdMzufuJEhpbwuwt6+Tl1bXMmpjKrx4rw+0y8cpHDWzd14GiKjz04jHmj3ey7C81NHlj7DsS4NW1zcwc6+aXzx4j1anxyoZWtpX5UBX4/buNzCl0ct8bjTR2xNhXFeL1ze1MG2blzteaSXNqvLatk+0VQRRF4alPvcwcYeO+VW00dcbZXxPhjaIupg+zccfbrRJf5GN7ZRhVCB5Z28XcEVbu/7CD5i6d/bVR3tsXZHK+hTvfbSfdofLazgDbj0ZAGDz6mY+5BRZWfNxFk0+npCHG63sCTB9i5q73O0mzq7xeHKS4NoqBwqMb/CweZaGiWWdYmkZ7yGBHdYyusMHxTp17TnejCIOOsIHdrPLoliBzh5j59YYArUEdRVHYUB3j+eIIL+yNkAjUp7TVoDBd4/9j772j66iu9v/Pmbm9qXfJkrst995tDNgUU4zBtBB6KCFAQqgBDDiUUBNCD70k9I5twA3bcrfcbbnKsnrvV7pt5vz+OFeShW1C8kLe37u+OWtp2Zr76My5M2ees2efvZ/98tYQY9N1Hl/fTlGzZH+j5PODBkMTBA9tDOOzmHxRDJvrJB4rrKyEi3vDu4VQFYS9LWrbN2DAbVvBZQGvDrualNbru8UGuV7Jm4dNGkIquXBptUl/r+DlwjBui8ayGoPdzSYC+LAkTA+nwbvFJvUhONAqWVJlsLrG5Kl9kv0tSkpre5OkNSJ5OSpQs69ZGdTbG+CdQnVsb5Okj0/wTYlJQYMkxq4Sjc7uqbG1TlLbJtldL2mOwMMTbaypMIi1Cz47aOC0CC7tr1HQIBmdrPHUlgg17ZIEp8Bnlfx2uJWHNoaJtQve3Rvh/f3dabMhCLVtkr2Nks8OmQxNEDy8KUKsTfB5ocG2GhOE4MVdBqOSBX/ZblDTZpBXyc8vYzfv8uN8ejxpun9FAvPYRu7x9N+DgXY2bS3jwy92cfXvPmfF2iLifDb2Hmzgk0UH2FfYwJzT+6quj6P8sSSvmP2HGrFadL5YXERu33i+XHwIf1uYsko/a7dU0yfbx7tfHCQ+xsr6bbUcKm3FatH4cnkpA3vHsGB5Kf62CGXV7azbVkefHh7+/mURbQGTvy8sY83WBoQQPPraQSYMdPPA64eP4p/7Xz+M16nz7sp61u5pRQOe+LSS8Tm2bnzy/voWRqZq3L2whTiXxvtb2ll3OITQBH9b28rINCuPrGqj2m+yozrCR7tDDE2E+atDxNoFn+wLs7HCQEiT57eFGZ2s8efNYWraJbvrTL4pMhgYL3gkX83nzw8Z5NeYCGny8h7JyET46y6TugDsapQsLIHBsZLHdynD86tSpR8tgVcPwIg4yXN7oTagnrOF5Upf+ck9SuViQQVsbVClsl8rVDHRLxyA+hDsaYGvyyE3RvKXvQq/tBI2Nyg/7puHYFis5KUofu8x8AsqlI60Rlf/rx1Uus57mhX++j5Koi7RpjSktzdCDzd4dLhvqPJCt4SVV3xBGQyOkTy7F4bGwqoa+KhE/XQYuwdalYFc5IdvKyUDY+DP+wzirBpLqgx2NZloCD4pi9DPo/NuSQhDQocCWF+Xznvl7XgsGnl1AdY3hFhYFaA6aDI7zcOimjaaIyalgQhbmgJkOq18UdWCS9fY3BSgqC2MQPJtjV8l+9W00hI2KAuE2dzYTparO/7bmlYW1fjZ1RJgqM/B1zWt1AbDrGxQL7plgQg1wQi6gG9q/d2O9XbbWFbnx65BY8QkyaYzMsbR2X9bxCTNbmGQ186yOj89XVYOtoUY7rUTY9HY3BwgKzr+kTEOnJrAoWsIAcvq/CTbdD6t6v5iPS7WqfrXjvi+UXxPl5WlNa00dnzfjv4rmqgOmz8pP/6YEI5rgPtR0nXHa3uBL4AQqlLh/+nWEjo2iR/P+D1WrLLteGobP6Jt27COrz/5gB0b13Ngz256989l8KjRJKakEA6F+dWNvyM+IYFfX3kpV954Cx0F4Y5fYOXwMY79C1rNcOyFzTz2dYr3GPTvaSc9AXpnOXBa2+mX7SA7WVfp1oYDuxakV7qd9NgIvzhdZV31SLMTOiuDeEeA809KIDuqgD84RyfW2sovT09mVHKYpAkqRjArOcIl03zEBOu5cJiNnGRFPgMdNryVlZzbR2OE0URitjqeGWnkogE6nj2lXJgVIdulHsoBWQaePcWckxJhcGMtsbHRggWNIc5OCmMvKGNOkkGWrhb9PkkmloJKzk406NdQj8sdLZBRH+SUmDBidyVnxUoyo4ZDVowBBVWcGW/Su64Bh1Phk+vbmBUH5p4aTvd14TOdJsbuIKfHSLJrGzg5mjuUXOvnNB9EdtdwqkeSGQ4iTZMUtyC8u5ZTfZKs2jDTrWAaBqlVbcz0QGBXkAsSVUEEKSXlcYLBsQbra2FgazMxVuXRSa0PMtMLgQMNzHDDx7slCytgWpIqLPDbzV33eKAP+oWCBHzQXtJGZSN8ctDg5BSN09M0WqtNpvg0YiI2+tokXqugImBiFyG+PaSjIyholOxrNSn2mxxs1ZiepDM7zUJdWD1niXbBxAQDly4YG2fQ26Oesx5Ok3eKIuTVSdyWCGdnKBpLdggWVMCvt0imJMHMdHWds5vhjm1q3Gvr4Kr+khibIM0JK+oF31VITsoQnNtX9bOnJcLSMskJmRoz+tjIjcZSp7lgWYnBqdn6EQVNoKzFoJcXzu2tMyJBkBzdSUiymtjR8AmTc7IFGW6F7+MQuCMRzsqEXKdBbCbU+QVfl3YZoLOzINMFQkj6uMGHydk9BEN8kgRLNAnSJQnnCOJ0yZxsQbpb55GtP22SzLHa0qrh/xLedgx+tB6HH13WY5OYw951vGD7Vr547x22bFjH3u1b6Nu3J+PGDSe9R38qKqq55rpZ9Oubwey5f+SueTdDYg8AtOPsrp1x3tjO//cfrf694toRncc6suV/e+sEMNrI7YKTO079e9WvupbHDo2Sm3+TiZTQe5ByYGRneLHEppEzMo5r9WR6Zqng3HElLWQPS+LSSxxMHJFIr7FqnD3SXFgya8gaaueqxCR6pis+HF3eTkasyWX2Zibleskerng4K8mG5q0ko5+TyzweshPVfB5ZG6GHI8gvIyEmZNvI6aE4PkUzsLgNstItXKJZOwu4FFYFyUjSuWiIwdg0nawkNS9TbCa6U5KeqHHhIFUAKBIyGO6HjATB+f1NxiRrZCVKzIhJmlug2SVp8YLz+0k1/02TIX7IiBfM7ScZnSjokah2WtLcAotTkp4gmKtJMqIFU4b5ITMOzuujQq2y4yUSQZoLrE5JZrxgbl9Id5oIFD4jFs7tBaOTILMjadgFukOSFic4qw9kRAvKDGmTDIkT4JCMSoKKti58fq0kPUHjfCE7n9+hfvWd2ojwcIHk1EzB9HSN+Zu71s7eXrhggLqepX7Be8UmG+oh3R3mF706CrhEcFghxd3O+TmC5rAkrw7iHQYttBJnh2V1YfZGi8GcmyVIsGmMjGslziVJdah1qqJdkmxvZq5dMjimnaqAul+flwXY4zfZ0lrPBdkWUh1h3igKk99ikuwOM7eHzuCYdg60mKzYocZeHzYZGN9EvBtSHSaGLlhSJZmVpjEhwWRIbDvlYY3vakxmpQmmJEUYFddAqleNsSpgIWAI+nubcTgkQ2LaohViBUn2AJleybCYVnxOSZxFgpBUBwR9PO1IXZDrC9PHp4GABJtBnENnkC/MyAYLm5siR1zfEDPR6e8x6BVS1znRZhJj1+ntDRHGSmK0wEptSCPDZTA50c5O/0/Ljz/GypsL/E3K47ksIfrZ34CL/92BCCHuF0LI7/1UHvG5iGLKhRDtQojvhBCDvteHFEKEhBC9vnf8DSHEV//u2P5TLdDezuN338bvL7uQxJQ0bnvoMfIKK3lz0TKKDuwjJSOTdxavZMz4Cdxw1WW89NY/yOzR43972Ee1xuYgB4uamPfEWiaOTuOq3y8mLtbOguXFfPz1IeJibFx95yomjEzhoRd2U1jSSmFJK/Of38X44YlcO28TMV4Lny2r4rNlVcR6LVz/4E7GDYnlmU/KOVQe4FB5gIffLmZsro8b/nyAOJfOlxsa+XJDIzFunZteKWVkto0/LainqDZCUW2ERxc2MKang4eXthLj0Phqd5CvdgeJcWj87otmRqXpPLGmncONBocbDZ5c086IVJ3bl7UTYxcsOhhm0cEwMXbBk5tCjEjR+Ut+iJIWk5IWk6c3hxiaILh7bRifDb4tNvi22CDGBvesizA8UeOv2yKUtKj413f2mAxPEMzbEMFng8UlJotLTLw2mLfJYHii4LldBiWtkpJWyd/2mAxLENyfb+CzCpaUmayslPiscP8Wk2HxgucLTEr9koo2eGmvZGgczN8m8VphaQWsrAKvVR0bGgcv7pWUtUFpG7y0Xx3743aVlb2wQt3PFTXw+y1w/5Cue3x5T42/7DXp7ZE8sNNkTTR+eEmVyZpakxs2h9nWaHLDlgB37wpy784AT+8P8aueVt4tifBBaZj19Qa93DoP5DpJc2jMybDxfmmY6qBJddDko9IQ/Tw6t2wP8NCeEI/vDbK2LoIp4ZsqRfjfVJkcbDWpDEheKwyzsUEtKqtqYGG5yXfVknSnoFdUsqqfD1rDgjK/uj6PjNM5JUtw0xALS0pNlpSa3DTEwkX9dJ6YaufpLWGKWyTFLZJntoaZmqEfdX+9NnHs+7vPZHiiYN4mA59NdPZ/rPt1Zrbg/J5dL+gd93dRiYnPJrgv32B4guC53SYlrZIyPzy/W82f+/JV/8vL/09v/v3TFgqF+OuD93HlWafg9ni5+Z75VFbks3HDl9TWNmCxWNi44StmnTaGX1z+GC88cwO5A//3+NFq1Zj35DoOHm7i4OEm7ntqPRNHpXL3k/nE+ux88s1hPvnmMLE+O7/6w2rGDI7nged2HcWHNzy8mzivhc+WV/HZ8irivBbmvV3K2H4eHn6vjKKqAEVVAR55v4yROQ5ufqeaWJfGl1v8fLnFT6xL4w9ftzImy8pjK/wcbjA43GDwQn6QUWkWblvcRoxdsHB/iIX7Q/hsGnetDCp+2xSiuNmkuNnktV0Rhidr3L06RIxN8M3hCEtLDXw2uHd9hBGJGs9sj1DSKqlokzy/yzhq/q+qlMeczyVtkhd2d+e3lZWSJWVH81t5G5T6JS8UqGP3b1HP1IoKWFIu8drgga2SYfHw6j5JqV8ehfdaYUmZyZIyE59VnXNYguDNfbKTbzuer/mbIt2fX5vgjvURVlYqzvu6VPJAvsHIhK7n9/GxOh8VmiwoNjGl5KMihf2sBN4plLy8X3L9esmL+yXn5Eke2GHy4C7JqHhV+XD+bklhq8RrgdsGCK7upVEZgAyn4On9ETwWWF1rsrrW5Ityg8s2hsirNXjncITKgORgq8k3Ubm8RZWqFPfSqgjLqruOpTkF7xyO4DdgdPQlY2aKxpuHjc7+h/g0nhxmIWRCbozg7SKD6Ska9+YqpZNBPsETe9X1XFmjpEc9Fnh6f4SBPsHbhw2qg5LKgOTd4gj9vRrPHgjjscDWJoP19QZui+DFwiD9vToflIaoCZlUB0w+LQvSx6PzalGAczMcnJfeFar62uF2+rgtfFsd4rDfoCZo8ml5gD5uC68dbo961kNsbgrh0gVvl/jp5T5CJuUnaj/GAz0UePhH4FYC1//PhsNe4IQjfj/SHXo78Hvg8ihuHrBYCNFfStnyvb95CLjofziWH91M08Q0DBACTdOOG77xQ237xvXc8+urGDh0BB+tzic2PqHTs/3oH27FFxPL46++g2EYXHHRXG6+7U6mnXjST/1V/tv+H20t4e7b7zE2wZAYyY4mtS07JFaVze1oiypM1tRCXq3EKsCmKSF7pwbl7RKBIGzKzt2RpgjMSNYw6Xqo60KSBJvAHo3le+twkGU1EaqCkhkpyuPYHJYUt6mxFbSYjIrT8FoF6Q5BeUDS0y1wRz2ydl0wI0VjcZXJSSmqwENHGxEPT42Bj4+xGdNx/iOb0/KvP8P/06bO2XUfvi412VIHO+oNbP+HtY2klBiRCAiBiHLkv9r27NzOnddcTnJaOp+t3UJKWjoAXlcpDz/8LE1NzSz46g2sVitnXfY4l/7iJOaeO+Wn/ir/bf+PtsZgd36064JZWZIFJSop8oZBGkXNXZiPi0w+jhrN/WKUnr0hwa5BWTsk2FS58/1KiIWqIFyWA35DxWQDFPphcAydsc759ZIPSiJkOkEVgIa2iGRVrTKKF1eZnJ6qni23RdDPI9jXKslwCrxWgdMiyPUJdjerYzHWLo6blaaT7DC5oqeFlw52D6/yWY/mQs/3uOo/0RzH4OktjWEK20yG+iykO/5DOvhHtB8jYxcAZkgpV/0T3BRgsZTS8UO4H/j7+4HzpJSDj/GZAMqBZ6WUD0WPOYFq4FYp5UvRYxJ4HGVoj5VS5kePvwEkSinP+BHjkEvKjp2w0hHC0dbawlO3/45927fQ3NCAv7kJKWXnD4Cu68QnJZOYmkZiahpJ0X9T0tKRUlJbVUlNRQW1VRXUVlZQWVbKnY/+mZmzz+08n1XX2b11M9eeewafr99GfGISD9/+O9558RmefO5Fzpg9h8SkpE78cUM4zLyjjx0vWfC4SYTH2IAIHTuJsK6iiJr6NrIzfKxYV8rMadms31zZGcJRWNzCuOFJLM4rY+JgF8UVXVuWqzbVcPLEFNbnl3WGcBwqb2fMoBiWrq9lQo6VkhqVjZuV7GD1jiZOHBnLunVV5CSrN9TD1UFG9Xbx3boaxvV2UFoflbOJt7DmQICpyZLNZWGy46LyQA0GIzOsLN/VxtgMC2XN0RAOn8bqQ0GmZFnYWmWQ5VMPaEmzyaAYyCszGJuqUxbd4s/wCDaUhZmQqnXb4i9uNhiWqNQSxqRoneWak+2S/GqYmCrYXndkSICSjlLZ7oLo5cEiDYpaBROSBTsaJJkuVRFqdyNMShGsrZaMSlR40zBIdQo218H4JBWTmOGChqBKShscC+tqYGQCzN8q+bZChQ1MTxWMT4TFFZIndsHgWEX231UrA7n9OBE+/20/bXtmosaNa7o8yktP19nbBKOi86ExaDIwTiO/RjIhRbCjXpLu1jh5wc9fifB4/NjRQoEAz9xzOzvWr6WlsYHWpsaj+FHTNOISkzr5MTEllaTUNNIzMtF0ndrKSmoqy6mpqqSmsoLSQ4Xc9uCjzLnk8m4OCq08j/ETzmbTxq/IycnioYee4Z57H+fpJ6/lvDmTSU9P6BrYv8J5x0tm/BeSrAMt9Zim5HCZ6is7w8uK9WWcNCaeDdtqOkM4DpW0MHZYEotXFjJpROJRfDhtmJ2Nu5o7QzgOlbczItZk2TYVwlFS0xXCsWZdJVP6OckvCnaGcByujTDMEWRFYYjx2TZKm7pCONaXGUzNtrCl0ugWwjE0SSevVIVwdPBbis1kU5VkUrrGttquEI4yPwxNEKypNBmdrPitI4RjU43Sjt5R3xXCUeqHIfGCtVWycz53hHDk18pOfusI4Sj1w5A4Ovmtsq0rhKMLD07NIN6uUeaHwXGwtgZGJyr5ulhbd/yupq4QjtJoCMfaakkvnyRoqOuQ5oL8GsnyCsmHhSZnZWv8dqhOmV+S7ICLlkboHwP9YzQ+Paye1abjhPD/t/207dURPjY2hHmxqCsZ+fFBHiqCJoO8FvIbjM7CK7UhkxyXzo6mMC8ebv2Py9hVAn2BHzSgo5jKf4L5Z62XEKIMFUu9HviDlLIQJaWXCnzbAZRStgshVgIT6R53vQH4GHgM+FEuWiHENahY73/a6qoqueuX59Nv6HAeevN9vLGxxMXFY4nG7t112YXkfb2A3BGjye7bj+T0DOISEhGaRl1VJVvXrUEIQVJqGn0G5jJ++kkkpaTSZ0Au3piYbucyDIP7br6eW+Y/QnxiEt989jHvvPgMA3IHsWr5Mm6/6QZe/ccHnHnOnB8z9P9YW7e5go8W7OeCs/pxywMrWfbBudz1SB5nn5xJe8Dgm5Wl/OPpE7n1ofU8fusQ3l9UDMDcU7O4/YltfP3KNF75uJi+OWrffcnaGt58cDh3/mUPj12bw/vLlOzdudMS+cNLh/jy0cH86eMqpuYq/NIdLbxyQw9eWtGECXyar17zZ4/0MO/TOj68JJaHlrQwvY8yuJcfCPLSebE8s76d34x18vleZaCf1d/GC/lBBibqPLY2wNQe0cpexRGenGbnkfVB/jDOzoJCZaCf3svC2wUR+sXaeGpLmMnpiojXVRj8aaKNR/Mj3DnawsJoZa/TswSPbzV4dbqVp7dHOivV7WkwuWO4hSe2RrhtuIVFJSbb60yKWlT4xaczLPx1p8nEFMHKCpNt9UqndGej5NYhGl+XSlwCJqXAn3dLXpggeLZAEjKVIZ1ol7wzVfDn3ZJf9VMJMqC2FzfXSV6aIHi/SMXgrq9ViX2PDYNHClRSzH/bz9/e2CcZEgc7GiDJAQjBE9sj3DpM57GtBkWtMCVVUuaXvDzVwtM7Taak/m+PGpobGrjvql8Ql5TCA6+9gy8unvi4eKw2tX361B2/47M3X6X/sBHk9O1PSkYmsQkJWKw26qoq2ZG/ESMSISk1jZx+/Rk7dTqJKakMyB1MbHx8t3NJKbn+13/gzjt+TU5OFqtXb+Seex8nNTWOTZv3c+udr/L8X3+HXS80AAAgAElEQVTN1Vf+syTrn6e1toXZtL2a975QikcXnNmX38/P49s3ZnD3k/nMnJIBwLeryvj7n0/gxXcPIE3JB4uUalIHH3711+Hc/8J+Th6nKq0uWV/LK7/uwd1vlPDwFVl8nKe04OZMiuetVU0MSLPx4Oe1nJir9OyX7fbzwhlu7lvcygMzPHy2S/Hbmb0tzF/Zxnvnenk0r51pOWoNO1ATIcOj8fC6IHdPsPNV1CM5K1vnTxtDvHGKg6fyw0zJ0BGGyYoKkycm2nh0c4Q7RlpYdNgk1iYZm6zxxNYIr5xg5ekdBhNTNVyaZHGZ5LFxOk9sN7h1mM7XJSYaMCNT44ntBi9PUfx2YppKLl5TZfKnMTpP7jS5dYjGygqTNkNwSobgyZ0mf5ukc9t6g5ogDI41sevwyCiNp3aaZLlV2Fq2B24bonXiPz5kkuhQu1RrqiSPjtW5c4NBSxhyPCpp99RMjUe3GhyOct4Xh02SXbC1VjJvlI5Th611cKDZZHg8nN9b54bV//Uw/Cdac0TyeWWQYT4L25ojpNo1KoIm75YG6OXSWV0fJsepMyzGxu6WMFdle/is4jgvv/+D9mM80K8Dg4DxUspjBtkJITRgHbBTSnnlsTD/dCBCnAZ4gT1AMnAPMCB67v7AaiBbSll8xN+8BmRIKU+J/i5RMdtbgd3AWVLKr/8dD3R7mx+bXTnTQ8EAuqaz5tuFvPLwA5x20S+55OZbOz0hRyYRvv/iszx73124vT4mnjwTgO0b1hGflMzcq67l1DnnY3cc7aQ/lrzdey89x9IFn/P6V0sQQrB762YO7t3DVZdewhsvv8QdN/+GZ195gxmnnc7br71CU3UF55xzDpMmTUI/MnHnZ/JAy2ANpikJBCK43TaaWwJ4PXbaG0sxDBO320Z1bRspSW7qGwO4NJVJr2ShHFTVtBHvCuGP6iS5nZZOWbqq8rouWbqoLFRVfZBEEaK1Q0YqKkuXHG+jurC+U2auJWAS77FQUdRAss/SKRvntglqWw3iwyEa2gw89qjMU1AS59KpqGgj0a13w1fUh0jyWGgMmN1k2tzII2ShojJSFkFVU4gk1/fwIUmMXaO23STB0YV3CMGBJoM+MTqNQRO3BR7ZbPBRocn5vTWuy9WItwvK/CazFnUR89LTLehCEjAlpy7qeiQ/mC7o7dP44xaDz4rh3B7wq36Q4NAoajGZu6Lr3n0zQ6jqU3bBg9skX5Qq/NV9FL4pZGIzQApoN5VcXIeMVHMIEAKnLmgISeLtGg/sMFlRI5maJDglRaMhDIsrTfa0SAb5NCbE64xL0AkYEGvTqAuanVWolCydRmPI7NzmBLVl1xSRpDqgJWziiE7pQBTfEg4RZ9cJGLILH5Zkew2awmanjF2bAWk+QV3AJN4uaI9ef6dF0CwESU6Luv5H3N/kONtR99ep0Snb1+3+Bg1iHJaj7q9dQl3AJMGhdeu/qTVCnNPSbTxSSNxWnfqgVNc/aOKyQn3AwGnRibFr1AVMkHDSwq658NHJGn1idJqCJk4LjP3M+Nk90F/uK8XpduNvacbl8RIOhYiEw2xft5oX59/DuBNncumtd+JwRit3hsOd+BULvuCxW36DxWpj0sxT0TSNPVu3YHPYOffKa5l9wS/QLRZcbjetzc24vap/u9WKzWbD39KCx+ejze/n2y8+4R/PPsrGDV9itVopKNjPmjX5XPnLQXz86WrmXvQwz//1Bi48fyrv/GM5+/Yd5qxZozlh6iCs1iN8Rz+TB9oINCKEIBxW98tq1WkPRLDJAMGQgdWiJno4YmK36dRU1RMXYz2KD+MdAeqbumTvWtoMfK1+qhvDJMV0l90s319LSoxVyVxG+a0lKPG1+Dtl7zr4zR42qPGbJLm7z+fahiDxTstR898hobbN7Db/jZCJPwKxdo3agEmCXeHDkQgeS9d87pj/MmLQZmid87lz/kv1PB45/x3CoCGsquZ14F/ao+KJZ/eAe0eo/oUQnHwEP358AuT4dA40GVxwBOctPlVd7wSHxv2bI3xRDOf2FNyYq2FIwUlHylSeopHh1qgPSl7aI/ngoMl5vQR3jtCjMp0a1f4w8TatUxazY/zxNtH5/AK0heGtA5I39ktOTIU5WVAXVLt662pgWJzSmz4hSfXRZoBL06kPmsTZRFS2D5y6YE+zpKfH2o0P/SGJz26hMWQqWc8OvEVxqpLJ68K3RUxibN3xmpCKP0OSWHsXXpcGAanhtWrdxqOLCG6L3sn/zWETpw4BQ+/k58agSYxN0BSUaELr5OeO8QhTIDStG//HWJVEIpqGQxM0RyQxVo3mgIHD0lWZ1WPVaAqbxFg1agIRvFYNuyYoCxjMK+jy8jw00IdNaLij479nT+NPyo8/xoAeCGwGFgC/llJWf+/zZOB5YBYwUkpZ8JMMTAgPUAj8CWWcrwZ6SNklahw17tOklKdGf5fAXCnlR0KI54BJwEjgNf4FA3ra7HOZdemVrFm0gLrKCoKBNvKXL2Xg6LGcdcU1DBw5mi15K2iur6e1qZG2piZamhoZNW06J597AZFQiIVvv86nr/+Ndr+foeMmEAoG2bZuDe3+Vr7aWUjcEaEXcLQBXV58mCtmTOHNb76jZ9/+3T7LcFlpqK/nw3f/zoLPP2Vd3ipOP2s2o4b6+PSzVZSV1fD8s7dw3nnR/PFjaageT4f1ONJ0x+qjqqyUJ19cy5zTB3LnQ0v55LXzue72BZw5PY32gCpM8NyDU5l7/Tc8fMc4vll2AL8/wtkzsrjnz1t5/y9TuHn+aqaOVNusyzbU8efbc7nkzi3cf2Eqn69V5zxjXBzz3ynlrdv78MhrheRmKG/WdwXtPHZBEle+UsGdkx0s2qv2z07vb+fhZa08N9PBPd8FmJKlFstVJREenObgwRVtzO1nYXG02MWMbJ2n8sM8MV7joXyTCSnq+VpbJbkt1+SOTfCbgYLlFepZmZ4m+KhQckM/wRMFkjHR5JGNdZLf9NF4YJfJ1b108qKxaWPidV4tjHDfIBvPHYgwIlqQ5PNSg+J2SZwV7hhgZ0V1hEVVXQvBU0NdfFAaYmiMTl5tmN0tJlMSLdQEJRdk2tnYEKag2eBQm0msRTA/18OrRe1sa+5aCOb19/FuaRuz01y8W+qnNGAwzGfFb0h+le3lvTI/Az1W2gxJUXuE89PdvFbcwpmpLg62hmkzJcN8Nj6vbOvED/VZiUhJQUuECzNdvFzUygCPTl59iASbRlVQGcJnpzooa4+QExVc3dUS4ZIsJy8c8nNxlo0NDWqcY+KsvF8a5OY+Tt4taWegTzH9tkaDX/W08/rhAGelW1hbp67NhASdt4rCzB8s+Mt+2ZkAs6lBcnM/jWf3G1yUDSuiTDUtGd4+DA+M1Hh4u2R89NFbVwN/GCa4bYPJjYN0lkWT8E5M1/jwkMntw3Ue3GwwIUXdrzUVBncN07h9o8mNAzWWRefDtETJs/vgT8Phsd0wNho1sL9FcGlPwbztJtf00VhZrfDj4zVeO2Ry7yCdv+43GBWn4bSYrK2FWwZ0x8fZJaPi4Ln9Xf3Xh5TUVqYLXp8suGOT5DcDBXnV8Np++bMb0De9/gkLnnmUyx97kbfuugEpJSW7t2N3uTnl6hvZtOhTBoyfyoHN6wkHg8SnpLE/fz0zL7+Wwu2bGTh+Moe257Nl6TdougVN00jr1YeiXTsIBwP8/tmXWfTWa9z6/Cu8fO+dDJs8FafTxYal33D9g4/xp+uuZM51N/LoDVfx5AdfMGDEqG5jdFos+FtbWPzJh6xc+CX5eSsYPXU6o8ZP4rtFX1J6qJCb7n+I2ZdcrvDHUP4Y6D1O0Hlk6XGOH8PgjhxbD59g1TEPt9QVc9XvFzNjajYAi1ce5vlHTmTu1Z/zx9+N5NPFynd0zowePPvmNp64dTA3P7Kdk6ITeum6Gh6/LptL5xdw/1U5fJmnnB5nTk7gydcLeeaqDG59q5wTBqmduk0FzdxzRjxXvVHN3bPiWLhDcf/pvXUeXNzCqxfEccdXzUzrrfh2W3GQ26e6uOazFu6a5mLRvhAYJjN62Xh0TTsvzXJz97J2pvSwYNNgSZHi2+sXtXHHRAdfHwzjtcKEDAuPrw/y/Cku7l3ZzuRMCy1Bk63VJvOnOLjh23ZuG2dn/uoAO2pMZuboNAYl8yc5OPWjrvXpxB46j0xzcOOSdmLtgm+LDAbEazwwyc6TG4M8c7KTi75qo7BRMjZNU4bzZDvXfdPGluouu+flUxy8vD1Ellfj430RxqZpnN1XFZ2ZP8XB75a0cflQO+vLFV/N7Gnl8fVBnj3Zzn15ISZlqrmyutTg/sl2/rQuyEUDrXxbFMXnWLg3L4A0lVRfVbsk1q5Koj8xycK8dRF+N8LK4uLoetRD58P9EW4daWX+hjAT0zr4x2TeOCu/XRnmlm54JZP59DQbD6wPd+5kHmg0uW6olZtXhLrhZ+boPJkf5q/T7TywNsTEdB00yZoyk/sm2LlpeYDfj7Kx+LCBxyIZn67WxyPxNk2yvNTkvnHf698wOCFN4+mdJk9NUPw5KUkSNlWRnTuGdPHV+kolATotWfDifslDw6LraZxGRHbx+QM7Da7rK1gZ5fOpyYK/HTD541CNt4tMeqmNFjbUw20D4JfroDYIfTwwOl504u8frDM776d1MPzTEA4pZYEQ4lLgTaBECLER6EjFyQZGAybwy5/KeI6et1UIsQsVGvJZ9HAqcGRVkGTg2GwEDwAHgV/8q+fuN2wkyZk9qDx8iL1b8plx4SVk9u7HqGnT+frvb/L0bTczYso04lNS8cbGkdm7Dw6XiwVvv84Xb7zC9Q88zPnX/Ybzr/sNVaUlbFu7mq1rV9FzwEAEEIn8sJTK+u+WMv831/Dru+YdZTx3tLj4eK654UauueFGQqEQNpuNeD2PefdewZhxv8JmO15A9E/X3G4bJ0zMoVd2HKdO743XY2PmtF4MGeDEjDpGfR4rp0zLoleWjzFDEjBNSc9MDzMnpeF1W5k2KoGRA7tCV3xuCydPSCIzyc7kQSpGMCfFzkkjYvA4NUZk2xl4RDau16lxYq6bnFiYmK2+c3aczgm9bXisMCXLwtCUrsXQYxMMitfI8miMjW55Z3k0pmTouHUVT9pRuhnArcOEZEGGC0ZFDeUMl1JzcOkwJkGVclVNJc6NiddIc8KwWIX/usJkTwu8WaSM574eJeRf3K5IvCGsvJuj4nWqg5L8RpM+bo1ku2BojE5vt0Zvt53tTQYnJ9tYVBUiyS4Y6LXQ320l3ibY2hTBoQtGxFqxarCpMUJft4Uku06u10qiTeOsNCdtEUl/r4219UEcumCgx0qmUwcEDl39DPDYSLDphFwSU0KiXWegx0rIlMRZNMoDEWpDJhFTVcrKcOgM9lr5pibIRckOerosrKkPMSXRzqYGyHR20YxDFwz2Wkm0awz0quNJ0e/p0CDXp9PL3fUy6dRhgFcj1SEYEo3RTHUIRsbpOC0mo+ME/X3d79eQWEh3Kb1XUP8flahCUcYnwaDYDrwqBjExRSPTDaMT1fFMNwyKVwvchBSNQVED3YiohKEJyYIMN4yK4tMckgmJ6txjEyBauRmNjmOCdCeMiOuQr1LE7tJhVJxGP6/ArkPEPBrv0CXpTo7qv0VCWZvAY+man8MTBOz/+RN74tMyGTBhGqs/fIvSPTsZMfNMpl18FWV7d3Joez4lBbtwenzYnC68CUlk9umHlJIdq5ZRVVTIwPGTOfWya+k/ajyDJkzhw6cewWK10trYgEASl5zM8Kkn4HR7GDZ5Kr2HDsdusRIOBXF5vGT16cfzf/g9E045/SjjuaO5PV5mX3olsy+9knAohNVmw2GxcOUtt3Pj+Wf/W4neP3dzOizMmJrNmOEpncd8HhszJmfQM8vLtChh9czyMnpQLF63hZPGJzEyN7YL79Q5eXQcOakOJg9TEzEn1cHE/m48Dp0TBnkY0VPFUmuBEF6HxvQBTrITrEzsrXZGe8SaTO9jx2MTTOttY3i64lWLoRRnTuhpIztGZ0KWFSOsYqenZVtxWwVTelgYmmIBKQkaim+nZVvI8mmMz7DQGjDJ8mlMzbLgtsLkTAt5pREWHlSGq8cKU7N0PFbYUaMWkW+LDK4fbiUrRjA2TWNDhclpPXUmZVrw2GBKpoXz+ls4JUeNL8srmJKp+v/VUBvpHkGsQ7CjxsRjgxOzreTEmny6L8K0LJ3BSRpTMi1cOdTK4ESN0eldfOWxwoRMC0OSNDrMpR4+wdQsHbcVJmXq0c/AH5bsqjVoj0je2xMmEJGkuTX8YcmJPSy8uTPM70ZZGZMaLaVea5LmgknpOpkewdjoi3qmR61RbitMTNMYnKB1G8/kdI1Mj2BMahd+crrCTzoC79BR1/h7+AyPUOudFSam6wxJVLJxAqGuZ4ZOlldjbKpE54j18Ui8KQkZR/dvBE0y3YJJqV382c9jRNMNu/NVfx9EpOK6cYmicz3t4wIZfT7dOtH1VHbyZ7pTcaRLV3KqHQpLoPj5vCwYHw9VQe0o/E/dfnQlQiFEH+AWVFxxVvRwCbAE+LOU8sBPOjAhHMAh4AXgj6gkwmeklA8f8Xk1cNv3kgjnSik/iv5+H3AFsBbw/lgP9AcFh7n/sgtobWzksjvuZfmnH1JUsItwKMjsq67jxHMvwO3rkiTo0Dk1IhHuvGgOFcVFvL9x5zFJ+nj6px0e6NeefJRP3niZ+59/hSknzjgmNsN1bOM4Xs9j27YDDB95BaNG9adnThoffvDHn80DHWipZe/BWjZuKeeyC4bx5AtrufKiEWzevJdwxGT0kCRe/3APt1w9jLc+3svI/i6khE076/jl2b34yxsFXDwzni17lE7qyAE+3vqqjJsuzuGDD/aTm622gDcf8HPR9ASe+6KKCwZZ2FasYviG9bDz7toWrj8plne/rWZYlPi2lkc4f6iDV1c1c2Y/Gzuq1Zv3kGSdDwtCXNJb8NlBUxEBishm99F5a3uI03to7I6WYM2NE3xxIMwFPQVflULHOrW7EU5KlLxfLJiVrsT4AZZXSRZVwBlpgn5eZdg1hyW3besKs3hupJXqaEb3ymqT5TUmM1N0+ng0+nii42mUnJRsZUFlmBOSLBT61d9nOXRW1oU5LcVGXl2Ynm4dwxAcajOZmGDlm6ogUxJsFLUZNIehv8fGmvogJyc7WFcfJNtlQUrB4bYI4+LtLK0JMCHeTpE/ggR6uCysqw9yYpKDDQ1Berp0JILitgg7W0IUtITJdFrw6CqD26YJCqKlZquDJgZwTY6LdgMmxNtYXB1kcoKVw23q+me7dFbXhZiRYmdbc5DMaGW1Q36DyQlWFlWFODlZ7/y+vT06y6vDnJclWFZt0jd6ffa3mpyYrLO8JszUJMG+lmi2u1fwdYXk0p4miypUBTFQSUSzewneKYSzewh2Rx2DubGwpEIyJ0fjq2LZaSjvapCclSN4+4BkdrbGruh8GOCVfF4suaS34KsS2WmI76kzmZEK/zgMZxwxH3q5BQsr4IIealwDoob+zkY4OUXj41KTU1I19rVIHBaTvl7BwnLZDW/TTXY3waz07v1brNA/RvBFCVzSSxWvGBSncfGKnz+E48J5j1N1aD8bv/qYK5/8G5u//pyC1d9hmgapPftw0bxH2Z23nB6DhgJQdWAPY087m2/f/BsHNm/gwOYNXPPYM/QZNpJVn7zPKZdfw+rPP6Ln4GG47ToHtm1h2pzz+fLVFzlx7kUc3LENu81Gr9zBPHvn79m7ZROTZ53FzAsvYdCwEUeN0Wk5tl/IYbFQUVrMmcMH0H/ocHwxsbzw6cL/33igP/4kj8lj09m0TX0+elgKr723i5t/0Zu3PzvAqCEqBjp/Ry0XnhzL038v5NKzerA5OqFH5sby0ecHuHxWGu8urmZEP2VZbNnXytxcK89/U8fFU+LYekhx/5BYk3c3tnL9CTG8v7GVEVnK01xQ6OfMQQ5eXOvnohFOtkU9r0PiJO/tCHHtGAcf7gwyLM1CJGiwvcrg3IE2Xt4S5PxcxbcaktxExbdXD7fz8Z4wq0rCLDwQYVy6zptnuHh1W4gTs3VO+6Brzbl+hJWbRtn5ZF+YvJIIiw4ZjE3TeP10J69tD3NefwvrygzcNsGQJI2P9ka4cqiVT/dFGJJwBJ/3tfD6jjDn9rewM7oTeCR+0cEISa4uw/qcfhZe2x5m7gBrN/yHe8JcNdTGJ/vCDE1Wc2J7tcGcflbe3R3itF4WdtSYvL0rzOYqgxi7YHKGTmtYyfWVtEgONpo0BiQBA/463Y49OrUGJ+p8uT/Ehf10Pi80Og3fnXUmZ/fUeGOPyZzeOrvq1HgGJWh8VWTwiwEWPj/YhS+oNzijl4U3dkeY09vCznqFHxwv+OSgweW53fH7m0xO62nhjV0R5vSxsLPORAjJ4EQLH+8Pc8VgK58diHQayttrJbP76N3wOpIBcRqfHIx06z8ciLCrAc7MFry932R2tsbO2gimKRgYSze+6utUyaAFzXBaGrxXrHhuZ4NA0sXnc7MEy6sN+kWT+Pc0S05NE7xfLDkrQ3by7YAY+KoMLs6GrysEvaNJ+R3494okLx/6aXfofkwSIQBRA/nXP9WJv9+EEE8AXwLFKM/yvYAbeFNKKYUQfwHuFkLsAfahYqRbgX/8QLdPoqT1ZgPHYb6j259vuYHSA/vJGZDLYzdcjTcujmvn/wlpmkw8ddYx/6ausoI/3XQdUkr+8tnX/7aHo6ayHE3XSYrKNP2rzet1Mf+Bqxg1sj/nX3gfoVAY28+0nAaCETZuKefbFYXMmTWQr5cf5ISJOeTvqKGhKUh8rJ1vVpTwq4tyWbyqFItMIhg2WbqmktknZ/Ht6gomDnayKl8lwcT5rCxZW8MVZ2ey+aCfQFRabfm2Js4cH8fSLU1MTI1h9X61AMS6dJbt9vPLST7yikKdojorC0OcPsDO1iqD4akm68rUAhDrEKw4HOGcbCtryrtCJdaUG8zI1tlSq3RIN0U9HzE2jS31cEYWrK9RxUZA/X9iLORVq7fiLQ2KHBdFk/G+qpCMD0k6ZNbTHVAeoLPM7Y6mjnKvFsrbw1zSw8qLhV27EhUBCJiwtTFCrldnd7Maq10TbG8ymJ4EO6KZ9JgaO5sjjIy1sLM5wgCvhT0tEeyaTm3IZHdLmMkJdgpa1DUQCApaw9HkihB93RYOtUWISInbItjTGmJivJ09rWFsmvKKFrSGMSXE2zTmpLnY6w8TMCQjYmyUtBtck+PhvZIWerittEUkBa0RRsRY2dUcZoBXZ2+rOrfLItjZEmZqoo3CVoOwqa7DjiaD0XFWtjcZDI0R7I6qoHgsgq2NBrPSLWxp7HoJ2dJoMiFBZ3+LpK9HsK1R9eO1CDbWm5yXrbbzOtqGepiZrbL4RyeoTH9Qcd0Fjao09rojtnTXVUtOyhSsrpSMTpRsiuK9mupjTrZgXQ10yDjtaYKJSbC2FkbGQX70XdOlw4Y6yZkZgo31XfgdTSrmcVO9ZGisZHujxGNV1//7eLcVNtTBCSnd+3fblDdqbbXknB5qe1TT/jOyUsvfeRld17HYbLx042V44xLIGDCIky65mi+ffQyLzc6edV0552UFO+g9fDRL3noZb3wCo087i0M7thKTkMiO1d8xbe7F7FqzUl1jj5NteSsZe8rpbF35HYPGTWTX+jV4fTG4PF4O7d6JlJLSwgPs3771mAb0DzWLxco1d9zD4FFjuPOKX9Dc2IAzKfknvT7/btu8s5r0FDffrVUFf+NjHXzzXRFXzu7B4tXlnbjFq8uZNdHLkjU1TB2VyKp8FaoRH2Nj2wE/rW0Gy/K7HB7L8hs4rVciS3e0MGmAm9V7VYxoTD8ry/e088vxXlbs7XKo7CkPM72vneUHgkzMsbGmSIXGxWo63x0K8YthdlYUKb6SEZNVxRFO7WNlxeEw4zMsrCuN4LWBYcKKwxEuGmRjyaEwS6MhDevLDUqaTVaWKGN6YIJGQZ3JzJ4W8itN/GHIKzWY3sPCsGSdbdUm/hCsKo0wLk2npEXSHDKJtQtWlUa4YICV1aUGOkoqLq/MYEaOReEzNDZUKK48Er+j1qBvnOprdanBzCh+QqalM1Qjxm5lZYnBhQMleaVd60VeqcEpPa3sqDEZnCjZUGFQ0ya5YICVnbUGt461cV9eiMFJOoOTVGjHvIk2bljcTqITlhZH1xe7YEetyZk9ddZUdPHbmgqTk7M0VpcbjE3R2FDVhd9cbTK7N6w+Ar+lxmR6FuSVm4xNkWysVJ/F2TXyyk3m9u2OL2iQTM2EVWUGY1I1NlQaaBrE2E1WlRmc39/K6rJo3L7oWh+PxPus4LGKo/o3Q5K1VZKTMvRO/tzZAO0R9ULRja/iVeXGjXWSacmC9bVqPS1olgTNLj6fla6zvRHMKH9urIepyYpbxySocDYAnxXW18HsTChopnN96cBvrP/p+fFHe6CP+ccqtONLKeUP6xr9uL7eA6YCiUANKu75Xinl7ujnArgPuBaIQ6l03CCl3HlEH9080NFj16NitBf8WA90/5GjcXm8BNrauOnxp0nLzqGptoaElGOnudt0nTsvnkOPPv249r6H0HX9mNW34Ic90Hu3b2XedVeSmpnFvGf/RmZG5jGxP+SBPrJNnvprfnvTXM47+xiVw34CD7QZbKCtPYzbZaW6xk9Ksoe6+jbcunolPDJZMDnRSVNtLSBwuyxU1wVISXRSWVLRlSzoV8mC1XVBYgMt3ZJjapoiJMdaqdpbi8+lrmFrwCTOrVPdHCHO76ctanC7rIJav8QXCdPQbuKJvkH4w5JYh0ZpdTCa7KW+h8sCdQHwSYPGoOxMpmmLgNMwONhi0ssjOiXcnDrct1l5m09Pg9sGqv4f3yNZWA4zUwS3DehKLgGdw22SHLdGc1h2biU1h0Q0eUISY1VGM4CQOk0RSaxVo/lNO+0AACAASURBVCUsieZG0hLuSp7wWQRBE8KGwH5EskVrxMShCwIRjaAJbotK8PBG8aZUhnhLROKL4q1ClZ4PGLIbPiKVnrNNgw/L/dSGTMbF2sn16jgsWjd8rLWrjK1do7P/toiBI6qpHDwCn+Qwu+E7xh8yIzijep8BUxnR7UaYWJvovD4ODRrDkOEyaApL3EckC/qsgnYz0vmy0nG/WjVBokNd62hINm0RiHVo1AUk8fbu+MYwJDi1bvOhpV0lxXwfbwmrsuEJdiVj1dF/fUgQY9U6ky878EJqNIYhziY654NdN2g3Bb4jkjXbDbDrKjnn+/1rVmgzhBpPUBJvg6DUmLLw5/dAZ+UOxR0bR2t9Hef/4RHSomFm4XY/7phYmutq8MYnEmpXXOL1enjplmuxu9yc89u78MbGYbNoBPyteGLjaKqtwZeQSLCtDbdNw+F201RXS2xiEi0N9Tg9Xmy6zqGCnTz/h9uwWK3c+sxLxMQnkBAbd9QYf8gDfWS75ZK5TDxpJr+85mi/0P+GB1oGKqlraMfnUZ7gltYw8XEOyooqSE5w4O9InnZZKCsuJyXBQV1jCJ9Hfa8WfwSv0UZ1Q4ikWGs3/qwoqCE5xkp9awRvNJusqbJF8WeLQZJHoy2aXOhoD1DrN0ny6NS3mZ3JiM1NIeKcGjV+k0SXoC0M4UBE8a4QJLm0Tr6977s2/rErzCWDbdw01k6iU3DX8nbe3x3m4lwrN4+xk+jSaAiYeKyCWr9KEot1iM7kxdagKlfvsnQl7zYE1MsmQuAP0Q2vkiOj+IAk0akS2TqSxb+P78b/0f6bgvKI9aIDb5Dg1I7CxzuEGo8NXt8RZklRhGuH2+gdI8iOOQbe1oXv6N8rTGrbJQkOuuFrA5Kk7/GPPwxxTu2Y+LoAJDrF9/AqIfD7eLdNdOI7xiM0EU2OFN3w0jRxWY7GS8PEHxFH4cNt4WgyJSQ41HhsRgQhBP4I3fiqwa/ul1OHhhDE21USowUBiE4+bwhJkv4/9s47OoojXfu/7p6eHJRzJEogQAgEiGCiwQGcbWyc1xFnr9frvAbvOqxzzhFjG4MDNmCDiSZnkZNQRBLKcfJMd39/9CAsg+/de6/3u3fvuXVOH45qHmqq3q6urnnreZ/XrHVbn0/gvWHl5HoewbcENOwG8RS8SxaZsDr8/zeI8Df/oyBI6HJzhZqm7fz38P8qRRAEzepwklMwhLSefRAliYKx41n08fvc++wrfPPeG/QaMAiAo3t3c8nMu5n/2gu0NDTgdXdSMGYsA4aPZMfqlVxz7/2ntP9vbaBXLVrIiw//ibMvvQJJljEbjUgGA4bIwu/u7MDd0YEY9DMgfzBnjJ9I39xcBEFg25bN3H7dJfTLzeLrr/6GLBtYtGgDf5n1ATs3PX+qR/w/uIH+4YcNrN1YxoP3TOShJ5Zw87UjWLtuH9XHOzlrfE9eeX8r770wlT89vpyRg6MIhjS27m7guUeKuPWhNdx5/UBWri0lGFQ5c1QKb3x2iDdnDeehpzczOMKN2H6gjSfvzOGup/dxy6QolhfrG/GJ+S7e+aGel2dm8cwHZfRO1jnQxZV+Zl0Yx32fN3DDIAOrS3WvyNgeRj7c5uOvo2We3hBkUIQDvbte4ZHRZp5c4+G8njLrIl7o0SkScw+GuC1X4+PDkBcTOUprUUHRWFIDYxJ0KSTQtZEf/MWMv6mHvogd7IBLU+GDCrgoVez6xTvQJbCoVuPOPgY+LFPo49DvRYVH4/J0mTdLQ0xNNrAz4mXNc0j8WB/i5mwzc6sC9IrsEEvcCpenm/mwws+URCN72sOgQT+nTpe4LsPClzV+etgkVEWkzBfmohQLn1V7mRBrYr87jIBGjt3I6iY/M9JsfHvcS7pZAkGgyhfm/CQrX9Z4GBtn5qgnRFiFfg6Z5Q0+Ui0GtrYG8Kn6ZtckwI1ZNr497mdCjMwBj27P/g4Dq5oCXJ1mZVG9j5TIC7vcq3BZipk5x3yclWTo8qIPdBlYVh/kD1lmvor0H+CoR+HqDCOfVvqZnGxgR+RockiMyPc1CvfnqLxTShc14lCHxq09Rd4uVTkvTfdGAAyPhe+Ow4MDBF7a352qcU9/eHI3zOgpsqFev18jEwUWH1O5d4DES3vVLk78nkaVP+bpqiVX9BDYGPFaF7pgfhU81B9eO3ySA13WCdf2EHjukMYl6bp3GSDfJbCwBu7pK/JuqUpfp4BJUNnfCbf16o63GiA/GuZXdm9fMuhUkLv7wVN74PIsPYPZnFL+6RvouIxsAh43d33wNUvfeZH0fvp62FRVxpSb7uLLvz3E2Cuu5+DGNfr9HTOBL558hD6FRQR9XjLzBiEbRMp272L6/Y/y8aw/c+ZVN7B3/RrsVgu5w0bww5wPufXJ55jz9BP0GpiPyWRi89IllOzdhSMqmr75Q6g7VokrKpqUrGwOFe9gwLAiijeuw+VyEZ+ciiRJ3D7rSd59+gkKRp3Ba395ELPVyl9efZulX81n/LnTePCGq1h5oALHLyh58N+zgQ521rB9Tz3xMTp1rbHFS0FeAuvWl9C/dzS1DfranJJgZclPh5hUlMDDL+9naP/I+rm/jdnXpHLPKyXcemEqK7bpTo+JQ6P58Ksqnrkqmce/rGNwD50Dva/EzcPnRnPf/CZuGuNk1SH9nTA+Q+K9zR6en+Zi9k+dDE7Vd2TFVX4eG2fj/mUebhxqZnVZiLXlQQ40qaQ5BL6dbufJdX56RYs8vznQNa4z0iVuKTCzpjJEWFEZn2Xkkz0Bnhpn4alNfgYlSGiKxp4mlYdGmHhkrZ9rBxjZWB0mpGiMSTcwZ1+Qv40x88yWAEMSJEIa7GlUeHC4iUfX+bk2z8j66jCKqnOi5+wP8rfRZl7aESAnNkK9+AX+mv4y6yJe5V+2/+rOIL0jQd57GvX+PLrWxzUDTKytCnfDPzFK5u9bQwyMl/CHNZaUhbHLAjvrVTKdAg4j9IsVmdJD1vFFRp7dFmJA3AkOtMIfBwnM3qpyVV+J9REv7qhkkUVlYf5YIPPczl9QU5pV7h8iMWuLwlU5BtZHgp5HJ8PcwyqzR8g8tyNMXoSaWN6mcNsgmcc3h7rhx6QKfHpQ4YmRRp7dHmJAnIiAxt4mjT8XGnlsY4Br+smsq1EwChqFSQbmHgx1wxs0leImuH+IoVv7ajjMyASJz4+qPFYg8tJelTynRliDA+3d16st9RDQYHgMfHUM/pyrB0v3sYOG0LWev3BE5bL0k6eKw2IEvqrWuD9H4NNyreu9fKAd7ugDfz8AF6fBll/h7+sjcPHG/yYKx2+U/3mRGL9DGX72VK577K801ehHaXGpaUyacS1Gp5MhE6eQmK5HSbsSkjBYrQweO4Gg388Xr7xA/hkTSEhNY0DAT1A5VRNS/A1qh6hpnHHONNpbW2hvbUEJh1FVlZDXSzgcBk3D5nQSE59AosNG8fZtPPmXR0jPyOSaG2/mhaf+yuOPXsFjj3+IKCigQU7fVCor61DCIQyGX70Q/gOeZoDhA6OIsWfhsvi58Kxs+vUwY1bjgXgyU+2Ersohzh5g5lV9yYjTf1kW5NiItYa5ZXpPRvS3E2+M17m2SUZCF6YRYw5w7VgXWYn6hnhgfBTR/k7+MCGawZYAcbn69EyzBri+wExUazuXZEGaU1/I8owiruZ2rsmRyJUVHKmRID85zPQeIqbOIBenaaTa9PvQS9aQO/wMs6v00gLYIpzmJDVM0A+XLofRcQJDI45/Z1jgkX36pmddA5yTYMQhC8QbBYZEhdjRpjAsWmJolN7/OIOGqMqMjA7jEg3kO/UFyyoYKYwK0eaVKXCGiYuQ4EyqSpNHJt8RwqTK9LVEqBqagUGOEC1eIwPsJmIikltme5hOv0y+U8aGkRyrjneKEgUuGV/IyGCngRjZgIZGtFFBVWSGugTiZCMD7ZGjTFmiMEoC1chQl0C0LCEgkGgMI2kyhVGQJBsxRVKfRskSRTESva1G+thC2CWRan+YXR0+Xin1MCLaQrLZgknS24+WJYZHGUCTGRcfJi6iS9crIBJjhjMTjRTGhcmMcNQSzCoWWSTDHmZ6pkqKVbd5rQ/6OANcpGkMjA7TQ48pJdGsS0Sl2mB6Jl34QdGQYlOZmgp5UQJxphN4nYpiDAtMS9aDVgB6mAU0v8hZCRqpksDYiMxwogRFUSK+DpHxMXoAI0BMrIC7U2B8rEqsJjLcqX9vlCQyNk7F7ZcYHauSGMmIlWgMoykiZyaopJlEjLE6PsWick4K2CSBc5L19i2GML0cAk4DnJ+q0c8pEGMEi6SQZAFN0ylAl2ToQTGiDLlROubSLBgUA8lOA3NK/+0A5d+jpA45g7T8IpoNMWRMugxnkv7AGDP60aja6HXW5ZCWR9pY3Tssp6Uy4LwZFH//Bef++SmiktMxSgLm9BxaBTt5U2dgyhpAL3MMNqOENSmVgvOvpE2wk3/eDGJS07EYRezpPRlYWU7Jji3YklJIMtsQ0fCpYE9IImw00WNwISlpqVQeOsiWHxez5edVjDxnGs89cC/TrrmBBW+9giMtk8GTJhOV3ZNQKEyDuxPfr04M2/2n30Bb5dNnN0w7TZrgGHnN6Q0oOU5bbTQ4GDk2p+vv3pF/z5ysb6hTsk9ip50tERtt4vbrTfTI0NsbPqyT9L5mbrvOzJih8WTl6FSNjBQbotVMWmEst9qjuxKylB1tJbWvnVtkF6MGusgs1GVGU80aHbGtpA6P4eYYD1mJJmbNrebrA504k0RuviiNkTk27BVe3v5rGQDVnRrWvgncEhcmM06mWq1j3lY3141ycPZAGyN7WchuDkFIJTXagCnRT2YfMzc7gmTGGtDCCiNaFTLTjdwkByjqYaJHQwANSHNJmOKCZPU0crM1REa0hACMaFXISpO5STJTlGWkR3YIEEiLkjDHBcnuYeR6q5mMSMKsEa0KWakyNwkmRqRJ9MjS1+c0l4TRFSQzy8jVBpl0l44f1qaQnmLghhEiIzKMZKUoXXjZLpOVIXOTIUxmlI4fm6tQkGJgZUkAgyjwzYEAy8pCjO1j4MbhMtm9zNxkCXcl8BrRqtAnw8jNtiBFmUb6tEXaj5JwZYXp08PEzPgQGTE6vqpFoW8fG7fG+SjqaSEnkuY1zSlizw7Qp4+ZW5N0ewIcawrSO83ILU7dnn0jqkepZhVLYoiePYzc4tATimnBMCPaVLJTDNyETFGGTM9MBcWvkuIUMdpl0pMN/KFQJsMlogQUBnaopMRJXJsvMSxFIiNOJRySSbWLGGwKaUkS10gqKSYVEBjq1kiPE7g6T08olpkYWQ/tAvYYlV7JItfbNNLsAALVbo1+cQI3WFUKk0Qi05kUu4AzTqVvisjl0ZAWcUgd69ToHS9yvUVhaKJA30iWx1SbgDNBoV+KBBt/Xy3o//+5D/8FyjUPPc6CV56nvqqS+qpKFrzyPH0GD2Xuc09hc7nYtHQxm5YuxuZy8cYD95JTMJQ9mzZQVXKI0v17mHX9DJrqjv+73xMOhfjw2SfxunXvhSiKnH/19Vxz131c/8cHuO2hv3DnY09w7+ynuPeJp7n5Tw9x5S13cO2NN2O12fC43TQ21PPZRx+wdO0mYmIcjBub36UB/cJL87l95gWnbp7/E+XHVUeJjjLzh3u+Z2RhOo/9fTUV1R2UVrbz+ItbGDkkiRvuX0m0y8TSdbV881MlUU4jNz+yiaL8eGa9upuKWi/l1V7+9s4Rhg+MZuZf9xBlM/D9pla+39RKlF3ijtcrGNbXzts/t1PRFKaiKcyzS9sozDJzz7wmHCaRJUeCLDkSJMoscN9SD0NTDLy6M8ixTpVjnSqv7AwyOFHihd0KqgYrqlVWVKs4jQIXLAvx8B64YQvUePXr1SOwIZJUcX2TxtLjKmsbNVKsAhkW/eHMtgp4FKjza3xRFeaOniaKYiQuTzexpUVhS4uCzSAwv8ZPL5uBb2v9NAZUGgMqS+q99LDKzK32YJVEituCFLcFMUsiX9Z2kmWVWdrooTmo0BxUWN/iJdMi83VdBxZRZG+nn72dfiySwNd1HWRaZJY3uWkOKbSGwqxocp+CP+IOYBHFU/Atp8Ef6Azo7f8K3xpSaA4pp+DLvEE8isrZ8Q4SjBIbW3y8V9nW1f9ljR6yrDJf1nZikQS2tYbZ1hrGZhD4oMJPL7vEdzUKdX6NOr/GZ5Vhcpwir5aEcciwpkFjTYOGwwDPHNTo54L3SzVqfHoa3A/KNPJc8PZRPbHM6nr9csjw5AFOi+/n0ttyGLq3/2G5Sj+XwJxyleM+jeM+jTnlKn3sAq+UhLEbYEOTyoYmFbsBXj8aoq9D5POqcFf/Fx8P0dch8VZZELtBYHNzmM3NYWyScFr8vGMquc7u7W9s0rDL8OwhlTynwEdlKrU+jTo/vFuqK4v8bb8+xlX1+g86hwxP7NYYGA1vH9ao9v7/4UDLVjvJ/QtY/fKjmOxOytb/RNn6nzDbHSx/4RGS++Wzec4rtB2vou14FZvnvc/AKRfQdryaoM/LijeeYuW7L2BxuPju6QdJzytg1fsv01JTRUtdDcveeYmsgQXMe+J+ipcvYtvir9i/dhU2VxRHtm/m0gdmEfT76T96PIPHT0ISRW568kUaq48x4fKrsTldtLc04/N6aG9pZuuKZQydeCay2URyVjYL3nqV3CGFPHr1ZYw4c0pXEqx/pRLtMnLjg+uIdhn5emk5Xy8tJ9pl5C+v7GVEfiyzX99HWbWHsmoPT7yxj6H9Xcz82z6iHAYWrqpn4ap6XDaJG546zLD+Tp78pJLy437Kj/uZNuswN7xUzvB79hFlM/D56ia+WKMf53y0qoXsRCNPf11Ph1dl0gBdQ+yq0S7++m0TUVaRRTs7KeppYfHdyfhDGoXZZp5Z0kJFU5iq1hDPLmujMMvEPfObibKILN7jZck+Hy6LyD1ftVCYaeTvP7VzrDVMZUuY51Z1Upguc+/CdlwWkZUlARYf8OOyiNy7sJ3CdJlnV3ZS1aZS2arw3Gq3jv++A5dZYPGBAIsPBHCZRe79voPCdJn3tviobFV0/M8eHb+oE4dJYPGhAIsPBXCZBe5d4mZoqsyza71UtqpUtqo8t9ZLYZrMk6s9evu/wg9Pl1lXGeK8HBO3D7dw/zIPaytC3Le4A5dFYPFBP4sP+nFZBGb/pI/t2dXuk/1Z7SY/1cg937Tp+H0+Fu/z4bIIPPJtM4VZZv7+Y2vX+/GVVe2n2HPxHi8Oc3d7VjSHqWgO89ZG7y/sI+r2+UX/C9NOjre6U+HFTT6GJBu4f7kXl0ngh5IgqyvDuEwCD6z2U5Ak8dLWAJUdKsc6ta7378PrAjiNAqurVX6qUnAa4ZFNIfLjRV7dFabWo1Ll1nhtV5j8eJFHNoVwGmHVafDv7A1T1alR1anxanGI/ASRRzYEcZhgabnC0nIFp1Hg4XUBBidKfLg3zLEOlWMdKq8WhxicIPHI+sC/9Uj9p8p/xQOtocvZ/f69+hcsksFAn0GDWfj+25Tt38eejeuImh9H3rARSKfh5GmaxksP/4lFn37EiElTGDR02D/8XYqiIAgC0y68mNT0dB554kksFgsrvm1kw8Z93DLzBZISY/hy/moOH5jzew7zf2w5kRzjl2VLg8qnJSoFcQJnpet8sorISWtJp84pdsi63M95qfB9DYxPELAaTp4S9HeJPJRrYFndqacJRvF/5QHMf6g4ZYmpiQ7eqmzloDtIrv1UT9z/lf8rgigSlZTKhk/fomZ/MWo4RErfPLQTepenKTWH91N39DBFF19JbFzcP/xdmqahhsPkjx5LQ3UVs+d+zeKP36W9qYmG6mq2r1mJQTZQU1rCjY88/nsM7398aWo9Ncf0M59W8c3PjditIlGROJR2d5gdJbqr72htgJbOMHaLRFGunU0H3fRKNhHnPPk+u2FcNBkxMo9dnMBD87pTU2Js/3XHzb966R0rcUk/I6vKQpjk/3tf/G8r/6Ugwm4NCUIKerbCb36XBv+biiAI2sMfz6PvkMJuFI6DWzczdOx4Snbt7KJw1B+rpHd+AQc3raf/sCI2Ll3CB0/+hXAoRFRsHMcrKzDIRhLT0giHwgQDfq774wNMu+o6Pn/9ZVZ8uwCbw8mF19/ElAsvOaUv1t/wjJzuuBAgRlzDkSPHWLxkE+3tHkYW9WfKlGGnzZL1m/y836BwNNfXUlLWwvAhqfy0ppSxRVmUl+py4JmpDn7eUsPkMzLYUlzfReEor+5k2MA4lm84zhmFiZQdrY1QOCys39nCxBFxbFxVRlairj9aUR9gaB8bq3Z1MMweoDpy5JQWbWBTqZ9xfS2s2NhIXoJul8p2lYJkieu+7WRlWZhzexi4Y7CRVLvAisowf1xz8rfd15MNeMPwfYXKgjKV81NhRpb+WZJZj+RNMYnU+QWSI0f8x32QZpbZ1abS3yXSGJGfizcJ7GmDPKfEUbdKQuSIv8GvkWKS2d8Zpq/dQFMwQuEQjZR4QuTaZSq8Jykcx70q6RaZI54QPawyrZGMZXbJQLk3RG+bkWP+UBeFozkYJsMiU+IJkm010hY6Scko9wa74TU0WkMK6eZ/H3+CwtESCv+n8XFGgbcr2xgTa2FMjJUyb4g+NplOzdtF4WgIqPS0SezrUBgRF6YxcnsSzAL72lUGR4nU+IOkWHV71vqgnxN2tqoMjBKo10+YSTTDrjYoitXY367rPAPUeqG/S+c+n4Jv1bWXD3TQReGo9UEPq8iOVu0U/O5WGBQlcrhT66JwVHsF+tiFU+ZDlEHkQKfKIJdEifskhaMlGKa3XTwFn2JR2dsBBVFCV/sWQ5jjPl1TfHuLxqAogbrASQpHcavO5d7ffpLCUesTyIvSE8IUxEJj2MCFy0P/dA70Td/soHbfdtILRlF/eE8XhcPXdJykvgOo2rGB1IGFdNbryhGJaalU7d6GIyGZOXdMRxQlYtOzqD24B8lowuaKRjKaCPm8FJx1Hmfdeh8/vvkc+9etwBETT78xEznj4storq4ia8BgDm5aS+8hw2k5XoPFaCA2JZXD2zaTN2ospbt30qNnDwDqj1XRJ7+AXevW0H94Ee119TQdr6b84AGO7ClmzLnnE5OQSH7hcMRfxaaYfiMI/D+yJseIa05vxOCpWV31+t9IaeCrPKWqrqqG2GgTW3Y1dlE4yqo6SY+DPYfbGTM0nqpafSP8ypwjfPh1GTdclM6Mc1LJTrHQ1BZk2IwNXe3tnVuIPxLV+/oXlXyyoonrJ8dz+djYLordrkNtTBjgZPVeNyNzbBxrDqIFQqTHymw84mV8Pxs7yv1kxsngD1LRHGZIponVh3yM7GWmuiXcReHYVOZnXB8zO6pOUjiqWhUK0o2sKfFTlG2muvEkhWNTRZBxvYzsrD5J4ahsVShIk1lzNEhRlpHqlpMUjk0VQcb1NFJcE+qicFS2KhSkyqwpDTIiXaK6/SSFY3NlkLE9jOyqDnZROCrbdErGz+VBRmQYqW4/SeHYXBVibLbMztqTFI4T+HVlQQrT5F+0L7K0JMBz6/1M6mXkrtG2rv4MyTCypjTS/19QOLbVhhnT08TOY90pHEP62Fhz2EdRT/PJ96NTZFNZoJs9Qadw5Kf9wp5tJykcmypCjOtpZGfNSQpHZZsaGW+IERky1e0nKRxbqsOckWmguE7ponBUdajkJ0qsO6YwPEWiplMlHFJJtetKHaNTJXY3nqRwVLs1BsYJbDiuUzhq3ScpHNvqVUYli+xp6k7hOIEfliRS+wsKx7Y6lVEpIvtau1M4BsWLrK9RGJogdOFTbQJb6xVGp0jkfuz9XddHadasWb9LQ7Nnz54MLJg1a9YTv0uD/01l9uzZszzt7UTFxbPii085vGMbZpudT5+aRdHZ5/LuYw/g87gpP7CPn76YQ8G4ibzz2IMkpmew+acfaDp+HJ+7E7/Hi2wyEZ+aSmafHNqam4hLTubK2+9h408/8umrL/DyV4uIiY/n5Yfvw93RzsBhRd281fJvLOJO4+nrLUIFsbEuior6M37cYHr1StU/UP2ngk9X92/Uz5m3hZff28I5E3pxxcxvyO0Tx2df72HVxmrsNpn7nljPJef04rZHVqNpGtv2NPHelyVMGZPKNX/aQE5PJwt+qGD11mbsVgMPvHyACyYk88DLh2j3Kuwt9/LxT41MKojippdKyU2QeXtNOzsrg9hNIn/5roVdx4L8dYWHLTUh/GGYuztAfpKBWWv04JeSVpVWv4rTJPDijiBjEgUOt8OAGAFBEPiqTOXhAgOlrSpTU+CbatjdpgcAvnwYzkwUePmIik8ROOqGxbUqg6MkXiwJkW4VWVancLBDxSIJLG8Ik+uUeL88gF+FCq/K8oYQeQ6Zdyp8JJtF1jQGKXEryILAN8d9DHaZmFfjIaBCtU9hf2eILKuRudUdJJoMbGr1Ue4NYRZFFjd0kuc0s7Cuk4CmURsIs7PDT2+bkS9r24k3Gdja5qM+oCAJsORX+JZQmI0tPvraTd3wx/1hDILQDa9oUBMIs6W1O35/Z4ASbxCT2B2vIVDtD3XDZ1kMdIRVtrUFEAVY0+xjkMvMykYvLSGNSq/K6sYQA6MMvF3mI9sm8GOdysEOXWXkg7IwI+Mk3isP0xnSTwi+r9EYHivw1lGNeLPAwmqNPW26HN5rRzQmJMKzh/To7yOdsLBGTzjy2hFOwX9UpjEyTuDFQype5WT7Q6IFnjmkkGEVWFyrsr9dwyIJfF+rMShK5I2jYXwKlHk0lh4PMyTawIslwW7zwWoQ+LgyyIgYmffKA/gVjQqPyu42lb4O6RS8TYb3ShVGxUtd7Vf7NBbWqAyLFXnygEqGTWBRjUatDwRBn58TEuHvB3V1jkovzK/QAx4fLdbIdggsOqZxoE1j1qxZs0//cP/Xy+zZs2el5BWy8b1n6Dl6MmvfeIKQ10NT6UGqizeRlDuIpc/8iZiMlTqh1gAAIABJREFUnuxZPI/a/TuxOJyseOMphpx3BXt+/JqAx40SDhEOBHAlJOHtaMNgNBHye4lNy+T40UOs/vQ9rn/+XfauXsb+n5dTumsHBzeuJe+MCXz40F0kZfdi3YLPOFq8HYvNxufPzKZwyrl8MutBQKNk9y6Wff4JQ8ZO5MV7biW9Vx82L1vCwZ3bGTRyNCsWzOOKu+7j9YfvY/y0C5CNpm7j/HVm2BPlP7ImW4SK0xvxtwK4Fc/p68Ptp1RtLz6G2xPm/qe34PaE2HWgmfuf3sLf3tzPj+tqGZoXw3sLSlm5uZ7PFukb8OKDHRwq68QbUCmp8lJxzE2bWyHKLjFmYBQfLqlj8/4OLh4RzbYjbt66I5v73q3E7VPZW+5l1a4ORvS1cfNbVfRJMfPxqhZ2lnmxGEUem9/AtCFO/jS3Drdfo6w+yPtrO5iYa+XWOQ30TjLyyYYOShqCSKLAX75vZepAG3/+uhl3QGN/bYhPNnuY2NfCrfOa6ZMg891uD2vLgtiMIo8v7WBafzN/XtSBgMbO6jBztnuZ2MfEzK/a6B1v4KvdPjZUhLAZBR5f1sG0fmaeWummyaOyry6C721i5tdt5MYb+Hi7n63HQrpqyHI3U3PNvLDOQ51bZV99mE+L/UzoaeLexW6yYyTmFPvZWh3W8Ss8TM0x8sAyN+6g1g3//DovcVaRT3cF2Faj459Z6+PNCxw8tNTNsTaFerfKpzt9TOht4rav9f7P2eFj6zG9/3N3eBnZw8T937XhCWjsOx7ik20eJuZamTm3kT6JMp9s7GRreQCnSeSxX9lzX02Q1Ud8DM0wddnzky1utlYEcMgCf4nY58+LO3AHNfbXhZgT6f9t33XSO1Yfb2mLgigIPLHWyzm9jTyy0osnBOWtCnP2hRiXYeCeFT56Rkt8vj/EngZddenpLQHOyjbw+IYAiqoHQH5ZojAmVeJP64P0dImsPKay7riKTRZ4ZnuIKZkGZm8JEVL1AP5f4ntFicw7HGZnQwS/LciULAMf7Atx3KNxsFll3qEQZ6QbuG+Nnz7REl8cCrOzXsVqhGe2BJmSLfPhvtDvuj7+nh7oi4H5mqb9S5/bCIKgvbVhF664OPxenXButlppb2okISmJzrZWLDY97NPnceOIisbT0kx0fAI+r74AtjbU88PHH/Dz4oXY7A58Xg/hUIiAzwcCJKSkMuudj+mdN5CmuuO89NB97Nq0gfd/XEVGz95dffnPeKBPW07jgdZCrXR0+HC5rDQ3u4mJseHzBSHUisVipKXVS2yMjfYOHzarETXQitsTJCbaSn2Dm4R4G53N9SCgy9g1eUmMt9HS6sMi6HbrkrFr8pEQa6bkcDXxMWZsFomGlgCJsWbqDtbgD6rEu2TcPoVoh0xDW4in3y/lk42dXDnczguXxXHoeJBxz5/UQt12ixOzQSDaInHvj24W7A9yaR8DD40wYjXo0jqOcJjyToW0iEfTo0CUUaS6PniKbFlrAIyigfaQyolEeB4VRM1Ea1AlStZl3kDPplfvg2iTAXdIJSIygV8BEZn2kILTIOKP6FCqqkxHWMUlS3jCCqYI9aMtAHbZQEdIwWEQCUTwIhJuRcVhkPCGlS6qSEBRsckGOsMKdknHa6qK2XAqXtM0QhpYDVJ3vKZhlsRu+BMydkFV64b3KwqCIGIShe7tC8Cv8NEyBFSN5Y1ejKJAUbQZpyxhMniwGMQu++gyfApZ9nA3e7aFNKKNIoLg75Kx86q69FBrQCHGJOCL4C3SCWkjXfbohCygV9Flkup9GrG/wjf5NWLNEu0hlYgKIsVtGqvqdZm+njaBgmiwGQQd79OIMhvoDKldMoIdQRGHLJ4yHyRBoj2kEWUUu82HkBrGaTScgncYta7xnmjfIoXxqhHZu6BKtKz33yqpWGR9fsaYdRk7qwSS8cR4RZr9KjEmgVUNGg9u++ercNy6eB++tmas0XH4OtswWiK5dAM+LK4oPK2NWKPiCEVk7FwuO57WJuwx8Xjb2wh4Oti/7FuKlyzAaLES9HpQFYVQMIAWDuNMSGLa3Q8zYNxkGo+Vs/y919i/djm3vPgOOSNGd5O9s5oMmK1WOpqacMXH425rJT4mCgHwud04oqNpbWwgKi4eNRAAASxWG21NjUTHJ9DR2kpcjB496vd6sDtdtLe0EB8Xd1ot/3+mB7qh5igJ8acGGDYcO0BCnK1b3a33fc87nx/i5ityeH32SBqafaQVfdH1eeXq84iL1n8U3PvUTt6dX8qNF6Xz2C29cUQemNbjHaiazsWMj5LxRBZEayhEQ1uIhCiZ1s4Q9sgD0N7qI8aur8/xLgMev4rmD2AzSzR2KCS4DLS6w9jNIqo3gCdIl8xovEPCE1BRA2HsZonGToUEp4FWj4LdJKApKu6gRrRVoqEzTLxdorMzgCCI2IwCjR6VBLtEq1fBLgOCcBLvVoi3iXj9ChoCNvmX+BD2yImfO/ALvEXAHTkh/CW+pUPPztgdHybeJuGJyKR2b1/pksk7ga9rC5Fgl7rJqjZ6VRKjjby8zk29W+WJyXbcAY0Yh9zV/1+23xTUSHDIevsRWT13UCMm1tLNnqDLWv7angAd3jAxNkOXPU/grapySv+1YLi7fWwiO2pDfLbDR5RZJM4qcGk/fT7ZjSfkCwWiLCKNXoU4i4g3pBEOKlhlXTov3irS5lcxq2FddjCky4Y2+VRizQKekP5+0WXyIrKDfhWbQTsFH2cV8UZomife7/FWff20Gk9kgtTxjV6VWBOn4Ms7NK750f8/1gPdD7j0f4MHesJ1t/LOQ/fi9ngpP3SQ7959g5zRE/nkiUdwJaXy46cfsXPtGvzBEK//6S4ycnJ57YF7qS4tZc/GdWz4cTE3P/ZXitf/zOTpM5AkA9m5/bnugUfIGzKMB19+C8kg89lrL/LMvbcxZMw4/v7hZySmpCEIQtdlMhgQBeGUK9MqRl663S9Ce0ENnnqFW3XP8i+uo4cOUVV5nKtu/oDLz+/Ldbd+hNfdzvYdB3n+tdVMHZ/EOZd/TH6OjdffW8dPK/YT74Kr7/ye6WelcN09iwl43azbXMUrH+zi7NFxTP3DjwzoZeXzbw7y1Y/lJLk0rn9oMxePi2boJT/x1PtH2bStgaVrapmca+LiPxezelMT975fzdINzQyOVpn5RiWjEzXumqdH9e2tCbKrxM156fDtoSCeEOREC9S3Kjg0lXuWenliuExpU5iCKI2D9WHe3ROiyKXw6JYw6bLAFyUqG2s1rCo8tj3MkCgjTx7QaAtIHGwXmVMBeU4jTx5QiTGYWFgL21pEjBh5qzRErt3C66VBOoISR90CX9co9LTaeL7ES6xsYll9mF1tGhIyX1QHyDDb+bjKS3tQotwDKxr99LRaeaeinTijibXNAQ52KtgMBj6v6WCg08qXtZ0EVTgeUNjZ4aeHzcTHx1pJschsbvNR5g1hM0jMr20n32Xhq+MdhDWN5pDKmhYPuQ5zN/zxgIJJEvjyV/im4Kn47e0BjnqD2A1iN7wgCNQFwvzc4u2G39kRoMTTHf9tXTsIKgfdQeoDCmPijbxb2cHQOIVVjUGOekKk2BTeLPVzborG/OogAU2hLqDwTY3ClBSFR/eGGZwq8V0t7HELpERJPLFXZVpPiSf3aagGiaqAyOeVGpMyDbxwQE8L/E01FLcLJNhEZu3VmJwMTx2AkAoVHvisEgqjRR7YrdLDJvF5lcrLh2FdI3jDApIg8OUxFa8i0BIUWFCtkesw89cDQZLMRhbVquxsBYtk4JWjQYZGm3j9aBCPIlLugVUNCr0dMs8c8pNiMbC0TmFPu0aiReClI0HGJUi8ejREWINjPo1l9SHGJmg8ujfMgGiNJccVyoMCCU6Rv+1TubC3xNP7VQRZpFky8FG5wFk5Ju7aopKfbuTrGoHDAYn4aBOPble4aKCVW9eFWVihEVT5p3ug2xsbiOs3nKWzZ+JM68u+RV9wrHgzRmcMy5/9M5kjz2b5cw/Q3nCcql1b2fHNXCRnHN8/cTdBTaB0yzoEyUDhFbdQuWMDY299GHdTPQOnTidv4jkEvB76jJ/GG9efz/p5nxAKhRg0eRrRWX349NF76TthKnMf/xOdHi/VRw6x+L036D1yAq/MvIb4nrms/+5rtq5ajuyM5rX77mDQlGm88ee7CSkKR/buYf5br5B3xgRmXz+DlL45/PD5HLasWYHZGcXTd97C8HOm8ckLTzNw9FhCqtrtUjSNuro6RLOZgKJ0XceO1xEwmGgLhruuFiWLQ7Vm3HIujaGMrivB5qKhxYTN1RsMqWBI5ba73mT6tS/S0CJw7nmTQY4GOZrb/vg502/8jIY2mXOnjQdjLA3tMpff9BkAO/Y1ccfMs0hOT6Ohyc32XTXces1AZlxWgGx1IludTJ3Sl8vOSmPOwgqGDsnivW+qWbfbTVp2Ane/cJArpw/i1mcOEDbZOVKvMX9DK+Mn9eTSv+xjSFEmHyxvZv3RIKm94rj51TKuuCKH29+oIGy3UdKh8eqyVqael8X0v5cxuCiZD9d2sK9FICojipkfHOfyS3pwx8d1hJx2qvwiL6/qYOqUNC5/o4bBQxP4cIuXjTUKiZlR3D63gelTM7jzi0bEKBuHOiRe3+Dl3AnJzHi/nvz8eL49GGJlpUpiupPb5zVz2ZQU7l7Qgmq3cKhD5I2NXs4Zm8iMDxsYPCCGj3b42VCrkZhm5/YFLVw2KYmnV3bSIhg54hZ5Y5OPc8bEc+UnTQzuF8VHxQE2HNdISLFzxzdtXDwqmnu+7yQgGznSIfDGZj9nFUbx0NJOsjLtfFwcYEOtRkKylTu+befSiQnc830nQauJIx6RN7YGOGdkLNfPbydslCltVakIGUnKcvHkGg9Tp2Zx1/xmwtEOSgJG3tjkZeoF2VzxZi0FI1P5aIefjQ0CyX3jefibJi64MJs7P6kjHGWnxGvgw41uJk9O4/LXaxg8LJEPt3jZUKuRmuVi5qcn7RmyWznilvhip5fxw2OZ8VEj+XnRun2qwsQnWLlzYQeTh0Qx5rVGFuwLkhylJ8b5/nCInyrCDOtt4bN9IQ42qbjsBu5d7uXigRbuX+knJApU+kTe3RPi3AEWbljiZXCWiUWVGpuaIDXRxP0/B5heaOfBdUGsCXZKgwbeP6Bw/qgobljiZViei+8aZLZ2ymTkRPOnFV6uuiCV2Rv8hGMdVIpm3j+gcOE5qfxhYQfDx6TweYnKdo9MRr9Y/ri0k6suzuDZLQF80Q4qRQvv7w+TkhPDH+a1oGq/7/r4X5Wx+19ZTFY7/YrGkNV/UFedxWYnq/9Avn39Rcr2FOP3eti2bDGKojD3uac4VnKYfZs3EhUXz7QbbsHmcDBswiTGTruQ5MxsFEUh6Pezd8smfvh8DpUlRxhz9lTeXbaWpPSM3xT//2eV6CgrwZDKWRP64rCbmDy+Dz+tPsKC7/Ywrigdp8PIWeOz6ZHpYv/hJn5YWUZLe4ApZ6TjsMmcOTqNpT9X8PWyKsYUJuC0yUwelUx2mp1n9rby4/pGPD6FM0fE4Q8qlNfox5Yb9nfy12vTcVhERuTaeeErXa1kX61O1RifYyEzTmZUuoENx8Kc21tmTKaM3ShwXb6Z0bEqNZGTznS7yJhUCZsMoxOFrtTKoCfLyHXqfNHBEd3fFAsMixUwSzA4SuxKDQ26Vy/HIZFgFujn1D0WCWaB3jYDJkmgv8NAlvXkPTKL0M9hJM4k0TuiXB9nkkg3GzGJAr1tRtLM8onuYBYF+kQk6bIjsmvRBok+dtMpeIMgnBYfI58er6CdgheBGNlwWrz6K3ymWUMTTsUnmX453pP4dLOG+qv2c+wymVYDW1uDZNtELJJAP4dMojnEgCjdzslmgaHR+o+/XCf0/IWzzWbQ6RepNoGh8RE5QpvAyCQRmwFGJIhd+s0gYpMhxyWQaoMhcSfwUJQgYBU1hsWcTOUNYJOgMEYk2QKxRgGTpPFCvsjqel1G7mCHSnMAVtYrJJgF6vwKA10GEkwn50O8SWCgS8IswgCXRHYkSEpEv18DXAYSTCI5jhPzR6EgWsLyq/lml/XxDo8TuuanzSaQZhUYmagngjgxXqNVT8hjk2F0ikiaXaAwSUSWRdIdAkUpEpKgUevW6B0jUVx/arDr713i+wzCaLGRkj8Se2Iqif2HAuBISCXoc/PVnRfg72ih/tAujFYbqhJm5QsPEehsY8cXb1N41R3EpaQTk5JJ33HnkjV0FJ6WemSTlZoDe6grOcD7N0zDlZTGeY88T8DdgcVkJCYlg97Dz8BktdFr2GjScgd2eZ/MNjs5RWOJTU1HCHhQFIX4tAzyRo/FbLXRv+gMMvrmcuLE1WJ3MGjMOBLSM+k3dBiappGUkUnB2AlYbHb6DRlGa1Mj0XHx3cb+wgP3svDj97nguhu57+8vdau75Pqbeej5V7qwf/3jHXz5wTtMv+EWHnvx9a762257hLfe/pSZt17Nm28+SUNDE2+9/SkAb727hFmPXUlCQhQNDW289e4Svf6DNcx6+DwS4p0kxDuZef0w3vpoKzOvH0ZCvH4i+uaz5/P43fkkxFlPuWc90h1MOSONHhkOxg5PBiAzxcbk0Sk4bDKTRiUzNE8P1DRJKk6bzJkjk8hKszFmSFwEb+HMongcNgMTh8cxpF8UasiPpgk4bRKThseQnWJh9OAoJEUhK8nMpKHR2K0SE4ZE66nFAyH8QQ2HVWLi4CiyEs2MznOihRSyEk1MzHdht4iMH+QkL8PMiQNyh0ViwkAnWQlGOj0WwqpGZoKJiQMc2M0S4/LsDMgwd43XYZaYOMBBRpzMqL66PTLjjUzMs2M3iwzKNJObavoFXmRCfzvpsQZG9daDJDLjDEzoZ8Nulhjb19KV6vwEPj/dRGaszKheEXyszIQcK3aTwLhcC/m/7I9FZGx/O3sr/QzItDAq10Zmgokhve36ePNdDO598pTBaTEwaWg0WckmRg/QNcqzkk0U5blwROxZkKMvoJKq6PYcEkVWkrkLnx7X3Z4FPfX25VBIt0+encx4I6P6WlHdATJjZcbnWGh0K2jAglsSMQSDLD4QYH6xlxiryGWftJAdY+DSXJlMl8i4bP3dfEaWgfwkA4KgJ+tyGAXGZRvJdEkMTtZQNMh0SYzLNmI3CozNkslNMnDCGewwiUzobSYjRmKobETVNDLjZCb0t2E3ixT1sjIg85f3V79fGbEyo/raTt7fyHwo6GGhf7qZYFhDUTVe/7GZlGiZqqbfV+bz/ygcvyqCIGiXPTCboVOmUnlgDwCZ/QayceF8Rp47jb/NuIChZ57D2EuuoOLAXhLSM5kz+yGCAT/DzzyLgSPH0LdgKJuWfMeECy7hvb89Tkt9HYd37cTqcDDxgksYPmESeYUjMJpOPsCn20DbjKenavR3/sZmO7Do9PWhU48Mb5z5Fh/M3cot144gKyOaaWf1J2/U812fP3L3CB6/bxSvfbCD+2av6aqv3HAlcxeWMG1CJgPPXtBV/8DN/Xj0toG8+dlhHniuuKv+yOJxfPFDLUcqPXy2pIYzC1y8fkc2n61q4vbzErnwoX1sLA1w3iArY/tamV5o56017VyUorL+WAinSWRgosT8/UFuKjDxdbGHPtEnhOhVLugl8fH+MGfHhTnQrj+M/aLguyqNCxJhWV33RBtnJQvMrxQZFacHAAL0sousqFeYnGBkbZNCzwiHo9SjMthpYnlDkFGxRiq9+uYk0yqxuUVhdKyJLS0BMiIb6ypvmFyblfWtPoa6LFT79Yc11WRgR4efMTFWdrb7ujaydYEwA51m1rV4/yF8tT9EgcvSDS+ikWI2sr3d9w/hBTRS/0F8rT+Eih5I+e/hx8dJVPkVvqr1ckmylRq/wqQEM5WBDrJtuv2PdGpMShT5plrl0kyFQ3qeHHKcsLgWZmTCijaJficSnbRoTMsSmXdE4ex0kf2RlN39owQWVqpcma2x+BhdP5z2t2lMTRf4/IjK5GQ9xTZAjgsWHRO4ME3kpzoNDfi2WuWiNJFRcQa+qVbY3qrSGNC4LstAcatKnR8e7GthXVOYHpGN79FOhTFxRn6sD3JGnEy5R58/GRaJdc0hzko0sqE51LWxbgsHGB0nsbBGYVLiyfk2JDbED8cFLs/Q07/nOsFq0wNipmUKfFqickGmPl6LRSQnWuKb0jDX9TPwXalCXqyIJIusPhbmtZ0hZBHy4gS2RxLB/LMpHJe+u4qjaxbSf9o1lP68iNie/QFoLtnNkRVfYzCamfjnF2guO0R7bSXVu9ZTf3A3Q2fMRDKaSO5XgNkgUr1vO7LZws5vPsXdVI9sNpOSM4DccWfTUl3ByCtvYc/Sb0nJGYDZKFF9YDcF51zE+s8/YMjUS6k5tBezLJLRbwCbv1vAhKtuZOvir8kZXACaRvm+3Yw8/xJ++uRdRl84nYbSwyjhED0GDGLNV/M49w+3sPbbBeQVDAU0SvbsYsLF01n43lvUV5az7MvPmHbNH7j76RcAaG1q5NJBfbps8f0+XQP5vLweXXXLD1USE59AS2MDZ+ZkdtX/fLSG2PgEmhsbGHsiNgWor9tJQkLcyU31zefy5mu3d31+251v8Na7S5h5wzjefOmqkzciUE9Do7tr83yiaIHG0963N97fyg2X9WXOtyUMHaBviHftrefyqdm8/PEBrr2oFzv26e+J/D5W5iys5O6rezN3USVD+ut63rsPNnHZlBRe/ayMq6elU3ywHS0cZHBfB58uqeXOyzP4/Mc6CnIdaMEwOw+5ueLMBF7/qoarpiRSXOJGDIUZ2MPG3BWN3HFBEl+samJwbxtaUKG4zMsVY2N5Y1E9V06IY09JJ4oK+dkWPvu5hdvPSWDeuhYGZ5nRgOIyL5ePjuHNHxuZMTaGPaUeVE3Hf76uldumxPHVxtaujVdxuY/LR0bx5k/NXFHkZFelHu+Tn2nm8w3t3HZmDN9saqVfZGO9q8rP9OFO3v6phenDHOw+pkc9D0o38cXWTm6b4OLLbW7yM07gA0wf5mDOpk7OK7CzuyqCzzDxxaZObr8ghQl/OcLV42IYmWOnuMzLleem8PrCOq6aFE/xUd0zNLiXje+3tHHt2Yl8saKBwX30jXLxkU5mnJPMawuqufqsJIqPuLvan7u8kTsuTOaLlY0M7q3PiYNHO7mgKLrLnrtK9fYHJoh8vr6N2ybHMm9jG4OzLYQ7/ew+FmR6oZ1Z3zezdJ+Xv18chxgMkZsgcenHrbT7VW4eaaOkMUxTe5gpvWQu7W/ine1+Ls8zsbs+jCgIDEwyMG9vgFsKzSzYFyA/2YAG7D4e5tI8E+9s83P5ABOHPCIhFQalyszb4eXW0Xbm7/QypL8TDYHiCj+XFzl5c0UrM0ZHnfZ+fV/sISfNdPL+jormzWVNzBgTxZp9Hu78sBqbScRpkTjWHEk//zuuj/+uDrQgCHP+kQu48/fq1H93qdhXTFNNFUe2b+bI9s0c3LyOlZ99wKxLzsHqcJKYmUX5/j1889rzfPDofZgsFv748lsYzWYO7dzGrnU/892H73LDGcPYvXEd8ampzLj3fnKHFPKH+x+mYPTYbpvnf3ZpaOw45e8P5m4F4J1PNvP90gN0dvrJH5ACwEXn9GH91ho63UE27zzOuKJ0AHpkOLGYDSxbe4wOT4iC/jp38PxJaWwsbqLTE2LrnmbGFcYCkJ1qwWyUWL65iRsuTOeuCxLJybBQUR9gZXE7bp9KktPArPNiGNvXys+Hfbj9KqsP+ajuVDjQqLC5OkRVu8rPFSE8IY29TWrXtbFWwROCdTUK1V7Y0aSxo0mjxgObGvTUn9ta9I3zoQ6NbS06b7T0/7H33uFRVWvf/2fv6S2Z9B5C751QRZrY2zke21E5dgV7L1hAxQIqCgr23guIICC9hgAJCYSakN7bTDK97v37Yw+BQHyO53f0vM/zvs99XXNBVr5Zs/Zea9a6597f+3u7JBp8MkXtEkXtyv/32cP4wnCgPUypW6LULXGgPYxPgoPOIM0BiWOuEMdcIZoDEtVehcN7xBWkyhOiyhPiiCtIQJYpdvmxBUOUewKUewLYg2GKXX78kkyJO0CNL0iNL0i1L4hfOhPfFpS6xJd5zsRX+0LYgqEz8A3+ECXuwJl4b/AMfJ0vRI0veAa+zhek3BM4A1/fBb4lIFHsCuEISkrVKWcQX1im2Hnytc+uzEmeXaLeB/l25VXnhV0tCkc9r0nikE3mkE1mV6OMJwQHbIrGcX6z8qrxyOREfpfbrDjO+1olVlbLVLlkitoURY4Cu/Kq88D+dhlPGPLsMgV2GbWo/N8Xhv1tEtdnqhkTK1LulhkRozi7G5uCFDnClLkkylwSByPr4UB7mGa/zBFniCPOEK1BiaL2kLJWHCHK3WHK3WGOuyS8YdhnD3dab/Ve2N2ijGdvq8wRBxxrl8ltkvCEIKfx5PUebpWpccnsqJNwB2FnvcTBVokjNon1lWEmZ6joGyvwyGg9A+P/M7L+ruZa6gpzCHo91O3fRU3+NvZ+/Ap7Pl5AfI8ByJKEq7me3Z++Tv5XbxHXrQ/xPfrRb/pfqC/Ko2LPFra8N5+t786neOuvhAN+pj/0An0nX0hK38FYk9Op2JdLwOOmPG8ndUeLaDh+lON7duD3uCnZvQ1bXRXlBbs5np9La201R3dtxedxczR3O9XFhyk/uJ9Du7bh87g5uGMrzTVVlB/az+E9u2iqrmT/9i343C4O7NxKUe4OSg4UUrB9C163iz0b1vLrtwpFYuVnH2FvUZzSmPgELr/xVgAuv/FWYhISiEk42fa3m24nNiERgNiERK6+5Q4Arr7lDuIi7XEJicy88wYAZt55A4mJijO7ZMk8Gqu/6uQ8AyxZfBeNpa93dp4jdrrz/F/Ztj31ON1BNuyoJa+ohbyiFnbua8bpDrJuRx3lNU627W1k295Gqmo9rM9pwOlNxhAYAAAgAElEQVQJsTG3kfxDdvIP2dlTZMfpDrF+VzMVtR6257eSs99OeZ2XDbttOD1hNu21se+Ik0Olbjbl23F5wmzIs1PR4GPH/nYKSt1UNPrYWNCGyyuxubCdghI3hWUeNu934PJKbCxsp6LRz74yDzsPu6hoCrDpgAOXL8zmIidHanwUlHnYctCFyxdmY5GTyiY/e0s97DzmprI5wMYiJy5fmN0lHgrKvRSUe9lyyI3LJ7HxoIvq1iA5xzzkHPNQ2RJk0yEXLr9EXrmPwirlteWIch5tL/FS2Rokp9RHTqmPytYgm496cfplthz1Uljlp7DKz5ajCr6wyk9lS4idJV52lnipbAmx6bAbly9MnS1IsyPUMX6nN8zGgjYqGn3sOOhgx0EHFY0+Co+7cHnDbNrXRkGxk4JiJ5v2teHyhNm4105FvY/thW1sL2yjstHPxvw2XN4wmwvaKShxUVDiorDU3XE/j1Z7+WJTC6v3tlHVHGDjQRcun8SWQ24Kyr3sr/Z3nL9bj/mINqjYedxLYW2AmnaJWKPAt/+IZX9tkJ7xavLrQny8z48rILOlPEhlu8Su6hC7a4JUtofZUh7AFZDZWhHkUFOI/fUhtlYEI/gAle1h9tcFySn3U2ULs6nEh8svs+W4n6JqPwUVPrYcUeZr0yE3lS1dz1dBxanze3I9VLUE+TmvnRSrhkU3p5ERr+HvZ1l/9+fl99o/jUALglCBkmfwu0yW5e7/HPXf1wRBkN/ZX0nl4SIO7dhM3q+rcLfbmXTVDYy78BJSuvfE7/EgyzIzxwzg1XU59OiRhcNuQ5YkPn3pOQq2bebSG29l3HkXktW3P75IcqHeaEIO+DGaztz4/ogIdFP15yQmdl4ks+5dytL31jDz1iksWTijo33mPe/yzie5/OOaUXzy9tW02txEWfQ01VVi0KuJjTHQ2OwmMd6I2xOkobqRrAwLTa1ekuKNtNp9GNU+mm1+9DoVsVZdR7Jge3MLzfYAWakGmmwBkuJ0tLYH0LcpyYwur0SMRU1TWxCrvQ1PIEL21wo0uyQSLSrqj9k6kifcQVlJDnBLGP0BPIoaD0Y1tPog3iBQ1+DFFNHZ9ISUZLIqm0SMVuicLBgAFVocwZPJZ94wWDQCdW6RaI1AJNcCnQi1HpFojQpXSEKvOpHMJ6MWNDiCEha1QCQXBa0I9V4Ri1qFOyyhPyX579TkvEDkM6cVTibnnYr3SRIm1e/Dy7JMQAajSuyElwHd78T7JRlBOLN/XSS50C/JnfuXZDgNr1L50Yvw4ME2nusXjVWrwhGUGBLnxhe5P3oR2oIQoxUQxADmyDJ2hyFaA61+SEvQdJovmx9iNNDml4kwZTrmt9kVIkYLX5TB+8UyfaOgxKHIvU1OhOxYZY14wqBGjT0gY9WAzS9z1z6JO3uJ9DGrsWrFM9bDq8dCFLSF+WyUkWAkYKERBBwhpYy5MyRjOJFsGjqRHCkRpT65flKMgY7rPbV/rdpPtFbE5peJ0SrvZ7IoyTQ2P8TphY7r1RpUeMICVp2SCBOnV65fpRWZtytAVrTA7UN12H0y0SY1/d9r/9Mj0Fd9tJVwwM/xjcupzt+Kp7WBHmdfwvC/3ggCGK3x+BxtfH/PZVw+/0v0URYMUTG011dzYMXnHN+6moHnXs7wy65HpdViionH67CjNZoxaFQEvG4MUVZcthZMMXEEvR70GhGd0Yjb3oo5Nh5Pux2dyYxZq8LncWOKtuJobcYSG48m7ANBQGcw4mhtITpeSS5USUGi4+LxuV2YrTG0tTTz4+LX2fD1Z0y/+jrufvn1juTCJY8/yNpvvugUgQbQqdXYm5uJSehM7fDZbR3O86nY1uamDuf5hA201NPU1NLhPHdY8GDXN91f10Vb15J3vxWBDnudHfuzO7KBGjRhmlp9JMUbaG3zExX5gNltDuKsOhpbfSTG6jqSCw3q4Mn9vC1AlFmN5Pfi9ISJjdLQZAuQEKMkI0q+ECa9SHNbkMQYLTZHEItRhewJ4PKd3P87khEDYQXfHiLRqlH0p1WK/JnLFybGrKapPUhClBqXO6Qkr+tEmh0hEqMVvEXLafgQCWYBd0Q+0qQTOpIdW9sCWAwnkguljmTHeJ2MO3IembQCzc4wCXoBmzt8MrnQp+Bb3GHiLaoz8IkxWmyuMBbDaXhZw9SnS1j2eA9SYzWYdCI21CRaT94fUM7H2Dg9TfaAktwZ2UBNepEWj6T03x7EEnnS1d7qU+7/aXijHKa5PcTm/Q4e/bCS/pkGSmp9DM/Sc9OUWPoka+mRpMXtl5Ec3o7zN9ogMnl+DbefHc21A1W4gwIxRpFmV5h4k4gnIPPMz3a+Kgqw945oUiwq7F4Js1ZAECPJnQblvI43CrgDMoIgYNRAi0cmwSRi80pY4/VKMqhf7tS/z2QABGW+IsmRNo/U5XwlxupOJlPqxI75tTlDvPFLMya9yO3nxHWshwH3H/1D98c/jMLxf4sJgiAnZnantb6GzP6DyOg7kJa6Gv7x3Kv8uGAuk668lrxfFV7azp9/JLVnH57+8HNevG0G9RXlZPTqg95k4rE332Hurdcz45En2PGLQq0468KLaSwv56+RyMSp9u860LNmzWLp0qXMvP0CliyaCUBTUxtJmSed5uyR3Zn//FUs+zkfiyHM0IGpvLZ0Gz9/cRM33fMdU8/qiV7jY/XGMj5eeCGX3riMFx47ix9/KUarCnHB5G48uzCPn949j1se28LUcfGEQ7BldyPvvTCGK+7expx7h7B5RyV2R5BLJyfxwrslfPvqCGY+X8SU/gYCYZkdRQ4W39Wd614+ziNTTPxyQOFHXzTEyPy1dj69OYnnvqund6xynbuqQyw418itK13cO0jF2krlA3NuNxWLCoO8PVXHk1t8jIicR3tbYM4wgbn5Mn/JENjapKzxsxMEPiqTeayvmsXHwwyJcHMPtEnc20fDa0eDXJyqZU+rcmCMjlXxU22Qm7uZ+KTaQ7/IAXPUHeTvKWberXJxcbKRwjalSMEwq5bNTT4uT47mxwYHPYzK/JW5fVyRYuWz2jbOjTdT5FIeRQ0x6/i1xc2MNGsnfJM/yHkJljPwA01aNrR6OuFVyJR4glyRHNUJbxIFuht1rG9xdcKLyByP4D+usdPLqKU1EEKtEhlh0bOh9eR4+po0BGWBMk+gU//Fbj9+WWaQWd/R/4pGGypBRaU3RJpBxQ0ZJt4td3FbT4kdkSqPE+JFPq8M88wANV9Xh8iKUP7ybfDUIHikAO4ZIrAx4i9MSxN5+2CYhWNF5uyTyI5wo/c2y8weLvLkbgmtSqFqjEuASzIF3joiMzEOvqkCnwRXpCuJhA/0EXjmoMxNWQLbW2RsAUXKLiTDw33VLK/pvB6uStXyzFE/vcwiCVoleXekVcWyuiD399Lzfrm/gxtd7Q1zZZqeRaVe/pqqIy+izzolUeLL6jCz+2tZVBzs6L/MFeaB/vBEIdzWE7Y0g0UPE5JFlhyWWDhOxZz8MNkJAha9yJY6iXnjtdy9OcC9w9Ssqwxj0MGvFTIWrcwn5xt5YruPCekqXsr983WgNUYLggCCqGLAJTNwNtQgiCK9J57P3i/f5NwnFrF18dM0FxfR99y/4W6tp/fE81n/ysMkDxiBOS4JvcVMzzFTyPl0EZfNfZtfX5tNxtAx6I16ynZv5eLHXub7J+9k0i0PcHTbWsxR0fQcNY4N77/BDa+8w4/zHqfHyHFo1QLH9+7i2jnzef+B27lo1kOU5e3A53IycvqFLF/8Kvcs/pAXrr0EW30dvYePxGSJ5o6XX+eVW6+n4vBJp/Xht97j5w/eYfb7n/HZi8+R2bsPRrOZgp3beHDBmzx7y/U88/YHpHbLOuO+GLvYv3W/kdcy0PIbVWr/RAc66HbQ5ghgNqrx+ZX9TSuGcHlCWKO0tDsD6CJSfB6nm2iLhjZn8DR8AJcnjNWiod0VQqcVCfs8BELKl7c2l1J0xReQCHsCGHQq3N4w0WY1DncIrUZk/c4mvtjQzFv39ODvLxYz++8Z/JzTCpLExWNjeembOr58tCf3LK1g6iAz/pDMjsMuFt+eyfWvl/PElcnsOOTE7gpx0Sgrr/zYwOf3Z3HvBzVMGmAkLAnsOOJi0c1p3LC4iicvj+fnfIXqcNFIC68sb+LzezJ4cVkjPSP61juPenjzxmRueLuWxy+ysqpQUY+ZMsDAnGWtPH6+lc9znUztZ0AUBHaW+njj6nieWN7CjPHRrNqvBMguGmrilV9sfHZHCvd92cxZfRRu9I5iL29el8ili2px+WTOG2ZGFAUuGmXlo8023ry7B3cvLmNihLu8vcjBWw/04rrnj/HkjEx+3qFQay6ZEMuSFXW882g/7lpQzMRhSrAs/1Abr9zZg7+/cIzZ1yn3U5JlMmPVvPtLM3qtSHq8hvOzrQSCEr/utqNSCewt9TLnykRKG4PI/gAXDjF3nL+3fNpEZUsIvVomwSzy4bUx3PilncemWfjlkA+9HGJ3rURlW5g1N0Tx1EYP4zI1CIJMTmWI1y80c9MyJ4+cZWRruR93UODC3loW7PTw8V8tPLjaxfRBRrxB2FnmZ+EVVm783Maj50SxpSqEJwAXDzfz8soWPr8zlSe+a2J4d+MZ8zX7b0n8nOeIzG9UZH4zmft9AznFHiYPNFNvC0bWQwX5Zf7/daD/TBMEQX748xWEg0ESMrMAaIkI+FcV5NJrxChaIwVW3r7/dlrraolNSsLndnPznHn0HzWGxqpKhmSPoWD7FgaPGU9jTTUAiWnpeFqaSe/R84z3tXThLJt/g+bRR7eJpiY7iYkKN62pyU5S2pUdv28sW0JiopJBNev+j1n6wQbuvGk8f7loMJMm9KSiygbBNrqlR7Mtt4rpk7qze18dPTKthHw2yqudjBmWxPrtNUwak0pFjQPJ7yEz1cT2vEbOGZ/CngMtZMQDCFTUuskeFMPG3GYmjoyj7GAdMjIZiXpyitqZMsJK3lEXaZKyMVW2BBnZXc+Wwx6yDT6qTxWojwja5x52dwikVzlkhiWK7KgJM8gYOimobhLIb5YZlySQWx4g7bSCGtubRAZGi50KZBS1yfQ06joVvGj0SfQ2i+TZZPpYThZAidOKFNll+lk0VHjCxEcSlloCEjEqPSWeAD0M2o4CKFaNikpvgJ7GzgVQbIEQGQZNF3iRcm+Q3qfh7YEw6Qb1GfhotUiF73S8jO1EwZQuxlPuDXTCy8g0+UNUeINst3noYdTiDIWxB8MEJBmdKKIRISTREZW2aESyDBqCsoxVrcIZDiEBZpVAW1AiWafCI/vItUk8M0BLWIa+FqXgyLk9wtR7lHlMMcK+VpmxCQLHQ2rSIlzzapfE0HiRnDqJs/vpKagPU2oP0zdeRYtH5tzuJwX8ATaUBfl4vx9ZhmndNVzQS4NJK5BmEdlTG2J8ikhhY5ifioNoVXBhTw2DYgR21oYZnaKixqnseYlGWLg3wJqKEDMGaPhbH+ULUrVTYkicwObqMN8Wh7D5ZC7rqeaiTIGDNpnxySIHWmXSzcp11TolBsWK5DRIZCeK1LqV/tOtIvmNMuNTRfa3SGREuNS1XpmhCapO49EaVKRFKeOfmHnyenXROqVAQ5qGrWUBxnXTUtYa4vUcL2UtQZ66KIap/YzkV/rp3s3CgIeK/3QHeuTNT9N90iU0H84jof9I3M2KgxednELTkX2kDBlHS0kR+Z+/RltVCTpzFLIUps85f2PIX2/B1VSLWi1iTkyl4VAeacPG0xQpyKJWCTgaa0jqO4TqghzSBmfjaKxFqxaJSkyl5kAe3UaOp/7ofqzJGZh0Kux11aQNGEpZ3k66DR2Nr7UOT3sbqX0HUV64h5Re/Xnx4jEd13Dnoo8YMGEKR3O3U7hxDTnLvmbMhZdxywuvcixvNwPHn01jcRFJaZnAyYJZ+3dsZdTEyV1WltV30ab9Dc3o3yrS0lUfAEOsXQRSAmu6xBJo+Y32LhzurgpsAZL/TN1pAClwpn61FOy6ELEU7LqegN3u4ViFs9N5UVnnQZZCZCYb2VlgY+qYePYebCMzSSnYVF7nJXtgFJv22DhreIxSIEaGjCQ9O/e3MTU7lr2HHWQl6kCAijovowZEsSnPzlmDLFQ1KmPMSNKz80AbU0fGkHfYQbcTBbwafIzqZ2Fzfhvj+xkpqfXxw9YWvlzfRLckPWa9yKFKDy5vmPhoDaGwjEYl4AvKRJtUpCXo6J6iZ2gvM0cr3STF66mo9xFv1aBRCzg9YVLitLz6VTW/vJ2N0aDMc2aygd1HPEzOTmRvkY2sdCWiUFHjZszwJDbsauDsUYlURrLmM1NN5Oy3M7C3lW9/qaBfz2iy0s20tXnJHhLHhpwGzs5OZP3OeuYsOoBahJ6ZZhY+OYKyajfdI/2XV7WTPSiGWc8XoBIF7r2+l3L/U4zsKGhl2pgE9h5sIyPZwI/ra1nw8XGeubMP3VKMnDUilsp6L4IskRSn4++P7cPpCXP+hASuuSAVk15NRZ2H7EFWNu1uUfB1no4CajsL7UwdHcfeQ+30yIwG4Uz/obopAAjKePKbmTYuifwjLrLSFS74iQJtG3LqmTQ2jYrI/emWZmL73kamjE3mlid2kbuvgfVfXkJDi5cxw5LYkFPPBdev+M9yoH/LBEHQCYIwSxCEtwRBmB2pRPh/he1btwqTNYaCDWso2LAGY1Q0X855hKzBQ/lp8as0VVfSVF3J4IlTeG7FBrIGDObxDz6nvbmZ3DWrMEVH896c2fQfmc3nr71MfWU59ZXlfPH6KySlZ/xLY2ltajqjbdbdb5KUdiWz7lYyvhMTY5h5xyUAzLz1nA7nGWDJGzeRs/YefL4g40dn8fSLayitaKGyuo1n5m9lfHY6N9+/iphoPT+sOsLaLdXEROm49dHNjB+ZzDOv76G0ykFFjZO5i/czblgCt8/ehTVKyy9bG/hpQx1Wi4Y75xYwdmgszy09SnWTj/I6Hy9+XsXoAVHctfA4VouKdQdcrNznxGoUuffTBrJ7Gnhtm4tKe5hKe5gFW91kZ2h4YKWTKA2sKQuxpixEtE7g8S0+RiSr+OyYRI1L4YW+fTDMsDiBZ/aEiNLA5kblZdHAvMOKE/dZuUS9V6beK/NZucSAaIGvqgOY1QK5rSFyW0OY1QJLywL0MKtYVuunySfR5JNYXuunu0nN59VujCqBfe0B9rUHMKoE1ja76GbQsL7FRWswTGswzIYWFxl6DT82ODCIIkVOH0VORdf4xwbHGfgdNg/dDGfi9Sq6xG9qdZ+BP+LyYxDFM/D2yHhOxe93eFnV6OTrunby273cnhlDglbFOXFm/pYSTbbVwM0ZVtL0aq5KiWK81cAgi44BJh1HXX4cQYn8dh+OkIQ7JHHYGUAjCOTY/XjCMC1RqcRnVsOikhD9okS+OC5T41ZeS49IDI0VmFMgYdEI/FoZ4tfKEFoRrl3t4/uSECPea+eWlS6+KApw+0o39691039JO09t8XDLSje3rXQzf5cPq07gxytNSDK0emWq2iUW5iprZM52L9E6Aa1KYHWpsn7m7vQzPEnFG/kBqp0S1U6JJYVBHhilYUCcis+PhFhZGuTXihBROoFX84KMSVHRI1pgaIKKH0pCTF4WYG1lmEd3BonSwrqqMOuqwlg0Ak/vDjE8XmTxgRDVLplql8ynh0MMSxSZvTNAtPbk9UZpBZ7c3nk8NU5l/CNT1DyywUu0XmDN8SAbjweI1os88LOD7AwN8ze7eH69k7q2EBN6Ghjbw8D937RgNYqsLnScsVf8GZbYfwR5H75AXJ+hHPx+Ca6malxN1Rxd/RUJfYexa+mzaM1RZE24gMFX3M7Y22aTNDCbQZf+g31fv4WjoQZHQy15X75FUr/hbF30NDpzFGU566nM24bOHMWmhU+R3H8Yuz9bRHt9NY6GOnI+XUTqwGGse202enM0xdt/pWD1j+gtUfz88hNkDBzO5g/fYPXil3jnjqtYetsVdBs8gl+XzmfodGV/7Dl8NPHp3fhyziP0GDoSgzmKO+e/xbhL/sryxa/Ra9goPnrqIUyWaHatXcWutcp+/vZjD9B3RDaFO7f9R+7x/622p8h+xnlRVuOhvNrLC+8WM2ZIDDOfP4A1SsPanc38tLmRGIuaWfMOM2ZwNC+8X0pVvY+yWi/zPixnzKBoZr10hBiLml92tvDT1masFg13vXKMMQOjePWrasrrlPNo3scVjBkYzV0LirGa1azY3sKK7S1YzWrueq2Ekf0s3Dy/hMtnH2ZnkYPpo2L4ad4AMpN0rH5xAE9dn8F10xJYel8PJdHv5YGMGRDFyD5mPL4w766ow+WV+CWnFZ1WoLDERe5BBzZHkM/WNPDR80P4YX0D5TUeyms8vPBeCdkD47hjTj7WKC3LN9SyfEMt1igtT7+xn3HD4pn7VhHHyhy8800J46/+lbuezaX3tGX8sLaCWc/sIvvylVxyx2bSJy7jkx9LOevqX7n58V2cnZ3I5eem885z2cxeeICYKA3L19ewbF01Jr2KO+bs4/Yru/Pd2hpKq12U1nh4/p1jjB0Sy53P7cdq0bBySwNRRjVLnhrCI68dplemieffKaa8xkNVg4/5H5fy1Ssj0GlEtuS1kn3NDq5+NJ+wJDPz+SLGDInh+XdLqKz3Ul7r5YX3jjNmsJWZLxzEalHza05Tl/5DRY2bsmoXzy05xNhh8dzxTB7RUVqWratk2bpKrFFabp+9i3HDEnjzk8OUVTkoq3Iw580Cxg1PZPTlKzle0c4d1w1kzan+zKg/3kX9p9ppgiA8B1why/LAU9p0wG5gMHDCm79XEISxsiyX/+Gj/G9qgiBgtsZgscagMxj+8P7n3D+Lrz94h2tvvZM5bywBFId66bsKJWTpuyuZ88wMEhNjWPLWfcx57IJOzvMJi4s1ndH2v/b/ntmCYQ44/VyRbKHCGyTutOppakEgVqtCJyq877ZQGK0MvYxaGgIhLkmysKnFzYAoFZIMx91Bzk804qt3c22mxIH2/39Ps1aVh6lyylzaUyTOInJODy2CIJBbE+Te0Xqe3+ZhTJqarZUh3EGZp8828tXB4BmFLuw+iZtWuqlpl/jHYMiIUvh4ubWh//L94w0Cg+NFtteGmZbZeUsUBYGJaSompqnYUhUgLMOmGomsqDAmDehUf1qwt0tz+CT21gR545p4CqoC/9H3/ldNEATUOgNRKZmo1F0XIPl37NiW1dQezKex9ChqjRKlDfq8HN25GYD6kiO47Mrj72m33EuvoSMQu4jyGqOikP73Sez/81Zc7WF1rp37rkhl/KAodhR1/kKq04jookXS4nWYDSoyEvXERWsYO1ChXiTH6Xj07xks+LaGGy5IZss+JcI/eYSVhV9XM2FYLNvz7f/yuLbubWL11jp6ZZqZc98I3v3mGI/cPpjNu+qRZZkhfa288t4hpoxJorHFyxuzRxJr1XHgqK1TP61tfpatq+adbySyB8XSu5sFrUZgy55mJkUS/7uyXpkmslKNzHuvmISYzk9DRFGgR7qRB//Rg1+2NbFlbwtXPbyP7mkG7I4/VjLu91iLzUdxeTtrP7+EQ8W2f/4H/6b9niTCHGCnLMuPnNL2IPAqMB+YB/QHlgG/yrJ8y5833D/fBEGQF+WXU1FUQHy68gjvBIWjsmAXvYePorWuFoC41DSO5e1m3NSplBTuIylTkS06QeHYt20zg8eMpylC+fivKBzB9rZOSSinyyDllDUQl6j8/o2HLmPpuyuZecclLHnrvpOd/AYvbnfOHkaPzGTdpmNMmtCTymp7B4Vj665Kzp3co0sKx7pt1Uwam0pljbODwrFtbyPTJ3RN4diwS3kEU37oJIVjZ1E7U3+DwrH5sJtsg5+a30nh2F4TZpAhRL3SDakmgbwmmfHJXVM4tjWKDLJ2pnAcaJPp9V9QOHpb1LT+XgqHO0B3o5a230vhOAMvUu4J0tv0GxSO0/DRapEK7+n4UygcXYyn3BPohN/c6qLaG2Rmt9hT8CFAOBOvVoEgYAuGOvXvQ3HcYjUix91B+pk1BEQnyZH72eCT6WsRKIhQOBpOoXDkt8iMS+xM4Xh0u5+Le6hIMIic3VdPbYRikRYlsrsmxMQMVScKR1W7xPBkFTnVIUamqql1ShxtCfPIBg8X9tKw5niQjy8y0C1aRVFTmIc3eXlgpJY0i8joZBW1rkj/ZoH8hhBjU1Rsrg7zQm6AcakqLu+pYmSiyM46iexkkboIPlkvs7dRwqyBNwpDHLHLTE0XOTtF5LxMFTkNEqMSRepOoXDkNcpM+A0Kx47acMd4TlA4dteGOPs3KBxbSgNsOu7H6ZO494I40mPU7Cr1Mbmv4T9K4Zg25zPieg2ioWgXif1G4m5ROL3RySk0Hd5HylCFwmFJSgfA21pHQu/B1BXmkDRwFO7mug4KR/3BPNKH/waFY99OUgdn42yqI+xxkNRrADUH9tJt5ATK927jp6fu7BjXg8tzaDh+hKyho/llwRPsX7+K7MuuYdDk8+g9ZiLVhwpJz8pCEE7u50d3baPXyDH4WhsAiE9N4+jeXAZNmNQlhaNw+xayz57yvxSOU9v+DQrHifOiqv4khWPHPhvTxnZN4di428ZZw61U13s6KBw7CtuYNrprCsfGvQqFo7rpJIVjx/42po3qmsKxKb+NomIH32xq5rMn+5KRqGNnkYOpQy3kFbvIOoFv9DGqj5ltR9yMHRBFdZNyrSfOu2lj48g74iQrJYKv9zGqv4UtB72cNSKWqgblPmYmG9h1yMPUMb9B4chpYOKoRGbN2UNKgoGn7xpMTqGdqeNT2LO/he4ZihhBeVW7QuHYWc/E7CSF4gJkJGrZnt/COeOT+HZ1FffN28dtV/XkrS+Kqdl0ITmFNuKitfztgV1cdV4az8zsy44CG+eMVSgcWWlGZEmiotZDr0wTZ92wg7FDY7j3ul9ywNIAACAASURBVB6Y9AIZyQZ2FNiYFqHcZKUZQYaNu5vZkNvCym1NXDopiUsnJ9K3u5nMU/FdUDhOrIea5pMUju15zZwzvmsKx/qdCoWjsu4khePuZ3cpAg8zhnbgy6odCiV1Zz0X3vDHUjj+aSXCuXPnvgi8P2fOnMOntL0CaICLZFn2z5kzp3bu3Llh4O9z5sx5448a3P8Jmzt37pyzrrqB716cjc/louboIXKWfcWACZNZ894izNZYtnz/JSUFeeiNJr5b8AJjz7+ID555HK/LSfnhg2z45gtGTZnGa/fNJL1Xb9Z89SmH83ajN5k4ti+PgSOzO73nwscfZPZtM7A1NzPx3AsAMJhMOG2tHNyXx7W33smFV1zVgZ9xaRKz7ryEq66c3HnwYXeX13TLrA85d0pfrr/zS/r3SeLdT3ZxpKQBlSjw8NyNXHFxP2Y+uhanK8Dx8lbe/vQg50/KZMYDG+nXw8p7Xx+h4GAzOq2Kx+fn85dzM7nnuT34AyH2HW7jox8rmT4hkVuezqdvlpkVm+rYlN+G2aDiqfcruPSsOB58q5SQP0xBhZfPtrczbZCZmR/W0csq8Pk+H3urg5i1AnM3uLion57FOS7qXTKHWyS+ORxkUqaahzb56GGB70slCltkjGp4rTDM9AwV8wvDOENQ7IQVtUpRjndKZWK18EudxKF2RTXhvTKJ0bFqPqgI4AnLlLslNjaFGGZV82mlnzityObmICWuMHoV/NLgZ2CUlm9q3PgkmWpvmB2tfnoZdXxX306CVs2edi+V3iA6EXbYvfQyaVnR6MQflqjzBclr89LbrOO7us54vSiwusnFoCh9J/wxt59uRu0ZeF0X+KZAmNw2L31O67/FH0IQOAMfiEjRjbIaOvD72r2UR8Z/Kl6WodoXZE975/6LHF6KXcp4VjR4GBqt45tqN54wlLkl1jaGGRmj4vXiIL2jZH6ogEKbMl8LD0pMSxX5uDhMvUfmiE1iXWWYs9PVvFUYpHecii+LAuTVhTBp4IXtXi7opeGpzV5cQTjUHOarg34mZ2lYtMdHjF7gq4MBPjsQ4Ip+WvbWKV8e9jWG8YVlWrwyrV6ZHTVhVpaG6Bsr8n1xiH2NYYwa+PZokNEpal7ZG2BqpopddWG+OhpibIrIC7uD9IgS+LY4xL4mCb0o82pBmBv6qVlXFeacTJFyh8wXxySavPDD8RDdo0S+Px6moFnCooVX8oKc203N3F0BXCHleleWhhiXpuaRLT56WEW+ORqkuE1CI8K87T4u6K3lqc0eXEGFj/3hHg9Te+m4a1k7/RNVLD/oIxCS0KhF5vxs46KhZh77oRVfSGLLYc+fXokw6HWR2H8kuUtmY0ntTtnGH2kpLkRrspD/+atkjjmHPR/MI+h1Y6s4SvXujSQPHMXWN5/AmtadY+t+oKX0EGqtntyPFtB9/HR2LH2egNdNe30VRSu/pNuoiaxf8BgxGd3Z+NqT5H/3IU2lRynetpbeE89l67uvYIyJw9XSiDkukZGXXsPyFx4mvlsPvO12rCmpDJt+CasXv8SgKeezYv4zCIJMRVFhx37+2VP3k5TVk9yVP3AsLxed0cy3C15g1PQLWbZoAW3NzZQfPsi6bz5nxKSpvPngXYyYNBVzdHRHQRZJkhBFESTlS7csyyfbZFn59zRTd9H2X7Un6btwuMPHu56gsOc32rs4G6SunVw53LVTLIfPfJIjS10X7pGlrp/6rNtRz4KPSpg+PnJedLfw0bJK9hywYzKoeXLRES6bksIDrxwkLEnsO+LgkxW1TB8Xx21zD9Iny8Sqrc1s2mvDbFTx1JLjXDYpkQdfP4Y/KFFwzMXHq+qZPjqO2+cdoV+WgY9W1pN70IHZqOLpd8u4dGICi7+roabZT1Gpm09+aeCc7FjueOUY00dZ+W5zCw63khD59EcVXDouloeWVuD0hjlQ5uaTX5s4Z2QML39ZQ3y0ho9XN5J7yNlx3l02KYEH3yjB6Qlz4LiLT1bVM310LHcvOErPdCMfLa8md78ds1HN0m/KmTImifteLMTpDrL/aBsf/ljB+RNTufHxXPp2t/D+96W0OQJkpppY8MFhzpuYxj1zc3G4ghQesfHD2gomjU7ipsd30bdHFB98f5xdBQqV5bEF+7l8ejpX37eT7MGx9OluIa/IxrB+Vp5adIizRsZjaw+wYlM9W/a08NOmev4yLZX7Xz6Ayx2mtNrNu99VcsnkZL5fV4dGLbDg4+PYHCEsRhVPLjrKZVOSeWD+IVyeEIdKnSzb2MDiJwazcmsjWalGXvmolDU7munX3czsxce4bHIyDyw4jCAK7D3YxkfLKjuth+/X1rJ1TzNmo5onXj/A5eek8/SbRbTa/ew/aufD70s496xUbnosh0F9Y3jv62Ps2teE2aRhyReHqahxUdfkpb7ZQ+HhVt7/+jDnT8rkpoc20Nji/UP3x98TgfYB58qyvC3ysxZwAD/Isnz9KbjJKBHo/5zA8Z9ggiDISworcLe3oTcq3whPyCT522xEx8fj9yiblM6oyCR1y0jF2WbHEJGn87pdJCcmYW9uwhqf0EnGTgwGOsnY2ZubufgUIf7NJTUdskeDoxq6ljvy53c9+K6iDACBMwuphFz1iKJAU4uXpAQjtjYfFpOGsN+N0x3qJEvn9oQIeZ2YjGqabH6S4vTY2v0YBS8IgoKP1tLY6icxVktbVSsIQicZI7sziN7uAIROMjQxDieeYETGTiPQ4pZIMKtoqHFjOl3GziNhDoW6lLFrbPFjPE3GrqYlSGxEJgxOythpBE0nWTFPGKI0AtUuFVaN0El2rdYjEq1V4QrJRAKs+CQQ5ZMydqfK3jX6BKLUKjxhCV1Els4V5J/K2J2K/z0ydifwOjGEXwKTWsQZkjCrFFk9rUop5e0MyURpRNwRGb4Sl5+1jX4e6WPpGH+YsFI6XqRDps0VkrFqwoByP8xqJWEwWi0giAp94lRZOp3GR0RVqZMsXWaKDm9kvgynzJffqMGsUWT1bl3t4eJeWqZkqUlP1Z+2HmSSEnTYPRJmXeR+npA98kOCWYUnIPPwD62MyNRx7kAD5y9q4Ps7k+mbrETuXD4JlShw91fNVNmCvHlNAr0SNRi1Aq1+SIhSY3eHMetFZFnm3c3tvL3BTopVjSgKjMzSM/uyeKIt6g5ZJbs7jFmnLIh6l8R1b1bRJ0XHwhtTUUVoHSYNHbJKdpfSP4DTHVRklRwhEiwq3H4ZQadRPi8RWS67K4RZr0LQK7JUJ2S/4qNUTH38KA9cn8lfJiXQbA+SGKvIYEUnRBF71q9/egT60qWb0Jmt+Npb0UXFEvYrETWNwYjfYUMfHYff1Y5GrzwSkgIe9BYr3rZW9NGxhPxeRBE0eiO+dhsGaxx+ZzsagxG1SiTk86CzRONta0GW4eubp3S8/98WLye2W298zna0BiMhtx2NTo/eYsVjb8FgjUMTcQw1eiMeeyum2Hi8jjYsFgsIEPB0lslTRRxGrcGIy96KJTYe2dOOPrJPnyqTF5+YiN8b2f8NRpy2FqLiEgi6TsFHZPICTjtRsWc+Gjdpu6az/FYE2qQ5E2/+DYWmLqPV0HXEOvgbdIJQ15FpQs7f1wbIga7bpXDXj/Xl0Jl0JDn8rznnXTv4v4GVuvZ7Cg7buHPuPnZ/M7VTu609gCVSMMvpOXHeBUiMOynzZzKoaLL5SU40YWv3YzFqIvggsdE6mtvCnWQETUY1ze0hkuKN2Nr8WCIqT053kPg4C40tHhLjDMx4cBP9e8bwxF3DaW4LdTqvATx+GWu0ntNNUJ+kbj707AZMRg3PPjyRHmOW8PNnVzN0YHLH7z3eMA88vZaN28v55r2/MWpY2olOzuj3s28LeOjZ1XRLtyLLMHRgMksXXIZO1/X69XqDTLviI5ITzSydfxlJiRH/R/gXau6pzqyuCYB45no//6+LuPrKydw0o/McoolF0Ez9jycR1gJZp/w8BtACOafhNEDXIdD/Yfbxk/fTVFnGirdeZcVbr9JUWcbCW65GrVWz9KFZ7F7zM7vX/MzSh2ahUqt58bYZ1JWX8eVrL/Hlay9RV17G83f8A5Vaw7yZN7NlxTK2rFjGvJk3Iwoi9uaTUkMxCQn8JSLEf9Upgvsn7Azn+Q+yhmYP18xag1otMOWqHykuszN7/i5e//AgxeXtTLvuFzRqkb/ft5lvfylj+YYarn9kF2qVwLk3b6akwsX8j0uZu7SY41Vuzp+5G41aYMbsQtbstrNsWws3v1KCWiVw8eOHOF7r4821rbz4UzOljQEue7USjUrgruVt/HTQx08HfdzxQzsqUeCvn7RS2S7xaq6PV3N9lLdJXLPMhUaEF/cEWF0eZnV5mAe3BlAJMGOtjwoXvH1I4u1DEpUumVu3hVAL8HQRbGhQXk8XgUqA146GqPXKfFIu8Um5RK1X5pFCBf9aSYCdLWF2toR5rSSAKAi8dNRNgy/Mj7V+fqz10+AL83mVC5UAH1a6yW/zk9/m58NKNypgSUUbzf4wa5rcrGly0xII816lDZUg8HVdOwccPg44fKxsciIKAu9V2mgJhFjX7GJdswubX+oS/1294wz8xhYvzYEwb5W3IQKf1jgpcPg54AjyYaUbUYCFxx00+SVW1HvJawviCsssKHGiEuDdCg95bSF224IsKfOiEui43lX1Ib6tCVDvlZh72INaEHjzuJ/drRLbm8PMPxZEJcCTB/xUuWDpceVV7YaZe0Etwsv5IVZXhVldFebhnUHUIty40U9Vu8S8nV7O/8ZFrUPmm8N+NCLc97ODnw75+emQnzuXOVCJcPs3NspaQry03sFL6x2UtYT4ywfNaFRw+xctLC90E2MUeWVdG5/mOFGL4AvKvLTazkur7ZQ2B7nryybeuDoOrUrg8rfrmfVlM7d80oRKhMvfqKG0KciLK1t5aZWNcb0MjO1lYO4VCYgCfLK9nUXrbNz6Xi1qUeCyVyspbQzw4k/NvPhTMy1ORfO1xRHiopfKWb67neW723nqmwbUKrh0fgWljX7mLW9i3vImypqCHev/1vfqWL7XwS/57dz6dhVqUeDSF0spbfAz74cGlqxq4Hi9j0uePYpGJXDLG+X0StUx54MKLnxgPwJw0YP7Ka3x8tIHJX/KXnG6uRqq2TLvNkSVmty3Hqcq91eqcn+l8ItXEUQVm164FWd9JUXfvU3Rd2/jaqhm/dxbENVqdrz5KJU5a6nctZ5tCx9FUKn49dlbcNRXUvD1WxT9/AlNxfv55ambEFUacj94ieRIqfCo5AyMMQmsfPJG2msr2PP5Ig6s+IK2mkqWPfoPRLWatS89SPGO9RzZtJoVzz+AqFLx1YM3YKupYNe3H7Hp/YW0Vlfw6X3Xo1Kr+XHO/RRtWs2BDav4+ql7EVUq3pv1d5qrK1m15FVWLXmV5qpyFt9+DSq1hh9efZ68tT+Tt/Zn3n/0LkSVmtduuZrGqgqWvTmfZW/Op7GynJdvvBLxN6ga/2v/fc2oV3U4uCfM7Q1xvNLFnLcPM+ftwxyvdHHebdvRaERueGw336+t5vu11dzw2G7UKoHbntpDSYWLZxcX8eziIkoqXJx782Y0aoHrHtzOd2sq+G5NBdc9uB21SuSc69dQUtHO0wvzeXphPiUV7dz22Bb8gTC9Jn3FppxaEODaezegVgtMvXoZxWVtPLUgl6cW5FJR88+Th6+8tD+f/1DEwnf3kJJo7uQ8AxiNWt597VJenD2NC679gideWI/b3XWOxYyrh7N/yz0sXXAZj949kc++K2Tdlt/eewwGDWu//QcCAi+9ufV3zMK/ZzOuHctri1ay8pc8QqGuv4T9UfZPkwiB7cD9giD8DLQD9wIS8MtpuOFAzR87vP8zljVoGPHpmfQZNRaA+PRMBkyYhN5oZuD4s+k+aGgHVm8yM3DMeJIyMhk0ZjwASRmZDBg1BqPZzMizp9Bn2IgO/OI5T/LTpx/ylxtv5eFXFgLw8CsLuXf2nDOc5z/Tosxapp+dSZRZy3mTutEjM5rJ49IRZT89Mi2cd3Y6FpOGc85KY9TgeKSAm1BIJsqkYfqEZLqnmxg9OAZJkslKMzJ9bDwWk5ppY+IZkCqeeKKJxahi2kgrWcl6RnQ3EJaI1Lg3Y9aJnJWlY2jqyQiLRScwpZeOtCiBsWnK8syIEpnUTY1JoyR79Yk5+b3PrIWJaSoyTBIjIzrB6UaB8UkCRpXM6Fjof0pepUkNvS0CKXqBIZGaMyl6gVGxAgYVDItW0ct8sn+DCgZHq0nUifSzKAdiok4kw6BGrxLob1HTzXjyY6QTBfqZtcRqVfSMRCBiNCr6mHXoRIHeJm1HKWy1IKAXBfqYdcRq1HQ3KlERq0bsEg+cgdeLEnFaFf3MWvQq5b0zDGp0okRQljGoBAZYNMRrlaIhsixyoD1Ef7ManUpgoEVNN4OgaNZF+j9xvZIsEgYS9QLDrGr0IgyJVpFlOhm9MapgRIyKVEOIkYqqIqkGhUJjUsHAOIE+1pP3MyjJZFlEcqpDrDoeYmSyimcn6llRHMSkERjXTcuQlJP306ITyM7UkhmrYnx35eFWZqyKqb31mLUik/roGZ6hY0ialuq2EJ/lurh4iIlucRrG91SiMt3iNIzrqcdiUDFjfBTJUSJLNjs41hjgrfVtmHQinkCYCb2VROBu8Wom9DUyvo+RcwaaCEnwzS4HI3vo8QUkpg400y1ew/i+SlQkM07D+cOi+GFXG+cNtTC8u9KPXg0WvYppg8x0S9Ay4QQ+Xt2x/icPMDE8S4+g1RAIyVgMKqYNttAtUceE/ia0Bg1ZSTqmDYvGbBCZMjSKQd0MrC5y892GJibNKqBXusLtDIf/MwmNpoRUkoeMR603kjR4LLHdlfxyjU6PxmAiZch4zInpJAwYqeATU0kdNgGN3kjKkHHE9RyIKAogS2gNJlKHjceclEbSwFGUrP+e/C8WkdBnMBqDkbRh44nvNYig14Gzvgqt0UTGiLOISk4ndXA2GpVAVEo6maPOQmMwkTliAok9+nOi9pfWZKZH9kSsKRnIfg9SOERMagY9R09EazTRI3sCaX0HdVyb3mSmz9iziU1Lp9dIZf+PS8ug37hJ6I0mMgcMIa3XyXLeBpOZgeMnEZ+WQd/R4wBISM9k8ITJHU8w/9f+51iPdBOSLLM9v4WJI5XglVolkJVuYuIo5eesdBPTxydiMaqZNjapo9Q5QJRJw8iBMXRPN3F2tnKed083MX1CMhaTlnMmpDBq0MmgWJRZw7kT0+ieYWHS6GRcniAtNh8eX4hzr19FerKJlx8fh9GgJinecMp5HcWksUqUOCPV8k+va8yIVO6+eRQvvrmTl5865zdxV102iIlju/HInHX0P+strv3rEJISzIzPzmTsqMwOXGpyFKnJUVij9Eye0J3bHviJW6+v4c4bR5OeeqaQQZRFj73dy43XDv+nY/137eq/jsIb0PHya8u5/e53uHnGVFJTYohNSP7nf/wv2u+hcHQH8gET4AMswDuyLM86DXcY2HJ6+/80EwRBXrS3hN0rf6TbwCEAVB46wNhLriD3p28Yfd7FlB86AED3gUPYvuxbrp55F5uXfUevIcMAOH6gkIuvuZ4f3n2b8665jpL9hQAkZmRw+9TxHe+16mBZR0UrSxeaz4OjGroe5B9A4WiurUCSZD769jAP3T6cT384QvbQJOSgjz0Hmpnxl94s/KiIG//Wh/yiFuSgl2H9Y/j0p3Lun9GXL36uYHhvHciQf6Sd6y5KY9GX5dxwSTqFe+sJhmWG9zbzxfom7v5LCl9vbGZojIQsE6lxH82S9Tau6gEH6pVv/ENT1Xxd4OXOcSZ+yHXQN15xWA80hrmin4YPCv1cmiFwsFVZs4PiRJYdD3HjQDU/HPQzIOJYH7LLXNJN4KvDIc5JUQptAPSLhlW1cHGKig2N0CeSpFjslJmeJPB9lfD/sXfe0VEcWdv/9SSNpFHOERFFkJAQOZtgwBGMs9fGONu7zhmvE8bgyOKAwQGTweQcTAYJSQRlJISEcs4jjWY0efr7o4UAS9rwru3d9/18z+lzpJp7qqurq6pv3Xruc5ngp6BAL1n/fTQyDtc4mOqvIrHRSs92jEKxwc4QdzXH6s2M8XaitB2j0MNZQVKjlTHezqQ0mwhzlgzfEoONOE9nEpraGObhTIVJOsYMdVKQojMx3tuFtBZjh6FcY7Yx2F3dST/ESUHqL/RVMgflJhvDPZ040WBkpJeacqMNJ7mDMGcFSU1mpvqrOdNkpoeLAqXgYEulkUg3JTJgrI+KSpMVEejpKie+wcqMAOl5B7gLiCIUGhxM8FWwv8bKDX4KasxW7KLUP0dr7cwKkZPSbO7YqFxsgVuCYWMp3DtIRY5WpKDZwepLdvRW6O8l4KKWcUsfJXGBCrLq7MyOlN7vQ6M1ZF4ZD0FKfsow8ucb3NmSbiQ2VDquy6iwcE+cCxvSjdw62JV5O5qwOURya6zUt9oZ11fN1IEuDA2X5lR6uYV7h7my/JSO+0e4kVkuHdkbrSJbUvWEeCnYcq6Vd2f6MLyXMxll7ePzWDMPjHYno8xESb2VtFIz+9JauWWIG70DVNwUKx1FXqqxMXO4Oz2euUjSor4UVLcn1umhYuPpFv48zYdNSc0dhnVGURv3jJLG/wNjPUgtNlKpc6A3ifycpuO24R6UNZiJCndmUG83LpYbuX+iD4s2VZJdaiS/0oTJKmKzi2hbbWhc5MT00eCkVnD8XONvDuEY/sR8wsfMIP/geiImzERbLIXH+PQeRPGpXUTe/BDFCXvx7iUZ1rryfHqOvYnc/evofcMsGotykMll+PQaQMHxXQy6bQ6Fp/aiCQjlyPwnOu4Vc9cTDLrlTxJeWqHAp1d/8o7uZPCsh8k/vhu/vlEoFTLq8rPpP3Um6TtWM3DabHRleYh2O4H9orjw83aG3/0I2Yd20SMqBlEUqbp0gZgZd5C8eSVDbr6LxqJcRNFBaP9oUvZtY/wDj3Hx2D5CIwcAUJaTxYhb7+T4+hVMmH0vpRel9b/HwMEk7drCjXOeIP3wXsIiBwJQnJ3J2Jl3cXrbembM6RxT/weEowv9/xIIB6KDT1bkodNbWfji1Y3Vqp0lHYZyao6WB28N58cdJcyeFkpajtSPcYO8WLurlBfn9mf9nhKGRnlL+tlNPHh7BEs3FvLQrN6kZkvf46FRPmz5uYynHxjAR8sy+WFzHjq9hQBfZyaODMZqc/D5W2NIuSCdWA+L9mPj3kKenTuYNdsuMTwmAID8Eh333HZ1U3dFrkA4PlxymuYWE4dPFVPXYKB/X1+ObHkQpfKaE5Iu4BRJ58o4lVxObb2en3Zm8tXCW7n3jsFddltufh3LVp5lw/ZMpozvzZsvTGBoTMh1Oj2GfMaJnY/RK8K723t2JXa7g5z8Fs6klHDhYjUR4d706eWLm0bN0CG98fCQ1tW6eh3Pv76FnEtV6A029AYTDQ2Sd/7PT06nsdnC5i0nfl8IRzstXSzwCbAWeLgL4zkYOAas+rUa9p8Uc5ue3OQESnOyKM3JIjc5AVObgdKLF6ivKCPvXDJ555KpryjjQuJJjAY9GQknKcjKoCArg4yEk7Tp9Zw5cpCa0hIyk0+TmXwaY2srQ8aMA+COuY93Sgf7e4q2xUxRWQuHTpXSarByJL6M85m1ZOU1cvR0Ja0GK4fiKygqa+XU2WrOZDZQXGHgSGINrW1WjibXkJnXQmpuC8fONtBqsHHkTAMllW2kF+o5fUFHSY2JY6nN6I12TqS3kH0lx/1FA3qzg+M5esq0dpJKLCSVWCjV2jlRYEZvEcmss5NVK10J5RJ92alSG5V6kXM1ds7V2CnXO0iotGOwwrl6kRytdJ2pc9BmgxydxMiRrpWuqjY42yhholO1DvJbRfJbRVK1DtrskNtqp9bkIEdnJ0cn/Z3fasfkgGydjWKDnWKDnWydhDu+2GqlweIgX28jX2+jweKgzGjD7BDJM1gpN0pXQZsFs0MkX2+myWqjuM1CcZsFrc1Ovt6MuT2wr8Jk7bi60m+ydtavNFu5pLdgsotc0ltotNgpMFgpN9ppsDi42GrFZBfJbbVR2maj1Gin0SpidYhkt1qptzgoMNi51GqnzuzgQout43nLDA4KDQ6yWqQ+yGi2UWcSyW91cKHFQY1JJE1rx2iX+vVii3Sda5Rw0MkNUGUQOVtjZ2uBnalhcqJ9YPlEFf195ChkAll1dhLKpPcbX2ajtNlOUqmVpFIrpVo7Jwst6C0iJwvMZFRYyKiwcLLAjN4sklVhobTRRnKxifxaKw+P1hAdrKS+1cEP8TrSyy2kl1s4lWdEb3Zw4pKR0kYrSYUmkgpNBHnI8XGV8+atPsSGq/lwTyMPLK/ih5MttJocHM8xUNpgJSnfSJXWxmOTvIgOd6KXv5IvDjaycGc95wqNpBS1Udtixe6ABp2NxDwDiXkGyhusHMvWozc5OJljIL3YSHqxkcQ8A00GG8dz9Hy+r4FHv63ks111nLtsoKHVRl6liX3ndby0spI1x+o5kalj86lGlu2rI9zfibEDNcyc4MuSF/vi5iLn/cci8PNScufUoN9l7WgsyMJmaqMmKwlDfQX1uSnU56ZgqK+iOisJq6mN2gtnaCrKoakoh4b8TKymNqoyEtHXVVB7MYX6S+k0Fl6kKiMJq7GNqsxk9LUVBA+WEp70mzyL2tx0WmsrqM5Ooe5yNrqaCsrTTmMxtlGRnkz95Wzq8rMpS0vEajRQlnIaXXUFNXkXKMs4R3N1OUXnE7C0GShOTaS2MI+qSxcoOp+Ipc1A4bkEtFXllGalUpx2lqaqcvLPxGM2GCjOTKEsJ4uynCwunZHW/0vJp2isriA/5Qz5KWdoqCwjJ+kUpjYDBekpFGdnUpydSU5SPCaDnpzkxN/lffwhv77YrzGwRVHk2Jk6UnO0pOZoOXamjtY2G6kXO3Hl9wAAIABJREFUtZRUGEhIbSAhtYGSCgNHkq5+H1Ozm0jNbuJoslR2LLmG4opW4s/XEn++luKKVs5n1qPTW1i76zLRkV4sfmskQ6N9+eyt0VTUGCgq13HqbBWnzlZRVK7j9Plq6XudUM75zFrOZ9aScLby7z7LqeQyci838N4r4ylLfQ6Ni4oX3j70D/tgzIhw5r04kS8W3sLhLY/w+geHiBy1hHc+OoLjyhFzuwzo58/XH99GSdqrTBgdwS33r+XFv+6nVX81ILWmrpUAP80vb9NJHA4HbW3Shur7NWfx6j2fu+auJPFsMRHh3pSWN7FibTJTZi7lmx9OAnDg8AXiJiyiV4Qva7+dy77t80g89iEzboxl8ccP880XT7Bpwzv/8N7/qvyRifAXIgiCuOjIeWQyKagE2oNFGhsICAqkVavFWXN9sIio17YHC0rBJWoXF5a/+TJHtv7E9Hv/xIvtUA2jwUCAry/a+vpOxvPv7YF2tNXQorPg6eFEQ5MRHy81bUYbNqMeV1cldY1GAnxdaNSacNcosbbp0LfZrwsu1DVqQQBXZwX1TVJARWOzBRejHhHQt9nxcldSp7Xg56mkpbgBKce9jPpWG/7uSuouN+DWHoylt4h4Ocup19vRmMzXB5O1OfBzlVNdZ0TTTidnsIGnk4yGNgeuNhtGm6TvrBBoMou4WB00W8SO4LY2uxRcWKoDLyc5Jrukr5YLaK0iKpzQWR0dwYVSbIiKFqsdd4UMc7u+k1ygpk3AQ6VAb7Wjll8J/hORiSparXY0ChmW9kVYQI7e5sBNKcdgs3cEC5rtDlyVik76KpnwT+s7yWw4yaUAQnelHL3Njlom4KRwYHKIaBRydFY7bgoZZoeIHBsL8tt4KEzNQHcVrVYHbkopiNBkB41S1vG8omhFEGSo5QItVhFPlQyd1YGv2tbRn+5KGVqLg34eluuCNZss4OMEBrWcRWkO9Fb4cKSCIFc5DUYHYb8MFmx/v0YneUdwXsd4sIC/u4K2dnpBF5WMBr0UkNOkt7MlVU9OtYUPbvPGy1VOZoWZ27+pJXt+KIJw/Xhr0ttwaw/m05sdeHs5dQTz6Yx2ssrNzNvawCMTPHh8kvd1+i+sr+PwBT2RQSp6+KmoarJS1Wzj8Du9sdgcjHu7kK2v9GBQmAQd0bdZ8dIoqWux4ueuwNAebfr095UU1VnY82o4hTUWnllZzcxRHjw7ww8fj6v6m05r+fpAA/3D1Ow5I3kFZYIETnBSylAqBGL7afjhzf4E+qowylQETT72m3ug71qbiq6yEI/QPphbm1E4S54uu7k9WLClEbW7NzaTFFyodnXB1NKIs6cvZl0zChdXUld/wuWj2+g37R4G3/UUzp4+WE1GFHKhIyjRxcsXk64ZpYsrcrkMa5setfvVYEGrqU3qh2uDBVu0eHp5AGKnYEGhnVpN5eyCQduIxtuXthYtHp7S0Ym5PViwtbEe/8CugwUtrS1X1/82AxoPT3QN9fgG+HcKLg8ICuiyD//wQHeh/1/kgZ4w5yTv/XkgU0ZJEIwrNlKbSWqPi1pOY7MFX29ntLqrwYV6ow1PNxWNOis+nk60tS+ILs6Svr+fG9qWq8GC+jYb7h7OPPp6AoVlOjZ9NQkvDydcnBVodQ6p/uv0rXh5a677XgO4atSdOPHhqgd6445sftqZw9519wKg09vwHfAZ2rzXcXVtHy/deYOvCSJ0OBxkXKjmmdf3cP8dg3nhqTHX3XfegkN8s/IssVFB9Az3oq5Bz8X8ehL3P0losAeRo5awbtldjIgL+7v3fOyFbZxMLOLUnqew2ezc+sAaJo7tyxcf3Xmd1/zoyTwef+EnJo2PZPWGZADkchkOh4iTkxInJwX9+gQTf+QD1GoVotIb2a8cRPhPGdCCIEwCXgD6AM3AZlEUv/61GvHfJIIgiD7BITRWVRLYsze9Y+IYcdPtbPpkPgs2bmPJC88QO0GKCs+IP8HLX33HJ08+zJzX3uLk7h0ADJ04mU+evXoUuftCYYfB3NViCF2n7e6n7gZw3w1/J9bOhrJU3sVCaanvXAas35yKt6eaVz9M4ujG27n/uSNMnxiGUrCz73g56/82gWlzD/P5vOHsP1pEq8HG3dNDeWPxBQ5+P445b57n9nGe6NvsHDvXxKr3BnHrSxl89GwfjpysodlgZ/ZYb/66upw970fyzJLLjO0nbVSO5xj44fEg7lhSwcIZGrZlSh/SmVHOvPezju2PeLNgXzO9vaVJdLLEyrJbNNy7VcdfRzuxt0BaUG7to2RhkomVk5W8ctrKuGDJADpd5WDxeBUfJJuZ3VPGz+WSQTMjVMbnWXa+GQl/TYPR/tL8Sq4TeXugwEtpIs/1k3G0VporUwIE9lSI/KWvnEUX7QzzlvRTmkRe7Kvi3RwLj/VUklAvLaBjfOSsLrUyf6Cav102E+sptb+izcGfwp2Yn2tkbg8ViY2S/g1+MlYUW1kwyInP8y0MaccQ5+jsvByp5K0sK0/0VhBfb8dDKTLMW2B5gYPFsXIW5NgZ7i3DU+XgeB0siIZnU+GFSDhSI7FtnW0CdwUsGw5vZ8GEQLCJAsl1IouGCjyTLPLyIIGURpEms8C0EIG/ZTv4boyMeakOJofIMNkhqVbkkxFynkiwMW+kioPFUvtv7qng4/MWVk9X88gRyQNxe6SSxHIbS29y5f7tehbd7sn2rM7v96UDBsZESgv/sWw9K54K5dk11fz5tkC2n5aI8a+Mn/1fxPLIh7mEBTiRkttKgLeKVW8P4KEFuRSUGZk+Vppzd90YyCcri9j42XAenpfK1DFS+dGketZ9PpoZj5/is9di2HKwHIDYAZ68teQCvcPdcNcoueWGEApKW9m0v4QTG27mnuePM6ivF2fS6rA7RN56No512/OZOT2Cxd9nMXtGBIP7+5BfomPRayOY+qe9LH57DJv3StRjB0+W0Wa0ERqkwWC0onFRkVugJWaADwfX3s6U+3fxt3fH8dPufNJzGjBb7BQUN7Ns0SQ27spjxg0RuLiq2XnwMpu/u51Jd27iiw8mc+BEBV9+n/ybG9DBQ8ZTlZ5AxPjbMDRUETRYgqUZasuJue85ji54gmFzXqUk6WcAQoeOJ3Pzcqa9v4L4Ja/j1z+W7B0rOup0C+rB6MfnUXT6IC6ePgRFj+Dsyk+5ecGPHP/8NUKHjEXl7Epx8mGmvPY5+95+lDGPv0FB/EEEAfpMuImkHz7h9o9WceSTV+k9dio2s4mylNPMmLeYHW/MZcJT86jMOouxuZHIG27m5Lcfc/dnq9m/8GX6jL4B0W6n6HwCM99ewk+vPMxNL7zDhSN7ABg05RYOL13EnC/WcWLF3/AJjQCg4Gw893zwFaue/xN3vPY+aQd3ATDkxtvY/cWHvLhiM25enVk4XFRdH/y6q7s2oJ26Sv7SzXfEuRsjvCuDW91NHf1cugllsuV2Uda1oYy9u/JuaPa6qqc73e7o97rgnhZFRxea3dPvNTQZ6XfDRurSHkGh+PsH9ILQze9dGLMAMkXnd7BoaTqHTxWxb/39aFyv+V3p2XXdCvcuyrrRba/j7Nlcnn/pG84mLQVAbxqJv78/BoOhwwDObe26P2yOzv1XfDmPZ+68FZWTE8u27yMoNJyc9FReuH823+89Qk1lOYmHf+bE/t2oXVx59JU3mHbH3exYvYJvP/qAp996j9kPd58uZM7kMfgGBlF6OZ+ps+6kuryUQ9u3sOjH9Uy6bdZ1ul+++yaZZ5IpuZzHs+8v5Nb7H0KuUGDqYvNlstm4tYff72tAC4IwHTiARF2XD4QBAcA7oigu+rUa8t8igiBc1yHz1u2gx8Ao8lLOERU7mLryMgLC2hOmlJdycsdWDm1cw00PzOGOJ54BwD8kjMUvPEPCwb3MevgxXm73QMN/vwFdXVGLu5uK+LPV3Dg+lLMZtfQKc8dubqO4XM+IGCkH/YThARQVSh7v8CAXTqc1MGWUP+cvaAl1t0gE6e2E9sdTtIyL8aTkYhMiEOanIim3lUmD3Tl3vo4evlKfXEmwcjK3jRFeNsqbpcnbkWClt4rUSwZCPSQDtKzZwZAgOfGlNuJ8oVIn6Ye4yThXbWe4p4OsBpFQjTRfKvQig30FTpdYGeIrUNW+Pl9J8DHMw0F2Mx0JWSrboJeTQEoTxHhBO/89AWpIbxKI8RS41CoSpJbqrzaJhKuVZLY4GOQuo84sDSUflYyLOgcxHrLrErjUGEV6a2RktdgZ6C6n3nwlYYeD3FaRGA8Z+XqRgHb6tkarjUg3GenNItEeArUmESe5nQAngawWkaFeArk6CHIGF4WdSqOUUOZcEwzxgmojbCuHehPcGQYjfCCnBUI9QECgsg2iPOFsA8R5Q60ZRASCnCGtEUb5QbZWyvAHAhVtItFeAmfqRMb2VHUkKAnWCKTUOBjoIzBtp4mtd2rwc5V1JEBJKLMxYbCG8pbO7zfLrKaHn/QhKa23MLSXM6fLbIzq70ZZneSlujJ+pt4QSEpuK1X1ZpbtqOTDp3oxbIAb3++vZ/Ohar5/L1oan4HOnMluZdKIawj/gZLKNkYOCeBYci3jh/lR2j4gwoNcSMrUsvtoBTUNJpa+N4LH5iVT12Rm05c3UFTWyoQRgXy0PIvDpys5uv4WktLqmDouhBWbL/H8e4mc3Hw7cpmMYYP9OHK6gokjgimplIyEHzflkl/SwuwZPUlOqyU8WMO0CT2w2UVGDgngSEI5E0eGUFKh48CJMj5dnsqrT8fxypNxnE2voVe4B4LCiaKyFkbGBXHkVAkTR4dRUSvSZ+SS39yAvvb/8a9+jXcvCfvbUpZLcMxYarKS8R8oJUzJ2vYtpUk/Ezp0ApPe+IqGyxfQBISQvv4LCk7uIXL6PfQYMZnAQcPQ11Uik8tw9Q2i5mIqITGjqc/Pwi0gFLlcQFdTgX/kYCozkgiKGk5rbSUyuYDbNQlZavOy8A4KBUFAV11BQP/BlKclERI9nLbGKhDBPSCYiqwUegwdQ/WlTHzbE6Y0V5cTPCCGktRE+sSNpLlGOhr3DAihNOs8vYaNpTY/G88gKUGMtrKM0EGxFJ4/zYARo9BWS/pegSEUpZ8jeuyELj2DfxjQXdX932FAf7PmAtsOFHJi86wuf79W/l0D2mi00nP0Sk7smMOAfr+Ac/6KBnRmZiEPzf2YrPQfALhcHM5NN91EQcFVLvF/xYAGsNntLFs0n9KCy3y6agPvP/cU+dlZzF/+Iz379Qfg4NZN/PTdUr7bewQndXtSmct53DsmjvUnz9B3UHSXda9buoS8rAwm3TKTssIC1C7OjJoyjR59OuO8Tx8+yMIXnmbekmWMm35zR7nR1vnk4bcwoP8ZGru3gNNAuCiKI5EM6BXAG0JXq8P/ARl/530ARI+fTFurjl1LF5NyeB+PjRzM/jUrSP55H8k/78PhcHBo4xoADm5cy+ULmVSXlrBu8ce8880P7L5QeJ3x/L9BGrQm3vvbecYMDeTx10/g5e7E9oNF7D1WjqeHiif/msToWD/e/zKD0so2iioMLFiey6gYH556Pw1PdyVHzjWx65RE5P6XT/IYOcidD1cWU1pnpqTWxEebKxnRT8Ozy0rwcJGxN13P3nQ9ni5ynl9Xy/BeznyXaKC0yUZpk43PjrcyPEzJS7tacHeSsT/fwv58Cx5qgVcOGxgWrODL82ZKdQ5KdQ6WnDcTFyjn01Qr7io4XGbncJkddxX8NdlKlDd8c9FBuV6kXC+y7KKDWB+Bz3NE3JRwrFq63JTwZb6DQR7wY6FIlRGqjLCySKSfGyzOs6NRCCTUO0iod6BRCKwusRLpJmNjmY0ak0iNSWRzuYVINxnfFFpwVQgkN9pIbrThooDlRRYi3eRsLrdSY3JQY3Kwt8pOpJuMpQVWNApIbrST3Cjd68vLNga4C6wrtVNtEqk1wuoSB4PcBT7Pc+CmhPh6kaQGqf0LL0K0B/xQADvLIb4OvJ0g2hM+zJF0TtVcfd4PMkUGe8G3eSLVbVBhgG8vicR4w/wMETcVxNeIHK104K4UeD/VToyPwFfpFspaRcpaRb5KtxLrL+PxI2bGhilIqbZzsMCKh1rgtaNGhgYp+C656/fr6Spnb4qOvSk6PFzlPL+qiqF9NCzaVElJrem68fPBihI83RScy9VR3WDB003BnPcvYrI4aG61UlxppLjSyIffFzAi2pOnP8jE003JrmPV7DpWjaebkne/ymZUrC/zv8mhqFxPUbmeD5blMDLGl+ZWK0lp9SxZeZGpYwIZG+dPzC27sFodvPdlOiNj/Xjn2Vi+XJ3D6LgAHn8zngkjghg7LJDXF53Bw13J42+cZExcIO8uOU9hqY7CUh1Wm4OLl7UsXZPNi48OxtPdiYzcBrw8nHjsteOMGRrIu387S3JaNa9+eJoRsQE8/WA0j716FC8PNdsOFLDncAFeHk48+tJBxgwP4Z1PT1NS3s3G+lcWr56SwewWFIEmIJTyc0dJ/PJVTn78LPteuQPfyFgyt3xDY9FFStu90BWp8cR/8QYqV3dKzxzFLzKGmxeuwW4x4x8ZS9pPS9HVVNBaV0XaT98QEBlLwtJ3UGncKU4+QllKPE4ad0599Q4B/Ydwfv3X6GrK0VWXc3791wQOiOXEF2/jpHGn+Fw8BacP4+TmzrElfyVwYCxn1n2FrraK5uoyktZ8RfCgWA4v/itqjQf5iUfJiz+E2s2dA5+9RcigIZze8D3aqjK0VWWcWPklYYOGsOfjeag1blw8cZCLJw7i7O7Bro/eJCwqjpNrv6OxopTGilIOfbeEiMFxbP/sN8tn84f8BrLncDGff5/B8kUTf5f7rd+Ry/DY4M7G868szs5OmMyS86GkpIakpCSCg4P/rToFQeCxl98gNzON00cO8eanXzBj9j08ceuNHN8rncTcdPd9rD16usN4BojoG8mTb77Dis8+6rbumQ/OpSQ/j4sZqcx96TXuf/q5Lo1nva6FN+fez6OvvnWd8fx7yj9jQA8AFoui2AogiqIdWIDExhH2G7btPyb3vf4ek+6bw+T75wBgNhpJ2L4JgNN7d2HU6wFw8/IiuD0td6+BUWjcr6dv+U8GCf4hf8gvpUAPNwZIVH6/h8gFqDeI/NZxFhpnBXVaC19uKufQ2SZW7CjHz6sbLOi/IE4qOW88OYiN+0pQKATm3NEHV2cF6q4yw10jU8aGkHNZy5GErj15Glcld0yLIPNiI826rrO+Afj7uvDqU3EcS6zg4ImSf+dRflUJHjKem5fsw6evFJFvNRpoyEsHQFdVgkknQW1Urm4ED5GCpvtMno1Cdf0pm9qtG8/ZH/KH/Afk5JlKnn9kMP17e/1j5V9BnNUKqmr1WK2/LVexj48bdXXNvDHvB4aP/gsffvghQ4cO/bfrVTs78/aSb1j4yrPYbTbufvRJevcfiLIbfP4VuevRJynIucCe9Wu6/N3d04tb7vsTP327lKrSkm7r0bh7sOCHNaz8fBE/b/3p33mU/7H8MxAOBzBKFMVz15TJASswVBTF9N+2ib+vCIIgvvLDBvrGDaexSjqS8wkOYdnLz5B16hgjp9/MUx98AkgQjr6xcaQcOsCoG2dQVylhKP1DwqjMyyV6+MhO9f9vgXCcOlPFtAlhXUI4jiRWMWF4IMVFVyEcCakNTB3dNYTj2Hkt42I8KM3VdkA4Ei+2MjmmawjHidw2RnjaqLjmiD+5xMINfbqGcJwqtTLUR6Cy9SqE42yVnRFe3UM4Yn0Fqq+FcNSLDPPsGsJxvgliPKG2/YQwQA2pTQJDuoFwZDQ7GOQh64Bk+Khk5OgcxHYD4chsh3A0XAPhuKgTifXsGsKR1g7hqLsGwpHZIjKsGwjH2UYJwvHnFJgVCjOCJFaSkd1AOM7UQ5wP1F0D4UhthNHdQDiS2yEcVddAOM7XOBgZKHDjTjPPDVczo4+yA8IR3w7h6Or9dgXhiC+xMXqAG+X1VyEciRdbuXGSBOGICFJz/qKOr7ZUsPTVflToYEyMF2XtmJvwQGeSL+iYPNKvSwjH0SQJwlFWfQ2EI6uZyaMCWfRtNqu3FfLyYwOZ93k6w6J8eOWxaKaMDaK0UsobFRHuSfy5K5CnOnqFu3PhUiP3PXeM/atupllnYeLIIEorpY13j2AN0+bsQxAE3nluKIP7+yDI5RSV6Rg5JIDD8eVMHBlMaWUrgkzOS/PjCfBzYeXnU7uEcBw+KUE4Kut+HwjHnavOUH8plcDo0TQWXEDjH0rmT19SkrCHvlPvJnT4JAIGDMXQUA2AUq2mpbKI4JgxHRAOuSDQWleBX9/BVGUkETBIgnx0QDhyUgiJHdMlhKMiPYmgqGHo66o6IBxVF84TFje2SwhHWVoiIdHDMTZWXwPhOE+PoWO7hHAUp5ymb9xImmurAAnCUZJ5jt7Dx3UJ4Sg4l8CAEaNorpH0vQJDKEo7S/S4iX9AODqV//dCOO555hCzpvfkgVmdvZ1dyb8L4RBFkWE3b+Lhewbz/BO/sBV+RQgHQFraZd77YA0fzn+EmKFPdlL9VyEc9vbypGNHeO+5J3n1w0+Z/8LTRPSNZOm2vbh7Xt2EOLqwMcsKL/PUbdOYv/xHRkyc3On3j155jpzU83y9bS9evn5d1nGl7g+ffwp3Ty+e/+DjjvLfC8Lxz/qi/r+i6kjYsRkEgaz44wAMHj8Jh83G4gPH2fHNlyTs2wlAfloqj76zgJO7d+Du5c2544cBGD7pRpL27+7SgP5vl4yLjXi4qVi3I4/hMf5s2JHPyCEBCA4LSWn19I1wZ/2uQrzcnTh+uor6JjPTxwWwdGMBg/t5sHRjAWMHuWC2ipzLaeGT5/qwfFs5CjmcTGjAZHVwY5wH3+6vJTrCmR9OahkaIR3xnC8ysfAef747pkU2wokjeZJ3bkpfNT8kG4gKUrAp20xfH2nYplZbme/hwo9pJsRBCk62BwXeEK5gVZaZ3iNkrM21E+snGdwZ9XbmDVeyp8yBiIzTNdKwHhcosL7AQc8okZ+KYHD73M/SwtO9RLaWgQyBM+37k1E+cLTGQU8XOTsrHAxwbw/E0Ik8HG5nb7UduaAgRSstSrEeMvbV2OnpomJftY1+7Ylayo0OfJ1UHKi2IgfSmiX94V4Ce6vtRLgq2VdlJbI9gUuhwU5AT4HdlTbkyDnfJOIidzDES8b2cpE+rrCjQmSgh5TmPF0LL0XC5jLJG6wUYGUh6CyQ0gT93GBTKcT6gIhIlhZeGQQ/FUv66U0SE8nYANhYJNLPXWBjkchQXwEbAlmNIq/GyNhQ4EDtbCO+SurPCSFyVuVY2FUow2QTqTPY2ZsvklZtJ2yCmpXpZly8nDiSZ+r0flfENxHXzpd8vsDIwvsDWXesAZkMDqdKhN5Xxk/MYC+W7ahkxAApkUCQnxPurnJWrSlBEOBQorRJnD7GjxU7KhgywJOfDlQwPEr6sJzPbqZfLy/W7y3F013F8TPShnDSSH8OnKxkQC8Plm/I556be/DB0iymjQvm+4XjeGHBGfx91RxNkgymGyeEs27nZYYN9mPDrgJGxkrR+zeOD+PuPx9m+GB/vDycOHpaMkymjAkhNFCDq4uCe589whP3DWDIYH9On6umXy9P1m6/1K5fTmWNgQuXGnDXBKFtMbNuxyVGDQlEpVaTcLaCfr28WLM1Gy9PNYmp3Wygf2VpyEsn/+AGvML7kf/zRnz6DsYzIpKewm1E3/UUycvfRSaTUZl+GpCCCHP3r8c7IpLc/evx6xeDIJNRn5fByEdDyNm3HuRyKlMTUKidCYoaRvbedfhERJK9bz3+kTEoVCpqss8zOuBNLuxZiyCTU54SjyCD8GETyNq9Dp9e/cnavY7QqGE47DZqcjMY//Q8MnauRSaTU5V9HpvJSM8RE0jbsQa/3v1J37GW0Og4cIhU5mYw5c9vkbJ9LU4qJQXJJwHoM+oGzm5dTWCf/qQd2I5fj14AlGenc3Pw2yRvWY2zk4JLiZJ+/7GTiN+0kp6DomltasCl/WSyTddCQI9eNDY24BMU0qlf/5D/rEyfGMaXK7Pw9lJz47hQ5PJ/5oD+fyYOh8hrC+LRNhuZMr7nb3afKxIX15e9uz781erTNWupKC5m3bIvuGvu4yz/+ANeeH8RwydMQhAE8rIy6D1gECUF+bi6uyMIMlqbtfTo04/C3ByCe0Tw4oKPefuJh/lq6x4EQaD3gEGUFuTj5uHJIy+/warFHzNn8ljuferP3PrAHFqapJMtTx8fqspK6d1/IEf37uTMsSN8veMARbkXCe/Tl6JLF/EMCkanlRyHHt4+VJeXEtS776/2/Ffkn/VA1wG/5JkJBWqRPNFXRBRFscev2sLfWQRBEFecyexES9fS2EBIcMh1NHZGvR43Ly/atE14+fphbJM8Us4urlhbdXh4d47A7o6qqCtvQD/XbjZKtmPdlHez6++KlsjS0LVuN95tu7Gps2qbnjajDVcXBXWNJgJ8nWlqNuMil4ZKa5sNbw8VtY0m/L2d0DVLpOauzvIO2ruGCi2aKzRA19DeeTssHbRfrk4y6lts+Hsqaao1oLlCQ2Zy4KWRU9diw1u00GZpp0VTCdTrHfgKVrRtDjTtHly9WcTLRUZtrQlfF4G29pHrooSGNhFPuUizyYGrUtI3WEU0gkhDmwMfZ4ErGV5dFFCrs+PrLKPZLNLOMoTBCm6CgwajiI+aDn1nGTSawNdZoMUs0p6gEL3ZgYeTjEaTiLcTtLMSoVELHfrX1m9Chqdadl39CqWAi1Kg0Sji6yKj2STpy5UCBit4qmXUtzmke5tElqWZ2XfZyiuj1dw1wIlmkwN3ZxkgtNPGyag3OKT+sYkIgtDRP36uMrRGB25qoZN+QJDzdf2/6qyB7RltfPdEMEEeiqvvy1VOnc5GYLjH9e9XZ8PfQ4nOSY2mnUfwynhotKvw93bC0E4L5eosp67JQkioL00tZtxj3olQAAAgAElEQVTaO7S1zYq3hxMNejn+vs4dKXldXRS0mJT4ejt3jN0fNmSx+1Ahvn5e+PlocNOoqK3XU1HVQnllC2WVOhqb9Dg7K3novtG0tVlYt+rVLucGqs7zHAD5DfzlL3/Bz8+P999/v6M4t9WOKIrYbDYSjx7irWce49tdB4mM6pyk4IU/3YXa2Zn3l/2I/JrU0JYuPENWu53JwZ6/uQf60R1ZV2npWltQttN9ipa262jmrtDYKV1cMDY3SrR0rc0onV2RCRL0Q+12PS2dDAGlc2d9RBGrqa2TPoBSfb2+k6u0PlvbDKjdPTFoG3Dx9MFubkNo129rbsTVyxejrhl1+3p+hfbOoG3Aw8f3uvqv0ORZ9S04tWcYvJYmz9vfD0s77d0Vmjwff3/aWppxcpX0zQYDLh6e2I161JrO2eOcumF9cFZ1hgy5KLvW7cpbDaDqIq14d98ip25SkHel3939Brh1A3Pq7tvVlbe5u++Z2HWK6S7rELuBR4idPZQOh4OFi4+yZtN53nppKo8++A8cYEI3/sfuKOHkLh1/Hjycxat/3Uz84Q/w8ekik2B3HmjltE5FF1q6pgY0WLruJ4O1s/4vdU/v283x7Ztx8fTCzcsbFzd3dE2NNNVU01hTRUNlJa3aRmRyOWPvuJem6kqe/Hw5JpvjOtpHQ0szqJwRhKvjv7WxAY23D3q9nlNrlmM2GJj86LMSraSuGZnKBRERo66FhrIidsx/mVvmfULIQCkD9LXzcdeHr2LUabn93a+wWy0d81dw8ey0PihcvflhVvTvHkS4FjiIlCjl2msN8PMvyo7/Wg37T4pCoWTx80+RuG8Xift2sfj5p5DL5fztleeoKC5g9acLWf3pQiqKC3jt7ttRKJTMf2oux3dt5/iu7cx/ai6ybhah/0ui01vZcqCEP70cj0IucOOcQ1wu0fHFunze/yaHgtJWpj9+CqVCxkNvnGXvqVq2Hanm4bczkSsEbnrmLAWVJhasKmXBqlIKKo3c8moWSrnAvDUV7EzSsjNJy2NfFqOQC9w+P5/iOjMLd9axcGcdhbVmbv+0BKVc4Jn19exMN7Az3cCTa+tRyOCZrVqKGm18fLSVj4+2UtRoY/bKRhQyeHqPnt25Znbnmnl6jx65DJ7ab6BI6+DzZBOfJ5so0jp45uc2FDKB54+a2FdgZV+BleePmpAL8NBBIyUtDr5ItfJFqpWSFgevJ1pQyOCV01YOlto5WGrn9WSpbO4xMyWtIl9l2vgq00aZXuTR4xYUAryWbONgmYODZQ4+TrVJ+kfMlLaKfJlh48sMG8U6Bw8dNKKQwUsnzRwotnGo2C61RybwwJ42ilsc/O28mRXpFoqbHdy3Q49SBs8eMvJzkY1IHznOCoGSZgf3bm+lSOvgizMmPk00Uqx1cPcWHQoZ/Hm/gSOFFnZfMvPMXgMKGdy1SUeR1sE3Z018ktBGkdbOXT+1oJDBU5ub2JVlZFeWkcd/auJwrolmo4MGnY1FextZtLeRwjors76oQCkXeGtdJTuTm9mZ3MxjX5eikAnc/uFlCiqNnceDQmDOW+lsO1zFtsNVzHkrHYVc4On3znK5pJX3vs7iva+zuFzSyo2PHEOplPHA88fYvK+QzfsKeeD5Y8hl16+ZS1dlMHV8DyaO6YWfjysWq53+ff145IFhfP+32Wxf/wx+vhoC/Nwpr2jisw/v/h/Nkdtuu40TJ050Kt/843eMifBn10/rcHVzo7mx6w3tvMVf01hXy4v3zaJF23kT+5+QxG8XIMgU7H/7EVqqSkjZ8DUpG76mpbqM3fPmIlMoOfLJqxTEH6Ag/gDxS+cjkyvY/eZcmitLObf2S85vWEZzZSk735iLTKHg0EevUHDqIEVnjvPzRy8jyBXseP1hmitKObPmS9K2raS5opQdrz+MTKHg549e5vKpg1w+dbCTfuqWH0le/QXayhK2vTYHuVzBwYUvU5h0jLyTB9i/8GVkcjlbXp2DtrKE5LXfcHrlF2grStj08kPI5AoOLn6Xi8cPcPH4AXbNfxFBLmfDiw+hrSzj+A9LOP7DEhrLS1jzwoPIFQp2f/YOWUf3kXV0H5veeR6ZXM6KFx6lvqyYg8sWc3DZYurLiln29P0I/x98G/43ikwm453XpvHUw6PJudRNDoZfQRwOB5u2neXRh8Z3bTz/F8ihn9bSP24Yg0aNxcs/AJvVQmCPCMbNnM2j7y1iykOPo3J2Qa5QUFNciCDISPl5LxlH9rP6zWeRyxV8/eR91JcVc2LNcn5eLo3/b595ALlCwYa/Ps+lhGMIMhkZh3ZJ8+UvD9BQVkz82mVseec5vrxnElvefhaVqyuJ65Z3OR8HTb+T5soyfpw7ncqctI75m7B8IQWnDlJw6iCHPnoFmVzBvre7p877n8o/hHCIojj3V7/rf7k4azTEjpvYkZpbKnOjT3QMQeERDB49FoCg8AiG3TAZF42GYRMn0z827qq+6z/OuPO/XdROcoZFS943d42KaeOD6RmmoWWAJ1abSESoKzeOCcTNRcGUUQFE91Vz5cDD3VXB1NF+RAQ6MS5GOuKMCFQzdZgXGhc5cb1dGBh+1WPo5ixncqw7Yb5KxkZKO/kefiqmRGnQqGWM76smNuwqxsxNLSMuVEUPLzljekrlPbzkTOrjhEYFEyOUxARdHf5uKoHhwXLCPWSMCpXKwz1kDAuS46qEcaFyBvtf/fBplDA+RE6Ym4wRgdJDhbnJGOwjw1UJY4JkRPm0709FySs8LkhOqEZgeIBUHuQCY4NkuChhdICMqHY+aWcVuCphbLCkP6JdP9xNxvgQqT1jQ+RE+8qQK2VYHXI0SpgQJifcXWBksAKlUiDMXcbEHgpclQLjwxQMDpAjCNDbS4bVDhN7KNufUYEIhHvKuCFCiUYlMKGHgv6+ig7slkYlcENPJT08ZBiCFNgc0MNDzg09VZJ+byeCPOR8e1rP+TILff0UzIx2IcxHydi+0nvs4atg8kBXNGoZcb1cGBD2i/c72J2IQHWn8eDmomDKSF+GDrzqlXHXKIgd4E3PUA0ThkmQiZ6hGqaMCiQjp4GoSG9iB/mgaD+GddNcHRuiKKJvs7JhZy6P/mk0T8wZjpfnVe8QwHNvHebpR2/gg7f/MZ3V35Px48fzwAMPUFFRQWiohJ016PV4eHljaG0lvFdvVCongsO7Prjz9vPnq617+eyNl/j09ZdY+EPXgTe/p/j3j0Hl4krokLG4BYQSFDUMALeAEMLjxqF0diFsyGj8+kmpkGVKJUoXV8LixuIeGEpw9AhkgoB7YCjhQ8eidHYlPG4M/v2ikAky7BYzKhdXwoeNwz0olJDo4QhyBe5BoYQPG9euPxb/fldTLV+rH2CKxmG34REURo9h41G6uBI+dAx+vSLhSrIiFw0Rw8bjGRhGSFQcoijiERRGz+HjpWeLjiOg94CO+p1cNfQaMR6PwBAihowAwCs4jN4jJP0eUXEE9r1ev/fw0XiHhNF7qOTJ9A4Jo//oCShVneNd/pD/HtFonNAVdh0j9O9Ifb2OF9/8icPHsgnw92DR+3f96vf4R2K327lwLhmNuwdhvfui6AYHbzQYOL1/DxNm38OEO+7G/Ren6Ue2bmLYtFsIiOjFjXOeJHnPNiKiYjDbHIgOB2pXDf1HT8QnJIzwqFgcdjs+IWFEjpqAk6srfUeOI7B3f/wienNm2zqaa6voO3IC3sHhBEUOAiSedZ/wXngHh+EeFEZQ5FXauyvz0b9nHyY9M4+cI7s4v2Vlx/z1j4zGt2dkh77SxZXQIWOozj7Hryn/DISj179SoSiKRf9Wi/7DIgiC+Oi7HzLulpkUXMgEoE90DMe2/cR9zzzP0W2biIwZAkBeZjo33nUf+9esYNpd95GXKcVTRsYMIeXoYW5/8OFO9f9fgnC0NDaTkFLL0Cgf1uwo4MW5g1i3q5C4SBdEEVJztDx4Ww++XHeZObN6kJZVg0OEuP7urN1XyfMPRLB+ezFD+kmbjfR8Pfff6M/SbZXcP9KNjCLpCCa2lwsbTjbyl1sC2HGyloGhEmY6vdjIfWM8WXa4kXsHO5FZLh1DxYQ58dO5Vp4aqmJLponYEKlvMyqt3BPrzLpEHbdGOpFZIx3jxQQq2HTBzKPRCrbnWhkcIL2jrFobM3vJ+DHLyt39lVyol47No/1k7Muzck9/BbsKbET7SkbahQYHt4XB6ksOZveWk9Mo6Q/0FNhZ7ODh/nJ2F9uJ8pb087UOpofLWJtnZ1ZPOReb2uv3l7Gj0MHcAXJ2F9k7DPHcFpjZR8GqbCt39lWS3WBHqZQxyE/G1ktWHhusYke+lcH+chQKgYxaB3f2V7Iiw8zdA1RcqLMjlwmsvWBGJYMPbnDmWLENBIHiZjt2ER6PU7PrkoV7o5zIrbdjFUViAiTs+VPD1GzNMRMXrMQBZFbbuDvKie/Om7h5iCv3rm5iRA8Vz0/UcCzPzNPjNOwusDEwWDIYMspM3DvSneXHmnlwRiAZxdIRf2xPZzacauIvN/uzNbON2L7Xj4dVR7WMH+rD1xuKaNHb8PVUkVvcyjMPRNJmsjMsypviCgMrthaSldeMSik9f029kSXvjCbI34XDSbV8s3DK1Slhc3A0oZRVWws5dCKfGZP7MX1yP24Y24uePbx5//NE6upbWbbkwasDvrtgnb8D4QB46aWXUCqVfPrppwC8PH8Ra5d9xfRZd/H4S68RGBKKuYugFwBLe0IAU1sb94wZwvzlKxkyeux/FMLxwMqT5B/fSfTMh7l8Yg++fSRDtrWygF7jppO1cw39b7yDuoIcAPz7RXHp8A5iZs8l79hu/PtGIZNBXV42kVNnkrFjNQOmzabucg4KhRLfXpFcPLyDIbPncunobvz7RSEgUJt/gf5TZ5K+YzUDp82mLj+7o/5r9QMHDAaHSG3+BQbcOIu07asZNH02jUWXcNhtBPaNIvvQDobeNZeLR3YR1F+CztTkXWDQtFmkbF3FkFvupDpPan9QZBRZB7cz4p5HyD/1M/49JSxl1aULxMy4g+TNKxk5824qc6X2hPSPJnXfVqbMeYKUfTsIGyjVX34xi2G3zqbwfCKDxk3q1Ld/QDh+qfv7QjiuyDOvbKNPT18evn8Yvj4aks4Wk3y+lEH9A4gaEERIsIcUHPovQDgMBjOTZy5l1PBevPr8DMJC29cMmUsnXeBfhnBoGxvYvXEttZWViA4HDtFB76jB3HTPA8hkMiqKiziwZQMHNm3AzdMLi9lMXWUFi7ftRa5QUFZazKhpV6ngHA4H2WeTOLx5I6nHjzBw5BhiJ0xi4MjRBPXszcYvFpN18ghvrNvFkbXfM3bWvZRezMJiEwkbGMWZ3VuZ/ODjnNu3ncD+0SBCeW4Ww26ZTfyGHxl+212U5eXisNkoyUyh4Nxpnv5hK2kHdtBUUy3FHPQdyC2vvE/e6eMMnHYHNfmd52P28QP4RvTDYbez852nmfLs22grSukzedbV9afvIHIP72DQrXP48a643z2IsIB/LYjwf/351OXMdPoOjiXnbBIAbp6eZMSfYOZDj5IWf/U4Ni3+BONm3EpmciJRw0eRkZTQru9F5rnkLg3o/0tiMNqIP1eLt4cThxOqeOzufhxNqsJJ7o/RZOfYmVpmTgnhSFINE4b5knqxpQPXejS5nkdmhhKfcdVgP56q5baxPhxN0TKul8S0AOCpUXA8Q8fDU3xJLzZibk8BfTLHwK1x7hzL1jMqRE5SoRSU5uki48QlI3+KVnKq4CpN2KkCMzcPUJNVayc60E5yuYQF83QWOFls4d5IBQllVxfWhDIbU0NVxJfbGRms4GyV9JuHk5KcJjsGq4LEyqsLdGKlnclBchKr7IwIkHGuVjJy3JUyTlfbubu3nOTqq4ZPvtbB+CAZidUOhvnJOF/fztrhAolVdu7uIyfpGv2UepGpPRQkVNoZESjnXI0DjVrEzUkgvtzOfQPgdIXUHmcnGQnlNmb0VnCq1MaoEAVnKm04KwUKmhyUtTg4VdaKAKjkAv195eQ32tmcbcbPVcboUCVZdTaaTSKeahkniiyMCFGwL89Cs0nE5oBzFTb6+sjZn2dmd74FP42MYA85Rgscv2ziweGuZJSasLSnWD+Za+SWGA1Hc/T072NgZ3IzepODcD8VB1JaKKg2kZjXhrurApPFQYveRmW9mY1H61jwbT4RIc54uavoGeJCvdbC5ysvUVDSit0honFREOCrZvvX4/hibSEvPhbNrCcOMe/TczTrLDip5NcZ0AqFjBmTejJjxkiatG1s3X2Bo6cKeH3+QW6a0g+7qCKiRzeG8b8oL774InFxcUyaNIkZM2YwfdZdrP56Ca8u+Bi1s/M/rgApDuMv7y5gyduvs+C7VZgsVux2GwGhYbh5/L50cK31FVSkJ9J/2t1UZiR1lLdUFv4/9t47rMora///nN45VOmgiEoRLCD2Ek3VTHommSQzb2ZSZ5I4yZtquunNxBhjiqkaUzQao9i7CAgCAtKRduidw+FUTvn9cRALh3kn7y9l3m+4r8vrSjY3m/3svZ79rGc/91qL8KS56PKOEZIwjaZTJwBQaH2oz0sn7oobachz80UCIbq8DKJmX4wuN53QxBSaCrORabRIFSp0OceYeMWN6PLS3XyJFF1eOmNnX4wu5xhhCSk0DvQv13ifxxdLpTj6behyM4iefQl1OWmEJU6jtbIYq0GPXKOlNieNhMU3UpebgVAowuVyUpuTzrg5l1BzIo0xSTPQ5We5x++lpTo7jclX/pGW8iLsVvc+U30indh5l1KVncb4aTOpOXmWX5l1lFnX/YnyrLTB+SnPSiPhostoqSr36ECP4D8D5afbWLvuOMvf2ENIsJZeg4VrlySw60ApJwsbefSBi3jiwUXn/Y7L5aKsopX+fgdSmRSxWIjD4cLhcOJwOFn2wjbiJoSw8vVbPGZmORd2u4PmljYaGjtoaOigobGDlpYueg0mDMZ1GAwGDAYDAoGARYsWkVN2mv3bfmDRlVczLj4BodD9crXtqy9ZvfwpzCYTKrWGy66/iRVfbyZ4nPtk9qHrFvPK/XfRVFsDwI81rYNjEAqFJM6cQ3TyDEx9BrL37KQkK4NNq95iwtRpWKxWjL16rCYjxelHmJA8k/ITmTgFQpRaLWWZR5h13Z8oO56GSyTB3m+jMusYCQsuo/z4UaKmTqeprAizQU9U0kyOfb2W/D0/UpmVRkTiNBx2OzK1BrVvAKezjhKamPIv7kf3M947JJLDH76BQuuD3C8IXW46UoUSuUaLLjedcYt+/hP/f+cE+id5gS6X67f/xvj/AwKBwLW5qpne7i4UA4EeloFgQbuxDy9vH/oHFkwik2EyGPDz9cXUZ0A2EExjtZjxG+ah9v/SCbTd3IfT6cJscaBWSdAbbHipJZj0vSAQIJMK6e2zo9VIMBj7kWJBIBBgtjpQK8Xo+/pROayDDrFMIqDX5ECrEtPT0ItyIFjQbHOilovoNTnQuPrpswwEk8mEtBvsjPKS0N5oQHMmuNDqwkclornZwCi1GONAcJtqMLjQQZfZiWbgq36fDXwUQpo6rfgrRZgGxqOUCGjpthGgEtNtdnJGBdDXDxoh5wQXDvDFAtr0NvyVYrotTtRnggUtLrwVIjrMTvzkZ/kKkYBOixM/uXAgeNHNN7tc+MjFQ/gapXgwWPBM/2KJgD67AB+58Ox4+l0IJaCSiOg0ufBXCQevVyCA6h4XEVoRPRYnzX1OwrVCNHIRSomAgzX9PH3QxNabNfgpXSAQktNo560MC3U9DrxkAmwO95fwMwdmUpGAqZEyXr3SC6FQMDj/bQYHQWFq+iwOajv6OVhiYmteH+XNNvy9JIT4Sgj2leDvJSIiQAYuCInUIBELUStE2B1OdmR0MjHWj+suDibY3/3l4Yz99FqlGEz9eKmkKOSiAXvrx3eUH4Y+Gx98VYK+z8Yn35axYfViLr/IQ7S7bNR5/6vvtfDuR8f4ZEMeR3Y+ypjR5+Ry/1+cQFssFuRyOVu3buWJJ54gLCyMedf8kbUrXuOu/36cG2+/E7vdjtVuRywWY7VYkMnl9NtsiMRibA4HDrsdiVSKxWzmxQfuobyoAKFIjEgkorO1hdv++TBX3fZXhFIpl4T7/fIn0F8eQeHli6mnE4XWdzBYR6VRY+ruQDkQnCdVuIPn+q1GFF4+5wcLCi4I5tN3I1WqEQgE2M3nB//1W0y4nCBVDuXDQDDiOXy7xYxAOLR/uUqNALCZzwYLKr39sFvNCC4YT39fD7KB/s/le/sFYBsIFpcMBAuqff2xG3uQqdzPC6upD5XWB6u+E42vP9aBYHSZUklfVye+owKw99sQitzPAqfDjlgiRSJk0Pk5FyMn0BfgFz6BbmntRaWUolRKOVnYSNRoX3x93LZcXtnGnMXvUXPyadSaM22tPLhsC4UlTfholfTbHTgcTkQi4eC/qYnhfLLmTiSSC+Zr4ARaV9/Blh+z+H5rFtk5pwkI8CYs1N/9LyyA4CBfvLyUaLxT0Gg0aDQarFYre/bswaX15/r/ugNf//PrTvRZrbQ2NqD18UUxEMgK0Gs2IxKL2bz2Aww93Wxf9xl3PPsi86++HpvVglR2dv8x9dtx2u2IpVJsVgsup4s96z9j91df8I+Va/EJDMLLL4C+ni7kKg3mfseg/fd2dqDx9UPfa0CAYND+NX7+GPXdIFUiFAiwmvpoq65g24rlyJQqJl5yNTlbNzD58utIvOwaNH7+dHW0I1e5U/idez9KvfywmQfuR7mSXW88QXNJPi4EiCRSjJ1txF1+A8l/uhdjbx8bbl/w65by/r1BIBC4vs4t4dX77iJ5gTs/Yc7hgzy55hNKszK4+NqhwUQSD5vecJuTyAMXQOyhfdhNyFXvud1Tnk7wvBF5cqrBc85o8OhYO616j1Rnv+fiEJ7aXXbPm+FwfRSWdrD6G/cb8w2XhPD4yhJ2rpnBnc/kMj/JnX9uf1YXXyyfyN9fKubvVwfz/RH3y8L18/158qMaflw+njtWVLNoiltre+Cknk8fHssdb1by0FWBbM50X+t1M715e0szn9wTyl0fN7Iw3v1APVjcx9rbA7l2VSMvXh/ADznu+b0mSc0nh3p450Y/7vmqnYsmuE8X0yrNvH+TH9etbePFK334ocB9w9+QqODJVD1b7vTn7m+7WDjO7SBWdTl4arEP13/YyotX+fBDvpt/bbKGZ37oZMv9wdz9ZRsLY5QoNBJ25Bn45J4wrnmzlpdvDmJLtp7AAAWz4zU89UU9256fwB3vVLFoshaZQsTOrG4+e3QcVz1Vwit3RrIrV4/J6uL6BQE8+WEVYaPkFFT2sfSmUIqqjfxwuINn/jaar3a18Nr9YzmY0013r53rLgrgyTXVpK5I5I5Xy1mY4jcw/x188WICS+7PY/l9MSxbWUpzu4UF0/wpqupl/9pZvPxJFeMi3Q7HvowW1r8xg8vvPMLbT83k21S3CuyPi8fwyGvZpG25EV/vs9WszkAo9/VoIygiBv/z3gfXMzrCjyeevMcjtYuhn0QBqnvNQ9oMw0S1G6yebfVU4SnWPPR3Hvv8Oz545B/Ez5hLTXEhVafyiZo8jdpTedz01Kvk7dmOUKFm3PR57H7vZW5f9RWbnvsn0dPn4RArqEzbzRVPvs2Wx25n3r3LKD+0A5FcTXjSHI59+CKawDBaS0/iHT6WzqqSX9yBjl1wBZcufYYND/2ZS+5/iuIDqQAkXno1u999gb+sXM/m5Q8yNmUuAC0VJSx+6Fm+WHobly99iqL9qYilMmLmXjLkeqUKJSWHd3P9cytZ9+CfuewBN1+p9WZM8mz2rn7lvP5dLqjKTuPa51YOjqcmJx2Tvpu4hUvY//4r3PrOen5Y/iBxCy7HZjZSlZ12Xv9lafuwW63EL1oy2P+ud18gZIJbmnI66yg3Ln+XL5bexpX//RwFe34EYOKiJex+72X+umoDO999gZBx7gqNlVlHufnFVax/7B4uufshCvdtd8/PxVey492XuWfNV2x4+p9MmDEPgPLjR7n1pVW0VpczPmXOkDmXiIYu53ByD0/c4fgKiefnyy/phCuG0dx6+pvD5qN2Vg3TPoxj7QnDOdaeMmhc0HbHXW/R1NzJV+ufo6DgNDf96TmWPXEb9993PVKpBIRD1xA851ru7ulh5fNPsveH71lwxZUsuvo6ps+7CPswfoKn/MbDZdswWD1n5/jspee49K/3svKuPxE2Po7GyjJC4hJJXLiEHe++zJ3vb+Cbp5cyfsY8nBI55Uf2cM2z77Dhv//Cxfc9ScnBHYjV3oRNms6xj1/nmtc+Z89rjxCRNBuHU0h97lEWPvImO5+5g+l3PE5t9lFsRgORMy8j76u3WPj0WjJWPU7glEXYrSbaijJIvudVjr1xD8GT5tF08jAul5Pg5EtpPXmQaQ+uoXDdS2gi3fdjd3k2Mbc9z6kP/0nIpf+g+5T7pcw7fgGNez8k+i9votv1ATL/CBwWA71FBxCIxDhsVlw244gD/UtCIBC4duk6KDuZQ3DEaACadbXETEmmr72NwNCwIb8z4kBf0P4LOtBWi4WaxoGCF0EK0k92sXC6P1l5rYwJdTusNU1mpsV5cfhYKzPiteja3J9cw0fJyTilZ36skpwKI6MD3drc2lYryeNVHDrRxawYNbozBTv8pWQUdDE/VkVujeW8gi9TQ8UcLjMzK1pBfZd7owrzFZNV2sfcaDm5OhuRA/mqa9utJIXLOFJpZWaUjPpu9yYYphFwvNbG/GgZefX9RPi617uhD6aESzlSYWHmWDn1XQP8URKOV1tZMEFBbp2VSD8JQpVssODI4WIjsyYo0XX2I1IpCAuQklFq4KJEL3Iq3dcrkIiobbWQPF7NoXw9syd6Ua93AALCA+VkFOqZmeDF9Dtz0bW61+CN+8dy9zUhHMztZk6iN7qBirINpkwAACAASURBVDLhgXLSC3tYmORDTrWZMSFKjGYHezI7cDldHMjuorDSwIJkf+6/dQwTItWD63Wy0kJkiPv0pabRSEqCLwcyW1kwazS1AwVKIkNVpJ1o5bKLx3v87PnvONBLH/2a9o4+vvjiGWSyocUkfkkHuk1vpCw7g/hZ86guPElAmHtc1VU1RMRPpiIrjfDYBAxdnRj7nWgDQ6kbKNjRUJKPT0gEerMdfXM9QTGT0OVlEJowDUNrI5Z+J+qAswVHirZvoN9qI2f927+4A337mo0DBUfSiZiUgr7F7ej4BoVQV5hDVPJsGksK8AlxF6rVtzYSGptI1YljjJ6cQk+Lu0CVp+t1Op30NDUQGjeJ6px0Iiel0NPSgAAB2sAQ6gpPnNe/wwU9TfWExJ0dj5vv7l9XeIIxybNpKinANzQcAdDdVD+kf3AXTDnTf3P5qbMFU5p0hMVNpurEMcZMno6+dej4m8sK8Al2X29Xk47w+MlU52QwZvI0upvdfO+gUGrys4mZMQddUT5+oW5+Z2M9ERMnY+rpQuPrP2TORxzoC/AbO9B2u4OFlzxC2rFTAGz89gVuvPEcSc6/cKCtFguFOVmcLi2hqqyUw3t2kDx7Ho+88uZ5UiyTh1Rz8PM40OXFpQRFRVOamcbpkyc4nZvFZUufJnB0NDX52YxLmUN9cT6+IeH0Wh3oBwsMnb3fjTb3/tNUlEP4lFm0lhfiFRSGxeKgr62RgPGJNBZkEhyfTLtOB4DKP5i2sjyCEmbQefoUQk0wAgEY2xvxiZpIe3EWfhOm0tPUAAKQ+wbRWZKF/0R3/3I/d/lxS2cTmog4eipOIBoVg63HLT2RegfSV1eIJiqJ7qpTSLSBAPTrW3A5HHSVHMF4atevnsbud4e1Lz2HWutN2o5tpO3YhlrrzdsPP4DfqMDfemi/e2zZ30xNg4maBhMvfVTB9EQf/v5iIT5eYrYebmPr4TZ8NGL+8WopSRM0vLxeR02ThZomC6+s15ES58ULXzXgrRaxLbObbZndeKtF3L+6lmnRKl7d1EJtm43aNhuvfd9C8hgFS79swVspZHuege15BryVQl7a1sm0KDmv7eiktqOf2o5+Xt/RxdQIKQ9u7MRbISS10ERqoQlvhZAHv+9iWqSU1/fqqe20U9tp56P0PqZFSHlwSw9ahYDUIjOpRWa0CiEPbuxk2mgZr+/uGeSv2NPDtDFy/vl1O94KIdvz+9hbYECrErH08yamRSt5dWs7tW02dO1WXv2ukZTxau5fU4u3Ssy2493szOrGWyXm/lXVpMRoeHlDA7XNVmqaLbzyZR0p8V78/c0Kegx2JkapGBMiZ8XXOm5YVsSU8RqWranieJGeCp2Jlz+vZXq8lvverMBLJeLp1RXMuf04G3Y0sXZLA3OnenPl/EBuuDSElnbreevlrZHww/5GftjfiI+XlHuezWHGZH9eer+A6noD1fUGnl+Vz8wpo3h5Vc7/2l6WP3k1p6vb+Oa7wz+fEf6bOHlwL9GTk/ns6YdRemnJ2buDnL07kKu9+PaFx4iYOIVXrruIL5fdT3VOBjvefg4Q8M0T9+J0OCg+tJOa7KPI1Vr2rXiK4LjJHF/3Lj3NOgytDeRsWE1gzBSOrHqG8KmzESuGCUj6mSFXa0l9fRlh8VM48tlKupt0dDfpOP79l4THT2Hba8uQa7woObybksO7kak0/PjqE4RPnMrBT1bS1aiju6meQ5+uJHziVH589QkUGi0lh3dzOvMIco0X215bRnj8FA596u6/p7WRQ5+9O6T/0iO7kWu8zhuPvqWJ7iYdRz5/l7D4KaS+7uafPn6EksO7h/Tf09RAd5PuvP5las3g+BUa7eD4Mzd+Rlejjq5GHQcHxr/11SeQq7UUHdpF0aFdKDRatrz8BBETp7Dv43fobKyjs7GO/WvfITJhKrvefwOFl5bCg7spPLgbhZeWTS8+jtJrpLT5/wUYjWZKy3RcuWQW8+dP5oF/riQ1NZ3+fjstLZ2UlZVhNp//Au5yudj74xaWJMez4tlllJ0qIHJsNK+uXcfy99f+qnEMMpWK9c89StTkJKxGI+Y+A8e/Xz9on5tffhyFRsupQ7upyjyEXO3FjjeeJGziFI5+tpLupnp6W5vIXv8eQbGTOfjO08jUXlQd20td9kGkai/SVj9D4ITJ5H69GmN7E32t9RR+/wH+4yeR9dHzSFVetBVl0JRzAIlKw8nPX8A3OpGyrR9g6mzE1N7A6e0fU73nCw4/sRhrdyvNxzbTcGgDNn0HZV89jyYijrbjW7B1N2Prbqbl0JeowuOp37YCoUyNoSIdQ0U6IrkafdE+fGbc+rPP5b9biXAEIxjB7wQltUaunOPHnEnemKxOpGIBj62uYtwNx5FKBKSmd9BjsOPjJcFkdVBcbeTO54vpNtj569Wh/OUPoby9vpa/XRPGh983/abX4uOjwttbQVCgz/9M/pXRUHoKk6EXU6+ene8sB6DldCk9zY1U3OdOqS/38uGGt9b9lsMcwQhGcA5Wrd7K4stT+PLLZwFITy/k1j+/SENDO76+Gry8/GhubiY+Pp4ZM2YQEhLC/v370TW38soHn5Iyd8FgX8Nl3/m1IJJIUKi9UGg8lAj/jdFvMqCvdWfSKN/wPABSbQDdZVmY2+roLDyEUCIn8tonEIh+G1d2RMJxAf6lhKOtlcCw8CG/MyLhuKD9V5RwHMvrYtEMzxKOQ2mtzJiopf4cCUf6KT0L/oWEY+YENfUdZyUc6fldLIjzLOE4VGpi1jgFDWckFv+DhONwpYWZY+Q09JyVcGTW2lgwjITjcIWFmVFyGrrPSjgyq6xcFONZwnFoQMJRf46EI73EwMJJniUcB0+6JRwNvWclHN/sa+WlL2pZ88h4psZqECCgttnClPFqDuV1M3eyD/WtFkwWBx36frYcasdPK0GulHDntWEIhQL3/Md7cSCri3nTAtG1mIeslycJx/6MVhbMHk3dORKOo9mtXH7J/17C4XQ6iYx/nCMH3iEqKngI9ZeWcJRmpTNx9nyPEo7SjMMIBEJqC3Jo1tVStD8VkURK8Ph4GordKTFlKg1XvfQRwbGTB7JVTMPQ2jQo4WguyiFsyizayguR+wbz3Z0LfzUJR/WJY0ROShmUNPgGhVBbcIKx0+Z4lnBkHyNycsr5Eoj8bMameJZwVJ04xuhJKfS0Ng5KOGoHJBOeJBxnxuPmn5VYRE2b41HCcW7/4JZwnOnfo4Qj+xhjJqegb2saHH9tfhbRKXM9SjiqTqQz5hzJindQKDUns4iZOdezhKO7E43f+YFgMCLhGILfUMJRX9/GlGn3cvzYe0SPP5vh1+FwIBAI3EGgwjmYTCby8vLIysqira2NsWPHMvPG/0J8wXUO50D/OhKOo0RPTeHVm5ew8M6HiJ2ziJqTWYybPtezhOPEMSImp6BvaTwr4Th1gvCpsz1LOPIzCIpPpqPe7a+o/INpK80lKHHmMBKO4wMSjkYQgMwnkIajmxFKZLSVnKCrNAOXw44yaAzm1lpcTvcaTrh3LQKh0C3hqC1EM3aohEMePIGu8mw6Ul/61dPY/e5g7uujsjAfs9H9IG+oqiRyfAw9XZ0eHegR/Hro6LaRX+p23F0uyC/XMz3Rh/yKXowD2Tkq6kzEjlFRWmciJEBGwWnjIL/gtJHk0TLyq4yD/MpGCzERCkrrLYT6SSkcyE/sAsoarUwbqyC/1oLR4k4pV9liY7yfilP1VsJ9JRTWWwf7Ty00ERMkYUOWgYmhbs3tqXoLET5iNmQbEQsFHKl0O/TzosRsyDETHyTmqxwjCSHuh0tlp4MwHy0bsvoQC+FIxQA/VsGGzD4mhkr5KqOXhDAZYoWV/FoLEf4SvkrrRiyEwyVG5CoTs+LUrD/QTsJoBev2t5MYpUIsFnCyykhkoIz1+9oQiwQcLenD6YT5U7S8+Hkt918fyvZjnRitDny9pFTWm4gZraTwtJHIIAUlNX3022HSODVRoQruviaEbw52UFLTd978F1T0MjrMi/yyoetVfFqPweje4MtrDMSN9SK/rIcxo/vIK+4amH8XJ0s6mT/XjlLh+cH7r9DdbeS2uz4hOmoUkZGj/udfOAc2q5V9W79n6qy51J2uAMAvcjSFmenMW3I1WQf3De4FDfU6Js+dT/rOVCZOn0ljtfsBb5cqOLr5WyJi4jmy6Wsi4gaC0oqL8Q0JJ3v7JmZdfysOhx2fkHCueep1crd9x+xb7yZ/52aCx8XjVGgo3r0ZbVA4Rbu/RyASocvLxIGQ0IRplO3djH/UBMr2fo82coLni/mZUbB7C9qgMPJ3bEIkElOd6041NzZpNidTNxEUHUte6kaCBoLq2msr0QaFkpe6EaFYRNWJdAQCIVHJM8lL3UjguFjytm8keFwcCEU0lbmd15OpmxCKxFTnpCOSSIiclDKkfxfuIEVt8Nnx1BZk47T3E5U0m/wdmwiMjuVk6kbCYhNwOBy0VJac139NXiYup5Oo5LPjP7njewKjxgPQXFmCd3A4eakbEUslnB5ITRedMoe87ZsIGhdH7o4tBEUN5IeuKMYnJJyc7ZsQCkVUnjgGwLhpczixbSMh42PJ/vE7QgYKRjSVF+MbGk7+7h9JWHgF7XXuINqAyCiq87JIumQxJemH8AkOBaC7uZHJ8xdycv8uxiVNp7XWzQ8cHYWr30pwVPSvYAW/Tzzw4GqW3n8t0dGh57WLLnhhUCqVzJkzhzlzzuqhPQUR/hwwG40IhYIh+482LIKyE1mkXLaEgiMH8BuI3zq+M5VFt97J0U0b2Pv5h5gMveiK8lF6eXNi20aCx8cN2qfNKaC5rBDvoDAKdn7vvl9y07ELJIRMTKJkz2b8omIo3r2JgLFx2O0uOqtL0QSGUr5vCwKRiPqTWTgdDoISplN16Ae8I8dTdWgLmvA4nA4Hel0ZSv9QatO2IhCKaC7OBocDv9jp9NQUEXvTo3TVlBG+8DasvR3YetqJuuoBGg5/i3fSH+gu3AeAJiqJzpO7UARFoS8+iMzPvT9b26qRaAPpK9n/s8/9yAn0BRAIBK7Mtj6PP/P0Bg6eT48lw3AD5Z7bfT35B8OdNA/3Bu4YemrmbveQ3sdTG4BzuHYPb7nD9uH5RM5zH57H7HJ4fjN3Ojy/VXviu+yeuU6H5zd2T6fhzmH6GO7kvLPbhI+XhK7efjRK91obDDZ8vaS0ddkI8JFgNLs3UqVUQHt3P6N8pefx+6xOj3y1l4L2Lhuj/GR06W1oVGJEEjkGkwNfrZTWTgujfGUYzQ6EUhkqpYS2TguB/gq6eqxoVBKEIgkGox1fbxmtHWZG+ckxWd17wHepVXz4dRnHt1yF3tCPViNBJPr3wiQE4qEBegBCkWfHVyAfJvWbdGgQFdJhYg9knttPGdyV325ZNJuJU5N59JW3MHkoPALQbfZsf51GK/qOdrz8zqYh63NJ6OvqQOMXgEnfg2wgNVRze487rVJXB0ofv8G0bn12CeaeTpQ+/lgMeiQDGuWezl5kGi3mnk7kWl/sVjMGgx2xXIG1twu51g9bnx6xXIXBaMVhNSNRabH1diHR+OCwment7kMoVWA39iBR+2A39WKziyhdcc0vfgL99tEC1N4+9Ha2u9O0mQfStCmUGLo68PILwKjvQaZ0z4/JYEDtcwHf5U7rdi5frlThcLmwmoyotN7n8R0Oz3yny4XlAr6pz4RAAFKFcnC9jPoeJAolAgFYjUaUWm8Mne2off2xDKSlc/PdabYM3WfXd5Df1YHS2xfbwPVKz0ljZ9T3ID/DNxlRenmjb29H5evvkW/qPTs/Z/h9Xe2ofIbytf5D+WqtD4auDtQ+fufxsVuRyofmFvd0Aj3cKbZsmBR5ag/p9IY7rR72ZHq40+2f8BV3uDzKnp7Dzp/o3/Q7hjq59oG94/DObax+4Vm+PpKFVCbzeBoMYBmm3ezhVNnUP0wf/Z73q37H0OsxWmwIRaJB+z9jDy6JfNCez92vWjr0KL28+ebh21H5+rPovmWYHGLEcuU5+1UPEoUKs8mO3WI6f7+ymOkz9yOWKS/Yr5T0mR3YLUakKi3W3k6kGl+62rsQAEKpgv6+bqQaX/pNveh77QgQ4LSZESk02I3diJTe9LR3AgIEYhlOix6RwpuetjYEkoFMTHYLAqkal0WPw2KBM89zkRRsfQhkGpyGNgTigYqfDhsCiQJnbzP9+Z+OBBGOYAT/qRCJBCy+L4fTOhMvfFTFCx9VcVpnZvEDeYjFAm5/rpjNB9rYfKCNx987jVgkYMk/T1JVb+KFT2p44ZMaaho88+98vhCRWMAVf8/idL2J5R9U8tbnlZyu6+Oyu9KQiIX8+YkTbNrTwPaDjdz2cDpisZBLbt9PZZ2B594t4NUPC6ms1XPxn3chEQu55aEjfLW1kj8+cIClyzNZ8eR0Lv3LLipq9Ow4NMwL3P8RaH18iU2cMpi3/adg44pXEInFfPDwP8jatY2sXdtY/+QDCEVi1tz7J9p1Nexas4Jda1bQ3VjHhgf/jFAsZuvyByk5uJOSgzvJ+OQNhCIxPy67HX1jLdnrV5G9fhWGljr2Lr8DoVhM2srHqE3fTXPeIXI+XIZQJOLYG3fT16qj9If3qT/0Laa2evJW/QOBSETx50/TlrufntJ0aja9hEAoovzzh7F0NtCW/vUvMItD0VZXy1t/+yMisYSPH/0HJ3Zt48SubWx88wWEIjFv/e2PtNZWs/W9N9j63hu019ex4o6bEIklrH3sPnJ2byN3XyprH7sPoUjMijtuorWumq2r32T/uo9pq6vmnQH+p4/dT+7u7RQe3sPnT9yPSCTm3btuoq2umu3vv0Xqmrdo19Xw3t03IxJL+OKJ+yk6vIeTe7ez7sn7EYrEvH/PzbTrajiy4RN2rVlBu66GNff+CZFYwvonH6DwwE7y96Wy4amlCMUiPvz7LXTW17H3wxXs/XAFHfU1fPyPWxCJxOxc9QqF+1Mp3J/Kt88sRSgS8cl9t9DVUMu+j95m30dv06Gr4ZP7bkEoErPx2aUUHUil6EAqG59187e88jiduhr2f/w2+z9+m05dDZ/dfwtCsWf+J/ffRoeu5rz+v3vuIUQiMd88vXRwPN88vRSBYOSR/nPDYjKx9s1XeOmf/+DJt1cjlf1nlWJ32O3n2X/enu3k7dnO9pUvD9pzu66G3R+sYPcHK+hucO9Xci8tbdUVlBzcSeXRXex77WH3fvXE7fQ01pG97l2Ktn2BvrmOXc/egVAk5sjbj1GTvpum3CNkvf8EAqGIw6/cjaFFR9H3azi9/WNMrTqyVvwdgUhMwdqn6CpKo6PgIJUbliMQiij+6J9Y2uvpztlK+7H12Lob0X27DIFQTPP217HUZmOpzkB/6F0EAhGdO5bj6mulv2gL/UVbcBpasRx+HYQi7BWpOFsKcLYUYD/1NQiE2HI+Aks3jtrDOGoP4zJ3YitYB7/AvTEi4RjBCH5GKGVCLp7uz5gQBXOmuAPXxoTIuXi6LxqliIXTfJka685/LJOARiViUYovo0MUzJ3sjsSOCPLMF0rEeKnEXDwzgDEhCuYm+SKVShkdpuKSWaPQKMUsmjGKpHgfRFIZZqsDL5WES2cHMyZMzbyUUYjFEsaEa7h0rvsTpMvl4vl385g1NZAX/zuZmVMDuWxeGFERGrzUP1028Z+Em+64h+eX3surj/2TV778lmnzF/7bvzs6PgG5Sk38rHmMmTgJgD6LHblaTczMefiGhjM2yX3SrQwKIyplLlKlijHT5hA8IQEAq1OERKkiYuocvILCCEmY5uYHhBIyaTYSuZLgxJn4j43HaHLgcvQjlqsZNXEWqoBQ/CckYe4XoPAPwTd2BiK5Ct+Y6WgiYxHoTbgc/YhkSrTR05D5BKMMi6PzZ55DT/APCyN+9nxkShVxM+cxemB+pHK5e85mz8c/LIIJ02YC4BcaRvys+ciVKuJmzmV0/CRcgMvpRKFSEz9rPv6hEYxPnoFQJMY/LIK42W5+7My5RMYn4nQJsNtsyFVqYme5+x+XPAOny4VfaDgxM938mBlzCRkfh8vlPsFzr9d8/ELDMRsNOO12fEPDiZk5D5lKxYTpcwmNmThYa1euUjNhxjx8QkIZM9W9vr4h4Yyf4eaHxiQQOCDVAJCp3Pm7fULCGDPlDD+CcdPnIVOriU6ZQ+hAqfAz/NAJE/EJjRjk+4RGDOTA9swfN30uviER5/UfHj8JmUrFuOlzCIs9yxcNozEewU+HxWzmxw1f8vm7b5GQnMK6A+mERET+1sMaApFYfJ79R8QP2INENmjPfqHhRA3YsyY4lKiUuQTHJrLlmfs59OEbTLv1fsKmzkKiVBE+dfbAfpVCvx00gaGETpmFRKEkZNJM/KPjMVmdOPutSBQqghJmohoVSkBsEharE4V/KAHxMxDLVfjFTUfoF8WZI1+RXIX3+BTkfiHIAqPB6UCiDUI1ZipCqQLl6CnYlWdlsgKpAlnYZOyqAEQBMQAIVQGIgiaCWI7QKwyB2v0lUgjuNr8JIPdG4O1eK4HcB6HPWBD+/PfGiITjAoxIOEYkHOdxf6KE47td9VyzcBRf72xmaqw7svlkiZ4/XR7Ee9/q+POSEPLKegGYFK1mw65mHrgpnK93tzA1xs0vrTNy3cLAIfykiX6sS21k6S2j2bCjkaQ4LSKJnJzibm67MoJ3v6rkL1ePJq+kG4lcxqQYX77cUsWDt8ey/sdqkif6IRKLychtp6HFyHvrSrhkTiiLZocyOkxDUoI/X3xfwUN/S2DdD5VcPi+M0CCVx+u8EP+JEo4z2PPDJj5881We+/BzxkyIOe9nw0k42vRGdn/+EXOvu4ma4kIAtGNiObF9E/NvvZOc1C2Ex7kfVJUlxcRetJjsjZ+TeMX1NJcXAaAIm0D5vh9IvPa/qDjwIwHj3RrohpIiouYuoSR1PdEXXUNndTFmiwvvyBjqjm0j+tLbqM9IxXtMHEazA0NdCUHTF6M7+DUhM66kV1eGyWRDGTSWzpN7CJx1A535exH6jqHmi6W/fBDhS2+TcsXV7Fv3MbOvuYm6Evf8RMYlkr71Oy75y91kbvt+0LHWlRUP8Ncy65o/UldSiEAgICI2gYytG7nkL3eRuf17t2MtEFB7Kp8Zf7ie/esH+MWnQCgibEIcmT9uZNFtd5GVupmI+ERcLhe64kJSrryeg199woyrb6S+rASHw0F4bALZ2zax4LY7OZG6mbC4SeByUV9SSPKV13FkwydM+8ON1JcW4XI5CY9N4MT275l36x3k7dpG8Hi3hruhtJCpi68j7etPmbrkehrL3OsbGpNAbuom5txyB4V7txM0LvY8fvq3XzLpimtpKnPnCw6JSSAvdROzbr6Dgt1bBh3lxrJCJl9xHSe2fsPERUuG8Ofdegd5O7cMOsoNpYUkLb6eY998SvKVN9AwwA+LScDY0UJYbMKQdRuRcPx76Hc4sNvtrFv9Dl9/uJqE5BT+svRhEpJThnD/UyQc3d09SGTyQfvXlbjtIXB8PDkD9pyzYwvhA/ZzuqSYuIVLBvergp3fc2LzOhY+8hrtFUVMuu52yg/8yKhxE7HanHRUFhG94A8UbV/HuIXX0FlVgrVfgDZyPLVHfmT8FbdRdywVn6h4TBY7+tpSQmcuoXbfBkJn/YGWsiJcLgfqsAm0ndhJ8LybaM/djUMVCbiwtFSgjV9EV84PaCdeQmdVMQJciP2jMFccRpWwhK5TBxANOMTO7lpEkbOwV+wB31hcve5gU6E2DEdjDqLIuTgbshCo3M8Hl6EJYWAi9prDOBszR4IIRzCC/1TklupZNMOPg9lnzwKP5HZx5bwA9md1MWeKD8dOujOa+GlEHMju4vY/hHAw52z2k9JaE5fM8B/C9/VRsD+znb9eHTbYv0xu4cDxNq5eGMK+jDbmJQWQltOBr68SL7WUvenN3HFjNAcyWgAQCcW8+lEhcdHexI/z5pE7J7LraBN1jX34aGXsOdrAnTfFsP9YI3HjvP9tB/o/GZdcfT2lpSU8eMOVePv5M+eyxcy+bDFhY6KoKCslNCoaldf5aZxsVgun0g8TkzKT8uxMAKKlasoyjzLjmj9RPhBIBtBUUsTY6fOpzk4jYnIKuvwsAEKlGnR5xxi38Cpqsg7jcrkQCAS0luQSPu0imgrSCYxLprU4B4dQjkSpoa0og9HzrqWt+Lh7HC4xXWVZBEyaT1fpcXyip9JzOo9+hwiRTIn+9An8kxbTW5WL3PbLBCldiOqCXCbNv5ji9CNMSJ5J+Qn3/Ki1vhSnH2HeDbdSknl0kF9bVEDi/IspzjjC+GkzqMg5jlgsQemlpTjjCHNvuIWSTPd8imVySjPTmLzockrSjzA+2c2XqdTIVWpKM44w+7pbKDvu5rtcLsqOp5G48HLKMo8wLnkGuuJCLEYDSi9vyjKPMONa93qJpDLsVivlWWkkXHQZZZlHGTt1BrWFuTj6bSi9vCk/fpTp19xM7alcHAMv5ZVZx4iffxkVx48yJmkGNSfd66vw0lKZdZRp19xMXVEe9oGX7dPZx4hfcBnVeZlEJCad5Wu0nM46SvJVN3M6+9jg/JzOPkbs/MtoLCskNCZhCH/6tUP5CQvc44maOp2aPDdf6eWNqavdowM9gn8PLpeLlx66j4baaj76YRdjY+MGNdD/qbBZLDgcjkH7P53r3jtkmrP2XJl11n6aSoqInrFgcL+yGPR4h0dx4M3H6TcbMXa10VV7mn6LGWN3D1015UROX0TjyQyC4qfRUpyDS6JCrFDRciqTqIuuo7XI/Tet/S46S7IInLKA9uLj+I6fiqG+BKfNjFihoacim1HT/4C+IgdJuAuX3YqxJhdFSCx91bkowxPob6t065ZlaqwN+ShjFuHsqEAw8DLkaC1CFDoVR0sRImUgrm53EK1LosTZWY4oLAVnbxPCgSwdzu5qhP4xOPW6XdoMiAAAIABJREFUn33uR06gL8DICfTICfR53J94Au109GM0O1ApRNgGThGkQgbbzFbH4AmPxWxHIRcN4cvkYo98m0uEQi7GaLajUoix9TsRS+VIJKLBNrPFgUwqRCiTY+t3IZeJMJrsqJRirFY7/3wpj4YWE1+9PQ9fbzlmix25wn16bOt3IJeJMZr6USklOBzO/9NBhOeix2LB6XSSn3GM7MMHyNi7i5YGHUERo2muq8U/OISEGbOYveQqJs6Yja6xFS8/Pwzd3SjU7hLuTe097mC1jjY0fgFYTe59woicvq521L4BmPTdyJRqXE4nR7/5gqq0XXQ3VCORKXDY+9GGjsYrZAx+0QlMuOwmLIZuJAo1BoMdu9WETK3F3NOBXOuH3WKiz2RDJFNhM3Qi8/LHZtQjlinp6e7DZTMjVnphM3QhUfug7+iiavXNv/gJ9MeFOqwmEzKlEpvFgljqXnu7zYZULh/8mb3ffY8IxRKPfEe/DYnsfL7TBWKJBKvZhExxlm93uHDa+938gZ/Z+23YrBZkSjWGzna8/Edh7OlGKFchFAjOBiMOrJeprw+BwHU+X9+NRKmGc4MXO9pQ+Y7CYnSn/5Qp1fR1tqPxH0WfvhOpwi2pspndwX+GjnY0/gEX8DtQ+gZgHLCH8/gDwYu2AfuRKtXnBDsO5Zt7OlD5+A3am0ypxtjVMTj+M3yr2Yi3jw8WYx8ypQrHwPyLJFJcNjMKlRqb2Tw4/0JnPzKFcpB/Zr3UqqFBiPD7OIF+69ll5KQd4aOtu1AO3PfDOdA/1wm0ua8Puers/IslUnp6elGoNVjNZiQD69VvsyGUyoesl10gprejbdD+ZSr3uHv0PWi8/YbsV2aBYsh+1WOyYzUa6GtvovLwDhoLs+lpqEETGE5fexNyjTfBidMJnTqH0MlzMFpcOKxGZGrv8/Yro8WJSCrH1tuJTOuPrU+PwQxCoWAgGNq9X4lV3tQc+B594R5sXQ0IxFJcDjtS7yDQBCMNjEExdiZCmQaHsQejXYqz3+0rCMRyXBY9QoU31rZqhIPBhVaEUhVOqwEhApx2tx8iEElx2foQOJ3YTrw3Usr7l4RAIHB12jzPiUcnFzw7usM5ucPln/TkXLqGSbI+XL7L4foerp9fGx7HN9yYf+K1/BwOvsM49M/1WzwPw+l5fB4deafnMbs8RHwDIPR8f3sKEBIIh3nIeEgsX1DSwbV37aRw782oVWcd3jN60aF9e37Z8zgO2TCVtCTDtXtwlMGjA90luMIj1VOuZoBuy9A1q6ipRSAQ8N5DfydxoJBBwdFD/PmV91h195+Yf/PtZG79ls7GekRiMRKFmmueW8mBNa8xNmUuAGWZR7j0iRVsW/ZXZt/9BJVHdgIQNuMKcj5/nYufXUvau4/hH52A7vh+bKY+Jt/+NMXfv0finx6lLn07dnMfcv8I6o9sJOamx2nKSiUgfg6Wfhc9ZelE3fg0FV88Qvjlf6fr1CGcEg2K8AQ6Dn9K6I0v0bLjTZSjp2J3CjHXZON3yUO0b38e71l/pa8yE0vFgV/cgT7Y5DmH/HDOiqf24bjDOSuOYdpXPrKU2VdezRcvP8fyDZt5e+k9JF9yBVazmYK0wyxd+QEv/flG/vLUcgrSj9Hb2U7KFVfx7esv8Njn3/HBI/9g4tyFOOwOijOOcNcbq3n7zpu54ZHnObFrKwBJl/2BLSte5IGPv2HrqjcIGKgPUJZ5lD+/vIoP/nErVz74LPl7fgQg8eIl7Fj1Mv+1cj2bnn+Q6OnzADiddZQbl79L6ornSLrqZor2pwIQv2gJe1e/wq3vrOeH5Q8O2ltVdhrXPreSrx/+Ly69b9l5/JwfvuLKR19m8wX8P76wii+W3soVS5/m1AB/4qIlHP1yDbe++j7fPL2U8TPc42kqO8UNj7/Amr/fwjX//Qx5e7YDsPiufxAYeTbH8RmoZEP3FE9ONfx0x9rjIdRPqJkAIPTgWP8UB7q1sYHbLprBhvQ8tL5nX/Btw+zTw+VqHi63c591aD8Gk5lXblrMDY88S87ubQAkX/4H0jZ/x3WPPs+6Jx8gZuZ8wL3/3PTCu3xy/20sefBpCve512v8RUvY997LQ+ynta6GWX97iC2P3c68e5dRfmgHAJGzruD4p6+x+MVPOfjWo4RNmY3NDs0Fx5j1wOsceukupvz5UWozdiFWeuM3IYlTX79J+MzFVO39ChCgCZ+Aw2Zh8j1vkffefYy/7iFacvfSb3fhHTeHht0fMv72t6je9BKyyGRc9n5MtXkELn6Uxk3LEMk12LqbEftGIptwMeaTG1EveIi+tNW45H44O8pBokSaci/9J9YiGncFzpYCAERBidgrdiCZeif28lQECneskbO7BsmEq+gv+hZRxFycneUACH3HYdelIRl7Bf3FX4840L8kRhzoXxAjDvQF3F/XgV75ST5lVd18+OpF54/jd+BAN3R2IZHKqCrIIyDcraVrr6/DOzqB8uNpRCdNp7PJraWzmoz8uOYdLH0GFt3zGD6h7gIoddU1BE5IpOFkBiEJ0+gdKMCBMoC20lyCE2fSVnaS7LUvETp1Ln4TF+AzdiLtxVn4TZiKqdNdgMMlD6Dh2GZ0h76l36gnIHE+Iu8wBCIR3rFzsHU1oR6diK2nlT6DFbFXAOaGYpSRk7E0lyPxDsJismE3tCIdNQ5rQyGykDhM7Y10b330d+VA152uICA0jJLs40yaM5/K/Dy8Q8IQCAS01dcRPWkqp9KPEpsyg8Y6HS4X+IeEUp6TRfyseVQXnsQryJ0ft6NRx5iEKZRmpjF6SgpdA/bgGxzK6bxsYmbM5fSpfHyC3AG4XQMFUCqyjhGamExP89mCKbX52UQmzR4sEAPnFGTJzSRiYhI9Le7+vQNDqSs8QWTSbJpKCvAeKEBzpkBMXW66u0DMOXzdqVzGJM08r2BNd1M9kQlT3AVizingog0MpbEol+hpswYLZAD0tTUSET+Ziqw0xk6dPni9oWNGI/Lg6P6/7kDv3Pg1h3em8uKn689r/yUdaHO/g5KMo4xLnn6evZXl5hKdPJO6CwruBMUkUpl9jKgpKXQP2JvYJ4j6whOMST7ffprrdQSOT0CXl0FowjQMA/uVQD2KltJcQifNpL2iEE1gGH1mO8a2RvyiE2g9dZyA2CSM7U1YrA4UfkF0VpwkIG46PdVFuFwuatN30lmSyaxnNtJdkYtP9BTMXc3o9UZk2kD66twFTYwNpVgEWhCAXd+KNDCaxg0PIQ+bCOFzEIrECNX+9LeWIwmeiL2jCotdgquvhf68L90p67wjEfhGIxCKESh8EfqMwdVTi8A3Gld7GQKZFgCXVY9AHYyrpxaX3B+BbaCAnEyDy9CEQOFPf8FIGrsRjGAEPxEul4svvi/j+sW/zyILEqmMj598GKWXN9l7dpC9ZwdKL2+2r36DMZOS2PHB23Q06Oho0HFy3w6uevIt2qvL6dBVUXpkN6VHdiNTe3Fo5dMExU4me/0qepvr6W2upzR1HQETJpP5wXO0FGXjcjlR+gcjVXtx8vMX8I1OpGzrB5jaGjC1NVCz53NCZ1+D74RpTH1gNc5+K72nT6Avy6Rk9R04bBZ0qe9hqMnHVF9I+6G1KEJiaN27CpFcTV9FBua6HIQyFd2H1yANGo8++1ucfW2/9TT/6mipq+Pbd95kwtRpvP/4Q6i0Wk4e2k/W7lRUXlo+WvbfjJ+SzMaVb9LR2EhbfR0/vLeC6MnJfPb0wyi9tBQc3Eve/p0ovbSse/ZRoiYnse+zNYP2sOODd4ialMSG5x9FodZQeHAXhQd3ofDS8t2LjzE6cSppX31MV6OOrkYdBz5ZSUTCVFLfegaFRkvJ4d2UHN6NQqPlx1efIDQmkUOfrqS7SUd3k45Dn71LePwUDn74BnKN16C9yTVepL6+jPD4KUP4oXGT2PbaMuQar8H+5Rov9n30FuETp3Lgk5WD4zn46UrC4yex+eXHUWi0nDq0m1OH3OP59oXHGJ2YxK4P36ajUUdHo25QX/57Q+o365l/5VW/6t9sra0ianIS299/m/Z6He31OraveYfwuES+feExlBovCg/sovDALpQaL7a/vZzIhKns+/gdOhvr6GysI2PDh4TFTyH19WXn2Y9MpWHfiqcIjpvM8XXv0tOso6dZR9G2LwicMJm01c8gVXtRk7mPhuwDSFVeZH/8PH7jJ1G0aQ19bfWYOpsp3/oRvmMTKfj8BSQqDb315XiFxyCWq8h77360UQlU7fgIc0cjtq5mmg59iSo8nrqtbyFWaDDWnMBYmYFQpqZ5y3MgFCEQSdx5nA1tmPI3IwkYhzHjY4RSJc7WIlx9LUhnLUUYlIBwVBzOlkKczXnYT31D/6lvQaKkv2ADLpsRR0s+jo5yEMmwn96FwCsUV2seLqsel1WPozELgToIu+7o/7wgPxEjQYQjGMHvAEezmujvd3LxnLDfeij/JyAUiQiMjuX4N2sJn5QyWNb5f4JIKkMokQ6r07wQEqUXvhOmYbE6UEcmoEtdRcPej3GYDfRW5eJCgMOkx6wrBJEIc2PJwNeP80/+XC4X1rrsn3qZIxjBCIDTJUXUVVYwf8nVv/VQ/k9AIBAQPv+PVGx+h7aCI9gtw3ztHfJ7QoQS2b+9PwqEYsSj5+Iy9yL0DsfV14KjNs3tRNuM2PtaoN8EAgEuQwOufpPHL74ulwuXVf+TrvHfGt+IhON8jEg4fkGMSDgu4P56Eo57lh1i3Ggtj9wzdeg4fucSjrLMo0QnzaCr+cwn1DByM44zesp09r73Eh11p2mpKEGiVDN27mUofQKIu+KPGDtb3Z0rA2grySV40kya8tNJW/k4f1ixmc6mVrzHxNFefHxAwtEMuCUcPVUn8Y2ZTm9tMQr/EHq6+7B2N6MKi6W3KgdN5CRsereEQ6Txw1B8AIfVRF/5Uey97UiD45AERKGKv4y+/K1YG07hdLlwdNX9LiUcxVmZTJ67wKOEo/DYEWJTZtCkqx+UcJSdOM7E2fM9SjhKMo4y+pxP5L7BoZzOzSJm5jzPEo7jaYQkJqNvcUt0vINCqT2ZRWTyHM8SjhMZRCQk0TPwSd07MJTagmxGJ8/xKOGozTnG6Ekp5/H/lYTjdHYaoydPR996joTjVA7RKbM9SjjKj7uzkXQ3/34lHGteeg6n08FdTy0f8rNfXsJxhHFJ0+k6x95Kc3IYN22WZwlHVhpjpkwflOiIfYLQFWQTNW2OZwlHbjqhidMwtLrtU6AeRUtJDqGTZ3mUcLScymRUTBLGjuazEo7yvP+vvTsPk6uq8z/+/t6q7k53Op0dEsISEFkD4g6OMOCIOuo4ziguozMyjwuKjOL+iI7C6IzM/BgUF0BgRlBHokBYwxK2oLInbAkhkIWsZO+k9+ql6vv7495auypJke6+1enP63nqqapzz7117qnb33P63FvnMv34k9m1eilN02fRk0rTs20j7etfYPOT99CzfQNBXQPjDzuRKXPegZNm4mvfOugSjrpph7H2l//EIWdfSdvW7ZgRXsKxeTl1B52Qu4TDzPDu7dik2WS2LYemAyAVxh0bN6noEg7qW/BUK5kdL+Fd2/DOTdiEgwmaZ2ITZoWj0JsWhxWeat0/p7Ezsy8C5wCzo6TngR+6+/xouQHfBz4HTAYeB77o7s8XbMOBfuAYd19dkH4tMM3d3z/8eyJSe2ZOb6Kto8I/XmNAV1sbQRBw39zfcsQJ4Xyoq5c8x7u+8HUemfc7gmSS5dFUaseccipL7pnHAUccRV9PN8ec9m6OPvVdvPDIQ3gmw+Lrr2Dx3Ctpnj6T6Ucez6y3voeX7r+RyYcfxZKbr8ECY82jC9i5cT2NU2ewZuE8CBJsfT6c7q3lNW9mw8M30zzrKNY/PI+Jhx5LV3cfPRuW0zB5JtufnA+WpGPVk/SlEzTNOo7utc8y/Z1foH/nRpqPPpWeLWvoWnYfHU/dRNAwnvFz3ktvZwfp1rWx1XEcutraaGqeQHpggP6+Xnq6u0juCqeETHV10d/XS3qgn662Nrra28GdruZm0gMDDPT1kuruItjZCga93d0M9PWSHhigbds2Hr31DwAce/JpPHzT75h11HEsmj+PAw97DQDrX3iOybMO5tGbf8ebLcGKx8NTxEe99VSeuHUuU444hkW3XM9Bx4TTyr2yfAmTZx7Cc/fcAgaroqnpXvOWt/PUbXOZdvjRLL6tOP/EmQez+La5BIlEUf5n7w6Pz0W3FuefMusQFt06lyCRZNUTf4ryn8pTt/+ema89hsdu/l1umrttq19i8kEHh8d/IsmL0aUbb3znu3nm/rv568+ex4PXX8vBR4XzW+/auI6/POvj3HblZbztAx9i5dOLaW4axzs+/LFh/IZHxtQDDuTll5aP+OdmMhnSAwN0t7fT3R6OkI4bP4FMOs1AXx993V10RcdzX3cXXTtbefyW6wmSSVZE39esk07m6dvncuCRxxYfP6tXMuGAg1gy//dYIsHaxQ8DcMDxp7D8nhuYOvtoXrjnD0w78nh6Uxl2rlnG+AMOYtX9NxEECTY99ygZkkw9+g2sfWgeLYcczZqFNzHp8GPpHwhoW7uU137gPHauWMwR7z+HLU/eQ/vmtay/+3L6dm5m4jGn4P29JA8+CXMntWUl4w6eg2cypF5ZRmr9KizdR92sE0i9dD+JKYeReuk+0o0zwlt871pH8tippNc+DDPfgLWuAMCmHEVmwxMkmmcysGUpQVP0g890H8mjP8DAirtg3CTS25fBxsegcQoESRKz/4r0suuH9PurmRFoM/tboA9YQXht9qeAbwJvdPfnzOxbwHeBs4EXge8BbweOdveOaBsOpIBb3P3jBdu+lr3sQJuZe/eN5RdWMyrqMYwSB5VuMVpmlKBS3qD8dGRl81fKa+VHJbAh+H+tUj2Vq9dKI/UVR6DLjFhnKkwNWNU2KpSj0gh5Nbz8KAglo9633rOSq367hNt/9b7Bm6gwVV+5HyKGCwb/Ax/UN5XPm6gwj3SFKejKjUy3Jj9UNuvyneWnm9zaNfhMwqqtnQSJBF1tuxg3PixTqquL7kQTXa3baZo8lf7oNGTduCY2bNhC06SppDraqG8M921Xa3s0zdwOBvpSrH7oNlbeewMTjziBQ972PlpXPsvGx+/h5K/8jOYZs+lqa6eueSK97TuonzCFdG94LHWlYKBzJ3UTpjDQ3U7Q0ERPd29urtT+zp0kx08i05+iu7MHq2sk3d1Gcvwk0qkOgrpG+vrTeH9PeM1gqoOgcSJ9XZ1sue7sYR+BrtRmvNRVPr3c6HG1I82VRgH7yuSvNAJYzfRinb1pUtFx1NDURPuO7UycNp1t23bQmD1+stPe7dhG3YSp9PWEx099YxOdrdtJtkyhu30XDU1h/t7ucFq6Xdu30Tx5WlH+rp07GDdxCj3tu6iP8vd1d9HYMonO1nAau/4of12Uv3nKtEH5x0+anMtfuP3unTvCqfwKyhP0dzN+4uT8tHpR/gkTmulo3U7L1Onh30uUPzHQQ/OkybRt30bL1Gn0dnfTPC7JuKbBf/uVpnytOI1dmfyVpoKt9MOtSiPT5ZSOTD/72CP89MIL+OVdDw7KW+mYrHQ8VTpW+8ukd1aYu72nQnp3X2bQ99XtdWWPhy3b22hsmUT3zu00TsrHt+6BOlJtrTROmkpvRxt1jU20tQ8wkOqivnkiqbYdNLSE8aor1U+yoYm+jlYaWqbS39VGYtx4drV2hvGqqYX+zlaS4yeT6UvR2ZEiqB9H79bVdK17jtYn5pGYdDDNJ/4NvRuX0P3SQ0w+4zzGHfI6utvaw6Yk2YCn2gkaJ5Lp7aSnLwjTB1JYfTOeaiNDArLTzybqoa8Da2gh3bkdS+ansbP6Jry3I+xrpPtwz4TL+7uwoJ7eP/5w//wRobvf6u53uftKd3/J3b8DdACnRKPP5wMXu/tN7r6UsIM9AfiHkk39DPiImb1xRHdApIa9Yc6BPLV07P3ILMeMX5zzMbate5k7L7+EOy+/hG3rXmb+f36bIJnklovOZ9kDd7LsgTu55aLzMQu4/YKzadu4hid+81Oe+M1P6di0lnsv+jRBMskzv/sJ46ceyJwPn0N/ZxvLbriMjY/fzev+6QI2PHony2++nO7tG1j0ky8QJJIs+Z/vsnnxvWxefC+rb7wYEgmWXX0+Pds3sGHBNWx7eC69Ozaw6tffwBJJ1s37D3Y9v5Cu1U+y5c7/hwUBG2/4Dv07X6H1kd/S/tQ8BnZtYuutF0GQYMc9/03q5UfjruX9xrYN63j8rtt4/K7buOJr55JIJrn47LPYvmEtt/78Em79+SVsXbuaH3/6oySSddx48Xd5esHtPL3gdn59wXkEiSTXffXTbF/3Mvf+8lLu/eWlbF/3Mtd88R9IJOr4w/e+xNL772Dp/Xfwh+99iSCR4OZ//wY71q/hgat/zANX/5gd69dw3Zc/SSKZ5KYLz2fpA/NZ+sB8brrwfIJEguu+/MlB+W+9ODyeb/j+l1l6/3yW3j+fG77/ZYJkkv897x/Yse5l7rvqUu676lK2r1/D5Z//OIlkHb+54F94ZsEdPLPgDub99w9IJJJc9tmPsnXtam7/xSXc/otL2LJuDReffRaJZJIrvnZuWD/33Bn3VzUkjpxzAquXL2OgwmUZteL/vvcVgmQdv77gvNzxdvt/XlD2eGjbtI553/wUQTLJ3T/6KiseuosVD93FE9f8CEskuOf7n6Z901qevv7nvHDzFXRuWcef/+tzBIkki678NhufWMC2Z//Ikv/5LhYkWfSTL9C1dT0rb7uCzX/+A6kdG1h+zVexIMmq3/+A1iUP0P7in9h468UkW6bTueJxZv3NtyBRx877f0r/jrUkmqfTcMBraL33x/RtWEzvmkfp/OPPwALa7vkh6fbNDCy/g/6l88h0bCG18D8hSND/7P+R3riY9MbF9C/+FViC3kcug+4dpFfcTXrF3Xj3NvqeuBIswcBL88lsXYpvW8bA838AC+h99jd7ruAq1cwIdCEzSwBnAb8G3gh0AauAt7j7kwX55gPb3f1T0XuP1vsIMNXd/ypKv5bdjECb2ecILw0h+jwRkdFoh7tXuMB830UxVkRkNBrS+Fgz10ADmNkJwKPAOKAT+Dt3X2Jmb4uybClZZQswq8ymLgCWmdl73P3uPX2uu18FXPXqS77vzGyRu78pzjKMFarrkaX6Hjlmtmg4tz+cl4fsjo6hkaX6Hjmq65Ez1PGxZi7hiLwInAScDFwBXGdmcwqWl45+WJk03H0lcDVwsZWbMkBERERE5FWqqc6lu/dF10AvcvdvA88AXwE2R1lmlKxyAINHpbMuAl4DfGJYCisiIiIiY1JNdaDLCIAG4GXCTvSZ2QVmNg44FXik3IruvhW4BPhBtI1aF+slJGOM6npkqb5Hzv5a1/vrftUq1ffIUV2PnCGt65r5EaGZXQzMB9aTn13jW8D73P2uaBq77xBOY/cS4ZR2pzF4Gruz3P3G6H0zsBKYCNyveaBFREREZF/V0o8IZwC/jZ7bgOeAv3b3e6Ll/wU0Ar8gfyOVd2U7z+W4e6eZXQRcPpwFFxEREZGxo2ZGoEVERERERoNavwZaRERERKSmqAM9xMxsppldZ2bbzCxlZsvM7C8LlpuZXWhmr5hZj5ktNLPjC5Y/ZmZXl2zzH83MzexrJen/bmbrhn+vapOZfdHMnjOz9ujxqJm9r2C56jpGZnaumb0c/R0sNrNT4y7TaLOvx3iUxys8Pj/ye6QYOVIUH2ub4uO+izs+qgM9hMxsEvAw4fzU7wOOBf4FKLyH8jeBr0Xpb46W3WtmE6LlDwBnlGz6dGBdhfQHh2wHRp8NhD80fQPwJsK6u8XMToyWq65jYmYfBS4D/gN4PeFsOXeZ2aGxFmz02ddjPOuzwMySx3XDXvoSipEjSvGxRik+Dpl446O76zFED8I/hod3s9yATcB3CtIagQ7gnOj9mYQ3hzmkIM9q4POEP65MRGnjgT7gU3Hvdy09gFbgHNV17N/D48DVJWkrgB/FXbbR/qjmGI/SHPhw3OWOyqIYOUqOHdXzsH4Pio/DV7cjFh81Aj20Pgg8bma/N7OtZvaMmZ1nZtnb3x5OOMvIguwK7t4D/BHI3q78YcJgdAaAmR1GeLvyXxPe3vyNUb63A3Xov34AzCxhZh8Dmgn/m1ddx8TM6gnrbkHJogXk616q9CqP8VqjGBkDxcfaofg4POKIj+pAD60jgHMJ/0t/N+EpmouBL0bLs3dSLL174pbsMnfvBp4gf4rsDOCJKP2hkvRV7j6mrzszsxPMrBPoBa4E/s7dl6C6jtM0IMFu6l723r4c4wV+Y2adJY8ThrfkZSlGjiDFx5qk+DiE4oyP6kAPrQB4yt2/7e5Pu/uvgJ+SbxyySucOtJK0BykOTguj1wtL0h8YmmKPai8CJwEnA1cA15nZnILlquv47KnuZe/s6zEO8I1oG4WPF4eltLunGDmyFB9rl+Lj0IgtPqoDPbQ2ActK0l4Asj8M2Bw9l/73cwDF/yU9ABxmZrMJf5yxMEp/CPgLM5tCeNH8mD9l5u597r7S3Re5+7eBZ4CvoLqO03YgzZ7rXvbCEBzjAJujbRQ++oa56OUoRo4gxceapPg4hOKMj+pAD62HgaNL0o4C1kavXyb8Us/MLjSzccCphNfsZD0KpIDPEH75jwC4+4uEF8B/lfAukgpagwVAA6rr2ESBZzEFdR85k+K6l1en2mO8lihGxkvxMWaKj8Nu5OJj3L+Y3J8ehNOk9APfAY4EziL8tfIXC/J8C2gH/h6YA8wFXgEmlGzrgSjfn0rS50bpy+Le37gfhNdOngrMBk4AfgRkCG8Br7qO97v5KOEPkD5DOFXZZYQ/PDos7rKNpsdQHOOEpyuzHaDCR3MM+6MYOYqOHdXzsH03io9DU4+xxsfYK2B/exDObfp0vDgjAAAVwUlEQVQs4X/tLwFfIrplerTcgAsJT2WmCE+FzSmznX+NvtgflKR/Pkr/edz7GvcDuJZw5KqXcH7H+4B3q65r40H4Y7E10fezGDgt7jKNtsdQHOPRMVzu8cOY9kkxcpQcO6rnYf1+FB/3vQ5jjY8WbUBERERERPaCroEWEREREamCOtAiIiIiIlVQB1pEREREpArqQIuIiIiIVEEdaBERERGRKqgDLSIiIiJSBXWgRURERESqoA60iIiIiEgV1IEWEREREamCOtAiIiIiIlVQB1pEREREpArqQIuIiIiIVEEdaBERERGRKqgDLSIiIiJSBXWgRURERESqoA60iIiIiEgV1IEWEREREamCOtAiIiIiIlVIxl0AERHZf5nZFOBkwOIui4jsN1a6+4txFsDcPc7PFxGR/ZCZvcFaZi+mdxfWdCAECcDAArDC5+h1uFL02jArlzeIthH1xYuWBxAEmIXrBmZYYNFHWLZMRWm5PERpgeXWz64TBOTfB9E6ZgRBtozhfwa5IpkNep1bXvTe8rucWz9btmhd8rsbvStaHlCcN79f+f9WCpcHVlqmfN58mYn2kXy9lHvOf8+5bVm0AYOitNyyMmlmRlPCaExEGbwd2AWeySZEr7PPGXAvfp97TcHyTMl6peunc+uE3SDPbdfdCz7DcRw8l7F8noLXxcujNTwDmSgtEy3PvSf/Plsgdzy7vCCvF6yT3b5nKucJyxEWP5c/V1TPPZdLo6g4xdspSsvkixQuNrKrZ9yiqrP8ewfHspvPvQ+Lnc+fofB9uG7GwyNpQ6qfjMPJkxv57ca2OncfYISpA72PotGVjwAfAibEXBwR2X/0ALcB17v75rgLszfMrCFx4JtTmbbVkGggmPQarHF61PlMgCUgSGBB+Bz2TqPXEKUV5LFEUVp+G0Euf25bloRkHUEQECSMRBAQJAKCwAgSYf5EtCyIliWiZUGQz1eYBpBIFOSJtptIJEgkg6gDTu4ZwtfZTnfR69xz2GkNgnyHOJtWuNxKnoNch95IWPFzYCWvg3z+7OvC9HJp2fIkDBKBkYy2lX2YFb/PlcfK5CuTXpi/cFuJIGBavTGlLjqIfD34Wsj2hzxd8Bgo/57oPZTkqZDf0+D9kAk/I+zcZsJn95L3mVzn17Od9FxaQZ6M59M9g2eyHfiog5oZgHQGT2eiZy95n4F01MEtSos+pyQtu/7g/F6UxzNOWNSoY03Y4XaPnjMeLcu/zz/C3c0UppVZLzOQIeNGOurcZtxIZ8IOcTrq9OaeM8XvIdztXFrGBq/j5NL7M/krj7f3DfDYzh5Wdfdx4oQGFmzvOtDdt1YRsvaJLuF4FcysPjHz5N5M+zqsYTI24WCCCYdAXVNxAwEFjURQ1ICUbSBy+QsaiUENRDIXyIFBjUSugbDBDQRQtpFIJAwr00AAZRuJwAqCfa5hiIpfppGo1EAA+dGggkZidw1Ebh8qNQZWnBZ9X0WNxO4aCCgf+Cs1EIX5rTRPpQYCokZi3R4CfEmDQLok7x7yFzQSlRoIyI4ilDQSlRoIyC8j30hUbCCgbCNR2njkGohMaYNQvpEp/YzSRmJQoPd8A5HPP7hxKV0vnx8yA17cIFRoIMJdLtMAeHHD4KUNTkkj0ZN2lnSkTn+uPXXpMc0NnDRxHL9/pX28u3dXEa5GhJkdGkw+ei31LXh/B4kZb8HqmuIulojsx6bVJ3n/gRPoyzjPtvdwyLi6LSdNbGRpV//b0un0Yz7MI8TqQO8lC3tXJwcTj3iE+ha8ZweJqcdhDRMLMgW5h+VOSWbTBo+mVN+BTkCQxIIAy45eBEHu/aDXieh1IkwP89ugdCsZYQmfE1FxKnSgy4ywwKvrQJeOsuxTBzoY3IEuHWUZrg50pdGaRBBQV2fUFXWg68CT4Tkut4JHyXvIp1GYJ/vw4veUpmU7xQaZsNMWdqDD92H2DLkzj5nCU3mUnC31XHmKzqBmTwFmglwRw+covxUXH3PcMmCGW3Q+OhO9Tkdlik4Ce7SB/Ptyy/PVlSmsSi9Iz5RUUckjU6FKC04ikwmcjBsWdYItOuWYe1/QgQ6XFeSNOtAWjbAYRiZ3orvw9HyYljGjOWmcMrmJUyY3sa1vgGfaUsxsSHa9aVIjr29p5Jr1OxOeGxIbeWZmiVmnZjK7VmGN07CGiSSnHpePfSIiI6A+MN48qYk3TWxkXU8/wCOtfQEfmjmReZuHb9BBHeg9MLMjginHraJhIlY/ERt/EMnpJ+U6WyIiw216fZIzpzfzzmnjWdvTz1NtKWY0JNOnTx3PQ63dx7v7spEqi5m1BNNf10bDJDId60lMPRZrmDRSHy8iUpaZcVhTPYc11dMxkObJXT3MaEh2nTZ1PH9q7T7S3VcN5eepA12GmU1OHPD61kzHeqzpAKyuieTBp2OBqktE4mNmzG6qZ3ZTPf0ZZ3lnL8c2Nzx/WFM9J04Yxx1bO4b1GsDE1OOc+hZwJznrVCxRP1wfJSLyqk1IJnjHtGb+cup4Xujs5fDGupVHNzfwUldfs7t3DcVnqEdYwszeiwXzPbUrvI4v2Rh3kUREBqkLjBNaxnFCyzg6BzL8ubWLBGwxs39292uH4zOtfgJmCbx3J943BcZN0dk4EalZHQMZNqYG6Mk4s5vqeamrb8hm61AHerCFiQPeSKZjHelNT+R+IKiRFhGpNb3pDEs7enmmPUUG529ntDBvc/vNw/V5A5seNzOzxPQTM5ldq2DgOYKWw7EJB+sMnYjUBHdnVXcfj+3soSud4a2TGlnYOzBuU6q/dyg/RxGvRHSxeTSdpc205pmvpF95GBLjCFoOxZpm5GfYEBEZYWl3Vnb18XR7im29A8yZMI6V3X2z3X3tSHx+9Mv2bIyc4U0zNqXXP0jQdCDBxCOw+uaRKIaISJFUOsNTbSkWt/Vw0Lgkz3f2vsHdnwaYOwyfpw70brj7JvINxRyvb16S3vECQeMUbMJhmE5fisgIcHc29Q7wVFuKVd19HN5Ux7PtqbcAizamOmKbzD+an9rMrM6mHNeX3voUWIJg0hHhYIPio4gMsy29Azy6s5t1Pf28vmUcr/QOTN2Y6m8d7s9VB3ovuftSopmbbPqJA5m2l/FtTxOMP4hgwqEadRGRIdfWn+aZ9hRLOlJMqUvw+omNPLyzu35Tqr8/7rIVcvd+8oMNx3td09L0jucJJhxK0DJbl8CJyJBKu7Oso5fHdnVTb8bJk5t4fFdP4pWtHSM2tafuRLgPzGx84sA3d2Y61kGmHxIN5O+7mrtxabZZidLyy3M3PC3KT3G+ouUF62bnUY5urZq/RaxF2aLn3K1hrWDzBetQkDe33fycyIVFy227aLfyt2jNFR2K1i96Ll2ndHu5W8Xm03LbGvQZBftPNm9JOQvSC7dtJeW3wg1T6XOtaJvsZnnhezOj3qCuaHrcHvAecjMOe8nMxF4ya3HF5XuRv+iWtNksBfnDe7MW3eo1v14+zUvyF26n6Fa40WTK+U15fp2C5cW3iy1YRpnlhc9k0wvzFxancD+jvNnXlGy/ML3k1rX5/YrSMrnN5G41W7iaY0VVWpQnl89yn1d4K9vCOwU74a1uUxknMDipZRzzNndMdvddjCLhdHcntXn7mjA2Ft6GOxfPyKdB0fKy8bEoNlJme/n4WBobw9y7j4+lsTGbVi4+louNUYnKxsdKsbFoWeE6ZWJjNm+l+FgaG0u3XRofS2Njcb58WUrjXVF7UlBPpfGxUmwsTBscHwtjI+wx/hUtqzJ/SbwbFB/LxkaK1y2Mj2ViYz5Lmfi4t/Fvt7GT4mWUxMeS2FhQwvLxsSQ25p52Ex8LY2P2uVJ8LI2N+fwV4mOZ2AiwayDDUePr+WNr92vcfTUxUAd6iJjZJOCzwP/FXZYa8wlUJ6VUJ4OpTgb7iLv/JO5C7KvoJlRfR99vKR3z5aleBlOdDPZBd788zgKoAz2EzGyRu78p7nLUEtXJYKqTwVQng+1PdbI/7ctQUZ2Up3oZTHUyWC3Uie65KiIiIiJSBXWgRURERESqoA700Loq7gLUINXJYKqTwVQng+1PdbI/7ctQUZ2Up3oZTHUyWOx1omugRURERESqoBFoEREREZEqqAMtIiIiIlIFdaCHkYXuNjM3sw/HXZ64mNkUM/uZmS03sx4zW29mV5jZ1LjLNtLM7Fwze9nMUma22MxOjbtMcTGzb5vZk2bWbmbbzOx2M5sTd7lqiZldEMWPn8ddln2lOFCZmX3OzB40s13R9z077jKNNMXGYmZ2mpndZmYbo2Pi7LjLFLdaazPUgR5eXwPScReiBhwEzAK+CZwAfBI4Dbg+zkKNNDP7KHAZ8B/A64FHgLvM7NBYCxaf04HLgbcB7wAGgPvMbEqchaoVZnYy4c2Znou7LENEcaCyJmABcGHM5YiFYmNZzcBS4MtAT8xlqRWnU0Nthn5EOEzM7E3AzcAbgS3AWe5+Y7ylqh1m9l7gDmCSu7fHXZ6RYGaPA8+5+2cL0lYAN7r7t+MrWW0ws2agjfAOU7fHXZ44mdlE4CnCDvT3gKXufl68pRp6YzEO7E7UbjwJHO7ua2IuzohRbNw9M+sEznP3a+MuSy2Ju83QCPQwMLMJhKMq57j71rjLU6NagF6gO+6CjAQzqyf8Z2pByaIFhP9NC0wgjEk74y5IDbiKsPPwQNwFGWZjKg7IYIqNsg9ibTPUgR4eVwJ3u/udcRekFpnZJOAHwNXuPhB3eUbINCBBeDai0BZgxsgXpyZdBjwDPBp3QeJkZp8FjgT+Ne6yDKcxGgdkMMVGebVibTPUgd5LZvbD6EL+3T1ON7N/BF4HfCPuMg+3va2TknXGA7cDGwmvhRxrSq+ZsjJpY46ZXQq8HfiQu4/Z3w2Y2dGE14F+wt374i7P3lAcKO/V1MsYp9goe60W2oxkHB86Sv0E+O0e8qwDzgaOAzrNrHDZ783sUXd/+/AULxZ7WydA7nql7Kj8+909NVwFq0HbCX9QWjqicgCDR17GFDP7MfAx4Ax3Xx13eWJ2CuGI3NKC+JEATjOzzwPj3b03rsJVoDhQXlX1MoYpNkpVaqXNUAd6L7n7dsI/9N0ys+8Al5QkLwG+Dtw6DEWLzd7WCeSuC7+LcFThPe7eOZxlqzXu3mdmi4EzgRsKFp0J3BRPqeJnZpcRBsLT3X153OWpAbcAi0rSfgWsIByZrrlRacWB8qqpl7FMsVGqUUtthjrQQ8zdNxKelsyJRpLWj9XRtajRXED4g6EPAuOjU7gAraPlVPUQuBT4jZk9ATwMfJ5waq8rYy1VTMzsF8A/Eh4TO80sOwLVuT93rHbH3XcBuwrTzKyL8O9kaTylGhqKA5VFx/4M4Kgo6bjoGvF17t4aX8lGjGJjiehMzZHR2wA41MxOIvxbGZNnLmqtzdA0diPAzJwxPI1ddJ3fgxUWn+HuC0euNPEys3MJr/mcSTjH51fc/Y/xlioe0d9FORe5+4UjWZZaZmYL2Q+msVMcqMzMLgS+X2bRP4+VqcsUG4vt5u/lOnc/e2RLUxtqrc1QB1pEREREpAqahUNEREREpArqQIuIiIiIVEEdaBERERGRKqgDLSIiIiJSBXWgRURERESqoA60iIiIiEgV1IEWEREREamCOtAiIiIiIlVQB1pEREREpArqQItIjpldYWYbd3PLVBGRMUexUUrpVt4ikmNmpwEvApvd3eIuj4hILVBslFIagZZRy0Ivm5mb2ZFxl2d3zGxhVE43s/PjLk8l7v5Hd99SbpmZXViwDzeOdNlEZO8oNg49xUYppQ60jGanALMBBz4Wb1H2yoOEZZ4bd0FepWsIy/903AURkd1SbBxZio1jUDLuAojsg48DrwAPR69/GG9x9qjV3R+L68PN7M/AwWUW3e/un97T+u6+AdhgZu1DXjgRGUqKjVVQbJRXQyPQMiqZWQI4C7gBuB44zsxOLMmzsPR0mpmdHp1mmzNypa3MzK41s0Vm9j4zW2Zm3WY238ymmNmRZvagmXVFeU7cw7aON7O7zaw1WucFM/tidrm7v93dZ5d57LGBEJHRQbGx7LYUG2XIqQMto9U7gAOB3wN3Au2EIy2j0aHAvwHfBT4HvA24ivB05lzgw4Rni+aa2e5+vHIbkAY+CXwA+BkwYfiKLSI1SLFxMMVGGXK6hENGq48D64DH3N3N7FbgY2Z2gY++qWWmAKe4+yqAaDTlG8Cn3P3XUZoB84FjgBdKN2Bm04AjgA+6+5Io+f5qC2Jm1wDviV5vAO52989UvUciEhfFxgKKjTJcNAIto46ZNQB/B/yhoEGYS/ijmZPjKtc+WJNtICIro+cHyqTNqrCNVmA9cKWZfdTMDng1BXH3z7j7we5u0bMaCJFRQrGxLMVGGRbqQMto9NfAJMJTlFn3EgbKqk5VRtfXPWtmz5jZI2Z2bMGyNdG1d89Ej+MKls0xs6fMbIWZ3WZm+3I6cFfJ+74y6dm0ceU24O4Z4F3AZuB/gc1m9icze/0+lEtERhfFxhKKjTJc1IGW0ejjwGp3X5RNcPd+4GbgI9GPaABSQH3JulNK3l8NfMzdTwJ+S3i9XaH3uvtJ0WNZQfqVwHfd/bXAcuCb+7RHQ8Ddl7v7hwgb0HcSNijzzUx/5yJjg2JjGYqNMhx08MioYmbNwPspHmHJmkv445kzovcbCK+LK3RmyfsM0BK9nghs2osyHAgc7u53Rkn/A3xoj4UfIe7e7+4PAJcCMwkbDRHZjyk27pliowwl/YhQRpu/BZqATjP7YMmyBNBLOApzH+Goy6fN7MeEPzI5A3h3yTqfBO4wsxTQDfxFyfJboh+p3AFcGI3mHEzYAGWtAw7Z1x3bF9GPay4hbDxXA5OBbwHPuntrnGUTkRGh2FiGYqMMF3WgZbTJXsf377vJ8/dmdq67zzezC4Bzgc8AtwLnR8+YWZIwkL7D3ZeY2WeBawlHcQDe7u4bopGd3wBfB34EGOEdvmrJZmAL8B3gIMJrBB8k3D8R2f8pNpan2CjDwkbfrDYiQ8PM3gT8wt3fGr1vAra5+/gyed8PnOPuf2NmM4DF7j4rWnY0cIu7H1u6XsH6C4EdwEeB9CicToroesGAcAqobe7+4ZiLJCLDQLGxOoqNY5OugZaxbAPwWjPLnmJ8D7AMwMzGm1lL9DpJeB3fcwDuvhlYY2bvjdb7NDBvLz7v74F+4MtDtgcj63uE5T8t7oKIyLBSbKyOYuMYpBFoGdPM7J8JTz8OAF3A5939OTM7gjDwB4TXDz4KfMndu6P1TgSuA5qBF4FPuHvbbj7naPJ3vlrn7luHaZeGjZkdRHgKFKDV3VfHWR4RGT6KjXtPsXFsUgdaRERERKQKuoRDRERERKQK6kCLiIiIiFRBHWgRERERkSqoAy0iIiIiUgV1oEVEREREqqAOtIiIiIhIFdSBFhERERGpgjrQIiIiIiJV+P91hpD8frZfKgAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 720x504 with 8 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "mods = ['ICON', 'MPI-ESM', 'IPSL-CM5A']\n",
+    "vlim_tot = 4\n",
+    "vlim_cld = 2\n",
+    "# boundaries of region with robust response\n",
+    "lonwest = -4; loneast = 25; latsout = 50; latnort = 59\n",
+    "\n",
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(3, 2, figsize=(10,7),\n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "for i in range(ax.shape[0]):\n",
+    "    for k in range(ax.shape[1]):\n",
+    "        ax[i, k].coastlines(rasterized=True)\n",
+    "        ax[i, k].set_aspect('auto')\n",
+    "        ax[i, k].tick_params(labelsize=14)\n",
+    "        # extended North Atlantic region\n",
+    "        ax[i, k].set_extent([-70, 30, 30, 70], ccrs.PlateCarree())\n",
+    "        # set xticks and yticks for latitudes and longitudes\n",
+    "        # xaxis: longitudes\n",
+    "        if i == 2: # last row\n",
+    "            ax[i, k].set_xticks([-60, -30, 0, 30], crs=ccrs.PlateCarree())\n",
+    "            lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                                degree_symbol='',\n",
+    "                                                dateline_direction_label=True)\n",
+    "            ax[i, k].xaxis.set_major_formatter(lon_formatter)\n",
+    "            del lon_formatter\n",
+    "        # yaxis: latitudes\n",
+    "        if k == 0: # first column\n",
+    "            ax[i, k].set_yticks([30, 50, 70], crs=ccrs.PlateCarree())\n",
+    "            lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "            ax[i, k].yaxis.set_major_formatter(lat_formatter)\n",
+    "            del lat_formatter\n",
+    "        # draw box around region, for which we determine the area-mean response\n",
+    "        # left vertical line\n",
+    "        ax[i, k].plot([lonwest, lonwest], [latsout, latnort],\n",
+    "                      linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "        # right vertical line\n",
+    "        ax[i, k].plot([loneast, loneast], [latsout, latnort],\n",
+    "                      linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "        # upper horizontal line\n",
+    "        ax[i, k].plot([loneast, lonwest], [latnort, latnort],\n",
+    "                      linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "        # lower horizontal line\n",
+    "        ax[i, k].plot([lonwest, loneast], [latsout, latsout],\n",
+    "                      linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    del k\n",
+    "del i\n",
+    "del lonwest, loneast, latsout, latnort\n",
+    "# total response\n",
+    "# ICON\n",
+    "k = response_cldvap.index('total') # 0\n",
+    "cf = ax[0, 0].pcolormesh(lons_plot, lats_plot,\n",
+    "                         du850_icon_plot[k, :, :],\n",
+    "                         vmin=-vlim_tot, vmax=vlim_tot, cmap=mymap2,\n",
+    "                         rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# stippling for significant response\n",
+    "ax[0, 0].pcolor(lons_plot, lats_plot,\n",
+    "                np.ma.masked_values(1*mask_icon_plot[k, :, :], 0),\n",
+    "                hatch='.....', alpha=0., rasterized=True,\n",
+    "                transform=ccrs.PlateCarree())\n",
+    "# MPI-ESM\n",
+    "ax[1, 0].pcolormesh(lons_plot, lats_mpi_plot,\n",
+    "                    du850_mpi_plot[k, :, :],\n",
+    "                    vmin=-vlim_tot, vmax=vlim_tot, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# stippling for significant response\n",
+    "ax[1, 0].pcolor(lons_plot, lats_mpi_plot,\n",
+    "                np.ma.masked_values(1*mask_mpi_plot[k, :, :], 0),\n",
+    "                hatch='.....', alpha=0., rasterized=True,\n",
+    "                transform=ccrs.PlateCarree())\n",
+    "# IPSL-CM5A\n",
+    "ax[2, 0].pcolormesh(lons_plot, lats_plot,\n",
+    "                    du850_ipsl_plot[k, :, :],\n",
+    "                    vmin=-vlim_tot, vmax=vlim_tot, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# stippling for significant response\n",
+    "ax[2, 0].pcolor(lons_plot, lats_plot,\n",
+    "                np.ma.masked_values(1*mask_ipsl_plot[k, :, :], 0),\n",
+    "                hatch='.....', alpha=0., rasterized=True,\n",
+    "                transform=ccrs.PlateCarree())\n",
+    "del k\n",
+    "##################################################\n",
+    "# cloud impact\n",
+    "k = response_cldvap.index('cloud') # 2\n",
+    "# ICON\n",
+    "cf1 = ax[0, 1].pcolormesh(lons_plot, lats_plot,\n",
+    "                          du850_icon_plot[k, :, :],\n",
+    "                          vmin=-vlim_cld, vmax=vlim_cld, cmap=mymap2,\n",
+    "                          rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# stippling for significant response\n",
+    "ax[0, 1].pcolor(lons_plot, lats_plot,\n",
+    "                np.ma.masked_values(1*mask_icon_plot[k, :, :], 0),\n",
+    "                hatch='.....', alpha=0., rasterized=True,\n",
+    "                transform=ccrs.PlateCarree())\n",
+    "# MPI-ESM\n",
+    "ax[1, 1].pcolormesh(lons_plot, lats_mpi_plot,\n",
+    "                    du850_mpi_plot[k, :, :],\n",
+    "                    vmin=-vlim_cld, vmax=vlim_cld, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# stippling for significant response\n",
+    "ax[1, 1].pcolor(lons_plot, lats_mpi_plot,\n",
+    "                np.ma.masked_values(1*mask_mpi_plot[k, :, :], 0),\n",
+    "                hatch='.....', alpha=0., rasterized=True,\n",
+    "                transform=ccrs.PlateCarree())\n",
+    "# IPSL-CM5A\n",
+    "ax[2, 1].pcolormesh(lons_plot, lats_plot,\n",
+    "                    du850_ipsl_plot[k, :, :],\n",
+    "                    vmin=-vlim_cld, vmax=vlim_cld, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# stippling for significant response\n",
+    "ax[2, 1].pcolor(lons_plot, lats_plot,\n",
+    "                np.ma.masked_values(1*mask_ipsl_plot[k, :, :], 0),\n",
+    "                hatch='.....', alpha=0., rasterized=True,\n",
+    "                transform=ccrs.PlateCarree())\n",
+    "del k\n",
+    "##################################################\n",
+    "# jet latitude in control simulation\n",
+    "for k in range(ax.shape[1]):\n",
+    "    ax[0, k].plot(lons_plot, jetlat_icon_nh[lonind_west:lonind_east+1],\n",
+    "                  marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "                  markersize=2, transform=ccrs.PlateCarree())\n",
+    "    ax[1, k].plot(lons_plot, jetlat_mpi_nh[lonind_west:lonind_east+1],\n",
+    "                  marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "                  markersize=2, transform=ccrs.PlateCarree())\n",
+    "    ax[2, k].plot(lons_plot, jetlat_ipsl_nh[lonind_west:lonind_east+1],\n",
+    "                  marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "                  markersize=2, transform=ccrs.PlateCarree())\n",
+    "\n",
+    "# titles\n",
+    "ax[0, 0].set_title('total', fontsize=16)\n",
+    "ax[0, 1].set_title('cloud', fontsize=16)\n",
+    "\n",
+    "# labels for models\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i, 0].text(-0.15, 0.51, mods[i], va='bottom', ha='center',\n",
+    "                  rotation='vertical', rotation_mode='anchor',\n",
+    "                  fontsize=16, transform=ax[i, 0].transAxes)\n",
+    "del i\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# a), b) etc for subplots\n",
+    "labs = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)']\n",
+    "ax = ax.reshape(-1)\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].text(0.01, 1.02, labs[i], va='bottom', ha='left',\n",
+    "               rotation_mode='anchor', fontsize=15,\n",
+    "               transform=ax[i].transAxes)\n",
+    "del i\n",
+    "\n",
+    "# colorbar for response\n",
+    "fig.subplots_adjust(bottom=0.1)\n",
+    "cbar_ax = fig.add_axes([0.09, 0.0, 0.423, 0.02]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf, cax=cbar_ax, orientation='horizontal', extend='both')\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf\n",
+    "\n",
+    "cbar_ax = fig.add_axes([0.545, 0.0, 0.423, 0.023]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf1, cax=cbar_ax, orientation='horizontal', extend='both')\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf1\n",
+    "\n",
+    "fig.savefig('figure3a_3f.pdf', bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj\n",
+    "\n",
+    "del mods, vlim_tot, vlim_cld"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/.ipynb_checkpoints/figure4_cloudheating_change-checkpoint.ipynb b/pythonscripts/.ipynb_checkpoints/figure4_cloudheating_change-checkpoint.ipynb
new file mode 100644
index 0000000..745548b
--- /dev/null
+++ b/pythonscripts/.ipynb_checkpoints/figure4_cloudheating_change-checkpoint.ipynb
@@ -0,0 +1,506 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Changes in atmospheric cloud radiative heating.\n",
+    "\n",
+    "This script generates figure 4: \n",
+    "zonal-mean changes and maps of upper-tropospheric changes in atmospheric cloud-radiative heating during DJF for ICON, MPI-ESM and IPSL-CM5A."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify the months of the year (needed for DJF mean)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (ICON, MPI-ESM, IPSL-CM5A)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:50: RuntimeWarning: Mean of empty slice\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "LMD: change order of levels to go from TOA to surface\n",
+      "False -5.538915423676372 5.984612123575062\n",
+      "True -8.794642752036452 10.795256146229804\n",
+      "False -14.69999528490007 12.625148193910718\n"
+     ]
+    }
+   ],
+   "source": [
+    "# ICON\n",
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "ifile = 'ICON-NWP_prp_T1C1_vs_T1C2_3d_40PL_mm.ymonmean.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "lats_icon = np.array(ncfile.variables['lat'][:].data)\n",
+    "lons_icon = np.array(ncfile.variables['lon'][:].data)\n",
+    "levs_icon = np.array(ncfile.variables['lev'][:].data)\n",
+    "dQsw = np.array(ncfile.variables['dQ_c_srad'][:].data) # shortwave\n",
+    "dQlw = np.array(ncfile.variables['dQ_c_trad'][:].data) # longwave\n",
+    "ncfile.close()\n",
+    "# add shortwave and longwave components\n",
+    "dQ_icon = (dQsw + dQlw) * 86400 # K/s -> K/day\n",
+    "del ipath, ifile, ncfile, dQsw, dQlw\n",
+    "\n",
+    "# get DJF data\n",
+    "dQ_icon_djf = np.nanmean(np.array([dQ_icon[months.index('Jan'), :, :, :],\n",
+    "                                   dQ_icon[months.index('Feb'), :, :, :],\n",
+    "                                   dQ_icon[months.index('Dec'), :, :, :]]),\n",
+    "                         axis=0)\n",
+    "del dQ_icon\n",
+    "\n",
+    "# levels must go from TOA to surface\n",
+    "if levs_icon[0] > levs_icon[1]:\n",
+    "    print('ICON: change order of levels to go from TOA to surface')\n",
+    "    levs_icon = levs_icon[::-1]\n",
+    "    dQ_icon_djf = dQ_icon_djf[::-1, :, :]\n",
+    "\n",
+    "##############################################################################\n",
+    "# MPI-ESM\n",
+    "ipath = '../../MPI-ESM/'\n",
+    "ifile = 'MPI-ESM_prp_T1C1W1_vs_T1C2W1_3d_mm.ymonmean.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "lats_mpi = np.array(ncfile.variables['lat'][:].data)\n",
+    "lons_mpi = np.array(ncfile.variables['lon'][:].data)\n",
+    "levs_mpi = np.array(ncfile.variables['plev_2'][:].data)\n",
+    "dQsw = np.array(ncfile.variables['dQ_cld_srad'][:].data) # shortwave\n",
+    "dQlw = np.array(ncfile.variables['dQ_cld_trad'][:].data) # longwave\n",
+    "ncfile.close()\n",
+    "# add shortwave and longwave components\n",
+    "dQ_mpi = (dQsw + dQlw) * 86400 # K/s -> K/day\n",
+    "del ipath, ifile, ncfile, dQsw, dQlw\n",
+    "\n",
+    "# set missing values (-9e33) to NaN\n",
+    "dQ_mpi[dQ_mpi <= -8e33] = np.nan\n",
+    "\n",
+    "# get DJF data\n",
+    "dQ_mpi_djf = np.nanmean(np.array([dQ_mpi[months.index('Jan'), :, :, :],\n",
+    "                                  dQ_mpi[months.index('Feb'), :, :, :],\n",
+    "                                  dQ_mpi[months.index('Dec'), :, :, :]]),\n",
+    "                          axis=0)\n",
+    "del dQ_mpi\n",
+    "\n",
+    "# levels must go from TOA to surface\n",
+    "if levs_mpi[0] > levs_mpi[1]:\n",
+    "    print('ECHAM: change order of levels to go from TOA to surface')\n",
+    "    levs_mpi = levs_mpi[::-1]\n",
+    "    dQ_mpi_djf = dQ_mpi_djf[::-1, :, :]\n",
+    "\n",
+    "##############################################################################\n",
+    "# IPSL-CM5A\n",
+    "ipath = '../../IPSL-CM5A/'\n",
+    "ifile = 'IPSL-CM5A_prp_T1C1W1_vs_T1C2W1_3d_mm.remapcon.ymonmean.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "lats_ipsl = np.array(ncfile.variables['lat'][:].data)\n",
+    "lons_ipsl = np.array(ncfile.variables['lon'][:].data)\n",
+    "levs_ipsl = np.array(ncfile.variables['presnivs'][:].data)\n",
+    "dtswr = np.array(ncfile.variables['dtswr'][:].data)\n",
+    "dtlwr = np.array(ncfile.variables['dtlwr'][:].data)\n",
+    "dtswr_prpc = np.array(ncfile.variables['dtswr_prpc'][:].data)\n",
+    "dtlwr_prpc = np.array(ncfile.variables['dtlwr_prpc'][:].data)\n",
+    "ncfile.close()\n",
+    "# get change in cloud-radiative heating in K/day\n",
+    "# multiply with 86400 to get K/s -> K/day\n",
+    "dQ_ipsl = 86400 * ((dtswr_prpc + dtlwr_prpc) - (dtswr + dtlwr))\n",
+    "del ifile, ncfile, dtswr, dtlwr, dtswr_prpc, dtlwr_prpc\n",
+    "\n",
+    "# set missing values (9.9e36) to NaN\n",
+    "dQ_ipsl[dQ_ipsl >= 9e36] = np.nan\n",
+    "\n",
+    "# get DJF data\n",
+    "dQ_ipsl_djf = np.nanmean(np.array([dQ_ipsl[months.index('Jan'), :, :, :],\n",
+    "                                   dQ_ipsl[months.index('Feb'), :, :, :],\n",
+    "                                   dQ_ipsl[months.index('Dec'), :, :, :]]),\n",
+    "                        axis=0)\n",
+    "del dQ_ipsl\n",
+    "\n",
+    "# levels must go from TOA to surface\n",
+    "if levs_ipsl[0] > levs_ipsl[1]:\n",
+    "    print('LMD: change order of levels to go from TOA to surface')\n",
+    "    levs_ipsl = levs_ipsl[::-1]\n",
+    "    dQ_ipsl_djf = dQ_ipsl_djf[::-1, :, :]\n",
+    "\n",
+    "##############################################################################\n",
+    "# check that all missing values are replaced by NaN's\n",
+    "print(np.isnan(dQ_icon_djf).any(), np.nanmin(dQ_icon_djf), np.nanmax(dQ_icon_djf))\n",
+    "print(np.isnan(dQ_mpi_djf).any(), np.nanmin(dQ_mpi_djf), np.nanmax(dQ_mpi_djf))\n",
+    "print(np.isnan(dQ_ipsl_djf).any(), np.nanmin(dQ_ipsl_djf), np.nanmax(dQ_ipsl_djf))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read tropopause height (with interpolated missing values) and calculate vertical mean dQ for a 200hPa thick layer below tropopause.\n",
+    "\n",
+    "NOTE: pressure value that is closer to the ground must be the second plev value that is given to the function get_verticalmean_overp_tropo (due to order of levels in levs array)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ipath = '../../tropopause_T1C1_T1C1W1/'\n",
+    "\n",
+    "# ICON\n",
+    "ifile = 'ICON-NWP_AMIP_T1C1_tropopause_DJF_timemean.fillmiss.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "tropo = ncfile.variables['ptrop'][:]\n",
+    "ncfile.close()\n",
+    "del ifile, ncfile\n",
+    "\n",
+    "# find index of tropopause height for each grid point\n",
+    "tropoind1 = np.full((lats_icon.size, lons_icon.size), np.nan, dtype=int)\n",
+    "# index 300 hPa below tropopause\n",
+    "tropoind2 = np.full((lats_icon.size, lons_icon.size), np.nan, dtype=int)\n",
+    "for la in range(lats_icon.size):\n",
+    "    for lo in range(lons_icon.size):\n",
+    "        tropoind1[la, lo] = np.argmin(np.abs(levs_icon-tropo[la,lo]))\n",
+    "        tropoind2[la, lo] = np.argmin(np.abs(levs_icon-(tropo[la, lo]+20000)))\n",
+    "    del lo\n",
+    "del la\n",
+    "\n",
+    "# calculate vertical-mean dQ\n",
+    "dQ_icon_vmean = fct.get_verticalmean_overp_tropo(dQ_icon_djf, levs_icon,\n",
+    "                                                 tropoind1, tropoind2)\n",
+    "\n",
+    "# get zonal-mean tropopause\n",
+    "tropo_icon = np.nanmean(tropo, axis=1)\n",
+    "\n",
+    "# delete temporary variables\n",
+    "del tropo, tropoind1, tropoind2\n",
+    "\n",
+    "##############################################################################\n",
+    "# MPI-ESM\n",
+    "ifile = 'MPI-ESM_T1C1W1_tropopause_DJF_timemean.fillmiss.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "tropo = ncfile.variables['ptrop'][:]\n",
+    "ncfile.close()\n",
+    "del ifile, ncfile\n",
+    "\n",
+    "# find index of tropopause height for each grid point\n",
+    "tropoind1 = np.full((lats_mpi.size, lons_mpi.size), np.nan, dtype=int)\n",
+    "# index 300 hPa below tropopause\n",
+    "tropoind2 = np.full((lats_mpi.size, lons_mpi.size), np.nan, dtype=int)\n",
+    "for la in range(lats_mpi.size):\n",
+    "    for lo in range(lons_mpi.size):\n",
+    "        tropoind1[la, lo] = np.argmin(np.abs(levs_mpi-tropo[la,lo]))\n",
+    "        tropoind2[la, lo] = np.argmin(np.abs(levs_mpi-(tropo[la, lo]+20000)))\n",
+    "    del lo\n",
+    "del la\n",
+    "\n",
+    "# calculate vertical-mean dQ\n",
+    "dQ_mpi_vmean = fct.get_verticalmean_overp_tropo(dQ_mpi_djf, levs_mpi,\n",
+    "                                                tropoind1, tropoind2)\n",
+    "\n",
+    "# get zonal-mean tropopause\n",
+    "tropo_mpi = np.nanmean(tropo, axis=1)\n",
+    "\n",
+    "# delete temporary variables\n",
+    "del tropo, tropoind1, tropoind2\n",
+    "\n",
+    "##############################################################################\n",
+    "# IPSL-CM5A\n",
+    "ifile = 'IPSL-CM5A_T1C1W1_tropopause_DJF_remapcon_timemean.fillmiss.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "tropo = ncfile.variables['ptrop'][:]\n",
+    "ncfile.close()\n",
+    "del ifile, ncfile\n",
+    "\n",
+    "# find index of tropopause height for each grid point\n",
+    "tropoind1 = np.full((lats_ipsl.size, lons_ipsl.size), np.nan, dtype=int)\n",
+    "# index 300 hPa below tropopause\n",
+    "tropoind2 = np.full((lats_ipsl.size, lons_ipsl.size), np.nan, dtype=int)\n",
+    "for la in range(lats_ipsl.size):\n",
+    "    for lo in range(lons_ipsl.size):\n",
+    "        tropoind1[la, lo] = np.argmin(np.abs(levs_ipsl-tropo[la,lo]))\n",
+    "        tropoind2[la, lo] = np.argmin(np.abs(levs_ipsl-(tropo[la, lo]+20000)))\n",
+    "    del lo\n",
+    "del la\n",
+    "\n",
+    "# calculate vertical-mean dQ\n",
+    "dQ_ipsl_vmean = fct.get_verticalmean_overp_tropo(dQ_ipsl_djf, levs_ipsl,\n",
+    "                                            tropoind1, tropoind2)\n",
+    "\n",
+    "# get zonal-mean tropopause\n",
+    "tropo_ipsl = np.nanmean(tropo, axis=1)\n",
+    "\n",
+    "# delete temporary variables\n",
+    "del tropo, tropoind1, tropoind2\n",
+    "\n",
+    "del ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Get zonal-mean changes in atmospheric cloud-radiative heating."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: Mean of empty slice\n",
+      "  \n"
+     ]
+    }
+   ],
+   "source": [
+    "dQ_icon_djf_zm = np.nanmean(dQ_icon_djf, axis=2)\n",
+    "dQ_mpi_djf_zm = np.nanmean(dQ_mpi_djf, axis=2)\n",
+    "dQ_ipsl_djf_zm = np.nanmean(dQ_ipsl_djf, axis=2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot zonal-mean and maps of upper-tropospheric changes in atmospheric cloud-radiative heating in ICON, MPI-ESM and IPSL-CM5A."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAAImCAYAAACsOWf9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd5QVRdrGf9V902QYYMg5CQgmkjmLOaEYwYh5zVnXtOpn3DXvqruGNWfdRcWMCIKBJFlyZoBJTLqpu74/+nZ39Z17YUCQYe3nnDnTt7tSV1dXP/XWU28JKSU+fPjw4cOHDx8+fPjYPLQdXQAfPnz48OHDhw8fPnYW+OTZhw8fPnz48OHDh49GwifPPnz48OHDhw8fPnw0Ej559uHDhw8fPnz48OGjkfDJsw8fPnz48OHDhw8fjYRPnn348OHDhw8fPnz4aCR88uzDhw8fPnz48OHDRyPhk+cmBmFhhhDinC2I87QQ4l/bs1w+fPjwsTOgMX2oEOIKIYRUfg8UQpQJIYp+n1L68OFjZ4ZPnpseRgDNgde3IM7DwFlCiB7bp0g+fPjwsdNgi/tQKeXPwHTgmu1VKB8+fPzvwCfPTQ9XAq9IKRONjSClXApMAC7dXoXy4cOHj50EW9yHpvAicIkQIrAdyuTDh4//IfjkuQkhZTneB3hXOTdKCDFBCFEuhKgQQnwjhBiYIfp7WNZn/5n68OHjD4ksfWhYCPGUEKIy1Y/+DQhmiP4foBgY9vuU1ocPHzsrfKLVtHAoUAvMUM51Af4NnAqcCawExgshuqXF/R5oDfTf/sX04cOHjyaJTH3oA8CFwF+As4DOwHXpEaWUG4HZwGHbv5g+fPjYmeFPTzUt7AXMlVKa9gkp5T32ccqq/AUwCDgbuEeJOxswgMF4Pxw+fPjw8UeBpw8VQrQALgHulFI+mjr3GTAnS/wZWH2oDx8+fGSFb3luWmgDbFBPCCH6CCE+EEKUYpHjBNAb6KWGk1ImgcpUGj58+PDxR0R6H9ofiAAf2SdSxPojMmMDfh/qw4ePzcC3PDctRIA6+4cQogD4HCgFrgWWAVHgn6mw6YhlOe/Dhw8ffwR4+lBcIrwuLVz6bxt+H+rDh4/NwifPTQvleK0eewMdgMOllPPsk5vwRdoslYYPHz58/BGR3oeuTf0vwds3lmSJ7/ehPnz42Cx82UbTwnygq/I7J/U/Zp8QQuyDtYjQAyFEKyAX+HU7ls+HDx8+mjLS+9CZWLN1J9gnUmtHTiAzuuD3oT58+NgMfPLctDAR6JQiwgCTgRrgeSHEEUKI84E3gVUZ4g4EJJbXDR8+fPj4I8LTh0opy4DngLuFENcJIY4E3gHys8QfmErDhw8fPrLCJ89NC+OwpgyPBJBSlmK5qGuDtcDlaqyV4wszxD0S+Db1sfDhw4ePPyLGofShKdwIvADcAbwBrAb+mh5RCLEH0Ap4f7uX0ocPHzs1hJRyR5fBhwIhxONADynlMVsQR8daTHizlPLV7VY4Hz58+Gji2Jo+NBXv/4BBUkrfz7MPHz42CZ88NzEIITpg6fb2kFI2SnsnhDgdawOAPimXdT58+PDxh8RW9qF5WAaIU6SU47Zj8Xz48PE/AF+20cQgpVwJXAC03YJoArjAJ84+fPj4o2Mr+9BOwD0+cfbhw0dj4Fueffjw4cOHDx8+fPhoJHw/zzsQLVu2lJ07dXJ+SyG2eR5iiwZHSlhPvCxpZEtaZP2RIax6PXNYubk0GpHNFqNR1bb5QNlCqOe3tuiNqv4tzidDqG3fLLewXW57bI93bXtCra/GlF0TgilTpmyQUrbabOCdGJ06d5Yrli/f0cXw4cPH/yaWSSm7ZLrQpMizEOKyrYz61s7oZaJLly5M+O475/f2/KBnIyvCVJQe0nSPTUOJa2YO06iMLWWQFFqDc9axe89SC2QMo9ZLNs61tVWXLT2zEeRODWF6xh0y43kjQ5JalnJnu50tpZxqOrqSmZpvpry0LBW6rZrojiDPOxth/i3IiUQQQizb0eXY3lixfDkV1bXOb5HlGUspN3ltS2BuInhjUtpU/K3B9p493pIe/7cUZVvXy/ZGtr77tyK9HvRGims3FSxb21dhZHh4mdJsTFrZENK9cY1t9NAbk8qmSp3pWTbLz0UI0TlbnCZFnoGntiKOxPKHvNOR598TKnHwWLFUwqoQY7UtSfkbpPGZXjSx+fSyEZ1tzX/U9NR6UV+mbGVRX3w1vEqS1Zc6G2G1Sa3ar6jkdZsR1mwDIhX2+SzPKOsgyBMmy7Pbxh/5PxIZ9tE4bIpI2teyfa9/a+vcJKnOUq5NEdPtyYntsmpi2/Uv6eXdHC/KVCfZ6uO3LM4SQmTMSyWBdt+crS7s/DPF2RIYpncQ5zG0pP7rwjovpV32TacHENCFp+40pazZvjvqeVNCUFO/OZlvLv2e1Wdsf7+Sm3jwm3w/M6Qb1Bo3qEovbWNfnd8yAGpq5BlgqJTyx8YEFEIEgPh2Lo8PH9sN+vYyX2wNtnRWwYePnQTZZoA29fplnU1qZJ6NJZONsRw3lsxkjquET/3XHbKYmcil59eYfBpzf966ExhmZsuqWiXpzyEbScxWXuuyIJFIUFVVRayujrKyDfw6fx7SNAmFw/w0eTLl5WXU1dVhGAamYZCTm0c0Wk99fT26phEMhQiFQgSDIYLBAJFIDnrAolAXXnwJHTt2oq6+jvq6ekzTAATFxcWgaSz4dT7JZJIOHTtRV1fL22+8xpqVq1i9ehVSSnRdp2zDBpYuXUIiHieRSFj3oWmYZuYWV9yiBXl5+YQjYV5+4x26duuu3K+3/uz6kLhEUz3vra/GDRDSibP9U9fEJmdis83YZkI8bbrWBPStHMDYKalRfovhu6mR52+BjVsQ3kzFqd4+xfnfRDYrtAceC6MaeetkG978s9gRGmGR3hbw3LNqbc8iTxEeCYl7rGu6c6xaodXOR88yBrZJc0Ad7auWYUOR0yjnvfeR+VmoZcwqudncc1TvWZmdEMo9k6VexHZ04rOzWZu3tczIR0OsWLGS6dOnsXTJYtavW0fr1m0YOGgwew4ahKZZbdEz06POKinnzTRS7bHMKSloaQTOSWsLLa9WnOxykoYEMDPUty2TtTEd2cqlWmillNtsYO/tD11owrIsZiqXRO1P1Xv0WlildON5ZQeCObNmcubw4znokMOIRCK8+vKLztX8ggK69+iJJgQVFRUce8KJHDZoMHl5eQSDQYSAuto6cvNyiURyQJps3LiRn36YzNNPPtHgHl956QVycnLIzc0jkhNB1wMIIdiwYT2mYdC9R0+CoRArVyxn/bp1Trw3P/gPuqZhSklRYSE9e/YiFA6nyiCora2lW/vWGeu1vKyM8jJrwv3oQw6kfYcOVFVVsmrlSk+4pWvWk5ub66l3q4YatnmrTrO3SYE7K6phUlVVRWVlJZqmoes6lZWVFBe3oFWrVgQCAQwpMfFa/u2UJQ2t3wDvv/s25Rs20LVrN2prq1lXWsrhRwyjR8+enrJkkkFuCoLGvReNbfa+t40diIEDB8rfS/PcGGQjlds+o62XbfymbDPcn8im8zYze/1TiaTUg25UoRDpLJpn9aVUSbOWjFl5Ggk3gOFOqGQl0mrZs+jIacRAIaMUQyHJUlfG2HpIOe/efzYiva0HRNv7HdkWZLcxXer2ftVTmucpUsqB2zenHQshhFPbLVu1YsjQfYjFosyYPo3169bx57vuobCoGS1atqRX7950696DULDxNqNMRFO1fqrkLVM4sCw86W9BOgG07sU9lz7trhLITVmFMzUrmeE+ttSSnqmMmdCYt70xmtl0UiWlZN26UgoLiwhFIs61t197lfz8fEratKFdu/a079CBDRvW89H773PbTdc74UaddwETxn9LaelaamtqMua5prIGDTAMg4vOO4eFC+Zz8ikjWLZ0CWVlZXw/YQKtSkpYtHCBE+f6m29FmibnjL6ENiWtnHLbZTYMAymEY4Cxn8P6daVsWFfKgAEDGtSJkZJsqPdvQ0pJ0jSpKC+jurqGu265gWHHHM/NV1/uhMnPL6B3nz4Ut2hJz169ueG2O4iErb66QbtS6jvTeYD6ujqOPfYYNE1DCEFBQQGrVq5iwcIFxGOxjHUJ0KNnT6ZOn+E5l/49tK3IapPIzclpkNbpp5/OCy++mHrf3ERsiYiuCRIKm7aP7OdA2n1nQvo70qow1x5QZozR1CzPPnxsfzQheYJNnJsEfifL/84G30rctLF0zXreefN1xn3zNSuWL6dswwaSSWvA+Ze77vCEPfTwI/j3W+86FmnITvjStbKZCK8p3cGyRmYiKiWkzx3ZBEDiEghL4+rmpaXCGCntq52GJqQTzsrTJQXZrHENCEMqAVO6+aj32KBO1HKl38sm7tPOylAqRhOywXU7z7KyDUyfOoVYLE5tbQ1HHnUM8+bN5bhhhznP4rW33uXwI49iwa/zuerySzLer41AMEgykWD8uG9o07YtzZo3Z+rPPznXb7rtDs4651xatGyFkJJp06Yy5qMPGfOfDwFYumQJr7/6byf8xo1VzvFDjz3B2eecD1gL4UwJCdPbFoSuE9ZUYmyRuXZtWtOmTWtHlmAindnL9EfY0AAjKCpuSVFxS5577R0AJowfx+QJ4/nXWx/Qp++u6JpLgAOacOpfCpzGqw7IdE24xiVNeKzTkUiEDevXs3jxYqcck3/4gR9++IGrrryyQZ0fdthhHHzwwRx08MHoQnjIrrpgUEiJSkvt/OtraygvL6esrIzOnTsTjFhk2ibOKjF2Zh0M6bFoqxDO++W+T9mubQmatOVZWHe2L9ALiKRfl1I+87sXahuiqVmeVfwvekNw7km1wCoW5myW36xQrdBZPIV48lfTTMYb5CmSUeVYsTyrBFsJL5NKedV8AopFOBDOUkZF6xiwrMlSsSp7LM8B5XxjLM/a9huTb6s2srXNuzHZb2na26PZ/5Eszx998hnLly2jdF0p8XicoqIiFi1YwKTvJ7K+dC0S6NKlG1N+dpfS9OjVCyklgUCALl260X/AAM4bfREtW7ZS095i8ly6bh0ff/QBtTXVSCnJyc2lbbsOtGnXjt59+hGtr6OgsMjRyqrk2crTzSOTHAO8i/zSLYnZrOCbsrZlusdsA4rNkedMaEieG17/94v/4qZrrmoQd/8DDyYUDvHV55855wKBABdfdgVdu3Vnlz59CEci3HX7rSxetAiQSCmpr6+nqrLSiRMOh0kkEg30w6FwmD323Iu8/HwqysqYNnUKAE/8/VkOPOgQCgoKeOGfz3Fv2iAM4LqbbsEwDDRdJz8vl67detBn113p3KWrZyAVykCe7XpLGu5x48mzi4qKCgb26uz8/vDrifTt199DnoOayLx4MJ08K8cqedaEQAhYs2YN54waxYQJE2jWrBmGYfCnP13J6IsuomuXzjRv3pyamhoefuQRLrroIute0izFqhTIIs8ZJKRpxi2Z+hap5LmyspK5c+cx/9f5LF60iNK1a1nw66/M/GUGMcUaPnvhElq1KknFb9hAN0We84OCvLy8rJbnJkuehRCtga+Avnh17k6BpZR6hqg7DZoyeVaxrYj0tr6/LZ0eV+/DIc0qeVWlEgp5bYycwwOVkKvhFbKrnpcJ62WX9a7LLTPqHstadxmAjEczHqsQkTznWCtq4RzryrGI5Lt5hdxpMhm0tHEeYqyQZw8xVgl2IwYPW+uFY0cT5mzIViyfPP9+EELIQUP3pri4BV27d0fXA1SUl9G9Zy/ate9ATl4eBx16OLpwCcSvc2Yhpcmdt97MpO8nYhjW+/3ia29ywEEHE8nJQQjNIS1SSuLxOKGQ9R6kW5ddIi257LyRjB3zUcayHnbk0Xw59hPndyQnhznLSx1CkW3xm12GbMhk7U5PKxNhzZxPKs00wmaHt63j6hu+Of13trQASlev5sV/PsvqVav4fOyn9Onbj7bt2vHF559RU735pUxPP/8Cxxx/Il1aF3vODx46lB8nTwYgNy+PWDTqPOdNYfiIM7j6xpvp0aO7W2Yglkjw848/8OPkSVRVVhEMBtADAQK6jmma1NXWsnDBAr747FMOO2IYd9xzLz136QNYBFkdYOgZ6t7E245UqU3SlI5FO5pwazsS1NCAXds1A2DkhZdw230PYpgQCYg0zxrWL11YnjmsY+GURZVt6CK7tyeZIv9r164lGApZCyLxhk+3DmeDVzbitVA7+Slp1NTWMXHCd5w2/KTsiQJ77DWQ/gMG0HuXPpw/+mJnlinTIM8wJRs3VlFbXYOm6yxftoThxwyjdZu2VFVWUF9fv1OS51eBrsAIYAUwBCgFzgZGAcdIKRftuBL+dvyRyPP2uLetJc8eQruDybNNnA1pUltbTr0Zp96MU1dfRVwmiUuDeH01JiYmEjMRRwACgUgmCAiNANZfWOiE0AlF8gmhExQ64aJWaAh0NAJFLTAwLS1eOIekNEiYSWKBAFEjTkzTiZkxYkacKAYxM0HMiBHHJGbErWumQcKMkzCTxGUSwzQwpIGBxExbZKkJQViP0KOoB32L+9CtqAdBlZSnPZds8MnzluOPRJ6XlVkka1PkUyWPcUOyYf16Bvbp5gkTCFiEKB6LkZubx/4HH0Jubh7Tp/7M4oULiOTkENADtOvYkeNOOoXLrrE0tSpBiEWjTJ/6M/99723eeuUl5/yIs0dx8GHDqCgvp6qygmQyyWFHHUOfPn09VuRNwSOPsK2XMrNVWT1vWw9h8142smmxbet4Juv25hZYpZdRdUP2t4cf5IH7/sJhhx9B9549Wb9uHR+8965TJtvbRH5BAYMGDyYvL5/Kykpm/jLDsSx/OPZL3nz1Fd589WVPvnl5+QRDQSorKpxzPXr2YsXy5cRiluGhWfNiqjdWEQgGiUW9xoh3Pvwv+x94EJqmeazF6eRLxZo1axjz0fs8+ehDjDhzJDff+Re0LBWkpiOE+ztuSAzpEmYV9nOoKCtjxFEHsXqFu0HQ0y+/wSHDjrZIsZa2rsaOrwlHOhHQXPLskW1I0zGAmFik1uN+NUsH5ww21eO0xYfpOmsVmdqkNbMDP0yexHHDDgMsLyM5Obm079iB4088mSF770uffv3QUsYcezZl6k8/8s6brxEKR2jdti3DTzuLV154njNHnUdtbQ11dXXcf9ftfD9+HK3btMU0TdavKwXgg8++5uiD9iUcDu+U5HkFcBXwIZBEcWEnhLgd2F9KOWwHFvE3wyfPvzHNLSTPmCZxM04sUUttopbqRDXV0UpiRgxTmhhGDIFAExoB0yRuJqg3otQn64gZceJmgrgRtXxwAiYmcSNBzLSuJaVB0kySMBPUGzGiRoyYGSNpGiRUoilNz/+YmaDObELa581AFzohLURA0wlqQTShoQkdTWipjlEgU2S6NmnVNUBYD7Nri13Zs9Ve7NN2H/q16GeF9snzNscfkTyDl8wE06bLbQQ0V46RMK13ecP69bRq2dIha7NnzWThgl+Jx2LE43GG7Ls/LUraYBhJ3nntZR6++89cf/vdrF65nCk//kDHzl0o27CeZs2LiUbrmTR+HF179KB3n12pq6slNzeX+ro6aqqrqa7eyNrVq9lj4CAGDd2Hbt17EItGiUbrMQyTgsJCBg0dSvsOHZ0yey25Mm1BVOoYSXVlBddfNprZv8ygrraWF958j0F779Ow3lL/0zdDqq+vZ9nSJSxZtJCysg3MnfULJa3b0KNnbzRNo1///kQiuRQUFpCbl+cZsKhEKZunENs1XX19PZVlZey56y6Ew2GuueEmkskkjzxwv6c8gwYPZvq0aVxx1dWsWL6cktZteObJxwE45bQz+GTMf7j7gUd48pEHWb5sKZ26dKV9h45MmjCe/PwCamqqKSxqxpHHHEu//gO485YbOXH4KVxz4808/8zTnH3eBfTs1Ztf58/jqIP3p7hFC1qVtKZ640ZisShCCPbcaxBdu3fnwEMOo1PnznTu2t2R9HgXjroP6cKzRvD152MJhUKceuZILr/metq17+C5N/U5Gqbrlk3XvGRaJdEagmh9NQO7u2nte+DBPPvq2+RGwqn4gqAmHPJsWZLtPFWf1q48QyXa6YMzqZBnVaYkpfu+2fWwZNFCJn47DiEE1Rur0AMB+u3an779+lHSunVWa7fKQ420dGf98guHH2C14Ztvv5MH7r2bnr16M+bLb4nkubOsNpYvW8ZjD97PV59/yqVXXcfsmTP4z3vveMJ07NyFvPx85s2eBcCi0gr01MJ4u712Ks7f5ILBpkyeq4GjpZTfCSEqgbOllGNS1w4BPpJSFuzQQv5G7Cjy3BS8AWwtGttcy6JlTFrzPbPKZ7G8ejnLq5dRFi3zWEd/KwSCsBYkpAUIiyABoRMQOkE0IlqQiBYiLIV1TujopkRHQxcammlax1ISEjr5IkROEnJFkBwChBIGYTSC6MiNdeiWrRmj3rKIm0gS0RiGkCSRJIUkIUziQmLmBkgIkyQSrbjAslgjEQXN0ISGjiCQ35ygCBDUdIKRQsJakGC4kJAWIqyHCIcKrP96mHAgh7AeJqSFCAZz0G3PItlkGwpMYHXtKuaUz2VW2SymrZ/K/Ir5SCQHtj+IK3e7ko4FLkmwifSOGmztCPjkeeshhJAryy3vCermDPYH2t14Qnish/bHOaQ4GY4rwlwjRRKchVaqtVGaTJv0HV98MgbTMDhm+GmsW7ua5i1LKCsrRwhBOBRg6NC9KSxqRiCVRVLpeurrqhn/1ZdM//lHVq5YTiQnh5yUXKR07Rq+/nwsf7ruRirKyzEMg7y8PHLz84nH4uw5eAjXX34xObm5dOnanZzcXJLJBEXNm9O8eTHvvv4K7Tp2omz9Ol5460P6774nZoqm6WmNLVZfR+naNaxbu5bHHryfqT//QPsOHenWoxcFRUXsOmB3Vq1YxtLFi5g5fSoV5eW0aNmSjVVVhMMR8vLzKCwqor6unvYdOtC+fQfatG1L95692HXAbixetIAZ06YBgqVLFrHw1/lomsa8uXPp0LEj/QfsxoTx39K6dRuEgF69exMKhfjg/fcbPOspM+fSoqSElStXsfDX+dTW1TFn1kzefOUlyjZsAOCE4SP46L23CYZCJBMJRl1wEX12HcDNV19Ox06dWbF8GQA5ubmEgiEkkpycHJoXt6BDhw6sXbuW4uIWFBYV8cDfnmDi+G8RQjB9ys/8Mn0ac+fMomzDBr6c9DPdevTK2i5L165h7/69PefmrlhHOBLJSJgDigA1aUB1PEkwJTfQNXeQIwTs0bGFR4JyyLCjeOG1tx2LckgXHmlIOmHeEqTzQ8sqbh3PnzePD959h8kTv2PRogXEojHC4RAHH34kwWCQwsJC4rEYLz7/DwCOP/Ek9tv/AFq3aUOLFi3ot2t/CgoLnTLa769K0A1TYpomX479hEnfjeOX6dOZllq78M/X30XTdf50/kiGHXcCLVu1onuPXqxZvZLHHryfR55+lpNOPZ2K8nIG7tIVgD0HDWaf/Q/k+lv/7LwLlRXlNC9u4bz/dl13brHzkudfgHullG8LISYCy6WUZ6Su/Q04WUrZeZOJNHH45HnLka3sUkoWVS3i21XjmLDmO+aUzwGgMFRI54LOdCroROucEiKBHHK1IDmBHAqDBRToOUT0MLrQ0aSRsiaYmPF6QlqQHD1MrhSE9RAhLUjEBC01paXKPGz5BWxCuxzLoFdW5CGmJ16dcxwtc1d4J2rdNJK1mTXPoULXp2dB53bOcaBdV+dYb9XejZBnaebMsDsWlUFlfW62hZGNIM+Z2vTG+EbeX/geL819ibgZ58J+ozm/r7Vq3SfP2wZ/JPK8aL21JkAXgnBAsTYrZNWQ0vk4W5Zn63zUMB0LtcC1UNth1TTs56RrFsEBaxAbSRHw+qTpWB81ITxkRiUEdlmtcHi0qRKrL3v/rTdYsXQxxS1aEgyGqK2ppq6uFl3X+XLsp/wyfSpXXn8zQ/bZl7q6OnRdp7yiglXLlzF31ky+/foL4rEYRx57PEcddyL7HnQwBYVFCCEca7WUkt5tipy8b7nzL5x/yWWOttseVqgbU+iadSyQVJSXU19XR1VVJZFIDstWLGflylWsW7uW2bNnMW/ObNq2a8/gvffBlNCxc2f69+tHbW0NJa1bU1W1kSmTJrJ48SK6detG2/YdmDt7NosWLmDJksXMnTOH+vp6K19dx5SWRwV70Z+maQQCQSSSRDzOoL33pbammjkzf/G0kX++9ja/TJvKE488gK7rGIbBldfdyFN/e4SLr7iSRDzBP//xNMOOPpYLL72cZUuWcP2VlwHQo1dvThh+KldceyNCCPbdvS+rVq4gGAxy/iWXc9yJw9l1t90z6nXHfTGW888cYbWBUIg5K9ZhonmsuursiGp51oUgnkzw0Ttv8v2331BfW8uG9etYt3YNGzdW0WuXPuw5aAj77HcAhw47iqCuOe0tqHkXAMYNSVBh06pLt81JbmyybZetpj7GS/96nvfefJ3160o59qThHHT4MLr37EUkJ5dITi6hUMhJVxeCZYsWMHnid4TCYX6cPInysjI2rF/H3Dmz6dq1G0P33Y+LLruC8ePGccNVlsu9gUP25uY772Hi+G+ZO3sWc2f9wrIllrePjp27WBveVFRQX299J2++6z5isSgL589j3JefU53yivL4cy9y7EnDGbbvIBb+Oh+AJes3IkTaAANve4ed2/L8f0ArKeWFQoijgI+AdUAC6ATcJKV8ZEeW8bdiZyfP26Lp/Nap75gR4/1F7/HOgrdZVbsKgaBfi13Zr+1+7NN2X3Zp1tPpAGyy6/FeoZBXLVHvlivmElnq3FXbRpW7C7yZ5biudINzXL/OjRuvVshxvKF22kgkleuuZaFuQ50Sxv2ax2syewQJF7keNtrs4Y4vW+7ZxzkOdnKtJlpJJyvPPHfRjUqes3rh+A2LBAE21G/goSkPMm7VON4Y9gbdm/XIGnZr0US7Nw988rz1EELIBevcBbU2MckJaA0WtaVLH2zYR3FDOiTRRDoE2f5ti5Jyg8JjRbafX9KUHj2wTYxCuiBhSg9RsfNRta3BdI8HyjF4p7LVe7O5kF0OwzB44cZ1tpMAACAASURBVLlnWb9uLaFQmDdefoEN692NOfruOoBnX36N1atW8u6br/PO66841046ZQRPP/+CRw+r6pzV6X8bkZRpPWG6A5RoUnq8kNhl1EWaxwWlToKaICdg+0O2JA2333or338/0bJSFhRQUFDA88/+g2uvv5HzL76UqVOnMn/ePErXrmHlihXkFxZiJJOcdvYoRo88nVvvupfDjzoGIQTRaJRQKMwD99zB2DH/IRaNcvDhR7B2zWq++eJznvznyxx9wknMmPozJw87hGbNi2nfvj2zZ81k2q9LaV7cgo0bK7nsvFEsmD+PfQ84iPHffMmG9eu596G/cu6FFzmWWl0TLFy4kAMG7c4Lb7zL/oce4Txvux2pbQok69euZsXSpaxauZw5s2byzedjadO2HSPOPIuioiJatmpFm9ZtaN/J6q//9vCDzJs9m1369qV7t27Mnz+PvLw8ZkyfzvJlSxnz8Sc0a9YMXRksCpE+QyOc+rafSzbZxuRJ33PdVVfSrkNHLrniKobssy+6bn0PkqZkyk8/sHzpEjp17sKgwUOswY3utuPPx37KyNNPJb+ggONPGk7bdu2YM2smn475LwA9e/dmwfz5Ttk0TWP05X+iX//d6NOvP0IT/PzDDwzYcy/y8/Np2botG0rX0Kx5MTl5+Z57XLViOUsWLWTfAw7khisu5qN33wZg/4MP5eW33rc2dUkjz+qCTYCuLQt2TvKcDiHEQOAkIAf4Qkr56Q4u0m+GT563njyb0uTjpWN4fvZzlNaVskerPRjW6UgOaHcALXJaOuE0dacqnzw7x02BPANUxao4fsxxHNj+QO4Z+pdNht0a7Azd2/8CeRZCHAbcC+wKRIG3pZSXpa6NAu4E2gIzgcuklFNS1w4CvgG+kVIeoqR3NtbMY5fN5Ct/LbXIs2rZFcIiwzYZ04UrmwhoXsIcUEiDTWRtNYcq26hLWO9kOKCRm9oaTyUiVtq29U84zzWoCYeEgNeSq0pFwDs9r1p7M+lLrfK5pGf1qlVccNZptG3Xnq8+s7x65Oblk19QQH5+Pp27deebz8cC8MaHH3PGiccA1uYyG9avd9K84557ueKqa5zfuoBcPZW30NFwXYwZpvTUpUqy7WZteYugAaxNMlzfv0II5x414UpqEqb0kFJ1MVr6ds820jcWMSTEYjHmzJzBgvnzufO2W6iqsvrm/Px8Tjn9TE45cyQ5ObkcuvdenrQef/ZfHHPCSQSDQebNmc2w/Yc61woLi+jQqRP/fOUNunTp4vFKkjRMLh99HhO+/YaJ0+aQm5fntEsb9r1fNPIMfpg0ke49etK5c2f69OnDAQcexOAhQwjpGppUFq1Lk/XrN9Cxq7vg9ehjjqH/gAGUrl1LTiTC3//+dwCqN6wlFNCx3b/JYA5k2hhMaE7fLoXmbPoVN0xmz57NY399lO8nTuC+/3uAk08+2XlWccNyCzj8+GOZ8tMPTrJPP/8iJww/1bOD5MaqKq64ZDSffep6nLFx/uiL2W3PvSgvK2PUOeeyatVK2rfvQG5BQQMPMPZ7njS9vp0zefbQBXzynw+ZN3smJw0fQe8+fRpsZANeKZfdT/Qs+R8hz/+LGDhwoPxuwoTfJa8tfcyZpqEgc0dlhd+y9G1szQ6wMSPGPT/eyTcrv6ZP875c2v8yBrUe7FxXLRtaQvGdnHBJqJYixx6SXOMS4OSGtc5xfLm7o1TVolXOcdlcdxvUNVPc8NPXujtYLa3L7Iv598JxHQqd435n7uEclwzu7xyHegxwI7S09Mcy5C7E2FIinY0wZ2uDj09/jDcXvMG7R71Hh4IOmQNtJo1s2NJ2vDlsK56bvlDLSX8bZfB7kucUAf4QuBD4L1Y19ZVSThVC7Ad8hmX4+BZrEfh1QE8p5cZU3K+AKmCUsq6l0eR52krXm4L67kd0zWMVVjdo2Fx/lTSlxz+xIaXHWmxbDFWvBlK6z68wpHlcf0m85DfTYjCggbW5rq6OieO/pU+/XWmXWkCY7h0jaUqSySRTJn3PmScfC8BH4ybTt29fTNPk+3FfMeXHyaxasYJPx3xENCWFeP29/2CaJk8//iiTJrhGnGFHHsm773k1x7YaxjZAmIr/eBuG6ZXGOPckhOc5RJNSqUc3bEgXznthKjIblVR76kp45QlWmm5ZbNTU1vLW669x31/upnXrNnTp0oXPP7MGEbl5edTVut+Ahx97kg/eewcBNGvWnNLSNfz8o6WxvfO+B7j7tps9ZXjsmWcZccZZjvs+py0oZbjsogtYsmgRf3ngIQYOGkxtwtXWzp89k0cfuI9Zv8zgx2kziEQihHVBUCYdI4+6Y6uQpuPN6T+ffsGpZ42y6jsQoLAgn/polD49e7D7rn0ZOXIk+wy1vovSfl5CcwizMJPufgZawOnDpdD4ZuIPfPLJx4wb9y1lZRs497wLuOTyKygqLHBmVJYsWcwDDzzAx2PGUJHyaHLqaaczfMRpHHjQwdYW43g374nW13Pn7bfxr+efZdQ557LbHtY36bzzLyAp7ffI66FD3dwknfCqu26qg+f098gKYy/sJJWe9Ax+7UN7cNO3TeEmyXOT2mEwtSnKpam/LsBa4H3gbill3Sai+viDoDpezc3f38C09VO5YsCVnNHrrC1eBKGphNmHi5YdNx9mO+DM3mfxzsK3eWXeK9wy6JYdUgYfvwn/B/xDSvmucm5q6v9o4H0p5ecAQoiHgSuwyPTLqTASy2r9kBDiUynl5h3y/o8hHo/z1qv/ZtyXn1G6tpRBQ4bQe5c+3H7T9SQSCe667wEuvPQKpJSUl22geXELZv0ygw/ff4cJ48axdPEi2nXowN77HcCypUsoKrK0zJqmceChh3PwYZZs4PpbbmPB/Hn89MNk+u++O5O+G8+kCd/xwF8fp03bduw9aA/atGmbsYxVVVVce+3VnHT88ex70CH89NNPdOvWjW7dum1xH/x7YeYvMxh55unsvsee3PbnOznvggsJBnSqq6v5ZcYM5s6fz/VX/YkDDz4ECdxw9Z8Ay1fw6lWrCIWCFBQW0rFTZ8Z8+D5du3VnyWLLQ+7wEWcw7OhjNluGp/7xPO+98xbnnHkaf7rqWtp27krrtm0ZsNse/PuF5/ll+jTGTfqJSKTBPnCbxPHHHEWs0poxSERrqSwro7h5M4IYSKEhI1vnT+G/Yz7m6utvZPToi7j/4UcZOGgw4Qxb2o8cOZLBgwbx408/cfLJJ3Pk0cdy0623WTstxmOUl5VRUFBAJOwaXHJycnjo0b/y0KN/bWg428nsuE2KPAOXAE9hWSI+xvLzfC3QErhge2QohHgQOBboCNSk8r1JSlmuhMk67Zi6PhB4BmvKcg1wp5Ty1e1R3j8qpJRMWfcTj894jGUbl3LXkHs4otORO7pYPrYBWuW04tguxzFm6X8ZvetoWiqyGx9NG0KIPGAw8JkQYirWepRZwPVSyp+B3YCX7PBSSimEmJY6r+Ip4HIssv2PLSmD68PYa2Wy/eUChAOigW7XjZ+Kg/v91oUgbrjbYBumdPz1qpIMj+stxT1YOKChCVixYgULFiygsqKSmtoaciI5BENBpk2bRjKZ5OjjTmDtmjWcd/YZHHDwIYw67wLatG3LsYc7ChYAvv7yC959601K166hJrV7YUnrNhx34snc8/Bf6dF7F/LyC52yqLvKWb+t/717dGOXHt0YceKxvPTSS1x26aXous5zTz1OYVERpWeexSGHHEKHTp2RRpJQKEReUOOWm2/isaetx/Lxx59QtdFyD9iudSuisTgd27ZG6AF69uhO/759OOWMs+jWtauVqbKrXyAQpiDl6t22qArHkui1VtszBYaUaPZxmgXaMF3Zja4JNEVbDXDxhefzpyuv4tJLL3XiSKCosIB999uPIfvsy7nnWYuVy8sriNbVcsA+Qxl17nmMPOdcwLL+v/bqKzz79FMMGbo343+cytIlS7j0/FHcfM1VPPb03ynMz/O4XtMEGHa7CgQ45+yz2HNAf5588kkmTPiOX+fNRQAVFeWM/ewzurQsADMlK4zHvXsF6CGnrqTQIJja1EpKZ7+AYDBISSur3zT1iLXI25ZqBCKKtTnm7m5rJt0pEC0JKVdt+QWFdOrchT9ddwOGKZk/Zyarli/j+OOP97SpwQP34tlnn+WySy/lhOOO49777uPhNFeDANOmT6d3b9fziFQsv/bzVHdeVK3Fhum6A0zfDTOoeWckPLslCu85sCzV6a72nGvK+cbOhjc18nwp8ISU8mr7RIq4viCEuExKuT2c4RpYG6/MApoB/wZeBE5I5b8f8He8046fCCHsacci4FPgEWB/4ADgAyHEIinlpO1Q3s1i83rhhotlrPNqGg2nM8DrL1WdJlGle9mc7tvIthlAJuvFurq1fL/2Wz5e+j4rapZRFGrGX4Y+yl4lQ5zpL/B+OCNKqw6paaY6cTOYgxZPyTaUTsrMsgOVpoy6w83cnfkKO7kkL6Hoj3dTKiNU5uqoNyqrjIJKudpELPlDcciVQdhuigD0kHscyHHLIpQwiVo3/0TMvY/CDq71IRBxLQBCVyQXtueP1QvQSiyNtAy6uw56oE6nKVIN9cNnmptvX+kfwRE9z+ajxR/y8txXuKy/tU1vYzZf2BJsqWFjc31oYzrZbLu8efS5appbKQzZgYa/5liv9GjgKGAecD1WH9kLKMCSZKioBArVE1LKuBDiVuBxIcRrm8pQCHERcJH92373hXAX6dkLo0RqxjVpgCG8emaw3YVZ72VRWHclBClfu/ZzytN05zhXEXLqiq9cXSFPU6dM4fG//ZUJ331Hv1370bx5MXl5eUSj9dTX19O/f3/++9EYnnzsb5SUWNsH33b7HYwZ81/+8dQE+vTtx8kjTuO+u+7gwEMO5axR55Kbm0fP3r1p274jc+bMpmfvXUDTlU1HXPJeFNYcEiKkdHWuQqSm6w3OPu1U2pSU0LJlCxKJBJ+M/YybbrjeU9fnjhpJUWEhjz/9Dzp36siufXZh8O792b1vT/bea3eKC/MoXbOWVaXrMBMx5i9ZwY8zZnPAgQfSvm1b2rZuRSgnnyuuuIID9t8PLRlzPlBC0z0bUOn2g7MuYqY2VFK3VRKaIH03O/u3lMoal9S5Nm3acPedd9C6VUsGDxlCh3bt0ANWigHNJdkSaNOqmB9/WEBlZQXlG9Y71wrycrlg9MUcfMihnD78JAYP6EN1dTXX33gL8+bO5shDDuSNt96ma7dunkVokRSTF2YCkUywV5/uvPTkQ8hQHqZpMn/ObIrzw7Rt3RrqKpTBhGlJ5dLlGmCRalM5n5IlSqE5z1iLVnv6b5GIunVuJnniX69w3Z+t9SVXXXQe999+oyOxABi6x64sXbyI0048lvLyCqZNnw7Ag/ffy1VXXA7S5Meff+bV117n3FEj6d65A5dceD411Rt57IknAbj91luoq6uje9cu9O5QghZPCQc03f1uCF1xcSERiuTFKbsQOF8qTWKYwpVaKHp/Vf6Uvu20KuVJmN4NX1Q4fW8j+9ImpXkWQtRh+XYep5zLBzYC/aSUc3+HMhwDvC6lLEr9fhnQpJQjU78FsAz4s5TyZSHEecDdQGeZqkwhxCtAUkp53qby2l6a552ZPMeNOLPLZ/Dzusn8tO57llcvAaB3s74c1/UUDmp/KCE9nArvxvWSZ/c4ZCq7BkZTO5HFXdmGFnU3WDCrnckGjAp3AU1yzRLnuG6tq4uuWeUuDCybs9o5Xj/HPT93M+TZJs6wfchz8y6uK6quR/R1jlvs4R4H2ltb0drEGcDMcePJkOv6TipaR1X/7CHPjWhfmTSM9/18F+NWfsWLh71Gp4JODa6nY2cmz9nyyaaF3nw+3t+/l+Y5ZTyoBO6TUt6eOieAcuAs4H7gJSnlY0qcj4BFUsprU5rnL6WUgdS1ScCXwHwaqXmeV2pxc8P0eoMIplW46uvYbqIBzV2YFjdMchRinN6nqR4j7GPVp66UksnfT+CxRx7m11/nc9kVV3L2OedSkJ/vXYchGrqnKy8vZ+jgQeyx10BGnH4mRx59DKtXLGfQHgO4+OKLeeiRRz3h7fcnYboEUNUM66ay1sI0GjYQhUzZpKtiwzq+GD+Jl197nS+/HgdAXm4uA/r2ZtLP0wCYNfFLenV3F6qJZNQ1QJimk24sGmX63AVsqKhk1dpSbnvoSa449wzuuPEahxQaeS08C9UwDdf9ZzIOdv8mNMt6Cq5w1b4NPYi6G54K+5Z/mDyZ0884g4CuU15ezl577cWZZ53F3nvvTc+evZx31PY4MWHCBI44/HB+XbSEktatvWkimTF9Ol27daOoqIiEIbn5hut5/tm/M/2XmezSLdWHStNdmC5Nx92nGcpz79E0lLpLurvaCs0iw4GQUxfqN8shn5quWI51z265CM2tAKW+ovEEhZ16c/7IM3nhldcBWL9gBs3ycjzkvXxjLeMn/cCp513ixI2Ew/zzmceprKrm3Q8+5KAD9ufmm24CYOj+B5Kfn8+Eid/zl7vu5IZrr3bv3S6fXfa03QvBu6g0nT+o6w5UbpPuucV+J1TLs7o1uh3GTkKAx8OIqssH6LYZbxtNzfIcAdK1zTb7yGIK2+Y4FFAdRW5u2nE3YKr0jkKmAiO3czkbBbtx/haSrIrq1RFetvObI+9qP64hqIpV8PP6ifxYOp6ZZVOIGvUEtCD9infnsA7HslervelY0CUVV3hcO9lQrUlBJX3Vs4bjTUNozkJBGXfJrWf7bMUyq+W4i+dySpQtqJVM1ePcli7ZLF7jLh7M5h3DDq8SYxV6UCXPrh3Ga0nOPCQJFbhlL+ru+nbWClu4cUPWh0lWliKKU3pH1XtGlmN1YWA2a7PhaSPuebXt2GHO6X0ZE1aP56GpD/B/Q5/MOBORbYubzW1tnI7GaDSz7ZKWKc9sJFndPVGKzYfPtsDRW66GhdlRNhApZZUQYimZxyYSmAHsaZ9IEevdsdayZML1wOfAPY0vg/U/L6g1qD+1rryyDluC4YbVNa0BYXbcXAqBnrpF9ThhSoQuqKysoE8Xa83Alddcy8hzzmXg4CGsWb2KOZVV7DN0iEce4uZp/Rr31Zf069ePV15/E4Dlixaw95DBmKbJyNNOIRRXBvnhAsdvrxAQtjmmEXf7OzOJMCxiJoWGsImVTWJ0t6/5btJPHHbsiZ56a9e6hP+75WpOGHYI+UGNlesraN+mxCITSWURdjLuPgBdd/rQSCjAkD5drLxqN9KlKMSFdz/BmLFf8N6/nqJT+7bo0rQG47YkIRBK8wSROg6GXJKpbB1t/1atrPbzN5TB0+AhQ1m82DKAVNfU8NVXX/Leu+9y3333UVFeTl1dHVdfex2jzjmXww45CGmajL74YkpKWjkDHbsdacDAvazmrBkJQsLkzzddi0xEOfyQg2nZsgVDBu7FXx+4l7zcVLmEhhG2ZiyFabjlF0pbFZprpJAmGElEylorEvWeGVLn1jXdGjxgDYJsw4Ywk+7zTmHl6rU89a9/88EnnxMJh3nhldfp0a0rCxcv4dJrbuSRP19He3sHRKFRXJjHCUccTF5uLpFImLLyCqKxGGdfcAmRSJjmRUWUtGrF6Esvp7a2lukzfmHmtCn06NEjRepTkhERtCzpQhkIKZ5a3MV73ntTrcWqK0aVMKs7hVoPRJkVtZuk5lquhbC2qtaV2Sm7Jam7GjYWTY08AwxPaYhtaFid8KlCiKHKeSml/Pu2zFgIMRxr+vFA5fTmph0bNS2p5OFMOXbqtHnr2m9BYz7EOwq1iWomrf2GCau/YE75dExMWkZac1D7o9iz1VAGtNyTnIDVmWzrGWnRhBYMqkR7R8MhzjsIxZGWnNfnMp6e+TBfrxzLoR2P2qHlsdGU1kJtrWV6O+MZ4CohxBvAr1jrVKLA90A1MDY1g/cdcCWWkeSDTAlJKScKIcZikehGvai2VMFUrMO2izob6VZ/uxrTfSZ7wqXXtTpYTPVKWspjRG4khxtuuY3Fixby+quvMGvmTK67+ioqKy0vBGvLKgkGg04ejv46RSB2HziE666/HpmM8+gjD/P6q69w9ojhXD76PPr37gqxWoco6Yn1DvnNTcQ8mzXZxEzE6ywyCmiqFddMSQLMkHNPIaOeoXvtzlknH8uJhx1A25JWHiIsjDgd2ljSEsdibW8Kpcq4hIZISSKkaSKCKQKl6Zx584NU1tRx0K7d6X/YSfzrxgs4+aTjESVdnFkukYxjpkimDOY4JKs+YbrSGE24s4m2hVZ5PPbUuyZw3bspYQoL8jn++BM4/vgTMKVkY3UN77/7Ls8/9w8uvOhiysvKePSxx7ngwtFOnpoQriXfNBp8j0patuSpx//Gw/f/hYWLFvPw3x6n0y79+erLrxgwYABI0/H6JMykh0g6AwdFAifidYhkzCXMQnM2sJLhfNdDhh5yj6XmDJxEMmrJPGxjUCDI2Zdexdp1G/jrPbdz4jkXA7Bw8RJeffoRxk/+iWPPuZxrLjqXUaeewPOvvs1zr77Nr4uWUFdfzwXnnMXkn6aQiCdo3rwZi5cu54D992XQwIFUVlYSjcaYOeVWevboDkgwk879CGlaVnhHNqQ5VniBonMWyq6gUn1BXPJrE2c3HB4ibp9Xtx3XvUmREC7hNiREUxdV39ZGNgtNGpoieb4hy/mb0n5LLC3yNoEQ4lTgWeB4KeVU5VI1UJQWvBmwSLneJcP1jWSAlPI54DmwZBu/rdQ7F6riFUxd9z0/r5/AtPWTSZhx2uV14uTuoxjS+kC6F7lTaFvjws7Hzo+jO5/IVys/5bk5TzCo9T4UhtJfPR9NEI9gGRG+xiLG04CjpJRVwAQhxGXA87gLro+WUmbsH1O4CZhDI8lzxFlY5kq24ob0SCoCmquVTCfMTp8jpWekLkSaZcsTx/ofS/GbSCTCzbfcqmy9LDlm2GH8Mn0aoVCI+QsX0bOXtWhKdZknhCCkQfeunenVsyd7Dx5EOBzm8Qfv5eiD97fKlpred0iyNNFMxaqsWmvtdRvS9EjSnCl9W3aVii+kyd579ue7D1/1pCP1kEs6A0HHCiz1QEpGkSLJgTQPETbh00x3kVo4wsSXHqXfKZfSq0NrHrt0BKff8wyPrK/gwjOHE9ntUKsuw0Uet381KflZSBee6fm4psjFJMjUc80RLjGVmo6pqF9tQ1IA6bjdQwiKiwo579xz+PLzsYwYfhJ9+vYlJxx2rPkAwoi5llzVAqzIMTCTJGqr+P6Hn6isqqKmppb/fPg+u/XtbZFgxXIu7HpVCXMy6sg2RDJmzRyknocZKXIGQp6FhPE657mmW3dVC70hYeJPluzm7Muu4ZwRJ/Ly2x8CsGefnnRs3YLnXnmLC669jSm/zObDsV/y6t8fp0e3LrRq2RI9qLgnBbcsdl6kyL8iIbGJvzASVpntcHrIua+AFiCQmjEVCuEGMHE3y1ENBoZ0rdVSOVZJtQpdHanidZunbuqjzkqpaxo2hSaled5RSOmWHwWOk1JOTLv2MlY9jUr9FsBS4A5F83yXulW4EOLfgLGjNc/bStu8tbKNaLKe+ZUzmV0+lVllU1lYNReJSYtICUNaH8gB7YfRs7CPMjXq5umZ+lbKrnaiqmwjrLw5uYrmWYu5HxCt3pog8FielQ+MrHW/52ade94oW+Me17rn1W2zVf1z3RpXO129GdmGanne3rKNZr1cV3ShDq5uUW/RxkpDsTybkc1rnu0FPeCd8tpa2YaNJRsX8qfx59K3eADn97mcXZr3c/MkM7anbCNb0EbJNjKk19jwmcvUuFFlbs4fZ4fBjbXW9LY6DaynVuLbdWtIPJYpG+n9n6qHVOPYaYDXciyl9Ewj2225qrqG3l060LffrsyYPo1Onbvw04xZ2NsC27ILXQjHQjp9ys989dWXjD7vXJrnBt3FdLblziYkivXSOu/u5CJSkgoZrfVoZu1jEQwjQzleomVbAhU5hgxE3LSUtQ2ejZHsulKJobLplIhZfZ+MR5HN21l1F62mtLSUdvse74Tbd8hA7r7xGvY/6CDXv7yUmCn/8nHDfY5BTKQtPZHed1Pd5EZKSY6w6k8KzYljmC55VqUQ0kjy+RdfUl5RwWmnnoKmuQvwhBF3jtetXsVr73zAzff8nxM3GAjQtm1bKior2X1Af76b+D0ArVq25NGHHmDEicc65LuB/MK25Btxd7BjJi1rvOJ32alTpSwimXDSk3rQmY0QyYRX3qLrrFpbyvqyCvr06MaJ51/BF99NBqCoIJ/cnAi1dfUIIbj+0vM57dgj6NYxJfFTLcZgtZ3UN8DTFvS0dmFfM+JW+1T06xnDqVWiWOQ9EAIzEM74rVF7Ran81hSZJ3jXLiRMqWyC5Iax3+e2zfL8TVI2BSHElVhu6I6UUv6U4fp+wFgs7xv2tOMNuE7+mwELgIeAx7E8bnwEHL45bxsDBw6U47/bMvKc3llkQiads9rgspFktS1kIzrq7kheIm2yIbqWhVVzWFA5i18rZ7K0egGmNNCFTveiPvRvMYiBJfvTq6i38wFTZ1dDCgFUB3+qw/2IEiEQd4mpiDYkyYBnd0AzRY4d7xKATGTZxERZBS6jymINxe2SSrbr17uEuW6te1yzyl14WLfB1VfL1Fur7gYYaeaSVF0hxjklzZUwrveMcImyk2KeqxKyNcwAQrEaqOe1gmYNzpuKX1AZVo6zbZKSzfOGcC0+ahuJKQsmo4badlQibf0fu/xDXpv/d2qT1fRpvjv7tj2Cjvnd6JDXjUigodQlO8EVmw/jIbUN46rjEi8ZVvW0ahrKeVVTm4Uwe7eJNYklo0SN1F/qOG5EiRkxYkaMuBkjYSZJGHGSZoKkTJI0kxjSwJQSUxrs23EfBrcd/Icgz/V1qWUyyvSwvUua0Yjvm0qE1XOq6zHVygXevtX9UKe0k4bB3X++jfnz5vHVl184rjMTGgAAIABJREFU4eYvWUHz4mKCmptnTlBzp/SNuONGTEvUu+TVJhMqkXGIneJuTJqudVoLeK2kdrn1EDLo9jlqfKOwxONWzh40y2AOgfKlbpxk3Okfk626u1P0RsLZiEoYSccqqiXqHIu4SEaR0VpmL1zKW59+w/3PuY5VPnj1BY457CArz3CeI1WIGu4AJShcAipT7tjUZ66SZHXDFft56YoEQyru3Jx6dW7e9Fr0E1GeeOZZbrztz576LMjPp7qmhrtvvo5gTh633nkPI4afxJRp01mU0ln/7d47uOKcEVYW0kSo62xsUhoMuzILxbJvx/EMkIyGshVbHuEUPxB2de0q+TaTrFtbypATR7JitbWxV6d2bbj32ks44uADaFncHGHEkbHUcwznpmQjqUGNFnDkQ1blpr6T6oZZimXakfcouxfaSJomlRWVtGxRbJFvdT2NppTdI/nQM+qn02G/EkKoOwd6d6RUXVGGNOEMaG0U5ObsVAsGG0AIEQbaY00HeiClnLMNsngcS0f+TZpFIj/1f5PTjlLKSiHE0cDTWItc1gCX7Cg3db8H6hK1rK1byfKaZSyrXsiy6oUs3jifjXFL3xfSwnQv6sNxXc5kl+a70bvZAPKCrgW0qTrU99F0cHjHE9iv7WF8tfK//HfJW/xzzkPOteJwCa1z21GS056WkTYUR1pRHGlFs3AxRaFiCoJF6BksGtsCUkoSZtwitGaUWDJKvVFHwrD+1yfriRlRokY90WQ9MbOe+mQ9USN1Phl1rru/Y6m/KHEz86LSLUU4FNp8IB/bHNFolCsuuZgN69fx3Asv0ren5cnm4y++pnlx8Q4uXdNBvx5duOdP53HdqOG02O9kIuEwa0vX7ehiZcW9DzzMvQ8+zKEHHcCrzz1FcfPmDD54GDNmzSEQ0Pn48y9ZV1ZBl86dicXiDnEGmL9w0SZS/v1R0rKYp+65mXfGfMYn4ybyxB3Xctyh+zeU4KQhkUgwe8Gv7LLLLoTDDXeYzIYPPh7LX595ng7t23HuWafz3kdj+GnadGbPnQ9A6cJZNCtu4YkjpeSnKVN49p8v8t3EidTV1tG5Uye+/earBjKSHYUma3kWQrTD0gZnWjWU0prLdJd+OxW2xvKcCVJKapN1VMerqY5vpDpRQ22yltpEnfUBN+LEjDiGmcTExJQSgeVEX6AhEGhCA7SU9cokYSaIpohBTaKWylg5FbEyyqLr2Rh3rbkBEaB9fhe6FPSgZ7N+9CjqS5fCHgRS5MW2tqk6P/U4ohyHFauyZ1vtmGth9sgwahXXclWuCzlTPVbkF/YoWSr+nD2WWWW0j6rrUqzQnhG2YpFOVipSjeWlzvHGpa7ko2a1W5Z4rWVlUKUaBW1dH9J5bdzOJK+9a2HOaeu6Tgq0cRecarmK5VnxDpINItTQeY1qkTKDinVXsTTI9Ok5pwDK9tzqNK8SN6EIHewtesE7m2H73FWM1ESTBuvr17CiZjFLNi5kbd0K1tWvorR+NRvjbr2ryNHzyAnkkRvIJ6RHCGlhQnoYXQRSf7prVcTElAaGaWDIJEmZIGHGSZpx4kaMuBm3iK1hEV8zq3gkQ7UInRw9h0ggQkTPIRLIIayHiej27wgRPZw6bx3npI5zAhEiesQKH7D+h/UIIS1ESA8R1EIEtQABLUBQC6BrOprQ0NAozMv9w8g2ovb7rumuJS+lBValRTa8myO4Vsl0OVtj5B3qrNjPP/3I5ZdcQu9dduH5559HSkmb1iXsuddALrzoIvr22YW99hrodVuXVPS0iaiz6EuLVrsWt0DQu6As3aKs9meKLtpxCRbOQ9rvs+0JIdWnaYk615KnbqwRzLEWp5GyAtr9npFIefWw8pGKxVAkok7/7NFiq/KCWJ23Pw2EGDb6Bq664GyOPvRAzJDbB8pUHxUPF7naVGU7bl3RsYM7WwCkechww3gkL0bCK91Q5ALC8G5UEqutIRqLsXTZcu64/yHGfj2eTChbMo/8/DzqN1YiE/XMnPcre/TtRW7qOyejNZDrzvqp7uREup5atcTaXjWMhNunalrGxYcIzWNVt/XyUkpEvB6Rqg+ph/j3Ox/w9idfMeaZ+92ZSaE5lucff11OeU2U/YcOZPR1t/P2fz4F4P1/Pclxww51+31puv2+Yh0eefEVjP3ia26//ipuvPPeBvU1+pyzeeKh+9ACATctoXHaqPOZMPF7zjrjdJ5/4UXqUrNL1RVlBELKVuP2PaqWd/v+gYSEhKFYnrGszGC1lVzDSlcKrcF7FWpWstNanv+J5eLoWqzFI9vGJNOEYEqTZ355usF5qzuXJE0DQxokzaRjnYoaUeqSddQmaqlJ1FCTqKY6Xo2xHXa01YRObiCXiJ5Ls3BzWkZK6FnUlza57WmT256S3A60z+9MUAt6Pki+YdnH/7N33lFSVOn7/9yqjtOThzBkyUGyuipmxQAGEFEEA2YMmHP6mnXFLGZdzGExIAbMGUwICIIgShKQMAyTp3Pd3x+3wu1hBoZdXd399XPOnNNTXfHW7arnvvd5n/f3hCEMWue0o3VOOwa02MNdnrYgaSWojJdTHttIdWIz1ckKahKV1KdqqU/VEE3VkbBiJNIJqhMVpGWKtC1xcKB0qIpQ+wwfPsOP3wiQ44sQMIIEzSAB0yayvpBNcsOEzLBNjHMI+0KEfTmEzDA5fm95SCNvOmnSZwj15c3RSDfeRtvRoP9r0EhDBlmWhrIGg8wpeI2YGIbPnfptWHHMEJ4PbRpPz+ys9svPP/P8M08Rj8eorKjk008+5q4772D0UUfxww8LOflUVRS3oKCAsyecQSgUomLzZkWQHa1rvNbTw6ZimdP4GhnQE6oyNLDScge9qviJfYlmg+icq5P1fJ0BJRXwe0mEbvRRSk9jnU54bZxOKTJm+w4bKd1bWHjXop2nOi/PrULGbTmKlSYuo8xftITepYWKZAvHni2OtCUgwVSCgD1ot8JFJO0b4E7DO8mAWgEVA0//jbQydNluYEYj8U5SX0Y/0ZIk161YwdCxpxMOBtl/j78RCPhJJJKMHTGMI4buyy6D+9O5tAVYNVBdQx6AX7BHv55YgTDSli8Inx8cz2bNo1rZ02ltqdu9mQFXCiH9oQzNsS5ZQfP9x/KuWQLvfPgxR4w/m1AwSF5uhPzcCH6/n6rqGs44/mgwTKxwAbfc+zDvfzaLcDBAWflmNlVUYVmSXj26Mnzofkx94x18Ph+jTj2XMYcdzLijDufgfYZgRIoyBq6YPp567kVeef1NfpzzFZ07dWT//ffjwUf/wdD99qJThw7cPfkhnn7xn3w+60uuufRCjhlzrHtdyWSSwYMGcvXll3DfAw9SUlzMG6+8REBYSM1+tjGnGWkGXCLuF7gPW78pCMgUwrGstVLuPTb0pEZf8yLbf2XyvAdwupRy6p99In8ULGnx/FKvineGrygCn6Fe6KYw7Re4ilhF/BGKQ8V0yO1AfiCPvEA+EX8u+X7vc8QfIWTmuJEuExWhEnjm6ZZMk0ynlZ4PScqyVORKGCAN/EYgw1cZmi6SkkUWfwb8RoCW4TaUhErdZdtr56brkhvzBc7QPDeiiW64jpkdPf5n4URFpZXhq91UJK+xpDegYf0NEskkc2Z/S58ddyQ3v8D16bYkvDL1n0w8awInnXIqrVq0oFePntz995tpUVwEqTj/fOlFFi1aRDgc5rvZ33LdtVczbP+9MWJ20rKjc055VnMZiVINNcuWhWF7PeuFJgCE5rDhLktqutp4HYZfI1zphDdr5gt4vViPvFopcHJHhPCS0RwSqOuOnXOx0t45W+kMqzQnV0QEQh55jtWTTEmqa+sokAmsjb9iFNgzbqE8DFsbbBk+kEH3ukxtViyQjmX4GztkyHV5cNraGaw0KOritJNVU4lMJcCOvhrhCDKV5JX3PuXYi25wjzftgVs4YthB3HP1hdT7csjPCbntIJP1GYRbOFZ/1V7ei7TS7syn8Ac8LXA86lkDFrdRgyJHS26lwG53K1zg9V9/SLUNmTN8IhVXThya+8Wv6zbRrk1rFn7+LrXxNJXV1aRsc5me3bry/cIfeOPDt7nxzsm89eo/EckYPp/J/Y89ydvvf8Tuuwzm/see5MB99uCDz5SnwhsffsZbH3/BkF0GMePFJ0kFIqxeu5Yf5i+gXfv2XH/L7ViWxRNTnsYwDV5/6x2Wr1zFCy+/yt5DduOAPXZl/z1356Vpb3DChHMZNvww8vJykaafyZMf4JDhw/i/G29i+YJvOXDEMeyx/0HsNKAfn771KsFgMGMQiS+Q8bt2fmdICxFSOUN+mVLONYmGpUTs+2fPtOizy1vDX5k8b8QrkPI/CZ/h4/PRv4/bRmPOGk1VdPM++fGJJojx9pZvyyKLLLL4M6BF7ITUEpS0Cm4qMmevo22q5AVawh2wbt16PvzwA267/XZWrFgJwJFHHknnLl057/zzGX3UKH5asoTHHnuMsUcflTldbL/Qc3Lz6NCxI5vKyvh15QpyrKgidE6ymBMx1MmnRvB15wssW2ahT1HrETdHjmZZSOdzMuEVejJMZNQm3vEYhCMuQRD+oEsyrWDES/BqIBsQleu94/kCnsuBH29Qkog2WcXT9X/WkrVFIEQoXkkimWLZyl8ZKOOu849Ei7BbKYyoTbgDOfjidqK2MJC+oFd9T5+6T6fc5SKd0IpixZBR9TldU+kmaPrad8PwF7tEfMPmCl56fQYX3XgHAL267sD5pxzH8EMOJp1TiJkD+amYO/ARtuTGbedoXYb0z9Ikfr7WndzzTa5YZH/0Bj5GIoapJXSTU+DOLshA2HPh0CLX0jC3mGWRTpKflSK3oJA2paXkFLYgxxegVTtvEDl7zhyGjzyWMUcfzazPPmGngf3dQx88+ngAzjztZC6J5PDya68zZ8EiNldUEo2pe/L517P54adfuOvhf/D81FdpiHXr19OudQuenjyJHfvsSDwe44NPZzLrm9nULFtJr149Oe+cc8gtKlH9RxiUtmvHZ59/QZvSUl6a+iqPPHAfx55wEnPm/0BlNEGr3ALvntvbuLMG6QRm9Qa7vXIwc1SugbAlnFZISRwzBtd6X3cj217SfGP4K5Pn/wMuF0J8tg1P0CyyyCKLLP4/RcaUfL1KWraWz8foMgArR0WdBLhCeqlFLkXDinVWmsOPOJxFPy7mtFNO4okVT9GhQ3v69OrBLbfdTk7Qz3ezZ3P44YdzzNFHg/RewJbpp7KyijVr1vDmW28TDATo1KkTfiHtyJijp00hkk6J5pQqdmGfvzsNremYEQIZjCAtW15hR4/Blje4JMmLpIpQrkuKk616aFPSQVISonbOQVpKWm1SBE6kku7Uiu6ogS+IzGthn3sSKxD2CJpWkpuIRvjs8wHc6wbADCAi9j2p2UQgkscNZ4xlwj1P88btl1G6RiXX+Tr19i4/lfSkKbEazf84DywfaAVIvG3imZF7N6JvImxnIl84gnTuQyqBDEYQ6SQVVdW0Hay8pwf36cHsaVNccitryyGU456Xcx+SKxapQYpDkrXopVFQkhGFT678cYt1AIyIImtmUauM/Btp+j05jeHzZBsaYTTSyYxqujKQ47WH4WPGBx9TVFSkCLemLa6pq+fUCeew+267M3nyZLU8nYR0kng8zhUXTuSdDz+hY6cdWPrLMuYsWES3Ll34do4qhfHJjNeZN/8HDht7Mn/baRAAH7w+lQNHHsPeQ3blw2kvgZRePo1lEcyJcNSRIxg1Zqw3SBQGMu25jSBMflyk+uUH775N7169ADj3rAm0bN1G2dFl+Jsn3IqaIhmFGts6Np3GZ7eXUbcZhCCdb+cNpb1KjNL0I2xXqYyI9lbwlyLPQoiGEo2OwCohxGxU1T4dUko55j9zZn8cdElEU7rF5kwCb8uWrilLuoZlMR34mkjw0xNk9OV+7SUi9KQ+x0Iuifdi0xL69EQ/PQEvXePd7mStt9xKeMdJxbyHhQ7D73XrQL6XPGdGvGQU054eNPI8Gzh3yhAg6G0n9c8NtYQ2fNoPOUezymu1WfOIrvCyyTMiMCG1fyfqAmR6LutJNHryXtBbriveM3Rguu9qxjS23iG06V7npaxHvvRyvPpxdL2jvo+G+lIbAe1zRE8w1D9riYxO2V1Lu2+W5jkd1fwUo1oCYlPWipk2i40n/TVWlbMBj9Gg/XbTuoRD8wwVjS/Xf0emdipNyz+2PK//r3XOGoxlymE0XVWO0V65W9BlAKmijm6fN6t+86Kqpkk6on7r0p+DSKvlKgosePHZZ7j48it4YspTAKxevYaTzr6Ab+f9wM233sbLb77DdVdexkuvv8WwQw8jWl/H2rVrWLlsGSeOPYYWLVsy8YKLee3lf3Lx5VdiBsPUpIVrhWtJMLR8Xd0n2o0eNkhmo+FvSn/B65FrV6esE8lYxoDBEAJp7y9twZqiPuo8hHD7X8AQGf2rLumRbd0GLmlJOtcvV4c3M6fO3eeAfl4+v0dOitoirBRXXXEpa2pu4eRJ/+CtxyYRCiq9dzrXJuyJusyou6vfTpAOF5I2g+51uccWnjVmIi3dFN94SmbIDR1rTJ+hbFDDPoFo4bX1p1/MhM3LwH5ey0QMo0pFNdMVGxFOFceCEjV4KVKVGIVf88CvqUTYhFumkq6tqFVT4a5jFpS46wjdhxulwXWei9L0u7p+IxX3CtFYmpa9EWvDc848g30OGk6ouJQd+/SmsCAfiWDZsuUkU0n2GLI7ww89lLKyMurq6olGo5Rt2kQ4HKK2to7eg3flmssv5YsvlT/0wAEDeP+N1yjIDTFk111Y+ONipjz7AgCFLVry5ssvcOLpZ3Pw6OPo1rkTS35ezu5/25nKmjqefv5FDjpgf15+8Tl3UCB0a8BUHAEM6NWNUSMO56Bhh9KurXofhkPBzKRYB5aVWZo+rAYiAkg7pDxWg8xvhVn5m9q8ciNGfrHdxkG3uqVbSIitu+P8pdw2hBCfbM/6Usr9/qhz+U9g5513lh999oX7/+9Nnpvj59wUec7Udnr4V8mzQ5yheeTZ+gPJs6mR5N+LPOs/ZN1nWm6DPDvEGf498qzjXyXPGdvJxsllxnG2kzxnfN4GeXaIM+A91PjjybOOxrTTzfGTbooA68szyHMzfKEbP7+mvyvJ+8+5bQghbgHGASWostyfAxdJKX+1vz8R5aXvWH2eLaWcY3+3L/AJ8ImUcn9tn8cDN0spd9jGsWV9VEVbjXSSpFB9yUkmc55REu95aAg0b+bMRnQGTw9MnsyVV1zO5Acf4tDDDqegqJhkKkVpcQFjxo7jvXfe4Za/3867M97mzTemu9uPPmYMRUXFbC7fxFtvvsHin5dTXFyUcUyJd2+FwJWNbEGWtWn4LQpHNPL7dMo6q3+83BYZzHWjlWnDTzRlUZuw3OM7e21Yyc9B0pLu+cZTFglLuteSssgg3E7OTsD0qjM2LAikF6sxBfiwSKVSjB8/nt/WruWyi87ngH33JpiT616/E12WgRxvUI0gLWVGVUK3LQTuQMQSphukSlnSfT86x3fOK2AaiGSUz2fO5L77JxPwB5j63FMZLigNPZMbSnbcQlzJKDLlJUk6ZM6qrXTlNDKddt8DZkEJVsSWFzjl1O1RuwxG3MEehplZ7VAvRuKemJE5wLL182WbNjHrq28YM/40dAzo34+99xjCgUMPoHWrVuTm5SOtFF06d6aivIzq2jp6D9yFnxYtoFPHjixfsZKS4iIK8vPdPptIJHhzxjuMO8nb9w/zv+enJUv4bs4cOnXpyllnnglA+/btSaVSGXZ+etBCT9QFqK6qYtWqVeTn59GpUydM0/Pydp71aek9330N+rBzj53CSVV25cp2i98mtfNIr9k84xPALTT13+G28d9OhrPIIoss/j/Es8AkKWWVECIHuBl4CRhiF5l6GDgS+Aw4H5ghhOiuyfEsYKAQ4jAp5Vvbe3C3oqrpxwnuB0yxRXEMxwlTZAwcM12KhD2VfthhhzH99WmsWf0rpa1aICXk+PxcfdVV+P1+OnXswDlnnrHFufy0ZDFHjT6agQP6c+vfb6NFSVEGaXbOxT2elW58sCkMl5Vm6H8bQGguDUJarq2kNH2uHEQaPnf7ZINBRcOSxm6FRtH4+TpWX9441CPSPlNkVH11y56LLQk02O4YtlVfAHj60Qe46bbbufG22zn9nPN49fmn2X3XXVSbOJIXLYptGD6EIby8OKRLcpUjiEoMM6WFG3IQhpv8KH0hMPxuGy2Y/SXnXXwZG8rKOOv00zjp6COUG0qiztMZ6w4X9kyF+keCtFRlQFT0WE9MdAcSxW28IilmwCXSli/k6eADOUqS4bP/92nRVt3DUxiejWuDcosqIOHpv5ev+Y2zzr+YRT8uZvrUFxi63z5EU5Lq6mratmnj3LAt9lVS2p6Fn6sA3x133UvXbt3o27cvbdp3tKsa+qmurua1adNJpVLMmjmTDRs2kBMO0a1bN7p168ahhx+BZVn8tmYNPXr14uabbuKSSy+lOUhLyC8ooF///u5A17nfeuBP4JHmgOnNmljS6+M+AZbhGRemdxmJkfEscHbWvCm9vxR5ziKLLLLI4r8LUsol2r8C9dbuaf9/OvCalPJ9ACHEHcBEFJl+2tkFinBPEkK8I+Uf4Lu5nejSpQvPv/ACfXfckT69ezP6aFUh7pprrgHgy6++YtLttwNw0smnMHLkSAYOHkxuXj4+ny8rqfkXEAgEuOnaK7np2it58ZVpnHPRZYw5aiSffD6Tqy65gL332P0PO/bUl1/msksv4dILzuWcM07F8AUy6gv8t+P8S65k15134o2pL7gFTnJDQXIj264JsM/ee7Fowfe8Pv0NVq9ezSuvvophGJxy8knss/fenHTKqQSDQdq1a8eVV11Ffn4+/fv1Y/qbbzJowEC+mzOH1atX06NnT95+6y2EEIwbN+6PvuQ/HM2SbQgh9t7eHUspG3cR3/pxzgNeklI2u9SQvc0LUspN23u8PxtZ2UZWtpGVbWRlG//tsg0AIcQ4VIQ5H1Wx9SIp5WQhxPfAU1LKe7V1pwPLpJQX2bKND4EcYDFwh5Tyke2RbfR9qu8fck1ZZJHF/99YeNLCf1u28SmNZaw0Dbkd+9ZxD/AVyqZumxBCmPY2M4H/OvKcRRZZZPG/ACnlC8ALQohS4FSUthmU31NVg9UrUSRb3z4hhLgKuE8I8fzWjiWEOAPYUjORRRZZZPEfQnMJ7gnNWCcMnAUM+tdPBwHcJoRovOZu4+tnkUUWWWTxF4CUcr0Q4nFguRCiI1ADFDRYrRBY1si2/xRCXABcBvy0lWM8BjwGKvL83egv1fKMwiHKdk1qtlw6Mop8ZOxczUgk4zGGvLEvAJ8e/hmRUDDTPcJZ3fBpVnmy0amJhkVNMmZgtLLAWyQF6ucqNUu4jBkcze5MSq/oRhPXlVEEBZRe2q3Q2MTrVNNlS8PHzq/tBcDso7/GEqZXhVFC0NmVVlVQpBMZM01o7egUi9ni/O2y39fedCuT7pnsrhIOhZg86RZOPHa0Oq90wtUQW6E8hLSIRmMUdh/IvPdeYcee3VTina0tFtFqd1ZL+oNg+Lj6trtYuGgxNfUx2rct5cVpb/G3Qf2Z9cYLGc0w6CNVAW/eAS+pfUnL0y/bJaHde+lYszmXpuvPnaIuqbjb9hnrO23lzBoaRoa9XIb+XbPg0zHzq6855dTTGHPMMRw1ahQDBnjezU3OQLorCG+/VgMFlXacjP6ql4NvQMuc/vHaq68y/sQT6Na9O+3btef16dPZc9oQAL45ZnZGkqBpCObPn8/II46gc+fOpFJJlq9YyaCBA/no448BmPvdbLp164bf71fXpJ9zI4VOGv6+MhI+G0EwtwBxUtMUs1nkWUrZZCRACBEAJgBXoLKpv0BlVv8r+BwwgZbbuU3NNtfKIossssjiPwEfEAHaAvOBwc4XQmWODQRea2LbS4D3gRubfTTdxkxHg5e7dAqDSOmSy6T05DGWlJiGSVlZGWeffTaMVpvOePttjhk1cgsCCooA6V61W9iFAZgyo9yySCe95DBf0CO0epGPhnZ0UnqVCPWkNUuTWxk+9xrRrb/0fTmV63SplkN6AhGvjfRERiEzS3U7126lMAywbGGf3xBeAqbuWS0tr6qbTsbsc3SkaMJKuRZ6jqPEzZedz4kjhzHhoiuYNWcBpiE444JLKVu9nIvGj8aIFLrXYtZXIA0flWUbsSyLrqVFiHidItW2dZ8M5iJtP1/neq6/4EwOP+kcvvjmO66+cCKRnBwO2GdPz3+bTLmcS2QTUZcUZ1SJhEzbPmFkkDnXucP0u5K0jIqC6YTtpNFItUnLQjjLheHJCKU3UNy8eTMnn3IqV195BSedqOKebi6cTpyhweCrscRVkUnYhbEFOQa7D2huNo1Zfo466ii+/eYbFi5cSDwRZ+LEc+AA73vH6UVYaUQyyaA+PXnlpRfYa/+hALzw7NNccfW17vqHjxjJpk2baNOmlFAwRG1dHclEgorKSsafcDz333OXSlRt7PfVENo1bvEcaQL/csKgEMIPnAZcBbRDyS3GSyk//Ff3KaXc91/d9veAEMJASUB2BzpIKdfYy5u0WrK/3xl4COgLrAOuk1I+RzOQaEJ0rGdB6/ZBTekct1UQMCOrWoswBLTlQZ/3sDa1ZAkR0zTMmp6Xek+XrOt50+VeNaqErV3Wtco6fDmettUxrwfwte3snWOuZ77v+DKCqojlQAa9akB6bXrXXB5I259jernxJkqP67rZmJbhrCc7W5qSSW9+EfHGfv687t41ddayoe0NotoO9b5gZtwjzWdbO46RyPQ19bb1HvR+v9dGukZd71NN2XY1tu+M5XopZM2gX/eI1vuLofUjq2KD+zlVttb97Ppf6y9Z7X4aIU/znKv1l/wc7/4bYa1fhL11LL2P5Gg6cp8X9Ukk7QOdAAAgAElEQVQbXtslbBNYTVqdcY/0PpJZwl7zWdd7htW4b7OuqMuQojdisPBXK/xpPzPPBqZKKTcKIdoDk4GVwBLgceBdIcTTqMDKeUAImNbY/qSUs4QQ76JIdF1j6zTERx9+wND99lXbay9AqUfJDNNrW+E5NPgM1Y+XLl3K3HnzmDt3Ls8//zzHHnssq1gJoEpuQwYZcouRJOo96zAhvGp/gbBGbCyMukoMOxfE8ue4fc7QSgVboXyt1LgES4vc6tUHtYiZAEjrkUSbiKaTmcRI+z0JrVqhEzF12gwL0uk0VjJO0LEukZZ7jIxCJLEahOkjoJU99xwmUl7RCqdcdIPzkP6gcpxw2lKLHopU0n2O9GoR5tGrz2WfUy6mvLKai04ew9sff8F7n81i2qN3kZ+vfuOqAIjB198v5PCh+xIsao1l79d9J+ie09LiqwU/cfkNf+fbefM59sjDaN++LXX19fTfsbdHGE1/A99lrdS5E2nGvt+NzApIf0jZz2FH1J1z0Ui1lMaWxFaP6jp9ybBodICmfT5sxEiGHXwQ448f5/UTp931qLIOfWZDX+wLIrXfi3KwsZ1DtPUMIRq8g2wiLCVS++LW225lh06dOOCAA1iyeLFLnk0rSWPEdpedd+LJxx/h4suu5IGHHmafvfbk/Ilnc8bZE1ny01LOn3g248YcjZVKkZubi9/vJxgMMPKY49hxwGDuu/tOhh50cGab6vk5znU2KJTUHGw3ebZ1xqeiSHNHYDZwupTy3e3d118QFwIZhc+3ZbUkhCgA3gHuBPYC9gamCSGWSSm/+o+efRZZZJHFfx7Dgf8TQkRQeuZPgaFSyhQwUwhxNopEO8GH4duoGns58CPNJM8jjh7Ll59+RP/+/d2RnsRECiPjxW3INKlUipde+if/nKrqcXXs2IEffviBufO+Z5+992anXXbh66+/pkP79uwy9W8A7Lfn7hmRXJGKe36+qZhH2NMaSUt4g0URr0OkE+5A3kyUu5IGK6fQXW7UV3gRTF/II1bC8KKQ2CTeiRBrsgsVUXbCf2ajMg/HM1qPVmdE0qXFgw8+yLKlS9hUVsbeu+/KmSeNw0QjbM666SRo0gPDSnlR5HTSI8zg2sMJtOCGMNy2ATXgcJOQYzVYdhltEY7Qq3dP1n/5Jvc/PZWD9tiF2y48neMuuZGLb5vMY5Ou945hBkhKgw2bKzLs5aThY8Wq1Tz3yjRW/roan2ly/OgRHDDqOPccX5r2Fi9Ne8v+/CZ1tXWMGXEowXAmUXQHG2iky51ZcCLPfjehW1gppN/YcvsM+Y7A0pKkM75vgthimG7BlERaYkqYMuUfrF69mlmffKjO2dmusQhIw/3afcoy/W5QyUBgaSP2hj7gXgBFuhUl9T4ihcgIsgR8Pl55eSrjxh3HjTdcz2QeavxctLYZe8zRjD3m6Iz9fvnZJ8x49z1GHXMsp55yMp06dvQ2NXx89tmnnDB+PIcfeRRvvvEG8+bNY8KECe5ACzIHa/q+X3j5NZ586klmzfpyyzbT0GzybEcYTgKuAXYA5gLnSCnfbu4+/soQQvRARVCOAuZpX23LamkUEEX5nErgAyHENFRCS5Y8Z5FFFv+zkGqeffg21nkGeKaJ7z6lwXtISvkL0IStzZa49aYbOHLMOJ564lH22nNPtY8tSKFESsnYccdRtmkTewzZnbvvuZeCggL++eKL7LbbrgRDYS9Sp82kGFYSklEMJ0Iaq0FWqpm2dKzOK71sGBjOLFki5lZJlbE6RCiCsGdEhGG6ZNiwLIjbRV7yij3tayrmkT9/WH12zy3mXZtNDO0da6QjM8LmEmx7HTcS6s+MuIlkPRNPOY71q1dx4VXXc8VNt3HzXfex5JPpFObnZZAwI2HPTqa1KndOu/mCruex1GULqbh3XnYE3Y3Qp5JuFBrDgKBdfc5Q2wvgglPGuhXgWrQu5ZFnp3LvDZeTE1Ylwy1hMOrw4dx49wPc+/gznH/mqepQlsU5l11NcXExPp+PZ/85lb9fPpHF775A9x06QE4BG8rKmfb+J0y88kamz3if6TPe5/SLriQUCtJ/xz7qre+0U0My6gxidA9vZwZOWt69NAPeAE+fWmqoY9YkBk1p5nXyHTAFRjpJq6JCEvGY+k7rF5YrjUl7MyXavnT5EGRKKIwmorJbyBsa5AKodbZcb49dd+GE44/jq6++Arss0ry5cxk0cAAN4RYIcheoyPlr015n3Akn8sSjDyvi3EBaIoVgypNP0a9vP2697Ta++uorevfuxWGHHqrJkYyM3ICamhruvvtuHnzoIc6dOJEHH3xIDcibQLPIsy1buBboAiwAjpRSTt/6Vv89sAcGU4BL2bIM+ADgKecfKaUUQsyzlzvfz5WZnn9zaSLJUs8U76iNlrLIIosssth+nDfxHNasWcspZ5zFwu/nuj62wkp507KGj3g8zltvv81br7/GjbfcCsDfdt6JffbYTZGhVNybOtcS2a648iruvPRMrMoyANL1NUSXLgQgFY1j2MloRsCHP1cR5GRtHYlqFTk1/D7CbVpjoko3Ewwh42r/Vl2NJ/WI1WNE7LLCkSKXSJupmNLQulP3phfJTdRnEis7qqtImpYIqEcgDb9XzCPVwO7TsvAZBh1LW/DaE/cyecrz3PPY08SlQPqDLul21hXxWk9qFc7zLCZ9frfqnaHpeaUZ8MhLOqFsQJ2iJ/E6N9rs7hPbTtQeoIhACGkn6d1ywWms37iJHnsfxtgRwxh16MHstuuu+AzBG1OfZ79hI3h4yjMUFhbw87IV9OnVk+eeuZfSTl0Yd/QoiouLKfGlIZ1CRKtpZSY4YshAlyNfd/G53HDXZKLRGN98N5e+KEvE8Wedz0uvTef+W6/jrBOOttu1QbKn38DSNNN6FFnYEVo1kHHWSGM4RNb0Z0RhneRX9aXM0JIbjubaSiGSMY4cuicP9etLeWUNJS1busc27P4s0gmPMBom0pcZ7Vbry0yCrmuFt5L42lTJeCmMLZIUDxt2CEeNGUub/dsCcOqZZ/Pum6/TqmVmulvD4kDRulruuOsebr3jLm696QaOH3usaquMqQELw7IICLj8kou4/OILOPvc81m5YnkGkdf3/e233zLhzDMZPHgwH33wAf369SWUs3UP7MbLFm2Jp1DEeR7wCrCjEOKqrfxd2cz9/lVwPrBeStlYEsu2rJaaZcXkQEr5mJRyZynlzi1bbk9eZBZZZJFFFo3h9ttuYe3atTzw0MPste9+fPDBlqk3oVCI996ZwcmnncHRo0fzzZczmTb1xS2jiKhIpYN7Hn3yDz33vzLOPeU4ls96h1YtSra98n8Yhfl5vPLo3bz++L3k5uRw/LmX02/vQzj78v9j4Y+Lefrh+xg0oB8njxvD0vnf8vn7b1Fbp6Llhx18IG9/+Cmffzc/4163KCzggpOOYeheu3HMiOHcd8u1XDpxAseOGuGuc8pxYzjluDHsttO/Yyz2x2BT+WZmz5lHOBza9sp/Inbb9W88+cRj7v9777kHo489rsn1P/jwYw4dMYqi0vZ88PEnfPLuW1x0/nnNPt6BQ/fn/UaeCT/++CMTJ07k8COO4NLLLuOJf/yDfv2a5xu/PZpngcqaHrytFVHjqdu2Y99/GoQQ3YCLgaaKCWzLaqkGJWNp+P3WNH1ZZJFFFln8HpASaVkMP+Rg3p7xDqWlpTz++GMcNHR/L7pka5b32WtPpr/6MuNPPZ12bUoZ2KsrIqpNNjplrKvK3EV7D9qRtXO+pESqiOfGuUuoWqFkG6loiuKeXnEjJ9oM4I8oAuMLBZGWRShml4suKMGqUUWjrGQKYVfG8bfZwTuNZBKr3n6FGCZGKIJZ0EJtEwgjHJ11IupJPcwAllbG2ktYRIsESpBpT5ssoxgx7VWlJ/Q525u4lnKZicFxJceI2IWmklEv0p82IGBHwRtMjzuRZhmIgJXGtAtopcrWusWxZCKGrFPnpRePMotaefsJhhDAzgP6svOAvlx7/gTm/riUT778hgcffoyK6hoGD+jHrXdP5udVa7jovHNYvPQXAO568FHyImF+++03qqprWfPxS6TWrUQYJreNPQgjHEGEEnQ/cGeELwCGwaDvLwZg/8G92X9wb/uatci9YXpOHlba03ybnuxCpBNuIiXCaDQS6iYh6pFrPeLvHs+X4X6SDhdy1MmjGTxoEJFQwJXQ6NKHLZxaZNw99wzo0oaGFm+NRaHZMkrsXmNDazx7sHrQgUO56tXrAejbpzePPP4PEskUAbvfrFu/nhf/OZX33/+AL778igfvuYPHH7iHtqWt1IBX09hnHLKha4iV5oB99uaSy69k+uvTGHHEEQAkrTS77rYbp55yCl99+SVdd+io5DeurGXrkefmkufO217lj4EQog+wE9ABmGL7iHYDNkgpfw+Luj1R1ngL7QiE0wMWCCGuYdtWS/NR+mcdg+zlWWSRRRZZ/IEQ6QQm8MpLL4AQbCwro+/AnXj4iSlcc/XVPDT5fo4+8gjXqWin/n247JzTee2Vlzn6gN3c6qcylUT41Ms4tNlzDPp83iI6jrmQBw/fi0O6d2TNzOVYtutKuCjE6i9UHMVKS0xbQ5zfIZ/yn1TdrlQsRV6bXHLbqMlII+DDb7sMpZMpUnW2zpcFhEpUnKagazukHRFN1kUx/X5CbVqr7XMLXf00luU6EIlgGNNxl5HSq9ZpBjJIRga5sHXOznLHkUaaAZf0ZFQe1fWy6aTSH0dt8h3KdYm85c/RSKDf09lqriFGtArqKkjZTk3p8vXE16t2j1fWkKhW5xUq2UhOqYp8W7F616pNWhZmSSlmntKZG5EidhrYj50G9uOSc892XTE2Vddy6dXXMWi3vcjPy6Nrl84MHtifB+68jVkzZzL+7AvBsrDqqkmUqxIT/rwcr/qsP8iqDV4NNlmhzlGEIwj7epXThnSTRHWdt/RpEho9edPwZRJOx/XHcddoxEPZ3tA9hjOIkv4wwkoTCARo06ZNhgWgJNML3BWEGGbjMowGfuVb6I41eKTcdBMDpRCuu4ewUmpApkuInP1qA7E7770fgIsvu5y6+ig/Ll7MsuUrOOiA/bjo3LN4+dkpFOQE1TnafUkKTZZl+jHs/WXIRKwUmAEK8nJ54J67uP3Ouxlx+GEA+A2DSCTCVZdfRusWRZ7evqHrSRNors/zqmbt7XeEECIXpUM+ClXu1Qe8C6wHbgV+RdkZ/buYiioP66A9KtHvIJTV0gK2brU0DZgkhLgUuA/luDEKOPB3OLcsssgiiyy2ArfQhh3hbNWiBf379+PCCy4A4P9uuJFPP/+cybdeh9/vJ7FhJQtmf4UvWY9c+xPJqnK1edDTfy6ZN9edb/SbBkjJOW9+wW3de9G5UpCfo4hJIOInr41yVYhVx5E2qbYSaeLV6mVevylK/aYoNeuUZMAf8ROriLnfOdsECwJEWilSXLlsnXsuqWgKX9hHuEQdJ6e0BF9IRefMUAB/JOx+NgtseYVhIgK2u0dJKYbf1sYGc5DRGk8bHa3z9MWBkCcdtdKIoOaHHNhSBiCDuchADjKijin9WtKZ4QPb7tSor8wk0g5pEgbpumrSFSrKnyzfRNIeSETLq4lXKCJav7GCqmXKzjJUUkBuOyV3DLZtp84zpNpMapFcS0sga5Gfy5QH7kFKycIlP/HkM8/z4BNPIZMJundqx4DePdR5hiOEu3jylDnfzeWD75fy6pfz+WH1Bpwy8PN/XkFpi2JKcwtY8dtGKqqqicWTDO7bm5CpWQgm7Sh+XdJrP50wCwMaFFMB3EGP2/Z6MQ8tgq97QyuCKrj5husZfsRI/vHcS5x04gkYjkuLZlUnzS2P2dD5I/OEtIRHIRAJz6e68aI+afce67alANKf02ghn88/ep+O3Xrx+JSnOPH44zjqiEOJxeKsWfsbY8afysN3/Z3jRg4H7ZoFuIRXmn73GnWNvbBSSKHWOWDXQVywfj2vvfoyR404nF9W/Eo4FKQoEsCsK9d0+VtGsxvDv+TzLIQIAt1Qut4a4GcpZXzrW2037gaGAEOBWYB+F2agiPO/TZ6llPVo9nRCCKdN1kspa9mG1ZKUslIIMRx4EGXsvw44s7k2dbonbEY31LOatb7s0/159RxFbR3P0xG3Q2VED3SvTm06yB15AUKbjsqcdtF+ZNoD1dfaS370tenira51RGdKywro/sye366lmdfHNXsc3Vu3qc8Z3rra6aaTmi+v1gaO/26Gz7N2aUlNBxfXvJir4t7Ok9oG9boZsIYcLZtd91HWLX+c/dQm0o2umxvwIgd5Qe8nGzT17GjvmPq2Ic27O2Dqn7Vz0fpOU17P7rlq7ZXR/YR3jiHTu6eBiOetHCzwjh9q3dM7ZicvZSDDR9Z5yWrLjITXR9EiFzLlRcT0ZCMZ9abRDdPzIm8Kfq1PBzP6qfqs20npfVf3ita6HEmtj+oZxbpfs/77bqr1G9tWz1Funq3//yaMmOo/aWG4SVc1VWrZqp8XEwqGOOLIUeS378Z1553GI89OZXCPHZh09jiSK5cg7Wdg3doycjuUMm/FWva88kGXLOm/8582VtLOV8imWrVNqDpOKqb6Z7w6Tq1NigtaRfBH1LOvNp6CeIq1FarvpqX3m9uc8Pa9aVMdVUsUkd8hx8+Alp6nuZWWJGwyVtgml/z2KsJcv6ke034+CFNQ2Ekx/nQiTahI9dmiXp0I5KvPZjCICEdcKYTwBdzrt+qqXb9+K1aPtK/bX9oBs8hOPtN+H3LTGoyCEs9LP2Fi+XPse1KDrFL7kqkk0o7oC3+AlFMHwKcIj7NvUDIWAJm23Mh71aoqN6KfUx0lXqlIdW5lDXmdql2HEyPXQNomLcJMIZxnspUCfxgB9Ovdi3tvvIpzThpHnz0Pco/76ZcHkO83ePadT9mrXw86FITZ9+qHOGpAd/q1bcEPqz1f+p3HnE0kHCQUCFBe5U1+v3jvTRw1RLkzCMPEsCPiIpjjkkxLI8YinXLfv1Yw15NOWBYiVZuZA+fY+2lFbTB8isCCes9Lya677MwrL7/MhRddxOzv5nD/fffiF17lxoziOfb/3gnZ52j6M7iFhefhbOjPXJ3IW2nXx1wkY95Mg0P8bQmKBVhhFdF31gdo3aKEe++8nSuvvZ4PP/qIXzq0Y5dBA9i1fy9enW4QIY5RV676ki15komY6+Vu5OS5SaVWfQ3CqQdgmK7vf05eCc9OnsS4sy7i8AP2Yczx47HSadav/JnO7dt41pIOD2rRnq1hu8izXQzkOlRUVafnSSHE+8CNUsrvtmefW8Eo4Hwp5SdCfzMrrAI6/U7HyYCUciUN3mFbs1qyv58N/O2POJ9/C800+/5PQK/q9Gcjo3DFnwz9xfxnY1vE+T+JLVwA/kTI4Na1b/9J/NWKpPwVkF6zFABf605YITVYm/+DcsO445abuPfGK/js7+cy8sq7uO7ex3j94uM4cNf+gKRuzTpq13pT8uXVtex505SM/ecFfNTYRZ6eqlrPsJZF1NuDoi+WlBO2B6VhUxC1l5emaiiLq+fv0toExQGT1vbA1xRQaw/IY5Z0B/5h03D3VZe2mL5KDQByfUZGcKBHLE3tz4pAbIinCNijr2jaokNYvZbbhX1u0afi/J8p6KTIdmGnAvI6tibccrW7P4ewCtNwCXN0Y6WbSBdeX05uh9Z2G3tBktSGX6F8PZYduccwPE1yJN8dxFrROpfAiFCOIs0ogmnFY8h6T3Pt6L9lOu1qxvPapEnbAwehjfSTdTHS8Thpu8iSjNW7shsjr9CVQViBsBeVTMUR8Tp6tC3hhZsvYuLtj7K5po4Dz74Wn2mSSqeZMuNzDMvizD5dObVbZ2rzgyzeWIEzPK994SaSqTSLN1TSu3MHvlmygutffI9Tr7iZzReexumjDkGEIy75FyaeLl2zE9Qt40Qq5hJMkYyqiGljpeVFZnluYfdLvRjYfnsN4YMZb3HMuON45KGHOPfsCZmj68Ye88IgaccNDekVDDMNoSK8jiOM4XOj0BbCrSQYiFVhVm/0rsWRcyTj6p7oRNspnpPQAht15ZwzdgRnH3sEQghEXH337ezZ5OeEGNavM4nli7CqyklU2Lr4tEUqFtc+q4GILxRw5U/+khZunzSidezeqZjeXXeg86Dd2bRZ7efgY8Yz+4GryJGO5aSim+EeezTSUB62x+f5FOARVIB0FvA9KikuH6UBHg4cIoQ4U0o5pckdNR9hoLyJ7/KAvw4zzCKLLLLI4k+B0KeBE1GEEFx19inc+tAUHnjqBSoqK7hx+E48deIwxPhhEEu4L+BgYR65XVVKT6JqM9e8+D79O5Xy6AnDOZ1vAVzi7CDUMkSxrSNtD9RvVpGqsniKDfbMVEVNms3aTNLmROb/BXYkNWIarI9v+SrL9Rn0zbet6oSgNmWxsl6Rg8U1cZcwtwiYVNjE0hSCTfYxWgZNcu1Zp1Q0ReVydb2BSABhlrkkOViY65I8koqQOnCJdHk1wULbQs/nacE3z12APxJy1wvkR8DWDAMusRGGQbi1ii77SjuStsm2jNYhUwlXkiHTlkueI21KSEXV9ebv0MbdZ7yyNqNabay8CsOvtjdqKzHybW10IoZhyzlEOOKSv+SaZS7ZH9YyyNI7z2PG90t5fe4SXvtmEdcdugczFi7j9N37M2KnXgDktCnh1cI8juB7AFa98w0AHTqXErBS7NWjAx8+cguzFy1l9BWT+HzuQsYeuAcyEKJ/z650at8W4rau3DARjhY9VutFhANhL8EwWq3kKI5+3afJI6Tl6ZwtvxuUEknNslAYtCou4J5bb2Dk2BP5+JOPuOP2SXTr1jWzCqRzn6Xk56U/8eU3s9mwcQOBYIhxJ55EQUEBJmAkYyRtqYdehTecrHXzBYz6Cqxqde+tVCJzJjBa59kxJmL42qjfmyj0kj9FvM6TYAQiyOpNxOIJzrzyZq4btQ9y1WKq1pZRsXS1K4cKRPwUdG0HgBnwuYMtgGhZhds/HG8H05Y6PX/KUF75qjU7dO3Kefc/y4o1v7F0/gJ2cBJ37f1saeKXieb6PO8EPIaqJniilPLnRtbphorOPiqEmCelnNdwne3EbOBElM65IUYDWy//kkUWWWSRxX8N7BnGv6OKcYWA94EJUspNW9vOkR2s/XUFnfYZBcAZp4zn4Uk3MemBx2jdrgNDr3+cOfddSijgB8PE36G72rZND0SijkU//cJJVz5Efl4urTt2Zvebp7iyje9OPJQPVv7G7V8v5IjO7ejQvQW1G1RkLFwUou1OSgLRI2DS/vNfAZj5a5UrzUg3MltQZUsKqpqQewEstEmCKWC34jClIfU6DxiChD0FsUP3YpJ1iqisX1fLeltCUhTwkdNCrR8qClHcXSUVOiTY0RYL0yCvo4oqy7RFIC/iLjf8ih4kaupIJ9QxEhWVYAdR8zq2xozkupXl0tF60jFPGmf6/e6+HPJk1VS40g9hGOALUOQk5qUSXulqK41Mqn2JYNhNEswzTI+YOdHkHDvJMRHzvovHsJzP9dVudDpdV4PPlonklHYEn58x/XbimNF1pCs2El23gd9q6/n6518Ze5iKPFYsXsW3z8yBOxTRnfbKEgD26LOJjra7Sl7Hdezerz+zn76DSc9MY9Izr5Gbl8f3S36hS6cOPPR/F9K/Z1fSZWtdpxWZSrrnbhSUuIMYI5KHTCYx7Cg6ySj4bZ9r3Z3D9IMtfZCGL9MH3PAxaNAglsz7lgcfn8K+Qw9izOhR9OzZk48/+YQVK1cRyc1jhx06Mm/efKqrq9h7r71o17YNS5ev5M0332TCmWeyZNEPjBo5gr79BwLgx3JnBY26ckTlOrtdq71+UL7O9evGsohuKKN+vSLWqViCoh5q1iOn307utaR/+wWZTLr9ILZuFRMemUbHSJA9Y0lWf/gdsYoYibqkO/uQrE0gTHV8K5Emt51yozFDAVfaU7O2ws0vSEWdGRbBAEAsq2A3M8jeHdtTuLYMo7MapDn9dltobuT5UmANquRqoyVTpZS/CCEOAhYClwFjm7nvpnAN8KEQ4kPgZZTsb7gQ4kIUed7739x/FllkkUUWfx1cAYwAdkXNOk4BngWGbW0jR/Pa1jC44NTjuf/JF3j3vQ/4fOYsKqur2blvb1586WWW1UP/du2UXKBdHwAWLFvNtBee5vHnX+bG8Udw3JAd6T3hFvbs08WtltX3hKPouvxnjt2tHwDJ6joMW2ccKgzjCyvSsuH73yi3X9Stgz5XQrGsLrFVktwYarU8i7SEWeWe1j/XZ7gSEH7e7EahAVf2kbQskjaRTq6rpW6jem236tcK02+Q00pNa4dbFuIvVO0X7L2zazsn0kkVGQVy4jGsmPbaX/qmuvbeg5UG1S74kqGttNIIJ0kxEMKwExmFllQoTX9G2XFSSTcqatVWulIPfJkJbm5iV9VGRH4LL3prGC6BE+mkZ4kXjCC6K1Wl2UA+6JZZj9fhK61m7ZynmT7nJ3bv08WNqL983xe0DHpXtzqqSN6ni8rY0yZk+R3W0xnISaa4/m/dCA3biVDnHliWxQOfLWToSeez6os3iX73jSuTCZUUYIZULzMqytwETSMnDxEMu21uhCKIoK3nTSbcdgVcmQr+sFuTUwrHLi9FOOjnknPP4rjRI3no8SnM/uZrjjh4KDv26k5lVTXLVqzitLGjGbLHHghbzphKW1xx3U1MfeE5NmwsY/KDDzPnq5l06thBtZcrO0l4ZeINk5Sd+ClTSaLrlEY8XllLtKyC9XPU4KW4exG1a+3r9M93E72Svy4lWaMi7+WbKpn47Azq4kkeOmR3gvYgrqBrO6pXriNm5w5s/rnCTcI1Aybrv1fHjFbEWF+nBl6bExZhm2wHDEFZPO3+36dVhNNLla65fk0VHfdWAwQ36XYbaC553ht4tCni7EBKWSuEeAq7gt6/A3MdBDMAACAASURBVCnlTCHEAahIxAMopc4NwNcoEj/73z1GFllkkUUWfxmcgcqbWQ4ghLgM+EUIsYOdi7JVCCG485qL2WPngUy48iYG9u/HipW/cuLES0il00x65jWeu+kiAL6b9z1nnH8Jy1asYvzRI5j+1IMMDkVJ11QQCQVYW15FBJV09N63CyhfuZKpn83lloN2Y6dHXuWKQb05ttsfknaTxZ+EiqoaDnzkNeKpNPee3tB99l+DYRhcdMZ43v/kC8694Q4mDen2u+x3e9GmtDU3XXul5zFtY7+9VHRdalUofT4fd956EwBpDEo7daWm5vdwBd46kuk0T342j7tmzOKgHh15YNT+UFu/7Q3/JDSXPJegkvSag1VA8b92OpmQUs4C9hJChIEioNJ2x/ifgdlEkpbuxmBmeC5qc4C6Z2RjGbRNZNVmlljV9HZaIoJul6MnKGT4PWrG6npCoJ684Dho6I4VuktGMsMZY9v+irojie4SoTtJZC73/nGcSvS21bOHRcx7QGQUA/BpjiSG5vYQ98aSVqzC/Zwu93SBbjINeNOIgM/OdtcLABgtvWScdGFb7zABz7FCTxjz630k6f0sMuyBNNcQ/Pp98e5vym7VlO48ojtGaMt9lnfMeBPJjtGUt36ddt8DWvQtormQ+ILe48LZsrH7Bg3ul+4Oo7lw6M4yQiuzrCfoZDh1aG2kf3b3o9dB0PSCUv/s86JBAa3/B/TiA039jrZW8tZdX7WB/vPXk8jS/+WZhEKIAqAjMMdZJqVcJoSoBvoDK5vaVtrFR6xUArlpPYf3KqX4jqs48fr7+fqN51n00y8cf/6VdMj1k1qzjOAuBzH9yXsYMqAPT145gW61G2D19yQiITZ8+yNrN26mLpmiL2oad8TV9wLQsjCf0JDd4IGpTFm+mrPOOZpvFv/CT0tWsdsObYmYghW2hMKJTv4RqE1Z1NrP8GVNhLPmVwG2tKQ05KNHru128P0GwkUh4tW2JMI0XT2yVVOJsKUS0rLcSKjw+zEs2ylJc7IxbamBE/3Uda6AkmFgO3TY0WNp+FznDbeksxPJNCzXjULmtiTtaNk1CzrdM1kWd/TKR6N+6+57SCvMIjVLNam/S62062stUnGOP/0SjJwcvnjyHtq1bcHLw68AVMLnbzEDhy51jQTstk9QuUn1vXBRiE0LlpG2Nef5HVu5UhMjr5CWkQBPvfIWsYU7sH/bVgwoKaRNj/aESpSuOdK2Vca72KqrRjrR/tYdEU67a5F6I5LvSjVkIOyWRnfbqLHCNGaDxD2n7RJR79lj+t311qxeQ3V1NX3aFmLWlqlEPifanIpjxdVzN7F8EemoagtfcUtyOnZQuwqsJ1FTz7wfVDLhYFMQyFeD0mRdocpeA9ZurOCYSc9SEApw98C+7L5TV6iP4c+LECxUrkbCNMht1xJhqHdquCJG2WL1eUVdkipb+5+U0p25SUsotmeJNifSdAj76ZGn+mJem1wirdW55LUvcmcE/Hohnq2gueR5E80vlNKJphP9mgUhRAhV8nqMlPJ1KWUUiG5jsyyyyCKLLP47YWdHUdVgeaX2HQBCiDPQZjdTtp41tbnMrfA3pEsXrpp4KkeeeSlfff01x779NndP/4xjdtuRnbqs5YBe7Rlz7b0c1zqIb7CyTaxcuprJXy+kIOhnwl4DeV9zRz3j0H2495yxCCHYpWdnzjj6UM544k3e+9pL7XmkpDvzRCUrUzEMTDoQpogAviYMCGtIEcHEaNKg8PfB+ljK1ULnVsboURagS60iuvHqOGk7sa9F/0pCHXdQG2lWa2ZBiSe7aGAJKeMxiKjbIwLhTI9cZ3CXTngFO3TZhO53DEi/VsnOMD2iZ/iwjC2pSobPMbZdpFZJz10uhHsqljbINIRJwg4AfPvdD7z30Sd8//VMevbqiTX7TeZXefdfl9EssyUBYVOQV6CIWPeRg0knU6z8QLm8VCyvdJMfjYCPa4/Yg0Fti7jsqTdZHk+waNY8+rUu4ZKhf6NX62La50cw4uo+BEvagC/gtX9eoasTl4mYK62xdAmML7NdpVZkRVipTCLtDERUg3htqfs/29t++smn9O3VHTOdQJBGpBPIaMzb3ukPhoG/RWv3HF37QP8mAnk57LGfmqX55KOVnDBSaZ1T9TGXPB9221MMbV3COf17EC2Psm72arvtDPwhde7BgiCm3yRht3+8OuES5nZhH8UBb2DhON2UhnwU2NunUxbBvABFXdS5lfRshRlS1xwuyXc1/lbFti1Nofnk+QvgJCHEpK1JN+zCJicDnzdzv41CShkTQmxEFUfJIossssjifxvOtE9Bg+WFKFcnF1LKx1AJ7AghZOUPPwJg+n0Ei+zksVSSk3sVsnjXvhxxwF68cf9NdGlRwJ7XPMLijl3Yp39PRu+7KyOemE6HknwKI2EGtCrmwTmLmX7J8Vz+2uf4NM5+7d96seiHhexy+QP0aF3M6Tc/AMAOJQWsLFd8/8zynzmsR0fGd+3BB18uZVb1ZiplijYEaUOInuQStGd50kheQJH+YbSi4zZz+38f1KYs5lbGXA12u411bgKWMA38K1QCVnHfzvjtKKfl8yNsXbND6EDZyWGYXsRUWu7sjh5hlrpbhG61JgzQ5AIZsy7O9w2X67MxDUtKa/uWDWZ03X9l457pkYiKQD788EM8cNv1zL3z2W3q1KNpyZL1ig6VfLyQDvv2odvhqhjx5sWrbKcHiFfUEPh5NaPyczj6shMJ5OVQG0/Q7+9Pc+2MWayuqCaWStO5TSsuOGYYp/YcqAqNOBFeLXIvfMHM9ttae7kuNKY2G+1dvRAGGHZRGcOn3SPhfh47bhz/fG06o864kGfuu438RHVG2XinnLqvtKOb8Cdy8jH6KDlIpOfORF98jJ7HDQUgGXuX5TOUa0kwPwCqUjanDe7FsMICpCWpWFFJvEoRZDNgEG6h7k3lqmoCuX43ul+3od69R2XxtKv9/y2Wosjv9Q3D7t+JpKS+Ok5urTcAtOxE2I3zlrF5sRJXODZ3nYefxdbQXPI8CfgWeF8IcYKjSdMhhOiMSu5oC9zZzP1uDY8C5wkh3pNS/nFzYFlkkUUWWfypsItN/QoMRtmgIoTogoo6L9jatpVL7SiV30e0XJGZQCRAsCjC7WOHcv1zcfodeSpXHHUAhhCsnvUNVjrNxW2LGH/8MFZJSdqyePOHXxi9ez/26t+Vo9dVMk1Tiry0dBXHDenPBYfsTp+2LYit38zXqzdw/M69eXT2jyzZUM5PZZX8VFZJn+J87j5xfwzTpLw+xsxla3njy5+YGv2N/SihjjR1ZtI1W51FOUsIsg/FBDEbXt4fAid6CpBeoCJt0U1RctuqKfJoeRXFvZUULae0xLMX06oOkkpixeownEJcgZBXLMgwMp0hHAmF4duygptbBa8BWXW212Ub9v/qH5sI6kTZibbKxmVMumRPWGlX7jftlan8bdAALmkfYsNjd/LcBysa3b4hFteoaHHneRso/6WC/PZq8NZ6QDti5Wo8WLd2E9FN6nN+xzDpWIIwsOK60zEDPixLEmxTzIJ6H1c8+Bz/eHcmuw7qx40XnEFxYYGqSqhVzHPPP5VABnLcNnBJtV510Gkfpz10qaX2v2wwKHHkcf5wLtNffJqLL7uC4cdP4NMHr3cHUvU//UjMdrVoMfRg1wM8Nn8m5upF7r6EYfDheapMhj9oUmAX8vlt3gaXPB8YiJCqtxMpC0NEK9XxY9EUy35WTh21KYuAIVhZbzu/aLMIpsiUGjq2kMvqEko3AQwoCFGVTFO2SCU2bvxlMwGbZBd2KsCyZyHqNqrnSedtsNjmlueeK4Q4E3gY+EkIMZMtfZ73tFefKKWc0/ietguFQF9gpRDiI2ADmYNGKaW8/Hc4ThZZZJFFFn8+HgMuF0J8gpL+3Q68t61kwWXvKaJjBgz8th41VhHDDBhU/FzGMcABI/bh+i8XkEil2f+hlwmYBvt2bsemqlp6tGnB8YN6cOueg8jJy6F++TqG9engkufRQwawW5sWFLQs4ZZTRpKoqKTm1w2MHNSTnNJidhnYnZbn3821w4bQE8EFn35H924dGNatA20L8zhtj/4cf9X5PH7Xg1w940vCGETtF3U/8hjmL2ZSchUrqKc7OfQklzaE/nA5B0BFMu1Od9eW1bPZ1kkXrq5xByJ57Yso7K6iqOHWa91trZjSv0rHwzdWh6xTUUkjHHErcGZINQzTI8JmA/phegU4dJ2zDiG1EldO5Ho74Xg+C2nhtxQRa1FYwLfz5vPTPr3ZrWv7DGLWFIoDpkvSVtQlqaiMsd4meh2+/o1DDtgBgGBRlILOKrclnUxR0ltJGH557Us3qmr9uIpdjzmED285l89/3cx9U2fwxMtvcdmE8UhheFF8UyvYJC0v0m74vEGItGwnDE/z7QxYGmtT9YWBk6piSDzbO2nhD4Z44Jrz2HH48Tz87FQmDN0FgEBhLkZAHWPR3x90d9VqUBfCGxVjDXfuwtqZi5lbqQj3+liKgt8U4S7JEWAn5a7+5je3SFcsbbntWpuy3IFeY5aPDrb2nQNHhuOQb8B1UWlRFXclIAU2oT5kG/trdpEUKeUTQogFqAqDQ4F9tK+TwAeoTOmvm7vPbeAovFSdvRo7JeC/njxH9YQqLUlKz8XKKN+b8Y83irSkNk3hPF5Mb/rKSGtlsjV9lJ5clTEy0TVS+mhVW57S0vfiTZXQ1gztncSzpspB64lhYZ/3WW8Xv9SUPFqChZ4k5yS9qOVatldjZcmj3oyw478JXhKSOox3nHT5OvdzQisIEC33pJrJai15T0tkdDRVAKEKe5b6l58Jt1QJc0aZ92ISIe8hGdKmSjOiM1ryiFXnJTtKvV00WyMj30vM8+V5n/1+T+vm9I3GyqoDoGdray8/qZWyrrO8/pJqRpl1PcGwMej9wq/1v2DAm+EPhrzPGcmeTSQPolf30tfRkwC1c2h0qlSfAtXbRegJuY0nA4pGNJwNkVH+tpHvTe13afma5036F8ffUYnhs1Fuwh8Ax29ro7fWbekEEDYFO+QEqJitfq89d2vHMyccwqR3v2bmD8tYUlXD+7+oCNPcsgpeWqBKF1w+fAi3z1AlBByf51e+nM8JO/XgtBsf48WFy7ikRzcmHDgIUEVG8np0Zd0Lf6eg1wDWLP2JTe/M4vTn3mFcny6M7N6B+6ZMZ9avGyjItUtXB0xG/D/2zjvMrqps+7+19z5tztRMJj2ThCRACqEkBAiggB0wIIKKdEVERLFhQbGLUmyvvFioiooCAgJSLCAQugGBJEAIoSQhPdPn1L3X98fa5dlnzkkGiSbv57mvK1fOnLPL2mu3ez3rfu6n2EEHKRpti4XzJzC/0MHNz73KbbktvOCaSPBedgNnNk7gyZ5/X7VNWbxlRlOKRv+527O2j+dWm2djZ8Maxs8zaUxt0zpMqAwovLiM/OaesMiMM3ZyqM31BvpQwbOqe31oO+c1tIbPCuWWTXKbiEpLMqx1pH+uJjsIEUo1ouRDI+GQ71Ptr67x/O3aygo9fc/51KeY1DmRD51zDvf97Ft8YO5Yfrd4LdvC4WPMAMFSivX5ElP9kuxjRzfS41eIbN2lPZRw2OkkyXGGPPev/wubnjf9OuUtU9EDvVjA2+bvyVPr+nlpzVrcxpFDqvMGxFYJ8hzrDq9MpQQmJM3ai/pLPOM9FMETz9NaFCS0SAKWbfOD8z7JJ796Ie8YMO+3Tc9vDvmIk3FCv3En/SqNE4zn8nM3PMzDj68NNfcjknY4MFndF+3l8a4ce7aY48y5Xrj8a/lyjC9sbwTa6I2iUNFr+eGphV9XeW6t9WPAEX5C33RM1LkXWOEn9W03aK2Hm6BYRw1U6r52JEo7kRtAzG1kByMgzjsDYkkndYSo9oKqY/tDa+0Cn/P/vSEE+seAGK75x1osW3FWewdnv30Mhd4Cedfl+S29bMkXGXDLLMsPkF5jNJyNdjQw2XNEC0f95Ibw710yDaz1fWtbd+skMWUmHUrhjp/FmPYp/PbyS8m88Ch/uOMhzn/gSXKFEne9+xDsWZ2ceNkfWN87wB9Zz4JdxnP5gXNomTqOycDh55/ElieX8lp3P/N/9Fv+6Q7yTEeJA50Mj2zJDSu69kawvL/AjKaoqmFQpGVVrsTsh1cDMGF1b0ieu559BWVbJJv9BCvLDskz5SJ2u3ErUU4iLNVtWX1oNygpnTT3lkhskw4ZYYRaRTF4bVnRALeyVHUFmQykG1opgliMhwrJWMnTFH3NrKUsjj7u/by07CnOuex6fn3SAbD4pqr9FBDmRMoOI8ebVvWSsaMZhXxXPkxM27RsfViwZuqx+zP4wvNmme486VbTX6Pnz8TuMNXy/rT4WX7486u48dqrTH9oL17eWhDhKIofBUmqlvUWg4poQ9EAw/N0GCyQrMFRmCCJk2LMmLFs7OnjhYdeJW3ZbO7KM2as6Yvmic2sXGYKBLVMaiHZZPpl/H67cGhzivV3rAAMMQ6uMYB7/f/XF8qs6I/ey+Mz0fHmfe7QlrBjcqMxaSck2TsCr4s8B9Ba54FntnNbdiiUUm8Fvo2RiuSB67XWZ/m/nYyJuI/FHPdZUpqilJoHXOavuxb4mtb61//ZI6ijjjrq+O9FS8Ki2YlI7/iMEysgsvkFM7OUHd3AiGnttAAjxzab4go2LCg14G52uX3CHrzYl+dyf70TSiM5YGILxx46m8mtTZQG8qx6cBUbS0Xe9MnvA9/nfZMmsPsBs8hO34tPfuQUnMPfytsP+gtTTj4P11KMKCnG2A53fWgh9/fn+d2jS5k+cRyTj3pzWJRBpTK0H5ClHfjnLhM4/4qbuW7FKs4+/h0kb13Os32GOFgQluTObUdG7WrC8t4SPSUvLNKyv4aANqx6YAWJxkRoMTqqtTU6lmR75BBRLqL9mTHlumHBDyuRQpUKoS2qtpMRSZYFVJx0NPspLOiU9gyRriDQENdGS/2zpd3we1tFyWSup1Fa88nPn8f1hxzGTVs0l/z6QwBcc9ZvwoEEwBq/MMp4oLXZkNaRE5tJZhO86OtpPa1ZvdxElcdOaQ3JszNqAuVeE9EfuVt7SL6d5hbwXG598Ak+9dPfc9OvrmD+/vv5neFFs2aeG86U6UQmlL7EwmTa8902/G+1jkf0pb65yuWjiWb7VHHQ7Ft77D1zOpMyaX66ci27qixFT/N+X+M9/qCZJP2oe8fe08OIfsP+8+nYr5uP7WaSBBMNaXpfNhH91Y+sAcyxeI4byiUmt6bwXE1JezxZ7uPt2TYspRg/fywzF69ji28D2ZKwaRgRJdq+4s9ArcmVhx09fiMYbnnuMcDfgT9orb+8leUuAN4DvElrvfGNNEwpdda2ltFaX/ZG9iH2dQhwI3A6cBvmWpzp/3YQRuv9HuA+4BzgDqXUdK11r+9PeicmSfJgTEGZm5VSL2qtH94e7aujjjrqqOM/h7QgGBllc/zYUYzIZrjzhVW02zblYoGTVy5lVqKBOePbaUsmuOyORWzqvZsPvnchYzraeWndJjZ09zGxvYXb1qzl9H0m057NcPqCvTjz1A8AUF73atX9Tx/XwZWnHgHA5qXDS16r440jkUhwzZWXc+DBb2bO+R9ij0ljtr3SdsItDyzmo9+/ijt/eSnz5u3NzjNXa/DrW+5kU77AvjRte+HXiVyFzERrzY+2rOa+XA85PN7TOHK77/ONYriR508CIzEJHFvDhcBHgLMxkdo3gku38ltwXW0X8gx8F/iZ1vpG8d0T/v8fAW7SWv8ZQCl1Meb43gP8EjgG40F9kdZaA39RSt2M8SGtk+c66qijjn8jDu0w0btxU9sYO9dMfTvZDG6+wOAGE+Vziy6O7/c6YkYntp/oNLihm1knTgage8Ua+lYbbWpucVToaElvgQ3L1vK9xx9Ba2hvSLF+MM9cp4lD9EiO6TQlfv/Y1cO73rIvI9pH4raMpad5LNMnTeCM97ydc390FYPTxvGtk48kMWkG3qQ5pp2zk1gDJkLpNo+hbJlIZsIt0NZv4k/tfRuYcOjfuPbrl1P2NF+bNDXUl254uSeUCqzJlXl5sIRG46Jx2LbcaEzaodkxy70m/KBr4ZEtOQJz3r8/sY4DprXROMrkfqxb9ATBa3PM/nuQ2GUWYFw4gtwLr687yiexLKxMFtXoR6vtIl7SL4ihvUhp4BahHBRSiZwnwmh0rNCXHzElnrMQRaGjhEOHyO7OVoqy1jiWw+4zZ3P6sUdw9m/+xmXf+BzHf2chLe89g73/fAwQJZ51NjVz36OvAbDfriMY3JRj6ixTcMZO2hR9GYJb8ti41CTQjXtqMX2rNvjHq0JbNCybe55ZwRdOPZb5c/fB89yo8JPQKUMk0ZCSFy2t5oZY/kXWc5USNGnhVw3aSaGTDbhWgm/+5Ep+svDNcI/JFdjruFmMO9SUPU9Om0PTHGPTl5g4ncKzpgC0yjaTaB/L6GB/Dc3kNt4NwIT9xwNmYDilPUWH7zQzMCLBH7as575cD0dPHMcNr63nxKmdjJw9kYZRjWTHmuvFTicpD5hzkRnVymTfdWfjsvXc/bCRVVW7nsf4z4HRKSfUX28qlkNZ1HCSRWH45PlwjIyhd2sLaa17lFK/xxiQvCHyrMNsgQhKqVbgHZhEwePfyPbFNrPAfOBupdQTmCpXS4DPaa3/AewJXCPapZVST/rf4///hE+cAzwBnLQ92ldHHXXUUUdtzH3f7PBzkJRrJxwSDWkaxxsy4xbLtE43Vlr26M6w+l2rk8T2E3JbZr9KfrV5AbfPXIXvmMei7GaW9vfzNmcEb3LamDuznRWDA+zS0ECzk2DPM98OwKWb386FV9/A3m9+O2d+9KNsXPIYe02dwDknHcu+u03m+K/+mPO/8kWsafvS5Zlp7cGSx/hmE90sWckweXZdwSaTNlVGR2sP7XrsOWE0F/x9Md965wImjjSka+RL64zsBFCv9fFIqYc/ljYyRaU5OWUGEvuObKDHJxGPd+VoSdikhZwlIAuNjkXGlzHYSoXuA7WkIb1ll8de7GI/f53WSQUaRhnyO7h+E40t0QAkSIBWdqSLtrLNhvj2+zXVLBvLD2pqJx3X8waWaoikXkmkA1i+K0UFSQwrdIokOaV15LyhLCxFmOT4ve9ewC+u+RXHfvJ8OhuTfCwxEXw5dzBYs5M2e/n656axjTSOa6LsSwrckkeTrwdONmfYssKQ543/fAHPl8Z0rexm5Gy/qqzn0tvTTdvkMdC/GQtwm6NKd0FCctUiM1RxIan4varmWUBa+Gkt5ByWjXZS/POVjSjH4ajPnk35/Sa5VrsupW6TI5BqHglT5gFQLg6SmmEcObSTQm9ZS3JXk2Dbt+jPjJq7O1prHu+DgDy/95i5ZLXmjDsf4tGnN3D4tIk8csqRnHbLffS5LmP2Go2TTYeDXoBMewvlrC8Ncj3GHmgGpK27dtHgy2EKvQUGN+X8Q1F0v9pL22Rz7yQbk8ZrGt9D2peduFWkS9UwXPI8jeFHeZ8GTh3msq8LWutu4Pe+VOLnwCHbYbNtGBnZR4B3Ac9hElbuUErtihlmb63q1bZ+j0FWx+rs7OTp9VHNmentkX4n64hpwxoRBDlAktw90CvpmCF6dKodp4aThrixPOHkURTWH7KCdqEcXWSlGqWdw93UKKUtXTUyomSznY/GaSonKrLXKk/u1YiYSK/RICFOPnBFWWXVJKaGRAKGJbZhiYdvQkQ8GoVjQ7WyqEO+D5aXEYVYlSjRYVKzV+wX24j2b3WIxZPbLrjgyraIql7VIBMsY+VdZelrUR67qUbZ9kI6mu7LiQIEMReO0JFFZMrLcy7KgyOcasriAnOsKCElIfrUEo4gslR37NqRzhvu1qNw8VL1Ncpt11x56wUYKhG2UV7PiGt0yBr/Pcmfrbv6pYATCTKTjJMBlm3ImO/yYLePQaXMC1XbSVHAIx2eR2fsNLLtzwKQnjARNhryvHSgn/2SzXykZTRKKTLa4t1HmippY97yJuw9DwPg3bkejjx4Pn99eDE/+N2fWPXSSn77lY+hB3rYb7cpTJk4nmtuuYuPnzGOEb47TGtDWyzqVw5dIaA55RcpUW00HLyQ8xIORx9+ACM39tC9wkQ8E9kURT8K/Ux5wBDnVIYf778Xo9MBsdBM9b11Z2waRNmKXJe5d72iFxKI/g2DDPjvozX9RQ7axVSye2hlV1UNaca2mN2SJu9vK9ecIt1m9unmi5Q3G/JspRvAt7BzB/qxs4ZUOqMmYDU0hWW9VTKNsgwZU5nm8Nmh3GLoWqPKhdBL2pQGp+Ke8OGkIvJtObHkwVADXe394X/nJJKcfczbOOPIQ7j1L3/nC9+8gKYLzEN24RVnArD+wcWMnDMVgN6X1pId2045Z7TR3S+s4pV7TTmMxnGNITHreaUn9BMevccoel8yfZTzNH9+7Gm+eOSB5J95mNTM+Vip6HkVDhICPXNlu2EoWdZDDQOkRlwDSjw5YqXL5evHTtLQMZ7NW7p5zWph3AFHhwsl/G25ysL2Z1AQlR/77v49qXHjwwFTw4w5vEYD53zz+zy3YiXJr5uB69T5M+nLtvLA5Tez+daf0vfwY7iexxbtce/5H2b8lHEU+wbY8Mw6klmzn5YNXfSvjWaWxuy7CwCZjlZG7GoGnm6pTMF3tup5tZvOCU3hgCXd3kwia96VdjpJl18kJb+5ks5Vx3DJ85BZkK1AU91ZaXviJWDedtpW4HN0tdb6aQCl1HeBc4EF/u/Vql69KNafXOX3qlF6WR1r3rx5O5usqY466qjj/xQadzXltWVJaauhCdU8MkpGsxzchD+oTKRjRSe0GDy+olez+Kkl3POXP8O7zde3nnwErcu7sPxB/7j9J9M+y5hB2S3tqJIZ3HvpJsi08Jb3TOewY0+KLBNXLcX2PM77+Gl87Cvf47rbatYJxAAAIABJREFU/8LlF32dmdOnYhUHQjKYaGjD9oMcLSmLVN4kOP72pz9i8dLlfP0Db2ePPcdSWPUSSf+lr2yLOaeZSfHpPf1Mf/g5dmtpwu4v0zF7fNhHCT9Clx3j0b7HNMqDZrBb6O4jM8qQ5BduWET/a2Zw7mp4YY15Ne7RkgqTuVblokFnf9mjt+TS3miIYaYtTXaMmVJv2WsvHN89QhZWcbs2oHN+wMiyKK9/NSzAEvwOYJeLKL8MtU5m4g4S/sBXAQiHDhxRknqYg9PAbtVR8XV0MoM7aho2cMxJu3DEMcdxwCIzmZyY+zYAxu+/EOUXA7FbXsbpGI81xhxL4p4/sOEZkxjXOCpLwU84HFg/wKg9DAkf/+Y9WfuwKed91W0P0plM4d33DBumjWZMUxvJlH+OkxnwryWdzOJljUOTl26uLtXwXTjCr2RQROs4O5MDiLDmjBVje1opdtllKh/+8Ol8/GsXcdPVPzXH3LeB8kum/cw/KrS3Uy89gedLc1JjxmA1tmK3mWN+rk9xwDuP5lOnfYDrLvwi+z3zecAQ1lF7zGdkawtPP7+CmaNauf2pF5jY3sJ026bv1fU0Tuhg0mEzWPcPMyjpemkLjaPMAMNK2jEr2ABNE0eFA5wJloWbL1IaMNe+nUyg/KCH0z6GkfNMcKfU1TVkO9UwXPL8KqFBzTaxF7BqmMu+biilxgKfJYj3v0H4UpOXqT440MBTmKpXwf4V5hgDH5unMPpnib397+uoo4466vg3IqhshmVFvuaZZn/KOfItDyORbjFOrpwUv7z213znOxcwONjPvDmzWLD3bB7BJPNNKWsSe4xmhF/cIpHN0PeqkUokRm0gMcrsX6eaQjKi3FIYFdSde2APbOadb5vKC4e+mTPOu4B93vV+7rnpN+y/79xoZslzSfkzYYWyF/ohD5Y1l173Ry697o/89eJzOXDmFJIdZkq/sG4djk+MW50Ex+9jBhKlvsGQJDjpVPgZoGflajzff7+pc3QYmWudNpp+P/L84tJNTGsxpL5hZAbbL0Mt3UveMr6JgVw5jKr2rx+gY09DKUrrVoXRxsTE6WG/WOksqs20XZeKWI2toY1def0q7Ha/mEhfd+hjbpVy6IyZyPWSjdG588omIh0EZcs+8YNY9TzllfH8GUPLLYVt0XYymuGqLG7opFFWOdxWqikioKpkiGz/n64l3TnZ9PF+78Ya2BJGy1MTpzDt3aZfs+NGsfYhQwdSzSkaxhrym2xvp/Nt+/HEi6u59Fd/4uKWyax69DWWP7Sag5oa6PAJp9XYGurE7XYbK28io1pZ0cxplaIy4fUn+mLI7OJWyLdcRimLL5/3Jebtuy9XXf9HTjvlZFT36nBgpJbeGy5eXvsSVrMZRCV33dtIc/yBkNO3lv6BQd533LGkfWcWgJZ95vKdy66mKZNir9mzYM1KfvHAP/nE4QvCZfpXbyTV1sjY/aaZfh3bTpevc9ZidryhcyJNe5qZIS83gPbLiZe6unCam3Ea/EG0k4jcYbLNeP5McqJjNMPBcMnz3cBpSqkLtNZrai2klBqPMbW/epjbrQml1EaGEtokRiaRxyTqbS9cBpyjlLoOWA58xt/HQ5jI8l1KqV8CD2CSJ9PAzf66NwMXKaXOBX6Mcdw4BnjbdmxfHXXUUUcdVaBG+hFWzwujvdpJ4CUaIo2r7YT+wngeeMXwe/K9fPRjZzFrt+k8ccNPaW1uRBfyXP/0gwCM2W93lGXhZPwIcXMzCd/H1hk7OYp2FgdiBSy8jD9h6ZbNZ6+MnXS44pJvUS6XedPC9/PcYw8webeZflsS+EoNkikbyqa9HznrEyxYsD/Hn/lZ1tmNsUit9FZWloXyo5XuimW0zD/AHG7PZlK+VVxh0xZSSYeBtWbqW5JqO+Ew8U2GmDgZhzV+klsD0NppyGtHNgGYBMHMyAbc1/pp9SUh045ZEA4qCt192CnfSaRcxA4Ic7kUBj6VbYOTDMmz3T4Gy9dGu10b8ALynG2K1rGcmPxOlfORBMtzIxJoO+hEQ9hHVrCMW6rQCgfhVsuQ8VAvLGQMdoJy76ZwnfJKUy2+YcYc7Im7m+8yLWxOtjNywPhh222jaJpltPj9zy2j6wWT/Dluwa4Usmn+tnQlt377Fzz96npe3dTNj08+nLdkzHE9csNSVi9aHlbva521W+gBXXp1eThAtDtnmOgzoIXEIziemB48qALpVMj1alRxDKGj8inpVJKrrrySk045lfeeeBr26Dm0+JIbd/NaCi8uM+1KpaL95QZQmSyqYGY0pk8az9gxY/jb40uZuu/Z0T5TaTZ09fLeN88nnW1gWc5l5aYeDkin6VtlrqmWqeMZXLuFRLM5r+VcgVHz9zD90t1NarwZxKpkGl3wo8st7Wh/NsoZPxWdH4y8yP2EVfPZxhll5F+6NLyiRMMlzxcDpwH3KKU+rLVeVLmAUupA4Er/z21UBR8W/peh5DkPrAbu0lpv3g77CHAJhpTfgyHGTwLv0lr3AIt827zLiXyeDw+SJ7XW3Uqpw/32fhPj83xm3aaujjrq+G+BUuo7wAeBdsxz+n7gM1rrV/3ft+WV/zHg45iEbRcji7tYa/37be07LFGcaoBU5NYgo3HaLVfVh2rtkcubl+XvrvwpLYm8kRWIio3a9UhkM6QmGtKqnATOKJ+wN7ZHOQYyf0FZUU6AsmKRb6Usfvk/FzFvzmwOeudCrr7sR7zjsEMisg1YIp9AJxuYNWcfnln0F/PbYFe4L6eYDyuKen3d4JOG1KRpYTVSu2M8Km20xOlMFj3QS1OnEx6b9pdrnjKWQrch2VMP34uOmUZ2sHHZ+lCyUs5FfThmr9GUdxvBtBOONNvyvNDEzM40hHkAXn83KmtIntXQFBIr1dAC2jOJg4A30IvyyUwiOzXUQutCPoywytwKk0gocjBkZT3PDfNWtGXHHTmC6GvgE+2fo5hm2HNjwt9lK6PJ9KC9a2/5I+NPMdeB3beBtmx7KMHJzzgM556rACgN5GkcZ3rmlqUrOf+2+9l38jiO2Gd3vnn82+lozqLWd5HbaOQCe79jFzYu20S/PxBx0kmyftVcu20U2s91UaUctj8o0MX+yIXDb0NYuTHZEEXhK4hxLG9DaqFlgqFPoAH2mLk7mzdvoqe3l0SmkewE3zUm20rKv450IRcWyClvXIMu5rFb2rnj4Sf46Z8WsXbdOvbfdy62F0mA7JZ2jjlgD0656GpaW5q45d5HOOWdBzN61hQS7SYXqf/Fl0J3DdN8LyS/SdtG5wfCcxcMyLz8oLnmAK9cwmkfE97bViZbvXpyJsqZ2RqGRZ611muUUu8FbgDu82UOT2N0vU3AHGAK0A8cp7VePay9b32fX3+j23gd+9LAV/1/1X7/FfCrraz/OMaxo4466qjjvxHXYuw6e5RSDZiCU78DFgzDK/94DLE+CngME8CYB2w783U7IJc3L9rPnv9N/nTx5/8TuwTgE6efzMQJ4/n2xYY817HzYumzzyHyc/8ldBeKfObGv/HnTx/PjLEjSWQzoeRmqzZmOxEaGhpYcODB3HHbrRz1vg++rnXf84WL+fTpJ/Lb635HY2PjkN8PnDWN7374GP6+9CVOP/IQ3nfofrD+DVPJfxuGXWFQa/1XpdQcjE3cUf6/AGuAn2Eenq9sj4YpYw9ha60L4ru3Y4qX3K+1fqLmynXUUUcddfzHoLV+TvypMCpSP5Nvm175CzDP9Ef95XMYidywELiiKLcfLd1zMJFlAJIZtO1P12ov1K0qoL2lmYP2n8+YUR1YvgayvDFSJzbvMQeVyoQRLJVthqyZCtZOOtLQOtF0NUpFbQlkHb6kRJXzYVR43pxZLHt+Od0bXqNltIUS7fd8zbO2Eyg7gdVvpAM6mQE/KmuPHBdNM3suXlDJz7IjBxjPC6f6lWWZCnLNJsptNbaG0Te3a0MoRzHdFETtPZQfeTZJWSaK3dDRRnb8yHCficm7h0mCulwMvwdwg/7sGB+23UlnjdtJqTtsZ5hMmEhE0dJMNrQW1LkBVJvRRVuFAdxsexghtgp9USIo4txLqYadGGJjFy5jJ2LnL9SiK8U99z8AbzV/dj90HwDFvoEwwdFJpMyMgI9MKUdui5Fq5DZ0oV2PFzf30pRKsPdsk8Bmp1JhpB3Whjr0dFuW5glFel4x20s0R5KM9EB/eO70mE5UYN0m5TBu5JdtvrCi47Ko7QYkEyZl4mXFjMpZHzuTj535UWbtMQd7ppGmjGoei93pz6wUIkcovWqAwVdXsWm0JpNKcv5JC2lSBRgo4CWisbF2XezWkXxg4Tt4/7tK4flmym5YWXPfNQLZcQOU+s01YqeTuD1GgOB0jA+vVzwXL7iOGAjvW6d9jJml8a3odCIJ+MmnqQZUKed3w/CSTZWuVp9xOCsq1YSxY+vVWvdta/l/Yft/AHq01h/y//4k8COgACYJVmt9+/be738S8+bN01+/9k/h3zWt6oSFW9KOppK2aVUn9jWkXn3wvZjKHJZVnbiuCmX5/fCt6lKv16quuH2t6mLL1lgvZgcktyGs6uRUoNrBVnWxtg/Dqk6/Dqu62HrSqk5Y2MXOSy2ruuS/ZlUnu0J+Ly6XmE+pY8llos+Wlufr32hVV+k9G64QT8LZFqpaUsWuRREKqzh3qWwTSqnFWuvt5Uq0TSilPoiJMDcDZYxs4ydKqX8C12itfySW/SPwotb6M0qp4zCR60uAe4HFvi3pcPapZ18ze9sL1lFHHXW8Tiw5dQlaV/H8Y/jluRds4/ch32mtHxpW62pjf8z0XoBzge9rrc9VSl0GfBn4P02eAQ6aGBGKnkL0YnTs6mRA9rQkBpJIW1U8ciWfLYk/8m700pVkOFeOyIVbY4CVsquTlKxdnRAHx2EJ4oL8LLhYnPQKkiAIQ2zkKshDWXRGSRAz+X3e/15SGEnAJGTfSsImBzLyHpD7satvMjbAcP3l5XhXtislBlJykFRtG5VtqUUwaw28gnWrDcYAHNHK0IoLP5oWtL0wUHWZlDinSXHuELzPcyK9WbXLzpMDCaWqfh8j4+Kz9BdHeEFrFV1TdiKK8kiibr2OYrkxv1QxwLJKUq8pNLW1yLYk2G6VwZTYT9Vo2n8YWuvfAr9VSo0BPozRNsM2vPC11jcopXLAhzBR6pFKqfuBT2itl1TuR3rl11FHHXXsCAxXtrGI6lZu1RAkZ247jLV1tAPrAJRSewDjMNIQMNrrE97g9v+/Ry3SuyPg1CCmOwL5GhWzdgTcYZYC/U+g2iB4R2EnunRfF3H+t2Nn6pga0FqvU0pdDqxUSnWyba98/FnE2wGUUrtjHJBuV0pNqajeGvPKV0rpfx7ya/N9Ih0V0HCSKLdcfXbAq5ix8jf/+a99h+eXP89tV1+KLua457GnWL9hA9lMhl/dfAd/XfQI8/aczdQpk9lv7t5M7pzIxi3dPPL4Yi694hp++oOL2LB5C9f+7nqWPv5gFAAIErf8/618L3gud/z1Xk47+7Nc/4Ovcuj8vUwCXTDYtBPxWSnLCQu7yJkNnchEA1TtobrX+sfookv+lHQma7yCAa9nEyqREI4DUaKVdt0wGS5MvsJ3L/ATsIIZDq/PTAzocjHcj7txTeizrZxE6Pzh9XXF9hdWCxzsNUlfgRwmkQyt6lSqAV0YDPePSIr0Bs1Et9XQhEqlURmzvk5mcBv9alHCSUKVi/HKfKJPZSGVGERJ64GBASZNnc4Lzz9He8Kl/OAfAMivXU//GiPN6F+zkYH1A6zs7mdkKkl7RyNN49v4/ZIX+Z9Hl/Lrjx/L3CnjSLY0YfnOI3hu5JSSSpvESKC4eiXlgTzrFxslVNuuE8My3k5DOnIuKeZRIrE1TKpMpkl07oZO+AEC140ltYYDd2WFganYrKdlR/dNtUG532d33nUXx7z3WAYHBuju7eXBhx9h06ZNJLwyK55bwj33P8jgQD9XX/gV9t7NFDChXDTXOSaAoJN+4SLpgCJn/8rF2PWty6XQSSO0pQza7BfiGTKDGtz35ZL5LbiWivnwOrayTaHTS7C+s/c7UafWficOlzyfNszltifWY4qPLALeCbyitQ4ethmGODPWUUcdddSxk8ABspigx7a88mPQWj+nlPohcCumAuyWre0ofLlK6YzWoFS8HkQwn2NZQiddConT8hUruPPeRRz/iS9y74OPMm5UB7tNm8JgLsfkzomsffLvNGQy5kUvXvbvO/pIjn/vURz4rsju/9pf/5aTTvQTqpQFwltapxrp2ryBMz/3ZW664se8aS9jd0alG0hgu+d54LlYaaNj9ZIZdKIBrTWpUZOYN2cmt175E0a3NYbOGzjJSNZVLuKFhCOBLpXCctlAROAAr6HN7yInIv/KQgf6ZcsQ7ECHWt6wJiQbicm7hwMTXcyH58PuGB86Z3h93dhtvl48aEvCr/ZYyIcaYquhOTqflh0Ws8BJhGQ7OE6v369K2JLE7jUOFW62PfI5TjZEfet5saqyIQJtbxBA0Bp8N4if/fznvPWww2hraUaXcqT2ONA0q/UF3JJJvSr2mcHG5xY9wqq+QcY1NjByRBM9gwVuOfcE5uxhzrFqaI68hZ1EvLpi8H0qjdO1kc6RI/w2u6HO1yuVUT7hU6l0dCxCQuf1d+N1rQ/1+9LFBbcY3hNaekO7ZfAHGFp7oV92jEjjSxj9dd68YH8AJk2aRC6fZ6895zBu7FgKhQJjRnXwpc9/jnccchAJrwj+zKQqDKB9xxTllCPnFcuOJIF2Ml4Uxx/cquIAKpmJBgyeG+nycwOho4tZzXcO8e8d8KO/nhfeI1ZDRJi9/ACu36+2PwDcFobrtvHLYW1t++IG4EKl1J4Y8n6p+G1v4IUd0KY66qijjjoElHnTngVcr7XeoJSaAPwEeBl4DmPzWdMrXyn1IUx0+l6t9SZ//TOBZVrrrRJniLTfMY24WzSkT0TQAgmNTmYiKZgoJfzHay9n8dPLeP7FlXzxnLOYM31SlLTmltG2Y17Ayor2ZdmgNfvuvScrHr+f62+9k5/84kpO/+RnGdHRwRHveJuJ9CkrjKip4iDfvfASDn/LIRx04IHoIKdjoCvaH4RFUrD9SG1AhkX08JJvfoXPffXbjNv3LSy6/gpm7jqVxoYMti6H66lkGuUvr+0kOAm8gJx45SGRcbNclDynSrkwogx+lDJrjj8xIS2Ss6JooC4JDZ7nYTUZUm63tOP5EUKVTEcRaUAJz2cvPxAjydqXeVkQEk4815Ck5pHRcn4kU5ahxitH+QvaixJ3kg3xHBa/b/2VQMPzy5dz0SU/4P6/3mVKg1uOqSQJ2G0dYXXLVGsTvS+t5aFvfpSJn/4hB++9G6cf8072mzGNzMjRke2eILnac1Fpv722HUZkbSdpEjlFApzlJ1zqYp7SZpM4mh43uWqeinISsRkFy3PRvoWjtqNBkSTCaB3OrynTCH/5pCHSVWYls42N5Ls2sHTZs0ybugvpdJSQG5B5pT28ZBOqnPLb4qGC601ZUS5HKQf+Oa4sUR1FzZXJVQnWT2VRgUSwdVTVvBASmTARkAa/+mg4kIqufSXW17nhpfAN221jB+CLGAeXfTFJKBeI3+YC2/T/rKOOOuqo4z+Cw4GvKqWyGD3z34G3aq3LbMMrH+jCEOrLfJu7YP0jh7Pj6AUcRTu1smL5ESgVkcFiLvaiVUS6/Ll77M7cPXY3L2DtRaTLc7HCEsmZSDpRjryFJ40dyblnnMC5Z5zA7fc+xOkfP4eD9p/PrJkzueCSH3LYwQfSOXE8N9xyO4O5HA/cfoOZuvajvSrZECZHa8+NSLPlGNKbjiJuQZW5T518LI89/g+uv+0uDnrf6QBc/NXP8+lT348KJCx2IoreuUXTFzKnxO8Lyy1GBNqKIn460xwj1qpchCCh3EmhUn70b6A3IrZEJFc5iXCq3co2Y/kkRrlF4xQSDGpKxZCkewO9EXksF8EvAqKTWXSD79NbzKHz/SHpQntR7oVXjhWsiSrpRRFlle+LpGrKMsQyOE7toZ00v7/xZmbOnMluu88IyWUYne+wSCSSPPr0Ml5+uYe+coolDy9nRHMjZ59xGgsO2C/aliD8EoFUA9uOzTwo247EYp4bRZH7uklPGzVkfZWKpC06X4KkFw5ELCcZLyQTXO9S8qEsVFlINVR0H2mRh4IlZl0sB7TL7Bm7xmQyKCscxAQJ2MFgVc4ImB9E/ka1BHyxXXN+rGhGxXXDQRVax6U3Aaku5sWgICgL799XiUxMBhceZ+PwPAl3WvLsP3S/WeO37VldsI466qijjn8R2niCHb6NZWp65Wutbyaq2PovQ7klNIYQKK9k7LsCAiqItLacyIqrslR3QNikBIS4I4sqFUKrO1Mi2Schwv3m3Yfsz2O3X8ejTzzNk8++wCc/cirr1q8nm3JYdOt1zJ4+GaWUKQmsdLitYLpZlXKhxjmIosbaXC5RLpe586/3cv1td3HA3D1Jp1L84+mlLHzLwYZ8BFE1mZStPUNkBNGRrjmqnIv2H0Qr5bR9qRBFACFO+FJRFFmXSign+j7QJSPLYyczZoATlu6OZgHsVEOsjVGE1AvPsZdpgXRTSOZUvi88f1ZpAG37xM12ooIpghjKoirGZtDDmMQE/ZJnsL+X6ZMnGp06xAje5q4eUolGTvj8BaxZt54Tjz6cXXaZxn23fozdp+0S05WGfey5MZ21lQos+OLRTl0qRWRYDEhi2lzAs3zyXS5F16yTMHpoP6qvB3pDC0Ar2wQBSSzmIsKZSEWRV2WF145VzkNpMLp/KnT4YRTbK0fkU/axjG4Hxx8McOTgtqJ4S+xz5f3p39OyoihuKR6F96PVMWkKQLkQ9aedjB2PkoPjYWCnJc9KqVFAVmv9kv+3wmRizwT+prW+bUe2r4466qijjjpqYdKEcUyaMI7j3rOQdx3/Yf56/4M0NzXyv1f/lr7lj5FJD01iGy48z+OkT32ZG/70ZwAeXvwUc2bsyksP3klrS7OZBq/jDeOGm/7IqR98H1rrIQnVMw9+B1u6jE728dt+wz4zd8WrLJNdx/+32GnJM3ANsAIznQfwDeA8/7uzlVKna62v2TFNq6OOOuqoY2eA50eKVLkUTcMGRUL8SKQikiRUlunWMhIZFpOI1g2Xi0kX/OiZkw6LfuAk4sUlgjLKXp5vfuZM/rlkGePHjmbp8ytI+klyVqE/muJGRHmddBTdthNgm/YNDua462/38uPLf8nqtesAmLXrVC75ymdYsP98k9AIKNcxkgaIuVXgpCqmzb0wUctECSOpRtj+UiGaxndMmXEdWD26jukDMBHpIBLoFEKphi6V0K7vapDJQs7XPKcahrpciKhsGAm1k5F+u5jDyvf5bUmH2vbwWIJ2Wk4YiVXaC6UpJtqoomWEbMOcs+ic9w4MsmbtWr7z/R/zqY+dTkuzSUhTbhGtdUic/3H3jew1fYqRjQTlw51ETLMcRj+lvSeFSOPulyo3TbFMkRg/wm61doSWrlJfTrkUJc9ZdvhZey5K6sWLeVM0J/w7F+3Hv8YstxjJXJRFUDwkKBajvLx/LpxYVFkLmYsqDoR9GYsqCyipP3fLMQec2HUo7z3pkuO5kQSpnI9LgwJHGOliYifiMxh2IlQcaenIIqU9ItK/NezM5HkfIjsiC/gYcJ7W+iKl1DeAT2EI9v9ppC3hp5sRF7hYRnoVx+26q3v75ny/5kFRiELa1uXL0ed1/dHNvK4v+jxYiqanGlPRZTKyIbop2tKRZqolHbVdtkX5+0qI40zLQhtUh0zk8MTnmFezOI6imDKVzlalKlZw0h9Y1SiuIf2ZpcterWIcEnaN5aUtXdBb8jaVLZXLymOWe5Sfa3lOy7bI4jhezCO58giIeRXHvpcPYfHSV8K32W0YEe1fFLvR0tu5QvsXIOYBHq4YXcd2Das2JayoZAqQ5clrRNxHNbbjimsqOL+1fLtr+XJLJ0RZBEh6SMddIGpA/KCs5FaXLVbYL/7rMc3/ewiJiW1Hbg9OMpQYQMWL0itHy9mOcBxwI2JZDF7w/vVo2dE5k3paWRypFK/GpkK9Z5r5c2Zy5cXfYNnyFznmfy/C1h6UPUMmgspmdrJqsSVVLqBKOR56ejknfvKLTJ40ibe+5TC+/5OfMqVzIrdccxmTJ473d2r27yUzYWIWbhEcWbjJi7ThdjKUXhjC6e+zFL0LdCIl3EnK8UJJNoJk5+IERiYP+v0tqw7qUhGVSArS50VkUFlh3yvtRVXhPC9y3sj3ocvFmA1eMKjRdhJVimQIyhK2gcVINhANdkoxGQLKYvly40kwb685tGQz4JZQ5TxLnn2O7/7kCsaO7uDZRXeTbWgw5NyNbA/xooFI0AYY+r6LWcQJa0NTIdKJf49fETLsv0KUBCuTNi0byqXQ0g/LiiUshnaEnht3ohD2hKHtnZOInwuIZB+SPEMkm9B6iEwllpgpn70BSdbaDH4roZQYhJZjSYY6kYlIuiuuAynz8dsAgO3LSWRiYaB/zg2gfGu/mMxjK9iZyXMLsNn/PBcYAfzG//se4LM7olF11FFHHXXsPAiJnvYiUlsumpdtpZsCgU5ZEBMR5ZLJUapciBGFEMIfGIhHpCuWC9ZV2uOIQw/kiEMP9H8LkgHtKFpbGAj108bqzY9KWhba8/ifq37NK2vWMnO3aVz6iyu58Gtf4oxTTvB1wBX6UmWhEyJaXJIFjQqhrlO5xdqevrbQkAoNuIxEmy/8AYqdRKX87+UgWAy4lWXFBtGxNiecaHCorIhoBqWzAUUptCdTloW27OhvOxHt1xGDJbeItvzjLQwI95IilvR5Fucxny+w4B0LAXjwzpsJh63K4sOf/SpLnn+B3/70h2Qzfnl2P6kzpg/3SVoYjQajI5fJm+EPXqyfvESk5Y5V0i2Xomi5KAevMs3obt/mr3kEulTAzkS+xaGUkJ35AAAgAElEQVQ3sm1HSYqWFUVZS3HiGkaqPQtdHIja5rnhOiqZDmcRwr/9PgpnebSHLuZQMhAdJgAmRTl0K5bEG0W0RT8NmaXQ0f0Wux6FLrtUiEq7F7rjSZJ+fwR9VOnLvi3szOR5NUbf/ABwBPCc1nqN/1sLkK+14uuFXxHrx8BhmD55Evi01vop//eTga8RZYqfpbVeLNafhzH1nw2sBb6mtf719mpfHXXUUUcd1SGnjmUCWKwyqUgSBOLExA6m16MEMqU9vFQ2Su6KeeJGEWoz9S+TqIIExTgZi80LyCQ7SfiD9kBoN2aWNwTjVxd/jW99+gyWLF/Jpd/4ApPGj0WXBmMJaLHELiFJCCN02oNSPi4vCZLpZHvTkWwCrxxfvsJZIZR6JFKgA0cQ4dCgdTzhMojIV0lCC4/ZsgyBxCeh5SgKHRI7y0HZibDd2kmgVdbfh2izkHBUQiaSWrmoCGbSJ5gHzdsTuzQQRT+LA3zu9BP44Dlf5qmnnuaodxwWO6aYh3I5kj6ECZZCtqHLJZQTzWzgxZPXdC3pQ7CNCsmRaoks+8gIn2zPQ/labKW9uGwn6DtpTSjuA5SFytSy8wPle48Hxxz+HhLkBCopfisMREmxMsmvgnCH0hCR+KqVZWZp/AGtcotDBrUQXcfrN27msaee4bD5e9GYbTDRdBFtB0L7R+XEifxwsDOT56uAi5RSb8WQ5y+J3/YHnt2O+7oMU0J2N6Af+DamulUncCDGKu89wH2YkuF3KKWma617lVItwJ3AJcDBwJuAm5VSL2qtH96ObayjjjrqqKMSMjIXkM9iLl7MxC4L2YWQLQhnASXkGJTyKKKpd4UbkVFB0iv10zFLNF2I/xbTXkaOAcFnz8lWj2j7HtEJYNquzUzdbYb5HcygIIhwChcQIKowVzGNLWUXWkxjS9KiLSciM4LYaO1Byo47eIhthbZgcn81imygPVOQQ0Z/ZX9V9i1xmUNIWIP1y6WIWEvCrqwo+isJJ4BVDpeH6Hx2r1tNUzbD3352AZRLYV9e87s7+coPfsaPvnwOp5/4/qEa52A7qoKkBpAzG6KK5BBXCLmubccHiFJSFwxchC4c1zWFgMS1EBWJcWPuHZHGP6r8iNQPB8tUDOSi40kO+T4+8DPXXthiJyLplVU0Y9dBMJtRYZOna2nJvXI4MFH+OR0//60AXPiFs/ncR04ysgypbYa4jEaci+FgpyXPWuvvKqXWYHyeP4Eh0wFGAFdsx91NAy4NDPmVUlcC52JKhH8EuElr/Wf/t4uBszFk+pfAMUAOuMgvI/sXpdTNwBlAnTzXUUcddfw7EUa8FFqLF18F0YgikYhEQhGtlpXNkg0xwlkJXY08u4JgWxZRZoP/m8wXCEm9qHZoEYvwhrpRqyJZUUaC3WI09a6iQizGo9qP8FZEx7ErqsaVpc462K4bJ2my+ptHLOIZkm8V7/sg8qrMj9H2w2Ivyt9XYB0mdMKy72UU3a8cCZhiN4J0qmIujPwrrxy3HPP3qROpiFT6yXDhcUB4LCNamrAti5/97mbO/sipYNm8tm4Dp3/pO3zvsx/l7A8ebXTU/vLfv+waPv+9nwBw/sdP4+ufOiPat4x0el6ord1asmQssVEOyiBW4CeMbgu9f6ATjiXzyYFYIGVyS2D5dnbSnzs/EC+nXjFjU3ktyn4bcryWEyXvBpDkXdy74bmXuQsiQTGQx6CC+8UKJTsxqYXfjy8+cDs9vf3Mnj45ancFeY5HrsWs0TCw05JnoKY3qNb6zO28q4uBE5VSN2Eiz2cAi/xqV3siEhO11lop9SSwp//VnsATOp6B9ARw0nZuYx111FFHHRXQUsdY+RKtJGEEL/StJwVVEpvYFLEgM1p6xdoicitInVYWyvHCghFUkqEqfrcajG4XzHoVEdqQ8GodJ+VBpE5E5ZRXjpc79jyTPAWGfMmIpVsRWfT3ETp/AMpOhlpybdmgk+F+Yv1dEQkN+oJE/BzFEhDDSKIgUxBfXxJ3EXnHJ9MQl81oy4FkBQHz+1WJ/pbOHXZDI5d9/XN88LPf4Ks/v449Z+7O/Y8apeYtf13EmR98L00tDeHyxZLLbrtMoqN9BIcevCBe7dLyYpKGmIRHDCq0THUWsyPKj9BXhSDYIceUEhtAq0T8vATkVTiaVJYKj+nIkRIbFZ0vZUHZb38iVT0i7CN2/QXb8sqxeyRE5f1ZOciQsyBq6P0d/N+5yzR/555J7q4kzsF3NdbfFnZq8qyUSgEfAuYBE4GPa61fUEq9H3haa729pBsPAqcAGwEXWAW8y/+tCeipWL4baB7m7zEopc7AkHM6OzvfaLvrqKOOOnYK+BK7b2NyP/KYct1n+b9tK2/kY8DHgU7MM/hF4GKt9TYryUotcqRf9mJOGpXRu1g0q9ZLU2pVY5KMClJeuU2IlYeW8gFgCBmombAXIKgQKBLMtHCXqSZvCJIIgXiSmdaGDLtVJAW2HSfPMgocRrrLyEp+XqIh6mNZyVBEx7GJ+qtSey5g5XoiqYnjVO3voUU3ZOltbeQ1QGUVxXBbsmy3ipdvj0WilcX7jngri5ct5/tXXsf9jy5GKcX/fPvLfOLL36Z17tsBKLz0JLZt84VPncUXzxExPRnJlYMtJxG/Lrz49Roeo0Csv6RESbh7WKLgSSgxssQ5C9cXgy3PDQdbyi2hkj4pLeZCXbIuFYwMw7cHVIlUeE/EymtLaZBbimQfju+mIqLKleQeiDttqHI8Ui2u71jlUDkArbimqjpmBFKgavd+8HfFdreGnZY8K6V2Bf6CSQ5cDByCIapgtMVHACdvh/1YwF+BuzASjLy/3QeUUrOBPr8NEq2Yhzv+75Or/N5LFWitf4FvwTdv3ryaLlW2tBIT51JaUkn7OWltVhBelcHHzbno4lwrLOk2DEQP5FVbBsPPE0dENmSFcrS9vPicEL5d0s5LOrhJC7Xwcw2bsKoJPRWLy+OUwX65T6GwIpuoYSfnryBt2mrZ00lLOmn3pkpCFyanOKWuTdoVVWlHwlZhG+SxyX1KF7KE6KKkHf0h4xny+OX3ShROsEX/2rIyU9BW8YIv1eh/afmnpXpMLp+OxpDyGimKKW15hoSjISkneMlEL/SCrv5gKxSiZfKiwxKiH1PyBKvq/euJNkqrx+DalfdfqUZfyN3kxHvLEU2X11c1O0WobX8XtMGufmnvECilDgFuBE4HbsOc1pn+bwex9byR4zHE+ijgMYzT3jxgeKW+6qjj3wClFBd9/uN897Nnct8/n2fx08u47+HH+cDCd9Ixoo3Zu0/Htoc+O+v478BOS56B/wFeBd6NkVIIYRb3ARdup/2MAKYAP9FaB4T3CqXUhZjExKcwntMAQaXDvYCb/K+ewrwUJPb2v9+hcKsMvnYUkjvRm96u4c+8I1CDN/3XI+UMb/T/n8DOdO1W+jnvRPgu8DOt9Y3iuyf8/7eVN7IAuF9r/ai/fA7jsjQ8SKs5oSWWUc5Qe1kNYQKbNNZWJjIZ6EMrf6vmUy71oVrod4PlxW/SfismHZARM2k7J500BGSEe6iVl79dh6HRtiqRWFUuxoMAoVuDkFBoHYuqWm7fkDLi4XZlO4O2aC/SRlf8r1PZyHlESk2kZKXCEUW5lVHKKlpZGWF20tExymCN56IdGdUthtpky/M4dMF8Dl0w3+iNRV96or2ek4r6KUlcDy/t2QKphb/faKeBNEXFirzI4zLSGD9JMFn9OhySqGhVXFOVGmL8mYzg+3RTJBMJZCbyGhVafE9F3shaXodVjh2I6e9jT7KK530sOh1LJLRi5y+M1gv/ceWW8aRu2Yuul1h7tI6uJXkfSAvBrWBnJs8HA8dprbuVUpVPvfWY6b83DF/XvBw4Syn1RaCAiTw3YaYXNwN3KaV+iXmgfxITGbnZ38TNGFeQczF2dwdjIthv2x7tq6OOOurYmaGUygLzgbuVUk9gpBdLgM9prf+ByQu5Jli+St7I/cC1SqlvA/cCi7XW3cPdvxfMbmgvbn0lX6DKipNLWShBkglZ2axy/WryiGA9GFKRMCYZcZJV/aQryXL4Z+X2h5CeILkpEXkgu6WqU+JUFP+IwU5GcpDKqophMlbF94hCFUKGEE9KFETfLeIlGsJ2xZ0jKo4zOC5/8OL/gQ5mqoQ0BK8ck7KYcyw+y4GTrCpoWUOWidwovHA/Wlq3CUQkMRosRX7igugFx+Iko/63xWcpQREaZ4SmPNqpT5jFQMJcrxWSoKB9MTlLxUCuihwn/E3sK/w6lgxYjiUshuQ7OOYAvpd3oP2Pa5qDPvfieQGV5BaMXlseV2UCocgxCJervG/tCrJeRQ6kZVv8a3dbcwo7M3nOU3vabjxGV7y9cDQmafAVTIGyFRjivhJYqZQ6C7icSK93eBCl9sn94cD/At/E+DyfWbepq6OOOv5L0IahLR/B5Io8B3wOI83YlW3khWitb1BK5TD5LR8BRiql7gc+obVeUrkzmTcCxIlG8OKsoiuOkdkgYlipLw2kQv4LX77QA5u0GAFEkAsVT5jTAZMLImZWRQSNePRNucXIucKVOs+hhV5i+5YETm5XEubKCGXMA1q4L1QhMOYY4seqZTJgLY1o0N+Jhoi8StmVsiqKUySGEp9gO1UkfVr7jiSx6K2QklX4fA9BZZKa9sLiOTJBT8tBlS0GIpXb9BMYg89aiSQ56acsyGt47djR4MxUwxzmDFOV2Yjg+o5F0qsQ7pgXdux8xweBWp4jUnHCKs9XjX6JJ0hacSItC6OIZcJ1rYq8hQrEiqQE26q0PJRR9BrS0Mq2DAeqVpnaHQ2l1O+A6ZjCJf2YSsZzgWWY6MSzWusP77gWvnHMmzdPL7r/vvDvslA5SmmBnKqVn3Pl6ie52imVy0qpgNShyunpmOZaXP5pobP1xI4ak9E4Tepyg+OQ25O66Vqlr6VUuWapaHEc/cXoASpnthtEY1J+Zq6qUf1KlgGXOlu5fJAoA2Dlo1KznqiapTORRL6oohs5Xk586EmSfREr6yx+SLrCu1Pc5J4olS2hqkwLVq4bHJ88NsTLu1Z/DQvyJZSKDPXLyeiz1GUHXRQroS76RWqu+4rRtgdK8mUXLW/La1FsKK4pr547EHyS90ta3CPFGhr1yhn+APL+KovzL+9iu+a1rofsUy6ZqJAiTRjRiFJqsdZ6XtUNbkf4XvfdwHe01l/xv1PAFuAE4ALgGq31j8Q6fwRe1Fp/psr2dsd47+8CTNFbeUkppXS+t6vWj/Eom4TwA46dpMoXqpzirRaZk8RCTgNXRtsgTgLkfVTtHtVViE+VKOMQ2UXQbGVVjbDGClFUHqOMVnoVVnXVIpfBurWil2EUWbRFTulXOdaQ+GwlaStms1c5xV4tCi7XjRErtfXzLRFeL17Vdq9Zs4b7H1jEH26+hXyhwA2/+RUN6dSQdYYmrkYR8SFR2OC6kNHmiuMPN1OZSKmEpVzlM0VWOKzmRT1kNkAMGOQ+KioqDmkPFYOFoC3V3kOV96Fsa2Xfx65dYTVYpfhLVbcdOXMQoMo9mGpqRSmF1rrqQ3lnjjyfi3HBWIFJHNTAV4FZQBIjjaijjjrqqGMHQmvdo5R6GarmxGq2nTdSub3nlFI/BG7FRLW3bLUB1fyTwZS+9lw2btzI88uXs88+c2loiPs3B5G/rq5uWka0hwM5z06YZN8qcgcPFQVutUYrRW9vL3fecQfHHr2QRMKf8q8gn1oS9rABFtrZBmH0db6qChGQxKZq1Db4LEml8MOuLPISRmsrInaxtlT+Jj9XO4ZKol5pzReTVwTtrE744u4oypTdrjGNX5VwKqtmMEZVDAqqOkloDXhorXlm6TIu+eGPuf7662Pb2WP2LOxEMrbPqkEHreNRVtlG5E92eGMNR94gjyE6uKH9olUKiKwNqyKoPBhGlSt8n6tdk9oLZTbBoCAITFWOSeR9pETkPYoog2uZdfv6etm8eQvJVIqRHR2kEk54zrSWga8KeZUYhMTOpSz+YlfIQ4aBnZY8a61X+R7LnwHegnG3GAvcAPxAa715R7ZvR0FGyWpFuIIAV7FGNlp3PooktqSii2ZUQ3Q5ZC1pdC4uzLKsmiVfDtWXD+p6WVXfq9BTiG4+GSWWtddFUDseqRb7b05G68ZKwRaj6HC1l0GsYlW1qdjKzyK644kIczkVuUrEo+DR8Um3h+aUaUNSyyILsvJT9BEx1alKkSOKnJ6yC/1iXblNWalK3O7bnMaUJERWearxyIjp4gQ5qb40toigu7bYvn+dlGq4qkjUcqmQ9wieiDCLazAvsmnldSQjuMH2izXcO+Tu5eNWvobk93LdWDLvMGb/gtkHVfOYt7mJfzcuA85RSl0HLMc8t/PAQxhHopp5I0qpD/nL3OvnoEwAzgSWBYWrtobfXP8H0pk0+VyeUaNGUS6XGRwcoFQqc9edd3L33XfROWkSr7z8MguPOoqpU6dRLpfYsH49//jHP1iyZAm2bdPR0cGBBx5I58SJzJw5g6bGJpavWMHf770XZdu0trTQ3dNDQyZDOp1h1epV9Pb0Ui6XWb16FV1dXdxw/buYP38+hUKeQqGI67porUkkEowaPZpTTzmFppa4eZMSxDAg2K6nI6s55eBYFVHj1xMRr4Sy0FYVkrotUlT5fZXtbgsxYiSr2/nbjvkBB1F8ryxYlngZVOyvMqGyqsWb9lBhx0riWuVJJQdMgUbdc7n5llv43vcu5Olnngl/v/aaqzj2uPcJkqrCR7jW4v0nB0GqNqnX2PFjDdqhtVgner5aKj6gi3dEReS6iubcs1XNGUBlJ2KXlpxxtmLPQ5/IKoZW7vOfW3JG0ULHhtsBwfY8Td/AIGvXruXxxx7jsccf447bb6enp4f2kSPJDeYoFgt8/kvnsd9++zNz1iyy2Sx9Pd309/czcdzY0AXFJF8m4vuUXaMUr732Gs88swSUYvPmzRQLBS7/xc9ZuHAhW8NOSZ6VUglMAspLWuvzgfN3cJPqqKOOOuqojUsw2uZ7MMT4SeBdWuseYNHW8kaALgyhvkwp1YCRgPwdOHI4O779T3+iWCiQTCbZsGE9yWSKhoYMSikOOGABF3zve4zs6GDd2tf4w41/YN26dSQSDlOmTuOIhUezz1wTkV7y9D9Z8swSVq58kZtv+SO9ff1MmDCBD5x4ErZt09fTQ1trK70DAwwMDHL0e49lxIg2LNumtbWNltY2fvPra9m4YQPJZJKG5hZsx8FSilKxxDe+8Q2+8IUv8K4jjmDa1GmMHj2acePG4TgOGzas501vejMzZszAsqwYyfC0xsQYAjJnhXKkIWREwKsxdJXKC+W8PhlWwNXDnD2tY22o3A8MJXOSuw7RoAZkDhWRR9uuOqNfq31gBr5xkxyz3VokM5C3VSOZAcFasWIF8+fN44MnnMhRRx/N0888wzHvfS+fOOcc5u4zlxIqyrFUOkZsA2KssHD946pUwMQsPnXM/LNq6EmJ712thywUjLO1Vnja7DNpqzBY4GoLS+wluF4q+67sxdvihtvVYQuUJP5ahzaq8rytW7eOa3/5SyZ0dnLwQQfR1pQl29TMU089zeNPPMHzzy/npZdW8sTixXR1ddE2YgQHLDiQiZ2d3HL7nUyfPi20RF30wP389te/4sbf/44VK1YwZuxY1q9bRyaTYcuWLYwYMYKGbJYvnfdlTjrxBNOWYLCmLNatW8dFl1zCQw89xKuvvMoee85BKUVbWzuJhMO7jlzIxo0bq/S66P+dUfPsey/nMA/Yv+3o9vy78K9onqV2uSA0tDGHoWA96asrtrElVz3yPLaxVuRZRGRrRp5FpNCWkWfTGumPPCjaLXWrMvIsIbWitSLPMT/jWOR5QLRx65FnLf2ZhZYupnkuRpFfWaigduQ52r2MPAce2TUjzxJS41cj8jxkajXc5uuIPMuoUjUtXK31KpeXkWf5MhK6bHmNyMhzEL2Q/VbrGdUrrh15fUsdfy0NsdTxv57Ic1ZcozLyLbXQsu3yJZSRMyviHpCR8lrtDZqVr5HnUElgJrX/5zTPOxJKKd3db+4JqyLiVYvUychZ2dOxGQQdW05uS+yTOIGQZySYUbCt6DnsETweNSteWM7yZ5fxyssvs2H9OtatW0chl2NEezuLHrif19asoa2tjX33249DDjmUfebOJZlIkEoai7Om5mY6Ro0mlTT3j9Tax/I0KjXXIiJaeTuFEcOtHHuwl5D4imWD72ylas4whsvGSFbt5TytY1uqdiYtpWLnMrYfovwFpVR4/hRiFqdCox5vZ9R3Pf0DTOrsZMqUKeTzeZqamrnz7ru54vLL+dOfbieXy3HdjTczavSYcB3HUuEz3haEXeuov2sNfLZ2jioHVbHrMPhMPHfDtqJaArlCkYTSpFIpbEuFzydXm2dfLpdjzZrVrFj+PEuXLuOFF14gk0nz7iPfzcZNm7j//vsAhePYbNi4iXKpSDqVpqW1hTcdfBDNTc0M5HLgeQzmcqxbt44lS5bw0ssv88KKFzn2mGNYtXoVS5YsZWBwkFGjRpHP53nTm83AccqUKczZa28mTOxEKYWrK+9p2Sfm/97eXjasW8vEiRNobGyEcol7/nI3Rx/7PqZMmcyyJUtYv349X/7K+ax48UV6enpYtWoVJ596Gke/5xj2mDOHVDozZPauo7lhq5rnnZI8AyillgAXaK1/u6Pb8u/Cv0Ke+wVhqJUwWO1F3ihkDfKF3uBGZMzZ/HL4ubQympJyeyKFjN0eOQRa2abwsyRM1ujJ0ddC2uA1tAFxcisTxzaJihKSRkvS0ShIvTUYJQqpQiTPiD0IRcUsncpGn0N/SykZiBBLvhEk2UtHxyOLh9Ty35Uvt5QoJSoHIUGiXlACdwjE8ViSPMeqgdUgrOL4PNHXOimMbLaWgUxFdKjSQincePW2WHlRKyg2aKmeCe8lo3MU9K8kmnJ8Jfu8FpEuCn1EwpL3V7QdeY5qEe91/eZ6aErJxNhoI7W8oEdkouUzwsu0RxR1kUSl1vFVRnYqoSqI4vi2bJ0872TkOazETHS+ZJstBYVCgc2bN3PP3/7Kow8/xLJlyyiXShRLJbTW9Pb00NXVRUM2y9mf+ARf/MIXonb9l5LncrnMH268kauvvopxY8fR3NKM7Tgce9z72Xf+/Bh5dstlkgkHpdQ2yfPvfn89p33oQ+F3f/3b3zj+Ax+gr6+PO+++m/n7zqfkab79zW9w+2238veHHgvP685Anj3PY+kzz3Dpj3/IU/98komdnTy06AG01szZcy/yuRybN2/CcRw6Ro3ilZdfZnBwkHHjxjF92jSmTpvKrtN3ZWBggJtuuokRI0Zw9MJ30zcwiOu6TJ02jZRjMzg4yKZNm7jrz39GKUVDNouFItOQYfTo0czYbVemT5/O1F12ob29PezzLb0DvPzqKmbMmEEyGb0PXK1D8j8c8gyGLwW/JRR8/+KL+MrXvs4xRx/F1GnTufyKKzj1lFNYeNRRNDY1M2HCBFLZpnAdTw+Vvm2LPO+Usg0fXwYuVEo9o7V+ZptL1zEEO4EOMkRAnHcG6FrR0x2AmMPFjsYwEyX+EyjtRNduQJx3BuyswY6dBbVcWiRpcXXtfqx8UcsXdDW5uXzGKhUflAW/2Sq+YVcTY47Bdi0FykkyYvRY3n/CyRx/4snR+hhi/c8nn+TBBxfxra9/jXy+SKHshYTNVpHcQ23FFafGhGGsLVrrcLuKqF8rI71D+jv42dfZep6H67o4jkO5XMZJGquzcrnM5ClT0Fpz3HHH8Y53vpPPn3sus2fPZsOGDXzpvPOYtssuDAwMsOzZZznkzW+mo6MjptMFjbIUTS3NVMPN/4+98w6vozjb/m9OUbdVLVuSq9wbLphqG2yqqaGaEkowxbRAqHkp+RICIXlDzZsOCdVgTAm9BbAxBgOuuHdbrrIkyypWPW2+P3b3nNnVOdJxkXWM574uXdozMzv7zOzM7D3PPPPMW//hgosupGznTgJ+P7m5eXz00YdkZGTQq1cv0lJTGTJ0KJ0yMujWrRvffPMNaenpeL1e+vbrx86yMlJSUmhqMsbo837yE4QQhEIh6usbqPcbGwfv/OX9/PvZZ/nvR+9z3nnnhevRqku1zrwuEXVSp5rYhKI0tGj3uJRJQUix2rjt1lv5avZsyivK6dIln59eeSUPPvgAK1as4LZbb+Woo49mzZrVdOrUmdy8PCorK6nYVcnQoUPJyc3F7RJhhYI1Ibv7rhZOcVp4+LjpxqnGW3Fs1vQrHqdCCvvNzE5meJbBC4IK+Q+GIpOCoJQ4v0qWosLrFuFac7tExPQmFOK8n5zLh598Ql19PTXVVSz4/luKuvewKSjVlQtfUNpWJ+JBImue52Mce50DbMc4GMUmrJTy6IMv2YFDvJpn9Xjs3U0R7YI/hpZMXVq2ksRy2dXZFTEV8FRsCF8HNkXcqzZvXh++diVFOoInN7JMJZIi2ll3Zm4kfVaXSJ65vY38kiIaa1WTri5Jq0dPq27bOtdujjxzz67ItUfRiCoaGKm4kENJY5lrqKYaxDQxUGbFipmHS9kk6VKOvlZNO1TE3A1vaT8UzbPNBZOqVfZFnkOzYpISiE7wZFbkHcnkSL3bNL82GVv6v7U7uI/xUY7hEs/VGHHHbpu0uKJru9X3Zcmi7Cm1rZo0q+ZM/uirMI0x3AOqZhs2syBl6FTNKaqbjFUR+4cwIne6sqtV1Y7kpCiaZ6Vf7m5UtIRK+ljmH3Yti/E/lrs7gJ4H0VVdR0IIIStrjX7gEtE1uhZifelsdWtpCM1w6/toaqBa3KMS7FiaUisvlehYaM1kx0q/ZvUq/vn3v/PGa6/Sq3dvjj76GC657HKOHzu21RNKrfvdLtEqIXBqM1W5neVR0waDQWbMeI2KsjK65uezectmysvKaPb5qKioYMOGjWwqKcHvj3xjUlNTCQQC+Hw+pKn2mxQAACAASURBVJThOs3IyKCuLrLpuX//fjQ2NpGWmkrv3r2Yv2ABLuGid+9eFBUWUmwS7/Jdu/j4k0+prjbGmcsvv5yrrr6amV/MJBgKkpfXhW4FBbhdLqqqqzhy1Gg8Xi/l5eXs3l1JyaYSavfUsn37dvr3609aehpSSpYuWUp5RQVFRYUMGTqMgoJCsrKzyM7NIyOjE1VVVaxft5YP3n2HuXO/ISsri2nTX2PQ4KG2ugf7qpDzcNto9Rq5z3wPsuWkRX0/1dXVrF+/nnVr1rBg/nyeffYZRo4cydvvfUB2Tk7UdhsNQaVNW/CYGl13jDaiym3xETW9EAYZdim/w89TSbKyQdbjivS1kIyMz07RVY2+01OKDcqqi+UdB+yrTmqZre9EbqdDV/O8AuOUKo19RCId/WwR50SAaufc4YjTIfvBQLTjfzsKiSSLRZwTAe7EWRxISKhk10kKY5l0uEUkjaphdQm7RlBVaKhTyGjTyXjHXpvmVi2H+b+yspITjz+Wu++9l2UrVpLftastf6/Lbt8ajQyoxN16jkpmVHMPl0k01q1bxxdffMGAAQOoq6ujobGREUccQVNTE5s3b2bFihV89NFHLFq8mGt+9jN+WLKEnj170n/gIJKSk8nNyaVPcTHFffuSkpJCIBjE7XZTV1eH2+0mLS0Nn89nEmaLJRpjYWZmpmHjbckroLS0lFAoxNYtWygtLWXjxo24XS6GDT+Ck08+heqaGjZs2MBpp09i7LjxjB03PrqG17HBMZrJyqZNm3hl2is0NTfh9XrwB5awZMkSSjZtYumSH0hLS6ewexF9+hRz4sSTeOzpP5GX1wW3yxXRXjoIc6zJS6yVEhEKgjl5Ky0tZcmSpXw5ezYbNm6kvKyMqqoqmpubw5OGPsXFDBw4iCHDhvH5rNmMGj0ar8famGh/ulVWm7mSlC2IvRUelBFPRaoJjLP+VM1tOFzRINsejtUOzXpwR+yyjZWaCGEOhtu63cY9JGVE2WGrPHdMT2QhRFgGtxC2vm+R5ng1zwlLnqWUP+toGTQ0NDQ0EhuWbWkschztdzQ40wjsmmhnXGt5uKMQjL1FY1MzpaU78Xq9/OHRR/nTU08x68vZDB02zJa/tcTeQv44WIAwfQ2vWrWK0ydN4owzz2TEEUeQkprKHXcaS/V5eXkUFBRQUlJCt27d6FtczLDhw7njzjspKirimGOPa7WcksgqTUanzuEwjzeJrOwcRV77qk9YK4ugoMDYa1NUVGTP27Y6Y2gvrSCLsDmrIRhDTmul4U9PP83KlSsA2LhhA1Ouu54jjzySiy6+mGOPO55OnTq1uNciyNE0rABNTU08+8wzfPjhh2zatAmv18vgwUO4+ZZbmDBhgi1tXV0dU2+4gWXLlrFt2za8Xi+DBg3itFNP4eorryA/P5+c7GySU1LJzM6mc+fOpoY0arHCdRNNZouwOgl2PFCtdFrmbeTnC4ZaXflQw6NtG1H7oFUGaxJr08jHEERCxDWhQzawt5EUz95pJhLObEMIkQqciWGyUQp8IaUs61Ch2gnxmm2om4vUpVrVm0ayopJSl6HL6w2t2bbaiG2t2kiyUyOmDMmKeUSS8vxeNavC17JZ8TbRrNjr5vcKX4YU84BAel74uqKh5dJ3Z2UDllpO9cQ4dSld7ePqJsjM5OjmBM4lKAvBKKoh+2mLiumBYp5h87yhephQNciqCYVqnqBoU6Oai6gbfhRbaNtRvYrph0sx21BNRdRNmuqpfrZjjFUfpurJiorP2UhYDO14jGNxVaimGs2Kv2q1/tV3pFpfWJoAdRNdcowBTjX/Udu/em21P7B7qlHTqH1AHRqttlmjaKG7pCv1ppShq+IvXW1HqlmS6mVGNUuKtvkMnMvALeVTyw/QP7/TYWO2sae+pZlUa2S5NbvdSL4t7YH3gV9ERax81aXnJUuWcNHFFxsb24Rgy5YtAHz0wftMOPmUlr5823xo6ytca9euZcSo8Dk29O/fj98/+ihz5nzNrFmzqN2zh7q6PdTV1ePz+UhLSyMYDPL4Y39kyjXXmAWw+01W3dmp2s5oGk4LrU2AnHC+R2mLi3jOiUWWnc+z0CU3h6amJkaPHk3//gOYdMYZ9OzViwEDBpCVlQXA5599xksvvciAAQPweDz88MMPbNm8mVemv0afPn0AKC8r4//9v1/R3NzM13PmMGjwYM4991xyc3Io2byZ6a++yurVq6lvaLQ9f/PmEoYMHhxV3hXLl9Onb99W60Wtd2e97CtspkaKeUY0CCHC39LIxK5lumBItknanSsmsdBaGZ0rOm1NfK16yzDdXR4SZhtCiGLgcwzibKFWCDFZSvnfjpHq0IVFnBMBKnHpaEQjzh2GBDLb2OsPcjsilveSjoA6qetoHCgC92OELyjDE6G2tL12otXShtMKao/6FsJpo+mQTUqOPc7Q5v7xj39k3NixDB48mJRkc/IdY3/BvsA6lKX/oME0NjSwc+dOmpqa6NKlCzu2bzMO/lDQJS+P5JQUtm3bBkBTsy9yciLKxCCGnW40EhVPFUd7D04bcVUT6RYRG1zncn8sWO9+V+VuZs2axZyvvqKyspJ333mbLVu2sHbtWlJSUigoKGD37t1s3749Sh7G/0AgwNdz5vDKtGnhuIqKCubPm0dqaqrhcjAvj59ecQVTrrmG9evX4ff78fsDVFYae3ncbjd5eXnk5XUhNS2VxYsWUbF7Nz36FEfqxSo7LesxmnlKLPd+rdWOc8LjcgtbnLPsIWlXVDnTWQhKez+I2jaECO9tceYZy368NTiJtBq+tytECUWegT9iKF/GAwuBPhgnV/3TvN4nCCEuBW4BRgBpUkqPI34S8ARQjHGS4Z0qWRdC9AP+ARyH4dD/KSnlE0p8GvAX4HyM9/AWcKuU0j6l1NDQ0NA4oAh7tXCJffIwFM2GMxwXY9WrLUT7Dtu8XLSWmRDsqavjm2++Yfr06bzwwgts3LiR7t2707NnT3r36cMZZ5xBTnY2PXr0pGu3blRXVyOEICs7GyEEDQ0N+P1+UlJSqKiooKioiM2bN1NRUU59XT2ZWZkMHjyElBRlA7QQ5HcrCNdD3wGDWLpsOXPnzuXGqTcA8OvfPMSwYcMYOWoUXq/dbaWzzPG4CnSSudY2zu0NVBvcoJT4rVWsGC4lrXQWyRs/YSLjJ0w0ZTJNFKSkrKyMnaWl1NXXU11dRXl5OTu2b6dkUwlr167hhBNOID8/n00bN9KlSxfGjR9P124FFBQUUFhURJLXi5SSxsZGamtrqNy1i1GjR3P91KmkJCfj8XjIzc0lJy/PVr/RvL44rQZaurOM1hmidxC3S8RUKgkhoj5TdQ/nlLHFU6N0CCfxtvqu+oZ8wYj5jlsYm8SjuQVt7dmWFtwfkrYN2bBv5irhexPJbEMIsR24S0r5mhI2AFgFdJdSlu5jvqdjeO1IBZ5RybOp7V4O3AC8DlwMPAMMlVKWCCHcZvznwC+BQcAnwM+llDPMPJ4FhmKQZwm8AyyRUt7Umlzxmm00KGvZn22M+DYe2S1iHlFRHzEn6JlpmATs2kttb9d05TAUpVF1cSlzAMVUwdW0J2q4VHz1WiYEjUQGgjJFro27I3lnpkSery5xqwe5qCYn6hK7CtX8IkvxdmB1HLVuvbH6ju2kKcWTgmq2oR4YE+tQEZtv44iphmXOoL5zVW61/u1HQtsHr2hyqaYSqsu3WINjW94C1A9OPEON6uEi2i5m9ZkQ/ch5NUw1SVI3zKkDoVpfNntQxRCiNsbp56ruTj2ox5JXLU+dP6L1y/BG2oUqV7ZbaQvK+/cJtX1H8rS/98itqomW6kUiXIYYdQiHl7eN8pqI+VK8JgHR0js/pK3l1Vqe7QGfz8fGjRvZumULCxbMZ/68edTU1rJ+/XpqqqvpnJmJDIVobGyksLCQ6poafM3NBAIBOnfOZM+eWrKzsyksLCQtPZ3KXZVs2LCegoICcnJzycnJoaCggPz8fDIyOpGekYFwuaiuqqK2tpY3X59BaWnrn99nnv0Xl11+eYtwpwY0FuPY27qMtSHQCWeI6hLNHcdL3huOtHL1Gurr6xk6xD4xsdBae4vnmc4hPFoqZ5p42nG88IekzaRzf+ALtXRDB233Q6t8KR5hG0fjhTXetqhLs84t08BD6pAUIUQIOFZKOU8JcwN+4Egp5eL9zH8C8LmDPD8EnCSlHK+EzTHTPSSEmAh8CORLKevM+IeBcVLKiaaN9m7gbOs0RCHEycD7QI6UMqYj331xVbd9j3J6nvJKVbtJyyWWajPZOVmxiQ5ECKvPE3ENphJJVTPibo64ECIYwyWa6sFCIZvq6XEW1MNddtZFyuNXDlrZoyyVq+RNdQ+muv7yxujQKsG2yFaG4lbMHVIYlUKYQyrRVWfI0n4QQeQG1S5aqSP1sBXF/ji8m1ghug1BhQzHGGTV/qouY7W6azv8QyHqsVeNjaREj481w1flinW4hxqupm9LWxjLhlk9sVHtL/ZjdyPtq0lZaIvlvinNrfww66s+hru7aCdGAiT7IpNK9f2qk6eQiLRBdaKoEmmV4LepyXTEF2QdPoekHA7kORZC5pjpMsfF+vp6SktLSUpKolfPnvj9fjxeL9XV1WRmZobLKDH8Rm/dupWqqt1UVlays7SU8nJDM11XX4ffHyA7O5vMzEz8fj9NjY3UNzSwu7KSbdu2EgqFyMjIICcnl+ycbO65+x66duvWQsbDiTz7YpgYWNDkOYJDnTwnmtkGHBj79r3BCAwTERWLzHArfq1FnJX4W8zrgUCKI49FGFruAcDS/RVQ3XTUNyuihVW1in7lo54uDEIoUIihevKzP8LnYzkEE8omMtXPr1B99cY61U5E7rVOTgrFGBpz0yIkotHfcgIA9s1dzTGIRrQNVQANSiUFQ0aEOrCleKKfmKdKa+/L6qYY1f+x6sPYHTXcpnk2M1W1wepnJdYpeSqhinWqnTqREDFpcATWByTWmBhts4gT+2Oi7I7yQVFliUVS1YUHdSOnbSKjkGe3V9lsqUzCgjay3fKI9FTlvSUr5Nq28KH2BaV/2fqFMnlS+1eKkr86sUxS8rfqN5pPYjX+cES833K1iqJ1HfVgEGh7c5szz7ZgZdXaPXtNIF12+pGenk6/fv2MvIQIn9yWk93ykKq0lBQG9u8fNd+9sf+UMa4ttLZhL1Y+8ZgAtLXiHg8BbW3/S7Q+JWXrhDvsCYLo79L2uFbqJZ4ai0eRAUY59mZnTWtW9C5iT/D3FoEYg1as9+qs9vo4TtKKSvRtSifbk9vMT0UikudPhRDR1sC/cIZLKfMPwPM6ATWOsGoMM4zW4jsr8TjSWNctjj4SQtyAYSIC0JyannGo+rLOA3a1mSoxcajKfqjKDVr2jsDAjhbgYCCvc3rbiTQ0NDT2HptjRSQaeX6oA565B8h0hGUBtXsRj5mmWrlGSROGlPIZDJtqhBALDtVlVS37wcehKjdo2TsCQogFHS1DeyPWkuqBwqH67tsbh2u9HK7lbk8cqnWaUORZStkR5HkJMNERNgr4QokfIIRIl1LWK/FLzOs1QBMwGpipxDcCa9tLaA0NDQ0NDQ0NjYOPw+KwVyGEWwiRgmniK4RIMf8E8BIwRghxmRDCK4S4DDgSeNG8/SsM1f2jQohUIcRIYCqG+zxMd3TTgN8KIfKFEPnAb4GXWtssqKGhoaGhoaGhcejhsCDPwJUYmuBPAbd53Qj0klJuAC4AHsQws3gQOF9KWQIgpQwC5wDDgErgI+Ax1Z0ecDuGltn6WwPcEYdcz+xvwToQWvaDj0NVbtCydwQOVbkTCboOo+NwrZfDtdztiUOyThPKVZ2GhoaGhoaGhoZGIuNw0TxraGhoaGhoaGho7Dc0edbQ0NDQ0NDQ0NCIE5o8twOEELlCiBeFEDuFEDVCiFeFENlK/FVCiA1CiAYhxPdCiCMd998khFguhKgVQlQJIRYIIS45SLKfIoT4TghRJ4TYJYT42yEi9++EEJvMZ5cLId4UQvQ8FGRvC+aG18eEEBVCiD1CiLeEEHkJINc+17kQYoIQQgohZjryvEIIUXIQZN+ndp4Acu/z2NLRsncEhBCXCiHmmG004Ig7Uwgx03z/VWa68Y40/YQQnwsh6oUQ24QQdzniS4QQTWY7Uv+c7k0TAm3Uh9U+1HLMdaSJWR9CiKeEEJ870j9p5jlICetjhg1vr3K2BSHECkc5G02ZRpvxk8w0jeZ34TTl3sVCiAcd+S0SQux0hE0xx+yOPoiyQyGEcAkh5pr1210Jj2escvar6R1TiiiQUuq/A/yHcZz3WxgHqORgbFT8wIwbB9QDpwHJwL1AGdDZjL8M2Akcg3HkTSowHjjtIMg9AcNX9UWmbCnA6ESX23z+ICDTvE4DngTmHgqyx1G2BzA2ohZj+BB/C/g4AeTanzqfAASJHG1v5XkFUJLA7bzD5Dafsz9jS4fK3kFt9HSzf08BAo64nwLnY/jt9wA3AXVADzPeDawC/my279FAOXCJkkcJcEVHl/MA1ccEZ5gjvtX6AM7C2IifotzzA7AcuEUJuw7Y2dF14Sjb74AV5nUx0GD2iySzndQDvc34x4BZyr05GOc9bAKGKuHTgBkdXbaO/gPuAj7HODixuxkWz1gVsy0mwl+HC/Bj+wPSMU6tHKGEnWg2nF4YLvBeVuIEsAW42vz9Z+D1DpL9W+APMeISVu4Y7+BxoPJQkz1GeTYD1yq/+5rtqXdHy7YfdT4BCAB3AisBtxl+MMjz/rTzjpR7f8eWDpO9o//i/RgDFRjelsDw/98AZCjxD2MnTiUcQuS5tfpoq47aqg8gA/ABJ5m/8zA8WF0N/Ee5ZzrwSkfXgSKPBygFbjN/PwTMcaSZA/zavD4d42yHVPP3hRiT2GesPMzwHcD1HV2+Dq7bAcAGYCR28hzXWNXR8rf2p802DjyE8mfBqucR5t9CK0IaLWWxGQ6GX+lzhRCPCCFOFkJktb/IIIRIB44GmswlqF1CiC+FENbJPwkptwohxOVCiBoM7dHtwG/MqISXPRbM5d+e2OXfgPFROqKj5LKwH3Vu4S8Ymofr211YDkg7t3BQ5Taxv2OLhY6QPeEhhDgCyMXQlIJRb2ullHVKskW0rM8fE9xCiK2mWdCHQgi1rK3Whxk+DzjZjDsJ+Ab4LzBBCOFSwm3mHR2M8zBW9F4yf9v6kQn1vc/B6IPjzN8nYxyQNsu8RggxBCggscp5UGG+7+eAe4icvmwh3rEqYaHJ8wGGOYB8CfxGCJElhOgC3G9Gd8ZYbq1x3FZtxiGlfANjOXkI8CpQKYSYJYQY1s6iZ2O0h+uBnwGFGIPeRyaZTFS5w5BSviqlzMQYtH4DLDOjEl72VtDZ/B9T/o7Evta5cr8Po3/8RgjRqX2lBfaznVvoALn3e2xR8jnosic6hHG41ZvAH6WU68zguOoT+KcQolr5W9rO4rYXVmNoCPtgmGQtBWYKIQrN+Hjq43Mi5PlkYKaUshRjSX60aeecT2KRyqkY5hUWwWvre9GAsXplK6f5d6IQwm2GbZRSbmpn2RMZt2OY5/wnSlw8bcnt6FfVQoj/aS9h9xaaPLcPrgCaMezD5gHvmuG7MGyjnJtJsjA0iQBIKT+QUl4gpewKDMVY7vignTce7DH/Py+lXGp+YH8PeIHjE1juFpBS7gSeNZ9t2aMdErJHgfVeWpW/o7Evda7cOwPDXvDe9paTA9DOLRxkuS3s19hioYNkT0iY5HAWxiTqPiUq3vqcKqXMUv46fEVoXyCl3CmlXCKlDEgpq6WU92HYx59hJomnPr7AOLG3M4aG2dqcOsv8fRKG9npre5VjbyCE6ItBdP+hBMdbzpOEEEUYk4FFUsoyDFONI0k87fpBhRCiH4at860xksRTx0FHv8qSUv6hHcTdJ2jy3A6QUm6XUl4ipSyQUvbB+Eg1Ad8BSzA2WgBgkrORZni0vFYDT2HYNGZHS3OAZK7BsN+LdmqOJEHlbgUeDBvRQg492VVZqjFswVT5izFm6Imm4drnOgfuxrDFLWpPAQ90O+cgyW3hQI4tHGTZExFCiN4Yy/AfSylvNZePLSwBBpimPhZGEbs+f4wIETETiqc+vsPYNHglhgnMYjN8JgZJPZnEIpVTgSVSyu+VMFs/MuEs5+cYJPki4CtpnEQMRjlPw7DZTaRyHmyMA7oAy4UQuzDMXgCWCiFuZu/HqsRDRxtd/xj/gIEYO3BdwFHAOiKbDcZh2IeejLGT927su0ynABcDeebv7hg77FccBLnvAbZhmC94MLRSpRgzxESW24Uxw81Xnv02BrHwJLLscZbvAYwj3/tgkOY3gE86WKb9rfMJtNyw9BbGhq2SBG7nHSa3+az9GVs6VPYOaqduDG8qp2Fslkwx/wSGacI24JFW7l0F/AnDA89Isz4vVdKUcAhtGGyjPk4C+pltKwPDDKualt5HYtaHme4jsz+9rYTlmW2zBnNDZkf/mX2kHGPlQA3vi7Ex8jKMFanLULxtmGk8ZllKgduV8AvNsBCQ29Fl7MC6TcP4Jlh/x2IoJ8aYbWuvx6pE++twAX6Mfxj2lKVmB1yndi4z/ipgI8YMfR5wpBJ3PsYSV4XZYbcDrwB9DoLcAvgthtu2alOOkYeA3C5zwC53PLtvosseZ/ncGJ4srKX5/2AS/Q6UaX/rvMXgiPHh9tH+5Hl/2nmHyW0+a3/Glg6VvYPa6c8wPtrOv97A8+Z1nePvp476+cKs7x3A3Y78SzA0/848hnd02fehPu7A8OxTb/brT4CjorSXmPVhprnTzPPnjvAlGK4Sszq6Hkx5LsUYTzOixE0CVpj9aAVR3JYC75nlHK6E5WAQ54UdXb5E+jPbV9jbhhnW1lgVrW/O7eiyWH/CFFRDQ0NDQ0NDQ0NDow1om2cNDQ0NDQ0NDQ2NOKHJs4aGhoaGhoaGhkac0ORZQ0NDQ0NDQ0NDI05o8qyhoaGhoaGhoaERJzR51tDQ0NDQ0NDQ0IgTmjxraGhoaGhoaGhoxAlNnjU0NDQ0NDQ0NDTihCbPGhoaGhoaGhoaGnFCk2cNDQ0NDQ0NDQ2NOKHJs4aGhoaGhoaGhkac0ORZQ0NDQ0NDQ0NDI05o8qyhoaGhoaGhoaERJzR51tDQ0NDQ0NDQ0IgTmjwnGISBJUKIq83fJUKIx9u4Z4wQolIIkXlwpNTQ0NBITDjH0Djv+asQ4t/tKZeGhsaPB5o8Jx4mA9nAq/HeIKVcAPwA3NFeQmloaGgcItjrMRR4DPipEKJf+4ikoaHxY4Imz4mH24CXpZT+vbzveeBGIYSnHWTS0NDQOFSw12OolLIE+Bq4qb2E0tDQ+PFAk+cEgqn1OB54M0rcr4QQO4UQdUKIV6KYaLwH5ACnHwRRNTQ0NBIOscZQIcR1QogVQohmIcRmIcS9UW5/C0P7rL+LGhoarUIPEomFk4F6YIkj/DLgFOB64E7gLOBfagIpZS2wwkynoaGhcTiixRgqhLgH+DvwDnC2ef2wEOJWx71zga7A8IMjqoaGxqEKvcSfWDgSWCWlDDnCU4GzpJR1AEKIeuBlIcRgKeUqJd0S4OiDI6qGhoZGwsE2hgohOgO/Bh6RUj5kpvlMCJEGPCiE+LuUMmiGrwCCGGOoU4GhoaGhEYbWPCcWugG7ooR/ZhFnE/8BBHCUI90uMw8NDQ2NwxHOMfQ4IB14Qwjhsf6AmRha5u5WQillAKhGj6EaGhptQGueEwspQEOU8HL1h5SyUQhRBxQ40jWbeWhoaGgcjnCOoXnm/xUx0vcANiu/9RiqoaHRJjR5TizsJrrWI1/9IYRIBTKAUke6LDMPDQ0NjcMRzjHUGg/PBsqipF/j+K3HUA0NjTahyXNiYQ3GMqMTpwohMhTTjQsACSxwpOsNrG0/8TQ0NDQSGs4x9FugESiUUn7Y2o1CiC5AGnoM1dDQaAPa5jmx8A3Q0xzEVTQCHwohzhZCXA/8FXhbSrnSkW6MmYeGhobG4QjbGCqlrAZ+A/xJCPGIEOI0IcQkIcRtQoi3HfeOwVBKzD2oEmtoaBxy0JrnxMKXGEuGk4CXlfDXgD3AvzHMNd7D4cxfCDEK6IKxmVBDQ0PjcMSXOMZQKeUfhRA7ME5gvQtowtAuz3DcOwmYLaWsPGjSamhoHJIQUsqOlkFDgRDiT0A/KeVZe3nf74GjpJTaz7OGhsZhi30ZQ4UQboyNg/8jpZzWbsJpaGj8KKDJc4JBCNEdw25vlJQyLts7IUQ6xsB/kZTyy3YUT0NDQyOhsY9j6KXAw8Bg02WdhoaGRkxom+cEg5RyG3AtLd3QtYaewG81cdbQ0DjcsY9jqACu1cRZQ0MjHmjNs4aGhoaGhoaGhkac0BsGOxB5eXmyd+/eyJDzNO6DBWXiFHMSFS1ctJ21iJUmerhU09seaf0QUcLilCUu7Nskcm/vOlDS7vOTDpYAbVXMfsgh9IS/VQiXsaC4cOHCXVJKp+eeHxV69uolt27Z0tFiaGho/DixWUrZO1pEQpFnIcTN+3jrjENxh3Tv3r1ZsGABTY2NB++hMkLUhXJNKBgJD/paz0NEt/aRarjL3XZ6V6T5qeS5I7hRqI2HxooNxSGrK565RttJ9goupT5jzmPaEbGqsz1l0aTaQEpqKgBCiM1tJD3ksXXLFnbV1gPR+5A69bauQxLcwh4f7X5na7L6ukvY+73Vv4Mhidv8oT7PulcdB6z7nSu/QukgQSXO5YgLy6ikcbuETcZo5ZLEHmtcIvoznM8JSnseVpnjqRc13sozXBeOZ1rPcL6jaOoUp/xSyqhjs1upGKe8qkxCCFuZY43zzrFdfb4zzAp3/o6WzplvtOfHesfhvKOLHNe3Jp53EQxFyhKtLqFl+46FWP0jmizR7nH2t2gyRkO0Z1phuZ3SEEL0inVvQpFn4C/7cI8EvgMOOfKcUFA7tEJqbQTbilfJcAxiE1YDtgAAIABJREFUHBfBVpOrnWwviLRNYb0f3Eklm9GIdGsfnL1Be/JYV0ew5BjoEMK+jw/VpPvHg3gnquGProMkRSM/YHxYvcrQ5XG1JGlJbmH76FuiuISRPjp5VtILESb1gZAkyRwrVRIKdpKsjihuJf+gBK95Y1CR0S1aJ1VWnD8obXWkkiThyMBKF5J28mk9MxZ5scrhto3hLcmrEKJFHaiIRsjVulQJq41UKy/E+b6llDairRIlNaXbzNdvvRvrFvUbpmZs+85E6sbrEuHvjjTzFWH57bnEIsrCcW39drsEAVO+2N8xEZ6suYWwfQPVuGiTJis8WvtWJ5OqrE4IaW9HVj26hL1cztdvtYdYkw13nB/okOP58SDRyDPAsVLKefEkFEJ4gDbUpBo2KOTVNqNXSXKMNNHi42FJsQhzPIiWfTxazYPFh2KV/lCgY9FI474S0EMZe1vmfSXb6nM0YT/wCMrWtb3OtNDyPcgwgbCnj3eSrBJOJ+FTtc2eSMLIs4nIn+R22QiLSwjcilDWZVDJKxiS+MyCpXpdkbKJCC2WZrp4NKlhTRwyXF9uYdc8u0SkLt0uQYgISbVNRBTyrcJJ5oNKHYko9ziJuEuAtcapkn+VAEoh8AcjEw+3AJ/Px6q1axBSkpKSwtxvv6Vq927q6+sJBgKEZIi0tDSaGhtpbGzC43GT5E3C7fWQlJREkjeJ1NQUOnXqTH5+PkcddRRZWVnhZwYdkwJfczOhUIiklFTq9tTyzddzWL9+Azu2bzfK4Xaza9cuSjZuxOf34fMZtMbtduN2u/F4PLhcxnV6ehpdunQhP78r2dnZ+AN+brhhKpmZmYA6sSP8P/K+7PVnyRuSMpzGqTwKKnEq1Pp2NqdoKzvqfU6odeXseyqc2na1T9j5jBnWiqY/lkzx9vVEI8+zgdq9SB8y79nTPuIcRrARXFXbbIbHIhh7qWGOqaneC8TDdfaHSLelwW3LxAP2XcN8oLTHhyEHPmiIhwQfjpOQjoILydatW9m0cQNl5RV0KyjgiBEjSc/oZCOsqhYqmnmDCov8xDTVIELGnJpYZ3pLwxp+lhBRzUncQoQ1mAJpIzwhGSGwLodcFmGWUuI1yYQVZuQrbdo7j1LogGJS4Vfu8Tq06B6lntI8QtH4RUiqS9H22kfAiBbVqTlWNaYGsW35QlzIMCkHGU4jBLiCfkJubzhvq2wiFKShvoEnn3ySHr16E5Ihbr3ZsApNT0/H5/PRu08fvB4PZWVlnHbaaXTJzyc1NZWUlGTcLjf19fWkpaWRk5NDKBTC1+yjuqaaPzz6aAsZu3brRqeMDBoaGmhsbCQYNMwgc3JzcbtcbNu2DYDOnTOpqCgP3/fbhx/B7XYTDAbp37cvV191Fd6kJJK9RpnqGxo4/bRTWzzPiTdff4ORo0ZRW1tDdVUVO3fupKKighEjRvDeBx/i9bRO9ZzvUTUZcr4RK8ZpjhOeeLqEnchC1LYL9nus8FAwQHV1DVJKZChIXUMjRUVFJCd5bf0oGKXfqXmCfQXDmvSp98VjvhULCUWepZQT9zJ9CNirexIRzg/tgdBKxfp4280jYmihifXDyjsOAnwASPKBQiwes6/VnEjmESrimlRojecBxb6SZK2FPnDI6ZwBQNeuXTnq6GMo27mT1atXMeaoo7jl57eTnZ1Nbl4e3bt3x+1220ww2tLAquQ62hKw7WOu2FeGpEIUXcYHPBTjsxwhAzKqqYVTfycwTESsZ1r3u12uMPl2ThaikXWrTNZzvG4RljDo0Nqr2kwhJR5TwRKQrvB46ELa2rUr6DfucXnCD/WIlvtbLKKmXruFwBc0nmFo8SPae4uauRCs3rCJZI+b/Px80tIzwnt3Pv3kY8678OLwc44/7jhcLhehUIj6esNGft3aiAvw6dOn06DsPXr/gw+orqomLy+PkpJN7N69m08//ZTly5ahYvwJJ1CyqYQ/PPYYgwYOJDk1jdSUFNweDx6XoLS0FIDivn1xu91UlJWxvXQHc2Z/hT/g544772zxjtzhNmSErFi5itraGtLS0vB4vFRXV1NRUUFpaSk33TiVSy69lBmvvcbKlStwoqJiF3vqG8js3MmoS6ITWUn09haS4Pf7+b+nn6S2phZfczMZnTuxfdt2Zn85i+2m5jwaLp58Cc89/7yxomJpuB19IJpJT05m5xZhxx1/PJ9+9jlSmUTGg0DIXhawk+uARdiJ+G32xJpRO6Bd1XUgxowZIxcsWEBjU5Mt/KCRZ9sNMTYSRs27fcnzwdLa/dia/oEgz1pjevBxoMmzsmFwoZRyzAHNPMEghJCvvfEWH3/0IV/Omsm2rVvJ6NQJKSW1NTUt0j/4/37NHXff26Z9Y7TvZyzb3Wjk2foNpiZOxt64ZCPooiV5jphoRH5bxDgYklE11yp5VgmzkzyDXYsdD3l2IcPfiwBxkmcFscizWwgCoRDlZWUE/D5219QyYMBAysvLOP+cs1lrkt2PP/2UcePGs2H9ekaOOMKW9/Bhw1i2fDlOnDFpEsXFxVTu3s2MGTPCBOqcc85h8uTJjBwxgr79+9Pc3MwH77/PlVdeCcDxx49l4cIFNDc3t8jzZ9dM4ek/R7ZpuYWdrIXrTLnHWf9qi4hFnl0t7J9bYsKEE5k/bx7XT53K/fc/QG5eXtRVl1jk2bZSIiKyhCQ0NjZS0CUXgLS0NDp16sRDDz/C0iVL+NtfI+X3eDx06tSJnJwc3B4PN99yC9dee13YVAha70PW85ubGvn8889pbmqmd58+9OzRnbwuXXC5XFFt3luDSrRjbdKF6OQ5x9gwiJQyqtAJTZ6FUdNjgQFAijNeSvm3gy7UAcSBJs8HzHazDfLcHlrlRCRttvpRJxehGOcoxPPe2qrbmMIcoDpX69nMM64NoAoS8V39WHAgiPThRp43l5azZXMJ5WVlNDc14fa4WbN6NS8+/xzVVVXU1taSmppKba1hEdi//wBGjhplkAqPhz59+jBi5EhOOfU0PI7lbRuxVGx4Y10HAgEWLVxIba1B3FNT0ygoLKKoqBBvUnI4X7crck+sTU2qCYNKWBGu8BgUcnsRlqck4Qr3TaFouoVC6gQtN4dZUG1bnUvbLoXQuRz3OEl+JM7473WJsJlLQEbCk0UIhIsQgi+//JIHH7ifxYsX2/K45popNDc38+qrr4TDzjjzTH52zTV0yc/nnbfeorCwkAULFrBq1SoqKirIy81l27Zt1O6JWHMOGTwYj9vN1u3bqaqqCod3717ETy+7jMycXLZv285fTTI49aabOfHEEzhyzBiuufpq5n7zDU68Mn0GwVAQt9tNamoq/fv3p0ePHoaGW9onT+HVAcdmPAuqOY01QbGtTinvWNXe1tfXM2zoUMrLywD4bt58+g8a0sJOPNaGy9a8w1hwCUP7/OWsWVx4/nkAjBs/no0bNjBi5Eiuv/56Ljj//HD6qTfdxOOPP9GifNHyjeWdJdrGXecehoaGBjZsWM/GDRvYvbuKhvo6Nm3axOwvv2T9urXkd+3K9wt/IL1T53Berdk/O7/M3TLTD03yLIToCnwBDKHlZlLjQkp3lFsPGWjyrDwyAQmZJs/RkYjv6scCTZ73DkIImZaWRk5uLsV9++Jxe9i9ezf9+vene48epKenc801U8jKzaNyVwW7KiqY9913pKQk8/WcOSxbtpSlS5YA8O/nX+SCiy6K55nha6e28cbrr2PGa9Oj3nfR5Mm8+frr4d8TJkzknQ8+jOpyTLVBtUwdrLahXkNkKdwlg0jTRajajJxkTSXrvqAMk15fUEYl9eoGQ5ep9bZImMdlt9+2iLUQCuGD8LgiQoHwGCjdSTTV1fDD0uU898ILvDztFTIyMjj2uONYumQJ5eUR2+BY+Mc/n+Hiiy8iNyfHFj569GgWLVrU5v1OjBo5kquvvoqp110Lpi01wJLlK3ht+nTWrVtLfV09SUleXG4PHo9hr1xXV8e6devYWVrKnXffy5133kFGZ2MDn7ONxCKs6qiqTlBcMmgfl5VJlM/nIys7GyklPznvPF586WXcbnfMDesqeQ5J+2pGOHvlt0VYrXTBkKR8ZynLli6lU6cMxo0bF04XaxKoejhxTkJjecVQXdCpmvLysjJOO+VkfD5f2I48GjweD+NPOJFXZ7xOSkoLvWsLWPbQtbW1PPrwb9m8uYRtWzazcuXKQ5I8TwP6AJOBrcAxQBlwBXAVcJaUckPHSbj/iIc8741t5P6Qmva0u0xUshWrzCIUIBAK0OCrozHQSGOwCX+ggUAoSEAGkKYfbIEgGAoQCAUJyiChkI+gDBGSIWQoSAhpzG5thNlJnkU4L0FkYBEtbMNcyh3WcqA0tE3mcwzbspDh0sdcepMyRBBBCEOuoEsY/2WIIBhyI8NyWzKHZMje9hAIYSzRel1ePC4vXpeXFE8qqZ5UOnkz6N25D11Su7TqV1OjdWjyvHcQQshK089zVA2LlQ67K6qynaUMGdDPlmbQoMEEAgFS01LJzs5m3AkTSE9LY9HCBcyb9z2FhUV4PB669+jBRZMvYeLJp9hc0AlgU0kJH7z3HgsXLOCtt94M5/2zKdcy+dJL+fjDD1m1aiVlO3dy7XU3cPU118T0gey07bQIjdvlHB0MBJQNc07Nsc3+WUbm0KrZh0qsgtLujs+6321qra3cAiFJktsYm/whaZPR2rSomgE4Na9//9vfuPeeuykoKKBfv35UV1ezfPnysFYwOzub+vp6fD4fubm5HHHEEWRkpFNSUsKyZYZ5xvfz5rN06RKuv+46kpKSCAaDBINBcnJyqK6uJqQcQtavb18qKiqoMVchCgsLaGxsQkpJdXV1ON3AAQP49NNP6dq1KyFlw2MgJGO2MX9QMmf2LKa/+ipzv/maJ556ikmTzmhpZ66Oq8rExWm+Y60OeEVkghQy30UwGOSf//gHd999d/iehx95hDvvvMu22Q/skx+vY3kgmhmE09+03XVc9LFdXZFQn9+axxtnXDTTDktbXF5Wxk/OPotVq1YCxhkZtXv2cOYZZ3L82LGMHDmS3r17kZWVFc6rtHQHH330ESkpqRQWFnL82LHMmjWLcSdMICkpCYAnHnuMv//l/3C5XLjcLirMCdv/PvEUp500gVHGCtUhR563ArcD7wABFBd2QogHgfFSytM7UMT9hibP7Q9f0EdZQxml9Tsobyynzl9Hvb+ePb49VDdXUd1cwx5/LXX+ehoCDTT4G2gMNBKQMbTLGq2ic1Jn+mcN4LhuxzG2cCzFnYs1md4LaPK8dxBCyPIagzwHpcRlj4v64VY3DPr9fqqrqli2bCld8vNJTkqmqamRhQsXsWnTRpqammlubmL4ESMYaJLr1197lddemcZrb7/Hti2bWTDve3r17kNlRQU5OTk0Njbw5z89TUpKCrm5uTT7fGRkZNDY0EBtbS0+n4/8/Hwu/+kVjB03jr79+tHc1ERTUyOBQIDMzCx69SlGmFpkS1tnaS9V/hOS9iXxUMDPi88/x9IlS3C7BXfceTf9+ha3OFhE/a26hwtJCAaDlO/cQeWuCpYuXUphtwL6DRhAcnIShYVFuF0uG0EKe7iQ0mY2ol6r2lLrekdpKX379cftdjPj9dcJhUI8/PDDLFu6NJx3r9692VxSwgUXXMDKlSvp1q0bX375JQDdunWjctcu/vvJR0w85TQAiouLSUlOZuWqVaSlpREMBvF6vUycMIH+Awbw5JNPcv21U+hb3IdH//eP/OF3v2PI4EEsWb6C239xh1G/bjehUIiMjAyOO/54Rh95JH379uOUU04hNzdXcaFn938siUyAzj/3bGbNnMm111/PlVdeyejRRyKEwCsDYRtwEfQRdEdMeSLv1D4GuBRbdq9L0NjczLFHH8X6desAGH7EEbz86mv06tULAH/IaN8qYY5m1+6UX51wOfcExHIfpxJmtxA0NTWxbNlSBIKa2lo8HjdDhw4jPzcbAOly20yI1HaoTuKsOg6GJGvXreW4I0cB8Is77+LpJ5/g3J+cx9/++QydO2WE5bRkrK7dw6vTXubPf3qa448fy9ZtW/l27lyb3Onp6TQ0NIQnacvXrjfMZdxu0tMzSE1NJf8QNtvYA5wppZwjhKgGrpBSfmDGnQS8K6Xs1KFC7idikedY6Ai/vOpSYaJDSsnMbTN5be1r7GqsoMZXQ52/LmraFHcK2clZZCVn0cnbiXRPGhmeNFI9qaS5U0j1pJDm8pLiTiHVnUIyLjzCg8flxhXW8ko8gEe4cQsXbsAtXLhw4QqFjI0eCHN3eJT6s5YvTXtGqy9KKyySEIsWSIe+w9JBGQcZuLCeKDxe8ze43MmGXMKF8KRErt1JhtyeVFzChdsMc1n5uCP2nyGEuSM7RECG8If8+EI+GgNNNAUaqfZVs7FmExtq1rOschnratYD0KtTL64efDWTep2Bx5VQzn0SHvEQ6WiT68ONPKuaZ3W5WSUzKlQCYdfItjxMI7xcrbwLX1MTz/z9r/z3k48JBgJcfNnl7Nyxg7wuXajavRuXy8WePbVce/1Uivv2DZN11RXX2tWr+M9bbzJ/3jxKSkpISU0lLTUNl0tQXl7Otm3bmPHaa+zevRt/MEhGejoZnTrha27mmGOP5Y+PPcae2j106ZJHSmoagUCAnOxsvF4v//PLe8OyvvHmm0w648yo7rmMchmErLq6mt///vd88cXnbC4pISsri8zMLEaOGsWWzSWsX7eOMlMrl5/flaysTAoKCkjPyKBz5840NjTQo0cPehYVUFBQwMBBQxg6qD8lJZtZsGgxwuNlw8aNrFm1EpeAJUuX0bt3H7IyM1n0w2L27KkjOSWFvn37snXLFlatWtXiva1YtZrevXqxaf1ayisq6NWrF9NeeonHnnyKuro6hg0dwtFHHcVXX38NwKZNJUyePJmiwgIef+JJJl98Ma+/8QZgeN/w+ZqREjpndqZnj554kpKord1DYVERI0eNZszRx/CvZ/6B1+Nh4YIFLF68iGAgwKmnnsr//fnP5HVOj9jHCGHYI5umHt999x0nTZxok39PbS0ujxd3yNxI6TCRs0xuhJT4lfelEkt/UHL26afy7bcRMjh02DC+mvt9i9P/1LatrghYUAmnCnWzaDTNcXjVwe/j008/5avZs1m/bh1NTU2sXr2argUFJHncZGZm0tTczNy53wLw24ceYvz4cRQUFpGbk0N6p07h6gtKGfUQoGBI0tTYwP978AFWrVzJooULaDL50ow336K4b3/+8be/MnDgAPLyutB/4AAWL1rEbbfczLPPPc+ll1zCmjVrGDPaIN9ZWVkEg0FWrl5DanoGpWXlLFown3PPPRe/Ob+zypt7qG4YFEIsBR6RUr4uhPgG2CKlvMyMewq4QErZq0OF3E9o8nzgsLJyBU/98BRLdi2hV6deDMoeRGZyFlnJmRSkdaMgrZCuaflkeDPI8GbgcXnstsvq8eRWuHJMuQj4Wk8LoFyLoBLeAR5OpCdir4c7SQmPaDqkRY7VeJXgKkes761d9M7GcuaWfsNb699ibfVaCtILufWIWzi152ltl0MD0OQ5HgghZG19A2AnypadabQjj90isoHNCXV5XE2h+rFVCYV6kp1KOnwOm4skxQ2cxO5Rwe3Q3AYCAe6++262bdlCbm4uXq+X2ro6GurqcLndzJ49mz179jB27FjOOuss6hsa8Hg8VFfuYtPmLSxdupTdlZWkpadz4403cv6FFzGgbzFgbNhzKROEAf37sWPHDgAmT57Mbbf/gj7FxWRlZtpOvPMSIhAIsKt8J1JKamr2sGNnKQ31DVRVV5OWmsqWbdvZvm0rpaU7WbZ8OZtKSsjLzeW4Y44GoHevXgwbMojaunqys7Np9AWYM2c2ixb/wOhRo+leVMSylStZv349WzZvbuHhon///tTX11NWVkYwaGzUk1KGzTIKCgqQMsTOnWW2+6a9+DyPPPp7Vq+JuKZ79HeP8MCDv+KYo44iJCXz5s9nwoQTOePMsyjbWcaTTxob3i659DIuuvgizjzjTACGDxvKxo0b6dWrF4889GtOPekksrIyDfIcCobHVyFDPPGnP/PAAw+En1lTXU1SUlLYPZqq+fW4RPgzYW0W9AUlS5cuYfbMmeypq6O8vJzSHTv49JOPjTaVlMTEk0/mhZem4U1OabEiEc1+3WlCEsvDhpNUq230q2/m8sq0l3n/vfcYPnw4kyZNYkD/fqSnptKjexH9ivuEvx1SuJg27WVenf4agwcN5NvvvqdiVyWVlZUUFRVx3HHHM3bcOM674AJmzprN5ZMv5LTTJ3HMsccwZcq1LFiwgKVLl7J82TLe/s9bAJx3/vn4fD7WrFnDhvWGkuaSSy6lqbmJVatWsXbNmrDcb739DiefehpjRo0Ia+rV8UKdJKj+oOHQJs+/B7pIKa8TQpwBvAuUA36gJ/BLKeXjHSnj/mJfyXOiE9n2QGtE4rud33H7nF+QlZTFjcNu5Jw+Z9u1nLFIahsk2EaY49notx8bBsPPj7EZ0S539DLYoBJfb2TDhFSJsrUhRtEwq/ExT5JUSXobpFpKydelX/PsimdZVbWae0bdzeT+kw9qGz4QQ1xHd7l4DmM5XMmz5Z9XJayq/2MzXfjjaNgptySvvmDEz7Jqv2shmr2n6hXBaW6nbhJzkpZo4U7yr0Il5s2NDdRU19CtoMAg7wHz+6H0+Rlv/oePP/qIpCQvL00zPFWMHDGCnNxcJk6cyHXX34AQgjt+cTvTp0c2OP75acOsoUUft35Lw0OGsBQLwhUeg5wbqZuD0jgdj5B93LNW3DwpxrU1DskQIYt8BnxU76ln1KhR7CwrY8iQIaSlpZGens7s2bMZPmwY0158gdlz5rBk6TJ2lu2koqyczpmd2bp1G7fcOJXb7ryL+395D/fdcSve1AzWb9hATk4e515wIYt+WEK/fn25/dZb2LxlC398/El+/+ij3PaLO5g5cybnnH0WAEeOGcPCBQvYsnUreXl5rF+/ntt+fhtr1qxm6NChLF68iKSkZJ584nHOP/eccNlE0M/ajZsZPnoMf/7TU1x44UVkZ2c7Xr5ax8bL3bNnDyUlm1mxfBnvv/8+33//Peeddx6dMzPp0qULhd26MXzkKHr27Mn8+fNZ8sNiirp3p7i4L2vXrCY9PYPFixfR7PNz3/33GyuS2NueetqirY05XCuCcdKlC4kIBSjduZO7fnk/CxfM54apN3LBhRfSs0cPwOhHjQ31bNmyhe7du5OZkd6irPPnz2fCxIlcdumlHHnkaBobm5g3fz7vvvsuKSkpHHvc8Xw5a2b4FpfLxbgTTmDY8CMYNvwIKndV8OH77zNlyhTSM9LpW9yXzSUl9CkuZvjQIeH7ynft4utvvmHpkiXcfOvPeXXaNO77n1+G89xVXRt2e2fZgKvk2bLhT0tNOTTJsxNCiDHA+UAq8JmU8uMOFmm/oclz/IhFHnbU7+Cqz64iL7UL/5r4LBlJGS0TafIcuT7I5NmCP+jnvm/vY/aOr7hj5B1cNvDymGkPNDR5bn8IIU4BHgGGAU3A61LKm824q4BfAwXAMuBmKeVCM24CMAuYJaU8ScnvCoyVx95tPFeqh1uop+0JoZ6EZ/dyYKE1t2tOY6tohFt9L6oniZAnuYULOSupelogECbsvmAobD/sC0Y+7P6gJNXrCpNxdQOZO9AU7uu1VZX881/PEQwF+c3Dxil4RUVFFBUUsGDRIs6cdDoffGR8Nl99+UUuv/JqALp06UJFRUVYnk/fe5sTTzwhnK8I+m12uhBZwRJBf2SFLhQCjzl+hAIQQ4GBc8wwxzzpTopoLJWVQXU1TAT94XFLBP1hjW843npO0Bd5fsAHLuOZzQHJ6nUbuPzqKazfsIH09DQGDxzEmWeewd133E5VbR0nn3oaW7ZsCR+RPeO11zj33HMBmDtvHidPmBB+Xp8+fdi0aROzZs3iuDGj7GNjwEdeUS8GDujP7C8+w+v1GuWy2ojbG24/j/7uYf7xz2epq6+nZ88eDBw4iAknnsCVV1xBp/Q02zgrZIjy8gp6FvcNh/Xs2ZMhQ4dSX1/P4EGDeeaZfwJQU1uL1xtZhQwomwedXjDC+St9wusS1NfX869/PcsTjz/ONVOmcPe9vyQtLc1Ia6Z78IEH+Otf/kwgYLyzd95+m9NPPz3yDoWL9evXM3zESKKhuLiYSWecwaaNm7jvgftZtWo1gwcPZugRI20a9BabDJX+Gq1/Azz061/zwQfvc8+993L+BReSnJSk3B9F8y+N9pSSdojaPB8O0OQ5fkQjD02BJq6fdQPb6rbx0ikv0qNTj+g3a/Icue4g8gwQCAW4/9sHmLV9FreNuI0rBl3ZavoDBU2e21k2gwC/A1wHvI/x/RoipVwkhBgHfIqh+JiNsQn8LqC/lLLWvPcLoAa4StnXosmz29AAbttRSmF+Hm6v0Tdjkee1q1dyxJhjAfjonbcpHjiQ5qYm3n3nHeZ++y0bNm4iOSWF5cuXk56ezttvvs538xbw9ttvs/iHH8Ly9C3uw4rFC3405Fn6m/l+0WJ+9fAf+Prb7yno1o3tpqlKWloaDQ0N4ftfeO45fjZlCk6kpaXx7jvv8Mv77mPRwoXh0wrvv+8+7rrrLtLS0oy6UcsW9BMKhTjhlNMZMngwDz/0a/K7FdrI867ycp577jn+8L//y7zvvqVv3764XKam39Jiy1AL8gxw06238fwLLwAwYsRIcnJy2LptK9u2bmXAgIFceNGF3HPPPbZyxEuey8vKmDVrJt989RUffPA+Y8eO5bcPP8LAgQPCk7ja2lqmv/IKM2a8xoL58wEYPHgIl0y+mGuuuYb8/HwbeQaoqdzF2RdcxIIFCygoKODUU06hqrqal16eFvaAoZpM+R3uE/eFPKt9PJqfcvgRkGfzUJSbzL/ewE7gP8BDUsqGVm49JLG35PmZwhZXAAAgAElEQVRgYV+bRDTn7y3yVq5j8ZF4jr8OhAL8bv4jfLT5Q54Y/yTjC8fb4mP6aI5BnqOR2lh2yPHYBUs1PEa1qHaXEfIcXSYRy/7aPMXLlocTNrlUotySPKsfPFs5Y5BnFbGItErwAqEAv/ruV3yx9XNuHH4TU4ZMiVk/8bSng4X9OZL9YBPvVNOv6UEkz98Cs6WU/xMl7kXAJaW80vwtgM3Ar6SUL5rk+XPgXgzyPVxKGdwb8txYb2wKDpMpDCImQoFIm1QOl2hh7xxrQhv0h0liiIiLNXW527kxyxp3RKA58uId7Vjdd6AeeDFv3vd8/Mmn7CwtZeyxxzBo6FAef+wx3n//fR584H4evM+oXunyIII+6uvr+fCDD5j55ZesXL2G5StX4/f78fv9LP32SwYO6B8uO+YejJdef5v3P/qExUuX8vG7/6G8YhcnnX4m1/7saroXdGHkiJGMPfYYMtNTbOOfdHuQUvLZ7G/oXljI4P59qNhVSU5OTvhgGeG3f8fC44fbsVHYCneSTUtW83/4fpfbYfZh1nHQZ9RlNH/SQR8EfFTsquTqm2+nZPMWjj/mKJ7+wyOkZuby0SefsG7tWrZu287fnvkXWZmZDBs2jK/Nw1AszWogEKBLXh452Vn4/X5Wr10XftTgQYN4d8Y0evXsgfQk2yYZYbmBqqoqHv3j47z+xhu89MILFBcXk5WVRUZGBr+44xc888yzLPzuG4YMHmwUz5Pc4ptlI8/WOC9cNPn8lJWXU1G2k8qqGgoLCxk4oD/epGSb/b51nLp0uaP6AFd9d3879xsuueQSxo8fzwnjx3POOefQvUdPW3qASyZfTCgY4vobbuDee+7m/PMv4DcPPYSbUGxFimn24/P58AhJ0OwLziOxrUmwurlX0nIDsMpfVb/kan5WCst8pcVpmdBigyZARlpqq+Q50ba/3wj8BUMT8SGGn+c7gTzg2vZ4oBDif4GzgR5AnfncX0opdytpYi47mvFjgL9hLFmWAr+WUk5rD3k1YG3VGh5Z8AhrqlZz3dDrWxBnjcSFx+Xh4WMfxuvy8I9lf8cf9HH90Knand0hCiFEOnA08KkQYhHGfpTlwN1SygXACOAFK72UUgohFpvhKv4C3AJcD/xjr2SwJpBCRIiVv9EgGeZKigj6ENaqiukZATAmn8phGGH73aDPIOABY9OaWwhclvY1oExSPcmRiboMRWSxsguFqK6ppaqqirraGtLSUvGmpLFowQIATj5pIs2N9Yw/5QxCwSA/vWwyY44YwtSbbrLlU1W5i5tvnMqOnWWsWL2G7oWFrFi1mmOOHsM5Z0ziiksvYdQRw8jISEdKiSvQHCENAV+YfF112cVcdfklEArw7gcfM/nq64z8d+8iNSWJFLcgM9UbLreRgYtPZs3hmht/zu6qKnoUFdLU3EzFrkqyMjMZNWI4PYsKEULQv7gPw4cO4qQTTwi7A7QIUzg7n6IHsxHfyPuT3uQIeQ/ZV7rC4cJll1OGwpMEi3BeNmUqY0aP5P1XnsPj8ZircCHOmXQa8qyzCAYC3Pc/vyQ/J4sflq+ipmwbP7vlDp5+7A+cNP54PB4369au46//eoFpr7/FrVOv5c7bfk7Jli1Mn/EGb77zHnf+/GZcjTVItyes5BDBANLUwud0SuOx3/2W448ew5133kF1dTX19Q1MPPEEvp8/n7emT2PIoIHhYria9xgkXD1YxjrQypuqrAL4SUny0qt7Eb2KChxabx+W+satro4E/YTMlUghJUIhmR7zck9NNWNGj2bG9OmIUIDq+iZKNqyjuLgYl6oUkZLPPvsvT//paY497jgef/wxVq1czudfzLRt9ly7akXYNlq6PCBDJHk9SJcbtyma85j5ZPMxqo9t6djI6FdIspNYq6dbqr60k0UIv9meBOAyJxVejKPmIX5FSaKR55uA/5NS/sIKMInrc0KIm6WULQ+Y338EMQ5eWQ5kAS8BzwM/MZ8/Dvg79mXHj4QQ1rJjJvAx8DgwHjgBeFsIsUFK+W07yBsX4lHaxdLsRQt1OvCPnl/rebQG+/Ko0tnNhtwcbGLprqV8vWM272z8D5lJmTxy3O+ZWHSSbWOOBZsjekULjFQGmDY2FcpYWmBVw6tqhJXn28wf4vBaYYXbJuyqQsymMY6uSbdp9WOZfyjyRrsv6klWACKOwzyVe1WNWkh5P6aeg/vG/Bq38PLvlf+mrGEXtx5xG+leu716NDdjTsRywB9VvL0k6Pblwf/P3nmHWVFkbfxX3ffeuTN38pBzVkQEUUQMqERFUMw5ophxzTmLAcMqa86KCVkjBhQRBXNAzIKSRDJMvnNjd31/VIfqYUYG193V/eY8Dw89faurq6u7q9869Z73BIO/Gi7f8C+bexf/4vOGEsBAgd59gB+B81FjZC+gAEXJ0K0SKNR3SCnTQohLgTuFEE/xGyaEmABM8P62GqBXOcveDT3vQBB0ZRL+MQHFnLTvSZR4NAwhbc97bKZqA55k912vLC/ngYcf4Z777ieZSlFSXEwsFiORTJBMJOm7bR9mvjUr0KbP5r7Dop9+Yu6HH1FSXMwB+47ikaem0Xeb3uRHw7Qqac+ooXvQu2d3Pp2/gFFD96B1yxaB9pJUKamVJ9RZMg9HfQqAu2olbXYesB377j2CXXfbnWgkh5dfeZm77nsQgA7t2vLrqtXcdM3ldOvQjkPHn05OTg6FBQXs0H87+m27DQeM2YfSokK++uZbVq5eg21bLFq8jJtun8VJZ53H6OF70bZ1SyLRXI44cD+6de4UAMgYJsJKY0dim9wTYWWRDj1N2Jo2stGAp7oeYHavD2GwZNlyflm5ikMP2I8B/bbzfwNw6Dcty0qRQP/e3fm0agOr1qxl1YrlFOYpCn6/bbbigTsmM/7ow9n74KNYsngpC39eTL++2/LZF/P59NNPefiOmygoKAzQWkQq7rXRsNIcPHQQBw2fAWaYtevWM2vuB5x07JEM32tI4DuCtBHZdGBS6CbJklbaa78M5yFSTgpyM+I/uy7lowFtbYDZb77ONTfcwudfLuDZxx9m3Nh9IRz1xu9BA/ox/vPPueLyy6iqquapZ56hrq6O56ZNY9+x+2FIi59//pkfvv+edu3aUVpUyAN3/4P2bdow+Val4dC9ezcEgu7du1FSVKj1uT+REhp9KST8+yJs/z6a2r033Gty3kPTMOt99NxVC+07K/HK5BgGwrYJG5tmu0RKIvW/mbm/nZnwz0bbqENpO7+r7csHqoE+UspNxR//+DbsCzwtpSxy/t7csuMJwDVAZ+l0phBiKpCVUp7wW+f6d9I2/trgWS3vL6z4gS/Wf84X6z7j243fkLbTmMJkn86jObPfRAojRY3W11AWJ6BR7miD1I7GwHMDkeObVLeF4Fnnt3nWGCd7SyX0GgHEbhul7nkLbV62rlHahlY+AJ5lffDsJHSQNg98ey9PL5xKi9wWnLf9RezSdjftuAZPE7D/FHgO1NNo+d+Hgv9o8PyfpG04zoNKYJKU8nJnnwDKgaOAG4DHpJR3aMe8DCyWUp7r0jaklCHnt49QNI6FNJG2kV6zxP0jOPAFJs32JtxZr4yn/hDxZRul7VE/gCDFwMr670m9CfDaNauZcs/9PPrEk+w9aiTnnn0W2/bpo4CiAw6lMBDZJPF4HZU1cUqKizAMgxFjxrFhw0YOP2gcZ4w/lqqKcrbZbSSnn3gMd0y6KnjhOjfYBZ2GqVEdDD82wgz5771db7xy+bUo3d7X3nqH9z/6mCn33O8V6di+HStWKo7wp7Nfp992fb0APGH51BhFVVHbi5YsZc7cD9hQXsGq1Wt4Y/a7TL76Mg7Zd7jWj6pPvbHSDAfAjH7v3PtgR2L+Pak3lgs7G5zIAMlkkmkvv8bfLr6ccChM965d2GXnnTj68EPo26u7RzmRZgiRTmBnUjz5z5c59cIrWfnlXEpLip3KVZvLK6t5ceZsem/Vk0E77UQ6neawE05hzrz3Wf/950Rz1FgqQzn+fan3jZDhXK/OBukYtpOO26UgafdYUVU0UOc+4/U9+PoYbVteuVRdLQVd+jB27xHMmKkmb6u/+4yy0hL/mQpH+WLB17w28y0mTb7Nq6YgP5/Zs98mkUjw8MOPkBvN4fbJN2GaJgcffiQff/IpGzZu5OQTj+eu22/xrl3nr2dzCgM61w1+a/Vvt8ZxR5u8bmKad14H6C7FyWtLqB4dyZscb0qRjJS0+UvRNqJAfW6zGw2S+x9qwzDga+3vzS079gPmyyCinA/8R6KhthQkNwXUNgSUGwPGjYFq/fHW26gDhfrZwDYk1vPJ2g/5bO1HfLH+M+JOgpMeRT05oPtB7NhqEP1a9ic/nNdgu0WgPm27oYASCIJNfebvANKgJ0QDrBltfzruX2e6CZMg7YMuAlrMzqAb4Bn/Bm/MLRIA1dqScSNgNwAgQq6XRAso1PtHDzRszCXeBM1nPTjK5dU5i+uc1Od0BrcZwi3zJ3HRh+cxouM+nNn3XPIjBZskMnet/nPTVNNXNHRrrAZ9yGzsPDrA3hxHe0s9038Fj7SUskoIsYyGhxYJfAUMcHc4wLo/KpalITsfeAu4tqltEBnnk2FGvImlDEUR6WRgUtrQhxJh+Ks6tgWmG7wWwsgkPS10YfleKhmK+F5Fw0SaIRKJBIP22puFP/3MySccy7SnnmBw/z4kkkk2rl1Ji2J/om8440p+WBBrVYaQNs/PeI1wyOTb998iFApRVRvntAuvAGDYkF39tqpODL53DQTZkbUQroSdGQlwv4WdDXjYF/+6hkNOPJ1vvv8x0K9njD+O4488lK6dOzJ33gfsMnAApS1bIQ0jOAZKZ9wxfbrHVl06slWng532hXjrvQ846tSzmT33faZcd6kKDtMl8AA0jnmA/mKGfQk7KxOUyat/Xz1vrQKf0ZwIxx12ECOH7ELINPlp6TLeeuc9jjrhZNZvLKfPVj2RUnLMoQdw0D7DufLmv/Ppgm8Y2K8PBWEDkVbwQ4bV+UsL8xh/xEFqn7SImnDLVRez31En0nPnoQzdbTA7DdiOU489ghDq+yKF4ev+S+k5PGQoEqCgeH1hZ5GRmPd9MqyM/8waoeD4n0n79959Pt1vifvs2hbZVILnX53JizNeI2SazJg5i+37bsOX33zPQ49PZeKEE8jL9SHWjttuzQ59tuKGW26nsKCAqupqampr2WnQzpSVlhKJhDn+qMO57957SCQSvPr6Gyz4eB7pdFpRUDxQnFXvkTPZDKVr/VUEGaQ4ee2vJ43oPQve9fkT3OD33FmBSCf8YNd6336ZSWl9afpjv5Sa59u5VyVt+C1rEnh2ltO2xKSU8sYtPMa1gxwOsWsGahA+RAixc71z3Ps7z9GgCSEOQi0/7qHt3tyyY5OWJbVzeEuOnTp1+hdb/Ne3VfGVzFs1h/dXvcv3Fd8C0DK3FXu0G8rA1oPYodUOlOSUNHNi/4etd+m23D/0CZ5a+ChPLnyMBRu+4ILtL2f7Vjv9t5vWbE2ze4CzhRDPAItQcSpJ4EOgBpjprODNAyainCQvNlSRlPIDIcRMFIiON1RmEzM1hQdn20jWIEPhQLIiYTneOzsbWG2RzldQSNtf1XE0iBsCNyKjBQPaFpghUuk0udEorVu2YNo/X+TlGa+Tn5/HkmW/AJBau8yvywz7wCiTACtNr46t+XXlKkJC8urMt7j5H/dTVV3Ds/f9nf2G7QbZZBBoum3RukGQ8mkDenvTdZsG7Wng5MvPP+Ob739k8I7bc9HZZzBoh+0pzM8j4hJMpc3Y4bs7mxYinQioWnj0EG3VKsBzljaHnXQmtfE43/6wkH5Dx/L6M4/QtX1r7364bRIOhUZxfoV3LX4Zf+IgXbDu/u0E7XnHuJ5+I0TbVore0rJFGbvsuD1XX/g31m7YyKLFS3nsmelMe+k1dhu4Pfc/OZ0rzzuTy087DpGTq2aE+gRLB65Z1d9bd2rNonmv8f3Cn/hs/lfc/cRzPPvPl3hmyiQ6tWuz6eRc89S7QFCnpiCEohJpEx4dWIsGMrW6HH21nQlwpjFM9jv6ZD767AtuvOIiXnhdeZy//OZ7/nHdJTw34y0+/vxLrj73DLbfdmvmffghU59/jZ+WLkNKSf++2/DeBx8TDoXIZLNsLC9nuz69Wb9uHT8vWkRdIsmT99xOz3YtlCyezEDG8p4JaYY8ag3SDgaWus+l7oHX+1kvb1vISK4/WdYnElbWWw0JrGDUN/2dzjRM6WqKQwhoGm1DCGFDIGhxcyallE0gSTZ4nqba7zrHb5z7EOB+4CAp5Rxt/wJ+e9nxDqCLlHKc9vs5wDFSygH8hv0RtI2/oud5dXwl7696l/dWvs3CSsXE6Vm8Fbu324td2w6hW2E3Dyy743dDmcLqm747EAHf7Hn2D9XrD7lLjJqHWc9A2IjEXaOydY3QNjLaQxL0PDtltT9+KP+Om764hhW1y+lZtBV9yvqxbVk/ehX3pk2eSgrx+z3PDe9vnIax+fMEymz2/Fs2Afy988X/gtqGQFHXJqCA8ZfAOVLKBc7vxwJX4wdcn1ZP59mjbTj7egDfA6uaRNtYrbKMBTyqm/sANiSdplMIHPDngVFNRm2T98wNcjPDyGya1WvX0a51K4aPO4yP539FNpvl54/eolOH9l47A8v12QxSSvqOPIitu3flwy8WcNoxh3H+hGO9e4kQHjioT/3SqVuet1HzyAbOZ4Q2lcPUJx9utbZOx8iAafr9oHPDpR2YoMhIXqD/3O2Zs99l7LGncv4ZE8hkMtz5wKPMe3U6O2/fN1DOq9eMBOlkelCmdu6A6dzeelS1wPilJWUBiMfr2G2fcfTt3YuVq9cydtRQzplwvO+JtLKBsVAHf4Esrak4n37xJa+8/R433/c4119wFheffuImL7IH8M1wAOx747EL1hsY52UoGnjGvedTl/YzIwHwLIGcNt0A6NKxA127dGLOPJXee+NPC8hmLbrtsDvxujoevPU6Lrnhdi792xl079KRVq1a069/f0w7gxCCTNaiNl5HiZtVUeOve99TITTvsh2c/OixI9mkLydohrVJUMQH22jfbCsTpCZp/eJRXSD4jNhZf3JnhtSz7B3sv1OqfgfwR5QHPtRuq39dqs4BtUngFeBJ1AD4myalXL7Ziv8k5vCWbwPGSik/qPfb46h+Otb5WwDLgCs1zvPVeqpwIcQTgPWf4Dz/FcBzKpvix4rv+GL9p3y0Zh7LqhcD0Kt4a/ZsP5w92g2lbX57r7wOSJrBcwP2PwyepZQks0leWDKNL9Z9yg8V35JyPIZ5oRjdinrQOb8LHfI70bGgM+1jHWgba0fEDHIdG7Jm8Py/Z0IImVnp0A3sbGDpV2R16Tr/wxlIXR8IxK33jNdfytU+zt57ImVAj9jjdmazFHbfjq6dOrBm3QaO2G9v7r7uEqduI3hznXHolVnv8fTLb3D5xAlsu1UPD7AC3oc90Db3Tw80hX2ArXsenTYHTH9Xc9yAPT2WItXg8e411td93uQcmrfULZtIJDEFVNTG6dh3EACxvDzOGH805516EqXFhf4x+riieZSRdnBsgwDFQ+fHemO9FjwnzUhgv9u26qoq7nnkccorKrnmvNOJRaMN6kdnpeDTr77jmjvuZdkvK1m9bgOdO7SlV9cuLPllBTXxOEtXKH740F13Yso1l7B1j64+RzyTCk5eGho/Q2GwbR+YaxMkaYY0nrDtT9xCPvisT4eRVobXZs9j/cZyBmzfj1un3MOzL70GqLEik82Qzap05+P2Hs7JRx/G0L32dOpynrV68QPq/0b4mFL6751LJ3H70jC971QgYE9o0oTaJCigNOJI+HnPXjal9UV202ccZ+JXj7rlvv/CymqA3z+nS9EJdejzh4DnvigO75Eo78HXwFRUYN2azVbwJzYhxESUDN3eUsrPGvh9N2AmSn3DXXa8AF/kvxj4CZgM3IlS3HgZGLE5tQ0XPNclGgddDX1At1QXtylgl8bKbOa4+h7mtJViVXwlP1ctYnHVIhZV/sCPFd+RsdMYGGxb1o9d2g5hl7ZD6JDfwTs2rI3TukajC4INHRhuBvSCsxzqlsn6/asDX5ms9ausqfS349XO7z4wthP+thX3j0usq/BPn/TPn43758zU+W2x09qM2vQvOhRTs93cMp/tEynwU5xGin0lChHRvCBh/4Ovg3GR59dj5Pr1BI91BpGo/3sASIdzGtzfaABkuGEQnhH+h9rV70zrChwNcKJBPVsZO8OSqkUsqf6JJVU/saz6Z36tXU51JsiUKou2oEW0NS1zW9Ei2oqSnFKKc0opzimhMFJMUaSI/EgheaEYISNUDxhrl0bDFpiMafu3BGA3BQs3BWDb0saWNpa0sGxL/S8tpMxiS5tYXj6l0dJm8PxfBM+PPD2dB6c+y+df+X6mtV/MpqykuFHwvMlk+X8MPIMCMLYweeqfLzHptjtZ7NBaAD56fTo79lehRP9p8Cwcr7fvsbQ3Ac/zv/2Rgfs3HMp0yL4jGdC3N5fcdCfjRu7FS295i9e8+OAdjB01VNXzXwDPesIaaYT45JNPOOfKSXz+1bdekXNOOZHDD9iXAX37eP2k6moGz/9SwKCU8hvgQiHERcBwlLTb1cDNQog5KCD9gpSyaRy1LTAhRA7QHrUcWL9d3/8Bp7gTyAJz9I+flDLf+f99IcTpwIP4y46jpZTVzu+VQojRwN2oIJfVwKn/TZm6zZmUkoydIZlNkrJSZOw0lrS8D3LWtrXtLFmZJW1lSFtpUnaKRKaOeDZOXSZOZbqC8mQ55akNrImvYkPST/MaNiJ0KezO2C4HsV2LAWxb1p+inIL/4pU321/NwkaYrUr6sFVJn8D+6nQVK2t/YW3dKlbX/crautVsSKxjWfVivlj3CQmr8ZxKOWYOUTOPaChK1MwlakaJmBHCRoSwESZkhAiJkKKICAOB0ICxxJaKxWZJGyltbGlhOYDW9v62nPfHQuKD3Gw9wGtr752UTp2oeqSU2Kj/JdL7f3M2uO1gHhj5wL/Q638xC2QHdT6UhgIULmA2UnEfUFjC5+dqwCJIpwgC2UAwngYG6ivvSCmZfNf9PDj1Wabdcws773cUAN/MnKaAs3u8I/0oQ5EgMNKXld1tw1S6x+7E3zA8MB1MnqRzaO0AMPAcCEZI0UsiPphyg+L0pXel8KDRE7Qg7WBwWsQrJ3R6hE7B0CkEwkAARx9yAEcfeiAffz6fIfuqALy357zHwG2cxC6hiFeXkaoJgL9Nsqo2sJqoeO2+xrfOLdaD7wL3zwh5AdPCIHCee59+kTOvUCnPZz/zILvu2J8+ww4gkUyxx6Dt6dSuLZ8tUBOlL78LBl6++MYs9ttrsGpqqs5zYMhsJiC956GPjO31k2q/nuFRe9alDE4E66tNuM+GRgEx0rXsvEM/xozYi0VLllFdU8sHr01n4ACVWtyRC/PvlwvgXZUWK4OhZ37URZi1QDwXWBuZBN8sXMyjz0ynz9a9GDVkF954510+X/ANjzw9HYB1P86nJBYJvIcim6QukeDBaa8w78NPiCcS9OzWlTuuvwLPF2OY/q3XlXE0qgamCbZqo20q+UbvnuuUDcMA93VpjC9dz363VJ0QIhc4EAWkh6NoHadLKaf+rgo3rb8d8ABKO3STn+GP5Tz/N8z1PNdqnknYsuXdlJWmIlnOxuRGNqbKve3KVCXV6Sqq0lXUpGvUv0wNyWyCpJXEko2kdd5Ci4XyKY2WUZJTSuu8trSLtaddrD3dCnvQqaALISMU8NrpIucRzfNqWhoVQqdLuPwyPZNeI1JtAQ+E7lV2PMlqvw+qdG+y7mWWzn5b+5DpHmNL8zCna/zjsgl9v3+eVGWNVk/D/R4pVJ7nnGJ/chHVvND6/lC+5oXWvMpGnl/GKCj2yzTiqfb2BTxxjdA9ApzBRjzPWhk77Eduy5x8bb9qS1qT4Mg2QOuAhlU6gEZVOHRLZBJUpsqpSqv3oDpTSV2mlrpsnHi21nkPEiSyCTJWirSdJmWlsGSWrJ3FklklEeoAYn1iLXBAtRCYwsQQBqYwMLTtkBHCwMQ0TPUOCANThLzyYSOE4RzjHyu8fQKBKQyE8xF1kxPo5zSEQUiEMA0TU6unY3EHhnQY8v/G82wtfB/A0wUGEOEch5/re57d5zNAXdICiAJBdq53VQ8M1MGJex5Nwm7tunVMvOx6fvjpZ954/B5alRbTftAIWrdowSO3XUu3Lp1oUVqivIoOeBda9L/QAacmL+byjHUw666UiZwo5G4amy6sNNIZv4Rh+DxfYWDnxALecu96NLUSoQdg2bbv0Q5FlXfXTUZTzwsd4FnrvNcGJyhgpGoZdfSpnHTEQRwwYghmfokql/LHVWFnPW9goL0uf1u/nzrn3b2XGnhWnusGVFdcnqz7DNXDRUtXrOTHxUvZa/dduePeh7jx3keJ1/tuA1R++wH5sTw+//o76hJJvlu0mDEj96Jjm1aqLdmU/y3TMwnqns9QTkBqUFiZgFpKY6shja40CMP3yEvp89elZPK9j/H+p18w45EpwYBPp4/Ka5OkUknatCjlkusnc9vdalK+4N032Garnv4p9IBHzSbfdT+Tp9zHyKF78M+XX93k9yMP2p9H/3GrSontXlcmxaR7HmXSnfey1y478ePPy1j+60oAapZ8QzTiKmlkg/dVO15vV/3JlfdeRPMb9Fa7dZpd+v97pOqklAkhxLOoaOpcVHKQrr+3vgbsIZTE0bmo4JFGQiP/2laXqWNF7a9YdpastMhYaVJWkrpsgkS2jngmTl22jppMDVWpSipTVVSkyh1vbznV6eoG6801cynMKaIoUkRBpJAuhS3ID+eTG8pV3rZQlIgRJcfMIWyEMQ3T+5ALYWA6H35DKC+cKUJe2dxQHrFwzFsCb7Zm+7NZNJRLm1B72sR8Ln1jc1ivO1oAACAASURBVNLGAhCbQu34vXSOLeFKq/KbL+UW8YLM/p+Y9zHUJ4GeZ1SjZWhgypO10ryl+odWSDswGQx4YqWNyKTIZDI8P2suiWSKisoqbrv/UY49aCxP3H4tVZUVnHzxdVRU1dCzaxd2GXcMJUWFrPv2Q4XrXG9vKu57H82w3xbDDrYxUY3typLpsRW2heFed306Q0RTd9VoF3pfuNeil1HbsmEgqVFjXDPSjqPCsvxnXUpw6CBSUxcJgF9hYEnJ4mW/sHW3zkpz2UnyEtBslvXSU7teRSurvK+RTRUb9L9lKOrf+3qgUs92qCZYWjn3+g2DouIi7p06ncPPuJBuHdt5wLmspIiTDt2fHfv2ZtQeuxLLVclKduzbG4TBkEE7OP2mXb/T37KmHOECWcvy6HVCGJDxgWF9UBq4BtfRFMrx+ygUhqwv6ScjuXy9cAkXXX8LtfE6CmIxCgtihMIRlq/4lX59tlbxLXaWl2fOZs7H88nJyWH9ho3MeFPpOp9wxMFEoz4Vr/+e+3DjlZdwxAFjaNemdUBP2aXGvPfhJ1w+6RZef/oRRuy5G0MG7cBt9zzEnrsNRkrJnPc/5JkXXqa6qoprzzmVflt39+738zNe56C9h3L7NZfQdvs9CYdDvPbEveQaVoBD6mV01CXonMBCde9CyJSrzmEG/rdryj1nksykMfKVw0mPY/ot+13IRwgxGOVxPhQoBT4CTgee/T31NWK7AidLKZ/7A+v809nclXO54L0LNltOIChywHBxTgldi7qxQ84OlETLKIuWUZpTSmm0jNJoKaXRUnJM/wPaKF+5sXwh2rZb5s+UTKfZmq3Zms0z1/OqeW5lOFcBAo1360pc6ZnopKYcEfC2OvVVV1eTH8vDMG0P8App88V3Cxl1zOls3bM7LcrKKCst5sXH7mPgdr0BuPuuh3nKCcr64ecl7D9qKAeMHqGOz6QazZjnrarZVhAkhyIeuJI5uT49IRL1yokQypvpXK8Xs1BfhUL3ROJTMkQ22eBKnp0T8wG2E/sQmIg0ZPU43QFqhwZkK6qqWb5yNd27dQ6k5LZNLQ5Dy5Aow7mahzaq6tXApHctgeyQQfUFr4nS9oOidY80asUJEzaWVzDlwcd4/rW3WLh4KS8/MoUxewxmyS+/snrZUgbv0BchBCKvSOkzN9YvnpZ4Nki8cr29VsJfOUknEIahJlAAVtpLrCKsDHZUrTCKTNK73yKb0mgfKexILtKbvESYOfcjZr33Ae+8Mp2aeIKq6iqsbBbDMBg7agQb6zJ88Nl8Dj75bK6//GIwDFq2bkMoEubRJ59lzkef0b5tW/bbZyRvvvMuqVSam++8mytvvJVTjj+a2yddjTRMbNtm9Zq1FBcWcvWtU4jl5ZHOZJj+6lt88Nl8WrUsY+HPixkyeBAP3XwVFeXlTHl8GgP2PZyqBbPJj6n7N/X269jryFN5deYsvnnrn+x64HGMPOJkrrlgIpeeOd6bpHnvcSS34ZWhbAaR41COhBFQ/hBaTI9XBpTGdhOsyeDZkQ86GpU1qjtKz3MK8KSUcmlT69kCW4efIOV/1rZrsR1X7nQ1IRFSXEsjTCycR66ZS24ol1g4j1hIeYxNY1OWypYqaTRbszVbs/1PmZckJIw0C5ztUD3QKLyg16AXUwNZTtr7bDbLdz8t4ZrJdzDjzbfZbputOHTMKHp27sD+I/fiurse4u8PPMFZJx7FtZddhPB4oZYPnsI55MfyyM+PMXv64/Tq3s1ri50T0wBgsU8v0Ckcho3QvWdGyB/fddpUNgO5CoDZ0YJgIF/9AD5Q4C2cF1ii9zy5RgikpoWtUVjcc3qeWj15jB50pQUsumWN+prFDnAX2RTFsShSSlauXE3Prp5gFYTqcXbdtqbj3t9Gska1S+cBa1J39ScM4IDrAE1HeGX0jHd2NsOinxez3ZBRXtX9tt2GQQN3BGnTrWM7upTkKQoOyots5Bc3rOak0zOMEMKNjo/6NDuhbSMEZFP+c2pGPJAvzZBHadFpPjIZR6bUBMUoKvPugTomzNa9etF3m97suvsQvy3O6srSZcsZts9Y2rZtw0P3/INjDj/Ya0pOaVsAHphyO99+/wPPvfAiqZS6L5VVatV76rTnueiC83jy6We45OpJ1Le/XXkDPbp14cD9xnD6KVuTjlcx6933uXbKQ9TU1hAJR7js7FPJKyhCCoGQNn227sXc6Q+z7YiD2aHfttx6zaVMOO8yrrplCscedjAd2rVxJP00TKTx3XUpRV0XXJohkG5QqZ+ARQ+2bao1NUnKR8BOwHpgGgowb6JM8QfblcBFQoj33OC8/0Vrl9+OfTqPDuz7vWl+m63Zmq3Z/r+ZrXHqdc5yADxadoCq4ElDihyPluD+PuzgI/jw0y846ejDAfj6+4X02aonl0+ewoO338ikO+/nyIPHcd0Vl6oPsntqB4DV1Nby1fc/0KNrFxYvW07nzl2or8nrmRZwp7e/vk5y4O9sJrAE7QEAK+15H3WaibCz2K5H1s5ipGuRTlvsSMzj4EqHx79JGzVVB8+Lq6k8BL5WrvdUaGoRdlDhwmtvKAfDynD8EYdywc13MfXeOykIOcljElVB8KufwvGoYjqav+7POtXGzir6A8rzGuD86mpBuufZ+a+uLkFJ515emdoVC4mEnMlDNomsVAJjwjSx2qtAZiNZg60Hrq5Z4kmBQtxXPArl+KBWV8jQzKWs6JQjPVGITo+QVRs3OR7bwkjFkc6kwgaeef4lunXtjJ5ICDuLzKY485zz6NChPXNnvRHoC4AD9hvLi6/MoLi0jME770xdIkGvHj148DEV2nbzpOv49vvvGXfY0RQXK9rDjBefZ+wBB9Glc2fefPVlunRsH/QGZ5Lssfvu6lpc8O+sAEkcJ6C0STkhbTddeh79+mzNhPPg3DMm0L5jx00chULPwohPbZFu7INzvRghlXAIde+9SaQW+2DlKt795gLqtkTnOQF8glKm2JxJKeWozRfb5Dz1KRo7ozL4fYbK2lf/HIdt6Tn+TOYGDFbF6wcMNlzej/f3rSmUDKsxeoYud7QZmS090E+Xkgvp3E1dHk7jkhkah8jj+oHHbwOQelCfHnHuVdLwrFDoA6EWHa0veboz8vr7GzVdVsc9j86nDLSrnheoofPrgYnZhpc5jZhaeg4G/ZU0eH49GFBqwUK2HhEfalj3uL46gDpQk2TSZf206wnoSWvbgXulX1sDqySgXUcgw5smiRfxr8H7SEIg2t/WJPH0YEM9CFHXls46+3WmZoDG2YTVm8Y0xLeEL2029nsj52yKDJ5u7juan5frHvP/ImAwvdZZ+NSBkXQAnx7wp6WxDmQ2qycd9sas2Zx0+kQ2bCz3di/5dj79B+9BdU0NL017irPOvZDHHriH3Xbe0QNAS375leH7jiOTTjNs2F4sWbyUUyacxFEHj9vUC1xfSsxps8/nzWgAX3l0vd9sLbhKmyQEgno1xYNAf9lZRLoOO7fI7zOtjzwOaTbtj7mWfz7fg+xzm116iAi8//UC3twAbsP0xgAZioIQ1CUSjDn+THp2bs99V5+naBDhnIYDDrNJbwXBKumAWblS60crOB7rCWN0L6473thWkL7i9EkikaCkpcp+uHr5UkpKS7y+FJk65fFGjVvuN89I1ijvtXOdIprvUwrCOYFEHV7gqj5GWxlv7JWhqKrPvcdWOhjQnnFVWLQ+zon6154TU5KAjjfbjsR4+fWZHHrcyew4oD+jhg8jmpPD6nUb+O6HH/jmm285efyJpFMp1m/cQLw2TiKZZNny5ZSVlvHBR0o47PRTJnDP/SpgsE2b1syc8Qpb9+6NlJL9xh3IrNmzAXjztRl88/UCrr1hMuOPO5oeXTvz408/M3inHUkmkrz46usM2WUwE089KZjkRE9eIwzWrF3H7qMPQAjYbedBvP3uXA7Zfwy33nCt0y962nIzEJTqd5Y/JnjvkUtBEiKomlOPy/9HJUlZxhayAqSUWxw86Mjebck59trSc/yZrBk8N4Nnr5pm8Ky2m8FzI3X8ecGzEGISKgdAGUp1aS5wrpTyF+f3Y1Fa+q7U5+n1MgzOAeZIKYdqdR4NXN+UDIOpSkcesyH9XH2JuiHFgmxa46n6H+Ppr7zGUaeczcTTJnDgfmMYvNMOxCvLKe3el0mXX8SjTz3LpeecRcayuOjqSd4S9qgRwxg4YACx/HwuueIqlny3gPZtWjqUhqDKh2ca59pT4dCzBobrBYBK26MqNKhxDGq8bOB6MUKIRFXg/bOjPmfc81ZnUsr7C4oa4b7nDtVB99h5XZ7xdXd1bqlM1ATGYE8hyLY8jfmqmlr2PHwCO/TuydWnHkX7Tp38scIw/XHGtpRKgn5u7doCHFjvhP5baucW+ZMMLZBRlRMIK8PqNWu4/NobWLV6Na+//GJg7BPJGoykkwfADHlAzMukp30DpSY16B0fzvHGO92zHHgmpa2CL517YVWs875zIica0OX32q9n6DPDahzVgkQzls27H3zEz0uWcfYlV6GbaZrsMmgnRgwfRuvWrciP5SOBXj17sHbdevLychk2ajTfLZhPcXEx782dy3bbbkuPnj28c65ZvYqbbrmN+x54EIBwOMxzjz/E/K++4fMvF7BVj248/MTT1NTWEgmHSWcypCrWBt/ZBkxYWT77Yj7f/biI/KIi9tx5IGUtW/kFNMlJ753Rx3MzHJwoCwMym2IA5e2P+OWASEmbP0TnuUtTyv2r9lcHw83WbM3WbP8PbSowWUpZJYTIA65HBY/v4iSZuhc4AHgPOBt4XQjRU6Pj2UB/IcQYKeWmelb/BWvVoozSkmK23aY3gwcNBGkTy8tjn2F78tmXX7H3sL04ceL5mxw3/8uvKCwooKysjLdffYn27dpuFiA0GxQV5DPr3hs45vJb6LnfeAb27c1jky+nW8f2mz/4D7LKykquuOpqnp3+T8aMHs3tk2/6j537323JVIrZ773Pk8+9wK3XX83wPXdnY2UVVTVxhu05hGg02mh22xmvvQ7A2++8Q69ePdlt111o1bKl97uUkjVr1nLUEYez1x5DuPf+B+jWpRN7jxjK6L1HgjBIxGt4c/a7tGpRhpSSoUN2a3LbBw7oz8AB/T1N9D9LbFezzlizNVuzNVuz/W6TUupZIQQKDG/l/H0yKoHWWwBCiFuAM1Fg+nG3ChTgniyEeEPKLRShb0Ar1/POalrFwtY8Uxq9Q+grLw7Q3WOXnZn53BOMOuQYurUpZY9dByOySWY8OgUsi2kzZnKXc0z3Lp044fCD6N+/P/22H0Crli2Ud9MwkYCwjKCn2Ur7y+3SDmrYu5JmusfM8ZrXz9QHQFbz/AY0l7O+Z1OTXRPZtCrnHqR5RY1UraexL1Jx33OslXM9moEVRK8BGgWmrgrb9TbXW4VyvdB2bSWwHplSdRUBr9xwLql0huumvsypl93EhINHs+CHnzh21G50a99a1VWxTlUbjSkvtrb6ZpV08K/Z7SOdziJtTdHEn9R89PEnHHrsiYwaPozvPv+IVm3aqXLZZCDJCGgrrHbEp6zUVSJCOZ63WWbSiBzH+51N+/2XqEG4TvEG0n8DSKdv3ZVU0wkABOXNttzr11cm8Wk+GOp58zzshsnfLr2Y2nic2a++QK9evfw+aohzLW3/+RAGY0bvw9OPP8qLr8xg2vR/8t333zNuv/047ZST2bZPH04+7XTmvf8B+Xl5bNi4kUE7DqB1i1KeemYa/bbtzRcLvmHlmnVcddF5rF67jlum3M0bL00PvhNmJCgn6HHQtTa62+5zbWV9PXBZT6/dbX425cn5ebrQOh3GoQApLfGod81NsX8ZPAshSoHRQDvgR2CG/J26Zk6q7GellOu28JinpZQbfs85m63Zmq3Zmu1fMyHEkSgPcyEqLuZc56d+wGNuOSmlFEJ86ezX7S7gDBTYvm9Lzh3QaXaWbr1ldH0pV09043xQdYUFXasWO8v2fbamorKKZ196jT12GeSnyJY2h+47ghdnzqbvNltz6bkT1SG5RSrQC7BDOQFQrgo4/Eph+EBeCyQMAGRdnzq0qW63t08YPpDV1S5EKEDt8LjMVjp4zUQwa9aq3zJJP0GVppUrnL4BMOoqNsm26FLUrKqNPkXNtrAqFJ3GKChukPYm00kFjtx7llcIyTgR4MrDRjL0/Fs47AKl3jBz3ie8948riYRDHu1DxAqRha08GTdphvy6nPZ9/Nl8vv5xEaXFRfTdZmtOPeci4vE4sbw82rdvR+eOHdl5px144ZXXOOvUk7nwPOex1ROQ6CaErytuW+CCt1BYBbw5EwMRDnsgV4TCXqIqEY4gE46WtSYzKPXsjpmM0zeW15duv4rcmA+ms2mk+0zm5EJuUNdbepx5wdvvzuXVaVPZqlsXL5AQ8HStGwWM0saQNgftP4aD9h+DNEJU18a54OJLOH78BNatX0d5eQWfzp1Nv55d+PGnxXz80Qes/PVXZr35Jjfeegf9tt0GwzS47+FHiUajXHvZRYruKQz/OdbAr5qc1XHljbeyaMkyRg3dk+OPOlzJ8dm+uouuqiHNSFBppZHA4UBwrhHyNZ/NsK/aYjYNFjdVbeMI1KB2lJRytbZ/R+A1oAXOOwZ8KIQYKaX8PTJzf0dpRjcJPAshTOeY94Fm8NxszdZszfZfMCnl08DTQog2wHgUtxlUwHdVveKVKJCtH58WQlwK3CmEeOq3ziWEmABMcP92Oah6AJgUhuIDe1JkwucH6x43PcWvEH7aayySqTTdOnWgMD8POxJDaOmeEQbPPHQP0ghhB/SU3cx7VsCbKLJaEgdpa4FKGZ8LbaV9L6mVBdcTZpgBT6ICho43N5v0+L0infAAuw4sApnYbFs107l+I1Pne6UzCWxXvcEwvfgMYZg+kI4VQCYVAHZupla7Yp0HErPrV3o83fjPP3kaxuFYLtJS2xkn1idapgL1QuBxWMOGwdSLT6L3CZcB8OVPyxk/+UFuOf9UOnZRknZ2Tiy42qDZnHkfctMdd7F8xUp2H7wT5RWVTPzsCzaUV3D3LZPYqkc3Pv78SzZWVTNh4nkcc8RhPP7Us5x71umEQiEv0QcE+dsiHceuqVDnr6n0kmyYZW3UPiewT2S1mI5sRsv2aPoTnJpKj0suM2kv7gXURMS/F4ZXzigo9j352Yyn6GGGIxB3NBVyC8E0qKlL8sIrr/LQY0/QsUN7unRSXnk/tbo/wUK7xgA3H4L9K20KC/K5/+5/ALB8yWKklHRt3xphZ+m9VU969+yGUb4icF1V8SSl/RUr96Qzz+HIo47GCOsZFvX30IBwlJvuuJtBO+7AZdfdSCQc4pCx+5Bj+Lx8pO17jq20L2GYqfNXYDIpfwxwAiw9jr8Qvhcagmo8TbCmep4PBYp14OzY46ggkeuBT4ExwCnAOcANTaxbNwHcKIQo32xJv3yzNVuzNVuz/QlMSrlGCPEgsEQI0QmVgbaoXrFiYHEDx04TQvwNuBBY+BvneAB4AEAIIfUgrYAKBb7HdJMUxXoApqs7nEn4qYstiwkXXk3HDh2YeNopzlK4AyDrfEqDld/Sl2cjHfDIBhJlWFk/uEna/jK+1DzPejrwegHS0owgnd+EJvemtGobyBAIntddZFMI6QDcvBJFyTB8wOwqOdiZDHbal0TzVB2yaT+Bx3rlMRVhLauh6zHNZjxPanJjFanKWqfeLHZa9YsZjWBn1HYoFiWvVQlmbp7X58JwwH80j+69t+GQ4bsx/W2Vfn36Ox/zyY/LeHzKzew2aIdNUkK7ihapVIpxx4znvpuv4aB9RxGJbZq+HGDIrrsgQxHKyytJpFLk58e45c67uOu+hzho3Fim3HqzqhdtdaNyDamfv1bbmufYqliHWdIK6WaBtC2Ec16ZSmLECrxjFF1F9Z3nOdYmIdiWQ/VQz4CdrPP6L1LSyvdum5pySSbtJ9EBlq/ZwNGnnk1hQQGnHH8URx5+GIZhODQiZyKQSflAXAuikyEQegpz3QtvmP62laFLOyd4zwx59AiZE4OYQykpX41dU0lhaVsmnnAkUx59GoBzL7yYO267NXhDNPAqzQgvTHua4086hf33GcF1k2/n2ptv5+AxI3npzXeQts2Xc14nV9b516J5oYVwtceDEFGGIgH1jcAE150gZRoQLGjAmgqe+1Mve6AQYgegN/CAlNIN33zNGTAP4feB57moKXXLzRWsd0zNZks1W7M1W7M123/CQkAMReX7Chjg/iCUbEh/4IVGjj0feAu4tqkn83iPwgCXg+p4W31KRj31F32ZWqNtSCOEZVlcc8ttfP3DQrbvuw2LlyylbfsOXnE7r8QDvEa6FjvHUcixCQAAjzJiW8o77H6cs2lf67gen9bzSKcTSJey6ioX2T5tRAfcnsSZDiRtje9tZTzwK6odKoELzBJxZFLVL9NJH/ylk5q31PDBczaNrKv2FR/0fjVMrBoFDFd/9D3SUbyxLYnpJAaJlsTIa6NoB+FYlFCeD8RFJIpRosCYkVeAME2m3nIFB7w9l4k33sOG8gqS6TRjjj2N5x68k5F77BpcRXC2E8kkiUSS/fcdTSRPozLUa680lYf5hknXsdteI1jx66/06b0V2WyWtevWaVzbLIZ7L0MRQi1VEGPl/PleXfkdneoLfX6y51VOJ5FhTS0pzwHV2bRfhoiSm1MdhkzGyVSqvpSWjRl107YbXjkjGvOVl7SMkmkR4ZATjmbI4J24+apLVSa9htSqpA2Wxv81NbUJndoRyLopPZelkH7mRqNmnc//1iaNRlEL7EguVl4Jk2+ZzE+/rqWkrAWz57zHP+65l7POPNO7ZtdENgnCYN8Re3HfzVdx5Onn0651K+6/6QrOuvJGlq1YBUD7bXeiR+f2dOnQjhzToKa6mnQ2S1VNnBMOHsNJB++rQLyujx6NejEGhrYiIzJ1PtWjEUWs+tZU8NyKTT0FI1GTnPopuWcB1zWx3oBJKff8Pcf9USaUqvr7wGCgo5TyV2d/o1JLzu87AvcA2wKrgauklE829byJbNBjENY0qvR5k7u7sbTajUnc6TJzusyWLp2l7w8E0DgPmi49pweLGBltf8qXZLN16Tldts22te2G44ICsmwuv02X59HTqOofDO16NpEBaujYQIraqLatBlxbk1BLaTJo6Ua2U5Z/bUGpQE06p5F715CcWUS7cfozEWrkRjcl1MBs4NnS9+nnNFz+I/hcSPAF+6FRmTtP5gq1vOmatVElGHCDhFRhXcrJD+7RZfuE5j0SmgxVRLuHufo91OXv3OxcYf84/d7qcncZ7X7q+3W5x0bT2mv9n9HKuE+fnpi3KdJzQam6hk+q33L33uU3WPLfY86YeTrwnJRynRCiA/APYBkqBuZBYKYQ4nFgHjARiAIvNlSflPIDIcRMFIiON1Smvq1YvY6O7doEkk7IUDSYotrw+bBo2fX0ILelPy3iw08+5da7H6CkqIiy0hKmPvciI4cPU97bBjLeKZ60n2TEvdnC8r11MieYiMM9ztvW6CDeOXTZuKyS0HM97DKd9K8hVuyDHmn7GrZo3vd0Ejvu8GxdT6VTxqpYh13n+J70dzkS9d5RK+mP8a6lflUAJl1TR3yl4jZLbfzLbVHg/V21vALDeU+tdJaQAwTNcFh9D9z3PxTxJdlMEwpaEAIOOfwIWnTqzsjDTmTdhnJOOuJATj73Ug4eM4rJV12CEQrSCt7/6BOGD9mVvHznTRBGUJLOvUYry4aKtTz/0gwOGD2K6tpaDhw3lqemPc9+o/cO6G+bVep6M7/+7PV9uroOy/Gi57UpwwyFsTaqxXkjN+b1qzDqZcJzwKgIRbAt3+9nOJQXu64GmU6STah7GS0r8vrFrq0k7EwwREmboJyn87wdd9o55MdiTLriEoxQWIFFqWkda5J47nddmhqP3dK+l0IgQ3n+N1TTRiaT9MZ5xS32ny07r8Sv110BEYJHHn6Ytp26MP74Y7nh5slsKK/g6quuQlBPY9yxQ4fvwlsH7ctjz7/GoaedT8/OHXjkxku44OZ7KC3IY2Tf7vTu1JZUXZzC/M6ETZNIyGT8nQ8z6933mXT+6fTs1VO1JZyLSNepjJcQkDZUq06NyNE2Yk0Fz3GUJ0G3XZx++rze/ko2n5zlz2rnAIGRYnNSS0KIIuAN4FZgd2AI8KIQYrGU8qP/aOubrdmardn+8zYauFIIEUON/+8Cw6WUWeB9IcTpKBDtOh9GbyZr7EXA9zQRPHfddR8WfzyLTh07BhQGpJ6MJOtTKr76+geee+lVWrdqRSwvl/kLvuLBR5+guKiQQTsN5KZJ1zFq950Zvp9KU3zI7ttjVK7y0inLSNBr7QIQgaaZLAhG/acT/gzZtrzJnQIwTlrlRJWfDMMwvSAx27YU0HKdEIaBkevXK4QW/Gj5nuOsE7BmbVzjgWaRV6i8x05d6bWrEU7QmBEOYSXTTJ23gA11SSKWzW5bdWSbNi0IxxyHQiaLtGyPelH7y1qySR/sxNeqNucU5VDWR3GTo2VFHpAWpu/FNqMRjFDYmySHO/VSqazdrnVBZjbD0EEDqP7hI8affxUHjR3NjZdfyP7Hn8ENdz3EZRec6/ULtk15VQ0iFPZ1e20bgUVdXYK3P/yU5b+sIBIJs/P22zFw2L7o9tATim6/4teVLF+2jM4dO2DGN5Jd+4sqEIp4k7Cc4nzSNXVev9jxGt97DH6QYCTq979h+rQNwCxRi+xGbswLsMQwIBQhUug4jkIRzztvFLdCOCmz7Txf79+pnDfefodX35zF2h8XqMm0S+9x+1/nNkvbB/LZDNJFg1ognTcBdCd7WlZAIW1kuZosyFadsfN9woAdUW034hvVDN+556W5Jo/cexfnXHQp99x3H8cfdxwTzzmPsliOH+yZ9TXGrfK1PHjJadx/0SmYsQLseDXZtSvY9/4rePHDjgB5lAAAIABJREFULzn1zqf45u/n0CGvtfcch/NjzL/1bMbe8Ahbjz2B1e/9ky++X8Tw3XYmFAphu44b2/aCTyUoxRLgg68X8dJbc5j/0wp+y5qazHshsI/7hxAiHwUSv5RS1tYr2xFY28R6/zQmhOiF8qDUF+/0pJaklCngFiCFAtMAB6KyL06WUqaklLNQXpUJNFuzNVuz/Q+blNKWUo6WUraSUsaklO2llEdJKRdrZZ6QUnaTUuZKKXfSV+2klO9KKUP16vxZShlpan6Bs8YfzSkXXMniZb9stuxVN93G2EOPZsOGjZx/yeWcf+kV9OjWla8/mceqH77klenPMmr4MIQQvPLEvfz64WuEw/+/FF337teT/l3a8tB78xky6THOfmomqcx/X6s6LzeXZ+6ezPAhu1BcVEjvXj2YdNuUTcqNG7MPX371Na+/9XZg/5kXXcENt/ydV15/g7POv4TC/Hym3HQdy77+lKVffcKMZx7jxGOOBOCqSTfTa8BgBgwZwYnnXcHf/v4Ij782h9UbK/4j1/p7bfHS5ZQUFZGTE9l84f+SHXX4IRx52MG8PettRo4axXHHHM3qNWt+8xijHu3kp1XruPihF5i47650bV26SfmS/FxeufQE9tt9IN1GHcWY0y5l9sfzNymnm23bvDjrPY6ceAnfL1rCIYcc8pvlmzoq3AU8I4SYiuIYH4JaHXy4gbLDgW+bWO+fwpylx0eAC9g0DfjmpJb6AfPryfPNB475tzW42Zqt2Zqt2QC46dLzGH7YCRx1+rl88OYMFRgVijg0Bp9KVGeb3Pj3u5j39kz+dsFFABQVFTHxrLNUSuh0nbdUb0cL+W75N/x9yl0M3X0XTh031Ocs1/kASmYzvs6wTg2wMn7202wqmM3ODHtcbJGqQVQrj6OdSnplsmt/8XnK9YCDUVCC5XBlQxqdTVasVdQVwKpY73uxbQs77vRDTSWZ2jjpat+pn9+1k9oIRbAz62lVUsDAmjrmnnEIl7w6j6kff8t5o3amY2khoWgOiY1Vvrc6EsKqVp686l9rsNKq/bHWMc8rm40nCDme6+JO7clp195rl1nWxuMA6ya1JXVC/vXLUNTru/Mnnsars95h2LjDGH/8sYwYPpwWLVqQHy1g2tNPcvBhR7LXHkMoLi5i4aJFLFz0Mx/NmUnP7Qayz8hhdOnWjVO7dHLqjdC+bRt27r8t8z74kIrKKsYMH8Jjz73Mdz/8GGjb34YN5JnPvuf2g4cxuES1PVKmuM6uF13ECj1vs11T6QeV6hS1SNRX2DBC3mqAHa9GJuIYzqRN5EQJtVbtNEtaYuX5+s4uJc3NlHnq+ON55Y23qK2qoLDAob3pms/1qEOeKoWRbphWZBhKftFLj67RglI1gWfeo0Bkk4isf7xRU+FdtxUrQ4ZzGTZ8JJdcfgVPTJ3K1CeeYPyEU5nx5IOEw2GMZA1Sox+53Htr3Uoya1cw4+OvGH/P84zbpR83HD1avbumQbhYeeJlOokRK6QsN8a0S09CRKKccOP9/LJ0KXJgX5/jb1seKN9Ym2DCVbeyYtVarj/vdI4etw9m94GcccYZNGZNzTA4TQixM3AWcJSz+2Hgfr2cEGJbYDen3F/JzgbWSClfEEJ0qffb5qSWmiTF5Jous9SpU6ff3+Jma7Zma7ZmI5KTw5znp9Jmu12Z/cEnvPbmLE48/ni269HJBwHhKNFQDv+48w6OOekULrngPAzDYJ999kU48REyJ9+jVkgzwqHHnYxtZXn+1ZmccuhYSGocVsdkIu5zNPPLvOVmGc7xEpgIaWObRT7XNJv1qR5Wxguys+PVXkxAprqacKETWAZka2sJORxemc34oMW2fK1aLbaAbJr0Wod/GwmRqVbnq1j0C5l4klxHHq6gU2syFWoyYCXTJCvVNSY3VpFTXMD1o3fl+n12oUXvbuoc2QzhWJSMA8aFYZCJ++oExV1UvTpVI6e4wAt4Cxfk+bzrrAsgHTpMOFfjicd8MGdnfQk/M+zxtbv16MniH75l6rPTef6lVzj3wksYOWIEu+22K6P3HsVbr8/gpltuo1u3bhx84AHstOMOXvzPhef8jZVr1hIrKKS4qEhpNDvnzo1G+al8Gcfuuxdr16zhwy++Jsc02H+HrSkrKaR1aRHZT79j9TfLKT1ljOrjwjJEOOLRMAhFPJ1nnaYhwhGMQsdTavuShTKbIdRO9XF68TdgGJ6es9myvZcQxc4r9mN19OfQDKlgyUSKz+YvwLJsP1V5Tsx/RoWJbfiUIS9Y1owFwLNnZkQF3noydqZKHAMY6YTP58+mPb1wI1GlVGjc+1hP41uk4+w7bHd++PYQjjnqSD6bO5sDDz2c4yeczrP/uBG7ptyXT4xEya5fyaIVa3jkuRm8sWARG+uSXHvAnhy5/VZULlyu+iWTpbCrqj/SspVHmbGrNmJnM+zetRWz5szjhGE7aYGZNjXr1/D0m/O49N6nOWHsMJ6+eiLR0pa+fvdvWJPXo6SU5wghbgS6AsuklA1RM9YDO6ECRf4SJoToAZwH7NhIkc1JLdUAXRr4vUFOny6ztOOOO/5ZMk02W7M1W7P9NU0YKibMlhx45HF0aN+eisoqHrv/7oBUHbbFySccR140h0suv5JpUx+lZXG+J7GFMDyuZjyRYNVqBT5H7b03djiKqFDA1qqr9j7uMpP2AJDZ0vICXoVtIfLUZ0OmE5jpRDD9sfNxzqxairV+pao3lSK50QHflu3JkwnTIBNPkFivQG42kSbWVgGrULzGK2dnsp5HWZiG5x1OVdSSckBx9S8bicT8JX0XLANUL12NlXSUCCKm5/ku6NjaA+hmQYycdNaToZO2TbREgZHiHq3JKVYAPxyLEooqkGZGIxgRR4O3oMTzthp5BRgFxWrSgsMXb0hGTNPvxlHIAAX+QkaIE447lhOOO5ZVa9fzxhuvM+fdd7nmmmuJ19XRe+utePe9udwy+SZihcVMnz4dgKGj96OwsIB0OsPeI4bxzGMPIcIRioqL+Xz2q5i167GrNrL77VeQWbGI6kVLVF9078wvb7zP3oeOoMvBo72+s9avxGzdyZORI5PxtZnzNW3mUNi7ftejCo6iieNtFZEoZlEZZpniNtOyow9yNc+7+s/Noqj696pJN9GzRzeKWrfzg/O1LH3SDHkTEbt+giBNP9kNirXDuQg7S0aov8NkMZxJZOaXhR4QDeUVeQGtdrwaw9FfllYaO5Kv1CxQgYUyFMEwDS4+9VjmvjuHI446mgtPOJR9TjqPJ686E7t8rfdOzfnhF9549wMemfUJB27TlQt26cfATq0piuaQWl/pSf0J0/R0w6W1xvPaZ+IJkhur2bkwn8sWLOTjOe+xw9aKiy+jeWw9/hq6tmnBk+cfw/Ad+0LlOiwnwenmAve2iMzlZP5rNIGJA6j/UL6zEGIbYAcUl/oRR0e0B7BWSvlHSNTthpLG+9aJgHenc18LIS5n81JLX+Hzn13b3tnfbM3WbM3WbP9GE5kkJrDhp6+wQjksXf4LQ0buy+x33+OpZ5/j8ovOp1u37h4AO+rwQ6ks38BjTzzJrv238b3N4agHAGLRHEKhENlsljdnziTSYSZLPn6bju3bEErFPTCT/GKO146AvJsuI1bPjGgMy0mAYVWsI75KfVIz8SSWFnzneneNSIjEugovSC9dnaBqsVJ/iBTmktjohx2FouqTHi0rItZGeTilbXsBf7llMUK5Ec8TnNxY7QHrZEXCO540nkSAMA2sRJ3TXuVFdY8v69ONSIm6TpETDQTJuTQEs6yNBxhFTp4PBMO52KEI0pmwSGEElFCkHqymq9O4++uVa9OuHSeeOJ4TTxyPbWWxMmkikQgLvv6W8SefzKWXXcHAnXZi/IknMnjwYI4+4jDmzZvLPmPHKY+2MBCmT7VwgwSteA3lPygPZ27LEnpdcqk6b6KGjTNfUftblWDUVSNjrmyh5fWFStWtts2iMj+xB3jUGrcsgAiHMUpaIgpbqKpC0UAq8UA6ej0TpW3xzPTn2WuP3R3NcD8pj+dU1qgaCIF0IaKUvopMvbTd0gj5KlAZy1PVksm45x1P//wVsk75C43iVoScSaQRzUfafhptWVvurdzInHxeuPE87pn+Gkf+7QoAnnj2eTZu2Mj3v6zhzQWLKIjlcsh2PZg+YRzblRVTvWw1VNeRqK5DmIaa2KEmjnWrVXoQW1f0smyEaVBiGly85w5cPW0W089UXGYzN0VdMs0zJ+9Pi5bFXvKbhpRZGrKmZhg8EZgjpVzq/C1QHuiVThCdXnZ74Agp5YVNakHj58xH8ZAPQqV7DQEzgTUoDelf2DS47/fYc4AeWdABleVwJMqD/jW/LbX0IjBZCHEBcCdKceNAYMQf0LZma7Zma7Zm+w3z5DQzdYSySXq2LqJr506cMOEM1q5fz1PT/sltN13PmeOPU+XsLEYmQU1luVK4cOTsjFSNB8QqEhaXXnwx115/PZ07d2b58uV023k4H73xPAN7d/e4n6FOvciuWgpAavVKT14sr0sXDE8L2SCz9DsPGGYTcbK1CvCma+KeWkVifYUHmHXZN2lJrIxFxRIFXONr4ySTTtKMsElOoWp/KDdE2wHKW1nQqZUHmI1IiI3fqjYapkEmnvTqT1Zo3Oe2RZ63Olpa5HmLQ9EcDbjHibVvSbSDEjYWGl9ZhMMI5xqNojKlL4zKBOgCNintgGSkDEcDoC0g4acpbwT0s/VMjQEPtV/cMAyMnCgS6Ne/P59+8gkrVqzgvXnz+Pvtt/PwI4+QmxNh/fp1DN1rTyeLo/QzL5a0oWrlL3z6/c+8/v5n3DfjXQCuzCvhnB6/kJ+Xy/q3XvcTweTmUFSY9BUzbEvjM5vYFb7PMeTSVmzbB9i27WUUVEloIh7doX4yGK9/Inl+99hZhGnw0D3/YOL5F/HFlwvYYcAAv59M1/McxtO3DKTk1tJ5a/KLwsqQMXO8YwwhvPcl1LaLPynauNpTN7FrK8loyXZENEaoleK5y0w6IDsazS/g3BMOZ0ivjgw+41pO/vtUxgzajh27tmVixzZY1TW8++0Sto7lUZvMOKsw/gQzWa5WasxoDpU/+0GHdRvUJDiUG/LejxGdWnPTnC94Z/bnbNeyhPXZLKYQpNZXkDSEpz/eUCr5hqypnucHUQFwS52/S4GfUADxnXplt0HRIP4l8AzcjpLDGw58AGjisryOAs7/MniWUtahydMJIdw+WeMoifym1JKUslIIMRq4GyXsvxo4tVmmrtmardma7d9vdo3yOAnT9MCIgc3a9ev5ef6H2LbNrnvvz/TnX+TKi87j5tv+zrLlK3jkxkuhdqMnCScKShC2RXVtnFaDxtCytITzTz6aWx/0Jfs/eP8DBnb5P/bOO8xu4vz+n5F0296tXtvrghtguqkGAwEChF5DN2BM7x0ChN5DT+BLCRASggMEAqEm9N5Mx1SbYjA22LjX9d4iaX5/jDQzunvXXoJJSH73fR4/vqurMhrpSu+cOe85vbTclSwWlCZxFG46Sni8lLFq9lKIukbK3ynpq7DsU5wbTX1baHNpwWL90l/wzQL8KEEOI5HxGXPUd6VQMrOo0LFeGZe26PvWth6k8gbBjCkcxXmLcKLkyS+UyDTXa0vsdENeJ8xePqs1mFP5HF60L8dLUYySlExLA06+UZuZCMdFZFUS59Q3a6twuxgtkbBZIT3Fp9X6unbxmZsiFJ0nzh3haMQ5YalcGRXLHcdh0KBBHDB4MAcccADPP/88O+6wAwMHDsRxHKbOmE1TfR0vvfgKaw5bg7psnlVHncbgAcuRdkzbn3j2JS66aQy967Ks0NLA2EjjGuC+E/Zh8xVUkpjr1aKT4cQMhF/WmtuEgVF+91KaL63pHDGC6iV1onXxnp1UR+e7/bbbcNSnn7HzniM576wzOfLwQ1U/2cm3RY1J9JeNNscDFxkmfACQDjKlrrdo7Q+L1YBO5BtxM+raB/NnGxTXLyMK7ZSj34LXd7Cla16GCKFeZ+1h7LLJejz3zse8Nv5Lnh83gfVWXI4VejTy3JffsvOaQ0nlszjpFDJQ+y4uKLLwG/W5Y26BwtxopiPt6sLVUnvZyCc2Zjiu7wDOee4d/jx8XW76ehI5R7Do6xmki2VNM8pUGip1EaI7xgpCiBAYJaW8O/q7FcVv3kpK+VzFuvsDY6SUP0jrWQgxCzhRSnmXEMIFysBwKeW7QogtgEeklA1L3stPO4YPHy7ffvtt5rd3JJZ3ZXYi9PeW0YW1rhMYDlXSj94yZ7Cmf2zjk4Qmqb2OtoH1q35PWP04iePbP3x7Ws61PqdtNMKMqMOomrgrIwv77g26MLWwozsGF3HL7f3Zm5Xt41inabdxfsH00eKyeSmUE+fRuUAja1WWN2XNA68pY0bDdSnb1MSsn+riPVKlDASo+j7r0lCnmllPZdjmLanQoAN2hbat5an3VzDsq+S91YU8VlfTagkjgs5mOPa915XRjm2ck5gSde1tO7/I1GdrecJURf1hd3fCRKeL+8xex+5ze7l9z9VFN0BThDgKId6RUnZVy/E/EUIIWXztfgDclt4a7XRXHAHAFWefwqlHHsTCefMYvtO+TJz8LVf+6kiO3WVLPM/FbWimOF4p54lMlkXzF9B7tJpCHvfbU2ju2ZPBo88im/YoRNzixf+4kWDeLACKcxfqhDnd2kMn0k5zb10I5387kcK06cybqLjNHTPmUVyg7v9MYwYR/egWz+pg4TSFZE6ZNE8/w9oa0oSBZOZi9SzOuYK8p46TaUrjptTnXqv3pK53xCdOpXRSDAbJruvdjFeXxYna2TF7vk64M80NpHqpaXC3qTVpFx3d206+Aae+WfF4UUlWjIAqk5goMbOTtZRFO7ApAY6X/L1JmUjs4t+TkNJYk4dBwlJZH7daxPSOSovmqF/PO/ccrrnmGr08k8lQLBYRQtDW1saWI9ZlzLWX8tGEz1h7+314/NxDWF24TCuVKPo+78+Yy/rL9+cvr4zjntc/ond9jt/utx3rD+mnBh+Ru6HT0ls/92SpgBs5FMpiQXPkvf4rEkY64mLBDKUpHp1nWNeS1GaOz8NNm/dmRR+8/+FHjDzwUC678Hx+ufMOySTbukZ238T9Ekqpn/26v2Pny9DHidRmnMVzkcVI53rhPOWYCITtC7VZTMfMubipFLlBimfstQ1E9IzcOjsWaCMeWSog0lk+nTSF5lyGVjdACMFXX3zORidfzQdXHIc7bxF+e4HFM03yHCfMC6cu0oi0cB1mzlfLF/mSXPT76tOcJdOc4dAJH9KcSvHefDUgXLdPKw8dvQcNEfKcblV0p7o9foUQAill1TfeT1nAMgfM7uK7BqB7xJRa1KIWtajF/2zEBXf4Zbw2RSfYYI2VefOjTznj0t/iFNo5Zs/teO4PVxAEIQNXWZ1Fzz1AGVVQFFMl6nq3cPeTr7Px8v0Yc9BONLnw4MtvAOjEGWDCo8/Qs6dSP/ALJdyoOClfKmtjC3/adEoLDSVixnsT6Yhe9HO/nIffofbn5TzCCCULSiETF6kEYG45YEDO08vreuboEal3pDIu9X1VkV3jgEbyvVXS5eVzOkn22zs07UI4Dq1rKCWHTN/+iGxeK0Bk+/czaH1DM26MKNvcZMu228nlCeuaCWKAQwiTdTmucWoNfT1AlW7KoMtSmgTQcUE4Jvm13O8QTtLpFrNOpzF/hT13HHZiKOIBrBAacLro4ks4+ZRTufZ3v+Pee+9hypQpbLzxxnz7zTecd+bpjN55SyQwbMWBFF69T0mieSl6RdSM4aUCxanfcsleW3HsLzbg4XfG88v/u5ezdtmMA3+xPqVA0L+1CbepVStviGzeKEmk0tVts2PXQO1+t9gASjZtxR4U2OcuHNZca22uvuxSjjzuRMZ99Amnn3oyuVwuul5hp/4pl8t88sknfPfdd+QyGTbbeASO4yjwzFLlUJbexgUzDrdnP1Pw6KU13z1dKFFu7zADMQxwIjN5RHSuTlBCellWWas3IvQJF85BSskpd1zHCbttSc+BAyimv2Ph5OmJ2RUnSoyFK1gwRYEwi+d0ML+s2pZzBT3SarCQzqdwPYffDl+Tu76awqgRq3D7+1/w/vQ5fLW4g3WiWZeOaapsz0B41eOnnDy/BYxG8ZwrY0/gtX9vc2pRi1rUohY/VkQzjJcDB6HqSp4CjpRSzurO9tPnzGPdXY9m2ErLc8hu27HrJutx6Z//zhOvvMk/XniNJ2++DNetPiE6Z3GBX/3pUV78+Eua6jKseN6tPHbSSLZdayVevfAI7nnpXa5/9m1WaG2i8SdsQFGL7xctLS1ceNFFXHjRhcycPp22tjaOPfZYPpnwKey8pV5PiC6m26Lo01TP4T9flzUH9+PCB5/nwgdfoLUhTygle2+7GReM3JbGfG6J+1jWseN22/Ds449y8WVXssY6wzn/3LNZZeWVee6FF/jqq0nkGxoZPHgw7777Lo8//jj9+vWjf//+fPvtt6y/3rqcfuopTBj/CRttsB49e7Qs/YDLOK78073MmDOPk0/Zf+krf4/ol8tx2morkV+hBw9/PoUtVliO5VqqKgsvMX7KyfM5wDNCiGeA+1AzmjsIIU5GJc+b/ScbV4ta1KIWtVim8WtgV2AEatbxT8BfsNxtq0X7JKWE0NCrlcZsiuffeJd3P/yEzYatCEguHr0zO531OyYvKLLCoOUovv+ilrWa11HkzWmzuPD+59hy4+HcP6gvhz31OgCD6uuoCwJWaq7n7G025OhVlyfjucz5dDqKtQhB2Ui1CdfRBWR+e0Ejz6UFHXz1wmS+jdDmUmimkmfO7iCIUNH2IKQxomM0eo5Gz/rkBcIV1PVQyZebdmjop5DnXmsOJt0Y0SYs2+ygVK8RumxrE16PyAa6pTeOVcAlsnmt/iDTOcKY62rZMFOHRjUDL6PoT1XQ3gRVw01XV8hwnE7LQpsUZvGcHYt2YdOgRFec1Coc6U6rJNBsm2ol6N2nDzLwGTduHH37tBm7acfDjZBUkanTmsvlSeO14UswfzbCcdhy+eXZcouNIZXBydbxzYzZnHPbfYw4/jd8cs91pHv20Si+LBWM5GGpA2wKRmGhKVwTgrgsS6bqCOP13LRBf0PfUMt0X7ustMqq/GXMHbwy9nWuvPIqpk2bxuY/34wRI0Ywf+EiPvv8c4YPH85ll19O796KsrNw4UL23GN3ttlxZ6ZPn86QwYN5+ZnH6dHSkqDSyUweYc0uyIh24qYyyFi+saUXdfXNRravpY0gHxXmBYbaJ8lrmUgKC7l0zO3c9cgzPHv3LdRFomoxF3nBV9PMNYzup8WzOnSNgCMEqywXyQGGoaY1eTkPL+vhRJSUjHC4//i9AUg35umYoegghdlKNaSVJcf3SZ6HCiE2jj7HuserCyEKFeut9D322WVIKV8RQvwChUTcgLrXLwReR3Gt31oWx6lFLWpRi1r8JOII4CIp5ZcAQojTgS+EEIOllJO62iiWqMo7Dm9ffASXPfQif37pPWbNmU/Kdfn5iZdS9gOuveV2rjv9KMKOdiZPn8vlT4zlta++ZUDf3vxq3x3ZbVArpcUF2p96nZFDB9G6+sp8+NlEhrT14NNn3+XlWXMYudoQTn71XXbq0Zv1G5pw0i7L77A2oLjME/6m+NPFBUWdVMuIvNwnq17ipVDyxSLDX55aUInGIj+kI1p3/ZYsLRHtIt+Wx+/wtW5vvq2B+r7qFZzv20q6TSlsCMfR0+MxhxTAyTfitvYBFC9cZvKEEQ0gTniiHSRoE9KWRItCehlFs6imfoHhHwsZJutoEu51ySTXxnS1EIQASWe0N5QSJ1oe5+b2Nl2F5kxjnSNJOgdhyOjRB/L+Bx9w6+8eR0S1GNJN4WTVYAW/aAoB842aduHUNSgDlMhhEMdF5PIM6tWfO69fj5/tdTjXPPQCZ554tE74nHLRJKNhYI5XKigKTFw46KZN/YXjap1mKRzTQ8LRgx0ziIlpHLDJRhuyyYN/19up9dwEz7kUUX5SuTyPPfmU7p/lhwxhwtdT2aBtAF5hnqkXCUo6kQ/zrRBEx3fTOAMj/ravdNAT1z+uQXFTZoAWJduvvv4m51x0KUHg8+Lf76BPjyZoj1Q82heSbmkmE0krevmsKXbNpck0pqPucrXkogwk5SipdlPK0MdJm/vPt6Qh499XqnFphA0V3yd5Pi/6Z8d10ImCJKos+5dCSvkqsKkQIge0APMidYz/qcjKUnKBXXdXRaJGBHZRlTWSrqYFWfnZLvCzCgwTz50KjcdOyzzDOUoUT9lFCzbC4FQvvLKliGz0oWQV0pVL6nNgQQ/JYiz+5XASwIj5w63yFLbXtYvquprO8xtMIUzBN41cZBUPFv0lN97etWe9b+xCPqsmKLHcLt6ziyHLdq1NlaZ3VQwYdFGkZu/OtYsnHXP+btpccxF99OwCuLxl+WqhEba1cqy/qzawile7urftcCyULA77OF0Uw0rfevkL6/h2kU0CbbM+V1ayV66baF/1AkT7N5GgN9rFhtYfqS5LQ3/6IYRoAgYC78TLpJQThRALgDWBSV1t2zCwTX/O1Oe5YNQODBnQl5ufHMsDV5/NvU+9zO2PPgtBmbDQjpPL89ePv6TgOpy7/46M2mYTXNehNH0apQWLmd9R5J7Pv+aefc/odKy18vW8smAeU0pF1m9qYkZ7Bx/f9gwr5vP0GdxCfYQIO2lX8zE75hYU2hy9tBsaM7hCvca+WFSiJWWS6pifGUhTaOp3+ATlgHRe/aYa+taT66XQT6/O0lb2UtqkQFqJnMjlNVoqMwpplhHXVHqZqs/7Sr6wXbCX+F64+iEgQt8q0kve//aTzk7YHIuDDKDXtI09rHWsdLFbSfOSojLBP+mkE7n/gQf42913suZqK+O0q0GZTGXMoMDLGHWRplat1BKC+h3HhZU3mrnQAAAgAElEQVQNzVqSL3Q9Bg0Zwrm/u4VVhq3NJhuNoLVHC8LxEKWO6Bx8ZIdKCsOOdghDjTw7XkrvVyyeSxi/tzP5ToWC5uRs7nfFtYh1zaV5foTSPOPLodSfF8ydw8yZMxi25lqEUiLTecIo/xCBQb4Tz2oZEuYifNVNQ7mgn42iXDCc53QOpGpbBw4nnHQaz7/4CuedfhKjdtlaUaz8suKJA17bAGRTK40ZSxM76qOmFRfSc4FCjBfPmKtRZC+bobw46mPH0TMzoGZkYqUbW1/d5lQvKbqbPB/czfWWSQghsijL632klA9JKTuAjqVsVota1KIWtfjvjJh0OL9i+TzrOwCEEEegUGpAFb0BKpGJXqYH7rEz42Ys4pxb7+H5Mf/HY2Pf4+EX3+Tig/cg57isscqKPPz2BK7fdmtcL5ruTXs8+uW3LCgUOXvz9bj0BZ3H078ux19/sSF5T70yRyzXiwtnTuKlqUaq7OMRe/HSdzOYMHcBQzN1bNDcg7Tr0DG3QGu/ekqRjbXjCp201HsOs6KCwZw1Kv9sUYmeUSLdoxSQdgQDWlUy5hd87TYoXIdmXfDXotEzp67BDMrCUKs9EATItGcADbtgD2vwWGXwZ3/WSbTjGiRZJFHdqgNIIQi7QDxEkpvRxfIKCkdF4pxYNw4bHa8Emxz194RPP+fWP9zGh+++zdChKyILC5GxznK5aNpT7tAKGf7Ur4wRTEtvJUlXp1RIQi9lnPzqWjj8sMMIhctehxxNQ32eAf37MeqX23PM6JHU5+sgKBm3PC+t0No4SRROQvXKidFyi6ohU5kkbcOi09iDBGEXclagJ/HtJxyhBzv/ePQR1lpnXbx0RiXUwiMVJ8Yd8xMgmdDIc8ocw8sgZKiVvaTjKfUVIhBOFJg+YyaHHXsS+Xye9958jQZPmgTbug+cPJBvNHbu5TJhZMwi0llELio+THnU949k/4JQq56U5i/U8o1xxDSrbGujRqEzzd0TceuWVN1/IoQQU4CjpZT/+E+35ceKWKquuKjyfWGiKvIcLhvkOSEhljhAldFsVw/FHxt5jj7+6MhzAlleBsiz1bBlgTynrYPmLDk7e3nq+yLPVaIr5Nnu52qyfpDsN1s2r5rknY082/fhj4k8d0sT1r5Xu0wgftrIc7YuH23z3yNVJ4RoBuYC60gpx1nL5wMHSCkf6WI7WXrzYQCdyAC4rX2RjsuOh/+K3q09+P1Fp7PrIcfzzviJfPzXa+ndpw+7nHgB0+cuYPUBbfRoyLPB4N4cfeO93HDIzlz50It8PNXUKb5/0E4symY45P5nGdjaxNOfRo5znkuHr37Tq/frRRgEbDl0IGMnfsNHM+awSo8mNunTkzVz9axRV48jBGEp5IsJMzlo9qcAnJgeSLOTotFz9G9okR8mrm2957Byc2SDPaiJpkFqPFHXu4lcb4UqZ5sbtDazcB2cGCHN5XEiJzivV3/CfA/CTJSApOuSZiRxv1agsp3eCTa9w0Iyu0KBNddYOIn7OoFJV0jQdYmqdhWVSXKMioa+eZZULI/jg6+msd4mW3DIgaP4/bXXgF/S3zsd86FdDVaCuTO0EYxIZxHNSp1EphSC38kABtSy6FpOmzKJvg1p3n7/IzbZeR8ABvXvQ+/mBgb36cmJ++zE+musHJ1+hGI3tSJi/WzbUjuV0c+8MNtoNLZTuaScZ6Rq0qm7HC9xLULrfouR5zmzZ7PVFpuzx557cPY55+K4rnmGE5qk3up7aUkQhsLFDYr6/G2qhgjKzJ49ixWHrcvo/fbliovOJZvNKqqH7JynxNdQxii2X0bOVyom4YI5hrJUaNeItFI3iQZ6fpmwfQFBu0qYi/OSBtVx0uzm1ezRjy5VF7kNDkCZipSWtv73iFuAE4QQT0opy0tduxa1qEUtavFfGZHZ1GRgXWAcgBBieRTq/MGSttVJRmtfk2S4KUjX8bfbrmffo05hi32P5JozjmG7w08j3TYAt7GeP111Pq++/ykfvv8+fhBw7t1PsLBQYtsRa/HW5Bl8PPVlfYyxHUV+seaKhJ7L0OWXowN496upXLfb5pz+6MvMXVzg46kz2W3EGmz383U5d+dNKAt448upPPvxl1zz0UTyjsPVI9Zi0qQ5jA/a6e+m+TYocUfpG35Z34uNvCbS0UAv7Rh0en45xBVC00BK7SWtb5vKZ0hFUnuL2gs4kWxeurEO4c6P1smRjm3D01lcN6WTExn6yIxKFqRwLEk5WxItiU5LIRDSfI51yiXgVvCRrYuk10/ky0JUR4vtqOBV64iLGuPv/JLljFfSg2whQ12wJsodhksMunjvqUf/yYpDBnH+8YfhtM9GlDoI6yKqS7pOJ/9uGEC9GoiE+R7ahwC/lNBDjtsNIErtelDer09vnMJCRqy7Fu0fv0QqLPPF5G+ZNeVr3h7/BXudeRXbbbQOI4atwgG770g6lUrsi1RG2XXrPogT0ZKyVAfFPfasYkLpmetnJ9IyTBRl2pSYGO/o1bOVp55+moMOHM1RRx7Bbbf9URfcScy+ROgTVpEcFEIBZoaP7eprGaZyHHvy6ey9xx5cd+Wlqt0xeh33q12Q2mmQ125cHMNQ02mE1x8R9ZtIZ0EXwfr40ybhtCu02utRNgPMBqMmYsvqLSmWhdpGb5TzYDW3wR8SzcAawCQhxLPAdKigTknZmZRWi1rUoha1+G+MW4EzhBDPo9Q2rgCeXFKxIKBRVemmCSOTFNw00suQr2/koTG3cv8DD7H7CefRUSjSe4PtOHTk7qy84hCmTPqKlfr1ZtSOW3De/jtql7dtP5vEHc++yfHbbcRvHnyBtl5N9GrM89YlR5FqbiYsqGno4tyF7LnlcFqOvIxjtxnB8v16c9iN9zHmxJGsVZdhkyH9WL+5kdM3Xotf//15tnrsRVxhEuO+bpqzlxvCcV9/yj/dOezX0JtN65ppCiSLIl1nVwjqPYEX6T5nW7I0LKemzhsGtpGL3AKF6+jkOf4bwM3Vaf1mp6ElogFESQooTiqKE6pfsJFdtfrCoH9xAlMmTpqSiW98Xm7FrEmMTgeVU4XSzEJ1SpC1MYjRhhZBSSdYwi8i/AJOxBsOF87RSTKOq6f3cVMmYXRcZIfSuA7mz9bJ7pzJX/LFV1/j+0rXWGbyehZMehmjhJHOGUqCnSTa2tUAQVkhqPpcOvR68exSJt8IUrLSaj1YeZVV+dnWsP+oUfzxbw9x/f2PQ30Lh4/cDZnKEGQsKkHUx5WGUk7U3jBVB76hmkg3hYhR8BDikY+QZZP8CpGYFbYR6bY+fXjo4UdYZZWV+cc/HmWXXXaJtjfXpdOsmjXYChEQ1cA4UlKOTJy/nTKZBx95lM8/+VD1qd5XOtF2okJK3XfxDJ+UuqhVeFnd4oSKh636IhycugadHKf6D9TujzKVMzOgs6bSnfjBtA0hRBvKkrqT2+AP3O9XS1lFSimXX1bH+0+Epm0snJf8oos5Wu3GZPPBrOns5BR2FxQO+zBli7ZhTx3b08/VCgYtV6iufnD2FFBXrmmJwrMuaAFLC5s2YdMpUjadwaYI2FP+dt8VLRH38uLof6t/rO+lNTKNLXgB8+CG6uL3lWH1eTX5pYSta535rIsxKvahR+tU0GNsFy97+q5aNX0VxylI0gOCLq5bV1Ht+tv0EM+pfg09ixTi2LQN+362XlCJ+7+aw2aiyr6zQsC/FF1SQarM9HVVxGOHfd/YroZdnZv90oqSoHTk4PXfRNsAYp3nK1A6zxngaeCIJek8CyGkP1kB09LL6r4J0/lEXzrFdr6cMo0d9jmAiZMmd9mGMcfvzePvfcrkWfMYvrJSGfCDgOsO2J4Pps7i/rEfsv+Ga7DVWkpUKiiUEK7DC+O/YtigPrjZNEOOvhKA3+29FXuvvyr/9/jr3PnWx/RKpxk3ex7N6RQXrLwybZkMAzI5si1Z3pg5m7smfs1rs1SRWoPrcuTgwezWvx/CFWQbMzQsp54B6YY8dX2VC1quVwtuNHhwGlr0OQsvbQoJM1loiNDSVF3S1tlNmXvR9TTtQDpeMjmzCwErUejYfc5KDJGh5kIHoazqimsnX/H2RnotMEmQDE2RvE1T9As4xXbC+er2kPazIJ3VqKT0soriQEThiJPtRfM07WHh7Blc+dBLPPD4s7zy8F30aGpI/kZjbvGSqFcySWNIJIC6w6T+W4S+dj0VpQ59viL0+d0fxvDxZ1/yh2suQfglg4K7XvK9ZFNTAsNrRwjj/Oh4pkDUar+dZCIc885w3IRxTYgglJK777qLW2+5mZdfeUV9VekoXI0aEs1M2O+A+Hkvg4DBgwdz/XXX8sudd6yiFlLRzvj+6OIdFtM6hF/U11h6ZuAkSh1qPd9QeMKG3lGflRDx7ERJvdOdlX723+kwKKUc8p9uQy1qUYta1OLfE1LKAPhV9G+Zx5BBAxj/+gsUA8nMb75k+szZvP3SC0yb8jUTp87kodfG8cGkafz1lfcBeHXC13rbNU6/QX/eatXBnfa9+apDEK7DvLLPEVtvQL/WZu5+/UN+dd+zBFJy8w4/45vv5vLFgkXMK5U56cOPOHDgAA4foGyLR/RqZXhzM8X5Rd6aN5dTJ4zn6okTGdpQz7CWpk7Hq8WyjXwuy8W/Oo4Zc+Zx1uXXcvNl5/7H2jL+8y+5ecy9XH7Oaf+xNlSL5VdYgc8++4wwDHG6Aw4tJRzHYbvttuWZZ59j1512qCb+9JOOnyzy/O8OIcRWwCUoqkgB+JuU8pjou9HA+UBf4EPgGCnlO9a2w4Gbom2nAedLKe9c2jFryHMNedbHrCHPQA15/v8Zef5XQgghS9OjSUpLTzZM5RTv034OxhGGOEU1Fex0zMefrpBo/7vJ+JHc1UfTZvLbf45l1KZrseagPpzwh4c4ZPP1+MUaK5Du0QNR10jZ99nm1Mt5fcIkbjhoJ3o35qnv1ZOfDxuKkCFB+0K2ufiPFDuK3Lf7lgSFEu9Pn8O9H03k/s8nM6C+jid225IwKpDO9+2hqRZ3vv0Jf3h3ApPnLeLbi48i3ViXKGiKOZpOQ7OWpHPyjQnDEz0N7qZ1MRmOp/pE0xi8BMpoT3F39d4AkkVc1bjRjmPUJlK5LjnLqoEReuoXTLsCP8FftouHdfHZ/BnIglGudRqa9T5FOqufjTbyLN20eWZKaYoCF89FFhczvyRZc/uR/OmqC/nFJhuq9VzXoKGV/VVJ27D6XCOpwjFtsdUmLBRfhD6EPu9/+BE77L4Pl555Kofst5f6rtgOkTOmdNO6LSIoJTSXRWAK8aTjVT1nmcrqd0OCL16h3W3O11V0KARBELDhhiM477zzktQN67z1vuJLVaGOAlaRqAyZPn06a669DmNfeYkVll9e91GIQErJp+M/YbVVV9HnJYKSkVO0ONAiKOMUFkR9UU6i2LHMX1BWBZcWkh3bnovy4k65jtd36I+OPM9HSdl9vAz2pUMIcczS1pFS3rSMjrU5cD9wGPAoIIDVou82AX4P7Aa8CJwIPCaEGCqlXBDpkz4OXA1sinI+fFAIMVFKOXZZtK8WtahFLWrRRcRvZzelnc1AvVxFEL3IE0l0iIzdzIrtmg9MGBIWPgNgrSH9+ctpB+ot/nbGQcgwYOqcBeRmzyEdOPTf5xT8IKRXQx1PjvuUf77/BaGUfHb7xSzXs4VZMs3YTyeTcl0m+D5DgbXaerBafZ7LthkBKApGpkUV7Hl1WVKRhfPxKw3g5MN2BVRS7NQ1GBm6fANOvRpMO7m80RNO54zaQwLsMNJ00vEQwrH0+0UiaUqERdVIFOLJ0CSzUppkJPRx4uTRyyIjCUBhD/BkaCWvoUpyogGwsJIePUUPOO1zjJKK45oE2XURDc266E9kkuYW0lKo0JJu6ZwZlMpQD+ylcHDcNM1Zn9suP5fRJ5/Dm4/dQ/8+bUkagbQgIptmEi+y+jWZgJrkWxf5WaoUhD5vvfMee+x/INdedjF7/3InfS/LbINlJuLjxPSEoGySdS+DKCoVCVkqIHKGIy0sSTvhF3XSKb10UqEoHriHISIW7ZceSIkLvD52LDO++44VV1xR7cvmolt9IR0vCfDZ4FUFVaetrY0VV1iBWbNm6eQ53ua6a6/lrLPO4q4xd7DH7rspF0M3lRiIhZGrpOM5hFHhq1NYoClDMS1Gh5QJYEnz2lN1pl1dOVhWxA9OnqWUBeCOH7qfKnHDEr6L7/llkjwDlwE3Synvt5a9G/1/OPCAlPIpACHEVcBxqGT6DmB3lAb1lVJBpk8LIR5E6ZDWkuda1KIWtfgRI0bYAMuJzYMwsPi81kvUTUOkOxtmG3Ry5xQLeL3669WEl9KavrNmzWHH0y5n3MQpNOezzGsvsMagvrx26VF0TFOOc5vP+CttzfW0yRIinWXKnKkMXa6NndZblR1vuI/fjdyaURsNQ1pSnOnGvHacS7W06KQYx9XHFmllhHLtnQ+Sy6Y56oC9lUEGEKYyxrTKcROzT4Zza5274ypVhCoJs0qA4lerQR+FDA1P14+Q5jiBreTNxglj6CNKEaoblDXnViXPZh3Aki5LKmTEs4EJ9YMg0GizSGdxGvIGVXXTWpvZRoVlqs7cI7YUpZ3kZfKEjosotbPVL7Zgw3Uf4PhzfsOfrrmYph49l8B1tgYh8XEhaWFuLe90/oEZoIz5698Yvd9I9tpz94RUnurvzjMoSf5yWSuliFxKGa7EiGs6C65liBbPonqG7y69rJGaEw4impnB8TR6e8avz+T6a65gjaHLq1kuayBjZ8g2p15g9UF0LrakHUC+vp7pM01ZQxj4/PWeeznrrLPYa4/due7/rmeP3XZV7nsVyi9uWNZtjs9fZuqtYtMkIi4zdUZz2ktrV8cEvz+oGER2Ed1KnoUQ/bq1NyuklN0rWex6+07zmpEW6LbAGcC+P2T/1j7zwAbAk0KId1EuVx8Bv5JSvg2sBfzZapcUQrwXLSf6/12Z5Bq8CxywLNpXi1rUoha1WEJUoZbFYScEZqGjp85Dx9HJs9vk6xei9Euq4Cyd4/xrb+HSG29n5FYb88S15zD126k8NvY9dtpgDVwvRaZFoXx7bDyMGx8fy+ib/84Ju2zBxLmLGdTWk3NH70q/Pr258ZHnOXTPbUjl8hpFVo1QCYhT36xttJ1c3khsRUVSH0yayr2PPsmeI0fSoyUuIEspekp0Xh9P+IwRm27OfiP34ZabbujUL9Lx8KVx6nM6JXhWMm2pXQhLLVYEfpKGEaPabkojfU6xPZG4OLH1tOMh052NNVQ/+IYqV2zHn/ktlSGydVrDF8dJaHsr98SoMNCSh0OGuoAsIdXmpTsn09E0/i1XX8wZl17DSpvuyKg9f8khB+zHaisP7UypjBN34XTSebeR56rOLm7KJJ+OSymQ9B80RA12ZGj0jMvFpIV5PBgKSiZZJ2OoCm4amW/FXaQMfGSpgPCi49hyb6UOKKpE0kln9ayFcEyCKvwCuGk+nfA5U6dOY9ctNsKJ1EpkKpvoY7t9ttlOVxS1ObNn8cCDDzF+/HjWHDYMKRwuvuQSbr7lVvr368fLL73IiSeexLvvvWcGQ13sK+EMaw2KbGqLlvhLmxmKmAIpyoXEtehOdBd5/ga+t+V291rwPUJKOQ+4N6JK3AJsvgx22wI4KIR5e2ACqmDlMSHESkADS3a9Wtr3ibDdsQYOHAhA2U3qF87uCDptBzC/qG6Q+QVzo9jc3uasQRiG5C2eq12h3BXX036I2OYl0WjO5rnaXOVy2TYv6YJbbT1wujLhsLmuTsJ+Wn22ebF2lW+XhjHlKlxHkuec4AXX2RzhSPje+hHZ59wdzm9X55m1TjRhUhNVANvca1ml2j36wvps+1xb61cxPlCr24YlFt9OL6se9o9ZOlUQlSUcp9q90xX33b7zpeU97qbr9WfbWEGkrIdmNZ4zJBGcqut2gTSEFahctfW7vC7Vbgw7MbHO1H4hJw7Txe+pGo+3y2P+74dtTGEWKnRUVnm5g4XaucYJLnBTWifaCXyEX+TJl9/g0htvB+D3Zx1LXTZDa9/+DBu+PgBhqYAbIaPnHLkCpx42ihsfeJKRV41hUaHAAxccRy6b4eg9tuO2x17isXET2XWjNTXCLDJZXSvh1Dfr5WEmn6BaANx87VWst9661PdoM5QEi8/67HPPs+Ouu9HU1MTOu+xiqAoVWsq28oX9nW3AoRZYv6F4eeAn+jXBm5VSy7OF2QYj1RZYiXfoa25+VVeVOOnxUlo2MLarVn+E2kku7GgnXLzQ2JD7Bf0MTEzN2+cUGBQ3VlUAtFJLjKS3tvbktqsv5uuTjua2u//OJjvszqlHH8rZp51soa0Vz77AN9QHm7YQlJPPZpszHR2v5Ic89+yzHHHgfhECbz9jKqg18Tl6WaPLDZrmoRJGVyt0CK8DGQ1eKHWYWQMvpet3FPVFcYad+uZkn2WgWFZFgn6pSCrWng4D0y6LmpLIMbwsgiBRr7W4o4Nrfvtbrr/hRjbf/Oc88Pf7GTRoEHPnzuU3l13OG2++ybBhw5BSsnDRIh647161r2r1V3aSnPBrt/o47nsvq1DxKjMCMttoVDiWwPW3o7vJ80V8/+T5x4yvgGVVCBPbzNwupfwAQAhxGXAasHH0fWW5czMw0dp+cJXvF1Q7mJTyVpSeKcOHD/8p9WktalGLWvzXRdUp9Wh63LzI3S5fioYDmqHsZPh68mReeP45JnwynnsefIS/3ngVe+2wldabJQyMg1kqp4uJhZfC88v8+uQVOe2YQ1gwczqN+ToIAxzH5Zi9duDIa8fw2he/4Jwj9qelsR6RyWpJOZnKGZ3qeLoceOXt95m/aBHbb7M1Rx99NIniLuHopGG99dbjyiuuYLttt2Ho0KH6/CpNSNzQ4sra1IXuFM46DoQ20mFxeMuLDZc8MElKPN2u2mLJuUXHT1iCx4VxMg31ql/cbF4jzOHCeQRxgb1fxu3V3xQNt89DxPSQrOk/ZSEeUXPKHUlUMpYni3nBVgEewmHQgOW4+Ncnc/C+e7Le1rty3MH70dzSQ+/XSMUpebh48Csdizcc+AkU3+Z8x/HMU8+Sy2ZYb5XlDYAS0zDs5LsSfY370k1ZBYKpBB8aISAXy/alNbovCwtxmiMb63JRJ9XhgjnGZCTXgCgXWWOlIWywzjBOv/S3XH/pOeo7MO0KnaSldkwZKRe0CQ/Ad9Ons/0uv2TwoMG89+479O/TFm3v09RQT8/WVhwZIqRk7NixBEHAttvvmABsYmDGvq9jtF4tD4kvhKp7MPKBCaqLjVaDoT8ty+RZSnlBt/b2bwghRF/gVFQC/YNDSjlfCDGJ6oMDCbyPcr2Kjy+AtYEHokXvo/jPdqwTLa9FLWpRi1r8O6JyRqDiZWmvVzmt/MEHH3LbH2/j4UceRQAbbrQhI9Zbl8ceuIe1hq1B6JdMYhYpI0BEQ4gRPkstwgFaevRV6/tKJeDY449nt733YccDj+GJQ0/nnUfvItvcmnT+qoKi//OpZ7nmelXeM+HD9xk8aCDVVDGam5s5/rhj1WKrGK6TKoRtUV1BJ4gTDRudizmiECUcthJHUEpwWPVsmhMkua2xhbflSqfbYfOm437INpgE30tp5qzbsx/hAqWFHS6aRzB7GrKs2uw2NONEgxpZeS9EYSPi0vFwwkX6fCu1re3PKyzXRt/evZg+bSotuSix9FJJNNSiaggZGgMPa7CgEmxrhjT0mTl7Doee8Cvuvum3ODJACjWg0cmo4+kZwU7Fi1YhofDVeYapnB48AsiUpYEc+oTZqJjQLkTMGmqLyDVqJap4cOWGATddfCbDttmTvXbahs022kD9BuJ+tpH+0DeztmGg7p/oGkz7eiLjx0/gmX88RGuvnjr5FzLknnvvQ0rJcn3aEH6R66+7lhOOPUbN4lpcad0XlYO9aoWvwjEz6fEAx0667YGjnmn+EQoGhRB9UCjrLCnlF99n2+8bQoiZdE5o0yiaRAFVqLes4ibgRCHEX4HPgFOiY7yGQpafEELcAbwMnABkgQejbR8ErhRCnAZch1Lc2B3luFiLWtSiFrX4EaMqjUWGioZgy4XFU7QVFsVChozYaCMA3nj9ddZcc81EsikBRLsxtPBLysGNZDIjUzlzDOGAYyke+Epiq62+J2OfeYzVN96ShjU2Zd5Xn1CXjwwsvLRJ7ISjKQCXXngeq64+jMOOOpoHHnqYU046oXpHyKSNtbCl4CrOt0vqUZU+FTI0sp5xMhLv200jLXOPMOIMJ5RPLNpBghsc+AoJtgvoQku2Lj4tx6soeoyQ43SWcOFc7fbo5PLaelvMmwaNEaqaaTDblDoMhcDLEFqydTiuTvpE4BDGiXB5MTLwmTZjJm09W02/lItgsSMJLSUOx+I8V9AYCMp8NvEr/v7o44z7eDxPv/Qah+63F1v9bLhGvBODF5tqkOjLlC44TKiQxAMgC7kOLfRX88KtJFcEZcP/laEavMQRDZB69urJ76+4gOPOvIAPnnskkTBLN6WTUiW7FySOEffLuuuuS1uvXjzwwAMccdABCWnOl19+mSMOOZAeTfVMm/oNL7z4Erfd+H+JwYfdFyJBv6hIim151jjc6HkQD+SsNqvtO0u3Lim6WzCYBv6EVaQnhBgH7C6l/LrLDX9Y3Ejn5LmA4l8/IaWcvQyPdTUqKX8OlRi/B2wvpZwPvBLJ5v0Bo/O8g5RyAYCUcp4QYoeovRehdJ6PqsnU1aIWtfj/JYQQlwL7Aa2o5/RLwClSysnR96NZslb+0cCxqILtAEWLu0pKee+P3fbFi1Xy9flnn7LccgN+7MORTqf5/O1XOOKkMxj+ix24789/YPVVVupyfSEEo/Ybyaj9l0mNfC3+hZj49RR6NDfR0tTY7Wn9avH2uA846tSzmDN3HjtvswV77rQtJx95EButP7wqAv9Ti59vtAHfTJtOqVQmnUsvfQMrPlzqb2cAACAASURBVP/yK+649+9MnzmT/v36dvp+p+234/xLLmOzTTfhjjvvZvddd6ahof4nxRe2o7vI8xmoB+M7wPPAUGBXlArFFj9Gw/6dVJFIKeO86F+178cAY5aw/VsoxY5a1KIWtfj/Mf6CkuucL4SoQxlO3QNs3A2t/H1RifWuwJsoAGM4UKUScAlRkdTYdtE2jUFUvI0LJYVsnXXW2fzl9tsq9hm7+iRVGez92gVzyAhtTRltZYRDaEmBhRE94Jbf38gNN9/KqeddzOMP3qfWyySnv+PjJcVyu5iutukY9pR65TZ+qaqJk+Z8djqvKioHMWLr+9rWGCESfF6N/qWyOjEUgdF1jtfRqLZtQGIdUytlgFo3ZfdRoCkdMgyQ7abUSPdYI1pFQwSlRL9qdFaGylwjRrwtDq1M1THus69Za9gaSVlECykHFM0ibn/ZN8iocJBuioWL2tl+79HceMnZ7LPLdpDOmaLORFFjCceiyhAG2kRLprLm3hOOuS9saghJChHCMQXkYWCQXFt/2ka7LdtwbXsdbdPckmXYqqvw5CtvstN22yR/X45Bxw3qntL9OGzjLdl+6y1589l/svYaq6nlvrkW2/3i54x9/Q3OPPd8frbhCE4/+YTE7FF8T9jXrys1HX2ONlJv/W7jNsc3SaXtfHeiu8nzvqiH3paxJJsQ4hzgQiFEHynld9/rqN0IIYQHuFLKorVsG5R5yUtSyne73LgWtahFLWrxbwsp5QTrT4Gq2Fk5+ntpWvkbo57pb0Trd6Aoct07ti1Jpjmg8bRxTC9ImivYiWVzg6JNNDU1JugFIiibKd5K7nTMJ4Xkyz2WXgtDXfAfa9DqBCkM9NT51tvtwCVXXMWiok8+l9Ro1lxNKalUpkhM61dDQit5n3ay73q6nUKGho5SSX+JzzFTr6kZhMmCv6TbpUlapJfR9AwlpxedS7nDFBhGyh12AV8iuYkpLOmcUfFo6G0VKBbx8o0Qa3OHgS4slEVD+3CK7UplImpvGHPXHS95LmCoCKGfoAW88944hg4ekOwXGYJnDaosqTpRLhoN7OhemjljBo4jGLnr9mr95JETzn+JfVnr2FrY2G6D9mAFcBZbrsVeJnH94oGTdNMI2xQ37iPXRZbVfoOGNrWexXE/aNS+XHDldQxfdx36tKmCv4SKleNp+UQZyQ+2RwPUm67+DX3tbazzTLkev7nwXHVvxssrJOg0557kAFFUJM+mPUZ+MaZ8JJ2Yo+eEsOojliVtAxgC3FShZXwPiqawPLDMk2fgXpQE3CEAQogTgGuBIuAKIXaXUv7jRzhuLWpRi1rU4nuGEGI/FMLcCPio2hFYulb+S8BfhBCXoGY234lkSbsVTiQ5Jh3PJJxuzLfs/IqzX8AAjuvw9utj2XyrrTnv7LPp3buXUSuoNmfsuBgpLGGKo4TTWZYNVOLseAmVgPhza1tffD+gFAryboW8aIVKRldGHYnEOG6XjY7bCYhwVKIRJ1BO0sLcLli0tzdcXoUw6sTWTVsKG2XT/17aqJg4Hn7ULi+dN6YoHfOT51UhQSbTpnBLI7SZvEnY855BsVHIr9Y2Lpe182BCtzfXaLSkLaWRMJXDKXeY9gdJJPL+R5/gb3++xZwrqAGZzS+27L6lcMA3x502fQZbH3AMJxwyyrS3UyLs6s8JnrSNts6YjMhHKrh+SSPSIp1NFCLiZYwBSipjZgdcl9CS/Uxw+6NBhV046bbPTiSc0k1x4N67MeHTz9j/8ON46u934bquSj5jtNq+94TD199OZfvd9uHA/UbSt63NMi7qIv10zXVJaEY7ScUc6WWSia59/nEfh74ZVMgwIREau2Xqvyv6hNySJ766mzxngDkVy+ZG/2f5cWJD1PReHKcB10gpTxNC3AScDfxPJM9BxQO6T9rWhBTW8kiPs9l0uW85+Nj6nfZt1GHdIGnPrGNrJ9tavCWrQcVy0Ol7G+ewx2iepWHsWm1JW8uz0nrY2aN+m+9VTd/WlqpJGZFze7Rdtn6MJczUXtkWFU6Utnc+DICjFX66kLaSS++LrlhxBatvHbvaxFGfQ8tWtSvZXnsG10ksr64X7Fj7Cf1qLbNeUt3QCrbvG+v9pjW5gcRDKmVd57TWYbXOvRK1iNvaheq0bzdR2MYE5qP9W6iUkoVk34ZdaOAmZsoTD92K6vlqy6tMmfvWS8s+Ziowet+iO7zHcmfkBEhOKf8HQkp5N3B3VFh+KIrbDEvRwpdS3ieE6EABJYcDPYUQLwHHSyk/qjyOrZUPGJcwq9ApTKskq6reuPAS1xlg1TXXZpNNN+Wev93LCccd18kGmDAgDEOmTpvG5Cnf8Nbbb/Ptt1PJ1tWx6SabstFGG1LX0Ih0LPQPq4BKhgS271d0/V955WXWXGst8k3NlDH3n2NPV0fqFrYJRuKlX0UhojLRTkxvC0dTNBQSnTbbWFPcdgFV4vcaWpQUGZqEOwx0ohp6Gd3fEihHz73M4hmmvUHJoJ2gijDtgUjcllKHkVrzC6oAECjneuBkTMJKcSFhXhX0iUxe0z1k2dLTt9qo6AlRP/jFZJ+5hm7gByHTZsxkwKBBCatzLNReq7tgfoNOJDn3/sfjOeiE0zhw5B6cc8pxSYpGQj0jul/mfku4cJ4pcvTS5lXluHrAIMtl5bAYHz/SxZflouqTmIZjqaNIN5eUyovfO17azEbYCWdsEa6LOgOEm+LSc3/NTvscwJkXX86VF56jvo+LPYOCTozf/3gC+x10GIeNGskpxxyuqDGa8mOswnGcZAFinHwHpYoZmNAMpCpk5xIUnDiCktHzjlF3u3jWN7MDWqc6qJiB6SK+j9pGV2/VH4vP3UqEaAshhgH9gJuj7+4D9v+RjluLWtSiFrX4F0NK+Z0Q4g/Al0KIgSxdK59oFvEfAEKIVVAKSP8QQgypmPFMaOULIWScGLiLZsICNQkqUzmCqV+Qiab0/Z5DoE7p8wahTAyo491vttlmPP3c8xx34skIKZk5axazZs+hLp/nzr+M4Y9/up1SqcTAAQPYYP3hDB40kFmzZnP5FVfw6muv8fTTTyOBhx96iMuvvEqPX50oQfGiV2WIwEHywQcfcOrJJ3P+eeeREmp5nNOHuFrzOLYgrjZdnUhyK13s4sTHQg5jLnM16TPpppLHiJcLpxMqZw9YQi3JZugGXsd83NjJLfTJxO3N5BMJQxh9r/4IcYpV7JItC/IwldPn4hUXRLMD6m+nsNAkRkGQ5AFHSZJI53R3OX5Rq3NIT5nliJKSrgvT9Uar2O/AdR3F7w58Q82xQroe0svS0dFBNptFuB6h4zH2jbfYY7+DuPScMzh4/5GEE9+22lQ2duyYAXrolwnbF2gzGOGlte4yXlobm4iU7VCIScRjdN7iv8emOonZEeEgPTMQ0EhwggYUdOLPS+HgCjjy4NHsffCRXHnReYjQZ9qcBcyePQeXgE+/+oZnXniRBx56mKsuvZD9d9spaksIZcN5t+kgVQdkUhqpROGo5F1YfHCL7x/fM07HfKPx7aVgtnKqdBp6EGbyiLnK/DpYOA+nQfW/bB1okPquEPGK+D7J8zVCiAutv+Nh9JgINbBDSilX5ofFdJQs3ivAdsDXUsr4YZuja3CvFrWoRS1q8Z8ND8ijQI+laeUnQko5QQjxO+ARlANs5axnMmK0M9+aQEvdgasiFypRJqewUE/Xp2x039LDvfP2P/LJZ19w7cXn8Pyrb/D6O+No69WTxR0dDB40kL/fdx9rr72W3r/ehRCMGTOGrbc26qQHHnQwq662WnS+0XpRCiqAsh9w8CGHcNaZv2bUKDWVr5NkkhzSqFMwDhxSWWFLyfrrb8CuO27PGaeeRDZrFfwFXe8rYYziuLjzp+pzihMV4RcNN9hNW+ifkq1LoH9R/wXZJoN8W7xutZ66Ro5fTGpJxzQSQHoOYYz+WU6roiIRTBTCWbQNmcoZbeRMXg8+RKlDJ+zh3OmElqW3GyVPBAFOQw+ddLkLp+t17nn4SdZZdSi9vaIanOnsuzM6v/7mO/PFpCnsvePW5PN5Hnn6Bf549UXsvPlGsGgmsqW3NtiRJcsS2kubz8UCDiDjcwsDZCRJJ5zAJNKgXUhFvD8iCodwDDc7ck+ESAM6nsUNk8ir3mfFrId009ZNLPW+Nh2hfOp23Gc0X0z8krnz59PWuxeLF3fQt08b22+1Be+8+DR9+vZJaI5LEdmAW0YuQp2Mbm98j4SpHDIahInSYgRBUifbjwYSMrTMXxbpZ4LjOBDTXGSIWDgLf5YaYKcGDDW0HWsQ6S6YoT706MeSorvJ80tUR5indHP7fyXuA64QQqwFHAzcYH23DvD5j3jsWtSiFrWoRTdCqOznGOBvUsoZQojlgOuBScAElMxnl1r5QohDUOj081LKWdH2RwGfSCmXnDhDcurcRtXS9dAzsm62lRSEU9WM5NUnHubeBx/h0y8msvdee3LXHX+kqckgg/glWDw3UWQXx8F77UKfhixXXHsDY998iw3WH85rL73AuuusDaFKRotp1RZXCG64/nr69evHwaMPsJBji4pRTSkjRpZliNuuBgUD+/biN1ddw2+uuoZJbz1P//79Tb/Ernp+wSRSEYosrGMKyy67Ut8ZKl78cTIVTZHb6g8Ih4KIk2qpc5yUKyBG+p00YbSOKxTVy7GQxSAX25YbAw+n3dwCwuZVlwtJXrvNebWWa2MYAMfFiRwdcVzC9oV6k6BUwInQXplXxjdz5y/grKtvYsyV5yg6hOMou3DAyVcUmPpFHrzpCobtsB9Tp89kj21X5+yj/siQASYJE6mMuUcdF5FRiaHN7RVeCvINum2yVDBUB8e1aCcBstihr5GI3Rn9sjqOTngtJNdxDC3SSyOlTXuL7jObRx71Y2LAEx2/tUcLU8e/x2NPP8c6a67BqqusjOu6avZAD4gyapbC6ienioqLCHyTJNuFgDJEFNVsgCi1RxrSZhAZ91mYziVIfjE6TyqlHSmF4+K29sFbYU11mrkW3A7FPnYXzdTXJcz3oDvRXYfBzbu1t2Ubv0ZZXK+PKkL5jfXdeqiCwlrUoha1qMV/PnYAzhNC5FF85heAraSUPkvRykfVz5wA3BTJ3MXb79SdA8ccxTBTn5wGjhM9UImzlTSYjR2Ikse65h4cPDoq6LKKlvR60Xah4xluuoU+br/tVmy/9ZYA/P72Ozno0MPYd689WX3VlfnzmL+wzuqr0LtXK/c98jivvPE2j9xxE978bzX6J/yiaa+lPCFTmQSSKPwCYcT7fejuO9h693156dWxrLP1L1m4qJ2br7mM0XvvZpKx0Ddud5adtjrPtEla/EIyUQ7ihNPHWbzY/oYwaxetRWizlyEVJValQFKyOM9xHY0QZsradQSeBMdTiV1KwOKIzx9KQTbq71RjH5xCVFxoUSYqCz8TEmlW0ZtM5UzNgsUZxksbFNYvq2Q2GyXPwgHX5do/30NjYwObbbaZWh5ZrcfHkMJh1py5zJ83hwULFvLR51/SWJ/nhP1/ye5bbaLOpX0BIpbXC4OEEgi5uABxMcQ27X5ZJfuxEkQ6awo8ix1mX46LyKi+k+0LjBQjJfXZ4g3rLirb/GXTf9K1UHTHARkvTyX+B4uPHPq09uzJAfvuHSnTSLVPxzNUi+hvLVVoo9pxv8fnElGB8FLGCMWyU5duOoGiKxdG05dhRE0RwjFOk6kcXlRHFGaUiY7f1F9vH1OOSNebc41+D0tLjr+Xw+C/M6KH7kVdfLcs3QVrUYta1KIW/2JIlZntsJR1xtCFVr6U8kGMY+v/RBx12MEMGDCA115/g1tvv4NZM2by9eQp9G3rxZknHMkKAy9ihcEDf/BxJk2ewkuvjmWn7bZh7tw5vPrG26wydIVlcAa1AMWHX3PVJTNQtxl1NB9M+Jy1Vx3K8gP7c/sVZ7Pr5htVVX+oxf9OdNdh8Pta30gp5Q8q/RZC9AbyUsqvor8FqhJ7NeBZKeWjP2T/tahFLWpRi//+iG2FpY2qRtPLBol0OxfUodBeUlmzffxGjIqZjKxWKsEdTkiSxcfwMglUbscdtmfHHbZHyJCd99ibp559nnkLFrLzAUey6LO3OtlkJ4v/7GKqWEe6qL9zWMil/3cr5199A/m6HP944in69O7NhDdeZPnBAxXqHtMDPMtYo7wYW8lC+AXLHMNS9EhlNPJcqf8sPcOBFUEZwkghpLgQJ6aKpHJkPIXQfreoTCpS4sl4qtgsjqIfavWeRYE07A4BqVitxC8nVSl0fynJvE5azZDk8KYMcksYJu4DEat4RNbosdGHQp7TPPvqmxy8z+5qH9F+YxR//W13Y9xH4wF4+p7b2GJj45OWKNIMjb259MtJDaE4wa5vBd9wlqVfxolRcIujDRjOdBjqz6KlTamSQDQb4GieeaffhX3smD5e6tB0DOmZ2QgZobtagSIMNK8cxzXUnmyDQZvB2IFHv8HENYrRYhka85d0XdLOvJrWsm3qAsn71bqncTytPCQtcyJCH1zX8Ppt5D2V0Wof3VI8ovvIs4cSrn8KNaX274g/A1+gpvMALgTOipYdJ4Q4TEr5539TW2pRi1rUohY/wdAv5kqd3cRKDrH7ny1rJS15rIQeMC6hLZcmhM65QinxLL3fao5nKnmPm+Vw6IGjee2NN1lxheX5dtp3hOk8YTqdTJJthQsbe4oT9Oj7Lyd9zXW3/YWHn3iWtl49mT5zFuefcQr77LEbQ1ZcUfFf/ZI5n8BK0h0vUQAmvYzhs0Z9qNuQtnjhcddYsmdqpRCEJXUZJ+UyxA/V5551npYudbB41UFZJbVRO7OeoQYIgU7SROhr3qvNNReBr5Jay/DFmOP4hipgD4I8a4DiWhrXjkeYSSfoOIsXzeeNd8bxxjvj2HOnbWlqbEgkdXHi/Pc/3cTPN98SaQ8ybEUUL21k0HyrSM4ePFmyecgQMnlkTJtx08nBgBtf18BIMUqp5fxEUFbnG11LaW0vglJCeSPmuyf0sysKIXHTRh7PTZmBSHwvRW2WMZUHkr8lGRoJVMc1yXd8rvH5xxK01m9ClBabgUuFoyNEBZAQFVzGAwQBUVGidI3mtDKFWZzYh07GLWpJVancKtHd5PlhYHuU6sU/UVas/4yoFT9WrIuRI3KAo4GzpJRXRqofJ2EJ7/83R6ZST9jWJnXNQ7QQafSmrbGrrREbpqpLbuc888MLrIfj/GL1aaWi37k21EYLbA1nS9o3oTmcsv6w1wkcSwfTlknKGA1cW1M31rG2tbATmtRlW3LqXxdgSSc0qqP/HXuZ+Rx2oYVstzGhBS2Xvk58LPv1bZ+nvZ1v/WG3O9HP1rbl6s2tur/kOZt17OPYYe/aPqZjvVBD19Iij14QjrWlrcUr7D4JqyBKKA1cs0EVhAKQVnOrXa5qUmXRX6bdyUop6/i2hrhZI2fZBqesR2P84nYtfp59P9l8wsCySLbXTyQsaaNzHvN1AYK67hW6/K+FToQrZdfsCINEwmh0b1OdnfUwyKHhkTpaLUNinkuOEElJOTvpiLcNfXbdeUcmfP4FH30ynn8+8DdS+Qad5EoRt9W0qxNKLhymTP6Oo391Nu9++DE7bfMLZs2dS7FY4oVH72PjDYarJMMuxoqTJ9vkImWSCtUvoeE8F9uRKeuYNu3A1v21EEBR6jDrBcaVT7opq+/Ajd9TUpoCsCh5jJMjL6GrHZrk2TKzSKiIuCl1TMuoRGB0ieNfWGjzn22rc+EozerofFUxYlZfs6+nK5wwl83S2Npbn8+cOXP50133Up/P8+w/H1S23UgkGWPA4qaUm2J0HJt/bpLqjFEHcTwzg5LOIcqFRJFenNSLUgdhJiqqtFRP1MAhOsd0XdJJz/othOkmM5Phefrah7b5CxBGz29HBohSu34/J+6lRF+6iVkX/dkvktAoF5nqCHNiQJdTmt+gEnJbacW2lbdVY6x9KQUYU4gYxkm5ECpBt377doGxRp6rPA+qRXcLBncTQjQDI4FRKH7aHCHE34C/SCnHduto3y+agNnR5/WAHsBd0d/PAaf+CMesRS1qUYta/BdFAv2KlBhE6BO6KT0QT8imVRikVLW3Fk4n9DrezEXoAXQgpeW+l9LrOEE5+TIHfn3qSbqdui0eXQ4AE4mBDDn1gst56oWXOfX4o3nymec4YvR+XHPJ+QrZhEShVgIFj1F03U5Lxswa8JE1UnXS9YyMGQYFDlM5TXMBkFmDUgq/pOXVhHBIpdUxfKlMU0BJ1Wk94aJST9AmFpZDpAjKZno9KBv0EDRCKfwiAgvFVAeOGiaTg6qYHmAlstIqCo3treNE3g8CNttpT3r1bOWdF59OXKM9DzqSN94dx63XXsnaq6+qBg8R8hnTBUTgE9a16Oun+zJdr4vcROib8/WLOIuV8oP0C1FiH7Uz22Tab0m3yVRWS/qpRBx9jtLLGMTWTlJDXyfCIijpwZSPgx/GRZ2CbBj1a7QvbeBiq5tEgzq1X2OzHnoZdf+jAD2nXEganRjtRnOP+gU9cHECI1Noq3vIVF1iRgFrwGBTONSuY5m+dIKGYcs0Cr9oZkr8QuI50p3odsFgZJd6M3CzEGJ5VBK9P3CUEOIr4E7gNinlspKv+wbFb34Z2BGYIKX8NvquCSh0teH3jcgR6zpgS1SfvAecLKV8P/p+NHA+plL8GCnlO9b2w1Gi/msA04DzpZR3Lqv21aIWtahFLaqHtNAv20VQhhI3QtBCKY2roAXqOkjzArXVGyoR5Ap6Qhx2Gh5KSWwnYifuQkR0gkp+M2ikNj6GzdGutK2+6uqr2XOvvfno44+48IIL2H67bQmFMM5qQdkktsJBxrMSnpm21wOCKvxtyoXENLaMpw8dDyw+K0HJJLChb5I84VjcYpPIeIQIP87sZCIpV+YcVgJvGbvoc6lAG+PkU3rJmVaZymhurvQsVFI4RsdXmDmvhClMYDSVAcqhz7z5SuGj14AhyMDoIY8etR+vvPEWH306UTtaImVS4cPxjHqERXWR6Zy5XqFvkOeUrdFdSnCzY6URQBm5RLbmQb4V0kYbOe4ljTzbyWSMPtsW9kJQjhxaU34Hnm3NjpVIWuoyYSqXRGbj62XN4MjIjl6dYzRTYf/GLAoHgUUViY9d4RwYr6PPIb5fKp014/0KAa5HuVxmxsyZ9O3XDyGEStSt35XtIiqh0+zM0uJfUtuQUn6JUsK4SAgxAiUjdw7KFbqqQsa/EH8CrhRCbIVKns+0vtsQGL+MjgMq8W0AVgYWAZeg3K0GAj9DSeXtBryIsgx/TAgxVEq5QAjRBDwOXA1sCmwGPCiEmPgjIfK1qEUtalGLKDRiZi3TphgxdcH6zk6kQ4ROipVCV4RyRQCZWIpigsTQlYQQmhaXcgRBlM54jqeSZFvHOabkuOlkQhsf301rulUQFdK19BvEdrsNYtc998YRQh3baovjJRNxTe9x3MQgQATlBK0ljD47WAmKzbEVDkQJhfCLEVc2Qqi9LCI2TEl5iXOM3QITyZDN8430trUedbnDJLEyNImwZYmdQJFTWS0Xp88zpjp04ZwYWndJOZQEEWUt5aYJQokbcapnz51JQ0MDU6dNI3RcwihRf/fdd7ju939g1P77c9zxxxnKSuWgRIZGC9u1rat9izJjEjUlUxitH/PQK7nlkOBGuwunW9uXDDrcMR8hHFM0l84n+sOJtI0RDmlRTO4/PofYeMhNEYQSL9o+FC5hNJhxHZH4fcjEPRMbAqkZnPheTlkDDHt2QPWTRZuwf3d6ZqOYRNHB3BeZJH9dOh59Bg5l0aJFXHnFFRx/3LEgQzWotXn98f/pOi2nGP/fiyXHvyxVF6G1+6IQ6HX4f+ydd5xdRd3/399zy97tJVvSSO8JhBIFIiDSH5qADRRBQawgiuDPgordB/VRH318FEEfFbuISO8llABJEEggvZC2KbtJNtv33ju/P06bc/ac3Zuy2Q2ZT177yrkzc2a+M2fOnM985zvfgU3YJ0ntFyilvisiG7H9PF+DTaZd1AC37q+ygEnAz1yH/CJyG3AD9hHhVwH/UEo95MR9H7gam0z/FrgIezPlzc4xsg+LyJ3ARwFDng0MDAwGEJ3OHg1LfFt2V6FVmnI+4iIIrqkFdDsJdBt/sFBZjeCKeH6L7Tyd47VD+xY8DxGoQH6ephsrqFVWedDtMANat4RXVqAcTcpsXqFtI/CQB5KOVlHf4BiyUsHSTolTibRHKPV9J4HVdeVPQpKpYpQIopMePXN9Y5obpJnTKJ3UOxvAAja0ut2sdoqhrzkNeVVIFvnHKlsJbz+EspK4W3dyyhcym88HPHq4cPuQ2y9KK6vp7Ozk3gcf4fTTTyeVEHK5HCeecAJf+OIX+cpXvkIin/XI+n333cdHPvEp2js6+Z8ffo9LL36P53FC90Wskmm/7VMZ22bcrbubxjO30JdI/INR/Lw0zbt+6l6uG5Uu1fw892g+lNO+5lbvkzpUHnfTiORzpFSenKXty3DbT4FyJp66+VJCE93KZ1FikXTlV5a3j0ufnOpa+IAoAbKdtydrbntqm2hVskizn06ByvPnP/yeTZu3cPY553grDoHJsFiBybI7Ce/SxoC+sEfk2XFgfxHwQWwThw7sI1b/H7b7uH62Ju0Z4nyDKqU+vj/LAb4PXCoi/8DWPH8UeNo57Wo22sZEpZQSkZcA55xWZgOLQnVfhN1GBgYGBgYDCPdjl1PQmfM/fJmERbfzrUwnoMuJ6s4p3zY5rzxXadngDlHSiSAxd6P1VDovtQm6jbxSXroeBZYkPVvfhEgvQuuVrxF0d49uDiEpPtnLqyCRd8NFxCPsuRDz9mi8CPlUxiMRecSbcOibgkXwNHQK8SYFnkY/woTFQnmE1dO2Y2/Y0zW+Ocsmb2mVtV249fiuyzyRde1npsIn2BpZdu3avS+vwjNDQCNDOb9ZA89Yb7uewhpUkgAAIABJREFUvMICkm4biMUXbvwqF7/rAk486WROfPuJ/OgHPwDgmaefBsQ2jXBkuePOf9K8w95gmM3lA+Yl9gE7ro15sU90VR4y2oTKtRfv6bS1sq5XjFzWtxN34yG4QRQ87bZKFoGlHRCU6/bu18lo3IqAspI+kU3YsyjP2EXlvQlKZ9bfUFuctLyJhyV+n8pJkhR5f++BlSDvxFn4qzNYaZJoGmb9FEXdxlopf9Ig4mv3raRPjHM9qFQxp55+JjryknCzsJMp5f3QJ6vBCXU8YnYqBCEiZ4rI7cAWbA1wFrgMaFBKfUgp9cj+Js5OuUUi8gkRuU1EHhKRyU74+0Rk+n4s6hnsCdM2bPJ8EbbGGWxzjl2h9DuBigLjAxCRj4rIAhFZsG3btv0guoGBgcHgQ0ROE5H5ItIqIttF5Oda3GUiskpE2kXkeRE5JnTvJ0RksYi0iMgOZ4x834GvhYGBjY9+4lPU1Axj3lNP8J1vfpOOjg5uufVW5s2bR2lJMaecdjo5x53cr3/xM7p2bKGreTMfuvSSQZbc4ECgUM3z/dha5nuAPwFbnfCjJGoKDSilnt0XwURkCvAw9ubAhcDJ2EQVbNvic7AJ/D7BcYP3CPAANmnudPKdJyKzgN2ODDqqgFXO9W5gXER8CxFQSt2C44Jvzpw5+33CYWBgYHCgISInA38HPgLcja3snOHEnUDf+0Yuwd6Q/U7gBSADzAEK2rnjarkSllCWcpdhbRMKd4m5rUd5Wkfd5jkhQXeDujmE7h6yJ7SS6yqnAhpppTRbz2C4fn/e0rTF+Npc/doS3+zDNUfRtc1RH46U5dtch5To3r2phO0txNX4KaU8WbqyedJOA4joLi4VCXcjpJN/l9M4SUso0tos4WnxLRKOCz8r1+NpK9ty4mn6lTjbK3VXZPphHsoxO3A8YXj3OOnzyeA5bD155R3G0p3zzTN0LXxCwH0UKq8CbjzzhNx2ptIsXrWOLY2b+ecdf+fllxbynW9/h0mTJ7N9+3ZGjBiBlc44/rEjNphqNryu9jSfSJF1tONJSzyvFORzmmu9koBLOyzLt23u6QhsLnTL0O267YNNujy7GxVqJ73dPC200tzp9eFtQlkJ8rneKxX2b2elQQWfA5blrzvklWdTHHjX8oqcY0udTpf47ZKwfHdyWIHNh7qsWazghken7l3ZPBnLMcnJ2ysoUe+R3ndivLL2ghSiMBYJOCLu7wbBtm7ova6zBxCRB4BS4DxsbXA3MEcptUhE3gP8p1Jqwr6U4ZRTi61xnqGUel0LbwKuwCbUopS6zAkXYC3wVaXUb0Xkw8BNSqmx2r2/A3JKqQ/3VfacOXPUggUL6Gz3XbN05oNPTh903WcV53M3qS036AO/vgrRrUV0aJl3aL6d9TR+fn6YXo7+AqS08LR2rU+w4mQPL6eF0+t10HPQ79PFTsYsvejFxy2/pvp5e3IxsurQi4+zXcxF3Bxs22g59HbW/RXHtVGcj2w3fVw5eqieJm7I0OfR/W20itztD5EDYxiRdnoQWMJsz+m2p/b/ejvoTR/V38F/38L36tDrrPtuziR7t6n+bON8cutyBds8Ok2x5lDdNV+oKnM8IYgsVErNiZZ8/0JEngOeVEp9ISLut4CllPqg81uAdcBXnDH0p9irmO/di3LV6m22niJliTfWuO3l9ohsXgVMF1zo5hXgP6N0QnrZ/Xqu6kS8cST86ujlu88vboxw4cpqm11oeWny5pXy+qDSrgMW2xIsS0/vOa0TIZ3Q5fcJd9Ly7aR78iqQRm8HNx6CfTeVEJ8Yid8WetuD32etnk779Lou11VdIuD3WN8Y6JLHXKKol5/9qOaNmzx0axHZnN8u7piqv8/6srz7LEW71j8TlgiJfE/0+KXynglFT2gMcsu1VM6zv7U013xgm1147aJ7JnG8R/RCyPWh0mx7wf9mJkSwtIODovIIj7V5zU2j2y/1NnChT+KUUoH3Iup7KPjf3YSWb1LwJ1eO7bVrQpJVfpkBm2udB0W8fO570Z1TnpyWFu727TE1ZYgISinplQmFa577JIEDhBOB9yildor0MrDagu02bp/h2DUvBz4pIl8AurA1z+XYbumagAecD8A87BMPM9i+rnH+v1lEbsB2d3ciNuE+vVAZMiW+g/LO1vY+UhoYGBgMLYhIKfBW4EERWQSMARYD1yulFmDvC/k/N33EvpGngN+LyLeAx4GFjmvUgqB/tF27S29TUwThDa6WSuAD6sbl8va9riZSYgizPqkSgof/6EQyYYlvUylBYuvrMFQMKVcBjZkidAiSNsf0Jop51WsiAaCsIJmxRD8SW89TI0WaJC7Bj1JgdIWO106I33buHC8wUbcSNhksjtosl/dPnLMSni2z0kiSTryg9wFUuiw5r+19gi8i3qFUNpEN1tOF+/zcfFPepCg48dKPV5dcT8Bzird5MbQR1G2O7ryvwe8R+0RGSzs5U3evZjmHr+TTpR7p1b1ISK4b3U95D1bsDM61XU+onoCG2iP5KqgU0G2Gw4ob93dXNt9r4uj2hay2xwCgKOGSX/856itDSux1D7D7YV6bxeaUCij13OcSJszuL28CpXUUd4tEVqnAClYhKPSQlN8WlNv+RSfxy3aj2L/HhF+AvWlwHZDCPgL8PY5LvtUi8kngV/h+ns9WSrUAOOT+bOB/sN30bQY+btzUGRgYHCKoxv62XYV9Eu1S4Hps04wp9LMvRCn1NxHpwF7puwqoFZGngGuUUovDhYnIR7E3dQPaR9ySAJlJiE+s0wkheGKnrzn1tIqa5tfTMmtaRncVTCfSiqB5hq5tDXzDtd9Z/I2I+sff1Qq7iFu90q978n4eSkWfnCmiEQvP3MIvQ59UeJxJ+SSjJ++TlLQljnmI3076seU6oXU1zCnxNfoJS4KuwlLF2kEXOd/fr5XwXOiFyZBvftO7/aOQsCSwEuGulva34cu9J4ev0reJuPLq6MqWcPuGdgKi7sYu6RDZnD6R0DT6CRGvXinBcwkIjtmH58WkRztIpjugZfYWj620U2en+JjVFTfOvicRIOI9Wd//MQQJr9suCUsCRNRzsS4SmLjo/xclg62uTyJd+ROWv+EwYIqERXdOBSZ5ejm6LFETx7wKrcJqE6aevHj9IkpbHYW9dlV3APAw8CUReQTbbANAiUgRtuu6+/ZXQY65xrl9xEd6/dDiX8TWvOwzwsvD+tKQaxWlz4r1JfzWbn+pXF/O7dEy7dTMM9o0lyxZbZW9vcf/4S+/+PeVF2ndRjMzCSw/a2sFCa2z56JXQAJHgusfEK8aMbb1geOktfCA+YN2q968eo5R4XFpA5qrmAE7bvldlyWpL+17O501X5kx77C71AYEXGnFQf8IR1mkWDFtG1fN2KO1dXdJcXZzMae5RV2rGNMO/TofcJnlt4WlWZq5mrk4M4w4sya9z+vei+JMZYoCjdv705zRXxutfN30SM9CN6WKQ8Ly07R2O2Yb/d613+H4weI3SqlXAETku9juPufS/74RlFL3YO+pQUSmYfvev0dExoc3o+v7RkREeV4plPK0ZMkQQcqroK2rC0vEu0cnkk7egRffu00p7/h33W4yIWEzMlfb1tu9XYDkuv/r76kV1PiB0gi/n7eeJqfZL+eV3wYJh/Da99oE35UzaUV7/khqBMYSSGnjUrduhhF4j/y89O9SUiPb5H0il1MJJO94IgFIJL369OQVuR6dwOHJ79fXr6tdT3+c0s1GcnnfPCOsRddNZnJKRRJqXXMNeDa/bhxAVzZHy45mHn7gXnbs2MHVn/ykN06KytvaX4ITurBHE/eblVdgJdL+2JpIBZ6X3haehwqlSCl7XMxZKe9wErvO2oQMv/118xDdPCOb9/tRTjkrJZ7NvHgfBsEf83SNcph8WhKU243tyanAu+Pels/55XdrqxnuRMkdF1OWRpLRtdzaxEdbgYHgBDdtBfmQ23f0vtsXhjJ5vgHbC8ZKbCKtgK8CM4E0tmmEgYGBgcEgQim1S0TWEm1+qrD9/x/tBjg2z0diuzmNym+piPwI+Be2Vru5r/LdjUq6za++FyOfz9PW2kpZebkfFjMvyYU+wBIgp366sFu7bDbL6lUrmT59upe/r5ENacA0meNso3N56HIP1pCghjwor3+TbrOsT+RyGllXCnL5vEdSbTMEbZLq/G8JZNw8EkFNsz6jyOb8NtLb3MJXGuhawax2t92G4TbuPblWSnPbp/xJvd0uwXL1iUAuTvugQS9bN9tJiK+sCtuRu7K0trXx61tv4etfubFXvh/68JVUlPoL577Zh1a2Up4Lv7xSvqYYkBBJ1tvMf0ZC3jNpUP5hN64ZkntEdkDBoBHJuL0j+Bpizz7aCdf7sm2O4xDRhHZAkKZddlcj3GrrPTi8eU9HmDDb9XUncnjl66subh/NiT9J0leT8io4YerUFIaW6P3qICfPSqn1jo/l64BTsbUUI4C/Af+llGoaTPkGCj3hWZt27WvF/FBdS6sPOwGNhKb5DWjf9B3g2nevKNT5Iag9zWijVVw/02dvvbQ5bvn6kqW+Y7uwvmvnp13rMurl65pa3T9pAQpk/77Axgg/3NLbPyaPgLZZb4ucfkytr6XwgnTH+QENr3aKV8SpTmHoy6T6oOwN1hKdlsBlAXkXom1266lvEtRs7eLqoB/f2mtzSz9w3xG9am09/Txwgtpmva+GiVM0/JvdftnTuxmccO2d1HLozKnI9PrKZ1c2Ov0g4OfAtSLyJ2A59rjdCTyLrXmO3TciIlc4aR539qCMBj4OvOYeXNUX1q5cRlFRho6uTurr6sjlcrS2tqHyOR68/35u/+2vWbtmDTMPP4L3XvJ+xk+cTE93N9u2bWXRghdZ+tprbN3SyMwjjuD4uScw+rDDmDFjBqWlZaxetZKnnnwCEaGysoqWXTvJlJSQyWTYuGEDLbt2kcvlWLVyBS8+P5/PfO4Gjj3+eDo7u+jq7iKXy5PL5UmlUtQPH85bjj2etPYAldI0vyGSHVzIkH7NDHS7akuCGkD3Xrd/uWXmFIElcs+0JO/7wta/E1nHR3bQVMN5p3P+uJtMiOfPN6+C/pT1SUXC8lcC9LjwMKC/FwHCK758YU8p+ibHKHt3feOlZ4bjkjEJmnq4SIjw2uuv8/Of/oQ/3f57L/ySD1zKF798I6WZNCNGjLA1v65XEN0eOTC++8fJ65OjhCVYutmGWN53SzeNCWycFL+9LRHEStgG7l5d6QVF9KpDCn+ylRK7LTx7e21CmcsrX8Or0DTnmucKbULnxnmmLpZ430/dFjydsM2Huru7WbViBS+8+AL33H03y5cvp6mpiUwmw5Sp0/jM9Z/n2OOOJ51OB8pXoW916DXy5Bex+7lSiqbt20gmEjQ3NdHW0cnvf30r77rg/N6No6EgbxsHGiKSwjaDWKOU2jTY8gwUXG8bOhp3tQV+R5FnndyWpf3rXV3+EFORTmj3+S+su7QL0KJd6+Qg3Nlh4MmzTkh0Tx0u8dHLj+PWB4o8xyXdH+RZ3z0dR54tza4uLo2OgI1h4OPhxMeRZw350NJfZDlxpHYPyLOuJQnkrZP0OLMNTSy9z0fZv8WRZ70fBjaWqOhwHfpEVtf8uf1Sj48jz/r7Xgh5LtXMs9z3eVKdrWE9wN42BPg6ti1yBngJ+KxS6t9O/GXATfj7Rj6hlFroxF2ITahnASXY9tBPADcqpdb0U66aOGkyXV2dpNNFbN26hXQqTUmpvdnsrccdz2UfuoK3Hnc8Tz3xGH//61/YuqWRRDJFXV0902fM5Kg5cxhWW8v8Z5/h9cWLWbt2DatWrKCtrZVRo0bzjtNOwxKLXbt2UVFZSUdHB50d7YwafRhV1dUkrASVlZUcNmYst/3qF2zdsoVUKk1RUZpEMolC6Onu5r6776Kuvp4PfvgjTJgwkfrhDdQ3jCCRTNK0bRtHHHU06bTvTUHXmOm/7Xo7Yfjkzt3kqN/jIqz5TkSMFXFacN3MJKeCfTHqpEOwx+jAN8CbQAYFszWGyrsn6s3StfgivTeB+psfg2NZlPbRvi+6DLd+UcjlcuxuaaGqupqGqjKOnvMWFr74Au+88CLmvu0ELrv8cjKZjFfPgBu6MLTTHd2De7qy+QBJT1vawTQq6F3FDU9Z/uEl+mE3Yeh2w+Gqu3fkNLMLBQETDBW6LzguRpUX1OB793V389STTzJy1Cimz5gRCH/llVdYvXIla1avZsHCBaxcuZKmpibq6uoYPfowLrv8cmYdfgTDhg2jtb2Dv//1z/z1z39i5YoVTJ0+nUmTp7Dk1Vdpbmpi9JjDqKurp6SklKs/fS1z3vIWT1ZXnq6uLv7x978xf/5zPPrwQ3R0dCAI1TU1pFIpJkyaxI7t25g/f36st42hSp4tbL/SZyulHh1seQYKhjwb8txLAEOeo/M25NnDUCTPgwURUdtb/DFTU+LaG7oiHpXuGaA/6M8jHxOuyeJd633NXXFobtrOU088xutLlrB+3Vq2bmmksbGRrs5OaoYN4421a5kwaRJV1TXMeeuxnPj2k5l91NEkU+nebuwMeT5g5Lmjo4MTj53DlsbNvPW441mxfBl33nM/3/nG13nqycc5/Ywz+fkvfkkqlXpTkOe8Umzb0shrr73GsmXLyRRnOOfsc2hqbuapJ58gm4dUKsW2rVvp6ukhU5ShsqqKuSecQEVFJT2dtsewtvY2tjU2smTJEtasWc1zzz1HaUkJGzZsIJfPM7xhOFOnTeW+e+9lwoSJzJg5g/HjxnP4kUcyZcpUqmuqGTF8eOAZ6V5UFNDdk2XhghdZt24dkydNZuSokWzetInXlizmm1/7KlXV1byw6N/09PRw669uYfXKlbTs2skrr7xCXX0957/zAt524onMnDGjlw19XUVJn67qhiR5BhCRxcB3lFJ/HGxZBgpR5HlriDzrL7NLjnXj+7oSnzy1a+vC+gChk+3dGsHWNyTpg05Gu9kl53oeOsFIaffpfETfpKj7TdbDAxulIggzEFhG9GT1i6FEY6MBMqpD9zmsb7CT6JHf29mskT6dpMURzED5et76RjqdYOrXERs3CoJOtmN8JPfnOzlQZmhZMQpx9Y9DoF2i/D/rddD8mOpEX1+C1icgcXvqAv0lgjzr71Wb9t7ofW+nZhSnf5d0/+jb2/266f28rtSvR5QPWX2C2B3z0Wvt6v2sbFmi363t7fbH+rTJdU55hwZ53um499Q37Omb4lyECaGWhxembyzL0z9JDkOfZLnzN90W24VOcl1ZdjQ38cba1TRt384Tjz3C8889x4plS+np6SGVSiEilJWVM2r0aCZOnsw7L7iIs847P0BmcxH9PlxemIS797tHVENwopDL+67D3KVut255fFOLpCWRG9vCG7bDmxw9WdC9LwRNCf28fCKctMT7/e9FC1my+BXqauuoqKggXVTE1KnTqKis7OVfXffZrHt7gODE+MXn53PL//4Pzz37DD3dPcx7/kVOOv6toODxp+Zx2NhxdHd1cuWHLqerq4s777rLK0uU8sc9sULjqj/euhsJe3LKGwf0DaFuW3jm55a/sVDX8Ibh9oP29nZuu+UXvPzvfzNm7FienvcUnZ2dzHnLW+nu7GTb9m0kUynq6+tZu2YNjZsb2bRpI5lMhomTJjNp0iTa29u5/757KSkt5bzzzmd3ayu5fJ7x4yeQLiqio72dpu3befThBwEoLinFsoTi4hIaGhqYOm0aEyZOYvKUKZx00kkAbNu2lbWrV7Ns+XJOPuU0xhw22jeT6dVH+64jENCOK+AH3/su3/vOt3j/pR/ktNPP4Nvf/AajR4/iP845j/LycsaOG8dbjzsey/I3cobf0ZryvsnzkLV5Br4M/KeIvKqUenWwhTEwMDAwGLpQBD+0uj/lMHH27DaVr9a0CBK7lMSvcull5jUCppPPwAFSQuCgEs/dl4BbSkNdLXV1tQCc9R9nBzY3dXV1kRBYv/4NHrz/Pr5245exgAsueGdAa+pO/sIeJsIu9FxyEjhRTyvPro8THtqoWJy0tENSgt4jCvHm407+vvjZa6iqquKUM86isqqKxx95iCnTZrBp4wbOvejdlJVXksvl2LBuDePGT8CyLMc7ii+XCJwy962sWbOGzo6OQDlFmQw/+NGP2dLYSC6bpWbYMO7917+oqKxkzNixlJSUMGPGTMrKy6itq+e5554jkykmnU4zYdIknnl6Hv/6551efrOnTyGTydDZ2clLixYxdtw4SkuK+b/f/Y6pkyfx3LPPMnfuXL/NdKWEe8JguEdp7e1OqLtRWEr3R+0nT2htHHCtiK9Fvuuuu3jskYdZunQZi199hXecehrnnncery1ZwqmnncZxx89l+bJllJaXU1dbx47mJrZt385577yQESNHMnLESMoqq7zywO5/6XQ6IIzej8KP3dJk1H/nld03a+saaGgYzpxjj/fuiTL1sJvIX/3WvWfo9svh9Keceirf+863uP/ee1m+bBn/+f0fcPIppwbcMepafN3mvFCF8lDWPL+Ifex1DbAR+2CUgLBKqf3iHm6wUIjmWdcArGjqBCCjaYHHVvoarh0xZhu6aUeLps3Sl7bLtPQV4mvTEq3bALDad3hhudJh3rXV4x/qki/SdrMXRzvM6kkURYbriDo1UJ9l6tpBXUseq3kObILTlvP19DnNFZp2MlQU3NOeAP90LEDt3Opd55o2a9eNfvpi/0Ac1eOXnxw53v6/bpRfUIxGOODOTU+jLxtrR7gq7djSgAYkme5djobAaVYxs/9g+dGbFyVK8x437sTZ0sSYs8Tt+9O1TW5/6oxxhxhnzqGv5OiaoOYOfzl2Q4vfF1Y3+X1h9ogK73pEee8+X1nk10dfAdrZ6efdqe1YrCn2Vz70DVxpTQ2/29k9OHec/X4eKprnHbv9dg+fIhm16UupoNmDTqSjDgSBIDnIKWLNI/wygqtqAX/SBD9keh46T3XHvNbdu7nzjr/z21//irVr1zJ+wgQ+cOllXHnVR3uZJOh56pvhAie46nWJOMHWTRMwzxC/7uC337LXltC8fTu19fWsW7uWpu3b6Orqpmn7NtauWcWaVSvp7OggnS6iu7uLqupqctksu3fvZtnrr3n5T5k2jeVLl/rlJRKUlpXT3d1FeXkFw2prqatvYMzYMYwcNZqxY8ejUDRt3873vnkTnZ32t/Hsc8/nqGOO4Zl581AqT119PSNGjCCRSLBz506OmH0kqVSSbVu3smvnTlavXs3ulhY2bdrEpMmTKS4uRinFksWL2b5tGyNHjWTatOkMq62lvr6e+vp6Dp89mxkzZrJ61Sru+uedPPP00zz37DP87Y47eccp7+j1jMOHjES523Nti91nF14ZiTrIR98M19XVxcqVK1i4YAGfveZTiAh33HU3s488iqqqqtjTSvUy3CRhV3N5FVzhyqvodGHC7D1LbRIb1b/D+UJwwhbWMOsTxKh7+2K0+nOJI/wuqsoOXs3zEuxTqgwMDAwMDCKha177IoC+KyoCaSxPCxzWvPosW/8gh8lAJPnVCRO9TdHcn/p1GAlLaGtr4+S3HcvMw4/gq9/4NsfMeQtl5eVeObrmu9f9GuHVTVP0elqWTqZ9QXbtaGbVqtWMmzCBtt2tdHS2M2nyFBIoNmzYwGtLFvPgfffyp9t/x+Gzj6Sjo53Rh42hYfgIitJpqmtqePvJ7+BDV3yEsrIyerq7KCrKsGNHM4lkkrKycjo72mlva/Nky+fzZPM5RowYyfiJk2lr201xppjSkhIeffQRctksG95YR2NjIw89cC+JRILa2louv+JKtm7Zwrwnn+C4uXP5+Keu4drrrg88R52Mue3VS8PptEBzUxO3/eqXFBUVUVRUBNjayjWrV3P/ffexbt1ampuaOOywMcw94UQ+fvU1/PzWX1NXV+9ri/EJZ0/e91uMCq5U6M/OTeJqVN0opRTbtzQy78knWLVqFU3bt7Fjxw66urpo2bmTDRvWs6WxkTFjxzFz1ix++OP/5tzzz6e2ts7LL+B5Re//IbMVF7rnCt2lnE6yEwkJEH4d+iFCCiI15OF8wx5PwvA8tuh7QbTydRd6+j2ubCmLwEmGUXlH1SUOQ5Y8K6U+NNgyGBgYGBgMbXgnzulhoZ1fIuJ9afXDNEQzp7BU7yOtvSN7Q5sBow4+CttdhqFv+or6QOv3u+jq7KSlpYVMURH33f0vZs6cQXVleaQHDq+empwuPK2iEpvAuKYWTrmbN23if3/234wbP4EZs2axasUKrr36kwBUVVVTXlHO9m3b6Onpob6hgalTp3H47Nl89+Yf8LGPf9wnwP1oAPWlfls7rskIAVOTTKbIk/H008/oVZeovHXoE5m49o6yg//D7bfzve982wt/24knMW36DOoaGvjSTd9g1GHjaBg+nFQyEXvYkWsbbl/bgjz79DweeehBVq1cQTqdZuq06bzvkvczdty4APnLZrP8709/zOJXF7Np4wbWrF5FLpfnuLlzmTlzFtOnz6CmpoZ0URHVVZWMHDmK0WPGkkppq1MqWL7bR/XDTCwhcgUkvFIhof4uEffo7Qfg+iJwyasbEz7kxUV4E3pgEqvVSUdYc61vdtXJesB+OiIfN+8o8t0Xhhx5FpFi4Gxsk43NwKNKqS2DKpSBgYGBwUGDZCLeL3KeaLON8FK5bsOsx0sMGQsjalOiiyizD/0j39TUxMc+cgULF7xIy65d/PMfdwAw921zuejd740tM+5oYTc4bDLiEomNmzbx85/91As/fPZs/t8Xv8wzz8zjhfnzyeayJJJJho8YQXFxMSJCy86dnHHGmd6mK0viD9MI2njjXSdU6Eh17dolJ/qkImrzpYqIi0oXDg/Hu8/opq98CYAjjzqa8ooKbvrmdxjvmHS4WL1qJSuXr6C0vJyiogyLFrzAhg3rueYzn6O6xjab6uiz68mJAAAgAElEQVTq4vGHH6Rx40YeffhB1q1dwwXveg/nXnARG954g7//9U/8789+yrI3NgU2bq5ctZJvff0mr6yy8nK6OjvZsWMHH/vUNVRV2Yd1xj1LS4KHvOgIa+D1FL4//KBdcbiPhicFLlxiHN6oq+cR1rbrsujpo8JdIuyR/NAsyv2V0CYFelE9ef+glcj8CyTNXvqhZPMsIhOAR7CJs4sW4L1KqYcGRagBRH82z7orOYC/vGLb0R49yj/pVt+MsWDDTu969kg/zdgq3/51cqU/X0rueMO7zr/h259te8hv6sYFqwFoXumfVVA51s87pZ05XDd7rHddf9ZZ3nVi5CTvOls7wbtuyenu9LRZq2aIF+XmS7fn1pHIabbIujs33VOGZq9sdezyb9aPf852O/dF2/PqsDp3e9f5Fr+NspvXRKaXjG/zLEX+c0kOH2fnkSkP32Kn1V276d4zNFvtgLy61wrdnZtuo5yImDvH2FbrdtGBPDRb5Di3cfmIMSbgsk/3OqI9t1gbdq38vGbPrdvlB+Daf+v27j2dvqxaO6i0/3zalF8f3f75xU3+M9fdQ72y0e9Pm3f5+R8/oQaATq1fl6T8dhtR5ttEb23z69zeox/D7jdYWZEv75ZWvz+/xRkXDjWb56aWaJvnvhBnJxyXLnzMbxT57e9EuzgyH/5oK6VoqCoD4P/+8GfedsKJVFcH95BEfeb7Kj2O7OtkpGXnDl584Xk6OjqYMnUqRUUZ3nLk4YH0o0aPJpFI8Ma6dQBcedVH+eGPftxHyX45/cmip+tFkHVzHJeI9VNmHCHTEbVSsHXrFv54++3Mf+ZpmpubaWpqonHzJhoahjNh0iSGjxjJC/OfZfWqVb3ye+K5F5kyzT5l8v577+HKSy/24qpraujs7KS7q4vyikrqGxqYPnMWs488mtWrVtDTkyWb7aG5qYnHH4mmO7f/9Q5OPeNMu07QyzuMew29N+vp9Q3XOY42hu319fziTCXCZYa9Z+jh/Wl74yaDYQQIOtHPdc+o8cHnbeNm7D5wIrAQGI99ctUvnes3Peor/Y93y7bdfaQ0MDAwMHizQUSYv+gVHnrgPv7r5u/xiY98mPETJjBl6nQOG3MYY8eN58yz/oPq6moymcweacx6enpoa22luKTEsef1UVVdzeln+kqPbDbLF2/8Ko8/+gjzn3sWgOs//wWqq6sYP348k6dMDWhj3yyor2/g05/9HJ+57nOATcqy2Szr1q5hzerVNG7ezMxZs9i2dSsbNmxg27atrF+3jsbNm/h/113LqNGHsXLFctatWUNpWRnDhtVSM2wY9Q3DKS0rI51O09nRQUtLC2tXryKTKebw2bMpKsqQTCapGTaMG774ZYbV1lJWXk5ZWTnpdLT/e4PBw1DTPG8EPqeU+rMWNgV4HRitlNoce3Pf+V4MfAqYDZQopZKh+LOAHwITsI8Bv07XdIvIJOAXwPHADuBHSqkfavElwM+AC7EnOHcAVyulgr5zQojSPOt4ctX2wO8zL74RgElvP9cLa1q31rvu2u1rPkvrxnjXp/7HEd71r07xtcatd/7Ku371/57yrv+1yPcO0Zrt7XGiTvMUcFydT/anXeSfGjT6nWd714lpx3rXbZW+XBt3+1pG3ctAoKwSW4M6vMx/ZEVdmsZY07xanX649PgaOVXky5jXNIsBWPr54HaZcRrWDuVf64fOlGgHVui7k3UvD7p2SvcX7Hpc0DXstcV+Obqfbb3MjKbC1TdS6PnoWl7dVZKr4Y+zZ9NXNXTtcVKzLtV9QeuHAki35oUk4LXDqYdumxl39LbupSPra3ID0PK2HM8w4TJdjzABjf1Ov4/n2/xJqlXqa/67J73NL6bDX9Vptvw0L21u9a4fX+G/r8u3+HlWOX14p+YTeslL/lBWO8r3zJHQ/JuNavD76pLFvieXrKaR3rbC31OdKra1lY13XGvX8RDRPLveNgrd6BPWRhVyWzhdf2XFeTRw46K0gmF7YPe6rb2DlcuXsnzZMjasX8/CBS+y8MUXaGlpoby8nOEjRtDc3IxlWQwfPoKRo0axaeNGtm/bRklpCVsatzBh4kSWLVtKW2srpWVl9HR3M37CBCZNmkzNsGFU19QwfPgI6uvrKSsro6SsjISVYMeOZna3tHDz977LyhXLPVnHjhtHwkqwe3cLzc32d+evd/yDU049rVcb9eVSLKp9wvFxdtxx6ePa3U0TZaYTJXM4rJf8od/d3d3c869/sXv3bmbMmsWECeOpqRmGQvrVqOumLYXUIRymy9zXCkogz5iy4rT0YRRycJmdn/R7yFhf2ulCPHTEmensCcLtd7BpnkcAq0Nhq7CfzXBsG+i9wQ5sDXYxcIse4ZiK/AP7WNm/Au8B7hSRmUqptSKSAO7GNic5H5gGPCAiG5RSf3Gy+YkTPg27b/wT+C/gE3spLwCbtSVZgLxjTjBzVr0XdteT9/SKBxh1xDHe9Tum1nnXnRW13nXZ0cd51/riXMNsf5B87V/LgJD/U408l40o866L66qjK6Itl+udP7AUnfa7YpdG2N1l8cCLoZMtrc6S1chbwBRAS5P3tS2qyJc96MLNTtMj2nK+VrxeB33ZXj/soiOGMEe5KYLogUM/YS6nt2GAgGvLmb2zsGUP7PTvvfypG8HoMnVpZgY6Gc9qC9ABAxqd7GpmEVGmIDq5FY3U5rXTBgMndOl56M+z23eVqJuZ6M9fuu05rNJMYlSPn3duh09MJe2b0ugu9nQTn8oafwldd0M3c6RPgo8d578L9y2xt2yMqPK1dIu151ChmVU1b/MnHWltwiRaB+nQXLNlKv13u2Wj/94eiogkCDFEKcrLAfQmyDpRibNTjvpoRxEb3bOAm2+vTVCubbL4nggymQyzjjiSWUcc2Sv/N9atY+eOHVTX1KCUYvPmTWzeuJGiTIYpU6eyu2U3DcOHs3LFcqZOn05dXT0iQkdHB8uXLmXtmlXs2LGD5qYmXnvtNZ568kna2lppbW0ll81SXV1NeWUlU6dNY+zYsbS1t7NowYusW7s2IHdFZSXVtfXeaYoBwqOIdE3Z63EpFUla4040jXOV1jvbYLpCTAEKNf/Rs0qn01z07nf3ShNUSIQIurbRMmzDGwWByJNk9cmd7sIOojei9oX+mkc3ZfL8JKu+Ji+aLDGTFwkoaqInCHnVexIRMCcpYBoct0oTeC4FTaeHHnmGwhQBe5ahUg8CiMjJEdGXAwuVUrc7v/8gIh93wr8OnASMBb6olGoHFonIL4GPA39xNjheCpzrbmwUka8Ad4vIZ5VSMSqz/rGjI1obu/YN/0OuE+bTPvYR73pCnU8Mv/N/C73r4VfP9a6PmHq6d1259nXveuQJvqY6WWyTnDWP+PZdDUf4H+x0uf/hr5yo+SgOECl/EqB39mJNJZrUNL9RJ1DphFolSrzronK/nomkpuHMxRwVnYi2l9WJl+sKW+nEWD9MQKuDPgHQxw7dRlY/KUuvWzBPN97PQ9dMdwd292t5xAxYgVPHYkh61DCixydjyszHTAZEP2Y74xPJyKO49ZMGA8eNazvGtWtL0+pbGjHXbdgDGmyNYLt25DphT5T7BFht9Pu26vbzbs9p/bDsMO+6stXXMB9WUeNdpyx/VUcfo1ePsAn+cO1deWVlk3ddVeLXs6vCb8PdnX67VQ7z+7yOsqoG77r1sFGRaQ4lhIltlK2sGxcO0yE472KEq7pCtJI6gXGTRH2447SqYZ/TYbjj4qgxYxg1xl/Nc691X9ZKQd3wEc59ICjSmQyzjjySmbOPjHPhvsewtDrkkT61xFHQiZWO/ohsX1r+XjKGguO8lvSFMBmOigtPwqL6W7jvxHmuiNOc6wiT8rg2i+u7/fXpXpMh97qQWYZSwXZxiXEojftF0MvSjyZ32zEgX8Sz71MLHZqguQj7hy8EQ5E8PygiUczn0XC4Uqo+It2eYja2fbWORU64G79cKdUaiv+Ucz0VyITyWISt5Z4CvLIfZDQwMDAwiICIUJRKks3Zn99kIkEul/M0bslEIhC3J9d7c8+e5qWGkCxDqV36u3af8YGWpa8+tTfy95dXzvmdKPA6SpZC+5iXXkEyYQ3J/pII/BZSyf7kD6YppJxkItopgY6hRp6/PghllgO7QmE7gZn9xFdo8YTSuNcVhCAiH8U2EQHoEpE9PgjmhX//JjL8/k9Eh+s462d7WloEbMcctUDQKPtXd0YkHpLoLfvBgYNVbjCyHzDI973LqYMoxgFDVVm0Vt7AwMBgH7EuLmJIkWel1GCQ591AZSisCttFXqHxOGl2atdoaTwopW7BsbsWkQUH64YeI/uBx8EqNxjZBwMiEr8b+U2CuM08+wsH67MfaByq7XKo1nsgcbC2aV9mVYcKXgaODoUd5YS78VNEpDQmfhnQGcrjKKADOLR38BgYGBgYGBgYvMlwSJBnEUmISAZIO78zzp8AvwPmiMglIpISkUuAY4DfOrc/ha26/46IFIvIkcDHsH1P47ijux34hojUi0g98A3gd/uyWdDAwMDAwMDAwGDo4ZAgz8AHsTXBD2Lbm3c4f2OVUquAi4Absc0sbgQuVEqtBVBK5YDzgFlAE3Af8H3dFzVwLbaW2f1bBny2ALlu6T/JkIWR/cDjYJUbjOyDgYNV7qEE04bROFTb5VCt90DioGzTIXVIioGBgYGBgYGBgcFQxqGieTYwMDAwMDAwMDDYZxjybGBgYGBgYGBgYFAgDHkeAIjIMBH5rYg0isguEfmjiFRr8ZeJyCoRaReR50XkmND9nxCRxSLSIiI7RGSBiLzvAMl+mojMF5FWEdkuIj8/SOT+toisccreKiJ/F5ExWvyQlb0/OBtevy8i20Rkt4jcISK1/d854HLtdZuLyMkiokTksVCel4rI2gMg+1718yEg916PLYMt+2BARC4WkXlOH82G4s4Wkcec57/DSXdiKM0kEXlERNpEZIOIfC4Uv1ZEOp1+pP+F3ZsOCfTTHm7/0OvxbChNbHuIyI9E5JFQ+v9y8pymhY13wg4fqHr2BxFZEqpnhyPT0U78WU6aDue7cIZ270sicmMov0Ui0hgKu8IZswfUneJQh4hYIvKs076jtfBCxqrwe/WnwalFBJRS5m8//wH3AndgH6BSg71R8R4n7gSgDTgDKAI+D2wBKpz4S4BG4FjsA7KKgROBMw6A3Cdj+6p+tyNbBjh6qMvtlD8NqHSuS4D/Ap49GGQvoG5fxt6IOgHbh/gdwP1DQK59afOTgRzQjH20vZvnpcDaIdzPB01up5x9GVsGVfZB6qNnOu/3FUA2FPcB4EJsv/1J4BNAK3CYE58AXgd+6vTvo4GtwPu0PNYClw52PfdTe5wcDgvF99kewDnYG/Ez2j3/BhYDn9LCPgI0DnZbhOr2bWCJcz0BaHfei7TTT9qAcU7894HHtXtrsM97WAPM1MJvB/4y2HUb7D/gc8Aj2Kdzj3bCChmrYvviUPgbdAHebH9AKZAHZmthb3c6zlhsF3i/1+IEeAO43Pn9U+CvgyT7c8D3YuKGrNwxz+AHQNPBJntMfdYBV2q/Jzr9adxgy7YPbX4ykAWuwz6zMuGEHwjyvC/9fDDl3texZdBkH+y/Qj/GwDZsb0sA78AmUWVa/DcJEqe1HETkua/26K+N+msPoAzoBk5xftdie7C6HPiHds+fgD8Mdhto8iSBzcCnnd9fB+aF0swDvuZcn4l9tkOx8/td2JPYW9w8nPBNwFWDXb9BbtspwCrgSILkuaCxarDl7+vPmG3sf4j258Jt59nO30I3Qtk95SUnHGy/0ueLyLdE5FQRqRp4kUHsQ2DeCnQ6S1DbReQJEXFP/hmScusQkfeLyC5s7dG1wE1O1JCXPQ7O8u8YgvKvwv4oHTFYcrnYhzZ38TNszcNVAy4s+6WfuzigcjvY17HFxWDIPuQhIkcAw7A1pWC323KlVKuWbBG92/PNhISIrHfMgu4VEb2ufbaHE/4CcKoTdwrwDPAQcLKIWFp4wLxjkHEB9ore75zfgffIgf7c52G/gyc4v08FHgMed64RkRnACIZWPQ8onOf9a+AG/NOXXRQ6Vg1ZGPK8n+EMIE8AN4lIlYjUAV9yoiuwl1t3hW7b6cShlPob9nLyDOCPQJOIPC4iswZY9Grs/nAV8CFgJPagd59DJoeq3B6UUn9USlViD1o3Aa86UUNe9j5Q4fwfK/9gYm/bXLu/G/v9uElEygdWWmAf+7mLQZB7n8cWLZ8DLvtQh9iHW/0duFkptcIJLqg9gV+KyE7t75UBFnegsBRbQzge2yTrFeAxERnpxBfSHo/gk+dTgceUUpuxl+SPduyc6xlapPJj2OYVLsHr73vRjr16Fain8/d2EUk4YauVUmsGWPahjGuxzXP+ERFXSF9KhN6rnSLyhYESdk9hyPPA4FKgC9s+7AXgLid8O7ZtVHgzSRW2JhEApdQ9SqmLlFINwEzs5Y57BnjjwW7n/98opV5xPrDfBVLA3CEsdy8opRqBXzllu/ZoB4XsEXCfS5/yDzb2ps21e/+CbS/4+YGWk/3Qz10cYLld7NPY4mKQZB+ScMjh49iTqC9qUYW258eUUlXa36CvCO0NlFKNSqmXlVJZpdROpdQXse3j/8NJUkh7PIp9Ym8FtobZ3Zz6uPP7FGzt9fqBqseeQEQmYhPdX2jBhdbzFBEZhT0ZWKSU2oJtqnEMQ0+7fkAhIpOwbZ2vjklSSBvnQu9VlVLqewMg7l7BkOcBgFJqo1LqfUqpEUqp8dgfqU5gPvAy9kYLABxydqQTHpXXUuBH2DaN1VFp9pPMu7Dt96JOzVEMUbn7QBLbRnQkB5/suiw7sW3BdPknYM/Qh5qGa6/bHLge2xZ31EAKuL/7OQdIbhf7c2zhAMs+FCEi47CX4e9XSl3tLB+7eBmY4pj6uDiK+PZ8MyKPbyZUSHvMx940+EFsE5iXnPDHsEnqqQwtUvkx4GWl1PNaWOA9chCu5yPYJPndwFPKPokY7HqegW2zO5TqeaBxAlAHLBaR7dhmLwCviMgn2fOxauhhsI2u34x/wFTsHbgW8BZgBf5mgxOw7UNPxd7Jez3BXaZXAO8Bap3fo7F32C85AHLfAGzANl9IYmulNmPPEIey3Bb2DLdeK/tObGKRHMqyF1i/L2Mf+T4emzT/DXhgkGXa1zY/md4blu7A3rC1dgj380GT2ylrX8aWQZV9kPppAtubyhnYmyUzzp9gmyZsAL7Vx72vAz/B9sBzpNOeF2tp1nIQbRjspz1OASY5fasM2wxrJ729j8S2h5PuPud9ulMLq3X65i6cDZmD/ee8I1uxVw708InYGyMvwV6RugTN24aTJunUZTNwrRb+LicsDwwb7DoOYtuWYH8T3L/jsJUTc5y+tcdj1VD7G3QB3ox/2PaUm50XcIX+cjnxlwGrsWfoLwDHaHEXYi9xbXNe2I3AH4DxB0BuAb6B7bZtpyPHkQeB3JYzYG8NlT1xqMteYP0S2J4s3KX5f+AQ/UGUaV/bvNfgiP3h7mbgyfO+9PNBk9spa1/GlkGVfZD66YewP9rhv3HAb5zr1tDfB0Lt86jT3puA60P5r8XW/IfzOHyw674X7fFZbM8+bc57/QDwloj+EtseTprrnDyvCYW/jO0qsWqw28GR52Ls8bQsIu4sYInzHi0hwm0p8C+nnodrYTXYxHnhYNdvKP05/cvztuGE9TdWRb2bzw52Xdw/cQQ1MDAwMDAwMDAwMOgHxubZwMDAwMDAwMDAoEAY8mxgYGBgYGBgYGBQIAx5NjAwMDAwMDAwMCgQhjwbGBgYGBgYGBgYFAhDng0MDAwMDAwMDAwKhCHPBgYGBgYGBgYGBgXCkGcDAwMDAwMDAwODAmHIs4GBgYGBgYGBgUGBMOTZwMDAwMDAwMDAoEAY8mxgYGBgYGBgYGBQIAx5NjAwMDAwMDAwMCgQhjwbGBgYGBgYGBgYFAhDnocYxMbLInJ5gen/R0RuG2i5DAwMDA4GhMdQESkVkT+LSJOIKBH5kIjcICKPDrasBgYGBydEKTXYMhhoEJH3Ad8HJiqlegpIPw5YCsxSSq0cWOkMDAwMhjbCY6iIXA98HbgM2AisAjqBN4ALlVJPDJasBgYGByeM5nno4dPA7wshzgBKqbXA08AnBlIoAwMDg4ME4TF0GrBMKXWHUmq+UmqbUmo3cAdwzaBJaWBgcNDCkOchBBGZBMwF/h4Kv0pEXhWRThHZIiJ/F5FKLckdwAdExDxPAwODQxbhMVRE1gJXAkc5Jhv6UusdwLkiUnPABTUwMDioYcjW0MKpQBvwshsgIjcCvwSeBC7A1jDvAsq0+54FGoDDD5ikBgYGBkMP4TH0QuA+bNO2450/F88CKeDEAymggYHBwY/kYAtgEMAxwOtKqTyAiFQBXwJ+rJS6Tkv3j9B9S4Ac8FY04m1gYGBwiCEwhiqlXhKRbUCDUmq+nlAptUtE3sAeN+868KIaGBgcrDCa56GF4cB27ffxQDHwm75uUkplgZ3O/QYGBgaHKsJjaH/Yjhk3DQwM9hCGPA8tZIAu7fcw5//NBdzb5dxvYGBgcKgiPIb2BzNuGhgY7DEMeR5aaAaqtN9Nzv8jCri3yrnfwMDA4FBFeAztD2bcNDAw2GMY8jy0sAwYr/1+DugA+jwwRUTqgBJg+cCJZmBgYDDkER5DY+F4JxqDGTcNDAz2EIY8Dy08A4xxyDBKqZ3AN4HrROS/ReQsEXmniNwiIqO0++YACnv3uIGBgcGhisAY2g+mYnstemZgRTIwMHizwZDnoYUnsJcQz3IDlFLfxXZPdxr2jvBfYi817tbuOwt4UinVhIGBgcGhiycIjaF94CxgDfDSQApkYGDw5oM5nnuIQUR+AkxSSp1TYPoEsA74glLq9gEVzsDAwGCIo9AxVESeA+5VSn3rwEhmYGDwZoEhz0MMIjIa227vKKVUv7Z4InIxtmnHdMdlnYGBgcEhi0LGUBE5FngAGO+YxxkYGBgUDGO2McSglNqAfZxsIR42AAS40hBnAwMDg4LH0BrgckOcDQwM9gZG82xgYGBgYGBgYGBQIIzm2cDAwMDAwMDAwKBAJAdbAB0i8sm9vPUvB6OnidraWjV2zJjBFiMGhaxIyN7lLNp9BS187MvqyB7IuHfVKTz7mFWeQHt4gftS0D7cO4CIq7/B/odYFgsXLtyulCrEZdtBi7Fjx6o33nhjsMUwMDB4c2KdUmpcVMSQMtsQkfxe3KaAtyilFu1veQYac+bMUfOefnq/5LVHxERFN7PEhMelR6IXLpQeHpEmkiyG0wxAtyyg2L3Pew8F7q8N9qX+e1rPKNkLeUZ7m3fBiOt3+wMxfffNgkxxMSKyUCk1Z7BlGUiIiOpobweCfdbtdnmt/8X1xPx+HGusmNdGAmmCifbH+1oo9va93pfXOB9zc7gd4tIF5OiVd7DN456lznMKed5xSfZ1VFR7mYdeR3HaLRBGsD31pg30lz399u8HqD7G2j0udyC/CS4ceYtKyxERlFKRj2xIaZ4dHKeUeqGQhCKSBLoHWJ6DAvqg2O/gqnfmQjrjvhANN38tD12+uMF8IIju3n509qhthzD2RPY90pLvYd69Mz0AA+IQwL5MSA7mfjfgcPqPYBXcxv0RqCilUiGkK6ddh4m0S3oUKkiglJu+MFK9vya2e4JwkXvSHcP1KiRdmEjrv9zn4D6jnnx0Oh36s3Pvy+bzJETo6elh+dKlNO9ooq21jXwuByiKi4vp7Oyko72dRCJBOp0mlU6TTqVIplIUFxdTVlZGfUMDw4bV2kSrnzIB8vk8WxobWbtmNRs3bgQgkbDYvm0ba9esoaenh2yPTWusRIJEIkEykSSRsEgmEpSUltIwfDjDnb/aunrGjR0DltWrHX0Beo+xA0mYCy5Hj4vqVP3JuK/cJPL+wtplqJHnJ4GWPUifd+7Z3V/CoYqB0DBGDa6FfHxVgODu2YvV1+zSThDdUQuTa88+FvubaAwGcQlYthRQ/IH6nu63tngTE+aBIDd7+04fKlBK0dzcxPbmZhoaGqioqBxskQyGANa/8QZtba0ohPdccB7jxk8glUrRtH07q1auIJvNUlZWzvARNgktKSkllUpiWRbtbW0Ul5SQyWRQ+TzdPT30dHfz4AP39yrn6GOOYczYcbS3t9PR0U7eYc41NcMQEZYvX0o+l2P0YWN47JGHvfveedG7SCQS5HI5KioqmDR5KkVFRaTTKUSE9rY2vvyFz/dbz/POP58TTzyJlpZd7Nq1C8GerI0cOZJrrr56qFryHdQYUmYbhxrmzJmjnpq392Yb+32570ASmjf5srmLqKXkMApZrtyjMmPC47pL3HKfF/ZmJMz7uf/tC2HWm3d/8e7iTOaQMdtwrysqKqitrWXLli2MGTOGc849lyuuuILRo0djWQlP89uXVlNHWNMc9630NKFh2bTrqGX3cHj4Hj+NOPfFCBqBvR3rdaVJlDLFC+vHHK+QIaPQcS+szXWfQ17ZefjP1U/30qKFnPmOk7zfVdXV7NyxI7aMsvJylr+x2fvd3d1Nd1cnHR0dvLFuLc1NTTz68IM89fjjrF2z2ktXXVPDjuZmPnH1NRx51NFkiksoLi5GEgkAtmxuBIHJU6aSTqdY/8Z6Fi14gbv/eSdV1dXc/dCjjmmA/3wt7D5iiV3XW2/5JSuWL6e4uJiidJpdu3bR3NzEG+vWsXDBixQXF9PR0RFbty2NjVRUVMQ0bgFmHCrPc/OfZ/2GDXR2dlI7bBhr1q7lvgce5NHHHgdg1MiRVFdXs7u1lbLSUhKJBB94/yVce83VfZbjl+E/vExFda/oC995Pn/6/W9DQuovVcx4HlVuXL8LvWBFZZV9mm0Y8jyIOJDkuSACdKDIzSFCnKH/D8r+Js6w9+Q5rj8Z8tw/DHkeHIiIuvjii5k3bx67du1i3LhxVAjasxUAACAASURBVFVVsWz5crZt3dor/e9vv52LLnrXXr13UXfoZG4P5e4VFrZh9cPj389e72Z/y/MqH+xwKu/H74EJX+S+FpFgvHcdFFwvPu45KOx2FRG6u7v5fzdcz2233grAi4v+zeQpU1izejVHHTHLuyedTvOpT3+G5+c/x/JlS2luaiKft+v0yc98DhFh3do13HfXnV44wEknn8JZ557HBz78EZSCVSuWc+rxxwA26bbEwkpYVFZW0dXVyYb16wGYNn06Tz+/wK66JjdALq8inzGETDgi4sMjU3iy5f5KWELC+TFl0kQ2b7bJ/71338WM6dMZ3tAQK4MvTITZRKhPtOzaRd24KQBUlJczbFgN55x1BotfW8oTT82LzfrKD1/O//zkx/Flx8j2m9/+jpt/+F9MnzqVWbNmMX3aVN4293jGjBlri9TPnqo+sQffoExJ6cFLnsV+8m8DpgCZcLxS6ucHXKj9iP25YbA/7DEBGmyiM8gEO4705rQf3Tn/uifGIDIRo2XSk7v56O+iBMqPzjsXI1dOe3S6XHo2yYR/XZz02zrtjMYpTdikdq2Hx25KKQQHaf/aU5K8v4bXPSXVhxJ53t3WTnd3Nxs2bGDd2rV0dXexYvkKvvH1m+js7KS8ooKO9nayWfscqXe/570cddRRKKVIJpOMGz+O2bOPZPTo0V6+UXajUUQvysa1o6ODlpZdJC2L4pISysrKCqtL6PfebADrRZQ94XJ+vPvnpnGIpOjhsUJaQfJiWRp5tiLJM5Y/2ATCvTBh06ZN3HXXXTxw/wM8/PBDXtz3/vNm1qxZzS9/8Qsv7JpPf5rrPnc9RcUljKyvZfqMGeRyOZYvWwbAlGnTWL50qZe+rKyMCZMmk8lk2LplS0BzfOzxc/n0dTdQWVXFpk2b+OjlHwBg5uFHMG36dD57/ec54a3H9GqGiZMmcfe995HP5UgkEpSVljCsqhJx6qpEyOVd22rl9Y2crjnX2yBG8wzuZkDnWnzCnBTo6Wjls9d/ntt+838ALHv5RcaNGVPY+BbTDwAkn/UFAzZs2sztf/sHX/3uDwG49mNX8sKil9m4eTMfufwDfPXbN3v3vuPtJ/LAP//uZGT1NunsT7ZYLU6431hks1nWr19PU/MO2tvbaW5u5vVly1i+bBnFJSX85Cc/IZncO+tkZww9+MiziDQAjwIzCG5S9QRWSiUibj1oYMhzH3gTk2elFN35LNl8lo5sD9l8lrzKk3P+V6jglzQia0HII4iTMO+ECULeedcFIav8cOWEgUue7fDipAUCRQkLECwR0lYCSywSkiCV8J+FIc+GPA8liIiaOHESjY2bSaXTJBMJdu7cycSJkxh92GhKSkq58qqrmDXrcF588UUeefgh8vk8RUVFdHV28vLL/2bRwoUA3P7HP3LhBRf2W2acB4+8gm/e9DV++IPvR953/Q038IPvf5/6+gaG1Q7jwgsu5Ms33hhTr4iwGNIcSZhDHc8nQyHynA9pnjXtY7RgVkDDDKASSS3OJ9IBE4+IJXY3PpfL8cHLLufOf/4TsDXIVVVVbI1YOQjjd7f/kXecdjqHDQ96ZJw2fQZLX38t9r7i4hJy+Rw93d0emXWIEqefeRa/++OfyaRTXvif/nA7N3zuOlpbW708Ro4cSSKRIJ/L0drWiiUWYw4bzZduuI7zzz0HSRfb9bNS3vchl1ee0iOnVOSqU8Ihzm6LWWJrmcEOc6+tXA+tu3ZQO8rWyE6bMol5991JRWWVt3kwEnEkWWmTqBjsbu/g4Sef4fXlKykvK+WTV1xm22zn8zTt2EV1VSXJdJFfvlhgBclr1P4oUfn4fVN6XwO+8rWvs2r1al5ZvJhVq1ZH3+Ng/YYN1NQM8373530nl8tx7z138+qrr7Jx/Xpuv/32g5I83w6MB94LrAeOBbYAlwKXAecopVYNnoT7jjlz5qin58UvewwZDAbROUDkeU9IslKK1p5OWntaaetpZWdXCy3dO2np3kVz505ae3bT1rOb3T27ac+20pFtpzPXRleuk65cFz35Lrpz3XTnuw5I3fYXLLEoShRRnCimJFXCMXXHcNHEC5k+bGZk+gNGpPdTH9kTQrw/bTmjEOeZoD8Rw21+KLmqe27hS1RXV1NbW4dgezNIJoJ9Q5/bWgKNjZuZPnlSIM15559PUbqI4pJiqqqqefvb305paSmLFy9mwYsvUlldRSqZYtRhh3H22ecwdty4XvI8/tij3HrLLWzatIl/v2R7T80UFzNl8mS+8KUv8/nrP8eGDRsAuOT97+fWW28rbBIaJssxy+2BNBH3esQ5H5E2bNKhI8a+VIkVSZQCGuYw2dau//CHP/KRj34UgMrKStrb20kmk54N74QJE1i9OkiQRo4cSUNDA6vXrGHGjJn88rbfsPS11/jMpz8FgGVZdHZ2sn3bNsAm493d8U65XNIMMGXqNBqGD+ekk97Opz/zGYqKikjo5DVMMl1b8FyW7Vsb+d9bbuPu+x+kdlgN//vfP2b8uLGoRAqVSAOQRwJE2m3tcP+EaPOMpPiE95V/v8Qvf3Urt/329wBcdvG7ufUn34/W9ur11QhzYFLlXEfavUea6YSeaZz5jr46UQhCqxNKLHp6evjCjV/jf37xSwBGjx7Nhg0bmDx5Eqe+4x0ceeSRjB07ljFjxjBy5EgyxSV0d3fz8quvUlSUoaGhgWG1tWzdupW6+nrAbvO//fUv3HnHHXR2dmBZCZ6e9xSdnZ1c/uErOOmEt3HllVceWPIsIjOVUkv2MY/1wLXAP4Esmgs7EbkROFEpdeY+CzuIMOS5DwwweVZK0dzVzKb2RrZ1bKWpo4ntnU20dLfQ2r2blp7dtPW00Z5tp62nnTaHMGdVNjZPSxKUJcspTZVTnCylJFlKSaqETKKYdKKIinQxRYki0laa4lSapCRJAQlJkJQElpOHu1Pa1RIHZ97OP2ctRik3xF0O9OMVCuVsRlEo8vpc2wkDm+z5w7hCKUWevK0NVzny+SyduS46sx3s7N7Fs5ufpTPXybTqaZwz7lxOH3M6NZkaL2tDng15PlAQEdXU0tYrPM7fso6tW7ewaeMmGhsbWbJ4McNHDKeoqIiOjg5eWriQNWvW0NXVxa5dO5kxcxZHHzOHbLaH++65h/nPPcvyNetYs3oNixYuYOzYcWxv2kZNzTA62tu56ooPBcrKZDJUVlZSXl5BeUU5DQ0NfODSD/K2uXMZPrwBAJXLkcv2kEql+tcmuwQunw0uvQOvLV3Gktdep6y0jBOPP5by0uLCGjOEto4ulq5YQUN9HaNGjQpGxtidKkvXQkeMX9r1zp07GTHKNpVZunQplpXg5ptv5rbbbu1lqjZx4kQ2bdpEpriYHc3Ngbgnn5nP2992HGB7t7Act2+pVIqSklJ27dpJJpPh2OPn8sLz83nvJR9g6WtLeP65Z7n8yquYMnUai195mT/d/rtAvkfMns1Z/3E2Rx99FJMmTvz/7J13eBVV+sc/Z+a29ISQEELvvXdEUBRFbNhddO0Fe1vX1XUtrAV7Wburrr13FMSKiChVpfeETkhIT27unZnz+2Pmzpyb3FAUy/427/PkyblTzjnTv+c93/f70rNnT4RleoATGvLHLQPDMBh7xNF8v2AR7776PIccNIZgKMk7PzFqhx7Act7xpvSoHTGud+we9gsQhu1wEZaBZUT4yw038ehTz7hNv/vSs0wYN9YeCMQAq5X4vRoHnk1nUGEZCLOhF9reoTGPsOJ40n3udhHDAt1PeUUlPp+PzMzdKN8kujdUsK352LR1G5179gWge7durFy1iqOOnMDtU6bQtXv3BlVKBHO+/ZYbb7yRiooKKioq2LJlCz179WL5MhuWjhg5kpqaGn784QcA3nj7HUxTousaoaQkRow8gOYZqb8NbcOhWUwC/gz0+6WUCiFEJTBBSjlbCFEGnC6lnOasGwu8L6VM+6X9/j1t8ODB8puvZyVe+T8UVLe/LREY2lGznW+2fsvKXctZvms5hZUbG3iABYI0fxop/lT3L8mXTIovmRR/Kmn+VNKDaaT6U0n1p5LpSyYzmEFmMJMsS5CsJ9mgVx25B5K9sjJ9JaJ2YgetJnEEuPsiA5evaO+gPFbq1JwRVer2Iq+tWg9YyEjY2zVFib5Os6e1LL/S12CKV/Z7H1+pB6iKVDF94wzeW/8eq8tWowudYXnDGd92PKNbjSHJt+eP9b7QEH6NybHdBSrtfR0/v/2fk0wDdkMH/B8Gz2VVTpKUPdwoia7XnkC2FT/eBGBHUREXnH0mPyxeRMAfYMJRR7Ft61ZycnPZtWsXmqaxaOECnn/ldQYNHoKUktraWqqrKqisqKC6spLVK1fw9ttvsWD+fKSUhMNhotEomqbh9/vp1aMHr774H0pKSjCNKKmpqaQmJ1EXidChbWve+3Aa23fsJCs9lZTkZKKGQbOMdCLRKMeedo7b58fvuY3zTjs57pgSeQmllLz2zvt88sUs1q7fwJp166mLROjYvh1bt20nGjWorKqiR7eutG3disyMdFrmtSA1JYX0jHRqa2pp07oVrVu3pmVeC9q3a0cgGMIwDNYVFKJpPtatX8+KVavQfT6WLF1Gi9xclixdxqbNm1m+fDkZGRnk5+ezfHliusWPS5fRtm1bvvziC4qLiznplFO55KIL+WT6DPJb5dO6TVsCgQCLFszH7w9QULCBA0ePQdM0vvzic6bcfgc3/f0GAM678CIM00DXdJplN6NT567M++5bKioqOHD0GLp27UZZWSlPPPYIwUCQH39YjM/no0OHDhxz1AQuuegi1xusWgyYvvzq65xz0aXu8rzcHAqXzPfALYDu8zz1uj/OWyssw+OpmxGE4YBcaXHJtX/n6Rdecevu17sn87+Y7tFn3M4kyOdgWW4fhRkFBzwLIxrvha6/XyLTfGzYWsTX3y9g9YaNhCMGi5cu55t5i5BSkpmRTiQSpara/gZ99OpzjBoykKQU79uS0FutnBeExo7iEkYedAjbtm0nKzOT4hI7mfSH77/LkCFD+WbOHLKyssjNbkb79u156513OPvc85l6x+1cdtllzF+wgIMOHhvX9ekzZpCSnEJBYSFfffUl9z/wILqjkBJ7ztOSk3498CyESAKOwwbMh2DrRq/ABrY3/OyK7bp/Am6TUr4hhJgDbJRS/slZ9wBwvJSy3S9p4/e2JvD865gKnotqinhu+bO8v+F9DMsgPZBO96wedMroTH5KPs1DeeQm5ZIVyibNn4GuNQwuUF+SAeWHX/FCi9pyr/z/HDy7dSNYV76WGYXTmVE4g6LaIpJ8SYxpdRB/7nYGnTPjp8Xjjq8JPCe0JvC8byaEkBXV9rNk7uaCWDL+2u6rqIkmvADdWDumaRKJREhO9p6bGN3LtCDGHNGIn3q3y84Py6R8VzFJSUmEAn6EZVBcUsLocUcQrg3TvHkz/D4flVXVVFVVoes6hmGwbUcRzbIyOWzMAdTUhvH5fJSUllGwcRPFu0ppmZtLfl4O1158LuNGDUP3O8+tA5xj76IzLrma1975gPZtWhMMBbn64gvo0qkjXTt1JDUlheTkJOrq6igtK6ektIzCwkKwTMoqKti2vYjqmhpKKypJSgqxacs2Nm/dxvYdO9letJNuXTpRsHETGRnpgKB92zb06tmDysoq0tPTiRomX38zh+UrVtCzZw/atG7N0mXLKS4uJiUlhV31PMzHH38CteFa1q1dx+bNmzBNk9S0NKoqK6mra5wK98JLr3DG6ZPc3x07deK4E07i4QfuIy0tDQmU7tpFrz596N27NyXFJXz26UxatWrNJZddxpFHHUXbNm3YsmULRx4xnsLCQg4bN4777rqTzh3bN3CYxOycCy/i5dffcn+XF64iKaC8vxvxzqv0mcqqKhYsXERVVSU7dpawdUcRtz0Qr5Ow6KsZ9O7ZwwPPagCoWifEeZuFGXG/G8KMuN8ZqXxLGpimU1xexZvTP+e1aZ+xasNGDh01jG6dOpCSnES7Vi05evyh+ANBuytojD/1bL78Zi4HDBvM/MU/2cGVzbLo37sXBwwbzKjhQ+nbqwcLflrGzXfcwxGHj2PYkMEMHjiA7TuK+HHpMpYsXcajTz7N1m3buWTyBdTU1FBRWcW773+AZVl079aNcDjMjqIikpOSKHHunW++/JzBgwfRf/AwVq5aZet3V5Q1OKxENJdfRW1DCHEINmA+HkjFfi89Bdy7v3jIQog7gRwp5XlCiCOA94EiIAq0Ba6TUt67P9r6vey3AM+/RzaquPb34fbaXSCOV5+iKqFylJWNYhmnPip4lyeWPoAlTca1OZrD255My+S2CCGoqLPBaXnYA6lq+xkhD+i2Sgu65RbJ3stPr9julrXSzV5fSr1AF+Hze9ukNdSvBDBLtjVYJnweSFVBrwg0EJ1pYFalB8jN8hJvhfJS1Fu0dcv+1p28fVMcIJ3kTbWZIQ9oV0W8F3Kd4ZWjlsWyXT/w1ZaZfL31U8JGLaPzx3F69/PIT2ljt6nciyolVb3T9yThpdovubP35rbcn2mbYXdSZF5ZVwMy47ZpGKi5O3pME3iOt18DPDvtx223r+BZQ+GdqpQAhYPqBvU5AOinZcsp3LiJsQeOJDUUaAC8SsvKefjfzzP981lEolFWrl1PNGpw7qQTycrI4MjDxjJy2FAAjj9rMh/N/ByAY444nJv+ehV9e/Vo/ETUpy1QD3g45YqqKlasXkd+yzxbxUTzpuFdD6Pma8CllkKjurqaTZs2sWnzFo459lj7nOk6wVCIUDDoguq777ufOd/MZtWq1ZTuKqGkuJj09Ax27SphwlFH8/G0Dzl03GE8/cyzpGdm8cVnn5KUksJRh49D13U6durMY0/9m00bCznnjNO55tq/cuNNN/PZp59y0vETAejZsxfLly9jQ+FGmjdvzkfTPuSKyy7DkpJgMEhOdjaDBg7gz386meFDh8Sdlw0b1tN9wDAum3wep590HAP69AYzGne8CaktlsnK1Wv5YMZMHnziGbp37khWRjo52c1o2SKX/n16MnzQAHz+AGsLNtG6VUvyWrSgcNsOUlNSWLT4R3Rd47CDDoy7L+z/Px88R6MGD774Nvc88wqHHzicU48Zz7gxBxIIeN84KSX4PC86ms+d6SjYuJmb77qPQf36kJaaQsmuMuYt/pH3PprBMUccRrOsLP7zyutuXe3atKGispJ+fXrTt09vvvl2Lot++JHLLp5sK6h06MiGggLy81ty7llnIpBUV1fz3bz5zJ4zlw+mTePNV15m87atHD7haLfemooytHoBlb8qeBZC9MYGzJOAVsA64FVgHvABcKKU8p29quxnmBBiMLaXOwn4VErZMM3Pf5n92uD59wbO8PuB5x92LuCG766gX/YgLurzV/KS86k17G1iwBl+f/CcCDjb+/324DkGnGHfwbN6LSoj5by97mU+3PAGpjT5x5C7GdxiRBN43g/geW8VTn5r8CyEOBS4DegNhIE3pJQXO+vOAG4GWgJLgIullAuddQcBXwJfSinHKvWdjj3z2H4P7crqGnumpT5vFOITmCR6jzSWsKT+vaWC56gl3Xu2vqSkCrBj19LnAGdtX8CzZXhT9Zbp8mlj69x+KioFpiVZsWY9GzZu4vhzbMrAUYeOobyiitnzFnLc+EN4d4YNlP99/x2cd7U9OZzbPJuiYu89sW7RHNq0yo8LRGwwpa8EzcVL13nT7QnVNoQWr84RA1eJtnNBtu52xZSSbdu3k5OTi3QUhOpzhcE+18XFO90gUtVKios4YeKxLF+2jOSUFNq1bcf4I47gyquuIikU4tZbb2H5smVUVVXz3XdzmTp1KpdfdhlCCL7//juXAtCndy/q6upYvWYtr7/wLBOPPDyOZxwN15DaphuTTjqe5+69BU3T0CK1CYHauzO+4KnX36Ng42YKt2ylZW4OB40cyrUXn0u3Th28DZ1zVlRcQqu+I9zFqSkpZKSnUllVzeB+ffjim7kM6tOTuR++gtaY8opleEDZiCBNZ4bTsuJmO6Vl8tX8H7nyvqdp3bIFj0y5nk7tWsdhlDemzWDKw8+wYl0BAHPff4kh/XojfQF7tlJofDtvAQcdE08hUm34kEF8N38hD99zB2vWrad3zx6cOemU+G9CY7ioMY620Dj6pEnM/OxzLrt4Mn+95ipymjdvuH/cPnZ7e0qSslcCeEKIxUBfbM/vG8ArUsrvnXWddrfv/jIp5QJgwW/RVpP9d1tRzXbuXHgjrVPacN2g20n2pex5pybbb5YWyOCsHhdzTIeTuWXe1dyx8AbuGPEIvZr13vPOTfZfZw4Afgs4D/gQG3v2dNaNAh7HdnzMwg4C/1gI0UVKWeFUYQH9hRBHxeJa9sU06XBDFZBVP+ufJeMH2OYehl6xLRNtpdcb4Km6vbEmLCCW+9CwJFJ4QNuSEivmmBOga/YAW9N8YHqSZFK3vD6YDWkBEO8xW75qDQMPOx6A2/96Gd06tidcV8e7M76gZW5z3p3xOUP79WLBkhV8M/d7nn/gNt6b+SWzv18UV+foCcdTsOBL97ewDIgBq9ixxwYfllEPeDhgTNfjvY8xUK15lDQpNBuYx/at55V2q7Vw6WpCQosWedinpB4orHddcpp78nWVFeU8eP99fDJ9Otu2baWszJ66t0yTpUuXsHTpEu69526ee+45Hn7oobh6rr/+eubNm8djjz7K22+9CUBWZiZLli7jTycez9svPUvXzvEwSEiLgE9n27L5DD7kKB595kUu/vPJaBje8QoN04jyyezvOeXS63jxkXvo06Mr7du0ISkUIKFJC8wIOZnx2uFjRwyia/s2bNpWxE8rVwOQFvJjlWy1Bzgq9U8B+HHLFbPCtaws3MqshT/x8mffsbO8krsuPZ3jJhyG7jiBLCPC3IU/8uq0T3n8lXcB8Pl0hvXrRUpyktvf2ABr5NDBbFwyj7Z9hrrtdO7QnrUbCijbuJrkULB+N+Ipi7E+OzdGo7rk6gBNWnz4xkvx62NBkvVAtvss7aXTZK88z0IIC1gPXAlMl1KayrpOwBr2g+fZSYpykfPXHtgOvAPcKqWs+SV1/xFt8ODBcs6sLxOu253UTEJLsP2+poZuzNsbV6eaHSlBMA3U+0glmOpUNZEjallxX1ZHvIemSilXKl5j1YNcGbHLhlXHO4XXUWls59CcOzEjuV49zvZqX1pmeJ7cvq08b+uAPC8WtV1ASX26wlNHqf5hvlsuWebJKe1aW+yWTaXvme28+oPOy09TprzUqSRfitcvo9rzPJtR75hdTwFghiMJtzFqFW+zwrcLKi/flJa2xzm9pxe5HOw5zC1HW3Rzy9vD3j1VoRzbzmqvfdWbv7NmJy+uu4Y6s4YzutxH85BN4VD1opP9eoOyuiyoJHFRE7ao3us4r7byDW0s0cT+IEU1lr0rPhVz4jZVD7Pa3/jle6BqNCZNBgRT0n4zz7MQYi4wS0r5twTrngc0KeWfnd8CKAT+IaV83gHenwF/xQbffaSU5r54nsMVpbEfHviqJ6elJq2o761s7D1mycTe6PozISpQj73DIqZscO1j94uueddWE971L9tVwry537J9+3b69+5Jr66dePLZ//D3W/7J3bfeyJUXOoGASga4VWvW8MWs2SxfvY75Pyxl4dIVACz++DX6duvkbi+NCJFolAv+fhcvffAJALPfeJrc7GzGnHo+rVvm0apFDv17duWkCYfSo1M7l2IgLQscL3hlnYGu6x7QMSLgzJIJfzAhJUPqPnBiJRpQNVRlB033QLYaTKcoVFi63+Ocy/jrV/+TJYBoNMqdt03hP88+Q26LFjz62OO0bduWqXfewc6inWia4MMPPwSgb58+hOvqqKmuRghB6zZtqKmpRgiNtWvXYlkWNTXxMGTBVzPpo9BcVNk/4Zy/FatWcen1t1JVVc205x4hNzvT3fb6ux7m7qde5K2Hb2PiwbZiCClZ9vHGvgeWx4FW1VVktI65C35gR8kuinaWUFJaRn5OM/p2bEP31i28d6xl1vMkW97y2KBE01wv9MqCzZww5Qksy+LAvl2ZOPYAjjz0IHRdR/j97uznVbc/xIyvv+P0Yw7jjidf5ITxY3n45r+QkZllUzdwnkN1UCTsxCbLV6+lVcuWZDdzZmP3dpa8EW74bqUU65sqrbgbnBXIzP3lnmfgWuA0bN5xiRAi5n3+di/331ubDDyCnRzlI2yd56uB5sC5+7ktAIQQdwFHAW2AKqfd66SUu5RtGp12dNYPBh7DnrLcBtwspaw33GmyX9vKIlv4avtDlEbXc0Cz60jztaIsspvghyb71S3V34xTO9zOi+v+wivrrufINlfSKf3/NQ33f8qEECnAUOATIcQi7HiUpcBfnNnCfsB/YttLKaUzk9mvXlWPAJcA5wNPsC/mDhw0iHmhhWV/GGPrhIbP+VBabsogG1SLBEBa9VjHzMUi9VDavrJ7pJRsLCxASkn79u0JRyPcefttvPTC8wwZPIj8li254e9/p7paCfaVFk/85yW2bt/B0hWraJufx5x5CykqLmbCwaPo2aUTpx1zOPm52dTUhunRqS048mYx8BsAnrvlSp6bcjXCH+C7H5cz9Ng/U15VzaWnn0CbvFxGDuxNh9Z5WFVlcTSvLTuKuOb+Z3j78zn07dKe9nk5fDB7Pgf2686QPj1om5eDFgjStXNHenfpQMv8Vi4QFqbhefLr8aWdDjorNYQKvnXHsaCAb80yEc5yXdcxLM/Dn4jzfulFF1JeVsaCRYtpkZfnZOsTPProYwgBxTu2c+7ZZzNq5HA++ng669av46F/PcJ9d99Fu7Zt8fv9rF6zhkcff4Iff1rCeWefyRHjDmFDYSE+TWN7cTF9VJCrHpZzLD26deOzN5/nn/c/SreDjyEYCJCfl8tJRx3G9FlzeWTKdUwcN9odoMiyIrBMlz7MjAAAIABJREFUF8xqGdkeH1kFwabJ8F5d7LIR8SgYlomMRj3AbJnxgNmty0JoTlnTkWH7flu6ai2dWubwwT8vRcvIRgrNrt8RUIs5bT7/dj75udlMPvlIfly1jtnzf+C9z2azcMlKFi1fiUAQCgZ48+mHyMiwHUdCaPh1jX49ujr9UZxBiTSl7Z2Uk7ob9Y/GZO8a2abR8l7aXoFnKeV9wH0K7/lPwEVCiI3YQFey7++QRHYR8LCU8srYAge4PiuEuFhK+WtklzCxE68sBTKBF4DngGOd9nc77SiEyACmA/cCBwKjgXeFEOuklHN/hf42WT2zpMlPpe8zr/hFfCLAsKwryQ8N2fOOTfabWFYwn1M73M67G2/ntfU30j1jFEe0mUxGIGfPOzfZH92ysB2r5wNHACuBv2C/I7sCaUB5vX3KgHR1gZQyIoS4AXhICPHy7hoUQlwAXOAtUOSu6pn6QXZn4uqD3wTTcjbI8n5bMjGQVs2SnhfZr8FXX3zG048/yro1qyktLaW6qoqkpCT8gQBJoRDbt293U3dXVVXx6fRp5Oc2Z/acb3nu+Rfo07MH6wsKCQYDfDFrNslJSXTv0omTjpnAvIWLufum6xgzfBA+6YEkF5yaUQ8wGREbTOHET2gaMhLGb9RRXlXNsQeNYPXa9fzrhTfZUVJK25a5DO7RmelzFvD8rVcxsEtbOp9wiXuc5RVV1KQl88SVZ9AyK40fNmxlxao1mBLenvElP60toH/3zhw3bjQtc7IJJqcweuhA0lJT4hSH4q5d/fOv60jTAd+aD6k7M1u+AMiQs40fn+KJRhNxXHdNwOeffsqQoUOpixoNZxKkJCcnh8MPPwxhGZxy0gksWbKEKbfdQbi2ltEjbHrBiEH9OPPUE5k2/RMuu+av5DbLZNGPSyjctJmSXbu46Lyz+NuVl9nXvrEMj5rOTX+5nKsnn024ppolK9cw7dOvOH3ieC48daJ9vcxYwF4EGa5xlZLM0iL07LyE5ylmMhJG1jkzlDGwrIBn1dZuKeKJj2axdMMWnr76DNrkOBr9jhd6cJd2XPXsh7w1eyGVpuDfH3xO4fadfHzfDfTv2RWh6RTtKqNldhaffb+Y2powj9x8Dfc88xrn/vXWBn2rKi8n09EabyCnp54j72Qpz/TegVo7KNHzQsfqisPamjOY3k9iDD9XbUMAY7GB9HHYL8j12Ly3D4Fv5c+oWAhRg63t/JWyLBWoAHpJKVfsc2f3vQ9HYnvVM5zfe5p2PBu4FWgXO2YhxIuAIaU8e3dtDR48WH77+Qz3996kp9xNxxtsr9YnFYmzRLQKiP+IRJWbTs22Zyg7qJSLsOGVVTpFcY390t5e6VEPCkq8qa/1O710p9t2efSI2iqPBlCnUA+MWMe0OnwZhVipS7BSloFegz/Si5SqP9HDSVcKMLyjl7xjcL49+u2Y6fHJkrd7uXzCi7/y+vK1R68v/NKjZCwv9HDAaqWPkcZ4Lop1SvHabZVkv0Rycz0+dkoLT/LKrwQs1pR452XbBk9mZ0utQmFRgvfKo97Lstbcc7/ynbaGtfHwTKfDPJm5lgf0dctJgw52y9GWXobB7RGvvwVl3rVeU+J5zwp2VbCm+gNWVr0NCPL9h9LGfxS68NqNTWcnKxSTjGR/wnJawGszPeiV05RyqlJPSKF/qPQITWG2qlSQ2CPV2PrGqCI+Xexxm72hbQjloxeXBS5mu3nFBtMyfxPahuM8KANul1Le6CwTwC7s2co7gP9IKR9U9nkfWCelvDpG25BS+px1c7FpHKv4BbQNaKgCEWPX2kmBcMqNU9FU211gmoqjTdPkg/fe5aEH7sMwDC6/8ipGjRpFVmYmaamp1NbWUldbQ26zDNauXcfq1atolpFObm4OU+++l5fffIfxYw/i+ismkxTQGHz4iVx29iQeuOlam0eMwwdWlThiCg71VTCcQGMZjXjlWPCxynt1QFtFXZT3vlnE90tX8cx7MwHISE0mEolS68zgzZx6FaN6tI9rJzaNLwIhhD9AXSTKtBVb+eLbeRTvKmPbzmJA8NjUW+jXxgtKFq4CR4KUEAqAsjP0ORQOXwjpcygjfrtsOZ5oNWNf7Bu3bNlSXnrheT779FPy81vRqVNHRowYybETJ5KWmuI+Y0LaYLOivIxbb7+T9z74kCXz5pCSkkIsK6OUktnffsdb731Ij25dOeu0Uygtr+SYk0+jdX5L3n/p34mDLC3De34VCoZN7Yi410U6YNkKVyPrwq4nWBpRfE6Adzx32XSvo6yr9a6xEfW8z7HtnHNsahptz7yJtOQQm3baz83mNx8kOz3V83xbFi9/MY/35izmo3lL3OY6tWrBrMenEAiFeOzN6cxfsY4n/n4pLbIzuenJV7n/hbeJRKOcetShvPzAP7221WusDJ7i9MbrW+xe31ugW48aknBArepIx34nAOmxNoPpzfYLbSPOHJD4OfC5EOIiYCI2kL4Gm+JRDLT4GVWHgPrc5hhy+HlpkvbdDgF+Un7vadqxH7Co3mBhEfb5aLL9YBIJvjJkaBMECiC5AJK2YggLzBBaTQ+S5RD8kd5eVr4m+8OZLvx0Tz2BNqFR/FD2Gpuj09ka/Yw831ha+Y8gqGXvuZIm+0OZlLJcCFFA4plHCfwIDIwtcIB1f+xYlkT2F2AmMGWvO9GYxznug+i9GTSEG+uhCbBoOJCpz4WO80SrXHS87W+fcguPPPwQAwcN4h8338yE8UfYmeKQLk85mBKCJFvPuWvHdnRt3wpMg5lffMWiH5ew6afvyWmeDZFq7nn4cQC6tW+NiFR7NAYVPNfzMHsgRU8YbIVl2WBaoWRUVVfz5LRZ3PvGDGIJZwA6tMzhhj9PZFj39rzy2VwOHdSLEV1ax8utKcDX374nUmgkAyd36sPJR9kJgA3D4NEXXmfcyWdx27WXcf7pJ9mgROkTgNy1zZ1mF7rucal9BlgNA+hsT5WGFlP+0APu7ELsuvTr04feU+/is0MORdd11q5dyztvv81VV15Bnz59GDBgAKFQiEPHjmX0AcP5YtZsqqpriEYNLCniAJYARo8ew+jRY5wOWCQlJfHwPXdw8ISJHHb8JCaMO5ihA/szcujgeGAY0142o4p32vIAb13YvSYu5SKmuGREPdBsRBVVDDNeLSNWl2mDaqmAYc0HK7cU8d78FZRV11JWXcvwHh35bsV6Fi5fw6EDunsxHJbJaQcNYtKYgaRMdEkArNuyg6Hn/I3q2jr8Pp1bzjuZ9YUbWbVuPVOfeY0vn72XtRu3cuRBI5RBmok0Tft6xsy9rp4jpAGIthRQqwJhrfHU43tSbWnQljpA2wP/OZH9LPCsmpSyFluy7lUhRC62t+H0X1DlCQ6HOGYa9nNykhBieHzT8vFf0E4DE0KcgD39OEZZvKdpx72allTacKcc27Ztm2iT/3mzCGMG12EGCrEChZiBQvBVOit9UNsGisfgi3RC1HZC4COQuWcJtyb7Y1iKrwXdQxfR1prIxsh7bDVmstWYSY4+jFaBw0nXGk+u0mR/SHsMuEII8SqwGjtOJQx8C1QCM5wZvNnA5dhOkncTVSSlnCOEmIENohvm3U60T4xbW1/CDW/GLS7QUog4qJ8oKDDGhVZ9Iqq3WTUBFO0o4oH77nXWCy487zwOGDmCWV9/TWVlFXVlOxPzNYUGvgBJKWn4/H6at8xnXUEhU26fyqvvfMBNV05m8p9Psb3KMZAYrVWAVsTzItdLpiT8NjgR/kA9YKUEkFkmL336LTc+a49lLp54CBOG96d1diZdW+XYx2yZ3PSn8e729cFQoEv/uPNuN+RJ2Pl8Pt78aCa7ysr550NPMHPWN7zywD8JBnxxfFwtJQ1jxyZ7f5/fBVciEEJLSnHrlzG1Dsuw/2JgTI+694KmgHqfrnHk+MPsH+MO4dKLLqSiooJ58xewcuUKXnrpZVavWkl6ajKnnn4GZ/75dBbP+47UjMzdclFjSiMjhw+javMa3v5gGvMWLOKBx//NUeMOZuoNV5GeloowDTe9tqyL9w3GqBbSiLgAWeg60tLd66rntPIoGQq3OeZhhnr3gXOdhBsMqHPlcx/y9CdzmXykp/383Yr13HzakUx+6CVOPWgIfz/1cJKDATZtK+LjRStZu9WWXG3VPJMtxfaM59biUoQQJAX9PDftC0oqqqioruWKU4+mT/tWHNC7iy2zGutXDMir5y3GszaU2QfM+BmI2L0uNCXleyMzFLH/sf1VwKykDW+wTgXZSl176+3eb+m594c5qh57a/KXpgCv1/ZJwJPACVLKL5XlP7D7accHgfZSyonK+quAP0spB7IbGzx4sJzzxcxGOtQYhWPPUaWJKBqGSrFQpvLrDHW5d/pV5YuwwuGoUSgBlYraQqlCrVApGmt2eLSMzbvsF0eNsq2mg6ntIKpvIJS6mSq5jlq5mdjXLTOQT5/s3nTJ7EXXzF4cnN4MvyPtFP3yVbeeHx7zZL/fnLPJLe8NbeHnWp5Creid7snspGV4ZV1RjdAD3jUKZXlgP7WF/WEIZXq0DV2RKgpmesofdWWVbrl07U63XFO8ZzGaugqPZlK4zaunoMa7HjvrEksXxSygIAeVhtIp1Su3HOTx89qO9eTpMkd5lA/ZxRsHL6uu5P0NbzC98D1qjBqyg7kMzh1Di1B/WiZ3pLYu1QUuKiVIpR/F0SCUcsineMbU7JD1A0kSbBNUOBoxykciZRBoXBFEzUjZWFmldvhVWkgjyhsa3rRvzH5ntQ2BTV27ABsYLwauklL+4Kw/A7gFL+D6ono6zy5tw1nWGVgObN0b2kZttf2OqS+bJoWWEDzXV96Iqy+2DQ0pHbsDzzErKd7J/PnzGdi/P6dNmsR38+YBsHntCnKym9GYmaZJ5z4D+cvll3DLHXdz0MihPHXnjTRvluVxmaUHkvcFPKPpWNW2KqBVXRkHwBrsE1NJqMeZVQPOZDTigWdNJ9jLeZbrfbNUkDLlwSeY8tCT3Hz5+Xw5dwHfLv6JpdNfpUvbfLduoWl7BM/4gnYqa0A6tI0YeEYPKJJ43rO5WzqktNixYwfDR4zkissuZc633zJi+DCuufKKxPuou1uGS5URhp1kpLqynDc/mM4F19zAg1Ou55KzT9t78Ox6kaNxswNaWubPAs+qpZx6A83TUxjYpS1rt+xk/XZbEWr1M7fi92l0P+9W6qIGcx+4lhNve4qD+3alQ142uZlpHD96CHUW+DSNWsNkw45ShvXsRFIw4Kl1BEPe9fIF3HsvBp7VwD0Ry3ap6Qp4plH6Ttw1re95VuUQYzMz+wk87ylJyi/yPAshkoFhQDawE/julwT1SSn3D5N7H83hLd8HHC2lnFNv9Z6mHX/E5n2rNsBZ/rva7jJu/dYWA84m5UT8GzB8BRh6AYa/AClsZk6NlUyq6EyWPogh+f3JS+pGSE9jVDsvuYhf7EpY/3+rxYDzH8H2BJx/LctNzuP8Xpczqeu5zCz8gnlFX/HZ5vcwpa2pGtLTyQq0JiPQgpDIJcXXnCRfFkGRSZKeSVBPR6cRXdT9YCpXel9MSknUMoiaEaJWBCEMTGliSgNNWFjSwpImIJ2y5Sw3MaUFmBjSJGpFMS2DqBXBMCNErSiGNDCsKJbDxZTOPpa0MKXJyLYH7ql7+80cytpNzl+i9S9gB2InWvcV9b5DUsq1sPcX1AXIlhGXWENYJlrUAR0qH1rzuQMTlScbU2LA/S3jPq5qoprGJAPzmmVw9OGHIk2DpcuWkZebS7iujtdee53LL7BDYOKTitjTxbomuOLiC7n9nvv596MPMvGwgxFmBAn2f1Pz+LGWDa7A4TDHaA+KtxHN9CgQmu55IR2vpnBlcOPpHXFBhipAr5d1Lnb0od4j2Bu7+fLzOHrsKHKy0ph80gTajT2ZXuNPpXfn9tx11fmMHTbAprikN3P7Gd1o6xVraVkeMNSqXfClBZPjwLPUA64Sh/R5mRdFfSdTPT5sXk42M6Z9wK233U5lVRV/OqVeIg9FGhBpUV5ewRP/fpat27ezbNlyevfsTuvc5qxcs5Z3Pp5JTa19z23YsAGzqhwfphv8Z4WrvWsEHrUiGo3jpetZOS6YlNUV3jpFNlCaZoPrYm9jOkoazrOA4NIjRxGOGAzu2pafNmzlsY+/AeC0qc+wq7KauqiBJgST7nqWq48by+TxI9364ig0mkbb5pmAhTSirhcZXffAr2UCfm9fv/IoK8cuGnFgNJCQq6ecEbsWcc+RVAZ7mkqnUgIEY0A8JqGo+eKcDuq7Y29sb5Ok3AC8J6VcriybDNyJTU8Q2M/TLiHE5VLKVxPX9MczIcTl2DJ0h0sp5yfY5Gl2P+34LnC3EOJa4CFsxY3jgXG/dt//iGZJk1qzjBpjF7VmCduMTYSt7ZQGNhPVtmAJJy+CFOhmPsHoQPxGR/xmBzpld3RfdO1TG/fSNNn/T0vxpzAqfzyj8sezelcJ26rXsr12Axsq1lAW2crm6qVUGcUkotcGtGSCWjpBPY2QnopfS8YvkkjyJePTgugiQEAPoKGjCR2fpsfx46W0sLAQwsKShgNwJZY00YQNSC1pgDAxLBsMS6JEzDoiVh1RK0zEihAxw0StOurMMHVmHZJ9mUzbfxYI/lYhIr+/CcVD6kqdYSfpiHmj4hIqSMudAtaEyn8WcY6oBh/HmKqFVCgi9UB0bPns2bNpkZtDaVkZZeXl/OXGWzjtxIlkN8uKl2uTnifsqgvP4aqYlrNlep4wzYeo71VM4H3Esoj57zWVT6qapsXzoetpAKsyZq4ZUYwaReseSBky1Ns+hmES8Uud84K0GNirK0iLaE01Rx00gnc+/ZofV61n/OTrAVj93lN0aJ1vVxsJo+e0sruclOJlVtX9mMVb7eaiEXud4XfPk/Tbs37CiPdCu4k1tHpBYk65e9fOvPb8M949YkaUsh3wV1pWzpCDx7Nxy9a4w5s993sOGNSPA4f0o7qmlgE9urB4xRoeeu41HnruNeY+dw8D2tr5BqyayoTeYmlE0LNbuufU3LklLuBPJhrgKCY0LQ6Uq8BUIJl62uHuvkZdmO6tcjBMk/lrNgIwtGs7Jh8xklMOHGj3SZ1pAAQOYNd00GIzBab3JlZ1qTXNTaoTm6Fw+c27A6ZxyjiNeIeVYxd4Hm0pNGWA4yXliQHTWF1CWnHr4oI3FdrH3tjeep5vAwqwp9IQQpyCzXNbAfwN2Ah0Bq4CXhRCbJFSfr2Xde/WhBBB7HTgDUitKpj/BfYQYABf1ku1mur8/0YIcTE2iI5NO06IZceSUpYJISYAj2IHuWwDJv+RZerqzDCbqzaxqbKAgopCSsI7Ka3bxa5wCREHGBiWgUAghECgoQkdYUv9u/UYloXpAI2IWUedVU3UCjdoTyeEJloQMnsRsNpghfPxGa0RhNCVqXGxlzdtk/3/t5CeQof0fnRI70enFG8yqzRcS61ZRq1RSlW0hLBVTtisoM4qo86qos6spM6sojJaRNSqJSprMa0IFj/Pq66hIYQDuIUfn+bDpwXwawECWoCgHsKvBUgJZhPQggT1EEE9SFBPIqgHSfKF8Gt+/FqAoM+PT/OjC52ArqMLDQ0Nn+ZDExqaEAQ03Snr+HUdv2a3GdQCBHQ/Qc3vLvMJzd4WDYFEFxq6sPcPpqRxMRfvr8vxh7aE2sH1rH5AkOs5FiJOTSVufWO0GDU5Q+y3u6HGhx/PYPJlV/LIfVM59azzAZj53htkNWtmB7TFfegtD/w3ohbifuQV2sYej9cyIUarM6JYrvKG4+FUgskarS8B0LGiBqmDDvCC1oyo68WOOy7lvEgjGjfc9fl03njwViwjymMvvcWV9zwFwEsffsrfzz3FO0YHKJlG1AVfWlKK7ZUF8AWxyos9bncg5HkldcOesgc7wLKxwDA1wFA5x3GDLcvgo5lfMPHcywG46dKzOfHwg+l79BlMPHgEx4wZTkZSkDc/s7256zZujjtnj774Jk9eYLM6jZpaN6FVqFW+O4MgNB1j5xa7uUj8/Sx0DaE3/DbGAWTN8/yK+gMnFXBaJmcfOpyZP67lg/k2fPr+vqvp07mdB+rVNvwNB2GNqqRY3vV2zRegpKqcj2fPY0DPrvTq2omFy1axcOkqLp1yP/m5zVk+/RXS0tPiBovYdAm+mb+Yr+ctorqmlq4d23HWicfEP3sxkC4UIK3OFFiad3/H8F2M5qPKJkoLGZvs0vbO4bEvGQZPl1K+4vxegn2/DZBSRpXt0rH1kn+SUh61Vz1ovM184Cls7dAGq9nPnOffwwYPHixnf/ON+7sxCTl1uXq1Gtte5StHTEmtUcPConmsKF3M6rKlFFSuxowlE0CQ4s8gzd+MJD2DgBbCpwUAZ8pIWiAspLSQWOjKlEjQ5wGKVH+QFH8Kqf5Ucn1BckPZ5CQ1p1XxTrJ9aQgh2PGB7ayf9YiXpe/rveDq7i87VJGFa9PX9gTkD+voLsse4GWKCvbyMuyZLbq45XLdiwMtqvZectuqPICnXpe0oHeLNkvyXkTJCrk1lglKXRZU3+/ReK+Pu9z0OMzS540tI7rHuS4Nex9Gld+uvotTlXYzfE6QSpn3AZBb13h1rP7BLW+Z5ZU3zi50y/MKK9zyptqG04p7a80cmbmBSjBopxGt3HL+SC/zYeZAL7zA18nLv2E2s4NyDcukXPhs2oRlsitsT4kjJVVRywWsFWELXfjQNR+VdZbLcw07UoDWPsaIqDQAlSOtUkHU665uE1AuUiCOr22XVW61v963NTcj5TfjPP+eJoSQ4fISb0FsqruennB9Tngi/ef6MYXCMuMlAhUvVSLvVDQa5b4HHuRfjz3Be2+8wpCB/cnMb084HObrGR8wbNCAhv1RtZljdbvtxRQaDHs75z1g1VbHeZ6l6kVWgsRcSkBd2Jv2D1d7PFQATYtXQlDPY+xc1lZj1trvaStqkNJ/hJtBTtSfkk/kxY5G45NVKF5NK1zNoZfczDEHDORPY4eRndaQxiZ8frcdEQghQnZsiAgmIfxB71rXVngeajUleFyqx/jBSSxVOFLG88oVGoCMhJn9/WL+88FMHrjiTBYtXcmrn87hmWlfUt9WPXg1oYCPZz6bx/aooDpcxwUTRjOkc2t7AyPi8pfNujoXSBvheLar7ve7cS9awOfNJKgeXoi7dnVFdgyM5vehBfbsF60OR/jbyzPYVVXDK1dNsukxEH8f+fyuhvR/Pp/HJU++zeg+XXjl+vPIzsqM287jMnv9mzF/Kdfc/wxCCNZs3NKgD53b5rPkrafwBfxoKfa3VfpCTPvyG2686yGqa8NkpKfxg5M5s3L1PJICCRhdjalwCM3LVCniQb/LlXe2k3ogbn0wNWP/cp4dT3Av7Cx7cV9GJ2nIs8Cl+1pvAvs3Ntf4amyPd2T3mzeZajtqtvHd9jnML/qGpSWLMGSUgBakc0ZPDmtzKm1Tu5CX3JaQlodfs8GWGgyoptBWUymrADBHCRhrnuQ9xJmWF4ymldsvhRhw/iNYDDj/EcyfKNvC72Qx4PxHsGaB/Tsu9mk6SbpHZbCkqazzjjuqeE2EI7ofNv445+WPdL/8USyOA6mmMd6LfepLkbllUwFSEI+sFVu1ejXh2lpKy8q44R8306xZFt999Sm52Znc//AjhMNhcnOaM3r8MfTt1YMFX3wcV5cwI17QmbRcT1ocz9aywXMijWY0xbOmTLdLosg6B2yHa+LLpoV0gsPjgJnP74ExJzAQbAqFFbX7mNx3aPwJcNQ3GvRLpRrUz7ynyK5ZtdU2HaJdDs38eMfo1BHrl6reIJxBgRYLNHQCsWVKFlJTvJeKaXWOcItJvHdZoalIJZmM2n8ZrmFwqwxmpoU49MIbWLR2Y1zd7fKac/SI/vz54CG0aWN7xa879Yg4qbjozh1eudq+FmY4guVcBytiuIBX9/sQmob6BnSVOIBdS21nhub3uR5pXQHMuhl/voWuUVJTy3NfLGRHeRVpSSHSkkP4dY2wKUlJSrIDMi2TVZt3MK9wJ0nBADtLK3j2o6/YWV7BjeeczJz19jF8vWQNrSddx8dTr2FMn85omgaW5nnR/QHw+Vm7eRvHXvVP7rz0DK4+bSLHXn0bM+YuIuD3EXHup4It27np/se49tQjycyzKTtaRjaTr7uFEQP7cfct19NlhM2AffbBOwklJcc/l7Hzoz7H0TqE4QwWdSWoMbatvxFlLjdN/N7B4p8TMBiD95saWb8ZW77tl9oBwPlSyjf2Q13/7624tojlu5awbNcSFu6cx8bK9QC0TG7NEe1OYEDzUXTN7INP81GpTAuVh/c85dlkTdZkTfZHNa3GTvYgFbkqqfkcfq8bGafs4FM8zxKhUnpUYKVYfa/W5s2bOOv8yaxevYZgIEB2djMuOu9szpx0MkII7nngYW687S4AcptnU7SzmLGjhns6v7F2LMObelbUGxooaqjUi7p61LhEFAwFbFu11S74NcMRzIinDa16OPWQoi1smVix9k2LpO5OoiTLcjzMltumCxLrB68lAM+uVJ6zvri4mKWF2+iV3zzOay0CIUTAhhHCH1D4tF7wI5qGUD2Oarke5cZVYrDMeJKOOwGhO9zemPnd67K1uJT7nv+Af70+jcf/ej6Txgzmm6WrWbNxK6eO6k96cghZF8aKhImW2veiFTXcAYplmu75l6aF4Xib1W2kacVxmQs+W+ImytICOrozteRL8uMLNfS8+lKS8CeHnO19+EIBBVj7eXLGXKZ+MJuppx1OTSRKSXklloTc9BQuHD8SKTS2llYy4JI7OP7AQQifH79PZ1Tfbjz5/mfc+vRrnHjISI45cDALV6xjS3EpZ019GiHgH6cfzbnjD/AkB0PJCE3jpsdfZnT/Hpw+biRr121gdN+utMlOR0NyYO8ujOnWhrfn/sgrXy3kifc/p/ClqYQCfkRpEc/edi2nXjOFbTuMGLcJAAAgAElEQVR38f4LT3LsGRdyzpXXk5ebw7jRI91rLNTnNVaOVGM6s1HSiLqzNFpyGiIlHc3RKbcC8eo8Wp3j9IsNBjN372TbF/B8rBCivVOuBNo0sl0r7OxSv9SK8BKk/M9bnVlHce1OdtTuoKhmB0W1O9havYVNVRvZXLmRsoj90Aa0IN2zejOu5+UMaD6S/BR72jryK0q2NVmTNVmT/V6mVTu0DcsEJ/uc1P3IQDKW355tUGXspG4hEnmXlA9wdXUNDz72JFOm3st1V1/OASNG0KlDOzp37MCH0z/hun/cSo9uXVmxYA5pSUGvfQdI1tZUI4SgfZvW3HDFRRx7+FgCfh9YhgOSY5SMKMRkzAxPRQMjqkiSReLUGDAi8YlRYt1X6RiWiVln1xsDzOABNtMBcyLN83BKy4oDloG2XZ0T7A1K0DTHE+wFusVJrJkNaRu742g3S7fTk5fX1pGSmhIP/p16hT9gawc77Qtlul0aUU9hw9S8gZDquXd+u//VoEi1vWjUHQgAWJZFaHi8kNaILm3xW1EO7tmBgzrl2cdcW+1SMFTAHLtGBTN+IOo4qYxaA9ORfjWUDLHSsvA5YFkP6Oh+Hel8s/WIieXMxBlhAz2g9NHZJpASxkixwbMvJQkzFHAHRTJkMbhNC3rmN+eCA/q7oFroGnooQHlNmHHXPcCCdZu59OjR3HX+Se65Sz7Wlux75fZrePOzOcz5aRUl5TbILCqz6Xm3vvQhZ04cz4ezvmfSlEeob22OnUzztGQmDutN9xbNqA3X8ewHnzN53RbCzn14cK+OaNE6pDQQgRCHjRzMC1NvYPQxp3DeaScz9cZr+dtt9zBh0nlsmPcZrVvmOTMHsevq8dWtyjLMUpvCIsPVbuZGLSMb3YiiZdjJuIQ/GBdM6A5ijYZxW4lsX8DzSc5fzCYCTyTYbhx2IOEvtZuA64QQs2LBef8LZkqTtWVr+alkCevL11FQsZ7CygJK60obbJsZyKJNWjsOaDmatmkd6dmsDx0zuhCTTG0CzE3WZE32/90sx8tk1VS6esYiEELPzkPPtBPdSl/A5TQKaChzFTOhcdEV1/Dsi69w+KFjAbjr/ocZPOBrFiz+gY/ffpUTTzuLE445kv88+gDBgN/V8CUmJSclJTuLGDN8MLO+W8DRY4YRlFGEA2axDBcYWvXSKuvOh90o2d6AwlBfa9ku16NwKIoH6rR/DDAZOIOHmFcy4Hen+9UANL1FW5fqgS+ACHpcaqHr8VrDTjm8dnkcMIsFvsk4z3N8OalTFw4Z0J2HPv6Wqecc18Djb28X761WpfkAtJB9nrQUZcK7kQyLiQCzfRwR91gMwyRlrJfn7a0zj6JPTiYhnw9j2XI2L7TPvRk1MJyYDjNqOXQYJQ7JCdiMho245T1OHuw0b8Wdj9i503QtjpIhNA09YA8QCj5Z6NYrTemCZ7W9YD3ahqZrvDVvOZ1ysjCjUYQZP4ty40szKK6spvjlO9B1zRYJcAYkw3t35bulq0lNSWHKxWcwacIhfPTNfO574W0AjhwznJ2lZZw99SmKS+1ccfdefT5/uf9pAN7455VMGNANTeHrS8viyuPAtCzwBfHpGlooyRugGRGs2mp6trY9v13bt+aE8Qfzt9vuYfLpJ9E2OwMi9fyqDrUJILKtgIrlK6lvgbRy/CXb8bew/b6+vLbuQEz4/G46dDMGthvUEG97C547JFjW4C4XQuRgZ5j6ZC/rrb9/fYpGW6BQCDEfO2ufalJKecrPaeePYpa0mL3lazZXbWZz1RYKKwtZWrKUGsO+eKn+VDqkd2Rk3oG0SM4jN7kFOUktyE1qQU5SrstVhsYDBpusyZqsyZps761TR/tzt2DRYud3e559/CH6Dh/DhBP+xJMP38eNU+5gXUEhPbt62TDLKyq59IZ/UrB5C9XVNYSCQaZefyVJoVBCnmaT2fb4Facz7roHaJGZxtXHjf29u0O1Erz32WUn0y0rvYECxn+bDWyXx1/f+oK/vP4Z4/t2xqdpbC+vYmVRKf/5ejG3/elw3p77I8Xl1VQbFrWRKAU7SujRoQ0Rw+SoK27luINH8Oz7nwLg03Veu/sGJh42hpraMAecdhlL1mwAoH1+LmcfcygfzPqemnCEH9dvYvnaDYzo3oGaqgq+XrqePu3yGNmtHZqv8diWOmdg8+2CH/DpOp3btyOQQP3j97I/WobBhuGruzEp5cF73uqPa/0H9pfmFfZoKcmXTIuk1nTO6En3rL50TO9N81AeQgjUgaSqkqBmIFPllmLBxf5GMp0l+bxyupL1Tq/Y7pWrvQh2q9Jj4Zg7vYjZuk0b3HLZao8CX7rOq6d0vT3mqd7hZdpVR+Fqpr3Mdp6SRVaXHLfcrHt7t5zcxVNY8Lf31DEMR1UBIBLykqrUKNkRo+4MT+J7Pk7hRNlGDZ6sVeqrVJKK1JmJP46JstQBpDjTcCGfqsbQUIED4lUVapXgNVU9Q12u9rdayQJZp2yTKAhO7V+WEhiaqtwjah9TlHLA9D44mnLvaLu8+yK6eZ1bjmzx1DkqCra55aot9nRbraLCEq7w6rYiqqdGOUdJnh8gkOL1PZTlBQkm53j3RSg7XSlnuGV/lrdNTGfW18K7t6yUbK+c7G0b8XsqAZVKH6uUsprBM04pR42zUu47M8F9GpeNUDl+VdUDoG9+xm+ZYfB2YBJ2sqww8DVwtZRyo7P+DGwt/ZjU58X1Mgx+CXwppRyr1Hk6cNveZBiMLrKzi2ppmZ7nOabE4HibpVJG98dH2ruVednM3n//fU454xz69e7FqSdO5JqLL6B4507yew3m9af/xd3/eoKLzvwTfbt14oGnnmfJyjUUl5aRl5PNcYcdzLD+vRh/1uUs/eQNunfphLl1LVpqZsM262v2xry/CYLv3Ox7RsS9N+19GkqUCU13PbPmzi2ed9uhJsQ4uMEO3eOa94L/FG+vkjHO5iKHCC/9zmlHcxUjotW1aDFdX12L86rGHbLp0SZ0vx+haxQWlzH+vle4cdKRnDP+AIQ/6HnCfYE4VYn61JCYSoMIJbuKD5G1P8Ulkol5v9VgSStquMF70eowQtfQdA3DtPjbu1+xcHsJCx++Lo7OIS0r4XHFvMQqh9nlmUfqJZhR+pKoDqFpaLoeJ08XK1sRwz1/qukBj7u+Y95yfClJLjdaDwWoMQyemfMTFZEoj365MG7ftFCAYMDPgT070SIrjdSUZKTQ6NYmj6I6C58vwN8eeoZ5rz5CWU0dn3+/mMMOGMpBwwe6997iZas45fK/U1ldQ1FJKSccfhD9e3Rh3uIlzF+6kj4d2zLnp5XU1HmUk8i89+PPi8Lpj13HneVVvPfdTyxbW0B6ZhYnH3YgfTs4yiVKUKcq1RdZ+xOly+1vTbQmjOFcY6HbHPnmfe0Bb6hrbzvjJmBVlnop4B3FluChZ/96GQb3t/23g+F9NZ/m4/YRj5OX3Ir0QCYKziGaQAi9yZqsyZrsD2gvAndLKcudrLO3Aa8BI4UQo4DHsbOwzgKuAD4WQnRR6HgW0F8IcZSUctq+Nq6lOaBU83kA1YzaQNhNI+3zggnjssxpDZQZAKqdpCD3TrmRMQcMRxh1NE9PIhgM8Ndb7mD4gN7cdNeDbC0qjtsvGo3y0rvTmP7F1zx0/aV0a5kF1aWJgTPES8UpAMDuWvzEcYzSAcRROGIDBjUNslle4oJff4y7jMeLdsFgJOwpTCgWL0GnsWO6PZkczEwlmJWG5vfOmSu3VuPRTJqNOYSyb2fZdTmgxT5E3QXYOABR6BrtWzTj/StPZfxdL3Dr8+9z/NCe/H3iGNKTgoQ6dPWULwyP+136w1K7mpjKRCiALxR0yzHwGurgHX+cWSYhNaOi0Hjuk2954K1P8Osat591rHNNTG96fzfXK1YPEAe4dSUwEBoHz7FzWl9mTgX8eijgqYxomrut5vMjgjboazV+DMLnp3SxneRY9/tI0XXaZmfw1OwfmDigG4f16kBpbR1VhsnhfTrTq2M+yem2E0FNSuNr3ZkPv/wWgCpTMGjgAA4+aIwNKhXqU88ePVny6bv85bb7eOzF15m94Cdefew+NGEH85WVlZI96DAAjjl4JK1ym9sUIKfPIpTi0ias6kr33DVPTeL8I8cA9jGpiWAshc+sKspUb95GXZmn+KU790TVlhLKCsoJl9jrMjbuIJBuyx4G0lOIDT31QCNqHPVsXzIM7otJKeWd+7jP/6R1y+qt/PrjzAI0WZM1WZPtjUkpVYKhwAbDsSmi84F3pJQzAYQQ92BLmR4HPB+rAhtw3y2EmC6lbOha2137zkeXlCxPXUMP2IkWlOQYbmYxaUE0JmXlq6flbJdPP24CzfQHOOviK5j50pN069wBYZlUr5iLsAzuffpFXp/2qduH4f16MW7UUMaPGcnwAb3jJPDsRpWypiNjCTx2k5Wv/tfAld8zTS9Vd7TO9ZhJ00SkN7cPv1meV1WtByTs9NwWxrYCAKIlxVRvt2eKzHDEVYJozGusVYfJHDbCBVciECLocraVjHmRMBlDR7jHqypkqFa9+DuXEtG1RTPW338lP23czl0ffsN1L03n3AP7s3HWIg5olUtywE+02vMk5o3obXOD1WDCGLBVgwrD1V56aZ/f89T7Ay6o37C1iNNvupe6SJSHrjiTg/t28ZQcAiFFP1vz6tL1uJkCO122onwSk9SLhOPl/NyAxfjb3DtHapprkJqJhX2ONL/PO/dq2mxnRkC1ZiNsVYqaFUu4c9psPlmyjssOGcLEob1snrHf53qrRSCEiGUl9QXces3SIsb27sh1F53N5H/czZYdRWRlpHPt5LM5b9KJBEIhpv7rKe54+CmihsGIQf35x1UX0adHd5as20ivrh35adkKdpVVUPTTbNauL+Dosy9l7ZfvIYK6N0AUGiJk38d6IET4xzkAGFVVcR58X1LQ7bMZjhDIsXnRsi7sDQiVezeYmUYwK9X9bUZMNGfWN1oTpnS1nc8gtXVzUvLs90hynn0/e6TYxLYvGQZjz/LeCI1K7NTd+2ROquzXpJRF+7jPK1LK4j1u3GRN1mRN1mT73YQQk7A9zOnYcWlXO6v6Af+JbSellEKIxc5y1R4BLsEG24kC0Rs1y/E+iWjU82QFk5G1lUhnWlZLy0SEnI+oElyE7o/3PMe0Yi2Do8eOYuL5RTzx4qs8eONVcW1efc6fuOmBpzh89HDeefxuO5mOA4RlrJ4YlUZJIWz/9nkUkn2wuMxvsQRJQQMRk+Iywm7QYlywnC+gJCyJgGXia9keAH+rTgRa2LrF0oh6MniNTImLpBRkXa0LBoWijRwX4IhHIxH+AFJz+lMPSKf0G9oARA7vA88NH8Hgc//G9GUbKKuq4Yj+XXj1slOQhukmFIl5vIl6fGSV6qAFQpTX1LK2uIJmzbLJb57F4+9+zsaiXfh0ndZ5OXTo0oW+3Tpz12szGDV8CPf+7VL7Wmp6/OxEonTR9RO/1MtQaOxwqGmKikp8OnVPUSROL9s9AOdeNECL5UhRvMIiEPLAczCE1ojHNHXwSN6Y8ixvTL2OHqISPRh094mj/DSSOjsp4Oe2c0/gtnNPQAqNH9cUcP4t93P91AcZ0rs7s+b/wP+xd95hUlRpF//dqu7q7umJhCFnxESQIGIOICqIAROKOYc1xzXntJgVFbMYMYKsWXHNERAVFEGCIJkZJnaqut8ft8LtpgfGld119+vzPDzUVFe4dbu66r3vPe85Uyc+yE7bDWTym+/x6dczmfjiFH6a9wsLf11Cx7atSacz/LpchXU3n30cxZl67Jpa3y1Spmuz+jPcdQv+/tFXzJ47nx0278SQLXvg1FYjIlE/yA7piiyRqE8tilQkKO6kBo8NK1YTjqtBQVFluVvIqvbJ1DfSYktFySvu0JpQqaL/6DM8G8LvoW0kgSnAUyje2r8CdwCfoWTqNgohhOnu8zFQCJ4LKKCAAv4DcN1nnxFCtAVOIHhHlADrcjavRgXZ+v4pd4bzLiHE0xs6lxDiZOBk72+zpTJX0HWeHTOECEUw4gEvXS/aC2gPSdSrzc0qagGERNC5fVtl6JBj5WuEQjTM+cQ/px/Y6iYducGX/3e2DXc+5M1G6+fQs5OGG0Sagf5ylmaydAL9aK+tLkfQrg3q8GU65WtJ24kUmUbVL1ZpHDNenN1HfjCefS4fjg2OxwO2A+1cJ4H0Ara8zoZqn7KiCI9fdAJDL/gbAG/M/Jm/TfmQ03fpT8itF8hAlmY1KE1jgKV1DTw6fQGPTZ1G53aVVNXW0ZBIsqa6hqMPHEG/zXry+czZvPP1D8yc8zNjRu3F9DnzkFbc/X7E+oMe1QHrtxlAuEGzFwxLh5DLS1fUmEAdRWqZem+wIlOJICuZ05/SCSzc9QyziEQx3ECSUDjIHKO+Jyed4tsf5/Pgc6+Qth06dGhPtCweDF50Uxw9cNYcBjFMMr8FtU0YJn3alPL5/VdTb0venz6bc8bsy/CtOmFYIcbutxdj99vL77ua2jpKiuOsXrWadoOGss9uO3LJXY9x4V9Oxigp9787gcZlz6QRIYsDz7+eLu0qubmmlg8eupk+3V36jpNnIEaQyY+WV/p9XFwRaDVbLWsoSQd66Zn6BJH26jsyK1pjFKlHkk8D2wiaGzz3A45CFYUcAsxC8dyekVIu39COvxMCuEkI0Vyd6ILdVgEFFFDAnwRSyuVCiIeAX4QQnVGeAGU5m5UD8/Ps+7wQ4hzgIuCnDZxjAjABVMGgs07lTfRMmpFDD8Aws0088smYQaC/bBjcMuFphBCccsRBbjCcJ+PYZCOz5e/U/8L/26dt6J9vSJEjJ4DTp4ElblGkEQqoHU4mcF4EsAM6ixEKIzVOs3dWQw9EbAfc4FnaWsAXtpRtuVZc5QVzTs1aLcOa0/48RioS3AAo2zYZFNViSNdKhmzehc9/UhncGyZ/yDuz5vHAEXvRobyEojatkI6dRXcw4iWkMzZ7HHMZY0fsztfP3EXXHj0QVpRfl63ANiw6d+qAEIKz3T47+IQzaVVZyYL3PuK5Nz5g8htvM3q/kRy8/755+z/fwMYz6ZCh9Q1vRDgWBL92oIstk40QdZc3oIWtc9T1gFFRLaLaejfYdxwa6uo445rb+fCbWey32/ZMf348LctLVcDunSuRbhZR1CvIhOwMdVk4zIGjuqgPIpqtupT+YKm0KAZ2hsqKUnr36sEbHyg6xgPPvMypY/bXTmIGDoCogdWdl5zBuMcncdyBI9j1xEvYbfA2jB05lM9m/gDA384/GSOP+oaManrdjhNcrztr4nHGQ63x70u7ahWOO5AUVSp3G+k5ZIP90qzgWUr5HXCREOJiYBhwJHA1cIurkDERxWurb/oozcKHgAm03tiGOfvUbnSrAgoooIAC/h0IAXGgPfAtMMD7QAghgG2Al5vY9wLgbeDa5p4seFEGGTOp818hq7hLeEYfZAdz/mfApLc+5L6nXuLM48dSVFqGDGW/pAPrbN2IQ/oBsjCambGEIGh2nGyrcb/tGwnWfaUVI6CDGKHsYNzUs+4RhGseY+rBb0M0oFpofWdGIlnBMiFLy3w7vs6zWdE6K2OZT085/evcoE1e9lrvCk+JI5Ug1LoDk647lzsnvc7tL74NwIK1New/4VVev+4M4o5NurYh0EcOh/zgeVV1Ddf99TyKYlGkFcMxQnToXua7SwYzBSbXXfFX9tj/UAzD4KmXX+Odaf/gq1k/cNAhh7r9m9P/ecxXpLfsZ/5NkO6gJuT4gxrpRJT1OyAi8by61uudp6ltjFAW5cgfUNkpxl74VxLJJLNeeZiYFVbZb03LGgIKjzqFQ1NOlYQs/74Iteuala32Bz52yp9paApfvfoEgw88huE7Duaaux+mY2UrRu4yeL3tvOP/ZeyB1NQ3cOU9j7Hrtv0Yuv1Azv/bA36R7lc/zGXLHl3p1qk90YhFXUMjqXSaqupaxozYg50G9smiw8hUQvHiPV5+OuU/B4R7Pfr5N4Z/WqpOCBEDRqMC6WEoiaLTpZQT/6kD/gkghDBQFJDtgU5SyiXu+ialltzPBwHjgd7AMuAqKeVTGzvfoEGD5Mtvf+D/resz61JlujyYLm0W1vLuIh2IhhvJOrUuFYxljMZg5jSjyc3Za4KJA1kfeNE42ktFr/rW3Z38US/4PCTAL2ABZYkJILTRK/FgWsTWpL/sohb+si7xpcvN6X2kL+vqJOkmdK49aS9dkk2XgdOUv9aT/vKQLSWGtpxfekw7fNa5vEX9LPo5822rzp//nHpf6Ov1n7fTxE/db4t2Hl0STe8XM6u/8rdR316XSLQ0PqKZDqTo9HtTuOtFOpCny+sUlgOpbe9VYIOqyPahZ728aVS0gjOyeZv6NGJe6MoIWgZEL9zRfxdC/13o22jrRaQoaHs0MH3wg6KcwrPg8+w8iNWi/b9Fqs59Zp4OTJJSrhRCdATuQQXImwFDgDeB/YGPgLOAC4HNpJQ1rlTdu9JzdlLHfAnYBahvjlRd4vNXVKZZU5vwebre32ErO3huAj/M/5WbHnicDz7/hsH9+zL5rfe574bLOfnoMcF9aNtBhjfXxtuXwzMDmTy3eDFvAC1zgu/si3P/d2kfWnFVvoA767DCaPp34wTtF+mEb/IiG2t9Goesr8FpcHNShhkE1V620+9LExFV96yIxAK5PD1Tm04Ghiu5zonJhOZQmMriABulwbvh6Xc+4YSbJwCw75C+fD77F246dhRH7NBHC9gNQm078+5Xs7j2ySl8POVZdZ5Q0N7cDLIUgnm/LODLb2Yy7cOPOebIIxg2cn8efeA+jjh8jNpFKyRdry+bgv4dSccPmHHsLF60Pkhar3A1a/CzPkc+iwokgwD9hnF3MeHpF/juxQcoLY6rZ6AWMOumPFkDHJdC4mTSvpEIkC1VqAXSGGbw3NPukfW401pfzFuwiM2Hj+G0MfszccrbjL/8LA4fsUeThZSpdJqyXQ7Fth16dmpHVW09++y0Lc+9+QHd2rdln122wwqHSaUzlJQUEw6FiIRNbprwNBefeARnHjmaoph61spkwh9EqL5IawMBI8swBSA0cOS/RqpOStkohHgOlfWNoR52+cxU/ptwLtCgr9iY1JIQogx4AxgH7Izqh1eEEPOllJ/9W1tfQAEFFPDvxwjgSiFEHMVn/gAYJqXMAB8LIU4HHiJIPozYiGvsxcBsoFkzmW2GHcncVydQUVy08Y2Bmrp63vzwc7p1bI9lhfhy1hyenvwWX3//I6XFcc48+jDGX38Z248+BoAjDhzZrOP+r+Ctz2eQrK2hXbFF7y7tsSLNy8T9KzF2zx0ZslVPBp10OfsN6cdVR43i4GvuR9gZDt81e3y4dOUa2lfmn7xe8tsyFi7+FSscpl379vTol535nPjs83Tr0oVoNEomkyEU+lOp+W4UM7+fw7V3PciSj16lNLY+peE/jZ5dOnLZqUfx0AtTGX/FOZx6ze0csMeOxKz8bbXCYRo/e4Xv5i0kYkVo1aKCluWlnHXEAbw67TNufOgZ5r/1NF06ts+qA9hjyAD2PfUSbn3kGdZ8PpUVq9fSujiW9xy5+HX5Kj6ZOZsZz7y/we3+qTtDCLE9KuN8KNACVeR3Okrb878SQoheqGs4CJihfbQxqaXRQCNK51QC7wghXkEVtBSC5wIKKOB/FlJKBxU8b2ibJ4Enm/jsA3LeQ1LKeUCz5SiG9t+SK+96mOuPO4CSEjdb72bL/FkAx0FEorzw5jTOvP4u+vTqzrQv1GP+iFHDOXzUnky8/Ro6tW+n2mCEeO2Ru1i1eg2lkRAk68EOLKmlXrTkZdzMIACQ2pS6NMPZWWCnicy1xlPO6g9hIHK1qZssXHMz7SKHc63zqg3TL9pDGL5hjDBCmCGLDt16MO2jzzj25gmk0zbjLziBsXsMDlQooEnpuaCYS2uLFWSkZaI+pzhNo5NoxxVWNJtS4Nh0b13G2inj/e2HbT+QKye9x5EH7KNWhCzMlu0YPnwYF9z7FLPmLabPllsgzTAYBldefzMTHptIeXkZCxYu4vMP3mG3nXfiovPPYfWaKhYsXMgdd9/LgkWLOOLYEwA4/qix7DN8KJlMmp7du9Fn661UP+T2a07/Zy3rGWY7ExQi5uwnPTpHLl1DV/GwU8GsgafwgcuxziR57bUp9OrSkVZhGcy6ZdJZSh5Zah25hYKAoc0OgMerXx8i5BaMgm/f7h9HP650sr7Lq089kl8WL+WTb75li64dueruR7jm5DFEmgighWHSp3tnlR12j9uitIQ3PvqSYUP6076iDJlOZdEtBm7Zk388cSc7H3UWXfc4hCUrVvPBQzez/dY9sw/uzUyFLKRj88vSFYy59G9U19UzdJ9RedvjodnBsxCiJypgHgv0QNlw3w08JaVcsKF9/+xwpx4fRU0n5tqAb0xqqR8wXWbzX6ajCiwLKKCAAgr4F+L2Y0cy4Oy/sWT5Sl689izAC8I0UwXHpmHdOg4//1ree+gWrn4gYNU9fvU5CCEQ4TAyGUw8htKNfPLZF9SsWcnQwdvkn+6GoEo/XgKWym7JkOLaesukG3wqkrBTQTGZrcnmJQPTB5lKrCf9hlZYZ2iKC75cWTgScGCFgQwrSTJpBpSVfIYwfpAXdjCkwzZ9+9C3WwfOPGAP9j7nek68+UGGbNmdnh3bqgFJyMqixzTJEc0ZMOReh7CiahDiBnZGXJNay1FSCA4ZHOeoUXvyyOR3uGjiG5x06Cg279QVGS+nQ88WjLv2Cg448kROOuZIyivK+enn+Twz6SXem/oKex1wCNsOHMA2Awbx5lTlciecDEiHc049nj7b7cpvy5ZRXlHOi69O5tGJ2eIvj4y/mxnfzuL4o8ay9dZb5b9mnbaR1ccbMODwNMk9yoZXvGqntYA541MwsugktjKPOf+o0bz23kekjBARVw9ZZlLZykJYsC4AACAASURBVAr6gCVfYR2spzXdZJM12kY+aow6iRNQdVzayNBBfXhs8ls8culpXHTvRM7+24M88NfT1O459xea5CHAomWrGHnmlbRt3ZJXx99MOGKtNwiQ6RSbdWrHwqmPsuDXpVw94VkWLF7C9lt2y75+l4ufSSS56fFJPDDlA8bsOpCrj9qXlodcwKOPPtrktTfXJOUzYDCwCngeFTB/1Zx9/0twNrBcSvmyEKJrzmcbk1pqlhSTB11mqXPnzv98iwsooIACCqCyVQtmP3QVvU+9jrmra/ly9jz23mV72pREg4DAcbBkhlMP2pur7n2MQ4buwJad2nLKfnvgVCtLeJ3DKdNpzr7qdqZ8Mp2oFaZq8r3BCXOkvLzgWVpxnIjKfDuxcmRIBa9JB6IhB5Fyeb8aB1Yk63yLYHvNMr8GJV1XT7LKXZ/O4KQyhGIqeDDCISLl6jyh4uJA29qKZllV+8ux0qBAMhRVAbQWHPmBWSYNHv/ZlVebePlp1DUm6FrZwpWfyy6UVEoenh60rQVgOcomXvBu21nBi2FF/WLMrHqacDgwOnGDIXXtlp853Wl4LxbM2Ilb7h7PiFMuobSkhKPHHMTOQwZzzOGHUNmmLROfe4GSkmJ69erFu1NfYautt2bV6tXcd+dt6rpdXWxvEFO9agWLlyjjjPtuvYGjTzvbb9Og/v1YvbaKGbNmce+DD9O1S+f1g2cPuTMImlmPvyp3G50jnU76Wt7CTgVSf7nca+1vYUWxMPllyXJqMoI2FeoeaUplRto2pNx2JRqCzzKp7GA0ZGVZV/v3WygczLbkOnV62Xn3/sqyjjdNDhs1nLe/mMlZdz7Oi7ddyfZHnsX1E1/jytOOUuY1On/aCFFTW8eb73/Oa+9+yDOT3+D4Q/fnmrNPIlaihVleHycb/HssYoXZvEsHdui7JR/OnMPYkUOz+kI21jN97gJO/dvDlMcifHHbubS2DGisY2NobuZ5OxQ1YTawJXCDaKKgyoWUUu7VzGP/R+Fm1M8Hmiqs2ZjUUi3QNc/neTl9uszSoEGDCpaCBRRQQAF/AMKKUhKyWL2ujp1OuYK6xgQnzZnP3WccjpNwM8muPuy4I4bx18df48bHXuDt685gs4oITo1y2NMDu4bGRqZ8Mp3Orcrp2qaFMmjwsmwhS8v8xjDKlKtfprgV0i3yTBkW6Yx6vKccSdgqQkTcYCjhIGzXVri22i/gTixeSNXcXwFoXFlN3Uo3C21LHNshHFWv63CxRVFLFcxEykt8x7VQzCJUpNoVjscIVyiNa6O0pa9da5RUYITC2dlBTzEiUY+tZb4BWpWV0KqsJMtkRaaD4ErPOmc53mXROcKBnq9p+pbp0rbBMDDCbmAWCoM74MiSBnRsjKja34nEcVylECdaSmWrIm4f/xC3Scn777/PlJdf5KGJ51NTs46S4mIW/bqEfr234vSTT6D3Vlvw7AsvAXDpVddwxjnnUVZSzCnHHsk5J4xFOBk6lMVI/zJdZe3DMWoXzQEhSKbSRCIRP/i97bqr3LblaPJpRjj51DJEzt95iwqlo+gZrgumTtvIOoee3XZNXSa99S4ty8to07Iif9Y4ZPmqGqpIz/G/C10v2y8QjcQwisv9+0eaVjCjkY+2kgvpIPVrs9S1xOLw1D230G+fMdz27FSeuecmhow+jqsuOR9ME8c97m8rVvPBpx9y3e330aayFcN23p5Z777CVr16qMPnO6cRUvc4+PbzI3bfkVuefJnf1jXQobUSJpDpJPtceAtfzJ7HJQfvydnDBiKEILFG5UJL8h1b78qNfO5hsdvOf3tBoBBiK2Ag0Al41NUR7QmskFJuCom6nVDSeN+7AwLvbpglhLicjUstfYviP+vo764voIACCijgXwhPn3XRhMtYU1NLQzLNkXc+xw/9u/HR9/PZv99mxMIhHFcG56rh2xKVNg+8+j5/O36Un/G0GxvI1KuAxXBZeItXV7N4dTXbXXAHH407j0g4lG3RbEVxPHpGrIyUUK/U+rTjK+BkHImUEAurLFkRgcKMk0rguCpHdUtXsfYnlXmuWVJD9TKV/bKlUtDx1G1MAWWVKuCMt4ljumpMpmUSjrsua6Uxoi1VzidWWe4vmyXlKnsYyjPdrmclM+kgyNK3SSWUaYdvBmP6L0xpmEGGNMeww4eu3GGGs/jbMse23M8k6rQTqwjHUteelpDKOL6K0HY7786uu++BlJLlixdQvXYtvbfeiueff54Ro8cwaOAA+vXtw2knHU/frbdijx234/MvvuCYv1zAOcceqtwSE3UIwHCKAkqDaRI1LUg3quA3n+az6zyYz60yK8B06SGQQ9mRmmqKk0FkUgiPY5+brfZt2gODGGEYSCE55oKrOXifPYLvDRCWZmrj2Yjjqp1kAtUhvz7AiioKEq7Gc6zUV/6RZtjnyP8eiIyXRU8H1x+Bvz/7CJfddAf7n3IBALN+WcK6uga+m/0jb7w7jS9nfMsu2w/mnFNP5MSxh2CaJp51/XozKDplxjuvYQL19OrRlVMOP5CL736Up2+9XO3iSD6YMYdlUx6gJFmDXa9+b0a4eWFxc3WeuzbraJsQQohiFA/5IJSZUAglebQcuBEV0F+wCU41CXhX+7sjqtBvOPAjyhDmTSHEEwRSS1HgFXf7V4BbhRAXAnehFDdGA3tugrYVUEABBRSwAdQvWQaAWdNAJSClJCwlR94ziTmrq7n45WncPXQwu3ZRxYCl3drRu3t7Jn0yS0lvRTyTjxoaVlYBIIXg2CFb8/jnP1Bkhfl+8XIqDr2IuQ9dQafOXYKp62iR4jQDjhkm7cpqShlIORoG2I6kLqWivCIBTq3yAZPJhM/l1IPMSGkET9AzVZ8m05hBusG4IyUNqxUFpLEqgeHKQQrTIORmp63iMNEKdY5YRRSrRLXRKo0Tilp+gBCOR/3MdTge85ezLLl1CoXXTt3W2YXMpNczugCQIUszQjH8qX4/+DGCIDnQqc4fSDtWnITbD6YhKAob2G70bEv85cpO3WjXpTs2MOaY4xm29wg++fRTPv7oQ+5/SPFYZ3zyPmlbMnSXHVWbErXYrkGGJ8lWVVPH21/N4sLbJrDToH4cc9C+7L3rjkrCzCvkBCVNaIR8STkJ4LXfCGkBbyagydjpgPvuZAL6i2ew4hmrEEDXY9ah+hieuPUK7npiEmur19HCnXnIDt617LJhBlKaUbK4xZ6VvWPFkFYcGVF/N5ltNkwc93sVeTLlnhyiyCRU0SRqINCxS3eeeOAeXnh1KmNPOZMBQ0fRoV0b9tp9V3bdcQhHjzmIufMWMGTbAZim6Uo2BoW4/n3pZrhVv0aUUyQgMklf0/zkY46g3/CDWVLdSMd2bahNSopjUZyQBY2OMgby+rgZ+DPrsNwO7IDSkP4EpSPt4XVU4PyHg2cpZQOaPJ0QwuuT5VLKOjYitSSlrBZCjADuQwn7LwNOba5MXeui4CswMpq2ra3xlPS5CX11E/wpfyQfKfFvWicWME+MzvqyxtnKsaDNu6yLsuvV5fpoVNOktLVtbFNN9zRmguPVaxrODeuCh0JC20Zf1mE2QR0Ka9rCRpZesVq2nUB/WNck1rW1zSb0n4WeddBqRPUWNkfnOR+a0lPeyG7uOZvQn3byt1HHxqTem9KHbmobfTmldYYQwQeGiPjLVlEbf9nM0196XwgtOyb0KdMm1wfL/tThho7TlIar92DOnabNB62yvcnj6S8gberb0dfny2JBkIXb2JTp/xM0rlSZ52R1rZ9dLjdNvlqxhgmD+tNg21w07RtGdm3PsZt344Xvfual7+dz85FKpcHj0zqpDE46gyMl29zxDC3iUcbs0JfnPp3ln+uFL3/igi17+387DbWE6hRnWkgH033OxqJ5S14AMFesIL3iV/9vTwu/pHMbnLS6v9L1jaTdLHiqNkFjVQLbtdTONGZoWKOC54aaJDFLPW+tePCszTRmSLivzExjBmEqOoZhVhGKhgjF1L1V1DLuZ6Wt0iKsEhV0GFbID7BNivzsvBEtUjbQeYoXc+2evUymNC0tQyuyHziaGx0iEwTf2vNBmpYfcGdk8HwzUb/jkHvskADHzYM7UvrPDcNOU9minAP3HcHoEcO57fqruG/CI/TfcQ/223tPamrrSCZTRKWkqq6RitJiUg11DD3jar6YM5/iWJS6xgQvvP4eb3/4OZUtyunVtSNb9OjCpzN+8B3vPn1lItsO6q8uRTrITNBHfiAsHRVAgrKh1rLNuv41EChk5AZzG9AuP3jv3Zjy/sdsMfwwXhx/K7sMHpAV5AvDCGYFdF1u3XDFNLEtN1i2YoonHwq+Dw8Owvc9yDiSVFK11zSE/64VQoAEyy2UNCAw7JGOzzkfPWofis+Lk86k2ax7N9778BNemvoGvXp046sZs2hRUUbfrbZQz0Ev22yGsgpk/eei1kaRqke427TrVMR5px7PSX+9ntefnsBTr75Bq/JSWhTHyFSlmh00e2huwWAElVWdLaW8ewPbnQ1sAZwlpWzCWaDZGA2cLaWcJoTILbtdBHT5g8fPCynlQrIHexuUWnI//wpVUPmngtCC8f80vMD5zwDduKOAPyc2NtD4t6I5pgj/LuRRIPj/jlStCgwb1tSTrlMv469WKB7zqsYEu1e2ZvzgbTjh82945udF7Ld5F94/7wjal5eQXL3Wz7YmqmtpqKlni3ueB+D2g/Zg2wG9soLnGydO5oLjDvUL+zJrV5H5TYlNGSUVhDsqLqZo0Wl90wsXcu0y35hHOfa5pgxFMaItVdBtpzM41UHRkhk2/eBYtDIwXMMhJ2UTr1T61iXti7FTHofVIVXvKQmsP+AzLXd/bXBrpzKk61VQHibmB2QiHMZwjVCMkgrFf9WDNl1lQSuM0wPmrCyyzgFucrAqA7UJJ+MfK2xAyL12IW1yM5yGu50hjCaVIgSS0088lqefm8SUN98BYLPt9yReFGPewsVErDD9e3Wjpq6e+in38NnsXxh2yR1MuvwUdhmwNe/PmkcileKrnxZw9N678O2P82hIJLn13ge5/4a/UtmyBdK0suX8crPKqEy9btiRdfmZVMBH1pVdrOj68oDgc56jRWGeHz+OV96axqF/uYSXHrqL7QcPCrKyOf3tGEF23EuGyZDlz6ZghnHMMJk8GRQnJ+vivVeFEH4SRKISOF7eRL9+nedtClj54ze8NPVNykvidOvciV49ulFVU8fmQ3Zn5J57BNSYLKpMMEDxpSGF8JNGoUgJwr0WkUlw7l9OY/zjT3PBtX/jroeeAOC0cY9y34n7YaTVINhJNSNBQvMzzycBx6Ec9DaE14FbgZnAg808dlOIAWua+KwE2LCGSgEFFFBAAf+vcc2cnygLh9muXSse2nUwdZkMwwdsRkl5/nKg6b+tYvOWZTw6ZjjdOrTmw19X+p+VFMWobWikpr6BeN69C/hvgWEYfP72FOb+PI8xJ/2F7+f85H8mhGDEjgM5cy+lbb3D1j2Y/fC1dG3bEhGOMHpXlScbO2J3RMjihAOGM/OXJdz3/FQ2G3oIk+65geG77fKfujQADtx7KCvWVnHqxddw7cVns9/w3dmIyAPpdJq1VdWEYkVUtG73b2ppgFAoxGEH7JsV4F996x0cPGoEHdtvmvZYlsXEe8dxxS13cvlZJ/PGO+/z9Ovvc96I7emyARXBvO1t5naHAJOllD9vaCMp5c+uQcjh/PHg+SvgaBTPORcHA5/+weMXUEABBRTwJ4E7w3gzcCyKhfk2cIqUcvWG9vOoBvWOw43f/0iroigvHLonU+cu4omZc7lx/jyG2g1cul1vhBCk6xOsnbMIUJzfUDRC2nZ47OOZ3PfNHBwpGT7hFd4+53C27FjJfSftz+MfzuKrn1SGOe6kSK9aAcC6+UsJufrEVskKIq5yhlnWUuP5mlmFcjJRnzcraieTJN1ss51I+jSN5LokjVUJilqp7G+swqK4vZpWj1YEb3w75QT8ZyvHrt3NWoeLLcLREGY07F+/3/+mgeHuZ1ghfzmrYBBFc/F42rqxCWhUIo3LrA6uFf9paJIRJoQfRMlMKqsYTGjZ7Wz+rZPNuc6X+df0k5GSzbt2YMY7r9CwrpoPP/ucYdv15/i/3kginSHqFs0569bQzm4kuXSJ6iOPzhIv9uUA+7ar4KG/nsqQPptzzPlXY5om6YxNvy16cvh+e3HM/sMxDENlkX3lkpzJef2ecJysYj6/vxwb4QTUGCLq3l+v2NIIcdJxx9Kysi1X3Ho34594nluvuYye3bvz4aefsWDRYuJFRXTp3p3pM2fx6t/fYsbMmRTH4ySSSa688kr+csYZLFn6G63atEG6k/9hM6BkhIVm3qKRAqURQvoUSUWf8TnPybqAwmKnsosvvcyxq7Qy+fW3mfr2+3z13t/9zLoM5fDiNdqG/+1Lna6pzYwYIRAGu23Xn49efoK1v/3KI0+/QMvSEmJhE8fVYc8k1u/3fGhu8NwXuKKZ236M4v7+UVwOvCuEeBd4AfV7GCGEOBcVPP9nh3YFFFBAAQVsSlwC7I+SRl2DKhifCOyzoZ3iHZRUXDoe4ZU5CwF49vtfOHrI1sStEM8ePZKRD73K6Tv3p31pnIZVVTSudstcjDqWJZPcMmMOtak0E3YcxPg58/hg+SqipUX0aNeKHu1acfReOzPz50X07tIWWbXSl7NK1db7hUZOKuMHv7AsqwBJGAbCpRuE41GsUpdbHF7nB2PJ6lp/ylgYBpFSxU1N16ex045Pv0gnMjhuYG2nbb+Q0E7ZPpc5HA0RLlZBRlGrIj9YNq2Q3w6vbR5VQ5gBHcQMh306C47tS9c5holw7ECqLxYHxwuY838/qjAwnwqFyPq7SQ5/PprCRpBlICJlNl3BO540/XbFS4oZsfvOyEQdyWSSWfMW+ZztTF0d1fOXursGA4ziDq2JePzhVAIHOGHf3RkzdHuWrquntKyMb36Yy3Xjn+CVt95n8n03Ki60FzTnMyXR2ug7AerFm7E4wpOKc/nIQLa0n8dvBg7afz9GjRzJhMefYtThx1K1robBA/uzxea9qKmpZf6Tz7H55r249JKL2HGHHSgqKmLRooXsNmwvrr76ahoaGhg6bBjPTnoRy7IICzBS7j2eQ0fyv1eNsuJ9cyKp9hHpxqBuxLbzG/mELCa/9nfOuPBSJj/9GBWtK9UgSxjrGf5Ivd+0kZjfFXbGdwbFTmVplbcoK+HnV+4nZJrI6lW+3npzZ5WaGzzHgPpmbluPUuP5Q5BSfiyEGIrKRNyLuheuAT4Hhv2PmbQUUEABBfx/x8nAtVLKXwCEEBcB84QQXd1alLyItVMFp6FYhAV3nsdfnpjKd7+u4M3vf6E4FOKAhydTl0oz5ccFnLZ9X0JRi7TVyEvzf+XdRcv4eV0de7WpZNwOfbHiFjM+qebGUTuzec/OJEyLooiFHY7iWFGskjImTfuC3qVRelS2wCqJY5Wq112kvIRMwi3QTmVIrFESdF4ho1cMGG1ZRsQtBgxFrYBzvaaGZLV6gWcSKZ+zXLeinvoV9SSq1D6mZRApVUFHpDTiK2wUtQrk4Rxb+llox3YgoY7lpJVqh512i7vCJoalZY69gYDtYLtBXsR2MD0XQM1IRq0w18vs+cfSNY+bQq7V+O8NlKWTnX3OKnTXrKvzaC7rmWsByFQjdz74OC+/8yEvXXMmTrWi7JhRi/IeHQBYNWMuy6b/BkCbfm1p2Vt939GWZZhlLcGxiQG92rfGiMVpv+t2DNt1J/rsM4YX3/uMQ0cOQ0S9jLrmVOnYYLizAIaJQFNfMQNdbmmGlToE2QFnVj8a2f0etgxOP+MMTj3tNFLpDNFYbP19XC66BLp06cp3386ksbGRsBWh3zbb8OWXX7L9DjsiTSP7e9UCdm+9cDJN1ltJ09Ky1TmzL8JgxcpV3HDnfUyZ+gZTnn+KAdv01QZb698bMqtQXf2hiwQgnSBYd5ws/r0RjhCtUANvxwxhlCh1ErOiMW/bc9Hc4HklypK7OeiOciL8w5BSfgLsLISIARVAtauOUUABBRRQwP8IhBBlQGfgG2+dlHK+EKIGNfO5sKl9Q+2V/YAIL6VNG5OnrzidK56cwg9zF7B357Y8NXMutSvXMuu31UjbwYxGeGbxb3ywdAW927Tg/qGDKQqFKKosI1ZZQdlbMS597SMufe2j9c71zTP3cNztE9mmewc+ufUcUg0JjFYVxKMWZusOwYaOTdylcNQvXUXDquogW11Tj+0G2ZHyEr9IEPAD6fqVtdQsUYF0Y1UCO+OwtlEFs+vSDp2r1f6lHUq0oDmMcAttw2GTVL2afvaCcA+GVowbioUI2S4NIZzCsFRgbJkG4bg6rhEO+SoafoFgPuvs3OAmbyBtZn2+XuCs/91kUOwFX3nOqUVTQdDUhJpOTqB+98SXuODuJ7j29KMZMWhLEkuUIkq4pIhIZWsAKgcZxDuoZSedoW6pYhRJ2yEGgXqF4/jXGosVs9O2Azj87MvYbkA/urRXgz1h5Rip6LQF8KkPGJp7n66KoetK51JkdMc/l94ggEjE8BO0MocDLbw8sXQojkUojkVobGhgxYoVDO7fj6KQQKQTfr+qGQV1vbYR9pWVhLB8Cbmo3YhZv0ZT8gj72WJp6VQNk/sffozrbh7HmENG8/XH79GyRQsla+cLiTvrmcyIkDqW7UhfhcUQKLk8vT+8PnIIpCWNEMLVaDfiFdk0n2agucHzJ8ARQohrpZRNEkKEEBYwFqWH/E9DCBFFWV4fJqV8VUrZiHI4LKCAAgoo4H8PXgS5Lmd9tfYZAEKIk1FZagBCbtBqlrVENtYTBq47+wRGnXEFX6+p5q2LjqLdeXfS6GZ+7USSIltiITird0+KQh5too7Pfv6VxVU1XLBDX8ZpKhsA3z52E91aqCxz6/JSLnvqDe589X0AttuiG+/few3L04JZc39h4KBBtO+ngnqrZw3Fv/zA2tm/ANC4soq6Zeoy61fWAiqTKW3Hp2CsW1JLzVIVPK9N2axLO9haQLDWpW2wtJZkjQqkG0ojmgth2Oc5F1fGs1Q1dIRiYUyPwxu1MIxAhcOjcxjhEIYXn3vcbS9Yc2zA0/d1gsDIDLLQUpcXyw2o8wR93nI+GkeT6hywYc1NXxIuJ3h2z7F4+SouvOVePnjiDnYa0Ae7tpqYS5uw1yynfvESt1kGRZUqQ5mq0Sg76QzJqlpCLduqQ7tmNKDYBLsOGcTr0z6m+8770rlDO3bZbiCH7z+CvXbZXh3XyWSrXWjyfHpfZvVRvuvzO0qTbjMtP1CWUlPJyOkvXxJUGL6U55TJr9K/X1/KLCBZq6gSrmxdQljU+vJ0tq+wYRqBWpIMRZRMrmeSoutXSwcZskin01x27S1M++ADPnzvLTbr2imLEuIZrCAlGBk/cyzAV1cR2uyGEGRROPyMuDeoCHk60XFE0pVwdOr8LmyWHCnND57vRBXoPS+EODqfs59ravIkSkLu8GYeNy+klAkhxEqUOUoBBRRQQAH/2/DeKWU568uBGn2FlHICMAFACCE9Pq5MJnDc5WgmyYvnH85Ol4xn/Dtf8OlZh7HbfS9w4JN/5+mxe3PiXoOZ+ugUrvxmNgMqyiiLhNln+LY8OH0ut546hqlffJfViLmT7qYsXsS4SW9w3uH78szrH7CuJngNfvHjAo67+nbenTWPgVt055urbqNz+3YM3qYPe++1Jzt16k4Ld9vVqbmsmL+aYe99RP+W5dy1wwAs0yBZk/ID4cbVDazzqBUCWkdMSsMqGIpWRH3ahdTpGSkb3ODZMIRP7Yi5wZ4HQwtYzagVFAbq25iGz7920hmfp6uoBg54msTZOyG8ekDDaLIYMIteYORo9W5EEUJiZgd9Ou9Wk8ETuet9aEGmFkj/tmI1tm3z5idfs9OgbTBLypFFgSJLzA34jHipbywSzaR8LjiAtG0/8+zU1yBc/XARiXH8wfty3EEjef2Tr+nRsT0ffPYVI485nfZtWjN4mz60adWSrl27cOyYg2hZWYYMRwO5OL0wToMeiGbRE5oYeHgwmujj7Gyt2mbgwAEsWbqUV15+mdGjRoBVhGOqkZSdCbYPGYJYKNDl94JvI92obMZ1/rmr7SzSSdIZh533PZhoUZzXX36e1q1arWd5rl+7cDKIlBrUSQs/Wy+AkLfdelln21/2iyohm8JjhgLt/yYkDnPRXIfBL4QQlwI3AQtdRY3vUA+1EtS02oEoasXlUsovmnX2DeNB4CwhxFubQDP6T4vw2kX+sjcKAnztTwAnEvyIZVirjm7qB+JxorSHpHQ0nWX9BmpqmqwJ6DeyLpyu/Y7ymnSkUsENmdQ2Tmkb61KSujFGifZwD2mzfrpJii7d3NTDwYP+sZG1/vdpC+ttzPohNdGN4Tz60k0ZkDRH5ripfbNMXf5JveRm+KI0Cb1dWZw08q/X7wF/pjJr3fpGNwCmEVTu6++Wpsxzsl7nTWnN6stehqQJ05Ust648+wH+iyIXWS/DnKnsDSHr4a/jv9wwxTWbWgwMQEmdIoTojso6z9rQvp4rnEynceqUYYqsr4G1tTwyameOe+UD5q5YyxfXnMyQqx+iJpGieHkVVw3Yio8bGviuPkkmkeKSqx4C4KnrzuOrOfOzzrG0pBsyanPtoy8ydFAflq+rY/m6Oi7ddQA3/mM6AJM+nslZ+2zPacOH0G6rPsypgw+/nM49j0zkmOkzOHrEbow79wTKMjbU1LHNj635/NcVHPjOx9y96yC6hK2AdhG3aOH+BgxTIEyDknZKYaO4fbEfZKfr0gjfYVAQdQPmcDzsc7HDRVFfVSMcjyFMI6to0IOTyvg8Z6mbGxlahjiTwmms9x0WDYJnhTBNcAvAFL/ULX4UBlK6WWjD8N8/XnbVc6bbUOLYp9Zq7nUqQM42Xdno1LthBPrR2jY/L1Dv4RH9N8desxyZn3bpfgAAIABJREFUTvmmJU5tlc9XF42BUorZsh2mm2nOLF9MetlCjFg8uH53f0zT12oeMbg3srGeXiN2YlCn24i06cwPc+exOuHw9azZ9N19FBf99VIGDxlC37791O5C+DrJemCKYwfPl3yFex6k41MymnwbNNFfPTfbnMkvTuLwo45l/pJlXHDmaRj1SkE4Hi0h7LlTCgKes60dz06pgj0/Cx4Ovj8nw5W33E4sGuW916dg4A54cp+reuCt6USLZKBIIsNRyDfY0G3Pvb7JNwtB8Jx3Gt1sdFN95aLZDoNSyluEED8CNwDH59lkNnCilPKVPJ/9MyhH6UovFEK8B6wg+50upZQXb6JzFVBAAQUU8J/FBOBiIcQ0lNrGLcBbGyoWBLCrVImNrK8h06CyUun6RuqWriK2rI4HB/TjsbkL2O3qh0lmbP4y6R0OHdKHLpXl9EgVsW+Xdgzs1p5M5RmUbdYb0zQ58IB9eeEfXzF0p+147+MvWDR/LjsdOJL00h9BOjiLZwPQOHsGY7frzda3PsmBPTqx+KdfGfLe1zyx5xB2O3AXttysjPOPvJo1K1ex31lXEtt+tLJ21gK+cwZvycFvfMyeXdtx/na96V5RSro+GQTIiQzpurQvS2eGDYorXfvhdsIPhIVhEG/XEoBY63JCMRXImlErMDmJxbOd1DIpLascuKwJwwhcBUvKlTGKB8cJuL2hsC/XJkNRHE+OLxTVqAYicKA1rSwurmOG/QSLJH9CwNCm4dVUvavk4AZC/uBWymCKvqmAqQnM/H4O0UiEbXpviYhYmBWtETGVtEov+pFMjZr8kI7tG544jfWI2mr/WkIVrRFFAcNIeIF0kdZ3QiCi6rgDd66EUJjeW22ONC2ck09mxsxvufWe+7n5xhsZd/e97D1yX8IyMCAx7DQipSXZ9Oy6z5XOpnZkDf6b4pHnQrs/B/Tfhg/efp0+2w5hjx23Y2DvLdUHdpqwKxuX69KaXaQXGNYYdto/77JVa7n9vgnM/fw9zEx2djrvDIK77EsYog0GdDqQafnbiFQ9RiKbKOFJ3ekOyUI6viqHPpuwIfwue24p5WRgshCiB7AVKitQA8yRUs77PcdqBg4CvJLNnfM1BygEzwUUUEAB/xu4GTV7+RUQAd4BjvyjBy2zwpzRszv94sVc9OOPfLViLV9N/sd62+0xYCvuuOZi5i5cwtrqGqZOGEdSGhyw1x6M3HMPFi1ZyozvZtN785501yYLSqMWRw3akoPbVdIuFuXVX5bwl398w1P9N2Obru14bdqnTHz1TQZs0Z0vfviZLpUVnLxLf9qUFbNnu1bU/7aaJTWNvPDTIvZ+XjnejejaniM6d2SrilwWSwH/Cpx50nHMmTOHA867jtfuuor/lB9u/2368fiTE7njzjt558032Hvkvv+hlmSjfbu2XHD2mVxz821MeerhTXLM8tISSorjzPx+Nl2799wkx/x34ncFzx6klPOB+Rvd8A9AStntX3n8AgoooIAC/jyQUtrABe6/ZsNep6aRM/UJX+otVdNA/fJqGtaoTHTtb3W0qJc8WN6LWiNNTRiq7DQr2kZYYYb4x7c/8f702Yy7/3Emvj5tvXPc8+jTzF2wGIDLzzmVa05TMX1sq/5YbZbz4LbbkFqxjIVLVtK+vJje7Vpx2N3P0yIeZc6yNVw8eg/WNCYoKYqycMVaLn3hPV4753DsZJpkTZLje3TllK170mgK7v1mDk9+P5/XF/7Gp6cdTIuMTaK6kWi54ppGKkp83rIwDV+hIxyPEu+siifDHbVgxDD87LCIFqtpbyfInvqc8UzapxoYxeUYrkmIUkhwuaVOBplOBoYvpoXjZlKdaEmWgYWfvZSB8oQ0Qjhu5thR1Wt+MwXZlDO/+UJkUe1ELr/DyzpKe/11622TP9vauWN7ptx/M3sfdTrjHnmOv550RDBtb5iESt3+M02fFmnE4gg3ox9u1R4nEs8ueNTPrdPE0qq/RSaF46o9OLEyv4/ra2t4c+pUDjzkUMKGoChsYHo6yck6P/Msw0W+TnIuzzm36C34zM7KyjfFjV6vMFM67LrTjoy76x6ka8yCdDCS65W/QSalZZ7tLKlA4WR8emq0tpqdB/Xjl59+RCR3D87pOD5NSAojhxKnLZtGUGSpyw7aKZ/mbCTrfY60l7WWWiGmcO93kUnguLMI3v8bg5AbIho15wBCVAAvAedLKWf8oYP9P8OgQYPk51Oe9v/+vZznjfIcm+Bn/kc4z9pDsinOc1rbRq8sNzSm1r+L86xThbM4xE1s0xxm8b+S89zU77ip428Mm47zrHHa9eM3cQKf85y1Lv/3rHPOs7+vAufZqmiLEOIbKeWgDR7wvxxCCFnzxFX+3xlXPzmTSJJYU0PDyipAFb15jn3RirjvShjv0MrXiQawbYc1dQ28O30OJ903iXvPPZbd+2/FwJMu55xjD+O8Yw+jZevWyKRSTL3rsed48Y33uPOMsVQaSdK1DbQujZOsriURCnHR8+9gWCGeuPESzHbdePSF17jxngksXKaoJkuuPpnaX5VboZOylQGKlJz/9Xd8tnQFibTN4suOx05nCBepZ38oFmhDh6IRwiUuJSNe6svlhVp3CAw0rFiTRXki3RgEFxpkOJJVsOYHJpkkIpPI0vp1ilz1CauEjPvjd2TwmzQN4T8T7JwHUtgUvjKDYaezfjt+O3ML2Zr6jUgnK2DP+7uWjpI/w/1da9sb6QYWzZ/H4NHHMW3CzfQqjwTX75mURKK+QYxR3lopSQBG3Woyq5ZiFCuKhlHSIpBhC4WDIM1OIRtVwOk01mO2bK/6Jd4SGY7w27LlDNvvYPYcNoxbxt1OKBTCTDdgJNyaWS8YBRwrjowUB9fiPWtydZGzeL5NUDh0NLG+oaGBvoN35LG7bmHXHbbL7ld9WaeNeFQLT21Do20gHWbPW8h2o49j9rsv06lta3+913dp2yEc0gtazJx7eX05RJFJIFy3QJL1OLVVOZcXPG8drdhYJtxBift/7IBzPYpV3hfKP5V5zoEF7IaabttkEEKcvrFtpJTjN+H5hgHXo3jWCWCSlPJ097OjgauAdqhCydOllN9o+w4Cxrv7LgOuklI+tanaVkABBRRQQH6ESlUAI6wo4VbB+qJ1ayhqqzQuDNP0ucGRytYY5ZVqfSzuS4o5ddUYtVW0LS7h4L4p9rrseGW9vWQhS8adRbRlGfKX6SRXt8Bs05lRZ1/N25+pYsHDb3mUXxYpXeBF7z5Hy5U/Iwkz6csfALhs4RJ6Acfs1JujtxtHOpnAcSRy+a/Yrh1w45p1pOpTCGDCyB2hRSlVDQmiLUsJRSOBdXY42yXQaz+GGahgJOoRRW7wlssTzSmUQpeX8/igoQjScr3OdN6pnUY4DsLL8sokIqyyp6FIie9QmM4Jkv3BrSH8AbAhhBrQ5iuAg7yBkeu77X6eJ5DWbJn9QsZc/rPvMGjgD+ml4ml33mwLrrnobI689BbeOPcwiqMWa35YwKrvlWZ3j30HUr7b3qorVv+G0/izanokilFUGvC/zUDOT0jHzxbb69YEmf50GmGtdfvCYPGK1Yw+8WzGHrgvl194LjJZDUl3wOL2izQtHMvN/IajwcBbD4rtjJoh0DSgfbk3Jyc7rw2ksjSj8xiTLF+5EsexMTNJRKJWDQS8QUEoHHCJwxFk2L13XNtwj3cs7LQ/8HTqa9iyawd6du7AijVVdGzfLmhLOML7H3/GXmNO4MMpz7P9oP5qcKCps2QVD2ZSavAFyFSjKhhGFRN7M1N2fR2Z+oT/OxJGMGsjrKhvOe//njaCTRE8/6tw7wY+834XmyR4FkLsBrwInAi8hkokbuV+thNwP0pN5B/A2cDrQojNpJQ1rrj/G8A4FDd7F+AVIcR8KeVnm6J9BRRQQAEF5IceCEs9619USrzCnc3Tsk3hjj2Q5epFLcMxHC9ITCcIpVUWtrjNXKyyWf4MoIPgrMf/zqNTp7FVjy7YRoiffp7P/IWLad+iBCEE++wzgqo1q+jQsQMZ2cCCxSvp3qEtuw7ehl3OuIbnrzqDXfptjpNowEg2YgAp2yHsqmI4OUGtUdtAS5TboFUaZ9qC5VSWlTCgX29fN1emEtiurXB65WoirlKATDb6BWtGNB6oY0Tj2Rk7XXfXDCPNtL/e19NNB8GbsFPocmPYaYyEK80tHQy3L81w4HaIJFuezp/Cz1HG0OkERij4zpo7O95EYaAURvbMoKY/HRScSX/q/6RjjuKJZ1/k1g9nc+vZx9HKNJBukWDNwuXUTnwSgMpBWxPp4+o0h5QLoJeFd2JlgYZwqg7cWVqjpMIP7BwCygw1q7lj/AT69OzClaeORdSt8q9FmlYWPcOjjQCB9XQ64atdiExCZbrNQOdZp01k9Y1mvuL1syQcTP1phivnXHQZp59yEjvusac/i+h9r2bdamTVcrVLOOxn5+3yDmRiLTDd2XO7OI1Zp2ZdzFAYGY5RUVHO8jVVPv1HWjFmzvqevcacwOCB/bnjwccYMnhbv+35tL5Fso7MGnV+mUz4/WqvWUbDchU8J6vrSNXUB4Y/pkGkXGXuYy3L/EDajDXPIPtPGzxLT9tGgxCiHNgLVSj4h7Skc3AT8ICU8kVt3XT3/5OAl6WUb7tt+BvwF1Qw/QQwGmXgcqtUc9TvuFJ+JwOF4LmAAgoo4F8Ij5trxEsDYwrTcqey3WyU4/hBoiwNptsbrTJWNaiXctiIYkbUtHvLrTsR7twHo6GK16d9xAEnnM2gvlvz5lMPUJV0eOTJZ7n31hvoVCSRaZVJKy2vYOb3P3DTYy9x0oHDWSYaaVXZhiuvv4mG9CX89eEX+PThm9DynVgtW/i0i8SadT41Q9loB0GCk8ow7uX3+GLuYla+dBexiJsli8bRvf5Wr17DeU/8nb6d2nDOiB3VNpo0nTAMl6urAmuZqPf7TFhRRMR1XCttQagkoBFm2Tjr2cpUAulyRI1YHOJu8FhUkR0wexQSjeonDeWwlxXAakocQdbTyQ6gfXqAmd02aFKqLmsbrV3rSUFLgQAeuucOjjnjXLY98TLOPekYDj7lLGLRKPavP9I493sAMnV12F++B0C4bSdCrTtg+MYeCV+VI8vwwzCQHiXTMP3MrUwlSNbV0b97R+S61TiZtD8QNCsqA3UTOxXIKBimT8E0krV+dlcmG5TOtPe9RrSBjNsGf9n9PqQRCmQGAWTQt9IIsXT5Cr765huenvgkTpEKOBOEaEir6ypr04pQqRrEmjUrsVcsVMevrcYKzQ0y8uEYjks1SbfuyfTPP2bOvIW0b1GGcDI8P/nvPPr8ZGZ9/z2P3DOOJ555nlf+/qYagNg2IlWPU78+zzqTqEd6A8dUQMGwEylfZtBJZUjXJ3zZRs8cSHVrWs0ygT/Q3Bg2RfCcQmVkqza24R+FlLIaZdRShtKB3u2PHlMIEQcGA28JIaajLGK/By6QUn4N9AMe19oghRAz3PW4/0+X2aTT6cBRTZzPd8fq3LnzH21+AQUUUMD/a/jFcFY0KFgLhZGOGdAQwpFgWjkU8WW9lK2venTbtvRjNLs+Q8Rqyc+/rGS/484E4LnnnqV9u3aYNcs4ZHfF+RRVvyLdLOtL42/ih58XcMOd97PZfQ8Rj8e54arLaNN9Cx64+3a23G4XPlm4ml36b4VMqsyYk6j3M5GxkIXp2mNnEkmfzmGVxAmXFvHCJcdz5G1PkUxniHrcB8f2jzX951/Z9RqlhLBZSZw1PywAIFld6wfi1YvWUdSqyC8+tErjWG7wHopZhNzgPdamta9hLMKWn4E3rCgiEsV2A5XM0vlZwbdRpq7FLKsLJPEc2w+qG1v38nnRKdvBNAQR07MHD/saxtIw/e/CkAHPV9jpgNtruM57HrdYkx5rCkI6QaRshPwMqxQGOBmf3rBl79588eH7vP7WOzzwyOOce/XNPPjA/Ry03RZ+dl9N9atzhtp2xS6pxPEywXYKITRKiEZVkAm1LJMB19yxbT77djajd+yP05ATHGZSfiAu7EaEa7YsQ2GEJxWXavS51Pa6NTjr1vgZaqHVT2GYfpuFFc0KsA3PdjuTCmqrXNvwZStW0apVa8LFZdS4Y4LaVIa6lLrGlC0pcweesRZRTLcQUiTrFe84riQU7ZJKjIYqXnvzHS656nrSmQy3XHwmA7buxbrVKzj+nEsYf/1lPH/b5bQoL+POe8Zz3TknQX01wjBwaqux3cGal0EG/JmB3OsKG6afUY6UlxCrLA+Cadvx732rNO7LOXoDy43hDwfPUsoqYHe/4UJ0BnpKKd//o8feABYAm6oQpgL1EzoJ2Af4EVXt/boQohfKBGZDlrEb+zwLujvWoEGDpNSmt/wHP2RNM2YVCekFexsj/IeaIbiTj1dG/qmR3G20nAHyD5WYKei6/SZ6kViwHNaNSZooGNsU+J1+KVnIKl4z8l9HvuNnGYpof+gFmFkFePp67Tj6+qaKGpsqtsu3bVPfbFOFgVn76tec1d78R/WKA/Xj6ct6YWpGr9TPKuTM35acM2nbB781U/t9mZ75RFOV/s0oOhTeyzRn/e8tGMzK/OX9fBP/AP4bofeNF7jl6RchHaQbKMQiBi2k+i4yjiTtSBzHYfa33/DL3J+46/bbuPTyK7jk4ouJpGuDwE0/nkv1IN1I7y5tefaOa1jw20qWrq1l+0H9kXWrKSop5YjDDuGUq27j0rNO4YgRu2OaJmZjDY7HOXYcvDeA5dh+5nFZTSPUp2nfsozXrjwJYcogy6ZpM1eUxdljs06cuENfhrSqIFWjtknWJEnXqXY7KYe63+qoX6E+i5TWYhW7AWA0RMibup6/lFA0eH94lJKi1uWkahv87J1VEvczdma8GNudOk8kk/70t4hECQ/aS52vbgUR9zdUFIkjRQTp2hI6Emw3mrVt6RcXRkMmptB+X35QnlK/u3CeTGGOnnFWRtqjbXjBN4BQGWcpApc+IQQj9x7OiH1H8fb7/+CwMWPYa84MSnqqvJk0w75+dSZWhhOr8O8FI1kHrhKFkawj4/Fu1yz3B0updbV+3327dC1r1tUwpHML7HVrsgJAmUwgQm5Arelyi1gcXOULYad8a3QcR2VfvQytYwcFj+Fw3pkGES3CiLnUnFhJwAsXBtJO0XvznsSLYtx9550cd/rZ6iMg4roKJmyHVIP6vmIhi1hJJ7VcYWCmG3yaT+OqpZx45rnM+G42D95wKbv13wIhBPba5VjJJEURi526t6Y0VcMPX81h+arVnH3QcJzaKkTIQjp2dmbY04+2olmDBO+3I2JxfxAYdhwVZHuUJ302KpMOgufYvyl4zoOjgGshazZpk0EI0Q44HxVAbwp4w7zHpJSz3HPcBFwI7OB+ns8ydr62f9c8n9dQQAEFFFDAnx61NTVMm/Y+jz38EN9O/4aKFi3YdvBgzr3gAg4/YiymacDv8Lnt2rE9XXq41Ah33fWXX8JuO+3AmONO4e33pjHxzhuadawrnn6D5z6awdjdBnLnSaOJF8XybtetsgUTjx4JKH5nAZsOe+65J23btmXp8uVs0bp5wVVzkc7YHHX7RC46eBhW+M/JpI1Go0x89BF2Hb43Q0fuT+cuXf+p43zz7Sxe+vvbVP34JaVhgUwE9+lns34inbEJuRnlu56bysmj9yYasZo63H8Uf85vChBCrGL9pJeFyvQmUFzjPwwp5TohxMI858Jd9y3KMtZrlwC2AV52V32L4j/r6O+uL6CAAgoo4F8IP+MkjGzliJwsfZaVsTsjYEqH0nARlZ1UAeHd4x/g/gkP06lDOyzTwJA2IBWH1YUMFwUzgKFwlmShP0tohPyZRCEdpFWEKIqx56jRzJ25DR0378s33//I7LcnYWgzDx4fVc+KjT/naAwzxNMffEXbsmKuPXwvP7Omc6Ol42B6SgKmQSimzl9kGiQ0jcd0IkOmUWVYa5bUYLtT71ZxmIhr7y1MgeFOSaUTGdL1qr/WLFpHUWmENn2UrFjrvl2JVCgOawRodKUBG1ZV0/HQQ9WxYnGEx8dNLFNa04CTSSBDUZ9uYYSjPifaNMN4OX4DGRTGOZlAOcTTNvb4xE0odWRB10PW+ds6PzsXUiIdm9raGuLRiK/wIGNl2MWqH6QZxkFgevdfyALbzRzHShFG4ILZsGI1Gdvhzc++Z/bqKqbOXkCX0jiH9+xA7byFmFGLSEUJZpmiOohwGNPNhur0BJlsBI/6EYkhIq5kYWkLRVvyChNzaCA+zzqT9os2Da/NgIhqFtnSQdgZMFJs1q0TF194IWedfBzvTvsHyf9j77zj7KjK//8+M7du300njfQAaZBQQ1dQQGl2RcQCoiCoKDZQsSsKlp+AiH6lWBFFQXoNJFJDJyE9QEg2yWazffeWOb8/zsycM7MzuzckkETm83rta+fOnDnnzJmZe5/znM/zeUpgu8uiSrLblSkEet0lwt5SGUtkacyq+3rYgYowcPMd9/HRk98ZWHW79uY7+MxJR7MH3bSuXclN9zzMk1dc5K9miFQaUpkg7STlet7z1QiXKoJT8q9R3drgPfWvv1jQ6jRO2c+o6dU/GHZZ4xn4Nf0N2l7gVeAOKWXLDmzrCuB8IcSfgWXAF922FqE8y3cIIa4FHgLOA3KAl4b8n8BPhBBfBn6BUtw4FThmB/YvQYIECXZZCCG+D3wYGIL67lwAfFFK+bJ7fDC5z88A56BiTsqolb1LpZR/HbRxL+mBFfo5c4OdBux3uUR3t/opee7JR5k8fR+1X5aV8VrW+ryePrBKN+0GWtkhr5hpPBn0AJnKUnIpCUPGTKT55dUccOgRnPTZr/H7S7/FkMYG7JReUpclLQNWXV3H7791Pr/6apFsJkUqFbwmWdQyZOkaZWikqnKUupXBX+zqJV3n6loXipR7C5RcPnXH+k46X1Pev0Jn0U8J7pQl0jWMyoUyC5pVmWrbIt9ZZG/X+O5rL1A9XBlt+aG1jDpEURpqxo/21Q+cthY/vbdVXYdVpQI8Rb4ay+Cpy0ze15YW6Sw5V+5M9HVr3V7LDgYiQlC32VDSMKkHkamrQ1J3Ulg6mBA0zUo6rF/3CkgYXZeluPo5ANJ77q0VIuw0hbJDzpNRMxPD2Bk/mcrGouCiG+/jlieXMHVYIweMHcFH5u7FR2ZPoWuDkq1zikWyDbXkhig2aNVoQ4fbsv3JoqlXTFo/b1Z1HSKbR7rjbBV6tTFZKvrPiywV9cTTsqInDt7kxB2LD733ZH7wwx+ScQqkM1lSJS2B6NFssinLTydeciSFsqRPCnp6erjnvkcB6BVpNaF0DW4LOPLAfbnuP/fRVnD49b8f4NAZkxlZnQkkLRHZXIh24qrIOJqOYRrkIpPTeuXuvfSCJEXWkGB0ysG09RVglzWepZTffhOb+ynKo30fyjB+CjhOStkGPOxqTv8W/cV/vJSy3e3nViHE8Shj/zsoneezE5m6BAkSvIVwPUpxqE0IUYXSzP8LcEgFcp8fQhnWJwGPob6D5wHR/IQYCKekEyVICbbx4xhKqOBBlos4bjDXb6++mkt/8B1dHowf12i+upCONubslDbSrFQ/r6YXZ+BIm/yQETz5zLN8/cIv8Zlv/pQ/Xfd/SmKsViVsEeUCli8HpwLmGmKUJEztXrvRVTwYsRWnUxkd5bYWnIIyMMu9BYpdPRQ61DWnq3O+t7nYWaDgepj72vvoa1ftL9zYRZurquD99zDt+U3s/Z69AcgPa2TlzQ8BkKnNkXEN9kxtlVY4yGXID3O1txuHB7L0iUwOy+PgZvJanq2s9Z9lKut7SKWdUROnqMRGwgFDsEvantpFyrh/hu6JJ8lmrBb4EBbPPPMsc+bMRnRtoWfFUv+Q56MsVw8hX9WIcIPRlPSbKx1XLoBt01cocNSFl3HKwbN59upvMywt6dmkDObelnZ6u5SR3LO5g0J7t+/FL3b1UudKr5lKKQHj0TCqQXlp/c/Vddp4dsp6slUqBrnQngJLKuevoMjQezC8qYGRI4bzyH8Xccj8Q8kbXlovHMQudmO5Xu8UkJMSmc6yz6y51NbVcfUvL+O0D75XxR2491hIh5PffRx/vvcRRn/oQg6eMYVffuETWPlqHJff7/R2I0oFRI+RTM673uo6P0GNmchG9vXqTJmgrtfUuvaCTFOp2DivOOyyxrMQIgXYUso+Y9+xKP3lBVLKxbEnbyNcpYxvun9Rx68Drhvg/MdRih0JEiRI8JaDlHKp8VGgrJJp7ufB5D4PQX2nP+qW70Gt8lXWtun99VNUBtMVh5f7dXGLrBuM1tfThdXjxn5bqX4B1HFBmzo7dCh7mymlJizfyybdYNVMJsPHP3kmp5x0IgVpkTHoINLJquVy9UFVWTKMMX9ZPRjAajW4XsnqOmSXMibsxmGB1MN2rlNr2uYypKqVwVps76LYpdrY8HSzT+2YVJ2mLqUusqvs8LYZw8nWqfNXP7eJFberRCFVQ18l16i9fIUOj+rSgvCyCNoWuSHKmMkPbyTXUEvG1dq1DAPIqq7zjR5ZLuuEJ+mM73G1UmmXHqPTLQeSe3heaNuk1pT8UGFlRBtyeELoe4aRXlwIXlz6EpMmTkT29dLTop6R7PAWnLbNahyl4wbtaak9TyFEWimsXDUtW7toae/kh+coIS6ncyvpamUwl7p7sVxD1M7YlHpL/ioA4Cuv5IbUkRuiQrDs6lpEVX9dApGvRtjpoBfe8766gZHqgAwE1Doe5cjOGN59VzLQD8B1OO0D7+Onl13On/edQzZCE9nqbcfqdhUxygVksQ8nX8e69Rt47p9/Zeqkifq+eAZr2qGxoZ67/vBz+ra2kpLu2BV6tUe4t9tVynCPGVKOtuF5FrlqpDsRsKpr/fPD9A01sMXgdaqC/ctFoCLjWQhxSEW1Kewo/bW/olQsPuH24Tzg5yiVQ1sIcaqU8tYd1FaCBAkSJNitQ2HuAAAgAElEQVQOCCE+jPIw16F+4b7oHhpM7nMBcL0Q4nvA/cCTrixpZfB+gM1lbMdRK85e30LKKKZHLZtJcdsNv+H0877KD790DnW1NWCXAj+iwpXsUh+CXmzpGbeu3BmAKBV0khHzPJS5Zrvb+0waR0dnJ1s3NzOiqV5ngjOvK/Ka1ZWFk174abQzed/zaNU24LjGRDlXjVXfS9r1ZOa72im0KU5s++r1fjXDZw7zPc8HHTOLtXc/CyiaR1dzF72t6vxhQ/O+5zpbl/W3cw1VOAYXu9il6urr6vP3F7t66WvsJD9EGYCpqjYydcoTa+erfONZVBmGdEFzz0vNr7jXakjleZrfRuZI7LSv6+3kavVkRDqaFyrs/kaTIdRy7fXXc8WvfgUjxzPs2OPVTkP2DekgCj1aLchUyBIW3UWH0y/8LiccOd+nsACkXC9wtqjvo7At+lo72LpaeZ7LhTa6Nqp7VDum0Tek88NKvudbprTyB5alDMWUTqzia0ubhrF7TG/rlZJAmZDRee6nP8l/H3ucc8//Ar+9SuWpE9LRz36xB1yOu9PXQ0dHJx+75GIO2m8W08aP1pzxgOJQCulmTsw26PssU2nN83bKQa8xBN95EyVNTfGUacjmECmCEoo+DC98lJEdgUo9zw8THVAXBbENZQfCQajlPQ9fBn4mpfyyEOIK4BtAYjwnSJAgwS4AKeWfgD8JIUYCn0RR3GAQOU8p5Y1CiB6Uo+RMYKgQYgHwOSnl8+F2TK18QAeKOYa3UVggpdbaDXuiQzjmiPlMGDea2x94mA+8+51QKvaTORSWqquju4cnnlvCug3N5HM5Dj9oHkObGoNGuZVCFP0TA1xb4ZR8A+6x/z7O1EkTGFmTgb6uoKRayHiOTLEcQsBbbhjtnsEm8tXIni7KrRtVVUDGNRrGHHmCb5A6Ha1+MopC61bGHDYdgJ6Wdno2tlLqVQZQqadEKu/pNNtkG5UBlGsKClR5NJFCe5efwhuU97DUo67LSqd8b6JT6PWvs+ulZWQbXKM4k1IeZ1DGjmXp8SgVcIzMi5ZHb6iuw3IfP1HoMZKUpPxU1zJTRUBL0+BDlxxJc/NGJk2egkzb2I0j3DZ6tGFGF6SKvuElLNtfEdna0cUnv/xNRgwZwnU/+xZWSXuUvb6njUmBsCwsy/LHqdRb8Mdbjbm6xmJXDylXecVp12m/reo6df1ukKGpWyyF5T8Xg8UDqMr6e2Pz+TzXXX0FB7/tHVzzu2s484zT/ZTgPlwueGtXHx/52o8ZMWwYf/nVj1Tgre+dLwepEl5GxHReec4hkCpb2LainHj327KjjWfTyC4VkcZ7I01qi20bhrmjr9WOMchDqNR4/niF5XYkhgAbAIQQM4E9gKvcYzcCH9kJfdrhkBlj2SNCQxTwhf4h9MAHBGgN/WW7Pw/Jkds2n7GNB8jUtg3oycZUaeoGS3c7Zwtfr7gc8xvmxNRnahKnA7rJ0WUqqTMKAa3iGN3cON3kSnSmzXtgJoz1J/xGHVaMhna5guuxK+hLQC86oHns/Y8bT9mvbLiOuHS6ceXjNJ39FLAx1xwYrxhd7Lj7aMKsvhwYYL1t+/fIfP70gxxQTAi8lkF+rF+z+b4aOtNl8xmM6axXIqizHTS0toksvIMhpdwghPgtsMrV/R9M7hN3FfFWACHEdFQQ961CiAmhBFQBrXwhhPSMhgDn01uG9YxpJxQMFoFPvO8krr/p33zw+KNBOoGI/VvufYjf/v0/LFr8LIViidnTp7Dn2D3YtGUrn7rgIjo6u1j54L/I5nLcu/AxPnLquwN1C8N4F6Uiolxg/cbNXPzDn3LKO45UGdQgSMcwPKTqmJfEwtDMsyy9LJ1K62sUFuVaxX+mXNSGjXSwcl2+lq0yRtT5pU3rcDyFhq4Oiu1qu9jVQ7FLjXGpq4dSb4nuzYpu4OlFe/AM6VQuhbA1VcP3Qoe+wOyMjZ1WfU7XZHzPtZ1OYbnKIZnaaj+xhZ3L+PrTqeqc0ub13r3QyoM/Tj1dmgudKiLKOsDU9rjUriZzIMjT9VanpKRUKpGzyohyaFITVnLw7oUaLNY1b+KQD5zNiW8/nEu/dh62bSO9uNNUxr8P9pBRiIzyNFvpFHV7T/e5vuvuecSvv9RT8NNNl3sLflBoUG+7XaUB94zpchmrxuAue+NkBLUGVUiMSac0JqMGavJZLvrS5/n057/MmR/9sKZESQmpHK9t3sptd9/Hd3/2S9737uP40de/QMrlFcuoNNshjrln5whz4pfNqdTbhkJGJEL7/aQ0qbRKW+4p2kSf7e8fzISuyHiWUl5bSbkdjGaUfvLDwDuBtVJK78s2j/5tTRCDbbSX31BUYvS9FbEr5bbY0Ylmtge70stdyWTkzcJu9BqlgGqU02Mwuc8ApJRLhRCXA/9GJbHaMlBDvnfKkC1TP6BG1rEQpzFq6fqnV1/Ha80buXPh4zy46FH+cstdNLe0Up3PUSqXufTLn+Hqb19AU2MDmYyneGBRlnDaBd9m0hEn+VUec9ghDB+mpMaUd9RBYHiVgU985bvMnbkPF3zuHJx0Osi7lE6Ac6t4p0a6Z2EhpeQL37iEdx/3Do4+fH5QZcCQ4xPlgjbEy6WAAWWmbrYsy5frsmobsIco4yvb20WNa4gVW1vp26oC2kBlL/QM21JvAaeg+lg0PKWy7GBnvCVxY6JuWwhbBFKH+/23rcDnshvwKCyLsrvf420HYCYXMzzSfjIMk2phKld4DiczgYqbdv3+RY8xZuQwhtm9WF3dWv3BsgJZ7igVOPlz3+T+Rxfzrc99gnwuy49+cwOf//gH+eKnTvPr9yTlRCanjW+j3ymguLnZT3JTP2k05WKInoOaYHhj4E00zL74WSwtLVVn5asDydP84MtQwpjACo4Bq6AnSwfP2Yeenl4uvuS7rFi9lv8+8RSbWtSrKqXk3ccezZ+u+jnz583Rqy2Oo5RswggnnPI+l4tBFQzLRniXWgoZ0KZH2kVq+NiB6U9+o5b/vgQmpwNglw0YRHmXfyyEmI3yfP8/49i+wPKd0qsECRIkSOBDKHfnZ4G/SSk3CiHGAL8C1qAytv6WAeQ+hRCfQHmn75dSbnbPPxt4UUo5oOG8I3HTby7jquv/yqVXXcuMKRP46+WXMH3COLp7e2moyZPxMpuFlopt2+ZPl3+HmVMncfHlvwFg9AFvZ+XDtzFu9KjItv707ztZt2Ej/772Cj9QbFshhODP//gXV/z+Oj5w6olcdflPqYpJoJLg9UFKydd/9HO++YXPVLSK9f7jjuTWBxZx1Z9vZv7cWfzmuxdy3FGHvgk9ffOx59gx/OdPv+P2ex/khGOO4vtf/xKjR46gt6+P2ppqJakYQT/6X4GQFbgnXQ7bVOApKWWHsd9GcY9PR3kYlgAXSylv2+6OKbWNrwP7A08D35VSFtxj/wAWSil/tr3t7EzMmzdPLrr3Dr1jB9M24tI9VwKTBhFH2zCrLMfU72k/mp7nXiPHspliOa6PuzNtIzCOgfL9Uz8H+6K3zbEtB8bLKG+cW4mjNHAdbicCacUroG3EpQQ3+7itqb3945jHo+sI0lziygw+GoN53O2IsQrvN2kugdfS8IzsCNpG3JiHx7ChpgohxJNSynkR1exQuMbzrSh5uWoUn/kB4JveaqGr8/xttNznZzydZyHEKSiDegZQZZx/kZRywEyyQghZeuF+vcPzMJbLAXk54Xl2QXmvIjx+ptar7OtRy97eZ6cc1NU1uK143st0Biybjq5uLv7FNSxZsZrzz/gAM6ZM5F/3LGDmtMnkcxn+eus9XPevO/jlN87jIycf73sCpZHkJcDRDsvsGSmm+wolxu47n9atbcyZsTejRgzj3E+ezrFHHubTPJCOWq7G5VsbSSSEZWmd7GKfSrwB6rqN1MWeh092teN0d/j0jlJ3L6UeVxu6WPL1o8u9BS2PVyz53FLpOJoXbNu+19m/NJfeIWzF+wWXquEmfBGW5XtZ09V57FzGT6ts5au1R91NqOG1Y3p4hTHGwgyys+3g+ZbNj666lh9ddR0tj92GZVmKC96mU0z4NI1MDieVZskrGzjm7Iu4+OyPcO6Hde40kc7oes3r9SgIfb043WpMZU8XTm+3vhelIo5XruwExsgbP8uQrROeXriR9MMPqkxldLlMTqu72GlNZwhoYUdLPBoDEL0/sIISNKDjvgcDp5v1lvWKS2C/Uwo+o0VtP4ko3nKI3hMIDDQk7Lx7ak8/DCEEUsrIX4hKPc9fQQWAjAzt/wEqkK8NeAElI3ezEOKI7dU5llKWULrJUcd2SHbBBAkSJEiwfZCKcH38IGVi5T6llP9EJ53a9vYN3de+ZU+pfaGEB8KyDKMpbDD3z9ZX7i1QLhYDclieoWKn05pqYFtYaZ3Vz0qlyQDffud+/Pxfbfz817/l2dXr2OwGzI1qrOPT7zyEX3/6PbxrYiN9S5/UBlUqo2kEZjKIVKYft9YzDpy+Iq1b23jXEQexfuNmbr/3QT51whGIlvHIotb2LXsBaaUisq8Hx+WBZibPQnh5x0uGBJ4xLiKVRliubq5lI7J5o29bsXO9/ph52s6mkVcuFn2FCI87bd4XD9IJGoYerEwqMMZ+Fsayg1MoISyXnmAGfaEpKZ4h7LUnfW3jDDJVDJZJeROJAsK2Kfb2cuIRByLbNlNGPWu+EkSpCE6Z4795JQ88txzbshg3vImz33U4n37bPMqtm/S98iYMxr0Ulq1pB2FqQibnPwuyVMQ2VVhiJoEiEEhpBwzIWCqCP1koGYF8hkZ5RKCtaN/k9rkcDLgLBPKFzql3+femAdzPGO5P5zAzbeKUccplPytgsFw5eI1mXaGVosDkKSLg0LsnO4TzjMqa9y8pZbffASEagC+gMvIdLKVsFUJMAP4LXAC8t8K6IyGEGA5Ue54Hlyd3JspAv1dKecv21J8gQYIECXZ/tP33AQCskCcz7NU0YabB9tNblx314+zu9zynHkwDLnCOx8e1Lay02s5mUlx4wiFwglJ5/cp1t3HnsyuYNKyRhc8t5/PHHYjV140sF30FAJENenuFy1kNG0Jqn8XNDz7K6Zf8ipFDGrj1wUdoqK3mj9/7Eu86eI7iu5pGlmeIgUo6knHl4tYs0W0WegMGtz9WhiHvTUqcDhXclhoxDqtXTV6srg7/PKekJx52OUM5rTniHjwvtMnXDaQnN+DtN++x99/3/hoqC9LRKw/SsnzPL4ZHWmWQLPvjYK4iqPpt/vvIo5w8dzq9S59R5bp6/CC9r/zjAVq6enjg+ZVcfvKRnDxjImk3+2PrY0/4qdKtdCrA67YzaX+/CfOaSz19PpfcKZZ8hQ3zuoWtFTkaDjgo+IzEyK2FDcziOhVG5nurQelEB2Tvgs+et8Zlrkio5Cv9jVqvT7JVG9wBb3FJT9x8Q9xc6Qi9n1HvZRhOWa8gOYVSgC8uy05wYuZ57g2lFw/D9z9xwHYqNZ7HoXSXTbzTPf9nUspWACnlapfXdlqF9Q6EPwArUMt5AJegaBwrgHOFEJ+SUv5hB7STIEGCBAl2U9Tuuz/Q36tnwjSmgFjjIpBJMBSM5BkUIpWOj/R3EW5/zLRVrLr3ccaNGcUDT72IGLcX2Vw26BVNG1SDdFZT9ISlPIEuNadY6OOPN9/OV3/2eybvOY4Xlq3kbfMP4Euf+STHHHqg23kZkGTjlSW6X+m0NmqKBSP7nKmBY+jrmoGIbn+t2kYAyq0bKbmqHIWOLj+QsNDRjVPwVBG0HF25t+gHEzqFsq/IAUqhww8sHGDio8fYcoMOtQHkQTqOzyUXtoXtHlNqHTrIznbLWJmUWp2wtYxcSUrufHIJdz65hFOPOZS6qjxpgx5w7aNKRfE7Z5zMmae+HSsUCGd6ggPb2f4rClHP65b771bjFLH6oarSXvj2p57oF3jpGemmt96kegiTtmJQloRBrfHufWriLMIIa6eb6czNyVe/tNemwR3luSZaSSPynTaPxcjWBdQ5KggG9Ps0CCo1nmvoH/F8OGoScm9o/zJgaIX1DoT90HJEFvAZ4OtSyp8IIS4BPo8hvJ8gQYIECd568FQFTK1WaXJbvXIeDcE0BgfUijUMOCdCxWGgPoXKnP+hd/PEi8t5buVafn7BJ8m7cmvSKeuMd0U0v9MpB7mZlk13Vxffv/JafnfjLUybMI6UbfPCspVcd9l3+MhJxykNXy9jmlMKZLhj9BS1386oRAxewhaXAw0gin1aM9vrAwRVQEJKJf2UEQwOb9DD6ErCFYuBBBYmRCrNpocWDTyu5WhqRxRMo9rbbto/FAJgeuftIN1gfbPmNtdWV4MQiFwGmclz/1NLSKdsfnD2h/n0yceQsq2gVzVkMOrEHCZNwaCZpDL9npnGw450y8VM/CKecd1eOZqeYFAq+nG8B4KnshFuL8pINschyhANjIGxUjAIBiojoxKouG3JsLFufA7WsW2BjZUaz68AU0L7DgNapZSrQvuzqMjp7UU94D29c4Em4I/u5/tQ1JDdHp5IOwDSiJSOIdLHBewVjeihUtHQmnSRNmf4plxQ0RBnL3br/d2tervQE90XU086rcXMzWvydKzLaTONp35IC8bza66amI/xjgoGGywAa1t14+KCtwJwooMQfe1mU5O4gjbNOiyigwcrQUAL2UsbHIho1Jtm8KAZGBen+Wx+MIMHzTZLMR32ygeus4KBiQvkM7GtUnx+trCYgM1gGEn0fTa1oM13OjAWxoM/2H00AwqDAcHBcg28hRDncSJkKHv0CNNgDsuNeftdozbgGasEMd6zTDrNX37wJd3+IPA4t6CfrHO//VOuvfkOfnTBp3ns+Zeorsqz5K6/UVenMvQFDFmn7D9vwil5GY11xkUjoEtEBX0ZnsjwtfcLtPJgp4PfYd71p9IIJ2fUq8c0bBCNOP6EiNEIop88mUfPCBtGceNsGLjC2Ccd/VxIKbngst8xffxofvPFM/x3WlgWZ/z4d9y68Em+fsZ7OP+0U3WfTCM3xkgzObyyr0e3Vyz24+n69z9sgLqfhe0grQhub4RB6vO8TQqP4yC8BIlxTIh+8m/F2PctMlg3aoUnYp8wAvZM9AvUNfsS56mOWz1CTRj8r8pQm5W8lyYqNZ7vBz4uhLhGSrlCCHE8sA/RASBzgJe3qRfReBXFb34IOAFYKqVc5x6rB3rjTtxWuGoivwCORo3JU8AXpJTPuMdPB76FjhT/rBcp7h6fhxL1nwGsB74lpbxhR/UvQYIECRJEw8ukFkvFIGgwV6S84Z3nbcR4vWSEF82HF/3vGUyGJzv2hzrwwx8M3jv9hKMY3lDLg48+xQFzZnDe6e+lrqZKq2oYfVBGWp/bloWwgxrTfj/CiSr8DIn62mV4Sb1UMMbPXOI3KjbHOxUcG1OBJmBoxRhD5lgpY8ryxyqsMhQwjAZBv7m00WZfby+3LlQ/8ftPGavVSVJpZk8ez433/VdNQDwvrtd21CTLHIu4NkNea2GVtUEb510Gw5AeQF2CYJCcPm7Flh8QAwTjeX2Rxna/NszzzQmC2R+PQhKhcBP47PR3FHr3QUqJlFI7M7xAyhgv+xtlPH8XeB+wVAjRDIwAulBqG7pxITLAyWgP8fbg98BPhBBvRxnPXzOOHYSSxdtRuAKVQnYa0Al8D5XdahwwH7gSOAV4EJUy/DYhxBQpZbsQoh64Hfgpyht/OPBPIcTK7VUcSZAgQYIEA6Pcsr7/zghvVUCZIK0DojQ9or9KgClVpw0dw8ANeRgDBm9JB9+Zmfz691W1mZls8Eojyh4+dxaHz52lvOVpI+jNuEYZY4h6xoVQO0JGdsiT69YVifAEwfXw+3V721GGjg/DeAmpKXheVkE60nspHENSjJDBHNVuv/4HDe6o6wHo7O6hOpdl2fU/VsaXa3Bt6exh4fPLmD1lT044/ADf4JLhvpbL8c+YC/OZksViwMAOy+tF9TGAAQzlftSkwWgbVnCMAUqvrujfZlTfwFchietvLL0j4tkNtGH2O3xOBOZ/5Zc8vXodvzvvQ3zw8P30uVHPdmD8VDuDqa8PzsoHXI/vPFR67GdRovdzpZTLQkUPAh4F/lJJvYO0+UPgc6gU3Z8DfmkcbgKu2d42DEwGbpRSbnG1pH8HjEGlCD8T+IeU8i4pZR9wKdCHMqYBTgV6gJ9IKfuklHejZJfO2oH9S5AgQYIECRK8CairytHdV+CVTTrUy3EcJrz/8zTW1vDwNT9k9pQJ/rHlL7/GxVf9kS/8/P945PmwWZRgZ+AjR8zl1INmMmfi6Dek/oozDLqScecOUmYBsGB7O2XUF6kNKqU8e0e14eJS4DQ3+UonyvB92M12NRsjMFFKKYUQTwGz3V2zgcUymKVgMfDRHdzHBAkSJEgQgqf8oD5E83HDy79RAVTQf5nZ94QOxHkOUBq8FL/a0yzLZSXFFeVZM7aLrywP7g8FXfl9s2wyU/eNvk7Pg+hY0QFQHk3D8HL6P1ymXJjBsw146yICLAO0lxiOf2QfAGE5mD4+EeVVDZyqPdXC9VSLEL0lEoFkNx7twzY47cH/mUyGT51wBCd89TIu+MBxzK9Lc+b1d9BXLLK1s5tsVqXWLqx4FoCPX3wljy1/BYBsdzuzTz0qVuHClFEz75FZ3kqndNp5gs+lDN8bF+nxe6kNy6K0fk0/3ecwYpPHEMEV9qlR4Xsf4XkOqVqEOdvCCxgN38uo5zWCu+6PE0SOn4dz3/dOzjUpM1Ge/G2kapio2HgWQmRRlIwJwCbgP1LKDa+75crb/ATK6z0WOEdKuVwI8QHgWSnljqJuLAQ+hrquMipA8jj3WC0qCYyJrUBdhccDEEKcheuVHjdu3Pb2O0GCBAl2CbgUu++hYj96Uem6P+seGyxu5DPAOShZ1DKwErhUShmWSO0Hq8YNjxyI8xzFvYzaDp/nq8VVwA81DYAo3dqoQCZH6+MGdYodX5UiykgornGl5wJSd5kYdYOgASJsm9QeE9UH23INWAIcUv+8iGuNDRhUB1X/DcNZbt0YyWcNtBFXX6hcQL+5VOiv3hGjdqHpEQXfsJNOuZ8ha2oKf+OoOfz21gf4+m9vVF0Tgq+fdDg/+NcCZr/nLE49eBZfff+xWJbF3d87h7IjSVkWdoQKSJTxa2VCffSMQjdTZcD4DRSLCsKzKbdu9M+3ahsiqSJx70iY2hHgZscF1ZowKTdhKlAIUYlh+qllmBNPo41w+z4daSCN637qOhXEHlSAioxnN6BuATAJ3d9OIcRJUsr74898/RBCTAXuRgUHPgkciTJUQXGLT0ClBd/edizgHuAOFAWj1633ISHEDJRySH3otAbUlzvu8T0jjrdHtSelvBpXgm/evHnSVNY0b6SpRlAOKDYE6vK3i070/nza5dM5WoLI6tK2vt2u5z+Fl/zfMl6580F/u3X5Jt0Xo6FsnU4bXj281t+umzDK366dNN7fTo+ZrM4bsaeur14nrSxXaY2AbqOdQEpqNAJpqytQm7AjFBkytog8biKoKjG4ZENcqnITUbVUUrcwGHum8oqo4PorUZvYFtWOlPksGn0x75fZqDT2x6VWd7ZBEkPGqX0YSMfcX3OoSzEpz3VZEbymAcoCARUUs6GC8ZCabfbG7I9K5w76+TLVaSp55t5ICCGOBP4OfAq4BdX9vd1jhzJw3MiHUIb1ScBjQA7lMMlTAaxq97vH/CEcKKUwBFUpApWF6jCNQDNl8UB1AiKTD2RSC/OhA15l31utJd2E4yCLFXhkDaMnziNJSIINy6a08RXjMmMC0gbgrQbaNzCooslAxorJSzfLhtUqPGPZHbuAjm9UPx3HmMgUghMcLxWzN9kx7tEwoONP3+OeZ1dw2b8e5OXNW/nFHY8AsGTdJn59+yK+ccapCCHIbIMRJiIMfE+OMDAOg6UXh0hj2B/7qBWVSvsZ5gAbylr9Um+DGvdBshj6p8e1GcF9r1jlBqInBhHni3T0pGQggz8K2xIwOAmlSHEPSrbumygjMCxht6PwS5Rqx7tRVApDgJIHgR/voHaaUN70X0kpPYP3GiHEj1Ec7mdQmtMAXqbDOcA/3F3PoPnPHvZ19+9UeIbzrgDPcN4VECdl9lbHtsrdvVUQZTjvLOxsI3kA/BC4Skr5d2PfYve/HzcCIIS4FEUBPAW4FjgEWCClfNQt34NSWaoIMu3a2F4yEQ9x3k4p/R99YTkBo9eH50H1E5UIv75wuuLIPoWrk07AMPMMa+GUtJKD6a02Jc1cb2skJSHsrRuMtuJRVuICyKKuJWRUxilhxGkIxyqahMcxpCEdMNK8XdKBtNLIFuWiUqaIkoQrh8bFGEud1a4YpG1EUAcs4J1HjeSdRx0KQFtXN6lUipp8Lng9VkQWyMi+RKuOAEFjOZWubCISMcEI9Mtrq5LxD56g+x+aROoDhsyhCGUirLBus41A2m6jjX6owMiNmqj6sKInEoNqXYdQqfH8DuAGKeUX/YaE2ARc73oPlsef+rpxGPA+KeVWIUT4qWxGLf9tN1xe8zLgs0KIr6KCAU9HebmfQ2lN3+FmTnwIlfEwhwoKxP3/EyHEl1GTi8NQHuxjdkT/EiRIkGBXhhCiGjgAuFMIsRhFvXge+JKU8glUXMgfvPIRcSMLUL8l30PJoj4ppdxacQc83Vor4ufMN5LRBqAQeLHyAxrCYYM5rmxMApF+/Qh4ol0dsnIKbNdoyuT9xCamIefROQbNxhb2skWpLXjGV4QBEatUEVLE6Od78Iw+00MZGovIcTGyJkbCnwgZ9WB4LlPZaI1qCO4PjaU0JQQDZQbmSwM01Q8JHguNWRRvOKh97fQ7p9+57iTEV+vw9hHyUJvPpPl86Qr7bQ/4HPtlgxPQuGdaSEcbqTK02jaY6kkE/BrCE11/25jwRlYQ5tKDkoc08lGY2RNh21arQqjUeB5Ff0/AAtRzMQp4I9JG1g8AACAASURBVIznXuKX7UajeMU7CiejggbXokZ6BcpwXwWsEkJ8FqUw4vH1jve81K5xfzzwa+A7KJ3nsxOZugQJErxF0IiycM5ExYosBb6EomZMZZC4ECnljUKIHlR8y5nAUCHEAuBzUsrnw42ZcSMwgAEclwBEVaL+xxkHnpERm6wq5hyzfjOhjbD0j7909PmWozMBOlpnWVhG38tFpGP7/Ot+HOYIz2s/hL3Accv3EdfVz3UVKu9di7RspG2kFI9C3P2A2HsVHmtfGs8tH3UvgsazEZgmHUQ2SKfRXYuR7TPbDnu0w2XNSQpeeuywdz7CEDYRESSnL2wbqETePpNvHeHtH3Q7DG/cpYNws+8E6rVS/frYT088vB0wfGPaddykVUSMTYSRreoKthV4lk1dc3OyV6ERXanxbAPdoX1e2rmKgw63EXcDXxdC3IOibQBIN4jwc8BtO6ohN/DwXQMcv47ohDDe8cdRnpcECRIkeKvByyj7f1LKZwGEED8EvoyiZAwWN4KU8lbgVvfc6Sjt/VuFEBNCSkaBuBEhhPSNqMF6aQ1idBiGiRRWf6/UAIZfZJlggEqg7UBSB99g1uUCxrZnfGyrQRroy+CGUcArGUd/GfCcATzzxvJ+bF1mnwcw8nxjPaop81nwlUXCXn/DW2pMaIRTwktkE5eq2cyEF0iK4q5+vLj6FXr7CszdZ6r2yKfSQRqQ/4yFfPjeM2L0KYx+nmNjEhgoozob/K8vIr6sWWdEnyDoSde0Jiu4L2T8S2nUH3d9EZOh2Mmv2bdQ/8z+9JssDPYObwO2xfBtEELsYXxucv8PCe0HQEr52nb1TH3xLkR5ge9GPavfRGU2zKCoEQkSJEiQYCdCStkmhFhDtD0jGTxuJFzfUiHE5cC/UV7tLVHlwjB/aGXcjyeAlYqmeJicac8TVWEQktrtaJ9YFB3BMyik1P2Sjp8qW0pHGXrufr+qyNaMbvtBWxUaBmFDyzSg4sZN9Dd++nckZoJRycSjUsRwb4FgenJjP+Hnwu5vnHlef89TKaQD5f4BcNJx9H20Jfc/9hRX/umf/POuBwPltjx1L3XVSt5NGlzwSvjyHj/eNzjjaBSVTFzC/R/ovgYKxhum/mTPOD888Qq/Xz4dKW4SGWPkqglKyW3PCUx4YmG+x6Cfd8dRyygDGd1x+yKwLcbzr9y/MOISorx+DRBASvmKq7H8ReBtKC/FKOBG4DIpZcv21L+rwAncSHO/3g4qaegP5UAZ/aHGDRTMFjr8fVaPXjWVr2qFv/anHvG3tyxZ4293rtflC136S6R7c4+/XS5oVk1+SLVuK60fK4+35UWRq8r1rbON67F6dX9rc1q9Q6ZyxnbW33Zi4nYDageBF8H16pi8NFMYIuZnylRykJUEG1ai/OFWGggaqUgxQ3/JBK9/YMWI8H7zmrzNdIxkhfk9JIwBE2V9T83rsMtmbK/RQ+M+IgxPhvFsyIz7g2NcZ9HgPPYYL4OpUtHXF/2FFxdgF6dU0darUx239qrnvrVHP//mGOXT+jnKpXQfs8a2uT9tGC3VGX2u2X5Hn26/aFyfVyaqf+HzAKaPiFTKfCNxBXC+EOLPwDLU93YvsAjleY6NGxFCfMItc78bgzIGOBt4UUpZkeEcBSklCx55nN/ecCOLn3uRIw45gNPfdxJTJ02iryxp3rSZxxc/w3NLlrK+eRNzZu7DYQcfwLgxYxg/biwI2NLaykOLHsWyLBrq62jd2kZ1Pkc+l+PlV1+lrb2DUqnMiy8t45prb+DP1/yaQw/cn76+PvoKBUqlMlJKMpk0w4YOob7uTb8vCXYw2ju7uP5fd/B/N93G00sUY7W6Ks+3z/sUUyeM47D951BfW1PJ13mCCrD4uRf59533sXT5Clpa28hnM+w1ZSJfPutjDBvSOHgF24hyuczv//Yvjj9t6IDlKjWeL9n+LlUOIUQaRYNYLaW8GLj4zWw/QYIECRJsE36K4jbfhzKMnwKOk1K2AQ8PFDcCtKIM6iuEEFUoPvQDDEClM1EzZX/yuSy9fQWGDWmiXC7T1dNDqVRmzOhRfOq0D3HB+edy530P8umvXMKG5o2k02mGDxvGzH32Yt5++zJ//qEsWPQI3/zx5axctZrOrm5qa2ro6u7ikIMOwrIstra10djQQFd3Nz3dPYwbN5aGhnpsy6Jp6DAu+/EP+P5l/4/mjRvJZjJkMxnsVAohoFgosmrtyxx79JGc9fGPMnniBEaNGE5DbQ2OU6anp5fqqnxF9AYg4G0dzEjrp2ARmA0bnkwrnuPdzxs3SKrxuDIDLsMP1ma/48oLKSI8zLGUldBnf+w8aofpxY9ZnZh+6MnUVFex6uVXmTtzL4YPHcI1P/42I4YP9a/fqcQrPBBtIawVHbU6YKViqUH9+P5RVImYFYFBveNRqxNChChPhrfXOKd5YzP19fXkcsqR4vW4u7ePNWvXsnL1Wp54+hlWrFzNaxs28OiTT1NfW8sZH34fp7zrOIY1NdDd1cWfb76NKUeeyPg9RrL/7H2YPnFPnl6yjM2tWxk/ehTDhjRRnc9z+ntPZPTI4f3GAeC5JS+x8MlnuP2BhTz94jIE0LK1jWKpxB7Dh3HB9y8feBjkLih95Gov96C+YO/d2f15ozBv3jz5wIJoRSbTq2zqw5r3azDPc025098X53nuivE8d6xr1WWau/xt0/NcNVR7nodM07O0pr20tnPNJJXC1B6i9ZxtM2K5Ws8cpeFtdt4Qz7O7axs9z4FzK9BiLlUgbZaK8jxXghjPs+m9rERZLcrzHKczXYnnOSDBVInn2eTQlXeA57kU42F+i3qez58/ESHEk1LKefwPQwghW1c+S29vH9l8nvWbtpDJZKiuqwcrTeOQIQj3h30wo8A0LNra2ujs7GBIU5P6oZfSfxFkKCAqAEOCzvty8Zasn1y8mL/e9E9eXPoSq9espXnjRkqlMpl0mt6+PubMnMGMvaczpLGBgw6Yx6EHHaA81WGjNhwMF9F/MN4h2zAC4wLOBhqPSpbJI+oLnB9n2IbOD5RxIgy+wHZ/Pu72IED7MLZLZYePnnshi597gXcf+zZ+c/2f+fcN13Da2Z8nk05z3pkf4wtnfUzJDnoGt5UaPJAxvB2a5ATpGQadyI4w6p3QJMKQQ+yn9BLoUAQFBHUfN25uYfnK1VRVVTFrxt709RV49oUlWLZNOpNm/YZmisUSuVyW+voGZu2zF/l83jecy+Uym1paef7FJaxas4YHH1rEnffch23bzNtvDqNGjmD61Kn8/eZ/s2zFCvYYNYoJ48ez35xZTJ86haamJg6bfwj5fB4hhKJ5lAv+SmVn6yZWrVjBwieeZs0r65g6YTx7jBzOug3NvNa8id/95R+MGjaUx/9xDQAPPfEMy1atpa2zi0eefoFHnn6Bdxx+EEccuB+H7b8v0koxtLGBVCpNNpuBsTNJpVJIGb3eXGmSlEMqKWdCSrloW88xznWEEMuBEa+3jgQJEiRI8L+PqqYRVAHSzjBx5EQASlJ5tXq9maSEYO4a9XtoCWPyaNn+BLquoZH6+nrDEyxCxoVrSEs9sVFNecZIxne+CTuLJQRzDj6cOQcfHpiAdna009vdTV1dLYsWLWL5S0vZ3NLCpb+4gjPOPo/Re4wim82SyWQQQlBTU8O4MaOZPm0a73j70ew1fVqQHxrlcY1SEohzAkQZpCEjMDZoLeTJ9IfOrCOkcBAL6fjULmka0mYZ/4NNy5ZW1r32Go0N9dTX1ZJOpcnlsv59DiBmIiKxA9f/6mvrufWue3nquRe456FF3PSHqzn5o59i5IgRzJk7j5eXPsPSl5bzwY+fxavrXuOyL52JcJ0+MmOMkemsIcS5DVyv0S/Ljl4RCI+93/+SHm+vLnfHPQsWsvjZF5g4fhwL/vsYnd3dHDR3Dj29fWzaspVUymbk8OGsfvkV1q1vZt369SxfuYau7m4m7jme7p4eisUinV1djB87hvaOTspOmamTJ5PJpOnu7mFzyxZeeXUdtm3T3dONlJJCoUhDfT17TZvKlClTmDdvHlddeQWbt7azdMlSVqxaxfLly7nom9/m8COOIJfPu2MURK93S6Qklcrj+WCqsjXMHDqKmQcdFpw8OGW+/7Nfsn7jZo459ECWPv8CF//6WhYvXcmRB+5LXV0dh86bw29/cgl19SqOWaYyAY++A6RjdLs9VErbeDjimuIg3LLbxXkGvgH8WAjxnJTyue2sK0GCBAkS/A+ilFU84rKUlF1vvbdAEbWyaltaRs4W2pCWaO+y7XmOA0ak60kW+odaCkuvi4SDC90yfdJCIrE9a08I34Cuqq1XXnLgyKPfxlFHHQXA17/2NbrbW1m9Zi2FUpm+YhlKfbR3dPDC88/zlYu+yb9uuYX777wtehndRMzyej+EDObAyMUt0YepDSY9wB2vuHruuOtuxo8ZzbSpU+jo6GTty2sZNXIEfX0FRu8xSqehFpY/J5FhzynwuS99jZv/fSsbN28O7N9z/DhuvP73rN/QTKlcZmhTEzffehsNdbWMHzeWfC7LPtOnUVdby5CmRh57/AmqqvJk0mnGjx7Jr6/5Az+78nd+fWd89ny6urvp7unmn7fewRkfPY3pM+dw7513sNes2Zx14lFMnzlb9zlujCrBAAZzwLvvl0/5Y7Rq7Xruue9Blr60lIWPPEZnZxfvOvZo7lt4Iyk7xeGHHMgji5+jrraGoUOb2LJlK6vWPsmMvaYzY+/pjB45kqlTJjNy+DCsVBopJc+8sITGxgbGjxsXvC4vu6WVYt2GZizLoqqqGglks1nS6XQ/w3FETSMjxoznUKlXSUtS0lFQ9zYcm2POf9ISpJvlzE5XYbkr0UI6/rMhCl3sO2sfAP5y613cfNcDfPWs07j6sh9QP2Sor6surRSO13875dN0Kr1fFdE2hBAfq6g2A1LKa7f1nFCbj6PSXjcB61CJUcKSRbu1PFyltA0zVXVPSW+bD1ldRr9QjQUVkGf1GlQN44Fwaob521sNKe0eY+l7XUefv33bko3+9kMvNvvbLes1LSRXrYXID99vtL/9/jlKiGXfJt0/e9lCf3vL/Xf5220r1xGFbIOmcOSH6xTeNRPG6TpHGNsGLUTkavxtJ+PObDM6uDF2CXMbRd5FWS+bB5bVjHGPjfD3yxrzzajlyX7nGqmvzfsroikBcfBqMdNkW8VefdykYZTMIEF9zaKknxdR0NQemYpI60qQRuS0GbG/ngZqk86BVK7Vz2uLpRXPzHdhXbvu16pWraq5fKN+Rte2aPrR6nU6OLWtRZd3jDqFOx4p491KZ/U4pwzaRjav9+8xpMrfnjhMP39NNUY6+4wuX5/T2yZ1xqSLtHa7S5UGbaOlS1/zq1uCSqK3nHXwW4a20dWtnreylP53opcV0nv6Y1Opm55nw5A296vPIhDcXUm9gX6i762FDLw7UV5eUTTeoXKRxU88wW+u/ROPPLGYlavXcNoH38fPfvh93/A2z1XbA9DLBlLO8K4xjhftf1bHC4UCXV1dNDQ0sOG119i4cSN9hQKbNm5k5cqVrFy5gu7uHrKZDL19vQxpaqRULNHe0cEf/6y1Bg6ffwgLFurF6r2mT2PEsGF0dXfz4tKlnHTCCYwaNZI9x49j9OjRTJywJ1JKNrW0cuzxmhp/8EEHUVVVxVNPPYVEMmrkKEaNGqk461u3su/sWaRsm02bN9OyZQurVq+hs7OTtvYORg0fRlU+h5SS15o3UldTw6YtWxg9aiR1tbUMGzqEsWPHcsCBB/HhD7yflG1x511389DCRfz6N1fzh0u/xftPOREAJ13lJ4yRKSPZyWDe9qhy4d8oc/XApLeVHZ597jnmH3oYAD/47iXMmzuXQw+cp7/bw20MRuEJr1SIkK63+7gUHem/cyVH+vZL2d32FfUgcjXAtEOFEP77IwTY3oRWQNoW/ueylIHfLo8CaRW6EIVuurt72NrWxrCmBtLpNNhpZCrj0z5Mb3PU6ky2tkHRRbaHtrG9hvDrxAuoLFUJEiRIkCBBJHrdCU9Z6h9hh+CcM05pxoT6TVYF+//IR1vJlcYMKYPA9VwDtjvZtQS+lW4LoeMuUllwypRKJU5674dYuXI1Z37iY3zqjI+y34GHYHtLyjFBX/07EO+VjjKaHMehr1Akn88jhfANI9sS4Dise/UVbr/9ds47//Pkcjkcx6Gurp6Ro0aSyWRpbGpiwsRJTJq2N9XVVZSKRbKZDK1bt5JJpaitrWXuAQfS3tZGoa+Pqqo8+82bR29PD3tNn8acWbPo6Ggnn88zYc/x3PDHP1EqlXli8dPcctsdrFq9Btu2GTp0KPPnH8JC1/CeOn06V155Zf/LNPnnPv9XT2J6urvIpSwsp0SpVOKhRx6nta2NutoaMtk82GlWrVnD4mee5V//voUrf3M1K1etYurkSZzyruO57W83cPhB+1P2MiyanswYQzj+XolA31RXJUuWvsSKNS+zcdNmWltb6e3rY2tbO6+8+gorV65ixYoVjB49muOPO45vfOMb7LfvHPfaHRXAGGrfjN8Jviv6Q1QcjHdcOnqyKqUMvCHefgfIpyqRqNJlAsYz2qkTntCmLL2CI8pFHXfj0laqqqvJ19QqeT/wJSr92JtQkKMXC1VpGOAbleBkuyGlPGNn9yFBggQJEuza8AJ0BzKYQRu65QF+HD2DuQy+sVspHBkKxDW8bVJqb5xtaWO0BAHD1F2RpizTVKczbNy8nnsfeIhf/vTHTNtrb2bPPQArnY2nVHi7pDOwJzGE7u5uFi5cSG1dHdP32ot/3PQPzjnnsyr4sqaGnu5uZs6aRW9vL6+8/DKpVJoZM2Zw6nvew6+uvBopJelsDs+MLzvxY+EZQx5lxrtmSwjt4DQD3oALL7ww8hoidYulRBrUGFUwImBOCD8APVufB6eE45T5241/54xPfdovtuf4cewxciQjR45g/sEH8vajjmLs6D2YsOee1NeplSVppVyFjaDH3uxnc3MzCx56iOXLl5NOpdlr771425FHUFVV1e9a7rn7Lp555lleXbeOlatW8eyzz5HNZZmx994MGz6cIU1NZLJZxowdywEHHsjkSZOYMm0a1dXVSKkMXMcfTFsbvOb74cjYiaSHSlYuATK2pbn/liDjnydw5OArNeYk1HxXhBA+FUsbz8Znf6UohXBXfO10LnjvvbYJrh7pmtQ76JSdwL4qBsYup7YhhMgDx6MoG+uBe6WUzQOetJtiINqGeVdMtY1eg1phPtidBf2l0FXQygcN7pKwqcbx9Pp2f/umpzRVYtHtj/vbLSsWV3IJOxRDJvt5FPj9d9/nb79t0/3+9t9P/Y6/vWBzOOll5Xjv3ooKMPXEGf6+qlFN/rad1nQDO6eX3YQpsG9sWzn9qnna1gCyaNAcspoiIwxaiNOlKARtK9b6+zY+tUr3y9DQNikshQ5NQ8gN0cu3I0/VY2emhi0b9AhZLEaWcbrcZ8MMciloCkfvK6/421sNmk3nOl13T6sun63T6ihD99HUmtpxOhY4M0JTNKxGLStkjdsbgM01+ry7V2oVmOfWaerHyk2anrFyhe5L83I9jj2tG/ztYq8eu2JXOHO0gjDHYBBVFMtYmh17wDv87f321xSmWWM15ai+yni+YpbYC4YkSI/xTnvb69v0OL+4Wo8LwMNfOeotQ9t4dYu69+GlXxMV0hP77RvMuIhjR5ieaztUxrZEZL1pHF7tUve8xna47Iff47HHH+fBBx/0y1z+859z1lmf7n/yAP0a7NIdKbnn7rs55eST/H0nnXwy7e0d3H/fvQwZMpRRe4xi7Zo1jBgxkgkTJ7LXPvswbdp0jjj6aEaOHOXWE11/WNlHL8mLyOP6PNHvWoBIw8hHhBe+n8JFjLfRo9PkahSHvq6ujvr6eu698zbGjRkTqLO3t5eenl7SmTS5XI5HH3ucDc0bOfHd71IUAbf+tWvX8sqrr3LHnXfx+9//ngMPPIiZs2ZSLJa48447SKdTLPyvUrzyrurFF5dw0P5z/bbq6uqYPHkyH/7IRzjzrE/7XPDwKFRKIaoEAyk2ee9SyqhYhs7xV4DCE9iYNsLvZ6X6KebUKY5yFdV2uA9Syn5tjqyv3n7axpsFIcRE4B6U4eyhXQjxfinlXdFnJYhDQ26Xur27DDzDeVeAZzjvCvAN510AnuG8K2Aww/nNhGlEJ/jfhJSSyeNG09XVxQ033MDFF32DkSNGMGT4COreoCQrbz/mGO69/wEefOB+mpubOWT+ocyfP5+5+86hpUUF4mUyWXp6e3jppaXcfded7nnH8peb/vmG9Gln4Y7/3Mo1v/s9Dy9cyPr169nvgIMZO2YM06ZOYfKkiYzeYw+uvPoali1f3u/cBfffywH77w/Av2+5hQ988EP+sZkzZ7K5ZTN/v/HvbNq0kVKpxKzZs3lowQKWL19GoVikWCzR3Bz0Fba3t7N48WIWL17MsGHDOfU973ljByBBRdjVrKufoCYdhwFPAhNQmat+424nSJAgQYIEPqKWli2PC+l7L41g2AE5z9GoJHzYiSkn6e8J8z6nhA68FcUemtwA58t+/gvuufsuzj77bCZOnMje+8xg6vTpjBs3nvF7TmDu3P36ecojZdlQ11uJ9vvc/Q9g7v46Br+trY099hhNW1ubb0B//aKLKPT1seeECey1997MnrNfwAMZbte81jjIiG2B5tZaAT5skKvbzwsdIYknQzxf75Sy1HIPHuVGiBTzjzya+UcercpLSWdHBy+/vJaXli5l9apVLF2+grlz5zJk6FA2btxIa+sWOjo6GTF8OH/9+z9Y9OjjvLRsGStXrmTEiBG0tLSQTmfYsmUL2WyWVCrF8OEj6OzqZPGTT3LhhRcye999yWZzpFI2jU1D+OnPf8nQoUOpra2ltraOpsYGRo4aRb6qOrASHQfzlpj5AKSUsc+JWSaMjLvK6riUGIj3NkfWaWxX8iwG+xN/rBiUkAC2zdNuep63FbsUbUMIsQ64QEr5F2PfVGAJMEZKuf511vtB4BxgNlAlpUyFjr8T+BkwEZUG/Iump1sIMRm4CjgYlQ3rcinlz4zjVcD/A05Bvfc3AedKKXXIdATmzZsnFzz0cOSxMDfHg/nebOnRAQV9xoEhbuR/2vgmN2kdzV36vGeatbfxj4s0bWDZ4yv97e4WvTzf06pnxem8oSRgUC4yhiKBp07Q06nVGNY/o5chS716uX1H4YAPftTfvvWcA/3tzkvPB2DFf3QcqjSWxkfM1JSB4fOm+tvV4/SSncgZachr9TK8Ze5v0J7tUqM+t5TXtBAvMMj8YrMdTaWwW1/WbbZv8rfLLZp6wD6H6/JdmqrgvKbvnRg9RZe3NbUgkIQmregkW0r6vtUYChP51jW6js2atuF0btX7DYqDPWqSv11q0pSLXlvTVjZ162fQ/DHwqApmMpD1xrOzcrOmWyxv1s/OS2s0bWGDsW0+i8PGaGrL5LF6uz5vUCiMb94Gl1pRNr7tWzo1Dcc02kzqxagGnQxmiqG2MdSgatQaahtpY11/i6Gw0Wl4mbuLarvPUAPZaiRJCXukv3rUlLcMbeO11k7jsz42kME7mAFRKczfz7ilZq8fUcvKJs/ZNgKgkA7CKdHb28ujzy7lhRdeYNmypax75VWeeWoxPT3dNDQ2MXbsWIaPGElraysIwchRo9hjj9GsX7+Olk2bqKqqpnnDeiZOnsKypUtoadlMV2cX9Q317DNjJhMnTaFpyBAam5rYY9Qohg0fTk1tDdXVNdiWxdatrXS2t/OJM07n+eeeo6qqisMOP5zRo8dQW1eHbVu0bmmlp7eXc887j1kzZ27XeEbRNtTYRZT1pAR9IzkYAGf+hpYNIylg8A3YvrF/EEpPd3c3K1es4Ma//Y2Ojnb2mTGDCRMmMmHiREaMHKWSh4Tal2hjNorOoq9FxnOFje2BaBtRx3IVBfIFEWcsD0TPGOi82HYq7M/2mq8DGfKjG3cj2gYqdeuq0L6VqGd6JIoD/XrQivJg54GrzQMuVeQfwFnA34D3Af8UQuwjpVwjhLCBW1B0khOB6cAdQohXpZR/dav5hbt/Ouq5uRm4DPjM6+xvggQJEiSoABlj8rFjTGKFgX6XvR9d98cVGNw7bQYs+trSjsSb9ljGL7ltWdh2lnR1lsMOOZDDDtFOgFKpxKbmZtrb23nppZdobWujsbGRzV1FNm14jQ3r19M4ZBj7H3gIHR0djBo1iuXLl3HkMe9g+Mg9yObzbN7cwtIXnmf1qpUsWbGKrVta2LxxA62bN9PV3Ul3VxflUon6xkZqa+soFYvU1NTS2dnBnXfcEXl9J7/nfUyZvo8/Lp4xGOZ8m6hkRUCNnd4OqkHoYDgMxYewseapvVYaAGcLEbj/3qQmzqNbVVXFzFmzmDlr1sAVCxFKgDH4E+sgyLmDGOdUM1EpF3qwY359YT5yxDmDGfHb6qStWCh2O1/4uFWTiprexTzPDnCglPJxY58NFIG5UsqntrP+I4F7TM+zEOIS4Ggp5WHGvofccpcIIY4C/gMMl1J2use/CxwqpTzKDXDcArzLSyUuhHgbyuBuklLqqJ4Q5s2bJx96ONrzHAfzdplBgFlTDcfV3O1EexrNh8T8sWkxPYBGfWbdcctEZmCi6SnsM7y5nW7a4A2G97BgeM/M7YyRytjcNr2BTXl9TW192vO2qV3Xv9QIiDQ9hR6On60D1IZU6foaDQ/kqBod6FaX0193jdno3D/mmBqy3HQYY9Tep7erXY3grDH7N1M/b+nRZc26a40b3WbUZz4XI6v1nDgvjEAzqfturkR4t9d8Ruqz0V9fhUDKaL2/xVgFCf5wYZTXHzxPKgS9qTWuR9aIxQzc/9WtejFno/FMmX0xPbnj6rW3u8ZIiV2VNrcNHWejLe93Pe4azBTfxYDho/dXp6LH0fSsmG2WGzOfHgAAIABJREFUY95BHRUe3Zdw0OGU4bVvGc/z1s7XHzgch0p/F7d1Cdqv3/0f5+mEgWkYwt82FCqMpC791DYM76ynvRuGLeD5TT3utvDfo7Rl+c90xhY4hT42b9pIdU0N9fUNfgCbSVsRQvjn2CI6QFIQNLrMItXmz+YASV4i1TaADmM93wwGG+i2msNtB1RAoo38jDRk7wZLVBNxLbKfh3ngU6Pweozp6HoGOD+mjUq84duCHTnxHQiV2ssNNVW7lecZ4E4hRCli/73h/VLK4RHlthWzUfxqE4vd/d7xZZ7hbBw/x92eBuRCdSxGebmnAs8O1HgF+S8CMPM+mfaN+SI6ro5hnuAPsAfzB7rBMAzNkkXj29U0RkwDq2TUYzZj1m9+SXtGUqdhXZrL1C8b6gFm+32l6CAp0wAyE1Acs7dWcqjLaYM4Zxgy3pJgrWFQmcazaVCZL1urYbCaBouZsMMOLR96yBhWlXdfigXpG099xh14tV2PhTkZWW8kr4kz9s17lA58UziRZcpu6ttyWS8PmkoPZh3m89RdNLf1uHQUSsZ+XU+TkUikwbgvBpsjSOEo9ff27DVU02OmDdUKJ+Y4m/eu2tg2JyFxy4jmPbKk8dzFLA17MA3ZOE3hSto033tzLKKUJOJUCt5qsITy1HrPsbkd/ryt29t7flRdJffdsm2L8jZse58dx1EpfL26pVuvlIAV3b7U21Kq58W2LUrlsjrmtrPX0Dwpd1u44+o4DpYQWJaFlA5CphjTsCeWZeF4iSksG1kuARJh28iy2h+1LYWFZdnqXPe9siwldSalu+1U+fsd91qitj3aQ/hYdVpve5nnLMvy++Kfb5zre5cHaVNvp/rtlxF96d9nty+DtCGldMci/rmSMfu39XmTA5TxVWO28XmNenZf7/m28UwGrl9ue11igO8Lb9uuIEnarmY8X7IT2qwFwlpVW4F9BjleZxwnVMbb7hcaLYQ4C0URAeirrsrvrolghgKbBy21a2J37fvu2m9I+r4zMG1nd+DNQF31YIqsCRIkSPC6sDbuwC5lPEspd4bx3AHUh/Y1AO3bcBy3zFZjG6OMDynl1bi8ayHEE7vrsmrS9zcfu2u/Ien7zoAQ4omd3Yc3GnFLqjsKu+u9f6PxVh2Xt+p1v5HYXce0Yl72/zCeAfYL7dvX3e8dnyqEqI45/hLQG6pjX6AHWLbDe5sgQYIECRIkSJBgp+EtYTwLIWwhRA5UBJ0QIuf+CeA6YJ4Q4kNCiLQQ4kPAXOBa9/QFKNf9D4QQeSHEHODTKO1pXDm6G4DvCCGGCyGGA98BrhsoWDBBggQJEiRIkCDB7oe3hPEMfBTlCb4TsN3tHmC8lHIlcCpwEYpmcRFwipRyDYCUsgy8G5gBtAC3AZeaWtTA+Sgvs/f3EvCFCvp19eBFdlkkfX/zsbv2G5K+7wzsrv3elZCMYTTequPyVr3uNxK75ZjuUlJ1CRIkSJAgQYIECRLsynireJ4TJEiQIEGCBAkSJNhuJMZzggQJEiRIkCBBggQVIjGe3wAIIYYIIa4VQmwQQrQJIf4khGg0jp8uhFgphOgWQjwqhJgbOv8zQojnhRDtQohWIcQTQogPvEl9f7sQ4hEhRKcQYrMQ4ordpN/fF0KsdtveKIT4uxBi3O7Q98HgBrxeKoTYJIToEELcJIQYugv063WPuRDiSCGEFELcF6rzNCHEmjeh76/rOd8F+v26v1t2dt93BoQQHxRCPOQ+o6XQseOFEPe597/VLXdYqMxkIcQ9QoguIcSrQogLQsfXCCF63efI/AvLm+4SGGQ8vOfDvI5FoTKx4yGEuFwIcU+o/GVundONfRPcfTPfqOscDEKIF0LX2eP2aT/3+DvdMj3u78KxxrlPCSEuCtW3WAixIbTvE+539ls5hxFCCEsIscgd3zHG/kq+q8Lv1Z93zlVEQEqZ/O3gP1Q675tQCVSaUIGKt7rHDgW6gGOBLHAh0AzUucc/BGwADkQlgsoDhwHHvgn9PhKlVf1et285YL9dvd9u+9OBene7CrgMWLQ79L2Ca/sGKhB1IkpD/Cbg9l2gX9sz5kcCZXRqe6/O04A1u/BzvtP67bazPd8tO7XvO+kZfYf7fn8CKIWOfQQ4BaXbnwI+A3QCY93jNrAE+JX7fO8HbAQ+YNSxBjhtZ1/nDhqPI8P7QscHHA/gBFQgfs4452ngeeAcY9+ngA07eyxC1/Z94AV3eyLQ7b4XGfc56QL2dI9fCtxvnNuEyvewGtjH2H8D8NedfW07+w+4ALgHlcR4jLuvku+q2GdxV/jb6R34X/sDqlF5kGcb+45wH5zxKAm8641jAngZ+Jj7+VfA33ZS3/8L/Cjm2C7b75h78FOgZXfre8z1rAU+aXye5D5Pe+7svm3HmB8JlIAvAi8Ctrv/zTCet+c535n93t7vlp3W9539V+mPMbAJpbYEcBTKiKoxjn+XoOG0ht3IeB5oPAYbo8HGA6gBCsDR7uehKAWrjwH/MM75M/DHnT0GRn9SwHrgPPfzJcBDoTIPAd9yt9+Byu2Qdz+/BzWJvdqrw93/GnDmzr6+nTy2U4GVwByCxnNF31U7u/8D/SW0jR0PYfx58MZ5tvv3pHdAqiflKXc/KF3pE4UQ3xNCvE0I0fDGdxmESgJzAPz/9u49Wq6yvOP49zeThNxDuEQJJAahUmtQECjYWkEQirUtFa/US1lWanXZYrvQKtY2S9t6aVetXdVSqYq30lYgVUSlciuKpajR0LCKF5CQcBVCbuZGzjz94333zJ7JnJydc5mZc87vs9asM/udd7/72e/ZM+c5e979bnblr6Aek3SLpOLOPwMZd5mk35a0hXT26GJgVX5p4GMfTv76dznt8d9D+qP07H7FVRhDnxf+gXTm4aIJD5ZxOc4LPY07G+tnS6EfsQ88Sc8GDiWdKYXUbz+MiO2lamvYtz+nkrqkDXlY0HWSyvu63/7I5XcAZ+XXzgRuA/4TOENSrVTeNryjz36L9I3eZ/Jy2/soK//ev0F6Dz4/L58F3ATcnJ8j6ReAIxis/eyp/Pv+JPB2WndfLlT9rBpYTp7HWf4AuQVYJelgSYcDl+aXF5K+bt3Ssdrm/BoR8QXS18m/APwL8LikmyWtnODQF5OOh4uAC4GlpA+9r+RkclDjboqIf4mIRaQPrVXA/+aXBj72/ViYfw4bfz+Nts9L6+8hvT9WSVowsdECYzzOC32Ie8yfLaV2eh77oFO6udVVwIci4ke5uFJ/Av8kaXPpcecEhztR7iadITyaNCTrTuAmSUvz61X64wZayfNZwE0R8RDpK/nn5nHOSxispPJNpOEVRYI30t+LHaRvr9r2Mz9Ol1TPZfdGxE8mOPZBdjFpeM41XV6rcizVO95XmyW9c6KCPVBOnifGa4HdpPFhdwBfzOWPkcZGdV5McjDpTCIAEfHliDg/Ip4CPIv0dceXJ/jCg23556ci4s78B/b9wEzglwY47n1ExMPA5XnbxXi0SRF7F8XvZb/x99to+ry07r+Rxgu+Y6LjZByO80KP4y6M6bOl0KfYB1JODm8m/RP1rtJLVfvzTRFxcOnR92+ERiMiHo6ItRGxNyI2R8S7SOPjX5yrVOmPG0l37F1IOsNcXJx6c14+k3T2esNE7ceBkHQMKdG9rFRcdT/PlHQk6Z+BNRHxCGmoxkkM3tn1npJ0LGms81uHqVKlj4c63lcHR8QHJiDcUXHyPAEi4oGIeFVEHBERR5P+SO0CbgfWki60ACAnZyfk8m5t3Q18mDSmcXG3OuMU8xbS+L1ud80JBjTu/ZhBGiO6lMkXezmWzaSxYOX4n076D33QznCNus+BS0hjcY+cyADH+zinR3EXxvOzhR7HPogkrSB9Df/ViHhr/vq4sBZ4Rh7qUziR4ftzKmrQGiZUpT9uJ100+DrSEJjv5fKbSEnqWQxWUvkmYG1E/E+prO19lHXu5w2kJPnlwK2R7kQMaT/PIY3ZHaT97LXnA4cD6yQ9Rhr2AnCnpLdw4J9Vg6ffg66n4gM4jnQFbg04BfgRrYsNnk8aH3oW6UreS2i/yvQNwCuAw/LyUaQr7O/qQdxvBzaShi/MIJ2Veoj0H+Igx10j/Ye7pLTt1aTEYsYgx15x/95NuuX70aSk+QvA1/oc01j7/Az2vWDpatIFW/cN8HHet7jztsby2dLX2Pt0nNZJs6mcQ7pYcnZ+iDQ0YSPwF/tZ9/+Aj5Bm4Dkh9+erS3XuYxJdMDhCf5wJHJuPrfmkYVib2Xf2kWH7I9f7Sn4/rS6VHZaPzS3kCzL7/cjvkUdJ3xyUy48hXRh5AekbqQsozbaR68zI+/IQcHGp/GW5rAEc2u997GPfziX9TSgep5FOTpycj60D/qwatEffA5iKD9J4yofyG/BH5TdXfv31wL2k/9DvAE4qvfZS0ldcP81v2AeAzwNH9yBuAe8lTdu2OcdxwiSIu5Y/sB/t2PYxgx57xf2rk2ayKL6av4ac6PcxprH2+T4fjqQ/3HuY+OR5LMd53+LO2xrLZ0tfY+/TcXoh6Y9252MF8Kn8fHvH4zUd/XNj7u8HgUs62r+PdOa/s43j+73vo+iPPyLN7POz/L7+GnBKl+Nl2P7Idf44t/kHHeVrSVMlHtzvfsjxvJr0eTq/y2vnAnfl99FddJm2FPhS3s/jS2WHkBLn7/Z7/wbpkY+v5mwbuWykz6pu781v9XtfiodyoGZmZmZmNgKPeTYzMzMzq8jJs5mZmZlZRU6ezczMzMwqcvJsZmZmZlaRk2czMzMzs4qcPJuZmZmZVeTk2czMzMysIifPZoCkVfk2omNp45WSLuxSfoWk74xUbwzbXSkpJJ0xDm3dktsKSW8rlS+S9DVJt0t6Tcc6q0rrXDXWGMzMzAaZk2ez8fNK0h28Or2vo3y4eoPiZuB5wL+Wyl4EXBkRp5FuZV72z7n+93oTnpmZWf/M6HcAZlNdRNzT7xgO0KaIuL2j7BbgKklvISXLTRGxEdgoaWuP4jMzM+sbn3k2q0DS8yR9SdKDkn4m6fvl4QuSrgBeBpxeGsKwqnitGLYxQr1bOoc9SDoj11lZKnuLpA05jmuBI4aJ+fmS/kvSDkmPS7pc0oLR7H9EPB4RL4yIUyPi8tG0YWZmNhX4zLNZNU8DbgMuA3YBvwx8SlIjIq4kDc1YDhwMvCWvs7FLO1XrdSXpPOCjOY7/AE4HPtml3i8DN+Y6LwcOBT4ALM7LZmZmNgpOns0qiIjm+F9JAm4FjgIuIo0FvkfSJqDWZchDuZ1K9fbj3cDXIuLNefl6SYcDb+yo9wHgWxHxqlLcDwA3SloZEetGsW0zM7Npz8M2zCqQtFjS30taDzyZH78HPKOHMdSBE4Evdrx0TUe9uaQL+P5d0oziAXyTFPdJvYjXzMxsKnLybFbNFcCrgL8GzgFOIQ2XmN3DGA4nfVv0aEd55/JioA58jFai/ySwG5gJLJvYMM3MzKYuD9swG4Gk2cBLgLdGxGWl8vH+53MXMKuj7JDS858Ce4ElHXU6lzcDAawCvtJlOw+OPkQzM7Ppzcmz2cgOIp3J3V0U5FkrfpOUpBb2UO1M9HD1NgIv6Cg7u3gSEUOSvg+cR7pgsHB+eYWI+Jmk24HjIuK9FeIxMzOzipw8m7XMktRtJor/Ar4N/Fmey7gBvBPYAiws1bsbOE/Sb5ES4QcjottZ3uHqrQZ+V9KHgeuAFwK/2rHuXwHXSPrHXP904Nwu23gH6eLABnAVsI00y8dLgHdHxA/33xVmZmbWjcc8m7UsAL7Q5fEs4LeBnwCfAT4CXJ2fl30M+E/SWOhvky4o7KZrvYi4DriUNJXcatL0eG8rrxgRq4E/AH6DNA3dicDvdm4gIr5JOot9OPBZ4FpSQr0BeGTEnjAzM7OuFBEj1zKzaUHSLcDjpIsjh6LCB0Qe+10jzSv904jwPNJmZjZl+cyzmXU6nzQ7x8UV6/9Zrt85XtvMzGzK8ZlnM2uSdBxp+ArA/RHROQ1et3WWAkvz4qaIuHei4jMzM+s3J89mZmZmZhV52IaZmZmZWUVOns3MzMzMKnLybGZmZmZWkZNnMzMzM7OKnDybmZmZmVXk5NnMzMzMrCInz2ZmZmZmFTl5NjMzMzOraEa/AzCzkUk6GDgFqPc7FjOzAbMXuCMitvY7EJsefIdBswElaXntyFPXx9YNMPQkmrcEajOQakWF9LymvFhDEqiGVDRSLlNbWbmdZltqtUVHHeUHRTMoVZea2yteV7Md0jKl9Yo6lOsoh9FsvH05r5dDBaBWWqfWUVZrbr+1XLTUWaem9npFTPu2lb6qK++bUF6/vU+Kr/SaMQ+3Xke95nq09rXcT7XSctGlorX9tt9Lc7nzdZoxlZrqvl6XthGo+XcjIPLP5nKg/LNcts8yNH+26pfLi/VorqdmnaJeI1dttNZrNNq2F9G+XLQdRb3cTrNObiuiI+5SnShvL4JotNqOABqtOlGu04xp3+W0Tn5etNUWY1ononO93F4zzGJ7tG8/aMZZXg9o33bRdqMce6nrihiKOgS5OP+WUlsNWus0upSldaI4Imh0KYvS+q22Wl3SyNseIniY3cyixtOYy21sWh4RGzCbIE6ezQaEUnZ1Qu0pJ6yJbQ9AfSZauJzaomVo1vxUp1ZHtXrbc9XTcq1YrtVRrdZep1SvWK51ttPZdn3fbdVqQs1kXc3loqymjuWaSHl4qpvaSq83k9JiuaZWglmj1bbKbYl6bqeen9dLZTM6luu12j516hp+nf213a2dmkRdNPetXFbE3KyjVjvdy9L6RT/Wa/lnl7LU/1ArkvXmPyZdymj9IwCtfwDKSX+5rLVOt7Kc1JcSSkWjPXndpyw/b6Tl5mulRLVV1mhvtyPB3adeYyglmI2h1vLQUFovl0UjLUepDo1Grje0bzvN9TqWS+1GqU4MpUfncmNo3zqR+6AxtJ/1cp20PNRcp9Vuo6MsclnktqNZXl5uNKJUll5vW25Es25qOy83GjRyvSjaKi03IhiKIBc1nw/l31vxPP2sUifHNEK9cjuFbexlPTtYz0720GA5c/gOW04A7gwnOzaOPGzDrI8kzarVai/gkOO+zuzFaPZiNHsRtSXPQvVZ/Q7PzGzSWMAMVrKQlSxkNw02sJNjmPv9J3iS47WQdWx7EXBrRDzZ71htcnPybNZjkhbVn3b65saW+2H2Ypj/VLRoOTOWntI802tmZqN3EDWOZR7HMo8hggfZRcAND7GLn9M8VjCXG3hskcdJ22g4eTbrAUmza0eetjO23o/mHk7s3kJ9yfEw55C2cb1mZja+6ohlzGEZcwiCx9jDfexkCbO2LNMcVjCXb7JpdkTs7nesNjk4eTbrjbmxZT2xZzu1Q46ltmg5zF7sxNnMrIeEOIxZ6QJZ4Ef8jJ+wA2AO4OTZKnHybNYDEbGJdE3gYh20YNPQI2uJXVupzX8qWrQMzX9qa2YLMzMbV0MED7GL9ezkQXaxmJmsYC5b2bt4Szy5ud/x2eTi5NmshyLiCYpZwqSDtPTkXbFlPUMP3IHmLKa2aDlacBSqz+xzpGZmk9seGtzPTtazg008yRHMZgVzWMe2gx6PPXv6HZ9NXk6ezfokj68rEmnFrieeG7MWfKfx6DqoH4QWLae2cBmaNa/PkZqZTQ7b2ct6dnIfO9hDg2XM4cfsOAn43uOxx9PV2bjwPM9mA0jS0bUjT703ttwPjb1o4VFowRGoPqs5vEO1GlId1fOy0vzOqTwPASnq1GqlOZtrUKtRU72tHfK6zbbqubzZTq1tnmdQ2zzOOe62uZmL+66U53lGxTzPzX2FYp5nSuvVipuHlOaDznMdQ5pzuJbnXW7Nl5znWi7N81zL8zC3z5fc2n691EZrvmb2aTu10T6nsyTqObZivaKsiLmW50quUbRDl7K8XGyrrV5RpmZZ7sbmjUxKv5LmPM+l+800y4rl5vzN5XmeO+oU80B3ttN5kxRFeS7mPM8zQfs8z+U5naP9piRAumNH55zO0VGWt0WprDGUb/hRzNec50ButM8FnW700apD5DmWo7ReMa90MYdyc57pXGeoNV91c57nyHMqF3cIydtPcyYPNeMu6jTnZ27keZaby9GMu1HcyKRRxNiadznNudza/6LdRiOadykp5nNu3hClWK9BqU6xfVrtRJrXmeb28zzP0ZoPOhrFvtCqE8Vcz7kLIvIczcVymo+5UbpJSrHcnNM53wiltHkaua2h0k1Sym012yENyXiAXdzPTmZSYwVzuI0nVkTEeswmgJNnswEnaTHwa8BFwA/7HM5U8PPA3f0OYgpwP44P9+PY7QVmAm+PCI9ftgnn5NlskpD0nYg4ud9xTHbux/Hhfhwf7sfx4X60XvLl/WZmZmZmFTl5NjMzMzOryMmz2eTx8X4HMEW4H8eH+3F8uB/Hh/vResZjns3MzMzMKvKZZzMzMzOzipw8m5mZmZlV5OTZbEBJ+kNJ/yNph6QfV1znXEl3SdopaZ2kcyY6zkEnaa6kT0p6QtJmSZ+QNGc/9S+U1JC0vfS4spcxDwJJdUl/LemnkrZJulrSYfup72Ovw4H0oaQzJEXHcfetXsc8iCS9WtI3JG2VtLdC/ZMl3ZE/O++R9NpexGnTh5Nns8H1IPAh4C+rVJb0dOAa4P3AovxztaQVExTfZPER0o0ofh54BvBM4G9HWOfeiJhfelww0UEOoHcC5wGnAkflss92q+hjb1iV+zAb6jjufmnCI5wcngA+BrxtpIqSFgFfBa4GFgO/D1wm6XkTGqFNK06ezQZURFwVEVcDD1Rc5XeA70bE5yJiT0R8HliTy6elfIb5tcB7IuKRiHgUeA/wO5Jm9ze6gfd7wAcj4t6I2AK8Azh3mITYx153B9KHNoyIuD4irgTurVD9fGAn8KGI2B0RXwdWk34XZuPCybPZ1PEc4LsdZWty+XR1HDCb9n5ZA8whnYUezjJJD0vaIOlfJR09kUEOmnz2bjmlfouIe4CtwLO7rOJjr8Mo+hCgno+5hyVdJ2na9t8YPAdYE+1TiU3rY9HGn5Nnsx6TdEUe2zjc4y9G2fQCYEtH2WZg4dgiHkwV+3FBrl7ul+L5cP1yK3A8sBQ4BdgFfF3SvInYjwFV9E3V42laHXsVHWgf3g2cABxNGmJ0J3CTpKUTFuHU5GPRJtyMfgdgNg29FbhkP6/vGGW720jjTcsOJp3pmoqq9GNxdnkR6Q9o8RyG6ZeIKH81/LCki0h/jE8Dbhx1tJPLtvyz6vE03Y69Kg6oDyPiYeDhvLgZeJeklwMvBj4xUUFOQduAFR1l0/1YtHHm5NmsxyJiO7B9AppeC7ywo+xEpmjCV6UfJf2AdOb4ucBNufhE0pjIH1bdVH5odJFOPhGxWdL9pH77PjQvClxIOiPaaVode1WMog+7aTCNjrtxshZ4aUfZibncbFx42IbZgJI0I1/UNjMtavYIF7l9BjhZ0gWSZkq6ADgJ+HQv4h1EEbET+BzwXklLJC0B3gt8JiJ2dVtH0kskHaXkEOCjwGPA7T0LfDB8HPgTSUdLWgh8ELg+Iu7rUtfHXneV+1DSmZKOlVSTNF/SKuApwPU9jXgA5Sn/ZgOz8vLs/Oj2j8VqYK6kt0uaJeks0kWEvn23jRsnz2aD609JZ0g/Djw9P99ZvCjpNZKaZ17zxUjn5/W25p8vHSbZmU4uJp1lLh4/AP6oeFHSpZLuKtU/A7iDdFb7LuBQ4Ox8pns6+QBwLfBt0owvddLMJT72qqvch6QL2m4kDTu4lzRM6OyI2NDTiAfT60iffdeT+rD4LHyapF/Jc2Ivh3TGH/g14BWk4VaXA78fEf/dl8htSlL7BalmZmZmZjYcn3k2MzMzM6vIybOZmZmZWUVOns3MzMzMKnLybGZmZmZWkZNnMzMzM7OKnDybmdlAkPQlSU9IuqrfsZiZDcfJs5mZDYoPA6/vdxBmZvvj5NnMzPYh6cuSrujlNiPiZtJNQszMBpaTZzOzKUTSFZK+3FH265J2SPrLfsVlZjZVzOh3AGZmNnEkvQ74Z+AdEfGRPseybpiXXuzbUJvZZOEzz2ZmU5Ski0mJ8xv3lzhLmpvPWG+X9IikS7vUOVfSN/IFfZskXS/pmaXXXy/pcUkHdaz3eUlfAoiIlcM8nDib2aTh5NnMbAqS9D7g/cD5EfHZEar/DXA28DLgLOBE4AUddeYBfwf8InAGsAW4VtKs/PoXSH9TzivFsAh4KfCJseyLmdkgUUT0OwYzMxsn+SK/C4BZwK9HxHUj1J8PPA68ISI+XyrbCPxHRFw4zHrzgK3A6RHxzVz2D8CxEXFuXn4z8OfAURGxt0LsNwDPISXqm4BXRMR/j7SemVkvecyzmdnUsw5YBPy5pNsiYvN+6h5DSrSbSWpEbJf0v+VKko4B3gecChxOOstcA5aXql0OrJF0VERsBN4AfLpK4py3+6Iq9czM+snDNszMpp6HgNNJCfQNkhbvp64qtnktKWl+EymBPhHYS0q8AYiItcAa4EJJK4GTgU8ecPRmZgPMybOZ2RQUEQ+QxibPA26UdOgwVX8MPAmcVhTkIRkrS8uHAs8E/ioiboiI/wMW0P3by8uBC4E3ArdFxA/GvDNmZgPEybOZ2RQVEQ+REuhZwE2SDutSZzvpgr4PSjpb0rNIZ4vrpWpPAI8BF0k6VtLpwGWkM8+drgSeCrwZXyhoZlOQk2czsyksIh4BXpgXb5a0pEu1S4CbgdX55zrg1lIbDeBVwLPzax8F3gPs7rK9bcC/A3vyTzOzKcWzbZiZ2biS9FVgY0Rc1O9YzMzGm2fbMDOzcSHpEOBFwDmkKefMzKYcJ89mZjZe1gCHAJdGxHC34jYzm9Q8bMPMzMzMrCJfMGhmZmZmVpGTZzMzMzOzipw8m5mZmZlV5OTZzMzMzKwiJ89mZmZmZhU5eTYzMzMzq8jJs5mZmZlZRU6ezcy3w2yAAAAAG0lEQVTMzMwqcvJsZmZmZlaRk2czMzMzs4r+HwvmJV/Qw0zhAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 720x504 with 7 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# shift longitudes from 0deg...360deg to -90deg...270deg for visualization reasons\n",
+    "dQ_icon_vmean_shift, lons_icon_shift = fct.shiftgrid_copy(90., dQ_icon_vmean, lons_icon, start=False)\n",
+    "dQ_mpi_vmean_shift, lons_mpi_shift = fct.shiftgrid_copy(90., dQ_mpi_vmean, lons_mpi, start=False)\n",
+    "dQ_ipsl_vmean_shift, lons_ipsl_shift = fct.shiftgrid_copy(90., dQ_ipsl_vmean, lons_ipsl, start=False)\n",
+    "\n",
+    "# limit for colorbar\n",
+    "vlim = 1\n",
+    "\n",
+    "fig, ax = plt.subplots(3, 2, figsize=(10, 7))#figsize(10))\n",
+    "# zonal-mean change\n",
+    "cf0 = ax[0, 0].pcolormesh(lats_icon, levs_icon/100, dQ_icon_djf_zm,\n",
+    "                          vmin=-vlim, vmax=vlim, cmap='RdBu_r')\n",
+    "ax[1, 0].pcolormesh(lats_mpi, levs_mpi/100, dQ_mpi_djf_zm,\n",
+    "                    vmin=-vlim, vmax=vlim, cmap='RdBu_r')\n",
+    "ax[2, 0].pcolormesh(lats_ipsl, levs_ipsl/100, dQ_ipsl_djf_zm,\n",
+    "                    vmin=-vlim, vmax=vlim, cmap='RdBu_r')\n",
+    "# zonal-mean tropopause\n",
+    "ax[0, 0].plot(lats_icon, tropo_icon/100, color='tab:green')\n",
+    "ax[1, 0].plot(lats_mpi, tropo_mpi/100, color='tab:green')\n",
+    "ax[2, 0].plot(lats_ipsl, tropo_ipsl/100, color='tab:green')\n",
+    "\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i, 0].tick_params(labelsize=13)\n",
+    "    ax[i, 0].set(xticks=np.arange(-90, 91, 30),\n",
+    "              xticklabels=['90S', '60S', '30S', '0', '30N', '60N' ,'90N'],\n",
+    "              xlim=(-90, 90))\n",
+    "    ax[i, 0].set_yticks(np.arange(0, 1100, 200))\n",
+    "    ax[i, 0].set_ylim(1000, 10)\n",
+    "    ax[i, 0].set_ylabel('Pressure [hPa]', fontsize=15)\n",
+    "del i\n",
+    "ax[2, 0].set_xlabel('Latitude [$^{\\circ}$]', fontsize=15)\n",
+    "# text for models\n",
+    "mods = ['ICON', 'MPI-ESM', 'IPSL-CM5A']\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i, 0].text(-0.25, 0.51, mods[i], va='bottom', ha='center',\n",
+    "                  rotation='vertical', rotation_mode='anchor',\n",
+    "                  fontsize=17, transform=ax[i, 0].transAxes)\n",
+    "del i\n",
+    "###################################################################\n",
+    "# maps\n",
+    "ax1 = plt.subplot(3, 2, 2, projection=ccrs.PlateCarree(central_longitude=-90))\n",
+    "ax1.pcolormesh(lons_icon_shift, lats_icon, dQ_icon_vmean_shift,\n",
+    "               vmin=-vlim, vmax=vlim, cmap='RdBu_r',\n",
+    "               rasterized=True,\n",
+    "               transform=ccrs.PlateCarree())\n",
+    "ax2 = plt.subplot(3, 2, 4, projection=ccrs.PlateCarree(central_longitude=-90))\n",
+    "ax2.pcolormesh(lons_icon_shift, lats_icon, dQ_mpi_vmean_shift,\n",
+    "               vmin=-vlim, vmax=vlim, cmap='RdBu_r',\n",
+    "               rasterized=True,\n",
+    "               transform=ccrs.PlateCarree())\n",
+    "ax3 = plt.subplot(3, 2, 6, projection=ccrs.PlateCarree(central_longitude=-90))\n",
+    "ax3.pcolormesh(lons_icon_shift, lats_icon, dQ_ipsl_vmean_shift,\n",
+    "               vmin=-vlim, vmax=vlim, cmap='RdBu_r',\n",
+    "               rasterized=True,\n",
+    "               transform=ccrs.PlateCarree())\n",
+    "\n",
+    "for axis in [ax1, ax2, ax3]:\n",
+    "    axis.coastlines()\n",
+    "    axis.set_aspect('auto')\n",
+    "    axis.tick_params(labelsize=13)\n",
+    "    # set xticks and yticks for latitudes and longitudes\n",
+    "    # xaxis: longitudes\n",
+    "    axis.set_xticks([-150, -70, 40, 120], crs=ccrs.PlateCarree())\n",
+    "    lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                       degree_symbol='',\n",
+    "                                       dateline_direction_label=True)\n",
+    "    axis.xaxis.set_major_formatter(lon_formatter)\n",
+    "    del lon_formatter\n",
+    "    # yaxis: latitudes\n",
+    "    axis.set_yticks([-60, -30, 0, 30, 60],\n",
+    "                     crs=ccrs.PlateCarree())\n",
+    "    lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "    axis.yaxis.set_major_formatter(lat_formatter)\n",
+    "    del lat_formatter\n",
+    "del axis\n",
+    "\n",
+    "# add lines for tropical regions in ICON\n",
+    "latnort = 30   # northern boundary: 30°N\n",
+    "latsout = -30  # southern boundary: 30°S\n",
+    "lon1 = -150 # 150°W\n",
+    "lon2 = -70  # 70°W\n",
+    "lon3 = 40   # 40°E\n",
+    "lon4 = 120  # 120°E\n",
+    "# upper horizontal line\n",
+    "ax1.plot([90, -269.999], [latnort, latnort],\n",
+    "            linewidth=2, color='tab:green', transform=ccrs.PlateCarree())\n",
+    "# lower horizontal line\n",
+    "ax1.plot([90, -269.999], [latsout, latsout],\n",
+    "            linewidth=2, color='tab:green', transform=ccrs.PlateCarree())\n",
+    "# vertical lines\n",
+    "ax1.plot([lon1, lon1], [latsout, latnort],\n",
+    "            linewidth=2, color='tab:green', transform=ccrs.PlateCarree())\n",
+    "ax1.plot([lon2, lon2], [latsout, latnort],\n",
+    "            linewidth=2, color='tab:green', transform=ccrs.PlateCarree())\n",
+    "ax1.plot([lon3, lon3], [latsout, latnort],\n",
+    "            linewidth=2, color='tab:green', transform=ccrs.PlateCarree())\n",
+    "ax1.plot([lon4, lon4], [latsout, latnort],\n",
+    "            linewidth=2, color='tab:green', transform=ccrs.PlateCarree())\n",
+    "del latnort, latsout, lon1, lon2, lon3, lon4\n",
+    "\n",
+    "# a), b) etc for subplots\n",
+    "labs1 = ['(a)', '(b)', '(c)']\n",
+    "labs2 = ['(d)', '(e)', '(f)']\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i, 0].text(0.01, 1.02, labs1[i], va='bottom', ha='left',\n",
+    "                  rotation_mode='anchor', fontsize=15,\n",
+    "                  transform=ax[i, 0].transAxes)\n",
+    "del i\n",
+    "for i, axis in enumerate([ax1, ax2, ax3]):\n",
+    "    axis.text(0.01, 1.02, labs2[i], va='bottom', ha='left',\n",
+    "              rotation_mode='anchor', fontsize=15,\n",
+    "              transform=axis.transAxes)\n",
+    "del i, axis\n",
+    "del labs1, labs2\n",
+    "\n",
+    "del ax1, ax2, ax3\n",
+    "\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# colorbar\n",
+    "fig.subplots_adjust(bottom=0.12)#(right=0.8)\n",
+    "clevs = np.array([-1, -0.5, 0, 0.5, 1])\n",
+    "cbar_ax = fig.add_axes([0.3, 0.0, 0.5, 0.02]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf0, cax=cbar_ax, orientation='horizontal', extend='both',\n",
+    "                  ticks=clevs)\n",
+    "cb.set_label('K day$^{-1}$', fontsize=14, labelpad=1)\n",
+    "cb.ax.tick_params(labelsize=13)\n",
+    "del cbar_ax, cb, cf0, clevs\n",
+    "\n",
+    "fig.savefig('figure4a_4f.pdf', bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax\n",
+    "\n",
+    "del dQ_icon_vmean_shift, lons_icon_shift, dQ_mpi_vmean_shift, \\\n",
+    "    lons_mpi_shift, dQ_ipsl_vmean_shift, lons_ipsl_shift\n",
+    "del vlim"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/pythonscripts/.ipynb_checkpoints/figure5_tr_ml_po-checkpoint.ipynb b/pythonscripts/.ipynb_checkpoints/figure5_tr_ml_po-checkpoint.ipynb
new file mode 100644
index 0000000..d490148
--- /dev/null
+++ b/pythonscripts/.ipynb_checkpoints/figure5_tr_ml_po-checkpoint.ipynb
@@ -0,0 +1,440 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Zonal wind response: tropical, midlatitude and polar cloud impacts\n",
+    "\n",
+    "This script generates figure 5: maps of the impacts of tropical, midlatitude and polar cloud changes on the zonal wind response in ICON."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load own colorbar"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mymap, mymap2 = fct.generate_mymap()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated (total response, SST impact, global cloud impact, regional cloud impacts)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# simulations with global cloud changes\n",
+    "runs_glo = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "\n",
+    "# simulations with regional cloud changes\n",
+    "runs_reg_TR = ['T1C2TR', 'T1C1TR', 'T2C2TR', 'T2C1TR']\n",
+    "runs_reg_ML = ['T1C2ML', 'T1C1ML', 'T2C2ML', 'T2C1ML']\n",
+    "runs_reg_PO = ['T1C2PO', 'T1C1PO', 'T2C2PO', 'T2C1PO']\n",
+    "\n",
+    "runs_reg = runs_reg_TR + runs_reg_ML + runs_reg_PO\n",
+    "runs_all = runs_glo + runs_reg\n",
+    "\n",
+    "# responses\n",
+    "response_all = ['total', 'SST', 'cloud',\n",
+    "                'cloud TR', 'cloud notTR',\n",
+    "                'cloud ML', 'cloud notML',\n",
+    "                'cloud PO', 'cloud notPO']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal wind at 850 hPa"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T2C1\n",
+      "reading T1C2\n",
+      "reading T1C2TR\n",
+      "reading T1C1TR\n",
+      "reading T2C2TR\n",
+      "reading T2C1TR\n",
+      "reading T1C2ML\n",
+      "reading T1C1ML\n",
+      "reading T2C2ML\n",
+      "reading T2C1ML\n",
+      "reading T1C2PO\n",
+      "reading T1C1PO\n",
+      "reading T2C2PO\n",
+      "reading T2C1PO\n"
+     ]
+    }
+   ],
+   "source": [
+    "u850 = {}\n",
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "for run in runs_all:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats = np.array(ncfile.variables['lat'][:].data)\n",
+    "    lons = np.array(ncfile.variables['lon'][:].data)\n",
+    "    levs = np.array(ncfile.variables['lev'][:].data)\n",
+    "    uwind = np.array(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()\n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # find index of 850 hPa level\n",
+    "    u850[run] = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Calculate DJF mean\n"
+     ]
+    }
+   ],
+   "source": [
+    "print('Calculate DJF mean')\n",
+    "u850_djf = {}\n",
+    "for run in runs_all:\n",
+    "    u850_djf[run] = fct.calcMonthlyandSeasonMean(u850[run], months, seasons)[1]['DJF']\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF jet latitude in control simulation (T1C1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "jetlat_sh_T1C1 = np.full(lons.shape, np.nan, dtype=float)\n",
+    "jetlat_nh_T1C1 = np.full(lons.shape, np.nan, dtype=float)\n",
+    "for i in range(lons.shape[0]):\n",
+    "    jetlat_sh_T1C1[i], _, jetlat_nh_T1C1[i], _ = \\\n",
+    "       fct.get_eddyjetlatint(u850_djf['T1C1'][:, i], lats)\n",
+    "del i"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate responses (total response, SST impact, global cloud impact, regional cloud impacts)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "du850_djf = np.full((len(response_all), len(lats), len(lons)), np.nan,\n",
+    "                    dtype=float)\n",
+    "# total, SST, cloud\n",
+    "du850_djf[0, :, :], du850_djf[1, :, :], du850_djf[2, :, :] = \\\n",
+    "  fct.calc_impacts_timmean(u850_djf['T1C1'], u850_djf['T2C2'],\n",
+    "                           u850_djf['T1C2'], u850_djf['T2C1'])\n",
+    "# regional cloud impacts\n",
+    "for k in range(int(len(runs_reg)/4)):\n",
+    "    _, _, du850_djf[k*2+3, :, :], du850_djf[k*2+4, :, :] = \\\n",
+    "      fct.calc_3impacts_timmean(u850_djf['T1C1'], u850_djf['T2C2'],\n",
+    "                                u850_djf['T1C2'], u850_djf['T2C1'],\n",
+    "                                u850_djf[runs_all[4:][k*4]],\n",
+    "                                u850_djf[runs_all[4:][k*4+1]],\n",
+    "                                u850_djf[runs_all[4:][k*4+2]],\n",
+    "                                u850_djf[runs_all[4:][k*4+3]])\n",
+    "del k\n",
+    "del u850, u850_djf"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read masks for significant responses\n",
+    "\n",
+    "These masks are generated with the script \"calculate_significance_bootstrapping.ipynb\" based on time series of the seasonal mean zonal wind."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ipath_bs = '../../ICON-NWP_lockedclouds/'\n",
+    "du850_mask_sm_bs = np.load(ipath_bs + 'du850_mask_sm_bs.npy',\n",
+    "                           allow_pickle='TRUE').item()\n",
+    "del ipath_bs\n",
+    "\n",
+    "# only store masks for tropical, midlatitude and polar cloud impacts\n",
+    "response_sel = ['cloud TR', 'cloud ML', 'cloud PO']\n",
+    "du850_djf_mask = np.array([du850_mask_sm_bs[r][seasons.index('DJF'), :, :] \\\n",
+    "                           for r in response_sel])\n",
+    "\n",
+    "del du850_mask_sm_bs"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Prepare plot\n",
+    "\n",
+    "Shift the longitudes from 0deg...360deg to -90deg...270deg for visualization reasons and select the North Atlantic region (otherwise it is very slow to add the dots for the regions, in which the response is significant).\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# shift longitudes\n",
+    "du850_djf_shift, lons_shift = fct.shiftgrid_copy(90., du850_djf, lons, start=False)\n",
+    "du850_mask_shift, _ = fct.shiftgrid_copy(90., du850_djf_mask, lons, start=False)\n",
+    "jetlat_nh_shift = fct.shiftgrid_copy(90., jetlat_nh_T1C1, lons, start=False)[0]\n",
+    "\n",
+    "# find indices of border of North Atlantic/Europe box\n",
+    "# -> makes plotting faster (important if mask is plotted)\n",
+    "lonind_west = (np.abs(lons_shift--72)).argmin()\n",
+    "lonind_east = (np.abs(lons_shift-32)).argmin()\n",
+    "latind_sout = (np.abs(lats-28)).argmin()\n",
+    "latind_nort = (np.abs(lats-72)).argmin()\n",
+    "\n",
+    "lons_plot = lons_shift[lonind_west:lonind_east+1]\n",
+    "lats_plot = lats[latind_sout:latind_nort+1]\n",
+    "\n",
+    "jetlat_nh_plot = jetlat_nh_shift[lonind_west:lonind_east+1]\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot maps of tropical, midlatitude and polar cloud impacts"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAIqCAYAAAAaSpDbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd1gUV/fHP7O7LL13BCkqih0EOwL2HqMxlsQSk2iaiUaTmGiMmhiNGhM1ljRL7DUmRoOICKIgiKJYUFGpIr13lp3fH4NYdskbf2mvb/b7PDywh3PvnDs7c+bMaVcQRREddNBBBx3+fsj+aQF00EEHHf6t0ClgHXTQQYd/CDoFrIMOOujwD0GngHXQQQcd/iHoFLAOOuigwz8EnQLWQQcddPiHoFPAOvzXQBCEcEEQwv+B4y4QBKHRfExBECYLgiD+jp8F9fwpj9CLBEE4JghCz79tUTo8EVD80wL8UQiCIAAXgJWiKG75nWPWAgaiKL74lwqnw/8KDgPdHvjsA6wF3gTOPkDPeODvo8ACJCOnBfARcEQQhPaiKKb8lcLq8OTgiVfAwLOAJbDjMcYsB64JgrBEFMWbf41YOvyvQBTFXCD33mdBEAzq/0wURfFMI8PyHvhflCAIN4FTwFhg6V8mrA5PFP4XXBBvAltFUaz9vQPqLZBTwKt/lVA6aEIQhA6CIPwoCEK+IAiVgiBcFwTh/f8wpmX9mKL6MWcEQRj4CM9mQRBStIzVcGkIguAtCEKkIAhVgiDcEQThQ0D4E5b3n3C+/nfTv+FYOjwheKIVsCAIzYHuwL4HaBMFQTglCEKBIAiFgiCcEATBV8vw/cBzgiA80efgSYEgCJ2BaKAZMBMYAqwEnH9jjBPSg7ID8AbS204RcFgQhEH/DxlsgDDABpgEvA4MBKY87lz/D7jV/771NxxLhycET7oLog9QDlx8gOYG/IB0oSuB8cBJQRDaiqJ4+wG+KMAeaPfIeB3+GqwA8oGuoihW1NPC/sOYt5HcS93uuYoEQTgCXAUWA78+pgwzAWNggCiKafXzHQNSH3Oe3wNBEAQFkpHTHFgPJAEb/4Jj6fCE4km3/joh+eHU9wiiKC4SRfEbURSPIwVCXgDSgOcfGXsFqAM6/13C/lshCIIR0APY/oDy/T3oBZx50E8vimIdsBPoKAiC2WOK0q1+vrQH5isHDj3mPL8H44FaoBrpWmsLDBNFsfAvOJYOTyiedAXsAOQ9SBAEwaveZ5iNpGBrgZaA54N8oiiqkF5nHf4mWf/NsES61jL+E+MjsALuaqFnIfltLR9zPkcgWwtdG+2P4lfAD8lFNgMwBA48EMDTQYcn3gVhADRYVIIgmAIhSDfU20ivllXAd/W8j6K6EboOfy4KATXQ5DHHFaD9AekAiPX/B+k7Vmrhs0Zye9zDXSS306PQRvujKBBFMa7+72hBEIqBTcB0pCwcHXR44i3gAsDigc/dkII6z4uiuF0UxVP1N4F5I+MtuH8T6/AXod7tcAp4XhAEw8cYGgF0FQTB7R5BEAQ5MAaIF0WxtJ6cCtjXB9nu8TVDevN5ENH187k8wGcMDHsMmf6/2IKUCfFOvUtGBx2eeAV8HXB/4PO9m7v6HkEQhO7cj0DzAN0WMAJu/IXy6XAfs5Es0mhBECYIghAkCMKLgiCs+Y0xXyC5iY4JgjBeEIShSP5aT2DuA3x7kSzi7YIgDBAE4TngJx5xT9XPVw6ECIIwRhCEEUhvTJV/xgJ/C6K088F8wBZd+qMO9XjSFfBpoGm9MgU4A5QB3wqC0F8QhCnALuCOlrG+SDdt1N8i6b8coiieRQrEpQNrgCPAO/yGX1gUxUygJ1IQaz1SuqEVMEQUxeAH+G4CzyC5OA4C7yK5oG48Ml8eUuZMHpJFuhYI5m/KTBBF8TDS9Tb7Md8EdPgfhfAkb0kkCIISya83QxTFrfW0gUgpT82Q0n7mIN2QeaIoPvPA2FVAe1EUg/52wXXQQQcdeMIVMDQo0uaiKA55jDFyJL/hHFEUt/1lwumggw46/Ab+owtCS2enez+HH+B5TRCE5PryznOCIPg3Msej9AWCIFz+g2tYDgQKguD5HznvYzSS32/XHzy2DjrooMP/G7/HB+yHlD9578cHyXe6B0AQhDHAKuBTwBvJx/WrIAiP1rxXAZ/9OWLfhyiKGcCL9bL9XgjAi/W5wDrooIMO/wge2wUhCMJcpOCJkyiKFYIgxAAJoii+/ABPErBPFMX36z+nIEWlpwLPiaJ4oJ6+AHhGFMW2f8JadNBBBx2eKDxWFkR9790XgW31yleJVA4c8ghrCFIF0IO4F/1eUl8jr4MOOujwr8bjKsJ+SHm339V/tgHkaJZyZgN9tYxfArxU/7PhPx1MEISpSFYzFuYmnYqKyx5TXB100EGHPxWpoii6/VmTPa4Cfhk4K4rihUfoj/oxBC00RFEsFARhCfCRIAhb/9PBRFH8BvgGQBAEMfjHt1mzIYzv101lzKQ1DOzXHoBTUdcIP3UNYyN9tn47jZ17pT7Y40Z3ZsZ7Ozlx5F3GTFrPwL7tMDVRsvdgHLs3TyNoyAq+XDqWnftiADVjR3Zi5gf7OXHoLca8sJHRT3ehtKyK4NBL7N7yKkGDl7Fq+UR27JFSh8c+042Z723lxJF5vPvhTrxaSp0Vg0Mv8s2al5k87Wvc3ew5FnYBmUyguLiCFs0d8fX1YtDALgwc0Jmqqhqat3yevLxC9PT0NE+C+pQWWrUmTZA3chLr/hivTF87rzbItO+4c6lYs1VzbZ3msdSNuMNWLpxH4FMjeX/8KOxdmpKUcAELOwd8+w/mwoljzNmyj/WzX6Ndj0Aq1HISI48x9uPVfPfGcwx5ax7XYk5TXlRA66DBhK5bwnMrf+Dgopl4dOkFosjt2EhGzP+C7W9PJOi1uSQel3rztAwcTPiGpUz4cis/LpxBs85SDPlWbCRPf/QloasX0nnEOBKOSfzt+w7l5I7vePajz9n14Zu06NILgKSYk8zbvAuF8uFqaTN97befsVKzqtpQy7VhINf+PeorNOdtZ67l2gKoffTlFagtaoT30bqW3+CVa0lzVpVq0pQ2mjQApT0qVR17D0SzZMUBZIKM99/uzzMjfJHLH3lx1xbKqWuk55M2edVVGiSxrkbrcJnzl67aJ/7/4Xf7gAVBsENKmn9dFMVv62lKpF4M40RR3PsA71qgrSiKAfWfU4CvRFFcUd+M5DqSFS3nd/qABUEQ1SUbycmrwsRYn/0/neVMbBLHI66Sl1dCn8A2PDPCj9FPd6a8XFJQxsYKcnJLsLczp6CgDFNTAxDrKC2twsrKhOycYuxszSR+dTXGxvrk5JZib2dGQWE5puZSr5eH+O1sHphfn5ycEuztzSkorJLmf4C/sKQOS0sT1Go1GRn5ODlZoVDIQWEKQFlZJSNGzqNdWw++WLVXy6r51ypgURS5efUykUePcPzwz2Sm3KZt5274DxlOx+49KUEPfSNjSvLzMLexpayoEANjEzKLq6mpLMfIzIKygjyMLa0pKCpFEEDPwIiKwnyMrWyoLClCaWQMQE1FOYZmFpQX5CE3saS2Srp59QyMqCjKx8beXiu/WFaIiZU1NZUSv9LQiJL8XEytbakoKUK/nr+6ohxPV82WFjoFjFYFXF1dy5Y9iXy28iBOjpZ88M5IBvb3Rqgr1n6sv1cBI4rin9bA/3F8wJORSnwbUrdEUawBziG5Jh5EPxqpMBNFsQqpJPMdpLLM340xk9ajkMvw7j6XKa98zYbvj6OvVPDtmink5JbQN7ANYyatZde+M+zad4aXXt+EQi4ncNBSbtzMZu7CA6xYHcKNm9kEDl6GnkLOmMlfs2t/LDv3n2PMC9+jUMgIHPIlN27msGJVMHMXHpD4By1FTyHnhVe+Zte+aHbti2bMxDUS/8BPuHk7i7kLdjF3wS5u3MwkcODChie1TCajaVNb6urUhEdc4qMFm/APeBOHJiNp2tSOFctfeZzT8D8HURTJy87i8rlYQn7cx/I5b/OUjxezJ46hIC+XYROn4NayNbNXriUm9Chx4WGcP36U9bNeQ65QsHTyaLJTkzmwahkRP6wnLy2Z714fj0yhYNeHb5J0+jhXw45wcOEMBLmc7TMmUJCRQuSm1UR89wUFGSlsnzEBmUJBxIalXA8/wvXwIxxe/DYyuZyd77xIQXoK4d99Qfh3X1CQnsLWt55HrpCzc96bJIT+QkLoL+yc9yZyhYLvXh9PXloyx75eybGvV5KXlkza9av/9Gn+r0dJSSUr1oTi0fEjDh6KZfM3rxMZ+gmDBvgghZ/+9/C7XBD1wbeXgF0PNEC5h5XAVkEQYpFKg18BnPhtH+9WYBbSTgS/e4eAoQM7YGZmyOvT+jKoX0c2bz9J3PnbvDJjM4IgsGjpQdyaWuPZ3AELcyP0DWSYmRnw9DAfPNxs6R3ghUymxsPNlqeHemNqasDQge3p2NYFxFr0lXLMTA14emh7PNxsKC1XU6dG4h/mg6mpAX0CW9OhrRsASqUcMzNDnh7eCVcXG3oHtgHAw82Op4f5YWR035IpKamge+C7GBoq6dunM/PnTaR79zYYG/85FalqtZpDv0QxZHA3tu84xvBhPbh6NQW5DFq2dOHnQ9E8N74Ph4+coXVrDwCuJqY8xC8T1Jibm/wp8txDdnY2IcFh1NXVIYoiqtpasu5kcCctlcy0VLLS08i6k46RiSn2Tk1wbOqGIAh88vVm1Go1giBg5tyU8tJSjExM6NJ3AM1atyOrpBxRFDEwNsGn90BsnV3w6tKD/EoVVk4uePXqj9LQmJbdgzB3awmIyBUK9I1NaNGzL+aOLrh06Iwgipg7utCiZ1+URsbYtWyHrVtzAGQKPZRGJrToEYRDyzZYN5XOm56hISPmr8TQzILhsxegNJR663j598XQzIJnF36JsYUltq7NAFAaGuJk/hhvEv8yZOeUsPrrcL7edIp+Qa34ZderePtp28RGO9IzCqiqruXqtbsMGdCO7XtiGTWkFSYm//3n/He5IARBCELavaCLKIqxWv7/GlK5ryNwGZgpiuLJB/6fQr0L4gHaIKR+AFd+rwsi+/Y6du2P4dWX+7NlewR+PtIFfvFyOi1bOPHhol0Ul1Rw+Wo6MplAi2YOqNUiE8b5Y2SkT/cunsgENTFxt5j0nD+frz7ClAkBxMUnI6rr8OvkwcYfIpj15iC2bD9Fl85eqNVqzp6/xaTnAvh81S9MmRhE3HlpYw1fHw82/nCCWW8NZfeP8bSrV8xn424waUJf9hw4w3Pj+6FWqxkx8kOcnKzZsO5tkAdqrK+gkR3trLS9OaqOa5LK0ikoLH9Ifr9OHsgEiIm7zaTnevL56l+ZMjGA+As3qatT4+vjxsatp5g1vT9bdkQxdtwQTEweeSDItTfuulTeS4N271pSq9VEhvzKj1s3EXc6ko7deqCvbwCCgEIhx86xCUb2Dtg1ccbO2QVbpyYYGBmTV1rJrxs3MGDyVE7/tA/3th0AuBB/ibZ9BhO1ayPeQ54h89olKlRg28yLK0cP4DNqMonHDmLv2Q6A7BuX8Oo3gvP7N9NmwEjyb19DXafCoUVbLh89QKdnJnP12EE8O3REEAQyEhPwGTySUzu+p++z40i9mgCAa+v2RB3cw7jXXkehxQUg02KV6TXiFtDm37Y01P7wNdFyLCMtbglPw9Nax2t9/a5upOWxNrdCTb4mDair1GwcqK7W3sdIpq+5Nrnxw26Y3LxyPloRxa4D5xk70odZbwTRzL3+pbhGUy51lfbGhVGx6RQW1+DbzpZN+67x9ovtiTyXS5+eLhq8glzT5tS6K5lMu20qOC77U10Qv8sCFkXxBL+xcaEoiuuAdb/xfzcttF9/a05tuJ2SQ2zcTZ4f24uQ4wkN9IuX0hg6qBM1tSpWrZjC/oNnqKisoX0bZ7746gjHwi4RHXuD6a8MpJWnAyHHLzFyuB/BxxII9PciPPIqIGJtZUJw6CWmvhBESNhlDAyNqKquIeR4AiOHdyE49CKB/q0Jj7wCgJWVMcGhF5k6pS+xZ69TVSX5jUJCzzNyRA9iYhN5bnw/5n+0iaKiMvbtWfA4y30sqFR13E7OeUh+AEMDPULCLjNyuC/BoZcI9PciOvYWFZU1WFkaExx6mamTexESdpUhQ3trKuDHRGlxMfNenUJmWirjpr7G4g2bkGtRNFllmhktdXUqLp0OJ2D0eK5ENTy/uXP1Ei26BXAz5iRu3p1JiY9BrWeE0siE1LhI2g0aTdo5yeMlU+iRdi6K5j36kRoXiXN7P7JvXKa6rAQDU3NS4iJpN3g0qeeiMDHQQxTV3Iw9RZvAASTFnMS7pz834qQgrrG5BVeiIqiaPBkTcwsNeXX4/+NyYjbDJ+xk2KD2JMZ8gL3d425uch/xV/JIvVOGlYU+R0+m8/JYLy5dy9eqgP/b8MT0ghAEQcxP+xorawuys4uwszO/HwwzMSInpxh7ewvy80sxM5Nu+NKSMqysTMnKKiQ0/DIz393C5Of9+fjD0RQXV2Jvb36fX1twrlIEhPpg2735SzAzk6zCBv7sIuycnCkvl5z5xsYG5OQUYe/kxKFDUUx5eRlXEjZhZ1e/gcNfYAFTlUlBQZlmcBFRkqc+GJmfX4qZqfxh+ev51Qob5I9acI9hASddvcLMCaPpFtiHdz5dgV691Val0gySaFPAeWVVyGQyivNyMbO2obpCsuSyqmSUF+ZjYmVDRXEh+sYmFFaoqK0ox8DMgvLCPIwsrKXgmQh6hlLwzNjShsqSQgyNTEB4INhWz28ql0660tCoYX792jIMjSU3TFVFOcbmFiirSzC31gwW6Szg/58FfPjYDV546yArFw7g+fGB2uV6DAu4tqoaURQpLa/FysKA7LwK7O3NtPqN/9ssYPmCBQv+rLn+UixcuHBBzNlbDBrgTdDgRXg2c2TZFz/za0g8piaGjJn0Bc+M6Mro5z8nN7eE6JgbrPv2KEH+beg95GNGPdWFoqJywiOvsnzVYVas+oWYszeZu3APB3+J4/yFFNZ+e5xB/dsTNHgJns0d2LLjFHt/PIOhgZJxL6zmmRFdePG1DWRkFBAdc4PFy39kUL+OBA1ehFdLFz5bsZdfj8ZhaKDPuImfMX5cX6qqaggJjSMk5Cx9evtgZmYMMjeN9VWqNdcMYKjtflYna5CqywsY9uwXD8m/7MsjnL+QglqtZtwL66UskYlfUVJaSWRUEotXHGZQv7YEDVmBZzN76kQlNjaPWCIy7dHznNqHs3FCDu7jncnjeWPuAl6aNechRa5Say6urEYzypx19y7VlZUse2EM9q7u/LpxPZciT4DSiH0fvUXrwIHsmf8m5UUF3L2RSMz2tbj6+XPg3clYNHHj3J7vuXs1HkGQEbx0Ns39+3Nk8UxUtdVkXDxL7M6vcfPzZ+87k7Fs4kbc/s1cPx2Onr4+uz+aQdugQQSvW0Z2ym1uXzzPr999Rduegax640X6jnlOQ15tN7hcpj2urc3M0ZbZAKDUosS1KXZrvXSt4xG1PM3ryrXzqrUo6zrtSlVUadLFOu3V/IJCc22CnjFfbIjm/U9C+XHzWIb089SeLQFaHyLajg+w48frhERmsGRdPAMDXOj73CF6+jXBwVbTeBC0fD9aA3yNbJa+8PPTLFiwYKF2oR8fT5QFfP70Yjp2aEZo2CV69fQiJS0XANemdpw8lUgnbw8Sr9/Bs7nUFiI55S6dfVs8zC+qyM4pJjwykRbNHLh0OY2tO08z681BdPVrRhe/ZoSeuEyvHq1IzShBBFxdbIg8fY2+vdsRG5eEu6u0g83tlGy6+NXPH+hHSmpOgzyRpy7Tt393qqtrqa2txcVtDMFHltG1S2sqqjtjaGiIqt4yVCgUZFfUotRi5fxeC1isvMOFhFQ6tnflVNQNuvg1I+NOAWq1GucmVkRGXadvUFtizt7CrakZMpmM2yl5dPF1J/TEVXr18KRObo2R0SM7NP2GBZxzN5NjPx3g6I97ybl7l5U/7MKrg7cG7++1gHOKypDr6ZF0PhaPdt4UZEvbwZXoWZCZmEDT9r5kJV3F3N6Jwoo6ynIzsW3mReblczi0ak9J1h0qSwoxtnGgLCcTp7adyL2ViIW9dD2U5tzFtpkXdy6fw7FVe+QV+QiAma09GVcTcO3gS0VGEmWFBVyLOU1lWQl2Lm6oygpxbemFl18X7Jrcf63VWcCSBVxRqcLQQI5KJa1RoRCoFvUwMtSjqlqFnkJGTU0d0xfFcT7hLru/GU3LFjaoVGrQs0ShkFFZWYuRkZKqqlr09ORQk0dtrRoDAwUVFbUYGiqoKcurn19GZZVKmr9KRXlZJSqVmuT0Ejp3tOf46QwCe9w3EB7kr64VpfmhYf7KShWGhnqSPPf4q8HISJpfT0/WwG/ovvJPtYCfKAUslm5i2RdHeO3l3ixa+jMtmtmxan0omXcLqaisQV0n0tTFmuFDvGnuYU+fwNYs/fwwa1ZMYNHSgwT6e6FQyAg9cYX5c0YwffZWRg73ZfyUdSz6cAyDB3iz9PODrPl8CouW7KNfkBe1tXWERyY28L/39nDCIiQfcJ/ANixdeYg1KyaxesNxOnaQouThJy8z/4Nnmf/xLqa9NJBPlu4hLi6Jg/vmsnT5ftZ8+SqLFu8ksFf7ev4EFi2aioGBlm3NtLgrqDqoSWsk7zHhUjLbdkU1yD/n7aFExqRSU6OiT1B7lq44wJqVL7Ho0z28994ErK0f3r2pQOzz0Oec7GwO/bif3bt2cePKJQIHDWXgyNF0DewDjSif3ApN2QorNXMvlY8m2NejslZLfjJSsG/fquVcjDxBUU42ZUWFmFtZU1Ndjbd/AKOmvY5nBx+M6hWaKIokXbrI0T07uZOaTEe/rnTo0o3W3p1IvXmD0IP7Cf35AHK5gl6DhqDUN6CqopyK8jJO/PIzNg4ObI+4H4NWabl3jLTk4AIotFhe7U0b2QtAmwLUpii15dUiPYw1WCu059DWlmjOqyrWzqsw19zZ69T5fDq2MmfJtzfw72QNQOS5fOZN78Tbn8Yx++U2HApLZ+PeW7g4GuJgY8hX8335dMMVevnaIVPqEx5zl3mvd2TGx2d4Z2p7TkRnoq8n0q2jLcu/u8oXH3Ti0/WXCfC1oq5OJPJcHu9P9eLtzy4w+4WWRF0soKZGTVAXO1ZsvMbK971ZtzOZDl5WAJyMzWbua+2ZuTiWd15uS1i09GAP6ubIim8v88VcPxavu0SvzvYN/POmez8kj8TvRLuBB/7+INx/K6JibmJva0b/3m2Z8/ZQ3v1wNz4d3Zj/yX7atXWhcyePRseKokjSrSwmTfuGEcM6oVT+daeiuLic/IJSEi6l/GXH+LORlVVA/IWbnI6P4dKFeNLTUikpKiI3N4f+g4Yw8Y0Z9OjTH6X+/VQfbcUVfxXUajVbFs0l7XoiUxYuxcreEXNrG2xMjakoKyVk13YWvzIFe2cXRr/0KlkZaRzds5OKslIGjB7HwDHjuRF/jq8+/pCkywlY2zvQ76lRLN24Hc92HR56LVWLIjXVNXi26/C3re9/BUkpJazcmEhHL0tWvufNio3X/vJjlpTVkpJRxp3sCtIyy7l0vZAtB26iVMrwdDdDTyHDQL+RYqS/GU+cBSyKIiHHLxPQsxWvzfyBhMvpbFz/Mneziujfpx0xZ29hbW3Cx5/9RPCxBNaunISJsT5BvbxITctHkAnoK+WMmbyO6upaZr85mH6924KgbHAphIReJMC/NWmpmYgiuDa1JuLUNWn+uGQ83OwAKSuji19zQo5fIiDAm9Q0yZpwbWpLROQV+vfrREzsdTzcHfjpUAzvzdvC9NeG0q1LawID2pN6z2XhakfS7XzatdPywPiDFnBWVj4W5kb35T97C4/m0jZ6t5Oz6dLZk207IygsLOPq9Syu38jg8hXJb+zdsTleHfvQroM3rh4eWFhY4ty0KYaGhtyp+H3VbfDXWMDBW75j25IFdB86gibNW2Lt5IS1gxPNPDywc3ZBJpNRp1Jx6sjPBG/bgqOrGwOeHUeHrj2Q1VujhvXWak11NXpKZaPJ/mpRZMOnC/h1z05mLl5OwOBhCIKgs4DrcSw6B38fa9LuSj7apo6GRF+poqi0htcXxLDgzY48M9CVlPRifNtaERqVhb+vHWmZ5QhKA1ybGHMyNpt+PZ2IvZiLu4sp6toakjPK6NzemtDTd/H3syc1tQARgaaORkSey6VvN3vOXirAvakUt0jOKCcrr5JpH57Fq7kFzo5GNHc1o0cnO/IKqtBTyNiw8zoXEwvo5efAtHGe9PdvwokzWXT3sSM1U3KLuTqZcDIuh/7+TRrkAUhOL8X/2cP/bhdEYWE5Pfp9ypefjWPbrmgSb2SSdDMbuVxGRPAHvDFrKwP7Svmgh49eoKSkiqvX7zByuC/V1SoEASJOXUMmkxF/+mMmvPw1A/u2QxQUHA29yO4tbxE0eBFffjaJsIiLZGeXMPaZLsycs4MTR97n5Tc20b1rCwCCjyWwe8t0ggZ/wpqV09i2KwKAsaN7MvPdjZw4+iljnl/GwP4+APx0KAZDQyXn4m+x4avphISeq+cPIDwykSWfvqy58D+ogL/fHIZzE8sG+cdMWstTw7tRXVVL8LF4nh8XwCvTN9A7sD0+Pq3o09ubNq1dcXS0RhAEDRfEPfzTCri0sJAb8WcpuJtJflYm+Zl3yMlIIzXxChNmzWH0q2828Bo1EuwybERZPop7/tv46FN8NvtNmjZrwZzP12Bmo1nI+W9TwJVVdfSccJLPZrVh71HpVf3pPo68sugiBko5Nlb6jBog+WOTUopZ9GYHBrwYxvL3vNlzJA19Az1G9Hdj9qcxHNs6iOdmhNPfvwnG+nDgWDrbVvRgwAvHWT6nE8HhaRSXqRg9wJn3ViTw67e9mPheDMP7OFNaUcv3e6X8fIVcYMMn3dl5SApWjx7sxjtL4wjZ3J9XPoyio5cVe4+kIAJh2wYy45NYpoxuwZ7D9/nnLD9H8OaBDfIAhETe4WRs1r9bAQOPpFlBeYWK9+bv5uAv5+nU0Y3nxnTjqcE+CAJYWZkSHpnIkZCLbN8dhaGBkh++mUYzD7uHeyODL/wAACAASURBVETI9B9OK7Mzp7y0mIY0tHs9JQorMDWtT3Nr4C/GztHhkTS0YuwdrCkoKH2AvxJLSxOeemYxA/p3YtLzfRv4S8obqUL7gwq4uqoKpfKRnhiWkuJ4a9Z3BB+7wLpVUxnQzxu1zFgjDe2/VQEDXDt7hpBtm+oVcCalRQVY2tgy5o0ZDJkwpYHvz1LAVZWVfL/8Uw5s+pYVO/bRrmsPDd5/mwIGyM6vxs5KSXllHflFNbz28UVUoow9qwMQAFNj6fyXlFRiZaFPdl4Vdtb6lFeqkCkNMDbSIye/CnsbQwqKqjE11kNdW0VpuaqevxI7awNKi8pBEDA2lJNTUI29tQEFxTWYmSr5cssNDp24w8F1/tSqRBzszSmvkIK/xkYKcvKrsDLX55td19l5KJlbaSV88rYPLz7r2TD/Q/yFNTjYGjXIA1BaXotD5x3/3jS0lycHsHjZIXr1aMm8jw9QUlrF9aQsDh6OZ9EHI0lNy8PPx53134Xx4Sf7uZNZxMFfzjFxXE/CTyUyYWxP+gS0JjTiCoE9WzF99laauduybXc0UTFJWFoYM//j3Qzs5828hbspr6gi8Xomm7dHNvB7uNuxfU9UPb8R8z/Zx8B+Hfh4yQEKi8q5fuMOm7eGEdirDbPnbMbVxZZtO8OJOnMNS3Nj5i/aQWuvpuzcHYGVlSnXb2Sw+YdjBAR4s2dvODY25sTGXuP27bvo6+vx08/n8fT05Oeff6a6upqsrCzOxh6jqYsNO/dEYmNtRmxcEmlp2bi5alpkGRl5hBy/RLs2Lvyw4zRNXayJi08j6dZd3n5vMws/HMvIp7py4OAZ3Nyd0dd/WFlVot2PXlqrmVrWWDezilpNZa0tM0Iu035dq9Ta562tqSE3I42CrCxy0lJxbtGSLn364dLcE0tbO/QNpAdfY5kJeo2kjD0KEYgKPcrs555B39CQ5dv20rx1W7RlDjY2p7aMCXv9RtLItKWBaUsXU2tvGKNNMZcUlXHlZhFZuZVEn8/BzdmEXYduY2UicvZyEcl3KtBXyvj5RBbNHRQcjsqnukYku6CGmCvFuDoYcPBkPlbmeg/xbz6YRsdW5ixcd434xGLeWJyAoYGM/V8FMXdlPO4uJuw8lMyZC7lYmClY+NUl+vdwZMGaBErLVVxPLeOHAzcJ6OzAjEVncHcxZefPtzl3KQ8TEwWLvkqgf09HFqxOoLS8lhsppWz7ORV/X1veXnoBd2dj9h5N59KNIsor6rhwtYj+PRz4dMMVikpquJFcwqZ9N8m4W86wqcfJzKnEq7k5gwKc6dbJjkWrL9C/hxMfrb4gzZ9cwg8/3iKgi+ND8pyJz8HcVMnGvTf+1DS0JyoIpydU0sTBEFNDFa1bWNHWUypsEOtqMTMBL09bpkzoQsd2DhQUlrNl+yly8sox1S+hdXNT2rc0QiYIVJSZYmZQSgs3Y1wdoEMrU0R1Ha62lbRwNcBUkUXrZvq08ZCjVsuoLDHETJlPC1cD3Bzq6NBS6nLlal9HC1cjTJWFtGlhSNtm0o1eWWyImV4OrZqZ4+oko4OXJKerk4wW7mZ4tnTkh21ltGlphyAIVJaXYqxfS2ZGJnpCa2qqSurXW0VW6mEUVSoK755C5iQpw9LCfBSUSvyyZtRUFqHWN9eaMubm7oybu9Qm88UX+gPg0tSJqqoalEoF01+R+iiNGdUZ9E01T3ojL0jarN3CKk2rFqC0WrN7m7mBZp2+NisRwMlUMzvEQKGgjZ0Nfbt0BiTr9FJcDF9+9AEHv9vA+KmvM2/FKqDx3FxP48YNmdTUVCIiIoiIiCA8PBi5XMbG9dMZMKAzkCn9aFOUNY2ke2kpLCBPeycxdbWmBaqu0TyWqlK7BSxXal4H1SUFqOu7tuVnFyFWmJCRnoeyiyd1SIpc38iE7MIcjJycKZPVYmArZTWUZedj7ORCYXQGpg5uCDlS7MLUwQ4TWxmlem5EX7lI+p1sPpjhj5mpPjYOtng2t6VZM0cKK6T7wsVeoJmLMSaGAq08TPHyMKG2pIgSGxV6pXdwtVJhryigpV0NQnEFtsUqmupXIUtOxsOgkhZWRogilNkJGFQW4m4t4KisAFUNFxMLsLFQ4u6kh6GsEk8ncLWq5vDJXHb8nIF3KzOe7WfP++OdiU8qA2qxF/NxtVChKLpDcysVzUylXOkSKxWKnBRczWqwU2XjaS6dNztVI9/tH8AT5YL4dtVYJo3rzGdfhvL8GD+uXssCwNenORu3nWbW9H5s2RGNn48bANExV1m+Ohz/bu4sWzCUuAvpKBQyOrZtwsbtscx6PYAtu+Lw83YBsY6z8RlMGtuJz9dFMmW8LxcvZ1Bbq8a3YxM27jjHrNd6sm3fJXw6SArtbHw6k8b68vnaCKY835W4C5JF49vRRZr/rWFs2RGFn48U9Dp7PplJ47uzasNptu48Sbcungwf4oevTzP2/BjDtJcGsmVrGH6+ko/5bFwSk8b6NPRwiDsv+ah8vZuycWsks94cwJbtp/Hr5I5caU7bNlpalTZiJa375ihbtp8kJmLxfaK+nQZfgTpQ6/iUUk1l25gCLqzUVB7aWi42poBNtfAaPPKqr1KpGNm1A+m3b9Hcqw2jJryAU1NXHJ1dcHF1x9LGRiPIdk8Bi6JIcnLyAwo3nMrKSgICAqSfnka0bu3aELxrwB9VwI20cvwrFHBVSQHHoiXF6dPagh9+SuWt55uzPyyHdp5SmXXc5QImDHfnm703GT3IjfNXJFeITxtrthy4xbvTe7JlXyJ+HaR0reOn07mVVsGWPZd462U/fDs4YqCvwLeDI5u2xzDjxQ5s2X8dv/bSdXXxQjKj+jvz5Q83mDTCjfNXC1GVFePd0oytR+4yfYwLO4Kz8GllhphfxrlbFYztZc3aw9k8F2jNlXypOZZ3CxO2Hc2ml7c5b3yeRFF5HS+NdMHGQsmEYc58uS0ZAZE1O1NxdTRk3sseXEoqY/r4puz8KZ0OzSVXX/yNMsb1s2PT4Sye7mVTr5jr5//1Lm+MasLO0By8PU3r+Ut5c9Wtf28aWsiJa4wc1oHt+87xyechuDpb0rK5PW+bGBF8/ApTJ/sTEna/7d/Z8+ksWziU56btYNJYX8JP38LS3AgzEwOCw64zdVJXQk7cAEBUqzkWkcTIoW0JPn6dwB4exF24Q2FxFVaWhgSHJTF1oh8RUbepq38lDjlxg5FD2xEcdp3eAZ6En5Iau1lZGBF8/BpTp/R7SJ6QsKuMHOZD7LmbzJvzDJNeXsPdrCKsrEw4d/4mpaWVhByPv89/PJ6RQ1o39HAIj0wEwNbGqL7nQwAhYVJOsp6BqXYFrAXRMTf4aPFeoo5//Ae+jf8uKBQKlm3cTmZKMncz0shITeHs6ZNkpqeRlZFGVWUlDs4uODk3xdFF+t3EzJC4uDiio6NRq9UNCve9996jVatW9xV2Xfg/urY/A7UqNZHnpIeAlbkeodE5TBnpxtlLBVTXSM6U41FZjOjrzNmEfHzb2XAyVlLYlub6hJy+y6sv1HDsZBql5TVERN8hODyVF8Z2oGMbO4YP8OTAYSnFzMrSkNBT6bw4tjXHItMaZLh0pZD+PR04FpVFLz9bTsblIqutwtJUj+OxBUwe5kRYXCEAepXVnEgoYWhnC8IulNCjtSlnb1RSUaUmp7CGr/ZnsP7HOzhYK5n3cnPUIoTF5tO5rQVfbkvG3cmQ/t2ssbfWx9xUj9CYPCaPaMLphGLuFWaGnStkWA9rEm6W4e1pwqmL0oPP0lRBWHwRkwc7EHb+/kPywb//LDxRFrC6YFVDw/S9B+N596OfSEkrwEBfweD+7ejf24txz/ghq/clGuvXkJNbxpCxG3nrlZ6MfbojIFJaVoOVpRHZOaXY2ZpQXl4DYh3GxkpycsuwtzMlv6AcMxMFIFBaVl3PX4advaXEDw/zF1Zidi/YVlaFlaUx2fkidnZmDzdwzy3B3smV/PxSkm5mMn7yKnoHtuWrVa9RXFyOnZ3FQ8G87DupODza46K0XKPng6BngbHxI1Vs8JAFnHgtgwWf7iMi8ipfr3mZp4b6Pcz7BFvA96CtGblcJqO8rIy76WncvZPO3fQ0MtPT0K8px9fXl65du+Lh4dF4z9nGFPATZgGr6w2H0goVVuZKsvOrcHSwoLyyPvhkqCAnvxp7OyPyi6oxeyD4VKcW2RmczdGINM5eyGZwbzc+fqcrphaW2NuakF9QgZmp5FYqLavBwrCa7NwK7GwMKa8P2OrVFjQEz+7NX1OUR2lFHVZmeuQU1GBrqUd5ZR2q7FKMDWTkFquws9Ajv6SW+Ow6vtp3h1t3Knl9lDNDulvh6mBAlZ503Z+KL+CVjy8xfbw7zw+yx7K+Cf39+aux1hMpr5I0sLGBjNyiWuwslRSU1GJqJLlKyirqsDSWk1NYg62F3kP8loOj/r1ZEMH7XmXNNxF8v2Y8Y6Zsprd/C0IjbnA65jZ+Pq5cTpTydq0sjLCzNWPc0+1YuzGKsvIaWrWwZUg/L0xN9Nn7cwK7v3ueoKc28OWnw9m5/wIgMvbpDsyc9wsnDr7MmJd2MHp4G0rLaggOS2L3t2MJevo7Vi0ZwY59kpU6dmRHZs79mRM/vcK7C47g1VJ6NQs+fo3d30/khel7mfFav/otj2DsqM7MfH83YcGLGDvxCwb286aysoZ13wTj4GBFZWU161a9ys49Uiewsc/6M3f+Zg7vm8WYSWsb0uuSbmXx6YJRBA1expefjWPn3hgMjU1Yt2qa5olT15B08y6LluznaOhFZr05lNenDcDERIuy/h9WwNrwWz7gh/A/oIBTkzPZcVhykYVG57BliS+Dp53miw982fFLKgDPDmrKO8viObqpL8/PPkV3bxuu3izm5NkcRBEM9BW8/FxbUtJL0FPIGDPck+92XWPt0oGMmfojA3tL7WGDw26xc3Vv+oz7iZXze7Lr5yQAxvSXAmfB3wUw4d0z9OvuANUVhJzJZ9NHbRg68wJL3mjO/uM5WOmp6dXWjA+2pDNtkB0fbbuDibGcbm3NyS6sYcs8L4a9k8CSV5pxPKGU5DuVnDpfgIWpghPfd2PeV4m0dJVcDaExeWz+uB1D3jjP0mnu7D0htTAYFWjLBxtucWh5e15YfI2+vlKsJjSukI3vtWD4nCssmebOvgjpuxsVYMOoeVf/vQr4nem9cXQw5/WX/IlPyMDdVSo1/PX4DdZ9d5KysipWLhlN4vW7XEjI4Oq1O8RfusOHs/syoHdL3JtaIqpFUjKK6OzjQmhEEr26uZOSXgRiHa7OFkSeSaFvQHNiz6fj7mIGCCSnFdLZx5nQiFv06tFC4od6/mT6BrTgbPwd3JpKX2ByWgGdfVwJO51Bz26epNwr0HCxJjI6ib59uxN79ibublLWwu3kHOIupDDvo2189eU0/DpJPmBXVzsiI2LoG9SW2HO3cW8qdeRKTs+hs8/9Hg4paXnIFOa0aOGkcd5u30qnZceZzH9/FG+9Nqihk5tW6BSwdvwXKODC/GIMlHLiLufR3ceOhGsFOFpK925GViXtPM2JvpCPb1tLsgul2KmTnRHnLufRzduO8/EpONhKD92UzAr82lhyIiaXXl2akJIpBZlcnYw4fT4XN2dTJr8XzfXkEoK62OPX3ppXx3tSKzfD1tqI2voMGD09Gcl3a/FwtSI2PhN3F8mXnJxehK+XEaGnMujV2ZGUO9KDwsGonKgL+fTuas/ZywW4ORlTU5RPWlY1nbxMCT9XSPf25qRlV6HKKcPFVsn7mzM4d7OcsQFWjB7cBLlMRmpWFZ1amRIeX0j3tuaklwk8OzueWRPdcbY3JKizNXFX8mnqKF3raZmVdGptRvjZAro2NyAtW3ordLHTJ/pKMUE+VsQlluDqIJ2f1KwqOrUwJjy+iO5tzUjLkd5gXWz1cRhx5t+rgLv6OFBZpeJqUgFtPa3Q11dgb21IUBdrjkdl4e9ry4LVCYwf7s7QoCbEJhTy5qTWvLP0LO9Obc+JM3cx0IeuHWweqjHv1dkO5HqcjM16qCY95mI+FZUqend3YtnXF1k1vzvLv46nq7dk6UbE3GXeG968tSiad15qy4kz9TXmXR1Z/u0lVr7fkU/XX5HmB07G5vDBq21ZsPoiU59tzokY6WYN6mLPlh9vMSjAiZFvnOLFZzzo5WfHybM5fPR2d95aeJp3X/EmLErK7+w/oAtLVoWzZslwFq04TmAPDxQKGf2DPDXOm9qkAx06vcpnn77I4EFSxkCj+2Vp2xNO314r66XSLhq0ai2pZdC4Yn0U2hrOAHgaRGgSG+nYpVUB1hZq59U2h0pLDqxa+7q0dQKrq9bedUxbHm5dlXZedY1m1sjtm8VsPJzFu+NdeHf9bWY+24SwiLsIgoC/lwmrj+Sy5DlHVvycS2ArQ2rVcPp6BbOH2fL+jru8PaUZEfGSDAHeFnyxO4NlrzdjY3g1HVtL2Q4RMXfxdDdnxsdnmDG1C3a2xij15PTxd2fpmtN8/81sjUBkbWkKU98+wJw3AzkeeROAPv7NWbriR1a898D9BcRF3ODlgXbM2ZTOW085cPJyKeqCUno2M2BNeAmfDrfk8+MldPfQR6Gu4/iNan68VEUnFz3m9TcjLkekWiXSy9OQ1aFFfPqMDZ8HF9LLy4glhwowM5SxeaojH+zJZXpPY07elAwC/+b35199rBBfZ8k1EZVay9v+Rnx5spwx7fU5lSK5Snq66bE2ppJPBpiyMrKC7q73+ddHV/x7g3D+XZyZN92HqXPCGBzkxq8nUsnJq2R/cBoXEgsIOZWJIAjs+iWFIYGSNajUkz8x+0l1aGXB0EAnNu6/TfuWf04DcJlMxrz3x7Fk2a77CliHJwpm/mENf6/eJz2EdxzL0eDbeUqyqL/69T7tq2Apk2Hn6fMa/DtCGk+rWrJas9Pa5l0TGuXfvPOcJm2/VJm2clNiA+2TXZKRsjNCs7Pa7nOSYbDu5MOulaPXqjl6LVeDf1eslLWwNuz+w81jlnTMXTGa7pl78z+I9dESbUz7f2b7oifKAq689SYno1Po09OFmPhsPOprwG8lZdCprTW/ht/BycGIqzeL8W1rjZuLhWaNeV2tRo15WmY5gkKpUZPu4Sq5FG6nldClox3HIjPo5Wd/v2a8iQknY7Po17MJZy9k49pE8jklp5fSuYMtx0+l0b2TVPMO0NTJmMiz2fTtZk9sQj7uzvX8GWX4tbMkNCobf19bZi09T/rdCvas6kn05Qr6+bsQcyEHDxdpvRnFpvh6OxNyIomA7u6kphfVb8GkZYtvM2++WHWAk5GX+HHfRxJNZwE3Psd/oQX8oALW4a/BoYnmuFpIQbjUojp8XJRE3K6hq6uSjGLpvnA2l+OxNPffWwnXqb0d639IoE8PF16be4LS8louXMnjl7BUunnb8sKcaHp0suPwiTtEnc/FzETJ7KWxjBrgxusfRVNaXsuttBLWbrvOAH8nJr4TRUsPc77dfZPo8zmYGCuZ/WkMowa68/r8aABiL+Twzc5rDAx0YcKME7RubsGGHdc4fS4bU2M9Zi+OYdQgd5auv0hGVjkXEgv4dtd1BvZy5oOV53CwNeTb3TeJOp+LqZGCdz47z9N9XZj+cRxl5SouXivk27036d/TgclzYmjlYcaFxEJOxuVxJOIuh8PTGTnQg9c+jJTWezWPY6cy6NqpKeOm7sLL044Nm2OIu3CHIf1baZy30hpznh2/mE3fzsLevn5HDm0Nu6V/aJIU2jfpzKlx1qDVaWm8DtqrwLShsYo1a0WqJlHbVuSgvfG4lm3HG51Drfn6j9hIt3wtdLFO+7lV12rOK6q084qPFLks2STlf+//pDUXk8qI3uDN+RtlTPY3J6CNCao6kaMfNuNYQikbpjrjZKHAw17J/GfsuZhaSeSiZqSUiozvZ0+gtwWqOpHjqzsSElvAjtV9kckEOnhZ07u7E1eTCkk9N4OzFzN5ZWIn+vZyR1WnJubIi0yd9gyrV0xiwQejGn7aNjdkzZLhnI3P4JXJXekb0ByVqo6T24IIPpnJps+6o5DL6NDKkoWjrIm/XcGp5V5cuFXB5H42BLjIqK2DX1+3J/R6JevGWCOXgYu5jIoaEXtTGeFv2HLhTi3Tgszp0dwQlVrk15lOhF6tYN1EO6xN5bSwV1JYocbSWMbpD5uSW1DD0x2N6NXcANUD8699yhS5INDGXsHc3sbsvyx9LymFdZTViFzOVrE1voqgZvq8drCEFtZyfjhXRWx6LSZKgf2Xq/+9DdkVChlxvzxDOy87CgorMTWRLKbC7GwsLQw0arpNTY3Iya/E3saIgqIqqca8ruaBrUvu88v09Otrxu/zN6SV3ePPrZBq2B+sGc+rxN7WiPy8ckxN9B7iv5tdhJ21oUZNur2VfoM89/gtzZUPyVNdU8fG/cl8seUGE0Z6Ym2hj75SjiCASmaGsbE+xkZKXhjficrKWgRB6lmhUtWhUMipq1MjkwksXnuNxGtpbP9hzv2TqbOAG5/jL7SAVSo1CoWsIR1MrKlooNXVidw7TaqqauRyoeF/9yzgwiPdG9KmCktqMSiR3sTKqtRYmijIKa7F1kxRn/YlSGlWJSrszPUoMTPF1FjyOJZV1GFppkdOYQ1u3m0ars/4K3m8uzSWs6GvST1PTO6llUlpmFVydwwMlKjrH7QymYyyvCRMTAzq+ZX1/DUY19zUuB+F27fIKarFzkKPwjIVJgYyalNyKasRsTSSk1uqwsZETnm1mqqKGl7dV4KFoYwNoy0orlJjbmsICJRVi1KaWIkKW1M5ZTVqSqtFun+cTtSHTXGy1CM/qwwTg/q0sgfmt0JFRa10/o30BJosllwbV2ZYYqIU7vOb6JFbVoeNsUyD/1/rA1bIBairJWj0PhbP9uNgSAoAz45oy9jZJznw7TAmzjlO/wCpICH6/DWWzQuk3wsHWTo3gAM/XMfS0pSgHu6MeyeUA5vGMPGdX+gf2Iy6ikxCT2fy1cLu9H3+VxbP9iPsZAJFpbU81duJD1dfZufn3Zgy6yLdOkpBi+Nnclj1fgd6jz3Gwlfd+emE5JcbFmDHgvVJbF3YhnEf3aB3fXpLWFwhX8z0ZMzcRF4f4cShKMkPNqy7FZsOZfLxBGfGfZBGUHvJ1XAuoYSDb9jz3LpEfD0MSM6VLCZ3RwNibpRjZ67H7Lk/MTHQkmZ2Sk5cKWP5RCcmf5XG/NEO7D9TxN6YUk5u601V4rf3z6Oxpfbza9FMk6jNIgTayTW3RULWSG8CbZamNmVf3ciDoVLLvNoUJaCu0bKVjbqRhu61mpaxNqu0MVeBqEUx11Vq5521LJEPJrgwc80tevtI/v1LicW8O9KByauS+XCME4fPSmsa0kafRT/msXmaE7N33H+gTHw3ns+eMmfQjgLm9Tfn0LkSEAQGtVCy5GQF3z5lwgvHKuhlD1UqiMqsY35XJZPCq5nf15jDN6S1Pcg/dckFWttJiupoUi0p2SrGTPqeV8e481OY5K99qrcj89cksmdtH95YGEPf7lJ8JTQqk6VjLZm8/Bbzn3fmlxjpQTe0iyUfr09i7WBjXjtegX99EOtSciUvtZLzfEwdb7aVEXZHRKxV09MW1t+EJR3grUTobAVKGcjKIDkf2izOYm4bSKqAqjqB3o4CaxLVLPeTMSNBJMBR4E45VNWKzPk6jVslInM7yjghFcrSx0lg1WU1K7vJmZugxttG0p/R2feNzx9PFXM6W6RWDa0tBH5JV7Osm5J3r6ro5ig9GaPvNvIm9AfwRClgQQAbSwMG9HLGo6kpAV2krWbcXMwZGOiGqYmS/gGu+HWQNv+TKxQYGSqQywS+/CaO555pjb6+MR6ulgzs3RxTE336BzbDr2MTVGUyEATMTJQN8xe1saS2Vo2bszH9ujtgaqSgp481Hb3uKzAzYz36dbfD1cGQnt4S3d3JkL5dbDA1lNHb1xKfVvf3WTM1ltPZyxQ3BwN6tpPobg4GdHA3wsRATlB7M7yb3U8Va+Goz+QAC8Z3M+NCmqQwvL0s2BFRwKsDbXj3hzvsPl1EWxcDerYywlBPRo9WxhgqBbKLVAR2saOFm5YeDzr8rfBtZYKJoZzePhYNpa2KmlpMDeX0bm+Gm52SHq0ld4+LNfRuY4yJgYxAL2N+Pi9ZuoHN9THVl9G7hQFNreR0c1GAIOBqLiPQXQ8TpUAvNwUt9dUNjYJMlODfRI6LmUzih4f4vR3leNlKdLUociqtlg4tzXBrYtSww4VbEyP6drfF1FiPvt2d8G1n3bAuM8Ma+nib42avT8820rrc7PXp6aLg/9h77/g4yqvt/zuzve+qF9uyXOQi94qxjQuY3kMJkAQSSAghkPAACSF5IAmmhh56tU0xxRjbNFe5dxXLslUsyep1pdVK28vMvH/MWrJi8T4teX4vv+T+fPYPj47vvcvsPWeuc53rWHQCC3N0TE1XD3jJK2LRwdnpAsPMAjNTIRaELDPMTQazRj18JzjUculRGZamw2+OwCPHYVkWzE+HbAvMSxMwa+GsVBjnEBjrEDAmTrOiLoWny2RuzhMxagSGWQTmZ6j2E11qJZPqXqjrGzhQ36mSUVAP/lAcNILArduj5NgEHDoYblMP4U1Nf99D+DsFQeTlOrhk6XAevXc2qz6vZtZkNehUUR/m+svH8czrRfzk+5MoLFUffSOGu7j0h58xNtdFY0sfZ8/O5t/uWMjB4hZuvn4az7y6j5/cMJ3C0lbi/k5mTUllxZoT3POTyaz6vJoZY4zIikLR8R5+cFkOL7xXzY8uH05xhRptnjHRxar19fzqB2P5+Ksa8kerP6Diij5uvDiTtz5t5HtL0yipUiOy08fZeO/rNu68JI3V29xMH5vISa/2c/1cOy9/1clNi5M5clL14qaNMrN6Yxu3n+vio/19TB+p8hQruySunOvilW/c3LgoiQMn/Hx5yMs3HskzJQAAIABJREFUxT5CUQWLUUQUIMWuZdVzC5iZnzRoLf9LHrDxW0p7D+XBKv9DD/jboJGh9Cy+Yx5wtDfMXz9r4Qfnp1FyQj1Qp6SKfLDTw50Xp/HRbg/TR6kP3iMVXq6da+eVrT3cOM/OxN+qkf2y32XwUVGQny+w8klxkEk2CUEQONIe59p8A68Xhvn+JAOFNUHissCkZJG1NXFuydeytVNgUrp6Qp1uf32+nqOd6vpMTdeydEUvX7+9gKLyXmZMVD314nIvN106nDc+7+CGy3IpOqYyK2ZOSubDlQe5ZVkqq7d3M2OMKlJVXBPgUq2XN4sjXJev52iH2v+IWIh1DQo/HCvyRYNCvksgEoxT0QsXZ8GHDXBpNlT2gkaAsXb4sgVuzIF3T8Kqerh/koBWhEuHC7xfq3DFCIETfgFJgXynwLoGmZvGCNy1T6InAlOTBU54AUGhpleNcgyzwEibwIJMkT8WqmN7aIaGfJfqGR/vUbhqrJbXj8XZ3y5T2q3wwAwtF+VoWPR55J8XgsjPS2L7/jZ8gRhb9wxonh6r8XPx0lw27qhn8bxh7NjfTDwus3nXHmRZYfWrl3HrvRv5amstOp0eb1+Eqy+ZwMaCGhafPZIde+uRo30kOY1s2tXMbdePZ+ueFnRKCuGIxLYDHVxxbjZb9rWzcGYyuwsTOfV2PVv2dfKTq3MpKu/tz6kvONTNZYvTOHy8j5njbew+oh7YLpuWbYc8/GhJMttLBg6Q7SW9XDzF0p/zvrdcPbCdVi27q4LcNN/BjoqBH/aJLonzpkpsK/Mxf4KFopoQw5L1fHrfSJavaWfVXTnct6qVxfnW/nTSf7X/b1swLLG1sIcFkx3sKVPV7pxTzBQc7ePmpclsLxugTR2oDnHRVCsFxwPMHztQuLPRI1FQHeYHsy3sqIkgZannwK76OBeN1bOjLsa84TqOd8v0RsBhgN0tEtfmaTnQEidRM3OQ/dkjtOxvUh8kTqOIrMDREz62HRigfW074ObyJZnsK+7krGmp7DqkwiJJDgOltQH8C5IpOOKlvSdKhkvP9tJelkyW2Vkf46xhWg40qw81rQ32dSh8LxcOdMqAiBSBQx5YnA4Hu2GGC0p6wKoFi1a9duUw2NQO4+ygERQOuAWWZsL+ToVZyQLHPArBODj0p/oXGW2Dbr1AZ0j17G+foOHNColrR2vY1iLTE4E9p0EKn9VJNPlFBAFKu2UQBVZWSaSbBM4bJtIekGn2/+diGf+V9p3ygN9+chFrvq7lzSfOGQTuO1KS6ewKkp5qodsTwmbVccs9mwiFJda+cxWdXUHSUswUl3Vw0Y1reOOZy5k3azjpaQM57PHepkTwbEAA2tvZdYYAdHdPaCBH/rSc+iRzlEBIfZpaTBrcPVFSrRo8vTFsFk3CXs1Jb2vsI82lH5Rj3tESIM2pw+OLY0vUoveHJRyxcH+wIRBR98qaZOoPrvTbSzL+sJQIxsRJtavBjKTZE/qrup5q//KAE7b/ix5wd5sfl003SHPA29pHklU3EDyLqPeDKRLG7ZNIs2vx+CXG3a+KPFX8PhOXWewPDvV1qkFEsw66ggqpFpGekIzSGwZBIBADp0GgK6QwcriRUxr6p9t7QjK204JPa45HqTA6eeeRGYPu505PlOwRGXT3hLGfCrYFYhjaTrL7WB+Pr26h6ESA+6/L4t5rMqnbeIJUi4aekNwf3Gqq8+HUi3SHFZIMEJIg5Itj0kBPFJIMAr1RBYtW9VRDEth1Ah/VK6xvgdfng0UnYtKAJwLJRgFvVMFmEEAQEoewQHdYIdmo/v+usMKGepnDbqjuU0g3wSi7QKZZIMkALx5T1/yCYQKNfgUBMGrBoBG4IU/L9BShf/zBGMxf+/f1gL9TNDSLWcvmPS2s3VRHS3uAr3c0ceioG51Oy5+fO8g5Z2Xzu8f38O4nxzlc2kH++FTOmpnFXQ9uJSXJxJeba8kZkcxjL+xm+946LjlvLL9bvpW2Dh+FR5p4//Ma5kxL5Vd/3k+Ky8hHX9Sys9CNIMITb1Qyf2YKf3zpOK3uECWVXj78sonZk13c+2QpSTYNH3zTxr5SL4IAT71Tx7zJdv705knauyIcOeHjo80dzJpg499fO4nDquXDrW72H+9DEOGVda3MyrPw5w9b6eiJUloX5KNdHmYM1/K7T9wkWTV8tL+PAzUhRI3A0+vdzBtv4ZFP2mn3xjhSH+STfV5mjjLxwAdtJFu1rN7jxZFmY1jG4PRjUT90OXTRmHTmRe3QVRCGFgr+tqKcQ+FmQ/z/b6PHDXVYf0twcEga2Lc4GUMdoIWlnVQ39NHQ4mfr3jbyRtp5bXUVyU49Ow65qTjpQ6sV+ODLRiaOsvLBl834AnEaWoNsO+BmTLaeNz5rJsmhY2dxD5X1AbQagb+8V8+MPCt/ereBNk+MIzUB1u3pZmqumQdWNpNk07J6l4f9lQGQZJ79xsO8MSaWr++irEmda09QZsYwHQ9+2UuSWcNHhX4OtagwxAv7Q8wdpuPxXUHcPolj3Qrra+NMSRVZfjBGslXg0+NRDjbHB9k/tzdAi0+hrEPis+MRLh6r489f9TB7spMPv2pmb4kHUYAn3jrBwtmZ/OG5EtrcQUrKu3l3TQ1bD3Ty0IomLprtIn+kife3uqlqDrOpzM+cbB1P7g3R6Zc51inxTU2MCU54olTGqRfY0KBwpEtBEOCdkzDNpQbjuiJwtAdW1UFZrwpN3DEGDndDUbcaC3rrhMKMZHipXMETgXIvfNkoMzlJ7d+lV1jfAF83KhxwK9h08NJ8kY4wTE0WcegFan0KlYls8N9O0QAqXnxVjkitT+baMVqePxrHHVIo98hsqJeo6FH+eQXZb796GLdekcWqDQ3UNXgoONDJ8rvzmTY8xveWuPj004PsPlBPLCbzyTNnEQrFsEab+MGFSUwfFiBpiQVkiWsXTOPaewvZt3UnN51rYmR2FNkP+SlmrIFmblpsZVqqj7QLs1AUGJFpJh4bQapTw81XjyF3mIp1Tc8PkJ5m5cfXjOHsSWays9Sg2ogMEwo60pL03HxJJiOz1ANvWp6NVJee7y9JYe44K5lO1ZMenmaAUDKpdh0/PDeFkWmqhzFllIWMUVZ+dLGOeRNtZI9UPcERIywoVhMZIx3cfLmGkRlGkCRmdETIGGnl5ktg3iQ72SPtZGZCLPA3mgPC0K9Silw1xNWhroEwVB/f0u+Q3zWEpyl8Cw9YHsJ2qMMThqaGfRvfVo6f6Vm79H4yLOo8xKiMNtpFXqZAhjlCVI35kmGOkJcpYgj0MT4FRjrU79SmgDEUZlyqhiy9RDxZ7SdLL3HZNBtJQpybFroG9tchkayJc9NZdmZna8gwqvdVphxmrSDzm/daB3GoGzqj/PpjD9flG5hmlbDkqD/fbLPMVbkaTJEYV+VqyNAAgsB4u4BTVLg6VyRPjGFNMAqzNFEuHwa63hAXD9MwLBGjHWMUGaWTSNXIfPHsQc5KBrMWzI01nOOF/fd/zRi/jKmuhSKvxBeNUaY6tPx0hIGZ7QG6IgrDhxl4fo+H81PM7NqrJSNkQmlT9zVJMnKoVsdwMUpnpx5XTEIRFbx+LSMNUco69AzXxej0y3zc2kumUUuqVscVGSJOjGg0MQQEon6R8aY41e1a8gwSOWIcBLBYFNxdIrOtEimyxFwbZIgy5T0Si5O1iEGRcxwSmUZ1TdOdIusSTkOuTsGU8D/StQqXZIAxEuOSdMg2qw/wUXpYe3LIW+m/3f7+oMY/sDntOjZsb+Pp+6cyIsPMfT/J4/cvHmfejQXc/nAxT71dxa9/OJZf3jSG/Ue6cdl1/PxPJZw1NYk/v1rJyeYgDW0hvt7dyQdPzuSG3xRRVe9nXUEb63a6cdq03PmXE8zNd7D83Xoa20KcbA7yyGuVnDU1iZ//qQSnXcfnW5r5fEszLruO2x86zFnTknnxgzrqmoPUNQdZ/voJ5k5x8eArNThtOtbtdCf613Hnk1XMHmfl0Q+aqWuPUNce4bEPm5k+2sJdrzXgtGjYcNDLhoNenBYN97zewJw8K4991EJ9R5j6jjCvrmtlzgQbv3yhFqdVy/q93XyxvwenRcsvXzzJnPG2/v79wW9JWPhXG7KZDCLrtnewbnsHLpuWXzxazpyJdpa/U0dda4i61hCPvlvP3Hw7f3ynAadNw/o93azf043TpuHBtxsGrf+p/Z2Zd+b+Okwid69sZ/ZoE0+s76LOHaPOHeMHq7o53BjFE5DJTRp4KFV2SVR2xVkwQsvT+0I09kk0+WReKI4yPV3Dg7sj2PUCu9pktjRJ2PXw7wfjTE8ReeO4RJNPocmn8NfSONNSRP5wII5ND5vq42yqj2M3CDy4J8oDE+GbVrizEJ6pgEePg1GE5RVhNnfEePBYmE+aYtyco8ehE5nm1LKmJUJHRCYgKWSbBI77o3zU6sesESjti1DaF8GoEfmsvY8ck44tXX66YxI9MYmtXX5yTDo+a+/DJIoc9IYYY9FxY7aV7pjMLIeRrzuDeKIy7qjEF+0hRpm1vNcUwKwRKPLGOeiRsGgFXjsZYZxNw+ctMm1hBZ0IKQaBN0/G+cHBKJ80yex2qx+rduDh9natQmsIWkPwzkmFqUkCjxxVsOugoF392P8B4ZTv1AH8t23CKDuP3zOJ3GEW9ry/mEWzUzl7enK/HvD/rc3Kd7JoVjK/e76CprZvIfX/q/2r/S+3HeUBjrbGWHFTEiOStFw3YwA+GuXSMHeY9ltr5/292ng7LEqD306ADBMUeuDJCuiOKjh0AjNdGq7M0jLaOvQbywizSGtYwh//71G2emISyfqh+/7PtlP1CQVBYIJd5C9TdRhFMPzPuv27t+9UEG7HikWqZsL+ThbOTKGxTQ24jMg0s7uoi/PmpXG4rIeRCYigrsmXsHezcGayai9LDM8wsafYw7lnpfDcqlpeWl3HR49MRJZh1gQb2wp7WDDVSVtI3w9B7C7q5rx5qRRWBPohiLrmAHOmJLF1XwdnTzLT2K4e5CMS/S+eYqKwvK8fgqhvDTFrop2CXe3Mm2in6ZTMXZqBA0d6WDjJRmFNsP8Vtb4zyuxxVgpKVXZEk3sAgthb1sfSGQ4Kq/z9EER9R4RZeVYKSnqZP0ntP3NsEg7rYKRJZx0C6wU0iVfg/9x+/P8Tgmhs6cWQCFrWtYaYnW9n2z4386c4aOpI7Fe6gT2lvSydZKWw0s/ITDVjrL4twsxRxkHrDwnZw5Iezpk8eH8b6lVq4fbyAGfnmalpj3D5X5r4/NZk3AGZxWMMFDfFuOR1lZEwJkkkFINgTMGgBWR4/BwDM9M1HGqXWJCtodQtk6GRQBBo9itMSRbY1y4zO10goTpJlkXgcIfM/EyR470CwxIc1yafzNRUkc2lQaa4oD0Ro8wwqsyEbL2Zar9MulG17wjLjDBp2e+J0xmR2dMVI9+u5aYRBlacjNEZlbkwzdx/mLaHFYYZdVQHouSa9XhjEgoKLp2WumCUsRY9jaEo7zb38uuRdsIK5Ji0VAVijDbr8MsqBJGkF6n2x5hg01EflBhjUyGI9pBMUFLY0Bajxi+zJE3kqmyRdJNIWa9CQYdEplHhqmHqeNrCCr8uUSGIzYtVfBgg3Qjlfpl5qQLHvJCdeAa2BOHW/co/bxCutinABfPTueXBQsbl2nhzTR37jnTjsOn4zdNlXHVeNnc/dgR/MEZplZfPNrdwzqwUfvx71f6tz+qpbfQjCAK/fb6cK5dm8szKWkYNN/Ps+w0cqfZx4VnJ3PpoJXk5Jr7Y42Hr/k6sZh0PPFvGledl8fsXjtHtjVJa6eWtT2u5YGEmN//2ABNGWXnrswb2l/ZgNWv57fPlXHFOCvc8ewJfUOJotZ93N7SybG4yf3jtJFnJet7d2MmBCh9Wk4Z3N3Uyf6KN+95qxB+WKasPsXJLF+dOd/DTF+rIG2bk3c1uDlT6cdq0/O7Neq6Yn8y/vVyHPyRxvC7IOxs7WTbTxU+friFvuIl3N3aSnWlmeMZg8XXNtwXhtEOnAg/VhlSY+6+ozg2hGyF8S8qyMpTGxH9Bn2Go71JNzwzurStoZX9pL0dP+HhnXTPnz0vhzscrGDXMzDsbWjlQ1ovFrOXBl2u4YkEy9/y1Fn9I5mhtgHe+bue86Q5++szA+p/a31e+7GDxZPug/d1a0sfsMWZuf6uVvAwDj6/vwheWWDTawENf9XLZZBP3r/fS7FXHmW4ReP4iC9vro9wxy8RX1TFkRcGqF3j8YIQLc7U8vDeCokBZt8InNXEWZmr4zb4Yo50iH1fLFLsVzFp4sijO+SM0vH48TkdQocIj81FVnHOGaXn+SIxkA3zeDEe9aoLEiydgjkvLm3VRQnGZI70SG9tjRBVY2RBBK4IvptAbl8k0atjhjuKTFMp9URSgJRynKhBjhEnHx629pBq0HPKGaA7F0IkCX3X6mGQ38klrH2FZwaXXsNsTYqLNwHvNPtINGkp6I1T6YxhFgTWtQWY4DaxuDqCgUOuXWNkYpdov0xVRuH20hg2tMod7ZLJNAm/VxmkJK0RklR1R61f4qlUh8UxlqlNgfYtCWS+YtQKvnFBYkinwxDGFoCRwog/WNiq0hfjn1YJo3n4xSQ4DHV1hVZPhb0uppBjx9EawmVWPr88fTdDKBuzleAyrWS1/kp5swNMbxWbW8IfnyqhqCPLZE5P7S6OEdVYEURjUvzdAf069LxDv7z/ZEh88Hk+UFFO8v39I0NAcetrrvaQ69QTCCZqPUUNbW4AMl4EeXwzrKRpaSCLJaaDTGyXVoeu3tyWZ6OyJ9msCWM0JGtqpHP/T7DXJVixmLZ7eGMlOPV5fDGeiQKU/GMdp19PVEyHZqSeiqJ6c2aSluydCSpIRb28Ea4J25w/GcNoNdHnCpCSZCCbm22+f/H8Re/+b9o/ygIOBMEaDhm5vlBSXAW9fFLNOjbT7Q3GctoH5+v0JGpdRQ3dvjBSnnm5PH1ZTYn8T+9XRFiA1ST+YZuiJkmoWB9HKfEEJl1E4Y78sRg3trQHSkwbvb2+nbxAN7cevtXB2npmfTNbi9kuk2bT0BCUmPKomFh29w4HLpMEdkNheF+OLigjPLjZg1qlUs1SziDcso4+paxOIg9Mg0hWWSTEJBBNEYLNWpWqlmER6JQWbXn3wBWIqF7i6OkBSgsYFqLSvKISiFvqiEu81xijrk0nWCzi0IuekaBhu1vBweYifjjQw1amlrleLJ67wVmMf9+Q6cOhEvBEBq16LLyZh1YpEZQVFUTBoRPxxGZtOwza3j66YxE3ZFiKygkWroS8mYdOKIMQBAYNGwBeXses0+OMS2eYYmzpi7HDHWT7JTDCukG2J0xWRWV4u4YsryIrKu3llhoA18YYTlODafeokdywVCUlKYr4CQWRSjCK9UZnE9hKUYNlW/nk94Iummvj3F45x3ngdtz9Sir+rj2PH3KxaU8vZwwWuvq+QiS6J11bXULC7BVcsyG2PlHLleA23P1qGv81LTXkXT71Tw3k5At/7XSkTbTFe/7ierYc9jHBpee2zZq6aaOAXz9YgBcOUlrp5dkU150/Qc/V9RUweY+K11TVs399Gsh1+8uAhvrc0mYdeqqLLG6W81sezq2q5eGEqdz52nNEjLLy5rpVdJb2kJhv42fIKrjkvg188X0tEFqlsifD82jYuXpDK9Y9WM3WCg7c2d7G7IkBamom7X63jqiVp3PlSPWFZoLI1wsfb3SyY7ODahyuZMtrCm192sK8qQEqKkZ89U8O1ywb6r2sJ8tSKei6ck8Q19x1hcq6Zlevr2Ly7BZdF5tbfH+aqRU5+9lAh0aCfkqNt/OWNMpbNMnPFz3cwOdfAy++Vs21PI0kWmR//Zi9XL3bxq0cO0dPdR1l5B395vZTz5zp499NKZuSZkKOh//gTj57xkcJ+pEjwjI8cDSHHwoM+UjgwZL9fbmtg+avHWTbHylV37SN/pI7VG07yzY4WkowStz5cwpXzbPzsT0cIegIcK/fw7MpaluUb+d59JUzO1PH6p83sONBFil7hp8vL+d5ZDu546gQhX5Tyah/Pf9jIhVNt3PtiDcMdGt7a0MrOoh6SjQK/f6OOCyeYuPOlOoJ9Ucpr/LzwWSvn5+n5/tN1TEoVeXuTm12lvaTp4Y5327hqkom7VnZwrDlCOCxRcDzA4uEabnrfQ36SwOpS1U1bkiXy600Bci1w9+YQC7NF3EF482iMxdkafrY5zHiXwBc1cXa1yrj08LsDMS4cJvLIoRi9ITjhUXi7PM6CVIE7dsYYpY3zfnmcvY1xLHGJB/ZGmevS8lg5+GIiJ/pE3qsXmO7U8lRlnPawwD5PnNlOLRekG6nxCeRb7bzTEMQTkwnGtexwxxlnNbGmTQ2ubXQH8cYU7HoNH7f2Ms1hYk1bH3FFwR2V2OkJMsFm5O1GDxWBKOkGLe1hGa2o4YNmH5PsZj5q9RGTBBpDMpvcEfLMRl6t95Gu17PXE+Xz1ihXZ5l4vzHCdIeR1U1RfDENOWYRXxx+mmvkhF8i16xjQysU9whYNFq2JrIA6wNq6nNdQKW9nZMCvy5UyLPCp40qBc6lhQ0tf18P+DtFQxuZaWDmWCtWk8iSaQ6mj1UxS72oYDOJnDttcE56TpqepVPsqsbCZBvTR5kRZJlwTMZm0nDuZBs5aQZy0/VUtUb5ydJk+kISVqOGxflWJo00kRCuwmbWcO50ZyJHXsVQc7NMnDcvFZtFy6x8B/mjBzQX7BYts/Md5GaZWDDdOWA/NwmbWcPSmS6m5w1IPdpNGs6d6TxDI2LRVAdWk4Yl0x39qctGvaiO5zR7UavS0c6b5cJ6Wv+iXkMoImOzaDh3ThIjs0zMiYAkKwOaFWYNS+ckM3mMrZ+da7doOW9eKjlDagJomT89ianjnYPmO+7/Ac2JCbkWls5JVsc/N4XcLBO+PCtxCUZmGjl3tqt//aflmFTRAehfz5w0AwsmJdY/3ci5053q+p92v52ynzbKnNBwSGggpOmZM8bcf/9Mzx2AeuxGkaX5FnJSdJydp14flqRlyXgTVqPIonEmbphj4dcfd3PBaC02g8DiUfp+jVqA4XaBCcki9xRE+N44LZePGig20K/5YBXpdYnEFci2CJydIWLWwsxUgXGOU47bgCZDplFhZpJ6PdsM81JVzYQZLoE824CjZ9bAGIuGhqDMLKeWSXYdqXqRbKOIQRSYbDOgF0WO9oUZbzVg1IjkWQ1MsxmoD6lQhUunJc9qwCAKjLXosWhE2iNxbFqR7qiaqTfZZmSizYAGSPob+yyjph/mMmoExlv1JOk1iKIGSYE8i5aeqIJBIzDKIpJjVj1djSAwwiwy06Uj3SgwyaFeTzcMzG92Eoy3n/q3mgwyLwWyTDAzkbeUNTRy9z9q3ykI4sVfjeb75yTx0rp2fnBeKiU1atbRtBEGPtjezZ2XpbN6ZzczRqs/lNJqH9fOT+Llrzu5aVESR+pCaFCYlGPiw50efnFRKh/t8TB1pIkdZT5WbveAAOOyjDx2YwaNYZFYHKaPsfD+Vje/vDKDNcVBpo1XkxOKynu56ZJsXvywnpsvy6a4Qk0xnT7BwXtfNPPLazL5cGMHMyaoP9DiCh83XpTB6x83cu2SVEqqVU2A6WOtrC3o4McXpZ+hEXHDuam89HkbP1iWdpq9hfe3uPnlVZn99oJOQ8kJPzcsS+OlNS384IJ0Sqr96Awik8eoGhR3XT+cDze2M3OKExShX7Pirx828sNLsyitCSDLMGO8nVVftnD3jSNZW+Amf0xi/AlNgBfer+VHl488TRPDyar1DfzbLRPQaP77b2ffBisMhesOBUsA7C12M3aEhfe+bOWuG0fw4ddtzBhtQlGguNLHjRek89dPm/nhhRkUH/OiKOr6v7+lk19elcm6XV2MH2FKrH+AG5am8OqGdm5YOnC/nboffnFBMh/t8vSLJ5XUBrl+tpVXNnVz40IXR+pUiGNarom1e7r58SLnIE2P43UBrpxu5dUdvdwwx0ZpU4Qt5UH8fRFGODXcNc/EmmNR7v9G3fc/ztfzUnGMqKRwbo4Wg6CwaJiGySmafs2HdTUSE6yqsMxxj8JlI0VWnZC5fLiarAADmgk/HCvy9ck4YxIHT3mvqsWw6oTAojQNJ/zq2ZBnFdjcLjPPaebZmiC5Fg1zXXrqgxKjjVZ2e4L0xGTK/WH0osCyZCvFfWEUFOqCMQQgSadhSYqFKXYjuz1BJlkNvNboIUWvQYOAOybh0IpMsxsZZdYjAE3hGDMcJnZ7gsxymOiIRlEUhWEmHYe9YRYlmyj0hhlvU1h+IsBNw4zMTzGwpSPCBRkiJ4PqfTPKIrLDHeeSDB0HPFFGWdUDuMYv80qteh+tWyhSpf58GWeHTW0yN42Er1phYiIX6dlKNRj594QgvlM0tIJiL/6QxLYSL/UdYfYc62PPsT4a3TG2HenFH5LZXtpHcW2A4toAB6oC+MMSBUf7qO+MsrfcT2l9kIbOCNvKfPjDEjuO+SmtD+G0aJiWa+IvP8yiqDbIhctP8smOLvYc66O+I8y2Ei/+kMzekh6KynspKu+l4FA3vkCcrfvdNLSF2V3sYXexh/qWIFsOdOELyRQc9lBc4aO4wkfBYQ++oMSh8j7q28PsKe1lT2kv9e1hjtQE8Icktpf0UlLtp6Taz/aSXnW+RV7VvqyPPWV9NHZG2FbkHWx/wk9BUQ/+oKo5cKr/kio/9a0hth1Sv7ugsIejJ/wUV/Sp4w9KbD3YRV1riKLjvewu8lDXGmLrfje+QJzC4z0Ul3spLvey7YB6bes+Nw2tAXYXdbG7qIv6lgBb93cSiX5bJtz/Xiuu7FPHf1Atd15wqJvjJwMUV/ooKOrBF5TYdriH+rYw+46p61nfHu5fT3XtA5RUB9ieuKd2lfUNut8G7geJ7Uf7KKkNUlIbZPvRPnwhmW1lPhrtMju4AAAgAElEQVTcUfZWBdhbFaDBHaWwLow/LLOjIkBJfZiS+jBHmqL4wzLbK0M0dMfYVxumuSdOSWucF/eFuG2tj+21Axl/B1okli80kGIWcBkFNjZIfFAZp8kvs7tFIhBTJSirexWOexT2d6gaCfvaZVoDUORWKHIrNAcV9iX+drxXPXjLe+GgWyEQh0qfQltYocwrU+ZV+bSFPTJhGXpiCu6ITH1Q4lhfnKgMB70h6kJRptqMpOq1bOj00RWNM8thYpxVT7ZRS3dM4mQwQkRWqPKF+bLTh12rIdes54I0Kyk6DT8e7qIhFKM5HKM1Eqc6ECUiK5zwR/DE4jQGo9QGY3iiEpV+9W9VgRgtYRmHTqDQGyMiKRzzxXBHFcr7JMr7JDrDCke8ccIyHO+TqfGrnyPegQd7awhKehRKelQ+8MFuaAnBoW51bQ53q4fv37t9pzzgnq/PprMzSJrLMCj40eeNkjQo+KQurFmUcffGT9NYEFHikirobNXS6Y2R6kjk4EsyFsOAgPXXRb384ZMO5k6wcelZScwaZ0UjKGSNTz9D8yEtSQ3m2S2Dgzdtbb2kJRnOsE8xDQ7e+IMSTqNAZ0+UVKeOQCihEWEScXujZ8zXF4yTZNcPtteJWM3aM+xFvUhfQB1PpydCqktPIKYgiOLg8Xuj2G2GQePv9ERIT7UQCCbGb9bg9kRISzbS1RPFYTslKK8GI/sCMg6bHikRzNBoBGIxGZ1OJB6X+71jSVLQasX+v52yFwVpaPu4pNrHZXQJ8XI5HkWjGbh2yj4ei9EXiA+ar687qArWnz7fvhgWQV1nf0jCZVMFytPsWvyn5msS+wXQB+1XSMZl09LeFlDvt4SGg8Ug0tkeIM2p77/fQBVMd2rl0zQ9VPvmthC1XXH0GoERLi0jU7Rsrwpx24pO7phr4vXDIXb/zMmsl1XXteo2C11hhVSTSE9Yprknzm1bory6VM/UNC1dIVnVR+iNgChi1gh0RxRSjCJd/thAsO204JxdUalbAGaNQE9EQYnr6YsNBJ9CEth0IpUeHcd9Eps6o9w/xoxFK1Ldq+WZOg83D3OSY9LhjUm83NDDZek2xph1GEWRVxo8GESBzqiEAsRkhSS9hp+PcGEQhf5gmy8uYdWowTlZkTFqNPglGZtWQyAuYdXIIJxpLwoh3muJMMai5awkHQ6dBoUwZq0635AMNq2INyqTZpQHBduu3q9yz9YvFLCcFmxbUaewthmuHga/TNS6fekErG3+Jw7CzRph4JFVjSzI0fHj507i7ghxqKyXj7d1MjMNrnziJCPNMn9d386Wwx70kQi3v9HMxaO13PpqE50dQSpOBnjy804W52i4+tlGci0yL33lZmuRF300yu1vt3FJrsjDa7u4bp6d0pMhVmx2s3JjJ8+saeOzjS2sWNfIgUI3FinKTx45zqWTjPz+1Wqqa3o5UNzFX1acZOkEI794upoUi4bnVzeyeX83RhFufaScK5akccsjFXT54hyq9PHM6iaWzUvm8geOMybXwl/XtrK1pBeTRcddz9dyycJUbnn8BN0+icNVAdbu6mb2BDuX/+44Y4aZeXFtKzuLvei1Arc9XsUV85O4eXklXd4Yx08GeHxlA8tmubj0344yOtvIu+tb+XKnG4NW4NY/HueKBcnc/O9lBMIye454eXpFLefPS+XiOw8xLsfEMytr2bS3A6MObvlDCVcsSuXOR4/S3BHk4FEPT71TzbKzUrj7sSPYTQpPvV3JVztaMGglrr/3IFeck8S19xyg3R1gX3Enj7xaznlzHCy+ZRejsnQ89XYlX+5owShEuf7+Qi6f7+S6ewtp7/Cxr7iTFZ83MHuskaW3HWBkmoa/vFPNvpJu5HicGx84wuXzXVz/mxLaO4OUVvbx5Dt1nDfLxaV3lzAq08iHmzpYv6sLo0Hk1keruOKcFG7+cwUev8ShqgDPfNLCsrOSufyBY+TlmHn+8zZ1/c1abvtLDZcvSOaWJ2vo8iXsP23lvNku7nujAadNx183dLD1SB8mo4aHV7exdLqDW19upCugcPhkmOe+dLMk38rVzzUxKsPI019189iGblbu87GuJEBDd5zHvu7haHMUjaA+oFr9Cp6gzJxRJtYeVQ+JOSMM3LM1xGUTjdy9OYxGKyAKAi8difG9fD0/3hhhdKqODXUyW1sULCYNv90f56Ixeh4pluiKazjWJ/B2lcySUXpu2x5jQpaeVbVwsEfEbtfxYKHMVeME/nRUIqYTOBmBjxplLhoj8vTxMIvTJXa6FUr7ouQnxdjsDjHFKbLJHSLdHCFEBE9Upj0S5ZvOIO2xEH5JJs+mcH66gfqAxJ/yLZT3xdFo4gSUAAXdQS7MjvF8jZ9pyVF2e4L0yWFM+jBvN/iZmxrlkxY/VmOUjliYrV0h5qZGebQqwPFAiM/aovjiMhMdMp+0RLg4W+LDpig9cYn6UJx1rVGWZEj8+7EoObY4X7dLlPVJpJjibFQ156kOQFAQqQoIvHtSYUei5mlFH3TKIkU+kYvG6PiiTvrnpaG1rJrGwdIeFk4wU3QyRE5qgtDeEmR6joEdlSHOHmOiyaPiOtlWgQMnwyzKM1HUECEnWYeAQn13nJk5BnaeCDFvtGqvxCSGObUcqIuwaKyB4qYouaPUYExDV4yZuUY2FPpwZVhYu6+HL/b3cN81mUwcaWbJVDslDWFGpKnYXn17mFnjrOwu93NWvoPGBMN7eLqRfUd7WTov+cwEjXFWCop6WDDFOch+b0kPS2a6KKz0qQkXQGNbiBl5VrYXe5k/2UFjZxiURP9lvSyZ4exPEBB0GurbwsyaYBvo3x0BBIanG9h7tJels1wUlveRm+tE4FQCgoOCQ90smO6ioW0gwWTvkR6WzkmmqMJHTpaKfda3BJk9ycnOw27mTf0b+xIPS+Ykc/h4L7mJ+Q7uP4mGRELN8GQNe0u9LJ2dxOHyvn77+pYAM8fbKUgkyDS2h0FQGJ5mHDT+kVkmUBR1vhMH7Jtagyin1vOol6UzXRRW+MhJMwzs13gb24u8zM+3qesJDE9T13PxVPtAwstp+7vrsIe54600dqoJHcNT9ewv87JoiISaGZkiBccC1HdFeXJDF5dOt/GHC+0caYqyKM/E5yV+Vu7z4QnI/GqBmdEpWm75sAdPUOYUsrPiSgsaQWDhCC0l7RJZRpXGdfeWMGYdjEvWcPNkPT19cQQgyypQ2C5zdpbI0S6ZYQnss8kvMzVFZF+rzKwMgUSN2X77WU6ZMo9CtkV19FoCCpOTBLbVxJniEvi6RWF7p8JT00SKugXiCvy1WuKWkRrG2QR64zDKLPJBo0StX+GSTJFUg4BRNHDCJ5Nv11AbkEgziDgNUdrDMM4mUNwjoRcFdndJVPQpuCMKGUaBqKwmcUywCfx8jJbuiMKmDpnemMKV2RpS9QpmrUiaEcq8CjNcAnUBiQyTOv62EEyww+/LJA50w7IMuG20mmCyaJs69xfPEpmY0ANuDsA37fDxCYlrx2q4ZYK2f32mfxj+58WAn/i0lRmjjNz9bisOi4YvCvv4orAPh0nkV+93MnuUkSe+6qa+K0Z9V4wXtnqZPdLIrz/qwmkW+fJogK0VIZxmkV9/1MXskUae/KaH+q449V0xntrSy+wcPb9e48FhEtl6zM8XxT6cZjVn/9zJVvZX+Ln8LBfLbxnOo6tbyMs28suX6rGbVU2G9Xu7cVq1/PKFWmaOs/Hoygbq2sLUtYV5bGUDc/Lt/O6lMzUi/vhmXb8GRV1rmLrWMI++W8+cfDt3PlOtaj7s7mL97i4cFg13PlfDnIl2Hn2vkbrWMPVtYR57r5E5E+3c+VxNv0bB5oOeMzQuGtrCgzQN7nyyCqdNx8Y9nawr6MBp03LH8mPMnezkxQ/qqWsJUdcSYvkbNcyd7OSO5cfU8Re0sa6gDaddxx2PHGVWvoNHXq8e0MR4o5q5U1wJey3rCjr6+//jKyeYO9mp2if6f3pVPXMnOfjF4xW4bFrW7ehk3Y5OHBYtdz5Zxdz8AU2GxrbIGeNft9PN1/u6+zU3Ttk3dgys59x8B3f+5QROm5YNe9T1dFq13PlMNXPy7byyrrV//U+t5z0vnezX3Dh9f2eMsQzS6Hj84xZmjbFw1xtNqubDoV42HOrFadFw+1utPLbezQvfePjNZSlcNN3Gir2+/vtzyjADyyaaae6JE4krvHsoyJ67U7llzgC3+udfBugNK9y/JYjDILCxNsamOokHzzbgCSlUdElc+kmAFr9Eo0/hxZIY09JEfr83qmo+NMTZ1BDHoRf4/d4o09JE3j0Wp9GnDLJ/9qiEXS+wtVlma7OMXS/wUKHERIeqmRBXoDEIb9XK5NkECjpk5iSpB+7tRXG2tMs8Xx1jnF3EHVF4sirOA2UxnqwKohHgrboQFq3A4Z44uzrjnPTL/LwoyvPVcZ6sjOGLwdI0kWXpIo9P0TPOJvLMVB3emMK9R2I8URnnSI/Mb8ZrKe9T8MWhNazwXr3ERIfAcyckrDrY5VbY5Vaw6uCR4+rhC7ClXRV9f6N24Gy5+4DM/Ycktrao+g9RSWHTlQZsOlWmstGv8Ncjf39dle8UDe3/pZbu0pGbYWDVFvd/bPyv9k/b4pLC42va2FLq58/XpVPXEel/c/vbtrY4wMwcA7NH6DnYmBAxP033YelILQ/vCDItY3DCikUnMDZJw0MLDJy3OsDhdpmZ6f8Y30pRFNIMAjEZmhMSKlpR4IpsDTkWgRq/wuYOFeNuD8ex6eDGEVqCEmzrUHinIUREgol2iQOeGA0BmZEWBasWHpygp6BTYrJDRCOANzYQJNOJAldma4grAlOdAmuaJUz/AeMmGFcwJwR3DBqBizPh6zaFs1PANoSwTkk3LEhXOMVNTDL+YzU34DsIQew/4mHRRMuQEMT2iiBnjzXR7FGfVNlWgf21YRaPGxqC2FEVYt5oI8098X4IYn9dmMVjjUNCENvLAyycl9avyRCKyFz+UBV6rUBulpHHf5bLiDTDwCvqcT9nTXLQdDqkcLSXc78FgjilQXG6/Z6SHvWVeQgIoiABQTSdBkHsLetl6bdAEP39nwZB7Cnt5dzZQ0MQ2w52MX9aEk0dp2lclHg4d27Kt0IQZ01xDdbEKPGw9FsgiG0Hu1gwPanffniyhj1HvJw7Z2gIYtvhHhZMTWgyJCCI08f/txDEKfvmtlA/BLGn1Mu5s4aGIAoSEETTaRDE3rJelnwLBLHzcDdzxw1odAwFQfhDEgt/V8XXvx1BZ5/E2XlmmrvVwzXLIPffn4X1YS79azu7f5NNQ2uQpWMNbK6MYDUIXLPC0/87sOph5ZVWREEgy6jgCckEYjAtXcPuJglJUXhoZ5jXz9Uz3C5yuF1m/rdAEHtbZWalC7QlNOSzrAKH22VmO2U2N8lIiipes6NV5mCnQk9EzYqzaGGUBe6fIFDuFZnqFKn0KWQaBeKyQqVPYZZLQ2mvwiSHSGdYPWO06Knok2gKSWzrjDE3ScslWRCSBMbZBEq8cr+9AKQaBY71ykx3ilT5FDKNCoIg0B5WVMjCqzDZIdAdkQFhEATxeEWM3V1wQYbAZVkiE+xQ6FEY55BJxEAHQRAAl40Q+FW+SHMAZo/QsbdNZna6SGuCjvePgCC+Ux7wwRN+PtnvZeIwA6t29jB1pPoDrWwMMjwpiQ/29aHTCOyoUDHFc8Ya+OCAj0lZet474GPaMAOCqFDSGCUnScsHB3xoNbCzKowcl1icZ+LDwwEmZep476CfWb0CcRlKG0PkpKTy/m4veqeZHUdVwuDiqXYWT7Fx77VZ3P9mA9c8VM7dV2dR2xomJ93A6i3tiIJAQZHKX1ky08Wqb9qYlGdjxZdtTBun8n2PVPkZkZbDqm/a0WsFthWq9ktnunhvUweTR1tY8XV7Pz/4RGOQ4Wl6Vm3sQKcRKCj2IqCweIaLVRs7mDzKzIpvVHuNXqCowk9OhqG//52lvcTjCktnu1j1VRtTxlhY8WUbMydHkGWFI5V95GSaWLWhGa1GoOCQ+u62dE4yqzY0M3msnZXrm5iSpz6gSip7yckys/qbFhCg4IBasmnp3BRWrm9i0hgbK9Y1MS1RnPRIZR8jMgys2tCMTiuw7aDa/5IZdlZ91cqUsVZWbGhl2jiVf1x50s+IdCOrvmpDr4Vth3vQaWHh9MHjnzbOiggUV/nJyRyw31PiJRKTWTrTxapv2pkyWrWfMtaCiEBJ9an1aUMnKBQUexPjcbJqYweTcoys3NjBtETNsyM1AXLSDXy6y4MgwPYjvsT9YOOjXR4mDjexarsqtg6Qm27g+W+6kWXVk9tRrp54C3N1vLOnj0lZet4/6Gdkspafruqksj3GddNMlLVF6fAN5kD7o2DUwMrSCCc9cQrbZUY5BT68wsInFVFunKhFAB4/HOO2STrWVMeZkKTjs+oY4xLSluVdMsOt6t80gsi+NhVLzraKvF8RJy4rdIYg0wxxWc0Qe3KuhhXHJXIscMIHI8xQ64dtHTI5ZoFv2mTGJhI3qn0KeVaFLe0SWgGKe9Q5jDFL7O6K8cMcIx1hmRS9hjJvlNoApBu0g+wlWWZWsnot1yywqT1OnhUUQaTGL5Nu0LC5LY5W0FDYHUcrisxwiWxsl0jWi+xWb0E2tStEJYk7x4p83abqYBxKPM/mDNQW5YJsyHfC1haZci+MTlNYUx1HK2jZ26aC8Gdn/v2l1L5THnDX6ul0dgRJc+jo8cexGtUFCWh0JNlOo5WdVurnFA2txxfHahKRuvpUGppFM6jUjxKIYNYLuP0yaTYNPUEJm0MPgoA/LPfbpzl1/aWBLAahv3SMV9Fw68tN/GxZCnPzzLisWrpF3SBanMWo0prSU4xnaj4kG/s1KE637+yNq5oVp9OgIrJKQztlH5IQdDosJi1uT5S0UxoXidoup0ondXZHSE3SEzzVf6LUzOmaGAiCSitz6OnoVilnf1uaJj3ZQHdPaLAmhkNPh3sIzYTTaF+DNDHsugFaXMLeZjUOHs/f9t8dIe1U/4pKizvTXhjQcOi3VzUEzpjvUP27tGfMN9XGkOPv6AiqNMDTS0t1RVTNh1MaHcAdT51gzQ43V8xP4t0H8vrtH3qzjnc3u/nJ+ancfXkGV/ypigb3gELbrFEm7roomZtfbu6/dt0cKy/9KIOajihnP9LYf/348hwURSHVpmFbSS93ftLDrxbbyLRrmJ1jwKAXiEqQYtXgj8i4zBrcPgk0Aha9yLNbe1lfGuC8CSaunWbGaoTcZH3//eYya+h0h0mxiARjCdqaTugvvXV66SF/VCEpydBfOikYVe1DEiAIqn1QxmoQUCSZBo/EmFRtv/1963v5sDjEj2YYufccK6lWtdSSKR6nK6hg1Aq4TCLugMxz+0O8dzTC9RN1PL7E1K+Jcf/WAGsq49wwUcd9c404jQJdQTkxfhLjh9GvqM5U6c8dWHTq+AMxhbR008D4T5tv1p87/nlpaFUtYS6cYuP65+qZkmPi7QIPuysCpCcbuP3Fk1yzIJlfvFxPOCZT0RTi7Y2dnDvNwXWPnWByrpm3NnZytC6IzShyx7vtfG+2nV+ubCccU6hoDvPSjj4umGjixrc7mZRtYO2RAFuOB0mxafnFynaunmXjtx934gsrVLZGeXGzhwunWPn+Sy1MG2Xm4z1eGruijM828vPXmrhmSSp3PldLOCpT0RDkhTWtXDTXxS+eq2FMtpk3v2xnV2kvqQ49y1fVs2xOEnc8VUU4IlNRF+C5j5q4eH4K1/z2KFPHWnljnUo3y0gxcNufy7lmWTp3PFah2tcHefa9Oi5amMb37ilk6jgHb3zaSOmJPmwWHbc9XMq152fy80eOEY8rHKvx8eyqk1x8ThpX31PI1Dw7H37dwpb9XaS69Nz6x6Ncd34mD71cRVfPKY2Lk1y8MJ2rf32IaePsvP5pIzsLPaQmGbjt4VKuOT+dO5aXq+M5GeC59+u5aEEq19xbwpQ8O29+1szOoh5SXXoefbOW8+alcMfy4/32r3/axLKzU/vH88aaRnYWdpOebOAnD5dy3fmZ3P7nMsIRmdqmIE+tqB00/jfWNHL4eC9Om45bHz7CdRdkcfufjgJw9ETfoPFPHefg7bWNbD/URWqSod/+T69W4e6JUn7S378+Nz1QwsTRVt5c29I//p8+Us41S1LP2K+L5iVz7e+PM2WMlTc3tLHxgIf3N6tFLKuaQhytDRCTFA5V+Hh2TSugZtAdrPKj0wqkO3V0euOkO7VkOLR8UeSjJ6A+EC6YZOap69O44ZVW5ow2UdoYotMnc8kUM58c9nP1TCuLnmjm7f2B/8PeeYdHVW1t/DctfdIz6QkJNZCEkBBIgNCbNAHFAgKCUhUUKwICUqWICNIFRKWKgvQWei8hQAoE0nsy6b3N+f44YZKQyVWu3qt8l/d58jyZfdasWeecfdZZe6293427lZwbCeU8VFcy72gee0KKWRFcwInIEtq66vPOrmzuppTzzs5sLjws5eT9Evxc9FjwoiUjtmTw9elCTkSWkJhThY2JjHd2ZdO5kYLPjhRQWilwP6OSby8V06uJHm/sycPTVs7WW6VcjK/A2ljKtIP5DPI05L19eZRWwsKTBcw4lE9OcRUbLhfiZa/HlmtFLD6Zz5fBhfx0s5ix7Y2Z+HMu+8PEFNCd1Epe9zFg/N48PO0UTNhfwILzJcTlVvHDnTI6ucj54IQ42g3P1BCWWUVfdwVjDhYxsY0+elIw1pNgZSjhw+ASBjbVY/b5UgorICpbw/qQch5WR+d9Guvxw50yLidWYmUk5f3DBQz2MuS9/fl1zjcqs/J/lwuim7epyPngpcTVRo+OzcUhoYuNgh4+ZiJHRGtT7VJkmVRSjyNCUliCq7WC7q2MMTGQ0tXDmDaNDBCKpSABpYGUbs0NcbWSUyRIqdQIuFrL6d5SlA9saoi3Sw29o9JQXOPvbK2Hq0oPJysFrip9engpUT7B4QAih0A7DyWN7PVrOB/s9WnTVKnlKPBtUcOpoDSWazkcgnxE7gUX21qcEv6W+HookcgVCEINh4ObgyFBfpYoZJI6nBXd21nRurmpdks2U2M5vQKsaeRohF8rczRVAo0cjegVYF3NcWFOq8amWntMTeT0CrQR7XmSE8NQ1O/rUUu+FidDpzYWWnmfFqZaDorH8nKFvI49Qb6ifld7A609Pdpb4+dhhkQCZRWaevJSqVS0v/p8e7S3xrOpqXY1s9Z+RyM6+lggIKkj7+thRkv3upwenf0sdXN6GNa/X6ZGMgJbmYocHa3NqKwS2H8+E3VeJW/2VdGmqYm2P3T2VHI+rABrUzkKmYSPXrJHLpPgYFDF8TuFtG9ixNCv4rW6+3gbi/2tpTGu1nJm9Lckr0RD5+ZG7LxaQGmFWN8AiEivZO4LprwVaMKbP2URHCWuqAtPrcBYX0L7RnqsPCOmTkISy3m9rRFtGxlQVikQm1WllZ3cWYmLpZyySoGgtVkEuirwcaipYCn10XJWdHAR213NZfg5KTDRl9CliT6uFjKuxImR/a6QEt7vYoKLpYxWdgrWXhDnwKUXaCit1NC7hQH6cgkHw0sJdFHQyEJG18Z6mOhLuFO9vf3RRxVMaWeAq7mMQCc5V5Iq6ddETpCzAhM9CV1c5TgrpXSt3rLJ2VRKZ2c5xgpo5yjH06YmlXCkeimyi5mUACeF9v8ujfVEXY316pzvwYj6G7n+GTxTKYj7G7z49VwmY7pZsetSjpbsJFJdxdAOlqw5mM6I7taERldzRLgbs/2Mug5HhJBXyK3YMl4LNGXtqRyGB5oSmlCKprgCHxd9dl4vZFIXU3bfLMSvqTEaAUITSnm1vSnrgnMZ3tGM0ATxJvi4GLDjSj5vdjbjo11qzoQV8ulQFYZ6Ul7rZMn3V/J5qUtdzoefTmYw5WVHdp7KoE0z8cG9HVXA8BfsWb1X5Ci4HVUt38yEHSczmDzMiR3H0vCtzqFGxhcxtLstq3clMLK/AyH385HKFbSpxeGw/XAyfi3NkAA3a3FWjBrgyJ2ofDSaGs6KqSPc2H44mbYtzRAEuBVZLb89lpGDXLgdKe5ALMonMnWEOzsP1+R0H3NibPk1jiHd7Qi5Lw7rfFuY1uVkqHa0IZH54vnuFDkoHsv7tbKsY4+fh7gIPzy6gJd62Yv2DHTidmQeMpkE72am9eUlEtGeAU6s2h7DyIHOhEXlU1El1LF/+6EkfD3MkEgk3IrIrZEf4PjE+Sbx7jAHdhxNq8fpseqnWEa+YF/nfo2YHc61iAI6eZuxeJI76/Ylcy28gP3zW/DzuSze6KUiOCSHK+EFhEYV8DC5lFc7W9HE0YDO1SRARy9nsvtSHuqCSvr7Ktl5SfcO0M/x1+HLnka0thUd8530KoYHKFl/pYjX2xhyJ0V8qbV2kOO1PPN/twgXl1HOrZgShgVWcTa8UNsekVZB7zbmBIfm0bGVkovh4pvd3EROcGgeo3vacOaO+JDrlZZzNrKIAW1MOB1eRMemhlyOKkGoqMTCWMaZByWMDDDhXFQpBkbim/9sZAn9W5twOqKIDs2NuBwlVu2N9aRsv5THxtM5IJHgZqvg9N0C9ORSBrQVd6vwa67k4j3xty2UcoJv5fJmPzttoQdEjouBXVUE38ghqLU5F0JztfLnQnIY2d+e0zdrFqLfTyimV4A1p65l06mNBRdv5yJXyDA3VXDqSiZjXnTSFs4M9GWcvp7FoK624s4gvpbcCMuluFSDhamCk1fVjBnsTPA1NfoKCWUVAsHX1AzqasvJq2o6t7Xmwi1Rl4WpgpNXMhkz2IXLd3KoqqaKe6z/TlQhPi1KuFi9aN7CVMGpa2reHOyoteex/MAuNpy6pqaTr4VW3trCoI49j3HvYT69O9hw8qqaIF9LLoRkozQSo+Un5RVyqWh/NztOXskkyNeKW5G55BVU1rE/+JoaqVTkagnO488AACAASURBVK8t38XXggsh2TXne1XN6P4qjl6qsef0jWyuheXx05FUQh4UamdrgMC1CLHvXbybx/nQXEKjCknMKMVvfCgSCWw/mUFSZhlu9gaM6m7FoWs5fD7ciQ82xWtrAg+SSykq02BqJMXF+j+wEdlz1MOF+Io6/w/yFTjzqIwOjfS4XB29mxv+9dPSnqkI+NEmL8zlQl0OB0BpZaRzzX5RSRXm1Wv8xWJJFVVZBXU4H7ILK1EaytAUllFYWoWFsZyMgkpsTGQUS0U9onwVBnoSzj0oJjy5gluxpYTEleJirSA9twIXlT4OlgouRhZxdUkzNBqwdzcnO79cSxD/mHNAXVCJ9ROE3RmFldhZGZBVh1OiEksLg/rFKqVYUFNZ6WvlpQo9LQdCneKTAMZG8priWW4ZZiaKJ4ptpSJnRXH17rKGcpEHwsqArLwKTE1qcT5Uy9uYy+sR0KssZHXtL6pb/KtbnCtFZWlYR76oFJFw/7E9dfRX25NbhqmJAgnUOt/a8tLq860lb6wACfXOt7C4opojokb+fkwujZ1N6tg/fk4IO46lM3qAPYunNKW4tIomL17S9s3I3e2wMdejoLiSBZvj2XwolbED7Jj3tpv2fJOSCqkUJMSklODfQomBnpSC7FItB8Xj/glgWF7G2fBCzkYUc+JOAQ/TagpzGd82ISOvEhtTmXi/HvfP6mJwdmElxpUVYvG4TMPJB2UsOpHHlY/sqdSIBa/bieUEPyjlWlw5owNM+LCXOBJ43P+z88uxMJYj1NpXTaMRyMouw8pIqqXAFAQBKqrIKKxCZSLTys84XsS226WM9jdi8QDTGnkJSKVSNBoBqVSCIAgIVRqt/sdtEokEobxK+79GEJBKJJQXllNaKRbD1MUabIxlZBdXYSgRp6EVlQuYG0rJLK7CUk9Sp3imLtFgYyQjt0yDyWNOjGr5rFKN+LzXks+VybFVyskurkKpX83pUaah5bL/cgQskUjmAnOeaE4XBMGu+rik+vh4wAK4BrwjCEJ4LR0CUAG0EAQhplb794C1IAgD/oixY9an8MPitgydd4klH3rx83GxOvxKTwM+/jqaw9/68uaiR/Rsbw3A9RA1KyY2YtC8KBaNdeGXC9moLBQEeZkyc3MqBxa2ZOyah/RoYw4SCA4pYMunTXl5VQSLxjXiwt08MnIr6OZjzrQ1sWg0oK+Q4OFsiLPKAHN1BXmlGgwN5bwzyJ5318bh39yYe6mVzPw+kUPLvBiz+CE924q5z1M3c9j6WXMmrHjE1Ndd2HtKLM681MOW7w+n8/UnnoxeEEavQBsATl7J5IfF/gz88Gad8x3ez4UPlt7l6MZOjJpzl14dVMhkUo5dTOPHpQEMmHKJZR+3Zs/RRFRWBnTxt+GT5Xc49l0XRs66yYDOdpRVaDh5OYMfvvSn/zs3WfqRFyevZJCTX8GwPk58uvwuRzd1ZsbKSFpU50RPXc5k22I/+k++xrKPvNh9TLTn5d5OTF9xj6Mbgxg1K5ReHVSi/dX6B0y9xtKPW7PnWCIAw/o4sW1/PCtm+DLq8zv06mgn3q+72ayZ247+715i2XQ/9hwR85/DB7oxbWEIJ77vychZt+jdyQEDfSm/BSfx0/KOdeRNTeT0DXLg4yUhHN/agzdm3uClXk4UFFVy4lIqPy3rSP93LrDs0zZs/y0WhULKsL4ufLIslLaelvx0IA5/L0sGdnXg5OU0Vkz3Yccx8T5tO5RKUbmUkYNcMVcqyC2owN5anz0X8rXXZ+sCH87ezePF3i5M/04835d7ObBmVzLrZ7fm67Uh9AoUH/QHsQXMf7cFL358jaXTPPj5RGb19bRj5q/xvNbXkbjgbIL8LGnlbsSdqALyG9nz0rshfPleM/aeSwUkvNTTjunfPWDPstZMWhDBgHZmFJUK7D6dTU5BJZVVMOLXYkIi85BIoJ2nOQ/SNRzbFMjK7QlsTVHWul/eLP42kg3z2tZ7/myMzOq1TZl/g/U/3GXiKG/WLuoOwNZ3YWmuDJXNE3sManTkTxuiINWB2DQ5Xy4P5rUhrZk26xBn9o9j6ts7GNDZgtLSKk7cTOWn5R0ZNSaY5dOas+tYSvX1tOfTryM5srYtM+aFElCd6gm+lcPWWR4s/PYRo/rZ8ctp8foP7WbD5xti+O0rHyZ8EU6PdmItIvh6tm7D/gR+NwKudsCvAV1rNVcJgpBZffxTYBbwJvAAmA10ApoLglBQLSMApcB+QRBer6X7e/6gA5ZIJMKZ74Pw97Qg+Kq4yWZ89S6DjpYCl0Jz6d7OkhvhNRP4H93LpG0zY87cya9e41+GVCbFyUafy+H5dPMx42ZUIY1sDUAm1U6wP3M7j45e4qaKJ2/m8vXPyXT2NuXb9xtzJzyXRip99lzIZsPRDI5+0YzwhFKW/ZJK+xZK3uxlg7ONHpcjC+jRwabepo1tW5hw/n4xHVqb1yxAsDXg+oNSurS14kZYLo0caxY4tGttXe98Xe2NuXg7ix4BNZuQSqRSYpOLaOdlSfCVdILa2hCfUowEcLY34uKtTHoE2nL9XjaN7A0ACXFJRfh7WRB89fEmp6UIiJuQXgxRi/rvZODqWHfBRfC1TIL8bLT2iPJZ9Ay0rbMpqlb/NTVBftZ15K/ey6FrOxXX72ZrNzmNTyvF38uKU5fT6OyvIj5ZzOW7Oppw4WYGPTvYc/2uGjcnJYKgITapkHbeT8hLwMXeuFrejut3s3BzMEKdU0ZBUYUofyWN/SeT2Lw3mldecGbDvHYcOpPMyE+uavvbzb09KSyqxN/Lkpffu8TRC+kM6+PEzAkttNfHs4kx8Sklde5X25amnL6mppOvZR1OjMt3cujmX/f+JqQU4dfSrJ680kjGyBmhlJVr+GCUOx19LNBoKrn3sJC9J9PIzq9gRD8HbobnEZNUTFJ6KRGxRUglYkpFEMQteJo7G7J2WmOW7kzG1MKA115wwMFGH1d7Iy2nx+2oUlwd696v2w/y8WtVf+NW+RMOOCOrBMeAHdrPaaHjUVmL5yZRmFIPf9IBlwoWxCfm4upszvkrsfTq2pRrtxJxNBK3bKrdHzp4KOpxknRvb821G2nV/R/tAqULt3Np71mXs+XivTx6+FvWWzDV853bfwsXRKUgCGm1/h47XwnwPvClIAi/CIIQBowGlMDwJ3SsBl6RSCR+/66x5koFn60MI6C1JfPW3ScmqZiYpGJW70igvZcZkxdGkJJRyvvLIhk/P4wNh9Pxf/cee89n0fOTCGZsSWDOtgSGzrlPQkYZL8+9T3Z+JbvOqNl/IROJBN5Y+ICyCg1vLHjAe6uj+fbXFLr6mLFySmM+XBuLuZGcn85ksWRvKsvecmbxz6mcC8snLbeCzp4mWk6Ads1MmLkpTsvJ8NvFLMyVIoeDfytTFnwXQ0xyCTHJJSzcHEvblmZMmn8Xc9O6HAtTFt7Rcb7RBLS2YsLcEMxNFew7lcxvp5OxMNVjwuybBPhY88WacGISC4lPLWLe2nACfKyZMPsmFqZ6HDmXyr5TyZibKpgwN4SA1lbMWxtJXEoRMYmFzF8XUa3/FuamcvYHp7I/OBVzpYKJ8+4Q4G3J0s1RWnvmr79PQGtLZq8O19pTX38EMYmFWv3+npZMmH0DC1MF+04mse9kEmZKPcbPukagjzVfrLpLTGIBMYkFrNwaSaCPDeNnXsHcVI9fT8Rz5Jx4vk/Kh4ZnM2/1XQJ9rBk/6xoWpnqM/PgyvkOOsmZ7FOM/v04TFxM27xWJAPYcTWT68lD6dranWfWOHh3bWHHhlhpzUz0mzL3FtsX+TBjmxuv9nYlJKmL+ukgCWluxenuMyEFR6/p8uiKC9t4WzF8fVcOJsSGKdq3M691fMxM5k+bfE+WrOTROXMqk7WsX8XAzQSaTsGFvPCM+C2XasvtMXhjBzYg8mrsaM2N1FA/ii7Cz0aexsxEhuwIZ0t2WS9va89U7biwa14gtnzZj7W+pXI8swMhARnmFQFxKaR1ODzNl/fvVsnH9SFcXVFaGTBzlDcDEUd5a5/ufQll5FdFxWcz+8iQd/F0ZO3UvFmaGHD6bxL4TCXX6w6rtsfU5SebfEzlJzqvZf16t5UjxbaGsx8ES4GlWh2PkMWfLX40/WoRzl0gkyUA5YophRnUqwQ2wA048FhQEoUQikZwHOgAbaum4DvwCLAV6/AW210NcSgnvLY3Eq4kSI0MZ7vYKkjLL8WlsTMijIjJyKzAzlpNbWMnZO3mEx5Xw6aZ40rLLqagUMDKQIpVIyCusQp1XQdvmJkwaZM/1+4V1fufAtRzaNzPG3c6A6NQyrkeJkdrkNXF0aKmkke0f3134Of46rN/5kGPnU2jdwpwZkzwByMot49wNkVtwz9EEXu7rgo2lAa1bmHPnfi59g+wxqt6Es31rK9bP9eXOg/qzDh7L/Kdx+rqa4tIqLoXmkFtQwbRRbty4l0d+UQWfjnHjRngen4xxQ4DqaXESLt7OqeccMnLK2XgwlcNXcvBpYoyV+X+mT65d1J25HwT8x53v/1f8kRTEC4gR7X1AhZhuaAG0ApoDlwBXQRASan1nC+AoCEKf6s8CMAwIBSKAQYIgHPu9FIREIhmPmFsG8Du3rTN+rcw5c11NBx9LEtPEIa21cQUz10Rz6moWX0xuQre24vApJjwT3yYmnL9XwJC5DwCwVMowN5GTklVOh1amdG1tyrAuVmgkUlKzyvFtZsK5O3kEeFRzAkilOFvrcTWygC6tzVi7O5ENxzI4OKcpmXlVbDyWwf2kUn6e0YTJa+JJVJdzdkkLLoQVUqUnR08hxad6XnJ8Rhl+zUy4cL+QAG8LkdMAcLbV16YgbkXk4movdub41GLaelnXO18XO2Mu38miWzsVN8NycHU0RiKTEp9cTFtPC85cy6BDG2sSU4sRBA0uDiZcvq2mW3tR3kWlD1IJ8clFovz1DDr4WJOYVgISCc52RlwOVdOtnYob99JpZG+stcevZfX1b2MlykO1fDY9Amy5H5OPnY04xEvLLKW5m5KQyHy8mpmRkS0O8VSWBoTHFNDGw4IHsQXYWYvy6dkVNHc3JSQ8G69m5mRki9fH1sqQe1G5+Lay5H5MPvY2hgiaKiIe5RHoa0NIeDZ21gY07vGbtu8c2tiVHh3seRCTz9dbI9i2L5ZhL7jww5JAQiJy8GpmRsTDXKws9FFZ6XMvKg/flhY8iM7F1voJ+yOy8GpaY4/KUp97D/PwbaHkfi3709SlNHMx4nZkHp5NTcmslrex1CfsUT5tWpjxIK6w5nwzi2nWyITb9/PxbKLUyqtzy7h6N5e3hzoTFV+MnbU+gqaS9Kxymrkacft+AZ5NTHh/aSRhjwr5aLQbjip9VJZ6bPg5keArajLzKkRe4v52SCXg429PZo5Y6bex0CPsUQFtWpgSnVKFrbV+nfONTiqhqY79/Z5MQQDIDHXvA5hdIMfK0oi8/FIMDcSXg1BVgr7+Ey+yp0hBlEssyVAXobI25m54Gn4+jtx/mImlJB6QkJZZou0/Hg4CmTnlta6/eL6RkWpsLcWXUXpWOc1cDLkekU/rJiYkZlQ/jyp9roTn07WtJbfuF+BazQESn1ZKj0khf2kK4qlnQUgkEhMgBvgSuIrogF0EQUisJbMVsBcEoW/1ZwEYJgjCXolEsgboCPgCW3iKHHBnf1t+WOJP37fPsfQjb9btjCY2qYg0dQllFRpObOzAh8vC8GtpRkmZhntReQzrZcvGX5JYNq05K36MIyy6EAulguz8Cjq2tuDszSz09aS8EGRLYloJ2xb60m/yVZZOa8m5m5lkZJVrk/i/rGiL/+sXeKmnLU2cjTl1Tc33873o/24IS6c0Yc6GaB4llWCkLyU7vxLPpkruPSzAydYAv5ZmZGSVsW2BD+PmhzPtzRbsOSq+s4b1dWHLr3GsnhPIiGln6R3kCMCJC8ls/6Y7vUce5auZ7dl1SKxfjhjclPe/uMzJ7f0ZPvU0fTo7IZVKOHo2kR2rutNrxGG+mhXIrkPRqKwM6RZgz0cLr2rlB/VwoayiiuPnk9jxTXd6vXGEr2a25/j5RHLyynmlnxsffXmdk9v6Mn35TVo2EYuIteW/nh3IjgPiMP7V/u58tPAqV34bhtLkj0VaEmn9dfWCjr3fGsI7M8+y/qcwJr7hyZoFXcS2WefEthEt+XZeUI1eTSUZWSWorOruqihU1d9CSde+dEJVA05CWj+DJ5E0kNVrqF2XqKz+tdGld92OKNb9GIa+noyMrBJKyyoZ0rcxw1/yokugMzJZre/o2+n+MbmOXG1D0Heo1xRe2kun6MtB/qz9+QCfjH2DDj16A9C2iQsjR478Y79VdbZ+W0Vu/TaAygbadeotrte0ecsRnB1M2blPnDfw2uCWfPTFSU7teplXJx2mb9dGABw7G8e5K0l/rwMGkEgkZxAj4mVANNBOEIQbtY4fBtSCIIyu/lzbAauqvzMZMRXxhx1w6pVXMTeq4n5MPpPm3iJNXcorLzgzrKeKy6HZ7DmeQtijfBxsDDBXKjAxkqI0knP6ehaTX3Fm7BAn9PUV3I8t4tjFDG7fz+fq3VyKS6t4vZ8jS6a1rDuNq3rRuLGhjLBHBXz6dSTW5nI2zRGHt7U5DayNpRSViFNn4lJLUedU0CPIgZTMElb8EEtMUjHfzfXG0kwPdZECW2uDOtOs1PkS7GyMyM4tQ2n8eNpXBVZWRqSrS0ROhsfTjoz1yMgqwdbaiOzcUpTGetXy5ViaG5CuLkZlZVgjbySvK28kAyQUFFVgaa6v1V9YUApIquVLsbU2JKegopb+WvLWRvX029vV7JL8u/fzKRxwhrq4zhA3Q12Mvd8W7efUm2O0x9PTC1BZP+FoG4iynhUHXF5eRVRcAREPczDQl9GisTmNXUyJTSmjz8gDxF4aRdiDbJq7m6OnJ0Oqb1xf6X/ZAWekp2FloyIvJxsjEzFKbmkixdDwD24t/F90wEVZcRgZKWqedyMF6Wlq7FQmZOeUaIOKgsJyrDzX/b2E7BKJxAAxBZEKxAJpQK8njgcBl3V9XxCEDGA5MB/Qf5rffhiXz6sfXOb1D66QlVfG28Pcufsgl86jL7LraDJZueX8vLwtfTqoaO9lwfQxbmRkl3FwtR8rt8cz+L3bHLuUydrd8UwZ4UZ5hYb9q9oy5fVG2Frp8yihiL4Tr6CQSxg14zaHzqWz92QqL0y6xotTbxCXUsKEYc7M2xDNvA3RPEoopt87N5HLpXy66hG/nM7g1zOZLP8pgdbNlIz5PJSk9DIOnEknIrqQ0TND6TvxKgq5lDc+vsLPRxP5+Wgib3x8BYVcSs+RR3kYl8fnK0P4fGUID+Py6D/2GAq5lOHvnWH34Rh2H47ho4VXkcuk9Bh+iKjYPD5fcYMvvrlJVGwePYYfEuWnBrP7UDQHTsUxfGpwHflF6+7w+Ypq+RGHtfr3n0pgz5FYhk87h1wmoefIozyKy+fzFTfryY+bfp7dh6LZfShaq3/NtrtP253qIUNd9wF5Z+ZZ7P228M7Ms9o2lbURE98QX4IT3/Cs45yfdL7PMq7ezsCn/z6s/bYzfOpp9h2PY8ueKAa9fQLz1j/w0oSjJKYUEpOQj1cLK/T0/nq2rn8Xcrmctwb0Iv7RQ76dP5tv588mO/uvn8b1V0Amk/Lq+H3s2h/Orv3hvDp+Hwq5jK4v7yEqJoeZSy4xc8klomL++l05/8g84OXAQSABMQf8OWAMbBMEQZBIJCuBmRKJ5D4QhZgjLgR2NKAS4CtgEjAYCP4XcnWgryflcoia/l0cuB2Zw9Lv7tM3yI7P3m7KlBHurNoeQxNXE4KqN1Vs5GBIRx8Lvtwcg5WZHp9PaIyLgzGlZRotZ0ITJyO6+FvBE5wAIoeAEkEDO48kY6AvY2gPOxo7GdXhNOjZ3hqlkQw/DyUt3WtxPhjLaOdpjpuDIY2djbCzNuByaDaDutlhaiKnZ6Adfp41U31MTRT0DnLEzVlJl3ZitOLmrKR7BweUxgp6dnKkrZc4v9nAQI6piR59Ojvh7mJKl/b2SAB3F1P6dHZCaaxHz05OtPW2QSqBktKqOvIBPjZoNODuoqyWF/W3bm6JRmuPHr2DHGnkrKRLe3ugrnwnfzvatLKuZb8ezRtb/NFbqRN10goLu5KhLmb9T2EArP8pjDnT2mmd7ZoFXZjzvv//6+KPOqcUSzN9rt4ciKFB3dROSWkljxJLiU3Mx9FWR8T7N8PIREmHHr1xbORG206dATA3/+MjpP8m9PRk9O7qhr9PTYRvqtSjb9dGuLua0zXQCQB317/e/j8SATsBOxHn+P4KlAEBgiA8ZglZCqwA1gA3AXug9+M5wLogCEIh8AVg0JCMLvR76xRd26n49WQSvTrYseELP17v78IbA51ZtT2GqSPcOXI+HQcbAxxsDDh+Rc2l0BzS1GUcX98WqVRCelYZ/YNUrNoRx9ThjTh8IQMHG30cVYYcOZ/O1GpH3q+zLelZZUTGFmBsKKOgqJJhfew5fkmNg40+Djb6HLmYyZThLqzekUB3f0tS1WWkqsvo19Ga1bsTeXuoM4cvZLD0Aw8+GOWGu5MRpsYy1u96RP+uDqRklJCSUUL/rg5s2h3FtDGeHDqdiIOtEQ62Rhw6ncjU0Z58veUeA3u4kJJeTEp6Mb06OvL15rtMe8ubg6ficbA1xt7WmIOn4pn2ljdfb77LwJ6upKQXkZZZzMCernXk7VXGONgacTA4gWljvbT6UzNF/QO6O/P11jCmjfHk5IVkrT215ft1dSYlvYiU9CKt/m6Bjn/4Xj4Z6T7pbB+nHRqKdIH/184XxBdwdEI+566laYfHj2FoIKd1S2sG93HHwOCfxyiwY8O3jHr3fc4dPYTK3hGVvSMPHz78u83Sieu3UxjUuxnJqQUkpxYwqHczvtpwiw8n+HHgRDSOdkoc7ZQcOBH9+8qeEr975wRBeO13jgvA3Oq/hmTq5UwEQVgHrPtdC2vByFDO6asZ+La0YHBPR05fFVcomRsJPIwvpKCokvDoAgyqlw5GRBdgrlRQUVlOWlYZYY8KUChkmJkoeBhfREFRJRHRhaK8REp4dAEFRZU8jC8kIbWY8EcFxCQVcz4km6bOxhw6l8H5m2ouhOQgk0mITy0hIbWEwxcyeRBbABJwtTPA0kzB/fgiPlgeyZELGUwY5oKLvSHOdoZ892siA7o5EphaxN0HYu7K2kKPnPwyNIKAu7MSQ31xKOnurEQQBLxbWIo7BFjVvK+8PazQaAQau5hiaCADARq7mKLRCHh7WFXLGyJF3GCltrx4fSQ0dlGK8tX6rSz0QZAgkUjwbmGJRhBwdjDGsPoBry1PtX5q6f+j5QRtsWykF2sXdgNq0gqPI2BtpLuwa53I938JHo3NmTK6FUs33OW1qWdo09KK7h0ceOuV5jj8A6Pe2mja0hNBo8HJzR19Q7HfWljonjHxd0NlbYREUvNCl0jA28NafF5czWr6v+sfmx/9NHimuCCcHJR892UXegY5k5VTquUoyMspxNJCv36xykjOmh8juXgznTVfBGJqoodEKqsuJv3rYlWNfglrfgxDnV1GXkEZenIJpaVVVFRqUCikKORS7FWG5BZUcuFGGrfCMpn2ljfnr6diZqpPdm4ZU970ZnAfd+QyKc7tv+fqwdexNDfAVFmT3LdUNVAkkeh4Rwo6ikK65BqCru83pEPSQF5RV7tQv6gFkKEuQWUjpmcyMguxbVFDp5oe8Zn22OPjtT8DoCmrr1TXqipAqCrX0dZAEU6jowinS/YpZmc0VGyTyOpfW12FSACp0r1eW1G5kotXHnDoWCh7fr3O+pVvMmRYf902yD3qNWVXOv8Lo+siqaj+NQRwMq4/w8WyobUJNZOiarXF62hroC9WldRvkzcw5a2qU327pGd1663UMTB/in4v0evzv8uGtnhGN1ZtDcWrhRWvTzlJny5ipwq/n8mS6e3oVT1da3f1dK1XB7iz9scIMrNLGToxGLlcQltvFbfuqetN15IAr1RPpxr3egu2/fKQsa80p7CoQpx+VS2/YoY/Ow/FAvBSDxftdK0p868Rl1SAoIHlG+/w6UQfQsKziYjK5siZOE5fTsLCTJ+y8kqUJgpeGn+wzvSW334ciZnpU2Vk/pF40oFO/ng/67ZeZdKYQNYuH4rKxoRJYwJZt/UKk8a0q+ds6znf5wDA2FifPj296dPTmxGvdGDE2+u5eTeDBfPe1JLdPMezh2cqAi6J+5QLFyPo1sGRa6HpuDuLU2hi4rLw97bm1KUUOrezIy5JXLnm6mjMhRvpLNtwF3VOGQ/j8jBT6rHgI39eH9iECzfS6NzOnrjkgmp5ExavDWXRmtuMfqkZiz5pJ+pPyKe9j4pTF5MJ8rUiTstRIOrv2dGBX08mcSg4gcLiCroFOvLOqFb8ciKe8Z+coUkjM1o1s+TMlWTeGe3Fp+8GcC0kVZvUj4nPpX37FrofpGcoAp780S/VzjaAtcsGi9GuxwLt8fT7c2oi4fTsP+5sn0fAoLCu8zErq4Au/ZYy/LVuzJj+el3Z5xHwMxMB/2f2rv4PYfbSc7TzUfH2J2ewMNXnl6Mx/HJUXI8/7rOLBLZRMWdlCDEJ+cQk5PPlursEtlEhAIVF5SgUUvIKypk86yLm3t/z+tRgzL230vGl34iKyWXCjAts2BFBUzczktOLOHw6gV+OxmJhps/b088T6GvLonU1HAVzV4US2EbFuBmX8G5hRYCvLT07OdEryIm3Pz3LC11dGfuqB4N6u6FQSPH1tGHSSE+mzT2LhZkBew9FsfdQFBZmBmzeHvJ3X96nQkZmYb3P67aKZDbrtl7VRsKTxgQAMGlMYB2H+zzS/XOwslJy8uhitmw7zuo1v/3+F57jH4lnygH/u3C2N8ajqQUVFRqsLAwwMVZgbCzH19MamUzC8BcbExqRxW8n41g1tyOtPSzJ4CwTLQAAIABJREFUzC5l0ZrbpKvrT9x+GsjlUvy8VAzp25hm7ubP5HDxSWc7+eP92Lb4gskf/aptq+tsA7QOdu2ywaTfn8Pa5UP/ewb/j8De3orgY0tY/vVejh2/8ftfeI5/HJ6pFISQNpPyQjUymUjq/NiXVZWX1CN6rv6Otk2jEUhXF/Pjvlg27YokJ6+MopJKTIwU2KuMsLMxZMTgpowa2oy4pAJmLrvOpVvp7FzVnUBfO60OiaZSp35kilpE1YjyEhkymbSevFxPv479ggBS/QbmGP7NKYjJnxz8w2kFhCrdRTRdwzmN7mGuTjxPQdRLQQCgbwvAuIlf49+2OePf7ie260hBpBTaUFggDr/j42LxbevP2eBTdAjqTGK8mBpwcnHhysULNAnorDNQ+HdTEPn5BWzatJPtO3bjYG+NoaE+m7+bjqmp8TOVgkhKysTZ/Y2/fyny3wGJRCIIeet1LiVEqk9ZWQXxidkkJOWQmJRDbl4JFVVyKiqrKC+vRKGQMf2DAcgNrdBoNKSl5WBtbYqentiDNJWl3AqJYfvuC/y48xzvv9OfD6YOxNj4icJYA5X+p4JUB19Cg7nWP+mAdTkvoYqMjDxUqif4XTMLUKlqXgQZGbnYuo7Rfk6P24xKZcbk9zaxbtNxJr3dk7Ura443eG00Ou6ZLlldtoJuZ93gb+nQUVlYv40Glj5r6rc9DUdFQ5DKddxzfZVuYZOW9Zrulfat11ZQJp7rJ28MY+CI0QS9IK7of5Rdn82tJCud8/v3AhB6/izTVq1n7oiXmTz/S87s+xmAoIFD+G7e5+w6dREzi/qLalqZPsVLXnMRgPDwWDp3fZc+vdsx/u3+LPtqF0eOXuPE0WXY2lrg6d0TqY4l3U8FSf38dnaFDjkgubj+gSod97y0su4zlp+bw9jeXUiOi/nfnQXxr/D2lO0cORmBdysHnB0tsDA3Ije/gt2/Xkej0TDuza5aWalUioODFWlpOZw4dZvjJ29zIvg2NtamDHjBj4hbK7G1/Weu2nlaZGTk1nGqQI0DHdeHtd+Mq9s2vi9rv5kAgEplzqRxfbSyjx322m/GMfezF+s58Of4e5CdmYmlyvZfypjbqBj41kQAer72BkpzC+Zu34udnT3NfHwBMDAyZtGufTqd77+LzMxcWrVyY8f2OSBU8iAqAbU6j+EjF2BubkJJySzu3jmBpeU/83nLSE0h/uEDbl++iNLsr+/vz3wOWKPRcPDoPe6EJTPoBS/OHHqfpfMGI5dLOXgslLdGdSb67nLWrBiNXC4jIyOXRUv24BvwPh4+kzlw+DpdO3ty69ISIkJWsnThyGfW+WZk1CUlmTxlDbauY5j83oY6Mus2HQdg3abjZGTkkZGRV9O28VgdPWu/GUd63Gato36M5873n4PszHSsfscBV1VWsHPFl+xc8SWpsTHMGf4SMrmcDXM+4/yBfZw/sI8l77yNTC5n6YyP/jLbMjJyMNCvif7fGtsfR0cbZs8axcP7P6FSWXP8+Lm/7Pf+auxY+w3z3hlHzP0Ipq/49i/X/8xGwJnqQn7+7Q7rtlxCLpcz6+O+vDSoDQBd+q+kW1Az7l1diKODuGrr4aM05i/9jYNHQ3lpcAe+WT6OgPbNUSiqL8HT5CT/AXgysp08ZQ3rNh5m0vj+rF39juhoNx4GRKc6d+arqFTmDUa12rbxfetFzM+d7T8XgiCQnZmBhU0D6YxqyOQKWrXvAICtiys+nbtiaGxCs9a+NPKoSXkYmSjx9PX/l7rCwsL4/vvvUavVjBs3jg4dOjRYXNbTk5OalkVFRSUKOcjlMn7dO097fN3ahQQEvoidnQ3dunX4o6f9X0PYzet8sWErvh2Cfl/438AzFQEnp+SwadsV+r2ykaZtF3HxagxfzX+RkPPTeWWIn5b/tLS0gunv98bRwZKqKg1ff3uMwB7z8GjmQHTERr5bP4WgTq1qnO8/GE9GtQCTp67D1mUUk6eu08rUONvDWuc8aby4UupJp6orql37zTjS47dq0w/P8WwgLTEBfQND9A3+9SKe0qIiLO3tsbS3J/TCWQa+NZGTO3/Ev0dvNFVVaKqq6NT/Ra6fOk6fIS83qGfnzp10794dY2NjvL29GTNmDD4+Pnz22WfEx9ef5/vii0E4OdrwyquziY1NrXe8bVtxS6OvV36HplYuNi8vn7KyMqKiYtBoNMTFJZKXl09eXj5xcYloNBqiomIoKyujvPw/Ezw9iggjOiIcW3snstLTKS9roEbxJ/BMFeEsLZX06d2eQQM7MnBgR4yNRS6C8MKAOrKD2nnzwkuv4Nq0OTs2fItEImHO6o04u+moLlejXAc3rC5IG3jTy3UUEhQ6iLUBsjIzsPqdiAVgwYdT2LN5A6+9NZHZX3+r/W5Q4xrWpgvRKVjZqJg37V12bV5fR7ah37I10G2Xzop2dTGlHnQVQ3W1ge7Ks6DjoWno+zpnQTTw0DVQdPxT0FU0BZDqYFNtqJiqEPOqubnFLP3mGAeP3sGtsQfNmzWmeXN3TE1NxG3aBUgutcDe2ZnGzVti+i8YxAoKCxk7oCfd+w3i7Q8/1bYbKOrfyIexsVw6eRSAa2eD+WTZN3w2ZjiLtu7A1LxuzjentO4Mk4rycn7d8C2XjhykMD+PuVu24+7RCgAzPT1uX7nIgZ++B4mEL9ZuFm2Q1wQ3JcXF/LBmJTvWr2boyDF8MHcRimob80tLyc/N4cM3hmHr6MzsVevR09fn0M+7sHdxZf3COSzcsp3ln7xPYI8+VFZWcOPcaT5aupKZY0cwceYXNHZxxdG1UR2bPZR/nJozNKd+n4nLzeXdXuLsCv9qQvmAPv2Z/lL//91ZEBUlx5Hr1SdledIBH9y9nZsXz5ORnkb7Lt15ddyk3620/rcc8GOn+spbE5j11eo6x2o7y6zMDLo1ddIee+xogadytrrw3AE/Jf4CB1xcYcS3G0+z7JvjDOrnw7jRQaTkNuLBg2geRMVQVFSMRCISIeWW65OaEM+jB5EoTc2QyeXk5+ZQWlyMXKFArlCgUOih0Wjo1LMPizZ+XycFoMsBZxcXU1wozgYxNDYmJzODyspKbl26QETITe7fCcHU3AIn9yZYOjnj4OaOQyM38rKyWD39A2wcHBn+3oc0bumFXq1o26L6//SUZN7oGsDRiFjkcnkdB/wY+VlqPhj9Ot37D2Ts1A/FtmpnX1pSwrwpE7h2NpjOL/Sny8CheLTxxczSiuyMDCxsbCgpEne9NjQyJiczE0uVirzsLNwcHOulQP6sA/525XL2b1zDu0tX4lmduikpKmSUr8f/rgMWKk7p7PRPOuDHKKtsYI6hDvw3HPCTTvXMwyStw9TlmHVFwLV1/RFnqwvPHfBT4k864EcxaroM2kCAvzsLPh+MR/PqEYxJb51qIwvF4xqNhtSkRBAETM0tMDAyorKiQvyrrKC4pARrW7t6wYUuB5yiVrN8+gcAdOrdj9kT38TQ2AS35i3o2PsFWrZpS2FeLklxMTx6GEVqXCwpcTFUlpfz1qx5dHlxaL3+nJOZwbFtmxn13oeYKE0Z1aMjU+YswL9zN50O2EChIPZhFK/16MihG/ewsbXTOuDHSE9JIvjAfravXUVpcRHLd+1n4dTxTJ2/hKunTlBYkEePwS+zevZ0Vv1yhDkTRrNi80/YOTrV0fNnHHB6chIvdfJj7rY9fL94Lm06dwfg9vnThF+78twBP4lnxQGDbkf7rxxzXpb633a0DeG5A35K/EkHXFBQSpcXN/Hyi37M+KgWg9nvOODfQ0UDfVaXA84qKiIhWuTjTU2IZ+Xn09lx4Qb5ebm/m4J4jNp9/OaZYJZNm4wEmLtmE4E9enNi38+snPUpy37cg1+7+s/kY7uWzvqEe7du8s0Pu5ErdS+uSMtIZ9PieZw+sA+35i0Y+d7H2Lu4IpVKsHVy4c7VS/h36U7ErRsEBnTQpjQe48844CXTP6C4qoo3Z8wlKjQEW2cXANITE/7yFMQzVYT7JyM7M0Nne9YT7bO+Ws2Zh0l10g9WNipeeUssfr3y1oQ6Dvevdr7P8d+HUmnAplWj+GHnlb/NhvycbJLjYkmOi2XX+m9p4e3DovcnI9fhrH8PuepMFkwcw+cbt9Hv1eE8uHcHgN5DhvHZim/5YPhLHPv15wa//8HcRfi0a8+QTn6EXtW5cxkPw+7y6sR3CejZmy4DBrNw6ng+Hj6U0wf2sXnpAjz927P4/Ukozc3JzVI/9Tn8K2SkpGBt78i3n7yPiZkZV44e4srRQ5j8B+YB//OnAdRCcXEpRib1o4605CQsrKzZ9+NWug94kYfh4s4KLs09OHvkAC+OGE3wgX24t/BAKpHwKDKCHoOG8Nv2bXTrN5CHkeFUajQ09mjF+SMHGTB8FGcO7se9hQcCEHs/km4DB3Noxw906TeQmEhx99TGLT05d+QgD8Pusv/HrfQcNJQx0z4m5n4kPQYNYeKrg7lx8Ryd+/Tj9fGTadrSk9OHD/DK2PH1zmHWV6uZNP3z5w73/ynKyiuxMP/vkMpH348kJSmBZq28OHVwPy+PGsulE8ewshM5p5XmFhQXFeLSuAn5OTncuy6SKLl7tOLC0UN0GDKMy0cO4tKsOQAJUQ/o2G8gJ/fvpV33Xlw6dgRDExPsnF1ITUyguLCQoz/vxL25Byp7B14ZN4nV8z9n16a1zF+7mYSYRwC08vYh+NBvvDxqLE08WvH2+x/z0chX8PDxxbtdAFFhd5kyez7J8XEU5udh5+SMjZ09A0eMprS4CBDYtXY17bv3QtAImFtZI5FIiLgTiizsLs1aeRF86DeGjhzDz8eO0KRJEwDCw8N5+eWX2bJlC4MHD+bevXsAeHl5sX//fnyHjCD4wK80biFOx/Pw8eGn9asIGjAEkNTKef/1PC7PVAri+9OXUTVpVu9YWUUFoRfO0aZzV6JCb2Hr7ApAfGwMTVr7cvfiOTzaBaBOTqJSI0FuoE9q9EM8O3Yh+k4IKmdXctRqSosKcfduQ/jl8zRv257EyHCMzS2wdnDk/o2reHbsQuy92xiaKFFaWJKRGI+NkwtTg9pobZm/+zfcPb24cfI4K9+fpG3/5thZSoqKaObjS2VJCUZPDL30GpgxoatdpiPd0dBQRtf3G/otXXobXH6qKzWhK9XQUHuVrranSEE0lFZ4mnSDTMcGnrrSCrIGHKdMx/C5Ab6C85fzmTFzCRcv1BAYhRfY65TV6HgmdaXTiip0r7dNVaspLy0hPTGeZj5+3D5/Fq+ADmQkJ5ESF8O2L+fRqEVLPlq1gajQW6icHg+xRfmzp4Jp2safrJRkAKwcHIm6eQ03/47Eh4Vi6eDEVyNfpM+4qZzbvpnAF4fR9fXRZKeK8pb2jjy8ep7rxw4RF3aHETPn06ilF7npSbh7+nDv4jlatAtAnZxMdkY6dy+eJSs5kei7oahcXJm07FusjPRJS4ineRs/Qs6fwat9B7JSU3gQeoufvl5G+x69mDh3EfdDbtK0STMEBFLi42jl58+1M8G0bB9IepLIR2Hr5MydKxfx79qDk2fOYlN9vplJCbh7t+HcybM4e/qSmy7ab27ryLZ3X6XdwJdwbemNytUNAHVSAiveHPq/uxS5sUcrCnR0uoKcbDYvmM3CHb/ww5KFtOkibnMTGXKTt+Yt4cdFcxk18wsuH9pPbGQ4CZHhGJma8eXhs/y8YjEV5WVE37mNuY0ts38+wq4lX2Dj7Mrdc8HYuTVm+PS57Foyj0+27mbth++QlZJE49ZtUOjpM3nFOoxMzSjOz8PBvTHBe7ZTWjSYn1evoNtLr3Dmlz008/HlRvBJbp8/zUerNlKSn4eLsvl/+/I9x98ID48mREQ8JD09E1tbm//obz0IuUl0+F1unzvDx6s38N38z3lt6occ3LqR2IhwXhj5JiFnT5OrzuTwti04V0e6j+WDf9qMoBG4cVSkufTvO4g9y75g8vodHFy9hBaBXXD19OHnxbOwtHfk8m97cGzmwc1jBwBo23cgv61dyQcbfmTp2FdZ9+Fk7Bq5Y2JmRv+xE/lx8VxGzfiCy4d/Q6ZQ0LbXC+z48gtKiwqJuHKRLZ9/TJuAjtw4c4Lpa75j4xezmDB3ITfPnKK4IB99AwMuHDnIa+9OY/PieXQfMIiy0lKunj7Jgo3b+Gb2p0xZsJSTv+wBoPuLQ1kzZwZf/3KIQxtX07RNWwDCLp5jwvI13DywE42mirBThwBo1aM/pYUF3Dj8KwdWfUkTv/bYOLuREH7nL79Xz1QEfCm9gDwdk6ErqqrIzczA3EZFQW4OhsYiG1dWbi5Kcwty1ZmYWVmTmZTIez0Ctd9bfTGUorxcpvfvqm37+lwI+dlZzBnSS9u28lzIYxt4r3NNtPvl4bPYuzchT52JoUKKvqEYKRkYGZGXpcZaZUtyzCNtRF5SVIjS3AKJRlMv9/Y8Aub/dQSM3IMxYz+kjU8rpk4dC/znIuDsoiIEjYajP33PpSMHiL8fiUJfH7eWrRj1ySwae3qTq87EwkZFfnY2hibi8/K4f0bFJWFqaU1ZiXg/9A2NKMhWozC1JDU6iuiQ65QVFXJuzw9IEJiy7kfs3JrUka/Iz8HM2obC3BwEQeDY1g3Eh98hJyMdA2MTpm/ZgVQqo0oAfSMj8rPUmFpZE3rmJBd/28v9a5fp1H8gwyZOxcDYGHNrGypKS5AAowLbsHT3ftw8WpGfk4PKUtzTsKiwADMLS7Iz0jGytKKkWNw4wdDImBx1JmaWVpwIPk1aXDRKCyssbO2xsncgXl2MiaU1FSXFlOTncv3XHylWpyJoqogPu0NeZjrmtvbI9fRQJ8Y/L8I9iUf37iCVy5n52hBSYqP5afliflq+mLS4GOa98TJyuZxv3p9I2JWLtAwUJ1cHDXmVNdMmUpSfh0t17se3Z1/WfzgZc5UtNtWVz+b+gWxfNBuZXM7aDyfh1/MFAFxatKQoP4/Fo15GJpfz65pvuHxoP5cP7efrqRORyWSseG8ihXl5bP9qMdu/WkxKbAyzXh/yTHICP8efh6WFOUVFf45f+o/gRvBxti6ay65vllOUl8fy347TtkcvOvV/kZjweyx9dxwyuZwZrw4mNT5G+7ykxEYz87UhyOVyNn48mRtHD3Dj6AE2fjwZqUzOlo8nEXX9Er8sncv1I/voNuItjEzN2THvM777aDK3jh3k1rGDbP7kXaRyOV++OYz0+FiObl6HoNHwyofTUVpa4dysOe908uWrSW9ybNsm1nwwCZlMzpejh6G0tELl5ELf4SOpLK9gfPdA9m1ax8IJY7h45CCn9u4mPycbC5UtH708kOSYR/z4zXLWL/qCxOhHTB7cF5lCwbefTyd4315O7/+Fz0a9wryJY+nlasPGT6Zw/PuN7Fw8h1XvvMn7ndtw9/g+fpn7Pme/X83GcYO5f+EUzfwDyYiPpcPQ15FIpbTs0JVR87/+y+/VM5WCAHHtu0RSw/kLYGphiZGJEt8u3bB1dsUzQJw4rXJypXVQVwyMTfDu2AV3r9a4ePoQfuUivUa8ybHvN6JyduXl96eTn5tDq8AgLu7bg4GRMf3efgdbl0YYKc2IC7+LgbEJXp260mXoa/j37o+RqSkqZ1e8grphYGxCk9ZttEM5JBIMTZQ0a9MWW2cX7URuW2cX2nTpjlQmQ9fI48lze/z/k+f7uO05ni2cPHWBtWsW/L7gU0BXXzExs+DmmVME9OmHQyM3sQ/6B+LW0lP7PSMTJb5du6NyctE+L7bOrvh26Ya+kQktAzvj2spbK29gbIKbT1t8evbj+KbVdH51NN7deiOXSblxZD8mlla4tPTSyhtWPy82Ti40byeOOq0dnPHp3J2+b47D0t6JnPRUzuz+kQHjp2BgYoJXUDdUzq6Y29px6sfNODdpRmNP7/9j773joyyzv//3pE5mUia9N0IS0kkhJITeREVFxN53V13LrgW7q2t3VUTFilIFRJEiAlKkhZDee+890zKZzGSSTDK/P+4YyDL8nt3X+v0+66PnPy8/ubzue65zee5zPudzUZqVgaK7i5V33oOTqxs2YjEjBgNJi5bgFRjE2JAe0/g4PoFBpCxehtTeATdfP7a++ya3PvwoyQuXcvbw93j7B/LI5zvoaRLoeEFRsXz91t+pOHUEO0cnqs4enXiXFpzY/Al67QAnt31GzPylxC5ajttE7viXtF9VCuKWv73FzCtXc+7rTcy65kY6qoVqpldYDJl7trH0T3+l6Mf9+EUIG6c2L5uk628j+9stxF+1hq7ackZMFniERFBxbB9JN95L5Ynv8QqPwThmoreunIhlqyjat42oK1ajaqphbMyIV2g0Fcf3k7jmHurPHsYrVGjD7K4tJ+aKVeTt2UrSyjV01QrsC58ZMRQf2cvC2/9E8dEL6+moLiPhqtUUHthF4pXX0lYlrD8gMobyU0eZv+Y2sg/tJSgqDoCWylIW3XAzx7ZtZP7qW2iuEHJQ8XPSEEumfhZLbcxzVc0R4u3MjIH51ITdZWhKZnmWxlNmsWZTEP8qNxgurxNszsx1oplLKwCIzLwzcymEy6UgrJZcMlQ5YJ573tLSxF1L53G8qnmyceJyKQRznHRzaQlLkYjc0z8RHhfP0d07uenPj3Ds26/Zt2Uj06JiCItPZOENN3No8+fEXnnD5H4LjIoh6/s9LL3zPk4dOIBHiBA4dNWUE7fiejK+20XogivpqxP2s0dYNFUn9uO/6FZaMg7RePoAwQuuxcLSktBF13HwsetIuPNxrGwEtoBrSCSdWYeZef3d1Jw8iEeYcPAPdDQSvmAFBd9tJXrFDfTWVVB+eDftFcX4xyRw02sfU/zjXnL3bCNu0TKGdYOIRBYUHP0eJ3dPIlLSiJm3mLL0U+Qf+4H73v4YVU8XcbMSMZlMNJaVsGD1TRza/DlOMmd2f/AuoyPDLL3pNpqrKqnMyyYkMZWrHhHattury0i86no+uHsVw4NatIpeklbdRszSa1GVpnP13X8i59gRImbNRiQS0VBWwqfPrf3tFuFqcjIIiE2iJvscIQkpNBbmApBzcA+VZ4+jVfYxohc+8YqPHaS5OJfexhrU3e0EzZxNS3EellIHbCX2NOdnEHv1TbQUZAJgHDPRXpTF9LRltBZk4Bc7i966SgyDGsQOTrQUZBBz1Y20l+ZjmhANac4/T/i8ZTTlZTB9ViotxcJ67BydaMg9x5zVt1CfeyFXWp97nqgFV9BcVkhQbDwNhQL9R+oko62qDIP+OqqyMybxVdkZpK64mvKMs8yYlUpNnsAjDYuKuuQA/t3+u+3UDweIiIv/z8XHLzKTyURp1nkcZc7knz3Jyjvu4dSBPWiUSsJmJlCWmcHsFVdTcu4svrHJ1BX8vN+cqMpMZ+4Nt9FZXYZxVPgfX1N+JhHzl9NTU4ZnWAyd5cI1R2IHGW0F5/FKvY7ushzGRofRdDRi0KgISl3KUL8Ck9FIb30BALb2TrQX5xC1Yg1tRZmT6+1vbyR41jya8zPwj0umvTQPz5AZxC5fxYHXn6S3oZqKnw6j7mrHND6OTtPPLS+8SUNRDkNaLTZiCbX52aRecwO1Bdl88dRDhCbOxslejHFkhNLz50i+4ipKzp3ltseeQjegIXHxMtRyOV3Njfz1nQ85e+IE7dVlgOCPMQuvQOLkwkBvF+Fzl2FpbYvJZKKhpBib+22pys+ZpKGVZJz9xX67n+1XFQGnrbmdzL27SL3hdlY88ARie3sGVUpeW3lBxu75w7mMGPSsW7Nocmzt99mILCywldqjHxlnZEiHnaMMnVqBRObKqEHP6JgJa7EEfb8SqbMbQwNq7CT2IIIR/QW8s7s7owbhkLcWS9CrlUhd3DDqNIgnin/Deh0SRxmjGhVSF1dGJooTNnYSBtVKPL080PWrJ/EGvQ4XVxcGlHIc/qn4MTKgQubuwaBajXiiWGJrMY6teGoB6fcIeML+CyPgU4cP8ubTj/HpviMEhV6gUf6nEbCVhQXG0VH0g4M4Ojujkvfx3pN/ZUbKHBatuXWyGCxzc6e5vQc7e+HZDHodUicZA0o5OktHRif2m7WdBJ1ayahYxtBAPzYSKQCjQzrEDjLamzsRO7mS8f5a/GctxjdxIcr6Ys5/8Awr39uLvavnBF6Ph7cberUCuwn/ArB3sL/gXxo1NlJ7JNYWjOh1FB/ZS132Ge56/yuqzhwlY/tHRM1dxLJ7H8TR1R1dvxpHJ+EWdMG/nPjwwTuZFpvATQ8+BIimPO+wdoDjX+/g5Hdf89zGbQSFR6CW99EzJp7ij33Njay//UqWP/wcSatuE96/XsecqAD65XKc3NwwTAR1YomE1SHev2gEbPnyyy//UnP9j9orr7zycvvEJ1RHdTnNJQXoB/rpbqhB1dPN0EA/dg6OBM2cRe6+nRiHh9Fr1IjtHZl1/R3sfflRdP0q+prryNz+EcHJ8/l27d24+AWSt2czLfkZWNmIOfaPJ5k+bzk/vvE4xpFhOsryydu9kaBZ8/juqXtw9Q8m55tNNOaew9rGloOvr2XG/Cs49dnbqDpaaa8oJuOrzwhNWcCBt55B6uxKxq4vqMtOx9pWzLcvPcbMJSvY9uwjaNUqmsuK+GnLJ0SlLeD9+27FMyCYE1s3Unn+LNa2Yrb//WkSFi/nk8cfQKtW0lBSiKqzY0o+Dy7PbDDbIn2ZKMwcC+Jyim7utmbmGG82izXbNmy2lfgXYDaYu5Ptctc1/auHtcVlusUsLlXXkw9fer3Nd1u/JHnhYhasuHrK+KiZq3AAxszVB8zgRMC3n25g14Z1JC9exto112BtK6ahvIzG8hJsbO344LGHSLlyJZtefBp1bxdNZUUc2/QxUXMX8sF9t+ISEELmri9oyD2Hla2Y/a8+wbS05Rx783GGNCp6qkso+OYLApPmcXrdM9g5u9OadYzOwrM0nt5Hy/mjOHj60VWShWFAjbyulPJSUiz3AAAgAElEQVT9mwhKnseBZ+7B2TeIor2baS3IwFZiz6HXnyBs/hX88OpjDPWr6KkpJ2PHp8y/+xFObXyXEb2O7rpKxgx6LCwsOP3VF8xceiVbnnmIYb2O+qJcfvzyY2LmLeL4to3U5mfTUVdDeVbGlOf96i1Bc7gsO5P8U8eZd80q/nbrapz9gkjf8QW1WelYi8V89/qzLPrj4xz/6A3UnW2oOts4v/NzZi9awkt33IBP8DS+3/gJRWdPYSMWk/79Pl5++eVXzG+If99+VRFw6vW3kn1gN6k33E7SVatx8RXugpJ3dCDz8qW7oZpp8cmoJwjhRpE1yvYmpiWl0VlVirOPP0OjY/R3d+AdEUdrYSZ+sckM9HZgHAMHTx86ywsISJhDT00pzt7+iID+nna8Z8TRWphFSGIymh5hficvX9pK8wlOSkPRUIHMS9BzUHe14Rc5k/aSXILjEifXI/Pypbkkj7i582mtKMF1Yv3KznbCZiZQnZ1BaNJslF0dALh6+9JaWkB02vzJhhEAa5MRV++pegG/R8AT9l8YAa+95zZmL1rCdbffPWX8l4iA1Qo53a0tRCQkUZB+BldPL+5fPo8XtuxiRlIy1Xk5xM5dQH52Hm5+wn5TdLQRFBNPdXYGjqHx9PdcaEBoLcvHOXI2vTVlOHoL+3mguwPPGbFUnM/AIzwebU87jWf2Y+/hh2vQdLyik1HUl2Pv6QvAYG8nIfEJtBdl4Rszi4E+YX43X186ygoITEyju7oUJ29/JFYi1N0deE6PYMPNi0i7/QEyd32Oo4srt/ztTYb1emakzKOlvBifwEBAhKKjjeDYeKqyMxgzjrL9xbX8df3HRCanTD5vW2UF+kEtbz/8R66+8w/cvvZZSjLOYhUcM+mPzl6+NBfn4RWbwpf3XU/M0pXErViNuqudlVfMo/R8OlHJqfR1Cg0d7r5+3BwR9Nulobn6+PHM/jPYSqRIHJ2ozjxDdeYZbB0cOL97MwHRCWTs3oy6pxN1TycVpw7jHxXPqY3vYufoRF32GZrzMxE7yDi3aR0+UfEU7N3KQF83mt5OivdtwztyJpmb38PWXkZL4Xma8tIR28vI2PQePlEzydu7jYHebgZ6u8n7bht+0fGc+WIdYqk99dlnqM8+g52DEz99/i5+kbFT1nP+G2GNRz57D4mjE5UZp6nMOI3E0YlDn77PtLhETu74ElVXJ6quTk7u3MT0+ET2vPcm9jIZJemnKEk/BSKoLcpnzGikqaIMZU83yp5Lxa5/t/8OW3H9Gra8/w57Nn3O6L8gHq4f1FKZn8uY0Uh9eSmK7i4U3d3Ul5cyZjRSWZCLTjtAa30dOSeP4yCT8cUbL+Pq4cETa1aSuGgZY6NGDm/5grCEJHa9+wZiRwcqMk5TkXEaiaOM7z/8B9PiEsnbtwNNbxea3i5yvtuKf1Q8OTs2YOvgREteOi156dg6OJG1ZT2uIdHU/LiDIXUfPjPnYhzW4zItiqJdH2Bj70hHYQYdhRnY2DuStXU9XpEzKT6wDW1vF9reLooPfo1PVDznNq1D7CCjKfcstVmnGBnS8c1z9+MWMI3K04fxmRHD6idepKEwl+DYRA5u+AcSRxkVmWcpP3caiZOM/R+8RUhcIh111aStXMXGF57i+42fTD6vxMEBRVcn19/3MGf27+HhpXPxCgzi/Ddb6O/ppL+nk4zdmwmISWDvS39hbHQUsYNwRtg5OrH97dcJT0ji4ObPkXd2IO/s4IfNG/+Pv92/a7+qIlxHjwJXgx1dnb009enp6h0AYMzTQHd3L819Q3T3qMBNIGArVAO0Kwz09fTRpTQgVw4ishZj1W9A2SOnVzWMSq7C2kOPyWSiX6lGpRlB3SenXzuMdnAE44gBO+0IarkcpWYUtXoQ637hymylXEWvagRlr5xezSgKtfDftdWMoOiV06sZQaFQY6sR8AqFmp6BYVRqLb0Dwyj6Bbx0YBjN4BC92hHkcjVSP0GNSi5XI9eO0NfTh1w7grJf0HPtVWo5tnMnNz8XysnvDxCWlIKz1JY4F9f/6P2ai7IuZ5UDl2KjHC+NCAEQnb10zFxUerlI11wK4nIKZebsshGwmWjZTFRbpzP/XgyDlx6m/3ybLkDqiqu5R6tl54b3sHF0ZMkq4caJgcvcsNDU3s6Br7ZwT+A0juz9lsjkVEZMFlRlZ7Dyz4/x3dYtrPjDQ2SeOQuA1k1JdVM7Ne+9j72XPwmrbqNvcISePhWd/SN0dfURPmJiUCfsw6HRcdQKBUOj47iIRfhONNtoTEOEe0kpFZuI9ZVi2S4EelG+UlrHtLjJbGke0+NgJ4wPjOmxsrRgeECFBWAaFZ7HAtCqVOj0Y2jV/XQd+obe6iIsrKypy0pnoLuVhuxzDMq7MA4bsLSxZXxsFPewmSgaakl98GWqOgbpae3DrlFDc0s3kpYB1F1axoyjDLoO0NTaTUHzAI1tcvxmpjB2LoP8vBLs0/qpbuzCskpBV30vg/Jukh9+i/QNz7P+jXVYSZzQS4Rzo7ddgX2LFmVnm1Af0mqxFosZGzehUSowjpvQavoZmfhS0WouvZ3mP7VfVQrivgNFdJQW4BuXQl9dGY6ewieSpq8L9+nRdJZk4RWVxKC8CwA7Fy96qwrwiZuDvL4cB09fjGMw2NuBW2gM3aXZeEYmMqgQokd7N296qwrxjktFUV8++Qk22NuJW2gMXaVZ+ETPQjcxv9Tdh97KAnxmzqG/pQoHDyEtMNDTgUd4LH2VufhEJaLtE/AOHj50luczI2UeXdWlyLyFT8L+7nZC4hJozDtP4MxkNBM96U6evvRU5hM2ex5tF6UsRlS9BEbFUpV1jrCk2Si7O3GR2uAddGlO0lxqwlxaAsDWTArislgz45ftmhs7a2Zs6NKxX9sBbCaFYO4ABhgyGtn01qtY2dhwz9pngcsfwBXFRQRFRk/RMNENj09qMkTOmU9zWTEGe6HopWpvARF8+9wD3L1hNy4OYsCEs7cfjUU5hKfMp2VCwwFA1dlOQPRM6nIymLtoHoqJlJebrx/VeTlEzRFSXu4TKS95eyshcQns3X8cn+ip+7mxKB/v6ORJ/wLQ9nbiERZLV0kWHpGJ7H3wSmbe9AAy/+n0VOYj85/OiG4A15BIrKXOZH78AhIXD4b6lURecxdSdx8wgdTNm97qQrxjU1E2lOPqGwAi0PZ24B4WO+nvQ8oeqo5+g8lkIiBpPn7xc+iqLsPBw4eDT9zI8KAGqasnDl7+pD3+PvoJf5e6edNXXcjsJfP54Y2n6K6r4PqXPsA0Ps5Vy9MozUgncnYK8k7h/bj7+nF71LTfbhHOOyqB8h924huXQuZnrzFq0KFsrqGt4BxeETM5u/4ZZP7TqDm+h97qYqzFUvK2rSModRnZG19n1KBD29NGzbGv8Z05l8wNz+HoG0z9T98hry3BWiyh8Kt1BKQsI3fT64hMoKgvp+6nvfjGzyXjg2eR+YVQc2IPvTXF2Igl5G57l+DU5ZTu+wKdshdlUw3Vx/bgnziPvO3vI3Vxp+LHb+iuLMLaTkrGxn8wY8EVnPjgZUaHdPQ1VFNy+BtCUxaw75XHcQ8KoeD73bSVFWIrkXLyi/VEzV/G/rdfZFivo6uuirrcDKbFxrP52b/gHRzKuT27aK0sJ3HR0kvem7m8rrnC3OXG/x2sh7nCHICpxcyYmYPqssU2Mwfg5a7+MWeXLcKZWa+ZwprSfKoWo5kimrmxn8dzz/yE2M6OuJQ0AIYvo+f75SvPE5GcysdPPIxvSCgnd++gu7UFkUjEnndfIXH51ex87Xl0g4NUnvyBU5/9g86qEowjwwQnpVF3/idqss9hK5Fw8P3XiVtyJYc/+ge6fhVddVVk7/+aiDkL2PniYwTNiOCnr7dTW5iPWGrPjjdfJvmKq9ny92cx6AZpra7g1Dc7mTl/MXvefRUHN6/J/WwymcjbsQFtTzuVh75i1KCnv72B2hN78UuYS/oHzyLzDaarLJuWrONo+zrpLssl/qaHKP5WuM9Q0VRN05mDzH/iXRpO7cdn5hzqf/qOge5WRBYWgj/OXkbeptcxmcZQNFRQc/w7/BPnTvp78/mjaPu6aMs/S3dVEdPSllOy90taMk+gU/YishARf/PDtOadRhYYRsPJC/5etHMdMUtXUnb8ABKZC6VH99FZXUry4iV8+PhD+IWEcmL3V9QU5mEnsSfj4G+4CPfnwxVo5Qokzq4YtBpsJrQXDHo9YgcnhvoViJ1cMRqE6EpkbYtBo8JO5sqwVoO1nYTRMRNGgx5beyeG+pWInVwwDgt4K1u7C/hBDTYSKSIEWo2tg4CXOl+Y30p8AT82pMVmgps7MiSsxziomqS5gUBbG+pX4ubpMYXmM6LX4eLmyqBKgdR5Km1tTKvC0c0dvaYfW6mAtzYOYy+TTaGtuUptzHKDf4+A+a+JgNfefB3+IaHMmJnAtBmRbPtwHQadjsAZEYTHJzJnxUoA+hQKpI5Okxomw3o92mEjtnZStCqFQMvS9FNUXM7eFx9h1YvrmZaUNrl/HCyEddnYSRhUKXBwdUerVk3SGId1OiROMrRKOWHBPuj6+xnS6bCVSDCZxrG0tuHEzq3kHjvM0KCW8bExLC2tCEi7goDEuWi622nJS6ejNBev6NnI/IJpzTmJT2wKdi7uyGtLWfLsBgwaleBfhiEM2n7a8k5Td3I/I7oB3MPiCJ6zHO+EBRx+cg2pD76Cg1fApD+axk1YiSVT/NHeyeGf/FHw9/GRIUQiET+9/Th+8WnEXncXWpWaH9auIThtBcFzr8QtJJKhfiWInab6+4CKqIgAhgb6sbS2ZvN91zP/D49y+103T77/i2loN4X6/nZvxAiZewVz7n+Bk28/way7HqMlW6i6B85ZRv729Sx95gMyP38V35kCL7inpoSkOx/nzLtrSbzjUdpyT2ElccAzchbFuz9kwdr15H75Ot6xqYCJ7rIcZv/pBdLXryX+1kfpqy5gZHCAgNlLKNr1IQufXE/BV+vwihAEeTpLskl94G+cefcJUu5dS1PmCQCCU5eS99X7rHxxA2c+foWABCHiaSvKZOEjfyfjk1eZdeM91GX8BEDYvGVU/LiH5Y88x+F1LxEyS9CraMw/z43PvsaO5x7myoeeouLscQBSr7yGfe+/yZ/Xb2TX688TmToPJ6mYhatvuuS9/X4A819zAL/64B8YMQxjZW1FZWE+y26+nWlRMbTUVnN0x1ae3LCRqOQUKoqL2PHWKzyy7iPevv8unFzdEFnbIG9rISptEYU/HSEsIZmi08eZljyf1Jv/yOkv1rHmtY85uv7vJCxezuiwgdrcDK577G988eg9hCbPpaWkgGG9DksbG+StTVjbijHotIhEIqxtbDGOjuAVFExPawsRs1JwcHZBLJUSN28R33++AQtHD7oqi3D09EHmG8zosJ7Z9/2dM+vWInX3oumccDM3JhPe0cksevI9sja+hu9MoRVZ3dZA7Jr7+en1h/CJTaH+9AEAjCPDOAeGsvCpDyf90dLaho7CdJL/+ALn1q8l/rZH6avIwTg8RFDKEvJ3fDDp74HJCxk3jlB/9giqljps7B1Ie/g1inZtYHRIx5w/v0jhzg9Z/NT7ZG9+B/cZMwHoLsth1h+ep+H7T0hYeRM1GSdQd7XRVVWK2MaKpKVXUJKRTuqKq/Hw86f0/Dmyjx767XbCBc5eiJWdPYGpS3Dw9MM3Trj2xN7Nm6DUJVjZSfCftRCXwAmyu5U11nZSAlOWYO/pi3fMbMZMIuw9fQlIXoKVWIJf4gJkAWGIRCIsrW2xspMSkCzgxwx6TJgE/Gxhfp/Y2bgECK2bllY2wvyzl2Dv7o3vTGE9Dl5+BKUuxcpOSvDsRbgGC+uxtLbBRiLFf+YsZN7+BCUIG1Pm7Y9PxExs7KSEpy3BI0TAW9nYIrZ3IHrhclx8AwidJRzkLl4+xC9Zga1ESuz8pfiGR+Ai/TcOpN/tf92KM8/x/EdfUJRxFr9pIQA01NcTk5rGiMHA9fc/zKZX/8YDr7yFs48vfqFh/P3WVTg6u+I3PZyhkVEsLawQS6X4h0Xg5hdA2p0P4R0Wiczbn/D5y7GxkzJ9zmK8Q8JpqypD3dPFOzcvR+rsgkE3iFfoDKQyZ4JiEmivKmfOmtuRV+QQNEPglLdUV+DuF0B1YR6L1txCa3UVAIERkcxbdSP2s6+j4dzRyf2sbK7DasK/vKJn4eDhS/WPu1n41Hv0tzdgZSchIGkBzoET/mIrxtpOSsiClQSlXYFnZCI91SWInZzBZJrijyZMmAArOyn+yUuw9/DFFB6LCBH2Xn5T/T04HBEmLKxtcQ0O4/S6Z0hf/zSW1jbo1XKkHr4ETvivZ/RsZAGhAFhYCf7uMyMambc/wYmpBCWk4BeVgKoqD5mbB/6hYfz0zU7C4pOITZtH9tFDv+i++FVFwCs//omWzGMEL7yR9qzDyIIFFbOB9gZ8k5fTcGIngXOvpb9F2DiOgRG0nf+BkOV3TOKtLC1QN1USkLaS+uM7CZp3LepmAe88LYrWcwcJXXEHrZmHcZkWjclkQt1cSWDaSuqP7WT64lWoJvAuwVE0p39P+FV30pF3AueJH1bZWMm0+dfQdGYvIXOvRNEo3KDhFhJF3akDJNx4L7WnDuIRKmz8vvoKEq5cTcHeCz3yAJ5h0TSc/oGUm+6m5OgBfCNiJp63kfhlV3N25yaSr72R9upynCQ2RKctuOS9yewu5fFejjNsjvMrvkwjhrkI2NwYQJjUTMBgajcz1mr2783miy9nFiGXjon8/+U/r9ZeGm1f7u41c9Hu5fK6ysFBDnzxKUtvupWGiSt8PMMiSd/3DVfd+wBn9+4m+8hBRocNOLh50lhSQOyCpax+9Flaq8oQ29oQMCOSc/u/YcU9D3D+++8IiYlDJBLRVF7CvFU3cmTL58xcsIQDG96lrqSIVfc9hE47wC2PPsmxvXsImDhomytKSbtuDce3fcGsa9dc0IiIjBU0Iu66j5x/0iRJvWYNJ3ZtI2HFdbRPaLD4R8Tww+69TF98A80ZhzAMqOmrLiRg9lKC511DzY87mLZgFaomYf9be4XRkXmIactupyP7MLKgSIxG0LRW4ZNyNS0nd+E75xoGWqsRWVjh4B9KZ9YhgpbeTlfOEez9I8AEA21VeM++mrZTX+OTuhJtZx2m8XGcAmfQmX2YwCW30XVmN2JnN6zEUkZ1A/jPWUnDCcHffz4fnIMjacn4gehr76Il4xAu0wSNF1VTJRFLV1Hxw1eELllFT2UhzVnHac8/y7hx9LfLA9b1daJuqsRo0NFXmUN/cxX9zVWomyuEsYosdPJOFLWFKGoL0Sk6kVdkYzTokFfl0t9chaa9nr7KHAFffjG+CH1fJ73l2RgNevoqctC016NurhQ+fQx6esuzGezrRF5ViLyqkMG+DrrLshg16FE2VKBsrETZWEl3WTajBj3yujK0vR10VxTQXVGAtreDjuJMRvSDdBRl0VdfQV99BR1FWQwP6WjOz0DT3U57aR7tpXlouttpKsxiWK+jMf88ndXldFaX01FdjkGnoyY7XbhJoDCH+qL8/9s/z+/2/2PDQ0MUpZ+mp62V8pxMynMyUXR2UJZxVhAiz80iLGEWTeWllJ4RUlndjXUoOtqozc+mpbKcvvZWyifwFVnnaK4opa4on+Nfbeb1O25g34Z1vHHnGvoVcuZes4rI5BRqCvMY0g1SW5BLc0UpzRWlVGadw6AbpDzzLMquTuoKcqgryEHR2UZlVjrD+kGqsjNoqSylpbKUquwMDHodzSUFk/utsTAHZWc7qqYaRg16ustyMI0ZUdSX0XD6gDBWmsVgXwe91YX0VhcypOymryIb47AOeWUu/S1VaNqqUVTnYjToUFTlMKToRFVXxEBbNUOKThRVgq8qqnPRttcx0FaFsiaPMYMORXU2Q4ouNC2VqOsL0Su6UFZlM2bQMTygwDQ2xqhugM6Ck9T/uJXe8vPoFRedD/JO+sqzMBp0dJfloGqqRNVUSXdZDqNDejpLMtH2dqBoqMDBw5cVr2z6xffFryoCvvbT04hsHTFolNg6ujA2kUy3tLVjeECF2MmVkcF+rMRCsWFkaBAbeyeGNUpsJvCWFiKsxBfww4P9WIvtEYnAaNBjY+80Ob/RoBdSExfNP24YwNpuokd+ophn0EwU5/6pmOfs6YFhSk+9UDwYHVQicXbDOFGcsxJLEOnUSF3dJ3vkQSjOubtfWpxzc3acLK7o+gWNCJmdldkLFn+PgPmviIDbe7pxkDkzoFYhmdBk6FOqsJc5o1HIcXR14x/33kpofCIz5iyi/PwZzu3ZScKyKzGOjDCk1WDvJGPG7Dl4BgQREBFFyanjfLv+LYKjYkm9+jrCk2ZjYWGJq4sMERcE1vvlckxSJ4Ynikk/C6A7ubmjVCiwk07ViNAoFTi6uF4iyG7l4Dq53wAMOh1VfTCkUSJ2FIpntUd3MaxVE3ntHyeK3/2T/qJWagR/HFBi4yD448ioCStbO0a0KmwdXRkZ1GBlJwWTCeOwHhvpBfyIXg8isLS5CK/TYGUnQSQSMWbQYT2Bl7l7TJ4PxVtfpavwFHbOnjj5hzI6NIjI0hIbqRMu06JxDQ7FO3bOFP81DfUjcXbDoO3Hxu6C/359z7zfLg1N2ViBR/QcMt/9M/aeAdQf+4re8iysxBIKNj6PT+IS8j9/lmGtGlVjGS1nv8MtPJGsdQ8i9Qyg8dhXaNpqYHycgo0v4JO0hPxPBbyyoYzaQ1vwjJ1DxtsPYO8VQFvmYTryT2JlY0v+5y/gm7SEwi2vMqTqRVlfRtXBzXjHpXHm9ftw9A2m6oetdJWcx9JGTOZHzxE8Zxmn312LQaOir7aUkr1f4p8wl7PvP4/E2Y3ifVtoK8gQ5t/9Gf5xyZM98l1VJeR8/TmhKfPZ/uiduPoHkfX1lzTkpCNxsGfH838hbvGVbH/uYQbVKjprK5g+M/GS9ya2/tdvxDCn+/BLUNZcbczt1wEzYxqzfw/mqV1mTeRiZuxfv81WMXJpQHK5BhVzlDNzOg4A6578KxGJybzz0J/QKJXUFBWQfnAfoTMTeePumxg1GMg8tB+ZhyeegSGc3PEld778Nqd2bsbOwREHZxdq8rMZUCrY+8E7HP7iIyoyz+EfHsny2+/hm/feYv6qG9nw2AMYh4epyM1m76cfkLBgCS/evhrPwBCObvmU8owzWNuK2fjUX0hafhXfvvMafe2tNJUWcXTTx0TPXcjOvz+NvbPLFE2Szc/+hZjFV/LVxH5rKSvi5NZPcI1M5fQb9+HgFUj1oe10FWdg7+5L1Q+b8Zu1mMwPn2ZYq0ZRX0Z7znGcp0WTve4h7D39aTy+A2V1PhZW1pRteRHP+MWUbnqeEa0abVcDjUc24RaVSv4HDyH18Kfj/PfIy9KxtLGlYvtLeMxcRPmW5xkbHqK/sYTm49twjUyl8MOHcfAOpv7odnrLs8A0jq63nVGdhsHeNkYGB7AWS5BX5dFXmUtr5o+4hERRc2QH3SWZWNnYkvnxCwSlLOXse09i0Kjpqy2lbP+XDMq7frs0tEUvbcMhIAp5VS6uYQnoFQIhXOLqg7K+CPfI2aibKpC4T/Sk93XgPC16Ct7S0gKpmxeK2mI8oibwbr6IRCL0ik6cp0XTV5mLW3gCOkU3IkxIXL1R1An4gdYqpB7C/Dp5B64hMfRW5OAdmcigfKKhw92b3poigpPS6Ksrw2GiYUTb24FHWCx9VXn4RCcyMNFw4eDhg7quhMCE1MkeeQBNdzuhMxNozM8kaOYs1BM9+/4BATSX5BM2e+6kpoRMYo29kwwLS0vGjEYsrawYHx/HWWJziXj77xHw5e1/KgLOy8kiNC6e2pIivCZuW2lqbCYkNo7Sc2f4+u1XWXLLXcTMXYDE3Zv6wjwiU+fRXF6Mm28ANlYWyDvaCImLpzIrg/BZs1F1/txA4UttQR7Rc+bRWFpMwLQgRIjobW8jbGYCpefP4RuTeKHhwkfAR82ZR01pMW4TDUeKzjaCY+Kpyc1kesIslBPzu/r4Ul+YR2Bi2iUaJn22QfSU5+ARkUh3aRb5m19nziNvMj4+hld0CoqGcuw9hPn72lpxDr7gv0OKLkaNJuxcvVHXl+AakYympQI7V19MJjCoOnEKikZZnYdLaDzavk5EiBC7eqFuKMF1RjIDLZWI3X2EiF/ZhVNQFMqaPHyjZ104H9y8UdYV4zYjiYaj2+gpy0Ts6AIiEfaeAdhKJURec++FBis3b9SNxfjGzUFeN7XB5Mjzd/x2aWgLX/uOlrP7mX7N/TQe2YxLWAIAmrZaAhfdQvWedUy74m6UNUI+1DVyFs3HthNx85OTeCsrK+Q1eYSt/BMVu9cx/cq7UVTnIxKBe2Qy9T9uJ/a2p6g99CWe0SmYxozIawqJuO4+Sna+Q9R199JbKczvGZVM9aGtJNz9DE0nduMcLFR7eysLiFnzABV7PyN82Rq6ygWdYJ+Y2ZQd2MKCh16g8JvP8IlJBqCrPI+5dz3MmU/eYNbN99FWLOj+BsSnUvb9dq545DnSt31MUPxsANQtdcy96S4OrHuZxXc/SH1+JnY2VsyYNYdjWz7llude5fDnHxA+K5Wo2Oh/WbhHYuYA/neEey6nnGZu3M1MVOxyGdExc6a6THOEOTMX1YL5g9XcmDlxHIARMxHw5Yoqgzod7z+3ltseeZyi82cBiJ+7kK8/Wo+Hrx8n9+/hkdfeFq5ZL8zjtkceZ8MLT0/irWzFRCUm880nH/DI62+z4/13iJi4aaI8J4tbH13Lxr8/x5oHHyU/J4vRIQORqXM5/OUn3PnCa+z6aAO+kRNFteI8Ftz9MEc/fI2wlffQVTaxP+NmU7pvMwn3PEP53i/wjBIur+ytLCB2zQPk7fiQaYtvpK8qDwCPyGSa0g8StvKPlGx9FXllDgELVjztn6EAACAASURBVCMCglbcS82e9wi+4m5UE/7oHJ5M8/FtRNz0JI0/Cv44MjpOf0MRQcvvpX7/+wQsuQN1fSEWVjY4BcfQdmonoasfp+XEVpxDkzCNj9HfWDwFr6wvxjQ2itP0BDrPfE3wdX+lL/t77H2FovjF+Ijr7kVZLazHLWIWDT9uZ+adT1Pzw5e4hQtfkIraQmZcex+lu94l7Kq7kU/g3SNmcfL5Nb/dItzv9rv9v2TjY2N0NDVwcNuXJM5d+Ku+Zsqg7sMlLGHyEPvd/jX7VUXAac9uxj4wCkVVLi5h8QwpewAQy7xQNxTjGjFb+IRxEz4ZhpSdyIKjp+CtLEXYuXqhrC3CPSqF/omUhaWFBTq5kIKQV+bgGp7AcH8vmCZSELWFeESnMtBaOflJNdjXgev0GHrKs/GJTkSnENbzs6ZEQGIa8vqpKQj30FgUNfl4RyVM6alX1ZUQMDOF7ppSZF4TGhE97YTHJ16iEeHj709zcR5hKYJGhIuvPw62Vhdk+n7WiOjqJCDAG6mD45R3+XsELNj/ZgRcVpjPjJkJVBUV4B0QSNH5c2x/7x84ubiweNUarrr1Tno6hLSMt38ApdnnmbVwCVVFBfgEBmEcH79IdvI0cSlptLW2AODh60d5bhYJ8xdRW1yIrbsXIKJvQsOhIjMd68C4yf0j8/SlpTSPkFlzKcsrwGEipTYwkSJrKcrGc0b8lJRaT1UBjtOTUTdWIJnA6/s6sQ+MRF6Zg7W9E9nv/hk7Fy9mrH4ILG0Ef2y+4I96RTdOgZEoq3NxDo3HoOph2DCG2MWT/sYSnMOT0bZWInb1BUwYlF04BEahrs1DFjITg7oXMCF29pqCt3DyQAQYlF3YB0SiqcvHNTyJYfXE+XARflxRN5mi1Ms7kU2LRl1XgGto3KRGhMTNG3lNIZ7RqaibKpC6/5xy7CT99Xt/u0U4XV8H7tGplG5+EXvvINrP7ae/sRRriQM1363HK2ExVbvfZsygR9teR0/hSVzDE6fg9X3tgIiqPR/gk7SYsp3/YGxYj6atlpb0fXjGpFHwxQs4eAfTXXSa3opsrMUSynavx3fWUir2fMiItp/+1hoaT+/FZ+Zccj5+DllAKHUn9iCvETQoCr9aR9Cc5WRvfI3RIT2q5hpqT3yHX8I88ratw97Nk8ofv6WnqghrOwmVP+7BPy6ZUx++zMiQnr7GasqOfEuYGY0Ie5kT369/jbjFV7L3H38TRKwbaknfs4OYeYvY9MwjeE0L5dx3O3H39sZ9QoTlZ/t3inD/jni7ubHLjUssL93Ddv+GvMPQv1GX019GYsJccc3c2OUKa+bGL+eZn772EtGzZvPSH+9g36bPyD9zEk9ff176YjsfvfAUAaHhHPpqCxV5OUgdHPnk78+x4JpVrH/6cfSDWjpbmjmwZSOzFy/jjYfvIyA0jENfbaG6IBex1J5Nr75I2lXX8MkLTzI2Dk1lRZz5diex8xfz2ZOP4Boo7J/28kJsJFJOfPwmkQtXcH7HZ+hUvSiba6g5JmgsFOz8EDtnN+pO7KGvphgrOwkF29bhk7SE4u1vYjTo0LTW0nxmH+7Rcyj68m+4hidg1A8CJjpyjqGuL8YrYRGVu95mbFjwR2VVLrLgaMq2vIi9VxDtGfvRtFZiaSOm8eAG3OMWUbf3XcaG9QzJO+g8vxfXiFSqd76MxDOQ3qKT9NcXYGkrmYIfNxrRddTQm/sDsvDZ1O9+DXvvaXRlHkDTXDYF33DwY0YGNWjaamlN349nzBzqDm3Cxl5G89l9KOtLsbKVUPHth/gmLaZk+5uCxkVbLS1n9qFXdv92i3DLP/gJC7HjFBoLgIX1P9FSxAJtZGxYdwntxdJSNJX2otNgZSvF0sICo0E3hYZmGh0yQ0PTYj2hQXExDc3e5VIamqOb+6QGBVygoY3pVZfQ0EyDKqQu7pdoRHh6ul1CQ3OROUzS0H7WiHCwtWL4oqtmftaIcHeSXEJP+z0CFux/MwJWKhV8/fH7ZP90nPuee4nZS5ajG9Ti6OyCSt6Hs5s7Br0gTyqR2qNWyHFx95ikrY2OjzM0cfWQWt6HzM2d/gGBNSKWSOlXyHF290Dbr0YvEl6kQTc4SXOTj0kuuXrI3sWN5rbeSZrVzxomarkcuwkNB7igeTJm7STQxMTCfjYa9IjEDlNoniaTiZrvP6Mj6wiuM5JwCU/Cc+ZCrKVODKnkSN19p/ijwWDE0taO0UE1Ng4ujOoGsBRLwGRibHgIa6kjI1oV1vbOjA0PIRKBhc1U/JiFNYhgbFiPtUTAS509GB+ZOB8uwosthibPh5/93TiouoTWatAosZO5TTzvBfyRvyz57Rbh5j6/lbbzh5l+7QM0/rgFx8AZAGg7Gwleegd1Bz7Cb95qVLVC0txlRhIdGQcIX/3XSbyllQWa5iqmX/0Hqvd+RNCC1Sh+TrJHzqYlfR9RNz5K3aFNuIZEYzKNo26pZsY1f6Riz4dMX7qGvp+LcNHJNJ7aS9xtj1N3ZDsy/+kAqJqriLn+Psr2fkroolV0lQuXIfrEpFB7Yg9pf3qKwm8/x2O60HnT11BJ2h1/JmPTe8SuvJm2YgEfEJ9CzbHvWPbg05zb/ine4QK+v6ORhbfdx+GP/kHq6tuoz89CbGXBjJQ00vfsZM3aFziycQOBkTHEzUrEJ3gqM+D3A1iw/4kDWKfpx1ZsR0lOJh4Txc++7i5K83LY+8WnvPzldmpLiwGIT5vHDzu28ucXX2PH++8SFidoFDRWlHP7X5/g89de4tq7/kDR+XQsrK2ISU7l0I6tPPC3V9n5wTqComIQAQ0Vpdz8yBNsfesVVtx+N3kZ5xkbGyUqZS6nv93BLU/9jR3vr8crVOgc7a6tZN6dD3Jy4zsELlpDZ5mw33xjZ1N9bA8zb3uM8n1f4hIi4FWNVcTecD+5Oz4kaP51yKt+9pdZtGQcJuy6B6g/vBmnwAgANK3V+M69noqdb2BhYUV/U/nk+xFZWOASlsSYcQSv+EWMiWwY7KglcNndNB76FJ85q+ivK0BkYYnT9Hi6sr4n5NqHaT2xDXt/wd8H22sm8d6p19J6cif6niaMg/2Mj40i9Q3FNDqMxHsaTsFxDPW1TuKnL1mDsla4PNRtxixa0/cRc8uj1B7ajGxi/f2t1YRf80cqv91A0KIbkFcLRUf3iGTSX7v7t6sFYefqjYNPEHb2Djj5hUz2dFtaiJA4OuLgHYiTly8mg8AxdfL0Q+MVOAVvYWEBIyOIJY44eAVi7+6LUacBETh4eOPgFYCtRCrg/UOEnnTjsBBlegUg8/JlTK+ZmN8XJ59A7KRSXIKm4zKxHsZGsHOwxyVgGs4+vhj1wsZx9vHF2S8IeycHPIJD8Zy4DpyxERydnHAPCMbd1x/joDC/u68/6qDpODo54jM9DL8wYYM42Frh5OSIV1AwXv7+jGgjsbO2wMvPH5+gaTg4OOAfGk5geAROLq5Y/FNx55//+X/axswcVIqRS2NFxWUuizD395fj5pobv1yQYY7Ha45adrm728zZkMGAjZ2E7vY2nFzdAKirKGf/ps9Yc++fiIuLx3piPcHBIUybHoa7swvhkdFERMcCMDwygqWdBK+gYJy9ffAPj0BnHEckc8PJx58BkwXOgcFoHXyEBgQXFZUqI2Myb7pMjqjsfDGNGakZlKCz8yS3dZgRhwAGbIRc5oi9hvo+EyMSbzRGJ8YdBN1fzbgzJnsfFIOWIAtgzF6gyyEbRKGzxNrZn3GxO9ZugmTnuNgdG9cARky22LoFYe0WBICtbggbmQ9uEWn4pK6kv6mc8dFhXMITaTn1NfY+02g/u4fa/RtwCorE3jMQBxcZMt8gXHz9sTQOYmlliaO/P0N+QchcZQwGTccxIBwwYWNhxNHVGanMhZbDnzCqG8B39go8ExbTk3cCl7BEuguOMaTqQVF8HO/kFdi7yHDyEfz9Z/+1d/fB3isQSxspDt4hOPgKAdTYyAhiqT0O3gE4ePpg1AvaFw6eU9lEv4T9qiLg2Luex2/OSppO7CJg7rX0t1QDIAuMoC1zquYDgKa1Br+Uq2g8sXMSb2FpiSwgnNbzPzD9IryFCNTNVVM0IrSd9YyPGYWe8fSDhF15B125x3CZJhyEP2s+VB/ZQfjS61FOaD64hkRSf/p74m+4l/rTB3Gf0HyQ11cQtvg66o5/S/jilVM0H1oyjxN/zc2UH/8e73BB86G7tpy069aQ8fVmklauoaNGiCTC4maSc3APS+64j9zD+wiIikVibUFzRdlkj/+81TfTXFlGZMy/TkP7T++Pu1wEbO7Av1y+2Jz9mg5gEbDr4/e5+pY7qSktAqC3o4MfvtrEztPZHP5mJ1HxAlOgpqKM5dffyK5PP+Sa2+6iukTAe82I5Kc9X3PD/Q/z095vCI+Lp98wQmNZMfNW3ciPWzey4IZbyMjIQyQCn/AYin/cS+rNf6D02AEsvMLBZELRUMn0hddQcegrPJOvpr9Z8JefNRBCr7iDxvNHJw+egdZqfFKupi19H15JS9G01gBMaiz4L7yVnrwfcQyY0GBpq8Jz1pW0ndmNT8pKBtoEvGPADHryfiRg0a105x6ZxOt6GvFMXErrqa/xTV2Jqq4YbVsFvUVncZ4eR+w9L9GZfRinwEhEliI0zZX4pa6k6add+Kddg7q1FsbHcQqMoC3jAJ3Zh3HwDSV4xR8QWYgm199ychd+c69B01hB/aEvGOxuQuzsScCimxhRd+MWnojUw4/+5ir856yk5dx+fJOWTmpEyIIi6cj6gbAr76D1/GGcJzQi1E2VFG55/bdLQ5NX5jJm0COvyEYv70RZW4iythC9qusSzYf+5ipU9aXC2EV4TWuN0ANekTVFU0LVXHmJRoSquRp5dSG6vk56ftaIqC66RPOhqySTwb4ueioL6KksQNvbSWdxFqNDOjqKs5HXVyCvr6CjOJuRIT1dVcVoutvpLMujs0zQfOiprWBEr6M5/zzdteV015bTnH+eYZ2OupxzqLraaS7KpbkoF1VXJ9VZ6Rj0OmpyMmirLKO5omxKj7+8o43avGzU8r7/2z/bb8rGxsbIO32SrrZmSrLOU5J1nqN7diK2k6Af1JJz5iSVxYVUFhdSXVKEblBLzumTdLa2UJSVQVFWBr3tbRScPc3Q4CBF585QW1pMe1015ZnC71uWcRZ5eyutJXm0FOeh7mqnMS+DEb2OpvxM1K31KBoq6SrNFjQNirPQybvMaiBoWioZaK1moPWCJoOmpQK9ogt1feEUjYXxYT3KmjwG2qouaDIM61FV5zCk6KK/oYj+hiKGFF2oavIZM+im4DVt1cJYVTZ6RRcDbVVYWtkSuOhGekvOMqrXIq/KRdNahbajHnllLsZhHX0T/qtprkBVV4he0UlH1iHsvachsrRksKtxyvoFTYlu1I2luEXOJvmJTxFZWTPY1Uh30RmKt7xC3aHNdOafRNVQSl9lDoraQuQ1BZPvp/dn/ZeKHNRNlaibKumtyPnF98uvKgK++otcRrVqbP9J88E4rBN6xi8qBoCQTB8ZUE3BW5jRfBgbHsLCYqqmxPBgP+IJTYaL8Y5u7mYF3Mf0mks0H4x6NXZOUwXch/qVuHp5MjSgxkYizD+q1+Hi5oJOJYjNXyzgLtL3TwhwqyfXY2U0TCm2jQzpkdpYTunxH+wX8DKprZB2uch+j4AF+5+IgMeNRqysrdGolEgdHGlrrOexG1ZytLwBraYfF3cPhnRCsc3azg6VvA9XD89JPECnQjGl2GbQ61DohhBLpJO/r1atpkMvvMMRvQ47R9lksbapXQmIplwY0Nctx/pnf7mo2Dxm7TTVX7QqrB1cLmgywKTGgqF/ong2UdyytBEEzW0dXRjVabAUX8Db2ssuFNtGLuz/f9Z8sLayYHRokIKPHsPRLxTvWcux9w7G2s4OK1vJRfh+RDZSRCIRRoOOrrzjqOtLmHnfG4JGxEXrt3V0ZVTfj5XdRc87oRHh4OKOpq2W4q2vYhofA5MJC2sbDP0KLKys8YhKwS08kYDZixgd0k0pzunkXfz0ws3/uzlgkUj0MPAAEDQxVAm8bjKZjkz8exHwd+B+wBnIBR42mUyVF81hAkaBGSaTqemi8W2Am8lkWvmvLFZemUPL6T3MvOdFCjc+j3u00Amk7Woi6sZHyVr3IFG3PEFXriBc7pN8BZXfrmfOk59N4q3tpHQVnCTpgbfIfPfPxNyylo6844hE4Je8nPJv1jP36c/J/+w5/JKXYjTo6SnPJuXht0h/6wGS7n2G1vM/AhA4ZwWFX61j6YtfUrr7fZz8hNxYZ3EWC594h8xPXyL2ujtpOHcUgJB5V5K9+W1ueGcbx95aS2DSPABaCzJY/dL7fL32bpY+/DxVpwVh68hFV3F+6wfc/d5mdv/tr4SlzAdA09XKNY88xUf338rqJ1+i8NgP2NpYk7T8Kr55+1We3votnz35EDFpC0ldtoygGZH/yuv93X4B62hqxNHFhZfvv4fkxUspzjyHlbU1A/1q/j/2zjOsiqsJwO/Se5fe7YpiRcQae6ImsRtbNJaoidFEY+/G3mOi0Vhii7137B2xYu90lCqIdLj7/VhEgb0KEfUj2fd59lHOnT17du/e2dk5M3P6f/kpQ6fN5tC2zQA0b9eJOaOHsXjHfsb2/RrvRtKSUpf9zjFk1gJGdPqCbydM48SubeiamVPBy4d1MyYxZvVmFv04APuqUn3oR/6naTdhAWuGdKf5oDEEnDlDakIMbnVa4P/XHFpMXM7VlVMwLym5tqJunKPmgOmcmdWfsu2HEuEv3Z92NZpxd+t8qg/+nRsrx2JZQfp9xd4+T6VvfuHmX+NxbdqDp5elam221ZsSdnYnZTv8zM2/xmJRXqqHHXfHj0q9fuHKou8o0/bHHHm7Wi24t3lurv41NTWJvnmW8h1+5PLiocQ9CiA5MhQ9sxKUqORDzG1/6oz8k8tLx2Dj2QBVZjrRt85Trt0g7myeR/Tt80Tf9CMjOTFn/DWHLOb+jt8wsnMFJL1Rpe8v+M8bSOUuPxN24SCmzmVzfu/egxdy8Y+RmLmU48XTYALWzSBg7TQASjbpSELoAxKfBJP2PK7I75e3WsCCIHwBpAMPkFwWXwPDgeqiKF4XBGEEMBboCdwDxgN1gbKiKCZm9yECqcBOURS/eq3vvyigAhYEQfz099PEPQqgRHkv4gNvoW8l+TaTYyIwd6tIzJ2LWJSqQnLsy0U57aTXkPI1c+QFEVLinkg56XcuYpktr6EBBpZ2xD4IoESFmjx7fAtjGzsQNEiOjsDcvSJRty9iX6EqSbEvF/WzJ+b+NWwqehEfdAvjlzUoosOxKuVB9N1L2JWvmpNwYVTCnqd3r1CqZh2e3ruBic3LAPhwSlauQuDlczhVqk7805cB8/bE3gugVE0fQm8HYJGds58S+wTXip7cv3gOd88axEaEYaSnhbWzKymJzzE0NSPlRSLaunqKBUzRWMBB9+5iaSMtghkbGYlLmbLcvx5AyQoViY2UAv4trG14ePM6FarV4O7Vy9g6OXNiz05O7d/D0p0HuHjqBJ7ePkSEBAHSJOsNfz9q1GvArauXsM9eBPPug/uUq1qda2dPUbGmN5FhIcSnpmNpa8/9q5eo6F2Hxzeu8VynBCIiCU/DsS9XicDL53GuXJ3btx8BYGRlT9S9a9hV8iIw4Jq02CXk3M/Rty+i61CRtGeRgLSIbfzj65iVqU5C8G30Le0A6X4zdalAzJ2LmJesQmr2/a9nYUvco+tYlK3O8+Db6GXLp8Y+wcy1InH3L2Hm7vlK3sqGhMAbWJSpkdO/pqYGqbERmLlWJPbuJcxLefLiSSDPHgWQEHSLyIDTGFjZY13JB8d67dDU0iYpJpzIK8eJDDhJ3XF/kxT1BIRX47coW4OEkNsY5IxfqhERd+8S1mWqkhKXnXBhaUfswwCsK3gR9/gmBq/pE1M7R+7vX0NCyAMSnwbhWLMxpZp3Zf+QTz+sD1gUxV2iKB4QRfGhKIr3RVEcAyQCtbOt3yHADFEUt4mieBNJQRsDXfJ0tQjoKAjCP85VDDywHEePKtxa+wumFmY8u3GCZzdOYGJhzs21v2BfsQqP9y0j6/kTsp4/Icj3L+zKe3JzzRSMzEyJCThO/D0/jMxMub5mCnYVPHm4dykZCRGkP4vg/p5l2FXwJOCvbPnbfkReOYahqSlXV07Grrwnd3avJDUmnNSYcG5tW4Jt2cr4L5uAgYkJYf5HCPM/goGJCeeXTMCpgidXN/5OSnQYKdFhXNv0O04Vq3DuzxmYmZkQct6XkPO+mJmZcG7lPMpVrc6FNYtIjwknPSacC2t/o3z16uyaPhJLCzPun/bl/mlfSlias3nKcCpWq87hZfNJigojKSocE31tbKwtMdLVpISlGWZGeujr6KCrpZVr09LQkN00ZTYNQSjwVhgysrLybakZGbJbWmZmgbek9PR8W3JGhuyWVMAtLiGedFHFgW2bObBtM+miiqmDB2Ds4MBvv4znxvVr3Lh+jd+nTkDX3onx3/XlhYYmO7duIigslODHDxkzdDAaziX5ZexIzl0L4Ny1AGZOn0aytQs/9O7JoxeZrFi9lhWr13IhIp0hvfrwUNORccPHsP34FXYfu8HM0ZO5l+nIuH4DOR+UwbHtOzm+YxfhzzVYO24YSSal2DZ/NhFBoYQ/CuTcml/RKFGGo/PHko4ej8/48viML+noc2HpRLRty3Fv319EBT4kKvAhN7f+hsrUlVub5pMhahPq50uony8ZojYBqyZh5urB431LSYkNJyU2nMf7l2HuVpG7f09Fx8CYmGvHibl2HB0DY+78PQ1T14q55MOOb8bc1YPb635B18CY6KvHiQk4gZ6RMTfXTMGylAcP9ywlIzEWMwdXDMytaDFnD3qmlsQ9uMq5X7pxZ9NMHu78nfDze/hk9FKCD/yJRlo0QtJTQn2X41SpCvc3TsXMwoz4myeIv3kCUwsz7v49FYcKngQeWkVGQgQZCRE83Cv93h/t+R2LEuY8u3WCZ7dOYFHCnLvbFlHzqwGUKFkWn35jcK7qTcjxTf9UdamlUJNwgiBoCoLQGTACzgFugC3g+1JGFMUU4BTgk2d3f2AbMOtdBqygUJwwsbTieVwcmelqYuwU3oigoYmemRXVeo3DvXF7UmIjsSpbBTvPuugYmry9g/93RFF86wZUAl4AmUA80DK73QdpzXDnPPIrgUOv/S0C7YFSSO6MFtntfwF733DcfsCl7E1UNmVTNmX7yFtQQXRmQbeCJmLcA6oAZkA7YLUgCA1f+1zMIy/ItCGK4kNBEP4EZgiC4Jv3cxn5ZcCyAo5RQUFBoVhRIBeEKIrp2T7gS6IojgKuAT8CT7NFbPPsYg1EquluElAS6PoPxqugoKDwr+GfJmJoALpAIJISbvryA0EQ9IB6SD7ifIiiGAXMAaZk96GgoKDwn+StClgQhBmCINQTBMFVEIRKgiBMBxoC60XJUbsAGCkIQltBEDyQ/LovgL/f0O1cQA/48l1PQEFBQaG4UhAfsC2wLvvfBOA68KkoioeyP58F6AO/8yoRo9nLGGA5RFF8IQjCJGDxO4xdQUFBoVhTbFKRFRQUFP5tFKtiPAoKCgr/JhQFrKCgoPCRUBSwgoKCwkdCUcAKCgoKHwlFASsoKCh8JBQFrKCgoPCRUBSwgoKCwkdCUcAKCgoKHwlFASsoKCh8JBQFrKCgoPCRUBSwgoKCwkdCUcAKCgoKHwlFASv8XyAIwglBEE58hONOzF61+21yJwRBEAVBkK1zLQjCX9mfh+VpDxIEYV1RjVfh30WxV8CCRIAgCF9n/x0kCMKct+xTQxCEWEEQTD/MKBX+JbxcDbzU642CIBgAbbM/V1AoMMVeAQMdkeoQv6kAfC5EUbzEq2WVFBQKynXgIdAtT3tbpHUQD+XbQ0HhDfwbFPAPwFpRFDMKud8qoL8gCAVdmFThHRAEwVMQhB3Zbx4pgiDcEwRh1Fv2KZu9T3z2Pn6CILTII/OXIAhBMvvmc2kIglBVEITTgiCkCoIQLgjCOCTFWRjWkl8B9wC2A0mF7EvhP06xVsDZr4I+wFaZz8YJgvBUEIQXgiCsl3E37AYsgOYfYKj/aQRB8ALOIy3G+iPQEpgHOL5hH3vgDOAJfI/0phMP7BME4dN/MAYr4BhgBXwNfAe0AL4pZFdrAXdBEHxeG2djYE1hx6SgUNytv8ZIVkdAnvavkF4V+wJ2SMsmLQc6vBQQRfG5IAi3gCbAvg8y2v8uc4BYwFsUxeTstmNv2ecnJNdSbVEUHwIIgrAfuA1MBQ4Ucgw/AoZAc1EUQ7L7OwwEF6YTURQDBUE4g2T1nkOyhiOA40D3Qo5J4T9OsbaAgerAHVEUVXna9YGWoijuEUVxGZK1004QhPJ55AIArw8wzv8s2RNUdZAWcU1+m/xr1Af8XipfAFEUs4ANQBVBEEwKOZTa2f2FvNZfErCnkP2AZO12FARBF0nprpO5BxUU3kpxV8C2QIxM+2FRFF+89vd2JF9fzTxyMdl9KLw/zJHus7C3CebBAngi0/4U6bs0L2R/dkCkTLtc29vYjLSq93jAA8X9oPAPKe4KWA9Ik2mPev0PURRTgBdIP8LXScvuQ+H98QxQAQ6F3C8O+YejLSBmfw6QCujIyFnm+fsJYCMjJ9f2RkRRfI40hzASuCSK4p3C9qGgAMVfAccBZjLt1q//IQiCPmBEfovKjFc/ZIX3QLbb4QzQLft7KCgnAW9BEFxfNgiCoAl0Aq6Kovgy5jYYsMmeZHspVxIom6e/89n9Ob0mZwi0LsSYXuc3JPfFrH+4v4JCsZ+Eu4fk28tLU0EQjF5zQ7RFspou5ZFzBe6/v+EpZDMMSaGeFwRhLpI7wh2oIoriIDX7zAd6AocFQZgAPAcGAmWQoihesgWYAqwXBGEeUpTDKPK7sHB5HgAAIABJREFUpuZn7+8rCMJEpLefn4GUf3JCoiieQXqwFARnQRDay7SfF0Ux/J8cX+HfQXG3gM8i3dwl8rSnIIUrtRIEoS/wO7BDFMXbeeRqZPeh8B4RRfEi0kRcKLAI2I+k/NT6hUVRjADqAreAJUihhhZIk6sHX5N7CLRHcnHsBIYjRVDcz9NfDFLUTAywGumeOAisLIpzfAv1kB4UeTc540HhP4Qgim9Ng/+/RRAEHSS3whBRFNdmtwUB25DSQgcguR52AwNEUYx/bd+qwGXAXRTFoA87cgUFBYViroABBEFYCJQSRbHlW4Vz7zcdqCmKYpP3MzIFBQWFN/NWF0R2cRtRZtv3msxAQRACs1M8LwuCUE9NH3nbJwqCcPMdz2E20FAQhDIF3SF78qUv8Ms7HltBQUHhH1MQH3BNpPCtl1s1pAmtzQCCIHQCFgLTgKpI2UEHBEFwztNPKjCzaIb9ClEUw4De5A8xexPOwGRRFE8U9XgUFBQUCkqhXRCCIIxBmkCxF0UxWRCEC8B1URT7vibzANgqiuKo7L+DgF1AP6CrKIrbs9snAu1FUfQognNRUFBQKFYUKgpCEAQBydpcl618dZDSgX3ziPoiFcl5nZcz4NOVCmQKCgoKhY8Dbgq4IRW2ASnmUpP86ZyRSEVu8jId6JO9/fG2gwmC0A/JasbSwrR6bFxCIYeroKCgUKQEi6LoWlSdFVYB9wUuiqJ4LU97Xj+GINOGKIrPsqMPJgiCsPZtB8supLMMQBAEUUzZAYJmPrnbt4Oo3XAky34bQKcOdV8bRX5Z1BnfcrKFkcvT/uhROCtW7ufQ4Ys8ehSBZ+WSBIdEEhn5jGrVyvBpC2++/KIerq622Np/SVTkNQwMZBLFVI/yt4lZMnLpBRs/gIZc5q4a1J6vzHUUXGRF77ywz9eWqcpfu0ZDkC/Nm5aZSVZWFjcuXeDUwf0c3bMDEWjYug0NP2+De/mKCNn7JqSmFuhYAFoa+V8A5cagrSl/DXRk2uX6BNAthKxcu9wYKpqouZfF0PxtWWryjbJk6iNlqlnYI0umPSM+fxvI32Ny962OVf42AD0pYfHKlQdMn7WBEycDGDSgJd8PaImFhXGeccnk0qTJ57c8C7+HoYF03RKTMrAw0yMiPBprS32SkjMBMDTQ4ml0ErYlDIiLT8PYUDtH3tbrb/mb/B9SYAUsCII18AVSZbGXxABZ5M/Zt0Z9kZNFSPVdfyr4MHMjiiJ37oZy9Ph1jhy7xqkzt3B1sSYltRBK6D1TsqQD06b2ZdrUvkRFPePatYe4u9vj5maLppYuIJ1H7z4zaPlZbXnl+x8nKTGRc8cOc2Tfbs4eOUQJWzvqN/+MGSvWYVe2fI7SVfh3IYoip04FMG3G39y6HczQIe1ZtfxnjPTfPWT2UXACm/ZID6O2n5Zk1IxzbF70CV0GH6dJXalcyZEz4Sya6E2TbgeYOqw6O3yliqVtmhWp7gUKZwH3RErf3PiyQRTFdEEQLiO5Jra8JtsUKRkiH6IopgqCMB5JEb/VCpZjwaLd/DR8BRoaGvTq0Zjr/gtwclLzJP0/wNranGbNpEJsT57EcvzEdY4dv8yx41ews7PE9+C8jzzC/w+ex8cTERLEFb+znDiwj4CLflTxqk3dZp8yYNQ47Jxe/QAS0uRqMCkUZ1QqFfsOXmf63L1Ex6UyYlgndu9ogq5utjUtZ60XEhdHYxrWltYBcHc2pXkDF4wNtWhS14EalV7pEBMjHZrVc8DNyZgGXpJ96eZkLNvnu1AgBZw9+dYH2PhaEZSXzAPWCoLgj5TW2x+w580+3rXAUKTVCGTesd/M4O9bU79uRfYfvMT+Q5fxqDGYT+p78FmL6nzarNr/pTLOyMikbfvxnD13kwb1q9CoUTV+HNKJChVc/9WWXGZmJvdv3SArKwtRpSIjI4On4WGEBQcRERJMRGgwT0JDiAgNRqVS4eDsQoUq1ejQsw/z12zC0NiYtMzMj30aCu+RjIxMNm71Z+b8/ejoaDLix89o37kNmmpcPwXrM4vb954C4OZsyclzj/isaXkOnw7Go4ykHw6fDmFov6qsWH+VL5q6EnA3FoDWjZxZtuEOP35TkS0HAqlU1gKAI2eLvmxHQS3ghkBp8q+FhSiKmwRBsATGIsXi3gQ+E0VR7UoDoiiqBEEYgVQToOBk+5A0BKhe1Y3qVd0YN6oDMXGp+B65wv6Dlxg9YT2CAKVLOVC6lAOlStpTs0YZmjer8WZFJ+ezKoSf8238NGw8KlGfqMgAtLTk+nXK3wbycSqZMtUP1fnt5M5LpcZ6lPP3aujKit5KqZuvzU7/1Xk9evCAdatWsGndavSNTdDT00cQBDS1tLC1d6SEgyO2Lq5UrVsPeycXbJ2cMTAxzfUdqYDEtDQS0/O7llLVKGVdmWurr+Z7l/PhyvlqDbS1ZffXlPHVqvPrylHeWI2CyTqRv03Ox6/uLUDO16rOepTz66q7l2TGIKbIexoFvbzVQAHd3JU/09IyWLrkKHMXHaCkmzXzpnehaSMP6R5Il/Fjp8orQFVyVL62ZzEvWLtWmqpq09yNOQsv4F02k4PHHpOYIC3dd/hsOE1rW+F/PZpK5Sw5ejYCAGNDHXYdCaXLl2XZezSM1OzLfORMYUtav51ik4osCIIoJm99q5IQRZHIyGc8eBjBg0dPefgwnF17zlOqpD1//P4DdnYyNwa8VwW8fPkG5sxdxgW/XZiaqlnIQZ0ClptQkVPAhZkMUUehFHCjfG12+lpkZmYyZewoNq5dTaduPejaszeWJcvlk31eiMmywijggk6swb9AAat7kBYDBRwV/Zy23ZZiZGTA5DFt8apRMk/HMudbCAWclpLGy6/95WRbZEwyVmaauSbbomJTsS1hSOyzVEyMdF7Jm+sTGZOcb3JOp/RyRFEsslfWf108riAI2NpaYGtrQb16ngBMGNeNqdM34FljAHNn9qNb18Yf7LXfz+8Ko8fM4vSpreqV77+EmOhoenfthLa2Nuev38HCUvoRxqQXj4e8wofhxq1wPu+8mO6dazFxTEc0CvHQKihnLz/FP0BSzIdOhbLh1yY06bqHeWO82LDnMQAdW7ozbNoFjqz7jC6Dj9O8vmO2fBjrFzaiWbf9zB1bm417JS9pp5buRT7Of50ClkNXV4fJE7/myy986NVnLmvWH6FyJTeMDPUxNNTD0FCPpk1rUaaMGiv0HYiJiUMURRYuXMn06SP+tUr4xuWL/NyzM+07d2X0pCnv5L9T+Pey58B1en+/lgUzOtClgxe8B+ULULmcJRVLS77bBrXssbbUZ+5YH+pWt8TRzggAFwdD5o6phbWlPlOH1cTdWZpkq+9lh42VAXPH1qa+lx3ODi/ljYp8nP8JBfySalVLc/H8IjZsPEFUdDxJSalERcfz96LjZKmE96KAW7Vqwp3bxyhVuj6dO39O/fq1ivwYH4uMjAz8Tx7nwI7NnDywjwVLltHqyzYfdUyiKCKK4jtZVQlxsVw6fRIAfQMDzExM0DcwxMm9JCZmhV2KTgGk72Xur77MX3yUPZsGUquG23s9no62Buv2PQCgkY8DfUacYOGEukxbcgnvKtKCOau23mfsd1UYM+cSX7crzbaDgZJ8bXv6jjzFgvE+TFhwiQa1pDIzq7bcK/JxFmsF/PTpM8ZN/puw8GdEPIkj4kks3l7l+G3BAFxc5Jf60tHR5useTV/rI44Vqw7RrWtTWfmi4Pz5y7i7O1Ov3odfgPn4yRvY21kwa94OFs7pzS8zttCoQSWyVCpOnr7F2JEdGDxsBcN/asM5v3ukpmXQqGFlZs3dzsK5fdm+6xQ9ur+6NllZWZw8dYM/NmzhyJ6dOLq60aJtB34YOxlP97z1l94/R7du5MrJ48RFPiUu6ilxkZHo6uvTqnsvWn3dGzOr3LX6E+PjObl7O0+Cg/Co4UUlL28srG14kRDPmYP7OLVnJzcuXqCKtw86enqkJCeTnpLMlXNnqFTdizWHT33wcyzupKVlMmD4Xq7ejMHvyAicHC0+yHFfzm+JopjjDxZVr9xhr5yQ0kP75brW0n5iHpnc/y8qitckXOKaXJNCvy4+wAHfawwa2Ao7W3NsrM1YtfYo8xftYeyIDgz6XiaU5bWJplOnb9Czzxx6dG3CxPHdZQ5a8EkpRJlJIQ1pYuGnnyZz7vxltm1dioODreyEW1yGfLcWcvM/aTIrqavJhHuekMjtu2HUqlka3yMBNKhXgeDwBBDBxbkEJ0/folmTKlzwv4+bqzWCIPA4MBKvmqVZs/4E+roa3LwdSlBwNAnPk/G/9BAHews6tatNx3a1cXV5bfk9uWsAoJc/Ew7NhvKyBSQuAxYvmMfKpYsZPnYi9o6O2NrZU97ZjidPnjB//nw2bdpEhw4d+OGHHwgKCmL16tX4+vrSokULPDw88Du/n7PnbmBmZkxc3HMafVKNjh070rp1E4yMDF8dTHBi0KBB2NraMmbMmFftKpkVidRdg8JMjBV0wk2uT4BMmQlZdRN26dEy3crfS4Ju3oVnAG25JRkBLak9KiqB9t0WYmVpzNoVgzA0zLMGrkrNNUiXWew8VW6RbFBl5D43URS58/AZt+/HcffRMy5djyIuPg0LM11+6lMFayspIsfFwZiTFyJoVt+JC1cjcXeW3IOPQ55Tq6oNvqdCaVDLnuBwaVLSxcEYw3JLi3QSrlgr4EFDVxIeEcfKpYMxM3v1g7n/IJx+3y0hOSWDP5f8gGfl15zngiapqemMm7ia9RuOsfT3wbRu5a3moEWjgDMzM5k+/XcW/fYXCxdM5Ksu3+cTfV8KeN+Bi8xesIdNqwfzyWeTWTDza/YdCuB5YgqdO9Tlx+Er2bt9LG06zaB0STvCwmO4cy8cAUhKTsPHuwwN61XA3dUGc3NDKpRzpFRJucWK1VwDeC8K+I+/1jGgV3cGDvkJr9p1cHBywtHJmTL2JXLcD9HR0SxevJglS5bg5uZGz5496dixI+bm2W4E1RlUKhX37oVgb2+FqamRfJSL4ESPHj24e/cuf/75J56enjn750NRwBJaZly8/Ij23RbSvXNdJo9rj4amXEhk0SrggNsxdP3Bl/CnSVia62JjZUDss1SmDPPm+/En0dPRJD4xHXcnEyb+5MWYWX4c3fAFX33vS/MG0hvcoZMh/L2oGU267GLe+Lps3C25Mjq1Ls1nX+9RFPBLoqISGDNpI3sOXGHimE706dUULS1JaYqiyMo1Jxk5dhWVPdzo1uUT2rWpy6PHkXTvNYtyZZ344/cfsLIyfcNBi0YBv+TSpQC69/gRT8/q/Pnnnxgbv8qseV8KOCszg4SEZCwsjIiMjMfa2pSkFOldy9BQj8NHAxg4eCkW5kZU8XSjQjknXF2sqVO7HCqVmGMtFIgPqID9btzl0L49hIeFEhYSQnhoCOFhobxITGTx4sV88803b+9EToGqUcAqlYqVK1cyevRoevbsycSJEzHQu5JfVlHAAKxYf42R4zeybFFv2nxeM7sDGY9nESlgURRZ9vctxs+9wPwJ9WjXwh0NDem+zQlDi06mhKUe5y4/ZdgvZxnQ3YMWDVywKWFAXHxqrpoPL+WtrfRJSpZ+nIYG2mi5LS5SBVysF+W0tjblz9+/5cDOcWzedhbHUn0YPHQ5F/ylXO/evZoT+mgNA75tya49fjiV7EHzVqMZ+XMntmwc+2bl+x6oUcOTK5f3ExMTw6ZNmz7IMbftvMD9hxE0bDEJbW0tOvVYwLYd59m45Qw1fIbRtec8dHW0+HVuH5wcLYl4EoetjRkdus5GW1uTOQtklP3/AWXKlaPppy0xMTHF1MwMEzMzTM3MUKlUhIbKxE6/IxoaGvTu3ZuRI0cye/ZsTpw4UeTH+DeQlpZB/x83MHvBXk77jn+lfN8zf6y7xaJV1zm1pS1dvijDi+RMxs65wNg5F7j/OJ5GnXagra1B6157GTH9PLfuxbFwZQBaWhr0+fkY9x/H55Jv8tVOtLU16Pz9ITbuecjGPQ/p/P2hIh93sZ6Ee0nVKu4cOziF+w/C2bD5DD36LCQrS8WEsV3p1qUR7dvWpX3busTGPkdE44Mr3tfR19ejUaNG3L+vpjpVEVO+nAM21qa0/7IWxsZ6fN6yBpUquaPKUnE1IJBbVxZy9Ph13N1sadG0GpqaGpR0t2XI960xNTWgeRPPDzLOf0Li8wRu3biO//mzxMXGUrVGTb4bMIDmzZujUqmKNL70zp07DBw4kPj4eM6fP4+3t7e8Bf0fJjTsGR17rcDW2gT/k5MxMTH4YMfW19PEo6wlZUtK7iUTI206tS4NQElnExrXdaTjgIPcefiMPp0rMGeMD8mpmZiZ6NDmU3fKlzJHR+eV/HdfV8LUWId+XSpS0lnSF25OxmzdV+jKCW+keLkgnv0qn9mlmbtIhiiKnL/wgP6DV/JZs8rMmNypAEeQe50rhAtCU6aamZZ88Y6t206yctUB9u+d8fZhyWUlyb16qikbGRoSwaHD1/i6W0PmLtzDNz0acfXKLVJS0+nUcwmTRrdh6A/NWb3+LJ3bVMLIKM8kibqsKLnjqSstqCMTkSL3SqzulTwjNn/ba/eBSqXi3oNIzvo9YvHyk1y9Hsq3veryx/yv5Pt7idw5ZN9LmZlZXLkWxMkzdzhx5j7+lx4wflRHBvRrkePmkv0e1GUeysoWwp0l55YoTHEada/6hRmXtkx2m6DJ8+fJzJ63ncXLDjBsyJeMGNZO3t+b8Sx/m5y7BOQzO9W4UULDExgx5Sj3HsVy+XD2wjxiFqIocvxsMJPmnCb8aSJjBtehW7uyaGsXIEZdJe9KEhzmKS6ItyEIAj7eZTi2dyR/rT/DpSuPP/aQctGkcXXu3A1m5673b0EFBkXhezSAxMQUDh6+yuOgSM5ffMTqv89hXcKEg0dukJiYiu+xWyS+KJ4VxjQ0NChd0pqtu65w9XooFcvb0aRhWW7ffcKLF/lTnuXIyMjivP9jZszdTYsvZ2Lh1I/eA5cREhpLr+6NuBfwG4MGtnylfBVIT89g0eK9lKnUn5DQaK6cn8+o4R3eS2abHNExSfw47hBVGi/D1cmUI1telao5ciqQel+sYcCIA/TpWoW7Z/rT6yvPginfD0ixtIDXbPBj6pwDtP+iKh2+rI5nFTW1YcUs1m44y7zfDnDx5KS3/Hg+nAUMcOHCbVp/OYYDe2dQvXpZ9cN6Rws4LSUJHR0toqISsLExIzY2kWdxkdRpMpXVf/ShRbPKREYlYF3CBFVGEpqaeX48xcACBumtZ9O2Szx4FElIWBzBoXGEhD0jJCwOPV1tnB3NcXa0wNkp+19Hc/T0dLl0NRi/i4H4XwmipGsJGtSrSIO65ajnUw4rq+zvT1PNq/R/1AJWqVRs3X6e0RPWUaqkHTOn9sSzcp7ECrkJtyKygKOik/h1+QWWrL5MlzYejPmxHrbWUpZaUlI6P4w5yIlzQUwZ0YBOX1TIfU+Lama78x3rw1jAxVIBZ2Wp+P3PE4yevIukpDRKlbShQ5tadGhTiyqVXV4p4+zXkKp1xjF5TFs+b1ntDUf4sAoYYNv2k/QfOJ8J477mu4Ffyj9E3lEBr1h5AEcHS34c8Rc7Nw2naavJxMQ8p3HDCjxPTGHT6gF88tksFsz8Cmd7A8qVyRNiVkwUcA55ro0oisTEviAk7BnBIXGEhj8jNFxSzC+S0qlexQXvmm74eLljbm6Yz50FKAoYyMpScfZSFFu2nWPbzvM4OVoxbXI3GjeqKt/ve1DAjx4/Yd4ffvy9/SYdP6/AyEF1cHN5lZkYcOspHftuw6emI7/+0hRjI5nrqyjgf4acDzgkNI6BQzdw4PBNatcqTcSTZ2hqavBFy+rU8S5DbS93VCoRj1qjeXB1FpaWb1KIH14BAzx8GE6nLpNwdbFlxZ/DMTPLk2/+jgr4aUQkGhoCw8esZd+hK9SqUZrxIz7D1aUEjwOjqVXTncPHbtGgblmy0pMwMMijQIq5An4jb/AB5277byrgrCwVp87eZ+vOy2zfcwUbG3M6tPWhfRsfypaRVo8o1JJV/1ABXw4IZ9ai0xw9/ZB+3arxQ99aORbvS8IinlOz+XJmT2hCt/aV1d8H/2cKuFj5gNds9Odp5KuFOZ2dLNizaSAb/xpEUHA09euU49fZPTA1MeDPv45ToeYoytcYSbdOPm9Rvh+PUqUcOHf6NxwcrKhWsx/+/jKlJt+B2LhEylUZTHpGFkt//ZYNq3/E0tKYFy9SqVjenivXgmnUoDwPHkWipVWsbgeF90RCQjKDh2/AvsxQho7ZjKODOacODOfahfmMGdHhlfL9AKzbco3WXdfiVc2RwIs/MG1M43zKF+Cr/tsY3NdLUr7FiGJlAbdr7cHRUw9xdTKnWmV7ypaykjYXbawt9Zm2yJ/VW26zbFYT2nxaGpWGIQ8D43CwNcbQMNsyUfdklLNy5KxadRTCKlXH9j3X6T90K5tWdOeTelJIjForqSDHB9KFEpTyGMTW9UPxqpndZ1qEfB/JQfnbtNWE7KmzCuWQOwfZBVMLswCoOkvzHdcFlB2DmnEV9LzUtRfmfAtqFatDnWWuUyXXn35+V+jS9UeaNWvGsGHDKFWqVM5ndxLz32PlDc/L9yuXSJESmL9N3e8xK5mMjCzK+Sxi5cIvaeDjqv6e09CldrN5DOnfkE5ts92M6hJi5CjEIrdCiTH/YRdEzAwy0tO5eDWMG3ciufcwhnsPo7n7IJLwpy9wcTAhM0tFenoWIRf7ImjLWL3/xwoYYP/h23w/fDvXT/+MkZHuOytgdO1ZsuwQ+w5eZu/20VKbooDV83+ogAXdz+TlFIoMMXZ27oYPpICLXSKGtrYmPl4u+Hi9ljKaHktaWiYPg+K59+gZMXEpxXadtc+aVqBe7WuM/mUfv85oWyR9Ghnp8SKpYOFYCgoKH45ip4DVoaurRcWyVlQs+/+3IGdhmT/1CyrXnYOerjbjhrfC2Fjv7TupIT09g4lTN7Pyj4FFOEKFj4GYujt3QxG7IJYv38C5c5dZuUo+Tf5DuiD2HrjKiCmHuXX6tcJVb3BBAFRrMIvfZ3egtpdbgV0QgsVPBZJ7XxSrWRenytOJiU362MMoEjIyssjKUpGVpSIjIyunTaVSYWKsx3nfH4iMTqRczcksXXWa3fuvs+fgDfYeusGegzc4eOQWVwJCUalUZGZmkZkpfyOvWnOcku42NKhX8UOenkIxxM3NiceBIR97GAB4V3dEEAR+mXeyQPLJyencexhF1cqO73lkRUuxsoAzMlWkZenlD+/SU7egpYyFoM53KBcOU5gwHxlZMeO5rGh6UhKrt92jRmWplu6l61F0beXEgr9u83XbUly+KYVdTf3eDX1VLPt3n+RhyAtMjF5Wa8rExlKPizfjaOhlTasGdtiYCzSuldv6T0tX8cu0M6yfU5vUh5tz2gVN+a9d2yh/oWwNDTUPvIyE/G3qfOYFXRhUbViWzMNFnYUj5y9Wd3y54xV0cVaQlm0uSJ/wj+YD3kph+lRjPd5Pfk1h2dXi/qNwtTUuymvJLMCZpCaMLKWAilyNBWxlrs2RzV/RoM1akpNTmTC0HrpvmJK5/yAcEFm45Cid21bBxUVNyVR1CUsZGrxISicpKY0XSWkkp0KFcnb5wzKLmGJlAaenZ6GnJ79C7Zv4e/MFps/d/x5G9M9Yt/M+rRu7Ev40ifCnSbRu7Mqfmx4wpGdF9h4Lw8HGAAcbA/YeC2PW0MrU8DBn/9J6DO9dluG9y7JvaT0aellzb/+nZGaq+HlOAHtPRpKcmvtmXrM7DI/SpnhVVrMStILCa9g5OhETFUl6egFjZd8zttZGnNjejTsPYqj0yZ8cOvZQraynhz0HNvUhMCSO6o0W0Ou79bJvhaIoEhIax5adVxg6ZltOu4nzcEpXn0LdTxfS7uuV9B60BrfKY5g6ez/x8YUwxApJsbKAzUz1iYx6jqWF4duFgeTkNAb8uI4LlwJz9h/Qt/n7HGKBOH85knIlzTl5QYpGsDDT5ertWBKTMjhy7lWEwpFzEbSuZ87hc1HUr16C05ckv5qVuS6Hzz3lm3Zu6OtpMqxXWXYfDaNim5OYGGrxIjmT5NQsVCrwXfXJRzlHheKHlpYWtg6OBAc/pXTpol8f8Z9gZ2PMjlUd2Ov7gNbd/2bvui40+6RUPjlBEKjv4059H3fmTWlNm6/X8lWf1bRpWZnHwbE8CozhcVAM9x9Fo1KJeNdwxbvmq/TptMj5uTvU0OH23Qi+HfI3Mxf6cvbQz1SqWPTxz8UqDK1nF29qVnViYJ96uT/Uyl8UWqVS0aH7r2hoCPy15BuePI2nbvOZrFvenyafeOQ/wAd0QajSUoh9lvqaSyEDUwORyJgUrC31SEqWXq8NDbSICIvB1kqP2Pg0TF4WjE5WYWGmQ2RsKtYWuiSlZKFKTyIqLp2sLBFDfU0MDbQw1NNE1zh/GFmhXBA6aiY+5DKF/msuCDl3lrpzkO23cGFo+SbhCpP1pyYr835ao1x/92rdjDE/NeOzz2rnF06TcUG89rtJSUlHXz/7PN/RBZGXqQvOsP/oY47v6ImOTp7vQ8a9kpquweCR24h/nkJJVyvcXS1xd7XC1saM9PTMnFohP4zYAsCFI0Mp5W6FhoZAamom4U+TmLXQl5NnHzBsUBN+6N8IHR0tBNP+/90wtE/qlWHPwev5FbAME6ZuJzLqOUf3DEVXV5tSJW3Y9Ne3dOixhP3bhlKjmvtb+3hfxD5LpcN3vjSvL1kZh06FsnZ2HZr3OsycUTXZvE+y2Dt85sr4eZfZ/mtteoy8SFMfyWf8MCSJSYM8+LTvKWb97Mnmg6HoaamYP1yZaFN4N6r71OXwkYvyClgNMbGJjBi/jfWb/diwsh9tWr+p5krh8T3xmN9XXebS4W/zK1816Olps3RBZ168SGPH3gDO+Qfy69IKXClFAAAgAElEQVRTPAqKwd3VChcnC1ycXhkc/X/axMPAaAQE9PS0MTHWo+/XdVn5ew8MDQsYi/8PKFYWcPCNKVSpN52ZEz+nUgU7PD0cpCduHgv4783nGDN5KxeOjca6hEmuz3bvv0nfQSs5uGMYVT1dX33wAS3grNRkLl2PxsVRSqkMDntBtfLGHPd7gk/VEgRHSBNfznaGnPULpoFXCS7ffoaznfSkD45IoYaHBScvRlPb05KQJ8moMpNxszckKi4NuxJ6RD9Lx9hAEy19YxKTMylhoUdEVAo2lrqkZggYGeb3pSsWsBrZ/5AFfP/WTb7r0JSgx1vyx9LnsYBVKhUrVu5l7JQdfNW+Fl+2qkLnXsuYO7UjXT+XWYZKDjXnIIoidx/EcsY/lHEzT7JpaRsa1C0t34fcBGP29/D3lkuMnrKXwf0bUKeWO1UqO+dS4oLZd9Lxnv2aZ3/5e+Y/bQE7u9gx95e2nDz7gCUrz/IsPpk9G/vjUS4TURQ5de4Ry1b74Xv8Hsd2DcDaOBFScxeT+byhIRnTm/Jpm5n4bvqKyhWyC8VkpeQ/oI7M5JU6JSNTXEYQ5Oc4J/96mc6tS7HtgGTpNvJxYPSci4z61oOJC69S30uydFdtuc+ofmXoP+kqw3qXY+expwA0rG7KtxMuMvdnDyb9foN61S0RVFms3hXOyN6lGDDlBj997c7OY0/R19eiViVzRs+5wpxhFRk79xatm7pRp1r+9b0yk/M/MIQ0+SgI2YLbGjLX8A3XIZ+chrxCEsX84QYaWmqUqtz3U5i01MKsA1jQ/dWhToGq0tmx6wKXrz7G3u5Vta8Jk1aTnJzO+FHtMDbWV7/Om1xhKTXHKqNzONffpauI/KSjwY7NO2nzuVduJZzxKrb3akAoA4ZuRENQcWhzL6pUkhTu0e29qd96KXUrd8HFMbfxI/c9osrfdv1ODE2+2oGxkQ51ajqwYl4LGtS2f0OBHfUPaFcnUwwNtOnb3Ss7s1SNysv3gPowdYOLlQIG6NWtNr26Sa9H6zf780nrhfTu5sWOfTfQ0tSg39e1WTSzDRbmhmorebVrVY6sLBXNO2/g8KYueJS3lpVTUPgYbN1xnh+GrqTfN024fjM4p/3PVcdwdLBAR6cgK7z8MwRBYPbUroyasIGR4zfwTfeG9OhaH2MjfW5ef0zAzXDOXXjMoWN3mDbuc3p1rpirAHvFcjb071mLKQv8WD6n2T8aw96jgXRtW4EFUxq/8/nUqOpE1coOlPeeSZMGpbG3t2DquM/fud+ioli5IMTny/M99c9deMzfW/z4qm01fGq55n5iyyng17KH/t5+k+FTjnF299e42MtYVIWxgOWOJRcrC2SmvODCtSjcnSQL4XHoc6qX0+fI2SfUq2lDyEsXhL0hp/zCaeJjg/+NONwcpOiP4NB4qlUw44hfNPWqWRLyJAUxKxNnO33OXI2jcS0rLt6Mx9XBAEHQIDA8mZoeZhz1i6FuNQtikrRwdchfUUqQsSoFTXlLQN4Clrd0P7oFrM4FIVv/o4Bt0gcFly2gZXzkWABdes7Dd/c4qnhKs/SCQXsAKlV05sTBCVhYZH93hbGA5cpsgrxrIiMeURS5cPEBK9ecYMsOP9LSMqhQ1hZPDwc8PRzo2rEmlhZGsvf9s/hkStecxfndX1Ha/ZUFX1AL+Itv9tC9YyU6tC6X+wMNNRmhsi6I3N/5Wb9AJs06hLOTFcsXdc1pz3FBJK7K26nsoQTjHv9dF4QcPrXc8an5z8JDurT1ICommU+7bOTMjg5YmBei+M47EBefxujZF3JNwq2Z6c3PM68we2R1Nu+XrJ6Onzoz4bebVC5nxriFN2jqIwWXPwxKYKKtASPn3WLm0IpsORSBlqbIl5/YMmL+HfYvrsX4xfdp6m2FkYE2O449YfXUaoxYcJtZP1bA71YSE76v9EHOVaHgZGZm0e2bBWxZNzRH+b6Om6s1X/VcSGamCg0NAW1tgeW/9c7lpigqBEHA26sM3l5lWDS3F5qaGmiJMvV8gfT0TPYfucfazVdoWMedQX3rMKRPNSbOO8/63wpXSEgURfyuPuX3Gf8sXPRxUCyrN15h+75bDOlfn97dvQGo4+2Gs6M51Tz/P8LrXlLsFfC7MqSfF6Hhz/my9258/26Hnt77vySW5npsXdwM4+yJsL6dy2Oil8GhVY2xttSjdhUpo83QQAuPUobYWOqxcZ4PxgbS2BISkrAw1WH/Hz5YW+jgXdkCMSsDQ30t9i+uhY2lLn/PqIqxoRagQYfm9pL8Ym+sLXSo5+383s9RofCcOHUTZ0crtWnjzZtUxtXZGh0dTV4kpdGpxwIM9N9vphaArm72hO1r+RkZGVnEPUviwf1geg7agoOtCXp6WgSHSpPZg/tUo0y9VZy7GIFPzQJOyAGBIc/R1tLA0b7w9bvHTD3EsjX+dGnnyYwJrRgwdCvpGVkM+KYOAKf9HjPo20Zv6eXD8p9XwACzJzSmS/9tfDfmKCvmvvnJm/A8hXMXggC4HBDGD/3qMXm2LxOG+sgvgSLDyJl+tG3hxuHTYQA0refIqk03mDS4CkN+uUQtT0kBXwiIYdyAsvQcdYHvupTiyHlpFrpRTXOGzQ5kzs+V+GnmDWpWMoesLPxvJzC2byl6jw9gQCcXjvrFoKOjQb3qlvw89xazh1bkp9m3qOdlj6mRNlduP+O7rmWY9sdNerZ1x8zMEDvrD7eUuEJuNm09Q6f2ddV+PrDfq3tzx25/6vmUwcysYElJRcmM+b6Mn7YXM1N9rCwMmDS8CZ82KUutZr/Tt7sXAMZGOiyZ3phuPxzgmm83TIwL9ts4di4U72q2ha5muGv/LdZvvcrd8z9JiVoaOpzY8x2NvljMzn03EQSIjnmBR4WCPww+BMVLAQua8jOechEMIOuDFbPyz4gLgKONHtGxKWSlvpr1FzLy+9g0UrKwM30BgI1pGnpZ4VgapaOjkQp5+pb1eQHlSlng6mRK1UqSP9rVyZSKZUtgZmZC1Uo2VK4oKeB0lSZm5mZUKmeFm6sV1V5IN6W7qwkeZRMxMzelioc1nhUtEFUiGYIu5lYWVCxniZtbCaqlaKGlKeDmakbFsomYWZhStWIJyrubIAI2USno62piaaaLhakuWtoC5B2zSt5/qyJ/nQ1BVBeuJdOHjL9YzJK/XhqahUg/L0wUw/uoz6Bupr4A47p8NZA6PpXUjyt7Zj8sPJZho9cydXx7NYOQ2V+dvzhNJtRSXU3lrGQOH7/PkhUnCb42Gjtbk5zwy/MXQ0lNy8DJzoCsjBQ0tYz4slUVDpwIY9D406xe9CVvU6lJSelM+fUS6xe3AU2ZB8sbvsdBo/awfulXWFqa5Mi6u9vjd+RnLlwKQldXC0d7czS11bkZ81yzAiwnVhQUq1oQ74vAkAQWrrpBj3ZvWJ04G309rZwaDp83dWfusqsM7VeVJ1EFr9LWrU0Z9hwJwsHGEAcbQ/YcCaJf53LMX3mD1o2diYhMJiIymdaNnVm05k6+GhFHzz9lyNflWLD6Lq0aOhARmcKT6BRaNrRnwZp7DOlRln0nIrC31sfGSo99JyIY0qMsC9bco2VDe57EpBIRmUKrhg4sWH2XIV+XY++JcHS1ldvhY/Lnkh8YPnolJ07dVCvzNDKexq2m0793Yzq39/6Ao5PYvCuAoQMbSMr3NbxrONKsYUmadljDwmV+Oe3zJjXD73I42/bmX2or7lkK/lfCCQx+xoukdGb+dhafGk7U83bJJ/s2IqMTqVElv3/X1saUL1p60qJJxf876xeKmwX8nrCzNmT0d1XpOvgInuUtGfxNZZrVc5R9YmdmqjhxXnIdWJjpcuhkMP26ehAZnYyrk5rVI/KQlJyR434AOHw6jC+bOHLoVBj1vew4eeEJAOamuhzze0LPdqVy1Yi4fT+O5vXs8D37hPo1rTl1KQpNDTAz0eHw2af0bu/OkfNSzLCeriZHzj/liyYOHD77lPo1rLkQEEtKaibmpjr4nn1C7w4lOXruKZ994iSboKHwYaherTQjh3Vg87azNKyfP10+K0tF09bTycpSoaOthe/RGzRr/GEnU7W1NNHUzP/LWLzSn/XbbmBooE3jeu5s2nmL0xdCOHYmkIzMLBat8Kddq/I58unpWTRqt4asLJHnL9KIjk1CT1eLgGPfFnpMWdmr4Ojqvt/Y3YGDlxZ5n8UrDC1xlXy4l7qVe9Pzr6Yr54IAUGWkkZqWycY9D1m48gZ6elqsmN2IimVyh6KJaJCV/aqcmJSBhZkekdHJ2NrnzyITs+Rf5aKjErAw081V8+Hp0wRsSxhk14jQyenfzEgjX40IAx0VUbFp2LxWI0IUVSQmZ2BhqvtajYhMEKX+o+LSsLGU5E2NdADhlXxMKtaWuoiCJpqaua1gQV3gukb+H6E6WdkwNDUha7KHknFBqKtngVb+8Dr1hbwLmMlWmDC0wmTCyciuXX+UlX8dIu7ZC1o0rcr0Kd3QNGwHQGbCWpb/dZyIJ894Fp/Etl0XWbWkT8GUsFq3hlwSgxoXRMYzfhyzGycHU34a2EBqy0pmxfrLTJpzkpM7e3HyfBDfj9xP0wZu1K3lTF0vJ8bNPM4pvxBCrwyhhJXkWhgz7Rg37kSxa02nHH9vVpbq1f1XSFdSqRoz2Lm2Jx7ls8tQvqV4e86uJn2kU05ck1sujwsiKioeG5dekqwShvZ+0NPVomf7cvRoW5Y/N97hk447GdDDg+5ty2JppoepiS5BYQlsP/gIgOPnwlg1tymte+1m51/tMDWRvlxdHU2SkjMwMRRIfJGOtpZ0M2VkZmFkqMPgCafp2aEc2w48BqBtCzeWb7zFwvG16TPiNA287QA46feEZVO9aTPgOJOHVGX7ISk8rV1Te8YtvMH23+rRb5w/DWpaoyGIHPOPYtlkL9oNOs2kQZXYfiQMS1Md6tewZuJvN9i2qB79xvvTvK4dKhWc8I/kj0ledBx8mkmDK+NoZ0xpV5O8l0XhPZGWlkFCQhIvXqTg6GiFjo42piaGnDh1k2/7NGPuwl0M6NciR15TU4Nve79KTmjTuhpde//B1bNTsLEu2NvXu+LmbMG+w3f4cUB9BEFApVLx3cj9nNzZCzcXc5JTMjAy1GHE93XwruGISiUiilDG3ZLG7deip6tFUkoGsXHJXDv2ba7JtrwP/8JQt5YrJ88+eqWAi4CoqHisraUyB9bWZgzo14Ilyw4WWf9Q3CzghD/k6zMUIkVRTJZfkDIzNb8VfeVmDOPnX+HGvTjiE9LxKGtOCQs96teypf2nbjyJSsbLswRHzkbQwMueoHCpDxcHI077P6VJXQcuXIvG3Vl6mj4OSaRWlRIcuxBFvZr2BIVJqb8ujsacvRjOJ972UoKGc3aCRshzanlaceRMOPW97HL6d7Yz4PSlSJrUscc/IBo3J6n/wNDEnPHU97IlKOwFGhoaONsb5hpPGXczLMzyB7XLWZVqkygKMUst14esBavO2hZk3CKFSXhQZ/29oYZA7jZ1NS4KWEsij2xaWjrTZmxkzvxt6OvroK+vi76+DosWfE/dOh5cuvyQ+Qu34u5mx7y53yFoSSVFxfRDuftUpTFm/FquXHvEvp3jX2WkFWapIrlrozZFOo2MjEzqNJnEN90b0L9PEwD6fb8cKytjpk2UMvTWbTzDqAmbqFu7LK4uVpw8c5fNawbx4GEYBvo6GBrq4mBnjrn5GyI4VGmoVCoCg2KxtzN9VWUtm5SUdHbuC+DU2QecPHuf8CfxzJ7cjn69sgt1qavfkee7FIykpAwxZUeu9oFDVrBk6V4GfNuKxYsGvZLXaV6kFrAy6/IG9PW0+K57eb76vCS3fNtiYaZL9UpWrNvxiBqf7+LyjRj6jjpD7arWzFt5g8chiTwOSWTigivUrmbDz9P9MTfVYdvBQLYdDMTcVIc+I0/jXdWG8fP8eRTynEchz5kw7yJelUvQZ+QpzE112XYgkG0HAjE31WXguLPUrmbDhAWXc/r/dfVtale1pu+oM5iZ6LL9YBA7DwVjZqKbM54JC67wOOQ5weEvcsbTZ+RpzE11OHo2/GNf2v8sJ09dp2rN7wi4/pj7t/8i5ul2QgM3MH/OAAYO+pXuPWdSpowTfXu3ZNnyvZT3+Dpn37t385d4nDjuK+ITkhgybDmXrzxUuzRVUaGtrcWIH1tz8Mj1nLY2n9fg8LGbBAZFIYoi3TrX5e6V2ZQva8/m7RdY++cAHB0s+aR+eWrVLIlHBUe1yjcq+jlrN5yjW9+V2JUZQcNW87BwHUrZ6hP4YfirteqGjd3GoqXHKVPKmrVLexEbOPeV8n0DUVHy2am5ZeJZsnQvAEuW7iUqSs2qH0WA4oIoIGYmuthY6dOhpRslLPR4EJTA5F+v0aJB0RdpVvj3ERERy88j/+T02ZvMn/0tbdvUzeUzb/mZN3V8PHAv052TpwLo3KkRMZG7ePgwnEpVvgGgYdPh7N89hWpVX1UF09bWYvO64UybtYVuvebh5GjFod1j3uuq4LY2pjwOlJStIAhU9XSlpJs1dZpMQkNDYORPn/Pdt035pkcDNDU18Go4nlLuNnTr5E3ndl6UyFOh8N79J+zad5Vd+65y6244jeqXp0Xj8kwd9wUuzpakp2dy/2Ekbbr+gYXLBTQ1NVCpRO5cnJCv2uGbGPjjOpasOMGAPk1YvKBXrs/yuRu+bZVjAb9sfx8oLohs5FwQUbEpPEtIx8XBkFP+kTSta49/QBRu2TUcOn1/jM6t3XFzMqGBlx3BEVJ8sIuDEaf8n9L0DS6IujXtCA7Ldlk4GnPWP5xPasu7IA6fCae+ly3B4VL/znYGnLr4cjz5XRCHz0RQ38uG4PCkHBfE6+NRXBBv6KOIXRCiKDL/111Mm7WVfr0/ZcyoLhga6smOa8B3C4iNe86mDRNzKdCXLoiVfw5lxOjlnDo6h3LlnPPF9mZmZlGx6vf8Nu8bmjb2lB9zXgrpggDIyMjEudxglv/eh5YtquY61z+WH2XM5M1oZdcQad6kEqOGfk5oeBxr/j7JvkMBdGrrxYRRX7Bpmz/LVp3keWIKn39WlS9aVuWT+uWkzDuZuOW0tAySktLJUqnQ09V+82rhghZR0c9zFHRU9HNs/sfeWYdFlbZh/Dc0DC0hqWK3GGAi2K7dveYa2N2Kq6uunWDrmmv32oWJgQEGBqiEMkM3DDDfHwMjMGdcWfXbddf7urwueec557znzJn73Od5nyj5oQNyZLA3VlYmShcEwLDBLfBemROFoWmQj5SVu/3CLojvBJwDIQL+/UQw56+F07WVExPm+3FuR0uGzrhOHWdF9bT9f4Tw6k0CWdlymrvZo6ejiY6OJt1aOzHhFz/O7WxJz9GXaO6maHx4xjeM3Ssb0XeiL+N/qsbe4y8A6Nq6FJt2P2b1z/XoOepiPvtdK9xp1ucUS6e78vsJxaJdz3ZOjPn5Fud2tKTXmMs0a2CHpoaIU1cU9k1z7PeeCMbKQh+P2rY58/mBnqMv0rtDGfp3UY15/k7AfHECjo5OoGixvvheXEKd2hXUzksul6Oh05T3YfsRaWhiZWWGXC4nNjaRIlbtlHbWVqbs2j6Fxo2cITtdhSR+3+fLspVH8PNd8GkqWA0Bp6SkEymJQ19Ph3MXH/HbrsvExiZioK+LWKxLcnI6B3aOxto6/+JfXFwyN2+/oEolR2xtzPLPQZ5BfHwKY6fsYcfvN+ncviYjhzSmtkvJfBXVgI8UGvo0eI77XaF2B7rjvby3YkxAAeclYIDIN1sV11PN/fWdgL8SAWekJJAhy0JPV4uU1EwM9LVITZWRlZ0TxhWdhrWFPjFxqRiJP4SJZWWD7+13nL0agX9gFMc3NaeopX4e+zRlzQdl2FpMBtaWYpJTFMn1YgNtIiMTsLYUq9qb6JCYlIGhWJuMDEX4m46OiMQkGUaG2qSkZqKro7h50zOyMdDXIjFJhqFYiwxZNiJEObUDZBgZ6pCSmomenjYaQmFk3wn4qyzC/TRsDUZGhixbUiDGVaSJRBKLlZWimE6t2p7Y21ly5Nh1hg1tS3XnMgwfuVKlSWbIi98oXqwoniNW4LPhFMMGt8R71TBAUSTd2XU0s6d2oWP7T0jUyHNtYmOTOHHqLoeP3uTC5UBMTQxITcvAyFCf5b/2w7aoIafPPSQ1VYbX9I5oaxfSg5knvC0tTfbRBruSSOknuxfyKt3cv61LTVL+Hflq2QclHJWBVZ6IkY8pYCF8aQL+tnzAsjjhJ6O6+EChIulq4kdnLLtP+2YlmLbYjwPezRg05gqt3e1IS8/i3PUI1syuTZNefzB3bFWOngsFoF1TB2Ysf8DeFQ3wvRVBYlIGi9f5EyFJZfVsV3qP9WNE34ocOfsagPbNijN98UX2ezejx4izNK2vULrnroWx9ucGNO51gvkTXTl8RlGovUPzElQqZ4mJmeLmUS4Ei0SY5pxyboq9hpYOuS9kuT1LdRQfAGCWE9ZobIj6sn5CKEwxcrX7+MRuEGo7TxQiwL4w+xUi1sLEAasrTVoAqenZbNp6iPjEdDZvmqIc9xy+AZ91Oxg2tA8rV3qRnqHBkWPXAfBZd4wWLRqyZfMSevcZrdymd+/mFHdyQiKJxWfDKYXthlN4zRmGlZUZGoDXrIGMGL0KPcMiVKxYHAcHRZiiEHIfABs3nWT8pPV4uFelYwcP5s/3pFw51Yy0mnUL1KrQKCm433zt7nMQLZVQxCqn9nbOpbPQUeWyCSM92breh2HDhuHt7f3hA3koEkkUVlYWyiFPz+k517A93mvHA2BlCMOGtMFn/XGGDWmDlWMVpb2Vo/C9FPnumPJBqDgv9TU5viS+R0HkwM3FFicHY5q7OWAk1qZpfXsqlzWnRmULmtazxdhQh2YN7Chhb4ibixVuLlaUsDekWT0bjMTauFS1wMnBiKKWBjSpZ4OxWBvXalY4ORrT0NWGhq42ODka09zNHmNDxf5rVrGiZhUrmtZXjDV3c8DJwZiGrrY0dFXMR1vr+1f0LUMiiWXX7vMAbNl6EokkVjnus24HAD7rdjB48BSKF7dn6FDF6/KwoX2IiYknMvJDF4rId8fY8dsMAKyszBg2tH2ObXsleXgOX0rHLrMoVdKW5SsPULfBSIzNWuE5YqXy2LnwHLESa7suDBi0mGkzt3Dr2mqOHpqL3+2nlK/UD88RBToFfwa8xnhS16koXmM8VT6TSiT5/r91vY/iuvj4IMnzmafndKyLVsfTczoAEklUnmt4JN/5ea8ZTWT4frzXfHh4fQz5yPf/iG/LBRG18LMVsLoi6f7333L3kYQfO5Zh2eZH9O9cjgeB75BlyqlRqQjbDr5gbP9K7DwShHMFRdbb3cBo+rRzYsW2p/TrVIqBU29S0tGQacOq8Nuhl4wbXJ3th15Qs4qi/c/dR1J+7FgGn11P6NGmNHcDpADUrGzJvj9eMaRHebYfek7NKlY59hIG9RTIchJ4/VdboFzotf67As6Z19dRwHndCnK5nJJlehES8i6fSoMPCrhO7erExSdw6+ZRjI2NlCovMDAI19ptSUlRFJuSZ1396LEkklisbT50e4iMOISVlRmbNp9k4aLdvHoVwbAhbfBeM1pha9dFaTuwf0s2bRivMp67j4LH+nC9hBXwzdc6SrUbLZFQ1+lDgsSN4PfKzxaOH87W9T70HzKMJasValdIAUskEqytrT/M670/VlYWggoYUO9DLnB/KGOsC15bNQpYJBL9h10QXxF3H0k4dy2MDs1LcMY3lIauttwLjCY2IQNzEx3OXg1nUNeyXLsnIStb8dC6cOM97Zs4cOZaBJqaGtx6IEVDA0LCEjl7LYKfelbm/LUPNR/OXwujQ/Pi3LwXiWs1a674KfzR5qa6+AdKSUwuxbk89ueuhTGwR6WvGlL0HX8dQoTkOWI5PuuOMWxoW7zXjGWt9xHMzAy5fHE/jo4KEpLJMrlw4R7JKSkYGxuib6DH9u0rMDZW+IlSU9No224Aly/fok6d6ly4oHBLiDT/PM41L6xtO6qM+aw/js/64yrjm7eeYvPWU5+0j89FXjLOxdb1PkrlmwsfHx98fHxUbAGsi+bvvOyz7gg+6458uUn+n/BdAecgPjouZ7EtFWsLRU0GQ91sQJSzeKZLZFQqFqYaH2oy6Gty6Ewoq3c8QxqTTsNa1tR2tqBZfTtsrQ2QJsixKqKfr+aDJDqVopaGOTUfCizORaWo2KOhpbpg9l0Bq8dXUsAFow08R67FZ8NJJdFCjgLNQ1iREYdw8xhNaKiU4sWL4mBvhampIRcv+VOypB09unehS5dW2NhY5ztcaGgEFSs1YcH8ydSu7UzNWq3//Ly/47PwdyngfzUBP3j4msVrr7N6wQ/M+vUSrtXt0dVMx9cvjJ8n1GXkzEuMHujMOd+3REkTaOHhwPJNj9iyyINx825Qv4YF6Rlybj+UsnSaCwOmXKVna0d+P/mGd9JUEpMzeSdJoZitmDfhyTjYigkOTaKlmy3ec2ozYeF9BnQvx6lLigymFu6OLN/8iIPezXj1NhFTYwUxxSVkUNbJhICgGJwcjZFGpwFgWUQPY2N91Rz57wSsHp9JwJKotHyr5ACeY7YqyHZwK7xXD1cUZnHoqfw872t6QQUsl8uJi0siNCyasDApUmkcbm5VKVHCFkTqyy4eO3aWTZt/5/79x4SFvVOOC7khVJCnC/Ra78Ns3HySu7e8iYlJwMREjN/tZ1y4eJ+Nm/+gSSNnNm+ckD+iQeAaFjwvJTRKql0Y6zFoKF4rvFX2lRcWOiKkEgmWVvkb45oLBUjIQ9Wc7xvVsU90QSjGhH4j/xACFolEXsDsAsORcrm8aM7nopzPBwNmgB8wXC6XP86zDzmKhibl5HJ5cJ7xbYCFXC7/00e8MgxN6GIJhaYB6bEvuXIrjKZuxfDzf4dTMYWCCX4Th2t1G875vqFhbXtehyngvGAAACAASURBVCYgz86imJ0RvrfDadrAEb/775UJDk9fxnL68hs27XmMlpYGlcsWoVpFC4zE2izf9ICVXm5YF9FhzM83GdClHPVqFcW1mhWX/N5Tv2aemg92RvjejqC5u2q/L5GOmgLQQuQlVCxaS03IjiB5qSG0zy1QrpboBM5BKHRQ3fE/l6zV7FciTcjnQvhAMh/8iSp+1ZzVcs/hS/FZd4RhQ/vg7f3Lh51mvxL2lRYGOed2+rQf/QfOp369KtSpUxH3hs5Ur/7nNatzfw+XrzzEc+Qa7OyK4OJSgRs3HnPn7jPKly9GI3dnunX1oHrNliqbx2QK90279SIEc8v8RDlv/EhO7thKqz79Gf7L4g/7kEowtbD806nqqGn6aqanKhKcjIV97pFpqveSLEs4NDVToAmolkBlPnVuvyqmOn8LAXcH3PMMZ8nlcmnO55OBGUA/IAiYBdQHysrl8sQcGzmQBhyRy+U98ux7G1+RgBcu2seI/tUYOeMSU4bX4sK1txgYaFGnui0L195h9TwPfl5+C/c69mRnZXHlVjizxrgwatYVJnvW5Oa9CJ69jOXgqVfIMrM4sqkVB06+oE4NG+4+lLB4/X1ObW/D5t+fEPE+iZS0TLq3KUXjevYsWnefVT83ZO6quzSsrSgEfeVWBDNH1SQmXkYx+/yE+Z2AP3L8L0DABUnRc8RKRZhSjqJTcR/kCUv6QLb5F3okUnE+5QdA9ivheRUCskyYNXsTO3aeZdeOmTRsqMg2k8kyWbZ8LwYGujRv5sLz56E8fvKax49DePwkhPfvYxCJRGhofCCQFUuGcv/hK27fec6YUZ2pU6cCJiZ5SnYKLKKpI+DncfmbDsRIJbSq6KT8e7f/UyXpZn/im/V/nYA/dREuUy6Xvy84mKN+xwAL5XL5wZyxvoAE6AnkrWC8GhgvEomWyOXye583bfWIeBeP/8NQYuJSuH4nnMysbAKfRbFlbyAvQxR+3uRkGdLoFMLfJylr++ZCJssiOUXGo6dRHD79iks3w5k1phaBQdGULGaCSCQiJTWTtb8F0LpJcapVsODZq1iSU2QM6lb++4LZ3wyh9FEl2eaJAMhdiPJZdwyvWf1ywrraKhVwXrL2Xjser9kDVFStCvl+AYSGSujeay7GRmJWLh/FsePXuf/gBfZ2lixbsQ9jIwOMjAxYsvR3ypV1pGLFEjR0q4bnsA7Y2Snmky1LITtbjo2NObq62kyatondO2ZSq1a5Pzl64WBuaUWrPv2VCvhTFO935MenKuBJQCyQgcLFME0ulweLRCIn4BXgIpfL7+TZ5iQQJZfL++b8LQe6AF2BInK5vHHO+Da+oAK+eTuEDn024VzZniLmYoz1M5BEpeJob0TA0ygyZFmI9bWJT8wgQ5ZF8Jt4EpIyMDPWxdhIh4TEDGLi07C2MMDYUIfK5YowbWRNUlIzcXW25qzvWxq62DJ02mWSUmTsXNGUdbsCGT9XsUpd29maTi1KULu6NbWdrbl46z31a9rwRlmm0ogrfhG08PjugvgaCli5MJanhKBEEoe1fTelTWT4foULoYACzoVEmvjp7gMhH+5nKuDOXWdz5uwd3Bs6ExAYzMABrZBK43j9+j0eHs6MHtVFNW23ILJSSE5O49jxm+z6/SIhIe8JfLRNWBx8hgIGiE1LIy5KqkK+3xXwp+FTFLAfCvfCM8AKhbvhhkgkqgjkxpNEFtgmEhAqEzYNeCISiVrI5fI/rWwsEokGo/At/ymO/RHAwFG72e7Th5ZNFTn3ftduMnXBNdb92gTLyopwFgN9LdLTsyhXyhwDfS2Wznbj5t13pKbJaN/cidVbH7LP5weGT79EC3dHrt95x+Vb4ayd15DFPv68DU/g4KlX/NipLH4PIvFadhuA7m1KEvg8lqWbHlKvZlHWzKnP6q0P0dTU4OQFRWZbmyYlWLzOnyYNiqH1PcHis5FX7UokcfhsOAkoSgh6zeyDlZVpTmWrPFlROeTqvWY0XrP7C6javycgPxd7ds3kxMnbhEdI2bf3Z/T11S+C/jJ/Oy9fhjF5Ui/KlStGRoaM06f92LPnDKfO3KFunQr06OpO+3Z1v9qbWVpqCkZm5sRKJejqKQgyPS0VQzNz4qOkGJqYkpaqEEh6+gYkxcdhYmFJQkw0unr6yDQ1yEhLw9i8CHFRUoxy7EW6uugbiEmMi8XM0oq46CisNS0Ri///XaC/JgodBSESiQyBYGAhcAu4DjjK5R+WKEUi0VbARi6Xt8j5Ww50kcvlB0Qi0VqgHlAd2EJhFHDCpnyrm9ExSew95M/Ovbd4GxbH4e19qVXdgfT0TGLjUoiNiSUuPo1qlYoiy8ximc9N1my5TX3XYlgWEROfkMaVmyFUrWjDghktqFGtQPpkAeWVmZmFa9NVjPqpDn27549DRJ7JkPHH2HM4kLq1HEhKziDoVTQaGiLatahA3+7VqedaXGErpGA11ShgoSQAoTF16lFdgXAhCClYuXALJ0Fbdav6IgFFJbSiLWQHPE9WvUdnjR7G3s3r6TZwCDOXrQFg7rgR7N28nq4DhzBj6ep89tFSCUUKLCAJKR9NgTGhdFkAcy2Bc1CngIWKpKurYfKJ+HXJAXw2nCQlJY2KFYrxKCCEihWK0aObO507NsDSMo8rRqu84D6E1O67VDVtuwS4IjUlBT19feJjYzAwVNzDKUmJmJoXIVoSibmlFanJCuWsoatLjFRCEStr4mNjEBsaERgZTVpyEoamZsRHSTEuYkF6SgoWhrroGYiJi5JiZmlFYlwsluZF0NJSve+E5qWtRlmb6H5aVI86Xqxqpvv3h6GJRKJLKBTxYgrhgsghYKucbTyBxvwFAk5Pl+E5fi8Hjt3nh6YV6dOlKpZFDNm4w4/9Rx+RlJyOuZkB5qZ66OlqERufxq8zm9K1XUWiYzM4cTaIS9eCuXQ9mKTkDGLjUunYuiIHt/UpcNAPX2Jqqozhkw7z+m00Fw4NUFUUOUSVlJTOHxdekJUlp2uH6rwJjcVr0XnehsVx+VhOoY/vBFwoAr4ZEvmhhgCqmVVXXoYryVUqiVQhWnX4lgg4NTWdZ0Fh6OvpULKkDdraWvg/CKZnn4Xc81vLqdN3cHUpi4ODmnP/SgScnpbGsE6tGT17HheOKxIhGrdpz9oFc1i8ZRdzxw6nTqOmADx/EsiAcZOZ3K8nI2bN5dKJo8RkZOLs3oT9yxcwYsUGtv88jYp13TA3FnP7/Bk8f1nM/KH96Td5Jm8CH9Fp0NBPmte3QsCFzoQTiUR6QDngEhACvAeaAnfyfN4AmCi0vVwul4hEoiXAXOBmYY+fkpJBpx83oq+nzYt7Xpy58IS5S84T/i6BwT+6EnhtPLY2xgqCzPEN+958TW/PQ/xx/jm/re1Kvx7V6dejOnK5nLdhcSSnyLC3U//qGfRCQteBO6lQ1poj23t99HXO0FCXru1yOtpqaOBUvAjRMSmYmxkwa8FZ5kxpKtht+TsUkEgkWOUhW09PT3x8fPLFlBaxsqLbwCFKBZyXcD+VfL8FPHn6lllzdhAQ+Jq3oVJKlbQhNTWDsPAoShQvStky9gQ9DyMmJoHOnQqXJfeloKWtTd3GzbArXoKa9d0AsCtegtrujTEwNKJOo6ZUcq4BgKaODoZGxtRp3BS7YsWpUa8Bb+KTsLR3pHI9d/TEhlSs60aJSlUpYqiHLD0dA0MjajRsRFHHYugWopHrt4I/PSORSLREJBI1FIlEJUQikStwABADv8kVj4kVwBSRSNRRJBJVArYBScDuj+x2KaAHtC/MZBMT0/ihize6Olo4FbegUp157Nx3hymjPQj2n8KMCU2wszXJR5AyWRanLrwgO1vOgJ753QYikYhiDmZUKGuF8UeKO0//5TTJKRmsXdTho3bqII1ORltLk3W/+fHiVdSfb/AfhaenJ9bW1nh6Kgq2SCQSZSrqnk3riM5TmGXmsjVceRmudD/8G/EsKJTXbyI5uHc68dL9BPj78PLpZuIk+9m3ewo9u3uw8JcBGBv/fX7RF48D+XHEGK6cOoGVjR1WNnZcOXWCPp6j2b5mOe4tWyN5F4HkXQSuDRux03slvT1H43v6JJY2tphaWXP/0jma9xvMmW0bcPZoSqzkPTFSCa5NW3B4ozcdfvLE79xpzP6FURaf8kixB/agiPE9BKQDteVyZfrJImAZsBa4C9gAzXJjgIUgl8uTgDlAodisabtliMU6BL+OIlKSwPUz4zlzaATtfqiElpbwK0ePIQe4H/Ae//NDaFi3eGEOByhcDw52pkRKknj2QvLnGwjg9rkR7N3ck+YeZfjjfNBf2se/DRJJlMrfuWSbWwXLysqKYcMUdW57DBqazw0B/y61KwSnEkWJi0vGUKyPjs6H1DA9PR0qVypB1y4NmTyxGyYmfx8BR0aEkZKUyM1L53l8/y6P79/l5qXzpCQlcv38WcJeh3Dn2hXuXLvCu7C33LxwjuSkRPwuX+DJ/Xu8fhzA4xu+pCUnEXD9MtKwtwTdvsnLhw94//YN965cJDU5iftXLxMS9PRvO8+vhW8qFdmtXhleBkcy1rMR40c0/qB01SRikJVCm9676N25Kt3a57gFChnAf+HKC9r12cbCmT/gYGeCtqYcLS0NtLQUfakSEtOJT0hDQySnQW1HnIorKqXJ5XLW/faAG3feMHdqU4o7mnPbP5QuA3bxwn8OOjoF5vEf8gHnuhUKZpF5Dl+gGC9QB7agDxjUhxl9avgT/PN9wOnpMoaNXMMfp+8iNtClsUc1GnlUpW1rVwwM9AoXNviVfMByuZyoHL977mKbvlhMtFSCpXVR4qKjERsrQiQTEhMxNDYmJSkJfbGYTJmMwPdRaOnokJ6Sgp5YTHpqKto6OlgY6iHLSEdP34DU5CT0DMTo5fzetXV0SE1JRt9AYa+hrY1IJCIzIwMdPT1SU5IxNhIOy/yn+YC/KQK2sDBmw8of6dC2Rv4P1eV9a+jivfEit+8Gs239oJwxNaUFhYhKQ5fs7GwmTN7E6zcSMjOzyMyUkZmZhUyWhUgEJsZiTEwMSM+Qc9n3EXp62syd3ZfTZ+8S8FjxkjBxfA96925OdnY2NnbtuXDBl0qVKuU71NPEz1sRt9b7zBheICrj0++FLIF4SqEYS0D5AwVFNEKjMh9+9OeevVGmt2ZmZxMjlaikuxaGVIUgRLQA+tqqBQds9FUfLIJEC5D1XGBMjRgQImB1922BB6xcLufxs/dcvPSQE3/cJiw8it3bJ1HNWZhUBYn9CxCw0HeekpJCT486TJy/mNMH9wHQvGNXVs6ZjveB40we2Ju6jZsBYG1jR5vu+VsAVTEVFggxMtWx43fus2vFYhq27ciGn6fz696jzPccRIOWrUhPS+PO5QvM9NnC+C5t+WXDNspUqqKyD6HvXENgTUfoXOE/TsB3r/1KjaoCr50fIeDgEAl1m/xCWNBSTp5+ROXKpXEqYS1g++FGuHI1kKLWZpQt56Rqp+ZYMfGZ9Bu4lNNn76KhIaJbl4Z4e0+iuFMX/O9uxsHBmqNHrzJv/nZu336ispD3byHgguFe88aPZN/m9XQdMJjpOaFhv4wfyb4tG+jcfzBTl6zMt70Q/usEDOQrirRrzyXGTFjP4oVD6Ne3uart/5GAs+Vybl48R416bkS8VQgOGwdH/G9eo7Z7YwLu3sa+uCLxKCszE2vb/OkBhSHg628iiAwPxdrOgQC/m1R3c+fZ/bvYF1f8Tt+9eU356jW553uJBu6N0RL4fv9pBPxNLSvWqC5c/PljcCphha2NKZ16raV9j9W06rSQ+Hg1PxLg5q1nNG/zM7/vv1ao47wKfkd8QjKVKhZn5bJhbNs8gfj4ZGJjk5jz81Z8fA4zy2szkyb0/NemK88bPxKP0vbMG6/IQouWSti3WZGNvm/LBqKlCh/69KWrOffsTT7y/Y5PR68eHly7uITps7awd9+lv3Uu925cpapLHbznzyH0dTChr4PxWfAzVWq64jViMMamZpw/dpjzxw6jK5DdVhjIMjJ49+Y125cupELNWiwbPxJDE1Nunj2F74mjGJmYsmTcCCrWdOHckQNf6Ay/Lv4TBdk9BzVihfc5ype1ISwiFlPb/pQuZUMRc0Nlc8CrFxbwNlRKxx6LaNakGqFhhYtWqFWzLFcuLMk3ZmtrQdDTXRw/cR3/+8/p1rURHTu6fclT+9tQUOnmI9vN6xk2ZSZFLK3oOnCIUgHntS/oZviOwqFsWXtOn1hA05aTEYv1ad3qExpwfsc/Dt+UC0KecgCyBIIrPuKCAEhJSad+s/lEvIvD1ERMaHgMJUtYY2tjxuWrT/h1bk/atK5Nqw7zGD7kBxq5V6Z5mzk0qF+JFUuG5C/uUpjXRnWtbARqjf6TXRDREkm+RTCvMZ7s2bSO7gOHMmv5hzAwr7HDFWRbIBMtSiA5Qsjd8N0FkYNP7tasw+3bz2jdfgYnjszDxSWn2M7/2QVx48I5atRrwLtQRd1rGwdH7t24Sh2PJl/NBfHo1g1qNPQQdEHcvXIRN48m310Q/xQYGOhy76oXh3aNoLZLGTQ1NUhOTuOu/yu0tTWZMG0nDRpPp2O72owY9gOODhZ061yfg4evc/vOfztsrGAzxWiJhD2b1gHw++Z1SrcCwIylq7n0IkwlDfjfHi72d8LFpRzt29bl7r2/5z7Nzs7G1rEYmTIZevr66OnrkymTUdTegaysLMwsLMjOzubW5Qssmjqe5bOnsW/zemQyAYb9E4g0NNDTNyAzU4a1gwPZWVmYmFtw7/JFLh4+wIH1a4mVStnns5qAu36sXziX9Qvn8uj2LSb17U58TDQJcbF/fiA1SE5UG1n7l/FtKeD0P9R8qFB/WVlZvHsXQ2iYlLi4ZGTZRZHJMsnIkKGtrUXHji0JSrEnPjaWZwEPMLe0wsLKGhMzcxCJiI+N5fShfaxb9Asubu6MmD4Hu2LF8x1K3ZOxMIouU+Caq3sSCqk3oTGhp7g6fCxaIa9rIEYqoWWFD5XbTj1RFOReNGkMB7dupGO/QUxctOLDftXcS0L3mLo5CKEw1ap0BGz1BOoHANiLVdWXoNrNVBN/KqR2hZQuqFG7at56hCJ1tE1Vx3KUcoeO0+jTuzkdOzYE4EF8LRXTtEw14YQCKGMqHFcs9IaUkiF8vrnf77vQt4zu1h5tXR06/DiQI9u3EBTwkG3nrlKsVBnMTQXOSw30BNQrgCQhAeRykpMSMTEzJ0YSiZ6ZOWkpirA4PQMxsVFSzC2tSJPJVKrJCf12Co6lp6YyqUcHHt/x+96UUwgjx6xlw6ZTmJsb4WBvgZmZESINQy5fvkV6ejqNG9ejTZsmAJiYmeHq5kFWVhaP799jz0Yfrl04y/PHAbg0cGfN74ep6Fzjs199/wkQCusSGl84cTQHt26kU/+fmJRDquaWVnTq/5NyPNd+0qIVDJgw9bsf9x+C95ExWFv/vVXc1OFt8EsMTUzY/MdF5EBGejrmllZM7NOVpIQEKtWoxardBzEwNPzTfanDkd828z4sFPdWbZk6bxYLtu5mzawpOJWrCMBd34uMWbCMsZ1aMW/nATR0Pj02PjU5ieSEBO5cvkBCTMxfnqM6/CtcEM+eveVRQAgd29fj3ds9XLu8jM4d6xMUFEz9+jXxvbKf8+f2oKurS2ZmJueOHWZC/140KGnLjOE/kZgQj+eUWVx99U5Jvt8iYqT5M/XmTxhF47KOzJ8wKt/4womjaV6+OAsnjlZud3DrRgAObt2Ybz+TFq3g1JMQJSnn4jv5/nMQGRlD0aJF/u5pCEKWno6mpqbyjaVNrx+JinxPk/adOP30NZJ34QTcu/1ZxyhbpRrV6zXAtlhxajdqitjQiHJVq1OumjPlqjlT060RYiMjark3QVPN25A67Fmzgp4ulTmwwZvBM+Z81jyF8M0q4KysLK74BrB23QmuXn/MiGFtGeGp6N3l3mQiYrEeO3esoF49xetYXFw83t47WO2zG1sHR9r1/JHxcxdiY69YhPjW1G5BBTt/wij2b9lAlwGDmbZkFTFSCfu3bABg/5YNDJ08A3NLKxWyHTxpulqlm4vvZPvPhVwu5/37/68Cjo2O5vzxw8RGR9G8Sw8si9p8xDYKESKlG0psaMTWs75o5WSvjZo5l8HtW7L/6l3KVKr8l+ZjWsQCPX0Drp35g57DRrHbZxVNuvYg6OEDAOo2b8m+dWvoOnQEKelp6OmrWRwXwOM7fszdtgeXRk2/SvjoN6WAMzOz8L0awNgJG3Ao2ZeJU7fg7laFkOfbmTWjN+bmivTD0DApm9ePU5LvH39cpFLlpgQ9f8Wa3w+z86wvXfoNUpLvPxkFVS3AggmjaVquGAsmfFCweck2l5y7DFDUsu8yYLCSRHPJFshHtlMWrxRUut/xz0ZMTAIaGhoYGn46qXwO7vvdpI1rFa5fPE9oSDCd6jgzeUBvju3ZQVJCgop9yy49SElOYuXsaaQkJQGKVOJcMvNopRBNO3xW5dsuJTmZyPAwsrKyCH/7mrTUVOLUuAAkEWGEhrwkOOgpaakpvH4eRIxUwpvnQbx5HkRM5HvevgwiLTWFLNmn+8KzMjN5/ugBFWu6frXY/W9qEc7MzIgSJUrTpk0bevToQdmyig6xAfH5V1Tb1qrEkInTKF2xCju8V3Ln6mVmr1qHi5uH2sWfNIHaAoVJt80Q2F5d+FNslFSlspPQQsDKqeM5vn0LbX4cwOgFS5XbdqlaRmmz/+FzzCwsWTF1PCe2b6H1jwMYNf9DPHKUJFKwV5dQG5nCLOR9Lj5l4SMXQm1rtNVcW6EFN101r53ljQRC97IFEnDUhYsVJrQsZ8EuKyub3fuuc/TEPZxK2lO2tB1ly9hjbKyPXJ6zYKlljKOjtVJQAIJ1NrLldnTs2JGiRYuybt064ePmoOBv5GNIL7BgJ5fLuXj8COePHuLe9SvMWLme+s1aAJCRnMSZQ/s5fXAfTmXLKbMd89bjjYwIZ+msqdy5eolpXnPp1e9DPe23SemEhrxieOc2/NClB0Mmz0AkEhGflISOri6xUgnmVtbEx0RjZGIqWJDdSKC+g7paIUJEmioQkZGYkcH9a76smTmZzZc+VM1tYmf2301FDg89jK29agXLgjfXhsXzuXHxPNLId9R2b8zo2b8gNlIUu/m7CXjVtAmCRKkhEuUjZnVEC8LEnC2XCxJ7YaINvhMwX42A5ZnJHP/Dn2le+zAx0eenfh5ERKYQ9DycoBfhJCenIxKBhoYG2XIRb95Eoq+vS4UKxdHS1CQ2Lp2UlFS0tbXR0VH8S03NRiwWc/78eXT+ZGFJiICzsrJ48TiAB343eXz/HiZm5jiWLEXRYsVxdCqFla0d0ZL3/DpxDKEhwfQZMYYa9RtSNM+bY+71fv3yOYPaNufc42BEIpFgQfTwQH+GD+jLmElT6dZb0fzgbZLiekVLIhnZrT3Z2dk079iFtIwMyletzspZk1l76A9mDO5L6+69ad2jj8p+vwYBnzlxhKXjRzFu8UrqtWilHP9PE7A866pgEoO6p3thCPT/QcCxUVK6VSur/HvvgyAlYa6eNkGFVIWINu++8pKtOh/2dwL++wk4IiKGzj0XkpiYynyvbrRu6awgAqHOKADaZsjlcsLDpTx58prsbDlm5qUxMNBHJpMhk2Uik8nIkJlRq1YtjIzU7CcP8v5G0lJTmTywN3euXcHCuijOrnWpVKMWiQnxvH31kjevXhIa/JL42Bi0dXTpPtiT/mMnoVWA5DPS07ly/DDNO3RBR1eXtrUqsXDjdipUqy5IwNZ6mtzxu0W/bp24FfAMIyMjJQGD4oHgf+MqZ48c5OyRAzTv1I2aDTxo0OIHHt+7Q7FSpRUhowXwpQk4MT6OjrUq88v2vZSvXjPfZ98J+BsmYBBWwAWJOa/aFVK1QvhOwAr8EwlYIomjRt3xzPfqSp8eeTpXfISAVSBU6lNNCych5P2NPLx9izljhrH5+DnMilio2Oa6INJSUkhLTcE0xybvPfY88BEzfupLxNvXeB84jksDd7avXcHhndtYu/coxUqoFrLKzdb0HNAXuVzOinUbiVTjGbl++SJLpowjPiYacytrxsxdSGJcHI3bdlCx/dIEvGnJAt6GBDNx+VoV2y9NwN/UItw/GXFR0k+yGzV/CXsfBOVzP5hZWNLmxwEAtPlxQD7C/Td2AfivwcrKlF2bPZm/+NjfPRUAgoOeUa5yNUHyzQs9AwMl+eZFclIiIzu3od+YCXT8cQDPHimiDX4cPoZOPw6gb0sPAu7dUdkuFwuXryIpMZFWHg0IfxMiaGNkYkq9pi1YuvsgWZkypvbvxa61K3n19HEhzvSvIeD2LSq5/H9qa3xTBJxZiGyewiIuOorMzEzCQl4hl8uJDA8jNTmZ1JRkJOFhyOVywkJekSmTER8TTXxMNFmZmYSHBLNy6nh6Vi/PysljSEtJRhoRjlwuRxoRTqwAMQuR6ugFS9n/8LmKq+E7/h3Q1dXG6C+0s/oa0NVXFDv/qwh+9hQTM3N+6NYLu2LFefPyhfKz3sNGMXXRcoZ1actva1YIZkEam5iwff8hOnfvSZ+mbuzbsoELx4/ge+YPsnKUq30JJ4ZO98LIxJQ91+6x+cwVGrZqw4hOrXke8PAvz/1T0GfkWHavXkbmX0iXLiy+qTjgI35iylRWfe1Tl2aZKjCeIpMJRgAsmjyWRp26s3neLH7ZfZDFI4dQtYE7iOCB7yXGrVrP7B+7MXDWPC7s3Y2Onh7127Rno9c03r1WPMXP7NmJkZkFT+/5MWHVBqZ3b0dESDAtevVlyNxflcdS+6ptbEJygdROIRdCYWKWM7ML0yHi090ChXEhCHWZ+Nx06sJAnRvmebLqHMqIVV1ciNQU4xEJdL9Q06UiNUMDPT29/IV21KUtC3Uh0VB1N6gr4JSYrkquudc7NkrK0d07sLK1Q5aVpTZSrC5Z3gAAIABJREFURwi5913Zqs4kxMUQGhLM2aOH6DV8DEl57luXpi3ZfPoy03/6keuXLzB16SqsbOx4m5n/WD8MGEbRSs7sWruS7Oxsngc+pE6jZkxatBzDHL+2o5OiBG3xUqUpNWYiRW3sGNW1HdOXrVGGsAn9HtR95ykCnFDQBVHapQ4mZubcu3yBes1/+NTL85fwTSngUuUrfvY+1k6fSM/q5Vk7fWK+savHj+B37hS/7D6IqaUV1o7F2LVkPpKwUCZ6b8bUwpI5uw5y68wfXDt5FA0tLao1cGf+3mO06NUXgGY9+tBt9Hgm+2wBEUSEBANwetdvn+yi+I5/J0qWKMqTZ6EkJqb+LcfPzs7G7/JFerrXpkzFykxdsurPN1IDLS0tOg8cyqCWHkSGh1O3WUsVG/viJdh08gJlKlehZ8PabF+1jNCQV8q2RbmoVKMWC7bs5Ndtu4l485ojO7Zw+8pFtS2BWnXrScXqNQVjjr8kug8fzeLxIxndsRVXThwlKSFeqc6/JL6pRbjAeJngwtinKuDYKCkdKpdS/r3bX1FkpWf1D6X61py/xppJY3jmf1c5Nn3zTo5sWMuQeYsY1fTDIkrNxs0YuWgFizwH0nHoSAJuKhZwajdvxY5F87ApVoLz+3Z/sgIWwn9JAatTY5+7CCd0fBBenCsjFjgHuRoFLNT/TZ2qzUqhc06t6cEDm+XsV80PWkcgrVjTXWXozxSw3+ULnD9ykFfPnhDy7ClmlpZMXbKKOh5NlLZC11xoQRkU92JyUiLPAx6SKZPhPW82aSkpbDnri66+fv5TyPOdvX31kjVzZxL06AHRkkiatO2A15qNaGlp5TtWSlISpw/u5eCW9WTKMukyaCg/dO2prBORO9fmFUqw/dxVrO3sAeHvsWAscy5iEhJ4+TgAc0srbIoVRyQS5VPAsowMzh/4nYToKBJiY7l84gjSiHC0dXXJyswkOyvr+yLcX4WZhSWt+vQHoFWf/phaWGKaZ6ySa11sHItTq0lzGnXqBkB198aUrFSVam4eWDsUo1LtegDU/aEtLk2aY2BohLNbI0pWrEwl17pUcq2LtYMjzm6NGDpvEVtvB+Qj3+/476KkU1GkUfH/l2NlZmayYNwIHEuWYpTXfE4+es6xe0/yke9fgf81X0Z1bsOaOTNo0bkbpSpU4tcJo9QqVgDHkqVYtG0PJx8EcfnVO2KjoxnwQ2N2r1+bL9PTwNCQjn0HsvOyH5MXr+SO72U6u1bhzKF9yv3LMjKIi4nG4iPpzwURFxPNoinj6N2oHm0qlGDZ1PGM7NCSRg5FaGBtxIVD+wFFPeHxnVpx+dhh0lJSMC1ShPb9FL0k1x47y7k3X/4t9j+lgEG9D/j8oX1UrefG+f17aD9oGBcP7sXSsRhGJqa8fPQA945dObZ5HU269ODRdV/ExiaUrFyVC/t/p92goVw/eRTHsgol/fLRAzw6duX6yWM0bN9JZQ7fFfB/UwHX85jKjCmdadk8p9jTV1LAUfHxzBzSD1lGBst2H0QkEqm9toVVwOlpabSrVoZt569T1N6BlORkBjZ3Y4TXfOrkNN8E4e8s91iyjAyunD7JuaOHePPqBVvOXMmX4Rb+OoTVc2ZgX6IEmTIZvqdP4liyNAs2/obYyJiGxa35I/AlRsYmgPD3+P79O2YMHcCIGXOwtrOnf0sP7IqVYN7W3egZKPzwGenp7FqznId+N6jT7AfW5LglazZsRFamDFlGBvEx0ZSqWJnZ67cB4G5j8l0BF8TLJ4G8DX7JzCH9eB7wkO2rlrJ91VLuXb3CXM+BJMbHsXL6RC4dO8SN0yfZs2opSfHx/DpyMK8eB7DfexVhr14QGRbK8/v3SElK5Jn/HWIjIwl+HEiQ/11SkxJ5ft+fyNA3hAe/5PmDe0hy7FOTEnkV+IiQxwGEPA4gyP8OqUmJPLp1jZAngRxat5pD61YT8iSQZaOHkRQfz4bZU7l24ijXThxlw+ypJMfHsXT0UIKfBHJw3WoOrltN8JNAVk8aTXJCPJu8pnP95DGunzzG/tXLSE6IZ8VYT0KeBHJk/RqObvAm5EkgK8Z6kpwQz+Y507lx8hh3zp1i688zSE6IZ/W44bx+Esjlg3v/7q/sPweJJI4nz0Jp7KHaqfdLY/awgWhpabPot9+/eA0DXT09SlWsTGjwS0ARqmZR1Falxu7HoK2jQ5O2HVi4aTvmFpYMaN6QK6dOAIq0518njsbc0gp9sSEvnwSiq6eHJCKMUwf2oqGhQZ1GTRjXqzMhz9UXob927gwvnwQyqnsH/K5cpO/Icdy9doUdKz+Ef+ro6tJn1Hjio6PZuXwRAJ2HDKfdgMH0GjWewdO8mLZ6A1NW+PyVS/VJ+KYU8MWION6/f6eiXldPm8Cpndto2bsfPcdNxsDQiA1e0zizezvNe/Wl66jxmBSxIC0lhezsbPTEYuKjozC1sCQxNgZ9Q8WKa2pyEkamZsRFSTEpYkFSUhIiROgaGCjt46KjlfZpyUkYmpoRHyXFuIgF6SmKfH9dAwMSoqMwsbAkMTYW/RwfVq59nFSCiYVlPvuoSAmmllYkxcWiJ/5gr2tkSkK0FCNzC9JTFfbaevokxkRhXMSSpLhY9MWGiEQi0lOSEZvkt9cQydEzECvnkxQXi76h0SeX5VOrgAXUso6mukQK1R+nUKaUkGpSN65bCFt16k9IGX+yKgbIuqw6pkYB79l9hg1bznLpzNw/tc3bofvDxFRLpD6IU61SFxT4iFHd2nP20Qt08iQoqHtrEkpYSFITfpXrV53WpyttfxxA7aYt0NLQoF9DV2at24JTnkVyoWsr9C1kymTcuniO+WOGscv3LsHPnjChVye2X7hOyXIVkMvlbFuxmE1LFvD7dX9sHIuRlZXFjtXLOLp9C3uu3cNYIBMwViqhg2tVpi5ewemD+xBpaFDVpTbuHbqouC8C7txi5oDe9JswlQ45LgdjNandX7olkaaXl9eX2tdXxZw5c7xio6TM9xxIXJQUl5zXnbgoKb8OV1T3evnoAU/v+CEJD+P4FkWDyFcBD7lz/jR2TqU4usGb4McByLOzWTHGk9otW7Ns5BASYqJ4fv8uh7xX4dywEV69OmNbvARXDh/A7/QJdPT0WDNuOC4tWrFh+gRi3kfw4sE9jq5bTVU3D37p2xVbp1Ic3+jNQ99L6OjqsXbCCFyat2LVmCEkxETns183eTSmFpac2OyjtD/is5JytWrjPW4oiTHRvHpwjxMbV1OhXkOWDeqOVTEnzm5dR+C1S+iJDdk4aTjVm/7AhomeJMZEExL4gD82rKJSfXeWDuymtH/7NBB5djYbJo2gRtMfWDduGADFylf6pOuuTkEJjWsKkLK6caEfqDpXwae6MNTZFsaNIrTfIjpqfm/y1wJjqoR27Xog/Qcvx2fVEIo5Wn3UFhAOZdOyVRl6n6bauWLF7Kk0atmaWvUb5p+W8JEEiTlDTQhXrvvv6qnjOJYqg0OpMiTFxbFj5RL6jJ6IXp6FOKFrK3QVNTQ1cSxVmhipBN/TJ+jQ7yd0dHVZOGEUIqCqax2c69Sj22BPzHIq92loaFCxei0uHT9KRkY6VWu5quxXbGjIu7C33LhwlqW/7aVNj944166LVoFSlHHR0Qxu7s5PU2cpyRfUP+DX/ToPLy+vL1YY+JtSwHn/3u3/VKmEV00dz+ldv9GiV18adeqKtUMxfls4l4sH99K8Z19cmrWgoksdJOGhyBFhYWvL09u3qFK/IS8e+GPtqEjzjHz7htLVqvPo2hUquNThXVgoyOVY2Nnz7I4fleu5EXT/HlYOCntp6BtKVq1O4HVfytaqTVR4GAAWdnYE3fGjUj03Xj30x7Kg/c2rlKvpijTsg/3Te3co71KP4Ef3sbR3VNiHvcWhYjWe3LxKmZquROfs37SoLS/9b1O+TgNCAu5jYeeIhkhEVNhbSlRxzmevqSmiiI0tQXdvU7FuA4If3ce6uBOGJp/WCua7Av58BTxxykZMjXWYPrnLn9oCn6WAR3ZrT12PxvQbMTb/ob6gAl42SZFwFB8TQ6DfTbR1dTj+9E2+h/KnKuBcpCQn0aehK5MWr8TVowl71q5AEhHOxIXLlDYF10Me3rrB1AG92HTiPMVLl8n3mYZIhPT9O7rWr0m3QUMZOmUmoKhylhdyuZwdK5Zw5LdNzNu8k4o1XYD/nwL+pnzAbfsOBD5EMOSiVd+BrL9ym4z0dMTGptw4dYLSVZ35Zd8xMtLTKFu9FnuWL+L9mzdIw0LZu2IxZarXwnvKWMQmJtw6dYKbp44jNjHBe8pYylSvxe8rFhEVHk7k2zfsX7mEMs41WT91HGJjE26fOcntMycxMDZlw7TxlHauyamt65GEvkYS+pqDq5ZQ2rkmuxb+jIGxqYp9qao1OLBycT57p0rV2DJjPAbGJtw9e5K7Z09iYGzCzp+nUrJaDY6uWYI07A3SsDdc3LUZp2o12D5rIgbGJvif/wP/C6cwMDbht1kT8tlHRYRxZM1SSjnXYOvMCYiNTXh68+rf9RX+JxEaKsXB/uNpv18KY39eyOpfvJC8i/hqxxg8fQ4aIg2KlS7LyRdhHAl49dm+Zl09fYxNzQh69IABTRuwddki3Fq2/ug2VWvXZeh0L0b36EBsdJTK569fBJGclEjVj6QVi0Qi+o6bhFP5ity7euWzzuGv4JvKhPOc/QsenbtRunI1pBHhGOT4YpNiYylRsRJiIyNEIoWTH8DI1AwDI0VNVT0DAzQ0NZCL5OjmvIYYGBmDSPShypNIpLTX1TcAkeIVSU/fADmgb2SMXCTPYw8GRkbIUdhp5KgvXX0xcnLmIULVXi5HV1+czz5bLkffyBgRH+xFgK5YDHLFfEQ5qkKkoQFy0DcyUthr6yhe70Qo/NN57EU5/5fLcz4TgRwRCdFR6BsaEieVUMTWnrjI9+iKxYhEItKSkjC1Lkp0RBhmFlbK5oZ57WMjI5W+7dSkJMysi5KYEI+RQLWq/zrcGlTGe/1p7GyL0Mi98lcr7h0XE83CSaOpUac+hjkRAl8SUe8iMDYzRybLYMjseYgNjZCGh2Ht4IgkPAyDHF9sSmIiNg6On7zf7Oxsbl08h0gkIisrC2s7e3ZcuP5J16ltr76EB79kyoDerD14Il80Ra0G7qz6/TDTBvej28Ah9Bs9AQSU+V3fy4S+fMEvW3Z98py/FL4pF4TX70dxrORM4PUrlKtVm6iIcADMbGx5ftePinXd8r3CR4a+pURlZ57c8FW8kkeEg0jxSv78rh8V6roR8ug+Fjn2ylf4XPv34ZANRWztlPavHvljYZdjH/5h/6WquxDzXjEfcxs7Xtzzo2LdhkoXQT77W1cp5VyLmHd57P3vUcalLq8D8s/HrkI1gm75UrJ6bWLf5bog7Ai+70fZ2m68CXxAETsHtDRFRIe9pXhlZ57d9KVUDVdi3oWjqSHC3MaWF/f8KF/HjdcB9zG1dUSUs/+89tER4ciRY25jz8t7tyhXx43Qxw8pYuegnE+ufZlarsS+y3++1Rq4C/5oDHRU3QIG2p9etawwbgUh14Q614aQG8RGX3UOgp2SAbKeq44JuBWysrL4ed4Otvx2gbUrBtO2tYvw/nKhKdQVuZnqWIHKbRMnrUUiiWPLFh80C5zb8xR7wUMJhXWqqyT2PimJZ/53KZrTKfz9m9eUca7BvSuXqFK7LpHhiutkbeeAsVisnMOBjT7cOHcakyJFMC1igY6uHlHvI5CEhyOJCEMSEY7YyBjneg3wv+bL+jOXsXEQKkCvxo2SmYlnSw+GzJxL9Qb5fd/JiQkkJySweNwIylSpyk/TVd23C4cPIlMmY+7G7UoCF6txQVQx1fnvLsK9f/Oayg08WD9xJDZOpbi8dwcv/O9gYGzCnoVe1GzWih0/TyMtJYm3zx5z59RxyrnUZdPkERR1Ko3v/p1Evg1BJNJg3+I51GjWip1zFfahTx/je2AXlRt4KO0fXDjD4xtX0DMwVNofWDaf5LhYQp8p7CvVd2fzlJHYliqD776dvLp/Fz2xmANL5lK9aSt2z5tGenJyPvuDS37B1KooV/fvUtpfPbCL0jVrs3f+dNJSkgkLesz1g7soW6chu2aOwbpESW4c3E3Iw7sYmJhwZOnPVG3ckgMLppOekkzEi6dcO7CTCvXc+W3aKKxLlOLagV1IQkMQiUQ58/mBPfOmkynL5O2TR1w/uCufvf/ZEwT5XUfXwIDDy+ZRrUlLzm5eS5zkvXI+ufY2JVXPt267zsq3j7zQFvQBf52FNaF9FGZxz0hbdUxfQ03aqzxaYEyVvDQ0NPBwK8+7dzEkJ6dRv14F4f0pNxBov65ZUuBYb5X/lUpjGTdhDSuWjcLWtpSKabTMWGUMEEygUEd07ySRrJg0ltSkJF4FBnBy5zZqejTh15E/4VCqLCd3bOXxHT/0xYbY2jugldNGft7IwbTq+SPFSpdBS0sbTU1NSlWsTL1mLWnXdxBJ8XEYGBkRGyWl79hJVKsjUI8D9QuJIpEIaXgYkeGhONdzy/dZt+rl8T1+BG0dHXT1DagrUNuhdkMPzh0+wMnfd1C/WUv09A3UPrR9Fs797y7CrbsVgK6RqUrYl7a+/ocwq/g49AwUq8PJiYqwr/xhXIrX/9wwruT4OHRz7AuGcaWlJCMSidDVN1DaJ8TGoJ8bJpbHXmxWRBkmlmtvamFFcp755NrHSSIxsrDMZx8nlWIsYK9jaEJitBRDcwsycux19A1IionCKGf+emIx2hqifPMxyrHXEMnRNch/vlp6YkQF5m9kbkFqcjIikWL/ufapCXHoGaier6mFhcr5WlpbC353/3UFrBhPZ4bXLjQ1NZgzs4ewTS4KoYDv3n3GUM8lvHgRRof2Ddi6ZRoijeIqpl9CAUcmJ5MQG6tMDU6Mj+fV40dEvA6hokttLG3t0NTURM9AjDin75tcLmdQMzcS4+L4oXsvWnTtiXWejhopycm0r1yK3bce/GnzV3UPhmy5nMd3/Fg0xpMtvreVyvue7yW2LpqPhoYIl0bNcCxdBrecAj55IdbWJisri8WTRpORnsGsNRv+bwr4m/IBv38dzOkdW+k17Wd8xntSsa7iafc26AntPMeyqF9XOo2dgv/5UwBUa9ySdeOGMGz5BjZM9KRCHTe0dXV5ePkcvWbMZ8mArnQcPQX/C6cAEdUbt+DQyoVK+6ruzZClp/Hkpq/Svv3oydy/cBoA58YtOLzyV4YuW8++X72wL6PIhHt68yrdp89j8+SRePTqr2L/0xIfNk8aQfk6DZT2XafOY+VP3Wg7cjIPL54BoGqj5pxct4Le81ayfdoIyroq7N8Hv6DpgBGsHdKdViMmE3DpNFpaWlRu2IRjq39l0JL1bJ0ygnK1G6Crr8ujS+fpPn0eywd2o/3oyQRcu4IsLY2qjZrns69QvxFZsgye3VLMZ/Xg7rQbNYUHOfPPa7/TaxJOVWvkO98Lu7fRuGe/r38jfKN4GPAa11pluOUXRIXyDixadpjk5HQqVXTEpWZpKlcSKLr+Ebx6FU6bdpNZtHAY3bs3QVvgofZXkJ2dzY0LZzm6ZwfJCQlky7PREGmQmJJClyHDuXL8CBGvg4l485qsrCwq1nRh/c8zqOneGAsbOx5cv8Kuq4paKiKRiE1nfQl6eJ+Te3YwqFkDSlaojHO9BjRo0RrHMmUxt7QkMiz0s7pvV6jpgpGZGbfOnVa2EJo3bCCujZrSontvqtVr8NHtNTU1GTlnAd3rOPPk/j1qudb5y3MpDL4pArZ0KIZTlWroiQ2pWNeNEpWqAqCpo4Oe2JBK/2PvvMOiurY2/tsw1GHoRemoiAhIF1ERu8b0nhhj8t30Zrrp7abHGGOKGkvsGmOJxt4VkCJVkCLYqCpdKVLnfH+cASlDxHvNzfVm3ueZR2fPu/dZZzhnzT5rr/XukZHYObviFSp/ebZOrviMiMTIVMng8FG4+/ojhB7NjY3yGCMisdXwJUnC1rkz33ngoPZHtHa+kysDQ4ZdGX94JMamSjx8A3D0vLKrhYnSDPchgdr5SjO8wyNw87lSFWWkNMN7uGyPZxvf2RXPoSMwVirxCovAZbDMVxgZY2xmxqDwSGycXOgfPAyFnsDW2RVvjT2DhkXg6jMEhb4ezQ2NmCjNGKw5X48hQUhqdTe+s5d3p/MdFB6JjaNLJ3va+AOCQnEZ5NvpfPt6aHlM1qEdFRU1rFkXxfpNsWRmFXD/PSMJGOJOVEwmr721jKi9n3ZywpIksXNXIiXnKjAwPodCoUCtVtPa2kpraytffvkhH7z3fzz88OQ/PO6pU2eJOn6cC8VFnC8u4nxJERdKSqi9dJHamhpqay5RV1ODnp4eYZFjyMk4hrGJKfc/9hQOjk4IPT1qL11i1rszmfXyc5gozfDwHswjM98lPy+HKVMf4YN/TCXxwN52Dd3mpqb2QhAhBIMCgvDyD+S5Dz/j6KH9ZCTE8cp9t+EfPoKLVVX0dXX/t75bIQT3PTOD+R++jb6+PmHjJzH5/ofQ09e7qvNtg9JMxVNvf8DXb77CtKeeo7WlFbVaTcTEydhdg/bENdl9I4UgnvlqLgETbiF6wxpCJ91CQU4WAI6eg0jeu53Iex8icddWnDWaDIUnsgmeeCvRG1YTPOkWik7IfGevwSTv3kbEPQ+RtHtr+8y1KDebkElX+IU5WQjRmZ+4extOnoMAKM7LJnjiLcRsXEPAuCkU5WVrxvcmZc8ORt79IKl7t+Pk6d2Z/9svBIybTNGJK/zU/bsZdtt9pOzZ1skev3E3E/fbWgLGT6FEM35fTy+O7dtF+J0PkrZvO46eg9ADzp3MIWjiLcRuWkvghCkUn8hG6Ek4ew1utydlzzb6DBiEQFCUm92JX3QiGwkJp4HepO7bwfA7HyT9wE4c+3u129PGD5p4E8W5OZ3Od/yDD3db/AFdCEJub0SSpPZFyrq6BpTKKwLtX8zaSOqxM/yy8lWEQklOTgFPP/89VVU1hIZ40dxqT3NzM3p6eujr66Ovr8/QEGuefrr7JrUIN06fzmfFio1s2LiDyspq+nn74+DkRB9HZ/o4OWPf1xFzSytMlEqUZiqUKhWNDQ3EHtyHo6s7QcNHdltQPVdTQ/6JHKzs5ZlqVWkpLgO9yDuWitDXI+XwQTYunMdLs+Yy/pbbu5Und/U19XW1bFzyEy3NzTzyyhvav7eOX2EPvqqqopzmpiYuFBVSXV7Gj++9iW3fvujp63M2J5s1iRnkpKbgP3wk6tbWbusUSoMrMXe1Ws0PH71LTUU5CgMDGhsbiN2/l0deeJmHn32R0D7mf98QROye3dj6j+DIjm2o3L3JPHwIAF89E+J2bqf/qJtJ2LuHyktybDI/IxXHwAjid23Hst9gMqMOY2phQbO+MQm7t+M15maS9u/hYm09arXEyaNHcAq6ws9NSeVyzUVqJENid27DZeRNpMUcpupSLQAnj8bgGDSShF3bsOzvQ2ZMFADN+sYk7t6G99gpJO/fw6Va2Z68hBjcQiLIij+Cjccgjh+R+ZKBCXmpKQyMmEzawb3U1V9u5zsFR5C6dzu2/QeTFSvn7+qbmJG2bwe+424h49BeGi5fRk9PkBsfjeewSJL3bqfPQB8y46IxNbdAz8iM5D3b8Rt/K6kH9+LT3IK6pYWc+Gi8R4wmdd92nL19OZuRSmN9HSZKM47t20Ho5NvJT0+hpUG2JzsumiGjxpC2bzue/kM4eVRehTc3V3Fs3w4m3f8gRkbdF5CMFVrEdLQ4P21COqBdeKcnp6rNMV/TnnDahHekfK39tUKbmDqAnlGnSjClyqhTxduzz95F5LjXefL5hYwfP4yXXvmOt996mGefuRN9fX0qW7UvTFV2Cdeq1Wq+mTuX+V9+yu0PTuPduT8TMHRYjwtYHYsbVMBtU6f3eGp9VSr6hoReaXB1o0WtxkEzw7xUVMiw0WO54657tQqfdxX5URibcPczM4CeBbV6srUjUhPiqC4vIzX6EM9+Ogs7ZxeCR4/jeEIsPmHDyc3KZMW3X/GO92AUevqoLDsXIXUV7XrivX92uj6Lzpzixw/fYfmP317VxmvFDTUDnn30NBVlpais7ai7eEUzobGuFlMLK2oqyzGzsum8WFVVgcratp2vJ6Cpvg5TC0tqKsoxs5b5rerufAxNEUJenDM1t6S2shxL286LYXVVFZh1GB+u8C9XV6Cy7mJPZQUqmy78ujqMVJZa7a8sK8Pcxo76i1UYafjqhnrZ/g58hb68WNi+OFddhbGZGYIrGhFti3ktDfXdFtvqNBoRXRfntC22mdvY0VR7sdNipJmFJeqG+vbc4I5QGvZutmtqoGX1n/9iB6xts87Weu1cocWGLiXHqaknCQp7DgB3974cS12Kubm8INuTA5YkiW2bf2P/7p3kZGVyIjsLz8F+fL7gZ9z6X8mG0LbYBte2aas2X9Gxf3piPK9Mu4/PFq3Ad3h3e7Vp9F7L8XviXr5cj7q1FWNTJdXlZVjZ2VNbVdWel1x8+iSlRYX09/PHXksoQavanpa24rOneSDM/++bhubuF8jO+bPpHzqcNe+8QF1VJQUZqaTs3IzbkGAWP/cQNi7uRK9eSG7cYQyMTVj3/kv4jr2pnV96Opc9i+biFR7JT88+hJ2LO4dXLuREXBQGRkad+M2NDZxNO0r0ivl4Dotk2Yxp2Lp6EL1qkTy+kRHrPngJ3zE3sfP7z6kozKcgI5XDy+cxMDySjZ+8gZmVjTx+7GEMjI1Z895L+I6dxOq3Z1BXVUl+RioHls1j4LBRLH5+Wmf7jYzZ/PlbDIoYz7r3ZPsLj6eSsX87Lr4Bnc43LzEGAwNDVr33EkPGTmbF289TV1XBuVMn2L3wW7yHRzLvmanYuboTu2kN6Yf2YGBkxIp3XsR/3E0se/M5mi7XczIlgT1LfmDwiNF8/+SD9PEYwJ6l88mMOYQjjyO9AAAgAElEQVShsTE/vzWDwPE3seqjN6g6X8KpY8lsX/gDviNHE7V+DV4h3XNctZUia3OU2i56AH2tuhPaQxC91XcAsDPS1q4t5awHDV9tWg5SD/uICS3H6tL22hsLCQ3x4sUZ96Onp8fb7yzEyNCAQ4dT2bo1hhM52ejp62NrZ4e+vj7Zx4/z+LQH2L97F5NuuZW7H5jKOx99wl2PP4uldeeCmJ4mWtcibXq1/g5OzjQ1NpKZkkTY+O5ZG9p+BK7l+D1xNy74nsObN2JobMzsGU8z/KZbWPrZR5ScPU1OSiLz33+T/Rt+YfuKn6mvrSF6x+8kHtzHqcwM9PUV6Ovro+wi6KPt+jK3tGLp15//fdPQvozJITclkf4h4RRmpmHtKKezVJ0rxnnwEPKOxtAvcGh7gYBlH0fOpCXiOXRkO19PDyqLC3H1DSAvIYZ+QUOpPFeMWi0XOJxJO9rOVzrIqTtVJQU4Dw7gVGIMA4LDqG4f34mzaUcZMHQkRdnpWPWR+ZUlsoZDfmo8Hv7B7QUXVn2cOJN6FM+wkRRoCigAKooLcRocoMV+J06mJNA/dCRFmWlYaQo6akuLcfbufL4KPbDq68zp1KMM1Ixv7eSCntCjorgAN98AchOi6R8URvWFYpDkgotTKQl4DYsg/3gatk4uCI2mhLtfIDnx0XiFhFGpKQCRCy5kDYri7GPYOV3RrOg3JJDKwjM49uueg6qbAXPVGXBm5llGT5jJqZylmFvJZfYbNhxk2/ZYrK3NMbb0o7iwgKSEePLPnMbGzo76ujpef/cDHn3iqU4VYOVN3e/p/8QMGODLmS/h0q8/dzz+TDfunzUDvlBUSGNDA/ZOzmQejSMgYjQn09Pa091mv/Qs6XExtGqO7+TRn8EhQ9m7fm37GLvPlnaKDfc0GYhwUP19tSB2/fQNLj7+bPz0DUxUFmQc3EXGwV0Ym6nY+OkbuPkFsXfhHCqK86kozufg8vm4+QV14p+IPYyJuQXrP34DtyFB7P5pDhVF+VQU5bNv0ZxO/Lz4Q2Qd2oWJyoItn7+Ji28Qh5b9SGVxAZXFBexf/C2ufkFs+vRNjJVmHD+4k+MHd2KismDTp2/iOti/0/h7Fs7BbUgQW+d8gom5BekHdpF+YBcm5hbsnj+rm/37Fs3BxTeIzZ+/iYm5BVkHd5J1cGcP51vI7p/m4D4kiHUfz9SMv5PsIwcxVZnzyz9n4j4kmJ0LvqGiuJDyogJ2LPgGD/9g1nw0ExOVOcejD5C6T9aUWP3h6/TzD2b/ykWUFRZQVljA1nlz6BcQzMoPXsdUZUHS3h0k7d2B0tyCpe+9hl2H/E4deg+1Ws0zL3zPh+9Naw85ANxzzxiWLX2Hb2a/wGtvv8uc+QuJTkkns+Acm3cfIDH7JI8/81wn5/tXovzCeY5GHcJ94KD/6HErzp/jfMFZVs/5kkHBoXz3+osozS04smMrR3Zs5amPPmf0HXfzw54o7nriWcpKijmddRy/sOEEjRrDMx9+qrWA6D+B/46/XC+hr1AgSaBvIH9ZeppHW7UkXWlTKBCa5Y42rYWOfEmik96CvkIhr/YKuW9HPhLt+gv6hpqUGn1F++pwG19haAhCtB+vrU3qOL7m//IYeogO9guuVPl0sl+hkMfQ2CPaxldrP199A8UVDQrN+UuaE+5oD5KctqOvuMIXgEC0r1y38SUEiCvjt31m09eJEbfL6l4KAwMemPk+CoO/5iK+0bFsxV4aGpp4+smbe8VXqVSotGjg/pXISU/jlYfu4fZpjzJs9DgaejmzbWpooPz8OX5ftohHZ77DxoXzGRwSir6+PhkJ8dz95DMs++pTbnv0CbJSkmhpbsJn6DC2LlvM9Nff5rdFC/AMCJR3/VDIT1AGhkagVne4HyUMjYxxcHbB3MqKj5atASArKZG7n3yGzYsXUHz2DBkJsQD4hQ3n92WLeOLN91n30w/4hshyl8eTEq7vl8YNFoJ4e08GZ9KT8AgeTknWMSw1IYiL54voO2gIpxNjcPMfysUL8iO8uYMTBceO0i90ZDtfoQ9VJYVySOFoDG4BV/gWDk7kpx2l/9CRFGWlYeUoP2K3hyCOxuAROJSLF0ra+WfTEhgwNILi7HQs+2pCFsUFOPsEcDopFtchIZ3GP5smP/LLIRF5/LaQxcmEaNwDw6g+fyUEkZ92FM+wiE4hl8pzRTh5D+nEN9QXcggiJYGBwyLaQxAG+ldCELLmwzBqSjtrOLRpRPR1c0Mg2kMKmbFR+A0dRrlGWcvWyYmco/H4jYzEQGrFoIPgN/T8qK8tu0Eb1/gaJCZ7ekR0MO7e3mMambbQgrYsBm3hA9AegugpDU0b9E2IijrGvQ98xK7tXxIY6KlpH92NWqkltGytPWJDbl33e7qnTSq7bskOf6C58AdOdcEnH1Bfc4lXvpzTI0fbVkcNzc3kpqXgFRhMStRB/MKGt8vG2jk6kZEQS9CoMZxITcbOWQ6RnS/IxyswmNSog/iGDed8kVySbefkTGaCHII4nZGOvbN8P3bkDxk2glKNrKu9kzMZCbGERI7lRGoyfTSytG38jvbIfBfuGOj8912EcxkSQuLGFbgHD2fnN+/TVF/Hhbws8uIO4uwbzJaPX8HWrT8pv6+lMCMZI6UZ+378jEGRk9v51SUFJGxYgeewSDZ89DJ27v1J2ryWgowUjEyU7Pr+U3zG3MS2r98HSaI46xhJW9a28+09PEncvIaC9GQMTU3b+YdXzONS6XnO5WaRtGUtA8NHs3fBV6hs7UncvLYT33fMJH6f9T6N9XWcy80icfNaBg6LZN2HL2Pv3p+jv60lPz0ZI1NT9i78hsGjJrD5y/dkzYfcLPKORuPqG8i6D15q5xdkpWFkbMKWbz/Bf+xNbPjiXZrq6ygvPEvUL8vwHjGaFe+8SB+P/iTt+p0TCUc6aFbIGhFIas5kpHH4V1kTY+HM53H1Gsy+tcvJTUnExFTJqi8+ImzSzaibmzBRdhYEv5Z9x65lT7hrEW83U1yDloPWxTUtTkbbAhr0sAjXu63L8/KKefaF7/nuh0388N0Mxo4JuvKhllLiy1rMMtH+G0SFFmd9LTHgaxFvb4ORsQnLZn9BboYce9W2aWarlv71l+uZ89oLsqbE80/i6jmQ7auWUXTqJEJPj8X/fI8RU27lx3deQ93SQl56GrtWLyd49Dhmz3galwGeRG/dTHpMFCZKM37+5H2G33QrG+Z9S8W5c5zOPN6J7zrQi52rlpKVlICx0ozF/3yPkTffxg9vv8rl2jpOZWawY/UygkeP46sXnmq3JzMxARMzMw7+tv7vuwj33qET1FSWo7SWNQoM2zUcajE1t6K2shyllQ3NbVv3dEgTa+Mb6AkaL19JK1N2Sftq49dfqsbQRNktDU1lrT0Nrf5SFUamndPQaivKUVp3H9/CVh6/owbFH9kjp6FVy9KUyFsndeUbKvQ6paG18RV63bcqUjdeBtE5razuYjXm5pqtljRpZRfLy7BzsNe61ZKRvuiWaK+bAXPVGXDasVN8MWs9+w+mMeP5u3n1lfswNTXuTLoBZ8CSJJEcfYhjcUdIOLiP+dv3dyvK0TYDbmptpaa6CpWlFVVlpVja2tFQX4dakjqlldVUV7XfL21bh7Xxa2trEAiMTU25WF6OpZ18/XfdaqyqrBRruyvyqm3j29g7UKPZ2kvb+B35N7vZ/X1nwOVnTzFg+Fh+eeMJ+ngOJmnzas6mxKOytmPzJ6/hO/4Wtn7xJs2NDZSdySN58xr6DR3ZiX8+LwsjpZJNH7+G34Rb2fzZG7Q0NlJ6JpeY1QvxGjGWVa8/Tt+Bgzm+dyu5cYdQWtm087fP/oCm+lpKz+QSveonBo0cx8rXHsPRy4+EjSs5nRyHmaUNG//5Kn4Tb+G3T2fS0tTQib/p05nYuniQsHEVp5PjUFrZsG/hHE3q2kyaGxu4cDqXqFU/MThiPMteeQxHr8HEb1jJqaQ4VDZ2/PrhKwyZeGs7v/RMHgeXL8AnYjyLX/oHTl4+HFm/kpLcTIyVZqx872WCJ9/O6g9eQ61upSQ3hz1LF+AXOZ4fn3sUl0E+JGzdxPGYg5hb27L4zRcJu/kO1n/zOTVVFRTlnWDronkEjZnIrCcfJvK2u7rtK6ebAffQpsHCxTt5/Jm53HtXBCt+fpUJE8O16zfcgDNgIQSObh4EDB/J4e1bWPr1F1SXl2GiNMXGoa+s9aulf11dLYV5ucx68WlG33E3s195nqaGBkrOnubXH+YQNmEyHzz6AP19/Ni3fi0pUQewsLHlm5eeJfL2u/j2tReQWtWczclk04LvCR0/kY//MZUBfoFsW7GY9NjoTvz5786kXlPRt2H+d4RNmMz8997EwdmVrcuXcOxINJa2dszW8NvsyT+Rw/p531GQd+K6zoBvKAc8fOqTOAz0pflyPa7+ISiMjLHs64KNSz8kdSsufsG0tjTTd6APKjsHDAyN6OvlS1NHvr0Dtm79kVrVuPoFo25poa+XD+Z2fTBWqnDU8N38QxBCDytHF+zcr/BbGhtw9PKV+WYqefyGelz8gjEyNsHa0QU7j/6o1a24+oWgbmnuxr9cU43bkGAM2/ju/Wmsr8XFJ1DmD/Jtt8dpkB9Nl+txDwjFwNgEayfX9vOV7Zf5Vg59MDEzx3mQbL9HYCiGRsZYOfTBwaM/6tZWPPxDaG1uxmXQYCwd+mCiUuHq7UdjfR0DgodiZm6Ok6cXfT36Y2ymws3bF0OFAg/fIdg5u2Dt0Bdnz4EYGhnRz8e3W6mqzgH30AZs2BTDm+8uI3r/LG6eMlSuGNQmOwk3pANugxCCSfc8gF9oGPl5J1j741xWzPmKA79vYumsz0g6dIDCk3kYGBlh29eRFrUaQxMTWlvV+ISE0dLchKefP5a2tihVFgzw86ehrg6focPQUyjo4+qGy4CBqFtb8Q4Jo6W5haamRo7HxXAqI53kA3tpbW0FScLQ2BivwBDcBg5q5zc1NDDAbwg2ffqiVJkzwM+fi+XleIeEYmRiSh9Xd1w8B9La0sLg0Cv22Pbpi1KlIm73jr9vCOK13+M5vm8boXdOJW3nbzh5+wFw/uQJfMZOIW7dzwROuYeSExkAuHgPIWX7BkY8+BhpOzfhNGgI6AmKs44RcNNdHFm7hKBb7qUkJwNJknDyHkLKtvXtfFcffyRJoig7naApdxGzZgkht95LcY48vvMgP5K2bSBi6mOk79tOnzbNBA0/ftNq/MffQlEX/phpj5O8fVO7uE5hVjqht9zN4dWLGXrbvRRmt9nvR9rOTYx96B/Eb93YLt5z7lQuIRNvYe+KRQy/4z7ys9LlLWIG+3Fk8zomTH+SuN83tIsPnclIJfy2e9i7YiEj7rif0pNZqNWtePj6c3jjL0z5v6eI3ryecXfc3S2uey1hhZ7CAoZanOW19Near9tFjPxKu5awQE+zUm1cbegpBKFt7zYtx6qsvET/Qf/HwX1zCAjokCfd07hCiypaS3b3Nm0SlUDmpe7hhosNDVq5XctwoXdlwW3oySl3LIg5l3+GytIL9HF25Ux2JtkpScTu3EbD5XpG3XIHRiYmPPDCK2xaOI+J908lLz0NoVDQz9uHvb+u4c4nnmX/hl8YMCQQSZLIS09l7N33s/7HbzlfkE9q1EFCxk4gZOwEkg/ux32QN4kH9lJWXITrwEEEjR7LmLvuY8viBUy470FOZhwDYICfP/vWr+X2x5/h4MZ1eA4JBGgff/Pi+Yy/tzP/kVDfv68WRFVJAcXZ6QyZdDunEq/cgOdPZuM5LJJTR6NxDwjjbOpRAJQW1pxMiCLk9gfadQsUhsacPBqDd+QkTiZE4REYxplUOb3E1NyyE9/Q2JjmxgZOHo3BZ/Qk8hKi6B88jDMpV/i58VEMvf0BCrOO0dIk39B5CTH4RE6i4HgqLoP9u/HD73yAEwlX9mU7kRDNkLGTyYk7TP/gYZxKjm/nnzh6hOF33t9pH7dzp/PwHTmGzNjDDAwdRm5SPPr6CpTmFmQeOcyoex4iK07WmTA0MiYrLoqg8TeReeQwXiHh5KWl0NRQj5mFJenRhxh730NkHIli+IRJ3RywDv8+omOOMzR0UGfn+zdCXzcP+rp5oCfkzIah4yYy/bW3OJOdyYGNv/LrvLl4Dgkg+fB+hoSPID3uCEpzC0yVZiQfPsDkqdNJjT6EnkKfluYW0qIPEzZhMlsWL8Bn6DDG3zeV1tYWrOwdOJd/mulvvsu5/LOEjpvI+h/mkBp1gOyko5w+nk4fF1dy01LQVyhQWVqSevggkx58mLQO+8GlRR8mfPLNpB4+iN+w4RyPl9PTumpIXA/cUDPgmdsTtS5WKYxMriyGddBMaGm4jNKiK1/C0ESpld91May1sftiW8PFaozMrmg4dNVkaON31aDoyL9cXYbK2q7LYls55jb27RoOAA11ddjYdhWUB5MOAuu1msUDIbovtjVerkfSLGZ05FtbmWvGlwXr2wTuTRR63RZOdDNg/u0Z8AMPfcbw4X7MeOHu3o37PzYD/qM2SZLYu34tu9euZPZvO7lUVYmpmYpWSaKhy2JYXW0NaBbbNi+aR+L+vbwxf0m3xbbqsjIsbG1pqK+n8fJl6i5Vs3PlMgpyc7hQWMDFijJe/uZHBgWHYKoyp/JCKTZ9+rRXyhmbmlJdVoqVvUO7PW3jTwsc9PddhCvKOsaAYaNYPuNhbFzciV2ziJPxhzE0VbLxo5fwjpzMhg9fpK66kqLMVJI2r8EjaBhLZ8iaCUfWLKLkRCaSWs2Gj17CZ/RNnTQWolbMw3NYZDs/becmjh/Y1UnzYePnb3Gx9DwFGakc1Gg+LH7uIezc+hO16qd2DYd177+E35ibOmlWtPHXffgqKhs7Dq78iZzYQxgaGbN3yQ8MCApj+VvPUVtVydn0FPYt/RGfEZHMfXIq9q4e7F32E5kxhzBRmrFo5nMETZjCwtefpaaygjPH09ix8Dt8R45m9mP3Y+/Wjz1LF1CQdRxJrWbxG88TPGEKP732DA31tZxISmDLgu/xHzWGTx+5T56hoMbc2qbT934tcd0et/7ppT5DT/21ajZ02I6nc7s2Z9vDJKOXKWM9xoCFth+MzscqKang1TcWsnTJGxgbd3HYPY6rZaal7r7rr9ZtioCyxu5x3Z6yILTFgK+pPLmHdm17A2pru1xXy6WqKjYvno+eQsHqb76kprqaszlZrJ7zFcGjx/H2A3fi6NGPXWtWEL9nJ4ZGxiz9/CO8AoPYs2Yll+tqyTqawIZ53xIUOY73HroLp/6e/Lbge9KPRGHT15Fdq5fxzqKV5KYlMzg0jNWzP2fTwnlsXjiPbcsW8dvCH9n36xri9+xAX1/BgvfeYPjkm/nquSe4WFlOTkoSv3z7NeXnSv6zMWAhxHPAU4C7pikT+ESSpO2azwXwAfAkYAUkAM9JkpTZYQwJaAYGSZJ0ukP7MsBWkqQ/3n9aM8ZjC35t12RwDxjaXrBgbteX/PQk+oWMoDjrGFbtBRrFuPj4d+YLgYW9I/nHjnbTWGgroGjj15SWIElSJ82H4qxjVwoiSgpx8ZE1HDwCh3bSiOioKdGVfzY5ln4dNuW06uNEQXoKA0LD2zfZBFkjwiswkOy4aDxDwqgskRPIbfo6czJF1mRo2/RTT6Ph4DEkkKy4aHlT0eKiK5uQJh9lcHgEZ9JTcfFwAyEoK8ynv38Qx49EMWjoMEw0imodoZsB82/NgGfNXk9uXhGLFmrRu9XNgGVx+eZmtq5YQnpsDJmJ8SjNLfAfHoHHYB9ueuhRjifE4hc2nHMF+UiAvbMzBzb8ysYF3/Hq3PnYazbwvFBYwMCAII7FHGbw0HDKNAUUdk7OZB2Nx39kJHlpKe0FFxcK8xkYEExG3BFcB3oRvXUzWYnxZCUlYGBgROQdd+Po0Q9P/0AOb97A7rWrqKmq/I9rQRQBbwBBQAhwANgshGjbzmEm8CrwAhAKlAJ7hRBdayVbgU//HWONzSw4uORbXHwDiVu3lOrzxVSfL+bob6tw9glk/09fY6wyJy/+MHnxhzFRmbN3wSxcfAOJ1fCrzhcT9+tSXHwD2btgFsYqC/JiD5EbewhjlUU3fvX5Yo6sW4qrXyB75s/C2MycE3GHOBF3CBOVBbvmfYWbXyBx61dQda6YqnPFHFn3M25+gexZ+A0mKotufBffAA6vWULVuSKqzhURtXYJzoP92PbDV5ioLMg+cojsIzJ/83df0i8giAMrl1BRUkxFSTGH1i2nX0AQv839AlNzC47HHCTzyGH6ePQnNyker9BwCnOyMDA2xtDIiMIT2XiFhpObFE8fj/7UVFdSW1VJ334DyD4ah3fYcPKzM9vLrnW4frCyMqOxsQeFtBsMcbt3UFV6gfS4I6THHaGq9AKHf99Ec2MjsTu3cjYni7M5WcTu3EpzYyP71q/tzC8rZe/6tTQ3NhKzYytnNPzflixgytRHcPPy5pstu5k8dToNl+vZv/4X7vftz641K1jw4duUlhRSWlzI70sW0tLcRE11FaYqc1KiDpFyaD9mFhas/OoTvAJD2LFiCWVFRZQVFbF1yUK8AkNY+dUnmFlaknxoP8mH9qO0sGTFV5/Qf0gA+35di1P/AUx4YBq3PPIEM776lvTYaFZ/8yUv3zyerMQEnvti9nX/Tq+6CCdJ0pYuTe8IIZ4BwoUQGcBLwBeSJG0EEEI8guyEpwI/dej3PfCqEOJrSZKS/xVj7VQGGKibsFMZIhprMTeUf4gqpFYsTQ1orqnC3FiBgSYZ3sRQj4aLFZga6tNSdwkDoUahr6C1/hJmRgoaL1aiNNRDr7URCQmloR6NFysxM5I5Job6qFtaUNfXYG5sQOPFSkwN9REt8vimHfj6UgtG+vJsoKWuRm5rbcTcRB+Fxh5zE32aL1VhZWqAdLkGU823L12uwd7ckJaaSmyUCs4j822UCqT6WuzNjKGhFnND2UFW6UnYKo1ovlSFtakBxVIzhvoCDyd7PJzk3QqcRsjbCOnr6cEgefHHdfxYAAzdndq/Uw9HuWLJccRIrbNSk2vYpaKnEILWXSa0ZWC17NfanyYtxQ09qY5pTQ3rYUandWaspU30oHGhbQbbZVYcNMSZud9v6n24A6BVy2xX4d2tSVvBBWgvrtCWgwvaiyN6mtXmpafh1N+Tgjx5JxRLO3tOZx4ncPR4slOS0TOQS9OzU5LxGT6KY3FH6OcfyBnNzi/mtnYci40hdOIUslIS0TMwAKHHxapKGltbqSy9QItajYmZisCIMTz40kzWfPsVXgFBrJs7m5zkRIZNmkLSgX1UlZXiPyISPT19WpubaNFcIxfLy0EImpuaaG2V/+61l6pBCC6WlyNJEg2awiJJkqguK0MAtRerUWu+i7pLF/EMCMJ5wEBmzPqO1KiDKAwMcOk/UOv38u/gmhbhhBD6wL3ACiAYqANOAUMlSUrswNsOlEuS9IjmvaTpdx9gI0nSOE37Mq4hBDFz5W+4+QaQHReFZ3BY+yO8ia0jp1MS8Bo2qtMjfHlRAa6+AeTGR9MvKIyq88XoCYFVHydOpcR341cUF+LmG8CJ+Cj6Bw2jtkwOQVj3deJkcgKDwkdxNiMNW+cr47v7BWo0Fq7Y08b3GxnZHiIAKC8uwMMvkLzEIwwMCqWiRObbODqRfyyZweEjOXUsBTvNI1VZYT6+IaGkRR/CJyycMk0Nu53jFdm9vLQUHFzcUOjrYWFj2+170+YUe5Jy/K91wNqqy24QB9zY2IxV32mUn9/UveJNawwZ7eerzQH3sNPxJS3hBm2hBoBaLT9uPcWAJUnqppnQb0hA9+vTyZnMhHgCIiLbr0+A8pIiBnTlS2DnfEXDITctBQcXV/T0BBcK5BBBatQhvENC2blqOQc3rcMrKBT/4RGMvOV2ctOSsXOW76+2EERa9CEGDw2nvKSjPZrxU5NxcO0csjgedwTvkFBKizQaEc7OZMTFEhQ5hty05Hb7LxTmM/Oum69rCAJJkq76AvyAWqAFqAZu1rQPR47Du3bh/wzs7vBeAu4BBgBNwGRN+zJg2x8c90kgSfOSdC/dS/fSvf7i19ne+MzevnqbB3wCCAAsgbuB5UKI0R0+l7rwhZY2JEk6KYRYBHwhhNhztYNKkrQQWNhLG3XQQQcdbij0atVFkqQmSZJOSpKUJEnSW0Aa8DJwXkPp06WLPXChh+E+AvoDD/0L9uqggw46/M/gX1321gOMgDPITnhC2wdCCGMgAojV1lGSpFLga+BjzRg66KCDDn9LXNUBCyG+EEJECCHchRB+QojPgdHAakkO1H4LvCmEuEsI4Ysc160F1vzBsLMBY+COf/cEdNBBBx1uVPQmBtwHWKX59yKQDtwkSdJuzedfASbAj1wpxJgoSVJNTwNKklQrhPgImPdv2K6DDjrocEPjhtGC0EEHHXT4X4Ou9EkHHXTQ4S+CzgHroIMOOvxF0DlgHXTQQYe/CDoHrIMOOujwF0HngHXQQQcd/iLoHLAOOuigw18EnQPWQQcddPiLoHPAOuiggw5/EXQOWAcddNDhL4LOAeuggw46/EXQOWAddNBBh78IOgesgw466PAXQeeAddBBBx3+IugcsA7/FRBCHBJCHPoLjvuhZtPYq/EOCSGkDq9zQohdQogwLVwvIcRyIUSxEKJJ8+9KIYTXn3MWOtyouOEdsJBxTAjxSC/5PwohlvzZdunwP4l0IFzzehlwBg4LIQa3EYQQ44EUwB94GxgPvAX4ACmaz3XQAfgfcMDIW91b8cc7cHTELOAhIcSAP88kHf5HUSNJUrzm9QtwC/K2Wk8DCCFsgF+AY8AwSZKWS5IUJUnSCuQdxI8Bv2h4OujwP+GAZwArJUlq7g1ZkqSzQAzwzJ9plA6dIYTwF0L8JoSoEEJcFkKcEEK8dZU+Xpo+1Zo+8UKIyV04y4QQZ7X07RbSEEIECiGihRANmsaib7QAACAASURBVLDAe8g7eP9L0FxLZUDbj/njgA3woiRJDV24DcBLms8f/1ePqcP/Fm5oB6yZxQ4HNnRpf0IIkaG50S4IITYIISw6UDYiz4Jv6PO/USCEGArEIe+G/TJwM/AN8iN8T30ckX8o/YHnkZ90qoHtQoib/gUbbIEDgC3wCPAcMBn4x7WO1WFMC8BaYxfAOOC8JEmJ2viSJB1F3i187L96TB3+t9CbPeH+mzEOqEN+tANACPEu8E/k/eZeB0yRb3gz5D3tQN6x2QHw69hXhz8NXwMVyI/l9Zq2A1fp8wpyaClckqSTAEKIHUAW8Cmw8xpteBlQApMkSSrQjLcXyL+WQYQQbfeMG/LmsvrAr5o2F+DsVYY4q+HpoMMN74CDgWxJktQAQghL5IWPbyVJeqUDb1OXfplAKzAUnQP+UyGEMAVGALM6ON/eYBQQ3+Z8ASRJahVCrAXeF0KYS5J06RrGC9eMV9BhvDohxFbg0V6OMQLoGOoqA56WJGmz5n1vwhn/cshDh/893OgOuA9Q3uF9OPIOzUv/qJMkSS1CiGpNfx3+XFghh7qKrrGfNZCqpf08shOzAq7FAfcFjmtpv3ANYxxDjt9Kmn7FUuddbQsB36uM4YbuR18HDW70GKgx0Njhfdvq8rle9G3U9Nfhz0UVoAacrrFfJdp/IPsgO8BKzfsGwFALr2umwTnksFNXaGvrCbWSJCVJkpQsSVJRF+cLsB/oI4QI1dZZEwt34OrhFx3+JrjRHXAlYNnhfYXm37696GvJlZtYhz8JmrBDDDBNCGFyDV0PA8OEEO5tDUIIfeB+IFWSpBpNcz7goFlka+P1B7oWPcRpxnPpwFMCt16DTVfDYuQfnLlCiE4/7pr33yJfc4uv4zF1uIFxozvgE4BHh/dxwGXkVe4eIYSwQ16cy/3zTNOhA15DnpHGCSEeFkKMEUI8JoT4/g/6zEHOLtgrhJgqhLgF2AoMBN7pwFuPPCNeLYSYJIR4CNhC59BU23h1wB4hxP1CiDuAPcjXy3WBJEnlwINAAPK5ThdCRAghHkZe+A0ApkqSVPFH4+jw98GN7oCPAK4ah4okSdXAx8ArQojvhBCThRC3CyEWCiE6PgKHIN+0sf95k/9+0KRljUCOkX4P7EDOUOkxLixJUgkwEnnBdD5yqqE1cLMkSbs68E4C9yCHODYDM5EzKHK7jFeOnDVTDiwHfgR2AT9fj3PscJzdyIvDx4EvkMMSXwHZQIjmcx10AEB0D2PdOBBCGCLH9l6SJGllh/angBeR806rgCjg8bZVcyHEXGCIJElj/vNW66CDDjrIuOoMWAhxtosISdtrewfOs0KIM5rCh2QhREQPY3Rt/1AIoW1luleQJKkJWAU80KX9J0mSBkuSZCRJUh9Jku7r4Hz1gbsBnR6EDjro8JeiNyGIUORFrbZXEPLj+68AQoj7gbnAZ0Ag8mP9TiGEa5dxGoAvr4/ZnTALGC2EGNhL/r3Icb9f/gRbdNBBBx16jas6YEmSyiRJOt/2AqYg51+u11BeAZZJkrRIkqRsSZJeQA4LdNVaWAgECiHuuo72I0lSEfAYvct8ADmH9DFJklqupx066KCDDteKayrEEEIIZGe3SpKkek0MNhi51LQj9iBrNHRE2wLM50KI36+nA9QoU/WWu/Z6HVcHHXTQ4d/BtVbCTUBO+2rLY7RFroXvWk10AVkHtSs+R64kehxYcLWDCSGeBJ4EsLG2CK6ovHiVHjrooIMOfyryJUlyv16DXasDfgJIlCQprUt711QKoaUNSZKqhBCfAx8IIVZ2/VwLfyFy6AIhhCQ17gCh340XFZXGPQ9+xsZf3iFi5FUqQbX0/8P2bka19qo9Ni6Lr7/5lW07k+njYImHmz0n8kpQKPQpK7/EmFG+GBkZ4Opqx8/L9nH7raH88M3jPD1jIRPH+QOwZ/8x5n/zIHdP+5EvPrqXTb8nA3Dvbb68/v5mNq16gqdfXsvEsd4I1Ow+kMP82fdz9/QlfPHBrWzamo6VrQNjIn15871VbFr7Ok/PWMgDUx/lrru6C4plXOpeeHY0Ppa8zAwAEg8f4LUv5/DOY9N44u2PiNqxBYCIKbex8NMP+WjxCua8+Qoho2Sxr6SoA7z0+Tf888npPP3ORxze8TsAkVNuY9vq5bz40Wd88doMwkaPA+BM1nE+mPNjNxsGGh8GoLS0iu074tmw8TAxR44zYXwI9907lptvDkep1NR4aHuwau0h1be5SkublhTda3lY6+lYWrnapTGklrpubermRi28Ju3DNvXeBqm1+7lJrdqv8arKizz/2XHGhck1L/sTypk9ox/T38/kwyf78Xu0nHp9W4Qtn60oZPlnwbz4eTrjhtkBkH26lpmPefHQzKP884XBbDlwDmOlkpvHuvHOrETWzxvPc+/FMH6kM0qrvvy+O5uP35rAxHuWcPFSI65OKoL9+/LUwyG8+el+Nv18H0/P3M4tY51pbFKzNyqfeZ+P5Z4ntvH560Fs3HkWgDsmuvPO14ms/3E8r34cw/BA2f59cef57t1g3p6dxj/udGfLgRIAbh/ryAc/ZLL663BmfJrCuGFyseT++Ats2lvs1usvtxfotQMWQtgDtyPL+LWhHFnUpuuda0/PNfbfI8sLvtLD571CfX0DMUcy2X8glX0HUmloaCImNvPqDvg/hOHhg9m49nUWLtmLkZEBOSeK8R/izvNP38S2nSlMezCSpJRTrP01mgD/fgwP80KlMmHiOH9Cg69oxZubmzB5vB/9POwYHSEXd7m5WjN5/GBUZsZMHOtNaKAbSK1IEpirjJk8zpt+7raMHjkAAxN7+rk7MHlCYPv4vr693xnHytYO78Dg9vdKlTlhY8bTx82NgOFyUoujmztDx4zDxExFyKixDAoI7MBXETZmPE5uHgRq+E5uHnj7B6I0UxE2ehyDNePbWll3OrYkSeRlZbJx72q2bosjK/ss48cF89DU8fyy9p+oVKbX+FfR4d+B0lifcWG2BHtfUXY1N1Uwbqg17o4mRATIRanujiaMGWqHSqlg3DA7ggbL7cbGCsyVCsaH2+PupCQi2BZDM0v6uZozaZQzKqUh40c6EzLEjsoGMyor6wmfPB/PfrasX3IrVVXVtLZK9HOzYvKY/qjMDJkY2Q9/HwvasmnNzQyZNNodNycVkWHyslA/V5VmfAMiQuwI8La6Yr/SgIBBFrg7K4kIkR2zu7OSceEOqEwVjBvmQLDPFf6mvcXX9TvtdR6wEGIm8B7g2KEMFCFEAnBMkqQnO7TlAhslSXpL8/4s8IMkSV9r3j+C7IhXApGSJF3Va3acAS9asoPnX5xHS0srj06fwKMPjyNsqBeGhga9OJH/zAwYoDC/ACNDA5JSTgEQEtSfxcv2MW6MP19/u4Vz56s4m1/KSy/cyovPTmb23G38Y/rYTvzlK3fz0nMTWL76CKHBctHf8eOnue/OYGb/sJ9/TAsnKTUfgZrgAFd+XhXPq8+PZfnaBEID3dAztiMh8SSPTBvN7Llb+cf0seQWWDBy5NBu9mqbAVdcukRS9CEAvP2D2LZ2BQ8+M4Md69fi6SfP1HPSUph831R+X7mUyFvv4MQxWUPHyz+QnWtX8fBzL7Jj3ep2R56dmsztU6ezet5cbps6ney0FACGDY/AxNSUlPgjHNixlQM7toIkceetQdx6cziRkf4YGWlkH0QPcwfdDPhPmwH/vP4EUyLsSc2WQ4GB3hZs2lXAo7c6smbXeYIGmQOQknOJ6fd4MnfVKabf5kpKliyXHORjxYotBbw4bQCrtxUS5GOJgZkVSenlTL9rIHOWpDNyaB/+OTeFhLQypt8fhIW5MR+9MYHlvyQzNMAWSYLE1BIeud+f2fPj+MeDgaSmnaKlVSLE34Gff8nk1aeCWLshHV8v2XEmZZQz/U5P5vycwbSbHUnJkv/uQYOtWL75DC9O7ceqbQXtjjY5s4ppt7ozd2Ue0+9wIyWzqt1+93HbkSTpuina9WoGrFl8exz4paPz1eAbYKUQ4ihyZdrTgCN/HONdCbyKLIZ96lqNvv/eSExNjNmx6yhbtsaRmHSCmyaFMGVyKMPDvTEw+O8QeVPo69PY1IyenkCSJN7/+BdWro1i5ZooXFxsue3mUIaGeHLufDXNza3Y2qja+QCNTc2cOn2BmpoGMrOLMTGRnU9mzjlqai6Td6qU/IIKjmUWo68n4evtiK2NkpaWVpSmRjS3tCKaWlEqjWlpuTK+/OfsHSS1Gj09OVmmqakRC2sbWltaKDx9CoWBbM/ZEznU19ZwqbqK5sbGdn5zo8xvqK9HoTCgrqaG1tYWLlVVEb17ByezjvPTl59w5kQ2lWWl1FRXU1tzCe8hAYydcivz121hoI8vXiZR1/PP8l+PnQfOMDrchQ3b8xg7woWcU5XoSS0McLfgYGwxd0/pz65DBbj1NUYIwZnCGiZHOrNx1xnGDHMk91QZLa0SXh7mHEq4wF0TXdgbU4KbkwqAM0W1TIroy6Y9hYwOseHEGfmWHuih4vDRUu4c58iumPN4OCs1/DomjehD1qka/AaoyDgp820tDcktqKemvoWcs/WYGMl/95yz9dTWt3CqoI7Cc/Ucz5NF62ytjDhVWEdNfQvZpy9hbKyHsZlAaaogPu0CG3ae5pvF6Uwa5cKyH+5jaJAzuw/k0tKiRmlqSFOTGgClqSEtLWpsrU1pbGoBIdDTg8amVmytTWhpkTAxUdDcouGbKGhpVWNjZUxTUyua24vGZjW2lkby+Cb6Hfj6tLRK2FjKx2y7H9uOfz3RqxmwEGIMsoJTmEbVv+vnzyKXgLZJ/r0sSVJUh8/P0mEGrGm7CbkkNfNaZ8Ad0draSmJSLjt2HmXHrkROnirB18cdzwGOeHq6MKC/I0GBngwYcBUxLj2j7m3aZj49zbzEH4eGZs9eyOo1m9m29WccnbSIZUmF2js2H+fChSrs7S2pq5N3uVEaXqa09BIODhZUVNRgbm4CCpX2Hx6j7loz6dXaZ076et2zEtU9XB9ldXU01MszNWNTJVXlZfR3uZL6fbmujr1bNrJ51TIyko6ip6+PEAJ9hQIHRyf6uLjS19mVvq5u7f86u7ph69Cn3YH/kV1OptqfdqwlLTrtTT1Ew7TOgKu7t6kburcB6sbuM1VtM0qAVi1cdU8z2MZ6SiubcLAxoqK6CXMzBermZmrqW7C2MKS0ohE7a0NqL8kzXaWJPmVVzdhbG1JxsRkzoQYBtfWtWJkbUFrVhJ1Kn7oGjYMx1qOsuhl7K0Mqyi+jMpXvqdrLaqxUCi6UXsbOwqAz/2IL9jaGVNa0oDLRa+ebN16m9FKLPH6jfK0ojQS1Lo7Y2xhTcbEJc6V8XTYZ2WNtacyF8nrsbUyorWsm+lgD3y5M4FR+Fa8+PYzHpgaiVBpq/c5b67Uvwmt7Omj3sv8q1Nqve8NBy67rDPiGKUX+o0W4jigtrSYrO5+8k8WcPHWevJPFxBw5zqPTJ/LRB49gYqLF0cKf6oB37z7Mo//3Cgnxv+Pq6gRCy4YIPTjg0uIYRk94g2+/foq1vx4CYNp9obzw6nIO7niX+x/5nskThmBkYsbLM27vPsCf5IAPHNzHzrWrABh7x93M++BtVu+LQalS8dvKpXz7wdsEhIVzx7RHGTVpCgYGnR1mk5bHXIWW4/dk1/+yAz4cV8hLX2SwY8FwHnkrmfHD7TAzFvy2/zzLPwlgynNH+fJlb9bvkqU07h7nwFvf57H9uyAe/eA4t4+wpvaymn1JVSx9ZxC3vp7OF0/1Y/2hMpkfacvbP51h65e+vLvwNINc5Fj6/tRqfn7dk+fnnuSpKQ5sjJHFAu8aYc07ywr5/eNBPDb7FOMCLTT8iyx61J47vinkk/sc2JQoz3TvDFXxyY6LbJ4byiPvpjFhmBxbPVMKn7wWyoSHtvP5G0N5+eM4qi81M/fTyTxwhw8GBh3ubZ0D/u9Cbx1w504yt7S0iudf/J70jDMsXfQ64eGDu3P/JAecl3eGkRF3s2H9fCIiwjTc3jtgqSmDvftSiRzlx9mzsiNxczQg6kgOE8b6kZB4kn7u9ggDFXZ2Ft0H+JMc8Lnqas4VyLv59HF24Vh8LJGjxzLrrVdJiY3h6xXr6Oc1CAA9LSEPnQPu2QFfrq0lOqWCcWF2JB6vxt3JFHVLM2dLLhPqY8GBoxWMDLQmv1B2SC4Oxhw5Vs3YUGsSsy7hZiVfo2fPNxAySMXB5GpG+JhRUCo7Khd7Y2IzLjImyJLkzIu42svX/tkLDYQMNONQchXh3ioKSmX7XOwMic2uYUygBUm5dbg7tPEbCbRWcyirnuEDTSiskDcLcbYxIKXVgrFDbdrtBzhfryJkiB3rt59m7tIMrCyNmPXRzfh5a5Fk/ps44BtdDa1XsLe34te17/Pxh49y570f8PyM71m0eDtrfznA71tj2X8ghcrKa9lcofeIi0umqamJ1NRMmpt7tXFzJzz/4jyGh3vz3ocrOHX6HKdOn2POjzsZHjaQfzyzECtLJRs2H2XL1oQ/wfqesf6nHyjJP0NJ/hmWzvqMPs7O3DM8iKqKClbui2l3vjpcO+auPMWwIdY8/c9jWKoM2Lz/HHtiy7BUKXjmk+OE+Vny8U95nC6+zOniy3y65AxhvhY8+3k2VioFe45WsiW6HEszBc/NzmOojzmzfyniTEkDZ0oa+GxlAUMHm/PcnJOYm+qzJbaSLbGVWCoVPP/daUI8zfjsl2LOXmjg7IUGPl9XzNCBZry1pABLM31+j6vi97gqLM30+XhTGaH9TfhiSzlnypo5U9bMl1vKGeprwTMfZ2BpbsDmA+fZfOA8FuaG3PX0Xt78KgF9fT2enTaYC6Xdf5j+TvjvWK36D+HeeyIZHenPnLkbSTiaQ119A7W1l4mNy+T116by5hvTrvsxp0+/h8BAXyJG3YO39wAmTBh13Y/xV6KqrJTs1GT2blxH6IgIPl+88poW+f4boVZLZGTLs2alqSFmJmqUpgYoTQ3bF2R0uHbsP1LM3ugi5n08kqyTVTf8dXI9cEOHIGprL/PTou0UFZdTUlJBybkKhoV588G70zAzM+lVuOLSpTrcB0wjPW0Zzs72nT+8TjHgI0cSmf7Iy5zIOYRCobjmEMS+A6lEjPAlv6AUgH7ORjQ2tmBmZkx9fSOGhgpQqFAotJzvnxCCOF9UyKZf13Jwy0bOFxYw8qZbGHvH3YwdN1HruH9mCCL+SAxRB/Zz/lwJ50tKKDuXg5GRAc8/cwv33h0hL0x2CEGo1WoORedw6nQZ4UF2DB7kgJ6eHpIkEZ+Yz7qNCazfmoXS1ABjIwV19c3U1jVSWl7PuAg39v16f/tYrQ21pGdX4OJoBkBhSS1+Ay2ITb5AiJ8d58rkNLO+dqYkpRUQ5m9HxolqnPvIj+RFJRfx8bQgLq2CYB8rzpfJj9125mpiU6sYE2ZL4vEqOQTR3Ez+ucuE+Fhy8GgFwwOsKCiSn9pcHIyJO1bN6FBrkrIu4mypQE+I9hDEodQqwgeZUVjWFlIwIi7zEqMDLUnMrMLdXi5iaQ9BpFQxzMuMIg3f2c6QuOxaRgdakJxbh5smBJF/oZEAazWHs+sYNsCEokr5fnG2ViC8XLE0N6S+oRUDfZi7+gwLNxazYcFEvPtbojRV0NSkxsC8L4aGWq7bv0kI4sZywP/P3nkHRHVtbf83jQEGht47dhHBggVUVMTejTFRE41ppliiMdFooikaW9RoTGKi1xhTLYm9USwoAgqIBmxI7x0GZigzzPfHQZAwvjH3Nfe++e5d/yhn1uyz9zln1ll7rWc9q/ZIq2Nf7TzF17vP8PS0oTg72eDgYMnuPWeIuvQbX2ybx8gRBtAGDxjl9PR8Zs1ZTztvZ3bvWtJW1xDmV/IQ8P9DMJ0Ar83/jNR7efy6/z1MTf9cG7qigkIGD1/Olg0v8OM+AViyfNmMtqgOmWHjhzbiT52v1Ve1Om5fjyExKYvM7FIqKjVEx6Zy604BE8d0Z9rkXgwZ2LElefKwF57EvO0xQ9f2Yd9vNIxrPXw8kZfmf8uLswbh6mKFk6MFzk525BdUsHn7ae6lF7Lw1RG8MHsoRcVV7Pk+im9/jMLKUoGvjxsxV1IpLaumT6923Lydi6mJnGkTOjNtoi9dOra8jHXVOSzfEINOp2ft0v7Nx0vy8pm64BKhQQJ+OuxSAd+s7smYuZdYt9iX/aeFJNkTw13Z/v0dvljRldnv3mBYUyXZ7XtVfPCSN2MXX+fj17w5GCkkySb3t+SdnZkcWd2VORvuEtLDEoUUjsSUs3OBFxM+vMuaZ105eLkMELUkyVZ14vnN9xjnr6CmTk/Eb9XsfNmViRsyWDPdkYMxggGb1MeCFT8VcGiJJ+99n0snRwFOePaWhh3P2rNoXwkvDLbk16sC3GxiLzPe+6WEY5v8ee7j2wzrLeBlw6+Ws2ddL8a82pQUPCO0Ynwi1JEhwZ0wMZZSV6/j1fcu89udCn7ZMQxXR0Wreyg1NZC3APTatuG6h8XM0RuAh0lk5BbU8NudMpJvl3H7Xjn+PnY8Oa4jdjYmv/v6Q7D9BkTq9cV/DfB9eX3hl9TXa/li+0IkkpYf75mweOa+vpX+fbuweeNc7O0faBsnkqDX6/nH7lMsXb6TpW89xcL5k1t9v1kekwEuL1fx+oLtxCfcZe83bxHQ+9Er0WisawtDM7dou337XxhgvV5Pfn4pySmZJCdn8FtyBjd+S+e35AxcnCzo4eeGt6cdVpam+HR2IXRoV4ykf8KA/gUG+ExEMmOf3MrKpeOYOLYH7q42mJsbg6ilP+fVhDQ+2XaK46evYWJsxPQnA5k1YyD+3T2bdQoKK4iJS8Xbyx5fHzdEtZltzqWrzmHcnOPIpGK+XBOMva3wDDSoSimrrMO8yRtXqRuwNIXC0lrsreXUaIQ1Kkwk5OeX42Ajp6yqoRn2VVWqwVopo6isHjurFtiXibZBgH1ZyihXaTEzEdOoaaC6thErMylFFQ3YWUhRN9moZphYk75pQy0gatKXUFSpxU7ZGiZWXKXD3kJKSV41ZsZNsLLaRqwUEopr9QKsrL5J30hEsUqHaw8XylUNmJnch63psHW3bobFPbheIwt7cgrUPL3wPG5OCnauCcTMvK3z8bgNcEGxmnkrozkbk4+JsZSuHa3o1tGa9p6WXE4o4MTZTPr3dOLpCR2ZPrGjgNH/rwH+YzFkgG/eyubl17ZTpaplyydzGRzs1/xZTU0tqz7cyzffhvHkE4OYOX0o/fp2obCoihfnbiInp5i93yylWzev35+qRR6TAb4v+/afZ94bn/PKS2NZ8c50wyGD38nYCcv5dtcbzJ33OcNDhBJfpYWSJ6cGt1b8Jw1wXl4J059Zw2/JGXTz8aSbjxc+XT3w7eaFn187zKVFhr/YaGDb9y80wBcu3WHPD9Fk55SRnVtGVk4ZMpkEd1dbVr/3BONGt5RDl5SqsbAwebQCHU1Gm0O66hxq1A2s2nyF73+9w+q3+jJ7amfWbL5IcB8HDkcInu6EEFc+3XOTre/4sWBNEiH9BC86IqaITxa155nl11n1SgeOnheu6YT+Vrz3dTp7V3XljS13GdpL8CxjrpXz4XPuPLvuLiufdePo5XIs5SKCfMz58Idc9iz2ZvHOLIb4KUEk4mxSFZ+86MGsjam8N8OVqIRSKmoaGdvTnA8OFrHnVTdW7isgoL3w7J5LrmHDM47M/jyHFSMtOH5deHZH+5qy+ng5u19yYslPxQzuIniK525qWD/NjiVHq5g/xYWj0UK14LhAG/ZElrJ6XicWrk9haB+hEXVkXClzn/Fl1psXmfdsFxa/4INIJEJkwMl5nAY4MjqP2UvOM2dqR+bN8cfWum0PWHVtI0fC0vnw0zg+WNyPJ8a0/7ca4L91Eq5LZzfOh3/MgV/jmP3CJ7i62DLj6SFMnTIIW1sLNqx9kdfmjuP7HyN57oVP0Op0VFfX8sKcURzct/LRSpcfozw5NZigQB/GTVpJxw4uTH966B9+Z9hQvyYOhx4E9O4AgLbxT0Dx/gc5E3aVWXPW89or44k4s8HwLuCxtax8vDIoqCMd2zsQfjaF7NxysnJKSbqRQ/y1TC5cutXKANvaGngB/ElRmMrYsDyQjl6WvPj2Oaws5HTraImXq4JBAYKh9XJV0NfPqolDwJ6ePi07L6VCwrC+tng5mzCgh2Bo3RyNCQmwwtxUwtBeVvTsLMxTrNVibiohpIclng7GDOimRKLT4mlvxFB/JWbGEoZ0V9KjnaJ5J2RuIibE3wJPBzkqd2MaGsHDzoiQbmaYGYvp38kUX/cWg2RuLCGkmxlu1lIC2wmeqYeNjCGdTTCTixjcxQR/9xaP1dxETL+u5ng6yRngK5QcezrJ6dFJiblCytA+NvTqaoFerycyroRn34ziH2sHMCzI+X997R9FDpxMZ9FHMexeP4iQIBdEUiODehVVdWTmVFFXp+NWqgEY4r9Y/tYecLOI5dTXN3AmLJ4ffjrLiVNXCAr0YcWyp+nfT8D86vV6rsbfwchIjp9fu0c76WP2gO/Lqg/2otXq+OiD2c3HamvrkctllJermuPEanUt5goJn31xnBlPBZN4TajaDgzyQ6NpwM7OokVfNgxj47ZbvNrqk0ilEsrKqrCzs6S8XIWJiRF6PVjbT+LE0TV08/HE2lqJRiNsXU1M5M36ZbnJKBTypvnUYWWloLhEhZVSQm2tkHQxMZFRVq5umo8aU1OjJv16rKxMKS7TY21thkZT36RvREN9fXNpdbP8yRjwsZNJLF6+jzupQpItoKcnT08NZNb0AVhbm/3xuIbkIR5weWUdKzbEcPhMBmuX9mPGpI7UVpTw04lM/Jo4B5JulzN1mANf7stg2kgXkm4LMVe/Thb8cjqd2eNd2B9WSPcOgqH97WY5k4fY89WhPJ4MsScptRqAbo5SDlwokvUoGQAAIABJREFU48UxDhy4UIqvlyn6Wi03MjVMCbJi5+linhhgzY1MDYhEdPcyZX9UKS+OtOfgxTJ8bEUgghtZdUzpq2RnZDlT+ppzI0vYtXT3MOFATCUvDLXilwsldHES7sNvOfVM7qnguyvVjOthzo0cQd/XVc7Bqypemd2BA+dL8PUWru2NtGqenODFVwezmDbCmdjr5XyxL4vSynp+3hZCB6/W3u1f6QF/8X0KV6+XsGudgDL6vQHOylWx4ctEfjqaytSx7XlybAcG9nFGKhX/1wN+ZDFElAIgtcRIAmNHdmfsyO5UV2vYd/ASk55Yyapl45n7/GBEQEA3UwHZoE5tO0bjQ27u70Vs+M1qsJBDbNhYd2xnw69HYkHbQqtxLjKRPr3bt6Gj/HLTNA4fiaJ/T3siIgTSGmtlI0tW7OOX719n7sJvGT7UB5lxOLOeCWlzriOHzuHuZtuKjnJMaGfUmnrq67X4d5Qxedpy1q6awuljYahqGpg0wot3NsRy4PPhrNwQRbcOgicXEVPI1uU9eXrxZT56w5dD4QIz1IQQF9799AY/bQpi3kfxDOsvJKXCLxew7d1ePLXoMh+94c/hMAHpMSHUjfwSLVNG/Q/hnwfEEDmMSCJhZE8YeXIsRaUaLicUcim+kB1fH+etd39k8fO+fPhGTwB09YZfjo0GSGsaH/jhl1c1EH2tnIvxxewPK2RcsB2xe3phZQ6a3DtU3Cvl2LFMarIEj/Ds9SqGeOs5eiaLns4QES1UkpnWWXMpppiJPqacjMintkTAvqbk1DHMT8nxqBJ6tzPlXJygrwy05kRcBU+H2nMmvpKGRjCRigi7rmJUkC0nE6vo42vBhZvVgAgLCxkn4yuZHurAmWtVGA13RVOrIzJTw7hpzpy+U0hgiBXRxULow6arBafvFPHMcw5c19aDiXB/z5UWMrlPd65duEGgVyfiUoX75ezlRvivibzq5UfkV5FIHIQkYuTtGp6078nJuDvUGenZ/OVNXF0s+GzjeNr5OGNk3Nq8NGra/n4NIhgwXNAikhg2V7X1erLya0lMKUNs1DrskJFdxdrP4zlwPJUXnvYhJWJ6cwxfOJEekagtykYkfjy7zD+Sv5cHrNpt+EOppcHD927fpO/QNcSdXY63l8BJ+lBmq3+hAc7Lr8S//5sc2b+Ufn1aWtkVFlZgb2/RkmxTGFOYl4mjgyWlpdUolYKHq6puwNrajMKiSuztlNTU1CEyskGhaOsB6xo0VFaqsbY2bxm/soC4+AymP/81SdErcbC3oLS0GkWd0B9VVdPQXLNvKatplVwpKqvDwcaYsqp6lIr7ySeBo6CwrA57a2NqNNomfSlFZXU42ptRWlHXol/TgJ294XtmSB5mgFutU9fIko/j2PnzLbzczNm8vC9BPe0xMpI8sgEuragn6moRlxLLuJhYRlqOmgAfSwb4WzA6yBafdmat9e+WYm4ipqauiTNBLqakQYSDdetkW7VGh6WU5uTZ/WSbmZW8mZOhlf6DHA6WTck5nQ6FsaQ52dZ6fIHD4f74dUpl0/WXUFxWj72NnJIyNUozwYCp1Lqm5F8dTs52be6vs7NVm/tlbSmnrM4Ee1tTapqyfwpTGQdO5bJ26yXEYlj/3nAG9vNAVV2HtWXb34MhA6w3hGDg0QxwQ4OO3ftvsXpbPH38HfhgcT+6dhQoTdOyKvn4s3gOnb7HyzO6sfCFppjwo7I/PsQAi923/gcn4ZoM8MHDV/n2h0s8MTGA8aP9sbB5SJypoZT1W04Sce4Wp35dKMTL/g8YYEQSDh2JY+Fbu4mOXI2zszUaTR29gt5my/rZ/LjvEgBPTQ1i+cq9HD8wn2mzdzBymMBZdPdeMWtWTWHI6PVsWfc0P+6PxURhzudbf9+GD44fv8yGLYf5+dtFDBm1ii3rZ/PLrxf4fn8sC18ZxsEjCZw9/ibTZu9g4lBb1Botpy9k8+PWYQybcZSNS3z58XgWAFNHuPL2xuuc/HoQr3+UQN/uQtIlLLqAvev7sejjazw3xZt9J5v0R7rz1oZrnN4dwsw3LzE8SOBnPXMpn2O7RmFq8mgbsEcxwI2NelZvT+ROWiXZ+dVk59eQX6zBzsoYNycT3JxMcXM0bfWvkbiBhJRK4m6UczGhlOwCDX19LRnQ05oBPazo0dkCI5kYfYPhZ2PFhmQG+ZhzsMnTnRxozfaTxexY3J456+4S0qtp5xBfwc75nkx4/w5rnnNr5liYNsyet3dkcGRN11b6cTdVfDrPm/HvpLDmRU8OXijBXillgK+S5bsehKdZAKJmDofxy1NY84IHl9LqKSyt54lQR5ZuucWJ7X2Yv/YGAU0x6fDYEr750JcxryewaWlPfjzR+v6e2TOcmYujGD5A+F2duZjHd58MZNbSWN5+LYCfDt+mtFxDTn41d9Iq2PLRKPbuT2JUiJCjOBWZytlfnmmD1HlcBrihQcfPR1P5cOtVvNyUfPRWfwL8HJqfg01fJbL+ywReecaXBc/7YW35gGPyXwP8z8mDBriqSsOyVQf4YudZZDIJw4f5M3VyIOPH9MHS8gGcYUMpDQ1afPutYuv6pxke4vN/xgADbNh8mE1bj/LNV68zItSfM+HXCB7oQ0amsFX0cLfjwvk4Qof6EHslrdmLz8wup3dPL8Iikwke0ImMzBLEcms6tG/7IqqqqCDlVg59Azpw6kwixSVVrPzoJwb278BXW5/lwqU7hA7tSuyVNNzNchCJRKRlV9HX356wizn072xEZr7gQbo7mXIxoYSQfvZcTSnH07mJrjC3hj6+1py7UkJgD1syc4UttruzgovxxQwb4ELc9VK8XAUPMj2nmsAAA8UoD5FHMcCGdLXaRvKK1GRklZKdryY7X01OgZrsAuH/1eoGenS2IMDXiiB/a/w7WyCm7bkeZoCvx+Tj7Sgn636Bg60RsZl1DPa34OrtajwdhR9+RkEtvdzlnL1eRVDXFo4FdzdTopObOBYe0M8sqKVXJzPOJlYS5Kskq7AOdI242cuJTq5iiL8FV+9U4+nQNH5TAcXZa5UEdVOSqxOeRXdHEy5dKxc4GW6U4eksbM/T8zQE+CiJjCtjcH+PNvd3eLAHcddL8HK9T1+pok93Ww6dLyOvsIYfD98mPauSd+b1waerB6GD2xEbn4O3hxALT8ssp1+vts/i/9YAq+v0/OPnm2zZdR0PV3PeXdCbIf1dmo1lfmENsxaFo9E0sPfT4Xi6KQ0M/F8D/E+JoRBEdMxdXpq/h5u38/Hr7knqvXwGBnVl4rg+DAjsQicvY6qqamnnt4zEi+/h7mbzf8oAA5y78Bsz52xlaHA3tn4yhzUbfmXwQB/hs6hk3lsSyrwlP7B00Wgizt0EYNiQbnz8yXG2bZzBB2uPMHhgJ6RyK4aH9mhzqsjIeJwcLXl1wU4KiiqorFIz76UhdPdx4fylO7z39rjm8S+cCaOuXsfQQBfWf5nIpysHsGVHLN07CYmSqPgSlr3UhUXrrrFkTmfOxgkviiF97dm46xab3unJmi9TmlEBF64U8c7crixam8SSF7pyNqZA0O/nSG6xlmED/oAitEn+WQN8X/7ZGHDzmA8xwKr0MtbuzyOoq2CoLqWoeOsZD97+KoOFT7hwPklIwgX7WbD7aB7Lprmw4UAeA3wE/Rs5dbw83om3d6S30d9yIJd1L3ux/sccBvgqkYngbFIlb01zEcaf4sz565WAiODuSrYczGPdS56s/zmXYYNdaNDpiYovY+nz7Xjzk5u8McON8/FC1n9wb2s27c1gw6JO7Pi1CL9Ogmd8//6u/vo2z0/twNmYAiqq6lHXatl94B71DXqcHRRMGd2eHt3siY7PZ+VbI5j3zgmWzh9IxIU0AEIGeePpao5c/scx4EcxwMWlGj7fm8KOH1MYGODM4pf86dujhcBHJJZQpaqn34R9TBnVnpVv9EEqfQjNzf8xA/y3SsJt/uw0L88J5sSZGwQHdUIsFvPF5mc5HnaLz3ec4pWXRlDfoOXI8St8sGYfFZXVuLva4NPFGRMTI2Li7iERN+LpYcv5i3cYP9qPiPO38Pa0Ra+rJz2zjJDgjhw5eYPgoPZkZJaha2yknZct5y+lMn6UL5FRd/HyFLbeaRklhAR35siJJIIHdeNemlDJ1M7LjvOXbjNuTH8izyXj7SU8LGnphYQM8eX4qasMCOzMvfRCjI2NOHP0XZ6cuYnRk9YQPKBrc2WZtZUAM3J0EAygwrTF+Ds6Kpt1ZFIJYomIk6fjCRnSnSPH4gge2I17aflkZZfw2sKdVFTWsH3LC9y+k0uv7g6IRCKsrQQP9v74MqkIiUQKej2Odqag12NkJELW9DBbKYWYoKONHERg2gTIRw8OtsbQCNYWRsgkwvNpbSHM19HWGNA/EHLQk56jor5eR+TlPLzcBIOUkVPNkH5OHI3IYlAfR+5lCUnKdq6mnI8rZNxQNyJj8vFyNUdhZoSbU+uY7L9apBIRIf4WuNoI6zQ2EmMkEzE+yAYbpZSATsL8bJRShvhZYCQVMayHBa62gr5CaYSR1LD++CAbjKQiQntb4monR6TTIZVYNOlbY6OU0rujGSKRqEnfWtDvaYGnqwl6vQgTuRgjmZiJQx2wsTQioJtwn60tZUwY4oCRTEygvy0uDoJnbGIswUgmZnAfR45F5vDT8QwycqoZOciZF6a15+15A7l6vQj3JmJ3C6UcuVzKE+N8sLU2pV9vVwBsrU2RSB4Pz1f4xRymL4hkyigvzu+bREdvw7mD55dEMLi/Kx8u6fdYzvuvkr+VB9ylgxW5+dWMCHbDxkpOn+72tPNU0lBZjL2NMXNWJFJRreXduR3x7aDETGnOt4fSeW5KO3IK1Hi5mqHXa0nPEbbM4dGFDOxtR1a+GrFcgYeLggtxhYQOcCYuqZgO7YWYZVpWJX17OHLmQhbBfZ3JzBXgQh4u5pyPzWX4IHeuXMtv7jiQllVF3x4OhEdlMqC34wP6ZpyPzWd4sDux1wrxbtoipWVX0cfPkRffPsvJc5l8vXYIHbws8XAx58LVQoYHexCbUIC3h/ADSk8rpnd3O85E5RDc14nM3Gp0GhXuzgqirhYxLNCxectfWaUm6OlIzu8dQla+moG97LiXLGS33RyMuXS9kqG9LLl6S4VjeRkikYjM0gZ6ecg5d1vDwCEu5JS0cAhcSlYx1F9JQkYtHg4tW+zencw4H19G387mZBfXtdIfMdqLK8mVeD2wBe7rZ0t4TDEDe9qQlS94ou5OxkQllDGsn10rGsOsPDW9fCxb6ZsY6XF1aAu0N/Q8N9YappPU1xsIN9Qbamn0GDohGDBIIiPD/o/YxAA+/U8YNLGk7fdl5jYGdY2sW3OYZOVUMmPeaYyMJCx+fTjDhnQVuEYATDzbDmCIvhNAk97mkF7Ttp/aw1AQIrFQsRowZh/LXu/FlNHtDaIVQIgNdx38DZtXDWbEYGGOD6MFfWR5CC+J2HXLf64H/MmKAaz/4ip9/e3ZvPMGkZfyKCmvpaKqDg8nU4rL67A0lzF/zQ3GBjvw9Lj2HDidzYtPdmDFliSGBzlhbirmYFgOe9f3462NSWxY4se+k9mIpTKmjvHmzTWxhO0dxfKN8Uwd1wlVdQOnz2fy0/ZRLHr/AlveD+bHQ7cBmDa+I4vev0Dkz1PYvucGXdoLMbDT57P48bMRbNl1ncZGPT8fFWBvT45tz5urownrass762IZEezWpJ/Nj9uGE3etkKfGdWDOkkhGD/Hg6QkdefeTWPx97Fj28cXmh+vuvRLcXfrw5upoPlkRyM9HU5GgZVKoG0vWJ3J619Dm9Zoai7GyMOKDz1O4ea+K9Uv8OH4mD5W6kSmD7Xjny3sc3dCdVbsyGOUtQdOgb+YEeO9wGeudLfn5vLB1nDzAmuW7szjyQWc27csloKlwICK+gn+83YHdp4vRNcLBqLJW+j37ubBy+22G9Rdi2OGXi9m7zpylm5JZt9iH/aeFbrRPjnBm6aZkTnwZyHvbbjIsUNC/nVbNRwu6ttLv6G7ComcfEc/9NxflwMh/y3kjz9/6t5z39/LkK6ceSW/kjF/+6XM0Zs3/p7/7v5G/lQesTX+VgoJKHOxMKauoxVwhbOVy0zIor2rganIFhaW1FJTWseqVTljaWFFUWoeDrXFzzb6+UdsCm3qgZl9ibIbCVEpRaS0OtiaUVdRhZSMY1GZYVrEae1uTVjCcohINDnamlJbWYG4ma6VfUFiFvY0JNeomWJaplKJSDQ72Zk3zb9G3sTKlsFiNnY0xw2ceIbivMyvmB1BU3oCjvYKy8trm8SvLqlq1dqlRa9GqK5vGb73eRm0DB8Ny2PbdXX7ZFoS9tZzyrHwQiVq1pimvakCWJhy/zwlQpNLh3M2+bWsaSxkVtXrMHoBZWZnLmlrZSNvou3R1pKyyHvOm1jSqGi22NgoKS+uw/x2HwP1WPL/XF+5Xi75Yr8PEuG2c7v9HD/jfZYD/k6SNAf6vB9xWnnr9NJ+tCiRk+jFWLwng0JkMAMYFmrFi2y1+WNeLBWt/I6SvLQfD8rly8y5rFvkT+lwEHy3043BEDhZmEoL72DcVDgQy861YhvV3QCSTE34pj89W9WfYzJOsfrMXUQfTKauoY/KodixbG83Br8bw3OJwBgQIoYmwC1l8vmYIQ548yLpl/TlwQqhUmzTCm3fWXWb/9lCenh9O6AAhNhZ2MYftHwzkqdfOsPCF7vx6StimTRrpxderL7NxRRBPzztD6EB31nx2laMRGZz4dhJDntjPx8sG8MtJwZOeMtydJ149w4HPhzeP31ivITy6gK3v9m61XnNTMT8cy0IqEWK5z7wdS4ifKTodRMaXs2l+e8a8eZ1Vz3sSHllJdZ1e4AT4poh/zLZn6a4sfDyEUMDZpEo+edmTce/eYtUcD45cKmu6/ta8/80d9izxZs4n9xjiZ9FKf9Qrsbz/WieOnBUq1sYPceDdz+6yemFXnl0WT0g/wdONSSpn9YKujHwpmg/mdeFwpMCuNSnEielLrvLDht7N+g5WMkYO+B196P/nUhU97JH0/tkQxBffxHMtuZAd218zPPC/MAQRGZ3H6++eJzliRjMH8/8UggAImvATH70VyJAg90cOQYjdtz6S3l8lfysDnHy7DL1ez4hBrni7KwnuKxhCdycdof3tMFdICelrS6+uQqDeyMQEpULG8CAnvFzNGNTbHom4ES8XBaGBjpibShnW34FePlaI5QpEiFCaGTF8oAtebuao66U0aPV4u1swItgDc4WM4H7O9OzW8sNXmhkxItgDDxdzgvsJ0BtvdyUjgt0xN5MROsCV3t0f1JfRv5cD3m7KFn03JT197TBXyAgd6E5Ad3s8XMxYsTGWMc8ewt/HHrFYRCdvK0QiEIn09PGzR6drbB5fp1GhhzbrjblWiNxIzNQRbk0cBQ74ueibk8HmphKG9bbC09EYf3c5jY0PcAIYi+nZXtFsgKGJc6CHBR72D3ACOBoT0ssSc2MJQ/ws6Nle0Up/WH87vJxNGNhLAMl7OZvQo4uFcL/62dGz6X5JJCKUZlKGBdrh6WLKwF6C0fBwNmFYoF0rfcVDWvv9V/558XK35JcTt//d0wDA292C6poGfj56l6cndPxD/fp6HUkpxfT2c/wXzO7xyd+qJVFhiZovv0/hjed9OXE2CxcHBS4OCiIuFzN/uhdf/JzB6IEO5JfUkl9Sy8iBTnz+wx0WzurEyQt5uDiYYGct52RUAQuf7cDnP6YyJtiJgmIN+UU1jB3qyva9Kbwxx4cTZ7NxsDPBxVHB8cgMFr/Ug23fJDFmiCf5RTXkF9UwPtSLbd8ksfilHoRHZeHqqMDVUcHxyEwWvejPju9TGBfi0aw/LsSDz779jVdm+nDibGaz/omzmbw83Ydt39xg/DBhfEulnIsHJtPBy5Lo+DzGzjrMqk0xvLfxMmPnnGLfsXt4D/qBO+kVpGdXkV9cw9jBLq3W62RnzP5TOQQH2Ldab2FpHQVl9YzqZ82OQ7m8/oQLp2PLcFCKcbKUEH6zhleCleyMqmSIvzkF5fUUlNczqo8lX50o4rXxDoQnlONsK8PZVsaZK+W8PsmJvRFFjOpj2UZ//tMenIouxtlOjrOdnFPRxcyZ7MEXP6UzeqAjBSW1FJTUMiLQni9+SmfBDG9OXSzExd4YF3tjImKKWTDDu5V+eq6a0sp6vj6YiVbbyP4zedxKr+ZWuooDYflotY3sPCjwEtzJ/M9ue/Oo4u1hSVrmv5+gBsDLXcnJveNZ/OFF9hy4aTC09KDcvFuGRCIi4mIWdXX/uwScTteIqrr+D8/5OORv5QFrtY1cv1lMZbmKU2cz0NYL25fkLBGTLbw4HfcbQ0JsuXxb2BY5tbfixKVE/HpJ+OZwLmKFLcamlkQkFDF1ui8nL18jONSdizerQFuGrZ0Vx8/lMWd6D8IuFWIkE1Nb10jYpVzGDLLnyOlU+voqCb8gVA6ZG+s4cjqVmePcuXw1h2qVgHYIv5TPmAE2XLqajX9HEyIuCHSFZrJ6jpy5x7QQS06cuUNdlTDPiJgiQjrUcfhYCj0cazgdVQKAXGVLwe1sfp1tz5J9dQzuLKAObmWqWRisYOZ3dcRF3GLHnhv0tNLzXHsR+27pCfjtOvuv6zkt01NfIeJedDq3Jfn8Gq6h3b1UonJ11Gr14CXjSGwdI+tKOB5VC/0sqdPC+du1jPRRcCZZQ/9eGqISBXyqUgqnYst4ur8Fl65X0dDEF3v2WiWjAyxJyq7H3xcu3hFQDdYOCk4nVjGzpJozUQVo1cL9iowvZ3SQNcfP5xHQVcG5WAFPbGEq5vj5fKaPcuTMpUK0DcIP6bdUFaH9bDh+oYC+3ZScjyvGzESEwljEwbA8Jg2148jZfKpr6pGJ4fTlUob0VHIwLA/fdibkFNbSybstI5rIxID/YQiB8DAxFNcVG/5J/RlugYdxHkhNWhPXiKWG52oIWyuRKwxogr6+hY/E3V5MTn4V2oY6w1SptQa6ttTmGRy3UZ3f5pihxqSGcNv3pbObjONfhzBrSRTfH0xhy4p+dPJuS94jkkjo6Cpl7VsBbN4Rx/OLT/Pmi9158yW/NtV4YqkROl0jyXfKiEls6ZTiHbibanUD1TUN1Dc0YiQT49PJhrdfDWDSqHaPDVbXZu5/pySco60J534YgamxBHsb4+bklpWTM0UlahzsFJSWaVCaC8m5yhoxX3+fyKYvY5FKxWxbM4KRw/xQKIwoKq7Gwd6c0rIalObG6NV5bZJtlWWCN/Bgcq60vBalmTD+/Rr5whINdhaS3yXbarGzlLSuqVc3YG0hJz+/Enub1oTdeWmFTcmnBswVkiZ9HYqsQoqqtK0Iso01tZTUNGJnJqFM3UhKQQMrfi1Drwd7E6iqB20jZNXA2sFyQj2llGr02JqKKa/Vo5QDiKhpAEtjESXqRmxMRIi9rBEhwtRIRHF1I/bmEipNTVE24Xera3UCIXhlAw7OijbJNkdXszbzN0Q4rjAWU1IL9tZySivrUTYl26o1Anb49wTfZqbS5uTcff1GbT0qTWMzp4GdVZO+rlHgQChvwN7aiNLKBizNpEgkf0H/sX+RAVb0OgyAOnFKq+N/xgDLFFYGdcWy1rEcj37/4MKppXh62BpQNhD3+QsN8H1paGjk8+9v8f62axz7OpSgXq27KP++KCcjR8XEl8MYO9SDySO9SMuqIj27intZKu6mV5GQXIyzg4K+/g7s/UUIuaRGPYuZQobCVIqJsRTEUo6GpfH+phjUGi3H9kygvZflf3YSTqdr5PjZbL7+OZWNy3qx73gGAM8+1YN5757l7P6pTHvlOCOb4Fo7f0zGUinHUmnMa3N688xrh5n+RBZPTujOGyuOcfbQi0x74QdGhnRCX1/J6fNZ/LR9FEOnHWTzqkFEXEijsETDkw/A0+auuET/HkJM90xULt9vGUzoMyfZ/E5vfjwqJB6mjvZkydp4Tu0K5pkll1u1rNm7oT/Pv5fAwmfat2pZs2tfKpvmd+C5j24SEiD8WCKulPPFFAumbM/nw8k2/BoveNiTuxix/EQVB5+z5uV9FQxpLyfUCU7lwnBnEZ/f1PNMexHxpXqSihsxkepYE1PH3jEmLIysZZinjHqdngvZOrYOM2bGUQ0rAuXE3K6gUt3IxB4K3jtcxsFXnfjwlzw6uQied+T1KnbO82TCR6mse9mL/ecFT33yQBuW78rk2GY/nvvoVqv5717RpW3LnSF2fHu6iE8Wd2rVoicuuZJtS7sx+rXWLW6eGunMm5+kcOLzvsxacY3QfrYYG8HR80XNnAZrF3TkQFgBSlMJof1sWLbtLse39mT2yt9YMN2dEf0NGJT/ShvxclNyL73EsAH+N4lMJsbWSo6TnSndOhp+kTwonq7mhO0dw7TXwzlxLot27kq83Mzx62LD1LEd6drBiuqaBrLyqpsNsLWlHAtlywumoqqO+OtFZOepmDiyfZs2Ro9L/lYe8OI5PhSUqHl6nBeDAhzIaCpw6NDZiwuxOYQO8iA2IR9vD0u+/+Umm79OJDH8eeKvFxDc351tu66w5aurRB5+kYysckIHdyA2PhtvD2v0moLmgouwqCyC+7pwL60AvR48XBREXSlkWJAzcUlFeDUVUKRnq+jjZ0f4pTwG9rAhI6+p4MLZjKirhQztY0Pc9TK8XJs4E3Jq6NPdmoiLOQT1tCEzr6UG/1J0JoP8Lbl6U4WnU1OBQ34tvrpKzt3WENjehOxSAf7mJGkgJrOB4HZGJOQ04GEloeBaMblqEd2sIKYYetlAngbMbOU4K8RcKdAR5CIhqagRdwsxIhFkVenxtxdzMUdHH2cJFbbC9s7VSkpMWi3BHU1IqpbhYSd4/BlF9fRub8q5GyoG9LZu5jS4z1EQMsC+zfx7dzEnMr6cAd0tySoU4GBuDsbE3VUzqJcVV5Krmgs0MguaqWXLAAAgAElEQVTq6e1jQWRcKQN6WDdzFHg4mXIpsYyhfW2bCzQadQ1k5NU2cxoM6GElFHQ0NgoFJkkVDA2w5kpKFZ09Fc1e9mOV/w894LdWX8TEwpEPlo83oGzYA25o0LFlRzQ7v7vK919Opbe/62P1gK/fKmPUnDBOfzMS305t12GwLL0JMdHYqCf+txIuJxRyOb6AmGvFFJdqcHM2w93ZjMhoAZmhMJVhaiJFJIK6eh11dTqemtiJFfP7NhdAweOHof2tknDB/Rw4HJ4Nej0ffnadzJxqMnOq+XRXAoG9nVm06hzWlsZs/PIqKz+5zFcbR/PRlksE9nZh3WeX6dbZnrEjOtN/xOd4uFqyaMUxrC1NOHLqJkfD0rC2NGbxB1EE9nJi3RfxZOWpyMxRsfHr3+jfw44lH8dhqTTiWEQWxyKysLKQs+TjOPr3sGPbdzeb57NxZzL9/W15b+sNrC1kHD+fy/HzuVhbyHh7wzUCulmy6Zu7ZOapycxTs3nPXXp1NOOdL9KwNJdy8nIpJy+XYmkuZdWhUgI85WwLLyerrIGssgZ2xdTQ203GylNVWJiIOXOrlguFesyN9Gz6TU93az3fpOrJq9GTq2rk66R6etiL+TimHgs5nMtsICJDi6UcVl+uo6eDmK8S68kp05JVpuWzyEp6e8p573AZFqZiTiVUcSqhCiszCSu+yyOgo4LPDhWQVVRHVlEdn/6SR59O5qzendFm/u98kUbfrko2/5RNZkEtmQW1bPkpm15dzFi29Q5WSiknLhZz4mIxFmYSln16i76+lmzam0ZmnobMPA3bf86gb3crlm65iZVSxsmoIs5eKcPJVs6Gb9IJ9LfkmyO5lFU1UF6lZc+xfAL9LNnwbQZOtnLu5Tw6Wf5/ukwa2Y5fjl57ZP0L0en4D/mMyKh7LHoliNFPf8vFmIzHMpfaOh0XrxYybcF5Ni3vY9D4/pHsP5HG+OdPceteOWOGehD500Sqb73M7XMzCfthYrNeRfJLJJ58isSTT5F2cRblKa/wj0+GtzK+f4X8rUIQbrYSOnmZs2rrNZJuVXD8XDZL5nRCU11LXUUh2dmlbN0RzZ5f03hmohcuZlWUFhZTV5pOZUkRdeUwtr8xKclmjH5yBz26WFFbaE5NcRGN2no0JXpKikrRFGdSUVxCo9YUrbaRalUtjQ31lFfUAhLqtfd3DSIqqhoQiSRo63XotMLbvEZdj75RR12tlkZdI3V1wvFGXSPlVfXodQ2oquvRNggeraq6HsRiKquFGHJdQ8uuRG0kR+Zhh8a4HpFdE7tTvhaprTkqNEitFGiLRJh5iHDwlqOrqMaltwUSlQorLzlSMWir61B6mKO5UYnCxQwjExENWjDrbEptdhnKHg7ocksQWZsh0kNtvh6pkxUqUTVihZwGiZA8E5kYUVWvR6yQUycSo5cLHphaJ0JsLkeLCJFMQn2TgyCSSahU65CYKdDoxGAkeFAaXQ0iiRGV1Y0gktCgFfTFUhmVNY2IpTLUtXr0TaRFOh0gElNZrUMvElOn1WNro8DTw4ZlcwWo2qszWpiv+vcR/l32igBv83oIfhSDRNxtnZuHebWGwPoP9YAfQh5kUFckJiG5hJS75bg4tCTPDp4rR63RMmNiB4zl0ocm6wx52yLZQ7pxy6xb/dkvyJGyshNci43Cr6tdq890tS0ebGGJmqXr4jgfk8cny/sxcbgHIpEID5uBTHz2W64fG4vN7zmBG9t65obIjzLzanj+3Xiu3SyjSzsLXp3RiWmjPR5K3CPCwHqbro2jgxmebko+Xz1Y6Ev3kJ2I1EiOi8sD85X8NSGH38vfKgRxbs9g+vjZEB5dSFBPW5Ztus6xc/ksf6Ub3x5K4066ioEB9rw6oyNd21uSnlVFn+42hEcXMLC3PVl5NUAjbk4K5n8UT9z1Uj5e7EcvH2saG2rJyFUT0K2FcyCvXIwegVZRCEE4cfWmqoXDIUtFX387wi7mEuRrTtZ9Wr8mToZmGsCmEERGTg0BvtaEX8wi0M+KrIImDgRHE6LjCgju0TYE0dPNiMhEgWYwu0gwhE5aNdGpGoZ0MSU+vRYPWxm6ihqyyhrp6SbjXGod/T3l5FRoEYnAxULK5Yw6BreXk5DdgFcH4a2eWdJALy9jzqbUENjRlLw6KXoEWsXom9UM6W5OYnZdC+dDE+1hZGIlA/vaNs/HzcGYi0kVDAu040pKVSvOh4CuSs4mqhjQw7rVei8nlRPc27oVR0RmYUOr63+fI8LNQc7FhDJC+rWEIOTGRliaPxpi4WEA/v+rBjj2WgmTXg4jJNCZghIN52OF7by9jQkmxhKSTj6JmUL2lxhggM++PM27G6IZ2MeF56Z1ZUyIFzKZhOKCUm7cKuNyQiFbv/mNZ6d0ZMVr/pgpWt+HV1ZcxNJMwkeL/FsP/IgGeNt3d0m8VcX2VX1bj/2Q+2goFHO/JZGqup7QGUeRSkWMG+aJpYUJc2d2a9aTeHwGgD53UesBHmKARY6rH2sIQrJq1arHNdZfKu+///6qe9nVjBjoxKylsXTxVpJ0qwLQE5NUSm6Bmgs/DGf/qSxM5BKSbpaz/1QWwQEOPPv2ZTp5K/l63z1Ss6oRiUTs+TWd0cHOLN98HZlUTPKdCnYdzGR4kAPPLU+gk5cZR84WcOZSAeamUpasS2DycHfe2XiN0vJarqWU8tWPtxgZ7MYzb5yja3slO35OJTqxBHOFlCXrE5k0zIX5qxOprtGRdKuSnQfSGD7AkWWbf8PZ3phdv2RzOakCM1MJuw5lM9DPkje23EWl0XE9tZrdx/IJ8bfgxU9S6ehmwu5TRcTcVGFhpGf5vmLG9TTnzR+KqK7Tk5JdxzdxNYR0Mmbuz+V0tJeyJ05NWokWkRjeO17JOF8TlhyuQKuHa5l17LlQToivGS/vzKOjo5xDV1Wcv1GFmYmE5d/mML6vFZt+LSCvtIHraWp2ny4itJcVL25MpbOXgl1H8on5rQqFiYR3Pk9j4hB7Fm68TbVay/W7Kv5xOI/h/Wx5buUNOnuaNa23HDOFlN2HshnQw5oF65JRaXQk3VFx4EwewQF2zdd/58FMLieVYWEm5a3NKUwc6sSCtTeoVmspLm+gWwcDfK8G5PdQpAc+eCTdhxvwR9cVPaS09feSfLec8S+GsWvdIN6e68ezkzvw4bZEACwt5IR9Nw5He9P/cUyDLXYeYqwNGZqAbma8NtsPvV7PF9/eYPm6aLbuSmTDjiRSUssxNZHx6apApk/ogJGs7bn8ulgzd0U0Myd4tTagBpw9vQGj/Nn3qYwa7Epv398lAh9yHw2+cJqOyY0kzJnWBbFYxJ4Dt9HUapk8qoVD5IMtcQCsWty/9QBiwy/39zdGsWrVqvcNfvhPyN/KA845Nw4bK3krDgcAM3OTVhwOzRwLqrommFhtE+xLi17f2Nwqx95azmvvX+VeVjX7N/WivkHfinOgVi88nA/C0CrVomYOigdhaDYKXetWPKV12FlKBE4D0/utYAROg7y80lbzV5hIKMiuEGBoD7SaUal1WIob27SykZdVUqzSYa+UUl6jw8xYjK6shuo6PVamYoqrddgqxKjr9egBhZGoGbZWrm7EwsUcEFFd18T50ARz08gFL0khf4DzQQvmJm1b3zi4/A6GVt6Ag6Npm/lbK2UUqzDA+SBc/wc5H2rqRG04HwBM5aI2HBFiifThnK9tnp2/hwes1+vxGfELK17vwYwJ7ZuPyzrsAuC5qZ1QmMjQ6hoRi0XIZFJWzO/duuMD/3sPWF9b0OrvtEwBB+5mJ2kuC25RFp6Bm6kV/HAkle6drZk62ps33r8IwMZlvVp0H9ED7jTqJCf/MYwOnr97wT6CB6yp1XLoTCaHw7N4aYYPIUGuzZ/Nfy8KL3cLFr3Uwpv97/aA/1ZJuNRMFbOXxSKTipn5Viz7T2Wz/1Q2i9bEI5WKCZ0dzt1MFSs/TWLlp0nczVQR+lwEMpmImW9Gs+9kFkcic5m55DJSiYgRz59j5gQv8oo0DHr2Incyqhn5UjQyqYhnl8VzNDKHfSczmbn4UvP4dzIqeXfTVd7ddJU76ZWEzDiOTCpm0doE9p3MYt/JLGa+GY1UKmLW0lhSM1Ws2p7Mqu3JpGaqGPHCeaQSEbNWJHEgLJ8DYfnMWpGEVCZmzKIk7uVo+GBXBh/syuBejoYpq24hk4iYsyGVX6JK+SWqlHcPFCMVi5iwKZt7hfWsOVzC+vAq0kq0TNopfPbST+Ucuq7h9E0NL/1UjkQMk3YWk1aiZfOJUtYcKuZeYT0TNmYik4h44as8jsdV8Gt0Oc9/mo5UImL8+3dIy6vlw+9y+PC7HFLzNIxdnoJMIuL1jXc4GFnEwcgiZn94E6lExGtrb5KareaDr9L44Ks0UrPVjJ6XIFzP5dea1/vs8mtIxCJGvRJLaraa97+4y/tf3CU1q6bV9T9wJpcDZ3J585NkpBIRI+deJjWrhvc/v82ew1n/7sfxscuV6yVIxCKmjzfM8mZmKsPTzZyuHazwdley7Zvr1BkgFHrc4u1hgbeHRVvjCxSWaBg56yQjZp3k9IUcYhKFopolL3blh6Pp3M2o+lPnyivSUKPR0t6jbeHMH8nu/XfwHPgTe3+9S98eDsxcEMap8y3PyaWr+QT2dvrT4/6V8rdKwnm6KgjsYYu5qZSxg53p1hTLNDczQqmQMnm4G16uZoQ0deX1clEwOVTgQBg7xIVuHS3QNzYiEiHoh7rS3t2MdUv8WLE5iV/C85gY4oS5qZQxwY74drJEj0BUfX98b1dzQoLucziYMWWkF+YKKf39bejSTpiPiVzQH9DLFk9XBUP72jfPf1KoC0qFlDED7fBpb96kL0ZpImLCIFs8nOQMaeoN5uEkZ1SABWbGYkb1scTHU4glG9eoMTcWMb6nGZ62MoK7mKKtUuNhLWFcNxPMjGBkFzldHIzQI3gd5kYixnUzwcNaQoCxESJEeNpKGd9LiZlcxCg/M7p6miACjI1EmJuIGdfPEjd7OUP8mjgfHIyZEGiNmbGYwT2t6Opp2jx/c1MJI/pb49veDAdrYYdgb23ER6+1x9JcxrIX2mNvLSQ5+vhaYqWUsnp+Z7p4teg72itYs7CroP9iJ+ybiM77dLPESiljzfwudPE2x8FGjvHvW9r/fyD7j6czdbTXQ0Mmm98Lav5/2MUcArrb42RvuMLtr5T9x+/x7idXKSmvRV2rZcmL3Tnw+TBGzj5JpybCdAdbE957vTuz34rm3PfDkRkIVRiSy9dK6d3N6uFho4dIXFIxyzde4dyPY+nS3hKR1Ih+PR2Z8vJJpo3tgEgE97Kq6NnN7o8H+xfK3yoEsX2FPzPGuvLpd/d4doIHCSlCKW/PLkq+PZLFgpnt+P5YdjO5y7WbFTw1yoWt36fxzDg3Em9WIm6sp3sHc/Yez2PeU+78cLKAnl3M2Xs4h4vXKzn7qR+f/ZLHzOH2JBdqadDq6dlZyd5jecyb7s6+sFL8uwiGNiGlghlj3fj0u3vMmtSOhGShcq6njxXfHspk3lOufH88t5kcKD6lghljXdmxL50nhzuRcEvwDnp2VnLwTA5zJrg0zwcg4aaKp4fbs+3nbJ4Z7UTibaFstEd7BXtPFTBvqis/nC6kZ2dzEItIuKVi+kjHVvoymRjf3623V3dr0EN8SiUzxriw9YcMnh3rQtJdFY06PT26WLD3aA7zZ3hxMKIYn6ZYa0Ly/fWmMmuiNwkprde7+Pmuj16y+Ygx0Yc/D38irPBQFq2H40cflN9jZZuPSw28BB6WPZca8OgkrVtW+Q1Yy6qlo5g01q/1lKwEqkR9xXYAVKpahk/+jKee6MeCV4cbmJiBVlgPa8WlN9BuSatqewygoZzEG/mMmLaXg/+Yhk8nOyxN6xGLRZyLzuaZ+SdJPPMMttYmNGoFLoVxzx3Dv6stH73V3/CYD55W20jvMT/z7oIAnhjTloDnf4pj+wzawQdvBTNlbOemY8I1uJ5cwMmIO8iNJLTzsmbc6J6tx7QWQg/3r+0DJzN4KpHF3P/cEERETBGqGh3hl4vIyK0hKr6EqPgSsvLUhEcXo6rREhFTTEJKBQkpFURfK0NVoyXscjEZuWqi4ku5dltFep6G8NgyVGodkVfKOHelnN3HC7BRyqjW6Ai/Wk5Gfh2Jt6q4mFjepF+CSq3jUmJp8/gRMcI5w6OLycpTN88nI6eGsOgCVGotEbElxKdUEJ9SQURsCaoaLbHXK0jP0xAVX0ZUfBnpeRqu3VY1zyfhpoqEmyoir5RRrdYSEVdGRp6GqGsVRF2rIKuwlogr5YJ+fDkJt1Qk3q4m8qpw7EH9RAPrTbpVRXxKJZFxpcL8LxeTnqchPrmCqIQyMnLVhMUIc72aXE5CcgUJyRXC9VdrCb9cRGZeTZv11tU/Bt7c/2D58J0xvLJ4H8k32xYx3Be1up5xT32Jb1dn5s19NHrKxylffXuVRXP7M7CfB9ZWps1hiaAAZ4ICXPDo8zVff38dEBKauzaEsHvfTS7EtqWi1OkaqVK1kN58/UMytlbGrZJkjyppWRWMGtr2e919HHl7/iAWzg1i3Iguf3rcv1r+Vh5w9dXxFJfVYW9jTGlFC4eAqqb+D5M3pRX1KM2kNNZqUGlacxTkFtWy7NM7nE+sZHyQNW886YqFmRQLRzMQPchpUIejg4VhAnGV/gHOByHZll9QaZBw3N5K2ooDQVWjxcqUFs6EB/QLi2vbckSo6rFWGrXmWBCLWnEg3NcXicVt1qvWSprHLy6rx76JY8FCIQWRqBUBuoO9WZvkmYONMWVVujbrramjOQH6h/JfD7iNBwywau0JysrVbF33RMuUmjzgxvLPGDllO/fSi9m6biodO3rQvp1DmzH+Sg/4lSVH8e3iwKtzmsDWDUKC7kREGk/OPY5YLOLKienUVGu4dCWfczG5TfwpMg7tGttyWr2esbOPce5yDnrA1sqYqup6og5Owbez7Z9CcuiQI3P9GF3eOy2hCwPXVjje+v78GQ/41UU/8MWuC/+5XBDhl4v58uc0Pn/Pn1nLrjKsvxBbvZlWxZoFPoyeG92qxc3UUCfe2pzCic/7MWt5AqH97VAY6Tl0tohv3u/GmPkJrJ3fgQPhhZgZS1j/ihdLv0znyKUyZFIRr0/3QN8I4bElzZwDG5f48vMp4W3+xPCWFjortt2is5ewVQ+LLuDbdX155cMkXnvKi/1nhPk8EerM21tSOP5Zb2avSGrVoucfK7sybkFi83wApoQ48MFX99i/tjvPvZ9MSB8hY30vR83KOV6tOBakMjHjB9nxzvZUjm32b9Y3U8g4fK71es/EllNVo+OJ0P/H3lmHR3G1bfy3EncPngSHoMGKFy/FvcWdBHctbsWtCVqgUFooFKe4BHcJGgIESEKyUeLJynx/bNhks7OUvFDha+7r6lVy9pkzZ2Zn7332kfu4M2nFY478UIPe0+7Q9kt3UtPVnLgSw9a5lWnpd5WlEyvx65HXWddbmEnLgjiyrg7D592jZkUnvevddvA1EwaU+zsehf+38CzmxN37EXTtt5nmjcrQr0f2T3eVSkP5MgWwt7NgRcAZbt55zenDE6hUoejftj4zMzkZuXYNORn4kj6jj3Foazseh8RR4+sdFHS1ok71ArRsVIw5K68TFZ1KUnImNllCVmu33yc2Po23DwejVGmIiUtDIpFQ+H/YaFUqlVDAzZoXrxLwKpb3brkPgSI6kYBNgZ983s/KA4691IrLd+NoWN2Z6/fj8SikTUC8Ck/Gp7w9p65qC/hfRrwr4Dfl4u14fQ2BzDSthkA5W05fj6NuZW1DhCY1kyKu5lwKekv1sjaMWvWM80GJzBhcnJLFrKhZwY7T1+K0m2BGvNtE0oILt2NpXNOFW49TKFpQ+637ruHizOVwvqjkwMs32Q0IF2/H8WV1B4NNKquVstBbj3b95ly4HUejao7ceJiIR5b9q4hUqpbOpbEglWRvslnNQWcvkUp48Ub/el/HqLQNJu4WXLwTr20YefAWz4KWIEHXkHL6agz1qrvrNBmKFrDkwq1YGtdy4ebDRIoV0m8wCXmdTmmvD6vNzfeAEfXS9h2+R/seG2nbsgL7jwTx7PZ0ileZDRh6aT/vvsvcRQe5ETgDq5wK9X+hBzxv+TkeP41hm79Wl0KTkYBdmTXs2dCaZg08uHIzgu7D/+DsrvYUcteSac+Rx7l8M5LypR2xtzUjJVVJ4NUIAnd3pEwJccLMay3zN0P20qyBF32/yYqffwIPWBGdiKtL9vP8V3jAn1UMeOHGJ1Qvb8+I+XextzFh/+kI9p+OwNZGzoj596hV0YEFG4J5EZ7Ci/AUlm59Rs2K9oxYEIS9jYm2sSJLo2Dk4ifU9LZj4ZYXvIhI40VEOot+eUWNcjZM2xjKpB5F6Pl1QeZueEbbkbfwahnIjiMRdBx5lUPn3vA8LJmFG4OpVdGBEfPvYWstZ/+pCPafisDexpThc29TrZwdCzY+JTQ8ldDwVBZuekrNivZMWfkIe2s5+89Gsf9sFPbWcmasC8m1njS+3xpKzfK2jFoajJ2NnAOB0RwIjMbGQsqo5U+pWc6W77e91NqHp7Lop5cG9seuGF5vdFwGHgUtUWsEGtVwIjlVjU/WDhU2lnJ8ytmTnKqmUU1nlCoNHoWs8ChkhVoj0LiWC8mpKqqWc8TG0gQbSxN8yjuSnKqilGfeS4f+ixAEgR2771C6+lwcPSdh6jqaFp38CQ5RULuGJ+tXdMPWxpz+PWvh5WFclax71y+o4ePJqIk7/ra1jxhYi0vXX7P/D+2GnVKphMZ1ixL0SKuMV6NKAb5pW4bKzX9h1vKrbN71kOt3o/h5dTNaNCxG47pF6NamFKd+bWeUfHNCoxF3EAVB4PZ9BSs33qJDv90cPfOcN4rkT3adfmN24FZiAn5jsu+t/7JvP9n87/BZhSCUKgEEgUylBgQBIevNEVQqMjLVaFQqMjPVaLIUltRqFRpVJpmZKgR1JmqVEkwAtYBSqUFQa7L+LyAo1SgzNAiZapQZaoRMNV5uJoztVgSf0jbM3/aS6qWs2XlawdqdL7C2lFG5lA3qtFQy0jNRpSejytB6iuqMJDLS09GoM1EqVdrzAkqldj0apEhkMgSyNBNkMiRSE6RmFqgFGRK51ptRCzLk1jaoJHLkltZITLVqYqYOzqhksZg4uqAxiUFmbYdULkcwVWPm5IZaFo6ZvQsySw1yS1NM7Z3RyKIxcyyAYBKDqa0zNi7ZsUPzrM+BJEdB+zv/wULEEzF30Nrm9DEsQbTTSTuxiMMg1hVlpNdffEpjHWfGdQEMIBf5uSvmqYqNAcjyYpv16yg0kqEjVvHqlYINm36jfPnyWFhYsG7dOmq3mMegQYPoOnojbyTbWDV3BqE9T+mmuBDXAQenbEKWChKGL2lHx3rVmbY2kTbdemBjZ4dGZXhvTYw0gig1hnXEJibitqXswrBxhllzXPlp3zHa9uwL6mD6D3Fg2YrdjJjcDBMTOXOXfs0AvxdMmb6Nhf6BXDzzPdV8SvJF0zTDSTX6e8JpNBpu3g7l6KmHHDt5l6vXQyhS2IkK5YvSrFE5hg7SJh7nLNzHj9sCadGkAp06fsmqZWUoXChHU4mYchugiE7G1VVEYMfCM9tGkaALNwRsCmTmrKG4utqLzvex+OxCEJduxfBljpACQOjrRHzK2XHqaoye5kARVxMu3E6gcU1HneyhRqnkZUQ61crZcup6PHUr2fE6KgNNUjpFXM24eD+RRlXsuBGcjGdWMXhoZDrVythw+mYC9Wo4Efomjf1no/npUATLxpSm2RdO3AxOpph7Dg2E8racvRHHFxXteR2ZJcPobs6F2wk0rVNAf/1ZP/lPXYmhblV9zYSLd+JpXMtFz/51VCY+5R05eTmKej4uvHqTilQm12lQNKntzrV7sXgWtkYik/MiLIkaFZ05cfEN9au7ERWbiUdhkR0ixHrqjRGdmBRiPgEbtU1Xylm0ZCcrV//OmFGdGD+2C6aWLfRswsPDqVChAuPmLaZTr348e/yIp48eMLJnFwA8SpRi44FjuBfSdndJs+7r46C7LJw0hqBbN2jTrQffLVtjcH6jBCwiB2nMtpSlVr/67NnLTJq8kCuX94M6mOfPI+jQeRbPnkdQo3oZhvq2oUMbHzQaDb/sDOSHdUco4VWAnt1q06iht36poiaD1NQMTp55wP7Dtzh09A7OTjY0b1KZFk0rUbtWacIj4rj/8DWDh6+nZHE35HIZQQ/DuHV+Nl6eRjZmFSFgv1EbCdhwAt+BzfFfORAAiaU22Rn1eoceyfqN8Cdg3SF8B7fCf/Vw3bjEtPknDUF8VgS8b/UXrN35DP/vKtN78k2a1NYmsR6FvGXe8DIGQt6dmrgyaWUwh9dU1Ql/W5vDvjPRbJ5Rnlaj77BgWAn2nFIgKFV0qKsVFj8wrxz9Fj+lXQNXXVna5qllaD3+HotGlWLXCW2S7OajRN4mqzi/qQbfBYRQ2kP7gX6XtPOd+xC/rkXZfULb2tmxiTuTVwVzJKAWvafepmlWEu7E5Wi2zKvC135XWTS6nF7SbtbaJ+xZUVPvep+9TmPWcG++GhjIovGV2HX0NaYmMto3LcL4Rbc5tqkRPcZfpFmdAthYm/L78VdsX1qPZn1OsmSyD5duxzJzRHY7pu4e5xPwX0LAh/+4zoixG6lUsTjLl/hSrFjWrw95Yz27BQsWcPjwYdYfPoNcnr3m0tbaa/Wd+B0Hf93OT8fO4lqgoI6A3yElKYmWPuXw37WfspX0399PScCpqWkUL1GX3b+tpU6tbG8yISGZpct/46ftJyha2Jm7QS8oU7owk8Z15HVYDD9tP0VkVALjRrZmhN9XHD95l3WbjnM68CHVqnjS9uuqtGlZFU8PF1ECff0qgtdhcajVGpydrClbppDoOgGD4xWKt7h5DtL9HeninGEAACAASURBVBW6CVdXOx0BA/gO+hr/1Vk7QktkKBQJBp7vf5qAk2+0ITpWq+uQU0Pg7ds00a1sLM0EouMztZoDWRoFQobKoCwrJU2NJjFdt7WOq70J8UkqbBzMQQLJqWocbE1QxGfiVsBSN/+ZG3GMWRrMV3WcKVHMkgEdCmMil+rK1nKXxWnLxDJxd7XVW3/Osi9DeyVuzuZ69slpUhztTfU0MaQyeZZmRUaWfQY2liZIZDLt/FmaFa5O5qRnSrC0MCSlfALmkxNwTEwiLoV7sHf3LNq1rZPLNpuABUFAKpXy/PlzlK4eembvCBjAydWNOT9soH6zr5BKJMRGK3ByyfYCt69dw/mTxwj47YDeHB9DwDcvX+Twb78gJEdgYW6OpaU5hw6f4sjhrZQpqf+ehYVF89vuc1QsX4jKlTxxcsqRlFWnEXT/Fb6jNvLwcRjFirgwYkgT2n5dFUfHXO+FWAhBI76FvSikZigUb/XCDe/zgN9B5wkba8T4xAT8WSXhxnwfhEwq0G/aLZ6HpbB0SwhLt4Tw7HUK/WfcRW4iYdySRxw8G8XBs1FMXhmMTCah/8wgnoelsmxbKAF7XvM8PI0Bcx4il8P4lU85eD6GQ1fimLA+FLkUBi4N4fmbNAL2hrNiZxjPItIYuOAxJjKYtDKYg4HRHAyM5sz1OPwnl+Hu0yR2n4iift9rLN7ygudhqfSfGYSJDMYte8LBcwoOnlMwbtkTZDIJQ+fd1a5/6zOWbn3G87AURi4MwkQuYeziBxw4E8mBM5GMXfwAuVxicL1hkSlMXHIXS3MZCzc85sLNaC7cimbBugdYmMuYsOg2ith0tu57zq4/QomKTWf89zewtJCzYG0Qtx/G/tNv5X8Gzs62tGtTi/v3X4i+rlBotRMkEgnly5cnLi6O2Kyxkwf3UauY/k/sWEUURT21DQezRw+jXvGCzB49TPd6l74DCXn0gFuXL+R5rYIgEHTzGktnTKZFlbJ4O5jhU9CeQR2/pkCRonzVoiEZmRlEvIni5o3DlClTwmCOwoVdGD2qE40bVdIn3yxU8C7KuWMzOX98FrcuLaRvz/qG5IvWY/1QKKIN9Sb8Rm3EzXMQfqM26sb8VwwgKnSTjnxzw3fQ139ZrNcYPqskXOVyjtjZWlC+pB3FCtlSpZz227u4lxPepVNwcLSnsrcLlcprs0qC3BwnV1cqlI2nePECvM0wR6LOwNPTFu8yKdg721GpnBOVytkjCGpUFm9x8HTG2zsZr/JuJEvjUKoFPD1sKF/KBlsnC7y9rChfTBvrzUhT0aCiLffqOtG1mTtfjbiDqRSKOplQrpgl9g42VC7rSMWy2jdVJchxcLChXAlHPIo6UDWr2sejqAPepdNxcHKgsrcrlb21yQSVxBQnN3cqlIuheIlCJKRrFa3KehdleY2SAMwYpxUXkchNaP21dr7lc7VjFSoXR2qqjRuvrKbtApo5pZjxGyz7G3UFNCLlT0a8DlEY80pFPVgj2XYTkQ+biWFr74NE8RIupYgQjird0ItPYjPfzdzC9RAJE5eu0o0vnjiQfVs20q7PAMYsXIbc1p7Bo8dx8/xZ2vTuT0piIl2HjmTt7O90x9Ru/hWWBQvx5GUov25aC8Cvm9bSddQ4HJy1IapBU2fy3fAhfL99F+5FiiGVSo1qK7zzwC6dPMbi8SMxt7Skfss2TF69Dq+y5clMT0Mml2NpbYMgCAxq1g+A+0pAARqhuvi8IuezyBFWwRNupoOpiGc+b+xwdv24nm8GDGHmCn/deClrCQqFAlfX7C8lPz8/AgIC8B3SE3//eQAoFDEEbDgBQMCGE8ycPRxXV+0z4FpEdLlERd7C1TU7wRmnMmL4ifFZhSBenm7Fb3+8ZGAnL7YfeoVPFtE+eJZI5+ZFWfFTML3beeTQKHBk675QRvUqzfYDofh4OyJkpnHjgVaTIadGhEajLcX66VA4I7714OfD4VQrZYkGrSbDt1+5s/rXV/Ro4srtp9pylyqlrHWaDL+fi2HHsSgaV3fAzlrOty3c2Xw0lk7NCmVrVpSz56cDrxjVqwzbD2av/+aDeHq1L86KrU/o3d6LWw/idOv/+fBrRvQqz7Z9Ifhk6aNqkONTQV9URDQkADoC/iDkE3DeCFjk57sql+RiXLSC5mU9dH8fuv8cBxcX4qOjaeXtpRvvPXYi5/84xPOHD3RjxUqWovvIccwfpo1d7rn3VEeyACsnj2X/1k207d2f0QuX6cYTYqLZsWYFZw7uJSk+nqIlS9GoTXtaduuJg4v+c/M2OhpzS0u616vGhCWrqNWoKRogPjrawFaMKzRG+EOMgNPi43B00ffoTWUyvTBKbLSCRqWyye/S80icsgh3xfihWrL19cXf3x+FQoGbW3Y1T04S9fMbQcDaffgOaYf/D2NF1wggkdXTXptGX13PGAE7mUr+uyGIF+EpXL8fr9VYuKLg5oN4bj6I53qQduzEpUhehKcQeCOawBta/YcTFyNJSlVy8nIkN+/HcT8kUafJkFMj4uJtrSbDyctafYfT12K5/yxFp8mQlKrm5NU4XrzJ1mQIfZOtyXDzURLpmWoePE/RaTJcuxevm//8zVhCw7WaFYkpKk5didKt/9SVKJJSVBy/+IYXYckE3lAQeEPBi7Bkzlx+Q1KKkhMXI7gZFMPNoBiev8qbxF8+/l7ERSt0/3Z0caVEOe0ODO1699eRmoOLC+36DACgZqOmHNq+lUXbd+vG2vTuz/hlP7Dmu4m6uXKSL8DohcvYGxSiR77LJ42hXYUSZKansefWI/beC6Zhq7bs27qJNt5eLJ04Wme7dOJoWnl7MaxDS7yr1aRWo6a68dy2oCXlD0Vu22UTR9O8rAcLx4/UG583djiNShVh3lhtpYGTiytd+mm/cL4ZMERHvrEKBQEBAQAEBAToPGFfX18AfIf01PNg/X8YS9SbA+8l338DPisPODywDQ7WMkNBdmtTnUZBbEJGDo0CtTb5pLNXoU5PyRJk19eIEDRqXTLsXTIvOVFbDpZTYyEmOjVbwyE1O5kXnaRi0LxHdG/hjm+nwkTHKylY1Ek3P2Qn2xRxalydzfWTbW/VuDtb5Fq/EmdnO13yLCVV64nZ2FkZ/KTM94DfM/43esBzxw5nz+YNdOw7kEmLV3LuyEGWTh3Psl/3UrREtsJXeOgLTuzbzfHdO0lLSWbm+i1UqF4LgJDHj/jjl21cOn6E9LQ0Yt5EiK8/H58M/5QH/FkRcL1qzmxbUJ0Wgy6waFwFdh3VlsV807oYYxfe4ejGBvSccIWmtbV6wNeD4lk93YcW/c+yeEJldv3xChc7KfV9nJm4Ql8jQtBoOPlOAyGrnO3cNQWKuEw6NnZj8uqnHF5VlWELH1KzvDa5cOp6PDMHeNJhUhAALg6meBU0Z3DHwkz1f8Yf6+vQe/ItXfnYyUvRbF3gw4DpdxjVuxS7jmo1Fjo3L8yPv79k1bRquvIxgOMX3/Dz8i9p1ucYSyfXYOdhbSJnyrBqlPDQLybPJ+D3jH8CAs5dbQAQFflG7yd1XLSCxqWzdRmOPQqlT7P6CIJA6UpVcC1YGBs7O66cPkHEy1Aatm5Hk/adqFDjC6Q5WrNDHj9kQOM6jFywlMbtOvJ1ycLk469FPgH/CSQSiRC4/UuqlbPn7DUFX1Ry4mWktvOsWEFrrtyNpUENV27cj6NYQS2RvAxPo1pFR85dU/BFZWdevklBk55KkQKWXLkXT4NqTtx4kECxghYIgoaXEWlUK2dH4M1YalVw4GVYIhKgsJs5V++/pX5VB67cjiMtQ8Od4CTO3krgTnAyLg5aL9jV0ZSnr9O4urkaUfFKGtcvyvX78RQrkLXp5Js0qpW3J/DmW76onL3+om6WXH/4lvrVXbl+PxaPgtqscGhEMrWqFiY8KgV3ZwuSszxgO3trg90J8gn4PeN5IGBFfGW9JA9AtwFD2LlpHV37D9Y1OcwZM4ydm9bRud8gpizJTqzl9oDjohWEhb4gIuw1iohwEmJjqFK7Lj51GyA1EX/PlGo1v29ax77N64l8/Uq3e7atgyP7HjzX2YnFWQHexsToQh3r588iOOgOS37ZS0LWeJxCwa0L59i17gfUKhU/HDiKpVV2JYJYDHjpxNHahGHv/oz5fnm2rSAQHxOtFx5ZPmkM+7duMrD9kBjwO5iL3JtSVkZ4T3gtMvZS3FYMEsPE9L+GgCUSyUxgRq7hKEEQ3LNel2S9PghwAK4CQwVBeJBjDgFQAmUEQXieY3wL4CwIQiv+BBKJRHhwshsbfnnIzJHVmLP6Jg1qanemuH0/ihF9vBk5+zITBlfk9GXtT7Yva7iyeMN9lk+twTz/e9Sv4YaJTMqpy2+Y6leR0fOuMW6gN2cuaxs3vvyiAEty2Deq4YRSLXDuWhTFi1ozN+AhySlKrC3leBS0xLuULdsPvmJIVy8QBE5fi6FkMSuKulsyeWAp5m0IoX8nL85c1cYEv6zpypJNj1nxXS3mBQRRv7o2gRB4PYrpo2oyctZFJgypwulLWrW1RrULUaSwPVaW+g+jKKmK7O2VZSxyMz9B8YsxcZcPhVidpzECFiNQMe8VRD3YewkiZA+8Dg/XI5klE0ezd8tGvaRWfEw07Stkl1v9djcYgM6VssMJv95+jH0WAWkEgYSYaN3f74MxAn03/jL4MfN8+5OYEE8hz+I0bNuBr3v00dnJjQgavassiHgZysqp4wl78Yxvh43h4a3rBF29TEzUGyrVqkOjth2p17qdnvcNhonEdwiLCMfOSV+bYvWUCQTu2k79Lj34duo83XhaQiy2uWztLQxJ1cZMvGXYwdxwDzsv2w/fKj4mU5zXxMJGYu+DsXtQ0d70H5GjfAI0zPF3zquYAIwF+mTZTQdOSCSS0oIgJOU6Zh7wzf+62H8CcW8z2X8qHGtLOeWK2zLDtzS3H73ldWQqm/e+pFYlJ6YMKkOboZeQSyV0+6owl27H/dPLzkcu5Pay3pU6te8zgHHfLyc+Opq9W7Q1o/u3bqLPuMk4OLvg4OxC6179OPjTj7Tu1U/n6b0ba9WzrwHZfgj5/hmO79rBhrkz6D9lBs27dkdAW4Vw6ehhzC0tqVSnPlEvQwkNfszLJ48IDX5MXFQUEqkUmUxbdhZ87w5dhwynYs3a7NkUQPPO39Kqe29KeFdElkXSxohGDLnJ921sDIG7tgMQuGs7rYaM1pFubvLNhzg+1APuJAiCt8hrEiACWCMIwrysMQtAAYwTBGFd1pgALEZL1DUEQbiZNb6FPHjAF35vT82KLhw/H6aVhQzXloMVdTcn8HokTesW4vz1SMxMZSQkZvDoaRyeha25+ziOCqUciY5Px8xESsUyjjx/nUTbJkW4fi8WzyLan18vXidTo5Izxy+EU7msEz/vC2bxxkcM6FycmpWc+Kp+Aa7ciqSwuwWtfS/RqXkhJg8szdy1T/jlyCu2LfDBxsqEogUsOH8rlmb1CnMtKA7PLNnGF+Ep1KjgyNkb8dTxceNlhHb9xQpac+V+Io2+KMTVOwq8imhjzM9fJ/JFdcP4X74HTJ484K79B7Prx/V06TeIqUtXG5Q6vSsNE/OAQUtSuX9mA8QoogzI1lhZlhhES7VSkvlh2kSC795i0LQ5xERG4FygIM4FCvHb2lUE372NTCYn7HkITm7uFCtVBo/SZfAoVRYnd23uQCbRbvfuWaYcrgULMaBZfQZPm4VPvYYG5xMjYGOknJRh2IlmzAM2kRleW74HbIgPJeAJQDyQiTbEMEUQhOcSicQLeIaWVK/nOOYwECMIQu+svwWgM9AFcBIEoXHW+BbyQMD1axbkl5WNadLjIEun1WbnwRAAvmnjxejZV9i0qD6Nux/G3EyGpbmcTKWaimUcuXInmhLFbAiLTMHMRIZEIiFCkYq5mQxBAHcXCyzMZYRHpuJgZ8qriBTMTWXY25pQpawDQ74pyYTFdzi6qSF+06+SqdIQGp6Ku7MZC8Z4U69HIHKZBI9ClngWsmTot15MWvaAo5sa6iUFT1yKZNuiWvSfeoPR/cqx63AoAJ1bevDjnuesmV2Pb0acpHl9LTkcC3zNqV87GMR78wkYowScO4abu1b0dPBrnFxcDTzgbPsoA6I19mEUG/9YAp7n248bZ07RtFM3zuzfQ7WGjXkbF0PU69dUrF2XwTPmYmZuQUZ6GtZW4uLlpjIZgiAQHHSXE3t2cXr/HnbeeKDzev/sGvJCwLEpShJjYww83nwC/jB8CAF/BdgAjwFXYBpQBigPlAYuAsUEQXiV45gfgUKCIDTP+vsdAd8BHgJtBEE4+mcELJFIBqGNLQP4KG73xdHWlKiYVFydLHRlWZbmcPpSBP0mBjKsV3lG9dU662/fpuo0EIrW+y1rTvAsbEPZEnY0qOlOpdIOqNQCcQkZWFrIKeVph0wGXkVsSHqbDBKyyta0ZW4370XRZuglTm+uj5O9KY37nif4ZTLbv/dh056XPAhJ4umRJsS+VeLibE1iigoby3dla1llaAkCbs7ZZWVWlnJikiS4u1gRl5Cu29YnKUWJk7NhUimfgAETewOxFL/hq7UKVlmF+u+Q2wN+h9wxYABlHgjpryDgOEUUJ3/7ldjIN3QdOhLnAgWNznti1w7exsbQulc/rGy0v5rCnoVw7sDvnNz7GyqliibtO/FVt+4U9PAyON7YNeSVgMWQT8AfhjxXQUgkEmvgObAQuIKWgIsKQnYqUiKRbAYKCILQIutvAegsCMJuiUTyA1AHqAr8SB484MxnQ1BmqDA1lWp1fAWBwGtv+HlfMEfOvmbVjC/o3NILtVp7TXfuRzFh0Q12rWpAv8mXiIlLJ/hFIrbWJtSr7sbx8xFkKjUUL2ZD9QpO9GxXghkrb7NjeX1GzLlGizouZGQKnL4axYopVegx7jIpqSrMTKVUr+BAm4YF+G7VA35eXJ0FG55w9loM4QrtHm7Vytuz82g45UvY4WRvSikPa7q39mDWmvsc2tgEjQadZ6vRCFjY2JKRocbERIparX3zZTIpUhMTg5rffAIGvzHb9OQCFYoE3Ap31b0eFRWl84TvJWSKZtqTMw2Tc/80ARsbF5v352Xfsz8rbl2/VVue3LlFbFQkX7ZpT5P2nShXtbru2TG2ro8l4HPHjuNZsSq/LviOsjXrAvDo6gW6T5nN+vHDaD9iPLdPHQOgQavW7FgynzGr1rFx5hQq1qmPpakZN86dZuic75k/tD99xk/l0rEjtOrYhdIV9HeH/v9IwHn+JAqCkCyRSB4AJYF9WcPuQM5aEFcgysgUs9CGLbrn9dwmdh6YqFMRBIFlP1xi9abruDhZ0rNDaSaPrMPRM6HU73aEqJhU4t9mkJyi3TK704jzfPlFYTq2LEHwi3g273xEyKsUklKUFHSz4s7DOCwtTSlZ0p2m9T1wcHakSX1PqlZyQaMRkJlb4ejmhqm5GZExmUwe6oNcLqVUWWe+apyGS8GC1KyWSr9vKvLidRLb9z3D08OBWaML4FXEjmWb7nL+VjyzxtWjSYMULFw8DXvz5TY6gXM9P0FsaxWxMYkI0UIeVaUMH04EkTFjMEagYqphYl8MppVFDw98LtMjz9hoBQHrtGQbsO4Q7UatwdHFlY59B7Jn8wba9e7PE8GCJ1HaHHCqUgkWlrxJ1t8xQYyUxD54xpwUWR62VTJGth9qK5dKSUtNQS43wcRUe+986jfkysljzFi/lVN7f6Nhq3ZUql1XF2pQC4JOdS4vLcOWRsrj7ES81boVyuFVypOEZs0pX7UaAMXsrKhbqjjPmzansU8VCki197Rk6TK8+rIJpQoUpP6XTShXxYeolGTKpqchmJpSrmYdbNzcKVHFB7mtHW9zEX5wgjgpilWDiGlMgHh5m7Op4T2IShc9/JPjf/GAzYEXQAAwB20SbrUgCPNzvK4AxudKwnUWBGF31t8zgL7AZcDmQz1gIWYhGmUKw6f8wbXbEWxZ2YbUNCX+P15h37EQWjX2om/X8ngUscXBzpwjp0Jo39yT7iNOcOF6BI1qF6Zv17JULufC5l2PGNCtHHNXX6dIQRtKFrMjKjaN3h1Ls2zDHfp2Kcudh9EoVRqKF7Wl4+CjWFuZ0LFFMZrW1SbGbgTF0Kt9SZb/GETvjiW4GaTdlsWngjNbdj9l7MAq/PR7MHuPvcDERIqrowVrZtclIdMKd9dc8bs/2UnhT8f+nxCwQhGj11Lq5zeVgLXb9GpwAWaM8tOrt32HiDdvDMIKqUrxn8n/NAEbI+V3hBLzJoIDWzfx4skjQh8/JE6hQCNocC9clKIlS1GwmCd7Nviz5+5T7Jyc3nv+vBCwsfI2EzGik0rZsmop7br35sGdWwCUr1yVg79sp4ffCA7+so3yVbTE/PhhEE3bdmS7/0rafNuLR3duEZOWTnHvCpz67VfaDhjCmd93UaJiZTw9vLCx14/zWxn5YvhrCFj8uS9nK/97tSAkEskSiUTSQCKReEokkprAbsAK2Cpon8wVwCSJRNJBIpF4A1uAZOB9G1UtBcyBdnlZrEqlpt+oA9y5H0nPThXoM/IAXQbuoUwJB4LP92Xb6q9oVLcoXsXscbA35/LNN6Smq3kUEodKpSE5RcmtoGiev0rk2LmXSKQSIqJSsbXWxpVPnH9FUoqSY+de8fxVIjeDojl3JYIhU84RGpbELv/mPApJ4EZQDDeCYjh5IVxrHxjGy7Bkzl2L5Ny1SF68TuL4+XCSkpWcuBDGheuR3L4fw9Y9T3j8LIHEpDzomv6H4Oc3FTf3qvj5TQWyVK3WbgNg56Z1xObQWJi0eCXHHoXqkS9gQL6fM+5fv8qFo4dp2rErC7bv5tDTMA4+fsXMDVtp3L4zVjY2NO3UDbXItkJ/F1RKJZdOHScs9AU3LwRy80IgYaEvuHL2FKnJSVw+c5IHt2/w4PYNHt25RUpyEpdPnSD8ZSg3L57n8Y0rRL1+xe3A06SlJHPn/FlC7t0hMf6/Ucr5IUm4X4H6gDMQjTbu+50gCA+zXn/XiDEY/UaM+znm0POAs8Z8AX/g8Id6wJ3bViAsPB5LCxNS05RMG12P5l8WRyakih6jVmbgN+UsF66/IWBBA2pW1lYjJKUocbQ3Jyo6FVdnC1JSlSAIWFmaoIhJw83Fktj4dGysZGg0Agt+uMXc1Tf5ZXVTOjYvopc8U8Sm4+ZsQUyclsiz5zcjOl6Fq5MFiUmZyGRSeo89TYOaBRg9rJHhYv9jHrAiJlUvgaZQJOBWtJfu73fKVsY84DQjXm2ayjA2/bl6wI/v3GLpuOH4HzmDmZFk1Yfir/KAUSoxt7AgIS5WlwhMTU7CwdGJWEUUji6upKWkACAzNycuWoGTqxsJcbFY29gSlphIWkoyNvYOJERHY+fsTHpqKk62tsjk+hHS/48e8GfViuxTqRCpaRnUrlYE/+9bYmqadZNV4ruh3n8YSYue+1k4uTYPg+Oo4u2CqamMq7ciGTe4Kt8tuUL/buU4fy0CBIG61Qvy465HzBlbkyXrb1OzsgvX7ypYtPYOy6bX4dKNSLq09ODm/RhkMgnVvJ3Zvj+EXh1KcvBUKHWruSOXS7n9IJaxA7wZMesqDnbmFClghYW5HIlUwuyVN4gMGm248eF/iID9Rm4gYMMxfAd9hf8q3+zxUb8RsHabnrYrGMaA4b9BwGkpyUz6tiMvHj/Cu0YtqtSpj0+9BhQvX8Govq8x/FUEfPnYESpWr8nyGZN1oYYHt28wdvZCZo8eyreDhnIxKwlX/6vWHN2zE98pM9i2ZjllKlYhNi2NZ/fv0X6QHz8vXUjTrt15cO0KdRs3o0iJknrnyifgfxASiURwc7VjzPCvGD+qlf4DqE4SP0idyuJVpwl9Hc8Piztqx/JIKJmZKtr1+JGXr+NRqTWoVGqUSjUqlQaJRIKdrTl2tuakZ2h4FhpDnZpeTBrVjMBLIazdfBErS1MmjWlFv14NEASBAiVGcPzgd1Ss4KF/LjFSzVrDB43l5brysrWLsXnFiF1mJEsta6j7Z+663DNPw3TkmqZUEhetMNALyBDJXGeKjAGkixBwXshHDMYISWw8L8k2Y/PmXu/buDjuXr7ArfNnuXrmFEWKF2fyyrU4ubqJHi9GzqZGzmUuN8zDF7YS/zJ/lWz43MREvsG1QEHu3bhGYQ/tzsJhoS+oWK0Gl8+cpFqd+oS/CtXO6+Glt9cd5O1L7G26eGZM7J6LXReAmci42BrURqogPjUBf1Y7Yviv6E+HNj55OqZFkzK07f4jgiDwPDQWJwdz7O3eX84S8jwGG2sz3NzsMTWVc2RX9mZ+oiIyQIbanGHjd7H1l6tcvRFKuTLuXD83k1qNZlGnllY34MKlYGxszClf7u9R2/8noFDE63YfyB7L3sXgnYZrQEAAXfoPNvBsc5NvPsDO0ZGGrdrSsFVbVEolW5d9T/8mdZnuv4mqdev/o2tzdHFl+tCB9Bs9nhP7fwegZoMvmTliCBMXLGXNvBlUr9sAgKjwMGo2EAm//YfxWQmyd2hbM8/HeJctgFQqYdiE3ynhM5+2PbageU//+7MXMXzRYg0bt13L03kuX3vBgT+CkMul9P6mJmcOjkIQBMLC4zlw5BZnAh8yc8Fexo34SrQj6f8D/IYtx61gB/yGLdcfc3PDz89PN+bv78+Zp2FMy9EUkY8Pg9zEhP4Tp/Gd/0ZmDu5D0PWr//SS8vER+KxCEELKTvEGgPeEIACWrD7Dtl03sLO14E5QOLY25lStVAgnB0vSM1SYmsjYtKozSckZfNF8DTbWZtT0KcqaxZ0M5zTiAYvFcAWpNUdP3OPAkds8eBSOZzFn1q7si4W1SBvtZx6CUCgScCvyre7vqAitN+RWsEP2WI7miKC3hnFZY3Hd/3oIwti8186eYt6wQSzasYfSFbNrqP/OEET0mwjcChYSDUFcOn2CanXqE/FaKw2ZH4IwxGflAf+v6Nu9rmXkQwAAIABJREFUBpGKJCKjErGwMEERk8yLl3FERCay+8A97GzN0WgEOvT+iZZNy7B6YTt+3XuH2YuOkZZmhHA/ABKJhK+aVSJgRR8Cj01l6/rBWFgYSZb9i6FQJPzpmKurPb5D2gDgO6QNrq4OuLo6ZI/5+hro7Obj41CjYWPGLlrBxB6def085B9Zw70bV4mLVrBy5lT2bd/Cvu1bWDlzKrHRChZPGcfNS+f5cflifly+mMiwV38+4X8M/wkPGCAlJYNd++6ybstFnr+Mw8XJmviENCwtTNAIGqKik2nRqDS7fuyJRAKLVp1l8pw/2LGhB990rJo9Zx48YNEGBPjwygb4xz1gvxH+BKw/iu+gFvivHKwdG7kua+xr/FcPzTaWWYjHgGPLGZBvvgf88R7wOywY6UupCpXoOGAI8Pd6wAgCMpkMZWamrmxMrVJhYmpKRno6ZubmqFQqXoY85fi+3bgVKkyZCpUoU7EyEonks/KAVSoVFR3N/7tVEILy5J+SjyAIxMcnkZCQjFKpRqlUkZmpwsREhre3JxKpnLt3Q7h0+QEuLva4uzni5uaAu7sj1tYWnD17hwmT1wGw5PshNGiQqz3WmI6CtO4HX0ucCM84ilfYfDw0FwzHRHYAAAy60BSKGNzcs798Hodpu8vLFM7Ovp8LCdcl0jJEyA/EyfJjNRfyomObF80FMVI0MRKzFyM1Y+VPecGHlse9W/+kft1p3KYDTdtpK33iRYgqL18i9iJCOMYgpq0A2deQEBfL3JG+3Lt+leYdu3DqwF6i30Sw89ItPEqWNrouMRh7H8TWIPZFDOJf5h8CtVrN/GGDOLN/z3+3CuJ9WPD9Dn7afpJXrxTI5VIcHGwwNZXz6pWCjAwlHh7uPL7/I2bmcipVKkGlStpdDuLiEjlx8gbHjl/n2PEbWFtbMHN6b7p2+dJgp4DPEWIeqXZcvOU3Zw2uq6szfQf7snldAH0H++KS5cW+G+sqUsWQj78fsYoooyVp/zQe3r7Jm7BXHLj1CFMLC1wLFuL+jetMH9yXxLcJ1GncnHHzF+v0Lf5t0Gg0CBoNdy5d4OHNvCXmPwSfP8MAiYkpXLr8EE8Pd9683snb2AP8tHkiRYu4UqCAE+sDRvPkwWbMzLRv8v37L5g1eytf1BmKR/Fv2Lb9BFWrlOLsqeU8frCVb7o1/izJV6FQ6P3t5+eHW4E2+A1dmmvceMtvwNptKBQxOtslq/15HBbFktX+emPnQsL1OtPy8c8hNurfS8AmJqaYmJhibqkNsTVt35mg61co7FmcZTv2cP74EZ4+CPqHV2kcO/1X0a68F3N8+9FlyPBPPv/nxzI5EBYWzdRpG/Eq1RNbG0uWLR6Cra0V3brPpe+AxXzbrRHBD7cwcMDXSKVS9vweyJeNR9Psq/EkJ6cxd3Y/oiP3cujAAoYNbU/JkoXz3GH0T0GUbHOUeykUCgICAgAIWLsPhSI+azzegGxdXZ3xHdITAN8hPfU8Y0Dn+eZEvuf774G2vffvez/UajU3L13g1MF9KEUkPXPixdPHOOQQa3ctUJAtJ84zffU6vEqXpbvvcPw6tuLNvzRBd/fyBQZ/N5sdV+/Svt+gPz8gj/jsCDgyMo516w/Q4MuRVKo6gIS3yVy7tIaft02hTBntluDnLwRx+vgS+vX9ChMTOQ8fvqR2vREsXrqLIYNbE/rsFxYvGkLjxj46r/jfitxEC39CtgEBusYHX19tm6/vkHa6MIS2MsGQbP395xEVeUuvBTgf/36kpaSgUil1Ogx/NcJfhtK1fg0WjB/J9oDVtKpcmoAFswm6fhWVSNy1dbeePH/yiL0//airv3d2L6DziLsNGkrS2wR+WffD37L+vECj0fDo9g1qN2+JpbWRhPpH4rNKwlWrVpGnIa9o3KwFHbp+Q6NmzTEzMzPo225ZtRzzAjZSrrIPP/2wki2rlzF82iw69x1o1MMVzXrmIdEjZmssE5sYF2vgQZa1MUww+Pn5ERAQoLfDQ+5WXp1ozdAFBrYAl19EGXhH6UqlqEC5WLLMWLWB2J0xVjv5ocLleREzN4aPrUIQG5MZmVMs4WYsqZQz037vxjXOHT1EUQ8vPEqWwrNkaaxtbBEEAUEQkEmlmFvod2saez4XThxD+MsXrP51r25cLNOfLCKmDuL3PEnEqw25f48Lfxzi8I6f6Oo3go4DfJFIJLwJCebAz1u5ePwoTdp1YPDkGQb34cm9O8wbMwypVMq4Od9TtXZ2wjpTrebOlUtM7PstY+YuonnHLrpr+1BY5SF+LPZ8iAnNJ2Vm8vzhA2YO6MFPl27rxpsVdvzvVkGcPbOLMjXaYZJLUCM3AU8bOpCzfxwiIS6W6nUbMHvNegoV83jv/H8XAb/bi6xb/yFMX54dQy1rI9Nr2TUg2hxNDH6+vQxFayRF9I5/h+AUw/c33Ui5Vz4B/7UE/OzxQ1bPmc6DO7do1eUbYiIjefH0CaEhwaQmJ4NEglQqRRAErG1sKVm2PMXLlEUul5MQH096WipyuQlyE60oe2pKMo/u3eHnkxexzaGdmxcCTk5K4v6t6zy6cwtbeweKepXAoXARnNwLIJVKyUhLY+vShRzbtYMW3XrwRZPmeNeopTveIutcT+7dYfrgvuy8fFv0Pmg0Gk7t3c2y6ZOYG7CJL75sAmQ/XyGPHjCyazsq16xN0/Ydqd6wCWYfWI3xVxDwrZvXmdm/B50GD6N9/8G68f80AQuaV8SpDHUUjCkXZSqVyGSyD4rr/h0EnHs33vPPInRe6OqJww08WDEPGADhtUEVAxJxfYl8AjaOv4uAkxLfsnTKeAKP/0G/kePoOmAI5hYWRslaKpGgiHzDs8cPCXn0EEEQsLGzx9zSEpVSqf1PpSQ9I4P6zb6iQJGiesf/GQGrVCr8583k6rnTvAwJppR3RcpXqUZSYgJhz5/z8nkIKYmJFPTwJDU5ibJVqjFs7vcGOh2CIPDi3h3KVvFBIpHQtnJpVu85RLESpYwqlJ09cpCVs6ex6/wNTExM9J6vhLhYTu7bw8n9vxPy6D5DpsykTY8+f5oQ/9QEnJGeTsfqFRgycy4NWrfXey2fgPNAwHn5QP+THnBstIJ6xQvqbHJ6u2JeLcJrDJBPwMC/k4DDQp9r46brt/Jly9bvtYU8NAYYud9/RsCP7t5mYt9vmbP2R0pXrIJpLq3hpMxMUpOTiAh9gVKppGwVQwGsyLBXrJg4hmtnTrL+8CkqVK/J6plTeXr/Hgs2/4ydnWG7/bvdmn07taKCTw38Jk8XrQcHePIgiPmjhyIIAp37D6FRm/ZGPeJPTcC7N63jwqnjzNnyi4Htpybgzy4J97lj6tLVnH8WoRd+cHLJkTDL1bKb3777+aOwhxfz125m9dzp//RSAAh5+ADvajWoVOMLA/J9B0trG0p4VxQlX5VSyeQeXSjhXZGWXbsTHHQXAN9psyjk4Ylvm+ZERYSJziuRSJixIoBzRw8zoX8PkpMSRe2Kly3P+sOn6D1yHMf27KRdldKsnT+ThNgYUftPibNHDtCgVZ426/mf8VkR8L/ZW4+LNqxWAPS20XkHsRIuf39/oqKi9EMN+fh/A9eChTA1/bhdLT4VPjQsZwyPb99Eo1YzYPJ0SpSvwLNHDwCQy+VMWLySZh260KtJXS6eOCp6fIEiRdl2PBA7ewd6NarDjfPnePb4Ia+e6etZyGQyGrRszYqd+1h/+DQJsTEMaPEl8THR//PaPwTtevZl74/r3qua+KnwWXXC7b4YRZmKBQzGjf30Ffv5rNJoiI+ONtg7TC1C7rHRChyc9e2kEonB8csmjmbf1k206zOAsd9nSzEuHD2UvVs20r7PAMblGBcLTdxLUIOpPZEJ+hlosQ+KWmNI4CpNmsEYQLpYG7CRsMLfuc36x9jl1fZjIfZsgPHnSwwJCQmYW1rptWsr83C/8tKOnSDSivzuOVJmZnLl/FkyMjNJNdKua+w9f9feW6hsOeKiowiPCOfSmZPUa9VWr/3564G+eFWuyrzhg2jQuh29x03BzMLCIGQzdP4SyuzbzaLJYxE0GuJjoukyeCjdR4zFLJdtEa/iTFvuz/rv5/JNHR+WbNtF5Vq1AfHPv7HQmViFR0quMe/GzclYNJ+Qu7cp51NddJ5Phc/KAy5avOSfG/0JlkwcTStvL5ZMHK03Hh+t/626bOJo2lcowfJJYwzG21YozrKs4+Ojo9m3dRMA+7Zs1M0THx3N3i0bAdibYzwf/024FizEq2dP/7Rx4a9E2Itn+LZqwtu4WD1HIa8wM7eg7tdtmd6rC8F3blG/teHP9Qo1vyDg2DkU4WEMbFyby8f/EP0F27hdJzafucyWc1d5GxfLz6uX8yZLvlIMgyZOo1q9BgQ/uPc/r//PIJVKadOrH5N7dmb5xNEE37vz153rL5v5L4ClldVHHR8XrRAlxSXvIdX9WzfpfvLEx+Qg262bdJ5wu979AWjXZ4DOM3ZwcaF9nwEAtM8xno//JoqVKIln6bKc2LfnbztnaPATfvFfxfwRQxjQrD4DmzWgZbcezN/yC3aO79/G3hg0Gg0JMdH0mjAVe2cXCpcoiYmR0IqtgyPT1m5m5MJl/LhwNk2LudCpalm2rVgsSsbbL93i6297Mbh5Qyb06sr1wDOidg9u3aB24+b/0/oBkhISUBvx/gVB4OH1qzi5F6DToKFcOXmcIS0a0qlyaXrVzdtuPB+Cz6oK4l6CuPeQlxDEwvEj9cIC8dHRtPL20r2+P+gZDi4uurBC2979Gb1wme71FZPGaMMNvfszJocXkRATY0CyUhANd4iFIIxlxMVDEB/+c/TfGoL42IqHTxGCyMuGlGIQq45430abq2d/h7WNDX1HT3iv7ceGIJQaDYIg0KdhLcr5VKe8T3W8ypTDs0zZD+roMqZql65ScemPQ8wf0heJREKL7r15FfyYCrXq0GvcZD1bsfsoKJVEhb1m5qDeFC/nTbNOXalcu56BEE9aagpn9+7mt40BmJiaMXHJKspWropcKkWlUlG/qDOBL6ORZ/UDiJ0r52c/Iz2dgzt+Iuj6Fe5cu0JCTAwIAu5FiyKTyek+fgo+DRuTmpREwHcTeHr3NiXKeWNhZYWpmTmHtm9h5oateJQqS58GNf67ZWifgoDFYsBLJo5m75aNBqT6oTHgrPUZnMvYRzmfgP+bBDy8Sxtaf9OLZu07vdf2Ywk4U63Gf9Y0bgSeYcPxQORyeZ6Sbu8j4OS3b+lftyrrz17FzsmZxNgYRrZqwoRV6yifo0HjfTsVJ8bHsX/rJs7/cQhHF1cWbNult763cXHs3ehPwWKehAY/4Y9dO2jaoTMjZ8xDKpPR0NONk09e69qZxc6VmJzMD7O/o/vQkWjUano1rkPZKlUZPGMeRUqUIj01hTcvQ/l55VIkcjmNOnVl+eihJMRE0/zbXpiZmKDMyCA2KpLMzAyW7jqARCKhUUH7fALODWMEHBn5xqB4PFOlIi01BStrG5LeJmBta0dmRgZJiYkGpJoXYex8As4nYGNzAqQlJdK6chmOBIVgaW39XtuPJeDl303k/vWrLPp5N7YOjoD4c2QM7yNggEld29Jt+Fgq162PVCLhu15dad27PzUaN9PZfshW8SqlkiEtv6SIVwm6+o6gTGWt9vSCkb4kxcdhY2tH0PWrOLm5k5qcxDeDh9K2Rx8GtmpCYU8vRs/5Hlt7B9Fz/b59CyunT8bW3oG5G38i8vUrpg7sxeDv5tAhS7geIDU5if5f1iY5MYG05GRqNGmOd83aWFtaYmJqhomZKT71GuLk5g7wyQn4s6qCeJuRIep9CoJgtDKhTe/+jFqQLcf48M4t1s/+jqkBmxjfpQ1DZs7n7P49jF26xqiIc058ig9+XkShxYhKzLM3Rmh5ITqxL2NjH9y8EJUYxO5jXgjJmO2naOb4UIjSn5HzB928jleZsphbWenWaGytYs+H2PsgFxl78+olR3ft4Jcrd7HJ0Qxh7EtX7Jk3ZhuXqnWAJCZmxCQmE52cjolMQvSbCOR2jsSlZldC2Jp/QHOEVMr8n/dwfNcOpvXrzqazVwh98pjT+/ew8+o9XAoURJmZyaJxwzm6cwfFK1QiU63m+227WD1jCkPafcWm44GYmRjuZlCtTn1kcjkd+w5g+uA+SJDQsvM3VK1dV++LwNTOnlnrNzNzcF9afduLoTPnI5VKsfmb9Ik/qyTc0omjaePtxdJcFQzvq0w4kCOJBlCsZGn6T56OvbMLQ2bOp2KtOnQdOuqzkaHMx+eH0ODHzBk+mC4Dff/yc/26bg1ff9tbj3w/NUzMzFDmKDuLi4rE4X/UI7Z3cqaL7wgq1KzNzyuWUMjTi4ZtOtC/SV1O/v4bJqamTFm5ls2nL1PKuyIA1rZ2jJz7PanJyRzdtUN03sIenlSoVoNnjx6y+/Idfr92j5lr1lOqQiU9u6SEeGYM6kPr7r0ZNmvB364D/lkR8L6sCobc5V7vq0xo07u/Xhw3IvQF1vb2LB07jPLVarB18XzehIb+q5s88vF54+hvv9Kyy7c0a9/5Lz9XcNBdPEqW/kvPYW5pxbN7t9g+7zuG1KpARmoqNv9jVcU7DJ4+h2O7dhAV9prxy3+g8yA/bpw/C2i9/xLlvfXsLa2sGTZjLluWLzbamDF91VrOH/+DrSuXir4OYGFlTeUv6nDu8AHevAr9qGv4X/BZEXC7rLKu3OVeujKw3v1142O+X86ee0/1wg/5yMc/gajwMDxK/bWk+A5Dp89l3bwZJCXE/2XnaOs3mifXr6B4Fcrs3YdZeOjUR3uODi6uFCtZmgt/HGLB0IH8vHo51ep/+d5j6rdsTdP2nRjfqysZIs0n965dITE+jqp1jO/XKDcxYdqaDTi4uHBw+9aPuob/BZ9VEu58VNIHx4BBm6RQq1TI5HLUajVSqZTklGRePH5E2So+3Aw8Q8WatYkKf00hz+JIpVI9e4lEgkQiQaPRIJPJtLu9mpjoWhRz2797CN/Zq1Qq5HK5gb2JiYmo/bu5ctorlUqD+dMyM5HL5Xr2GkEQXY86qyQp9/xiH5iPjQF/bAz33xADzkuM/0MTrz8uXcjToLuMW7AUt0KF/3Te/zUGnJmRwdLJYwm6fpWVvx/B3inbKzWapM1DDDgmKQ2pTKbdJy3reZMKauQmJmjUaiRZz4Sg0WBvZWFwvDF9bNC2Ny8cPpgOA305/fsu5m7ajkuBgno2YvdWEARmDu6LqZkZ09es192nd8/nni0bWff9XMbNX0zTdp1Eu/9CHgQxtms7tp67prtnxmLAVf7LuyIfD4vLU0b99uULrJk8joU797Fw6AB8GjTGzMqKi4cPMH7NeqZ904EB0+cQeEArZl23VTs2zZ3OvB17WDx8MLVbtiItJYXb584wfvU6pn7bkYHT53LuwO8A1Mthv3nBbAqXKKU9b+Bpxq1az+oJI2ndbxDn383fuh0/zp3O7O17WDpyMFXqN9LZj1wRwKwenek7bRYXDu0DoM7X7fh56ULGr9vK6tG+VKzXEIA3L1/QedQkFvbpwreTZ3Ll8H5kMjnVm7dkx8JZTNqyC/8xvlSo1xALKyuuHT3M8OUBzOvdhZ6TZ/L09nU6jxxvcL/k0g+vChBT7DJm+6GqYZ+iwuTvbFH+0POnp6UxZ/hgLp8+wdLtv+FTpx5gnBTFCFgs8Wqg4rVmOQ9vXGXq2i26Sot3MPbeiBGNsXs48tuOfN2rn+7zUq91O479so1BsxayZMQgved5UVbZFsCFIwe5f+UStk5O2Dk6YmJmTlxUJNER4br/0pKTqFyvIddOHmP2TzvxKl/B4PzGriE9NQXfZg2YsCqAslW1rcM5OeHhjWusnjSGhu060XXYKIPjl40YjJmFJdNWBujGjCmsVbQ3zSfg3DBGwEq1moSYaBxcXElKiMfCyhqlRkN6SjI29g7ERyuwd3YhPTUFQQBzS0vexkRjn2VvbmWNBEjLsk+IVmDn7EJ6aiqgb/82Lg6LrIdeZx+jwM4pt30M9i4uuvW8s7ewtSMhJho7J2c9e0VkFPYuriRnrQcgJTkZa3sH3sZEY+vkTEaWvZmlJYmxMdg5u+jsZRJIT9G3V2dmYGZh6KHkE/DH431e/JIp43AvVIQeQ0cCn5aANRoNY1s1YdDsBVSuVcfA9lMQ8LPwMGzsHUhP/b/2zjwsqqoN4L93ZtgREFAURXEXFQVxX0AtS9PKsjLrq6xss/2rbLHF+iqt1GzRSs3cSsssd03NNdcQ911BFlcUNxBEmPP9cS8wwKCgwLjc3/OcZ+49973nvPfMnXfOPee970kDtLHglOPH7d7P/jbzLi9070x4h0gsTs6cOXmCi5mZ+FWpin/VQPyqBrLsj984knCQo/Hx9Or/LH1fft1u/ZfyvPlh8CC8/f158AVtIj7HJvSPbEm12nVxcnbG08eHVz7/qtC55w4l8la/vjRp0ZrXh47A2cWl3AzwdTUGXFK+/+BtzBYLbz5wF4diDzDx80+YOWY0h2IP8E6fXlicnPj8hadYNWcmq+b8yRcvPI3JYmHQg/dwOO4As8aOZsqwIRyOO8CgB+/B7OTE12+8zKo5fxaSP5IQx8/Dh/Dz8CEcjovl3b73YDY7MezFp/ln7kz+mTuTYS8+jcli5ovnn+JwXGw++VEDX8FssfDlS8+yZu5M1sydyZcvPYvZYuHjR+7j6MFYpo/8jOkjP+N44kGGPHofZouFUf99jnXzZ7F+wWxG/fc5zGYLQx7V5GeM/Iz543/g6MFYPn5Ek//m1efYsnKZo7+amxIvbx/Onk4p1TKPH0pk5KsDeLJ1U1zd3akf3qJUy7fFbLbY/F5m8vkLT3Hy+FFeu6sr8Xt257ufM/UxWaUUKceOErdrJ7VCGvPsh0N47ctR9HvzXXo++gTNO3Zi65p/eGvUOKZt3Vek8b0cEVFdWD1/Tr5htCPxB/ENqMLJY0dxcXOjTuOmds+tUaceYxcs48TRI4wZ+r8rqv9Kua78gEtKoxatcfesQETULVSpUZOmbduDyUSVGjVpHtUFNw9Pwjt2ol7TsFz3TXfPCoRHdSYgqCbpqalkZWUREFST8KjOuHl40rh1G+o0znNlyZWvFkST1lp0poCgGoRHdsHN05Owjp2o2zQsn3yDiJYEBNXIJ1+7SVPcPDxp1iGSOjbybp4VaNqxE5WCahLSqi0A/oFBhHbshKuHJ03aRVI7NAz09cRcPT0J7diJykE1adiqLRYnC5WCatJUlw9tH0lQOU0IGeTnwO6dtOl8K2dOpVDB24eF06dxPi2VOiGNqRPSCE8v7xKVd+70KT5+/CHa3N6Dz2YuoHI1+0H5r4TE2AMsnD6V1HNnUVYrYjLR5s57CO/YiRr1G7Bt7Rrid+/iw0f7YDab+ajfg9x6f1+CQxoRu2MrjfSXKkSE8as3snbhPBb+MonR7w6kY8+7adq2A2EdonBxd8fJxYULGRlX5QraPKoz333wNtvXryVUj5L24h2dqRvajHuefJZb7utzyfM9PCswaOR3PBzVkrsfeZyGDUOuWJeScEMPQaScPMHCXyZz79MDWPL7NOo3C8cK7N0cQ5fefZg59jtufaAv+7dtwWq1Uq9pGEumT6VX/+dYOuNX6oc1R1kV+7Zu0uTHfcet92vyAHVDm+XKr5o7kxoNtC9t/9bNdL73ARZOmUiHO+/mgC5fJ7QZf0+fxt39n2XZH7/lGub9WzfTodd9zP3xe7rc3zef/JLff6Xbo/1ZNXO6ZmiB+L27ad3tThZO+IHIex8kbvsWEKFW46as/GMa3fo9wz+6vNkkHNi6iY697mf+Tz8Q1ftBjsfH0bBFq0LtZQxBXD2XGoJ4KKo18fv34uTkjKe3N34BVagT0pgDu3aQeGA/k5atpUr1oHxDEEmxB0g5fgxlNmO2WFBWK9bsbKzWbH74+APqh7fgsbfzB3ovuCLGxcxMziQf58SRw7np5NEjpJ07y8X086SdO8f51HOICM07RLF/xzZ2bNxA9wcepnJgNUwmIfXsWaaMGokgXMhIp2aDELr/px/paWl0f+RxhjzTj31bNnHulNbDn7XvEE52gr0fS0xg5ZyZ7Ph3Hbtjounx6BPMmzSekfP+pvJlJigv9/LPvCkTWDh1MgO/+o5qdeoxcuDLVK1Ry+64ry0VbVbamPT1cLasX8vzb71HdlYWVquVJs1b5AauL+0hiOuqB3wq+Tj7t28lvH0k29avoVJgNQCSjxyhccvWbFyxlIbhERxN0MPZWSwcit1Pemoq8Xt24+LqhhVF/J7dpKemcijuAMcSE4jbuR2lwNvXl8OxB0hPTSVh7x7traXsbBL27iE9NZXDsQc4npTIQT0AtVfFirny8Xt2g/7jS9DLT4rdx/GkROJ27QSgQkVfDscd4HxqKgl7duOsf/EJe3aTfu4sh+Ni85VfoaIvR2IPkJGWStK+Pbnyh/buIaNjZ47GxZJ8KJGE3TtBBE+fihyNiyUjLZVDurzZZCJp3x4y0lI5ejCWE0mJxO/ajtliplL1GuzfsolmHaPY9e96GrdoiYube7l9nzcbo2bMxaOCFyLCgV07CA5pjEU3lt8MHsQvo7/iv58OA7R4COOGfsQ/C+ZSrVYdLl7MJDsrCzGZMJvNmMxm6jYN45E337VbV3paKhuWLGL1/NlsWrWcCj4V8a8aiH+VQO2zaiA1G4bg6+2Du6cn7p6eZGZc4N+VS+lwW3c+HjMxN9ZCDk5e3tQLC+do/EFEhNqNQ9m4YhlZFzOpXqcePv6VWb94Ps2jutg1vulpqcTt2kGvJ5+hTpOm3PX408ybPJ4WXW69rPEtDt0e/A/pqam83rsnbW7rjrIq5v88gQeef7nYves+Tz/PlvVr+fT1l7A4OXEhI4PUs2d57X9D6dLz7qvWsSDXVQ946pa9uFbw4nRyMt7+/nYnt86eSsmN+JSWek6fDMub3LJWGsKkAAAgAElEQVRarbh6eHDm5Al8/Ctx7lQKbp4VuJBlLTRZlXJa6xW4uLlzLuUEXn6VOHc6BTcPrfwL59Pw8Pbh7MlkPCr6cSFdnwyzkU+1mZzI0OXPJB/Hy79SPvmU48fx8q9Mms1kW8b5NJw9vTl3MhlPX38ydXkvL49C5ZtEcss/ezKZCr7+XEg/j8WkTZbYTs55e3tp5Re4XhezYC7QWy1JD9heT7eofHs9xdJYfdheuVf7lmNRsUZKwuVeKT957BhP3B7JA08NIKxjFB8+04+IyM48OXAQFXwqlqiumOV/M+S/L1AnpDFd7rqHyG498NBjQhSHkkwMnbGZCFw+awYr58zk/XGT7cqmpqXi4uqWbzJbRLs/S5Ozp1JYOGUC51NT8fTxofezL+beA0527iV3O68y2waE37B8KV+9/yYurm7s2hxTqj1g8+DBg0urrDLlww8/HLxn80bCIzvz/sO9CaxVm5k/jCJm+d+4engw/KVnaNftTr544SnOnDzJnphoFk6ZQJM27fng4d5UDa7NrDGjid2xDWW1MvKVAbTp3pMRLz7D2ZQT7NkUzazvv6FZZGc+eewBqtasxT+zZrBx0TycXVwZ9+YLRHS9g0kfDOTUsSPEbtnI/LHf0qRDJ4Y/2Ycqterw1/jv2fHPcpxcXPnxrRcJ79qDsW8M4FzKSWK3xLBgnCb/06BX8farxKKffsiVnz/ma+pGtGb8mwM4d+okcVtjWPTjt9RvE8l3Ax6mUo1glk4aw641y3Hz9OTHN18g/NbujHtDl9+2mfljv6FJh06M6P8gATVqseinH0jcvR1ltTJmoKb/9/99jozzqeyJXl/oekVZ8SrwRlNJfHPtGeWi8u0OKxRRl73zSzJccbUGuDQ6KfZKsF1pw93Tk7A27RnU/xFmTxpPBR8fhk6eXqgXao8DO7ez6PdpzP15IpNHfsHS2X/y3tff88Rrb9EgtBmubu7241YUQUla60K+P5GjLPxlEuEdO+HjXzj+9eLpU/ELqMKgh3oTGFybP8aMYueGtUToS9SXFi5ubjRu3ZawjlE0atma9LQ0jiXG4+XrZ/desmeUbf/gqwXX4u5HniCgWnUWzfiNwYMHf1haul5XPeBhfy6gdtMwtvyzgsat2nL8kLY6sH9gdXb9u45mHaLYuzmGAH2Z7iMJ8dQPa55PXiH4Bwaya8M6mnaIYt/mGAJq1ORClpXkxHjqNGvO9tUradiqDYnxCWAFv8Bq7N24gUZtOxK7dROVqmvln0hKoFbTcHauXUXd5q04eURbiNCvajX2bdxASNuOxG3bhH81Xf5QArVCw9m9/h9N/nCe/J6YjdRv2ZaD2zbhb1N+tUZh7F2/ijrNW5Oiy1cJqs7+GK38HHlBcsvftXYV9Vq05uThJJzMJvyqBrInegON22n6V6tZE0QKXa+LiUJDEEYPuHx6wAAj3nmdhP37qBvajG0b1mEym+n32lucT0vl7KkU/CoHENK8Re5kne0wRZe7exPcoCHBDUJo0iy8kOHOKklUuxJc15kCvsg/fvIBGefP8/wnXxSSPZyYgH/VQDavWkGT1m05lpSI2WymanCtEtRYciZ+9j9mjfueno/1p26Tppw9dRKz2YJv5QAaNm9BYGC13KGgHAouiZRD28qeN68bmqe3DxM+HUyD5i355cvPOBp/kKPxB5k97jsaNG/JtwNfwdPbm7UL5rJ2wVw8vb0Z9earNGjekqlffs7R+HiSkxL5deQX1G/ektFvvYqHtzfrFsxlw8K5uHv5MOad16gX3oLfv/qClEOHSE6KZ9ao4dQJi2Di+6/j7uVFzOL5xCyej7uXNxPff506YREsnjSW5MR4khPjmT16BLXDIvh9+P9w9/ImZsl8YpZo8pPef4Naoc2ZPWp4PvmajZvy8+A3cPfyZtOSBWxasgB3L2+mf/oOwU0jWPD9CE4cSuDEoQSW/jye2mERTP5Ak49ZvIBNSxfkll87LCK3/BOHk5j57XDqhkfw03uv4+HlTcyyJWz4a16h68208zqnQflw/MhhFv7+K+99M4an3vmAL2fMpUVkJ8Z8OpjZE39k48rlTB45jPvCQ+gX1Zo3+t7LY5EtcXJ2ZtKqf3nx48+485HHCW3Vpli95rIiOzubytXte2O4uLry9cBXaBjRkp9HfMbRhIMcS0ooc512R/9LdlYWs378nuGvDmD5zBns376VT597gkdbN+XWID+yLl4scz3scV1NwhkY3KiMfHcgvR/vj19AABeyszGbzfzn5df5TwG/2KyLF4ndtYNTyclUrRlMjbpXv05iaXEhI52d0Rt44PlLex2UN5/+NovkQ0kk7t/LoqmTWbdoAfF7duPq7kHG+TTufOTx3NU1ypvraghi+My/qBXalK2rV9GwRStO6I/k/oHV2R29gabtO7JvyyYqV9dmVI8mJlGvWRjb1vxDg4iWnDx8iCxlpVJgdfZs/JfQdh3Yv2UzlapXIzNbceJQErVDw9i+9h8aNG9JYkIiguBbNZADm6Jp2Lo9cds246fP2J48nEStJmHsXr+a4GYRnDp6GCCf/MHtm/EN1HoEKYcTCdbl64S3IOVInvyejdE0aNWO+B1b8K2qlZ9yJInAhk3Zt2E1wWEtOK3LVwmqxoHNWvnx27fgG1gdk2j6FCzfYtKGUPbHRBPSpj1x2zcTGFQTUJw4nP96XS2mQm/IGUMQZT8EsWbJX4x45w2mrFiPq5tbieJF28Pe43NZD0EcP5TEx08/RmBwLf47/Ntcjx1bcoYgcn6/yYeTEBEqVwvi4K4d1G0aRuL+vfhWDkApOJV8jKC69dm/dTPBIY05cyIZBfj4V8ovXykABFKO55c/rUdJs5U3A9bs7HxeGpebhLOltIcgrqtJuMNxsTSL7MKIl5+hWp16/PXzJHZFb8CtQgV+/OhdWnfrwfeDBnI+NZXYHdtZNWcm9Vu2ZeQrzxEQXIeFv0wiKS6WbAWTPvmAsFvvYNz7A0lNTeXA9u0snTaZkPad+O61AVQOrkvMkoXsWL0CF3cPfv18MM273sHvwz/l3OkUEnbvYOVvUwhpH8W4N1+gcu36rPh1Mvti/sXi6s7vX3xEg6huTPvkHdLOnSN+13ZWTv+ZOq0i+XPEJ3j4BbDytynsi/kXs4s7q2f8THBYK379dBDpaakk7t7BP7//TMO2UUx59yWq1KrLmhk/E7clGtcKXvz++WBCu3Rn2ifvcD41jUN7d7Hyt8k06tCJH998gYDguqycPoVj8QcBE9M+G0zzrj2Y/OHbZGddJHb7Fv6eOpnQjl0Y/doAqtSph8UkhSbhnMxmTCKFkqvFgsVkypdc7ORZTCaczebCsmYzTiZTvuRiseBkNhdK9vKrezjj7WwplII9zAS4FkguhwlwSS2cXCsWlrWTzloL65QzcWM2mfIlJzvXatGP2ctPPpTEW0/+h/dGfEv9ho1wMptxs1gKJRezGVeLpVgJKPR9WZVCoFDKzM7GqlS+lF1Eumi1klUg5UwkTvtmOM4urgz8+gcsTk5k6QGibNOqebPwDajKsJeepnrdeiycMpE9mzdhcXHm+/cG0rpbT74Z+DLnzp4h6cB+Zo4dTVhUF4Y+24+qteuw7I/fiFmxFBd3d757dyBtu93J1wNf5sKFC+zetJG5E8bmylev14C5P41l29rV+eSzsi7i5lkBBbkpp31sk9jJsyrFT8OG3LyTcFM27bYbM8HZzS3PrczG7ev0mbNUKBAzIUupQm5Zrh6eZGVbyTifhqe3T6586rlUKOCGdvZUSiG3srMnk3H19st1E3PW5d18/Dl/5jQu+mrOF9LScPf2ITUlmQq+lfLJnzl5HC+/yoXkPX0qFnJDc/PI0yftzGlc3T1wMtt3QzOL4OrukU/ey1tzoyvohuZuKeyGVtCpPwd7ka2K6gE7FfOljaJ6tfZmqau62dfL196TpEq0K4sU782xvWlFxxopSHGjtJ1PTeXHr4Yxbex3PP7yazx+mVdwSxLlzV6MCXuxJKD0Vmf5d9kSfhj8Dp173cet9z2Y+5Roy/nzabobWp4bqVUpzY20wO9XQW7Mlpzfu3b/S6GYKi66G1u6jXzFQjFbNHmzSKFIgCW5lyOreN28k3CH4w4w8tXnMVssDH/pGVbPncnquTMZ/9G7mM1mPnioN0fiYpk6YihTRwwtFANh7fxZbFq6yG7MhD+//oJjB2P5vN8DmJ2c+P71AWxZvpjohbMZO/B5TGYLw5/sw/GEg8z6dhizvh3G8fhYvnyyD2aLEzO+GEzMX3OI+WsOE956AbPZwpR3XyY5IY4Fo4ezYPRwkhPiGP1sX0xmJya98wKbFs1h06I5THrnBcxmJ0Y/27eQ/A8vPobJkl9+5oiPMZstfPP0gyQnxDF39DDmfPdlPn1+HPgCGxfOYeuyxYx5YwAms4VhTzzAsYOxzP7+G2aM/IyjB2PzxZQ4e/KEo7/iG57TKSf59tMPub1pPRJjD/DrivWXNb7XA807duLux5/mUNwBRr830K7MuZQULUaKkyU3Rsqa+bMZ/tIzmM1m3n/oXo7ExfLL8KHMHvsdR+Jief+he3N/7+sWzssXU+XdvvdwOC6WP77/hl+GD80n/+NH7xWKwfJu33uKXI7eUVxXk3ABQTWp1yxci2LfISr3VV6LszNunhUIi+xEQI2aNNZjLFQuEAOhdmgYVoTMjIxCMROysq1Uql6DJh2icHX3oHHbSKrVCwGl9SbcPDxp3C4K/2pB1G+hrf7qX70Gjdpr8jWbhBOoh6MEcPXwpGZoGL7VgqgT0RoA32pBNGwbiauHJw1adySoUV5wEBcPTxq2jSwkX69Ve1w9PPLJu7i64urhScO2UfhVC6JuRBssJsmnT0jbjtRs3BSL2ULmhQxcPTxp3D4K/+o1qBfWHKs1m8pBNfPFlMh5AcSgbPhnyV+82f9Rbr2zF1MWr6R6rTqOVqnUMFss3NmvP936PsKA2yN5/5H76dTrPlp0vjV3WMvTx0eLkeKRFyPFqhTKatV/v1oMlsat22G2WAgIqklYZOfc33utRqEo3aPa3bMC4ZFdCAiqQf1m4WRnW/PJ120aRk2beA458uZLxCR2BNfVEMSrX46izR13sejniXS4sxcH9Vd8azQMYfXcmXTt+yhr588hOKQxAAd27aLlbd1ZOm0ybXv2In73TjCZqV6vAevmzaRzn0fYsHAONRo2JjPzIvE7t9H2zntZMmU8be/qzcFdO7FmZ1EjJJR1c2dwy0NPsG7+TILqNwIgYfd2Wve4h6W//ETzO+4hadd2AKqHNCF67h+06/M4G+f/SbWGmj6Hdu8g4o5erJnxM81vu5Ok3bp8wyZsWjKftvc8yMb5M/PJt+xxLyunjqdFj3tz5Ws00sqP6vs4/87/k6CGTTCbhcRdefq07nkvCbu242Q2EdSwCWvnzOCWh59g3dw/qNesGSaTmYTdO2jV7U6W/TqZNj16UcHVCc8Ca4kZQxClMwSxacNaXuhzD19PnUG43kEoyeTetT4EkS8vI4OV82ezZsFctq5ZRXBIYypXq07C3j3UC2tO2unT3PfCK5w8chirUtRu0owVf06nR7/+rJj5O7UbhyImEwe2bSGq133MmzCOqHvu5+DO7aCs1G7SlOV/TKfn40+xYuZ0vPz82RW9gV3/bqBa7TqcOXmCDnfeQ1bmBSpWqpxPPjP9PB76m7JZWRdxdXMnOz0dNw+PXFc0i5MT1swLuNvpkJT2EMS19XdwGTr1ug+rUvTUlyYK6xAJaDdGj8e0vKhevXPlq+o90u76kkU+7TuSbdVuom6PPAFAx7vuBWDxtJ/ZsXYl4bfcztYVf1OveUsSd24j7expPL182L5yKR3veZD90etQ2dpjzM61qwjvcjvbVy2lXkRrDmxcB4CXjzc7/1lKm7sfYN/6lZhFq3Pf+lU0v+V24rdEUzs0jAMb1wLg6e3N4V3byO5+F3vXrcCkv7e0d90qWna9nd2rl9KwRUviYrTy/fz92Ll6GZG9H2TPOq18s0nYvXYlLbt2Y+eqpYS0aEXsxrW4e3nj4eXF9pV/E9m7DzvXLKeyf0Va334H9RtpPYS7H9fazs3ObLC9GWIANzsGuKgVD+x5TNgz7PU9irivs5cXzlNFGI7MTPv59pBddvIKG/v67vULywEpWYUN+InMwkYqLTWVlx66j0+/H0+EbazeEnhy2KOoeML2DGVRZdr70yvJCtv2ynV1c6NTr/vo1Os+MjMy2LJmFaeOH8OvSiDOrq6sXTCH6OVLqOBTkeAGIfR8/Clili3htj4PsWXlckQpnF1d2bJqOe279SBm2RKatGrD/i0xZKSfp4JPRTYuW8Kt9z/I3Ak/cjT+ILUbNeHihQxq1KvP7JXLOZuSwsHdO6kb2pR+b3/AxmVLuO3Bhxn/8fs0aqE9YW5atZznPx3GhE8/pNtDj7B6wTwA2nfvweQvhjDst1l226E0ua56wLPijtm9CYq6YTKzC9+gOQa4IGfOnsPFLX9Acyc37R+wODEfzp46mRsjImcy7FTyCSr4Fp6c8/T1LxTzwXbyzFY+/fQJvP0r54spceH8eTx98k+2OZnEbkD2nPJtJxdduWg36M4NYYCtJTHAdnrs9vLMV2eA//l7EaOG/o8pf63Il1/UfXu1Bthez7yoHvBFO2UUpZe9+orSwV59WdnZuZNhyYcPsevf9ayeN4vt69cydPpsvH39CsWIyFlQwTbGS3paKp7ePnzc/xHSzp7l6Y+GULVGzULy6ampvHFPd4LqNaDVLbfRqFUb6jRqwsVMzXUuR75SQJX85aem4ufvb/e6ugT63LxuaH1fecPuO/VF/YVk27mRivq/+emDt3F2dc0XM+HihQvsjV6bL+ZDQHBtFhWI+dC86x3MGP4JxxMPErs1hoXjvqVxh05Mef8NPH39WDLxB3auXo6ziysT33mJZl26MeGtFzh3KoW4rTEsHj+KkLaRfPvsw1SuEczfk8awc/VynFxcmPrRWzTt3DU35kPs1hg2/jWHWk3D88V82LluFU7Ozvn0P3fqJEn7djN71AiadOjEF0/0IaBmbdbPn0kTO6sm2HvUt5cHxR9WAPsGxZ6sn3MR97U6aC+zCNkS+NCKHX3t5Znsr/ibbi0cv/e8nerHjfyCRs3CadE+Ml9+Ufdtcf2WS9JTtfdbKEq2KL1K0vmxV9+huFg+erwv7brdyZevPoeXrz8BQdVJ3LeXuF07mT1+TG6MiAPbtqCsVoa/9Cztuvfk8wH9SU9NZceGdUz/diTKamXOhHE8/eGnrPtrHusWzsfZ1TVX/qdPBnP6RDKBteoQt2sHqadPMfnzT/ht1JfMHj+Wfds2U6GiL1+8+Awde9zFJ88+wZmTJ9i18V+mfvMlrbt0xc2jcJCgicOH3rxuaGXZA47ftw+/wGr5Yib4BtqJ+RCRP4ZDbsyH7Vvw08NjnkhKIDg0nF3r11A7rEVuDAffqtXYH7OB+q07EL99M356AO2ThxKp2SSMPetWUTeidW75vlWrc3Bz/pgPAKeOHKZm46b5Yj5YTIJ/Af1zYlYkJyVQu2k4O9asokHL1mSfTbH7uqjRAy4i7yp6wGdOneLW0DrM2bCNSlWq5lf1JusBZ2Zmsm3tP/litphESNy/h+EvPcedjz9Nz379ST58CJPJRKXAauzYsJawjp3Ys2kjAUE1EBGOJsQTs2IpCXt389rI7zh2KBEUVK5WPVd+35bNeS9kJcTTIDyCzauW07B5SxZM+Ylp34zAu6IfGennsTg5YbE4Ed4xirD2kfgGBBDRrmOhP8KLmZncHlz55nVDK0uOJ8YXipmw/Z9lhWI+LBj7TaGYD5PefwNXT09iFi8gZrEWk2HyB29Qs3EY80aP4ERSAieSEpj33ZfUbhbBn8P/h1sFLzYvWcDmJQtwq+DFnG8+o1azCOZ9lyc///sRhWI+xCxegJtnhUIxH5ITEwrpH714PltXLsXDy5uf3nuduuERzPxmGCf1N/YMyp45v/5Mx1u7FTK+NyNbVq8sFLNl3V/zqFipCoG167Jo2mQeDqvPiFeeY/b4Hxj70SAaRrTk6zdextPbh3+XLmbNgjl4evuwf+tmEvfvZcqIoRxPSuRowkF+/vKzXHl3Ly/WLJiTK//1Gy/TMKIlf/zwLTUbhPDcR0MJ6xjFkGl/0va27jz13kecSk5m4hef8EG/vjzUuhmLpk/l3OnTZGdlsXL+bJ7vcUupt8llJ+FE5HngGSBYz9oBfKyUmqcfF+AD4GmgIrAeeF4ptcOmDAVcBBoqpWJt8icA/kqpnqVxMVeD2WLB3csHpRRefpVAQMSEs5sbmMDLrxJKKVxc3TGbtWbz8PIGpfDy80cg7/VLEbz8/FEo3L28Mem9PXdd3sXdM69stHoszi6gNBmzjbwAXn7+IJJbvlWvE6Xw8PLGbLZgtpioF9EKs8VC43aRuHt5E1Q/BJPZjLuXN43bRWK2WKgX0QrfylXKtW1vZkQED0/DvQ+gcvUgLBYLYR074eHlrXkrWa2ISWgQHsEDP07m99FfYzab2bM5hl3RG9i9MRp3zwqcOZGMxWLBbDJrMbrd3Tlx5DDuFbxAab9fT28fUNqrx1ituLhq8xwiouUpbdzXbHGiYuUqBATVoFJgdbz8/AluEEKHO3oCPaleux7TvhnOyvlzGPn2a7i6uVMpsBrtuvVg/45tpdomlx2CEJG7gUxgH1qP+TFgIBChlNoqIm8C7wL9gD3A+0AHoIFS6pxehgIygJlKqb42ZU+gmAZYRNT8hBN2H4/sPXKB/cejC1n2H5mSYg9oQxD/rqNJ+ygObInBr1oNhLxH+O2rV1CvRWtSDh8C0Ics1tO4XSQHtm7BL1B75MkZsti1fjX1wltw0kZ+b/R6GrWLJG5r/rCT9cObs331Chq2bMMJXd4/sBr7N64ntIOmT6WgmoAWI6JOaBhb/1lBSKs2nDiUhLPFQmCt2oWuy94YblFDBfaGIDyLGIKwV25jryL+z+25gWXvtSNX1LDCBTt5JRhqKAp7ww0lkTPbiTpWYLhizZpoXnr5AyYujSm2WiWJtWwPe7+Hon4jGXZeTCgqboQ9W1GSIQi7w4dWK3s3x9AgPIKYlcsIbd2O44cSETHhG1CFBT9P5PihRJb8Po02t3Wn5yNPsGbhPBZPn8r9z71Ez0ef4MThQygUAdWC2LpuDRFRndm7JYaA6jlhaQ/SMLwFG1csI7RNu9wwtjnyLTt1YXdMNFVqBgNwNP4gTVq0InrFUuo2CmXP1s0EBteiSvUgutWuUr5uaEqpgr4Yg0TkOaCtiGwDXgGGKqVmAIjIY8Bx4CHgB5vzvgFeE5FhSqmNpaJ9KTJv3Ghad7+TX4Z+yFsTfmP6iCG0uK0HGWlpbFu9nOeGjWbaZx/x4FuDWT9/JgCtut/FtM8+5I3xv7Js6kSq1qkLwI7VK3j6i1EsnjQGZbXy7wKtCVt2u4vfvviQV8dO44+vhtK4fVSu/HPDRjHts4/o+9YHrJ8/K7f8P77+gpohjZk2fAhNO3YC4HjCQfwDqzP508E8OuhD1sydiaubG09/NLScW83gcjRr1oidO/dx8eJFnBwUcetaJvNCBj8N/Yi3Ro1jzIfv8szgT1g+6w98/Pxp1r4jf02bwtBfZ7Jv62ZSjh/jzQfuxtnVhUE/TOC7994iuGEIG5f/TeqZM0TddS9jPhrEZ7/OYvbEH6mhu6FGL1/KO6PHMeajQTw7eAjLZv4OkCtfr8lsfhzyES063aLL/817349n9AfvMODDIayYq/3eu9i4uJYWJZqEExEzcD8wCYgA0oADQCul1L82cvOAE0qpx/R9pZ/3AOCnlLpFz5/AJXrAIvI02tAGen0GBgYGjuSkUsq+j9oVUKwXMUQkFFgLuAKpwD1KqW0i0k4XOVbglGNANTtFvQPsFJFuSqmFl6tXKTUGGFMcHcsCEYlWSrVwVP03Mkbblh1G25YdIhJdmuUVd2BpDxAGtAG+AyaKSBOb4wW70WInD6XUfmAsMFTEnsOlgYGBwc1DsYygUipTKbVfKRWtlHob2Ay8ChzVRQpOq1emcK84hw+BOsDDV6CvgYGBwQ3DlfZCTYALEIdmhLvmHBARV6AjsMbeiUqp48Aw4H96GdcyDhv+uAkw2rbsMNq27CjVti2OG9pQYB6QCFRA8254E+ihlFqgu6ENQnND24vmkhZJYTe0+5VSv+v7nsB+wBv4+1rwAzYwMDAob4ozCVcFmKJ/ngG2At2VUn/pxz8H3IBR5L2IcVuO8bWHUipVRD4ERl+F7gYGBgbXNddNLAgDAwODGw3DE8HAwMDAQdw0BlhEqorIRBFJFpEMEdkpIlE2x0VEBovIYRFJF5HlItLY5vg6ERlboMxHRESJyGsF8j8RkYSyvyrHIyLPi8hWETmrp7Ui0sPmuNGu5YiIDBCROP0e3ygiHR2t07XM1d6/uowqIj17ufpvCgMsIj7AajT/5B5ACPAi2ivTOQwEXtPzW+rHFotIBf34UqBzgaI7AQlF5C8rtQu4tklCm5RtDrRAa6eZIpKz4J3RruWEiPQBvgI+BcLRPJEWiEgNhyp2bXO1928OTwFVC6SJl61dKXXDJ7QbcvUljgtwBBhkk+cGnAOe0fe7or1cEmQjEws8izY5adbzPNCCFz3m6Ot2YHunoEXQM9q1fNt9PTC2QN4+YIijdbueUknuXz1PAfddSV03RQ8Y6AWsF5FfReS4iGwWkRckL+JyLTQvj0U5Jyil0oGVQM7r1qvRDEBnABGpifa69SS017NzYlV0AJy4CXtqImIWkQcBT7Tel9Gu5YSIOKO11aIChxaR19YGl+AK79+r4mYxwLWBAWg9q9vRHtOGAs/rx3Pe5LMX06IKgFLqPLCBvMfizsAGPX9FgfwDSqmbZqxSREJFJBW4AHyPHisEo13LE3/AzCXa2q57St4AABIQSURBVMA+V3P/2jBZRFILpNDL1X2zGGATEKOUelsptUkp9RPwNXkGOIfLxbRYRn6DsFzfXl4gf2npqH3dcLWxQox2LT2KFZfFIB+lEevmDb0M27TnchXfLAb4CLCzQN4uIGdyorgxLZYCNUUkGG1CaLmevwJoLyK+aIP5N9Vjsrr6WCFGu149J4BsShaXxYBSi3VzVC/DNl121YCbxQCvBhoUyKsPxOvbxY1psRZtZY/+aF/KGgCl1B60gfn/or1deLMbipLGCjHa9SrRf+wbsWlrna4UEZfFoEiuONZNiXH0jGM5zWq2RFuTbhBQFy04/Bm0tetyZN4EzgL3Ak2AacBhoEKBspbqcqsK5E/T83c6+nrLuW2H6jdkMBAKDAGsaK+rG+1avt9FH7QJzf5orpZfoU1k1nS0btdqKo37F204IqfzYJs8L1u/oxugHBu6B7AFrae1F3gJ/VVs/bgAg9GGKzLQHn+b2CnnPb3B/1cg/1k9/1tHX2s5t+sEtCeJC2g+kkuA2412ddj3MQA4qH8fG4FIR+t0LafSuH/1+9Ne+vhy9RuxIAwMDAwcxM0yBmxgYGBwzWEYYAMDAwMHYRhgAwMDAwdhGGADAwMDB2EYYAMDAwMHYRhgAwMDAwdhGGADAwMDB2EYYAMDAwMHYRhgAwMDAwdhGGADAwMDB2FxtAJlhYhUBx4DunMDX6eBgcEVkw7MAH5RSqU4QoEbKhaEiLiYq7TOsJ49CMqKyasG4lENLM4gZjCZEZP2ickEYtK2JSdPP26zn5tAzzflL0csYLFgMpkwmQWzyYTJbMJkEkxmk74vmMSk74t+3FYmL89sFkTfBnLLNJvNmC0mTCKa2jafJgER0bZNIKJfnohWh4DJJHq+jXzOtn5MTNoKTSbRyzUJZv0cc+65BbZ1Hcy5uujHbfLE9rheltkkWPQytDolV9Z0mSQimGzOKXie7bbZZMLfWfB10m8SlQg5i2qoLFDZNqmIfbIL5F9CVmWDugjWLJSygtWqfeq/s7w8BUo/ZlW6jLXAOVaU1UYOK8qaI6dQ1izItqKyrfqnyrcP6Nuq8DGrvm0t+vy8c/OOK6tCUzFnW6FdirYNYFWajLKVucx5ucezFFYF2UqwKiHbKvn38+Vr+1qdQrYiv4wSVL59sFq1/YtWE+nZii1nM9h8Nh1fJzMtfNwYn3jaopTKLks7ZcsN0TMUkWYmnzqbcfZCXTiNuVIzxNlm0VIx5Sax2UYKG9uSG2AzmCyIyaQZMpOp6G2zvm22yS+YZ84zxqAZYM24m7V8ewbYVNAAS4kNsKk0DfAl8srKABdljM0mE05OglOuAXYCpd/2ClBik4rYx3Y/J6lL7OcYVQGrZgTyDHBOnhWUnq0bo7x98vatKi9fs8X6vkJZTbmqaZ8q3z656iuUWEEEJaL9Q1v17WxBoZ2gaWi7L3oz5R3PaRqrbTOpvG0Aq7Xo8GDWIposJ99qUliVILrRFDQDnLufL1/bB/Rt8mSsuoyuu+jXoi0DKVhF8LQI7X3daVfRjUMZWUSfSaeKiyXrFn9Plp5Mq62UiiuO/bkarlsDLCK+pkphJ9W5BMSzGuIegMW/qWZgDQwMDIqJiFDdzYnqbk5ctCp2nMugrrtzbF0PFyK8XfntyFl3pS3GWepcVwZYREzmwA7Z1rMHEZeKoKyYq7ZDLC6OVs3AwOAGwMkkhHm7EebtRkpmNjFar/h8m4rurD+d3gqIVqU4bntdGWCcK2Rnn9iKOSACcalI3qryBgYGBqWLr7OZWyt50sXfg71pmexMvbChhqsT5A7wXD3X1/N65rmWJjd/so/FYE3ZhbqY5miNDAwMbmCOZFxk3vFz/JWcSoS3KztSL9QvzfKvqx6wUioaEBFxE6f657OPxQAKk1ewNg6cM1lmYGBgcIWkZ1vZfDaDTWcy8HYyEeHtxppT6U5HMi5mlXZd15UBzkEfEBcAEaml3PxjsxOXYXLzRbyCjeEJAwODEmFVigPnM4k+nc7Ji9mEebmSmHGxckK6SgZt4biy4Lo0wLboriIiIiapFJptPbUfLqYiFYIwVahhTNAZGBgUSUpmNhvPpLMz9QI13ZzYeu5CS2BjUvq5cnlB4ro3wDkozVM9p1dcUbxqpmQfWZPrpwu6/6PuB6hL2uxrSZACsuR92pHPd67oHodCvn10v1tsjuf00EVs5LGRyz2u1Zsjl6tSTrnYXo7kzg7kqS4F9nOvJE/eppy8jxz9847nllWgvNxrtjlmq1+efF6ZYqNz7nkF9222c9sq75socL1527b7IoKzgFPubEc65HoU2TrfKvv7lzp2KVkbx958v+TcfK1+lZuHzXl5ecpG1vb83MV4c51pc3yJ7cjb5Cvb40Uds/0kJ9/GaTdXDZtryznfdt+mfmUnL+8yVd5lW3OuWukqSP7LQHLLsT2e+22qgjKSr+6c40pBhlVhESHC25WjF7Lcj2RcLBNXs0txQ70JZw8ReQ2Y6mg9SsDDwM+OVqIEGPqWLYa+ZccDSqmRjlTgZjDA0UqpFo7Wo7gY+pYthr5ly/Wk77Wg6/XlhmZgYGBwA2EYYAMDAwMHcTMY4DGOVqCEGPqWLYa+Zcv1pK/Ddb3hx4ANDAwMrlVuhh6wgYGBwTWJYYANDAwMHMQNZ4BF5GkRWSYip0VEiUhwMc7pp8sWTK7Xor76eb1FZKeIXNA/7ylbTXPrdRGRb0TkhIikichsffmnS50z2E7bHi0j/QaISJyIZIjIRhHpeBn5KF0uQ0RiReTZstDrEvUXW18R6VTEfdqwHPSM1L/rQ3qd/YpxTqiIrBCRdP2896WcYgSUVF8RCS6ibbuVpZ43nAEG3IFFwOASnnceqGqblFIZpauaXUqsr4i0BX5Fc3gP0z+ni0jrslCwACOB3kBfoCPgBcwVkctFQtpD/vYNLW3FRKQP8BXwKRAOrAEWiEiNIuRrAfN1uXBgCPCNiPQubd1KQ18bGpO/LfeVpZ46nsB24GW0tdQuiYh4AYuBY0BL4CXgDeC/ZaijLSXS14Zu5G/bpaWvmg1KqRsyAS3Q3j4MLoZsPyD1OtL3V2BxgbwlwNQy1tEbyAQetskLQltR5vZLnDcY2F4ObbgeGFsgbx8wpAj5z4B9BfLGAWvL6Tsvqb6d9HvEvzz0u4TeqUC/y8g8B5wF3Gzy3gUOoU/+X2P6Butt26I8dbsRe8BXipuIxItIkojMFZFwRyt0Cdqi9Zpt+QtoV8b1RgBOtnUrpRKBXcWou7b+OBgnItNEpHZpKiYizrp+Bdtl0SV0K6odW4iIkx35UuMK9c0hWkSOiMjfItK5TBS8etoCq1T+pXz+AgLRjN21yh8iclxEVovIfWVdmWGANfYATwB3oz1aZwCrRaSeQ7Uqmipoj3a2HNPzy7rebOBECetej/aU0R14SpddIyJ+paibP2CmZO1SVDta9PLKkivR9whaz7I3cC/affu3iESWlZJXQVFtm3PsWiMVeB14ALgD+Bv4VUT+U5aVXhfR0ETkY2DQZcQ6K6WWX0n5Sqm1wFqb+tYAm4EX0cauSkRZ66tT0IFb7OQVi+Lqe6kiLlW3UmpBgfrWAbHAY8CIYqpZXEraLvbk7eWXFcXWVym1B83o5rBWn7R9HVhZFspdJY5u22KjlDoBDLfJihYRf2AgMKWs6r0uDDDaxM/lGiGhtCpTSmWLSDRwpT3gstb3KIV7EZUp3OMoLsXVtw1ar80fSC5Qd7ENgFIqVUR2cOXta48TaL3zkrRLUe2YBZwsRd3scSX62mM98GBpKVWKFNW2cOX3aXmzHni8LCu4Lgyw/u9U8LG3zNBdZZoCW67k/HLQdy3QFfjCJq8r2ix6iSmuviKyEbio1/WLnlcdCClJ3bp7X0Ng2ZXoaw+lVKauX1dgus2hrsCMIk5bC/QqkNcVbeXbi6Wlmz2uUF97hKENTVxrrAU+ExFXledN1BU4DBx0mFYlo+zb1pGzqWU041lFb7iH0B517tD3fW1k/sZmphn4ALgdqK3LjkczNK2uUX3bofXS3kYzZG/r+rYuB32/Q5vJvhXNdWoZ2nCN2UZmN/CCzf4wIAqoBbQG5qLNkNcsZd36oHlp9Ef7U/gKbWyvpn58EjDJRr4WkIb2BBCin5cJ9C6ne7Wk+r6C9odRD80VbYh+z9xbDrp66vdlGJrL5vv6dg39+BDgbxt5b7Re8DSgCdqY9VngtXJq25Lq+5j+GwwBGqAN62QCr5apnuXRGOWZ0FyelJ3Uz0bmIDDBZv9LIB64ABxHm61te63qq+fdpxu6TDQvhDL/Eer1ugLfoD2inwfmAEEFZBQw2GZ/GlrPJxPNeM8AGpWRfgP09roAbAQibY4tB5YXkI8CYnT5OODZcr5fi60v2njkfjS/1hRgFXBHOenZqYj7dIJ+fAJwsMA5oWhDUxloPckPKCcXtJLqi2aAd6L9IZ8FooH/lLWeRjAeAwMDAwdhuKEZGBgYOAjDABsYGBg4CMMAGxgYGDgIwwAbGBgYOAjDABsYGBg4CMMAGxgYGDgIwwAbGBgYOAjDABsYGBg4CMMAGxgYGDgIwwAbGFwDiMh3OeuXOVoXg/LDeBXZwOAaQA+qvgc4qpQql4UrDRyP0QM2KDGiEaevGlvX0fpcChFZbrPC7SuO1qcolFIrlVJ24+QWWFX69/LWzaDsMAywwZXQlrxFDK/FYOAFWYam8zRHK3KFjEPTf5OjFTEoXa6LgOwG1xx90cJLrta3P3asOpclRSm1zlGVi8g/QHU7h/5WSj15ufOVUklAkoicLXXlDByK0QM2KBEiYgbuR1vFYSrQSESaFpBZXvBRWUQ66Y/QTcpP26IRkQkiEi0iPURkp4icF5F5IuIrInVFZJmIpOkyTS9TVmMRWSgiKfo5u0Tk+ZzjSqkOSqlgO+myxtfgxsYwwAYlpQsQAPwKzEcLXt3XoRpdOTWAj4B3gafRVhoZgzZUMQ0t6L0FmKYvU1UUs9HWd/sPcBdawPoKZae2wY2CMQRhUFL6oi3QuU4ppURkFvCgiLyjrj+XGl+0lU8OAOg93TeAx5RSk/Q8AeahLf20q2AB+sq5tYFeSqltevbfJVVERMYB3fTtJGChUqp/ia/I4LrC6AEbFBsRcQHuAX6zMbbT0Cbk2jhKr6vgYI7x1dmvfy61k1etiDJSgETgexHpIyKVi5C7JEqp/kqp6kop0T8N43sTYBhgg5LQHfBBG37IYTGaESrRMIQ+9rpFRDaLyBoRCbE5dlAfl92sp0Y2x5qISIyI7BOR2SJyNY/6pwvsZ9rJz8lztVeAUsoK3Ia2AOV44KiIrBKR8KvQy+AmwTDABiWhLxCrlIrOyVDa8u1/Ag/oE3SgLcLoXOBc3wL7Y4EHlVJhwBS0sVhb7lBKhelpp03+98C7Sql6aIuSDryqKyoFlFK7lVK90f6cbkUz1vNExPh9GVwS4wYxKBYi4gn0JH/vN4dpaBNznfX9JLQxU1u6Fti3Al76tjfaqrmX0yEAqKWUmq9n/Qj0vqzy5YRS6qJSaikwAqiKZpANDIrEmIQzKC53A+5Aqoj0KnDMjLasel9gCVqP+EkR+RJtAqszcHuBc/4DzBWRDLTl7dsXOD5TnwCbi7bE/UU0X9okG5kEIOhqL+xq0CfuhqH9McUCFYE3gS1KqRRH6mZw7WMYYIPikjPG+8klZO4VkQFKqXki8g4wAOgPzAJe0T8REQuakeqilNomIk8BE9B62AAdlFJJeq97MvA6MAQQtLfvriWOAseAQUAg2vjxMrTrMzC4JEYwHoNyR0RaAKOUUq31fXcgWSnlYUe2J/CMUupOEakCbFRKVdOPNQBmKqVCCp5nc/5y4CTQB8i+Dl3l0MeSTWjubclKqfscrJJBKWGMARs4giSgnojkDB90A3YCiIiHiHjp2xa0Md6tAEqpo8BBEblDP+9J4I9i1HcvcBF4udSuoHx5H03/SEcrYlC6GD1gA4cgIo+jDS1kAWnAs0qprSJSG82omtDGltcCLymlzuvnNQUmAp5o4RsfVkqduUQ9Dch7Ky1BKXW8jC6pzBCRQLThDdDiWsQ6Uh+D0sMwwAYGBgYOwhiCMDAwMHAQhgE2MDAwcBCGATYwMDBwEIYBNjAwMHAQhgE2MDAwcBCGATYwMDBwEIYBNjAwMHAQhgE2MDAwcBD/ByywToJz2/X+AAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 360x504 with 4 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "response_plot = ['cloud TR', 'cloud ML', 'cloud PO']\n",
+    "\n",
+    "du850_plot = np.array([du850_djf_shift[response_all.index(r),\n",
+    "                                       latind_sout:latind_nort+1,\n",
+    "                                       lonind_west:lonind_east+1] \\\n",
+    "                       for r in response_plot])\n",
+    "mask_plot = np.array([du850_mask_shift[response_sel.index(r),\n",
+    "                                       latind_sout:latind_nort+1,\n",
+    "                                       lonind_west:lonind_east+1] \\\n",
+    "                      for r in response_plot])\n",
+    "\n",
+    "# box around region with jet exit strengthening\n",
+    "#lonwest = -4; loneast = 25; latsout = 52; latnort = 61\n",
+    "lonwest = -4; loneast = 26; latsout = 52; latnort = 62\n",
+    "\n",
+    "# plot\n",
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(3, 1, figsize=(5, 7),#figsize(10),\n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "ax = ax.reshape(-1)\n",
+    "labs = ['(a)', '(b)', '(c)']\n",
+    "for r in range(du850_plot.shape[0]): # loop over responses\n",
+    "    ax[r].coastlines(rasterized=True)\n",
+    "    ax[r].set_aspect('auto')\n",
+    "    ax[r].tick_params(labelsize=14)\n",
+    "    # extended North Atlantic region\n",
+    "    ax[r].set_extent([-70, 30, 30, 70], ccrs.PlateCarree())\n",
+    "    # set yticks for longitudes\n",
+    "    ax[r].set_yticks([30, 50, 70], crs=ccrs.PlateCarree())\n",
+    "    lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "    ax[r].yaxis.set_major_formatter(lat_formatter)\n",
+    "    del lat_formatter\n",
+    "    # draw box around region, for which we determine the area-mean response\n",
+    "    # left vertical line\n",
+    "    ax[r].plot([lonwest, lonwest], [latsout, latnort],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # right vertical line\n",
+    "    ax[r].plot([loneast, loneast], [latsout, latnort],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # upper horizontal line\n",
+    "    ax[r].plot([loneast, lonwest], [latnort, latnort],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # lower horizontal line\n",
+    "    ax[r].plot([lonwest, loneast], [latsout, latsout],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # jet latitude in control run\n",
+    "    ax[r].plot(lons_plot, jetlat_nh_plot, marker='x',\n",
+    "               color='k', linestyle='none', markeredgewidth=2,\n",
+    "               markersize=2, transform=ccrs.PlateCarree())\n",
+    "    # plot different effects\n",
+    "    cf0 = ax[r].pcolormesh(lons_plot, lats_plot,\n",
+    "                           du850_plot[r, :, :],\n",
+    "                           vmin=-1.5, vmax=1.5, cmap=mymap2,\n",
+    "                           rasterized=True,\n",
+    "                           transform=ccrs.PlateCarree())\n",
+    "    # stippling for significance\n",
+    "    ax[r].pcolor(lons_plot, lats_plot,\n",
+    "                 np.ma.masked_values(1*mask_plot[r, :, :], 0),\n",
+    "                 hatch='.....', alpha=0.,\n",
+    "                 rasterized=True,\n",
+    "                 transform=ccrs.PlateCarree())\n",
+    "    ax[r].set_title(response_plot[r][0:8], fontsize=16)\n",
+    "    # a), b) etc for subplots\n",
+    "    ax[r].text(0.01, 1.02, labs[r], va='bottom', ha='left',\n",
+    "                      rotation_mode='anchor', fontsize=15,\n",
+    "                      transform=ax[r].transAxes)\n",
+    "del r\n",
+    "# xaxis: longitudes\n",
+    "ax[2].set_xticks([-60, -30, 0, 30], crs=ccrs.PlateCarree())\n",
+    "lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                    degree_symbol='',\n",
+    "                                    dateline_direction_label=True)\n",
+    "ax[2].xaxis.set_major_formatter(lon_formatter)\n",
+    "del lon_formatter\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# colorbar for response\n",
+    "#clevs = [-1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5]\n",
+    "fig.subplots_adjust(bottom=0.08)#(right=0.8)\n",
+    "cbar_ax = fig.add_axes([0.13, 0.0, 0.804, 0.02]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf0, cax=cbar_ax, orientation='horizontal', extend='both')#,\n",
+    "                  #ticks=clevs)\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf0#, clevs\n",
+    "\n",
+    "fig.savefig('figure5a_5c.pdf', dpi=200, bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj\n",
+    "del response_plot, du850_plot, mask_plot\n",
+    "del lonwest, loneast, latsout, latnort"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/.ipynb_checkpoints/figure6_tropical_cloudimpacts-checkpoint.ipynb b/pythonscripts/.ipynb_checkpoints/figure6_tropical_cloudimpacts-checkpoint.ipynb
new file mode 100644
index 0000000..a00fdd4
--- /dev/null
+++ b/pythonscripts/.ipynb_checkpoints/figure6_tropical_cloudimpacts-checkpoint.ipynb
@@ -0,0 +1,471 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Zonal wind response: tropical cloud impacts\n",
+    "    \n",
+    "This script generates figure 6: maps of the impacts of western tropical Pacific, eastern tropical Pacific, tropical Atlantic, and Indian Ocean cloud changes on the zonal wind response in ICON."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load own colorbar"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mymap, mymap2 = fct.generate_mymap()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated (total response, SST impact, global cloud impact, regional cloud impacts)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# simulations with global cloud changes\n",
+    "runs_glo = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "\n",
+    "# simulations with regional cloud changes\n",
+    "runs_reg_TR = ['T1C2TR', 'T1C1TR', 'T2C2TR', 'T2C1TR']\n",
+    "runs_reg_TA = ['T1C2TA', 'T1C1TA', 'T2C2TA', 'T2C1TA']\n",
+    "runs_reg_IO = ['T1C2IO', 'T1C1IO', 'T2C2IO', 'T2C1IO']\n",
+    "runs_reg_WP = ['T1C2WP', 'T1C1WP', 'T2C2WP', 'T2C1WP']\n",
+    "runs_reg_EP = ['T1C2EP', 'T1C1EP', 'T2C2EP', 'T2C1EP']\n",
+    "\n",
+    "runs_reg = runs_reg_TR + runs_reg_TA + runs_reg_IO + runs_reg_WP + runs_reg_EP\n",
+    "runs_all = runs_glo + runs_reg\n",
+    "\n",
+    "# responses\n",
+    "response_all = ['total', 'SST', 'cloud',\n",
+    "                'cloud TR', 'cloud notTR',\n",
+    "                'cloud TA', 'cloud notTA', 'cloud IO', 'cloud notIO',\n",
+    "                'cloud WP', 'cloud notWP', 'cloud EP', 'cloud notEP']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal wind at 850 hPa"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T2C1\n",
+      "reading T1C2\n",
+      "reading T1C2TR\n",
+      "reading T1C1TR\n",
+      "reading T2C2TR\n",
+      "reading T2C1TR\n",
+      "reading T1C2TA\n",
+      "reading T1C1TA\n",
+      "reading T2C2TA\n",
+      "reading T2C1TA\n",
+      "reading T1C2IO\n",
+      "reading T1C1IO\n",
+      "reading T2C2IO\n",
+      "reading T2C1IO\n",
+      "reading T1C2WP\n",
+      "reading T1C1WP\n",
+      "reading T2C2WP\n",
+      "reading T2C1WP\n",
+      "reading T1C2EP\n",
+      "reading T1C1EP\n",
+      "reading T2C2EP\n",
+      "reading T2C1EP\n"
+     ]
+    }
+   ],
+   "source": [
+    "u850 = {}\n",
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "for run in runs_all:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats = np.array(ncfile.variables['lat'][:].data)\n",
+    "    lons = np.array(ncfile.variables['lon'][:].data)\n",
+    "    levs = np.array(ncfile.variables['lev'][:].data)\n",
+    "    uwind = np.array(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()\n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # find index of 850 hPa level\n",
+    "    u850[run] = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "u850_djf = {}\n",
+    "for run in runs_all:\n",
+    "    u850_djf[run] = fct.calcMonthlyandSeasonMean(u850[run], months, seasons)[1]['DJF']\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF jet latitude in control simulation (T1C1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "jetlat_sh_T1C1 = np.full(lons.shape, np.nan, dtype=float)\n",
+    "jetlat_nh_T1C1 = np.full(lons.shape, np.nan, dtype=float)\n",
+    "for i in range(lons.shape[0]):\n",
+    "    jetlat_sh_T1C1[i], _, jetlat_nh_T1C1[i], _ = \\\n",
+    "       fct.get_eddyjetlatint(u850_djf['T1C1'][:, i], lats)\n",
+    "del i"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate responses (total response, SST impact, global cloud impact, regional cloud impacts)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "du850_djf = np.full((len(response_all), len(lats), len(lons)), np.nan,\n",
+    "                    dtype=float)\n",
+    "# total, SST, cloud\n",
+    "du850_djf[0, :, :], du850_djf[1, :, :], du850_djf[2, :, :] = \\\n",
+    "  fct.calc_impacts_timmean(u850_djf['T1C1'], u850_djf['T2C2'],\n",
+    "                           u850_djf['T1C2'], u850_djf['T2C1'])\n",
+    "# regional cloud impacts\n",
+    "for k in range(int(len(runs_reg)/4)):\n",
+    "    _, _, du850_djf[k*2+3, :, :], du850_djf[k*2+4, :, :] = \\\n",
+    "      fct.calc_3impacts_timmean(u850_djf['T1C1'], u850_djf['T2C2'],\n",
+    "                                u850_djf['T1C2'], u850_djf['T2C1'],\n",
+    "                                u850_djf[runs_all[4:][k*4]],\n",
+    "                                u850_djf[runs_all[4:][k*4+1]],\n",
+    "                                u850_djf[runs_all[4:][k*4+2]],\n",
+    "                                u850_djf[runs_all[4:][k*4+3]])\n",
+    "del k\n",
+    "del u850, u850_djf"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read masks for significant responses\n",
+    "\n",
+    "These masks are generated with the script \"calculate_significance_bootstrapping.ipynb\" based on time series of the seasonal mean zonal wind."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ipath_bs = '../../ICON-NWP_lockedclouds/'\n",
+    "du850_mask_sm_bs = np.load(ipath_bs + 'du850_mask_sm_bs.npy',\n",
+    "                           allow_pickle='TRUE').item()\n",
+    "del ipath_bs\n",
+    "\n",
+    "# only store masks for tropical regions\n",
+    "response_sel = ['cloud WP', 'cloud EP', 'cloud IO', 'cloud TA']\n",
+    "du850_djf_mask = np.array([du850_mask_sm_bs[r][seasons.index('DJF'), :, :] \\\n",
+    "                           for r in response_sel])\n",
+    "\n",
+    "del du850_mask_sm_bs"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Prepare plot\n",
+    "\n",
+    "Shift the longitudes from 0deg...360deg to -90deg...270deg for visualization reasons and select the North Atlantic region (otherwise it is very slow to add the dots for the regions, in which the response is significant)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# shift longitudes\n",
+    "du850_djf_shift, lons_shift = fct.shiftgrid_copy(90., du850_djf, lons, start=False)\n",
+    "du850_mask_shift, _ = fct.shiftgrid_copy(90., du850_djf_mask, lons, start=False)\n",
+    "jetlat_nh_shift = fct.shiftgrid_copy(90., jetlat_nh_T1C1, lons, start=False)[0]\n",
+    "\n",
+    "# find indices of border of North Atlantic/Europe box\n",
+    "# -> makes plotting faster (important if mask is plotted)\n",
+    "lonind_west = (np.abs(lons_shift--72)).argmin()\n",
+    "lonind_east = (np.abs(lons_shift-32)).argmin()\n",
+    "latind_sout = (np.abs(lats-28)).argmin()\n",
+    "latind_nort = (np.abs(lats-72)).argmin()\n",
+    "\n",
+    "lons_plot = lons_shift[lonind_west:lonind_east+1]\n",
+    "lats_plot = lats[latind_sout:latind_nort+1]\n",
+    "\n",
+    "jetlat_nh_plot = jetlat_nh_shift[lonind_west:lonind_east+1]\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot maps of cloud impacts from the four tropical and the linearity IO+WP+EP+TA vs TR "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAJyCAYAAAC7cE0mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydZ1gUVxeA3wtL76iggjS7ImIBG/aGsRuNxhpLEqNpmliTqIkaY+yxJGoSNfYeOyIqKqIodmyISFEUBEF63fl+zKoIu1G+RI1x3ufZB/bumbtnZmfOzLnn3HOFJEkoKCgoKCgoKCgoKCg8L3qvWgEFBQUFBQUFBQUFhdcLxYlQUFBQUFBQUFBQUCgRihOhoKCgoKCgoKCgoFAiFCdCQUFBQUFBQUFBQaFEKE6EgoKCgoKCgoKCgkKJUJwIBQUFBQUFBQUFBYUSoTgRCq8VQohAIUTgK/jeKUKIv6yHLITYL4SI1NI+TgghCSF+1PLZaSFEaKH3URpZSQihFkLECiG2CCGq/TN7oqCgoCDzb7anGrnAQvaw6Gt+IbmVRT67L4Q4KoTwfbF7oqDwZvPaOxFC5oIQYlAJtlkshPjtReql8EZyFHAVQjgWaW8GZGr+PkYIYQ7U0WxXmP1AI8AHmAR4A8eEEHYvQmmFN5uiNlTjyM5+xjb1hRBJQgirl6OlwhvMRWR7WPQ1r4jc/UKfvQ8IYK8QovXLU1VB4c3itXcigHcAG2BdCbaZBfQTQlR6MSopvKE8cgYeOwtCCD2gCbAcqCeEMCsk3wTQB44U6SdRkqSTkiQFS5K0AhgAlAb6vzDNFd5kSmxDJUkKBc4Do16UUgoKGtI09rDoK7qIXG6hz/4EOgKpwGcvX2UFhTeD/4IT8SmwWpKkvOfdQJKkKCAI+OhFKaXw/yGEqC2E2K4Z5cwSQlwXQkx4xjZVNdukaLY5WTSMrQl3R2nZtlg4XwhRRwhxTAiRLYS4I4T4BnlU61mcArJ5OuJQG7AC5gIFyKNkj2gGSMCxZ/R7WvNXcXoVXgQltqEaVgDDhRCqF6CTwj/Aa25P/xaSJKUC4Sh2U0HhhfFaOxGaSEJjYEuhtoFCiCAhxAMhRLIQ4rAQor6WzbciRyNe62PwX0II4Q2cACoij3B2RH74LpoeVHib8sgOYW3gY+RR1RRgjxCiw/+hQ2ngEPLI/yBgJOALDHnWtpIk5QAhPO1ENAPCJUmKQXYGin52WZKkB8/o2lXzN+V59kFB4XnRZkMLffaNEOKeECJdCLFWS+rSTsAWaP8SVFUoIa+7PS3Sj0rL6y8dEY1zWwHFbioovDBe9xGk1kAGcKFQmwvwB3ATMAT6AkeFEO6SJBWe9BoM2AO1imyv8OqYDSQBDSVJytS0HXrGNqORUzEaSZIUASCE2AtcAaYD+0qowyjADGivefBHCHEAKBo618VR4BshRBlJku4jOwqPIg3HNO8RQhgDXsCvWvoQmhugHlAFWAqo0fKgp6DwN9FmQwHeBSKQc8vLAT8in6u9HglIkpQqhLgMtAH2vBRtFUrCf8Gegpz2qS1K1osiNrFQVKws8I3m78wS6qygoPCcvO6j8PWAq5IkqR81SJL0nSRJyyRJOog8QXUwEEPxfPLLyOkl3i9LWQXdCCFMkW8Wawvd8J6HZsDJRzc8AEmSCoD1gKcQwrKEqjTS9BdTqL8MYNdzbv9ofkNTzV8fnjgRQUADIYQh0AAwovikapAd3zwgB7gElAd6SZJ0tgT7oaDwPBSzoRpMgI6SJO2SJGkZ8gjy20KI6kXkLqDY0H8d/yF7CvI55qXldbCInAOy3cwDYpHt6CTgpxLqrKCg8Jy87pGIskBi4QbNTe575BB94Wo2VQrLSZKUL4RI0fSh8OqxQXZqb5dwO1vgnJb2e8h5tzbIk+uel3JAmJb2+Ofc/gTyTayZEOIq8jn4yIk4jhwd8+ZJWpM2J2If8s2vAIiTJOl5v1tBoaQUs6EaDkiSlF7o/TZgDfLD29VC7Yk8cZgV/j38V+wpQLpmIv+zSEBO2ZKQIzCxGgdIQUHhBfG6OxHGyKUzARBCWAD+yAZqNHLINBs5DG+sZfscHe0KL59k5JQdhxJu9wDtjmBZ5JvJo/kG2cgP8EUphXzDecRd5DS3omhrK4YkSZlCiDPITsJVZCcgUvPZQyHEJc1nj+ZK3NPSzYPnvGkqKPxdnrKhhUgo/EaSpCwhRDryQ2FhFBv67+Q/YU9LSJ5iNxUUXi6vezrTA8C60PtGyJPG+kuStFaSpCCNUdFVy9yaJ0ZR4RWiCbkHAf2FECYl2PQI0FAI4fKoQQihD/QGzkmSlKZpjgbsNRP9HslVBKoW6e+Epr8KheTMgM4l1Kk20InilZeCgFbI56q2KISCwsukqA19xFNrkmiuSXPkh8LCKDb0X8h/zJ4qKCj8S3ndnYjrPKlcA3IeL8ijYwAIIRojT7Z+CiFEGcAUuQScwr+DL5FHsk4IIQYIIVoKIYYKIRb+xTbzkKtvHBBC9BVCdELOt60CfFVIbjPySNpaIUR7IUQ/YAfFUznmIU809RdC9BZCdEOObmWVYD+OIl9bHSnuRBxDdiLMUJwIhVdPURv6iLZCXgzxET2Qr5+iI70uKDb038p/xZ5aCCEaankVdVgUFBReMq+7E3EccNI4BAAngXRguRCinRBiCLABuKNl2/rIRjD4pWiq8EwkSTqNPBkwFlgI7AXG8Bd5vZIkxSFPXr4M/IxcrcMWeVKoXyG5CKAncnj/T2AscspbeJH+EpEr1iQCq4DFgB/wewl2JQh5PoNAuxPxqDSh4kQovGqK2tBHZCGX9ewkhHgf+TrYLknSlSJy9TV9KPzL+A/ZUw/kiEbR15wS9KGgoPACEJIkvWod/m80VW7uAp9LkrRa0+aLXNquInADGI9s4BIlSepZaNsFgIckSS1fuuIKCgoK/wJ02NAo5HV00pAX5DRHXhPiI0mSUgptWwc4A7hpFvBUUFBQUHiDeK2dCHjsDFSSJKljCbbRR87pHC9J0poXppyCgoLCv5z/x4ZqtpsBeEmS1ObFaKagoKCg8G/mmelMQogoIYSk5bWnkMwIIcQtzbL2Z4QQTXX0UbR9ihBCW/m3kjALaCGEqPJMySf0Qg7Xb/ib362goKDwulNiG6qZHPs+MO2FaaWgoKCg8K/meeZEeCGX9Xv0qos8l2ATgBCiN7AAeW2GOshzDPYJIZyK9JPNC1g5UpKk28BQipce/CsEMFSSpPx/Wh8FBQWF14n/04Y6Ad9JkhT4QpRSUFBQUPjXU+J0JiHEV8iTs8prauKHABclSXq/kMwNYIskSRM076OQKzd8APSTJGmbpn0K0FOSJPd/YF8UFBQUFBQUFBQUFF4CJVpsTgghkEes1mgcCEOgHvJE5sL4I68YXZhHFSJmCCF2Pk8UQAjxAbLjQalSpeolJSU9YwsFBQWF15ZoSZJcXlTnLi4uUnR09IvqXkFBQeFV80JtqEJxSrpidVvkmuK/at6XBvQpvoR9PKBtst0MYJjm9cuzvkySpGXAMgAhhBRyPwOVXvEMrB1rV7Hsx+n8tieA8hWcn2tH8goKOHk4gLqNm3I3NgYAe8cKnAs+RoOWbQg7cxoHZxcA0pOTcatWvbh+ajUhgYdo1KoNl0JP4egil1uPi4mmZt36nDgUQL0mTTl3Mpgx7/Xhk6+/w6edL47OT8qy5+bksHfLRiKvX2XPpnUYGRtjam5OOUcnflyxjjPHjz3VvxCCO1G3qFXfm+BDB6jfpBl3Y6MxNTF9rG9hqlvoaz8A+Qe1t0sFz3X8nonQ8r3a2v6Kkuqipf+0tEx2/HmEDZsDORYURvu29ejzTgve6uCNsbG2BVefv++/bNdvobX5QZ528dsZudq70XK+A6i1RBB1RRVl3//vo1fCfnTJaz0n1UHaOxE6rmf1Te3tOo57UTIyMli2bBk/zp6Nu0dt2vi+RV0vb9w9amNkZIStgZaN8vy1d5aXor09P1l7u9BudoXlsOczXv8n0dHR+G39hHZt6xNy+iZurvJ6cpG3Ejh7IYqpP+zg2IGvKMiXzyNnp1IcCbpGuzaehJyOwM1FIx+VQAOvSvgfvERzn2pExyRq5Etz7Ph12rRyLy7f0EP7eahnpF3ZItfVtWsx+LT8gulTh+Lb3htn5yeLKufk5BJ84hp79p5g67YjqFT6WFub417TlRUrlhbvW9LhSOk41x7kV9DaHp9dMvtkb6zdVmg910rIxRTt9iNfrdbars1+AMQkxBNz4zrV6tTnzJHDeDRsTFT4NQ75HyD8dDAR50Kp1awVTtXdqe/bhdtpEg/vxlKuem2iQoOoUNubezExIAQWduWJu3SaCnWbEH/9IrblHQFB6t3b2FfzIObscRxqeZF8Lw6QismXcnBCCHh4N5ay1WoTc+Y4Dh5eZNyPAwks7ctz++JpnOs14e61C9iUlzOoi+qTm3QPkLC2dyDqwikqevlw58oFSjs6gRAk34nBsaYnEaeOUbleA1LuxQFgXdaBW+dCqNygKQ9jIyhfqfiyFCYG2n9TfR2J4ram2u85JgbaTwJTLe0Whtr78LTRcS3poiBQe7sOG3o59elx38z0dDatWM7axfOoV68eHTp0wNvbGw8PDwwNDUGKLd5Jno4psLlFHyE15Kdpby/I1NosSo9/oTZUoTgldSLeB05LknS+SHtRiyS0tCFJUrKmosdkIcTqEn63Trr2G0RmWhrDu3Xg972HKG1f9pnbPLifwLyvxzF6+o/s37YJgLbdejHvm/Es2b6XJVMn0bCV7Ac9SIhnzIziJamT4u8x+6sxLN+5n5+++5rGrdsBEBt5k3IVnJj91RjGfD8Lv62bqOZRh9DjR1k663ssra1xrVyVqIhw4mKiMTUzp1PvfhgZG/PVnIVM//JTHiYnczY4qFj/ekJwPMCfH39fo+l/Nvu2bqJceQc+mzT1nzqkrzUPH6azz+8UW7cdxf9AKM183Hn3nZasXz0BCwvTV62ewiskNTWVJUuWMH/+fHx8fFi/fTcedeq8arVeGqMmbuawZxXGT96Eb5taAPgFXGLjqpH89PMBWr71Az4NK2NsbEifng0YNX4dh/e5MX7SRnzbesjyBy6ycdUnjBq3mvk/DmD95hMA9OnZiO9n7cDD3amY/PZNFbGxMdeu1HNQtWoFfl74CTv3nOKbySsoVcqSqlUqcO16DNHR8dSqVZGObzVix/bvqVWrIr37TKZli7p/82i9eVw8cZxty3/ms5lzmfflJ5R1cub6ubNYly1HvbYdSYy7Te9xU1g+9mMktURytsTNk4fp/M08Dv/8A61GTODyoX2o1QVUataB4OUz6TJjBSEr5+HWqBUFebnEhAbhO2EOx5b+QLMPJxB19jjZqSnF5Ks08yU3K4Po0GN0mDiXo0t/oNnwCdw5H0JmSiJVW7xF4C8/0GvWSoJ+m0uVpu3Iy87i1uljT+kTc/oIORkZ1GzdEf9F3zNw/moOLptNlUYtkNRqIkKO8s53P+G3cDoGoyZxwX8nAB5tOrFnwXSGLV5L0OY1vDNBub8CpD18yLplS1j7y0K8mrbAz88PDw+PV62WwiviuedECCHskBepGSlJ0nJNmyGQCbwrSdLmQrKLAXdJkppr3kcBiyRJmi2EMEZeJfVX5CjGc82J0BaJuHs7hpDAQ4QEHuTU0UCsbW35bvGv1Krv/cz9yVerSUqIx7aMHVkZGQAYmZry4H4CpezseZj8ADNzC1k2JwdzS8tifegJQVJC/GN5U418Rloa1ra2xfo3t7BArVZz/dIFYm9F4lq5Ks6VKpOr6T8pIZ67t2MZ2asLK/Yewrlylaf0MTW3QE8IMtPTsLJ5un9DAwNMTIs/IL8pkYjY2AR27j7Jjp3BnAy5QlOfWnTv1pQe3Ztia21csu/VhhKJeK0jEQ8ePOCnn35i8eLFtG/fngkTJlCzZk2dv8crikQgSdI/82Np618I6d6NH7EvW5YHD9KxsDAmKiaRPX7nCQ6J4GDgZeztrFi6YDB1ajtjZmZEwv1U7O1tH8sDpKVlY2trTnz8Q+zsLMnIyAGQ5RNSsbe3Ki5fxk67Us8ZiXgib4harebcuRtE3rpL9WrOVKniiKGRyWORkycv07nrOC6cW0l5h3rF+1AiEVrtx93YGPbs2Ebwvt3cvHyRanXq06xLd+o1a0lSgQojU1PSHiRiWaoMGQ9TMDY1IyIxi9zMDEwsrclITsTUuhQPH8qjxypjU7JSkjC1KU12WgomZrITmZeVgbGFNZnJiZhYlyIrMwOhRd7M3AIE5GVmYFyo/4KcTARgYGxKZkoSZjalyUpNwdjMHATF9DHIzwbAwMSUjOQkzG1leVML+X6dk5mBqaU16Q8SsS5dmtwseZTb0MSU9OQkLGxLo5ebgbHm/l6YNykScTwqnjU/L2TDr7/QrH0Hho0eh1uVatS01DEW/WoiES/UhioUpyQrVr8H5FCoLKokSbnIiw21LSLbFh0rQUuSlA1MQp6cXXSV1OciOuIGPRrUplPtquzbvIGGLduw7nAw20MuPpcDAfBRtw6oDAyYOGwA/ts34799M9M+G45KpeKjrr7E3Izg5++n8PP3U0iI07bgNZw+Foi+SsWwzm2JjrjB4mmTWTxtMrdv3WRY57aoDAwYN6Q/fts24bdtE2eDg9DT06N67Tq06/Y2lWu6Y2hkRGT4dd5uXI9ffpzO4Lda0b57T86HBDNp5LBi/S+ZPoXoiBsM7ST3P3ZIP/y2beLYAT+tOv5XkSSJ8+cj+HbqH9Tz/og6XsM5dfoawz/sTFzsFvbs+oFhQztia1vc+VN4c0hISGDChAlUrlyZ2NhYgoODWbNmDTVr1nzVqr0SVCo9Bg9fjl/ARezdPqaK51jWbTrBxbAYAvdOwL2GI9dv3GXDlpP0HrQYlb4eXd6ZQ3jEXb76dhNffbuJ8Ii7tOwwDQMDfXoPXMiGLSfYsOUEvQcuRKXSo4XvtGLyYyas/Mf2QU9Pj3r1qtKrZwvc3V0xNDQgLS2TPXuCGf3FQrp2n8DK3ydSvnzpf+w7/4tIksS1C+dYNnMa/Vo2ZGAbH47v241Xqza4VndnwuJfOXPkEKFHDnHu4D6Wjx2Jnr6KOUN7Ex8dyZ+LZhH8xyKSb0exYfQA9PRV7Jo6ihtH93Hj6D4O/PAFevoqdox/j5Q70Zxev5STqxaQcjuabWMHoadS4TdjNFEnDmqVP7t1BSdWzif5ThRbxgxEX1/FvumjiQw+xPXAveyZPho9fX02fTmQ5DtRnNr0G0G/zy+mz5Wj/oQd2sPWKZ+jp6/Pqs/6kxQbxcHl8whYNpekmFv8/nFf9FQqNk/9kosBu7kYsJv1X3+Knr4+y0b05YEmxelNJD4+nrFjx9Kxbg0S4++x/lAw3/+yArcq1V61agr/Ap4rnUkzoXoYsEGSpKKu4VxgtRDiFHAcGA6U56/nPKwGvgCGADqGFHVT3smZwZ+PIejAPkICD5GVkU7Cnds0bf8W1Tw80Ss0eitJErG3Iinr4Eh66kMAzC2taNmpKyZm5jRt35HK7nIgxMDQCBNzC1p26oqDsytezeTFrG3s7IiNvImDiyvxcbexsLQGwNjEFFNzC1p37o6jiysNmsvyZSs407pzd0zMzGneoSOVa8ppA6amZk/tx5aVv7J74zquXTxPuQpO2Jax44tpM/Fp6wvIczTMLa3oPewjXKtWo61KhZ4QOLlVos/7H2FmYUn3AYNxqlgJU2MT/mvk5OQSG3ufqOh7REXFP/57K+oeNyPjMDMzpmvnxsydPZwmjd1RGZRgjoPCf5rY2Fhmz57N6tWr6dOnD2fPnsXZWUmXtTA3oqFXRZo2rsLgAc04FRrJxbBYbGzM2LozFA/3CnjVc0MIgbGxARYWxrRr7Y6bqx1tWsh20s3Vjh5dvTA3N6JLx7p4uMsj9cbGBlhamvB2N69i8vXqVEStVnP7dhLW1rIdTEnJwNGpPJGR96hQoQwPH8oRWysrMzKzMrGxKT7yW5QlP//J2nUBXLgYibd3dVq3qoe/31xq1670Ig7fa0duTg73bscSFxNNXGw0dzV/70TdIjbyJuZW1tRt7MNn387AtUo1wiNvYl/BCWMTU4zNzGjY1hfX6jW5k5KJnp4eRqZm1G3TgdKOTlRr4EPcw1ysylWgSrP2GJqYUqlRS0wdK6En9NA3MMTAxBS3Jm2xKutIQc068lyGso5U9GmLgbEprg1aYu1cGaFFXk8qwMDIGGsHZ2p36YehmTk1O/SklIMTILAoUx4jMws8u/SjlFNFVIaGoFZj4+BCnW79MDIzx+OtnpTTzFW0si+PsZkFXt37U9q5IioDA4SAUo4uNHh7AEam5tRp341SFVyekm/UcwClyju+uh/xFREdHc2sWbNYt24d/fr1Y0tQKOUctUflFN5cniudSQjREjgENJAk6ZSWz0cAY5HrjIcBoyRJOlro8yg06UyF2joAe4HLJUlnKpoikZ+Xx/mTwQQd2EeQvx/paak0btWWKu61qOBWiavnz9J/5Of4bd1IjTpyaPvKuTO81bsfa5csoHPfgVw9fxaA6p512bXuD/qN+Iw9G9ZSvY6cUxt59TLte7zDmsXz6dpvEFc08tU867Bz7R/0H/EZuzesedx/1PVrtO/ekz8Wzadb/0FcOXcGgGat22FkLIf4d21ax4Kpk5g8bzF92jTFzOxpBwPgalrxcLmu8HQtKx0x8Zxd2ttLmrb0f6QdFCO7+GjO1Wt3WL4igLMXolGrJSRJIj9fTeydB9xPTMOhvC0uTmVwcda8nMrg4miCi1MpKjjaPJ2qoyPEqSt9RKuOejrmTOjaf13oOi7qHB3yukLCL3Apk5IcFwC19pQJnejSXdLSj67fzqi89nYDa63N+y+VY/m8mRzcvYO3Bw7hvY9HYVe2HFXMdES4daX1aQuj67pmdP2mJTxnhGnPF57ONGNKD774tAOr1h7Hq578cHUiJAJXlzLMmOtHbGwiD1MzqevpRjOf6kTcvMe4L7pzNOgKDb3ltehOn4lgUP8WzFmwiyEDWxF6Vh4Hql+3Ims2HOWTjzqwak0gXvUqPZEf0Jo583cwZFDrp+Q3bTvOh0Pbs2rN4afkhwzp/NRg0GMM2j3+d+XKlcyYMYNFixZh59lYazqnNnSdCyVKbfsrtKVxAIiSPYBdelhcoZz84tdUxNXLbPtjBTcuX0RSq2UbmpfH/btxJCcmYlu2LHaOTpRxcMTOsQJlHCqQnFWAvVtlrgUfoeWA9zm9eysVangQ9zCX+OuXqNamK+e2raRGux4khIeRL+lR2q0a1wO249FtEOGHdlCmsjtCwP3wMKq07srF7auo1rY7SZFXkAC7yjW56r8Nzx7vcT1gB1XryEtM3bl6Cc8O3Qne8Dt1OvYk+3Y46oICnGvWIvjPTbQZ8D4nd22labu2lCpbfOmSzDwdKVpq7c8yWXnar1sjVfHzy9RQu902VulKW9KezKErldPKWHtqrbmOdCYn8+I2xFYvUKssOQna2/V1DDAa2GhtvnY9jx9mLmHXrgA+eL8vn38+FHv7MrpTSHV9r7YUJV22Upf912VzdbSLstOVdKaXzHNFIiRJOow8WVrX50uAJX/xuYuWtn1/1efzojIwoH7T5ng3a8HoqTOJjbzJicMBRIVf43iAPxdCTvD7vFkYGhnRqU8/KtVwJyTwIM07duHkoQDqNmnG2eBjAFjZ2HLyUADdBg4hJPDJw0V42AWatuvACU01pDPHZf/I0saWEwcP0L2IfHT4dZq2bU/wQX+8fJoRGiTL12vQGCNjY65ePM/0MZ+zck8A1dw9MNP1gPMfZtfes8yct4ubkQkM7t+Eb8Z1QaXSQyBQqfRwKG+Dg6MDKm3GW1euucIbS1ZWDh9/uoDtO0/T/8OR7D8fjrWt7atW61+HX0AYHwxuif+hy4/bDh29xi89vClf1oYfvnuXX1ceIirmPucvRnEoMIzDRy9z+04S5cvZ0qt7Q27HPaBH1wb4HThHi2Y1CTwm92Vra86x41d4r38L/A9eeNy//8EL9OjWWCPvTuBROS/a1sacs+ciSUvLwj/gSa0O/4Dz9O/f4S+rp4WGhjJ27FiOHDlC9erVCc8o2XpH/wUC9+7kj4XzuBcbw1vvDuC90ePR09dHCNBXqbAr50C+mTn6quK3+QN7/cnPzeX6yaM06tGX6yHyPTA5VxBz9jgVm7QhJjQIx1re3Ll0GmFoiqGpObFng6jWvhe3z8mT6fX09Ik9dwLXxm2JORtE+VpexIWdQVIXYGxhRcyZ49Ts0IuYs8FYmhmhLijg5ukgqjdvR0TIUVzqeJMQdoGsjHTMrKy4cvwIPm/35eqJY1R3r6HViVB4MWRkZPHRiDn47Q/l008GE3HjKDY22gdrFBQeUeLF5l4VuiIRj9DVrpYk7sbGcOv6VWZ88Sn1mjbni+9nkZ2VJU9YfpCEmYWcN5+hZcIygIWFxeMJzimF5NNTU7HSMoHaytJSq7yRSkVGWho9m3szevJ0OvbqA+geGfsvRiIKCtR8/d0m1m8+wbwf+tOpQx0MVNr3SWdUQJcToUQiSsZ/JBIRH/+Art2/pmLF8nwxdxvmFsXTYJRIhGxDpdRfib+fjl2ZIhOi76diX7YcSUlpWFrKI5ePJ1AnpGJpacoev7OMGruSTm/VY8xnXXBzK1tEPgtbWwvi41Ows7MiIyNb078xCffTsbe3JilJ7utZ8pk5+piZaRm1NWhHQkICXl5ezJs3jx49egCUyIl43SMR+fn5LPruGw7v2cHoqTNp0q4D+Truf/fStE9MjU7MJCs9DTMra9KS7mNuK08ojkrKwqDQBOes1BQMTc3IyVOTl5WJsYXV4wnR+dlZCCE9JZ+dmoKxhfYJ1FYq2R4YFprgnPkwGQc7a/SEIDszAzMra1KT7mNhWxobQzAwKn4NKZGIQK2yfycSEReXSJdu46lZw5UlS+ZjZqblPqhEIhS0UNISr68dKUmJfNa7G6On/0jtRo24ePokPRvUxtDYmN/9Avn6/UGPS7leOn2KCXMXMqL7W4yaNhP/bXLBqY693mXWhC9YusOPCcMG0KiVPI88KuIGH3/zHdaKGQsAACAASURBVB916/BUqdjOvfsyc9xoft3pz9gh/R+XfvWs78WGX5dSq67XYwfiTSIlJYO+QxaTlZXL6SNTKVNGM+lZ20OlgsJzcPnyLTp1ncigAe2ZPGkQN3KenUf/JhOf8JARo9fx4ZAWrN8cAkCfnt6MGr+Bw35T6D1wPr5tagPgF3CBjas+4+2+c5k0sRd79p2laZPq3Lx5j2p1PmPzmi+Yt2g3vm3lErl+B86x8Y/RtOwwhfk/vsf6Tcfl/ns1YdFSP35dMpLeA2Y/Lb/6S1r6fsP8WUNZv+mYRt6H23fTGDrYV+s+DBkyhObNmz92IN4kHiY/4Kv3B6FWq1l14BjWtqUAyC8o2aDQrQuh+C2dx8DvF7Lko750G/0NZ/fvosDYCkfPBhxb+gM9Zq7Eb8YXONX3AZURUScCaD1mNru/HkLjYeOIOLoPfQND3Bq1JvjXmXSe/jsHfvwSZ6+mIEnEnDlO+/Gz+XP8YHw+HE/ouWPkZmbg3roTfgun895Pa9g8+TO8279FblYmV44fYeiPi5j//rv0/HISetmpNO3y5v3GL5sLFyLo0m08H7zfhYkTBiB0DaQpKGjhPx+JKFCrCQk8SN3GTYmLkUv7RYVfZ9qoETi5VUItqbEuVQpjE1PUBQUMGzORxPh7mkXoZHlHJxfOngiiYYvWhIWewkEzUet2dBQ169Yv1r+Tiytng4/RqKW8SNwjeRNDI0KPH+X7caPwqN+AGb/8jpm5+RsRibh6NZqu3cfj28aDOTP6YWBQyH/V5UQokQglEvEXkYgDB0LpN3A6c2ePoH8/2bEPz26uVVyJRMg2VP1wOYeP3aBJw0pERT9ZJO7o8eu0beNFyOkbuLnYAxAZFU8Dr8ocDLxM0yY1iIpO0MiXYeacP1n62wFKl7agTClLTE2NUKslnJ3LUNfTlQHvNn9K/vjJG7RqUYuQU+G4uWr6vxVPA+8qHDh4geZNaz4lf+9+Ni4uWtb7MWjHpk2bGD16ND4+Pvz++++Ympq+EZGIG1fC+KxfT5p36MzHk6aiKpSmlK3DidAViYiIS+ZuxHWc3T0JDzlGxboNeBB3m9spuVjYlSPuUigV6jYm/tpFLMs5kpunJvXebeyqenDnfDDl3L1Ii7+DngBzu/LcDQvFsU5jEq5fxNpB3s/Ue7exr+pB7LlgHGp5oZ8WjxACK3sHojWLvt2+cp4qld1AQOLtGFxq1eHqiWNUrt8AMykHq1LFK2wpkYhArbL/TyRi794TvDfkexYu+JzevVvL7SUtq61EIt5oSlLi9V+NJElkZWaiVqvJzckhNycHtVrNkulT8PBqyLIfp3MnKpI7UZGEnT3NmsMnsbSxpUu/gZSyK4uhoREnDwXwy/ffUtu7ESvm/cjd2BjuxsawcdkSPL0b8cOYz7GyLcURvz0c8duDpY0NM8d+Tm3vRvw+dyb3bsdw73YMm377Bc8Gjfn+y0+xsrXlyL7dHNm3GwMDA5q29WW1XyBH/PeSmZFOXl4eWVlZSJJEpkb/nJwccjT6Z2VmIkkS2VlZ5OXlkZen4073isjPLyArK0ejf7ZG/1xycnLJzs5h27aj9B8wnSbNPmbs5534afagpx2IV4harSZPxw2mJGRl5bJ95ykWL93PytWBbNl+kn37z3Ls+BWys5Uoy4tg2fJdDHjve7Zu+vaxA6HwbD789A8a1Hdlyvc7uHkrgZu3Evh2xg4aN6jEuK/XYmNtxtYdIWzdEYKNtRkffrKMht5VmDJ9Ezcj73Ez8h7ffr+ZLz7rTNtWHowd1ZXq1Rwpa29Nk0ZVWf57AE6OpYvJN/CqzIcjf5arQO04ydYdJ7GxMeOryWto3LAqU6ZteCI/fSMODrrLs77zzjscPnyY3bt3/+vs4T9NXm4ugft2M27YAIZ0bMP7Y77i8+9mPOVA/BVqtZqcbPn+kpMl31/ycnKIC7+KiYUlm7+fiLNHPfyWLSDxTgyp925zau0Sytbw5NBPkzEyt+Rm0AGiTwViZG7JscVTsKvmyZl1S0i9F0vK3RhC1y7GvronRxZNkeWDA4g8fgAjM0sCf5pC2eqenFqzmOS7d3hwJ4YjKxdSwb0uu2Z9jbGFFWFBhzl7YB/Rly8yd8g7JMXFsmLi55w64MfV0yHk5eh48FT4WyxavJWh7//Aju0znjgQCgol5N/xNFcCii6Ss2P1Sk4dPUz8nVhuXrmMJElU86yDT/uONGrTjrSHD8lVF5CXn0eeZhQ/Lz8PYwtzrErZUqtBY3Jz87gdeZNSdvbMW7sFIQQjJ05+/B0+mnSkCbMXAOBU8Un5wImzfwJgRCH5Zm3aA/DVnIUAOFesDMD9e3f5aeokbEuVxrliZc6HyoWuFp87w8CRnzNj3CiGfv4lIUcOA+DdvBUr5s9iwo/z+eXHaXj5NMdApcJH0/9T6BpR1TXaXFJ0jCAEB+xjt/81Jn3Zmk8m7GTMyGYs+yOE0HNRXA5PwtBAn3Ej6mNlWBEnyzjy7wUW60PPQMeIbQmjZEJP+2iRMLQgOzufqfOOcT3iAXfupRF3L4179zMwMTbgg0GN+Hx4M8qXsyo2ehwVnciajcEgDGjauDre9SthYmJIXl4+Bw+HsX7TEXbuO089TxeqVi5LRkYO6Rk5pKens//gNeZM68boka2edJibqF15dXaJ9lUq0OKc6IhS6ULoaz831PnaHR8hdCx8V1CyBzl9Uy3Lw+iotlR0hEqtVjP26/Xs2neeoIDvqFSxHOQmPf68iuEB7f3oehDRFV3RFklS6UiVEq/P5MO8/HwkSaKg4Mm5cuZcFIM+/JWQ05Gs33ycxMQ0GjesTEMvN/Ly8kGdQ0F+7uPIkvy/Gj098KrrRmqqPBfM2NgQK0tTGjWsTsDhsMfHsKBAAqlA7ktSIz0aNZfUqAvUIBVQUFAAklojX4CkzgdtA4oaO7d86TKGDWmPlVko5EMVXUEfrRHBFiU+blop6QKJOjif/PS5WVBQQGjQEXZt3sCxfbtwqVqdNt168tGUGagsLbmfWXzU9naK9pHciMhoTmz+g5aDP2b33O9oNuBDboYGo2dkQoWanmTn5JKWnU92bh6ZuQUYG+qhjxpTQz30pAKMDQUG+qAyUmGuyifpxiWOL5jA3euXuB6wlZz0VPT0VZQy18eUHKqWM8U8wQQkCXdXS+LM9ahqnMbRyAskSOk4ValKGWM9vJ1tOGUo0IsJ44LfDm5evkSV2nWo5u5OwrWLmBroc9p/H8uOjuXDqTPx7Tfo8T7lF2iPcKp0rPCma0G4UmbFTxpti7sBTy1y+1TfOpw5axPto/9VjI9obScrSnt7upaou46qSujrsk9P61hQUMCoL5cTcOgsxw9Nx8217NP3JbWONTHydNy7dN3TCjKKt6m1/3aSjt9U171Fl7zCy+e1S2cqTH5+Pm0rOTBm5lwys7Ko26Qp0TfC8d+6ictnTtHno0/oNewjTgUexLORD/duxwBQ1tGJ8yeC8G7RmstnTnP7ViSLpkzk3Q9GMvSLcX9bV10GJyYyggquFelUtzo+bXx5Z8j76KtUlKvgTOjxozRu1fap9Ke4mGhq1fMiWFMVKi42GgM9fVwqVynWd3WTQO3K6HpIKmmajJbw4f37D9m7cw+34x5y7lIcFmZG7Pa/Sjl7S7r7OuNZ045uvpXwPxJN84aOREfFU9FZy8rfL9iJyJVM6D54C0ZG+rzbrSYO5Swob29BuQpO3EtIY+6SQNZsOkOPTh58+XlXnJ1KsW3nGVasCeL8xRje7dUAIyMTjgVfI+xKLB7uTtyMjKeimz3v9vTinR7elLW3evpL89Oo2/xH5kzrRsumhX4vxYkomRNhaP/434yMbPoP/ZnklAy2bRiLra2Wm6auB31dYfSSOBH6pqSmZhB2OYqwy9FcCrtFUlIq3br60LlTI0xMSpjyVvQrDdq8+HSmlJ85dCySJg0rEx2TSG5ePg1bTePjD1rToX1d7iemUsnVnmk/7iDkdASrlg9HXaCmaZNqRMc8SX86EhROuza1H6c/7fE7y5cT1/DzwuFYWZrSvGlNomPua+TLEBQURutWHlrTpfwDLtC8aY2n5O8mZOPqqiWdSZNqV8NjCB07NOCH74ehr68jdRB0/I4ttIqWOJ2ppE6ElnSmhIQENgWe5MaVS6QkJZGcdJ8ThwIoU648Lbu+Tcsu3bF3eLJGQXqu9vNVlxMRey8JfQNDos6FUKlBU2Ivn8e2vBN5BWqS78biWMOTm6eCcPb05mH8HXLyJCztyxFz4RSu9X2Iu3oB63IVUOfnsH3KZ1jaladUBVec6zUCtYSrsz36+ir+XPADN8+FUqmeN+989Ck29nYc3ryBq6dPcutyGD5deyDl5hJ+8TzxsdGUKe/Iw6REbO3L0rJ7L1q9/Q42RVY1zyso4FPf5oyYPptq9bwetz/I1H4MdDkRutKcXgsnIu8fcCL0n6TopqVl8u6AmWRn57Fl3ZeP12x5Cl028R9yIh6m5hB2PZFLVxMJu55I8sMcurd3o1NrF4yMnj6eJXUiDCotV9KZXjKvXSSiMHeiIlEZGtKodTsWTZ1EM99ObFy6iAYt22BsasKS7yYRFnqa8EvnGfX9bAK2yxOl23TrycLJE/nxj01MHNKP3OxsWnXtzo0rl16ovn7bNvP2wCHo6elxLiSY/X9uoW5jH3oNfp/ZX43h153+LPj268cTsc+dPM53i5Yxa+KXjJ0xh31bNmJoZMS3C35+oXoWJS8vn/DwWMIux3DpcjSXLkfLpRnTs7C2NKSuhwPHQ6IY+0lzLl+/R49OtRAF6Sz47RyN65dn1JRA5n/bgl37rzPvm8YvVXdJkugzfDu3YlPYvKwHbs42mJpqbhSGBrg42fLTDz2YNKYdi389TjPfGeTm5dPIuxIfDmlBl7c8MTIyeDxXIj09m9NnInBxtsPVxQ7U2m/e2dl5XI9I4PTZGJo2qqi9VK3CcxMVfZ9ufebi6eHMxj8+wdBYy83vBZGXl8/kqRtYtymI+/dTqFHdmVruLtRyd8WjlivLf9vL8JEL6NHNh4ED2tKsqcdL062kJNxPY8nyQxQUqFm/OYTk5AwMDVRs332O0Z92Zsr0bfi29cCrnhvhEXcZOOxnCtQSP88fzM698vo4fXo2YvT4NRzaO4kvJ64hJzuPyOgEnJxK09ynptaJ0ot+3kstd2fGf7Om2ETsUeNWFpuIfftuGkO1OREa/HbPYODgmbRqO4Y/VozD2dlep+y/gdzcXMJvhBEWFsalS5e4dOkSZ8+eJTMzk8oenlSp6UEpOzucK1Vm6OjxOFesRJoOh6Ek3Lt5nbysTPb8NJ1hi9bi//MsKjdohsrYjMuB++j17QL8Fk7H99OvCAvYjaGlDc51GnJoyQ+8O2cVR36dg2t9Hy4H7CQ1Po5WH45l39xJVKjtxZVDe7htbkztVu25HxvN6BWbWfLxYKYOege1Wo2RsQn9x31D8v0EvNu05+KRw1Tx8GTgFxNY+u1Epq3exPJpk7Gv4FTMgQDIysggPjqa8PNnqexZ96+dRYVncvPmXbr2/I7GDauz+KcRGOj//VTe5yU3t4CvZx5j446rJCVnU6OKLbWqlaZWtTKYGKtY8sdFPhx/iB4dKjKoZ3WaeOmYC6fwr+O1j0QsnDKR/Vs30nv4J7z70adkpqViai575In37rJ2yQICd/1Jt0FDadG5G+UqOGFiakbI4YPM/+pLqtTyZPSMOZhbWiLl5mBh9fdTE3SNWmSmp2Nqbk5SQjzWpUqzYv5sVi9ZwBfTZtK4VVtK25flYfKDx/pnZqRjXaTkrL6eHmbm5sX6fhGRiJSUdD4YuZhde07j7FQG9xpOuNd0wr2GE3XruOHqYk9WYhgmJgZyCUc7Cx4kZ2JhbgQ5CaSl52JrY0L8/QzsSpuS+iAZM9PiIz0vMhJRUKDm8+9OcC0iiZg7qcTGpWJuaoiToyVOFUrzxcgW+DR0eyyfmWdKWno29nZFIgu6JlzrcCLITyMi8j4ffL6B1LRsfv3pXTxrOSqRCEoeiTh85DLvDl7MhC+68OmI9vICg7omLf/DkYg7d5LoM3AO5ubGzJ8zkkqVyhd/mBH63LmTyPqNh5g9dzNbNkzCx6eW9n7/gpcRiZAe/kJ8YvbjEq+5uflMmv4nG7aE8N3XPenVvQHW1o9KsGajr6/Hp1+u4uCRywzu35w+PRtRo7oDCfcziIxKoN/ghbRoVoPZ3/cHBLalbbWXeI1/gL29NQ8epGFh8eySsDpLvBaa9F9QUMDsuZuZM28LC+aO4N0+rYrLv+JIxIMHKQx7fyz79h3GxcUVd3d33N3dqVWrFnXr1sXZ2ZkLKdrPQW1OREkjEfdSMtDTVz0pqZqagpGpGbn5ErlZGZhaWpP+IBEzm1LkZmWSnVeAgbEpmclJmNnKJV71DQw5/MsPJMVEkp50n9SEuxiammFRxh678g74DhtJaYcKWJYqQ8bDFEqbG5GTlYmhsTEW1jakJN7HqlRpVAX5CMDY1IyUxPvYlLEjLTkZQzMzrWtZ5BUUcCcygiUTvyQvJ4eRM+biXK26Eon4PyIRBwLO0n/wbCZ/1ZePPuwo29CS2sT/MxIReyeVdz7cSZlSJsz5phkVXazR03vazEkF+cTGpbHuz+vMXX6OXSs64+1ZVolEvAa81hOrVSoVo6b9yJI//Qg5dID2lRxYNX82CyaNY+mMb0mMv0fi3Ti+W7YS/60bGd6xNYPb+NCnkSffjRyGvkrFOx+MYO3ieSyd8S13oqNeqL6JCfcY2qktKgMDxg8bgG2ZMvQeNpyZ47/g4O4dDO3UluiIGyyaOolFUycRczOCIR3boDIwYMzgvuzbtgn/HVtfqI6POH8hkvqNR1PW3oakuLVcu7CILevHMuXrPvTs0Rg317IIIdh38Dq9h61DpdKjRZelhN9M5Kvp+/lmVjDhkcm06LkJA5UevYfvYceB6Jeie2H09fVYNMMXv/XvcnBzPw5s7MtXnzfBtYI1x07cYtuup6NPpqZGxR2I/5NKbmU4uONj3n27HvVbzubgkev/SL9vCpIksfDn/bw7eDFrfxvBZyN9n16h/AUTeiaC+j5j8G1Xhz3bv6Zq1Qo6R0PLlrWhXt0qODqU4fiJy1pl/g206DgHA5U+vQf9zIYtIWzbeYaE+6lsW/sx387YRqPWk3mrxyxGj19DeMRduvaey7yZ/ale1YGgE9dp2HIS9q4fMXHKBpq3n8IHQ1tTupQFP8zZQXhEHN3f+QEDA31695/Nhs1BbNgcRO/+s2X70H4S4RF3+WrKer6asp7wiLsMGb5Ylh8wlw2bj7Nh83F6D5hb7CFDG/r6+owb0we/3TP4ZspKNm0OfPEHsASEhl6gXv2OuLpU4EHSJa5evcrmzZuZPHkyPXr0wMXF5YWfz8lxt9nwzafo6evz68i+JMbc4sDSuZzY+BtJsbdY8Uk/9FQqNk/+jLCDe7gRFMCOqaPQ09dn3egBPLgdxfE/FmNRpizNh43GxNKa7t/+hEVpe4TQJ/z0CVZPGoOevop5Q3uTEB3Jn0sXsXfVr9y9Fcnkvm+jr1Ix79PhBO3ZReDO7Xw/Yij6KhVjenXh9q0IDmlKo2vDwa0SU9dto0HbDnzRpS1XTp18ocfrv4YkScyZt42BQ+ewae0ERgzv9FJt6MkzcXh1WE33DpX5c0UPKrvZ6Ly2y9mZUd/DnvL2ZhwPvfvSdFT4e7zW6UyPcKtanXmbdjJrzKfcjY0m5HAArlWr4+hSEff63tTyaki/j0dR2d2Di6dOcCLAn3mzFnBwx1YcnF2p07gpAGUdS1aCr6TYlrajcet2mJpb0KhlG2rWqU/NOvWJvnmDW+HXaNy6HQ4urtT3aQaAg7MLTdpo5Fu1xb1OPQyesyrH3+FGRBxt3vqGRfM+pM87si66Sqq5VytLcossLC2M8W1dFTdnW1o0cYP8FNycrfFt4YKFuSHtmjtTu3rx+RAvC58uqwg5K08YszA3pMdb1Zg8th3tWlZ9Yd8pSRLrt5xh9qJDfPheY7zrOgPpL+z7/ktkZ+cx4suthF64S/DBKbi5Fk93eNEcPHyRjr71+GpcL50y+fkFrFkXwLQZa7EwN+GdXs15b6CWwgf/Enxb18TCwph2rWriVc/1cXujBhWZOKYLdqWt+OW3g6xYfZSIyHgcyttgbGxA77cb4lXPjdzcfFasPoKxsRFfftqJIQNaEno2EgA3F3ua+tTAwsKEdm088ar3pACFpaUpvm3r4OZiT4umNR/L1/V0k+Vb135K3sjo+euq1q1bmaGDfTlz9gbv9GrxN4/QP8Ply9fx7TCQpb/M4O2333plepha21DJ2wcjM3MqN2iGbXknXOs0QK2nwqa8E5UaNMPI1IyKXj44VK9FTr5Efm4uhmbmuHk1xbpcBZw8vdFT6bN/3hTu3wpny8ThqIyMca3fBI8mTTExN8fEzJwaTZpT2tEJlXcjQMLeyRnPZi0wMTOntk8zKrk/ic6ZmltQv0Uryjm5gI65bCDb0CN/bmH3yuX49n8PN/da6Ij9KhQhKyuHDz5eyuWrdwg5Ng8np5dvQw8cieLtjlUYO7KB3KAlWJ6XV8CqTZeZvvA0tlZG9OlShf7dX9x9WeGf5bVOZypMcvIDzC2tSEtJpqBATZD/Xnav/YPcnGxGTZ9FjXpe5GRnAWBkbEJaSjLWpUqTlpKMkYkcvtcryH/h6UwmZmYkJyViaW1DTpasz4nAg2z6bSlLt+8lNSUZY40+2dlZWFnbPCWv0tPDTMuKvCVNZ0p+kMKhwIt07dyAVasP0r1rIy5fiUFPT4/4hBS+nryai2cWsmNXCO41nRCouRQWQ9fO3qxac5juXRpw+Uos2Q8jqV2zHOu2nmfk0Ias3XKeurUcIC+Js2EJ9OtencUrz9O3WzVCz0ZjaqKiRmUb/vSPYmCPKuwMiMa7rgNODsX3KeF+BtcjU6hZxZbt+yMZ9HY1dhy4Ra2qtkgShIU/oGtbV1ZtvUb39m5cu/kQtVqiZtVSbPe7yaCe1dnhH4mHuxPZOfns9L8BwMYdV4i+/RBbGzM8apTjvX7eJCdnMuhdL3b6R9Gja/3iB6wE6UySJHHh/DXGTt5Bwv10ls7rTYP6LvKHSjrTM9OZzl+6w4ejNuPkaMOKZZ9ibq4treXFpzMFHLrA+G9WE3p89iPFH3+cn1/AuvWHmDpjHQ7lS/Pt5EE0b1Zbe1/PyctIZ8pNXMTyP0Lo2bUe5y7IhSbq1HZi3aYQRg73Ze3GYOrWdiY9I5vfVx/l6rU7xN5JYuPKT0hNy9LIu7Bu00lGDm/P2o1B1K0tOyNnL9yib5+WLFnqR9/eTTl3/pYs7+nKpq1BfDi0LWs3HntKvl9vHxb/sp++vX04d0EjX9uV3fvDGNi/NTt2ncC9hgsAYVei6NGjpdaR1M1bjrB+42G2bZ5SZKdfTTrTnj0HWbzkD/buWVWoXfsgVdHqTI8oSTrTzbtJhAUdxrNlO07s3EKd1r7ERVwnOTOPMi5uXPDfSYMeA7jgv5PyVWqSr4a74WHUatuF09vXUKttZ+6FXyEnX8K+UjWuHNxD3W59uXJwF3aVaqCnJ4i7cgEbBydCNv5Ofm42cVcvYmFjS5X6DTE0NaPXmEmc3rcDz/p1KOvsSk5WFuZW1qQ+eIC5lRWGmupbRsYmpD1Mwcq2FOkpKahMTDAwfHptGrVaTfjF86z84Tsy09IYMX0WFWvJ15eSzvTsdKYzZ2/y4SdLqVypHL8t+wJTUy029CWkM+09eJNp808QvKu/pu8naUj5+WpWb73CtAUhONib8d0XDUlMzsa9qryAYtj1JDq3duSPreF0a+/K5fAHANSsYsu+Q7d4p2NFdgZEU7OKfDwuhyfT++MAJZ3pJfNaRSKM/2IU3tFenoT36OJ1GfIB/Qa/z/rlS/hh1Ei2BZ+lVOknDy+lNPMKCl/sBToewoqWlX0WuToW/lGZmJCnVmNuY4saMDCVH0qqu3tw40oYGamp2BZaXMdIszCNjabN1NwcIYT2BedUOuo8Z/+ptflOTBQbNx2iZWMnVq8NoGYVW3btCsXWPBcDAz3uxSeSeuckG9fvJrlFRYwNYef+G7Ssk8/qP3ZR0ymDXXuuYaSfi4l0n+07z9DX14Y9e8+QkxoP6jwOBMXh28CK7XuuUq+qMUdP3iYvX0KfCqzdfp0uLcqyaVc4+qKA8jbFb7Ax0Uns9ItCr8CJNVuu0LmZHRt3XCWjpQNZ2fkcDL6Hj4cZq7dcpmoFAw4H3+FhWh5SZnn+2BhGB29T1m+9wMOEeHLy1Jw7m8BPEz3xD5CYPLUuY2ZfZI//FSwNUomJy6K9+0PWrrxA+8qRxXTR5WzrGRghSRLXo9I5ejqRY2cSOXomEQszAz7sU5mP+9VGpYoj57YcBVHna39S0TPU/lCs68Fd6P0Dl66OsLLKVHs6ly5d9C0qaW0v/ND9FAaltMrevn2fb6asYt/+UCZ/3Y/hH3TSvZ+6bnS6boy6Fi3SomN2di6Ll+5n5qz19H239RMHR6goKChg/foApk5fhb29Lct+GUfLFiWcSF2QVTL5f5C05AROh16jbk0bDh6WU/mszPL5c/cpBvTxZu/+M+Tnyfqlpqazc8MImnWYSf9hi+jWsTb6+npYmavZsfskA3vXZu++EPJz5AXN/A9doUtbV/7ccYyGdWw5ePC83L9pJidPXKBvt0rs3Xuc/Cy5JK//4Wt0aevGn7uO07CeHQcPntPok8fxoDN0863Ixo0HSG5VU9P/ZTr71sLQsPiDXs0aLoScukpqagaWls+YdF8QqLXZVkdy74O8FtrlDXy0todnSNxKtSBHz4LwzEKVlXK0DxRk6FjrIlVLWeL76dr7iE98wIm9OylXy4ugnVuxcHQjLNAfI3NL9A0MuHo0gDodehB+IhB1QT6ojLhx4ghVGrfi2rEAHP7HR1cUtQAAIABJREFU3nmHR1Vt7/9zpk8mM8mk90JJ6KEloQQCoSMqvYhYsGBBEWkiSJGq0kTFAldAUXoPvffee00P6b3PZOb3xxkDuZnxC/cnKPfyPk8eceedPfucnLP3Xnut9a7aDblz+hh2Oh06Rx13ju2habeexJ46hBQzEqmM+LPHqN+2M0fLSmj/9kjOb1vH7ZMHObVtI1oXD5oMHMqpPbtJzy+jXidvQAo5+YAc8h88bLFcQ4a4+bSTF2I2F5Aee5u48yeIPXeCuPMnUWt1RPR9hRa9B4FMxp2MP/dBuGqtF8l0VFs3DKwZDLaMAnuF9b4bOFgpqAa2C7OV2JBPtQVrBoPChoiAREF8fCrjPlvM7r1n+Xziq7z5RlcEU7H1HEhrxeD+ZIzlRekPOWgoLjHy7ZJLzF54nld716K8RJwjzMYyjEYTv2+6w/TvzuHjac+i6S1x08twdpQy9OfLtG/pCcDuI/doUVfOr2uuEOQtZdOeRACEMh/2HIyhXRMtKzdeo10z8X7sOW7jep7hseKp8kRcsJzYmEwmMtNScfXwrPi9rcqRAB8O7E3tBg15d8z4P/2Ov8qIsFVV2hbUcjnTR39E+r17zPllRcVJm7Xx2IpntFmx2oYRYSjORiaTkpaeh7ubA5mZ+eh0aoz5d4jquZTez9fh5d4huLlqKCwsA5MBjUZOWkYh7q72ZGYVodMqMRakkV9owMlRRWpGEW7OagqLjJjKitHYyUjLLMHdRU1mTik6jThGka8kNaMYN2cVJWVm1Kqqk7fJZKa83FyFX1BQDAhV+reXi/crv8iIk4OC1MwS3JyUFBYaQACNWkpalvgM1e62g5JSE81D9DSu40hwgD1ajZx61e3w81SjUVcez4Pvidls5lZ8IYfPZnHoXC4Hz2SgUkho3dRF/GniQoC/lY0y/51GBHYB1tsf0ojIzy/my7nRLPhxM0Pe7MqYUf1wcLBsBG1W/n5EwQBbRsQDHo3y8nJ+/W0vE6cso1HDIKZPfZM6llNwgPUbjjJ23I+4uDgweeJgoqKaiO/jo8ol2zAiBGXXx+6JSLk6DncPZ9LS8yktM+LhpiO/oAQnvYbULHNFwjWARqMkLT0PN2clHXt8S5uImowe1kHkO+lITcvDzVVbmZ+Wg7ubjsysAnR/JFAXlIjzQwW/zMJXkJZRgru7Q2V+fomYoJ2WW2U8pUYVKpWVDZ3ckXfem0defiG//fLp/XnS1vPzCMgytbHabstDcSWnjIEdW/N835cY9O4HFe0FNmqV/CVGRG4xgkRCQVYmWmcXCnOzUWnsbSZQlxlMyNV29xOuc7NRasRDKmt8k8mM4gF+6p3rLBrSm3JDGd71GuMfEobKXodLtZootHqc/aojV9molIw4h2YlxJBw/gTJl04Sd/4kcpWagEbNCGgUjn/DMHz9Hy282JYRoVNanyu1yqpz7t9mRJgfQYnLihGRl1fEzFlr+XFhNO+98wKjR/ZDq7XMv7aqQZfaGMv/hxFhNJpYuuY6U+afJjTEjSkjw6lV/b4htHrzDSbMOY2Hqx0ThzUmMlzcw5kMpRXre2GROJ9q7GSkpOZV3T8UGdDby+6v78Xi3K5RS9E0XvfME/GE8VR5Iv5Aeso9ejQLwa9aDTr16E3HHr3xC6hmkz/2i7n0aRVK1979Kgq//dMw4vOZDGwfwfwpExg6btJjl7Pbf+g6JpOJ4Z/8zr6tY+n36nd0aleP/QfPcf12Bi/1bEDbnkuYN6Uzy9dfwkWvpH3rQIZP2M2+dQPp9/Z6OkdVR2YuYvPueH6fH0WHgVuYPb45K6LvIKWcnp38GTXzDDuXtOflEYfoEulNebmZnYeTWTa7FR1f282ssU04fSmLse9WPc29fieXLfsT2HkomWVzWtPxtZ3MGhvK/uPJpGaU0LeLH6O+OMuOxe14eeQRerTzoqDQyK6jKfzyRThd3jrIl6NC2HUkhey8Mvp08mHM7Ets+ymC+kEONAzWkZFTRvT+FNJDnIjen4KjVkZmrgGNWoqfhxofDzV+Hip83FWUm+DkpRxOXs5BLhNo1cSJds3d+PyDOvh72dgwP4NNlJSUsXTZPiZNW0n7qMacO7ngb4nbNRrLWbPuMFNnrMDRUcPvS0fTstX9kLbCwmKGDf+Wg4cu8u384XToEPpEkxP/SrTtvpB9m97jxYE/c+5iEq6u9igVMlb9/AoTZu5m2LvtWb7mBAD9e4UxfOxK9m3+kLz8EqbP3kFuXjEnz8SxcslbtO02h3kz+rJ87SmR37Mp02dvY9WSN+j3+s90bl8HgO27r7Ly51dp+8I3zJvek+VrLVKxPRuz8NfjfDdrAP1eX0jndqLHYfueK6xc+j5tu37JvC8GsHy1ZTy9wxCkdnRs39Dqtc2d/S5hzd/n86m/8tm4l5H8ycHS44LJZGLOpE9x0DsxcMj7T+x7MxJiyU5JYvPcaQxZ8Bu/jf+Q4GatkSrtuLJ/G/2nzGfR0IE8N2w8F3dFo3Z0xr9RODu/nc4r835l7eSPqB7WCqWdhqv7t9Nn8tcs+fDlCulXlb2OamGtKvjb508lrPerFBfkE3/+BOVGA0eWfY+jly/ZyfGUl5WhsNOgc/dC5yb+aN08MZUbSb56nuQr55AqlPg1DKNms0javzMaRw/vJ3a//ltQXFzK4qW7+Hz6crp0CuPCmZ/w8bESLvqYYTSaWLn5NjO+O4Ors5oV33WkWaP7Es0FhQY+mHCQk+dT+XZyS9o296w0hxqNpor9wKotsQD06RrAj8uv8+2EpgwadYwOLcX+dh1JYemMULq+fYgvR4WwanuCyO903+v3DE8OT6UnAuBeQjxThr/PkT07AWjQNIzOPfvQsXtvPLyrPkzTR3+EUqlixJSZNr/j7/REAGSkpjBy8EAUCiUzFy7FwanqafZf5YnITk9BrZZz8MgN2retyzc/7GLJskMYDSVMH9eObh2D2bX/DpEtAohNyEEwG/DzduDg8Xg6RAZy4mwy1fwcMRZmcDchj/CGbuw+nETrME9ik/IxlZXg723PodOptG/hycmLGQT62AMCMYn5hDVwYffRe7QOdSc1sxQ/r6qytSWl5eQVlBGTUEBYyH1+XGIOZrOAn5eGQ6fTaN/Cg5MXM/F3F+9BbGIhofWd2HM8jVZNXIhPKsAM+HnacfhsBu2auXHqUjb+XuJJVGxSEaH1HNlzIp2IEAfkMgnp2WUkpBSTkFJMYmoJ8feKMZvNhNV3JKyeI36eagRBsClPK1VYP4X7X/dElJYa2HkggVVrjxC97TThoUFMmzSQJqE2JFEfoyeitNTA0t8O8eXsNXh46Pl0dD+6dG4qvmNS8e937VocvfpOpEnjIBZ8N/L+6d7DfKct/I2eiB2rB9Mhqi4nTschlUoYNXEzB46Ip6Z1gj0ZPCiC0KaBuLvq8Pd15uCRm3RoU50Tp2NZsOggzk4a+vVsQnhodXbtvUZkRE1i48XwJH9fZw4fvUG7NrU4cTqWagFiGObd2AzCm/iya991IlvWIDY+y8J34sipeKJa1+LE6ZjK/LBa7Np7hciIYGLj7he5yy2Q4O5uJW/NEnKWlJRB3wFTcHTU8MviMTi7OP1/37eH8USYzWa2b9/OuHHjMAhSfloTjbNbZYP4cXoikjJyEQQJMedOUjM8gvjL53H29sVgMpOVlIBv3YbcPnmYwEZhZN9LoqzcjKObF3EXT1GtaUuSrl5A7+WLIAhk34sXi9CdOkxAwzByUpIwmbHKN5jM5NxLwKt2CDGnj+AXEkbmvUT0Xv4U5WSSl3aPvNRk8tKSyU+7B4KAV+0QPOs0xMFdNBrs5NbnFZ360ea4/xVPRIlJz46dZ1i19hBbtp2iRbPaTPv8VRo1rm39A4/RE1FcYmTJ6uvM/uk8vl72fPJeYzq29q20T7l8I5N+7+2keRMP5o0PsyrzbjKUsutIMq1D3YlNEsVH/L3sOXI6mTZhbpy8mEWgj+idjkksJLSuQ8X6HpcsXp+fpx1OzTY880Q8YTy1Eq+evn58t3oT035YjKOTMyUlxVw8fYqeLRozqFMkP389m/Mnj1FWWkp5eTkHd2yj3fMv/t3D/lO4uHuwaOMOaoc0om9kOOdPHHts35WbV8SEqesQBAGvmsP4esFOmjQKYPg7zQmq7sLgYRtoEerLZzP3cic2i9iEXCZ8eYAWoT4M/igavYOKNdHX2LwnFr2Dkjc/OUjzxu5MnHeau/F5xCTmM/mbCzRv6Mrb447hqFOwcXcC63bG4ahT8Pa4YzRv6Mqk+RdISrU+ycUnF7JuRxyODgreHndU5H99nvjkIu4m5PP5Nxdp3tCFt8efQK9TsP1QCut3J+GoUzBk0hmahTjz+YKrxCYXcjexkCnfX6NZiDNDJp3FUScnen8KG/bcw1Er553PL9CsgRNTf7qFRCLg7qykaV1HerTz5IOXAvny49p8NaIOfTp64e9l99SeRP8dKCszsm3nJV5752c8a47gq7kbaBYWxLVz37B90wSaNK7+RMeTn1/MrLkbqFb7HTZsOsbihcM5vG8WXbtU9jBkZubSpdsYPvqwF78u/dS6AfGUoUWoP59M3oLe0Y5T5xLo82II0z/rikIhRSaTsuiXQzzX62t6v7yALr3mIZNJeGf4cuztlUTvuIxCIUPvaMfg93+hRXg1Ppu6iTsx6dyJSWfCtE00Cw1k8PvL0DvasWbjOdZsPIfe0Y5REzbSIqwan03byp2YDO7EZDBh+lbCmwQy+P1fRP6Gs6zZcBa9ox2fTlpDi/AafDZlPXdi0rgTk8aEqetxdraROG+Bt7cL+/fMpnYtf5qEv8fJk9ce+z09ePAgrVu3ZsSIEYwfP541B05UMSAeNwylJez8aS7+DRqzesoY1DoHLu7dzo2jB1BrHVg37RP86jdm98J5ZCXFk5uSzL6fv8a3biM2zRyLSqvj6v7t3Dy2D7XWgY0zPsG3XmP2LhL5OfcSrfMP70Jlr2PLl5/iU68RB3+eR+69RASJBI2TK561GhAc2ZnQPoOJen8cUe99Sq22z1UYEM/wcCgrM7Jl+wVeeXshnv4vM/ebDUS0qMuNSz+xddPnNGr4ZOfQvPwyvvzhHDVb/8b2/fH8Mq89+1Z2p1OkX6U5NC2jiG6vb2H0u41Y9GVbqwYEQFxSQcV+4G58AXfjC5j8zQVC6zkxZMIp9Do563clsn5XInqdnAnfXK5Y3+8mFHA3oYAp3199Upf/DA/gqQpnunTmFHUbNalwUwuCQLd+L9E8qj1fjR3JxVMnmPLdQqQyGUf37GTaiBXE3r6JT2A1nN3caBjW/G++gv8bMpmM4ZOm0ahZC4YP6svrw0Yw6L1hf/mm1dnJnjPnYli17gSvDGjJ6I+6kpKWh1CahLurhkF9QlAqZfToWhsvDy3JyVk4OarAbMbdVYMggJ1ajrlUgiCAu4sKzKB3UCCVCpjNEpwcxNMbNxc1AqBUSEEAwdIG4OSgoMxQzpWb2dyOy6dzpDert8bSIcKLmMR87NQyke+squALgqjEof+jf2clYEYmBTuVFEEANyexzVEnRyIREARw1MkBM27OSgQBlHIBhVz8nZteAZhx0D68tOQz/DkuX01i3oJdbIg+T1ANd/r1DGXahB54+9tIxH4CiI9PJ7TVKNq0qkf0unG2T++AV1+fSe+ekbz91vNPcISPF2cvJqFUSCreX4AObYJIupdDUkoRB4/cYuSHokTt9t2XGf7JSq7dvMf+Q7dwc7WndpC7+L67ip5DJ71dhSqOk94OMOPuqq3UvyCAWi2+e056NTLZH3y1ha9DEATs7JQWvoBCIbPw7SqqvTvp7TAYDPy+8hCd2jfkxi3xxDS4phd7D5+lZ48Itm47Sc0a3rz2SkekUgndXhhLp05hfPXFEG7eFBMza9Xyw83NhsLNI6J79+5cvHiRSZMmMXDgQKRSKTcLn7x3X6Gyo16bjsgUChp37Y7WyYVqjULJzc5GEATsnVwAMyqtAxKplHKTgFqrwwxo9M4gCMhVagSZFBDQWPhqnQMSqQytqwe1WnVAqlDQoNOL2Otd8A8JxWg2o3FyoV6HF5DKFQS16oBa/+RDEv9bceFSPF8v2MXGLeeoHexFv15hfDHjPTw9//89bI8Kg6GcLXvjUCmlDPpoD3WD9GxY1IXbsblU99Nx8ITlfazmyM6DCfR5rjqdB0XTKdKPJvVd2bDjLp0jPFm19S4dW/lw824OAEHVHNl7/B59Ogfg5KBAJhP3Ok4OCjCDm5MKJAJ2KotXWiKglEv4Y33/gy+u78/wpPFUhTPVqe1HekYenTo0pWWLutSu7UetYD/c3BwRMLFz1xneH/YtIfWrseCbD3Bzc6SgxI8TJ87h5+dNzZqBD3RYNWnL1uRfany0cAVb9/RRw6KS4mIYPfhl/KpVZ/pPSxEEAT9762EvTuZt1jsx5tvsv9ML0+jVPZy3B7evaDNnHrHKjbkdj7OjkkOnUmnf0pOTFzMJ9BET8WISCwhr4MKuI5Zwo+QCTIZS/L00HDqdTvsW7py8lEWApx0I98ONdh9LpVUTV+LiM8VwIw81h89l0S7chVOXc/BzEw2ImORiQuvo2HMyi4iGjiSmlmAGfN1VHD6fQ7swJ05dzSPATQGCQGxyMU3r6NhzKpuIEAcSM0RXcRW+iyX86V4JTWtr2XM6m4gQR1QKKw46G/KBEpUV6bw/gS1j0Jbcqs2wJSuhRYKN8CSzDYlDW3xBZt11r3CwvjkQdPUqf5/ZzE+LDzJ+6kZGDu/FgL6RlXMdFF2s9mMVtmQ0bT3XtkKLLKFV738wH61Wzczpb1kGbyNcSpARUK0Py375jIgIS76OrbAAW0nbtvg22gXtK489nMnXS0tpmZEm9d2IauFLjQAH5HIJndv4s3v/bQqKDHz0+THqBjnxw7SWXL2VQ/Omvixdc51mjd0J8NFxNz6PsAbO7DyUSGS4J3F/hB9423P4bDrtI3w5cS6Van5iXZi78Xk0a+zJzoPxRIZ7E5eUb+FrOXI2haiWvpw4m0I1fzGM7m5cLuGNPdh5II7IZj7EJeVZ+DqOnE62ym/WxOs+P9HC99GxfNNNvvnXWTzd7fl5rlisMD5NQdNGVpJ2NbWs3ziJ9ffhUmFr3ujWgRcGDOLFga9UtNtaL2yFuVqTcgXILKoa9pZfYv1Zyyux/p3p2YWk3r6GV50Q7p46jH9IGLmpScikEhzcvYg7f5LqYREkXj2P3ssPo9ESnvRvfDsXD+TKqnOdxkqokFxq/RFWyqzPoSq5db5abv3dtFdab7cWngSgtRGKZC1EqYGjda6tsGCbCke23n1b0tTqwEr/azab+e77aCZPW8noUe8wYMCL+PiISchX8j2t9UBdOxvysUW3rTabsi9ZbTcW5VptP3cpheBALW+MO4mLXskXI0M4dDqdDhHeFfsBwLIfcGbX4WSGTDzFrDGNqFfTAT8vDQdPJNOumSunLmcT4C2GJ8UmFdK0loY9JzKIaOREfIr43Pt5qDl6LoPIpnpOXckj0Es8eIxJLqZpTbuK9T0hVQz783VX4t7p0LNwpieMp8qIMJftIC4+g23bT3L6zE2u34jn2vV4TCYztYJ9qRXsQ4C/B6vWHCC0aTBL/jUSZDZOGp8CIwKgrLSUVztFMuDt93jhpVf+UiPi0JFrvDbke26cn1tx2mfLiJj93WFqVdNVSmTu2NITpVJG9N6ESonSq7bEIhFM9Ozgw+hZF9i+KJJBo4/TJcIDYzlVEp93HEwgN99I746ejJl7ja0Lwnl1/HlebO1MYXE5u09ksWRyPZ778CwzP6zJwbPZpGWV0audO2O/ucWW+Y15beJlXox0oaConD0ns1g8sS7dhp9nxtAa7D2VTXa+oQq/czM9BqOZPaeyWTy+Nt1GXGTm+9WJamrllPIpNSLUIWsefnDP8JfDXGTl/v+NRkTtmk4smdOBgR9sx0GrJD2rmOSUAuw1oicutIErqRnFxCbm06KJO3GJBexZ0Z0BQ3fSKdIPgB0H4vl9fjvaD9zM7PEtWLlZ3KT07VaDmT+cZ+V3nRkwdDudIv0t/DhWfNeFqH7rmDupNSs23gSg3wtBLFp+hW+ntaX/u1vp1CZA5O+PZcX3XYnqu5a5kyJZsfFGBf/HZZf4fkZUFf7KH7rRts9q5k1uw/INIr//i8GM++IIaxZ1p16bn+nWoToN67px+HQG0SverHqD/gMj4viBvUwf+SHrj1+oEMP4JxkR1y9dZuf8qfSYOI/fhg+iw9BxXNkTjdbZlcBG4Wz/ZhqvzV/G6onDqBHeGqlSzfUDO6rwm700BL23f5X+/xeMiGehq38vbke34rXPLtE+XMyZ2n0ig58/q83zwy8wY2gN1u5JA6BnlBu9Rl98ZkQ8YTx1RoS1k8OMjFyuX4/l+o2Eih+FXM661ROeeiMC4PrF87zX+3lWHz5No2p+Vjn/iRFhNpvxqv4OW9d9QqOG4kmILSMiLyMVpUJSIamalVOKViNHEATyC42VJFgLi4yYjKUVkqruziqycsuwt7gj/12CNT8n/wEJ1jLcnZVk5ZahkZWDAPlF5Tjp5KRlleGql1eSdEvPNuDmpCArz4C9QrDKLyozW+fLzJbxVOZbXTSeGRHP8B/gn2ZEpJwfgpuTkqycErQWycS8gjJMJjOHj8WQllnCpRtZ3IzJw1GnYN6E5nh66ivx8wsN6LWySpLOIEoypucYcHfVVOE76+1ITS/CzUVNYZHBwpeTllUi8rNL0Npb+AUGnPQqUtMLcXOxq8RPTS/Cw60q39nJzjo/sxQPN3t2HYhh0AdbOLfrVVQ6b/SOVvJb/gMjory8nLY1ffh5y25q1BbVpf5JRkRWQRklBXmoH5BsNRQXIZOCQq25L/Gal4PSToPBIgn773xkCiRWFAOfGRHP8LiRd7Q9WXkGtHZ/7B/K0asEq/sBx7YHnhkRTxhPVU6ELbi4OBDRsh4RLev93+SnELUaNOTFga8yfeSH/LZiFQobk+KjYv2mk3h56mkYEvB/cg+dTmPJ2jvMnxBKh9d2M3V4QzbuSkCtltGplRfjh51j5deRDPz4kFgsptzIrmOpzB/XiI5v7GfKsPps2ZeMsdzMi1FefDb/MstnN2fQmBN0buFEmcHMnhMZzBtTl87vnuDz94LYfzKV3Pxyno90ZdIPd1g2rT6vTbxC11YulJSY2Hsqizkjgun6wVkmvVOdg6ezyCkw8kIrFwb9dJdfp9TjtclX6dLShTKDuQp/x+F0SstMIn/RVX6dVIfXp15nyWe24+SfVhSd61Wl7XGEM126kki/137k6qkpoPSyPpi/IZwpLbOUWvUGc/n8Qry87hd0/LNwJoBXXp1Kq4gGvPXWC48UziQou1rn/s2QSSUMHrGLtwfWY902UUGmZ5fqjJ15lJXz2zB04lHaR3jToLYzuw8nIZMKdH9zC5+814T1O8QijD06VePTL46yekFHBny4mw4RohrersOJLJjWlqh+65g+pgXrt4v99+hcnQW/HOLryZH0f28bHVqLByG7DsazYGY72vZezYyxEazbdtsynhos/P0SX41vTf93t9Khtb+FH8eC6VFW+fM+3cv3M9rR750tdLR4QHYeiOP7LzrSpudyZo6LxMdLS9teK1my4GWahQb8Jfdzx/rV+FarTvVadf6S/v5q3Lt5BXN5OXt/mkXvKd+yfvJHBDZtiUqt4vrhPXQbMZnFHwyk/TsjuXZgJwqNjoBGzarwq4W3seRJ/O/CXLy+auNjCGc6feYmb74zn/OnvgV51T3N3xXOdPNOBo177GDqR/XRauTstqzvw6ad58NXgtloKQb3Yjsfxs+7wIq5LfhgyhlikwqpV9OBgiIj88bUY+DoU3z+QR027r0n8qM8mf/LTb7+pB7DvrhCO4vHYej0ywB0ff80k96tyeYDosfh+Ug3lmxIYMo71Xlt8tWKyIG9p61U936Gx46nyojYu+88rVs3rAi9+V/CkNHjGP36S7RuEsIXX39LZJSNCtUPCZPJxMSpq5k55aWHOmmp4a+lXQsPdBo5HVt6EuhjT+swNyQSCYE+WjpGeKHVyGnf0pOm9VwwGUsxAzqNnA4tPAj01tCykQsms5kAHw0dWnigtZPRrpk79Wvcl0PVaWR0aOZCgLcdjYN1GMrNBHqpaR/uhNZOSlSoE/WqafgjzF+nkdI+3IlALzX5wfYYyyHAS027MAu/qZ76NewxU5UfXkeLGYEATxXtQvUiv4kV+chneGgE+rsQG5+J2Wzmn3QcdPfuPeRyKUajjfwFGzh95jofD+/3mEb15HH2UiqN6rlSzc+BNs3FzX81Pwc6Rfqjs5fTPsKbpvXvbxZ19gpah3tTzU9HZDMvC19Hx9a+aDVyOkT40LTBfeNSp1XQKdLfwveu4IeFuIv81n6EhrhX6r9TmwCq+T8wHn8HGtdzQ2svp0Nrf0Ibulfu3wq/RVMvtPYKOkb6Exri8QBfSee2gVTzd+DTD5ox7etjvD50BT/M6U1ky/+/BH+j0cj3M6fw6Vdf/2NPq+2dXJHK5VQPa4XCTkNg05Z41aqPXCbFUFqKUmNPjfDW6L38CGgUjlmQ4ujlW5WvfvqVyZ4WBAZ4EBOb8o+bQ5NSirBTyahTQycmOyOu780auYj7gabiPBDoY0/Hlp5o7eS0b+7BtB+uMPrN2mTllKHTyGnf3I0Abw2tmojzTIC3hmYN9Gg1MtqFu9CkdmWJ8fbhLgR6qYloJBoLgV5qGgbZV6zvjWvpKrgb9j98Ve1n+GvwVIUz6XR27Nr2JWFhVtzOtpIb/wvCmR7s9/Le7Ywb+RF16tbH20880RMEATXxAEilEl7q34aw0GDxQzZObFevO8asr6M5vn9qpQXQVjjTieM38PbQsHZ7HG/2rcGqbfE0CHZEkAhcvJ5D3y7+LFx1m96d/blwPQuToZSQWnrW7kzkzd4po4skAAAgAElEQVTVWL0jgbrVdUgkcOlGLr07+fKvtXfp2dGHC1dSMZshJEjH2j0pvNHdlzW7k6nrpwIBLt8poFeUO4s3JdGjrRuX7xZiMplpUMOe9fvSeP0Fb9buTaVeoB1m4PKdQnq1dWNxdDI9Il25HFOEGarw6/qpLf0X0quNK4u33KNHpCvGcvHvpNfJibtXQk1fNbFppThZ1B+y8owEeKq4lVBEYIAj2XmGCn5scjFB/hoycw246h/eNf64w5melCcCwDXwIy4dn4yHn413729KrJ47bw3f/7SZg3vn4uFhUTf5E09Ebm4BPn49yc7cikwm+488Ef+0cCalQsqhtb24fjubkDpiUaoLV9PF/IRl5+jeyZ/zV8U6Dg3rOLFmayxDBoWwMvo2IbXEujUXrmfSt0sAPy2/Rp/nqnH+ilgnomFdZ9Zsj+Xtl+qxcvMtQmqLm4QL1zIY8GIwPy67TJ9uNTl/Jd3Cd2X9jrsM7l+XlZtuElLHwr+aQd/na7Lwt8v06RbE+StpFr4b67ffYnD/elX4/V8M5sdll+jbLahS/yu33OadQQ1ZufEaDeq4YTabWbo2hjWbLtKogTc+Xo6WewOCXHwmZDIpgwZG0biRxciwEc404+cEVi9ZxJKteyu91/+kcKbUjFySr1/ELySMW8f2EdCoGdnJ8aK6nZcPsWdPENSiLbHnT+Lk7Yeh3ExOcnwVvs7TD4UVQ+J/KZzpSXkizGYzDq69ib25BCf3qoqSf5UnIjP2FGqljKxcMTHZyUFJTGIe1T0EYhILcXYUx5qZU0qgjz1rt97m8q1clm2OY8bHDWjd1JW1OxN5q28NVm1PoEGwuMm/eCObvp39WLjqFm3C3YkYsJvfZ7egUR09a7bG8EavANbsTKJ+kGgsXLqZS68oF/61IZFe7Ty4cFMURug+7LT4/QeiWLsnlXo1xMTty7cL6BGhZ8mWFHpEunLxdiEADWpoqNHz2LNwpieMp8oTEeDvikJmtP6Cyv5cP/zfkWWlvo+Lwvqz56SxLh1my+iw2c+jKpAZdlZpatQ5n16tx7Ny7QmKigswm82i0WIEsxnyC4rp3msCXdoHM31cJxzNMVX6MJnMfP75Fj7/oB4lt1ZX/l2Z9cnv3PkECgM0rN12hx6t7YnedYeiXGdkmNhxPIu2dQTWRt+kvpeRnYcykJSbUJfks3ZLLD0aK9i8/S5F9e0pN8G+C3m08TaydvMd6upKOXouh6JSE6o8Peu3JNG9lozo7QkYQrSUGkzsv1xAWy+BdduTqaczcepyPjlF5agztazblsaLgRK2bL9HeUN7Sgxm9l8pJMrdzPrtydTXGDl2uYDCEhOqdC3rtqbxgj9Eb0uhuIEWk8nC94T1O+9Rz0lg62lxEnsu1IEpK5NZ+lEgs1fco2mwOIntu5DHnLf8GT7rNpNf92fjUXHT9XxzPZN/SeDXT4LYdDybVzu7V7mPErX1h0Bqr7Habrax8bBmdJj/rMah1V9aX4zNRuubmvJiGxv34sr1TAK8Vdw6tw8PVxv5IiYrSie2Fl1bKLdlRNj2NAx/qz4F2YlEth3Kz9++TMtm1W0bEUBWQgZSKTz/3FBe7hdG925N0WisbAL+pNjcpbOnKSgsvf9TUIpCLvBi13qoVE9eklAqESgrNbJp912KS8Vx7zoUT5e2fhw+n0PjpkHsPy2GMzi5e7JuVxIvvxRB9L5kykzi33PngWS6dWvBul17CGsewr4zcQDoPQPYcziRAS8Gs3l3LCWl5Zb+E+jU3JXVm6/TMEjDzv3igYdGbuD46Xh6tPNg4/YbFOWLKk+7jiTRIVTH6k1XCamhZOdesSKtnbSYw8dj6R7pwsat1yjMFTdTu4/co31jO1ZtuEyDACk7LGEVKrMPm7ddo0+UCxu2XKEgWwx3yExJ5+Lm51i9LZaiYvEemM0gkedgNpvJKzDQtdsYXugQyNRRzXDzr2oMl5ebWDr7a76d8yYNlJsr/1Jb9b0HOJ7ZyGp7Wbn1Z1ZlxeNerrB1EGV9KXf2d6GOfxQAQT0sUsUBrhgsByXVvJ4DwCeqDWAxAOrXqMK3ZRhY2+jLreROAChstKtsFHizVfjNVj+2vreu9p7VdgyXq7YV/klITElC1bayDKtUU0mW1XaJ0nohzwfnLQEI9NMTc/0UTg5Vr6muzMYcl3XFanNZ5l2r7buiz+PqKGfTIfEaXmjlwqSf7rLk42qM/TGWtiHiWPddyGXOkACit8Txekc39ugkfPj5aSYO9GHtoUxerC2wKTqW/IT7/DbeZWzZGYNjeT5Go4lhn5/kpSgXjlzNp0djJdE74yhMt/DP5RIVLGP9jkRCvGTsPZpZaZwnjqewbEMidQPtKDWYOX+7kJKcYtbtTifEV8W+4+K9tpc8WpHfZ/hr8FR5IoJqerFxzXhqBVspb27LiJCIRViio3fz3YJf+P23+ej1jmQZrUj82YCtzf/fYURQauPk44Hqk7l5JUyZtYelK88y5s1g3hkQhNxSFdRsNrNuZwKzF13h0LK2VU7GbRkRZaWl5FUkIJfiqldQWFyOucxYOWE514BWI8VcbKCguBy9Vk5adhmujnLyM4oAAY1KQnquETdHOVn5RuwVAAIFJeXo7WWk5RhwdZBRkFcmJlwrJaTnGXFzEPlamcnCN6G3l5KWa8RVJ6WwxASCgEYpkJ5XjpuDjKwCI2L+pUBBqQm9RkpanhFXrRQxH7QyP9sgQasWJ+6K8eQacHNRif1D5fGXmNBZEr4Kik3otZbxOymseh0e1Yiw5nEA256Lf4emyUYAis72sNLHo4UF2qpk/e94adhenm/nz6A3+lgnWMuVeAJGBIjP/+oNZxn+6Vq6tK/LF5/3xNmparX0P1BYWMqmbRdZtvIEF68ksWfTCIJqelQmmY2Ulho4dzGBYyfvcvxUDKvWnwGgXm1P7O2VaOwU2GuU2GuUpKblcfVmCiPea8OQ15pXGCaC08eP3RMR4KNl+bedCA1xq5zgnFGMp68XmVlF6LTiePILynDSq0lNL8bNVcPy9ZdZuuICKxf2otSowN1NS2ZWITqtysIvxVGRZTWB+l5iOu4udmRml6ATX3jyCw04OakqCTKIfBmpqfm4u6jJzClF90CC9r8LOFTw0wqq8osMODtrq/DtNdbfTanq/juYk1vK5HknWb7pFhNGdeKd15vdV7Azm/l9zTm+W3yGI3unVe1L+WhGRGax9QrmBivGRWGZdYO1qMz6BsrW5v8PI+Jh+f8zRoShqhEh2A8EwJw9vyr/rzIi/u2Z6T5wIS/3bUrvvs9V5dqa4woezYgoSUusWK/hvsDIvbvZuDrIq653Wpm4XqsE1h3NZtKviXQN0/PuC27U8FJX4bs7K8nKMyAIsO1kNiv3ZXI3pYTFY4JoEmxfiZ+RX45OI+PQhRyuxRVx6no+m4+I9zDIR4VOI0OtkGCnkqLTSElIKyU+rZQ3urrzxnPu2CmlFBSXU23A6WeeiCeMp8oT4eaqIzExw7oRYQNGo5FPPpnJ6jVbaNGiCf36v8/WLUsf4yj/fjjoVMz6/DneeDmUD0b+zhc/XUEmFSgoMlJYbMROJWP57GaPFMcbfTCdn9YmsGRKfZ4bepaZw4JYsysFe5WEjs2c+fS720TPbcjrk6/QLswJwWhi1+lsFo8N5vkxl5kxJJBN+9MoNZrp2dKJcUsS2DQpmDfm3qFrUwdKDGb2ns9j0bBAXpxyi+mv+LD/Qg6Z+eX0CHdk/O/JbBhbjTe/i+eFxvYUlprZc7mARUN86P5VLNP6e3DwWgEZ+eX0CHNg/IoUNowK4M0fE+nW0J6iMjN7rxSw8G1vesyOZ2pfd7ZdKKDEYKrEf2thElENxBjLvRfzWPRBAC9Ovc3MwX6sPixOag+O/7NlidT2E938e87l8POomrww7ipLPg2mlt//ZhxxgI+W2ETbqmB/JwRBoG+PJnSKqkO/wf9iwOB/sXPDMJt8jUbJgN6hDOgdys/LjtPuhdnMm9mftPQ8bt9N405MOrfvphETl0FQdXeahwXSrXP9CiPi0tGxVTs1Gzl3MZH+b/7KzK/3cufMp2i1j6by9Z9C76Bk9PQjfDq0KSs23QKg3/M1GTHlMPvWvUq/IevoHCUevGzfe4eVP/Wgx2trcXfTsPtgDM5Oajr2+42CQgP7NrxNvzd/p3M7MXRy+54bLJ/fhnb9NzBnYitWbLpZ0f+3i8/x45SWDBy+n46txFyJnYeS+O3rNnQYtJ3Z48JZGS1udvo+V42fV11n3rhQXh5xiI4RotG583Ayv85uRacHpKQB+nQNYN7iK/w8vTkvjxKlpwF2HrnHsjmRdHp9F7PGhrJqi+iVfemF6kQ1t5H0b4Gjg5K5E1vxRv86fDTlFJ/P2oVEIlBYaKCwqAx7jYKNq8f+Y3MhnuHpRqC/MzFx1g2RvwrFpeUMmnCZdmFiGN8f0uhjFsYzqIMraw9Z1rsIJ8YtjmfTRHG9btdQNIQCPZTcSCym67gb/PhRtSr8zVNrM3jWbdo1EkMGy81m3urmQZcxVxjex4t953LJLy5Hq5ZyNa5I9AYKUDvADl+3+x5fQRAYO9CXtQdFg61nKxd+3ZnKyH7evDztBnNXJ/FBTy8OXsh7rPfrGazjqTIiIiPqsv/gZdq3a/jQnxk1ahrnL1zl7JmtODhoea7ba4waNY3Pvlr0GEf6z0DtIDeif2pLXHIhSoUUjVqGRi1FKpVgKit9pL7ahjnj5abCVa9g5rAgIhrp8fNQYTaU4+uuZMbQGrjq5Ux6uxoBXmrMJQZa1nfA1VHOjCGBtKzvgLe9AAj4uiqY/rovrg4yJgz0wd9ZDgK0rKPF1UHG9Fd8aFHHHh9HiVhUzlnBtIFeuOpkTOjrgb9ePDlpGWyHq07KtP4etAi2w89FjgnwdZYzrb8HrjopE3q54eskFq1rGWyHq1bK1L7utAhS4+uqAKEyf3xfTwLdxQmsZW17XHUypg/ypnlte7xdxPYHxz+kmwd+lgkvor5l/G/6U8NbXfUm/o8gwEfLqYv/7AS3rOxCzl1MZN2yIQ/9mcGDIpDLpPzw836qBbhSPdCVFuE1qBHoTI1qrpSUGoiLzyIu4b47Pj4hC18ffaXN5sGjdxg/bRsSQeC7L3s+MQMCoG1LHzKyiokM98bfW/Te+ntrmTMhAjdXO2aOj6Kan7jot2nhj5uLBhdnO/LyS9mz5mXs7OQM/WQ7AX7OuLnaM3NCF6r5i5uQNi2r4eYiMGdiqyr9S8tLcXNWMW1EEwJ9xfbIMA/cnNXMHhdO6zAP/LzsLXwNMokJN2cVUz9uRKCPyG8d5o67s4pZY5vQOtQdPy/Rc+DvZY9UMOHmrGTqRyEVRa9ah7rh7qJm1tjQSvxAn/uJmP8X6gU7s2fDEOISslEqZNhrFNjZKZBKJVUKhD3DM/xVCPR35tqNlMf6HWqltGK9BmjV0BFXvZzXO7kRXtteXB8BX1cl0wf7VazXAZb1McBDyehF8Yzu50XLutqqfEc5E1/xJcBdnN8i6mtpWltHWraBE9fy8XVT4uOqJKSGhoLicvq0deX4lXwkEkjKKGX9QXEe/bivNy3qaSsMC183JdfiCvlieSLuegWj+vvQMVRP20aOdBxpxbv0DI8V1mMl/qGIbFWHA4ce/iFZsnQ70Vv2sG7tjzg765HJZKxY/i1btu5l0fffPcaR/nMgCAIB3vZ4uqrR2cvFxe8/wPGLOei1Mt6bdpXw+g5MXXiHu0nFxN4rZtriWMLr6nj/ixs4auVsOJDOpiOZOGqlvD/3NmF1dEz7NZ64tFJiU0uYsTKJsCB7hi6IxVEjY/vZHDadyMFRI+WDH+IIDdYwY1UyCRkGYtPKmLkuldCadny4KBEHjZQ9FwvYfDoPB42UDxcnE1rDjhkb0u/zN6QTWsOODxcn46CRsutiAZvP5uNoJ+HDpSmEVlczc2MGcellVfh6exmbTuay6WSuOJ6fEggN0jBn3T1iU0uqjF+nkbDxaBYbj2bhqJExdP5dwmpp2Xbi8Z4i/ZPRrJEbB47fsykw8Ge4cjWRNp2n8ub7CykvfzwxrqWlBvq89i8++agjLZs9mkLPoAHN2bVxBHNn9COsSSDXbtxjzMR1eNf+hOoNP+P195ey+Lf7OSLNOs5B5zcaz1rj0QeMQe05gtfeX86bg8K5fHQ0fbo//IHIX4HzVzKITchnwpwT3InP5U58LhPnnqRFEw9GTtqN3kHFmuhrrIm+ht5BRctuS7lxJ4N6tVzJyComPjGP+nVcOX0ukYiu36N3ULNm8yXWbL6E3kHNhxMO0qKJBxNmH+dOXC534nKZOOcEoQ1ceOvTIzjqlKzbEce6HXE46pSMm3Wa5o3cmDjvLHfj87gbn8ekr88RWs+Jt8cdw1GnYN3OONbtjMNRp2Dc7HM0b+jKpPkXuBtfwN34AiZ/c4Gw+s68/dlJ9DoF63clsH5XAnqdgvcnHhf5X5/nbnw+d+PzmfnDxUe6Z4IgEODnhKeHDq1W9R/Poc/wDA+L5qEB7Dt86z/67MUrqbR6YTHvjt6CyWR7Dj50Lrtivd5wIB1HrZz3v7hB45p2TF+eRGxKKbEppcxYkURYsD2TliXiqJGx6Xg2aw9nMmNFMgHuSga0cbbKH/59DI4aWaX18aNv7/LJQF9CqtvTPcIZR3spCzensP5gJgF9T/LajBu8P+c236+/H4I2flEcfn1P0XHkJdp+dBGf3if419ZUZFKBFRNrUVxmYuORTBztn6oz8f8aPFV3vUWzYM5duMvduykEBrr/qSv5+PGrjP7kRw7sX4tef1+2U693ZPu2X2jd9iXsNBpeeuW1JzDypwcGo4miEjE+MSffiNZOSqnBhKncBJhRKcUFVC4TkAiiqolCJv4dlAoBMCOTCIhRiQIquQQwI5eJheAEBAvfjEoh9iUIAlKJKGenkkvAbEYuE/8r4YH+5QICYAKkUgHBDEpL/wqpgBkzEgEUUrF/pVyCYAZBMFfUilNZvlsuExAEszieB/ncrysnjkcAsxmpVFLxvFUavwkq8h8FLNdkprzcRIklTrnUIOZN5BaWo5NLKTWYLfdLQn6REUd7GbkFBsu1WPh/3H+NnFKDyXL9EvKLynHUysjLL0OpsFTILTOhs5eRk29AayerxP87UN+i0nHpSjIN6nk/1GeKikqZ8sV6Fi3Zz8SxPdkQfZpX3vqepT+985dKOufnl/DxuLX4+zrx0Xtt/+N+QttMQ6WSEdW6Nu++0ZpffnwNN9f7J9yCwzsAJF+bSk5uEcXFBlQqOUqFDLVK+NvCYPy8tayJvk39YCcExHdPYXlOZBb1HJnlBTh94R7nr6RyNPp11kRfQ2IZs4NWxbqlg4h47ns277hakROBYEZheacVckkF/4/+VUopAiCzxNcLgEQivksKuQSJ5XFVyCWYzeYH+JIH+Pc5D/5bnJvE50T6QPy+Uil5oH+xXf43vRfP8AwPiyYNfSkoLOX6jSRqBT/cHFpYWMbk2QdYsuICk0e3YcWGywz+aBPfj69LQZHxgfWiHJ29nJJScU2XVaj0mVEqBMxmcT39Y4r6Y338Y100GE2sP5pNoIcSL2c5mLHKV0rFNb/S+ii3vO8ygdE/xmCvluJkL+O1Lm54uyoZ3s+HwxdFYYfh34h1Zs4uasjM3xIJqaFBLhM4d7OQEX09mLw0CalE4H9Q8f8fhacqsdpcuJIRY39j+apDFJeU0bRxDRZ8/TY1a3hVSKcZDEY2RR9n2Igf+eGboXR7vpXV/m7cTKJt+4+ZM+s9+vcT1SswWVelsangIg2y3m6Os95ushFCZCup1JBTtc1opQ2gKNZ61yWF1ru2oUJxLykDnUbG4XNZtAt34dTlHAK87SjPzic2pZSmtezZezaHlvUdSEgrwZRTjI+LgqPXC2hbX8vp20UEuCkw5RcRl2GkSaCKfdeKaFFTTXxqCYIZfJxkHL1dQttaas7EleLnKAUE4jINNPFXsv9GMc2rq0iIL8CMgI+jlGOxZbSpruBskgF/TyUgEJ9lpLGvgv23SmgeqCIpqwyzGXwcZRyLLaVNDSVnEwz4usgRBKrwE/PKERDw0cs4dreENkEqTieUEeAiumUfHE+LIDWJWWJS44PjP59qwtdZTOSMyzCI13u1kBY17Ui0SID5OMs5erOItnU0XEg34+sqPquxaWU0rWHHvov5RDR1IiFdfP583ZQcuZRHVGMHzicb8PcU3c0xycWE1tGx52QWrcM9iE8pAcDPQ83hs1m0b+nBqcvZuOiVYv5LkZH2b4gSqYn7niMrtwwPFxX2dpazA5tJ29afd8EW34ok7KiZp3DUyhn3XoOq/H+Trd1xKJEPJx8ntIErs8aG4uFqR3GJkb4f7KNWdQe+HNPU6vdahRUVqpy8MmYsvM7hk/e4diebFk08WPFNexy0StvSurKqCfCC9P51tnzhN2aMbU3r5tYFGgTPL8XhpIx76KELHtMee2K1MeY9er29lWPnUikpLadekBM/zowkPqmAjhHenDifho+Hhu0HEhg36yS/zokCs5GIUHfiksS5xN9bw/6jCfh42NH+1d1M/7gRXdt4E5NYQNNgO3YfS6NVExfi74nzmp+nHcevFhHV3JOTFzII9BXDjWISCmjWxJNdh5NoHeZBXFKBpX97Dp9Kom14VX5ofUd2H7lHq1B34pPF8fh5aThyOpWoZu6cvJhZEc4Uk1hAWANndh9NoVVTtwp+gJ9DxYaq0v2xIads632wKTSgs+FdsrMe/nStsKqMJ0CxoaqEoC2ZWFvttnx5tswomcT6byQ2jF5rSc5SG33YSnwO0th45B9V3tlWu8nW+mplDbTsAfLySygoKMPdzR6Z+6cAZF77mMzsYrzc7dFoxLnAVGJ9PS63IVBiaw6VyKuGNA797ADeLjJGvVVZQttQUHXc2w6lMuLLSzSr78C092rg5qSgqKSc/p9eoparjAn9vUjIsKwvlvU60l/KmZgS/F0qr18HTmUR6q8kMcey3jnK2HWjmNOpZvZeKSQx20jTQBXDOzsREWzHwZvFhNe0IzGz8nrXLtS5Yj8A4noXWkfH3gt5tKyjJeqTq4zq5UWXUEeO3SqkbUMHTt8sqAh/Cnr1LABrJtemZX0dCWni/snXTcmJ6/lENnTk9PUCAjwt6+m9Ujp8fPFZYvUTxlPliQCY/cXrzP7iddLTc1mx+jCt2o9jzW+j8PP3ZuHP2/nXkp3UqO7Jgq/fp9tz4Tb7CQ72Y8fWL+nQeSQqlYLuL0Y8wav452L/qUycHOSMmXuNrQvCmbDgJh2auaA2G9h4OJPFY4P59McYZgwJZM2BDDQSEx0b6hj3axIbx9dgyspkMTG51MCeK4UsfNOTz1anM7WPK1vO5FFqNNO9sT0T1meybqgnUzdn0aWumhIj7LtezI+vuDFhYxZTujtx4FIxmUVmXqyrYuKOPNa+6sS03fk8H2KisMzM3hsl/PSSMxOic5jSTc+hW8VkFJro3kDNhC25rHvThak7c3munh3Fhqr87deKKTGY6d5Qw4RN2ax9x53pW7NpW0tMiH5wPNN6OrP2jLjJeXD8P+3Joba3OIn9kbj92ao0ZvR3Z/UJMdGrR6iWz1alsX6EH0t2Z1HNU5wk/0gkH/dLIl9p5Kzcfz9xbNyiWDZNr8M3KxIICRI3RbtPZLFkcj3GfnOLLxVKVu8UFbl6d/BizLyrbKut55M5l7kRU4Cx3ERh0X0Vj+Cu2yksLmfy0DqMGhz82J+jvl0D6fbWblIyShjcuzqN6jhX4SSmFDLmy1OcuZTJNxObVyTcAqhVMv41M4IGXdfz4au18fGwoV71EFizPY6zl9P5alxzQhu4orKibf+oiAjz5sPP9rBgRgfUKhme7ho83GyrPP1TkJZRjEQqYcnsdixZfY278Xm07r0BB62CFfPbM+DDXWTnluHqpMLTTU1IHWd6v7uD8UMbVkp8HvPlWbb/3A5/Lw0jZp7h8Jk04pIL+WVaE8bMvsSXI+uzarsotdqnkw8/romjXpCe8XPO0rGVJVH6UDK/fx3FyGknmD0unBWW/vt1q8a/Vt6ibo2q/F9mtWDUF2f56pMmrNoqHtb07eLHvCXXqFfTkfHzLlRKrP71yxaM+vIcX41pxKqtorTsSy9UI6q5da39Z3iGxORcWnb9ntIyI5lZ940BvybfUFhkYNbEdox4t9ljH8eAF4N4YXA0ialFDO5Vg5DaTlU4CSnFfDLvKpdv5TF/VDBtm97n2Kmk/PhpbZq+fIKmNezYe0lcv3o2d2Tcr0ls+NCLKRsyiKorzq17Lev1LycLKTfD+ouialj3Bmo+3ZxLdQ8FSrnAsE5OyKQCs7ZmEeyl5NudWZjMAutOVV7vGgQ53N8PIAqV/OtjNeOWJDD9dV9MJhi5KI7UHANrjmTh4aRg8i8JFYnYf2DcolimvxVQKbF62e406gRomLQ4lvaWitW7n1Ws/lvw1Hki/r3wz45d5xj4+lzMZhjYvy1D3upC3Tr+9wk2CgX94V04c+YGXbp9wm+/jKNDu6qnpg9yq+C/0BNRlJuDQi4hLatMlGjLLUOrkWHIzKOwpLJka2GJifKsQlHSzSLBml1gxF4lxZRfJEqwPiCpWpBfJkqwKgTS88tx08nILixHIwME4T4/vxxXewn5GUUIgJ1cIKPQhKu9lOxiE1qdXOSXmtDbSUnPL8fFXkJhcbnIVzzALzL9P/bOMzCqamvDz9RMkknvPfQWSgi9dxABBTtiV0C6AjYUlSp2QQURlaYCUqX3DoEAgYQSSEivk0nPtEz7fpwwSciMV+61fN6b99/sWbNnz5lz9tqrvGuhdBbbldeahfQqF7mIwkoL/m4SSvRWlArBW1R7Pf4eEjRVwrNSe/2lFrGt+dHdJWQ1hmp5pxr5MpEc5d0lZEuNBIS41i2RV2rE30tOGRLcXIVDb19OBnkAACAASURBVIWtxG4VAYHuaHSCkeDqLEFVXIWzs5xBL5xkzKBgZj3XnOLyKhoP2Q/AY/eFUlZhZOMn3WrSOf7ESARAVm4F67bfZvWW23h5yHl8RCPKKqq4klRKQlIx5ZVGJjzRkjmT2uPibP9g/+ZHcVRojCx793cqbTuRiAlvn6VThyAmPtmm/tr/zUiE1Wrl5203mDXvKHkFGr6YP5BpL8bUyP4/jUSY0yeTX1iJv4+zreTpsbM5PDvzCGIxPHxfYyY91YYWjT2rS6oqyCsorSPv6iIlP7+MAF9niksNJKWW8+i0Eyx/vwv39/KloEiPv7dTnfuzSCslwNeF4lIDbrVKtvr6Ku2WbM0vKLcr7+UusSuvKtQK6ykz4OZSU+LV28OJArUefx8nNNU9IZRKhd10soZIREMkoqS4lN4jvuHZx2OYNaUPRqMZeZDwDD8yshUms4VNK8fYUv/+zEgEQGpKLmu2prBm6238fRU8OjwSdWE5ibfKSUguR6M1MeHRSF57rikys97uHDMXXUUihrceEQznOyXTfUVGSjTmevouL7MMP1cJ2mp95yIX8eLPxQyK9uD+Dsr6+rHSIpRYv0vfBQYpbecBQd6Mt7eipoS7zsyW08V8sDEXVZmJTyZGMrqXj6CvAf+H4gC4uS7Gdt4AbOeNAG8nSiqMNfpUZ6bRo+cbIhF/Mf7xyaFDB0dzI34ZmSlrWPrZxLoGxO9ATEwLtmx6nyefXkhCgv16yv9LuHyznKfnXEYqFTHs5XOkZGp4f/ktlm7OISVbz/2vJSKTinhu8U22Hi9kV1wpLyzLQCoWMWpBMil5BhZuyuODX9XcLqjigU+zkElEvLgqj18va9h+qZKXVquQSkQ8uCyX24VGvjhcxuI9JdwuNDL6qzxkYhi/tpB9N/Rsv6pnwuYyJGIRY1YXkVpkYvnJChbvLyNVbWL0NyqkEhj/UxH7b+jYnqBj/IYSJGIYvaqQVLWJZcfty++8omXbZQ3j16uRimH08nxSVFUs3lNSbz2v/FzI9kuV9dafpjKyaHshi7YXCr/34wxkEpEQeYgrZ1tcOS+uzEUqFvHAxxmkFehZuDGHhRtzSMkzMOr9W8ikIt74Jp2tJ9RsPaHm+SXJSCUiRrxxjdQcHfNWpjJvZSopWVqGT72EVCripXcvs/lALpsP5PL0W/GIgDajDtI8UkmF1sR7X98gI7dGkeUU6Fi3pAtGkwWd3ozeYMbsoFb8H4WwIFfeerkdSQceZOHMjtxKL0csEvHsQ804tO4+VOfHsnBmjF0DorBYUIivvtCGzXvTycyt/LfXcT5BTZf29rtt3wvyVZWUlArrEolEjB3TmqyLL9OrSyhRLX3/4/n/Cgx4bBsyiZgnphxk485kNu5MZv22W5zcMpoB3YN5+qEWrNuWzNufxHErrYwBY39FJhUzdsYxNu1OY9PuNMbOOIZUKmbws4dIzqhg15Fs+nUNYPzb5xg+4SQyqZin3ojjl/3Z/LI/m6feiBPkn95Pcno5cz+PZ+7n8SSnl/PimyeE+acfZePuVDbuTmXs9KNIJfblX3jzDDKpmHEzT7Npbwab9mYwbuZppBIRg587THJ6Be8uS+DdZQkkp1cwcuIxZDIR42adYdPeTDbtzWT8nLP/+kI14H8ORqOZUePWMqRfM2ZOFtKgZbX6YBSX6lj/5QNUVZnR6Yzo9aY/rfjDHYQHu/LOlPbcPPgg707twM3UcqQSEc88EMaBb7qTfXgIcye2sPGBakNdKqQvTbvfn+8PFrH6UBHbztbo62lr87hdUMWiHWoW7ailr0Uixm8oYXtCjT69mmdk35UK+/ISeHFlbj1998iS27bzwMJNeaTkGRgxNwmdwczzn6Wy7WwJYrGIbq2UtGvswur9BaTk6pi/Ppv567Ntv0MmFfH8kuS79KOY+19LJCVbz/w1mcxfk0lKtn0jqgF/Lv5x6Uz24Ofn4bid/O9A797tWPr5VEaMnsvZE58TEvLPOBD8GQgLcGZgV1/cXaUM7uZLZIgLvTt6I9LqiAxyYlAnL5TOEgZ09CS6uRuWMi1GM7g5SxjQzp1Ifzk9WyuxaoVcywFtXFEqxPRr5Uq7kJrbzU0hZkBLFyJ8ZMSEO2G2QoSPjP4tnVEqxPRt4Uxrbyt3AmVuTiL6N3UiwkuCxirGaIFwbykDWihQOonp10xBq0BZLXkxA5opCPeWEF0lx2ytL982xMlGBnNTiOnfwplIXzk9mgiT1F5P1yYK2oY61Vt/mI+MHi2E9Cfh9ypROolpH6GwpTnZ5NsoCfNzomdroWRlpL+cAR3cUSokxLRQ0iqipq+Em4uEgTGeRAQq6FUd3m0U7Mygrt64uUjoHeNDx1Y1Yd/E5HLkcjEfz27HlZsCMS0ypCYFKC1HS9iA3YDQnddssdKmqQdnfx74798svxNisYhBPYIY1EPwhDny+Gq0Rn789TZrt6Vw/oqa20cfITTQmRcebc4H3yTy9fv2Pba/hfLKKtJzKmnbon4qwO+ByWRh16FUvt9wjZPnc/HyUHB0y+NEhgleaKsVrlxXER1lv8HY/zcM7RuOm1LG4N6hdGpXY1g1jXCnZ+cgGoe507erkD7UOMydoX3CcHOVMbhnCDFta/ZFd1cZQ3oG0ShUSZ8uwjw9Y/yZt+wKWp2Jgd38iWnjVVe+dzCNwpT06SJcq0ZhSjq29sXNVcagXiF0qj2/0r58TJQPbq4yBvYIpFOUT135O+vpJKynUaiS/l0DcHO5Iy/cA05Of32n8Ab8/8fh47fQ6Yx8PG+43UjVrdRivFt9gkgkkI/NZisxUX6c2f7wn742iUTM0N7BDO0dbJcTcQeVWhM/Hyjgp335XEqqIHlrD4J9ZPRs5cqVdC3TRwrPkpuzhPbhCiJ8ZfRoLnDubPraSUS/pk50CBUir9oqC0eT9fRp6WJfXiGmX2tXoiNroiluCjF92iiJ9JfTtYUrl25rWfxLHhdTNIyen8wzg33p2ETQTyazlUPrspn6YBCRAQp6RQnpT8uqKzQpnSX0j/YgullNuqi7i4RBnbyIDHKiV1tB/g43ogF/Lf7xkYg/Co8/NoBJE0Yy4sG5VFTcY/fc/yKUVRoZ3tufpT+mMe3JRuw5qSLYT4G/l4y9scVMGRPMl1tzua+bN3lqA/mlJoZ1dOerPSomD/dn36VygrxkBHpI2ZegYdIgL74+VMKwdq4UlJnJLzUzNMqV5UfKeHmAB/uvavB3lxDkIWH/NS0v9/Ng+bEyhrZxQVVpIb/CwtAWTqw4q2Fid1f23zTg7yYhyF3Cges6JvZ2Y8XJCoa0dkZVYSav3MyQVgpWnKpkYi8lB27oCXC3L19QYSKvzMzQNi4sP17Oy33d2X9VQ5BH/fUMau1Cfmn99R+9piHIU0qQp5R9VyqZNNibrw8W07+1C3mlJvJKTQxrr+Trg8VMGuzNscRygrxlBHnL2HexjMn3B/DV7gL6R3uQV1RFXlEV93X15stteUwZHcShc8UE+zkR7OfEnlNqpj4ezrINmdzX25/cQj25hXqG9wlgwcpbTHy0EftPFRDsryDYX8Ge4zV1xrct7U72kfspPvsAJbEPsOTVtrRt/vs6UP+ZyMip5EKimj3Hsug7dg97jmXz5sT2eLrLbd61V55rzc7DWcQl2O8O+1u4eLWY9i2963gU7wUTXj/Mgi/OM/q+pmRfepmZEzvT/6ENpGcJhlr81QIiQt3x8vzrej38J3j1pQ58+/MNRg6KJKdAQ06BhpGDIvl01RUmjm3NzsPphAS6EhLoys7D6bz6Qju+WneDEQPDyC3QkFugYcTAMD5ffYMZz7Zi19Fsgv1dCPZ3wUku5uXHGtPv2eP07+JHrkpHrkrH/X2DWLnhFjOebcOuI9mEBLgQEuDCriPZvPR4Cz77PpGRA8PJLdCSW6Bl5MBwVm1Kti//aFM+X32DEf1DyVVpyVVpGdE/lBUbU5jxTEt2HcshOMCZ4ABndh3LYeq4Fny+JokR/ULILdCRW6BjaO/fbjTXgP9NbP41gbEPdUDsIB1rz/rHKEmaiS79dfQZb/DBnP60a1Wf6/VXwmq1kpGr5cK1UvadUTNo0iWOxhXz5rORuCjEOMnFZBZWsWBcCIeulHMmqdKmr5/u5cG+BA1BnjKCPGU2fb3+gpYhrRTklQv61FcpwcdFzHN9PO3Kf3+slGHtlfX03cRh/uy9WMaaI2r2XCwjxFdO0rftaRbsxA/7C0lM15BXXEWwtxwvpZSZjwSz93wJQT4ygnxqDP0vt+VxX1fvOvpx9b58powJZm9sMUG+TgT5OrE39n+3rPrfif+KSMQfhddnP8rt1FxenrKM9Wte/7uX87cgPUdLpdbE+cRSKjQmYhNKkEhESPQ6zt0oZ0QPH+JulNOrrTsXblYgMRjxdBVzIUVDpc7E+VsapGKw6PTEpeoZ0cGVC6k6ejZ3Jj5Dh9kiwstVzIV0HZU6JXFpemSABSsX0vTc39aZCxl6ejZRkJhXhc4Ins4iLmYbqayycCHLiMJFgsksIi7DwPAoZy5kGujR2InEnCp0JvByEXEhq4pKg4W4zCrkchFmS335+CwDZjN4uYi5kKmnUq/kfJrOVjKuznqaKbiYLoRLa6//SoYOc3Ut7rjbWkZEK7mQqqVXC2cupuqq5SVcSNVSqfcgIVWDySTIn7+pYURnDy4ka+hbYODCTSGn19tdSlxSBZVafy4klWGuDq/EXi1lZB9fzl8ro08XLeevCh4pDzcpCTfL+eS1tny7OQNJdUnc2ISaTTWqWV2DYc+JfF54uPGfcAf9fiz46jJfrr1BRIgSH08nnn+4OS8/2ZKFX1+hRSMPfDydACs+Xgo+f7sLz752kvNbR+Dq8vs9yYfP5NG1/b8XWfxxaxJnLuQSt+cJlK5yRBI5U57vCEDX4esID3FHpdYyYnCTf2v+vwMSiZgHhkTi4eZEt2jBK+nqLOOpMS3Q6kycvVRgK8F69lIBo4c2Ii6xkO4x/py7LDQQ9PZyIvayigpNU2LjC23ysfGFLJrWkrW/ZjLzwwTatxTuOW8POZeTiqjQGDkbr7I9X2fjVTw0vBHn4lX07RrIucsqQd5TTuKtErvyowYEce6Kmr5dAzh3RV0t70T8dUE+9rLaVhI29rKaBweGcC5BTd8uAZyrNkJ9vJ15dVEcy+Z25d2ll+kVI0QuMnJ1zH6p7Z95+Rvw/xRGo5nte67yzswpDmWiWtVNidx5IJlXX/zr7xeLxUpicjmHYgs5HFvIlZvliEQi2jV1xdtDxpgB/qzZlYe7qxSLxcLSXSqe6ONFr1ZKPt6WT1S4k6CvOymIS9VSTe8gLlXLiA6uXM+rol2IjEtZQjpUWpERsRgqdGa78gkZOmIa29F3OhMbTpaQWWhg9ugALqTosJgtSCVihnX2ZPaqLNxdJJgtVvy9ZEjEIoZ18cJZXteIe3yAH+6uEjq3FCIRLgoJI7r7CPJdvXGuLjsf4CUDbv/5f0AD6uCfRazWbfsNAQeeRqvZ/rg9EpaplJdf3YhUKmHZh7VClFK3e5tbfo/51/YI1NXrqYcqB95Yk/2ccUfEaovRPsnbUFFKWaURbw95HYKkSVOKq7OUwhIj/t5yisqMuLtKMBdrqNRZ8HKT2ghTGr0Fi8ZgI3D5e8gorjChFAnXq1JvwUspQVVmws+9mnCNqA4BubjSjFJsrku4riYsVxTpEYnqEqiLtULt69oEahtBu8xQj3BdrLXgbiNcW/FyEVNYacbXVVyHUGaT11txu0Moq0XQ9vOW15G3EbSR4K6oT7j293NGY6gmiNW6PiUGK27V3IA6hOtA57qEsjIT/p4ySs0iG+H6VqaWQVMvs39FVzq09KhDaHXrtg8AzYWRtv/4+60ZfLw6mfMbB9SUe62FeyWYWk31CaC/BYupiqPn1UxakMCx73sQ4KvAYqq5H0dOvUjvjl68/Gg4ylr2wksLruOulPLJjOaIFfY9/+JahOhclY5uTxzn5Lo+RIZ5/kv52hBJ5YT23MTOlQOJbiN4G2v//qu3StDpTMjlEppGeqF0rTuPrOm3AJgzHB9K7oYk4su/hFhtNZvsvl9UXIGnu7wuYblIj7+nlKJSA+61Cc5uknqEZVdnKQVqHXOXJqCQS/j49WhBXmvE18fNLiFaXQ4Bfi4UlehxV8qr56/Cy11qVz4vv4xAX+d66/F2l9ldT75aW09eYwBvT0W9+ZXuznbTWByRXsUy++kTIkWg/T9AZv8eRObAyJW42Blzti8rukd/oKNiHo70qKPy5/ZgtX9/3dMc4Fi/OiJKO/pNjuaptc7U9CI69PmYG6deJiSobkdzUcA8Yfpaz/LXaxL4/LsrXNo5CmdF/WtvMejsL93BXmm12L9mVlP9a2Yqq6S43Mi5a+W8sfw2WxZG0TTMhYK8Svw8BALymHeTGN7Vkwd6+hDpXa1/FSLGf5GGr4eMj1+KoKDIIOjr2vqoWr8UV5hwc5aQpa5i8JwkTnzYCrlcYtPvUKOPAvwVFJcbcXO5Q3AWzgOFGgsxL15i28I2tIxwwVUhRq0x4+/tRHGZkSyVHn2VBaPJSnQrD1yd6957Hv2OAVB+ZlC9a+BIR7l129dArP6L0RCJqIWEqzms/vk8yRfe/ruX8rfh+IVClqy6ydoPOnPf+FO2Uo3erlb6dfLmzWXJ7F7akWffvcqgrt7IjCb2nC/h+9nNGDXnOotejGDLiSLEFgsPdPW0lX59cVk6Q9q6YjLD4auVrJoQyoMfpbPw8UAOXSmnTGdhdCc33vmlkG2vhPLSqjxGtHNBa7ByJEnLymf8GfNlHvPH+HDqWiWqyrqlXMdvKGZke1c0BitHb+r4ZpwfD60oYP4oLw5f01Cmt/BAlDPv7itny3PeTNhUytBWCoxmOJKsZ+Xj3oxZpWb+/e5sSxAiDrXnn72jlJjw6lKu1aVix3yrYvEYXzbfKf0a7crcHcVsmRTE4gPFNK6uj32n9OvoTzJZ8kwom04LEYTRXT15+6dctr/ZmPc3FdA8tG7p1wfmJ7NkQgS/HCsCYExvH+Z8l8GvC1szaVkavToInt7DcSXMeDyMQePPserdtuw/IxiaDw+pX8Zy074cFn17i/0re9g1IP4qbNyXw/RxjQnwrX9Ae2dCU+atSOHjNelc3dgNPy/hOn40vRk9X7jA8J7FDLaTkqLVm3F2ltqajb37VRLPj4kgItjOYexfwGq1oi7R066ll933o5rXjDtSaP80zFx4jidGNalTynXWonMc+GEg42aeYkiv6lKrp3JZ92EPhr5wpE7p1EfvC+ftz65wM72C9i09+XztTQAOns7nx0/7MOTZQ3z8ZgybdqcD8MjwSH7YksrS93sydtoRhvYJBWD/iWx+/LwPg5/axydzutZZz8qfrrNsbmfGzTpdp5Tr+g+7M/SFo/XWM3dpAtu+6s1Ts88yuKdwuD95Qc13i3vUW8+LT7SiW/R/TsBvwD8PjSN9eHvWYAY/up5Tvz6Ht5cDYw1YuyWJD1dc4timMTgr/p5OZ0/Nu0FZpYm2TZRM/yKFH+a05LklKcx8NJgtJ4rwcJXwy/Ei5q3L5uxnrZm5MpOBHTxoHqpg6Y4C+rZzZ8tJNU8P8GPLGSFiPaaHN2+uzmL7O02ZsCyDAR3c2XK6GDdnCTKJiFdXZvD8UD+2nKqW7+nNnNVZ7FzYiuc/TrGVZj0cX8r3s5vx6PwkNHoz3+3OQyQS8VBfX+avyeSXRVE8t+AGAzsLe+jhuBLWzYuqZ0Q04J+BhkhELWRnpDHjra0cO5XC+Gd6MHV8H4ICPf6nIhElhWpu3K6gc1svDscKTaMycrWYdRWEBSg4faWUAZ29ibteTqNgZ8wlWtIL9HRqruTo5TJ6RrmTWWDAoqkizE/O2aRK+lU3oYtwB0QiMgqriGnszLFrGnq0cCEzXwdWEaE+Us4m6+jXykVoguMhwnpXE7oeTZ3JzNJgRWiCE5tuoG91U7mIACcQQUaRiZhwOcdv6eneREFGrg5EEOohITajir5N5FzKNtqa7GQWm+kYJuN4ioHujZzIKqlpsnNn/vhcE2He0mp5oWnd8WQDPVq41Mh7SYlN1dO3uTNX1BbCfKqb1lU38Tl2XUvPdh5k3mn64yPn7E0N/aKUxGdWEV6rKU+npi4cS6igV0dPMlU1TejOXCunfwcPLmVXERkoHMDT8/R0auXGfTOv8tjQIPp0Ejzn4YHO+PY5AAiRiH2nCnhi9gU+ez2K7h28aRzqZrd7718RiZi8IIGYNp48Pzq8eky4H6uMFp6ak8Dp+BK6t/diw4LWpOXqOZNQxsn4UrR6M1q9me3L6vaAiU0oYdTUOIwmK57uMvy85JSUG7m8ZQBurtI65Vlrw1EkQmcUE9R9I2WXn/yXv9/e9brXSMTkOcdYsf7q3xqJOB+fQ9uW3qRn32n65srJuAIGdvXjfIKaRqHCPpiWXUHnNp4cOptPn07+tiZ04cGubD2YwbYD2Zy8UMhTDzbimQcjqdSa6dYxkENn8ujTOYD0O03lgpXEJpbRv3sw5y6raBwueIBTM8vp0s6bQ6dz6dMlsM56Tp/PoV9XO03lorzsrudkXAEDewRwPqGYRqECkTMj30CXdr711tM4wgu5nSZ0DZEI/usjEXcw8rHlPDKqNU8/2t42VjsSseNAKo9P3sfyRf3p3jGQyECprdxrnSX+yZGIuBvlfLU5h+5t3enYwo1OLd04GqumRxs3krN1vLYyg6tpWlpHOLP7/ebsiC0lr7iK2KRKSqqjDBPu86NrCyWZ1U1Os9VVjP3wNharFVeFBD93KZV6CyumRNKrtZJTNzR0bams0Ud+cs7cqGBAJ686TeLunAd2Xyhj0qcpHPlCKJ0f5q/gbFIF/WO8uHCjgsigWvoryqNeFPBeIxGvfHiNVVuzGiIRfzEaiNW1EBrixeY1LxB78FXKK/S07raICTM2UFr6v0O0TrxVhqe7jAnvXaJbex/mfX2D1GwNmfl6Fn6XRtcoDyYtvoGXm5Ttx1TsPV+Cp6uUKUtT6dLSjYU/ZpOWbyC90MAHm/Pp3NyVqSuz8HSVsCe+gp0XyvFwlTDth1w6N3Vh8fZCMtQm0tRVLNlZROfGzkxbV4Cni4QD17TsvFyJp7OY6T8V0rmRgg92F5NdZiK92MyHh8vpHC5nxtZSPJxFHErSsStBi6ezmBmbiugc6cSSfaVklZrIKDbx0ZEKOofJeGV7GR7OYvZd17Hrqg4PZxEztpbSOVzOkoNlpBeb683v7ixmV6KWXYlaPJzFzNhcTOcIOV8dLSNdbSJdbeLDfaV0jlQwY4MadxcJOy9VsPNSBZ4uYqatyadzE2eW71OTrqoiXVXFB1sL6NzMhWmrsvFwlfDruVJ+PVeKp6uEqSsy6NzClc+25JGWbyAt38Cin7Lp0tKNKUtT8XCVsv2Emu0n1Hi6SZn80S3aNXPjlwN5zFt+i70nVSxYmVznvy0oMtCnkw8/bMvkgSnneHzWef4uJ4KTkxhDVV3lbjJZePG9q0jEIvZ+3Ymm4S60fDiWETMuc+xiCR1bunHqcgmnE8ooq6xRxlq9mYnzE1n1fnuKTg/n/IZ+rF4Uw6n1fWwpX/e8PrlASrxTavbPhEqtZcX6q3/69/wrtGnuxbufXyI1s5zUzHLe+yKe7tH+TJ8fh6e7nK0HMth6IANPdznj3zlH9w6+vP9lIqlZlaRmVTLvq0RG9gvB013OmiXduHStmN5PHmb5T8m8sjCO7h38eG/pFVIzK0nNrOT9ZVfo0s6fF984gZeHE1v2prFlbxpeHk68/clFukf711tP57Y+jH/7HF7ucrYdyGTbgUy83OXMWnLJ7nq6dfBhwtw4vNxlbDuYzbaD2Xgo5Yyfc7beer75Oenv/gsa8DcjIsyTwiIts947wLmL2fXeL1Br6dc9lG/WX2XouB08Pu3oX76HWq1WPJVS8ooMxF2vwFMpZfInyXRu4cq8dVm88nU6APd386JNpAthT1/mrR+y2HKqGIlIxJVUDQfjy2gRomDxplzSCwwkZel4/vNUVkyJZNJwf356rQkju3ry0lA/Ar1kTF2RQcemrizakEN6gZ70Aj2LN+bQpbmSOd9l4ukqZceZYnacKbadB3q1c0dfZSHxtoa0XD2L1mXSpbU7kz+6hadbXf21eHX6f3RNCosNrNqa9Z9f3AbcMxqMCDto2tiPLz96hNvxc5FKxbTt9jb7DyX+3ctqQAN+E25KKecSS7mZoWHeN8mUVtT1ej3zQDg7lnXj+JreJG4fQGGJgZW/pP0ta3VxkpCvrhsNW7QqldIKEz/Ma0vbZm6oiqt4flQw13/pznfvtGbiQ6E8/0AI3m5SPl2bysZ9uXy/PYuJ8xOJaeXBqH4BSKViAnyciGrqTpCdVKnfC4lETLcO/py5qPpPf6pdqNQ1jgl/Xxcmjov6U77n70JkiCuPDAtnzsQ2mMwW1u9I4/j5gr97WQ1owG/CXSln7pJjxF3OZeDD68jIqpsNMH5sFHvXjuLsjke4eewpMnIq+X7Trb9lrXKZmDJN3QjG2WsVmMxWpjwYhJ+njIISI+0bufDrey0Y29+XXlFuPNDdB7lUxPI9KpKy9Ry6XM5Xu1WE+MgZ2MEdsViEj5uUIG+5jefw70AmFRPoLedW1p/jhC0srtEfft5OvDgm7E/5ngb8NhrSmeqM2U8rOnQykxen/ECzJgF0bB9BVOtQ2rYJpWUzfxQKO+kQ//B0pptpFcS08eLY+UK6t/chM1+LRV9BqL+C2MQy+sZ4cTGpnPBAZ8zFlWQXGolu5sqJhHK6tlSSVViFRaMnzE/B+VsaerdREp+qJcTVglgsJlNtIrqRgpM3NHRpWp3OJBIR5i3l/G0dvVu4EJ+hJ0QpdErNLDYRHe7EyVt6ujR2IitbgxURoZ4S4jKq6NXEicvZRkL9ZYgRk1VipEOY8qJsoAAAIABJREFUEydT9HSJdCIzryadKS6ril6NnLicYyTcSwJiMVklZjqEyjh120DnCDnZpcI9U3v++Fwj4V7Cf51VaqJDqJxTt/V0aeJMdplANAv1knI+zUDvZgquqC2EV5epyywyER2p4GSShq6t3ckqFjb+MB8555M19G6tJD5LT7ifcOjNKqwiuokLJ69W0K29B1mFgjEQ5ifn7PUK8kuMHLxcjlgsQiyG+3v68GAfPz7elEdeoQE/bzn7zxRyYEU3/PrWpDPdjZQsLQOfO8nelT1p3aSGTPhXpDPdztLQ//nTHFjZnZaN3LCYDHy8Jo1rtyv5YZ5Q8SQ2oZSxb1zhwX5+vPVsJKoSI/fPuMyCl5uw60wxrgoJzgoJnm4yXn26Ed4ecsdE6XtIZ8pX6zh1qZila27Qu3MAi2bF/Obvv9d0pjupSxPHRfHVwn628b+bWK0qLMfLQ07lHaKxi5QCtZ4gHxmFxfq6naY9pOSqdAT4ONWRz8itIDJEycVrxYQHCelDmXkaSiutPPf6adq18CIyVEnTCDf6dPanRGNlaJ9wLiQUEhEipEtl5FTQqa03R87k0KNjABm5NelPqenFtGziUW89fp5yu+vJK9QSEuBSR75SD/4+zuSqtAT4KGzy7h4uiMUNxGq7+C9KZ7JYLKz5+TyXE7Ior9Ajk0l4ffoAmjTy5ZctZzgZm4mPtzOHTqRyZMvTyEMXCtPbeZYTr+UwcOwejm24nxaNayrgOUpnMhqqUFVHN309nbiZXkGbpu6kZpbh6yXcT+qSKhqFunAtpYLWkU710nxMZZWoS4Vypw+8nsimBW3o1NKdnOxKfthXQFq+gU8mRqJUSNh9rphXv05neGdP3ngsmBx1FY8tTmbBM2FsOVmEp1KKXCrCw1XCrDGBGIxWgrzlqMuNdTpN+7rLyCs1EeApQ6OvLtyhkKAqMxIc6Iy6rG7naJPZyu64MtYfLKB3Ow9mPRGGUiFBVWki2E+BurTKxsmr1Jrw9an/jP1WOtOrH99k1dYsXhwTxmevtbGNNxCr/3r8s4wIw54/bkJ7G52jw7y1iooKPYeP3+DajRyuXs/l6o0cUlIL6NYpggVvDaVn10a1FnuP1vs9GDpWY7n9KRwc5Cx2cirBcQ7moROZfPBNIus/6V2HeOjlLmFAV39e/ziBvd/24enXzzG4RyByqYXdxwtYsziG4RPPsGRmG37Zn4sYMw/2D+DNpbfY/WVHnn0nkaGdPDGZ4dCFEn6Y05KRsxNYPLEJB8+pKdOYGdPblzmr0vl1UWueX5LMqK4eaAxWDseX8d3MJoyam8Si58M5eaUUVamJMT28mbM2mx3vNOPFL9IYFeNGpd7C4cQKVr0czoMfprHwiUCOJFRQqjUzuosHb2/IZ/vsSF78Jpth7ZUY6xG9A9h6XrjGteVnrs+nUxNBqR9OrGDV5HAeXJzKkhfC2XSyLtHs1/daMH9jLk1CBIV/+GIp37/ejFFvXefDyY3ZeFgolflQX1/e+iaNnUuieG9dDs0bCTneh84WsmZBB4ZPPs/HM1uzcV8uAL06evPqR9doFq5EazDTqokblRoTJy4U8fLjjTgdX8ypHwfy8PQzeHvIeW5MJAOfOw6ANv4hu//36m1pLP/5NifW98epOh/c4WFZcm8HFXv5vADmagX71YY0Tl4sYsNHnbBazFRqTbQYeYyErX3w8RAO/eoSLYu/S2XLoQLcXKTMfDqSZ0aFYK2yf/+K5PbXWGWWcupSMScuFuHlLiOqmRttm7kTFFDTwGjFxlRWbkqjoMhAz46+9Onkx+hBIYQGCv+7WG7/0CiRO6Mq0uHvU3PAkzX7DgBT2st1ZFVqLcGd19heF1yZiL+vML8o5NM/3YiwZE7DYnaQl+3AuLC3V1jN9ves9OwyFHJxPeLzj5/2YeBTB3j0/kh2H8mmtLwKi9VKdr6WHjEBVGqMPHK/UCp3/4ksfl46iEFP7uSTt3uwcWcKAI+OaIpIBEN634PH0UHNf3sQiezLisQOnge5A66cvcM/ODYiHDVKldiZ39EB3REcGRcW+04kcKCLHMGe7rrXNTrkLNzjWhwZEbXGk1OLeOGVnZjNFh4Z0Rw3pZyc/AqWrrrE9BdjmPVSW5ycJAx7agfhwW48+0grej+0BQBj8gv1p67S8c3Pt1izLZVj6wfbODWOnHfXU8r4Yr1QhvThIcG88ek19qzoweufXiOqmfB/HzpTaNOnJ9f0qk/ettZ0yf58XSrxSeWsWdgBq9VKWaWRFiOPcWtXf9yrUznVpVUsWJnMjqMFuCokzBnfjLHDQxymYTkyjvUGKycvqjlxoRAfTzltm3sQ1cyDwFoR3y9/TGHVljQKi2vtoYNDCfEX9sbf0i2qIj3+tYwJRZufhO+9NraOrKpIT3ifrbbX2acfs+298parG4yIvxgNRkRt/IYRYQ9VmkJ+2hzPu0sO8MzjnZj35lDhjX+wEWEyGCirMOLt6VSnBKLZoBNKPhYbCPBRUFxWhZuLFKvZQIXWXF0S1oC/txyNzoy5Soers4TCkiqhpFu5Edfq76zUmvFyl6EqqcLPU0ZlmQFEIqFkXKkRfy85JRVGXMVWEFGvhGxNSdiaknQllSZcrSZAVFMitbqErFDysbqEbLkZfw8pJZVmlApRtXzdkrMag/BM1JE3UMczI8xvJCDAxW4J1hKT0BUUBM+Ml5vwe/19nOrKV//eMrGTLX+/QmPC20OOqsiAv48TJeVGvtmcwfKNGUx4JII3nm9Kuc5i86zeSq9k0cpbxCeVsXdlH5QuUt7+4irXb5dxobqXxFMPRLBsTkfkdxGprVYrY2fFkpWvY1jvQB4eEkqrZvYrEv3RRsSl66VM+yCRU2t7Y7UIz0CHR07QJ8abwd396NHBC283Yb03Uis5dE5Nt7aehAc54+/m6GBXs8bcQj27TxSy/4yaswllRDV1o19nXyo0JhKTy4m/UcbcSa3o2s4Ljc7ME7POs31Zd6JbeSKV1Y9QODIipi+8xDc/JTFhbEu+fL8nUGNE5MY9YzMS7mDqu2dYvvYKLz/dnq8X13QM/28wIkzGKiQSMcWlhjqRAh9vV7slW3PVZg6dzuG9z+MY/0QrXp8YLZRs9VRQoNbi7+NcR95QZUbhdA/3YYMRYX/8f8yIMBhMfPz1WT5bGcs7r/RhygudkYhq9qeMrDKmv3OYG8lqDvz4AHKZhDeXnOH6rWLirggpjS881oJl7/aoU4zCXKXDarXy0OTjqEsMDO0dzKPDI2gc6CBqazHXKcGtKq4iwMdJ0Kd37f8FRQb8vexEVmsZEbEJJcxZmsThVd1tRkHrB48xtIcfg7pV76HVDpmrKRUcv6AmprUHjUNdbVXv7kZtIyI7X8eu43nsP13Amfhi2jX3oH9XP0rLjVxNLuPSjVIWTI+iY2tPKipNjHv9HDu+6kl0S0/EdgwGR0bE9IXxrNyYzPjHmrF0bmegxojIPDGmjnEBMH3BRb75+SYTnmjBsne728YbjIi/Hg1GRG3coxGBUTig5eSW0bb3J6ReehNPD+d/tBHx64FU/H0UvP1pPBu/6MuU988xqGcQcrGZ3cfz+OKtaMbOimX+tCh2HMlFIbcypEcAc5fd4KePOjF9cQIDu/lhNRs5fK6IT2e35Km3Enjv5WbsOZqHyQQje/nw3nfprJ/bileWpjCkkwdGo5Wj8WV8MqkRTy+6xbvPhnMyvoRSjZkRXb2Ytz6bta815dVv0rmvowf6KgtHE8r5+IVwnv00lXfGhnAyvoQynYURMe7M+yWfNVPCmbU2lyHtlFSZrBy7puGjpwJ59uts5j7kz8GESgwmKyM6ujFvi4o1k8KYuS6X/m0E73Rt+XcfC2LnBeHaj+jkzrxN+ayZFsEHOwpp20g4NBy9Us4nL0XwzMcpzHshku2nhQjFyB7evL86k3VzmvPRxhxaRQjyRy6V8umUJjy1IIn5M1qz44iQMz6qfwDvfnWTHz+IZuL8ROKTyvHxkBESoODb99rz5BvxzJ/aih1HhI7UDwwIYurCBApLDJzfNBg/7xol4BIteNFG9AvCYoEfP+pqizjcgaHKzLHzhRyOLWD74Ryu7hpeTwb+eCOiQK2n0+MnuLKlH17VRkFicjn7ThdyOr6Ys1dK2fJJBwL9nIi/Uc6qrdnkFhooKTfSLcqdscMCua+HL061mhMl5xrYeULFrhOF3M7SMqS7L/f18mVg9yCbMr2Dw7GFzP/mFmaLFZPZypMjwpn6pOANt5eiZM+IuNsrlhM7Fn8fZ5sRATBxXBu+nN/H9loid0al1tYzLv5bjIhhLxxhwSsd2HFQIDo+MDiMFT8n8+lbXZjyfiyDegilYg+dyeXrBX15ZPJBpj3blnEzDvPS4614bGRTvttwgyVvdmPSOycZ3Eso/XrwVDZrPxlgt4KSQzQYEfbH/4eMiMNHrzL5zb00b+zD0oXDiAyv/h8sdYsm7DuSyosz93J5/xN41+pAL4n4EoDh/cJwkktY/1m/mohDlbCX6Q1mjsbmc/B0HnuO53B58wC7le++/SUVWXUz0MOxhXz+RjuefO0C86e1YvvhPEDYz+/oU5PJjJ/XXfdHLSMiu0BHj6dOk7i1ry3ycOVmOQfOFHIqvpizV0rY9VUXfDzkXLpRxsrNGRQUGSguM9Iz2puxw4O5r5e/zblktVq5lV3FzqN57DyWT3qOhmG9ArmvdwADuwfg6VZ3D913Kp9FK5Mwm4U99LnRkUx8rLqJqZ3nyZ4RoSrSE9H/V9vrO0bDHSMCqGNcAIgl8nrRX2gwIv4O/HcUOP+bERLswfBBLfl27TlmT+33dy/nP0LTcDd8vBQM6RWMm6uMQT2D6BTli8WoR2+w4O4qY3CPQCJDXekd44sIM5EhLgzq4Yebq5SB3fzo2NoTi9GA1QrurlIGdfWlUbAzPaLcsVhFRAYqGNTJC6WLhAExXrSNVGBFeO7dXCQMjPEkMlBBRRNXTGYrkQFODIz2QOkspn97D1qHK7hj+7o5SxjQwZ1IfzmVjZwxmiHCT87Atm4oFRL6tVESFabgjqnsppAwMEpJhJ+czk2csVItH6VEqRDTv40r0Y1qNqY78uF+cnq2EnK8I/ydbPN3aq6kTXgteWcxAzt4EBagoFdbgWcQGahgYIwnSmcJ0c2VtIpwrZF3kTCokxeRQc70jvEGoFGwM707+fD6ZzeITSjltWeb0LeTN5eSynF3lTK4my+RIS70jhFKuXq6ycjI07L2g651DIja+PyNaGZ9dIWpC+JZOa9Tnfec5BKG9gpkaK9AkjMq+WFrKhMfb/bv3UD3AF8vJ5qFu/Ld1kxmPSOkA7Zt5k7bZu7MfrYJj866yKjplwj0caJ9CzeeGRXCo0MC0RnM/Ho4n+9+zeXt5bf58rWWqIqrWLoxC3Wpkfv7+DF3QhN6RXshqy6/KJbW97oN7ObHoJ71e2n8Fu4Oufv7KJgwtqUtEnG3UgNYsf4ac6d3qmM03G1A/LdALBYxpGcQjUKV9OkicMMahSrp3NZX2E96BNOprY9N3l0pZ2ifMHp0DKRjlB96g5nGYe5ERwnyg3uF0qldDcfMXjnNBjTAHsrK9bw8axtn4tJZumAYo4a1cChbqNby3Ct7+WnZkDoGRG18+X4Pps87y7R5Z1mxoFed9xROEu7rG8J9fUNISi3nx11ZPDs6ot4crRq74a6sOXa5K6UM6uFHZHDNfl5bn+r/RXG4QB8nwgOdWb09i2lPCnto+xbutG/hzuznmjB6xgWGTTxHkJ+CDi3ceemhcB4eHIxWb2bbkTxWbMpgztKbfP12FNkFepb9lE5JhZGR/YKYP7U1PaN9bMaQPSN7WK9AhvVywAFyAHt76PjHmtkiEXdHHQBWbkzm7clt7/qc414eDfjr0BCJqI1/MxIBcDkxh973Lyc81JP2UcG8M2sIrVoE/M61/P+JRGTnlLH/ZA5PPdCEz1df55kxTbl4tQixtYp2LTxZuz2D6U81Y/3ODGLaeIHFyMXrpTw5Iowv1t/m6VHhXLpeitVURXRLd9btymXq2HB+2pNHhwhhA4i/VckTg/35cnMO44YGcDmpHIvFSnQzJesPqpgyOoifDxcS00iBxSriUoqGJ/r78NWvBTw5wJfE5EpMFisdGrvw47EiJt8fwIYTRXQMlWGxQnyajsd7evH1fjVje3uRmK7BbIEOkc78dKqUSUN82HCmlOhIZxBVy/fw5OsDRYzt5cnldMG7VFv+l7gK2kUKm1Z8qpbHe3nz9d5Cxg315/JtwQPWoYkrPx5RM3lkANviymkdKRwU45MreWKgH19uy+OpoQHEJwtE0ejmStYfUDFlTDDbL1bSpongebx4vYxu7TzpNu4Mset7kJknaJLoVh6s25nNtCcb8fO+PKJbCR61rQdz2bgvh8ljmzF1nHD4t1qtlFeaCOpT4+Hp18UPL3c5P37UzTamKtbj712zMV+6XsIjr5zl2q776nVi/XciEflqPRaLFWeFhAXLrxN7uYjiUj0ebjK8PeSYzVZ+WBCNv1f9uQuLDYgw4+NZ3wC4w4k4eK6IKR/epFmYC9MeD2NwL3/75FipAxKsg99kLxIx44OEeiF3+G1OBNiPRNj9zv+CSERxiRali5R1O1LpFCUcii5cLeLp0c3q7CcAMVE+bD2Yw/gnWrN26y0UTlImzjmOl7sTfboGEeTvwuzx0VxIFDhEndr6UVymp2UT++l2dtEQibA//j8QibiWVECnQcvIufyK/eZxtSIRp85l88LMvdw4UtMXxmq1Ul5RhXfbb21jfboEEhzgyrpP+wlfWaWrdyg+G1/IM7NPcWXboHrpo+UVBs5cFiLUHVt7svbXTKaPa8Iv+3OIaiY4nS7V0qcznmxMYYngkHOSi5n/zS3iEksorTDi7SHH1VmCTCri+/kd8PGon/qkKjIglYltHLPauHP223NSxdTFV2nd2I3p4yIZ3CvEbud2R8+HQ9iRn7H4Mis33Wb8o0344u2YGtHf4ESA/UiEPTREIv56NEQi/iB0aBuCOvk9btwq4MCxFAaOXs6R7S/TsvnvNCT+n0BvMGMyWakyWhCLRVRqjej0JvILNHi6yUnOrKBCa+T67XKB8GUxci2lggqNkZRMDZl5Wq4ml2M1G/HxlJGSpaVCY+Z6aiVyixmRCK6na6jQmknJ0ZFZoOd6eiVmM/h4yLido6NCZ+ZGhhYXiRWzFW5k6qjUmbmdqydLZeBaphajGXzcpNzO1VOpM3EjU4cLFsxWSMrRU6k3k5JvIEtdxfVsPSazCB+lhJR8A5V6M0k5epxlIqyi+vLXsgQFW1v+Zo4OWfXTkpRdS77QwNV0QXn5uEu5naenUmcmV20gzF84HJjMVqpMViRigU+hMwjhaI3OgkQMVSYrJpOV8upyfWazlbBAZ5pHuLLlUL7NuNDozEjEIqqMFkrLjVRUy3soZUI5V5HVZhTsOJLLU6+fq/PfHjtfyHuTW9teT18Uz7e/pPLSI4354q1oADq29iKmjRff/nKbaU859tw5gtVq5cbtMrYeyGL7gUxyCrQ4ySXoDGY6R3nz+VvReLpY2HwgF4PRwpsvNEMqFds4EbXh5+3k0Ni9g8Fdfbi5pYfttciOAfHv4G7jSlWsZ+VGoe/GvXjF7HEi/mmoqjJz6kIBIYFCBC0nX0OPaF+7KW8gNAw0m62UawRjxWyuvZ+Y0FVXd6nUmhCLxVQZLZjMVsJDlGxfOYyjZ3ORSUV88UMiw/tHoNPf4VIZ7R5uGtAAe2jTMoABvZqw6ddrTHymU733VWoN/r7CPR0Z5kFJqQGr1UphkQ5/Xxc27kzm6RkH63zmxPl8Pnit5jA7bV5cPcdC92g/WjRy44dt6Ux4tHGdz6tLq7iaLDgCfb3kpGRqqNAYuZ5Sjrj63r6aXM75xGK2HMjl593ZqIoMyGRi9AYz3dt7s/TNKDzdpGzYl4sIeO25pkgkIrtEaX+f+tWd7sbw3v4M7z3A9vqPesbs7qGbBFL5yk23mfNym3oRCXuwx4lowP8f/LMiEbptjvkGjrw/0oH2x40H6o858s4Ycu2PVxU5HH9r8SkMVWY+ebevfZlasNbKcawz7sAz6GCSe5obi4PvdHBoq9LpKK+sT7gGgfCoKtIT4OtMUakBd1cZVrOJCq0Rbw8nCtR6/H2cqKjQAaJqQplA0C4qNeDuIgZEVGjvEMr0+Hs7UVmpFwjXtQhoRaVVuCkA0V0ENG85FWXCYV4gdBvx95ZTVGYU5heJBAK4uwxVcRV+XrI6BLc78sVabLmltQnOAf6u9glxFVbc7xBIa60/0F9p35tjJ63GES5eVTNm0lGSDz9c58A29f2zAqlsbEuWvdedohI9jftu4pHhjVm7NZkJY1tSZbTQtoU3ry6ItX3uoWGRrP64LwonKaoiHSHdajw9d3L5QaggMnDsLvasvo/2rXxsnn2Hnqhqb++NlBIembgPjc7E6KGNGDOsEd2jA5BI6n7OYq4fHXPk2XbEq3DU+dURCtQa/O2letl5PmZ8kMC3mzN46ZFGfPFmh5rxJVcdRiLuxp1IhL2ykGInj3pjAKLAhX96JMKa9xpWO9cfcLgnqArL8fG663kv1BBgxzhyuN/c61olUmYvPINcLmbh7JrImVhiv4TvPcFBdMJRGWAkrg7GHegcR5EFsYP5Hcnfqyf+XuAoWnCvUQF78zgq5eqwZKsDvevwOx1F0up/79mLuTw2cTe3Tz2LTFazh06ac5QV6xKZ+GRrvpzXG5VaR2Tv9Ywd2YTVW4Q9tFJjpEeMP5PnnrV97qGh4fywpCdOcgmqIj1hvTfb3ss89qDtsHvlmooRL59i1/JetGnqbttDK7UmnKqjE3frO43OzPXb5bw09yIanYmHh4QyakAI3dr72I2u3g1HDhSJs/2ImSNvvshBmezCkiq7DhF7emHSm4ftFo+Y9NYRlq+5zMvPdODrD4bUmqT+d4oChdK6VtX79hZpf+1+cxoiEX8xGhJM/yQ0jvCgtPzP73b7V+HXw1k8Nv04BWodQ549xKEzebyyMI65X1zm4Ok8hjx7iAK1jsenH+fz1df5Ym0Sj804RYFaz9AXjnDobD5vfprAq0suc+hsAfe9dIKCIj1jZ8XyzS9pfLE+mSdmnaOgSM99409xOFbFB6tuMfOjqxyKLWT4xDMUFBl48rULfL89i6U/pjH2jXgKigwMn3SOI+fUfLgmndmf3+Lw+WLun3YJVXEVT72dyKoduSzbkMm4OYmoiqu4f9oljsQV887y2/Xl34xn6U/pLP0pnSffiEdVZGD45PMcPV/IzI+u1lvPrA+v8MW6ZL5Yl8wTM88K63/pBEmp9tPO7gU/bE4hv1DH2BnHbGOqIh3f/HwTgG9+SiJPpeHpmcd5enRT1m5Nto2fu6wiwLfmcJsTO5YNywbaKtv4+zgzYWxLgHq5/K2beTF7QjvGTDiAd4fVdH1wG8+/dowrN+wbzXcap82cf5qnH25J6qlxfDq3F80jPesZEH8kVHa6Sdsbm74onkaD9zFj8RU78oZ6r7/dnAHAt7+k1Xl/6dzOZJ4YU8eA+F/A41MOcPBkNtPfO8n0905y4EQWQ8bt+tO/t1GYO2Xl99hboAENqIW1v9wgO0/D45P32cZUai0r1gnNY1f8eJ3cAg1PTDvEhCdas3pLzR56/kphnX0x6+TD/PRZH5tDR8jlbwrA+Mea1vGWt23uwZQnmzJ62hkCeu+k17ijjH/3IvO+vsYX65Pr6bvth3N45YPLPPZqLL1jfHFzkfLKM83wcJP9LgPi34VKXb+fRe1GmHcwec4xAjusZNJbR/6lvEqtZflaYa9dvvZKnfe//mAIBYmT6xoQDfhHoyESURt/YCRi865bbNhxk83f1m/ydTf+CZGIkuIKklLL6NLOl0Nn8ujTOYD0nEpEQHiwkpMXChjUI4jzCWoahbphNRtJy9bQpZ0Ph87m06eTP2mZpYCI8CAXTl1SM7CbP3GJxUSGOAMi0rM1dG7rxeFYFb1jfEnPqQArhAc5cyq+iIFd/Yi7WkpEoOBBSc/R0jnKkyPn1PTq6E16ZjlgJSxAwekrpQzo7E3c9XIigxSIRCLScnV0bu3OkbhienXwIiNPh0hEXfmbWhqHCPdSWq6Ozm08OHK+iD6d/cnIFTbc2uu5eKOSiBDBUyms35vDsSoGdA+2SwJ1FIm4O6deVaQjrNcvtte1a2HXjkS4K2VcSFCz+/shvLLgnI3g+9CwRjw54yiF1YdqezXO7X0vwJR3z/DNTzeYMLYVC2d34XpyCfc9sweNzmTz3Nlk555kxY/XGT4gnJS0Mq7sfwyZTMKUd06wYv21evIA+aqyet/5W5GIu3NlAabOO18vFcteepaqWE/kwN22z6UdHGaLSMxYfIVvN6fz0sMRfP5GO5uMo0iE2Ml+ytJ/eyTi2JkMunYIID1bMIwjQt04eS7XVjWpNv7ISMRP22+x52gG678YbBtviET8QfgvjEQUFJTW8ZSr1FoCO6y0vc6/9KLt/dqRCCcnCUkppfy6ahjT3jtp20NHDgznudknbHuo4fo4O0s0OdifzvHtL2m89Egj3p/SmqTUCu6feAqdwcK4keEsmB5l03cPzzjL3pMF9Iz2IU+tJ/an/sQmFLPzaB7fbk6rs5/ZfttdqULw25EIe/v8tPfPseLH63X26Dv7ee1GmCq1lqCY72uu4+XxNdfxrSOsWJtQP+LgIBKBg0amDZGIfy4ajIja+AONiG/WJbB59y0ObnjYvkwt/BOMiN2HUmkcruTjb6/x2ZzOLFyeSJ/OAf/H3nmHNXW2YfwXwt4zTLe4EEQR9x611m2rtdZtq+LqUGtdrW211jrqBLWuOrq07q3gQnHviQsBGWGETULG+f4IIkiOlX62VZv7urwkT57z5j0nJ8957/dZmJjAkdPJTAnx55OZZxn/oR/wk0tBAAAgAElEQVSHTyUhEXS0auDOnFU3+WFyPb5ddp0W9VzQCfqGNZOG1eTT2ZcYP7g6Jy/IUakFWjdwY+6aaOZPrMOsFbdo1cAZjUbg+Pk0Jn1YTe8JGFiV05dTyVNqaRXswvyf7jN3fC2+W3WXVnXtUWsFIi9mMHFQRSYsiObTfhWIupKJSq2jVZAT8zc8ZM7H1Zi9Nobm9RwRBErqD6rK0bP6xLeWwc7MX/eAueNqsmDjQxr46xM6i89n/NAaHD6tT/xs3UDG3DW3mT8xkIgzqXRvV7opliESMearU6z4NZphfaqx+Et96MaJ88l0+uAQ+UptqVrYWTkFrNt2l71H4rkbk8WJzV1wdbZEIjEhUZ7LnQdZbD/0kI3b75KmEEugNOKfwOtAIrKz8/h64TlaNtKXZj16KoFpo+tha1P6wf8iScTiNVc4cDyOnas7FcmNJOIF4TUjESM/P0DYT5cYMSCA0G/18f2HT8TRZdB28vI1jOjvT+jM1kX6mVkq1vx2hV3hscQ+yiZqa0+cHCzQaQtIlOdy+34W2w8+5Ocd91BkGr1h/yaMJOLlhjGc6QXj+q1kugzcxuzQs0wIKZ3MZcR/G/K0/FKvV/waDcCKX6ORp+WTl69h4ITjdG9fnp9/aMmo/jXJyFKxIzyWvp8coUrrTUREJTLwbV8u7u6Ba7EdqagLcjoM2ouTvQUH17/1j56bEUa8CFy5lUanQbtY8tNVPvmgzr89HSNeMshTc0u9DvvpEgDL1l1BnppHdk4B/cfuo3eXavwW2pGPhgSSkali67579Bq+mwqN13D0VCLD+9bi4p5eODk8IXJHTifReegB3FwsifjZaEONMOJZMHoiiuMveiIEQeBmdAqzFh5lX3g0TYM9eRCbiVRqwicf1qP/O/qKOAUFWszNpeTmqbG2MkWt1u/amZpCXr4GG2sz8vM1mBc2z1Llq7CyMiulb7DZ0t/sicjMyOF+bDYBNZw4eSGF+v4uJMjzQRDwcrfm3NU0mtRz48otBT6eNghaNfFJ+QRUd+TkxVTq13bmUUI2SMDTzZLz1xU0DnThSnQmPm4WINE3zgmo5kDUpTSC/JxIkOeAIMHTzYLzNzJoXMeZK9FZeLvpdyMfJSvx97Uj6rKCoFoOJCRmIwjg6WrBhVtZNPJ34OrdHLxlFoCER3Il/lVtOXU1k3o17ElMVQKSEvrXYpR4u1s9NX4GwQEuJKbo74/i87l+Lx+vQv3i829U1530zIISbu6xM86x4re7JTwOUNoTka/UMG/VdR7EZROflEd8Ui4J8nyC/Fzo07kyPTtUwMVANSCJxAS1Wkfjt7fj6mRJ1Yr2lPO0xcfThvKeNjSu5/58dfYlJkXu7yXrrrF2UzSntnZHkalGVizPQhAENu2+x5jpkexd14V6td1KDCOX55bQhyfu8sdJ4UVjiYQzjZl+Un/N3q3KoqlPSLlOozbo0jckA/H7Wp6WbzDh2mCzuTKEMwGYiMlfMU/E6QuPCKjhQoJcv3jzktlw9nISzeqX7rHxVz0RgiBw/Y6C70IvERH1iCZBntyPzcTM1IRxwwJ5t4u+dLHRE/GC8Ip4IuQpucjcnlz/kRP3EvbThVKJuU97InLz1Hwfeo6YuCziErKIS8ghITmXhnXdea9bdd55qypWZvp71czMpOj5m5ubiyBAk7d34SGzolpFB2SullTytsbTzYpGdVyxtDQlL1+LjbUpebnKojKuBWodVpam5OZpsJCqSUxR4eZswdKf77L5wCOOrWvFuWvpVPLRNzONeZRLkJ8j05feYNUfMaz9tj7VKtqVeD4mpBQUPY8ew1DYJoiHM308+1pRiFZxm2siNUeeml/KRqdkqA0nUIuUw05JUz5/BboyhDPp9UV+M0ZPxEuDV4tEZK8BSRkNcVmgLd2XAQBVcsmXKg0XryZw4tQdTpyJ4+TZOKRSE/yqu3L2UgJvtqpA1zeqMHxiODvXdqVFI33s8DfzT/JBn5q067uDedOa8ttOfRLXe10q88nXURzc2Im+YyPo0EKvf+J8Mj/Obl1C39xMyrJZrXluiJRrE6u0I7YIMNSsC55RW97AOIbKeAJlJjRiC86ywlD3TEOLRxCvWCGRmhrsPjxq8uESMaHy1Dzc6ywrej/56qii8oJQstzgX0ahIU5NyyPyTBxb99xm3SZ9AqHM1Zp9P/eirv9zlBwudt1VKg3VW6zl02H1GDu8BWnpeRyNekj48QccPHofWxtzfvimIy2bVCw9jsiiQZ4kL3W9dGqVwesoCDqDchMzkb4PYhWkTG0Nyy1EroehnjEiHXFFIbrIFKmK4jLh7ycRmcvK1JdGVC4Sly66GHhKX6XScP5KMidOP+TkuQROnk/E3ExK9SpOnLucTOd2lenYpiLDJ4Zz4JceNA7Sh1JJTMv4GzG06VTWRb6pSD8IsR4MLwqGFuhlJRZlWfyDOAEQW+gb0Bc0uQYUn/Gs0KgNLmZHTTtaYvErT8vHp/GvRe/HRfYqEeefnJJjsBSo2OeO/uosBWodvd4sx2dzL7NvZUuGf3GOpnVdycnTsPPII6pVtGN7uH4T0dJCSrvGMj7sVZmJc6+w98cWTF14leoV9f0dDp5MYt3shnT88Bhzx1Xnl736DtRdWsroN+kSX4b4Ev0wH0+ZJQ8f5XHsfCrmZlKSU5X8+kNjOjQrTcoNhb+a2Tobtok2PshTcpC5PWXrLNyRp2Qhc7N/Su5l8LqI2q1ifbGeT1+k75YhiP32RPVF7L95ByOJ+IfxpyRCIpFMB758SpwsCIJH4fuSwveHAU7AaWCUIAjXi40hAGqghiAI94vJ1wKugiB0/tOJvgQkQhAEfvnjMmMn76CctwNNg31oUt+HJsE+/LjhAtv3RbPn5764O+lo++4ftG9Rni8+ebLjnJWRg62NGckpechcrYpKJlpb6HdE3V2tSc9QYmejP8ccpQ5nR8sS+hKJBFubMvzgjCRCFGUlEQbJwrRjLFt3pUQs7tMJfcmXRyBztX6SbPZ0ebsXhcIFnCAILF51jhk/RDJpbBM6tCxPzWouz6z/LQgCKpUWExMJJuj/P3H2ESM+D6eijz11a8vYfuABD+MzaBJcjrbNK9G2eSUCa3tgItaETnSxmlNKFDLxAMs2XNMn9M14UhZZ9H40kogy42UgEYIgsH7TdT6ZHkEFb3ua1PegaX0vGtfzYMlPVzh0PJZda7vi4mxNq3c20f3Nqnw++kk1LCOJeLVJhOENl4hSCb7y1Hy8Gq4r0omP6oPMxYox06NY/vOtUt5ceNbzwrA8J1c/9xIlxxVK7KzNEASBeWujWf7bPUb0qUK3Nl74eFgjkZQsUZ6eWYCdtf4+yMpVY2NlSopChZuthnyVjpOXFExadIuKXtbUqWbHzmMpJKUoaRjgTIMAJ95q4YG7iwXenvYG5yhGIgxh9PRzhK05RcjgRoTO6f7kDTEbZyQRRrwAPC+J6AO0KibWCoKQUvj+RGAqMAi4DXwBNAOqC4KQXagjAEpgmyAI7xUbey2vCIlIV+QRMn4bV28msSHsXerV8S5aVMwLi2L9pisc/L0fbq42jJ64nbiEbLas7FKiPFv0HTnDPj/C5mUdGDnlGO2b6z0O568k8/WnwfQedYiZE4LZdiAGgJ4dqzBp9ukS+qamUgb1qvn852QkEaIQIxGGdsVGf3niySL3OapWPO2JeAx5uur/9ziIQWJGVraKDz7dzb2HCjb92JPKFZyKFnDb993h5603GNi7NlaWply7lar/dzuVa7dSUKq0CIKATqf/5+1hy4KvWtGsgTfVW6xl/6/vE1THQNUpsRDD5yQRT3tpEs8NLrqORhLx4vBvk4jUtDyGf3aA6PvpbFjSmTp+MgS1vvLNt0vOsmXPXQ783ANnR0uGT4pAkaHit2VvlSC/RhLxapAIQ2Rh5OeH/tSGJpweUGR7n/ZEPEayPMdgc8eykoj12+6j0Qocikpm0ZS6vDcuim/G1Oa3fXEciEzCzNQEOxtTti5pxpdLrlGvphMXbijYH5nErE/9+X7lLVo3dCfitJy0DBVZOWrylFpMpRI0WgEEcHIww7eCDQsn+tFswEmWTAvUN5YzkdCtjSdfLL7Bz3MaIFdoqFW1dJjj85KIp69j8s2pTzwSRhJhxN+I57WCGkEQkp4WFnohPga+EwThj0LZQEAO9AWWF1NfDIyTSCRzBUE4//9N+9l4GJvC7ehHpCtySE/PQalSI5GARCLR77RKTHBzs8fbyxlvL2e8PJ2xsCj98MvJUZKYlMGlC1f5ZOouenX1Z+2SXlhZPdF98FDBrEWRnN33AW6uNuw6EM2uQ/e5uP/9UvWdZS5WdGhZDjsbM9o396F+gAwAc1OwtzWnQwsfKpe3p2VDvVuzUjn7UvpSAwtfI14cikrcPbUrtmzDNQCWbbjGl580QOZqjczVmhEDAoo8EcUfmqGz2jJ9XONSD9K/jUAAl68n884Hf9CueSU++jCY0DXn8fKwo3J5O46dimPLnmjGDg3iq3knMTeTUruGKwG13OjboyZ+1V1xdSmc61MP49C1l+jUthINg0qX9HwRkLlaM6Jf7aIFxqve4fl1QExsOtH3UklLzyM9TYGqQFvChkpNdLi5WOPtYYu3px2eMhssLEo/TnJyC0hIyubClUeM++owfXvUZOPSzlhaPtG98yCDH368yIW97+HsaMmWvXcJj4zj4v73jR2qX0E8Lvv5tHdW1Ia+X6vI5hbfvFk8vTHTxgSWIgxi3eHLirq1nNDp9Juo9jZmtG/iQXauhi0H4gnyc2JQj0osWBfNum0xWJqZcPi0nJOXUmkY4MIPP90hK1dDeqaKxoHOlPe0pnMrL3YeTuSj/r78vuceflX0i/jzNzIJP51KbV87OjSR4eakXwBX9LahXWMZdtamqHX/X40bmas1IYMbFXkiSoU0GWHE34Tn9UR8BiiAAvThSpMFQbgvkUgqA/eABoIgnC12zG4gVRCEgYWvBaAX0BtwEQShbaF8LS/YE7Fz9zmGhIQSGFARZydbnJ1ssbQ0QxCgoEBNUnIGFhZmqNUaEhIVPEpIJzEpA3t7K7w9HXF0sEaekkVCUgZqtRYvT0fKedoydVwb2raoWvIztXl07f8rjYK8mfxxc5LkOQS0WkZuXgH1A9zp3bUag3rXwrqQdIQfu0+z+h7MX3mZwb1qcO6qvjRoUC1n1m6+zSdDA1i3JZr6AfoE1Us3Fbzf3beEvqlUSoeW5f/schW/cCJioyciJaOgVG+G4l2ci++KGfJEgHhOhHh3579n91IQBMoFLcPe1oKG9bzYd/gew/rVRZGp5EGsAicHSxZ83QZnp+d4ABde94fxWfy89RZL1l7kx+/b81aHAMP6/6cnAp6dE2EIRk9E2fG8nogtu64xfNxWAmt74uJkjZO9KZaWpvqQtwItyfIcLCxMKCjQkpCcy6PEbJJScnGws8Db0w4HO0uSU3NJSMpGo9Xh7WFHOS87vvi0Ca2alLRduoJ8OvbfTrvm5Rk/vB6PknKo88bPqAq0BNfR29CB79TCykr/uzF6Il4uT4Q8WVEi8Vmekou7/4Ki1yV6ChjwROinYjgnwlBne3hGT5kyeiIORiag1QnUq+XET9tiGNvPl3KtdyJzscS3vC1Rl9II6VOFw2fk2FiZIiAwpEclmge7sW7bQz7q78vmA3H4FXoQzl9X0K9LBRauv8P7Hd24eCuL5DQV9+NyWb45lnUzA0nP1uHnq9e/cD2D9zuXY+GGu3w8qGZRgnZxlCWc6Vk5EQZh9EQY8QLwPFbwNPpQpVuADH3o0kmJROIHeBTqJD91TDLgbWCsycANiUTypiAI+wy8XwISiWQY+lyL58KadRFM+uJndv8xiQbBvqXeb9F+GsdP3MTc3BQLCzPqBVaiV8/G9OzWkCqVPEh4FE9GZh7uMnu8PJxwcLDS74Spnj49PXbsu030/TQ2rdT3gpg+5yhurjb8OLEtsY+yGT3lMDWrOtO6qb5fwLVbadSp6cL+o3G0bOTF0VP6hC1ne1P2H4vngz41OBQZXzT+ifPJdG1fsYS+uVkZSYQRBhvtFG/YtuSrpoB+h0tsV2zpzFZFu2dP42XYOZdIJJw/MIQ1v14hL0/N7RMh2NsVGlqR0JOPp4XzVtvKtG9ZsWjHN12Rz6YdN9m49SY3otN4p1M1fg3tRPOGf48Xojhehuv4X8eP687w5eyD7P99iD5kE0qEM9Vrv5KLV5OxsJBiYS6lnr8773arwdudqlOpvAOPkvLJzFLhIbPFy8MWezsL/b0lcg9u3n2XhORcPhqiL+U6be4pvD1s+HZSM27fUzByUgT+NVxpGiyy4DHiH4GhxenIz3YRtvYsIQPrETq7IwAyNxtR7+yzbeiL8S6UBZEXUlFrdDg5mHPwZBJD36lMu8buaLQCWq1Ai2BXRvfz5cTFVL4YVYvt4QlcuJlBOU9rDp5MYnDPiiz4KZpWDWVUr2hHxGk53dp6s+dYAoqMHH7dm0hGtpr2jd2o7G1NUC0HZq+JQVWg37gNPyWnaxtPDkXJGfFeNYMkoqwweiCM+KdR5upMEonEFrgPfAecAk4A5QVBiCumswbwFAThzcLXAtBLEITNEolkKdAUqAes5v/0RGi1OiKOXmfNhkhOnrrNvu1TqVHdEH+BzMxcvp+/nWWrDtD1rWAqVZSh1erY8OsxXF3s+CikDb16BGNm9hS3MkAicnML8Gs2j1Xzu9C2RWX9+FlKbKzNkQo5TP3+JAt+vMCH7/vTvIE3oT9dJj4hi24dKvPOW1UIrOWCVKo3GjqNGolEgk4nYGIi4fF3YmJqViR7/L/oTqv4hRMR/zc8EUVkoVjDNnlaPj5NfyvSeXSqbxHJEMuJeFZ1JoPyf9gTof/Q56uM8xg1mq1EnpZHlQqODOjlx6HjDzlyMpYOLSvyfs8adGxdqWQ5YbHd/BfkiTA4hNET8cIg5onQaLQcOnKLNesjOXc5nv2/D6FqZddiCk9IhCIjn9lLovhx40V6dPSlgrcDBWot6zdfx8vDlo8+aMjbnWuUzpsxcA9m56io2XwlvyzpSLMGepKQkanCztYMqZkpn804zrL1V/jwfX+a1vdi8eqLJKUqebtTdd7pXJPA2u5/Hu5k9EQ8/9hg0BMxcsI2fZjMoGBCv9c/quUpObj7zSnSSb76cZFHQiwnQqdRo9HoyM3T4OhgQUpaPq7OluRm5wESrK1MSU1X4uZihSJThbWFDpCQm6/G0d6ClHQlrk4W5ObobYW1lSmpChVuzpYoMlXYWoEgSMjN1+Bob25AX/pEP6sAOysTBAGyc9U4O1qQnKrEzcmc3Hz9tbGxMkWepsLdVZ9wbW+rvz+y89Q4O+j1Ww86TEaWmirlbHmvc3n2HEvk/DUFLYKc6PuWN60buKAq0OHsYE5ymgpPD/ui53vxZ76J2POljJ4Ig7BwR6HIxdZWf9/n5hbg6GhNdoEjdnYGbJTRE2FEGfCXSrxKJJLD6D0TcyhDOFMhiZAVHjMSaEtZSIRyR9HNk5SUzoJFW9nwSwQe7k4M7N+e995tRdSpm+zdf5a0tCzSFdmkp2eRnp5N86Z+fDdjAF5eLiQkpLFg8TYOHLrMg4dyGjeoRmZWHqfORPPV1F58MempLtO6kosHQRAYO2EjaakZ/LxyYOnJqhUIgsCN2yls3nmd8OMPeP9tf4L83dhSWHazT7dazJ3ernDAMiQplrFusugCr6w1y8u6UDQkF3twiUHMtS42l6cgT8nBvcaTbpfJ0TORuekXBCPH/U7Y6khChjYndF6fJweVNUFfdC5i8hdU+70s11dk8Ttq/CbK+zhRrYorm3depX1LX3p29sfeQSRkROweE7uXpCKLL0MPHXPX0jIAk2aG5dojhuUqucg4ZbzfxRJJXwREvg+J7ft/P4nIXlN07yQkZvDD0oNs/P0UPl5ODOxTnz5vBxF56h77Dt0kTZFLuiKP9PQcFJn5tGpamVlT38TD3Y74hEwWLIvk4NE7xMQqaBxcAUVGPmcuxPHdF28ycWyrkh/+1P2q0+kImbCDgoIC1izsVnqygj7J/9qtFDbvvMnhkw8Z2DsA/1pebNl9k3W/X2bwe4HMnFxoQ82cDJ+0QQIg8tt8Trvyp9Dl/7lOcYiR07LYyxeQEK3/yKcbuZWsNJd4fsiT4hFTjrBswzWG963Jkq+bFRvD8PMsOVnBmi33OXgiifVzGvPm0CPM+SyQ8BMJpGYU0KuDDxPnXWXvimYM+PwsPdrIyM7VcPBUKj/NCOStkaf5/pOaHDmXhjy9gHfae/D5glvsWdqAgVMv0bWFK3lKLYdOp7P2q9p0GnuB78b6si8yhZw8LT1buzE59D675gUweMZN2jdwQidA+FkFa6bWpPO4K3w3pgqbw/Vhxj3byJi89C67fghk4tJ7BPjq76VDp1NZ+40/nUZfoIKXNWkZBVhbSpFIJEQ/zGH/8sbMX/+AKuX0dvTgSTnrvgum47BIdq9qi7d7afsntTBsc01tDNzX9kEGda+qexiUK5VKQt7uRJO2+oqAJ8MPMHvVBv5Yu5JRk74opa9QKg2OY21q2P7bWhi2odVsDJiyJ3vNT8kfGpaL2P/oXMPr1uq2JkYS8Q/jr3giLIEHQBjwDZAALBYE4dti78uBCYIgLC+UFZGIwtdfAoOBKMCurCQiNlZOmw6f0aF9fUYO74yHhzOr1+4ndPlOZG6OvPduKzzcnXF2tsPFyRJ7e2vWrgtn+ap9TPikJ5+N64mkcOGemprF0cgbnDx1G0Gno0fXYJo3far6UTESoVDkMmjESpLlWez4eWjRorQExBh7oeFu2X09Y4bWp8sbvvpkRCOJMIxnkAhD7nWDLvfxWwhbE0XIkGaEzutdUj81r/T395qQCEEQuHtfzpVrj7h6LYYrNxJJV+RRvaobtap7ULOaO3fuJbNz/w32bfqw5Dhi52QkES8GLwGJeBCTQpsu8+jyZgAhH7TCzdWOVWsjCF0VibenA+/2rIeHzB5nJ2uc7U2ws7Vg1cZzrNp4lskft+aTkGZFXoCU1ByOnLhP1NlYAN7p6k+TBhVKfnix+zUtPY/+IzeRla1i+0+9cHE2cD+I2ZXC77Fxxx+Z/HEL3mhVRW9DjSRCRP58uQyPkZyUUrqq0uNE6adyGQCSkjJKhYqKkQhVXg7pmQU8iM+lQYAz4VHJNK/vRkxcJghQ3tOayAuptG0k4+xVBeVkUiQSiHmUR3BtRyJOp9KsnjMPE/IRECjvYcWJSwraNHDh7PVMKrqZggQeJOQTXMueiLPpNAt04mGc3vNZzt2SE1cyaBPkxLmb2VT01DchjUlUUr+mHRHnFTSr60Rskv6a+cjM2RyRgp21lEPnMkhKVZGVo8HN2Zzm9ZzIU2oxNzdj/4kUFnxeWz+fi+m0aejKxdu5lPfSX9+Y+FyC/Z0IPyWnbfPyRREIxfF3kgitTseVs6fxqVgJgPiYB/jXb0Dc3Wiq1KhVSt9IIowoC54nsXousBOIRZ8TMQ1oAfgLgvCwsMTrFPR5E9HocyZaULrEa3ESYQvcBRyA8LKQiAcPFbR9cyJjRnajVYsAloTtYMu2E3Tt3IhRIV1oEFyj5IGFRlSr1TJidBg7dp/m1uUwnBwMLCpEO2rqjfzD2FRavTWbLh0DmTvzXcxNRB4WzyARd+6nU61JGF4e+sVu/MWxSBB5WBhJhEHxyAnb9cRgcGNC5/bUyx6ThWKyx5CnFRgme2UJdRDDS0oiDoTfoGf/5bRpUR3/mjICanni4mzD7btybkYnc+N2MjejkzGVmhB3dWrJcYwk4rUmEXfvJtC26zwmjH2TRsGVWbIigu17LtGjkz+jPmhOUOBTOVeF89VqdQz9aDMHDt/h1qlx2NuVbuwlisL79d6DNFr3WEXvbv7MmvoGZtIydk42Mef6LTm1WyzFy8MOMzMpD859jMTccIiHkUSUvo8N5TLAk27QxasqPUZycpbBXAZDYYhiJCIlRcGmvXG0bihj7upbzJ9Ul2+X3aB1sAsarcDxc6lMGlaDT2dfZvzgapy6mEyeUkurYBfm/3SfueNr8d2qu7QKdkajhePn0/l8aBXGz7vJpwMqcepiKsoCHa2CnJi/4SFzPq7G7LUxNA+wQxAkHL+UwcQBFfhs8V0+ea8cRy9mIAjQqp4jP/wSx/djqvLDr3E0rK1PfF63O5HD5xQ42pnSoamrviO1hRRHO1O2RshxczLncnQ2ttamhE4N4Pj5ND7/wJfxc68zYUgNIs7oPRqtG7gxd0008yfW4XaciuCA0rbu7yQRt69dxdTMjDPHDgPQoEVr1iyYw/SFYZgbIABGEmFEWfA8QZ0+wC+AK5CCPg+ikSAUfevfA1bAUp40m3vjMYEwBEEQciQSyVdAaFkme/deAm07fsHgAW+wZ98Zfli0hZBhnbl9bRUymaPoccnJCvoNno9areXS6YU4OdmKG91nwMLCDDtbS+7eT8bMTPqX1oMuTlasmPsWzRqU4833fuHuAwW+lUQWW0aUgjwlh7A1UQCErYli+sQ3iv4uLivukTBIIF5zuDjbULWyGzt+HVlikdKuVbUnSoIWrdZwzoERryduRyfSrutchg9uyR87zjN38X5GftCKuTN74eoovohOTMqi7/BfMTU14eLhsWUjEMVgaWmKna0F92LS9DZUJO/pWZC52vDj/K40a1ieVt3XEhufSYXKIiTCiBKQp+QQtlYfeRz20wWmj2+BzM0GeUouYT9dAGDZuitM/7RRCdLwXyx6YGlhgm85K2pVtmVk7/IcOZcOQKv6zjySq5jzaXWW/5GAX1XDjeKMMOK/gL+UE/FvQCKRCD7ervR5txVbt5/g3Xda8tWXAzA1/ZPdI52Kd/t9j4O9NaGLQp7oGyIRf+KJmDV3F/MW72faxC58NPIN8eZMfxLO9BjDxu/Gx9OeLz5tZFjf6NBZQTkAACAASURBVIkwHKJURk9Emc7pNfFEKBS5+NSaxIJZvWjXoiKVKrg83xhg9ETAa+uJ8PJ0pH+fRvy25RyD+jZh6medn4RXiO2Ia/Po3n8d3p72LJrV1WA4xp+i8F77em4Ei36M4pvP2xEyuKH4df6TcKbHGDh6CzWrufH5uK6G9Y2eiFI29K94IsQKaJTFE/F0ONOhk/pwpofxT8KZjp9PpV1jw+FM4adTaVbXmdjEJ+FMkRfTadvQ1WA4U/iZdJoFOhIbr8/zKOduSeTlDNrWNxzOFH5OH84Ul6w/JwszCQ0GnWX2mKq4uljS0F+/UfkgIZ9gP3vCT6fTItid2CT9913ew4rIC+m0bWQ4nOlQlJx2LV6ecKbYO7epWtOvlL7RE2FEWfA3l5d4sXjzjXqs3xjOjK8G8sGQjn9+QCFq1ShHbp7yzwnHn2DfoWu0b+NHQYGWBUsPYCpRY2pqgpmZFI1GR2ZWPplZSgqUOTQKKkeb5pVwctTHi966k0K/kM1UKOfAhiXdsLIy45NhDWnZYz3jRtTDxrqM1Qn+AyiqCjK4EaFzuhfJQ+f2LOVtMCT7L8PJyYZ1ywaxddclps3cga2NOe1aVqNXtzq0bVntzwcw4rVEpw51WLPhBHO+6cWAvk2e+7ha1WX6JnN/hUAUw55D0XRsW42c3AIWLDuBqVSnt6GmUjRaHZlZSjIylajVWpoEe9O6aUUcHfRej2s35fQfs5NqVVxYt6QnFhamjAtpQod31/PxqI5YWopUJ/sPo4gwFKusFPp9Z6aPa1oqJyJ0dke+/KR+mbwO+47GcepiMh8P8efrRRcY+HY1Tpx5BEDjejLWb73LtNGBLFh7g9pVrElMyefCdQUVvAL4cdNdTE0lHDudiKpAoF1jGSs3P8C/mj0rNt+noZ8dBRqBCzcyKe9lxcotsZhJJRy/kI6yQEvbhq6s2hpHbV87Vv4RS8Oatqh1AudvZlPew5LV2x9hZirhyJlUNBpoE+zEmp2J1K5iy8odCdStbosECRduZ1POozJrdiZiamZCxFn9JmCbYCdqVrTmwKk0Dp1RYGstxbe8NZaWJiyfVpvV2+KxsDTjYFQqAO0aubJyy0NqV7Nj465YfCvqCeyFGwrKe/mxcvMDateSGUys/juh0+koKFCRqdCfV0GBigLV37hJYsR/Cq+UJ8LNzYX16zfSoUOH5z9Qe4SoqOuMGDWfyxdWFZMb2C36k93HGzfjWLfxMBqNDo1Gi0atQq3WotFqkZqY4OBgjYO9FRKpOcdP3OT4iRu0axPA4P5tGTY6lMkTejJx6gbS4tdga2uFWq3Bq8owThyeTTVfA2VpDe38iu4Sl5EgldWzUFaUcRy5PKNESJpcnoG7z7tFr5MfbUImK9yVKetOuaSCiLzc809QbAdFVF9kZ0Vsd7Gsc9fdKy0zdE8DgjqLa9fjOHT4KouX7ePN9nWYN2sAVhZl/O2LlboUkafre0qWgrM08vk/s4w7USpN2bxdpiaGF8U6A3bR08rwd+QstnbViZynyD0gMW39t3si3Nzs+XXNSNq0LJ1Q+XQVuiIIWo5G3mH8tC2cPTyxcLC/Zj+uXHvEz5vPFtpQHeoCJRqt/m+p1AQHe0sc7CzBxIzjUfeIPHWPTm/40at7PUaO+42pn3Vh4hebyIgPxdLSDJVKjafvJ5yP/I5KFWWlP7AspSPF5i7mKRC7XqIeHREPRVm8XjrDu8ToNKXKqspT83Cvs6zodeK5wUXvl8WzoJcb/lxVvorsPE1hCVMlMmcLsjP1HnobKyny9ALcXSxIzyzAxlQDEgnZeVqc7c2Qpxfg5mRGtkL/mTaWJqRkqJE5maPIUmOtVYMEcvJ1ONmZIs9Q4+ZgSk6WXm5jYUJKpgaZoxmKHA02ggaQkKPU4mRrijxTg5u9lOyUHJBIsDGXkJKtRWZviiJXi62l/refo9ThZCNFnqXBy9+DXKXuyXwKx8+wsCYuUcmRc2ms2BxLl5bujHmvApWqeBosCavI1mBnU1gStqiEbD7lqojYc+uKhuW2Bn6nUsObQOkaw88zUfukCTcsL2uot7nhDV1DNlorUs5dKmKHxfQ1IvIAR3OjJ+IfxivliTh4YCN1AstAIAoRHFyDuLgUEhJSSUnRJ1MF+hvuJVEc9+4nkpaWTYNg/Y+2Vs1yfDdjwBMFkYeFYGLFrDl/EHnyJtF3Ehg7biW7/phCTk4eQXUrY2ur9078/sdJatcqZ5hAvKZ4miwAjByzmLDluwgZ3pnQxWMAkMkcCRnehbDlOwkZ3uUJgTCizJBIJPjXLo9/7fIMGdCaEWN/pEGLyRzYPgFPD/FcIiNePxze+xV+1Q2Etv0JGjeoRPQ9OSmp2cQ/ykBqakpA7T9vQHjnnpzMrHzq19UvngJqexNQu5i9E7GhOokl33y/l5Nn7nP1RgJnzj9k/x+jkKeraRRcpcjr8PPvp2gQVMkwgXhNIU/NReZa0oswclI4YesuEzKgDqGz9ORd5mrNiH61i7pE/x15DXNW36ZdYxnTFl3jl3mN6T/xNG0bOCEIEH46lQUT/Xgz5DRfj6zGwRNJ5Cl1dGnpxvRl99gw059BX17nzWBHVGqBiPMK5o+tSqfxV5g+tCLHz6SiyNXSuaETX2+IZ91nVRky7x4d6zmgLNBx+EoWc4eWp+tX0Uzr682xiwqy8nV0DrLn6yWx/DS6PB+ExdGumjlqLRy5lc/3vV3pvjiBqV2c2XslF50AnerYMGN1MmuGuDNywT0a++lzHA5fymTeiIp0nnKDbz6uxfbD+lDJJZNrM/TLyxw9n0bDOm5FidLhJ5NYNK0+7QeHM2t8EFsO6KuVdW9fjqkfXeS3hS2JiIylTTNjs1gjXh/8/y0S/0HUqWOAlT8HTE2ldOncmJmzNhDcKIS69T/k7LnoZx6TkpJJ+05f8f38bWX+vPT0bLbtOI2bqz0VK8g4d2IODYKrcfb8XdIVOaxaG87R49f5/oftjBvb5S+d06uIkWMW4+7zLiPHLC6SyeUZhC3fBUDY8l3I5U8a1IQu+YjkR5sIXfLRPz7X1xUODtb8vHYs777TmDe6fY9CkfvnBxnx2sCvVhm8b8Vgbm7KW+39+Hr2Xuq3nk2dpjO4fDX+mccky7No120R85dGlPnzUlJz2LnvGi5ONlSp5Ma5IxOpF1iesxcekJKazZr1xzly/BZzFu5j3Jg3/9I5vYoY+fkB3P2XMvLzA0UyeWouYesuAxC27jLy1CfEbOmMliSeG8zSGS3/lvk0DnShoo8N7Zt4YGdtSttG7tSt4UBQTQfaNnTF3saU9o1cqehtTbCfPc3qOlLJy4p2DZ2xs5bSJtgZv8q21K1mS5sgJ+yspbSr70RFD0vqVLGhmZ8dFd0taFvXAVsrE1rXcaBWOUvqVrGmdYA9dlZS2gTaU1FmTmBFK5pWt6GCmzlt/e2wtZTSys+W2t4WBJa3oFUNK+wsTWhTw5oKLmY0rmpJ06pWVHAxo00Na2wtTWjqb09dXxvq+trQOtABO2spbes6UsHLmuZBzjQPcibA147R71WkYzMZ4VHJ1KhkR/3azrRt4oG9jRlvNPWkgrctLYLdaRHsTiUfO95o5oWdjRneHsZwWyNeL7xS4UyCLrZsIShQlIAZFXWd3u99hVqtoXevVqz9aR/1g3zx96uIiYkJSmUB5XycmPzZO6hUatq99SXm5qaoVGoiI2aJjC3ithbp4JiTncP2XWfZsfscCYnp+PtVYMkPQzExFal08hqFM5UKT4r/rcgjYcgT8cw5GsOZyhTOZKgAgCAIjP98LVFn7nJwx0RsbJ4jodwYzmRQ91UKZxLyNpc9PKfwt3zkeDSDRq2noEBDj8512fD7aeoHVqB2LS9MTCQolRoqVXDms4/ao1Sqad1lIdZW+osTvkNkI6CMNjQrV8L23RfZseciyfIsAgPKs/D7vkikIg0SX6NwJnlKLu615xW9Tr46qsgjMXLi/lKeCHhGJ/gXFM507XYapy+n0a9LBRauv8OA7hU4fyUJBKhb04H1O+MZ+34lNu5+RD1fKwTgws1s+nb0YPGvsfTv5MXl6wo0Wqjra8uG/cmMfsebXw7KqVvOHEGAC3dzea+1C0t3JPN+G1eu3slGo4PAytZsPJLGqE7u/HosjXo+ZugEuPggnz5NnQjdn0rf5k5cvpGBToA65S345VQ2IW0c+O1MNnXLWSBI4FKsincb2BEWkcmAXhW4eFf//dWtasOGQymM7u7B1stK/AubzZ2/kcn7nbxZuPEBD5M0nLmSxpej/Wlc142ftt7n44E12Hwwntq+eu/5uWup9O9WhQVrb/DpqOZYWRkwGMZwJoNyYzjTy49XyhPx/6BRo1q4uzvh5enCtu0n9O3us/PJyVXyKCGVZT/uQRAEBEFgxJhluLnas27lR9y4Fc/M2ZtQqUQawpUBtrZWvN+nBb+t/5Tjh2YQuvBDTER+PK86insU4HF4kj6xL2R45xIhTaGLx5Ac/1tJAmHE3wqJRMKcmX2oVtWDt/stoqCg7KU2jfhvoWUzX+xsLfF0d2DH3it6G5qjJCdHRWycgmWrjyGR6Anq0DEbqFDOmVWL+3HhchyzFxx4IfeYvb0V/d9rwqb1ozi2fxKL5rxf1PTudYM8paSXUOZmQ8jAQABCBgaWCGkKndWW5MsjShCIfwJXbmcQfiqZ7DwNB08mEROfS+RFBccvpBPzKI+Dp1LJztUQfjqVy9E5XLiZTcTZdLLz9J2lHyTkc/52NpGXM4lJUnLonIKcPC0R5xVcf5jHhbu5HL6cSU6+jvCLmcQkq7j8IJ8TN7KJkRcQcSmLHKWWw1eyuBar5OKDfI5czyFHqSX8ajYPUwo491DJibv5PExTE3ErjxyljiO38rkUp+JSrIojt/LJUeqIuJXHw+QCIq9lEXkti5hkJeEXM8jJ13H6ioLzNzI5fyOTiDNp+nM6lcqQt6ugE2DS/EvcicniwIlEsvPUXLyezrlrqZy7lsqhE4lk56o5EJlAdu7/v44wwoiXCf8ZTwRAVlYuG38+ROiy7WRmZFO5kifXbz7EVCqlbt0quLvZ8yAmmazsfI4fmomNjSU3b8XRrO1kmjauyY7Nk58au2y7aM9btrAIr4AnQi5XlMpXGDl6YWEuQ+dSxMBQTkSZ52j0RPzfngj9GCo0Gi11m07jh+/60q51bcN6j/GSeCIEQWDn6cvYOzrh6VOuxCLS6IkQx//riQDIzMxnw+9nCF11nNy8AiqUc+b6zQTMzKQE1SmPm6st9x6koFRpOLr7Y6yszLl6/REt3vqBti2rs3ndU93Ry2pDxeQmYvKX3xMhT04vVSlp5MQ9hK09R8ig+oTOfqvYZyoN5kSI9dsQ9Sxo1KgKtFhamJKXr8baygy1WotOrcLMTEpevgZrK1OUKg3mZlK0BfmoNQKWFk/eU6t15OcpsbE2RZ6mxN3VirQMFbZm+oXy44RreboKNydzsjNyQGKCjZWUFEUBMmcL0jIKsJFokUhMyM5/KuE6JVefQG0pJSVTjczRnPQsNbZSHUhMSiVcZ6fnI5FI9AnRWRpkDmak52iwLVAiADkqHU42psizNLjZSckt0P/GiydcZzrZ42Ct/0FnK7U425khzyjAq7o7qgL97re5mYScPC12NqYUSGyQmkho2Hs/8z+vR9smnmTnqrG3t0JVoC3UNyEnT4OdjRkmNq6YmhqwOf+wJ0IQBC6fX4GLiz0+Pm4libjRE2FEGfBKkYhrmWrUWsOG3kxqeGFpSC4IAg8unGL96pXk5ebi5u6OzN0Ddw8PZO4eNGjcBHsHB7Zt+p2vpkwkILAe02d9T+WqVUuMk5gvYrhFrqnYtS4QOSdDCxyxsU1EduPKqi8mN7TbN2PcGH5ftZzeQ4YxZZ4+zyEtRU6bak+MWUR0HC5usmfORQxi+mWVixkcQxA7fzGYi9x3Zb2+ZYWhcw10Eut5ILKYLQyjqFt/OCuXjyMoqPDhlB9jWF8i1g9CZAFn2UBkHAMPOxGSVvzBqNPp2LtzB4vmzubRowSUynwUqSlMmbeYd4cO1w9TxntMzG68CLhbPv/Y2zdvYkjf3n8/icjfWvZFgoGFuIAJkSdusGrtQfKVBXi4O+Hh7oi7zBEPDyeaNq6JnZ0Vv/x2jEnT1tEw2JfZMwdQuZLHc072RfVsMHCuYuFDYv0dntE/o0xyA5WVRn5+gLCfLpXozSBPzcMjcEWRTomqSoJhW6ZTiVRmEyEXR0/G8k3YDdbNbkjHD4/x/YQ6/L4vDlcHKa3quzJxwQ32hDZi4JQLtG/shqWZwM6jctZ+40+n0Rf47qNqbD6YhLkJdG7mwuTQ++yaF8DgGTdpW8den1h9MYPVE3zpOuUG335QgX1RaeQodfRs4syUdfFsn+bLBwsf0DnIjjyVQPjVbFaOKk/3WfeZ+b4Xx69mIs/S0iPYjmm/y9k6rjwfrnhElzo25KoEIm7ksmKIBz0XPeKbt904eiuP9Bwt3YNs+WJLKlvGejNsdRJv1rGlQAsR13P58QNPevwQz4xebmw/m4VWJ9C9ni1fbE1jy2hPPt2ZTePCjtWHzilYM6UGXSZcYdW8djQMLJ28b+qgT5L2a76EX5f3wr+Wu/4NR8O9n24qDW+s5KsNeyjqOZ4rLRTrQyW2EVXsftTpdGzdcYbZ87YhT1GQna0kXZHLqqWDGTKghV6pLP19QJSo38xvVUqWKdKDQl1GsmBIHrF1M9+NGWYkEf8wXhsSYWpiwtnjR3lw5zaJ8XEkxseSl5ODRq1Go1ajLihAo1Ez6bv5BDZohKt56ftMEATuRkcTvn8vf/z2C1qNhm/mzKdpC8NJaa86iUhPkePsVtIwKlJTihb9xZH+lDwtRU5r3yfVWYqThZnjxvD76hUlyMWz5iIGI4kQx4skEV7l3+XMySX4+Ljp5S8piTiwZzfjx4Qw4/v5BL7RmXu3bvBO0yBWbNvLhagT1GvclMCGTbCwfP5uyi8Dibh+5Qo9O7YjNSXlXyURgiAQceQa0XcTiY1LJS4+jewcJQVqLQUFGtRqLWq1hsXzP6R+/eqiY9y6Hc/e/ef5+Td9eNMP339AsyaG9cUn+2qQCEPNMOVJKaU8CwByeVoJD4I8NRd3/6VFr5MuDSsiCyMnR7Bs3RVG9KtdIin6RZGIrIxsrt/JJNjfmfBTcpoHufIwIQ9Bo6KchxUnLqbTpqErZ69lUNHbGkGr4sEjJcF+9kScSadZXSd90zeVmnLulpy4kkGbIH0Tt/L2EkBCTLKS+tVsOXwpk6a17Yl5qC+1Ws7VnKibObQKsOPc3TwqOJqARMJDuYqgKtYcuZZDkxo2xD7Sh3P5uJgRFZ1Pq1rWnH+gpLyD/ifyMFVDUEULjtzKp0lVK+IUahDAx9mUqLtKWtWw4nyMiooy80J9NUGVLDlyM48mvlbEJukXtD7OpkTdU9KquhVXJfZU8NDbj5gkJfVr2HH4fAZvdg/GzKz08/gxiXCtMZsbx0c9uRdeUhKxZdspxk1ax/zvBtLtrRpcvBxL/RZfcWjnBCKjomnepBpNm9bDwsKA++IlJhHRVy4xbWAfFClyI4n4h/HaBORrNBrG9O3J8YP7sLK2pknrdvToN4gW7d/k4b073Ll5jdYdO1PDv06J43Jzc9m/excTxo4iqEYVerzZlpvXr/HJxMkcijorSiBedXw7fixtq5fn2/FjS8jaVCvHzHElQ5BmjhtDa18fZhSTu7jJ6F24+9t7yLASBGPKvMVERMeVIBBGvJzQ6XSkpJQhxOxfhLmFBZWqVKXr2+8glUpxcHLGycWVmePHEvfgHvOmTmTGp6P/7Wk+Nw7s2c3vGzfw3ddfUr9h4397OqhUarr2nsOB8CvY2lryRtsAhgxoxRttA4m+k8CNW3H06NqI2n4lS1Tm5OSzY9dpQsaEUrnGh7zR6Utu3Y7nyyl9OH18Ls2a/rWqei87Rk7YhnvNGYycsK2krPY8Rk7cU1J34p5SVZVkrk9yHEYMCChRgjX02zZ/a1WlG/eycLQ3Z/j08zSq48LXoTe4H5dDbGI+M5ZH0zDAiZBvruBob8a2iET2RqbiZGfKyJk3aOjvwIwf73H/UT4xCUpmromhoZ8Do+ZE42hnyo4oBdtPpuNoY8roRfdpUMOOmRvjiU0tICZZxXebEgiubsOYZQ9xtJFy8HIWO89k4GAjZezKeIJ9rZn1RzLxaWoepKiZvT2V4CpWjP0pCUdrEw5dy2PnxVwcrU34aIOc4MqWfLc7jdhUNTGpambvTie4siUfbZDjaG3Cvis57LyYg6O1lLHrkwmubMV3O9OISVMTk6ph9h4FwZUs+ejnFOxtTNl+PJXtx1NxtDVl1Lw7NPCzZ8Wvt0SvpVqtJTNLiYvzP9tE7q/A0tKc6r5e9OjWEBMTE1xdbHF1sWXExz9x70EKH0/8hbHjVv/b03xuRB3Yy6E/fmf9/Nn4vwQ29L+IV6pPhBhSk5PYGLoIExMTeg8ZRos3OhJ7/x7L58zk2P699A8Zw8CRH2Frr6//rNVq2btzD2t/XEZU5HEC6wXRtkNH1m/aRi1//9cuUe9pj0N6ipxNq/Xu8k2rVzBi4tSivwF+X72CEZ9Pw8VNRlqKnN8fy1ctJ6RQDjB13mJGTJxq0HNhSGbEy4f09Gzs7KwxN3/5u/3ev3sHV1e3otfuXt5MX7SMYwf28sWCUC6djmLSsIGkp6bgXEzvZcVXkyfi4upKy7btGTpiJFXcnf+1uSQkpjN3wS7MzKSMGvYG7doEcOduIl/P+oN9hy7z6diujB7xFnZ2+h43Wq2WHbvOsOzHfZw8dYvgoKp07BDEzi3T8KtV/rWzofKUbGRudiVeh605BUDYmlNM/6xd0d8AYWvPMX18S2RuNshTcglbq99RDvvpEtPHNy3ySIR+9wZfftLAYA+Hv6OvgxEvHilpubg4Wf/f3dz/Cdy5l4hMZl/0ukJ5V5YtHEj4kRssnd+fI8dvMWzsOtLSsnFxEQlreomw/OtpuHl5E9SiNV0GDOHYru3/9pT+c3hlSYQgCNy4eJ7tP69j/5ZNdH63L1tOXsTTpxwajYZeLYIZMOpjDlyOxt5Rv8taUFDAryuXsS5sEa4uLgwbNZYfN/yKvb39n3zaqwFD4Umzxn/E5jUreGfwMCbNXQiAs5uMXkOGsWn1CnoNGVZ0zGNZcc+Ci5uM3kOG6cOThg4vRQ6MZOHVRnKyAnf3f6eR36NHj9iwYQM3b96kf78OtGnT9JmLTzs7ex7GPEBbLPyvdaeutO7UFYDAho1p1q4DrX19OJOYWaawpn8aWZmZxD2M4cjZi5iZ/TsEThAEzpy7y+p1h9m09RQD+7bk+rl5eHs5o1QWUK/p53z2SVeWLhyBvb1+QatSqQldvpdFobvx8HBiTEhnNv8yETu712PBK0/JQuZW8nkwctzvhK2OJGRIM0Ln9QZA5mZHyOBGhK05RcjgRkVhLEWyQfWLQppkbjaEDKqvT5R+qqoS/DtkoVYVe67fyWT59CAORSUzLaQWsYn6cKapw6sReSGdsGkBnL2WQfc2nkXhTKFTahF+Op0pH1QmLkmJoFLTvG5FIi9nsHRCNc7dzKZrYycehzMtGVuZiIuZTO7rw8NYfThTcz87Tt7MYfGICpy7m0f7OvZF4UyLPvDh8NUcPu/pTlyCPpypeQ1XTkbnsWigB+cfKGlXW3+9HqZqWNhPxuGbeUzs5Ey8QgMCNKtmxck7+SzsJ+N8jIo3A2wL9dUs6u+u1+/iQlxhOFOzak6cvKtkYV83ruZq6NZc3zwuJknJ0nG+RJzP4MN364tey+SUXNwNhK/9E4iNTWHjr0eIvpPAwP7tadni2ZugdraW3LufjE6nKwpDebtbfd7upj+/Vs1r0LxJTVzLDUaV8ctLvbmUmZ5GRloKq4+deW2rXL4KeKVIhCAIRF+/yuHdO9i7+Vd0Oh1vvdOHLacu4eHpVaQnlUrJy8lhxGdTsDTXx+tFX7/GxGEDcXaTMWfleto1a/zK7pYZIgvfjh9bRAomz11UpLd5jd6LsHnNCoZPnFJ03OS5ixgxcWqJcSbPXVTC0/AYU+YtJmTSF0bC8BoiLl6O+78QyhQZGck777xDt27dCAwM5KOPpwPwXp9udOrUhsBAv1LHvN3nPdasCOOzsaP4YMo3RZsDjyGRSGjbpTu/r17BnRvXqF1P/MH/b+PCubP4B9b9xwmEIAhcvhzD1p1n2PhbJFKpCf36NOfWhR+QyRyK9ExMTMjPL2DqxJ5IpPpcm8tXHtB/6ELKl3Pltw2f0SDYcJWYVwFyeWaJ8wUY+ckGwlYdIWRoK0J/6KfXS8kibLU+pyhsdSTTP+9Y5JEIndOd6Z+1K5ETETqnO9PHNS2VExE6+y2mj2tYuqrSMxB9P4NK5ey4E5OJj4ctikwlOp0OZ0dL4pNy8K3owIO4bOztzNGp8snKUVPJx447D7Pw8bBGkVmAoNPg5GDOo6Q8qlaw58GjHOxtzLh8PY21Wx8wb0IdFq67g9REwt7jiVhbQPN6LizceB//anYs/vk+jfydMJVqOX4xgzmfVGfxLw+RSmHfiVSkOh3tGjiz+Pd4/KvYsGRTPA18rRGAM7dymP1hBZZsS8TEBA6fTadAC2/UdWDJrmT8ylsRtiuZptWtKdAInLmTx6z+Xizdm4LUBE5cyyRHJfCGvw2hB9Lx87Yk7GA6TataoNIInLuvZGYvN8LCM5BKJETeySO/QKC9nw1h4Rn4+ViwLEJBY19rNDo4ez+fb3vLCD2oQCqBg5ezEYD2ftaEHc7Ez9ucFUcSaBGotytnbmRTxduKtXsSqVwnk9rVDHsK4x5l4u72zzeRO3L0Ku/2/563uzchwL8iI8cuxczMlD69W9CpYwMC/CuVOmZgv1YsX3WQj8avYea0LtjbW5V4XyKR8E6PxqxZf5gbN+MJrFN6Qll46gAAIABJREFUjJcFty6ep3qdekYC8S/jlUqsdvf2QWpqSos3O9GhZy/86gWLEoEWFdxYs/8oPhUqsWnVMn5a/AOjp31N936DRI8RS3DWlDFRWilSZrKsSbiGkmcXThrH1rUr6THoA8bP/gEARUoKnWtXLtLZff1+ETmY89nHbFm7kp6DPmDC9wueOfazIJaaLFaCrSzjv6hEabGk+7ImoxuCWAk6se9UrHSoWCKvmBksPseYO7fZtHIZ9k5O1KjpRyXf6vhUqISJVIogCFS3NcHExAQHB4fnIshZWVk0bNiQ8ePHM3To0CK5WCO3alYnDA8kVrb2qdKygiDwx9aT7N1/np17zrJ+9Sd0aF9P/56pI4cPX2DX7pOsXLWLmPubcHa2Jzq/aYkx0lNS+OGrKRzavYOQz6fx9sChmJqW3As5sG0z/2PvvAOavN63/wkrQCCEPUTFhSgOEPeou9W6W7Wuuveoo26tq3Vv66h7z7pHtS5wIQ4E90IEZIYNCSPz/SOIYhK/tba2/b1cf8H93DnPeUZOzr2ue96EMSzfeQD/uvUB4++pMQjN9P0rxt4BQyQN8B7qV2Dq1KkolUoWL15cKBMIBH97YbVnCSeEQnPat61Dj25NCKhR4c278k6BpLnVFzy6t5kSJUuwctWvLFu+n8ULh9OnT2sEGKFDNW1iUJxmhB7/fffIIJRnDcuNFUsrM/REw8dsMWgsuJYbV6iT9GxuobEwfNyewojD2sUd//c51Ya7wGsUhgu0jdGwpkgzcJAISUrJxcXREnmOCnW+HJGVGdK0fFwdLUnLVGBrbYZakUN2jlpHqZqaj7ODBfJcNRp5TgGlqhIXBx1Fqq21KZocJbI8Nfa25kjTFThLzJHnadAqVDqK1EwVLhJz0rNV2FiZgFqrR6kqz9OgVasLKFgL9GUqRCa69UOWp8bexgxpphJnsRnybAUIBIiEApKz1LjYmZEuU2NtpkUgEBRQsJoWUrDmqE10FK9Ck7f0VdjaWwKCN+MXzCe3oBj/3flLSjuAQEC2XEVSaj4rd72khKsl3n41qFjOhco+LqSm5eDsZEO6shQODmLEYuuia6iR4vr0LDW1G3zHzGm96NXzraJpY8QAZh/Wx+PdtVir1RJ+6lfOnDnDqVOn2Lt3L82b68bUqgK5cOEOJ3+7zpatp4mNPoBYLNKjLk5KSmfq9M38duYGc37oQf++LTB9+3fJwo/du48w7vsfOX5sM3Xq+APwWOaBIRj7fTVEiZ2U92G/0cYKsVNzc9n80wyEllb0Gj+lUN7ey6W4sPoT4z9lRPx67Q6lvSv+oQ3SlAHf8vDOLZITE6heuy4zf95AidJe7/3MP2VEZKakYO+sn8OdmizF/q3c7vSUZDpVfUMze/JBZOHnlk4aa9BYAMORi2Ij4r9jRCQnJrB58Vwu/XaCr/sNBiAu8gUvnz8hLjoKrVaLiYkJpgIBKpUKCwsLqlSpgq+vLyKRiLS0NLKysjA1NcXc3BwLCwssLCwIDw/H39+ftWvXFjnnhxoRKmU+d+9GEHz9IUKhOd4VSlKhQgk8XISF39W4uFSGjFzDq9gUhg5qRauWNSjzNt2n+ZuUqvYdJtO9Wwu6d2+hZ0S8xt07t/lx3EjqNmnGqOlz9I5fu3CWqYP70qLDV7T+qivV69b/II/V32VEaLVaFi1axOrVqzl37hw+Pj6Fxz6FEfH47loqVixteA19x4jo1Hkmd8Kek5CQxmefVWfLpimUKlVAYWnMcPyHjAhpYpJBcgBpfEyR9CRpchauZd8U3ye9WFZ4fPiYbXppS4BRFqa/24gIufWKacvusH9lY0bOvkGLBu4I1ArOBktZOaU6PSbc5MdRvhy7GI9IqKVpHSdmrnnK7gX+jFn0iGa1HRGi4rfgVJaPrsC3sx8xa2AZjl9JQWIloGFVO2Zvi2HnNG/GrXlJU387hCZaTt/KYOkQL/osimBGL09O3kjHRmhCk2pi5uyOZcf48ozbGE3T6mJM0HIhPIslA0rRd1kkP/QowW8haWi00LammDkHEtn+XWnGb4ujRRURKrWWoIdyFn/rRt+1scz42oVLD2Vk52poU8OWHw9L2TbMk/G7Emldw448pYaghzIW9/ag7+oYZnRx41pEHhlyFW1q2/Pjnji2f1+W7zfF0KquAwqllsDwTJYO9aL3wufM7F2Si0/zkaYpiE/O40JICqO6e/HbVSk2EnsSErNJSs7GUmhGbp4Ka2shWi0IheZU8fXCt3JprKwsSE/LICsrp2ANNcXCwgwLCzPuhEdRv15lli8ZWvThfaARoVKpCA8P5/r161haWuLt7U2FChXIFrsVflcTYl8xfeRg5KlSBg8eTKtWrfDy8nrrvQsq/LPVlxMZNLANX3/V2Gj/kzu37zNk5BrafVmbGdO6vTlgoSv2P3nyPP36j6drl7Z069YOh+odDK6hn9qI0Gq1rFs8j7P7dvHjroN4lHnjQC02Ij49/lPpTGV9Kv3hzen8zTsBEGC4x8G/Bcsnj+PY9s107DOAcQWRBYBlk8ZydPtmOvQZwNgFywCwd3KmU9+BhZGItw2PCYtWMGDCVD1jATAoK8a/H/m5uexYuZjD2zbTrkdv9l8PRyzRbbZthfp0rr5iM7RaLVKplAcPHvDw4UPy8vLw9vbGzs4OjUaDQqFAqVSiUCgICAigd+/ef2puubn5LFu+n0uXwgm58ZCSJZ2pX68KarWanbvO8ex5LDJZDhXKe1CurBtXrj1i+ODWHN4/xWCebWamDKHQHEtLIW3b1OfkqWC6d29h9Pw+1fxYtmM/XRrW5Ktv++s5CBo0/5x9QSH8dnAfCyePIzM9jfHzltC8XUfDA34iHDlyhK1btxISEkKJEiU++fl9KnrCH1wPjxycDYBWYPGvXkOHj/qZdetPMmxwa9auGvZG/t061m04zbCBzVi7vC8ALs5ihg1oUhiJeNvAWLu0a5F0pbehZ0B8Anh52vB5Qw9sRea0aOBOzSpOqPNzUGtALDKnZX0XvDxFNKrpBBoFZTysaFHPGVuRGc1qOxJQ2Q5tXh55+RpsRaY0r2WPl7sljfwkmKpVeLlZ0jxAgo2VKU397fCvYINApSZPocXWyoTm/nZ4uQpp6GuLKeDlKqS5nx02ViY0rS6mRjkRWo0GjQZsrUxp5ifGy8WC+hVFaAVQ2kVI86q22Fia0qSKDVVLWaD7RQZbS1OaV7GhtLMF/l6WqDRQ2smcZr42OoOlsgjfkkI0BT/3tpamNK9qS2lnC2RqASoNeLlY0MxPjI2lKU2rialSxprX2wNba1Oa+0twkZjzLCqNs9eT6dWmBOP6lGVSv3KU8bSmUauWgIBbYa/o060mS9dcYuCwfjg6iklKSufBwygePopGoVDhU8EVsa21bg1V6uiOFQoVtWr50ruX8XXqfZDL5SxdupQrV65w48YNSpUqRYMGDVAoFGzfvp1nz54hz8mhVNnylCpTjlvXLtN7+Hcs/mGywTTIzEwZlpYWCIUWtG1Tj5OnQnRGhBHU8C/HwT2TqVFvLP37tMDT06nI8bZtW3Dr5gn27DnG8BHTScsaz9RFK2j2Zbs/db1/FS4cPcSVE0dZfOQ0Di6u/+hcivEfi0SEpuZ+sAf9Q7zNnzoS8W5k4dj9F9g7O5OenEyHquUK5UfuRxRGJMxNTEhPTtaLXHxo/4HiSMS/PxLxOPwOg1s3ZfWR3/CvV7RzszEj4q/AH4lEHDhwkfkLdzF7Zn/q16uEk5Odnn5maiIRLxJ49jyOqlW8qOKr331bq9WyZds5JkzdzuRJPZk4oSdxcclUrd6H308vxa7KQINzed2Zev2iuTy5f5dlO/a/d6N7O/gKs78bStmKlegzahzVatV5r/7fEYnQarUEBAQwc+ZMOnTooKf/KSIR2rzjxvnkjXV3NjHQf+RfEomQSjNw9fym8P+kmB24uEh08lJvDOSkyNVvDAatwmAB9Yc3j/t7IxGb996nV/uyrNj2iD5flSf0QSpaZR7+le3ZcSyK0b0qsOtkDAG+9miV+dx+lEHPNiVYtSeK3m1LcOdJFqbKfKqWs2HnmURGdfFkz+9J1PCxhXwVoc9kdG/uzOojCfRq6ULYcxmmWg1VvazZfTGFEe1d2RuYSo3yItBquRMhp3tjR9acSKJnMyfCX8hBq6V6GWt2B6Uyoo0r+y6n4lfSAgQCwiJz6NbQgbWnk+nR2IF7EdlotODnZcWeqxkM/9yRfcEZ+JfWef/DovLoVs+OtefS6NHAjkcJSpRq8CtjxZ4r6Qz/wol919IJqCRGC4S9yKHbZ46sOZVEzyaOPEhQoFaDf3kRu84nM7KjG/P2xLLqcALrfqiKQqkpcn8eZ+ny/Wv6lWTL7pt8P6IxB86k07NHsz/+DhjrnfAHIhE7d+5k1apVzJgxgwYNGuDgoF9zERqfQdSL50RFPKNSVT/KV6qMt6joEqHRaNi0aRMTJ45j1oy+jBndmaioRAJqD+H870vw9yurN+7b1zR95i5eRCawZ8d43ZpYEIl4F9t+e8qMUUOpVN2P/t99T7Wauj5AnzISodFo6NO0Ht9O+oGApvpRneJIxKdHcUXKPwh7J2c69NHlonfsM6DQMLB3dqZjgbxDnwFFUppeHy/G/31U8qvB6B8X8PPMqf/0VPRw7/4LOrRvSPv2DQ0aEAB2diICapSn+zeNDRoQAD/M2s2CJYcYPKg9oaHPAChRwpktmybzZdsJXDn/+3vn0XvkWJITExjTszNZGfr576/hX7cB+y7dxL9uA34Y1p8eTetxbPd2lIoP7N78Ebh+/TqZmZm0a/fPevL+L8HFRcKwIW0BGDa4dWFKk4uLhGGDW+vkA5vpGQx6BsS/EBeCE8iWKzl7NZ6XsdlcvpVEyL00omLlnAuWkp2j4kKIlNCH6dyPyOLizVSy5SrOX0/mZXwuV0LTCHsmIyohjwu30snOUXMxNJ07T7J5FJ1DYFgmslw1F0IziErM4+r9LO6+kBOVlM+FsExkuRoC72ZyJ0LOg5c5BN7NQpar4UJ4JlFJ+Vx9mE3IExlRUgUXw7OQ5akJvJdFeFQuYZE5BD2QIctTc+F+NtHSfG5H5nLtaQ7RyQouPJAhy9MQ9FDOo1f5hEXlEfRIjixfw8WHMqJTlIRH53LtqVynfz8bWZ6aoIcyHr3KI+xFDoH3dOe8GJ5FlFRB+HM5Vx9kEZWUx4WwDGS5GqIS8+nYzI2FW17o3Z/LwZEEXXtBZFQqZy4+JVuWT9Dlu5/s+d67d49OnTrRrl07gwYEgK2dHVVr1KRd1x6Ur2S438qkSZNYvnw5gwa0JfSObg318nJj/bpxfPHlRC4Ghr13HpMnfE1EZAJdey4kK8uIsQTU+awpR4LvUDWgFuP796Rr47oc27MTpZFGeX8HwoKvolarqNHEgKFXjH8ExZGIt/BXRSISEhP0Nv4A8vQ0g/I/WhMBukiEIRRHIv7vRSIA4qNe8l2Xdhy+/bCI/J+ORIwYuQwfn1KMGtn5DxdWv4v4+FSqBIzixaMNxEmVfN1lOk8f7yk8fvXqPTp2ns3g7yfRZ8SYIpGD/LeifUqFgiXTJnL1/O8s3b4Xn2r6nrS331ONRkPwhXPsXLuC2JeRrD5wnDLeRTsq/x2RiNTUVCpWrMj169epUKGCnn5xJOINpFIpLi76aZjSuAOGax/+YE0EAFojhuO/LBKhzs9BmpqHq5MVqRn5iEXmqPNkhQXUSal5uDgIkeeqUefnIrI2JTlNgYujkNRMBWKRGRpZDtm5ahzE5kjTFDjb6wqoNTkKXcF1hhIX+zcF19p8FbI8/QJq1NoiBctp2SpsrUzQqrV6Bc6ybN391RVEq3CxK9A306AriNZgb2OKNFOFs9gUWY4KKCi4zlbjIjYjTaZGbGtOkQLqAv0cgdmbguu35mNnLwQBegXg99JMGDDzHmEHGhW5Px7VPwcgW5aPg701SdJsXMrWNxyh/BsiEYMGDaJmzZoMGTLEsC6G1+K3IxHR0dEEBAQQGRnJ8yd76TtgIffD3zSLCwoKp2v32cyY1osRwzsYLRbPy1MwZvwmAi/d59ChbVSpot9h/u3CarVazZWzp9m2ejnxr16x4fApSpUrX0T/74hEpCcn06NRAEuPn8O1ZCk9/eJIxKfHfyoSkZwQ/09P4X9i2aSxfONXkVVTxxeRr5o6nk5Vy7N88ji9zxiLLBgyOIrx/xeyMzMK6yD+TRCLrZFKjXv+/whsbKxQqdSYmAiQyXL1jjdsWI39gdc5cWAvo3oYjzSYW1gwZfEKRk6fxZBOXzKqWydGftORmaOGIM/WN2RMTExo2PIL1h85zYCxExndvRM3Ll38qGv5I3B0dGTs2LHMnTv3bz+XMXzsM/sUGD58OK6urgwfPlxf7vkNw0f9rPcZYx3X/00Rhzv3pdT8cj/SlBxa9z7Osg1hLNsQRo/vLiBNzaVW+8NcDI5j2PQrDJt+hXPBCbQddIGklFx6jb/Cyu2PWbP3Bd9OvklSah7tR1zjQoiUCYvvMXfjcy7cSKHj6NtIU/Po98NdVu+JYuvJePr99BhpWj6dJt3nYmg6k1dHsHR/LBfDMvh6xmOk6QoGLHrG2qMJbD0npf/SCKTpCjrPfkrg3SymbolhwYFYLt7NovNPz5BmKBiw/AVrTyWx/nQiA1a+RJqhoMu85wTey+KH3XFM2x1P4P1suiyKRJqpZNDaaDZdSGXduVQGrn+FNFNJl2XRBD2UseREMtP3JxH4UE7X5TE6/Y1xbA9KZd3ZFAauK9Bf8pKghzKWHYln2vZYLt7Losu850gzFAxc9ZItvyex9ngi/Rc/R5qu4OuZjwkMz2TFzpdkypR692fFL5dZvu4y3wzYSZI0my+6bOLS5Xuf7H0Qi8VIpdKPGsPW1haFQoGJiYnBNbRJEz+CL69k89bTfNPjR7KyDBu4lpYW/LJ6ONMnd6Vps29o36E/7dr3Y/DgScjl+gaUqakpTVq3ZdupC/Qe8R3Du3bg5pVLf/o6VCoVXRrVIiToIrNHD2P26GFcD7zA9EG9SU9OZly3Tuxdt4ozB/diK5awZ9lCxrRpzt1rl1kz5XvWTPme8Kt//vzF+PP4T0Ui9l6+ibdvVYPHjVmyxqILKVKp3uZdoVaTnpKst3lXaTRkpCQjeUduZmJSRD89JZku1d9wp7+uZTBW+/AapkY84oY85R9CB/s+KI148415+Y3dR2NyQ+/Vh0YWVBojNSdKY5GID4toGIKx+2tu+mFykYVhb6+xSISlAc83QPTjh8wdNYRtgdeLyK0M6FsZ6TlgNEKhuWpYbszrZmKBVqtl+YpfWbBoL4cOzKZRo2qGdcEoKwiaN57gdp1m0bypH/ceROPjU4qJ478pqmvWnPz8fCZMmMCJEydYu3YtrVu35nG24bGjI1/w/NEDNBoN8yaMpl23XoydNfe9EbNzRw8xY8RAToU/fS8JgbFIhLF3xtB9j42NpXp1X44enkfDhtWKeAYFpo3+9kjEk4fbqVhR34MHgEk5g+I0VUk9WVyOktRkqV7vGKVabZANDgyzxJmZmBQZJzVZSjPvN+e78iIeR2cXUpOlNCr3xhOalJRUNFKhumD4mgxFw1RGDClj770BmljdOJkGxZp8wxu1XFk2l24m0qKBBzfvJlOmpK6AO/JFMjWrOnDhehKNajoTHaf7vIdEzbXwdJrVduTWw0zKeFihzs4hKjGPmj62BIZm0KCaHTFJeWhk+ZR0siD4cTZNq4m5/VyOl6sQrTyPqGQlAWWtCHooo35FETEpSgRaDZ6O5lx/mkMTXxGhkbmUdrYAtEQX6supX9GamFQlAhOTAn05TXxt3uibCIhOVhBQzpqgBzLq+4iIlioQmEBJRwudfhUbQl/k4OWma/4YJVVQs7w1QfezqV/JhldpSrQIKOlkwfXHMppUs+V2RA5lSupoVqOS8qjpbUNgeCYNqoiJU5iAFkq6WnLtbgbNajlw61EW5cs5oUVAVJycWlXsuRCSTKMAR86EZPPTmruEHGrLlVtJhfffu1JJQEBkdAZ1arhz7nI0TVo2w8LQ2m1qpHuzuWEHzzNlK4Nyb+FFNBoNS5b9ytLlv3L04Bzq1atsdK18pmipJ8t/p+ZySKcvadqmPXdvBFOlRk2+HT66yHETgYD8vDzmTx7H9cALzFy+mvrNWhpdzyKfPyPiySPUKhU/fj+Kb/oPZuTUmcZ/p9Vqzhw+wOxRQzj76GWh08vQ+O/O/TWS5HLuXA6kap36JMW+AsClhCe3rgdTuU59Xty9g3NJXUrs09s32DZ7Cp2HjaZ1r75I42J1+p6edPEpXRyJ+MT4T0UiylXSb0D1Z7Bk0lg6VC3Hsklji8hXTvmeLtW9WTnl+yLy1VPH083fh9XvRBfe1bd3cqZd7/5A0VoGY7UPxSjG/4JnmXKkJiXw6sXzf3QeSqWKBw9e0vGr6ezbH8iN4LXvNyD+IKZP6caGzafZvfcCfXt/blBHKBSyatUq1q1bx8iRI+ncuTNBp0/yMCwUWVZWEd2SZcrSrE17Auo3xNZOQtDpk/y6dSO5OcZzfUtX8MbB2QWJo5NRnb8Knp6ezJ87hCHDFlPJtxfbtv3G7dtPiIz8NFFWb299g+DP4KfvR9G0gic/fT+qiHz++NG09CnN/PGj/5B87vejaOZdkrkF4zg6u9C1v47GuNuAoYXGhaOzC90G6Gg0hw0bZjDV6d+OXUdfUM/fhUFTriIRCzl8JorDZ6KwE5szZMYt6vo5Mnv1AyJj5UTGypm7MYI6VSUM++kBElszjl5M4mRwKhIbM0YsfU5tXzFzt0fzMiGPGGk+8/fHUdvbhpFro5CIzDgeks7Zu9nYWZvy3ZY4apW3Zv4RKVFSBa9SlSw4mkyt8tZ8tzUeO5EpJ25ncfaeDDuRKd9tjdfpH00mSqogJlnBgiNSnf6WOOysTTlxO5PfQrN0+ptiqVXBmvmHkohJVhAlVbDgcBK1Kljz3aZY7ESmnA7N5PjNTCQiU0ZteEUtbxHzf03U6Sfls+DXeGpVFDHql2gkIlPO38nkWHAaEpEZI1dFUtvHlrm7Y4lJyCMyLpe5m19Sp4odw+c/xt7WjNNXkzh6Ph6JrTlDZ4dRt7oDc9Y9wdREwKsEOWN+uqm7/1OvIRELOXTqOQdPPsPezpL+485Sv6YHC5a/vwbrY6BUKrl/P5J2Hadz5OhVbl1fozMgPhJDJ01nz/rVnD9xlPbdvjWoI7S0ZNaKtUxduIyZo4cxvl9Pgs6c4kFYKLJ3orWly5WneZv2+Netj9hOwrnjRzi0Ywt5ufqRDtClYZYqWx43z5LY2v25xqXS2FdUCqjFzqULSIh+SUL0S3YtW0jZqtXZMPV7rMUSbv5+ipu/n8Kzgg9lKlfl9O5t9K/nx+97d3Ln0kU2zpr2p85djI/Df8qI+CtoBtOTkzmybRMAR7dvJj05uVB+Yocul/DEji2kpxTIU5I5uXMrACd3biWjQJ6RYlh/9PylHLkfUUjL+hpjFyzj2P0XRWhci1GM/wUrkYgvu/fmzIG9n/zcT57E0KvPQqoHDEXs2Imvusygkk9prl5eRZky7h81dlpaNidP3SA5ORMPd11RYUzM+0P7rVq14sGDB/j5+bF30y/M+G4o7etU4+Xzp3q69o5OHA0JZ8rC5Vz6/TdaV6vAytnTSSrwWr2NqGdPqfSRnU+T4uO4cu4ML54+Rm0kOhcYGMikSZO4ey+CmgE+ZGbK6DdgPl27zaB5yzF/+twfgr9iDU2WSjmweT0ABzavJzVZ99xSk6Uc3LoBgINbN5BWIE97j/zAFp38wJYNheNMW/ozV17EM2P56iLnnbF8NUlJSXp9TYpRjPfB2sqMJnXdePzi06fyPX/0kO/796JdneoEuNvRudsc/KqX53Lg8jc9V/4k0lNTCDp9ksz0NJxc3ECrJSE25r2fadyqDcdv3KOMd0V2rV/D9BGDaFe7KjGRL/R0nV3dOHHrPhPnLuLc8SN8UbU8P/80A6mBtPKo50+pVN3/o9aX1MQEEmOiSEmIQ2Mk6hEfGcFvW34hKy2NclWqk5+Xx/HNv3B4/Wqunjr2p89djD+P/1Q6062UnA9O5zGUbrNk0liObNuk15th8cQxnNixhXa9+zN6/tJC+YrJ4zi5cyttv+3HyHlLCuVrpk0wqG+sqNbY3IvTmYrTmYylM1mYmvLrxrW8ehHBuLcM00+RzjR0xEpUKg1DB7ehcqVSWNt8YH75e9KZTpy8Qefuc6lTuyJtW9fGq0wJJkzewO2QtTg7v+XNMtKc6XU606GdW1k55wc6dO9Fi3adqFpAO/guol48Z++GtZw6sJc+o8bRe+QYzMzM0Gi17Fi9Aml8HOPnLTb42dd4NzwffPEcx/bs4O7NEHJkMipWqUZcTDTxMVG6dKp585gyZQoqlYqffvqJjRs3MmzYMCR2qdjaWJOQmMrCRbuJfnkQsVj0SdKZtKpA4wofkM40bNhQDmxeT9cBQ5i+9E2NwpyxIzm4dQOd+w1mypKVhfL540cblC+cMJoDWzbQtf9gpr01jrHvSSVbIwWr/5F0pqAbibRsaDid6XywLp0pJv5NOtPVsDSa13EymM50sSCd6dVb6UzXHmXTrLrhdKbAgnSjV2+lMwU/zaGpkXSmwIJ0pldvpTMFP5HTtIrhdKbA+7rxY5LfpDMFP5HTtKrhdKbA+9nU97EhNv1NOlPwYxlNjaQzXQzTpTPFK9+kM10Nz6B5bcPpTOev69KZEjLN2XzgGQqlmtaNSxbe/3fTmc5eiqZJy6YIhQbW0T+ZzjRlaH/MLSzo2m8Q5X0qU01y3aD+n0lnOnfsMFOH9KVKjVo0ad0WZzc3Vv80i31B15E4OBbqG913FKxnezf9wpoFP9KpZ29atv8KX/8Ag/oRz56wd/1aTh/az4CxE+k5bBRmZmaoNRo2L1uILCvPw0prAAAgAElEQVSL0bPm6o1vaO6vce3875zat5vwm9eRZ2dRzrcaCdEvSU1KRKvR0OybXvSbNZ9noTe5de40IadPUKNpC8pVqow0NhYrGxEnt25izq6DlKxQoTid6R/A/5dGBPw9NRFvyw2h2IgoNiL+jBExc1AfajVtTtseb3jv/24jYuPm35j14y6CLy2ndOkCj5kx9h5jeI8RkZ+vpESZb7kdvBIvL1cwsWDi5A0kJKSxc/vkN7r/w4gAeHQ3jPPHj/Dr9s3MXbeZhi2+KKKbIk1i/eJ5lCxbDom9I4e2b0Yuy2be+m2UqejDoW2buB96i1k/r3/v5ZiamLBz7SpENrZ81bsfB7dtYt7471iwcQdfdOpc6IXTaDQc27ODo1t+YefOnfTr148bN27Qvn17HBwcyM+LJT9fycNHL+nf70smTugJfJqaiL/KiPi7aiJe4/+iEXEzNIZ+Ey9zbmdreo4J4vNGumaDN+4k8POMmrQaEMTiiX4cOK3zJn/V1JHJK57w25ra9JkeTot6zpiplJwOSWPrNB/aTbjH/KHlOBiUjMRcS1M/O6Zte8XxWRUZsPwFzf3ssBZoOH47k03DStFx0Uvmdnfj8I1MnG1NaegjYvq+RI5O8GLg+liaV7FBJBRwPDSbTUM86bg4irnd3Dh8MxM7kRnNqtjo9CeWYeC6GJpXtcXUzISz4VlsGlGKjvMjmdvTg6M3M9BooFMdCdP3xHN0SlkGronhy5p25Cu1XLyXxaZRXnT4KYJ535Yg8KGMtGwVX9V3YNqOWI79UIGBK1/SsZEj2bkaLoRlsGVCBdpPe8S8gaW5+jwXaZqCr5u7MuXn55xaVYO+Mx/QsaUn8lw1569L2T6/Jl8OucbC76ty9kYGx87F0PVLL367FMu57a3oOTaINp97o9FoORMUxf51bWja5VfWLu9Dk0b6zER/xojYvWEtG5Yu4EDgdVw9dM/aW2iEwOFPGBG5OTm0rFyGQ8F3cPUogYlAwILJ45BnZ/Pjmo2F+v/LiAB4EBbKuWOH+XX7ZhZv2UXdxkUpVKUJ8WxYupBS5cojlkj4ddsmFHl5zNuwjVLlKrB3w1oinz4u4ggwZkTsXL0CB2dn2nzTkwOb1rFs+iQmrFrPrqULGDxrLpePH0ar1WJlY0vgkYOM+XkjS4f2JS9HTony3sgy0vGpUZO7165gbWOLo5sbJStUpFHbjszu263YiPjE+D9vRCQlJhqsQVAb0DdK8Wpkk2vMWCg2Iv4ZIyJfqUar0aDMz8NSZIM8KwNrWzvy8/NAC+ZCITnZWYjEduTJZVhYWqHVat/Sz8RGbIcyX0e5qNPPRCSWoMqVY2Gp86Qp8vOwEtkgz8zAzl6CMj+vQN+SnKxMRHYSzLUqLISWenP8UCMClYoOVcqxN+QuEsc33qW/04jYsvkIs3/axfnTC6hQ4a2uyn+hEQG6ouoBfT+nY4f6YGLBvv2BHD56hQN7Z7zR/QNGxGtcu3CWqcMG8O3w0XQbOBRrkQiASQO/RaFQYGfvwP3QW6hVKmo1asyzB/fZdPIcT+/fZehXbZi29GdatO9k9HJyZTIalXHF0dWNYZN/oFWnLuxev5otKxaz7dQFKvvVeHOJGg0jO7Tkzp07ODo6otFomDx5MlZWVliYvUQoNEcksqJly5qYFTzLf6sR8TReiPM7NQhxOYY5W43RLBvDh1Ih/5eNCFW+HGlqLq5O1qSl52Nro3vuGakZOEgs31C25ug2iUJykKYpcHUUkpapwNbaFE12Dlk5KhzEFkjT8nG2t0Ceq0aTmYPIyozkTCUuEotCClZNdg7Z+eDwFkWqPF8DKrWO4jVLjYudGWkyFbaWJqDVGNTXAjZWZnr6AjMTsnI1BfpKnMVm5BToF6F4lakQi0wBAdm5GhxszZBmKnAWmyNXakBgUkDZ+mb+Yok5AhMTHaWt2BxphgJnO3NyhRYITEwQWZkiTVfg6iAkLUuBxFEXwczOUeFgJyy8n2m5Qiq3OsKLi11QKNW6+5+Rj6O7C1otZMsUONhbkSSV41LGz3BKzgcaEXN+iWbj8kVsO3mekl5lCuV/pREBMPSrNvQcNopGLVthIhBwbO9OrgeeZ8GG7YU6f8SIeI3A0yeZOXoYvUeMpvvAYVhaWQEwpvc3mJiaYmMr5t6tG5iYmFC9Tj2iI56z7vApHoTe4rvuX/HDirU0LehobWj8JGkSrSqXwcHJmeHTZ9O0TQd2rVnBnvWrmb5xO1XrNiQ3R/f9sRBaMqb95yRFR2FlY4uJqQmt+w4GATg7OaHIz8PBxY2K/gGYmplhaS2iY1m3YiPiE+OvIZb/RDARCIxuWg15uRZPHMPhbZv4qu9AJixaoTfWuxAa4/D/wDw/Y/of8mWGD9uIG7sv+R+4+c8x0jhGrjAsN7qhV+nLPzRSYEzfmPzu+ZPEPXlA5cafc3bdYnrMX8uxGUPxadAMlVJBxM2rdJgwh9XfdeHzYRN4GhyEWqkoor915lC86zQC4PmNq3SYOIdVo7rQdtQk7l88A0DVpl9was0i+i5cx77lU/GsqCuOexJyha5TfmLx8K/pO2cJTp76LDh2Briz34fYJ49xcvfAWiIp8swM/dDlGXmmD9E3ZgB8rfQ3TXl5Cqb+sJWzpxdToWKZogeN9Rcw1jNAY4SPX5kOgJVQQH5Ohu5/gRnxr2LwcBGBIvUtZcObw0q2+sZFpY6tMTPfwYalC0iVJjJp3hJuX7tM8MXz/Hb3GdYiEVqtlm2rlrL6p5l07jcIhVpNmcpVWLR9Hz9+N5SkhHi6DBxqcHMrkUio4FuVbgOGsHn5YhZPHY+NrZg2XXsidnTSC9XP37qfnyaM5tnD+2w5/jtuJTwB9DrOfko8lDc0ug4lJSXqRQR++n4UBzav5+t+g5i8+E0akrH1w1jflL+qF8z9TMNyoZnh5lPe1vo1MJg8MKj7+r3UgzFj2JjRYQQLfrnH4G4VadHrNHPHB3DkbDQAHZs4021cMPuW1afXhOu0qKeL/J2/GsfySb60Hn6TOcO9OR6UhLlGxed1HPh2zhN2zahEv7lPaBZgj7laxZnbGSwd4kW7WU+Z0cuTkzfSkViZ0rCKLf3WRbFjfHkGboymaXUxlmYCTt/OYMmAUnRYEskPPUpw6nwadtZmOv1fYtj+fVkGboqhaTUx5qYCzoZl6vQXFejfTMHMVMAXARL6/Vygvy6GZjUkaLUQeDeTpUO86LAwghm9PLl4JZ2cfA3t6jvQd3UkO6d5M3DNS1rXd9RFKELTWfZdedrPecysAV5cu51OepaKdo2d6bP0KbvmVmXAkqe0bVaCvHw1F0KSWTG5Gm1G32bOqEpcPhNNpkxJh+ae9JgYyv4VDekz9TY+3g7Yi4UMn3Wd1bPq0aL3GeaOD2DZ9qdoNFo6tSrH1IXBHFz/JYOGrGL9giZ6z85UUsnwQxX10BPl5OTw84/uXLmwAJ/yD4G3evxoDfRcATA3TCqRkan/jqW+VeCsMTMjISOD2AKCiecvXyKUOBCT+cbANeagMrQO+DRszOQV69ixYjHxiYkMnT6b25cCuR18lQM37yO00jnedixfzNYl8+g8aBgypRKvan7M3riDhWNHkJAQT/ve/TEzML7ITkKpcuXpNnQUGxfNY/GkcdjY2VG7xRfYO7uycMRA/Bs1ASDsShDjlq5mevdOmFuY49eoCdnJidT9og2XD+5jxMyfWDJxDHlput+LW5+AprsY+vhPGRHwx42FtGQphwsKqA9v28SACVPfS99YjP8+nEuXw8JKhINHKSrU+QyhtYjytRviVqESFGxWhCIbKtT5DAePUpSqWgO02iL6FWo3wrPSG9YhS5EN3nU/w8Hdk3IBdQBwKFESn3qfIRSJ8Krqj0eFikX0feo1xsbecAfSD0FWehpLx4+icbuOHz3WH8WefYHU8PemWjXDXum/EpaW5uTlvzFOExIzcHf7uJ4YdT5rSjmfyrSvXY2u/QZhayfBydWNYV+3ZfKi5VSq5ke/0eOpVN2/SFO66nXqMW7uIqYN7E2zdh1xdfcwOH6nHr05uns7h6/eRmSr807mGjG8V/w4nfhX0ew+exn7t6JI/zQMpQ/NGTuSfZt/KVLjkJr8poD60NaNDJ44rXgN/Qj4V3ZEbGPB541KUKakLY1ruwFQ2sOSlvXdsLU2o0U9VwJ8dd8BjSIfsciMlnWd8CphTaMaDqhz8vBys6RFTXtsrE1pFmCPv7cN5OaTr9Ria2VCc387vFyFNPS1xUwAXq5CmvvZYWNlQtPqYmqUE4FGQ55CjK2VKc38xHi5WNCgsi1mJuDlYkEzPzE2lqY0rSbGv5w1AnTOm3f1BQLD+qDbQL49n5o+WjQa8HKzpHmABBsrU5r62+Fb1qbQYWZrbUqLmvZ4uVkiVwlQqjWU8bCiRR0HbK1NaVbLAd/ytq+Xc8Q2ZrSo74xXCWtk+aao1VrKeNrweQN3bK3NqV3NkU0HI2nfohRVKzoUuf+f1RGg1ULZUmK+aFwaW5E5jesa/t5/CHbs2EGDepXwqej50WP9L1gIhYWRcIA0aRJuBpqwfQhqNm6KV0Uf+jSpQ7tefRA7OGArkTC+x1eM/mkx5X2r0GfcRHz8a1D5rfoJ//oNGTl7Hj+OGETjth1wNMB2JxAI+PKbXpzev5tdl25gVRAtjoiJxlZij3+jJlSo7g/onKgHf/kZobU1P2zZTWJ0FACuJUtRsZof1ja21GrcjEpvzSHw+JGPuvZifDj+U+xM88ePpo1vWRZPfMNk8q6x8Jr5w8HZha/6DgTgq74Di3/8/j+Apa0YsbMrj6+ep2GPAVzds5lKDVsgS5GSlZxEpYYtuLpnMw17DODx1fPYOjnr6Vdu1JzM5EQykxOp1LA5V/ZsplGPATwODsLO2Q07ZzceXb5A454DubR7ExXrfUaGNIkMaRJVGrfg4q5NNOs1kNinjz/6eg79sppyvlX5duzEj785fxB79l2k2zdNP8m5rCwtyMrKJfKllKHfbeTMuXA83D++sZ6TiytDJ0xl9pjhePtW5fC1UGrUa8DaebMLdeo2aV6k+BCgfosvqN2kOcd2bX93yEL0HDqS8pV8GfJ1G1RGOM9Bl84U9fw5Ds4umBtJM/sn8OO4kTQq58GcsSMLZanJUvZt/gUoyrbk6OxC1wG6brpf9xtUvIZ+JOr6O7N8ywPG9q/CyQuv8HAV4eEq4syVRMb09mbFjme0aexOvDSXeGkuX37mwqrdL/muZxl+uyLFw9kSd0dzToekMbJzCVYfjKN1XQcSUhUkpilpXUvCmuNJjGjvyulbGbg7WOAiMef07QxGtHNlzYkkWteUkJCmQJqppFWAHWtOJTGijStnQjNxdzDHVWLOmdBMRrRxZc2pJFoF2JGQpiQpw7C+m72+fnyakoQ0hd583BwscHe04PSNNEZ2cmf1kQRa13FAmp5PQqqC1nUdWH0wjpGdS3A6JA1XRws8nIX8djWFUd1K8fO+GL5s6ERSSj7x0jy+/MyNlbteMLpXOX67nIibsxUerlacDIpjTB8fVmx/wrOobMp7iWnZ0IO2zUu+c/9tKOFmw/FzLxk3yI9lG8P5/LOPp0DevXs33bo0+gvemP8NC6ElOdnZxEZG8PPkcYRdCcLB1e2jx3Vyc6fHyLEsnTSOClWqsS0wBJ/q/mxbOr9Qp07TFti+0wi1Yas2+NVrwMk9O4yO3X3YKNxLeTG+V+dCFiaJkzNHNq6lTstWpCYmkJqYQO3mn/Pk9k3KVK7C3auXcXBzx8HNnVsXztLu237sW7eKhl+0ITkhnuSEeBp+0eajr7sYH47/lBHxmibwjxoLExat4NTDSL1UpmL830R6fCyxj+8RcfMq+Tlynt+4TFp8DK8e3eNl2A3S4mN4fuMy+TlyIm5eJeHpIz391LgYXt65wcs7N0iLf8WzkMvky+VEhd/i1aN7vHp0j6c3rpAvl/Pk+mXS4mOJCA0hIjSE1LhXPLl+ibwcOQkvIz76epJeRRPwWZO/hJbzj6Lvt5+zfOVBlErjG+S/Cu3b1GDOgiPUbz4LRwdbOrWvTdPGf00vmJ5DR5Lw6hXnjh/hzvWrRD59TIXKVf7n58bNW8zh7ZsIPHXcqE74zRCsrEUG0w1fw8TEhC0nzmLv4MjATq3/1DX8HdhfEFnYt/mXIsbC6x4MXQcMKRKlmL70Z35/HFUklakYfw4J0lzOXokjW67k3LU4Qu+nEHo/heCwFLJzVJwLTuRlnJzLt5O5fDuZqLgczoWkkC1XceFGCqGPM7kbIediaDqyHDXnb6cTlZjH1buZ3ImQE5WUz4WwTGS5GgILZI+icwm8m4UsV8OF8EyikvK5+jCb8MgcoqQKLoZnIctTE3gvi7AXOTyIySXwnk52MTyLKKmCa4+yCY2QG9S/+zJHT//6o2yuPszWm8+9F3LCnssIDMtElqvmQmgGUYl5hD7N5urdTKIS8zh/W3dtF0PTuR8h487jbC7eSiM7R835G2m8jM8l/EkmV0JTiYrL4Xxwsu7+hCRz72k6tx+kcSE4kewcJWevJfD0ZRYiK1Mu30ri5avsovf/npRbd5M4d+UV2XIlv1+KJjpO9tHPuW/fvixdedQo1fNfibpffMn2xfOY1KU9dk7ONGzTjiq16/4lY38zZCQxEc8IPneGeyHBRD9/Rtk/0KtrzLwl/LphLdfOnTF4XKvV8jD0FpbWokIjQqPREHrpIokx0dwPCeZ+SDDSuFh8AmpiZm7O/lVLibgXTsS9cMKvBJEry+ZG4Hnio18SFnyFsOArxEe//Euuuxgfhv9UYXXnfoM5uHWDwRoHY4wgH4IPrWX4q8Ypron4a2oiFPl5qFUqLKyskaenYuPgRE5mOhbWNggEkJ8jx1osQZaWgsjeEUWuLt/0bf3crAwsRTa6a5DLsbaTkJ2Wgr2TUxF9WVoKto7OKLLTsRTp0lrycuSI7CRkpSbj5OJicPNvrCbCVqhftPzDt11o1bUHzTt10TsmNFaIbQD2lsZqIvRzSOPjU6lUbRD7dv9A69Z1ih780JoIteHmRG/nnj96HEtySjaNPzPciR4LI2lA/6Pg+tbVS0wZ2p9ZK9YyaVAf2nf/lp5DR+JaomiKQZ6BaMLju2GM+aYjvxw9XcTweF24vnnlEnavX8Mvvx7H27eq0XQmG6GQKcP6I3FwZNLcN/SxxmoiBALB315Y/c2AIezfvJ5uA4bq9WEwVBMBhrvM/lU1ER+6VhoruDb2fTBYE6H8wJoIZapheX6SQbEmz3AhdkZaJrY25iSl5OLiaFlYQG0pyEWalo+royWpGfmIReaF+g52FiSl5uPioCugVmXKdAXRGUpc7C1Iy1LqCq5lechyNdjbmiHNUOJsZ4Y8TwNqLSJLE5IzVbhIzAsLrrVqDbI8DfY2b+nna0CLAX1TQGtEX4vI0rSIvthON/9355OjFoBAoBv/7fnbCREIQJajxl5sjjRdgbPEnNwCH6fIypTkdCUuDhakZiqxdxSDALLlqiL3J08tBAGIrMyQpubj6mRJ097nGfGtL52+8CJbrsRBIiy8/7kqcwQCASJrc6Qpubg6W5OWnoO9nX7dgtGaCMkoPdGrV6+oVMmb4wen0axp9aIHTT6sJuJmyvtrIgBePnlETlYWvkaMhw+piYA3+5Fbly6yZMIYxs5fwtxRQ2jdrSddh4zE6Q9EOh7evsnk3l1Zd+x3vLx99I5vW76IY7u2sWzPIcpUrIQ0OxtTMzOy0tOwtilIE5XLsLQVs3BYf0qULc/XBZ24La2tMc2R4+DiSmZaKiJbHfV4jiybNsUUr58cprNmzfqn5/CHMHv27Fk7L1ylQ58BtOj4td7x17l1HwNjHt8P9QR/6DgfYqQYM/kMsU39Gbkx1ial2rD8QUgwGo2Gm7+fxKNMeW6ePk5eTg4pCfE8uxWCc8nSBB89gLWdhIiw2yRFRWJqZsadsydxLVOeO7+fID8vl4zEeCJCQ3AqWZobx3/FWmxH1P1wkqJeYGpmxt3zp3DxKsfdcycL9SPv3MDRszS3T+r0w8+e4Nn1IAQCAYFbV1PGrza/r1uMLC2V2CcPCD99mJK+fpxYNhtrOwlhZ44SFX6zqP7aRWSnSIl78oA7p49Qsoofx5fOwsbenlsnDxEZfguBwIRzm1dTxr82v29YSUZSPK+ePODmqUOUruLHoUWzcC5RkphHD0iKisTEzIzQ30/iVqY89y6dJTc7i9SEeB7duI5rKS+CDu2jjHdFzMyLGhJ2Do6smzFFx59duSrCt4wBY6w2hmCIyQnAxbyo5+bRo2gatxjP6FGd6devtf77KjB2TsPvhvGC6zc5vM7OYrxKOxsf29TasNykrP6wGg2PY+J59ug+u9evpWWHThzcvpleQ0cxYNxEbMT6fS4MFfA6u7nj5lGCueNG0rFXX8wtdM/l9Qa2Rt36OLm48X3fHuTn5VGtTj2Djeoeh4Xyy+L5rNxxAAvhm82Do4Xh7/vs2bOZNWvWbIMH/wLMnj171v6gELoPGkbrr/QNU0trw/dabeAeGVs/jDpEjMzpQ9dKY+Mb+z44mmfpCzVGmhq+9V4WlRsxhtWGWZi0KsPjXLgag5uzFbuORuBoL+R6mJQXMdkkJcuY98tjGtZw4oeVD0hIziXscTq7T8ZQ29eO8Use42Bnzq5TsYTcSwMELN71ivpV7Zi1OYrEVAX3IrLYG5hKTW8RkzbG4GBrxt7AFEKfy9FqYfGhBOpXsmH27jgS0pU8jJKz91IqAeWtmbwtFgcbM/ZeSiU0Qqe/5Egi9XxEzNkbR2K6kgfROQb1Q57JECAoop+QpiQ8Mod9QUXn8+ulVK49yEJgAov3xVHf15ZZ22NIyVQS9lTG3vNSavrYMnHNCxzEZhwOknLlTiYCE1i4/SUNqtsz65cIUrJUhD7MYM+pWGpVkfD9ogc42llw4Ewcl24lIxDA/PUPaRjgwsmgWLYejODa7SQu30ykXg0Xxsy5gYNEyI4jEVy5GY+JiYCfVt3is9ol+GnlTVo1Ka337Ews9RkeAbAs6mi5f/8+TZo0YdL37enZ3UAU2ZgjxtRwDZohFrQcpZLEmGge3QohLjICRzd3noTdpkS58lw+cZS8HDnJ8XHcu34NDy8vAo8cRGQr5v7N67x6EYGpmTlBJ45QqlwFAo8dJjdHjjQ+jvDgq7iVLk148FXSU6Qc3LiO5p06c2TrBnqMHEPPkWOxtrHRm0/QyWNYWAi5d+M6r148x8zMjAe3bxLQ4DPmjh6Gd1U/UpISuXPtCp5eZTm5dyeftWqLXJbNkknjyExLI/LZY9xKlmb7wh9JS0ok4v5dLh7ej1qj4cj61XQYOJTLxw7x6FYIAhMBxzavxzegNr/MnUlKYgJP74Vx5te9PL9/729dQ4uhj/9UYbXQzIzSnoZzFo1txF0tDXuuHP49acpGYYjG0pjXU2Fk82/I0/o+ubGIQ2auYX1zB3ewccLKyQO51hwr11IInT1R5asxz1WToTLDzMEdpZUDAgdPBGjJE9pjYu9OmsIUU0dPVLYFng17FSl5JmDnSo6FPSpbHUuJ3FyCVuxGSp4JWnsPVGKdviBXTarCFCTu5AgdcKxaD0ctWLl6UL6FArmZmHItvkbs5olAIMC6ZEXkZmLKt/gaqzLVKWvjhEAAYtcS+HyuQCG0o3Krzth76ArTJGUrobGyw7dVZ1x8/BFKdF5aO9cS+LVRYmpjj/+XX+HgrqNBda3gi4XYgZrtuuJStiJmVjrDVuTgjMTdE4GFJXauJZB46LzhSo0ArZkQiZsnAnMLPXrMao2aMG7pKvauWoa12I5OA4cWHjMx4Am2Exr2chmleNUW9a6tWL2NwYP6MO2HJYb1jUH7ysgB/S6ogGFWm/9BB/sa4ydtYs/+IFxcHHB2kiCR2CBNTufVKylxcSlIJPbIZDIsLS1xsbVCKctixqghPJEb3sYa85w37diZQ9u3EHzpIg0+16UjvfamZ6Sm4Fu7LjsvBjOkwxdUqdeQ6nXq6Y1x62YIFkJLImOiKVWufKH8vuqfW3zS8/LAxlbPmwnG6VkNGVrG2JM+lGra2LptzCgw5lU1xqx3X6XvNa1qZyTvXXDWsFxrhGVMk29QbKI1vIa2aekNwNjBtQDw8dZ1fc/JykKNEHcPRwZ2q1zYhM6/sgNuJRzp39WbhjWdKVnSEbVSQWkPaxDZ4lHemQHdLfAqIUKjVFAjPocSlSX072ZOwxoOlKqcCxoVnq6WaO1FuFd2oF93IWU8rECtoXpCLh6VxfTtYkpDP3tKVc5Fq9FS0kWIVmKNe0V7+nUxx6tA3y8hD/fytvTpBA2qSShZQQImAkq6WhbRL+NpDQIBAfG5uJcX07czNPCzx7NiPgKgpJslWmtL3MpK6NfFhLIF1xsQl4O7l4R+nb1oWMMBL28tWq2WUu7WYG6Nu6cTA7qaUtZLl4cfUE2Gu7tDwf1xoXQ5NVotlC4hQmtqgZuHhNlja/IqScmKzXfxreiMu7sjA3tU5bM6JfAq6w5aKO0pRoMpbm529O3XBlN7A4XJlkbeGfmeIv8uWfAL3w39jIlj24FWqW89G+sr8YHrk5ObO2qV7j1zdHXDrVRpzISWuJYujXNBYbUGLSYWQsSu7lg5OOJQUmcc7V6zgqunjnFk2ybMLSyQODmTmZZKclwsi8aPwtrGhrycXMzMzTGxtCRPoaBWu05IZYZTvcwl9gjEdtgU9MJALEbk4op/oyYc2Lye6PhYqtZtgI0inxSVCgsnZ1Ly8/Ft2gLvBp+xdtJYWg8YjtLSljodvsG5gNXQqXwl4h6GYSuxx62UF+4FVLnOJTyxs7RE4uREu5598Cilk1es5sdve3YanGMx/j78p2oiivHvQ3piHGfWL8OrWgD75kzE2lbMvQuneXTpd6zEdhydP5mSVWpwYdMK0hNiSI+P4dLWlXj6+nNy4dHxoQ4AACAASURBVBQsbcVEXL/I08u/Y2kr5rfFUynh68+VrSvJksaTkRBD8PZVePj6cXbpNCxt7Ii6eZnnV37H0saOc0un4V7Zj5AdK8lK0umH7FiFe2U/zhXov7wRZFA/MzGWjPhXXNu2Cg9ff84smYqVrR1PLp3hyaUzWNqIObVoKp5V/Lm8fS1pcTGkxcVwcfMKSlapwdH5k7G0seXexTPcu3gGK7Edv/44idLVahC4ezMpsTGkxMZwat1yylYPYPesCVjZ2HL77Clunz2FtdiOLdO/p7xfTWKePjF4f2t81pQGrdsS///YO++AKK/s/X/oMMMUeu8WEOmCdOwliZtueo8mm6qJJrF3Y+wtsUSNvfeuiNJRQLFhQQWk995hht8fgyAysxt/u8lu9svzH6+Pd868c8+973vPOc/JTP9Df8fc3AKOHjvHm28+/4d+zr+K/Ydi2bnlO37bOImJE97glZcHMHP6h5w9vZTK8lM8ePAAXV1dRo4ciYaGBtu3b0dDxUb8z+ATEkZKfEyX64e3b+YZtx58/8GbNDU00KjkgRzglQ/H8vaX4xk7agiXIlX0MejG/3ms3HKLAC9TxkyOQyrW4eCZhxw88xCpWJtPpifh72nErNU3Sc+pJTO3ljlr7+DvYcins1KQirQ4fC6P03FFSMVa/H3ODfq7GzBn3T0ycurIKqhn3oZ0+rtJ+GzeLQxEmhy+UMjZSyUYiDT57Mfb9O8rYe6GdNJz68kuaGDeb5n0dxXz+U93FeNHFXPqYhlSkSafL0qjv6uEub9lkpHXQGZ+V/6R6GIORxZ1GT8rr5703K72nIkr4vD5gi72Z+XXkp5Ty5w1t/H3MOKTmVeQirU4HZPHofBsDMTajJ2WSICnMbNW3yAzp4b0rCpmrkhR3M9JsRhIdKmta8bKXEhJWT0fTTxPoI8505de4sHDCh48rGD64ngC+1ny4TdnkYiVp37+HmTnlHL8dApvjg78N86OrlBTU2Pr4h/Jf5hJ/sNMti1ZgIuPL+tnTkYolhJ/6jjxp44jFEtZ+d04enp6sX3pAgqyMsl/mMGFg3uZsHIdjn36Muz1dxAbGtHb05uvFq0k6NnnWXkmGi1tbXwGDkZDQ5OvFq9UGml9BHtnF3Yu+4mCh5kUPMxk17KF9Pb2Zc2Uibj4+BGxb3e7PeumfEcvb1+Wjfs7019/kY0zJ1NTUY6JtR2bpn6LQCzptD+WFRYw6sNPmPD8MC6eOdkxvoc3C8Z9hkhiQOTxw0QeP4xI8q+LcnTj6fGXikR0oxv/F6GhqUlzk4rT0H8Rhw+fYdr0xeTlFfLWmy/g5GT/h3zOP0N+fjmJl+/j3MuKHk7maGh03bRkMhmGBiI++mQ5H344ivffG4mVVec0g42/7SE4OJjt27f/yzYFDhnOpA/e5NOps9sbwpUWFSISS1BTU+Ol9z4iOyMd+15KOty24cV3P8TWqQdTxrzLvoSriCTSf9mubnSjG08HDXU1mlvkaGn9/x0o/CPsP3SJmfMPUlBYwftvhWBj/Z+Rc26oq+VaXAyVpcWIDZXbIJfJ0NbVY82UiRiZWzL41TdoaVbsLaZW1mhoaBB7/AgewaF8s3zNv2xTX/9A4mcex3dQR9O8iuIitLR1QE0Nr9BB3E1JxtS2awoZKF6Yhr3xDmlXL3N4/c/8fd5TRsm78YfjL1VYfbNSeZgYutOZ6lSkJ6ni/7vSmXIysxAZmfDgykV6+4fy8OZVjKxsqG2UUZ6XjbWrJ/cTY7D37E9xbg7QisTMiofXEnH0DSbv1jX0zRRh0Ir8bCxdPMhIjsXWw4/SvFwAxGaW5FxPws4niPw71xCZK0LLlfnZmDt7kHU5Dit3X6qL8qAVRGaW5F5PwtYniII719rTmZ7k1xXntaczZV9LxL5fMEV3r7WnM7XbkxRLr37+VBbmAYp0psyrl+jhF0LxvRvt6UyludnY9vUk7VIMrr4BlBUo7De0sOL+5Us4B4RSfO8mxm3pTMU5WTi6e3EzLorAQYOUnpjraWmx4odvsO3RiyGvvI5IKiXzzm2uREZg06Mnji59MLO2RV1dXWU6k7eh8tO12JgDvPTyJ+zcsZKBAwM7Pl/tKWUOVaQztTSlcfhILDGx15HLW5HL5Qj0dPn600FYWxvR0iLjTPhVfv3tHNFxt/Dz6UHa/Xzq65vIvb+GU2evYmJmjp9vx0N6a2sryZfvsXHLBfbuO0+AvyujngtiwAAvnJ3tiLjQyPjx47l+/XonW1KrlM9fVSk8jwQG/j5qKK+O+YxBf3sRbQ0NFn4/nkuR5xn+0qu8/snniKUGKlN7Hl+T5o37DLGBAV/OmKeys7i7VPsPL6yOKVTSwbkN/4vpTMrutZtExeLfrCKdqTFP+fWmEhXXi5VeVtXJuq6qiqhLBQwNtiTxWnF7OtP99GL83I04F19ISD8TsvJq29OZYi6XMiTAhKSb5e3pTA/z6vDtKyXiUgnBXoZkFXSkM8WmVDC4vyFJqVXt6UwZ+fX49hETkVhGsKeU7MKG9nSm2GuVDPY1IPlWVXs6U2Z+A/1cREQklxPsoeA/Smd6nP8onSkjr/P4WcVN7elMj9vzKJ0pM7ez/bmlHelMMZdLGBJgStKN8vZ0poycmrb7U0BIP1NySjvSmaITC9vvZw9HU8bNisHaXJ8fPvcm6VoxBhIdDpzOwNFWyqAgGzKyKxk+wJ4r97Xx8fz96Uznz13kjQ9Ws2fLl4QEOXccfqgqoNYxU3o5rT5I6fWqujoijh7iWuJF5K1y5DIZci1tnn37fVpampHJWsi+d48D61aTm5GOpYMjZYUFtLa2MnH1eqrKyigrLGDIq29QlKsQGTCxtOL0zq1kpd0h9vhhenv74hkchomVFUHP/I1z+3ZxattvLD7a2R9U+XZaymUcXfu27e+KdKPUSwl4hw7kbkoya6f9wN8+/AQrR0fs3TyZ/9HbFOVk4x4UQthLr2Lby5krcQm4BoaQfj2lPZ2pOCcL7/5+XI2JxLV/AEu+/AQDUzM+nDab3BvX8QkJ49aVpPZ0prysDP7+7JDuwuo/Gd2RiG78S7h4ZDeOnr4cWTaXz9bs5MTqn3AOCKNJ1sq9i1GMnr2S06vmMfKrqdyIPIOsqYk+g57l3M/zeWvZNs6vX0zPoMG0NDWSnhTD81OXcf6XBQz+fBLpyQnUV5bRe8AzRK5dwKuLNhO7cSk9QobTVF/Hw+QYRk5eSvS6BYR+OonslATqKhT86HULeGnhZuI2LcUpaCgtjQ1d+BkJEbQ0NeA84BkurFnAa0u2ELVhKY6+Co3v9MQYXpi+jHO//IjuuOlcD1fIfvYd/CynV83jg5U7iNuzGXMnxUPu3YvRvDV3JceWzUPvh1kknVA0vvEZPoqDS+bw5fpdRO7ZjpmdYtG7ERfJ3xf/wu6fZuPm6YnURHnxXs6D+5zds4Mti+ZjYWdPWWEBYaNe4Gp8DA9u3cS9fyDT1m7q8v/qa2uprCijoEnU3qtAJpMhk8nIycnhlVf/zo7tKxgy5PdpmtfW1pKdnU1OTg7Z2dnk5eVRWVlJdVU+1TW1VFfX0NDQSFBgP4RCAat/3oCVpTEvvRiCtrYW6upqZGQU4OH/LXq62hQVV+HlYc/YD4eyfeMX6OvrUllZh5HNR7j5TeTW7RyGD/Xh9PE57Taoqanh268Xvv4+LF3yBQcPRhFx/jKz527Gv78rfv1HYmj4rzf6e4TRn3zBpkXz6eXmjmOPXgx/+TUuXYhgzHdTnkpw4ZMfpvFGqB8jX30DSwtLWlpa0NLWxtBYRcFmN/7PIOl6CRMWJBK+ZQRTllxmWIjiUOJsTDZbFwbw3aKrLPrOk72nstDRgufCLPhh6Q1Orgti+qpbDAkwRaANRyIL2TLXk++X3WbheBf2nc3HxECTEG9DJq1M48Rqb2auuceQ/sbo66pxOLKYzbP6MmnVPRZ81ZP95woxlmgR6m3A5J/vc3yZJzPXpzPYzxA9LTWOx5Xy21QXJv+Szo+fO3LgfDHa2uo8F2LSiT/U35hWWjl3qazT+KcTSqmpk/HyEPNO9rwwyILaehnhF0s62R9ztZKCkkZeHW7N90tucGp9MNNWpfLScFtqals4G5fP9kVBTFyYwqLvvTifWEppeQOjn3VkwvxLhG8byZTFl3l+mBMJlwvIzq9hzfabyGSt6OhoYGWuT2V1E1MWxiKXtXI35gPmLjrPoR1j23+bmpoGyivq0dLXb49iyGRyZDI5D7OKeOOD1eze/AUDQvv8rt+6pqaOnJxisrOLyM4uIr+glMrKGrLLt1NbU0NNdRXNjY14BwSho6vLtrWrsbS1Y8DIUWhpa6Ours6tO7f4fEQYcrmcpoZGrJ16UFNVydKjZ1j53XgGvjyaA7+sZMbbo2lsqEdqbIKFnT3RbY3YQka9wNld25i78yA5D+4jEImIPnqQrLQ7RB7ch5qGBqKnaJZ6dONahr3+NjFt4wePeoFNc6fjuPMg2xbOx8rRia0L52JiYcXEdb+Rcz8NNTU16mtrOLN9M0HPvsDJ39Zg09uFfct+xC1oAKDYH51+/pVNc6fz0bQ5aGppE7F/N46ublyLikBsYMDPM6YQOFxRs5Z4/tzvtrkb/z50RyL+i/HfFImoqGtGLpOhoalJS3MTmlrayGUyKqrr0dHTo7qsGLGRKbWV5egI9KlplNFU1yaRWlqEvqEJ1dWKwixtPQG1ZSXoG5lQX1mBmo4eamrQVFeLnlhKTVkxQgNjaqtrUVMDLT0BdeUlCA1NqK+qQF1HgJq6Gs31teiKpNSWFSMwMKaprhY1NbVO/IbqCjR1haip0YXf2lTfbs8jfkttJdoCRUF0uz2lxRibmT0h8VqMyMiUlroKdAVtkrDtEq9FmJlb0FCrOHnUEQioKi1GYmxKa0M1em3jN9TWoC81oLK4CDtbq3ZdcQ0NDZqbmtDS1kZLTY2S/Dz0hEL0BELu37yO1NgE+7ZC3Ya6Ot7y92DpgeO491V02pbL5Rzevpk182cp0nBkLTS3zQNNTU00NDTQ1NRkzuzxvP9+V5WeR5GIyspKjhw5wt69e4mPj6e+vh5ra2tsbGywtrbG0tISqVSKSL8FsVgfkUgfDQ11LlxIoLSsnM8/HYyfX1dpxIKs+zQ1t2BmKkVHp80R2wqrGxub+WzcRoyNRGzadoGTR+bg269XVxs1RZ3+rK9v5Jc1h/hxwW5Wr17N66+/3unf/38jEXK5nJ0/L2fnLyt4dvRbhI58jslj3mHu2s34hg4AVJ/KP7km7Vq7mo2Lf0RTSwtNTU3q62oZ8dJovpg6C0Njkz8tEtHc3IyWllaX+YaGBrKWFtTbTvUf+Xt9QwNa2tqd+O3XnuCrPTZ3lc3nJ/laWlpK+WqtrUojc/+LkYiW+hrKK5swlOpQVdOEQFfxHaurqhHra1FW2YiBWJuGRhny5kZ0dTTaJUzLKhoRCTVpbWmiuk7WJnnagKmhDrX1MuQtTQgFmhSVNWFmpENZZRMigQatLTJq6uVdJGRbW2Rd+UJNaJFRXS/HUKxFYVkjpgYKPhrqCPU0OvHFIsX97bBHMX5Ngww19a58iUj3Cb7C/vpmDUAdoaDz9xVLBKipqSkkXqU6FJTUY2akS71MA1BIthaW1GNuIqCsogEDQwmZOdVoaapjaSYkPDYbd2cjTEwkip+9RY5jwEYuHX8TU1tXRCJdZDI5v26JY/r842hra9Lc0kpzs2J+ampqoKGhjpamBj/OGs1brymJIrRFIsrLazhyPIm9B+JJSEyjoaEZGxtTrK1NsbE2xdLSCIlEn3pdN4QiEfr6ItQ1NEiIjKCmqoqXPhiD62MdmQHya2ooLcinob4OiZERQpGEmsoKdEViqsvLUdfQYMOcqejqCYk7eZRvlv2CZ0gY9XWK+acnEFJeXISBiSnV5eXotSkuVRQXE330IPvXrOSLn5bhO2Q40OG/GlpaSteHmopyRFKDTuNXFBdjZGZGdXk52np6HFq3mmO/rWfQ6Dfp6eHNuqkTGbd8Db28fNAVCMnNLUBqYkpNRXm7xHpDbQ3WFqaUFxUhNTGhvq6WY5vWc2zjOjQ0NNDS1qa+tpYhL77C+xMno6WlxSgX++5IxJ+Mv9RLRGvTGZWKGE+quHRcV8F/GqgKTarkd9X8B/6BvJue0stl8gFdrt2vVKJsA9SreClQ3fdB+f2qalA+zvl9uzFz6MHRVT/x8eJ17Jk/BWf/EFpaNbgTf4Hnv5vNjkmfM+KziaRGnqGlVQ3n4CFErF/M6DmrObFkBjb9QmiVy8hMjmPo1zM4MusrQj/+lvuJsbQ01OEUOJT435byzLQVXFg1C1u/Aciam8i5Ek/o59M5M38c/d8fT961RBpqKnEMGMLFLcsYPnkF0T/Pxq7/QGRNDeSkJBD892mELxiH37vjyb+RQHNdLY5BQ0n4bRkjpy4nctVsHPxCaJXLybocz8CvpnNiztcMGTuBu7HhADiHDOP8+sW8Mmc1UesWYuPmpfgNEmN5fuJsdk7+nOe/nsy1iJMAuA0cwYnVP/H+wrVEbFqFhZPi4ffOxRhemzSXDRM/5bUJU7h89gQA3kNGcmDZAj5bsZ7T65Zj11vxwH0tNpoxs39k8edjeO+HaSScPg6A//Bn2bZwLt+v2YSBSNT+MrL75+XEnjrBhkMn0dXTY/w7o6ksL2PK4pW4eHipfmhSkYbU0GjClClT2LBhAwMGDGD06NEMGTIEU+M05afvqnxMTUX+sTI/UOucExsY9CITvh3LS89ZKB9DhU/K5IpGb13s1FDyIgIqU7eefIEvKSpk1fzZPLiTiqamFu98MY7AwQptd1Vh/gZVvVvafLWmspKtS38i4uBenv9gDFuXLPjDXyKcff35cPEads+dikuAIgJ1OyGG16fMZe+CGQx8831SIs4A4DV4OIdX/MSHi9ext83fQTGf35o6j3XffsqLX39PSsTpNv4Izm5ay3uzF7F9ziT6BIQCcCshmremzmPtN5/y0tc/cCXiFADeg0cSd3AnoydMZevsybgGKvip8dF8vWQFOrpd10VVqWD62srXXGUvF0IVXCuB8rENUfFyoeolQlVfCRV9KFqbVFxv6bp2V1VUM2ZSDKtnBTL6iwjmTfDl8NlM9AUaDAm0ZMqSy+xdNYjPZyYwNMgSXW04dj6HVTP68/rXUcz9xovD4dlIRZqE+Zoydfk19iwP5svZyQwONEdXC45H5bNyihdvfJvAnK/dOBKRi76uBoP9TZm2KpVdi/vz1fyrDPY3RUNdjbPxhayY5MGbExOZ86UrRyNzkcvh+UEWTF91i52L/Ph6/jVGBJvTLGsl4mJRJ/6F5DKqa5t5frB1J3tGDbGnoVFGeFweq2f489pXF5j3rQ9RySWUVzby4nAHJi+6xP5fhvHZtBhGDe9JY6OM8OiH/PLjIF4Zc5wfJwXj0KMH5mairjdYq6M+ac7CE5yJuMXJo/PQ1tbk+VfmUVfXyM8rPsHdzaHLoUU7VOzpOdXezJk6iV1bNxMyYBAvvDKasMFDaBJKla6hynqxgPK1RdWhxZ30BxTn5ZJwRrG/JIafQUNTk5k7DvDr9B/wCFb416P9ZeO82YS9+iZXzrX5Y9t+NHbxL+ycP+0J/53PvsWzGfjaO134Y5asZee8KfRpW09uJcTw5pR5bJr8Nc99Oq59fejp48euuVMxsrCkKOsh/qNexNKxJ6nx0bwzbR4/j/+EV8dP4nK4YnyfoSO5sHsbr38/vcv68NbUeawZ/wnPjPmcA8sXUJDxAP/nXiR6/67ul4g/Gd3pTN34XbDs6YyBuSUugWHoCoQ4+4dg6+pOfVMrMlkzukJ9evmHYmhpg4N3f5paWjGwtMHJLwRtgRBH3yAMe3SEfLWF+jj4hiCxsMG8tzutchliC2ts+wWjpSfE1jsII4fe0LaIagmE2HgHITa3pqm2BrmsBbG5NbbewWjpCbDxCsDQvhe0KhZYbYEQG+9gxObWyBvdkMvlCr5PUNv4gZj26AOotfH1sesXgoGVLXaefgBIH7PfzrMflr06unXqCPXp2T8UAwtrnHwUTX6MrGxwDghDVyjE1sUNi54dufy6Qn1cAsMwsrSmt69CDtTE2pa+wYr72cPdC9veHU159PRFeIYOwNTahr79FWofZja2eIUOQk+oj4ZGh+u+9tnXlBTkE2xvioGxCW4+vmw+daG9GPj3oLKyitTUNG7evMvKVdtxcXHh/v37mDyeYiW/97vH+1fR3Nzc3s30afD/q8T0z2BsasYPi5b/c+JTQF8i4bNZ83n2rXc5/Nuv/9axVcE9ZAC6An1cAkKwc3Vvv64n1MfB3Qtja1t69VPMZ2NrW/oEdfb3x/mugWEYWz3Gt7Klh48fOgIhfQJCse/b0WhLVyjCNSgMY2vb9vlvbG2LnUtfdIX6uAaG4vAYX0v7KQ9u/o9AW0udIcFWiPW1GR5qjaOtiLD+Fqgjx8FGxLAQK0RCLYYGWeLjZoxaq4z6RhlioRbDgi1xsBYR6muGloYcB2t9hgVZIBJoMTjQnH59DQEZDU1yxEIthgaa42AlJLSfCepqrdhbCxkaaIpIoMlgf1N8XA1Qa21FJm9t45tiby0kyMsYAHsrIUMCOvgezhJa29bbx/m+jdDS0trFHrfeBsjbnqHF+toMC7HCwUZEdYOC72gjZniojeL7Blvj0cf40XahuD8D7HG0kyAQqDjUewxTJowkN68CienrGBuLCQ125eSR6U+1npSXV5OamsHNm+ksXTkGd08vrtxNx9Coo8g5X0Vt4b8DOnp6mNva4eaviIwknw/HydUdPX19PIJDcXL3bOfq6Yuwc3XD5DF/fLQf6YkkSvxXH4e+Hkr5ukJ9+gSEYO/awdcT6uPsF9hpfbDr486Qtz5g2LsfE3dkfyd/19MX4RY0QDG+X8f49n3dla4Pevr69A0Ow9bZlRe/nEhJbjYZN679u29pN34HuiVeu/G7IJAYcCPqHIPfHkPE9l9xCxtCZVEhVSWFuAQPJmbnRkLe/IjbsRFITMwRGZtyNy6CgNc+JGHPJnoHDaamtIiakkKcAgaRvO83+r36AQ8SziMwNEZobEbGxQt4vfQ+KQc34+A/kPryEmpLi7DvP5BrBzfj8dL7ZF66gMDAGKGRKZmXLuD+4ntcP7QF+/4DqWvj2/kN5PrhLbi/8B4PEy8gMDRB38iUzIsX8Hzpfa4e3Iy9/0BqS4upKS3EMWAQVw5sxvvl90mLi0BkbIbI2Iy0uAj6v/Yhl/ZsonfAAKqKC6kqLsQleAixOzcS/OZH3E2IRmJihsTEjNTocwx4+2Mit2/AOSCEyqJCKosKcQsbQsT2Xxn89hhuJcRgYGqOgak5Vy+EM+y9sZzdsh6P4FDKCgsoKyyg35DhHNu4llEffUpK9AUMzS0wNLcgKeIsz3/8KUc2rG1vgAaKOgF526l3eUkxVy8lcCmqazdqZYiMTMDTawRW1n6MGz+LixdTmDFjBnv37u38AvEnY97c7/jk00ncup31H7Phn2HymHfZtGwRLSqifb8Xdr2c+frHJf8mq/4xnvngE2IP7MR9wBAqigqpKCrEfcAQzm37lZBX3+Z65DmkpmZITc24HnmOIe+MIWr35nZ/fzSfw7f+ytB3x3A9Krx9Pl+PCmfQG+8TvnU9HgOGUlFUQEVRAR4DhhK1bxtD3x3LtchwpKbmSE3NuRYZTtjotzmzeT1eA4dSXlRAeVEBXgOHcv9ayp9yP/5qkMlbGTXYlmWbbjD+QzeORWRhaSbA3FTA8fPZjP+gL8t+u8lzg2zIK6yjsKSe5wbasHzzLca934fjF7KxMhNgaqTH8chcxr3nzPItd3hugBV5hfUUFjfwbJgFy7emMe7dXpyIysfSVA9zY11OROXz9ds9WbH9Hs+GWZBXVE9+iYK/Yvs9vn67p4JvooulqS4nowr4+u0erNh+n2fCzCkobiSvqL4L38xIF0uzrvYUlNSTV1jHc4NsWPbbTcZ/0Jfj57MxNxZgZS7kWEQm33zkztKN1xk12J78wlpy82v42zBHlqy7wrefeHP0bDpaWv/8MUddXZ2WFsWhRUlJFdGxqURGqehs/gQiIpJx93wPG7uX+XbiapKS7zBl9jzWb9vZ6QXij4ZQLCHx3BmMzMwxMjPHIyiUpPNn2bdqKf2GDO+yv4S98iZXL4R32Y9iDuzs4r/hW9cT9upbSvlRe7biHtbhv+5hQwnf+iuD3/qoy/ow7N2P2/29rDCfbXOmUFaQx7mdvzH8/bGkPDZ+yoVwBqhYH6L372TYe2Pb7enp5UtPb98/7V53owPdkYhu/C4UZ2Vw52IMHoNGcDs+ip4+/txLvgia2uiJxKRdjMbv+de5dykWgOaWVtKT4nAJHcaDNnWm3JuXkbe0oCuSkJEUg/uzo8lMjkOurom8uZmsK3E4BQ0hKzkWazc/iu6l0lRbhY5IQvaVOPqMfJWcK/FoaunQ0thAdkoCDoFDyboSi6WbLyX3b9JYU42OvoTsK7E4D3+VnJQEtHR0kDc3kXUlHsegIW3qTH7k376KrLkRXZGEh8kxuI18lfTk2PbvnJEch3Ob/b18A8hIuQSAnljCvUvR+L7wOg9vptDSrEjnuXspBreBI7iTEIVz/yDF/QEEYgm346MIeulNHqZep7lB0dE2NSEa76EjuRkbhU9wCKmX4gHQl0i5Gh3JkNff5s7lpPaH1KsxkfgPf4aU6PO888U4NNoiDYW52Vw4cpCYjAIkBoYkx0bzw9j36OXqRmN9PfUVpWhra+Pv709gYCDe3t4AzJ07mZiYRJYtnc6LL47o0AJ/WnWmPwDDhoViZPTfq/uddvM6548f4fzxI2xa9hMmZhZUlJWio6uLvkSKk3Mf+vYP4OWPPvlPm9oJDbU1ZN26gV0fN9La5qdQIuFWXBRBL77O7YSOvhi3E2LwHDyC+5cvD4HPEQAAIABJREFU4ejh02k+34qPIuSVN7n1GP9WQgzeg0eSGhdF734B3E1KUIwvlpJ54xr+z77ErYTox/jR+A17hhtxkTj7BXA3UcHXl0ipLsyh1xO54N2AxiYZ6VnVnInO4ePXnDkXq1CA09aE8Lg8Xhhqx9mYXML8zIlKLMBApIlIX4uzsXl89GpPzsXlA6CnrUZEfAEvDLHmbFw+ob6mRCcXIdHXQKSvRXh8AR+94si5hEIANNUVaUjPD7IkPL6IUB8TYpJL0NJUQyrSJjy+iA9fciDiYhHQCq0QcbGIvw2y4FxCEaH9jLl0o4z6BhmG4s58XYE2jY3yLvakpJZRVtmEoUSbszG5fDy6N+FxeQiEutQ3tBAem8OLwx04E51NWH9LLl8voqKqEUOpLmciMxn7lhvh0Q955aVmdHX/cRHkg/RiDp+4SkXhLiQSIRHnr/HOR8vw8nCktraBkrIadHW1CfB3JTDAFS/PnsjlcmbN2UZi0m2WL/2SUaOC2tfQMlnwHzcJVEAul5MSE9n+d3lxEToCAVl3b1GY9bDL/tL/hTdIfcwfH+1HWbduYufi1sl/U+OiGDD6TaX8B9cu4+Du9dh6IiU1PopgJetD/8f8PfHkUdJvpPDg+hXU1NQ5v3MLZQX56Ojpoa2nh7q6BrVVFUrXh4e3btJQV9vFnm78+eiuifg96K6JoLK6Dk1tHarLShAbmVDbVgBV/XgBdVkJ+gZGNNXX0dAkQ0tPQG15KfqGxtRVliPTFgAdBcu15SUIpEbUVNWAGmjpCqivKEVgYNxeQM1jBdF15SXoSY1oqq1DTQ00dfXa+Q1VFWi0FVA31dehK5K082mu7zJ+Q1UFeiJFnmtzXS26bfaYmpnS3FZA/bj9rXWV6Op3FFALxFJqykowNjV9ouC6BJGRCY3VFeg9KhBrL7guxszclMY2vo6egKrSEiTGJlBfhUBfYU99bQ0iqQEVJcUYmZjSUKfg6woEVJaUIDUxQV9buz23dsmErxAbGDBlfoeGdllJMZfjYpAYGOJrZ0ZtbS0JCQnEx8dz7do1GhsbefON55g27WuEQkHnH1vVS4Q8VsX1f39NREtLC/oiFyoKd6Crq8SfVPmkqs/8F2sioLNIQX5OFpuWLuTB7VSuJSo2zwHPjMLZw4uDWzZS1CZPvDfpJhZPaKCryn8eYmXwh9dE/Bybgpq+ATUV5Urnp8jQuNP8rC4rQWjQ4e+P+FJDA6X8mrJSJMYmnQokG//B+PUVXfkNtTWYmxkr/Q7/12siZE317UXYhSX1mBrpUlvXQqusBaFAi6LSBsyM9Sgtb0Csr02rvLm9ALkTX96CUE+zvWC5tKIRsVCLVnkL1XUtXQq0FQXXGhSVNWJm1MEHuvBr6hR2KwqoH/GbkOhrAWpd+PXNGqBGF3ukUn0Fv7a5k/31zeooCqg1KSqtx8xYQGl5A1IjscKemmYMDXQpLK7F1FgAOmbKm6U9VhPxztjfsLc1Ys6cT9uvFRaWExt/G0MDfYzNLKiqqiXh4i3iE1K5fuMBTU0tvPvOCCZPegeBoLOMtqqXCFXpTP+OmoiC6mrU1dVpaCtwVtfQ4A23Hmy/8YC66ir0nthfsnPyERsZd9mP9A2V+29tWTEiJXyBgbHS9aSypLjL+I2VZe3+Xl1RzqmNa8hJu03GTUUqUr9hz2Bu70TU/p1Ulyn8aOn5RLR0dDutDwIV43/sZtddE/EnozsS0Y3fhdj9OzB36NEuVfrbD1/gEhiGTE2T2zERvDF3JRs+f4tnx03levgx5KjjMmAEZ1fP593l2zgwaxz2fmHIZTIykmIYNW0Ze759j0GfTeL+xWgaa6voGfYMMesW8NJPmzn947fYBw6lpaGO7CtxDP1+MUcnfUDQ2B/IuXaJ+vJSeoSOJH7DT4yat4nwhRNwCBzWxo9l8MTFHJ/6IYEff0/u1Tgaq6voGTaS2PU/8cKC3zizYAKO/gORy1rapV8Pfvc+w76cwq0IRSHz41K0Z5fPwKaPIifz3qVoXp+zkg1fvMXLE2dx+dRhALyGPdcudXtqzWJMbO0BuB0fxQcLVrNq7Bu8PXUOCccOAuA38m/s/mkWEzft4ciKBVi1KS5djY5k/Mq1zHzrFcbMnEf04QNAh3TenB0H0ZBKEOiLuJWcSOL5cDZGXuz0exkamzD0+ZeADjWagIAAvvnmmw6SisLq/zRaW1tZufI3HB1tlL9A/BfAwtqWKUtXAyCTyzm4eQORJ4+RnZHOoFEvIBJLsOrRq8sLxH8a894bzVfrd7Hxu8/pExQGwK24KD5auJptM75j4JsfkHxaIWXcb8Qo9i+ew5frOvwdFPN57KKfWfrx64yeOIOkUx380xt+5pMlv7B+4ue4to2fGhfFmEU/s/Sj1xj93UySTh0BwHfE34g7uIu3p85lzYTPOkk7Tt24HV3BEy+33aC6pplXPz/HzhWDGPr2SZZM6c/u4+kYiLUYGmTVLhX71vhIhoVYIdRT59DZLLYvCWHY++dYPMmHvScyMTXSIczXlIkLUzizcRBvT4xjWJAFQj01Dp3LZdtCf0Z8HMWiiR7sPaUoxB4SYNYutfruD0kMDTRFU0OdUzEFbF3gy8ixsSyc4MaB8BxkslZeGWbdLkX73qRknhtgSWOTjPD4ok7884mllFY0MXqkbSd7XhnpSHVtM2djctmxbABD3zvNkkl+RCYVUVRSz+jnejBhXjzndozija/O8fKzvaita+FMZCa71zzDoNEHWDYzjL7uAqwsJCrvaVRsGlFxaaxZOqPTdTMzA15+sa37dFthdVCQW+f/rOpg8D+AsoJ8ch7cI/roIVpbW1FTV0dNTZ3qijKWffV3PNvU5B7tLzvmTSP0lTdJbPPHR/vRtxv2sP67zv47dtHP7JgzmQGvvdOFP/7X3fz6/Re4tq0PqfFRjFm4ml++/JDnv5zYaX04tnoR49Zsafd3M1t7irIzWRZ5mRkvj6AkN5usO7cQSQ1xDQylIDMddQ1NVo8b22l9GLtoNYs/fJ3Xv5/ZyZ5u/Pn4a0UiSheBTPlJvMpIROtT5CurqQh5qjrdVHUaqkrJQdV1DRXXlTSmSa3xV0qtbEuReRK1TxuJaFR+IpKblYNQKuXe5URcAkLIvJGCsbUtdU1yytqbrMXi5O1HWX4udU0yDMyteXgtESffYHJSr6JnagmoPdZULg5bDz+Kc7Oh9VFTuWTsfALJv3MNPROFXnpVQQ5mvd3JTonHys2XqsI8oBWRqSV5N5Ox8Qqk8O51pBaKU+Wq/BzMnN3JvqLg15UoJBqfHN/YqnNTuczLcbj5B1KerzhFlppbkXE1kZ5+wRTeuYGhlaJJXGluNnZtTeX6+PlTlq9osmNoYdV+f3Ju3cCoralcSU4WDu5e3EqIwTMgoL0pj7GVFXeTLtE3KJTs1GuY2ijsKcx6SE9Pb67HRhE8YDAF2Yq6AHNrG65djKdf2ECkbaepbw4K5P0vv+GZV1/HXarigVtVBKFVRZFfi+qGZMrHV+F7TxORU3ukwS5jzKfLuXzlHof3z8TBVvx0n6ky+vGUPqwsOqgxQCk1rVb5GqrqdFGVrKyPkd4fHol4Y9EmbLwCyLt9rd1fHs3/9MsJWLv1o6pQMT/FZlbkXE/CsV9QF76DmxfpyXHYefhRUaDgS82syE29gmO/QHJSr2LQ5l/luVn08PTi3qVYHNvWBwADcyvyUq/Q0zewvUklKPzL1ceH1PgYevv2p7TNX4wsrdBoVujePwlVEQplkrB6KgQHVMnHqhrbRV+F9Guzilx6VZELmQp/U+aHqqJ+MuXysa3NyvcFuUxFU9GKOm7dL6e/pynnYnMJ9bMgM7caWmXYWgqJSSpkSNBjTfHkrWRkV+PnYcK5uDxC/cxJz6pCTR3sLPWJSS5kSKAFiddKcLSTgBpd+NmFTYomcdYioi/lMzTEmktXC3FyMEZNTY30h5X09zYnPDqLMH8rsorU2vgSohMeMnSAE5cu5+Dl7dIhGf04tFTUJeha0tzcgle/Mcyc/j6vvBz21D6uCg2qpNhVXK9WsR83KVkrZCoiEbW1Naira5CflcGORT9SkpfL3z7+FO+RL/Dg2hVMbRQHGkXZD3Hy8OZqbAxOXv0ozWvzr7b9q4dfcPv+Dor9y97Ni7SkeBw9+1GW17Hf3b+SiLN/iFL+3YuxOPn4deJnXk3CJSCEjBsp7ftvSW4WfXz6cTM+Gmdff0oe8/f7KZdx6R/YxX4HNy9S46Pp/Rjf2NKKsd49uyMRfzK6C6u78btQWVLEsV+W4ejpw7YZExGIJVwJP8Wt6Aj0xBL2zPkOe3dvTq9dRmnOQyrysjm/cTk2fb05/OMP6IklpMWe407UaXT1xZxYOBnrvl5Eb1pOVX4OFflZxG9ZiaWrJ2eXTEFXX8LDxCgexJ5FR1/M+WVTMXfx5NLWldQU5VGZn03itlWYu3hyftlUdPTFZCZGcT/2LDoiMRHLpmDex5OL21ZSWah8/Htx57gbfQZdkZiTiyZj5erF2fXLKM19SGnuQ879ugw7N28OzPsePZGY6xGnuB5xCoFIzO7Z32Hv7kP4lnUUZ2dRnJ31xP0RcyX8JFfCTyIQS9gyfQJOnj6c2vwrRdmZFGVncmDlYnp69WP95G8RiiVcPHWci6eOI5RI+OWH8fTy9mXX6mXkPcwg72EGvy2aT19fPxaO/xyZTMYv82chlhow8pXX/tPT49+G0tJqtu88T1TEYhwczP/T5vzPwdrVi6hfl6ArEnM3+kyn+W/h4kHc5hVU5GVTkZdN3OaVWLp6Eb5idhf+0QWTsHH14sLG5ZTnZVGel8WFTSuwdvVs9/dbF05x68Ip9MQSTqxagJ27N2fWKdaH0pyHnF2/DLu+Huyc9R16IjFXz53i6rlT6InEHFj+Ez28fDi8ajFF2Q8pyn7I4dVLEEn/e+tk/heQeK0IA4kOH/8QTYC3GTOWJ5OeVUVmTjUzV6QQ4GXKmEmxSMU6HDydyZFzWUjFOoyZHEeAlykzVqSQkVtNelY1s1ZeJcDThLFT4pFKtDkakcXB05kK/qRYBX/5FTJzqnmQVcWMpUkE+pjz8XcXMBDrcPpCJvtP3MNAqsNH34YT2M+CaYsSyMyq4EFmGdN/ukCgrw0ffn0YA6ke+YVVT/Vdm5tbmDT5V6ytTHj5pdA/6I7+edDS0WXXsoWk37hBStQF+vgF4Dd0JLsWzkEokZJ05gRJZ04glEjZMOVb7N08OPrzEoqzH1Kc/ZCjvyzF0dOHY6sXIRBLSDl3ipRzpxCIJeyYORE7V09O/LKUkpwsSnKyOLFmGY4ePhxcMkcp397DWyl/6/S254dzJ7lyTrE/7vhxBj09+3FwxSKKsjIpysrk0MrFOLh5sGHKt13s379sAT08+3FoZcf6cGjVnyNO0Y3O6H6J6EY3/mIoKyrkzUGB3LicyOzV65+qc/J/O0xNpXh6ODJ1xmY2bT7DXyVS2o1udOOvg/ORqXj1G8P1G+lsWD/xf2oNFRkYYmRuwZ3LiUQfOdC9hnbjD0V3OlOnD+lOZ/rn6UyXcAkIVZ7OdDEGR+/+lBd0pDNlXr1ED78Q5elMSbHYevop0nva05mSsPMJUp7OdCUOSzdfqovyaU9nupGEjXeQ0nSmrCtxWLn5Ul+iUCR5cvwn05kykmNx8w+iouCxdKaUS/TsH6I0nenuxWj69PdvT39SpDMp7o/SdKb4aDwCAihpK7o1trLiTuJF3ILDlKYzXYuJInjAIApzsmltbaUoJ4v182dRW1XJ+JnzGf7iK502v/+FdCaAS4l3OHI0nn0HY1i64H1GPatEuq87nempoaam1vr6wo3Yegf+g3QmH6oKFfNTbGZFdls6orJ0pgdJsdh7+FHRxpeaWZGTehmnfkFK05nSLsXg6KVYH+D3pDNF07tff0rb/KU7nYk/NZ0pPCaH0P4WPMytaU9nik4sZGiw8nSm8Ng8Qv3MyMiubk9nik4qYGiQpdJ0pkf8nKLm9nSmqIt5DAu1UZrOdDbqIWH+1mQXd6QzRcU/ZNjA35fO1NraSkRkKnN/Okx2bimLF33BC88Hd36B+IunM6mpq1Ocm0N66g0yUm8SdXgfH81bikAk7pLOlBITTQ+vfpS27V9GFlakJSv2O6XpSYlxOHn2a09HNLSw4v7lSzg/9jzwOP/OxRh6PJa+qEhnSsQlIFR5OlNcFL19/Tv5+70ryfTxD1KaznQzLkqR/vRoP+1OZ/qPQGPmzJn/aRt+F2bNmjVz5vfDVL8UtCrfmOEpGlapfABREbBRVVSl6sHkaa9r6ne5VNxkrZSq8oFFxYKj6kGmUaacH7V/F00N9exfPAfvoc+wa+4UGupqyXtwj7j923AJDGP7tHGY2fcg4eAOsm6moK2nx+lV83AdOJJji6bR3NhIQVoqKUd349Q/lCNzv8XI1olbESfITklAW09I5NoF9AodTsSKmbTKWym8e53Uk3ux6xfC2Z8mYmDrSEZ8BFmXY9HWExC7/id6BA8jcvVs1ICCu9e5eXIP9r4hnFkwAUMbJ+5FnyJLyfiy5iYK025y9fhunPxCOTZvAmYOPUg8tJOH15PREQg5sWIefQeN5PQvC6ktLyP37i0SDu7AJXAA26d+jXWP3kTt3caDlGR0hcL2+xP+21rKCnLJvpNK9L4duIUMZMP3X2Db24VzO7eQdiUJPYGQ7Qtm0X/4sxxdt5rS/Dwybt0kfNc2vAYMYvm4z3B06cO+davZsmQBFyPO0lBby6qjZ3F390Rbp/O8MdNVMX9bVfVaUOEbqh7QVUGV7z2NPz12zdrKmMGDvLC1NuXL8WsRCnWxtzNBIHjs+6r8TFW++rQ+rORhRN1eKbVUxZKkarNX1eF6/cJ5zJw5c5by0f51zJo1a2ZBWiq9woZzdvkMmutrKbp/u33+R21Ygr6hCVeP7yb35hW09QRcWLOA3qFd+T39wzg4+xuM7Z24fGQX2Tcuoy0QErN1Db0CBnBs0TQa62rJT7tF8pFdOAcOYNe0cZjZO3Hx4E4yryWjIxRy8dBuevj0Z+/8KTTU1pJz9xbxB3bgHjKQ9d99gYVjTyL3budeShK6Qn3qykswt7Pv8t20VDQF01SiyqOlTKlHBfcfjW2ireLhX16k/LqqA7BWVcqCSq6rmveq9kW58n2htVX53DwblcX8n1MYMcCGd8ZdwNnJgHW7bpOaVo6mpjoT5l/i5REOfD49geraZlLTylm78w4jQq15Z0IUzo5SNu5LI+5yEfpCTSYuSOal4XZ8MfMizS2tJN8o4dfddxkRZs0730Ti7CTlwOlMzsXmoC/QYsLceF4e6cRnU6JRV1Pn4pUC1m2/zshB9rz5xWlcehpy6NQDzly4j0iow/jpp3l1lCufTjxOWFAvjAyFXb+UhoC8/HKGP7+AQ0eTGff5CNat/AhXd7euEYin9HFVUKWgpGo/VvayACBTslaoOvgtLSog/eZ1zu7cSmHWQ/oNHkZyRDhXoyK4FhlBU0M9OffucGHPdtxDB3Hkl+XoSw2J3ruDBymK/W7f4tl4DnmGPfMV+3vO3VTiDuygT9AATq5Zhr6hEbH7d5B+NRldgZCDS+bgOVg5f9fs7zG2se/EP7p6MZ6DhrFj7hQaa2sV++P+HXiGDGLNxC+wdOrJ+d3bFPujUEjEri249A9ky8wfaKir4eHtm1zYs52+IQNYP/FLLBx7ELlnG/euJKEjEJJw/NAfuoZ2oyu6IxGdPqQ7EqEqElFRVdNZ4rWyAl2BkNomeYfEa2kx+obGNNXXUdckR/txideqCuRaChm8donXshIEBkZUV9Wg1ibBWldRirBN4rVVS0+pxGtzfV1XydbqCnT09JXyaeqQeH18fKFIv4s9llbmnSVby0sRGRrTUlv5mMScQsKuurQYYzOTLpKYYiMTGqqq0BUqNrTGJyVe2yRbdQQdEq9N1ZXotUnIPi7xamFoyLiXnsU7JIyPJ82gqrwMQxNTDHV1u2yA/yuRiMdxLjyBNetPE37+Gj5eTrwwyo8eThakpWXj0tsKXx8njIxE/3Sc/59IRGlpJUlJd5HL5bi42GHn+JpSqci/UiTi64Px6EoMqa+qQFugmJ+P5r9CrtGI5oY2ieM2fxEbGnfhSw0NqSkrQWhg1EkSuaGyDJGRCXVVFegIOua/oZEB1aUl6BsadfKv5ioF/9F6AgqJSDNTI6USjnrqMrR1OstpQnck4t8ViWhpaqKyuglDqS6FJXWYGum1ScI2d5KQLatoRCTUAnlrFwnWmlrFeqCQYO3gi8U6KJds1aBdsrWkHjMTAWUVDUikivXwScnWumbFPBEKtSkqrsXMVJ+y8jqkxhZK/bOyTo+wEXN44bl+TPvhRTQ02ji6ll1vwF84EtHY3Nwm8dohCV5RUsydGzc4u20jaZeTsHd1xy04FOsezty7cQ0HN0/MHXsilEjb9y89qXEXf3xcovlx/33yeeBJvpqaOg9SkgCwdnZFV1cHA1OzLnxjk8f8/bH9sbK0BKkSCWiBWKqU/2Ff2+5IxJ+Mv1QkQi5vxbuvKRNnncXOWsr+o6kkpeQi0NNi1a8X6edhwbzlcdTWNZP2oIzt+2/i427KhNmR2FmL2X/8LklXCxDoaTF3eTxBvlbMW5Gg4KeXsffoHTxczZg4KwI7Kwn7j90m6WoeQoEOs5dEE9zflnnLY9rGL+XomTRcnc2YOONUmz03SUrJwd7OFKFAycPJXzgSUV1VTWleDgam5uQ9SENfakBVaQmXjh9CW1ePYyt+pE/III6tmK84gcx4QPKRXTj6BHBkwSSMre25evoQWdeT0RVJOL92IT0DBxKxZgFNDQ2UPbzP9RN7sfUK4OzSqRhY23M36iS51xPREUmI27gIh/4DiPt1ES3NTZRn3Sf15F6sPf05v2IaUit77sWcIvd6IroiMbEbFuHQfyCxvy5C1thAWVbX8W9HHCXnkT3rFtIjYCDhv/xIc309xZkPSDy8kx79Ajkw7wfMbB1IOn6AjKvJCMQSjq2YT5+QwZxcs5T66ioKMx4Qs38nzn6BbJv1Peb2TiQc2cf9lCSEEgn7l8zDPWwIx9Yuo7ainLz0+5zfs50+AUH8OmUCff2DqK2uor6mBj2hPnnp9zEyt2TGO69h7ejEu998T2lhPibmlmTcvY2VhWWXl4j/lUjE43C0N+K1V4L5+vPnMDOVEBWTypnwq6irw5HjyXw/bSe798VRXV2Pna0JYrGSk8h/ML6yF5q7d3N44eWZTJ66gfSMfJKS77JoyW6mT5/FgQMHKC8vJzi4Qwf+rxSJCHhjDOfWLEBiasHNM4fIuXG5ff47+g8kat1PNNfXUZaVzrXje7D1DCB8xUwMLG078SPWLqR30CDO/ryApoY6SrLSuXxkN06+gR3+fuogWdeT0RNJuLBpNT39gzm+Yj6N9XUUZT7g0qGd9PQNZPecHzCxcyDx2AHSryYjkEg4s2E1fQJC2Lt4rmI9Sb9P1L4d9PULYPtPczCxtObiqeM8uH4VHV095C3NCEVdlby6IxFPF4koLq1DR1uDu+kV2FmKSMuoRENDjbikfFZtvcWgAEvGTo6lp4OYbQfvkXC1CKlIi+8XJvHcQBu++ymZ6tom7qZXsWFvGgMDLPhkahy97CXsPPaA2KQCDCTafP9TEs8NsuG7BUno6GpiZKBHTn4tVuZCUtPKMTLQpbC0gaqaZkT62ty9X4adtZi09ArUNXVpbpaRk1eFlYWY1DtFGBkKkKODllbn30omk/Pca7/g7WHPwrlvdH7JUHao918Widi37meqK8rJzXjAhUP7cOrrzsZ5MzC1sibu5DHuXb+Kjp4ee1YuobePH5vnzaChrpbcB/c4u3MrboEhnNy6iRHvjUUgliBraaIwM4Pze7ahb2jEua0bCN+yjotHD3D57AmcfQM4tnY5hhaWXDp2gAdt/nho2Tz6Bg/m8LJ5NNbVUZjxgLgDO+ntF8i+RTMxsrLpxN855wfiD+3m6IoF5KTd4l7yRcI3/Uzkrs2Eb11PXVUlD2/fVOyPYilHfl6Ce8gAdi+cTWOtwt8v7N1OH/9gNk79FnN7J2IP7SXtciJCiZSj61fgGhDCnkVzaKirIz/9PpF7t5OZer07EvEn479H5Ph3wEpSh2bdQ8zFTUjUCrGSKBZliVohUr0G1GtzsJA2YSZULO4W0ibUa/IwE7UgpgwrseIUR0wZpqIW1GvysZC0YCZQnOKYi1vQbCjEXCpDolmOlYFi5RCrl2IulaFZn4+VgQxzkeJzy0QNaDflYWEgw0C7DBsjxaKv25KFvKrr6ZW6rqHyL6atvLGSsg3DVaj8VPm2WojS6+pPWTCmiq9tboyVucJOY093xUUTA6oK3TF3sMehTx9MDKX06OuOfd++NLTI0VVrwcxYip1zH2wd7WiqqaSVVqzt7Sjs3QdjQwkOru6Y93IBQEddjpmJATa9+2Dj4IBGcx1ymQxLJwcqnF2xNDXAsa87ls4utLbK0VOXY2FqgG3vPtg72CNsbWjjO1Lu7IqlmQFObm44ufeF1lZEWuBgZUSWqyu9ejkioQFoxdbZiYq+fXG0NKLcwxP7vn0B0FWXYWlqiJOrKz16OqLRpJhXDj0dyOursMfZ3Q3b3gr7tZFhYWpET9e+9OndA+2mGgB69O5Brrs79hbGuHt4Yt/GF2io4WhhgauHJ30cHDqlJ/W0tOTujWtUl5WwJzwazcdOSe2MAumlF9f1R2pW8ZCi6uHlaR9qVD7AqIhoqEoVUvZy8U/GFmjC34bZ8bdhdp34MpmcuIsP2L43CY/+R3B3teTbLwbz3Ag35eP9E1vWboxm6twjzJ76MlEnJ3ScWgJVNTJu383ljfeXYSLJZGCoK44OZvTSVN4sEm1VhwMuv8+2PwD/j737Do+q2Bs4/p0kkIRAOumNXkOHUEKRDqIiioqo+IodLNh7ThzJAAAgAElEQVS9Xnu/KBawYqEpooCA9A4BUilpQBJKeu+9kXn/OAuk7FFW6c7nefLATmZnZzd75pw5M7+Z0jpLWnm0xczOjVZ+Wj3M7Nyw8+5IlbDEzrczLTy0/UrsyiqpNrPC1rcjZg7u2LbpquV3cMfOpyNlWGLXpgvWnvXyW1hj79sRc0d37Ntq+c0d3bHzaU+VmTWObbti690BAMeySuqa2+DcphNWTh607tANACsnD5zbdOCMhTVuHbri1EbbKLCsvJIac0tsnFwQNnbYuGh3koWNHZV1kpKqpt9bvQ7bxRBdbHz1MH87nc0ahc6mdbU6+2EYG6Gu0zlmdUYPhYXxY9lc59j38NK+yw6ttTgCf39tf4WKGnPySsCptSO9urvTvp07hWXmCCTt2reml38B9s4O9O3lQd9e2udyxswSZ9fW9PL3pH1HD0pqLamrk3To6EbvHkU4urjQv48P3Xt0xdPXEU9DHXr3145xe6/z77+nYVC+ay/AQtsk7uyn36Of9v2rv3ncWRFhcWRkV7F1+0JE486gkY0m9UYcOtoYPy9GFRr/fE0dcdCbGWDj1JoWTloMUCsXN6rNzLXHNnbYuLgbMtnRwtmFSixw79gNJz/teHEvraDGwhrXNh1o6eKBj39vfPx749u1BwfW/MrIex8k9I9VeHfpRvLRGEL/WMXHM++klaMTnfoNwK+b1oa6eHnh3akLNrYt8e3aHe9OnQGoq62mpa0t3h064+rlTWV3Lf+J8AOcPBjK7c++gjA3o0333gAkxkbSb9R41iz4iCM7NtFv3CQ823fCzdsbn05dsGnZkjbd/PHtorUbZ2qrsbe3pU2Xbnj4+lBZrO3T5OHrQ5tOXbC3t6W9fw/addPyi7oadq0w+jEql9A1NZ0pdf+drNx4igfv6MDStSfp1127qI2IyeWem/34dNFxZkxpx6FYbafDPt2cWL7uFI/f3ZGl607Tr7ujIX8+997chk8XH2fGrW05FJsPQN8eLiz+/SRP39+NpWtO0s9fa0ij4wu5c2JbPvkxhvtv68DBGK38fj3dWLQyjjkze7BkdTz9ehgC/sya0bt70+A/kzsRzZtOZ8LSxWjWY+XGOxF605z0GrMK3WFY4xeKCcfiSTgUxqCbb2fbkm8ZMvlOko5GUV1bh3dXf0LW/sbIex4kbP0qXDpqjUzqsSj6TJxC0M/f02/S7SQfi0XKOjw6+3No/W8MmTaTI5tW496lJ8g60o5F02vCrRz45Qd633g7GfFHqTtTi0cnfw5vXMmgOx8gcvPv+HTvBXWStONR9Jowhf3Lv6fPpKnknzqGrDuDVxd/wv/4jeHTHyRi/Wra+vcEAcmxUQRMuo0dyxYyfMpdJB2NAsC3aw/2r1nBmPse5uDmtfh11ToXp6KPEDh5KpsXfcOoqXdxKlrL39a/J7tX/sKNDzzC4a0b8DV0FhKijjDytjtZs/Arbpp+H/GRhwHo2LM3m39ZxtRHZlOWk41Ho7ney79eQOapE7y94Nsmn7vRToSpnYVrqBNxIfmrqmr4Y3M0Dz+1nLiI12jtrDNNUKcue/bFc8/DP7Jj3dN07NimaV7DiGFoeAKzn/mBpORcBgV0pH+/Tvj5utClszd9+7Rvkr8JnU6EMLu0Q/FCCDngvqfpOXkG8TvX0rqj9n3OiY+h46hbiN34K+2GjifnRCwArdt3I2777/S67X7idqzFpYOWPzshhm5jJnN49SK6jp1Cdrw2fcelY3dO7llP78n3ELt1DW6dtOM9My6aPhOmEPrrD/SceDsZcdEAuHfy50TQJgZMnsahjavx6qLdnEg9FsXQyVPZtew7Bt4yleSjWn6frv4c3bmR4Xfcw4G1K2nTXbuoOB0Tybhp042usGPTvOnNnBY605NMneakN0JxdnPHJmr0OhE6IxrGjk8TOxG6o4q6bUKF0eQDYSm087XjhxVHefbh3ixeeYz+PV1BSsIis5hxe2fmLTzC/93RhYMxuSChXw+XBvkDensgEYRHZjJjalc+/uYgD9zVneRsQb9eRkbYdacFN+0sAEY7ER/MXUlqhmDBgreb5r8GOhE5OTmcMJwvzp5fxsx4mH1rfqOtfy/g/Ploy5LvGXTTFBJjtfORX7ce7Pt9BTfc8xAhf6zEr5t2vCTGRjLoptvZs/In+o69kaRY7fjy7eZP0Mqfcfb0Yfk7/+HxBT9i3bIVSbFRDLzpNoJW/dwk/4E1vzLmvofPlX8q6hBr58/l+cWriNqznYE33d7gfBq2fhVj7p3JmvkfEblnO4U52Th7eNFv9DjSTiZwwx3Tqa3Wbva26d6T8M3rGXXXPez9/Tfa+Wv1PxkdybBbp7Lhh28YcftdnIqOPPf5PDqop5rOdJldU0u8nk4p4fDRPErKati+P4OImFwiYnLZvj+DkrJatu7P4HRqKXvDstkbls3p1FL2H8qhpLyGHQcyiYjJJyImnx0HMikprzmfPyKbvRHZJKaVsjUoXSv/QDoR0XlEROcRejjn3M6Zp1NK2BOWyZ6wTBJTS9iyN5WSsmq270slIiqHiKgcTiUXXemP6rJJOxHH0eC9VJWXEbt/D7mpycSFB3PyUBh5aSkcD95DZXkZx0OCSI2LIfVYFAmh+6gqKyM+ZC/56SmkHjvC6cOhFKQlcyJUK+tE2D6yThwn7Vg0J8P3aWmheylITyYjLpbEw2EUpKdwMiyI6vIyToXvJ+tEHGnHozgRVi9/WjIpRyM5eTCU/LQUjgfvpaqsjLjQIFKPx5AcG8XxkCAqy8s4dmAPOSlJxIUHExceTG5qMrH791BVXkbCwVBORR/hVPQRYg7spbKslOig3eSkpnI0LJijYcFkpyQRGbSbyrJSTkRHkhB1hISoIxwO2k1FWSmH9uwkKyWZyOB9RAbvIyMpkfDdOygvLSUvO6vB5yqlZOMvyxg/ZeoV+steeywtm3H7LX24c0ofPl6ww+TnP/ffVXz8zm10bG+k815PQP8OhAe9z+mj87nlxn6Ul1excfNBJk5+k2U/7yLhRDrH41KJiUkkPj71qlpiMeXQPmoqy0k5HExOfAw58TGkHA6mpqKcrLhIijNTSY8OJz06nOLMVC1/eRmphw6QnRBDdkIMqYcOUFNRRnLEPoozUkmLDictOpzijFRSoyKoLi8jMWI/mXHRZMZFkxixn6qKUk6GBVGYnkLSkTCSjoRRmJ5CetzRc8d76rEoUo+dP36PB+8hLy2FEwdDOHEwhLy0FE7HRlFZXkZs8F5Ox0RyOiaS2OC91OlMB1EujkMx2ZxKLmLLniRKymrYtjeZ8MgsDsVksy0ohZKyGrbsSeJUcjF7Q1LZHZzaJP+hmGzCIzPZuieJktJqNu9O5FRSIdFHs/66An+DlJJFS3cwdeqNl6T8yyE3I93o+SXmwN4m56OEQ2HkGM6/ceHB5KQmE7NvD1XlpRwNDiIxNpLE2EiOBmvnu+RjMeSmJhMfEUJ8RIh27g7dT7fA4bR0cGT74m9Jio3imCF/Ukxkk/xH9++hsux8+RsXzse1TTtaOTpzPOwAuWn18qclczRkH5XlZeSkJTPm3geZPOtZhLkZZcVFHA09wOdPPcKOX5YSsW0TR0P2E31gD0nHYonct5uT0ZGcjI4kav8eKsrKiAzaTXZKUoPPR7n8rqmRiMyQaTjYmp8LyCor1+5S2rSwICu3HFdna/IKq7C10e4ElZTV4GjbjKzcSlycLCmrMOS3tiA7rwpXZ6sG+UurRIOAr7Plt7Rpfi5ALK+gEtuWzQ35ZZMANABb+6axDHB9jkTkFpTS3MrqXIDV2QCoypozTQKyCou06T31A5bLigows7RBCC0As4Wt/bmAzcrysnP5zwVoFxXQzMoGxPmA0LP566orjea3t7fVyi9rGABOTSWChgFiNaXnA6jrB0Q7uxoPiK4sLqBFS+2OWWVZKS0NAdEe7u7n6m/VwobC3BwcWrtQU1J8bu52eWkptg4OFORk4+XhSX2RIQd4b84sthw+ZjRYUI1E6F80Jqfk03vYB3z76TSGDGyLm6udbt76dRl10yc89dhIbp7YE8yMTDH5i+VgDwQf4/8e/pwzZ85gYWGOubk5ZeVVVFfXMHH8AG6cMICxY/piY9e7SRHp6Zl4eg245CMRD6+LobJQW3CgtlK762xhZU1FYR5W9s5U1g+grijHqpUdlcV5tLB3otYQcG1hpQVEt3BoGHBdU1GGnaMjZQW5tLBvGKBdW1Jw7ni0tDm/oIGT8/kA7foBm7KsQAvYrB9Q+ScB15ZmEgsjIwxqJOLijETUVFVTXGoIuM4px8XZmrLyGqSs0wKuDQHReQUV2LXSAt+1AOrz+curtGsNLX85rq1tyMuvwM7ZHQsLI5/lPxyJ2LkrkiefXUh0dJDxfSCugZGI3Ly88wHIhvNLTlZ2k4Di4jztGCptdLy0tLMnNzsHW0enJguAtHR0prSwAOt6+c+e7yrLyvjfPbdwx8tv0XnAYIBz5/fG+UvzcmllOB4/f/QeJj78JD5duhvNb+/oYPT4rSzMx751aw7u2MrP/3sLWScRZgKLZs2pKCkBJP5DhtEjcAR9Ro6hsqwU+9YulBTkY204/6afSuDFm8aokYjL7JoKrA6LzGHcUA/G3r+d9n6tmPf9UbYEpWNlZcEbn0cyIsCVu5/ZR05+JSFHcvlwYSzjhrgxbuYu2vu2Yt4Px9kSlIG1lTkzXgrm1tHe3P3sfnLyqwiJzOWrn+MZEeDG2Pu30t7Plnnfx7IlKI1WLZox/Zk9TBnnx7SndxvKz2bF+lME9HZhzPQNdPCz46OFUWzek4J/Z2cc7ZuuICL05k6b682JNdIZsTAeOJpb42s0XS/gWi+Qy9SAsFUL5lFXW8t3L86m75iJfPPcY5QU5HEq6jDbflhAl8HDWfDI3bj4+LH3l0Uc37+TZpZWrHjtabqPnMDPrzxBdVkZiZHh7F3yJR0GDufHJ6fj5O3HkU2rOLp7M80srVj55hy6jhjPr689SW11FYlHwti37GvaBwxjydP34uTtR+Tm3zm6ezMWlpasfPNpuo2YwIpXn6CmqoJTh8PY/uOXdB40nK8en05r7zbs+3Ux0Xu209zSisX/eZJeoyfw/QuzKCnI5VTkQTYuXED3wBF8PPNOPNq0Z8P3XxIVtIvmVlZ89dxs+o+9kZ/ff4Os5CQSDh9kzdfz6TnsBt65dyre7Tuw6qv5HNy9g+ZWVnz85KMMnjCJxR++TcrJExw9GMbP8z9mwA2jeXbqzYy6afK5xhZg0Sf/o/+wGxgYaHwnVadmKU0TdZc/NjEdvQt0vRsOOgHaJi23amLZuvnBzs4ab097lvwSystvruO7JQc4nZhLC+tmeHk6YGZW7xxTry65eaWEHUzU4imMrdT2F8vBenu35onHJ/HkrJuY/dgkZj1+K08/eSs3TxpEcXEZy5bv4NkXviU09AjV1dX4+XlRXFzCvHkLmfngC5SVlV/ywOou4+9g3zfvYGljy5HVP5J8MAgLSyt2fPQCbQaPZfv/nqGyqICs45Ec/u1bvPsEsu39ObRs7cbhVT+QHBGERXNLtv7vBdoHjmXze3OoKMon89gRIn75ljYDhvHrczNw9PIl7NfvOR22F4vmlgT9+Bl+fQax+o2nKC/MJy32MPuXfU2nwcP4fvY9OHv7EfTTQuKD99DM0pJdi76kXZ8BLHppFiUF+ZyOOsS2H76gx9ARzH3gLlx927L5x6+JNhyP1J3BzqnpzZjmRi709S7+TQ24NtdJ113goO6kTroJKwvqBlCb2vHXaxOMny9+Wn2Ulz84wIQRfoy8cxUd2toz9+tD7DyQSrNmZkx/Yiu3TWzPnY9vJie/kgMHM3lvQXiD/F8viWbNlpNYW1kwbdZGbr+xA1MfXY9tqxZ07WTk5pjuQiRNz60AmDdMf/PdX7hxQj8GDh5hPL9oenNBL4Daqbnx69KsSuOfr6kB1HoLncx//ilyUlManF/eve8O3PzasPH7rxqcj/qOmcjXz2jn35ORB9nwrXb+WvL687S0d2Trj98Qu283zSyt+P6lJ+g9egLfPf+44Xx9iM3fLaBb4Ah+/eB1nDy9yTx9kkNb17Nt0TdsX7KQwuxMtnz3BRWlxZyOPnwu/6JXnsHWqTVbf/yGwuwscpIT2b50Ib1HT2Th849Tkp/HqchDbPpuAf6BI5j7wJ1Njt8Vc9+mR+BwfvrwLQLGT8Kvmz/Febm88O1igjesZfJjTxG5Zychm9ez5qvP2LtmJRbNLVnx6YfkpqaybuEXrJj3IbKuTgVWX2Z/ORIhhJgFPAL4GZJigXeklBsMvxfA68DDgAMQCsySUsbWK0MCNUBnKeWpeumLAGcp5aS/rKgQcv+vk+jX3Z5dIRkM7t2apAztTq+Pmw3BR7IZPsCViJg8fNy1C+3kjDL6d3Nkd2gWg3o5kZyh9Xy93Vpw4HAONwx0IyK2Xv7Mavr3cGZ3aGaD8n3dbQg+kseIADciovPw8dDyp2RX0M/fhd0h6Qzu40pSmpa/bRsnktJKaO9nR2pGKQ52WmNYWGGNt6ctJ07n08bHgcIi7c65k5u38Tsl18BIRFZ2PpYtbCjITMfZy4eCrExatLKlqLSU/LRUfLr1ICEimDY9+pKWlIwwE9i5eJASe4i2fQaReiyKlq09kFJSlJWOZ5cenD4Ugnf3PuRnpiIQ2Lm6kxJzmDZ9BpJ+LJpWhoCyoqx0PDr7k3g4BO9ufSjOycBMYChfy592LAo3Ly+EgIKsdLy79OBERDB+PfpSV1WOuZkZVi1bUZCVgbOnN+V52bQ4O1JQUoyDqxu5qcm4+3hTXlwMgHWrVuRnptPay4eSnCxsbA35i4twdHMnOyUZHz8/yoq1aW02rWzJyUjDzduX8rwcbGy1k1dZURHO7h5kJCfRrm27Bt+BL99+DWsbG579r/H28N80EpFwMos2vs4UFml3Se3trElMyqZdm9akphXiYK91zgsKK/D2ciDhZDZtfJ0oLKqgrq6OlLRCliwPZe+BE6SkFTBxTDfumzaATu3d8PZ2JuFkFn4+Tjz0xDKKSir5bfFDnE4po31bV1LT8nGw1473/KJqvL2cOXEykzZ+LhQWase7naMTiUnZtG/nTmpqLg4OhqV6q6B164Z3RwsKSli/OYVVqzexa1cwZmaC22+byFNPzcS/x6W9iyaEkA+tjSYzJhTXzr0NmzZqAZuZxyPx8A8gOz6alq21gOXSnHRad+hORkwY7l0b5s8+ehjv3oPIio+mlSHAuSQ7Hd/uvUg+HIJHt94UG/LburiRfTwKv94BZMRFY2vIX5ydTvsevTh5MBif7n3ObVpn5+JBbnwUHfoNJDk2Ckd3LX9+Rjrd+vbhWOgB2vfqe26TLEc3D0qyUvBq34n8zHRsbLXPvKy4EB8je0qokQidskF3JKKirJK8wko83VpyOrkIH89WFBZXIWUddq0sSUkvpY2PLWmZpTjaWyMlFBZXNchfVFoLCOxsLUlJL6GNjx1pGSU4u3lhaWnkM/6HIxFznv8OdzcHXnjZSDwEXBMjEceiInF00a4DctNTaevfiyP799GxT39yz24S5+bBiSMRdOw/mNPRR3A0jGrnp6fh170n0SEHaN+z77lN3xzcPDgVeYiOAwaRGBOJg+H4KshIx7dbD+LDg2lbL7+dixvhG9dQlJNF+Ka1VBQX02XwUDoNGMKgW6aSEBFMu579yE1LYd2CuVg0t2TIrXfROWAwp2OO4OhuqE9GGh179jZ6/CZHH6brwMGcio7E2VD/3PQ0OvbqTUzwPjr16U+OYVM5K2trNi/9kbQT8RwNPYCZuRl9R42j94hRfP70Y2ok4jK7kE7ELUA1kIAWQzEDeAHoK6WMEkK8CPwXuB+IA14DAoFOUsoSQxkSqATWSCmn1St7ESZ0IiIW9WPpxkyen+7D/5YlE9hTuxjbF1nEi/f58MKCk8yZ5s3uQ4UAjOhjzzdr0nnj4bZ8uCSJob20RiboSCEv/V8bnv80nmfu8WX3wQItf4AL85ac5qNnu/DB9ycZ2lebfhQZV8Ls6e14dm4Mz85oz+5wbb3vGwa589EPccx7sRfvf3uMoX21O2FHT5fz2N2dmPNuOM891I1dIZkAjBnWlg+/Psxnrwfy9vyDDA/QDt4ePXzw9TYy5cLKSLCZsY4FQHMno8nHKkYYTddrtCp0Ri4qddL1Oh0bflpM1wEDWfPNAh547V1WLphH+36DQdZxPCyYWx6fw9J3X2XSQ7M4Fh5CbU0NXQOGsPH7L7n7P2/xx1ef0nXQUM7U1hIXHsxNjz3Nz++9xsSZj3Mq8hDVlRV0GRjIxu++YPp/3mbdV5/iHziUutpajoUFc+vjc1j8zqvc9NAsTkdGUFtdjf/gQH7/egEzX3+X3+bP455nX8TSquHokLE7l3+WrnfhYdPc+B4JF3qB8cuK3fy2ai+rlj9nPL+xi4NqnbnFpu6doEevU6C3dr0eYx0GnYuguLgUPN1b8dbHQYwYrI227T6QxGvPBPLEK1t56YnB7Ag6DcCooW1YtCKSV54ObJp/zkCe+O927rmtK18uOsKe4GQ6tnXEy9Oej98cy413/0RV1RneefkGwo+k89pzY3ji5fW89NQwduzV7iCPGtGVDz7dyfwPp/DW3K2MCGwHQNihNJ57YjRPvPAbL80Zy449cQDcctMgPD2MTGE0jDwWFJQipcTRUbtYEi1uv+SdiI6jJhP4yMsc/OVrPPy1ncDTo8Ppd9djhC2bT+dxU0mPDAXAo2cAkau+J/DR/zTJP2D6YwR99R597niQ1CMhAHj1Gkjs+p8ZOvMZQpZ9iVfPAQCkRoYx7P7ZbJv/DoOmPUTioWAA/PoM4ujW3xk+Yxa7Fy2gTe8AAE4fDmXcQ7NZ99FbjJjxKCfCDwDQvv9gIjesZMIjT7Lxm8/p2E/bMyc+IoQps+bw83uvMvHBWRwL0Vaw6zIwEF9fb6xaNBzp1Ts29ToXlnrHvk5+zxbG0x3NdfZrMaUTobtPkqn7J+l0/E0d0TClDdHbN8ai6dK8WrpOZ0Gvc9FsbIOHixcvZsuWLbyx8Cej2fWWYDZG7zynN7JQpZOu17nQK//UyVNEB+0GoOugQNYv/ILpL7/Fuq8+pdOAQQDEhQVz82NPs2Le+4ycdj/HQ7UbTJ0DhrD5hy+59bk32LzwczoYjpeEiBAmPPwkmxfOZ8DNtxMfph1fHQcMZvuir7nthdfZsnA+7ftq+U8cDGH8Q0+yeeHnDLzlDg5tXU9a3FGSYo4ghOD+dz7hyK4tZJ5KoCg3my6DhnLL7Of5fd47jL3vIY4a6tM1YAhbFn3LtBdfb1L/KbPnsMRwvo41HL/dBgay7/dfuOOJZ/lt/jy6BWjTqmJDD3Dn7Dl899Z/GTd9BkfDQrC0tqbHkKHMHh2oOhGX2V8GVksp10opN0kpT0gp46WUrwAlwCDDKMTTwAdSylVSyhi0TkYr4O5GRc0H7hBC9L3I70FRrju9erblSNSpv86omMTLvRWjhvry+rNDmDSmHVt3n6Rr4JeYmZnx9ks3YNNC50LnEnBwaHmuA6EoysXVu3dvDh8+fKWrcd1pae9Ip4BAHluwGAd3T5a8/hz7Vv1McysrbnrsGSyaXb421MbWFktrnWniymVhUmC1EMIcmAosAfoCZcBJYICUMrxevg1ArpRyhuGxNDzvDsBJSjnKkL4IE0Yidi+fTW/vAnbHWjG0f1uS07URBB8PB/YF7WTUmHGERybj563dlU9MyaNPmyJ2xVgxdEBbktMM+T0d2LN7B+PGjyfsSDJtfLS7hafiIwgYMprtQccZGtCe5DRt6Vcv+2wOxDZnzLAuhB1OpI2PNuJwOuEQAwaPZNveowwL6EhSmrb0q69TIftiBGOGdyP00Cna+mrLvSadimLAoJFs3RXN8MGdSUrVRjQ6+tVi3qJj0zctC6F546UmS8HCyE6bogLMms4Jzqh2AeHQJL2gqoYW5k077PlVNbRq1vTuUm5lNXZG0rMrqnBobmTDrtQ0yjPS6N63HyG7dtJn8BAi40/gYNkMNy9vDgfvJ2DESGIPRWDu7IaLtSVpSYl069OPsD276DVwMLEnTuFs1QxXL2+OhBxgwPAbiD0UQbPWnri2aF4v/056DRzC8dOncbK0aFJ+CzcPWltbkZaUSPe+/QjetZO+g4dQfEbi1qphjElR9RmcrJreSSyuOYOjZdP0sto67I28/6o6gW3zpp+XfTOBjYWRvvuZow0elpaWYe80iKKcddi0NPL3PpMFZo1Gn6pPglnTpYU5k2n8O3MmE8yNpWeAubvx17Qwkl6TChZG1syvTTf+ujVpTcupPmU8b9VJtuzJZXhgN5JScgDw9W7N/n27GTlqDKER8bT100bnTiVmEdCjOVuDCpvk3xe0g1GjxhAakdAgf5+uzVm5KZ0pNw0iKSXbkN+FPXv3MHbceELD42jbRntvp07GEjBwBFt3RDA8sCdJydrIj68n7AnJYezo/oSGH6Otn/beCvJT6dSlf9P3JAvAvOmIorDse8lHIpYcTmXb9u3cMHwouRmpADi7e3E8IgTLjv0Qacdx8dJGcLJTk2jn34dt27cxcsTwBvl37t7NhPHjOBF1qEF+C98ulB0Np2v/QeSmG/J7eLE3KIhxY8cQH3kIV28fALJSkrFp15WC6FD8BwwmO03L7+Lpxb4D+xgzahTHjxzE3VsrPyMlCadO/mQeDqZnwGCy0rS4IFdPb/bt38e4MWOIPRSBp2EKU1pSIt49euHaaOPPkpo6nK2bXuiU1dbhoHOM2xk5xivrwNZIm9jMzPgx3pwTNDP21z2TZXR+PmcyQTQayapNN9rOU5ti9DtFTYrOMZsCFp5G0pN00pOhmZGR8Zo0aNZoWlBNStM00NoVCyPpdXnQzMhrymIwN7YXRymYG/kMhDuYnT/XFRYW4uzszAgKzZ0AACAASURBVOmCMpobGX0qq63DutE5sPyMNHpeLKquNZpeWF1LSyN/6/yqGqPfjZyKauyMnBeyyiuNfvf2hobTwU87XtIN57tNmzYzcsQNZKZq3383L2+OhOzHq+9g8uKizy0Vnp6USNc+/di8dTvDAwPJNBwvbp7eRIYewL3PIIoSYnD3MRxfyUl06d2X7Tt2MDwwkCzD8ejq6XUuf3FCbJP8W7dsoY9/d2oMS7O6enoTGXIA3wGDyY+LbnA8OnfuQXL4fnoNHNKg/lr7MJrYQxEN6u/RvScnQ/bTd/AQMgz53b28Cdq3nzGjRxF9MAIvQ/7UpERmTBitRiIuswvqRAgh/IFgwAooBaZLKTcIIQYD+wFfKc9viyuE+AHwlFKOMzw+24k4AhwFbpZSbv6rToQQ4mG0WAvQOi2KoijXqyQppd+lKtzQDiuKolyvLmkbqjR1oTtWxwG9AHvgNmCxEGJEvd83PjkJI2lIKU8IIRYCHwiht31ng/zfAk132lIURVFMou7QKYqiKBfTBW02J6WsNsREREgpX0YbUZgDZBqyNB5zdAH0dpB5E2gHTP8b9VUURVEURVEU5Qr7uztWmwGWwGm0jsSYs78QQlgBQ4EDxp4opcwGPgLeNpShKIqiKIqiKMo15C87EUKID4QQQ4UQfkIIfyHE+8AI4CepBVR8CrwkhJgihOgOLEKLm/j5T4r9GC2+YvI/fQOKoiiKoiiKolxeFxIT4QYsM/xbBEQBE6SUWwy//x9gDXzB+c3mxp7dI8IYKWWpEOJN4Mt/UHdFURRFURRFUa4Ak5Z4VRRFURRFURRF+bsxEYqiKIqiKIqi/EupToSiKIqiKIqiKCZRnQhFURRFURRFUUyiOhGKoiiKoiiKophEdSIURVEURVEURTGJ6kQoiqIoiqIoimIS1YlQFEVRFEVRFMUkqhOhKIqiKIqiKIpJVCdCURRFURRFURSTqE6EoiiKoiiKoigmUZ0IRVEURVEURVFMojoRiqIoiqIoiqKYRHUiFEVRFEVRFEUxiepEKIqiKIqiKIpiEtWJUBRFURRFURTFJKoToSiKoiiKoiiKSVQnQlEURVEURVEUk6hOhKIoiqIoiqIoJlGdCEVRFEVRFEVRTKI6EYqiKIqiKIqimER1IhRFURRFURRFMYnqRCiKoiiKoiiKYhLViVAURVEURVEUxSSqE6EoiqIoiqIoiklUJ0JRFEVRFEVRFJOoToSiKIqiKIqiKCZRnQhFURRFURRFUUyiOhGKoiiKoiiKophEdSIURVEURVEURTGJ6kQo1zQhxG4hxO4r8LpvCCHkBeTbLYTYZyTdQwjxhRDitBCiSgiRLYRYLYQYcGlqrCiKct7V2nYKIe4XQsgL+Hmj0fPaCCHqhBCVQgiHS/5GFEW59jsRQhMphJhxgfm/EEJ8f6nrpSh6hBA9gSPABOBDYCzwBGAPHBBC3HsFq6f8y1xIGyqEmF3/wk8I0U8IkSeEsLs8tVT+RTYAg+r9zDKkP9ko/btGz7sPEIAlcNdlqami/MtZXOkKXAR3AA7AzxeYfy5wXAjxvpTyxKWrlqI0JYRoBqwEioCBUsq8er/7DfgNWCiECJNSxl2hair/Lqa2oUgpI4QQR4A5wBuXqF7Kv5CUMgfIOftYCGFl+O8xKWXInzz1PiAScAZmAF9dskoqigJcByMRaHcnlkopay4ks5QyEdgHPHYpK6VcHEKInkKI3w13PSuEEHFCiJf/4jmdDM8pNDwnRAgxvlGeRUKIRCPPbTLEL4ToLYQIMgyTpwkhXkW74/V3TAHaA/+p34EAkFLWoY1ImANP/83yFcVUJrWh9fwIPCqEuB5uRl13rsO288/qPRRoCywGlgEBQohOF/t1FEVp6JruRAgh2gOD0e7s1k9/SAgRbWi4soQQKxsNu68Cpgshrun3f70zxAcEA+3Q7njeCMwDvP7kOR5oncSewGy0u6yFwAYhxIS/UQdnYCfn727NAsYDD5halsEo4AzakH0TUsp04CAw8m+WrygXzFgbKoSwFEIsMFxI5gshPgGaGXn6OsARGHd5aqtcqOu07fwzM4BatNG0xYa0+y7B6yiKUs+1fgdpFFCGNoQJgBDiv8BbwJfA80ALtAa0JdoUEoADgCvgX/+5ylXnIyAPbdpPuSFt51885xm0qRmDzk5XE0JsBI4C7wKbTKzDHMAGGCelTDaUtw1IMrGcs7yBnHrvx5hEoMffLF9RTNGkDQU+AB4EXkE7bh4CpjZ+opSyWAgRC4xGp1OsXDHXY9tplBDCGu37uVVKmQVkCSEigHuFEK8aRngVRbkErvU78X3R5knWAQgh7IH/AJ9KKWdLKTdLKVdLKWdKKdPqPS8W7W6wWgnnKiWEaAEMAX76iwvuxoYBIfXjXaSUZ4DlQC8hhK2JVRlkKC+5XnllwB8mlnPWhQzlX/ThfkXR0bgNdQIeBV6XUn4spdwE3A6U6jw/EtWOXlWu47ZTz62ALbCkXtpitBs2Iy7yaymKUs+13olwA3LrPR4EWKPN1dUlpaxFG6Z1u3RVU/4hB7TvZ6qJz3MEMoykZ6JdnJu69J87kGUk3VjahUgBWhtO9Hp8DfkU5VJr3Ib6A1bA2rMJhg7GWozLRbWjV5vrte3UMwOtk7tHCGFvuJm4CW160wWt2qgoyt9zrXcirICqeo+dDP8aawgbqzI8X7k6FQB1gKeJz8vH+EWNGyANvweoBJobyefU6HEG2tS3xoylXYgdaIHTNxr7pWFecl/+euqBolwMjdvQs8dOdqN8jR+fpdrRq8/12nY2YWgvR6NNV85Ae+8FwAm06dq3CSFsLtbrKYrS0LXeichHW1v/rLOr3bhfwHPtOd8oKlcZwzD8PuAew5zXC7UHGCiE8DubIIQwB+4EDkspSwzJSYCrIfjvbL52QOMVPYIN5XnXy2cD3GRCnepbDZwE3hNCONb/hSHQ/3O0C4DP/mb5imKKxm1opuFfl0b5Gj8+S7WjV5nruO005l6065iHgRsa/TyLFpNx20V8PUVR6rnWOxFxQJt6j4OBCv5iCFMI0Rot4Dr+0lVNuQieQ7u7FSyEuFcIcYMQYqYQYv6fPOcTtKlq24QQdwshJqHNwe2IFih61m9od9d+EkKME0JMR5uykWukvDJgqxDiTiHEZGAr2vfMZFLKarQgQAcgXAjxqBBimBBiKrAdmAw8IqU8/nfKVxQTNW5Do9HuNN9yNsHQub0F4/xQ7ejV6LprO3XcB5yQUi6UUu6u/4N2QyYLNaVJUS6Za70TsR/wMXQKkFIWAm8DzwghPhdCjBdC3CKE+FYIUX9otx9aI3jg8ldZuVBSynC0AMEUYD6wEW3FLd25voYlUgPRgue/Qlu60hG4UUq5uV6+E2gBo57AGuAFtNVJ4huVl4u2gk0uWrDeF8Bm4Id/8L4OA72ALcBLaJ2HL4FiYKiUctHfLVtRTNS4Dc0DvgXeFEI8a9gj4De06SLG9DOUoVxFrte2sz4hRH+gq155htjHxcANQgifi/GaiqI0JKSUV7oOf5sQojnaPMinpZRL66U/AjyFtkZ2AbAXeFBKWWz4/WdADynlDZe/1oqiKFcHY22oEMIS7S7ydLSpdcuA08DHUkpR77m90fY0aWvYxFNRFEX5F7mmOxFwrkPQXkppNFDVSH5ztDmdL0kpl13SyimKolzlTG1D6z3vfaC/lHL0pamZoiiKcjX7y+lMQohEIYQ08rOhXp7HhRCnDTtEHzRsQW+sjMbpbwghYv7he5gLjBBCdLzA/FPR5mT+8g9fV1EU5Xpgaht6NkD2IeCdS1YrRVEU5ap2ITER/dFWOzr70wctnuBXACHEnWgrybwH9EaLM9hkZA5iJfDhxan2eVLKVGAmF7YiE2jrXc80zJdUFEX5V/sbbSiAD/CWIYBVURRF+RcyeTqTEOIVtAAtDylluRAiFIiSUj5UL08CsFJK+bLhcSLa6g0PA9OllKsN6W8At0spu1+E96IoiqIoiqIoymVgYUpmIYRAu2O1zNCBaI62MdZHjbJuBQY3Sju7SsT7Qoh1FzISIIR4GK3jgZOjfd+8/EJTqqsoinItSZJS+l2qwv38vGVSkqmbGCuKolwzLmkbqjRlUicCGIO2pvh3hsfOaLvvNt7GPgttF8nG3gceNPx8/VcvJqX8Fm25QYQQUlb8DmaWTfKt3xDKzEc/Y9vGd+nh36bhL4W58cKNpevmNfVjaig5OYvuPe7jiVm3MmF8AAMHdsXCwhwpJSkp2QTti2XDxmA2bQ6hR492NGtmga+PG99/91LTwvT6XvKMael1VcbTdVSWFWFp2Yzs7CJcXe3JyyvB1tYai+bWaH3LRoz8nTDX2ffIfITR5Pwa49lzq42Pnp2pq2uSlpaUyPqVv7B51a8U5OUy7tapjL/tDrr36Ud5TdMXqNUZmbMw9h4BM510Kwvj3xlzM+MzCPXK0cvv3LxpfsdmRrPqq9unk67z3bhY37HakqZpdeWmla3HvIVOeqsGDzMyCvj483X8sGQnt90SwMRxvRnQrz2eHob9/4y1BabWxZS2BxDWt/qa9gKmSUpKRVauM3psrv59H7Oe+oIdmz+ga9d/UA29z8jM2AbHF+7kyXT6BjzGE7OmMH5cfwICzrehyclZ7A2KYcPGYDZvCaN37w4AdO7kw1dfGdkWQSbp1F2nbdVr/80CjSYfKzH+GdQaaZ8A9GYDGGtX9doJY20fQJ1O2Xp1MZaelniajatWsGvdakoLCxlx8xRG3DKFjj16GW1D9V7TUqdNbG5u/Hho1dz4d8ZCp020bmZaA+hq1fR1HS1SjGc29TtjrI0D4+dFML3NNUVdtfF0vfZJTzP7Bg/T0nL5aN6vLF66lTtuC2TCuD7079sBDw/DxuXG6q73uZzRSdc95xj/3IXjM5e0DVWaMvXq+CEgXEp5pFF641ZDGElDSllgWNHjdSHE0sa//7sm3RjAu2/ex5iJrxCydx5t2rhdrKIvCh8fV7Zs+pg//gjiyTnzOX06g/btPYmLS6FlS2sG9O/ChPED+fijWbi7OzP1jlcZMbzXla52A19/t40unTyZ89ISdm18jTtnfMb40T2Z+X/jaN3a7kpXr4HEEwns3LiObWtXk3zqJKNvmcKLH8yj96AhmOucsJR/h+SUHOZ+so6fVgRx77RhRIXOxcvT6UpX64qbcmsgGZn5jJ7wEiFBn+Hjo7dB9ZXRrp0HG9a+yx8bQpn15GckJ2fTtq07cXEp2NraMKB/F26cOIjPPn0KV1dHbpn8MiOG977S1b5mJZ2IJ2jTBnZtWEtGchJDb7yZJ9+dS7f+AzHTuYhX/h0SEzP5cO4vrPhtD/ffN5aYg/PPdxyUf50L7kQIIVzQdi2dVS85FzgDNL5qd6Hp6MRZ84HZaJvT/G21tWcIC49j247DbNtxmMio0wT070RJ6cXcDPPiGTSoO4MGdua9dx8iIyOP06cz6NzZB0dH2wZ3urZtC2dvUCQL5s+5grVtauqUQTg5tuTTD2fg4mLHB29No62fKw4OentQXT51dXVERYSxbf0adm74g+LCAm6YeBOPv/QqA0eMQqiOw7/eyVOZfPDR76xeF8qD94/i2KFPcXW1vzh3+q5RNTW1Whu6/RBbtx8kOiaRQQO7UHqVtqFDhnRnSGBPPnj/YdLTc0lMzKRLF18cHFo1aEM3bgwmLPwoP3xvZCRXMaquro7oiDB2b/yDvZvXU15aytBxE3n4xVfpO3Q4Vdf4UvDKP5eQkMp7Hyxn3foDPPLQJOJif6R1a3s4ozOKrPwrmDIScT9QRb2lUaWU1UKIg2jTnH6rl3cMsMpYIVLKSiHEa2idib81GhF7NIkhI56jqKiMUTf04tWXpzE0sBstWlj9neIuO3d3J9zdz/fcT59OZ8eOg2zfEcG27RGsWf0erq6OV7CGTWVkFvDZFxt57eXbeeDRr3jp2cmsXBPCXXeMwNGx1V8XcJFVVVYSvHsHO9avZdem9dg5OHLDjTfx7pff4d+3f4O7ZXpD98r179jxdN77eD2btsXw+EPjiI+cj5PT5f++Xm2OHDnJsFHPUVJSztgxfXnj1XsZGtgda2ud6RZXGQ8PZzw8nAFtOtCpU2ns2HGQHTu1n/XrPsTJ6eoaIb3aVFZUELZnJ3s3rSdo2yYcnFozdPxEXv/iOzr37N2gDa0yMm1J+XeIiU3mvbmr2bYzmtmP38KJ40u0jruicIGdCENA9YPAL1LKxpPX5gFLhRBhwH7gUcCDP495WAo8CzwAnDS10l06e7Ny+X/YsCmc9RvDeOCRT5k4vh+TJgxg1MhetGypM/f+KiKl5I03F7H0p21UVFQxamRfxo0dwEdzZ+HlZfpUgurqGg4eTKBfv47s2x9D717tSU3NoVVLS3x9Xf9xfVs72zJwQAeaNTPnhmHdsLdrQbcu3lhamjoR/8LU1taSnJhKclIiyUmJpCQa/k1KJDExkZysTHr0HcCoSTfz4JwX8G3XXndesPLvc/BwIu99tJ59wQk8+dhoFnzyKHZ2Nle6WleNHj3asGrFf9mwKYw/NoQy85F5TBw/gEkTAxh5Qy9sbK7+GzJSSv776vf8tHw71dW1jB7Vj4kTBvLJvCfOdTD+zWpra8lMSyE9Oen8T8r5/+dlZ9G97wCGT5jE/XNewMuvjbrhopwTFp7Ae3NXExKWwNOzb+Trr57H1la1oUpDF7TEqxDiBmAnECClDDPy+8eBF9DWGY8B5kgp99b7fSKwQEr5Ub20CcBGIPZClngVQkhZtsJoMFB8QjobtkSzfmMYYRHxDBzQiZ492tKhvQcdO3rTsYMXHh5ODQPVjAUV6QU9XSzifMzPZ599z6LFK1m29FO6dhtlPDhZGgnyqjPe56oqL0ZKyZ690Ywd04fQsDjatnHD0rwKOzsjwaZ6QVV6AV4WOncedAJZ8+WoJmmO5g0Deevq6tix4yALv1vDocMnqKurQ0ptqlp2diGuLnb4+brg5+tq+Nfw422Hl6cTzZs36gPrBW8217mgMBIYGV9m/HjoaGM8oFE3OFlviPdiTZ8x9nfSC6AzdUsU3TrqpOu9VxPSZWWe0azCSmeurc7fdG9wCu99vJ7YY2k89+R4HpwxHBsbS6gp0KmLCVN39I4Bve+dmU6Qt15gdcvpSCl1vmj/nBBCGgusllISF5fChs0RrN8QQsTBeAYP6koP/7Z0aO9Jx46+dOzohbu7k/F2qsGL/LNFKM6X89fxkXPnfs1vKzeweNE8Ondub7xuwvvCX1PvWNariyllo9+26KmqbXrcNg6sPnPmDMG7tvPbou+Ii4lC1tUhpaS2poaCvFzsnVvj6uWDq7c3bt6+uHp54+rtg5u3L63dPbBoFIxcoTPioNe5MBbM3EInwNlSZ1qpXqC0Xrpe4LZe0Lle3Y0FdJu68IVeXUytoyma6XyOxhbbgKbn3T8jpWT3rgje++An4uJTeP7ZO5n5wERtlofe+cWUYOlLGUAOCPtZl7QNVZoyeZ+IK+XPOhHAuYvZoqIy9uyN5lhcCvEJaSScSCc+IY3q6ho+fG8mDz4wQTvZXMFOxO7dwdw1bTYhwWvw8/PWPxmZ0IlIS04hJjaJOc9/y66tH3DnPR8wfmxf2vs5cPutA43U5cp1IqSUfPvtOj6c+xN2di156IHxjBrZBwsLc4QACwtz3NwcaW6uM4Sud+GnOhE6r3n9dyLy8ku5+8FFnEzM46U5E7l32uCGo2SqE6HbiWhcr8LCUnbvieR4XDIJCWnEJ6QRn5DKmTNn+Oh/jzHjvnH6nYnL1InYtm0vM+5/htCQdXh7e/xJOddnJ0JKyS/ffcWPn8/D3sGRyfc9QL/A4ZiZmyOEwNzCHGcXNwqNlFG/nMZUJ+Lf24nIySngrrvfIDU1h5demMb0u0fTvHm9v6XqRChGXKQW/+phZ2fDzTcN5OabDBfOhhNjTEwiM2bO5fe1B1j41dN4ev3zKT5/R0pKOtPuns3SJZ9oHYiLxN3dEQ8PJ3Zt/QBXVwdWr/gvrVpZY1ZXdtFe42KoqKjikUfnEh1zihXL36Rfv84IqdM4nVHzcJW/lnAymxvv+IrJN/Zgw6pnsbBQgfT/hL19SybfMgQYoiUY2tDIyBPMeOADVv8exLdfP4ub25WJ2zp9Opl775vDil+++PMOxHWqoryc1594hMQT8XyyZAXdevc12uEAQC9dUeo5diyRSTe/yJ13jGTrpvvVKobKBfvXrNXWvbsfIfs+I6B/Z3oPeJyfft6huz73pfTgQy8QGNif0aOHXtRyi4rKuHP6+1hYmDNizIvEJ6TxymuLWfrz3r9+8mWSkpLFsBGzqampZX/Ql/Tv3+Wvp0coyp/Yuz+BoRPm8fyTo/nfW7eqDsQl1LNne8KCv6KHf1t69nmQX3/bdUXq8cDM5xk9OpBhwwKuyOtfSenJSdw7dhjmFuYs2bybbr37XukqKde4nTsPMmLkk7z6ygzee/cR1YFQTPKv6UQANGtmweuv3sOmP97lvQ9/xrfd3XTv9SADh8xm1NjnuWXyy4SGxl7SOrz63yc5eTKZIYFTKCi4eDtwW1tbMnZ0H2xtWzB+bF/atnFjxLAedO928UY7/omQ/fsIGPQIU28fwc8/vX7NrKSlXL2W/hLK7TO+Y+k3M3hoxpArXZ1/hebNm/HO2zNZ9/s7vPbGj/i2vQv/Xg8wcPDjjB77LLdMfplDh+IuaR3eeH0O0dHHGTb8doqLdaZSXIfCg/Zw9+hAbrn7Xt77+kesrK/+BUSUq9sPP2xg2vQ3WbH8Te6/f+KVro5yDbqupjNJKSktraBVK525yAZ9+3TgSMQ3JCdnU1ZWSVlZJcUlZUy9623+8/I9l7SOgYEDWPnbV/Tpe+NF7fGfOVPHlMlDWLx0O8/NuY21fwTTvasfLa2v3Dr4+Xl5rFu9ktUrlhN37ChLF73M+PFXx93Duro6cnKyEELg4vLPNtbKyMhl5ardpKfnYmNjTcuW1thYm9HSxpqbJg28JlYLu5ZIKXn93fUs+zWM3eufpmtn9ytdpevGhbahAQFdiTr8PSkpWhtaWlpBcXE5t93xOm+8/n+XtI7Dhw/k1xVfMnjIrdf9XdP83By2rV3NppUrSDqZwIcLlzBwxMgrXS1Aa0Pzs7MwNzfHzumfrYaVk5HO9nW/k5edhXWLFljbtKSljQ3WLVsyYsJNWLf48++jYpq6ujr+88q3rFq9h727F9Cpk8+VrpJyjbq2AquLvwPRMIjx7Q/XsGV7NOmZRaRnFCClZNKEviyY9yDu7g76QY+NAgDXbwjljXeWEx7yxYVPsTE1ENsQoPfUU69jZWXJhx/+x5B+EUYLqjeZll8vSFSPXnBuo6Cq4uJy1v4RyvIVu9gfEsf4Mb2YNnUI48f0xKq5Thl6wVZ6gVx6Abt6f2vzFhQWlvP0y78Sl5BFWkYhmVnF2NlaU1tbx8Sx3XjhqXH09PdqEAwrpSQ49ARLlu8Ds2YMG9KNoUO64u3tTEFBKavWBLP81yAOHTnFzTf2p1NHT8MFVSVlZeV8v3gX771xFy8/f2u9z0snwNfUoGhjgWh6wWl6QfS6wfU6ddH5O+kFRcs64/Uxs7K/8Lo0a5i3srKGB574hdNJ+axZ9gCuLo2+x3rHpKkBfcbK0Q2g1gtUvrC251yyzZ2XPrC6bEWT9/H628vZvjOK9IwCMjLzkVIy+eZBfD7vUVxdHYz/bYykrVq9l48/3cCB/b83zS+TjFfKyOIGgH6Qs8Fjj3+Es7M9b7/1oKE+FyH4+czuC88Lpn13QL+OZ+IbPCwqKmXN2gMsX7GT4JCjTJwQwLQ7b2Dc2H5YWunckDAfYTQ5XyeszFFnZe7YYv1A7MK8PD54+VkST8STnZFObnYWtnb21NbWMHLizcx86jk6dmu40KKUkoMH9rF2+VJsLJsxaMhQBgYOxdPLi/y8PP74fRXLl/9MXHQUI2+8CZ+2HagoL6O8rJTS0lLWLlvEc+99xLRHzu9xqxcoberytKbk1rtO0rtW0JvioRdYrRdEbkoZehoHYldWVPDKo/9HXnYWn/20EodGHcBurTKMF1R7TCddZzTQWJtrcgC1Tn6dcoTtgyqw+jK7pkciqqtr+WDeetatmIOvnxce7o6YmQnefn8lPQc+y//euZcZ9439006BlJJvFm7k1TeXsviHFy/LHP2w8Eg6dPCjrKwcG5tr8w5LdXUNsbGJHIqIIjI6kZycInLzigmLSGBYYDfuuWsovy6dQ8uW9aYt1V2ZIL/i4grGTfmcPj19+Oid2/B0t8fdzQ5Ly2YUFVXwzY97mXD7fHp08+SFOTfTpZMHS37ex4/LgpBS8n/3DMXSuiUrfz/A0y98j5Vlc4qKyxkzsiePPzyBieP7NNmkS56pYn9IHDcM73ZF3vP1KCe3lFvv/RFPdzt2rn0Ma2udi/RLpLb2DCdO5RAdm0b00TRijqaTm1/K5En9mDY1AHc3I52jq1xFRRVzP1nDxjWv4u3tgbu7A0II3nj7J3r0m8XHHz7I9LtH/2Ub+sWXa3nznaX8/NMXl6XeYeHH6NmjPeXlldfs1MiqqipiY+M5GL6dqOhT5OYVk5NTSHhEHCOG9+T++8ax6tfXsbG58iOZRQUFzJw8nt4Bg3nx/Y9wcfOgtZs71tbWFBcWsvy7r3jg5rF07dWHh+a8gE/bdqz5eQmrly3CzMycW++Zgb1Vc9as/JWXn3kS6xYtKCosZOSYcUx/ZDZDx4zH0qrh37GypoaIfXvoPUhNVbxYcrMyefLu2/Bt157v1m6hueXl3VyytvYMCScyiT6aSnRsCjFH08gvKGXKzf246/aBuLqoDSKvNdf0SERcfAYDR71J6M7X6di5XYP8h4+c4oFHv8TFxYFvFjyOn1+j1ZiEBVlZBcx85FMyMgv4adHzdO7asIy/9DdHIoqLS3jiydcICTnMyRabMQAAIABJREFUT8s+o1//SaaVY8wlGomQUpKenktMdAIxsYnExJ4mKvokx44l07atO316tqFXzza4uTpgb2/DwAGdtB2sjS2dWaczgnAJRyKklAy98Uvy8suY/7878fVxxNvTESurhrfiqqpqWLYijLmfbycjq5A7bh3A/90zjEEBhvXnDZ+XlJITJzNwdbHH1la/A1hZXopv59lMmzqYd9+46/zmXWok4m+NRByOSuXWe3/knjv68tbL4xvsptuw8Is/ElFaWsXjz/3KynVHcHe1w7+bJ/5dPfHv6kHLlpb8+vsR1m48TEC/ttw3bTDTpg40LCN99Y9EREUnMnLCa4Ts+ZD2Hfwa5I84GM8DD3+Kt7cLXy94Am/vetP+DH+vjIw8HnjoI/LzS1i2+CU6dNaZanORRyIKC0t4fNY8jkQm8POy1+nVe7TxjFfBSISUkrS0HGJiy4iJiSMmNo6oqOMcP36Cdu186dPLh1492+Hq6oCDQysGBnTR3xFYd4nzEUaTL8ZIxJkzZ7hnzFD+n72zDosy++L4Zxi6QUJpUBQRbFHBRuwu7FpXXd21O9duxe517e7uRkTsLkC6le6Z3x/DgizzuuIPg935PA+Pj3fO3Lnzzsy977n3fM9JTUlhwvwlmFlaU8rCEjV19XwpUdPT0ji6ezubly8mNjqKFh260KFXPyrVqIlIJMpNQSqVSnn7+jWmpUqho6NDeKr8Oe79hw+0quJAm+69GDR+am5Ik+Ik4stOIp7c82NUb0869OrHoHGTBdPZfo2TiISEFH4ZsYXDx/0wNzPAqbwFzhUscK5giYa6CvsO+3Ls1H1ca5ahT/c6dOlQM+faKk4ifnSKtRMhlUpZuvIM85Yc56e+7kwZ3wkdnbxdm8zMLBYvP8liryN0aFubPj0b4eYqywh0/ORdBg5dQf8+TZg+pbssH7JQuIIQX+hE/MXevcf4bdh0Ro4czbhx4/6/+N6v4EQEB0fStfvvvH4dgrOTLU5OtjhVkP1VrGgn2yETzBH9YzgR2dkSFq26wYvXEQQFvycoJI6QsPfo6WpgZWHIzMmtae6RdwQvQZ2sLEnBQnaFDf+SZBATk8CoCdu47v2CdcsH0NSjssKJoPBOxJ6D9/ltwiHWLOpI53aV5dvldl60TsTT5+F06vsHri62LJvnia6unF1hJTVSUtI5evI+k2ceYp1Xb5q4OxULJyI7O5vFy46yyOsIgwa0YNJ4z3zVqjMyMlmw+CBeKw/TqUNd+vRqTO1ajoiUlDl85Aa//LqcQT+3YsqkHqioKIO4rPwXL2In4i927jzHiFErGDd2KKNHDyzoXH5nJyIwMBzPbtMJDIzA2dkRpwrlcHIqh7OzA87ODmhqahQIZ/ok38GJyMzMZMvyxbx785rwkCDCg4OJCAtBV98AM0srRv0+B9eGeU6cRCIhKysLVdX833+hOgZCTkR6VhZx0VEsnjyWp/f8mLxkFS71GyqciC9wIo7t3s6SqROY7rWGRq3afrKfonYiHj0JolPP5bjXr8DCWV3y3aN9THJyOkdO3GXSjP1sXT+QBnXLo3AifnyKdTiTSCRi9LDm9PCszYTfD1Gu0jD69GxAr271cCxviYqKMhPHdaZ3j0bs2H2FgUNXk56eSUVnGx48DGDfzonUrfOPxbK/Gp6ebahduxodOv6KgYEBgwcP/m5j+TvnzvnSu+8cRo7owtgx3VASFW6C/lEQi5WYMKoZMbFJvH4bRVBwHIFBsfjdf8fl6y85d+lZPidCSUkJVdWiSVpmZKTLtk2/sn7zeZq1m8fJgxNo0dimSPr+L5CdLWHSnOPsP/qQC4cHU8nJ/Ju+/qVrr/Dsv4WFM9rSr0etT24yZGdLyMqSoK6mwv2H72RORDFALBYzfkwHenVvwPipOyjn/DN9ezWmZ7dGODhYoqqqwtTJPejb24PtOy/Sb8BSJFIJjuWtefrsHYf3z6B2bcfvNv4ePZrg5uZMuw6/Y2RkSL9+Xb7bWP7OyZPe9B8wn3FjuzNqpCciJZvvPaQvQkVFhcFjJxEXE827t68JDw4mNCiQp/fv4nv9Ct6XL+RzImRzaNGEGhoamzB3w1b2bFjDLx1asPbQKarWrV8kff8XyMrKwmvqBK6eOcnm4+coU/7bhteeu/iIHv3X4LWwFz083T6piZDNodm5c6jMiVDwo1OsnYi/KGmqz58bfuXJ0yC2775Kk9azMDHWo2e3egzo3xxz8xKMH9ORcaM7cPfeG67ffMafm0ajp6f1vYeOlZU5vXr14smTJ997KLk8eeJPj14z2b93Fg0aVJE1SounE/EXnXqv5+qN1wDo6KjTqW1V1i3rTp3aZb7aa2ZmZrFs5UkWeh1n7u9dadzIGfjvpKT8f3j/IZXuvxwiPVOE74URGJXQ/uZjuP8ohPatKskcCAESElJZseEsy9ecp1aN0kwc3ZIObYpf7n4zM0O2bxnLo8cBbNtxkUbNJmJWypCe3RrxU//mWFqaMGlCNyaO74rvnZfc8nnBjq0T/zGL07fAxqYU3bu15cmTr5tatjDcvfuSfj/N49CBOdSpU/F7D6dIGOrZjod3bgOgo6eHR5sOzFyxnuquRVvz6GMyMzLYvsqLHWtXMPz3OVRxFTi5UlCA+PdxTPypF2KxmJ0Xb6Bn8O2LQ969H0DXTrVlDoQA8fEpeK05y8p153GrZc+0Ce1o37r4zaH/VYqVE+F3L5BqVe25fO05brXsCQ6JA8DSwhCfu0+pV8eRzu1rM/LXVnj7vGTDH+dZseY0u7eNoXYtB0QiEdWr2VO9mr1gSMH3oEyZMpw6dep7DyOX8PBYKlUqk+dA/Au4fGIUge9iuX7rDde9X3P91hsOH3+Aa007unWqQU/Poks9m5SUypWrD5g0fQ+lSupz+8psStuVlD2oKCD7SaRSKWcuvWHY5LO0bGzPotmdUFH5Pmk8y5c1ZetuX7mPJSamsXL9ZbzWXqKJewVunJtEubLFP9VsRWdbFi8YwIK5/bh85REb/zjDijXH2LtzEjWql0MkElHTxYGaNX+shAH29rbcuHnnew8jl4iIWKpXc/jXOBAAuy7cIDjAn7u3bnDXW/Z38cQRqtR0pY1nD1p27lpkr5WcmMiNyxdYPXs6pays2XHxJmZWsnDgwoYt/deQSqVcP3eaxRNH06h1O0b+Phdl5e9zv1O+nDkHj8r/XSYkpLJ87VlWrD1PiyYV8bk0nTKlTeXaKvhx+XHupD+DMZN2svePPvw6agtec9ux++A9ALp2qMKqzbdwsOvFmImbaeYuW+DS0lJYPLsDXXrM45nvLHR0Psr+IC+2VElgV00wtaNA7LhgDLr82Ffn8vHcvetD6Lu9mJt/lG5N3tGfUGy3EELOkpCuICuR5A8RqChlQ3rkP/efXQQ760Jx7ILtAp9HWpj89vQIRICtCdi2NaF3WxOevCjL6OkXuenziqZuJZDG5winBeL4hRApiUlOycTbL5zLt0K46hPCo+exVKtYikm/VcWzrSMiURQkRn26I6H3VFidg1zbQv7M1c3ktwt8Z0QatvLbheJZxXL0JSIxDx8FMGbiVoJDYli6aDCtW9YofEpAoe+1WGjHvOB1jIlJZO6SU2zddZWxw1uDat7ClpSUxqp1Z1i68iSNGzpz7dwMHMoKLHw/0EZFLpIU4Tnko+GKRdC4oSONGzqyd98VOnedxVO/xXl6CaHva9bdwo1HdFx+u9BvX+BzdHbSwcfHj8iI+5iafrTjKnkrZ4yFnLMEvzsCSNJJTkpERUWU/1pn3JJvL6STkoeKQD0GlYtymw3FQro9+Tv6FbQEtCg5mgvHSmVpWqksDO7Po0ePGDRsJPdve9OweV5ykLRM+UKMN0Lah+xsUpKTeOLrw33vG9y/eY2AF88pW6kyvUZPoF7LNohEIuLTZdcyRaB/ISRfUfepLnBzLtQupH1QE7AvjP5BIpXy7MF9lkwdT2xUBJMWLaduk+aC9oXVVhRmLo6Kimf2ggPs3HudyeM65vs9JyamsmLNKbxWn6SZR2VuXppD2TICc6iQJlBobVHwzSlWwurYV5MxNCpBSOgHwiMTKFvaGLFYCS0tVaLisjE10SUuLjnXWUhMTMOwhB79h2xBT1eDZfM/2ikpEidCKB94IYWswMzZ27l85QEXzi7ME1h/TSdCYCxpSbG41JvAiKEt6d/H/Z/7LwonorAIXQMhJ0KSlu+/kdHJWFVfR0ZGNlWcjHEqWwIrCx2szXWwMtPO/VddXf61S03LwvtuOFd9wrhyK5QHz2KoUsGY+rXNaVjbgtrVSqGpa1C491SMnQi5ToHsCZ9lHxoay9RZezl19h7TJnbh5/4eMpEuFJ0TIbjo5F3H5OR0vNacZdmqM3h2cmXq+I6UzEnbKpFIWL3+LLMXHKZhfUemTeiEY3mLnDEKLHSFvO7fRFiduAUQk5GRxeOnwVSpZJ0nRhZKHiDJoGf/lZibGbJgdg9ZW2GTUAgOSuB7XEgnAmDK1I3cufOc06cW570neZ/NV3YiUlLSqFZzCFMm9qBH94/m0Az5CQiKxokQSC8suBEjEBYkJC7/m3A7JCQEW1tbsrKyqFClGvblK2BmaYWZlTXGZuaUsrSipLllvrStaVl5n0VaSgqP7vhw98Y1/G5e4+3TJ9hXrERV17pUcauHY7UaiAV0FcXZiVATSJ6ioSJf6f65N/rhIcEsnzkVnysX+WXCVNr36vePpw9CDk15bYF1NFMg5PqjOTcxMZWlK46zYu0penatx+RxHTHJSdsqkUhYvvok8xYfxqNRRaZO6IxDuRydm9A8X5jEIoBIp7dCWP2NKVZOxK3Tg9i44z5jfmtA1QZLUVNVpnplSyRSKXv/HEjnPhuZ/3t7Dh27D0CHNlWwMDdCXV2FCi7TOH1wBFUr52RI+sGciOzsbBo3HYeNdUnWrBomqzvwjZ2I9PQMhv7qRWJSKnu2jfy8mhnF0IkASE/PIjgohnehibK/kASCcv59F5pISEQSBrpqWJnryP7MtMnOluJzL4Inr+KoVN6I+rXMaOhqhWv1Umhp5l8ERKqFzOb0H3QiIiLes2bDWVZvOMPA/k2YMKZDQZ3SN3AiEhNT2bDlCktWnqaeWzlmT+1EGfu8Cq5RUfH0GbiGD/HJbFw1EKcKf6vuWgydiJDQOKrXm46yshKd27vg2aEmNWtXlv+bl2QQGfkBJ5cxXDo5DWcnqx/SicjKyqJBo2E4lrdh5YoRqKmpfnMnIi0tg0G/LEMqlbLtzwn5H/wXOREgq3Nx7WUQYUHvCA1+R1jQO8JDggl+F0h48Dsiw0LRMzCkpIUlZpZWGJmZk5WRyWO/2wS8ekFZp0pUc6tLRdc6VKjmgvrfqlILhS0pnIg8osLD2L1xLfv+2IDnT4PoN3wMWjqft/YUpRORkJDC2o1n8Vp1EveGzsyc2hU727zThYiI9/QasJK0tAzWrxyEY/m/ZU1TOBHFlh/wvF0YO2tDqlQ0p4ytMQumteLqrbccOv4YgGr15mFtaciH+BTq17FHJBJhZ2OEiooaBgZadOtUk72H7uQ5ET8YYrGYY4dnMWDQElzrDuPA3umUtvs28YFZWdls33mBGbN3UsHBnJ1bhn+TonvfEzU1ZUrb6FPaJv/i+1c4k0QiJSI6haDQRILCEgkKTUQqhYWT3ahe0QSNnFMKkdL3idcvrkRFJ3DouDd7D3rz4FEgHdrU5P6tRVhZlfzmY4mJSWTl+kus2XgR9waOnDo4msoV888P3j4v6dLLi17d6jJzape8E5JijoW5Ic/uzGPM5N14rT6L1+qzWFka06WjK56d6lCtaul8c4CpqT6d2tVi36FbMifiB0RZWZmTxxfSr/886tQbyv69M7GxNv4mr52ZmcXWbeeYOWc7VSqXYcfWid/kdb8nampqWJcug3Xp/Mkp/gpnys7OJjYqkvDgIJlzERSISCSicbuOlKtYGXUNWarP9GxFaEphiImK5MLRQ5w5vJ9XTx7TpF1HDt68i4nZt81eBxAdHc/yFQdYt/kcTRtX4tzxqTg75Z9Dr914Rtfey/ipTyOmT+6CsrJizfw3UaxWxGNnnjOorytLVl+hfw8XypQ2onplS9b/eYusLCmODqXo+8tWxGIl6ruV5dipR0wZ1xpNTVX2Hb7DmUMjvvdb+CQ6Oprs2TmF1WuOUrvuMNavHkb7dl+vWqdEImH/gWtMn7kdU1MDdm4dj5vLj3mD8K1RUhJhZqqFmakWtap++xvcfxOxsUkcOnaXfYd9uXMvgOZNqjJ8SEuaNamMuvq3rToNEBIax5KVZ9m66yad2tbg1sVpcgV9QcExdOi2hI2rB9G6xb8vW4ihoTZ/rP2Zrp1qMWj4FvT1tUlITKVr7yUAtG5RA7faDrjVLI2+vhaHjvpy9ez07zzqT6Onp83BA7PxWr6PmrUHsXnDWFq1qv3VXk8ikbBn72Wmz9yGlaUJ+3ZNpVat75fy9kdCLBZjUsoMk1JmVHKplS+cSUHhiIuJ5sKxw5w9fIBnD+9Rr0lz+vw6EtdGHrkhY1/zxOXvBAVFsXjZIXbsvoRnR1d8r83Pd/LwF/4BkXTqsZhtG3+jWZN/T6IWBXkUKyfi0MlntGpeibq17FBREWNtYYi1hSG9u1Zn7PRTHD7xgJ96uVGnVmmueb/hlq8/ld1mIhJBlYpWVHQqROGh74RIJOLXoe1wqeFAl+6zuOH9hPlzfvoqO6ANGo8lJSWdFcuG4NG4qmznsbBH/QoUCHD52nMWLDvFLd+3NHV3YvBPDTm6ZxiaOgIhGd+AFy/DcfWYQ78edXjsMwtzM+GxdOu7nJG/tvxXORBHjt/DvYFTvoJPTdydeewzl6lzjrNr3zXmzuhJJWcbzl96yJ87LjHw1zWIxUrUrG6fF8P8AyMSiRg5wpOaLo507f47N24+Zvasn3J3QLOzs5k2YxcTx3VizfpTVKlkB8Dzl8H07+PBvIUH6N2zIbd8ZCljXd0qs3X7eSaO78aadceoUlm2866iImbCpE1IpbBu9XDcG1X9Pm9Ywb+WW5cv8sfyxTy5dwc396Z0GziEOo2b5p7ifA+ePA2knvs4BvRrytP76yhloi5o26XnEiaN7aBwIP7FFCtNRJP6tnj7hVK9UincXCwpb2+Mg30JypUxQltTzKNnkQweJ6vcvGN1W+ysDZAqafDqbQz6uhqYmnyUa15erJ2QsFBFQCQrVJFWKA61kHF/sTEf6D1wA2npmZw7Og6xWKnwGYuEYo6Vdejs+TuutSswckTnvHYhJ0KovTBx31+gFZGLUNy7kD5DqAKznOxT0qzkwo1FAJFIoGCdUhE5g5LP39WTCtT4EByjWGCBUhMIr9OwyfffrKxsZs7Zw+at51k4py/t2tTKVwW5UJXeC1vNXLCiryzeune/hTiUs2TShG6y9k/8Jh0rD8Vr0QCaeOQsgPKqsOfYym8vnJ5FpN3jq2siGtcvi4/fO1yqWuJW0wYHexMc7I0pW9oYbfUM7j8OZ/DYk6ioiNmxuj02VvpIUOHlmxiMDLUwNsrRrAh9LkL6gcJmOBKikNc6Ouo9PX/Zh0gk4tSe3igpKSEVqSASiYiMSsTEWJvkZNl3SUtTTFR0EqYmOsTGJaP7cYIOQ62C9oaWtOu6gibuTgwd+JGAWuhzzxTQPqgJaJDkrTuCld2byG1+nih/LEK71pkCoUVCOgR5M0u6wIlDhkDfQvaF3VkXss+SfH4/qmL5c6KQNkFIy6AqpH34zKxNWZmZrJs/i9P7djF8xlzqN2+NRo5mRGgsKgKvKdReVv2q3HbhOVHW3rXHXKpXs2fMqJz7BoH1WCqVYu80hM3rhlK/bk7xzcLO20LzjEIT8cNQrJyIM7u7EhGdiqG+OncfhfPidSwv3sTwyj+WEgYaOJQxoqydIZdvvsOxrBEHNncUXryKgROBNBuJRELj1gto1awyo35rXqROxIMHb2jZZiJvX+3MCytROBGFG4sAP4oTITJfWjSvp+CLkCZuK9j4HZ0IadxSkhJTuHjtNfcehfLidTQvXkfx2j8GI0PZHGpvZ8jF6wFUq1iKnWs7yJ9ziokTgSSD7GwJ9dtsoluHigz9qRaJyRJSUjNp2HYdXnPbsPvgAwB6dKzEsEnHuXzkZzwH7KKZezkAnr+MZOHvLWjYbiNec1qx+9BDACaO7cSH+BQ69VrNm4cLUFX9h4xiCidCbvuP7kR0LF38678UZ6RJO+U0KpyIH4ViFc5Uv7Y10XFpWJrr0bppudx2iURKUHAcL97E8uJNLNkSSeFzIP+gKCkpsWFFf2o1mkG7VtWwK110IVlOTrZkZ2fz6lUwFSuWLrJ+FShQ8OOira1G2xZOtG3hlNuWnS0hKDCEF29iePE6lsxMCepqxWp5EEQsVmKTV3vqtt5A66YOmJmVQFtbDa+5bajvWhprC9nNurWFDl5zWmFirM38ac2xs5bVmwgMisPEWBuvOa2o72qXa29na4xEIiU5OR3/gGgcyiluNhUoUPDfolitEtMWXmXOpIK1C5SURNhY6WNjpU+zRv++m+EypU0ZN6IlPw3dzOE9Y9HX1/rnJ30GO3aex6GcFc7OdkXSn4IfF0lIwaQCXyOc6fmLYNp1nsvLx2uFB/MdwpmCQpOo4jKE18/+wNBQN++Bfzgd7N57MR7ulenXp3GhwplE2j3k2/6giMVK2FobYGttQHN3++89nCLHwd6Y4T+78tOIQ+z7ozejphxn5fx2TJ13hgZusjVjz6F7jB5Sj/7DDjBhWAMO5GT+a1yvDP2HHWDlvDZMnXeOBm6y+fJNyBNCwuKoVsVG4UD8BzjsH1Gg7WuEM718/JDpQwaw5/oduZuh3yuc6e2bYGrWGc7bF3/mT8UtmFZbRseuC+jYrjbdu9Yr1Lwt0uz0yX4V/BgI3EX8mDx5EU1a2n8zw8Oo35pRzr4k5auOYtvOq/y/YWiZmVnMnL2NWTP6/+vTuSr4dthYmxAUHI1EIMf79yIuLhGxWImwsLhCPc/X7xU1Xcp+pVF9e7bv9SM9/b85h477rS5W5vo4uS3BPzC2SObQOYtOMGtK+yIaoQIFYG5tQ1hQ4P/9/Sxq4t7L5tDwcIF6JwL4+r2mpsu/b2NCgYxidRLhez+M2/dDaVzv83fOQ8LisTDTIzwiAT1dmVAuPiGNUqaaBAa9x8JMl4RE2W6nnqGWTLz8A6KsLGbd8n7079OYoSM3s2zVKawsjfjr/l8kEiMSyXYUe3StT9vWLp90DrZtP0tpOzPq1q34jd6Bgv8CGhpq6OtrER7+HnPzEt97OLlUrlya5Ut+oWmrSVw5vwh7+3/OMhQTk0BUdDwO5Sy+wQi/DcMnHsbJwYQqFQuXZanA/GmiRmDQh3zzp66OGsEhcdhaGxa0N9ckMCgWCzN9EhLTcuzVCQmLx8bKkPCIePR0NXLsUylVUk+ufXBILLbWJeTM51oEBsVhYaaXbzwhIXE5/cvsV85rxflrgfy+8DzV3ZdTtrQR9x6GAqCpoUxzzz8oZarLyfMv6Nm5MgARUYn8saITr97EMHdKU95/kJ1I7TsZiLOjBTVr/PtOvxV8P7R19VBRUeVDbAwljE2+93ByqVG9HIvmDcCjxUSuXVyCre0/pz4PC4sjOSUdu8+wVVA8KVZOhFkpPYyNDeWL9AQqdg4YtZyta3vTbfAhmjWW5e8+c+EZe//8mRY91uI1rwu7D94BoG/XKtR3K1OwE6FKyEJC7MIKhQuBi5MqPmcGcenaG5JTMnJ3K6QoIZVKSUxKZ9LULaxdd5jl89rhUFq3QB+ZmdnMmfsn29b/BClvP2/sygIVUYuicnJhxZKF7V8iILiWI0YXqRaycrQQha00Laeq9ie7l5NxSZotvMMszSoojJQKOZmZ8kOIBN3rvwnUbS00CXhyGXPjevLt5SUkkHz6SLwAgkJ/IfG+Mt1am5H83oP67iNYPq8jndpWRiQWDq1KS3iPoYEGlaoPoWeXmvT0dMHcTI7Y9RPfjdOnvUlKTicpOZ3k5AySktNRUVGmd7eaGBsVsqp5EWBirCOsdRCoVB4Tm0S3Xw7RzL0CAGcuPmXvn4Np0XMjXvO7svvAbQC6dnRh7qIj7NvUjW4D99CskWz38cyl1+xZ3ZgWXQ6y7Pf67DkqS53q2aYsm3Y/YfUcd7r9cpJmDWxk9lcC2b3CgxbdjrB0Wh32HHsts29tz/pdT1k7pwHdfj1D0/qyolZnr75jl1cjWvQ8wZIpruw9/gaALq3KMHWxD0fWudNz1DWa1JW9vyveIRxYVI2Gfa5S0aYEN+59AMDZwYg/70fSpq4eU+acYd3mq7SoVwp1VSlTB5XDQgzpQaAJpGdks2DxdXZ7NSAzNH9YiFhDG3koGVSWf91VBdIMy1vnBCpNP3gv/zcrFqhKnC1wUihUJVoohEaemFnItrBhOEJjFEJIWK0q/vyTdqGxAGjJWRuEKlMLITTG+PT8n5+ppRWv3rzGzaRgCKmmwBpVVjNE/otmv5LfnipwXyMVCDmSZtG7UxmSP3hQt+FwVi70pF2ryojkyusBkZiM5Bi0tVSo7PIbvTxr0sPTlVIlBe4lBDh9+qZsDk1Kz51L1dXE9O7qQgnDogntVvDlFKvsTPZ2Rhzb2RsHezneuYATERMTTwlDLZatucQfO25xfM9g9HQ1MDTUJTIqARNjHZKTZT9gLfVs+bv3QrHQ38GJEIw//Og1MzOzWbXxBnOWXqBv1ypMG9MQLU1VklMySErO4MCxJxw5+5ZLJ8Z8sp98/EhOhNA1kAh8TkJZUf4hlvOzxlJY+6JyIrILTvTynAix9SoAsgOHyhmLwOIqMCcoqX/e5N9jyBGaNSxNrz5t5Bt8JyfiL276+DN41F4szPRZvaQ7drbCVY0lEgk3fd6yY68vh0884PjeIdSsbpvfSJpNWPgHbvkGcOuO7M/7tj8ATd0d0NYCcDSfAAAgAElEQVRSy/cXGZ3E0VOP6Nu9FmN+c8eslOy6ivSHfvXsTNaWhlw6MhA7GzmnRELzGbKCgTv23Wbzdm/2/DEAx/KWREbFY2Ksmzd/aqkRFfIWUxMd4t6noKMtc9ASk9Ix0EwmMjoZEyNNklNkDq2WpgrRsWmYGmsR9z4VHW3VHPsM9LWViIxOwcRII599ZEwqJU20iPuQho6WLB49MTkTA20xkTEpmJTQIDklK8dembCwOEoaaxL3IT3X/kNsHIZ6akTGpmFiqEZyanZu/1Fx6ZiWUCciJo0dxwLx2vaa7i3MmTKoLOqqSiSnZZOcks3+c6FcvZfAiU0FsyIV2olQF0iW8QM5EYLtcuYKoQxPQtmZhPouKieiMElW5DkRLaxkTt65kIKhkIV1IsQCY0n9W4aqGT/3oV6rtnTqWlBbVWROhNDm6CeciL+4cv0lv4zaTRk7Y1Yu6IyNtZz5JGculkgkXLv5mh17fTl+5hGnDgynWhWb/F1LpYSGveeWrz+3fN/ic0f2L0BT9/J586e27N/wiHiOn3nCgF61GTW0ISVNZZulIoNhiuxM35hidRJhaa7H24A4+U6EAJmZ2ZjaT0BPVwM9XQ1qeyxmzx/9mblgEwe2DcKz70aaNJKdUNx74M+axcVfzKOiImbkkPp061iFSTOPUaLsHCQSKVqaqmhrqaKro8af637+3sNU8C/F1kqfgKAP33sYgrjVsuPe1XF06beFwSN3ce7IcEFbJSUl6rraU9fVnjYtKtLacw2TxzQjKjqRN/7RvA2Q/YnFStSqYUvtGrbMmtQK97YrADhzYEjBTkViAt/F0rTjKtb/eYOIl/PQ0REu2FSUWJrr8zYgVr4TIUCHHmv5EJ/KsxfhmJvp06XPBgxLaHNk51A8+67PnT/PXXrG2vlNaNB2E/OnNuHQyWey57d0ZNWGqyyf2YCuv5zCo57sBOH8tXesnd+YBp32MX9iHQ6dlp0gdGhehg3bH7Bwshtdfz2LR10rmf31INbMbkAjz0PMHe/K4TOym4z2zUrjtfEeq2fVpduwC3jUkYWfnb8Rwoop1fHofZbZo6py5HwQAK3rl2DaCl92L65Jrwl3cK8lW0/uPfvA779WoOmAq8wa5sT7hEw6NrEgIDQZC/dzSKRStDWU0dQQo6ejwp8LG/x/H4YCBQKUtLIiIvjd9x6GIA3qluPhzSl06Lme38bt4/jeXwRtlZSUaFC3HA3qluPIyce06LScyWNaEhGVwNuAKN74R/E2IBoVZTG1XUpTq4Ydc6a1p1GrxQCcOfhrwU6l2bwNiKZpx7Ws+/MGES/moKkpEEWg4KtSrJyI+q62XPX2p2UTh8+yl0qljJp8EFNjHU7sG8KTZ6EsXnmRFeuu4NGoPDo66jRp5EiNqjYAaGv8uxzYkqa6/LGiI+sWt0VFRZz/lEUo044CBf8ntlb6XPUO+uLnZ2dLEIlki8/X4vnLCG74vOXyiVGf/ZyWTZ3Zvr4vew75YWttRNuWlShta0xpG0NUVcQEBsURGBTL0xfhuc/xvu1P+XIl0dVRJy0tk7T0LM5eesnv809hYabPltW9vpkDAVDfrQxXvf3xaPh5YnGpVEpgUBzWVoasX94DsViJDVuuExoej7a2Ws78mXcyo6ujRrNG9thZG9LAVdZuZ22ISxVTdLRV8KhnTY3KeXOPrrYqzRrYYGetT4PaFjn2+lRxMkZHSwWPulbUqGjyUf+qNK1vjZ2VLvVryXQddla61K5aUmZfx4LqH9trq9Kkrhm2ltrUc5G9rq25Gh6uJuhoKuNey4RqFWQhasrKSuhqqeDhWhIbCy3qVpPtQNd00kZDTYyKsijfHKqq+/0qryv4d1PS0po3Tx598fOzs7NRUlL6qklTnjwL47ZfADfOfP4c2q5VFVSUxRw46oedjTFtW1ShjJ0xpW1NUFERE/AuhnfBsTx+mneqcsvXn/JlS6KTO4dmcursY35fcJrStkbs3NBb4UB8R4qVE9HAzY4x0099tv2i5efwvu3PY+/J7DtyjxpVrJn/e1u69v+DsvYlWbLyPP17ueJ3X+bxf+7CWtzILYKkQME3oF4tK6YtvIpEIim0I3Dp6gsGj9xFGTtjDm4fhIZG0S8OCQmpdOr7B0tnt8fJsXAC46aNK9C0cQVCw95z+fortuzw5obPGwLexWJjZYiNVQmsLQ1z7UdMOsTzV5GkpGSgrq6CmqoyFcqXYt3SrjSqX+4Tr/R1qO9WhhkLPn8OnbP4NCoqYpo0dMQmJ6yjqXsFNm67SYtOK9i1+Wf87gUC0KZFZVZuOs/oIXXYuuceNarInIJjZ54zuFdFlqy/R/+uFfB7KNPQtGlix/odjxg9qBpb9z+jRiWZ+PLYubcM7F6BpRsf0K9LefweR8nsG9uwfudTRv1cma0HXlCjkswpOHY+gF96OrJ08yP6dXLA73E0AK3dbVi57Skj+lZg+5G3VHeWnb6cuhbK8J72LN/xmt5tbbj3TBbu2NStJMu3v2Z4L3t2HH+X61zcexZPQxeFw6Dg21Gxliv71q5AKpUW2hE4d+4aQ4ZOxtHRnv371vI1yr28f59M5z4bWL24K+XsC7ch2bJZRVo2q0hwSBxXrr9k8/Yb3Lj1hnfBsdhYlcDGyghry7yT0t/G7efF6whSUzNRV1dBXU0FZ8dS/LGqO/XdFFmfvjfF6u7Spaolz15Fcf1WAJWdzNDRERZFnjr3mOXrLtG5bRUA/ANjMC4hi1Vt26IiR048QE9Xg1bNnHkbEANAaSsdhVBHgYL/E3s7Q/R11blzN5CaNT4vk1pUdAKjJx/kmvdrvOZ1Zv+Re7T2XMPR3b+gpVWIuhKfQCqV8jYghrHTjtKobll6dXX54r4atFyKfWkTmjRyZEDv2lRyskBFJS+eeu3m6wD4XhyTm/wg92bga2qm/gFXF1vuPw7F2zeQio6l0NbOu7aB72IwKqFN3HuZPsXb9y2rN1zh8olReK29mLvb9/hZKLs3/0zNRnOZvfAEJXLmVaMS2jx8GkFiUhp+D0Nzr4ffw1Dae5jw8Fk0gcHx+D2SORFGhuo8fRlLYlIGfg8jUVFRyrGPpK27JQ+exRAYkoDfQ5kTYWTwl30mdx9HoZpjf/dxFO0bW/DwWSyBIYncfZxn//B5LInJGdx9GouKiuz6P3j2njYNSvHoZTzvwpK59/R9znjUCApPJjU9m4DQZIwMZNcmKUmgVokCBV8Jm3LlESsr8/LxQxwqCmhp/kZERBSjRs/i1q17LPeazrbtB2nbbgCH949DQ6Po5tA3/lGMnHiAVs2c6dKheuH1gjm4NZlPJScLPBo6MqhffSo6WaCsnDc3rtl0GQC/K+MLzqFf+JoKip5iJayWJmxikdcJ9h2+x7OXEVhbGrJldU+Z0DGnKNX7Dyls2+PHnKUXOLK9H67V5O8ghYdFUq/9Lob2rcqIgdUBkGbKF7eK1AQEpYUVVgsJiwuDUN+FKeD1qX7EhcwYI/he5bQLjfEfCn59NoUoBib4ukKiMqGiZ0JjL6y90HUsTP+Z8QAEhyYSFpmEeUltLGtsBODh+Z7Evk+lrJ0BZiVzhJ8CwkV5mZ/gE8Xp5Jw2TF5wk6yMTOaNq1mwf0ne5yGRSNly4BVTl/jRs30Zpv1WFW0tFbKzJfQffw1lJdg41+2zxyJv7BHRqYxZcI8bd8JRUhLRpJ4lK2fWRV1NWbAfkXLBIlIicd6pSP32u5g+2o1GdaxBJMe25BzZeCKnyelc/mctMpn+1YXV0vcrmLvoOIdOPuX562hsrQzYuqoT1SqZQ3YKsXEpZGZJ2L7/MQtX3+LUzq5YmigVEERHRHwgM1NCPc+jjPqpIoO6O5KYnImeppTImFRMSqjnEzjHJoKpkSax79PQ1c4TRBsZ68kXUEclYWpc0N5AR1mugFpmr5Fjr5prr6+tJHc8UbFpmBrlt09JzUBPp+DJl1DWM7GG/LlSWVtAs6chJKAWmHPlCqsF5lCBApGv0urLbS+ssLqwYmm5fQvcawjdgwgJpYXE4kIoFyJb1F9F38JDgoiNjMSklBnNnWUZGw/cuMuH97HYlCmLcUlZcUGhbE7ldeS3xxVMkgdATEbB97pg0hjM9bSYOXNm/gcyTuf7r0QiYcOm00z9fRs/9WnAtAnt0dRUIysrmx79V6OvI2a9V9eCLyqQWESaVrCoXmh4EqNmeXPdJwhlZSWaNyrDqnnNUVUVC69R8r6/H819tZquZvGMltSpZSO/2FyJsbLxxC6S378cRCXGKoTV35hidRIBMHaYB2OHeZCdLeHYqUe08lzH+mXdsCilydo/vDl88jEtPMpzfNdP1KxuLZjFpZSpNhf3daVe+11oqCszqPfnefsKFPzIvHr7nvqd9mFmqkV4VHJue9v+xwgMTsBrRn2G/VTlq4+jezsH6nXYx/M37/mpiwPNG1ihrJy3+GdkZHPvaSwTFvqSkSHh1JZmVHbMO8IWi5VYMd0VB/d9vApIoKxtwVTFn8uhc+9ISc3i6v722FrqFEmccMvGpek34jSLpzdAXV2N8vZGlLE1/Ocn/gBMGtmASSMbkJWVzeGTz2jm+SebvTqgppxFn2HHiU9Ix8G+BFbmulhZ6NKh3z6mjXBhz1FZlhfPNmUZPeMq53e2xtRIg+nL/LjmG07M+zR2LHajSd/zLJ5Yg30nAwDo3MKGdbtes2F+fboNu0DTerKb6bPXgtm7pgWNPA+x7Pd6+frfvPsJK2bUo9uvZ2laXyasPns1iJ3LG+EhJ5Xrsk0P+HNxA7oPv0TTehY5/YewfXEdmvb723ia2zB2gR/n/mySL/Wrf1Aia2fW+kafgoIfFf8XzxnUrhkmZuZER+Tpm4Z170BY0DsmL1lJl/4Dv/o42nTtSd8WjXj06BEDBgygWbNmKH+UDSojIxO/u68ZM2EzAJdOTsLZySr3cWVlMWu9+mNfaSQTRnpgKy+D0mey59hLsrIk3DrZH2tLvSKZQ1s1caDXkL0smdkSZWVlnB1LYWtdPOZQBXkUu5OIv+/A3nsQROtu61BTFTOob236dXfBxPijnR2hVJDZshust4HvadBxDwsm16dba/mhF4qTiC/oR3ESUTj7IjiJCA8Jxa3dXib95sKA7s6ybs2XAuBRzwqLUjpsWtw4bwH4iicRAAlxCRw4/ZbNe18QGJJI55aliU9I58GzGF4FxGNjrsPgnuUZ1M1BsMjj3FV3eeEfz58L637WWOSNvd+4GzRws6K/Z/nPfk//dBIBcNU7iNEzLvPsdSyLproztH/1PNsf+CTi73Oi771g2vTcgbaWCs0blWZI32qUMNDAP+gDNauaceHSM+q6mBEYInuetbkOV7wD8ahjwe0HUUil0HnIWYb0cmLcAAcueIdTr4YpgaFJMnszbW4/+kBDV3NuP4jCzlLmEPoHJ1C7hiXnrwdRv6Z5vv6974TSwNWc2/cjsbPKsQ9KwKViCc7fCKG+ixmBoX/Za3PDN5RGrmbcfhCNnZVOjn0iNZz05YxHi+t+UTR2LYXvwxhsLWUnc1ExKTiVLVgHRHES8d85iYgND6N/i0YMmfQ7LT27A1CthOzaVq9TH1v7skxesjJ3Dv2aJxEApSRJ7N27l02bNhESEkKXLl2Ii3nMg4f+vHwVgp1tSYYNbcPPPzVDKTtebh/TZmwjNDyezSu753+gECcRnoNP0rpZBXp1llOc9gtPIgAuXnvDmOknefE6mhXz2vFz77yTa8VJRPHgxyzPXAiqVrYi8NEs3tydxPjh7vkdiM+gtI0Bp3d2YsS0S1z1EcizrEDBD05GRhYteh2mv2eFXAfiY3S0VJk1tjavAz7w2v89bwM/EPehcLUpCou2lgp9OzlwfX87zm5rhYGeGrWqmLJmVh0ifHvy6ExHhvR0LOBASCRSHjyLRSqVMqSnAxduhvP87ZenjPV9FE2NSv9/5deHT6MIDM5bqOu7WuF3tg+VHE2p6PjjVJYtLC5VLQl6MJb+3Svxa//qXL4ZyIETzzHQU6f/iBPUqlqSqYt9ePsunrfv4pm2xAfXqiUZMP4KBnpqPHgWQ5+O5Vi2+RFdh1+ldmVjfl/+AP+gRPyDEpmx4gEulU1y7Q+e8efgGX8M9NSYON8b12qlCvRfo5IJP429JLM//ZaDp9/K7BfcxrVqSaYtu8Pbdwm8fZfA9GV+1KxswoAJ1zHQU+XgmQAOngnAQE+VodN9CoxnzppH1K5szMDJ3ujrqXLo7DsOnX2HtlZBx1HBf4f0tDR+82yH54DBuQ7ExxiZmDJw7CTevX3Nu7evCQ54y4e4grUjihIdHR0GDBiAj48Pp0+fRk9PD7fajmxcO4y4iL08fbCOQT+3KJDAIjtbwoNHgUilUkYOacjRU4954x/9xePwfRCBSxX5xSg/F6lUyv1HoQSF5M3l7vXKcP/ycMqXNaWiY6n/q38F34diF84kDxUVMUi+3B9ycjBm15pWeA45ztX9nShXWk5VWgUKfmDOX/VHQ12ZycMLahAATl0K4MqtEAz11ZFKpSSnZmJkoMGj8wWLGX0NHO0NcLSvBuTXRHxMVGwqq7Y+ZefRNwSFJfP6chesSqozrE955qx+xI6lAhWwP0Hch3QiY9JwtP+y33RySiZ/7nvGH3ueEB2XRmamhLO7O1OpgsxpSE/P4vHzKCo7Fe+UyaqqyoUqyvV3LEppM29cTUbNuol/sMDprwIFPzC3Lp5D39CQXr+OlPv45VPH8LlyEV19faRSKSnJyZiamXPgmu83GZ+zszPOzs4FNBEfExH5gRVrz7J99w1CQuMIe7OKUiU0+W1gPWYtOsvWtT0L/bqR0cnEJ2Zgb/dl4VCJSen8ufsem3f68T4+jczMbM4fHEAFB9mcmZycwcs3UVSsoHAiiiP/CieiKGhcz4Z5E9xo2eco3ke6YGIk5yhOgYIflAPHn+LZppxgrGqI388YGuTVI1i01g//d/KPv78V2dkSbj+MJjo2lajYNBase0iTuhbsW92Ypr1Po60p2xke0sOBSq2Ocv5mGB5uhdsN83sSQ9UKhoLhUp9CKpXSbcgpsrIkzJ9UB/d6pTl06hVNu+3PdST8HkbgUKZEbnXm4sz4X2tz+14YnVrJwr78gz7wh1crzl98yszRtXiXEz7UyNWCyzcD2LSgAbcfRNGxmSwM1D84gYUTqtN20EVu7mtJYo5QumGtUty6HyXXft4EV85dCyrQ/807oWxe1Ijb9yPp2Lx0zngSmDe+JueuhzBjZHXe5YQnNXI148btUDbNr8vtB9F0bGabY5/I6hm1OH8zjOnDKvMuLClnPCW5dieSDXNc8X0YQ4emsuJ3UTGFrJqu4F/FpeOH8WjXSXAOvfA8EF39vM2IjYvn8yE25lsNTy7Z2dn43H5BVHQ8UeFhzFl0lNbNq3BkzyjqNpmJlqYakMqIwQ1wrD2XKzde06BO4dKi+j6IxKWyKUpKhd9kkEgkdO6/GxUVJZbOakGDOmXYc+gRHh035ToSvveCqVTBDA0NxUlgcUThRHxEvy6OvHjznkETLnF4U6vvPRwFCj6LjIwsjp19yazRwrtMHzsQUqmUY+f8mTi0uqD910YqlTJsxi0ueYdRvow+hvpqLJ5Uk3ZNbBg56xZu1UwpYaCGNDsLbS0VNsxx5edJ3vgdaY2h/uffsJ++GkrtKl8WarRi8wMio1O4frgLqqpiRGIlOreWFbqs224X2loqJCZlMLh3tS/q/0fjQ3wak+Zepkl92U3+uav+7FrbllnLfZn8mwt7T8iEz11a2TN+3i0qlS/BlMW++SpEb1tYm2le9+k5+hplcrQJHZvbsH73K5zKGRSw37PGiLGzr7Noct18/W/e8wRHewOmLPLBo65MS3D+ejA7vdwZP+8WCybWZv9JWcXqTi3sWLb5IRXKGTB1qR8ebrLaH+dvhrJ1oRsTFvoxf2x1DpwOlNk3t2HCIj8qbvZg6rJ7NM5xTAOCFcLq/yrpaWncPH+W0bMXCtp87EBIpVIunz7OyOmzv8Xw5CKVShk4ZCU3bj7FoZwlRoZqrFrShzYtq/HL8D9o1rgiOjoakJWKnp4Gm5Z3o++QnTy8Ph49PfkaGnmcvBiAa/UvC2VasuYmiUnpXDk6QBYxIlKieydZEpvazdagpalKYnI6IwbV/YeeFPyoFC9hdeIWYcGqREAQKyAektsuSaPr4GOUsTFg9oSPvtRKAhVl5QmHPtUuJPAtjOBaqG8hlAQmi0L3I3DjpiRQDEyeeFTofYqs5bdL3xWNvdB1l/edKaxQWuj7Veg81oW0/6j/sPAPOFSfws2zY3GukL94mkhvsMw8bmlu28yFZzl4/BG3z49AXV3O7o/Qb0ngGkhSouQPUUCgLclM49DZQH73useN/a3Q1VZFkpnXd9vBlylro8svPcpha5b32xs9/z6RsWlsX1gLJSUBcbI47zv2KjCBBt3P8uB4a0xKyP8NyxNQA4iUlDGqshXvQ20pa6tfoO+YuFQyMiWoqihhqK9R4KRDbLNa9l6DhhXsXEAYqmTh9fWF1dFzICNW7uPZGanEfUhDRysvpaqhvjrhobEFUqpGRMRjaqROXHw6OjknRokpmehrQvvfvHFxNuC3nrIdTy0NMdEJEkxLFLQ3MtKTm4I1Jj4LUyNN4j6k5xuPLMVrQfvImBRMjTQK2BvqqxWw19ZSzU3x+rF9apZIbopXJWX5c5zgd0dVIHSusOuFvDlXJDDfFnZ+FrIXShaiVEd+uxyExMNCGApsQH/tfj4WM4cFB9G6ZkV8fXwoXz5/Aoa/Tiak2ddz26ZM3cjpMz7cur4cVdVCzKGFSfIh1E+27MRu9/7bzFt6Cu/zE9HWVs+3Frm3XUW1SpYMGVAHG0u93PZfRh8gJTWDrWu6C4/xI569jKRB2w089x5FCQOB+yABpFIpWtYzeHZjODZWOb+Jj+4LomOSyMyUoKYmxsBAu4CuI1dY/dHalYvA2EVGExTC6m9MsRdWFyU+d8M4fPo1fbpU+N5DUaDgszErpc96r14067iCoOBPC/2WrbnKjv33OHdwsHwH4htx8lIwv/VxzM3R/zFzRlUhICSJCs2PERWbJ/6ePcKZJ68+cPCc/AQIASFJhEQkk54hW5AnLrrH6J8cBR2ITyGRSElIyqCMtZ7cx40MNTAz1cLIsKADUVwZOeMGrwI+MGWxL1MW+/Iq4AONuh5FRVlM95FX2XcqgH2nAug+8irKyiI8+l3kdWAi01c+YvrKR7wOTKRx/6tcuRON75P37D8bwv6zIfSacAdlsYgm/S/zOjCJ6SsfM33lY14HJjFwsjcqykr0GHWNfacC2XcqkB6jrqEsVsK9x0leBcQzdakfU5f68Sognv7jr6OirFRwPGIRHr3P8jowgWle95nmdZ/XgQm0+vlCgf77jruOslhE416neR0Yz1Sve0z1ukdQTriTgv8eZpZWTF28gqZNmxIaGvpJ2wULd3Lo8FXOnl4i34H4Rhw79ZBRvzaRORB/Y8nsdjx7GUGZqrOIe5+X6nvxzNZ4+wZy5ORjuX36B8YSGh5PRkYWUqmUUVNPMnlkwy8qwpuRkU1WliTPgfgbxkbamJXSpYShVgEHQkHxQRHO9BFl7Qz4pXdlarbcQavGpRk9uEaugFKBgh+Zbp1rcvLsQ85ceMrAfvKPhnfs82PMtGMsntmGJ8/DUVdXRk/384+1ixIVZSVEFNwwSkzOZPBUHx68eI9nSxt0tJS5dieKG3ejueQTiZGBGhv2vKFzs/ynUWeuhdF7/C20NJSJeZ+OhroYkxLq7Fr2ZcfkaenZqKmKvygO+EsYMunSN3mdT+FS2QQ7S13q15KFLthZ6tK0viU6Wsp4uJlRzTmvcKeulgpN3Epha6FNveqyOdLWQhv3WiY42eux43gQymIR3VtZ4V7LBF0tZTzcSmJroUW9Gn/Za1HZ0RAdLRUau5pR3TlPuKmrrULTehbYWelQv6ZMcGlnpUM15xLoaKkUHI+2Ck3qmmFrqU09F5lg09ZSm0a1ShXoX6QkQldblSZ1zbG11KG+S0kAzE0VOrj/Mu2698bv/EnOnz9P37595dps2XKSSZM3sGzpbzx8+AaX6qXR0fk+3xtVVbGcGRQ+xKfQ/9ddPH4WRu+uNVBXU+Hy9ddc8/bn3OWXmJfSY83mm7RrXi7f8w6ffELfX/ejqaFKTFwymhoqmJfSY0j/2l80vpTUTDTUv90t5pCxR77ZaynIQ+H+fYShgQZes9x5e2sgFcoZ0aLnAVr2PEBQyPcVoCpQ8DmYmugSGv6BHgM2c+TEgwKPa2mq0q+7Czd8/Jk8+xTNO28kK6uwYVdFg5qqUu6JwV+kpmXRYehVqlQwxP9Se9RVlbCod5QpXo9ISslieJ9yRMelc+dJHNFxeScU7+MzGDrjDvuW1yHwakcSH3bj1fl23DnUEjVVgfob/4CGuhgtTWVCI5L/2fj/JComhXXbHn311/knOrcsw/ELgZibamFuqsXxC4GMGlCJ1Tue06qRJWGRKYRFptCqkSVeW18woo8DJ66EYmaqgZmpBieuhDKmX1ksSmrgvashejoqDJ11n8MXQlm0+Tkjepfj5JUwzEw0MDPR4OSVMH7uYo/Xn09p1ciC0MgUQiNTaNXIgo17XjKyvzPHLwZhZqqJmakmxy8GMdCzHMu2PCkwnnW7XzGibwVOXArB3FQTc1NNTlwK4bfe5Qv239CSZVueMLKfEycuBef2f803/J8vkoJ/NaampgQHB9OtWzdOnjxZ4HEdHU369mnOlSv3mTh5A63aTiG7ELUyihI1NRXSM/KHRyUnp9PKcwN1atkR8nQmWVkSjMtOY/Ls06SkZjB+eCNCwuK57uPP+w954U8xsckMGXuUk7v7Ef5sMhnhcwi8Px6/C7/KtAxfgK6OGiKRiKjor3/CFxWdxNotPl/9dRQURHESIQcDfXXG/9OtnVgAACAASURBVFqTkQOrs2TdHao12ciCKe7061a5SCo1KlDwNdDT1WDmgpO0bVGJzn028PhW/kJn7VtVpH0rWbEgiURCs04bmLPkAtPHN/3mY9XVUeXNu4R8bZOWPMDYQI3lU2rITgBEIkb2LceUIU65NjfuRnPsYghTvB5ib61LcmoWN+9F08bdggY5O9AikQgDvf8vW5JIJMKtWklu+EXg2ar0/9WXPKJiUnIzwJkYaTK4d8Xv7kikpGZx/npeqNj56yG0b2bHNd9Ialcx4aqvrAiVoZ4q573D+alzaS565xWmuugdQZt6Jpz3jqJeNWNMDdXp1dqKpJQsFm56QQkDNa765ulnLtyKoH0zO85dD6NejZJc843M6V+N+89iSEzO5MKNvNCSCzdCaeduwbnrodR3KZlvPLfuR9GjjR0XvMPy7L3DaOdhWaD/EvrqnLseyoAu5Th/M8/+TXAS7ZrYFuUlVVDM0NPTY8aMGbRr14527drx8uXLfI936tSQTp0aArLMSO6Nh7Fw8V4mji9YV+Krj1VXg9dv8+vRRk0+jJWFAV7zOuSGCE0Z3ZiJIxvn2py7/JKT554zYeYZbK0NSUnJ4MpNf7p3rESdWjZAzhyq//+dsIjFSrjWsOLG7Xd0aFX0IeJR0UmYGMsKRZoYa/NLv1oKR+I7oBBW5+tDfvGtxy/i6TPsKGnpWVRxKomTgwnO5U1wqmCFlYV+wXg+hbBaIaz+SsLq9PRMlqw4y72HgSQkpCIWKzFlXEvcatlz6coTfO4EEJ+QyuNnoZzYNxSxwRDZcOSI08LC46nacCmHtvbFteZHN0/fQFgdHpVCjbZHObSuMS6VjJFkprNm50vOXg/j6DrZIv345Xs6/3YNp7J6zB9diej36XQd4c26mdU5ez0SLQ0xGhrKGOiq0re9HVqayvnEz5/D38Wx2dkSHj6P49qdKLYeeEWzBpbMHy+rvSHUt7yq158SVg+ZcoV12x4xuHdF1sxtlNv+LYTVca+nYKCZQkJiOpo5KRVT07LQ0VYlPDQWYyMNknNSs2ppqhAVm4qxjojYD2no5gqWs9DXkhIZk4ZJCbV8Aufw8HhKGmsQ+yEdXS3Z9UpMySI4KpN+E31QEolwLKOHg50OVRwNKWmiQzVnI+Li0/P6T8nCqIQ2kTEpOYLuvPFERiRiaqJVYDwGeipy7aNiUzE10sxnn5ySjYG+egF7bV1NuZtECmE1/yphdVpaGquWLOLeg4ckJSYgVlZm6ISpVHapRcCNczx8+JDw8HD8/f05cuRI7vr+sbD6L4LfBVOt5hBOHp1NjRoOeQ98A2F1SGgcVevO4uzhkVSpZAXZKSxZdYkbPv4c3jEAgPuPgmnfcxPVKlmwaGYbQsI+0HXAdjZ6deH0+adoaaqipamCgb4GA3q6fDrN6meuaVlZ2Tx4Es6VmwH8sesuHVpWYPYkD9mD8u4LBNo/JaweMnofa7f48Eu/WqxZ1C7vOQph9TenmDkR20D6zxkF8iH0o5V385edKvDiYtkP43E4T19G8vhZBE9eRPL4eSTaWmrMntySjm0q5TkTghN3IReRwlCIH+cnX1NcVqAfS7nNQhN9ZNrXO+IVC4iwjFT//7lDaCFCGiy/XeC6CFLIfj6+vnfv+PLbgH7YlbGnc7ce6OjqEhERztzpU2jk0RSvRQswMjKiZ8+eJCYm0qNHDzw9PWUvm3W5YOeSDI4c9WbUuPU8uLMGXd0c8VxhHXXBBVDAwUqX7Qj/sfMOB44/4dSefpCVSHp6FiUrLufFjUGY5uwwpSbF47XpPkvW30VJScTaee50aFEGSbrAb1WA0P+xd95RUVxtGP8tvUtdkI4VVGzYsICKvUVN7L0L9l6iJvbeFexdk9i7saKiIoodsQsigiy9irT9/lhc2qzJ5jPFZJ9zPMe5887Mndnhzn3u85b3qZy9Gol/YBSmxtq4VjSlqosZtVzN5RPHH1YGs37XY2ws9fCoWxrPuqVp3tBGMGNPEYjUkMR/QGxWQNg1y20GIOfVsCKmkrgPWNfdJd9+f3ewXJFQs1/zp5MIl3ImnNvVgl5jr9CikSyT17mAd+xd1ZghUwMY2deF/afCAOjSxpFJi4I5u60pvSdep0UDWWzCuevR7FrgRuuh11gy0ZX9v8rUiy4tbVmy9Qm75lWn34z7NHO3AOBCYCw7F7jR2juQod85cOh8NEmp2WhrqfH0dRo2VrpoaajRvY09IpGI8zfes3tpfVoNvszSydXZfyZCdv5W9mw58Io1M93oMymQ5g1ksQznr79n7woPWvS/wLJpbuw/FS7v/w+r73N0gxe9x1+lRSNZrMfVWzFsXeJB8z5nWP59XX45+RqAIb1cca9pVfK5KcgEpqYtHHSvcMxVNEFXikQoci1R0uVE0XnyFH0Df+Nv4P+5prIESBEUPcdC171xI4SBQ5ZQpbIT3bs1w9BQj3fv4pgxazPt2zVg4fxBmJoa0aXbj0ilUrp1bULX7rMBkGadLXluaS77D15lxg+7uBu0FgOD/DFA0eKSIii6V6GxtVDbhs1nOXvhAUd+mQzSXD58yMLCYTBvn/liYpI/hmZksGLtaVauO4OamhrbNwylbasaSi90vYuK48y5h/gHPMXczIBqVeyo5mpPzeoO8jF06qwDbNjmj621KY0bVqBxo4q0aFoZo0+xdwrfX5DEpiC2MJJviwwHyG43dXsJO8syY+TbMa9Xy48TGQ5QkYi/GCoSUaRNMYkQPLWaLhcuP2Pq7OPUqemA3wrZhE1FIlQkQiH+AIlISU5m/g8zOH7oAAuWr6Zjl65FVkxTUlJYNHsWh37aS0BAALa2tixdupSQkBAOHz4MQPNmtTh0YHbRIMB8UuA9cg1nzgbT3KsG/fo0p6G7gmJEX5hE3H3wjkFjD3LPfwzkyFbXKjXaSPkyJrTwLIOHuz2Vy8lWh99L0rkc+BZNDXXKORnjWtZA+NyfuiSVEvwolmPnwjlzOYKIqDSaN7ShaX0bUtKyePg0Af8bUfT8phx1a4hJz8hhwrxAgk90xsZKHxSoKEIY+cMNNu57wrCeLqybI1ux/UQiooL6IjYvqgaO/PEGG3Y/YngfV3znN5G3/xUk4vTOdnjVM+fWg1ic7GST2rC3qdSpZsGla5E0qGVJeH4RNwdrAwKCY/CqZ8Gth/E42cqeeVhkGrUq6nHxpoRGbua8iZL9zval9Qi4HUWT2mbcfpyMk7XsvsOiPlDH1ZRLQXE0rGnKm2jZOGtvpcvNkDSyc/KYuPQBHrUs+GFEZcIj06lT3YKLgTE0qmXBm3eyuBR7a30C78fRuI6YWw8TcLLVz+9POvVqWnHhRjQetYv3P5ZmDUpz60EcTnay/odHZVCnmgUXrkfhUceK8EiZfVknc7QEYmhUJIKvnkQkJqYyfcYWjh2/zppVo/juW88iynhSUiozZ21h/wF/bgSsxcLCmKXLfuFxaDhHjsoUiNatanPgpxno6xfKhpQ/9g0cupLLVx7R3KsGA/o1p14te+X6/gdJxM1bzxkzcRtBVxfJ28tWGU3VKvY0b+qKZ8NKVHK2QiQSERWdSMD1p6irq+FcwZoqlT5f+yEvL4/bd8I4evIOp84+4F1UAi28qtCscSUSk9J5+DiSC/6hDOzTkFo1nEhJ/cDkmfu5d302pa2Mhfuu4B3wGbcLvy3+eA9ugu/KvjLTfBJRmCR8zv7TMSoS8ddCRSKKtClHIj4NWvEJ6ZSrOYcnQd9jZWmkIhGoSIRCKHEeqVTK5t0/MWvqRFq1bc+MuQswNTMTOBiOHTzA/JnTuHv3LkZGhVZz8snGsKHtefDgFb+eXkypUvkT8HxSkJeXx+PHbzh34Q5Llh/g5eMNwhlHvjCJiE9Ip3ydZYQEjMPaQtbPqPepXLgaxpXACA6ffsamxV5YmOkS/DCGjbsfITbX5W1UGqaltOj7bQV6diiPRb4CkJ2dy5Vb0Rw/H86x8+EY6GnSobkj7Zo6UKeaORoaRd+boPsSlm16QG6ulNy8PLq1K0fPb8rl39PvIxGS+A/Y1Nsn334X1Buxma6cRAAM71WJdXMKskSpaWoXiYmQt/8FJCIpZDDzVt+k37cV8A+UxQM0cbdm6aaHrJxei/m+j+TZja7eiuF7n6pMWxbMyN4V8b8pi0FoUs+KJRsfsGJKdRZuekqjWrIsSQHBcUzu78DE5U8Y39eJK7dl6YY9a5uy8/g7pg+pwKItL2jkJnuHA+7EM927CuMXP2BAJ0fae19j+jAX2jW2Zs+JCKYMdWHBhlB5NqertyVMH1aJ8YvuMXGgM/5BMje6JnXFbD4YxuzR1Znv9wiP2vn9vy3r/7j5t5k4pAr+gbLA6Sb1bVi2+RGrZtZj3vr78uxMryI/MHpA1ZLPTUUivloSIZVK2b33IlOmbaJzp0bMmzMIE5P836GYe+3eveeYM28Hd25tLFAUAJGGjOgP6NeCl6+iOHVsbsH4mD/25eXl8SgknLPn7rBq3TFePlqLnp4ScVl/kES8f59I5VrjCL2zCkux7L4i38Vz0T+EK9dCOXQsiN2bvTE00CH4Xhgbtl7E2sqE8IhYxBZG9OvZkJ5d3DE3lx2blZXD5YAnHD15h2On7lHKSJdO7d1o16o6dWo5lkhnfT3wBcvX/kpubh65uVL69qxP1851FPdd4B1QpCx8IhFACbLw6bji5EJFIv56qAKrvwDMTPXp1qkmazddZd6MtoJp11RQQRnExcXRrVs3JHHx7Nx/mNp1FVfSTYiPZ9JoH349c6YIgSiM2T/058c5Oxk4eAmHDswpsk9NTQ1XVydcXZ24c/cF6/xOMW1yly96P4UhlUrJy5Oiq6NJWUcztu69zcyxsg+PtZUhfbtWpW/XqiQmZ9Jv7FmqV7agRhUxGxZ70bSBHXl5Ui5decWuQ89Y5HuPxVPr8T7uA+t2PsLaUp+OLZw4u6stzmULV5gtSQrqVhdzwLe5Un0v7rYkNtNlWE8XuRJReN8nbNgbyqzRtYooEsUJxH8dZsbaVKlQimt342jrWfrv7o4K/wLExCTStcdc0jMyOX5kftGYhWKQSBIZM24NF84uK0IgCmPB3AF8P2sHQ71X89OeaUX2qampUa1qGapVLUPQ7Wds2HKO8aPbf9H7KQzZGJqHoaEudjbm7Nx7mcnjZNeztTGjX29P+vX2RBKbQo8B66le1Z6a1ZzYun4IjT0qkZubx6XLj9i57xrzlx5n2fwevI2MZ+3G8zjYmdOpvRuXTk6lYoXCf4slSUED9/I0UKRcK0Dxyb/YwgjvwU3kykJxYgDgt8WfH6d3LHGcCn8/VEpEkbY/pkQAvHglweub9aSmZVK1ii0Lf+hI/brFsrqolIgvgv+CEhEREYGzszMPXkVgZm4ufEw+bgXeYHj/3oS/fo1EIkEsFpOTk8Pz58+pXLkgK0Zjz2rY2FiwZ9f3soa8LCSSJMRiY7nN06cReHhN5OXjjRgZFXtHlFQicrPTuP8wgtzcPHR1NflxwTGu33xBQmI6pia6WFoYUMXZik0rOqOvXTIO4+PHHNT5IFjM7VNMxN2QWHxmBlCxjDHjB1ejmouwUqMoyFshBOxH/nCdjfueMqynM+tmNyjY8ZmYCBBWIoTwVygRp3a0pZm7hUJ3pvpulryJKnAHunr7Pc3cxYLuTBcCZe5MEdEF7kxXb7+jaW1zQXemizdl7kwR7wvcmYIep9O4jgW3HyWQnZNH36m3SMvIoYaLCR28bBj0XVkiogrcmW7cj6OJAnem89dl7kxF+y+heUNrQXem89ei8KhjKXeXUrkz8a9SIl69iqJqzaG8iziAsbGA+2MhJeLy5Xt4j1jOk5AdSCSJiMUmZGfn8OJFJJWrFqyIN2pYhXJlrdm2eYKsQZpbYgx9FBJG89bf8zJkrUJCUgIK7jUnO4v7D8KQSqVoa2syc84+bt56TmJiOhbmRpiaGlCzuhN+q4eip1tyTTgzMwtNDYQLYuaP27fvvMZ73A4qO9swcUwbXCsr+qYp+U0X+C74jN8r6IYEimMiQFiJEIJKifjroVIivhDKlxUTETKb2LhUzl95RceeGzi1fwS13Rz/7q6p8BXC3t6eLl26sG7FMn5YsKjE/liJBAuxzM2jgrMLcbGxeHt7s2HDBry9vXF3d2f06KKZgS5fecDypd7ybZ9Ra/HbeBLvYe3wXTsKAGdne1o1r8nyVUeZPUv5tIXZ2TlcuhzCoWO3OHriFmILI3R1NfnwIZu6tcpw99qPmOql8/ORB2Rl5TKkbx2Zy1VOSRKhra2BNOfzpWxqVrHg5pHOv9mv4pN8Ze0l8R/YuO8pABv3PWXW6JolFAkhCMVE/J3Yvv8pVcsbsHX/c2pUkhGue6HxONoasOf4a0RqIi7mp0lt6m7NjoMvqVbRkG0HXlK9kkzZuR+aiL1PRXYcfYOmhohL+W5FTeuK2XcyCtdyhuw4+pZqFWUTggfPUnCy1mfn8Qg0NUVcCooDoEkdM345G0OlckZsOxJGDWdjJg+qyI0H8bhXs2Da8gdoa6vx5p2MpDStZ8lPJ95QuWwpth9+RXXn/P48TaSsQyl2HHqJpoYaF2/I3Jaa1rdi55GXVHMxYdvB51TPJ5gPniXgaGvA9gPP0dQUcfGa7H6/aQV1a1j+6b+BCn8Nypa1pkN7d1as3M+c2QNL7P9EFgBcXBx4/z4e7xEr2bDxON7DO+BWswKTpmwsckzAtRC6fech3/YZtR6/TafwHtoW37UjAHCt4oRno0qsXn+a76d8q3S/s7Kyuej/kIOHr3P81C2sLI3R0dbiQ+ZHGtZ34cHNZZiYGLB73xVEIhED+zWVjaECk3YdHS3FC6n5qO1WhuCrcz5rA8LuQ8rYS2JT8NsiS/ChjLIgFBOhwj8HX5cSkf6L8mlSFfllC0GRb7fCVX4FKyXqesxffIDY2BRWLRtU0K4wfZ4SvpOK0psqWBF/kip8Tzl5wiuzit4HRfZ5CuzVhFIlKqixocw5Pgdl7ZXpi6L7V9SereTzEsIc74FcOnqItj37Mmn5Wnn7yqnjObZzKx37DWL84pXEvIukT8NaZH4oeNc9235D3cZNWTKpwNe0bffezFjth5qaGgmxElpXKkjrevZJOKYWMlIS8+4tvZs24Ie1G6lWpx6lTEwBxc/3U/ujO7cZ2fUb7MuWo1n7jjTr0Blbx5J59230Sso9ChWg3MvC7dlJwu05JdvlQXgD6+O77Lsi+yTvIhBb6Be1n3IGv513S6Rg9Zl6gQ17Qhjeuwrr53nK24VUDg0nP1l3wrxL7FNTF77Zv0KJeHOlE2JjdRKSszDUK0jBalpKC0lSLmIznSIpWyXxmVia65KQ9BFDeUrVbIx184iJz0Rsqk36B9kYo6+rzntJGpZm2rLzf0rxmi47f0z8R8SmWkXsJQkfsTTTKWFvbmbAlOUP0dBQY9oQZ7l9XLo6VgL9MTPVJybuQ8n+J2ZhZaFXxD7tI5ga6xATm4HYXFdub2RsKFwHSFOB4vA7sgEVgaJxXuH3RYk1vs9kvRGEogxsir6BSqesFoDC56X4OyoIhWnFSz6vbr0Wsv9gAEMGtWaT31h5e/EFlPDw97hUHUJmZoHa2r5dPTp3bMSAwUvlbf37tWTrpgmoqakhkSRiaVPg9hkT+YtckXj9Opo6DUaze/tk6tV1LojD+I3neP3GY9p3no2Lsx3fdWpI506NcHD4ncRWodeBct4FQvDx8cHPzw9vb298fX2L7PukfgvaD++Dr+/8Qu0j8dsgI2m+68YVHCCgcou0ZPWLBLNiKYBIq6VKifiLoapY/SehtJUJySlKpnlTQYV8JMbFcunoIQBO7dtFYlysvP3Yzq0AHN25lfeRb5k5qDcDJk6jU39ZbvBO/QcT8+4tokJuX2dCw5i1dqM8DbGphZhvBwwB4NsBQ+QEAqC0rT1jfpzPthWLaV/dmRaVnPDp3JZHd24J9jU+VoJUKmXJtAmMn7uI3eeu0m/UeHT19QXtvxQkkpKEQRKbUmJbvvq17QaS2FT5Pp+JB7F0XYXPlDOF7NPx23kXgA27HiKJK/gbXj/Pk+jgAUUIxNcGDQ01hs66zYs3qfywLoQf1oXw4k0qLQZdRkNdjd4TrrP/zBv2n3lD7wnX0dBQ49sRV2T2qx/ww+oHvHiTSqshV9HUUKPP1NscOBvJgbOR9Jl6Gw11Ea2GB/IyIp3Zvs+Y7fuMlxHpDJp1D00NEX2n3+PguSgOnoui7/R7Cu2Hz75DaQtdjl54V+T8muoimvc7x4s3KcxafZ9Zq+/z4k0KPcdeRlNDjZ7jrrD/dBj7T4fRc9wVNDXU8Op1iudhycxcEczMFcE8D0uiafdjaGqq0WPkeX458YJfTrxg6oKSdQBU+HohkSSx/6DsN9289Yx8vJBIkvDbeBIAv40nCX/znk5d5rBo/kC8h8niCryHtefNG4ms6GU+Yt4dYPuWSfIxVCw2wXtYu3z7dkVcmsqUKc3CuQOYPW8PDuX6Yu3QgxZtpnHn7guFfc3Ly2P0+I2sW+XN9cvLGTemE7q6/1/RzN+CRFKyxk/xNolEgp+fbFHEz8+vyH4fHx8sLS3x8fERtt+wG4kkTr7Pd904YqIOFyUQKnzVUJGIPwmljPRJTk7/u7uhwleCTyThE0zMLXByrgRAh36DMDG3kLd/00+mbn3TbxA7li2ktL0j3X1GM3HxSk6GvGbi4pVMXbGOTQsLJOrCJOETpi5dzdkn4UxdurpI+8KJY5g9ahgVXatzJTyGXeev8jA4iL7NPVgwsaiL1IKJo2lawY7hnduSnZVF++69AZg/YRRNytsyb8KoEteNFfhwfQ4SSWKJNp8xG7F0GIDPmI1F28qMwWdcQR2GT0F7AN4D6yO2kK0ISmJT8dt2AwC/nXeRxKbn2+vj3a8mAMP7Vi0RAP21B0Qb6WtSs5IJTjb6eNSywKOWBU42+jSvb4WRgQZe9a2oVcWMWlXM8KpvhZG+Jo1qi3GyNcCjjhiPOrL/N6tviaGeBl71xLhVNsGtsgle9cQY6avT3N0CRxs9GrmZ0cjNDEcbPWpVNsZQXwOvuua4VTLGrZIxXnXNMdLXFLSv4WyMpak2pqW0ip7fQJMWDa1xsjXEo7YlHrUtcbI1xL2GBYb6mjRvYI2bqzluruY0b2CNkYEWLT1sKWNviGd+7Y8ydka09LST2TeypVZVMbWqiqlXUxXQ/TWj+KKCWGxMJRdZqtXhQwsm+WKxsXzyP3xoO2bM2kmVyo6MHtkR33VjiHl3AN91Y9i2eSITp2wqdL6SRQR9144iJvIXuTvoJ/iMWstQn9XUrFGO5LjD3AxYzfUbj6nlPgafUeuL2a7H0q4nzVt/j6amOj26NS5ot+2Gz6i1FIfQAsrnn01ciTYhAiDUJhaL8faWKare3t5y1UERuShiP7wPYnHRmD6h56jC1wuVO1NhfCF3pjyRDguXHuJKwGPOnfyxYIfKnen/Psfn8LW6M31yT/qm3yDGLZJV57x+9jRrZkxh2c+HsStbNPtFdEQ4J/fs5PrZ0+jo6rL68Gl09fVRF4n4mJnJ5ZPHCPj1JEH+F8lISy1xPRX+OvzT3Jnmjq3GmN5l2XPiDW6VZR/zO48T6d3egc2H3tCltQN3H8cDULOyGTsPv2Jsf2d2HwujVhVZTEFwSDy9WpVm9Z4X9P3GkbuhMpJXs5IJP50MY3hXR/aejMStkmzSdic0iV5tbVizL4w+7e249yQZgBoupThyMYqBnRxK2Pds50TnMTdQUxMxslc5+fkPX5IwtFsFdh97Ra0q5vn9iaNvpwqs3P6Y/t+W506IrP9uVczYc/w1o/tVYdeRF9RyldnfDU2iT+cKrNjygAFdnAl+JCPwDeo4YGoiEL+icmf6x7sz+Yz2w2/TmSKxCYeOXGPytG2cO72AsmVtiti/ehXFpq2nOXY8EBMTQy6eXYSeng6I1MnIyOTQ4QCOHLvOhYt3SU1VeRT8nVC5M/2zoVIiviCkUinnLz2iVoNJnDgVzILZvf/uLqnwNyIxNrZkWzHFobB70rGdW0mMiyU9NYXF43yo4FqVkOBb3Am4zOunoRzZvpmRHVrg3caL9NQUJi1bw8ZfLxdxG7p56RzzxwynTmMv9gc9+HNvUIWvDueuR5Oakc2FwBjuPE7kzuNELgTGkJqRQ9CDOMIi07h6S8LVWxLCItNk9uk5XLzxnuCQeIJD4rl44z2pGTmcvyEhPDKdgOA4AoLjCI9M5/q9BJl9UBx3QpO4E5rExaA4UjNyOR8YS/i7DALuxBNwJ57wdxncf5pSxD74cSL7TkfSoLc/d0KT6NHGrsj57zyOJzU9mwvXowkOiSM4JI4L16NJTc/mXMA7wt6mcuXWe67cek/Y21Qu3YiS2V97R/CjOIIfxXH55jtS07M5e+Utr9+mcOVmFFduRvHufdrf/fOoUAwSSbJAW1KJbb9NMpdEv02nkEiSSExMZfDwNbjVLMe166Fc8r9PSEg4a9cfo17DMdT3HEdGxkd2bJ3IjasrZQQiHydOBjJ42AratalL2Ivdf+4NqqDCVw6VElEYf1CJyMj4yLXAZyxcdpzwiDiqVHYgMOgZamoiZk3rxkjvNjJ7lRLxf5/jc/gnKRGLJ43haKHgZ4AVU8ZxtJjiACWViJzsbM4e+InoN+FIot4hiXpHfEw0FavWwKtzF2p7NkVLq+RqnLpIJPOr/bYdSfFx2Dg6IbaxpbSNLZa2djRq0QY9g4JUh58LlE6IlWBqIebUL/vYvmopey7dIDM9rYhbVHZWFj9v9mPzsoXsuRCAY7miAXwJcbGYFXOjmjdhFPu3bmTAMG+WrS0I0FMUWO3j/Y1wIF52UonUigCS6AjhTB7ZJV2iAMiKF2yW5pR0RZTmCOczVjZ97N+pRGQ+7kl0dBKW5rqkZ+QHOOvJApytLI2IT/yIkUGhgGhj7UIByNn51p9a8AAAIABJREFU9prERCchNtMpYW9sIEIS/xELU62i588P0I5P/oiRPKA7VxbQHf8RPV01LgXFsXrPayQJWTjZ6XP/SRJqIhEzhjszoJMjqek5WFiZFgqgLuhPbEI2lhZ6xCdmYmSgKe+PmZkeickfMTbSIvOjrD+6+rokpWRhUkqblNQseWrMHLTQFwj6VykRn2lXBkoqET7j9+K3+SzeQ1riu1oWv+UzZrOsbWhrfNcUyjRXTIn4+DGbXXsuEhb+nreR8byNjCUqKp66dZzp2b0JzbxqoKkp8HxF6uTm5uLZdDzJyemULWuNna0FdnZi7O3EdGjvXoRwfO65fBqftmw7w5p1x7h1Yw0pyalFxqyPH7NZvfYoC5fu507gGsqUKepSJ4lNLTHGCWXV+9R3wec4aid+G3aXCHJGZCcYFC3U9ocglM4875WwraL04UpCpUT89fi6SMTn+pp3Tbhd0eRBaID+nTUVYmISCAh4wPUbb7h+I5jHj5/jWqUiBgb63Lv/mIEDB+Pl5UXPnj3x9/enWrVqADxPF+5/riKXmNySA5Syk/ksgXN8DrkKziOYteQzUEbiUjKDv8JzK+q7Igg9G0XPV9FzzM3LIykuFuP8mAWApLhYBtRxlW9vv/UIoEjblqCHlDIr8BVNjo8rsv0Jv5URSagt62Mmb5495de9O7mwfx8ikYgylV0Zv8oXu0ITfUXn1tEo+NtIS05mWItGdOg/mG+HjiD86RMe3rzOvetXeXTzOpXc6jDw+9nYl1eQAUQAcZKYIs8LhJ8jgK6mpmC7iY4OQjDWFU6nWkFfwfurKPtThsDHLqukXzEAOQpcxhTVnVEAkc2KP51EvL3WjdFzbjK4awV+ORUGQNc2TkxcdItzO5rTe3wALRpZA3AuIIo9KzzoNuoS04dXZv+ZCAC6tLJnyrL7/LrNi94Tr9OigWzic+56NHuXN6JF/wssm+bG/lPhMvs2jvjtfYrfnLpy+9T0bI5fisS9ujk/nQxHKgVDfQ3U1dXI+JBDaQsdpg6twtCZQXj3KI/YTIdz16PZt6YZLfqcYfn3dfn55GsAurUrw8ptj9m1sjk9Rp6lpafMD/7slQguHe5VJDgWAHUFAf8Ka+coSRaUhSKyILRgpshWUV8UkgIFi3EKq88rIB2CfVGyj2ragulALcuOl2/HvJbFbRWtbLyuxDGCCwjKkLR82w8fPhLy+C3rN/3Kzj2XUVNTo0Z1J37aOZ7y5ayFz1cYhcaEhIQ0qrp/z+SxbRnp3ZZHIRFcDgjl4uUQrl5/gmfDSixdNIgK5W1Knkegj8+zWxEvkWBWbKKf9OGDfPGnMD7m5pIYG4uJRdExNDNH+B1Q9F0opS1MgrXUhZ+vpkC7pY5yfzMKs/YpgEgkUpGIvxi/udQhEol+BH4o1hwjlUqt8veL8vcPBUyAIGCEVCp9XOgcUiAbcJZKpa8Lte8AzKVSabv/7zb+GuTm5rJs+c8sWbqP+u5VaNCgEcuWzqBmzSqMGj2LV6/eEPb6OiI1O9zd3VmwYIGcQKjw9UNoMrtx5hR+3buTVr36MWzuYgCMzS1o1aufvP3TMZ/aWvTsV4IwCBGIPwp1dQ1unD7Bg2tXmbxuM9UbeWJQyvizx2SkppIUH4uamho6mlqI1EQ8vh3ExjkzcW/eipi3EXSpWh5DYxOq1qtP4/adGLtoBSYWYoXESxGKP0MQfo6fs1fhj0FspsPwnhWpX9MSe2uZKuVgo8/yaXUQm+kyb3xNeVE2j9pWiM10+N67Mg3dLLAvLZtM21vrs2RKTcRmOswbV11ehM6jjiViMx2WTXPDo7Yl9tayybqDtQEa6rJr/zi6Kr9eiWLz/pdUKleKMrb6/DjKlV7tHBg26zaxiR85vK4RQQ/imb7iAeMHOjOyV8X8/oixNNdl+fd18ahTGnubT/03QFNLG7G5LgumuFPGXjaR9KxnU5JAqPC3QhKbKk9u8Ak+4/bgt/Uy3oMa47tS5gKsqIpxQVvTEoThS9YSUFdXY9/+AK4EhHJw30S8mlTH2Pjz2eaSk9OJjUtBTU2EWl4GamoiLgc8ZcqsX/iuY20eP3mHuf1gLMyN8GxYiZ5dG7Bl/TDE4lKgrlwtmeIEAmDJ5LEc2r6ZbwcMYfKSVUX2FScQKqjwpfCbSkQ+iegONC7UnCuVSmPz908BZgD9gWfALKAhUFEqlabm20iBTOCoVCrtUejcO/idJOLvViLCwqLo238+6upq7Nz+PQ4OVnLXoqlTFxJ06z4nT2xHT0+XHj0no6+vz5YtW4qs4KuUCGH805QIIbKwetoEzuzZQeve/fGetwSQkYq+tQoqQm+/9aiEIlH8PPGxEqUIg7JKRHzMe5aNGoaOnh7jVqzDyNTs0+oMZ/Zs58qxwzTp3BVtHR0inj/jzbMnvHn+lJSEBFlfpVKk0jykUinmVtZ4/zAP89LWDGvhwYZzV7GwLrlapiyJKG7/ueeoqym8FKVSIpSHSCSS9u1UjlUz6jLP9wGedawAuHLrPTN8qvHjmrsM7lYB/0BZsbYm7qVZtjmE5ZOrsmBjKB61ZROXq7clfO9TlXEL7jBpcCX8b76X2dezwnffc+aPq8F8v0d41LbMt49h+vBKDP4+iLC3aXzIzKFneyc6t7Rn56GXTB3mQouBl8nLkzJtWCVu3o/j5Zs0noencnBNI/yDYmTnr2vJzhNvmTGiBvPW3cOzrkwBuRIUzaxx9Rj9QwBTvGty6UYkAE3r22LvKEZfr5i7jEqJ+NOVCEGyMPEAflsD8B7UCN/l3QEZqbAsP1VuE/NqRQEZEKkLqguS2HTlCIOSSsTbyDi69VmBmakhOzePxNTUEETqSKVS1qw/ycEjgfTv0xRNTXVCHkcQEhpByOMI4hNSsRQbI5VKycvLRSqVYm9rxspFvTAzNaBe09ncv7kE69KmJa+riEQoUCKKI14ioX4ZK/n2mdAwuSLxUcEcQKVEqPAl8HudLnOkUun74o35KsRYYJFUKj2U39YPkAA9gcLlHtcCE0Qi0TKpVHrn/+v25xEc/JRHj16RkJhKQqyEzI9ZiEQiRCKRbJVAJMLc3AQbGzNsrGX/rK3N0Ck0AUlNzSAqKp6o6HjuP3rLgoW7mTqlN+PGdpXniQYICXnG1m2/EPLoPPr6euzceYBHjx4RHBys9MRbhb8WiXGx8tSpn7Bu+kRO7t5Ouz4DGLlgGSCb5J7ZswOAM3t20GPsJIzNLRQqDp8gtIL+JRWH4rh/7QqrJoyiTZ8BOFRwZtOP0zEVW2Fp78DjW4FEhb3mO+/RXDt1DA1NLRwrOtOqZ18cKjojtrVHPX/QL+zOBHBgwzoatm4nSCC+BH7rOarw1+PNuzSOnHvD4xdJzPN7TMCdWF6/lQUev4v5wNz1jwh9mcSvV6OIfJ9OKUMtPmYVTFakUikZH3JISP5IRFQ66/Y848yVd4zp50xpsW6RicqDp0k8e52C3+zaaGupE/IimWhJpjwblAr/XAiShQn78dt2De+BDfFd3lVu57dVVrPBb2sAP05ti9jCELGFId6DGsuViN+jLvyZ1Yt/PXeP/kPXM25UW8qVLc2IcVuwsTbFydGKi/4PiYiMY9LYjvxy8Bo6OlpUqWzP8MEtqVLZHkcHccHcoNjCwsJlJ/iuY21hAvEFYCaW1f35pEQIpfRWQYU/A79XiZgMJAJZyNyVpkul0tcikagM8AqoI5VKbxc65hQQJ5VK++VvS4EuQFfATCqVeuW37+ALKxFbtpxg5g9baNWyLqamRpgYaaCjo4VUKiUpKY1Xr9+jq6uNtrYW8QmpREXH8y4qnujoBAwMdDE2NpAXfrGxNsfa2gw7OysmT+qJq2vZIpeUYo+H53f07NERb+8+vHoVTvUarUlLS6dcuXJ07dqV8ePHY2Ym+xiqlAhh/B1KxKcg5/Z9BzJm4XJARiq6VCvw7f/53lP5hFZIiQDFvvyKoOyq/e9VIqRSKT5N6qGmroHYxpa46Ci+GTSMtORkYiIjMChlTPfRE9AqtIL/uZgIqVRKaPAtLh45gP+xQ8zeuocqdet/kXsSsv9cTIQQVEqE8hCJRNKPT/rhfzOa+jXFvHknCx53sNHn6q0YmjWw4taDOK7efs+anU9wq2JGBUcj4hMzqOBoRGJyFinpWcQnZZGWkYuDjT4v36SRlp7N+7gPxMRlUspQC00NEanpOeRJpYjNdLAvrY+mhohl09xITc+Ruz+FRabh5mJEzU5nGdm7PJ61xYRHptFjQiAZmbmUdzDEvbo5Ewe7YGyoRVhkGu517Dl/7R0edax48y4tv/8G3LiXiFdDW4LuxcjdmV5HpFDfvWzJB6FSIr6IEuEz8SB+224UqQQviU3FsmKB93PM8/lykiGkRACCMRGfvSeUfO6/U4nIy8vDwXkkhoa6lLYyJkaSzNgRbUlITON1uAQL81LMmNoFbe3fsTyek0peXh43br5g7/5Afj50kzOHJlKvXmVh+/9TiYDPx0QIQaVEqPAl8HuUiCBkrkpPATEy16UbIpGoMvBJP4spdkwMILRsOR0IFYlEraRS6a+/dWGRSDQUWazFb0IqlbJg4W62bjvJ1cvrKF8+P1tRIXemZq1nctH/AYaGsj9YsYUxtdzKM250Jzq0q0tySiZJSelYWhpjaKhXMHFW8BHZtesgmZkfGTq0JwCLFvlSp041li5dS0hICIMGDaJ9+/aYmZmRl5dHTk4uGhpKZNxQ4YugeFBZYmwsR/PTqp7YtY2+E6ZiYm6BibkF7foMkCsRhSe03vOWyBWI4vgnrJyLRCLWnL3CjdMn+Zj5gWZdeqCRPwFXRAAXeg/ErbEXTTp1QTM/29Pbly+4dvwwl44eRFNTi6adurD+tD/WDo4KieqXgqLnmJuTg5q6Onn55ENNTY3c3Fy5cqLC74ckPpNNPz0lN1fK/tOywOoubRyZsiSY01u96DPxKmnpOfT7thx3QuKZMLgKPcb4062NAwfORHD6ahRxiVmoqYGutgZ5eVLKORriUVtM5Pt01syqx3cjL7PmhzqcvCRzK+rSWhZYbWaszbj5wTTPD8Q+fz2alg2tePs+AwdrfZZve8q1u7FUdDLE1FiL5vWtmbbiPvp66thY6nHuejS7V5gzeWEQS6fX5Zf8wOqubcuwekcors5mzFx2kxYessDqc1cjOH+gjCou4guguOJQpFjjthv8OKVlgbIwsKFciSh8jO/y7nIFojj+THXh90JNTY1nD9Zw4HAg2dk59O/TBA2N/DFGgIhIpVI6d1tMxw516NnNQ57tKfTJW/buO8/e/YHo62nTq6s7967NxdHhz/9OGJmYysfJvLw8NDQ0yM7ORkNDo8T4CbKxVZSvnkjz8lDX0CArKwtNTc0i9nm5uaCARKjw34bS2ZlEIpEB8BpYBNwErgP2UmlBPi+RSLQdKC2VSlvlb0uBLlKp9KBIJFoPNABqAttQQokITSnJnNNSUjh3/DBH9+wkNSWZLUfPILYqSJNWQV/mDy4SicjOzmbz5s3MnTuXOvUbUqmKKzq6uvx68jiRbyPoNtib7oOGo29YdJATmjwlJyTQoW5V1v1ylMo13GR2eXmIRCLypFJ2rlnBxqXzadisFTXcG3Bg60biJDE0aNGapu07UqexF9r5q6mKVgqUURGU8Z1XdE+fg6LVZg213685KLrml+qLkKKzYeYUzuzZQcte/Rg6Z5G8fdOsqZzdu5NmPfsy6MeF8vasXCkp8XEYFXM7ystTru+5Chbn1f+GyiyK3oFZnVqQ+SGdvJxc6rTuQOjNayTHxlC7dQfc23XC3qXK71Kg9LSEJ/OG2sKpG4VUBAOBlLUgI0DxkhhMLcR8SJetnOvq65OemoqBUcmJhyJVT2hVDKCykQJSL6RQKEpDmKsgjfTHKKXsRWaT/nQlIifMm/cxKYjNdEnPkI2nObl5bD/wjCNnw0nPyOb4llaIzXRJTc/C1FiHmNgMLMx0yPiQS1Z2LvuOvWTB+ns0cbfGyc4QQ30tTlx8Q1RMOqP6u9KxhSNOdkby8+vraSBJ/IiluR4JSZkY6svIbdjbVDy7HGHv6qY0rmdNekYOeXlSDA00kcR/YNv+Zyzyu0+bxna417TEd3coCckfad7Inl6dK1LfrTTaWuro62mSq2WFpqbAb6wpkFBA2dV8ZaFsqnBl7QWhyFbJGAeBvvhM+DlfQfDAd0XPgvbx+/DberWksoCwm5PSqogifKk0tMo8XwW2LvUWk5WVS16elK6danLu0hNi49Po8V1denWtSzVXu6JjqJoCxUGR2iWQFv75x6aCpmkfP5KcmICegeyYjLRUSpmYEhvzvsT4mRArwcRCTHJiAvr59un59iGvX1HKzJzMDNk4paOnR3J8HA62wmnkFanC2gILporG4Qp6kYLtilLXK4JKifjr8YdSvIpEIn9kysRSlHBnyicR4vxjfAAv/iCJCH/xHN/F87hy9hS1G3rSqWdf6jRqzJnD+7ly7gxJCfEkJySQlpRAQkICjRo1YvXq1bi6upKWlsbaTVu5fPE8gdcCsHdwRFdPj+CgmwyZMIVxP8wvcu3iE8XsrCymDRtAKVNTvl+2pkRfP01kEuPjuHz6BLeu+tOmSw+cKrty5dRx9m/xo25jL8bn+9yrSMSX6Ut8sdShSXGx9KtdRb69LegRpcwLyEGspGSQc1augj7+C0nEz0vmoGdUiir1PQg+f4bK9RvhUqc+KPGbwp9LIp6HPMTK1o6540bg3rQ5AIGXzjNn3eYiNS8+QUUiFEMkEkk96lpzYJ0XI2Zdo3IFU075R3A/NI4WDW1JTstmmk91Vmx5SHhkKno6GryKSEFPV4OEpI9ULGNM17ZlCH2RyMLJdWjZ7wxiMx3uhsRRykgLcxMdnrxMYtKwaoS9TaV5Q1sAzl+LZP1cT7r4nGXBlLoc+TWMnJw87ofGERufgf9P7Rkx8xrN8u0vXItk3ZyGdB1xgYlDq7J2Zwhvo9IZ3M2ZwPux1K5mybzVt6lfqzTftS3H+asR7Ns6oGDVuDBUJEK4WQGJkEiSSigORQKfXy4pmla1mP1n8S8kESOnHMXe1pRG7mU5euohrbwq4dGgHOqaCsjCn0giXoe9JuZdJJdOHQOgadtvWDt3Jou3/8SiSaOp29gLgKDLF5mydDWrf5hOx74DuZxv37jtN/jOncXotRvZOHMK1Rt6ArJYu2FzFhEX9prq9RuWuK6KRPy3obRvjUgk0gGcAX8gDHgPNAduF9rfCJgkdLxUKpWIRKJlwFwg8I90+kVoCIM7tqbXsBFMXbSclMREft66gZmjhlKnYWM69uiDuaUVxiam1LQ1w8jIiB07duDl5UW3bt1YuXIlw0aNYdioMeTk5HD/7h1uB97A65vvcG/i9dlrR7+NYEL/HphbWjG2GNkoDhMzczr1GUCnPgMAmQ/itwOHcvKn3dT2aELs+2gsrEp/9hwqCKO4/7zv95M5vWc7rXv3Z3ihVKute/eXKxGFCQT8uUHOfzdyc3J4cfcWb5894d3LZ0Q+e0J6chJWTmWxLlue0mXKoV/KmNDAa3QYPoYyVWvIj/2z3ZaUgZGxCXoGhrg3bU6VfMUPQFtB7IMKn0dLTzsMDTSpWMaYdTtD6NmxPN3blcWrgQ2jfrxO77GXqFzBhK5ty1CvhiX+gVGMHejKiQtviIhOZ82OENxcLbCy0GNQ14r071KRoHsxvHyTQlpGNvcfx9O9XTmCH8VSq2qBb7aRoSYtPe0oY2dExbLGLPa9i3NZE9o2roihvhbNGtpSq2rB37ORgSYtPWxxc7VgVD/ZQoCbqwVa2loM7VWFtdsf0KGFE462RjT3sEf972DnXzGEYhCElAVZ4HMjuRJRMvD5dxKIrxDZ2bkEBIbxMDSaR6HveRgaTWJSBs7lLalU0RKXCpZYmBlw8cozJo9pjnudMn9rf3X09LBxdMKtgQcANo5OuDdtjp6hIXUbe1Gp0PhpYGiEc7Ua2Dg4UrN+I5m9gyP1mjZDR9+A6g09KVe1utxe18AQ0y9RgE6Ffx1+T2D1MuAEEIEsJmIm4AG4SqXSN/kpXr9HFjfxHFnMhAclU7x2kUqlB/O3DYCXQCngojJKxJOH9xn2bTsmzVuCoZER+zb5EvrgHl36D6L7oOFY29kXOe5TQOWHDx8YNGgQd+7c4datW+TqlaxCGpMpvJLxaVIV9uIZvZt70HfEWIZOnIqiJ6doNTQzJ4ewZ0/o2ag2Onp6aGnrcOZJONlfICj6v6RErJk2kdN7ttOm9wB85i8hKS6W3m6V5Pt33g4pQjDiJZISBAIgS0Au+LcoEY8C/Nk8dQy1W7XHroIzdhVcMDA2ITr8FdGvXhL1+gVRr56Tlydl9sEzRY5V9vf4M5UIgG2rltKxd39C78mSulWq4cbju8F4tGxTwlalRCiGSCSSfng+lBlLb7Lz4HMGdq2IhoYaAbejuRcSx4i+lTE20qZ5I5kiEPwwlr6dK7BuVwi9OpbnRvB7Vm57RGx8Jj06lGGqd012HX4un/wHP4yl37cVWbH1IQO+cyb4USwAtVwt2H/6NcN6VWLh+rus3PKAgd1ccClnTN9O5Vi59RH9u1TkTr69m6sFB0+/Zkh3lxLnH9C9KhPmBrBux0N0tNXR0VbniX8f0LHCylJgQqtSIkq0+IzbJau1UMg9SRKbgmW5yXKbmBeLiioScQrSqiqz+v+VKRFHT4UwZNxBun5TlapVbHB1KY2JsR7PXkoIfRbDk+cxhD6ToKGhRtDFyUUPVlSd/E9UIlIzMzm6Z4fcvfrxvTu0696bA9s20aLTdzy5fxcAl+o1Ob5vFz28R3P657241KgJwJN7d2nbvRc7Nvni3ro9Lx89AKCcazUuHvyJfqMnFMlM+QkqJeK/jd+jRNgCPwHmQCyyOIh6Uqn0Tf7+JYAusJ6CYnMtPhEIIUil0jSRSDQb8FWmsyF3g/Hu0oH+o8ezecVidHR06TVsBGt/OoyenoI/QuDFixd06dIFFxcXgoODMTQ0JCFbmSvLYC62wsbBEf/Txxk6cepvHyAASxs7Vvx0mMputRnUsjFhz55gW8H5D53rv4ikuFhO79kOwOk92+k5Thbs3Kb3ALkSUTxAV4hA/NthbGFJKQsxfWbOL0IkS5cpB01b/o09Uw65ublcv3COWg09uX3tCiALHnwRGiJIIlT4PPwD37F+12MGdq3Ill+eoq2lzuDuzkjzYNygqoycdQ2TUrIJ0IVrkXRq6cjVW9FYW+oxZvYNLM10WT+3AfPX3WVE3ywuXCv4+F+4FknnVk6cvfoWz7rWXAmSkShTY21uPYihZ8fy3H8sc306dSmcd+8t6NTCgbNXI/GoW5orQbL6FCaltLn3OI7U9JLn/66dM/dCYlkxqxGvI5LZefAJV26+o4absTCJUKEIJLEp+G3xB8Bv61V+nNYOsYWRrLjbIA+5ElFcYfgnBD7/1bC2MsLe1pj1SzsXIRwuFS3p2NZVtqGILPwNyMvL46b/Bfn2Tf8LNG33DY/v3KZyzVrcuS5LsWtkYkrgxfN803sAQZcvyu2DLl+kcbsOvHr8kDJVqvI4SBY4b2hszP2r/vT2GYPaZxZ7VPhv4g/FRPwdEIlEUlNzC77rP4jDu3fgPfl7egzxlu9XV7AiXkFfRJcuXXBycmLx4sXyICchEvFbSsSCyWO5cPwIkxcso1XnLp9ZhRZeDc3IKqhXAbBq5hQ0NDQZMmO2oL1KiRAu2FZcifiE4jERn6Co7/9mJeJDWirjm9SiZb+hVKnvQZmqNeTZmn4L/yQlIic7G00tLZIS4tE3lE1kPgUMCkGlRCiGSCSSmpnoMLSHM1t+fsqPY2sxoEvFIgHUYnPdogHR8R+wNNej7YAzVK9kxg9j3EjLyJbZx2UUCdDW19MgNj4TSwt94hMzMTKQvW+p6dmYmuoRE5vBjytvc/rSGxZNc6d7h3LExKRiaaGXb6+Vb5+l8PySxDxKW+qTkCSzHzXrCgZ6mixf2E34plVKRAnXJSEl4hMUxjgo23dlbP+hSkRcfDqONRYwaaQnzTydqeNmXzJ4X6Hi8NcrEckZGaipqQkGUCclxGOQP35+CqCOlbzH1LxkwPUHHV1SExPQzQ+4/pCehqGxCbpQJEX4J6iUiP82vioS0aX/YC6cOMp83y00bl3UA+pzJGLRokVERUWxZk1BEPQfIRHe37VHpKaGnVMZNDQ0UddQR11DAw0NTXJzckhLSSE1JZmsrI9UrV2Peo29cKpQEZFIxL2b15nUvydWdvasPnAcfQNDot9G0M+rAfsC72FobFLiuv91EiFU+O1TX4TIhaIJ5H+RRAC8vBfM/cvnCQ28hiQinApudanVog0Nvvnus1mXvhSJ+GnRbDw7dObu1csA1GjkybFtG1m0ZXcJW0Uk4kN6Opra2kS8eoFhKdmEMDU5CcfyFQVTvKpIhGKIRCKpjZU+mZk5VKpgQscWjgDcvCdh5Ux3xs8NZGBXZ077RwDQqrEdq7Y+ZOsST1r2PYOFmQ4dmjnI7QdOusz4wdWK2O8+9JxtS5vwIjwFYyPZb5qUkkX5MsaEvkhk7OxraGioYVtaH0N9LdLTs7A01yU1PRsNdRGp6dnEJWaip6OBg60hnVs5YWyohUgk4umrRAZOvkrFMsasmeNJabE+4ZEptOt/gvD7UyllJDBB+4+TCJ9x22WEYXATfFf2lbdLYmKVc0/6D5IIgIDA15w4G8r5yy8JexOPR/2ydOtUnZ7f1ZSNof8gEvH85XPevn5FwDmZe2rDZi3Z47uaORt2kBAbg6GRzIU7NSUZ+zLlePXsCaXt7EmKjweglKkp0W8j0Cxtw/vw1+jn26enJFPasQzaeXkYlCrpBq4iEf9tfFUkwsKqNMv3HMClek2ljn328D7Th/TjUNADeZvQxDLnN56FJOodAWdOkpuTQ25uDtLcXHKys+V57A2u/VLXAAAgAElEQVSMjDAwKkVWbh6PbgXif+wwZVwq4dW5K7tXLmHQzLmsnTKOffefoaWjw8cPGQysX5Nlx35FbGtf4npCkzlFk3ZFJEpZcvGlINT3z5GI4qQgKS6WvrUKCvMUzqwkNPmXtStHALIF7JWdQCuyV/R8NdWV+z0+5vz+4oKZ2cJ90VQXkZaYwPPbN7iwcyOlLCzp9cMSDBSs5iuCuYGwkmGhL/wBDL9/h8o1ahEVIfN8LG1nz93Aa7g3aVbCVuiDA8q/py6GCiYG+cUoS0DkINwu99Ys3KZgsqOIXCia1CgiEXrf/ekkwtxMj/MH+pKZmUMZB9nCxes3idR1s+Xi1Zc0qmtP+NskABxsjbl68w3Nm7iwdU8wy/2uc+XYYF6/SaBuLUfOX36BZ/0yhEfIavE42BkT/CCahvWcBC4u+13evE3gxK+PycnJIycnj+ysj+Tk5pKTk4e6uhqlDHUoZaQD6joEBL7i58N3qV3Dno5tXVm48gKrFvdkyKgdJL5dh6amBmlpmdhXmsjDoKXY2ghUuFZUxEsIyk5OlSjMBihPUhSRHQWQSJIRi0sV2bZ0KiizFPPat2C/shNuqaJ3XOBvQhGpVlR8UdHzyssUvmSugr4oWECQ5gnfq1Ra0l5NU3jyL9IyITYunYsBr1m89hplHEzYvKIDphaWwn1RRCK0FNgrIhFarUs0PUkVvp/UtDTU1dV5FxEOgLWdA3duBNCgaXPBRaPSusLvl6naZeG+KBjnnmQKJ6MRmpOYayk3vKmKzf3z8VVVPtt6xp/SdiUn27+F8lWqkpaSzLs34USGvSIjPY1Grdv/5nHPHtwjKT6OuvmpJcXWNnw7aJh8v4aCCU5KZiZP7gWTm5tDUnwcJ/dsZ82xs7x6/oyK1WvKJcFLh/bj4lZbkED8WyGkIPjNmFyiGrSxuQUte/Xj7N6dgpmVVFAOBiam1GzRjqpNWnBy3TIW92zLSL89WDoKVPT9QnCuWgO/hbPl2UKO7d3BkInTycvLEwzQU+HPx7UTQ9m2L5iBPWtw8EQoAF4eZRg45ihr57dk5mJ/Gtd3BGDrvnvMmuDJiCknGDmoLmNnnGLz7ttYWhgwY+F5ju7qx8yF52jcQJaVZuve2/w4pWi8za07ESSnZNK8qQsADnamjBzSqMBAwcQyW6rHjVth5OVJefsukZ0/3eLm+fE8fJJAg3rl5IW9tu0OwMvTRZhA/EtRnCwA+Izdgt/m83gPaY7vqsEAiMWl8B7cDL8tF/Ae3KzEMSooBwtzfbp3cqVTGxemzD1PzWYbuXjUh7JO/4xvk7aODqt+nE7t/NSsR3ZvZ/jkGexYu5IBo8f/zb1T4d+Kr+pL/kcIBMgqLjZp9w0bFs5hQu8uTO7Xg1uXL332mOiIN0zs0Zlju7Ypfb2M1FQSJDFUqFqdau4NWXP8HNaOTkS8eEp0RDg/r17GlWOHOLLZl46DvX/7hP8S+H4/md5ulfD9viCTRVJcLGf27ADgzJ4dJMXFyvcNnbOIbUGPihSJU+H/g4amFh3HTaft8HH4juhL4nsFLjcq/CthU/qPBciqq6tRrXJpjv/6hBFTT3Dx6muu3Qz/7DEvX8fRuttWtuy5pfT1klM+IIlNxa2aHc0bO3P913E4OZgR8uQdz168Z+7i4+z9JZAV684yYVSrP3RPXyN8xm7B0mkoPmO3yNskkmT8Np8HwG/zeSSSZPk+31UDiHnti++qAX95X/+t0NbWYNW81kwb3ZAW324kKjr5tw9SQYV/Kb4qd6bbcQpk0t+B5yEPGdWlA3m5uXi2ac/Jn/dgbe9IWZdKiNTUyPr4kdL2joyZv4T01BR82jXHsaILkndv8Tt1UfCcipSI9Gzh1E+pHz4QejuIWxd+JUEiwcHZhS4+Y5SKFfha3ZmS4mLpWdNFvr3nTqhckVj//aQSSgRAtsIifCp3JmXdmYRwcfdmAo/8zNitB36Xa5PS7kz3gqlUoxbRb2U+86Xt7LlzI4D6+cpeYajcmf4ad6Zff+lPi8aOBN2JFHRnaljHnjeRBe5MVwLDadG0EkF33pKS+pG+Iw7y8WMOndpVYdcvdyjjYIqjvSlqIhHq6iIMDHT4ZWtvkpI/4N5yHdWqlCYmNg3/4yOEO6XIxUXAFxwgW6pLwI3nHD99nxhJCjWq2jN5XBtQU+AO8i9yZyrhnhS2Sa4uCCkRsj4qeGdV7kxKuzMJYcGaIH46dJcrJ0dgaqJf6ER/jzuTmpoaUW9lY5e1nQPB16/S0KuFyp1JhT8NX5U70/+DClWqUq5SFd5HvuXR7SC0dXQwMDJC36gUH9LTuHnxHBOWrCI3N5fZwwfiWqceg6bMoH8Td5ZPGceQqTMxUtKHvDjUNTRwdW+Aq3uDoju+EiKnDIq7LRVOw9qm94Ai+7znLaHH2EmCmZVU+PPg1WcI6UkJ+I3qz+hNP6Gtp//bBymBbSuX0tN7FGcP7QegRecurPh+MvUD733R66jw+zFu5in8D/dn6rwLtGpaDoBfL73kl01dWLnhJnl5Un46EgJA946VGTfrHP6u9kyde45WTcujp6tJSlom14PCkeaBmpqI8IgEsrJyiYxOxqWCmJycXLoN2kOLJhWYOqYJ1RuvZPTUw8yZ1hrjUv9fkUBNTQ2aelaiqWel3zb+ylHcbUksLoX3kOZyslB4n++qwfw4vYvKZekvxrRxXsQnpNOu+1YuHBmOnt7flwI1KT6OsBfPOHPwFwBafduVpdP/x95Zx1WR/f//SXeXCraiEqKiCKiI3bF2dyF21yp2rbEG2ILdayvqGmArgoKKWNhSgtJ5f39cvHC5M7vyWfP35fV47GPl3Nc9c2bumZnzOu+aQFX/AAyMhEVQEYrwX/F/xhIBuTnnz57moO9GQm/fpHwVW6Jev0ICWJYqg5KKCu9fv8TCsiR/7D6Eqpoar549waNlIypVq8HcTdvQ0tElM0OqyLU1NUlOSkRHV4+0lBTUNKS7DwlJSWhqa5OSlCjHz1JWJiUpCW1dXdJTU1BVl/LT0lLR1NImNSkJTR0dsnL5KurqpCYloZWPr6qsLJiV5kdZIoRiHD5nVWrVuz+e85fK2oUCqD+3C6HIEvFtLREAEomEpb3a0nbkJCo75/mqZ6SmopqbMSkrIwN1LS10lNLR1NYhK1M6P1XV1ElLTqaUhTlpqSmo5c7nzIx0NLW00cjORltHRzb/1dTVSU1ORktHUawUxhKRlZXFlb/PYGBohLVdVbTz9VdkiRCHkpKSJClyFjrayqSlZaKem1UrIyMbTU01kpNS0dFRJyNDOm51dRWSkzPQ0dOT8bOysjl88iGbd93hVvBr7KsU4/nLDygpKVGhjDEoKfPyTQLlyxhzfPcAVFVVePgoCtcWa3FzLceRnQMLXIvCWSJE239hS4RwjMNWaSxDQcuCCF8URZaIb2qJQFUPiUSCQ70/WLOkA26uuTFmP8ASkZGVhbKystzzNiU5GV1dXQVuZmYm4ZfPY2Rigq19Vbk6W0WWiCIUBr+UiAiMSkRsvOJpPIVvuJfPn3Ju/x7SU5IxNDPHyMwcA1MzDE3NsSxfASQSTm7fwqF1q6ndtBUvHj1kykY/Nv4+BYe60kDRl48f0clzDH94DqbnxGncOHMSAMemLdm9ZD5jVm9ki9dU7HMDS19FhPPb8LH8OWow3cZP5dZZaSq2Gk1asn/ZAkau2ojv7KnYuUr5j4Nu0nPKLDm+uro6PcYrFroTc3MSW5wWVnQIYe30iZzYvlXODalgVqVtt+/LRENhU7CmZIosoL9SutXCoLBiQSyVq4aq8AdaBfOP/ws+pSm+vMXGKHZMFWXp2Ce1aYzH4pWUtbEDwP/gQYyLW3H3vD8ADg2bcXT1Yqat28LGmXnz/+7lAAbPWcjOhbNp23cQl08dB6Bui9ZsXjiHLcfOCApeQWHwBSmEMzMyOOC7iW1rV2JibkFaSgqPH4QxZvYCBoyeAICltvBbR/RlJCYuhJAlUj+zsO4rAguM1WuPMGqs9zcXEZLEreIEsYW40MJdWZ2nT9+y1e80KSnpFCtmTDELo9z/G1OlSimys3P4c/Uhli7bR+9ezfh9Rj+MjQvEZIiJuEKmdoxIFp771jqFuJxic0F0kSu2mP3y+TB8lA8+G07hMaQV3qulLl/R0QlYlMyr3xD1ahfm5gKpavNDbOFeWL6YWBA7J6F+xO6TrCThQ2YLC52cbGG3YDF+YSHJUuxfRVPYGqusKzIfNaSioHKNqRzaNQKbypbSdh3hhfX9xOKC7WIbZtWMvm4xu/T0dNatW8fy5cuxLKFLwsckHj58yaoVnowc8ZuUJPbcEssWJjKXIjIU3VZTMoTnV+Hfr4rvNL/VK1j2++QiEfGd8f+NO1NOTg7nDu3j1dMnxLx9TfSb1yQnJpKZkUFWViZZmdL/Jq9aj72zK8VKlaFXgcV4WloaD2/f5OKyhVw9eYwylW2Yv/cIJpYlOb5lPVo6ujjUdaN81WoAqGlqoaWrRzU3dyxKlca2tisApiVKUrWeO5o6utjXcaOcfS5fXQMtXV2q1nPHrGRpqji5AGBmVQr7XL6dax5fVUVZga/xhQXDvgRCVgGhNqH2hNgYTmyXLkhO7fCVuSMZmprRolc/WYxDkYvSz4+PsTEYmORlGDEpURITy5JUrOkMgKlVKaq41kdLV37+A2jp6lGpmiPFSpfBwaUuAMVKl6Gme6OvnoEp8Owpdm1Yy6KN26hW24WIsHsMatuMKlWr4TVqGNVru9KtQ3uMTX6tTD23bj9i4ZI9P3oY5OTksH1XII+fvuPlq1hevYnj06dUMjJzyMjIIjMzm8ysLPbtnIqLqwPly5dg3pwBcn2kp2cQeDkUv+1n2H/wEo41rLkasArryt8uC9iPRHR0gsICX6hNqD06OgGfDdKNJJ8NJ/D6vSfm5oaYmxviMaQVPhtO4DGk1b8LiCL8cETFfMLC7Od3JTt8+DDr169n//79ONVI5PbtR7RuPwNrayuGDFtO3Tp2tGlTFyOjX6v6e/D1q+xYt/pHD+P/JH6p7Ez/BElODj5e04l5+xoHl7r0HDWB8Uv/pGWvfqSnpqKkpEy/SdOxqVVb7nsxb15zeqcf8wf3oV9NW3YsnY+mljaTvTczbeM2rMpXJCkhnjYDh3Fs8zpqNm7Gh6j3fIh6T9U6bhzbvI42A4dx+5w/xhbFMLYoRtiVAFr2H8rJreup0bAp8VHviI96h31dN05uXU/L/kO5c/4MRhbFMbIoTtjlizTvN5TTvvL8au6NBfgi5tBCQihTkvf0SfSoUYW10yfKcddOn6jQbmhqRqve0owfBcWCx7wlbLt9Xy5Iugg/J3Kys0lKiEffOG/hXcrWgdBL5zAwt8DA3ILQS+do1Gsw5/bskJv/NRs349jmdbTu3Z/rZ05hUrw4JsWLc/3MKToN9eRTQvxXHauOnj5mFsVxcMoVN8WKo6KqygyPgRgaG3N83y4mjRIJ4P0J4bftLIuW7GX8pA241bX/0cMhMzObMZP9ePsunob17ZgxqQMb1gxhyMAWpKSmo6amwuL5/XGqZS33vcjI9/isO0rb337HvEQnfp/li4GBDkcOzuGvA7Oxtrb6QWf0bTF85FosSvZg+Mi18m2l+zN89Hp57uj1WJTqw/BRPrI2qViQuqsUFAveqz2JerVLZp0ows+L9PRMkpPTMTISseT9RDAwMMDS0hInJycALC1NkUgk9Bu4FFNTA7b6+TN67K+zGD+0bSubVyxh+cwpstS2Rfi++P/CEvHs4QO2/SmtaNyiWy8cXOryIOgWG+d78ebFc3qPn0KjDl1QyfW7Tk1Own//bk7t9CM+Oprqbu7UadUWjwV/yO3IfkZSQgKq6uqEBFzEtrYr929cBUDP0IiQgIs07taLu5cDZPzIiEc4uDXgXuBFbJxceHjzmpRvZMK9wIs07NKT0Ct5/GdhoTjUb0Ro4EUq13IhPJevb2ikwNdQV6N0pbwsR18CISvCyR1SK8LJHVvpMXai7N8AJ7ZvpefYSRiamslZHPK3A3jOX0rX0RMErQ1FFohfA5/iP6Ctp49qPgtXdmYG4dcDZX+HXw/EoWFznoXdo5xdVdn81zUwJCTgIh36DiIo4IKMHxRwgTot2qAkycHgPyYjyI+IsHtyaZ6NTc1Y5reHmwEXGDZ5Bg9CghndvT2Rz55Rply5r3bcb4X5i3bjWKMiA/o1o0e3Buzdf+mHjeVu6EsWLDuNmqoKg/o1xNW5EpevhjNh2nZevY5nwZy+dO/qjqqq1NUhMTEFXz9/1m86QUxMAs2a1KR71wZs3TQBE5Off0e2sIiOjsfc3Ejub58NJ4A8K8Lnf0v/fxqv6V0xNzfMtTiczm0/hdeM7jLB4L3KA6/fewtaG4osEL8GomM+YWaq90vUvrl79y5lypSR/V28uAl7d83g6rUHTJvSg2vXHtClx1xevHhP6dLFftxAvxDrl8ynhmsdugwYQvOOXTm+d+ePHtL/OfyyMREZ6elc//sMJ/fsIDw4iE5DPGnbdwDaunpkZWbSulJJRs5dQoOOXWQLpOTET+xetZwze3di4+RMm36Dsa3tIrv5/8ln//NCPDH+A1q6UlNfanISeoZGJOS6g6SlSH0DldQ1+RQXi4GpGYnx8WjlBjalJSeha2jEx9gY9E1MSc/lq2ppy/hJ8fFo5vIzUqT95+erqyoLBqaqKisLuiJtmDlF5lo0bO5iWfv636fIMiUNny+1GHhPn8TJHYoB0Z9jHwq2f742X4qimIifLybiRfgDVo/z5I+TeSLgTcxH1DW1yEiVzk91LW0SP8RiXdZScP5nJ37CyNSMtJRkADS1dUiIjcG6dBnB436+Zo/vh3HAbxPPI8Jp0bkHzTp0Rl1D3gc4f0zExVPHWek1jf2BtxV4n7F5/kz+XLqIFx8S5QIKf7aYiLi4T5Sr1JcPUQdkcSNK6s2+a0xEWlomJ/zvsmVbIMH3XjJ+VGuGDmyCrq4mqakZGFsNwGflIHr1bikTDwkJScxdsBvf7edo2KA6Iz3bU7eO3b8voMQCTX+ymIiCYgFg+PAl+Kw/hsfQNnivGZ3X7rlC5nL02WIwfOTa3LbmeP+ZV5h0+Oj1+Gw4jceQFnivKlAbqJCVqQVRFBNRaHytmIjbd54zZJQvdy7Pzmv/TjERISEhbNy4kYiICPr27UuXLl1QVxfPEHXgwAFmz57NnTt3UFMKEOSMHb+OlasOkJJ4Gi2tfMf/yWIiot+9paNrDQKevZOlsK1qqF4UE/Gd8UuJiHMvYrhz+RKBp45z6cQRylexo0nHLjT+rTOquVWgQZpxpklJE/xfxJCWkcGD2zdI+vSRtdMnUam6I91HjePjx4/YODrxODQEQxPpwvtDTDQV7B0Iv3OLUtaViXv/DgANHR18589m6LwlbF88R+YT/ubpEzqPGMf6GZNo2XcgIQHSAnY2ddw5s30LA+csZteSeZSzdwDg7bMndPAcy+aZk2nWewB3Ay8CYFvXnb93bKHf7MXsWTqPsnZS/quHYXQdP1WOr6aqQv3fOvExNpZKNWryNOwuBiam7F+1jMCjf9G0Wy/qtmlPKevKRIY/wKt3F9l18bsVJhMZKiKi41Nc7BfFRHxGkYj4tUXErTOn8N+xlRnb9snaL587j46hEU/vSIuEla/uxLXDe+k3cRJ+C7xk8//pvRB6T57JqS3radyxC6HXpRYKu9ounN6zA69lqwUXl8pKSpw7dph5Yz3pPtSTshUrcWj7ViLC7uHesi3uLVvj2qgpIC8iJBIJo7p3QEVFhUkLl2EpIFLehgbRvJ4Lh06fo37DvBf5zyYiTp66yfI/D3LudJ6w/x4iIiV6PecvPeTQ0SD+On6H6lVL0aurC9061UZLJ2/nOzMzC03jXmR92o2SmjQY+uy5Owwc9ictm9Vk2tRelCpVCNfKn0xEREdHY25uLtc23OM3fNYdxmNYe7zXjs/lxWNRvK2ME/Vmf57IyMkQjol4HyUcExGTKGxdKBIRwof8RUTE3oM38N15hVOH8lWF/g4iYu/evYwYMYKxY8dSoUIFNm7cSFhYGB06dKB9+/Y0aaK4iJdIJDRv3hw9PT1WLO1IyZLmCpyAwDDqNxzDxb9XUL9+XvzbzyYi/j52mEPbt7J23xFZe5GI+P74pUSEjp4+5WzscG7SjPptf8O8RJ6vbcEsTJ1tyjB13VaMi5dg+5L5PL4bTNfR47F1csHM0opbV65g5+rG07t3MC8pfZG9iXxBWftqPLgWiHXN2sS9eQ2Ajnlxnt65SWXnekSGBmNqJXWpiH/3mjJ2Djy8FkjFmrX58FbK1zUrwbPgm1RyrseLsBBMLKUPoNTYd5S1c+D+1UAq1crrX1Nbm3fPnyiMJ+71S8o7VCfsSgCVnZyJef2aI97LuXL8CI4NGjN5gx+PQ+6gpavLuBYNZOc+YfV6nBo3J/rNKw6s/ZOLf+2nec++DM1niRC7Ob9WitPCcLNEREF2IVKz/lP/YiJCbKH/NaAq0rm2mnC7ukAWI0CuSFDotSsc2bwePUNDrCtXoXQFa0qULouyigqSnBy0VFVBSQnL0mXk0p6KXZfo9+/o07guExctp0GrvIWSWLrVT2lp3A+6RYncxfvbF5HYOtYiLi4WA2PFYOaENPkUjdlZWZzYtoWgi+d49TiCGRu3USFXYJtoafHiSQRXz/qz+Y+F7L0ajImFBdoFEgmkpqTgt2YFu9evodvAYQybOA2tfOkJs3NyuHX5EmP7dGP26vU0yj0vMaEqdh/Y6r1TbBRK+wqFT6OpYo2n5wwMDfWZPz8vJklJudQ3FxF6elo41rCmTSsXunZxx9Iyn/umqvzCR11dHX9/fzKMSrDdZxXnTx5jvvcm6jRsQnqW8DkXdqNADGL8gvPhMz7ExmBiprggEspat3TiSLau96H/UA/+WO0NQEx0NJWt8kRRVFSUTGQMHz4cHx8fPDw88Pb2LtR5yEHySrhdTDBlCRQ5FV2gJwi3i4mFwmacEu1HMQ2rWApW0cW/2DukkGnIlVSEn1tKKnk78+cCIlm1OQhTY20q29pTuZIl5cqYo6ysTE5ODhJ1M5SVlSlbtjja2nkbk2L3+Js3MTi5DGfjuvG0bOmc76DCY/mQXbdQ5/QmRV7oZGZmsnejN5fP+vPs8SO89x6mcu4z1EJThUcPH3L21AmWzp9DcMRzjE1MFDZQkpKSWLJkCWvXrmTE8PZMndwdTc181gvVRpw7d47u3bvj6+tLq1atALiXIDI3RFDVUNEi8kFYFxYab1MymTVyKMVLlsJj8gxZu52BWpGI+M74pUTE4fvP0TYQ9rctKCI2zJ7O47vBvIgIp7pbQwxMTKhRvyEAYTeu0mLIaLbP/53Wgz15cE26G1mhliunN3vTbeocjq9bSaVa0uxJz8Lu0qDnIPYvnkWT/h48uindcbVxroP/Fm+6TJnNyfWrsM7NZvMy4iFuXfpwYIkXjfsNIyKXX72eGyc3raXHtDkc85H2f373NkIDz1O/U3eys7PlxlOmig0X9u+m74y5/OW9glKVbfGZOFJ2jq6t2tJl9ATCrl7m2qnj3L9xFcty5Vl65Az7Vi/DrrYrBiammJawVLAiFImIX0dERIY/wG/RXF4/fUxnzzEAxL14zovHEdLqpBIJKCmhqqxCdnYW7169xNSiGOUr26ClrcPH+A8kJSaioqKMqpoaamrqqKmr8+LJY5p17MLQfA9hEBcRe7dtxdaxJrcDLgJQ082d7auWM3j6bO4H3STs1g00NDSwKlceq3IV0Le0QtdAuvMaGf6AVRNHo2toSJu+g7CpVRs9wzy3EROtvHz+0wf1xrlhE9r06CO6aEyIjuL3kUOxKl2GWSvyAls/L2LvBwfh0aUddtUdadGxK/VbtEZbIF/69xYR2dnZjBm/m/MXruB/egdWVnk7k99DRHx4twsjU8XFNqAgIkaMGEFwcDAv3rzFqW59pi1egb6h9Pf8mUTE/PEj2bdlA10GDmXGMvmg0I9xsXLiIi4mmnrlS8j+Dn8dhVmuWJgxWlwsCFkuCo0iESHcx3cQESFhUUyed4mnLxKYNsqZ7GwJ4S9VefjoDZEvY3IPp4SyijpZWdlERr7D0tIMW5uyaGmpEx//iU+fUlBRUUZNTRV1dVXU1dUIf/SSAf1aMHVKzwIHLZyIiIuN5fqVy9y6fg0tLS3KVahIuYoV0bYsK7vnwu+FMNNzMKYWxegx2IPqznXkishZaOa9Q3p1bE+7jp3p3KOnqBX25bNdDB62HJsqpVmxbHjeB7nPgRs3btC2bVucnZ3p1q0bZd2ay21O/Ru+lYjIyspihOdwQm5eY/3BE5gXz7ufi0TE98cvFVitb2T0xS+jIbPmA7B5vhedR45j3+pl33Jo/xNSEj8RGih1gbp0YDdOLfN2g6+fPMK2udMpXjYvNaKOvj7V3RsRfPFvGnbpQU6+h7Jbu470mjCVs3t2KBynKMj510TSxwQ2z51J0KW/6eI5lmnrfWUFDfMvuj9D93NxuKwsXj9/ypPwh2SkpaFrYIiuvj4SSY405XFmFpmZGaioquLcoPH/NLa01FQ2L13Itb/PcPHEEWwca2FXszY52dlcO+fPq2fevHr2BFU1dYqXLsv7l5H0mTSdJl17Cub4fvfqJbr6+ugZGFKnSQsCTh2jTY8+oscvZmnFko3baOloQ/dBHljb2sl9blvdkVN3HvL3iaOcPLCH+RNHM3zqTLoN9vihAZDbd5zj+o07XLl8CEPD7x+AbGSkKKTEsGbNGkDcVehnQFxMNPu2bABg3+b1eEz5XSYa5o0fyb7N6+k2cBgzV0jPxcTMnP5DPWSWCLN8wsDb2xsvLy9BsfCfBUQRfgji4lMZ63WGswEv+H2sC4N7OsiKLKLvqPgFTemCNCsriydP3nD//nMyMrIwMtRGX1+bnBwJGRmZZEU4JqoAACAASURBVGZmkZGRhYaGGk2a1Pyfxhb/4QNzZ0zlamAAUe/fUcvZBSdnVzIyMvA/cYynjyN48uQxGhqaWJUtx+vI54ybvZAOvfrKWag/42VkJIbGxujr69OsVWvOnDxO5x49BY4sRalSFmz3nYJN1YEMG9KGSpXkxWzt2rWJiIjgyJEjbNu2jWueIxgx3YtO/Qf/0Gfojq2biQi7x/bTl9DV1//3LxThm+KXskScf5tQ6KJyGVlZhARexLa2CzG57kNmllbcunwZuzr1hd2ZrgZI3ZnevgFy3ZmCblDZxU3EnSmAio61+fBOytc1K8HTO1K+sDtTAJVy+z/ivYKbp47i4N6Isd6+PL17By1dPaa1aSg7B89la3Fs3IzYN29QUwENLS3ePHmCQ736PA65g0Wp0qgoKRH16iXW1WrIna+mtg4mxRT9MIssET+/JeLFo4eMb9uMOTv2Y+vkLPfZP4mIghC7LuIxFP/uznTh+GEOb9vK9JXeGJoXw0Qg9XB8aioJsTG8ff6MYqXLYGIhzfaRf+5lpqdzYN1q9q1ZQd8xExk4YSoJcbF0da2Bl89mGjVrKTgWzdwd6e0+qzl77DCbDksLMYrthD+JCGfWiCFkZWXRd+RYGrRsi5qa2ne1RGRnZ2NTdSA+3ktp2LCOAv17WCIkaUfFq+OqCvtxC4mIn90SERcTTYOKee6ugU/fysSFhaYKMdHRcgICCl8dt9AoskQI9/ENLRHBYdG4tN3LpUPdcXYsIf/hP4gIxTEWMg7jCywRO323sG/nduYuWY5t1aqChTlfJ2cQFx1F5JPHlKlQEVOLYgoueulpaWz4YyGbVixhyqw5jJk0hffv3lG3uh2bdu6lQ3ORjaLc+fXH8n2cPRfE8SPzUVNTFX0OHL5xl5kjhqCirELvEWNwb9EaVZF3BXwbS0RWVhZOttbMXbeVGs6Kz9AiS8T3x8+fk+w/IjH+A1vmzeTBzesc8lnNIZ/V3L9xjd2L5/ApLpb9yxcScGgPAYf2cGrTGhI/xLJv6Wwigm5yeos3p7d48yzkNoeWzSXxQyxHVy/m2pF9XDuyj8D9O0j8EMuBP+byOOgm/lt88N/iw/O7Qfy1fB6JH2I5tnox14/s5/qR/VzYs41PcbHsWTybR7dvcnKzN2oaGgxfsY6YVy9l4wm+cIbyDtUBqNe+M395r+TRrRsc27iWY5vW8ebJE3znz+JjXCw7ly7g/P7dBBw5xPYl8/gYGyt3vldzqwgX4ddD6UpVGLV0Jd7TJvzooQCQkpSI97yZHN+9nXOHD5Kc+Anz4iV4E/lMkK+kpISRmTm2Ts4yAVEQG+bMIOjieYZN8+Jx2D0ADE1MWbp9H3NHDOGYgGUtP7oNGoauvj69m7vz7rXIIg0oU8GaLSf+po/naHav96aFgzUbli7gU4LI4usb4PKVMCQSCQ0auH63Y/5fwPRlq7nw+LWcK5OJmTldBkqzI3UbOEwhXqKggCjC/5+obmfOusVN8Zhy5kcPRQH3Q+/RuHlLqlavLiggQPoMNbUoRs069TAVeYbOHuvJzcuXmOo1l7C7IQAUK16cbfv/YljfnuzevfsfxzHSsz2qqio0bDKBt29jRXnlKlXB7/RFug32YPvaP2npUInNy5eQ+PHjF57xf0fghfNoa+sICogi/Bj8UpaIv9/Eky2RkJOTg7Kysizdq5KSEulZWSgpKSGRSGSmPolEQlZODvEx0RiamslSsGpqa/Pq7XsMTc1ISohHU0dq4v+Y8AldQyMSYqMxMDGTpWBFXZNPcTEYmJqT/DEBTW2pX2BmWjI6BoZ8jI1G38SM9NyUmCnJKeTk5CjwU2JfU7xMBRJiojEwzetfR0+Xj7ExGJqZy40n9vULLMvl8dNSUtBQVUZTW5uE2BiMzMxJTIhHS0cXVWVlWcrN/OerrKKMhqaW3DVTUlJCOd+1yv/Z59lQkP/5ehbk5wi0CZlaocgSAYWPiXgX+Ryvvl3ZEHBLrv1bWiLUVVRk9xIg+32TMzP5lBCPto4uK3+fjFnxEvQdPYGUtDTUBI5dMLD6Mz7v/ke/ec2oFg3wvR5CdkI8Y7v+xsHbYTJeZEQ447t3pFHb9oyeNR+1fLvQmvn+nZOTw6aVS/Fbs5JFG3xxbaiYFaTgznbE/VC2rVlJgP9JvPcfoWpN+SKU38ISkZSUSsUqfTl5YgfVq9sp0IssEXmIjnqPsUCgdGpCvGAAtdgzp2BMBMj7judHkSWC/+8sEQD3H3+ky5CjPAgYKP/BD7ZEjBs+FDuHagwY6iHIBcXAapBPFvDi6RN6NK7L3w+ek/z6Of27d+ZGWLjs8wehofRo34qePXsyd+5cectBvvmVk5PDgkW78F53jJ0799OgQV6ils8oGFgdHnqXbWtWcvXvM/gcPE6V3I3Pz/gWlohPHz/iZGvNhiP+VLRRfIYWWSK+P36pmIhzR//i5vmz9J82C5/pk6hWT1qhMCTwEn1nzWfFyCF0nzCVm2dOAeDUtAV/rVtLv7lL8R4+CFsXNwDuXwug0+R5rO7VkbYjJ3P3vD8Atg2ac2L1IvotWYf3eA8q1a4HwKvwMOp26ceWKSNp5TmJ0AtSvkOjFhzP5W+Y6Eml2vUIOnWYp3du4Ny2M7FvXsr6D78eyJuIBxiYmTPjwBm8xw2niou0/9fhYXQYNZEFvTvRcewU7pyTjr9Ws1bM692Jkas2smqsB3aubqipKHH38iUGei1kZo+OsvNV19CkWv0G7P5jIePWbGTxiMFUrVMfNXV1gi6cZaDXQrnro61vgI2TC3uWLWTM6o1s8ZqKfR03VNU1uXPhDP1mLmT16MF0HjeVoLOn0NDRw9alLvtXLGTEyg1smzMNW1c3VFRVuRdwnj4zF7BmzBA6j5XyO4yeJFfADEBZWSRdm8gtL6IVRPvJEfnC1xALYm4vYhBLQ5ueVbgsQYkJ8egYGFJQ7H9MV1wEZBdSLIi1p6SksGSMB45u0hdJUMAFRi1cRtjN67g2a0mqREKOsjIfExNJzMgAZWWyRRaVQvi80NQ1MiInJ5uU5GReRz5HU1eX+HzCw6BUGdb7X2TBqGH0bdkQr/W+WFhKXVRSMuXfRp2GjaSsXVWmDO0vtXpIJBibmeO1ZoOgC0BFGzvmem/i4qnjjOrRifFzF9GqSw/Z5x+yhBZ2wou9qDRhV0qFhbMS9Bv7O1PnbmGZ3z/vDn4rhL6phrKpcJrJ9Cxh0SfkKpolMnfENqVyJBLiY2Mw+oL4rBVTxnHEbzPt+w1i/OIVsvZlk8dy2HcTHfoNYuKSlXLfERPhukbGCoLnTYrwPfj6K22oCcX8AKipCFfuttYSSTNcqPSphWwXFRHCc0AUOV9+3yuritQvUBZZhihrirSLpD1VUdxYAYhPe4OhkQFoFyhAKSQMxMSSWLpmFWvBZuHnh7xQ1VFXJeVDjLRNRGDGqirOmfzpYI3NzMnISCc1NZWw5y/Q1NXjXWreeRlVqMLOizeYMrgvzvUbsGTzDixKWOZ+Kl/h+bcxDbCoeo4u3bpjXrwEEokEs2LFWbzeF2MzM9QK3GP21WqwdNM2/A8fZFT3Dkycv5QWHfNSygttPohtMoiluFWAqha9R4xl88qlLNrg92XfKcI3xS8lIkyKFaO8nT1aOrpUq1efilXzlK+Wrh4O9dwxL1kaGydpViXzkqWxdnRCU1sHWxc3Wf0FkPpiV3Gtj6lVKSrmZlUyKW5FWYeaaOroUKl2PUraVAXgjv9RlnZtQim7ahhblqS8o3TX0riEPN/EshRP79wA4PrR/TQd6ImpVSmsKtnw97b1AHyMiSYzLY0qLvUobSvtX1NTA00dXezq1sfMqpQsK5SZVSns67lLP3N1o5x9NVSVpRs3Bc9XSVkZ85KlccjlV61Tn/L2DigpKZOZkaHIV1HFrGRpquby7etI+5coKZGRnoamri72ufzKTi4oKatIx1NHyrd1lV5PJSVp6k5pH+7S8Tu5/BLVO38FqGtqkp6a+l2PqaqujqNbA6yr1ZC1aevqYW5pRWZGBlsWzeHyyWPM8f1vC2ENTS2q12vA0S3refv8Gc2691bgGBibsHDbXvZ4r2JwUzeGTJtFy+69QWB+Odatz74rQbyJfE5mZgaT+/dk70YfPGfMVuB+RoOWbTAwMmZQ26Y4uzfCxLwQtQ/+BzTv2IU182dx8sAeGrVuj4amyELpGyE7O/ur+bDGx8RgZKYoCoTaPwuDdn0HMnbRcnl+PnERHxvDEb/NABz23cSACdMwMjMjPiaGw76bADjku4mBE6cJWiqKUISC0NJUJyW1cOlJvyXS09OZNGkSJ0+e5Pjx/+ZurKOnh1M9d7b7rOLh3WA69R2owDE2NWPdweNsXLaIzm5OjJu9gHY9+gha71wbNub4rTBev3hOemoqo3t3YddGb0ZMmyU6hibtOmBgbMLgds1wbdAYA2Pj/3RO/4bmHbuycdkiTh3cR6PW7UQLjxbh++CXWum9eBRO0+59OLzJB6fGzYiLekdc1DucGjfj3K5ttBowlKC/z2BsUQxji2IE/X2Ghj36ccZvA9UaNCE++j3x0e95Enyb31s48+Hta0IvncPA3AIDcwu2zxjFua1rWT24C7ZujfkYE8X7Z495cvsaAC/DQrhz6ggGZsUwMCvGjhmj5fiZGelUqSPdvS1tX42WQ8YQeukcxcpXpHoTaa7luh17cOPEIaq6NyYhOoqE6Chs69TnjN8GmvYdQsiFsxiZF8PIvBh3L52jeb+hnPZdT42GTYmPekd8dBSOjZpyYst6ufM1Mjcn6O8ztBowlBNb1uPYqCkfot4THyPMNzA14875M7TsP5STW/P6T4iNoUbDppz2XU/zfkO5c/4MRhbFMTAzJ/jCWZr1G4K/7waqy65nFNUbNMHfdwPN+g0hOHf8hTVFF0EYJcqWI/nTR57dD/1ux3wUcgfnpi2Ie/eOuHfvqN2kOduWLeJDTDTjO7bi9bOn+PhforyAObmw6D52IhEhwQRd/JsG7TsJcpSVlekxYgzL9h7mxK5teLZtyl9+mwk4dZz3BeIgDIyMsanuSLlKVShX2YYjO/1Yt2guMe8F3JNyoa6hgVWZst9lUWpsasaiDX4c2u5LY5uyeC+ay9/Hj3D7SuA3PzZAqTJlvko/yyaPpa1dOZZNHivXvnzyWNrZl2d5vvb4mDxhcMRvM/GxMbLPVkwZx2/2FVgxRVqoy8jUjHa5C6H2/QbJxIiRmRnt+w0CoEO/QUUCoghfDJvKxXn3/iNhD978sDFIJBLevX3L6dOnqVu3Li9fvuTOnTvY2tr+575H/T6H25cvcevyJVp26ibIUVZWZujEafjsP8qeTevo17Ih+7du5PyJo7zPTTjzGUYmJtjXqEn5yjZUqGLLni0bWLNwDrHRUaJjUFVVoXwVG/SNjEQ5XwsWJSyZ572ZA76baFSlDOuXLviuz9AiyOOXskQEB16kdtOWBF+6gL2zK2G5FXL1DA15ci+Yuu06cO/KJRn/3pVL2Lk3JezyJSrVcuHRrWukp6Zy5ch+AK4c3MXH2GgA0pKT5MTCq4ehPA26DoB9g2aEXvCnVpvOvAgLRlNHl7TkJB7fuqrAL1auIu7d+3F2qzdpKcmEX5dO7MrO9dDS1aXdqElsGDcU65rORNyW9m9oYkzY5Uu4de7J/Wt5peifBN+iRsNmhAZepHItF8JvXkNVRRldAwPuBl6kUdeesvNVUVPl3pVLODVtwd3Ai9jUduHBzWto6+mhraenwFdV1yD0SgC1mrTgXuBFbJxceHjzGtr6hmhp6xAaeBH3zj0Juyodj6qaBvevBuDYuDmhVy5S2cmFRzevoa6piY6+AaFXLlK/cw/u5/ItK1gL7hYXoXBQ19CkSdeeBB47TDlb++9yzPe5tScuHDnIvWtXSElKJC01hQe3b9KoQxfa9hsk6oP+pYh995Zb58+SnZnJx7hYcrJziLgbTA03d9HvVLSrytpjZ/Hft5v7t28QFx3Fgzu3WLp9P7aOteS4egaGeB88zvNH4ezZ6EMHl+rUa9qC3p6jqVK1mhz35bMnVLKr+j+fU0ZGBuH3QngUdg/LUqUpU7ESunr6aOrqylnkTuzfTeCZU6QmJ5OTnY2SkhLeC+fgUKs2Kv+Q5eRnw4eYaJlVQMFa8NmK4LeZ/rntRmZSYfDZEiFkdTjit5l+E6ZiZGrG2EXLGThxuoI1Y/ziFQwuskAUoZDQ1lanf09X9v0VhJ2N5b9/4Svi1vVrzJk+hYf3w1BRUaGqvT0DBgxg2LBh//kZ+u7VSwLOnCIzM4P4uDiys7IICw7CqV590e/YVndk57nLHN7px71bN4iJes/9McPx2X8Um3yWZ5CKCb8T54i4H8aOdatpXdOWhi3b0nfEGCrZVZXjvnz2FGtb+//9GZqeTvi9ECLuh2JVpixlKlijraeHnr6BXEzm8b07ufr3WVKSk2Suk6vnzaJa7SLvhx+FXyqw+lhkNHExURiZmvMp/gPaunoApCYnoaKjR0JsDAYmprKAZQ1tbd6/i8KgQAD1tjlTufLXPpzadKSX1x9k5AZEH1qxgKsHd+LasRctho1DM7c4VUriJ3JyckAiQdfYVMY/sXqRID87LQUdA0M+xcWgl4+vpaNN4odY9E2k49HKHU9Oegq6hkZ8jI1B38RUFqCto6vLp7hY6fjj49HU1UVdRYm05KTcAPC885UgDRj/GBeLoakZifEf0Mq9PkL8rJwcNLV1ZP0nxsejpatLtiSPLxtPSgo5ORI0tLXzxpPvegrxNQWK0nytmAgxZIlFUH8FFDYmQgxqIierpSbsc6uqrMyRTet4//IFQ+cszNePIv9rBVZn5eTwKf4Da2ZMwrRYCZp160WpChXJSEtDQyCgWwxpInESEomE4ICLLBjSlzqt2lLdzR2LEpYs8hzMsr9OUaxU6X89J7XcF8aVs6eZM2IILg2b4N6qLU3a/ib4Ikv59JFD27aw3XsVjdv+xqjf56Kjp4eSkhJbVy0jLiqKCfOXyPiW2v8eZXto7x62bvAh+E4QpcqWp7K9A29eRvLq+TOi3r5hwJgJjPFaQEpSEounjif4+hUGjpmEvqEhOrp6vHj6mA1/LORkcDgamprfPChQSUlJEpchkfOZzg+xYGmhmIjFk8Zw2HeTYtzCpDEc9ttM+74DGZevXSwmQszNSSyuQFXkPhSLiRC6b8X6/lrvQvGYCOExWmtdEe4oM16gTSSAWiyw+gfEREgkws9hJSWRRd43jolARZtFy08TE5fEsvn5rJ0qeopcdVPFNvifYyL6d+tMBetKDPYcibmFhXjwvkhMRESKeEzExdMnmNi/B03bd6RekxboGxoxbVh/dp+/SnErkWB9Afx9/AgzRwzBrVkLmrTtQLO2vwny4mJi2O+3iW3eq2jVqSujfp+Lto4OORIJ65cuICU5mbFe82V8ofleMCbi6J6d7Nu6gYf3QihVrgLWtva8eRHJq8hnxLx7y9BJ0xk+dSbJiYksmjyW+8FB9Bs1Dn0D6TP06aMH+K1ZyYmgB6ipqxcFVv8A/DrbX8CdgAuc3r2dYbMXsnTkUKrXl7oOBV+6wIjl3szr05k+02dz9fhhAFxateOQzyqG/eHN+gme2NWVKvTYVy+Zus+frZM9Cb8eSNDpowA4NGnD41tXaDZ4FL6TPajsIuW/efyQdmNn4DO8J+3G/k7wGSm/ZovfBPlxryNpM2Iiq4d0p8OEmbL+a7f+jX2LZzFm4242TxqBTR0p/23EQ7pP8WLpgK50m+zFzVNHAHBt1Z6di7yY4rsP73Ee2NdzR1VZmZCAC4xa6cO83nnnq6mjS3X3Rmxf4MWM7ftZNcYDh3ruaGhpcfPMKQW+vokZVZxc2LFoNtP99rF6rAdV67mjoaPLrdPHGb7ch0X9utBjqhfXTxxB18AIG5e67Fk8h0lb9+IzYTj2ddxRVVcn+MIZPP7wZkn/rnSfMosbJ4/Qd9YiVEUWgEUoHEKvXaZum/bf7XgpyUl4tmhAWkoKLXv2Y/XU8Uz32UzI1UAatOv4VY5R1bUuOvr6dBo+CqvyFVFTUaFt/8FsWTCbaeu2fHE/dZo0Z/vF61z2P8maOb8jyc6iWYcucpzXkc9Z5TWNkmXLM3TSdK6c86ejaw0WbdpGdWdXDI1MeHw/TOQI8pg1ZSJ6evpMmP47qmpqBN++xeJN22lc4PcJOHOKxdMm4NqwKbNHe/Dq+VMcXetxYv9uMjPSyUhP5+2rl4yYNuu7x0V8DYxfvEJmgciPcYtXyCwQBSEUVD120XKZBaIIRfhWOB/wiMF9hatFfwtIJBLmz5zBo4cPWLZ2HcYmJl/9GHUaNkFLW4dhk2ZQsqw0aLxz/8Gs9JrG4k3bv7ifRq3bYVOtBpdOHWfxlPEoSSQ0bddBjhP55DF/zJxC6fIV8Jw6k0unT9DO2YFlW3dh51gLQ2MT3ryI/NdjSSQSFk0Zj6mFBYPHTUZVVZUHIXdYsmUn9Zu3kuOeP3EE7wVzcHSti9eoYbx9+YKadetzYt8uMjMySE9L4+3LF4ybs1AwO2ARvg9+KUvEoUevuH/7JvYudXgccgfzktKib9GvXmJpW5Wwa4FUdqwtKypnamnJtTP+1GzaimehIZjmFn2LffOKYpWq8ujmFcpXr8WHd1K+rlkJnofcxtqpDi/vh2BUIo9f2taBx7euULZaLeJzi8oZWZQg8l6QAv/T+9eUsaum0L9JcUuehdymcu06RIaFYPKZH/WWcvYOPLx+mYqOTsTljt/cqiSPg29h41yXp6HBmJUoiZoyxLx9TYWq1eXOVyKRYGZlxaOgm9i51OPJvWDMLUsikUgE+dmSHExLWBERdAtbl7z+MyUQ9/YV5e2r8+D6ZaxrOBH79jXZ2RJMLS15fEc6nmehIZiWkO6SxL59TTn7ajJ+3NvXqKirY2hmTuT9UCpUc+R1RDimJUqgY2Co8NsWWSLELRHZ6Wn0dbJn85VgdPJV5yysJeLpgzDMikvTF8a8e0u5KrbcD7pFRXsH4qKk8QLG5sWIuBfCvRvXOHtwDwt3HMDIzJzMzAw0tbTJysxUyLj1T7gfEkwp60p8iHqf278FT8LuUql6TV6EP8Bv8Tzc2nWgbGUbKtjac/HwAW7+fYbJazb+6zmpCez23g+6xfgeHWnZpTuDJkzF0NgEiUTCqK7tKVm2HKYWxQi9fZPH98No2LotoUG32HE2kOcR4fRp5s6wyTPoNtgDFRUVQUvEp0+fKG9uRNly5enYrQftO3fl8P69LF80n60nzuHokrdIkUgkjOjegZAb19DS0UVHV5cR073Q0NJCQ0MTdQ11tLR1qGhjJ7Oc/KyWiHfv3hEfE41Zidz58/YtpavYEHb7BpUdahCbG29iYlGM8LvB2NV04tnD+3LzrUxlG+7fvkklh+rE5s43E/NiPA67i02NWgp86wLuEp9RZIkoskQU1hLxKVkJK5upvA1fhK5uvj6/oSVi2hw/jv91kAMnz2CaT1B/TUsEwLCOrek5bAT1mjQH4K8dvty6fIkF67aKHOifcefaZUb16ET7Hr0ZPvl3DIyMkEgk9G/TlApVbDE0NuburRs8iwinfrNWPAq7i+/J80TcD6V/q8aMnO5Fl4FDUVZWFpzvsTHR1K9oRYlSZWjfsw9N2v7Gsb072fLnMraePE/Vmk55l0QiwbNzWx7cDUZLSxs9Q0M8psxAQ1MLTU0t1DXU0dHVo3xlm+/2DC2CIn4pEdFu8HBaDB3FjvkzaT3YkwfXpKnxbFzqcsp3E10mTOOYz0pZdqNDq5bwKvwBFmXKMWzlRsJvSGMYKtd25dRmHzpN8uL0xlVUcJRmZ4q8F0zT/sPYv3gWTfp78OimlF+xlivnfBX5bx89wK17Pw4s8aJxv2FE5PIr1a7D2a0C/McPce/WT6F/G+c6+G/xpsuU2Zxcvwrr3GxRT+/eptmA4exbNItmAzwIv3EVZWUlKjm54r/Zh65TZ3Ni/Z+5fCUe3bpGy6Gj5PhqGpqUr1YD/y0+cv2rqKry8PplBb66liblqiryUVbh0Y0rtBgySm78qmpqlK9ei7Nbfeg8eTanNqyiYk1n1FSk42k9bAx7Fs6k+YDhvAi9Q93f5HeJ4du7OYlBKA2r2FgKC7Gxa6iKuGmILDwigm+zbsZkVp48/6/HTMkUXgQmR78nIz2de7nxKlVd3Tjos4rxC5exbcViqrlKUw2HXA2k0xBPetepwbqzlymez60IxHP9i6XnS0xKZN+qZdjWlhZXu3/jKp1GjMNn5nSaDRjG5imjsLKuQrMBHlz/aw8GpmZ8jI2h++SZsj4MNYXfumILsvfPn7J9+WI0tLSZsGw118/5s3SsJweCHqCpLa2PcHr/bhaNGU4PzzGMyM3c9OJJBLM8BlKnSXMGT5ouuCjVUFWlR+O6dOwzgKN7dhAXHY2Onh5uLdrQecBg9AoI5I8J8cz0GEjixwSW7zyAvqE06FBHRBjZ6Kt+cxFx8d1H0d8xOkpaOyc/1k6fyIntW6nX9jdsa0mz0lV1deOAz58M8VrI3lXLsHOW/r5h16/SddQ4NnhNp+Owkdy7GpjLr8fZPTvoNmaiAr/bqPFs8JpGR49RcvMz5tULagnU+xATC2L3j5CIEPPbFvOoFutbrF1sboq5yBkrXxQ+sJAA+Gp1IkSyFYmJi8JAbMEtUjsBZbHUryJiQax/Ef6lK4+ZOGMfNy/OlP9ASeC4EpFUoxrCWdsiMhTn6KeEBJral+Xe3TNYWQmnU1boR0AsAHwSqLWTmk/sT+/fg2adu+PWsg0A21YuJTU5maHTvWQcFbH5LtIeGRHOxsXzMTQxYfLSP7l44ihLJo3hWK7bJcCRnX7MH+vJoAlTGTZ5BgBPwx8yY1h/Grf9jYHjJgv2r6aiQuf6tek5xJOD27cQHxuLnoEB9Vu2oXP/Iejm2ygD+Bj/xjEItgAAIABJREFUgWlD+pGelsqKnQfQ0zcApM9iIXzrZ2gRFPFLuTMBfPoQp9B2eO1yrp84Qk52Jjq5kywl8ROvwh8AEBX5jOQEgV2dIhThJ0b0m1esGOtJu0HixYi+Ns4c2EPpSlUUBMS3gIqqKtn5ClAlxERj+B9TrJaqYM3oRcvp7+bEo7vBlLauTAV7B/o3dGX8kpXUdHOneefuVLStSonSZWTfK13BmtFzFjGuewfa9OhDqXyf5UeX/kPYtHIpvifOYZo71tRMxQpKEomEmR7SLENr9h+TCZifAUKxCX9OHc+xbVto1bs/nvOXApAQG8OJ7dIdzcCjf1Guii1auXFfRSjCr4Bnz2PoN2wz0ye0/m7H3Oe7kZYtG36xgPgvUNfQICM9T2jERb2nVPmK/6nPcpWqMGXZKrq6Vue3vgMpX8WWspUq071+baYtW03Num6069mXKg7V5Y5VvnIVxs1dxJienWjbow8WxYUL93XpPxjfNSvYevwsRiZSy4+QFTQnJ4epg/qgqa3N8u37fkm3z/8L+KUsEY279eLcnh007NabOu06YV6yNInxH5jWpqGMt+TsNTJz1bu/30YCDuyiXudeOLfpgKmV1P0p9vVLLG2qEX4tgAqOznnuRiWseBp0g8oubkSGBufx37yilK2DAt+4mCVP7kj5L8JCMMl1l/rw7g2lbKoq8E1LWPFEoP/4d68oY1eNh9cCqOhYmw+f3aWKW/Ik6AZV8vGVUCL2zUvK2lfnwdUArGvWJu7dGyQSCcbFLXlcgI8EYt+8pIx9dfn+lZQwLlZCgS/Jgbi3ivwciRJGxUoojF8igbjc/qXnK+WrqShJ3aVu38DG1Y3n94IpUbYsekaKOaSLLBHCu5pb5s5EWVmZAf9Q5yA/xCwROupqhN+5LQtYfv/yBZWqO/Lk1nXsajkTlZsm1cKqJJ6tG9NuwBCade2p0E9hLRF3r1+lfFUHmXuhmaUVD25cx6qGK89Dg7m0dzvGxS0xtSrFvfOnefv0MR1GTcC1TZ4/bmEtEZ93qs/s282hzetYe+JvVFRVObBuNfeuX2Xxjv3y/ALXfbbnYPQMDZlSoJYB5O1+LZ0xiYAzpzkYeAt1DQ1RETFlYC+i3rxm8dZdMlcd+LGWiM9Zktr0GcDohcsAqajo7JDnlrHrzkOZReKzJcKlWSs8cgPP3798gXW1GgQHXMTO2YXo15/dL624f/MG1eq6EREShEVJ6XyLevUC62qOgvzwoFtUda3Ho+Aguflpl8+tIT+KLBFFlojCWCI8x+1EX1+LhbM7C/TzbSwRPZq4Mc6zCz16fHkc2/9qiVg42oPytnbYOtbCb/kSIh+FM3zWPNzzxWgV1hLxuf3w9q0c3eHLxpPnUVZWxm/FUh6FhrDUb88/9jNlUG+KWZZkXL5EIJ+hpqKCRCJh4eRx3Lp8iX2XbqCmpiYqIsb36crHD3Es2boLU4tiss+KLBE/D1S8vLx+9Bi+CLNnz/Z6FnYPgOdh93j79DEZaam8j3zK2yePSUtJRltfn0q1XLm4bwePg29Rq1lr3r+MpMeM+eyeN520lGRehd8ncP9OqtRxZ9v00RQrW54rB3fxLOQ2Wjq6HFo2l2qNW7J3gZT/+tF9Qi+epVz1Wop8fQMO/TGHao1bsG/BdNKSk3n96AGPrgdS2r6aAl9bz4CDf8xW6P/ehTNUqOHElqmjKFa2AoH7d/I0+Daauroc+GMuNZq0lI3/9aMHBOzfiV1ddzZPGUnxshUJ2LeT1xEPUVVTU+BHvXjOxd2+2NZ1l+s/5mUkSkpKCvzY1y+4sGurAv/98ycoK6soXJ/3zx4TuG8bNnXc8Zs2CouyFbh8YCeRocFoaGmzb+lsHJu2YsfcaUhyciiXr0DgZ4i+1EUeBV9L9grp5/+adu8zxMauKvKB0APdf/d2HBs0olTFSl90zEyRRb5yTg4rx48kNTmZZ/fDOL3TD0f3RuxcvgQjU1OObttC6M3raOvocP7IIcJuXadFjz4K8Q+FzfLkM30ixuYWnNm9jfCgm2hp6+I7fxbVm7Rk57zpGJiac/nQbkIu+FO/YzdsXOpSo0FT1PNlgNJUFV4wiPmdf24vZ2PH/nWrMTQ15UVEOOcPH8CuZm1q1HGT5xe47jXq1GPt3Jmoq6srpDxUVVYmJyeHmSOGUNm+Ki07dUVJSUlQXCkpKdGgdXueRzxi87JFdOw/WPaZ2EJ47cI5eHl5fZli/B8we/Zsr0d3gwGIuBtMm74D0dLWQUtbh/jYGCLuBtOqd3/c8i1AnBo1xbVVW66cPFZg/jTkj9EelCxvzeldfjy8Lf19D6xdSU33RvhMn0RqchLPHoThv3Mbjg2E+f67t2FX2xWf6RPl+q/Xui2qaoqLPLHfXWxBJHQ/i93jYnf+vy22CkJsjPoicU9aSpHCBxZa6Isu/kViGSSKAlfaLrJYFmsvDMRiH0TbCyk6RPtR5Ptsukj71jWoZC1gFRA8rsjbRVXYAheXXV6hTc/AgKVz5zFoUDdUvzB1c1ymvmC70OI6//NGz8CQVTMmc/bQftr3G4SDsyuuTZqjoZn3DC3MvZG/vaJdVXxXLKGYVSkiQu9y5q/91HCpSw3XuoL8z3Cs48byGZPQ1densr2D3GcqyspkZ2fz+4gh2NeoSbP2HVFSUhKsZK2kpETT9p0ID73LtjUr6dBngOwzMQH/rZ+hRVDEL2WJaNajL/67/GjYrQ8dR0+USzGakZGJRCKRS5GqoaVNbFQ0+qZmJH9MQFNbmnY0LSUZdV0DhRSsmto6shSs+fkpSZ/QMTRW4KtraQvy01KSBVO8ivWfkSpNkfqZn3/8BfnKSkoK/aen5qVgLciXAOkCfJCgoaU4HjF+djZf3H9GagrqqsoK49fV0xUMzC2yRAg/FOcN7IVz0xY07dbri475T5aIxHwphVOTk9AzNCLzYzzGZhakpiQDSOuD3LzGlN5dmLnBjxr13OX6KawlIjYmGj0jY9JSPs9/aQribC1D2fxJiIkiISYKu1rCO8//qyXi+jl/Ns73YvB0L1ZOHkcPz9E079IdPUP5YkgFLREAL58+YWibJiz13UWNfMHSn3e/ju7ZydLpE1myeTsu7o0ELREgFVcT+3SlSrUaDBg3Wdb+s1kiPkMoJgKkv3vB+aNrYEhCTDQGpmbyv29sDIZm5oLzTYj/KS4OQzMzBb6RsXA2myJLRJElojCWiKbtltO7ex16d3cV6OfbWCIi7ofRraEzJ0/44eZWW7i/gt/5Hy0RANFv35CanEzpisJB3v+rJeLiiaNsXDqfoVNmsmzqeHoNH03r7r1kcQn/1M+zR+EMatOEP3cewMHJWdb++d44tMOXFV7TWeG3m5p13ESTOgCM7NqemnXc6DtqnKytyBLx8+CXskRUdnSi/7w/eHTrBualSnP12F88CQlCR98A/22bsHGpx6E/F5OWlMT750+5/Nc+ytdwZu/CmZiVLM2tU4d5du8OWnr6HFv7BzZ13Dm+ZilpyUlERT7l5vGDVHB0Zt+imZhaleb2qcM8v3cHTT19Tvgsx8ZVnh/kf5Ry1Wqxf/EsTC1LcfvUEZ7fu4OWvgEnfJYp8k8fpXx1J4X+dfT1ObpmGbZ13TmyainpSUlEPX/K9WMHqVjTmT0L8sb/9G4Q2rr6HFn7B3Z1GnB49RJSkxKJfvGUq4f3Y13LRY4fef8uWjp6Cv1Hv3zB1b/2CfDvoaWjK8CP5PqRfVSs6SI3/siwYDR19Tn+/9g768Aqy7//v9Zn3d3d3QPG6JaUVDFQVBC7CAVEEVRA6e7ubliw7gDGBgzGYF2s+/fHOYzNc45feR71efw9+/ylF+9z3deueN/X5/7Uul9w6RXG6TU/0VhbKxrPIRz9Qti3dAH6ZhakXruAraeP2Nr2WCIkE7GBuQVrvvyYx3l3sXXzQEVdQjaRLtLc1sb1w/tpbmykvPAJGTciMLa25cKuraioqRF+4ijZKYmoamiw55cf6T14OOmxN6AD6p4+5erxw6ya+xnjZrwn0Z2pqamJy4f20dTYSOmTx6REXsfM1o6LB/egoa1NZlwMBfdyUVRS5OqRA1i5uLL/56U01NXy5P5dwo8cwCWwF9sXz0Pf1IL4cyd4fPcOBmaWnN28GueAEG6cOExzk3D8mTcisLS359yubWjr65MZF0N+7h3k5eWIOX8Gczt7rhw5SFNjIyWPC7hx9hR0dHA7JYmze3cyYNwEDm9Yw+uff83oV9/o9nXumUh6wWrq6ODk6sG8d99kzLTpnb97dml0dPPAxcubr2e+QV7uHQLCBkgsFhcXfpVT+3axeP22bl8k/yctEauOnUVVU4PhU6eTHnOD/Ls5KCgpcfHgPhx8fLkqms+u67tx4Tz0Tc2675+fl+Ib1p/dP/1AQ20tj+/d5erh/bgGBbPp268xtrAk4uQxslOSUNPQ4NDaVXj1DhXDuwUEs/HbrzGytOzW/5XD+7B39+xc32fjsbCx4+SOLWjrG3Qbf1tLC8oSatP0WCL+b1siLC10eWvWdnLvFuPvY4161+xMf4MlIjk2mrfHDmfdmsWMGjVQcl+S+nkBS0RzayuF+Q9JjYniYW4OWrp6xF4+j42zKxcP7+/kw8Twq5jb2hNz+TxWDk6dv29ra6Ojo0Nsn7a3t1NZWkJeTjYZ8bEc27WVkZNfZeeqn5j9zRJGT30NJSXxuARJ50lbTw9re0cWzJrBuFffQFFJqOA9e6azhxeOru58MeM1HuXdJ7DfAOQk8GLkxXNcOn6Yxeu2dPv3HkvE/x75VwVW61vbo29mhaGlNTpGppg5OAPC2ARDK1sUlFUxtnXE2E54YJoam1BUVUff0hotI1OM7YR4LSNTDCxtEKioYmzrgImd0F2ktaUNeWVV9Myt0TA0wVDUj7qBKXrmVsgJVDCwdsDAWoRvB1mBCrpmVqgZGKNvK/wSoKxrhLapFe0Kyuha2aNjKWxvammnTUEZLVMrBLpG6FiL8Hom6JgL8XpW9uhYCdsbmlqQUVJF19waVX0T9G2E41HWN0HHzJp2RSFe18oBGWSoq2sUw8vKyqGqb4KuuTUoqqBvbY+utQNycrI01NUhL1BFz0L099o6IScvj4ahCXoW1sgpqWBoY4+BrQMyMjI0NdShpKKKvoU12sYmGNs7IScri66JKQaW1p3zaWzviLysDM1NjSipqmJgYY22sSnNDbUSXV9kpby+pVkcFKV95n9BkVf48xUuX/Qi8aImZEmk6BkQxE9HzrD9x8XEnTvN+JmzOv9N0jyqKoKinCxaogwXpXKyaKgoIysnh76JGVZOLgDom5hhYm1DRWs7Jj7Pv5SlJiXy0sw5jH/7XYlf19sQFgtSEF2q29rb6ZCVQxEZDLV1qRQF3Rpq6yLf0YG5viHObh44eQpd2JQ6OrA0NMTYyhpDc3MangrHY2hujraJBU3tMjS3ttMhL3zhNLe209guQ219Ay1yirTKyHJ+91ZuxUWjKFDm2OZ1tLa00NrSwtPyMuQUFDCxtqXkUT4yMjK0A4oqKngPHk5FveQvstIufLZBIVg7u3L58gV6D3+p2xo9efiABjl5Nl2NYc5Lg4mNvYFHUC+xPkqKi2hsaOCmKO3pM5H/g69uf7cU1zdR2yZLWXM7lc3CC2NZczul1U95XNNMeV0Taq3CPVpe18TjmmaU9E1pVtVD1cwOgGZVPVSMLClpkkPV1AYFYysAVCueUtqigLKhBY2qeiibCi9Yjap6qBhLxlejiLqxBe3q+mhYCPtvV9enQ0mV8sY2nja2UC96TT1tbKGqtY2q2lrqkKFeZEmsQ4a2xkbkJHy1lbS+0s6mNOVOWrs0kda/tNS6KIdJbNZRlJD2U/a2lIdK+WovzRLR9oKpX19EpF7+XyyrkkRLwR/1I+G5oaG+XDu/iC/m7ebIqUw+eG94l+dK6F9BW7wNQFZyjQkH+e5rtGDzMn747mOmvTJHIv7mU2lnX7LyJum90NDaCoqKtD/bl4qK1DU00NDRQUNLC20ia39DSwsNHR3UNzZ2s178MPttwk8eQ01TCy09fVTVNagqL6WsqBAVVTUMzcx5nHcfZGSQU1BEW98Qv0FDqZNicZUm3v0HYW5rT1TENUIGDwOev/8K8u4ho6bOzoh4Zg7rz8CUJFx9/cX6KCkuor6ujluZ6Th3cS/9q1Ku98h/X/5VdcK9+w0i/PBehrz+DqnXL6NtYIS2gRGp1y/Td+KrXN61Cc+wQVSVFFFVUoRn2CAiD+5kwCtvkxlxBU0DQzQNDMmMuEL/V2Zwbc8W3PoOpKqkmKqSYpxDwgjfs4WwV2ZwM/IKmvqGaOobkhMfSd9pM4jYuwWX0AFUlxZRXVqEfUAvIvduJXTaW9yMuoqmvhGa+kbkJtygz9S3iNq3FefeXfCBoUTt20qfqW9x+8Zz/J1Yyf279O4ncTw3I68Q9soMwvdswTV0INWlxVSXFeMaOlAMr6FnIBFfU16KW9+BXNuzhf6vzCAr4gpaBoao6+qTJWF+npZJxmvqG5AZcYUBr7zN1T2bce87kOqSYqpLivHoO4jLuzYz6LW3yYi4jGZPQakXFitHJ3z79ufxg/v/Edvc1EjAwCGUFxdSXlxIwMAhnNiynhGvvknClYvoGhqja2hMwpWLjJnxHsnXLgHCL1D3MtNIj7iG/5DhUvtPvxEpsf/R098i+tI59I1N0Dc2IfrSOSa/+wHHtm6k15DhlBUVUlZUSK8hwzm4YTVDpr9DWpfzm3b9MmFTXufK7s14hD0/jx5hA7myfyfD35hJyrVLaBkY8TD7FmPe/4gVl6LwDO3Pa/MWM27WR3ywYh2/Xo1lqshtqP/EKVi7uDHnl9X/ZeuSR3AvMmLFc/jHXDzHrOH9eat/MJVlpbQ0S/46PGTCZD5fvoovX5vE5WOHJWL+aTm3fSN9X54qNv+Dp79D1OE94vO/ezN9J7/+p/jTre9Aog7u6sYPWgaGZEVcodf4aRLxN47u6+SHZ+PJiLhM35encXHHJrz7DaKypIjKkiK8+w3iyv7djHhzJslXL6FjaISOoRHJVy9JdMPqkR4BcHezZPBAT3LvFv5tz2hrayM+PpWLFyMZN27Y3/YcEF7EYy9fQM/IGD0jY2IvX2D8O7M4tWMzgYOGUl5USHlRIYGDhnJ88zpCR4zu/G17eztJ4dfYej2OreFxfLNxOzO/WczSPUc4cTOPo5l3WbrnMDKyMoyY+hoO7p58sXLtf5lDvYJ7kRpzQ6w94sxJZgzqw+v9gqmurKC5WbLy+tK06Xzy/U98NHksV08d/y+NoUf+XvlXWSJKC/J5eCuTxrpabopyigPcjInEo98QbkZH4OgXzJ3EWABUNbS4l5JA4KgJZMdFdeKz46Jw7zeE7NgI7P2CuJscB4BAQ5vs2AiCxk7hTvxz/KPsLFx69Sc7NhJbnyDuJccDoKypxZ24SALHTCY3/vlBKbqXi2NwGDlxkdj4BJKXIsSraumQExdJwOju+MLsLFx6i/evpiVhPDIy3ImPwr3fULJjI7D1DeJechwKSgKU1TXF8PKKihLxqpqaCFTVyI6NIGTclM75kVdSIjsuCo/+Q7vNj7KaOgI1dXG8giLZcVF49h/K7ZgI7H2DyE2KQ15OFhVNTW7GRNBnwlRuxUahrKyMqd2fCxLukefS3tYm1dWiq7S1tlH86CFZccL6I+paWqRGXGfwpFdIi4roxKVFRRA8dAQPb2fxtLycI78uR1NPnxEz3kPHUHpawke5d1DVUBfrf9Ibb5MY/ryORWL4NUKHjyIjIRZX/0DSRPUC1LW0Sbh+FbcR47kZ2+X8xkaiZWpBzPGDKCmrUPQgD0WBAFVNTe6lp9L7pfFkRkfS0d6OjoEhpzatoaLwMQ+zbxM0bCTZSfEUPXyAtqEh0WdO4tGrD9O/+l1O+P+CBA4cwpeTxjBj3iIURekF8+/m0FBXC8Cc73+itPAxdlIKowH0HjKc346c4YPxw/HpHYrufzOF7X9XMqLC6TV+itj8+wwaRl5GKlZunuQkCflQVVOTW9ERBI2d+qf4U1VTi3upCQSMGi+G9+gvGZ9/K4vGYXXcin2OvxUbReDg4WRGh+MUEMydBCGfq2lqcT8rnca6sWREP9/PGdERDJs0VaJLWY/0CEBrazuyUqyO/11Zs2YHCxetxMTEkAXz52BgIKVg3V8oKZHXu/13ryEjSLh0kcriYkoLn6Clq4e6ljbJEdcY/+Y7qKgJXWHb29pw8vblwzFD6Td6HEOnvIqbf1C3vq+dOELQgCG8+813/+1x9h46gi+mTWDmvIWd8ZB5d7JpbGhARkaGT5evojD/ITYiK7kk6TdyNMbmFsyZOBqfkN491e3/l8m/KrB6dXQGalraVJeVCgOoRS4KSioqVJSWoqGrT21VZWfAdVN9HfKqGhIDoqvLhfi6Lvi6WmGAcE15KWpd8PICZWorylB/hhe5bTTU1qKiqUVNeRlqOrqdeDklFWory1HX0aOuurJbALiqpjY1FWWoaT/Hq6qpSuy/ub5e4ngUlVXE8B0dzwOcu+I7OoTz83u8rIzkgGg6hC4gnQHRovlp7+iguaFeDC8jI9M9gFqEV5ATDwDvaG5ESUK+fHm5FyP3v8yd6QWCqP8n3Jme9bPi0w8wsbImaNAwLBwcyYi9QcyFc5jZ2WPl6IydhycCZRVa2tp4WlnR+cJ4FtBaUVKMtr6BWABsWmICOxbN5avtBzDtku9bXUl6VWpJ/XfU1KCtr98tQLuyrBQFJSWObd3EnYxUOtrbaWluRk1TE++RE3D0C6T08SMyo64Te+oo1WWlOIeEUngvl6L7OXx/IY6YEwexdXLC0tm123mvra7i6v6dxJ0/jZKyCj79BuESGIyNmwelD+6z5suPWXO1uwVB2vxKc2d6hp/3ysv0HTWGwZOmIS8ry7pv55Iee4PRr8+g/9gJCJSl139Q7nKpXbNwLnU1NXz5y2pUpFT99tYR/O2B1XuyCygpKkFDV7dbAoen5WUItHSp7RLg/Oz8Vpb+Of6UllBCmICiHA1dPTG8jq6OxIQSTdUVaOp15/PGulr09HWpKitF83f8rySDxKQNf6c7k9IL4qUFXBsrS1Z+dOQluDO1SnFnkhZw/X/cnekZ/pU3f8XT3YrhQ3xwdjLl6vVMTp9PxcXZHHdXS3x97BAIFF/YnenwofV88ul3XL2yHwcHmy7PNJeIl+7OJFkqKis4vms76QlxdHS009bWhqySgEmzP0LfxJSqslJSoyI4s3s7jXV1OPv5U5T/kMd591h9PpyEKxcxNDah19AR3fotLsjn4qH9XDiwBw1tHYIGDsErpA+eIb3JiL3B6vlfsu16bLffSOPQ/yQfjh/JyGmvMWjcRGRkZFjx1SfcSklizPS3GDRuIkrKylIr0Xc9qz9/9SkdHR18vmwFAikfDDy1lXoCq/9h+VcpEY7+Qbz38zqWvzGJKV99S/y5kwAEDHuJy3t3MH3RcjZ9PgvXXn0BuBkdwfSlq1n9zhTGffYNyRdOAeA7ZBTHVixh1oa97Pz6A5yChfi89BQmzvuBde9NZcwnC0i5eBoA76EvceKXxby3bi+7583BKViYJrL4wX2Gz/qCje9P46WP55N2SYj3HDKa0ysWM2PtXvbPn4NDkBBf+vAeQ2d9yZZZ0xjx0XwyLgvxvsPGcOKXRWL956UlMXnBsm7jkZGTxWvAcE6uXML76/exa65w/HIKCtyMvMJrP6zuhlfV0sYhoJcYXllNlbQr55i+dDVrZk5l3KcLSL54GnVdPex9gzi+YgmzN+7rnB8lFRXSr54XwyurquHaux/HfvmODzbtZ/tXs3EO6Yu8rCxZ0eG8vXwNK2ZMZuLn33LzxjWmfi0e89SjRPyxEvHFxNHkZqSipatPfW0NCoqKjHjtTYryH5KbmY6mji7f7z1Cc2sr86eMw7tvPwASLl9g4uyPObD6FwaMn0JKxDU6Ojrw6h3KsY1raWps4IvNe7D5XRo+SUpEU0M9j3JzWf3lR5hY21BXU8OjnGwcvX3JTk5EW9+AsqJC2tvacPUL4FZKkjB4T14e3z59kZWT425WJv1Hj2PHzz8CwmJzGrp6hE6YSlrEVWau3MimT97lfkaK8CJZX4dLYAhVZaW8+vVCYs4Kz3vw8JcIP7KP6QuWsGzGK6hpafH4bi5NDQ2EjZ1AScEj5m3d86fm9z8pEckR1/nt60/48reNeAQEce9mJvNfn8Ke2LT/+OW7qxLxtKqSqb18mb96I8ZGxrS1tqKkrIy9i1sn5p9QItbeSGXrwrn0fXkaCeef8+eBZYv4cPN+tn4xGxcRf96KjuCt5WvY+Mm7DHvnw278eXTFEmb/jj+zYyOY/sNq1rz7nB8AfAaPJOrQLiYv+FEM//ZPa1kp4ofE88L+/YaOIvbEQV6Z9x3rP3sf915hAGRGh/PhqvV8/9pEXpu3iJgzJwAIHjEaUzMzLLoEjz6THiWiR4lARo5e/eeReTMfPV11amobURYo8t47w7h3v4jE5FwszPU5fWyBmBJRUFBCQUEpCkp+KIiU1La2Ntra2nj48CHvvTeTSxf34OXl+rtniisRdXV1XM9+QFFBAcVPCih6XEBpUSG1T6upq62ltuYp9TU1NDU14RMUgqJAwOkDewkZMIiwYaNQUFRERlaWW9m32btqOY11dSgoKuLg6UNxQT4/n7jAT3Nm4uIXwOG1vyIrL09bSwuGZubsjc+QODVtbW2kx9wgLTqS6IvnUFVXx8HDi9LCJ3y3bW837H9ViYi+dJ41337NgrWbcfUVvhsWznyDA/HpndahP6NEVJWXMamXL4s3bMNA34CWlhaUVVSxd3k+9z1KxD8v/yolYv7+U9h6eHM7Lhpbbz/Kn4iKxBmbkp2ShFNACHlZaeiZCA9w2ZNHmDh5kJsYg7VXd3xuaiKOAb14mJXeWSSupKAGMjNhAAAgAElEQVQAS1cPcpNisfb0pVKEVzc0IT8zBTu/YB7dSkfb+Fn/+Vi4eHIvORZLjy54A1MeZaVg4xtMwa10tET4ysJHmLt4cj85FgsPX6q6FLmT1H9lYQGWrp7dxtMuGn9eRgr2fsHk30xHx8Scjo52KgsfY/E7fAcy6BibiOFlZaDiySMs3TzJTYzF2usZHnSMTclLT8HeP7hzfjrooOJxgRheSUUNDR1divLuYmLvROmjB6jr6CEvCzUV5RhYWPE4NxtjazuaaqslxkX0KBF/rEQ01NWiqCRATl6e4oJHqGlooizK1NTS3MxbffyYv2kn1m4e5KQlo6VvwNmdW7l0YC9mtnbUVFUir6BIW0sLsnJyKAoENDc2Munz+dh5endah5rq61HX1qGluhItPT0e3L5J3KXzJFy+wKN7uegZm6CqroGhhSU6hobIyytg5ezK06JCXLz9qK+rQVZWlkf373HvVhZvfbWAytJSjERFx4oePcTZ25cTJ09i7+1PVWkxINzPt5MScAzsxb20ZNKvXaSjo52Es8dZuP8E5YVPsPfxp0x0vvSMTbmXnoJrUAh309MwMDejvb2d64cPEH/uFGPenU2fUWNprBNaRpRUVKirLEfHwIinFeUIRFl8Guvq0NbTp7KkWJh6tBu+Ah0DQ6rKy4i/cpHdPy/FwdObviNHs2HxAj5ZvorgwX/s+6z8OyXj4pGD7Fm9AkVFReTk5SkvLsLe1Z1Pv/8JS1u7f0SJ2H37EenRN8T48156Mja+weRlpqFnIkw3WfakACs3T27HxWDzO3xuSiKOgd35s/yxOJ+AsGhmXnoq9v5BYnhHbx+y46Ox/R0/P8pKxSkwhPuZaeibCsdT+rgAV19fsmJv4ODjT+kT4SVb39iMxopyjCwt/9T6KquqSswE06NE8P+tElFT04CKiiJycnI8eFiCro466prCVKWNjc3YOL/DhVPf4uEjDN6tr29k6Y97WL/hBHZ2prS0CGgWxT7Jy8sjJyeHgoICC7+dxZAhfSU8U7jHc3JyOHz4MIcOHSInJwcDEzOMTM0wNDXFyNQcA2Nj1DQ0UVPXQFVNHRU1NeTk5IiLuE5NdRVjX3sTI7PuCklRbS2NdXXUVFUiJy+Ppq4e+XdzMHdw4smD+6hpaHJs0zrqap6SdP0Kn69Yg3ev0E43TIGKKtXlZegYGFJdUY6yKNV8bc1TUqPC2b3yJz74fjkuPn7d8AZGxlSVl3dmQWuoq0NLV5fykmK09fS79V9VXtbputnR0cGFg/vY/ONivIJ7EzxwCL/O/5xv1m8jsJ8wg9UfKRHlxUVo6xtQX1fLhSMHObptE7KyMigJlCl58hhnT28+Wvg9OvoGhNmZ9igR/7D8q5SILw5fIebEIfpOn0X4jjVYewszy+SlxhP2+mzOrVpMn1dmcj9J6LNt4xdC3JFdDHr3czF86PRZnF+1mN6vzOR+stBsZ+4VROy+TQyZs4CoXWux9BJmVHl0Owu/CdO5umYJgZPf5mGK0KfX1j+E2H2bGDxnPjd2rsXCS9h/6f07+I6dxqXflhA85W0epAj7dwnuTeSujYz85Buub38+nqKcLPpOfYvjPy+k//T3yE0UumI4+PXi2q4NjPt8IZe2/Iatr9B38V5yHINnzOHYTwsZMP1dchNjUFRSwNY7gMvb1/Pyl4s4v+k37P2CkJWT5U58DMPemcPhZd8y6I33uJMQg0BFGRsPby5uW8/ErxZxbuNvOPgFIa8gz+24G4yY+SEHl37LkLfeIzs+GmVlAXZefpzbuo6pcxdzev0qHP2DcQ4I6nR/6CqS7vlyUi7t0i7zL5L7/Y9EegpZ8fa/Sln4q9qlSdeaDWf37uTIxrUs2LaHhpoavp/5Bqqamsz8dglXjhxk9pJl7F35E56imgfpsTd45ePP2bPqJ4ZOfoXUG0L/eO/eoRxcu4o3P5vL51PGUVlagltAECqqqny8fBV7fv2FwZOmiuHfXfwj+1b9jEewMENRRmw00z76jG1Lv+OlN2aQJsJ79Q7l0NpfeWfRD+z/9Rfcg4S52zPjYgid/j4Hf3y+3y7t2Mjwtz+g8H4uo97/hLMbf8XBT7j/c5LiGPbOBxz6cSFD3nyP7HjheXcKDCHu1BGGvf2BGH7c+x+z94cFDJ8xi9txwngk56DehB/aw9jZn3Fq/SocA4IBuJMQy5hZH7P7+wWMfHsWt2Jv0NrSzNOSQipLS5CXV2Dg5Gk4+Qr54UXrBTy7ZLY0N3Ni20YOrv2VXsNGcn7frr9difAbMZ7Q9+cRves5X+WnxdN7+iyitv+G18hJnXxl5RNM7P7N9Ht/HrF71mHuKeLD9ARCX58lxm9WPsEkH99D/3c+68afD9MS6P3aLC799h0hU98hT4S39gkm6+IxiXw+5O3ZnPp5MWHT3+VuonB97fxDSD97hGEz53TyFYjWd9bH7JOwvpd3bmLaV99yfN1KnEXr+zArnckffS42P9Jyz0tTCqS5VChI2Q8vqlxIGo+DqpTt0XpVcrs0JUKa0iE1xetfkPoVaZd/Ke1yUlwFpbVLqzchFyaxuaJLsqEt69eyfeN6Np+6hECgzPQRA7CwsWPushUYmpiipyh53suaJd+fSkuKWfTR+6TGxzJ49HiGjpuAT1AvJFfaQWKxNZCchU9avZ6a3yV4mDmoD+8t/AHngCC2//idGD/vWvUTAyZMJiNaGI/k0asPx9avZsa333NozQrcAoX8nBUfw8QPPuXw6l8YOHEaGaIYN4+QPhzdsJp3Fn7Pwd9W4Cbi86y4GCbN+RRZWZnOWlggdH89vW0Tj3JzkFOQZ8Rrb+Eoyrgk7f2Xk56KuZ292PtlwqyP2Lx4Pi+9OZN9K5aREROJX/9B3DhzskeJ+IelJxKtR3rkXy4jpk2nsqSEd/oKL2E2ru4MmfwKOn8yiLetrY3q8jISr1/lblYms0YNQs/IiHfmrUNBUZG0mCiJX27/TpEBqsuK/9Fn/pHIKygyaMqrmFiLV6j9r4qCoiIvv/sB/ce+zMWDe//zD3qkR3rkb5EZ782ipKiIPnamAIycOJWft+7+01mJWlpaeJCbQ+6tLHJuZXF093ZGTpzCT1v3dNZIAGF2pH9KZGRlKXlcgPM/9sQ/FmVVNSbP+fQv7VNBURHv0DAcvLypLi//S/vukT8n/ypLxAdbj6Ln4MHdhCisvAKpLn4MgKahKfmZSdj4hlBwMw1tUwsAKh/nY+bqJRGflxqPbUBvCm6loW0ixJcVPMLE2YP7iTew9AzoxAt0jXiUkYiVX28Kb6ejKXI3qi95jLGzB3mJN7DwCqC6SNS/kQn5aYlY+/fmye3n7kzNFYWYOXtwNz4KK+9AqkR4AzMz8lIScAjqQ35WGjoic39VYQEWrl7ciRNmbaosLKCjowMdE3PupcThGBTKw6w0dE3NkZeTobwgHyt3b7JjI7HzDaSi8DHIyKBjZMLd5HicgkN5kJmKnpkFsjIdlD9+hJW7N7djI7EX4WVkZdE1MiEnKR6XkFDyMlPRM7VAQU6G0oJ8bDy8uRkTiaNfIOVPHmNoYYGCorg5uscS8c9ZIgCWvPcmmQlxVFeUoyRQZtrHX+Dk7Yujty+ZMZG4+QdT/FjoHmFoak5GXDQ+of3Yu/InzuzZhkBZFX0TU9wCg9HR0WPUa29QXCDCm5mTHnsDzz5hZKckYWRpBUDRwwc4+fiRHBWOm3/Q7/qPwbdvP7JTkzC2EOIL8x/g5O1HQvhV3ANDKHksdF8xMDUj/Ho4zkF9Ovfbozu32PLFLD7evJ+ainIc/AIpLxSeF6E7YhKOASGd+xmgrCAfGw8fbsVEiuEfZiTjEtSb+xmp6Ivwz/ZzVnQETv5BlD0R4vVMTMlJjsetV1/upadgIHLHqil+jL2o5kVHRwffTBmLpaMz079cgLKaGk0N9cgrKHbGSvwnS8TvZbCZzt9uiVgWd5e0Gzcwc/fpwlem5KcliPFVVeEjTJw9uZsYjZm7H09FfKhhaMqTzERsJODNXLzE+PMZP1v7hvDkVjpaInfTqiePsPbwlsjPxbdTsPULJl/EbyB0f3Lx9e3GVyB0v3yUmSJxfR29fci8EYFTQBBlj4V4CytLFJTEOavHEsH/WUsEwKsTxpKSnERleRnKKirMXb6K0ZNfAZBqiShtaufEvl388s3XqGpo4ODshr2LK70HDulWqfmZSLMi/B2WiFvJicx7bSKLtu/Dzs1TjJ9dQnqTk5aCobnwvBQ/ysfBy4fM2Bs4+fpTKuJnfVMzbsbH4hPaj5y0ZAxFfFj86CEOXr6kR0fi4h9ISYGIz83MyIqLxTesv9gYu77nOjo6+HTMUBy9fXnjy/nCOLjGBhS6cChAcsQ10ftCOH4DU3PS42Px7NVHbDxfjBvRY4n4h+VfZYk4u3Y5Exb+yoXV3zNsznwyr5wBwG3ACOKP7sbQxpHLG37CLlAYmHw3PpKXF0nGX1yzlOm/7uLKhp878flZKQz/dAlX1v7AoNnzuHlViHfoN5Lr639k0i87idzyC9b+fQCoepxHPyNTrqxbysBZc7l17SwArgNHcWXdUqat2EX4pl+wCRDiqx/nof2+KWd/+54RH84n47Kwf7/hYzi5agnvrdvL2bXLxQKrT65cIjWw+uyaZTgF90VRSZHMiMu88eMajv3yXWcguZqWNo6BvTsDn0+tXoZzSF9U1NRIuXSWt5av4cjP3zHhs29IunAKTT0DHPyCOPzzYj7ZcoDjvy7DNUQYiJ1y6Rwzf17LgWWLmPzlQhLOn2TCR1/8YVrQHvn7Jf9uDmnRUWyJSmTRm9OwcXHn4JqVNDXUo6mrR9mTJwhUVVFRU0NLT48+w1/izO5t6BqZkHf7FgPHT8LA1Iyk8KuMfn0G67/5CksHB66eOApA/9HjWPvtXJYfPMnWpYvxCxsAQFL4Veat38rJbZvoaO8g/KQQ3/elcWxaPI8fD55k29Lv8BO9TJLCrzF33Ra2LfmWtxYsJvLUMQD6jBrL2fWrMHNw7txvAC1NTTQ3NXH458VigbdRR/djYufAiV+XdQsEfnv5Won4mGP7MLN34vDKpd0Cdd/7eR0Hli0WS9Rwct0KLJxcObxiKe59hPg78TEs2HkAgLvpqdxNT+NeRjoX9+4EQEFRiY4O4QvezNYeJ19/3l+y/G9LLflfkdqKclJO7qO9va2Tr1z6DRfx1c5ufHU/IYox36wkZtcaQl6dxe3rQrxT2HDCNyzDSAJ+7DcrxfjTpf8Iko7vwcDGkWubfsZWhL+XEMWk7yTzc9q5wxjaOHB+3U84ihJT3ImLxGz56m58BcL1vb57i8T1/WDFOvb8uKhbYH7/sRPw6NXn757qHvkXya3MTJIT4riUeQ+BsjLZWRl89Ooktq76mcaGeqrKy1BSUsIvMJiA4BA8vH1ob2tj6ZLvaGpqZN2hk3h0KZYmTSn4J8XF1x9FgTLlxcU01MWK8fOiPUfZvXwJ3qFCfk6NvMZnv23i4r5dtLe1ESWqy9B71Bi2LfkGm/3H2LXs+87EHakR1/l89UaOb1xLR3sHkaeF+D4jx7B1yTd4h4b9IffdTIzjwe1b3M1M5/T2zQAoKCnR0d4OMjJY2Dvi6OVDZlwM7y76gfCTx0TjH8vFfbuxcnQSG0+P/PPyr7JELL6cAsoa1FaUodolRaqisgq1lWWo6+hT/7QKJZEfXlN9HSoaWhLxNRVlqOnodcPXPa1FWfM5vkWEb1cQUF9Vjqq2Hg1Pq1AU4dub6lHR0KKuogwVbV1aGoV4BYEK9ZXlqOp0x8u3NqCqqS02HnV1tc4UrPXVVSiJApf+VIrX6ioEqqrIy8pITNna0dGBkorq8xSs1VUIVFSRlRVP8drUUI8sSMTLyQoz9Khpaj1PsdtQj4qqqkSi6LFE/HOWiEVvT8fOzZ2XZ39MjShFZ1NDPdmpyRiaWyAr2gMZMVFkpybzMDeHxrpaBr08hdBRYzsDDOtra9HQ1qa2vAxtfQOxlK1qOro8raxERZSC+Bm+vKQYLT19GkV4gYoqVWWlaOsbUFNZiXKXlMjq2tqUFheJ4W/fy0dD7/l+a21p5pNQT36LvU3d0yqxFKCdKUZFeBCmDFXX0n6hlKHSUkbXVJaj9Tu8bEsDappaAFSXl3Np304e5d7hZnwMT8vLcQ/ujYt/IJEnj1H4MA+A7bFp6JuYdlu7/0lLxPL4ezwqKBLy23/gq+b6OpQ1tKgqLRXjt5anFRLxXfntGX8qKAsD29Uk4LV0dCTyc2tNBeq6et34sKmuDgMDXYnr2/K0UuL6auvqiK2vlqa6RE7osUTwf9YSMXXMKEJC+zJ59nN3m/q6OnJuZqKlo4udsT41T5+SGBdLQlwMtzIzaG5uZsTkV5n4xtti7p7SlIh/0hLRUF/HeHc7DmfeQ1FJSYyfBVrane8LeJ6yu6qsBE1d/d+lBC9Dx8BAIr6ytETE591TiGtLcKft+p6rLC3h/N6d5OdkkxEbzdOKcrz7hOHs48flIwc6LSFrLkRg7ezSbfwlRUUSx/OKt1OPJeIfFrmFCxf+T4/hT8miRYsWuvUbzJUtq7EN6MOZX76lpbGB0gd3iTu8E7vAUA59MwcDaweSTx/iQVoCKpraXFy7FIdeA8TwtoGhHPn2Q/St7Uk5fYiHaQkoaWpxfsW3OPcdwvmVC2lpaqDs4V0yzh/DwiuQ00s+Rs/KjsxzRyjISERNS4cLK7/FMXQwF1YtoqWxgbIHd8m6fBpLT39OLBbi084cJj89EXUdXU7+tACXsKGc+lk4npIHd0k6cwQ7vxB2z/0AI1t74k4c4F5KPCqamhz9cQEe/Ydx9McFNDU2UHg/hxsHduAYEsaur2djZOtA3IkDPMxMRVldg4M/zMdzwDAOL51Pc2MDJfkPCN+7BeeQMLZ9ORtjWwdiju/nce5tVDQ0ObTsW7z6D+HIz4tpbW6movAx1/dtxyWkL9vnfoSpvSOxp47wOOc2Kmrq7PvhG3wHDuXAskW0tjSjZ2KKopJAbL0k6QV/d4YjaSINL6n9RbD/RLs0efZySbh+hQsH9vDVbxtpaKin4G4uF/bv4XZyItZOLuz66Qf6j5vItqWLMTAzQ9fImLqnT/ni1w1cOXYQYwsrzu/bTUZcDBo6Ovz29af0HTGalV9/SlN9PQ9zsjmyZQOB/QaxesGXGJqZi+FDho5kzfzPaWpoID/3Die2bcSv30BWfvYBJta2XNi/m8y4GNS1dVg99zNCho1k/fzPRWlj73Bq2ybsg0LZ8sUsTOwciDq8lzMbf0VJWYUHtzJx69Of/d/Pp7mhgcJ7uVzbtw3nXmFs/WI2JnYORB/bT25yPKpa2pzb+CvOIX3F8B6hYaz/5H1M7RyIPLKfO0lxqGlpc/TXZXiE9mf3d/Nobmzgyb1cLu/ehnufMNZ98h5m9o5EHN7HncQ4tHR1kVdQRFEgoLW5CWf/IPwHDmX4tOk4BwRRXvQERSUBdh7eBA4exoSZs9E1MkJRIKCmqpKOjnZaW1poqKtBUUlAdUU5cvLyNNbV0dLUxMG1q1i4cKF4DuS/SBYtWrSwIDsLu96DuNiFrxKP7sI2oA8XVy1Cy9isk6+UNbW4uHIh9r0Hc+W3RbQ0NlL+8B4px3dhFxgqxm/KmlpcW78Mh179u/FnwpGd2AT04fiij9C3tidVhFfR1CJixxqJfO4U0pe98+ZgaGNP/MmD3E9NQEVTi4ubVuHSK4wD38+npbGBovu5XNu7Dc8+/Vj/qfj67vlhIb4Dh7Bj0VyaGht4fC+Xawf34BM2gKfP5r++jpbmJhTk5ZGVcKH/T2mAxfBSzrK0fl6kf10pbjW050lu72iR3N4uuco6SPuo+Fd8bJTyVVpGSruslHo10tqlZn+yktjcILqLnz99iuOHD7J26w6auig6CoqKGJmaoaWji46aMppaWji7uTFw6DCmvPY6r7zxFraefhI/okn7OCtJKfgjvKRWaX00tz1X9NpaW9n8/UIABk+cysrP54jx88Zv56JvasaVA3u5GR+LurY2Gxd8SfCQkWz85kshP9+9w5kdm/Hu25/NC+dhYGbO5QN7RHgdNsz/guChI9m44MtOPj+9fTM+Yf2pLClBoKLSyW8yMjLUVFWiJFCmpqoSgbIyzr7++PTtz9QPP8PY0pr62hpkZGVx8Q2gz8jReAT3xj0ohHXzhO+L/Nw7nNy2Ce+w/vw8+20sHJy6jefywb1/K4f2iLj8q9yZ5LRN0Layp01eCSNnb7SthXnBG5taqJcRoOfkDVpGaNq5C3+gZYSWjSs17QroOHghMHMAQKe+mVZ5ZQydvVHUNUHPUZgnX13fBFNXb2SVlDF19UHfVhiSJCMrh7qmBpbuvhiYWdLmLvSLNjQ3x8rDF01NDWy9/DB1Ej5XS00ZU0MdHH38sbWzQbFFqEGbW1li7+2PnrYGjj7+WLgK8ZrKShjoauHk64+ltTU0CM2i1rY2OPv5Y6CrgYt/ANZuHsjKyaCqIIOpoTauAQHY29sg31QDMrJY21rj4u+Pga4mLv6B2Lh7IicrgyItGOtr4ervj62dNbKN/uibmmNq54DbGqEZ8d0lywFQkpdl0OiXAJi7YSsA3n4+nV/RfP13APDJ8hWA9K9okuRFv7b/3XhJL+kX7UOaSLV+vMBY/qhdVkaGpsZG1i/4krnLf8VER4eGhgY0nZyRa2wAwMXJmfshvTHW1cM/uDfO3sJMGErIYqKnh5O7F1bWtjQGCAOyraxt8QwMBoEAR19/zJ2F+bcbmpuREQgwcnBCSd8QM1GFZiV9Q6w9fShtkcHIxQsVczsAjJ7WUdYsg669K83qumjbC2shNKvrYuziSVED6Dt5oWgqxOs71dOhqIqFuy9K2oZkRkfQ3tbGa8vWkR0bSZu8AHM3X/RE57GhqYUOBRUs3H1Q0TfFxEV4HlX0TdGzdqBFTglTNx90bIT8YNrUTKOMMmZuPijommDo7AWAgq4JRg6utMgJMHf3QddWiDdvbKZNThlzdx8Eeiad/ctqGXJ6724Gvvo2cafPYOkqnIei3FsEjhjLnawseo+dxIObwpzs6hY2nNizk6Gvz+TGqZPYuAuf+yT3DoHDRnJu5zb6jp9MXla6lF3x14uBkxeySqqYuPqgZyusEtva2oaMQBV9WxdUDcwwEs2PqoEZxi7eyCurYOLqg4Fo/tvbWpFXVsXU1RsNQzNMXIR4DUMzjJ08kFdWwczdFwM7Yf9tbW2oqqlj4e6Drok5TW5CvK6JOcZ2jghUVbH08MXEQbjfOtrbEKiqYeXhi66JOZZu3p14QztnOhSUsXD3Q180/samVtoUVLDw8EHFwBRTV9F+MDDFws2TdnllLD19MbRz7vx7q+qauLhvL33GTSJPtF6uvr6oaYkXG1NVlHxplXaZk2ZxkIZ/EbldI5kPnNUHSP6BnIQ0sQByOZLbpSkXHVKKpElVRl5ApF3+5dUlt0tLCSulINwfSX19PXM//ZBVG7agqKiItFrTxY0vZolpaZOMl2ZFaGyVPL+S0NL6fibNTU3Mnz4ZGVlZluw4gIycHC5+gdiI7hutra0oq6ph5eKKobkFjj6+ABiaW+DkG4CMQBk7b3/MHIXnsam5FVmBCmaOLmgYm2LlITxfGsam2Hr70aaghLWXL4YOwvNY19RMm4KAa6f30HvMy538Zu3mScSxQwx69S1iTp7A2k1478rLSid03ETyH+Uz4v1PuuHjz5+mTkYecw8fdJ7xc30jtR2KmLn7IKtthKGzsB9ZbaM/nJce+XvkX+XONPyzJbgMHE3ike24Dx1PUU4WAEYObmRcPYvHyMncvnwCQwfhYSnOycRxwGhSj+3AZfA4SkR4Awc3cq4cx+/lN7h56QRGjkJ86d1buA4cReLh7v2bOrmTcf4ogZPeJOPCcUxEykLlw7u4DRhO9P6t+Ix8mSfZmQDYe3iScOowYa/MIPHMUcxdhJeN4vt38Bk0kmt7thA0+mXybwnxDh5eRJ84yKDX3iH21BGsRIerIDuLoJFjubRzU+flRE5OFmtXDyKPHRBeTk4cFl5OZOB+Rhq9x7zMhR0bCR0nvJzIy8lh6eJGxNEDDH9jJlEivLq2tsRYBiX5v8YUL0l6lIi/TolorKtj+defUlNdzS+7hH767R0dHN+9HVdv4UvhZmoyIye/woHN6xgyfhK301IAcPby4fS+XYyfOZuLh/bhJEqzl52WwtCJUzm8Ywt9RrxEbkYaAPYeXlw6uI8Br71F5PHD2IqK093LTCd07Muc2bUD3yGjeHhLeBmzdPEg5sQh+r86g/jTRzsv2w9vZhA0ajwXd27utv8tXNxJOHOcPpNf58ahXZxZs4z3N+yn+H4uPsPHEblvC/6jXqbgthBv5uxO+pWzBI+bStKZY53n69GtDLyHjyVq31b8R03gkQhv7uxO1rULBI+b0u08PrqVQeCo8Vz/3Xm0cHEn6exxwqa8QfyZo1iIxl9wM52glyZwZfdmQsZM5OFNId7Ow5Po4wcZPP0dYk4e6Xw5Prl3h8BhL3U7jwC2bp5EHOt+HgHmjRn8t7szfXYxk9Qzh3AIHUqxiN8MHdzIunBUjA+L7mTiOngMycd24zLgJYpyRXxr78atS8cImPgGWRdPYCziw8LsTDyGjSXh0HY8ho2n8I4Qb+zoRk74OXxHTyG9C38+yc7EZ/h4Yg50508TJ3fuRJwnaOxkks4ew9xZtF63M/AfMV7ifsi6coY+L7/abb3yb2bQe/QELu8SrZdof9p7eHHj2EGGvP4O0V3Wq7rwEf4San9IUyL+qroSUt2iJOCl8YGzuhQe7pCiRLT1KBEPyp/y5YezaW1pYfOe/X+I/TcoEc+U1IqSYl4N9uZY1j2UlJXJz7uPQEVFjM+Hv/kO4ccOYech5J+7GWn0GzeRc/t2ETh0JPczhXxl4+5J+JEDjHhzpkT+v7hnB1ycEf8AACAASURBVMEjx3RXFo4eYEjX+wlwPzONoFHju91nAKxcPUi8cIoBU6aL4X9/n3nWf8y50/QZP7XbfelBVjq7F33Z4870D8u/yhKRlxSNXa+B3E+MwtwzgPy0BAAE6poU38mgpf8o8pNjOvH5yTFYBw8kP+kGZu4BPM5MFOG1eJAUjceIiTxIiu7EP7mZgn1If7H+1bR1uZcQhfeoSeR1wVc8vIt9cF/uxkdi7R1IXmo8ALr6emTHRhA0dgp34qM68UX37uDSqx/ZsRHY+wVxN1lYb0JHV5eb0RGETpjGrdjITvzd1AS8+g8m60YEjv7B3EmMRU5ODlUNTTKjwgl7eRpZMUK8nII8WTGR+A0aRmZUOE7+wWQnxKKqroGKujoZUeH0nziNzGgh3szOsScg+l8obW1tXDx2iNWLFuAf2pf5K9d0/ltHRwdx1690/n/c9Sv0HzmazMR43PwCSRHl99bQ1iHu2hWGTZtOYvi1Tnxi+DVCh4/iXlY69u6eZMQK97q6ljbJEVfpNX4SGdERnfiM6AgCBg8jLysdSzdPcpKE+1lVU4ubMRH0GjeF27HP9//t2Ci8BgwlOzay2/5X1dTibko8/qNe5kFmCjrGZhz/aaHQZajPALJjhdnJ7iULz5eKhhYF2Vk01dV1O1934qNwDRvMnbhIbHwCuZ/yHP/odibedS+J4b36DxE7j6qaWuQkxRI0eiLZcc/xOQkxeA0cxq3oCBz8gjr/Xm0dHbJuRBD68jRudjm/j3Nv4xnav9t5BNDU0RU7j/+UNNfXUZSThaG9K4/Sn/NnXmIU7sNf7saHD5Kise89iIKMRExcvSnoik+6gdfIieQlP8fnJUfjGDqY+wlRWHgFkJ8mnH9lDU0e387AfdBL3E98jr+fGI1b2FAx/lRW1+TxHeH65sbf6MTnxt/Ao98Qifvhfnoy/iPGdVuv7LgofAcN42ZMBA7+3dcrMzqcvi9P5WbM8/kvL3ggUYnokf+/pK2tjb179/Ll11/Tf9AQfvhl1f/0kP5S0TEwxMbFjeUfz8LG2QX3Xn2gDDE+7z9pCmlR4Z2/S4sKJ2jIcPJuZmLt6s4tEV+paWmRHhXOgEnTJPJ/TmoSdp7e3H6G19QiIyqcvl3uJwBZMZF49R/S7T4DQr7NTU6k10vjxfC/v888wz+8lUXAsLpu96Wu/90j/5z8qywRc6/fobq8FDVtPRqqK1EUBdQ019cho6JJXWUZKlrdAwBry8vEAgBbGurQ1NERwwuUuwQYdum/rbEeFQkBg2rqap0Bg/XVlSiJ8PKtjRIDopVVVZ4HLHcJAKS5ATUJAaEqqio8LS/rFjAoLycrMSC0A2FAUye+shKBmhpyMpIDSOUU5CWmZu2xRPzvtES0trZy8eghtq1cjpqGBp9+twwvUXGfZ/IsOK+hS2XeitISNPX0qa4oR1VdA4C62ho0tXV4UvgYHX1DsQBqRU0tnlZWoKKmLupPGECXX/AIDV39bgHI1eVlyKhqU9slwK1RFLBfVVqCum73ANiaijKUtfS67f/G+joE6s/Py+OcW9xNiiPp3DECx0ym14RXhHhRgHZTXR0qUhIOPC0vQ11Xj7rq5/031dWhoa0jEV9fWSYM6P7deLoGaEs6v13/3vam+u7nS4RXVVMTO48ALfV1qGlpiQX8zvB1/NstEbMP30AggT+VpSWIqCpHWVOXhqeVKKo8x2toa0vEN1SXo6aj340Pm+vr0NCSHHDd+LRCmBCjC76pvg4dXW1qystQ0+kecF1XUf58vbrsB21dHbH1UlRWoaGqDE09gz9eL9H8a2qqSTy3PZYI/r+wRLS0tLB3716WLl2Krq4u3y5fgX+geBpWSfJvskSAMGNf6o1IzuzZzpQ5n+ER0luMz4sLC9HU0xMLoBZo61BTWYGyCP/s/lBVVorm7xJQVJeXoa6j1y2BxjN8eak4vqKkRDwBgijBgqQEF9XlZcIEF134s7GuFgVVTYkJFmZ6WvZYIv5h+VcFVpu6ehO9ax0WHv6c+O4jGqoqeHIrjdh9G7Dw68OxL15Hy9SK5ENbeZAYhYKSgIj1P2Dl34cLP3xMQ3UFRbfTSDqwCZvAUA5+Oh0dM0sSDm0lLyESBSUBp7//FMfQId36z7x4HDN3X/Z+/Co6ZlbEHtjCvfhIBKpqHP52Dq5hwzi44APqKit4lJVK1tWzWLp5se69qehbWHFt1yZux4QjUFFl59cf4DlgGDu+mkVNZQV5GSnEnjiEvW8Av7w1CQNLGy5t30DWjesoKQvY+PlsfAcNZ8Mn71FTWc699BROb/wNjz79+PH1iRhaWXNu63pyUhKRlZVl/Wez8R88grUfz6SmspyCO7c4umYFnqH9+H76RIwtrTmzdT2tzc2YO4qXoZGWKelFgwIlyV8VEP1X4SUpDC/ax4uORVrvfxRc/ijvPm8M7UvBg/t8sOA7Zs1fhIkot3dXqaupITkmil2rVxB95SJKysrMe3s6/UaOZu6M16gsKyUzMZ4dK38ieMAgln/xERpa2uxf+yvxVy+jJBCw6N03CRk2kqXvv0V1eTm3kxM5uGYFfmED2PDN16hqaHJ6yzrSIq+hKBCw5pNZeA8cxqbP36emopz76Smc37IGt95hbPliNpr6hlzesZGbN8JRFAjY9vUcsf1/edtaHIP7sl50XuJPHqK2ogw730DOrl5GQ81Trm5fS0NNNQ8zU7myfR1OwX1Z//409M2tub57I9kx4SgqCbi6Yx3WXgHsmSs8jw8zU7m2Yx1OIWGd/T87jwpKSpxdsxyHwF5i43HpFcbqd6agb2HNlZ0buRUdjoKSgO1fz8F74DC2fP4+NZXl3M9IIfLIPhz9gvjpzUkYWtpwYfsGMqOuo6yiyrpP3+92Hu+mJRN39iR2nj7dzmN65HXys2/+7YHV9+IjsA8dwunFz/ktbt8GrANCufDzXFS0dDr5UF5RiTPff4Z978GcWfIxDVWVFN5KI2H/RmwDQtkv4s/4g1u5nxCJvJISl9d8j11gX04s+oj6qgoe30wjZs8G7AJD2fXRq+iaWxGzfwt34yORVxIQtXMtVt6B3fgzcpdwvTa+Pw19cysidm/iTkwECgIBV7b8hq1vILvmzqauspyHmSlc2b4O15AwVs/svl6KSgL2Lv4Sz36Duu3Py7s24xrch+VvTMLQ0prz29aTGXUdLX19dI1NxOZNmlLwVwRK/1G7pH6k8YS+kjQefiq5uUNKYS6p2ZmkpCyVin8BkRpYLUVZkJHiQCEjzonP5M6dOwQFBZGfn8/y5cv57rvv0BHVK/kzUtf6Yh9bpcW/SGuXply8SGB111ZNHV2cvHwwMrdk5ecfcvnwfsqKCsm7fbOTz9cv+Ao1TU1ObFxLSvhVFAUCVnz0LgFDRvDrh+/ytKKc3NRkTmxYjWdoP7Z+8xVqWlpi/O8/ZASrP5opxKclc1KE/+W96eiZmnNu63oyoq4L+X/B53j1G9zlPpPM2U1rhPeZN57fZ57hT6xZgXNASDf+PL1xNS69+rJixuRu9yVFJQHxZ4/3BFb/w/KvskR8eTGTBxlJWHoHiRU50rH3ID8lBlN3f2pERYvUDU0oyEjC3DuY4uwMNIzNAHhaWICFuxcPk6Mx8wjgabEwlZiWoSkFmYlY+fbq1n9taSEmTu7kJUVj4RlAddHzIiwP0xOx9e/drchdU3khFi4e5MRHYesTSMUTIV7P1JR7KQk4BvXpLBIHUFv8BGt3L27FRgmLZD0r8mJmSk5Swv9j76zDqzi6Bv47CUmIECFQJASCS3BICAGCW6Etpe4utH37tn3rRvu+dZevBi3FpUhpgSKlWAKB4O7urnGZ74/ZhJt795JcioXO73nuk9zZs7Ozc3dn98w5cw7R8e0Kkih5e3txePdOajZpzpoF83SSLEs+vHIEG5csomF8QkGSLC/hrPz8edSLjePwnj0EhoQQEu66jMxYIq4sS8Spo0d48NpO3NXvaW558NGz9djUn5WdTV5uLvt27QSgUmRVliUn0TKhI2uWLibCShK3d+cOGraIIXnubBrFxnFg9y7ASiq3cD71W7dl4/KlVKyqk/gc2LWTus1akDxnFnVaxHDYSkJXLqIKGxYvomrz+IIkcQBH9u6ieqNmrF+YRM3mMQXXf9lKEWxemkKt2LaFrv+je3WSMuf7JaxSFZZMm8j+TetZMXMKvv7+1GvdHr+AQHJzclBK0aLHDZTyK42XtzdhFSPYvmopNVvEuSQpq9G4uW39O1cvoU5MvEt7qjVoTPLEMSgUZ44fo1yVqtSLacW+LZup37pdoSR3p/bvpXrjpqxdkEjdmLP37zVVItm4tPD9CHBs3x5qNGpS6H4EePHa9hfdEnHrhz8S2bxNoaSZJ/fvplL9JuxclmwlldPtCa4QwZ5Vi4lsFs/+DSsJrWiNtwd2UzW6KTuWzieycSwnLfmQChHsXbuUqObxLuNzteimbFsyn2pNYjlx4Ox4u3fdcmq0aO2SJLRW02ZsXpREjeaxBUnlwipGsGv1Umq1jC+UlPPY3t3UbtqcDQsTdZJNh+ttx4rF1G/drtD1eerAnrNJMx3Gz8ioapTydQ0TaiwRlGhLxP79+2nTpg2vvvoqDz/8cEG5c7K5c1HSLBGObFy7mpFffMz6JSn4BQRQv3kMDVrGsixpLo3j21G2QkUqVq1GharVWJeykLpxbdniMF4d2r2TWk2as3bhfOrajP8NWrdj68pllLfk8983VsybQ1BYGKuTtAtU7WYtOXXiOC269HRJClmnWQvb95kty5dSv1V8ofHz0O6dVGng+r4UXjmCJ2PqGEvEJaZEKRFt7ulHzK0PM3fgJ7S48V52rdI+ulUbx7Lsj3G0urMfS8b+RCUrusj+9StoftODzP/5M5pef3fBmoiIRjGsmjScDo88T8qYH6kcreUPbFxDq5vvZ45T/dWbtmLJhKF0euwFFowaQJWGeiHq0e0badX3Hv787iNa3XwfOywf4Bade+DlJQSEhJF++lRBdtS87Az8y4SQdvI4/kHBZGdmAFAmKJD006cIDNXypSw3o9zsDAKDQ0g9cRz/Mlre29sLX7/SpJ0+RVBoGGmnTuLjVxqFIiczk4DgEM6cOE6AJS9K4efv7yLv7e1t+8A0SsSVo0Tk5OTw6LWdaN25G/1eebNwPTb15+bl8d37/y3IlLoyZSH3Pf0ffvjoHW64+36Wzdf+4s3btGPMwG95+NW3GfXNFzRsGQvAmiUp3PnkMwz6/CM633w7qxdqH9pGcW2Y9PMA+j7zEr8P/Ja6zVsCsHHZEq5/9ElGf/UZ8X1uY9Ni7XNeJyaO2SMHcf3TL/Pn4O+o0UQv9N62cind7u/H+C/ep/3tDxSsQajVIo7EcSPo+fhzzBryPVGW/I6VS+lwz2NM+eZD2t56H8v++JV9m9bj5VOKtFMnCSlfgU0LE8nLy6NGsxgCQsO47tnXmfrNx7S97f6CNRE1mrdi2R/j6fLAUy71d32gH5O+ep8Eh/b4BQQy9oM3KBMWTik/P4LLlefEgf0c3bub0oFBBJcrz8Mff8tmyye/QavWzBrxMzc9+wrTBn1Lraa6f/ZuWkfnux7kl0/fpds9DxX49DaIjWP6sEHc/vxrTP7xW+o01e35+LF7L7oS8eykpSwY+QPRXW8sNH4unTiUhIefZ7HDeLhv7Qpib3uYxJ+/pEnv29ljyVdpHMvyiUPp9OgLLBzzIxFWdKa961bQ+o5HmDPgY1r0vY9dK3X/VG3SirXTxpFw75PMH3l2/NyzZhnt7nmMmd99XGj8jGrairUzJtLh/seZM/QHohpr+R2rltHp3seY8s1HtLvtfrZZ/V+jRSsW/z6Gax99hplDvqO69ftuX7mUng8+wa9fvk/HOx8suD4bxrVm5ohB3Pzsq0wd9C21mujf6/iB3XS/636XfjNKBCVWicjKyqJVq1bcdNNNvP7664W2/VOUiE3r1uBdyodVyUkc2ruHMydPsDo5ifhrr2fh9D84feI4WRkZVI6qwX2vvknK7Fm0v/GWgjUO9WNbM23oT9z+/CtMGvidy/g/9uvP6HTLHYXkR338Ljs3rCUzLY2q9Rog4sW+rZtJP3Oa3NxcYnv0Lngu1IuJY9740dz41HP88dO31LbGw80rlnLtQ/345dP3Co2f9WJbM3fCL/R46Clm/PwtNaz7d9vKJUwZ8LVRIi4xJWphdW52NqW8vcjNyqSUtyBWdthS3kIpySPAzwuv3Cz8SulryCs3i6DS3khOJgF+Xvh4afkAPy/IztQvzLnZ+FguPP7eeZQN8sE7N4vQwFIcsXqnfBlfSuVlUSHYl9KSR5i/3pDj50WVUD98VRaVQnw54afrqRruT5mwsnrncP+C9hc8XMpZayHQSb68vbygnPZXJyzQ9cRD8suCzz5Ewiz5YBv54LPyBS+bYSFWUZCrvAPuHlLuHoAXIiGcp6EP3clfCAXgQikR7urxxHVh5cpl5GVl8sG777ooJXYPtTNWhuc860GVlZmJUor0zEzSsnNIt5IRpWXncOZMKicz0jmdmsrpzEwATqemciIjg5Npmew/lcaR09rXdP+pNI6eOM3B09mcPJPO0VT99D15Jp2Dp7LIyMrhTGYOaZlZVjtySD2TRnp2HhnpWWRm6/ZkpGeRnp1HZnoGWbl5ZGXrB2dWbh6ZGRlkZOeSmZlJVrY+t8zMTF1HWjqZOQr/stdQM+4aarSMZ8nksSTc8wT+Q74hPDKKnStSWDNnBtuWpRBUtjw5uYpsq/6cXEVOTh5ZOXlkZWaSnZNb0D9ZOblkpKXrNmRls37+LPauX0PVhk2574Nv+fPHr6nZQofA3bpsEXE33MaXD/Rl1qgheJfyITyiKhnZeaSlppGRnUd6ehYZ1vmmZ+ZwJkP3xZmMHFIzsq3+V6SlppOalUtaegZp2RcikVfxyAXIy8PLSyF5+rheXorczAyX8ZDcbPxKeSF5OZT28cJb9H1X2scLsrO0fE42PvmZJXO0fF5WJn6lBG/LwcKvlOCFwtfHC/Jyzsrn5eDvI+RlZeDnI3hbr0x+PoJSeXiLkJedXeACmJedDQjZVgjj3LyzL17ZWdnWdZRFdo6uJzMji8zcPNLT0snKySUrW/d/Xl4emenpKBTZmZnkWc+RPDcvcp7G/HdbblvqWe4Ad7LrT9tfQxVK27vslPVx48rjTunI2+pG3ua4nioi7nDnKpWXaV8urm1fmLwIL68cXnv1Xpdzs+uDTan2/VuhtP3zb2+avSZSnFwOjuR6IO+pS1SeUngpRV5uLuUqVqLzTbeRnZlBn0eeICszg4at4jl6YD+zxo/h6xf+TerpUwSHBBesIfLxFnIyM/Dx9iIvJ6sgB1ReThalvITcnBxylQ6drJRi8qAfWLMgkYfe+5ztq5dTN6Y1ABsXJ9P94acZ9taLbFy6mFMnTlChWnVqNI8lKzOTtKwc0tIySM/S55yWlsGxMzmcPp3GidRsTqfp6+pEajZZOblk5uSSnpFJpjWep2e4uS4MF5USZYl4afpq9qxdpt2Z1q0k1PJpPLFvNxXrN2b74iSqNo3l5AFt/g6pGMHuVUuIauFqXq/SoCnbFidRrUksJy33p8ioSLYtT6FOq3aF3CFSD++nWnQTNiTP0+Zyy7weWa0qG5cspGGb9oXMc35eeYRXdI185KlvrR3uXkLdcSFm58EoEReqHk+UiIGffkjqkQN8+MXXLtvslIiTaWnk5uSw33JPqhRZlWULEoluk8D6ZUuoZLkz7d+5g/rNWzJ/9kzqt4zl0J5895sqrFmYTMWmcbbuSSvnJ1G9SUuO7z/rDrR12UJqxrZ1cR+q2rApW1LmU6NZLMcPnHVH2bZsEbVaucpXqt+ELYsSiWrWihOWfGjFCLatWEzNlm1c3F0q1mvM1sVJRDWJ5YR1/4ZcU5lV08Yy68evuPHV96nWSM9oHdu3i2oNm7F5USLVnerfvXoJtWK0e8yRXduYOegbrn/uTRq06cCmhYnUaN6qoP3h1vmGVqjMuA9e59SRQ/iW9qdclUiqRTclJyuTLvc/zvED+6z+iWDr0kXUa51QyP3p5IG9RDVswroF87Q53hpP3rqh00W3RNz0/kBqxrR1GQ8r12/CnpWLiGzYomA8DKkQwc6VKdSIaesy3kZGN3Hp/9AKEexes4QaLduwZ90Kwipbv9c+ff3Y/b571y6jVsvWLtdDVKNmLv0fVjGCHSvP/l6O7kxVGza1ld+5Qve/o7ta+qG9VM93Z2rZiqP7tHzV6lG21tkAn+JbCuAclgg3FofSHtTj7lnhbrxx9/Jb1k2+titKiXC7JsJdhus6LkVvvfUZp0+n8umnb9jUU3wlopybJH/ulAh3GajdWRyy3chfKCViw7IlLu6pSxPnUL9lbEFm6PIRVVizcAG+/v689/A9vDvmd0LLlefg7p3UbtqclfPnUc9Jft2ihdSOa1fgbrR81gwmDfg/3hwziW1rVhW6v8IrR7AuZSH1WyeQ8sdEUqZM5ODO7ZTy9aFWs1hyc3No2K4jlWrURkQoWymC9UuWUNvG3bRG46bW+1gcx/bnuy9W4fl4k7H6UlOiFlZHNm7J8t9HU7VpLFM/e5OstFQObl7Hst9HU7NVO3575z+EV63J8kmj2bNmGb7+AdaivvZM+6w/WempHNyynuW/j6Zmq/b89r/nKFetJst+H8Xu1UsJCCrDpM/fpXGnnkz48A0y01LZt2kda+f9Sc1mMQx59WkqVK9F0rgRbFuxhDKhoYx6/y1aduvFkP++QkZqKrvWryXt5Ami6jdwOQdPHwB/VxYuzGJj8FxZ8OS4nqqx7uQvxKLoi72wurjZufPy8njjyUd4+Y3+RFRxfdjZLfQ7deoUK1OSGT94ICsXLSAgKIjPX3+JttdezxcvP0vamTNsWbOKScMGEdupK4M/eZ+QsuWYNnII65ek4B8QxE/vvEnTzj0Y+c5rZKamsnvDWuaNG0HDth2Y8sOXBIWGsWD8SLavXIJfQAC/ff4OjTr1KHS/LPx1FPVad+C3z/5LWMXKJE8YwfaVSygdEMhvX7zjcn8t/HUUteMSGPPWs1wTVZOUX0exc9VS/AICWPDLYGrGtGHSx1p+/6Z1LPltFLVatWfCf5+jXFRNlv6m71/fwEA2Jc2kasOmJI36Ce9SPuzftI7FE0dRt3UHxvR/hvJRNUn5dSQ7Vy3BLyCQxFGDqBPblgkfvsGKGZOp1TKeDQtm64zJbzxDhahaBe33Cwjk98/foc1Nd7Fq1lSadOpJKV8/Du7Yin+ZMswZ+TMnDu1n2Z9TWDd/DqePHuGP7z+ncYdujPuoPxlpqezZuJYNyYnUaNKMn17+F5Wq12beLyPYunwJezauu+gLqw9uXkfd9t2Z8UV/stNTObRlPSsmj6ZmbAJzBn5KUHj5gvHQNyCQmd+8R732PVzG29pxNv0fEEjisO+o07oDkz/R8gc269+rXusOjHnrGZffN2XiaGo2b+V6/cR3YMQb/y7U/6UDAlkwfgS1WsQx7oPXybLkkyeMpH6b9gx3+r1KBwQy9btPaNShK7+89xoZqans2biOhb+PJTo+gQEvPkWlGrWZ88twNi9fTNkKFWwXVvt4e7aA+nIsrHY33gS5cU/1d+uF6m4h9nE38jajsaeLs93hdgG1u4XY4YW+5ubm8sCDz/POO89TuXIFm3pCXIqOunFxCvC279/T2W4WRJ/Hi74ddhYKd88/t9aPrCw+/89TpKeeYdva1UwdMYSWHToz+stPCS5blukjrPE/MIif3+3P9Q89zuwJY9iwNIWM9DRmjBpK8w6dGf35x4SEhzNj1FA2LNXPi8Hv9qdl914MeetlMtLO8Nt3X1ImNIz46/vy8xsvUD4yquD+Kh0YxK9ffkzTTt2Y+NVH1GvVhip1G7B/2xZqNmtJ8m9jWT9/HhsWLWDz0kWcOnqYpHHDCQgOYcZPX5GVns7ejetInjCCBvHtGfraM1SsXpP540eybYV+Hi2ZOtEsrL7ElChLxKuzNxaEVHUM2ZqVlopfmRDbkIPu5ANtQraWK1uGM8eOUia8HGknT+AXaLkFZaYRFOoaQrBsaBmXEKwA/qUUfqX9ccZYIuwxlgjXa2D+zBl88fZrJC5eZvuC4M6dCVxDvPqGhnHq+HECrBB5aWfOEBwWxs49uwkrV94pxN9h0v2CST15gtLW/ZIfsvXA/kOUcQq5eebYEfzDwgvdL/khWFOPHXEJqXrmmA657CzvExRScD8WCtl65ChB4eVIO3UCP6s9mWmp+AYG24YMzTlzHBHhs9u60vGBJ6nWuAVhlasQXLY8p48dIcip/vSTR6wQoycY1f85mvfsQ924BIJCw1xCwpYOCOTMsSOUCS+v+8dqf256KoGhYWxeupBpA74iJzsbb29vvH18SD99igPbt1AtugkNEzrTKKELwaGhBIaGFgpRuH/bZj6864aLbonoNzaJYJvx0D84lMyTRwkIK1eoP92Nn0Ehobb9n3biKGXCy7v8XiFhYba/b+ZJS97perDrf1//AE4f1SF57a43O/n8EK+O17N3TrptSN6wkDK295qxRFAiLRGTJv3Ju+/9HwuTf3NTzz/HEnHaIcRxfojXwwcO2IZ4DS5Xjl2bN/L6bTdwy1PPEVU/mgYxrTh5/Cgh4U7Pi6NH8A0JL3j/+fTRu2nb5xba3HAzRw8eLHR/+fkHcPTQYULKlXd5vvgH65CtJw8fYuxHb6OUopSPLzk5ueTmZLN/ywaqN2lBvfgO1GoZT2Sdui7vY0f27OSjO3oZS8QlpkRZIo7s3Ert+E6MfukRKtZuwJKJI9ixbCGBoeHMGvAJtVp3YPIHL5OTlcnh7ZtZOHIAteM78cvLj1KhdgOW/jqCncsWEhgWzqT3XiS6c28mffAy2ZkZHN6+mcUThlG3dQKDnn2IynUasGDcMLYsSSa0/8etxgAAIABJREFUfAWGvPZvWva4geH9nyc7M4P9WzeRMmUC9WPj+ezxe6lWvyGzRg5h/aL51GgQXRCT2RFjibDHWCJcywd8+j5tOnejbXy8rbydJSIrN5dXH76HzIx0tm5Yx9CvPqVdj17896nHiKxZi4k/D2R50jzCypXnvX89Srvrb+TL558mKyOdXZs2MOH7/yOmS3d+evtVwitXYc6YoWxIWUCZsuEMevUZmne7jlFv6+v/wNZNzBr6PdHtujD2vVcJj6hacL8EhYUz+q3/0Kz79Yx++wVyMjMLyf/kdH8FhYUz8eM3ie7QnfHvvEh2ZgYHt21i3vAfqNO2E8Off4hKtRuwaMJwti1NJig0nFk/fkHtuAR+e/9lsrMyOLR9MwtGDqR+u86Meu0pWt10N8umjCdl4kiSRv5Eym+jCQwry+zB35Cbk83BbZuYO+wHGrTrXHC/b148n43J84hq3IIJH7xO4049C7V/9rCBRLfrzMB/P0BE3Wjmjx3K5sULCC5fnqGvPUP72x9g0+IFNO3cg8q165GXl8udb3zApiULqN+6PSmTxzP9p29Y/tdUHWa0TQeG9H+ehb+PY/qg78jNyb7olohWtz/Cn1/9l5CKVVg2cSQ7ly8kICycye+/QHTn3kx2GA+TRw2kdnwnfv3vs5SvVqvQeDvx3Rdo1KW3S//XbdOZES88TKU6DUiZMJztS5MJDAvnz+8/oW6bji6/b3S7Li7jbVBYODMGfEG91u1dr5+Ezvz4zINW/w9jy+JkgsqGM+mLd4lO6Ooi36h9V354+gGq1Ism8ZehbFq8gLLlyjPw5X/TqlcfBr32HNkZGezdvJHF0yfTqE2CS78ZSwQl0hLxv3e+4rreXYiJaeKmnn+GJWLjyuWcOnaUyUMHsXJBIqHh5fjkmX60u74PX73wb7IyM6zx/2tiunRj4FuvUq1OPU4cPszqBYkkT53E0A//x/7t2/lj8I+o3Fz2bdvCxB++oWXnrnz30jNUjKrBXyMHc+zgAQ7v2c3s0cOIvbYPg14/e39NHfQtjdt35esn7yeyXnSh58vYT/5Hkw7dmPjlhzTt3IMqdRtw8vAhbn/rU1bNmkrfF//Lng1r2JSSROKoQcwe/iMomDVsIMf372X6j18zdcCXqLw8Y4m4xBS5sFpEngQeA6KsorXAO0qpKdZ2AfoDjwJhwCLgSaXUWoc6FJAN1FNKbXMoHwyUU0r1Lk5ja8d3wjcgiPrtexBaOZLqLfQLVmjlSKo0bIGvfyC12nTimhr1APD29cUvIIi67bsTWimSqBZttHylSOokdMXXP5Da8Z24pqaWDwsNxr9MCH2e7094lShCrYzOZcuFc8tL/8W/TDC9n3yeoFC9aFqlxRMQHMLdr/2PClWjKGutgwgtV744p2MwuKVCpQhOHnf34LZHROj36luEhuuHafP4dgSHhnHfcy8SEVWD8pUjAAgJK8vT735MQJlgYrp0o3q9aAB8/PzwDypDVMOmlIuoSv04He2kXERVmne5Fp+AIKLbdaFyHX2/lPL1wy8wiKjGzSkbEUntGH1/lY2IpFGnnvgFBNIgoTOVa+t8JN5+vvgFBtGwY3cX+Vqx7fD1D6Re285UqlXfof5gojv2JCwikpottXxYRCQR9Rvh6x9InTadqFDzbHt8/AOJ7tSTRp16Ur5qDQCCr7mGucMGsG7en2xbupAzx48S3b4bddt0xC+oDI069SS0YiVysrIIuaYiZSMiqRvfAV+n9vv4+OAXGETjztcSHhFJ7VjdnvBKkTTrci1+AYE0cpQv7Y9fYBAtu19P0y69qBrdiLzcXHIz05g9cghfP3EvOdnZxF57A9f1e5bPH7nDo9/7fPANCKJy/SbWeGiNn5UiqZvQHb/AMoXGw1K+fvgFBFG9ZTuX8bZuu662/V86MIgGHXoQVjmSGtbvG1Y5kqqNmtv+vr6BQTTq1NPleoiMbuLS/95+vvgGlqFJvnzsWfkazeNs5UsHBtGk87WEV46kbquz8i27XUvpgECaduhKFStfTmhYCHm5uayYN4t6MXEcttYW1ahTx9aybLiyqVzpGo4dO3G5m3FJWZWcRMWqUQAc2LWD6NjWHN63l+iYOJq21QpyxapRtL32ekoHliG2czeq1dfjv6+vL/5BZajVqBnXRFaj6+13A1CtfjR/jR1JQJkQ/hw1lBGfvE9Ug2hqRDfGNyCQejHxXBNZjXqx8WxatpjA4BCiW7ejdGDh+8vHT48Pzbtc6/J8qRvTWo+f7TtTpU7++OBbMN5Wrl2PNrfco9tfow5zRwzg1NEjbFu+mF3rVtGsay+ad7+ecR8WjmJouPgU6c4kIjcAWcBmdITK+4AXgRZKqVUi8hLwOnA/sBF4E2gL1FVKnbbqUEAGMFEpdYdD3YMpphIhIqr/tBTWzppKfN87SJk8nqrRjQHYtXYVMb1vYvbwH4m74RZ2rVsNQNUGjVg+7Tc63H4fCyeNp5olv3PtKhJuvIUZQwbQ9sbb2LF2FQDRLVqcjarkgDtztjvztDtzttsZJw9m/4s7k32+5e5m0aKDL14gL3cmZHcmYU+joniCp5Yedy4N7szfxeX3CeMZM2wIn4ycYLs9NcvVZeBkpn10CjtZ0FlNy4SEsWX1SgBqNWrCX+NG0emeR0iaOJYajXTozm2rV9C2zy3MHDWcFt16sXOdvl+qNWjM/IljaH3bQyyZMp7IBvr+2r1O34+JY4bQomcfdq/X92Nk/Uak/D6Wzvc87HL/Nu5xI4kjfyLmupsLyS+eNonYG+9ixdQJRNTT8ns3rKJx9xtZMGYQzXrdzL4NWr5yvUasmfUHLa67jZXTfqVyvUYA7NuwmibdbyT5l0FEd+zJ0klj2Jg4E6UUkQ2bknD34/zy5tP4BQbR81+vc2Drelr06kvSyJ9o0fsW9lr1V2/YmMWTxtL+rodZMnlCwfnu27SOFj1vYM7wH4m9/paC9teIbkzy77/Q+e5HWORwvge3bqRFt97MGPIDrW+4mT0b1gPw7b8euOjuTO0ffo62tz/EyulO/dPjRpb+PoqGnXsX6s/lU8aRcOdDLJ86gSr1dfv3rF9Fq+tuYt4I199rxfRJtLvtXhZPLnw9NL+2L/NG/kjMdbewx5KvUr8Rq/7S43lx5VfOnELrvncW6v/8623uiML9H1m/Ecv+mEDHOx8s3P8b19D6+ptcxv/6TZsyZ/wYej34GPN+HUvNRnoGO+v0SZrYWig8C9nqziXUk1CxF8KafS48dn+yw51LlDvchZt1Z9HwDrAvl2qFvo4cOZFfJ05j7C/f24ofy3F1ZzqSZf8MyXTjhuTuGeUuClOmm3J38nbPNHfPuZPHj5Obk83mVSsAqN24KTPGjKTPI/34a9xoajdpBsDmlcvpfPPtTB0xlDa9ris0/s/8ZRS9H3qMORN+oVZjPf5vWbWCjn1vZdKwwbTqeR0bFi9k2+oVrJ4/j5OHD3PHK/05tGsnq+bNwtvHh1Y9r6f9zXcwbchA4q+/ueD+iopuzLxfx9Ll7odInjSOqGh9f+1Yu5LY3jfx17CBxPe5lZ1r9f1bLboRi6dNpu1NdxW6f3etXUVs75uYNXwgsb37snvdGry8vanaoBGvdmlp3JkuMUW+GSqlnB0KXxORfkBrEVkNPAN8oJQaDyAi9wGHgDuBHxz2+xr4j4h8opRaej6NPbZ3N7s3rCEjLZUNCxMLyjcsTKRxx+5sSJ5L7ZZxBfHeA0NC2bIshbjrb2Z98ln59cmJxHa/ljVJc6kb05qNi3X84QqVK9kqEQbDpaZRk6a89vwzF/UYJ48cJu3UKdYuWgBAmdBQVsybTXzfO1mzYF6B3JoF82jZtSc716+mWoNGBfdLYHAoa+fPpfl1t7Fx0dn7a+OiRBp17MG2FYuJatyCrdb9GBAcyobkubS56Q6X+7duQjc2LpxHjeatCvI7BASHsmftSpp078OWlKQC+S0pSdRt140ti+YR1SyWHcu1vH9wCAc2rSUrLZVti+cXyG9bPJ/6Cd3YmpJIVNNWqDxF7fhOBJevQOKwb1k3ZzphlarQuNv1HNi6ni0pSUR36M7mRfOo3rwV2636Q8LC2JA8j7g+dxQ6311rVxCd0IUNyXOp2SKu4HxDypZl/YK5tOl7Z6HzPbhtE9FtO7IhOVHP3i1Z+Hd+Ro/YtjiRmOtvt+2fPWtXEFG/caH+3LJoHq363O7S/0079bD9vbYtTyGm900u10N0h25sSJ5HzeZxbF16Vn7vhjVkpKbayHe3ld+9bjXNu7vKN+7U3aX/A4JD2ZQyn9Z9bivU/9uXL6JZlx4u43+58uGsTJxD59vuYtX8uQXyOWmptkqE4cqmWbNo3uz/6eVuxiUjMyOdI/v2sipZ39tlQsNYOvcvut1xD8sT5xTILU+cQ3zP3mxZs4KajRoX5AMKCgll2dxZdLn9LlY4yK9InENc92vZtnolNRo2ZttqraQ80P89fnrzJaYO+oHdG9fTrGNXouPbsT5lAa16Xsf6hfOp3Tz27PMiJJQNKUm07Xs76xzex9YlJ9KkY3fWzZ9LnZZxBeNhYEgIu9atJqOn6/tek449WL9gLrVbxLF1uc7/FRDs6p5muPh4tLBaRLyBW4ChQAsgFdgKxCqlFjvITQGOKKXus74ra79bgXClVGerfDDnsESIyKNoNyms4xkMBsPVyk6lVNTFqtwahw0Gg+Fq5aKOoQZXiuWjIiKNgGSgNHAGuFEptVpE8ld9HnTa5SAQYVPVq8A6EemhlJpW1HGVUgOAAcVpo8FgMBjcY8z8BoPBYLiQFDde6EagKRAHfAcMEZGGDtudZ7jEpgyl1BZgIPCBiLsQCwaDwWAwGAwGg+FKplgv8kqpLKXUFqXUEqXUK8AK4FnggCVS0WmXa3C1TuTzNlATuOs82mswGAwGg8FgMBguM+drDfAC/IDtaEWia/4GESkNtAMW2O2olDoEfAL8z6rDYDAYDAaDwWAwlCCKVCJE5AMRaSciUSLSSETeBzoAI5Relf0F8LKI9LVcnAaj102MPEe1n6LXV/T5uydgMBgMBoPBYDAYLi3FWVhdERhu/T0JrAJ6KqWmW9s/AvyBbzibbK5bfo4IO5RSZ0TkbeDbv9F2g8FgMBgMBoPBcBnwKMSrwWAwGAwGg8FgMJgISQaDwWAwGAwGg8EjjBJhMBgMBoPBYDAYPMIoEQaDwWAwGAwGg8EjjBJhMBgMBoPBYDAYPMIoEQaDwWAwGAwGg8EjjBJhMBgMBoPBYDAYPMIoEQaDwWAwGAwGg8EjjBJhMBgMBoPBYDAYPMIoEQaDwWAwGAwGg8EjjBJhMBgMBoPBYDAYPMIoEQaDwWAwGAwGg8EjjBJhMBgMBoPBYDAYPMIoEf9ARGSOiMy5DMd9S0RUMeTmiEiSTXllEflGRLaLSKaIHBKRCSISe3FafP6ISJSIKBG5/zIce4eIDD7H9kpW29602bbe2tbAqTzaKn/K+t7B+p7/SReRdSLypoj4X/CTMhgMBoPBcEVhlAhDiUBEmgArgJ7Ah0A34F9AKLBARO65jM0rUSil9gNbgATHchEpD9QD0py3OXyf51T+NNAa6AVMAvoDP1zgJhsMBoPBYLjCMEqE4YpHRHyAccBJIEYp9b1Saq5SagzQBfgNGCgidc+j7h0i8tYFbXDJYB7Q2urbfBLQffwL9krEMWC1U/l6pdRCpdQspdRLwFDgHhEpe5HabTAYDAaD4QrAKBFXISLSRER+FZGjlpvJRhF5pYh96lr7nLD2WSgiPZxkBovIDpt9XdyjRKSZiCSKSIaI7BWRNwA5z1PqC9QCXlVKHXXcoJTKQ1skvIFnzrP+80JEHhGRZVZ/HReRuSISX8Q+d4vISqtfjojIMBGp5CSjnBUbd+5RIvJvSxHKEJElItKumM2fCwQALRzKEoAF1jZnJaIdkKSUKsodbbH1t1Yx22EwGAwGg6EEYpSIqwxrfUAyUBN4Fu1m8hlQ5Rz7VAaSgCbAU8CtwAlgioj0PI82lANmAeWA+4AngR7Ag57WZdEZyAWm2G1USu0DlgKdzrN+jxGRT4ABwDJ0f92Nnt2veo59HgWGAevRitHLQHdgrogEnUcbHgK+AGYDfYDBwCggrBi757slOSoLCUCi9YkQkRrWcWoCEbi6MtlR3fp7ohiyBoPBYDAYSiilLncDDBecT4CjQJxSKs0qm1XEPs+hXzxbK6W2AIjIH8A64F1gqodteBYIBLorpXZZ9f0J7PSwnnwigcMO52PHDqDxuSoREUFbLJzxEhHHe0EppXLPUU8t9Dl+rpR6zmGTrZJj7eMN/A+Yo5S63aF8A/ql/UHgq3O136k+L+AtYLpS6gGH8sPA6KL2V0rtEJFdaMXhIxEJQfffv5RSW0Vkv7VtG2cVjbk2VeX3XQB6nUo/YIVSalNxz8VgMBgMBkPJw1giriJEJABoA4wo4oXbmQRgYb4CAWC9RI8CmopIsIdNaW3Vt8uhvlT0wtvzoThuUMWRaQ9kO32qAW84lf1VRD1d0PfOgGIcM5+6wDXACMdCpVQSWrlq70FdoC1LVdDrFxwZD+QUs455QBtLIWmLPvd8d6QkzioPCcBpYLlNHdOt/U4CYzlrFTEYDAaDwXAVYywRVxdh6JfbPR7uVxb7F8QD6JfzMOCUB/VVAtbYlB/0sF357Aa6iEjAOZSjapbcuVgKxDiV/Q5MprBCcLqIesKtv570c/5C4/022w44bC8u+esoCvWpUipHRI7ayNsxD+2G1RitKKQopTKtbYnAv63/E4AFbqwzTwIpQDqww1IWDQaDwWAwXOUYS8TVxXEgD+2/7gnHgIo25RUBZW0HyAB8beTCnb7vByrYyNmVFYe/0G5Ivew2Wms6WlCE25ZS6rRSaonjB8gC9jmVbyyiPUesv570c34fuutnxxf/TFz72a6PwalPLdciZ1l3OK6LyF8PkU8iUFNEYoAa2LsyAWyy+mytUSAMBoPBYPjnYJSIqwhrlj4JuNvDhF9zgTgRicovsHz4bwOWK6XyZ+Z3AhWshdP5cjXRrjqOJFv1RTrIBQLXedAmRyYAW4H3nEOHWq44X6GVpy/Ps35PmWkd71EP9tmIthrc7lhoRXOqRuGX9J1AQ6f9nRWoPWjLy61O5TdRTAujpSwdQC96b0FhJWIV2vr0uvW9OIuqDQaDwWAw/EMwSsTVx/PomehkEblHRDqKyEMi8vU59vkcHU3nTxG5U0R6o9cv1AFec5Abi7ZMjBCR7iJyFzpHwxGb+lKBGSJym4j0AWagXV48RimVBdyCdqtaLCKPi0iCiNyCfqHvAzymlNpwPvWfR3u2os/xWREZICK9RaSniPQXkdvc7JMLvIl2yxouIj2s6EoTgM3Azw7io4FeIvKaiHS2wr3e5VRfHvA20F1EfrZ+jyeBT/HM9SwRrUR4o8O7Ota/AK34pXN2rYTBYDAYDAaDUSKuNpRSi9GLq3cDXwN/AC9wDv99K0RqW2At8B06sVtZoJdSapqD3BbgZrQbz0TgRXRkp01O9R1Bh2U9AgwBvgGmAYP+xnktB5qiF/K+jFYevkW/MLdTSg0+37rPsz3PA08AcejFzCOAjsCuc+wzALgHaIRWvj4C/gTaK6XOOIi+D/wfOtzuRKC+tZ9zfT+hc2N0sup7AG3pOO7BqcxFr3tZqZRyVj4SrW2LLEXOYDAYDAaDAQApOneUwWAwGAwGg8FgMJzFWCIMBoPBYDAYDAaDRxglwmAwGAwGg8FgMHiEUSIMBoPBYDAYDAaDRxglwmAwGAwGg8FgMHiEUSIMRSIiUSKiROT+y3DsHSIyuAiZ/Pa5+zR1kHUszxGR7VaI1CoX/WQ8wGrfW5fhuHNEZM45tg8uoq/zPx2c9rvfKk+52OdgMJwvIvK1iExy+J4/tjxsI9tNRKaKyFERyRCRTSLyoYiEXYB23GEdN8GpvIJVftBmnyetbQ2t72853ZMnRCRFRO68AO27X9zf+ycc5Do4bUsXkXUi8qaHuYycjz+nmONQlNN++X3yi5t6bxGRfaLzGl0QrJDexWlrWxGp5VSWKyL7RWSYiHiaRNZguOgUKynVlYyICLAC+EwpNaSY+3wDlFZKPXRRG2e41LwP/G5Tvsnp+2DgB/T13xSdbyFeRJoqpc4rl8U/iP8B3zt8fxh4CB0iONehfJ3TfvdZf2NEpL5Sav3Fa6LBE5zHUOsF6iegKzrU8wNAeaCHUqrz5WvpxUV04szHgPhiyL4KvIsOwfwwOiN9C+Al4CYR6aiU2v03mpOffDKBwokeE4A04BoRqeeUGycBnfl+rVNd+fdmWeARdJ6f0kqp8w657cAtuIYPz7GRexqdayYA6A70B2oB957ncZ8Agh2+vwHEANc7ye3P/8e6zvNDZV8vImFKKedw2OPQ+XyeQ491F4L+6JDd+TwG3A+0dpJbC1Sw/n8HmAL4WXJvAvVEpLVSyq5/DYbLg1KqRH/QWZV3AT4e7BMFZAC1Lnf7L3Bf7ADeugj1RqGTzN1/mc5pcDHb93Ax6lPAO05l91nlfT1s25yi2vY3zltdjN+ymOc0xwP5t6y2ljqHTDV0hu8pluwHl/q8zOecv2GhMRSdsDIVnf08Dq1AlEHnH+lwudt7Efvha2CxU5nL2ILOB5MHfG5TR3W0QjG7iGPdrx+/55TZCsywaeMkYAvwqNO2fcCvDt9d7k30xMlmYNXfbNv9Vt3nfIYCHSy5Lk7lP1vlZd3sl9/vxbre0BNDe4qQSbDqzB+HHncj9zRwGPC9SNfZO+76F61YuTxr0YqIAlpejDaZj/mc7+dqcGd6GhimlMou7g5KqR1AEtDvYjWqpCEij4jIMsvcfFxE5orIOWfkRORuEVlpmfKPWCbXSk4yLm454sY9SkT+Ldp9KUNElohIuwt1fkWQn4251iU6HiJyo4jMF5EzInLKcjNwnkVz3qeHiCRbv9FJEZkoInWdZGzdv9z8DreLyAYRyRSRtSJy44U4NxvuRSetex1YBNwtIlfD2HO14DyG1gM2KqXGK6UWKqUOK6VOo5Mq/uuytfIiIiJ+wN3AyGKIv4hWFF5x3qCU2g58AHQQkVZ/s1lzgdYi4ugxkIBOAplk/Q+AiNQGKlHYauGC0rPYy7mEY50bLvmYi54sykFbTvfh3goyBggH+lyidhWHZdbfqpe1FQaDEyX6QS4itdCm53FO5Q9bL0WZIrJTRF602X08cJd5mQER+QQYgB6obkU/TOdxjgFLRB4FhgHrgb7oLNLdgbkiEnQebXgI+AKYjR68BwOjAE/8i71EpJTTx7sY+1W3/p44p9QFQkT+BUwADqEfbLcAv6Jn39zt0wM9g3YGPXPcD2gIJJ2Pr6yIdEG/MG1G/34fA18Cdc+133lyL7BG6azjQ9EZz69at5iShPMYKiI70C9ZzfL9sh3ExwO9RaTsJW/oxScOCEW/oLvFeqFvD/yplMpwI5bvUtnpb7ZpHhAENLeOHYq+5xOtj+N6iQSHfYqiOhdurPO2GXOL80y91GOuP3AzME0pdQAYgVbQ6jjLKqUOol1ge1yKthWTKOvv1svZCIPBmZK+JqIz2uy+Mr9ARF4A3gM+QrtmtAD+JyJpSilHv8QFaP/DRo77lxQs/067F2Qvp5krpZTKtZHLr6cW8CzaNP+cw6Yp59jHG+0vOkcpdbtD+Qb0w+1B4KtinYjezwttep+ulHrAofwwMLq49aDXOfzgVJaKfhA7HVJKcXZNxCdoP+PJRbTT+X4Rh7ryKaq/g9HX569Kqb4Om6af69hoE/g2oKc1m4iIJKMfdv9B+/B6wtvABuAGpVSeVd96YCGw0cO63CIibdCzjfmK/Gjgc7Ty9OeFOo7hvHEeQ29EX2s10GshHFkA+ADtgN8uVQMvEXFod5FVRciFA/5oN0t35G+LzC+wxkxxkPGyyp3HlFylVL7ilq8QJAAp6H7PBJai1z5EikiUZVlPAE6h17Y4460fF5RFTz60RE8Y/J225bMBV6YAvZ3K8p9LAUA3qx0rlFKbrGN5UXhSM//Z5u3Ujrz88cpD+qLXUAy1vg8BXkBPcLxuI78cfU1cLvL7y89qxyvAGKVUiXtXMVzdlPRZ+BbAeoeXoGC07+A7SqnXlFJ/KqU+AD4EXnealV6LXmwWe6kbfYFoD2Q7faqhF5g5lv1VRD1d0NfBAA+OXRe4Bj2bU4BSKgnYabXNE6pYH+eIGeOxX6TnjnfQi+scP3YuUa+i+yYdSLb+v1Yptc9dxaKjfDj3dwL6IeRYVtRMUTxaqSl2f1sLXZujHyIF/WG5TszHw/627oMYYJzjA1kptYhzvxydD/eh/cdHWMc4hvbpvlFEylzgYxk8p9AYalmLDgOplivTwnxBpdRJ9NqJkjpmnovKwCmlVFYRclLEdnf8ReFx4ier3HlMKbiXlVLb0IuW860MCcAipVSW9fJ9yGnbfDcTGBlW3QfRY98XaMvxebfNgRtxHXOfsZGbbtVxEhjLWYtzPm86HWuLVT7TqfxNm7qLw31oq8fvAEqptWhl7B5rQs6Zw+hrwi0i4myFOd9rw46f0Od7Bt0HezgbnMJguGIo6ZaIisARh++tgUBgrNPsxSz0y3UV9EsuSqkc0aHoKl6itl5olqIHbEd+R8+mO76gni6innDrr3OEjXOR786w32bbAYftxSV/HUWhsIXWb3TUg3p2KqWWFENuEPAdWkHZrZQqzjH24drfP1jlbzuUZRZRz/n0dxj65cVdf1fzoC6AcugZZZcwkW7KzgsRKY12j0sE0ix3DNCuWzeh3Qt+vlDHM5wXzmNoURyh5I6Z56I0Rd+7oM8/nXO4Hjpsc4zO9Bh6cXo+vdETXs5jirMVcB7Q03pBTaCwxTIJSBCRWdYxna2w+cShJ8yOA7ts1g+eb9tAuylusSl35km0NSUd2KGUSnXaPoDCluBK6OfZ4+hnXT5uJ3rpVeCFAAAgAElEQVTcYbl7dkZPZPjL2dCy49FW4Q5opcaRdLTF6VzMBdo4fH8DPZF1IXgb3R+BnHVf/Rp49ALVbzBcEEq6ElEa7YaSTznrr3OIu3wisZQIi0yrjhKHtdCx0AuziGQB+4r5Ip1P/gtEBMV3Yzlm/bV7majo1K5MwNdJJtzpe/7LcQXHQksRdJa9EOz3sI+wZiid+/s0cPRv9PeaYu5zHO1q4a6/HZWgDJz628aH/Qh6lqsCrlSg8D3yd+gDhKBnMJ1DKYKeWTNKxOXFeQwtihI7ZhbBUYqx/sqa2JgHdBUdJtVuXUR+gIRZDvsVGlvFyuVQjLFjHnAnWhFoTmHXm0R0qNN8C8Fc7FmqzhEW9G+0zRM2nas+ywpcoCDI2fwOGy9AO+5BW9vv4WyIV0fuw1WJKEvRyvVDFFa+9p5vA23Y4XDecy0vi4dF5Hul1LJz7WgwXEpKujvTMfRiOMfvoGdSnE2sMbiufQh12Oefyky0u4knMxwb0TPWtzsWio7mVI3CD7Od6MWAjvRy+r4HPWt3q1P5TZR8RdeZBWgTdbH725q1Wwrc4uiSJyLV0O5RRfV3If9ky+VhMXCz4yJIK5pMVHHbVQzuQ59rZ3RYTMfPMPQs6oU8nsFznMfQorhax8wNgI8UL+nkx+jJjfecN4hIdXSuiHmWe+DfJf/efhltjUx22JYE1EaPm2k4TXIYCrgXvZ7MeQzqiF6XdZO4JperThGTakqpjUqpJQ4fO0vxheIltALf/yIew2DwmJL+graRwglbktFmyMpKKbcLgwFEpDx6kZdzIrJ/FEqprSLyOfCc5aP+O2fXimxQSo2x2SdXRN4EfhCR4cBw9Mz6u+hoP46zy6PR61FeQy/abQfc4VRfnoi8DfwoIj9b+9RCLyY75cHp1BARu8Vwmyxf/MuOUuq0iLwCfC0i49Em9tPoBd4ZSqmv3ez6BnrB4mQR+Ra9ruJttI/xpw5yo4FB1m86GWiCjunuTH9gBjBRRH5A5wJ4G+0e9bcRHeq3K/CzUmqWzfYjnJ0ZvFBJnQye4zyGusVSOKtydY6Z+YuYYynC1VAp9Zc1/v3XUoKHoi1tzdEv+yexn/H2GKXUBhE5BFyHtiiccdi8HK2kX4fOS1HsMOcXkKYiUs6mfMm5rB+XChGJBeoDryul5thsD0KPU33RExv513kMOgDEFYFSaq+IfA88Izopqt0CeoPhklPSLRHzgaqWQoBS6gQ6ys+XIvKOiHQTHVv/aRH51WnflmgXkQWXtMVXIEqp59Fm8Ti0n+gI9CzNrnPsMwD9oGyEjtTyEXpWp73Tg+59dLbOp9DZXetj84BVSv2EXpDXyarvAbSlw84Nxh2voBVJ58/fDbV4QbGihN2CXqMzAt3nNwPbz7HPNLQFJxS9AP17dHjdtk4LwoegFYS+6AXM3dGLH53rmwnchV4kPwEdqeQZLlxkprvREVZss+IqpdagfaTPN2Ot4cJQaAwtgrpo5XX+xW3SpceKcJSCfiEvjvz/gJ5on/Wf0Qr5E2iFoqVSyu3YeR7MQ1shCoWftSyKyda24oR2vRiMxX7M9cS6dTHJD+wwxM32qWg3KsdFy+3QkZw8iQx4KXgfHUntjcvdEIMhH3GN2FZyEBFftD/9M0qpYQ7ld6PDljZA+4hvQke2+cxB5kugsVKq46VttcFgMFwZ2I2hopMVNlRKtXSSfRadbK6mTajPEo/o5JdfApWUUp6sEzFcRYjIQHQmbvNuYDAUQZGWCNEZcJXNZ4qDzBMisl10puGl4pRp2KEO5/K3RKS4i0tdsBa7DsfJN18pNVwp1UIp5a+UClNKtXJSILzR/vY/YTAYDP9Q7MZQpdT9zgqExa3AoKtRgbAYhl4c+8Tlbojh8mBFcrobeO1yt8VgKAkUx50pBh1uLf/THO0G9AuAiNyGnr15D2iGdg+aKiLO2Y4z0PkaLjQfAx3EJvPkObgFvXbiSjNXGgwGw6WmyDHUWnRfD+2aeFViuQc9iGfRqgxXF9XQVrl/vJuzwVAcilQilFKHlVIH8j/AtejFrmMtkeeAwUqpgUqp9Uqpf6HN4/2cqhoANBORvlxAlFJ70KHWKhUl64AAD10JC78MBoPhclLMMbQscJ+17uyqxUqw9+3lbofh8qCUWqCUcpdvw2AwOOHRmggr4c1W4A+l1FOWP20acIdSaqyD3Ddon9r21vcd6Bmsa4AbgGgr3vZbwM1KKeeQlAaDwWAwGAwGg+EKxdMQr13R8ZN/tL6XQ0dgcc5yexDoYrP/+8DD1uf7og4mIo9ixdMPLxvS4uixkx4212AwGEoMO5VSURer8qhq1dTOXRcyaJDBYDBcUZzXGCoiXYCFTpElDcXAUyXiEWCxTYxiZ3OG2JShlDouIu8D/UVkmPN2G/kBaDcoRESpIx9AqTIucskp27jhzh8YO/gB2repXXijl3Oy5PzyANcyb5uyc9bhZ19+Nh8YAPv3H6Vu9AP0vbEdPbrH0q1rS8qWDebkyTOsXbuDxAWpTJkyhVWrVtGrVy9SU1OpXLky73zpalUv651kf8yc0/blnnpsuTsnd/V70jdu+nfJ8Ra25ek59m3PycuzLd9ypHBKiby8PLatXMrUcePZkjidMuUrUbt9T+ok9CSofEXWbnZVSo8csldUg0Ps2+7t7W1bXr6cfVJfb297D8JS3mJbHlDavv7Sfq7lwf72t3NYgGflof4+tuVl/OyvjRA35bHl3NxPZwbblK23FVW5WbbleZnptuXeQXZJuIHgZoW+rl6zk3c/HMdfs1fw5CPt6dWtEY0bRuDnZ5171lGXKnJObLOtOv2wfYLv7F32qUlUlv11Xe7eVdXsG39h2LlrF5nHD6K8Xe/ZxPnzuePu+/hl1HDi4wqnWlHertdDjhtP2Mxce8u2m8u72OzevZs2rWK4oU8funTtRsdOnQgLC+PEiRNsWL+e+UlJTJ8+jQ3r19OjR09OnDxBjeo1+PiTT1zq8nJ9NAEgeW7GSmU/3iAeRkjPy/VMXlw7TXnZ37PZbn6P3Dz7c3VTTFp24XPNy8tj8aJkxo0dy4zJv1GlajWuvfFmelzXhwqVKrP9uOt9mJFj319l3YwrAT72Y1wZmzEOINfNz1HKXpwzmW528AAfNxdwKS/7ch835TY/6TnlfW2OW8bX/rf2yc20P2a2myU+bp6j+Ng/u3J8gwp9X7lyJR9/9CHzk5Lo1+9xunXrRsPoaHx99fgiOa7t8U51HVcB5KR9eqLc44fs5b3sf2zfuBs9HkN7yDUqlFKE44uIeF3FgSMuCsVWIkQk3xXpSYfiI+jEZBWdxK/B1TqRz9fonAHPFb+Z5yYupjrvvNaL3rcPYOGM54iu78nyiItPpUrhrFz6A1OnL2HkqL94rN9nBAT4cfp0GvXrV6NVqy689NJLdO7cmdKlS9O7d286dOhwuZtdIsnNyWHzshRWzp7Bsr+mUTowkGptenLzJ8MIjYi63M0zXGaWLN3COx+MZdGSzTz3r+sY+MXNlClj/9D8J9E2Pp5XX3qRPjffStLsv6hTu3bRO11CIiMjmZu0gL9mzmDUyBH868kn8Pf3Jy0tjTp16xITE8OLL75EQvv2+Pn5ccN119E2oV3RFRtcyM7OZtGC+cyYOoVpUyYREhpKjxv6MvqPmURWq365m2e4zCxOSeHDDz9k+fJl/PuZZxj4w/cEBjon/C4ZiEitcHy4gYos5gTxhOWhJ8ENxcQTS8T96LTrBRGNlFJZIrIU7eY01kG2KzqBlgtKqQwr2+fXWBkiz4ejx87w19yN/Dl7A3/O3kBWdg59ezehdOkrMwl39eqVeKJfH57o14fMzCwOHjxOlSrl8fLyAu8OBXIjR45k1apVdO3a1c18mcGZtDOnWTxnFtN+n8iaxNmUi4ikSYeu/Ov/BhNRuy5r9qVe7iYaLjPzF6znnQ/HsmbtLl587kZGDX0Of38/yHI313H1c+ToUWbPmctfs+cwc9YsVJ7ihuuuw9fXjTXyMlO9Rg0ee7wfjz3ej4yMDA4fPkxERAReXl6Fnvojhg9n69YttG/f4XI1tcRx6tQpZs38k0mTJzN75p9EVa9B1x7XMmzsr9StV58z2X9/Nt9QsklKSuLDDz9g86ZNPPfcfxg+YgSlS5fGS3loYbtCEJGAa/Dd3JaylMabeMoymYP0kYpqojpQLEVCRBKA54EWQGXgAaXU4HPIR2GfVLanlVC2xFGsN25rQfXDwGillLNfy2fAMBFJQWcyfRzdmeda8zAM+A86nN5WTxu9Zt0+Grd5D6UUnRLqMHbIw7RsGoG4sxVeYfj5+VK1qna7yMrKZtGSRGbOnMlff/3Fpk2bmDVrFmFhYRzLvswNvULJzc3l8L49LJ4zi/nT/2BNykIatIihTptO9H36ZcIqXlmWKMPlQSnFrMTtvPN5Ijv3ZfDy832Z+MsrZ12W/sEsX7GS+PYdUUrRpVMnxo4cQdMmjUvMGFq6dGkiIyMByMzMZElKCnPmzGbOnDls37aNP6ZNJzg4+DK38solNzeXPbt389fMP5k6ZTIpKYto1SqOzj168Wr//1GpcuXL3UTDFYBSipmz5/DBx5+x7+Ahnn/hRe64444Cl6WSiohIHQJTK+FHefSkiTdCZ8oxjUOISAWlVHFmmIKANehM9UM9aEIPYKXDd3vf1xJAcaftOwC10UlYCqGUGiMi4cDr6BCBa4BrlVL2jsJ6nzwReQn4w+MWAw0bVGbdoteZMn0Nk6evodP1X9Iuria9u0fTq1s01aqWPZ9qLym5ubk8+vinjB03lzp16tO5c2fefPNN2rZtS0CAG1/yfwh5eXkcObifHdu3s3/3Tg7s3lXw2b97J4f27aVMSChN49vR/ZY7eP3bHwkKDnFZE2H4Z5KXp5g0fRPvfZnIydOZvPJ0W+68/258fK5MK+XloFnTJixbtICp02fwx7TpdOt1HW3jW9Ozezd6dO9GVesF/UomJyeHJ/v1Y9Lvv1GnTh06dOzEa6+9Tlzr1vj7+1/u5l1W8vLyOHBgP9u27WDXrp3s3rWLXTt3smvXTnbt2sXePXsoGx5O23YJ3H3vffw0ZBjBwcEuayIM/0zy8vL4ffIffPjZF6RnZPDis/+m7x33UKrU1TGGtqNs3mGyqEfhNbZBlCKOMFZw6oCI+BSVBkAp9QfWe6yIDPagCUetlAklnv9n77zDo6i6OPzO1vQeEkgFQif03nsH6b0qiIgo1UaR3osVRFCRItJBpAgiCNJ77yWEJAQSSEjfdr8/grTMxARTCN++z5NHuXt35uzuzJ177j3ndzIl8ZqbSJIkxL0JsonVMbFJ7Ngbzpbtp9i28wwe7o6UDfanSGEvihYLpGhQAYoV9cHZ+Zm4PbnEX6UkYUWjFDK5JIUbTXqa8zN69EwOHDzO2jXf4u5RRrb7xbi024ReCom2buaN8udMvKZgi4LtFvlEVmwUJhUyvwfAiYTGadoquD0fe56YmMjq1av5YsFCLpw+iRAi9c9iwdXDExfvAnj4+OHp4/vcf5298qOzSTtJOB8hH7YUFSOfcCaHUuKzj5t8iEeAu3w8vZ+Lg2y7UlK4EgkG+d/DVWaS5KiwOmSjMPBrFZLClWwMttst205KuHx7gvy1Z3yUtn9SqPyGpM7zxXSrVGzypY3ZN5ksrN4eybS529Fq1Iwe2Zy2rcqhVqsQcZdkj5MUKbezDMlXQ9O0KSVEi2T530iyydx44tH7DEKIbNsKkCRJpNwPBU1aux7GxLBjz362/f47O3f+Qb58+ShduhRBhQtTuGgxigQVIahIEZydnQEwKGS3KuRVKwYZKz195BJKAdTP7JR8+uknnD17lqVLl+Hm5ipvj1IGsQyKiakKyf1KSc6KKCSDKmGUeR7pDM8HAsTHJ7Bmw0Z+WLqc02fPPxlDLRYLnh7u+AUE4u8fQEBgAP7+AfgHpP63UKA/NjZpxy6Dwg+YopAsLYdaIUlYr/CbahXmaZJRXjxBThgAQGjkx2hjNk5xjArfl0HhutMpfDdK35ncfaAyJssfI05+4dyik89XELbOadqMRiO/rNvInNmzsLOz48MPP6Jlq1aoVCrUCveH+pH8XFiKiUh7ziT5Z7QlUUm4RUG8QOEZpa/T7V/HUEmSynmhP9kKLzQKI9MJYjlKzBQhxJj0jvXCceOB9zIYzhQK2ABXgXlCiLUZPc+rxmvhVro429K5fVU6t6+K2Wzh1JkQLl4O5+r1SLZsO868a5u5ei2CYUNaM+bjTrm+Irlu3VaWr9jA0SObcXeXf/i9zphMJiZMmMD8+fOpUaMG/Yd/RLW6DVCr1UiShEqtRqPRcCJcfnBSGrit/P9y63YMbfqswdnFiVmTOtC0Yck8E5rzKuDq4kLnTh3p3KkjZrOZU6dPc+nyZa5du862rVv58uo1bt68wdChwxgxcmTmlYmymDVrVrNp40b2/b0fV9f/vzHUaDQyYeoMFi9ZRs3qVflk5HDq1a6Zmh8iSagfj6FJWvlFHiUnzcr/L9dv3KBj5654eHoyc9ZsGjRo8LqOoVWKYq/oQAAE48hRYrpIktTsmebvHiuG/hfiSc2h2A+YgDbAKkmS+gghlv/HY+cKr4UT8SxqtYqK5QtSsfxjFYnHK+VhYdEMGDyfqnU+Yuni9ykdXDRX7Ltw4QrvDPqUbVt/Il8+j1yxITeJjo6ma9euSJLEqVOn8PPzk91xsWIloxw+EUa7fmv5eEgN3h/SPrfNyfOo1WoqVqhAxQoVADCrUnNI7twJZdCgQWzZ8hvffPsdxYoXzxX7zpw5w8gRI9j82xbc3F790NWs5n5UFD3ffBu93obj+/fgU8CaA2blv7H/wEG69+zF6E8+5q2Bg3LbnGxHI0no0nGQJCGB4K4QIksl3oQQUcCcZ5qOSZLkAXwI5EknIneXk3IQHx93tmwYw7tvN6N+s3HMnL0GsznnJ6/vDh5DzZqVCA7OnQdwbnL27FmqVKlC2bJl2bp165PESCtWXpa1my/SqudqFs5qzvv9K+e2Oa81vr5+/PrrZnr37kOLpk345qsvsWQyPC8rGPrB+9SpU4fiueTE5Canz56jZoNmVK5YgQ2/LLM6EFb+M7+sXk2Xbt1ZtHABbw/on9vm5AgaKTW0LL2/HOQwqTnHeZL/GycCQJIk+vdrzNG/Z/H7zhPYOrfD1aszfoV7Uzz4bSpVfZc/d5/MVhu+XTAVk8lEqdKNuHcvKlvP9aoghGDHxrU0aNCAiRMnMnv27NcmQctK7iCEYPpXBxj22U52rOpG6ya5s7P4/4YkSfQfMIA/du9h65YteHu4UdDfl1LFi1K1YgUa1q3FwQP7s9WGr7+ZT1xcPFUqV+LBgzwrapIphBCsXrWKFu06M3XCWCZ/Nkax0KUVKxlBCMGUadMZN34i27f8RpPGafMYX1fUUvoORA47EeWAtAkkeYTXZiYnhCA6Op77UY8oWiS/YoIsQGBAPnb9Po2UFCMJCckkJCTzMCaeWvVHkc/TJVvtLF48iJkzPqV+g644Oson374u3Lh0ke3rV7NjwxpUKjXbt2+nYkX56tQ5icVsJvnRQxIf3EOt0eIa8PKLAEIIbl88x5Htm4m5F4ne1g69nT353FzQ29jSsmdfHJzTJrBZeXkMRjODh2/h5Lm7HNrSF5/8VinPrEAIQVRUNNHR0RQtWiS1ho0CBQsV4rdt2zEYDCQmJBCfkEDMwwc0b9IYD0/PbLWzZMmSTJw0ifbt2ubZIlcZ5cL586xZs5p1a9eit7Fh24Y1lAkuldtmYTabibp/n4iIcPR6PSVKvrxNQghOnDzJ2nXruRsZiYO9A/b2djjY6rG1sWHgW/1e+2dlTpOSksLAIW9z9epV9u7ehbeXV26blKNopPQdBSmD+haSJDkAQY//qQL8JUkqBzwQQtyWJGkaUEUI0fBx/z6AETgJWIDWpBZw/uglP0quk6ecCEvSfVT655UyBn+8na27rhFxLwE7Wx329nr8fFz5/utelCiWPzV1RQ6tGr1OQq+zxc3Vlt17TlK+bEFKl/ACs0KZ+DTHUEjosyioAT1eOJo9+zveG9wHW9v0K+WWcMzESlNKjHy7gnqSogqTTmFCJhT6xxx+7p83Q2L4ZdN5Vq5/kwcxyXRuU5R1X1WhYpl8YP4RS8iPaQ5Rwr2q7KFLFFbQKlew/axPI9n2JKORexHhTHxvACHXrvLg/j0cXVzwyu9DzINofAMCeWvoKOo0aY7mmdU9Q0oKu7b8yqaVy7gjQbVataleqzZlK1Qk5OZN1q9ayZRVv2A0GmjRsQt1q1QlKTGBhIR4khISmD9tAjYIBn8y7skx1QoTs6L2mVz5SFydtk2pcJqSSp2C8pPp4VXZ9uTEWNn2hNNX5I8T/lC23bZy2qq3Wjf5iafW0f25fz+MTaHzkN+xt9Wwe2VrHOxNmJOerkaLOPlk/JSHCu1Xw2Tb5ZSYJFt5VRiVQrtQUDBSUnnKCVSGBIR43q5BIz7mjz37iIi8h4O9PbZ2dgT4+/Pt119StGgR5EKHJUlCkiRsbGywsbHBzd2d3bv+oEqVqpQqXixNfyWRJCU1IKX+5sfhU3PnzeXtdwYhabQYzBbF/nKqN4pJxQoKREpqQEpIFqX7TV5VRxP1vELY9dthrNryB7/8+juxCYl0blKHXyZ9QPlihbHEhyNOpVU3UzvKL35l1sXSucmHR9lr9YTcCaf/iDFcvRHCvehoXJ2dKODtxf2oBxQpFMiod9+icd2aoHsqUZ6cnMKmbTv4ee0GVBottapXo1b1qpQvG8y1GzdZvW4jq9ZvRAhBlw7taFS3FgkJicQnJJCYmMjoCZORVCpGvD/4yTFVyfJS3kJGdQxAr6SiJTIeiqek/KRVyx/bwaxQ4FQhgloVLz+2InMtWezdZTpCsou/bHvKC/fYg+hoevfog7u7O2s2b8fWzo7YZ07joHC5SyaFeY3S9W6bdi4hybQBqBWuO0nhNxIGeeWujKKWQJtOToTIeNHqSsCzsoUTHv/9RGqB5vxA4RfeMwYIIPVquAK8mVeTqiGPOREvkpRk5MdVpzm5sz/+QSWxtdVhsVhY+MM+6jSfw9BBDfhweNt01ZiMRhMTp/zC4iU7Wbfy4xyxOyz8Lncj7xMZeR8vr+xdtcsOhBCER8Rw4lQIJ46e4PSFe9yPTiTqQSJR0Ul0bFWcrybXo1YVH1TPPMRzS1Mp6m4Eg9u1oHmnboz+fAEeXt5odToc9XpMJhPb16/h84ljmfvZp/QfOpKgEqXYuOInNq9eSfHgsrTv1RcPOxsO7t/HqCHvcu3KZZxcXGjbsTNTv/2BMpWqpFGxEEKw8eelNGrdNpc+9evHtVuxtO2/lSZ1/Zn1afV0dxuzGiEE92OMXAhN4uLtJC6EJnMxNImHcSZaVHGlSx13Sgfa5jk1k7j4eFau28ixP7dToHAxbGxsMJvNLFy0mPqNmzL0/SF8MGJkuuGHBoOBqZMn8cvPK/h51aocsTs8LJxHsY+Iun8/23c+sgMhBGHhEZw8c47TB/dy5vI1oh/Gcv9BDA9iH9GxWX2+/nQwNcqUSHdHKKe4E3GXJl3epH+PTnw/dwrenh7odFqQVBiNRlZt2saHk2ahnjqHEe8NokihQJauWsuaTVsoV7okvbp0RGtjx76Dh/h59Vqu3biBq4sLHdu2YemiBVQsXy7NvWOxWPhh6XJaNmuSS5/69ePq1St079SRVm3a8Om4CTl6bQkhuHs/inOXr3Pu8jXOXb7G+SvXefjoEW2bNqDHGy0oUyJnUgPU/7ITQQZ3IoQQe1BWsEYI0feFf/9EqoPx2pCnnYjQ8Edo1CruRSVQLDjVfVapVAzqX5eWTYMZOHQFa+qO54f5/alQLjDN+69cDaNH3znk83Th5KHP8fbOGanAzb/+wPjx8yhfoTmLF82kRcs+OXLelyE52cjps6GcuxjBuYthnLtwhzPn7mCxWKhYPpAKJZ3o+kZJvPM54OKsp0QRD7RaNcKksBKTw1gsFt7r2BqVSoWXjw9hITcxm0zkK+ADej0ajYZWnbvRslNXDvy5k+8/n03Y7Vu80bUna/cewS8wddXcQyfxRsdOAMTFxWFnZ4darSYyWX5pyWgwoNPpWTBzCqNnfYGnl3y9AysZY8feUPoO38W4oZV4p2fpHD13ZKyRdxbe4eztZEr621LCz5aKQXb0qu+OvY2KTYdj6TnrGvY2KrrWdWdQSy+0mtyf+GWEkNAwdFotUdHRFCqVujOqVqt5952BtGjejMHvD2Xdpl9ZsGABZcuWTfP+y5cu0f/Nvvj6+bHvwCG8vPLliN3rNm5i8sQJ1KlZna/mL6B+w1c3njs5OZnTZ89x/vw5zl+8xPmLlzl34SIA5cuWoWIRX7q1aoyXhxuuTo6UKByARqPBEqewu5zDmEwmmnbtj62NDV6eHtwICcVkMuGb3xudXo9Wq6Vnxzb06NCa33fvY9a3PxIeEUn3Tu04tONXAvx8ARBaGzq2awNAXFw8dna2qXkdCnLBSUlJ2NjYMHXmHGZPm0S+POgsvkrs/H07QwYNZMz4ifTs3SdTNVT+K+GR9+nxwaecv3Kd0sWCCC4WRLUKZejfrT22NnrWbNlJ2wFDcXFypGf7lnzQr3u25vzoVGCbjsyxOvvK9bx25Klic+aQ91Dpn8aXCyFYtekCoybuok7N4syc2B6fAq7Pvb589SlGjl5JxfKB9OleizYtKmBjo+W7nw4zZsJyJoztzqC3m7/cCmKmw5meT/78669D9O4zjFat3mD27Nn/rcpq/JLM2aIUzqR+uhV99vwdOvRcgJ2djrKl/Shd0pfSJX0oXdIHXx+31O9MoaCYnBMhTEbZviqFcCZsMhnOlJQ2nMlisbBh5TJCrl7hblgokXfucDcslPsR4bi4ufPxtDm06NjlSX+lcCMPnfz1oeREACQnJTF/xiTWL19Aq08AACAASURBVP2RYROm0r5n3+fCpZ4lV8KZFL5HpXAmU26EMzl7MnfRaeYtPs3PXzWmTlWFa+IxwiT/mV42nGn/pQQGLgylV11XRnXxlQ2PkdQqLBbB4cvxjFgUwthuvjSv7JLpcKacKDZnDLuE0D4dZ4QQ/Lx2A6MnTad+/fpMnjie/N7ez73+08rVjBk9mkqVK9OzRw9atGyJpNGx+LuFTJ86lXHjx9O7b7/UGi8K1mc2nEkp5OjF59Xev/YwaODbtG7zBuMmTEpTQC0z4Uwqg0IYayZrYjwbznTq9Bm69X0LJ0dHgksWp2SJ4pQqUYzSJYpTIL83kiSlCWf6BzknwqzgWCiFM2UWSSasxGw2s3zzTq7euEVIWDihYXcJDY8gPPIeHm6ufDFpDO1aPHXinr2+nkVoFcJ30/l+ExMTmTR9Nst/WcW0iZ/Ro0snVAphNUrhTGRjOJNSwUGVIXOLaKqk/x7OZNDJhy4nmyx8MXc2i79byA9Ll1OlajVAuRCjg07+GaVJkQ8jU8Xfl22XjKm/0679R+g7YiyDenXm40H9FHc/LBYL+46eZPCYqcweM4JmdWtkOpxJU6JORorNvd3D1mthHb3yPWMQFobEXv07qyVeX0fy9E6EJEl0bVuKVo2LMG3+WYKrT6Jl02B6dalKg7rF0GjU9OpWk/ZtKrHxt+N8v3Qvg4b9RFAhL8wWib1/TKNE8dyTGa1btxqnT22nfYf3WbhwIUOHDs01W17kpxX7GTlmDfOmdaFn1+rKFa5fcVQqFS06d+fW1ctcv3Ceu2Gh3L0TSsTtEM4ePczZ40eecyKyEhtbW4aPn4p/wcKMHTwAV3cPGrd6I1vO9TqSlGym//hdXLr+kAMb2uPvo5Dfk01sOf6IUUvD+bq/Dw2CHZHS2f4Of2Dk0KV44pMsXIuQj31/FZEkiR6d2tOmeROmfbWIClWq0bJ5c7p17UK9OrVRq9X07t2b9u3bs2nTJr7//nvef/99AgIDkSSJ3//YRVCR3FMnrFO3Hn8fOESPbl35efky3uw/INdseRYhBEuWrWDMhMl8Pmsandq3A4XK1686arWa3p3e4MKV65y/fJXQsAhuh0cQEhrOgWMnOXrq7HNORFZiZ2fHtInjCPD3461BQ8jn6UnTOtWz5VyvIwkJCbzzziBCbt1k5+695C+Q/iJMVrNmyw6GT5rDkjmTaFizSrp9QyMi2X/sFPGJSVy9GUKzujWyza5/S6zOxrWc14487UT8g4O9jinj2vL+Ow1Ytf4YYyZvInTQQ7p1rMyI91vjU8CNHl1q0KNLDcLCH3Dg8DXeaFs/NaYzl3FxcaZDhw6cPXs2t015wvGTt/h4/Hr2bB1FqRI+uW1OlrBw2iT+2rYZs8mEnYMj9Vu9wazvl1G+Ws1sO2f8o0d8MWkc2zesYfrCJdRv3irbzvW6ERqRSJcRBylexIM9q9tiZ5vz92rEQyONyzrQIFjZeQmLMjBvUyQbDz6gbXU3vhkcSI0SOevsZAWODg5Mnjie9wYPYs3adYz9bDx370bSpVNH3hs6jPz589OjRw969OhB6O3bHDx8lJatW6PV5v4Y6urmRotWrbh65XJum/KEQ0eOMnnGLHZt20zxonlWAv45xkz/nK1/7sVsNuPs5Ei75o1YMX8ONSqXz7ZzxsTGMnbiVDZv3cayxd/SuEE9UErwtfIcISEhdOvSmVLBZdi8fUeaXbqc4E7EPd5oXC9dByIkLIJp33zP+u1/0qVVE36aO4lalcplq10aFVYnIovIU05EYsQ11Hp5vQmtw13cgXfbO/Ju+0ZcvhHDj2uuUL76xyycXIOW9VPjMj2BNyqD+v6ONEIJkkb+gSgpKDBIeoUYTZ38diM28itRQQFRrF97EFI2P/+CSmYLNSWtMgcApjj5dqVQFoX+puiz3L95h1JBDhRzv4Pp3p3Hh5EPRTI8UtjKlPnO9G4KqyBmBdsN0fLtCpSO/1DeFo09uxaVJCEhiMMnw9l36Db7Dv/NsJ6rKOTvTJ9OpRg+8LH0rFohpExB5cpN93zVcSEEN27eZ+dfN5k8Yx3NGpfn8vHpuLs7AJtApbDlnqDwHVgUVChMMlvLCt+XJUV+q9wYL6+xr3WQrwIs4uT7O1YqI9uuFKagyxcs05gqMWg2W/hh6V+MnfwHI99vzoj36sqGGoq4S7LHToq+I9tuCJEP9ZJ08ve22s2efH4Gju6NQeOdGkL5bHhSWFQK89aEsX5vNL1qOXNocmHcHR8fKyEJC8phS+YHuZgvFHkTtb38taxKjsVXB8O6t2JY91ZcvHqD739ZT/Uqlfhx3jSa1Et1uAvZQcEmNSAlGl6YzwmtQtiHRn4Co1cIEzEq5CoaFCJQihYJYt+e3crKS88gWZQkcuR3WyWF0BRJIXROHR9F7O3LBBcpSGl3LUTfAsAcLT92J984L9tujE97Xq2TvLqNSJa3UeMlr9gjKTh/ppvnZNvVrvlYP+ND4hOHcPjsJf4+cY6/T56nU/8hFPYrQN+2TXmvW+ouq9pW/hktdPLtFtvnJbCFEFy/FcKO/UeZOWceLZo148ShA7i6poafmPXycq8Whd1yg0JYoVw0j1z42z82yaFTGOMS1PI22mnl+yuFIsmRZJK3xZCS+jlNJhMrly1hzvQpvDd0JH3eHoRJkohXunleQKOS72dro3DtKamXCQtuAUVY+usOTO6BwPNqS7dD7zBj7ues3/grA/r04Nzhfbi7PQ0RN6OsdCYZ/6s6k3UnIqvIU05EZihWyIXpH1WhVX0fOg/Zw8nNbfB0y3lPPCOUDS7IqTM3uXI1jKJFcn/l/0FsSp5JDM0M9vY6GtQKpEGtQHb+dYMJs/8i7G48vvn/mwb5rZAodu+7xO69l9nz92WMRjP16wbz85Kh1KlVMousf70RQvD7H2cZNeYX3Fzt+W3NMCpVKASWDMotZyHXI5KZsuYmhy/EMbZPwHOvhT92Htb+FUWvJl4c+bYcrsk5b2NOUKJIIWaPHUmrxvXo+d6HnP5jE26ur2bNkzJlynLs+HFu3rxJwYJpc25ymoexcehegV2arMbBzpaGVcvToEo5fj9wjMmLVhL1MAaffAoLZxlACMHN26Hs3X+IPQcO8df+QwghqF27Nit++pHqVdMPg7GSihCCXTu2M+WzMXh6ebF8zUZKlymLKQcTqP/h8pUrjBs/kWMnTzJlwmfPvRZ6J4wZcz9n3YZNvNW3F2ePHcTDKWfrvfxTsVqJ18GJkCRJJnEyQ3wohLiV0c550olITDLxx6FI6lfJh6N9+gN1jQr56N6mEB/PPMb302vlkIWZw9vblUmf9aBrr1kc/GsWen3uPXxi4wyMnnWEOaNf37jTyPvx9Hl/MxGR8QT4OvHtsjNs232LAF9HAvw8CPBzJsDXGb8CTuheSDITQnD7Tgx/HbjBnv032L0/hMTEFOrXLk692sUYPaolRYO8kJSS7q2k4fS5cEZN+ImQ21HMnNSFNi0r5IpU6t2HBmatieDXQw8Z3MGH+cOLYGeT+vunGCxMWRrC0t8j6dk4H0e+LY+nS+p9as47KRBPiE9IZNfB4zSsXhEHe7t0+9atXoX2LZrw6fR5fDtjfM4YmEl8fX358MOPeLNvH3b8sStXw6wexMQyds585k/6JNdsyG7C7kUxYMI87kY9JLCAFwtWbWbL3sME5PciIMCPgALeBPh44euVL03YsBCCkLAI9h4+xp6Dx9hz6DgGo5E6NapSr2Z1Rg8fQlDBQIRd9hZ+fZ04e/oU48Z8yr27dxkzcQoNGjfNlTE0LDycKdNn8uvm3xj+wRCWLF74RDAmOTmZzyZOZumKlbzZpxdnjh7A0+PxTr4xZwdRlUqFOp2FUoXNmLxGR1KL2slnxKdFAmoD04FbGT1J3nQiks1Mmn+Bvp8coWlNbzo29aN1M3vs7eQfHOPeK0u51pvYc/gu9aq+mlKbg95uzp97ztCu81SW/zgcN7ecj6t+8DCRfiP30LSOH20aB+b4+XMKL08Hwk9/QFL8I26HxRES9vi/dx6xe38IIXdiCbkTS8S9eNxdbQnwdcbf1x2zxcLBo7cxmS3UqV6QejULMXLoG5Qolj/P1QfIbYQQnDobzleL9rNl50XGfdyet/vVS7emS3ZxJ8rAN5vvsnpvNN3re3D4i9J45H+6MnY9LIk3p1/G10PHoQXl8HLNXPGxV5GEpGQ+nfMtIeF3aVG3Op1bNKR5sybYKSjETRw1hDIN3mD/0RPUrFwhh63NGO8OHszevX/Rs0d3Fn63CBeXnJ+ERkU/4K0Rn9G+WQNa1M++fKvcxtfLk9AdP5OYYiA08j63w+8REhHJ7Yh7/HnwOKERkYSE3yXiXjQers4E+Hjj51MAo8nEoRNnEAJqV6lA3WoVGTn0fYoFFUpbayeXPlteQQjBmVOnWLRwPnv+3MWwDz+hW6++6dZ0yS5Cbt/m8y+/ZtWatbzZtzdnTxzD1eVp+NOVq1fp2a8/RQoX4szRA7ku1ytpJNQKKlQAastr8zwfJIQ4kpGOkiRpgEyrP+RJJ8LDVc/+nxsy64dLzFx8iU1/huM48QTN6/nSqUUhmtbxxdbm6UdzsNfSuqE/uw6Ev7JOhCRJrFw6ko/H/ESFasNYveJDqlSViR3PBuLiU/h84UG+WHSYdk38mfVptRw5b25ja6ulWJAbxYKeyQF4JifCbLYQfjee22GxhISn3lszP2tOwQC3pw+8F3IirCgjhOD81RjWL9rO6k2nMZks9OpcgStHPsTZIzDH7bkalswXmyLYeiSGHg08+HtOKfK7Pe8gbD/8gMFzr/JxT3/eap7vtXEWvTzcOL7xB6YuWMqMRctZ9/senBxn0KJBbTq3bkbTujXR659+F85OjrRoVJdd+w6+sk6EJEksW76C0Z9+Qp1aNVm6bDnlymdf0u+zxD56xOfffs+CH5bSpWUjpo16L0fOm9vY2dpQLNCPYoFPVQ5Vz+REmEwmIu5HExJ2l9v3Y5EkmDV6BAE+TxdeXsyJsKKMEIJzZ8+waf06Nm1YD0Cnrt04eOwUeoVcp+zk0qVLzJ01k63bttOvTy9OHDmIt5fXY2NTl/M3bf6NwR8MZ/zY0fTv0/OVGEPVWjUaG+Xpr0YpbypvMQGQTxKUx/z4PQqJt/LkSScCQKdVMXpgSdo18mXQhOMkJlso4GXP/OUXGPDJPhpUL0CNil5UK+tOkUAnVm+5yd5fWuS22emi1WqYM+MtalYvQav2kxg3ugeDB7XJtpsuKcnIgiVHmfHV3zSuW5hDW/sT6PHfEpZeJ9RqFX4+Tvj5OFFTIbHayr9z8VoMa7ffYs22EJKSTHTuUImfF3anYjnfXHmgnL6RwLwNdzlwIY7+zfJx/KtgXB3TDoWXQhIZPPcqqyaUpFJxR8W6D3kVG72eiUMH0LFZffp/Og2D2YJ3Pk8+X7yMt0aMpWGtatSoVI7qlStQ0N+X9Vt2cGTbmtw2O110Oh2zZs+hevUatG37BuPGjaPfm29l23WWmJjE/B9+Yt78xTRtWJcD2zdRxCP98LD/JzQaDX75vfDL76WYWG3l37lw/jzr169j3bp1GFIMtGnXnsVLlhJc9mmlb6WaK9nBsWPHmD1rFocOHeLdgQM4f+rEk8T3Zzlz9hyDPxjO5vVrKF+urGLdh5xGpZZQ65TDmdS5kEeS1QghJmSyvyDVicgUecqJ+HZ1CM3r+VPI72kibMnCTvz5Yz2+2xDG1PmnGNSjJN9Nrc3+45EcOB7JT+uucOlGLK3q+1LYP29MBNu3rUGZ4EA6dZ/Fvr/PsXjhMBwds/7BVLnpd/j7OLNrXR9Kl0hdPTA9yozjasWKMr/8doOZ350j5pGBDs0CWDSlBlXKeqD3UlBzygFOXU+g05SrDGvvzdfvBuJgq7yl/eb0y4x/M5BKxfPGuJER5q/aTIvGdSnk91TAoUzxIA6sXsgXKzcz45vvea9fd36YM4l9h49z8Phpvv9lA1du3KRDiyYE+OaszvzL0r5DB0oHB9OrRw8OHjjI519+ib191k9iKzVsQbGgwuzcsJKSxR5LucZHZfl5rPz/IYRg5c8/M2/eXOLj4mjXvgOLFi+mZNmKubqaf/jQITp37sxHH33EDz/+iIOC4pQQgu593mTW9CmUL5e22n1uImlU6YczvRYbETlDnnIiTvx5i1kLL+Ggk6jkq6WIh5ogdzVBbhqapKRQsbGKqZvPsPSnU3zZQM9wNzVOnex5lOyGRpVE9IrtT44lDGmvEl2QQtXcQPl2lYO8PKFKLZ+boSQTJ2RkzLyA7TML8OGXV6lRpSe75lfARq9GbSf/IFTrM1ft2qZAeaqU9yXAz4XSJZ9OKMxJ8lKjiZfkK1PbFisk2651TKvWobZRmIyZFdRtlHIjTfKVkCWn0vL91QrnTZT5TIoVvhXa5aRWAVIyWT3aKC/DajHKn9ck8zsp/XaGyHvyx1CoKK204m5TJlC23Tbw+aKeCQkpvPfheg4ej+Dbbz6mTu3Sz1UpPZPYMM0xyuh2yR6bmEOyzQl35CVejeEKssCPpT9nr49gVOcCvN3y8Za7wuqdOTYJnQocMGOOTd2dM96SlzO2xMrv3iU/kpdFTomXb88Jjh4+zJSFS3Gxs6Va8UCK+uSjmE8+ivp4MrCEC20mvc2on37j55WrWTG8O51bl0f9Ziti4hPQaTSYrxxPPZCCHKrGQyFc1EFevUfo5McttULVY30mqkeX9nXnwNZ1vP/xWFo0bsDeLevR6XRglv/+VclKMtkKVXNtHKlcrgyligVRKijwyXEtsfJOhOHaGdl2JRlWTQGZ3BsFGXK1az55Gx3lwy2V1llVXvI1LcwKIUdyUptmBclPparPCWb5CbGSWq9SpIlZ4XdSWqGXE+dRynZSkmZVkgu2V5ifpijYEpP8/HES4uMZM2oY586cYuLMeVSqVv3JGBpvlP+cGgW1IYvCvMNGIbE4UeH4cY8lYidMmcbQj8bQse+bxAswK+QPqCUteltbdE7uJEipypi2Cqv/ksIulSpF6Z78bzsFKrUKtTYdJ+L1E6cEQJKk74QQb2fpMZUmtq8akiSJiM+8MacYOR9p5sxdE9eizVyLTv1vRJwFPweJQs4qbsRayO+gYnETG5x8FDSrX3EnAp7qzPcYe47iAXaM7V8oS52IK9ejqNlyIdePjsDJMfUmT7krX/QuW50InUKSlY38w1XJiUBS8ImzwolQqtitFOZkVggLy2Enwq7CBvnzWckRbgxOO/lSciJK/JSIyEZtQUmSRMLqGViA0zfDOXUjjMvh97h85x5Xwu5x9+EjCnq5USS/Bxfv3KNoAU9Wj+qF2lNGdjqbnQih4ESITDgRkKpLL4SgXc83qVyhHKNHfJClTsSFK9do3LEXVw7twt7u8W7x3euy/VMuHZNtV67lkH1OhBIZreXwD3JOhFLdgCxzIhSmLErRPJlyImROmtPyo1aeJ+Vh2gU5KUW+LorOu9C/jqGSJL39YbEiC9sWyK/YJ9lspsHe/X8LIWordsqDSJJ0WwihMLF6OfLUTgSASpII9tYQ7P286ffvJHLrkeBmrIUbsa9G3F1WMfuDItR86xjt6uejbHDWDWj+Ps5IkkT43bgnToQVK1Zeb1QqFeUL+1K+sO9z7UmJiVyLiOJK+H0uh91Hq1ZeqctLSJLEVzOnULVRS9q3bkGJwoFZduxAXx9MZjN370VRODBLn81WrFjJJlTq1zecSZIkJeslskH0LM85EUroNRLF3CSKub1++1D5PfSMG1CQd6ZdYvVcJ/y8M7froMR3S49SraIfxYvkrtyalewnZltaucmsCmdyKNrkyf9fuXaP5p0Xcf3EaLAvLttfNpzJLnPhTPE35VXrlMKZroYl0XL0JU4sKPN8HoTCKuU/30G/eTdoUdmFTrXcMhXOVGBa3ouLt9VpCQ7IT3CA8gpdXsXPpwBjRw7lzfeGs+b7b/BNZxUyMyxYsoJ6NapaHYj/AxKT0t7nitXPFUgR8vOTZ8OZLl04z+C3erPr4HHMmYgUUQpnMits3SiFMyn1v3DhAj07tGHf8bPYPCMFbauRP+8/9vTo0oku3brTpm07bJXCwmQ+p61d9gkUqNTS6xzOFAGUF0KkeWBJkhSa1SfLU1/Vl/viiU95vXYZMkqflvl5o44HNXvtY/aSa6TIhGNlhsREA9O/3MvEj9JO6KxYeVkC/Ny4Ex6D+RVUMhLA2ZuZqy59/FoCFYNeH7Wd2Rt3k5CcaSnw14KB/XrRrGF9Kjdqw5z5izAY/tv3EBcfz9xvv2fcyPezyEIrVsDPP4A7obcVw59zE4vFzPlz8rk9cgghOH7sKBUqVspGqzKPSqNCrVP+Uyk4O3mEX4FiCq9tV2h/afLUTsQPRxKp6aumgk+e/oFfCkmSGNU7kK6tC/LRvAsEt9+Dl5v+8WsgPU66UqslurX0p3/HQmjSqci4cOlRqlfyp1xw3lBbsZI30Os1eLo7cCc8hgCnf++fUxTxsWXRsEL0mXmNVWOKUj7o38MC7z40EpNgxs9DPpY7L/L1lr9pVK445QrJ5Dm85qhUKj77aDg9OrRmxNjJfPP9T+R7XDFXkqQn8pMajZreHVrzVpd2qNMJ6fp2yc/Ur1mNUsXkk5GtWHkZ7B0csLe3535kJO7/1Fx4BShWoiSzv17IwN7dWLJqA6XL/Lvi0p3QUIxGE975X63dTZVWlX6dCFPu17J4WYQQ76bz2oCsPl+eciJcbSV0ksAiox6Qr3VJ2fdIuqcf0WwWqB8nTmk902oaJx66LHuM6A2nZdv19vJfX0qCQvKsAoZE+f5JsWlXyq7d1dMHaOgtkWJJeRLgpkIggCQjLP7mDJ9/cZq3AnVoLWk/p9Ei+OLWPWaVl/i729jnXnN0ln9o+rUvJdsuzPI7Isa4tGEl5mT5ZCito/yKoCn6gmy7EkpJyErnFea037uklv9NJZXCraKUdKmQLI9CYqik0G5KkE+4Nj9I+5lMkfJ9ARL3X03TZlRI8E2Ok293iZf/fo2hz4fu+DmbObNhNT495RWqgnVpF0MenZZf3Uo+ESLbfvtP+faoR/K/k1lI6IBBvtDu0wt09lfTuoAae43876fXWHiQIiioF5R48yQNvOANHwhyzNzD5cud8SSZBclmSHr8p5Ikmnur8LXL+cUQFwc77BwckGSEGLSBJeTf9EwStdlsRq1Wo1IobGV+KB/yZQ6/Jduuds1cKKVKIaFbCUti2mTpwOgI1g5uzcXQKiSmpI49QggsyYkIAXFJKcxYupyF3/3ArD4tKEHa3zzRYGTu16tZN7A9D1Z8/dxrZqP8ve9WWX41Vu0sn3Qu2aZ1dCUbB5meYHaUT6yWlNRtFJKfJYP8WKlJlh9b5BLdhVZ+504pid5BwRZU8knkZgXhkiST/L3skE49gBeRS6x+Yo5CQr4cZgXbDQo2Gl8IIfL1D+DmrVsUkAm7U7JRyXSDQniSq8LYpyQ8IFlMdG9aC9vZ0+nTsQ2jPxrBO2/1Qy0U7kkzOKsMFA0qSJniQXTu0I5+vXpSqqTMOJNO/Ygff/iB+IRE4hMSiE9IJCExAb1Gzdu9ulKkUKDi+9LjX3MiVK/eLtCrSp5yIgwmgU4h7i89TGbBjJ9D+WFbJNtmlKaoX9bkFOQmL05A1NLTi76Ms4qDD8x8ec1AAX0MjTwd0EgSBovAYBFciE+mhDMUyeSEyIqVjBCQT0/IvVczZKaqu5qZZSXmXzOxK9LCiGIqijvJ3wdueokFlSXCEgU77sL7xwVjSglqeD7fP8ksuBkPZ2PhXAycf2a+demRBRu1hK0aHDTgoYfoFPjojJEyzio6+6spaJ9zzkSK0YROm/lh32g0MW7+TyzZtIO9S+ZSrIR8vkteQZIkSvo/ryRlTng64a5fuhBrD56j71drqOabj6F1yqNVq0gwmEg0GNl68SY1CvlQ3FveAbBi5b/g6x9I6O1bUKN6bpuShnZtWlG8aBGGjPiI5StXM//z2ZQvK1/7p0B+b/bt3MaVa9f5Zc06mrZpz4/fzadxg/rP9YuPT+D8xYscPnacw0ePcfjI8SevHT5+Egd7e+zt7XBxdsK3gDd3IyKo80Y3GtWtycdDBmZ6N1BSq1ClMw6+xDTzlUWSpEXZsQPxD3nKiQh0VXMl2kyQe8ZXo2LiTfSYfAmdRsWwjj50n3SJP+YG4/ka5xJLkkQNdw0VXNR8f13FdyEP0UigU0noVBJ6lYrPyrxGd4mVVwr/fDpCIhWkcl8BfO1UTAnWMuOSiWW3LEwpk/544mMn0a8QVHMXfHgKWhQQPDRAWBLcSYQEE/jbQSlnqO4BAwpD1wOp7x1WLO0Qa7SoaJFfzadnjQw/aWRFNR12CsmJWU0hbw8u3o6goHfGpT+jHsbSfvhEnOztGN67Ax2GTWD/mkU4O8qvir8OSJJEpxrBNK9QlMk/bqH9ks3oNRrsdRpstVqcbHRM79Agt8208pri6x/Andvyu62vAiWKF2Pnbxvo3Ksf0+d8zqqlP6Tbv2hQYcZ98iEN69ejS69+9OrelcjIe9y4dZPrN24RFx9P0aDCVK1cieZNGjN+9CeUrpTqQC2cNyPN8SRTCm/36krjzn2o2aoL4Wf2Y2eb8cVhlUaNWqc8/U1nQyovkq2Jr3nKiajmr+XQHSMtiiqVhHkek1nw1oyrlAiwY8bbBVGrJcKjDbw54wobvnZLN2fgdcBGLdHY04HGnmkf9gUd5MMOrFj5rwR66dl1SqEIXwZ4lGBCq5Gw1WefxOj5R4JzsRa+qZjxc5R2kZhbQbD3HpR3hVY+4GsLbvpUZyIsEe4mw2/hT9+z974FfzsJOzUYLKl/h6NNbAgzU8FVxWeltDnmQADUDi7C3+eu0aJKcIb6G00mun00jUolizB7xNuoVCpuR9yn58iJbJw/Ld2cgdcBBxs9HzeszMcNK6d5rtlUeQAAIABJREFUTef4+iTcW3m18AsI5MQReWW6jPAoNhadXo+NTfZJt+/Z9zdHjh3nwJ87MvyemtWrsWHVCrZs+526tWvSr3cPChcqhJenO1ev3+DmrRBCbofy49IVT96zbvNWihcJwtHBnuSUFJKTU9i+Yyeff7eEFo3qMWbY4Ew5EJCBnYhMHe3/mzzlRNTw1zJqW8ZXOCcsC8UiYPpjBwJg4psBdBl/kfenn+frT0ujep32raxYeQWoXcqRcUvvYDJZMuWoCyH4ZUckYxZcx9/bhvWzypAdgYcPDYJZl4wMLarBK5PP2OJOEsWd4Eqc4HAU/HwLzsSAoxZ87SC/DTyrwLznnoWQBEGKBXQq0KrA307FtGAt/jkYxvQPtUsX4ePv12e4/8i5i7G10TFr+IAnFXPnjhxIqw/GM2TiPL4ZPwJJso6hVqxkJdVq1eaLGVOwWCxP7ruMIITg5xXLGD9mDIWDgli9bgM2jlmvcBEecZd+Awfz48Jv8MmkXHLlihWoXLECJ0+dZuefu5n9xVccOnwUV1cXggoXIsDPjwC/pzVsVq7bxMUrV0lOTkGv12Gj1xNcoih7NqygWJB8sdt/Q1KrUenk81YgNW8tw8eSpHeBUUB+4DwwVAixT6HvEqCPzEuJQog8WdUwTzkRwd4aQmPNbLyYQrCXhkAXFWoFJ+CX3VFsPRLDrnnBaJ7Zm9KoJX76tBidJl1h1NyLzB5RwvoQtGIlC/H11OProePA8UjqVM3YA+ZaaCLD5l0hNt7E6unBrP/zHq2HnWZVbzfcHbJmtTvFLLgSJ1geYqKRl5pKbmrg5aSSR5+Gsi7QvAB8VBI89M+PIQuvpeYojSslH86UW1QqGsDlO3dZt+8EZQr5UMjbE7WCKPr3G39n1+FT7F/6+XM7DlqthnXfTKVpv6GMnP41sz9+zzqGWrGShQQWCsLV3Z2Tx45SsUrVDL3n8uVLjBz6AYmJiazZsImVK5bTrk0rfl6/EVdXtyyxKzExkSPHT/DZpGkMfKsvDerWeeljdezRm8YN6tOvZw+++2oeXvmeFwcYO2kqAGuXLEzzXsn038JlVWoV6nR2IjL6xJEkqQvwBfAu8Pfj/26TJKmkEOK2zFs+AD5+oW0/sDeDp3zlyFNOhN7ZhskN7dl82cDMv5OITRF80dyeRoV1xP55BYBbMWZWnjew9qKRle3sSd56ngiZY031Subd32MYdDyEIcUkJEniapT89nSJAsmy7c755fsrqS0Zk+UnLIkP5W+Ih8lpw7ZsNPLHiDPI/5TOenmlhbA4eduLO8vb8ujgTdn2pJNy9wmondLKYqoc5Jd9VbYKKwIKkxvJRj6cTSTI/06Kx5FptyQpJARnsu6BJUn+excG+WtDzpbU/vK/tzkhrZ2GpNS+F6PM3Iq14G3/dGL326FYHiYLSrqrCHJJPZfSdRcVK2+L4+1bsu0ObuFp2mrZm5gzchsJhdP+tlcePFX2MVkEf0Yn8veDJOq729PE1Y7Dn4dRQAicoy10nBlJL9+0CmOQ8aSmBwYzqyNiCU824qXXUNTejjJ29py9//ITXxvpIfnUdqgNes7fk+uRqkx1Ico5zStatZLyR/bnkTgVL8e8EQNYve8oY5f9xqOERH6aMIym1StgjosB4GpoBIs3/8nPO/ez64sx2MWEYYx5/jjqmAeseac1racv5ZMH4Yx9nB8QHyYfJungo/B7mRTuN03GQlb/QRjk732RlFZtSCicM+mefPFFSWEl2Kgw3jj4yn9WS3yMbLswKajh2MioM2nlx0opOu09CPIKT8BzilvPoVA8Tc4WQFblSVJQySNJQeFJo/CZFBR71ApKeTqFdqGkrCfn+D5Wmzp59hy3QkLxyf80+f73LZt48OAhFcqVpXjRoNTuMgp/AGqFSa5GK7+36iSjutWhdUt2/bqaZlVLP29i8vO1bpKSkpn+xTcs+mkFY4e+wzu9OqNWq6kzehAfjIvhs4E9+Xnm6LQnVbjuTNF307RdC4vk7S9WcPrydUoXKUizmpX5pEM9VCGnkBRCGiXbtApu4pnrxT9/Pro2rU3DmuVAMkOs3EwNVHIKYwq2ZxRJrU4/nCnj4kzDgSVCiEWP/z1EkqRmwCDgkxc7CyFigSc3giRJNYFCQK8Mn/EVI085EQAdS+npWCp1gno83MSATXG8V9VCPj0sP2fgYpSZDsW1bOjkgL+ziqRY+UHRQSvxZRV497DAVg0DrFLfVl4DTkeaeOu3RCp4q4lMfDoSfnHSyPloC9Nq6p44EdlJywA1fa8aGPbIQmNvNXU91dg/jv0XQvDIZOFWkont9xLw0qsZEuiOyzMVRCVJoomnA7NvRBGWbMTHRnnr+d84H5+Mq1bNm36uL6XuJkdZJxvWRMRSz90erSThZ6ulwH+wMSfp27oRfVs3AuDA6Yt0+WQmY/t3wc1Oz6Jfd3H+Zii9m9dl34IJBHp7YnkkXwXc1d6WjaN60nzaEmx1Wka2rp2TH8OKlWzh4JFjdOgzgGqVKxIe8XRC/dmUGZw6c46l333zxInITnp07UKLNm3Zf/Aw/Xr1oEuHdjg5pU7MhRCE343kwJFjjJs6m7LBJTm+fTU+3k/rSkiSxNSPh1KsVnPOXr1JcJGCL23Lhn3HKRLgw7Zvp2FvmzV5Ft3faE7PDz7h08H90Wg11KxUnjIlimbJsf8NtU6NxlZ5oUKdgcxqSZJ0QEVg9gsv7QBqZNCUAcB5IcSBDPZ/GcKy8dh5z4l4looFNGzo5sSATfHYaaBHaR3NC9uhz2CiootO4qsqMOiQwEEDleSlz61YyRPciDHz9tZEpjewpVHB1AltoW9SFz2EEAwM1tA2KGdueV8Hie8q6TkdY2FHpJllt0yUc1WRYIKrj2uI+NhoaOllT2lHvWyIj1YlUdfNnl1R8fT2dX1pW0KTjBR30GeZAwFQ2cWWAFstv9+P52aigaaeDnnGiXiWGmVL8Oe3U+j8yQzcHOwY0KYhb9SqhD6deOFn8XCyZ/NHvWk2dQnOdjZ0Kx6YvQZbsZKNXLh8hU59B/LjN/No2qAeALp8AUBqjZRxH4+kS4e2OWJLkSJBXD59lD92/8WPy1YwZsJkGjWoy8PoaE6fv4iERLngksyZPI4WjRvIrtg7PFZUm7xwOatmj5U5S8Y4evkmXd9olmUOBMA7PTtTu0pFPp3xJfuPnWTWmBE55kT8+06EAPCWJOnYM83fCSG+e+bfHqRGPr1YECkSaPSvNkiSM9AJ+DSDZr8UQohsXd3J004EQICLmh19nBVDhf4Nd33qjkT/gwLha6KyW57/Sqz8H5JkFPTbnMDwqjZPHIhnKeyionGAhkMRZiRSd/LtDYKC2VgrRCVJlHdVU95VTaxRcCTajKtOQhgdcdKoFOPoUywWbiQaKWavo7KLLX89SCA0yYifUtjbvxCaZKSxx3+TIzULwdUEA44a1ZNdkXx6Db18XfjqZjT506l++qpTxL8AJ1d8gUUm9CcjeLs4snFUT5pM/gEPoLHVkbCSB4mLj6dNt75MHz/6iQPxLBXLlaV544bs3vs3kiShUqnI7+lO0cIvl9ybEdRqNU0bNaBpowZE3rvH1t93UsDDlbKlS+Kdz1NxDI2LT+CvQ8do0aA273Ruzbxl6zl9+TplixXOtA1CCI5eusGc0f+tNozRaGLb7oP4FfCmXMliAJQqWphN339B2aYdKfu4LSf4V3WmVCfibgYn4C8GP0kybXL0JNUJWZaBvtmCJEkuQgj5OMsMkneffFmIt63E7Irw3uEUXHUSQVmUyGnFSk6x64YRfyc1XUrKb9H+cdvMlYcWnHQSAniYLJAsglX1c+Zad9ZKNPZOHW6uPJA/Z5TBxJ7oBM7HpZBiEYws5IGbTk09d3v+iIqnn1/mdyPiTGaSLQL3dKqTpke8ycLfDxI48SgZF42aB0YT3Qq4UNg+9Xs2WAT3DSby6/PeLkRWEujpys/vd6XTnBWs6NuSMj7yFZStWHlV+e33XZQqXpSendvLvr56wyaOnzqNq4sLQgjuR0VjZ2vDoZ2/5Yh9Xvny0a9XDyRDomKfy9dvMv3rxfy6cw+P4uIJObyT/LY2jOjTiYkLlrHu8/GZPu+d+w8xmy0EFvD6984yREZFM++HlSzbsJUA3wLcuH2H1fNnU7tKBQBiH8Vx6044pXMgROwfVGo16nR2WzP4tIgiVZnD+4X2fKTdnZBjALBOCPEgY6d7eSRJGgQ4CiFmPv53OeA3IL8kSaeAN4QQd17m2FY53McUd5YYUFDPvKvJ3EvOXBKtFSu5zZYrBloEKQ+Kx7vbsrGNLUub2bCsmQ0tCmqo4pm7ijpGi+BUbDJ/P0hi5/14FoY8xE2rZkigG1qVhO3juNTKzrY8NJo5/UghcT4d7iSZ8LPVZkqy7x/MQrA8LIZ4s4W3/Fx5N9CN7gVcWBkew/UEAxYhuJVkIL+NFq1VKppKhX2Y2bYu/ZZt406MTDKkFSuvMOs2b6VDm5aKrz+4fZVje/9g569r+WPzOtq2ak792jVz0MK0JCUls3rjb3yzeAnjZn9NvY59KVa4IEe3rEKv0+HslLoDO7BTS85fv8XGP/dn+hzHLt+kcvGCL6XAZjSaaDdwFA9jH/HnigXsX7+UZZ9PpfO7I9l35AQWi4V9R09SqUwpdBkMocwK/glnUvzT/Pv6uhDCABwHGr/wUmMg3RwHSZKqAGWBRen1y0KGAM8Wb/oSCAd6kOoHTH/ZA+epnQhhtiiGLSVEKygc3ZdX4rgVm1ZtwkNtRxXneL65ZuQt/6ernkqSjL4x8isCnp7y/ZNi5W2JTZG/eeIMadvVkvwumaNOXiXCy05BWcpB3lESQt4HV1LyUSus8EoP035Wna3yCorsMRQmZqYU+WtAayt/OSv1l0NY5L9fs0mhXUE9Sel7UTq+xaSgRKJwHK3N0/Yko2D3TQOfVrRXvD+SHz1Vs7AIwY6bZt4ppCJeJoIl0Sj/PT5MTqu4BXAzNPPy1hYh+DnsEXFmCwX0GuzUKnr6OBNgp2N1eCylHfTYPlas0qgkOud3ZsmdhwTaanHWZnxX4Xx8MgVfMgxqV1QCOpVEe2+nJ05IIXsd3X1cWHonBoNFoJaggbvy5082p7X1JSMvswTh5IlaQQ0HBRUikZz2IjEny49lTQr7crZcUT7ZsIcl3Zo+aVdSPjI8kg+hsvMtINuuFHKlZI8xIUm2XQ6dk/zvaOOeVmELQOMk366EosKRglKSkuKUbN8U+b6WBAVnTkGhSuUov9sn4uQjHiQZ2yVd5uLmldSylJSl5M4JKH6Pkq18nQSL/mmIY1x8PLv37ee7L+cgJAU1PyEgNcwFs9nMr1u38830iWCWUQqyyD+PVcnyClXSvWvy7TL3qjk2+okN3UZNIyYunjJFAnGz1bFuwhCqlChMr3ET6NGoOvqwy5gMyWiBxcN60XXS51TycsDbzVn22ACqF773Xw+doVaF0srXo9LvnZLI6Nnf4uHixIKxHyBJEpIhgcZVglk+exyt+71HQlIyep2WicMGKsu2yigxSWYFVbcMImlUqNKpWK1SUAaTYS6wTJKkI6RKtb4DFAC+BZAkaSmAEKL3C+97G7gK/JUpw18ef+DyY5s8gZpAQyHEHkmSDMDXL3vgPOVEZDdCCG4mGSnqkDl5QStWcpMEo0AjSVyPseBmm/4EWwjBtNMWHDRQRk45NYc4EZvMI5OFt/1d0bzgLBosAq1K4laigUC71HvR11ZLdVc71kY8op+fS4Z2FsKSjVyONzCikPtL2bj/QSLDC7mnOVchOx3jing+zi2x7kA8ixCCwyF3aVEiMLdNsWIlw8TFJ6DVarl89TrVKldMt6/FYmHQsA/J7+1FtUrlc8jCtHy/cQexcQnsXDAZrUaD5RlHLz4xGb1Wy6Hz16haJLVwW7UShenbtCbvfrGMdeMHk5GR68iFa+w9dYFvRvbPtH1CCL5cto7bu9ekGScb1ajMw+O/pzoWkgTqnA0HVanUqJQWUwCVOWMar0KIVZIkuQNjSC02dw5oIYQIedzF/8X3SJLkCHQFJgohMi4m+99IAf6Z2NYHEoF/CuI9AF56NmANZ3qGm4lGbiQYCExH+suKlVcNDzsVXza14/0/k7keo7yCIoTgi/MWLscKPq+mTjN5z0luJBqo7GIra0NjTweMFsF3tx8S/8wOTT13e5ItFo7Fpl1dFkJwK9HA7SQjDwwmUiwWtkTG0djTHhuFGhzpYRECoxA4KVTcVv3z8LPyHH9dD+NE2D0q+r1c/LQVK7lBAW8vfvp6Dp369OfaDfmaSJA6zowaO5Er126wZsni54ow5jR/nThH//ZN0cqE3kx8qyMx8Qk0HDqFB3FPd+8+7d6Kuw9iWfHHoTTvEULw99krHLlwjZvh94hPTGbkV0uZMKALDnaZV2VKMRiRJAlPN/n5qUqlLK6R7ajVoNGm/5dBhBDzhRCBQgi9EKKiEGLvM6/VE0LUe6F/nBDC4Z/8hBziCDBYkqRSwPvAdiHEP3vihUgNbXoprDsRz+Brq6WJpwPLw2Lw1Gmo5WZHUXurQ2Hl1aeWn4b6/mqORJgprFAHYtUNwbJrgv7FJP6MEJS0hXw2uTOIayQJi8wiTJzJzLI7McSZLVR3tcUkBCdjk7iVZORqQgoq4GhMElX+x955h0dRdWH8N1vTezYBQu9IFWmiIAjSEQEBkV4CghQRpIPYQEHpCEG6IKBYwAIoKl2KSO+9s5teNmXL/f7YkGSzM5DwgQjs+zx5YO7cuVP2zp177nnPewKckyUeTExjoykZP42KZKudFJudML2GZ/zlkzvdDVYBeZAKv2/4/mbi3Ss9AqhZJIy36j1Nj682U9YQSGTtStQvWehhX5YbbtwVTRrWp9EL9dj5115KlZDPqTDj8yjmfbGEMW8P4dsNP9HouVoUDH84BrOHTofN5sqNvB4dR4eJszDFJzGo3UskmVPZuPcIO46eYfP+Y/h46lm8cTtdmzlnm162aQfvL/ue8JBAouMTuRWbwNNlS9Clyb0phKampeOh//fmTwMnTs17ZY0WSa/8bZAUaN2PMN4G1gNHgCtArxz7OuKgYt0T3EZEDuhUEvWCvXk2yIsjiWlsNiWz2QT9S+op6vXYdSo3HjP46yUuJtjp+pOZZiW0dC7vvJpS2l+ib1mJJAtsvSFYkiiIqqFC/2/OljOhkRwT9ZxItdlZfCWeqv4evBDszVdX45lzMYZinjqKe+moGeDJz7eSuJJmIcFiy4qNSLTY+MmYRM/CgU5J6YQQ97zSpZXAU60izmIj6A7c2fuBZKudPfF55+7/l+Gl0zLwuSr0qV2R9cfO8cFve/jkDzWzXnuJCgVCHvblueHGHREYEMCps+do2LItXTq+Sq+urzntr1qpIqOHDSY2Lp5DR48x8/Modv28Dr1ePl7sQUKv05Ke4RwvEJ2QRIt3PqFXixcY0r4pHSfOot7QKdStWJrnKpYmskV9hn2+mn/OXuZWXAJhgY64nsvGGMZ98TUbp75DpXKOzLu3mTb3OoYG+Pmg02q4etNERLhCxvr7BGNMLPNXfZvn+pJKrRgTAiBp/i2W0b8DIcRxoFQm9So2F41qOOCapjyPcBsRMtBIEtX8Panq58E/iWlMO51EI4OOFuG6h0oBccONO8FXKzHzQAadyml4b1c6NcOdDd/qIRLVQxxlQghG/GVn/lnBkLL/fp/20qi4ke78AfzZmESEh4YXg72RJAl/rZoqOg0tDD5ZcQnBOg1JNjs/3EokQKMmQwiupVmpFeDlktX6/3GVS5JEMU8tF1MtD8SISLba8cmkSvloVNQK8HxsDAkAvUbNq1XK0L5yadYcPE37Bd/Sr141BtavjuYe6GVuuPFvwM/Xh8mfzSKyZ1feGPYO9Z+r47S/wfN1sxSZhBB07N6HCVM+4+OJo//1aw329+XQaWfq1Yh5q3iucllGvNYSgIIhgZSNqM2HvdqiyhROKFnQQExiMoNmLqdQSBApaensP3WBN19pTMXiEVlt/b9UI0mSqPt0JXYeOELH5g3/r7bkYIyJxRAcBIAhOIj+ndvm3ZBQ382IeDwVOoUQMTJlR/6fNt1GxB0gSRJP+3tSJ9TOkoupDDmUQYSnighPFYU81VSzCkr5kiVF6YYbDxoJ6YLp+9M5ESdIyRBIEgx6Rk/zUlqei1BTwEfPgVs2WpbUUDJAuV9KksSwshJ99tqpFSyoHfLv9uG6gV7MvBDD6eR0yvg4VvGKe+nYm2Mi/VyQF6uvJzLvUiwtDb6k2wVnUtLpXMifc2YLWklCp5Io56OnvM/9WQlMtdm5YM7gvNnClVQLQflQgsorvr+ZyJ74VGoFeNIm3KEc0ybc77EyIm5DkiQ6VStLw0qleOvr35i/9R/KFQimXHgw5cOCqVA0nEoRBrz+RXlHN55sxMTFM37qHA6ePENiUjJarZZxwwbRpvlLNHmxAWVLl2LLn9vo0bkjJYsXU2xHkiTmT/uQZxq15KUG9Xix3r8r9zq088s802Uo7ffX5YVnKgPwfOWyrP1jT1adtzo0o9sH83hh2CdM69+Rm7EJ7Dx6hqUje7P1yFm8PXR4eehpUbsKLepUvS/XFZuQyI4DR9l64BgHjp2mUpn7n4xv4MSpzF/1Lf07t2XupBEAzJ00Iu9GhEoDmjtQrR4zT8SDhPTvBYf/f5AkSVwZFkSKgtSoVUE30aIg73nN5Loadi5ePqutr9Yh15ZgsXMt1c7VNBvXUm3cTLdhTLfTpqCWpuEadJleCi+tvLybXi1v3fp4ypdbLa6/jU3IT/a0KiWJUPlVP59g+UCpnNKhOaH3lv/Iq73k7VCVzKTOniz/2wkFmVQlZJjln6+ShK5KIThWTlbVriDlqtLIP3eNwvPSKcjNKkEfqBC4lsNA3XQyjVEbEmhW3oNXKnviq5e4lWRn4sZECvip+aCBJ8UD1Yz7LYWjt6w0K6PjvT8csronenujzuVFS43P4G+TnZF/WVnTWEtwZnxEfKz872Gzyz8DtUr+mcWmyg/St9+zgwlp7IlPo1/RACx2FXYh+PCsiSHFgvHLnLzbheBQYhqbTMmk2gXdIwIo4ZU/nq0901txOiWdcykZeKlVhOs1FPDQUM5HjzpzxW3djQQOJ6VTxENLCS8dJby0RHhqs/YrIcgjg0SLHT9tdj/rd9Ahabqihq9T3QSLnTcPZgc6fv+8ikCdo/36W2wIofCC3wdIkiSslw8jZeTPWBEW1/fWel0++DTj6nn5Nmx2hBAYE1M4dtXIiWtGjl81cfzqLa7GJvJW82fpVf9p9JlZZJWyyUoKXgyVksykPe9ji6SXb0NJslTlL6/6pVhfSbJU6dplFGvkfos7QuH+FSVhkxWS1yrI/2J3HUOFRUGyVeH5qrzkJVhVvvIBuUIt//7bvYPk62uzz/v9hp8YOnIs7V5uRfv2r+Lr68P16zcYMXosxYoWYfqnUylerBgDBg3h9JkztG7ZgndGjwXAHHPTNZDaksaWrdvpO2gY+/7cTHCQQyJXSa5UUpB+FSqF/i4jZSrl6ANffvsja37cxIbFs5FsGVitVkKqN+bsH98RkhnQbEtP5cv1mxg3fSFJKWZ+WjiVZ6tVUpT5lYPNZmP/sdNs3LGXP/ceIiTQj8plSlKlbAlaNKib9Vx6jP6IH7bspHaVCtSv9TT1a1TlmYrl0Ga+z5JOPg5BaPUYo2MwhGS/U5oiDsPIcuWoU11jdAyFqtXP2r56ZE/WcboCpe46hkqSFDl3RN8FfV5upFjHnJZOYKNuO/KYsfqJhtsTkQ/4a1X4a1VU8HM8Nn+9hctmO8suZnAm2c7bZf59XqQbjz+uJdgY/3MCp4xW5r0aQJ1i2f2sXBj8+kYIC3en0GhJPBu6+DOxgRdrj6ZzKjp7AvHyt6ksae5BqJfzZKB6qIr2JdS0/sVClRCJ9iXUPH1vscj5Rqhe46S+pJIk/DVqVlyLp6SXIw6ilLeOav6ePOXrwUVzBjfSrGTYBaW9dXec3Gdkei2OJaVzOiUdb7WKMt566gd7k24X3Ei3stmUzPGkdCI8tWTYBadTMhhbKjRrMSCvWHXFzNaYdOoH6+lc2DngO8Fixz+HceGvVfFyIYkfrgleLiRlGRBPAiRJIszfhzB/Hxo+5VidFHY7R6/cYtzaLRy8dJMFvVs/5Kt043HExctXGDZqHGfOnWPV4iierV0ToXEYF09VqMDees8zY/Ycqtd6ll1b/2D6tE9YvnIVJ06cyGqjzguN+Om7rwkNcY7tebH+83Tp2J5yz9Tl2Vo1iOzZlZYN/525Z5kSxTDFZCc81mg0RIQbeDnybRrUeYZ6NavRsEZlurVpRtvG9dn5zxH2HT5BYrKZxjUr31FdKtmcyuad+/jh911s2rmPsOBAmjxXg5F9OpGQlMLh0+cZNX0hG7b+RbXypUlMMbNt32FubP/OEVCtlM9DBm+O/YD5K9bSv2sH5nw4zmlfbuPCEBJMv+6dWbBsFf26d3bal1dIag3SHTwRj1tMxIOE2xORA3fzROSGv97B6U61CfofSGVqJQ8MHiq3JwK3J+J+eCIsNsHCvWbm7EimTy1vBjzng4dW/jqW7UthxZ4UNnTxR5/jWgt94qBADqmuY/1ZC8tbeBLm7XgeqfHZzysuXbDHaOejAzZW1FbhL3Oe++2JSLXZmXw2lkHFAgjQOupm2AWXUzO4YLawLz6VF0K88VRJXEuzcjAxlRJeOuItduItNqr6e/CMvycGvSarveNJ6RxPTuecOYMIDy0VfPWU99YTKJO0z5hu5a94M0KAHajgo6dsPmlRyVY7H541ZW1PfcofP60qyxMB8GKolh7Fsn/fIn5m4jKEiwHxuHsiZMszV7LjzWlUHTWXXZP6UjDQz+2JALcn4j54IjIyMpgetZQZc+czZEA/hg7snxUEfduIuI25ny/gq7XGYPPiAAAgAElEQVRr+X3zRnS67HN4ZF7H6OHD+OGnn9n4wzrCDAbHTkv2czRFx7Bl6zbeHvsux3f+RoC/633db09ETFw85Ru2Yc/6lZQo6AheTjGnsvufI2zbe4CFq79n4pu98Pb04O9jJ/nqx99oWLs6569e59pNE51bvkifds0pXdQRCxETn8D6P3bxw++72LrvELUql6fNi3VpXq8WRQq4qlAdPXOBL9b9jM1mx2qz0a7JCzSqk5lnQzYRoesKlTE6lgK1shNTXj/wB4aQ4CxPBEC/rh2Z89H47Oel8XAxLiDvnoh5Y95c0LdtU8U65rQ0/J9r7/ZE5AFuT8R9gKdaomGohu+uW+lWVIuXm97rxv+Jm0k2XvsyjgJ+an6ODKFYkPKrGmu2M2ljEhu7ORsQOdGpvAaLXTBmWzqLmrkO5IF6iaaF1ewzCtZcEkSWejBzWZsQJFvtqCRH8ld/jYrDSRnUC3J8tHUqiVLeekp564mz2NgZa6aQh4aCHloiiwRlGQzGdCv/JKYSdTmWuoFeJFntHExMo4SXjqd89bQr4IfXXQJ4DXoNrcPkJzBKyBkQDY6g6PrB+ixPRE5K021sMVl4pZDOySPxJHkg8oIALw861K7IjF92M77tC/grGBFuuJFXXL56jRadulOieHF2btlI8aIueb+yYDSZGD/pPfb/tcvJgMiJAf36kJ6RwcChw/lm1XKX/aEhwXRq9wpb/tzOzKjFTBwx9L7dS05YLBbiEpLQajXYbHbCQoL4buMW3u7VCQBvL08a1a1Jo7o1OXvpKtOXrKZahTJUq1CGrSvnUra44zkcP3WGFes383zXIQzt1o6rN02s/vkPGtauRocmL7D0w5EE+MkvrN5GxdLFmTFmcL6u3xgdiyEk2+AzhATRv2uHLE+EnGdhwYo1TBg2wMUjcc9Qqe+cC0Kdv4XNRwWSJJUFCgEuFr0Q4ud7adM9Ut8ntCyg4dPTGfTen0qgDvqV1FA72K1C4sa9QS05aExrugdh8L2zW/iU0UJBfxWlgtVEp9gJ8VaRahHsvZqtflTnSzPVw1QU83fukzFpIisWAqBPeTUdNll4tYjrSnl+kWIVHE20IwToVLDmioWzyQJPdTp2AXq1RDU/PS8Ee2KXcWZ0KOiv2LZBr6FJqC81/b340ZhEqE7N0BLB+GkenBSzXEA0QOfCXrQM95A1IMDhifBX2OdGNga+VIveUd9RZtgMCgT68fHrTWlSpfTDviw3HlGo1Wpu3DTy+88/EBJ85wnn4SNHKVmiOCWKF8NoMmEIDcVsNrNzd3ZStsKlK1CrxjNUrlTR6VijKRpDaDbFafTbQ6j7UksG9elBUOA9JwIGIC4+gW1/7UMI8NDrmDhtNoePnyLAzwe7XeDl6UHXtq0Y0ut1wHXiu2rGB4reqwolizL5rb70ad+C4Z98zlOli3N0/WLCQ+RjS+4HBk6YwvyV6+j/ejvmvjcqq3zOh+OY8NYbioZBv64d/z+jIRck7V3yRCh43R9VSJJUCfgKKA+yycoFcE8fT7cRcZ8QrFfxUSUPbEJwwWxh8gkr+nIaqgW6Jw9u5B+hPmraV/ZkxtZkPmrpOpmOTrYR4uN45ysV0HI9wc7ITcl8eSidblX1VAzTMGOXM23l71t2WpfOfuU/PGBl7Tk7HUqqGPu0o7yAl8SL4RIrLggG34P0a4JFsMMk2GoUHIm3UdZXhU4F6XaoGqBmciUNFxJ8OZGUjgAq+DqoBXJGRF4QqFPTNeLuH+rcHoT81s+Zy2FPfCqNQnyc9isZEHOqersNiDyiaEgAv43pidVmZ9e5q/T6fB3L33yV58oVe9iX5sYjiEIFwnn15RZ8/Nkspn44yWX/bWMB4OmqVbl46TKDhr7FwkVLiOzTmwrly/HZzFlOx+zZt58+3btlbQ96ZwxRS1YQ2bMrsz/5CIASxYrSptlLfDJ7PlMmjCK/MEXHsGHTb3z740b++vsf6lSviodejzktjdYvNWTP9yuQJIkNv21Fq9XQtH6mKpRM4rm8oGThgnw3+/271jPGxGEIDsxzu7nrG2PimL9yHQDzV65j4uDIXB4JeSPh2j9b76sBAcBd80Q8dp6IxYAFaAmcBfIeVX8XPFJGhCXdhlCYbXgFyXOZlepLkisv2FcnzwdNSJfvbGaL/OMr4wMvF4Sd0YLyOVaRDQHyHVOtICPp4es6+dApxCDoveXLPQvIuyPVob6y5VI+aQQqhYzAItXiWpaWv35rT5Wvr1aIrdB6pMiW2xTiHORiIjQy3HkATYB8/1IHyfOcNWHyE1u5WBElmLefZs3vJiwBPsx5K3tF9u0551j0k5FeTUKZ1q8YF66kotKY+PKQ47ksP5hOk6o6xr5WiIFRV7KO6/G8PwM6O3itpkQraxc6+Otrz9mZ0MVAaKZR8l5ECi8ujKWGzotnIrSUDFY7aFJKvHab4/luu5hB5PfJ1CuupfuzOhqV1uGjd+3DTydlkL0Y4viN7Tb530itMAG3WexEm+2E5AoUt2a4XuO7O9P46qyVjqXVTKjp/C5fj84gSO9sLE0+bOebi4J2RWFUpez2T1pg3SVoVxTalMuW29bqZfrMQcc/L1YR5F4h9AlW8LBsiZUvv4+QLOlgc303AVkOPiD7sdUY5LNQK/HYbTHyuYzsSa5jrhZ48ZkA3mxhZPOxi9SvViG7fW+FcUsprkCursIKpMpPfgVW8pNPkif08u8+knyfVbKT7RqFMUHIvG9KMYxydVHm4KvSkuTra+X7gFIMhbC69iWVl/xvpBRDYveQr2/1lq8vdPLPXcg89xSLYNHnUSSY05n3+fys8qFDhrBwYRR9IyOZOXMml2+ZEEKwcNESAKK+WESjRo157/0P6NG9e9Zxffv25fXefbEBRqORqCUrHPWXrGDshEkYMmMlJrz/ITVrP0vJCpWpVaMGpUuXcsRiKLx7Uubv98vmX+nWpx8vvdiQ7t27sWrll/j4OH/D7Zm/afP2jkR49zrdlTLMLl4UxwlcWxw0aoIjkLnba8yZPNFpn9F4y2WS/+aY91mwYg39unVizkcTAAj1DXEKiA4pXJzbvVYojD0AIUVKkbt3545nyTcklUPmVQl32vdoojzQTgix6X437F4ie0Dw1UgoxP+64cZdYYrPYM3vjoDdLzcbMWUGQZviM1j0k2NCtniTifPXU+n28Vk+7l2Ung0dA3nPhsHEp9gwJWZ3wOMfl2Bq5+zAuFA/DT3qOD5OPer4ZBkQAMHeKqY09WHHxQze+C6B8tNM1Ps8hr8uyxt10Sl2rHbBu7+bmdnCh6iXfXm5vJ60B9j/J2xLpdayZCZsc14MiEm1u2x/ddJxIWvO2IhJy56EvbfXQuNNdiYfzj4mNl3wzUVHnXWXHNu3MaqSik2NJSfDwo0HhyBfLxJSHr/cGW78OzAajaxeswaAZcuWYTQas8oXLowCYGFUFKdPn+a1Tp2YPXs2fftGAtC3byRxcbGYTNmiCRcvXWLmrGzPhMFgILJvHwAi+/bJMiAAwsPCmDn9M377bQuvd+tOWKHCVK1eg7/27pW/VpMJi8XCiDHjWbEoipVLvqD9K20wpz64/j9o5HgiKtZg0MjxTuXG6BiX7QXLVgGwYPlXTvvfHD2JQtXq8+aY953rr1iTWX+1U/05k9/l2uHdzJn87v2+nfxBUiNUmjv8PTha7EPCXkA5KOj/gPtr+IDgrZFIUVhddcON3DDFO0/QQ/y1lCjoWG3p3SKc0ABHsF9ogI7eLcIB6PFSKGOXXqFBFT86Nwxhao9CnJhTgak9CvF5/yJEbY7Oai/Uz3Vl5eO2wRydGMHHbZ1XkUb/kkSvbxIJ9lKxtX8wJ0eEciPJRtuViYzemOxcd2MyVebG0XF1IkGeEi+Vcqwojd6cTOVZsS71AaLN+csGmrt+tNnOymOOFb2VxyxZ+ydsS+XZVWbe3Zm9ahrsqeK1co5771hanRX/EZMmWHPGseL2zUWRZSwE6SXaF3PUaVcUFy9F7m03Hhz8vDxINMuvgLvhRm7cNhJuIzQ0lOLFiwEOo+D2JN9gMGQZC71792b422/TqlUrOnbqxIyZM7lw8RIzZs5kydJlfDptWlZ7OY2E25g5YwaXLpxn5owZTuWDh77Fa126EhoawqED+7l17QqXr1zhhcbNGDxsuHPdYcMpXLoCL7V6haJFCtOk0YsADHr7HYqUKudSHxxGR76eTa76RpOJBUu/BGDB0i8xmhzfikEjxxNRqRaDRk3Ivu9MSVWAft1ey/I6GKNjWLD8K0cbK9ZkGQuGkGD6de2YWb+Ti5fivlOT7gUqFajVd/57vBAJREqS9LokSQUlSfLK/XevDT9SEq/nB/qTnizvDtT7KLhhFehMSUZXCz8hXn5yk186E1hZednC1VTBhArZruoiIQr0HAXKhpw0qZvOpCwVa41+NOlMDnrSTXq3COfTN0sC8OXmW8z99jprJ5WncFi269ZuF+w5nsTyn66z+UACtcr5sGR4SbQaFfbkdOJTrCz/M5af9ydy5kY6CebHjtv5SOFEd9exWUleufBnsQ9c4tV2bh8oJMJSojPJUWVEmvy7Zk9VeAfzQWcCMKdnMHbFz1yLTWDtO9l0kkeZzqQE8R+iMwlzgnx5PuhMSlzz/NKZ7PmgMw0e+hZRXywism+frAn9F4sWsXDhF6z9Zh2FCxfObtduZ9euXSxduoTNmzbx/PPPs3zFCjQaDUJATEwMS5YsZsP69Zw7d464uDiX87nx7yE95ppLmRKdycM/OG8Sr1PeXdC3SwfFOubUVPxLV39sJF4lSQoAFgJtleoIIdyB1Q8bNiHYHm3lm6sZFPeW6FnM/XifZJgSLIT6O39QTfEZWV6F29u36UmLfrrJqC6F0agl3pl3npoVfFn9u4lCIXrCgrTsPJLI13+Y8PZQ0f65IH7rWIiiYc4TkH1nzXz0zU2WDi5Gw0o+FOzlnO3TDTf+y7DabKzc+jcfrP2V6iUL82GXZg/7ktx4iJDj7BuNJgyGUKftqC8WARC18AvGjhkDwIh3RvL8c8/x1apVFIqIwGAwsG3bVr5euxY/f386dezIxAkTKFK0qFP7u3bu5MMPPmD1mrU0bNhQNt+DG484VHeJiZAeu7nbl0AdYBpPcmD1fxFCCKIzBMcSbay/noFWJVHQU+JIgp2hBzPoXERDuwh34ognDcMXXmLxZhO9XgplWt+iTmU5PQ636Um3PRGhATrsdsGK8eW4eCONa9EZ/HkwnhsxGVQr7cOqieWpWNwLkSbvkWtU2ZfmT/szeOEVIkJ0NHvaj4J+KiICNbz2rD/BOWIflDw6toTULKnYX8+kM3ZjEpv7BGG1OMpuI8ZsZ/YuM18fTWNzjwAK5pKijUkTTvXBQX9a9k8aXSrqeP+F7BVhu03IBkpP3JHGl0cy6FJJxwcNslf1bRb5lddbCVaCPV1Xgq0KARppSfLP0Z4PuSjZwGqUvaNuOEMIwSVTHFuPnmX6D1vx0usoUzCUP46cofqwE3zYpTmDWj4WC4Ju5AODho8iavEyInt1Z/a0Kc5lfXoza8Z0AAyGUCL79M7yRBgMBux2O6tXreLipYtcuXadLVt+48aNGzzzzDN8s+5bKlasiFLC+5atWtG48UtE9u1D4cJFaNWqFRERERQuXJjuPXoQGJitOCQpJPOThD3L2Pn+h/WMHjeOPTt3kGZOzlKEAgetaMrUT/l63bfs37mV8DDnhG63omOc6gMMfuttohYvJbJXD2Z/+rHTvpyKU1nP8e2RsvWlDLPstRuNRlnKkZJXC6VyOY+cwsRdKbBa3CGr9P+FzJgIJdxp3yOKBkBfIcSq+93wI0VnMn1eBkkn/+PaEuQDkFLOySueqNR5Zw3knmicirWz54aN/det/BNtxy6gcrBEXLogJg06lVJTOkBi5G4rX76oJcLHcS4PP/kXQqOQVdqrgKvbVqNAQ1KHyK+WaAvLu+JVCi5nSenlyaeL3m5xdX8LpQFXYTS3KQSV2RV+a6XM10q0KLm+pPJUcMUrqCpJnjpMsRmEBuXwLsRmULLltqztcz/WA3AqO/9zA0JzKIrdupFIaKBM/7iLIpIc7HaBMc7CR8svsfyXm/h5qXm2sj9T3ihJsQLZbmCh8FwyTmdTT67EWWkz7yY9nvWld/ui7D2VzI7jyWw7lsS5G2m0ezaIcQPLYAhyvXa1pzxtJEkdjiHEmebz5vtH+HzRNt7oXY95n3XO3qENwWhMwGDIpWikVZB1tcrTNEg+Ll+ulr/GtCu7XMoyoo0yNe+QcV0pu7JCH/N7/vcHn7H64kGEOp+UxXR5ipIsFGg1uWlLh06f54+9h9h98Ci7D58AoFbFstyIjiMmIZEB7ZtRpkhBekyaxe7FH1Mk3DExupMsoxzUMhQaRXUfBXqS3VNeTUuJhqSUUVkojXMKBqtWyEzOlJS1FKA0UVSlK6gzWRXGSoXzyk22hFbhuSg9d62Hy+TXaDJRuEx2PobLZ08CUKRUueyy82ecjzEaXSbQjhMoUL3kaHqZ3zm73c7NW7eY8N4HfLlqNQEB/jxfty6ffjKFIjmoUXIZpQGkHO/MhUtXaPByB4YN6Ev3zh3ZtXc/W3f+xR/bd3L2/EVef/UVxo0ZRWiI67da7vmmqT0xGY2E5orRGDx4MMsXf0G3Xn34aFp2jIZNCKJNJkJyPRuzwkKMTmFuFOQhv1iiUxjn1DaZRSqlDPJKRoSS0plC4LOXp2ee6ExzP52yoE+31xXrmM2pBBYt8zjRmY4BY4UQ39/vtu86M5Qk6V1JkkSuv5s59kuZda5LkpQqSdKfkiQ9lasNIUlShiRJJXKVL5Uk6cf7dzsPFqlWwQd/pdNncxrnEuzUKyixtIGWn5trsNoh2EPiu6ZamhdV8e4+K+Oqa7IMCDcefZjiXD8Yb009ScmW23hr6smsstAgHb1fiQCg9ysRhAbpnMr6tC3sZEAA8gbEPcKcbmd81Hn2n0xk0/QqnF9Xh9XvPeVkQOSE1SY4fTWVnUcT2XUskb0X0th3MY25fybw0owbvF7Lh0NXM6j4xhFmb7iFh07ig66FOLOwMp/1LSJrQNwJuQ0IY7SZzxc5DKzPF23DaEp0rp/bgHDjkUVKahoDP5pN60ETOHP5Kq3q1+LPhR9zfN18klPTKFIglENr5tCuYR36T/6c+aPfyDIg3Hj0cTuANycGvT2SwmUqMujtkVllhtBQInv3BCCyd08MoaHOZX16uxgMsgbEPSI5OZkRo8Zy9Ohxtv62kWsXzvH1VyudDIicsFgsnDh1mm07d7Fj11/s2ruf3fv+ZsrMuTzbrA0Dendj6649FKtci+nzovD28uKzD97lxsl/mPXxB7IGxJ2Q24AwGY0sX/wFAMsXf0G0yXnBI7cB8cRDUoFac4e/vIcHSJI0QJKkC5IkpUmS9LckSXc0PCRJqp9ZL02SpPOSJPX/v+/n7hgBjJUkqdj9bjivS1KngBdybOc0J98B3gZ6ZNabAPwqSVJZIURSrmM+BF6714t9mDgSbeOdbelUCFbx4yue+OulrCDvSftt6NUwpbYGtQSj91hpWkRFowi3+NWjCFO8hdAA55WRYTPPsGj9DXq3LsBnQxw5G0xxGSz67ioAi767ypjeJbI8EtNHlHPavl02tm9pFwPifuLkpRS6v3+CGuX92DKrKp6ZVBurTfDRskt8/YeR1xqH4aFVcfxcEievpHLuWhrhQVrCg3QIwJaSgV0ICvhr+HlQOELA4p03Ob2wMh4KXrP/B4YQL97oXS/LE2EIdXOQH0fsOXKSnuOnUbNSOQ59M58AXx9E5sp3z4nTCfL3Zem7byFJ0G3iDLq3bEir52s85Kt2415gjI5xocQMemcsC5Z+Sb8eXZj9yYeOeqZoohYvBSBq8VLGjxqeZQzM+mwa40aPdDIOZn02jXFjx9xXgyE3jhw9xmvdevJCvef589d5eHh4gKTCYrEwYdJ7fPvDerp27oxWq+H4sWMcP3mKM+fOU6hgAQqEhSGEwG6zYrfbKVyoILt++Z4Us5n5S77k5qmDjnwR9xmhBgPdevXJ8kSEhLoqSbmRAyr1fckTIUlSR2AmMADYkfnvL5IkVRBCXJapXxz4GUfyty7Ac8A8SZJMQoh1+byL/GASDonX05IkXQRcFC2EEDXvpeG8GhFWIYSLvIbk4KEMBabcfgCSJHUHjEBnYEGO6rOBtyVJmiaE+PteLjav2HTMzLFr6cSZ7UTfSiXdlpnaSnK4XlQSBHupCPeRCPNREe6tIszb8X+9GpIywJhi51aKnVvJgsPXM1h/zsrYWnpalHB+ZAej7Wy/Yee7plq0Konlp20YU2H6s4+dRNhjB7nA57fnX2DxL0Z6NTPwaf/ijnrxFhatvwHAovU3GN2tKKGBOkIDHd6FRd9dzfI45ETubUfZgzMg1m4xMnr+OSb2Ko7Faqft6KOEB+soFu7BX8cS8dSrWDiqLN/+GY1eK9Gwmj8DXy5AmcIeeOXg9eekMwF89ms8rat4PxAD4jbmfdaZd0e3dBsQ/xH8sHELR06eJjY+gbiYGNIzLEiSg3qoUqlQq1SEBgVSKCyUAmEhFAoLpVCYgYKGIPQ6HYnJKVy7aeK60cR1YzQH/jnMmk1bmTVqAO0aOS/Ubf37CNsOHOXQmjloNGo+WfYNsYnJjOja5iHdvRt5hTE61inrMMCbY95jwfLVTonGjNExTpKi40e8hSE0BENoCJG9emRx9vPiXXiQBsTylasYM/5dPnr/XZKTk2neph2FChSgWPFibN++A39/fxZHzeebdd/h6enBS40a8tagAZQtXQovr2wPq5SLAjjx4894tXWLB2JA3MZH02YwbOQYtwGRBwhJdb9iIoYBS4UQCzO3B0mS1BR4AxgtU78/cF0IMShz+4QkSbWA4cCDNCKOZv7dd+T1SZWQJOkajojuPcAYIcR5oDgQDmy+XVEIkSpJ0jbgWZyNiL04HtInwIv34dpdIIRg2qZ4vvk7mVee9qFQoIZSGg16jUMZ72qSneMmG756CZUkuJYkOHjTxs0UOzeT7ZhSBEigUUG4twqDt4owHwmDTuLb1p6E5woStdoFHx6w8XYVNb5aiZPxdmYdcThpmvxooX5BFQOeUlPQ201p+q9hxNJrLPk9hp6NQ5jW25GDxZRgYfEvDjfw4l+MjOoUQWiAltAALb1bF8jyROSkHsl5HB4GhBDMXXcNLw8187+7RpC/lmGdChOfbOXSzTTavhBK75YFUKkkaj/loAcpxUQApFrs/Ho8lXX/pLDrXBrr+oUp1r1fcBsQDx9CCMZ/PJPvfvmN9i2bUKRQQaqWKY6HXocQggtXrnPoxBm8/HyQJLh47Tq7/znCDWM0126ZuGGMRpIkdFoNBcNCKGgIpYAhhIhgf/Z/NZcCoc4TzgyLhUGfzGfasD74eHmy//gZ3p2/CpVKonjrfrR6vgYTIzsRYfgPaMu74YSBE6Ywf+U6+nd5lTnvOxSRjNGxLFi+GnAkGpswbCCGkGBH7oAeXbI8ETkVl2Z/+rGTB+JhwW63M3POPHx8fJg+aw7hYWGMGj6M2Lg4Lly8zOuvdaJ3zx6oVCrq1qkDKMdEgINX/+PmLXz17Q/s3LOPLd+vfuD34DYg8ghJ5fBGKCEPyeYkSdIB1XEoHuXEZhzzXznUIcd8ORObgO6SJGmFEPkLesojhBA9H0S7kDcjYg8OqtJJwACMA3Zlxj2EZ9a5leuYW0AhmbbGAMclSWoqhNh4txNLkhSJI0nGXWGzC8Z8G8Pfl9LZMLgghkylmJRz2cyr/r+ksPm8FR8dhHiqMJntVAhV06K0jlfL6/DWQboVPLXOk34lBZfVZ+0E6qFpYYdxseGinaaFVbxZUc3hGMH4fVa6l1UBEmarwJwmCPJwGxT/NkyJVqdka6ZEK0t+dyTGWfJrNCPbFyDUX0uov5ZezQxZnoiclKbPhpTO8kDkxsM2IMCxQvzn3KpsP5RAarqdl2oGKgas30aTkcd4sZo/kS3DCfDRYLMJth9JZM2GaDYeS6VyhI521byZ0ykEXw83Ne9xh9VqZcDo9zhy4jRbv1tBSJBDhSZnYHXTHoP5dcceAv39CPL341ZMLNUqlKFjy8Z0b9sCb089aekZeHk6x98o5YOYuWo9xQqE0eaF2gAs/3ELXZo3YEKfV9l24BhvTo1iWJeXAUg2p5JhTyU4wG1s/tvI7XEwRscyf6Vj4XT+l18zYUh/DCFBGEKC6NetU5YnIielafYnH2Z5IHLjYRsQACqVin07t/Hntu1YrVYav9gwewyVCfAVQvB8o6a0bNqE/n17EeDvj9Vq5Y9tO1i9eg0/bv6NGtWq0KntyyyfNx1fH/mcTW48BOTNExEuSdL+HMVRQoioHNshgBr5+W8jhabDgd9k6msy27tx12v/jyHf6kySJPkA54EpwF/ATqCIEOJKjjpLgAJCiKaZ2wJ4VQjxjSRJc4G6wNM4eGEhQoiWeTivSN7TDHsulYhLN1JZvfEGX/10ncJhHqyYUB6/HInX0m4kEp9iJdBHg1oFGw8k8t7q6wT6aKj3lA/eHmoOnjfz59EkOtQLZljbAhhy8eHl1H1uxFqoP/YUGwYVoJTBeRJpT05jxX4zk39NpGSIhlpFdXx9MJVUG1Qp6kHr6n68XMOPYF/HdXpUKi57z7oA11UFtU4hseBdJoy5oVJoRyipTWgUlEvS5CcHdhmVD0lJaUFBPUMukRGAUJKUk8Gg9/YStfo0kZ3KMHti7ezySX9ll0/IQQWUVBhjUjEEO6v22BSSayldi7DJl9vTlZSlFOrLJO27X2g0/Ch2Ibh4PY1GNQPZfjCBsCAdnVoU4dUmhSgQ6jwR1HjJBzhrvBUS63lHyJ84oJZL0a83q8hWTbPKPxcfnbzhduSGfGKokiHyH/ASOeQac6K8doNroVW+r5Oe+xuSCYu8MpRyMv0AACAASURBVJzSO6aKmPHA1ZkyjJdcZBPPX7zEqjXf8OWaryldsiRfLf0CH5/s9z3DnEx8QiLBQYGoVCp++Gkj4z6YTLghlPp16+Dt5cneAwfZuvMvunZoxztDBhKaWyJSRt3n0pVr1G7yMrvXr6JE0Vx9xW5n3vLVTPx0HhXKlKTO01VYvm49aekZPFO1Mm1bNKV96+YEBTr6nlBQULLqXH93m8I3Lx+qvo6283lAhoKimo8CTVCjcu0KipKiCuOQZJEfb5QUi+QwaPhoopYsJ7J3T2Z/+kl2+dvvELVoCZG9ezLrsxyLsSq1rNSopJTkMJ+QZJT/7ti+0jdN7hnYFZ6LwnOv3uI1tFotF65c5aXn6/DH7n1EhIfR+ZUWdGjZhHBDLoNJpfANVEieZvdyHZ/StfLf4rg0+WtUUv9SwjGTvKJX0QD5awzxVEh0q3Htvx4Kyk9Kv52S9KuSWqSnl1ee1Jlmz56zoFfv3op1zGYzoSHBd1RnkiSpIHANqCeE2J6jfCLwmhCinMwxp4EVQoj3c5TVB/7EMWeWz8p5D5AkaTCwWgghLyuofMwqIYSrAoIC8i2GK4RIzpSLKg3closKB67kqGbA1Tq7jUnAOUBZXysP2HcsgYnzznDiQgptXwxj4ahyhAXpmLX2Kr/uiyM2yUJ8kpXUdBs+HmpC/TVM7hZBs+r+NK7qx89/J7D1SBLf7o4nLtlKUYOOqF+M6LUSk7rKKzDcRqLZxqAvrtCtjq+LAXEbXZ/xomNVT3ZcSGfH+QxWdAmiQpUQ/jiWwtT1Jk7fSGfK6wX+n0fgRi4YY9Iw5MgGbIxJI2r1aQCiVp9m/JtVsoyD2RNrM35gZaf6t5HbgHhcIIRw8k7UrxaAWi3RtVk4G3fH8E6XopQp4oXG362G9CRg1197Gf/+R5w8fYYO7V5h5eIoQoKDmfLpdH79/U9iY+OIjY8jLS0dH29vChYIY/rk92nTshmtXmrA9z9vYsvWHfy5YzeJSckULRzBzAWL8PL2YtKo4Xc8d1x8An2GvsOgXq+7GhCZGNCtE707tmXLrj38uXsfvyz/nJJlK7D5z+28/+kszl28xMcT5WjHbtwrcid3M5qiiVqyHICoRUsYP2pElnEw+9NPXAKfb+O/4Fl4EMg9hjZ4tgYBfr50frkZP/+xg/GDIylTomie6DBuPDzYEYqLCaC80JAL0TgEg8Jzld9p/ntTob4ViMnLSfOB6cBuHDHKd4UkSerMY3bguLc8Id9GhCRJHkA54A/gAo6H0hjYl2P/8zgkpVwghDBKkjQNeB/HDeYbO/+Jo+vYw3w4qAxtXwxj79F4Zq6+xLZDCXRoaGDqmyUxBOoI9NPgneKwqjceSGT44is8VcSTBQOL0rpmAK1rOlaxrsVksP+sGTQqqpeSt/Jv48ilVHrNucQLT/ky7CX5nA23odNINCztQcPSjomqVqeiWVUf3l93izplvDlyOY1KReStezfujNwGg5PHIdOzYAj2ILJTmazy3MaBnAHxuMCcZmPD7liOXTBz/JKZ4xdSiEu2UrKgJ2WLeFKusBcWm2D7wXjG9SxGv1fk2IduPK74fet2uvbpz6eT3+eVVi3YtWcfUz6dwY5df/F6p1eZNW0KYWEGggIC8fV0LJT88NNGIocMp0a1KiyZPY32rVvQvnULAC5ducreAwdRqdXUfLraHc994NBRXoscRIvGDRk5oNcd6+r1Opo3eJ7mDRwLgna9J62bNmL0+1N4tuYzHD5+ksoVXBb83LgL5DJBZ3kcenZj9rTJAI7A557dsjwRD1JW9b+G5BQz32/6ncMnT3P05BmOnDxDXEISZUsUpXyp4pQvXQK7XbBl517GDerLm907PexLdiOPsNnBcodcS3fadxtCiAxJkv7GMf/9OseuxigHSe8GcitGNAb2P4B4CAmYLEmSvEtcvn6+cVcjInPCvwG4jMNiGg94A8uEEEKSpBk49GdPAqdxxEwkA3fKjPcpjuj1NsCW/Fzwn/tj6TnhCHNHV+BGdDr1eu7BLqBvy3DmDi+Dr5fzLdnMjudSq4w3JcP1GBMs5DYyCwXrKBSsU0xkdxvHLqfS9L2zvP9aAXo1CsEWrZDY6g44eiWdMzcyGLb8OjY7nJ1VNt9tPOnIbTC4eBxyeBhmT6jp5IF4UrDzaCLvLrlEn5bh9G4exlPFvQny1XD2WiqnrqRy6nIq56+lEeD72GXmdOMu2PTb7/QeMJiFc2dy+cpVatZvjFqt5o2+vVkyf64TlQmATGpi3do1KVm8GLeMJpcxtGjhCIoWjrhrUsoDh45Sr/WrzJ48iZ6dO6CyyFMn7oT9Bw9z7uJlIoeNQgjBzeP77+3r94QiK+tzDmPByeOwZDnjR76dZWTMnjaZ8WNGPdYGgxy27PiLcVNn079LBwZ260ilsqUI9Pfj1PlLnDh7nhNnL3DhyjUC/O68mOjGfw92AXeyE/JgQ9zGZ8AKSZL24qD29wcKAvMBJElaDiCE6JZZfz7wZua8eQEOan8PHkzqg204Yjby8+JuA/I1sc3LDCIC+ApH0IcJRxxEbSHEpcz9nwCewFwgEEcg9ku5ckQ4IZMSNQmYl5+L/XW3ib7vHuHtbsUYNu0kT5f345O3ylKveiAiRVkl4cA5Mz1nXqBN7QDGdSiIVoarlxeUCNdTobAHUb/G0PPFe1MLKVtQz7ZJJShbUE+9iec5eiWN2lXvqaknArnjE4wxqbIGg7PHwdnD8KQZEACFQvT4eWl4u4MzVaRqKR+qlnLwxJUyJ7vx+OKnzVuIHDqCEUMHMWDocGrXeIbZn07h+WfrIN2BgrF773669B1A51fbMnHUcLT3GGdftnQJypcpxZxFy+nZucM9tVHlqfIc+ONnypcuScXnGnPs1BkqPn1PEudPBHJ6HRx5GZYBzsaCk8ehZzcXL8WTZkAARBQMJzjAn1EDezvFRDxTuQLPVK7wEK/Mjf8X94nOhBBijSRJwTgWzwvgkFFtnmN+XCRX/QuSJDXHQRt6A7gODH4QOSKEEC/c7zblcNdPgRCikxCioBBCJ4QoJIRoJ4Q4nmO/EEK8K4QoIITwEELUF0IczdWGJIT4JlfZ55nldw2qvo2+kw7TvXUhPl1+kWnDyrJqShXqPxN0VxWa2T/eomuDYCZ1LnTPBgTAm1FXSE2381nPQnc9pxziU2xIQIUID9QqiZZP+/LldoVgTTcYNGk3EXXXMGhSNuvNEOxJZKcyAE4Gw+wJNbmyvb1zkPQTjKLhem7EZDBo5lm+2RpNdMKDC9B249FBv6Hv0KPLa0ydMZt5M6axetkX1Kv77F3Hs6mz5vJGn568P24UGs29e6+6DngLu10wZ8p793R8bFw8KpWKiuXKoFarebl5E5asXHvP1/O4Y9DwURQuW4lBw0cBmfSkXt0BXIyF2dMmc+XkoSzvxJOOkkUiOH/lGv1GTWLtj5uJjpUXbXDj0YPd7qA0Kf0pxdfLQQgxTwhRTAihF0JUF0Jsy7HvhdyTeSHEViHE05n1iwsh5t+3G3sIyLc608OCJEni9RaF2LLHxMrJVajxlHPwpz1ZPrrfZkpi/i9GTl1LZ3qfOwdMK9GZbqsz9Z5ziWsxFgoEaVGrQGO1olFJqFWOjpeYZicxzY4lw071CC31SuqpWVSHp1bix2OpDN+QiL+Xmj8mlsDfS40p0UqdsWc58G1DDDJJyJ5kdSZjTCqFan2ZtX11Z8csj4KwW11iIu4IJYqFnDqHQt1HUZ3p/PVUfvs7nj/+SWDn0USKhetpXTeYwW0LotOqFD0RSoHVbnWmR1+dqUuHdvy+fSfrVi7l6aq5nrnSe2LNYNqseVy5dp2ZH3/gqKqkkKbURqY6U7se/YmOjSXcEIpGo0GnktBo1GjUaqw2GwlJySQkJmGxWqnzdBUaPV+butWr4uGhZ836jbwx9gNCg4PY99sGfLy9uX7zFtUaNOfYgb0EBwW5nPZJVmcymkwUKVE6a/vKqSPZHgmjUVZqVRFq+fdNyP3eCh6tR1Gd6fT5S2z8cwdbdvzF9r0HKFWsMO2bN2ZYny53NqaVvHpudSbZuv+2OtPkz2Yu6NxdOR4r1WymXOGwO6ozueHAI0WI3n8qjZ0/9qBEUddJiz1dYZJX2k6r0FgW9PgJvzq1s1bc5Ca0SlKjt938i6um8+df17Ba7VisdtKTE7BaBRarHbVawt9Hh5+PFr1fMDv2XaPPgr8pXNCXNk1KsXLHCdaueov2XedS+PXhaLUaNAlmpPfeQV+hH94FXQf0E2bX/qtWGITKKCW0syqEnFjkJ0RShsKEyC7/kqs08nxQlSQziAr5QQ6VDqMpCUNodlsFg+CNnqf5fMle3uhZk0JlKjsdEiHnXRcKExubQt+Q+RjZMuQn+XaFD5eSVKLVLH9O681E+WYUEr/ZUxTOa3M9r76i86S9VEktpUr6MbC3Lxarnb+PxzNtyTlajDvFkg+qUbZMMdmmVVr5j4U6sKL8tWjlJyNHLK/IX3qi67UHe8p/6DQK/V2rlv9IN6i0R7Ycqzy78khGa9nyg6nNXMq8FAyXMkFXFc55QrZYsinFAcxQKL9/+PvIcX7+9Q8KFylCcq59MnNWACStxPPNWtOjaxdSPR00ToW5ACqFxYzbE/fZXyxl184dWK02LBYLWNKwWCxYrTbUahX+/v74+fmRJtTs3rmTV/q+RYmSJXmhQUPW//A9s75YzuDIXsT4FCFerSbeW4NNSJxNURPn6fr7ZCS7vj9qhRvVKpTrFW7WQyPfN5XqKxkLWoVnKftGKEye7Bq9wzAwZC88hRSIILJvX6IWLiSyb19CCpfk9psXXDQAhdE4X5BkDDLFybySDK3CgouULv/OqswKC1ep8mOu3SzfjpCpL3k6T9BLesDAprV4s/mzWKxW9h49zUdLvmb9L5tZPmkYxUsUk21bEcHyAhZCI5/J2q51peIqBf0qTtAV+qkSJbFRUfkFF6WFg0R73tc9zFYlg0Z+bPVUGP9VMpLR+YFd3Nm4yq/h9STjkTIidv3YiyD//C/UlS8ViF0ITpyNY88/tzDFpjHyjep3Pe7X7VeIiUvjtTYO9Y8Afz1tmpTI2m9JlFfBknzCmLX4HzIsdsypVnb/fZ39v7zOzqMZPFurFFqt47EvXLqVpo0qUlDGgHhcYTQlYwh1HqQGDP+Gzxfv4o1ezzJvWvus8nmfvMy7I150qe9G/qHVqKhdOYivPwtk3pqLNOi1kx+ivKlR5cnjOj/J2PL77+i985+srWLFSiQnJXH+3Dm2bf0Tc0oKgwYPvutxmzZtIiUlmZdfaQtAUFAQLVtlG246u7zxHG22Mn/uHGw2G/Hx8Rw5cpgtf25n42+/U6N2HdSZRuTKpYtp3KwFwSFPTj/ObSwADBkyhIVRUfSNjGTmzJlZ5TNnzmTs2LEu9d3IP7QaDXWrVmDD9PHM+Go9z/V+hw3zPuTp8qXvfrAb/yncx8DqJx6PVBraoMB7C5CVJIkOLUsx5uO/GPHhLsZ+8hfLvjmJTWY19zYOn4jh1Tc2sWbD2XyfLy3dStEIP15pWooeHSrw6+r2hAZ7cfV6LPv+vkDkoKV8Mv1nps/dzNuDmt7TPT2KGDDie8LKf8CAEd9nlRlNyXy+eBcAny/ehdHkvGrkNiDuLyRJYmCn4nw+rjJt39jC8bPumJwnCQEB8tSzu0GlUvFKu/aMGzOaiRPGM2b0KL5euxb7HcjD//zzD11e78y36/IfM5ielkaRosVo1qIlXbv14OtvfyAoOJgbN67zz/69jB0+lPmzprNs4Xz6DBh0T/f0KGLIkCEULVaMIUOGZJUZjUYWRjkS6S6MisJodJaFdxsQ9xcqlYphr7dhzsj+vDxoAqcvKXgi3fjPwi4cgdV3+nMjb3ikYiLErQlgl6d3KNKZMukmZy7EU7ftOiRJxYt1I/jp94tIksRTpYNQqSTS0q2UKRHAylmNuWUy8+wr39K6cTF2H7jJng0dZdtW8kTogwrK34RfJc6cvcmGXw5x42Y8lZ6KoFvnuuBZTLb6w6AzkU86EworieSiMxlNyYSVm5S1fevEuCwDYcA762U9EdgUsq0q4QHSmazmBIVTyrtVLYny3Px/k850G2pfecrZ11uTmPDZ3/y+qjlFC2Ubaw+cziQz8bQrjEP5pTOV91Do7/mkM8ldoyKdySt/dCYU6EyS5ysPPCbCnJpKqkV+4q9IZ8qkKJ08cYIWTV8CoP4LL7Bp40ZUKhVly5VDpVKRnpZGhaee4osvFnHj+nXq169Hq1atOHToEJt+k/9dlDwRKUKeC52QbuP82TNs2fQL0SYj5StWok37jqQq0CQyZN6Th0Vn0iqVK9GZclHDjEYjxYoWzdq+dPFiloEweOhQWU+EHN1Iru17RX7oTJKCnO9/mc6UVa4Q47B043Y+XLCSP5ZMo3B4How1JTqTXn6Mtnm7qkCabfK/nVKMjpJoghKdyUOl0I4inUn+XZVrP78sIU+Fi1SiM3n4+OUpJmLiJzMWvNqlp2KdVLOZGqUKuGMi8oBHyhPx/6B08QCavVAMjVrizIV4NGoVZYoHUL50IIUKeHPqfDydWpUiLd1Ku/4b6dquDO++VYPEpAxe7v0j5y/LTyLzfR2lwhk2qAlTP+zoMCAeUxhNzoxrQ6gPb/SsDcAbPWs7eRjmTWvPrVOTnA0INx44Xn+5JG/1rkiznpuIjb8/QY9uPL4oV748z9erj0ar5dzZc6jVakqXLk358uUJDw/n7NmztG//KmazmQ4dXqVPn76MGTuOW7du8fprnbh06dLdT5IHlChVmr4DBzP63Q9o015+gedxgJxHIbJvXwAi+/Z18jDMnDmTi5cuORkQbjx49GzThAGdWtH8jTEkJMkbMW789+CgM93BEyEfkfTYQJIkb0mS3pMk6ZgkSQmZf8ckSXpfkqR8JT55YowIgGXTX2T94hY8XdHBn9VqVezcf4O/D5soVzKQMZ/soVCNZRSL8GXCkBr4++lZ+3kTdv99kyETt92l9ScTuY0FyKQtlZvEgOHfOpXPm9qGWyfGMW9q7oSNOAVVu/Hv4c1uFQgJ1HPgWJ6z3D90JCcmsnbJQjZ+9w2Xz5/jUfGm3gmPyj0sXfElX61ZS+UqlZEkCY1Wy66dOzl86BBlypRhzOhRlCxRnHLlyzPinXcIDg5m5aqv2L5tG2NGjXzYl/+fRG5jARy0pWJFizrRlsBhLFy6eFHWWHDTlh4OhnV/FS9PDw6fPv+wLyXPSIiPZ8niRfzw/XdcvHDhkRl/7oT83IPNLrDYlP+sj39QxEpAD7wChGX+vYIjwn1lfhp6tOhMlt9AXUahgrx86+H4bHe5ECLLtWeMiebX774hzWwmKNRAkMFAQGgYQQYDfoFBJCfEs+TTj9n8zVd06D+Ydn36o/NwpnkoyU+mZCgnvpODKVm+fqiPK31Cp0Dj8PeQp6B4KsjQlfKXl3gNkuRpB8abRgwGZz71gEFz+TzqJ97o14p5cxwfO6MxjrBCr2bVuXVpSfZxKnkFCiwK+tuSQty/EuVKSfVGgYol0mJcyqxmebqRLd3VWAKwpMi71q3X5Mtt0Qp0JgWJ17tlUc8JXXl5Gp1vicqy5VJgNQAq1hzHqsX9qFzR8Q7tMMt7hBLS5KlVFpu8zkvpYPmEjE/53nApi7XKv79B6h1Z/09JSeWDD5cRtXADDepXJCEhhd9+P8SEMZ2YNKGzo5JaSQJZQXIxw7UPABxOb+VSFqdw/0rjgJJSUW4IIVg8+T3WzJv5wOlMN+KTMSvQmZROnPN7ensMFQIS4uP46ft1pKWlERpqIMQQhn9wKCGhYfgHBpIQF8e8z6bw83df03PgUDr1jESndx4DktLl+06ywvug9G1PTJOnNxh8XMccLwWKhL9enpbhqcA38lFoR6dAW4qLNhGaa6L/1tAhfLFwIb379OXTGQ7DwGQ0UjqH6s+5CxezjlNS5lGiSimpzOjU8teu1GWVaFFy1CVJYaxUojmp0hToRgmuxhWAPVFBOtmi8N1VkMW1J8uM0Qq0JU1YEdlydaBjQbJck058P+9jypV00M3sPvIUT5tvmGy5RS3/bZRNa6WgCCiUpHVz/HZJSUlMnjKFZcuW0aB+PUzR0WzbvoMPJr3L8GFDZY/Pbkihz1jkKcDJatd4RqWxRymySolimPsdE0IwbvRIFsybmyc608iPPlvQpnN3xTppqWYalC/82NKZJEk6JYQom999cnik1JnuBJvNxtSpUzl16hSXL1/m8uXLJCYmkpqegdVqwZKRwf/YO8voKJIuDD+dTNydoAlOkF0kCe5BFncW18Xd3T3Y4ou7s7g7wWVxdwkQd52Z/n5MSAjTHRIIEr55zplzkurq6hqr6Vv33vcq4+NZuvsQHuUqYm5pRYO2HZON4ff+PeePHuLCsSNcPnWMSnUbsvb0Fcwl9Md/Bfz9/LR+1Pz8gnF0TK5N3b3nXBYt2UO3v2qxcF6PhH4hLPpnHwCLluxh7Og2ODra4OhoQ7cudRL619AyPHT8fLz3C8XJMe2KPd+bgwcvsm//ea5cWoprVhOu33hKnYYT8fTIS826YylTqgCtWtXExSXTj55qmrh96QInd+/4fMdvjFKpZMm8OTx/8hjfN6/xffOaiIhw4uPiiY/XrJ9KpZKNuw9RzKMkVtY2tGjXKdkYvm/fcfLIAc4cP8L5MyeoVb8Ju09fxsLmF11D/f1wcHD8bNuAfn1ZsWwpnTp3ZvZHxsKypUsBWL5sKUOHj8DB0REHR0c6durM8mVL6di5s9YarePn431AME720jVnfib2HzjAyRMnOHfuHC5ZMnH5ylVat+9Agfz5qNeoCaVLluTP5k3Jni3lmlo/G2dOneTwwYOp7v/BEyFHSsd+ESIEQaguiuKhjxsFQagBpCku75cKZ5ozZw6WlpYMHTqUPXv28N9//9FzxFisrG0pVMydf3YdxL1shcT+KpWKm5cusGTqeNp7laNlmWL4HNxH8XIVWHXiAgOnz8HG4deUDhzYqzv5szoxsFf3ZG1OWZrQvWeSq9zPL5hFSzSFtxb9sw8/P83ujaOjNd3+qgVAty51khkeC+f34f2LlSyc2+V7PBUdX4FSqSIkNBp7u58/nMzW1hIrK3NcXTUeF1cXJ/T19WjZbiZ/1CjB7bsv6Tdw0Q+eZerZungeC0YOYc6QvhSvUPlHT0fjEVk8Hxs7O7r1HcDyDVvZe9yH3oOHYWVtw+8lPFj77z6Ke5ZMPEepVHLl4nlmTR5P/arlqFvBndPHDlGmYhV2nbjIiMne2Nr9mhLWQwb0pVCenAwZ0DdZW96crgzol9Tm7+/HimUaY2HZ0qX4J4QvOTg60ikhx6Fjp+TGwsw5c3ny7HmiwaHj5yUmNpaY2DisLTPAGmpjg5W1NTmyazwruXLmRKlU0alrN2pWr8b1GzcYPnL0D55l6pkzcwZDBw5gUP9+VKnqlerzVKJIvFqd4uMXpw0wUhCEV4IgnBcE4ZwgCK+AEYC8i0aCDG9EiKLI4cOnqVSpEubm5rRu3RovLy/u37+Pl5cX+7ZuZOy8xaw6cBzP8pUQBIH3b16zePJY6hTOxYzBfVHFK+k1bjJ77j5j4or11GnVDgdnGYWlDEiQv5/W/yuXaG62Vi5ZhL+fH/5+SW2LluzBz08TYvTBswDQ7a9ayTwLC+f14P2brYmhTB+j80BkDPwDwrG1MUNfJrzhZ+LipbvkzZO0Q2ZlZca+naOZMbk9vbrXZtSwZpw9d4dr1x79wFmmnt2rlmFgZEiPCdPoM3XWD5uHKIqcPHqYFvX+wMrahvqNm1G2QiXu371Dywa1ObDrX6bPW8z6nfvxLF0WgLdvXjNjwhjKFMnD+GEDUavVjJg4jVM3nzDrnzU0/LM1Dk4ZyyOUEgH+/lr/r1q+DIBVy5fh7++Hv79fYtuKZUvxT1h3HRwc6dBJYyx0+sSzMHvOXB49fZ4YyvQxOg9ExuB9QDCOdjayKkg/E5cvXyZvnqS6Fra2NuzYspGpkybS9a/ODB08kNNnfLh1+/YPnGXqEEWRfxYvwsTUBO85c5kywzvV534uJ+JX90SIongnIVSrONAD6AWUEEWxnCiKt9IyVoYNZ/LzC2Dz5j2sWr2VmJhYRowYS9OmTVEoFMTHx9OkSRN2795N5pKVE7/c79+8ZvaY4Zw9dpjqjZuxeM8RsudK+kIpM0h+iBzBAf7YfFJ0afrgvmxfuZRG7TszeLqmIq6tgyPtu3Rj5ZJFtO/SLfHH6kOblGdh7Mg/JQ2DT0OfdGQs3vuF/bBQphMnzjFv/iru3n1EoxbtadvpL+xT8PyVKlmQhYv+JSIiig+h7gXdslPQLXvi3316NaC4ZzdCA3dhaSkt1/gzEPj+HVEREXQeOf6H3XwE+Pmx599t7Ni0AZVaRY++A6lZtz76+vpER0XRr2tHlm3YSqmEzRcA39evmDZuFOdOn6B+kz/Zsu8oOVxzJY4Zl8F/fAMD/LUK140e3I/1K5fTsn1Hxk+fDYC9gwPtOnZi1fJltOvYKTF86UNbh06dk4U0zZw9h5EjRkgaBjpjIWPzPjAIJ7sf8zt47NhxFv/zD48ePaRly1a079ABO5lcNABPT0969upFVFQUZkaa278ihQtTpHBhAH4rUoQO7dviXqosQe99MTWVyTH7CXj96hUAo8dNSPMaqhIhPgW92ZSO/UqIougHSCcfpZKff/vxI3x9A1i6dAN/1GpL3nwVuXjpOpMmDubWzSO0aNECRUISsUKhQK1W4+XllZAEKLJvy0aaVSxJjtx52H/9Af0neyczIDISIQH+Wm2zh/anQeHczB7aP7EtOMCf7Ss1bvTtK5cm80h4z1vI/dfv8Z63MFmbzrPw/8Xtu69xzmT13a+7YMFqWrTsRZ3aVVm5wpuXz5/hUTAvLRvUZf2qFZLnVKhQlMqViuFVvT+XouwydgAAIABJREFUr0h7G+rVKQ3A/gOXvtnc04P7/10lf9Hi392A8H3zhg2rV9CuSX2qlirOnZs3GDJmPHtPnKV2g0aJlaANjYxQqVSUrVApcQ3dsWk99b3Kk7eAG8ev3Gb4hKnJDIiMRLDEGjphWH8qFMnNhGFJa2hggD/rVy4HYP3K5ck8EtNmzuH2o6dMmzknWdvDp8+YOTup7QM6Y+HX5PbDp2RylL9x/xaIosjf8+bTuUsX6tety6KFC3n46BGFCxWiaZMmrFu3TvK8KlWq4OHhQZ26dbl+44Zkn/p1NZEHh44c+WbzTw+uXL5ECXePL1pDlWo1sUqV7CNO+WuHMwmCkP+jv/UFQRgiCMKuBIlXaZUeubEykjqTpbUNJSpWoZRXDUpXq4GJWVL2f2BUcmWeNr/lpf3oCRjbOXNy02rePXtC+0mzyeGmsbhDorXVPN6ESKs7hEVIK3/IKV9EREori7hklrbqFbFhmNtoL0I2ptqOoj3eYzi8YTXVWrSl8/gpAIQGBtDJM0mBZ9N/97FO2E1bNHIwu1Yvp17bjvT7KGRCrmidoVy7jCqUnAJNEWuJwlzRMpVrY15Kt8sVxBOl1TZkFXiU0moh6nhttRC1RAE6AFWMdK6RSq7IoUxMpVpOoURfWhlG30QTZ6tWi2ze/5L56x5iY2WI229FyJ/XGdccDujr6yGKImrDwujp6ZEzZ3Zy5syeeEMoV/Ts8YuclClThq1bt1K+fHnJPh9zKUBa/UquUJxfZPLXJjoykk1zvbl++jhqtcjE1ZvInMMFADsTE0KCArl06gSTB/Zmw8nzZM6WQ6vAm0qlYse6VcyfMITqXiWYOaMLdnZJRtDNiHI8unOb7k3r0nnAUJp2+AuAV2Eyqlsy75OUspScCpVc4Ts5lbbnwcHM7d+TLLly07RX0g1ro1zO31ydydrGhnKVqlK5+h9U8qqBqVmSt+bT3beiLo5MmDkfOycn1i9bzJtXL5g0dzH5ChYmPFZ6jXsvozTnFyndLhd7/CZIWvGlcGZpr5kQFYK1nbYXy8pYew39e+wQNq9eTrO2HRk1RbMmBgb4U6FI7sQ+V+49TfSKjR7cjzUrltGmQycmeycZB3LFuuRI682O1PjGMipMenEyuZAyBcLQkw5CEGXa5RBUEu+rUvq9lpujILOGSo4NqCOlv8uCzPdQMNTcE6lUKtbtPsz8tVuxs7EmX4GC5MudC5cc2dATNGuoSmGsWUNdXXFxyZG4hgpK6d+F+4+eULVWPbatX01JD/fEdtHARLK/KKNwJKd8pP5EMy0sLIzJEydw5OgR9PX02b59W2J+g6BWEhAQyPGTJ+ndrz//Xb6IcybtkEKVSsXK1WuZMGkSNatVZeqEsdh8VMleNDDh+o0bNGjUhNGjRtK+bRvNtVXSr69cdWcrI+3+sTI35/IF8WRUx1Qq2rRuRbHixRkwYGBiu5mpSarUmTqNnLqkSuNWsn1io6NpVyrPr6zOdE0UxWIJf08E3IDlQCNAKYriX6keKyMZEWd9Q5ArifWpEbHrnwU8uX0Tv7dvyf17Cep274+BUZKB9bMYEcf+HseNvZtwr9+COgPHJzumiAnBwjYpKTE8KIDhVUsk/r/s4k2sEpIWV48bwd61K6nduj09JyfFBhorFJJhTjojIuMYEUfPvWPknJsYGugxsltBAJ6GZeP+w7c8e+GPWi2ipycgKOxQKpU8fvwCP78A8ufPjZmZCcFBfoSGRaKvr4+BgT6GBgoMDQ3wfRvO2LFj6datm+S1P0XKiFCr1Ty+d4cbF85x6/JFDIyMyJ4zN9ly5sLUOTPOLq4YGZtw4+xp5g/tT6GSZWjSqSsu+Qpg8JGBYGeS9KM7slsHipTwpGnHLrJVojPF7qFXn/kolSrWrx2e2H4zQrPmv37+lO5N6mJsYkrNRk0p4lUTx6zaiiPf24iIi42lf4eWhAUGMGTJKiysk8IgvocR8fhdMGqZ78mnRsQ/c725f+cWfu/eUbxUGbr2G5wo0fozGRErpwzn6Na11Grelh5jpiU7po4ITrb2BQf4U9u9QOL/p24+TgxfmjpiAOtWLqNV+05MnDE7sY9CTyDA3w/7TxSXdEZExjAiMDDiwOkLDPdejIWZKaN6tkelUnHvXRj3Hz3mxcvXiKKInp4e6BugVCl5/OQJgYFB5MubB2NjY0JDQggLC0dfXw+FgQGGBgYYGhri+/YtE8eMpF2rFskumRYjQqVScefuPc6dO8fFS5cwNjIid5485M6Vi5y585AzZ05MTEw4evQoPXt0p0rlynT56y8KFnTDwCDpd+PjitKt23WgcqWKiQaAFGGB/vQeOARDQ0OWLkjKyfkw90ePHlGvUWOsLK1o2qQxNeo3IUvWrNrz/85GRHR0NG1atyYiIpyNmzZj/ZEBlFojov2IqUsqNWwp2yc2OprOZfP+ykbEf6IoFv3wN1BGFMUoQRAUwH+iKBZO7VgZKidCYWBAbLz0Df2n1PtLI0UaHCWziP4ERAUHcmPvJgAu79xApY59Ej0Se7xHc3nnBso2aUWzYRMBsLC1p1qLtomeCKuPVE96TvamVf8hiR6Ij/nUgNCRMXjrH0OXidd4+TaS8b2LUL9qlsTF1ti1hvYJZhUT/wwPj+Du3UfExsZhYxGIlZUZarWauDglcXFK4uOVKEzKUahQoS+aW6Dfe6b078mNi+exsrXjt5KlKVa2PGqVildPn3DrykWePXrI+1cvsbS1BUGgx2RvilesgpmEYXDn2hUcnDPj6JyZCtVrsWvDGpp2lFf3srQ0Y8G83uQv1J7z5+9SqpRbsuNZXXLy74UbXD13hoPbt7CidlWqNm1By/6DMTKW/oH/Hvy7ZgVR4eGMWbMFAyOZuinfEIVCkeq8hb/6aHb45G4SfgZCgwI4unUtAPs2raZlz4GJHokF44awb9NqGrRqz8AJMwDNWtisbcdET8TH+Q8TZ8ym7+Dhknk5nxoQOjIGr9750X7EDN4FBDFpQBfqVSmXuIZWs9HeVFAbJxmpYWFh3Lv/gLj4OGwtTLG0tECtFomLiyM+Lp64+DiMjIxxK5Bfa5zU8MbXl549e3H+wgUcHR0pU7o0lSpWJC4ujkePH3P+3DkePX7MixcvsLOzQ19fn/kLFlKtSiXJ8S5dvkL27NnI5OREzRrV2blrd4pGhJWVJfNmTqewR2muXb9Bsd9/S3Y8T5483Lx2ldNnfNiybRvTy5aibYeODBgyDKMfsHZ9YMmSxcTHx7Nr9x4MZTaZPodKLaaowBQvU4vjF8JAEIRsaFIaRFEUo9D8oRQEQWaXVpoMZUT8apja2PFb7eaJnogPBkREcCCXd24AwGfrOv7o0jfRI9F5/BSa9hmQzID4gJQBoSPjEh2r4uqdINZ7l6JKqbQp3VhYmOPpqSkmJxfOhEGqNxu0OH/sMMr4eDb5XMHGUbqAkl9kJCqlEn/f11jZOWBipp3oHBEayj+TxnBw41o69BtEjxHjKFm5KtOHDWD3hjU0/6QOwceYm5sweUIHevWdz7HD07GySl7cSF9fH49yFfEoV5EGvQewePRQulctR932najS+E/Mrb5vLkh8XBxr58+m//ylP8SA+BWxsrWnapPWiZ6IDwZESKA/+zatBuDfdSvp2Gdw4mbKqCmz6D5gmFYCNZBiYr+OjEdUdCxX7zxg1+JpVPAomqZzLS0t8UwIUZILZ5ILQ0oNBw4cQF9fnxv/XcMpk7NkHzUCSqWSly9f4uTkhJmZmZYnPigoiGHDR7Bu/XpGDBvCiKFDqO7lxdDhI9m4eQt/NmsqOwdLSwvGDB9Cn0FD2b9jKxYWyddQhUJB5UoVqVypIgOGj2bwgH6UL+lOpy5dafZnSyy/8xoaExPDvL//5t+du77YgIAEidcUNlP+DypWmwOnSKgxKghCZlEUfQVBsADS9OQzVGL1r0iV3mMYvOdislAmcxs73Otr3KNlm7RKFtIESBoQOn49cmY1Y/XUkvSacPVHT0WLJ/fuUKxMOew+I+Opr1CQKbuLpAEBMHtIP0IC/Bnz92Ie3tYoy1lYWvHPrkMsnjaRJd5TSCnkslXLqni458O9VA9u3nwq28/a3oGhC5czYPYCHl7/j45lizN/+EDev3qRimebPty4eB5jE1NyF/n9u13z/4H2wyazwedWslAmazsHajXXyJ03aNVeyxsrZUDo+PXI55qNVdNH0mPszB89FS1u37lD+fLlcXKS3oT5gEKhIGfOnBoDQoIu3boTERnBvDmzuXVLI81qZ2fLgb27GDV2PHP+npfiGtq25Z8UcitAmao1uHvvvmw/p0zOrFq3kTnzF3LpwgWKF3ZjyIB+vHopE478DThz5gz2Dg4UKVLk851T4IMn4nvWiRAEwUgQhHmCIAQIghApCMJuQRC048OSn/NcEARR4rHva+YiiqKLKIo5RVF0TXj4JhxSAQ3TMpbOiPgGxIQFSbZHBQdKtkslVdcZOJ7JR68khjLp+P8kZzZz9GSSy34kKpUqWU7Dl+D74jnXzpxg1OKVFCtdlge3ktRCXPPmY9WBExzYsZX+7VoQIZMYraenx8L5fRg9ojVVqg9i98a1KV7Tzd2TQfOWsPjYWaxs7RhQtzrXTh3/queRWop4lCQ+LpY7l85/l+tlZCJDpNfK0KAAyXappOoeY6ax9/K9xFAmHf+f5MqW5adcQ9UqFYaG0rlwqeX+/ftcuniR1StXUqZUSW7cSpL4L+jmxokjB1m7fiMd/upCRIR0bqC+vj6L5s5iQO8eeNVpyKYtW2SvJwgCpcqUZemqNZy5eAULCwuqVyjLmVMnvup5pJayZcsSHBTE5Utfp76nVIvEKdUpPr4Bc9AkLv8JlAMsgb2CIJfMCYA74PzRoxgaT4H8m/QViKIYJYris7Sck6HCmY5fvIRVVlfJY37h0rkSrwKk3ZBvX77FyNI2WVuozBiRETHERwRjYJ5cC9rSSju2+t6m6bw+swPXSo35vc3QxPbra6by7MQ28lZrSsnOI5KdI7fAOVrYEB2f3HUZESsdrharlE5ENDGQ/nwqZBKo5ZJEjRXSHxULuRtJ1UmJNml1H5Thks1irExitczcBX2ZuehLx8DrSbTrGUi/jgpTabetKBM7Kci5uWXmgkK62mlURBg2dvcwdqmW/ICBhOSuKLOrblBNsvlWqPTnPSha+jUwS0jiE0WRmKgowoKD0BME2aR7ueT94ITxFdY2iAi8eP2K53dvY+3kzNPg4KSOJqaM37KLpeNGUqdMMYYsWIarmyaH45GQPH7XptJvjN3wB1O6tsd71FAQRaztHRi9bA1ZJGRIbRydaD1wGEXKVmBq1/Y06NKD+p27J9VDCNf+TMbJJFY/8pf+/Ep9V0u26sb2xQvIVsRd4oxvz5Mnj8mdO7f0QZn0sZAo7c/J+4g4QgIDsP7EKxocI/2ZilGqCA8OwMImeX8zifVp/fSRnNy+jqpN2tBxxOTE9uWThjN16xrJBGpHM+nwMDMb7aKhpmnMiJbbxY2RiRyWG10ur1puOsYSBSBlk5PjZNZWtfQkRQOZcDq5dUtP+jsuKiTGkUnOVitk1mdD6R12QS4p3FzGiySzFgc+DsDS2haVVebP9pdL5pYbW65diJdeQ/USkshFUSQ6NJjgt6/QD/eTva5Ugraon/T65sxkQ2xsLMG+z7l3+ybZMjsnu3Z2Jzt8Du+h7+ARlClfkU2rluFWIF/CJJO/121b/knRIkVo3q4DgwYPQRRFMjk5sXXtcnK65MDMJPn9Uq7sWZgyaSJeXlVp26oVAwYNonvPXonHo+O1X5u02nL66uTribmRgqGDBjJn5gw2rVudtsE+QqVO2VBIbyNCEAQroCPQXhTFIwltrYEXQFXgkNR5oigm06IWBKEjEAZs/cr55AMmAL7AeGA1UAm4A3QURTHV1QYzlCfCyCR9Cp+cXTKR/X2qcX3NVK1jceHaXoRnu2ZzbXJDnu2anWL/uPAgXp/ZoTnnxDZiEzwSsWFBPDuxDYCHh7cQHSq9y6ZDx6dYWBgTEipzg/ADiAgPY3inNtz97yp1WrT9qrEMDA0pXqkqW/6eyb7Vy6naXFtyz8jYhJ5TZtK8z0BGtmzMhtnTiYuR3hhwyVeAxUd8WHT4NLN3HSIiNIQjWzamOAc3d0+mbN3Neu8phAZI73KnJ24VqvHw6iUOrFxMWOC3v96nmJqmTwG+JROH0aFiEZZMHKZ1LEzCW7DVezSj6niy1Xt0iv3DggI4uV2jcX9065pEz4MmgXoNoEmgDgnUrvOgQ4cUFhbmhIRKezJ/BCGhYTTr1J07Dx7SummjrxrL2NiYalUqMmHaTBYtW0HHttprqKmpKf/Mn83APj2pWqcBU7xnExsrrRJYpHBB/vM5zpXTRzmxfyf+AQFs3LojxTmULVeevQcPMmrEcIKDpKMw0pMG9etz/NQp5s5fSEDgl91LxSlFouNUso+YuDTlFqeG4oABcPhDgyiKr4B7QOnUDCBodrg6Aus+JEJ/BcuBE8A74CywE3AApgGL0zJQhjIi7DJn+eoxokMCuX9wM5D8Rh/gwZYZ+IyoxYMtSe7vuPAg/C7uBsDv4m7iI5J2Su9tms6poX9wb9N0AAwtbMlaThNO5lqpcaKnw8jSFtdKjQHIW60pJlbftzCNjoxLnlyOqNRqTvk8+GFziImK4v71q+xat4o2lctgaW3NioMnyeoi7RVMC3/2H0JsTDQv7t+lTK06sv0q1m/MnH3HePHgHr1qVGCt9xT2rl7O41vJCyYZGBpi6+iEraMjxStUZu/aFcwe1Idn9+7Ijh0WFES2PPmw/g5JtSYWlgxctgHfxw8ZWqsCy0cO4Oj6VZzf++83vzaAo4RufFoJDvDn0GbNLuChzasJ+cgYWjt1BP2qF2ft1CRva1hQAGd3rgfg7M71hAcn9V8/fSQDapZg/fSRAFja2lOxkeZGqGqTNlgl5INpEqg1SjMfJ1Dr0PE5CuTJRURkBBeuXPthc4iMjOTy1WusWL8ZT686ZHZy4vSereTI9vX3NJPHjiQ4JIQHjx7ToE4t2X5tWjTj/IlDXPnvBiXKV2Hc5GksWrqCm7eSr41GRkZkcnLE2ckJr0oV+HvRUrr1G8ydO/JrqL+fH0WLFcPG1la2T3phb2/Hnh1buXHrFgWLlqBrzz4s+mcpm7fJSMhL8MET8ZlwpkyCIFz56JHq2gkSZEKTb/DpDsv7hGOpwQtwBZZ9xTw+YCaK4iJRFKcCpqIoLhdFMVoUxR1AmnaaMlQ4U3pgYm1H/hrNuH9wc7Ib/diwIN74aCzuNz47cK3ZEUMLWwwtbHH0rIvfxd04etZNDGmKjwhO9Dq8PrODXLU6YWhhS4HmgynSuKtWqNTvbYZSomV3nQGhI00YGCjo0Kosew/epELZfN/12td8TjFzcF8C3r4la67c5HUrRK+xE6lUq95Xj+377Amn/t1GfGwM9y9fRKVUcuXYEcrUlh/bIXMWhi1eyX9nTvLg2hVePLzPpr9n0mfGXNwreyXra2xqRv+Z8+gwfAwH1q9mbLs/yeKaiwZ/dadEparJdMnfv35Jttx5v/i5hAX48+zmVXwf3cfWOSuOLjkxNjPHyD4zhglysmq1Gp8Ny3h4/iRiXDQxkZGIajU+/24hIiQYQ+M0FQn9odjYO1C9WVsObV5N9WZtE0OaQgKTvAgnt6+j3l/9sLS1x9LWnjL1W3J253rK1G+ZGNIUHpy8f51OfbG0tafl4Ik07zEw0YD4QMcRk+nQZ5DOgNCRJoyMjGjdtDH7j56gZIli3/Xah4+doM+gobx99568uXNRKF8evCeMok71ql899r0Hj9i0bQfRMTGcu3CZ2Ng4Dhw+Sv0UDIkc2bKxff0qDh09zuVr17l99x6TpnuzcslCvCpXTNbXwsKc5Qvn8t7Pn2Wr11G3Tm0KuLnRp09fvLySr7cvnr8gX74vk7oFePfuLRcvXOTO7Vu4uLqSJ09ezM3Nye+aDZOEGkIqlQrvWbM5euw4EeHhRERGoFarWbV2HfVq10qTWlO8SpStWaE5rgZ497k6EQmF2kak1AdNmJDsEKReDakzcFkUxeup7J8SgiAIeQErwEQQBDdRFO8KgpAFjcck1fzfGREAZbqMJGfNjslu9I0sbclStiFvfHaQpWxDDC2SjrnW60fWKu2S5UQYmNuQtVxDXp/ZQdZyyft/akB8QGdA6PgSjIwUxMamrj5KeiGKItuWLqJ2y7Y06dIThUKRmBORHoT4+7Nn+RLqdu5KL+95mFtZMb5tM7LkzoNLfrcUzy1ariLFy2vW5aqNmzO+Yyuy5clLmRq1qde+s6ZoVALWdvb82XsADbr05Oz+PSyfOIbDm9bTbcJUbBOUpYLfv8PGMe11APauWcGOfxYSFhKMS+FiZMlXgAcXfTi7bR0v7tygdNN21Oo7kvBAf3ZMHkpsZASVO/YmWyY7jM3MeX7nJrsWzqbnnH/QVyi4dGBPmufwo+gycgrNug1IlhNhbafxIpzcvo6KjVph+ZER0GTgeGp07J0sJ8LCRr7/pwZE0jV0BoSOtGNoaEBYmHTu0rdCrVbz96IldOvcge6dO6JQKGQL630Jvm/fMm/JMvp278LaZQsxNjahXrOW5MuTmwL5U95wql61MtW9NIZMy2ZNaNyyLYULFqB+ndp07dA62SaLk6MDIwb1o9/QUWzfvp2BA/pTpEgRvGfOSlSWevfuLU5f4OVcvHABixctJCwsDA9PTwoVLMTxo0dZvvQfrl65Qv++fZg8cQK+b9/SuUtX4uLiGTZkMFbmplhYmHPh0mVm/z2fDWtWoq+vz9YdqfPoqhISq+WIT31OxBxg3Wf6vARKAvqAPfBxLKYjcPpzFxEEwRGoB/RI7cQ+wwg04UwqoAngLQiCDZAHGJCWgf4vjQiQvtHP13RQogfiUz5NqgYo0HxwogdCh45vxaFjd+jeqeJ3u55KpWL2kH4EB/hTt00HFDJJ9V9D/hIe2Dg64lntD1zdCqEnCDTp2Z9Ns6czdMmqVI+Tr2hxlp+9ys1zPqyfORWFQkGdth2T9Xl27y6zB/fBOYcrlRs15eXDB/SqWYm+M+bye8Uq2Dg68fTOLZkrJCGKItN7d8HU3IIek2aQNVduIkJDaDRoLCX+qJ+s75P/LrF6RF8y5yvIgXlTiAwJwtE1N3tnjQdVPPFxsUSFh9Fp0iz0v8Hr+z34NKkaoPXQSYkeiE/5NKkaoOXgiYkeCB06vhVHTp5mYA/54pXpjUqlomvv/kRGRNKhdatvsoZWLFcGGysrmtSvS4H8eUHQY2CfXoyf6s3GVUtTPU7pkh48unmF46fOMG7yNIwMFXRonbwC9/Wbt+kxaAS5cuemdZs23L59G09PD5YuXUaFylXIlMmZs2fPfPZaarWa9m1a45QpE9NmeJM3Xz5CQkKYM3ceDRolzw85deIEfXr1oECB/AwdNoLAoCDcChSg34CBxMbGEhsbQ2hYOKuXLUFfrlq5DEq1SJxK3lBQpnDsY0RRDEA7REkLQRCuAvFoQpI2JLRlBQoA51JxqXZALLApVRP7DKIo7gMSY+kEQfABfgdei6L4Pi1jZcxfrzQQHRKIiXXqPQBpNQh0BoSOb0lYWDQXrzxl96ae3+2a/0waw6snj5m5eSem5tKqUV+Lnp4eOfIVwO/1q0TFJVMLC9l6EilhbGKKR5VqOGd3YVCjWtw4d4YuYybhkDmLZjdwWH88qlTDLpMzD2/8x3WfU5StVZcNc735vWIV3Nw9WTV5HKunjqd5n4GyAg7RERGc3b8Hl/xuzB82gHK161OzRRvWjuqHhZ09+TzLJvbNVdSD3O5lOLp0DgbGJrgW86Rmz2EYGBmR2dYchaERhsbGmFtrb078bAQH+Kep6n1aDQKdAaHjWxIUHMKtu/epWqHs5zunE4NGjObVmzfs3b5Jtr7D16Kvr09BtwI8f/VKY0QAVpYWWJibf+ZMbczMzKjzRw1csmejau0GHD1xCu9J48jsnAmVSkX3foOp16gx9vYOXLl8mVMnT1G/Xn2mTZ1ChcpVKFO2LOPHjmb82DEMHjoMY5nwzNCQEA7s30cBNzcG9u9Hnbp1adWqNe3btsbRyYkyZZPeowqVKlHS04NJU6ZhambGb7/9xsTxYzExNsFQoYeRkSFmpmbY2EgoFX6Gz3kilOmsziSKYqggCMuBGYIg+AGBwCzgJnD0Qz9BEO4D80VRnP9RmwB0AjaJovhF7jRBEFJ272vm+EUFqTKUEXH+cQgBb/0wttK+cQ/w9dPyLtxYO5XnJ7eRpWxD8jUdlOxYaLC2ZrKJqbTsnZ6+tC6ZnOpbtIwMq77MOMEK6fz2SIlx3oVKS8GZGEpb4qaG0mObG0n3l2s3kpmjvZm0ZOkVPLXaSthVlOyLYqdks2AqI0AgyiknyLXL7FJIyTMLaftKCHoycZgpSj9LIPOcLl28Qb68WTH9VJ5QX+JGV5SWRLwXLj12dLx2iFRIYAD7N6xl58Ub2H9y4xijlB7/ZWioZPsDP2ld8ge+mvc1IEbgyuMAgp0DMVAI/Hf7OTF6lhy5m6S4YW4i/X5IfpUEO7quOcjp1QuYPHgQTcbP4+6JA7x4/Jgmk5dgYmlFprK1yVSiIuuH96BSm27c8o0APVu6rNrHtnH98R01mtr9x+Jooa1ektnKjIIeJSlfrxE3z51hy6K5mJpbUHvoNMxy/ca7sOTfzSrdhhE4sgfG5hY0HDULRUKV6oIuP85wUIvw/M17yWJrL3zfYvtJ+4yRA9mxbiV1W7Sjz7jpie2mMtLRWS2lbx5iZH6UJVRMAdCT0UOVu66hzNoqNUysMm3VaNVpK+CaZgxldC+lXjEThfQNqZGMTKoo8zqq1Gl7TmnpLatuLfM8BRkJXTnZUzn5VOKk2y9dvoxb3twYKwT4eEwJCVm9KGlZcdFI+vVVm2p/l99OOHJBAAAgAElEQVT7+bF+42bun9yNpTIMPlKGElTSYamijCyupMSrIuk7ZmxsQky8GlFhjCCqeecXgHNm52Qyu6K+dBiqKCGJXrC4ptbEhAkTGDJ+GqtWr2bTxo28fveeth06YWVlRYvWbahRqxbtWrdi+KjRxKlEsrrk5MTZi3Tp2I5xY8cybtIUFBLvt7ODHR4eHrRv147DR44wb85sLC0tWfjPMn4vXgLlJ5/LWbNm06RpU5ycnFixfDlGCWuorPxvKlGq1MQp5RWY0tuISKAfGiHtzYAJcAxoI4rJfvzzoQl5+piKaMKMtKW3Us9tPv81TuNNi4YMpc50euEEtv1VmUvLJiVrv7RsEgf7VePG2iTJ1tiwIJ6f1MiqvvHZISndqkPHz8ztOy9o3XEug/rW/3zndOLf1SuoXLse9p+pRJ0eKAwMUcUl3axHBvlhapv23ISPMbW2pUrXQfg+uM2za+fJUdSTvKUrM6u5FzePaop85vUsx4BNRyjXsnPieeY2dlTvMYRbR/YQ+Oq57Pi12nZi45wZ/Nl3EBPWbWPY4pUUrl4fhWHyDQhRrWb9oI5YOmai8di5iQbEj2bM4H5UKJKbCcP6J2ufMKw/tUrkZ8bIgYltQQH+7Fi3EoDdG1YRrJNV1ZHBuHHnHp0HjGBAt46f75xOLFm2kmZ1amBv++03C4yMjYn5SK7V9907nL9Sgc3BwYEpU6Zw9uxZzvr4ULFSJapWqYJ70d/YvUuz4Veteg2uXL9Bt+5JIfqOTk6MmTCJjevWpljFulu3boyfMIFxY8eyb+9eNm7YQNPmfyYaCB9QqVTUrl2bPLlzs2b1aq3jX4NSrUmsTumR3oiiGCOKYi9RFO1EUTQVRbFOgszrx30EURTHftJ2IqH9ayrsVQIqf/JoDPwDPEeTb/FFZCgj4u4BjTTrwyNbiQnVGAUxoUE8PKKpu/H8ZJJkq5GlLS4VNbKqnyZK69CREViy7DBdO1WnWZPv54a/dv4Mv7lre5G+BfqGxoS9e8Xraz5s7d2IJ2cOYJYOibMGRsbU6D2Kfd6jMTQxpe7QKVTp1Ifrh3cn9rF0cNLKRXDO40ZhrzqcWPm3bIGxktVqUrXJn4xo3oDYGJkdUUDQ0yNrwd95c/cGga+ff/VzSi82rFoOwObVywkM0BgFgQH+bF6tad+xbiVBCe229g40bNUegLot2mGjS2rWkcFYsmodvTq2pn5Nr893TidO+5zFs2jh73ItY2Mjnj57zr4DB3EvW5Gdu/finJDs/DWYmZkxY8YMevXqhY2NDUuXLaPvgIFs35pU4yxz5ixauQi/Fy1Gnfr18Z46WXYNbdSwIU2bNqVa9erExckU90MT8lqiRAnOX7jAkydPvvo5fUycUp1ynYj4dK8T8UMRRfGUxONfURS7ARuBpl86doYyItxqNgMgr1eTxJAmYytb8no1AcClYuNkIU2/tR5K2Un7tEKZdOjICLx87U+RQjm+6zU7DRzOomkTCQsJ/nznr6RAzeY89TnIqb9H4N6qFxX7TCRHiQrpMnYez/KIopp7Jw9yfvNyLv67gewFf//sedW6DyHw1XP2//O35HG1Ws3+tSspVLI0hkYpy7JW7zmcwl512Tq6V4r9vict2ml2ZJu17ZgY0mRn70CzhGT0hq3aJwtpGjTRm20X7iQLZdKhI6Pw6rUvhQt8X2nskUMHM3rmAsLCpcM505OeXbuweu16evTpz7hRw1m68G+8qqSkKJp6atWuTUREBHt272bWzJmsXbWKEh4enz1v/ORp3Ll9i7/nzJI8rlQqWbZsGZUqVsQgBcU/QRCYO3cu9evVo02bNl/8PKT4kBPxmToR/y+c4Cs8ERkqJ6J891G4NeiilRPh0WkEOf/oLKm4pPNA6MioKPT1efnq+4aQiKJITGQkj+7cpniZFCWyvxrbHHmoP2sryphorNK50Nu904cxsbLBwNiEq7s3U7P7IPKV/vyPq6GxCS2mLmFZl0ZkyVuA3ytVS3ZcT0+PAXMXMatvd07s2EKlhvIbOKIo8uzaBdwbfE0oa/oybvpsuvQfppUTMWrKLNr0GqSVEwHoPBA6Miz6Cn1evnn7Xa8pCAJhEZHcffSUksWKfNNrFSlciMtnTxEdE0Mmh/QVKNi2bRtZs2ZFFEXWrVvH8FGjqV6j5mfPMzMzY83GLdSsWhE3t4J4Va+R7LhCoWDVypV06tyZrdu20aRxY9mxRFHk1OnTdOmSvspaapUaVQqGQkrHfkFqAdLJQKkgQxkRgGRSNcjXZtChI6MyblRzylYZzv5D15g3qxN583x9ddOUuHTqOKO7tmfa8rXf3ID4gKGJGYYmqVcviYuKICYiHAsb28Q8BFEUiQoJItz/LdEB7wh594Z7pw9TrFYTji6ZQc0+oylULvW7cxZ2DvzlvYgFvdqTs0gxLD+RMi1ariLj127Bu083fPbuosKg6ZLP4d6pQ8SEh1C8TrNUX/t7IJVUDUgaEDp0ZGTGDumPV8M/2XvkOHMnjiKXS/Zver2DR47SuXtvtizy/uYGxAcsLS2xtLSUV3r5hLCwMMLCw7F3ypyYZyCKIv7+/rx+/ZoXr17x6uVLtm/fToeOHRk1ahSLlyyhdLnUe4kzZ8nCyjXraP1nM85fvoatXXKFzOrVq7N71y7ad+jA1i1bWLh8Faam2mIhm7dsITYmJt09EaIook5BxjWlYxkRQRC2SDQbAvnRJG0P/9KxM5QR8eRlBBERMZLHwkOklXwiZfrHS8S8KWXi4FRq6Q+UnJqTiYm0Yo+1rbT0WpSdnOKGdrSZIKO2YWIso84k1y6jemOskB5fTp3pnYl0TKO5kbYr93mItOvSzFD6htVUxtVpIqO5bSijFS2n9GIg0V9fT/p55jWTHiOtBMnUjLOVeKqFisOjhxXo1388/+57zZAhdROP3YvIrNU/MFo6Rj9eJe1WV3zyXLevWs5fw8dRqFxFQmO11YmCZcY3knk/stlIh/vceKatUhcQJK22YWGefOzTs4fx7tZF4mOi0DcwxMDUgtjwEBRGxpjYOmFq50zQ45uIoppzO7di7OhKXKaiXLovHZ4l931SqbJg7lKEzZsOkNVTs5P2QV0t5MV9ogLe8lvfxZyZ2gWD45ewz19ca4yoaAj19+P8kSNkd08yYjJby6iOfQfiVKKs2pC+zGsh1a4vs06Exkq/j3JqQHKKPTLNsggyamhSYdnxMjcI8TLrvFomtlsOufsPuXEMZJSlpNYtY5l1WO51NJBpl1LOARnVszSOLze2sczdhtznTk9GsQgJVSEAQU/7t+j3IoW5c2of/UZPZs/hY/Tt3Dapv8RNt9pYWtJaTg1I7+mVZP8vnTeH6b3bUbW0O6i17ydUEmpOAKLMddVG2u0hcWm7wTX/ZJ1v36U7586eJSIiAiNjYywtLQkMCMDMzJwsWbOQLVt2zp87h1qtYvnyFRQtVpxSZcvL5jjIzcatmAeFixbj6MnT/FFXEy2jVGve6xvX/+Otry+7Dx2lbg0v7ty6hbundi5evJ4hL1+/Zvv+w1Txqp7Ybqz4IiGhpDmrQJWCSltKxzIoUjtEMcAZoL8oivu/dOAMZUTo0PH/hoODHeXKunP58s1vdo2IsFCu+ZzmyukT9J8qHcf6MyCq1by/c5kqIxdjliUfyugI4iLDMbKwQWGskUKMCvLj8PCmFKjXCYWhMVk9qn7x9ezzFSfg3pVEI+IDQU/vcH31ZBTGZoiiGrWMbGN294qYDJvHce8BhL9/Q8HaP09Ykw4d/y84OdhT2r0Y9x8//WbXCAmP4Pil65y6epMV49NU8Pe7olQqOXP6NIePHCV3fjfCQkMJDQ3F3sEh0RPw5vUrKpQpzaChwzA3M6d+gwZffL2Spcty3ifJiPjA5YsXGDl0MGbm5qhUKuLipTcj/6hTDwcHR7p2bEOfAYNp06GzZL+0olarUaXgbUjpWEZEFMUUXfGCIBiIoiizxZkyOiNCh46fnPDwSExNU07i/VJWzJjM5sXzKeTuQe+J07C2//6Fv9QqJe+unyboyU3MnV2wcS2EhbOLdkdBIEdJL45N7IJd3qK4VqiP829l0FMkuXHeXD5GpsKlyFuj5VfPy7loBR7sWUah5v1RGGt+YAMf3yTs9WMASvWZRXxUODa55JVYHPIWodakNewe1Izs7hWxcMr61fPSoUNH2oiIjMTMRLqm0dcyct4qFmzeTZnfC7JgeC9sLL9Ngc6UiI+P5+ihg1y7eoW8+fJTrEQJcuXOo9VPEAQaNmpE9WpelC5bjtZt2lHFyytZRe1d/+6geo0a9Oj59YIQNWrXpWHNqowYNxHjhNf/4vlzPHxwH1EU2bh1BwH+/vxetJjsGO4lS7Fj32FqValA1Wo1yZz169dQUS2iTiHvIaVjvwoJRewqAX8CDdCuT5EqdEaEDh0/OTdu3iVL5kwcPHiSMmVKsHv3EVZtOYFr3nzkdStMyYqVsXNIe32FPetWcWTHFjZfvPlNjAf/N685tHYF969cQlSrEUU1hsYmZPZqi3X23EQF+fH66imentyFsU0mHAuW5P3Ns9xYM4Vq0/fw9NhmHHLmxrWMJplPEAQ8Oo2gaKt+PPE5xIP9a7i2cjKZipTCwc2d7CWrY5u7MA8Prk+X+ZvaZ8Y+f3Fent1NzirNAXh77STBz+5Suv887PL+jp6+gvjP/OCYOzjjVqslV9bNpdKAGekyNx06dKSem3cfkCenC4dP+lDavSjb9x1m7+HjFMiTk8L58lC5rOcX1XVYsGk3u06c4/HeVdhZW6b7vJ8/f86ChQu5cOECarUaUa3GyNSMvoOGkCdvPt699eXg/n1s2bCO7C6ulCtfgcMH9jFi8AB8Lv/H8n8WUeL332nQsCGgqXI9b/4CJk+Zypat25jlPZ3+fXtRpaoXZcuVp37DRpRw92D1ypXpMn+XnLkoWsKdHVs20qJtBwD27dnNvbt32bR9J8XdPdDX15cNl/tADhdX2nboxNSJY/l78bKvnpdaLabobVDLhDb+CgiC4InGcGgKOAFxaPIjvgidEaFDx09OQEAwFy9e59z5q1y9egtX12y06jWM1y+esWvjWtYsmMOmE+e1znt0+yavnz1F0NNDPyG/RK1SoVap8H/ry/q53szbdfCzBoRKpcL3+VOePn9GwFtfAnzfEPDuLUHv3xEVHk5MVCTRERFER0YQGxNNwRKeGJmacv3saco3aErrYWNQGBgg6Onh/+YVK6ZMJj46EmMrWxzzF6Py8EUobF0AiIsIxffKUY6NaEx8VBiRxSskGhEfMDA2xbV8PVzL1yP87Qv87l7m5bn93Nm+GLvchbHN6ZY+LzyQu1orLi0YhJGlPdk8q5KjfD1enNmNQ4ES6OmnfvksVLcN23vV5cGRbRi/zo5aqcTA2Bi3UuXRk8nl0aFDR/oQEBTMjTv3OXX+Etdu3iW3aw4G/NWGJy9esXLLThas3sip7au1zvvv5m2evnyFob4eBgm79SqVCpVazYvXvniv2MyplTM/a0AolUqevHzNq6BIXvu+5bXvO177vuWtnx9hYeGER8UQHhFBeHg4sbFxlPL0wNjYiNNnz9O2bVumTZuGoYEBenp63H70hOED+xMVFYm9gyOly5Zj88495MtfAAC/9+8pWiAP5T2KExoaQoOGDRONiA9YWFjQum07Wrdtx8OHD/A5fZqNG9YxbfIkihYrRtHi8p6BtNK5e296dW6Pja0d9evVo0XrNuzcsY2y5Sto1ZlIiW69+1HBsyib16/F0cEOZXw8pqamVKpSFT2ZXEY51Cq1bA4sgPoXqxMhCEIhNIZDc8AFCAb+BTYB1oBU4nXqxpZLlvnZEARB9Fpw4ZdMrLbLwInVljLjmBtpX9fOTC6xWvr1+n9PrAZAfIUoionve1RUNIaGBjyK0aiMqFQq6rgXZvTs+eTxKAVASGAAiyeO4cKxwxQq4UFcXBwqpSYxUE9fX7Pzo1DwZ/feFCwurfutVqu5eeEcx3fv4PS+3Rgam2CfOQv2zpmxz5wZu0yZsXVywszSCitLK0zMzTExM0dfoeDmOR/CgoMoWrMOpubarv2917RlayMiNfMT1WpenNlJdNB73lw+Qo3xKzCx1jZyYiWSC/0fXOPeruUUqNsR+3xFkx1TqaTXOfnE6qT+/vevcHvTLBRGJjgXLc/jg+v4rdVgsnpq5F/lPBH2NsnXh9fXznB3/wbsLE3Q09cn+P1b1CoVzYaOI3dRd7r+lgNRFNPngyaBIAjinbehqGTW/Jh46ecRlYYf1HiZBOr0Sqw2NZD+jpsZpiWxWnouusTqb51YnfrEfQA9UfpzJyi1RR8A9GKlBSSEuMjka2h0NIYGBhgkvJRKpZICFeqwas5kSpUuA4BfQCDDJ07n6CkfPIr9jjI+jviENVSRsIYaKBQM/PMPSrjl1b6mtSMqlYrTl66xbd8R/j10AnMzE7JlzUrWzM5kcc5EtizOODs5YmVpgbmtI+bm5lhaWKCnJ3DytA8hoWE0a9UWC4vka+jnEquVSiUb1q7m1cuXHD6wj4MHD+EgIaEdJ/E98DlzmrmzvBk2YhQl3N1TvM4HYmS+Tx+Pf+bEcSaMGoaNtTVVq9dgwdw5zJq3gD9q1wHkP18xnyQ4Hzm4n9XLl2JkaIBCoeDVq5foCXpMme6Nu6cn9pZmn11DBUH4K3O1nktsf6sh20cdH8PdOY19RFH8PjKF3wBBEHKiMRr+BAoCYcAuNIbDEVEUlQn96gE7RFH8ot2sDGVEmDZegfKVdIKpYCR9gy7GSyvKSPaXUFMAEKNDpcewki4vL5hI70pkyyNdOMzaVsaIMNK+s5Sz3E1MpW+sTSRu5gEMZX50TYykf6RMZIwFM5nxTQ20xzGRuaaphLEE0oYIgKWMzIecESFnpEj1tzKSNgylDI6UiFVKq3nI3UgoZW5ggmOkjeCPx/HZv4clY4czaulq7JycGdKsHsUrVKbNwOGYWVrKGmNyc3n57Ckz+nYnMiyUivUbUb5WPTK75iRcQrEJIDgqbc81MFLbkjp/JyjZ/2cmtcOtSW9sckvviPm+kZa1VsZLz0VhIP2ZiY6Sfk7qT256RbWKyEdniPV/gaCvj2X+8hg7ugJgIHNjK8eHjQ1RFIl46EPgmVUY2ecg6vm1b25EHLz/nleh0mui3A26lGEgd3Mqcz9BaKy09WwlscaB/I21s7n091N+7trfq/BY6XVe7vMqZxjJqTzJIbeZkRbSaizIbf7IvV4GMpso5jK/C8b62u3mMuu5ocx7Kmd0yCHI/E7LKSjJjvORMbJl+78MHzOBbasW42BvR9X6zaldvSqjB/fF0sJC2hoF0JN+HR+9CaBjl65ERkXRrEljGtavT05XF5D5DIgySlSixPhSN/8Ayk8+pxVKezJzzjyKuUtvFMmNI4fEWw3IG82fblYolUq2bNrIk4cPMDAwoE6jpuTJlx+Q3zT41Ij4QGCUZj0RRZEju7exZPp4chcoxPkTR1JlRDhX6b7EpkhKRkQs9+c3yehGhBqNeNY2NIbDflEUtTLYv9aI0IUz6dCRwSn7Rx0C372lbx3NzniFug3oNn5qqs8PDQri4c3rPH94j+f373Hu8AGa9uhLg05d0+wmTi/0FQYEPbqOda6ist6C74mgp491oSrJ2tTKeIQ0hDRpjSkIWOQrh1lOdyIenSPq+bWvnaYOHTq+gKaNGvDa9y2eXpqd8TbNG+M9YVSqzw8IDOLajVvcuf+AO/cfsv/IcYYNHkS3Lp1/2BpqZGTMuXM+FC3h/lOsoQqFgsZ/Jleoi42NTaxV8SUIgkC1ek0oW6UGpw7t4/yJI6k6Ty1+Jifi11BnegHkAMoAvgmPS+l9kR/z6dahQ0e6cuXkMfIVLU5Bj5LcOOfDhrneqFQqRFEkOiqSWIkaD/FxcWycP4e25YqzccFs3r18QYFiJZi18wCN/ur+w378AH5rP4bnJ7YS+vzuD5tDSoiimmcre/L634nEhwWgjA4nNugNcaH+iKq07YjqGRhj6Vb5G81Uhw4dqeHQkaOULFGMsiXdOXj0BNP/XqRJZhZFIiOjiInR9lrGxsYydc58CpWuxMwFi3n1xpdS7sU5dewIPbp1+aFr6MJ/lrHw77ncuX3rh80hJVQqFTXKuNOzQ2v83r0jJDiIZ08e89b3DfHxaVMbNTW3oGaj5qnur1aJqJTqFB8ZHVEUXdEYEP+iCWk6LwjCM0EQpgqCkG5JLzpPhA4dGZxHN6/z/P5dVpy5goGREQHv3jK911/sXvEPMVFRIICAQI68+Sjk7kmewr8BsGnBXDJlz8GCfcfJ4uKaOF6c6scnlZk5ZkXQV2Bobv2jpyJJ9Ou7xIe+Iz70Hff+1uyuGVo7o1bFoQwPRNA3wCRTLnK2moqewbeR59WhQ0f6cOHSZZ69eMndc8cwMDDg1RtfWnXpzZzFy4iIjARAT9DDLV8eSrkX47dCBRHVaqbPX0K+PLm4cGQvLtmzJY6nNk5/paa0kjtPHgRBwM7u+8t2p4YLPqfx93vH0QOvOLR3FwDZXVyIiY7B7/07TExNyV+wCMs270yUh00vRPX/R8VqURTPozEe+gJV0BgTfwGDBEF4iibM6auqn+qMCB06MjCiKLJyyniadu+DQYJb2D6TM1M27STY7z3m1tbYWloRGxPDw5vXuXP1EldPnyQ+LpaOQ0dRpkatn8LV/SmquBjiwoIxtnX60VORxMgxJ5mq9SA24CVxgS+IeHoN9PSwzOlJ5MvbxAa8JOrNfdRxMTojQoeOnxhRFBk+ZgJD+vfBICF/LFuWzBzftZm37/2wtbbG1MSY6OgYrt28xfnL1zh66gxxcfFMHzeSWtWqfOYKP4bwsDAiIyPJ5Oz8o6ciSZFixRkzxZtH9+/x6MFdfE6ewMDAkDIVKnPB5zTPnjzmv8sXiImJTncjQq1WJYqNSB5Pozf5Z0cURTVwBDgiCEJX4A80BkU/wBT44uRonRGhQ0cG5vSefwkLDuKPVu2Stevr62PvnDnxfyNjYwp7lKSwR8nEtrSqznwvVHEx3Fg9Cdu8RdMko/o90TcyxbqIJgfFwECfqDf3iXh2HX0Tc8yyF0bf2BwjG2cUZj+nJ0WHDh0a1m3aQkxsLO1atQBVUsiSvr4+WTMn3ICLIiYmxpTxdKeM50eqRTKJ1T+ayMhI+vbqQZly5X/KTSIACwtLmrRsA2gSq69eusilcz5YWVvjUboMlpZWOGfPibWNbbpfW1SrUCulq2QDKR7L6CQkV+8EdgqCYAbUR6Pi9EX8nL/QMiifXQGV9JurDg+QbBfkvuRS7TIKT4K9i2S7sYT0JICtvXTFSoWMIoZcuxRySjDRMgo5csjJUqrV0h8JfRlphrQoa8ipnETHSY8RIaOiEiszdznVJlkkVJvkbqzl1JbkVJWi09hfLoRITllJXxCIDA9j+cQxTFy2BlszM4xlpG+j5JSiZK4pp8L02F9a1eeZTHtUtPR1wyO02+PjNa+7Kj6WS96dMcvkwu9/TSdYRrpZToUpLEx6LnKqNnLSo5Hh2uPISUBbWJmCURYU+bMAmi0dJRCnUhPup63sFhb6Vd7jr+JNeEwKCkqpX0OsjKQ/a3JqQFkMpb0xcipBFjLKbPJyzdLtUqq1cn1DY9Km2hQRl7awv7QqKEm9T7FpDLMwUkqPLfOxx8pI7nsi3V+tpz2QnEysHHLfQfktDunnFCfKSIjLSMsCBAeHMHLcJLZv2YSekSmiUkYqWCGT/CujFCWnwiSr8iSDVHe511cv4UBkZCS1q1WhcJHfWLpsWdrfD5k5yijuIveJlHpfP1WQSuoLbkU9cCuaXEkqXq0mTuLD97UbYOr4OFSx0r8V8GsbER8jimIk/K+9O4+Toyr3P/55uiezJSHbJIQ9iUACWZFAAAGJGsIqqywXriCKIsimgD9FEe7VCyIqIiqLCogiXPUKSADBQEDDmkAAWcISkgAJWck6yWz9/P6o6pleqmamk5npnpnv+/WqV3edOufUU6dravp0VZ3iD+G0RbpVJ0JEAis+XMqPLrmA/aZ+hvH77Nd2gW4i1VDPxmWL2OfiX5Esr4RWDvQiIlvq/Q8+4NzzL+Too45k74/v1XaBbmLzpk0sWLCAfzw+i8rKytjnovRmbZ2J8F7SiegIGp1JpBvZtHEjd914PWdM3Y9Re4zl4v+5rtghdag+1f0ZtOtezP3Fxbx619W95hchEekaGzZs4Nprr2XKAQex98f34tqrf1DskDrUkJoa9t57MscfewwXX3hBwSMd9QapVCNNjfWtTtI+6kSIdAMb16/j9zf8mFOmTOD1F+dy84yZnHP5lVRWVxc7tA437owrGDntdDYuW8zyOQ8VOxwR6QHWrFnDNddcw55jx/LyK6/w5OMz+d53Lqeqg2/aLQW/ue02zr/gAl599VX+9+67ih1OyfGm4ExE7BRz2bzk0+VMIiVu/svzuOw/TmDyJ6dy/Z8fYOSYPUiW6M1yHaGi/2CGTTiYigFDef6G89nw3nxqJk5lm1GTSJRFX/csIhLn+eef5/gTTmD69Ok8+sgjjB49GuvBXxS3HT6cI448iiE1Qznx+OOY8/zzHHPc8XziwIOaR6DqzbypkVRDK5cz9eB9o6OpEyFSwpYsepdvff5kvnHt9Rx8xNHFDqdLDdhlD/a65E6Wz32Y9x69jU0rFjNw9BQqh+zAhiULqRiyE1Xb7071DnuSrOzboetO1dfSuOItGle+A+4kB2wPfYeT6D8cK8u/IV9EStNbb73FSSedxM033cQRRxxR7HC61JQpU3hmzgvc9fs7+cF/XcWCd97hM4ceyi67jOCtt99mt9FjmPTxyUzedwr9t+nYZ1usXfMRc597lpfnvQDArruNZuddd2fEqF2pqCzusNeeamz9nogmXQLWXupEiJSo+ro6Ljn1eD5/0aW9rgOR1qffQMlLd4kAACAASURBVHb45Cns8MlTqF+3io9ef4q6j5bR72P7ULdqMSuf/QubPvwh/UZMYsDYqTBsPJbcul/aat9+ijVP3Epy4I6UDRmFJZLUL3qOxjUfkNqwgrLtx1N94PmY6WpQkVJWW1vLMcceyxVXXNHrOhBpw4Zty0Vfv4SLvn4JS5cu5eEHZ7Dkgw/41LTpvDn/DX55w0/490svcfDUT3Hc507m4E9Po6IiZjSqdrrvL3/iqm9fxug9xzFh0sdJJhPMuO+vvPXmG7y/eBGfOvRwfnzzbUV7oneqqYlUY3xHoTM6EWb2ZYJnM+wFDABGuvvCNsqcCdwWsajK3Td3dIxbolt1IqxqAFQNiF4WVybmF8qy6vzhXAcOih7ideCg6DqGbTcoMr0yZnjCZIFjrUUNZ1heHjPUakzdiZhhBVMxQ61VV0XvEoP6R38xixtWtbJP/nrjhmeMS4+qA6AqZljIvuXRsfSNGMoVoG/Ead24WOLG2o4bai6q7taURRxM5770IoMGDeYrX7sob9nuffPjmfdR9NCs5TEH6tW10UONvrsqekSk9z+KPmat3xB9wK3dFD0m4OaIoXs3b44bhralfcv6Dmbo5KOA7GFSmzZvYP382ayacz91K26gZsrxbHvgqVn1xP2zqqtrid09xdIHf8amD15j+2O+Q+V2u+fEksKbGlh671X4K3dRseN4+n5sCpaMG3Y5evurqqP/QW+ITO1Y1X2SVFRGt0XcMLhRw7BW94muo3/M0K/lMcenygKHjo4bIrI+ZgSaPhGfe/+K6Lz9Y44ftTFD+1aUFTbEa2XMUK4VMW0QpeAhXmPqjhtat2/M/5d+MZ93v4j8cUPWJuK+mHn0NlmBX+QqUvnHkOeeepLtth3KF087Ceo3Zi9syD+eWUwsiQ0romOM+yIa8//CYx486X2i78tIlOff8xY33GxTIvp/TpO17O87bL8dX/zSlwDY1NiS/tFHq5lx3738+lc3cumF5/HV8y/iqxdcnFVP3P9Az/ibTKVSfP3cL/PKSy/ymz/+mQmTPp6dF6irq+O0Y4/g6ssvZd8DDuTQI48mmYj+24saohni97H28lRTqzdPd9KZiGrgEeA+4KcFlKsFPpaZUCodCOhmnQiR3uSZJx5jnwMPLnYYJS9Z2Y+BE6czcOJ0fONK3vrtBQwYcyCVNTsVVM/af8+kbuVCRp75cxo9+kuWJfswbPpFrJnzV9a/+girZ99Bec0IyvoPo3zwjvQfd2j8s2lEpEvNnPUkB33igGKHUfIGDRrM6WeexelnnsWCBQs4etohHH70MYwYOaqgeu6+83YWLVzAjMf+RXnMJUsVFRX87JbbuPXGn/H7397KNVd9l933GMsOO+3MrqPHcNJ/fqHTz1CkGlt/TkRndCLc/XoAM5tceFH/sMMD6iDqRIiUoIaGBu79wx3c+n8zih1Kt1I+cFtq9jmG5f/6Izsfe1lBZVc982eGH3ouifJKqIv/J1LWr4aaQ84GoH71ezSsWUrj+hWsf20mDWuWUDFsV9xT1G+uwxJllG+3J8l+0Q+mFJHOUVdXx+/v/l8eeeC+YofSrewyYiSfP+tsbvzpdVx3wy8LKvurG37KT35xM5VVVa0+EG6HnXbmyh/+GHfnzTdeZ8GCBXzw3mLu+d1tLFqwgD3GTyDV1MSm+gbKy8vZe/9PMHz7Hbd209KWNK1bgg3aNTZDat0HAJVmNicj+RZ3v6WjgihAlZktApLAPOC77v5iEeKIpE6ESAl64qEH2GHnEYwZN6HYoXQ7Nfscwxu/PIulM39N9Y5j6bvTnpT3i770MFNFzc40xDz5Pk754J0oHxyc8ageuQ9rnvkjtYtewBJJmprAGzez7rk7SVYOoGKnvajYZR8SNaPy7qeo//D1gtYrIq2794EH2WPMaMbsvluxQ+l2vnjOuRy8zySGDKlh8pT9mLzvFAYPafuHkN1Hj2HpkiXtXo+ZMXqPPRm5+x4ATD30MH7+o6v552OPkkyWQSJB7caNXHfltxm67XAO/PShTJ1+JB8bNynvbMXzs59o72pngJFa9SaJIbvnLfT6DTQtmQNwlLsva/fGdI75wFnAS0B/4EJgtplNdPe3ihpZSJ0IkRL0xMMzOOz4zxU7jG4pWdmXUaddzbr5T7Nq7t947/7rqBy6CwPHHMCA0Z+gYsgOkeX6jprMxgVzGDju01u03j7bDGPooRc2z2+qDa659VSKhpXvULf4Bdb96xZSdRso32UyFSMPgFQDm159mMZV727ROkUk2gMPPcJJxx1T7DC6pUGDBnPXX+7n0Ycf5LZbb+bCc85mzJ5jOezIo5l+5FGxlzkd8plDmTXzET57/IlbtN6ddhnJtTe2/Ni/uTG4KaKpqYl/z5vLk48+zPe+fh7r16/jk9OPZNpnT2DTxo3c89ubePuNV9u1Dnd3M+ubqlu7karBJKpbOkeeaqJp0RMkd9qPxjdntNmBMLPvA5e3kW2qu89qV3D5sT4NPJ2xvqcIzkacD1ywJXV2tDY7EWZ2HvAVYESY9CrwfXefES434HvAl4FBwLPAee7+akYdDjQAY9x9QUb67UCNux/VERsj0lPsMGIky5e2/xcdyVa17Siqtg3+0aWaGqhd9Apr58/mrTu+QVlVfwZPmk7N5KMIzhBDqn4z6159LO9m6o5giQTlw3ajfNhu9J98MnUffUD9oufY8PRtYEbVntPZZuqFrLzzzA5ft0hvNXLEzixZWrKXkpe88RMnMX7iJCC4NOypfz7JwzPu59jDPk3N0GGccvrnOe2Ms+hTEdz7sGH9eu798z3s3wn38SWTSSbuvS8T996X8//fFbzxxhvMevhvXPvtr5Ms68NJZ57NNTf/jkPGRP9AlMvda81s16bFs9+2XadjZcE2pD54Fhs4ksY3Z7R3FJzrgd+3kWdxO+tqk7s3hZdYlczpNfNWrlsDMLNjgHrgLYInXJ8BXAbs7e4vm9k3ge8AZxKcerkCOBAY7e7rwzoc2Azc6+6nZtR9O+3sRJiZ7/HNGWwzIPoJvalU9G38/beJzt+3Or//FDeqUlVldHqfmBEC4kZhihlwhJgBRyLzV5RHx1JZFl153CgGFXGjbcS0QdwoTHHpUaMNJWNuloq7djKqDogfQak6ZkSkqrL2x1gdM5JT1GhIADQ8Ep3euD46PRnzhGnLbvf7//Y0v7rlAR56MHoQh1c37JeX1hTzN7Bo7drI9I82RY9OsWRN9ChPi1dHDwixZm10PXX17R9JpqExOm/USE4A9THpmzfHxLI5uMfBPcXG915nxbN/YeN7rzH8wM/Rb4cxLH74JqqG7cLI4y7FCrypL1XgiDkNMaP9vPz9w3D3TnuKoJn5y0vWUBU3ek7MmqNG+KmKOd7EjUCU8OhtjhsNx2OGz20kOj1zpJlMdRH7VcxATrHHobj8TTH5EzFjBcYNwhT3gbf+nzlb3P+QPjEfatxAgVUx/xfiRuNKNOYfKyx3FKTm9OgbWZO1H0Wmp9avjkwn5jjnOaPt/GXmbP7w0Cz+ev1VMfXk75P1C6J/zbaq6BEak4OGRqYnqqOfuZAYEH1JUKo8enQmL89fb+wIT8no/11xIz/VxRy2amOGRMo8KzD3uWf57U03Mm/uHM7+2gWMHT+RH3z324yftBffv+56EolE5P4bt6/HHP5jR11riNkH9tpxUEHH0LJR0zy18nWSoz6Df/QOqXVL8DULEt7WF+OtEN5Y/TztGOI1oqwBc4CX3P2sTgivYG2eiXD33LuSLjezrwL7m9krwEXANe7+FwAzOwNYDvwHcHNGuZ8D3zCz69x9bodEL9JDTZr4MV6c906xw+hxzBL023ks/XYey6Zl77J89l0sf+Y+tp/6n9TsdWjBHQgRKU0Tdx/FZdf/tthh9DjJZJJ99z+Affc/gNdeeZkbfvxD7vzNLVx46bc45sSTi/bshy3RuOBRSw6f6E2L/wV1a/Half06qwNhZsOB4UD6dPeeZjYQWOzuq8M8M4Hn3P1b4fz3gGcIfsTfhuASpgnAVzsjxi3R5pmIrMxmSeBzwO+AvYGNwDvAvu7+fEa+GcBKdz8jnPew3EnAEHf/dJh+O62ciQgfzvHlcHbvgrZMRKR7WeXunTaMU3gcFhHpqQo+hobfa68BbnX3NzsnLDCzKwku/c/1BXe/PcyzEJjl7meG8z8FjifofKwFXgSuDO+VKAnt6kSY2XiCmzsqCZ6JdJq7zzCzA4DZwC7uvjgj/2+BHdx9ejif7kTMA14DPuvuD3eneyLMbI67Fzq+r2wltXtxqN27Xk9v856+faVK7V4caveupzbveu097zQfmATsB/wKuMPMxmUsz+2JWEQa7v42cCtwjeWOcSgiIiIiIt1Cu77Iu3u9u7/t7nPCa7XmARcD6aEPhucUGQbEDY91FcEjvE/bgnhFRERERKTItvRsQAKoAN4l6EhMSy8ws0rgIOCpqILuvhy4DvjvsI7uohhPKhS1e7Go3bteT2/znr59pUrtXhxq966nNu9i7Rni9RpgBvAewRPz/gP4JnCkuz8UDvF6OcEQr28SDPd6MPlDvH7O3f8czvcD3gYGADO7wz0RIiIiIiISaM8Tq4cTPEwjfXf4y8Dh7v73cPm1QBXwC1oeNndougMRxd03mNlVwC+3InYRERERESmCgoZ4FRERERER0QhJIiIiIiJSkF7XiTCz7czsDjNbYWabzew1M/tkxnIzsyvNbImZbTKzWWY2NmP5M2Z2a06d/2lmbmbfyEn/gZktppczs/PM7GUzWxdOT5vZkRnL1eYlwszONbN3w7+NuWZ2ULFj6q62dr8P83jMdE7Xb1FzTDqGdjEdQ7sPHUM7Tk89hvYkvaoTYcEjxmcTPMfiSGAP4HxgeUa2y4BvhOn7hMseNbP+4fLHgKk5VR8CLI5Jf7zDNqD7ep/gZvyPA5MJ2vBeM5sQLleblwAzOxn4GfA/wF4EI6w9ZGY7FzWw7mtr9/u0s4HtcqY7Oj36CDqGFo2Ood2AjqEdrscdQ3scd+81E8Ef9uxWlhuwFLg8I60KWA98JZyfRvAgvZ0y8iwAziG48TwZpvUF6oEzir3dpTgBq4GvqM1LZyIYFOHWnLS3gKuLHVtPmQrZ78M0B04sdtwZ8egYWiKTjqGlN+kY2iVt3K2PoT1t6lVnIoBjgWfN7B4zW25m88zsa2Zm4fKRBKNQPZIu4O6bgCeBA8Kk2QQH2akAZrYLsAPwO2ADsHeY70CgD/pFJ4uZJc3sFKAfwa80avMSYGblBO34SM6iR2j5HGQLbeF+X4p0DC0yHUNLk46hnasHHUN7lN7WiRgFnEvwC8x0gtOO1wDnhcvTT97Ofdr2svQyd68FnqPlFPBU4Lkw/Ymc9HfcXdeWAmY23sw2AHXATcBx7v4KavNSUQMkaeVzkMJtzX6f4U4z25Azje/cyGPpGFokOoaWPB1DO0EPPIb2KL2tE5EAXnD3b7n7i+5+G3ADLf8A03LHvbWctMfJPujOCt/Pykl/rGPC7hHmA5OA/YBfAXeY2biM5Wrz0tDW5yCF2dr9HuDSsI7MaX6nRNs2HUOLR8fQ7kHH0I7V046hPUpv60QsBV7LSXsdSN/09GH4mtuLHUZ2b/cxYBczG0FwE9qsMP0J4BNmNpjgRiCdEg65e727v+3uc9z9W8A84GLU5qViJdBE25+DFKAD9nuAD8M6Mqf6Tg49jo6hRaJjaMnTMbQT9MBjaI/S2zoRs4HROWm7A4vC9+8S7JjT0gvNrBI4iOAavLSngc3Alwh24KcA3H0+wU09Xyd4GrgOxvESQAVq85IQHlDnkvE5hKaR/TnI1il0vy81OoaWDh1DS4iOoV2mux9De5Zi39ndlRPBEGANwOXArsDnCEamOC8jzzeBdcDxwDjgbmAJ0D+nrsfCfP/MSb87TH+t2NtbKhPBNdMHASOA8cDVQAo4XG1eOhNwMsHNl18iGLrzZwQ3Xe5S7Ni649QR+z3Bafn0l77MqV+RtknH0G66L6nNu+Rz0jG0Y9uzxx1De9pU9AC6fIODsc1fIvhF5k3gAsAylhtwJcFp+80Ep3rHRdTz3XDn/O+c9HPC9BuLva2lMgG3E/xSWUcwjvM/gOlq89KbCG6aXRh+VnOBg4sdU3edOmK/D/frqOn7RdwuHUO74b6kNu+yz0rH0I5ryx55DO1Jk4WNLCIiIiIi0i697Z4IERERERHZSupEiIiIiIhIQdSJEBERERGRgqgTISIiIiIiBVEnQkRERERECqJOhIiIiIiIFESdCBERERERKYg6ESIiIiIiUpCyYgcgpc/MhgGjih2HiIhICVsPvO7uqWIHItIV9MRqyWNmQ5PDpyz3TSvwzash0Qcr7w+WPnFl6Yw5r4mW963laXVZWLa1ZWG65eZJn1hLJNLb0by45X12mfRswiwvzRLhfLhOS6TfZdTXnKeljOXWk7fucH2R9WSUbcmeVz79kpOUtw1Z68jOElkP5Mbekp73keSuM2O2uV1j8iQsuly4pow85JfLSElEbGdmWrreRE6evM8mY71x7Z6ZJ7a9MvJn58gum/eZtmNdlcngTWXu+WPfQPDdBSD87tJ8XM+cz12W8+qpjLSYevCYuuPqyUzLLJNqKdacJ+d/kXvzMs9bhzfPet66PHs2K+bsZZllPCaO5u+D6fSUZ2xedhlPZdSfmT+z2swyqey4WsrH19MSZmY8rSxLb19sE+TEF5GWWdY9r4LYPHm7WnP1nh9relkqu0iQ1bI2J70w1XIUymgey4ndmovkLcveXBzLeh+XNzeeVLiO2qYUy+ubGNInyajqcv62fP0E4FV1KqSnUidCMLOa5PD9VgSdhlVBp6GqBqsailUOxhLJIGP61bLns5aHX+Bz82S95paLyhu7zkRzen5c4Ym1sj5h1kS42Eg2vw9fw2+a6flkIkEi/JKWyMmbzMjbvCyvfH6eZDI7T1Q8yWQQe7IsXNbcqch+n7msuYnNItPy8qRjS3+xT2R/OU0krHlZS/nsMpaZJ7e+nDJJy36fXV9+nua0nO1MZrTB1uRJJKw5jvTnVJaz7kRGW5rlL8vN09prc3kouB6LyJPeV2rKg/nBfcjm74EvCt83hq9N+a+tLUuXTb8nYllzPRFp7V5XQ/Caamz5cp4KXnO/rLunIpblzKe8lWUZ8+llzd808+v1VG496S/24bY0helNqYz3nr8snG9573nLcutpjrWVPFu3Lm/e9pbmye64eKqlo+E5y1IZZXOX5b9G1x20aUv9UXUDpBqDN+kv5k1uLe9T2V/em9ya82a+z84bUU/Ol//msqmIevLmg3yZyxpSLT17d2dVQxMLautZUNvAsrpGasqTjKwu52/L1o8n6FToi5f0CLqcqRcysyHJ7fZb6bXBmQarqsHr12L9tidRM77ly7mIiIi0m5lRU15GTXkZ+w4MOhUr64NOxYT+Fa8sr29i/DaVjKou5/5l68cSXP6kToV0S+pE9AJmNji53X6rfNNKfNOqoNNQtybsNIzDEtoNREREOpqZMbSijKEVZUwZVI27syLsVIzvX/HqivomJoSdivuWrd8TeEOdCuku9O2xBzKzQcnt9l/tm1YEnYbKIfjmNVjf4SSGjFWnQUREpAjMjGEVZQyrKGO/sFOxPOxUjOtf8drK+iYmhp2Ke5etHwO8qU6FlCp9m+xBkkP2cN/4YdhpWI1Vq9MgIiJSqsyMbSvK2LaijP0HVZPK6FSM7Vfxxor6RiZuU8nL6+tGu/ubxY5XJJOeE9GDWFkVlFXjqQa8sRYaa6Fxc97oFyIiIlJ66lPOmoYm1jQ0sa4xRVUywaA+SYDaYscmkks/UfcgjcteMAAzS3j9uvFeMWheauUreMNGrGIAiXDEJfr0zRtaUkRERLpWXVOKdzc18G5tPQs3NWDAiKo+/HN17eHAbHdf31YdIsWiTkQPFI5J/RLhcPRmlvT6teO9YuCLqZUv4w21YadiKFY9FMqq1akQERHpZHVNKRZmdBqcoNPwrzWbj0ylUv9y93XFjlGkvdSJ6AXcvQmYR3anYqJXDJibWvFS2KkYSKI6fDZEn77FDVhERKQHqEulWFTbwIKw05ByGFHdh1HV5Tyxunagu68tdowiW0qdiF4o7FS8QHanYpJXbDMntXwe3rgp7FQMDTsV1cUNWEREpBuoTzmLNgUPmltYW0+Twy5VzZ2GQe6+Jp339iLGKdIR9MRqyWNmZcBeiZpxz3ntCrxxc3DTdvMlT82PN85+xZoX5eXJnE8/nZe26osp37yuVtaR8WrWsq6WrNnzlhG7tSRmxRmEnn3Zl1l+vZazLLfe4MUiy2dtOrlxkD/f3JbZspswN+ZW8uYkZq4zcv0Z77I2NydPXgytxJH3WWXVk50nM67cPJlx5ZfPTrCItPx1525xZuz5n0NsW8bkz60vd73hA6vpkzccxibwTeF7z371zPnWloWvUWl5ZVpblrOuuPo8P0/ef6KsPM2JObOZpXLXmZ/HY+qLitVz83hGWc/J4xH15qblzLt7fhxRZTLzx9WXs80teTPzkJMn+03W4tx1Zm5WbgVRmx6TJzs5t53DZam8VWZscvZfTPbmWWQ8UWXzm7ClbEs5y9uu5nXllEvPb0o5Te7sUlXOqOo+3PnB2sHu/hEiPZQ6EdKmsFNxMfCHYsfSjZyG2qtQarPCqL0KpzYrjNqrMCe6+w3FDkKkq6gTIe1iZnPcfXKx4+gu1F6FU5sVRu1VOLVZYdRehVF7SW+j50SIiIiIiEhB1IkQEREREZGCqBMh7XVLsQPoZtRehVObFUbtVTi1WWHUXoVRe0mvonsiRERERESkIDoTISIiIiIiBVEnQkRERERECqJOhEQysy+b2eNmtsbM3MxGtKPMmWHe3Kmy8yMuri1pr7DcCWb2mpnVha/HdW6kpcHMKszs52a20sw2mtn9ZrZjG2WujNi3PuyqmLuamZ1rZu+a2WYzm2tmB7WR/5Nhvs1mtsDMzumqWEtBIe1lZofEHKvGdGXMxWJmB4d/cx+E231mO8qMN7MnzGxTWO4Ky32KZA9WaJuZ2YiYfeywLgpZpNOpEyFxqoFHgCsLLFcLbJc5ufvmjg2tJBXcXma2P3APwcOcJoWvfzKzKZ0RYIm5HjgBOBU4CNgGeMDMkm2Um0/2/jW+M4MsFjM7GfgZ8D/AXsBTwENmtnNM/pHAg2G+vYCrgZ+b2QldE3FxFdpeGcaSvT+91ZlxlpB+wL+BC4FNbeTFzLYBHgWWAfsAFwCXAl/vxBhLTUFtluEwsvexxzo+NJHi0I3V0iozmww8D4x094Vt5D0TuNHd+3VBaCWpwPa6Bxjs7tMy0v4BrHD3Uzs10CIyswHACuAL7v6HMG0nYBFwuLv/PabclQRPhB3XVbEWi5k9C7zs7mdnpL0F/NndvxWR/4fA8e6+W0bar4Gx7r5/V8RcTFvQXocAjwND3X1llwVagsxsA/A1d7+9lTxfBX4IbOvum8K07wBfBXb0XvZFop1tNgJ4F9jH3ed0TWQiXUtnIqSjVZnZIjN738weMLO9ih1QCduf4OxFpr8DBxQhlq60N9CHjG139/eA12l720eFlxO8a2Z3m9moToyzKMysnKCNcveNR4hvn7h9abKZ9enYCEvLFrZX2hwzW2pmM81saqcE2DPsD/wz3YEI/R3YHhhRlIi6j/8zs+VmNtvMTix2MCIdSZ0I6UjzgbOAYwguU9kMzDaz3Vot1XsNJ7g8INOyML0nGw40Abm/ALe17c8CZwKHA2eHeZ8ysyGdEGMx1QBJCts34valsrC+nmxL2mspwa/oJwDHExy7ZprZwZ0VZDcXt3+ll0m+DcAlwEnAEcBM4B4zO72oUYl0oLJiByBdx8y+D1zeRrap7j5rS+p396eBpzPW9xQwDzif4BrabqWz2yuUexmARaR1C+1tr9aqoJVtd/eHctb3DLAAOAP4STvD7E4K3Tei8kel91Ttbi93n0/QcUh7Orz85BLgyc4Irgfo7ftXQcLL5H6ckTTHzGqAy4DfFycqkY6lTkTvcj1tH7wWd9TK3L3JzOYA3fVMRGe314fk/4o3jPxf/LqL9rbXfgS/HNcQ3BuRNowCvsC5+wYze5Xuu3/FWUlwpqaQfSNuX2oEVnVodKVnS9oryrPAKR0VVA8Tt39B9z1eFcOzwBeKHYRIR1EnohcJfxnpspsIw+H/JgAvddU6O1IXtNfTwDTgRxlp0whGlul22tteZjYXaCDY1rvCtB2BPShg2y0YOngMwQ2yPYa714dtNA34U8aiacBfYoo9DRybkzYNmOPuDR0fZenYwvaKMongMifJ9zTwQzOrzBhtbxqwBFhYtKi6H+1j0qOoEyGRzGw4wS9Pu4dJe5rZQGCxu68O88wEnkuPfmJm3wOeIRgmcRuCS5gmEFx73KNtSXsRDEn5pJl9C/grcBzB5T4HdmnwXczd15rZb4Afmdlygl/KfwK8DPwjnc/M3iAY7evGcP464G8EZzOGAd8F+gJ3dO0WdImfAHea2XPAbOAcgptYbwIws98BuPvnw/w3AV8zs+uBm4FPENw/0mNH+cpRUHuZ2UUEX35fBcqB0wk6Yb1lSNx+wK7hbALY2cwmAavdfbGZXQ3s6+6fDvPcBXwPuD28bHF34P8BV/WWkZkKbTMzO4Pgx5IXgRRwNHAe8M0uD16ks7i7Jk15E8HzDjxiOjMjz0Lg9oz5nxIM01kHLCcYvWP/Ym9LqbZXmHYi8AZQTzA60fHF3pYuaq9K4OcEHYhags7BTjl5HLgyY/5ugl8+64EPCH5l3rPY29KJbXRuuM/UAXOBgzOWzQJm5eT/JPBCmP9d4Jxib0OpthfBdelvE4z3vxr4J3BEsbehC9vqkJjj1e3h8tuBhTllxhNcbriZ4Nf07xEOE98bpkLbjOBerdeAjcA6YA5werG3Q5Omjpz0P5Y8XwAABUZJREFUnAgRERERESmIhngVEREREZGCqBMhIiIiIiIFUSdCREREREQKok6EiIiIiIgURJ0IEREREREpiDoRIiIiIiJSEHUiRERERESkIOpEiIiIiIhIQdSJEBERERGRgqgTISIiHcrMfmVmH5iZFzsWERHpHOauY7yIiHQcMzsYmA986O5W7HhERKTj6UyEiPRqFnjXzNzMdi12PK0xs1lhnG5mFxU7njju/qS7L4taZmZXZmzDn7s6NhER6RjqRIhIb7c/MAJw4JTihtIujxPEfHexA9lCvyaI/8ViByIiIluurNgBiIgU2anAEmB2+P77xQ2nTavd/ZlirdzM/gXsGLFoprt/sa3y7v4+8L6Zrevw4EREpMvoTISI9FpmlgQ+B/wJ+COwp5lNyMkzK/eyGzM7JLwcZ1zXRRvPzG43szlmdqSZvWZmtWY2w8wGm9muZva4mW0M80xoo66xZvawma0Oy7xuZuell7v7ge4+ImJqswMhIiI9hzoRItKbfQrYFrgHeBBYR3A2ojvaGfgv4DvAl4EDgFsILnu6GziR4Ozz3WbW2s3O9wNNwOnAZ4GfA/07L2wREemOdDmTiPRmpwKLgWfc3c3sPuAUM/u2d7+h6wYD+7v7OwDhGYdLgTPc/XdhmgEzgDHA67kVmFkNMAo41t1fCZNnFhqImf0aOCx8/z7wsLt/qeAtEhGRkqUzESLSK5lZBXAc8L8ZHYa7CW6y3q9YcW2FhekOROjt8PWxiLQdYupYDbwH3GRmJ5vZsC0JxN2/5O47uruFr+pAiIj0MOpEiEhvdTgwkOBSprRHCb5IF3RJU3gvwktmNs/MnjKzPTKWLQzvU5gXTntmLBtnZi+Y2Vtmdr+Zbc1lQ2ty5usj0tNplVEVuHsKOBT4EPgt8KGZ/dPM9tqKuEREpAdSJ0JEeqtTgQXuPied4O4NwF+Bk8KbrgE2A+U5ZQfnzN8KnOLuk4DfE9ybkOkId58UTq9lpN8EfMfddwPeAC7bqi3qAO7+hrufQNDB+gxBh2OGmen/hYiINNM/BRHpdcysH3AU2Wch0u4muNl6ajj/PsE9BJmm5cyngG3C9wOApe2IYVtgpLs/GCb9BjihzeC7iLs3uPtjwE+A7Qg6FSIiIoBurBaR3ukYoBrYYGbH5ixLAnUEZyr+QXBm4otm9lOCm5KnAtNzypwOPGBmm4Fa4BM5y+8Nb2p+ALgyPOOxI0EHJW0xsNPWbtjWCG/Gvo6gc7UAGAR8E3jJ3VcXMzYRESkt6kSISG+UvufhB63kOd7MznX3GWb2beBc4EvAfcBF4StmVkbwRftT7v6KmZ0N3E5wpgPgQHd/Pzz7cSdwCXA1YARPyS4lHwLLgMuB7Qnup3icYPtERESaWfcbxVBEpHSY2WTgF+4+JZyvBla4e9+IvEcBX3H3o81sODDX3XcIl40G7nX3PXLLZZSfBawCTgaauuEwtIT3ViQIho5d4e4nFjkkERHZAronQkRk67wP7GZm6UuRDgNeAzCzvma2Tfi+jOCeh5cB3P1DYKGZHRGW+yLwf+1Y3/FAA3Bhh21B17qCIP6Dix2IiIhsOZ2JEBHZSmb2BYLLlBqBjcA57v6ymY0i6BgkCO61eBq4wN1rw3ITgDuAfsB84DR3X9vKekbT8vToxe6+vJM2qdOY2fYEl0oBrHb3BcWMR0REtow6ESIiIiIiUhBdziQiIiIiIgVRJ0JERERERAqiToSIiIiIiBREnQgRERERESmIOhEiIiIiIlIQdSJERERERKQg6kSIiIiIiEhB1IkQEREREZGC/H9fYc2MJNd4hQAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 720x576 with 8 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "response_plot = ['cloud WP', 'cloud EP',\n",
+    "                 'cloud IO', 'cloud TA']\n",
+    "\n",
+    "du850_plot = np.array([du850_djf_shift[response_all.index(r),\n",
+    "                                       latind_sout:latind_nort+1,\n",
+    "                                       lonind_west:lonind_east+1] \\\n",
+    "                       for r in response_plot])\n",
+    "mask_plot = np.array([du850_mask_shift[response_sel.index(r),\n",
+    "                                       latind_sout:latind_nort+1,\n",
+    "                                       lonind_west:lonind_east+1] \\\n",
+    "                      for r in response_plot])\n",
+    "vlim = 1.5\n",
+    "# box around region with jet exit strengthening\n",
+    "lonwest = -4; loneast = 26; latsout = 52; latnort = 62\n",
+    "\n",
+    "# plot\n",
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(3, 2, figsize=(10, 8),#figsize(10),\n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "ax = ax.reshape(-1)\n",
+    "labs = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)']\n",
+    "for r in range(ax.shape[0]): # loop over responses\n",
+    "    ax[r].coastlines(rasterized=True)\n",
+    "    ax[r].set_aspect('auto')\n",
+    "    ax[r].tick_params(labelsize=14)\n",
+    "    # extended North Atlantic region\n",
+    "    ax[r].set_extent([-70, 30, 30, 70], ccrs.PlateCarree())\n",
+    "    # set xticks and yticks for latitudes and longitudes\n",
+    "    # xaxis: longitudes\n",
+    "    if r > 3: # last row\n",
+    "        ax[r].set_xticks([-60, -30, 0, 30], crs=ccrs.PlateCarree())\n",
+    "        lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                            degree_symbol='',\n",
+    "                                            dateline_direction_label=True)\n",
+    "        ax[r].xaxis.set_major_formatter(lon_formatter)\n",
+    "        del lon_formatter\n",
+    "    # yaxis: latitudes\n",
+    "    if r in [0, 2, 4, 6]:\n",
+    "        ax[r].set_yticks([30, 50, 70], crs=ccrs.PlateCarree())\n",
+    "        lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "        ax[r].yaxis.set_major_formatter(lat_formatter)\n",
+    "        del lat_formatter\n",
+    "    # draw box around region, for which we determine the area-mean response\n",
+    "    # left vertical line\n",
+    "    ax[r].plot([lonwest, lonwest], [latsout, latnort],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # right vertical line\n",
+    "    ax[r].plot([loneast, loneast], [latsout, latnort],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # upper horizontal line\n",
+    "    ax[r].plot([loneast, lonwest], [latnort, latnort],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # lower horizontal line\n",
+    "    ax[r].plot([lonwest, loneast], [latsout, latsout],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # jet latitude in control run\n",
+    "    ax[r].plot(lons_plot, jetlat_nh_plot, marker='x',\n",
+    "               color='k', linestyle='none', markeredgewidth=2,\n",
+    "               markersize=2, transform=ccrs.PlateCarree())\n",
+    "    # plot different effects\n",
+    "    if r in range(len(response_plot)):\n",
+    "        cf0 = ax[r].pcolormesh(lons_plot, lats_plot,\n",
+    "                               du850_plot[r, :, :],\n",
+    "                               vmin=-vlim, vmax=vlim, cmap=mymap2,\n",
+    "                               rasterized=True,\n",
+    "                               transform=ccrs.PlateCarree())\n",
+    "        # stippling for significance\n",
+    "        ax[r].pcolor(lons_plot, lats_plot,\n",
+    "                     np.ma.masked_values(1*mask_plot[r, :, :], 0),\n",
+    "                     hatch='.....', alpha=0.,\n",
+    "                     rasterized=True,\n",
+    "                     transform=ccrs.PlateCarree())    \n",
+    "        ax[r].set_title(response_plot[r], fontsize=16)\n",
+    "    # a), b) etc for subplots\n",
+    "    ax[r].text(0.01, 1.02, labs[r], va='bottom', ha='left',\n",
+    "                      rotation_mode='anchor', fontsize=15,\n",
+    "                      transform=ax[r].transAxes)\n",
+    "del r\n",
+    "\n",
+    "# IO + WP + EP + TA\n",
+    "ax[4].pcolormesh(lons_shift, lats,\n",
+    "                 (du850_djf_shift[response_all.index('cloud IO'), :, :] + \\\n",
+    "                  du850_djf_shift[response_all.index('cloud WP'), :, :] + \\\n",
+    "                  du850_djf_shift[response_all.index('cloud EP'), :, :] + \\\n",
+    "                  du850_djf_shift[response_all.index('cloud TA'), :, :]),\n",
+    "                 vmin=-vlim, vmax=vlim, cmap=mymap2,\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[4].set_title('cloud IO + cloud WP \\n+ cloud EP + cloud TA', fontsize=16)\n",
+    "cf2 = ax[5].pcolormesh(lons_shift, lats,\n",
+    "                 (du850_djf_shift[response_all.index('cloud IO'), :, :] + \\\n",
+    "                  du850_djf_shift[response_all.index('cloud WP'), :, :] + \\\n",
+    "                  du850_djf_shift[response_all.index('cloud EP'), :, :] + \\\n",
+    "                  du850_djf_shift[response_all.index('cloud TA'), :, :]) - \\\n",
+    "                 du850_djf_shift[response_all.index('cloud TR'), :, :],\n",
+    "                 vmin=-1.5, vmax=1.5, cmap='RdBu_r',\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[5].set_title('(IO+WP+EP+TA) - TR', fontsize=16)\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# colorbar for response\n",
+    "fig.subplots_adjust(bottom=0.07)#(right=0.8)\n",
+    "cbar_ax = fig.add_axes([0.165, 0.0, 0.7, 0.02]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf0, cax=cbar_ax, orientation='horizontal', extend='both')\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf0\n",
+    "\n",
+    "# colorbar for differences\n",
+    "clevs = [-1.5, -0.7, 0, 0.7, 1.5]\n",
+    "cbar_ax = fig.add_axes([0.98, 0.07, 0.013, 0.23]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf2, cax=cbar_ax, orientation='vertical', extend='both', ticks=clevs)\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf2, clevs\n",
+    "\n",
+    "fig.savefig('figure6a_6f.pdf', dpi=200, bbox_inches='tight')\n",
+    "\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj\n",
+    "del response_plot, du850_plot, mask_plot\n",
+    "del vlim, lonwest, loneast, latsout, latnort"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/.ipynb_checkpoints/figure_S1_free_vs_locked_watervapor-checkpoint.ipynb b/pythonscripts/.ipynb_checkpoints/figure_S1_free_vs_locked_watervapor-checkpoint.ipynb
new file mode 100644
index 0000000..6052b14
--- /dev/null
+++ b/pythonscripts/.ipynb_checkpoints/figure_S1_free_vs_locked_watervapor-checkpoint.ipynb
@@ -0,0 +1,392 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Cloud locking vs. cloud and water vapor locking\n",
+    "\n",
+    "This script generates figure S1: total response and cloud impact from ICON simulations with locked clouds and interactive water vapor and from ICON simulations with locked clouds and locked water vapor."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load own colorbar"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mymap, mymap2 = fct.generate_mymap()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated \n",
+    "\n",
+    "* xx_cld: locked clouds, interactive water vapor\n",
+    "* xx_cldvap: locked clouds, locked water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "runs_cld = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "runs_cldvap = ['T1C1W1', 'T2C2W2', 'T1C2W1', 'T1C1W2',\n",
+    "               'T1C2W2', 'T2C1W1', 'T2C2W1', 'T2C1W2']\n",
+    "\n",
+    "response_cld = ['total', 'SST', 'cloud']\n",
+    "response_cldvap = ['total', 'SST', 'cloud', 'water vapor']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read ICON data with locked clouds and interactive water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T2C1\n",
+      "reading T1C2\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "u850_icon_cld = {}\n",
+    "for run in runs_cld:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats = np.array(ncfile.variables['lat'][:].data)\n",
+    "    lons = np.array(ncfile.variables['lon'][:].data)\n",
+    "    levs = np.array(ncfile.variables['lev'][:].data)\n",
+    "    uwind = np.array(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()    \n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "    u850_icon_cld[run] = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "del run, ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read ICON data with locked clouds and locked water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1W1\n",
+      "reading T2C2W2\n",
+      "reading T1C2W1\n",
+      "reading T1C1W2\n",
+      "reading T1C2W2\n",
+      "reading T2C1W1\n",
+      "reading T2C2W1\n",
+      "reading T2C1W2\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../ICON-NWP_lockedcloudsandwatervapor/'\n",
+    "u850_icon = {}\n",
+    "for run in runs_cldvap:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.uwind.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    #lats = np.array(ncfile.variables['lat'][:].data)\n",
+    "    #lons = np.array(ncfile.variables['lon'][:].data)\n",
+    "    levs = np.array(ncfile.variables['lev'][:].data)\n",
+    "    uwind = np.array(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()    \n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "    u850_icon[run] = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "del run, ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# locked clouds\n",
+    "u850_icon_cld_djf = {}\n",
+    "for run in runs_cld:\n",
+    "    u850_icon_cld_djf[run] = fct.calcMonthlyandSeasonMean(u850_icon_cld[run],\n",
+    "                                                          months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "# locked clouds and locked water vapor\n",
+    "u850_icon_djf = {}\n",
+    "for run in runs_cldvap:\n",
+    "    u850_icon_djf[run] = fct.calcMonthlyandSeasonMean(u850_icon[run],\n",
+    "                                                      months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "del u850_icon_cld, u850_icon"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF responses and decompose the total response into contributions from changes in SST, clouds and water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# locked clouds\n",
+    "du850_icon_cld = np.full((len(response_cld), len(lats),\n",
+    "                          len(lons)), np.nan, dtype=float)\n",
+    "du850_icon_cld[0, :, :], du850_icon_cld[1, :, :], du850_icon_cld[2, :, :] = \\\n",
+    "  fct.calc_impacts_timmean(u850_icon_cld_djf['T1C1'], u850_icon_cld_djf['T2C2'],\n",
+    "                           u850_icon_cld_djf['T1C2'], u850_icon_cld_djf['T2C1'])\n",
+    "\n",
+    "# locked clouds and locked water vapor\n",
+    "du850_icon = np.full((len(response_cldvap), len(lats),\n",
+    "                     len(lons)), np.nan, dtype=float)\n",
+    "du850_icon[0, :, :], du850_icon[1, :, :], du850_icon[2, :, :], \\\n",
+    "du850_icon[3, :, :] = \\\n",
+    "  fct.calc_3impacts_timmean(u850_icon_djf['T1C1W1'], u850_icon_djf['T2C2W2'],\n",
+    "                            u850_icon_djf['T1C2W2'], u850_icon_djf['T2C1W1'],\n",
+    "                            u850_icon_djf['T1C2W1'], u850_icon_djf['T1C1W2'],\n",
+    "                            u850_icon_djf['T2C2W1'], u850_icon_djf['T2C1W2'])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot total response and cloud impact for both simulation setups and add differences between the two setups\n",
+    "\n",
+    "Shift the longitudes from 0deg...360deg to -90deg...270deg for visualization reasons"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAF2CAYAAAC28fR/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydZ3gVRReA30mvBJJQQ++9SAdBepMiFqooIEhTwQ+kWAAFRKSqqBRRlN6LNAHp0nvvJPQSQnq7uXe+H7vx7i6BBEhD9n2efZKZnZmd3Z2ZO3vmnDNCSomJiYmJiYmJiYmJSdrjkNEVMDExMTExMTExMXlRMCffJiYmJiYmJiYmJumEOfk2MTExMTExMTExSSfMybeJiYmJiYmJiYlJOmFOvk1MTExMTExMTEzSCXPybWJiYmJiYmJiYpJOmJPvFwwhxEghxBP7lxRCDBBCvJ4WdUothBAV1fvzTeKcFEKMzIBqmZikOk/bj1NarhDCKbXLNl4jrco3MTExyeyYk+8Xj1+Amk+RbwCQqSffQEVgBPDQ5Bvlnn9J3+qYmJiYmJiYmOhJM+mGSeZESnkduJ7R9QAQQrhKKePS41pSyr3pcR0TExMTExMTk8dhSr5fMIxLvuoS82ghxEdCiCtCiAghxHYhRBlNmkCgANBZTS+FELM15ysIIVYLIR4IIWKEEP8IIeoYrjtbCHFdCFFTCLFbCBEDfKue6yCE2CKEuCeEiBRCHBFCvJtE3Z2EEEOEEKeFELFq+g1CiJJCiK7Ab2rSC5p6FtTc50j1/3ZquHwS11gvhDhquOYwIcRZIUScEOKmEGKiEMLtCR+9iUmaIYTIIoSYqrbPOCHEOSHEx0IIYUiXXQjxkxDimprumhBijhDC9TFlN1P75VQhhIMa5yGEGKeOGfHq388Sz2vyVhJC7FT76w0hxBeASPJCJiYmJi8IpuTbBOBt4BzQH3ABxgOrhBAlpZQJQFtgHXAMGKnmuQcghHgJ2AkcAXoC0UBvYLMQopaU8pDmOj7AQmAC8CkQo8YXBpYC3wA2oC7wixDCXUo5TZN/IfAaMAXYDLipaXMDa4HRwOfAW9il+7eSuN/VQJh634MTI4UQOYFGwFBN2rlAK2AcsBsoBYwCCgJvJFG2iUm6ok541wIvAcOBE8CrwCQgO0pfQwiRDaUN+6L0leNADqANSr9/aBVKCPEOirrWKCnlKDXOCfgLKI3SF04ANYAv1LIHqun8gS3AbeBdtfxPgPyp+wRMTExMnjOklObxAh0ok2epCUvgAuCsiXtTja+liQsE5iZR3t/AGcBFE+eoxq3UxM1Wy2yTTP0cUD4KZwLHNPEN1PwfPSZvVzVN0STOSWCkJjwTZYLuoIkbACQAudVwHTXfO4ayOqvxFTP6fZrHi3lo+zHQUm2PXQ1pfkGZ8Pqr4a8AK1ApuXLVPjgYsAA9DGm6qGnqGuI/A+KBHGp4jBrOr0njCQRrxyDzMA/zMI8X7TDVTkwANkkpLZrwCfXvYyVUQgh34BVgCWBTVTScUJaVN6NIpbUkAGuSKKeYEGKBEOIGyo+9BegBlNAka4Lygz8zxXf1eOYAASiT+kS6AJullInS8mYok4dlifem3t9G9bzx/kxMMoK6KCtGCwzxc1Ek2okG1k2AA1LKIykoczLwJfCmlNJoqNwMCAJ2J9EvnFGk4KjX3SulvJqYUUoZBfyZ4jszMTEx+Q9iqp2YAIQYwonLz8npNfuiSLm/UI+HEEI4SCltavCulNJqOO8FbEJRVxkKXEKZ8PYBumuS+gEhUsoYUoedKNL8LigqMqVQlu3f1qTJgTJ5iXxEGX6pVBcTk2fBF6VvGNVGbmvOg9Jej6WwzI7AKZSPaCM5UGxALEmcS7wOKOpgJ5M4fyeFdTAxMTH5T2JOvk2ehVAUiduPwB9JJdBMvEGRXBupifJDXkdKuSsxMgk/w8GAr6oH/swTcCmlFELMBQYIIfqgTMIjgRWaZPeBWBT1k6S4+az1MDFJBUJQ+oaLlDJeE59L/Xtf/RuMstqTEhqiSLLXCyFaSCm1H6D3gStAu0fkDVT/3gJyJnE+qTgTExOTFwZT7cQkpcQB7toIdQl5J1ABOCylPGg8UlCuh/r3XymaahjWxpBuI4o6S49k6oixno9hDuCF4r+8M7BMShmtOb8BRfrvk9S9SSnNybdJZmA7ylj+liG+M8oqUqKbzY1ANSFEhRSUeQqoBxQDNgghvDXnNgD5gMhH9ItgNd0eoIYQIl9iRiGEJ4oBs4mJickLiyn5Nkkpp4E6QoiWKMvZwVLKQOB/wA7gLyHELBRplz+KCoejlHLoI8pLZDcQDvwohBiBYpD1OYqUzicxkZRyqxBiGTBJ/THfgqJfWhdYK6XcptYRoJ8Q4neUCf1xgzQQTZnnhRD7ULysBKBMxrXntwkhFgBLhRCTgP0okv6CQAtgiJTyfDL3Z2KS1qwHdgHThBDZUSbOLVA+VMdqJsOTgU4oalajUWw7/FE+dHtLKSO0hUopzwgh6gFbUSbgzdQ084BuwN9CiIkoqiwuQBGgNfCa+hE7GegLbFTdfCZ6O0kt1TETExOT5xJT8m2SUoahuCNcDBxAdTkopTwMVEVZiv4eRbr2HVAOZVL+WKSU91BcGTqiuBsci+KlYW4SyTuo130NxV3gr0AZVHeCUspEV4itUCYjB4A8yVQh0fDyBsokw8jbaplvAqvUOn6A4iHG1F01yXBU1a5Xgd+BIShuB19F+TD+TJMuFKiNolo1FEWCPRHFEPpRH6jnUIyqC6BMorOoxtlNUYyf30dxQzoPxZ3g7sSy1El/Q5QP6d9R1NM2oPRbExMTkxcWIWVSargmJiYmJiYmJiYmJqmNKfk2MTExMTExMTExSSfMybeJiYmJiYmJiYlJOmFOvk1MTExMTExMTEzSCXPybWJiYmJiYmJiYpJOmJNvExMTExMTExMTk3TCnHybPDFCiNeEEP/L6HqYmLyomH3Q5HlDCDFSCPFU7tWEEAOEEK+ndp1SEyFERfUefZM4J1Vf95kOIURBtX5d07Dsx22Ol1rX6JpW10gLzMm3ydPwGooPYRMTk4zB7IMmzxu/ADWfMu8AlJ2IMzMVgRHAQ5NvlPv+JX2rY5KZMXe4NMkUCCFcpZRxyafM/AghnIEEaTrRN3mOMPugSVoipbwOXM/oeiSSnu1dSrk3Pa5j8vxgSr7/gwghqqjLMC9r4j5U40Zr4oqpcS3UcHYhxHQhxHkhRLQQ4poQYr4QIkCTZzbKTnYBal4phAjUnPcXQvwshLghhIgTQpwVQrxvqF9XNV9dIcQSIUQosO8R99JOTVs+iXPrhRBHNeEPhBB7hBAhQohQIcReIcSrhjyJS1R9hRCThBB31XtdI4QoaEjrLIQYLYQIFELEq39Hqz/sSZX3rRDiJso22lmTfDkmLwRmHzT7oIkekYTaSWJ/EEJ8JIS4IoSIEEJsF0KU0aQJRNlhtbOmvc/WnK8ghFgthHgghIgRQvwjhKhjuM5sIcR1IURNIcRuIUQM8K16roMQYosQ4p4QIlIIcUQI8W4S9XcSQgwRQpwWQsSq6TcIIUoKReXhNzXpBU09C2ruc6T6/5P0JychxDC1D8cJIW4KISYKIdye4NE/FUKIt4UQx9R7DRZCzBFC5E4iXU8hxGH12T9Q31+tx5TrL4TYJ4Q4I4TIr4l/XR0votWxY4n2vJrGQwjxkxDivvquVgN5U/XG0wsppXn8xw6Uj6oHwHBN3AogGtitieuFsrW0txougbI1/BtAXZTt3A8AgYCbmqYIyvbVd4Ea6lFJPZcFZQv6q0BPoBEwHrACH2qu2xWQwDWUAbAR0OwR9+IGhALfGuJzAhZgoCZuAvAeypbWTYGp6nWaa9IU1Fz7T5RtuLuhbFF/HnDWpJ2vPp+vgCYoS4oWYH4S5d0AVgItgTaAe0a3A/PIuMPsg2YfNI+H2tFIQBripNq2/wJaA28CV4CLgJOappLaNjZo2nsR9dxLQBSwS83bAliN8vFVWXOd2UAEEAR8CNQDqqvnPgX6qu2rkdrWLEBvQ12Xqm1xAtAMRfVrElAfyA6MUu/nTU09XTX3OfIp+tNC9f6Gq3X7UM27LBXfS2L/6aqJe1+NW6g+0x4o4815wEuTboKa7hegldqXRwEdDGX30ITPAXsBP005vdV0v6rXaw+cUduCtybdHCAe+Ex9X+NRxjpd/Z+HI8MrYB5p9GJhFbBV/d8BCAEmqp3bS41fCOx9TBmOQD61YbfVxM8GrieR/gsgFihmiJ8JBGMfTLuqZU5O4b3MRFmudNDEDVAHwtyPyOOAola1EViliU8cDE4byqutxr+nhstqB0xNus/V+PKG8g4DIqPfu3lknsPsg2YfNA/dextJ0pPvC+g/uN5U42tp4gKBuUmU+TfKJM1FE+eoxq3UxM1Wy2yTTB0T2+xM4JgmvoGa/6PH5E3sU0WTOKdrxynpT0AdNd87hrI6q/EVU+m9JPafrprndwd17NKke1n7DICiKB/1k1JQdg+gAnATWAd4aNJ4AWHAr0nkjQcGqOES6vWGGtL9zHM4+TbVTv67bAVqqstTFVGWYL9FkQgkLsnVA7ZoMwkh+qhLTZEoA8FV9VSJFFyzGcrS9RV1ucxJCOGEItXwA0ob0q9I4b3MAQJQBsBEugCbpZS3NHWvrC5d31HrbgEaP6LuS6WUtsSAlPIflMEw0SCorvp3riFfYvgVQ/xKqY4EJiYqZh80+6BJ8mySUlo04RPq3/xJJU5ECOGO0gaWADZNWxfAZuztJ5EEYE0S5RQTQiwQQtxAaa8WlMmits02QZngzUzxXT2elPSnZiiTz2WGvrxRPW+8v38RQjhq8wghnmSuVwLIAczTRkopd6GsHCT2u0YoHyszUlBmXWA7yntpLaWM1pyribJiN89wn9eBs9jvs7p6vcWGshem8L4yFebk+7/LFsAVqIWyLHZMSnkHZXmuvqpTlxNlggAoOqnATygd5HWgGsrSGShLZcmRA6WjWAzHEvW8nyH9LVLGThTJRxe1nqVQlhvnaOqeD0UK4ouyNFcLqIqyVJlU3e88Ii5RtzbRYt1Yx9uG8zwinYmJ2QfNPmiSPCGGcKIRZHLt3RdFSvsFD7f3D4BshknnXSmlVVuAEMIL2IQilR2K8lFcFUX9wVWT1A8IkVLGpPCekiPZ/oTSl12ASMO93dXU6VH8bcgz/Anq9qh+B0rfSzyfeP2UGNG2QJFwT5dSJhjO5VD/bubh91hOc51EfXPjuJHUOJLpMb2d/Hc5gbLM3ABFZy5RurYFaIeibxkP/KPJ0wH4W0o5MDFCCFHoCa55H2Vg6P+I8+cM4RRJqaSUUggxFxgghOiDMmBFopfaNQN8gHZSsaoHFAONRxSb8xFxicYuiT8IuYBLmjS51L/3jdVM7j5MXjjMPojZB03SjFDABvwI/JFUAu3KCkm3j5ooxpx1VMkuoBg6GtIFA75CCPfUmICnsD/dR1Ehq5NEEaCocDyKXoB3CtMa0fY7I7mAg+r/werfAB4eV4x8gbJ6sF4I0Vxd5UoksR93BU4lkTdC/Zv4MZATuKw5n9Q4kukxJd//UdTl1+0oS7510P/wVwLaAvsMyz8eKF+bWrolUXwc4J5E/AagJHBVSnkwiSMiiTwpZQ7Kl/PrKDpvy5KoO9r6CyGKo+iRJsWbWqmIEKI2itX0HjVqu/q3gyFfZ/Xvjie9AZMXC7MPmn3QJNV4qL1LKaNQJMgVgMNJtfcUlJtUm82GYrCrZSOKOsvjNotJlNgn1S+TIrn+lLhi5POIvvzICbWU8lxK0ybBORRpsq7fqR5MCmDvl5tRPn50npQegQVF4LAR2CD03mh2o0ywiz7iPhMn9vvU67UzlG0cH54LTMn3f5stKFIBK8ogBYpRUjjKMvhXhvQbgCFCiE+B/SgSuzeTKPc0ihSgD8pXcKyU8gQwGcVKeacQYjJKJ/ZEmQzUkVIaB7QUI6U8L4TYB3yD8qU9x5BkM4pO3x9CiIkoS1RfoujLJvWR6Q2sFEJMR7FUH4ti+POHer1TQogFwEhVCrIbRUryBbBASnn8ae/F5IXC7INmHzR5dk4DdYQQLVFUH4KllIEoG03tAP4SQsxCkY76o6hwOEophyZT7m6UvvijEGIESl/5HEWq65OYSEq5VQixDJikqldtAZxRVLzWSim3qXUE6CeE+B1lwnlcShmf1IWT609Sym1q+18qhJiEMh7YUAwRWwBDpJTnk7m/J0ZKaRVCDAemq9L5uWr9xqD0z9/UdJfUMeZ/QghvFC8zVhRVubNSykWGci1CiA4ouuTrhRCvSim3SynDhRCfoLyD7MB6FAPMABT98m1SyvlSynNCiPnAV+pH+wEUwUaL1H4G6UJ6WHWaR8YcQCmUpba9hvhVanw9Q7w7iuXwPZQv0TVAIR621PYEFqC4UpNAoOZcNpQJwBWUJfW7KJOOAZo0XXmEVXgy99NPzaezEtecb4dioBGLsnzVAcXKXVu/gmoZfVHcRN1Dcf+2FihkKM8ZGI1iZGJR/45Gb5mfWF6PjH7f5pH5DrMPmn3QPP59TyNJ2tvJaENc4vvsqokrqbbhaPXcbM25UihGd3dRpM/XUSaCLTRpZpOEdyD1XAPgCBCDot700SPq6oTi4u682q/uoXjuKKFJMwLF5aVVrWdBzX2OTOLayfUnBxQVsmNqnwpT//8WRSKeGu/loeetxr+tXisORTVkDkl4NkJxE3hcTRcCbANqGsruoUnviOJCNAqor4lvgWL/Eq6+i4souvelNWk8UMbHEBQ1ndXYvSR1TY3nkV6HUG/IxOSFQCibHlwBekopze1+TUzSGbMPmpiYvOhkqM63UHYrk0kcazVp+gpl56tYIcQh8fDOVYllGONHCiFOpte9mJiYmJiYmJiYmCRHRhtcVkXRC0w8XkJZPlgMIIRoj7Lb29coBkq7UXSFjP4/Y4Fx6VRnExMTExMTExMTk6ciU6mdCCE+Az4B8kgpo1VjhONSyp6aNBdQNmcYpoYDUfQn3wc6SymXq/EjgTellGXT9y5MTExMTExMTExMkiajJd//IoQQwHsoW8hGCyFcgMrYd3NKZCPK5g1argE/AGOT8M9pYmJiYmJiYmJikinITBPVxihW/YkGOP4oVrFJ7WbUKIn8Y1F8cPYApiV3MSHE+6j+KbP5+lZ+EGLcZMvExERDkJSyYFoVnid/AXnr2tXkE5qYvLikaR8smD+fDLqWks0KTUxeSFK1/2WmyXdP4ICU8qgh3qgXI5KIQ0r5QAgxFhghhDD6n30IKeUMYAaAEEKei7Rpz9H7rdYULFqMYd9MAsBqs5/P6eaoK8vX6VoyFwuy/2+L+/ffwMDbDB76M39tOkL1qsUJDLpLyINIOrZ7hfZv1aVFm+GE3l2Cg4O6QGGN1pdrDGPVB52y6sMu/v/+ez5Gv+9FaIx+0y7bY9SR3Jz0zcbZUf88yngbdqW1XeLkyStMm7Ga+Qu20qpVIz4e0IOKFcs8XLjtkiGscZEqDfeneZYAJBj3D9GkjzXsMZAQZriM/lnaLPqyZYJ93xNrvPG565FWqyFsvwdLSKi+Grf19XDK5aMLY7W3O/cC+o0OXbKXIiHByg+/7GXM5G3071GFwf1q4uqqvh+heS+22EfWSTlv04cd7ItiwskTkWtMAdKQW9eucjzUXqfbN67z1stVmLpoJRWq1cBBCF16Y5sr7vGYSYPIpw9bt/3774qVO/l67Fxu3LxPubIFOXT4Anny+PNet+ZERcUSGHSbGdMG2fPajM/N0Aa1C29O3rpTJyKq68IRcfq8D2Lt78jY/4z37+HszONwN/TRhIQEdm/awNJZ07ly/ixtu/WkVZduZMnmS4Lh3btonq2j4bpWQ72cHfSLp9p6ORrOlXFdr6+kRd8XSNCE4/QyF1usPq3Nom/P1nj7+GWLj3tsWsutYF044eYDXdgpn33Xbhmj3+/IvXhBXdjNPz+37kQyYMQ2Dh6/w09j6tGkrtpVDPf/UB8zIBw178zB8NPsnAfhPyBN+2DQtevEhdjH7pmz5/LTjF/Ys3Ujbm5uSEcXXXrpaH/XCYZFdCf09ypshh3F1b2VEhISGD58OPMWLiJ/PqWfnj57lvp169Cz27t8PX4ioz4bwiu1a9qzWvXvRFu2MI7NhncgjON6tH38tUXpfz+Ek76PCVfDbvcO9n5iiwrXnTKWZQu9S3B4JHO3HGDaul0EZPWiX5MatKhUHOL1z8bBRf/uheEeIq7a+4azp75OLlk89Xkd9Xldcwfoz7vZ0wt3fV7HbDl0YTz18wlp3x8Lq4++XOnkqgsnGKYT8VZ7RJxVf9LVUT/mxNv057VDkEU998+O7Xw2qD+lSpdh1DcTyJ0nD0lhKBoPZ/s9OCfo50BC6tuwa9bsqdr/MsXkWwiRA2VHqX6a6GCU2ZNxi9McPCwNT+QH4AMUx/tPTGR4OJv+XMGaxQs4dnAfhYoVf5piUkzBgrlYPG8IoaGRbN1+gqJFclO6dCEcHR0ZPXYBDetXtE+8n0Oio2NYsmQNM2b8SmDQHbp3bc7JE5vIkyepXWtNnpRDx27w/v9W4pPFjd3relG84KN28X5+CLp0gXVLFrJ+2SI8vbMQHvog+UzPQNvX6tC2TS3OnAniwsUbVKlcnDwBOYmPt1CtZh8+G/Z2ml4/rbl1NYjV839nzfw55M5XgNfe6U7d1m1xdnFJPrPJY7HZJNP+OMYX43fTs1M5Zk9uipuLSD5jJsZqtbJt5z8sWrqC1es2UL5saaJjYnBzc0s+81Pg5OTE2K9GMGr4Z2zbuQs3V1cqlS+Lp6cnh44c5fKVQF6qUC5Nrp0eSCnZfvQMs5avZ+PhM7SsVpY/Br1DpexZ/k1jfUx+k8cTcj+YMcM/Y/fOHXw1bgItXm2Z0VVKMZli8o2y4UMciqN8AKSU8UKIQyjqKEs0aRsDy5IqREoZq+7M9AMP776WLBOGD2XBL9OoXPNlVu89Rp58RqcqaUPWrF60bVOT69eD+e6HVSxauoMbN++zZ/ukdLl+amGz2bh5NYjAq/+wYcN25i9YSc2aLzFkcEdaNK+Bk5MjOJgT72clIsrClz8cY9H6a3w7vBnvtK+EECKJlZDnC0t8PO80rUfo/WDe+99g+gwdjnMyEt7UolSpApQsmZ89e04zbsJilizdzit1K/DmG6+ky/VTi7iYGK5dusD18+fYuHwxp48cotmb7ZmyaCVFSikrTXFW8+f+WTl5IYwPRx9GOLqwZfGblCuVHQBpTUgmZ+Zm05ZttGn/NjlzZGfOrOk0blAvXa7r5OREo/r1iIqKYu36DSxZsYptO3Yx/YfJeHt5pUsdUot7D8I4feY8+05fYPa67bg6O9G9YVWm9HqDbF6KgMTyIG2FCv91pJQsWTif0SM+p80b7dj0z368vL2Tz5iJyPDJt2po2QNYKKU06g1MAuYIIfYD/6DspJSHx+t0zwEGAt1RdqtKMcMnTaXpa2+ybM5vtK5RgVr1GtGmUxcqVauJj59f8gU8AydPBVG30TDatqnFqBHv0KB+BWWymgk5dfggJw4dwGazERURTtCFc1w+d5bAi+fJks2X8qULUbtWFY4cXk/+/AEPq5KYPBVSSlZuusagbw7SoEYuTu7oT3Z/z+QzPic4u7iw9vAZ/lq5lJVzZ7NybhFadehMo9avU7JseVzTSPqWyOiv5zH7j794t0tTtmyaRMmS6fPx/aQkWCxsW7+GkHt3kdJG8K1bBF04R9CFcwTfvkWeAoUoXKIkTV5vx9jf5uPm7p7RVf7PEBWdwJjpp5mzKpDhfcvQr3c9HBzSXtotraHJJ0oFmjVuyIn9u/hj/kLe/6A/AXly806njjSs/woFCxdN05XY+Ph46jZuQa5cOWj/Rltm/vgdWX18ICHJ3dkzlFv37rN6214sCQnExVu4eOkKZ65c42zgdSwJVkoVyEO5Ivn5ZWgvqpcuigy7l9FV/s9w4dxZhvyvP9HR0fy2YCnlK72U0VV6KjLc1aAQoj6wBagupdyfxPm+wGAUP+AngY+llDs05wOBqVLKCZq45ijbvp5KiatBIYS8H69/DmGhoaxYsoiVSxdz/MhhPDw9qfhSFUZ8PY5iJUro0t6J1UuSjPqa2rDFIHVyd3bGZrPxTvP6tHyrI53f76s7769ZxvR13KWvuFHf1KgT7VRKFzwTadeDMupjGusVY9Hr1WVxc+Py+XN8+9knXDhxlFatWuHo6Iinpyee+YtSuEQpChUrgVeWLA+Vrb3/ct779HWMMRjZxRl0s7XSXGuUvlyDfp81znBeo99njdWfS4jQ61pbQwx5Iw3P1mKXaFnD9LphWr3spPLGh9nDsRH65xp1X6+Pmqusry7s1aI8AGGRCfT6+hJXrkUw9cta1K2eG0ukQX888tHSFGcff13YyV0vJRBOejUEodFndPDIjcj+GVLKNJtlCCGkcSw6e/Ysv/32Gxs2bODChXMUKRJAk8ZV+XrM+7i6JqM24fDyI0+dCNO/AycHBwIvXqBTo5dZtusgufPadcSNbfkh3XKjPrlN00cNdTgT8fhxQtsH70Tp26OTWo+tq5bz27ej8cuVmwIlSiGEIFv2HHjmKUiuwkXJnrcATs7OOj3u6Hh9+wzIqtfHzO+TRRcumc0uafQVf+vvL/6+PmwzrLbEa/SpDTrd1hi9UXt86F1d2BJin6BYQww2GOH6sOWGvq1rdbNjQvWTNWM4PkYvnb4Ton/HpV+yf9D6tLD/fOw9FUav8Zeo9VJ2xg2uTE5/dxKi9eOIzqbDMC44Z9f3bUdDH3TQ6FQb9Y0dPAJwzDMyzftgRJT9OUfHWdj692YWLVjAgQP7CAsLo3SZsrzXqzetXntdp3sbb9DbdTJ8kCQY9Ha1urae6v8TJ05g185drFq2WFnJU9HqFsPD+uMOMfZ3IB0N8kSDnrrNRS+scIjX9DNDuY63zurCcWcOEhkTx5jFG5mz9QANi+Uni7sLTg4O+MVYKOzjRREfL/zdXAm9om8XkbcidWGfAnbbnhzl9KvBngHZdWEvQ9gpq70dScvjP0yEq/7D28FNr5ronN+uWmvz0v9G2Nz19kc2N52/jGwAACAASURBVH34fqxmjLHo2/p9g61EWKz+2fq42d9TXII+b8GseiFLYluSUvL9xG+ZNf0nPh48jHe698TNWS+gFMnYqCQY2qnF9uj5r4tBXz6vr1eq9r8Ml3xLKbeiGFE+6vxPwE+POV8wibj1jyszJfhkzUrXnr3o2rMXUkquBQWxbvVKWjd6hdmLllG9Vu3kC0khK+f/gSU+nre69Uw+cQZx8cxpurZsRPf+A1m3fIlOB/B4aOaTTPyXiIu30WnoMYoXy8GSHxvi4pI5V0RSm5IlSzJu3DjGjRtHXMwWTp8OZNTo32nWYhArlo0ha9bUWWaUUjJq4Ae8P2iobuKd2VgxazrLZ01j4PjvKV1D7231eujzrXKU2TlxKZK3R55h+te1aVk/b0ZXJ11wcnKicdNmNG7aDIDbwcEcOXiQwf/rz9WgIPp8OOChyc7TEhQUxHdTprB9x85UKzO1iYmz8NY3v5Hdx4v9EwfiHWr/0Lp37HIG1uzF4McpE1m9Yhkbd+wlV+7cGV2dZ+b5teZLR4QQ5C9YkN4fDeDHWb/zzlttWbpgPiH372MxSIifhqljRtK287s4OmbOSdW1y5fo3qYpn4z5lu4fDUwz4xuTh7FaJT2/PImfjzM/flnrhZl4G3F1daFSpeIsWfwV5csV4eW6/Th58jLh4VHYkvEikRyH9uzi8J5/aPFG+1Sqbeqzbv4fLJk+lQmLV1Gxdp2Mrs4LReCtWNp/cYrxHxR5YSbeSeHr60fDJk3586+/Wb54EZ8O+pi7d+4QExPDs66gT5o4kSpVqlKgQJo6dHlq4uLj6Tj+d3Jly8Jv/TuRx88n+UwmqcaieXOY9/tvzFu66j8x8QZz8v3ENGjSlCVr/uK78d9QtXQxArK4Uz2fH/fu3H7qMr/6YTpTvvqC08eOpGJNU4fTRw7R741X6Tf0C9p0yByeH2yPWSr6LyGlZPCUc4SEWZg5oiyOjmZ3dXR05Lsp/enxXkuav/oJAfna4uxan9faDnvqMitUrUGHHr15r02zVKxp6pBgsbB69kz+mDiO8YtWkTNvxuuhSymfebL1vBAcGs8bn56kf7u8tH0le/IZXgDyBASwYt1f3Llzm0Z1alC6UF6K5/Fj1dLFT13mwEEDuXv3LhPGj0/FmqYOt++F0HHgV3i4OjPzw/aZYhy22WwvTB/ctGEd34wawdwlK/4zE2/IBGonmQ0pJX+tXcOFc2cJCrxCk+av0qTFq7o05StVYufh4wBcOHeOVo3r45c9R1LFpYhK1Wths1nJFZA5pCo2m40dG9Yy76fvuR54mT6fjqB91x6pVr7VamXt2j2cv3CNS+fOERefwLCBrSlW1K77lpBgZeeeK5Qr4YO/nydSSnbuucak6Qf4c9Ml3Fyd8PF2xtHRgbPb3sbd7b/XlL/bFc3emzGs+7EKri4ZP+CnF/fv32fNmjVcvnyZ+/fvM2zYMAIMY+6A/u0Y0L8dACO//JWIiKdXu3B2dqZ0hZe4cv7cs1Q7VYkMC2P9gj9Y9esM8hQszLiFywkoVDjVyg8Nvsfxndu4e+0qkbdvkq9IUTr1+QhXjXHmvbt3OXn+ODVrlMbZ2YmYmDjm/L6ZyVPXcv7CLby93YmNjefjfk0Y++VbqVa3zEJUvOTtL07Rtq4/vV4LSD5DGiJj7iafKBU5fuwYu3bvISjwCn7+/nzY/+N/fXMDZPHx4de5inMyKSUvV6lI4aLFnvp6+fMXIEeOHOTLn/Efl4mcvHCF7/5YworNO+ncsjGjW7XEKRVXp89ERHAmIoLQ8DvcjoyhdYn8NCio90998mYwvkJQPI+ij301OJTpy7bz++a9xMRb8PFwIzg8irM/f0q+7NlSrW6ZhUP79zLwwz7MXrCUImns+jm9+e/NWJ4SX9W+ZdeufxjY9306duxI6aKFGdj3fQYMGEDrPgP/1UWLVVVN4mJjGTbkE+q3fp0ww4YZWiyaZXEfV72xk01KDu39B7/sOfHw8tYZWGrrBYA0LMkZxwGj8VfsSl2wlPMhe0CzAYiUktOHd7Jn/2Wu33zAwmUH8fRwYeAHDXnrtbdwdrZA/BTNDembTXlDNTC427JF2PXhbKGS4RP2snrTFRq9nI8yRXITGmalZoPP6dWlMoP7N2L5mpOMmbwVD3dngq49oGLZ3MTEWnjwIIL+Xcswe1wNpISLZ65QrdM/xN65jHRxIO6M3hjOGmx3nmOL0eulJ4Tq31dMhP68Nf7RqgwR9/RGkuHR+onx+Qd6A7awOLvRT8UcekM6D2e99MIvUmlbC07GsfBoLCs6ZkFsPE44YK1j2LjBYNhpi9LXyyGL3rjmzv049p8K5/CZcKpXyEbTWn6P1K900GygIeXFJNOkOgmKcd/wz7/n+InL1K9XCTeXOKpXr8jK5WOpUqWkpoKKMePp06eZMXMDk+ct40xUtX9P59RoRhkNostlMaxSWc8zdtsf1K6UnVLu2/RGvg76/orNYOhpO/Po+4merQuWcjT4YXexe1CKiYljz/5jnDgZyLnzN1i4ZDctWrRgw5+rqVy5ModD9O/WaKyZzaAKpt2Up1qW7fpqhV6l+mujKFo4J+XK5KVQo7ys3/g33V+ZwZRvu1KocmEmfPcnv83dRoG8vgRdu0+9l4uze/9lKpfNxtSR1ahTLQ8RUfF8M3knJw8fIeaiMmmPv2efJCZc0xtnGo2a42/p23PUA41hcri+PxqFfHcNdp93o+33fz3C6O9eb3SWP4u+Hr5uhr5vsRFvlfReF01RL0Ff3zAerFaELQnVDJtzGQxBZby9rTn66K9rs0nOXYth/+lwrt2No1OL3BQJsKeRWmMwg7GmcEsfF61hcYpEtUXz5rRo/RqFihTh7783sWfPXiZN+wUvL/vvRmJ15/06E6uEfCXLERan3P8Dg8FdRLy+D+b0tPcjVycHrFYrW7ZuoecnX3AuTH/vWd30Y5SPwdg6RtOPjIZ/TgbTrywGgzs3jQFmyOFN7DhwlKAbt9my9xBHT5yiZ8OqHPm6D37eHlxcuEWX10GjAhh5U29Q6WhQDyz5pv5X8oKHC0O/W0TrKqUoXKgAlbw8GL90I6uCI5jc/FVu3QthzIx5nLkchBSOeHq4U6xwQfYcPELXDm9ydPuXZPfzJSzsAdWbv8VFrwIUqVEHhyi9UbPNQ78xjtFoMt5T8+wMO+EkvstEYsIerWJ7P1p/zmJQBfQwGEZmc7fPIbIYnlWigeW5s2fo9W4npvw8k0qVq/wr6de+QoOtJk7JyKhioqM5euQQh/bvw8vbm05vd8HDM2mPYRFxz6bOmBzm5NvAxYsXKVWqFOPHj8fR0ZH27dvTunVr9p08w8gpP+Oibk4RGR5O/85v4uvvT5/Pv3yma1Z9+RWKlS5L33ZtWLhsBd5p7K8yPt7CoQOn2bP3NHv2nWb7juN4ezpRu0YR8ubJxrTJnXildpE0MXzZtucG434+zKzxDalbLTcFihTEwUHQrWNFBo3chH/xr6hbsxCzprzBK7ULExsTy987FFeFjSo76tx62WyQLYszF4KiKFvs+fLx+TjWnI9n0p4YFr/pTU6vZ5d47zoVwYCBZ3gQZqFqWR8qFPdi9IyLjPz5Ap90LcQbjTKX7/ULF2/wdqdG9OrVBoDatcvS/NVBTPtpEG+8Ue/fdHv27OG1115j4sSJlK9S7RGlpYwhn3SgWcth5MyRjf790l795P79CHYfOs+evafZvecUBw+dp1zZglSuVJQCBXJw7Ngx8uVLG+PPgZ8uwmKxMuTjFpQolots/rno9k4DNm85zgf/+4UbN0Po3qU+J/ZPICCH4OatUDZtPcOY4W0okdM+683m44ZwgNg4K9ExCXi4/zd+Tqw2yf82xeDqCGPquT/zOCilZOyKe8zafg6/LM5UK+WNn48zjT88Sp2KPnz6bkFKFMg8G2Q9CLlPbGwMQz4fjn/2HPTs8wGfffIxb73ahF/mLiJA3f9CSskP48eyaukifp6/4pmek6OjI4NGjKHv22/x45zFFC+drJOyZ0JKycULFzhyYB/79u3jn927uXv7Ji9XrkCxgnnp2Koxc99tjJtL6rfpyHgL3X5dzWtVS/N+42oUL1MWVxdn3m5Ui++Xb6Jqh774+WRhyHsd6NLqS5xzFeLwidOcPn+RP374liw+9gm1m4s/zs5OBF6/ker1zEgCr1yh/ett+HLMWOo3bPzM5QXfu0vfHl05cuggpUqXpUq16pw4dpQp47+h63s96dv/Yzw80rcPZrirwcyA1s1ZcHAw7dq1QwjBvHnzyJUrF5GRkbTt2IXAi+fp9ckwKtSozYcd2lKxWg2GjJtMTDKbVjxO8p24TbbVamXUx/24dOo4i/9cj6/qV1wv+U5mG/tkJN8A9++H0+jVkdhsgpdrl6VmjdLUebkcBbIbXKw/bit3kcyAJB8t+T5++h7T5p7k/OVQzl0OJTQ8nr7dqjB+hNLBgkMl/n6aL1FNPSwP9BLYuJBbLNl4k08mneHHT8vRKLtBgpVpJN/2l1gxh95Fmoez/jlf9HRj6OZo5rT1olR2Jxyd7D9onnX0y7opkXxvPxFOz+8DmT68DI2q+f778SIdBH/vC6H7iBPsmVODgBwGyalO8i3xrrEh7V0NWjYDsHXbUTp1+Zp+fV7j02GdcXBw4MjRy7RpO4wa1cswbOjb3Lydk65du/LHH3/QvHnzh9z45XSzS1OMku9SXkZ3lucBCAq6Q5MWQ2j3ei1GjVTtG4ySbwej5Psxnn6MbjMdlMF985bjtHtnClUql6RmjdLUrFGK2rXK4u2p6VcuzXVZk5N8G7eIf5zk+/fflrFxyynOXbjN+Yu3cXNzYdn8QdSpXRqLJYHoqBh8fNQfogR9e7WFntSFw25d54NRhzl9OZzFk2uSw8EuAcw8km89j5N826Tk13twJ0oys4UHbs76Ju9dTb/6mJzkW0rJ5wvvsO9iNPNHlSWPv709RVlh0vyr7DkRxvopFZOVfPvUX5bmffB6SCRSSr4d8yVLFy7gx19+o1qNWkgpmf7TVH6aMoG3u/ekS/f3mfTNGI4dPsisBcvwyKZ3U/ekku9E1q9axrgvhjBl1jwqVq0OQFY3vWTUx1Ufjkl4tMs7o8vDLC4OSCkZ8skg/ly1krp161K9enVq1qhBlWwJOqcHUXs36fJeXL5bF36c5FsY9jHPXdXebqLiLfx65QZnb9zjwq1grt0Po2T+3Oye+gUODg5Eefji4eaKs7M6HvgbftcdNOOELYGzFy/TtmtfWjVtwLj+3XT3kJzk2/Ykkm/jHvEakpN8Oxtctubwsv++GCXfd27eoE3zJvTr/zHdevR8yBWh9TFTVuP7Brh39w7t27xKs5at+GjgEJ3DiMDLF/i4Xx/eaN+Bd7vrVWuNku/iObOkav97cRRJU4i/vz+bNm2idu3alClThkGDBhEWFsbUBcsY+s1EFv86k+bli9GgZRuGjf8u1TyUODo6MuK7n8mbLz9LFsxLlTKNhIZG0bDFCJo2qsjRQ9P58YePeLtzIwoUyJkm10uK8qX8afhyPgJye5Evt+JP+HKQ/QdeN/FOAW80yk2j6v58Oe18qtYzIzgYIhm8KZpZrZWJ97MSHm3l3UmXmf2/QjSp4adbNbgdHM/yv29js0kiozPXjof161Xk4N6f+HvLYcqU78avv62jTJlCnD45hxo1StOy9RC6devGn3/+SfPmzZMvMIUUKJCTXdum8P1Pa7h3Lyz5DE/Blm0n6dTtB1YvHszG9eP4csS7NGtaDW/v9JO6dGpXg8IFs5MvwJe8eXwJDo7g9h3FbZqzs5N94p0C3FwdGT2gHLfuxTLvz6vJZ8jESCn56aKVq2E2pjf3wNXp2X9nF+8J459zUSwbWEA38QY4cDqcHUdCSchc3Q8hBEM+H8k3k7+nd7cuvNelA4cPHqB7734sXruR2zdvUuelMgRevsjclWvxz/H09k5Gmrd5g48/+5KfJ45NtTKNDPlkEEcPH2bvwcP8Pns2ffv0oVKlSunmbczTxZlOdSqQx9ebAN8sZPXy4PKte8Spe0n4eHvaJ94poGTRwowY9CE/zJrLxaDnWwJ+7+4d3mzTku7v96Jbj9RxvTygby+atGjJ4M9G6Cbe8fHxrF/zJ4FXLmOJT393yebkOwkcHR356quvOHLkCAkJCZQrV46Zk8bxcsMmzP1rG5vOBNJ78GeprpYhhKBSlarcvJ6MhPsp2br9BNmyejF2VJcM9aUqpeTq9QgOHL9L5Qq5ad20BBHGTW1SQHhUAh0GH+bq7VjW/FA1DWqafhx5IBl10sb0ll5UyJU6S53uLg4kWCUVCtknU1JK/lhzk9rv7iWXnyvHltSmRMHMt0tmQIA/WzZP4sfv+7No8VaKFu/A6dOB/O/jDly+uIgLFy5Qo0aNVL9u9uxZKVggB9dvBCef+CmYNmsTY0Z24OVaJZNPnIbExydw4vR1Lgfe5b13G+Dvl+WpvCccPBVCnbe30OPNQnzSvUTyGTIpNin55bKVC5GSX1p64u6cOuOjm7MD+fxc8PGwT+xCIxLoN+kCH044T7+38rJ+SoXk6xd5K1Xq8yQ0bNyUfw6d4OW69ejXoys9325Pjpy5+GbKVHYfO8Oshcvx9s6SfEFPSJmKL3H7ZtpMIhMSEvj1l5ksXbkKH5+MdBcoeBAZw+HLN3FxduKT9i248+DJP/illEz4aRaDR33LpkW/UqJw5jFYfVLu3b1D+9da8Ua79vT9sH+qlevm7kaZsuV0cUcPH6JFgzrs27ObxSv/pEfvvo/InXaYaifol7wTORhm38Ti7q0bfPhGKz764iuatHmduAS9WkV+L71Ew1e/OZmOEIPNQrBhZ81Dqxcyd+5c1q5dq0Rod8xLMKiGiGS+1A3plyz+i8UrDrHkj/ex3NHvNGmJ0BtqWKP1ebW7OkrDkqJRpcO4FGu9Z1+Sk/H2Z3c/2saIvyJYftbCmPrudC7nSlyU/tnGReqvFWeV7L5tY9M1Gztu2Wie34HBFZ1wdhTERenTalVH4qz6Z2W16X9coxP05y1W/XepNn/pgvrrRD/QfzjkLK4f1F087JNpj9pFdeeklxsT5wUxY8UNZn1RmjpF9Oof8ZfsBmzWe/p3Eh2iv65nLvskOsEm+fGIhZnbQtkzvABZXQWBwRYGLgomPMbKpFe9KZ1To1pifbSajXB0IPeXt9Ne7SRmhS7uVHzLf/+/uGk0PftM4dLZ2YqU2Nj2Y42qJIa+8tiL68tq3XEG7d+oQef2tR9WsTKoYTx03kUjBTSqbgFt231Dl06v8PprNbHd1e8eqd2h1Ran30XVlqBvc9KwG9/jdmw19tfEPiil5HhQLN2nBnEvwsq+z/OR08cJyw17WcYdWRPibdyJsrE5KIENgVbO3bfyVTUn6gcoz/Cq5jU4Cv3YFhL7+F1J4zR90GLT97+IeP1zfimn/j080JRdqqj+up5++j6VpZH+w+euxYFeo08TZ7GxYGx5skTbn338ef2kN+6efmwzPh+fwva+f8/diw9+uY6vtxMzeyuqA2sPhTNk7k1efSkLnzbyxsvNfp8y5tHSN0e//GTvvSfN++CtUI3akGZ932Kx0P/Dfggh+HLSjwDcibTX9360vu4hsfrnYlQ7eKBJbzW4ji3r60SH2uVYvPsk7p5e5PTSt5t4g/qD1vNfIcPura7CoLJw7RR+5esQdV7ZTFtqd/a9G6RLKw3b2stYw66rMfY+5pynoO6ccNG3OcvNQP15Z2XsjYu3MGf9dj6aNIsm1Suy8tshOLgZduH08dOFre5ZOXjsJMvX/sXyDVvw9fVl/vz55M2XjyO39SpVfh76yciNcP1vhrdGp93ZoCpjMeh3xBrUPyI1v+VGg0ofg/exPF76evg46cvatHkz7/fuS88e7zFg8DCdcNC4e6o2p6ezvl25WvT3/9eG9fTqP4gfJoylVbMmxESE89WE75i3ZDnffvkZHdq2/vda0kVvII3U19HVL8BUO0krTp0K5EYSEq8cuQP431djmT5hbJr71mzVqhVHjx5l3759ySd+QpatPkLFcpnDnSHA1VAry89a8HUTnLtv5fdjcey+kcDtKL0P0+gEyaZrVgbvsdBgVTxzz1sp7+fA8mYufFbZ+aFB43nh2r04Wn58lJ1HQ9kxowqvvJQ6rqKuhCTw2m8h7L4Qw99D8pPVw5E5u8NpNukG9Uu6s/7jAN3EO7MgpWT7zpPExT1sVd+mdS0a1KvI9Jlr07wevbo3YNQ3K7BYEpJP/AQEB4eza88ZypXNHBuJCCFYvCeUoPsJlMjlwi87wlm0P4IjtyyEG/Qdb0TY+O1YHB3XRNNqeTTH7tnoWsaZza1d/p14P4+s2xdCnfcOUKtCVtZ+VwnfLKnTL1adiKbByIvULOHJzz3zEhVno8fP1/hyyW1m9M7HuC55dBPvzML9+8GcOHbsoXhnZ2c+GTmWHZs2cPNa2qoXeXp5U6tRMxb9MjXVy16+YTMVSmeeFRonR0dG/7oUm02SxcOd8XNWsmrbHs4GXsOiEfJZrVb+OXSMgV9/R9HqDen20WCcnZyYO28e23fsIG8aGWenNXFxcQweOoze/T5k9q+z+HTokFRZlY+OjuajQYP5YNAwfvv5e1o1a8KRYyeo0rAF127c5NCWdXR8vU2GagD8N8zTU4nVa3YzfOTvtH+rHk26j6R0pcr/nqvX7FW+HzWcnZs2UL3Bs1vfPgovLy/Gjh1L165d2bZtGzlTaV+HZSv38s++S8ya2iV1CkwFKuZ2YmdXby6F2LgcauN8iJW1wVYuh9qItkgK+Tjg4Sg5HSIp7ydonM+RIZWc8HN7PifbicTE2Vi49R5fz7/Ohx3y81H7fDp97KfFYpXM3BvN1H8iGfiKFz1a5MDBQTDlrxDm7wlnTf88FM2pSHoymZopoPiX7z9oFnfuhtH3/WbUe7c6vv72DvDpkA40a/UZH/Rtg5u7+2NKejZaNK3ID9M28r+h8/h+YvdUGaBjY+PpP2gW7d+oTbGieZLPkE4MfzMnHSq6cfGuhYt3LWw9G8OM6zFcCrHi5SIo5ONASIzkfoykUUEneldwoWYeR1zUD17jytTzwtW7cUxadJ2tR8OYO6osNcpnTT5TCrgZZuWLtaGcu5PAvP4FeKmwB+HRVjpOCaJgdhe2f1UU90zssz/oyhXeaNWCsuXK817vfjR7tRVOTso0wdvHh9c7v8vsn7/j068npmk93hv4OX3bNqZ81Vo0b9IoVcq8dOkSn477nrnff5Mq5aUGjo4OHPpjPGcDb3D+2k3OBd3kt1UbOXvlOtfvBlMgVw7y5wvg6Onz5M7hx+tN67N6znRKFy+KEAKLb+b4kH9SpJRs3badYZ99TsECBdi/exd+fn7JZ0wBm7Zspf+gIVSrUpkD2/4iq48P/+zdT/tu7zN59AjavdYy+ULSAXPyrWHYkE74ZPHko49/ZN6Cv6lQvSaden9InaYt8HRxoVjpsty8GpR8Qc/IO++8Q2BgIPXq1WPL5rHkzu2ffKZHEBoaxceDZ7N91ykWz+6Jp6dr8pnSCSEE+bI4ki+LI/XUuES1k4h4yZUwG/dCE6joL/BKJR3MjORWhJX5c67xx6a7VC7uxZLhJXmp8tO/Wy37bybw5fL75PFxYF0PPwr6OuHgIJixNZRlByL586M85PTJ3N3d0dGRnZu/plPXSQz/agEu45bTsl0nOvXqR+mqkmLFAoiMjCUqKjZNJ99CCBbO/oBmbcfxwf9+5YeJ3XBwePoJ06HDl3inx3eUKJaHH6e8n4o1fXZcnR0oE+BKmQD7uGC5EYaUkluRNs5cj8fTGcpld8TRQZDwGC9AmR0pJQdvWvnj63PsPBFO50bZ2fFdeXwDnt1NqcUmmXPKwsyTd+lWw5Opb/niXcADq03SflIgFQq683Wn3KnykZ2WvFSlKivW/UW3Tu3p0/0d8gTkpVvPXrTv3AXcfShWqgxrli5M83rkyJOX4VN/5asPuuPz40xq1Wvw1GXZbDamz5jBmK+/5vMPevBy1UqpWNNnx8/Hm9oVSlK7gqIOlah2Ehdv4dL1WwQ+iKJ8yaLkz6O4hLV5PL+b6cTExLB8yWJmTfsRm83GoIEf06lDh1QRcNy8eYPPPhnI4aPHmfzt1zRv0hgssZw8fYZ2XXsy++fvaVK3VvIFpROZ+9c4HbHZbDg4ONC3TxuKFcvLW53G4eLqxoLpUxk9oC+1GjRiz9bNDBk7IV3qM3z4cBwdHanX4CO2bP6OgIAnF4H/s+csHd+dwqvNXuL4/ol4uUYlnymT4O0iKJ/dkTj35/fHPpGTdxKYtj+GrVcsvNXQlfVjS1M0IPUmj1/uimVTYAKjWvjwainXfweymw8SmLQhhHWD8mb6iXci3t7urFw8lKGfz2Har1uJjoqiX/vXGOpuo1SJ/FSvVgI/v9Q38jKSNasnG1cNpVnb8fQdMIufprz3VBPw0d8s4Yef1zJ5XHc6tq+TocucT4IQgjzejvjmfT7azeOw2iSrzsXz65E4IuIlfdrnZ+qAonh7pI66zJ0oGz3+iiW7u2BNr+wU9rc/s9+3heDkJBjbOfczvXtLyM3kE6USFSu9xLq/t/Nux/ZER0Vy+OABvpvwLcXLlCMiPIzOPfqkSz3KV63JyJ9mM+yDboz5fhov139yCXhwcDBd3nmXqOho/t60ibK+z4+KlKuLM6UL56esT+pIhDOSe/fuMmv6NOb8/hsVK73EuG++pmH9+qk2Hq5auZL+H31I7+5dmfXzVNxV4YyUkv5DPmf4kIE0rv8KWDPPSp1pcIliaFIgjycdWxehbtVcvFTGj5sXL9Hp85NULZ2FYV0LsuNUPBFRFvp1KorNYIjhklXvasnZ2zBRFk+gR2jYBe+bH3Yza+4+9m3qj29WvRGHLSJQF7ZE6J3fjp52iktXI/jtG+VrL/KQ3UdvdYaQwgAAIABJREFU5EG93p6zwZdqfLRe31VrVOhg2EbKYvCjbDX4WtWefxClv47REFLrExsgVmOEZTSKTE7VOzbBXk+jAVdqUtI3XBeu1dbeHtYcj2LomnAGvF2Id1rnJW9pvWcDo6FrxNHjunDk3iv//h964+GPp8vhkp7bLaxu5kw2H/2zWxdkZdn5BH5r7v6Q32SjYWtMnP5hOmiM5VxdoNo6W5obe71c2Z83m+ajajlfyhbzYd70/Xyx4BYT3s1DkVK+bNz/gNrlfKhZNovOABjAOb+vPuxlDwtHwwTS4INWGgxrhGYb7YgYK216b6NCyWxM/qwKDs7GHS/146clym4IKBycqNj2L8YNrEDTl3MRd0M/gYo/8+gJlfH+QoP0BqROhv4aG24wNtb0wZgI/bs2+sE2GkZGaHawjTP0ueSMJjMKra/uVxvZm2mCTTL4uDMXrsUw9N0CNKnhh09xveTTEq638wnfddD+/xH9Owq7pTe6c3R24KdTCQTHwBeVHfHSGHe6ejrTbWUEzYq60L6sK/Ex+vdgHDcTNGFhGK5cchWk2MSzad4H27bvRP3GTSlboRIxrlmY9PlAgi6c4/MpM7gRdIUTB/fSuc/HeHh56Xxqa43vAMJi9WHjWB1lsd+ri6P+Zm+H6X3aHz+4nw3fDqDxx98SULYqFfPpVYQaFrb3dWfDysKFk8do/3prjp+7hLOzM76RBn312/Y9KIS/wR7K6Evfv5AuLOLt43GCu378MWI1lHVHM/7m9Hz8B67RIDVE006iDL+1EXEJhrC+jVkMZWnfi9FI0ttVHzYaukZr3qGbYU6gNcC8FnSF99u34ZX6DXi/34cULVYcL43qlfH+Ig2ra46Gd6r15e3prPhtr1C+HD9M/ZFGlUvp0kbcuETu6k25d3AzXp4e2ML0fd0Wq/lNtRn3NjEYXNbtaBpcpgVLfmyAJcHGN9OOUazhUtp+cpy8OdxY8Ncd9p8O5502BejXqWjyBaUyQwc0pG7Nwkz6aXvyiQ10bFmQzf/cIj4+M2r4/vdZczyKYSsfsPK7KnzUuRBZvVPfyHF1oJWWBRzwTEItp14+J04EWwmOeT5WDz7oXIxDJ0PoNfwguV5exYxN9ymQw4UPZt2gWF53BnXMR82yaS/11uLt6cyqafVY/tdVTl0IfeL8HV8twLod6e8mzkSRen24Nor7YRbWfVeRZrX8U13twyYlfwbaeKuIQ5JSvJbFXVhzPv19CD8tpcqUZdXSRXRs3YwOdSsRej+YkOC7zPt5MjXqN6bnJ1/g4eWVrnXKVaICr/T6gt2zxyNtTzaWlatQgew5cnDowP40qp3J47h5/SpdX3+Vvh8N4NspP1C0WPFUv8bevXtwcnKibt26D53LmsWb+jWqsGLjtlS/7rPy/K8pphIVS/lRsZSyvGOzSU4cOM2RcxEUy+dO9qwZK+35fFBjqjSYzP/61ME3W8o3wMiTw53YOCsPwuPJ6Z92OrImSbP2ZDSDm/pQvnjaTBitUrImyMa0ukl3Yy8XQcP8Tqy9lED758D9a5uGAbRpGABAdEwC+1Yf52hgDBduxencnqU33p7ODOhWiq9/PsmCH55sQ6piBbzYefBeGtXM5HHYJKw7H8/VtdXwcEsbdYOD9yRezoKSWZOe1Lco5sKIrdHcjbKR9TkQdXXr/QHden8AwJELQZw/eYzzJ4/i5Z2RPrGhYNX6HFo6g8CD26hU4PUU5xNCULhIUa5cvkyNWrXTsIYmSXH04H5KlS3Pu++lzoY5STF3zlw6v/32I1VYurdrw4wFy+nStkWa1eFpMCffSeDgIChewJPiBTxp3yRXRleHQgX8eL1lOXr0X8Kcnzvi6Zmyj4EVm65RvYK/OfHOIHJ6OxEWnXZS56PBEi9nKOrz6F91F0dweg5+9I14uDtRrZgH1YopH5tOHhk7VL3fvhjfzT7DH8sv8M7rxVKcb87qIDq0eA6+fP6DODoI/D0EYZEJeKVR+9l4zUbDvElLvQHcnJSPZBdH4DnT8PTLkZOaDZpQs8H/2TvrKCmOtY3/enp8Zt132QUWl+AED06QABGIK0QI8RsnrvdGSEJy40L0C3FyIxAixCDBIcHdlnUdt67vj1l2pnthF4In85yz52xN9VRXT5e8VfU+7zPiWFcFSZLoMXEKC996kj7dO5HZ7MBOocvKSlnwyy88+8LLR7iGMewLaRmZ1FQf/InhgUIIwaeffsKvCxbu9xqT0YD+KKmXHgxixnctbn9sCY/dfvyqJD77nzOYesvH9BrxLDdOGYBOJyG85UgSnNIrm/y8+jsTMz/ZwtXnHf5jnhgODBnxMnuqD2+s6Gi0SpDwheDHPQqDsvdtYW+pUjithR61NMHxid9XldO78/FJLrJZ9cx5fSjn3Pgrvywppl/3sF+/JMBkkjl9eB5mjY/k7mI3S/6s4L3Hex2LKscAZNh1FJX7yUk3N37xX0D/LB3/WRHk/JY64o31DfBCp4LVIJFo1uE/BPcvb8mJLRt+ONCs5yA8NZVMv/ochl94Fbb4RCQJqtLjaJLXlF59+9f7zkfvv8/I0WOIP6Zqlv9cpKVnUlpSdMTKlySJkaNGMeOZZ3j2uef2ec26zdto36r5PvOOJWKES8JEk3OHpfPSbZHg+8ZUdQi4aKKVbFGHpgq61epyil9NltJplZOiEPKqSXRaZbtAQWTV6FtbwEervPy2w48Agt4ggRD8uivIgwMtJFREVnfFXoUH17l4rYe5joQSTVjMi1cThwy6hieGaMJipYZ0pf2uN7h/UqVWqc6pSXtDx98K9a9iZY2HtQ4fH02IPGPKyTmqa0p+VROA1m9VG9EbKxsOg7bd7ee9gmoubpJIrkXtU27QKTy+uYJss55BKXYyTPteaytCUOIL4goJvIqCNyRIMco0s0be853ri4842WvW9U0Y2jHiT6rPiEyYhkw1oUlvV4fb8leXqNLRaqCSRd1eFQ2ZUXGqCV6hssh3/YVqouPu7U5eWRui0icQApSQoNADrqDgsZ4y24oiZLBVzkpKfYKb2oTbtNWgXojFpakNQqkBf2RtiL/KMnVZFpN6HPdFuRlr+5jDr24n2v7sDkT64IneH9/eXck1PWFoXlQf7KmOs170yy5VetHGyHhd5mk8NOsXxQ5KfEEuyEkg2xat+hdkuyvEI+vdjMs2MjzdgFW/73fsDgl2ugSeUPj/gFDonCCTVEtMS8ppwujPjjzh8tuNkX6kVTRsqiH8W6KO1JwaXlGZW00A1hIBd0b1QS2hrqhK3R+1+cVb1rLky1kIJYQQgniTnrVLf6PH4FN5/LH/YDSG27MQgrNO6c5/H7mHAb17ABD842dVWdHqkVplSXTqtr9XlXIvRGLkVFzn05DhNYxZxaQpO7ocg9o+UMxqN0XFqHY1jVZ8dGsIlx7NOyvXBE7QCtJFCxtbNGqRQQ0R0qhVwIzKN2tIs5badu50OOjargWFJWWq06GGqBd7NNoBCSb1e4hWtTQ7iqhxOOg1fBxTJ1/M9RecoT6Fcldx+5Mv8e2CJTxw3SRGdWujyheuSLCEHTt2sKu0kiqXhxqXF1mEOL1Xx7pdc9vZtx/W/hfb+a6F0dD42fxTM9excHkZn7wy6pjEa5UkibO7WDi7S7izesrCA9jq0hDXznXTxiwzNN2AJwQ/lQUYmCbXY3/HcPQQL8s4gkd2x7mZ1cgZmXG8tbuSUWlxdE9UD+TXNk/ktwoPr+ys4ILsRPJtRoQQ1AQVtrr9bHD52ezyYdbpiNfrMMs6zDqJ78r8NLMaGZMeh/0o+a0Y92OY7EWNM8BF01YyYXgWl513bGLd2gwSN3WODJtBX9gAeH+r4JKfQozP8JFukvEqgjmFCnd3OLGN1xMdcXqZEveRO30CGJ1u58tiBy/sqODafBuZUf7lzWwy97Sz8mWhn/vWunmogxWzLBFUBAVehT+rQ6ysCrHNFSLTrMMmS1j0EgYJZu3ycWaOkWHpx48a7coli3jojpt4/u0Pad702LhTZbfqwPibHqpLt06346yp4sV7buKi00dzz7+fAGDT+nX4/QH69+q+v6JiOMKwx8Uh62RqampIOEKnD/FxcXz1wVtMuPQq/li1ihcevguTKbKh8OhNV9CjYxvunvEaC3p34ZGpFwJQ7XSxaNlq5i35k2+W/ElVjZP8rDTibWYSbRZ2l1Tw5Gfzee7KM+nZ6vC39ZjxXYvdJd4G8595az1vfroVm0XPzI82MPmctkepZo2jY5rM/862M+VTN89s9mCVJex6iXNyY6/3WCLOoKPmCBvfAO3jzHgVwXdlrnrGt1XWMTTNRqbZyPt7qkkzyhT5gugkaGox0sZuZGSanUSD2kgs9QV5fkcFFlliXMbRiTCyu2L/MVj9AYXTb1hKToaZu/+7nhFDWpCTceDk4yMJSZI4v4VExySJuxd7CAkwyxI9kyXaHrp+SwyHgDi9jlLPkT3dlSWJ8ZnxzNxVye+Vfk7PUvfBPKvM1BYWXt/u4cF1HgRQ6FFINUl0iJcZnWmgfbwZWYr0QYNOYU6Rn7d2+GlmlTlazlhejxuzZd/9au0fK7lh0gV0O7k3j951K6+8M+u4iVtvj0/klmfeYMVnM7l5ymRsNhv2uAQeuv2G46aO/1RkZGZSVFh4xIxvgPymecz98B3yu/fjpssvomObCCdAlmUmjhzM4F7dOPmsy1mxYSubdxVSVu2gU34TRvQ8iTfvuJJO2UkqLQev08noB1/h0hnvs/q52w57nWPWWS3+2OxCCLHPjrpuaw1Pvr6O3z4cQVV1gNFX/sjowXlkpR8fkz9AvEnimhbqQd9uOLI7PjE0jAS9jCMYwh8S9Y7souENCj7YFGJiq7+2SxoSgl8q3IxM238IsNY2E+dlJxBCEK+XKfAG2O4OsLzay7elLhINOpqYDZhlHb6Qwh8OLwOSrQxK2f9x6eHG6l2+/eY9/c5WUhINvP1IFx56eRM3PbKUD2YcX6I1nZIlbm0VmWBOSq1u4OoYjgYS9TK7HI0b31uqFdZXCsY0+2t9cI83wB5vkCnN97/auqSpieWVQdJM4Ql+TU2I7W6FD3f7cQQFTSw68mqFf0p9Iba7FO5sY6Z13NE7Pdm2cR3tOtffKQ4GAtxz01Rue+DfDB8zjrNHnMLcL2YzatwZR61ujUGSJCZfcwOTr7mh7rMW/l0NfCOGo4GcJrls376NNm0b3rD8+KOPaNeuHUnN2jR43f7w7KszmTBquMrwjkZqUgJzn7ufPzdvp3VeDjuLS/lh4VJ+W7OJmXN+xijr6N4yj2aZKXj9Ab5dto78jGTeu/miIzLPxIzvWggEBaV+mqSrffwURXDtwyu4++qO5GbayM2EKRe059Jb5vP1zFHI8gkYSiKGowKjTiLNqGdNuULX9H1PoHtcght+9lPlE/xZrjA5a/+RE/aHRVXh046T4hr2T823GflgTzXrnD5aWo20sBnpEm8mxShTGQix2xvArwisBpnLc5PINB/d4+5VO7z7XABvLvDw/KztLHi7H5IkcdtlLRg4eRFvfLyFyROPfuz9GE4c5FkMfFDS8OnT97tDPLg0fBpk0cPBLjcVIfii2MHwNBu2Bly0jDqJVnaZh9d7UAR0S9TTPVFmbJaBOL3EVpdgl1tBJ0HHeD1X5euxNKYkdpixafWqfRrfn735EumZ2Yw+YwKSJPHAU//lxsvOp3O3HmQ3yT2qdYzhxEL3k3ux6PffOHXkqH3m+/1+brvlZr6dNw9Jkpg1Zz7JGs5dY9i4ZSuvvzuLFV/PavC6Fk0y+XXlWgZNuYv2zXM5tXt7powbQpvcLDyOapZu3MGuskrSE+K4/7xTGd293RHb4IkZ37U4c2Aava9YRo+2cfz35tbkp4LHG+Lfr64nFBJccXaLumvvurYrIy76msdeWsm0a7odw1rHcDhRHQgREAK7rMMVUnCHBDlmPbpD6HzNrEaWFgX2aXwv3ORm8lwfl7XXc24rmYu/9TNfH2JI+oF1y98q3Syt8lAdDHF5XvIBDRJl/iCXNklUkSkBEgxyvc+ONoqrg5x02xbO6BnHAxPC0UR2FHuZOmMrt09qSW5m+GTHbJJ5b3p/hl78Hb06p9KxdWJDxcZwgkAIQbE/hFWWkJFwhBRkCdKMf32aSjPKeEOCPU6FbLuGBKcInphTwXsrgrxwigEh4JpfAtzTSiHuADhAnpDC3FIn6xw+Mkx6eiRYgIblqwMCQgJmdLbW668JBh1da5uylsTuKD46Qk2vPfkQX856i0n/uosuA4YhhGDpz9/x2cwX+WDuD3V17ty9J5Ouvo6brprEu7O/JqbX9/eAx+1m5/atZOU0weFwUlZaQm7T5sQn/vUxtleffsx44tF95hUXFXHRhReQnJzMb4uXMP2JJ7jv1ht4buZ7B1T2r78v5vFnX2TB4mU8evdtZGekN/qdgtJyrjh9BI9MvVBFuFTcVtrnZdWlha9hV+RDRSzaCWGWd9F/cqnxKry+wMGnq9xM6mPnuR8ddM4x8sBpieRGn+iHBIU1IU59pZyXJybSu4l6cjB3a6pKG3Miq7hAqTrmZahCzZIO7qlUpQMlkXyfSz2wV+xSf9fpUQ+AzoC6XtEDunZwDzVC4o2WoNZKtVf71EabNqqDO6oeAUV9H21kFG3ZviiJ+CMZeaE6EOK57eUYdTpcwfCk71MEt7RIJcnw1++7xeXnvYIq+iRZ6Z9sxSLrqAqEWFXj5dcKNxOz42ltC+9Yb3D6+LbMybXNGvfwDCiCBzeVcFluEk0tBuQDXCB8WexgtzdAhzgTnePNxOsP7NmORrSTTVfa2e0Q3DrfS5tkHTpZ4ouNAS7tbOS6k82qqAeSTuLjtT5eWOLly/PjsWgew941IhWtz1GTM4O7ylXpQIG6z3mKI5GAPFVqVxht1JGqiv2rx5pkdZ7Jrj5JkBsw8LSEbq3ceEgj9axouAXR8vI+TYi76GgmUL//RkdFcge00YjUFdHmHwqWVnmYU+pAImyghoQgx2zgqqYNS3c3htlFNWxz+xmWaqdD7elQoS/I92UuPCGF83MSiKvtBx/uqSbLrGdAcuP738uqPCyr9nBmVjypB7hACCqC6VvL6BAXPnHqc4CiafHZuVzzw9Ij3gffWbKNNUsW8MJdNzDpxtv57otPcFRVMXXag4waearqeqMEV1wwgXYdOvGvu+9T5WlPAPyayBmeQCRd5lYrgDo0kVO00uVJmhO5nPhIOklWzz36nStUaSXK2AqnI9GMhFudJ4KahZRGflyEomTed6pDQSb0UIcXlYzqSDHRUVawqDk1wmDWpNXupCIq+onQaSTgZfXpZ0AjTqa19qLdIRVF4fSxY9m6dQsVFRVYrVZKSkp48ukZXDb58nqRUowi8ltLPnVUKJ0n4nLncrvpOHAMfbp14p7rr6R9q3wc1VXM/30ZNzw4nUvHDefuqy5Ap9Ph8nhpPuIClrz9JLkZYbtJ0kSdEcFIexlz878Z0LUDU88eQ4LdVk8SPvravfhuyR9Mfvh5bjjnNLq3zOWUzrXuMJr3q7jVz2Qdf0Ms2smRQrxZx01DE/AEBHPXenjtghS65YUbs/CrO3VWvMzT4xO49tMqvr8ymQRzbOV/okIRgo8La+iTZGVoqh1FCF7fVUlLq/GQDG+AFjYj1zZLYX65kye3lmHS6fArCs2tRqY0TSIlatJuZTMyu0hhjzdAdiMuH6X+IClGPfkHuVs9Ot3OrxVuvi5x0sRsOGDj+2hAkiRy4yVeOtXClG88dM6Q+e5COykW3T7D8E1ob2LhriAP/uTm30OOH/5FDAePCn+QuaUOrshLJtOkp9QX5OWdFZyeeehk3/EZcWx0+fmuzMncUifukEK8XkeHODNDUm3ooxauPRMtzC6qoX9S/Z1pLUr8QVrZTAdseAPodRLXNEvh/wqqWFDpPmDj+2hBbzDQue8grnn0OT6c8QhnXXYVw8ZPRN6HSIlOp+OJ515h/LD+9B04iN4DBh6DGsdwuPDySy/h9rhZ+edq9Ho9Tz/9NF998QUXXXLpIZVrs1pZ8+0nvPDOhww7/ypSkxPZUVBIj47tePa+Wzitd6fItRYzE4f1452v5zPtsomNlr1u2y5euHNq2PA+QAzr2Yk3772OkTc8xGWjB0aM76OMmPG9D0wbeWBHLENbmRjR2sx985w8M+7oRISI4fBjndOHR1HqyIU/V7jZ6QmQZJCZtacaHTA4xUbafuJkN4Zko8xZWQkMCYQIKII0o6ya2KsDIX6tcNPcaqB7ooUlVR7GZzZsfBf7gqQbD8xwLvUFmV/uItusp3+yjQHJVn6qcJFygN8/2kg0S8wab21wZ3gvHhhk5dR3a/hpR4CBTY+fkGwxHBzmljoZkGwj06QnKAQfFFZj18v8WB4+3bPKOsZm/LXQMZIk0cZuorXNSIE3SJJBVu3MCiHY5g6wuNrD2Iw4FGCHJ9CoG1axL0jPxMbVg4UQrHX6+L3Sw5h0O5lmA4NTbUjlrka/e6zQqc8pDBs2rNHrklNTeXj6s9x107V8/uNC7PZYeJ8TEQ6Hg38/8jDzf/4FvV7PyhUrePiB+xk6fATXXHUFSBJjxozhrAkT/lL5NquFW6+6hKsvnMjazVvp0jq/Lhyg4qzC4/Uxc/Y3FJVVMGncUM658wnuuOQsVfQRLaqdbqocLvIy0xq9f7XTzfMfz2Httl3MvOdaBnfvyCWjB9Gj7bET34lt1x4i7h5uZ9FOP99u2n+khhiOb2xy+ekSb65z3fArgh4JFnLNBtrYjGx2+3GFDj1kYJJBJt2kR5IkFCGoDoT4o8bLjG3lrHf5KPQF6ZFgYVWNF08j9yvxh0g/gMXAsmoPL++sIMkg80uFm40uH47asuP+BmThOJPE48Ot3Pm9mxpfzIXuRIQiBJtdfromhI/bfSFBskGmvd1EK5uRdKPMWseh+19KkkQTi6HO8A4ogjJ/kNnFDj4tqgkvwkMKPRMs/FbpbqS0A+uDQgje2l3FD2Xhxe+7BdV4QwpFvuB+Ra9ONAwcOoI+AwbyxAP3HOuqxPAXsXDBAjp16kyLFmFuW2HhHs44awJ9+/Vj6PARVFdV8ceqVYd8H7vNysmdO9YZ3hVV1Sxbu4ke50zljc/m8u1vy+jaJp/khDi+WrCswbLWb99Nm6Y5DRroAFsLiul43o1s2V1EpcPFnS+E/cn/3LKTjs2bNPjdI4m/R+8/hrAZdUw/LZ5rZtew5Hoj+piozQmHrW4/JydGQsSNiArZ5wspzC5y0OQwRv4QQvBeQTU7PH4SDTIXNklkdlEN2SYDiQaZjnFmfix3MSp9/7tIBd4AJyc0vOvmCSnMLXEyKTeJbLOBFlYj7xZUEafXkW0yHFdh+g4F/fMMDGxm4JlFXu49pfGdyBiOLxT6gtj1ujoXKJtex/k5kdPHJVUemh5mMnBVIMR/azke2SY9p2fG8WFhDfF6mV5JFqZvcTfo/uUKKjiDIZIbcUtb4/BRHVS4rlkyOknCrwie3V5BQBGc2kBoUC0cxXsO6vmONm5/4BHGDuzDqmVL6dy9x7GuTgwHiZ9/+okBA0+pS48aPYZhp46uS//fe+/Qu2+fw3rPV2fN5uZHnyEvM43LzxpFQUk5Lk94kX3XpInc9/L7jO7bDb1u331s+YZtdGjRdJ950bjzhXe5duIobr/4DCprnPSefCcLVq1n7bZddIgZ38ceVRsqVOmgV+18H/BF0lpyU1GxggVB4aoydJKEfZdTlW+OiwzgRquGIKFRX9PyXwPe/d/XnqImV2iHcq2fbCiKe6BoiI9CaWzXUE12i0a2oiY1+D3qZ5L1kbT2eRUNf0FLuPRGES61efW+qyGDRZPDtMSwvWUJIXCFFCRJUZFQ9+bPK3PR1n54F1UbXX7K/UHuaJmGvnZCrgqE8CoKihAMTbUxY1s5fZOsJOxjci/zB9njDdA6p2H3qLUOH00thjoDIt9m5OqmyXgVcci+7EcCjlL17mZ0mwxp2r5e4zLjdYVItErUFIdVX8WySHxfS7Em3rbmVCFUoz61MkaxN3WymvykRVz6/vuNtr9qoSVNHgy0A7f2XtFprbK1TXNtSkhNLAv6I+8hoDlNcGik6n0aEnR0P6v2qQ1XLVlzb3/1hIJIhMmI2n7mDSn8WO5iTPqBG6oHgnmlTnonWhlWawAvr/YQJ+so8wfJrnULmVsaXrjuC4urPHSKOi3bHxZVeRiSYquLmHRaRhxdvUFkCTIPYuc7LiMb1hx5A/ykqAW/1aB+Nq38eDIRiXgPZYR8HjrYfLQIFiK5PaprRWWR+kbpEaOpVZJafEXyq7+rC6hPIaSAur8qDsv+81LUxpnOpiZVSnLkHUghjS5GI8EohD7Svg391OOE7FaTuENWTTvyRhE9DQ2PMVJQ/UzR1wu9hmCpGVM8jYwxeyXiC4tLMJrMKoLmXqLrd999x+aNGxnSswsmf6Te0aRKqVJNOHUv/bHB+5btKmbao28yZ+pZNBES4OGyX3+naWIcy597lXZGAyangxl3/psJnVupvqu3WRBC8MI7X/DAmH6UfjMnUg/Naa7bZOD7RSt5YcIpuNesxB5n5Yd7L2N7SSXJdivWgAslUOv+pdcs8Pdj9B8unPjnzscBvtkjyDBDTcNRpmI4DiFJEuc1sTKrwFEvb53Tx1qHl/GHgfQVjSJfkNZ2Ux3RyyBBvtXIh4U1uEIKNllH53gzP0VFwnEEQ3xf5mRRpZt5pU56JFgwNrIg8CmCOE2kgDSTnlyL4ahJxh8NhIRgzk4FmyHswhDDiYW2diNpJlnV3iG8MP682EELq5H2cQ0bKAeLIl+QdlFx8VtYjezxBfm6JLxx0s5upMwfZKcnsrGwxeVnfpmL5dUefq9y0+8AyJJ+IYiP6muyJJFnMZBjPvAIRScCvv1pAQBu75ENzxbDkcGd997P22++wcaNG1SfFxcXM+VoDiIAAAAgAElEQVSqK3nt9TeIjz98/vy7qxwk2yy0yYhEfRnZKpe3V27g+53hhdpF7fJ5fuVG9kbkE0Lw5qpNvLF0LS8uWo0EDGjR8M61y+snwWrGYowslNIT7JzcKpeWWUdLN3bfaHDpLUnSvX+hTCGEeOgv1ueExA3tJF7dKDj7R8EVreHS5H0rZcZwfKJrgpE3drjY4vKTZzFgqDVq55Y4CAjBrD3VTMyKrwtHdqiQpXAotb1YWu2lyBekU5yJL4odbHL58SrhSXtcRviab0qdOINK3dF83+TGJ35B/dBSf0fIksTMIQb+szzInB0K9/TQ06txDk4MxwkkSaJzvImV1X62u/11RMciX5CVNV7SjTJzSxyMbMAN62AhS7D3YGVvtKNsk54Ug46XdlSwyxNAAdY5/eRZjPhCCrP2VNMp3kyJP0i3BAtZB+CKJgQcOlvk+MfYEUMoLa9g7IVXMnbEEB677VoSDqOxFsORRXZODl27dee7ed9gMVvIzcsD4L//fY7y8nIefOB+xG3/YviQQYflfkZZJhgVFnB7pYMnfl1J37xMVpdV8cLKjexxebDqZXZUO2mWGMe8rQW8v3oLA/JzKHK4mTa4R6N2luD43ZBp7Nzr/r9QpgD+UcZ3glHilo4Sp+cJHlgl2OTx80BfY50RF8PxDZ0koZfgpR3V9E4yc1ZWeNK4umky1UGFXytcfF/mOixhzyBsLO497qvwh/imNsTaF8UOMkx6/pWfwh/VXuaUOlnj8OJVBOudPm7OT8VyECTJdJPMmsNAVDsR0CFZx9tDDXy5Q+HqnwM8IgcY1TIW/eREgVEnsdbpY73Tx+S8JPKtRrLMBu5okYojqPBeQRVt7CaaHybfb7nW3Qvgt0oPQSG4uEkCj20p5+ImibS0GpmxrZw/a7w0sxhY6/TR0mY86Igr6SaZEl/wsNX7eIUsy1xx4TlMOG0kdzzyJAPPnsQXbzxHbnbmsa5aDAcIm83OvXdN45WXXmTZqtWg13H33fdwySWXsmjRIq67+TZW/f4LJlPDSsoHAoMs4/YH6na1b/r6V67v04mgovC/1Vt4cdjJWPR6Rn76PR+t3Ua3rFSeXrSaO/p1ZniH/AO+T5PkeKrdXqo9XhIsh/f07FDRmPF97OKwnIBoGS/xSh+4d7Xg7C+9DMiR6ZKmo3e+TLLl73PMf6LDrwi+KHRT6lewyxLjs6y0shmpCIQwRy2YzLIOs6xjZHocT28to2+S9YAijDSGljYj35c5GRmyExACWZJINcp0jjfxQ5mLk+JMrHB4aWs38VulB7NOYnxG/EEZ3mX+IFvdAUo08en/zpAkibHNZFrES9z4i4fPN/rpnqWnT8hHpxwjJn1sMXy8oMgb5IdSH+6QQrs4E3lmPc0sBop8QVUfTDDIJBhkRqTZmVPi5OqmSYflVLGNzcjiKjctbEZcIYVss54EQzhu/uKqcJ9zh0Jkmg0srHRjkXUHRZAMCcF2d4DKQKhR97ADgfM4J1zuRVJiAi89/iAzXnyVPqdfxNhhA+nTvRO9W+bQMjc7diJ8HOHjD97nl/nfEwj4+ddtd3BS504UFRVSVRXxVzeZTLRs2ZKWLVvy6YezePmNN7n+6qsO+d7ZCXaSbRa+WbuN/skJVHp8dMpMId5k5IXf/+S3PWVU+wP0yEhhZXEFmytrGNY8h0FND3wxV+Xx8uPGHRhkmY2F5fTMzznkeh9OxBQuCSt7LTlNbdhUONQuBlpikepar0aq2+TjjyqFdTUKGxyCzU6Fc/J0nJMnkWBV/95a5TpbknpVKUcRy7TXGkzqOmmJkAazJj+6LA1hTUtUkA5G0llrFGoIbSI63VAeqP0xUIsbKQENUU5DJglp8qMJe3uJnmUewTU/+Mgww5AmOhYXK/xRLnjyZB3T/1Qwy9AvQ6KlCfJskd/z7a2wpkbh7vZ6FKH+7UIa8qq2rUS3j70ktPcLqmhhM3JyopVntpUzITOeJhYD6xw+Pi6qJskgM7Vp8n6l7YUQbPcEWF7toSIQIs9ipGu8mXSTnnd3V7HTE6B9rYrl4dh1OxoKlyvPUu9UR5OchaaZ1FN81ChPBhPMLNgTYlWZwqoKqPEJpo+w0quJAYNF2y/UbV2OculprB9o26+IUudTnOpTB8WpJiZrSc7aZ2wISqME6f1Dq57ZELREV0XTP4MaNUIlqk/uj7S+sFjh7qUhzmsmkWWFNzYJOifDpHy4cAFMbAr5Vh2dEiG+lvTnC8LUZSEm5uoYmqFD+wh2S6SesmaRpVX4LHRa8IYEk5Z6eK27hc0OPS9uc/FI+3iCiuCD3T5+KvcyLsNG76T9G9w+RWGNw8eqGi9GnURTi4FeiVacQYUXd1QQb9DRMc5M13jzPonTB4O0vGwun7fiiPdBX2mEqKyvUZMkFYc6KEG0AmBg+zpVnquglDV7yliwZTdLdxSycONOOqcmcV/vk0g2mzAlRVjAQY+6X9ga8cU1xqld7uLatq77X2dXk9CljmrhH6dJrZbqjJoz3Jr5w69p61r3BUd0EAZNnlXzvrXqkNGqnVqSsfbEXDsFhKKJ6JphQPtdl3ZOFBAMBpn+0D38+sO3XHH9TVRXVfLKs0/xxFPPUFlRwczXXuXcCy6iT89u9O7Tp05gad3KZYwcezorFi8kNSUF2RWlFLxno+o+fk178BQWq9JVm3bx+frtfLlxFzN6d2bGqg0YdDqmntSKLYVVTFu5mi0OFx8N6IVpj3ocTWwaIegWBnx8XVDIkvJKWtjtDG+Xy8DcDD5cv50nFq+hT24Gp7ZswphWeRhkHeZkNbk3uq3JZvU8aUjNUKUtY6bGFC6Pd8iSRNckma5J4UbrCgW4648QWWYdY5sd27r9k7GqNMSNP/o5q5XMlW10SJLEmKYyL6wOcvOiEC/3k5mzW7C4VPBMsWBaex29U8N9bVyOjt/KFS76PcD1raB78qFNpkkGGVetYZNnNvB2QRUd7CZGpccxpWkSv5S7+abUSf9kq8rX3BlUWFbtYXGVB4ME3RIsdIgzs87p4/VdleRZDOz0BLi9ZerfitB1sEg2S4zN1zM2H2wpZr7f6ufyL1wsujyBRiI0xnCEIITgzY0K/7dZYXovmZPiw5bDgAyY8pvg6z0ST/eABaWCz3crPL8JXu6pI94goZMkrmkp88CaEJ/tVni8i4z9EE4yzLJEnF7CERQkG3X4QoKHNzgYlGpkfKadPLOBVQ4fBp1HpQEA4TCfiyo9/OnwhoWxEiyEhGBBpZs/anwIBB3jTYzL+GcLr3XITqVDdipXDujCnhWbeHjxah5bupbH+nc91lX7x6KyvJxbp04CIXj3i29JSQlHYel+ch/OHTOMXxcvw2y2sHzZEt5983UGDx7M0888A0CH9u247JKLaNe5G1OuuJxHb5l6SHXJibdRURtasENyAvcu/pNN1Q4mN23Ka7268caWHby8aRunyvG0MUcWawFF4ceSMj4r2MM2l4sRWRlMatGMbU43//phCQOaZLC0qJxXR/ahZ/PsQ6rjkcRfMr4lSeoB9AKSqB8x5R9HuGwMGWaJCbk6figRjG32zzWIjiU+3Bhkxgo/D/UxMiRPrwrhuKZCcHpTHSlmiQtbht/Pwl0K9/yh8GJPHVkWCaNOYnoXAz+WhPhod/CQje9ci4Gfyt0MToUzs+Ip9QV5t6CKl3dUUBEI0SHOREAInt5aTu8kK90SzHxf5mK900fHOBPnZifQxKyvO8ZtZTPSxmYkKGBIiu0fbXjvC0PzjXTJ8PHDtgBndI7tORxtuAOCaYtDFLnh3cF6MqxS3a65KwCFbhiZDdlWiZOSJDw+if9uVHhkjcJjXcJ97aREiQ/6yDy4VuH7YsH4nENr463idCyrDNE7SeI/HeP5ozrAq9vdzDcHKPOHGJxiYUW1l+/LnJyZGY9fEfxQ7sIdUjg50cq/8lNUC+PmVmMdUbON7e/t432wMMoy13dpy2mfz8cTDHHoXsMxHCzW/rGSGy+/iFPHnsH1d9yLXh8ZB9f8sYI+/fqT36IlLVq24uzzzkfxOhnQvz/vv/8+5513HgAP3ns310y5kk49enHjpeeQnvrXI4a0SUlgS6WDUo+XYbmZ9EhP5qmV67ll+R8oQpBkNDI0M52Ht26jmdHCdem5zKsp5+sdq8m325jQJJtB2ekYakV2+qSl0LNlJkUuD2e1yaNz2r7DhB4vOKhZSJIkC/ApMIJw4GdBJAC0iPosZnxr0D9V4oXNCnevEIzPleiZGjOOjhbcAcH9v/mZPc5M6yT1WtEZECwoUniyZ3gS9YUEshSe6FvGwWYnZEXtlPZP1fHKlhC73Aq51gPzwQ4oAndIsMcbYn6pC0dQocwfpENU+LQ0k55R6XEEFEFzq7EuFODgFBvvFVSzsNLNwGQr41rsm3QpS9JhD8f2d8PpbY088oub5SUhru9rJc0W42EcLczZGWKPC94YKGPSHMEvLYcOiWHDG8KxiYWAi5pLnP2rqCVlhfNkncTYbInXtiqMzznw91cTECgC/lcAS8q8lPgEVQHB8PTwFKiXJLokGJiQbSHVYCTPosegk+ifLLPJ5eO9gmri9DpGpcXRxm7cpztYokEm8TiMn3+8INViolNaEld9v4jRbZtycedWMR/wo4jpD9/LxAsv4/Lr/lUv76vZn3LN1GuQJIlgMEgwGCQtIYGrr76an376qc74BshIT2fcaWN458PPuHnq5Qd0byEExTUuvIEg0+f+xo49ZeyucZFhM2OpXcAmmoxc1i6fdlY73ZITaWqzIkkSpyp23i4v5NLtazjFnsSL3bvS1BZ2PZI16pZdM5Lr3ft4xcFuAd1L2PB+BPgemA9cApQAdwIW4OLDWcG/C+wGiVd6yqx2KNy1UvBKb2hmjw08RwNWg0S3dB07HUo949uqB5MMvhDoJcHYb0NU+sCuB3cQbm6rLkuvkxiSITOvKMTk/IYn/xKfwrfFAeaXuJCksL/d0FQ7AUVQHtAzThM5oa29/n5QnF7m8rwkgorA/DeQgz+WOLOdkWaJMp9uDHDlZzV8ckHCfn3qYzi86Jsp89TKfZN/LTJ1PtzLygVTFwn0ksCmhxZx1DPQuiVJOIOwvkbQNn7/708IweIymLVZsLQCDDrItsD4LD0Ly0P0TpbpnChTUetSqpMkhqabcGqEhFrZTNzWIhWjTjpmJ0qekoLGLzoB8NSAbiwuLuf51ZuQdRIXdmrV+JdiOCzoN2goWzdt3GdealoantoY7XfcchPvvvUmdrsdSZK47/77610/6ZKLuXLK1dw0ZVKD8u4Oj5dZPy/nxS9+pqTGRVBROOfkDpzXsQUfrtnKY8NPxu6KCKQ0j7eTnafm/hgkHZNTc5iQlEGCrCfR1niY3RMBB2t8TwA+EkLcK0nS3vOGAiHED5IkfQ8sAS4lbIifULAmqI8Jk3PVaX0UubFip1rBMqlGndbCV6vSmG6SGGWTWFsl+KUIsvIgJUttcJns6oZntERekT5RQ8ZMVkvX6WzqnU/Jon4GnSVStq4Rx1ctATOaVKnTqGpJms4nyfs/ctWSQhuDipQmtOQRLXlTo54ZpQx2mW0nXy8s5+KLO4TznOG8KmcQ09crSRzeCl9AYPh5K3teakt5sQtPQJCXEv7NFE9kgLir1MvQGcUMybLSPc9IfqJORWITIYWft/i478NKzulqZd54O81q/f+dZXvJIzLgxlOlJhvVVKqfIVol0OlXt40yj/o9aNUHDxcSTEdHPSq1uXoxok+NtG9tWw8WVKnTDvXvqI+LaoNRO619UqBvHzNt79pBtd1OWpyMoZk6KLguehHUGJlYSzh0+qL+1yh2BjRqttpINFrycfS1GmZVdF/eVz0lQ5Ryn5Y0qr22Xl/ffx/VXtsgYTqqnGygy7b1rG6awhl9w7tTe59/yYJKhLuC5mNz+PTrcq4ZrnDbqQmUOxXMBokUe/3d5OvSanhzuZMbeibRrZmZtOxI29HVjns3vLSdxbucXDk2lXf7JWGrJaCHymqI3vsLlqrHb39NpC2FAup25XOq+4KrUq0+WFYT+a21RHytym5DsBrUbSMxJxdWlhzw9/8qxB8/1P2v7fXCqxZBKl24tO5/b7laRbZic7kqXbY+km4OjPXH89GC9bRa7SHJpm7LessOVTq1jdq1ocnADqq0nBTpv1Krk1V5lQa168GeGvX7/LM48u6dmv7o9GnSXnU61ADpWZuXbFe3BWO08FI9wqW6j5k1gmjxURG3GiN65sRHbIJRZ5zNmYN7cfcjj2O1hcfTvZF4PC4XNQ4nAQV+X7iQOfN/pW3L5pSXldEkNxdfUMEcNe/36tuf5KQk7nx0OmeeNoquGWZMxsgzygkpONweul31CCe3a8Ez15zHKSe1rFtIB6squKT2Wl+VWuDOW65WIU1oqlYLjYbe1rAdoyXnWtPV7cGYEDVuxKnJurqEIyvCc7BbabnAT7X/7511jABCiCDwPnDu4ana3xdxetAEAojhCEPWQY2r/s7bA2/vYsIpqWQnG1EE+IMKeyoCpMXr6wxvLbIT9Ew/M4nvN3g465USpn1ZXe+a5391cv+oeO4bGV9neMdwfECnk4g363D5/gnyJ8cPZJ1EjVv9mzs8IR76sIg7z8ysu2ZjkR+TXiInSb9Pwxvg4n4JDGxr5aX5VXS9Zzu/bVAbhoUVfv73eyVzHmrLpUNT6wzvGI4P2CQZ78GE94nhkKGEQkiShNfjUX3+/bw57Ni2lQnnng+ATpbZtHEDCQkJ5LdogdFYfzNNkiReeeZxHE4XU26+k7ZjLql3zTvzFtC7fUtm3XcNAzvFXIy0OFjj20Fkt9xBWLwrmk5aDcSi6jcCsyzh1sYIiuGIweUJ8fDM7dw7uVndZ25fiJe/KOKbJZXcfWFYotZq0tEy08Td7zUeU3d0RyuvnJ/K5L5x2IzqQWVDSYD1xUHGd4yF1TheYTFKMeP7KOK75dXsKPZx3qCIT+aOUj/XvrKLISfZ6d3GhhCCnvlmflzn5stVrgZKA5NB4tbRyXxyXQ7NUw3YzeqpbOa8Us7ql0yiPUauPR5hkiR8sTDHRxXPPfYQ514ymeTUVCDslvXL/O+57/ZbePDxpzCbzXg8HoYMP5U7/3UDbre7wfLatW7J8088wlsvPIPdqp7rFEXhhdnfc82Zw47Y85zoONiRaQvQGkAIEZIkaQ1hV5Q3pPCy5kxgVwPf/0dDCMHcQsGHOwW3t4utAo8Wnp+1g3ibHr0ssb3Qw6xvS3htdgE928bxwT1tSLDpWbfWwcC7N3H+KUlcNSL1gMpdusPHawsdPHOm+ijrjUVuLuphjYm6HIdw+hTuf78UX1CQlRgzzI4GhBDc+9YuhnaJZ1uxD6dH4cWvSvjpzxouGpTMjWPTAXhqTgUzf67irvEpDG57YH6dT86pwOlTaJEZORL3+hXe+q6ULx5oc0SeJ4ZDwza/h+cde2hr+Hv47p4IWLd6FXNmf8yM19+hsGA3S35bwMwXn0NRQtx2z/30HzgYgFGD+pGans5/X30Dq7Xx91NZVc21t93NsD7dVZ/PW7KaOKuZvh1iPv37w8HOPt8BkyRJulEIEQJeBv4rSdIWwlFOmgPTDnMdT3gIIdjmgre2h9joAJMOHloj+OLIuhTFUIu2ze20a2bjpmc2U1DqY3TfFL58tD2tm0RW6/mZJpqlG9lc5OPFb8oI+YNMG5dKRsL+u8gfe/zkpxoY0jrsVyeEYM5aL/9b7eGna9P2+70Yjj68AcH8zT7u+boau0Vme1mQZ7+r4v7xsU54pCEEjOyZwJptbi58YiuKIrj81DSeujSbuCjBo8Htrbz0fSWLNnvYXOgjJ1HPTSMSGzyunr/OzfUjkrCawjvfHr/CPR/sonO+ldY5f5+Tp2DliU+4rAgF+MZVwWxHGYk6Pd95K+ltiqcvCY1/OYZDgsVs5bQJ5/LGi8+xY+sWWrRqzU3T7mPY8OGq/jV42Ah++O4bvpj9KV9//gkXX3Ip/foP2G+5lVXV/LFmHZ8+GaH5bdy+mztf/ZBbzhkdczVpAAdrfP8HeIfauE9CiBckSTIDFxL2AX8VeOJAC5Mk6X7gPs3HxUKIzNp8qTb/SsIxxRcB1wgh1kSVIQhzQ9oKIbZGff4mkCqEOO1A6pLWp4kqHU2cAghVRI5gMruod0a1hCZRS85buSfArBVu5q33oteBUZbIjIfcOJmtVQpNW1mxakiUhhz1QKSLj6w+tSRJWZuOUxPWdAYNAVOOTHQ6fcNxaHUGkyYdKUtnUpPf0GsGT1kz6emiypI0vpdSI01Qiqqn8O//OgCx72gKF3SAC67WfDekOVJTfPze180t989j5vsrALjpnvGkdskKZ/sj14d84SPxfs2Kmfb51yxKP4mFy4v45OutyLKOL94eR4duEe8rJRBpS4lutX94oEZNJhEeNc1JpfCpaZP6TLWIhzE1XZV2/LKy7n/X+lJVnqtcXVY9pcIotyijRQ+rOOJInNhLU4fIb6F9dkuXFqq0bFK3OUlvRFEE7/1vG7PnbeeXZWW0zLPjFjKjB+RS+X0BrXo1J25QSyRNX4hu+9HvDkAE1e1ICWreV3IkX/FrvqshdGlJlNH52jFFp4mEoyU9a/u6Th/hK0iyuixJ13Cfix4ntNfWK0tv0ORHE10j48TTp1C/r2v664gRfn4ZWUL/8W9TXePDajHw4EuTMBhkREj9u0uSDiEEvZfPZ/afxbQItefTr9by5bebGTGoFR98MI6kpNqxU9PXQx61UmNQ0yej31t0vwd1mwTQW9Rjn94W6ZPOVX+q8nzr1Aa0t0RddrSiq6JR7zVl5cKPazjSqFm1ou7/oFf9m3tK1GOVtzxClKverSbJ7VwdHm+qlSDfeipZ6HFQIQKkSgaEgNSQmQL8bK8OkhRS+yC3SVS35fim6vBxtjy1TLg+K7/uf5ddrUpYVqN+X4UOdZ90ByK/eakmz6MZE30atddSR4RQrQ15Z9SQJEs0ZWvzo2HRkCatGjXqzKjfJ09jAyRpiNiW2vu0a9uGx2e8gN2oqWcUKVqW4NFHH+GDkzpw7dSrAWjVsiVDBoVVQnU+NTFZV7ad5GAN2WnJvP7JHGxWM5/M+5nVm7Zx/5QLuGjiaXXGt2RTz1VySmR+NPrUxPQ4nfp59enq9y2ir1fU70iXqNn00vRXoWhcDaPHc81966UPMw7K+BZCOIENms+eAp46hDpsAAZFpaN/zduAmwlHUNlAONTht5IktRFCODTfeQQ4j+ME/1vjYdrXDqb0sfLWWBvfbPUzf0eIZ4aaOf0TN++cZomtCo8zfDlvI9/M38yy766iW4cEVq8vZfceB+mpVlasKub35UVs3l6NJIIEAgofz9nGpImtufbeXzl3XEvemzGMbh1TY+/1OIDfH+LKexaxaVsN15yXz7PTujDhxt+5bXIb0lIsLFtTyRUTWzReUAxHDX5/iHse/4kBvXJ57/kxxNmNzF+wk/4nN8Hp8PL78kJ+X15EZbUPvaxj07ZKCktcyDqJZ175jbPHdeCJ+0aQmXl8i2v8U1AY9PPv6p10NNoYoU9BD7wfKGKSMYfZ/lJ6k4gtJrJ9XGHrli08+vBDPDXjWa68fDKVlZUsXbqU7t27s3nrVhYtXsqqP1cTDAbReyr5cv5CBvTozBNvzGL8kH7cfOlERvTrgTFGpm0UByuy8wbwshBi0X7yTwamCCEmHUSxQSFE0T7KkoAbgf8IIT6p/WxvTPHzCbu87MVzwM2SJD0phFh2EPduFC6fwp7qECWFAUIKSBLorZAVryMnQUavCcsVCAlm/u7ixYUuPrgoiQ6ZBnbudPHaygBfn2vn2UVexrfS0yYlxr4/njDz/RXc858fuOvGU6hx+Ph87iYuv3kuIUXg94fIz4unV9cM2rVMRoT8hEKCH/5vNLc+upin7unDGafmN36TGP4SSip87NnlpMoR3inV6cCeotA020JqorHeYqei2s8ldyzGbJL59q1hmHUBXvt4GykJRiaf1ZxOZ3zLR8/0RW4gpF4MRxc+X5CJl3+Cxxtk0nmd2bK9ipkf/Ml7n65FUQTBoELPzhn06pZFi6YJCAGtmicybkQ+7Qe/Tdn62zFqQyrGcFgQCIUorHaxu7AMTzCIDgmdJGHxBmgSZ6sTSdkLIQQbAm6ertnN2dY0hliS2ODw84avgOH6FCpEABchOhK/nzvGcCywfv06zhw3lvMuuJDMzCxWrVrF5ZMnU1xcjBACm9XCyT26061LZ0wmE1TqeXradewoKEIoCq8/fGtdWUKzmx1DfRzsaHUpYb/vfRrfhH2+LwEOxvjOlySpAPDXljut1n2kOeHIKfP2XiiE8EiS9DPQF7XxvRj4BHgcGHoQ924QK3f7Oee1ElLtMinm8LGM2y/wC6jyKpS7BNkJMs1SDISEYEdFkKLqEG3T9Xw+KZncWkLXzFV+xrYyUOUVfLA+QJd0Hb/sCjIgNzZZHA9Yt7GEyTd+TteTMnn65d9IT7VRVOLg09dPp23LFEwmGbspciAT8rnw+UP83+dbWLi8hHdnDD+Gtf9749HXtvDih7tokm4i0a5HCEG1M4jQ6Sgs9REMCZplW8nNslFa6WP7bhdOT5CLT89n+p3d0et1+F0+nn57E68+0I2bH19FUamXdz7fTnqKmbysGOnreMCjz/zMjwt3kJ5q48W3llFR6SErw8bW36+iqtpLdroJfdRRvSTp2L3HwX3TF3JKr5yY4X2E4PIFOOPVz6hweUkzmzAbZAJBBWcggN8fpNDtId5oIMtowq7XU+j1UujxYkbicnsWPUxhV8idipcagnSU7Tzs2wbAWhy0J66h28dwFHHhuecSH5/AWzNnsmL5MrZs3sykyZO57rrrqKioIC9V4xK7+09+WrKKl2Z9zh2XHzdOBycMDveIZaN+bP6GsIiwQb8eSAfuBhZKktSBSMjCYs13inSqpLkAACAASURBVIEc6mMasFaSpJFCiLmN3ViSpCsJ+5LvE3uqg1z2dhlPT0hmdEdrnc93zuNhsYAEs8SglibGn2Qhwa5H1kGzZD05iXoMUWIaNV6FWWv8fH62nXt/Cvu2NU/U8fBCH9+co6egJkR2nC7mqnAM0bZVGu+/PIE/1hYx7YZTsNmMEIqEOnv7w9WsXlfE3df3IBgUvPT2H/z37bV0apPM568MIymhvjJlDIeOWXMLeX9OIctm9SG11pV42x4PXS8Ni3vkN7Ey+ORUxg3KxBuSSUs20byJnYwUk8pv+9PvCshKNdO3ayrDJv/CpWc04+ufC8lKs3DjJa2pqfKQkfr3IeediLjxqj7oJIVW+cmcf2ZHEJFpJCHexGU3fsnowc05a0xL1mwo58mXlvPFd1u4dGIHHr6t3zGs+dGB8JUd9XuGFIWrP5hHp+w0njhjEN7SsLDV5Nk/sbyoDAnonJbE4CYZNFMMeEIhsi1mssxmyter/cN/CVbSV05kuxLeET2ZRH6jklwsOBQZs6TDIMUUfI8lZr79Nu+9+w6TJl9B6zZtMEUtdj0eDxdcdjP3330n+c2a8fmXXzH9iSeocbr416Vnc/bIQceu4icoJNFIrE1JkvKAZrXJH4GHCe9+a5EM3AVYhBAd/1JlJMkObCVM7PwdWADkCSF2RV0zE8gSQoysTQtgohDiY0mSngf6Ad2ANzhAwqUkSaJ8VjcgrHj42rxSXptbwnUjUzmvXyIlNUFKyn0kWHXIOomr3yompECCVWbNLg9DOifwwrXN9ink8Mxnhazd6uSlK3IIhgQ6ofDSd5VM/6qMdjkmVm730izDxDWnZXD+oBQMOWqVJdkSIS01RIIE0Bk1BExNWjJG7TLoNTsOOg0BU685EjRERYUwqOuIPEiV3OhStylfMLIY0ba3oIYAoVXsipb/1uZpoS0rGHW99r5amWi9ljATRTr7v5ef5/lH7sMen4DP46H/8FO5+Lp/0brDSfusl0mvXtN2sERU4xAadSXjKFVynUOd3874dSRRs0KVV+8dagltgagJUHNfEVATpLwlalW5oCtCQhMhhYRBPyKEOGIrREmShG/thQD8uaGSx19dzU+LivnqtaEkJ5ooKfdRXO6lW4dkvpq/m2nTl9MmPwmXO8COAgePThvM1Mt6RBUYfn9CCLoMeYl/TzuF0UNbEAwqSCLI4IkfsbPAgdkkU1DkZPiAPO65qRddOqhJq0JDqFQ0hEuhaEmUoejMBp9Zq9CqiyIraomMDfZlqN8no4nN2nahJT3rNIvHaJKzto3VS6sPGtfURH4PT0D922n758HgilFD2Lp+LWnZ2Tirqznr8imcfslk4hLD/t3R/dskq5/v5FTN6UboR3Vap/H9l3Ij/3tnq/MqflGnjZpoOdG/j5bUre37mnxf6ZZIll9NQkSfgq3zG0e8D+68axIhReGrddt57qflpFlNTB/YnUqvn+1byvEqIdrY7czYspXFFZXkGE3s8fuwCB3XxWfTVB+ek6oDkXddEPLxlGMXN5ubokdCAAXCx3u+QlJ0BsqEH70kMdyWzNlxaXQZ105Vr5xhvVVpUwc1MTuUEQlnV6VTt8/NlWr3h+2V6t91c1lkk0WrNKlVqdQqXAaj8k0aAmW5Sz1OOL3qvhBN3tQSKi2aU5y2Wepnyo5SrcyJU9sAmRolTatBq5apfkZTlOudQUOAljyROWDbjp2069mf5MQE4uw2MtJSuXXqZMaOGIJOp0PSjoONkLoVW6TfuPV2VZ5fQ0TXPoPDH/ntjBrXQZussR/8Gr0A7QIvqt6Sps9JAXX/NOR2PKz970B2vi8jHHFE1P7dVfunhURYdOeyv1oZIYSzNnZ4K2DvqJeJOnZ4OvV3w/fiAcKxyC/4K/f/fb2Ti6Zv4dRuCTx2QRb/92sVj31eSlaSnvQ4mS0lfi7pn8g3D7RizrIaPl9UhW+rwheLKrnxjEy6tlBHAfljm5sXvizms5vzANDLEiIkcfXwZCb0imf+GhezpqXzv98r+c9Hezh/UCzs2fEAl9PB8hXLqCovp33X7rTv3JVmLVtz1/TnSElLJ6NJbuOFxPCXcNdTK3jv861ce3FbTumZwVnX/ojXGyIz3UJinJFN22t464kBrJhzLu9/vpGPvtpMtcPPHY/MVxvftXjsuQUY9DpGDQn75Ov1OlB0/PzpOSxdVURxqZtTemdz0fVzeX/2hnrGdwzHBkW7d7F62WLscQm069qNtl26MmDUGNp26krn3n2RTbHTpiOBaq+Ps9/5GqvRwKSOLVhXUc2Qj74j0WQgUdLjCYVIM5m4t20bNlormV9dQYHfx+6Qj8U+R53xvRdeofCuu4j++sS6nW0JyJXM3GJuxgbFxcCkeHQS3Fi8mVMssbCDxwOCwSCrV/3J2g0badu6JR3btSUpIZ7/vfMKAD27nFS7jIrhr+JAjO/ZwHbCfeYN4BXgN801AnACS6J3qQ8WtWEL2wLzgW1AETAcWBKVPwC4dV/fF0KUSJL0JPDQPurYIPZU+Jk8Yxv3npfD4o0ubnu3kJvGpPLWNU0wGXQIf5A9lQH6P7iDjAwLlw5N5ay+SXj8CkIv19v1Xr3dzcRHNjL9yqa0a1J/okiL13N2nwR0FpkKZwh/UHDXW7t5fFpivWtjOHq45cKJLPnlR9qe1JnktHRmPHAXjqoq/H4f7bt0Q6fTNboDH8Nfw//9byuffrODp+/qyWOvrEaWJV57tC+n9Myo27F47cONjJz0LUXLJnHrlG7cOqUbNQ4/tsT6C9fHnlvAzFmrmP/x2ft06+rROezZJsT/s3fW4VEcbxz/3F3ucnEhTvDg7l7cpcUKFIcWp0AppVCc4l6KFWvR0gLFiru7OwEihBB3O9vfHwnJ7cabQH9t7/s8eZ7szezszO7OzLsz7/f9GvB9HcPzV5E0rutJm6bF3m9DTcgUvt7PGN2tI5qkRCrUqE18bAyP79wGQaBRu470/XIcIN7VMiH/MHrvWap4OFO8gB3zLtyleRE3DnVqgrOlmoiXkegEgXH3HzD76TNmuBWngqUNw90KExAcg4VkVTFJMLA81h9PhTn15OnnNTOZjPIKazyV5vhrE4kXDGyKektDbXmslCYf/r8LP65cxYzvZ+Pp4U75MqVYumotL175oNXqiIiMolWTlLjfpj6YJ2T7hguCcJeUKL8ymawIsFsQhAf5cfEUQ/kA4EfyivYUkv3GfxEEQZDJZMuA72Qy2RPgGck+4bHA9iyKXQwMAz4BTua0LgOWvsJCJWfG9gD6NXPi2hwvbC3TDGqtXmDq7hCqF1PTvWFa3FELlRyZKr27yYvARLQ6gUpFLRFHT0yPEu7m9GnqxM8nQpgvCCb/778Rfi+8WX/oFOUrVUn9LTToLW/9/ZDLTT6J7xOjv7+Om7MFExff4vsxVenSurCoLzz3iWbemnss/a4Wjkaxbm1tVMiV6fvg1VsBlCzmiIdb9qSuds2L8exFBIdO+ZiM778RiQkJWNnY8Metx6nPXq/X4+f9DKXKtNr9vnHrTQhqMwVh8YlsblOPEvbivnP4bRC+8fEsr1QRUnblFTIZVhnERE4QDAQZNDQ2d0CezW69Uians7UTVxKjeRYWRVU30y7w34WAN28YN3YME0elUeLi4uK5f+cmlcuX+Rtr9u9CrqwJQRBm5JfhnQJPYAfJMbz3AElAHUEQ3jmgLiA5hvhK4AbgDrSUxPiW1jGWZPcTdWZ5MsIt7zjik/QcmVmaKT0LigxvgNOP4nj6RsOWYR5YqLK/bQevRlK+iAX21lmHFAyP0VG/rDWTPnXHWq3gvndslvlNeL9w8yzE5h8Wc/vKRQwpPqpOrm5Uqlk7mzNNyCsSEvWULmbLvQMd6NqmSLqP0Nmr7tLnEy+G9MxeNjwwKIartwJoWKdwtnlf+kYxY1xdxnxRlZMX/NLxA0z4cHBx9+Ctvz/bVi7n7evkTVSFQkGx0mXxLGYK5/m+Ea/RMqFJDdZ3a57O8NYJAgu9vVlWqSJFciA9/lQXjxI5rnJllvn0goAcGGjvTnW1DZcCgvPSBBPyiMKFCrHnj738/sd+4uOT/aCtrCypV7MaVjl47ibkDLne25HJZFYki990At6Nhi9JNp4XCoIQl9m5UgiC0CObdAGYnvKXWZ50n9SCIKwGVue0HgBKMxnbxpfAyyNjm72Eq4qYRANqZc6+VyJidQRFaOk86xlmCJgpZMQlGYiI1VHUWUWnmrY0LGNJl2XJopy3fihPl/oO7DoRRKWSpvBLfxe+W76aQ79uY/ZXo4iLiWb83MU0bf/x312t/wSqV3Bk88IGqDLYSQIoWcSW+MSMVUylkMlkxMQmsXPfQ/b8+QilWXJEoYioRGLjNDStX4iBPSoQEBhLj+F/MnFUTb7/ph6JSXruPQ6lcjnn7C9iQr7DwcmZxTt2c/i3HfRrVh+vcuWZtnI9Lh4ZBbj6D0GIzz5PPuDrRtXpUtErwzQzmYyCajXaHBJn4wU9BgS2JQQhGJLJ83pBIAEDZiS7nFRT2LAoPIQLCVEsd/GikYU9q739GVG9bPYXMOG9YED/flhaWfHz9l8Z8fVEBvX9jNlTJuZupdaEbJFttBNRZpnMETgPlAVCSVO7LAU4A4+BhoIghGdcwv8nZDKZ8MeK+rRqYCQJLpEV1iclUrT9eS5vqkVBT3vRqpyx5HJMnBZbGwti43W88I9FozWgSdKi1RmwsTKjQAFrftr5gmW/JN+6/l1KcuFGEI+OdmbYlEt4FXNg/JA0lwfjCCfpIhxkF4lA6SQ+lmcVxUActUAadcM4YkmsJIqBXjIYJ+qkrHBDpnnzEu1EJ2GjS9npxozysDhpnck0LySz133v3WTbdyNpPWw8Ndt3Tk2TRkYp5SJmaztLVgeM21DcVhy1wtEsa4pEuC6N3BkQL26DXLIyXN5W/C1tHHWmlOq4uGCNJHSZNOKFMXSRyGw/f++RFkKfTaGAoxFpWRId4uip58z74Swndg9EYSExjlPqr9Xq0OsF1CoD/q/DCQmNRaMV0Gj1CIKAo4MVSuLo/vlW7j0MxNXFmlpVPala0Z1JYxrjUXEet08OpbBnio+qQRy1wDgEXnK65GNAYfR8pRGEpFFHFJLwhgqj90aRy76eVcQOCaR9W9oHjft6gqQvx2o0meYFiNPojNLE5QbHiO+dVhLVIEErrpdeq+Hqb5u4c3AnvZb8goNH2i6GVB+peuE0op6LlZj4rpJEPykqiRDhKD9DpsgmkpOTSlwRR8WF1P/D9Q3EacJhcdlacTi+dM/UGHoBmdXH770PPh+Vxo+IDYwSpUf7RzPb+zkVbWxo5+KKNiopo2KI1+txK+KAIAi8iItDazAQExqPVhAwk8mwMzNDX9mNL3adxCAINK9Smge+gRyZNZznb0JYfuQaZ35ZmlqewUX8bidJJORD4tPeOeNIGADBkqgj8ZJ3zPg4Nkn8Lssl0U8Mkvkl0WgSkUrRR0nG6hjJooFxZBVppBRj+XiAMk7i+aWoQ1q6g7n43baRHMuk9p00wpJxNBBpWkIUQSGhfDZsLAXd3di0dA4Ko74kM4r8pLeXSMCbieeTBEEiGW/Ufml0E8ltR3LbMc4utV/NJCcrsxFSM456ptCJI+PIJMfmju752v9y+zEzk2RC5EiSw/01FAShIeABjABKk8Uq9f8zjA3vjCCTyahdwY4vFz7FpvYhgsLSDzy/HvLnoz7nALC2NKNyaXtqVnCkXtUCNKrpTLVyDhTxsEo1vGd+WZEmddyxtFBw90k4fxzzpXsHk+T1/wuKVKrO5yu2cvjHefg/uvd3V+dfD5HhnQFqVfPkxp0AzNymUK/FgnTpgiDwSY8VLFiWHJ6xkKcj1aoUpk6tEnxUvxSNGpSmYnlPXr+J5N7DQAAO/ToIg0EgPkHLtl13KFfKJc3wNuFvhUKpol6vIdTo0pddU0aikxj+JuQ/suMbVbSx4XRYKE2uXuZMdPo1tmCths9e3McvPh6ZTIaXtTVlbW0pb2VDFWtbKljZUMjcgp13n2EQBOoVcWfd6M8IiowhKCKazSev0qNtk/fVPBNyCVdnJw5uWcfrN4HM/3Hd312dfxVy63bSEVgvCMIq4x8FQdADq2UyWVWSiY5f5lP9/q/Qpr4Tszcku4k0G3SRJrWdkQFlitvSrbUnE5Y8QKPJektOLpcRdKkT0bFaPN0sCY6Eq3eC6Tn6NN3aFqWwh8nl5P8JLkVL0HHcdLZPGcOYLQcwt8zaQDTh/cHB3oIKZV25cSeAy9de0rzjMsqWdiMhQcsXA5rg/TKYw8fvU7hQ1mStZo1K8ubhFMzNzXB0sGTc8AYsWHGOA0efsGBa6w/UGhNyippd+vH63g3OrF9M8+ET/+7q/KdR18GBFT4+AMx548Pl2CisU8iWXzgXZPlbPxIMBsKTNBTOwj94ZacmhMQl4GptiZONFXP6deDrDX9grVbTrVWjD9EUE3IICws1W35cTK3WnWnaoC51qlf+u6v0r0BuV75dgdtZpN9KyfOvRLsGziRpBNydzPF5k8DxS8Fs3u9PQqKerxfco1f7wjg5mDNxyT10usyNcFtrJZ5uyQOTu4sly6bU4dHRLqyYVvdDNcWEXKBis7YUq1KTA8u+/7ur8p/HF71rYGttjlqt5OTZJxw4co/f9t4kMVHLVxN/Zem8HuzZf5MjJx5mWoZMJsPdzRZHh+Q+2KRBcQ7v7M+Ty2Pp2Nrka/r/BplMRtuvv+fRqUO8unnp767O34KEhIxdPD40nFXmlLO2xkmZTKK8GhvFmegIfJISORsTQahOQzt7J1a/eEVoUuZ1NjdT4GlnjVIhR6GQM/rjxlxdOp6Tc0dRwN4U6/v/DQXdXVk5dxr9vvyGuPgPwz/4tyO3xncQUDWL9KpkLoDzj4eLo4obW2vTsYkbtpYKtDoBWyszvl/7BJ838UwZWoah3YuxZucLXr7OMe/UhH8AmvQbivf1XIWOzxMEQWDr1j2MGzGUzRvWpUZe+Ttw4vSjv+3aUgzsVYN9W3pTrXJhXF1siYvToFDIaNVpMcM+b8Kgvh9RvqwHsxb8+XdX1YR8hKWdA1XadcPn9pUPds3IyFgmTpzIhAkTOH/+fPYnvEeM/Pr/Z8t/Udly9C7oib3CDMuUVe/niXGsD3nDOLcitLN34nlMLGeCQ7MpyYR/Ej5p0xwzhQIf/4APds27d24zZtQIlixaSEjI3xcFJyw8/2mMuXU7OQAMkclkt4B1Qoo+skwmkwOfAwOBtflbxQ8DC5ciomNBpiAoJI6n3uH4BcSQkGROUpIeaytL1qxqy7d+EbzwCaeIpz2eHrYEhcQyZu4JbtwJ4uqxkVSu4JFWmEjqOevQgyLSFYhJWnIJQSsdwdJBdCgl/BgT9pLiJEQpidy4Ri8mkBhLRUsJWrESskmSNnNSZaI2a3n5rCAlSWYHhdGnpfTct9ES4pgm61js0UERKK1seRulISpOSp4R502yF6cXd0h7LkGJ4uu81os3it7dj9E9OxMWFEThkqX4edhgNFZ21G3aAqUqjcSnlsjY34kQl21plBdlS1GadCgJTBDX+R2RLiw4iJ5fjOCDwEocQlCHJa9eBfL02WtCQqNJStKSlKShZo1KXLjQk8uXHyKTyShSxBVXZyvOnb9P9Y9mU69uWVYsHgDvJNmlMt9mEpKkVPbb+FjaX7OTZpcbkyaz6a8SkuSzeM/U/xMlpObEhMxJzEC6CBQGIY0sJyVAa/VS0pk4PdGo/0pJkPESt7rYJCkxOy1dKSE/SQlsITESMlxCWllSIpWFhRlRUdFYFXAlPE6LXkLSCopJW2VVSgiWBW3E9z1UIz43QFdfdKzV6/F/+YJB7XtSr0VrDmz9mVVr1rL6zxN4lRbvjCRqxWH0fAxpKqtFpR6E6cbrCqJD4+cfb+Tffnj3Tk5e8OFDwKlSWqQT64JRxCZpeBESyauwKGI9VCRp9egNMj5v2YRvCjpz+bk/bnbWFC9RBIVczs8nrrBg1wl+nDyS3m0ap5alcPYUXUdnm8axElTiOS9GLiYcSgl3SVm4diokPusOavHzsTMXj5nGhMsYiay79P2VkjWNIZ0DC1iJydZqySRhZnQsrZOTpfhcVytxup2RoJ95kpgUKw8NEx0LEsVRwTxzt0mpvHo6iXiFkujYOBxc3BFUVkTbptlMsZI5Xypt4qgW30vjRyqViDdLOVy7di1z5s5lxPBhTJs+HblBy5DBg7ErkEa210v4j2rEY5leJn7+CbrMAzyoFOKxXG6kojtw1EDyG7k1vqeSrDi5Cpghk8neRTspTXK0E2+Spej/8dh7+Dk9hh2gZmU3injacu9xKA+ehNCrSwX696pD0cIOFHC0ZPeBh2z+7Tb3Hr2lX/eq3Dg+HCtri+wvYMI/ConRUZhb236w6z28dYMdZ6/y4vlTzh0+yPShA1FbWvDzyUu4uHtkX0A+4ObF81w5fYISZcsTFvzhN7R69p7N+Qv3qVrFiwIF7Nh/4BJ6vYFNG75BJpNRr14FXrwIYO1PB9iy7RiWFubMmNqHHt0bpze4TfjHIyk2GsciJT/ItQL9/ShashTfLF6BXC7n2O7fGNy6CXWaNGPOxm0fpA5ajYYLx4+wY81KBo35mqkjh3yQ675DnEZLuRnrKe5sTwknB+I1Wk4/86OUiwNtK5TAylxFk3LFOP/El5Xr/+DPaw+oX74Ep+Z+SZnqtT5oXU14/xAEgfDIKBzsPoxb0O3bt5k6ZQqDBg5g0eIlrPhxJct/WMHyH1bQtVu3D1KHFy9ecO/uXY4fO5bvZedWZCcMqAHMA8KAmil/ocBcoGZKnn80gkPj2bH3MZXLOXP0124UcLQgPDKBPRu7sHXlxwQFxzJs/D4KVV7Anj8fMmJgbQLuTWDxzLZYSb54Tfh3IDEmErXthxl0NElJaBITUZmbU7lOfRq0bMPsTdsoXqYc18+e/iB1ABjcsSVXz55i5LTZH+ya73D+wiNu3X7Ot+N7sGj+EJ49e03NGqW5f2cDn3Zrwvnz92jUZDR1G4wkMiqWXb9O5v7ttcmGtwn/SiTFRKG2+TB9MDoqArU6eRHlsxFjKFO5KptOXeT6uTNEhIZ8kDrcvHSer/p8Srmq1WjRsdMHueY76PQGNl95gJlCwZb+7WlRtij3AkIY06Q6R0d+ipOVBauPX6Xi+BVM/u04VYoX5O7KieyaNAgvD1OM/H8j4uMTUCjkqNW50i/8y4iMisIyhbQ7b+4cBg0cyHeTJrF37x8fTAht7uzZ9OvTmzU/5b/bV65WvmUy2UZgrSAI3wHfZZBeSyaTDRUEIf/X6D8AIiITWbPlHsvW36Jvt/JsWtaGDdvvc+9RCPdPD8bBXs2K9deZseQC/XtU4+nlsbhKYjyb8O9EYj5P/Nt/WsWuzRtp1uET+gwfjYVRZAC5QoGNvT2vX72kRKUqTF+zMTlBEPiqRycat+uAlc37XYUPDwnGxs6eX46dy7GoRn7g3n0f5i/+g7PnH7J86Qg6d2pI3Qaj6NypIRO+6Ul0dBzduk/n2vUnzJ41iE+7NUalUqaPx23Cvw6JsVGY51MfjIqIYN6kcbx8+oTPx31Lw5ZtRGH2HAo48/rVS/R6PR5Fi/HDHynhK0t4MW3oQH7YdSBf6pEVXj55zKeDhvDtgmXI+TB9UKc3cODWExYevIiThTknR3fHIMC0gxf4fdDHVPBw4obfW0b/fpIS7k7s+PJTKhdxR+ngkH3hJvyjER4ZiaN9/oVhvXzpErNmzsDdzZ1pM2ZQpIjY9depQAG8vb0BGDhgAACxsbFM+PZb9v7xB506d05XZn7jxQtvjh4/Qd169fhiUP6atbklXPYHsgpEXQzo95dr8zdi2Lcn8Kq/kacvwjn9ezcWTm2CVYrvVcWyztjZmjN68jF+2nqbK4eHsmhGG5Ph/Q9FbEQYSbHR2Wc0QpivN1YOeV/RSUxIYN2S+Wz/aRVfTZ/N80cPaF3Ri03LF6XmMTMz44vxk/h2UG8e3LiW+nvFGrVQmJlx/sihPNcjO7x48pgSZctlG/c3P9Gi3XRad5xJpQpFeHT7B7p0/ij1+o0+qkxAQCgNGn2Ji4s9Tx7+Qu9eLZINbxP+cYgIfI1ep80+Ywp0SYlEv/HD0sEp+8zZICToLcO7f4KZwowBo75i8ZQJdK5XlQe3bqTmqVavAa4FPZn2RV9iItPEcL6YMJnr504T/Ob9k868Hz+kRJlyQHpf1feF6t+tZu3J60zu1Iidn3ekmFOysWWjVlHBw4nDD18yYMthJrepy+6vPqNyEfcPUi8T8hcJCQn4vw7I1QrywydPcXXJ+xxoMBg4f+4cvXr2pF//AZQqXYqG9evRs0d3kowi5IwdO5af1q1jzdq1qfW0tramfYcObN265b2vfguCwNMnTyhT9v1EwMq1vHw2sAJyPqL+H8GzeFnuXR9GQQ/H5B+UyYOOrbue3as2cfX+Xqys1Jy/+Av2DmKiTFZqcgAIWagYGl5IypI8EsGIQCBRW5Mq1UVFixWZ4rSRouN4IxKXVJkuK+IUiIkJUmU6aV4pKcs4XUrGlJYlVbE0JtsIUuaNBAoJccNYOczaXIEgCNw6sJNT65Yg6LTYOjnhXrQ4yGSYK+Q4uRekbLUaFHBxJSw0FAQBM5WKpMQEfC4d54cjZ7B3ckynoBeVQUit4IDX6LRa3AoX4WVE8uTtfe8OC4YNxMWzEN9t2o5zQU++qV2PV08e8VWX9rQdNBR1SgivFt17YW5jy4S+3fl28QoatmmPubUNG09cZHSXdqCQ07hDJ5HiWFbqoM/ixEZqKSvxvfKLTXv+BoOBbRvWULxSVQJjY7FUfhgDt1Wv8Szq2AmVuTkBgE9KnWRWBfniy02EBgfRa/AIBoweh4W1pE6yC+kLzA9I+2M2SpPGJGcpiVUbL+5jUiJkgi7tgzBeK1WD5E9FTAAAIABJREFUFJ9rrCSZnJ55n5T2RymJMjfn6vTScUF0KFKns1CJiY+2ajMSoqM4uGQ63lfPYdBp8CxZGrsCTgiCgFqppHiZcpSpWh2tXk9sdBRmSiVKlTk3zp6iWr169GqV7EssVZE1VuLUGQzo9Xp8nz2hgKs7Pin3ThAE/li7kt2rf6Bp50/pO302crmcDU1bsHHBbH7bvBGPsuVRpCjYzt36O2tnTWFQi4b8cuICdg6O1G3aghFTZjG+z6dMW7mO4inGcUZ4LVFXDFWKiZ3SPhiblDZ+3378iLPHDtOgW0/8oqKwVub3VJ0xNk/8nJqligKgsEuOl6+LjCZo8Tb6Hb7Fw2cvOLxtLdUrlkXrmkaQ1kj6SXCChLAvmSPCY9Peb6kqoyBRkZWqFkoJenqjcS8qSXxuUKz4GUiJkca7epZKcT2kREh3GzEhz8ro/dboxB1BulsoJYKqlfJM09IRECXHxv1VrxTvgKoLiHeGJNVCZxC4eeMGQz4fREREBDKZjPIVK2BurgbBgLW1DdVq1KBs2bLEREWRmJiIubk5KnMV06fNYeqMmcSokz+AjdUjFTpJ+8xkxERH4+fni1fJUugMye2NjIigX59e+Pr6suzHlbRp2w6FXMbQEaNo1bwZN27eol695JDLhYuX4NjJU/Tv25c7Dx6zcOlyAFat/5lP2rbi6/Hj+WrCJOyMVuMTJOvJ9irxDbBUitONp0yFXjyPb9+6GQ93V9ws5SAhtuYHsu3RMpmsMFDU6KcyMpnsowyyOgLDSCZd/uPw3TcZb2H06tmU0qU8CQqJp02bOpibm3y6/4mIiwhj//xJxIYF03/FdurWKE/gqxcE+fkik8lwsFQT6OfLrfNniA4Px8bREZlMjlajQZuUyIg5i7B3yvqrPzI0hP0/r+fyscOEB71FpVYTFxNNkTLlKFjci2vHDzNy7hLqtGqbek58bAzFypTDysaG1y+9RdEUPmrbAQsLC1bPmkqD1u0AKFamLN9v3MbqWVP4ac5Mvln8A9UbNs7Xe7Vz/RpC3wQwZtEP+VpudmjXrUeGv8/96Re8Hz7A3EJNtTr1M8xjwv8/Xt2+yp7vx1OmQTO+3nuRkk7m+Dx+QFxUFDK5HCu5HO+H9zm49WdkCgXWdnbotDq0miRkcjmDc8A9uH/tCge3b+bqiaNY2tgQGRqKpa0txctVQCaTEfzan1XHz+OUQloWBIHEhHjqNm/F0olficpSmZszbs4iYqOi2Lt5I/1Gfw1Ar5FjkMnlfNm1A2WqVOO7ZatwyGZsyC0WjhpMx4FD8Kr4YQVN3hnexnC2t+X6xvm8iBOoUbEsnu7/WimPfzX0ej0L5s9n/U9rWbB4CZ906szrN4E8enAfnU6PmUJGREQEN69f58SxYzg6OqBWW6DRJJGUlETHjz+hXfsOWV7DYDCwffMmjh7cz7VrV3FzcyfgtT8lvLyoVKkyN2/coFmL5uzaeyB14SgxMRG1Wk2Dhg25dvVKqvEN4OXlxd5DR6lRsRwjR4+lSNGiqNVqNv/6G9O+m0idKhUZOupLvvzq63zdpX3+3JtvJk/n+P49+VamFLLslu5lMtk0kiOYZLfGLwMMwABBELbkT/U+DGQymSDE7RT/qJT4NhmHAJSJfZP+b1a+E6Ur3+JVgP/yyvejg9u4uusXhm8+jEKpopSreOXMzUa8mi0NtWi88pjZyvfGuTN49eQx3UeMoWz1migUCqLCw3h09w6+Tx9RoU59ShlNpid//5VVk8ez7vgFdvy4FHtnZ0ZMmSUqWw70blSLUdPnULNJc1HatTMnmT1yMJ0HDaH7kJGoLMRRdhyMiDFqZdYr33ciktsgCAKfNqjBoOmzqZhi6FoqlTT1sEcQhPfmgyKTyYRH0ZmHxHu3GvkO5W0l/cQgWfk2jnYijXySm0go+bnyrc9u5Tvt+N+48r1zTE+KVK5Jy2HfAFDWTdwHnY36lfTeSEMrZrby/Wn18rTvO4AmH3fBvXARDAYDL1948+rRA0ICXtOiR2/sUqI1JMbHsfTrLwn292PFvqN0qlSSpb/vp2yVaqnlquRynt2/y1e9urLryl1RH0tKTGTDormc3LubcfMWU7dZS5EBIN0xyq4P3gpPHr+fP3rAiE8/Zt35G6kGirXSjGaeBd57H4w/8GPq8buV73cwK+glOs5q5Ts8u5XvBOOVb/G5UpMkNyvfYfHvb+XbwUL8/D7Uyre1Sjz2qYzuh+TWoJaca1ytV69eUaVSRc6cv0DFSsnzkHHXl95nSVFoJOOE8cp3dFJye69fucyoIYOYNWcujZs2w8bGhoSEBJ4/ecz9e/ewsbWhU+cuqePGwwf36d2zO0OGDcfTsxBLFi3g+MlTIlJnok5g5tTJxMfHM2/RElEdfHx9Gdy/Dx4FCzL9+7kUkviN20vunSC515mtfE+ZPhNtYjzzZ6UF7zN3dM/X/pcTn++9wABgEMkG9jqS43kb/w0AugLF/mmGtwn/DVTv2ANkMgKfP35v13jj84rmXbpToVad1EnTzrEAleo3pMPAIRQrl+au9PT2TX6eP5MiJUvj6/2MQROncnb/Hxz9fYeoTJlMxshps/l+1BCe3hWLy9Zq3IzVf57k5eNH9KpfjeO7f8uzH1zI20AC/HwoV7NOnsoxwQQpWg6bwMNTh99b+ZqkJCJCg+k+7EvcCydPwnK5HPciRanXpj0ffz4US+s0ns7OlcsJDwrC99lTlCoV3yxewaT+PQkKeC0qt1TFytRp0pyvenUh0Ujdz1ytZvjkGYyZvYAfpk1kVJd2+Dx7kud2XD51nKoNG4lcykwwIa8oVqwY/QcOYt/eve/tGj6vXlKzTl06fPwJNinx9S0sLKharRp9+/enU+cuqXk1Gg3du3amdOnSPHn8iA4dO1KsWHGGDRmSTlRuyIiRnDh6hJ9WrxT9XqhwYXYfPEzZcuVp1bghs6ZOJj4u7wKHJ06epFXzpnkuJytka3wLgnBXEIRfBEH4GZgB/JhybPy3WRCEPYKQ1RKvCSb8fVAoVVjY5h9TOzPI5DnjMN88c5KmnT+lXPWavPXzxdHFle9/+ZXVs6Zycu8uUd66zVryzcLlfNOrK2cO7uPOpQvoUlZGPYoUZcZPPzNz/WZ+WTKPw79uzVP9nd3c8SxSjPuX35MPtQn/Wdjks2uGFDKZDIPBgDyHRuv5g3sZMn02ZiolEaEhNGr/Md2HjmJ053YEvRZPZROX/Iirhydf9+7KzQtn8X70IDWtYau2bD17jUbtOjL8kzaEvA3MUzvqNWvJrbOnU/s4QFJuFcZMMCEDuLm5ZZ8pj5DncA589PAhVlbWDBk2HF8fX+RyOat/Wsfbt4GMGDYUvdFun6urG3/8eYSfVq9iycL5nD97htCUkJ+WlpZ8PfE7zl69js+rl4wa+kWeFaFbNG/OwcNH81RGdsgVi0MQhBnvqyJ/Ny5EtcLMSDFQJ1lBNF5RlLpGQNaRM+SyrIy+6jmtIhp95gRKgOhEyRZbUubqdNltPRuycfEwhtTtRHpdjdF1tZK8Wsl2XVZKk9L+JFW5UyolW3tGRJ54SzOSEhKJ1sgIjtYQL3F/Ke4k3uaOSsjq/sSkq1tsRBhPHjyk8EftUPmI9SMTjNr0TuVP51yc23u3oYuLxqN2U+4ERIC1GyNWbWbZsD68DAyhfuce2Fkkv5NF6zdi8OyF7Fy3miB/X+q2ac8wIx/YIhWrMGnVBiZ0/wQ7ZxdqNmku2rqXkkIv+IjfJWPFz+KN23L8jz0UrFIbgAqumaui5SfeEVPfwcxoEJdu4V/TiA0sC2Vt0XFBy7T8jrkMSxtu1K2kiqQ6rdSlSqIOqY/NNE3qyiRNN3Ylycp1C9L316z6s/Tc7Fy/Eo36r9SVSzosSPugOL+4TkJSEgqVKnX8fBUmVtQz7pNxSVm71bySiVe3FHJ4eOE0KrUF9wPCUBiN5dLx6J07motXOfb+vguFypxgg5LQkCgqd+pFVGISwzq2Yvy6rZQpl8bB+GLuYn6ZO5M1C2bjfe8Os7btpnrtNP/U9v0+JyYmlgEtGrLl4i1UkvB7gTHiceOkt/h9949410dtsLR35NzZc5SuWQ+ASq4fJpSfqmiZ1P8Fe7GhpnEsKjoOSkh7JoGx4mcZGCMeb9K9n1nML1L3DnOJOqT0Q0RvVFY6RVbJcZzkWGVUtlJiNMqlriJm4nRj1UorCf87Tis+N0byPsfHZz7PKSV97nmYLpOc6WEuqaPUlcY/PA6VSsX94OTnZUx2tTXP3U5LgpFatV4QMBgMnD5zBjOlktCErOus0QvYeJYgICCAoydP41W2PGEJOkDJ2q2/80Xv7vQbMJD5y1ZikeLqVcDdkx37DjHj23EcOrCf+Ph4zl69kWrsO7u4snb9Rjq0bsn0iROYu3ARSRKbQS2I30t5ghGRUp828Pfq0IL2nw1k/tRvUaneD88vt6EG/7UwM/swbHIT/j5YO7sT4fci+4y5gCAIhPh4s3HkZ1Ro1pbS9Zvl6LxClWsR8dqHsNd+FKtSM/X3giXLMHbdDo5uWsOOOZPxvnsrdau7RrOWTN+2i2LlKnBgw1pePX4oKtOrQiXKVKtBbHTemNnlG7fi0dULLBzUkwcXz/LGzzdP5ZlgAoCNkwsxoUEkxed9W9gYOq2G64f2sXnqeEas/FlkeGeFqq06cnbbeio0aCJarWvd73M+GT6a73t35sRvO/B7/hRBEFAoFAz4bjoT1/5MYnw8R7b/kq6vte/dn7jo6DyTvxr16Me6ccP4fcEM/J88JDwkOE/lmWACgIu7Bz7eT7PPmEtEhocz7asRBPj78nUORdnUFhY0b9eBdT8up3lKQAEASysr1m/7Da1GS4+P23Dp3FmCg5IVlgt6FmLrzl18MWw43s+fcXCfWHDHwsKCz3r3ISIiPN31coMyJUtQqUI5KtRrwqZtv/LUO3/tBjAZ3yb8h1C0TlN8r5/Nl7J0miR2zfiKBR3r8POYflTv8ClNB43J0aQbHxnOg2N7UdvaIwBJcbGidLdiXny7bR96nY4N0yYyuWs7Eo382Mb+sJaBU2fxXa+uLP9mDFFhoalpb/19KZZF+LN3iAh6y/k9O7l18ihvXjxDm7Iy/tb7Cad/XolbkeI8unKBxYN7M7hDixzeFRNMyBwWNnZ4lK6Iz+2r+VKe36N7LB3YlQmNKnNi80+M+HETxSvnbCfx1Z3r+D24g4WNPQmx6XeyGnXpwVerNnLp8AGm9fmUzQvSDAprWzs2XLqNIEC/hjU5sGVT6jb3W39fPIoVw1xCfpbCYDDg8+AuZ3duwfvWNUJf+6UaEXcP7eLp1Qs4unlwevsmlg/+jL6NTRwME/KOj1q24/KZ4/lW3uafVtKhYQ3a1q2MVqtl5dZdWFnbZH8isGf7ZuQyOTKZjIQEMQnewtKSHzf8QvtOXVi2YA4t6tfkjlEc/u49e7Fr30FWLFlMx1bNuXP7Vmqan58v5cqXz/b6cXFx7D98jF92/Mbt+w8IC0/eiYqNi2P8tNkozcyIiY1jyNgJdOyR//I1JuPbhP8MlBaW6LX5o4Toc+cagc8fMmTdH3z9xwXq9xiU43Mj377m1Jr5VGjWgcrN2nBo1cJ0eSxt7eg9dR5z9x6lTI1aTOjQnJM7tyW3Q6WiTd9BrD5+HrWlFaM7tEhdBY8OD8fWwTHD68bFRKNJSmJImyZM69yShxfPcva3rUz5uDnH1yzi9aN7bPyyL3Yu7lRv3oai5SvSfvBIDt599hfukAkmpIfK0hKdJn1c/L+Cszt/oUiFKsw+fp2Jv/5J4XIVc3zuvVNHeHzxNF0mzOTV/Ts8vX45XR6vKtWZumk7yw+d4uKf+5jSqws+Kf3Myd2D0QuX8/3POziycxszhw4gMT6e6IiITPufIAjEx8Zw++I5ulQpzS9TvsL34V32LJ3D1PYf8fbZAy5uXc2FzSspUbUWjXr2B+Crjb9x8OHL3N8gE0yQwMLKCk0GuhR/BXGxMaxdvpBpC5dz/pEP81aux8LCMvsTSe4LP8ybhVwuZ9aiZcyY+DWJCWLXJZlMxqChI/nt4FEW/LCSvt06MXn82FQhno8aN+HQqbP06N2HPp92YceWzQCEh4Vhn9kcGBeHXq9n0uSpFC1ZhpXrN3H8zHk++WwAFRu2JCIyivY9B+IXEEjLJo349JMOlCxRnCfXz+fhTmUMk/Ftwn8GQU/u4eyV/apwdogJC2HvvIm0GDoeezePXG8xu5Usj1JtSfnmHWg1eAy3juzLMv+gGfMYtXQV2xbNSZ38kxITGNGqEVePH0Gv1TLh048JePUSe2dnAn1fpSsj0M+XNiU9uXTsMMVKl6V4pap8Pm85Y9duYeKWPdw9foDVn3cmLjKcSzs3sWv5fBLj42nUrVeu2maCCZlBEAReP7qLR5mcG8mZ4ebRA3jfvErLAcNRW+VeabhU7QZY2tlTsUkrmvcexLVDmUeAsHUswI/HzlO5fiNWTf6GxBS3mZtnTjKqY0u0Gg3XT5/ku/49sHdyIjjgNVpN+o/8X1ctp21JT+wcC2CuVtOi3xD6zlzEN1v20qh7X/bO/IpzG5YRHfSGfSsWcODHhdRo3REPr9IkmgiXJuQDHt6+QekKVfJcjsFgYNLoobRo25EadernOjKPTCaj7kdNqFS9Fj37DsDWzoHbN69nmr9V2w4cu3AV72dPWbvqx9RdonGjRjBz8nc4FijAt+PGsOWXn3F2ccHnVcYfq8VKleXTnr2oUaM6tjY2rF26gK1rV/DsxgVUKhWVG7Xm0vWbHDpxiu++n8e+Q0eZNuGr96L0bHJ0ToFPpNh3Ty8hhOiz4B9KyYlyafDNLPJKyZvSMdY4vm2iNmuSlfTcdESrLOJt66RtyMW7JuXOaCRkMWMCl5RQmSTJKw2Vp9VmfuPTKTomiSttXHaSxkDgk/uU7zKMsEgNoRHir/+7T8UERFcnMUuvfOG0rbR9K5fiWbsVZiXq4h0YR0ysJJ66hKxpTATVpbxIcrUNtx+8wcHeEjMLG256J79/Tg5iFTXbFMIlzqVoN3IiU3t1ZcCCNQS9fE7hchXpOvZbts+bweOrF3nm/Zw2A4Yw/Yt+TNmyizLl0j40QlIkshd9MwbXwkUIePWSkDdvcPIsTJFK1SlbrzHXD+6iz+wVVG3ZnjKuae1NTzB+P3gdKd56NCYeSYlEFhIikZmELPU6WpFpWnYwbq80vrRechyvlZIqjYiOkj4mvY9SEqHxsfS6WeXNDkppZ1ZK74f4WnILI+K5ZFCRTrFSQqYxAVNKxvT3C0iOq2vnRkS8jpAYcdkP/NLcrxxsxSQn45jgeq2WnfOn0WXOT4QJloSFJxJrRPBKlBAsVar0hkG4wYrIiCievY3nbUQciWZWPAtOfv8KGLHnLFVpfbtq1/48uXeXka2bMO/gaXasWMqwOYuxd3JixfgvefHoAQ6Fi1LQqxTf9OrKnO27RZN2eAqheNKAz9AbDNw5eZgGnboD0HrQcG4cO4iFjS3jfj1KnQrimNpS4tz7gjHJ0qAWqyUKcnEdZLK0e15AQpKUxq5OlJLyjcjF0jQp0VFKmpQSLo3zW0tic0vHDXMzcRuMy5bG5pZe1zg2OYj7oDRvgERtWnocZRSPPCZROoZk/aGlMbpfUjulSAGJfoWdeB67fO06nmUr8zIi+V03vj/SNhS1F7tOFbRNm5vOnjjOy5cvWTZvJX5RCURI742kXtKyQ2KSCMeCy89fU9gngsi4BJ7HyUnyiaCEg7gN1qrkZ2pm58KY6fP4dmg/AoJD6d53ICeOHWHPsVPs+30nK5cu4sH9+/QZOIjPunxC4WLFGTxooKgsc5WKPw8fISwsnKjoaE7fekSf8tVR2MD8eXPp038gPXt8ysaf1or67vv49DUZ3yb8JxDp+5ToNz7YFiyRp3L0Oh1+V47TZk7eQvrJlSoMOi1JsVGobHIWArFWx24YDHpObV5L8So1CXjxjKSEBEYuW8uf61dSvnY9FGZmvHp4nz9WL2fiirWp5xYpVQYndw96fDkOj2IlsCpSGvMUoRKtJomgV89pNXgsVVu2z1O7TDAhMzw8sgu30pXyXM6Taxexdy+EW6kK2WfOBAqlCr0u2WBIiI7E0r5ANmeAXKFgxNLVzB/QnauH95MYF8utMycYPncJE1Zv4q2/LwozMyas3kjfamW5c+EcVRs2Sj2/WqOmnNu/h6Ez52HrWACLQiVT06LDQkGAIau2Yevk8pfbZYIJmUGTmMDlo/to1294nss6tHc3rbp+hlJlnn3mTKBQqtCnRGyLjYrA2j5jVxFjeJUux4bf9tOpWT3qNEjuW5fPn2PMhO+wsbOnbds2lPAqyfJVa/miXx/69+ktilbyyccdSUhIoHevnpQoXpyCRdPsgUePH1O3Th3W/Ljivax0S2FyOzHhP4HH+zZQvvNg1HbZd/CsEPTyGXKlOdYuBfNUjlyhJPTxVW5smou5tV32J6SgeptOvHn2iDL1GtGoy2cc/GkFFtY2dB3zbWqUh3YDBnP33GmijRjfMpmML6Z+z/alCyhZqXKq4Q2gSUwkKiQIBzePPLXJBBMyg06TxI3f1tN09PQ8l/Xk2iU8K9XMPmMWkJsp0cTFcHfPRp6eOZQrDYA2A4fy5/rVTNmxn5CA19w+d5oyNWrRuFM3ABQKBV2GjeLYTvEHermatSlRoRJXjh7Cq2Jl0QQf8fYNZkoV6hyS1UwwIbe4deoQdo5O1G6ZtUR8TnDlwjkq1KibfcYsoFAqiQp+w0+TvyQ6PBRru5yF03TzKEjjFm14cOc2O/YdZuakbzAYDHw+bCQlvJI/aBs0aoxHwYKcOH5MdO7kSd/y5+HDyGQyCnl6itK8vV/g4e72wSLfmYxvE/4TSIgMwa5wqTyX41aiNGbmagLv5y1ig2fDT3i250cK121Fpe4jc3ye0tycMnUbcXz9Cq4e2od78ZLp8jh7FqLhJ11YN2Oy6He/588wt7BAZS7eirSytWPgwrXsmj85z+IEJpiQERIiw7CwdcDKMe9CO9VbtOPxyQPoMvCrzils3QthX7Aoj4/uouHn4yhRL+dqdmVq1SX87Rt2LZ1HoM8rCpbwSpenbd+BPL19i+un0iJLyGQy/J49xSYDMliVpq2o1LwtJ9av+GsNMsGEbBAZEkThUuXyZVW3zcedOb7n1zyVUb5hKx6eO4KZSsXQOStRqXMuyNC0VVv+3PMbPy6eT7ESXhn6nE+fM5evv/qK6Og0HZbAwEAiIiJxdEhv6K9bs4rrN29y6kz+RETLDibj24T/BMxtHQl9egeDTpt95iwQGfQGXVICCHkzUgt/1JmmC49Qpk0vnLxyTkDT63TcP3OUyKBAKjduxsfDRmeY79MxE3h0/Sp3LqQNJB0HfIFKbcH2pQvSGdkvbl2lYqOWOVYnM8GE3EBpYYU2MZ5Qn7xHznnj/RSZTI6Qhz4oV5jRZvoaOi/9nXLNOmCZw1U3gEeXLuDg6sbF/buYtH4LRTMI7am2tGLUvCWsmjKBRKMwakNmzePYr1t5dP2KKL8gCLy8dZUKTVpleE1NLkTPTDAhI9g4FMD36UPiYvKmA6HVannl/RyBvL2TrsVKM2bzCQZMWUj1pm1yde6xP/dhaW1NcFAQm3/POGBBw0ZNaNK0KbNnzUr9rXKlSgz54nPGfv0N4eFikStfXz8SExJpUC9vK/o5hcnnOwXPg8VhbhR5sEFyQ4aSEjClpxqTtLIjXWVL5syCDJWuXrkgmEpJkjp95sdZESiTyxYfGxO6pO1RS8gzZhLyl5kRmaRGz2GcXToBuSGJaj1HplPWdLQXP/DwSPGq2vJjyUzsiBOLca/9CYl25XnpkzyI2duLv9hrlxdP5AWs08hIt18ZqaE6qdPdq/gURcWAu5d5fno/Nk6uqCytiA4KICrAl3DfZ+iSEgkJ8Me1RV9uv9EAyXW1lCiU1es/mk3Ll9PLsxLxWgOCINBq6kr2zfiSQJ0FlT/unZr37slD1OvcM0/vfV7hGy4mJRkTBc2VUuKURMlNlfOKSwmY+dnXk0RkKHHe9ORNcbrx+51dcAupCp6UpJZVm9KVLVlwys34JYWU5J0KG2eaDRrN7nG9GbTyV1xLlE6X17gNYZFiQvSmm28B0CXGcnv+NNrM3kZwlACkKPUZ9bE6JcUuJAUk8oPviJXJsM50XD21YTkxocHYOrti0OsJe+1DiO8Lwl/7IlcoKNOwJdEFSnHNJ82YsTAid1p6VcGxiBc7t++ketvORCXoMbiUpfX4OUwf0Jv+Gw5iXSDZvzvyjT/BPt5UrVsHayslKslKnrXZByJcqozUbBVi80DKuzbunwkSSppa0l+zIlEq5NkQLCXvSXiCeGw2VqmUjgtS1UrpHGLcj6Qk0VhJcIBoqUqlUT3D48R1ehkiFpLyDRUfx0amjXVJErKiVEVXYSaul/E3p4W1mJgcGS+uh0Znm/q/W40WGM4e4/vPuzF2wwEAVEb3y91GPBBI78ftwOR4+Kf/2EFwRBQ9ZvyYSiSVEixLO4lVkaXP4VzK/bKyseVtdMahD2Miw9mxaDquLi7YF3AmMiyEAJ8XvPF5QURoMAqFGUvXbca6gCvxqXaF+N6NmzKTupXLMXriVCwsLbFSqpj8/TymT/6OXgM+59c9aYb7lj0HqVKzNlFya6KSwCYXc8pfgWmZy4T/BByLlqZqjxFE+v91pSpDYgyat49xqZ7x6lR+wvvMQRRmSlSWVmjiY3H2Kke17oMx6HRYOblSp/9YlOqsY6oWqVyTwGcPUz+O3j69z8YBbUiMiSIuIkSUt8PIb9j/w3x87t9+b20y4b+NOt36UaxaXUL9/nrM6sgnV7DyKIWtR9H8q1gG0Ot0XNy+DtcSpdHrdMjkMkrXb0rFFh9jYWOHU5ESNOgzNNtyilWpScCTNCXaE6vnc3jJNAwGPQnRaRGW7NzpAiz9AAAgAElEQVQ9+ajrZywf3p+k+PiMijLBhDxBaa6m97QfCPZ78ZfdC3VaDbfOnaB+206YmSmzPyEPeHrzMkF+r3B2L0hMVARObh606d6PwsW8cHR2pVHrDtT9qEmWZTg4FqBYCS+ePErrg9UrluPihXO8fRsoytuzb39eej9n9Q9L3kt7pDAZ3yb8ZyCTyxEM+uwzZoDY27sJ+e1LLIrXQ2XrlC/10Ws1PD+5h6dHdxIT9FqUZunojP+t8yhU5lTvMYzybbpjbmWDVQFXPvvpMGVadM62fBtnV5RqC4JfJssJB3s/QqfVUKxmQ4pUayDKW7JmXTqPm8KeRTPzpW0mmJAR5HI5ep0u+4wS6JMSeLhmJP5H1+FWL/t3P6eIDHrDuc2reXj6MBoj9xC9VoO9uyf3Tx6kaNVaNBk4msotPyYmNIiq7T9l0OrfKeBZNNvyi1auzvPrFwGIiwwnNiwYvVZLjc59sHVJIzjLZDJ6fjsdG3sHzu3ekW/tM8EEY7xbzBb+gvH96PolRrSsSUxkBNUb5Y/qsSAIvLh9mbM7fsL3wU1RmtrKhpA3fgT4vKT9ZwPpNGAYtZu24vmj+yzcuJNv5/+QI//1mrXrcuHsGQCuXL6ElZU1BQt6MmDQF6J8BZyc2bb7AGt+WMbbwDf50r6sYHI7MeE/g5i3/iREhvHi3EH8b10kKSYKl7LVKNO2FygyD5kU/uwW8U9O4NRtGQqLrCOTGPQ64iPDSYiNxqDT4eBeiOO/r+fyHzvQaTQYFOZU/GQAmrgYHh/egZ1nceRmSp4d24mtexFKN+9EkVpNqNlnDCUatuHu72u5s3sDRWs3o1zrrsSGvc1xe2UyGeUat+bhqUPU6V+KK9vWUL/fl9TqPghdBl2/WqsOHFqzBJ/7tynZ9KMcX8cEE3KKsADfVHn5K7u34OBRiNIftaJ0g+ZZnud3ZC3qAh6UG/wDsmx4CZrEROKjo4iPjsLK3h5duJ5tC2fz9OYNBMGAU7FSVGvXFZ8717h34k/KNWnN3SN/8OT8cSLfvqHPwvWorW0Y8cufPDh1iEPLZmGmVFGlTSesHZ0Jf+2T4/YWrlCVxNgY3r58RlhIOD63LtNt9moKVayezp1CJpPR9vMRbJg0ln7DR+ZauMQEE7JDeOBrlCo1l/duRZOUyNMrZyhSrgr1P+mJe7mymZ4XFxPD6qljGTJjCdU+agZAbFLGH9GCIBAbE01sVCRxMdEUKl6S65fPsXHZfMJDgwEo3+wTHD0Kc/vYXmLCgilVqyEbxvWl9sefYaNW0X3sFCrU+YjZu05z8bdNjOnakrLVatJpwDBc3D0IefuGQsVyFja43cefMHXC14waN57dv/1GydKlWbzsB9w9PNLFSXd1d+fjLt3Yumk9M6ZPz1H5fxUm49uE/wwsC7hi61aYVxeOYOnkQeFazXm4fxNqG3uKNu6cTHo6vYfAu5cwyJK7hqDXEfHyPrb1BqUzvHWJcYTcOo5viDdxwf7EBfmjiYngtLUNahtb9FotCTFRlKlVn4EL12Dt4MiFi3d4cmQnFg5ONBo7H0evSgQ/vsXxmV8Q9folnlXSyB6ORUvTcuJSogL9eHL8D/ZN7I9zifK5anPlVp34ZUxvrNwKUbx2YxRKJQqlKp1fISTHMW7YvR87Zn3L9d/KoLa0pO/4SRQonrfY6CaY8A4Fy1RCJpdzdc8WKrXujCAYODD3GwrvOAVKa5LiYrj8y3KigoORmykRDAYMOg2Rzx5Q8cuN6Qzv6IBX+F4+QnywL1Fv/IgO9EPQabG0s8PS1o7o0BBkMhntB3xBnwlTkCsU7Nm6nQenDuFSvCRjth/F3M6Rg4uncWPvdgC0SYmorW2QKxRUatGBCk3b4nvvBmd/WYXv3Wu0GjU5o6ZlCLlcTp1OPdk+eTTtJy0CwNbFPdP8JapUx9LWjqn9e2KuVuNVsTLdh48Gc1Wm55hgQk5hplJRrHJN3ng/JirkLc37DOPB+ePs/XEulVYly7N737/Ngc1rsDBToDAzQ6/TEeDnQ6W6jVIN73cw6PXcv3SaB9cuEOLvQ7C/D+FvAzA3N8fazh612oKQoDc4u7oz7NvplCxXicSEOBbOm0NUcCDVWnemcrMOKBRm3D62l8t7NlO4dNocZ2PvSN+xk+g8aARXTh5m4dfDiI2MwKtszmP816xTD4PBwLdjR9GyRQvWrlqJu0fmYXX7fT6Ezm2a89rnJXq9ngGDPqdR46zdW/4KZFKy3H8RMplMmHnBW/SbiXCZRVouCZfG5MbERLHbR1Z1TF8nCVlGQq7JinBpZSFeRXpXJ/8bp7m/ay3NZmzm9uYFhD6/S7mOg4hPIfXI5QpUNo74RqWRKEuUcsPvxM8EXtiNfckauFeshZVrIaxcCqN2cKF6meRQYoIgEB0cSPESRVLPFREuSb5XgsHAk8Pb8L9xhvazxAaG0ohsE/rqCQadDpeSGQ88UsKldcpx8Kvn7Jo+hnD/V5T6qBXtv1ucTn3RyyVZzUynSeL+meO421ni8/QRR7ZvYfik6cweOxxBEN6b8oBMJhMmnn4q+s1EuMwc0jrniXApwXshXJL+mb3Lu2fGaFyKl8GrWSd2j++DZ+XaOJSqgV6nRSaXI1eYES13R10gLba+u52Wa+tmEvbyEcUatse9dDnsPIpg51GYOuUKpm5HJ8bHYWtmEIX3ExMuk9ubFB/L9glDqNCsHbU79cqw/oIgcP/UYUrUbIB5iqS9tL0iwmXKOykIAjcO7GLf0lloEuLp9v0qStVvlu7cdyqeIa/9iPJ+jMLMjD+3/YxBp6dDr/58P/Lz994HNUGvUo8FpZiAp1OLiaxRRkqi0RJyokbyDmkkBPdQI2KgVLFSqnj5PgmXeqNjKcFQ2qek5/4/Ei7d3KxFx2XdbUXHjpL8KjM5iXExTO/SkLnbDvL6xXPWzZpA12FfUdDFGb1Oh5nSDKVSReFq9VGp01QvL586zo7F07Cyc6Bq07a4Fi6Gc6FiOHkUooJHWn8LDXqLs5MzZso0H/Fzr8KQItj3BT+N7sH3O4/j4JKmtOpilbYrHRMZwcs71/ioVbvk9kiUVS2V0nEw+TgmOprJ47/i4N7dqC0seOn/JtkFzsiWSTB6Ry+dP0d8ZChxcXHM+X4mvfv0Y/HC+fna/0zGN8mDzuD9D0S/Kc2kHS/tf5VZNtue6Vj8af9LjUupASmVpjc2dLXSbcpsNOCFLCzo7M7NqixpsdI2SeupzWCVNbO8UigUGRuiAOYS2Wi1uUSC3Chdamy+g2AwsH/KEPxuXURt50jXVYdQqi3TfVAAJEZHEPLsHn4XDhAfEUa7SYuwdfUQSVtD+ntrYWQ4Su2aOw+ThXBen91JbMAz6o34XpRu/CEj/biQSntLYewPZ6WWo9dqUChVyQaNpI4qifH6rs7+d69x4/cNvLp27r1P/KOPPhb9pjZ63maKrI1tafQP4/lcmiaFtXnm2/vSCVhqCEiNXGPDNTsjNiuDWVpn6QeDFLn5gJBeVwpjI0N6360lfU6ZC9eIOI3YyIhPMdhCA/z5tnUDBEGgdrf+tBo5idik9NwMQRCIeO1D4OM7XN++mhrtOtOs3zCU5uYkGBlC0vZJDTLpR9DdV8lRHI5814uKXYdR1ojEJTWEcjPmSvunhZkBQUhefQSQvpb2lmmGhF3KYoFBr+foxtW8eXKfmyePvvc+6B8Wk3osHTFjNeJfEozujbFcPECMxBiXpkcZSapHJ2Yd/tVYih2ynn+t1eLNfAtl1u+n8Qd+ouQjQHrdwEhxNKbwuLQoHUGStNhsjhONPj40cTGiNCkvSXosN0szoBXmYgl4exexSFMBN/GxvcT4LuWanH7nyO8c+XE6ALO2HqR4ucoUdxQT+rV6gaSkRJ7dv8v1C6fZ/+tmJi5aRdW6DYmW9FdpBBtpn1QbPcPnYckfJsH+PiwZ9inLD15Kp0VhDONnKjW+s5oHAPTaRMzMlKlCOsZjdKgkUkxEynsZGRrEr0tmcf34gXztfybCpQn/acjkchTK5AEpMSqcoMe3SIqJIiY4INUAFwwG7v6+lt0jO/D40HZcvMrSdcFGbF3zTxHSuXJTwp9cIfq1d/aZ/wJkcjlm5mqi3vjw+7A2vLl3hbBXTwj3eYo2IfPoCoUq16LLnJ/eS51MMAFAbWWd2tde3rhIbFgIsWHBxEemKbTGRYTy+zf92f3tIHxuXKDj6Em0HjwGpflfl7eWolSrHtzZsTzfypNCoVRhplJxZdsadk8aQpj/S948uUfkG38M+oz9Z+UKBW2+GMmYH9a/t3qZYIJMnmbQXjl6gKSEBAL8fNAkpX1g3Lh4lu4fVWPF998RHRnJ0u37qVbvo3yTYncqWJhCpcpzZPuGfCkvI6jVFigUCvq3b8r2dSvxffGcx/duEREakuk59k6uDJ3zY77XxeTzbcJ/GvERoQQ8uEHvrVcI933GibkjwSCgUJkjUygoWLkusSGB6LUaOi3/A0sHZ5zs82/Cfwdze2cUKkvkyvwv2xgBdy4SGxzA4WnJTG+7gkWJCvDBoVBxuq/en28DqQkm5BRXD+2j1v/YO+vwKI42gP82F3dCSJAEAgnu7u7u7u5SChRaKFaklOLu7g7F3d0lIbhbQlwuudvvj1ByO4EcEqPf/p6Hh8zN7OyszOy7775Ssx7Vf/mLo0umM61peawcHImOjMTRzYP0uQrge+IAeWo0osnEJZhoNLil+vJseF+KfTqPjy/iicm904d45XODReePYe3o9PElo9Gw8RSt1zzR96+iInL9wGZ+nrqEbAWKMKlvO7pXyotTamdCgoMoXKIMDk6pOX3kACOnL6BgiZhIWVEJnA3ZxMSENO4emJkn7jPw2eOH+Ny8hs/NazDudzJnzcFDX28Alhy5hqPz92fh/RJU4Vvl/5rrO9eStVwNzKyscc1RgFbLTiBJEnq9nqAXj3l54xzOXnnIWqkBJokY1zQ6IpTIwLdYpUrciZ+9ahPs03nw8sZZbu1cSXjAB9s7SVIFb5UkR6/TcWjNMtr9PgFJkqjYeQAVOvUnVKtHF6Xl+c3LvLl3mxqDJ5CxYIlEHUvQi4dYO7km6j4A6v0+nafXznN5ywpe37v98ffoqO/Lvqui8i28vHuD4HevyFeqAqZmZoxevgMAz9Q2BPj7ce74Yd69eU2Hfr+QJu3nnYW/F1mWef34PvkKF0+0fQC4ZcrMgs17uXnlAjP+GPFR8AbQf2fm6q9BFb5V/m/RhoVy4591NJ265uNv/wqgkiThkMEDhwweiT4OnTaSm4t/IV3xOmjME16jZ4iphRXuhcuSqWg58tZrh6mFFeY2dlhYqkuBStJz+fA+bOwdyF60BE/8Yz5x/zsHNWbmZCxYItGFbgD/h3e4vHoqpftOSPR92bumJ3e1BuSuVIsQ/7dY2afC3MpaYfMt8t6IXbSKyrdyZtMiijXs+NEh0lAJ4+iUmuoNmgLf54j9JexdPpvAt2/IU6Jsou5HkiTyFi5K3sJFqdawBVFRWhwcnQgwkn07oVGfuB8Q/Wi+JtqHsb4MER0s49SLXjgGZTHiQ7jg1CI6R4ldGfYtthX3G18UFtHr+2uisESLkVKEsuikZDhO0ckulbXy9nUUnC/SO8Q6o+g+8Yls5V/zKVK2HE0rFyYoQnC2CFPaYPqFxj78nvspnWeu3nyjKD+6/1pRtrCIHVdkpPIhqjExIfLFTUL83mBZfjDXrymT7Ti7xIY3NBOch2xslJ/nzARPb0NnzfAI5fFYWZqCZWp0QGSYjuAwwcnH4BoHBifNg1+8noaOcqJDYZyoBvE4KBrbVsSw3ljEg7gOmAZzzCR+p0mNUDbclzEHSxFxXPEh9i0eo2HZQnCotDRVXiMPISW1k+nT2EKkMmnGjcjaivLrd2+ZuGg23Qb/Sm7X1KS1D/9Y5xemTDktrnWvgpTz1edpyMe/3wt1oqNyWLiyL120Hp9tq0lbshG61HnxfRDrAGdnqzxecX2yFJx1DfcVJZhxi47pdtZmWDvH+I1E6WQCDBz8AgRnPwspadyz7vrHXgMxvbqY9t2wHCBE7PAPUV4D8XgMY0SLa7O5qfKcaqOF66X//BwU55z4vBHnvpV57PUV9+MnHIO4hkYZOBlGCi9HeiOBBAwTTYUHKHM3mFkqI5ZERYTwOQxttQE0plkUZVPhmVEpt/LLjt27u7zxvsqUuQvxSquMjGIunMuXwvkIjIw9xvOP3yvqHvspo7s4Cc8qF/vYsq2lKbIss2/5HAYu3omDYypFWzNhHIZrrOjYK8o84j0r3tNROjOQzHgXGMk7IWKNuOYkNKrDpcr/HSGBAfzdvycXDx+gw7Dfk3s4mDlnQR/yjqAT89FHRRjfQEXlB+fm5Yt0rFqOfMVLUrZGbeMbJDL2GXPz+uJenp/cnNxDUVFJdPR6Pae3LGdkr44MmjANK2ubZB2PJEm458zHpsnDeeR90/gG/wFU4Vvl/4rjO7fSp2pZbB0d+WvbHlzc3JN7SJiYW+NUexTRwW8I8T6W3MNRUUk0wkJCmDjkJ/q2aEj3YSMYNHEKJl+p5U8M0harhWe9PjzcvYDIoLgxiFVU/iu8euDDgn4tuHlsLzM27KJkpWrJPSQAWg//mwzZcrNhzmT0CezMmRJRzU5U/m849c8OVk4ax7D5S8lRqGhyD0eBmXNm7Iq0xP/IVEIfXMA+bzUsXLOiDdRi7vDtTpj6KC2yrMfUysp4YxWVRESWZX7rEWNbuvXsVcxs7YxvlERIGlOc85bD7cU9zo5vRdqiNchQqgGSnQWWqdJgavHt80cbGoyZlQ2qrksluQl695qlQzpSpUN/CtdqSoZMqZN7SB9xSJOWah37smxIJwY3qULVpm0pUa0O2pAg0mXK8s0v6bIsExYchI29g/HGSYgqfKv8X+D/5jXzRw5j+KKVZCtQKLmH80nMXbORscM8Qu6e5P35TWj9n/JcY4aZXSrSFKlF+pL1MbW0Nt4RoA0N4tqK8by7fRZZp8PGxR3HLLnJ0aAnFvZOxjtQUUlgdqxdydOHD1hz+DTmFhaEarXGN0piPKp3wq1EbZ6f2c7lWX0w0WiIDg8hddYCeFZtQbr8pb44KtDrO5c5u3giwS8fI5locM6Sk4xFy5OvQYevHtf7cNXhUuX7kGWZrZN/pXi9VhStkzJDWlpa2zJ2xQ5unT/FwU2rWD3tD+wdnYjSailVrQ5123UnQyaPL+pLlmU2LZjG3rXLCAsNxt7RiUw581OtZSeyF0rciCpfgprhkpjMXoMOeit+Ex0ODTMCinWis5eYPdDQgSlOW2Ehjy8bn7EsdsYy1xk6LBpzOhOJLyW1MWevhEqbLZ4beyFCh52QcMPQOWzn4vnc977NyBnzAHgbpkws4/NGmfb9xjOlk8vZ87GOkN77/lEOMly5rRytFCokm1gHEslO0GKbKuMKS/axDjGyLOPoaEPUW1/Cbu0h6tVtXEo1w7V0MwBsBWe3fx0wI4P9uTitN045ipC1bjc0ZhaEvLjP4yPriY6MIHv9HqRy91RsGyY4Exk6lmm1eg73K5no2fUWXH+i+M3weovXXsygZmOudLY1dCr8GgdDsSw6RYqItYb7MhecFeNzsISvc5o0tm4b9iXuRxQe465BsePOZiNccvmpUH6sLOsM5pWJ8t4uVnIIEydOpFKlSgCceK3M7Pfwfew8evZe6ftw6W6gonzxwiNFOTQ41lEwWnCysrJWrgs2wrwRNWo2tjH1sizj5GyHLjKMt9eP8+TwajQmEgXaDSN11vwAmArrqM2HzJRPLx7j5JyRlO7xO+5FyqMNC8H/wW1Oz/+D3HXbkLVCPWxTKTVxhtk0RcdOB3NT/qyeI9Hn4Lyzjz6W34UonV5FB8RAgxeCZ/7K9VSr/bwD9yf2qyiLz0/xeopZRqMNMm/qhAdMuHAMltbKe9LMwGFWdE7UC33FJxMYQytkgIwwcO7TChmSxWOIilTWmxg8JO2dlF9kXDMonSZLZ3X++Lff88es/qU9hy7ewOxDZBMbg/vXML06wIXnyjn3PEg5Jw/eig0sIK7HYpZvQwdLgDQGc1DcNrVBFk5ZlrG2MMXvxVPO7VrPmZ3ryV2sDO1/nYCVrR2WgsDwr0+zLMssGTuEp/fu0HPcTFzcPHj99BHXzxxjz4p5dBk1hRyFSxBicG+JTsLiMYyrlStB55+q+Vb5v+D21UsUKVM+uYfxVUiShGRigrlrdsxds5PKKoK7S/rjmKssFqk+H2/1wd5lpPIqSM5mAz8+2Bw9cmHTYjC31v7F2b974OCeFbt0WfCq2T7RY4urqEREaLl9+zZFi6Ysc6/4kD7Evje1tCFdsZqkLVqD95d2cHPDdMr/tuSz2+mitJxZ8AeVBk8hba7CAFjaOeJWsDRl+4zh6sb5XN+8mLS5CpA2ZwHyNWivxthXSXSe371JnvwFPwrePwL/zovU6d2p1W0Qldr0YN2YAZzevZnKzTp8drtb509y9+oFxqzejYVVzNfitBkz4+LuQWhQAMsn/IqFpRXpvHJQrFZjshZMek24Knyr/OeJjori9KED9B85LrmH8l1YOKUnVZ6K+F87QLoK7T7b7s214xTqOTnOA93MypYCnUajDQkg5Okdnp3bx7mZA7F38yJKq8U2XRbSFauJZSoXxXbR4Z8PdaWi8iUcOHCRIkWKYGeXcuy8vxZJkshUrgF3ti8k+OUj7NJ5fLKd3/3bmNvafxS8DUmXpyjp8hQl4OkDgp77cmH1bF773EBjbo6sB/dCZchUvBIaK6V2/u1Dn0Q4IpX/J7xPH6ZRrarJPYzvwtLalqqturBp5oR4he/LR/dRuk7jj4K3IfW79KdWux48uHUV7xtXWTq8D7lLVSQ8MgorOwfyVqxDhux5FdskhoVIsgrfkiT1BroDHh9+ugX8IcvyPx/qJWAk0A1IBZwDesuyfMugDxmIAnLIsvzA4PdlgLMsy3US/0hUUjJXT58gYxYvXDO4JfdQvpvUhWrhu/QnQp/cwKVARVwKVcPUShkX1jZdZkLfPMHe3euTfZjbOuKatzTO2Qvz/PwBZFlPlA4CHt7kzPg2OHjkJlOFxqTJU4rQN0+5unB4Uhyayn+YrdtP0KhRo+QexndjojHFs0pzjo3rTNq8pfAoWxvXPCWQDExXHNyzEPLmBfroqM9mxXV0z4KLpxfOnjl5cfMiJiYatBGR+BzcyqkF48haoQ65azbD0S0L947t5vSiiUl1iCr/QaKjtNy9cJzKM6Yk91C+m5xFS6PX6xnRrAqFK1SjQv3mpM2YWdHGzTM7925c/mwfZuYWZC9YnPS5C+OayZOgd68Jj4KANy/ZPHEwpmbmFKjVjLyV6iFJEgcW/Jngx5Hcmu9nwC+ALzHmk+2BbZIkFZZl+TowBPgZ6AD4AL8DByRJyi7LsqHBoA4YB7RMwrGr/CCEBAXinDZtcg8jQbBy8SD3T2sIeXiVIO+jPN63COe8FXCr0BIbmxhhW2NhRfi750b70phbkrFMXSDG5jt9idpkb9yf15cOcv+fJdxeNxmdNgKP6h3x3Tw1UY9L5b9NQEAo6dIlXmrqpCR7nU64l6zFq6vHubFhFpeXTyRLxUZ4VW0OVrYgx2jJwwL8sHWOf91xzOCB44csutFRenLVaEbwmxfcPbiZHb92wszSCjMrG2r+PoctP6uPN5VvQ6/TER0ZgVNqZ+ONUzgmJiaMXLWbR7evcfXwHkZ3bEjG7Lmo2aoLeUvH+JNYWFnz9vkTIz3FkLtkBSDW5rt86548un6eczvWcnzlTDRmZngWTvismynO4VKSJH9gGLAAeAHMkmV53Ic6K+ANMEiW5fkffpOBv4gR0ovJsnzpw+/L+ELNtyRJ8qRz9xW/iY6Bhnb9xhy24jqHffu2lmaGjmPKOmMOXaKjmWF7Y+P4GucvsW18jp/G+jUTjskw+1lYlNLjPzJa6YgSIWQoC46IKT/1uc28IX3puSzWUfK5v9IR58DBu4ry67u+irLGIdYUQxfwUjlowcFS/0Z5LykcLp2MxBUXMpaZGUQmcXJWOtM4pbYjKsQfv8u7eXtuGx6VW2Jias6zU1spPngZlvaxn/jFzKpi1j/RwUunkwl47I21U1rsnVOztlXBRHf22v/MX/Gb4f1qZuTejs+pMj6HQgBXS2XZKT6TSNHhUKe8b9Ab3Av6yM/XfQpDB0VJ8/l2nxyXkI3NxMDBSexLbCsSbaDXELe1LKYoXg9UZswznKN+4bFOkEsnjCHcxIIqHXt//C2OU+XN2Ov/5KEyS6yl4DQZ+F5pChVl4DgV/EaZcdbUVunY6JpOmUHP3EJ5wQ0dwOwclZ+tHRyUDm42VhreP7iFz+4VBDz2pnjHIXjvWYujuyeluw5VtBUdBc1MlWXRCT5aG8krnxukz1UQV3srhpX2TPQ52G/L9Y9l75dKR/IIIeKKoROh6BRp7HkSbeCQKcogouOjRnCqE8+jIWLGZBNx3ROyRJtbxOofHW2VzpjGghIYZtoUM906Co6dolNhuNYww2f8WXPjOi/GmiTlFhws7S2V93LW1LH3b4uyBVizfQ9uBtFCtAZZV2+/Vc4pMcKOrbmQ7dXgkCIEgckv9MsjGYmOjmGCs66dEFjB8Fyam5oQpY3k1ol9HF05G9fM2ShcvRFb/v6N1qNnka2A0sfE3uLz+uZQ4R7WRut5//oF2ogwXDN5MaRC1gSdfykm8KgkSRpJkloAtsBpIDOQFtj/bxtZlsOB40ApYfPzwGZgUtKMVuVHwsXdg/cvniL/BwP3m9k6kbZcG7J3m0Pgo5u8uX6Mgr2mxzFF+VokSSKVR04s7FMZb6yiYoQMmbPw9vHD5B5GgiNJEk6eeSjZdxIF2gzm0qppOLp7UqTtwO/u29TcAre8RTDRfOWLmIrKJ3DL7Mnjh/eNN/zBMDO3oEDlevResAOXjJ7snP0HDV4wK8gAACAASURBVAf+gUeeuD4XX0sq1/S4Zvq0+eb3kuyab0mS8gJnAEsgBGgty/I/kiSVAk4BmWRZfmLQfgmQQZbl6h/KMtAUuArcBurJsrzXmOZbkqRuxNiSA3z/VVJR+W/zWJZlj8Tq/MM8VlFR+TzqHFRRST4SdP4lt803xNhyFwAcgcbAckmSKhjUiwuC9InfkGX5niRJC4GJkiTtF+s/0X4BMaYtKioqyUxifk5XUVExjjoHVVSSjmQ3O5FlWSvL8j1Zli/KsjyMGA32T8CrD01EjxUX4DWfZjTgCbROlMGqqKioqKioqKiofAfJLnx/AhPAAnhIjAD+MTClJEmWQFlibMLjIMvyG2AyMPZDHyoqKioqKioqKiophmQVviVJmihJUllJkjwkScorSdIEoAKwWo4xRp8GDJUkqZEkSXmAZcTYha+Jp9u/ibEfb5C4o1dRUVFRUVFRUVH5OpLb5jstsOrD/4HAdaCmLMv7PtRPAqyA2cQm2akmxPhWIMtyiCRJo4E5iTlwFRUVFRUVFRUVla8l2aOdqKioqKioqKioqPy/kBJtvlVUVFRUVFRUVFT+k6jCt4qKioqKioqKikoSoQrfKioqKioqKioqKkmEKnyrqKioqKioqKioJBGq8K2ioqKioqKioqKSRKjCt4qKioqKioqKikoSoQrfKioqKioqKioqKkmEKnyrqKioqKioqKioJBGq8K2ioqKioqKioqKSRKjCt4qKioqKioqKikoSoQrfKioqKioqKioqKkmEKnyrqKioqKioqKioJBGq8K2ioqKioqKioqKSRKjCt4qKioqKioqKikoSkazCtyRJjyRJkj/x7x+DNr0kSXooSVKEJEmXJEkq+5k+xN9HSZJ0M6mORUVFRUVFRUVFRcUYya35LgqkM/hXCJCBDQCSJDUHpgPjgYLAaWCPJEkZhX4igD+TaMwqKioqKioqKioq30SyCt+yLL+VZfnVv/+AWkAQsPFDk4HAMlmWF8qyfEeW5b7AS6Cn0NUCoKAkSY2SbPAqKioqKioqKioqX0lya74/IkmSBHQGVsmyHCZJkjlQGNgvNN0PlBJ+ewrMBCZIkmSa6INVUVFRUVFRUVFR+QZSkqBaFcgMLPpQdgY0wGuh3Wugyie2nwB0+fBvnrGdSZLUDegGkNrJobCff+C3jVpF5f+Dx7IseyRW5x4eHvLjx48Tq3sVlf8CiTsHM2aUHz99mljdq6j86CTo/EtJwndX4IIsy1eF32WhLH3iN2RZfi9J0gRgpCRJK43tTJblBcSYqyBJkixr932s0+v1VK81jJIlcjJmZNuvPAxA0sSzY93HP729n9JnwFyuXLtP1coFefT4NXe8n1KnVgnatK5C0xZjCPTfhUbzoT9duLIvXZiyrI9Ulk0slGWN9efHaJpTUfSPdleUX4ZHx+5GVp5+E0lSlHPbK28r/yh4/vQpKxYvZMnC+eQtXJT2vQdQtGx5IqKjFW3Fvr8GcRyGWJgqxyS2TWelrHcyEzrQnzT4WzjPeq1QFuoNr5MuWFkXLZTFa2bYl7mzss4sNbIss2LVYYb8toyWTUoydkQT7OysYuplg3GJ+xHL4pgN7lMkDZLrmEwkIo8fP0bWnfhYvnfvGSVL92D/7okULJhVOR5xfACy8j6KF4Ntl686zJjxGzE3N6VAvsxcuOSLNkpHx3bVAHj2/B2LFwyM3TbOtRXmpN5wTopzzM5IufLHP+8EK48vWq9XlMX7OZuNcO9HHzIYkxZZljl56haz5u7k4OErdGxbkX69apHRPY3Rax8v4jEYIn6EFNcrEcP9itczzvUW5pyizsi9IPYlHr9Zqs+3NXUUynYEBIQwbPgStu88w9S/utKsSTkkSYo7DnGdiHM+DI9f2K9ki2TXInHn4NOnRL6P1XXNmLeI9Rs3cWT/HszMzECjXBR1JrFlrU55f0rxrMUA8od1XqvVMmjgALZv20axYsUAuHjxIjlz5qRT5y7MnzeX30eOokLFip/tS2/wyNDplc8P8WliaqIcl6XBfSTpouIfs4nyfg6SzT/+rdUp9xQtjCNEqycsLJS927ewavE8QiO01G7bldK1GnL1pXINeRWoLFuZK/erMTiGrK62ijpzU6Uxg42Zcv6aaZT1Vgb1dubxt7U2U5ajDI45lZXy3rAwVZ5nG2Fcdhax+7IU5p9J2HtFmXjuJdk8Rqa5cu06vQYMws7akll/jiW7V5aYTXXKOSdphfU6PCi2ryihrUZ5PkzzVknQ+ZcihG9JklyA+kBvg5/fEbMapRWauxBXG/4vM4E+xNiKfzVabRT79l9izbojXLjkS6ZMLt/SzReTI4c7B/eO59mzd+w7cAkvz/QUKZoLGxsrpk7bRNkyeWMF7x+Q6Oho9uzZw+x5Czh/9jQNm7Vg2e5DZMmWI7mH9p/gru9zevSZQ2BQGP9s/Z0i+cWp8uPx+rU/GzYeZu26GOHx4aNXMcJ3ItG+TSXatanC6TN38L33kuHDmpMzlyd6vUzZij/Tq3udRNt3UuDnF8iKFXtZsHgvAN271GThrK7Y21sb2VLFGLIss3HjMX4aPJ+6tYtz+9pCHB2skntY34Usy1y9foN1m7awcet2nFKlIjAoCOfUqRNlf+bm5sycPZeJkyazb88eLCwtmDtvPq5p03Ln9m0ePHhAgYIFE2XfScXtmzdYsXQJu7dvomCREvz06ygcchc3eEEJj3d7lc8TEhLK6Al/sm7jZsaP/p22DWoaffFLKaQI4RvoAEQC6/79QZZlrSRJl4gxR9lo0LYqsPlTnciyHCFJ0u/ECOFGtd8i/X6aw/yFuylTOjfXLswiUybXr+3im3Bzc6Zzx+oEBISwcdNx1m88ysVLdzlzYkaS7D8hCQoI4MwtX/bu3cvixYtxd3endZfuLFy9DhsbG4UGXeXbiIyMYtK0PUyfe5DffmlG3151MDXVxNVm/2BotVHkytOW9++DGTa0DUcP/oW5ufgJIuGRJInSpXJRulQuvH2eMXbcGtZvPEbGjGlo3apSou8/IZFlmadPn3Lj6lnWrD3MP3vOUbd2MRbM6UuZ0rljHkzGNNAqRnn46DV9flrM46d+bFz7G6VK5o6pEDXWPxh79h+kYYs2uLqkYdHcOVStkjT3v42NDY2aNCE6OpoTx44yZvQodu7cyfjxE3B0dDTeQQoiMjKSe/fucfnCOdatWsGbVy9p2LIdmw+cIl0GNwBuvPmx1+qUwK59Bxnw62jKly3NlTPHcU6dGinixzmvyS58f3C07AKsk2VZPHNTgJWSJJ0HTgE9gPTEb9O9EvgZ6ATc/5qxTJ/Sk8oVC7J0xX4KFOtL00ZlaNu6EkWLZMPS0tx4B9/BvXsvKF72J8qVzUf7ttXYuO53bG1Tphbl0b273LpyCVmvJyQ4mEd3vXng4819nzuEBAeRK0cOSpUqxe7du8mXLx/+8X/NU/kKDh+7Tc8BK8mRLS2Xz0wjY8Y0yT2kBMPc3Iwb15azctU+li7bzabNR+jYvjqNG5bFM4srJiaJ6x8+beZ2/vx7C82blmfxgp8oXixHou/zW5BlmdNHDvLuzWv0ej1vXjzn7X1vbt++jbe3N7a2tuTKmY56dUoyc3ofnBwtk3vI/xm02iimzNjF5Ok7+LlfXbb+3CpJXhDRhyT+PoCa1apw4sBulq1aS7vOXSlSuBDtWreicsUKOKVJ3C/BOp2OmtWqoNPpaNKkKcN+G46bm1ui7vNbCQwMZMfB40RFR6GNjOTe/Qf4+njje9eH50+fkME9Izlz56X/oF8oX7kq4bofQxv7I/Dk2XN++m003r73WDB7GhXLlTW+UQpEkr/DxjZBBiBJFYHDQHFZls9/or4XMISYOOA3gZ9kWT5uUP8ImCXL8mSD32oCu4Fbsizn+YIxyHL0EcVvz5+/ZcXK/WzYdBRv7yd4eWWgSOHsjBnVEXd3YRH6mgArJmXi/CTLMjVq1KBq1aoMGjTo89sa2h0DRAm2UaLmUyN8Wja034zPHhy4GlhUUS6QyoKnT58yfPhw9uzZQaWKhdBoNNjYWJIxWwWy58xFthw5yeDujn+0cqGJNLDr1gm2q8bQGAg/GayVDzknjXA+vsbuN47NsxG7bYVGS9BuGbO9N7QLjg4UmoYqyiaWgpbHMj0AYWFaevy8iWMnvZkxqQ316xQW7IuBqIDPj0u03TV2zxqeSxMLJOehyLKcaE8QSZJkQ5tvWZY5c/oaS5fvZe++8wQFhZI/nyfVqxVh6JAWaESZOM7xxWOupamgLMtPefLkOYUK1+Lsme14ZY1nMTc2B7VvDMYgvLCLc85EqDewn/aXKyuqnD4Efdq3/yLDhi9Fp4sid053JAnSuqYiV85M5MzhTs4c7qRKZau8n0U/gzj2xMK5MjFYC8QxGsPwnhPtssVzJY5Dsa0RG3/R1l7RVLkOyLJoj6y8eWS9sm8Tm/SxBYvYr59Xrz+hTdclZHR3ZtaUTmTJ7PoJu26DcX3PFwaxX40TkkOHRJ+DEYF+H8uhWh3bt+9g9Zo1nL9wAUdHR/Lmy0e3bt2pXKWKwq5ZMHFW2CVDrI33v5jHmcAwb+5ctm3byp69++I1HRCrJIPrFyw8e0Tba3FbjcEPGqHOP0IntI3Rai+aM5Ol82eTt2AR7Ozt0ZiakiZDJjy8spE5a3bcMmUmVK88vmsvgxRl75exc9JBsJd2sVeuE1nTKO263Qzq01gr52d4tPJejxTKvn7K54295edfHMXzIdqA+4fHatXS2SrHbCnangv25KksY8uOlso6TYTyXBna2s9fuJgx4yfSu3tXBg3oiyVKzZ4ULT63BXlDsNuXNV/+4mzumjlB51+ya75lWT5CjBPl5+rnAHPiqff4xG974uvzS8iQIQ3DhrZm2NDWRERouX37Edu2n6RU2T7s2j6e/Pm9vqd7BRs3buTFixf0798/wfpMaB49ekT58uVp27Ytvj5rcXCIXRD8deILRfK+0P3XiI7W0aLTEqysrbh1fgK2tv99TaYkSZQqlYdSpWLend+99efa9fuMn7iWCxd9WLPiF6ytE+489Os/kv79OuHl5ZFgfSY0y1ccYPioZcyY0osGtfMqBZSvFZJVvgrfe6+p2Xg6f45tTdtW5X4Yu9LvwdrampYtW9CyZQv0ej2+Dx9z4fx5unfrym8jRtC2fccE29fLly+ZMGE8e/ftT7HnNioqij6d2xEdFcWGXftxyxIrA7wXzClDw9XPvQnNgkVLmD57LscO7Carp2fMj5E/7nlOduH7R8DS0pxChbJRqFA28uTJTNUag1mxdBhVqxZOEIfIIUOGMHz48BiP8hTImxfPaVyvKkOGDKF3795xtX8qiYYsy/T4aR3aqGg2LeyBufn/55R1dnagcqVClC2Tly7d/qZi1SFs3TiSdOmcvvthfebMJfbtO8bCBSk3Se6GjccYNmIJh/f9SY4cGX94+/4fiZevAqjeaCpjfqtPu9blk3s4yYKJiQmenp54enpSpGhRGjdswJMnTxn8y1DMzb//xW/yX5MoXrwEOXKkTGd8nU7Hzz27AjB/5TrMzc3Riup+lURjy7YdTPhrMgf3/INX5kQN+pNkpDyDxhROs6YV2bxhNF26/4W5VTXsHGuRxasZb968N77xZ5g0aRJDhgzhxo0bCTjShOHJg/t0b1iTHj16xAjeKknKiHG7uH7rOZuWd/m/FbwNMTc3Y/nSX6hetTBZc3XEzLoWTq6Nadt+4jf3WaBAbtq0bkiNmt8QVjSRkWWZTWvX0G/gXPbuHBcjeKskGYGBYdRsPJ1ObcrQtUO55B5OisDLy4uDhw5z+tQpMrimIV2a1OT0ysyO7du+uc+u3brz4MF9ZsyYnoAjTRiCg4MY2q8ngYHvmbVoeYK8bKh8OcdOnKTfwEFs3bAOzyyZk3s4CYb6NP8Ep07dwNvnCQ8fvqJG9WKUKZNXUV+2bD6ePd6IXq/nxo0HVK0xmNSp7b95f3Xr1qV79+44Ozsbb5wEyLLM1bOnWTlnOpdPn6TLz0MZPDgeW/Rv6f/caR753uX544doI7W06dUPl3TpFW3u3rpBlqzZsbSKcTy9feMGc2dMZc/O7VhZW5PKwQw7O2uOHZmZNE5PSczMRRfYsPUqp/YN/L8wNfmX4OAwjh69woMHT/HzC6J/v8akdoo1c5IkiTGj2jNmVHu02ihGj11FUPC3h+uysrKkevXyPHyUchKMREREsGntauZMm4KpqSm7to0hX74sCdZ/YGAYJ077cv/hWx48fkc2r7R071QhJmrOB4KDw3n87CW5c2VEkiR0Oh1bt59j6sydeN99hoO9DdHROvr1qs2gnxok2NhSChERUTRoNZsyJbz4bXDt5B2MLmmTwN2//4AL127w6NEjnJ2d6dSxo8KQM42LC//s3Ycsy4SHh1OuVEnSpU33zfvLkSMHWbNmxdExlfHGScTL589YvnAem9eupGzFKsxbtgYLy4RbhwNfPsb/kTdR/i8I8XtD9nK1SZ9TGVbx/atnBEhOODrH+JkFB/izbPkadqxbSZRWi4ODPa9evODQ+es4uySuQ2xycO3GTdp06MzKpYsokD9fcg8nQVGFb4Fz525Tv9Fw6tQuRfr0zjRuNpLxf3Sjc2eDeL9SzGcPvT6ayVNn0bhRHTSm8TwYJYOENXLcB/zxY8dwdU2NS5rIuPWSe5z2sX2JCSCEhBeig1c82764f4Gz5+/z7MV71mw4yzu/IAb0qMD2uUOxtbUAP4NP8hbpFds6mb4TyoIpjoWBA5cmG5MmzWXe/FWUK1ecLJntCQgIoVW5ggwb2oa+fRqzZ89Zxo5bzuvX7wkMDKFSxYKEh0dy/cZ9+vSsy58XpqHX63n29CWlKw1DF/4GsPiE46OBQCY6MIltRQeueJJ8yFGCQ0i00u5MF6F0atEbBPo3tVReI0nz6Sm4Yftt/px9hpPb25HGNhgiguNeX/EYouOJiKCxIiwsigtXX3Dh6ktKF3OjZBGDSAJyPLZzUUn04P9wzkf8voBjx69RulQewsIiKFG6Nzu3jlVqfT84Cb54+ZZVaw+zctmvn3eyFJ1LDRPQfGDXzq2ULpkFdHeBu7EVmmyfHONHRCdXQyfL+ByeQXFP6fV6rp/fw43bL/G594bFK89SMG86Zo8tRaWymSHSF/mVb2xX1so5GGdfhjbgwvFrdVZUazgRS0sz8ubOSOYsmdn6zwXmLz3FrOm9yZ8/FbPmbGf6zK1YWpohyzLVqhTmyLFrpHWx5+f+9ShXOidBweFMmb6F/QcvMqhvhQ/nw+ALoLGkMvoI4XRoDf6O33laHxX52TpxPooOlxpLG0VZdMBEF4ZOp6dNj62kcTRh+qgSSOGPYurMBIdo8Rjjc/qWTHnxKogzF57w+FkArRrlJ62r3ae3Ffs1iSeZUQKiN7dGlmUqVK9FyVKl8PT0YvuOnZw4dYapM2djYRH7TPnXmXH7jp1EREZQuGisk76Y7EbIQUOU4Hiv0+nYt28fv4wYFcdpUEyMIzoCBhucqoho5XPNTNjWVPP5vt4FBHPpwnmePX3MqRPHOXroAI1btGbHweO4ZcxEeLRMeHTsgRgmFtIIpm8Z7JVCuoOlcg5mjnpJjz5dKFa6HPm8suCQNTdLZg+jbLkK9B73B35+fkye9CfHjhwlWhdN1qxZ8fTKyt49u6lVpx5r12/EOU0a3vi/p2H1yty5fokqNWqhF1zdLIRncS4XpfOmYRIe0XpPZyQYR5ZUsccoJuBxNFeWTbTKZ6Kho6MsK9vqzWPm56NHj6jfvA1Tpk6lfNUa/Hu2TaIM1g1zcY2N35gjGonb3j6cOX8Rezs7GtevE2vuKzpjmsYjPyUAqvAtcMf7CUUKZ2fpkl+RJIn27WpSp94vePs8ZuKEHh9tvMPDI2jZqg/h4RHM3TT+u/ZZunQR3NzS0rxFL1avmqFY4BIDWZa56/OMM+fucOasN0ePX+fduwBKFffCLYMTv/xUi3rVvdB8wiP9ezl79jLDR0xm3dpZVK1aFjvbGO/67t3q06//NEaPWYqnZwZ+H96B+vXL8N7/Pbv3nAOgWaMRWFjETlp/P39Sp7bjxUt/PLN8u9YlpbHn0D36/rafAxta4pHx+2PcXrz2il6/HuGWzzvy5XKhYB5X5iy7hFt6O4YPKEO1CgmnUU0Ibt9+zIB+jWnfrgYAy5bvpXzlgaxeMYwqlQt/bHf9+gNq1fuVXwY1p1y5/N+1z94961G34Qg8s6SjXdtq39XXlxARoeXSZV/OnPPh9Fkfjp28TZrU1hTKlwH3DI4c2tyeXNljNVkJaV3668i1BAWHsWLhYLJkdsHM2pmBAxqzafMJWrefSHBwOHVrl+T44Slkz5aeO3eesO/AJbp0qkHJIrHKgDRpHLC1scDayhytNvo/YxYlyzI9huzhfWAEu1c3T5B18O85p5i15AJBwRGUKpoRZycbck2ZTrP6eRjWvzyZ3FOOxtfPz4+goCDmzJuPvb09YWHD6NGtKw3q1GLFmrWkMQg5uHDeHObMnM76TVu+KyynRqNh4OChtGramE3bdpA5S+KvSe/evuHqxQtcOH+Os6dPc/PmDXLnzUcWTy8KFCrM6ElTsLd3SPD9hoeFMrh7B2o1akqn3j+RJ3MGJEmiU5du/D1pIsUKF8LczIxeffoybcYsLC0tOXXyBHfu3GHMH3/gmDr2/DukccXWzo7g4P+WD8iLly+pXbcegwf9TOMmTb67v8CgILoNGMKhYydxdUlDyWJFePL0GSPGTqB/r+5069gWc8ukXb+SPdRgSsAw1OCLF++o1/A3MmVMx5LFQ3FwsMXfP4gmzUYQEaFlxG/tKVGyOvUbdMHNLR3Llv5t3AbMiOYbYkIYtWnbH3//ALZtXYSdnW3cbUVHR61S4xw3ZFhcIT44OIw6DX7n0eNXlCqRi5LFc1CubB7yZbdWLp6iQ5eh1krQfMfRyIrjMNDKnbsYypSpC/HxeYCv70McHKzp2aMBI4Z3QJZl7t17hpeXW6wTnaE2KE4q70jmzN/DmAkbWLfiZyqUFhbsH1DzffxSIM26bWH78qZKzTR8k+b73OWX1O2wjaljqtGoVnasPoS1io7Ws2nXHboP3oPPqR6kTRPPC58+GinDlMQPNfhhDu7ceZrO3f5i1O/t6dmjPpIkcfz4FZq1HEuDeqUZMqgZz1/40aT5aGZM7U3zZhXjDy0oar7FUJAfuHPnMTXqDKN/n0YM/OnDgi9qvvVC6oDweExVPqP5PnvOh7pNxpPJ3ZmSxbNTsng2KpTNTXong+snzD85wk9R/h7N98wFJ9m97yo+vi948fI9HplcWb5kMMWL5SA0NIL3AWG4uX2IHy9+XRPGFRzwhtadFxAUHM7mVX1IbW8wF35Azbcsywwcd4ELV1+wf30rbG2Etf0bNN+j/zrC+u23WL+wBXlyun5c296+C2XM5MPcvvuGQ1s6G9V8Sy6JH+4zLDwcWZbp168fR48eZcXKVeTNlw+9Xs8fY/9g1crl9BswkDbt2vP35Ens2r6d9Vu2k9kjfic4UfP9OZYtXsTfkyawbtMW8uaLeaE2rvmOvb4Rgtb8U5pvWZaZPGEci+bNpUjRohQtVpxiJUqQt1AxrKxj51GUoL031HqDUvMdJRyghRBqL0Qbe21DgoJYMGk09+/68Pi+L9HRUeQvUJBN23chSRJvX73A0dERG5uY+1R0KDcMHxihk7l+5TLd2rWiTcfOdOo7MF4H9PAo5fn5Hs234bn9Ls23RjnH3r55TbUaNWjVoiWDBw9CNlGu7Yaa7zjp46OUawpAQGAgtZu3o3D+vAwfOpg0zrHZWi9evkqfQUPp3qk9HdspfX5EzbelnWOCzj/V4VIgfXpnTh2fSbp0qcmeszXjJ6zAxERi/96/6du7MUOGzsXNvTiFCuZh1crpCeZ8YWFhwbq1s7GysmTFik8m8PxuQkLCqVl3ODmyu/PQZylrV/5Cvz71KZDfM8mSiRQvXpDOnVpQvlxxypQpSmBgKGfP3gJiFpmsWd2/KnpFz241qFG1IN16fzYa5Q/D2cuvaNZtCxsWNIoreH8DwSFaarXdypK/q9O6cZ6PgndMXSQXr75Ep9Pz1i9lZTysW7cUp47PZOHifyhVpg/btp+kTOk83LiyEGdne4qV6kPDJiNZtXxYjOCdQOTMmYmTR6cxcsxy/P2DjG/wDZw7f5d6TcezYlE/Lp6axMwpnWnVvCzp0zslyv4+Rc+u1ahWOR8VyuYiTy53fO4+4969FwDY2FjGCt5fgJ2dFcvmdcbH9xUz5x9MrCEnGSMmn+PEuSfsXt0iruD9DazfdpO1W29yZEsH8uZKq1jbHj19z9377/DzT1nzT5IkZs6cybBff6Nundr07tmDe76+DBs+gpVr1nPq5AlyZs3CsSNH2LF3P+4ZE84JuEPnLgwcNISxI39PsD5F/hr/B3t27eTU5ats3LqdIcN+pULFSgrBOzGxtbenY68BFClRmsIlSmNra8v5s2cID49RAGXIkOGj4P0l5CtYiN/H/cnk8WN54HvX+AYpmPfv31O3Xn3q16uXYH5mnfr+TNGC+Zk+caxC8Nbr9Vy7eQt///f4+X97wIxvRRW+P4GFhTmzZv7Ewf1T8fF5imfWFixZspuWLatw7cpSLl/azdSpIxNcYNVoNJQuVYQnT54naL//cvDQFQDmzuqbrJn7nj9/xeEjp9m//zhFimSnS+e6RER8XpP1OcLDI2nfZQbXbjxi/65RCT/QJOTSjTc07Lab5TPqUqF0woRSsjDXEBYRReUySr+BLf94k6fCAkLDorh5tBt5c6Y8R52sWd24eG4ePw9sxrgJq8hbsCtv3wbyx5hO3PdZwfXLC6hapbDxjr4Sd3cXPDK58vTp2wTvG2DKjB38Pqw5Nasn/Ni/FL1e5rb3M3bsvsTN20/p3rUWuXN92z13RWqgqgAAIABJREFU2/s5JSr9QfPGxfhtcB3jG6RQZFlm/KyLbN//gP3rWuHokDCOdXq9TJ4cLrga2NqGhWkZNHIPdVuvpFGd3JzZ08P4+KIDjLZJaJo1b86lK1dxz5iRmtWr07tHN3Llzs2K1Ws5dfYC2/7Zi7NzwmfYLVm6NM+ePUvwfgGio6OZMWUyG3bsSpSxfykhIUHcvHqJo/t3ozHRMHzUWEJDvy2L6dqVyxg+eACL12zAM1v2BB5p0hEYGEiDhg0pW7YsI39PuJcvvV5P+dIlFS++Pr73qFynEavWbWTJ3Bn83Ldngu3vS/lvGOklBJ/IDpknVwaWLxnE3bvPqF5rCG7prKhVowjZMwNR1z7fl/iZW7oT+7eYDENo6+5mzvnzt0B+HPODzuBNVnTuEhHNTITP61Fhr0nnYomJ9vknMvMJwoaJ8PBRfG4VP0UbGVfYvdi/pdt0bGROx0a9efDoHb+P20mjJr8xY0J9+nYrE39mO0mDTqfn9PnHbNp5g807b1G2ZGZO7eqCtXUQhAtmOIYYyzYnmJ3EyZJnkEXNxMIm3rZmDmIGVINILOapFVWyiRVzFh1j1IQ9LJzRnpq1cim3NTAtkiNeKbcVPq9LBp/nZFlm4ZpbWJibEhoejaVlKK/fhtJ3+FFueL9j7axqlCkaY7qgjwyEeD4xip/tEw3hGmhM7WjSpDKNG1di+dKtVK05BN9bC3Gws8TB1kR5TePJeGg0+6UwbzJmdOHu3Sfkz+cBUTeVbbWv4z8GTTyOcVF+aCPDSO9iClF+EKrUUunCPu/YKpkqo/lI4nr1FXG/zYGFE0syb1xxTp57SqefdrF46V6eXOxBOlfbeM0/JMmEoOBIdh16xObd9zhy5hlTRpajQ7PcEHYLnYE5iGQiOpgK2QaFesV9JrSNYzpibvXZehNbYf6Ja665MqrU+4AIug1Yzd37rzmw8xecXQzai+dVWCdl8bO3aeza4B8YzcYdt9D/a76gj+ToqUd0GbiTYgUzcONwB9I4WwNhEA3oY891nDknfb/vx5dg+EnfIjqC9LamjBzYm0HdO9Kx1wBG/zqEGdOmksMjA3oD04EQrXK8YmZJ0QEzvq+bGTK48fzZUyIiIrC0tIyzbbhQNizaCpkURRMVoqMxNTUlS/q0ALwOjV1DRbMS0UQjLEr5bIrUxbMuCrokD0fl8zR1gQIs27SdoMAAdm5cx+gRv3Jg/z6WbdxGVKR47pR96WSZxw/uc/CfHRz4ZzvhYWEs2bwHD6+scZL92Fso5QtDMxMAWwPzEPN4nFEhbtZSw/Mjnvc4z3G9sI4oCiacO3+e9p26ULd2LSb+9RdI0kc/F0kvygQGJ0QvmocqT9bZC5e5dceb6OgokPVER4QzZc4Cps9bxIhBA+jeoXWMIlIXFScLq8knTFgSElXzbcCjR68JCIj79pktmxt/juvA2Anr41yghKZOnVKcPnOT69fvGW/8lew5cIOc2VKOY6KffyhrNl/FObUNb96FsGbTFS5fe05IiHLlio7WcfjEfXoN3kaGvOPpM3Q7zk427N/UlbULW2Nt/WPGXX37LoR6LeawbPUZTh8YTIM6BRKk3xevQqjVbjvLN97i3M6WODtZsXHXXfJXXY2nhwNX9rX+KHinNG7cfIheiIQgSRId2lWlaOGsLFl2INHH0KFtVcb/uQ6dTme88VcQGBjGmfP3yZFC5qBGY8KuA/d48DiA4gXTsXrLbXYduMe9hwFEC7az/gERLN90h3odd+BefAlrt/lQt2pm7p3sGCN4/6AcO+lL/jJ/kCG9I+cODSV9uoQRcvcduU++CnPJ6ObA2vlNiIyMptcvu2nTeytTx1RjzbxGHwTvlEVQUBAPHz2O87uNjTWzZ85g4+bNPH/xIlHH4ODoSPmKlZg/Z1aC971/3z6yZ085iXxsbO1YOHsGer2e9O4ZWbtiKRfOnMLv7VuFrCHLMvd8vJk7ZRJNqpSmQ8OavHzxjAG/jmbTodN4eGVNxqP4dnQ6HRP+nESzFq2YNGE8f/05MUEynGq1Wn6fMJmmHbszafRwmtavg8+9+5SuUZ/jp85yZv9OenZun6wWAKrDJR+cvSJ2MHzkKqbN2kGn9lXo17cpXl4ZPrbRaYPJmb8382f1omIFI/Em42i+Dd4KjWi+AebO3crCxTs5dGA6qRwM2hvTfItOVwYOPIcOX6N1h7+4e3kc9vZW36f5NvtKz3zDfRkcryzLXLn6AG/ft/jce4O371u8fV/j+8CP1KmsyZE1DXa25hw99ZAsmVLRpF4+GtfJQ1bPD5orUYMpOikZkoiab71W2bdJnPBHSs23Tqdny87rDPhtG22bl2TMb3VjI0WIx2Co+Tbi6CljwpL1txj+1xl6ts3Hb/1LYGamYe7ya4yfeY6ti+tSOJ/rJ4/PmObbNPPcRHf2ig7bSY683ZEk6N+nPu07NsDW9sO5jA7m/AUfmrYaj++tRZibid5BCaf5ljGhfOVBlC+bjzEjWysfBt+o+dbpdPTuPwetNpolcz6k5f4OzbeJRcJEYQgKjuTy9Wd4+/rhc98f73v+eN/z49WbULJkciBbZkf83kdw9fZbKpd2p3EtL+pUzoyD/YdzJjy89Emk+TbRmH22Ps65+YTm288/hL9mHGTFuvMsntWWmlXzxNYbrhVxHM8FxzFB8+0fJDF03BH2HX3AkmkNqFLek7AwLY07rcfCXMOyGfVjTVoEh1Njmm+TDKMSfQ4e3PsPteo1pHLFCvTr0YWK5cp8vP9lcxsG/zIUSZKYNHFComm+LU0lHty/T43KFVm7cTNFDEIYAnEySxpqhuPT3r569ZK6NaoxbfoMKleuDCSi5ltA1HwbOjO+fvYE79u3eHDPlwe+d7nne5cHvj7Iskxmr2ykd3Pn5tXLREVFUaVmXSrXqUeBIsXRaDRxlm1xjKLmW3RATSzNt4mg+TaJFOaRiSlXr11n0LDhmJiasWTRAjKk//AlVpjbouZbijZYY6IjhDot5y9dofeQ4aRP68r8qX+S1iUNV2/epl7LDgwfNICu7Q3WdIN5JguhBiVhDpq7ZErQ+aeanRgwdlRrrKzMGT5qFbPm/kOd2iUY0K8RFSsUQKPRUKJYdm7efmJc+P5OevRogM/dp1St/hP7d0/AyenbE/iEh0cyfNQq1m44wcoFnWME7xSCJEkUyu9GofyG8aZ16HR6njwLwOfeW/zfhzJrYl3Sp7WPP6LFD0BAYASL1x9l1qKTpE9rz6p5ralY4ftC5P3Ltdvv6D3iGLIMe1c2oEDuNEgaDUvX3+SveRc5uqkpWTIlfNishESj0XDm+N80av4HfQbMZfiolXTtUpfevRqRKYMN+fNl4f37EAICQnFJY2u8w29EkiQ2rRtBpWpDAD1jRrb9Lm3MXd8XtO86CytLE9Yv655wA00A7O0sqFAqIxVKxTrNyTot4eHR+D58zx3fd9jbmlO+RAasLE3jxsT+wbjl/Ybpi/ezcdtlGtbJz5XjQ3F1/f4wf3q9zLINt/l14mma18/JjSNdcXC0R6/X07DDOlycbVg6vR6mpin7/JUpVYodWzbRsk079uzbT+6cOejboystmjTE0tyGEsWLs2TZskQfRxZPT2bNW0Dr5k1YtXYDRYsX/+a+ZFlmy6aN/DZ0CN279/goeKcU3DJmwi1jrM9FlF5GlmXe+/nx8L4vjx8+okvfgWTPlScm2dUPrDDV6XTs2rOPmfMW8fDxYwb06UXPXr0/hnD+Hvzfv2fE6HH8s/8QE34fRsvGMZGyfB88pE7zdsz4cyyN6iZzsiwDVM03sZrvf9m05RQdu82geLEcvHzlT2BgKHVqFmHjllNcOz8dNzcjmSi/U/MNMQvGoMGzOXz4Igf3TSJ1aoev1nxfueJDy3aTKZA/C7OmdsfZ3uAtMQVovoG4Yd+M2Hwr+EE03/ceBTN94QVWb7lJzSq56N+9LMUKf1hsxa8V36D5HjnlHPNX3+KPwSXp3CI3Jh80FG/fa8ldcTlHNjYld3ZlNI2UqPmWI3cDoNVG0bPvbDZvPU3FCgU5dvwqWb3SkS1rBp48fcuxg5M+EToy4TTf/9a/fRtA5eq/ULtmUcaP7RAjgH+l5nv2vD2MHLeBUb82o1fn4srPnClA8w3ESbBkzOZbOZCUr/mWJTP2HPJl2vyz3Ljzml5dKtC9Yxlc0ny4VuL98JWa73f+4TTqspPISB1zJ9WmcP4PZkUm5qxYf5WZi89xdk9XNCbCHPsKzbesB03GaYk+ByOCYtbqe/fu06h5cwDcM2TgwqUrVChfnlevX9G2TRu6du6UqJrvfzm4fx99enRj+eq1lChZCvg6zXdoUCD9+vTiro8Ps+bOp1RxpRY9JWi+RW20GOLwUzbf//KjaL5D3r5g6ao1zFm4hLQuLvTt1Z36dWpjZmYWJ6Tft2i+9x8+SpfeA2hUpwajhw7C0SFGYSnLMnVbdqBSudIM7NUtbhKeZNR8q8I3MYtO/jwZaNeiOOVKe5E3V3pu3/SlUcc1NK2Xhw4tCrHn8ENCQiMZ+Uv1uAKiKECJZUPiCJfxxJOWZYaO3MreQ3c4sbs/9g5GtH2CIDtiwmHuP3zDmiXdYn6IiI2iog97o2hrYinYOsaXnc+Y8BJfljeRT8TuVvYVj91tfFkZET4J68WHmbLfOA87QehQCBXCBNZYKa+LiUPOj38fOHKHVl2W071TJXp1q0p6D8HeUHyhiniiHEdYbFkfGVfAfPAkiFKNt3JjbzNcXJSC3+ptPizf5M3+VfXRR4vxiMXj/fz5kDQazLMtTfQHf4M6BWneqCjFi2TGI5MzM2dtY9y0oyyd3hhLKyv+OXCHahWzUb1S9rgvKRrhi47hS148mSVjyp+fg+/evqdqk6XUrpqdP36t+okXPuF+NcwGamKKZ4kFTB9biTpVveII11EhytjdJmYGD2gjGmbxHhTvXyk+TZL+y9f8OOYPccwhlONQxswWbfeNHJPhmMXjMxK729Qq9t43sY2N7qPX6+k3/CCHjt7h10F1aNaoKBb2QmQXUcCONLBpjlBG3RBftJFlJsy+yK27/iyfUgVTgwRpksac2m020aROdjq2yBvHOSzOC348Lx+YpkbjNibR52C/Xj2oWb0qBfPnQza3oXPnzgQGBTFzxgwuXr7C6dOnGDP2D1KlSqUQsAU5NY7wLcrahldXFOrE2/PgwYP06daJFes2UahI0TiCvKEwHh6lrDtx5iy/dGnJxpPXsLCwxEyQKIMjY+d6YKTyegRFKO+59+Gff96ERCi3dbBWCpDmwhePwLDYvjKmUj5rxZjZJtLnhXNLoV9RCLYWHCxthHobg33ZCXV2gmmfJNy/hkKyeL0NX8Zev3pF8wZ1yJkrF7369KNI0aKKay4K/aKwHcdkxXBtkEyQZZlCpcoxZsRv1KtSTtE0wN+P9HmK8cb7ErY2NphEibkG4plzwnk39SigxvlODKaMa4y372s691lNKo/BdB24lcL50jN13il8H7zj5z4VYgTvJESSJCaOqkfObGmZseD4V2/fqlkxjp70ITo6YR3HVL6MvQdv0brrMrat+4k/RjYjfbqEz2K3YosPLet6kSZ1XHOimhUycfHaG/wDEtdrO6GoUyMf6zafp1zNSTh7DGDXAR+8PFLTuucGypTw4O+xdWME7yTEObUNBzd3Yv6K89y9H080nc/QulFODh6P68CmkjT0+HkbV6494ezh4bRtWUqRITchkGWZ5Zu86dM+3yczYTasmZUd+xLeeT6xsLG2ZtzEv8iatyCly5TB0sqKe76+zJgxg5atWjFz1mxSpUrabJwVKlVm9Lg/GTF08FcHPMiRryB29g488L6dSKNTiY/Xr17RqHZ1mjZvwZLlK+PY7ycEl69eIzw8gjo148pnjg72lClehD2Hjib4fr8X1eb7A5XKZ6dS+ZgHe1iYlmtXvbl49Tk21uZYJGPaZEmSGDW0JmVrTaNf94pfZbPtmdmFkNBI3r4LJl3apAlVpRLLyvXnGT2sNqVLJo7AqNfLrNxyl83zPv1S6ORoSY0KmVi/05fuLVN+/NfO7crSuV1ZAF69DuTS+atcvPacjG6OhEdEJVv68tRO1vTrWpJxU46yfE7zr9q2QG5XZi65lEgjU4kPnU7P4tUX8H8yCweHxIkscubyKzQmJhQv6PrJ+hYNcjJ47FHevgsjjVPKj8o0avgwIMY21+fxCy5fvkzatGlJ7ZR0SaA+RYMmTZk5bTLHDh+ibMUvt9mWJAnPHLm5f+cWOfMXSsQRqnyKM6dOkDmLJwMHDU60faxYs5Z2rVp81pSpY6tmrFy/hab1Uo69N6jC9yextjanZNGMlCyacJm7vocc2VypXikn/X7ZyILprb5YCNn+z1UK5c+oCt7JhGsae0LD4rFD/07OXH6NpYUpBXJ93gfB0d48Tti4H4G0rg7UrpaD2tU+mOmIvhJJTL+upfAq9jfbdt+iQa0vD623avMtWjbIabyhSoKj0Zjg4mxLaFhkognfa7f70ryu12cf/DbWZshyXLOLlI5GoyFHjhzkyJGDVq1aARCdjBaqGo2GnwYPZdTwoaxYv4UMbu7GNwKCAwO4dPo4A8dOTuQRqnyKNC4uhIWFGm/4jciyzIZNWzl+cM9n2zg62BMd/RWmsEmEanbygVET/knuIcTL7L+aEhAYTvna09i8/Qpbd15l265r7Nh9nVevP+2otWj5Cbq2L/fJOpXE53/snXV4FMcbxz97F/dAPCEEAsEtuLs7xYsVt0JxKRQoXqxQtLi7Fihe3D1IgGBBkhAjLif7++PS5G4TLgSC/Xrf58nzZG9mZ2Z3Z2bfnXm/39fN1ZbXQe8m0X0s8nvZEh2bzInz746I6h8QSWGfL7tq9b64ev3Zl27CO2FrY8aBTV0YNGYfw8bvZ/eBO+w5eJe9f/tz+ERAhq5dIaFx/HM+kA4tDcb3l4KrszWvgz5ddMjKZVzZtPchMbEZf2QHhcRiaiLHIefHGf+i8vOHv/7a0Kzld7Tt0ImmdWuwZcNa/t6/j0MH/uLo3we4f8cvw3OO7t1B+eq1scuRM8N0Az4tnF1cCQkOzjzjB0IQBCpVKM+K1evemef+wwAK+Xx9OuiGle8UPH0WrEu8MZVsI2qTsqQEw3RR0LIQaVHKnpdEVVIla0h2lsDm6YVYuOEha9f8jShqCDoKpZo+D6JYMaUs1Yqk+TO+CEnk6rVHbJnuQ+LTQ5oftYgKxtaSyUhKXkzWJYOhzQQWsug3qVW2VBdXSoTUW0w68pf+pRid/JJ61OnaIepN1yZHaZMvAURplK34SwA4moZy5dlL3QifErUMbUIlgFJCylMlpPUtKSnS1kjNsgkl6Dr0GH8trkjhfLpGtiATeBkUzdZdfng5KMnlYqGdqJP3ZVAs4ZFJRMcqeBujIE8uK4rmt80w76dCWPALSNJyq9ImUUrHnJFETzudKoUWOVWfmgWAUjewlvbzVSWmjc9SueHM2opMXHifVasCEAG1SsWrN4nYWhmzenIJ7MLTxs3yU9E0LmeLOuAqUYAgITQZ2WXBd1ZKQJT0BZlEDSUrnOesRDDNjDQpaqufSMe2XKoCJSlL65JEqQKLlOwlJR9rqxbEpRmqLjkgKDAACmnde+nzl8zXqrg0Y0EtjXInmSfa1HPj6Cknug45zLpZ1bCw1OqngoznT0NJSlKyZOV5urQqgJm2+oTWvVIoVDwLjCYqJpm3MUnExSmoVt4Ne9uU8owzUdjKJiQZpyk5xSbpPj8pEVB7tV8u6N4XMxP9/USuda5U3UNK3tOur/+gnyha0pc1y5eiVqkQRRGlWsTv5nXad+1Bq16DdRSFDmzfRPfh41NVQKTTfmxyWr8Kk+xSGkuUfKwkyiGhMWnzhJudrjuolNgpl2x9OFlK5jMtqNJdvu4PtlrtsDbVnVNMJURrKQ3BRjIHaaudWBpJiI9KCZlcAu25QJCs45qnlJXb3ZU3IcGYS/qOPCltzhVi9UfnlcXrfnjqED9VClb+MpDSLbtT3MOeri0b6uQVlQqCngVw6eZdzh89SJVSuhGktefRt1HRvA4N521MHNGxcRgJArXLl8yWoD8ZwWB8p8DEOHOdyRVrz3Lu0mNWLen1yR6IPshkAoO6FGBQF43/7r8vpFOX3/DD2Mt0beJCzxYeRMcpWbnnFa3re2Bu9m1rY3/LcHWyIDhUjwReNqB2BScmDihEg17n+GO8L81rueukH15RnT82PKRC22PsWVSFssU0BnpsvIJz18I4dDaII2eDiY5JxsXRDBsrY2ysjLlxL5Lv6udiwoAi2Fi/+0WRnTCRhiiWICEhme4DN9CqaUnatMx+4s77wNHelEXj0yKRqhVJqFQiM1YFULXbeRb+4EZ+N1Oi49WsPxLC/EH5vkg7DdDAxcGc18HRmWf8CMwfX55eY89Ro+Pf7FhSB0+3NPWjssUd2b2sHjOW3GTlFn9ObWuOmakRoijy8nUsR8+84NDJQI6fe0kOO1PsbUyxtTFBLpcxcMJZfhtTgfZN8/G1eK3cuePHqOHDWbNuPY5OTl+kDRWrVKVilaqpx/EKNW+CgxjWtweXLpxPdTF58uA+0W8jKFGhyhdppwFgba1ZJImJiUn9P7vhkMOO/X/OotWAMdz2D2DmiH4YGaWZtlMG92Td3sN0HT2Vnq0bM6ZXihuVUsWNew85fO4Kh85e4e7jZ7g7OmBjZYGdtRWvQ8Oxt7Fi0ZgBFMrzfm5OWYHB+E5BZhP08jVnmDrnbyzMTdiy4xId2lT4TC3LHNXLOXF+Sx16jD7P8l2XsLU2IoeNMcunfj1t/C/CxdGc128y0RfPBnRq6okowohZt9IZ3+7O5swYVoIKJRzoOPwCvoXtufMoiqDQRHwL21O/qiub51aiqLeVzgfl4xexVO54HJVK5PefS3/yawB4HfzuFRClUkWzDssQBBg4Yhs1qhbE0eHTTOZZhVwu8HOv/FQobs+Pk2+hUInYmMspms+aCkW+jjb+V+HqZK63X2UHzM2MWD+nGk16HmXJhntMH1lOJ71qOVeqlHWh4+ATNOx2ELlMwO9BBIIAtSp50LSOF3/8WhXnnLpa0PNX36bzkBPkcrOiSkXHT3oN/yIpKQlT04w/tv3v36dVs6YUKlyEMaNGsmL1ms/SpveBk4srq3fsY/rkSfRpVQ9zC0usrG34fuDwLxpC/L8OQRBwdnEhKCjokxnfAMUKeHNq42Ly1m5Nl5YNKFEwzc3E3MyUPu2a0aRGRcq37Yvfwyc8ev4S/6cv8HJzpl6lMkzo15kqJYtgZprGLUpOSqROn7E0HvgLj/evyvY2G4zvFNzwe/3OtMdP3jBm0h4uHBtJRGQ8LToupV6touTM+emi7GUVLg5m7JlbUuc3Y5sPj4xpwMfD3dmC128SUCpVGBm9e1VXoVCxac8D2jfz4UP2KdRqkZU7nzGub+F35mlRxx2ZDJKS1YzuXYgXwYlcuhXGpZvhbPrrOR4u5pQubI+dtTHRcUrW7H5KlxZeTBpY9J1lZjdu+L2mU5uSGab9sewUKpWao3t+ZMT43Qwdu4P1f/7w2dr2Pqhd3oEbc9P8u40cDYb3l4aHiwUX72bu8/0sMJK7D0JpXNfng+p58DSKG/fCWTWreobpgiCwfHp1Nu0LwMvDmpx2Zty4F87Ne6Gs3u7PrGU3KF4wJyUKadwBHz+PYv+JQLYurEuVMq4f1KYPwb17dylVKr0qiEqlYkC/Poz5eRxt23egUvmyHDl8iHr1G3y2tmUGIyMjeo8YT+8R41N/kwadMeDzw93dnefPn+Pjo39sHT5xinx5vfD2yq0337uweud+GteopGN467TD2ZGDS2dw5Y4/gzq1IjE5mfPX/Lj3JJAx81dhYiSnTBEf8ri7kpiUxMEzlzEyknN02bRP4ulgML5TkJikJDgkBhdn3RemKIr0G7KBkYPrkd9b4wfesU0FuvdfyZ4tg76I+4kB3wasLY3J42HFDb9gypZyzzBPaHg87foexM8/jHNXXrN4YtbdKTbufwFAp6b6J61mtdz5adoNBvx6jZKF7KlZ3olOzb3w9rTi+csYrt6J5PWbBMzM5GyYVYFKpT6Pn+m/uOEXlOHvz19EMHXOIS4cHY5cLuPXsY0pWXUGm3dcoUPrL+N+YsC3gfIlHJiz+qLePCfOPKFj350olCq2LGtDrbKWevNLIYoiQ6dcZnTf4rg4vptYaW1lQrM6uWnZ+zBPXkRTv7on5Us607KBNw45zLh1J5TbD8KRywQ83a25caB1hvr9nxK3bt7M0Phes/JPTE3N6PpDd2QyGQsWLqZPz+6cPncBJ+eMZRYNMACgTNlyXLhwgbp162aYrlKpmDBzLqs2bMXe3pbzf+/GNosLh4Gvg5m/djuXd67Qm694gbz4P31OmyGTsLWypEGVMtSrVJofO7YgOSmZK3cf8DwoBAszU3q0rE/nxrU+2c6JwfhOQeO6BSle/XdqVM7LwhnNcXJ3QKlUMXfhEUJCoxkyoE5q3umTWlO57lQWLDnK4P71vmCrDchOvI3W+O/msDMlMiqZiKgk8uay+qgPrKplnTl94VmGxveN2y9p2WkzHVsWZPfKplRqvpVtB57QtnHe9yp7698vWbfvOTfuvWX/kkqpYeX14YpfBDvmV6JaORed34t6W9O4ulvqsfAeZWU37j4IoUiV+XRoWZyfh9ZAAELDYukxaCtD+tciv7fGx9TKyoxta3pRv9UCypTyTP0oNuDbx+uQeHLYmSCXwZuIRGSCgIvjhxughbxtiYxK4HVwNG4uui90URSZv+QfZsw7zKal3yGTCbTvvYM7R9umER31IDZOwfSlt9l3PBArCyP6dcxc1SYmTkFwaDyvLnbGWBLwp2RBPapEn0ntZMyoUWzbupUxY3+mVIqv9NXLl5j32wwOHTmWaohUr1GDTp270LtnD3asVuX1AAAgAElEQVTt3QdfjVe6AR8DpVJJcHAwbm5uJMXHExzyBlcXZ8zNP3wMVq5Shflz52SY9vZtFN169CI+IZFbpw8zefZ8Bo2ZwNpF896r7Ot3HzBv9VYOnbnIyJ7f4+WR+S6R/9MXtGtYk9kj+uoS19Vqqvhq7fSqP+2uiSG8PJqwumLwzwS+jGL+8iucvhjIsH7lmTTnDI45LVj2WyMKeaethogqJU+eR1GxxTYOrGmGb1HdSVNuJtluNrJN+1/CtBeVumonUha/tvKCVJVAysSXKiBIDSiZSdqqjMxY9+WSTsVAJmW2v/vrL10YaZk0nPdHhLPWhywopaSrR6Ke8CY0jjLN9xKfqCQmTomRXEChVHPvUHPy5rLWuddqSahrQab7DasdJvvwmSB6jbvEsK556dHSExNlIlGxSvaeDmXSymfMHuhNi2oaf84D58OZvzmQQ9O1XuJa1Hd1QhobP0mhxrvfXZYPz09NXzsszeQIEv13mXnay10w1viyDZ55l8CgBNrVd6NuJUcc7ExS2vxuJQpBkGHhu/uTh7ZOfjaIW/dC6T3yGA1qemEkl7FozS06fVeIWeOq6RAyRZWShWtusXrbPc7vboOxkW4f0+7fgrFkFUWtO26kIcNVSWljMt14lDx77byaotPKFiRSAzITyZgz0tUuFyRhk3XS9IWLzwDpnmdWztXXjsyUb7TmnHR5Mylr+4HH9Bx9EpVKJFmhRiaD0kUdOLu9Wbr7Lh2/OsoLkvH4w8hTBDyP5pcfS1CrgjOiSsnzV3FMWXIXv4dRbJtfBS93jQth5xHnqVQqB33b50upRzJ3ac1Pm/YHsmz7U+aOLolvYXvNx69WO2SS54sgIzFJhU+dnfT/viB5PW1op/2hrefeCcZOGHlN/+Rj8MHzV5w4doRxo0bw2+w57Ni2jdu3bzF1+gzatv5OJ78qOYkGjRpRr25dRowarZOWnF6yQwfaryaF6t3h4gGUknSpOkpM8rvfA9KyIyUh4xO1YiAYS96X0rD30nRtSEPASyENAy9VQ9GGiWTekIZf1z6Wtkma10h6TZJqjZVp85uQGEObbn04ff4CMbFxyOVykpOTmTdlAgN6dk0XXl5HOkYy5kSt45jYWAqWr0nLetUZ278buVydSQh6zqU7D+k7Yyn1fAszo09bjI2MiI5LwOf7YVybMwQXuxQ7SmJPKKLT+Hltl+6laB4P+reojbuDPYLUbjGVfDQYGXPg3FUGz17BLz3bUTSfF6ULpZDiM1nhNinX3BBe/lPB08OW2RNrU6aEK7MXX2TepLqc2t2ZQj7pt9/z5rZl0ZQadBh4iLh4RQalGfCtQBRF+v1yng7NvHlzuSPRNztRp7Irw3oUIW+uj/PbrV/VlX0LynL2RiTFvjtFtb7XKdTuIttPhLL3t2KphjdA/fI5CHyThP+LzBVSHgcnkdvZjCaVcmKZBUWb2cMKUdzHml6TbnM34NMS0bIKIyMZpYs7c2BdC/YefkzgqxiuHfqe+b/WzFAJZUDX4uTJZcOYmee/QGsNyE68Co5j8KRzHNvYlOg7Pbh/tDX2NqbMG1/xo8v+c0p5+nb04acpV6jY5hD56+2nZpcTWJob8c+6WqmGN0C3VnlZvevpe4Ux938aQ8OqLpQpmuO9dp0AzEzlnNnSiB2HntN52OkPvqZPBRtbW1p814aZc+fzy7ifqVK1Kldv3KJ5i5bp8hoZGbFm9WoWL17C5UuXvkBrDchOrN28jWeBL3hx5yrRgQ+YO3k8JYoWpmfn9h9VrrWVFXf+3oSdjTW+zbpQrX0fXBp0Y/CcFYzq0oo5AzpinKJOYmNpTrOyRdh0+sZ7lX0/8DU9GlXD3eH9ZVsbVy7DnJ9+oNfURSzbdeiDrik7YFj5Jm3lWy+0dIO1NZ+7DTmCtaUR8yelSR8ZVr6/rZXvv0++YPRvl7m0symmJnKWbLzPqN+u0rNtflQqEblcYED7PHh5aHY/srLyDWla3XceRRMVHkspH2tMU/RVRZXI2xgFK/4KwtfHmjNXw0lUqJn6Q0p01XesfO+6+Jb9N2NZOzYtbPy7Vr5fhybxx7aXFPa2pktTDwDyNjzB2bWVcHc2T2nzl1/5Vr/8SfKbnj6XMgbDIxMoXncTm/6oQ9VyaW4zhpXvb2vlu+uwE+TJZc3En8qiUqmp3XEfMXEKqpTRuEfltDXm5wElUvNnZeX7X81+pVLNP5dC8HI1w9szzZ1MEGTcfhDJ6p1P+GVAMSq2O8yGWeUpXSSH3pXvNkMu8H0zL1rW8cjwGrVXvk9fCeHPLY+YMKgk+b1sOHEhiKmLb3Nig5Yu8Vew8h30Nk1/2UyyTGoqWb0VUrbld+3ezaRfJ3Ph4sVU9wTDyrcuvvaV77i4OPIXKc6xPdsoWqgA9x8+okLdJjStXweHHDkQBIF61SvRqE7NtJPfc+UbQB4bCkBoeCTX7vrj625PDhuNnSTGRaNSqdlx6jKvwiKpkCsnvRdv5+a8oZox+o6V75jEJHyGLSB090LkKffsXSvfiUnJrD5wknvPX/P70O7I5XL6Tl9C6UL56N0qhTT8Na18C4Lg+SF/2dW4bwHzJlRjz5Gn/HPh3VEGDfi6cej0Szo198Y0ZXX10bNomtfJhXNOM/Lltmb7wWe8CP54ycCi+W2oUNQ21fBOSFLxz7VISne/ypoDwVzxj6ZTHQe2nQonJkG/v9mDV4kUzJ151Ly9J99QoesllEqRiYsfcuFWJKERSSiUatyczDI9/2tHTntzFk+rQc+R/xh2oL5RqNUih0+/oEdbjbtVeGQSpiZyKvo6kyeXNeZmclZse/jR9RgZyahb2ZV8ua0RBAFRFImISmLc77do3u8Ua3Y/IfxtEt1aerFsy+NMy/N/EkNh78yJYd1GnqX3uAtYWxrRfvBJ4hOU3H30lqI+WQiy9BWjVcuWFC9enF8nTfrSTTHgA3H+4mUK+eSnaCHNYs6d+w+oWbkieXJ7ki+vF/cfPuLkuY/f3XDMaU+DahVTDW+lUsXToFCq/DiZiWt2s/PUFcrlz4WxkZwTfgF6y3oUFE6BXC6phve78PJNOEW/H8qRy7e48/g5U1Zt11zj4+cU9f4wZZXsQGbLI8+Qhld6P/xnIrvY25mxZFp1eo38hwcnO2baEQz4+nDq4mtWTEsLxDD35/KpK2vxCUrG/36D0kWy70UpiiL9f3vIzn/e4OpgypIRBZi8+hkFPS3I42JGrZI2LN4XzKh2GSukAPg9T6BdPdt3pgPEJagYteAR22eWoIKvI3UqOvD96Bt4uZtTLL/N/41ST/N63uzY/4gpf1xj+iiDtv23hruPIrCzNiFXSnAaJwdzDq1NWxHesOcRFX2zN6BLSHgiVTocIyZOQfECdqyeUZHOI87j4mhGn3beFG92GP8n0RTwytjtLCpGwevQRPJ66JebPXT6FVfvhHPrr6aYmBjRfdQ5qnf8m7dRyYzuW/y92yuqvu7w8nPnzaNs2bK0a9+ekiUzlgs14OvFqTNnqFGlUupxm+ZNaNM0bQwePn6KyuWyN97DtqNn6TFlIfZWFnRrWA2Al6ERCILA6Fa1mLjlCLWKvTvA1O3AYAp6Zk6wHP/nFjrUq8Lk3u0JjoqlUvdRXLrzEL+AQIp4f7m14syM719Jb3w3A0oCR4F7aGjOhYHawE3gr2xu42eBOkk3rLfUVULb1US65WltqkYQRE0oarkMUakbplYwSvOtlcklYaAzYdTqbDdLdjzkcl1JrCwRnLLgVpKSQU+S7reW9Jq0y07novIRocsz21rXrivdNm7KuaIoEhgUh6mFmY6rgjplEfW3FbepVdENK9u0FS7BSEI8kYaul4Sf12mnXMbZG5FcvBvN8/1VMFUoiYlX8ehFPOZGICrVjG3rTq3R9+he1xFH27T+IrPStO9laBKXA+JZPsoGVFp1q3Tbse/UG4p7W1KugCWiWkn9ijnY8lsJomKUFMhjo+PXKn262vdLJiWtfCKIEpcOtXZfycTFyMZKjgx16tjTzi0ow3XySt2ipPVquy3IzXTHmEzi2iWX3BvR+v3brG8s6HMDkubVNEzP+JS6RWXmYiZ1G9MDaVk61ySdQ9/hUvbsVRwW5sYolWqM/t2eTyk3IVHJ7D/9GDugJDKjtLEgiu9uo7RNMnTde0RBxq+Lr9OmYW5mjCiNqFKyZvcT8nhYERKWSF4Pc37q5sOEP+6wdV4l3XPVmrLX7n1O0xpuGMkFiWtKWv9Qk8yi9fcZ26cwxjIVqEQWTyjNqcshGBnJqFTaKdUlJl07JZcnGOlRQslGmGu5R0hdGmQqyThRpLlk2cqSkYkipso45PERmEv7hVz3Gai1XCClriFW0lDkprrtkIaftzJJO5a6u8Qk645XMyNd1y9ttxO1pL+aGUv7ts6hjkuH9F6ZGul3B9G+z9I0mSSsu6DStSfQsj9EmZTUKx0XutegEnTtj0S5Zv56+uI1xYoURmWVxkGSJWpsovMXL3Pjzl2q1KyFWtulVvv9mqzrnieLeKHb5CRdV7/4iDCGzVvFyd/HUsJRM8c2mbwcX28PoqNjaF7Kh3l7T7Hz7A1aV9WVvjRxdEIURdaev8O4ri11XE2kBMvIBAX7zl4lcP8qBBMz3FytOblyFvefBDLlRzvsHNKuN51rXxbmwQ+BXstHFMWJoihO+vcPeATkAUqLothAFMWhoigOEUWxPlAO8AY+fn/wG8PanQEUzGtLQqJB0P9bgyAIzP2lCj1GnkyXdvJiEGt2PGLxpI8nfWnjmn8MjSrnxNxUM7itLeTU8rWj7UR/Qt4qyOVoQrMK9vyxNzj1nMgYJSv+DmHP+QhmbntN+xoO2Fjo//iIjlPi4aT7silbxJY6FXLi6fp59YM/JVQqNet2PSK3u9V7EeUM+LrQuFZunBzMmb/aL13a8GkXKVogB20a5cnWOq/eDqdtI6/U43qVXbl8O5x+E68A0KWZF1fvRHLjftqK8xW/CJZvf8LB00Es3vyYAd/ny7SeqFgFnm5pH3BmpnLqV3WjdkUXzM3+f5R+Dx8/iUqtwszs23dl+y9i3C8TWLhoEU+ePNH5PfLtW7r1GcDi32djb2eXbfU9Cw7F1socXx+v1N/aVC7JnD0n2XHhDjKZwLCmVZm662TqnC6KIptO32DjicusPHyemIREGpbXv3sUE5+AvbUVVhZp7zsvN2caVilLmcIZB+P5XMjqsuMoYKEoijelCaIoXgcWAWOyo2HfEn4ZVBI7GxNKNNnLtgNPv3RzDMgiurUuxM17Ydy6H45CKyLaT1MvYWQkY8SMK0S8TdJTQtZgbCToLIruOh3G+TvRNKmYg1nbgyja9zZrj4Wx50Lai3/qllfsORfJ7rMRvAxNpn/TzLWtVf+Rb0G5XMauJXVZuPYuDbsd4sGTzCMaGvD1QCYT6PJdAS7fesNt/7RdCr8HEfy56T5PX8Qw+8/b2VqnsbGASpX2Uv9p6lU8XS0o5mPLdz+eI3ftvwgKTeDgKU3gp/gEJe2GnOfSrXD+3PaY+lVcKFs089VotZSw+X+KBnVqMqhvL6rVb8q4X6eTkJC5YpMBXw/y5M1L2TJlOH78OCEhIam/z1mwiJDQMFau3cD5i5ezrT5juREqrbHxMuwtEzYfokQeN56+iaDK+GV0XriNVxFRPA/VvAeP3HzI5G1HOX7Tnx1nrjO5S9NMA+Co1Oqv1r0yq8a3D/BGT3oI8GU/J74A3J0tWPNbVdbPqcbkRbcYMf3Sf2bS/X+ATCZgZmpE2WY7GTsrbYLZv7wua2dVQy2KzPwz/arch8JYLhCfpLGMX4UlMWrZU3ZPKczbWCVKtci+iQWY0tWD4Mhkzt2N4dDVt+w+H8Hakd6sHZmP3RML4OGYeRCQ/LnMeRD48UTRbwG1KrlxdV9LGtXMRc0OBzh29uWXbpIBWYCVhTG7Dz+lXPNdXLyhefkX9bHn2v5WTPypNAvX3+OqX2i21WdiLCchZQyu2vmEwKB4jqyuxZLNAbRpmItXp5rh7WnFjsMvuHw7nMlL7lGueE5WTCnLnoVVmD+21HvV4+NlzYMn0Zln/MZhamrKiJ8GcvX0MQKePKF+8zaEhoV96WYZkAVYWFry05Ah1G/QAFXKys2oIYM5um8nNatVod9Pw1EqlZmU8n4wNpaTmJTmTtNr0VYGNKxM+6qlOHHnCTO/b8D1mQNJVCjZdu4W5/2fMWnrUaZ1asiqoV04NPVHmlcsoacGDTydHQl7G01s/Nf3MZhV4zsIaCVk8CkhaBztvgOC0531H0ElXydObWrINb8w6nQ6yJzltzl7NZiExOzpsAZkDxQKFfNW3GTAuFNMnHuJpCQVvkUdKOhth1LLB9DDxZIqZZyZM6Yc63YF8PRl9uhiVy5px4GzYUTHKYmIVmJqIqNYHksaV8jBxfuxJCnU7L/0lkqFrfl57QsW/RXMpM65yGljnHnhKQh9m4zf4zj8n/03jG8AY2MZg7oVZesftejy0zF6j/qHNdv98Q+INHwMf2V4+iKa0TMu0Gf0SfYeeYqnhzXFCuTA0jzNFUMQBIoXzEndqh6M/7EUo2deyTa3ourlnNmw50lKW2KpWd4ZL3crShex59j5EF4ExxMemYSxkYxhM29y91EUkwcVzaTUNIiiyC3/SMIik7gbEJX5CZmVp/o2dnPcXF3YvPpPalavQuU6jRj361T2HzpiMMS/Qhw8cIBRI4YzdPAgnj9/jk/+/Pj6+qJSqVLHmbW1FeXK+DKoX2+cnRxZs2FzttTt7mCPhZkpx67dRRRFngSHU7dUAWoX9+FFRBSB4W/Zf82fUnnc2HHBj182H6a0tzvNyxV57zoSk5I5dOE65qYm3H/6IvMTPjOypPMtCMIYYCpwDJgLPEBDyCwEDAVqAeNEUZye/U39dBAEQVQ+7Sf57d3fJVJ9bZWEbJCsENl77AUXboRy6VYoT17EMmVIaXq280FmlAmRSh+JUELgSk/KEvSm61yTXOLzKyVqSI9FPT4M0jRRIvkmjYyVFWiTxSRkEaRkEymE9PfybVQCbXtuAaBZ/YIcP/OYoJBYdqxsww+D9pDL3ZbmDQpSroQ9rs5pSgYTZ53m4eNINixskD7sbCZjSK1FwFWn9JV2g0/RoJo7XZt5UKrlYVZNK0epQvZs3PuU4bNu4+ZkxqUttRHUWu4ukr5yNyCKzQdf8fRVPOWK2tGytiueruYMmOrHnhPB1KngSLsGrjSq6py+L0hJeEa691Zbo1hmbIpx/pWfXedbH9KRMyUk58DXcfx17DkXb4Rw8UYI1lYmrJlTm5JFHPWShyGDyITa9UpJg5Ix+SGEw4wgJT1mWYdf37jJbKxrj5t0BC4J0o19pZ40zfGFqy9p1X0H37cqjFcuW2YvuUz7FoXo36UYxeusZ+LQivgWc6R0cScsUrTqFUnJlKy/mRljK9Gkdp70Y07rmaYjsUufkVpJVEwyuats5uX5jjx6Gkmnoae483cr4uIVDJ58kU1/PWFc/xKM6SsxuLXus0Kh5siZF2w9+AxLcyMq+TrSrpEXoZGJ1P/hOAqlmpZ1PenRxpt8uW0yjQegnZ6uDxo5IPeY9MnHYFLo+xspghYBU1Ampks/c/EqJ85e4OL1W1y+cZvvGtdn9oRR2Fhb6dxHqSZ05hVLiJCmWtGnjXXfa9Eq3Xscr9DtCwnKd49J6TRhIiFVamt3S/W0rY0lJMokycKN1jtRkAo0SIit6e6P1tygNtOVuhQlgg5Jou69UqpFRFFkzm8z2bBuDT369OdtZASb1q9l4Z8reeh/n13bt9GtZ29K+5aiQMFCqW4bt27coGO71ly+fgsrKyud65dJxrpaMm/IVbpum7KEKNZu3sa+v4+ya/lcRk+dg5WlBeN+6sedWzfpMHgcz14Gcf2v9eR30lX10h43YfFKtuw/wvHzVyiSPy8Nq5ajsm8xNv11hB8n/07xAt60qlednm2aYm6WfrdYqguucy8lfckob+lsHX9ZNb4FYB7w4zuyLBJFcVB2NOxzIruNb+m5/k9jaT3gBNOGl6ZF/bzoZjYY33qRjcb3Xf8QWnbdSMPaPsz5tSFGRnJEUWTkpEMcPvGIvzZ0ZPmGa1y79ZqL116wZ1VLqlfSSBHFRMdSvskWVCqRpdNrUL2ClgzgBxjfY+dcx87ahOE/5KPLqEvc8n9Lq7rujOrhw5MXcaza/QwXBzO6N3fF1irlugUZsfFKth1+zerdgYSEJ9KhoTuF8lpx6Fwo1+69pXoZB/afDuHu7uq6q4j/MeNbV9lHzvpdDxg2+SwvLnbDzFz/DoLB+P50xvfyDTf4efpJ1sxvSqPaGo3d0LB4arfdSscWBShV1Il9Rx5z5WYw8YlKLuxrh5WlCaJKydEzgbTtd4iKvi5sW1wfK0ut55RF4xsgT9UtnNzSGGtzOQXr7aRMUQd6titAi7q52LTvMWeuhNCohjtNanqk+Y0KMgKeR7Ny2yM27H2Mt6c1HZt6oVCqWbk9AFdHc5QqES8PK5ZMKqfjb/pfM761ERMbR9+Rv2Bhbs7yOVMMxvcXMr4jo6IZ1L8vr16+ZN3mLeRw1ASxOnfmFB1aNeefC5c5cfQoN65d4dKF87Tr0JFxEzT67QIwYugQ9uzaycDBgxk1YkRakz7A+D578TJjf53Omd3r2LR7P0N+mU7zBrUZ1bMDbk6OzFu1mfC3b+nTsh4+udMCWYmCwLGL1/lz237+uXyTJrWq0LBGJfwfP2Peqs10bFKHQ2cusXLaGGpV0C+P+M0Y36knCYIP0BzIi+aZPAb2iaL4ILsa9jnxqY1vQWbEiq0POHExiM0LaksqNxjfepFNxvf2vX70H7WP2RMb0rW9rnRRm+6bKVHEiXFDq6f+duT4Hbr9dJCrh7rg5mKNqEpGFEX+3OjHjr8ecmRTi7QCPsD43nnoOYs3PuDoqmqo1SJX7kTQ4+cruDmaERAYS+ki9liZG3HkfDAjunnTtr4bs9Y8YeuhV1QulYMerTypVTYn8hSZqqRkFdsOB5GYrKJoPhsqltDVJf8vG9//Xnvt9nv48YfitGjgrbdsg/Gd/cZ3UpKSgWMOcu7yS3avbk2BfDlT54nQsHgKV1/J2d3tKJBPQ2JUq1X0HH6MuPhktixpnCr1Gp+g4Ls+f9O6kTc92hXWamfWje/W/Y9Rt4o7vdv5EBOrYOfhZwyefJHKpZ24diecH77Lz/Hzr1GpRZZMqkCyQs30ZX7cuh9J5xbedG+Tn3yeaZJ5j55Fc+ryG1QqNS3reeKUU1f5479sfAO8CgqhVJ3mvLh+GlMtVRSD8f15jO9HDx/yfYf2lKtQgRmz5mBmZpYqzbht80bWr17JX0eOp34wRkWEUad6VabNnEWjJk1T5WifPnlCrepVuHv3HjlyaMbrhxjfEZFvKVC2KvdO/YWTQ06eBr5k/Mz53L57HxMTY+ITEmlRrwart++jTgVf5o/uz6aD/7Bw0x6sLc3p07Yp7Vs21eykpODg8VMEvg7BxsqC9o3rZEq2/JLG9wdpHYmi+BCYlV2N+C+gRb3cjJ51lYETztGllQ/lSjhmfpIB2YK4uGTa9drKpcN9KVvKQyctOiaRnfvvsm6hxpgWRVETSrdGHooWcOTS9SBaNtJomwqCQLc2hfll1gUeP4/CO7f+IDf/Qq0WUSjU+D2MYMWmO4RFJvHoWTTFC2gMZJlMoHzxnIzvX5jo6GSql3Ugf25NnY+ehNNpzA2mLn/EDy08ubixampIeG2dVVMTOZ2beqSr24A0tGuWnzEzL3DrfhiDupfA3tYgi/a5sGGHH1dvBXHp725YW+lu/x459ZSSRZ1SDe9/x+DMn6vgWXaFjp+3hbkxA7oWY9qCq7rGdyZITlYhkwms2ubPuWtBhIYn4Pcgkq7fafQBrK2M+b6ZNy+C4ihWwI5qZZ2xtzVFVJdk56FAmvY5gbWFERMGl2LnIi/MUmRCtWM+5PeyIb9X5hEv/6twd3WmWKECtOvzE62bNqRT6+Zfukn/KQwfOoRmLVoy+udx6dK2bdpAnwEDUyO/CoKAg4Mj/QcO4tDBAzRq0jQ1b568ealXrz5btmymf/8B711/YmIiCQmJzPhtFi8DnxEeEYGdrQ3GKa64eTw9GDGgB4ePHKd6+dKUKVYIY2MjxnRtxYg5f+JZtyPVyxRn3YwxlCtWEEEQEMx1g1w1rPbtBFn7/xEa/crhYG/GyU2NOHT6FS16H+HcjmbkyZVx9DQDsheWliaU8/UgLDwufZqFCWZmRqhUakRRJH/5BYRFxOPkYM7L1zEsnlFXJ7+pqRHft/Bh5Za7TBtVKV152ggNT2DV1nss23iHVyFxyASBn/sVw97WFJVKZPnUikDaKke7hp6IEn1A71yWHFtegagYJW7OmYeTN+Dd6Nm+MB6ulqzb+YBOg46yf02Tr1aG6v8NNSrnZszU45iapH/lmJoaYZniCnT+ymtqtt2Ova0p1pYmFC3ooDEItPI3qJ6b/mNPcvt+GMULOeit9/qdUBav9WP7wcfEJyjJl9uWUX2Ls353AJN+Kk3T2rlTx5yxsYzxA0tKgnMJtG6YmwqlHLC3McXSMpPdtk8F9ceTNr8GbF46l79PnGba74sBDAb4Z0TVatV49ep1hml29vaoU3aIfhkzig1rV+Pg4EBSYiKDhgxLl79T126MHTWCfv36651Dk5OT2bt3D8uWLOHK1asolUratW1DnepVmb9sBUd2bcbeLm0Rq0ThgpTyzqVThrWlBUvGD2Zo19bk93RPz5v7RpGlqxAE4cR7ZBNFUaydebavG+mi4GlPyJItQZlkO1lqQP0bxaywtyVF8hcm4HkU+44+5ccuhZCb6G5tpHdZ0WqHsdRFRfIikES8RC4x1rS3gqRkxKy4mUghStxKpGVrp2dAgtSB1JVEpr1KJo1AJSFQ6LmGrp3rsWbHPRo2a6zTpviYBMzMTIhIdHvpvMUAACAASURBVCA8AWLjVTy+PYfQsCjiE5LIV8xLU7RWWQMH2lG+9iwqVy1HhbJeOOaU3GdRybmLT2nSYTMtGxdj5/pelC6ZC5VKjRyJXrhaciy576IyDgvAEd0oq5o0ietFukhoaSZLZpFFpVvgMuO0VWGpS8qngmAq2Q3S41YkSO6TTCVRddFOT3FvkAFNGhShft2SOBaeTUScGY4OlmAsCR6h3a8k9QjS5yVt17va8D7Q5+KhzzUkw3Q9Yz0r9WYV2tesVa534TwULHCYg2djaNEkRaYvZQyKxpGER98FS29O33hMn25VGD24BqHhsdjZmiNY5NB53ibAwJ6VGTXzGhNH1qZUMVfMzLT6aEq5w345xI799+jX1ZenExvikNMCUQSZmEiPzmW1mqzHLS5lWzqPTYqRn8Wopfqgz5Uo/dyu/yMjuyB7dS+tDcaSyKAK3flFTE5zNVFL5iIxTldeUUy5bzmA74s4Y9etKYtWr6F9wZzp2iB1BZDZ6uaR53DROdae99SWuueaGeu+E40lZVtovVOlLrjSyJMmcqmrl1YbkyXzj8TzUpC4qop6fN5FU93VXLWJ7jUotJoZm6zb3xQK6TWkpTdv05561Sozfsr0dMGQ1Go14eERqNRw9vQp1m/bhZu7B+FhYRQsVJgEhRrt4KElyldBFGRMmjaDRs1aki9fPokRriIhPp46VSvg7uFB5z4DWbu7EYIgIJfLkQkCDbtqVs1foQsjS937bu+mmUe8Cmhuq1zLxUlQ6N53WYLuR6ogjTYtfUdqPwdp9HGTT7vYldVPiLyQLty8EeCK5t0WBqRfXjRABw72psQnGOQHPyfs7Sx58TI83e8Tp+2keePSeOZy4L7/K9RqNQqlioIFXN9ZlnceR2ZPbsmCZSfp1OcZvbtUYtbkFjp5Zi44wW8Tm9Cra1p0TLlcph192oAvBGNjOXa2ZsTGJWuMbwM+C+ztLHn5KlLnt/j4ZEZN2M3SeR0BSExUEBIag6uLDW6u73brGtSrIkEhMQwYtQ//gDBO7OpOhTKeqemhYXGs2nyDhxcG4Zgj7aUqCBjG4FeAnDbWxCVlX+AyAzKHmZkpKpWK6KgoHeP77OmT+N26xYKlKwFISkoi6u1bKlSqgmdurwzLEgSB335fxNI/5rFxzSosLCw4eem6Tp5d27fiU6AgqzdtI1n1/h+l/xVkSedbFEUvURTzSP5yAZbAz8BbQP9evAFYmhsRG6/IPKMB2YKkJAU/T9rKr+PapP6mVKpYv/kMG7ac47fJHQBwc7WnoI8bg0duyLTMbt9X5OieHxk7tH66r9HHT8O4cOUZ37fRz7Q24MvBysKE2LjkzDMakC04ffYBN/0C6dGlSupvb0Kj6Td0E+VKe1GvtsZ/u1nDYuw5cJt9f9/VW56FhQnzpzXh+omB5M+bExNj3dX7P9dfpVXjQoaPq68UlmYmxCUYjO/PiVnTp9K24/c4OadFR755/RqjhgxmyszZWFhaolKpaN6qNcMHDcg0SmmxkqVYtHIda7buQp2OXC6yatlievTp946zDchqkJ0MIYpiUoq29yU0+t8GvAMH/nnJko0PKOpjn3lmA7IFC5cewsLcBK/cTkRFxbNg8d/kLzGM5av/YefGn3B0tOHhoyA8Cv6Eq4stw35s+F7l3vJ7yaIVp6lcPo9ufcvP0qNTeSwsvpB/qAHvRFKSkpG/HiUyKhFnR6vMTzDgoyGKIkPHbqFdq7JExyQQ8DiEfkPWU6D0RMxMjVk4uz0AsxYcpV6rhQz/sTZVKuTJpFQNFvx5njehsfh4p7llKBQqlqy5yuBe3w756r+Ep0GhDFywnuIS314DPh0e+N9ny4b11G/UmLjYWI4fOcx3TRrQq2snevUbQP1GGnfMJnWqc/zIISZOnZHONSUjxMbEMOWXsZSroLvmev7MKQAqV6uR7dfy/4Ls9lw/C3xTAXY+F14GxzNl0W0OnnpNTjtTfv3jJs3rePKl+Dv/JTg52uLqYk/dplN4+SqCZo1Ls3n1ACqUy5+axyu3Iw45rVAoVOw9cJ3Dx28zoFctcuR4t4F24vRDvL0caNkkLcztybOPWLf1KjdOpSepGPDloFaLnL30kn6jjyCKAjGxSSxbf43xQ6t96ab930MURUqXzM2Z849Ytf4carWaAb1q4X91Is5Oaeog5Ut7IZMJBIdEs2jFWTzc7Pjh+3J6CV3rt9/k19F1sEpRUFEqVYybfpz8eXNQvIjLO8/75qDOnui6XxIx8YlsOHqeyev2kMspJ4cu3ebS/ceUL6Rf+tOAj4dapaJW3XqMGzmc58+ekjdffvr/+BNNW7bC2DjNLatEKV/8bt3E79ZNnj55TIPGTSla/N1h3EOCg7h84RxX/PxTfwsOCmLapF/4oXc/A6FdD7Lb+M6Dhg/zXhAEYSIwQfJziCiKLinpQkp6b8Aezcr6AFEU72qVIaLxwy8oiuITrd/XAA6iKDZ5n7bILSUTtVpCLklKc+SXSRzz05EzU3Rm/R9HsnH3Qw6eeM6LoFhcHC2wszEln5cdt+6HY25prldfGQBjLb9HKcFQSqhMR7DU8yikZUlJk1Lo0/79GN3gzI5lHz8xd+5Rkc7dNatr/8ooSa/XxAzOnFrM2HHLmTb7LwBq1a1JZXcvTQbt/pBC7qtRqxJDf97J2evxXLz8gG07z/LqdTib1v+MZ8EyGTdG+oxkVXSPRV2dXUF8nva/lFSo1H0hp6PNJYeka3NaPRlHH0yrTKu0zPTUswtWEuk47XueWf+U9mc0z3r/wWvs2nuJg4dvYmtrwdu3CmpUK8zL4FuYWrmBVQbhinXIih9BRNZXbkZlfQzhMrP8nwrvUY8MWPbn+NTjtDGoe/3Varuxd4cbDZtPIipKQx3q3K01xsZG6e9VCvG1Vs1SrNt+D59CRdm17wrbd1+iaGEPNq0ZCub/EmkzPjf1EvQ900yJriaSZC0FK6UkJHwm5GpdkrCkv8s+j4ShMuhZ2oFELz05JEjnWNQinyridF0UEt5orj06MZmdfgEcD3jBtZcheNnboFIoKGVvxe0nLzAJeEysoHtfTO10VcCMMyG5ynNotUlCXjRV6Ncf1yY3CippXsmzVugj5kpFBnTbrDbX5S+IWoTaJMnlJat0XTiSE6WxBNLS5VLtcQlJ9N/04sWKsWHzVgS0xh+6BD6FWuTX6TPZunE9Y4YPBSA+Lo5iJUoCYCSxo82MBPJ55cLDIxfbt2wkp4MTB/ft4dzpU/QYMIgWHTqn6qhL9dSfRqb1l6CYJEm5ug4Z9pKgaHns00QqnC1076utra6bmZCsS0EUpORq7eck1Y83/rRStFlVO/F8R1IOoA4wCDiZxTY8AGpoHWuP+JHAMKBbSr5fgKOCIBQQRTFGcs5UoEMW6/5kOHQqkG5Dj9OtTUEWTKzCtTuhrNnuz8HVjSnfYje7ltUzfBV+Aei759euP+DwkascOzybWrV8efYsmIiIaOztrXny+DUXLt4n4PFrBJQoFEqWrTzCD11q0bLdNFo2q8DUiZ2oWaM4Rp+YJW1A5lCpVPw0Yg3H/rlN/151GTO8Bb0G/kmHNpUoVsSTe/dfMuTHxl+6mf9JvGsMqlQqlq04RIliXmxeOxQ3txzcvPWU4sVyo1QouHHzKRevPCIyMhaZoObR42AuX3uCY05rBo1YR+sW5Thx4GcK+jhnWL4BnxdB0XF02XKEvDlt+b5UAYZVK8UP246xpVMjFpy9yZCqpfCwNbh+fW7oeweGhYaydOEfjPllIj36DkSlVPIk4BF58+UnMiKc61evcNfvNkqlEhMjOfv27KJwkSL8Pmsm5StWpmGTZsxdtBQTS4PefWbI6sr3M9KrnfwLAfBHY4BnBUpRFIPTFabpIT8BM0RR3JnyW1fgDdARWKaV/Q9gmCAIs0VRvJbF+vVCpVITFhFPSFA4KpWIIICRXI67ixV2tulX2wDW73zAqOkX2PVnQyqVdiEiIp4WvQ9xYVdL5qy4TbO6uSlXwik7m2nAR2L3njP07T+PKb92x9HRjrNn/fiu7YTUVQJTUyMqlCtEoYK5QFQhiiIHd49j8oztLJzXh3Ztqn7pS/i/RWJiMiEh4byN0qzeywQBc3MTPHM5YJKBbnRiYjKdeywgLDyGC/9Mw87WjHUbT6FWi4wa2pxCvkNZt3yAZkXVgK8CKpWKbj3n8/RZCGNGtkahUDJh8mZ+m7sHZydbQsOiye/tSsXyPjg72aJQqCiQ35WpE9pSpOwoQp8twcwsZTXxY3YnDEgHURSJikvgVVAYCQolMkFAJgjYWZjiYmuVoTH3MDSSrluO0LVMYfpUKIogCHTefJihVUvxNiGJeyERLGhRPYPaDPhSCHz2jNbNGtOkeQsqVKpM6JsQ+nbvwqMH/jg6ORMRFkYJX1+KlSiFqakpyUlKBg4eQmJCAnJjE/5YtjK1LH2RQw3QIKtvn19Jb3yLQATwEDgmZkXoVIO8giC8ApLRuJWMTXEfyQO4AEdSKxLFBEEQTqNRVNE2vi8DO4HfgGzTGL/3IJTqLTXKF045zTAyEkhKUqFQqgkOjcfM1Ajv3LbkzW2DUqnmaWA0TwKjyWFnyvEtzSmUT0OqXLT+Li3qeSGK8MeaO9Sp7M6lm28oX9JggH8NePAgkDbtJlKubCEm/roWW1tLgoLC2bjuZwoW9MTExBgPN63tLVU8KpWKffuvcOrMXVYuzer3pgHvi98XHmDU+E04Odpgb2eJKIokJiaTpFAREhKFi7Mt3nmcyZXLkTdvonjy7A3PA0Np1bw8h/aOw9TUGLVKwYy5e1kwqxsTpmwn8EUYR0/cplABd5yc3i9KqQGfFtNnbmXv/kt45nJkzPh1hIfH4OJixzP/ZQQFR5IvryNWVloxEdRJREbG8euMXVQsly/N8DYgW5GYrKDp+D+4+fgFTtaWWJgYoVKLJCgUxCYkE5ecjJeDPZ45rLE1NyUwIprnYVG8jU9kesNKtCqWDwC/oDAehEayvE1tfGauA+DA/We0LGrw9/5a0Kndd1hYWrBt80bOnz3Dk4AAOnbpxsYdewgJCiKfTwHkWvEgzIwE7t7xY/CA/nTp0fsLtvzbRJaMb1EUJ2Zz/ZfQuJT4A07AOOC8IAhF0BjeACGSc0IA9wzKGgvcEwShgSiKhzKrWBCE3mh8yTNEaFgcTTpvY/aE2nRtVxx1is+3PPdCADzdralcxpWGNb0QRRG5XNAY4p425LA1Tl0NiItXsHjdHU5ubc6PE88CkNPejB+G/8O9Y+2IiU3G2srw4viSyJfPnT/mD+K23xP275tGjhy6W2Y7dp7icUAgQwa3Qq0WWb/+CLN/34utjQUbVv2Eo6PBgPsU2Lv/CrN+/4tHt+fj6aHx330UEIxPSQ2ZtYxvHqpULED1qoWIiEzEydGWvHmc8crthIVF2q7UvgPXsLQwpXbNYtRtOpVG9UuxbtNpjIzkjB/9HYmJyVhaGkLNf0n0+KE+oaER5M/nyoC+jRFIW8NxdrZj6MiVNG7gS+2axQl8Ecq8BXtZu+kMzRr5snR+jy/Y8s8EMT7zPNldpSjS5/f1ONnZELJtDspQzau49bzNHPULwMLEmMo+nlQvlAd3K3NiEpPpmNOW3DltsUtWItcKaLP4wm16lS/KxeeaTe4fK5dgyL7TlHB1IK+dFWbGcp38Bnx+zJjzO5vWraVnv/6ULOWLtjR3dFQU40YOZfDw0Ti7uHD+zCmW/fE7d+/eoU+//rRo3fbLNfwbhSCN6vQlIQiCFfAEmAFcBM4BnqKYxkITBGE14CqKYoOUYxFoI4riDkEQFgGVAV9gFe9JuBQEQRRDpwKQkKBg9eZrzPzjNF3bFmfC8OqEhscTEhKBtZUJQSGxdBl0EHMzI+xsTPHzD6Vd88L8MbU+pqYp3zJaJJ3fl13k7KVn7FjRgrj4ZMyMYeqCS8xfcYOq5d3Zf+wJlcrmYljfijRvWABMJJHMtAk8MilZT180SDIgC+khkqW7KVJiUW6t/3UloiIkkuUhiZIIn1p9TCUhz0j1QaWQaW1pZuYjL5OkS4+1kdlE72CSdu7i3+cyedwYPL3yEBMdRfFSvvw4bCSVqlZDEIR015uVuhQq/edqX0Ncsi4J2FQSZtfdQpeYkkNfYErFEd1jpX41BcGiNaIofjKSgiAIoph8GIBnz4KZNXcHW7ef4u+/plC0iBchIZGEvHmLT343Vqw6zJTpmyhaJA+xsQmEvIlk7uwf6dixblqBKURWURSpUKECo0aNolWrVkRHR2NpEUHJUg0ATeCJ+/cDaN+uGaNG9SN//jzp+rc2pH1d7z3OBNKy9CEsWf84kY4rfchK389qO/S1SVqvtB5997Js2bL4+flRunRp/P396d69O4MHD8bDwyN9ZglpGfVj/Q2Vkrq1n7/6rG6alLicGWFcH9KRSLXGd7pIqqYI5o0++RiM2zINURQ54RfAjO3HUKjU7BnSgWSFksDAEBIUClxsLBm+6yR+r0PJk9OWZ+FReNhaMbtJVfLm1CxEaBMwn0ZG02brUU583xAzuZwklYo7IRH0P3KR0i45ufEmEisTIzr7FqRbmUK4FtN9HsYOuj78MnvdHWO5dgRMc92FE9FMl7wpSqOKah9L3xdSAp70XC1CnjRNLeH9JEncMBKUaeMoHcFScmwqYToaa5EsjaSES0nezDqLdk1qPUP7cUAApUsWJ2dOB9zc3UhKTGLg4MG0btseU1NTnesBUEoKU0iOtZstrddYck3Scy+8SBO/8M6hGyHc3VrXBkofpVT32FKeVrZMQs4UJVFmzWzss3X8ZdnpURAESzREyJZoIl6CxmDeBcwSRfGDI1yKohgrCMJdID+wJ+VnF0B7NnUi/Wr4v5gEPAa+/5D6b9x+TeOO6yhbyp3fxtdh/9GHmOeehp2NGS5OlgSFxDJ+SCVuHO3K+h132f7XA6Jjklm+4SbdO5SkQmndBfmHj8OZufA8+9e1AsDSwgTUSn4ZUpFOrQrx19EnLJ3dnG1779Jv1AGN8W3AF4dSqeTWXb8UH7fSlCxdhqIlSjJ24mScXVwpXKzYl27i/y1mztrKb3O207tHI+b+1ptefX/nvv8LXFzssbO1JDYuke2bf6Zpk0qsWXeYbTtOERISSY9eM3SN7xQsW7aMmJgYWrTQRCC1sbEBMYpbNw9z/PhZQkLCqFu3Kt1+GMbSpRuYM2d8ujIM+PyIioriypUr2NraUrx4ccqUKUPLli3x9vamfv362NnZZV6IAVlGXGIyrWauITwmnt7VfQmNiaPwqIWo1SKOVuYkKZWUzuXConZ1OB/wir1+AdwJCuPqyzfsuP2IkTV1VZ6SlCom/HOVTkW9sUzhWFjIjCjj6sCJDvU59OQVw2qVQRShw+bDVPZy5d2xhQ34XBBFkcDAQPzv36NAgYLkyZsXG1tb1m3cREJCPLVq10HM1LQ3QB+yqnaSAzgDFEITSv5GSpIPGiWSNoIgVBVFMeJDGiMIghlQEPgHeAoEA3WBK1rpVYERGZ0viuIbQRBmA5OBC1mpOyw8jpbdNvLL8Jo8fhZB/9EHGdi9LOH+I7C2MgV1IgFPIyldfy0W5kYM+MGXAT/4EhYeT2KygIeb7hf3g4Awardez7SxtShdIr3ebN7cdgzu6QtGVogiyGQCE2edZOLPrbPSbAOyGSN7deXY/j24u3vg6OTE7Zs3sLaxITw0lOq16yAzbI1+Muzdd55FS/9i/eqRzJ2/k117zjFjandaNK+UuuuxYOEeKlUbwuvArcyY1ovpU3sSGPgGW/v0QauWLl3K9OnTOXHiRLrnJpPJqFs3TeM7IuItZ85e5p9/zlOzVrtPe6EGvBOPHz/mu+++IyAggFKlShETE8PDhw+xsrKiUaNGjB079ks38f8a/f/chXtOOzpW9WXK9qOUzePOsdFdyOeck4TwKBIUSjqv2c+P24+zumMD6hXyIkGhJCjsLa42ujJvSUoVffadxs7MlH6+BdPVZWViTOuCXpjntOV5ZDSxyQqWXLxD2crFMTf5iC0lAz4K69asZvrUKajVagoVLsKjhw9ISEgkOSmJxMQE6tStB4BK31K5AZniQwiXBYGBwDJR1OybCYIgR+M//QcwkfdUPEkxlP8CAtGsaI9HE6p+rSiKovA/9s46Lqrs/ePvO8zQjSBgIDZ2YNfaxdqtq6Jr61prd66dq67dsXZ3dycWqNgFAiI5zMz9/QHCzAVnQMD9fXfn/XrxenHr3HPu3HPvc895ns8jCPOAUYIgPCI+oHM0EAFs0lPsbKAX0AQ4kdqGten+N3ITGWOnn6BZw0L4nemJW9akKSuNRmTGoisUKehMy5+THiRZnCxBSP6guHHnHUqlmtrVcifbJsXZyZJGdQuwZM0No/H9D3Pn2mXW7DtGjYrlANBoNAQ8fsyrF8+Nhncm06X7HHJkd6Zrj7mMG92err71dBRJXr8O4s/Fexk7qn2iX74gCHh4ZE1R53v//v2UKVOGPHkMB3WV8S5O4PNX7N17zGh8/4OEhYURGxtLSEgIpqbx076RkZHcunUrftbCSKZy/I4/TjZWvAoKZU33ppTJrTube+LRCwKCQlnfKUmm00Ihx8Mh+W/zKSqG2+8/Ma12OeQGnp0qjUirYvm4+OId9199xDtPSmFdRn4Ejx8/pkPHTowcPSZx0OPdu7fcuX2b0t5l/uHa/XtIqzXRCFghiuLir4Y3gCiKalEUlxDvZ90kDeVlBzYTr+G9E4gFyotiYmaRGcSnq18EXAfcgDoSjW8dRFGMIN79JE0RVKfOPyP0czSHt3Tir1lNdAxvgCOnAjl7+TWHN7XAzjZliUFtzl5+SXZ3W8xM9fsARkYqadqgIIum1UehkPHg0Tu9+xvJXFyz5WD7ulU8evAAiB8hLeDlRa16qUs5b+T7iYiIwcnJFv/7K+nZ3SeZFODIMatp9HN5Rg43LOcfHBzMw4cPU2V4f/oUysKFExk2tBcnT1387vobST/Zs2fnzZs3rF+/ntDQUACsrKyoXLkyxYoV+4dr9+8nKjaOHnXKc3R892SGt0qtoe/WY6zv5EOxbIaVuu59DEFhIsPegBKNRhRxsjRnZoNKVPN059yjwHS1wUj6yJY9O6dPneT0qZOoVPFJadzc3KlXv4HR3SsDSevId1aSXE1S4ibQKbWFiaLYxsB2kfiR9PF69knmeJTwIbAktfX4yo7V7ShVPOUvbs+cdijj1PEuKKng0ZNgTExkdOizC4UcFHITIqKUfAqJJo+HHW2bFKRSGXdqtF4PgN+ZnrRtWoRN228weXSqknIayQQmzF/ClpV/0aJhHRwdnZg0cw7VamSYeqURPRQskJ2dW8diY5NykiLPXK6oVKnTcI6OjubDhw/cuHGD+vXro1DEKxCFhoYSERFKjeoV6dSpBa9fv6NR466MHzeQESP6EBISxv379ylcOIXMl0YynaxZs7Jx40bWrl3LoEGDqFWrFkuXLiVLliyGD/5X82O0y/v7VKFPg0opbpObyMhmb4OZPHVBpS8/R2Ahl7P42n3kCMhlAnFqDWGxSsxMTKjr6U7DPNlZcPgSO/yecKDzzzQulJuJ524xsGFlwycwkil07NQZtVrNhHFjefvmDb369GXAoMHGpIAZTJrUTgRBeAkcEkWxxze2LwXqi6L4rUyY/y8RBEHcsqoLrZuVTlopiTbXaDQ45h6N/7URuLhI/Eu1Itzj4tQozCwJ/vSFu36vUSrVxCljiItTY21thqNTFtZvuciCJfFqEy2aVuD6zacEPlpK3wHLcHVzYfTIdklly720zqNfZSQ9SgRS1RHpsvb+KgPHJtuu9b+h+81E0sG1pyulU5fSZenDQVspRFpHqRKKVHVEo9Fw/thhxvfrwZi5i6jW4Odv1llaj7RIZknrIT1W+7pnNdf/0nsdqauGot1mS1Pd0af8VpIHqVQhQnKvCYKQ6UoLZwNek9XNPXGdthpGsFLk9OEDrF00n1V7jyS7x75eJ1EUUavVyOVynjx8QPCHd8QplahUcWg0InYODpiamjFpYB/879/DIYszBYoWo2ipMvQcPoZaXrlYd/QM2XPFu4sZ6hfpISPLkt5H2mUbUgHSpwpkCEP9Kj1lRYSHs2L2H5w/epglOw/grHVvSM+j0NIf1v4fkj/rvGwk/Uh672ujR/nGEAaVcaRKKtqKUskwQZBly/Q+GLQgycjSSNKpK8Oj6LvjJJU93WldsgCi1oewqKVLF6fWYGFriUqt4drL9yjVaqIjoolTa5DLZDhYmBFmZUaPlXtRqTWUL+jJs/fBHJrUl9fBoUzZdpxzf01KLE9mrTvaKpjpTmoLplqqI3LJhLeh+1HreStNTS8tSzTVVdYQFUnLcRLlsViJYkl0nO49qK3gIc1HI8mujpVCd4WF1rKpRveZL6gkKjlpSLsimur67IuCjICAADp19qVsubLMmj1Xx/VSu79KFVokgiXJ3s1fYr/9MSnd10RyPcxNvv2bBkfrliuth7Weaym1PaRYWVpkaP9Lq9vJPqCrIAg9BCFJW0cQBFmCbnYXYG9GVe5HomN4p4BMJqO8twd9h+5EcPiNkNDkoi57DtyhTPXpAGRxsqFGNS/q1S7Cz/WL0qxRCerU8KJUiVyJhvfvv9WneZMKZHGy5dWrYLbtukjb1j9leNuMpB2ZTEbVug34c+seJg7ozZOH9//pKv3r0Ta8U6KYdznu3rhKKVc7erVI+WNoRLdOrF0wB4C8XoUo/1NNqtSpT/UGjajp0xjvSlWJjo7C//49AOas+xszM3NkJiacPrSfbB65Eg1vI/8s1ra2DJjwB7WbNGeob7vEKXAjmYeh0U3vHFk5+CCQHBOWc8z/ZbLtQZHRVFi8jRch4chNZFTwdKda3hzUyJOduvlzUjNvdkplc2bntQeo1BqK53Rl/dDOBIdHoNKo2XTqGq1qVsysZJ+lWQAAIABJREFU5hlJI/ny5ePQwQNcu3adJUsW/9PV+VeRVreTscSrjywGJgiC8DhhfQHAGXgCjMu46v3/4ud6hZk0M95wrtVkEXVrFEQQBPLlyUpTn+L0/v1vIiWjj1JkMhmvH8/jU0gERQvn4MXbGPLnc6dkhUHUrlGcPHn0GyBGfiyFSpRiwPgpjOzWifXHz2NmbkzG8k/hmCULHnny8eD2Tc4dO8zgTm3xLFCQ2Oho6rVozduXzzm0429s7PQnPSpb5Sd2XrqFlbUNbjlyEh4awoq5M9i6ahnD/pj9g1pjJLV0GzKSu9eusHL2NHoMG/1PV+c/Tc18OZly7AoAA/aeoXnRvNiamSKKIn0rFmP8sSsERUbz4UskHo7fDpBd0qURgUGh5MvqhLW9DYOb1aL5pGVYm5sxY+CvP6o5RlKBnZ0d69euoVr1GlStWo2iRqndDCHNSXYEQbAFhhEfWOmZsPoZ8brcM0RRDM/QGv4ABEEQxbBFuiuTJTmAN2/D8Co/HVNTOZ9CIsmRzYF3Hz4zbEAd3n8IR6GQsffQPfp0q8HwQfWTpmi0yzLRDeTUSaIDYCLxdzW6naT4f0rLGel2oo0oigzt0h5nVzd+nzor2Xaj20n6EQRBfByhe99I3U4A1i9ZyOLpUwgJ/giAe04Pgj+8Z/H2fYzs4Uvzjl3YvnYls1ZvokS5Ct86l86y9J7Uvm5GtxP9ZKbbiTZB79/RvnoFZq7dTPGyFf5zbidxcRpMzXJleh8MXvh7UvVScDsB8Fm2i/dfInn/JQobMwUmMhk57KzpVb4IM8/cooR7Fj4r41jYshb2FvExUsovusmJHPInXVdTZ0nSHEkSHaPbyT/ndqLNhs1/M2f2LM5fuIi5ubnR7SSdpFk7TRTFcFEUR4miWFgURcuEvyKiKI7+XzS800I2d3tunh5EneoFsLezQK1W45zFmr9WnePMhQCmj2/C2KH1GTN5N48D3v/T1TWSQQiCQM/hYzlzaP8PPe+ZIweZO2EUpw7tM/jRkplcupQmyfxMpUPPvkxZvJw8Bb3Imi07MVFROGRxpm/rJtRu1JSuA4eSp0BBpg8f9E9X1UgG4uzqRtOOXTh35NAPO2d0dAwzZ85k1qxZ+Pn5/bDzpsTQYVP/0fNrs6VTQzp4F8LWTIGtmSkmgsDHiCgGH7jA9PoV6VexOFdevOfvm4/+6aoayUDatm2LUqnk6VMDGWMzkMBnT5k8bgyb168j/PNnwwdkEuHhGW/apjnD5b8WM4m7h2BCdHQsAU/e8up1MNExIrGxcVhZmbNp63zu3XvKo0cv8fDISs6cWVEo5IyZtIbde85x5vQ2vEqX1Sor6SvfP1Iyoiz5Io6N/rZfo0aM0dsEQyNp+rbrG60G3dEjQyPdaUE6gmUqGbWSpcHo1DcaJiVW4j8qbZNSMhL+JeIL1nb2KNVqPsfqji6YS9K8S0evnSwsvrlNWo+v13Jk987cu3EVzwJeLJ89nZUHjuNdsYrOqIC0veYK3aE17bJj4nSH4W6GSH8zZ50ljRifHvpzaAjtW7biRyC9Fi9i1YSFfOJFgD+fgoNQKpXEKWPJV7goa09d5vLJYwC4Zs+Ba46cvH3+nA51quLs5s7szauIiktD/nYtVFr3gvSjx9C9nlGj2YZGkNOy3ZAfr3QEJj2j1zI996d0WdrH9F07mSAQGRmJo7MLSrU62b7memYritrpT9gSotId3Q5Wirx5+YKODeriVawkx/buZNyECRy48SBZXIKh2ShtpM9+0FUV+dYz9uSBvWzdeSTV50kPVnnzJf4vquJQqzW8DArh2bsgImJUxMapUKk1DO7WggHdW3H85kPcHO3I6Z4VF3tbdp27QZ/l2xjfrTV9m9dNvPdkVrozvDKbJNECQa77+2iPKAOg0b1PBOloribpuSGo9bt9JksZLyY9u0VTa91tJrr10pjptiFOq+dEKL89sh1/nm9XSZo+3kIy9G1tKplZjY1I/F+I0VVdFuJ0Zxik10o6mq29XWOma19oLHRnHEzkZvF90N4OGSJvIpKuu3TkW/oIcbbUfUeaabVRmor+68D21s2bGDdqOK3bdWBQv96EBAfRrVcfFJZJ94c00U9WK93zRCabcdCtV2RUUhv0zR7+1rMXGY1e41sQhKr6tn8LURTPfl91/v+w78BVmreZRt48bnjkdOb5iyAePX5Fg/plady0JkWL5qFgQQ8OHbrMjJmbOH7iBk2bVOH2zdU4OBb5p6tvJIMJDwvD1j55FsXM4sKJo2w9d41n/o+4efE8PRrXI2u2HGw4dhYnl6w/pA6P797m0qnjZMuVmw9vXv+Qc2ozuqcvZw4dwDN/QeyzZOHWxfPExEQzcs6feHoVplLteoQGB3F051YObd1MSNBHOvX/nWa+3YyyWP9CwsNCyZW/wA851/Mn/rhly8Hc9X8ztm93ju/bTZ2iefm5dXsmL1r+Q+qgVqu5dfki6xbNo+fg4Yztn/EGgD4iY2LJ3XEUNpbm5Mvmgkaj4ZzfE3I4O1CxUG48s7nSqpo3d5695s9dJ9h2+gp5smVlz5QBlCr8Y34nIz+WsLAwHB0df8i5Lpw/x/DRY+nctRtrVi5n8cIFLJw3l4V/LaVBwx8jx/z+3VueBvhzcO/uDC/bkNvJaeJTvaf27+v+/9OEh0exe+9lvApm5/bVeZT1zk/wp3BWLhvE/t0TCQ+PZOSopWTP2YwZszZRt05Znj/byupVI3FwsDF8AiP/c4SHhWCbQgrzzCAuLg5VXBymZmaUrlSVIqW8mbF6Ey5ublw7f+aH1AGgQ42K7N2wll4jf3wMtb/fXR7euU3XwcOYvmo9ythYcubJy/oTF2jUriMBfvcY1qkNrcqX4NHtW/QeM4ldNx/SvEt3o+H9L+VLaOgP+wCOjoxMDK7u1HcArtmzs/XMFY7v282XHzT9fePieTo3qIGLWzbqNm72Q875FVEU2XH+JkqViuPTBtCn0U88fRdEjwZVuL5gODmdHdh44jJl+kyh9eSl2Fqac3LOcE7OGU7JfPokE438rxIdHT8bamFhYWDPjCEqMgJz8/hzDR05Gp/GTeg3cBD7du/6IecHmDV5Ar80b8TYqTMyvGxDbie+GX7G/8dER8eydsMppkzfTp1aJTl5eDLLVx3lyPGb3Lm+BHd3JzZsPMHvw1fQoH55LpxbTN682f/pahv5AYRn8It/39ZNbF+7iho+jWne+VcUEpcRc0tLgt69xdbBkUXb9wHxLiv927egSu36WNlk7kdeWMgnrGxs2XH1Lj/S2/zNi+es+3Meh3dto++o8TT5xZcuDWpQqlIVug8bgyoujikD+3Dm0H46DxzC2EXLsbI2fvD+F8jID+DIyEjGjRvHw4cP+W34aMqU1w3OtbCy4uP7d4iiSJ6Chdh54SYAbjlyMqp3VxZs3J4h9dDHk4d+tPTtxrh5i5H/oF4oiiKnbj9i6qb9RMcoOTljMDKZjF/nrGP76G5ULpwXv+dv6b5gIwq5nJndW1CtWH5kpkYVqH87ISEhOGTgANS9u3eYPX0aLq6uDBo6nCySwFtLSyvev4/P+N3ntwEAhIaEUMAzB02bt6ROvXoZVpdv8TzwKZt3H6RcpcqMH/674QPSgF7jWxTFtRl6tv/HjBy7gVXrTlDWOx9bN/xOhQrxGe5UKjVlvfPj5ubI+InrWb/pBIcOzKRkyfz/cI2NfC9RkZFoBAGFqf60x9q8fBqAfQZk2dNoNGxbs4Kls6cxaNwUtq1bxZoFc+g6aCgtfbsBoFAo8O3/O8N+/YXpKzeSx6sQACUrxPuIXjlzkho+jdNdF308e/SQ3AW9vqqcZOq5vvJ757ZcOXOKZh192XnxJvZZ4v3Q1So1Veo2JOJzGIM6tMQ9hwd/X7qFjZ0x1fH/Kl8+h2FqZZ3qWYo4pZK3L1/g4JT+PhgZGUnLli2xtramcePGdGnXCo9cnsyYv4hCCTJqFavXwtzCgnH9ejBixjwsLONVqHoOGcnAjq0JCQ7CMYuzvtOkm4AH98mb0PeVP6gPVug7BaVKxcAWdWhbtTQmJjIC3wfjYG1F5cJ5OX3Xn06z1jKx4890qlvZOMv0P4parSYqOgZbq9SPYgcEBOCcQZlm7/vdo03zJgz8fSjPnj2jWjlv6jb0Yfqc+ZiYxg9E9f6tP00a1CVHzpw0b9kaAAdHRypVqcqmDeuoXbduhtTlW4iiSMDjx+Qr6GV45+/AGHCZQKzag1OnLuLlFX+hH36JD/L4Yv6enQemcu3hTL6EhbHi0BUEZxdua808SgOHkgdlJQVIqEVpYELqg6EMhTVKJbX0SQJmZNCkFH0BW9JtUpk+Kdr1NCRxqM+U/nreQzu3MXlwP6KjIsnnVRiPvPkTDUzXbNkoVqY8zlldCfsUjCiKmJqZER0dzZFtW9h67hpWpqbkt9eVZEpJ4u/L5zBEUcTW3oHQhOm65/6PGNaxDXKFnNmbd+KRNz/VGzfj1uULDOncjqYduyBPCBJt37MvVtY2dGtUh5kr11OxRm1kDo5sOH6efq2bYGpujne1Gjr3T7QkwNBKz8dFdivdbS8jkoJIRVFk75YN5CtanGiV6oe9YIuVr8Sw2Quxto3X6f4aMGlmacmfk8fx4c0rfvJpQrcRY0EQiNXqd5klAWhQRlPPeTNShk9KRsoHpqVPSvdNJu+p1WZp8LRcJiM6Koq540awc90qrG1sKVyiFI7OLoiiiImJCfkLF6FY6bJoRA2fw8KQy+WYmZtz9uhhChQpRtGixREEATcL3VeXVGZVFEU+vnuLQxZnnUDHrauXM23k79Ro0IjxS1cjl8up2KIjM8cMY/nKFYyaMS9B4lJg75HjjPqtF51rVeTixYvY2tri1qYVL+/fYXCHFixbtwlyfjuZczJpQQS92x9qxc69e/eWc8cO06B1O2JVKkzTrEv2fUwZ3IPaFUojk8mQWcQ/5xwcQ3gf9gXfZfs5dfk6WxZN56dypUBLmk+TTIbPUrJsprOs0touaAUQAgga3cDrZPJ5cbqBgdpXVXoejbQeZhI5PZOk52CyQE9pYKckWNFE68yWCqlErP7nkUJLLk8hleWTBI0KMbrtF5RaQZXSfm6i+1zXSANM5WY89A+gc8/feOgfQM6cOSlatCjm5uao1RqsbawpXdobr0JefAn3IyYmBjMzM8zMzBg6bBj9BwxEldC0bDZJN3CIRCgiTiMSFxdHcNBHXN3ceRoa/5tFR0UyaXAfbl6+wICxU6jetBVtrBR06zuQtk0acPPWLcqVjReryFvAi8279tGrSyce3r/P6PETAViybjMtGtRm0uTJdO49UDf3hkRq0FUSgCmTxEfbmiVtlwZn7tx1ADs7e2wdnJLJQWYEaU0v3wdoKopirW9sPwrsEEVxaQbV74cgCIIovQ5fje/oqCiunj3Fhw/vqdukBZbW1gaVMfQZskbjW7+6STLNbK39pdsMlaWtLBIZHs6UIf25c+0K05evJU/BQjy6d5tXz54hCAKCIPD6RSC3r14m7NMn7J2ckMlkKJWxKGNiaNmlOw1btQMgm6XuW/Or8R3+OYy9m9Zx6uA+Ht6+hUi88Z2vSDE88ubnwJYN9Bk7iYZtOiQeqxAETExMqFckD8v2HsVTS20A4NT+PayYM50tpy4l/kbnjx1m1uihmJqZM2L2QgqX8iYl9BnfUpUGbeN71/rVbF6+hAW7DmJlY4sgCFTJapPpGsNXgnSzxn5t77uXL/C7eR1zCwsq1qkP/Dj9baPxrX/fZMa31v/S/vjU7y4junfCq1hJRsyajzo2Fr9bNwgPDUUmk6FSxfH43h3u3byOzMQEWzt7VHFxKJWxyGQmTFi4lGweuQC+aXw/8rvLns3rOXlgL2Ehn4iOisIzXwEKFS8JQrwf9dLt+/HMlzRz+TWw8Y8Rg9lx9qqOvryDXKRVq1ZUqlSJAQMGEBIXP3s1Zexo1q5YSp0GPkybtxBb2+QJZaTGtSHd76/vHIBODWtRrGx5eifEW5jKoKhDxuoMSxEEQYy7naSq8tX4Brh48x6PAl9R2bs4+T0TPjjSYXyL6TC+BanxrU66sD/S+NZoGd9SdZMMNb6l7VfqKproHqt7k2mrm4iiyOK1W5gyay4TRg6lc7vWPHgVhN/9+6hVKjQIhIaGcv3aNfz9H+Po6Ii5hQXK2FhiY2Mp6OXFnLnzkhRstPr+V+NbFEUO7N3NgX17OHvyBHK5CSqVmrxeRchfuCi3r17EM19BRkyblzjz7GIpRxRFxg0fTK7ceejT9zedNnwJC6VcyWKcuXQVN3d3IpRq3rx6yeghA/G7e4e+v4+gVccuKV6PZMa39FtFa4W28f3qxQvq1qjK8o3bKVYyPvt5/qy2Gdr/0mp8XwOui6KYYti1IAh/AmVEUSyXQfX7Iegzvr8Sp2eUzWh86/L/0fjesHgBG5cuYtelW1ha6T6AU4P29fmW8f3n5HHcunKJ9r36Ua5aDczMzXkV+Ix7t2/y5IEfZX+qQakKlROPO3NwH5N/68nm05dYPHUCnvkL0nPoKJ2yBVGkQalCTFm8nOLlk6TJNBoNB3duY9aIwXQbOpKmv3RBLvEb/17ju12Nivw6YixlqtWIr8M/bHxD8n5jNL7/94xv37rVKFm+Ir9Pjg9ekkqBavdXQ0nAvmV81yySh7pNmtOwRRsKFS9JbEwM/g/8eHT3Nm9evqBTnwE4JkydK5VKpgzpz+P791iz7xgVPLOy/cxVyhVNmmZ2VMDly5dp27Ytjx8/JkJI6lPhnz8zfsRQrl66yNwly5L5jX+v8R0Y8JiO9Wtw8N4T5Akypv+08R2/QjJsaDS+E///XzC+nwQ+p1DFWlw4ug/vkiUA0Fg5JW5XSapsIrFUpW1Kyfi+df0a3Tq1p//QEdSoXQ8XV1eCPn7k0o3bBDy4h5WNLU3adUp8brx+Ecionh1p16kL9g4OrF+xjJ0HDuvEQMllAqOG/Y6pqRnjJk0hQplkb931u8/gHr6U8C7DgBHjE/v2V77X+J49bSofgj4xZurMxHUZbXyndTIrH3BPz/b7CfsYMfL/ipa+3VCpVQT6Z17ihxdPA2jRqSs/1ffBwtISmUyGR5681GjUlO7Dx1BCy3gO8LvH1IF9yOqejWePH9F3zES2rV7OqQN7dco0MTFh0ISp/N6lg07dZTIZdZq2YPHOA5zav5fWlb25cOxwutsQ9P4dzwMeU6pytXSXZcSINn1HjefskYOZVr5SqeTD2zcMHDeFwiVKIQgC5hYWFCtdhla+3Rg4brLOy3nlvJncuXaFx353MTM3Z/TM+fRo4UPQx4865ZYvXx5vb29atWqFUplkGNna2TF70V/0Gfg7Xdq1olOr5rx++TLd7Th9+ACVatVNNLyNGMkI8nrmomOblhw6djLTzvHs6RPKV6pMm1864+LqCoCziwvlqlanQ8/faNq+c6LhrVKp6N+hOXZ29jx+cJ8GjZpibWPD6KGDk8UZ9e43gB3b/mbLpg066/MVLMSGvUcwt7Dk56plWL5wjk4f/V6OHj5EjboN0l2OPtJqfCsAfWHN5ga2GzHyj2BhaYlzVldU35l4JTWo1epko8/f4szBvTRs3Z5SFSvzOvAZ7jk8mLt+K+P79+LcUd0sfnWbNGfA2Ml0a1Kfq+dOE3DfD03CyGDeQkVYtGM/g6bMYOrgfpzYmz4ZpixZXXFxc+f+9avpKseIESk5PHMTlwEvxm8iiogaTaqN1t2b1jHpz2WYmJgQEhRE8198adymA83q1UpmgG/cuBGALm1b4XfnTqKRLQgCbTt24up9f4oUK07dqhUIDQlJVzPKVq7GtXOnUWvNqEqTgxgx8j3kzuVBXCa/AxWp7H9PHvphIpfTq/8gXjwPRC6Xs2DFGm7fusmE0SN0DPBs2bOzY+8Bpk4cz/pVy3lw7y4REfFBErZ29oycPIPNB09w5fwZxg/pn26RgAqVKnPxbOaqZqf109ofqA3M+cb2OsCPyz2agZx/91nnoR0nmfbUdi0x5GYi/eHTMiUuzYCoD0PnSe4e8+0nuFyW+mlsaR31ZYaKL1v2zX2lSI/VntY2lIVTul37XKYmJkRHRSEoFMkyKaZUL2lZ2r/5/RjdaU8TQSAi/DPPnwQQo1Ily6yYUmBgtvwFObxlA5Hh4XjXqktoTAzuhYowde1mRnRsw+AZ86jWsFGi2021Zi2J0WiYPuJ3QoM+4tO+U6I/KECFmnWYunwdA9o2w94pC6UrVdFpQ5zknr0ToTvVG6FlFFVp0oLje3ZQ0Ds+8MXZUnfqNrOIlFw37foburfT0scM7SvqcTsxVJahLI1pqYc+0uJ2ksw1xICbifZ1l7qOJKuHZFmjp79GRUZhZm6R2O60uMVJn3XablIQ/0y6efUyclNTomJjdZ7l0mO/Xo88XoU5feQgcrkCK3t74tRqegwbjVqjoUHNn1ix+xDF8yRoVgum/LVxK3169aC7b0devwhk45EzeBUrkVABc3yHjiE6Opo6lctx7uY9UOiOQ32I0e2Dz8J1P0S+PmPcCxbCwsqKuzeuUTShD9qY/phRcDFrnsT/1RI3E9FMNwOkRstNI05yJ8RIfRgkaJessHTS2WYqGgi4lLilaLuDiDLd6yTKdd1QpPXUrdO3XagAhLhonWW5Vj3kBlxUkhGn1QZDLp9yXfdB7d9BmrEy2XklfT1SI8Pc1hG1dfwMkHZ2yThJlkpVnPQdqLs9Qmu7IMT3sxu3bhInQqxa/3Pxc4wKW7dcBH14x7GzF3DM7smj4ChAzqSVWxnm24pe/X6j7+gpWJkntD9LTuas38nUof1Z8ddizC0s2Xb0DLKE51c2D08WrtpAq/o1WDBtIgNHjuOLJPOo1PyI1oqkDNUKGq3s05KRPTsycNS4xPIzmrSWuhmoIwjCJEFIcn4TBEEhCMIE4o3vTRlZwR+FcYrv34+zqxsvn2X8t2Hwh/f0b9mIEhUqU61ho1QdU6JiFZ743eX544eUqFglcX3h0mWZuWkHC8YMY8X0Sbx69iRxtL5ui9asPXmRAsVKsHbuDN6+eK5TZvFyFShetny6s1FWqNeQs/v3MLF7Z5743SMiPDxd5RkxAuCUNStB798REx1teOc0IIoi548fYWCHlszfuD3Vz/I6TZqzdOZUqtZtgEnCR4YgCPQbNZ7mHX1pXb0CB/fu4f27eK1hU1NT/liyig2HTxP55Qs71q0iVvIhPmDYCN68eqUzav09NO7gy+D2LVg1ezof3rzOkKl0I0bc3Nx49jTj34GxMTH8MWYEt69dYfj4Kak6xsLKipIVqrF1+UIq1KyfuN7Gzp4Za7fzOvApw7u2wf/BPaIi4weLPPLkY/G2g7Tr8RsBD+5x9bxuMnUraxt++bUnL58Hpqs9uQt44eLqRtOaVTh55BAhwcHpKi8l0mp8zwXOAqOAt4IgnBcE4RzwDhgDnAdmZ2wVjRjJGKr7NOLMoX0ZUpYqLo55I3+nQxVv2lYsRbmfajJw6sxUfSV/CQvj2qlj5CrohcLUjDil7shOgeIlWX7kDC/8/RnQqjE9fWrrvOQnLlvLr8NG07lOVf6cOJrIiCSNsrcvX5C/SFGDdYj8Es75Q/u5c/kCIR8/JBoL714EcnTzeoqUKc/ZA3voWbcqtQrlSuVVMWLk2zg4ZSF/kaJcl7wwv5enDx/Qv11zauTPweSBfZm9dgsVqqcoxJWMh3du8enjR5xcsqJJwVD27TeIqUtWMn/mNCoWL8S8GdMSt9na23Po5kPevn5F/dKFOLhja+Lo+svAQHLnzYdVKoK6Xwc+4+jObTx99IDwsNDE9acP7OHl0ydkz+XJ0mkTaepdGG/3H5PS28i/m0aNGrF///4MK2/7pnW09alN+YKePHviz5od+3BwcjJ8IHDh6AGyeXgiICAz0X1vWtvYMm3lFgqV8GbiwF40r1ySZ48fJm5v0KIdExetZtLwgfT5pRWBTwISt71++QKvVLwDVSoV1y9f5MShA7x59ZKYmPhBAWVsLGv+nINnnrwEfXhP745tqFuhVKralBbSZHyLohhH/Oj2cOA1UBIoBbwChgK1RFE0fqIb+X+Jnb0jUZGRhndMBX7Xr3Ll1HHG/7Waw/6v6D5ibKr1sF898WfW4H7kL1aCkpWrsnb2tGT7ODq7MGnlerZf88PdIxfd61fnZII/t4WVFb6DhrHxzBWCP7ynS92feB34DIjPTGnvmPLDLy4uDmVsLP1aNaZVqULsWbOCvyaOoUWJAmyYOZWXAY8Z1aYpcoUp3j/VILdXYVp078Pl1+nzYTVi5Ct2Do5ER0YY3jEVbF6+GOesrmw5fZnD9wLwrlw11cfu3rCWv1csoefQ0Vw+c5J7N5LHOFSqWYcj5y5x/pYfyxcvpEvbVjxPeMnnzl+AxVt2MXXxShb9MZGx/XqgVCoJDg7CSU8ikri4OG5evoCPdxG6NqzBkZ1bGdqpLTXzZiPg/j12rVnB/NHDyJUvP01+iZdPW3n4NLc/GmefjKQfR0dHIjPoHRgbE8PcKRPo2qc/5+8HsGLLTmxTmfhMFEUWjhvC25fPad9vCEsmjUwWD2Iil+M7cDgbjpyn/5gp9GvflGWzpqKKi0MQBH6q9zO7Tl2mbKUqdG5Sj+MH48UKQg28A0VRZP6s6ZQumJspo4ayac0KfKqUo2U1b6KjIhneoyMP7tykSMlS1GvcFOesrlz1f5G+i5UCafa1SDDAZyT8GTHyP8P9WzcoUKRYussJDw1h+sDe+A4ZSd7CRXXkEFNDgRKlMDU3p0X3PqiVSjpXK0evcSlP1QmCwLglK7l25iTje3WlQLESZMvlSZxSSe8m9bG0tibySzi/NqzBumPnsXNw5OO7t2RxddMp5+PbN9QvmpeFW/dgYWlJmZ9qMHbpGmQyGTfPn2H6wD7s+GshALtXLEHUaLB1cMTnF9/vu0hGjEgQRZFt2BWvAAAgAElEQVQHt27Qf/zUdJd17ughzh45yIbj53Fxc0/z8eWr1+T5E3+adfQlPCyUnetWU7R02RT3dc+WjYu37zNvxjTG9e/Fyj2HkcvlXD13hn7tm5O/UFH2/r2RT8FBjB4zjvfv3sXPJCl0faY3Ll3ElCH92XXxJuGfwxjyxxxqNW4GwOT+vZjcrwdP7seLic0dPRSZiQnlq9fCq3hJ1GmepDZiJDk3rl+nWLH0vwNFUWTckAGUq1yVmvUaIpNq+BlAEARKVKhCqco/UbtpG84d3svD29coVrZSivvXa9aKgsVKMGVIP7K4utG4Xfx7adaE0Zw9fpisbu4M7dUVTVwc9g6OfHj7NsVyqnkXp3ylylSoXBUrK2uWbd6Bs0tWoqOiqFGmGL4/1+TF0wBMTEy4ePIopmZmjJk6M1MSzRkdnRMIitLVzpQGqEXHaUWeGwgmkMY1piWwKi36vGnVETbR8/yWHqutQwpgJtcTNJmG4C9DWt3SZe1gKenksLRDqKSBnlr/K9Vq7t24hu+goSjV6mTnkQbRSkNgtGu9Zs4MvKvVoFazVmhEkRhJAKe0LO17KVIZv6+1gyOBb95ha22JhY1NYhZMM4m/6tfrVbhyNToMGEKXOlWYsn4bL/wfkcXdnc6DR7B08lge3b7Jw/v3aNypK793asPCXQfx8EwKnvoUHATAuD7dyONVmDtXL/H2xXPcc3lSvGIVvEqWJujNa377YzZ1W7fH2cYm8fr+qAyX0uumvWxI9zm5HrfWfSPV4DXQHTUGNHr1nTct6AvATNYvJC83SffU6Z+gGyhpKMBSX5801D+l94Z2f5WGNQe/fUNsbAwuOT2IUanS1H7t9qjVaib278Xk5euwd8kaf5/o8bFOqQ2OLlkJCwkhTq1GrVFjaWOb2E+1938dmVCuwpKOQ8dwtVVjmlQqxbaz11g0bRK9ho3G0dkF/8H3uHbuDPa5C2DvkpV2rVqyYOM2nfO+e/0KgOE9OmNtY8u2lX9Rr2kLAH4dPIx21StiIpez5dx18uTLr+O7bppG4+Z7CbNM+miXBqpK+40yOmmFXKaR7Ct5N+k5p1yj27Y4aaCnTDfgWxpTqH1pDAkHyCWXUbuaJhrdgG+DmTWl27Ux0VW9Ek0kppZ2IyQvZlGSpVKqr66jTS69tyU632h0+8WNq5epUK4MsoS6K7QDVCX1kP7e2r/phbNnuHfrOnuOn8VMLiM6TnfnD5G61+ZNuO7yg3fhRJvacefpWxxefyYqVsXzSIHYV2F4OOr+3hYJH7FyFw86DJ3ErAFdePPhI9UbteLArm1MW7GZE/t2EPD4IefPn6dhqw4M7dIG55x5aNmqtU5ZYaGh7Ph7M6EhIYSEfGL/3n007+ALMjP6DhvLpCH9qFq7PlP/XEGuLDaZFmwJRuPbyH+EF0/8efLwPrkLeBneWQ9qtZpTe3cyd3v6/ObkClNUcUrCQ2OwsXdI1TFNf+2JzMSErYsXkDNffkI+fsTW3oEpa7awcvokSlf5ifI16/Ds0QPWz5/N6HmLE4/NV7goji4udB08HGdXN4YvWo5dwtScRq0mPDSU5t17J450/yiD28h/h6M7tlKgaIl031s3LpzFKasrJSukPEqWGhSmpsTFxU9zh336hJ2jYZ9qhULBij2H6VCnKif27eb1i+c8efiA4Z27Ye/gxMvAJyhMTVm+6xAVc7lw49J5Smsl1apYozbH9+2mx+8jsba1o2SlpEDr2JhY5AoFS/ccIZfE8DZiJCNQKpXs2r2XX7umfzZz745ttP6l83clrPuKiUKBRhX/sRAVHoqlreH3YJ7CxZm0ZifD2zUkt1cxBEHg/ZtX9BszFUtrG2o2bEKegoUZPn0+00cMoEnTZjoJexo2aYpGo6FW3foMGzsRh5xJaWnCw0LJX7gokxcsw9zCMlMNb0h7wKURI/+TLJs+hY6/DUrmjpFWnj68j1yuIGfe9OWSkisUPL17iw0zp2DrkPpgqjqt2uJ37TI1mragSn0fVkybhL2TE4NnJKXrbd2zHxePHiLyS5KfqEwmY+DE6WxcvIAK1WsnGt4AEeHhPHvgh1epMulqkxEj30IZG8uy6ZMYNmtBusu6eOIY5RKyr34vcoUp0ZER7N6whpMH9nzTRzQlOvcbxMq5M9h29ir3b93gzOEDVKpVh7bdegPxhn3nfoPYsW61znHlqlXHM38Bbl+9RMUatXQMbP/78Yl+snnkSle7jBj5Fjt27cbUzJT2bduku6yzp05QuVr1dJUhkyuI/PyJA4smERH6CQvb1PmLZ83uQZGylXj9zJ/pK7fwx5A+aDQafh00kjwFCwNQ/qfaWFnbcO3iOZ1j+w8ZwYkjh3BxdaOAVyGdbTevXCS/VxEsLL//gyItGI1vI/8Jgt69pUgGGJe5C3ghyATuXrmUrnIq+DRhxegh5Cteima9fkv1cRZW1pSvVZeN82dx8/wZ3FN4WefMm49KdRuwaOIYnfVvXgQik8kwkYyq2Tk6MmHVBmYO6J2YvMeIkYwkNDgIW3sH3HJ6pLusKnXrc3zvznQlzMrmkQt7pywsmz6Ztt37UKlW3VQfW61uA14GPmXtn3P58PYN2XN5Jtvnl16/cenUca6eO524ThAEXj8PRKEwTbZ//eatqVynPounjv+e5hgxYpA3b9/iXapUhozo1qxbn707thneUQ95y1TjzpHtfPn0EZ/fxmFqbmH4oASqNGjKyd1/c3D7Jlyz5UiUCv2KIAj0Gj6eySMHE63lUhwWGkpYaChmZslzQU5esIxrF89y9fyZ729UGjAa30b+E1jZ2PDk4f10Z74KC/mEIAh80ZIG+x58uvZi3onLtB04lGJa08+GUKvVXDp6iHfPn5O/WAk6DR6W4n69x03m3JGD3L16OXFd047x6glbV/yV7Do8ve9H6Wo1Mn2qzch/E1MzM2KiotKtQQ8QGhxMdFRkurJlmpqZsXTPETacvEjb7r3TFLR59expsri4smnZYiYvWUmRUt7J9rG1t2f07IVMGNAHZWySv2v/sZPYu2UDj+7dSXaMv99dKtZM/UeAESNpwdbGhoAnT4iN1eOrngrUajVhoaGEhqZPBcu9QDG6/3WAliPnULp+yzQde+XEIcwtLAm4f5dpKzanuE/lWvUpVLQEyxbMSlxXqEhRGjdvxeypE5Mpn4V++kRMdDRFSpZOe2O+A6NjmZH/BF0GD2fUr78QHhZK18HDv7uc+aOHUbNpSyrVbZDuOmXJlv2b2x5cu8K5/btxcc+GpbUN71+94M2zZzx9cI+YqEjevghk9tbdWNnYpni8ta0dPUaMZd2C2czaED9C4ejswqIdBxjYrjmCuTkN23dK3P/Ezq34JBjnRoxkNA5ZnGnTsy/tKnuz8ugZcuUr8F3lREVEMKFfDxbvPoRFOvxNASwsLbHQk711/eL5fPr4ERd3d9QqFS+fPuF5gD/+9++hVqupXKsu1fQ8B2o2bMSmZYs4tncXDVvGT/VXb/AzythYuv5ch52Xb+Po7ALEz0o9vnub8jVS1ik3kDDSiBGDtGvTmr+376Bm3fqcP33yu8vZu2Mbr16+YNPuA+muk02WrJjIU86iGxkexs6/5uDg5IS9kzOfPwXz7sUz3j5/wtvnTzExkTNq1iKy58r9zfKHTfiDBpVK0XPAUMzMzREEgRkLFjN8QF9+69GFqUs3JO57dN8OvCtUwcraJt3tSg1G4zuB9+G6kcyxKt3pd22FE2laZKn6iXRZG2n0tVSBxNB2ffsaUizRLiv5sd8+T/yx2pHtuu2Tdh1D9UrtNkCvjJ+hY7W3Fy9Tjv4T/uD4nh3IBCG5Qo1kWapgEqNSERsTzY0LZ/EdNV5nu7QsO3PdKS3tn/Ajul/b0nvpq6rH0a0biYmKQqZQEPn0CVmz56SCT2NunjuFmaUlLfoMIFauIFZrSk16PXKW8ubBlPG8T0gl/+TubSZ1aYd9FhdeBD7js1binjb9BjF3SH/yFi6Gp8QXLi0KPOkhVo9qjEqiQCJNdSxVKNHug2lVJPlRKeL1lS3tjwrJvqYK/apBJlozGIbUTaTL2sdKHz+G7gV9TktdBg/n8Z3bPH/8iFz5CuhVrImT9IvQhHv1yomj5CzoRa7CRYnVuj+0nxOWCt2rZSJpn1TJKiXVKLVazaKpE+jUbxCB/o8RZDJy5S+Ig0tWnj5+iK2DA50HDiFSMvouVYopVakad25eo0aT5qg0GhaMH8mVU8fRaDR8+PAe6wRfcyf37NRu0oLhvu2Zt2kHFpI2mOt7EWQgLz9/ezYhNpmKU+r7iblEjUf73aSQ/D6met5bAFIxIu39LSTnsZBYONL3iUzUapPGQFZSiWKJjoKJNL28NM29HgUTaYp4Uapuokd1RDCkKqNVL2srS/bt2IpbrryIahWCICBonVst6l4b6TvR1ERAFEXOnDhK67btsLZK+nA1kdgEOWx134HOVrrtj9JSjwuN0r3nviQogt25cpGHNy9TvHIt3t65iY1jFjxLVSA46COm5pZ4FimBU7GKBHxKeqeaSQz5OI05Tu452H3+Grm8imJuIqN/wwo4OGclJiqSex+TEtTVbdqKXZvW8fe6lTTr4JvsHZPRGOeYjfxnMDU1RSlJB51a9q1ejm+54hSrWAVn92wZUh+NRsOVIwe5sH83nz/ppq81NbPgyd3b5Mibnx4Tp9GiT39cc3rg4OLKmusP8PHtbrB8Z/fsCILAm2dPAHj34jlfQkPxLFSEQmXK6exboXY9Ov4+gkVjUnZjMWIkI1CYmX7XtLcyJoaxndsya2AfGnbonGH1+RwawvbVy7l65hRxWj7ksdHR2Nk74nfjGo3a/sLw6XNp2703kV/Cad75V3ZdvUder8IGyy9etnxiRs8vn8MICw7m08cP1G7aAmctVxeZTMaY+fH6+vs2r8+w9hkxoo1CoUCj0aBSSYVADXPrxnUqlirGg/v3qF0v/TO/X3kb8ICr+7fw4fkTnfUyExPCPrxDrVbRpPcwGvccQoWGLXgX6M+gJVvoNWN5qtwk8xQtxaPrFwF4/vg+ClNT5KamVKjXWGc/F7dsLNi4k79mTCL0U8ank5diHPk28p/h9fNAIr984cKxw1w8cYzPoZ8oUaEyjdp1BD2d2P/OLbYumsucfUdxzZnL4HnUajURn8NQq9TYOTmxb+Na9mxYgzImBrm5OU179CUy/DN7Vy3F3MIKUwsL9ixbTP6SpalYtyElqlSjx8Q/8Lt8kc0LZrF14Rwq+zShSqNmhAZ9SHV7BUGgQn0fzu/fQ+vfBrN68liadO9D698GoUghuKVe6/ZsmjeTp/fv4V3aqHxiJON58zzevcLOwZEdq5fh7pGLavV9KFVJf3bK9XOmIVco2HjND1Pz5MFSUmJjYggPC8XSypo4ZSyL/5jI7csX0WjU5C1UhEbtOnHz0nm2r15OmSrVWD1vJpVq1SUs5BOTF63A0tqavdf92Ll+NYN+aY1H3rz4tG6Pk7MLL589TXV7S5SvSND7d7x8+oS3b15x7shBxi1aQeU69ZLtK5fL8R04lJnDB9G2aw+j3KeRDOfFy5dYWVqydcdOoqKiOXzsOGW8venQvh1O7jm/eVxUVBT9evzK78NH0axVawRBIE5PPgRRFImM+MKX8HCyurlz6+pllsyeRnDQR0RRpESdZjjn8ODygR0887tF7pLl2TN/IrU690MhE6jn25eilWsybM1+jq1fwoTWNSlauSbVW/li5+TC5+CPuHrk+eb5tfGu2ZAdi6ZT75ceHN+6DifXbPiOmIJrTk9iJElZsnt48lP9n9m9aQ2FRoxM3UX9TozGt5H/DDb29lhYW7FyznTccuSkTJXq/L1iMebm5tRsEe+TeXrfbq6cOo5MoUBAQKWK49b5M/w6ZlIyw1sZG8ulIwfxv3ubt8+f8TbwGUHv3hAbFYWljS2iKGJqZkaO3HnoM2YS9k5ZuH33NvtWLcPBxYVOw8ZQrGp1Hly9zPj2zQl84Ee2XLkpUaUaAEXKV2RSuR08vXeH41s3MapVI3LmL5imNldv2pKJvm3JVbAQpavXwj6LM2YWlim6S8gVCn7u/Cvzhg6kUPESWFha4TtoKBZZXb/vghsxIiFbLk8+vn3N/LHDaNi6AxpRw9CObdhz+xEW1jbERkezbsFsPgV9jB+lU6tRKpVcOn6EJUfPJjO8g9+/49S+Xbx6EsDrZ095/fwZoUEf0Wg02No7EBsTg1wux6d1eyYvWYmJXM6ezetZNW8GeQsWYt2xc2TP5cmUQX3ZsWYFAMP+mI2ltTVm5ua0/rUnTTp05sLxI6yaN5PAx4/oPWp8qttrYmLCz206MLZ3V8Ytii+/YLHi39y/TJVqCDIZw7t1xNzCkkIlStGqi+FZLiNGUkuhQl7s2rOXt2/f0bdvHw4dOszQYSNYuX4jAI8ePWTpkiVoALmJHJVaxdOAAIqVKEnz1royhaIocv3qZU6fPMWLwKe8ePaU1y9f8DksFHNzC8wtLBAEARO5gr7DRuFVpBjRUVFM+2Mq/jcvUcC7Is2Gz0RhZs7Diyc4unIuLjlzU8+3LwCObtloN2wKDXz7cePEfhYO7ERsVCRunqmX+i1QujwRn0PZvnAaRStU5fjWdbjmTK5Q9JVWvj34rUMzIj99RKNW0+aXzhQvlfFBmEJ61R/+DQiCIC67+1Jn3X/P51v/seZaPqbmEr8qhUTmR59PqaFse1Iyyuf7W766x3fvYPPSP1m45wgrp0/m1N6dtO7Zj9iEKWgTuRx7pyyUrl0vcSRKIZOxZ/Uy/l40H4/8BShesQruuXLj7pkbl2zZcXV2QSaToYqLI/DxQ/IXLpp47MfI5D7fapWKvSuWcO3YEaZv36cjBahtJPtdvYSo0VC4XMU0XY9HN68zd0AvIsLCKF6lGkMXrUhmfNuYmQEQHRXJiR1bsVIoCHjgx/mjhxg+bQ4DOrREFMVMG4oTBEHcE6g7qv/f9vlOfX8EMJU8KLQzpf5Qn+80XLuvDOvYhpKVqlCvVVv6t/iZ7J65KVm5GnHKWGQyE+QKBbmLlSB3oSKJx6gjI5g/eiiXjh+hSv2fyV+kGDly5yF77jzkcM+OuaUlgiAQEvSRuNhY3LUkDqU+3xAvhTjUtx3V6vvQue/AFNujUqnYvXEtNXwaJ+qCS98FKf2GGo2GDYvmsWL2dGKio5iyfB3VfXSnvCHpd3jy8D53L19ALlewY90qXNyz0dq3Gz2a+2R6H7z+8tsqTv+bPt/SsiQZWrX8vAVJdkhBI3HNkC5r80/5fEuqoRAldZRmvJRioiA0NJQChYty/vJVngT4061LF3r27o21nT0qlQqFQoFCYYpP46bY2CYF+F+8eIHxI4cR8eULdXwakyt3Xjxy5yG7Ry6yOGVJTG7z5PEjHN2zYamln33xZVji/199vl89vMOqYV0ZumoPztmT+qu2DRD28T2Prp2jok+rhG26zUnu8x3/u3wJ/cTKCYN5eucGKpWSlecfI5PJdEa+CzlbJ/5/+vA+VOGhREVGsGzRfHr1H8zkMSMytP8ZjW/iHzojTj3Wu4++B42+Fz8kf3FqY2Gqe7NId9VOK23ohZyWZWk66mQPS8nLXdvgTouxLS1buk06tSrX81GQFmNbupwsfXzCfa9SqfithQ+vnweiUatZfepSiklvNKKIMiYG/3t3OPL3Rh7fucWYRSvI7VXIYOpz7XpIt31NK79v1VJeBfjT+4/ZOtsjlEn1NpT2XN89KmiURISFYm3vgGkKGqeWipR/wyvHDrNzyQL8b9/M9Bf/Zv83Ouu008JLm2aoz2kbRWoD0uVpiWWTlpWeODh9/VnaP7+mWP6KtB/p65MGjW09H8SGjtXnGiF9t3zLMA/0f0y76uWxsLLip4aNGTJjHt+6k0ODgvC7cZWlUydQtupP9Bg+Bhs73eQcaQn4hqTg6i51qtJ7zETKVk1KHiI1rqVIt+p7n34JC0WpVOLkkhVBEJLtq30tv17lOKWSv6aMw//OLW5eupDpfXDs4YeJy9J3U7RS9xlqZ5kUFCo1atWS/ulsZaazrH2vZ7HUNUytJeeVGucWim8b2NJtVpJlheTq6U0Rn4FuP6LUGNcysKXXSor02ac9ECF1/ZD2ZUnziZPcsF8N+b8WLmDW9KnEKZVs3rmHipWrJPvw1hD/IfkkwJ8zJ08wf/ZMJs+YQ4OfG6OU3JbSwRFpt9Bo9fD7H+MFAd69eMakX1sya98lnQGojxG6v5H29ZLeo1K09xVFkeiwIEzNLbFMUAnTDmR2sNANcv5qyL97+ZzFE4dx++KZDO1/xoBLI/9p5HI5dg6OBL19w6cP73kR4B/vsx3+OXEfURTZtWoZTYvm5c8xw7C0tmHh7kPklqiCpIcytepx7fhhXj/xz7AytTE1M8cxqxuhH94zrkUDXjzw49PbN4S8f6s3sU652vWYvvNgptTJiBGALK6uxERHExoczKO7t4n8Ek5sdDSxCR+mABHhnxnh2442FUuyc/Vy2vfqx+9/zE5meKcHn7a/8OeE0RlWnhRbB0eyZHVl+/IlTOz9K2HBwbwOfMqXz2HfPEZhakq/CX+wbO+RTKuXESOu7m5ERkSgVCq5fvUKoijyOSxM591w68Z1ypcoSsfWLbl18wYbt+/Bp3HTDMsN4ZItJ24euTm6ZVWGlCdFEATsnV2xsLbhz/6/cHn/NsJDgvn4+gVxym9/hLnlzMWkFX9neH2MPt9G/tN8Dg3h+rkz7H/8kgc3rjGsfQtiY6JRKExx88hFmZ9q8OH1K14/e8qyY+fIlssz2ShjRuCa0wNLa1tkmVC2NndOH+f5/buMbR4f8GXj6MSXkE8Ur1yNUas3GYO8jPxwju3aTg2fJkxasY7ZIwbToJBnop9o0TLlKFq2PEe3b6HsT7XYf/8ZClNTTDOhnxQsUYp9m9ZleLlSju/axoOb1zm2428srKyJjowf+Zu0cgM/peCOYsRIZrN+9SqWr92Ad9lytGriw5zpf2Ail2NlZUXN2nVxcnJiy6YNzJr/J/Ua+gCgymApPhO5HI8ChRGSOdNkLJ/evuLxtQs8vnaBjYCDixuhH98BsPqcHzZ2Dpl6/q8YjW8j/2l2r1tFlXoNsba1o2z1Wuy48xiFwhRBJuPRrRvcOHcGu6KODJu3BHM9CTnSizI2hpAP73Fydcu0cwBUatwCK3sHHlw6z/nd2zC3tOJLyCf8b980Gt5GfjiiKLJ52WIGTPgDmUzGkOlz6T16AuZW1kR+CefamVM8vnubHqMmpOgnnZG8DnyKi1vGyIjqY/jcxVw7c5Jda5bzWks55WVA5sx6GTGijwd+fjwJ8Kd2vfqYmZlx4vxl4uLisLa05HngM44fPcKHDx/Yc/gYefKmPtDxe/jw6jmeRUpm6jkc3bLTY+YKnvvd4sjaRXwJ/ZS4LSYqymh8GzGS2cRER7N12WIWbN+XuM5CKyiksHdZCnuXBTI2sE5KnFLJrL7dKVe3PmYWmWfgA1jZ2VOpUXMqNWpOPd/umJqZY+PohJODXaae14iRlDh/7DAyExMq1qydGNBnZWOLRhSxtrWj+s9NqP5zk0yvx3P/RywYO4KhM+dn+rk8C3rhWdALn/adePXsCXaOTtg7Oun9uJdKohkxklEsWjCXbr36YJYQdB8fYBnv/5zLMze/9ugF6E+glREc2bKa188CKOidsqBARiGTyShSqQZFKtWgerN2xEZFYW3vQHZXF0wyeeZZG6PxnUBsnH4FE23jK1lAj0z/sjbSIEipUacwkQZSCSn+n5qypcvaQVyGArqkrhXa07xpUUsA3cACfcGYqVnWh74sf9L2aESRLYvmUbR0GYoVL/l/7Z13uBTV+fg/7+yt9KaidMQCAl+MXRFBxW6CYo0mJsFCMDGW2H4aQ6KxRGM0xpJo7IkaaxIRRSKWKIio2BAEC4gICshF4Nbd9/fHzO7Ozt27e8vuzi3v53nm2TPnnDnznjNzzrw7c9731DOabMhAE+pb/W8KrHL3bXXDq8Sl89KxaN5cvvjkY658ajYbq1Kt1VNW/Qscm83zhn8/VlPfCHjb7ZNLfH9b3fDqbltqwnnw+6ubzdi0vuGj38NO5nbLXlbDZDLAzO59KHXf77EkU/+DlnksaYqBdLAv+72oAOzYOUNbxv6Xuu+MTdl9d+0W/vaHa5l6wSV0Li2lyLfwRzqPJH6C/bM6xTNOwx5IGkq//9abOfTEU9jt4EP51tefW7K6a7Y/7KWdOjFs5OjEvr/O9Z4LBfoo9WVFchGymoDHr+D96jfALAk8T7qUpd4nm2pSx7VOvufN+spUjxxBA8Sgp5RIwHjRkYb7enBcLwt4PymNJA1Bg/ULElxN0o8G7hPJslqmv6jg7I2gGEFPT5U+XWVzXdPG5m4BA8XF77/HnOef57rrb6Qsi34RlNNfB61LTdxQlXpNqzJ4j+tUHHG/gN18NTc8PJN+fbfJKId/dcxs1AT+MgRXii3rm/zSVR0T8N0vQY93ucYMLo0OR+WWLVx94S944v57OP/Ka8MWh4E7j+CbNat57I/XUFvdvBU4DaMtsXjxYk48cF8GDB7KocccF7Y4DBs5mteen8nzjz0ctiiGkXdUlccefojjJx3F1dffQLfu4X75FBGG7jySv99yHSs/WRqqLIXClG+jQ/Hq7Fkcs/cYKr5Zz0Nz5jJkh52yH5RnuvToyTl/vpulb73BG7PMs4jRfqmurmb69OmMHTuWk6acxQ13P0hRUfgfYA8/6VQmnzGNW6+4hE0VFdkPMIw2yorln3Hq8cdy25/+yD+f/A/HHndC2CIBcM7vbqJbj148fNsNGV12thdM+TY6DK88/yyXn306l994C9fd9QDdeuTOTVlLGbH3fkw+9xIeunY6d156LkvfeoPqysqEJ4TmoqoZXQkaRiE588wzmTdvHm+//TYnnz611Rj5lv+7iQsAACAASURBVJSVcfhJp3LYiacy5cB9eOCPv2ftl6uoWLeOaJYpMNlo6fGGkSvWrVvLpMMnsvd+Y3nupVcZOXp09oMKxHaDhnLa+ZezYuliLjttEi/PeILqqko2+gwim0usFfbB8F85GEYB2LB+Hb/++Vlcd9cD7Ln/AXk1oGwuI/bej2tmvMSrTz3K3y6/gPWrV+FEihi48wjGHnsSux32XYqKS7IXBFRv2cKjN/yWhS/Moq6mmgHDRzJk5BgOnTKNzt3MuNIoPI8//jhz587l7bffpnPnzny0ufX1wam/voqJx53Ifx64h9MP2pdoXZSi4iL2GH8wk8/4KcN3bfwy08vef487fnMZHyx4nR69+7DTmO+w10GHcPjJP2iyXNVmcGm0EFXl4vPOYdLkE/j5eReELU5aunTvwY2PzeaNF2fx3D/v55bLz6W4pJQeW/Vlz4lHcfAJp1HUtfHeSP73xIO8/Pj9rF25nL5DdmD7Xf6PA445hUHDR+WxFo3DVrjEXdnr4v8uTolrigvLoJ1CUQajyZasUhk0kgzmDZ43KFfnkuR/raBBV1ng02/QwMu/clY2o8lM6cE3XS0xaMqGv47P3f1n5s+fzwMPPADAh9+m/hOurE01EAkaZX1TlZyL/U1l6rzsispUY6KgoUZTnpvxa6qq1FZXUxwRlsx/lRf+fg+rP13K0T89lwOO+37aY+Pn2bxxA3/66WlsPWgI3z37Ako7debzRe/x0qMPUt65C5N+fhE9Ay4NM/0ZiakybczgvK+u9+iyVSlxQUMjP0GjrKCxVFEW46lMNGVV1UzH1lu9tQUrwWYyYs5WVlONmqUJcmQ0uAywzz67ccWvfsHhh7srSH60pX9K+qbq5EIXwf5XUZ26CMbmgJGzP3/wvgneC9nGq3gda6qqKC0tZcPXX/HKM//miTtvp++AgUybfg3DRo5KW1acha+9wm/P+jFTLr2CA46exDdff82Sd97izqt+zZRLr2Dckd+jrLw85ZhMfbDEEcZt2yPvffCMR95O7GcyCAbo6jOqDBpnBlce9K+GCdCtNHlsl9LUZ0+ngPF/aeC8vQIrEfrzlxZlbp7g8vN+A8xgWiQWWJo9uIR8SloL9KjAPRRcDTMmqe2xubbhez244mWJTwn4fPlyjjx4PAs/WExZWVm99CxNV8+odJPPEH9DVerzdEPAcUDQSNJvgBlM89ehurISKSpm+ZIPmPPkP5g36z/sc+h3+f65v6I00H+CZT36p6t577U5/PDy6+m3/U58sWwxi+e/wtxnnuCn195O/x2Gpxwb1PmC+tWUPQbltP/Zm2+jQ7BgwQLGjh2bPWMrQUQoKSujOCKMGncQo8YdxKol73PD6d9n1NgJ9MrgD/y5u2+n7+Ch/PDKPyQUqV32O4CBI0Zxz+Xnc+WJh7Pznvuy7dAdmHDyj+jSozB+TY2OS01NDe+/v4R99238m+OwKSkrI+I49O67LZN+chZH/eAnPHnnbdzxm8u44dF/N3hctK6O3593NhfddBt7HjgRgE5dutJvyFA6d+3GPb//HQ/c+Hv+b9+xjNxjLw478ZRCVcnowLyz8C12/c5uCcW7LVBaXk5dNMaQ4aMYMvwaJp91PrdcMo1XZz7JgcemfwkFsHThG7w1ZyaX3vMfOnur4A4ZuSvDRu3K5m8ruPm8H9N30FAG7rgLexxyNIOHF376jSnfRrunrq6OmTNnMn369LBFaRGDRoxij0OPYu6/H+fIM3/WYL43nv0P026+q96b1649e3HOrfey9ovP+XjhAhbMmsHt553J4F1GU1dby7ZDd2D3w46mU2BaSk2VeWAxWsacOXMYNWpnunfvFrYozaaouJjJZ0zjsb/cyqrln7HdoMFp8y1e+Bal5Z0SirefvQ46hD0PnMiiBfP55MMPuO8P17LozTe8t3jC7uMP5Dv7j6/nb3jVis9yXyGjQzFr5kwmHHRw2GK0iO69t+KIH5zFv/52S0bl+43ZT7Pf0SckFG8/J577K7535vksfuNVPvvwPW698Ez2nHg0ddE6OnXtzh6HfI9tBg7JZzWAkA0uReRsEXlXRDZ621wROdKXLiIyXURWiUiliLwoIrsEylARqRGRoYH4e0Xk6ULVxWi9vPna/xgwYABDhuS/Q+WbA47/PjPvvp3bzjuL15/5F7U11fXybDN4KOtWrWywjD79BrDXkccw5eqbGDPhELr32Zre/Qaw+I3XuOyIsdx96S9Y9vYbqCrfrPmSW37a9DmqhuHniSeeYPKxh4ctRospKS3l8O//gF8efzR//tXFLF74Vj3PDP2HDuPrVV80aGgpIuyyx15877QpXHn339lu0BC23q4f3Xv14p7rruLUvUZz/43XsfZLdxrW/DmzmXpE21aajHCpra1l9nPPcuTR3w1blBbzf/uOZ+M3a/ntT47l6fvuoGLd1/Xy9B00lHVfNvwMLOvUmTEHHMKkqRdw3M8vpVuvPvTq248tmzZyw1nHc8PUE5j37FPU1lRTW1PNo3+6Ouf1CPvN90rgYmAp7h+B04CnRGQ3VX0XuAi4APgRsAS4AnheRHZS1W995USB3wEnF1B2o42w7qs1DB48OGwxcsKgEaO4esZLvPvKHP73xCM8dO109pt0PAef8hO6bdUXgK49e7P602WMHl//zZufss5dmPjDM4DkfNNNG75h3r8f4/4rLqS4tJQNX63mgJNO4+O338hvxYx2zZo1azhk4nfCFiMnTLnkCg783mRee24mV079MV269+C7P5zCoSecTFFxMSWlJYgIa1evYpt+AzKWNWzk6MRCOzFVvn/OBXz8wXs8/eC9nHHwfmw7cDDfVmzgstvu4sIT87/Sp9E+qa2pobJyC9tu2/B0xbZCpKiI6/45m0VvzmP+7Bn88tgJjN5nHIedPIV+I8YA0LVHL1Z/9nGjytvr0O8ByTnfk392Ke++8l9eefJB/nnTVRSXltJ/2PAMJTSPVmdwKSLrgUuBvwKrgD+r6u+8tHLgK+CXqvoXL06B63GV9D1V9U0v/l6gj6oe1Yhz6jVzUy9UcDVBv81HcCJ+NgOmTMcGjX2C6WXFyfSyooARZODYbKvg+VenK8lybLDsYFmZ8vYpSa1Dr1T7mJyxPmAPsyZg9BE3wlq08G1+dfbp/POVpAK5JWBguTm4HzDo8htDbQisyBZcAXJThtUis61wmskgN919t+azT3jp0QeZP+NJJp19AcWlpfzr1hu54tFn6NqzVyJvppUY0523Lhrlw3n/Y5vBQ+k7YCCnDe+fd2OvZ1asbXT+bIaQLVkZNVNaU4wVgz2mKWW15LzZaEnbBe/X4AqCKauq+sJ/vOISevTuw2nnJL0sVAXeDK/fsiUR3lKbarAVNJrcUtuw8Zt/5UXIbpheEkjPtNJoPaNZERa89AKP3n4LG79Zzy9+dz2P/vVWunTvwcV/vDUlb7a+HuTbig28M/dV9pxwMN07lbPX1l3z3gcvefqDxH5wnIsE5C3JtGJywOAy037XktR3gN0CBphdA/t9Asabxb5rUh5YCjRorBlc4bKzb9+p2ZySRiz1HiQa2PffC4F+IMFjM+lZwftAUmXWSGr9pbb+186kTA0vjz549J68OHsWAwf0T5se2Zzq0i9W2jl1vyx1OuKWaFLuiurgirOp9Q2u7Ox3SlBRndpWFYHVMYOGkHW+h1lVNMaWbyuY+8wTzLz/L4zYexx7H3Ecd13+M35w+e8ZufcBKccGnVD4y063wOcXHy+hassmth+1G2fslVunA63Gz7eIRETkJKAL8BowBOgLzIrnUdVK4GVg38Dh84HHgd8XRlqjLTFo+2F8/smydunvepvBQznhwis4/2+PMO/pJ3j2njv4xW33pijezcFxHHbZdxx9tks/UBtGUxi0/Q6s+Lj9rVznOA57TjiY3z/yFMdP/Rm/PuOHlHfuwrlX39Disrt278HYw46kpLQ0e2bDyMIO2w9h6bJlYYuRczp17c5BJ/6YKx95nkhRMbf98idMmnYRI/Ya1+Ky+22/E9uPyo+ReOhvvkVkFDAXKAM2Aaeo6gwR2Rd4FRikqit8+e8G+qnqod6+AscDC4FFwHdV9dlsb75F5EzgTG+37ZjgG0Y4rFPVPvkq3OvHhmE0jPVBwwiPnPa/sOd8gzuXewzQA5gM3Cci433pwQFB0sShqstE5E7gWhGZFUxPk/+vuFNbco6ILFDV3fNRdmulo9W5I9Y3n+Xn+nN6R7w+Vt/2jfXB1o3Vt32T6/4X+rQTVa1R1WWqukBVL8V9g30esNrL0jdwyNbAmgaK+w2wPWCOUw3DMAzDMIxWR+jKdxocoBT4FFcBT7hsEJEyYH/cOeH1UNWvgBuAK70yDMMwDMMwDKPVELaf72tFZH8RGSwio0TkGmA88Hd1J6PfBFwiIseKyEjgXtx54f/IUOwfcOePh+mXKS/TWVo5Ha3OVt/WTVuTt6VYfds/ba3ObU3elmL1bd/ktL6hGlx6RpETcKeWVADvAter6nNeugC/Bs4CegKvA2er6vu+MhQ4XlUf88X9FLgNmNEYV4OGYRiGYRiGUQhC93ZiGIZhGIZhGB2F1jjn2zAMwzAMwzDaJaZ8G4ZhGIZhGEaBMOU7CyKyrYjcJyJfi0iViCwSkQN86SIi00VklYhUisiLIrKLL32e53/cX+YPRERF5IJA/O9EZAUhISJni8i7IrLR2+aKyJG+9HZT1+YiItNE5FPvXnhTRPYPW6bm0NJr7eXRBrapOZSzw/Q/Twbrg1mwPphShvXBHGL9r3G0hz4Ydv8z5TsDItIDd5VNAY4EhgM/B77yZbsIuMCL38NLe15EunrpL+AalfoZD6xoIH5OzirQdFYCFwPfAXbHlf0pERntpbenujYZETkRuBm4GtgV1+XlTBEZGKpgzaOl1zrOGcC2ge2+XAjYAfsfWB/MiPVB64N5xvpfFtpRHwy3/6mqbQ1suDfXqxnSBfgSuMwXVw58C5zl7U/EXZFzgC/PJ8BUXA8vES+uM1ADnBZ2vQN1XI/rbabd17URbfE6cGcgbilwTdiyFfpae3EKHJdHeTp8/2vqdWkP9c3SFtYHrQ+22mvS1uvayPZot32wkP3P3nxnZhLwuog8IiJfichCEfmZiMSX4R2C6yYxsZy9qlYCLwP7elGv4nayCQAiMgjoB9yP67N8Ny/fWKCYVvJPWEQiInIS0AX3n227rWtjEJESXPlnBZJmkax/m6SZ17oQdNj+B9YHg1gftD5YSKz/1ae99sEw+p8p35kZCkzD/ed6KO6nlmuBs730vt5vcLn7NfE0Vd0CzCf5yWkCMN+LfykQ/7Gqhj3ndJSIbAKqgTuAY1T1PdphXZtIHyBChvq3NVpyrX08ICKbAtuoHInY4fofWB/MgPVB64N5x/pfRtpVHwyz/5nynRkHeEtVL1XVt1X1HuBPJAeeOEFn6RKIm0Nqp3vRC78YiH8hN2K3iCXAGGBv4HbgPnFXF43TnuraHLLVvy3R0msNcKFXhn9bkiP5OmL/A+uD2bA+mIr1wdxi/S877aUPhtb/TPnOzJfAokDch0DcsGC19xv8J7Q1qf+YXgAGichgXCOLF734l4D9RKQX7qT/0D9BqWqNqi5T1QWqeimwEDiPdljXJrIWiJK9/m2GHFxrgNVeGf6tJkcidrj+B9YHM2B90Ppg3rH+l5F21QfD7H+mfGfmVWCnQNyOwHIv/CnuRZoYTxSRMmB/3HlDceYCVcDpuBfzNQBVXYI7gf98oIjW2RkdoJSOUdcG8TrTm/jq7zGR1Pq3ZZp6rfON9T8X64NYH7Q+GBrW/zw6QB8sXP/Lh8Voe9lw3cvUApcBw4DjcS2Wz/bluRjYCBwLjAQeBlYBXQNlveDleyUQ/7AXv6gV1Pda7+YaDIwCrgFiwOHtra7NbJ8TcY1pTsd1uXUzrhHNoLBlC+Na435+iz9g/FuXHMnYofpfrq5LW6pvM9rH+qD1wVZ9TdpKXVvQRu2iD4bd/0JvgNa+4fo2fQf3n+xHwDmA+NIFmI77ea4K99PSyDTl/Mq7UFcG4qd68X9uBXW9F/eNRjWuT8vZwKHtsa4taKNpwGdeG70JjAtbprCutXct021X5VDODtP/cnVd2lJ9m9lG1geTeawPtrJr0lbq2sJ2avN9MOz+J14BhmEYhmEYhmHkGZvzbRiGYRiGYRgFwpRvwzAMwzAMwygQpnwbhmEYhmEYRoEoCluA9oaIbAvsg7s8qWEYhtFx2QS8DrynqtGwhWkpIjIGOChsOQwjx2wCHlbVikKd0AwuW4CIFAEjna3GvK1V69DqjUhRKVLWGynuAk78w4KTDIvjbgCOkPj44PjifXnEcRrO4y/fFSgRJxLIGymKy+w7vYPjiC9evNP4wiKeDK64ksjv+Krk4EV74WQ5bpwgkgw7ibIdnEjyPMTLEEESYRJlI4KDJOL9eRLlB44VX5nJcuL1FxJRTjKMk/wk5JYXlzEpixM4ZyK/Q0JGxwFJCdeXxfGFE7Iiybb1taPjDwuJdhYkpZ7ia6NkeyXzOPiuhyRlFEipa7Bsx1c2gfPH5eoaEbr4/9LrOu83vjYDoDF3A8AX1pi7nwhH08THx6to4LhoMj2l7HRlRBPxqpooUxPHxWXU+nmIJYpxy/fl8Y5LjqnJ40hax7vHxZJ51H/+mFd4TBN5NCXsO7YxeeLn9MVp8LjG5EnIlayrr4nc+sXz42tq9dfPd2l87ZaMg5i/vVIuhy9/sql98RDz7k23SslwzAsrvrCKr4m8vEhK02qiPEk2kYovPllejGTdYgjRmBtfGVM+r6xldXUdnSIOg8qLeWHd5sOBeaq6gTZC0Y5HaWzNOwA4PbdHnAgSKUIcx30WRIrc8dkpAsdx4x033XGKQLy4SAQRB4kUec8WSTyTHG+QdCJOYuxOxDmO+1j0jok/i0SESETccdQRihw3XJQuznv2OAJFESf113GfZw5CxHHHvIg3NjsiRLzxM+I96xwg4pUb8eQq8vJL/DnlPS8c8IUl8bwS4s8RN49I8pmUeByqIhr1+osisShuR/HivE4lqt64Fs9PcpzVmJs/5oY1Gk35JZYmLlqXOFaj7rEaiybGgljUHStidXVozO3jsbqoGxdN/qbmd381FnNPW+eOlVoX804VIxZ1x5FYXcz9jap3bnxxsUTfj8aUGFAXU2IoMYWoN3TVqRJTpc7bj6H10mJAncIWonzEJgbTibeo2EpV1+a7T5ny3QREpAewt9Nr55lauQ6N1SIl3ZDy3jhlvaGkW0J5AcCJeAdGEmFxkmFXI4sk8zr1w+JEsuZJpjvpzyNFUFTsZUkqvBHHwYl4irUjiXDEl8fx5Yn48jhOUnF3Ig4RX9jxNMdIpH6cExEiifQIkaK4Yu//U5AaTiiiIj7F3qcopoR9iq3jUxwdv5JbP680EI4P4AARIW3YHZz954m3L2nD8QE7XThdnP+c8XYu8p3H8bVLShs1Mpxoj4AMmY4Lnid+TfuUCL3cW81FP/d+l4PWeeGk8uuGGxGPLx7ctKaWkYivhZgb71d4NUXhDsb7wjFNHw/ug8L3p0BjSU0xNd4XTiizdRD1yovGfGFtID7mPmnSxiflyZTe9LJ9SnYMYj4F3a8Iqy8+5svvj693XDPKi9W5csVUiCYU7qTy6z6MJUse9zeq4gsH4mPp8gTy+/LUxurP6Py2LsqKytrEVqvKdqXFDCov5rHVG3cElmkreiCLiES2PywWW/MuRIqJbPN/SKferuLtRHCKSpBIBCcedhzvN+LGF5X40rxjiksSx8afOfGXPZGI4/4WJRVtN5xMc4+RlGOLitznT8QRSoocirzfiOMk4iKSTEvEpfmNiFDsnafYcRLjfLE33hZHvDgRiiNefk/RL3acxDifVNaTCnf8uEhcQffixItzvPHdVcoFB0+xjtUllexYXUI5Fp9iLW5ncPNE6+fXulpPAY+itW5Y62rRNHH+X39arK4WjcbQaIxYbR0ajRGtTcZFvbhkWp2XFk0Tp0Rro8SiSqzG/XXTXQU9VuP+RmtjGfIrtbEYUYWamBJV9YWTcfH9qCq1qmnzA0RRlrKZD/iW7SjjXTZup6pf5qt/2bSTBhBXI9khss1uS2KV66B6A1LWBynvhZT2xOm+PVJUFraYhmEYRhuga1GEXbpG2KWr+9yoiymrqmtZXlnLyK6lH62tiTKiaxmDyot59utN44AFqlpZaDlFRCJDD45J522IrV9KpP9eSFmPQothGAUlgrAzXdiRznzCFraiZNVI6cYHfDtIVVfk+nymfHuISCmwl9N75EtatQ5KuiMlXdBoLU73IUhpD3cqh2EYhmG0kCJHGFhewsDyEsCdUrOhNsbyyhr27lH+8sqqWgZ1KqF/mft2/KFVFf1UdVW+5BERJzJ4QlQ6bUWsYgWRgWOR0m75Op1htEochGF0Zns6sZxK1lKzfGfpwhI276iqS3N1HlO+k4whUvZSbP0inK6DcHoMQ8p6IY41kWEYhpFfRISeJRF6lpQzulsZa2uiLN1cw2vfbGH+hi2M7dnpC5KmI/mge/Tz13B6DcPpuysSKc5+hGG0UwRhMJ3oTjHP8zXD6fIROex/pll6qOrr4r7aHiCdtlqum1YRW/cBAFLaEynvjZT1hqLy1HndhmEYhtECamLKyspallfWsLyyloq6GFuVRBhUXsL62uiewDuvrN9ck08ZVPUbEelGcfnGuqUzcHoOxemzMxIpyedpDaNVspYa3qaCKmLsS09m8FVOpz6Y8u3DM3ZZge/fjYh01qr1ezhFZXNiG1egdZVISRfXo0l5b5uOYhiGYTQaVaWiLsZyT9leWeka//YvL2JQeQmz1m4eqBq3VC64bN/iTvsuxyneUrf0GZzuA3G2GmE2TkaHYA3VvIXrcXBXuvGUrs7L21ZTvrOgqpuBF/EUchFxtKZiR6dT3w9jFZ+i1Rtcl0plvVyFvKw3UlQaqsyGYRhG66BOlS+r6lheWcOKylq+ronSvchhUHkJc7+pnAC84T1nAHgoRFnjeIaeIiIlstWI6rqPn8Ppuh3OVrsgpV3DFs8wcoqifEk1b1NBMQ4rqNxNVd/K5znN1WAOEJFewN5Oz51naNU6NFaDRMqTjpuRVKfUPl/JPufWqWGfD+V08cljspcRPL/fn3QyS2q83+c2afL7p974fUgjPt/ZyQJT/ErHCwz65E6U5z+/v3q+jP6/oqlNIg3E+8uvL6vvlKlhf50DsqScq4Fz+n1u+/Ombes06cHzp8qSbAt/nVLPU19GfPEpcYEyM+UNxsfDJQLFKR+CPGcNWonnAdr99fvCzhavgTy5KCONL+6UkdCfX5OpmkhLZPTlp15Y05SRmkd92X1yaTKP+sIp5aj6qqS+aF98U/IGw/jz+OVKVw0NtJ/vWH/1ggcGRE1JT9ukmtrUfl/gvt+47+7AqRI+uv3nSlbBd0zKcZJyK8TLSLkUgfzxcFXMdXW2XZn7Vvvx1RuHAx9pilP51o+IFEUGHVAb++oDKC4jsY6E56rU3cf7CixefDLdHWsl7hfW9fXtFpz6TJHgcyEZ52X3xmcvjwT8ZntrKzi+cpK+swNuaIm7Wk3+Qmr++Jib+I3H+dIdLzHuqxuS43pibPaFU56BvvIJHC+Jmyuw/gAkx6e4/+/Ezai+vqOp+eLhWAyIu/L0pcUd8Sd883txXj7Xtap77vj6APGxIeHPX/HcrfrGDX8+14F+Sv7UONLk88WB51ecZDpxv/z+cLIZYl6exKauz+9EOlBFlO4Us5TNu6jqogY7Qg4x5TsPeIvvnAf8PWxZQuQUOnb9wdqgo9cfrA06ev2PV9WbwxYiV3h2URfQ9q5pW70P26LcbVHmE1T1pkKe0JTvPCEiC1R197DlCIuOXn+wNujo9QdrA6t/+6t/W6xTW5QZ2qbcJnPjMEtBwzAMwzAMwygQpnwbhmEYhmEYRoEw5Tt//DVsAUKmo9cfrA06ev3B2sDq3/5oi3VqizJD25TbZG4ENufbMAzDMAzDMAqEvfk2DMMwDMMwjAJhyrdhGIZhGIZhFAhTvvOMiNwpIh+LSKWIfC0i/xKR4WHLVShEpJeI3CIii702+FxEbheR3mHLVihE5EwRmSMiG0RERWRw2DLlGxGZJiKfikiViLwpIvuHLVOhEJFxIvJvEfnCu94/ClumQiEil4rIGyKy0Rvv/iMiI8OWq5CIyNki8q7XBhtFZK6IHBm2XM2lueOXiEwWkUUiUu39HpNfSVPOXeo9d9aKyGavP/bPcsx0r37+bXWe5WzSOCkiB3j5qkTkExGZmk/5GpCh0TKLyPg0baoisnMB5W3yeCwio0TkJU9n+UJErhD/inU5wJTv/LMA+BEwHDgUdzGr2SJSHKZQBWQ7oB9wETAKOBUYR+tYRblQdAJmAdNDlqMgiMiJwM3A1cCuwGvATBEZGKpghaML8D7wCxJLfHYYxgO3AfsCBwJ1uONdrzCFKjArgYuB7wC7Ay8AT4nI6FClaj5NHr9EZB/gEdzFVsZ4v4+KyF75EDANNwGTgZOB/YFuwNMiEsly3BJgW982Kl8CNnWcFJEhwDNevl2Ba4BbRGRyvmRMI0Nzx/ZdSG3XpfmUM0CTxmMR6QY8D6wB9gDOAS4Ezs+pVOpbGtS2/G/AaNxVTXcKW5YQ2+AI3FVdu4UtS4Hrvbt37QeHLUue6/k6cGcgbilwTdiyhdAWm4AfhS1HiPXvAkSBo8OWJeR2WA+cFbYcLaxDo8cvXMX7+UDcbOChAsjZHagBTvHFDfCeOYdmOG468H4B27NJ4yRwHbA0EHcXMLcVyzzeu2f6FErGLPJnHY+BnwIbgXJf3OXAF3hOSnKx2ZvvAiIinYEfAyuAz8KVJlS6AdXAlrAFMXKLiJQAu+G+KfMzC/dtqNGx6Ir7hfWbsAUJAxGJiMhJuH9CXgtbngKyjLNYlAAACpBJREFUD/XHgOcozBiwG1DsP7+qfg582IjzD/WmGXwqIg+LyNB8CNjMcbKhNt29EF/SWzi2LxCRL0XkvyIyIS8C5o59gFdU1f+W/Dncr/iDc3USU74LgDdHahPuv67DgYNUtTpksUJBRHoAV+L+e64LWx4j5/QBIrif7PysAfoWXhwjZG4GFgJzwxakkHhzRjfhvmS4AzhGVd8LWaxC0pfwxoC+uF9b1jbx/K/jThE9HDjDy/tanuyTmjNONtSmRV55+aY5Mn+J+yZ5MnAs7rSe/4rIuHwJmQMaaud4Wk4w5bsZiMhVDRgR+LfxvkP+jjs/6gDgI9y5b53CkD1XNKMN4m/+/4P7+eaiMOTOFc2pfwcjuICApIkz2jEiciMwFpisqtGw5SkwS3DnOu8N3A7cJ63I8LRA41dOx4AcyJzx/Ko6U1X/qarvqups4ChcHem05srcCJraRunyp4vPJ42WWVWXqOodqvqmqs5V1WnAs8Av8y1kC8l7OxflqqAOxk3Ag1nyrIgHVLUCqACWisg83E+wk4EH8iZh/mlSG4hIF1xjEYCjVLUqX4IViCbVvwOxFvetU/ANwdbUf5tgtFNE5I/AScAEVf0kbHkKjarWAMu83QUisgdwHjAlPKlSyPf4tZrcjwGNlXlv3De0fYCvA+d/ubEnU9VNIvIBsEMT5WwMzRknG2rTOmBdTqVLT67G9tdxx4bWSkPtDDl8hpny3QxUdS31P2k1FvG20txJVHia0gYi0hWYiVvvw1R1Uz5lKwQtvAfaLapaIyJvAhOBR31JE4HHw5HKKCQicjPuw3W8qi4OW55WgkMrGvMLMH7Nxe3z1/viJtKCee+Nldkbf2q98/3Di+uP63Gs0ecXkTJgZ2BOc+TNRDPHybnApEDcRGCBqtbmWsYgORzbx+BOR2mtzAWuE5Ey30vCicAqcmirZ8p3HhGRYbhvuGfj/gPvD1yCOw/w6RBFKxie4j0L18hyEtDZm34CsN57Q9SuEZG+uP+kd/SiRnhz31eo6vrwJMsbNwIPiMh84FVgKq6xyh2hSlUgvK88w7xdBxgoImNw7/d2/TVERG4FfoDb17/x7n2ATe3hT3djEJFrgRnA57gGp9/H9frQJn19N2b8EpH/AvNV9VIvz83AyyJyKfAkcAwwAXcaUl5R1QoR+RtwvYh8hftW+EbgXdxncbxei4E/q+qfvf0bcKdFrsB90/kroDNwX55EzThOisj9Xn1+6OW/A/iZiNwE/AXYD3eO+sl5kq/FMovIubgK6wdACa6r4Um4elFByDYei8g1wJ6qepCX5x/Ar4F7ReQq3Pv+EuA36rk+yQlhu35pzxuue6OZwFe4ro8+x53/vXPYshWwDcbjzpNKt40PW74CtcH0Bur/o7Bly2Odp+EOutXAm8C4sGUqYN0buufvDVu2AtS9ob4+PWzZCtgG9wLLvXv/K1yFr0EXd619a8z45fX1ewPHHQcs9p59HwLHFlDmMuAWXMV7C65SPSCQJ+W+BB7GfbtZg2uX9DgwIs9yNjhOAi8CLwbyHwC85eX/FJgawv3QaJlxbbuW4frXXg+8AhxRYHkzjsdef/0scMwo3ClKVbhv6X9NDt0MqqpbmGEYhmEYhmEY+ce8nRiGYRiGYRhGgTDl2zAMwzAMwzAKhCnfhmEYhmEYhlEgTPk2DMMwDMMwjAJhyrdhGIZhGIZhFAhTvg3DMAzDMAyjQJjybRiGYRiGYRgFwpRvwzAMwzAMwygQpnwbhtHhEJHbReQLEbFVxgzDMJqAjZ8tx1a4NAyjwyEi44AlwGpVlbDlMQzDaCvY+Nly7M23YbRyxOVTEVERGRa2PJkQkRc9OVVEzg1bnoZQ1ZdVdU26NBGZ7qvDY4WWzTCM3GHjZ+6x8bPlmPJtGK2ffYDBgAInhStKo5iDK/PDYQvSTO7Clf/tsAUxDKPF2PhZWGz8bARFYQtgGEZWTgZWAa964avCFScr61V1XlgnF5H/Af3TJP1XVadkO15VVwIrRWRjzoUzDKPQ2PjZBGz8LAz25tswWjEiEgGOBx4FHgJGiMjoQJ4Xg5/3RGS899lvZOGkbRgRuVdEFojIkSKySES2iMgMEeklIsNEZI6IbPbyjM5S1i4i8qyIrPeO+VBEzo6nq+pYVR2cZsv64DAMo/1g42fasmz8bAWY8m0YrZsDgW2AR4BngI24b2/aIgOB3wKXA2cC+wJ/xf28+jBwHO7XuIdFJJMRz7+BKHAq8F3gFqBr/sQ2DKONYuNnfWz8bAXYtBPDaN2cDKwA5qmqisi/gJNE5P9p23NV1AvYR1U/BvDe0FwInKaq93txAswAdgY+DBYgIn2AocAkVX3Pi/5vUwURkbuAw7zwSuBZVT29yTUyDKM1Y+OnDxs/Ww/25tswWikiUgocA/zT96B4GNd4aO+w5GoBn8UfHB7LvN8X0sT1a6CM9cDnwB0icqKIbN0cQVT1dFXtr6ri/dqDwzDaETZ+psXGz1aCKd+G0Xo5HOiB+8k0zvO4A2iTPp16cwXfEZGFIvKaiAz3pX3mzSNc6G0jfGkjReQtEVkqIv8WkZZ8ntwQ2K9JEx+PK0tXgKrGgEOA1cDdwGoReUVEdm2BXIZhtD9s/Axg42frwZRvw2i9nAx8oqoL4hGqWgs8CZzgGRMBVAElgWN7BfbvBE5S1THAg7hzB/0coapjvG2RL/4O4HJV3QFYDFzUohrlAFVdrKqTcR+sB+M+aGaIiI1nhmHEsfEzDTZ+tg6ssQ2jFSIiXYCjSH1rE+dhXCOiCd7+Stw5fn4mBvZjQDcv3B34shEybAMMUdVnvKi/AZOzCl8gVLVWVV8AbgS2xX2YGIbRwbHxMzs2foaLGVwaRuvke0AnYJOITAqkRYBq3Dc7s3Hf5EwRkT/iGttMAA4NHHMq8LSIVAFbgP0C6U95xjpPA9O9N0T9cR9McVYAA1pasZbgGRndgPtQ/QToCVwMvKOq68OUzTCMVoONn2mw8bP1YMq3YbRO4nMSf5chz7EiMk1VZ4jI/wOmAacD/wLO9X4RkSLcAfZAVX1PRM4A7sV9MwQwVlVXem+LHgB+CVwDCO6qcK2J1cAa4DJgO9z5jnNw62cYhgE2fjaEjZ+tBGl73nYMw2gKIrI7cKuq7uXtdwK+VtXOafIeBZylqkeLSF/gTVXt56XtBDylqsODx/mOfxFYB5wIRNugOy+8uY8Orguur1X1uJBFMgwjJGz8bBo2fjYOm/NtGO2flcAOIhL/5HkYsAhARDqLSDcvXIQ7J/FdAFVdDXwmIkd4x00BnmjE+Y4FaoFf5KwGheUKXPnHhS2IYRihY+Nn07DxsxHYm2/D6ACIyI9xP4fWAZuBqar6rogMxX0gOLhzIecC56jqFu+40cB9QBdgCXCKqlZkOM9OJFdLW6GqX+WpSnlDRLbD/SQLsF5VPwlTHsMwwsXGz8Zj42fjMOXbMAzDMAzDMAqETTsxDMMwDMMwjAJhyrdhGIZhGIZhFAhTvg3DMAzDMAyjQJjybRiGYRiGYRgFwpRvwzAMwzAMwygQpnwbhmEYhmEYRoEw5dswDMMwDMMwCoQp34ZhGIZhGIZRIEz5NgzDMAzDMIwC8f8BkEuRNmqx4rEAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 720x324 with 8 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# shift longitudes\n",
+    "du850_icon_cld_shift, lons_shift = fct.shiftgrid_copy(90., du850_icon_cld,\n",
+    "                                                      lons, start=False)\n",
+    "du850_icon_shift, _ = fct.shiftgrid_copy(90., du850_icon, lons, start=False)\n",
+    "\n",
+    "vlim = 3\n",
+    "vlim_diff = 1\n",
+    "\n",
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(2, 3, figsize=(10, 4.5),\n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "for i in range(ax.shape[0]):\n",
+    "    for k in range(ax.shape[1]):\n",
+    "        ax[i, k].coastlines(rasterized=True)\n",
+    "        ax[i, k].set_aspect('auto')\n",
+    "        ax[i, k].tick_params(labelsize=14)\n",
+    "        # extended North Atlantic region\n",
+    "        ax[i, k].set_extent([-70, 30, 30, 70], ccrs.PlateCarree())\n",
+    "        # set xticks and yticks for longitudes and latitudes\n",
+    "        # xaxis: longitudes\n",
+    "        ax[1, k].set_xticks([-60, -30, 0, 30], crs=ccrs.PlateCarree())\n",
+    "        lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                            degree_symbol='',\n",
+    "                                            dateline_direction_label=True)\n",
+    "        ax[1, k].xaxis.set_major_formatter(lon_formatter)\n",
+    "        del lon_formatter\n",
+    "    del k\n",
+    "    # yaxis: latitudes\n",
+    "    ax[i, 0].set_yticks([30, 50, 70], crs=ccrs.PlateCarree())\n",
+    "    lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "    ax[i, 0].yaxis.set_major_formatter(lat_formatter)\n",
+    "    del lat_formatter\n",
+    "del i\n",
+    "# ICON (locked clouds)\n",
+    "cf = ax[0, 0].pcolormesh(lons_shift, lats,\n",
+    "                         du850_icon_cld_shift[response_cld.index('total'), :, :],\n",
+    "                         vmin=-vlim, vmax=vlim, cmap=mymap2,\n",
+    "                         rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[1, 0].pcolormesh(lons_shift, lats,\n",
+    "                    du850_icon_cld_shift[response_cld.index('cloud'), :, :],\n",
+    "                    vmin=-vlim, vmax=vlim, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# ICON (locked clouds and locked water vapor)\n",
+    "ax[0, 1].pcolormesh(lons_shift, lats,\n",
+    "                    du850_icon_shift[response_cldvap.index('total'), :, :],\n",
+    "                    vmin=-vlim, vmax=vlim, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[1, 1].pcolormesh(lons_shift, lats,\n",
+    "                    du850_icon_shift[response_cldvap.index('cloud'), :, :],\n",
+    "                    vmin=-vlim, vmax=vlim, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# difference\n",
+    "cf2 = ax[0, 2].pcolormesh(lons_shift, lats,\n",
+    "                          du850_icon_cld_shift[response_cld.index('total'), :, :] - \\\n",
+    "                          du850_icon_shift[response_cldvap.index('total'), :, :],\n",
+    "                          vmin=-vlim_diff, vmax=vlim_diff, cmap='RdBu_r',\n",
+    "                          rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[1, 2].pcolormesh(lons_shift, lats,\n",
+    "                    du850_icon_cld_shift[response_cld.index('cloud'), :, :] - \\\n",
+    "                    du850_icon_shift[response_cldvap.index('cloud'), :, :],\n",
+    "                    vmin=-vlim_diff, vmax=vlim_diff, cmap='RdBu_r',\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "\n",
+    "ax[0, 0].set_title('a) locked clouds', fontsize=16)\n",
+    "ax[0, 1].set_title('b) locked clouds and\\nwater vapor', fontsize=16)\n",
+    "ax[0, 0].set_title('interactive\\nwater vapor', fontsize=16)\n",
+    "ax[0, 1].set_title('locked\\nwater vapor', fontsize=16)\n",
+    "ax[0, 2].set_title('interactive - locked', fontsize=16)#difference (a - b)', fontsize=16)\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# colorbar for response\n",
+    "fig.subplots_adjust(bottom=0.1)\n",
+    "cbar_ax = fig.add_axes([0.066, 0.0, 0.59, 0.027]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf, cax=cbar_ax, orientation='horizontal', extend='both')\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf\n",
+    "cbar_ax = fig.add_axes([0.69, 0.0, 0.277, 0.027]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf2, cax=cbar_ax, orientation='horizontal', extend='both')\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf2\n",
+    "\n",
+    "for r, res in enumerate(['total', 'cloud']): # response_cldvap):\n",
+    "    ax[r, 0].text(-0.2, 0.5, res, va='bottom', ha='center',\n",
+    "                  rotation='vertical', rotation_mode='anchor',\n",
+    "                  fontsize=18, transform=ax[r, 0].transAxes)\n",
+    "del r, res\n",
+    "\n",
+    "fig.savefig('figure_S1.pdf', bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj\n",
+    "\n",
+    "del lons_shift, du850_icon_cld_shift, du850_icon_shift, vlim, vlim_diff"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/.ipynb_checkpoints/figure_S2_schematics-checkpoint.ipynb b/pythonscripts/.ipynb_checkpoints/figure_S2_schematics-checkpoint.ipynb
new file mode 100644
index 0000000..486a2fe
--- /dev/null
+++ b/pythonscripts/.ipynb_checkpoints/figure_S2_schematics-checkpoint.ipynb
@@ -0,0 +1,355 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Schematics\n",
+    "\n",
+    "This script generates figure S2: schematic of the regions, for which the cloud impact is determined."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import matplotlib.colors as mcolors\n",
+    "from matplotlib.colors import LinearSegmentedColormap"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Generate colormap with two colors"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# sample the colormaps that you want to use. Use 128 from each so we get 256\n",
+    "# colors in total\n",
+    "colors1 = np.array([166/255, 166/255, 166/255, 1])\n",
+    "colors2 = np.array([178/255, 34/255, 34/255, 1])\n",
+    "\n",
+    "# combine two colors and build a new colormap\n",
+    "colors = np.vstack((colors1, colors2))\n",
+    "mymap = mcolors.LinearSegmentedColormap.from_list('my_colormap', colors)\n",
+    "del colors1, colors2"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Create latitude and longitude vectors"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "lats = np.arange(-90, 91, 1)\n",
+    "lons = np.arange(-180, 180, 1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Define regions for which the cloud impact is determined and generate masks"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# tropics\n",
+    "lat_nort_TR = 30   # northern boundary: 30°N\n",
+    "lat_sout_TR = -30  # southern boundary: 30°S\n",
+    "lon_west_TR = -180 # western boundary: 180°W\n",
+    "lon_east_TR = 180  # eastern boundary: 180°E\n",
+    "\n",
+    "# midlatitudes\n",
+    "lat_nort_ML_NH = 60   # northern boundary in NH: 60°N\n",
+    "lat_sout_ML_NH = 30   # southern boundary in NH: 30°N\n",
+    "lat_nort_ML_SH = -30  # northern boundary in SH: 30°S\n",
+    "lat_sout_ML_SH = -60  # southern boundary in SH: 60°S\n",
+    "lon_west_ML = -180 # western boundary: 180°W\n",
+    "lon_east_ML = 180  # eastern boundary: 180°E\n",
+    "\n",
+    "# tropical Atlantic\n",
+    "lon_west_TA = -70  # western boundary: 70°W\n",
+    "lon_east_TA = 40   # eastern boundary: 40°E\n",
+    "\n",
+    "# Indian Ocean\n",
+    "lon_west_IO = 40  # western boundary: 40°E\n",
+    "lon_east_IO = 120 # eastern boundary: 120°E\n",
+    "\n",
+    "# western tropical Pacific\n",
+    "lon_west_WP = 120  # western boundary: 120°E\n",
+    "lon_east_WP = -150 # eastern boundary: 150°W\n",
+    "\n",
+    "# eastern tropical Pacific\n",
+    "lon_west_EP = -150 # western boundary: 150°W\n",
+    "lon_east_EP = -70  # eastern boundary: 70°W\n",
+    "\n",
+    "# extended North Atlantic\n",
+    "lat_nort_NAe = 60  # northern boundary: 60°N\n",
+    "lat_sout_NAe = 30  # southern boundary: 30°N\n",
+    "lon_west_NAe = -90 # western boundary:  270°E/90°W\n",
+    "lon_east_NAe = 30  # eastern boundary:  30°E\n",
+    "\n",
+    "\n",
+    "# create array with 1 over tropics and 0 everywhere else\n",
+    "# and array with 1 over midlatitudes and 0 everywhere else\n",
+    "mask_lat_TR = np.logical_and(lats >= lat_sout_TR, lats <= lat_nort_TR)\n",
+    "mask_lat_ML = np.logical_or(np.logical_and(lats >= lat_sout_ML_SH, lats <= lat_nort_ML_SH),\n",
+    "                            np.logical_and(lats >= lat_sout_ML_NH, lats <= lat_nort_ML_NH))\n",
+    "mask_lat_PO = np.logical_or(lats <= lat_sout_ML_SH, lats >= lat_nort_ML_NH)\n",
+    "mask_lon = np.logical_and(lons >= lon_west_TR, lons <= lon_east_TR)\n",
+    "mask_TR = np.logical_and(mask_lon[None,:], mask_lat_TR[:,None]) * 1\n",
+    "mask_ML = np.logical_and(mask_lon[None,:], mask_lat_ML[:,None]) * 1\n",
+    "mask_PO = np.logical_and(mask_lon[None,:], mask_lat_PO[:,None]) * 1\n",
+    "del mask_lat_ML, mask_lat_PO, mask_lon\n",
+    "\n",
+    "# create array with 1 over tropical Atlantic and 0 everywhere else\n",
+    "mask_lon_TA = np.logical_and(lons >= lon_west_TA, lons <= lon_east_TA)\n",
+    "mask_TA = np.logical_and(mask_lon_TA[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_TA\n",
+    "\n",
+    "# create array with 1 over Indian Ocean and 0 everywhere else\n",
+    "mask_lon_IO = np.logical_and(lons >= lon_west_IO, lons <= lon_east_IO)\n",
+    "mask_IO = np.logical_and(mask_lon_IO[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_IO\n",
+    "\n",
+    "# create array with 1 over western tropical Pacific and 0 everywhere else\n",
+    "mask_lon_WP = (lons >= lon_west_WP) + (lons <= lon_east_WP) #np.logical_and(lons >= lon_west_WP, lons <= lon_east_WP)\n",
+    "mask_WP = np.logical_and(mask_lon_WP[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_WP\n",
+    "\n",
+    "# create array with 1 over eastern tropical Pacific and 0 everywhere else\n",
+    "mask_lon_EP = np.logical_and(lons >= lon_west_EP, lons <= lon_east_EP)\n",
+    "mask_EP = np.logical_and(mask_lon_EP[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_EP\n",
+    "\n",
+    "# create array with 1 over NAext and 0 everywhere else\n",
+    "mask_lat_NAe = np.logical_and(lats >= lat_sout_NAe, lats <= lat_nort_NAe)\n",
+    "mask_lon_NAe = np.logical_and(lons >= lon_west_NAe, lons <= lon_east_NAe)\n",
+    "mask_NAe = np.logical_and(mask_lon_NAe[None,:], mask_lat_NAe[:,None]) * 1\n",
+    "del mask_lat_NAe, mask_lon_NAe\n",
+    "\n",
+    "# create array with 1 over IOWPEP and 0 everywhere else\n",
+    "mask_lon_IOWPEP = (lons >= lon_west_IO) + (lons <= lon_east_EP)\n",
+    "mask_IOWPEP = np.logical_and(mask_lon_IOWPEP[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_IOWPEP\n",
+    "\n",
+    "# create array with 1 over IOWP and 0 everywhere else\n",
+    "mask_lon_IOWP = (lons >= lon_west_IO) + (lons <= lon_east_WP)\n",
+    "mask_IOWP = np.logical_and(mask_lon_IOWP[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_IOWP\n",
+    "\n",
+    "# create array with 1 over WPEP and 0 everywhere else\n",
+    "mask_lon_WPEP = (lons >= lon_west_WP) + (lons <= lon_east_EP)\n",
+    "mask_WPEP = np.logical_and(mask_lon_WPEP[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_WPEP\n",
+    "\n",
+    "del mask_lat_TR"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot maps"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAI4CAYAAACV/7uiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3hUxdrAf7PZ3eym9x6SgEjviCiCSBEVFC/wWUAFG1guXrFgQbheRAUFvApiR1FBrFhQkSaK0qRI7yUkJJBeNsnuZnfn++OcPW4aCZAE4t3f8+TZnDlz5szZPTPvvO+8846QUuLFixcvXrx4aVrozncFvHjx4sWLFy9njleAe/HixYsXL00QrwD34sWLFy9emiBeAe7FixcvXrw0QbwC3IsXL168eGmCeAW4Fy9evHjx0gTxCvALACGErMNf30aqyzXq/S5qhHuNEkLsFgob6vAdPCmEMFVKK1XLeEQI4VOp/FVCiMcb+jm8ePHi5XzgFeAXBpd5/PVT06ZVSt/aSHVZr94vrSFvogrbfwMvSSUYwd1UfN4jwJJKaR96FPGimjYEWAXMAiZUus10YKIQIqDhnsTL3w0hxLPq4PBgDecPqeef9Uj7QAixuQ5l51S6bo0Q4oszrN/Fah1DKqWPUesVoB5HqfmSz6T8Wu49RL1HvZVZy/0eFUL87HHsfsYiIYS5mvyr1PMfVHNNtf2AECJeCGERQjRvkIdoQPTnuwJeQEq5wf2/x0t22DO9JoQQJimltR7rUgjUet964DogFvhMve9uz5NCiDIgq/J3IIQwqf8e8Ti3WgjREbgDmOmRfSVgBW4F3qn3J/Dyd8YKpAghukspNcEshLgESFLPe/IcUEWgNBAXowx+PwAKPNK/RxnUlqrHUWq+NcCxRqpbvaH2hU8At1d3GhgMfOGRPxq4ErCcyX2klCeEEJ8CU4AxZ1vf80GT1MCFEKFCiFNCiBZ1zD9TCPFaQ9eroRFC3KeOJLsKIdaqQm68ei5aCLFQCJGvmpVXCSE6V7r+pBDieSHEVPX7KxZCLPAcmVZnQhdC6IUQk1XNwyaESBNCvO1xvq8QYp1aXqEQYqsQYmgtjzMa+EFKWVYvXw5sBxI9E1TN/isUwe7lAsezXavvlBRCRJwm/xAhxJ9CiIbox0qA1cAtldJvUdNLPBOllIellLsaoB51RkqZLaXcIKV0nc961CO3AjZgeTXnvqPqb3MTcBjYfxb3eh+4VQgRfhbXnjeapAAHnkbp/A/XMf8MYExTNJHUwKfAlyha7HIhhACWAn2Bf6G8+GZgjRAiqdK1Y4DLgbuAicA/gDdqud8HwDPAxyij3olAIID6wn8H7FHLugn4BAitqTC1vlcB62p/1DrTDDhaTfo6oKcQwr8e7+WlYTijdi2lXAo4gVENVJ/FwE3q++p+b29S0ytQnQldCNFHCLFdCGEVQmwRQlxe2w2FEK2FEIvVQbLbv+Nh9yBFKL4w36nZj6qDnGPqOc1UrJq4d6r5flbTZeV8le59TAgx0+NYqCb4LHVw/iEQVE2dTUKIl9Q629Rnvq5SnhvU76BEVTI2CiGurOXrGA18JauP970YGCyECPRIu4Vqfps68juQR9VBwQVNkzOhCyH8gHuA6+t6jZQyWwixHLgf+Ds4Nc2UUr7lPhBC3Ah0B3pKKTeqaT8Dx4FHUIS6Gz0wxG12F0LYgbeFEM9W13EKITqhdJDjpJRve5z6RP1sA/gDD0opbWraT7XUPwUIA85FY9EJIfSAH3AjysDi5mrybUd55q7A2nO4n5cG5Gzatcr7wEPAR/VeKcV68wZwBcq70xuIRPHNePl0Fwoh4oAfgU3ACCAOWIjyvp6OeBQNciFQDHQG/oMyIH8RxRfmMZSpomFAJoqWWplMlHa7EHiQs/OheQjFrPwCyvMPA16qJt8XQA8Uc/1hlEHOt+r0w5+qpfQL4FWU/tcEdEPpA6pFHXBfCsypIcsaIB+l7X8khGiGMn1wD0pfcEZIKaUQYgMwAHj9TK8/XzQ5AY6idbpQRkxuZ6i3UZy/YoB0lPnOmZVMSd+ivIh/BwH+faXjHkCaW3gDSCmLhBA/onQ+niyrNGf+FfAuSoOqTvPph/J9f1jNOYADKPOBi4UQ84Ff1Xn00xGjfubUku90vKX+uXlRSrmkmnzue8RUc87LhUOFdu1BTyHENKA1sBsYK6Xc4nH+W2COEOIiKeWh+qyQlLJACLEMRStbq34uU9Nru/xhlHYxWEpZCiCEKEGxYp3unqtQnDLdGv9vKEL/XpR3vEgI4TYRb5NSHquhHJsQYod6uKcu/jSeqP3qE8BbUspn1OSfhBArUAYZ7nz9UQRmXynlL2ryciHExcAk4P+ALkCxlNKz7/2hlip0QpFPNQ3yXcDnKL/JR+rnDinl3jr8NjWxHeV7bjI0RRN6b2CLh1lFB5xAGfW1QXlpngburHTdJiBe1HHe/ALnVKXj2GrS3Pkqj3KzPA+klPlAuVpGdYQD+TU5ykkps4BBQACKWT9bCPFtNaZ7T9yOaNVpDnVlGnAJcDWwDHhS7Uwq476HqZpzXi4cKrdrNzNRBEl3lJUJ36vaOgBSyuMo73lt5tizZTEwQgjhi6JJ19VE2wNY4RbeKl/VdpFqjv6PEOIQyrtbDjyP4lDXmApXIkqf8E2l9MrPMAA4Cfyu+sro1XquQvnNQDHlBwvF3+bqOk5n1WWQvxgYKIQI49zM525ygChxDiOAxqYpCvAkFPMQAFLKcinlFCnlH1LKY1LKz4A3UeaBPclQP5Mbp5oNSuVOLhPF47Qy0SjzOp5UyCeECAUMeHynlcgFQsVf3t9VKyPlWinlQJR575uADsCCGmv/V51CTpOnNlKllJullCtQzGjHqN6s6b5H5e/By4VFhXbtwXNSyp9UB7E7UQZiIyvlyaDh2vW3KIPT51Gmir47fXaNGKoOlsuo3UN6BoqJ/G0Uq8QlKINVaNxBqFuAZlVKr3wcoeYtr/T3LKpTqZRyPzAUaI6ieecIIRYJISJPc/9aB/lSyvUov/3TKFr+p6d9otqxoWj9TcYy3RQFuJlKSziE4p29WQiRLYSwoKwHblbpujKP6/9ubASaCSF6uBNU545rUExwnlxTSRgPQzFHbaF6VqG8J7fVVgkpZYmU8msUc3vb02Q9hOJ8lFJbmXVBnXv/N9BFCHF1pdPJ6ueB+riXlwajSrtWWe/+R0ppQdHmKr9bZTRQu5ZSlqA4iE4AvlOP68JJqg6WzSiDgdPxf8AcKeVLUsqV6hI2xxlWuzbc37OxUrqn4+lJ9bOyYlD5OA/FAnpJNX893ZmklN9LKXujWPTuRtHca5rfdpcLtQ/yP0X5bTZKKatzYj0TQgCLlLL8HMtpNJrMSMODHDxeNCHEzcB/UUat64AiFKeNf1S6zm1Kzm6EOjY236II4C+FEE8DhShmRwHMrpTXASwVQryCMkJ+CVhck+evlHKH6n06V3XM+R2lEd4gpbxNCDEMxXz1DYr/QSKKh/vqmiorpbSo83Pd+MsZ7lz5BGXU/zgVl510R1lPXm1QDi8XDBXa9RkSRsO26zcAXxTLXl35A7hLCOHnYUYfVofrzHhonepcdGXPaLv6WZtGXlO+dPWzDX/5El1KRQ/zNBQhPhRlispN5WdYBTyKIvj21VIfd5yJRaoH+mWnyeqe50/h9GvYFwCtgEW13bsOJNPEBvpNUYBvo+Ji+ytQRl9z3Qk1zHO3RzHt7KzmXJNG9aAcgiKs56CMrDegOJakVsr+gcenGcWj9sFabnE3yvzjnSjLyU7xlyPdAZT3aAaKh24WyoDi6VrK/AplmuOxWvLVCSmlQwgxA3hLCNFFSrlNPXUNdZh79HLeqdyu3fREeffcnsnt8XCoVK1JLWjASIVSyjUoXs9nwn9R2tVSIcRsFC/0p/jLElgTK4AH1TnwPLUM30p53MJtnBBiMVAqpayuXzuu3m+0EKIQKFc1+k0oWvNrQojJKAOgiSjKDwBSSqcQ4iVgphAiB8WJbziK0K9c35+AFWr7240yEOgMmKSUTwkhxqEI62UoJu+WKJaGmhxjkVIeFUJkogzyfz5Nvj0oU2h14UYhRGUrzx8efWR3qjpRXthIKZvUH8r8qhMIV4/Hoyy3uBblxZiMooEeq3Tds8Cq813/8/zdnQSmne96qHVJRBlQdWjAe0So9+h+vp/X+1frb1W5XfdF8fXYAwwE2qGYS08B/h7X9VXbv1891uVZIKeWPDnAsx7HHwCbK+XpC+xA0aj/BHpVc90a4AuP42iUQXWR+qwvoXhGSyDAI9+jQCqKRe2YmjammnyjUAbZdtTYRmr6JShWglKUwVMvFE13pkcegRJhLlv9jhei+B9IINkjny/KUrdD6n1Oogjrwer5y1AG/Bko5vujKAN+31q+47mV++zqnrGa6zYDH1RzTXV/Y9Q8Eep3eeX5bgtn8ifUyjcphBDrgY+llK8LIYwoJq5hKC/clygv9l1SymSPa/YD/5ZSnqunYpNFCHESeFf+tSzkvCKEeA+lU7mngcp/FmVt/DUNUb6X+qVSu+6LonkNRXHiaoWi3Y2TUv7hcc1bKO/Qfeehyl4aECFEF5RBRoKU8mRt+c/xXuNQrIEXyyYkFJuqAL8GJShAWymlsw75B6N4KHeUUta3Q0iT4QIU4AkocY6nN0SjEUKMRxnB76nvsr3UP2fRriOBfSgWlnN1YPJyASKE+B5lvXuD9VnqsrHdKBsrfdBQ92kImqQABxBCPAR8I6vO8VaX9yaUZUcba8vrxYuX88cZtuseQIqU8lyXD3m5QBFCtAYGSSlfbcB7xKI43k6vy8DxQqLJCnAvXrx48eLlf5km44UeGRkpc3LOJfKmFy9/e1I9/T6aCt627cVLrVTbtpuMBi6EkIsW1cdSPy9e/p6MHDkSKWWTCQPpxtu2vXg5PTW17aYYic2LFy9evHj5n6fJmNC9XDhIKSktLaWsrIzc3FxycnJwOp2kp6dTUlKC0+lEp9Phcrmw2+0YDAb0ej0GgwGj0YjT6aRTp040b94cm82Gw+FACEFgYCAZGRmYTCacTiebNm0iOzsbp9OJw+EgMzMTu92Oy6VsMped/VfwrcDAQIKDgzEajdx888106NDhfH09Xrw0WZxOJxaLhdLSUk6cOIHT6SQ7O5vc3FxsNhtOpxO9Xo/NpgSLc7dr959Op6Nfv34YjUatrZrNZhwOBzk5OURERLB//36OHDlCXl4eQgiKiorIy8vD4VAWCLnv7yYyMhI/Pz+ioqIYN24cfn617cj6v0OTMqHfdtttFBUVUVBQQFxcHD169CAmxrtLZGNgtVr58MMPWbt2LcnJyRw+XDXyat++fWnRogU+Pj44nU58fHwwGAxkZmby1VdVg6GZzWZMJhN6vR6n00lxcTFxcXFYrVZOnVI2V+vQoQO9e/dGCEF8fDy+vr7odDq2bdvGhx/WGMipCk888QSdOnU6o2d2tw2n00lGRgaFhYW4XC4cDgcGg4GIiAhiYmLQ6U5vyMrOzub1118nNjYWi8VCy5YtueGGG86oLnWhKZvQb7nlFnJycpBS0qZNG7p164avb+UAZF4agoyMDJ588klSUlI4eLD6iMO33norAQEBCCEoLy/HbDYjpWT79u2sW7euSv7AwEB8fX0RQmCxWLT2cuTIES3P2LFj0ev1+Pv7ExUVhY+PD0IIJkyYcEb1//DDD9Hrz0wXlVIihKC0tJRjx45hs9kwGo2UlJQQFBREbGwswcHBtZbz888/s2rVKpKTk8nNzeXWW2+lWbPK23CcOzW17SalgX/8sbKVblhYGGvXrmXx4sW0bdsWo9FIfHw8Q4cOJSCgtr0CvFTGarWyePFigoKCGDp0KDabjXvuuYf27dvTpUsXEhISWL16NRs3KqvwbDYbERERVHY8MpvN9O/fn82bNzN79mxiY2MpLS3FarVqQh3g3nvvpXXr1sTGVtzB1N2o3OTm5hISEoKPj0+VOl9zzTVcc81f8VnsdjsnT55k27ZtfPrpX6uKrrzySsLCwkhOTj6j72T27Nls3rwZk8mE1VrtTqoA/Oc//6Fly5anLSs/P58DBw5w4IASZvno0aNcf/31FZ71f53Fi5X4SmFhYaxatQqATp064evrS/fu3bniisrb2nupC/v372fVqlX06dOH9u3b89lnn/H1119z1VVX0a1bNwoKCpg/fz4ul4uDBw/SunVrjh8/XkEDBrjkkkuIiYlh5EhlI7j4+Hhyc3Mxm//aQ6Z58+Zcc8019OzZs4JAdQ+E3e+70+mkoKCA8PDwauvs6Q8hpcRqtbJu3TocDgcLFiibHHbo0IG4uDiSkpKq7R9qIj8/nwcfVCJHm81m7Ha71i+drh41sWrVKo4cOaINTHr27NkgArwmmpQGPn/+fDZt2kRGRgYFBQX8+uuvVfLdc889+Pr6EhQUREpKylkJdLfpx2g01qpdNTVOnDjB+vXr+e2338jKymLEiBF88cUX2vknnngCl8vFyy//tTNnUFAQRUVamGTMZjM+Pj5YLH/tjDht2jTMZjOPPfaY1mB79uzJhg0bKtz/qaeeIiUlBYPB0CAa1qFDh5gyZQoACxcuPGshuWvXLj766CPS0tKIj4/HYDBw7NixCnleeukl4uPj60UQl5WVUVBQQFlZGRkZGWRkZNCrVy/i4+PrXEZT1sBnzJjBjh07yMvL48SJE+zYsaNCnssvv5wuXbqg0+mIiYmhWbNmZ9RxA9qUjk6nw2isvBFX08bpdLJt2zY2bNjA1q1b0el03HLLLcyfPx+AkJAQpk+fzn33nT5gXWBgIHa7XTORd+3alZtuuom0tDRef/11LZ/ZbKas7K+w7iaTiZdffhmTyYSvr+8Za8S14XK5WLp0KYsXL+a+++6jT58+Z13OokWL+OGHHwAYOnQo33xTccvzwYMH15syKKWkoKCAkpISioqKOHHiBGVlZVx33XV1/o6EENx6663Vtu0mJcAjIyPJycnBx8cHHx8fYmJiiIqK4sorr+THH3+koKCA2NhY0tLSNBPsyy+/fEad4MMPP0xWVsUtbzt06MDOnTvx9fXln//8J926davXZ2sMpJTk5OTwr3/9q075n376aV5//XUKCwsBpWEXFxfX6dqOHTvy5JNPArBv3z6mTp2qnTObzRXMcJ06dWLUqFEEBQXVVNwZ8eabb/Lrr78SEhLCvHnzzrm81atXc/jwYcLCwrj++uvJzMyktLSU6OhowsLCai/gNPz222/8/vvvbN++vdrzo0aNYvDgwactIysri9WrV5OXl8dvv/3WZAW4e57U6XQSEhJCcHAw3bp1IyEhgXnz5tGyZUsMBgN79uzBbrfTsmVL/vOf/9T5HqmpqTz11FMV0twdqMPhIDk5mSeffLLe3sPGxGq1cvDgQV588cVa8/r5+fHMM8/w9NN/7TXk9lepC+6pKJfLxauvvsoff2hRbfHz80NKicPhICoqikGDBtG/f/96G+DefffdADzzzDO0bXu63YrrVt7ixYspLy/n0ksvpU2bNhw8eBCTyURiYuI5DfAcDgfvvvsuGRkZHDp0qNo8r7zyCtHR0actZ8OGDRw4cIC4uDjmz5/f9AX4zJkziYqKQqfTIaWsdgTuqYEBxMXFYTQaCQsLo3nz5uzZs4eCggJCQkKIjo7mH//4BxEREVr+n3/+mU2bNmmdalhYGJdddhkrV67EZrMxYcIELrnkkoZ/4Hpm9+7dPP/88/j7++Pr60tenrLdrqdpW6/XExAQQEFBAZGRkVx33XUsWLAAX19fbUTuRq/Xa04nlcsBGD58OMOHD6+xPi6Xi0OHDrF69Wp27drFQw89xMUXX3zWz1deXs5LL73E7t27AbjrrrsYMGDAWZfXkBQVFVXRhK666iratGlDbGws0dHRmEwm1q5dqwmrvLw8WrduTXl5OZ9//jlbtmzB19dXm8a4//77eeONN5qsAJ87dy5hYWE4HI4aNZMXX3yRnTv/2nQrISEBk8lEcnIywcHBrFy5kpiYGIxGIx07duS6667ThEdRURFff/0127Zt0wb3nTt3xuVysWPHDkJCQnjppZea5BTc2LFjsVgsxMbGkpWVpbVDzzZpMpkwm83k5+dz9913s2LFCo4fPw6AwWCgvPyvLbA9r/Px8cHlcmlWNYPBwLRp00hMTKyxPjabjd9//53ly5cTExPD2LFjz8nx7MiRIzzzzF+RVM9mzrux2LNnD9OmTdOOY2Ji6N27N8nJyURHRxMZGUleXh6bN2/G399fa9stWrTg5MmTvPbaazidTm2aoW/fvvTr148pU6Y0fQFe17WiLpeL/Px8UlNTiYiIwOFwsHfvXkpKSrDZbFx00UUEBgYyZ84ciouLueKKK8jPzweUF33Lli0AREVFac4aJSUllJSU0L17d1q1aqWZ49xaZE3zOZ5s2bKFb7/9loKCAiZPnlxh4FCZoqIi0tLSyMrK4tixYwQFBREREUFYWBjBwcGEh4dr2uzpRrgul4vCwkJeeOEFTpw4wdChQ1m3bl0FD26A1q1b4+vry/bt2wkICMDpdJKcnMzevXu1Bu2+V5s2bTRB2aFDB2JiYujZsydvvfUWWVlZ6PV69Ho9JpOJli1b0rVrV5KSkkhKSqq2rmPGjMFut9O8eXPuv//+M7KYgGJduP/++zUzf13mpc8Wu91OSUkJmzdvxmazUVZWRmRkJO3btz/t7+mJex7Rzeuvv05o6F9bYZ88eZJ33nkHm81Geno6drtdOxccHExhYSHBwcFMnToVnU5HcHAwer2+SZvQ69q2bTabZoYMDAwkLy+PI0eOYLfbkVLSuXNnCgsLee2117j66qs5cuQIQUFBWK1WHA4HBw4cIDw8HB8fH/z9/bFarZSUlGAymejZsyfR0dHYbDZcLhcRERF069atVlO9w+HgjTfeYP369QwePJhRo0bVmNflcnHq1ClSU1PJzs4mJyeHmJgYTCYTLVq0wNfXl9DQUAwGg/u7qbYcKSVOp5PU1FQmT55MbGws7du3Z+XKlXj26eHh4URGRrJvn7JVt8FgoF27dvz5559VyvT396d9+/Zs3LiRrl27kp6ezogRIzCbzcyaNQu9Xq8pT4mJibRo0YJOnTrRokWLah2+POebBw0axO23337GU5Lp6elMnDhRO3733XcbxAvdPdeenp7OgQMHKC8v16Zr6vIOAOzYsYPp06drx926dePRRx+tkGfNmjV8+umndOrUqcoUsHsg9dBDD2nvgtsiVFPb/lsK8LpisVhYvXo1JSUltGrVCr1eT2lpKUajkaSkpCpCuaCggM2bN3PkyBF8fHwwGo0cPHiQQ4cO0b59exwOB/7+/pq5+vjx40RERGh5jUYjxcXF6PV6Jk+eXOWlLyoqYsuWLRw6dIgNGzaQmJhIdHQ0iYmJZGVlcfjwYYqLizUN2mazIYQgKCiIyMhI4uLiSExM5ODBg5SWlpKenq5p2m6ns4CAAPz9/XE6nRWc0FJSUhgxYgQbN27E4XCwe/duzXzuyaWXXsrGjRs1s5tbuOv1em25iN1u5+KLL+aSSy7BZDKxY8cONmzYQGxsLLNmzapSpts64Kauv7N7YLV27Vo++ugjLf3NN9+sV1NocXExa9asYe3atZw6dQq9Xk+XLl0IDg7GZDKxZMkSAHr06EFcXByRkZF06NCBiIgIbDYbWVlZhIeHax3P1q1b+emnn8jIyCA3N5fhw4fz5ZdfEhsbS1JSEocPHyY7O5snnngCIYTWKYwdO5a+fftqc5SBgYEV6vm/IMDrysGDB1m3bh3JycmYzWbMZjOlpaWYTCbat29fpUM+cOAAf/75J/n5+Zr39Jo1ayp4SJvNZnx9ffn9d2XL6OjoaKSUhISEaMsde/Xqxe23316lPvv27SMjI4Nly5ZhtVpJSkoiLCyMqKgojh49yp49ezCbzZSXl5Ofn6+1r5iYGCIiIkhJScHHx4dDhw5htVo1z2lQrGEulwt/f39iYmKqeJKPHTsWl8vFzp07sdlsmvBu1aoV+/fv18owGo0VnNfcgweDwUBQUBDFxcXYbDaGDx9OeHg4OTk57Ny5k4MHD/L444/TpUuXCveVUjJp0iTNd6S2wY0nbg10/PjxWlpCQgIvvfRSna6vK4cPH2bFihVs27YNu91OUFAQXbt2xWg0cuzYMc3iM3DgQEJCQkhJSaFNmzaa9cvlchEWFqYtrfv+++/ZunUrR44cISwsjE6dOvHzzz/Trl074uPjWb58OQDvvPMOs2fPZu/evQQFBTF58mTi4+MpLCzE39+/ioXBK8AbCKfTya5duwAwGo1YLBacTicrVqygRYsWDBw4EIfDgdVq5cSJE/z+++/s3r2b6OhoAgICNPNK8+bN+eGHHzRP+6eeeqrWtcwOh0PTsLOzs0lLSyMtLY2LLrqI4OBgYmNj8ff3x2AwkJaWRnZ2NuHh4VitVlJTUzlw4ABbt24FqGAmDwoKoqSkRNNCPLX1vn370qVLFz7++GMtvXv37rhcLrZu3corr7zCu+++q2nogwYNYvTo0YwaNQopJdHR0Vx55ZW0a9eugpb8/PPPs3v3bi1/TUgpOXDgAAsXLuTIkSOYTCYiIyNp06YN7dq1o3nz5oSGhuJyuSguLsbhcNTJOlLT9/vFF1+wcuVKunXrRv/+/WnevHmVxmWxWMjMzOSnn37C4XAgpWT//v34+vrSoUMHVq9eDUBsbCwOh4OSkhKto3QvV9m3bx9jx45Fp9OxdetWNm3aRIsWLRg9erQ2JfTOO+/g7+9fY329Arx+ycvL4/Dhw9qAt6ysjLy8PJYvX87dd9+t+UC4rQBLly7FarXSrFkzmjVrRps2bejUqRMBAQGa4IqMjOTFF1+sVYt0t8VTp06RnZ3N4cOHsdls2qqb5s2bY7VaMZvN7N27V5t3TktLIz09nd9++42CggKgYtsODg6mqKgInU5HRESENp0Ayvz2pk2b2Lhxo/Z+jh49mgULFhAXF8fEiRN5+OGHtfxTp05FSsm///1vANq2bUufPn3o3LmzNoD21MKnTp3KRRddVOMzW61WVq1axXfffact50pISKBDhw60bt2axMREzXznRUIAACAASURBVDJx6tQpQkJCKnjBnwmZmZm89dZb5OfnM2DAAHr16kVoaGgVi4fbCrps2TKCg4PJzc1l//79DBw4kBUrVmj52rVrp3miu537kpKSyM7Oxmg0ct9995Gamsq3335LSUkJjz76KCtWrGDHjh0kJSXV6r/gFeDnGbvdTlpaGpMnTwaqenbfcMMNfPvttxWuee6552jRokWD1is3N5fc3FxtFF9SUkLHjh0pLy/HYrGQlZWFyWQiIiKCo0eP0r59e+0l37lzp/biBQcHc/nllzNs2DDee+89jh8/TkZGBnfffTf9+/fnk08+4bvvvtPue9FFF1Vwbps1axY7duzg7bffruKdbrVa+fzzzzl8+DCZmZn4+fkxbNgwevbsqTVoz3nlsLAwioqKNI3igQceOONlSJmZmcybN4/AwEDGjRunWUvWrVvH119/TXp6egVTvcViYezYsTWWFxwcTNu2bfnHP/5BXFwcQgjNglEd7iV1d955JzabjdGjRzNo0KDT1vlsBLi6E9N04DogEDgC3C+l/EU9L4B/A2OBUGAj8KCUcrdHGRIoB1pLKY94pH8AREgph9RShybdtnNycti+fTvvvfcesbGxZGZmVjg/YMAAVq5cWSHtgw8+aFBPeCklqamp2O12zWIXFxdHdHQ0paWlZGdnU15ejr+/v+ZQGhkZCShm/nnz5rFu3Tp8fHyIjY1lzJgxOJ1OvvjiC03Df+WVV4iMjOS2224D/hooeGrj5eXljB49mptvvpmhQ4dWqefBgwf5/vvvycjIICcnhzZt2jBy5EhiY2M1c/uSJUv4/PPPATQrn3vO/kytbVJKfvnlFz755BOGDx/OgAED0Ol0lJeX8+6777Jx40aSkpKYMmWK1jZ//fVX3nzzzWrLCwwMRAjB9ddfT58+fQgMDNQCWZ1u+uPEiRNMnDiRwMBApkyZUuu04d9iHfiFjJSSvLw8wsLCqv3htm/fziuvvEK7du3o3LkzeXl5bNu2jZMnT2rne/XqxaZNm7SXc/LkyXU2J58t4eHh1Wqobsc/T0/rDh06IKVk06ZNfP755xU088LCQn788UdsNluFpWPvvfceOp2ugvC+9tpruemmmyrcb/z48Tz//PMsXryYUaNGaVquxWLho48+4uTJk9x0003ExsZW6/3t6XxktVpp06aN5jFeVw/b8vJytm/fzh9//MG2bdsYPnw4V199NUIIMjMz+fHHH7WO2D014nn/2bNn88gjjwCK2bFly5ZMmjQJKWW1c3+nm1dzv0Pvv/9+lfXx9YUQIgT4HfgNGAxkA80Bz2UYE4FHgTHAfmAKsEII0UpK6bkswQk8D9xa7xU9z1itVsrLy6tMWbh5/PHHsdlsDBw4kGbNmrF9+3a2bNlCaGgoeXl5GAyGCuZqgG3btnHppZc2WJ2FEBViHyQlJWn/+/n5VTh2U1paypdffsm6des0jd0dYXHatGm0bdu2gnl+2rRp3HjjjdqxzWarYjk0GAxMnTqVGTNmcPHFF9OmTRvt3KFDh3jttde46qqruPHGG4mOjq5Wo/ZcVx0fH4/L5dKixHk6352OnJwctmzZwi+//ALApEmTaNasGVJKNmzYwOLFi7XVR5V9Wfr06UNOTk6F5bYTJkygW7duZ9yuQfltEhISzmmZq1aWVwM/O/Lz8/n+++/JzMykbdu2rFu3jqNHjzJ16lSaN29OaWkpFouFn3/+mT179pCeno7NZmPIkCEVnJiys7OZO3cuFouF8ePH8/TTT3PFFVeQkpJCt27diIqK0vLa7XY+//xz+vXrR2FhIREREXV2nKoPHA4H8+bNIzU1lSuvvJLevXuzevVqioqKWLFiBc2aNavg2epwOAgMDMRoNFaYb69p1FxQUMBbb70FwNVXX01CQgI///wzy5cvZ+bMmYSEhJy2fi6Xi+PHj1NYWEhpaSmJiYnExcXV2XHmhRdeoLy8nB49etC7d29tUGC32xk3bhyDBg1ixYoVDB06lBtuuEEbHHgOHlwuFwUFBee8xOxsOFMNXAjxAnCllLJXDecFkAHMlVI+r6aZUQT8Y1LKt9Q0CbyMIuh7SCm3qOkf0AQ18G3btrF+/XpsNhsdO3bkvffeAxTfjNLSUvR6Pbt372bt2rUcOnQIi8WC1WplxowZFbyzV65cyddff02fPn3w8/Nj0aJFDBkyhOTkZHr06FFhKubYsWNs2LCBa6+9loyMDFq0aNGoa9VTU1N5+eWXSUxM5IYbbsBsNrNq1Sr27NlDZmYm0dHRGAwG0tPTEULg4+NDYGAgVqtVMxmfbuXJ1q1beeedd7jhhhtISEigdevWjBkzRnNuq02QWSwWLf6HwWCgRYsWdda8T5w4wbPPPkv37t3p0aMHnTp10vqETZs28fbbb9O3b19++OEH3n77bfz8/CguLsZsNlf4DSwWCzqd7ryEcvWa0M8Qm83G5s2bNWcxk8lERkaGJhi+/PJLBg8eTEhICAsXLtSui46Opri4GKvVisFgYMCAAXTr1o2UlJRaA5e4BXtISAi+vr5ce+21JCQkEBYWhsViqbA8DhStT6/X4+vrS0JCAt27d+fyyy/XzMr1zdq1a5k/fz7z5s2rMlIuLy/H5XKxb98+ZsyYwauvvkpYWBg7duxg/vz5JCUlMWjQIObOnUvv3r0ZNWpUtY3WvUzq+PHjHDlyBIfDwUMPPUTnzp3r7TkcDgfZ2dmEhYVV+E2effZZRowYQXx8PGvXrqVPnz6EhITgcDi444476NmzJyEhISxbtqxCeecSWKI+OQsBvgdYBsQDV6EI63eB16WUUgjRHDiMIpT/8LjueyBHSjlaPZbA/wE3AeFSyv5q+gdcgAL8xIkT7N27l6KiIoQQSClJT08nOjqatWvXkpeXx913382qVasqBO8JDw/HYrFgs9lITk5mwIABtGrVSpsSqQnPqabIyEjatWtHq1atiIqKonnz5nz66adV3imj0UhQUBABAQE0b96cfv36kZKS0mDR+5566inatm1bxQHPvZzs1KlTLF26lNzcXCZOnIjNZmPlypUsXryY8ePHc/LkSZYsWcLkyZNrXAGSmprKkiVLyM/P58SJEwQHBzN9+vR67a+Kioqw2WzadAAonuyzZs1i9uzZWrCgvn37IoRg69atzJw5k/Hjx/Pee+9ViUA3f/58TCZTvdXvbBDZ2dz6r395BXhdcLlc/Prrr3zxxRckJiYSHx+vhdOMiIhg2bJlhIeHaya1/fv3a4FkkpKSuOOOO7RlIUKIM/rx8/PzKSoq0uagTpw4USXPZZddxmWXXUbLli0JCgrSNhk4fvw4a9asYd++fRgMBs0btj7XS+7bt4958+YRGxtLjx49aNWqFQkJCRXy7N27l+eee67CPNipU6eYM2cO6enpDBs2jM2bN5OQkMC999572g7JarVis9nqFJO4rkgpee6557RlNW+88YZW/vLly1m8eLEWOjUxMZEXX3yRDRs28OmnnzJ+/Hjy8vL473//CyhR/3Q6HT179jzvjRzOSoC7Y8S+AnwGdAbmAE9KKecKIS5HMbEnSSmPe1w3H4iXUg5Sj90C/E9gD3CDlHLZ6QS4EGIsyrw6QLdvmzc/s4c9C/IdDhbm57OxpIQe/v6EqKZOh5TYpGS/1UqJy0VHs5kDNhslLhdtTSZ+sVi4LzycFr6+pBiNlLhcBPv4oKujMJVScthux18INpaW8m1hITmqYGxmMHC8vBwDcEtoKB3MZi7y9cUpJflOJwVOJ7usVpYVFVHkdOKn0/FwZCSd61kL/Cgvjy8LChgeEkILo5GOZjMBlUzBs7Ky+MVi4dPkZMyqBvtjUREf5OYSZzAwMDCQRfn5TIyOpmMtzmV5Dgf+Oh2+9Rjp8rDNxgS1z7wmMJAHVCHulJLHMzI45BHLYmJUFFcEBDApI4MQHx8eiIxkQW4uy4qLCdTpGBkaSoLRSKezdJKrb244csQrwGtj06ZNLFy4kNDQUEaNGnXatcSLFi0iNTWVsWPHYjQaGTduXBXz+Nlgs9lYtWqV5o0OyvxVVFQUx44dY9KkSRXM6pWx2+0UFhby5ptvIoRg/Pjx9SoALRYLX331FWVlZezcuZOwsDDat29PcHAw3bt3p6ioiI8//phmzZpV8SZ3uVzodDrN4ax///706NGDdu3aNUrIWpfLxR9//MGrr76qpU2aNIl27dppx5UjdoWFhZGXl8fQoUPp3bs3jz32GL169aJFixYVYrFfCJyFALcDm6WUl3ukvQD8Q0rZxkOAN5NSpnnkeR+IlVJeox5L4P+klF8IIV4HegFdgfnUUQNvSAFud7l4OzeX30tKuDowkP8LCakinNw4pOTO1FRGhYVxVUAAPxQV8X5eHm8mJhJ3jppiut3Oh3l5bPDQ8gYHBbG+pISe/v6MCw8/reNTqZTsLCtjTnY2N4eGcn1QUL1q5FtLS9lUWkpWeTn7bTY6ms1c7OtLqI8Pl/n780dpKbOzspidkECyh2nZJaU2mFmQm8uXhYXcFx5OJ7OZ+EaaBsh1OFicn89PHtEiv0xJwaDWS0rJ6zk5LFfPCyBWr+ekw8ELcXFsLS1lZXExncxmhoeE0OwCC7VbkwD3OrGpSCmZO3euFs5x8eLF7N27l8mTJ1dwvHBjs9lo3749+fn5vPjii5jN5iqOWWfDypUrNZP8DTfcQI8ePWh+Bp2b0WgkMjKS7OxsSkpKePbZZ3nmmWfOeilVZQICArjjjjsAxdy9b98+9uzZw6JFiygqKmLJkiV06dKl2u/CLaSDgoKYM2cOK1asYMGCBYSHh/Pwww+f9ZKQuuB0OvnnP/9ZYTATEBDAzJkzefDBB+natSvr16/XlgS6ca+j37BhA9988w1du3blzjvv/LtsaZiJojF7shdwx9s9qX7GAGkeeaKAU1TPf1DM7nVb8NsIHLPbtY57jcXCjrIyDtvtfFONSVoCdim5xM+PbwoL+Tg/nzvCws5ZeEspeSA9HYCLfH0ZFBjIZf7+BPn4MK4OfixCCPyFINTHh2KXi8X5+ZwqL+ee0wj9M6Wrnx9d1fc6x+Hgz7IyjtlsvJ+Xxxinkw/y8pgUHV1BeAMVLBF3hIXR0WxmjcXCB3l53B0ezqAGDk+7tbSUZ0+exM+jHvEGA09mZPB0dDQ6YEVxMas9hLsEMhwOBDDz1CnynU7GRkRwbRMLpesV4CpCCD788EMyMjKwWq3MnDkTUKLrVCfAO3furAUlufnmm7n++uvrpR6DBw+uNf51XWjTpg1r167l8ssvZ/z48fUe3AQUR7UOHTrQoUMHOnbsyGuvvUZcXBwdO3asVRiHh4czaNAghBB88803bN68md69e9dr/TyxWCwUFhbi4+NDaGgo+fn5DB06FKfTyezZs+nduzeHDh2ib9++PPjgg3Tp0gWbzUZubi6RkZH1asW4gPgdaFUp7WIgVf3/KIoQHwj8ASCEMAG9gcerK1BKmSWEmAk8B6xvgDqfMRebTCxJSWG31YpdSqaqKz9ynE4iK00xGYSgvdnM2LQ0ovR6ZsXH07IeNt0RQlAfVgb3QCJCr+eHoiKKXC4ejozEp57nxiP0egYEBkJgIEUuF3+UlqKDWk3KQgi6+PlhFIJDNhvv5+ZytbrUqqHYqTrR6YQA1aL8dHQ0D6anc+/x4yT7+hJvMDBaHVwE+PhgEIKM8nJa+vpqWnpTxGtCrwa73c7dd9+tOXBU58jgcDj44IMP6N27N61aVe4DLwxKSkooKCjg8ceVvjYmJoYHHnjgtMEUzoW9e/eyY8cOrr/++ioa6p49e5g+fboWPz0kJAS73a45jURFRfHYY49VmVOvL5xOJ5s3b8bPz69C0ASTyYTNZuOyyy5jxIgRTXp/+bMwoV8CrAOeBT4FuqA4sT0tpXxdzfMEMAllGdkB4BmgD6AtI/M0oavHAcAhIBhYdb5N6J58X1jI90VFpJeX0zcggEeqmY7aZ7Xym8XCLaGhNZrazydOdc7+rZwcflZ3BBwQEMC9ERHa3HR9Yne5+LGoiBC9nisrxYq3uVx8WVDAYjVojA4I9/HBCeSp/eeYsDCGBgfX+yDDTVZ5ObutVkJ9fJiiDs7cwzKDENwUGsqNDXj/xsA7B15HpJR8+umn7Ny5k6NHj6LT6bSABU2V3bt389Zbb2lLud5///0G2cqzOlwuF1OmTNGiFIFi5u/evTvbt2+npKSkQv7G+I09vYIvuugixowZc0bTFJWRUmorFcrLy0lNTeX48eP07du3yty+O95yeHh4hfjn9cFZBnIZDLyAookfB+YCc6TaMXgEchlHxUAuuzzKqCDA1bT7gXnA9xeKAM9zOJisBllJKy+nX0AAD5/Gn+RCp9TlYmVxMe/m5gLQyteXl89wH4Fz4bjdzj/VaQE3gTodQ4KC+EQV6G7GhYczuIGtWFJKZmdl8YvapzwQEcHl6jTF2WJ3udAJgV4ILE4nf5SWEmcw0Koap9WT5eWUuVzEGQz16pwH3jnwOuFyuViyZAmbN2/m1ltvZdasWbRt27ZJC29Qwvy9+uqr3HvvvcTFxZ3xPsrnQkZGBkeOHGHcuHGEhIQwY8YM7HY769atA2DYsGF89dVXAOckRM+E9u3b88gjj2jz9TXdd8uWLSxatIiJEyfWuPWfxWJh7ty5VfavBiVuvDv0qcVi4ZNPPuG3337Tgk9cCGufpZTfA9+f5rxE0dCfPU2eKh2LlPIN4I1zr2H9kOtwMO3kSXr4+/On2sEPbmLznZXx0+m4ITiYFKORSZmZXF1DoJmGYoU6pzw3IYFfLRY+Kyig2OXik4ICLvPzI1yvZ6kabTKkEfocIQR3R0SQ4uvLVwUFdDabqxXeNpeLuTk5+Ol03Bsejr4GzXx7WZk24DMKgV1Vdnv7+/O4hwDfXlbGgrw8zct9eHAwo+vJ56g2vAIcJYhCeXk53377LUVFRUycOJHPPvsMgF27dvHuu+9yzz33nOdanhtCCMLDwxkzZkyjbsWXkJDAnXfeyU8//VRhTS38tTnHiBEjGqUuhw4dYuPGjfj6+uLn50dYWJi2C92xY8c4duwYDoeDlStXEh0dTW5uLpmZmUyYMIEpU6bQqlWrCnN5UkpmzZqF0+nk3nvv5Z133tHOCSFYv349/fr1Q6fTsWXLFn7++Wd69OjBpk2b6s1nwkvN2F0u9tlslLlcvJGTw7VBQVzh78+Xqnb4aEYGs+PjuaiRrFENhUEIWhiNDGzkAcnwkBDKXK4qWngzvZ67wsOJNhgY2wiBppxS8lNREdkOB2adDpMaxrTM5cIhJRtLSnAAB6xWtpSWckVAAL+oUw+HbTYmRUcTWqlPPFlezuTMTB6PiuLlrCxNeAMcsds5WV5OjOqP8GxmJtcEBWkCvEsjOrj+TwnwsrIyDAaDJsCklMyYMYODBw8SGBhIz549+de//sWmTZs0DRGoNQJYU8DhcJCWltaoc7yZmZksWrSILVu2MGzYMO655x5t3fz58OJ+5ZVXiI6Opk2bNmRnZxMVFcWAAQPYt28fU6dOpVevXlqQl9zc3Aq/+9SpU0lMTGTy5Mn4+/uTm5tLYWEh+/fvZ/To0VitVjp06IDJZKJLly7s2rWL+fPnY7PZGDx4MG3btsXX15cePXqwZ88evvvuOzp27FhhCZuXs6fY6STQQ9s6bLPxTGYmJiEI1+t5KDKSrn5+POYRW8Ffp+PCm+E+c47Z7UQ18v7YK4uLeU0NpfxmYiK7ysoI1evprm5x3Jgctdt5MzeX20JDKXO5KHA6GRocTIRez7u5uawvKaG9yYRA8TxfWlhInMFARnk5B2w2Rh8/zsjQUG4JDcXucpHndPKJOrD30+m4LiiIVLudJKOR1qp2PzYtjY+Tkgjy8eHW0FB+LylhfEQEc3JyePnUKd5p1gxTIyyN/Z8Q4Pn5+axatUoz1Q4cOJCePXuyYMECysrKeOONNyqEzHObONu1a8dDDz1UYwzkpoRer8dgMJCfn9/gwtPlcvHbb79pGwD4+fnRu3dvoqOjG81MXh1JSUlccsklXHXVVVraV199xbJly7j99tu59tprsdvtjBkzhvj4ePr06cPSpUspVk2FaWlp/Pnnn8ybN69CuQsWLKBXr170798fu93O5s2bycrKon379rRu3RpQInBNmDCB6dOn07dvX9asWcPSpUu9Avwc2WO18nFeHrusVlr5+tLdz48Yg4FZWVncERbGiEqDb7fPzwMREQxqYO/oxiJQpyNbdQ5taPIcDu45fhz33Xr6+RFnMJzzMrtzIdTHBx8Ui4DbUc3mcvFQejrBPj48GxNDiq8vXxYU8GtJCSNDQzlot5PhEUd9UX4+cQYDM7OyKpT9WX4+Xfz86B4SwmGbjR+LijDqdAwKDNQcBkeEhLCquJg5qo9RocvFAXUdfUPzPyHA3377bbZv364dr1ixQtsK7oEHHtCEt8vlYseOHWzatAlQ5mT/DsLbTb9+/fjoo4+YOHFigwZOefnll7Xv+0KY53Wza9cuLU69n58fp06d4osvvuDhhx+mU6dOFBYWkpOTQ6tWrQgPD0dKqQlvgNtvv71CgB1Qtlt0b3gCyjtU085n7v3VBw8ezJo1ayoMJLycOdkOB09mZGjHATodC/PzSVCFyTUebTfX4WB7WRmH7HYAOp8HTbGh6Oznxxs5OayzWLi8kpd4fTNG3evgyaioBr9XXTlks+EE0svLaWYwIITg68JCMh0O3khMpNTl4mR5OWE6HbF6Pb46HcfV9wDgqoAAylwu5qoWhbYmE3usVj5JTsZf7SddUtLNbObmahxPdUIQ7ONDvOrctjA/v1GEN9RBgAshHkTxQE1Wk3YD01Tnl0bZbvBcueuuu5g0aRIWi4WIiAjGjRvH888/T9++fVm2bBlt2rRh8+bNHD58mN9++42rr74avV5Pr17V7vHQZBk1ahSTJ0/mu+++q3Zrv/pi+PDhbN++nddee63B7nE2DBkyhK+++kqzxLh57733sFqt6PV6wsLCcDqd7N+/X1tGaDQaefPNNzGZTGRlZfHTTz9p+xR//PHHLFmyhNLSUgICAigoKGDkyJEMGVL1le7UqRNXXHEFU6ZMwdfX97yvLW/qbTtSr+fhyEj+q3a8Pfz9yXU6OWa308ls5veSEmIMBg5YrfxUXIxNSvoEBJDpMX/5d8Bfp+PJ6GhmnDpFktHYKNHPLhThDdBDtSiOrzQXbxKCEUePYhQCH1XIZjocvJ6TQ0fVCe0fQUHcGRGBxelkZKoS/iBGr0eYTNyVmopdSiL1erIcDlxUjO7myf+FhrI4P59P8vNp1Yg+FXXRwNOBJ4CDKMv8RgNfCyG6SSl30AS2G4yMjMTf35/AwEAt+EpQUBBr1qzh4osvZvz48VpeHx8fVq9eTYcOHRpsTfL5Qq/X8+ijj/LUU0+xa9cubrzxxno34W7fvp1PPvmExMTEC8534JprrqG0tJTly5fTqlUrfHx86NixIz179iQyMrKCRjZy5EgSEhJ48MEH8fHx0c7ddtttxMfHM3/+fNLT01mwYAFHjx5l9erV/PrrrwQGBtZotQkKCuKBBx5olGetI02+bSepwurp6Gh6+vuTaDDwdGYm6XY7r6sBPtyYhWBzaSljG8lDuDFpbzbzf6GhPHLiBH0DA7ktNLSCT8C5Ui4li/PzMQvByHpe/niuCCGYERfHjFOnyHM66WI246/T0dPfn0v9/Cos6dpWWsq/T57k8ehogjzSA3x8WJyczD/T0lhtsTAhIoL2UVGUOZ3808NvoqZv9BI/Py45D349Z7UOXAiRBzwFvE0jbDfoLuNczLEWi4WJEycybtw4zVxqtVqZMGGClqdbt27069eP9u3bN9iOXhcCxcXF2gYdY8aMwcfHh549e56zSfGTTz7h119/1XbuupBMlFJKnn76aZKSkrj55ptrXYO9dOlSli1bRnFxMd26dWPUqFEcOXKEefPmIYSgZ8+epKSk0KJFCwoLCyksLMRgMLBo0SJeffXVRvX0d3M268Arc77a9rmsA19VXMxXBQXMio/HKARZDgdriotZ5LEW+drAQEaEhhLm49OkA3qcDiklx+x2FufnoxOCdiYTHcxmbZBztuQ6HDybmUmEXs+9ERHndb67OvZZrTx/6hSjQkNr9Wsocjr5b1YWu6xWzDodt4SG0i8ggFlZWWwoLSXJaKSHnx/JRiNJRiOHbDYCdDpWFheTZDQy6jxsEwz1tA5cCOGDsutQAEoEpxSUOMnL3XmklGVCiF+By4G3PC7fBHwJvAT0P9MHOFcCAgJISEjgyy+/pFOnTgQHBxMcHMywYcPIzc1l3LhxjV2l80ZgYCADBw4kKytLc8iSUnL55Zef9rrc3Fw2btyIwWAgKyuL9evXEx4eTnx8PElJSSxdupQ33nij3kO21gc5OTlkZmbywgsv1GlgMWTIEIYMGUJpaSkffvghTz31FBaLhTvvvJO2bdvyxx9/cPjwYZYtW4a/vz9paWk4nU5uvPHGGoX3Z599RmpqKiNHjiS+EQNu1IWm3LYv9fPj1exsjtnttDaZiDEYuDEkhPWlpYwJC2vUZT3nEyEEKb6+/CsqijtTU/m9pAQBLPbYPawmtpWWcsxuJ0yvVzRtnY4AnY5YgwEpJQlGIxOjoi6oQbmbP0pL6ePvzzV16HeCfHyYEhsLwC51/fYHubmUScni5GR2lZWxvayMXywWDtlsJBoMbLdaCffx4bYahHeOw8G87GzijUbuCgur/+/oNJaUOmngQogOKHGNTYAFGCWl/L4htxtUr6u3LQeluqVcstHIP5t4YJb6oszl4maPtdn/iYmpsbP7pqCAzwoKuMzfnzKXS9vZ6TJ/f3ZarfxQWIgQgnHh4fTx92+U3cXqgpSSr9XwmZf6+XHvWa5LdUrJcbudZKOx2gY69eRJNqthYZekpFSr5d127BhFLhct1HcwyWNryvqg7AVCNwAAIABJREFUplH66bhQ2va5WNdOnTrFhAkTmDZt2nld5XAh4d7nGuDiiy/m0UcfrXZqx2KxMGfOHLKysujUqRMnTpxg9+7dPPzww5SUlLBr1y62b9+OTqdjzpw5GGt4/88Hubm5fPbZZ/z5559MmDBBW/FxphQWFuJwOKrd8MnlcnHbbbcB0KVLFy0stSfHjx/nySefxGQy0b9/f4YNG4bT6cRoNFZY3XQu1GRdq6sGvh9lr+AQYDiwQAjR1+N85VGAqCYNKeUhIcQ7wHQhxPLK56vJ/zaKKc/dUZw1PxYVYZeSWy6wednziVmn45aQEC2O8b9PnuSJqCh6VeOgsig/n+lxcaSoDhqer3EXPz9yHQ5+sVj4LD+f2dnZPBoVVSVu8vngw7w8/igt5eHISNqfg2eoj6rd1MTjUVHaYOjDvDzurKYzmBQTwxMZGRy22/l3ZiZFLhegLGlq6euLn06H1eWi1OWiha9vo6wjpYm3bYfDwZw5c7j++utJSUk522L+dngKswMHDvD444/z6quvVgmhvGPHDsrLy3n55ZertRx17dqVxx9/XLM+wYWxsqSwsJAXXniBjh07Mn369HMKS3w6Z1KdTseoUaNYuHAh+/fv5/jx4zRr1qxCnmbNmjFgwABWrlzJ6tWrWbVqFVarFZ1OxyOPPEJsbCxOpxO73Y5OpyM5Ofms61qlfnXJJKW0SykPSSk3SymfQhltT6DidoOe1LbdYAsaabtBh5R8W1jIwvx8jtntfK0u5fGiMDIsjBdUkxLA7Oxs1v4/e+cdHlWZ9uH7TJ/JpE96I6GFDgIWRESUJiuLIAquXZRFRN1PRQWVBRQRV1GxKzYUlFVwQRQsgCgdYSmBEALpZTLJJJlMb+f7I5PZBAgkkAbkvi4v5NR3hjnnecvz/H4+laIazB4PXjhj5u5doaEkKxSk+rI7u7QBdavDdjvrTCbmxcScV/BuCGpfJjDA6spKtpz0HQJ0U6kY5JNWjar1Xb5TWsrrBgPPFRXxWkkJ75WV8WxRUYvU9l7Iz3ZpaSmvvfYaLpeLtWvXUlxcfPaTLhE0Gg1ffPEFV1xxBQAmk4l58+ZR5tNNr8FgMBATE1Pvsk9QUBB33HEHUVFRJCcnE9lGtONXrFhBUlISd911V5N7CpzMjTfeSJcuXXC5XLzxxht+i+Ha3HnnnUC1WFiNE6PX6+Wjjz5i4cKFLF68mA8//JBFixaxatUqvL7O+/lyrpk2EkBJC9sNvlRczDNnUBJziSK7LRZCZDIMbjdrKispdLnopFQyOTSUD8rKGHABrYftsVoJEQQCpFJimrE0pKdazayoKBbo9TwQHs7HZWVoJRL/dLrB7SZcJquzjlbl8ZDldBIokfCGwcAJX13lcaeTWJkMdyub5LhFkSUGA9N0OsJaKKFsUEAASXI5XuBtg4EBGg2ak0bRT0dF8ZPJhFQQ6KVSkWa386nRyDUBAdzqexF5RLHaSzk3l08SExGg3s/gEUX2WK0cOCnj+jxolWf74MGD9OrVq979JSUlnDhxgrCwMA4dOsTGjRux2+2MGjUKvb66P1GfXn1bo0bsJyIigpSUlGbzJpBIJEybNg2j0YjRaGTgwIG89NJLLFy40B+wjUYjMbU68KIoUlBQgNFoJDAwkNmzZ9e55pAhQ3A6nU02NXwupKWlceDAAV555ZUWmc4XBIHJkyczb948FAoF//73v0/JmZLL5bz77rv88ccfhIeH061bN3744QfWrl3L66+/7u/45OfnM2fOHDIyMpg2bRpqtbre79JoNLJz585TnDBr05A68IVUmx3kAYHA7cBQYIwoiqIgCK8DswVBSOd/doNm4EzzLK8C04BxwK9na0MNB+z2esUKTB4Ps4uKMLrdVHm9JMnlDNZquU6rJUImw0u1oP7Z/GzbEnJB4IvyctLsdiaGhHBrM2ZAXhkQ4F+7PWSzsbKiwh/AY+VyLF4vh2w2eqrVmD0epuTm4hRFAiQSBgUEMESrxSOKrKqspNDtZnp+PglyOTFyOf01Gi73mRu0FJUeDwUuF71a+N/7xdhY7sjJIVWpZEV5OfeGhVX7FNdiRK1kG4PbTaXHQ0qtGQupIHBvWBjZTif35uYiA1adZm3XJYp8U1HBivJyRp9D4mBberaXL1/OE088cdp1yB07dvDxxx9j9s1qDBs2jEmTJjFgwABUKhVXX301NputzeRdnA2JREJZWRmfffYZarWaf/zjHyQlJTXLvRQKBXPnzsXr9SKRSFi5ciVpaWn06dMHgK5du7JmzRpGjhyJXC7nl19+4dtvv8VkMjFmzBj69u1L//79KS4uZt26dWzZsoUtW7YwZMgQJBIJ/fr1o3///i363aenpxMdHe03CmoJunbtytixYzl06BB79+7l6NGjp9hIBwcHM2bMGP/fq6qqiIyMrJPUGx8fz5w5c3juueeYNm0akyZNYuzYsafcT6/X89Zbb2EymZg4cWK97WrIGzUa+ML3ZyVwABgtiuIG3/5FgBp4m/+JPYw4qU60DqIomgVBmEu13WCDmRERwUK9nk9UqlOCwT6bDZvXS4JczmGHg1tDQrimVtKGw+vle5OJbKez3mzCtkYftZo+ajVvGwz8YDI1awAH/IlXY4KDebaoiDdKShgZFESqSsVDOh0v6vUkKxQUu1xcHhDAb2Yzl2k0PFQrKfBKjYYZBQXEymTkuVzkuVzsslp5FwiVSBgXEsLNLZCHEC6Tcb1WS6HLha4FOw5BUinRMhl9fUIiKQoF19VTF77XamVecTETQkJOmRmSCALzoqMp93iYmpeHWxTruCaZPB5eLSnBLYq8HhdHilLJjz7np0bQZp5tjUbD559/Xqess4ZffvmFa665hh9//BGonq6svZar1+v55JNPmDlzZpvL7j8dMpmMm266idGjR3PXXXeRkZHRbAG8hpoAO3ToUD744ANGjhzJsGHDuPLKK9m6dSszZ84kNDSU3Nxcxo8fzxdffMHw4cPrTJlLJBLWrl1LUlISW7ZsAWDz5s1ERETgcrmYNWtWi2hnXHXVVWRlZTX7fU6mZ8+e/PHHH9x0000sWbKEl1566bSJgW63mxUrVrB582YWL158ygg6MTGRpUuX8sMPP5yypAHVMwxLlixh2LBhjBs3DqVSeYp8cw0XlB/4mpQUniwooMrrRaDaxq4m6HhEkeeLilBLJEwODaXjSWuwK8vL+cInUN8S3sNNSc2/UUtmf1Z6PKw3mdhgMhEglTIoIACD202208lDOh0xcjmTs7O5TqslRaFgkG+mo8rjYXFJCf01Gso9HjIdDuLkcrqpVByy2bg8IIDLWmgZY0ZeHlN1umZf/z6ZXKeTpwsLeVin4zWDgQ8TEuq4Hf1hNvNleTkFLhd/1+kYfZba1Ufy83lIp/PnF2w1m3m3tJTBWi1TatkhnksWeltAEATxX//6F0888QRJSUkMGTKE0aNH+/dnZWWxcOFCxo4dyxVXXIHupEqC22+/Hai2pm0pZ7umQhTFFs/qTk9PZ+PGjezdu5fU1FR69erFpk2b6NmzJ+PGjeOnn37im2++4c477/SbPMlkMg4ePMjq1au56aab+P333zGbzQwcOBC1Wk1GRgYTJkxoEXXBjIwM3n//fb8oV0shiiJff/01RUVFBAYGYrFYePTRR/373W43S5cuZcuWLSQlJTF9+vQzdiiPHTvmXyMXBAGLxcLKlSvZunUrjz76qH9JqWYK/6LwAx8ZFMRxh4Ofq6o47nAQLpMRLpMhFQRmR0fzQnExxx2OUwJ4bTu4NJuNHhfQVHprlG0ES6XcFhrKLSEhpNvtbLdYUAgCEVIpbxsMDNVqCZdKcYsi++12PjEa+S4lhcBadZYnM7gFs9J3WCzkuFytkkyXqFAwISSE98rKcIoiR+x2UpRK9lit/GAyYfZ6+Xt4OFcEBDRIVOT6wEC+LC9nfkwMLlHk5ZISZkZGtuj32dyEhIRwww03UFVVxfbt27n88svRarUolUqSk5N58skneemllxg+fHi919i3bx+jRo1CewF9L63xbKemppKamkpVVRX79u3j0KFD9O/fn99//x2Xy4UgCERGRpKXl8f27dspLi7mlltuoVevXv6g0q9fvzrXrE//vzlYunRpqyTTCYLA2LFjWbBgAbt37wbA4XCQnZ3N1q1b2bZtGx06dODNN98krAH14DVVEzt37uTKK69k27ZtpKenM3/+/FPyEurjwlg0qsUNgYFM1em4PjCQJwoLuTc3l1W+MiiNRMIVGo0/oao2V9Qa9T1TVMR2i6XF2nwhIxUEeqjVTNHp+LtOx9NRUYwJDuaQ3U6Zx8PvFgujg4JIPk0ihtnj4cPSUl4tKeGY3d6i7e7hG61aW2mGaUJICE/6XjILS0p4vKCAnVYrV2g0PKTTMUirbbAi2I1BQWTY7ZS53XhFEbkgtNgsRkuh0Wi47777mDZtGnl5ecyYMYN7773X7yHfqVMnQkNDT5tpXiMHnJWVxUMPPYS9hX9rFyqBgYEMGTKEhx56iIkTJzJ//nxUKhVHjx6lpKSEuLg4evfufUqWtyiKZGdns2jRIlasWNHi3/fAgQNRKBRnDGzNhUajYe7cuX4jovvuu4+PPvqIyspKxo4dy4MPPkh4eHiDOmYymYxRo0axdetW/7aEhIQ6wfus12j8R2gb1PjfPhgezqqKCvJdLlIUCv5dUcHfT5piM3s8PF5YyEC1mt2+bN2X9PoLbiq9LSAIAjcEBnJDYCA2r5fbs7OZX1xMtEyG0+slz2cU8VlZGetrOXn9ZjaTrFAQJZOxwyd4Mic6mv7NFIgCpVJuCgpiRl4eL8bGktgKWbO91Gp6q1QcsNsJkko5arez32YjymLhykYk4MgFgZuCg/ncaGSgRoNaEFC1ETGNpkahUOBwOIBq851FixYxYcIE0tLScLlcRJwkwvSf//yHtDS/twput5uDBw8ycODAFm33xUBwcDCTJ09m8uTJHDlyhPnz5wPQuXNnrFYrer2ekJAQnnrqKX9C4X//+19+/PFHevTogcvl4vDhw0Dz1opfe+21LFq0iDfeeIOHH364xWWLpVIpEydOZNOmTQQEBGCxWDh27Bi7d+9Gq9UybNiwBl/rqquuYvXq1aSnp/uXMRrDBRvAd/pG0AESCYvi4rgvNxeFIPBqXFwd7V9RFP0uM3eHhvoDOFQrkZ1NYrCd+lFLJLwUG8vMwkKK3W5u8Y2WtBIJLlHkk8REXtbrCZFKuTc8nFynkxynkxi5nNWVlXxcVka8XF6nJropeUCnI1GhYG5xMR8kJLSKBvbcmBj+tFoJl8lIVCj4tKzsnH5zY4ODuS83l02+F+cyo5G7L0JTjtr1sddddx0ej4elS5cyfPhwFi1aVCd5LS0tja+//pqhQ4eiUqlYv349UJ301h7Az49u3boxcuRINmzYwPLly/0BOT4+nssuu4zbbruN6dOn89JLL2GxWCgtLaWyshKz2Uxubi7fffcdY8eObZbs9IiICObPn8+iRYtYs2YN48ePb/J7nI2QkBCWLFlCbm4u8fHxBAYG1lm3bigqlYqRI0cyf/58/8zGkCFDGpwMeMElsYmiiNHjYb/N5rcR/L+ICFJVKkKl0jrOMwDbzWY+MRp5LCICmygyt9YU3HsJCW1OmP9CxOH1srqiguUVFUiBjgoF/4iMJK7WNNfJU0qVHg/fVFSwwWTinvBwAiUSeqvVTSYrWpt5xcWUu908GhlJh5NG4uVuN7usVordbmJkMoafJaHsfNC7XPxfQQFvxsefU0ndPquVE04nnxmNRMtkfHCSItSFnMS2fPlynE4nVquVhQsXkpubS0pKCo8++igOh+OUF5rb7ebtt9/GbrfzyCOPsHDhQo4dO+bf3xbUwi4GcnJy+Oqrr9i/fz+hoaF0796dhx56CEEQ/KVpJ5OZmcn777+PTqdjwIABxMTE+N3/mpK8vDxefPFFrr76am699dY6nTtRFDl+/DhpaWlYrVauvvrqUxTUmpLVq1eTm5tbJ6mtobjdbr7//nsKCwv5448/uP/++7n++rqWAvVJqV5wAbzQ5eLveXkAjAgMZK/Vigd4Pjr6lMS1r8vL+dFkwujzdV6ZlIQT+KSsDKPHwz+jo9uMru/FxJTcXB7W6eh7lulxryiyyWzmT6vVn+z1QHg4Q+spuzpXvKLIL1VVLDMa6a1Wc8zhwOjxECGTUenxcJlaTaJCwS9VVXRUKin3eHgsIqJJPaOdXi/PFRUxMCCAW86jjE701donKRSnlJ5d6AF82bJl/Pjjj3Tu3Bmj0Uh4eDhut5sXXnihzvGVlZW88sorqFQqDh8+TPfu3XniiSfIz8/n3XffZdKkSe0j8GYgLS2Nd999l7feeuusx5pMJr777jsqKyspKirC4/HwzDPPNLnFsMlk4tNPPyUnJ4fY2FiOHDmCIAhoNBpkMhn9+vVDEAS2bt1Kp06d0Ol03HHHHU06M5CRkcGrr77KCy+8cMoST2PQ6/Vs2rSJkSNHnpJ3cL5a6G2GGJmMu8PC+Mxo5KeqKhSCgFMUOWiz0VGpxO718ofFwn8qK/GKIovj4vi/ggKGaLWopFJUwP3h4Uh9toORMll7EG9C/rRaKXG7G+RFLBEErg8M5HpfwD5it/PPoiIGaDRom7C3LhEERgQFcZlGw26rlVtCQoiSyyl2uYiUyfz3GqzVstVsZr/NxgdlZTx/BtW/xlDudrPYYEAnkzH+PMtsBEFgwkWq5//Xv/6Vo0ePcuzYMTQaDfn5+VitVsxmM1qtlsLCQn7++We2bt3KsGHD6N27N4cPH2batGmoVCo6derE888/jyiKdSQt22ka1q5de4qWen0EBQVx1113AdWdzvfff5+VK1fy4IMPnuXMxhEUFMSMGTM4dOgQ5eXlTJkyBVEUqaioIDEx0R+oO3bsSFFREevWraNHjx7079+/Se6/b98+3n//fR566KHzCt5QrSQ4adKkRp1zwQXwmheYFFhRXk43lYq9Nhs7rVbGhYSwsqKCH00mbgsJYUxwMHJBwCGKrK6sZHUtHfSbg4NZXVnJU5GR9Ndo8FC9nt7OuZPlcDC3uJgxQUGnzIY0hG4qFVJB4K3SUp6IjKwjXNIU6GSyOoplKSe1MVYuZ2JoKFJB4IQvkep82Wax8I7BwKigICaFhp6iytbO/wgKCuLpp59m0aJFeL1eysvLsVqtHDt2jL59+zJ79mySkpJ45plnSE5OpsqXJDlr1iz//9dm+fLlVFZWEhgYeMGotLVVvvrqKw4cOMCbb77Z6HMFQWDEiBE8++yzjBgxgqSkpCYdNAmCcMra88kj/SuvvBKA3377rUkU3FwuFx9++CEZGRk88sgjdO/e/byveS5csL/qscHBpKpUxMnldFYoMLnduEQRlSDQTaXir77gne90Yj1JOD5BLucvvhd5psPBrdnZTM7O5g+zmV+qqvjRZKK8HiMJ7wWy5NAafFlezuUaDVPP0bITYHhgINssFsZnZfFCcTGH7fYW/86P2O10PoP+cEPZajbzXmkp/4yJ4Y6wsCbvkFyMaLVa7rvvPgwGA9OmTQPwZxkHBgbWcR37/vvviYuLqxO8Z8+e7ZcJnTJlCtOmTeOOO+6gsLCQNWvWsH//flwu1yn3FUWxVcqSLgTKy8tZs2YNCxYsOEVEp6EEBQURFRXFrFmzePTRR1mxYgWmxisHnhcVFRUYDIbzdgOz2+28/fbbOBwOXn755VYL3nABroHXxuTx8Eh+PneEhbGyvJyOSiWPRUQwMTubBLmcBIWCPVYrXZRKDtWqVfyqQwcezc9Hf5og3dOXDPen1UqsQsGVGg2jgoL8ZUBPFhZyhUbD7CaaXr2YGHviBHD+SncGtxsZ1bacv5rNBEgkBEokjA4K4q/Bwc0+iv3DbOZTo5F5MTHnnOR4wGZjXnEx82Ji6N4EnYGGcKGvgddm8+bNfP/994wcOZLPP/+cmTNnUlZWxgcffECXLl2IiYnht99+82dKA1x99dUMHjyY9957j8rTuA7ecMMNnDhxgqKiIvr06cMVV1zB5ZdfjiAIvPHGG+zcuZP58+fTsWPHFvncFwo1fusPPvggQ4cOPefriKJIcXExbrebp556CoDQ0FCioqL429/+1uzfu9fr5eWXXyY8PJwpU6ac86zMkiVLqKio4Mknnzyj0UhTctEksZ3McYeDecXFSIAwqZQnoqJQUD2KMng87LRamRIezv8VFPjPeSE6mmNOJ15RRO9201Wp5PvKSrJcLnRSKX/X6eiv0XDQZuN3i4U/rVbGBAXxXWUlVb7RfHelkjkxMe1laLUYe+IEC5rYulMURaq8Xkrcbj4qK8Ps8TAuJIQbmjjR7WTWm0ysqqjgnYSERo+cRVFkRn4+E0JC6tVBbw4upgAO8M0337Bx40ZMJhM333wzY8aMITc3F4PBwJEjRzCbzYwZM4Y5c+b4z1m8eDGbNm1CpVJRUlJCZGQka9euxWaz0a9fP6ZNm4bX6+XPP/9k/fr1/uz27durzdNSUlLo2bNno9ciL2Y2b97M6tWr+de//oW8iRI7a2Y8jEYjhw8f5ssvvyQ5OZkpU6ac8yi/IdhsNl555RV69+7NuHHjGn3+0aNHef3113n11VfRtKCY0kWTxHYyHZVK3o6P55/FxWQ4HEz1ZagDXKfVcm9YGKFSKY/odLh8JWidlUqSlUqUgoDCF4D1bjcKm41BAQG8oNfzRVIS3VQqyjwefjObWebTUQ+XSpkfHc1DBQXclp1NH5WKu8LC6KRUXvLJcHFyOV9XVNBDpWqy70IQBIKkUoKkUl6MiWG7xcKnRmOzB/BRQUFsqqril6oqRjXS6csliuS6XMS3lyieF7fccgupqaksWLCAb7/9lm+//RaAgIAAxo8fz9VXX41er2f8+PFERkYiiiIRERGMHj26jib3ypUreeKJJ/jggw/4/PPPmTp1Kl27dqWsrIxVq1b57RwnTpxIUFCQX8/6sssuY/LkyS3qetUWiYuLw2AwsH//fgYMGNAk1xQEAUEQ0Ol0DBkyhL59+/Lxxx+zbdu207pzNRVqtZp77rmHf/7zn4waNarRI+i8vDxUKlWLBu8zccEHcACt7+X+m9nMMYeDdIeDHKeTTWazX/iiNl/7pFfvDA1loi9d/46wMO4AvvHteygvD4FqKdHaY+xFcXFEyGSs7NCBHRYL75aW8nhhIVcHBPDUBeJH3FwsiY9nZkEBv5rNzRJgpYKAvAVVyAZoNByy2RodwBUSCd2USorcbjo3U9suFXr27Mkrr7zC7t27ycrKIisri9LSUpYtW8bmzZvJq9Vhj4iI4P333wfgnXfe8Scy1YzuTSYTf/zxBzk5OeTl5dGlSxeg2p/78ssvZ9y4cQiCQJ8+fdi8eTOrVq1i48aNda51KdK5c2fmzJnD4sWL6d69e7MEL61Wi9vtbnCW+/mQmJhIYGAgWVlZdOvWrVHnpqamsnLlSlwuV5PNRpwPF0UAB1BKJIwICmJErW1uUcQtiuQ4nXxcVobD62VUUBAflJXxXHQ0fdRqRJ85BMDIwED6q9XckpJCht3OvOJinoyKIlwq5SW9niynkw9LS5kVHY1KImFoYCA91GpmFxay1WLB7PE0afnThYZMEHhAp+MVvZ5rAgJOEdU5Xw7b7bxlMDCzhTpKvdRq1p1jos1NwcF8VV7OkFrGGh5RpMLjaVFf9IuBuLi4U1yd7HY7NpuNrKwsXnvtNSZMmEB6ejqhoaHMmDGDkJAQDAYDTzzxBFOmTEGr1fLhhx+iVqtZsWIFUqmUOXPm8Ntvv/HBBx+wa9cusrOzSU5ORqfTccsttxAcHMxnn33Ge++9x9NPP91Kn75t0LVrV/r27cuaNWuaZXlh6dKlWK1Wrr322ia/9ulITU3lyJEjjQ7g8fHxJCUlsXHjRkaOHOnfXllZiVqt9s/mtBQX9ZtEJgjIBIGuKhUv13oBjAwK4qjDgcHt5q3SUvbbbEioLvmB6iSsbKcTk9fLepOJ/4uI4I34eDyiyMljvwifIpbR7b6kg3cN3VQqUlUqlpeXc28TSn3qXS4W6fXMiIigVwvV955wOM5ZGa6nWk15aWmdbR+WlfGDycQXSUkEtf9WzguVSoVKpSI0NJQvvvjCv91qtXL8+HGqqqqYNWsWAOvWrSM3N5exY8cyadIkDhw4QF5eHunp6QwdOpShQ4fidrtP0dQePnw4Q4YMwV1PRcqlxm233cbMmTMZPHhwk/p+b9iwgSNHjrBgwYIWSQpzu90UFBTQufO5zY91796dct+SKlTP7EybNo2BAwee1s++ObnkMrA8osg/i4uZWVjIA3l57LfZWJaUxHcpKfRQqeisVOIRRWxeL12USn4zm1npm1aXCkK9GdBhvof/N7OZ+3NzT3uMKIoYL4GXweTQUNabTGw1m5usNCfNbidFoeDyFlqP9Ioi/66o4LFzFGdQCAJVXi8eUcTs8fCfykp+8I3md7Y74TUL2dnZTJkyhYULFzJr1iwGDRrE8uXL/fKWNeVlbreblJQU5s+fj16vB6jXEEOpVPrXwKdPn17HOao2LperxcuiWprQ0FCGDh3KRx99RIlv1rIp2L59O3/7299aLKP74MGDSCSSU+RKG4pEIsHie4Zzc3NZsmQJALt3766j5d8SXFIB3Or1cnNWFvtsNr7q0IGliYm8Ex/vH2XdGRaGAPyjoIBNZjPDtFpejIlhg8mEp4GBKEYmw+B2n1JHXuxy8UBeHg/m5uJs4X/kliZBoeC56GhWVlTwj4ICDjeB3aDZ60XXglPPxW43Apyind4Q/jCbmV1YyHVaLW5R5P7cXPZarbzumwUKaR99Nzk7duxg1qxZDBw4kGXLlvHCCy9w7733Av9TuHr99dd58803qaio8Af4+gLy6UhNTeWnn346ZfsPP/zA3XffzapVq5rs87RVbrvtNvr06cNOoQrBAAAgAElEQVSzzz7LBx98gK2WOdS5YrFYCG9BY57Dhw/Tt2/fRifaWiwWVqxYwQ8//MBVV13Fjh07mD17Nh07duT2229vptaemUsmgBf4TCBCpVLejI9HI5EQIZMRX+sF3V2l4uXYWMYHB9NLrWZYYKB/uvbbigrcZwniZo+Hjkolq5OTCT0p2GQ6HFi8Xl6MjfVnvl/M9FSrWRwXx1+Cg5lXVHTeMw+7rdYmLU87GyFSKQ5R5FgjFNlcosgSg4Evy8u5LTSURyIisPg6a89FR2MXRRLkcgZe4lnNTYnL5SI9PZ0VK1YwaNAgpk+fjkQiISUlxT9ylkgkjB07lpdffpnIyEjuu+8+NBoNgwcPZuPGjWRmZp7xHqIoYjabmTFjRp2StRr+/PNP+vTpwx133NEsn7EtIZPJuPnmm3nttdewWCz+pMFzRa/XU1lZ2aRT8mcjNjaWvXv3Nmq0nJeXx7PPPktVVRVz5syhe/fuFBQUMHz4cCZNmkRubi533nlniyv+XdRr4DlOJxurqvjdbMYhivRWq3k9Lu6U4FobqSAwNDCQobW2PRsdzct6PWl2O3PPYLZ+b24uDlE8rcvZYK2WwbUSmi4FJD7v8J9MJordbv8yQ2PZZ7VS4HRyWQsGcI1Ewh1hYSwrL2dudHSDxGPSbDZ+rapieYcOaHwPconbjZfq4P5LVRXDWrAu/GJFFEV2797Nxo0bSU9PJyoqiuHDh/OXv/zljOeFhITUScDq3bs3N998M88//zyPPvooV1xxxWnPy87OZvbs2QwcOJBHHnnklP3PPffc+X2gCxCtVsstt9xyTtKqtfnqq6+45pprWtTTe+jQofz888/s2rXLL7F6NlatWkXnzp3raLkbDAZkMhlWq5W9e/e2Sgfuoh4KzsjP53ezmeeio1mWlMRTUVFnDN71kaJU8np8PPtsNp4rKqr3uNd8U6RLy8rOuc0XIzZRRNnI6Sqn18t2i4U3DQbmFRdzd3h4iycJ3hAYSIXbzZ8NnCbspVbjpdoqtYY9VitDtVpkgsAOi4Whl1gnrjnYs2cPr7/+Ov3792fx4sW8/PLLZw3ep6NmHfThhx/mjTfeIC0t7bTHJScnc8stt7B7924OHz58vs2/aLDb7edU9mU0Glm7di1z584lPT2dCRMmNEPr6kcQBO68806WLVvW4HNSU1M5dOhQnW179uxh+PDh7N27l9TUVIIaWW7aFDQ4gAuCMF0QhAOCIJh8/20XBGFMrf2CIAj/FAShUBAEmyAImwVB6HHSNa4VBOFXQRBKBUGwCoJwXBCELwVBaPJPbva9RN+MjydZqTxv+U21RMKniYnoXS4+qydAJygUrElJ4bl2mVU/HlGkyOUirhE1k8cdDv6el8d3FRV0Uih4KTaWa1sh8Ml9uvqFp9HOPhmj283bvqxzRa3fWjeViv02G28ZDCQqFG2uhOxCe66hWg0rKSmJ4cOHn2K7eC4MGjSIBx98kCVLlnDCJwd8MuPHj2f58uWnmGZcyhQUFBAbG9uoc1atWsXTTz9NYWEhN9xwAwsXLmwVUZQuXbpgtVobtIa/d+9e1q5dS9euXets79GjB2vXrmX16tUNHsk3NY0ZgecDTwGXAQOAjcB3giD09u2fCTwOzAAGAiXAz4IgBAIIgtAdWA8cAK4DegLTgEqgyav3nb716r1NkGRRQ5hMxqtxcayurMR1gUjQtjalbjdBEgmqRqwNfWY0Mj4khJfj4rjRZ1rTWvRWq9ljtZ71uHUmEwdsNj5LTKwTpPuq1fwlOJgwqfScM9qbmQvquYbqpLGcnJwmvebQoUMZM2YMP//8c5Ne92KmuLiYmDMsKZ6MwWBg3bp1vPLKK0ydOpWrr766jmJeSyKVSuncuTP79+8/67FLlixhyJAhTJ8+vc7222+/naCgIG688Uauuuqq5mrqGWnwW1UUxf+IovijKIqZoihmiKI4G6gCrhKq0/keAxaKovitKIqHgLuBQKAmPW8EUCaK4j9EUTwoiuIJURR/EkXxIVEUDU38uQiTyeijVpPvdDbpdQOlUiJlMo43kd3kxc5+m+0U284zYXC7yXU66daKQbs2AzQaDG43P52hRMjq9XLYbmdccPApSzRSQWBscDB3h4cT3QaUm07mQnuuAX/ZTlOWMkH1VHlWVlaTXvNi5tChQ41y9vrvf/9LTExMqwXtkxk5ciTLli07rfFNDRkZGQDcdNNNp6zTR0VFcdddd3H99dcjbc7lvVpLcidzTvN5giBIgYmAFtgGJAPRgL/GQhRFmyAIW4BBwPtAMRAhCMJ1oihuauB9HgTO2QH+9tBQFpeU1OvDXO52k+l0IqN6qrMho0SPT0+9Xee6YRS4XKQ0sBTL6vXyL72eEYGB5+Qn3hyoJBJmRUUxq7CQvmo1kSf9u7tEkddLSgiXShlxgSeotdRz7btXnWdb++yzDW6nlmqfg33z5jHhNBKnHlEk2+lE73YTJ5eTIJc3aAmtymQi0WZrVFsuVURRpDg7mx5ff43Wp1F/JtJsNlbp9SyIjW0z3++1wAmvly+feIInIyNPKSvLdTpZXFjIzMhIIl58sXUaeRYaFcAFQegFbAdUgBm4WRTFg4IgDPIdoj/pFD1QI4H2b2AksFEQhBJgF7AJWFZfT10UxQ+AD3z3Fs0vvNCY5hIvilQ9+CAZ06YRGxtLWVkZXq+X1atXs2fPHgA6duyIzWYjMzOTCRMmEBcXh06no1OnTqe95nfffUeCRALz53Oqyno7J2P7/HOUISGY6zEoqFHAstvtzJ07l5RBg/jL/fdjbkOldmFAp3/9i2+jorjjjjsoLS3F7XaTn5/PunXr0Kam8vdHHsGpUNC08z2N5BxrUVv6uYZTn+3GtnmgRsOaykomhIRg9XoxezxkO52sqqzkiN1OrFxOnFzOcYeDMo+Ht+Lj2WaxcEtIyGnd5cweD9+bTIxphUSkCxU3dfM96uwTRaRUJ4zts1r5V0kJT0RGktDCUqNn47bQUCZlZzPN60UhCJR5PNh8M2ory8uZotMxsI0Yl5yOxo7AjwJ9gRBgAvCZIAhDa+0/+UEUaraJougB7hUE4VlgGHAl8CQwWxCEIaIonj4F9DwoKirCYrGwdu1ajhw5gsuXjNSjRw8WLlxIWFiYv24vMzOT559/3n/ul19+eUqPLC8vj/Xr1/NCAzsSLpeLxx57jMmTJzN48OAm+lQXDl6vl4MHD/oFNU4mNzeXp59+mvj4eARBICkpiSlTprRJV7fExES+++47du7c6ZfWDAkJYfjw4Vx33XUtXv/ZxFxQzzXAUZ9p0WslJWyzWNBKJMgEgVtDQng+OtpfxieKIu+UlvJwfj5QbTk84jRB+qvycjooFA024dnhc8WbHxNDRBtLTGwJDtvtRMhkBNTzu1+o17PLauVKjYY0u50nIyPp2wYDYc3v5B8FBVT5vCzsXi89VCrmxsQ0avmvNTgvP3BBEH4BcoAXgePA5aIo7q61fx1QKori3fWcHwpkAOtEUbznLPc6rWfw2cjNzWX//v0kJyfTo0ePMwaHGmOEsrIyJk6cyM0334zH40EikWCz2ViyZAndu3fnpptuatC9RVFkxowZGI1GRo4cyXXXXUdCQkKbDFDNwaZNm/jpp59YsGDBaT+z1+vl8ccfp6Kigocffph+/fq12UAoiiJHjx5Fo9G02X/D+jyDG0tLPte+48U1KSmNaqNHFNlmsVDu8TAoIOCMKn1uUeT7yko+NhoB+DAhgSi5HI8oIhUEshwOnios5N2EhAZXCRS7XDzoc0JbEBNDjFze5ioMmguvKDKzsJBhgYHcWM+MRanbzX25udwcHMwNgYFtbuRdG6vXyyGbje4qVZv1sxh74kSz+IFLqM40zaJ6LWw4sBtAEAQVcA3VvfHTIopiuSAIRVQvazULiYmJJCYmNujY5ORklixZQkFBAfPmzWPHjh3k5eWhUCiQyWSEh4c3aiQtCAKzZ8/m8ccfZ8OGDWzYsIF33323zSRxNDf79++nd+/epwS7/Px81qxZg8fjwWKxMHXqVPr3799KrWwYgiCQmpra2s1oKdr8cy0VBK5pYGmhTBAYFxLCuJAQviov57GCAmJkMjKdThLlcso8HkYGBTUqAEfL5YwIDOSnqipmFRXRT60+o8jTxYRdFMlwOJh3ms/7g8lEut2O0e0mWiZjYkhImw2KNWgkkhbzWGhqGvyLFQRhIbAOyON/WahDgTGiKIqCILxO9bRZOtW972epXk9b7jt/KtXTdKup7tWrgLuAXsCiJvo8TUJcXBxvvfUWOTk57Nq1i6ysLKKjoxk7dmyj6k5zc3N55513/H8fPXr0JRO8odql5+T6yPXr17Nt2zYyMzP5+9//zq233krUJe6j3ppcSs81wKTQUEYHBXHUbucHkwkJ1YI94xrp9/1dRYXflEYhCNwVFtYMrW2bVHg8aCUS5LU65ka3m7UmE99WVHClRsPY4GB6q9WNKh9tp/E0ZgQeDXzh+7OS6rrP0aIobvDtXwSogbeBUGAnMEIUxSrf/l1UZ66+C8QCVuAYcJcoiv/zA2wjyOVyOnXqxP79+0lLSyMtLY2+ffsS0cBa3tzcXF577TVKSkrQarVcc801l4RWcg1ut5v09HTkcnmdIP75558D8OKLL5KcnNxazWvnf1xSzzVAsFRKf42GF3xOZHtstgYHcI8o8qPJ5J+OD5FIeCY6us1UTbQEB2w2zF4vR+12vz9BpsPBtxUVRMtkPB4ZibI9cDcZwhkqnhocwM+2liVWL6b/0/ff6fbvo7qG9IJi9OjRHD9+HKlU2iAVJqvVynvvvUdGRobfXnDBggXodLrmbmqbosYvt8YwQBRFfv/9dwAef/zx9uDdRrhUn2upIDAnOpovjEZGNTDz/KDNxuKSEmp0+ToqFLwWF9cm8yGak30+YaOaBLAKj4cNVVXEy+XMj4lpD95NjHgGJchLI+viPNBoNMycObPBx2/dupU9e/bQqVMnQkNDmT9/fosK9bcVli5dCuD3Yk5PT+e9995jzJgxbX69u51Lg/4aDf0bkRn9TmkppR4POqmUKeHhjL2ElsNqMHk8bLdauV6r9WdoLy0rY7fVyuK4uEsmka+t0P5tNzHXX389ycnJGI1G+vbte0kGb4CcnBwSExPR+hKNauwCq6qqznRaOz6qqqrYtGkTffv2bXASZjvNy8uxsRx1OAiUSFpV3rc1cfiqlq6rVW6XqlTym9mMt11eukEcdzjYbbUyPjj4vK2lL83o0oxIJJJ6RWAuJaKiovzldjabjXnz5jF48GDuu+8+AJxOJ0ePHkWpVNKlS5fWbGqbJDs7m6+++gpBENoDeBshSCpt06IeLYHN6yVMKqWnrwOz3WLhc6OR56Kj6ezbVuxyket00lGpbB+Rn4b3Sks56nAwVKsluj2At9MW6dq1KytWrEAmk7FmzRoKCgp44IEHUPjqQZcvX85PP1UrdH788ceoLtERTX306tWLc9E9aKed5iReLkchCMwrLuYvwcG85EsErN2xqamPHxUYyENt08CnVXklLu7sBzWQ8xJyaUnOVcilndbB6XRyzz33+P8eGRlJSUkJ11xzDVOnTsVut1NeXk54eHh78G4izlXIRRCEGGAhcCPVpWQngGmiKP7m2y8Ac6jWLq/JRJ9eW2VNEIRrgeeBPoAGKAJ2+K5TvxMM5ybk0k7r8W15OZ/5klSlQI3VxpzoaPprNOhdLkQgUiY7bxvndqqpT8ilPV2wnWZBoVDw+eefM2XKFHr16uWXHy0rK0MikaDRaIiLi2sP3q2MIAghwFaq5VHHAN2otg6tbfXV5ixF22k9JoSGsjQxkVGBgXRSKv1yqm7fYDBKLie6gQYy7Zwf7VPo7TQbMpmMYcOGMWzYsNZuSjv1MxMoEkXxrlrb/J6aJ1uK+rbdTXUQv51qRzK/pWita5yglotZOxcXETJZ+/R4G6B9BN5OO5c244CdgiB8LQhCiSAI/xUE4WHhf8XNp7UUBWosRaGWpWhLNryddi4JziBF2z4Cb6fV8Hq96PV6oqKi2qyJySVACvAQsJjqdfC+wBLfvreoDt7QxJaiJ/uBN9YquJ22jdlsxuVyNUp6up0zUI9V8EURwEVRbBI1JIvFQsAFKmp/oWC1Wlm3bh2rV6/2b5s5cyZ9+/ZtxVZd0kiAPaIoPuP7+z5BEDoD06kO4DU0qaVoQ/3Am+LZdrvduN3u9nyLZiY7O5tPP/2UjIwM/7bT2TK303RcUAE8MzMTALVajcfjwWq1snXrVrZs2ULnzp0ZMmQICoUCg8HA4cOHKS8vp3v37iQkJJCUlITD4eDAgQMolUrcbjcKhQK73U5lZSV2u53t27czbtw44uPjcblceL1eBEEgKiqKbt26tfKnv7BxOp18//33fPPNN/5tt956K3369KFDhw6t17AWxGw2k5mZyY4dOzhx4gR2u53IyEjGjRtHp06dUKlUOJ1Of6ndmSgvL8disWC1Wjly5AiBDfSxPg1FwOGTth0BHvX9f7Hvz2iqDU9qiOSkUbkoigXAMmCZL5hnUB3I7zlbI06cOIHX6yUgIACbzYbBYGDdunUUFBRwzTXX0L17d+x2O1lZWWRlZSEIAn379iUhIQGdTkd2djaFhYVoNBocDgdqtRqj0Yjdbuf48ePk5eXx8MMP4/V6cbvdiKKIXC6nW7duhIeHN/Y7a6cW+fn5fPXVV+zduxeoFm0aM2YM/fr1uySCtyiKFBQUkJ6ezu7duykuLkYmk9GzZ09uvPFGv39GTcw5E16vl+LiYtxuN1VVVezYsYPhw4fXe/wFVUaW4is1sVgsyGQy5HI5vXv3Zvjw4Rw9epTdu3cjiiJhYWGkpqYSEhLCgQMHKC4upqCgAKlUSu/evfF6vchkMhwOB0qlktDQUORyOWq1mj179uByuZDL5UilUrxeL1u2bKFjx4507dqV8PBwtFotDoeDPn36EBYWhrSN2+W1Jna7nfT0dPR6PZ999hkA3bt35/777yfmIrJfdLvd/PrrrwQEBJCcnExERAQHDx4kMzOT/Px8jh49isvlIikpiT59+tCvXz/UajV79+7lt99+w2AwEBERQX5+PiqVitDQUJKTk5k6dar/9+X1etmwYQM7duygsLCQoKAgAgICkMlkSCQSDh8+3OgyMkEQlgMJoiheU2vbfGCCKIrdfWvhhcASURQX+ParqE5ie1IUxffPcO0DQIYoirecpQ1iTSfOarWiVqtRq9WMGDGCTp068euvv1JQUIBKpSI2NpYuXbpgsVhIT08nNzeXyspKoqKi6NixI1arFYVCgc1mIywsDJVKhUajoaqqisOHDyOTyfzfV0ZGBoWFhQwaNIjo6GjCw8Nxu92Eh4fTtWtXNBrNJRGAzpXCwkIsFguffvopWVnVeY/jxo1j/PjxF5UCZVFRETt27KBbt27ExMTgdDo5cOAAubm5nDhxgtzcXIKCgkhMTOTaa68lISEBh8PBjz/+yKFDhxAEAUEQqKioIDg4GK1Wy/jx47n88sv99ygrK+Pbb7/lwIEDSKVSFAoFGo0GhUJBnz59WL58+Wmf7QsqgLdWHbjZbCYjI4P8/HzKysr8cqDp6emYTCa6du1Knz59CAgIQCqVolKpiI6OJi4uDvkZnGQudiorK/noo484cuQIXq+Xm266CUEQ+PXXXxk+fDhjx45tsbbU9GgB9Ho9iYmJVFZWolQqcblclJSUUFRURE5ODkVFRURHR6NWqzl+/DhQ3REB0Gq1fuU4r9dLVVUVubm5FBYW+hX4CgoKqKysJDk5md69exMfH0+XLl3QarX19sAtFgt6vZ64uDgcDgfvvPMOBw4c4NVXX2Xjxo3s2LGDqqoqUlJSuPnmm+natesp1zqXOnBBEAYC26g2K/ka6Ad8BMwSRfFt3zFPAbOpHknXWIoOAbqKolh1BkvRmcCdZ3Mla81nu6CggMzMTPR6PUajEY/HQ1lZGTk5OQiCwIABA+jYsSMymQypVEpgYCAJCQmEh4dfssHd6/WSl5fHM888g0ajwW638+yzz7Jx40YOHTrE7NmziWtCsZKzYTabkUgkFBYWEhgYiEqlwmw2ExQURGlpKQaDgcLCQo4ePYrb7aZbt25kZ2djMpnwer3Y7XYUCgUREREkJCTgdDrxeDyUlpb6j7v88svJzs6mpKQEr9fLwIEDSU5OpkOHDiQmJqJWq0+bxyOKIsXFxXi9XqKiosjKymLOnDl07NiRqVOnsnTpUoqLi7Fardx4441cffXVftnp2tT3bLcH8POkZlr+8OHDOBwOvF4vNpuN/fv343Q6+fTTTxs0Jdqc1LQpICAAt9uNVCo968untLSU//znP/z666/+bffddx8DBw7E7XZjNpsxGAxERkYSGRmJSqXC5XLhdDpRq9Vs3bqVd999F4DY2FgKCwtJSEjg5ZdfxmAw8PTTT/Piiy8SHR1dXxPOG7fbzYkTJ8jMzGT9+vVYrVasVitBQUHY7XZCQ0MpLS0lODiY6OhooqKiiI+PJyoqiuPHj+N2u+nZsydWq9XvWW40Gjly5Ih/dBYYGEhsbCzx8fH+aWxRFLFYLH4d+HPhdl/SSlRUFAkJCUyePJnQ0NAzruOeh5DLGGAB0BXIpXrte4nPiay2kMtU6gq5HPLt70d1qdlg6lqKvi2K4rIG3L9NPtt6vZ59+/aRn5+Px+PB4/FQWVnJwYMHGT16NHfeeWdrNxG73Y5UKkUul/tnDs/G/v37Wbx4MU6n07/t7bff9ucJpKenExoaikajISYmBkEQqKqqQq1WI5VKmT17NtnZ2QAkJCSQn5/PlClTuO6661izZg0HDx5k9uzZzfWRgerBQWZmJv/973/Ztm0bNpsNAJVKhUwmIyAgwN9R1+l0xMXFkZCQgEKhYP/+/XTs2JHg4GAUCgXBwcE4nU6ysrIoKytDpVIhlUr9s2ARERH+d7jT6UQURZTnaB9bUlLCY489hlarRRAE/0g8KCjojDO57QG8BXA6nWzatIk///yT48ePM3HiREaNGtVs97NarchkMkwmE1VVVZjNZgoLCykpKfEHaZlMRmFhITt37jzl/H79+iGRSKioqKBfv37odDpiYmJQq9Vs27aN7777Dqh+KGpeFGq1GplMhtfrRafTYbPZ0Ov1KJVKpFIpZrMZqVRKTEyMfw1So9EQFhbGjTfeyJVXXskff/zBv//9byZMmMANN9zQLN+NxWLhgQceAGDYsGEMGjSI1NRUrFZrncDq9XrbZAZ8aWkpR44cQafTkZqa2qDR3rkG8NbmQni29Xo969ev5+DBg7jdbp588slmG2V6vV7MZjNqtRq9Xo/dbsdoNJKXl4fNZkMURVQqFW63m7Vr1wIQGhrqt/ANDAykR48eGI1GdDodiYmJxMXFERUVhdPp5Nlnn/XfS6FQ4Ha7EQSB4OBg7Ha7fxRbVVVFRUUFQUFBmEwmRFFEo9EQFBRESUmJvwObmJjI3XffjcfjYcuWLaxdu5bPPvusWWYfRVHk0KFDvPTSS0RGRjJkyBCuv/56lEolgiDUCaxt9dlOS0ujvLyc1NTUBttMtwfwZsZisTBr1izi4uIYOnQoqampBDXQZ/hM5OfnExAQgMvl8q+JFBYW8vPPP7Np0yYAQkJCCA4OJiAggJiYGKKiovB6vYiiiMvlQqVSYTQa/S8Fo9FIfHw8HTp0QBRFRFEkIyODyspKiouLcTqdaLVafzbp448/Ts+ePQFO2/P0er1YrVZsNhvh4eFkZWWxZs0aYmNjiYqKoqKigszMTIqLiykrK6N79+5cdtllXHvttee1Vma320lLS/NPWdvtdioqKigoKMBkMhEaGsqdd955yWS4twfw5mHbtm18/PHH3HDDDfTv358OHTqcd3ByOp0UFRUREhLin+Exm81kZWXx9ttv+zvCkZGRqNVqQkNDiY+PR6PRIJFIsNlsyGQyRFGkpKQEuVyOzWbD6XTSr18/ZDIZwcHBHDt2DJPJhF6vp6SkxD+SzMnJAeDTTz/F7Xb7O+C1EUURj8dDRUWFPy9hzZo1FBUVkZiYiEajISsri/z8fEpKSnC5XAwaNIirrrrqvAyKRFGktLSUgwcPYjQaqaqq8ic25uXloVariYqK8o9kLwXqe7YvnkyDVqaoqAiDwYBEIkEul59X8P7ll184ceIE3bp1809D1yYmJoaOHTty//33M3To0CZJorvqqqvO+VyJRIJWq0Wr1eLxeHjuuef8+3r16kVsbCxDhgwhJiaGyMjIM04/GY1GfvrpJzIzM1EqlVxxxRUMGTLEv//gwYOsX7+e4uJiioqK6NKlC507d/YnLAUHBxMTE0NMTEyb7H23c2HhdDo5cuQIVquV48ePM3bs2HMO3l6vl9dee40OHToQHBzMJ598Ume/XC6nY8eODBo0iKFDh5KYmHjev+FevXqd9Zj6lvhqZvBqRok5OTmsXLnSv//aa68lJiaGK664gsjISMLDw8/Y3n379rFz505KSkqIjo5mzJgx/lkMURT5+uuv/blGLpeLAQMGEBUVRWxsLCqVCp1OR3x8PMGXoA97fbQH8PPE6/Xy5ptvcujQIaB6qs1gOK12RYPR6/Vs3ryZzZs3M2LECPR6Penp6TgcDqC6s1BUVESvXr3aXAZ8bb9vnU7HgAEDiI+PJz4+Ho/Hw2OPPUZMTAylpaUolUpefPFFFAoFGzZsYN26dZSWlpKQkECnTp3Iysrivffeo3v37uh0On+m9759+/z3yMjIYPr06f5SjXbaaSqKi4uZPXs2arUagMOHD1NVVYXmHC1FBUFg7969/nKrSZMm8euvv1JWVobX68XlcpGenk5OTg5//etf21wH9PDh6mrDmuS+nj17kpiYSHR0NN9//z27du1CrVaTnp7OPffcw4gRI7Barbz55pscO3YMm81Gv379CAsLY/PmzRgMBqxePekAACAASURBVGbPno0oipjNZtasWVPnfoWFhUyfPr01PuoFQ3sAP0/Ky8vZtWsXUVFRjB07lo4dOxIXF3deAhR/+9vfmDBhgj/xrLarlyAI/qn0tjh9FBISwtKlS9m1a5c/i/P333+noKDAn91ZWVkJVAf4nJwcKisr2b17N6WlpUgkEkpKSigrK0OpVNKhQwfmzp1LWVmZf50uNjaWkJAQgoKCKC8vb3MvunYuDvbv34/NZmPAgAF069aN5OTk8xr9CYLA8uXLqaysRCaTkZaWVqezr1AoUCqVJCYmtrmOOcDo0aPp1asX+/fvx2QysWfPHlatWkVJSQmiKOL1ev3H5ufnk5mZybFjx8jIyMButyOXyzly5AgymYzIyEhsNhv33nuvv5xXp9Oh1WoJCQlBEASio6ObTKTrYqV9DbwJ8Hq97Nu3j7S0NLKysigsLEQqldK5c2ciIiL8pUo1pScVFRW4XC60Wi16vR6LxYJKpSIlJQWdTkdwcLD/xyyTyXC5XGzZsoWlS5eSkpJC3759CQoK8te79uzZk4SEhNb+Gs6Ky+XCbDZTVlZGcXExmZmZ/Pnnn/4RelRUlP/zQ/Uat8lkIiYmhvj4+PZAfRba18CbnsrKSnbs2MGxY8fIycmhpKSEpKQkIiIiiI2NxW63+6d3DQaDP5FTo9FQVFSEw+EgOjqapKQkgoODCQsL81cT1GR3P/PMM5SXlzN48GASEhIICAig5r08ePDgc854bilEUcRms2EymfwlW3v27KGiooIOHToQGxtLREQEOp3On3xns9mwWq306NGDgICA9iB9FtqT2FqYrKwsDAYD+fn5iKKITCajtLQUi8VCTEwM/8/eeYdHVeWP+z3T03tIhYQunQUsIAprXQHBsihiYb9YsCKrP1FRBNu6oiKyIqhrWV3sioVdG8iKK4oIKkVaEkghpJdJMi1zz++Pe2eYJBOSkAJZ7/s88yS3nnNn7jmfcz7tGI1G7HY7KSkpREVFYbfbycnJoaKigoqKCsrKyqirq0MI4fc6ra2tDVrW5Zdf3qUx1TonJroA73x8NvGqqioKCgoICwvD6XRSUlJCWFiYPwFHbW0tvXr1wmKxUFBQQH5+PtXV1ZSXl1NRUYHL5fL7y/hyDARj2bJlunlIR3di62oyMzPJzMxskG2nrfi8yM1ms3+EqigKFRUVKIpCdHT0bzpRjI5OV+PLjNVeFEXB6/U2aL8ul4uKigpCQ0MJDw/XNU46LaIL8BMYIUQTD1GDwaDnbtbR6eYYDIYmAtpqtXZqYiOd7snR/CG6lQr9eNdBR+cE56CUMuN4V6Kt6G1bR6dFgrbtbiPAdXR0dHR0dI6gG1l0dHR0dHS6IboA19HR0dHR6YboAlxHR0dHR6cbogtwHR0dHR2dboguwHV0dHR0dLohugDX0dHR0dHphugCXEdHR0dHpxuiC3AdHR0dHZ1uiC7AdXR0dHR0uiG6ANfR0dHR0emG6AJcR0dHR0enG6ILcB0dHR0dnW6ILsB1dHR0dHS6IboA19HR0dHR6YboAlxHR0dHR6cbogtwHR0dHR2dboguwHV0dHR0dLohugDX0dHR0dHphugCXEdHR0dHpxuiC3AdHR0dHZ1uiC7AdXR0dHR0uiG6ANfR0dHR0emG6AJcR0dHR0enG6ILcB0dHR0dnW6ILsB1dHR0dHS6IboA19HR0dHR6YboAlxHR0dHR6cbogtwHR0dHR2dboguwHV0dHR0dLohugDX0dHR0dHphugCXEdHR0dHpxuiC/BjQAixSAghAz6HhBDvCSH6tPE+s7TrwzuxrhsC6lkvhDgghFglhEjoxDJfEUJs6az7N1NmqBDisBDizIB9BwKe3S2E2C2EuF8IYWl0bZwQYql2vkv7PV8SQvRqdF6qEKJGCNG7q55Lp/MIaMefBTn2rhBiQweWdZcQYkKQ/VIIcUs77iuEEDnaffoGOX6yEGJRkP2LhBClx1puC3Xq9DKFEHcIIb4K2Pb1pbuEEIZG5z4hhDjQzH0Wa9c9FORYiBCiWAgxviPq3BnoAvzYqQJO0z53AiOAdUKIsONaq+B8hVrPCcBTwAzgjU4s7yFgVifePxi3AjlSyv802r8a9dnPAd4EHgAe9R0UQqQAm4FLgb8C5wJ3AycDW4QQg33nSikLgLeAhZ33GDrHgXOFEGM6uYy7UNtfR3MakKH9f3mQ4yejvvNdSXNlvgic196baxOe+cBjQQ6fBFzShtv5vrMZjQ9IKR3ActT+7ISkWwpwIUSMEKKoNTNebfT1TCdUo15K+Z32WQ1cA/QCLuiEso6KECKkhVPKtXp+I6V8BlWAnaUJrw5HSpklpdzRGfcOhjbivhl4KcjhQu3Z/yOlXAS8AswRQgjt+AogGjhVSvmcdt4/gLFABfB6o/u9DMwQQsR1wqP8pmmpXQshRmuzpQxte7IQ4qfGM642Ug78Aixoxz2apRVts73MAGqB7wkihE4kpJT5UsofO+BWMwAX8HmQYxuAe1tzEyHEKKA/sA7o08wg7hXgDCHE0GOqaSfTLQU46g/0LyllVivO/SswqwvUnr4XM8O3QwgxXQixXVPL5gkhHhFCmI52EyHEY9o1NUKIfCHEP4UQSY3OOSCEeFJTB+cD1W2s68/a3/RG9x0ihFgrhLBrn3eClD1MCPGtEMIphNgphLhACLFFCPFKwDlNVOhCiBFCiHVCiDohRIX2XD0CjmdonfN0oar4q7TnX9yKDvr3QCrwfiue/UcgDIjXBMGFwDJtdu1HSlkNPAKMEEKcEXDov6idfrDZjk77aEu7Rkr5CeAFZrajTIk6oL2wpU66De/wTCHEP4QQlcDHmvo2DnhAHDHpTAi4tVEI8agQokRT2T4rhLC2VHEhhBH4I/AR6uB1kBBiWMDxWagzSALK3dDMvcKEEH8TQuzRni9Hq0dko/OkEGJuc/U9WpkiiApdqOarVUKIQq1P2SOEuL2FR78GeF9KKYMcexi1zU5u4R5wZCDwJ8BJ8Fl4HvADcHUr7tfldDsBLoQIBa4F/t6a86WUJagjtRs7s14cEdyHAYQQ56KqW7cCU1Ff6juBv7Vwn0TUDmUScDvQG1ivNdZArgDOBG4CLmtjXXsCCnDQt0Oo9rP/AjbgKlQV+GDUDkho54QCnwEhqC/7w8BS7X7NIlR7+wYgVKv3rVrdvxCN7NHA40ANqkr7dVR19aUtPM9ZwF4pZVkL54H6O7lRhfB4QABrmjnXt98vwLVO4zvg7FaUpdNK2tquA3gZuK2dxb8D7OUos/A2vsNPAHZU4foocBGqye3vHDG7bQ04/w4gBbgSWALcAMxtRb1/D/RANQ29C3hoKITWAk9q//vKvamZe4UCRtTv4A/A/dr93wly7tHq2+oyNe3EBmAaqpr6Au3aZjWDQjVRngJ828wp3wNf0oJGRevTLkMdMOYB/wIua2ay8C0nanuXUnarD2pnXgaIgH0DUUehVaid/yZgaMDxq4H8DqzDIqAUMGmf/qh25mogWTvnO+CrRtfdhTpjSNO2Z6HOAMKbKceIOrOUwBkB+w8AhYCtFXXdALyn1dOKqho+ADzX6LzXgD2AJWBfP62+k7Ttm1GFX2rAOSdr9XslYN8rwJaA7ceASiAyyHUztO0Mbfsfjer1E/BmC8/4OfBOkP0HUDsEE2oHNVl7R97Vjt+tlRl1lHtXBvmuFgEFx7st/C99mmnX5wO7UWdHG1EFpwQyAs7pqe3rewxlLgJKtf9nae96f237XWBDwLlteYc/CFJWKbAoyH4JfN1o3xrgu1bU/yVUM49F214L5DT6Dm9BG3c29+zN3NsEjNPq17Mt9W1tmaiCXwFGtOE3G6vVYXCj/bO0/eGovgYSOEs79gRwoNH5Z2jnTNe2/6htTwhS5iygnlb0t1396XYzcNRZ049S+2aFasf9BvXLPwf4HfAsqvDzsRlIFW30Em+BONQRrwdV8PUGLpNSFmqz5d/RdPT6FqrW47TmbiqE+IOmoq5CfWnytUP9G526TkrpbGVdL9bq6USdZRfRdNZyNvABoAghTJqqPwdVCI7WzhmD+t371c1Sys3a/Y7GycDnUlVLB153ADi90bmN7Vq7gLQW7p+E2kEG48+oz14LfAx8jToQaQ+lQKJPM6HTITRu1+moguELVAfR5ajamQZIKXNR378zGx9rI68DucA9zRxvyzu8to1lt/md11TWF6EOFtza7jdQBxGntrF83z2vEkJsE0LUoLaZb7RDjfueY2mjwfg9sE1K+VMbrvGZ9Jr1ZpdSbkDt5+47yn18vgOfaNufoGpNgvkRlKLKk06L3DlWuqMA74U6+/RxM+oP8Ucp5WYp5V4p5euNXopD2t+MDqxHFapAG4368mZIKf+tHYsHzDQVbL7t2GA3FKoTxUeoQvsqVEHva4y2Zu7VGtZrdT0d1SfgZFT1dyDxqJ6dnkaf3hyxlScBJUHuH2xfIMnN1LeIpt9FZaNtN02fvTE2VFtWMF5HffZhqLOnKVJKX118A5FewS7U7H9RAef5cHFE+6LTMTRu1zeiCtTbpJS7pZRvAyubufYQ7WzbUsp61AHClaJR+KBGW97htrRNOLZ3/g+ozpf/EkJECyGiUbVtLo7BmU0IcRHwD1Tt5R9R+52LtMON63Is9Q1GHA1/89bgK6e59u7jEWCCEGJs4wPa5ORS1IGIRfvurKjmwUuFEOZGl/jKOpZn7FS6YwcUQsMGMhL4JmAUGgxHwLUdRb2UsrlY51JU4ZfYaL/P4aW8mesuQhWGlwXMRIIKF1SNQ2upCKjrfzV73u1CiL9J1f7jq9MHqKEejfGNdg8DA4Icb2lkWkjT7wLU76MjvFLLUTuzYBQd5XfaiPo9XojqidyYqdrfrxvtjwZqpJSetlZUp1kat+uTUNWyge/5pmauddAxbfsl1Fnb/CDH2vIOt6VtHis+IR3MRj1dCDFPSultw/3+CHwvpfTbq0VAToVOogxoErveAr6+M5qmAwk/Usp/CyF+RP09dzU6fA7qhOUijgxSAjmXhloUX9/SXL993OiOM/BSICZguzVqTN8IuaWZYoegNZwfURtFINNRbT7NdUQhgKdRp9UeD9vm8MVozgvYtw4YgqrG3NLoc0A75wdgtBAi1XeREOJkjgxMmuN74DwhRETAdWNQZ03fNHdRG9gDZLb1Iu25PkIdzCQHHhNqrOl9wE9SysYCPAPV6Umn4ziWdu0jlg5o21JKF6q99P9QZ9yBtPcdPtZZahO0d3Myqsp8YqPPn1Hb48SAchFCtFR2CE1ntcfa97S2zHXAyEDP+VawR/vbmvb+CKqm4neN9s9A9R1o/N1NBIppqsHIAMpk65xku5TuKMC3AYMCtrcCpwfxBA1kCOqMeHtnVqwRDwAThRAvCyHOE0Lciepp+YKUMr+Za74AegohnhZCnCWEuB81ZKJD0cp/FbhOUx+B6mAyBFgrhLhUCDFBC4d5JSDk5WXUjvYTIcQ0IcQMVBV1CerApDme0v5+JoSYKoSYiRrytR3Vwa69/Be1IziW9/kmVHPId0KIOUKIM4QQV6EOsmJRPW0bM1orU6fjaNyudwGnNPIzaGLb1YREHxp6dbeHVai20Maq1/a+w7uBSVq7Gh04EDgGpqI6ZS6TUm4I/KBGuZRxRAjt1v7OFUKMEUIE06CB2vecIYRYIIQ4WwjxFGp0x7HQ2jL/gfr9fa61vYlCiP8TQgRL0AKAlDIHVRsyqhX1WAPs5Mhgxve+TAPeavzdad/fW8BULSrCx2ia93o/rnRHAf4ZcJI4kkhjBarn4dvay9JXCDFDCDEi4JrxwEYpZV1XVVJK+TlqrPBoVOep21E9optNmyil/Beq+u4S1Jnhmagj7c7gMdQZwY1a2XtRO8g64Hng38Bi1FH5fu2cOlTPYAfqi74I1bO+kqPEoks1lG8iqhPdG6hOhhuBc1owfbSWD1FnEOPaeqGU8hCqT8D7qF7pX6LaQrcAo6WUOwPPF0LEo3YeHTHw0DlC43a9EnXm87QQYoAQ4lJgTpDrTkV9RztkQKW940uD7G/vO/z/UH111qJqslojgJpjBrBPSvl9kHp6gLeBizVHt42ooV5zUbUIq5q55yrU/mkualvoher1fyy0qkzNCff3qP3jg6h9zl0c8VlqjvdRZ9ZHRdNkPtpo92QgAjXqJhivo8qTKeC3l5/FCdreRUNtbfdACLEJeF1K+ay2PRj1hfGFBmwHrpdaNjAhxB7gASnlm8epyv+zCCEyUdXJ10spXz6O9fgQNVSwvR7mLZVzA2o8f3/ZHRvPCUyQdj0JdebbC9UktQK1g830mXWEEKtQ++pgwl3nfxAhxEjUQVCalPJwJ5d1HuqAKEVKWduZZR0LrRLgmrrnIVSDfyKqumuulPIH7bhAVRlfj2rH+h64OXD2IoSQqGrsgVLK7ID9rwDxUspWzzSFEOcDy4BBLTlqaJ3AEmCY5mmq0w6EEPegjpAPosbg3oPqqT0wMMTmONRrDKpNrZeUsqKTyhCoKrnHpZSvdEYZv2Xa0q618xNQ1bWjNdWqzm8EIcRa1BC0o4WKdUQ5n6I6Uy7qzHKOldaq0H1J6K8BhqK6338Z4Mx0F2p2nltRQ3aKUTMUNbbzeFEdC9qFlPJTVBVWa2IPw4A/6cK7w5Cog7VPUWNzs4DfH0/hDaANJu+ihaxw7SQJ+CfNq9902kEb2zWojkw36cL7N8kddLJTslAzxW3iiP/DCUeLM3DtIezAJVLKDwP2/4hqs7gfdUb2NynlIwHXFAN3SilXafsk6kz4DuBkqSW1P5YZuI6Ojo6Ozm+d1szATahZaBpn/XKgJgbJRJ2Z+LPzSHUZtq9p6sm5GdUZoElGJR0dHR0dHZ3W02IiFymlXXMuuU8IsQM1mccM1Cxh+zmS2i5Y1rFUmnIvsEsIcb6mMmsWIcT1qHZ1IgyGUXblaJFKOjq/eQ5KKTOOdyXaSkJCgiwtbTYzpo6OTjNtu7WZ2K5CzVKUj2rH3ooaShEYIN9YFy+C7ENKuV8I8QLwmBAi2Hqugec+jxrShBBCftS7s1cE1dHpvlyYnd1c1r4TmtLSUlavXn28q6Gjc8JyxRVXBG3brRLgUl2f90yhLuUWqS3Y8RbqYhc+N/4kIC/gskSazwm8GNX5qTOyjOl0IVJKHFKiSMlBt5taRaFeSgxCoEiJW0pMQmDWPlYhiDAa6WEyYTU0b8HxSEm+202Bx4MXqJeSQx4PbinxSolRCAyAUQiMQJTRSILJRKzRSKrFQuhR7q2jo9MyHo8HKSVlZWWUlpbidDpRFAWTyYTLpSZtM5lMmM1mzGYzNpuNqKgo4uPjEUdZ56e6upqCggLKy8sRQlBVVUVFRQX19aqfsdFoxGAwYDAYsFgsxMbGEh8fT3R0NCkpKUe992+NNuVC1+LgaoUQMahe6XdxRIifgxqb58t2Mx41eUGw+xQLIZ5ADU1rLq1oExyKwgG3m/L6etItFtLNZv3H7EL2uVxsdzjwSslrFRXEGo14pMQlJfVS0t9qJdxoxIS6jJoJMAtBvZT86nJR6T0SGWQWgr4WC07tWgFEGo3keTyECMFhrTFHG40MtakZGdMtFsINBoxC8GNdHdscjiZ19HFBZCRVXi+FHg91isKi5GRSzI3XKGgbUkokqgrKBK1+97xSUu31ogAuKQk3GIg0Nl7e/bdNWVkZubm5APTr14/w8PDjXKPfDl6vl/Xr12OxWFi/fj379u0jISGBqqoq6uvrCQ8PJz09HZvNhsFgwO12ExKipp53Op389FPDxcRSUlIICQnB5XIhpSQkJASPx0NZWRkGg4HqajVg5eSTT8ZgMBAWFkZiYiJGoxEhBK+91nyQx8iRI4mKiqK8vJySkhIyMzO5+eab2y0HFEVBCIHX68Vkar1YdLvd1NTUIITA4XCQmJjYpuvbS6tK0oLZDagxl31Rvcn3AC9LKaUQ4mlggRBiN2pSj/tQ1+U+ml7sSdQsYNNQ43db5LIDBwCINxop93qxCMEVMTEkmkz0tFhI1QX6MVPl9WIVAps2c11nt5NoMpFkNhNhMPDv6mpeLldz+cdpwqfc2zBUN85kYn6PHhz2eFh0+DBnR0RQ6vGw3elsILxTzWYGWK2cHRFBiMHgF/JVXi/pFgsORWG/y8V/a2v5v7i4oIL3D5GRbLDbMQmBAKoUhS11dfysCfV/VTeMaqv0etskwP9dXc03NTXEm0wUejzsdgVf/GhFWhpplqNl8YVNtbU8XlzcYN+HmZn6uxrArbfeCkBsbCzl5eUMHDiQM888k7i4ODIyMnSBfowoikJVVRVRUVEYDAYKCwvJyckhKSmJ5ORknE4nCxYsoLJSXRfEarUCUFJyJEKrurqaWbNmkZqaypo1a8jOziYlJYWioiL27NnjP89oNBIZGcm0adPo0aMHVqsVg8GA3W7HbDYTHx9PaWkpP/30E3a7nWuuuQZDEE3ZkCFD2L9/P1arFbfbjd1u54033iAhIYFt27Y1ONdisbRJ6NbV1bFq1SoURcFgMFBaWkpOTvAoxNaYdWbNmtVge8qUKcyY0ebF4I6Z1iZymQ78BTU+sxzVk3yBlLJKO+5L5HIDDRO57Ai4h0Rd8vPdgH03omZXWttSGJkQQi5KSmKd3U6+x0OV19tEgEwMD+fG+HgUwCoERr2DbIKUkv1uN786ndQpCqNCQni+rIw9moB6IT2d3S4XTwYInDSTifz6hmH0jfc9mZpKT7OZDTU1PKs5JPUwmShqdN306GiujA26mmqH4JWS2bm5lHu9vJCeTo9jnHW/XFbGB1VVAIwPC+Og202u58jiY9EGA78LDeX/4uJaNZuu9no54HaTajYTYzRiOMq7WasoVHm9JJpMmNrwDl+YnY2Ustu99EIIedVVV7Ft2zbKysooKyvD7W6YnfTRRx+lR48eGAwGv5DRaYjD4WDHjh0UFRXh8Xg45ZRTuPPOOwEIDw9n1apVzJx5dKtlSkoKNTU1/lny6NGjmTFjBqGhoaxevZqNGzf671dTU9Pg2iVLlpCaGsxvuWOorq5mzpw5nHrqqdx4442Yj6FtO51O/u///s+/PX36dN5+++0G5wwdOpRhw4YxadKkVt3zwIEDeL1eUlNTsdmaX79FSkllZSVSSmLb2AdeccUVQdt2t0mlKoSQkyMjKfB4UFBtpAfdbjyKwsjQUL6vO5Lm3CYETilJMpn4S0oKcW1QabxeXs5PDgcuRSHUYCDeZGKgzYZDUUg0mRgWEkJsF6pIOpoLs7NbPKe/1co1MTH8s6KCXZpgDxECx1HeFasQmISgVosUeC4tjXCjkRUlJWwK+G36W60YAIsQpFosjA4JYXRoaIfNRhccOsR2pxrx2N5ZbqXXy9UHDwKQabFwc3w8L5SVYRGCESEh/DEmpoU7HJ2K+nq2OhxkuVxsqq2lrNGAdGpUFLPj4pq5WkWRkn0uFyX19TxeXNxtBfi4ceOorKzEZDJRXFxMcXExiYmJhIWFsX//fkCdHXo8HhRFYdq0aUyfPr3VZVRXV/PUU08hpcTpdBIbG0tqaioWi4W4uDiio6MZOXJk0Blhd6CsrMyvxTgaEydOZNy4cTz88MOtvrfNZsOptakxY8Zwww03kJ+fz6JFixqc179/f4QQhIWF0atXLyZOnEh8fHybnqM56urquPbaawG4+uqrOf/884/5XlJKvv32W5599llCQ0MZN24cp556Ks899xyxsbFce+21pKW1NpdQcPbv38+vv/5KdnY233/fJGV9qwY71dXV5ObmYrVaeeCBB4K27W4liRI0AWrR1KY9LRbCDAa/2ldKSZbbzZ8LCgA4XF/PmxUVxBiNxJlM9LVayXK5KPd6sQlBitnMqNDQBjP13U4newPVpS4XVV4vv2gv8B+jo7mqE2eQnUWu280t+fnYhCDMYMAiBIX1wZPT7XW52FJXx2mhoexyuQgRAlsLAtyl2cJjDQYmaOrOKKORe5KScCkK+1wuvKgJBQxC4FIUtjkcLC0pYXhICLclJBDSzs5zj9PJTu13uiQ6ut2DgmijkcaRD0s6YIYhpeSvxcV8W9swtXKmxUJvi4VBNhvJZjOxRiPFHg8xJhOKlH6nv29ra9nhcKBwxFQwLiys3fU6nvTv35+kpCRcLpffYSkqKsr/GyqKwsqVK/nmG3XlzjVr1qAoCjabjYyMDGJiYti0aRNhYWFYLBaGDBnSoIOsqKhg794jK8Dm5eWxY8cOvAGDpqVLl9KjR0sr4554rFq1iv/85z+Eh4cTGhpKXV1dk9mxjy1btnDGGWfQq1cv8vLysNls1GkDbKvV6ndOC8QnvIcOHcqgQYOwWCz079+f1atXU1ZWRkFBASaTCYPBgJQSu93OunXrWLt2Lddeey2nn356u56vvr6eTZuOuEqdffbZ7bqfEIJx48YxblzDtY+eeeaZdt0XGg40AhkyZAh9+vQhMzPTr0mqrq4mIiICj8eDxWLB6XTyySefYLfbqa+v56uvviIhIYELL7yw+WfpTjPw1oSReaTk29pa7JrKMtFkol5Kdjqd1CgKFV4vA61WEkwmPq6uZqDVyoVRUZR7vUjUmebfAmJSTagdeZjRSJzRyNkREZxksyEBt5TYhCBGc75oibL6ejbX1SGBs8PDsbQgsHzOTzlut38QEmEwHJNgevTwYb6rq+Pm+Hi+qanhZ2fDvDw2IfBIia87MwAxBgNlzcTeRxkMuDUPdIBJkZH8q7raHzdoE4IJ4eH0t9k4OTS0WTWzW1G4VPNteDI1lb4WyzE935sVFayuUFOgjwwJYUGPHi1+v+2hpL4el6LgUJQ2e73Pzc8nJ0BF/JfkZAbZbP7ndikKa6ureauiosmgqa/Fwn7t2uvj4qhRFE4JDSXTau3WKvTW2BsLCwvZs2cPRUVFuN1uIiIiKC8vJzs7G6fTid1u54wzzqC6upqNGzcyvXuxuAAAIABJREFUf/58cnJyiIyMxOl0Ul9fz5tvHlnPKDQ0lIiICMLCwujbty9jx46lR48euFwuFEUhKirK76zVEjt27GDv3r0MGjSIgQMHtni+0+n0e3enpaURFhZ2VPVrc/jUyjabjZkzZ/Laa681MT8YjcYGA5Xx48f7VeHNkZ6eTl5eHqNGjcJqtfLtt0dW08zIyGD06NH06dOHwYMHN2t/zs7O5r777mPMmDFce+21RES0fQXVxirvW265hbFjG+cH6zg8Hg+lpaV4PB4MBgMpKSmt1srk5uZy9913+7fHjRvHlVdeSVRUlH/foUOHeOWVV8jPz/f7HQAkJydjt9upqalh0qRJxMfH43K5OO+887Barf8bKvSOjgPf6XDwnCasB9lsGDUVcJXXy4VRUfwuJASHlNQqCjWaIP2mpoZ9LhdGIbAIQVF9PT0tFs6JiKBeSsK0H9siBJ/Z7WRYLJgAq8HAfpeLXU4nLil5Ji2NjCDOT3avl11OJ+9XVnLQ7cYgBL0sFg55PFRojTDRZCLOaCTcaPSHUCWZzaSazWRYLH779kG3mzKvl+L6euKNRrLcbuqlJFIIDjVS106JjOTq2FjeqaxksM3G0pISKr1eemizv1pFoU5KBlqt7Ha5/GaK/hYLtZpntVUIyrQBUh+rlX0uFw5F4SeHA4sQTI+J4cKAl9nH+5WVvKI5yAFNZr0tkeVyMU/TugC80rNnh5s5ct1uvrLbyXa7sWvfabjRiFUIvzCem5BAqtlMD5OJmKOUv7K0lC+rq/F1swuTkthcW0ucyUQPk4l9LhcfV1ezJCWFg263f0AZIgQPJydz0OMh2mhkdGhog/v+rwvw1iKl5LXXXuPHH38kMzMTm81GSEgIdXV1VFdXc+utt2K1WqmtrfV/tmzZwk8//URFRQVWqxUhBCUlJfz+97+nR48emEwmbDYbNpuNnTt3UlNT47djRkRE8M477wCqcHv00cYrWKqzSLvdzqeffsqWLVsoKysjIiKCHj16sG/fPjweD9HR0YSGhhITE0NYWBhSSnr06EFCQgKZmZkYjUb279+P0+kkJyeH2tpa7HY7QghKS0sRQhAXF9fEKeuxxx5DURS2b9+OEMLvnDV06FCysrKor69HSomiKA0Efc+e6rICkZGR1NbWYjAY6NOnD0lJSezfv59Dhw5RUFBAfHw88+fPJzExsUG5LpeLP/3pT/7t6667jokTJ9IW7rrrLvLz8/3bHZ0voL6+nq1bt7Jt2zaKi4spKirCZDJhsVgoKChASsngwYOZPHmyP4ytOdt7SUkJjz/+OAUBfdEjjzzCv//9bzIzM0lJSeHpp5/GYDCwatUqrr76av95U6ZM4ZRTTuHnn39mwoQJxDQyz+kCvJMoq6/n7cpKBKrQrlEUvFLylabCuj4ujnptpprvdrNPU+FPiYpiTGgoySYTkUYjRiFYU1nJS5oguyMxkZEhIQ1mrl4pKfd6qZeSsvp6arSY60pNoBx0uznodtPfaiVai4cOMxgwAXkeDz87HAy12XBISbbTyX63m+ZWePGFgkUYDARmwBtitVInJdma0Eo2mahVFKK0ELA/xcbyQWUllYpCksnENbGxjA0LY6rWqUyJjOTsiAjSLRa/g5ZbUfhzQQG5Hg9mIXgvM/Oo37lLUfiwqop9mnnjoNuNQ0oiDQb+FBfHWccw0m+OnQ4HqysqyPd4+H1EBIOsVkIMBgbYbJi1+q+z2/lV0/CU1NdzyOMh3mTi1NBQ0iwWv0PgTfHx5Lrd7HG52KepKpNMJn/I3FCbjQij0a9aTzKZeCQlhdlaeNXbGRl+c1EwdAHesWzZsoUtW7YQHh6O1+vF4XBQXl7Ojh07OPXUU+nTpw8A5eXl5OTksHfvXpKSkrjgggsYMGAA0dHRfkHscx7LyMhgzpw5pKSkNJi5+jQIDoeDiooK6urqEEJw+PBhSktL2b9/Py6Xy6/C7t27N06nE5vNxnfffYfZbKZnz57k5uaSm5vL4cNHVtkMnIELIfD1+X369CErK8t/3pQpU/j4448B1e4tpSQtLY2srCwSEhI477zzeP311wEYMWIE119/PVlZWTz55JMAzJw5kzPPPJOwsDC/Nmnv3r1+W/kNN9zAmWeeedTvPDc3l08//ZTKykoqKio4qPmgpKenc8899xAdHX0Mv2RT6uvrWbt2LV988QWJiYmMHTuW5ORkoqKi/PZvt9vN888/T2xsLDk5OVRVVVFWVkb//v35wx/+wPPPP095eTl9+/bltNNOY9++ffz44494PB6sVisWiwW73Q7AueeeS25uLrt37wbgtttu49dff+WLL76gd+/eLfoktEuACyGSgceAC1AXQ88GbpRS/kc73unLiZ6oArw5pJRBVcFPFhWR5XZj12b6Pu5ISGBNVRVZAeqvNzMyOj0hyTsVFex1uUjROpNdLheLkpPZ5XRSWl9PkceD1WAgxmjkJ4eD2XFxJJhMOBSFz+12/l5WRoTBgFez0b6cns6L5eV8Vl2NB/h9eDi3JybyaXU1K0pLidVCAHuZzSxPT/fX4+5Dh9jldLImM7OJh7aUkl+cTva7XOS73WxzODjJZmN8WBhRRiM9zGYiDQauy8ujwuvl/IgIKrUohSyXi+WtCPVqTL2UvF1RwWd2O3+KjWVceDhmITjk8bDebqdeSqZFRxOtDbBqvF6u0DqbnmYz+ZqzZWOujo1V1eVAjaKQos3W7V6v32Ne0Xw5Ig0G/lxQgF1RSDaZWJ6WdlSzwLEI8BOlbZ+IArw5grXtkpISHn74YcLDwxvMgM1mMzfccAPPPvusX3COHTuWW265pVPrWF1dzbPPPktCQgKRkZFkZ2czdOhQxo4dy65duyguLsbj8WAymVAUBbPZzJQpU1AUBbvdzvLly9m9ezfJyckUFhZyxRVXcPrpp7Nw4UJ/cpcFCxZw0kkn8ec//5ni4mK/Z/ptt93GqaeeCqie8bNnz2bOnDmcccYZTepZV1fHli1bOHToEAcPHiQrK4spU6aQkpJCbGwsycnJ5OTk8NBDD9GvXz/i4+Opr69n+/btDBs2jFtvvRVjG3MqFBUVsWLFCkJDQ5kxYwY9e/ZESskPP/zAnj17SEtLY8KECf7f+IsvvuDll18mJCSEhIQEf76CQAYNGsSZZ55J7969yc3NpUePHn7VeaB5pK6ujuzsbCIjI/3q9ua+m0CaE+At6hmFENHAf4FvgEmoS7j1Rl1tzIdvOdFZqPHhC1GXEx0gpbQHnOdbTrTrAuWOE40b+I91dSw+fJhIrQMONRio0o6FGwwcdLsbCG+Ayw8caLM6ua0050k9ppF6FuD8yEhAnTG/W1nJLs2O7puh13m9vFNVxScBMdgeKbF7vXypjUTLvV76WCzckpDQ4N43x8ezoLCQzXV1nNrIIWt9TQ2vlJUxISKC/jYbl0RHNxHINV6v38SwsbaW/lar36b/r+pqrm+lN6xTUfixro63KyuJNhpZmppKrGZG8P2GPvparZyuOeyFG43MS0hgaUlJg3CzJSkpSKCP1XrU5C+BAzWDEPTTQqUeTk4GIOMYfQOOht62j43Gv8P8+fPJy1OTUDZWI8fGxpKVlUXgROnbb79l/PjxDB8+vNPqGBkZyT333BP0WGPnrUAOHDjAunXr/M9TWFgIqEJs06ZNBOasz8/Pp0ePHhRrGqaamhrOO+88Ro4c6T8nJCSEyy+/nPfff5/Ro0cTGtCvuN1u/+x98ODBTJgwgVtvvbXBOQBbt24FYN++fX5Vv81mY/PmzRQUFPhV/S1RUlLChg0b+PLLL5k6dSrnn3++P079gw8+4NNPjyzNcfrpp/tV5RMmTGDjxo3s37/fL7yHDx/OhRdeSHJyMuHh4Q20KUfzLg8NDWXIkCEoisJdd91F375925XjoDXLiT4KnCmlDPqrayP0Tl9O9ESbgUsp2e50csjjYYjNxh6Xi2UlJSxLTSVT63ylloFsu8PBdoeDX5xOzomI4NaEBKSUFHg8/OJwsLKsDIClKSncd/gwtYpCpMHA7Lg4JjZSB1dotldzB3fmreUru51lJSX0tVr5fXg4K8vKSDaZ/B7tGWYztYpChNGIhAbOWj5WpqcHTaryU10dT5WUcEl0NBdGRiKE4JOqKp4vK+Ph5GSGteBQVFZfz9MlJaRqdciwWDjJZuMkzabZEqvLy/mwqop+VisXREVxmhbeJqXk/sJCahWFLLebM8PDmR0X5599+/C9E4UeD6eFhWEJSIzTFbR1Bn4ite0TaQZeU1PDjh07cDqdDB8+nBUrVuBwOBqoOZ1OJ1u2bGH//v1s2LABt9vNI488QmZmJvX19ezbt4+33nqLvXv30rt3by655BKWLFkCQN++fZk3b14DO6eUkvLycuJaCBvsLJxOJ88//zzfffcdkyZNwmQy8eGHHxIdHU1lZSVms5mTTjqJvLw8YmNjqampoaioYabsQYMGcd999zW5t5SSV155hW3btnHPPfeQrA1Kb7nlFqKiorj//vtbdODbuHEjmzdvJiwsDLPZTN++fRkyZEirvq/q6moef/xxSktLGTNmDJMmTSIpSV2DKzc3lwcffJC4uDjy8vKYN28eo0aNauK4Zrfb2bZtm18zEBMT06WJmI5ZhS6E2AV8irqy2ETUBv0i8KyWha03al7zk6WUPwRctxYolVJeo21L4I/AdCBOSnmWtv8VTlABXuP1Uun14tS8zfM9HkINBlLMZuYfOkSIEKRbLPw3IBzo/IgI6hSFw/X1VHu9GIXg5NBQTrLZiDYaSTSZmnWwujkvjzyPh4nh4fS1WrkgMtIf4lbj9fJMSQnf1dX5Y7IzLBb6W63YhKCnxcKo0NA2xby3lV8cDp4uLuaB5GR6BcyA7V4vPzscJJtMrK+p4ePqau5KTMQkBFvr6vjUbufMsDB6as54Z4SHMzLIDB+gWMvidsjjIcNiwYuqhr+og2xfR2Nufj7XxcUx2GYjz+MhzWzGIAQOReGyAwe4JjaWrXV1FGi2el+Smr8kJzO4ld7KnckxCPATpm13pQBXFIXKykqqq6v9A7RDhw7Rr18/fv31V1auXMnIkSMpKCjwzy4BzjnnHAoKCnC73RQWFjJgwAAGDBhAv379ADUULpjH8oEDB7j33nsBmDZtGiNGjKBfv35+AbBnzx4WL14M4M9WNnz4cBITE4mIiKB3794MGzasU1N0/u1vf8NoNDJ79mwsAW3bF3p38OBBfv31VwoLC7n44ovxeDx89tln7Nu3j1mzZlFaWordbufKK68krJmQxnXr1vH666+jKAq/+93v+OWXX3jyySc7zK7dHPv372flypU8/vjjOJ1OamtrSdA0gN988w0rVqzgjjvu4Mknn2To0KHs3LkTRVFISkrisccea/B9HC+OWYWOqlK7CViKaisbASzXjv2NLlpOFKCmDckH2kNZWRlvv/02P/zwA9HR0f5EBvEJCezY4U8ux+zZs/nhhx8Iz86mpqaG0NBQDOPH0y85mVGRkVgsFoYNG9ZkpBY8QhNOW7OGjMJCYhMTeeG993hBm5lHRkZiNpspq6vDZDJxyumnM2TIEOLj4zl48CBOp5Ntubm8/NNP9OvXj4iICE4++WRGjRrVod9L/tdfU7pyJZsnTkSccop/FCpQXwqAAVu38vETTxD75z/Ts2dPhgCjdu7kkUceIT4khNCICDZXVPB/l13GKaec0qSMUOCvmprsl19+obq6mnHjxlHTgZ3XBx98wDvvvENmZiYPPPCAv4H2/vvfeSUvj9raWgoKCvjDH/7AVVddpSYSWbgQZdIkrho6lLvuugvA791suP12agLs+ceNK65o6xUnTNvuCqSUbN26lTfffJOamhoiNZNQfX09LpeLcs2BtF+/fmRmZrJ3717i4uIoKyvj1FNPJSwsjAsuuICqqiqGDBniFwItERsby9ChQxkwYABbt25lzZo1/mOTJk1i7dq1gOqoNXz4cE455RTKy8spLS2lurqajz76iJdffpn+/fsTGhrKpZde2iA0qSMoKCjg8OHDnHfeefR/8UW/5si33OTvgO8KCshzuZiwZg1CCM4FnggL4+1XX8Wo5dV4ZNMmFiclBY3CmApMSUmhRlHYlJXFRTExpD3xRIc9Q5XXy+LDh9nvcvH/EhMZr6mmByoK1YcP88KcOfxHcy5+Ni2NdIuFg5pJ4KS33+aa2Fhe3b4dgDCDgYzq6i7Na34stGYG7ga2SCnHBux7FLhISnmSEGIsqh2tp5QyL+Ccl4FkKeX52rY/laoQ4llgHOp78RInyCi9rq6Ojz76iPXr13P22WczefLkJvYYt9uNyWTiP//5D2+88QaXXXYZ48ePZ9asWZx11lnMnj273fWoqanhvffe47PPPvPvi4yMpLq6mrvvvpthw4Y1e92uXbsoKytjzZo1TJ48mcmTJ3eoqicrK4tly5bhcrmw2WxMmDCBoUOHEhUV5VdnLVmyhLi4uAYJDSoqKigqKqJ///5kZ2ezcOFC7rzzToYPH95mJ5T2UFtby3XXXefffvzxx/1epy6Xiw0bNvDqq6/6j5911lns2bOHsWPHMm3aNObNm0dRURE9evRg6dKlXVbv1tDcKL05fkttOycnh3/+859UVVVxxRVXMGLEiAbtQkqJy+XCarWyYMECoqKiuOiii6iqqmLp0qU8+uijZGRktKsOUkqys7N56aWX/I5uCQkJ/rzjr776arMhSj7v8h07drBr1y7uuuuudmcLa1y3N998k40bN+KoqmKwzcYZ4eH0t1qJNBqJNBrJd7u5LT+fx1NT6RtgJtztchGnrQb4cFEROxwO/paeTnwr82N0VP0/qqri782Eoxa43fy1uJgDmkkvxmhkYng4a6urWZmeziGPh8WHD+OWkrsSE/2+LV01aWyJ9szAC4Fdjfb9CszV/v+fWE5USukXOKNGjSIiIoK//OUvzJs3r0HeWt9s7ddff2X69OlMnDjRb9tqT3o/H+vWrePvf/+7f3vKlClMnTrVX+7RRoTh4eGcfPLJgJow4MMPPyQvL4/rr7++w0aSffr04ZlnnlGz3mVl8d///pcXXniBvLw8rrjiClavXk10dDSXX355g+tiYmL8Nr8+ffpw3XXX8eabb7J8+XKmT5/O+eef36mNXVEU3njjDdata7huzvLly1mwYAGRkZG4XK4m6j/f+Z988gn/+te/qKmpYcWKFZ2u9usifhNte/fu3Tz44IOA6pBUUFDA1q1bGwy2hRB+TVt+fj6LFy/m0KFDLF26lMzMTNLbqWGRUnL11Vf7w7ni4uKYNWsWI0eOxO12t2gD7tmzJz179mTAgAHk5eVx7733Mm/evAYOY+1BCMGMGTOYMWMG5nvvZWNtLd/V1vJWRQWF9fXclpDAMyUlnBsR0SB/hRCCkwLqflN8PO9UVnJbfj6xRiPze/SgZyeroAvcbpaVlDRZcOif5eXMjI1FSokHNTmVjwqvl/e1tQ7mFRRQ6fVyZng4dzRyQjwROFq/2Jpe/b/AgEb7+gMHtf+7bDnRzkQIwbPPPsu3336Lw+FgzZo12O12NmzYwMUXX9zk/JNOOomNGzfy1ltvkZ6eznPPPdchaq3Ro0eTlJREv3792mV72bhxI263m9zcXBYvXszixYs7NM+zEIK+ffvSt29fQBV0X3/9NampqZx99tn06hV0/Xn/tRMnTmTChAls3ryZZcuWkZqa2qxmoSNwu92sXbuWYcOG8csvvwBw+eWXU1paypw5c7jxxht59dVX6dmzJ2PGjGHEiBG4XC6qq6tJTExkwIABlJeX079//2NaROEE5TfRtvv378/ixYv57rvvsNls/mQgl112WRMPYJvNRq9evVi5ciWbNm1i5syZnHfeee3WEgkhuO+++4iIiCA5OblBp9yWDGwul4ucnBwyMjJYsmRJq2Kr24rVYODsiAjO1hxo5+Xnk6MJx2vj4o66wE6cycSc+HiujYtjYWEhDxQW8vJR+oKOYGNtLbtdLn+SKYBHk5O5t7CQXU4n6RYLP9TVEWc0clVMDAIIMRgora9nWEgIcSYTXin9zsfdidYI8KXAt0KIBcBbwEjgNlR7F125nGhnExMTw6RJk5BS+hMa/Pzzz1x00UVNRkGjR4/mxRdf5JJLLgkq4I+VqKioDhkIvPDCC6xfv56+ffty//33M3v2bCZPnszUqVM7xa4zceJEiouL+emnnxgyZEiT4263m/Xr17Njxw5KS0sZMGAAubm5/kQSP/74I4MGDeo0m1N9fT2DBw8mOTmZrKwsamtrefPNN/0z6X/84x9cf/31fg1GMHzes/9D/CbatsFgoF+/fvTr149vvvnGb4765ZdfgqblnDBhAv/85z95+OGH6d2BjrMDBjQeK7WdtLQ0HnzwQRwOB+vXr2fVqlV8/PHHXH/99fTv378DatmUOxMTWVFaysTwcKxBhHeRx8O7lZUccLsJMxhINpn4urbWH1562OMhqRMHvX2sVgZarYwMCfEL8OWaWWKH00m9lDydmkpEF5rqOpKjmblbm8hlEvAo6mg9F9XBZbnULg5I9tCpy4l2lafqzz//zIsvvkiZ5kTW3MoxzSVrOZFwu9088cQTDZzvXn/99S5ddWnbtm1+M4OPyMhIEhMT/StNgZqSctWqVZ1enzVr1jRYQnDq1KlceumlHWqL93g8XT5Tb6sNHH5bbVtRFJYtW8bhw4fJy8sjJCSkgbkqkO7Qtvft28cDDzzg3546dSqXXXZZu+8bHiQULBheKbnn0KEmquvTw8L4ptFCPYuTkpqNPOko6hSFxYWF/KrVZ6jNxqXR0e0qt7ENXFEUFEXpcue29tjAkVKuBdYe5bgEFmmf5s5pUriU8jngudbUoavYu3cvK1as4OKLL+bVV19lzJgxzQbmn+gNHFSb/b333ktFRQU333wzoMZ8NnbO6yzy8/NZsmQJCQkJ3H///dxxxx14PB5CQ0OpqKggJCQEh8MB4E872Nmcf/75ZGVl8eOPPzJ37tyg3vAAlZWVFBQUMGjQoKP+1uvWrePTTz9l2LBh5Ofns13zZH3++ef9KlqfB/QXX3zBzp07SU9PD5ozu6v5rbRtRVF4+eWXsdvt/hlNoPBrTHdo2/369WP16tV88sknrF69ukEO7q7gqeJidrtc3BAXRw+zmQe1JEff1NZiRHUUK9Vs/tlud6cL8FCDgatiY3mquJgaReHepCT/2hSN2eV0kmAykXAUQVynKCxdupTCwkJOP/10f4rXvn37+n0qQO23fIluCgoKmD17NmeddVaHP18wTmwf+S5ESsmGDRt46623mDNnjj+kpK6uju+//77ZTr67EBMTQ58+fbjyyiu7THgDpKSksHDhQnbs2MFtt93m33/48GF69erF8uXLcTgc2O32TvdGd7vdZGVlYbVamTlzJqmpqWzbto1TTjkFRVGoqanB4/Hw1VdfkZSUxOeff87+/fuJiopi+fLlQUfdb775Jp999hlhYWH8+9//9u/3LdPoE+BbtmzxO0R5vV6qqqqa3Eunc6itrWXFihXU1tYyb948FixYgMlk4qOPPmLmzJlNFo7obgwdOpS0tDTmzZvXpeXelJDAKWFhvFdZ2SRh04KkJEaHhmL3ejlcX09mJzuyFXk8lHm9hBkMPJKSwv2FheS53Qy02XAqCgqw1+nkJ4eD/jYbj2lJaK6Pi2NyEJOlW1G4+uBBhsbFkZ+f32AVu/T09AYamvnz55OUlOQfQNU3s0xzZ/CbF+BffPGFfyWhmJgYFi5cSFVVlV+1tnPnTtxud7cX4PX19Rw4cKDL7bjl5eU8+OCDjBs3jkmTJrF161Yuv/xyhgwZ4l+qMSQkpNXLNraH+fPnU1lZSVJSEnV1dRgMBq688koURWHOnDl4vV68Xi+xsbGUlZX5F6uoqqriuuuuY/LkyUybNs0/0CgrK+Ojjz7i4YcfJiQkhNWrV5OSkkLv3r157733mD9/PnPnzmXEiBGEhoZitVqZMmUKzzzzDFFRUVRXV/tjkXU6lpqaGl566SW+//57QkJCGD9+PDNnzmTFihX+wbkvpWl3F+DZ2dkkJiZ2qdZASslbFRWsqapidlwc39TU0MNk4pLoaHpZLP71DCKMxk63Pee4XMwtKGCA1UqdouCSklijkV4WC5tra3m4qAirEEQbjVR4vYTW1JBqNlPg8fB8WRlf19RwZWxsg0yPH1RVEW8yMXfuXDZt2sTXX3/NxIkTyc/PZ/369eTk5LBo0SIsFgv9+vUjJCQEs9nM9u3bmyzn2pn8ZgR4Tk4Oy5cvZ9CgQYwZM4YBAwbw5Zdfsnr1ahYuXOj3DjUYDOzbtw9QR1pXXnllUKes7oZP6HgC8nR3Jo3X8R07diwjR470r8p0POjZsycXXnhhgyUNt2/fzuzZs+nTpw8LFizA7Xbzpz/9yb/AgQ+Xy8V7773H4MGDee+999i507+Wh9+7eOTIkZSUlPDll19iNpv9Xuyg5nr2Ce/TTjuNTZs28dRTT/lXatI5NhRF4fPPP+f9999n+vTp9OvXD5vNxooVKwgJCWHJkiWEhIT4hbRvla5zzjmHSy655H9iAGW1WnFq6xJ0BWurqlil+QcBTI2KYmoHJ5ZpCwkmEwbgsZQUf+ZKKSV/Ky3lC7udeQkJTAgP55OqKl4oL+ecsDA21BxJp7Xb5eKp4mIeTE7mloClSwGuvvpqevfuTWZmJp9++ikFBQX+5VvdbjcWi4XZs2dzxx13EK+tt/DGG2/Qs2fPTs117+M3IcBXrlzJ119/DagNeP369f4l9m6++WYGDhzoP1dK6U+skJ6eztChQ49LnTsaIQQDBw7kq6++4tJLL+3Usj766CO/yunee+89YQZAO3fuZMKECf5tRVF4+umnueiii7jwwguBI3H+YWFhXHbZZfzwww/+TFkpKSm8+uqr/iUOQc3/fNNNNxEZGengvKj6AAAgAElEQVRXsfvWfvZlavPhm9Gfc845bNq0iXPOOadTn/d/nUC/DlDNGXV1dWRmZpKTk8OLL77oNxdJKXE4HNRqzlVjx479nxDeAJmZmWRnZ1NYWNjpGrYLs9XF5sINBp5NSzvquvddxQ6nkzCDoUGc908OB1/Y7azu1YtwbfLiSzP9O5uNdLOZr2pq2KM5vLmk9C/76+P2hASGP/44loCFhGpqavB6vYSHh/snRZGRkaSnp1NXV8fo0aPZsmULgwcP7uSnVjn+334XMGrUKL8AB7j00kt59913Ofnkk/n6668ZO3asf83d5cuXk5aWhhCiw+MrjzfXX389d999N0OGDGkwaOks7rnnnhNGeIPa0S1ZsoTk5GRiYmIoKyvD4XCQnZ3NI488gsPhoKysjOjoaH799Vfeffddv/f+4sWL6du3Lw899BCghpSlpKRQVFTEe++9h9vtJjo6mm+//ZabbropaAOOjIwkLCyM1157DeC4x5MLIW5G9S7P0HbtBB7WHNu6ZCnR9uBLGbx582ZAdU58//33/XHS27dvZ8SIERQVFfHBBx/w/fff07NnTxISEjot5Op4kJyczLRp01i+fDmLFy/ukvfq9V69miz7e7wYYrNhVxSuyc0lzmgk2mjkR4eDOKORZ0pKqFYU7F4vtVpY20MBgrqf1cpjKSkUejz+2ffc+HieLyvjx7o6Nr/wArGxsRQVFVFQUMDjjz8eNIKnX79+fPHFF5hMJoxGY5d5qf8mBPiYMWOIj4/H7XazaNEikpKS/J1zWlpaA7VuaGgoMTExlJSU/E81clDTNt5666088cQTXHLJJYwfP75dS9kFo7q62q/O8yV5OVGYO3cun3/+Oe+++65/mcS+ffsycOBAUlNTMZlMxMbG4vV6ufPOOxk1ahQ33ngjdrvdv2ThbbfdxksvvcSWLVsoLCxk3rx5ZGVl+bPSgRrJEEyAZ2ZmsmLFCvbv34/ZbO7QGONjJB+YD+xDTVR1DbBGCDFKSvkLJ/hSoiaTiWnTprF582Yuv/xyzj33XHr37s0TTzxBcXExP/zwA8uWLfOfn5mZSU1NDaNGjeoWXuZtYcqUKWRnZ/Poo48ydepUhg8f3uHPuNvppLfFQl+r9YQR3qAu5bs8LY07tIxqPoaEhHBKaCjRRiMmIYg0GslxufhrcTEfZGSQ5XaTarFg1haDeig5mfsLC1lWWso1sbGECEFpSgrvvuuPjkRRlKACfMaMGZx77rkcOnSIlJSULnlu+I0IcIAbb7yRZcuW+dUet99+O3V1dTz//PP+cywWC6eddhpDhw7l5ptvxtoNM/O0xIgRI7jxxhv58ssv+fzzz1m4cCFms7lDBPn27dtZuXIlgwcP9tseTyTeeustfv75Z+655x6GDh2K0+lsNgtWnz59eP/999m+fTtjx46lZ8+eHDp0iLfffhuz2cysWbPo06cPvXv3Zvjw4RQXF7Nv3z5Wr159VM2Nb1nGEwEp5YeNdi3Q4rdPE0JsB24HHpNSvgcghLgGdSnRK4DAgP3lwB1CiCd8S4l2FWlpaUyYMIHc3FysVisDBw7k6quv5vDhw3z++ef+82JjY5kwYQJpaWkdklDlREMIwQ033MBnn33Giy++yDnnnMNpp51GXFxcu6M76qXk1fJyNtjt/DEmhnMbLXF8vCmtr2dxYSHDQ0K4IzERixBICLrkslObhc8vLCTDYuHi6GjCDAY+r67m29paLoqKopfFwujQUCKNRg6fe65fm1NVVXXUmXVcXFyXLwfbqkQuJwIdkezh4YcfJjIyskE40/z588nLy+Ohhx4iMzOzSxOcHG/++te/8vPPPwPwl7/85ajpT0G1IxYVFWH+/+ydd0BV5f/HX+cuLhtkDxHNXe4Z7kwbas40tRyVNtyhZop7/tIoLRuaaaZlapkrVzkyEQUXIIooU2QPGfdyL/fe8/sDuF8RSFBAUF7/wD3jOc8d53ye5/N8Pp+3XE5OTg6BgYFIpVJcXV1xcnJi4cKFTJ8+vUqCN8pLVlYWU6ZM4ZtvvinTwEIURaKjo4mPj2fLli3UqVOHrKwsmjdvjru7u3EGXhisVpjL3r17d95///0S27xx4wbx8fF07NixUgY3D1PIpRBBEKTkS4JuBdoBOVSBlGhhG49yb9+9e5cPPviAVatWGT0ld+7cYebMmbzyyiu89tprFa7eVZ1JSEhg5syZGAwGGjduzMKFCx84G9doNKSmpmJlZcXVefNI0+kwlUhwkcuJz8vjn+xsPnFyqhZr3vfzW0YGt7VappWxjrnKYOCWRkOgSsXBzExamZoSoFLh7ehIsFrNZbWaTL0eK6mUpHtSwhYsWFDi0qNWqyUgIAArK6tKi5l6pEIuTwomJibGIJZCCtc0q4Pma1UzZswYvL29AViyZAm+vr6lPugiIiLYtm0bCQkJRoMll8vp1asXfn5+pKamGgu0VDdiYmL4888/cXV1LbPhFAQBT09PPD096dChAzdv3uT69eu88MILWFlZ8dprryGKIgkJCSiVStauXcuNGzf4559/SjXghRHnYWFhvP3229VCqlAQhBbk1yxXkl8idbAoisEFSmRQCVKiBdetMDnRwnv33kJArq6ubNiwAXNz8yfOXf4gnJ2dGTp0KLt27eLGjRvs37+fAQMGlPg5GAwGjh07xp49e1AoFGRlZaHRaOhhYUGuwcCeu3dRGwzYy2TYVLNSpHpRxD8nhyOZmQwuh7iQmURCC1NTWpiaMsTGhkCViq7m5vSwsKBHgScyTxSJ0WqxWbaM8ePHA/miOCUZ8Fu3brF+/XokEgnz5s2rUg/b43+CVBHh4eGEh4czc+bMItufRsNdiIuLCy1atCA4OBi1Ws2cOXNYtGgRTk5OxY5ds2YNAwcONEZOJycnY2dnZzRCS5YsITU1ld9++43Y2FimTZtWLWIIrly5wvr16+nZsyc+ZSwReT8ymYymTZsWu3kFQTBG/Y4ZM8bYfkBAAB06dCjWzvjx49m2bRsnT57k2rVr2NnZERoayvr16x9nLnIY+TrgNsBQ4EdBEHres/9+F51QwjZEUbwpCMJGYJUgCEfv31/C8RuADWCcxT8027dv59lnn6VRo0ZFtld0fEdNolevXsb6Fjt27CApKamIvG8hly9f5ujRo8yZMwdPT09ycnLQaDRGBca4uDgWLVpEosHAxyYmZGVlFSuL/DjQ6XR8++23xMXFMWLSJDp16kT2g08rhhQorPBx//mFT0FPT0+ioqLYt28fffv2LTZJadKkCfXq1SM6OpqlS5fSrl07Lly4QK9evRg/fnylDtSfCn9xXFwcX375Jba2tkbxjFry8fb25tVXXwXyXZErV640ptEVkpeXR2ZmJs8//zwSiQSJRIKTk1ORH+abb75JcnIyarWa7Ozs/yzAX1VkZmby5ZdfMnnyZEaNGlWp3oEGDRowaNAgzMzM+Prrr0lMLK622adPH+Nn5urqSmhovpLnpEmTmDRpErNmzWLq1Km8++677NixA0PBel1lIoqiVhTFm6IoBoqi+AlwGZhBUSnRe3mQlOgzVJGUqCiKHDlyhEuXLpGYmGjMua8FbGxs+Oyzz4wTlOPHj/PLL78U+02lpKRQt25do9a5ubl5EflkNzc3unXrhlqtJjMzs5gH83Fx/Phxbt++jY+PT6UX2VqwYAH29vZIJBI2bNhglIQtRCKRMGvW/8T5CvUdTpw4wfjx4/H29mb69Ol8+OGHTJ48uYj+w6NSowz4yZMnH3iMRqNBFEVUKhW///67MbWiZcuWxMbG1qjAtPj4+Eovy6dQKBg1ahStW7cGoF69eixcuJCke1ItkpKScHR0LDVv9tixY8bZpyAIyGQy3N3dK7XfZWHDhg107dq1UmVK72XIkCGo1WqsrKxYvnx5id/d2rVrcXV1RSKR8P7779O5c2dMTEwYMmQI06ZNY/78+SxfvpxLly7x8ccfl+n7z8vL49q1axX1NiSACUWlRIEiUqJ+JZ0oimISUCglWq4b7f5BYwltoynI2Y2KimLTpk3Mnz+f06dPI5PJSElJqTEzboPBQFxcXKUPcl1cXFi+fLnx9c2bN/n222+LHJOQkFBqtohWq2Xu3LkcPpy/ImJubk7z5s0rr8NlJDk5mZ07dzJhwgTMzc0r/XpKpZIBAwagUqmIjIxkz549xY6pU6cOEyZMwNPTkxYtWjB16lTc3NxwcHDggw8+YM6cOSxdupThw4ezYMEC/vrrrzJdOzU1laioqFL31ygX+saNG2nVqlWJ7kaDwcAvv/xiLLohCALPPPMMXbp0YcyYMQiCQG5uLl27dq3qbj80oaGhnDp1iuzsbKZPn24M0KloJBIJs2fP5tq1azRq1Igvv/ySP/74g4kT85cozczMyMzMJD09HVtbW3Q6HatXryY4OBhXV1djdSvID9QCmDBhAkOHDqVTp06YmppWeXRmSkoKFy9eZP369VV2TZlMho+PD0uXLsXBwYErV67Qrl27IsdYWFiwZs0a4+sWLVoQFBREVlZWkUHPkiVLGD9+PAsWLMDKyoo5c+aUeM1CRaqHKUoiCMIq8oVMYgFL8qPLewL9qlpKdMeOHUyaNKnEINKEhAS+/PJLIiMjgfyHZePGjRk8eDBt2rTB39/fWDinJlCoTR8QEICXlxcjR46stL67ubmxYcMGkpOTcXNzY9y4cbz88svGFEYbGxsiIozp+1y9epWNGzeSlJTEq6++WsR4FC5DXrp0iZkzZ2JpaYm9vX2Vf+4nTpzA09PTWBipKujduzchISEkJCRw7tw5Xn755WIDxl69ehWp8qjT6fj666+xtrbGwcEByA9y1ev1bNy4kUOHDvH666/TuXPnYtcrFN/5+++/eeWVV0rtV42KQn/ppZc4efIk3333XbG1a39/f7Zv346LiwshISG8/vrrDB482LjfYDBw4sQJ6tSpQ5s2baq6+w9NVlYWS5YsIS4ujqqSUz127BibN282RpSbmJjwyy+/cPXqVZ5//nliY2O5desWKpUKDw8PPv74Y+O5SUlJTJ8+vcR2+/XrR7t27aqkiIwoiqxYsYJhw4ZVadqQwWDgnXfeYciQIezfvx8fH59SB17Z2dksX74cGxsbZs2aVcx43b17l3PnzrFlyxa2b99eJAhJFEUOHz7Mnj17eP311+nTp0+5o9ALIsV7ke8mvwsEAatFUTxSsL/SpUQL2zAxMeGll17ijTfeKLZ/+fLlODo6cuLECSB/IH/vzCs5ORl/f3+8vLyqfKD4KAQFBbFq1aoKkwEtCxMnTqRRo0aMHDkSd3d3srOzmTdvHq1bt8be3p5///2X1q1bs3//fubPn18kIOunn34qIthTiJeXF/b29vTv379KvCChoaEcPHiwiNu6KvDz8+Pw4cO4uLiQnJzM/PnzSw2QvHr1KsuXL8fb27vYIB7yJzo7d+6kfv36xcpLZ2dn4+vri1qtZvr06Tg5OT0ZUehjxowhLCyMXbt2YW5uzqBBg4z7mjRpgsFgwNnZmaZNm9KvX78i5164cIFNmzYhkUjYtm1bVXf9obG0tGTu3LlVWuv4xRdfxMbGhn379rF161a6detGhw4dyM7O5uzZs3Tq1Ilhw4YxdepUevfuTUJCAk5OTgiCYKy13rp1a27evEl2djZKpRJ3d3eOHTuGUqmsEgMuCAJ6vR6VSlXp17oXiUTCmDFj+O233xgyZAifffYZq1evLjLgTElJ4ciRIxw7dowmTZrw3nvvlTjztLa2pk+fPuzbt4/ExEScnfOXowvFdu7cucPy5cuNo/vyIoriuAfsrzIp0YULF7J48WIsLS155plnivxGOnfuzKFDh+jbty/NmjUr5jZds2YNsbGxKBQKXnrppfJc9rHSsmVLlixZUmmetZL44osv2Lt3L8uXL8fDw4NOnToxceJEfvrpJ9RqNQMHDjSmRNapU6eI4E7h3yFDhvD7778D+TN4QRA4dOgQnTt3rhIDbmNjU6SccVXRtm1bjh8/jq2tLbGxsfz+++8MHTq0yDEXLlzg77//Jjg4mDfffJO2bduW2Fbjxo3p16+f0WMM+YPyoKAgvvvuO7p06cLIkSMfmNZcowy4IAjUrVuX48ePo1ar6d69uzHgwtbWlpkzZ+Lr68t7771XbIZ+6dIlIP/LV6vV1a7IyH9R1RHKgiDQoUMHOnToQEREBP7+/qxfvx69Xo9OpyMzM9MYMHTw4EEOHjyIi4sLy5Ytw83Nrco8Bf9FZGQk169fZ9q0aVV+7V69ehEYGEhwcDDJyclcv36dli1bkpSUxLFjxzh58iTt2rVj1qxZD6yZLAgCrVu35ujRo4wZMwadTsfUqVPp1KkTy5YtqzFu4wdRaJR//fVXmjVrxieffGLc98ILL5CVlcU///zDmDFjip0bGxsL/C/+pSaljVV1tUIzMzNGjhzJsGHDOH/+PAEBAYSEhODo6EhISAhdunQxLlUsXLiQzMxMPvzwQ7p27crAgQMZOHAgQDE9hXtr0lc2e/furXJVRchfC3/nnXdYuHAh7u7u7N27l6FDh6LT6QgODubUqVNcvHiRt956i/Hjxz9wYN2kSRO+/fZboqKi8PT05OzZs2zatIkxY8aUuYx3jXKh32sYfH19iYqKIiUlhWXLlhnXdPbu3UtmZiZvvfVWkfODg4NZuXIlkL9WuXr16hLTpWr5b7Kysvj+++8JCQlBrVbTrVs3evXqxddff826deuKHR8ZGUleXh4NGjSo0rznqKgo5s6dW8z1XFXk5eWxa9cuDhw4YCzPm5aWRufOnenQoUO5Sl1mZmYyffp0vvvuO6RSKePGjePbb78tFlX/KIVcHif33tsZGRl4e3uj1Wpp3Lgx3t7exvc5bdo0Zs+ejZtb0TR0b29vY2lcLy8vPvzww6eqIFNFceXKFbZt20Z6ejoqlYpFixZx6NAhGjZsWMyjqdfrCQoKMhZxqko+//xzTExM+PDDD6v0uoXEx8ezatUqkpOTad26NREREZibm9OtW7cik8qy8Mcff5Cens748eM5efIkwcHBTJkypdhxT4QL/V4aNmxIYGAgdnZ2rFq1iokTJ+Lm5salS5eKVQITRZH9+/cbc/V0Oh0zZsyoFjPFmoalpSUzZsxAq9Vy8uRJtmzZwuXLl4uNiP39/Tlw4ECRAJnBgwfj5OREUFAQubm5jBo1qtLqBterV4+6deuyZs0apk6dWuXZB3K5nFGjRnHgwAFUKhXu7u4olUpOnDhBSEhIkRrdD8LKyopnn32WgwcP0rJlSxQKRY3yIJWHQg8Z5A+0v/jiC959911u3LhBTk5OsUFLTExMkc/Cz8+PF154oVpES9c0WrVqRatWrUhNTeXrr79m0aJF2NjYFHED63Q6Nm/ejL+/v/F7atWqFW3btsVgMPDvv//i7u7Oe++9V2n9fOWVV/i///s/Tp48WURdsKpwcXHB29ubOXPmEBYWRoMGDcjIyGDnzp1YW1sXCWR7EF5eXvj4+NC/f3+Cg4PL7VmoscPUwjSnwrxZX19fY8DAgAEDihz79ttvExISUmTNHCiWz1dL2VEoFPTt25eRI0eSlZXFjRs3+OSTTxg1ahSffPIJ69atK+IGeuedd8jIyODYsWP4+flx8eJF9uzZU2nfgSAILF26FLlcXi5jWdF89dVX9OrVixYtWjB06FAGDBjwUDEAI0aM4M8//8THxweVSkVgYGAl9Pbxc69HcMaMGUgkEqZPn87evXuZPXt2keWkhIQE5syZQ0RERJFc4Cf1s6kq7OzsmD9/PpDvEfnhhx+YOXMmo0aNYu3atYSFhTFu3DgARo8ejaurK1evXuXMmTPcunWLU6dOFRm4VzRNmzZl4cKF7Nixg4CAgAefUAl4eHgwbdo0vLy8aN++PR988AH29vbFvEMPwtHRkS5duvDFF19w9uxZ9u7dW65c+xo7Ay98k6tXr2bZsmV8+OGHuLi4FEstSEpKwsrKiilTphgDrO7d9zjWUp4kBgwYQKtWrVi8eLExsESn0zF9+nQ6duxIq1atkEql2NnZ0bt3b+N5YWFhbN26lWXLljFjxgzkcnmFzyoVCgVTpkxh2rRp7Ny5kyFDhpToxk9PTyc5ORlbW9uHDggrjcL8UMhPH/rhhx+K1OIvK+7u7vTo0YPIyEhCQ0PZuXNnidXeajr3GvD9+/czefJkjh8/Tp8+fYr9Ps6ePUv9+vVZunRpkXznw4cPl7hWXkv52LZtG/v27WPnzp3cuXMHyA/SnDt3Lra2tjg5OdGwYcNiyxV79uxhxYoVjBgxgk6dOmFhYVHhSxqenp5MmDCBrVu3YmpqWqJscWG+faFGfEVX3ezUqZNx4BgQEIC5uXmxaoBloX///qxdu5YmTZoQFhbGhQsX6N69e5nOrXFr4CkpKXz88cc0b94cMzMzTp8+jbW1NcuXLy+29hAWFsb69etJSUkB8mdDly5dYtOmTQD8+OOPj12T+UkiLi4OCwsL5s2bx/Tp0x8YoJOdnc3GjRsJDAxELpfTqFEj3n777QofVCUnJ7N161aSkpJ47bXXiIiIIC0tDXt7e8LDw4mLi8PFxYU7d+4wduxYNBoNvXr1emQVp/v56aefSE9PfygDXohGo2HZsmU0bdq0WPpJTV8DP3ToELt376Zfv37s3r0bU1NTOnToUKy2vMFgYPfu3Rw5cgS1Ws2AAQNo06YN58+f5/Dhw3Tq1OmxBC8+qRgMBm7evElmZia7d+9m1apVDzwnJCSEjRs3kp6ejkKhoHfv3owYMaLCDXlAQABbtmyhXbt21K9fn2vXriEIAmZmZvj7+2NqaopUKsXKyoo+ffpgYWFRorF/FDIzM/Hx8WHChAmPJGZy6dIltm3bxsSJE4ulvpZ2b9c4A67VavH29iY1NRVLS0v0ej02NjYMGjTIWKRFrVazb98+jh8/zsSJE9m6dStyuZzVq1cjCIKxupVUKq1REas1gUJlqJkzZ5aaQnE/oiii0+nYv38/p0+fxtfXt8K/F1EU8fPz48yZMzRq1AhHR0cSExOpW7cubdq0QSaT4e/vz+HDh7lx4wa9evUyzpwr4toHDhzgxIkTxlSpyqCmG/Br164ZxYWcnZ2xsrIiOjramP4piiLh4eHs3buX7OxsBg0axOrVq3nvvfeMyzW5ubmYmJjU3teVwB9//MGuXbvYvn17mc8RRZG0tDRWr15Nt27digXDVQQ5OTn89ttvpKenG6supqen06lTJ9zc3NDr9Xz33XdERkYSFxfH0qVLK6wITGZmJqtXr+bZZ58tsYZBRfHEBLEpFAo+//xzPv/8cy5fvoyJiQl37tzhn3/+oWvXrpw8eZINGzbQvHlz5syZQ/369dm4cSM6nY7Zs2djYmJCcnIyAwcOZNu2bSxevPih3B61FCczM5OPPvqIevXqlatYjiAIyOVyBg8ezJ9//snp06fL7EIqzzW6dOlCly5dSj2mc+fOdO7cmZMnT1bY2lpKSgobNmwgOzubuXPnVprxfhJo1qwZy5YtY9myZWRnZ5OUlITBYODKlSu0adOGefPmERUVxZAhQ+jXr59xSSwmJoYZM2ZgZmZGVlYW5ubmREdH1wapViCXLl1i586dRYo2lQVBELCzs2Ps2LEsXbqU3r17V3jqo7m5+X8umUilUmPEuo+PT4XVzPf392fr1q107969ygrx3E+NDGKTyWRMmTIFGxsbxo8fj7m5ufHBGBsby4svvsjcuXOpX78+arUatVrN3bt3iYuLIyIiokjZyuDgYN5//32WLl1KTEwM6enppKamPs63V2PZt28fLi4uZdIfLglBELC1teXbb7/l448/5sSJE2i12kro6X8TGhpaIYO61NRUFi9eTPPmzVm6dCn29vYV0LsnmwYNGvDuu+9iampqlLp1dXVFFEXu3LljrK5namrK5cuXATh06BCJiYlERkZSr14945LZ5s2bef/999m0aRMGg4Hbt28b66nXUnZyc3P59ttveeutt4pl+JSVwviFt99+m82bNxtLLlclKpWKmJiYCpl9//333/zyyy989NFHvPHGG4/N41PjZuCFKJVKZs2axapVqxg7dixff/019evXp2/fvsyYMQNTU1NcXV25ffs2bm5uRWr6fvHFF/j7+/PMM89w4sQJY2GShQsXIpPJjDKRLVu2pEOHDtStWxdBELh9+zbz5s0zrsHXUpSTJ0+iUqkeaYT96aef4ufnR3Z2Nn/++ScbN27Ey8sLa2trevbsSd26dSuwxyVja2tLWFgYeXl5Dx0jkZycbEwPuT8ropb/xsvLi7CwME6fPk3Lli1ZvHgxPj4+vPTSS/j6+tK7d2/q16/Pzp076dmzp1HkyMHBgVGjRvHnn39y6dIlLly4QGZmJn///bexKqBGo6F58+a0b9+eVq1aGQf++/fv59ixY6xZs+aplhguibS0NLKysoyVAB8GT09PfvjhBw4dOoRUKmXRokW4uLjQvHlznJycePHFFyu9KJFEIsHKyorQ0NAS64+XlUOHDrF3714WLFhQaWmwZaVGzsAL8fT0ZOjQoezYsYNOnToRFBSEo6MjkydPJiMjg1OnTnHw4MFiblO1Ws2JEyfIzc0lNTWVjh07AvkBQk2bNmXx4sUMHTqU7OxsVq9ezdq1a4mPj+fy5cvk5eWxbNkyjh8/Xi0kM6sTKpWK11577ZHaKHR1v/TSS/j4+LBgwQJatGiBqakpy5cv5+effzZW3qosXn/9dRQKBV999dVDf8fbt2+nc+fOtcb7IRk5ciRpaWmYmJggk8mIjY2lf//+dOvWjZiYGNatW0daWppRRQ/yB03JyckEBgaSlpZGWlqaMesgOjqaQYMGsXLlSlq3bs25c+fw9vbGz8+P0NBQAgMDSUlJYcWKFY9ldlidKUzZfVRjpVQqGTx4MK+99hrLly/n7bffpm7duty8eRMfHx+OHj1aqQp/KjcAACAASURBVB43pVLJzJkz2bp1q7EyZ3lJSUlh9+7dfPzxx4/deEMNnoEX0qdPHxwdHfH19SUvL48333yTli1bYmlpydChQ2nUqBEKhYK0tDTCwsKIiIhAqVTy+eefF2ln/fr1BAUFYWlpybp161i5ciUtW7akf//+fPLJJ0Z3HuSXEfz+++85efIk/fr1o3379hUesVxTqcjZi7W1NdbW1sa86W7durF3716+++47li1bVmHXuZ/CJZrp06cTEhJS7shSrVbL+fPnWb16dSX18MlHqVTyySefsHPnTgICAli7di2enp7Y2tpSt25dVq5ciYODA5mZmbi5uaHT6XB1daVly5Z8883/yrCLosjo0aPp378/v//+OwqFgp49e9K9e3fOnj3LV199ZTxWIpHg5ubGokWLePnll3nhhReqhSzu46ZQT6AiJyz169cH4Nlnn6Vv376cP3+e3377DblcXq5CKOXF09OTt99+m61bt9KqVatyR8VfuHABFxcXY/+rgv9yz9e4KPTSiI6OZtu2bVy9evWBbXXp0oUzZ87w7rvv8sILLwD5P86srCwOHDjAgQMHaNmyJRYWFvj5/U/6uF+/fsbZWXBwMDt37uTWrVuYmZkxYsQI+vTpU9olnwru3LnDkiVLmDlzZqXVeL59+zYrV66sEpnQnTt3cvfu3YeKRp8xYwZjxoypUuW7mh6FXhqFGSX3atRDvhRrcHAwDg4OJCcn06JFC6Kjo8nMzOSbb77B2toayI9SNjExMQY6DRgwgDNnzpCWlmZs66OPPqJ9+/bk5eWxd+9e/Pz8SEhIwMLCgnXr1j0xNecfBlEU2bt3L4GBgSxZsqTSytRu3boVCwsLhgwZUintF2IwGJg8eTIzZ840luAuK9evX2ft2rVFBolVwRMThV4a9erVY968eUC+KzwxMZGMjAxycnIICAjA398fgDZt2nDmzBmcnZ2NKQdXr15FIpHQrFkz+vfvT6dOnbh+/Tr//PMP3t7e6HQ61q5dy8GDB0lNTWXq1Km0aNGCFi1aEBoayrJly/j555/p0aPHU71+5urqyhtvvMHPP//8n1J7D0t6ejpr166tMsUpd3d3goKCHurcbt26cezYsRolXVtdee2114xLM+np6aSnp3Pnzh1EUUSr1RIWFoaHhwdRUVFkZWXRr18/Y4rpX3/9RZcuXZBKpXz66aeoVCqOHDmCo6Mjq1atYuPGjQQEBODr68uqVavw8PBg2LBhDBs2jM8++4wLFy6wZ88eRo4c+Zg/hceHIAgMHDiQixcv4ufnZ0zXrUj8/Pzw8/Nj0aJFFd72/UgkElxdXYmOji63AW/YsCEKhYLAwEDat29fST0sO0+MAb8XExMTPDw8jDJ9zz//PJMmTUKlUiGXy1GpVNja2iIIAsePH+f77783nmtqasqmTZvIyMggNjaWmJgYBg8ezIYNGwgPDy8WyNG8eXO+//579uzZU5t7Sr7hOnz4MGfOnKnQG12r1bJ+/Xratm37yOvsZcXOzo7ExMSHOrdHjx4cO3asyLaAgAD27NnDkiVLqlTY5UnC1tYWW1tb44O3W7duRqndnJwcLC0tkcvlxliVmzdv8uOPPwLw5ptv8uqrr7Jjxw6uX79OXl4e06dPJyEhgejo6GJrmt7e3pw9e/aJrTtfHgRBYPTo0Xz55Ze0bt26QmVDw8PD2bJlC/Pnz3+kQLnyUKdOnYe6t2UyGV26dCEqKspowEVR5NNPP6V169ZVLmdbo4PYyoNUKsXS0hKlUklQUBCjR49m8uTJfP/990yePJktW7bQsGFD4w8oMTGROnXqsGvXLi5fvoyFhQVt2rQpsUqYmZkZo0ePRi6XExERwd9//13Vb6/aIJVKef3119mxYwd3796tsHYDAgJQqVQMHz68wtp8ED/99BPjx49/qHMtLCzIysrCYDAA+QpGn3/+OVFRUVy7dq0iu/nUo1QqUSqVWFlZsWrVKkaPHs24cePIyMgw1owAjEa/UON6/vz5qNVqXFxc6Ny5c4mDqueff94YKHfw4EGj6tnTSJMmTahXrx6//fab8XddEezYsYNhw4ZVSYYJYLwHHzbAtLDeAOQb7127dnHlyhV+/PHHKg9sfmoMOOSvfcyaNYsNGzYwbdo0Bg8ezLhx4/Dy8kKhUNCuXTvi4+PZsWMHUVFRRqnMQvH6shAfH8+WLVuKFQsoVPHx8fF5LLnNVUnbtm3p2rUrs2bNYteuXeUqzl8aWq0WDw+PKgsWTEtLIykpyZihUB4yMjL4/fffjcIGX3zxBXPmzDEOBgprxtdSccTFxTF27FiSk5NZvnw5/fv3Z8aMGTg5OWFmZkaDBg3YtGkTZ86cISMjgxkzZqDX68tVsOfo0aNs3ry52PbY2Fjeffddfv3114p8S9WSsWPHcuvWLXx8fLhw4UKFtKnRaPD09KyQtspCYGAgnTt3NmrQlxVRFAkLC+Ps2bNGF/yUKVMICAgwegUrcmBTFp4qP9758+eJi4tj0KBBRdSLChk4cCBeXl788ssvREZGMmzYMGxsbHjvvfe4efNmmQKzvLy8MDMzK+ZiOnHiBMeOHePll19+4tfJBUHgjTfeoGfPnvzyyy/Mnz+fFStWPFIg0NWrVyus/GFZEAQBvV5PTk6OMRiqLAQEBLBp0ybatm3LrFmzSE1NJTAwkO+//5709HTMzMx45ZVXKrHnTx8Gg8FoWL29vfH09CwSJWxpacnSpUsJCAhg9+7ddOjQgSZNmjB8+HD+/vtvnn/++TLdkwsXLizRq7RixQokEskTKS5zP46OjixevJjAwEA2bdpEdHT0IwWdZWdnExcXV6XR/oIglNs7qNVq2bx5M9euXePll1+mT58+7Ny5k+eee4733nuPn3/+mVdffbXKs5GeeAN+48YN/v33X4KDg8nOzsbHx+c/i7A4ODgUE5sYOXIkixcvZsSIEfTv37/Uc1etWoWZmRmTJk0qFqnZs2dPGjduTL169R7tDdUgnJ2dmT59OnPnzuX27dsPHZmemJhIUFBQlZYrtLW1pVu3bvzxxx+MHTu2TOfcuHGDr776innz5tG4cWMgvza8wWBAr9fj5+dnDKiq5dHQ6XQcP36c4OBgrl27hoeHB5s3by5V910QBDp27FjEo9KpUycuXLjApEmTWLhwYalGpLCA0+zZs3n22WeL7V+6dClSqbSI1OmTjCAIdOjQAVtbWzZt2vRIBvz48eM0a9asmM57ZfLyyy/j7e1NbGxsmd32mzdvJjk5mRUrVhj7qlAo0Gq1iKLI2bNnmT17dmV2u0SeaBf6qFGjWLRoEba2tnz44Yd88803D1VBrW/fvixevJiff/6ZI0eOlHrcs88+i7+/P+vWrSu2Ty6XP1XGuxBBEJDJZA/lWirMIPD19aVXr14VLvX5IAYNGsTZs2eLVPH7L5ydncnLy8PJycm47ejRo3Ts2BEzMzP+/fffIhrptTwcN2/eZMyYMVy6dIk2bdqwcuVK5s+fX6rxLg0zMzNmzpyJl5cXs2fPJjk5ucTjHB0dycvLY/ny5SXGL9jb2z81xvte5HI5er3+oc69ffs2+/fv5/fff+ett96q4J79N+bm5gwePLhI8PKDsLOzQ6PRFBloHD58mN69exMaGoqVlZUxaLoqeWJn4IXFB9atW1chNagbNGjAW2+9xY8//oizs3OJNYEHDBhAp06djGpnteSvGyUkJBQxag9CpVLx008/ERAQQKNGjWjTpg1Dhw6txF6WjI2NDa1atSIyMvKBa3QGg4GwsDCAIm53JycnwsLC8PPzQxTFKi0A8aRy48YNbG1tyy2sURqjR48mODiY9evXM3PmzGLLXwqFgu3btxMWFlb7/d1DfHx8ue5ryM+j3rZtG2lpaTRr1oypU6dWuHxwWejVqxfbt29Hr9c/0COWmZlJVFSUMduhEFdXV+Lj47ly5cojlWZ9FJ5YA16oVBQdHV1hIhKvvPIK9evXZ82aNWzYsKHEggaOjo4Vcq0nhczMTARBKNc68ubNmxEEAV9fX6ysrCqxdw/mmWee4fr16w+sDnXkyBG2bdvG5MmTi6QjtW3bltOnT/PHH38wevTo2lTDCmDbtm0V2p5CoTDe03v37i2msw75nqTCioC15HPnzh1joGZZyMzMZM2aNUycOJG2bds+1lRKhUKBq6srN2/eLKa9fT/z58/Hzs6Ojz76qMj2/v37s23bNtzc3OjZs2cl9rZ0nlgXeuEoujDcv6Jo2rQpEonkqU4nKQ9RUVHlyu3U6XTExMTQo0ePx268Adq1a8elS5eIiIgo9RhRFImOjua1117Dy8uryD4LCwvmzZvH6tWrn4ogp6pg0qRJAMVmRI+CRCKhXbt2hIeHV1ibTzrlvbfj4uKwtLSkY8eO1aIOQufOndm1a9d/ekxzcnLIyMhg0qRJxTwF7du354svvmDWrFmP7Vn1xBpwqVTKpEmTjEpFpVEYYFRWRFFEIpFUix9gTeDGjRvlijv4+eefsbKyeuCouKoo1DL+5ptvjF6d+zl8+DDh4eHGsry1VC5dunShWbNmnD9//j+P0+l05c7LfVj1uaeR8tzb2dnZrF+/vtLLpJaHAQMGIAgChw4dKnG/Vqtl+fLlvPDCC9jZ2VVx78rGE22F2rVrx9atW0lKSjK6tkVRJCAggJCQECIiIoiOjkYul9OgQQOGDx+Ovb09Mpms1BHVtWvXkEgk5V77eVpRqVTUqVOnTMdu3bqVK1eusGjRomo1QPLy8uLIkSMcPXqUfv36GbdrtVoOHDjA8ePHmT9/fpUH2T3N9OzZk3///Zfu3bsbt2VmZnLq1CmioqIICwsjPT0de3t7mjZtyoQJE7hz506pgUYGg4Fz587VusnLiCiKqNXqMlVkS01NZdmyZXTv3p1u3bpVQe/KhlQq5Z133uGjjz6id+/eRQLUEhMTWb9+PXXr1jXW0K+OVJ+nZCWQmZlJVlYW165d48CBA4SFhWEwGFCr1fTt25fnn3+ehg0bolKp+P333411eN3c3EpUksrOzmbdunVlFrfQ6/Xs37+fHj16PJVRqpAf6FJa/nZiYiIrVqygb9++pKSkEBQUxNKlS6s0paQsCIKAm5sbO3bsIDExkbCwMDQaDUlJSbRp04YlS5aUeZBSS8Vw+/ZtgoOD8ff358SJE2RkZJCenk6TJk1o3bo1w4YNw9nZmejoaBYvXszp06eBfL35ktLFTp48SWxsbJlTBmNiYrhx4wa9evV6KtMCU1JSUCgUpebPHzx4kICAAHr27Mnhw4fp0qULw4YNq+JePpjCid2vv/5Kamoq8fHxZGdno9PpGDRoEP369avWcStPtAG3tbVlxIgRnDp1Ck9PTyZMmIBEIsHZ2bmIkbC2tmb8+PE4ODjw888/ExcXZ0xRuZcDBw7Qtm1b2rVrV+Y+7Ny5k507d7Jo0SJjbvDTQqGH4/7gj0IsLS1JTk5m+/bt9OrVCx8fn2pnvAt54403EEWROnXqMGHCBGQyGdbW1k/twOxx0717d9LS0vj777/x8vLC09MTuVyOm5tbkQeup6cnvr6+LFu2jPj4eGbPns0PP/xQpKiQTqdj9+7dfPTRR1haWpbp+nfv3uWHH37ghx9+YMuWLU98cab72bt3Lz179izVU2ZhYcGNGzeQSCT06tWLvn37VnEPy4ZEImHKlCmEhITw/PPPU7duXfR6Pe7u7jViOeWJkROtSPz9/fnpp5/o1q0b4eHh1KlTh8zMTIKDg1m5cmW58rnj4uKYNWuW8fW3335bLYKzqoIvvvgCS0tL3nnnnSLbc3JyCA8PJycnh3379tG2bdsqLdLypPKkyolWFDqdDl9fX/R6PY0bN+avv/6iR48enDlzBmtr63JrzPv6+hIYGAjku/QnTpxYGd2udqjVat55550SU3RjYmJITU0lISGB7du38+mnnxYTiaml/DzxcqIVSefOnbGysiIkJASdTkdiYiJNmzZl/Pjx5Yq6zM3NZf/+/UD+SK+kEqtPMjqdrlilo5iYGE6fPs3Bgwfp1KkTL7zwAr17935MPazlaUImkzFlyhTOnTtHREQE1tbW3Lx5kxEjRpRbGjIyMrJIgZ/yylLWZAqDOe/1Vuh0OiIiIli+fDkSiQQvLy/mz59fa7wrmVoDXgrNmzenefPmbNy4kRMnThhroZfVgOt0OtavX28s+K9UKlm3bl2JueNPIqIocvHixWLlU+fMmQPAhAkTHphbXUstFY2pqSk9e/bEy8uLcePGARAaGkp5PABxcXHMmzfP+Hr06NG8+OKLFd3VasuNGzeAfNGewmDeoKAg1qxZA1Rc8axaHkytAX8AAwYM4NSpUxgMBho1avTA40VR5NSpU+zbt4+EhAQAZsyYQdu2bZ+qYJfC/Pu//vqLQYMGAZCeng7k16CuNd61PE4UCgXDhg1j9+7dxWJdSiMrK4tff/21SGrq+vXrn7o4CD8/PyA/CNXJyQlRFLl9+zYA8+bNqzXeVUitAX8Azs7ObNiwAYVCUabUpjNnzrBhwwbatWtHTk4O06ZNo1mzZtU6krEyKHzITZ8+HfhfLICXlxeTJ09+jD2rpZZ8Bg8eTN++fcu8rPV///d/RERE0LBhQ2xsbBg3btxTZ7x1Oh0XL17Ew8ODZs2aAfkR3Pv27WPWrFklir3UUnnUGvAyUJ7I6CZNmjBo0CDS0tKYPXt2lUpgVid27doFYHShF0b91pSgyceNKIqkpKRgbW391EU4VxWCIJQrJmXw4MFcvnwZCwsLBgwYUG0zJiqTu3fvotVq6dmzpzFKu/AzNDU1fZxdqzEYDAYSExMrpAZ8rQGvYBwcHBg+fPjj7sZjp169eowcORLI/8EeOHAANzc3Bg4caDxGFEVjZbtainLhwgV8fX155ZVXqlytqZaSadeuXblSSJ9EsrKycHZ25uWXXwbyPWunT5/mxRdfLBLvYjAYEAThqfM8loXZs2dz584dVq9eXa5a8iVRa8BrqRTs7e05ffo0TZs25ejRoxw5coRly5YZK2EdO3aMzZs3AxTLy60FWrZsyYIFC55KCdpaqi8uLi4kJCQQEhJCgwYNWLJkCVlZWaxcudI4EB81ahSQr7tdnauYPS5mz56NSqWqkAj9chlwQRBcgFXAq4AlEAF8IIriqYL9ArAQmAjYAueASaIoXr2njR7AAqAVYAbEA/4F7WQ+6huqpXrw5ptvMnXqVP755x8gv8b07t27GThwIE2aNMHd3Z3evXvTsmXLWuNdAgqForasZy3VDhMTE3r06MGKFSuA/PRYuVzOoUOH8PLywtbWliFDhmAwGIqUua3lf1SkYmWZfZeCINgAZwAB6Ac0A6YASfccNhvwLtjeoWDfMUEQLAvaaA4cBoKAXsBzwAfAXcDkEd9LLdUIe3t7VqxYgYlJ/tcql8u5fPkyixcvxmAw0KxZM955551aha5aaqlhTJw4kaFDhwL5rvK8vDy2b9/OiRMnABg2bBjDhw8vV82MWh6O8szAZwPxoije6xOJLPynYPY9HVgliuJvBdvGkm/ERwHfAX2BVFEUZ9zTRgRw9OG6X0t1xtPTk82bN6PX64mNjcXe3h4zM7PaNe9aaqnBCILA0KFDGTp0KJmZmWRkZODq6lqtBIieFsrzJB0EnBME4VdBEJIEQbgsCMJk4X9RCvUBZ+4xxqIoqoF/gEKR5ATAQRCE2iTgpwipVIqnpycWFha1xruWWp4grKys8PDwqDXej4nyfOoNgA+Bz8lfB28NfFmw7yvyjTdA4n3nJQKFoXa7gJeA44IgJAHngRPAT6IoJt9/QUEQJpK/ng6AhY9PObpbSy211FJLLU8u5THgEiBQFMVPCl5fEgShETCJfANeyP2JvkLhNlEU9cB4QRB8gBeAzsAsYJ4gCN3vDXYrOH4DsAHyBQ/K0ddaqjGJeXnsu3uX/Zn5MYurXF1pXhvIVkstNRqdTsf169fZtWsX4eHh2Nra8tVXX9WmklUi5THg8UDofduuAdMK/k8o+OsMxN5zjCP3zcpFUYwDfgJ+KjDmN8g35OPK0R9EUeSCWs3xrCyamJjQ29ISuSCQqNMRolaTptfTwtSUegoFNlIpelEkXKPBRBDQASaCgNpg4K5ej1oU2ZmezlQHBzwUCvJEEb0oIhUEzCQSZLU/wkfmlkbDjvR0zqlUxm09LSzwqAGyfRWFThQ5l5PDTa2WXIMBZ5mMV6ysUDzC0kKERoPFE7Y0kZ2dzV9//cWdO3fo2rUrzZs3Jzc3l8jISCIjIxEEgdatW+Ps7IxcLufu3bskJCRgbm6ORqPB1NSU1NRUNBoN4eHhxMTEMG3aNGPQlSiKKBQKTE1Naw3MI6LT6fj333/ZvHmzUejE1NSU4cOHP1WfbWpqKoGBgSQkJCCTyWjVqhXPPffcQ7dnMBi4cuUKrVu3LvWYMsuJCoLwM1BXFMVu92xbCgwVRbF5wVr4HeBLURRXFOxXkh/ENksUxe/+o+0g4IYoiqUqvguCIFoXPKRMJRL0gMpgwF4q5SUrK67n5uKvUiECdlIpzyqV2MhkXFapSNDpMBEEtKKIvUyGQRSRCQIaUUQpCNjKZCgEgQy9nhitFq0oohAEpIAByDIYGG1rS3OlEgeZDAuJhNyCtmp5MAZR5IpazcKEBOO2mY6OdH/ClNkS8vJQSiTYFNS81xoMRGi1xGi1hObmkqTTEabRUF+hoL2ZGWYSCedzcril1dLUxIRnTEwI12iwkUqxlUppaGJC1/s+o1itFv+cHM6qVGTr9eQYDGQZDEjI/63WVDlRGxsbDAYD5ubmqNVqcnNzad++PQ0aNODEiRPExcWhVCpxdXWlcePGqFQqrl27Rnp6OlZWVsa8WpVKhUKhQK1WY2dnh4mJCUqlksjISFJTU5FKpcjlcgRBIDMzEwcHB0aMGIGzszN2dnbodDrMzc1rUxvLQGEhpnXr1nH+/HkAnJycWLBgwRNVYlav13P79m3c3NyMa/3p6enExMRw69YtYmNjiYyMJD093agprtFoOHz4MNbW1jRp0gSJREJSUhIODg5YWlrSo0cPoxAM5BvrixcvcunSJa5du4ZOpyMrKwuNRkPfvn05evRoifd2eQx4B8APWAT8CrQBvgfmiqK4vuCYj4F55M+kbwA+QHegiSiKWYIgvEf+2vke4BagBMaQH+H+liiK2/7j+uKPBUVAsg0G5IKAXBCwlUqRPGCUZxBFUvV6ZIDtQxhd/5wcLqhUxOblkazTcbegLXuZDEeZjBamprQzM8OiYKZuIgiYPGEzooflj4wMfkhLw1Umo6lSSaRWS7pez1wnJ5pWo4ekKIqk6PXc0miIz8vDRS7HTCIhXKNBBHINBkTAUiKhuVKZbyyBTL2eKK2WKK2WK2o1BlHEWirFTS4nKDeXunI5dRUKmimV2EulNFMqsbhP1CZZp+N6bi6xWi0eCgUaUeSvrCyu5uayycOD+Lw8/HJyyNDrCVGr6WFhQUdzcxxkMswlEpQFv//Xo6JqrAEvdLXm5ORgamqKQqEoIldZGrm5uWRmZmJtbW1MWSwrKpWKv/76i1u3bpGUlERqaip6vR5BEKhbty4ODg60b9+eZ555BplMhlQqrc2iKECv1/PJJ5+Qnp6OVqtl4MCBHDhwgGbNmjFt2rRqVf43Ly+PO3fucOPGDXQ6Hc2aNSMyMpKsrCwMBgO5ubkoFArs7e3x8PBAq9Wi1+tJSUkhKiqK0NBQMjIy0Ov1uLi4oNFoSE1NxdPTE09PT+rVq4e7uzuurq5F3rdOpyM2NpbQ0FAMBgPOzs4kJSWxfft2WrZsycyZM/nzzz9JSEggJiYGURTp3Lkzbdq0QaFQYGZmhrm5OXl5eYwbN+7RDDiAIAj9gBVAEyCG/LXvL8WCRu4p5PIeRQu5hBTsb0N+qllXwBVQAeHAelEUf3rAtcV91UhzVy+KRGq1JOblEahScTU3l9wCt7vaYMBcKqWRiQlznZxqpPtdL4qEqtV8l5qKvVSKmVTKUBsbnil4SOpEEZ0ooizlYRaam4vPnTvogG7m5pzOyaGDqSnzXVw4l5PDF8nJbPLwwKySH4aiKBKv0/F7Rga3NBqyDAbSdDoamZiQWTBzFYEknQ5ziQQPhQJnmYxwjYY8UaS1qSnZBgMuBW7+VJ2OkNxczCUSBMBSKsVdLqeeQkFbU1MUEgkJeXlEabW0NTV9qAEjwGsREQD0tbTkXE4OQ2xsqCOTGb1ApZ1TUw14eeQ8K5usrCxu375NVFQUly5dIi4uDp1Oh16vR6vVYmVlxfDhw2tsoRK1Ws2vv/5KdHQ0lpaW2Nra8tZbbxlnlyqVCqVSWepA5ZdffmH//v0AtGrVipCQEObMmUPTpk1Zt24dlpaWvPvuu5X+PnQ6HcHBwezfv9+oR+7o6IiZmZlxIJiRkWEs/1q3bl0UCgVBQUE0aNDAqDNgbW2NVqs1emmUSiVSqRRbW1vq16+Pu7s7rVq1Ms66DQYDbdq0eaiBXGxsLB9//DH29vYolUpsbW3p2LEjderUoUWLFqVG848aNarEe7tcTxdRFA8CB/9jv0j+DH1RKfsvAWPLc83qilQQaGhiQkMTE7rc4+a8U2DQf8/IIEOnoyqfpgZRJEmnI1GnM36xCkEgQqtlfUoKlhIJdSQSonU6TAWBMXXqIBcE0vR6OpqZ4SiTGWeH/+bk8FlSfo2emIJ1rRitFqVEQp4okmMwkKTT4SiT4SyTYSuTGWexFhIJ1lIpCkFAJ4r45eQggNFYNzQxwVIi4d/sbPpaWVXa5/F1cjKHs7KoI5XS3cKCd+zsSNTpeMbEhEy9HluplDS9HkuJBFe5vNTBSHl5psAd/ijMdnTkYGYmZhIJ39StW2zWXkvlYWlpSbNmzWjWrBmvvPIKkO/ivHr1KhcvXuTIkSNVnjal1Wq5ffs2ubm5iKKIiYkJer2eTZs2cfv2bXr06MGpyzgJcgAAIABJREFUU6eA/JrtnTp1IjU1FQcHBzw8PHB1dTUaHG9vbzIyMoq0HxsbS05ODiYmJty8eRMrKyvMzMxwd3fH0tKShIQE5HI5VlZWpKamGs+7evUqgiCg0+kA6NatG76+vowdO9YodlLR5OTkMGHCBAAaNGjAq6++ilwuR6lUIpfLkUgkmJubk5ycjLu7O7a2thUi5WxnZ4ednd0jteHk5ISXlxcGg4G2bdvSpUuXR4oTKNcM/HFS3Wbg96MXRb5NScEvJ4cOZma0NDWlh4UF0kqafV/LzeXzpCQcZTIyDQYy9XqyDQYsJRKc5XL0Bd+rThSRCwIxeXnoRREziYR0vR4bqZTWBepBBuB6bi4Zej0KQcBcIiFVryevoI337OywlUrRk79sIBMEEEVcFQru6vXE5eWRVbAe6yCTkSeKXM3NxUIiob5CgQik6HSkF8QYhGk0NFUqed/ODsdHvMk1BgOJBW3nGgyk6/XEarXcKlh37mNpyRQHh0e6Rk2hdgZeOcTGxrJ+/XpEUaRt27ZGt3ploNPp2L17N+fOncPBwYHExEQ0Gg1qtRpnZ2fMzc0RBIHc3FxkMhk5OTmkpKRgbm6OSqVCq9XStGlTrK2tsba2Jjw8nKysLFJTU7GzsyMvL6+I8V65ciWxsbGYmZlRp04dcnNzcSi4X7KyskhKSiIjIwOlUom5uTnx8fEkJyfj7OyMi4sLqamp5OTkkJycTGhoKHq9nq5duzJ06NBHDmDLyMggLS2NrKws1Go1ycnJxMbGEhQURGZmJitXrnxqtAIqZAZeS+nE5eVxJCuLGQ4OtDMzw+oRRnzxeXmk6nR4KBS8FxtLjsFAXbkcC4kEE4mE21otKXo9DRQK+ltbYyeTYSuVYi6RYPoIs0hRFPMNoShiJZGgEUXu6vXUUyhKHYiYF8xe72VybKxx1q4oiFN4TqnEVS6nj6Ul3o6Opc4oRVEkTKPhem4uSomEtqamRYx8mk7HeZWK+Lw8IrRawnNzqSOTYSOVopRIsC1Yf+5gZkZjpbLSXfS1PPmcOHECQRAYN24cTZo0eWjDJIoi169fx8TEhNzcXJYtW4aTkxMSiQRnZ2eysrKIi4tDq9XSt29fnnvuOZydnTE1NcXS0vKRZpF6vZ6kpCQUCgUmJiZkZ2cjCAJOTk6lGkE7Ozs8PT2Nr3Nycvjss8+Mry0tLXFxceGZZ57B3d2dbt260ahRo1I/n+zsbEJDQ0lMTMTZ2ZlWrVoVWTO+fv064eHhJCQkEB4eTkZGBvb29lhaWqJUKrG3t6d58+b069cPDw+PpyrCvTRqZ+AVgH9ODr+mp3NLqwXyU6M+eoSC9d5xcYRrNAA8b2bG2XvSrgA85HJamprS18oKz2oULAL5a8TjY2KMr9e6uVFPoUAiCGgNBi6q1dhIpSTqdGTp9bxqZYVEEIgrmJn/nZVFgk5Ha1NTIjQabmm1bK9XD8uCh9fapCT+zs42tt/QxISVLi61QYPUzsArGp1Ox+bNm7l06ZJx1rpixYoiRq08iKLI6NGjja9dXFyIj483vpbL5Tz33HM0atSIfv36VZoL+mH57bff+O233wDo2LEjEydONGqiR0dHo1KpkMlkXL16leeee46GDRsiiiJBQUHExMTw559/4u7ujrW1NX5+fnTt2pUPP/wQyF8iGDduXJHrjR07lpdeeqlK32N1pbQZeK0Bf0SSdTreiYmhoYkJr9vY0MrU9JFnfXmiSIBKRYZOR0tTUz68fbvE40bb2jKimqVriKJIoFrNX5mZJOv1pOp0aEWRunI5AnCtYGBSyK569ZBIJHx0+zbRBbN2KfmBZRYSCQ4yGQ0UCjIMBnQFefzZBkORNnzd3Gj4iGvOTwK1Brxi2blzJ3/88QeDBg2iY8eO1K1b95HXUpOTkwkJCUEqlWJqasrnn39e4nFr1qypELnJiiQ7O5vjx48bXdjJyclYWVnh7OxsdJ8X0qdPH8aPH8/NmzdZsGCBcbtEIkEmk2FpaUn9+vWRyWRoNBo0Gg2hoUXLjJiZmbFx48bamTa1BrxSidBoOJSZyRW1mrt6PW4KBQ0UCpoqlTjJZCgLctAdZDKkgmA0apZSKfF5eWQbDJgKAo1MTLArOOZeLqhU7MrIIDQ3l2YmJvSytOQ5pRIrqRQJ+XnxlbXWXhFkFqx9Z+r1pOv1JOl03MnLI1KrRSOKqArWzu0L8p/tZDJMBIFcUSRDr8etIMpbJghYS6XUkUqxlEqRV+P3/DioNeAVi0aj4cKFC/zzzz/cvHkTU1NTnJyceO6553BwcMDV1ZXc3FyUSiUODg4kJycjkUjIzs7GzMyM+Ph4NBoNzs7O1KtXr1jRGK1Wy6FDh/j1118B6N27N23atDEatsK0teqKwWAgMTGRxMRE41p8SkoKcXFxxMTEIJPJyMvLw8XFBWtra+rUqYNVQdCqSqVCpVLx/+ydd3gUVdfAf3fTeyWNQAKBUKT3WACVpjQpoqAiNuyKoiKor1hQULG9CgryCgiifKiIoCAgiGCkiZQgECAhHdJITzbJ3u+PmR12Nx0SSHR+z7NPsndm7tyZnTvn3nPOPadTp064urri7OyMt7c3Xl5e+lK9SqgXAa6mBX0NGIMSYe0A8KSUcq+6vcHygTdmAW5Jfnk5SaWlHCgq4lxpKQlq1Cd7IUgvKyPXZCLUwQF7IchVhZO3nR35JhMnS0o4r3pFN3NwwEO1aRepHt/J6gzVlps9PXnI3/8yX+mlY5KSM0YjoY6OujCuB3QB3nCYTCbS09NJSkri0KFD5OTkkJycrEV+O3fuHK6urjg5OWnLmMLCwnB0dCQlJYXExERMJhM+Pj74+vri4uKCvb09eXl5HDt2rMrzvvXWW4SGhl7GK60fcnNzKSoqIiAgQJ9B1wP15cT2GdAFZSlYEnAnsEUI0VENj2rOBz4FOI4iqDcLIcyBXMz5wD9BWQ9eALRByXT2j9CButvZ0d7OrsogJVLKah/ocnXWmV5WRoHJRJHJhIvBgKvBgFFdY55VXo5JSnzt7PBWVcxNEYMQtNJV3zpNAIPBQGBgIIGBgfTs2bPCdvNEqLq+XVJSQlZWFtnZ2RQVFVFWVoaHhwcGg4GSkhIKCwvJzs7G1dUVb29v/Pz8mqTwBiVLmWcDLhHVUai1ABdCuADjUEKnbleLZwshRgIPCyFeQs8HXiM1jUbthMDP3h4/PUyrjk6ToTazTCcnJ4KDgwkODr4MLdL5N1AXKWGP4l9UbFNehBJZrdJ84EIIcz7wT7HIBy6l3FbTCW3TiZqjU+no6FTKmSvdgItl0qRJV7oJOjqNmUr7dq0FuKoCjwZeFEIcQRHGE4Eo4CQNkA/cMp2ojo7OP5OmaLf/JyOE2Cel7HWl29EYaOz3oq6ufnehBO5KAkqAJ4BVQLnFPtXmA5dS3gOEAs+gxFN/FjgmhLiqzq3X0dHR0dH5l1InAS6lPCWlHAC4o6QW7QM4AHFY5wO3pNJ84FLKL6SUjwIdUQYFz15E+3V0dHR0dP6VXNRiOyllgZQyVQjhg6IS/54LQnyweT81H/h1KGlIq6orG2Up2T8rObSOjo5O00Q3W16gUd+Luq4DH4oi9I+hLP96G0WVfq2UsrQh84Hr6Ojo6OjoXKCua5W8gDdRbNhZwDfAC1JKc4SRtwAX4GMuBHIZIqXMU7fvQfFIX4h1PvDJuvDW0dHR0dGpPU0mlKqOjo6Ojo7OBfSAszo6Ojo6Ok0QXYDr6Ojo/AMRQngIId4XQpwRQhQJIX4XQvS22C6EELOFECnq9u2Wy3mFEH8IIRbb1HmXEEIKIabblM8RQiTQyBFCPCqEOCSEyFU/0UKI4Rbbq70n6j6yis9Dl/t6dAGuo6Oj88/kM5RVQncDnVGiZG4RQpgDa5lzVzwO9EYJe71ZTVoF8AtwvU2dA1Hid1RWXmN0zUZAEjAD6AH0QrnGtUKILur2mu6JmQeAYJvPsgZvvQ26DVxHR0fnH4aauyIPJXfF9xbl+4GfgJeAFOAjKeUci2POAc9IKT8VQgxGEfotpZSJ6j6nUZyV5wG+UspyIYQbkA08IKW87ELsUhFCZAEzUZaMVXtP1DIJ3CqlXHOFmqyhz8B1dHR0/nlcVO4KwJy7AmAXYESdbQshwlDCYi8H8gFzWrZrUQJ6NYUZuIYQwk4IcTtKDJLfqd09aVToAlxHR0fnH4a6dNecu6K5KqzuRMldEUz1uSuC1DoKUZb+mtXl1wN71PJfbcpPSSkbvQ0cQAjRWQiRjxLD5BNgjJTyMLW4JxZ8IYTIt/l0btiWV0QX4Do6Ojr/TC4pd4XKNqwF9Xb1/+025b/UU5svB8dRAor1Q4lJskwI0clie033BJTQ391sPscbpLXVoAtwHR0dnX8g9ZS74hcgTAgRjuKotl0t/xW4Rgjhi+IQ1mTU51JKo5TypJRyn5RyJvAX8BR1yOcBpKl1WH6MDdz0CugCXEdHR+cfzCXmrohGsaPfjyLYflfrPI7iJPc0ir29yQjwSjAATlxkPo8rSV1Dqero6OjoNAGqyF1xHPhcSimFEO8DLwghjnEhd0U+8KW5DilliRAiGkX9vkd16jKzQy3/W0qZRhNACDEX2AAkAh7AJBTNwvDa3hMVbyGE7Uw9X0qZ35Dtt0UX4Do6Ojr/TC41d4UZsx18u035duA2mpb9OwhYof7NAQ4BN0kpN6nba3tPFlOROSgC/7KhrwPX0dHR0dFpgug2cB0dHR0dnSaILsB1dHR0dHSaILoA19HR0dHRaYLoAlxHR0dHR6cJogtwHR0dHR2dJoguwHV0dHR0dJogugDX0dHR0dFpgugCXEdHR0dHpwmiC3AdHR0dHZ0miC7AdXR0dHR0miC6ANfR0dHR0WmC6AJcR0dHR0enCaILcB0dHR0dnSbIv16ACyHuE0JIIUSoTfk8tfxOm/LBavnV9diGCUKIKfVV36UihNiuXqMUQpQJIU4JId4TQnjW83mmqOdwtyjrIIT4TQhRoG4LV9uzpp7O+YMQ4mX1/9eEEIVCCAebfb5Wz32tTfkDanmI+r3a+yQUDgsh7qqPtuvUD0KI2Ra/m+3nzpprqPV5HNVzdauvOi8FtS9ZXmueEGKfEGJCA5yrQp9V+0+c2le2W7RnRD2cr7kQIl8I0dqirKrf+KTFPrbPQooQ4hshRITFPh8LIZZcahsbAj0fOPyu/r0aWG1RfjVQqP5dYVNeAuyvxzZMAPyBpfVY56WyDZiF8oz0Bl4DWgDj6/EcG4AolPts5m3AGxgFFACpwCNAaYWj64gQoi9KXuO71aLfUfL3dgf2WOxq+dvvtCmPl1KmWJRVeZ+klFII8RbwshBilZSy7FKvQafeyAGGVVJ+spKyi8UReBmIB/6qx3ovlWeAXYAncA/wtRCiUEq5vh7PYdVnhRBBwELgI+D/gGyUvh0FHKuH870I/CClPG1TPh+wHfwX23y3fBZao/ThrUKIq6SUBSjvpGNCiDellPX5fFw6Usom90FJtH4WiKjl/u8AH1axTQCZwPsWZQ4oL/CFwF82+28Cdtbz9awBttdTXQJwvsQ6tgNrbMpeBCTQrIF/25PAuw1U90pgpcV3b8AETLMoC1WvcyGw1ub448CKutwnwBnIA0Y25H37J3xs+zVwDXAIMKr3ujOQDLhd4nlmAxmX4Xrc1WdhSj3V53KJx4er7RlhUWZQn+sNDXwvrlXP3aUB6vZU39eDbcol8FhdnwWLtt5qUbYFmN/Qz0xdP01VhT4L+FFKeaqW+88DpliqV8xI5deJRpldmemOIggXAJ2FEB4AQggD0JcLs3bU8tGqKqpYCJEmhHjLUi0rhAgVQqwWQpwTQhSpqtbX1G1LgXHAAAs1zuw61D1bCJEhhLhWCLEXZXR5qxBioFrXQCHE/6nqpdNCiEdqec9sMWscwtXzThZC7BRCZAkhsoUQ24QQvWwPEkL0V7flCyFyVNVZd3WbpkI3q9OACOAptXy7ul9l6rguQlGHn1fr3iOEGFxV49XfcAwWo3Ep5XngKNa//dXAaWAtyuzAfLwfEInNb1/TfZJSFgM/ApNrOE6nYr/+ADiI8kyMlVIeBv4Anr4cjRFCzFVNIPlCiCQhxEp1Jmm5zyghxH6hmHyyhRC7hRAD1M156t/PLfp2uHqcs9qXE4UQJUKIg0KIm23qjhdCzBdCvCSESAJy1fKl6jthsBDikHrunUKIq+p6jVJKE4p2wNwuNyHER0KI40IxL8WpKmQr85kQwk4IMVMIcUJtf5L6LjNv1/qs+j77Td10UL0PU0QVKnShqNoPq++8s0KINUIIr2ouYwJQBPxS1+uvAqs+rPINcIcqAxoNjaoxtUEI4QrcD9TaJiGlTAd+Bh6uYpffgW5CCBf1exTKj3gEOI8itAGuArxQ1E/m9kwAvkVRwY4CXgGmAm9a1L8cRa06FbgJmAM4qdteQ1HDHlDPGwV8Voe6AVyBZepxw7BWBy9GeQmOQZnFfCyE6FPFfaiOcPVvmsX35cCtwCQgCdghrG1QA4GtKKq0u4HbUDpy80rqN6vT0oAv1f8rHWwIIdqj/AbBwEPqtX2Hco+r4mrAhYoC+HesBXgUyoBuN9BMCNHG4niw+O2rIFz9m2ZR9jtwoxBC1HDsv5Yq+nUb4BcpZaKUMkst+xx4WAhxyeY/IYS97cdmlwDgDWA4MA1FvfqLEMJOPT4CZUD4CzASuANYD/iqx9+g/n2dC307VS1bA0xR6x8J7AXWiYr28knAAJS+cJtFeUsU1e4cYKLa1tUX+YyFc+F5dQXsgBdQ3lUvqdfxfzbHfIryPloNjACmA25V1P8Z8Kj6/x0o92FDZTsKIV5U6/4VuAXlnZ2Dos2oihuBPVLK8kq2GSr5nWuSe+HqX9s+HIiiBWo8XGkVwEWoS8ajqLyFRVlHlAciDzgHrAKCbI6bDCRVUedAFJVJf/X718Db6v8bgP+o/z+ItXpUAGeAz23quxdlROinfs+nGhUqlajQ61D3bLVNo6u4plctyhyAdGBuDfd4O8qI0x5loHEdioDea3nfLfY3qPseM98rtTwa2FfZMer2KWob3S3K4oF3KmnPGovvq9T21FqliDK7S6+mDS3V77uBR9X/Y4DJ6v9vosyADHW9Txa/Rdsr3X8a6weLfs0FVa/lZ4q6nyOKlmnQJZxrdiX1mz/hVRxjhzLwtHxPjAcyqzlPpSp0FIEjgQE25TuA/7P4Ho8i8J1t9lsKlFk+TyjCTgLtq2mP+b6OUp9ZX+A5qlE1q/tdY9NH2qvfn6jmXLZ91twHOlXSnhHqd28UVXidTGjACdT3tU15Vb/xUptnIUO9TnsULds2lL4ebHMfyoAHrnRfsfw0uRk4yktyv1TvqhAiGOXBPwL0AQahdJx1NiOtPUBzYeFdaLOtjAuzrKtRhA8oKjvL8lipzOhB+bFboox8LUfxv6DYPjup+/0FvKmqjVrW8jprWzcoD+VPVdTzs7aTlKVALIqdtybGosyci1Hubzxwh8V97yCE+E4IcRYoV/dtp7YbIYQbiuZimfmYeuQG4GspZVEdjglC6ai2mGfUVwshnFHMJ1X99n9IReVoSbX3ScV83iB0qsKyXyeiaFcKUWa+wSiDaqSURpT+NKCKempLDorToe1Hc1AUQtwkhPhdCJGD8n5IUjdFqn8PA15CiGVCiCHqM18bBqHM7nbZ9O2tgK0ZaqtUzDC2xEspYy2+H1X/1qZvf4/yzGaiaAfeRfH5AEAIcZcQ4oAQIl/dz+zIab7u69W/S2txrroQhaIl+7yOx1XVt0HRUtj+xrNt9vFDuc5SFH+A1sBtUkqztgSpOKCep5H14abohR7GBTUUKCqWg1LKGeYCIcRkIAulM5jVyeaOGQ5Y2c6llIVCiL9QXuKhKJ3A/BKPBqargwFbr2R/9e+PVbTVrNK9DUXV9R7gLYQ4CEyXUm6t5jprWzdAtvpiq4zzNt+NKAOAmvgFmIHy4jojpcw2b1DtyT+jOBw9jaIpKEZRlZnr9kGZTVn+VvWF30XU64yyesAKKWWsECId5bdNQrk/h9TN0cAT6su1F/BWJfVWeZ8sMJ+3Nvf934rWr6WiCk0Tik9EjpQyzWbfFKztkxdDmZRyX1UbhRC9gXUoppm5KJo9iTKoc1bbeVwIMRp4HqWflgohvgOetBjkV4Y/iiCobGWFrRr4bBV1VNavoXbP2FMo77E8IM7y3SGEGINiGluIorXKQhlAfWdRtx9QIKXMrcW56oKf+rde+rZKQnW/s0oOyqBKogysUqqYdJTQyPpwUxTgLlg/1D2B/upo0ZYILghw82zNpZL9QLFxTOLCUiHzQ7Qb8EAZ8bdBcYgzY7bLTUWxYdsSByClTEZxojOgaAlmo2gIWkopM6toT63qVqnvGS4og4KqHvwolEHOYCmltgTExtEkG8XDO7gB2pZ5EfVmoajoKsPsxJgE7JUXlntFo9jjBqDYBiuzf1d3n8yYz5tV7V7/bmz7dXUUUXU/ri/GoJibbrPQOoXZ7iSl3ABsUJ/94cD7wH+B26upOwvFm/6WWrSjIfr2yWqe2VuB3VJKzf/EwinPTCbgJoTwrGchbn4XBlP1jLoyquvbtaHawZwF3jSyPtwUVegZKLM7MwYUO3U3m09bFIcSM2bHkqpGxrtQRsZ3c2H2jZQyD8UW+oxaZOkEdRylI4ZLKfdV8rESzlJKk5TyDxTnD1eUWQdUPiuuU92XGfPLUxv1CiWwTbj5u1TWT+4GJjeA89ZWYIKq8q4tx4EQIYRTJdt2AV1RRuHRFuVHUWYpT6PMjHZfXHMJRxnMNK41pI0L235dHb5U3Y/rCxeg1GYmdkdVO0spc6SUX6LMVDuqxVXNireizMDzK+vb9dT+i8WFirNZ2+s2e3vX98qKaJTB2d11PO440Kqe22KFEKIZyjv7REOep640xRn4ARTHIzN/oiwjOKPaeKuiE4rK6nAV282zq5uAJ222RQMPoMwq/zYXSilNQojpwBfqMoufUDpta5TR9XgUx7FNKGqpEyjOTtNRVDXmuo4Bo4UQt6DMAlOklCk11S2ltAyAcjn5A8Uxb7FQApWEomgVkm32ex5l/eRPQohFKIFZooB98tKCRryC4ii2QwgxH2Xk3h3Foeh/VRyzC+W36IziWGfJ7yh9YRDK7AlQlhgKIXajPBMH1cHcxdALiJFS5lzk8f8GbPt1dXRCWZ1xKdgLIfpVUp6oasw2A9OEEO8DP6BoaGyjMj6I8jxvRFHrt0WZwS4HxV4vhIhDGWweQTEzHVLr3gRsFkLMQ5kgeKJMPJyllDMv8douhc0oK1VeQBmw3ozidKehmg4WAfOFEAEovh/eKO+k6jQP1SKlPC+U5bVzhBCOKGYJJxTNxivq71IZu1Ac8yojvJLfWUop6zoY74WiDalpGenl5Up70dX1g/ICLueCF3YIin3qWxSnqdYoL+JFgIfFcbNRHEKqq/sMyo/Uy6Z8ilpeabADlBf8bygCKhfFyeZ1LngnL0YZJRaizDTWA50tjvdHGblnqeeZXZu6La6rQlAKKvH6VMu3YxN8pJJja7PPMBTHwSKUl9LNlR2Hon7eoV77eRQPz24297VOXuhqWReUDp6nfnYDN9bQ5sPAS5WUm21oEptANVzwWP74Yu6Tut9B4OUr3Xca88e2X6tl+VT04A5H0WaEXcK5zL9pZZ8XLfZ7DsWhrgBlINoWC49tLiyHSkERznEoJjYnizqGqP2jGAsvd5T3wisoWhkjyoB+IzDc4tgKfUEtX4oyCLa9L5pHdxXXXZt97FACX51Ded98g/JetTpO3W8WSswEI8rE43OL7VZ9g1p4oVuUP4ii/SpR78tqwLOaNvdSn4mWNuVV/cZlNs9CjUF9UGISbLvS/cT2I9TGNSmEENEoEbE+Vr+3RVnmcyPKyzgBxclqulQdNIQQx1Feol9dmVbrXGmEEE8B90kpO9W4c/2dsx3KDKuNlDL+cp23KVJJv85HEZZLLfaZibL8qrIwqDr/UlQn5JVSyrcboG47lMnd81LKFTXtfzlpqgJ8GMqIqKOsfPG+7f7DUZYTdJF6POp/Leoyn9Moy7y2XKZzfoKiFp1yOc7XlKmpX6v+C7HARCllTQF1dP5FCCFuRXnHt6nvd7wQ4naUgFsdGpv8aIo2cKSUG4UQH6PYXs/U4hA34J7GdvN1Li9SygIhxN1UHTGqXlGd9+JQAs/o1EAt+nUYMEcX3jqVsAbFfNqc2smEuiBQNHeNTn40yRm4jo6Ojo7Ov52muIxMR0dHR0fnX0+TUaE3a9ZMZmTUZW2/js6/jjNSyvAr3Yi6ovdtHZ0aqbRvNxkVuhBCfvnll1e6GTo6jZZJkyYhpWxyGc/0vq2jUz1V9e0mMwPXaRqYTCZMJhNCCKSUGI1G7O3tsbe3x2Cou8XGaDRSXl5OeXk5qampGI1GTCYTBoMBg8GAnZ0dBoMBLy8vfHx8sLfXH2kdnYbAZDJRXl6OnZ0dRqMSZM7e3h47OzvqGmxRSklxcTFCCHJycsjOzqasTPERM/dtg8GAo6Mjvr6+eHh41Pkc/waa5NuutLQUBweHK92Mfx1SSkpKSsjJyWHLli04ODiQkZFBRkYGJpOJpKQkioqKMBgMSpABIbC3t6esrIzycutVQW3btqVnz54UFxdTXl6OEAJ3d3dSUlJwcXFh165d5OYqYZadnJwQQhASEoKTkxMGg4GkpCRycioPbNamTRvGjRtHfn4+JpMJZ2dnunbtiqOjY4PfI52Lxzz40wdhl5/y8nKMRiMHDhwgOTkZo9FIcnIyZWVlZGRkkJmZSVlZGQaDAZPJhIODA0IISktLMZmsE/QNHjwYb29vSkpKkFLi4uJCaWkpmZmZuLi4sGnTJkDp1wCurq4EBARoA4GYmJgq2/nAAw/g4eFBQUEBDg4OBAQE0KZNm4a7MY2cJqVCN/9vMBjw9/dTyAG4AAAgAElEQVSnb9++DBo0CA8PD5ydG1WSmCaP0WjUOinA8ePHeeWVVwCws7OrIJABRo0axYQJEwBIT0/HZDKRnp7OsWPHWLt2bYX9R4wYgbOzsybk8/LyCAkJobi4mPXr15OXl8ezzz5L9+7dKxyblpbGzJkztYFCSUlVyYgUHn/8caKiomp9/ampqZw6dUobpOzatYv4+Hh8fHxwdXXVBikvvPACXl5e1dYVExPDnDlzrMpWrlxZ7zOKpqxCN//v6OhIREQEAwYMoGfPnri4uFyU5kancsrKyhBCYGdnp5V9/vnnbN68udrj3n77bUJCQigoKKCoqIi8vDzS09PZvXs3f/zxh9W+Xbt2pVWrVjg6OmIwGMjLy8PR0RE/Pz9SUlL48UclweKyZcsqnYh9++23fPPNNzg7O2sauOpYvnx5rQd9JpOJI0eOkJWVhb29PcnJyfz0008YjUZatmxJaWkpTk5OREREcN9999VY31NPPcXZsxdy8Nx1113cdNNNtWpLXfhHqNBbtGhBYmIinp6epKen88MPP/DDDz9o21988UU6duxYTQ06oMykz507R0lJCX5+fmzfvp2VK1cCsHDhQuLi4njrrQuZM/v27cvu3RdCB3t7e+Pu7s6ZMxeWW4aHh9O1a1dKSkqYN28eJ04oMf/NI3YzLi4ufPbZZzUKr5EjR1a7PSgoiM8/rzxt8N13301paSkjRozg2muvJSgoqM6z74ULF3LypJJ7pGfPnmRmKrljsrOzyc6+kDG0sLCwRgEeGhpKeHg4ubm59OjRg06dOunqQBtcXV0pKirC1dWVv//+m7//1lIOEBQUxPz58/V7VguKi4vJysqivLycgIAA3njjDWJjY+natSszZsxg8mTr/COenp6apguge/fuxMfHWz3jvXv31oTvs88+C4CHhwd5edapAR555BGuvfbaGtt45513Vrt97NixjB07tkJ5fn4+U6dOBeCZZ54hLCwMX1/fOj0XOTk5zJ07V/vev39/zRyQkJBgda7aMHHiRD744APat29P+/bt6dXLNp17w9KkZuDPP/88ycnJFBQUUFBQwL59+zh//jz29vbaDKx169Y4OTnh4eFB27ZtGTJkSJ3U7XFxccTGxlJWVoa7uzvNmjUjNDQUADc3tyY/G3jnnXf4888/te+tW7cmNTWVoiIl22qHDh3o168fe/bsQQjB8ePHcXZ2pqioSLNR2dnZ4eHhwfnzF1ISd+vWDScnJ03Qjxo1ii5duvD6669bnX/8+PHY29vj4OBAcHAwkZGRuLq61tv1rVy5kg0bNmj/X+xLv7S0lN27d7NgwQJAsfUNHz6c77//HoCQkBDeeeedS25vXl4e8fHxJCQkkJycTFxcnDYwuueeexg8eHCt6iksLOT+++9vsjPwxx9/nPT0dEpKSkhKSuKvv/7SbK5mOnTogBCCoKAgoqKiuOqqq2p9DpPJRHR0NLm5uQgh8PX1pXnz5ri7u+Pk5NTkNXg5OTk8/PDDVmU9evSw6us33XQTrq6u2vOWk5ODo6OjlbCyFcz29vZ06dKFEydOaPs99dRTxMXFVdCq3X777QghcHNzIzw8nFatWtXboKuoqEibEY8dO5bx48dfdF3p6en873//4+DBg3h6euLm5kabNm347bffAGVw0KNHj0tqr8lkIjU1lYSEBJKSkkhISCA2NlYbLH3wwQc0a9asxnrMvgL33XdfpX27SQnw9u3bExQUpKl2Q0NDCQwMpHPnzhiNRlJTU4mLi2PRokXacQ899BChoaH4+fnh5eWlOUw4OTnh6+ur2WHMTJo0qcK53dzcKCgoAGDo0KHcfXdds91deXJycli4cCFpaWmUlpbi7+9PbGxslfs//PDD7Nmzh/379wPKrNtSYFeFj48PU6ZMoVevXgghKCsrY9++fZw6dUpzgDEYDJSUlHD48GHOnTvHAw88QP/+/S/5Gk0mE0uWLGHbtm0MHjyYe+65p17qTE5OxtnZuVYdrrYcO3aMd999t9KRvqurKxEREUycOJHw8PAK27Ozs0lKSsJkMrF161b27duHq6srhYWFTVaAd+3alaCgIEpKSvD398fb25uuXbvi5+dHfn4+p06dYteuXezcuRMABwcHZs2ahbOzM82bN8fe3p7ExESEEDg5OeHv728lPCozY9jy7rvvEhQU1KDX2hDs37+fH3/8kWPHjtG8eXOMRiPnzp2rcv+3335bm0nXhR49ejBlyhT8/f0ByMjIYP/+/aSmpmrObCaTiby8PHbu3EnLli2ZNm0aAQEBF31tZkpLS7X37ueff17hvX0xFBYWkpKSQsuWLevVP2bt2rWsXr260m2hoaF06NCBO+64o8I5pZTExcWRm5tLeXk58+fPBxSZs2nTpqYvwGuz1CQ9PZ3XXnuNgoICjEYjrVq1oqysjPj4eHx9fTXbh5+fH2fPnuX++++ne/fumhoFYPXq1URHK2mhfXx86Nq1q+YMNWrUKHx9fas6fY2YBw91mXWa7byXgvmhGjlyJMnJyVYjc4CAgAAcHBxITr6Qsa93797s3bu30vpcXV0pLy/XNB+2At7f35/HHnuMoKAgPD09q7yukydP8vLLL3P11VfzyCOPXLSGIykpieeee077/vbbb9O8efOLqquhse3gI0aMICoqirCwMO36k5KS+OSTT8jLyyMyMpI///yTq6++Gm9vb7755hsAOnfuzPHjxxkyZAi33347d955Z5MV4LXp21u3bmXZsmUIIfDw8ND6c15eHu7u7mRnZxMSEkJhYSHnz5/ns88+IyMjA09PT4qLi8nMzOS9996jsFDJwtulSxf8/PwoLy8nPDycIUOGXPTzV1ZWxvnz5/Hx8bGyL1eHOaPUpWj1LAXbHXfcwbfffqtp00DRloWGhlqZu6677jpttlkZzs7OFBcXA4pPgoODgzaBAcVJbfjw4Xh6elapuSguLmbr1q2sXLmSmTNn0rlz54u+xoULF2rt9fT05KOPPmqUjo55eXl8+OGHmhNeUFAQo0ePplu3bpqZzWQy8dNPP/HLL0pK9RYtWhATE8Po0aOJi4sjOjqa9u3b4+DgwOHDh3nrrbcIDQ2t0gb+jxPgVVFYWEhRURGlpaUEBARgMBj49ttvWbNmDe7u7jg4OGBnZ0dhYSGFhYV06dKFG2+8keLiYoqKiigoKODMmTMcPHiQ4OBgbYmUk5MTUVFR9OnTh7KyMtzc3Mzt5fDhw3h4eGBvb4+joyM7duxgx44dlJaW8vrrr9O6detK25qbm8v27duJj4/n3LlzJCQk4O7ujpubGz4+PoSEhODr64ubmxt2dnZ4enoSEBBAs2bNcHJyIj8/n+LiYhITE8nKyiI7O5tTp05x8OBBbaZmS//+/enVqxf/93//x80338yyZcto0aIFCQkJmEwmSkuVVOvu7u4UFBSYU+wxcOBApJRERERw+vRp/vrrLyIiIvD29mbr1q04OzvTokULwsLCGDZsGCEhIRXOPX/+fG2mHxUVxeOPP16n3zY7O5tHH31U+/7JJ59UOWi4WEwmE7GxsZw5c4a8vDz27dtHSUkJRUVF5OTk0KNHD6ZOnVqr8z744INWasrXX39dWzbj7+/P4cOH+eCDD7jnnns4cuSI1SBq7Nix7Nq1i+7du1ewZzZlJ7aL7dtSSnJycigtLcXe3h4fHx+MRiNTpkzB3d1dW87o4uJCbm4uJSUlPPLII9jZ2VFSUqKZ4/bv38/58+cJCAigpKQEk8mEt7c348ePx8PDAzs7O1xcXHBwcCAxMZHs7Gzc3d0BpU/MmjULUDyrq/LNAMUZdN++fZw5c4b09HQyMjIICgqisLCQ7t274+rqio+PD25ubkgpCQwMxN/fX7P1ZmVlUVxcTFxcHAUFBWRlZfHDDz9ogwAXFxcrYQswZcoUcnNzSU1NxdXVlQMHDuDg4EB2djZGo1E71mQy0alTJ44cOYLBYKBTp05ERkYSFBTE//3f/+Hg4EB4eDgFBQUcOHAAd3d3IiMjadeuHTfddFMFoVpQUMADDzygfX/jjTcq1ShVx9KlS/n555+17w0RLyA/P5+jR4+Snp5OUlISJ06coLS0lOLiYvLz83nsscfo27dvjQOzEydOMHv2bO2Zs7e3Z9GiRSQkJODl5YWfnx9z584lNTWVadOm8fLLL2vHuru7M2jQINauXVvpffrXC/CqyMnJobCwkODg4FrtX1JSQmJiInZ2djg6OhIbG8vy5cu1QUBBQQHl5eVaJ+rcuTPl5eUUFRWRmpqKj48PDg4O3HPPPbRt29Zq9H3w4EHmzZuHEIKoqCi6dOlCYGAgLVq0ID09ndTUVE29kpWVRUFBAWVlZeTk5JCRkUFWVhb+/v5kZWXh7OxMSEgIrq6uCCFIS0sjISGBwMBASktLyc/Pt9I6uLi4EBwcbOXIYbZ5W2Lu4HBh+Ud8fLzmSd6xY0eOHj0KKDPLAQMGkJ2dzRtvvAHArFmz6NChg1VnsLXf1eZ3jo+PJy4ujry8PA4dOqSdE+rmlVoThYWFbNu2jS1btuDo6Ejbtm1xcXGhR48eeHl54eTkxLRp0ygvL8fZ2Vlb2tKpUyd69eqFwWBg6dKltG/fnptuuonExERiY2NZs2YNHh4ehIaGUlJSwunTpwHr2U9UVBTjx49n+vTpQM2qw3+jAK8Ks+nDz8+v1tqujIwMTUNmMBj4/vvv+f333wkMDNT6sPmvvb09kZGRAGRmZpKdnY2LiwvdunVjwoQJ+Pj4WNU9Z84cYmJicHV1ZcSIEYSFheHn50dAQABxcXGkpKRQVlamOaEVFhZq/da8TNOsonZ0dKR169YUFxfj6OioDfBatmypeURbrspo06aN5jVuZ2enDcZbtWpFXFyctt9VV12lzR7Dw8M5e/YspaWllJWV4e3tTWhoKEeOHMHV1ZU777yTDh06sG3bNtatW0dYWBiPP/54hQH61q1bWbJkCaC8DyozUVpSWlrKX3/9RU5ODllZWVZ29nvvvZdBgwbV6resDWfOnGHTpk3s2bOHyMhIgoOD8fLyokePHjg6OnLu3DneeOMN3N3dKSkpwdPTk1atWtG5c2f69u3Lxo0bSUxMJCoqioiICGJjYzl69Cjbt2+nXbt22NnZae+lZs2aaQNIgP/85z/s2bOHjRs30rdvX5544olqtay6AL+MmEwmjh8/jr+/v5Xd1GQy8d1337Fv3z4yMzPJz8+nefPmBAQEMHnyZH777Te+/fZbAMLCwpgzZ06d1GvFxcWkpKQQGhpao02noKCA1NRU/vOf/wCKytusfZgwYQLx8fFkZmZSVFRESUkJjo6OpKamMn36dLp3787evXv54YcfOH36NF27dqWsrIyYmBhWrlzJp59+yo4dOwBF4M+aNYtly5axadMmPDw8yM/PZ+jQoVYzyHnz5nHw4EHeeeedSmfpZWVlpKWlkZKSwr59+4iJiaFz5854enrSrFkzOnToQGxsLHl5ebRo0ULzdZBSMmbMmIsyQcTGxvLRRx8RERHBsGHDaNu2LSaTSXvptW7dWvt9ioqKmD59Ol5eXgQGBnLq1CkyMzMreOGbZyyHDx/GycmJXr164e3tTW5uLoMGDcLOzo5Tp04RHR1NaGgoJ0+eZPv27QB89tln1QojXYA3PPn5+Zw+fZoOHTpYOcfm5OTwwQcfUF5ervmWtG7dmi5dujB48GBmzpypOTBNnTqVgQMH1um8GRkZlJSU1GgWMplMZGZm8ueff7Js2TLs7e3x9fXVbOK33XYbR44cIScnB4PBQEZGBkajEQ8PD+bOnUteXh5Hjx7lf//7HwBjxozhu+++o0ePHkybNs2qz06bNo2OHTvy2GOPYTQaNY3E008/Tfv27YELzmfjxo1j5MiRlb6X8vPzSUlJ4cyZM2zZsgU3NzeCg4Px9fWlRYsWhIaGEh0djb+/P/b29pSWlhIXF0e/fv3o0KFDne6j+R6tXbuWzZs3M3ToUK6//nq8vLzIzc0lMTGRkJAQqwGYeWLVt29fioqKOHToUIU6nZyc6NatG8HBwaxdu5ZRo0bh5+eHEELz08rPz+fIkSPs3r2bkSNH8uKLLwJw7bXX8sgjj1Tb5n/EMrKmgsFgqPBgxcfH8/7771dwLklOTiY5OZmIiAhNeIMyOvzggw946qmnan1eZ2fnKtXytpg9L+vy4rS0xfv5+dGvXz/NrACKGv7QoUOa8Aa0F5XZm9isOrZdehUVFcXBgwcrHbCcOXOG119/HQ8PD4KCgujYsSOTJ0/WXhigvEAXL14MKJ60rVu35vz585w5c4aMjAxt+UltyM/PZ/369Wzfvp377ruP3r17A8oA6Y033tCWl1m+iB0cHPDz8+PUqVNW9sYRI0ZQVlbGVVddhYeHhxZ0YuLEiVWev23btrRt2xZQXtxDhw5l1KhR9eqtr3NxuLu706VLF6uy1atX88cff5CWlmZVfvr0aU6fPk1CQoLVUq1FixbRpk0bbXVLbTA7jtWEwWCgWbNmDB06lKFDh1a6z+jRo62+W/ZrBwcHfHx8NE3bd999h7+/P926ddNm0mbatGmDk5OTpskzO2RaCj8XFxdat27NiRMnKhXeq1ev5qeffqJ58+aEhoYyYcIEevToYTXg/u9//6v5JLVp0wYpJWfOnGHz5s28+eabhIWF1ereAJw8eZIVK1bg4ODAG2+8obX1yJEjmpYQrNeom++95VJagEGDBhEZGYmjoyPt2rXT3mnmWBi2uLu7069fP/r168f58+e56qqruP766+nXr1+t22+LPgO/BEwmEzk5OXh6epKZmcmPP/7I6NGjrR7gsrIykpOT2bVrF+vXr6dPnz48+eSTpKWlsX//fuLj4/n9998BmDlzJp988om2BjMyMpLZs2dfiUurkrS0ND7//HOOHz9Op06dKjjDdezYkfz8fJydnSkoKCA5OZmwsDAroVaVU8vatWv59ddfefzxx7WByJEjR5g/fz5jxoxh1KhR1bbtq6++Yt26dXh7e2M0GgkNDSUyMpJhw4bVyvEwJiaG9evXc+LECXr37s1tt92m/Zbr169n3bp15Ofn4+XlxR133EGfPn2sXkrFxcWsXLmSv/76i3HjxhEYGHhRM4SLRZ+B1x9Go5GioiK8vLzYuXMnOTk5DB8+3Gof82z8nXfeoaysjNdee43WrVtz6NAhbaZltnHfcsstfPLJJ9qxr776aqOLILZz506WL1+u2dst+ywog+yEhAScnJw4e/YsBQUFNG/eXHN89fT05L///W+FZbslJSW88MILtG7dmvvvv1/rM0uWLGHnzp3MnTuXwMDAKttVXFzMvffeCyhC0Bzsp1u3bgwYMKBGLWVZWRnr1q3jjz/+oKioiNGjR3PDDTdgMBjIz8/nww8/1MyCAwYMYMiQIbRq1cqqjmPHjvHVV18REBBAREQEUVFR9e5nUx26Cr0eMBqNmu1248aNfPfdd0gpcXR01MJ6PvTQQ9jb23P27Fny8/P5/fffcXNzIzIyEnd3d6666iq6du2q1SmlJC8vT1N7ffPNN4wYMYJrrrmmwsjywIEDvP322wwfPpykpCRatWpFREQEzs7OhIaG1hhQ5FI5e/Yss2fP5qabbqJfv34EBARQVlbGmTNnmD9/PiNGjGDbtm0kJyczaNAgysvLOXz4MIWFhYSFhfH3338TFRXFpEmT8PPzq/Qc0dHRLF26lMjISMLCwrSlQdOmTWvQawOYMWMG/fv3Z+DAgZozIlx4gTz22GP88MMPtGjRgr59+5KYmEhJSQnDhg1r8HtfG3QBfnGYQwQ7OTmRkZHB8uXLOXTokLbc0cyMGTO0MKOnTp3i77//pmXLlrRt25by8nJuueUWK61QWVkZ6enpGI1GFi1aRFxcHI899hjdu3fHxcVF289oNPL2228TExPD2LFjSUxMpFOnTgQEBGh+Eg0dBnj9+vVs27aNiRMn0qVLF+2dtnnzZk6dOoWbmxuZmZkkJSXRu3dvjEajtnzRzc2N5ORk7rrrLoYNG1apuaq4uJgFCxaQnp5OYGAgPXv2ZOHChcyePVvzJWgoTpw4wUcffcTjjz9ORESElcDfuHEjX3/9NU8//TRvvvkmzz33nBasycPDg0GDBjWKAEK6Cr0OSCnZs2cPmzZtIjs7m5KSEpydncnKysJoNGrrwmfOnEliYiIrVqzQjl27di3BwcF4enri6OjISy+9VKlN14wQAk9PTzw9PXn33XdxdHTk6NGjrF+/nmbNmuHq6kq/fv04d+4c27ZtA2DDhg20b98ek8nEli1bNMe64OBg+vfvr6lqqxKSF4vZuaRr167a2k57e3siIiK0gCeRkZH85z//Yfjw4ZrD3FdffcWePXu4/vrr2bZtG6dPn2bmzJmVrg+NioqiZcuWpKSkcPjwYYB6X3d/7NgxfvjhBwYMGECfPn208sDAQO2l9dNPP/HAAw/Qq1cvzWv/4MGD3HnnncyZM0dbjwyKM5BlPTqNl/z8fL7//nuOHDlCXl6e5jGclZVlFSJ49uzZLF68WJtdOjg4sGrVKtq0aaP1gUcffbTaADD29vYEBwdrDpdt2rTho48+ApTlQ+Xl5TzyyCOaLRRgy5Yt9OzZk7i4OPbs2aM5n/Xr14+OHTvi6upKly5dar1UrbZs3ryZoKAgevTooQk4Ly8vq4Apb775Jvb29po5Kjs7m5deeomgoCCcnZ354osvOHv2LJMnT64wK3Z2dmbatGnExMSQlZXFnj17GD9+fL0Kb5PJxMaNGzl06BAPPfQQ3t7egNKvCwsLSU9PZ/369aSkpPDKK6/g6uqKs7MzJSUl2NnZMXLkSKsIlKAsuWvMQX70GbgNJ06cYMWKFZSWljJu3DhCQkI0z2AfHx/+/vtvbda8aNEiunfvzm233cbzzz9/UUugqmLDhg18/fXXVtHPysvLmTRpEjfffHOFDmIymdi3bx9//vknmZmZnD17lieffJKIiIh6aQ9csA2bbVbt2rVj4MCBtGjRQmvP+fPnefPNN+nRowe33XYboNi/d+zYQVpaGkOGDGHv3r0sX76cTz/9FA8Pj3prX20oLy/nrrvu0r7Pnz9fW4GQkJDAN998Y7Vsa86cOVqs5EceeYQFCxawZ88eAG3g1lii8+kz8KopLS3l559/Zt26dfTp04eBAwdqKtCysjJcXV2JiYnBw8ODbdu2ceDAAYYNG0ZoaCgff/yxth73UsnOzmblypWa2cySjz/+uIL3Oij+Hdu2bSMhIYFTp07Rtm1bpk6dWq+z8vj4eBYtWkRWVhZhYWH06tWLvn37WqmJ9+/fz3vvvcc777yjBbxJT09n69atNGvWjL59+/Lyyy9rHumXe+a6c+dObSLh7OysOeIB2pp08wqPa6+9lsGDB/Pee+9x3333ERISwsyZMzEajUyYMIERI0ZcVJa1hkJXodeC6dOnk5qaSlRUFGPHjiUtLY2uXbtWuiRpwYIFhIWFMXz4cDZu3Mjy5cuZNm3aJc/Ejh07xquvvmpV9tRTT+Hn50dRUREdO3as1UP19ddfs3HjRqZOnVqnJB41IaUkOTmZoqIiDhw4wK5du7S1pFOmTGHz5s2cPn2au+++m+uuu67SOkpLS5kzZw5paWm0b9+eW2+99bIEXTl27Bjff/+95nQHMGTIEO666y5tRpOens6TTz5Z4djOnTvj4+PDjh07eOGFF7R1940JXYBXTkpKCs888wygOA9GRUWRnp5eqX9CcXExU6dOZcGCBQghePLJJzEajSxYsMBKPV5XpJQsWrSIX3/9VSvr2bMnEydOJDExsdYas/Pnz/PWW29hMpl4/vnntVlmfVBcXMy5c+dIT09nx44dxMTE4Onpib29Pffccw8ff/wxdnZ2vPbaa1Xaf2NiYnjvvfdo1qwZXbt2ZcKECQ0+wDUajWzatImtW7daOQnPmjWLTp06ad9XrFihJVKx5IYbbuCvv/4iICCA22+/ndatWze6QDG6AK8BKSUbNmxg9+7dlJeXk5aWRnFxMVOmTGHIkCEV9v/++++1pAF79uxh0qRJdV4aUhlHjx7lq6++YuTIkXTv3v2iHyTzeksXFxdGjx7NyJEjG2Q0KaUkIyODlStX4uLiwm+//ca4ceMYM2ZMjceePXtWWzrX0JHTzDPvPn36aDNoc5ISDw8P7r77bpYsWcKxY8eQUhIZGakFxGndujVt27bVVKeNNRmJLsArJycnhy+++EKz5Z45c4by8nKWLl1aaTjLJ598kgkTJrB+/Xrc3Ny499576+XZXLJkCaWlpYwaNapas1p1mEPCNm/enMLCQmbMmEHLli0vuW2VYTQaSU9P59lnn+Wee+7h888/r3EpIygajZMnT7Js2TJcXV156aWXGqR9Zn788UdWrFihJbsCJeDR+vXruf322/H19WXFihVkZGRo4bPNTrbdunXD29ub8vJyBg4cWO9mx/pCt4HXgBCCESNGMGLECECJllVcXEx8fHyl+/fq1Ytnn31WW69dX7Oxjh07VpiBXwxz587lrbfeYvLkybz//vvEx8czYcKEeo/1LISgWbNm3HvvvcyZMweTyVTlso7U1FTi4+MxmUz4+fkRGxurLTk7fvx4gwpw8zKeEydOaGFf8/LyCA4OJjo6mjfeeIOePXsyffp0XFxcGqWA1rk4vLy8eOyxxwBFAM6bNw9QTCa2nuBCCHr37s2CBQu45ZZbuOWWW+pNVV2b9JQ10bFjRwYOHIiHhwcnTpzg9ddf56abbmLUqFH1bhd3dHSkefPmPPHEE3z66af4+/tXei9MJpNm2/by8sLe3p7t27eTkJCghYttyP5kjrNgqSExR8r84osvcHFxYfr06bRt27ZRqcXrA30GXgkZGRnMmDFDiylcVeaY06dPExYWVu8dpz6xjXLWq1cvnn766QY5lzlCnO29KiwsZNq0aVaJO1xcXAgPD7dKG36W/IcAACAASURBVDlgwAAefPDBBmmbJeagMWYCAwN58MEHadeuXZPu3PoMvGZWr17NwYMHiYuLw9vbW7OZWlJUVERmZma92Lwbki1btljZeRsynXJubi729vYVZt/79u3j3XfftSoLDQ2tkFDF0tekocjIyOCJJ57QfJbs7e2Jiopi4sSJ9WpquBJU1bcbh/dNIyI/P5958+ZpduN27dpVae9p3bp1oxbeoMw+Vq5cqc1A9u3bVyFWcn1hZ2dXQXhnZWVx//33k5+fz+233w4onuo33HBDhXWmlvbBhsQyPvOjjz7Ke++9R/v27S9aeCcmJrJu3TrNJPDcc88xadKkCjHnCwsL+fnnn1m0aJGW8lTn8rFnzx62bdumPf/mtcW2uLi4NHrhDUogkcWLF2t2XkthXt94enpWEN5r167l3XffxcXFhRtvvBGAvn370rZt2woBq8yBWBoSf39/Jk+erDmqLVq0iIcffviShPfOnTvZsWMHKSkprFu3jkmTJlWaaSw+Pp5Vq1bxv//9jxMnTlz0+eqKrkK3ICUlhffee49u3brRuXNnfvnlF0JCQsjNzW10Dkt1QQjB1VdfzcaNG7nuuuus1jg3NI6OjowfP54OHTpokY5OnDihPeSLFy9m7969JCQkaNHHGhqzTWzVqlXExMRwzTXXWG0/ffo0Pj4+rFq1ip07dzJhwgRuueWWSuvau3cvn3zyCUVFRXz11VdW2yyXn5gTHXh6emrqfNvAIDoNg5SSLVu28M033/Dss8+yYsUKzp07R0lJCWVlZY3OYakuuLm5ceeddzJv3jxmzJhxWc/dvn177rvvPnJyclizZg1wIVrZpEmTuPbaa7VEK1U5tNY3w4YN45prruGFF14gKSnJykRiNon6+PhoES6r8r2RUvLhhx9qcSwssZ20ffTRR+zfv1+LGeDs7Nzga9vNNN0nt55ISkpi06ZNlJWVceDAASZMmECnTp20wCHbtm3j5MmTmt2sqWIymTh79izdunW7rOc1Z2H79ddftTW2UVFR9O7dm27duuHs7Fwvzn+1YcmSJWzduhVvb29cXV05f/48I0eOBOCLL74gNjaW0tJSLQa82Ut59erVpKSkMGzYMKtQtYWFhSxevJhx48Zx7bXX8tprrxEeHk5WVhbHjx9nzpw5TJ06lcDAQC3V6ujRo/niiy+YMGECJpOp0SxB+6chpWTXrl0cOHBAU4m//PLLHDlyhOPHjwPKsi1HR0ctVG5TJS0tjZCQkMs+ySgpKWHJkiW0a9dOK7v11lvp3LkzERERCCGslmw2FJmZmcycOROTyYSrqytOTk7k5OTg6+tLamoqS5cupbS0lKSkJMrKyqwcCJ999lluv/12brjhBisbenR0NHv27GHhwoXs2bOH7du307JlS44ePcratWsRQmg5Fk6dOsWYMWO0AfylhEatK/8aAW40Gtm6dSutWrUiMjISg8Gg5ZAeOnQozZo1Y8SIETRv3pytW7cCSiCGG2+8kcGDB1/h1tcPxcXF1Wazqm8sMw89/PDDXHPNNRQVFV1WDYAlCQkJTJo0iauvvlrL9uTs7MyCBQvYuXMnL730EiUlJbz11lsEBgZaOTDu3LmTnTt38u6775KQkGCVkGbNmjVs27aNnJwcDhw4QEhICH379iU6Oppdu3YxduxYunfvTocOHdi7dy+RkZGsXr2a9PR0K3W+zsWRkpLCH3/8wdChQ3F1dUVKyddff82uXbu44YYb8PHxISoqCmdnZ+bPnw8ogVSGDx9+SXmqGwvmQFOXi7Nnz1rlaHj55ZcpLCzE0dHximgzpJTk5+ezcOFCSkpKKCkpwd3dndjYWL766itatmzJqFGjOH36NKtWrdJSw5p9nL766isOHTrEU089xYYNG8jNzdXydX/66accO3YMFxcX0tLS6Ny5Mx4eHqxZs4brr78eHx8fHn74Yd5++20t8cuLL77I3LlzG2x1gCX/CgG+bds2Vq1aZeVENXToUDZt2sT48eMZO3as1f7mh7Bz5871HgXsSmEwGPDw8CA2NpaePXs26LnMAyMzc+fOpUWLFgghrpjwBiWRSkBAAL6+vlps9FdffRU3Nzf++9//4ufnpwXOcXBw4JVXXmHr1q1Wa0fXrl1rlawFYPDgwXTr1o327dtTXl6u5Rbu06cP3bt31+q74447ePHFF7n77rs5ceJEo12y0lQoLi5m4cKFWuAdsxo3KiqK6OjoSl+iZjvupEmTrEIaN2V8fX017ZFtHPL6ZuXKlZr/xrBhw7Tlolcy0U5WVhYuLi54eHhoIY3T09N5//33eeihh7jmmmuws7PTks0MHjwYZ2dn1qxZo6VPNmdgs7XVR0VFcd999+Hr60t2djaHDx+mvLycKVOmaEF3IiMjad68Od99951mIrtc9+NfIcCTk5OthHd4eDibNm2iRYsWWuIQUKIkWToh9O3b97K3tSG57777+PDDD3nvvfca1Ctz+fLlgOJkU5Wj0JVASsmnn35KYWEhBoOB5ORkjh07xoQJE9i9ezfFxcVkZmbSpUsX/v77bz777DPNS37UqFGMGDGCWbNmafUJIbjuuuuIjIzk/PnzxMXFcfz4cS2Xuy0ZGRnAhYxs9b2k799GaWmpVdS8sWPH8u233xIdHY27u7tVPvudO3eyZcsWTp48iZ2dnZXat6nTsWNHWrduzZIlS3jooYca9Fxm4b1w4cJGEf8flMFDUVERy5Yto0uXLuTm5rJ582Z8fX0xmUxs2LCBgoICcnJyCA8PZ82aNVZOdu+//z4nT57UwtwOGzaMjRs38sgjj2AwGDh37hynTp2iuLiY6667rlJnV0dHR0JDQ2nfvj1btmypdfa4S6XGZWRCiEeBB4FwtSgGeF1KuUHdLoCXgamAD7AbeFRKGWNRhwRKgfZSytMW5UsBfynliBobeolLTZ544gkyMjK44447GDZsGHfddRcRERGUl5cTFRXFqlWrtH2HDBnCzz//zIIFC5r88gNbVq9ezaFDh3jssccaTIAcPXqU119/ncWLF1/RGbctx48fZ8eOHVpMeTOdO3cmJCREy51cXl7Ol19+ybhx4/Dx8aG8vFwzoxw+fJgPPviAwsJCIiMjCQkJ4eTJk5hMJlJSUgAYOXJkpelCpZQcP36c/fv34+DgwNChQ+v1JVjXZWT/hL5tzlHfokULHn74YeLi4li8eDEtW7akX79+xMTEEBOjNDc4OJigoCAMBgPTp0+/qPM1VoqKipg1axbXXXcdN998c4Oo1EtLS5k3bx5FRUXMmTOn3uu/FH766Se++OILqzJnZ2d69eqlrU338PAgPj6enTt38uqrr/Lnn38SFRVFixYtMJlMfPrpp+zevRuj0citt97KiRMnyM/PJykpSXNQW758eaVmgsLCQnbv3k1CQgLh4eEMGDCgXq/vUgK5JAEzgFiUZWd3A2uFED2llIeA54DpwBTgOPAfYLMQop2UMs+innJgDlB1IuQG5Oqrr2b37t0MHToUOzs7Bg8eTH5+PtHR0Va2zsDAQIqLi5k+ffo/TniD4mSSl5fH888/T79+/ep1xJ6bm6tpMKZMmdKohDcoGpaDBw9y880307VrV/Lz8+ncuXOlITK//PJLjh07RlRUFD169AAUP4rs7GzGjRvHb7/9RmRkpGbn37t3Lx999JH20qgMIQTt27enffv2DXeRdaPJ921nZ2cCAgLo378/4eHhuLi40LFjR7y8vCos9wkICCAkJKTSyIpNHRcXF5555hk++eQT1q1bx9NPP12pFuhiiYmJ4eOPP6Z58+ZaMpPGgtFoJCEhAQ8PD+6//34MBgNOTk506NChgsf4gQMH2LlzJ0eOHCEiIkJbm3727FnatGmDh4cHBw8epEuXLowZMwYpJbNnz0YIoa0trwxXV1euv/76Br9WWy4qkIsQIguYCSwCUoCPpJRz1G0uwDngGSnlp2qZBN5GeRn0kVLuV8uXcplm4FJKZs6cSc+ePbn11lsBZURptnEPGjSI/v3707JlywZP3dcYKCoqYubMmTg5OWEwGJg5c2ad8tsajUbS0tIQQmid4LnnnqNLly5MnDjxsjrL1Ybi4mIeffRRZsyYUaslHunp6fz222+kpqby559/MnToUM6cOUNmZibOzs6cPHmSFi1a/D975x6fc/3///v72nVdu3Y+n2wzI2djKOTQiFBIUYQUhUSFHEJFTpESKjlEEUXOhZ+PU4WclcOwDbPNNtuunbdru87X+/fHtvfXbNhmm43dbze3cr2v9/v9ulzX6/18vZ6Hx5O6deuSlZXFzZs3cXNzQxRFZs6cWew1LRYLubm5D6SpfS/KQ8ilOs7t+Ph4Jk+ezJIlS6QOd//++y+LFi0iMDCQTp06ERwc/NiELM6cOcNPP/2E0WjkhRdeKJGs8e2kp6ej0WhQqVS4ublx6dIlVqxYwVtvvXXXxenD5K+//uLo0aNMnDixRJuG8+fPc+nSJS5fvoxcLqdz586sWbOG9u3bc/nyZUwmE3Xq1MHPz4/IyEgEQSA+Pp5hw4bRsWPHYq+p0+mQyWQVZjvKRUpVEAQr4FXAHjgOBALewP6C94iiqBUE4QjQHlh52+mngW3AQqBrCe83ijz33QMjCAK1UlK4uGcPw29T4Vrs64teFGly4wbcuHGPK1QdNHPnPvA1bGxsGDp0qJSVu2HDBsaMGXPX9+v1evbv38/hw4eRy+VS8oeHhwfJyckEBASgVqvp27dvlTPeoihKbuuS1md6eHhIyY3h4eGcO3eOzMxMRo0aJRntxMRErl27Rv369cnNzSU9Pf2eiVFDhw5FFEVGjBjBs88+Wy6frbyoznO7ICExNTVVMuCtWrVi7NixNG/evNI73pUV+9vaij4InUWRw3o9/2m1bNmyhbbHjtHgHi71eIOB9enpROn1uMnlXNLpcJDJsAC5FgsBSiUN5XI679wJO3cWOrc8nkUPglar5cyZMzRq1KjEHr/g4GCCg4MxGAycOHGCc+fO0aZNG8aOHSsZa7VazY0bN+jVqxfLli3jiSeeKLb9MfyfxoMgCCxfvrxUG6GScC+BqRIZcEEQgoATgArQAC+LohgqCEL7/Lck3XFKElCcsPV04IogCD1FUfzf/e4riuIq8nYCBSv9MpOZmcllnY7X8yd7AfWqmLGpTFq3bo27uzspKSn8888/iKLIyJEji11Fzps3D3t7e9599130ej3Xr1/nySefxMfHh7S0NObOnYubmxu///47jo6OdO/evcJ2mqUhIyODOXPmIAhCmSVki3N7F/RwL1gQ5OTk8Msvv0gtU4uTjQwJCeHy5cusX7+emJgY6tevT1xcHK+++upDU/R7FOb2qVOnsLGxKVTfKwhCEYGexwVBEBjp5sa7cXEATLp1i+leXrQrxsBd1+uZmZBAXycnBrm4EGsw0M7Ojl6OjuhEkVCtlu+Sk0kyGtmdmYmdTEaXKrIgOnr0KKtXr6Zdu3aSnkNpUCqVhISEFIlX+/r64uvrK1WQLF26lPDwcL7++mu+//77ItoNvr6+2NraYmdnx6effspLL71ESkoKDRo0KJdKh3t5yUu6A48AggFnoD+wThCEzrff4473C8W8hiiK1wVB+AFYIAjC/juPVxRms5lVq1bRwNoa/wous6hujBs3jqVLl5KSksKxY8cwGo188MEHhX6koigSFRXFN998I5VO3K657ObmRt++fVm1ahWhoaEkJCTg7u7OM888U+mf53ZEUeTzzz+nXbt2UtikoujVqxcnT54kMTGRJUuWMH/+/CIT/Y033pCy8rOzsyUd7suXL0vxW71ej1arJSQkhKZNm1bomPOp1nM7Li6OX3/9lY4dO1Z4CVV1opZCwZuurqxLSwPg86Qk5vr40NzGptD7og0GGqlUDMif1wG3Ld7tBIGnbG3xUSiI0OtZn5aGVhSrhAEPDw9n/fr1zJ49+67Nk8qLxYsXM2HCBIxGIwcOHKBHjx6FjtvZ2TFu3Djmz5+Pvb09W7dulaqbWrVqhY+PD2azGYPBgCAIDBo0qNzKzEokAyWKokEUxeuiKJ4VRXEacB6YACTmv+XO4JInRVfuBcwC6gFDSjvYpKS7XbJ4YmNjOX78OB9//DEajYZ/tVou5hfvVwfM+Z18KpJ69epJEqcA169fZ+HChRgMBum15ORkHB0d75rUl56ezrVr12jYsKEkjFHZim/FsXXrVqytrenfv3+l3G/8+PHk5OSgVqtZtGhRke9OpVJJZWgnT56U2pJGRkZia2uLvb09tWrVIjAwkEWLFrFnz54K//6rytw2Go0lfq/JZOLSpUts376d2bNn4+HhwYEDByQN7OpAQQetikIQBPo7OzPlNrfvl0lJHMrOLvS+eIOBJ+7hhTyv1SIXBJ60scFLocCnCsjO6vV6li9fzmuvvVbhxhvyEpuff/55tFotv/32W6HSxQKCgoLw8/NDo9Gg1WqlxXdCQgIODg64u7sTEBBATk4OM2fOLNIHoqyU9duQAdZAFHkT/TngDIAgCCqgEzC5uBNFUVQLgvAVMIc8112JmT59Oj/88MNd5ScvX77Mli1byM7OxtnZmbCwMIKCgnj55Zfx9vZm2rRpdC/n+ERFsjE9nVyLBYso8rabG4oKkt20t7dn7dq1/Pbbb/Tq1Yvvv/+e3bt3SzFgk8mE2WzGbDYjl8sRRZH9+/cTFhaGp6cnu3fvlq5VIFO5efNmXnjhhTL3PX5QsrKy2LFjB1999VWlyZW6ubkxYMAA9u/fT0REBGq1Gi8vr0LvadasGRs2bJDGlJuby6RJkzAYDIVKz5o2bcrUqVPR6/U4ODjcVQ0wKyuLZcuWSaVS5cBDmdt79uy5q9680Wjkjz/+4OzZswiCgEajIS0tjZCQEObMmcPWrVuxsrKSYuFVHa1Wy/fff48gCDz33HMVqgbX0d4ed7mcyzodbW1teT8ujuY2NnjkG2ITwG2LiWSTiZ0ZGSSZTDRVqfgpfwdfgBWwIyOD3k5OKB5S576DBw/i4OBQqXkkL730EhcvXkShULB///5i5XcXLlxYSB45NDSU+fPn06pVK6k5TteuXVm8eDHTpk1jwIABBAcHU6dOnWLvefLkSX777bd7LlLu+2QTBGGBIAidBEGoIwhCkCAI84HOwC9i3vZgCTBVEIR+giA0A9aSF0u7V1rpIvJibsXP2Lvg7e3Nl19+WeyxiIgIli5dirW1NQkJCXh6evLTTz8xbdo02rZtS0BAAGv8/VFVo3aRA11cqK1QcFSj4e38pLGKQqlUMnToUFxdXfHz82PPnj2S+E2tWrWoU6cOv/76KykpKZw4cUJSMbpw4QLLli3j559/Zt26dVJZ2p9//smkSZMYPHgwH3zwAatWrUKtVlfaLkmpVGJvb1/Ik1AZ9OnTh4yMDEJCQvj8888l0ZbbuX1BsXHjRuRyeRHjVbt2bT766CPCwsL46aefir1XdHQ08+bNQ6vVsmDBglKPtSrN7c2bN3P69Olij/34449cuXKFxMREoqOjGTt2LOvXr2fkyJF4eXkxevRo3n33XUlrv6pjY2PDqFGjEEWR+fPnc+DAgQq9XyOViv7OzvgplZiBP2/7TfZwcGB/djYXtVriDAbWpKaiNpk4nZuLg0zGT7Vr80fduvxUuzZ188//KS2N/lFRvHjjBpMnT+bkyZMkJSVVuLeoACcnp0q7VwEODg50794dR0dHUlNTuVvVxO0L80WLFtG7d+9Cne1kMhnjxo2jb9++bNu2TWr+cjuiKPLHH3/www8/EBISck8xrJJsTbyBDeTFyg4BTwHPi6K4N//4QuBrYBlwFvABut9RJ3rnADXkudtKpTYwffp0oqOjuXjxIpGRkYWOFTRqt7e3x8rKipdeeqlQNnRiYiJvx8YyMja2NLd8qCgEgZ5OTkzx9pZiVJXBwIEDadu2LR988AErVqzg6tWrjBw5ktjYWCZOnMjBgwcZNWoUiYmJBAcH4+LiglwuR6FQSMlbt2dspqSk8PfffzN+/HhWrVpVKZ+hoCNQampqpdyvACsrKzp27EhcXBzNmjXjxx9/LPKwsVgshIWFMX/+fI4dO8aYMWOKFXRp0aIFU6dOxcbGRupgVsA///zD/Pnz6dOnD5999llZ219Wmbk9evRotmzZQlxcHJmZmYWOFfShNhgMPPPMMzRo0KBQZu6WLVuYOHEix48fL80tHyoODg5MnDiRfv36VVrnKoAvatXiiEbDiJs32Z2ZiUomY6SbG1+r1cxMTEQOtMqPz3ayt8ctf6fuJpdTJz/H4Onb4rfx8fFs3bqVCRMmSKqFFU2DBg2KzIfKoGXLlkRHR/P8889z5MgRzp8/X+Q9BSpwH374IfXr1+eVV14p8h65XM7AgQMZNWoUCQkJhY7pdDq+/fZbTp48yfz583nppZfumdV+Xxe6KIrD7nNcBD7L/3O39xTZ9oqiuBxYfr/7346dnR3u7u7SbmP16tVSMsATTzzBK6+8wvbt2/nyyy+LuC4LdJI9q0AMp7S0sLGhxR3JJxVJwQ5h4MCBHDx4kB9++AGtVotMJsPV1ZX+/ftLnY9OnDjBv//+yzPPPMOLL75I/fr1+fLLL7G3t8fOzo7MzExkMhkuLi5kZGRUmkawRqPhypUrxSqiVTSjR49m4sSJNG3alE2bNhEdHU1gYCCiKBIeHs6OHTtISkqiVatWdzXeBVhZWdGgQQPOnj3Ls88+i8Vi4YsvviAyMpKpU6cWapdYWqrS3K5Xrx7x8fFMmTKFDh06MHbsWOlYQbvMtm3bFis89McffwCli6NXFYp7wFckjVUqvvPzI0yvZ09mJhvT03GXy9FaLATb2DDa3Z0N+QlYH8bHYyeTMdrdnbrW1rzr4UEfZ2cCFApEQeCmwYDHF19gsViksGVlcOHChYfS3tnd3Z2xY8eyevVqnnrqKTZs2CDl+uTm5nL27Fl+/PFHGjduzMCBAwkJCbln+K5Ro0asX78ejUYjNV9ZsGABzZo1Y+bMmSUqx6121mzy5MlkZWWxevVqtm3bhiiKDBo0CIVCwXPPPYdareaff/4pMjFatmzJ8ePHiTIY+DQhgc+8vbGqRu70h4GTkxP9+/enX79+3Lp1C7PZTEZGBt9++y1eXl44ODjQvn17vLy8WLt2LS+++CJAof66zs7O0m6pMpXtIiIi0Ol0xfb6rWgKpDqXL8+zYXv37sXFxYXz589jMBjo0KED48ePL/Fi5pVXXuHrr7+mS5cuiKJIaGhoocXro4Cvry8LFiwgNzeX7777jq1bt+Lj40OHDh2wtrZm+vTpjBkzhrS0tLvGulevXo2dnd0j18OgvBEEgSYqFU1UKgwWC9cNBrzkcrZnZPBubCy1lUps8kvRNqSnczInh7rW1ljLZIXKbgOUSnQymbRAryz279//UOY15OWw9OnThx9//BGAQ4cOERERwblz52jYsCFjxoyhTZs2JbqWh4cHTz75JPv376dfv37ExcXRtGnTQp3e7ke1a0bs6OiIn58fzZo1Y+/evfzvf/+TsszNZjM6nU5qE3c7BSshAbig1fJhfHwlj7z6IggCvr6+1K5dm+bNm/P111/z8ssv4+bmxh9//MHNmzepV69eoXPUajU7duxg6NChvP766yxZsoS4uDhycnKIjIzk/PnzFRoPb9myJdbW1hw6dKjS42UAfn5+fPrpp0Ceuzs8PBxnZ2c8PT1JSEgolfGtW7cuKpWK//77T+p09CiWTNWuXZuGDRuSnZ3N9u3bWbZsGdu3b8disZCVlYVcLi/ym9HpdIX6yS9dupS4/PrnGu6PUiajiUqFm1zOSHd3vvT1pYO9PVpR5PuUFOSCQK07fmuncnJYrFbTLyqKwYMHc+TIEVJTU0lLS+PKlStSM6iK4sUXXyQmJob4h/AMFwSBbt26MX78eCCvO1t6ejpNmjRBrVaXup1qp06dOHLkCDqdjvT09FI3Qal2O/ACCgxyQbnNqFGjcHFxwdvbu4ibbefOnWzevJmBTk78lh9fSzQaEUXxnio3NRSPra2tpGY0f/589u3bB8CuXbu4dOkSdevW5fDhw4WMenZ2NjNmzCj0AB4wYMBdM48fFJlMxieffMI333xDTk6O5B2oTFQqFR988AFr1qzBbDbj5eVFQkKC1JWspAiCwJAhQ9i+fTsqlQqTyURqauojKQ0qCILkCl+yZAnTp09n+/bt2NraFhHIMZlMUoJPgSAR5NUIlzEn4LHHW6HgBYWCbvb2vBIdTaLJhINMRqLRyHmdjqdsbNiamSmF9Dw9Pdm0aZOkX1DA3Zp+lAcdOnQgLS2NOXPm8Omnnz6U3Xjr1q158skniYyMRCaT4e/vz5kzZ0pdHti4cWN8fX3Zu3cvW7duJTg4uFAm+/2otga8oG/r1q1bGTNmDAaDAXd3d1555ZVCH95oNLJ582aef/55QkJDJQOuFUVSzWbcq2FMvCrx4Ycfsnr1ao4dOyZ1dIuPj6dVq1YMGzaMM2fOYG1tLTUEycrKQqVSsXHjRrZs2YJcLqd37/vKZZeJevXqMWPGDCZNmkTjxo2pX79+hdznXrRr14527doBedmlc+bMuWtJ2L0IDg5m48aN3MiX+127di1Tp04t17FWBW5/ABYo/C1dupS33367SLy/oKvcokWL2LlzJ0ePHgVgx44ddOvWrfIG/QiilMlY7OvL9Fu3OJWby6ncXAAsosg4Dw9a2djgI5fTfc4cHBwcMJlMGAwG0tLSWLJkCRMnTmTSpEn4+/uX+9hkMhl9+/bFYrGwbt06Pvjgg0pXfbSysiqk7BgXF8fBgwfL1ECmd+/ezJkzB0dHR86fP09oaGiJFdyqnfXKzc1l9+7ddO3alT179nDixAmysrKYPHlyEQlQjUYjZT0nJSVhEEUClUqi8kuLHlYd46OEtbU1Y8eOZdiwYfzwww+0a9eOLVu20LNnT+RyOU8//XShDwWT+QAAIABJREFU9xdkVL755puEhIQwd+5cjh07hp2dHa1atZK6xZUXbm5uvPPOOyxevJgOHTrw8ssvc+PGDcldde3aNU6fPk1SUhJeXl5MmzYNk8lUIb2OT548iUajKfJvUhJkMhlz5swhLS2NSZMmPZQs3Irm8uXLhIWFMWzYMNauXcvs2bMZOXIk8+fPL/LesLAwqZQnISGB2rVrS8cKVLBqeDDqWVuzqU4dIvR6NmdkEGxjwzGNRpJkfdPNDU2+KptcLpeqBb766iu2bt3KzJkz8fb2xsfHh+7du5d7D/YXXniB5ORkpk6dyogRIwgMDCQsLAxBELC1teX48eNcuXKFnJwcevfuzfPPP4/ZbC733JGChcSLL75YpmYmjRs3ZtmyZRw9epRNmzaV6vdbpm5kD4OCjkWZmZm8++67ANSvX5+cnBwUCgUDBgyQtGtFUeT69eusWbOGJ554gtDQUJKTk9kWGIhCELim16MQBOpU065jD7uBwL0QRZEhQ4YwYcKEYsUO7kSj0RAdHY3RaGTXrl3Y29uXWbP8XmRlZbFu3TpOnjxJ3bp18fT0JCkpCX9/fzp16oSfnx+//fabtKsbOXJkubYHvHHjBgsXLmTy5MlF8gVKS3p6OnZ2dkUeFuXRjexhUDC39+3bx7p164C8eLi/vz9Xrlxh2bJl0ntzc3M5fvw427Zt45VXXmHNmjV07tyZUaNGYTQaOX/+PC1atKiWHQXLq5lJRfGPRsMitZoddetKr93rWRQXF0dWVhbx8fH8+uuvjB8/vly0we8kNDSUNWvWkJWVJSmgpaen07ZtW1q3bo0gCMyePZvMzEyUSiWLFy8ut6Q7URTZsGEDUVFRfPzxxw+0+bBYLKSmphabYV8u3ciqAk5OTixatIiZM2dy7do1FAoFRqOREydO0LJlS65fv866detISkqiT58+9O7dm3HjxtGhQwfOXr+Ok5UVETodgUolU1NSmOzpKdU61vBgWCwWFi1ahEqlKrGOt729Pc2aNQPy9NVHjx5NREREua/WHR0def/993n33XfvGpsbMWIEgwYN4vTp0xw/frxcDLjFYmHfvn3s3LmTUaNGPbDxBio147cy6dGjByaTiV9++YWbN28SGxuLKIrcuHGDunXrsmPHDvbt24e7uzsfffSR9D126dKFM2fOYG9vT1RUFPHx8VgsFklJsIYHJ81kYqFazcul8EwV5CE0adIEhULBhg0baNasWbk37gkKCmLx4sVYLJa7Xnvp0qUAfPbZZ1y9erVcKhVSU1NZu3YtaWlpTJs27YE/l0wmK3V5XLW0XD4+PsyaNYtPP/2UwYMHs3r1ail2dvToUezt7fnggw/w8PBAFEXS0tI4efIkx25Tahrp5sYVnY7jGk1e4owo0t3REbtKkt18FPnrr7+4ePEi06dPL5ObqqDucdasWQwaNIiOHTuWu7G6V2JNgRDQnS7ZsmIymViyZAm5ubnMnDnzocnKVid69epFVlYWERERNGjQgN27dyMIAqIosmXLFkaOHCnV1xbkA9yt/3rTpk2lRjEFORg1lB5RFJmVmEgdpZI3yyhX6+fnR3x8PLNmzaJ///40bdq0XJPcBEG4pwFVKpWYzWaSk5PLJcExKiqKhQsX0rVrV95///2H5vGplgYc8oz4oEGDOHjwIIMGDWLjxo1069aNVq1a8eWXX5Kbm0tWVhbXrl3Dzs6ukKTlTG9vfBUKDmVnE2sw8L98ydCLWi3ZFgtGUeQZe3uCbWyoq1RKmerZZjN7s7J4yckJZY2hL8L/+3//j1q1atG4ceMyX2P27NmsXLmSU6dOsWXLFnx9fenTpw9OTk40atSoUtpu3s2NVRoMBgNLly7FZDIxffr0CsvIfRTp378/n3/+OU5OTgiCwN69exk2bBjBwcFcuHCBpk2b4urqypYtW2jTpk0hCda1a9fy119/ERERwaxZs6TX+/bty/Hjx6lTpw5PPvkkwcHBhfqEh4WFkZmZKSUc1vB/xBqNRBkMLPX1RVbGvKHAwEBGjx7NunXr2LFjB1988QV9+/alQYMGeHp6VkomuUajQa/XP/BcDA8P55tvvmHo0KG0b9/+/idUINX6qfLss88SGhpKeHg4Xbp0Ydu2bXz88cd07NiRTz75RNJG7ty5M3///bd0Xh2FguH5kqo3DAZcrKxIN5v5V6uli709zzo4cCInhwVJSViAoS4udHZw4JbBwIb0dDakp/Nz7do41zyUC5GQkPDAWaf+/v7MzY+rhYeHc/z4cU6dOkVycjJGo5G3336bevXqVWgd9JAhQ5g1axaurq5FWgeWlN27d5Odnc0nn3xSY7xLiVKp5J133mH27Nm89tprHDp0iIsXLzJ48GC+/fZbqQYX8mKDBQbcx8eHY8eOSXH02/n999+ZOHEiWVlZnD59mrVr11KvXj1GjhyJh4cHx44d488//+Ty5csMHTq0WsbQKwpjfp5U5gNozVtZWfHMM89ILYZ37NhBRkYG+/btIyYmhjZt2tC7d+8KVVhzcnLizTffZO7cuXz66aeF5J5LisFgYOXKlfTr1++hG2+o5gZcEATGjBnDr7/+yv79+7G2tmb37t00bdqU4OBgGjZsyPXr12nRogWRkZHE5hvtZLOZTXXqoBIEdKKISRT5ISWFq3o91/V65ILA+/nu92t6PZNu3eLHtDQy8n/A9ZVK3rh5k9ddXHjF2bnMq9JHkcGDB5fbtRo1akSjRo2APDfe0aNHWb58OYGBgYUe4uWNm5sbn376KVOnTiU4OLiILO/9MBqNbNu2jfnz59cYgjLi4+PDRx99xIoVK1Cr1fz+++/069ePHj16ULt2bRQKBXq9HhcXl0LZ6CEhIbRt2xZbW1syMjLQ6/VMnTqVRo0asXz5cqZMmUKXLl0wGAzs3LmTcePGFbpvUlISw4YN47PPPqtUjfKqzDW9HqUg0LQc5Zxffvll6f9zc3P5+eefmTJlChMmTChTKVZJ6dq1K9nZ2fz000989NFHpT7/+PHjqFQqunbtWgGjKz3V2oBD3mp92LBhuLm5sXHjxiJdYurWrcvZs2dxc3PDTq3GycoKRJGVKSn0cHSkiSqv58KLTk7cNBrJNpv5MS2NekolXgoFG/NT+jPMZl5wdOQZe3saW1vzlVot7cZb2tjwjrt7EcWix43hw4ezfPlyvvjii3IvwxIEgWeeeYbGjRvzSSVk63p4eNC+fXsOHjzIkCGla29tZWWFg4MD6enp5RJLf1ypU6cOs2bNYsqUKcTExLB48eJCxwu0+rt160Z4eDjPPfcc//zzD1euXGHYsGGSdG/fvn3p1KkT77//Pp999hkzZszgwoUL/Pfff0De99WvXz+6deuGVqtl/vz5fPbZZ0BeG8lXX331sRZ86mBnx7GcHFakpPB+BeyQbW1tGT16NM7OzoSHh1eoAQfo3r07u3btkkpHS4ODgwNZWVlV5vdQ7Q14AX369KFnz56o1WoSExOJjY0lLCwMg8EgCTxAnnZsgShBSH7xv1EUqWttTX2ViktaLX0cHTmRm8sFrZYXHBzwVyg4pNHw/7Ky8JLLaaJSMdnLi8nAhrQ0NmdkMCshgeX+/o/1bvy5554jMTGRrVu38vbbb5f79c1mM9u3b6dJkyblfu3iqFWrFpcuXSr1eTKZjObNm3P58uUKKZt5nLC2tmbp0qVkZmaSnp5OZGQkiYmJnDp1iri4OFJTUzl48CDwf25ZyNMZgDyp1QK1v/79+2MwGFi2bBnp6em88847/Pzzz+Tk5LBlyxY6d+6Mp6cnixcvxmg0MnHiRHbu3ElAQMBjra/uYGXFVC8vxsbGcl2v54kSNNkoLQkJCRw7doxRo0aV+7XvxNbWFldXV+Li4kptwOvXr49erycuLq5KqP09MgYcQKFQ4Ovri6+vL61bty4k03n9+nVyv/sOP6WSMJ2O5xwckOV31HkvXzu5vZ0d7lZWjHR3J8Zg4P24OJrY2NDJzo7Wtrb8lp6O6x3xzNdcXPBXKPg6ORmdKGL7GBtwyNuxTJ48meeee67cd59btmxBrVYzadKkcr3u3QgODmbTpk1lOrdXr158+eWXhUIKSUlJnD9/vsxx9ccZJycnnJycqFOnDoDkFRk9ejRnzpzBx8eH2NhYvL29JcW2Xbt2sXHjRvz9/XF3d6dnz54EBQWRmZnJkSNHaNeuHUFBQRw+fJjDhw8X0sxXKBR89tlnrFixgmvXrj3WBhzATibjNRcXVqem8rmPT7luVDQaDQsXLuSll14iKCio3K57L5o3b86VK1do3bp1qc5zdHSkffv2nD59upABP3LkCP7+/gQGBpb3UO/JI2XA78UTTzxRSG5vXlIS/goF2zMz6WBnx1O2tixPSUEvioxwd+e//F36ErWaRv7+dLS3p2Mxcn1yQSDEwYGQ/IzWbLMZrcWC52PqTndwcJC69cycObPcXE0XL17k77//Zv78+dhUUmvVzZs3l0n2FPJc8Dk5OZLevslkYsqUKRiNRho2bCgZohoeDCsrKylzPCAggD179rBr1y5EUeTs2bMMGDAAZ2dnVq1aJZWSFTTbWL58Oe+99x59+/alb9++Ra7t6urK9OnTpb8X7NgexUYyJeE5Bwd2ZWbyt0bDs7dl8D8oP/zwA40bN660uHJ6ejpHjx4t9N2WBk9Pz0JqaZcuXWLFihV4eHhI9eaVxWNXC7UvK4v34uIwiSJX891BUzw9edbBgRY2NvgqFITpdBhFkRB7e7wVCn5KSyvx9Q9kZzMiNlbK3Lydy1otG9PSMFcT9buy0rVrV/R6PQsWLCAyMrJcrpmRkUFQUFCliZjk5uZy8eLFQsk2peHmzZtS/fKRI0f4+OOPpTrwixcvludQawD0ej0fffQRmzZtwsnJiQsXLjB69GheeuklqawxMTGR7OxsjEYjr732GidPnuTy5cslvseUKVNYvXp1kdctFgtbtmwpVM72KGIlCAx3c2NNaiq/pKWR/QBZ6beTmZlJp06dyuVaJeHMmTMEBweXaRFtMpm4efMmMpkMjUbD2rVr+eabb2jSpAnJycmYTKbyH/A9eKwMeLTBwLKUFJysrJjl48PntWrxta+vtEv8yMuLl5yc+DwpiV/T0+nu4MAcHx9O5+aW+Mfax8mJljY26O/oSnMiJ4fpCQn8k5PDo22+87pwzZkzh9atW/PVV1+xatWqUnfpuZPY2NgKLTG5k6ysLKytrUu9209PT2fevHl8++23jBkzhszMTFasWEH//v2ZNm0akNdNqYbyZePGjcTGxjJ8+HDeeust1q1bJ5UseXl58e2335Kdnc3YsWNRKpX06dOHV155hcOHD5f4HmPGjCnUDa2AWbNmsWPHjkJaE48qT9rastjXlxSTiRE3bz7wYtRkMnHr1q0ylXSVlZSUlFK37QQ4ffo07733HhkZGfTp04cDBw5w48YNZs6cSbNmzfDy8qr0ktFH3oWu1+sJCwsjNDSUc4mJDHVx4dW77OIUgkCP/EzzFJMJ//wSoNY2Nky9dYtxHh40yM9aL47/ZWXhp1Awq5hJHqBU0t/ZmYHOzsgfgzi5XC6ne/fuPP3003z88cfExcWVOSZuMBg4ffo0Y8eOLedR3h1PT0+8vb05cOBAiWPWarWamTNn0q1bN6ZOnYqVlRU6nQ4rKyuaNWvG6dOnad26NW5ubhU8+scDtVrNpUuXCA8P58KFCyxatKhYAwt5pYGjR4/m5ZdfxtbWFkEQePrpp5kxYwarVq3izTfflJQA7yQzM5ODBw/y/PPPF6sw2KVLF3r16kWbNm3K9fNVVTwVCsZ5ehKs0bB169YHyhq/ePEiLi4ulTon2rdvz7x583jhhRdK3MVs79697Nmzh4kTJ0pdDVUqFd7e3vj6+rJixQreeOONihx2sTzSO/AFCxYwfPhwtm3bhlKpZKyHB6/kl5bcCxuZTDLeANO8vOhob8+kW7eIuK2f9Z38mZ3N9IQEtuVnwt5OLYWCN1xdsX7MFNwcHBxwdXUlJyenTOcbDAbWr1+Pr69vpbYDlclkDBkyhN9//13KbL4fer2ezMxMevXqJSnGHT58GB8fH1QqFUeOHCEkJKQih/1YkJGRweDBg/nkk084d+4c9erVY+7cuXc13rfj5eUlKbD5+PiwZMkSrl27xqeffoohv0vhnZhMJrZt28aIESNISkoqcrxz586PjfG+nUClsszzGvIWYD/++COvvvpqOY7q/tSpU4c2bdqUKkFVrVYTEBBQ6Bl08OBB6tevT3x8PKmpqQ+l4qTE1kQQhLGCIFwUBCEr/88JQRB63XZcEAThM0EQbgmCoBUE4W9BEJrecY0QQRAOCYKQIghCriAIkYIg/CIIgmN5fijIE9O4ePEiI0aMYM6cOQwcOJAWNjZlSqoSBIFBLi60srFhZkICaXeJcyyoVYtBLi44PmZG+n6kpqbiWgoNZVEUOXPmDF988QWjRo3i8uXLvPHGG5Vee1mvXj3q1atX4lKygl2EWq2WXjOZTDzxxBNkZGRw8+ZNgoODK2SsZaW6zWvIi2ECfPXVV0ycOJEePXqUObxiZ2fHpEmTiIuL47fffqO47oxubm4sW7aM9u3bP3Ao6FEi2WQq1byGvNyS7du3M2HCBCZOnEirVq0eik79gAEDOHbsWLHfd3HY2NgQl1+tVIAoitStW5eTJ0/Stm1bZA/huV+aO8YBHwGtgCeBP4GdgiAU+E+mABOB94GnADVwQBAEBwBBEJoA/wMuAl2AZsC7QCZQ7oWFWq0WoFyzfWd4e9PHyYmZCQnFfvGyfEP/nGOFPLeqJVqtFo1GU6oH7K5du9i0aRNPP/00K1eu5Ouvv8bb27sCR3l3AgICiImJue/7Lly4wIgRI2jbtm2hpiUtW7bk1KlTTJo0iWeffbYqyqpWq3kN8OeffwL/11v+QSmIkYeFhbF///5i3+Pi4sJ7771Xol3+40KswVCqWmiDwcDMmTNRq9WMGTOGn3/+mbfeeuuhGD5HR0dsbGyK9ajcybfffsuuXbsYMGBAodfbtWvHggUL2L17N507d66gkd6bEj9NRFH8/Y6XPhYE4V3gaUEQQoHxwAJRFLcBCILwJnmTfTCwEugOpIqiOOG2a9wAip8xD0jBgzI5OZm6t/WvfRBkgsBgFxe2ZWSQYTbjUvUexlWOpKQk3NzcSjVJz507x+uvvy71d3+YtGrViiVLltC3b997xstCQ0OlvtS3U6tWLakjWWlFIyqD6javIS8/ISYmRirRKw/c3Nzo2bMnp06dqqnTLyG3jMZSJZ8lJyej1WoZPXp0BY6qZAiCQKtWrTh06NB9lRbPnj3LrFmzitiRAQMG0L59e9zd3VHdIzeqIinT0kcQBCtBEF4D7IHjQCDgzW2TVhRFLXAEKFB8TwQ8BEF48CbLJcDW1pZXX32V48ePl+t1BUHAU6EgpZxKKB51zp8/X+Le4AAnT54kKSmp3BZdD0rdunVp2bJlseVDBVy9epWjR4/eNbvcwcGhShrvO6kO8xrg/fffx8PDg9DQ0HK9rpubW6H63hruzb9abYnntsViYf369VViUV5A//79OXXq1D1/Rz///DPe3t539eT6+flVuPG+1yK1VFtIQRCCgBOACtAAL4uiGCoIQsFkvtMfkQQU9InbAvQA/hQEQQ2cBv4C1ouimHyX+40CyqytFxISwt69e9FoNNjb26PJ73KVm5vLtWvXiIyMJCoqCisrK4KCgujQocN9v4zMzEySP/gAry++QFMT674vmZmZJc4w/ffff6UmA+Wtpf4gDBkyhMmTJ3P27FmefPLJQseuX7/OkiVLGDVqVKkWKlWJyp7X+fcs89yWy+V06dKFEydOFMqAFkWRW7duERMTQ1hYGMnJyXh7e9OmTZsSye9GRETQsGHDsgypXCh4PlUHRFEk/c03SzS3jUYjP/74I3q9nuHDh1fC6EqGi4sLb731FsuXL2fp0qWFBHosFgvbtm3jwoULzJ0796G4+UtCaX3AEUAw4Az0B9YJgtD5tuN3BoaFgtdEUTQDwwVB+AR4FmgHTCbPZfeMKIpFFBVEUVwFrAIQBKHU5dNKpRKNRkNmZibXr18nPDwci8XCvn37CAwMpH79+nTq1Inc3Fx+++03fvnlF3Q6HT169JC0lG/HbDbz5Zdf0rNnzxJ/oQkJCXh7e1cZ8fvKRq/X31W5Kjc3V3oIq9VqVqxYweTJk6vM7rsApVJJ7dq12bJlC3K5nIiICHQ6HQkJCURFRTFy5MhSSzJWMSp1Xuef90Bz28bGhrCwMHJzczl69Cjp6enExsZy7do16tevT9OmTWnVqhVRUVHMnTuXtm3bcurUKVauXFmoD3gBV69e5X//+1+J1bl0Oh1arbbShIWqGnq9HisrK6na4k7Cw8PJzc2lQYMGbNq0ieTkZKZMmVLlDGGzZs3IyMggNDSUjIwMEhIS0Gg0REZGYm9vz4wZMypN+fFu3CvRrlQGXBRFA3A9/69nBUF4CpgAzMt/zRuIve0UT+5YvYuiGA+sB9bnT/qr5E34YaUZS0kwm814eHgwdepU3N3defrpp5HL5UybNk1qU1lAp06dmDRpEjqdjn379tGzZ88ibs+jR48ik8l47bXXSnT/goYI1tbWrFy58rFrLanRaDhz5gz9+/e/6/E1a9YAeUkl7733XpVt4dinTx+++OILtm/fTrNmzXBwcKBWrVq89957Ja4lrapUt3kNeb8XtVrNu+++S/PmzalTpw4NGzbk3XffLfR9tGzZksaNGzNnzhwAZs+ezcKFCwstqEVRZMOGDQwePLjESa8nTpzghx9+YOjQoTz//PPl+tmqA4cPHyYoKOiuHssTJ05w4MABAIKCgvjwww8fuiEsDrlczrPPPsuKFSto3ry55BIv0MmvaguOOxFKmkZf7MmC8CdwCxia/99vRVH8PP+Yirxkl8miKK68xzUuAldFUXzlPvcS72wVWhJEUUSr1aJSqUr0ZSQlJbFz506SkpJ47bXXSEtLw8nJiZs3b7J9+3ZGjx5dqjjO8ePH+e6774A8wYehQ4c+tISHymb16tWkp6czefLkIsdEUUSn0/Hdd9/h4ODAO++889h6KcqLwYMHI4riA/8jVua8zn9vmea2yWTCZDKVaD5ZLBYuXbrEmjVr6NatG82bN+fSpUsEBQWxb98+zp07x3fffVfiB7bFYmH48OEYjUaeeuopgoOD6dKl0tIAHioFrvCZM2cWCTmIoogoiiQnJzNhwgRmz54tNZepoezcbW6XeAcuCMICYA95K3EH8rJQOwO9RFEUBUFYQp7bLJy81fcn5MXTfs0//x3y3HQ7gEjy4m1vAEHAwjJ/svuPu1j1pLvh5eXF8OHD2bx5Mz/99JNUQtSqVSsGDBjwQKpDf/31F0OHDi3z+dUNjUZTbOzx9OnTLFmyBIVCQaNGjR77fssPk+o6ryFv91TSsryCFq/jxo3j999/Z+/evZJAT58+ffjggw9Ktdsym8088cQThIWFcebMGezs7B4bA16w6SvOWzF9+nRiYmJwdnamX79+1KtXr5JH93hRGhe6N7Ah/7+Z5NV9Pi+K4r784wsBG2AZ4AKcArqLolggEHyavMzV5UAtIBe4BrwhiuKGB/wc5YpSqeT1118HYMWKFRw5coT//vuP559//q4xn+LYs2cPv/zyi/T3efPmPTa7b8grB7uzDeN7771HWloaXbp0YcSIETWG++Hz2MxryKsqmDBhAgaDgWHDhgHw999/M2jQoBJfQ6/XM2HCBGkBEBQUxNtvv10Rw62SREVFAYWzo8PDw5k9ezZAza67EilNHfiw+xwXgc/y/xR3/BxQNDOsivP0009z5MgRgBLHcJKSkvjf//7Hvn15z8AOHTrw4osv4u/vX2HjrGrodDop+/Tpp58G8lbuafmd3d5+++0a410FeFzntVKp5Mknn+Ts2bOYS1gSKooi586dY9u2bZLxHjJkCF27di3Vwr66U6CEd/78eUlCtqCRy6uvvlpjvCuRGiWS+9CiRQs+/PBDlEplibKjr127xsyZM6Ws5Hbt2vHOO+9URQWuCiU6OhpASvjTaDR8+eWXODs7lyrWWEMNFcXIkSNp2bJlicNiq1ev5vDhwwQGBmJjY8PIkSOlXuSPE4mJiQBSIvCZM2f4/vvvefXVV8vcfreGsvF4WZUycmft770wGAx4enoSERHBkCFD6NWr1/1PegQpcKd17doVyFNhunbtGn369Kkx3jVUCRwcHEoVt1YqlahUKkkStKzd9aoz6enpnD9/nn79+klStleuXEGv15fqOVlD+VBjwMuZpk2bsmTJkoc9jIdOgwYNePbZZ6W/Z2VlAdRoSZeQ69evM2PGDN58880aac8qwptvvlmsPsTjRE5ODo6OjlLpnMFgQKvVYmNjU27a9I86BXlVS5cuLXMTngJqtkI1VAjK21oNJiYm8sUXXzBp0iRJ9D8sLIzBgwczb948jEbjQxxp1cTJyYmQkJCaLN4aqhQODg5kZWVJMf9169Zx+vRpvvnmG0k98bvvvmPw4MFS7lANhWnevDk9evQolwVPzQ68hgqhd+/eLFiwgL1795KamgrkqdJZLBZkMhk3b94E8spxalzqRfHw8OCdd9552MOooYZCODk50bx5c9566y08PT1Rq9VYWVlhMBiws7MD4OLFiwCPnXBVSWnfvj3t27e//xtLwAMJuVQmZRV7qOHhIIoiS5YskTJW69SpIyW2bdiwocZoVwDlJeRS2dTM7epFUlISEybkNZ+ztrZGr9cD8PLLL/Pqq68+zKE9sjywkEsNNZQGQRCYMGECer2e8PBwIiMj6dChA40aNaox3jXUUI3x8vLi119/Ra1WEx4eTmpqKo6Ojjz11FMPe2iPHTUGvIYKxdramhYtWtCiRYuHPZQaaqihHPH09CxVP/Aayp+arVANNdRQQw01VEPKxvAXAAAgAElEQVRqduA1PBSysrI4e/YsFy5c4PXXX3/gcooaaqjh4SOKItHR0fzzzz8oFAoGDhxYo7hYgVR7A67Vajl79ixPPPFEoRrj1NRU0tPTqV279n2zIUVRRK/Xc+DAAbp06VLt20NWVUwmE8ePH2fFihWFXn/cEl+0Wi2xsbHodDo8PDweuDbeZDI9knkFMTExJCQkEBwcLPUQMBgMqNVqAPz8/O57DYvFQmRkJMnJyeWW+VtDUdLS0ti1a5ckHw3QuHHjhziiykcURVJSUkhMTEQulxMQEFCqRlrFYTQaUSgUdz1erbLQC2qIVSoVZrMZrVbL+fPnCQwMJCYmBm9vbxQKBcnJyeh0OhwdHUlPT8fb25uAgAB0Oh2hoaEolUrMZjNKpRKdTkdWVhYymQyLxYK3tzeurq4YjUapxEmhUDB8+HB8fX1rVpNlJD4+njlz5kiCLiEhIY9NmVRmZiYREREkJycTERFBaGgovr6+2Nracv36dYKDg2ncuDGBgYFERkbi5OSEs7MzXl5euLi4FLqWxWIhLi6Os2fPotFoyM3N5fz58zg5OREbG1tts9C7dOmCKIrY2tqi1WpJTk4mLi4OPz8/YmJiCAwMRKvVEh8fj6OjI3q9Hrlcjr+/P25ubsTExBAfH4+trS0GgwGVSkVaWpr0ADQajTRu3BhRFDEajYiiiMVioUWLFvTp0+eBH7SPM7t37+b2KoJ58+YRGBj4EEdUOVgsFm7evElsbCxRUVGEh4eTlpaGn58fOp0OtVpNly5daNiwITKZDLVajYeHBw4ODtSpU6eIvLZOp+Py5cuEhYVhNBrJzs7m5MmTDBs2jLVr1xY7t6uVAR85ciSiKJKTk4NCoUChUNC0aVO8vb0xGAxEREQA4OLiQq1atZDJZKSlpZGYmEh8fDxyuZygoCAsFgtyuRy9Xo9KpcLJyUky4NeuXcNkMiGXy7GyssJisbB9+3aio6MxGo24urpiZ2eHwWCgefPmuLm50axZM7y9vWuMezFcuXKFvXv3IpPJiIuLIyEhgRYtWjBmzBgcHBwe9vCKoNPpSE1NxcXFBblcjlqtRqlUkpWVhSiK2Nvb4+XlJe14TSYTcXFxxMbGsnv3buzs7AgMDMTHx4f//vuPyMhIzGYzDRs2xMXFhYYNG9K0aVNcXV2BPON+6tQprl27Rnx8PH5+fuj1ehITE4mNjWXlypUIgsD169fJyspi165dGAwGWrdujZubG3Z2djg6OmKxWPj666+rrQF/6623EASBnJwcbG1tUalUtGnTBqVSiVqt5tatW6hUKnx8fHBycsJkMpGUlERsbCwZGRl4eXlRr149cnNzsba2Jjc3Fzc3N6ytrREEgezsbKKjo7GyskKhUCAIAjExMRw4cICkpCRsbGxwc3PDZDLh5uZGgwYN8PT0pEWLFiVuYvQ4IYoiW7ZsITk5mYsXL+Ls7ExsbGyVVg5MSUnBbDbj4eFBVlYWWq0Ws9lMbm4uSqUSFxcXSYwG8vo3REdHc+nSJY4dO0ajRo3w9fXFYDBw/vx5bt26hZubGwEBAfj5+REQEEDLli2lZ8PVq1cJDQ0lLCxM2hympaURGhpK586dGTlyJLGxsSQlJREdHc3evXupXbs2LVu2RKlUYmtri4eHBwqFghkzZlR/A/6wa0VzcnJITU0lKysLQRAICwsjOTmZCxcuoFKpsLOzw8rKCmtra7y9vWnUqBHt27evtoY9OzubqKgoHB0dsba2xsPDo8RNWdLT0zl8+DC///47wcHBnDlzhhdeeIGePXuybds2YmJimD17dqW4fkVR5L///iMqKgqtVkt2djZ+fn5kZ2cjk8kQRRG1Wk1iYqL0MDcYDMhkMmxtbUlPT5c6yaWnp2OxWLBYLIiiiFarxdPTE39/f9q3b48oisTHx3Pz5k2Cg4Np0aIFzs7Opf4NDB48GMhrv7pp0yY8PDxwcXEhODiYDh06FHu9mjrwsmGxWEhPTyc1NRWLxUJKSgoxMTFER0dz48YNPD09pQW9g4OD9F2XxIVfVblx4wZGoxF7e3tUKhVubm4lPjc0NJRTp07x559/0rhxY8LDw1myZAmpqaksX76cF198UeqBUNHk5uZy6NAhaTfs4uKCra0tGo0GW1tbMjIySElJIT4+ntzcXOn5rNVqEQQBGxsbnJ2dMRgMpKSkSFr3ZrMZi8VCYGAgvr6+hISEEBUVRWxsLGazmU6dOlGnTp1St4eOi4tjypQpNGvWjICAAI4ePUq9evVwdXXlhRdeuGs4raYOvByws7OT1IYgT/cc8h4At27dQq/XYzabiY2NZfPmzRw6dIg2bdrcM4ZRGaSmpvLtt9/SqVMndDqdZJyeeeYZZDIZ6enp1KlTp9A5Fy9eZMGCBYVea9SoEUFBQRiNRnJyclCr1Xh5eeHl5SWtXFNTU7GzsyM7O5vNmzcDcOrUKaysrDh//jyDBw9mxIgRTJo0iQsXLtCyZcsK+9yhoaH8+eefxMbGAtCyZUuSk5Px9/cnMzMTZ2dnMjIysLe3p02bNnh7e1OrVi1UKhXJycmYzWa8vb0LXVMURRITE7G1tZUMfEW0kuzQoQPHjh1j27ZtvPXWWwQHB5f7PWrIQyaT4ebmVsiIdezYEcgzEElJSZhMJkwmE2fOnGHnzp2YzeZS9RCvKHbt2kV0dDRdu3blzJkz2NnZUa9ePRo2bCjVZ9++qwRYsmQJp0+fLvRav379MJlMqFQqwsPDcXFxwc7ODl9fXxwdHUlISECpVOLo6Mjvv/9OTEwMkCeJLJPJuHDhAt26dWPs2LF8/fXXdOnSpcIW5xaLhc2bNxMbG8vVq1dp0aIFcrkcGxsbSRXOxcWFlJQUateuTatWrfD19ZUSZaOjo/H29i4SNsnNzUWj0aBSqaTr3b5QLo82qQUhsUuXLmFvb8/nn38ueePKQs0OvBz5999/2bx5M+np6TRt2pQhQ4bg7u5eIffS6XQcOnQImUxGdna29OfWrVskJycjk8kQBAGFQoFWq8VgMAAgl8sxmUxA3oJEFEXkcjlyuRx3d3fphx0dHU14eDiQZ0zMZjOCIEi7cIvFgoeHB7m5uSQmJpKdnU1ubi7u7u5YLBaioqJwcnKiVq1aODo6Si7KzMxMDh8+THx8PJMmTZIWQeWBxWIhMzOT+Ph4oqKi2LhxI5AXkwsICHgkE71up2YHXjHodDp27tzJvn378PT0pF27dvTt27fCfk9RUVGcO3cOW1tbkpKS0Ov1pKamSomPoihibW2NyWSSNg0FcX4AKysr5HI5jo6O5OTkYGdnh5+fH56enhgMBv766y/pXn369OHWrVs4Ozvj6uqKVquVPG7Z2dmo1WoyMjIkD2NaWhrp6en4+vri4uKCi4sLSqUSV1dXrly5wqlTp7C3t2fu3Lnl2kLZYDCQnJxMbGwsp0+f5uTJk7z44ov06NGjSJ7Io8jd5naNAS8nEhISmDhxIuPHj+epp54qN7f5+vXrUSgUiKKInZ0d1tbWxMfH89dff2E2m+ncuTOurq44OTlhZ2dHrVq18PLywmw2A3lZjCqVCq1WK7l9Ia8pwZ2ZvZmZmSQmJqLX67G3t8doNJKQkEDPnj1LtRDZs2cPv/zyCwD16tUjMzMTnU6Hj48PPj4+PPXUUzRp0uSusUWTyURycjIqlarI5BRFkYyMDCluFBoaSlxcHFlZWRgMBhwcHKhVqxYBAQE0adKE5s2bY21tXep/9+pIjQGvGH799VcuXbrE+PHjy024JCEhge3bt+Pj44NWq8Xb21sKWZ05c0ZSNvP29sbGxgYXFxf8/Pyws7NDEAR0Oh1yuVz6f0EQpD4DLi4u0uIiNTVV8iIkJSVJLVGzs7MxGAz07du3xM8qo9HI6NGj0Wq1WFtb4+fnR3x8PE5OTnh6ehIYGEjHjh2l/KPi0Gg0ZGZm4ubmVsT9XJDXkJiYyLVr17h06RJpaWlkZ2cjCAJubm74+/tTt25dgoODi3gNH2VqXOgVSHJyMocPHwby3FPdu3dn2LBhZb7e3LlzuXLlCgCurq6kpaUVOu7n58fAgQPp0KFDiVef90rEUSqV+Pn54efn98A74uzsbMl4Q15TE19f3yIZ/FlZWWRlZeHl5QUgJScePnyY7du3Y29vLz3YZsyYIa3mf/vtN/744w/pOu3bt2fatGk4OTlhbW39yO+ya6hc/v33X27cuEF0dDTjx49n4cKFZY59WywWXn/9dQBq164tNfQpQKFQEBQUxMSJEyW38N24fT7fq+y1IDRQkMPxIBw7dgytVguAXq/njTfewMvLq0hXrbi4ONzd3SUDbTabSUxMZNOmTYSGhuLq6kpGRgYDBw6UEt6MRmOhVq1KpZIRI0bQtGlTHBwcsLKyqra5RBVJjQF/QDIzMxk3bhx169Zl8ODB2NvbP3D942uvvcauXbuIiIhg+PDhrFy5Eo1GIx2Pi4vj119/JTk5meHDhz/oRyhXrK2t6dy5MydPnkSpVLJz5058fX3x9/cnJyeH3bt3F3r/Tz/9hLW1NbNmzeLq1atA3gKlwCV4/fp1Tp48KbkKL1y4UOj848eP07179yKx6hpqeFAOHz7MypUr6d27N23btpUqEMqKIAi8/vrrHD16FCsrK6ZNm8b8+fOl40ajkf/++4///vuPBQsWULt27fL4GOWGr68vdevWJS4uDkdHRzZu3Ejt2rXx8fFhw4YNktcPoHPnzowaNYrExEQ+/PBD6fUGDRqQk5ODTqfj3Llz2NnZodfr0el0he5lMBj4/vvv/z975x0fRdE+8O/kUknvISEQIIYWpAYB6YioKCJWUFTAith+gIgNsaC8iAUUeUVQRMTXgg1BepMm0lvAEAKkkN6TS+5y8/tj79bL5dIgCQT2+/nsJ9nZ2dnZvZ19nnnmmWdYtmyZJrirQDOhXySlpaUsX76cv/76CycnJ1q1akVYWBgRERFcc801eHh4VNkrNBqN6jQGex6NJpOJt956Sx2PjoqKokOHDrRo0YLo6OjLdv6q0WikoKCArKwszp07R2JiIjk5Oaq5Oz8/nyZNmtC1a1eys7M5e/Ysubm55bz5TSYTBQUFhIaGEh4ejk6nw8vLC19fXzw8PPDw8MDHx4fQ0FCtkaOZ0OuahIQEvvnmG+Li4mjWrBkREREEBwfTsWNHAgMDq7RqWYJDWeJR2PsGJCUlMWXKFHW/f//+hIeHExkZyTXXXHPZvtOW2BmpqamcPXuW1NRUNYBJfn4+er2eFi1a0Lx5c3VGRllZGR4eHuq0PoPBgF6vV79hrq6u+Pj4qEOBnp6ehISE1Mma2VcC2hh4PWMymUhJSSE+Pp7k5GQOHTpEenq6OufcMr9UCEFOTo46hSMnJwcXFxcMBgNBQUEEBATg7e1NQEAA7u7uuLm5UVxcTEJCgmqmt+Xhhx/mxhtvbOA7vjhMJhNJSUns3buXsLAwmjVrVqtpahoV0QR4/aDX6zl9+jQJCQkkJiZy+PBhVQHV6/W4uroSEBCgOo9a5rJbFPOysjLCw8Px9vbGz89Pneqk0+nIz89n5cqV5Ofn2732hx9+2OgWDCktLWXfvn3q7JawsDA8PT0vW4WkMaCNgdczDg4O6lgvwL333gtATk6O6umdmZlJQUEBTZs2xdHRkfz8fIKCgnB2dsZgMHDu3Dmys7PVuYvJyckUFxfj5uaGt7c3N998M8XFxWpQD0sQj8bozOHg4EB4eHidjM1paNQnrq6utGvXrtzQmMlkIj09XTUBp6Wl4e7urgbgKCoqIjg4GCEEubm5quXJ4sV9/vx5jEYjnp6eDBgwgJKSErKysoiPjwdQ55vbTgFrDDg7O9OzZ89LXY2rAk2A1zM+Pj7q/7aRx6wbp8X8rqGhcfnj4OCgjod7eHhUCIRibfr19vZulIJY4/KnUZnQL3UdNDQuc85IKSMudSVqi9a2NTSqxW7bbjQCvC4QQjwmpfzsUtfjYrlS7kNDQ6M8ja1tN7b6XmlcbZNmH7vUFagjrpT70NDQKE9ja9uNrb5XFFebANfQ0NDQ0Lgi0AS4hoaGhoZGI+RqE+BXyljNlXIfGhoa5Wlsbbux1feK4qpyYtPQ0NDQ0LhSuNp64BoaGhoaGlcEmgDX0NDQ0NBohDQqAS6E6CeE+FUIkSSEkEKIh62OOQkhZgkhDgkhCoUQKUKIb4QQzW3KcBFCzBNCZJjz/SqEaGZ1PMJctr3tpvqqv/n4l3auuauW9U8RQrxsc86r5rLutElfJoTYejH3pKFxtXMltGshREIl37zfrfJMEEKcFkLohRB7hRB9rY59K4RYZ1NmX3MZ82zSHxVClAghKl8NRqNGNCoBDngAR4BngWKbY02ArsDb5r+3A+HAH0II65CxHwJ3AqOAvoAXsFIIobMp7yagqc22sR7rb2G9zTVvsTleXf03AQNtzhkAnK0kfVMt70FDQ6M8V0K7jrGpX1dAAt8BCCHuBT4CZgJdgB3AaqsO0kbgeiGEcw3rt0tKWdmz0qgpUspGuQEFwMPV5GmP8hJ2NO97A6XA/VZ5wgETMNS8H2E+p3tD1x/4ElhZxTk1qf+jQBHgYt53Me8/ARy1Oi/KfJ/9L/VvqW3adqVsV0q7Bl4GcoAm5v3dwEKbPP8A75j/v8Z83b5WxzcCTwMlQJBVehIw/VL/VlfC1th64LXFsqJAtvlvN8AJWGvJIKU8BxwHejds1SqljxAiTQhxUgixUAhhvZZgTeq/CXADrjPv9wQyga+ASCFEsDl9IEpvoZwpT0NDo15oNO1aKOt+jge+llIWmXvV3azrZ2atpX5Syn9QBPNAcxkuQC9gFfA3Sq8bIUQbIBTN8lcnXLEC3PzSzQF+k1ImmpNDgDIgwyZ7qvmYNVuFEAU2W30vKfQH8CAwGJgE9AA2mhsD1KD+Uso4IJF/zVYDgc1SyiJgL+aGZE7fIaUsqZc70dDQsNDY2vUQoCXwuXk/ANCZ62O3fmaszfy9gAwp5Slgi029i9A6DnXCFSnAzWPeXwM+wNianIJi/rFmNNDZZsuvw2pWQEr5rZTyVynlYSnlb8DNQBtgWDWn2tbfuiENBDab/99slT6Aix/T19DQqIZG2K4fBfZIKQ/YpNt+I+3Vr5cQwrWK+g0EtkspSy+yjhpcgQLcLLyXA9cCg6WUmVaHz6NokgE2pwVRUbtMlFLG2Wymequ4HaSUySha9zXmpJrWfyPQUwjhi2Jy22xO3wIMEEK0A4LRzFgaGg3O5dyuzab924GFVskZKBYCWyulvfq5oJj3B1jVbzvQSggRCvS/mPpplOeKEuBCCCfgfyjCe6CU8rxNlr2AAcVEZDmnGdAOxavyskIIEQCEASnmpJrWfxNKQ5oEpJvNWAB/Aq2A+1GcbfbUZ/01NDQqcpm364dRnM6+tSSYe8t7retnZoh1/aSUCUACioe9qmBIKQvN509AUTA0y18d4Vh9lssHIYQHEGnedQCaCyE6A1lAMvA9ynSI2wAphLBojLlSymIpZa4QYhEwWwiRhuIE8j5wCGWahzX+VudjXU491T8LeB34EaVhRwDvAGnATwA1rb+U8owQ4jTwDPCLVXqhEGKfOX2blNJ4ofeioaGhcKW0a7Pz2iPAt1JK2+HC94GlQoi/UHrUT6A4oy2wybfJfMxawQDFSvAMyjDk3gupn4YdLrUbfG02FLOMtLN9yb/Tv+xtD1uV4QrMQ2kkRcBvQLjV8arKeaQe6+8GrEFp2KXAGXN6uE0ZVdbfKt8ic9njbdLfNadPvtS/p7Zp25WwXSntGmV8WgI9Kjk+AaWHXYIihPvZyTPGXMZSm/SbzOmVTqfTttpv2mImGhoaGhoajZAragxcQ0NDQ0PjakET4BoaGhoaGo0QTYBraGhoaGg0QjQBrqGhoaGh0QjRBLiGhoaGhkYjRBPgGhoaGhoajRBNgGtoaGhoaDRCNAGuoaGhoaHRCNEEuIaGhoaGRiNEE+AaGhoaGhqNEE2Aa2hoaGhoNEI0Aa6hoaGhodEI0QS4hoaGhoZGI+SqFuBCCFmDbUAD1eUm8/Uiq89dq3LfFUIk1iL/bnM9rrdzrL0Q4nXz+sfW6U+Yz6nz9eUb4ppCiPuFEEeFwq4avBMv2pz/tDn9Uztl64QQp4QQd1xsPTU0NDSsuaoFONDLahtkTnvLJn1fA9Vlp/l65xroehUQQrQCeph3R9nJ0h6YDnjYOVZfVHbNFUAvKaXxYgoXQujM5f9HKmvrjqf87x8P/GST9pVNMZZndbetQiGlLAPeA2YIIcTF1FWj/jErixl1VFa0bSfAvD+xLsqvRT2aCyEWCSGShBAlQogEIcRHQoiAhqxHXSKEuFMIEWduvwghBpifbbRNPn8hxAfmey4RQiQLIRYLIVrY5AsTQhSYv4GNhjrvMTUEQghfIBboLaU8VYP8t6II5q5SSpMlXUq5yyqPRUCcsk6vokxXKaW+1pWvBCllLlDtdeuZUYAJ2IoijJ41C6DLDillGpBWB0XdAjQFvjOXe9T6oBCiGEir7J0wfwh6AhuAwcAQYLVNtm+AD4EBwKY6qLNG46UXcLqhLiaE6ABsRmkrL5uv3db8/61CiL5SyuSGqk9dIIRwAGYAs6v6PgkhQoFtgDMwEzgGtABeAP4WQgywtHcpZZIQ4n/Aa8DD9XsHdUdj7YG/BKyqifAGkFKuBMqA+y/kYlbm2q5CiG3mj/rT5mPBQohlQohsIUSREGKDEKKzzfnnhRBvCyHeEEKkCiHyhRBLrM3C9kzoQghHIcSrZk2zRAhxTgjxmdXxEUKIjUKIdCFErhBihxBi4IXco5lRwBbgAyAIRSCp9QO+N++mmOsaW8nzEkKIOUKII0KIQnO9lwghAu08l7eEEC+YNeMsIcRSIYRnddcUdkzoQgh3IcT7Qoiz5ucVL4SYUc09P4TyLhXX9CHZYOl9PwpkYsdyYVbO1gMPXuA1rgqEEL7m9tHaqkdVaS9RCHGrEOKA+YPeKJBS7pJSpjbEtcwWn6+BbBRr1ZdSyi1Syv+iKBI+wPyGqEsdMxhojaIYV8V8lHvsKaX81HzvXwG9UZ7J1zb5vwBGCSH867rC9UWjefEtCCGaAI8Ai2p56hfAMxd5+f8BP6L02taaG8hKlJ7Vsygfbzdgs62JBkWr6w2MQ9EA7wAqjJna8CXwCsqLNsx8nqfV8ZYopuT7gbuBvcA6IUT32t6Y2fTUAfgW+APlBbcWRjtRFCfMdekF3FtJcQ6AH4rV4xZgEoop3PLMrHnQXNZ4lF7BnSjada2uaf6IrzKX85H5um+gKCKV3bMABgI7KstTA0YBf0opT6O8GyOEEG528u0AbriI61wNNKhiXhOsFIkBQojvzWbWeCHEBDt5J5iV1UIhxG8olh3bPOVM6EKIYUKIdUKINCFEnlB8MG60Oed1IUSGEKKL+XiREGK/EKJvNdXvB3QG3pJS5lkfkFImAXOB4UKICKtr+Qsh/iuESBFC6IUQJ4QQz1kddxBCvGjVqTgphHjIpr71eU+gKN1rpZT5lWUw39Nw4CPzvVrfex7wNtBZCNHP6tB2IAu4rwZ1uDyQUjaqDbgLpacjrNKGAScAPYr59z5AAhFWeZqb0yIrKdfDfPxhO8eeMB973CZ9hDn9Oqs0LyAH5cWxpJ0HUgFXq7TxKB+f1ub9m6zrB3Qy7z9Ww+figDIksgWYb5X+LpBYg/NnAgbA37y/CMgFXGyevQRCKnk+jpWUrUPRmCXQw+a5HAccrNIWAAm1vSZwu3n/xlq8S63M5wyuIs8RYEElx9qZz59g3h9o3r/LTt5bzceaXuo2dDluQBMUpbGPeX+A+XkFVHPeRGBPHdbjdSDDat9Sj39QlOkhwGI777Ll/fsUGGpuT+fMaQOs8klgok39nzGfMwR43/xduN6mTkXAIWAscDPKcFsG0KSKe3nVfD3vSo5bvjEPmPfdgMMo36oJKH5Bj6H4h1jO+QQoQOlM3ADMMtf31oa4J/O5ycBUmzTL7xRt3h9j3r+2kjK8zcdfsUn/CfjpUreHmm6NcQy8L7BXmp+2EKI5Si/0E+C/QEeUF6YcUsqzQohUoD8Qd4HX/t1mvwdwTkq52+o6eUKI1UAfm7x/yPJj5iuAz4FugL0exyCU8WhbhykVcy9/JorgCAEsvVtD9bdSgfuAdVLKTPP+chRrwS0oL3WtEEIMR+lRtUNRaixEAX9Z7W+QVn4JKONU44UQwvIb15BBQLKUcm0tzgkx/71Qp6XRKB+mH8z7W1A+LqOs0ixYrhECpFzg9a5kbkF537fbpHcSQsxEadfHUBRaa8fSX4F5QohIKeWFtuuasFxK+RaAEGIzcBswkn/f5ZdR2viT5v015iGjR6oqVEr5seV/sxVpE4olbDzln4Ub8JyUcqM5bwqwH6WX/UclxYcBOVIZwrHHGat8oFjDOqD4Ch0wp220ql8k8CQwVkq5xJy8XgjRFMURdGV935NQxrWboijWVWG5pzP2Dkopc4UQuVb5LBxEGQ5rFDQ6EzqKE4L1B/BJFE/hSVLKE1LKH1B6cfZIBiIu4tq2Y1dN7aRZ8vnZpJVzuJJSZqMI2gpmNjP+QLasxFHOPPb7O4oC8BKKBhqD0uBcK70D+2X1RDHHrxRC+AghfFAaUgb2vdGrK+96FKF/CngAxfRtMVXZ1i3HZr8UxZKgq+Vl/am9YLTUpaSW51m4D+WDVGp+Zl7Ab8AwIYSXTV7LNWr121xFlFPMrXgHeBHoimJ5W2Y9DCOlPIvS3vrXc/1UxVBKaUDpkTcDdSZDF+AXm3NWVFeoEKKZUPxDkgAjyjfhRhRF1xoDijOahWPmv81qfgsVsH3Wg4D9VsLblsEoStZPQvHPcTR/hzagmKMtHuH1eU8Xq3RXRwYQZGeo77KkMfbA3SgvNNuimNCsX8bd2KfYfP6FYvvCp/Dv9DNrglHGUqwpNxYrFE96JyoXOpmAr/YPDEkAACAASURBVKjc2709ilY7UEq52arcJii9wtpgEdKfmDdrbhVCeMoqxpvscCdwVkqpjk0KIdrUsk61JZPKlaHKsPxGPrW9mBAiBog0b9l2stwBLLHat1zD9r3QULBVzC28KqXcBCCEeAP4E6XXZB3b4GIV85pgT9G0KGOBKN9S21kRVc6SMPdOf0Xxa3kNxTJYiH3fjTxZfgZNqVnGVKUQJgE+QggvaTMGbibCKh9UrwQHoCjWlfXomwohkqnfe6qp0m25pxYoZvpymBVsb6t8FkpQfktHLsyS2aA0xh54BuBrtS+oKFgrww9Ir8O67AaaCyEsc6cRigf1TSgfGmtuEkJYv5gjUbTZvZWUvQHl93mgkuMWRUR9kYUQ16D0wmuM+SNyD7AGxRRvvT1svs7t5uyl5r/V9SLdrPJauFBHo5pecwMQKoSojaNYHIqy0/IC6jUK5dnfSMXn9g8VLRcRKPeScAHXuhpwQ/FhscX642uZ7mQrCC5WMb9Y0lF6mrb1qtSB0kwkSs/9aSnlIql4Sf9N3d3LVvPf4ZUcH47y7dxm3q9OCc5Cuc/rUL4ztlsa9X9PNVW6t6HcW2X3bvmmbbVJ9wEKzFaWy57GKMD3o/Q+LRynotDqYbOPWXi2pm4Ds/yKIoB/FEKMMY/7/oGiVNiOwxtRTNTDhBBPoEzV+lZW4nErpTyEMv79sRDiNSHEYCHEPUIIy9QHi7PJR0KIm4UQo1HmH9c46poZy/j5p1LKzTbbEuAk/wojy7SxCUKI64Qyx9Qe64AoIcRsc71ncOGenTW95koUc9wPQojnhRCDzL+JrUVBRUpZgCIgutWmQlZKz29SynW2zw1l1sANovy0ue4oJuILNddf6dgq5hasP6QWRd32u1XXinmtkMpc5AP8KxQsjKzmVHtKeAugQhTEC2SruV6vmjsWKuZx62eBX6SUlnHiDUAXIcS1lZS3EaUH7i2l/NvOVtoA93QaRRGuUumWUiagfJ+fM9+rilCm774CHJBS2grwCJRvXqOgMQrwNUA78e9cvQVAayHEe0KINkKIkcDj5mPWPfOeKC+VrZPMBWM229+Kou3NQ5mCVYLidWrrPPElSo/9S5TIXL+gjN9XxXiUMcCxKMJ5DooHKFLKIhQzrQ5lrG06ismqtsFgRqFo3qsqOb4MuFEIESClPIky3n4fyrSoH+2dIKVcgeIBez9KI7oOxWO/1tTimiaU3+JLYArK83qd6oO9rEDxgK0N/VDMuEsrOf41yu9yj1XaUCqpuwZQUTGvEfWkmF8IM1GsbJ8KIW4UQryNYomrilgUhXuOWbG/D2Ws3dase0GYv09jUBScnUKIB4UQ/YQQj6F8J3KBp6xO+QqlY7BWKHEWBgohxgkh3jWXdwLle/utEGKqWTkfJpQ4Dp830D2VoHSaaqJ0TzDf4y7z/fQTQoxBmZ7qh33rZnfqUEbUO5faDf5CNpQf4Cmr/VtRtCY9ijAdiyK8g63y/JdKpgM1QH3Po8zFvOTPTtsq/DbhKL28jvV4jW4oil1wfV2jsW8oXuZl/DuNcQA208hQekcS6G6VNgDIp5qpR7Wox+vYn0YWbZNvM/CDTdpEFOFVhKIQ30j108hiUDzZi1GGXh5GUUL/rqxOlZVVxT01R5kWmozSez2DEiuhwhQ9lHHwhSiKrx5FID9jdVwAzwFHze90Osrsiwcb6p6AyUCcTVplv5M/irUzwXzvKSgxQVrYKTcAxVLa/1K3h5puwlzxRoVQInR9BLSXdkLpCSGeRXGa8JVSmsymzFiUhn+6YWurRBwDPpdSvtLQ19aoHiHEIpQOS5VTfi6i/K9RpvM0aAzsxoYQYifwtZTyE6HED98EBEopM8zHI1BMqDFSGVdFCPFflN/uiUtSaY0GRwgRDJxFiRmwpw7LfRxFOYiSjUQwNkYTOlLKP1C8pS3TOJ4SQvQQQrQUQoxCMd9+Kf/1cGyJEmyjwYW3RqNgOnCqPqaOmKfWHEeJSqdRNTOAZ4QQOqn4EwiL8AZlXNOcZhHegSiBfmZdovpqXAKkEor2c5Qx/DrB3PafBd5uLMIbaJw9cFuEEB+gjDf6o5iwvgXekIpThYaGRiNBCPEM5R2rqsrbA2gppfxf/ddM43JCCBGC4iP0rj0r7AWU1xQlcFWdlNdQXBECXENDQ0ND42qj0QRyCQwMlBkZ9RV8R0PjiuCMlDLiUleitmhtW0OjWuy27UbTAxdCyG++qW71OA2Nq5fRo0cjpWwUISCt0dq2hkbVVNa2G6UTm4aGhoaGxtVOozGha1w+GAwG0tLSKC4uJiMjg4yMDEwmE4mJiRQWFmI0GtHpdJSVlWEwGHB0dMTJyUlNKywspE+fPrRt2xa9Xo/RaMTBwQEPDw+Sk5Nxc3MjPz+fbdu2YTAYKCsro6ysjOTkZAwGAyaTCYOh8kiHEydOpFevXuj1esrKymjSpAkODpquqqFRHXl5eWRnZ1NUVERSUhJGo1Ft4yUlJZhMJhwdHSkpUQKtOTo64ujoiIODAyUlJTg5OTFs2DCaNGmi5m/SpAkGg4HMzEz8/PzYuXMnGRkZ5Ofn4+DgQG5uLtnZ2RiNRgBKS+37HgcHB/P666/j4eFBUVERTk5OuLi40EjWHakXGpUJvU8fZYXO3NxcQkNDue6662jTps1V/QM2FHl5eXzwwQecOHGCpk2bkpJScc2DwYMH07lzZxwdHTEajargPnHiBN9//32F/KGhobi6uqr58/PzCQsLQ6/XExurRFDt3bs3AwcORAhBaGgoLi4u6HQ6Dh8+zJw5c2pc/+eee44ePSpE2K0SvV6v/j1y5AjFxcU4OTlhNBpxcnLCx8eHdu3a4ezsXGU5SUlJTJkyhcDAQMrKyujUqROPPlr3KxY2ZhN6nz59KC4uRkpJu3bt6N27N76+9iKratQ1x48f580338Tb25vcXPvrlDz22GN4e3vj4OCAwWDAzc2N0tJSduzYwfbt5QOXOTg40KxZM5ydnXFwcCA/Px9nZ2cCAgI4deoUOTnKujBTp07F0dGRJk2aEBQUhE6nQwjBiy++SGqqvUUe7fPVV1/h6FjzvqjJZKKgoIAmTZqQnJzM8ePHcXBwwM3NjcLCQry9vQkJCSEiIqLasn744QdWrFhBixYtyM7O5tlnn6Vdu3Y1rktNqaxtN6oe+J9/KuuD+Pn5ceTIEdasWUNAQAAGg4FWrVoxfvx4/PxsV/HUqI7s7GzmzZuHh4cHEydOJDc3l2effRZXV1diYmLo0KED27Zt48SJE4ASvS84OLhCI/P396dbt26sWbOGJUuWqL1eV9fy65BMmzaNli1b4uHhUWW9TCYTQgi7Clq3bt2wHTfNzs7m9OnTvPfee+p1hw8fTkhICB07dqzVM3nttdeIi1OWl3ZxcVF7HLa89dZbtGrVqsqyLNaC9HQlXPf58+eVKEqa4qli3bb37dvHsmXL8Pb2xsnJiRtuuIHhwytbk0KjKrZv386KFSsYPnw4/fv3Z9asWRw8eJCIiAh69uxJcXExq1YpUZRzc3OJjo4mISGBgoKCcuVER0fj5+fHAw8o0Uc9PDwoLCwkICBAzdOpUyfuvPNOWrduXe27bTKZKrWKffDBBxXSDh8+jNFoZPbs2QAMGjSIFi1aEB4eXivhnZWVxcSJ/8ZT8vX1JTvb3mKCVPi+2OPcuXMAnDmjzHq0fW71TaPqgX/55Zfs2bOH1NRUcnNzWb9+Pbb1v+uuu3BxccHT05NrrrmGpk1rt8Kk0WgkKysLk8mEh4cH7u7uV9SHdv/+/WzevJk9e5QARoMHD2bDhg3q8SeffBJPT0/+85//qGm2mrmfnx9CCDIzM9W0SZMm4erqyttvv62mDRs2jN9//73c9adOnYq/vz+Ojo4EBATUqvHV9P4sjXzZsmUX/NudO3eOn376iV27duHh4YGbmxsFBQUUFxeref773//i6elZRSk1w2QykZqaSk5ODkVFRZw5c4Z//vmHO++8k8jIyBqX05h74O+//z4HDx4kNzeXc+fOsXdv+UX6IiMjue666xBC0LRpU9q2bYubW+0WuCooKKCgoAAHBwd8fX1xcnKqy9u4pJSWlrJq1Sq2b99OUpISdvyuu+7ihx9+AMDHx4eXXnqJ2bNnq4okgJOTk6pgOjo64uPjQ0FBgWp9atWqFXfffTf//PMPK1b8u7x5SEgI58+fV/eFEMycOROdToeHhwfe3t51+t00Go0sWrSILVu28OijjzJw4MALKkdKyebNm1m4cCEA/fv3Z8uWLbi6uqr3fMcdd3DHHXfUybdJr9eTnJxMYWEheXl5xMbGUlpaytixYyt0bKqisrbdqAS4k5MTbm5uqsmyWbNmBAUF0b9/f/bu3cv58+dxc3Nj586dFBUVATBr1izCw8NrfJ2xY8dW6G1FRESQkJAAwOOPP07//v3r5qYakLKyMk6ePMmbb74JKA2uqt9+ypQpLFy4UDV3eXl5kZdnb0nhigwdOpSHHnoIgNTUVJ5//nn1WNOmTdXxsoyMDKKjoxk/fjzBwcEXemvlWLhwIZs2baJZs2bllJALJTY2ltjYWLy9vRkwYIAqBAIDAy+qgZtMJn7++We2b99udzgCqNGHKiEhgV9++YWCggKOHj3aaAW4o6Mjvr6+lJSUEBAQgI+PD127dqVVq1Z8//33eHt7U1hYqCqeLVq04J133qnxNeLi4njttdcqPe7o6MhHH33UKM322dnZHDt2jE8+URbec3NzK6do2vLOO+8wbdo0dd8yhFUTrC1Ov/zyC//7nxJDR6fTERISgslkIj8/H4PBwC233MLIkSPR6XQXemsqJSUljB07FoCZM2fWyLxdFUajkW3btpGenk6PHj1o3rw56enpODs74+Pjc1HKR35+PrNnz+b8+fOV9sjnzZuHv7+/3WOgKBq//vorCQkJtGjRgu+++67xC/DPP/8cNze3Kh9ufHw8r7zyb8hxd3d3HB0d8fPzo1WrVhw7doz09HQCAwMJCAhgzJgxNGvWTM1/8OBBtm3bxo4dOwBF0+zRoweHDh0iPz+fCRMm1MsYR31j6ZmGhYXh6OiomnysCQkJIS8vj6KiInQ6HXfddZfaQG3R6XTqeBgomryUUv0Q9OvXj0ceeaRKIZeZmcm6detYt24dEyZMoFu3Wq3qWY6ioiIeeeTfUOZPP/00vXr1uuDy6hPLmLgFf39/Bg4cSJs2bQgJCcHX1xej0cjKlSspLS2lXbt2nD9/ng4dOlBaWsoXX3zBqVOnVKdAUIYl3nnnnUYrwJcsWVJtj3ju3Lns2vXvYnvu7u64uLjQsmVLfHx82LBhA0FBQbi4uNChQwceeOAB1Uyr1+vZuHEjGzZsUBWm6667Dp1OR3x8PH5+fkyePLlWvaLLBUuno0OHDpw6dUrtSVpwdXXFw8MDvV5PQUEB9913Hz///HOFfBbc3d0pLCxUzzUajeUE/LRp06ockpJScvjwYX777TdKSkqYNGkS3t7eF3x/e/bsKWdWr+2Yd0MhpWTbtm0sWLBATevevTtdu3YlIiKCoKAgmjRpQkJCAn/++Sfu7u60bduWtLQ0oqKiSExM5IMPPsDBwQGTSYkCfscdd9CnTx8mTZrU+AV4beaKlpWVkZiYiK+vL2VlZcTGxlJQUKB+EF1cXHj//fdJSUmhQ4cO5OTkIKXE1dWV+Ph4ANVBSUpJYWEhaWlpNG/enDZt2qie0JZx4ubNm5e7vpQSvV6Pq6urqnBs3bqVn3/+mfPnzzNnzpxKzftSSpKSkkhISCAtLY0zZ87g6elJQEAAXl5eBAQE4Ofnh7u7OzqdjiZNmth9oY1GI0VFRWRkZDB//nySk5MZMGAAu3fvrqChd+7cGR8fHzZv3kxYWBiZmZlERUVx6NAh1bxkGY+Ojo7m0KFDgCKoQ0JC6NmzJ5999hmxsbH4+vri4OBAZmYmkZGRdOvWjRYtWhAdHW23no8//jj5+fkIIXj11Vdp27ZtjX9ny289ZswYdb+qZ3sxmEwmMjMzyc/P5++//6akpAS9Xo+bmxu9e/eudizcwujRo8vt22rjCQkJfPzxxwQGBnL69Olylg+LNSgsLIx33nkHBwcHVUg1ZhN6Tdu2lJL8/HwKCgrw8PAgJyeHU6dOUVpaiqOjo9qW33jjDXr06EF8fDyenp7qbIf09HQiIyNV5ym9Xk9hYSHZ2dl07tyZoKAgSkpKkFLi7+/PgAEDcHFxKVcHg8GAlFK1BBqNRt544w3i4uLo3bt3uTFWW0pLSzl16hRnzpwhPT2djIwMQkJC0Ol0tGnTBhcXF3x9fXF3d8dkMuHp6Wm3w1JUVERpaSlnzpxh1qxZBAQE0LJlS9VCYcHd3Z2OHTty5MgRCgoK8PHxITQ0lGPHjlUo093dnZiYGDZv3kx0dDQmk4kRI0bg7u7Oyy+/jIeHB05OThQXF+Pm5kZkZCSdOnUiKiqqXCfIQl5eHk88oawx065dO1588cVaD1scPny4nKWlJorehVBaWkpGRgZJSUmcOHECg8GAg4MD7u7u3HbbbRXeAXtYD98BtG/fvlxnEuC3337j559/5sYbb+SXX34pd8wyLPHKK68QFRWlOvXBFWJCr+tgDwaDQTW3t2nTBp1OR1FREW5ubgQGBtKkSZNy+S3eyPHx8aqH9cmTJ9m7dy9hYWEYjUbc3d0BpZdVUlKCTqdDp9Op4/JSStzd3ZkyZUqF8dP09HTWrl1LUlISZ86c4ZprriE4OJjmzZuTlpZGfHw8hYWF6HQ6srKy1ClbBoMBX19fmjZtSvPmzTl58iRFRUWkpaWpL6KzszNFRUU4Ozvj7u6Om5sbycnJ6rVDQ0O55ZZb2L9/PwUFBSQnJ5Ofn1/hmfXq1YudO3eq+9amdWtTnLu7O3fffTeBgYEcOXKE1atXA/bHpU+fPs3LL7+s7tfkd7aY6vLy8ti+fTu//vqremzhwoXq71AXpKSksH79erZt24ajoyNubm507doVb29vXFxc+OKLLwCIioqiadOmBAUFER0dTatWrSguLubkyZOEhoYSEhJCWVkZBw4cYOXKler42ODBg/njjz9wcHAgKiqKhIQE9Ho9EyZMICAggDfeeAOAl156iejoaKSUmEymCqbJq0GA15TU1FR27dpFy5YtcXV1xc3NjaKiItzd3QkLC6vwDqampnLw4EGys7NxcXHBwcGBVatWodfr8fX1RafT4ebmhqurK0ePHgVQlXtLJ0Gn09GzZ0/uu+++CvX5888/SUpKYsuWLQQEBNCiRQv8/f0JCgri9OnTnDhxAmdnZwwGgzqNy4JFOOt0OuLi4igpKSEnJ0edtmVtBQsNDa1gXbv33nspKyvj6NGjlJSUqB2Ua665hn/++UfNZztMZmnPQgicnJzU6V0DBw6kQ4cOFBcX8/fff3Pw4EHGjx/P4MGDK9z3nDlzVH+GG264gXHjxlX725WUlFBQUEB2dna5YY8OHTqU+05cLGVlZezfv59169YRGxuLn58f3t7edO3aFWdnZxISEti6dSsAMTEx+Pj40LJlSzp27Ii/vz/x8fGUlJQQHh6Oh4cH+fn5bNiwge3bt1NUVISXlxdubm7ExsYSFhZGaGioqmB98sknLFmyhL/++otWrVoxadIk9T1ycHCo8H5qAryekFKqnohOTk6qUN22bRuRkZH06dOHsrIyiouLSU5OZvPmzezfv18dB77tttto2bIlXbp0YePGjSxevBiACRMmYJk2Vx2lpaVkZmZy7tw5zp07R2RkJN7e3gQHB+Ps7Kw6nOXm5uLt7U1RURFnz54lPj6eNWvWqHW3fAjCwsLIyspCr9fj6elZrlEPHz6cXr16sXz5crUX3r9/fwwGAzt27GDx4sXMmzeP/fv3A3D99dfz1FNP8fzzz5OamoqLiwt9+vShS5cudO3aVS333Xff5dChQzz00EMMHTq0ynvdt28f33zzDXq9Hi8vLwIDA2nfvj2tW7fG09OTpk2bUlRURHZ2NlLKCx4vKy4uZsmSJRw4cID+/fszePBggoKCKuSzfHSXLl2qCtX4+HgyMjLo1KkTBw8eBFB/i4CAANXRqF27dvj4+HDgwAEmT56M0Wjk8OHDrFy5km7dujFgwAB1utznn39eQam0RhPgdUtxcTFJSUm4u7tTVlZGUVERWVlZ7Ny5k1GjRuHj4wMoQ0GnT5/mxx9/JDc3F51OR9OmTYmJiSEmJobg4GAeeOABpJQ4OjoyZ84cAgMDq72+xdqQkZHBqVOnKCkpoX379jg7OxMaGqqaWVNSUiguLiYoKIhz586RlJTE1q1bVb8d66GWZs2aqUMIFsdMC2+99RZHjx5l165dnD6tLNz4zDPPMHfuXMLDw5kxY0Y5AfzKK6/g7u6ujqc3bdqUPn360KdPH/X+LL1wHx8fXn311SotY5mZmaxevZqNGzfi6uqKr68v4eHhREdHExwcrPqdmEwmkpKSCA0NvWDTfFxcHJ988gmenp4MGTKE6667zu500NzcXJKSkvjmm29o2rQp+fn5HDp0iA4dOqiKHKBaLf38/EhOTiYgIICwsDDy8vLw8/Pjnnvu4cyZM2zcuJHY2FimTp3KV199RUpKChEREcycObPK+moC/BJTUFDAoUOH+Pjjj4GKnt033XQTf/zxR7lzJk2adFHjwjWhtLSU3NxctWEUFxer5jCDwUBWVhaurq64u7tz/vx59ZiUkiNHjqhmXIu5ceDAgbz//vskJydTVFTEM888Q8+ePfnqq6/K3V/Hjh3LOdIsWLCAHTt2sGDBggpCKj8/ny+++IL4+HiysrKIjIzkjjvuKDcOl5uby5NPPgkoyoijoyOenp6kpaVVqxTY4+TJk3z66ae0a9eOBx98UB0bXbVqFcuXL6esrKzcWKDtGLwFT09P8vPz6dChA61ateLWW2+tlef6pEmTSElJ4fnnnycmJqbKvJoAvzTExcWxf/9+fvrpJ7tzqW2tVlC9MlYX5OfnU1xcjIuLCzk5OQQEBKiWqdzcXIxGozr32d3dXa2PyWRi/vz57NixAxcXF1q0aMGYMWNISUnhxx9/VKePzp8/Hy8vL3VqmWXs9uWXX6ZDhw7Av8Nbt912G6NGjapQx/379/PLL7+o1sCYmBjuvfdevLy81DxLlixROxpubm6YTCbV0Xju3LnlprJVh8W35I8//mDcuHFqbIji4mLmzJnDsWPH8PHxYe7cuepwn+0YvDVt2rTB2dmZ/v37qz4VNSE5OZnJkyfTrl07nnrqqSqnPwshGDVqlCbA6xOj0UhCQgIRERF2x3n//PNP5s+fT9euXRk4cCApKSns37+fpKQk8vLycHV1ZdiwYaxZs6acVny53XNZWRnr16/nu+++A6gwlt67d2/VAdDCyJEjy01Bueeeexg+fHi5eaAmk4nZs2fj7u7OuHHj1I9JZmYmixcvxmQyMWbMGIKCguw+Xykl999/P6A08rCwMDWS1HPPPUeXLl2qvbeCggJ27tzJnj17SE5O5sEHH1QbeFxcHL/88otqDuzUqRMPPPAAYWFh6vmZmZk8/fTTgGJOb968eY1MhnWFJsDrB4tJ2/q3tmA0Ghk7dixlZWU8/PDD+Pv7c/DgQdU6lZaWxqBBg5BSsmnTJvW8CwksVN9kZmby9ddfs3v3bjw8PCp4UHfr1q3C9L7hw4eXG76y5yGenJzM9OnTGT9+PD179lTT9+7dy8KFC7n33nvp2rUrXl5edsf7//nnH6ZPnw5AeHg4JpNJ9R2YNm1aOWFfGadPn2b37t1s376d8PBwxo8fj7+/PyaTibVr1/Ltt99SWlqKi4sLN954I/fee2+579PatWv58ssvAcXpdOLEibRp06ba69YVWg+8jklMTOSnn35SneDWrl2LwWDg7bffJjg4mJycHHVM5NixY+pY9fDhw7n99tvVcvLy8vjxxx/Jysri1ltvZcaMGQwdOpQ2bdrQoUOHcr21goIC5s2bx9133016ero6NtZQHpl6vZ7Zs2djMpkYPHgwPXv25K+//iI1NZXvv/+ejh07cvjwYQA1wI7BYMDLy0udM+rh4cH7779vN4hLUVERS5YsITk5mUGDBtG8eXP++usvtm/fzn/+858a9Vjy8/PVD26zZs2qDRZjzfTp0/Hx8aFnz550795ddZbR6/WMGzeOUaNGsXbtWoYMGcItt9xCamoqUsoKY6qlpaXVRmerDzQBfvGYTCa2bNnCzp070ev1tG/fnl9//RUhBF9//TWpqak4OTlx6NAhtm3bRkJCAv7+/mRmZvL222+XMxHv37+fjRs3Eh0dTXp6OqtWrWLMmDFERETQpk2bcgJi7969bNu2jXvuuYeEhATatGlT5TSjuub48eN8+OGHdOvWjeHDh+Pk5MSuXbvYvXs3cXFxqvKSlJSEl5cXRqNR9RWwxIMYM2YMN998s93y4+LimDdvHtdddx3NmjWjS5cuPP7449xzzz2MGDGi2voZjUZycnLIysrC2dmZZs2a1fi7d+bMGd566y2GDBlCTEwMLVu2VI9t3bqVJUuWMHLkSJYtW8YXX3yBwWAgIyMDX1/fciZ6yzBEXUyLqy2aAK8lubm5bNu2jezsbNWbPDk5maysLFq2bMnWrVu5//77cXV1ZdGiRdb1xNnZGZ1Oh7OzM8OGDaNbt24EBwdXO7fQ4p1sGY8eOnQozZs3Jzw8nMLCQmbNmlUuf3h4OCkpKeh0OsLCwujevTv9+vXD09MTR0fHOg9As2nTJr744gs+/fRTu05iZWVlxMfHM336dD766CPVi3rBggV4enpy8803M2fOHHr37s0TTzxhtwGaTCb++OMPzp07x5EjR8jLy+Oll16qU223sLCQhIQEmjVrVq6BvvXWW9x8880EBASwZcsWbrzxRkJCQjAYDDz00EN069ZNnZdszSOPPMKgQYPqrH4XiibAa8bx48c5cuSI6qQpm3H5sgAAIABJREFUpeTMmTMEBQWp1qNJkyaxYsUKdSzYgiVyV5cuXRg8eDBRUVHVKokWT2pLu27Xrp0aZKpr164sWLBA9RkB1FklhYWFeHp60rJlSwYNGkT79u1VoVnXTJkyhbZt2zJ+/Hi7x3Nzc/nmm29ITU3l9ddfp6ysjO3bt7NgwQIefvhhMjIyWLlyJVOmTKnU2pWWlsbq1avJyspi//79tGjRgtdff71OBaLFommtIKWkpDBz5kxmz57N7t27ycrK4vbbb8fBwYF9+/bx3nvvMXHiRH766SfVN8XC4sWLL4uphZoAryGWiEarVq2ie/fuhIWFqdOo/P392bx5Mz4+PpSVlXH27FkyMjIYMWIEy5cvp23btkyYMAEvLy9VONWmsZWUlKjep4sXL+bgwYMVAiwMHDiQgQMH0rx5c9Vr1WAwcPbsWdVBLj8/n+7du/PEE0/U6ThbQkICn3/+OVJKunTpoloJrO/REjBj4sSJ9O7dG1BMkIsXLyY5OZk777yT7du3YzKZmDJlSpXPx+KkU5cfLJPJxNSpU9WGaj2Fa/v27SxevFgdFvDy8uLjjz9m27ZtrF69mueee47jx4+rCtuUKVNwdHSkffv2l0Qrt0UT4FVjcUZKTEykT58+qvJmNBopKysjLi6OsrIyfH192blzJ4GBgbRt25Y1a9bw3HPP0aZNG7y8vOzOAKgOi3f70aNHWbVqlRqW2DqU52OPPUaHDh3UMV2DwUBeXh7Hjh1jw4YNnD17lpKSklo5uNaU1atX88MPP9CjRw8iIiLo3LlzheBKFj+Wzz77TFVadu/ezQ8//EBQUBCDBw9mwYIFPPLII9UOD1TmbX0xxMbGqjM2YmJi1ABSUkrmzJnDvn371Lzjx49n0KBBTJ8+ndatW3PnnXeyaNEidu/eTatWrbj99tsJDQ21O2xyKdAEeA34/fffWbZsGTExMYwaNQp/f/9K5xx++eWXFBYW8uijj5KRkcHkyZMZOXIkd91110XVIS8vj6VLl5ZbIKBHjx74+/uTkZHBuHHjqvW8LC0tZf78+WoUNHue0xeKXq9n7dq1FBcXc+DAAQoLC4mOjsbLy4t+/fqRkpLCTz/9RIcOHew6rcC/Dl/dunUjJiaGnj17NojJWa/Xs2XLFpYsWaKm2TqH2UaOs0ylGTp0KNdeey2zZ8/m5ptvpnXr1qqCcrmgCXD7FBUV8c4775CYmMjIkSMZOnSoOjXKFoPBwJNPPsnTTz9Nx44dWbp0KWvWrFEtShfDoUOHWLhwYbkQxPfeey8HDx4kJiamUvOzNadOneL999+nT58+3HfffXUqAOPi4jhy5Ajp6ens2bOH0NBQdUbLgAED2Lp1K99//z0zZ84kNDTUbhm//fYby5cvZ8SIEXTq1KnBxokTExP5+eefy/nfWCsaoPgTrVy5Ut23tO3nnnuOPXv2cPLkSXr27MkNN9xw0b91XXNFLGZSn0gp2bhxIwD79u0jMTGRlJSUSk1COp2O0NBQDh8+zLx584iKiuLOO++86HpYHC1CQ0MZMWIEbdq0qfXL5OzszF9//QUoi3K8+OKLFx160IJlgRBQnNESExM5fvw4K1asQErJb7/9xvXXX8/dd99daRlNmjRh8eLFbN68mQ0bNrB69eoaO6NcKGVlZYwbN65ckJjAwEAWLFhATk4O/fv3Z926deWmhgDqUqcJCQn8/fffDBkyhHvuuadGgR00Lg/S0tI4deoUAMuXL2fdunVkZGTw9ddfV7DuWPYDAwNZsmQJ69atY+LEiRf9QZdSMnfuXIqKihg8eDA9evRQPZitfWKqo7S0lOzsbLZu3UpqaipPPfVUnQU2iYyMVGPvjxkzhhMnTnD27FmWL1+Og4MDy5YtY8aMGZUKb4DbbruNTp06qX4rt912W43GuC+Gv/76iw8//LDc9yMqKorp06fzzDPP4OLiwurVq1m3bl2584xGIwEBAaxcuZLi4mJGjRpVzsmuMaAJcDNCCObMmUNeXh5lZWVqwIDY2Fi7ArxLly7MnDkTJycnxo8fT79+/eqkHkOGDGHIkCEXXc7dd9/N999/zw033MBLL73EjBkziIyMrFONXQhBeHg44eHhREZG8u677xIQEEBUVFSlDiZlZWUIIXB1dSU6Oppz586xadMmDhw4UGfP0B6WuewJCQkEBASQkZFBr1690Ol0fPHFF+zfv5+8vDxuuukmhg0bRtu2bTGZTOTl5eHp6XlJnNI06oaIiAiWLVumLirx+uuvA0rgJFszsU6nIzo6msmTJxMZGamGH75YhBB8/vnnF12OxQHLz8+P2NhYZs2axdNPP31RoUrt4erqSqdOnejUqRNZWVls3boVJyenSteVkFKqwWyaNWtGREQE7u7u/PLLL9x+++31uiCUJRiNJY4FwH333ccbb7zBtGnTVF+Dp59+mmuuuUb1EcrMzCQwMLBRL1almdDtoNfrefTRR1WvQ3uRvUwmEz/99JPqVXk5YlnlatKkSYDS833iiSfo3r17vVwvMTGRo0ePMmjQoHK9AtsVgEBx1HN2dlZjLut0Ol544YVaL/tZU6SUxMXF4ebmxosvvqiOr7u5uaHX67nlllsYNmyYGpyjMaKZ0Ktn9erVbN68mXPnzlWIRWDh3LlzHDhwgKFDh162ipvJZGLx4sWq1bB9+/b1Isgt19q1axdeXl5ER0eXO1ZQUMDChQvLhXB1cnLCz89PnS/et29fxo0bV29Wq4KCAs6cOYObm5saulSn06lRE0eNGkWfPn0ataDWxsBriMlk4vPPP+f8+fNqeL0333yzUa5SZCExMZFly5apEcEWLVpU66UYLxSDwcAjjzxSTjtu2rQpXbp0Yf369Wp4RgsN8RufOnWKV199FYCePXsyevToWgWDsMVgMJCTk0NgYCB5eXkcPnyYs2fPcvfdd1ewRKSnp5OQkKCGyK1LNAFeNSkpKbzzzjs4OzuTnJzM8OHD7YY9bSwYjUb27dvHhx9+CNR+hbaL5fjx4+rqhpZob5GRkcTExLB8+fJyee+//36GDRtW73VatGiRujzypEmT6Nix40UpYTk5OTg7O6uhp7ds2UL79u3p3LlzuXxGo5G4uDj0er0aEbIu0cbAa4DRaGTJkiWcO3eOu+66i9jYWMLDwxu18AYlfOLUqVP5v//7P8LCwhp0/DYjIwODwcDLL7/M2bNnWbp0KSkpKWo4x8cff5yvvvqK4uJirrvuugapU+vWrXnjjTf47rvv1FXp7LFp0yYWLlzI22+/XW7uqDXp6el8+OGHFaYbAYwYMUIV4JmZmSxatIijR4+qyszlMvf5aiApKYn33nuPm2++WXV0utwCqdQWR0dHevTowYwZM5g+fTojR45s0OufPHkSPz8/Jk2axMqVK9m5cydxcXHExcXRr18/wsLCWL58OU5OTg1mpbz//vtp06YNX331FSEhIXaFd3FxMW+++Sbu7u5Mnjy50u+hJfiWvfOtBfjOnTtZvnw5GRkZAAwbNkwNKlXfXPUC3GQycfDgQQwGA6tWrcLT05P/+7//49NPPwWU5UVnzZrF1KlTL3FNLx4hBHfddVe9zCOtjJCQEEaMGMH8+fPV6TKgxA5+8MEH6dixY4Otr75371527NihhoYtKytTLQCHDx/m1KlTGAwG1q9fT1BQkGpye/nll3nmmWfo3r17uR61yWTigw8+wNfXl5deeqlCPONVq1Zx++234+joyNGjRzlw4AB9+/ZVA3Zo1C/5+fkcPHgQvV7P999/z6hRo2jRogVLly4FlFjer732Wq1Xv7vcMBqNtG7dutpQu3VNr169OHHiRIUFRvr168fo0aPx8vLitttuq/d6lJaWsmLFCrKystQFZ0wmE1JKSkpK2Lx5MwaDgVOnTqm+NpY48ZMnT+aFF16oMLZ/9uxZ5s+fz0svvcTSpUvV9S4A/v77bwYMGEDr1q0BJaTssGHD1Ih0DbmM8VUlwNPT02nSpIk6nm00Gpk2bRqlpaX4+vrSq1cvhgwZwvbt2zly5AigRA5r6IZRHxiNRs6fP9+g0yP27NnDp59+il6vZ/To0cTExBAfH09MTMwlWc93yZIltGjRgnbt2lFUVETnzp25/vrr2bVrF3PnzmXYsGGUlZWh1+tJT08vF8Bh7ty5eHh4MHv2bDw8PIiPjycvL4+EhATat2/P4cOHadWqFQ4ODnTt2pX09HR+/PFHdDodI0aM4Nprr8XDw4OoqCiOHTvGd999R3Bw8GW7ZnljwmQykZycXC4i3uHDh/nPf/5DixYt8PX1ZerUqbRq1arcmHf79u3rZcy4oUlOTq4ylnZdYzKZ+Pjjj9W12T/77DP++ecfdbWuhiY5OZlff/2Vxx57DL1eT0lJCQ8++CBubm7897//5fTp03Tt2hUPDw9KSkrYuXMnwcHBpKamkpmZydSpUxk6dCgPPfQQubm5nD9/Xg39nJaWRkhICEIIgoOD6dy5M+vXr+fVV19l/vz5+Pj48OCDD7Jq1SqeeuopPvnkE1555ZUKU9jqi6tCgCcmJrJ69Wo1FnHXrl3p168fn376Kc2bN2fWrFnleqUWv4COHTsyadKky9aRpTY4Ojri7OxMWlpanU0pqwyj0ciKFSv4+eefAWUZwH79+uHl5VXB67chCQkJUVf4srB06VL27t2rBp4pLS3ljz/+ICAggBEjRrB69WpVWy8oKGDPnj3qinEWNmzYwA033MCDDz5IaWkpe/fuJScnh759+6rKn4+PD5MmTWLGjBkMHjyYDRs2sGfPHk2AXwRSSnbv3s13333H+fPn8fPzo0uXLjRr1owlS5bw2GOPlfutAVVxfOqpp7j++usvQa3rHk9PTzVUcX2TmJjICy+8oO7fcccdeHh41GitgfrC3d0dJycn+vbtqwbYKSoq4v/+7/9o27Yt06ZNIygoiN9//x1ADUVtPSd8zZo1BAcH89VXX5Ur+8iRI3Tq1IlWrVqRkJDAwYMH8fPzU2O3gzJzaMOGDXzyySfqecnJyURFRdX3rV8dAvybb77hwIED6v6+ffvUqDx9+/ZVhbdlGdDNmzcDylKPV4LwtjBs2DAWLlzIjBkz6rUHPHPmTGJjY3FzcysXZvZSc/z4cfz9/bn22mtxcnIiOTmZ1atX8/zzzxMeHk5CQoK6BKijoyNnz55VhbejoyNPP/10OU96gLFjxzJw4EBKS0txdXVVVx6z5/GampqKEIJ+/fqxYcOGRj8Ge6nJzMxk7ty56n5UVBQbNmxQfRqsxymTkpLYu3evOh/cslrWlUDnzp1ZunQpGzZssLsmd11iEd6vvPIK7du3r9dr1ZSUlBQMBgNHjhyhXbt2FBcX8/PPP1NcXMy4cePIy8vjxIkTODk50bJlS3Jzc1m/fr16/n333UdmZqYqvC1LAH/22Wc4ODjg7OxMaWkpISEhFRRCC87OznTp0oXWrVvzww8/NIjwhhoIcCHEU8DjQIQ56SjwlpTyd/NxAUwHHgN8gd3AU1LKo1ZlSMAAtJVSxlulfwkESClvrYubqYwJEyYwefJk8vLyiIqKYuzYsUybNo2+ffuyYcMG2rZty59//snp06c5fPgwt9xyC6dPn74iTOfW3HnnncTGxvLtt9+qSwDWB2PHjmXq1Km8//779XaNC+GBBx7gxx9/ZMuWLeXSLcsiWqa/lJWVcfDgQfr164ebmxtBQUG8+eabODo6cu7cOX744Qd10ZMff/xRXaXI0dERg8FQaUS+7t27k5iYyIIFCwgLC7uk1gho/G07ICCAKVOmMHv2bEB5vgUFBRw5coT27duzZ88e3Nzc+Oeff9i1axfu7u5cf/31ZGRkNOrpgrY4OzszZcoU3nrrLVq2bEmrVq3q7VqW0K+Xi/AGxVIaGhpaYa0IIQSTJk3C29tbXV44MzOTFStWMHDgQDZt2qQuwKLX69VAL3l5efTo0YNnnnkGvV5PkyZN1BDXS5YssRs454EHHuC3335j8+bNDaqY16QblghMBf4BHICHgJ+FEN2klIeAF4BJwMPACeA1YJ0Qoo2UMt+qnDLgbcB+fM16xMPDQ10L1xLEwd/fn127dhEaGlrOJASwbds2+vXrV2XEocaIEIJnn32WadOmcfDgQUaOHFmnJlwpJdu2beN///sf1157bZ1PpbhYunTpwvHjx9mzZw/9+/fHYDDQsWNHunfvXiFm/OjRo3F3d+e9994rNwvhhhtuoGnTpsybN48dO3bw6aefkpGRwbp161i5ciV+fn6VBv5o0qQJo0ePVhetuQxo9G3b0tu2hMQNCAjgyJEjFBQU8MUXX5TLq9frEUI0mIdwQ9K8eXMeeughXnvtNbp06aIubVpXFBYWsnTpUvR6PY8//nidlVsXCCG49957WbRoEd7e/8/eeUdHWW19+HmnpZJJJYVUIEiR3jsoRVSKFUQBFfEiRZo0Ba40ARVBBAVUQJRuuygiTYqU0EsINSGQPumZTMu09/sjyXyEBEiHQJ61sli89Uwy5+xz9tn7t5XUrVsXOzs7WrduTf369Qt4w/KLl/Tq1YuhQ4faItAVCgXLli3jq6++4vr16/Tv35///Oc/GI1G3nvvPds1d/Nc1qtXz6a3UZmUKg9cEIR0YDqwGkgAlouiOD/vnAOQDHwgiuKqvGMi8Bm5g0EbURRP5x1fRzFn6WXNFTUYDHzwwQcMHjyYDh06YDKZ0Ol0tj8OwDPPPEOnTp0qdAb7MGA2mzl79iyrVq2if//+SKVSevfuXaaCHKIosnLlSiIjIxkxYsRDF9lrtVqZNGkSbdu2pV+/fvct8nL48GH+/vtvVCoVAQEBDB48mLi4OH744QesVisNGzYkJCSEOnXqoFarSUhIwNXVlV27drF06dJKjfTPpzzywKti3z516hRr165l0aJFODs7YzQa2bNnDxs2bAByi9L06dOH3r17PxSVpSqSrKwstm3bRkpKCiEhITRr1qzMfTEpKYn58+fTuHFjBg0aVKGSx6UhPDyc1atX8+abb9KyZct7XmswGPjpp5+4dOkSmZmZ9OnThx49erBkyRJbZcdmzZrZqkBGRUUhl8s5ffo0TZo0qXBZ2LtRLnnggiBIgVcAZ+AoEAL4ALvzrxFFUS8IwiGgA7DqtttPAL8AnwIVu1FTBPb29vj7+7Nz5046dOiAXC5HqVQyfPhw0tPT76nd/aghk8lo3bo1sbGxNsEFOzu7++6fxcTEcPjwYZsr+fTp03h5eVGrVi0CAwM5cuQIq1evLtcKaOVFYmIimZmZDBw4sFiKTJ06daJTp05YrVa2bt3KqlWriI+PZ/To0Tz55JOcPXuWpKQkdu7ciZOTE3FxcRgMBnr27HlX471y5Uqio6N59913bSkoDwtVuW83bNiQjIwMW+CQQqGgd+/eXL9+neeff96m7/04oFQqGTp0KOPHjyc8PJzt27ezcuXKexpdq9XK4cOHuXXrFu7u7mzYsAEXFxdcXFxsudRPPPEE7777biV+kuJz7tw52rZte1/jDbl24J133gFy4yK2bt3K5MmT0ev1/PDDD8TExHDx4kUSExM5evQo/v7+nDlzBg8Pj7sqWCYlJfHZZ58RHBzM6NGjy33yLqSk3PVcsQy4IAiNgWOAPaABXhBFMVwQhPxyTKo7blEBRfkRPwQuCYLwjCiKfxfjve+Su/9WZiwWC1lZWYVmoxUd9PEw07dvX37++WcgV8HI3t7+rpG5mzZtYv/+/fTs2ZOcnBzi4uJ44403aNy4MZcuXeKXX37B0dGRw4cP07Zt2wLpOc558oYPAqsosjY9nQMaDa+4uFAjT4GtJLwDDFcoUAcFody5E3buLPjlNhhYpFZzRKtl69atvHLiBHYSCZp58wo85+rVq6hUKlasWMGwYcOoU6cOmZmZD1SK92Hp22X5jiTn5AAUUBeUyWSMHz++1M+syigUCkaPHs38+fMBmDlzJrNmzSrSpZ6RkcHChQuxs7OjZcuWtrro77//PllZWZw/f95W/jctLQ1HR8dKU3G8H/Hx8fzwww8kJSWVyn1dq1YtJkyYgNFoxGKxIJPJqF27dgEPrCiKvP7662g0GtatW8eMGTMKfVcdTSYSExPJSkri+/Bwhrq7o7dacZFKcangMsPFXYFfBZoBrsBLwA+CIHS77fydfnihiGOIohgpCMK3wEJBEHbfeb6I61eT68rLd9WVmu3btyOXyytFzq+qIJfLGTZsmK285ooVK9DpdEUWU9m1axeLFi2yBV7dHgQXEBBAQkICe/bsYefOnaxbt67IFJ4HwfLUVOKNRhb4+uJfhowCQRBQ3qMzTqpZkyN5amwrU1MZV0QJ14kTJzJ16lSSkpJYs2YNKXkz6xdffJHatWvj6OhITk4Oer2ehg0bVparskr3bb3VyufJybzwwgsPbU2CB0HdunVtRXtSUlIYO3ZskSvxiIgIlEol06dPL9IzFRoayokTJ8jMzGTs2LHAw6EgmJqayvz58+nduzfjx48vk9fvXplGgiAwZswYli9fTnR0NFeuXOHOdbifXM4gV1c2Z2ZyRqdjv0ZjOzfa05NacjlmUcQkigiCQEsHh3LTZS/WWl8URaMoipGiKJ4SRXE6cA6YAOQnH/rccUtNCs/c85kN1AFKHEmSX4CiJOh0OjZt2sTu3buJjIzkr7/+KvEzHmV69+5ti+KF3Lzov/8uuIBSq9VIpdK7SsqKosgzzzxDo0aNaNKkCUChogcPgpNaLce0WmaV0XgXB5kgMNfXF4B9Gg1/ZGUVuiYgIIDevXsDFIg3+PXXX9m5cyebN2/mr7/+4p9//mH27NnExMRUaJvh4enbJUUURaJycpiZmIhCEPjtt99s8rzV5G6JLVu2rECN8f/+97/Ex8cXuC4lJQU/P7+7GhSFQsGgQYMIDQ0lKCjooaiTLYoiP/zwAy1btqR///4VvmXXoUMHmjRpgtFoZPny5cTfUb8B4NW8sTHLasX9tr69LTOTH9PT2ZaZyV9qNd+mpvJNaio5pbBlRVHaZGAJYAdEk9vRewInAQRBsAc6A5OLulEUxWRBED4H5pLruis2s2fPZvbs2Xc9r9Pp+Pfff3F0dEStVrNjxw7UajUdO3Zk8ODBfPPNN1Wq3uvhw4dxdnZGJpPdNbe4PKhVqxbz5s1j5syZvP/++2zYsAE3NzebNnlGRgY1atQokD6RmJhIVFQUSqWSpUuXotfrgdwZvYuLCykpKWUqEFJWjFYr36SmMtHLC6dKCihr6uBAE3t7MiwWfkxPp41WW6iK3bBhw2jevDmiKNrEIVauXEmdOnVshTWsVis7duxg2rRpfPLJJ8hksruuLs1mMwcOHChUx7wMPJC+fVSrpcMdv6vbuZ6Tw2WDgRoSCZcNBv7OzsZdKmWQmxt/5U2WfPMmUA87BoOBffv24e7uzpNPPlmh2Rqvv/46er2exMREunbtyoIFC/j8889twXyZmZkFXOsWi4VLly6Rnp6Oh4dHIXngdu3akZWV9UAV7E6fPk1MTIzNI1AZDB48mJkzZ6JUKtmUnMwHd6SAygSBbcHBnNDpcJdKqWNnxy61mu/T05nt40OtvAVEitnMlPh4LhsMfODtjYdUivNdPHuxRiN7s7NxvYfnrzh54AuBHUAsUAMYDHQDnhNFURQEYSnwkSAIV4BrwAxy99Lu5WdZDLwHDAD23a8N+ahUKvbu3UuPHj0KnUtLS2P27NlIpVJUKhVPPPEEgwYNol27digUCkRRxMvLq9IS7MsDf39//ve//3H27Fk6d+7M8OHDK+xdtWvXtkXtHj9+nN9//91mwGvVqoXVauXMmTO0bNmSzMxMpk2bhp2dHRKJhAEDBuDv74/RaGTXrl1cuXKFuXPn4ujoiLOzM92NRto4OhJaiRHAWquVVIuFwEoW4pnh48OrN2/SzMGBdevWMXLkyELR/fleCsgdzLOysgooWUkkEp5//nmSkpL48MMPEQTB9re5Hb1ez+bNm/nnn3944YUXOH78eIna+jD17XVpaQTK5UV6Snaq1WzOyCAjr7zvQFdXPvH15cm8vdg2jo6kjRtXZcpFKhQKlEolGzZswGQyMWHChArL2pBIJAWCz1avXs3FixdtAVnNmjVj/fr19OrVC3t7e/78808OHDiASqViwIAB9O3bl+bNmxMbG8vatWsJCwsjLCyMxo0bY7FYaNWqFZ07dy40Ua1IEhIScHNzq1SRrcDAQAYMGMD58+c5o9dzQqulzR2f2U4iofNt8qln9Hrq2dlR87aFj5dMxgI/P2YlJjI2Lo7Bbm4MKsKzGZmTw5LkZOwlEgbeQ7OgOEsTH+AncvfK9gGtgT6iKO7MO/8p8AWwAjgF+AK97sgTLYAoihpy3W0lGtHHjRvHmjVrUKlUhdzp+QpL+W7e/v3706VLF9sfWavVsnz5clavXl2SVz5QgoODGTduHP369ePWrVuV9t5+/fqRnZ3NggULOHHiBBKJhJEjR7J8+XImTpzIxIkT6dGjBxqNhmbNmtk6edu2bXnzzTeB3NKGOp2O5ORktmRmMikhgX43brA+Pb1SPoObTEYPZ2cSbitjWhnYSyQEKRTUVihISkpi9+6it4PNZjP79u1jyZIltgpKtyMIAiNGjGDt2rU2JajbUalUzJ8/n+zsbL744ovSVqJ6aPp2XTs7VqelIYqiTco4nzCtlo55g6UCeMXV1Wa8AS4aDEyaNIkbN25QFZBIJHTq1Illy5Yhk8lsVawqg5dffpnVq1fzww8/oFKpbGlmY8aMYcKECezYscMWA9OzZ09ee+016tevT8+ePW3u+Pr16xMeHs6lS5dYv349U6ZMYfDgwUVW5KsI2rRp80DSAZ988kmSkpJ4w82Nr1JTSTGbi7wuzWzmM5WKs3o9H3l7I79jYukjl7M6MJB3PTxIveMZoihyIDub2YmJPOfiwqd+foUmCrdT5eqBz5o1i6SkJPR6PWvXrrU8vhHjAAAgAElEQVQl1ouiyNKlS9FoNLz77ruFVK62bdvGb7/9dtfVTDUFMRgMHDt2jL1795KWlkbr1q0xGAwkJiYyZswYHB0dGTlyJK1bt8bb25sOHToQHByMwWBg69at1K9f3xat7n7kCI3s7bmk19PYwaFSVuKiKPJeXBzjvLxoUMmdPdVsZlxcHG+PHcvy5ctZunSpzU1psVjYvXs3v/76K3Z2dgwbNuy+in8zZszgtddes8l/7tq1i82bN9OvXz8GDBhgW3lW5XrgX/v7MyouDgdBoK9SyRu3FedIMJmYmpBAfxcXnnFxKeRy7JdnuO+mgFdNQeLj4zl06BD79+/Hy8uLpk2bcubMGVue92+//cavv/5K3759qVGjBk8//TQODg5ER0ezd+9ennrqKS5dukRycjJNmzbFwcGBqKgoevToUSkppBEREaxfv76Q8lpl8OeffxLx228EKxTEGo18fNu2jdpiYXFyMuf1elo6OjLK0xOPe0hWR+Xk8FlyMl/7+yMRBNLNZlampnItJ4eZPj7Uua3Mab8bNx6NeuD9+/cnPj6e3bt3c/HiRVxdXQkODkYQBMaOHcvSpUs5d+6cLVgon3w3Zn4BhMqqPV1Vsbe3p3v37nTv3h2VSsWJEyewWCw4OTmxcOFC2rVrh7u7O87OzqjVaj788EM2btyIvb09Q4cOLfAs57z92fqVaEiPaLUkmEyEVmLt83w8ZTLedHfn+++/x2KxcPnyZTw9PTl37hz//POPTQK0uNs5PXv2ZMuWLcyZM8dWs37mzJk0aNCggj9J5eElk/GGmxtaq5XTOh3tnZzwlMlQSqX4yeUs8vNjQlwcz95j73X79u08/fTTdw22rCaXWrVq8dprr/HKK69w+fJlLl68SI8ePdizZw/Jyck4OTlRs2ZNpFIpf/75JzqdjldffZWQkBBGjBgBUEjHoDK15VevXv3AMg569uzJtd9+4395cRcZZjMRBgMHNRou6PW0c3JiS3AwdsWIuwlRKHCRSPhHo6FHjRqEabWkWiwsqVULt2LWqqh8uagy0rJlS/r160ebNm349NNPbfVaITf3s379+iQkJBS67/Z9xy+//NJWmaaa++Pt7U3fvn0ZMGAAb775Jm+99RY6nY709HT2799PkyZNCnVoq9VKXFwcixYtYmxsLCe02kptc6u8lUDyXdxcFU1PFxdm5OWLfv3113z77bdER0fTvXt3evToUaJYjE6dOpGQkGAr2qBQKB5I2caKxE4i4VU3N95wdyfOZGJCfDxDbt0iPC840lcmw00mK/T3FEWRtnnudLPZzOjRo9HclsZTzd2RyWQ0btyY1157jR49ejB79mwaNGhARkYGycnJWCwW6tSpQ807UiL1ej1nz55l5MiRLF26lIyMjEptd69evTCbzZgfQN+2s7Njpo8Pr+TtSw+LieFPtRoJ0Fep5EVX12IZbwCJIPCsiwsHNRpEUcQCBMjlxTbeUAVX4PnkFyOYMmUKP/74I3FxcQQGBnLw4EFGjx5d4FqVSsWsWbNo06YNJ06cAGDDhg3VOeGlpGnTpjRt2pShQ4cyatQoli9fjoODA1lZWVy/fh1/f39+/PFHLl26RE6eyMY8lQqlVIqPTMbVvGNTatakUwXVzLWXSBjq7s6k+Hhm+vjQ8AHsmQUGBtKlSxcOHTpEdnY2RqORyMhIXFxceOqpp4r9HKlUSv/+/dm8eTONGzdGLpc/EKnWykAuCOTkbet9ULMm85KSeFap5LLBgKMg4HvH4LYsJYXjeUY+n4iIiGoPWymwt7fnmWee4ZlnniE+Pp7Jk3OTDUJCQkhLSyMyMhI/Pz9mzJiBVCrFYDBw4sQJTpw4QVBQEAaDAZUqN8OwInPFO3XqxOnTp/nkk0+YMmVKpe+HC4JAf6WSbZmZOEkk3MjJoZZczjGdDh+5nKASBNd1dHZmW2YmZ/V6fs/Kok0JRXKq3B54Ph9++CE3b95k2LBhdO7cmXfeeQcvLy8+/vjjAi60fCUdgMWLFxdQ7Pn2228rNXryUeTO+sCQWzxGoVCwYMEC1q9fj2t4OK+5uaEym7llNCIA36WlYS8IzPLxIaQC3dxhWi0rUlL4LjCw2DPj8kIzbx6iKBIdHY27uztKpZJvv/2WmjVrllhTWafTMXr0aNuE6Omnny6UlVCV98C356lfWUWRAXnBUD8FBXFap2NJSgpvuLnxkqsr0tsCgk7pdMxJSmKImxvpHTrYvGqhoaH3TDetpnj88ccfNqnlfPz8/GjZsiXPPfcco0ePZuHChQiCQFpaGtnZ2Vy4cIFDhw7Rs2dP3njjjSIrd5UHZrOZL7/8Eh8fn0ovTpOvxKaxWFCZzTahlndjY1nu7497CUs1/61W8/VtgYyL/fwKxQndbQ+8yhlwq9XKzZs3SUpKYvny5UDuwNWtWzccHR0LrUz27dvHxo0bGTlyJA4ODgXyGpcsWfLASzo+CpjNZg4fPszq1attrvQxY8bYfrdFyWQarFZ2qNX8kJ7OQFdXnCUSWjo6VojgylcpKZzT63nfy4umDg5YRBG91YqzVMoto5FjWi2JJhO+cjmvuroiKad0pDulVOPi4pg7dy6LFy/GuRSehxs3bhAbG8uqVavw9vZmyZIlBc5XdQOeabGQbjazIT2dk3o9nlIpM3188JDJCklS6qxW5iQmYhVFpvr48IVSSXh4uO38w6AW9iiQkpLCH3/8wd69e2nQoAFKpZL333//nvfkywVbLBaaN2+Or68vLVq0KHcJ1vxMjLp16/Lmm2/i4uJCTk4OgiAgkUg4e/YsERER6HQ6unfvXm4xI0WNZ2vS0tBarYwthdCNKIr8o9FwNU/fYIynJ71uU8wT5HL6Xr36aBhwlUrFhAkTAOjcuTNRUVEYjUbGjBlTYF/RarWybt06IiIiSE9PJycnh3Xr1iGVSvn111/Jycmp0JrYjzNjxoxh+PDhttzme+lcn9XpOKXTYRJFjmm1vOLmRr8KEIk4pdOxIiUFH7mc6JwcmxaoQ17uZpBCwR9ZWThKJCSaTMzy8aF2GT0DtxtwrVbLnDlz6N27d4nc50Xx77//4uvrW6hIR1U34GvS0vg9KwsfmQyZIOAtk5FqNvNVQECB65NMJmYlJvKEvT0HNRoa2tvz0fffk5iYyKZNm+jbt2+V0nuoKkRERLBs2TJWrVp132vzNSGysrJISEggJiaGmTNnlvuCyWg0smXLFo4dO4a7uzuxsbFA7rZTcHCwrcDJ77//jpeXF15eXowdO/auZUGLw53j2UmtlhWpqSz197+n6Mr9yDCbOaLV0s3ZuUCmxb0MeJXbA/f29mbkyJGsXLmSf//9F7lcjslk4sKFC9SrV4/s7Gz27t3Lzp078ff3Z+7cuUyePJm+ffsCuX/YLl26YG9vz+XLl6lXr16ZymhWU5BDhw6Rnp5e7I7a3NGR5nkBZ88rlUyMj6eTk1OJ3VD3o5WjIysCArig1/OEnR2uUimZFgs1pFJkeSvulg4OnNHrOafX80N6OrPLSdkrPj6eFStW0LBhQ7p3717m53Xu3LkcWvXw8ZqbG7FGI6f1ehSCgMpsxiSKpJnNeMhkXDYY+F9WFie0Wt728CBYoeCgRsMMb2+MJhO+vr688sorNjGnau9a+SGKIj/99FOhgLa7oVAobGMu5Eo0b968mXHjxpVruxQKBUOGDKFbt25kZmbSoEEDBEEgOzvbFicFuUJVqampbNq0iTNnztCmTZsyv9sqiuzNzubH9HRm+PiUyXhDrnbF80UsXsR7aFlUOQMO0KVLFwRBYN26dbRq1YrDhw9z8+ZNIDeV5MSJE7z99ts22dScnBx+/vlnW+UtyK3E9ccffzB69Gjq16+P0WjEx8enyqg5PYxcu3aNlStX8vLLL+Pn51fi+wMVCmTAQpWK6d7eJYrGLA6OEgntbot5uPP5bjIZT9eoQZrZTPydN5eSPXv28PPPP/PSSy/Rs2fP6u/XPXCQSJjm7c18lQqDxYJOFIk1mYgxGnGXSpmekEA7Jye+DQzEQyYjPS8KefCtW5AnIHQ7P/30EzExMXh5eVXHupSR7777jlu3bpVaCKtDhw7MnDmTkydP0qxZs3LfGw8ICCDgNk+N6x3qZfnu861bt5ZLmqHOamWhSoXWamWunx/Blaz4mE+VNOCQG4l4/vx5RFGkSZMmREZGotVqcXd3x83NzTbDunnzpk2nO5/WrVvz7LPP8scff3Dz5k1WrFgB5OpU6/V6TCYTbdu2xd/fv8CeutVqRavVVqh2cVUmP0q6lKpgAAxyc2NNejrDYmKoo1DwnFJJBycnHCsxAO1aTg6NyyGyddeuXezYsYM5c+ZUrwaLiZ1EwkhPTz5MSGCMlxdzkpLIzJNQ9ZXLaePoaBPH2JyRQT2Fgmu3qdR9+umn7Nixg2PHjhXYIvvvf/9LWFgYQUFBtGjRolBVLoPBgEQiqVR5zqpCamoq+/fvL3XsBoCnpydNmjRhyZIlODg40LBhQ15++WUCAgIqLaMiIyODtLS0Aoa+NKgtFhapVPjK5bzn6VkgsLKyqXJ74LdjMBiYPn06vXr14sSJEzg6OjJx4kSGDx+OTCajVq1aXL9+nWbNmnHu3DnbfWvWrGH48OGFJBsBWrRogY+PD6dOncJsNtOyZUueffZZvL29iYyMZNasWfj6+rJ48eIK/8xVjddffx1RFAsFEJW01rPOakUuCGzNyGBLZiYKQUAA+ri4MMTdvZA0YXlzNi/yeZaPD3VLuQ8eptWyTKtl5syZZR4wiktV3wO/nTCtltWpqQxxd2dlaiof1KyJSRRZmJxMTZkMf7mcM3o9/ZVKm6hGp06daNmyJV9++WWR73n55ZeJjo7m0qVLBAUF0aZNG3r27IlUKmXp0qWcOHGCDz74gBYtWlT4Z65KJCUlMXHiREaOHEmXLl3K9CytVovFYmHKlCmIoohWq6VmzZoMGTKkQD2AikAURZYvX05OTg7jxo0rtRdg8fDh2EkkTKpZs8LHonwemSj0O1GpVHz66aekpaXh4+PDiBEj8PHx4caNG6jVas6ePcuLL77IBx98YLtn+vTpaDQapFIp2dnZuLu789dff3H16lXs7OwYMmQIXbp0IS4ujmPHjvH333/Tvn17/vnnH9szXF1dmTdvHu63ST4+7gwePJiPP/64UABRSQ34nVhEkSyLhdVpaUQYDLyoVPLCPQT+y4NjWi2rUlNZFRBQ4vQza15KydDx4yvVGDxKBhzgL7WaDenpZFut9HVx4TU3N9LMZjIsFi7n5KCzWunu5MT424SbvvnmG06fPo2bmxvx8fEolUq2bdtGamoqISEhTJo0iRo1anDx4kX++OMPIFfe9vr160BuCpq7uztjxoypjo3JY9++ffz+++98+eWX5b5aNpvNXL58mVWrVuHs7Mz7779fqu23kryvLOln58+fZ+3ixXzt74+iEr2Cj4yU6p14e3uzYMECFi9eTHh4ODNnzrSdCwgIoH///hiNRt5++22sVit6vZ46deqQnp6Oq6urzSUUFxeHQqGgadOmrFy5ktDQUJRKJXK5HIPBYDPerVq14u2332bUqFGMGTMGX19fXnrpJdq2bfvYd/hGjRqxbt065s6dW66/C6kg4C6TMc3bm3C9ni+SkyvcgLd3cuJvtZq/1Wr6l/BdFnIV4CpDF/pR5lkXF+rb2TE+Pp4/1Gr+UKtt5552duYFV1dijEaGuLnhNHAgMpkMuVxOSEgIwcHBthXdjz/+yMyZM/nss89Yvnw5U6ZMwdHRkaCgIHbt2mUTAnn//fcRBIEvv/ySU6dOUadOHd55550HJtv5sBAaGkp6ejqHDh2iW7du5frsfDW4L774gjVr1hAWFlamLbjivO+NN95g6tSpvPDCCyXuoxkZGYhQqcb7XlT5FXg+VquVixcvcvPmTeLj47l8+fJ9q/y88cYbPPvsswWO7dmzh7Vr11KjRg20Wi0+Pj4YjUbbs+bPn09ISAiiKBIZGcnq1auJj4+nSZMmTJs2rewftApjtVr55JNPaNmypa1yEZR9BX47+7Kz2aFW80WtWuX2zLvxc2Ym0Tk5TC7F/vWMhATaDR1a7gPevXjUVuD5qC0Wjmu1pJjNXMvJ4UxeTEuIQkH0bfvfXl5epKSkALnytXcGMo0ZMwaDwYC9vT3p6ekFlBldXV1t1cFMJhNhYWF88803ACxbtuyB1rZ/GIiJiWHevHl89tlnFVIL3GQysWjRIjp27FgumRr3Y9y4cbz77rsl1nBPTEzkv5Mn811gYKXG5TyyK/B8JBIJTZo0KaB5Drn7Hunp6fz8888YDAY6dOjAb7/9xqhRo/D398dkMjFt2jRkMhnPPfccPj4+bNy40SYl+M477+Dr68u6des4fvw4e/fuZcSIEQiCQGhoKDNmzODLL7/kwoULaLXaxzraVSKRMHToUD755BM6d+5c6oCXu3FSp+PH9HRm+fiU63PvRgsHB37LzCzVvQNcXVm9fXsBA240GlGpVJW2J/6o4CKV0vOOoDPIFQNSmUwsUal4+q23uHr1Ko0bN+b111/HwcGBGzduMGPGDF599VWUSiVz587F1dWVjRs3cvToUcaPH8/Zs2f57LPPyMzMJD4+nqCgIORyOZ07d0YqlfLtt9+ycuVKm67940pgYCAdO3bkl19+4e233y7XZ+fvTTs5OVVaimSTJk2IiIgosQH39fWlob09u9TqAl7ABJMJF4mkUKW8iuaRMeB3QxAEPDw8+M9//mM71rx5c8LCwjAajaxatYrExERq1arFypUrgVwVp0uXLgG5aQcfffTRXfMXlUols2bNwmQyVZhsYFUiMDCQli1bsmXLlkJSn2Uh1mhkSXIyH3l7l1lgpbic0ukILGVUcj07O7Lv8AB98803HD9+nOXLl1fHTpQD9hIJQXZ2LA0MRHNH5TxXV1dbucnr169z9uxZ+vfvz8CBAzl37hwZGRkcOXKEjh073lW1rUOHDrRr1w6r1VqZH+uh5aWXXmLixIl07dq1UPGisvDLL7+QkpLCnDlzyiSwUlyMRiOXLl0qtau+np0d6rzMCIAUs5mRsbE0dXBgbjlpRxSXh8ORX4nodDomT57M119/zYwZM4iNjWXNmjV89tlnPPHEE4SEhGA0GjEajTRo0IArV66wZcuW+z4333jv3r37rsERZrOZmzdvFhn9/igxYMAAjhw5wt9//11uFYOu5+TwpL09jcpZjvFuWESRP7KySiWNmI9Wq8VqtZKcnMzGjRs5fvw4AGfOnCmvZlZzGydPnmTChAls27aNRYsW0bNnTzZu3MjgwYMBbMGVVquVZs2asWLFCuLj753xL5FIbEZl8ODB7Nq1q8jrsrKybIU8HlWcnZ3p06cPq1atIjIystyee/HiRQbmxTBUBmfPnsXNzY2OHTuW6n4LoLVaEUWRszod85KSADiv12Op5LH9sTLgGo2Gd955B5VKxfr16/n+++9ZuXKlLYhl+PDhuLm5MWHCBPbt20eXLl2YN28ehw4dwnQPNZzbadKkCYIgkJWX2pJPbGwso0aNsq3WH2W8vLyYM2cO586dY/z48Rwth/KOmRYLnpXUwSFXrlMhkeBXQq+KKIpsz8piYnw8zz77LAaDgUmTJqFWq/niiy+A3HrM1ZQv+/fvZ8mSJTz99NMsX76cFStWMGTIECC3AMfIkSP5/vvvmTNnDllZWYwfP57u3btz6NChYr+jZ8+eRU6+Nm7cyHvvvcfevXvL7fM8rAwYMIBnn32WpUuXsmjRojKXEhVFkaysrEr1SEVGRvLkk0+W+L709HS+/vpr/szKopeLC3uys/k0OZmeNWrwVl77K9ugPhYG3GKxEBERwffff0/dunVtwSoODg4FBB38/f2ZNGkSo0aN4qmnnqJjx47Url0bJycnNm7cWEgQ5k6SkpJwc3Pjp59+KhTokZqairu7O59++uljIRbh7+/PtGnTGDFiBF+lppJSxpV4mFZL40pafQN4yGRYRJHz9/mb347BamWuSsW/Gg1Tatbk9ddfx2w2o1AoePvtt0lJSSEkJKTciipUk6sffVijYdu2bbz88su8mafI5ubmZlvRCYJAly5dWLx4MW3btuX9999HoVDQqVMnDhw4wOnTp+/5DovFQnx8PG+99RbTp08vdD4tLY3u3bvbVvqPMoIg0K1bN5YsWYKHhwfffvttmZ4XHx9PTk5OhaaO3Unt2rX5999/sdzmBr8fV65c4aOPPsLT05OvAwKoa2dHpsVCV2dnnlcquZqTwyhPz0pXWnykDfi5c+dYtmwZb731FuvXr8fNzY1p06bdM6JUEAQaNWrE888/bxsApk2bRlRUFDNnzrynS/ijjz7irbfe4sqVK4XONW/enIULF+JTSQFYDwtNmzYlUC5HVQavwyGNhmyrleaVaMDtJRLedHfnx/R0zMV0i13NyeGUTscCPz/q2dsjCAK3bt2y5c4ePHiwzEIY1eRub2zNyOD9uDhGxMayJzubwYMH8+KLL94zfdHOzo7evXvbAl0bNGjAf/7zHxYvXmzLCS+K/IDWcePG2cq53s7YsWNtga2PC3K5nGeeeYbk5ORSP0MURX744Qd69OhRqSm47du3R6lUcuDAgWLfs3v3bp588sncgMi8tkbl5CAjN0vivF5P53IO2i0Oj6wBF0XRJvDy1VdfsWjRIoYOHVqq3FwvLy9mzZpFQkIC06dPv2tQy+effw5QIrfc44Amr3RnSVBbLPyVlcXsxEQ+T07mbXd37Cs597KLszMiudHvxaFJ3lZM4m2TlStXrtCuXbvc/bKzZ2nfvn1FNPWx4ohWy08ZGQx2c2NjUBCzfX3p1KlTqZ7VokULpk6dyqZNm2wpZXcSGBjIqFGjSElJ4caNG2Vp+iOFRqMp1XgaHR3Njz/+yMSJE0lPTy+UylsZDBkyhK1btxb7+oYNG3L58uUCxy4aDDxdowZhWi3NHBxwegC54cV+oyAIowVBuCAIgjrv55ggCM/ddl4QBOFjQRASBEHQC4JwQBCERnc8o6sgCPsEQUgVBEEnCEKUIAgbBEEonCNSRnR5g+6ECRPKJW9RJpPx3Xff4ejoeFe3kZubGxs3buTdd98t8/seFcxmMyqzGb8S7F9f0OsZFRtLuMFALxcXVgUE0PoBpOdJBIEn7OxIKIb3INFk4r9JSUjANkOHXHGbM2fOsGTJEkJDQwtpcD9oqlq/Bjin11MjrzBNeQhqNG3alKlTp/L999/bsk/upFOnTmzcuLF6++M24uPjS+T6FkWR77//niVLlqBQKHjnnXeYP3++LQapMgkKCsJkMqEpRnzO/v372bhxYyGp1+YODqxLT2djRsYDWX1DyVbgccBUoAXQCvgH+F0QhPzE6ynAJGAs0BpIBvYIglADQBCEhsDfwAWgO/Ak8B6QBZR7XpAxT+ChKHd2aXF0dOTDDz/k0KFDtudXc2/S0tJwlUpLNNBuzcjgLQ8Ppnp7097JCd8HmJ7XzMGB41rtfTMHdmdnk2mxsCU4GJfbDHiDBg0YMmQIzZo1Y9SoURXd3NJQpfo1/P+WSnnStGlTXnjhhRK5VR93VCoVviVIm0pOTiYsLIxPP/2UgQMH0qhRowdivCE3u6BBgwb3jX+AXCW/V199tVD++whPT5o4ODDa05P2D0h1sdijqiiK/xNFcacoipGiKF4TRfEjIBtoL+Ru/owHFoqi+IsoiheBYUANID+yoxeQJoriBFEUw0VRvCGK4m5RFEeJophSzp8LNzc3OnXqZNM4Li/s7Ozw8fGxlS+t5t6cP3+eeiXI2441GrlpNBJaSbne96O5oyNm4Nc7sgpuJ8ti4axOx/MuLoV00wVBoF27djzzzDMP3eobql6/BlgTGIi9IBBTzpPowMDA6n5dAs6fP0/dunWLff2xY8cICAh4YEb7Tp5//nk2bdpkU+8ritOnTyMIAk899VShGAelVMpLrq60dnJ6YPEPpfI/CYIgFQRhEOAMHAVCAB9gd/41oijqgUNAh7xDSYCXIAjF1skTBOFdQRBOCYJwqjTt7NOnDydOnCgy8MxoNHLz5k3279/PoUOHSEtLK9YzzWYzycnJBAYGlqZJjx0pKSnFFkNJN5v5VKVisJtbqQVUyhu5IDC1Zk1+zcws0mDorFY+ValoZG/P01W8zGxl9eu8d5W6b7tIpXRzduZwEe5PURTJzs7m7Nmz7N69mwsXLhTbW5aQkEBwcHBJm/NYIooiycnJxdaJP378OLt372bMmDEV3LLi06BBA5555hm+++67Ij1sV65cYdWqVUybNu2BZg5Z7xF0XaLEWkEQGgPHAHtAA7wgimK4IAj5nflOJQMVkJ/0ug3oDfwjCEIycALYD/x4t5m6KIqrgdV57y5xhnxQUBB6vZ7ExES8vLyIiYnBarXy+++/ExERQc2aNQkNDUWn07Fy5Uq6d+9OzZo1qV27No0bNy7ymZs2baJ+/foPzSzyYcdsNmPt3RtNv36FzomiiFqtRqlUolarmTlzJp379qXzSy+heYgiep2AeosXs83ZmeHDhxMdHU1OTg4JCQns2rWL+u3bM3D4cPQPSYGDklLZ/RoK923NvHklanNoXpXAfrNnk5KSQsa1a8TGxvLnn3+SmprKE088ga+vL4cOHeLGjRtMnz6dI0eO8Pbbbxc5GGdmZvLnn38ycODAErXjcUUURURRvKv4ilarRaFQIJfLOXr0KBs2bGDSpEkPnQLhs88+y9atW8nOzsZisZCUlIRGoyEyMpKDBw8yZswYQkNDC9xT0u9quXCXFMWSKmNcBZoBrsBLwA+CIHS77fydRlbIPyaKogV4SxCEGcBTQDtgMvCRIAhdRFGMKGFb7otKpUKn07Fx40auX7+Ol5eXLU1swoQJ2N3mpk1OTmb8+PG2/69fv77Ql/PatWscP36chQsXFuv9JpOJYcOGMWjQIPoVYSudOZ0AAB5fSURBVMAedSwWC2fOnGHs2LFFno+NjWXatGnI5XJq1KhB+/btefnllyu5lcWjQYMG/PTTT4SFheHt7Y1UKsXFxYXBgwfTsmXLB928slKl+jXkFte4fv068+fPJyoqCl9fX+RyOUOHDqVZs2YFXJq///47CxYsAMDT07PI79iWLVto0aIF7dq1K9b7jxw5wooVK/jss88eS2Ge8PBwfH1971r74euvv+bs2bPUrVuXpKQkpk2bRu17FKx5UORP5saNG4dUKsXPzw+z2UxoaChz587FqwxKjJVBmaqRCYKwF7gFzAeigDaiKJ687fwOIFUUxWF3ud8NuAbsEEXxzfu8657VyO5GRkYGERERBAcH39fdk5KSYpO87NOnD2+88QY6nQ65XE5mZibLly+nU6dO9OrVq9jvnzNnDleuXKFJkyb06dOHxo0bl3tN3YeVHTt2cOLECWbPnl3keVEUmT9/vm3yFBIS8lDn0iYlJeHg4FAh1ZjKg/KqRlaZ/Trv+hL3bVEUuXLlCllZWTRr1uyeHjGr1cqZM2fYtGkTiYmJLFy4kMDAQDIzM6lRowYXLlxg2bJlfPXVV8UuwJOVlcV7770HwOjRowkKCnpsyo5aLBamTp1Kv3797qproNPpeOeddxg0aBBdu3Z9aPsM5H6eW7duERwc/NCOzXfr22XVppSQG2kaTe5eWE/gJIAgCPZAZ3Jn40UiimKGIAiJ5O65VQj5wWzFwcvLi3HjxpGSksKCBQv4999/bWkGLi4uhISE0KFDh/s8pSBvvfUWU6dO5cKFC1y4cIGVK1c+lMFMFUFkZCQNGzYsdDwqKsrm4bh16xbjxo17KGfnd/IYifA89P1aEIRip3RJJBJatWpFq1at2LNnD//9739xcHAgMzMTFxcXatSowQsvvFCi6nlKpZKuXbty8OBBVqxYQbNmzZgyZUppP06VwmQykZCQQJs2bQqd++WXXwgPD0er1VK7dm169+5dwNP5MCKVSqvE+FMUxTbggiAsBHYAsfx/FGo34DlRFEVBEJaS6za7Qu7sewa5+2kb8+7/D7luut/IndXbA0OBxsCn5fR5ygUvLy8WL15Meno6e/fuJTw8HA8PDwYOHFiiTn7lyhWWLVtm+/9rr7322BhvyE0hu3PytHnzZsLCwtBoNIwbN446deqUSgyimvLhcerXkKtn3r17d2JiYli7di329vaEhISUaItLFEV+/PFHTp3Kjb9zdnZm6NChFdXkh46UlBRcXV0LVF9MTk5m69atHD16lJ49e9K1a9eHekX7qFCSFbgP8FPev1nk5n32EUUxvzzPp4ADsAJwA44DvURRzM47f4LcyNVvAD9AB1wHhoqi+FMZP0e5k1+G1MnJiRs3bnDjxg26d+9eLOECq9VKREQEK1asQK1W4+npSZ8+fejTp08ltPzhwGQyERkZyc8//1xgj3j79u0ALFmyBG9v7wfVvGr+n8eqX0OuKFNwcDC3bt3CbDYTERFRbB1zvV7P//73P/7++28gV1d75MiRj5N3hsuXL5OZmUlERIRNljYuLo6jR48SHBzMkCFDKq2y2ONOsX/L99vLEnM30z/O+ynq/Flyc0irFL169SIxMRGJRFKsCjZZWVksXrwYrVaLWq0GYN68eY/VyhtyK/cANqEHq9XKn3/+CcCCBQuqjfdDwuParyUSCTNmzOB///sfXbt2LdY9J06c4LvvvrMFbrVp06ZA4Ovjwvnz5wHw8PAAcoOFt2/fTvPmzRk9enS18a5Eqn/T90GhUDBixIhiX3/mzBkiIyPx9fWlUaNGTJ8+/bF0I+WXzhw5ciSQu52wefNm+vbtS1BQ0INsWjXVALn1wSdPvutWfiF++eUXW0zMqFGjSq2/XpXJysri7NmzPPfcc7bo+61bt3Lt2jUWLlxYvR1WyVQb8HKmW7duNGnShLS0NOrWrftYGm/IFcpp2bKlLU0jv7MbDIYH2awqQ1paGuvXr6dPnz7Ur1//QTenGmD+/PnExcXh4ODw2HqQTHl1AW4vyhMaGsqxY8ceVJOqHKdOneLIkSOMGDGizBOex9O6VCD5e+f16tV7bI035Ebpdu7cGcitWjRlyhSef/55hg3L9baq1WoOHDhAWFjYfXXGH0dSUlI4efIkCQkJD7op1eSRv3f+uBpvyDXgTk5ONi/aoUOH2LJlC3PnzrWpU167do09e/YQHx//IJv60HLkyBGOHz9eLouZ6hV4NRVCy5YtWbt2LcnJyezfv5/s7GwaNWpkm9T89ttv7NqVGye1Zs2aamW7O6hfvz6l0T2oppqKxMfHB09PT6ZOnUrnzp3ZsmULAHXq1LFd8/HHHwPw3HPP8frrrz+IZj7UjBs3rtyeVSYhl8qktEIu1TwY8lXo8vHz8yMhIYEnnniCmTNnIooiJpMJOzu7h1q8pSpRXkIulU11365a7N+/31ZSWSqVYrFYABg7dizt27cnJycHiURSIM2smtIjCAKvvfZahQi5VFNNkcjlcjZs2MDFixc5deoUUVFRuLu74+vra1uFS28ru1lNNdVUDbp3707btm35999/uXz5MsnJySQnJ+Pq6grw0Au3VDXutciuNuDVVBiCINC4ceO7FoappppqqiaOjo707t2b3r17P+imPNY8vlFW1VRTTTXVVFOFqTbg1TwwDAYDly9fLrJeezXVVFN1UalUxMTEPOhmPPI8Ei50jUaDk5NTmYOhEhIS8PX1rQ6qqkAyMjL46aefCuSNTp8+vdrNXk0hzGYzJpMJBweHMj1Hr9ej1+sfulrUjxoXLlxgyZIl5OTk2I5t2LChejytQKqUAT95MreioYODAxaLBb1ez5EjRzh37hze3t506dIFuVxOSkoKly5dIjMzk4YNGxIQEEBQUBAGg4Hw8HAUCgVmsxmFQkFOTg5ZWVm21WC3bt2oVasWZrMZi8WCRCKhZs2atG/fvvqLWAZ0Oh2bNm1i3759tmOTJ08mODgYNze3B9iyyiEnJ4e0tDSuXr1KWFgY0dHR6PV6atasyYABA2jYsCEeHh6kpKSgVCptAjhFIYoit27dQqPRoNVquXz5MjVq1KjET1P+nD59GqvVipOTE3q9npSUFP7++28yMjJo3rw5DRs2RK/XEx0dTXR0NIIg0Lx5cwICAvDw8ODWrVvEx8fj6OhITk4ODg4OpKenk5OTQ0xMDOnp6bz++uu27AdRFJHL5TRt2tSWv1xN6bhy5Qpr1qwhLi4OgI4dO9KjRw9q1679yI+Zoiii0+m4ceMGV69e5eTJkyQlJSGRSGwlpPMrnanVatzd3e+pD6LX67lx4wZms5ns7GyOHz/Oc889d9frq1QaWcuWLRFFEa1Wi1wuRy6X06RJE7p27cqNGzdsBt7NzY0GDRqgVCoJDw8nKSmJuLg4ZDIZjRs3xmq1IpPJyMnJwd7e3lZZp0aNGoSFhWE2m5HJZEilUqxWK9u3b8fDw4MnnnjCVuDEaDTSpEkTPDw8cHd3f+S/qKUlKyuLM2fOkJmZybZt2wBo3LgxI0eOfKQMt0aj4c8//8TJyYnatWvj5+fH6dOniYyMJC4ujri4OJycnKhXrx5NmzalefPmODg4cPbsWfbv328zShaLBaPRiFwuJyQkhClTpiCXy23f+z/++IOwsDAkEontuyiVSpFIJBw9erTKppE1b94cAK1Wi6OjI/b29vTq1Yvg4GAOHjxIfHw89vb2+Pn5Ua9ePXQ6HZcvXyY2NpbMzEy8vb2pU6cOOp0OOzs7dDodHh4e2Nvb4+joiFar5eLFi0ilUuRyOYIgcP36dSIiImjQoAG+vr54eHhgMpnw9PSkXr16uLu7V0uD3oMrV66QnZ3N1q1bbaItr7/+On369HlkRKxEUeTatWscOXKEBg0a4O/vT05ODufOnSM2NpaoqCg0Gg3+/v4EBQXRtWtXAgMDMRqN/PXXX4SHh5OYmIggCMjlcnQ6HQ4ODgwcOJCnnnoKyK0TcfPmTX7++WeuXbuGv78/CoUCR0dHFAoFDRo04Ntvvy2yb1cpA/6gckXNZjOxsbHExcWRlpaGWq1GEASuXLlCamoqzs7ONG3a1DaY2tnZ4ePjQ506dR67Iib5iKJIXFwca9euJSUlBbVazUsvvYSLiws7d+7kySefZMiQIZXWHo1GQ3JyMjKZjPj4eAIDA1Gr1bZJWnJyMklJSdy8eZPExER8fHxwcHAgKioKyF1Bi6KIs7MzTzzxBKIoYrVayc7OJiYmhuzsbJu8ZFxcHDExMTRv3pwmTZpQq1Ytateufc9VtcViQa1Wo1QqgdyCLxERESxcuJDt27cTFhaGQqGgWbNmvPjii/j5+RUaJKvzwEtOdnY20dHRqFQq0tLSsFqtpKamcuvWLTIyMqhXrx61a9e2TehdXFwICAggODj4sS3aYTAYuHr1KosWLcLV1RW1Ws2CBQs4fPgwBw4cYPLkydStW7fS2hMfH49MJiMmJgZnZ2ccHBzQaDQ4OzuTnp5Oamoq8fHxXLt2DbPZTP369bl58yZqtRpRFDEYDMjlcry8vAgICMBkMmE2m23fAycnJ7p06UJ0dDSxsbFYLBa6dOlCSEgIQUFB+Pj43HMBp9PpsFqtODs7k5iYyKRJk6hbty6DBg1i9erVpKSk4ObmRr9+/WjXrl2RNuNufbvagJcRq9VKVFQUly9fJicnB4vFgsFg4OjRo2g0GtatW3fPgbsyMBqNJCQkEBgYSHZ2NlKpFJlMdk/1s/j4eDZs2MC5c+dsx1588UVat26NyWRCq9WSnJyMt7c33t7eKJVKLBYLmZmZODk5cebMGb777jsAXFxcUKvV+Pr6snjxYtRqNR988AEzZsyoUPelTqfj4sWLREZGcvDgQVsHCg4ORq/X4+rqSlpaGkqlEh8fH7y9vfH398fb25uoqChMJhONGzdGp9PZ5DPT09O5dOkSjo6OSCQSnJ2d8fPzK9SJRVEsk1cmv7yli4sLbdu25bXXXruvWl21AS9fNBoNFy9eJD4+HovFgsViISsri0OHDvH0008zfPjwB91EVCoVCoUCV1dXUlNTqVGjBhKJ5J5jzqFDh1i5cmWBY/PmzcNsNmNvb8+VK1dwc3PDycmJWrVq4ezsbHuPs7MzM2bMsEn8enp6kp6ezrBhw+jZsyf79u3j4MGDzJkzp0I/d3x8PFeuXOHcuXNERUXZvLJubm5IJBIcHR1RqVQEBQXh4eFBrVq1CAwMRC6Xc+HCBWrXro2rqysKhQIXFxdMJhM3btwgLS0Ne3t7ZDIZbm5uhISEFPDC5NvL0vbttLQ0xo4di52dHU5OTgwdOpRWrVrd12Nxt779eE4hyxGJREJoaCihoaGo1Wp27tzJpUuXMJlMvP/++xVqvPPLnGZnZ9t+EhISSE5ORiqV2tw2qamphIeHF7o/JCQEQRDIzMykefPmeHl52Vaep0+fthlvDw8PsrKy+Ouvvzh58iRSqRRRFPH09ESv15OYmIhGo0EURRwdHbFarUgkEmQyme2LWrt2bXr27ElaWhoHDhxAFEVu3LhRIQbcarWSmJhoqzT10ksvMXPmTPz9/Yv9jJCQkCKPK5XKu567nbJuqXz77bdER0fj7u5erBr01ZQ/zs7OtGvXDsjV9965cyfh4eHUqVOHF198scLeazQaSUxMxMHBAZVKhcFgID09ndjYWPR6PaIoYm9vj9ls5tixY1gsFhwcHNDr9UBujFBQUBCpqanUrFmTgIAA/P39qVmzJkajsYDxdnd3Jysri88//xwPDw/0ej0uLi7Y2dmRnZ1NcnIyer0emUyGg4ODbbWqUCiwt7fH2dmZxo0b06JFCyIiIoiKiiIyMhKTyVQhSmwGg4ETJ06wcuVK6tSpw1NPPcXo0aNLJMVcr169Io/nl0e9F2Xt1x4eHnz22WdkZmYSHBxsK01bWqpX4OVE/qqydevWdO3alTp16pSL0tilS5ewt7e3FRFQKBQkJCSwa9cuzp8/j4uLC+7u7ri6uuLk5ISvry/e3t42eUOTyYS9vT1arRa9Xo9UKkWtVttWmvD/+zxZWVkkJSWRk5NDjRo1iImJITExkY8++ohGjRrds52iKNpiCi5fvszmzZupXbs2SqWSjIwMIiMjSUpKQiqV0rp1a1q0aEGLFi1K3SFEUSQlJYXw8HDi4uJsgYiZmZkkJSXh4uJCYGAgffv2JTQ0tFTvqGpUr8Arhn379vHzzz8zYMAAWrRogaenZ5kHcp1Ox/Xr11Eqlej1ery9vdFoNNy4cYPVq1cDubE8vr6+ODg44OrqSkBAAI6OjgiCgMFgQCaTIQiCbUtPr9djtVpp2LAhgiCgVCq5fv06arUalUpFcnKyzfieOXMGpVLJ0qVL77sVYDKZEAQBQRDYvHkzMTExhIaGIpVKbW7ltLQ0fH196dixI61bt8bX17fUvxuTyUR0dDQXL14kLS0NjUaDTqcjNTWVzMxMAgICqF27NoMGDXpsaihUr8ArkHw3ukajYf/+/dSvX/+us7zi8Ouvv3LmzBlatWrF1q1bC5339/enRYsWPPXUU7Ru3bosTbdR1pKVgiDYJhpz584F4Pr163Tq1Al/f386deqEj48Pzs7O9xz84uLi2L59O1FRUdjZ2dGuXTv69u1ru+f48eNs3rwZlUoF5AbENW3alNDQUOzs7FAqlfj6+pZ5ZltNNZA7Mb969SpZWVn8/vvvZcpGsVqtTJo0idDQUPz8/Ar1bblczpNPPsmgQYNo27ZtuVQ9K4nX6W7kr6SvXr3Kjh07AAgPD6d///60atWKgQMH4uXldd/MiQMHDnD06FFSU1Px8fHhxRdftE2urVYrX3/9NeHh4WT/X3t3H9vEeQdw/PuriR2HJG5IQuJCm/AywV66FlpYO0QHVGjVVLa2WzVtExUVRVRF26ROm1QYWqVunaZpU7eiCXVMDIo6xqYKtd1WtROQClAZUGjUFjpGYE2DM+K8EMeJ7Rg/++Mu1+MaIO/2ld9HepT4ufP57mc/fnzPy10iQTAY5O6772bmzJmUlZVRXFxMZWUltbW1eglmF63ARymbzbJhwwaSySQ1NTXE4/FRf8CKiopoamqiqamJ++67j5MnT/L+++87/S8Do5onchDYUA004wFEo1GqqqqoqqqiuLiY9vZ21q5dSygUIp1OEwgE2LJlC6FQiF27drF7924A6urqmDt3LmfOnGHnzp0sXLiQUCjExYsXaWhocCpvsL5IVq5cOSZfVEq5nT17lvXr1zNr1izC4bDTVzpSIkIikWD//v0ArF69mh07dtDf308ul6O/v59jx45x7Ngxp+m+kMRiMcC6h8HAoN2BfuStW7fS0NDglO0HH3yQ+++/n+7ubjZu3EhbWxtg3aVw9uzZHDhwgP7+fh5//HHS6TTJZJKDBw86r5XJZNi/fz+bN2/WGT5XoBX4KCUSCZqbm4lEIixYsIBZs2YRjUZJpVIjbt5ZsWIF9957rzPS+aGHHnKWRSIRKioqqKiouOQWfoWivLyc7du389577xGPx+no6ODQoUO8+OKLdHV1ATgXeqipqaGxsZGuri5Onjzp9Ju3tLQQi8UIBoPU1tbyxBNPUFxc7IwCnjdvHqWlpZSWltLf3+/cREGpsTRwJbFwOMyKFSuor68nk8k4YzyGS0TYsmULuVwOEeH48eOXXPSkpqaGKVOmOAPHCs2SJUu45ZZbOHHihNMsf/z4cVpbW7lw4QKA88P8/PnzHD58mDNnzpDJZJypjo2NjQQCAWfQ3bp16wiHw4RCIebMmUMkEnG6CvWiWlenfeBjpKmpiXfffZempiZisRhtbW1MmzaN6upqQqEQ2WzWmcTf1dVFJpOhrKyM1tZWkskk4XCYmTNnUlVVRXl5OdXV1UyePJni4mJSqRRvvfUW27Zto6ioiEWLFjlnAz09PSxbtow5c+bkOwRDksvl6OzsJBaLcfr0aY4ePcr06dOZNm2ac6/hgalUqVSK7u5uZ5S7ujLtAx976XSat99+m1OnTjkXiwkEAlRXVxONRkmn04RCIaqqqmhrayMQCDhz2WOxGKlUitraWurq6ohEIkyZMoWKigpKSkoIBAIkEgmeeuopuru7mTFjBnPnzqWoqIhkMkkwGOSBBx7wTXdQKpUiHo9z7tw5jhw5QmdnJ/X19c734EBLXDabpa+vj97eXmbPnv2JmTM+nnQa2QRrb2+nvb2dlpYWjDFMmjSJeDxOT08P0WiUSZMmkUgkiEajRCIRZwBLZ2cnXV1dxONxent76evro6SkxBmRmslkPvZaDz/8MMuXL8/DUapCohX4+Mvlcs6gyZaWFiZPnkwqlaKtrY2SkhJCoRDhcJje3l7q6uoIBoO0tLTQ3NxMd3c3HR0ddHZ2kkqlyGazlJWVkcvlLukWctu0aZNeAlbpILaJVllZSWVl5bAGs82fP39I62WzWedSkEqpiXPdddc5Ux+Hev3+4cyCSKVSBINBPStVQ6IV+AQLBALOFK+RulavAKVUoRqLcg1cM9Oi1NBd6UTNV03o+d4HpQrcf40x9fneieHSsq3UVQ1atn1TgSt/E5Ejxpjb870fE+laPOZ80ViriVQonzftaFFKKaV8SCtwpZRSyoe0AlcT5bl870AeXIvHnC8aazWRCuLzpn3gSimllA/pGbhSSinlQ1qBK6WUUj6kFbhSSinlQ1qBqyETkbMiYgZJf3Ot85iInBGRlIgcFZHFrmU7ReR1zzYX29t41pO/RkTSIhIe/yMbGRFZb+/7JleeiMiTInJORPpEZJ+IfNbzvMFiaETk0Yk/isIgIneJyEsi0mLHYpVrWZGI/EJEGkUkKSIxEXlBRG7ybCMkIs+KSNxe7yURme5aXn+F2N8zgYerCpifyrVW4Go4FgBRV5oPGGAXgIh8E/gN8DQwDzgI/MP1RbsHWCQiQdc2lwAfAEs9r7UEeNMY00cBEpE7gDVAo2fRj4AfAN/Fitd54HURKfOst4ZLYxkFto3nPhe4UuAd4PuA9z0vwfqs/cz++zXgRuBVEXFfV/gZ4OvAt4DFQDnwiogEPNu7h4/Hfs9YHozyJ9+Va2OMJk0jSsAGoAsosR8fAn7vWecU8HP7/09hVfiLXcv32IUiDUx15bcAP8n3MV7muCPAaWAZsA/YZOcLEAM2uNYNAwlgrSvPAN/I93EUagJ6gFVXWeczdhxvdr0nGeA7rnVuBHLAl+3H9fZzbs/3MWoqvOTHcq1n4GpERESA1cAOY0yvfVZ9G/CaZ9XXgC8CGGNOYVXMS+1thIA7gb8DR7DOuhGROcANwN5xP5CReQ74qzHGe9Y2A6jFFQNjtSC8gR0DNWbK7b+d9t/bgCIujX0zcAKNvRoa35VrrcDVSC3H+mBvsR9XAQHAe2Pj/2F9+Afs5aPm8juBuDHmNNDgyl8K9AJvjv1uj46IrAFmAxsHWTxwnFeLAcDzItLjSUO7P+U1zv6x+CvgZWPMh3Z2LXARiHtWHyz2bwwS+8j47rUqZH4t13pfSjVSa4DDxpjjnnzvlYHEk7cX+J2IFGNV1Pvs/H3Ab+3/lwIHjDGZsdzh0bJbBp7G6gK40r5dLQYAPwRe9eR9MLo9/OSz+7x3ANcDXx3KU/h47L+N1d/ulhj93ik/8nO51gpcDZuITMUaSLTOlR3HOgPy/iKdyqW/XPcAIeAOrCbz7Xb+AWCmiNwAfAlrMFyhuROrpeEdqwcBsFod7rJHmg6MSq0Fml3P88YAoNUY859x3NdPHLvy/hNwM7DEGNPuWtyK9V5UAW2u/KlYTZ1uH2rslYtvy7U2oauRWIU16GznQIb9y/UoVtO623Ks0egD650FzgJfAb6AfQZujEnaz38MqKEwRwXvxqo8bnWlI1hxuBX4N1ZF4sTAbmlYjCsGavhEpAj4M/B5YKkxptWzylGgn0tjPx34NBp7dWW+Ldd6Bq6GxR689giw0xjjbXb8NVYf0L+wzqgfxRqMttmz3l57WZvd/z2gAfgeVnPm0XHY/VExxnRhjbp3iEgS6DDGvGM/fgbYICInsQr+j7FGVb/g2dz1IuJtregxxvSMy84XOBEpxeqDBOvE4iYRuRXoAM4Bf8GavrMCMK7YXTDG9BljLojIH4Bfish5oB3r89gI/NPzcpWDxP6CKdApi2p8+bpc53voviZ/Jaz+aQMsvMzyx7DOsNNYlfBdg6yz0t7G8578e+z8V/J9nMOIxz7s6Sb2YwGexJp2ksL6UfI5z3PMZdJP8308eYzjksvE5I98NP1rsLTKtY1i4FmsyrsXeBm40bX8Stt5JN8x0FQ4yS/lWu9GppRSSvmQ9oErpZRSPqQVuFJKKeVDWoErpZRSPqQVuFJKKeVDWoErpZRSPqQVuFJKKeVDWoErpZRSPqQVuFJKKeVD/wf1lYX61cb4ugAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 504x576 with 8 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(4, 2, figsize=(7, 8),#figsize(10), \n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "ax = ax.reshape(-1)\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].coastlines(rasterized=True)\n",
+    "    ax[i].set_aspect('auto')\n",
+    "    ax[i].tick_params(labelsize=14)\n",
+    "del i\n",
+    "\n",
+    "# TR\n",
+    "ax[0].pcolormesh(lons, lats, mask_TR, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[0].set_title('Tropics (TR)', fontsize=15)\n",
+    "\n",
+    "# ML\n",
+    "ax[1].pcolormesh(lons, lats, mask_ML, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[1].set_title('Midlatitudes (ML)', fontsize=15)\n",
+    "\n",
+    "# PO\n",
+    "ax[2].pcolormesh(lons, lats, mask_PO, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[2].set_title('Polar Region (PO)', fontsize=15)\n",
+    "\n",
+    "# NAe\n",
+    "ax[3].pcolormesh(lons, lats, mask_NAe, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[3].set_title('North Atlantic (NA)', fontsize=15)\n",
+    "\n",
+    "# WP\n",
+    "ax[4].pcolormesh(lons, lats, mask_WP, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[4].set_title('Western Pacific (WP)', fontsize=15)\n",
+    "\n",
+    "# EP\n",
+    "ax[5].pcolormesh(lons, lats, mask_EP, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[5].set_title('Eastern Pacific (EP)', fontsize=15)\n",
+    "\n",
+    "# TA\n",
+    "ax[6].pcolormesh(lons, lats, mask_TA, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[6].set_title('Tropical Atlantic (TA)', fontsize=15)\n",
+    "\n",
+    "# IO\n",
+    "ax[7].pcolormesh(lons, lats, mask_IO, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[7].set_title('Indian Ocean (IO)', fontsize=15)\n",
+    "\n",
+    "# set xticks and yticks for latitudes and longitudes\n",
+    "# TR\n",
+    "ax[0].set_yticks([lat_sout_TR, lat_nort_TR], crs=ccrs.PlateCarree())\n",
+    "ax[0].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "# ML\n",
+    "ax[1].set_yticks([lat_sout_ML_SH, lat_nort_ML_SH, \n",
+    "                  lat_sout_ML_NH, lat_nort_ML_NH], crs=ccrs.PlateCarree())\n",
+    "ax[1].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "# PO\n",
+    "ax[2].set_yticks([-90, lat_sout_ML_SH, \n",
+    "                  lat_nort_ML_NH, 90], crs=ccrs.PlateCarree())\n",
+    "ax[2].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "# NAe\n",
+    "ax[3].set_yticks([lat_sout_NAe, lat_nort_NAe], crs=ccrs.PlateCarree())\n",
+    "ax[3].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "ax[3].set_xticks([lon_west_NAe, lon_east_NAe], crs=ccrs.PlateCarree())\n",
+    "ax[3].xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='',\n",
+    "                                                   dateline_direction_label=True))\n",
+    "# WP\n",
+    "ax[4].set_yticks([lat_sout_TR, lat_nort_TR], crs=ccrs.PlateCarree())\n",
+    "ax[4].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "ax[4].set_xticks([lon_west_WP, lon_east_WP], crs=ccrs.PlateCarree())\n",
+    "ax[4].xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='',\n",
+    "                                                   dateline_direction_label=True))\n",
+    "# EP\n",
+    "ax[5].set_yticks([lat_sout_TR, lat_nort_TR], crs=ccrs.PlateCarree())\n",
+    "ax[5].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "ax[5].set_xticks([lon_west_EP, lon_east_EP], crs=ccrs.PlateCarree())\n",
+    "ax[5].xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='',\n",
+    "                                                   dateline_direction_label=True))\n",
+    "# TA\n",
+    "ax[6].set_yticks([lat_sout_TR, lat_nort_TR], crs=ccrs.PlateCarree())\n",
+    "ax[6].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "ax[6].set_xticks([lon_west_TA, lon_east_TA], crs=ccrs.PlateCarree())\n",
+    "ax[6].xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='',\n",
+    "                                                   dateline_direction_label=True))\n",
+    "# IO\n",
+    "ax[7].set_yticks([lat_sout_TR, lat_nort_TR], crs=ccrs.PlateCarree())\n",
+    "ax[7].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "ax[7].set_xticks([lon_west_IO, lon_east_IO], crs=ccrs.PlateCarree())\n",
+    "ax[7].xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='',\n",
+    "                                                   dateline_direction_label=True))\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# a), b) etc for subplots\n",
+    "labs = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)', '(g)', '(h)']\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].text(0.0, 1.02, labs[i], va='bottom', ha='left',\n",
+    "               rotation_mode='anchor', fontsize=14,\n",
+    "               transform=ax[i].transAxes)\n",
+    "del i\n",
+    "\n",
+    "fig.savefig('figure_S2.pdf', bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/.ipynb_checkpoints/figure_S3_cloudcover-checkpoint.ipynb b/pythonscripts/.ipynb_checkpoints/figure_S3_cloudcover-checkpoint.ipynb
new file mode 100644
index 0000000..21b55f5
--- /dev/null
+++ b/pythonscripts/.ipynb_checkpoints/figure_S3_cloudcover-checkpoint.ipynb
@@ -0,0 +1,387 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Cloud cover\n",
+    "\n",
+    "This script generates figure S3: cloud impacts on the cloud cover response in ICON, MPI-ESM and IPSL-CM5A."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated\n",
+    "\n",
+    "* xx_cld: locked clouds, interactive water vapor\n",
+    "* xx_cldvap: locked clouds, locked water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "runs_cld = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "runs_cldvap = ['T1C1W1', 'T2C2W2', 'T1C2W1', 'T1C1W2',\n",
+    "               'T1C2W2', 'T2C1W1', 'T2C2W1', 'T2C1W2']\n",
+    "\n",
+    "response_cld = ['total', 'SST', 'cloud']\n",
+    "response_cldvap = ['total', 'SST', 'cloud', 'water vapor']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal-mean cloud cover (MPI-ESM, IPSL-CM5A with locked clouds and locked water vapor)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1W1\n",
+      "reading T2C2W2\n",
+      "reading T1C2W1\n",
+      "reading T1C1W2\n",
+      "reading T1C2W2\n",
+      "reading T2C1W1\n",
+      "reading T2C2W1\n",
+      "reading T2C1W2\n"
+     ]
+    }
+   ],
+   "source": [
+    "clc_mpi = {}; clc_ipsl = {}\n",
+    "for run in runs_cldvap:\n",
+    "    print('reading ' + run)\n",
+    "    # MPI-ESM\n",
+    "    #print('   MPI-ESM')\n",
+    "    ifile = 'MPI-ESM_' + run + '_3d_mm.clc.nc'\n",
+    "    ncfile = nc.Dataset('../../MPI-ESM/' + ifile, 'r')\n",
+    "    lats_mpi = np.array(ncfile.variables['lat'][:].data)\n",
+    "    levs_mpi = np.array(ncfile.variables['plev'][:].data)\n",
+    "    # multiply with 100 to get cloud cover in %\n",
+    "    clc_mpi[run] = np.nanmean(np.array(ncfile.variables['aclcac'][:].data)*100, axis=3)\n",
+    "    ncfile.close()\n",
+    "    del ifile, ncfile\n",
+    "    \n",
+    "    # IPSL-CM5A\n",
+    "    #print('   IPSL-CM5A')\n",
+    "    ifile = 'IPSL-CM5A_' + run + '_3d_mm.remapcon.clc.nc'\n",
+    "    ncfile = nc.Dataset('../../IPSL-CM5A/' + ifile, 'r')\n",
+    "    lats_ipsl = np.array(ncfile.variables['lat'][:].data)\n",
+    "    levs_ipsl = np.array(ncfile.variables['presnivs'][:].data)\n",
+    "    # multiply with 100 to get cloud cover in %\n",
+    "    clc_ipsl[run] = np.nanmean(np.array(ncfile.variables['rneb'][:].data)*100, axis=3)\n",
+    "    ncfile.close()\n",
+    "    del ifile, ncfile\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal-mean cloud cover (ICON with locked clouds and interactive water vapor)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T2C1\n",
+      "reading T1C2\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "clc_icon = {}\n",
+    "for run in runs_cld:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats_icon = np.array(ncfile.variables['lat'][:].data)\n",
+    "    levs_icon = np.array(ncfile.variables['lev'][:].data)\n",
+    "    clc_icon[run] = np.nanmean(np.array(ncfile.variables['clc'][:].data), axis=3)\n",
+    "    ncfile.close()\n",
+    "    del ifile, ncfile\n",
+    "del run, ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "clc_mpi_djf = {}; clc_ipsl_djf = {}\n",
+    "for run in runs_cldvap:\n",
+    "    clc_mpi_djf[run] = fct.calcMonthlyandSeasonMean(clc_mpi[run],\n",
+    "                                                    months, seasons)[1]['DJF']\n",
+    "    clc_ipsl_djf[run] = fct.calcMonthlyandSeasonMean(clc_ipsl[run],\n",
+    "                                                     months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "clc_icon_djf = {}\n",
+    "for run in runs_cld:\n",
+    "    clc_icon_djf[run] = fct.calcMonthlyandSeasonMean(clc_icon[run],\n",
+    "                                                     months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "del clc_mpi, clc_ipsl, clc_icon"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF responses and decompose the total response into contributions from changes in SST, clouds and water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "dclc_mpi = np.full((len(response_cldvap), len(levs_mpi), len(lats_mpi)),\n",
+    "                   np.nan, dtype=float)\n",
+    "dclc_ipsl = np.full((len(response_cldvap), len(levs_ipsl), len(lats_ipsl)),\n",
+    "                    np.nan, dtype=float)\n",
+    "\n",
+    "dclc_mpi[0, :, :], dclc_mpi[1, :, :], dclc_mpi[2, :, :], \\\n",
+    "dclc_mpi[3, :, :] = \\\n",
+    "  fct.calc_3impacts_timmean(clc_mpi_djf['T1C1W1'], clc_mpi_djf['T2C2W2'],\n",
+    "                            clc_mpi_djf['T1C2W2'], clc_mpi_djf['T2C1W1'],\n",
+    "                            clc_mpi_djf['T1C2W1'], clc_mpi_djf['T1C1W2'],\n",
+    "                            clc_mpi_djf['T2C2W1'], clc_mpi_djf['T2C1W2'])\n",
+    "dclc_ipsl[0, :, :], dclc_ipsl[1, :, :], dclc_ipsl[2, :, :], \\\n",
+    "dclc_ipsl[3, :, :] = \\\n",
+    "  fct.calc_3impacts_timmean(clc_ipsl_djf['T1C1W1'], clc_ipsl_djf['T2C2W2'],\n",
+    "                            clc_ipsl_djf['T1C2W2'], clc_ipsl_djf['T2C1W1'],\n",
+    "                            clc_ipsl_djf['T1C2W1'], clc_ipsl_djf['T1C1W2'],\n",
+    "                            clc_ipsl_djf['T2C2W1'], clc_ipsl_djf['T2C1W2'])\n",
+    "\n",
+    "dclc_icon = np.full((len(response_cld), len(levs_icon), len(lats_icon)),\n",
+    "                    np.nan, dtype=float)\n",
+    "dclc_icon[0, :, :], dclc_icon[1, :, :], dclc_icon[2, :, :] = \\\n",
+    "  fct.calc_impacts_timmean(clc_icon_djf['T1C1'], clc_icon_djf['T2C2'],\n",
+    "                           clc_icon_djf['T1C2'], clc_icon_djf['T2C1'])\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal-mean tropopause in control simulations"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ipath = '../../tropopause_T1C1_T1C1W1/'\n",
+    "\n",
+    "# ICON\n",
+    "ifile = 'ICON-NWP_AMIP_T1C1_tropopause_DJF_timemean.fillmiss.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "tropo_icon = np.nanmean(ncfile.variables['ptrop'][:], axis=1)\n",
+    "ncfile.close()\n",
+    "del ifile, ncfile\n",
+    "\n",
+    "# MPI-ESM\n",
+    "ifile = 'MPI-ESM_T1C1W1_tropopause_DJF_timemean.fillmiss.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "tropo_mpi = np.nanmean(ncfile.variables['ptrop'][:], axis=1)\n",
+    "ncfile.close()\n",
+    "del ifile, ncfile\n",
+    "\n",
+    "# IPSL-CM5A\n",
+    "ifile = 'IPSL-CM5A_T1C1W1_tropopause_DJF_remapcon_timemean.fillmiss.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "tropo_ipsl = np.nanmean(ncfile.variables['ptrop'][:], axis=1)\n",
+    "ncfile.close()\n",
+    "del ifile, ncfile\n",
+    "\n",
+    "del ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot the cloud impact on the zonal-mean cloud cover response"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAEHCAYAAACz/bCKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd5gcxZm43+rJYXPWalda5bSKKwmBQIAAg0nGgMEmGRuc7fOZO8c722dzTucz5ox/xsYBg40BkyySAIukhLJQXmXtSpvjzE7sUL8/umc1u5pdrcQKBOr3eebpma7q7qqerq6vvvq+r4SUEhsbGxsbGxsbGxsbE+W9LoCNjY2NjY2NjY3N6YQtINvY2NjY2NjY2NikYQvINjY2NjY2NjY2NmnYArKNjY2NjY2NjY1NGraAbGNjY2NjY2NjY5OGLSDb2NjY2NjY2NjYpGELyDa9CCE+KYSQQohxafuEEOImIcQyIUS7EEIVQhwWQjwqhLggwzluFEK8IYToEkJEhRBbhRDfFkL4MuSV1udTGdL+IoQ4OOyVtLF5j0hrX1IIMSFD+vlp6RdZ+76ftk9a7WqtEOIT/Y49KIT4ywmWof+nq1/eRUKIpUKIBiFE3Gr3S4UQN6XlGZ12/GcyXC8ghAhb6XefyP2ysXmn9O/ThBAP9nvmW4UQbwohLu133Bgr734hREII0SKEWC2E+GG/fENqd4OUb4oQ4k9CiEPWdbqFEMuFEF8RQnitPCfVxvod1/+TO0B5brbSN55snT5I2AKyzYAIIRzA48CfgYPAp4HFwDcAL7BMCJGTlv+3wCPAPuAm4HLgCeBbwBtCiOwBLvU9IYT7FFXDxuZ0IwzckmH/rVZaJhYCC4BPAEeAv2YaWJ4A11vnS/9clEoUQnwEeA2IA18CLgW+A7QBH85wvoHqdC1gB9u3OZ1o5egzfycggBeEEIsBhBCjgA3ATOAHwIeALwOrgOuGqxBCiOuBjUA18EPgEuDj1nX+C/hsv0NOto39mGPb+kDvmdus7SwhRPXxa/HBxvleF8DmtOZbmC+E66SUT/ZL+6sQ4hJABXOkDnwG+KqU8t60fK8JIV4AVgD3Arf3O8/LmC+GzwK/GvYa2NicfjwF3CyE+K60VmqyZliuBZ4EPpnhmDVSSs3K+zKwE/gq8MeTLMNmKeXeQdK/BmwCrpF9V5P6sxAik2LlKeBWIUSVlPJA2v5bGbhONjbvBUkp5VupH0KIV4E64F+AZZiKoCCwWErZnnbcY0KIfx+OAgghxgMPAS8C16fatsULQoifA/1nmU62je1Pr+8gZRoJXAi8gDkIvg34tyFU5wOLrUG2yYil0b0LeD6DcAyAlPJlKWXU+vkNYDvwfxnyrQP+ANwihBjRL3kd8AzwHSGEf7jKb2NzGvMwMApTK5ziGsCB2dENitWZbgLGHS/vOyAfaJEZllqVUhoZ8q8A9gM3p3ZYHe4FmIKAjc1piZQyBOzmaHvKx5w56cqQN9OzfzL8K6aC8gv9hOPUdVqllCv77T7VbewWTJnw+8BK4CZrFvmMxRaQbQaiBsgFlhwvoyX0TgKezdShWizBFAAWZUj7D6AI+MrJFdXG5n3FIeBN+k6X3go8DfQM8RxVZOjATwCHEMLZ75PeH6wFLhFC3C2EmC6EEEM451/oW6ebgcPA6++gnDY2pxQhhBOo4Gh7WoupQX5MCHGeEMJzCi57EbBOStl4gsedTBv7sRBCs+yblwxiOnErsNNSaD0ElGLO7p6x2AKyzUBUWNtDJ5D34CB5UmkV/ROklNsxbZe/nm7TbGPzAeYh4HohhFcIUYbZYQ6mBUoJtMVCiO9hDmAffwfX34VpHpX+SR8MfxNTi/Qd4G2gSwjxjBDiY4Oc8yFgvBDiLOv3LcBfBhk029i8J6QNCkcCv8YUBlPt6WHgt8BHgTeAkOU4d1fKcW4YqGBofWt/TqSNJTDr8VlMLfO/Ydo7rxJCTE7PKISYj6nketja9RimFv02zmBsG2Sb4WAo2qXj5fkecAPw75gaZRubDzJ/B+4DrsQ0t2jCtH88b4D88bTvSeCXmD4CGbG0Yuno/TrRazA1T+n0aqSllC3AeUKIuZgOevMxhfirhRAXSynv7H9NKeV+IcRKTFMqDZiCKWTY2JxOlGP5zlj0AN/FMg+02snnhBA/xXQ0PxtTwPw5cJsQYr6UMjaUC1kmCul9X/92eEKcSBuztNOfS9u1XAixFNMU8jukmWpgCsIGpoYaKWW3EOIfmO09R0rZfbJlfj9jC8g2A1FvbUedQN7Rg+RJnac+U6LV8P8A/IsQ4t5MeWxsPihIKcNCiGcwNUCjgb9KKY1BLBnOAnSgE6iTUqoDZbTon34Bfadhtx3HSS9VznWYfgJYoaGeAO4QQtwrpdyW4ZCHgB9hmlOtlVLWHu8aNjbvMi2Ygq8E2oF6KaXeP5PlCHcfcJ8l6P4I+DqmE999Q7zWPvr2obcDD2L2g0PpWzNx0m1MSlkvhFgBzE3ts0xIbgBWA+G0EHBPW/s/BjxwkmV9X2ObWNgMxHpMjdKVx8sopTwC1AJXDmKreBVmB//GIKf6IWaj//aJFdXG5n3JQ5gddTXHd7LZIKVcL6XcNwThGMwOMP2z4R2VFJBSdnHUCXfKANkeBwKY4bNs5zyb0xHVaksbpJQHMwnH/bHy/Lf1c6BnPxNX0rcdPmvt/ydQI4QoPYFzpXinbUzQNyzclZiOiedgDsBTn0et9DPWzMIWkG0yIqVMAv8LXCGEuDZTHiHExWmRJ/4HmIoZL7J/vrmYo+6/SikbBrlmA6Y92OeBke+sBjY2pz2vYHZ291t2+MOGJQCkfwaKe5oRIcQxvgIWk6xtRuciS4j+MaY986OZ8tjYnM4IIcoHUPQM+uxnQkq5tV87TIWNuwdTYfT/MkWKEEIUCiHOGeCcJ93GhBCVmILwmrTdtwFRTBOqC/p9HgTOEUKMPZHrfFCwTSxsBuPHwAxMb94HMUe/HZjC67WYtk95AFLKPwghzgZ+KYSYgRmuKgaci+kcsA0zzuTx+AlmPOVFnJwTg43N+wJLK/Xx9+jyM4UQhRn2r7fCTr0ghGjBdNapBXyY9tF3YU7F9g9B1YuU8genoLw2Nu8W3wIWW33eJkxzpemY5hXtwJ/65a8UQmRaQGS1Nbt6DFLKPUKIWzFtft8SQtwP7MHUDJ+L6Vj3AwZoZ0NpY0KI/8VUgq7GXBxlolU3A9NEAyFEMaaPwV+klMsynKMJM77yrZh+QmcUtoBsMyBSSt3yWr8JUwP8IGb4m2ZgObAo3XhfSvlpIcQyTMeARwEXpg3Wz4BfpMVMHuya7UKIX2DGYrSxsTk1/H2A/UWYq+XdjTkI/gZQhjktewBzVunHwxgP1sbmdONhTNnoFkyBMoCpNX4F+KGUsr9z67nWpz/XY9rsZ0RK+XchxA5Mx/TvYUbSiAFbgP/EXDvgnbAdczb2k0AWZrt+FfivNLvlmzDrmnHBISnlLiHEKswFSr5/pkWkEWdYfW1sbGxsbGxsbGwGxbZBtrGxsbGxsbGxsUnDFpBtbGxsbGxsbGxs0rAFZBsbGxsbGxsbG5s0bAHZxsbGxsbGxsbGJg1bQLaxsbGxsbGxsbFJww7zZlFYWChHVVa+18WwsenDxk2b2qSURe91Od4r7HZpMxAybS0HYUVjkgMv1d2bJz2fOMkoTna7tNulzemHUBQ2bNgwbG3TFpAtRo8ezYrly9/rYtjY9MHn95/Ri6XY7dJmIN5LAdlul3a7tDmWwdpfCiHlkPOdKF6fDyHEsLVNW0A+zRjKgzNs1+r3/BlS9i7QbshUHvOLLkG3dhoZjk8V22F9UdKqkfqa2ieEOPq9N+3Yeg/lVmTq9IbCyXaMpxx7/QUbm4wM1r6H0vYzCdQ2NjbDR6Z21b9tvpsyzjvFFpBtbGxsTiMydSBD6XhOhlMhKB5Pi9tfe/tOtbkDXWfYkAbCHrja2JwUmWZ33i8DVFtAtrGxsbGxsbHpx4ma7GRKszEZ8j05jQajtoB8htD7cFoPnzC0Y2wsFIcLQzgA0A0zX0wz83QndFojKgBt0SQAPUm991i/ywyIUhzwAJDlcfSmuRQzzecyXyI+p4LHYX53WVsjNcrsU2arXOkjz5Rpxvv5BZTpBSDsgDI2Nqcdp1FnbXN6cdyZnvS+FsDQj/5O7Uth9bcoytG+oN9WirQ0xXHsvvcjqXuU3s5S3/vJLBk5xXW3BWQbGxubU8BQTSD6D/aElEc7BasDsMapJHRJ3PqR0M08qiF7+5LUJRXLul8IcKT8AyzDf5e1dYij+5zKUd+B/n4BJzooHUyzlv77RE0rhmJmctID56EKwrbAbGNzxmALyDYnhZQSKSXifWRwb2NjY2NjAyc/uEplUy2n9ahq0JM0B05J3dzndEC+1xSvsjE1x45Qo3lg+xH09iYAjFC7uY1FzDIoR2depaVxlpZ2WeoGiss8p+ILmNvcYpzF5WZ6thnZzPDnmb9dfqTDZVXuNNAypw0uezXGVh37zmxbabrWN2/6qdLro6TXLXfYigu2gDwsDKfx+clGZchEn6KktDXpa8OkHrzUdI3iIK6a+9p7ohw5dIh9Bw7Q2dZCW3sHkUgUQ41jqAnT2QaB7vCguQM4swvQc8uZMHUqistNcdDTexmPM2V+4QagNOghJ80EA45qsjIL3Ucr4ni3BPJTOa1zOrysbN53JPThMytynGAzel+bNNnY2NicBLaAbNOLlJId27excd1a9u/fR0lZOYUjKikZOQolt5Sm7ghS12kPRQBBT1KiOzzg8pDnAWfLXur2rcRbWIY6ohLF6UYIgdOh4M3KIVhZgT8r572upo3NKWVIIccsedNIHxBbW8vYAQDLioJwwtS0dMR1drVFkIbB1gONGPEe2rvCJBNxMPRebZPL7QaHi+ysLIqL8nD6g5TnmlqnPK+pVcr3uQi4zYFqwPIh8DkFbkfK7AKrJAKJQIgTE5SPdx/esdAtjV4/hWPPfYKmEIP5BUjj2JiYNu97hvL8Kbrpd4OuIrS4eZxm+uA4fKa2skt3sqq+C4D7X9oNwJYXnkONdONyQL5fkONVyPIKvC7wOAROx9Gwp1KaYVRVHZKaaUIVSYB/3Fn0EOSma2cB8MnZ5ZR21QKg7lwDQHzfTpS6PQC4ikeY28oJ5nnzyjF8Zn8rXT5zq5wika9f+8loU5yywZbGURvslJbYus9CT/amCSstYzxZJc0uO538Ee+kFsdgC8g2ANQfPsLjTz2DbkgWLDyXKbPnsmfHdnZsWoPL5cadU4CGB+H2IoXDfFBlEl+sDV9nB050tJIJlJ91EcnuVvSedrREDCklDgEd9fvY88bzjJk+h6KLPgT9NMg2NjaDE41E2LBqJbW1u+hpawKnB+ENIHDitMRYAwFI037Y0IlLjSNaHC0eod7rw+3Pwh8I4vEHyMnOpqCggPzCYsaMHoXT5Xqvq2hj875FS8TIjR7GpzWTO7ULbyCB4lEJGRqq0HG4DXAY6IrEcEgEVjcqQUqBlOA0wG+ASweP90UKZZI165/AlV2ALziD3EQ7Qgj0aB0KAkN045ROXCj4YiHyFB9V8TwqvGfsIo/Dii0g27Buw0b+8dwLXH311fiycln6/BISSZXpc+aSW1JOa1MDDY0NJLubMRIxPJZdk0fXUN1BItnleEtG4+iso+Gfj+Arq6J84jScXj+GpiLUOBWzzqEo4GbjP5/j6Yd+xy2f/ixutztjeQxp0KOGCSVDhJIhYloPETVCTIuhGkkMqSOlxKk4KPGXcFbJWTgUW+C2+eAgpSSshgmrURJanBUrV7N54xpKqkajV3ow8rIJdbWixRuQQpi2hoqzV6OiSInQVISWxBH04yrOwpHlJ+l24Q26iQqVuNbAoeZaumvb6Xmhk4LSEiZNnUx+UR6aoaJLlaSuoksN1VDRpY60tEEO4cCtuPA5/eR4sin0FjI1fypep/c9vGs27yaifyQGMmj0jnuS08vcrLdOlkZTSfSY+xNhhJoAQLp9hNQe9qtdNEYaeGHnBrbuW43m6SI2KobhPva+pCN1AZZQbJ5cHl0US8gBb8nuXSuP3Zne7YWsbdcSPtk1is+PvhjP+BnmNXPLAI5qlJ3eXtPK3nIJZfCZl/5paVEmjkbqSG2No1rhlEbY0sCjqQg1ZmazbK9lPAqAHosgk6l8yWPL4DRlBuE0ZRDhcoMzbWA/curA5T8JbAE5jZO1JR7q0oknypBWpZHHhkhLrXinGqAPWA8nUjoJh0I8teQ5PnHH59EcXv58/z2MX3gB9d5sXtnxBp2djYRy82gxknQmj6ApBmqsG+E0cLh1/NlJfNkaLqdGvFQiKjRgGYQkolsgDAeK4cDZ4kAYPhKBAnK9Uda+9DaerFy8TklCj6HKGBEtTEQNEVHDSIZ+/8v8ZXxi4k1cM/Ya3I7MQnem+5jxPx5sqmiAPH06hUxvt34RCQYqD/SzEbf5wKIbOs3RJo5EGjgUPsihcB3N0SZaY620x9poj7ejyX4d7USAVeb3bOtzMsTTvjuBQusDvHrwZTg48KECMWDbDLgCXFJxCXdOvYMi3wdEg2VHrThj0QyN3V217Ojew/6ufRyJNtGUaKc50UGPHuuT15EVwJnIw9foJ6h5yTI8yKib7m4H9S2CI60Ch1Qo9DkoDCgUBBQCboHbAaG4pDVi0Bw2aA1LdAlORbJwahFF3hjBc65GeoOMqnudqoDB5TWTaHnlRQCath4kHlfRhcRZ7CPs1nltss6DuYdoib7Bd43JeJWh9Yk2x2ILyB9gNENjS9tmGiJH6Ei00xRtoD3WimqoSCRO4aKx/TDh6jArNq4gpkZhBrwWfhnCQJH1ASiG4Jj+F1BQw27CYRdBrYRiVHqC4zCEl5yAm3A8gRQaqhpFFVH8RiO6EiLmM0gkD+FJdOPTXLgdPrLcWZT4R5DtziHHnU1W7zabXE8WOe4sPA4vfpcHp3CiCNClzs7Obfxt96P876af80jtX/nxOT9hSv6Ud/dG25xaTkJIGZINalq8zWM0ILp2bPzStHP2Doqs2RTp8vba+RmKuS81ONUNiW5I1jSvprZzJ7u7atnctoEetaf3fH6nn1JfEUXeQsbmTaXQ4SffnUNjXQu7D7bwoZqJbKg9jKELLr/gAoQh2H6ghR07dqBrBgWlI8jJK8Dp8SEcgni0h47WZlqbDjOivJyp1dOpGlEMgBLtpKW9k/0H69i+p45JlSNYPHsqHqeTXQdbWLdtH5+79sN4vFm4FRdOTxZO4cThDoDTdL7VBai6SkSP053spiHSyCuHl/H8wed5uf5lvjbjX7lqzFWZB5z9NEspTZHQ1cxxUdP/q5PZl2lg2j/WbCZP+ZS9puLo/a4kwseey+YDg5SSNc1reWLfk6xt3UBUMwXhoMNHubeISl8JNfnVjPAV0dXp4sCmA4ytvpRtL79C2JnP1h2HOBCVhOKy13/A64SzKp2MLXDQHpW09RjUd+qEExJNhxyfoCioMK/SRdAjeGlXkvYIbOouokoNM2fTUph3LTd84tP85b6fMb64g3JpPo9ZqoInbj7DwZgLYi7mdZQzUvPxcM4e9u74BT8f92kqKHtP7uf7HSFt5wMAampq5PIVK3p/n6gDyalYLnWw6/T+zqBB7klG+fPOP/LsgWcIqaHevHmefAp9xXgcHgSCpJ6k/XAL4yqn4BcBDtXuZeTUGqKtbYQbOsiZeA57DkcoaK0nEOqmI+ykPeKmqbkHJ4KRuQ6q8h2sPKASKZ7HBG8TlbkqB0rPY2RZLo0d5sulp9tUWWXpXYzpeAs57zoCm59k2lWfZGKF2XDz/aZQ4XaI3jitqdismfalx3aVUrK2eS3/ve5uNEPjwYv/TLG/+Lj38qQ1yP0PGU4Ncr8y+fz+DVLKmuMW4gNKTU2NXPHmGyd83HspIOsZBOS/1j7M/dvuQyAYEShndnENU/KnMCIwgrHBckp8xSgpJ6BEBCUeYt32PSx5bTVf/uhinl+9mYSq8ekrFrHxSIinX36dyVOmce655+LKKyGimteKa5YJhFU8DzqHdmxm9YrleNxOzj93IbOqSnA5nYh4mEhPiMf+uYZIPMGdV52P1+vj3seXMmvSGM6dX2PVzXe0jqkZmvSFCnpvukJ9uJ4fbfgx61vW8/XZX+f6sR899n/5AAjIrpFTzvh2uerlJQNnMAZpf+mLYaRI+z9OyExjsLwZ/tPe50oaR5811Wx38XgXX91wN2tDtRQofi7wTWBm2M1k8ggc6UFxmM98bvUUGsNxfrOhkRs+cgUPP/0cq0NVxPCS07KGHJ/A6xJohsTvEgQ9gtoWnY31Gmlra2VkVL7CwjEuXtmVJFlomgucP8WJS4tyw22fZJTWyuOPPcZ/fGQBLqeDjmUv0rJpLwDRdrO/dbjMcu6d5uDeCc3oSP7Ds4DFjkocRWZIOEdeMUogy7yoNejNdN8z3S+pme1XJszryWS81yxCJsytEQ0jLfMJNWTKIIlOs+3E20PE2rsBiLWbeWKd5nFqREW3bpK0ovYIq7N3uB04rdB57oD5jnUF3b3fASb/aQlCiGFrmwNqkIUQXzjJcz4mpWw/yWNt3iFvNa3mZxt+QlO0kUXlizm//GIm5E4ix5OLx9HXPnD7li2sq13BDQs+xz8efZj54y9E8xSxcfPfGHnuFzDiUZTaf9CdN571agmNBzcBEO3sASR1nRq1LTqXTHKzW21nd7yEUlcXo5uXoxVfClLi0iLkJNqIuPKIuvMJe4rJObKN/FET6ThYCxXvfGQrhGB+6Xx+ce493LHs03x95b/z+8V/wHmqPHZtbE6AFQ1v8tttv+aC8ov45pz/xOv09oY1dAhw9TelALbuOcjTr63mS1efz2ubdxGOJvjMhxfw2KvrONTWzRdvvo7iibPQdZ23a/dz4MAB2pobCYdDqMkEfn+Q3KJiJk+dRs28+dTMm8+hXVt5c+UqnlnSwLwZU1hUPY6CoJfbLz+Xx15dywNLXudLH7uM6y9eyK8efZbZ06cR8J2YTXFFVgW/Ou//+Maqb/KzjT8jz53DRRWLh+U+2ticKlRD45tb72FdaDffHH0DV2kjcAsnibApfPYQ6c2r6QaPbD7ChxZfwD+WvsLo+Yupe3U1eSLETgl7WnViqsShCBKqpDMmMYaoNzvUYaAbKhdPcrM2FKU16aetYBpjDr1I68E9XHh+DeXl5by2bT+XzBw/6LlmdwW5v72CH+Zs59vKCr4m5/AJyk/6Hp2JDCZB3HcS55PAW4AtIL/LqIbK/2z8Gc8e+AejskZz36L7mZI/axAbZNi4djVz5p9NuLuLugP7OOfD1/LUQw8waeGHaJAGXWueo2nEAqJZIzA62wg4dYp8GllBJ9GkpCls0NojeX57kitnNKFKB4cL5zKifSP5Gx4lx9DRHB5iShC/1kWnbyTNgXHkt6wlZ+GHaN65ATh/2O7BuNxxfG3WXdy97ofs6NjB9MLpw3ZuG5uTQTVUfrLhv5mQO5Fv1fznMYPUTOw5UMcjS9/gc9ddxuZdezjU1M7nLj+bh/65DkMI7rrjJmLxBEuW/IN1a9eSnZtHaWUVlWMn4A5m43K5ScYitDYe4dXnn+E1w+C8Cxdz9sypTJsymY66PazY8DY/fegZzqkez+Vnz+CGC+fxi0eXsmpLLefMrmbKmEpWbdzKxefMPeE6OxUnP1rw39z56p38ast9nF++yB6s2pzWPLj/Cd5s28h3qj7Bx0rPQz28b8C8y/a3kedz0dTcwsRxYzjQ2ohA8po6nyP1r6TlPLnZ5MNdBiv2qSwc38zzLVVIxUlz0Rx2r34Vzq/h8iuu4L57/pd540ce91wlhpd7Omfx07L93KNtoDA6gkv8k06qXGcix3trnSWlXDuUEwkhnEAGt0ObU42Ukh+tu5uldS9y88Rb+eTkO/A4PKiDzHKFurtpbDjCjVOm8vqry5hcPZPmI4fQNZXiqolsf+S3BCefRTRRQk7Hbkbq2xGVcVpiLpo7JAGPYHGZm0MdOmsPaazrGc284AEO6NNoKJiNc8J8Grs1pOKgpzuOw0gyuXMF3Z4ypKLg9HjpaW1ATSZwuT0DF/QEObvsbAC2tm+1BWSb95zVjavoTnbxrTlDE46bW1p58Ilnuf2qi6hvamNd7UG+/NELeeTVtbidDm69bCFrtu5kybLlzKmZy9fu+jc0T1bvSl7pJhaV4ydx3uKL6Ty8n9f++QorX1/GFZddSvXIfK65eBEXz57MI0vf4J7HXuJL117ETR86m3sff5nJ40Zzwdzp3P/Ei1xw1uyUFckJ4XF4uGPqndy14i5ern+FD4+67MRPYnNa44hYejAjLU50uolM74po1pR8yuxCSyL1zLYGwnFsNCKpWscn42lRD45uU/u0qDlNr8USvdcTVrxch9t8iHtXonMfFX20pMpT4iXm6gWc92YdTfyFZDjapwz+olyyp02lIRRj5do6br/uCn7/9+e5/MbbWPnwn1jbUkZSNg56vzLhLzDj9gZLqgDIKi4ip8BPaXgXCSVO9dS5jC3NAplFdM0Gnt28n0BuAdPmL+SvW5r5/B3fIf/QZgCSu81t5LBZjkRXD7F207zhS635tFR18l3jOUp37iE3LNHiprimxTXrvmmo1veUmYNhvVcM3UBaanDDMn3QYlZeVUftMf+jiGbFa08aNCfM9Kb44FE9hpP7/zS85xtMQH6Do4FDhoJhHfOB8GIYLCpFJtvVAW2PMy2v2CeI9hBGmamyCAUsTUyqfIaU/G77b1la9yKfmvJZbp30KZK6JKbJ3mUv1bT5ndTl1q7fyMhxk6kPq2xct4a5H7mFZS//g+wJc3ny6WeJ9bjZvhnGdT6C4oKX9ydpi0jgqPfuxnqNc8e6uHSymxd3bCU40skI7TVWd1fSaNk6te5aT6zTXFazs0BhWtlKdia97HjoCSpHZPP319YjC0cxb7S5PGZFjmnvWOh3E3CnFksQxACvM81GKhVl3aqbYt2PAm8hZf4ytrZttbz+h0Amu+M0+9RMefrkhzQbOmtFwJTGTGSwt7M5Y1h66AXyPHnMLTnruHlj8TgPPPw3rrzoPAxD8uLKDXz12p1UqswAACAASURBVAtZsvJtFEVw20XzePz19Rxo6eZfPnkjBePMAWBzOMHqV1+i+XAdoe5OEvEYbo+XnPxCzjl/MdMnTWDsuPEc3LmF515cyitOhVs/chnFAR+fvfoCHn91DX9+cQWf+8iFLJwxiReWr+fmyy+gpCCPTTv2UDN71knVfWHZOYzLGcuDO//MpZUfQrHbgc1pyCbaaBYxPqNOGDSfqhv8dcMhrlx8Hv9cuY7Z55zP5rdWoI6sJlnfwShfiItnulEUQXvE4LU9aq+j3okgpE5hZD9HKi9I2ykIVoyjef8uxsw+h3nnXsCff/0Ldu/dz6QhDGDdUuGr9ZV8duJOlha0c2M4/8QLdgYyoIAspbxgoLQB8hvACR3zgWc4QwQN0LnUhQ/x8K4/c+moD3PLxNuPSVczGD8lEwk2v7Wc8z96M3V7duLPzcfhcqOGOljXk01Fx162MJciWvG74bmdEl3NcB4dlu1WuWiCiwWjnaw6qFFRLJmd1UAtI2jdtZ5cj8GYUgetPQYH2w3mVEA0qjC13E2Hu4RgRz2ycFSf8xb6jw1L00c47ofSbzBTXVjN5tbNA+YfjBNegWvQk9kCwXDgPpz2X2ZwKBG6qQlJaZX0cFevs0g6wloIQzj7Pl9SS/bm73U2ScaRqjUhZmm+hMfUACvBXJyllWY+K76odPt7nfOSVq/YmehmRcNyPjLm+l4Tg9S4LuV06tATiGQEKSV/e/xJJo6uYMG0sdzz4N+5fvECgtk5bDtwhJ988SYURbB62z5+etedeD1ujFgHAKUeL3W125g1cyazaubi9/uJx2L87ne/xRHrIqib0TKmjypm7K3X8YN7H0CNRyCQC24/58+bxa8efR7Dn8esOTX84fFn0LNLmDN7Njv27WfOvPnWfdBQEuY97nWwS18V65gbrvCpiiv59rZfsnz3UywuOQuhxhFWbFkjEj72nqc0i5ZjZMoZUDgcA2odU+l9cLpQ3Ob/JXwB6//z9zoZylTs1JTCId0ExHq2pMc8Trp8aU6ZtqnIB40XxCGC0sVCrZh0BVB/XtzVSGHQQ152Fp3dIWaOm8Cm1W+iTb+OGdlPM8Yf4oXtKpEknD3ayfxRTlYdGJr2VGDgV5IU6w2Ud7YRd2aR9Ob2yZNVMZ6mrSupmnU2LrebCz98NY89/Qz/dtXZBLzHD+VWqnqoCWXxUkEH1x7KZfgD037wsFv7+5zfb38Al+LiC9VfRgwxFvPq116mfNQYCsvK2fjGS1ROq6H10B58paPwRNvRXH7iho9Jchc7mmUfJbfHCROKHMRUSXNYEk5I3tincnW1m6p8hdXdlSzIqeNsVuMaHyOpCxq6BFNKXcQ12NKgU1Ws4dYNos5sROeOYb8n1QXVvFz3Ms3RJkr8pcN+fhubobCs/mU0qXFJ5YePm/eVN1YSCvdw20c/TGNrM+3dPVSPH8XWPQepKi/B5XTQE4vj9bjxevp2hoqicOUVV/Di0qUsunAxTqeT1197lYA/wJzZs0E72um/snwNsyaPo7y4ACyBs66plVHlJQD4fF7iMVNgHV05kheXvY5hSBTl5LrTi0sW8Jt9j/KHA09xYfF8u1P+INHdApgmENKKRJKKcIChHzWNsAauRthcjlkNhXojGiS6zMGSGjGfUT2exLAGmIZqCpeJkGkyETocpuWgGf1gm7XveNP3buu5vazCDBo+7jLTsW3EeTPxTKohosd5fecSLi87n4L53yXpMAfgMcs+MWJt39q6hXUvPc+Hbv48T736Et4xs/j7ugMYrixq68PEnKOoZAcFRcUUCijM6mZvax7BEg++PLMPyi41t4Ujspg8ypwxHRmQhHeuIXpoKw5vgKzCEkoqqykbPw3pNmdTO2Pmfaxrd9HdE2Hpyo28UTIK8OMrHcfPl+1k7tU3M+E8c5aqwGeKdUWKitLTBoCjpxWA2/b8ky+1PMbWudnM32V27J21pklG5/4uOprN/6rVWtq+RxtYYZTyb0oakoj1n3UPZtf5PmTIKi5hslAI8SkhxBf6f05lIW0ys7tzN6/Uv8z1428k31swpGN2btnEvtodnHfpVXS3t9LV2kzJ2Ek079tJYOR4/KHDxLJH4pYJcuniUKd5nEOB6SMcXD/TQ55fYWSeg6uq3YwrVFB1eH2PyoLRLpzCYFV3JTuYzLP7s1iyP5vl+zT+vjmJlCCQlPg1ut1FePSYGeIpdiKWPMenuqAagC1tW4f1vDY2Q6Ul2syfdv6OKfnTGJszsLe5YRi88M/XWb1+E5/62FU4nU5eW/s2C6on4FAUtu49xPSxprY6EksQ9Ge2Y542bRoVFRX86O4f8n/3/pKDBw5wy223oihHX/FtnV2sfXs7Vyya1+fYgw0tjBphdt4+r4dY3BSQS4oK8Xo8HKo/fNL3wak4+FTVNewM72dl+6aTPo+Nzangt82vEDcSXF0+8OT3kbqDvP78Myy86kZcXi+d9XvJrRhjzp5YSqlOmc365FSm5EUYGYiz5oiTlvggvjWGjqjbTMsrD4OiUHHlnVRc8WkmXXwdo2fMx+MPHHOIEAqMWwC1y5G6OTAomnkeisPB5qVPkEwmjlvf+d7RjHYW8JCoJS6OE3POZmgCshCiBNgKvAk8gBnh4j7gV2mfYUEI8VMhxHYhREgI0SCEeEAIkd8vz61CiH1CiKgQYo0QYk6/9BohxForfZ8Q4ubhKt/pQn24nm+u+gZZrmw+PmFo1avbv5c3lj7LVTfeitcfYPfmdYybPgdNVelqOoKvrApfTyPR7HJKaKaVIjQDCgNw3UwPRUGFJduSvLlP5fU9Ks9vTzK7wsmMEQ7aIpLdrTozshoxEHSRR0Lv+3htbdCYWOIklFRIOv1kqa3IvHJE55FhvTfjcyfgcXjY2m4LyMOF3S6HjmZo/HDd90nqKt+u+d6AMzvt7e088McH2XvgEF/73O3kZAXZufcgtQfquXBuNbphsP3AYarHVgDQE4sTHCDsmhCCj994I//y1X9l8eKL+NwXvkhubl6fPG+u3cRZs6rJDvj77D/UeFRAdjmdGFKiWtq7mdVT2LR1+zu6H5eXnUept5AH9j+BHXd/eLHb5cmzrmcvf2lbznUjL6E651j740gkwrIXlvDMow+z+MpryS8t59DOLXiz8vDnFVkC8tE+rktmsfRwISub86gLHetsCICUZEeO4Fj7OKK7iaLzbyB3xvk4PL6hFbpoNGQVou1bB4BQFGZffgNOj5fHf///aD5SP+jhQgi+nn8x9fTw67K6E1qx9kxkqBrk/wW6gQpMn6T5wGjgP4E9wODW7SeGDtwMFAAzgJFAr2+iEGIh8Bvg80Ae8CTwghAi20rPAV609ucBnwPuF0IsGMYyvqe8ceRNPr3sU/SoPfzi3HvIdh9/zdldWzfz/BOPcPn1N1FYUkZXexv7t29mwqx5tByopbBiDIaawKFGSfryKaORRsoQwMLRgg11Kst2q4TiRxtUV0zy7LYkE0scTChysLFew6eozAg2AZJcj87ckii3zfNw2WQXSR08DuhOOHAYGtmJFktAPnkNVSZcDheT8iaztW3LsJ73DMdul0NgXfNa7nj1Nja3beRfZ36dkcHKY/J0d3fz3LPPcu8v72HsmDF84fabyQoGicRiPPrcS3zi8gvxez3sP9JMfnaQvOwgAJFYnIBv8Igvefn5VE+f3kdzDBBPJFi3ZQcL587ssz+pqjS0dlBprbInhMDn9RC3bLJnVU9l89YdGIMt/HAcXIqLO6uuZUv3bh478srxD7A5Eex2eRJsNFr4dt3fqHAX8LUJt/ZJa21t5Y1X/8mv7/kfdE3j9i9+jaqJ5uqsdbu2UTrVHF8Itw8Z7Tqu34rAINsRpVw7yFx1JcWd2zEmnItRfSnOrLxBj81I1Vz0htrenw6Hk+oLr6Rm4fkseeRBancMPqCd5xvNHXIyr+d2siS/9cSvfyI4HZATgBH5MGEEzBqDOGcy4qKZiMtqEFfMM7cXzUScNRGmVEBJrrmYzGnAUG2QFwH/AqTimAgpZR3wIyGEAvw/4EPDUSAp5bfTfrYKIe4DHknbdyfwlJTyZQAhxP8AXwKuAf4MfBTT0v5n0lRXvCKEeBr4DLB6OMr4XtEQaeTnb9/Lmw1vMiZ7DD9b+D+UByrQjzMI3LxmFWtXvM51t91JYXEZUkpef/4pqhcsIpidS/O+nZSNn0ZD0yHiwVIcagwfMTrJY1IxxFXY25b5JRBTYelOlSumugknJCu7R7Egu55FLEcbqbK/280TmxOUZStcNNHFliMaIwslQbUdVfHicvtQOhv6hOQZDuaW1PDHHX+kK9FFrif3+AfYDIrdLvsSjsXZuKeeva0baWhpp1l2sKtkF23ZbQS0ABcmFpPYGOP1vf/E6/MhkER6Ihw8sJ+mxgZqamr42tfuoiDbj0hGaO/s4oGHHqOmegoTqypATbB1zyGqxx4VsHtiiQE1yMdj3cbNTBhdSX5ONqhHQ1gt37SDKVUVeNxH7Zp9Xi/RWJysYJCSokKysoLsO1jH+Kpjhf2hck35Rbzeuo5f7Psbs/2VTAwcP4arzfF5L9tl8uAuswyJWK+jZcpu2FC13nBrKTvjuLV6WqSpi3CDuS/caG67uszjY7okaDlkB4PmM5laPU2NJOlWTbOA1DYTFxSZMyTnfmUR/pu+TFNbO6/Xx0jGIvy2tpb2/A10qa+hRLxo60bzkSd/jdthrn6X4xVIoK5TZ1uDTvj11fCb1eRWTiZ35GhqtCYawiOI7tyFx+dklAhQFt+HZ7opQOecPQaAkXl+xhS46Ny1ke7dG3F7A+SVllM+6aNMmTiBImv1t4Crb5/nUAS65VgfskKsHbTuTSSp0RJOgK6h42bfkW427G3DsPI7nAreggWE//o3IoFSukqm480xBfCCoNcql7nA3MTZi5jb8GN+z5sU3/1dFhWdT2FbHbHmQ8QSScqbG9AMAzXcjS4laiyOGk+iA1pCs7YquoRkUiOR1FBRyNUkCcVBDEHU6QIBrlgSTywBkTiuaAItEsfoDCOSmhmFyqEgXU70gAdRXoAxfTTxoI/8rjBlDW1UxXpwazqebA+uoLXibiC1dePwnkQcyiEyVAE5F2iVUhpCiBCQvo7vKuAbw16yoywG0lWBM4AHUz+klFIIscnan0rfKPvO5W0EbjnehaQ8GlGtPyJ9OdpUrEcrviN6EqH3W5ZWT/YuYSk080Vh9HT1blMOC73xHC2HGcUX6F0OUik0O5GkP4+H9j/JA3v/hiIcfKH6y1xZdQNOxUlrVCPRL5xbqoHFNYMdG9awa/1KLrrx08hgHk09Sep2bSUciTB5wmwOd4Rpq9vHxAuu5uC+F/GXVOCng3CgmBFleUxBYat3PmUeV2+4tq6D2/rcm1BcsrbRxXnjBCscI9hAKd5IG3u2bCDlFby3zaAsR8flgHyvjkOL0uYsJaurFY/LR1dbE76C0t5ls6E3ghu6NJ0lXGkvj97/RYjeyADp/92MwgUY8vcsP7KKSyov7V2i2pnKqyeP/n+p/0lXeyMipDzze//X9McpdSFLoJeK89gleJ3uox7yqbRMD1f/JW/7fz99edfa5elEc0+CV3fsZXvTBqZVjWDc+NEcGXuY1W2r8Tq83FF1B+flLiYWjtLZ1UU4FKK7uwuHouDz+Tl30SKqqsaQlTJz0BM0Nrfymwf/yuKz57Jo3izQE0gpeXvPQT7zkaOr0EVicfzeE48ZLqVk+eq13HD5RX32h6Mxlq19my/dcHmf/R7PUTtkgDkzpvHW+k3vSEAWQvD9qV/kxtV38c09f+DR6d/m1HVrZzRnZLvsRRG0l+bTPqKQLc0Q+7/fUVpUQEfQxZ7gdvZXbUUKibOuCn1NId2aAwOJqhnENeiOG0TTVnPov76NU6roytHBZENRDWOOLCPhySUSHNG7X3Y3c/CtZfiKyplx5a34cgvItgS5oTrTD4RIRtGdmQfKcW8BB8ZcQX7HTsr3vwxON5ovF8XnB6HQ7VaQmspWoTFCK6GgoJAfrf8BS+qfZmKyioDLgc/rxqMlcDoESjJhRolSddAkDiGQ0loBFPAq4Bc6UkviwoBwAo+hI9ujyOYwTk0nFDbln45kypFPJz7A0oIBh0KRx4HmckJlIY0jCtlVXMWI9i4mhbooRXtXHX2HKiAfAFJrAm8HbgKes35fCXQMc7kAEEJcizkCXpS2OwvT3COdLiB7iOnp5/8M5kiZysqTf/mfSvZHG/jO5h+yM7SXC8vP54sz7qLEX0JsEO/SFJ0tTWxduYyLP/EZgmn2iA6XC6fbg1AUFJz4cgroaqzDXzyS7u0bYeqF+Pe8RSDayiHXeCYmNuF2lNLg0ulQj22Y+X5BdbFOfdiByJWMUw5S4muifLyLpm6DprBBQUAwMsfBrmaNqCoIOBVcRgLD5UfREjjcg2vGXCfoRT8hdzJ5njxWN63kkspLT+hYm8F5t9vlod/d35uWP9kMCejKzu4N29Y7KLEWDNATppYCQE950qcFJPUW5JjnKDY7NCWQ3RsKzJFjOrumQrqlzt/UEWLpxlp21zWyaN4srvnkheyI7OL7G39Kc7SJiyuu4LqxnyXbnYdqGPhzwDMCSjEdXNNDETYnoc0KIWcYBk8++TxzzruIqnkLqAMUFySIE44niY1ZwB5A0yGU3U1D1wE2GWa51VCqTjoeh9kJuRzCuodmikMIwh0RokkN39jZNAiBcJvXfeSR3zJh5nzCI2uoj5v3KRZK0tzWwRFXCeEe8x4UV5/N0td+yoGYm7ygee/8lubLJbVeBQDW4FJoaRJGarBn6OR4Cvhs8Y3cffh+vrD8d0xrmUB3TwzDMHAogoDHRdDrIuj1EHQ7CXpdBFwKfo8Lr9OBy6ngcjhQdA2JGa4yqWokdIOEbhBN6nTFVUIxlVBSJ2FIkqpOQjNIqCqqbuBwOAj4vORmB8nNDpKfm0tpYT7jRo0kK9usm3SZgxDdaz6aCc3AkbqhnhxOV87o/tLrgmmjEJMrOZRIUHSkjcvzoPmSefzt8LNsjm9HoJDTNYbCjpl07IvSqbcTTkhCcUlPUg5pSQIXKppydGinugLUl51DReMKwpGROEMBXNF2ZKyD4gWXkFUxHl+GsKUpDMOgtaWFUHcXVWPH9S5oMijJGLprYJtlw+GirWg6XaUzyJVhHPEQLocOSFwBD8LpYkRRLhPKCrjQ9zH+eOBHbBGb+ei08/loYDIAWsMBDClJtjZiAGooTCISQwJaxFQaqdJsh/FEkqgWRxOCHkMnoTgIBfyERvpJeFz0KA6SXjcxtwvd40J3OpBCIDQdJZbE2dWDq60b9+F2pLVAi1PVKGpsp6yxHaUowMGSQlZWVuBBMj7UxQQZwzucIVkHYKgC8vPAJcDjwN3AP4QQhwEVqOQUaJCFENcDvwWuklJuTEsKA/3fUrnAvrT00RnSjwmVIKX8HfA7gJqamtPOWv2FltX8YPcf8Tq9/OSsu7lo5IXEh/iXaWqSN5c8zsxFl5KV1zfCRemocax+4UnikTDeQBZjz1rM3tWvMPLSW2jc+Ta07Odw2dmMbFzFdvds2pyl5Kv7mJHdTtCpUud00RE10AwozVIoy1HY2OSgPiS4tGAjSeliY2wsdL1NWY7CjJFOOqMG6+tVaipdtMQcxIJlFGtHCPtykULgCg5vx6MIhXklZ7Oy8U00Q8Op2Pqq4eBMapeGlOxtaOWNrfvZ39jGhTXT+MQlCyGYxa/2P8jDex6lxFPKV0q/RrkYR09jJ95S/1HBfQhsfmsFbreb6pr5ffb3hEMEs/rKKHmFRWzfNKSFTftwcG8to8dN6KO5euvN11EUhbMuvKRP3pb6A+QVl+HxHXXk8/r8lFVWsXfXDubW9PHvGhKhcA9vvrWetzZtISvgY9aoKWxwb2Xu9LHcUHI+LkNH1w16eiL0RKKEY0l6ojE6I3HqY3EiCY2EpqHqBqpmYFgdo0sReBwKHqcDr8uBz+Ukx++hqjCL7KAff3YObqcTX1YWHrcTty+Iqjjpicbo6onTGQrTEYqwfusuHnthGW6Xi5KiAgoLCsjPzSGnpJyCggKycvNxWHJ+IBA84fq/G5xJ7bIPfg+ierRpu7q/Cfn8Wqa7Yd2iAv61aCsd+1bgkW6qxQKmu89ldUfcmgHeT2FAUJWvkO1VcDvhhe1J2qODV0siKOnZS1NwIinxKeYr5NDICwnEWnDKJNGCcfgqxpBVMXhkqd07tvHqC0twuVz4AwGeeeIxZtfMY8bsORQWFR+TX08mEC37Ueq3kAxUHP/eCIHmy0fz5xMMmoM+f561EFdJFiVFplLg5+W/5Fsr/40fbPsVT6ljmXJkIp0dURKqjiLMwb1AIqCv9lZ6EYAiPSjBbJzSwOHW8eg6TmcSZyiON5HE3R3DHU8S7YnjTKj0RJMkdMM0q/C50fOyUItz6LpoFtFInLy3tuNKqL2X8Wg6E480Ux3uoqUol31ZOWz0F3FBdwvjObWr9A1J2pJSfivt+4tCiLMxbZh8wCtSyheHs1BCiNsxHQOvlFKu7Jf8NjA7La8AZgJPpaVf0++YWdb+9wWdWoSfNT3HS6EtzMqewE9q/oOC/HFDPj4W6WHZ049SUFpG1dSZx6Q7nE5Kx0ykZd9OKqfPI79yLJ4tb9G9bytMXQwb/oErdypHSs9iypFVNLoq2alVEu7041U0cnr2kOsTuBxQ32Ww6oCKw+/hkjEqHTKXWmMsmhGhuVVnd6tpOuIQcP54F/vbdMYWaTQKHyFHHu5oB1qw5B1PO2ViQdk5vFT3PNs7tjKnePbxD7AZlA9yu9QNg2hCpbs7TlNXDwfbQ2w72ITf62bhtLHcevF8vFm57Oqp4xvL/4uDySOUt5UzP74ArUhlt7aNrs5O2luaKSobQdWkasZMmYnHN7CmZ/vGNWxZu5Lrb//sMc9/JBwi0F9ALiiiq60VKeUJtZdDe2uZOmtu7++mhsOsX72cWz73FTN0VBr1u7dRPvbYJSjHT53Orm1vn5CA3NTSxmtvreftHbXMmTaZr9z+cUpy/MTi3Xzm7R/zm45neD66io8VLeSKwnkUBwtAM+uciqcr07XRFqn4umjJ3uWLe/0XUguLeLwofvNcvQuFuN14XR6y/D5Ki62uz5pDN6SkIxylubWd9rBpE16/dSvt7e20t7cjhEA3DM4+5xwuurjvoOK95r1ql5H9+wGIt4dQrRmblKmgNAyMZCqOsWlmF++07Iw74yRC5v+aCJvblB9NocdJ+Txzsnrs1WZc3+A5pnuTVjKRpCuAqqpM37uXjRvWs7u2linTZ3HWuYvYETJYsf0v/F/380QDHeg9LtrfqKBrWxFbVJW/8+qAdRlf5OCs0S6e39H3eQuWjgZg5LRJzK0uhfj1VDdvZlTzGyw850oqx0+m0O8kx2M+dwFhPptKrBuhmvUWyaNjDcMw2F27n2fXbqGjJ8btCyYxpjgXxe2luauH1XsO8dD9q/B53FSNqkARgrAKrW1tdHR0MGpkJVMuvZSsyvEIodASSdJm2YTUtZna18Od5vZIa4Tmw+bkwEYrLdZuRoxSYz0oLjcBh0p1fpRit4+CkZPYNqKW7RX1BMvn4pdzmF02F4dwM74kyNg8c9A8IssUtgt8Zp2DRhRHyHRPk23m+bXGAyQaze/humYAeo6YDoGhwyGibTHr2UiAGsE4EEIeqGf3pFHUXjaPc2v3URQ033G+PHMmyxVwUxbwMgONVrfKE45S8vNgQoEHDYOkkMS1YxeIeiec1EIhUsr1wPphLYmFEOIrwPeAD0kp12XI8gCwVAjxZ2A58BXACzxtpT8N/EwI8e/AvcC5mI4IF5+K8g4nSanzVPRt/tixkYie5POjruFTFVfg8BYwlMmEaE+Yvdu38PZbKxg3bQbTzlmMLjN3pOXjp7Jr7XIqp89DCMG4sy9h05KHofoymPlhStYvoblwOhv95zE6uYvFnrWEC100JfzsbDKobTk60h6VpzBvtMrhsEK9q4qJyj4qg4dJzvEQ1yQJFfIDguawQWfUIKop5BnttDnLqAw3o2aXDNMd7EtN8XwcwsETex9nZtEMHGKA0Ds2x+X93C6llByOGxyMGrQkJdGWLmKaQVR2kdB0NMNcRtbndpIX9FGUHaBqRBFfuHIcZfnZoDjoTIT57trHeDm+Brfh4lOFt3LbJR+HoBlRqzuhE1UluqZxYG8te7e/zfo3XmHUhClMmTOP0vLKXqE2Eg6xedXrHNyzi4/c+hly8o/VNPWEw/+fvfeOjuM8738/U7ZX7C567wQBkAR7J0UVSrRI9WbZsix3S3bsdOfek/xuTs79XZ8kTmznl9iWY1nd6r2QIsUq9iZ2AiDRe1kA28vM3D9mARAkSIISJUeWvufwgJidnX0xO+/7PuX7fJ8LIshmqw1RkoiEgljtjin97clEgs7WFm6648tjx7ZueJfl163G6XITSZ6jStPfQ9fZBuZde2Fjk+KK6Wx75zUikQiWSxj9AM1tnWz8YA/NbZ0smz+b//uH38E+qr6RjGKVzDxR9w+sb9/B79rf4V/aXubf2l6lzlLCtc7pLHdVkS1eeaRW0zTCsQQj0QQxIYZmTCAAkiWCQZbwekXMsnFS50IUBLxuF163a5xiYdW/21hSp4AERkZ47dVX6OvtveKxfVL4LM/LqSChanT0++keGKbtcCstHd20traSlZ1NXd1sbrv9DvoSEZ498Ds2dL1FxBhGMnoxD93HyafryXXK5KcLSCIMhDS6RlQmq+87O6CwqFjGIDHp62MwO6hcdStDHU3s2/wu9Yf3ccOX1uLKvbAhVWtnD0dOn6GprWNMBaajdwCfy86yafnMLc1BUsYjpZluO7cuqObWlfPp6B/irD+KKAiYvDmk+3xIznQCqu4I9oUudByvDBrT7ENU2Ic5m8ji2MgMTD1ZOMQBEo4dBG37CAgf8n8+wQAAIABJREFUsH5AxikX0ZqsoC1QjE/KIWbPwYyFgAyKksSQCKEG+kkmk8T9/UQTSUIDvQSGQkQVjWBAIqlBXPYioqJmmxDdI9jiIyRiKkErhIwaEbNG3NLCcFov/1lpJisWBEFFMwVIihoJg0DcACFJISJpRESF9eLEiP/fNb5ykb/3o+GiBnLK0/xe6l8R0I3udf4/mqaFL/a+q4CfA0lg87kLmaZp9tTPHanGJI+i86KPAms0TRtJvT4kCMIa4P8A/4iuvPFdTdP+x1bKR7Ukr8dP80TiKL1amGqpgBXRWYiH7Pxq9wbiql4IJssSktGE2WzGYDQjyzKxpEIgMMJATw/hUJCiyiquueUusguKiSZVlItIXKQXlHBg/SuEhgYwOj3YvRlkLriBjj3rYfYtNOddQ0HndjTSOWOq5mCwEHOwhRxziOsqDRglgUBMw2EWCMU09nVJ9IUFVvsOk9RkNodm0HdqN2aDgMWg96ZPs4qsqjBwuM9InTVIr5RN6cgOolnVn8h9tRvsPDT9Wzx6/Ff8075/5G9m/wS74aOpAHySiCkxhhNBgokg4WSEqBIjrsZJXKyF7x8Hn7l5GVU0DvuT7BtKElc1KmwSRRYRr8eCVRZxZmZhkkQMDhdmsxlRFMbbE6c4yKeGOvj1mY3sSB4jISdYbq/jH+Y8gsurZ3RC532mJMsUVlRRWFFFMBik8eghNr/2AvFYFE96JrFohMCwn6qZc7nzoYexXiRlHwyMYHNcaAS7vekMD/RN2UDubG3Cl5mNOWXU9nR10tfTzR1fefCCcw9t2UDVgmWYzBcawCazmYrptbz47FPc9eWvYDVMbGQQjcU4cuQIu/YfYngkwDWL5vHA7TdjNKUM41Txct/gEHsOHeVIQwtDgSCLvPOpNlXSaGnlRLyd/ZFGftrzOra4hcy4h6xEGtlaGllCGjbNjKZCMkW3iCWSxJIK8aRCNKkSjCUQBAGX2YjZZEBKtYVWBYFYPIk/GMZsMlJWkENlSSHTigtwuaZO7bI57Nx9/30ktS/m5ScBDfCnOehyeOgzmAh8OEgooeI9u4Msr4uswlIWLV3KjTku+pJ9HOs/wm+3PMqp4Ek0QSPbWsq6/C+zZbNK5kgjM2dZ6A6oDEU0VBWqs0SWlRrY25KkoW+iFayo0BtQyXGJtAxePhzlzi1m9kM/4Pj+nTzz2/+krLyCktIyXBYDAwODnDp5nEH/MPNqp3Ht/BmYDAYUVSU33YtDVsaK9NVzDORRiKJIfoaH3BIfAEm3XqzfH9UgdjWae2jM8QzjMSfY0JuLZtXpHCZAjOXhCq0hx1BHTDhNxNJGwNzP8VgTR4bGP1tSJayqFZNmwoQRgyYiCRKipoKoodrjJK1xFFElqSRIiCoRIUlEVrhIzA5RAVNcxaCE0YQYIw4JZ1zBKGjImoBJE/AkZPKjJmyCEYsqEhWMnI4I1DlkfLJEXUbdVbg/47hUBPm76M1ANqFzkIuBPwd8wDeu6ijOgaZd7PZNOOcJ4IlLvL4PmH+x1/+noE8J8mr0MC/ET+LXouRG05jdWkadpYS8zDSyphVgs5iQHV5UswNFUQjEFKLRCIFQBEVRUBDILigmbUUGDm86oiheoPQwGURJpnTBSg6+/jS1X7oPW5oPR345dPfDgVeR0xfQlH8d7tZ9zAttplP20iur1IfcbD/bjcUAdpNAIKoRTYLdaeaGkgTDmpNTahloI2PGsUmGuQUyRR6JTfUJ5hXHaTFW41SH0CQDiuWTk2F7YNrXUTWV/z7xG7Z3bOPa/FUsz1nOPO9M7J8QL1nRFPwxPwPxEQZifgYTAQZjfvyxIfzxIf1nzI8/6mcwNkREiVz+on9kfJbmpaZp7BuMs747RrFV4IYMA8Wm8UI52WkkktRIahrBeBJjLMFQPIlfCdOthmgM93Ii2sHxRAt+4wiCJjDfUcmfT7uPafYCEgYbZ5ubaWg8S/9IiGQyicuXSWZhGelZ45XsFqud2gXLmLlwKZFgAH9fD2arDZfHi2USI/RchAIj2J0XGm/p2Tn0dbWTXVgypXvR0lhPUdm4TP3eHVuZu3gpsixPWCda608wPNjHorX3XvRaq9fdzrb1b/LrX/6cmpoa0tLchAMjtLa00NLWTllJISuXLKC2rBhJmkjdiMXjvLPlA/YePsbC2gruv2kFhT47oiiOS4TFY5wNdbDFf4IDwSZOxjs4q403ETJqMh7sOLHgEsw4BBN2wYhVNJAmGciR9SCCShRFiqPIMglNQZEEUJPYBJXheIDNwWZe7ljPyJkwslHEZDFgMMloot7kJYmKoimogKqpxJV4ymHVjRmf2Tele/9p4LM0LydDQoaGCjhUa6a9RCZiCaPIJxDQMAgSBkRkgxnQiEc1IiciqCfGDVhnwsm1vhu5feaXaW4VqN+5icL+LvqcFbyy5Szn17J7rAIrygxk2AU+aJro6HQMqeRN0UAG3RmesXA5SxYvpvHIAdpaW2mKhvB6vaxYOI/a0jwkUUSIn7e+x893qz8e1EScRDiAMjSCaLv8Xlpt78cpJdjan01SExnVxXGrg1QMNmJUokS9xci2ZdTm5SKarZTleEizBegJtxBVu+mPdhNKDjASHyGaCBBPhFE1FSUZRxZELEkBU1zGhIQQk7FoIlIgjj0pIffHMfUnsURF+iUXPb4s6g63ktfpRzLKmJwmNGBXdTm+WIRFgn6/DDYjBluKbmHV10/ZZqZRM7C+IcnaAiP5nmlX9d5eykD+HvALTdN+NHpAEIQHgN8JgvB9TdMu39fwMwY5HkSTUkZTqqT1XGm382XbhKjeT56QHzVVQT+uBznuGY4eUyJB2tRh9gbPsDXeyn6pH1WAoqCHio4K1pgzWD63BE+tzhdM+vRNcEiw0RfWvbdYOI4AGFMzP5xQiKgaEUAa1CeiSdapBAZRwGrQ/2+S9J9mk75xpdsMlF67khNeB9vffIrVa2/l2lkzEWbcRmN9NS8+9yxLly9n5fd+jN/v59SxI7ScPcPpxrOUXjuHBfPmk1lURjQS4cOjR9m7YyvTamdy85o1rH/7TfbtOYKrtACrzY7BbCE7v5Bp1TXc2tzE3u1beODh+3j9D09QWLKCWQumjxXBCIzz0ZKpDTyuaMRTB0fFLEZFCRRNI5a6Fwl1tHhHv5jVIGExCKwrfpDpnjrebXmDjW3v83rTG0iCRIWjiOnOMiosWeRbssiRbKRhxC5ZEOMpblw0hKqpRBMRgokww2qUEWIMKCEG1TCDSoh+JUS/FqE/McKAEmQwEUCdpEORLMh4jE7SjC7STG4K3NNIM3twG504jS7sBhtWgw2zwYZRMiILMnP4k9brv+pIqBrPNg5zNhFgTqVCQA6yQYzSoURpV+MMkUCJqGiiBn5Nj3AEFRRpYmRGRqLMmsNX05ezJn0+WaY0BLOdE03tPLV+Bw6Hi4ryUnJy8xBFkdb2Dg4+/wRpvgxuuHtii2dBELA7XZMavBdDLBqdVBc8t7CEXe+vp7C8CmvapYuARvyDNBz/kNvu/zoAXe1tNDWe5oZ1t46dk0wkOLRrG4f37uSaO76CJF98SxAliS/dchtNZ8/Q095Kf18/LoeN5YsXUlZShDmlbCGcxxtOJJL84rFnyUz38pNv3z/G1xTO4wsKgkCpOZPS7EweSi4FoDc6wJl4H83xfjoTQ3Qlh+lPBuhRhqhXI4TVBAlV0WOok+xIsiBhFGSMooxRNGKSjJiMRuwWM2mCnURcJRqKExyKIKgCFqMJl9mK1WTBandis9gwGS0ISUCBDG8mNoOdLWy55L3/ApdG0KKxdW6S7XUQMwvICZWMrgRVJxV8HhuCBvaKbN1ZcWczOBJiKKQQGo5gVa1My57GDbNuYnrxdEbiGpvefZMD+/dRMmcZm7UZaIJIUr0wCD4Y1njzWJy1tUbK06UJkeTugMq0rCsPmpjMZhYvWw5MzkH+JBAeGaLt9DFaGk4S7O9BttpJIqGGhrBbvYSLFwIXSkI6pBiF5mHe7UgneY4TW21uI0cJ0GWvxm/OIyNbz1BJDn3NEkURnzkbnzmbHIcJTdMwJcMMDw+hBgaJD3UTTySJDw0QSySJDvUTGQ6goaEFwjglcPgHydISBCZwkAcYcMXYN6MCY6KR7GGdry0Ai/q7eT2viIpgHK96YaR9FFV2iYaQypt9Sb57lTt1Chdr/SkIQhg9FbPlnGN29OrWak3TTl7VkfyRMXfuXG3npncvayBHlRidgTbawl10jLTSHRtgMNLPSDxIXEuiqElkRCRNQBZENDSiSpxBNUxXcoQw+hedo1pZHMsk1uwjW7Fyd4kDkyRgzsvHWKGnCSYzkEcJ+dFzDORR/WNpVIloEgN59Kc5JcIuiYxpA/u72njjpefJzMzkltvvxGqzMTI8xNNP/B63O42169aR4XEjxkPE4nH2HT3FgYOHaG5pwWq1kpNfyNwly8nMzuXdl54lHovxtQcfJCLo8jbBlP5hw5H9fLBpA3d/7Zv09/ez/b23+cp3f4RsMFzSQD43IP5RDGQAiwShUJB4eJiTIyc4OfQhp0ZOcCbcSlC5kDFkFGREBFRU4trF01oSAmmSjXSjC5/sxGdyk2504TV78Jo8eI0u0qw+PAYndpMbQRDQRHmiXjJM0EMeewYBs8N9QNO0uRcdwJ845s6dqz23ZLxA1ZGv89VNaQ4MbjdxTaFZjnIq2cexWA8fBLoYMgVIiuNRIKMmIcUNeAUTWbIJu8mKEQmTxYlRlLHavNjMaTgNdjKd+eTasin0VKGl9E5VDRRFYeN773Fg7x7W3HUfpnS9irx5SF/o+8NxhkIx+re8gK1sFtb8SqTUw2o3y5hTD/jo3DSNzkMB7EbdKHWlGiI4jDKRET+vPv0Y+UXFrFqzDjlluMpoHNy7i62bNlBQWER1TS1VVVV43PpGJgj6WA8dOsQbr7/O9dffwMIlSxgYGOC//s9/cPvtd1BdUwPAmbNnefH558nMzmbxqtWkeX1jmuqj19LHqP/HIApja8xoOl8UzpEFZ+JroEfzN7zzJkODg9x9/wNYDSIGdVQOLhVoGA08JCJj0TYhFWUbLdZDVcYLwFIBBy0aRlMUkpqKIkIwHqMnGCcYTSCJBuxWO06rGY/Hg9VsRDDbx+bdmIZ5at5pmkYgmqSnf5CeEb1Yr7vfz8DgICMjAVwuJ36/n3/6X3+PyWTCbHd+7uflf/p0jvxIW4BEihMrpJ5zySiONfgYO2bQ98M9szVerAsRkTVKB9xk9WbyjSEVhwYWrwvf3GqCcYVjjnKOnW7kTFsXecUlRNIKaYzb0UwOAimqgcMso4WHsR9/i9O5N6JKRlpO6kVhnQfWTzp2gwi3zTSyuzlJq1/FXVSDSUxyTdYA8bRc+jLqmFmoy6JOTxmK5V4buU7d4PSlitMsqb1ciAYQY3qwbOz5TUTGC00jEyPGajw6RrFAVfT260azrhZxTnGp6NIzFapFn9udIZUjpxs5evQo/f39VNfUUj69Fl9uIQajkUhSRVGSHNq3jyM7NpFbOxdzpZ4YONurj6G5qQVf8xZOZN1ENKKPLxFTmB14nyPybEKkClpTa5fRpH+HVqcJjzWJfagZT7QbQoNIsoxscWBz2HHbbcgGIw6LEYPRhNNiwqLF9fUoNMTAcJDmtg4iCYXFGUbqkgFEQSCUKtxrGEyw2ZHO7e1nEVObu6ZonHSl0W61cW1764R7KJ7zTMkWmQQCzWYbdz39EoIgXLW5eakIshk433IYdYmm2Dj8s4NAPMDPj/0KREmP/WkqMSVONBlmOJUq7w730B+bKPlsFo14ZQcO0YhJMCBoGnEtSVJTUDQVURAwaiL5kps5UhaVkpfpMQuRboUXO+LMc4ksy5AwSZfNlH1iyCso5FuP/Iit773Lf/z8Z9x+5z1UVFbw7e89zLbN7/OLf/83amqqqZteSUVpMYsXLWLxokUMx/Vq+lBCJZ5I8Oozj+Ow2bj3/q9iMRno6uylq6Odjo5OmupPkkzEufvr38ZkNLLpzVe4+e77ka9AEutKoKoKDcePc/Lgbgb6e4lFIpjMZhx2B6IooCoCRfFSCrUSIlKYISFAQAiCRcNoETCYBMxGGZMkYJdNOCQDHtlCltmOx+TAI1nxGhy4RCuiJCOaUwtLirsqGM1jDUJGi34u2oXmC1wUGhoHnQGiol6UEbFEGBDj9ItJ2kIR2rQRlFS0XlYkciU311mmU4qT9KSNQ41xQkGBB8pd+FIbtpwqrJMzdS1XMaNgbBPSzPqGqIoyCXRj89SpU7y/cSMms5lv/+DPEMx2ekMXRjQEQcReMYdgwwGs+RcqQVwJXGke7v3mw6x/9Tmee+w3rL37yzhdbgRRZP7ipcycPZez9Sc5cewo77z5OjabDY/Hi6oq9PX14fP5+PpDD1FYWMRIMMhjv32Ua6+9luqaGjRNY9vWLWzdspWbb72dqppagvHLcxsj4TBtTY309XRTVTuTjMwLC5POR29PN4cP7OeRH//VBMM5GAqxa+dODh87TiIex2wyUZidTkF6GnmZPixCUleOiMdRNQ1NVRgOhOgfCTEwNII/FGU4GCYS1/nII9E4mgZZbhtuq67xHkn2MBKOMRSKIEsSc6vKWDanhvS0CyP5giDgtNtw2m2UmvS5rFp0IymU1DBKAv/xi5/T1t5BWenU6C1fYCK63QrPLo/SkKNQNWhiXmM+AcXLbbG+sQCOXxF452gPpwcjVFdZWTR7Bivv+jpGk4n1jf1oTRe2XDB1nyTuLUGVLq43fC7mF8p0jai0+nVDTBZUlnq6GJTyiKRfqPoEqULf5rO0tzQR9vdjMpvJ8qZRNa2CLOelzSFV0ybooI9e71jXMO+c7KA/FEMSRZaVZrJseiEpsQhUVaWlu5+jrcf48GQj0USC6dW13HTjTeQUlSBJEtGkNqEngiTJlM2cR27ZNN77w2NYYwrpM8azkAlLGpogYYkPEmW8jkF3FCcPlkpagtyhk3i72gm6ClGL5qA5fJTk6QZ8YZp1TOEi3aavsR6zhCmkG7/SiN5gLNl5ls6hEC/vOsrRMNzh08ac6pxklPRkjOPONGr9A2OfXTHs55QrjQ6bndxQ8KL32IBGefTir39UXE7F4g5BEM61xEfv4l2CICw857imadp/XfXRfYoIJ8M8d/YVNFJaf4KASTRilkw4jU48RjeL0+eQa8kk3+wj35pNnmjDLdsRwkMXUCy0SSgWWjRELKnyTnM7h3vj3JZjpPTKG2N9IpANBtasXUdF5TReeel5yssruOlLN3PDjTeyaMkSjhzYzzsbN/P8q2+wZMkS6urqkGxuNE2jqeE0O97fQJrXx5333sfJ48fY8M5bxOIJcvILcHkzWLHmVoqLClE1jecf+zV1C5eQW1g8JXH2K0Vn8xn2bHwTi8XK3MVLyC0owuOwIRsM2EcbHCQjiGE/AGJMn1haLERgeJiBQJjevkH8oQhDQwGC0Tgj4RitkRjHo8Ok2aJku2zkeWJMz/WS47lAU/8LXCVomsY/lk2MHthUiXTBSoHoZoGaR2+XjC1k42tlJRT69M2qfTDAbw93MzfDyvV1DiRFQdE0jg/G6O7toy8Ux5/sJKmo2OxHsNhsWMxm7E4XRqORmKLR3dNHS0szvvR0Fi1ewvSZdYiiSOASxqQ5u4ThI1uJ+3uweC9vQF4KJrOZW+/9Knu2b+HJX/+S1evuoGp69dhrM+tmM7NuNoKmEhgaZHBgEEmWcLtcpGfohTfxeJzf/+6/mV5dw+IlS1EUhReef46enh6+/8MfYnOmXWoIqIpCU8Npjh3cR3tLE/mFRXh96Tzzu19TWzeH62+6+ZLv3/D2Wyy/5lpsdr0YMR6LsWnLJrZ/sJPaqmncue5L2I0SoXCE1tYW6ls72XLgGPF4HFXVkEQBURRAA4fVhM9pw2s1UpXrwyGDRRIxSCJOmxmrUUYw6EaSIBsQxgouLfQOBdh9uo1/ffJVrplby6qFdRjkK1O1KSgopKW19QsD+Qox6FDZODvBruoEhiR8bY+dnFA+R80u7oz3YUZDAw4INg6GTKzMNHJXVTqOlfqzdWYSqsAo5P6zGAZbCdR8CYYvv5lkO0Xy0yRe+jCVvRBgcVoXg3ETHc4KMicxZP1NJ3nntV0YZZHiiipKy8uJxWL0dneyZdt2bBYzS+qmU1GUh8csE4nFaGptZ+uhU7T1+YknkhRmuJlZlIXVaMAfCHKspYeEonJLdQ4lXjshVWLjqQ5++tY+ZFnCIEkEo3G8LgdV5aXcf8sN5JZNRzPp8+hyjcIsNgd16+5n7yuPY7S7wK43WEIQCLuLcIfb8Zuqxs5XkRAn0coyqhGmh/cSMXtpLb8ZVTZj89guOG+qyHHb+FaNlzeOdPGHPrhLg1SSlwWhQV5xZVMx7MeUygZLwJzebvZnZJHd1MiFpLNPFpczkP/qIsfPbwyiAZ9pAznTmsnOdZenWMAkHOTLIK6otPtDnOjoZ0/7MOUuAw+XWLDJwljv+lGMRBPs3HGIzn4/YWUL2VkZFFTWklZQMak80dVGWUUFP/jxX/Leu2/x7//6L3xp7VpmzprFypUrWLV4Lm0dnWzfe4h//dm/YTCaCIeCuDxe5i9dSWXNDLZtfp/9e/dw/1e+giMrH0EQxigWPV0dbHrrVewOJ/OWrLjMSD4aTh3Yzcl9O1hw3c1Mm16D1ahPKdlw+akliiJOmwWnzUJRWiqKlGoFTjKhp3MVlb5QjK7hMC2DAX637RhJVaMqP5MZhVlMK83HIH0hJ3e1IAoiPz1VTIti4nTCiqaYWWQ3MC/XQWNCZmOTn+uLfVxT5UNKLfA9wRi/PdzNbZVeat36EndyIMbrzUEcBpGKTCMzshyk5+ZhkCQi1jRCmkw4EiUYV4jHE1itdmbPLeS2O+8c67AWv4gizLkQRBFbyQxCZw5j8X78Do6CKLJwxSryi4p5++XnaThxlOtvuhn7OQoXkiSRnp5BenrGhCRFNBrliccfx+v1cuOaNcTjcZ584nFEQeR7338YyWCc8DepioJ/YIDhwQGGBgfo7+6krekMdoeTGfMWsu7u+7CadaNzwdIVPPrLf+W61WvGUujn40xDPQP9fdz71a8BkEgk+N1//waX3caf//ARfM5U1iW1rpZmez8SxQJAuMycy3A7WLd8HkvqqnnxvR38798+x+3XLaG6vPgy38A48gvyOXHkyOVP/JxDETQ6slSaShIcK1E4m6siqrDwtIG1+0xE3OnsznBzW6AbqxFUYKvopFsw8HV7lJKiSzttAIKSwDJ4BlPXEYJVq9GMVi7UlJkISYSlpTI7mxJjUm5z82UUTeDQSDoZ6ecZx5EAje+9TTISYuH1a5k1vRJBECZQLFRV5czJY+zet5/New4xODyCzWwm2+NkaW0p0wuykBMxTnf2c6Ktl+5kEKtB5ObqXEq9jrE1y2QxcfecEu5eVMWQakDVNJwZ2VhMxrHsliKKXImGhclqJ2fxGtq3vYa06D4EWbdtoo5sHP49cK6BLIhjYxmFrCWoDe2k21iIP206zou0t75SiILASif4k7ApYWc1eoDKpSYpDAc55vIyx983dn5uKMjpRJxTHi/TBwcudtlPBBc1kDVN+7SN9T8ZnOkZYk9jJx1DIQZDUeKKSo7TQqnbzA8XFpKmhon5JxrXSVVjU3eUvccbmF9dzuKaMgzphXR0dfP+e+8iGjazcs3tMIUq1cuhr6uD5voTDPR2o2kqdpuV/IIiqqZNw52Whtls5pbb7qBu9hzefP013t+0kWtWLGd2VRn5uTnce085iqLQ2juI3eEgKRpRVZVNb79Ob0cr333kh3jTXHQMBmhpOsPZM2dob2okFomw9LrVzKyb+4l0VD9z9CAn9u5gzf3fwuFO+0QcClkSyUmzk5NmZ05JFrfNKaMvFOdkzwibjjTy1NbDTC/MYnZVKdPLipEmKbT6AleGyrCVA0kna8QIBTkmdg+r/Or0CDlOM9+fk0OWJ5UyV6E7GOM3+9q4uczDjAw7WjzK/p4wbzcFuKvUQYXLiCFV3Can63NJzMi5kGJhtJFIxSumIAozAdaiGnrefQw1GUeUp5b2vRzyCot58OEfs2vzBv7r3/+Z2lmzqampIb+wCNl04Wf09fbyxBNPkF9QwC233Y6qqjz5xONYLBbuufc+JElC0XS95X27d1Jff5rerk6sDidujw9XmoesvALqFi0jM0tv3HBuu3eny4XNZqe7u4uc3NxJx7x103usuuFGZFlGVVVefPZpPB4PX7n7Dr2IMfnp13l7XQ6+c+dNnGhq54UN2zna0Mzt1y/FOAWqV35BIe+89eanMMrPHiImjSPVcLRaoSVfI5YK+mb3C9y418CiEwZ8MZkBq4UP0rO4OdiLU00CMjsMLvyCzF3KIE7xwmxcOBTE39/LUGMzprZOxNAAtuAAMXsWkek3oKb0qi+HGTkSA0FtjFqR5xYp9Um8789kQo84TUPpOEXi9E68tfPJrJlPRrpzcv1sUaSitJhpKboBsTCCIEzkIKsJqvMzqM7XszoTOcgTrycIAl6HTlcQJ5nXVwpreg7WjHxCTYcwlOt85LjViykRRFITKCklJxXxgghyjtLGiOyhw1SG9SrvpYIgcHOaxqNhmTMYyU4dnzU0wKs5RVSNDGJR9OChAMzr6ebdwmJygwFc8Y+rAT11fKRGIV9gcgwGI7zwwVG6h8OsqMhmcWkWPrsZM0lEQUBLRSOVwERqd1dM5ZW2AF6TxN+sKMc3Q3+Qk75iykuLmbFkFVu27+TVJ3/DorX3kJ5b+JHGF4tE+GDz27SeqWf6rDlUzZiFKEkokRCtzU1s3vAOGVlZzFuwiBkzZlBQWMQjP/wzGurr2b1zB6+//ga11dOYv3AxRYWFeH3pAPR0drN947uEQyEe+tZ3CYaCPPnE49TX15NXUER6XiHXrruL/HwLZXqMAAAgAElEQVS94l8QhCu3Oi4Df18PB7es54YvfxOH++IRCEVRiMfjJBIRjIkEmqahRWOYjQY+StxXEAQynFayMtK5praUkaTG0aYO3tt7jBc27+PaebUsmTsT6Yuo8kfGgCYyookUkiDNILDGJ3Gr244xbeL33DIU4bFD7aytzGB2ugVV09jYEmBvT5hvT3eTYdGXO0XV6AnF6A93EUsouALgzcrBl+a+Kik8yWTB6Mki2t2MNa/i8m+YIoxGI9fdtJbFy1ZwYO9uNq5/l57ubvILCigsyCfN4yERj9Pa2kpDQwPXX389S5YuI6mq/OHZZ5Akadw4VhTef/99dmzfRs2MWSxZdQO5+YWo5xSIXm5PLCwppeVs46QG8kB/H/39fUyvqQXgw4P7CQUDPPDA9xHFS6eHp4JIPEHvQIBwLI6maQxFEvQHo/SHoiRVDa/DSk66h4J0NznZpgsc1emlBfz1Q3fx/Ibt/NOvnuGaBTOpLCnBajGjmhRkScY6ykEOhThy+gR9vX0kE0mGhoc/9vj/VDBsVnl7WYJtszXiJvANwJwPBUo7RSp6jbjCwliGIWKR2VFcxOK+bjJMuvHzoWSjVTRzjzKIMcWBTSgqJ/rDHH/pDZraOglF43jSM4gYnWiyiXhODSNyGqrBjMMsT2kvsRqgOkvm1aO6cWWSYVmpgS0NCeKe8bVZVGJkde8jqYUwzl1HVuXUMwzAp5LlvVJkzl5Ow+u/Ry7Qi3MRJcImD47EAEMmnQamChKipoz5CYKmkqe0cNJ8efW/eCRE+2A7I0ODEAsSCgRIxsIkU7RTIwr5mR4q7QJFvnEHyCgKLBdCbNNs3MEAImBXkpQGhznm9jKvt2fsXGcizsz+XnZm57K6pelTo1pckYEsCIIJyEUv4JsATdNOXK1B/bEgNu5B8Omi3Jp04a0RUh7hqDyRMpAin/d1EBzy87P93SzNsfHVWWkYbTKi3QRoiA7duxQy9cp3g6piSqUJh8MxnnjtA+5YPpd5lYXgySPq1s/rThUCdYzEEYtqKVZktr/+PDPvfRg1tSiIojBWIW84T6nCZZLH1StElWee+D25ebn82V/+NU6bFWOqMFBMRGHRHJTQEMdPnmTbB1s4tON9HvnyOuRYkDobzJibx1Cxmf0t/bz45O+RJZGb5k2nvrOfA2c6WT5/FqsWrkAYaeYXv3mWa+bWcv8jD2I1m3TVBgC1H1TQjBY0s+4la7Ieahht6BVTNEKJiRto8hILYELRCCcUDn6wheI5S1GsaXQF9ciU1SCRZtY3/KSicWDnNj7Y9C6ywYAoCCjJJIIoIgoCiWSSLJ+H4ux0inIyKPTa8TptyKkGB2oycY5eayrFG0vVrCYTkEpfWQxG5pthwZws2sIabx87wa6Dx/jGNTPxpevPgWSxQervHqX0nKtmoU2x2OTzgnrVSKkQ4+eKhz9LaKQZhAs2og+7hnn5eBd3VmdRm+lAS8R5r8lP/VCUR2b6cKQ6LrUHEzx1+IyeCfC5Mckyga4R+kb2Eo3G+PHD38abdvkU7+UgWezE/b1XZCAnEwn8vd30RAK4XC6yc/ORxAsdK4fTxcrrVmNcfSPRaJS25iZ6uztpa23DZDJSXFLCXXffjdlsRtNg+7atBIZH+Oa3vz3mqL34wvMMD4/wnUd+RJrHM1akF5sCjWQUpRXT2PTuW9TOqrug619jQz3lFdPGPu/wwQMsW7lKV+NQP3oEKBJP8NL2oxxu7ibdnuIdC+C2mvHZzcwsyECWRAbCcc50DbD5SCOhWIKbF81gyZyZE65lMRl5YN31tHb1snnPYXZ/eIpQJAKCSDyRwOVyI4oig4ODlJWXc/zYMUpLSujs7PrI4/9TQSAe4J9uUGj26IbujGOwbJdAQbeIgJBSsRifo4ogsL2kiNL+AQqjQTCZ6ZJM7Dc4uTPWi0nWzz2dENm4s40su5HZi2dx08qljHhKEQSB9Y39dKSK9NTolTVrmVsgc7pXIRjTn+8FhTLNAwpdIyruVADapo5Q1LSFgCMf45ybECaxAT6LMNicSBnFKJ2nwZpqcGTOwBnrHzeQz4sgZ6hdhAQ7Ieni0pShtnqGTuyhNTxCRnYuLo8PX5qLnPwCMtwObGoEBEgM9dLc1ceTOxtJd1i4p3B8fysmwX406k12pqVqgWqHBng1r4SagX4syjippGLIT7vdwb7MbBb293wCOegLMaUnQBCEHOA3wE2TvYzOQf5ch8jeaRpmVrqVVflT63A1igNNXdTkZzB/WhFwsTpSHUo8ij0j5xJnXBx7P9iG0Wzm5lvvuKiXK8sys6oqmDGtnP98/A9s3X+Ua2vHPWin2ciqyhxWVRey80wXGw7VU5mbzl985Ra8qYr2XR8eIz/Tx3ULZo2rN3wKUJUkFsfkkzkaDrF/4/u0N5/lB3/1E1xuN06jhBzXJ6QQD5NIJOlob6W5pZUTZ1tZv7MPfyA0NgkNkojDJFOYZmNmpo0Kn/2yE7TAY+c7S6exvXWIf39nH9+6cSGFGR/f+Pq8QS0pw2eU4UQr65NOvrOsFuIxRJtulDX7w7x8soGH1ywm1+tEsDmJRyPs+uBt/vyOVaS77GiJBNGkwu+efY/7bljGrPJCFLueAVEcGfjjsGv7Fh599lVu+dq36O4JMZCSVByVURylGIiiMMFBBci2m8YqubvrjzI01MWXbv0+ZosVq0EaMwBGr2GSBTRVxT8wQHvzSRrq6znTWI/P68PjtHF8cJDB4QALq0tZWTcNt6RvXmo4gBbStUK1eBQb4EkmdPkyn66egtqCcFiPviTNdra/v5Uf3Hk9Tv9ZABo6+zhbf4qffP/rmCwqxPpxGVMOq9kwJjk46thqqfXi3IJaQYAFdbX4ezp48anH+e73H0ZNtXKPJDU8vkwOHthPd0g3ZKKqQEdIQe6LjDntRkmPs5gkvbDSYvNidqbkpUZlnJQUDUNV6Onq4NEX/kBFcQH/9Nf3YJY0OL/bpKbfJ0FTIbW5dvX7+a8X3sHpzaCmomTCeQgiBTlZPLh21ZiTqlpcqKpGS/cAqqZRWFKGhMr/+9N/RpYglrr/n2doaAga3HLUyrS9STxtqXT4RdSYjubnYE4kqe7pBZe+L+y2prEsMYRLUwCZJLA+YuTrszMpdpsxpByawMc0hbKdIrluiRcP689SmlUgzy3xwqFxio9JTFId209fVh0BVxE5fyLG8SjEnEqS9TuhRDeQA+YMcgPjncnjohmzEhmLIMskiQmX5hwHm09iy69kxqLllHn14sHJVSwszCov5MZiN8/ta2Bze5AVo6qmAswmwkGTbcxAtioKRaER6p1uZp6jaCEAyzrbeT+vkK1ZuSzp6frEjc6pPgW/BWajd9I7AXx6JJDPAILxJId7w/xkQfblTz4Hqqaxt7GTO+ZPrftLT+NxvJVX3kqxvamRA7u289Xv/GBKKSBRELj3phX87IlXqCvMwOOcWLUqCAJLynJYNmu6/rvbgYZe8btl/1Fuv3bxFY/x40IQRDT1wtTt0T3bOfzBZsqqqrn7oe/ick/e2tdgkCnOy6YkQ+elCvEQmqYR9Q8gCAKxwDB+/xANfQHere/jxaNdLMlzsCzfdclJKggCK6cX4nNY+NU7u7huZjnXLpjxqVfjfpYxEolhNcrU5PkYCEQ41NJLXbbuDA2Fovxu437uX1FHrnc8inm8pYtcn5t01/j3ved0K+U5PmaVT05RWrhkOadP17N/2/vkzV7+kcbq72rnyNb1LL/rQcwW6wWvK8kk9SeP0XDiGE1nGjCbzBSXljK9uoZ777wNu82GGPYjRocZGBph295D/PSpt1i3oIqFlVdOrdp+soWyvExyfGlo6GvOyxt3sO6axZiMHy9TIQgCq1ffSE93D6+9+gprb7tz7LWc/AL6e7pJxOMYjEZMZgvxyIV641NFfeMZnnz2eW656Xrm16bWyylymLPTPXz9lmt59OUN/Djdi28SmbfzIYoCRYW6DKAmiqCqWCwWBAQSyYs3Lfi8wGl08nvrdVAG8cwQRoe+R5h8ejhWdLjHHNiTgzH6PjjC3zx0NzaLmaSnkKNNHcRf+AN1f/ZXiKKIURI4sG8PRSePU3bvgwD4k/oqOTSkf8+SKGBPZQRHu0BajDJui34s3aEbdDab/ly7M+4k2OtnqWE/x2LFeGvSsLqc1CQPMeTK5PYf6w25avNc9O54HW/GbJZep8cAvVb9mvZUkbdFFrGlCr2l5Gix/nijG220gG3UuTTZxrXtnSmN6BSnVk7G0NJ0PvJoC/bRAjrNYNHfCySN+k/NODHbCoxlfyUBjKksjSWVOXYa9d/TbQaK3Pp7S90zWH9sA7dUOjE5XPQG0zn78i5WTnfQGTNg6C/A3n2WQGp/VJRCfD2b8WdYQRDITLOM3V9HSi5TszkRJIlQUqV5SJ/b/ujofZOwGfV5ZrDre6qxpooZ2f384b9/xcqf/H968xFJwBoKseGn/5vCn/0Sk1F/f1p7O79/7DG+8nd/hzTa2l1VENQkcxMJXnr9LTY0tfDVO9ZSlPvx1IIuhanu00uAH2qa9nNN097TNG3r+f8+sRF+BrCvfYganwWb4cr8mb2NnRhlidKsy0cVY6EAwf5uXHmlV/QZA73dbHj5WdbefT/OS3Bzz0eGx83KeTN47v29XKyZzPk40diMIAhUFk5etPNJQhBFNG2igaxpKkf3bGftA99l9a13T2qwXPKagoDJIGOUJWwmAzkuKyvKMvnRkhIenJNPoz/Cz/d10Dpy+Y26Jj+Dv7xtBcfbeviX59Zzpr37isbyecbMggwkUcRrt3Dfokpe3t9Imz/EUCjKbzcfZtn0IqoLMie852BDO3PK8sZ+V1WNLUfPcM2MsvMvPwZBFLlm3Z0cP7CHkYHeKx5nJDjC/refZ87qW3D5Mia8pmkaJw4f4Dc//2cO79tDWUUl3//xX/Ljv/2/uPve+5g9dy5220RH1Ot2cvuKufzontVsOXKGp7ccJKFMvY69NxBh09Gz3Lx4XNt13/EGZElk9vSL34crgSAI3HXPPZxpbKT+1HjvKIPBQHpWNr0dbQAYLVZi0Ss3kIPBIE8/9zzPPP8iX7v3dubVzfhI4yzOzWLlglm8snH7R3o/gNWiR7oTiStL73+e0TYY4Jlth3hg5WxsFt3A0jSNLRs3sGT5NWMdJ1VVZdeObSxf/tEc00mhadRI9fSrafSq+t5n10ZwacP028f30WDzCZKhYYrnXcXP/h8GUZTILK5ksOU0oM9byVeA0t8OgGLzYYmOa0zHDXYU0Yg5dqHu9Chku4tEcOiKxpHm9WGz22ltaR47ZrXZSE9Pp6WlZexYXl4ebpeLQ4cOXXANg8HAvbfdzNrV1/LoMy/y3vbdYxm9q42pGsi9jDcJ+QLnQNU0drUOsjhn8sjkxRCOJXjzYAN3Lay6QER8MvSdOYmvqALxEq1gz4WmaTQcOchrTz7KstXrKCi+MsMa4LqFsxgJR9n6Yf2UPm/9B/u4YVHdH6VQQRRFtPMmyVBPF0azBfd5xsrVQJ7LwjdmZrG8wMXjxwd47MNuWoajl3yP12njkZuXcE3dNH7/1lZ++uRrvL51D4dPn6VvcGjKjsjnDQvKcogrCm6biQKvk7sXVPDbD07xz2/upjY/netnlU84PxJLcKq9hxkl447akZYunFYzxZmXrni3OZzMXb6KI5vfuqLvQ0km2PfmcxTPnE9OycQmIclEgvWvPM/+ndtZe+d93PfQd6ibN/8C3u7FkO118xe3rSCRVPnl+oP4w5d3yBRV5ek99dxUV05mSuUjnkjy5vZ93Hbt0qs6R81mMzfetIZN762fcM8ysnIY7NMdQT2CfGVbiKqq/P6pZzDIBv72L35EecmVFUydjxVzZ9Da2Utb15U7PwAW66iB/EUEeSpoHQjw6y3HuGfpTEqzx9uinzxdz8jwMHVz540da6w/jSzJlJeXT3apK4emUh4+hFFIcEIZdwZLlEZaxOIx+pAQDzP44TZ8C25C/BOjVZyP7LJpDDaP7+WSJwdlsAMA1exEVBPIyvgeNmLJxhHqvOj1ZJuL5EegG1XVzOD4kQ8nHCuvqKSh/vSEY6tXr2bDhg0oFwkKzKyexl98+2scO93Im5u2XfE4poKpGsh/D/yNIAhfdEQ4D6c7B7DIEvmOC9OVmqZNusnGkwrP7TpBbUEG+d6p3dLh7jbScqe2QUTDQXa/8QeO7/uAdfd/g/KamZd/0ySQJYmH1izl3T1HaRu49ERobO0gFApTV/nHEdGfLILc1VRPQdnU6Csf6TMFgbnZDv52QTblHgtPHevlF7ua2d02RCQx+aQWBYF504r5h2/eye0r5yMKInuO1fOLp17m73/5GI+9/Dbrt+1i96GjtHf3THqNzyOGwzEcFj3FOCM/nTvqivnWqlmsnll6gbF3rKmd0mwfNvP4nPzgZDPLa6b2bFbPWUgyEWeg6dSUztc0jROb38Du9lA6Z8mE1xKxGK899VsUJcl93/w+eYVFU7rm+TAaZB68bi4zCtL52eYT7GnuG0szn4+kovLM3gasRpmlVeO0jPf3HaE4J5PivKufkqyprdW7Dp44PnYszetjaLBfH/9HiCDv2L4dVdW487ZbMJs+fj2D0SBz3eI5vLN970d6v8VsQdM0kskvIsiXQlLV2Fjfw6+3HuOe+eXMKBqnHiqKwmtvvs3qL908Qdln5/atLFq2/Ko4boaIn6wzG5C1BPuTNagpEpxbDGDXAnSK45klU/M+HCU1mNLSP/bn/k9HRkEpocEeEil1CcmbqxvImgaCQNTswRr3j50/YsnGfgkD2WBzkQxduaLLtJoZnDx+FPUcSmRFRQWnT080kMvLy3E4nRw8/OH5lxiDx+3iG/fcyu5DR+jpu/oayRd1mQRBeP68QwVAiyAI+4Dz4+qapmn3XO3BfRaw9WQLiws9F0zsJn+EV/Z00B+K4nFYqcjyUFmYQyyR5P0PG/DZzdw6d+oV7oH+bormLr9kER/AcE8HR959gYKqmVx/231jRsVHRbrbwT2r5vPopr18b9k0MidpqxmLJ3ht0w6uWzx3LGX2aUMQL+Qgd5+tZ/H1az7xzzaIAkvzXSzKdXJqOM6BjhHeaejjxuoCFpVkTOqFypJEeX42ZUU6z1GVDPQNDtHS1Udnv58zLW3IX0jDjWEgGOHV/fVMy3RhNxuZkesZ4ziejz0nm5hfkT/2+3AoQmvfMN+6cWo1AqIokj9tBv2dLfhKqi57fvPezcSCI8y9/WsT1oFELMaGFx7Hl5HJ6rW3IXzMuSEIAtfVFDEtzcxLH7bw1vF2Zma7qPZZyXNbkUSRs4PDbKrvwmE18/XF08ayU8PBMJv3H+WvHrjtY43hYhBFkWuvX83mTe/x9Uq925/bm05jKipkMlsZiLRN+XqDg4Ns2rSRHz3yfX1NUa+kRcLFsbiumk27DlLf3E5FUd7l33AOrFYLfar6BcViEsQUjcZgkoa+fo71hyn22vnL1XWk2SYWeu04fBKXy0l55fi8am9tYXCgn5oZk7d5niq0eAT17H6yOhvwZ82iPuhDDY+2H9aoMrTQJJWOFZNKw91II924V3zye8T/BEiyAXduCYMtDYj5VQgWJwgiYnQE1eIiYvJgTfgZsejrZMjkxZCMYowHgAv3fdnmJBkavuLMp9eXPkazqCjTM9uFRUUM9PcTDAaxp7puCoLATTfeyNNPP820ygoc1slbejsddm5YtoiX3tnED6fPvqKxXA6Xyimc71KdSf00TPLa5xLdQ0HaBwJ8rSYDzukD/mFfhNebRrh1ZiHTMlz0a0ZOdvSz9egZrCYjCysLWFKaNWVvOR6LEg8Hsbq9hC7RYtLf1cqH777AnOtvIad0GtIU6RiXQ115AdGhQf5r2wkeWFgxIV2WSCr85pX3yPZ5WDCr+o8i/g96x7VzDeRoKEBo2E/mR9SM/iiQRIGaDAc1GQ66wgovHuviVPcQD147+7Ld9QRBIMObRobP+4XM2yTwB6MEYwneP9HGutkXpwsdaenGHwhTVzpu/BxsbKe2MAvjFbQWdvqyaDl9/LLndZ8+Qn/Taebd/uCE+ZZMxHnvladxe9NZuebWj20cn4tct5Ufrqii1z/M4c5h3mnooy+cIJ5UKfDYqMvzsKQyfwJ1682dh1k0oxKf23lZJ/ujorJqOq++9AJD/kHcaR7SvD6GB1IRZLOFWHTqFIvdu3cxZ85cfN6pNYGYKgyyzH1fWsWTb2zkrx+6B4d96m1zLRYLqqp+UaR3HoaTGr9vCOIziVRnubixxE2az4d4nnE8Egzz7gcHePh73xnb+zRNY9M7b7Dq+hs/lla8Ehggue8NxIwSOirXospmCI3H8TLEIYxCkm4hpQKlqZiadhErmo8oX75JzJ8KPEWV9DUcwZdfpfOQPbnII93ELS6iZg8O/5nxkwWRYUc+zkALZF5IUxQNRgTZqEekzVfWwKxqeg31p06MGciSJFFSWkpDQwN1deNCBKWlpcybM5vHn3yG733zQeSLmEzL5tchisJVpyleqpPeNVf1k/4EsfVkK0sq8zFI4timE1NU3jg7zFdn5lCWpxuShQ4XhT4XQkr7F1Ud09SdCoZ6u7F7M1Kb7OQGcmiwl2PvvkDttbeSU1o56TkfB/PLcjGqCZ7c00BuWhfTczwIpiE2Hz1DYW4W99183ZS41J8UBFGYQLHobz1DRmEJ4h8pCpvjNPPwyuk8taeRRzcd5purZvHpid79aUFVNcLxBPkeB7vPdLGiKg/nJPZmNJ7kpV3H+coNizGcYwzvr2/j5rlXNidc6ZmEB3svueAGB3po2r2JGeu+gsE8XgCqJBPsfO1ZnGkeFt94C4LwyWRV0m3/P3vvHR3HdaX7/k5V54AGGqGRCBKJYM45ShQVqUiFGQfJUfI4jD32hPfWzL3r3vveu3MnB9vjkeU0liVbtpIlK4sKpEiJOWeQBEDkHBpA5zrvj+oG0OhuoEGCIiXiW6sWwToVTlXXqdpn729/28zNlXlsLs3SZd6IyrwRX7DgQlM7J2oa+ZuvPHRF+hGDoihUVs3i3JnTLFu1hozMLAb7vUTCYcw2O4HBsUsBxxCJRNi/bx+Pfe1Prkg/Z5dPZ/m8Kp5+5R2+9kd3pe2osFmtRCKRKQ/yCPSHNJ5s0ViTa2ZtjhlzTmrK4O/f382qBVXkezz0RYfVqeNHiEQiLFh86Z6/iLcT/76XUSvXoBRUorXGV6kVSGaZ6jgdKkGa9bGY4z2PNFoJZ8+45PN+EpE1rZwLO18jK2p/qO5CDM11BD1V+CxuPMH9UT1HfUz0OadT2LKHfrks6fGMdhdBbw9kTcxALqucyWsvvRi3bubMKk6cOBFnIAPcdstmfvpfT/Lkb37HZ7behdWSKD+nqiobVi6d9Aj2lNrUJaLf5+dQbQvrquLDdO/W91PmMlOWlTwccCnoamvCkZ2aNxgc7Ofkm89Ste5WsksmnoyXLhYUufnr2xYxrzibi11ezjS185kNi/jCnTdeNWpFDEJR4jhN3o5WsjyTq6bRHwjjT8EtTgaDovDwykocVhM/efcQwfDkhImvN3j9QYwGlRm5LlaU5fPm0dqEbTq9g/x0235mFuYwc9qwokVbj5eeAR+VhTkTOqfJYkM1mfF7k2dpa+Ewp7e9QPnaW7CP4C9KKdn3xosYzRbW3n7fFTOO00U4ovGbtz9i68Zl2CxXfopWNWs258/q3G1VVXG4XPR2d2J1OPENeMfZW8eZU6dwu93k56fPlY5oGsera/jVy9t4+pV36Ood+1xbNqygp6+fw6fPj7ldDP0DA1yoqSEcjhCcMpCH8HKTn9k2wdqcsZ+tM43tnK9v5rY1S4fWaZrGO6+/yk233Xnp349ImMCRtzFVrkQpSJ7gV6I0EpAmWiO6koVRBvH0nSJQumr8cpGfMqgmMxkF0xlsqtH/n12Eoa8ZpCRs0Cf5xshwpMdndiOQGKKaxqNhcLjwtqRPnYqhqHgaXV2dDAwMT5oXLFzIqZMnCY4qJa0oCl98+HM4HQ7+/t9/hNfbP/pwVwxjcZC/DTwjpUw75Te6z6+llB2T0blrGafrmqnwZOG0mglHf68ef5jdzQN8b8nkqiZ0tzbjyE1t7FXveJW8ynkUVM6b1PMmg1FVWF1ewOryAhTHxGaNVxKjKRb9nW0UlV1+RrQmJfvONbLj+Hna+wbRpK6RuXa6m2W5FgzK2C9YVRF8fu08ntp5jCde/4hHblpGpjX9sO4UoGfQj0lVcNnMrCnP5+9e2ceKaW5Koxzko7XN/OaDI2yaV8qm+fGJeB8cv8DymSUJpYbTgT3bw0BnK64kz3nz6YPYMnPIq5gbt/7kzrfxD/Sz/v6Hr/qkEeDtI+dwZ9hZWjXjYzlfReVMXnz+WV3pQai43Dn0dnWSOa2cgG8QLRKBceQw9+3dzcqVq8Y9V3tXDxcu1tPW2c2+Y2fIcjlZOqeC/kEff//zZ9m0fD6bVy5KGrpXVZX7b1nPU394h7kV0zGPMYz7+/t5/Mc/obmlhaJ8D7Mqr04i8rUG/8YHqf35r/lff/o1TKM1tSPBId1fabRw6lgDq1etwJBTTNhgQQ1rCAEGVcFlUcnyRWUvz55Ai05K3S49AuvO1+/3gkWltFTqE93OwTDhcIi3fvckxuJiFt24nk6ffr7MqIbxaYuBDo+D0gsH6S1bxxJ7LrMLMghcOIQjXMXNm3VPZa5d395mVIa0hGM6w0PFgZCIaNEaMbo4jWrQtbIZrowKQKw6aiyyGStiEw4iIqG4dVIM7y+NUTm8mLbyiGqaMXtejXp4hTJiXfTfiIwV2xFD12OP6jnn2ExQNYuWliaqFixGShe7PpLMyjHidlgId3qYnR3CPUOfnLodJvoyVxGoO8yqDYsRijJUqddhMtBl2sTO3/+aVvys3XwrWc5o0R+DgjXKh1Cj91BdIiUAACAASURBVFDEonFSo6mxGbPJhMusYhQRkBDs78VoNKIoKlJCrKinoppRVTN3b72fPX/91wSECYcxGrFTgonFgiYRY73B/xVIm8AphFCj+5Rcbqeix1OEEB8KIaQQonjE+keEEOeFEINCiD1CiKWj9lsmhNgbbT8vhPj8ZPRnNM43tlI+SjLqvXovK/LtuMyTG9bvbmvGmZPcm9LXXIevp5Npi9dN6jk/aRitYuHtaiMj+/ImKvVtXfzbHz5k56k67lxQyv97xyL+95ZF3DengOOtXv5xdz0XusfnVSqK4HPr5jE9z83fP/cee05eiPN2f5JwNcZlz2AARVFwWc3YzEbuWVLO7w7W0OEdZPupOn638yhfv20VNy+siDOEB/wB9p6p44YxtI/HgsOdx0BXon8gEgrScPgjpi/bGLe++dwpWs6fYs09n0G9RF6jlJKunl4uNrfT0NpBt3eASOTSnpUjDR18eKaeP9686mOTXrTabHgKCqm7oHtmM7Nz6O3qQFFULFY7voGxvT+tLS00NDSwYGFq5Z1wOMJr737Av/z8N5ypqUcIwdf+6E6++4UH2LBsAXdsWMn//ZWHOFffwj//6vfUNCZXg6mcXkRpcT6vvL87jkrj8/upudiAlJKOzk7+40c/Ys7sWRiNBsKRCEsWXHlHxERxNcblrgNHWLlwLibj+LkuHd295Lrjv5eKonD33Xfz7LPPEpygdN5gv5c3fv0zLHYHi266O+XzbfF36uWObcMRpFBTNTnlc5Nufz0gp6CY7hZd3k0IgSEjm3CfrncsMwsQXQ1x2zvL5iMUhYaTBxOO5fYU8tDX/gyAX37/n9j57tv4xykIpGkaL/3hFW7cuAGjcfg9uWffAZYtW5aSi3769GlKSkpwuz++arRjPdkC+D9CiNRK0YnbTya+C8TdaSHEOuA/gfuA7cB3gNeEEJVSyj4hhAt4HfgnYD2wAXhRCHFeSvnRZHbuXEMbK1YN8xp7AxEOtQ3yl0snN38xHArR39OF3Z14XCklDfveY/ryjVeNa3utYKSKRdA3gBYOY3VcmiphKBzm1Q8OsvdUDXcuqWTlzGng60eLyuOUZ9spz7ZzvKGDp463UeW2sGZaJsVOU8pBoCoKd62cw4LSAl7YfYK3D5xiYeV0nA4HwVCYCIL8nCyKC/LJcmdfFS3pNPGxj8uegYCu6/vhSeYXu1kyI48jda18/4195LscfPvOteRlOhKUDj44foEFpUVkOqzIER9gTdNoaO9C9mvkurNSvgTt2R7aziUm6jUe20dm4XTsIyZgvr4ejr73Civv/iwmS3J6VX9fHw011bQ1N6EI/eNkNBiQWoRAwE9fdxctra1ITcNlt6JJycDAIL5giKqiHFbOLGFuXnp66+faenn2wHm+cdsqspwfb8SifOYszlefpqh8Ji53Dh0tulSU1eHE1++FMRLv3n1nG+vWb8A8hqzb7998h9aOTv7qsc+T5Uh+r7MyHHzjwdvZe6Kan//+bRbNKmPrLYmFIO6/ZSM/fPpFXlEFyxbM4eiZ87y/7yjmaPW/Pm8ft95yK2tXrWDfgQMM+tLPHfmY8bGOSykle46c4Htf+Wxanevo7iU7iWGzYOFCDh8+zAtvvMcNq5ZiHfTT0eFFVQSZBhsumyXOixcOhzl15CA739tG5YKlzFyxEd8Yieuu3hp6M2YMuVkjAz1o/n4yCj6+5O1rDW5PPt7uTiLhEKrBiMGZRcjbBdm5yLxylP3PI7UIIpbXIARla2/j5Gu/Jq9sFpaM+O+q2WLhprvuY+ma9Rzc+T6P/8s/sGjJUtasXpWUJvX6G28CsGHdsCRmJBJh/8GDfOPrX0/Z7wMHDrB0ycQrCV8OxjKQdwAqE1Os2AGkRzQbA0KImcA3gPuBkaVUHgVekFK+Fd3uH4Fvob8AfglsRS9o8g9Sdwm8LYR4EXgMmDQDud/np9s7QJHbObTu/fo+lnlsOEyTa6h2tLXizHInFTHvvVgNEnLK5kzqOT+JUBQFGeUHezvb9aTGSzAyu739/OSFt8iyW/ibh7dgi5YTTfYKnptrZ0amhd31PfzqWCthKSnNslHoNDPLk0lJfqJhMj0vi+89dAunGzupbWqjpbMbs9GAUA3sPnKK+je3E9EkZqORlYvnT7j/VxJXa1z2DvoJRT+CH51r5sbZ0/jS6plDMm+xxLSRCIUj7Dh2nm/fE28UtfZ4eeqlnQwGgqgGE5oW4evf+CZYE8sP2915DHS+G7dOahpNJ/Yz9/Y/jlt34p3fU7F0LZlJeO8D3j7e3/4W50+fZHpZBQXFxZiNBjRNQ4tEMBsNmM155C2YR15uLtlmUAO67rgIDDDoD3D0VDWvHzjDW0junVdIabYz4Twx7Knr4NWTTTyyqoppOeOXVZ5sTJs+g3defwUAlzuHcyeOArqBPNifWk+9va2VC+eq2Xr/Aym3OXmmmhNnz/GXf/Jl7EYxZnhVCMHKeTNZMLOUv/3Z71g4u4LykvicEafdyrc+dx+PP/N79p88R1XpNL71lYfx5OZw6kIDNpuNkrIKhBbGbrPR3nHtsQevxrgUQvBnX/oMOVmZ44a4pZR0dPeSk53c87f1/vt56Xe/5olnXiTg8+G2GtEk9AWr8QVCuDKc2CxmglKhs6uLopIZbLjrIfKnzWBwjJwQEfLh7LtITdkdxFJoQ03VGPPLJ1VV5pMGg8GI053DQGcbGZ4ijM5swn2dkA1YHGDPItx+EaNnuO6CzZ1H0exFnN31FstvTz4+M7Nz2HL/Q/T2dHN8/x5++sSPyS8oYOt995Gbl0ckEuG9997jwMGDfO87fxrnKT599izurCw8Hk/Sb63P5+PsmTM8dP/WSb4bY2MsFYsbPsZ+DEHoWS0/B/6SRL3lhcB/xf4jpZRCiEPR9bH2gzI+9fwg8HCKcz2G/jKgpKQE76EPcS6PD5sKc9RDYXEOzULbfRo5WS5MHp1NIkwWLn5Uy93zp6FmRrPIDUbUaL11ka1/NDWbzmXUrCM4jdFjhqN11r2BCB29Okm9czBE9flanDn5uMz6T+WJ1pm3GVVef/cIazfcwPxp0Vrno3hTI/mx0TLymFT9D0VGEFGvmoiMIMXHuFDRSkMY9etXXNkozlFczBHcqCEulTG+Jn3S7RVDQnJEjKdkZri2fGwLCcRqIoym/EY0iS9spDvLSXNrGxVuKwNN+rVHNDn0AjVF+VAieqnhiERV9GszmPXXp8UuOHj0PG5PAV986F7dwPbr8z3V70X16R/3SKfOl4t0t+Ewwga3l7V2K90hSa03yOnWQY43dPGNOXrwxRiTkoqG3RWrnXJFpTwHIMpT00KQ7YT5OXiNDiKaht187ci9Xc1xORAIEYpGB043dXHj7GnJdtP3jRrNvmCIUDhCjive49ra7aW9pw9PlovBUASfP0BPby8ZSQxkv7c3oXJlb3MdJpsDu3vYe+xtbybk91G2eHXCMaTUeP3ZpygoLubL3/krnHb9WTPH+HlCDI1bC7qhIQa7445hs5hZMbOEZZXT2H/iHD/76AzfvXEO7iQsjlavj5ePN/BnmxeS50ydKDzEb7wCyMsvoL2tFSmlzkHu1gX8nVk5dLe1wNzkEz+/z4cEGhrqmV2VXHWktr6BuTMrsFktaUtKWs0mls4u51xdU4KBDLqR/JePbEUaTAgh0KLPwuxZVUjDsCfbYrFecwoWV3Nc5qUweEfDOzCI0WhIqj4A4HA4+MLWLfp/6oc5yKorm2A4Qo81h0F/ALJLCJqcWKxWOgfH/x2sLSfpy5hOxDA8DkJN1VjnTwl0ZXkK8bY3keEpwpDhxtd0bqhNy6sg1Hg2zkAGKFu2gQ+feZy2uvPkTU8tBuDKzGLzbXdwx+23sWvXTr7/gx/gysggHArhdrv51je+jtMR/17eu28/K5YnV8oAOHrkCJWVldhstpTbXAlci7UVvwO0SClfEELMGNXmBEaXbukBMtJsj4OU8gngCYB58+bJX1R7+fbyZFvGw2BQiYzikFqNKv4roFLQVl9DThJliq62Fnq72imffe3x4a4GcvM8nDxxHICcohJ62loIBfxgnFh42eFwoCjKhL3PQgjcJkFmpoECi8JvGy4tFCuEINN+5YyXy8BVGZfLli2TWmYB0IrNasFvdqIt3oISHEBGPVexr7sIBYb+dmTBtKJjHG7zsXRulT6BkxoLsouoWrSM2sZmzBluCvM9KI5sBsP6nm6L/kq0qbDr0HZuvOV2yop0gykiJR8crmXOvAVU5egveE1KTlS3MaOsgjK3/vKOGbwmRXBw70eYDAoPbr0PRVGG2kSUDiIiQUQoGO2//syI4AAiqHPbpV+n9WiD+kRtSa6F3vIcntp7jkeXl2AxqLoHXVHxhyL8Yu9p7lkwHU9mtH9BP0TLwQpzdEJstuv3ymxHixqAMsmENpaMNDRRVUZ8LqI3WsDQZDeWe5fpsKEIgVELUpKbRdDvI88smT9nFrve20am5TZAnxwAROfslJWW8rmHH+HpJ3/Jt7/zZ+Tk5Az3TwJGG0tXb+D7//av3HHvA1hswxP0uL7F+h6btCsGusN7qSwsYyBzRvTccZeBKgT+aJSiPxSlavklECYYkUgJAal3tCFyTSXZXrVxmW4HO7p7ycm6tEiGyaAOGeJBdxEtA+lxlbVQAHPbWZqm3zK0zuDrRoaDqFmTX0nyk4YsTyENF2sBMGZkE/YOM2llXhmhmr3IcJAhBw6gGo3M2nAbx95/lY2f/TqYxjYfVVVlw4aNrF61is7OTkKBADNmzEAghxMXgYGBAc5Wn+OPH0zumdY0je07tnPvvfde+gVfIq6pOIMQogL4c/QwUDJ4gdEjLRPoS7M9JVRVxRtKb8wbVJXwqPrgDouR/sDkeheklLTW15BTPCOh7dSBj5i1eAXqp7x+fLrIyfPQ2a4nVBmMJrILiuloqJ3wcTKcGfT1XR5LyKqC/5OZg5cUV3NcQqxku4bNZsXvT78Qzbrli9i5/2jCerPJSFVpCSXFRRhSFNM5emAvRpOJ8lnDyTxSSmrOnKR0VnyCT1vjRTzTEjmN/f1etm97i7vuu39SFS02luWQ7zTzzx+c52Sbl1BEo83r55f7LlCWk8HK0slV0bkUZLhc9Pb2IBQFd3YOXZ3tFE8vpaOtBd9g6iSesvIKlq9cya5dO5O2Z2dnM6O0lIMHExOGxkJ3dw9ZWZeX3BP7DSe7GMGl4mqPy5Ho9fYnOI1i6OjuJSfz46X6DJ7dRzBrGmHTsKfS2l2LsbDyWs7v+Njgzi+iv60ZAMViR0YiyOikHKMFY950AjWJJZ5zp1eSlV/MyZ1vpX0ui8VCUVERpaWlSe/9gUOHmTN7FlZr8ojXyRMnMBmNzJyZfuXhycI1ZSAD69A5z8eFEB3o4R6Ao0KIbwBHgCFFcaHf7UXR9UT/Hc3iXjyiPSV0Azk9q8ZoUAmP8hY7zUa8/smtsNTX2Y7BYMSWEf9iD/p91J4+TtWiFZN6vk8ynBkZRMJhfNFiBPkzKmirrZ7wcTKcDvq8E/4+xMGiCnyRa+MjOkm4auMSdA+ClGC12gj40/fMz6+qoKOnl6a2ifFGW5oa2fnOW2y6c2vcC72jpQmDwUhmdrzucVtjHZ7iRPGePR9sZ+7CRXjy0ytxnS4UIXhoQTH3zing7ep2/vsbx/nhzjNMz7KzddGMST3XpcLlyqSvV3dOZufm0dnehsFoZNr0UmrPnx1z31Wr13Jg/378KX7rG2+4gbe3bYvTUB0P3d3dl20gi2vMQOYqj8sYGlvb+dv/fJJX3t2VtL2ju+eSPciXglBPG/76UwxOGyHYIaVuIBdcmqLNpw0Z2Xn4+3sJBwNRJQs3DAxTuyxVqwjWHCbsSxxj82+4g7a6czScOzUpfdm7bz8rlycP3Uspeefdd9h0001XZWJzrRnIvwPK0QfxIiBWJP0W4EngJ8BWIcRNQggT+uzZAsRKsrwI2IQQfymEMAkhbkJPRHhivBMrioI/ItOSVDKoyQxkA97A5BrIbfU15E0rTVhff/YEhTMqsNrTy2i/HiCEIDvPQ2ebzg8urpxD0/lTuu7qBJCRcfkeZKPQQ8Ih7Zr5kF4urtq4BIYk8ew2G/5A+h5kVVVZvWgeO/al/70f6O/nuad/yeYt95Cd54lrO3vsEOWz58W9qAf6epBS4nSNmsQGAhw9uJ8Va9anfe6JYq7HyXfWlvE/b5nLf79lPrfNLsSoXhuv9AxXJt6ogZyTm0dXNLpTOWceJ44cHnPfzKwsKioq2b9vX9L2srIyFi5YwG+ffT4tYzUSieD1esnMvDzddkXo1KtryEC+quMSoLOnl8efeYktN65h79GT1DW1JGzT3tVLrvvj0czXIhH6D2/DMWcd0jjskTT6dAqB6rr60ZVrAYqqYnfn0d+h/17GjOw4A1mxuTAWz6bn+IcJ+xrNFpbcupW9b75E2yVEaUeiobGRQZ+PivLk2uLnz5/H7/Mxb97VSVi/Nt6mUUgpB6WUDbEFiI22Fillv5RyJ3q27k/QuVMPAXdIKfui+/egvyQejLb/BPiTdCXe7EaBN40QbiqKxWQbyK31NXhKEg3k2pOHKZ+3aFLP9WlAjqeAjlb9kXFkurG73LTUpVcpKwaLxYIWiRAYVc1nIhBCYFHB/ynxIl/tcalFDRKbzUogEJiQhvT6ZQs4cvoc7V3JK+KNRCQS4cVnnmLuwsXMmh+vwxsOhTh79BCzF8d7OlobLpJXND3Bu3H80H6ml5WTmZVa0myyYDGq14xhHEOMYgHDHmSA2fMW0lBXQ1/v2L/HuvXr+fDDXSmN0S1bttDV083Lr7xKODw2ta23txenw5FSXzVdxHITrhUD+WqPS4C3PtjNqoVz2bB8EffdvJFfv/xWwrexrav7Y/EgSymp2fUGijUD87RZcW3Wrlp8mTOm6BUjYM/OY7BLr5BncLqRA/HJwZbKZQy21NJ/8XTCvu6Caaze8gA7X/oNZ48duuQxsWffflYsS10i+v333uXGGzddtaJLEzqrEGKOEOJhIcRfCyHyo+sqhBCpNYcuA1LKWimliA7+2LonpZRlUkqrlHKFlPLAqH32Rddbo9s9le75nAaFvsE0DGSDgVBSisXkcZCllLTV15JXHG8g9/d04e3qnJQqcZ82ZOfl09HaPPT/4qr51J1O5KCOBSEEzoyMyy5n+SmkWQzh4x6XmqbpYUCDAZPJlFCKdCw47TZuXLmYP7w3/jf/rddfQzWobNx8a0Jb9cmj5BUVkzHK4G1rrCNvFL1CahoHd+9ixdor5z2+1uHKjPcgxwxkk9nMnAWLObJ/75j7l5aWEolEaGxsTNpuMBj42le/QntHB//+Hz9iYAxe87HjJygouHyayzVIsYjDxz0upZScrK5h5UJdZnTpvCoURaGuMd6L3NbZQ37OlZ8o9jScp6+1noyltyQYwua+BvyZqdVvrkfYMrMZ7I0qLTnjKRYAwmjBs+5eOg+8SzBJmfiCGRXccP8jHP5oB689++shemO66B8Y4NChw6xYtjRp+9EjR+js7GTJ0uTto/HMi6/g841fuGsiSCvDSwjhQJeSuR8IR/d7A33G+rfAReAvJrVnVwEOo4J3cHyOo8GgEolEkFIODUSn2Uj/JHqQ+3q69DCIKzNO67H25BGmVc2bSs5LghxPPqcO7x/6f2HlXN7d/R7hUBCs6d8vnYfcT84YBQ3Gg1UR+MPX5of0k4aYQaIoCmazGX8ggG0Cv+cNKxfz//3oSS7UN1M2LdFQ0jSNV19+mXNnz/DwY9/UvRWjqFbH9+9h8dqNCfu2NVykfG58NKep4SIGg5GiJIl71wtcLteQl9idk0tvTzeRSATFYGDR8pU8++TP2XDj5pQFjoQQLFq8mEMHD1JcnCjNBuB0OPjKF7/Asy+8yKuvvspDDz6YsM2Zs9W88847PPbYo5d9TYqi1/W9Vg3kjxvbOxQCGnRkVYFNH4/Zefl0R0xotqwhJRaT0UBQA0tUuUDVQtiiybGKX8/3UHz6ZCrc2zkko6n16fKAalD/Jpu1MEXuGQBYo2WcewMRevxhIuEQ9XvfpWrNZvxRBZfp2XamZ9vRAoP4z/vZsGw2pe5oW6ZlqOKt3ThcXtoYtauHyknH3gMyXnlhXChKotRpTEJ15KsrVtwotq0YsV/sfNqITWRsu1gJbEFMi0WJSrMoUWqfIsSIMtT6fjHpV5NBkON209DeiMdpJqgW0b3/TaryHTpd0abf3yyrG0vnUjqPfMDS+x4CGCo1bTUolLjKWDbz22zf9ga/+c9/4+4td7B0yWKU8CBiIN6WGlLKUQ0gFN5+800WL5yP2+WMu7ealPT29vLiCy/wxa98FaGqRKRESFCVUe8LIUAz0Of1cvTkGR5OISV4qUjXg/wvwBpgM7o0zMjp2WvAbZPaq6sEp1HQl0alJEUIhKLEZe06JpmD3NbUgDu/MGF9/ZnjTJ+9YNLO82lCdl4+ne2tQyF4i91BdkExNSfG5jyORoYzg75J8SB/iqQsriK0SAQhBIqiYDGbJ5SoB2AyGrn/lvX86g/b8I2iUDW3tvH4j39Ma2sLj33jW1iT6Gy2NtYz4O1lemW8Nm8wEKCvu5PsUeP03OmTVMyec12HczNcrqEkPYPBgDPDRU+XniyZl19Apjubo4cOjHUIFi9ewqFDh8ak1AghuOuO2zl58iS1dXVxbSdOnuJXv/ktX/ziFyguSizgMlEIRTdHmDKQAehsbiQ7vyjuOc9wZdDbF5/kbDaZCAQnl344Gge3v43dnUvujESlA62rCVte8XVdHCQZbM4MBr36GDXZnAhFJTyQmKBeumQtTRfO0NeTvKiy0Wjkrrvv4Qtf+jLv7/iAH/34CZpb28Y8d3tHJweOHOXWmzYltEkpefGF51m5ejXF09Lz+tddbKBkWvGkv3PTfWK2Av+XlPI9YHTWUx3wqXCVOI3pUSwgqmQRGWkgGxkMRob4kpeL1sYGsvPjX+qDfd0EfINkF1z+y/7TCLPFgs3uYGDEQF5yw+0c2/UOPZ3pKxlkZDjp9V5eot6niYN8taFJiSDqQbZYJiT1FsPCWRXMLivh16++S3VtA3uPnuKnv3qG//jZr5g3bx5f+PJXkxrHAHvef5ul625EGeW9aG+qJ9tTmBDNOX/6JOWzru/qli5XJr29PUPeVp2H3D7UftPtd/L+26/j86WmRuTn52O327lw4cKY57Jardx15508/9xzRKL817379vPb51/k0S89QllpYh7HpUARIupBnpr4AnS2NCZ8o1wZGfQlGMjGCeV0dPrCnOnycbHXn5a3vqnmHHWnjzN74x1JDaRIVyP2/Cl6xWhYnS58IxSbTG4Pge7WhO2MZgvlC5ZxdPcHYx5vWkkJ3/32t5g/bx4//Ml/8cxLr9PXn0i7CIfDPPPCy9y4fg0OR6Km+NEjR+js6ODGmzanfS0X6+spmZY80nQ5SNdAtgKdKdqcJBrNn0g4DOlRLEBP1AuNSA5RFYHVqDIwSVrIbc0NuPPjf/DW2nPkz6hAJKtSNwUAsj359HQMD3JXTh7zVt/IO7//bdoftoyMy/cgWz/FHOSPG1pEAyFQVQWLxYw/cGlFWO7bvBYhBK/v2M2xsxdYMG82/+1732LD+vUpE7ia6+vo7mhjzqLEKk+tDYn84+6OdoKBAPnX+STWbLEgEASiv9XIRD2A/KJiZs6ex45tY+upLl22jN0fjc8fX7JkCTabjZ07d9LU1MTLr77Gt772KNNLEuX3LhW6B3mKYhFDzIM8EhlJDGSL2UQgkJ6B3B8I8cPDrbxf7+XpYy08cbCJTm9qXmlnWws7X3mWdXc+gMmSfIIb6WrE5pkykEfDYnMQ9PvQIrrNYs7y4O9MNJABqpau5tyJIwz2j+04UlWVDevW8jd//qeYTEZ++ItfMzA4/PtpmuTp517CYbexaf3ahP19Ph8vv/wSDzz4UEqN+mSoq29g+lU0kPcBj6RoewBI1AL5BEKnWKTnndKVLOINLqfFiHcSDGRN02hvbsLtiQ/dttWdo6B0KjlvLOTkFdDTHp8kUrl4JaFQiJaGi2kdw+l04O2fmIG8pzPIxYHh394yxUGeNEipRSkWKhazhcAEpN5Gwmgw8OWtt/HtRx7gKw9sYcXihVgs5pTbh8Nhdm17nWXrN6EmeVm3NtSRVxRvgF04o3uPr/dwrhCCjExXghbySNxwy22cPnGMM6dOpjzOqlWrqK6upq01+Yd75Pnuv/9+tm3bxq+eeoq7t9xBXl7umPtMFIqigrh2k/Q+bnS1NCZEM5MbyGZ8aY7Z5w/XsSTPztcW5vFXa6ZT6bbyL6/vY9vx2gR1jM6Odl56+hcsv+kO8qcnlwnTAoNo/gEsWVPybqMhFAWL3UFoUP/WmVN4kAGsdiflcxZwYv/utI5ts1rZevtm5lZV8MTTz9LZ3cPAoI9f/PZ5+rxePv/Q1qTKFK++9hpz585l+owZaV+HpmnUNzQyPU06xkSQ7lv8v6HrKW4DvorOCr9DCPErdImY/zHpPbsK0JP00jSQDYlSb06zgf7g5RvIPZ3t2OwOzNbhGXEkHKajoZb8MWqgT0FP1Ottjx/kQgjKZs2l5vSJtI5xKRzk7e0BnqzzcXFQfyYsKlMe5EmCJiVCgKpEPcgT5CBfCkKhEK/+9kmsdjuzFiZmUWuRCO3N9QkGcs3ZU5RXzb7i/fskICPDhTeaqJfrKaCtOV6Rwmaz88DnvsAfnv8dba2J+rmgyy6u37CBbdveHvd8eXl53HDDDRQWFrI8RWb85UAoYsqDHIWmaXhKShO0+F0ZiRxki9mEPw0P8rFzdTT1+rhthl7pWlUEm0rdfPf25Vxo6+F/P/EMe/buo6a2lr0f7uS/Hv8PVm7cTOmchSmPqXU1oWYVXvcT1lSwOV1DChWmrDwCXa0pn+/5y9dw+vBewuH0+eR3QGQE0wAAIABJREFUbb6BytLp/MtPnuT/+df/wJ3p4utf+jxGozFh24v19Rw7dozbbr8jyZFSo7W9HYfDgd2ePIJwOUjLhy2l3BkVEf874IfoSXr/C9gNbJZSJld0/4Qhu7iIvoNNCFce0qSLjGuqns0pzXakEr1diopqMuN35BPOzkM4cjBk5eM82YUvqxBTZTkyMAgxzmKMFxXNWBVhP9KgZ1vGjhmOZp5qQHtTA56i4qFsUYDW5jqycvIoytELElij6bYmRWA1xmeoGpVEHlYiNUtBqsZR2yjIaHbw6B0ULTycaRrLxo3dG5MVaUjiiYsNtNHUBqkN3wuiL87ofTAkoY/IMYj3qhAIIYe6XFZSzM63X2Oayxw9vg7bggU89/QvsWy5C6EoGJWh5OChF0IoAqgGrK5Muvv60SyuIbF5YctC+PUXiWrXfwM1S/dQtSt2wqKPh9fM5Fe7z/A/tswnw9JJk9ePdc5sFFP0t45ds8GkZzkDMhhv7AmTBZGRk/J6r0foSVoCoQhMJtMlcZAnAiklv/uvn+DMzOLmex8EkUi/aG9uxJnpxmIb5tBFImHamhspnj45nNdPOrLc2XR36fkAufkFDPT34+3rJcM1rIlbNK2EW++8h6d//hO++iffJC838dlft24df/u3f0tHRzs5OWN7hW+66SYgqkIwyYasrmIx5UEG/V5svO+zCeuTepAt5oTk2NGQUvLaroPcNX8aRjX+nZjjtPLYpkXUaA7eOnCcwcFBzHYHjzz6dUyZOfSMIa8a7mpEzU5Mdp+CDqsjg1A0Mc9gdSBUg56oZ08cZ5k5eWR7Cjl7/EhSylkyKIrgzs0buWPTenq8A2RlunQViyR48+13uPWWW7ClyAVJhbqL9VeEXgFpGsgAUspdwHohhBXIAnqklKkzLD6ByLSY6PYO6LqrY2wXDIXo6enFnVBfXsKYe6aHloaLeIriwwXejhZyCq7MQ/Bpgjsnh2DAz+BAP7YR3o28/AIsVisXzldTPkqNYDTy8wsIhUJUnzvHzNKxOYzd/YM8sf04dy6YzuyCLKo8Lt4900SfP0y+O2NSrul6h9lsQdM0gqEwDU0tVMyaQ9icMVSp0NGhly4WEd2zoZntRDIKouv0CZgIDiJCvrh1ymB3tM2HIzpZdBgtSClpaazny48+itlsxhctQR+Mni8YkUSCgzgzMrBEJ6dGRRDx+TCZzGQ69EmVJSq7ZDYoKGHdQBAxpZuYjJTUEOFgXP+FFh6WeopOsoVB759itSMj+oQr9qYRI/nT0YmXYtENd2G2IKJ/axZdrl4abdF/zcMT9ehEUAqBGG0Axia4UkuUrmJ4Lq1GexSb1+fmZNPb04XZoGBSBYVFRXS1NZMXraqmRifyS5csoberg/fefoPPf/5hvf/EJtdgNZtZvHgxhw8dZvPNNw9PmBXD0N+R6G8T67kQBtTo/Y85H/whbdgREd0wIiVaJMJHO94nt6CQspmzGIj93uHYthJFCPyBIFokQpDLKzjyaYbVaiUcDhMIBokJblmj0oxj4VRtAxFNY06+C9mVPEJUUVLIjEVrAOgK6Q9ZbyB1+pOUkkh7HcalWyZ+IdcJrM4MBkZoHFvcHgJdrZCCnjRv+RoObH+b2UmiamNBURTdOE6BpuYW6hub+MIXvzSh40opOXz0OIvmz5vQfuli3LiDEMIihAgIIe6NdsgnpWz6tBnHACaDgsNqoaGtk3/+xW+prmtIul1d3UUK8j2YzfFe00AwjMWUGDqYKBrqaigqmRG3rreznczsyeXUfRohhCCvoIjWpsaE9UtXrmHfhzvHPYaqqtxz9908/9xz41bpeumj4yyb4WFVWT4Ady+Yzs7zrRxt7GTetClP8GTA6XQQiURo7+iguamJsvKKK3o+IQRZWZn0j0GzURQlQX4sFApiNJmuaN8+Schyu4c8yAB5nnzaU1Ap1q7fwLlz52hubkraPn/+fI4dm1jRn3TgGxzgt7/8GbXnq3nzpefYv2tHym2Dfh+RSATt01NCftIhhEhIck6HYvH27iPcsnKhrhQySdD69WdPcVz5IiWfVFidLoKDwx5/a940+hvOpdx+Wnkl4XCI+gupt7kUvLt9OxvWrUlKvRgLJ0+fobunh2VLrkxl4XENZCmlH2hDLxDyqUdOVgY/fv5NnHYbv3zxDXqTfCTPXbiQtHZ4IBjCbLq8Ah59vT34BvrJLYgPC/V0tuOaMpDTgqegMMFABpi3cDEtTY20tTQn2Sse8+fPJzcvj3e3p/5gdvT2c7q+lU2zhz37WTYzN84swGU1keOcfE7U9Qi73YHBYODkyVPMKJ0x4ZfopcDpdOL1JmqCxqAoaqKBHAhgmjKQh+B2Z9PTPWwg53o8tKdItjObLWzYsJF333k3aXtpaRk9vb10dqYSU5o4pKbxh2efwZ2Ty2e+/BifffSbHD2wlxMH9iTd3u8bRFFVPnz71Unrw6cRrlEGstUydpJe7cV6ur0DLJ6VPNHuUhFpq8GQN1VeeixYnS5CIzzIzrK5DDbXJK2cBzoNc8WGm9izfdukUY26e3o4dfoMa1etnNB+4XCYl/7wCvfeeceEFC8mgnSZ6z8Gvi2EuPJfpquMgpwsphfk8tUH72Td0vk8+fwrCQ/C+fM1VJQlDmZ/MHjZHuQL56qZVhYv5SalpLejjcycqUzcdOApLKa1OdFANhiNrFizjo92vJfWce67917e3/EBg4PJZYbePVLNmjmlWIzxg3NTVSHfvOHKhHyuR9hstiEZtsqqWWNuK6XkyZfe4tTpM5d1zgxnBv1jaGELRUGOMpCDUx7kOLijHuTY+zMvz0N7W2o1ihWrVnHmzGm6uhILEiiKwry5czl+/Nik9W/vRzvx+3xs3nI3iqLgyszivs99kX3bt3F830e899IzHPnw/aHtA75BVNWAyZxa+WQKYLfb6R8YDjA77XZ6+lJHY/YcOMzahbNQJzmRLtLVjJo9RUscCxabg5BvWKtYNVlwFFfQVXM65T6VcxfQ39dLR4po0ERx4PARFi1YgNVqndB++w8cwO12M7sqsTjMZCHdJzITmAfUCiGeFEL8oxDiH0Ysf3/Fevgx474bV/HV+25BEYJb1q0gEAxy6IT+sGiaxqtvvk1XTzelMxJrowSCIcyX6d26UF3NtNL4EHJgcAApZVxC0BRSw1NYRFuKUO2Slas5f/ZMXOg3FdxuN3NmzWLv/v0Jbf2DPg5U13PDgsRwvyIEdvOnfi75scFmsw55CKrGMZDPN7RytraBX//uOVrHqeY0FjIyMoYkypJBKCLRgxwMYjRNGU8xWG02hADfoG4s5Xo8dLS1pqyMZ7VaWbFyJTt2bE/aPm/+Ao4dvXwDWWoa+z7ayYfb3+Xuhz4Tp4GdlZ3D5vv+mPOnjpNbOI1zJw5z9CO9P0G/H0VVMU39xgD0+sP0+sN0+UL0BiL0BiJ4w4IICprBqie2m+1MLy6irrEZQgFEOIgI+RDhACIcQGoRTp2tZn6F/j2VmoYWDumLb0BfutvQutuQXc2ofS2ofS1kmRWyzAo2o4IqBKoQBCIagYiGLxjBF4yg+bzYs7JxWAy4zEZcZiM5Nn1xGBXs0cWsCsyqwIg21K+hJeSLLoN6HsPIJeQfXsJBfdHCeg6Bpumc/RhvXyhI1aQntiuG+JLS+oUPLbFjKoF+ffH3ofj7EMGBof4o4QBKOIAaCWBA0xdFJCym2KLGL6oQOm9fKCA1FEXgMBvItBpxF04j1NNKltVIlkVfMq0GMswqGWYVt81IReVMOhtryLaquNQw5sFOzIOdqL1N0aUZ1duG6m1D6e9A6e9A9XWj+rpRfL3Dy2A3p06cZEH5NJTBbhRfN8awD2PYh0ULYNECmCLRJTSAOtiFOtiF0t/Brg92sGnForjjTTbSNZDvBwJAEFiPrn384KjlUwGjwTDEg1KE4N5bb+QP23bQ0dXFj3/xS2pq6/jun34zgX8M4A+FLsuDrGkaNeerKRnFsezraseVkzcVKkoTWe5sfIMDQx/mkbBYrCxesYod721L61jr1qxm54e7Ez7qR6trqSr2kGGb3NrvU0iEzWZDURQWL15Eds7YvO639hzhjg0ruGvL7fzsyV8RCl1aidvc3Bw6O9pTtitJPMihYBCTccqDPBJZ7my6ozQLi8WK1Wajp6c75fbr12/gwP79SaX8Kisrae9op63t0ic+AM8/8zQnjhzikce+SaY7O6G9uLScex55lHnL13LbH3+JM4f3ce74IYJBP6qiYJzyII8JIUAyHHXNdDkxGgx0dvckbNvc2oaqqnjcqRO4LgVSSqTPi2pzTupxP21QVBVtlFytLaeA3tbkDqYYppeVceH82BUu08GAz0djazsVMyZW0OfCxQZCoTAzy2Zcdh/GQloGspSydJxlcslD1xAqpk+juNDD3//bjygtKeHrX/0STocj6baB4OUZyC0tLZjNFjIy45MK+ro6phL0JgChKOTlF6b0Iq/ecAPVZ07T1FA/7rGml0zDZrNy6mx13Ppj5+pYUFowKf2dwtiwRT2RlRUVY04S61s7aOroZvn82axYugRPXh4f7N57Sef0eDy0jUEHSJakFwwGpigWo5CZ5aZnRLQmNy81DxnA5XLh8XhoaEhMkDYYDKxevZodO1LnBYyHizUXaGlq4OFHv0H2OJJxAHani80PPMyeba8SCgQRqorJPDUpHgtCt5DjMKO4kJr6xPfxiTPVzKmqnHTnjxbwgaqiGKbG41hIRhWzZubgH+gjHEzNGy8tr+TcuepLLtoUw5nzdVRML8ZonBiH+IO9B1m/YglKEknbycSUenYa+KMtt/BnX/8qt918U8qStJqmEQpHME3whx6Jc9XVlFYkhux7pxL0Joy8gsKkPGTQPVmbbrmNN/7w0riJBkII1q1ZzYd7hqW+g6EQ5y42Mackf1L7PIXksNlsaJpkYGBs4ZwPj51l/aLZGA36GL3z9lt5Z/suBpJEEsZDvsczZvU2IdSkHuQpAzkeWW73kAcZIDc/P2VRkBiKioppaEw+dteuXcfhQ4fon2Clyxh2vv8OazZuSvkeT4asXA9rb78Xo8mEIpQpGs14EInFVGYUF1LXkGggnzxTzZyZk69KEx7sQ7FOyWyOB0VRh/T5YxCKQkZuIV1NdSn3c2ZkUFZezqGDBy/r/CeqLzCncmL+1faOLs5eqGX5oiuf55OWgSyE+MZ4y5Xu6NWEw26jqGBsYygQCmM2Gi5rJlxbc4GSGYkPS1/XlMTbRFFUMoOL56tTti9asoxIOMyZk8fHPdbC+fM4X3txKPHkTG0j0/JzsVmmjKGPAwF/gHA4zMDAcDLJjh3bqa8fLh0upeTkhQYWVAyH6jx5eSycN5t3duya8DmdTieapjGQwhBL7kGeMpBHQ5d6G1aeyC8opKVp7PBtUXExDfXJoztOp5P58+fz4a6J/6aN9Rdpb2tlweKJV9mbUTWPxWs3AXIqSW8cCCHiKBagG8gX6uMnPV3d3bS1d1B5BcLkkYE+hHWKXjEeFDVxog/gKaui7cLYic6r16zhow93XbKaxaDfz6lzNcybOTED+aU3tnHT2pVYLVc+kpOuB/mHYyw/iC7XNfzBIObLoFdIKamtqaUkSQ3yvs72KQWLCaJs5iyaGxtSKhEoisLq9RvZ++H4H1qz2czcqpkcjCZrHq2uZUHljMns7hTGwOtvvkkoFGIw6gn2DQ7y+muvsX/PsBxXa2cPmpTkZ2fG7btu1QqOHj854XMKIcjLS02zSKqDHAxOybyNwmgt5PzCIpqTSDCORHFxag8ywKZNm/hg5056xkiiHA1N03jrtVdYu3HTJUtChcMhpJwykMdDsnLc0wrz6fMO0NQ6zOvff/AQi+bNvSISXeGBXpQpA3lc6BSLxGIreWWzaKs5kzKhFqCiopJgKERt3cWU24yF7XsOMXdmOZkZ6f9OZ85doLm1jY2r0qvkd7lIl4OsjF4AN/AZ4AgwZzI7JYTYLITYLYToF0J0CCF+NKLtESHEeSHEoBBijxBi6ah9lwkh9kbbzwshPj+ZfUsFnX986R/Hzo4ODAYVV2ZW3PpQMEDAN4g9IzPFnlNIBqPJRMWsOZw+djjlNrPnzaejvZ3WlvHlapYtXsj+oydpam3naHUt8yoSVUyuB1yNsWm324hEInij3tz9+/ZSWFjE6VMnhz7EJy/UM6esOCGCU+DJIxAMJk0QGg9j8WWFoiBlkkIhU0l6ccjMitdCzsnJxdvXmzQJLwaPx0N3d3dKfmNuXh5r1qzhpd//Pu1+7N+3l1A4xJIVq9Lv/CgEA340TcNouvY4yNfSN1MkoVgYDCqb1i7njfd1h4SUkn0HDrFiycLLOVVKhPp7UOxT38zxkMqDbMvIxGzPoKMxtfGrKArr16/nhZdenjCNzecPsGP/EW5Zn572sZSS/YeO8PRzL3PP7TdfMd3j0bhkDrKUskdK+VvgcXSd5EmBEOIG4Dngn4BsoBj4abRtHfCfwNfRy10/D7wmhMiItruA16Prs4A/AR4XQqyerP6lgj8YuiwPcm1tDdNLSxPW93a248zKRplkjcjrAXMWLubk0UMp21WDgSUrVrJv9/he5JkVZXT19PLDJ3/LQzevIyfz+uO3Xa2xabfbMRqN9Pd70TSNjz7cxT333oPRZBryRp64cJG5pdMS9hVCMLOijDMXUvPpUiFvjES9lB7kKe9iHDKzsujt6Rm6V4qqkpdfQGuKBFrQK1nm5+fTOIYXefNNN9HQ2MihQ6nHN0BnZyeHDh7gjdde5+6tD17We1Q3kCOYzNfWJOia+2YKkobd1y1bTE19I43NLdTUXURRFEqKC5Mc4PIR9nYjbJOrjPFphEjCQY7BU1ZFffXY0bfVa9ZSNbOSH/z8qaRF1VLh/T0HmVsxg1x31rjbXqxv4AePP8H7Oz/kS599gAVzqtI+z+ViMqyuGmAy/d3/B3hcSvmclDIgpfRLKWNM8EeBF6SUb0kpA8A/osvP3Rdt3wr4gH+I7vs28CLw2HgnDYfDfFCTWtZpPFyugkVtbS0zktArutpayMz1XPJxr2dMKy2n39uXsrwtwNIVqzh+5Ag+X/JiIDGoqsrdN2/k4fu2sHTOlS11fA3jqoxNm9WGwWCgu7uHl158AYfDQUnJdGbNnsPpU6fwB4LUNbdRVZJcVWRmeRlnL9RO+GLzPJ6UCWWpDOQpD3I8jEYjVpstriphwSTQLIwmE1945BFe+v3v2b17d1yblJIPduzg7/7u7/jB97/PiePHuXfrVvILUhtjZ04ep752bNmqYMBPJBzBeO2pWFyVcZkKgkQVCwCTycgtG1bz7z/+GU/87BesXrn8ikmXhqc8yGkhmVxlDJ7y2TRUnxyTYyyE4M7bb2Pp/Ln88OdP0d2XurhSDB3dvezYd5jbN44/B3tv+wf89Je/YsXSpXzvm1+jtOTjLfxyWX5qIUQB8OfoRvJlQwhhB1YAbwohDgIlwHHgL6SU+4GFwH/FtpdSSiHEoeh6ov8elPG/6EHg4fHOLaXk7TMtLF8/gNM+XNFFmvS/pcFMRNW9Q0ps9MeEvqVGtz+CzeFAs+h8GqGaEJHg0LEBRDgaVlTU4X0VPZu6qbGR5StWogBmNfrSMKv4ejrJ9+TjNKvRVXqb1ajvbzUomKLrlHA0JBnSZ4RCJnnwY+tGtIlwcGidiOi6sSIQTYjy6w+8FvAhYh//aHawNOuFSzSjFVRD3HFFJAyxd58U8fdLKEN909k6w32VI7eL9S/JANWiBxeC4euP7meKSr9IVNas28Ce99/mjx/+IgCR6LEiEkKaxGx3UlpRyZHDh1myYhUGTd/XOCQfo096VNXIkg03AxAO6uEkxaLfB9WZM3TfpKLfB2kwJrmO6D2PCcWDLio/8rrMTjBecx/gqzo2TSYTqqpisViw2Wx87uEvAFBWXs7uD3fRkG3EbrWkVJCpKJvBq2+mp3s9Ep6CAhrrG+jt6U6gPqlGI6FAACnl0Ec+EgkjrrDs0CcRTmcG3r4+XC7dYPHk59M8TqJeQX4+Tc1jl4QvLi7mm9/8Jv/5+ONkZLiomqUXkTlx/Bh7du/ms5/9LMXFxUPvCn84+Ye+s72NN196HtVgpGLWHFbevCWukmkMQb+fSDh0TRUKuZrjcow+JSTpxbB+xRIWLV5MRBh0udTI5cmEJYMWDqKFAghLcjnWKQwjpmKRzAh2uHNRVJWe9haypidG50bi5o1rUVWV7z/5PN/94oO4zMlVYqSUPPfm+2xavZTsTFeKp0THa2++xZFjJ/jet75BZqZL/1Ymd3ZfMaRlIAsh2kmcE5oAJ+BHn4VOBrLQvdqPArcDp4G/QA8JzYyeb3RmRg8Qi3eP1x4HIcRjRGfKJSUlrChy8Ys/vMs3H7p9XNe61+tl5wc7uPXmzYhIhI8OHmP1kvnpXWUSaJqGMUkVPoPRSDgcTrLHFNJBeeVMjh4aW4pmRnkFDXV1l8VPvA7wsY3N0ePyWH0bvkCQRfd/lczMTE4PwJG+HmrqOunRjBxyzCdo2s+/7m3FU7WIObkOcoL6q81jNeLKtTLg8xH2DeoScP1RVYWAPmEVijo0l1NceiGSiD2bnMx8VqxcyYE9H3HDrXcMGVi+kEZAmDGYTFxsasWZlY3NqOLKzqVtRPU+gzI8cRUhPUIxNBmNQo6oqKUZoxNz84iKmaMNNakN9TXWJtVEr7UWm4yF/IjoxDk2GRualIVF4iRu5OQ9NlkeMZmWoyb2IyuCxYzK2IQ1ooFBgYDfR5bTPjSpN5uMCDRifgAt+mWJaHLo1AaTiUgkgox5GJN9SaWGJzuLmzfdyMH9+5g7WzeQjx89ysb1a5mRnwNhP9KgG7QhISA2eY4aBIoUnDt1nPkLF7Nx8y089bMnqDl2kAVLV+Ad6CYSiZCVnYNBEUQCgyAEec6JlcS9wrhq43JMjGH5OOz2pM/sZCEy2I9qdUwV1koDIkY5SmIgCyEoKK2kpe4CpeMYyACb1q2iv6+HNz7Ywx9tXpN0m9rGVto7u/nqQ3ePeazGpmb2HTjEn3/nWzjsV6+CcLoe5P8g8ZH3Aw3AG1LKzsRdLgkx//wvpJRHAYQQ/wf4S2BNtH00sSgTOD9i/xlJ2vtIAinlE8ATAEuWLJEn2/txZVv5+Uvv8Ll7b8dqSe0pOHbsGO+89z5erxcFiclkZOm8WVzqFEdPbEj0+Fqs1jiZpClMDM6MjLjwbjIUFpewZ9cHH1OPPrH42MbmyHG5bNkyGQmFkJqGyRr/ovT392JxuFAUhVkb7+TwK0+RVVwOufGeI0VRyHA46O0fmDB3fM3atfzg+99n7aabgXiviDu/mK6WRpxZejW2vPxCju7fk+Qo1y+klPT1eXE64zPVBWMbL7oXMj0sXDCfV157nUAggMFg4PTp09yz5Y60+3jm5Aluvu0OLFYrW7Y+wNM//yk5efm89NunCIdCrNpwIyvXrsfnG8RstlyyrNUVwlUbl6HozGYwFCEQ1k2JQFgjGA6DwaBHykYixnUNB4c99LGIY2zSpkXQgvrfoQF9UmkY1CeyMujHENT/jh3ZlVFMl0/fvj+g/9s+ECYcDtPc68Md1r/hhS49KqfFJkZCDE3QDLEAZzg0FPUlOpEdiqhq4aTRV71RSfxbjEjiHVoXnZyNjCCOug9oEYSMVv8cFV1Ei4Axut3ICUYsQh27lyPv+1A0NbppOBZBlRjV4TGYZTURlmAx6P3JsujOOndWFn7fIBZVwawOR60BjFHvv+LrQQT1iHNVYTbvHTwJvr4hbrMwGIf6UFPfxOzyEgxCghYefgtoyvA1ahonjh9j4dwqnCYBIT1iKyLh4Ul7ZDjqfSWRrorF/5RS/q9Ry99LKZ+eROMYKWUvUEsKfwG6YsaS2AqhTxEXRdcT/XfxqP0Wj2hPCUVRyDAbmDWjCJfDxj/+7Dd09aY2rM6cPct999xNY1MztRfr+dIDd05IfH40kmX+ApitNgLj8GOnkBo2m52A3z+mFz43z0N/Xy8+38QLSlwvuJpjs2TRKmyZ2QkeoYC3F7NTN3gdOR7yZy/l/AevJh1HrowMerwDCevHQ05ODgXFxZw6ltjN7IJiOpuHK77l5hfS3jI2deB6g9frxWQyYR6pWSol49jHw9ulAYfdTmlpKcePH+fAgQNkZ2fjcqU3Eerr7aW7s5PppboWa0FhEf8/e28eJld1n/l/zr21r11dve+LWlJrRRISAgQSCCx2MGCwiY1jOyZeYjueJDOOPfE8M79MEi+ZJI4fJ7ZjGzBgG8xiNrMKBEhoQ/sutXrf9+7q2uue3x+3qrqru7q7WrQWpH6fp9Squ56quufe7/me9/u+C5cu54n/+glXb9jIg1/6GkcP7uft118hGAigKIKXnn0qo2OfC5zPfjkZYtEoBvXcqAykhWpKBrhzmBpJ+uck2XaL1UbQn/l90+N0MDA0+fYtXb0U5+VMe5wjJ06dFQOZmSJToxCDEMI8btnHhBB/KYRYOdl+Z4ifAJ8TQiwSQhjQR8JBYBvwc+BuIcRGIYQJnf9sQS8qIP7XJoT4GyGESQixEZ3+8bPpThqNRmkeDLJ51wHuXL+Gq1cu5b+eepFwODJhW03TOHXqFEsXL+arX/5zvv7Q57B8yOp1IQRSm3iPs1htBINzAfKZQlEU7A4HPt/kxQOKqpJfVEx7GnvbOaTgvPTNwGA/VvfEaueQbwiLYzQ5VrziaiKhAEf3bJ+wbZbbeUYBMsDKK65iTxqlE29BCX0do9eM051FNBqdVHv7UkRvTw85Od6UZZmEvTPJIAOsWLGC5194gT88/zx33XlnxvvVnThGVc38lOTGNRs3cc9nPs9lq9fiyfZyz2c+z/HDBwmHQqgGw4WoVHJe+uVkiMWi50yGKy0MRj3TeGFl+i9MSJnMbKeDxWYjOAMJtyynjf5h36SzLK3dfRTnTx1C+UYdAAAgAElEQVQgD/tG6Ozupbri/EupZqpi8Tt0qRgAhBBfB15Br57dLoS4bRbb9EPgl8BmoAedV3WzlHJQSvke8BX0Tj8I3AfcIqUcAl16DrgF+ER8/c+BL0kp35/upIqi4LYY8Ga52HbgONevXUlhrpcn//DihG2bW1pwu9243S7MJhOWWXB0mSyDrF+gZ/Zgn4MOp0svEpoKxSVltLWcmeD5meDAsVM0tk2vv3yB4bz0zcBgHzZ39oTlQd8g5jEBsqKo1Gy4g73vvsnQQH/KtjabFX/wzAqCqmoW4B8ZoWdcdji7oIiB7k5isTi3VwjyCoqmlDC71NDT0403Z9wDUcrpKRbx7TLFsqVL2bhxI9/59repqsrcmaux4TQV1amZKpPZTOW8+cn3NrudT3zmcxSXlWNQDVgsFxQHGc5Tv5wM0WjsvAbIQlEBMUrpmMOkkFKbkqttsdoJzmBm1RqXQAykSSxGYzG6+wcpyJl4Lx+LoyfrmF9dgcFw5jPys4VMA+S1wMtj3v8N8M9SSiu63uJ3ZqtBUsd3pZQFUsosKeV1Usp9Y9Y/KqWsklJapZRrpJQfjNt/V3y5Nb7dYxmel75ABAXYdkB3TLvv5uvYf/gokUjq9PzJEyeYP39+mqOcOSYLkK0224wu0DlMRKKKfioUl5XT0tRwbhoE/NdTL/C7l948Z+ebDZyvvukf6sfqSs0gSykJ+QaxOFPplVa3l5zCEro6UxUQzEYT4cjEm3YmUBSFJStWcXR/ysfBaDLjyMpmsHtUKzmnoJDOjqnVFy4l9PT0kpOTm7JMSqbMWoG+fiZcX5PJxLXXXIPNZptR+5obGigtr5h2O29uHpddfgVCEal0kQsA56tfToZYNIp6PjPIAAZTkj88h8kxVoUnHWaaoBNC6DQL38SYpaN3AK/bOanaUALH6+qpranO+JxnE5kGyF6gA0AIsRQoQjcIAXiKWXbSOx+QUmJWFVq6+4jGYtS3tGM2mcj1emkf56Z1/MQJ5tfUzOr5lUkDZPtcBvlDIpNCvYrqebQ0NZ5TOktkTp0kI6gGI47s1CArHPCjqEbUNLrDVruDEV+qaL3JZCQUOfPve9nKyzl+cB+xcb9ZdkFxKg85v2AugzwGvT09eMdRLEBOS0EWZEbF+DAYGhwkFAqSk5uX0fb6vUFciBnkCwrnnWIBoBpBmwuQp4OcjmJhtRGaYYIuy2Wnf3jiPq1dfRTlTp09Bmjv6qaksGBG5zxbyDRA7mS00vUmoFFKmaiCtQJnt5TwHEBRFPwRDY/TTnFuNtv2HgKgrLiIppbRB97W996jr6+P6urZHeEIoaQNkE1mC9FIJDmNO4eZw+l0T5tBNpstlFVUcerYsXPUKubk+zLEgmtuwl2QKhAfHB7A4kxfiGV1OBkZxwM2mYyEP0SAnJXtxZuXT/2JoynLvYUl9I7hIefkF9E5jX7vpYSenu4JGWQgowzy2eaQNjXWU1pembEcWDAQ0BMpF1gG+UJDNBo9/9PjBuNcBjkTTEN3MluthILBCaZIU8HjsKXNILd291KcN36wnApNSnp6+8nzTh9InwtkGiA/BXxPCPED4H8Aj45ZtwI4OdsNO9eIxWKoCowEgkSiMQ4eryMQClFaXEhTq/7A27ZtK++8s4WvfuUrmGe5UGMyioUQArN1ZkT5OaTC4XIyPDRe6nMiFixawtHDh85Bi3REonMcuTNFYHgohX88FlabA//IuAyy0fShAmSA2uWrOHYgVVM7u6CEvjEZZG9uHn29PXODH/TsVE9vLznjOMiZxL3nIoPcWF9PWRr30skQDASQmjaXQZ4GsVgM9XyqWJAw6poLkKfDdBlkRVExmc0zUtLKck6eQS6eJoPcPziEzWbFfIHYuWcaIH8L+CmwEL1Y7x/GrFuFXsT3kYbBYCASkwTDEepaOykrKuBkQwtlJUU0t7YRi8V4/bXX+Nznv0B29uyPbiYLkEGnWQTmAuQzhiuDIj2AmoWLOH3yBJEz5KrOFHNB1JkjMDwweYDscDDiS5dB/nC/a+WCxbQ2nCYcDCaXuXNyCfiGCcWpOQajEY/XS3dX52SHuWTgGx7GaDBgtaYGlDIDisW5yiCXVWRe0BcMBIjFYnMZ5GkQi14AFIuEksUcpsR0HGTQecgzkUD1uBz0j8sgSylp6+6jJG/q2Kmrp++CyR5D5jrIUSnl/5FS3i6l/DspZXjMurullP989pp4bhCJRFAEmIxGzEYj+V4Px+ubKMzPp7evn0NHjpKdnU1BwdnhxgglvVEIxInygTke8pnC4XRlJL1ls9spLCnh9Mnj56BVcxzkD4Pg8MQCvQTScZDNH5JiAWC2WCgur6Tp1CjNQlFUsvIK6B2jcJFfUDjHQwZ6ensmKljAtNJSMHOZt5kiEAjQ39tHQWFRxvsEg35i0eisqBZdzIjFYuefYqHOUSwyQgZ90WKzE5hBHZTdYqJ/nKRmW88ARoOKyz51EW1nTx/5uVPTMM4lMtVBzhNCVI55L4QQDwkh/lUIcfvZa965Q2LEGwiGMBpUpJQcr2/GYFApyMvlvW3vs+ry1Wft/EKIpMvPeFitcxnkDwNd5m16igXA/IW1nDp+rgLkOYpFJvD1djHUPcrrba87SvvJQ7jG8ZIT0APkcRlko+lDFeklMG/RUuqPpdJwsgtK6BlDs8gvnOMhQ1wD2TsxQJZk5hNyNjPIDadPUVpePiO1hWAgQCQSxmydo1hMhUgkjDFN8ey5hLA4UYJzeuTTIoOZGkVR0WKZPauklLx/6CTl+alBbt/wCAVez7TZ6lA4/KE9JWYTmd4dHgZOAV+Pv//fwLfjy/5CCPFnUsqHZ7115xAJEroQgiGfn/buXkb8AQYGhyjIz2PPgUM8+KefP2vnn4piYZlTsvhQMJst+P1+otEoYhq3w8p5Nex6f9tZb5OiKGialtEU16UO/0AvJ99/gzX3/hndHd3se/MFVt32KYzZ6WdzbHbnhAyy0Wj40BQLgMoFi9jyx+eJhIIYzXom0VtYQuvxg8lt8gsKqTt54kOf66OOnp5JMshw3jPIdSdPUF0zM6nOYCBAOBLBbJ7LIANEYvoz06gIQlH9/+GYIBwKYTCZkWrimRq3VU5YKMciSCW+LFF8nmb2VIsPaINxq+loIITNYGIoFOH9I22oikLRkjX4XPpAuaFXTyIdah7AGbFhG2ymPUsPkvNcetBV4dEzmLExz9qEzbWIBhFhnSolEvbG0TRW0/HPIxM20YqKTHCux9o8T2aDLBRQEhbT8eeRHNMfoon2hOObGCY/ntSS7U/MQCcspw2KAUVR4+v0z2uO+2q7hYrdaCEcVkDTWJRnJxoDLd7r1Hj/VAREI2EsFnPCtTr5N8UeO/49vbF9Lz6fn1uuW4FMzHqbLWRbjfQNDiEiAb19422447ArGu0DQ6i+HmTcopoxdtzJ3+McWU1nGiCvJO6sI/Sr/cvAt6WU3xdC/G/gL9GD6I8sDAYDUuhBi9FgoK13gOy8QhoHgkijFZvNhj0xPRDvWzLeGYQWTV6kiVGr5htI3uATQZmIX6zCHiWW6EgGvePm5eVz6MBBSqrmo8QvzrjlOYXFxRw/uI9Va9ZiivuhW+I+6mahoYTiBPqIfiNJTi2lu3jG+cLr243eLJKd3hTPkpjtyc+qqfEL1mBKPVYaSKFAwkAhIdg+vmON/X/8ZisAlNQgViqGZKdPbJ/cYswUkTHhTx//bmKaZMvmN3n37bcoq6jUg9H4bpocnT5JtEYBHM4sfMNDxDQ9cFXG3rfiTodGo/7dyHgn1RjtsIlrQhrME9qcEK4XUr/GNE1DU4woijK6rcGENFw4I+gLAXnVtbQc2s1AezN2iwmbMwt3fjH+yMSsxqJcB1JqSU5wAiaTcVYy9maLlaKKahqPHWTecn1GyVtYwt7NLyUHO/mFRXS2tV3Qgx+Z6MtnET3dPSxeumTC8lAwiMk49fnD4fC023wYDPT3U7OgdtrtxgZS4VAIRYgU1705pCIWjSKE0Gdk5ezbPR/pGubJA22sWFSDzWLmqSd/x/w166lednnKdmGzC09kLoM8HQyqSmya7HA0HMZomn5G4J29h3l733H+2303YlAVGHO/9ThsE3jJ6WCzms/Y0OlsINMA2Q30xv+/CsgGHo+/34xuX/mRhxAi+UBTFJVoNILJZEKe9XpquHHTJv7lhz+k5uQJSipTNZYXr1jNwQ92cOCDnay+4sqz3paLBaFQiPfeeZuv/uU3cXv0KZ/YNNNJHe2t5BcVn/XAJjvLhc1iRlEyrZO9dOG2GBEyhsflxJZbRNDvo6ujDZtH16+NxH/TiKaxv3OIlQVOEAKDIpIDD1Msos8gaFHCLbpCpTaiF24KVU0O+hIhmbC6UeOjo8QlEx+bsmj5Svbv3MaqeF/0WHMxmy34ejvJKyjEYXNjMBjw9XSSne1BCQygjPTpO4fiWZVEdmjMw0kx6wMvYTAiDXqWUhrN8b/xQZnRksxSJQZSMcWYpGclru6Ea73R5ECR+jmUSDw7FhiMZ32CSLMj/uHinzwWQRpSB+9E9QeWkFry+0yOcYVEoB8/EXSL+Lm7u7sozMvDMKYraQgG+nopKxu1kU0mEsb0uZ6eHrKzvVPO/o7NRCUzSol1sQiMW2Y0WFHiX4zH42F4aCCZJ1CEngkFkDKe3RQAYswYXB/wqHNddlKEw6GzZsV9bDjK86fa+OzKUhau0/ve0g0385Of/AcGownUwuS2EaMTU9SXEcf2UoZQdHlZfQY9/YUdDoemDZBf2baHnYdP8pf33kC2044MpSYozEYDkUg0JUmVDjaz6YIKkDPt6i2MmoHcChyTUrbG37vRfd8vGmiahqIoRMJhPUCOT4WfKfzB8LT7WywW7r73Xl5+7ukJKgqKonDL3ffx7huv0tX5kbMnPm84dPAA5RWVeLIzJ/13tLZQWJSe2zqb8Ga5KC8unH7DOQAQCvgxWW0IRaFk0Qo6ju6dcvvxN2FVVYiN0/IMRDW2tQzx8z2t/GR7PY/uaeZgYweDI0He3rGHN15/ncOHDyPH7Vc2bwE9nW2MjDGfKa2sprG+Lvm+pLSUppYWLlVomkZPT88EiTeYhnoRR29PbxqDkdlDlieb/r6+Ge2jadpcsDUNwqEQJtPsB8iNQclzbSE+f3kZldmjhV45OTlccfM9HHzvDeQYa2lNNaIJI2pkrnZnKiSy/eMNkMYiGtHjoMmw++BRth88zjcfuIMctyPtNooiUFWFyDTZavsFlkHONED+JfB9IcRTwH8nTreIYy1wNO1eH2EoqpLs7JqUZxwgt/QM8N1f/5HX90xf+LVg4UIKi0t5f8tEC+KcvAI2bLqVZ554lFDoohqPnDV8sGsXK2ZYWNnc2EBxadlZatEo1q5YyuVLp5/inYOOcMCPOW4jXLpoBV2njhCLTsYpnthXDQaV6Jgpv7bBAP+6s4WTfQHWFLn4WE0eC3IdvLr3BH//1GZaOroJBoO89OKL7Hhvy7hjGamoqeX0mGK9/OISOlpbk++LS0poHvP+UsPg4CBWqzWt4sNkgfNY9Pb24E1T4DcewWCIhx97gobGphm1z5OdzUB//4z2kVoG8nSXOPRs4+wGyG0hyZNdGp8otlCWNbFAMrekHIfHS6g5NQwJGR0YQ9PLe17qUA3qpAGylJJIePKiy9a2dp559S0eunsTTvvUxasmo2FaJSGr+SMYIEsp/xH4Grrd9NeAH41ZnQ381+w37fxBzyCrOg/ObE4WU80U/T4/P3tlB7evXcy7h06z//T0D8xNt93Ovl076E6TKV6yYhWlFVW88PvfzcjZ5lJEb08P3V2dLFiYeRCqaRpNDacprzr7PvBLF8yjuCAzi9tLHVospvPg4sVRVqcbV0EJDTs2T8juQpwSMS7TZ1ANyezFQCDMf7x/ik1V2Xx2WT7LC5zM89q5otTDX991Ld/77M18+s5N3Hb77XzxoYfYte0dOlpTs8HVi5dx6vCB5PucgkK6OkeVK4pLSmhuuXQD5K7ubnJzJzrohUIh/H4/bnd6ib4Eent78XqnziDHYjEeefwJgsEgv3j40RkFyVkeDwP9M8sgT2eqMId4BnkWTR76I5LfdGnc5lWodkzO/V5y1XUET+5OoSyFDE6M4Tke8nRQDcZJnXp1frKYVO1l5wd7Wb9mZUYW0iaDgXCaupGxsFs+ggEygJTyUSnl16SUv5BjokUp5ZeklI+cneadPyiKQiQ+taDFtDMKSDfvP8WqecWsXzqPL958Jb/dvJstB05OGWw7XW7W33gTL/7+N2mNJDbdfhcjvmHeevONGbfnUsKxY0epXbxkRoL1ne1tOJwuHJNYGM/h/ECnV1iT1fAAC667HX9/N8fefDa9A+W492MpFu1DQUrcNlYWTDIdOCYI8ng8bLzlTl58+rcpxSwllfMY6OlK0iy8ufn09nQntykuKaGltfVDUbM+yuju7iYvb+IAsK+vl2yvd0rufSBuyOFwpP99QA9Wn3rmWZCSL37us9x379089pvM/aqysjwzziBrUpvSlncOs0uxkFLyQleEK1yCWvvU33tOURmK1UGkZ3SQNJdBzgwGg2FS06poZOoCvYamJqrLM6Mkmo0GwtNo/1stJgKh8KSSt+caGQfIQgizEOLLQohfCCFeE0LUxJffL4S4qOaKpZT6DVxKDAYDmhY7owC5d9hPZb4+sirL8/DNe69nx9EGfvX8G1O6qC1btYYsj5etb74yYZ3BYOCeBx5k984dHD920TFbZg39/f3TTuOOR2N9HRVV885Si+ZwpggH/ZgsNo5s25xcZjRbWXzzp/D1tBMc7B23x9QUi15/CK8t8yxX7dLlOJwuDu/ZlVymqgaKK6tpOX1Sb4/JhMvtprenGwCHw4nFbKGnd2ZZyosFk2WQeybRRh4LnV7hnbRQVkrJ888/T0dHB5/99J+gqiqLaxcy7PMRDGZGP7PZ7QTi1tGZQs8gZ7z5JYnZLNI7MKwxEoOrXJl96caCKiKdDcn3IYMTw1yAPC1UdXIOcmQKBYtwJEJHRydlRfkZncdoUKdVElIVBbPRQDA0+wooZ4JMjULmAyeAfwQqgI2AM776GuBvz0bjzjUS2R4pJUJRklwqTTuzDHK/z4/HMVpQkJfl5Jv3Xo+mSX7++FOEwukvAiEEN911D8cPHaD+5LEJ6x1OF/c/8Gl+/+Tv6OubWRbkUsFA/wDurKwZ7dN4+tSs0itONTTR0dUza8e7VBHyj6AajRzbsQVf/2gwrKgqdm8B/v5x33FaioWazCD3joTJtmf+EBdCsGHTLezY8ibh0Oj0X0llDc3xABkgr6CI7o5RmkVpSTHNl2ihXndXN3mTBMjTFd/19kxNr9jzwQecOH6ch77weSwW/XdUFIX8vFw6OjOz+FZVFbPZTCAQmH7jOKR24cr2XSjQKRYfPkA+NhDmlZ4od+QZUmZ0poIpv5JwZ31S2WQug5wZVIOB6CT1HKFgcFJOeX1DIwX5eRnLMZpNBgIZBL4Om4XBDCThzgUynX/+EdAE3A74gLGfcgvwvVlu13lFIlBOVG7GYmeWQe73BfA4UonrRlXlc3fewOOvb+dnv/4dX/zin2FOM0Kz2uzccu+nePHJx3jgi1/D40kN9ioqK7l2/QYefewxvvHQ5+a0OcdhYKCfrCxPxtvHYjFaGhu54xOfmpXz7z9yjEeefI6PXXsVN2+4alaOeakiHPCjxK/vrvpjODxXJ9fZPDn4+7vxVi5MLpNMLKZSVZVoTK8l6PWHqci2z6gNBUUllFZWs/f9d1l1zQ0AlFbPZ+fbr8UF+lXy8gvpnBAgt3L5gvJJjnrxonuSDPJA/0AGBXq9kxboxWIxXn31Ve6//35sNluKpnpBfj4dHV1UlGf2fdvsdvwjI9jsmV0LUmooGT8yLx1ENEkwbhTi9wcwma1ENYkWlygUcaMLEdYlDoUcVQNJ6MZrVp2Tri5cw/PNUU70NPOnD3yCBVUVo0YYioGQswBN09jbPoTZYuX5dxt5Y69u697TOsTqmMrw0eP04sXuNDE/4icSjmCKmwrYjKN/rXGdZnVIH1QpgUFkIJWzLEwJuUUrJCQXk14CCaMQQ4ppCIA0mCYaiiQPKiCu2S+VcdeTFh3VlUxc22NlHRP/V0dNNCYcIyl9GMGg6QPAxBbW+H7SZCIUP7zT6UCEA7jNCpG4DGL856SrrZm8wiJ9eXxhQkLy9S3vsfrKq5EWJzIan7mJy7tpvgFkXI1LBPVzFjmtNDa1MC/HCQljtnhdiYibgshohIVFORw8dJhCS3yb+G+AoiLD+nm0wBjjNMNogD7bCoyZHu8a4B+llANMnL/sBC46vSohRHIkHItGicViM+ITBsMRIjENu2Vi8KsqCp+66za82R5+/suHJ8i6JVBSXsnKtet46fdPpBXzXnftemw2G398Y3OavS9tDAwMkDWDDHJHWwtZ2dnYbDMLnNKhrauHp154hZVLagmGLpyCg48qQoERBAK720Pn6VQ1GLsnF39/98SdxmWdFCFQFYVoTNMpFvaZFxKtve5G9u3YRig+je90Z2Gx2uiJB8X5hYV0jQmQS4qLabkElSzCkQhDw8NkZ08s3BkcGsQ1bYHe5Fnm3bt34cnOpnreRCpUQX4+7RlmkAHsdgcjI77pN4xjjmIxPULBwIey4v7DW9vp6O7lWw/9CQuqKpLL+4eGeev93fzkx//Od//nd/jtj/+JJ//jh4wc35FidNUmiikResAshULUaJ8r1JsGDocT33D676i1sZ7i8soJy7s62unp6WHFqsvT7JUeVfkeTndOP+N9WVUR+063ZXzcs4lMA+QgMNlVXwwMzE5zQAhRIIT4nRCiWwjRL4TYLIRYPmb9g0KIOiGEXwixQwixatz+lwshdsbX1wkhPn2mbTHGpw5isRhCiBllkftH9OzxZFNyiiL45J234rDbefb5Fyc9zuqr12OxWHnn9T9OWCeE4FP338/OD/Zx6nR9xm272BGNRvGPjOB0ZV5s19PZSX5B0aycv6unj+ryUqrLSwldIFyq2cD56puRUBApJSULlzLU00E0PDrosOfk4+tsncglTTOYVRTdzr3fH8ZjTQ2QozGNPv/UeuVZ2V4q5y9k7/ujsm+l1fNpjNOg8guK6GhrSR6jpKiQlrb2S05xxu/3YzQa0977goEg5mlUDgYGBvB4Js7+SCl5a/NbfOxjH0u7X2FBPu0dmevEO10uhgYyf3RdqAWXF9IzMxgIYLHapt8wDXYcOMqR00188f47ktP2pxqa+bdHnuR7P3uM9q5uNt5wI9/5u+/y4F/9L26459OEOxsp6duT7O+dooAcehFxf9SwyYUpPEezmAoOpxPfcPrvqLWxIW2A3FB3igULa2c0c50IkKfrR9WFXvp9fnqGRqbc7lwg0wD5deDbQoixQ38phDCjy769PItt+gm6dNwCIB/YDbwodKwD/gPd6toDPA28LIRwAcTb98f4cg/wJeA/hRAztp8TQiS5N9FoVJ+inaYCcyz6hyfSK8ZDUQSf/MS91J2u54Pdu9O3Q1HY9PH7OHHkEMcPHZiw3ul0cM8dt/L08y8Ri11aD+LJMDg4iMvlmpFL3WB/H1lpMl5nAp8/gM1mxWw2EZyEZ/4RxXnpm4kbqsFgxJHlJTI8moWwZeVgsjsZaj1NKKoRimrI+D6K0Kd1RXiEaNCHpmmI4T5CUQ2rCorTg8/o4OeHB/ifb57g33Y0808vbOepA638+29f4he/epgtW98nGo2iSYnVoHDdx27iyJ4dmMLD5NkNrFl5GU3HD1HkMFJV4MFqMTPUehpb1IdLhMhy2mlrOD3qQmdxgsWJzC7RX4Xz0UqXoJUuIVZYS6ywlkjefKLZZUSzy9AcuWiOXKTJhjTFKQVaVH/FIhCLoIyZ1NOk/oppUn9JSRSFKAoxs4OY2YHmyEFz5BBzFyMNZv2lGPRX3CJdjKEuJLbRjNbkSyZeqlGfVlZUfUpZKLiysnG53dQ1NhKMSYIxiT+qv3ILCmhoaiEQ1YhoENFG2xrVJDEJkUgEoRoIxzQimkxO+w4NDRIIBqiqqtIbFosgIgH9FYtQUpBLa2srRIIQCaKERuIvH0rIh1GAQRHJV1lZGa3NjRgVgVkVqIr+shr0l8uk4jKpZFlUPAbdPErGYniUyfS3zxsuiGcmQDDgx2KZeQY5Eo3x8pbtPHDzBuxWC5qUPP3HN3n0mRe55vLl/P03H+KBO29mwcKFWOOKNtl5BbivvAtzdJi8IX1mKSqMBDHjQA+uIiYHxnDmswSXIhxOV9oM8sjwMKFgAE/ORKpUw+lTVFfPrF4ny27BbDTQNTD176EqCssqCjOSxT3byDSC+BsgFzgF/BqdZvFd4CBQBHxnFts0D3hKStknpQwDvwBKAC/wReAZKeVrUsoQ8AMgBHw8vu/dQAD4vpQyJKV8HXgWeGgmDUhkPhJ6jtFoFHUat5nx6Pf5yXZMP5K2WMz86Wce4KUXnqe7O81UMTof+a5PfYY3XnqOhrpTE9YvW1yLw2Fn2+49GbfvYsZA/8z4x/o+fWR5ZidA9gcCOGw2LGbTxUaxOO990+Hx4htXlFdYu4KOY/uS74VQJmQp/MEQNrORUDSGyaCgCKGbhWw5SkW+h+9/9VP8w5fv5+M334jH7eaaa69lwcJaPti5na1vvZ48jsudxbIVq9i3eycAJWXlBPz+ZN+tqanheN3p5PY1FaWcaDr/N/pzjeXLlnNw/8QB/fwFtRw/emTKfaPRWFp5xs6OTvLz8yedlXM5nRgMBvoyzApXVlXTWJ/5zJvOY5+6Cv884bz3ywRCwTPLIG/ff4TCXC+Vxboiwgubt9La0cW3vvw5Vi5egGGSTKViNNGSvYqc4ZOoUn8+D+LGzSAAYZMTY2QuQJ4KkwXI/b3dZOfmTehvmqbR3FBPZfXMFZ+q8j3UdYFltmcAACAASURBVIxXHZqI5VVF7Ks7//fNTI1CmoHlwH+iq1jUofOOnwJWSSln0//4B8A9QogcIYQFvaO+J6XsibfhgzHtksDe+HLif/fI1KfjnjHrM4ckqecYjUYwzPDmmK5AbzIUFhRw48c28ZvHH5s0CM8vLOaO+z7Ns797jPZxpgVCCO6+7RZeffs9/IE5l72BgQGyPDNTsBjom90Mst1mw2I2XzByNbOE8943HR4vw32pAbIrvySFhyyETqUYeyo9QDYRDEewGlSklDx9oImN8wu5ZdVCjAa9Wn5+VQXXr1vLokWLuGzVah548PMc3LubxtOjA9NFS5dz5OCBpBxk7ZIlHDqgB4MLauZz/OSo5XRNZRknGi8MPt25xLLlyzlwYP8EeklldTU93V0MDQ5Oum8sGkVV0wTIXZ3k500tKVVaXERLa/uU2yRQVFxMf18ffn9mFfOKopyxadRZxnnvlwkEAzPnIEejUV7fupubr1kDwM4DR9l/7BRfuP8ubFa9QKurt5+3t+/mkYd/xcO/+iXvv/Y8gTh/PGR04rPkUyJ1DeQB6SJL6JSBiHEugzwdnJNQLPp6uvGkKZbtbG/D4XLhdDonrJsOVXlZnGqfXtlpflEunQPDDPnPbzwzbYAshDAKIa4GrFLKv5NSXiWlnC+lXCul/I6UcvrhwMywFVCBbnTFjLvRR8GgS8uNv7MOAK4M16dACPGQEGK3EGL32OytPmKSSXvFM6FY9I2TeJsOa6+6CpfLxebXJmofJ1BaWcXNd97DU48/zOC4LElhQT41leV8cOBQ+p0vIcxUwQJgoL+XLM908lM9GemsjvgD2G1WLGYToYsrg3xO+uZk/RLAmZWDbyBVW9hocxD2+5KBixAC4kFyAv6AnkEOhCNYjArHun34w1GurJhaUcHhdHLzx+/jj888SSROlykuLSMSCdMdLwhbtGQZB+MB8ryaeZxubEreK+aVl1Df2nGhZh7PGgoKCrBarDQ3NaYsV1WV+bWLOHp48vtULBZDNUzMGHZ1dpGXP7X7ZElRIY0ZOhiqqkppWRlNDZllkVVVnXEtyjnCee+XCQQDgRlTLHYfOExBbjblxQWEIxH+8Oa7fOHeW7HbrDS0tPH9nz/Ojx59ko7uXpYvv4zVq9egqAae++WPCXc3A9DpXkiZbESV0ZQM8hzFYnrYnemL9AZ6u9PSKxpPn6K8suqMzlVbksvR5q6k5OZkUFWF6gIvdRkE02cTmWSQY8Bm4KybgQjdKusNdM1lN2AD/i/wrhAiHxiOLx+LLCAx/JlufQqklD+TUl4upbx8vCSRlBJjgmIRiU7pNpMOYzPIrT2DNHdPPe0nhOAT93+So4cOcCwN1ziBhYuXsnrt1Tz68C8nqF+sXXUZ73+w70LMcJxTDPTPTMEiHAoRDoexT+HcBfCH555lzwfpueJjkQiQzaaLJ4N8LvvmVP3S6nQRGE59nhsSeuWR0e9aGR8gB4PxDHIUi6rw8rEOblpYlJHGauW8+RSWlPLB9q2A3ldrlyzj8MH9AJRVVDIwMEBvbx92m4383FzqG/UHt91qJcfjprHj0tPDXrFqZdraikWLl3Dk0MFJ94tGo+kpFhlkkFcuX8qO3XvoH8ysMKu8spLGjANkZcYziWcbF0q/TCAY8M+IYhGNRtmybSfXX7ECgG37j1FRXEhhXg479x3iZ795hhuvXs3/+cYX+eTtm7hsxQoWL1nCFRtv4drb7mVo9ysYo35CRhdDuPDKHnzYsRBClRGiRjuGqH9GhjCXGpyTUCz6envweNPxj+soP0NDrWyHFa/Txsm26e+H1UU51GWw3dnEtAGy1EU+T6KT/882soFK4N+llENSyrCU8r/Q27kW2A+sTGws9FTvZfHlxP+uGHfMFWPWZ4TEFG0KxcJoPIMA2UYkGuOfnnyDf332bZ7YvGvKQjq73c4n/uRBXnvhWTpaJzcYWHvNBrKzvbzxamq2uaaygmAwREt75lJHFyMGBvrJSlMFP+n2cf7xdCYAbW1tdHV2TXu8kUAwTrG4qDjIF0TftDrdBHwTgx+TzUEkMJopEkKkPBRHAiFsJj2DLBRBMKqxrCjzQdS6jZvY8d47BAP6dPyipcs5GqdZqKrKoiWLORgP+hbWVHPs1CjNYl5pIXUts8lC+2jg8stXc+jggaQsXgLz5i+gtaUF/0j6KvVYLD3Foquzk/yCqR9D+bk5XHPlFfz+xVfZvu8w//yL3zDsm7wavqS0jLYMpfgURUUoCrFp3MDOMc5bv9z/xycJ+0e/22g4TDQawWyxZNTwzp5e/t/PHiYv18uCylK27jnE69v3cVntPP75l7/lnV17+fTHb0VKyXsfHODNrTt5+63NHD1yhHAoSHHlPKzVl1HeuwOkRo/IJYduJAo+7Ni1YaSioikmYqELw3jiQoTJbCYSjaCNGfhJKelqayEnvyBl276ebtpamqisrklZXtfcxtOvvcsPnn6b//u7N/nPzfvpG0k/27p2YTlvHjg1bSJvQUkeR5o6z2vCL1PV8+8A3xNCHJRSTj70/5CQUvYIIU4AXxFCfAu9mOBB9Gmgg0Av8IoQ4hHgXeDrgAW9qID43+8LIf4G+Dd0/ea7gRtn0o7RAHmUYmEwGNJqEaeDpmkMjgTJclio7+ijIj+br96+jkfe2MXjm3fx6Ts3TbpvYXEJN991L0/9+hfccu8DlKUZqQkhuPPue/j3f/l/LF1cy/wyXZ5MUQRrVy5n254D3F9UMGG/SwUzzSAP9PfhnqZAz+cbZnhoiK6u6QcfYykWwZAuHTZd8H2h40Lpm1aHi+DI8ISbpsnmIBrwgVunyQhFmchBtpgIRKIIIMduSv4mBxra2d9yiK7+IWpra7lsSS1Z5izG5g+8uXnMr13Mjne3cMNNt1BcWko4HKars4P8gkLmz1/A3t272LB+PQvmVfPsS6/A+isAqCjMY8/RUce9SwVOl4uq6moO7N/HqjVrk8tNJhPVNTUcO3KYlavXTNhPL9JLpVj4/SNEo1Fcrqk1lAFuWL+Of/7xT9m29yBup4M33tvOx2/amHbbvPwCujKUhktkkGOxzBMlZxvns1/a3NnU7djM4uvvIKJp9HS24s0rICZ0w4loXH1ETZhiGPUZVWkwsf9EA08+/SzX3biJVWvW8tw77/DB9n1ccd3HeOaNN7jqmnXUnTjJo8+8RE1lGU67HZNBJRqG48e20NTSysob7+C4qRqz/yimut0ca+xlU4WfwQ4Dg9lRHM4gy8s9+JusLPGYyMr1sNCrt8ER6kP16dlJkTC5UAzgzou3UQ/yNUPcHMRoGTXkSGf8Mf53UU0pJjYTMP4YCcTGzAqPM1NhbBuSZiKxpDR3wpAkqUCjqGhjDEWApDlINDqqDjMSkShCYTgSSxqqDPZ1o6gKOWMs302qwruvvcyG664nx23HGh5kxB/g8Wee5lRDC1dW5rLJ7seiCPaeauOHLd3cMNhJqar3F1ue3ner3E7e7FPZ8fxLLCvXn7vGREJLUUHT46w8oRANBWk+fIBClzVlXcIwRGraqJEImQe0mSJTFYv/iV4Ru08I0SSE2BXXTUy+ZrFNd6GPiBvRO/dXgU9IKU9LKd8DvgL8HJ03dR9wi5RyCCBuZHIL8In4+p8DX5JSvj/TRmhSw2gyIaUkFothnAHFYmgkgN1iwqiqnGjtZkFJHhaTkc9tupLeoRH+8Nb2KfevqV3Mnfd/mpd+/wQNp46n3cbhcHDnx+/m6aefSQnc16xYxr7Dxy+oacBzCSnlzDPIfb3TKli0t7WT7fXS1TV9BtkXD5ANBgOKIoheWBmnD4Pz3jdVgwGj2ULYn8orNNkcRMdks4QQaGMeUAkOcjAcQSBwmfUHx3unu3j6/UPUlBZwxzWr8I2M8PPHnuQ73/5bfvWz/+DUidH+d+X669m3ewehUFCnWSxewtF41riqqorT9fVomkZFWQndvb2M+HVXqfKiPBrauy9J6tPqNVewa+eOCcsXLx2lqIxHNBbFMC6D3NnZRW7exIr6dDAYDPzVlz7HN//0fu675Xp27js4KeXC5XYTjUbw+abnqaqKiqIoF+K99bz0y+rV19LbfJr+Nr04rq+jlfzi0mkb29TSxpNPP8uff+FzXH7FlRw5dJAPtm9l9br1vL/lTZYsW8r7771HdXU1V6xdSygUZnhkBE1qFJcU86ef/zzr7nmQA1tewdFzjGPhMioMHYxEBFEJbmMEX9SAORa/HxgthINzGeSpoChKyoxbc30dZZXzUvpb4+k6ujrbufLqdQBomuSR3/4eo6rwP25cwo0LiyizquSZFS6XI6wb7uFdVy7jhwmqgI0ehTf7NbQp7olCCJbmOznYOr25yNlCpgHyYeBF4FHgTeBQfNnY16xASnlUSnmblDJHSumWUq6SUv5hzPpHpZRVUkqrlHKNlPKDcfvvii+3xrd77IzaoUmMJrNeMKKqM+Ig9w76kvzj4/EAGcBkNPDQrVdzqK6JrbumlmQrq6zmzk8+yB+f/h3N9XVpt6ldvBi7w8GuvaMPmiy3i/zcbE6cbky7z8UOfyCAoihYMpzmgzjFYhoFi472NhbW1hIKBgkEApNuF43FiEajWOIujGbTxUOzuFD6ptXhJjSSGvCMp1goQkFq4zjIJiPBcBQNictiYF9rP2+f6uTrt17FVUvns6CskHtvu4m/++ZX+Id//CdWrl7D8888xdEDuoRcVnY2ZZXV7Nu9C4CFS5Ymi80cTidZbjetbW2oqkpVeRmnGnWalNftRNMkA8PnX/j+XKNm/gKGh4boaE9V8lhQu4jmxsa0ChKxuKzmWHR1Ts8/HguDwYAQApfDzlWrLuO1LdvSbieEIK+ggM4MssiqqqKoSsYziecK56tfGkxmqtdsoGGv/t32dbSSX1Qy5T7DvhF++Zvfc989H6e0pJjBgQFefv5ZNtx0K9s2v07tsss4faqOhYsWsTM+sFq5bDErltTicjjYv3cfP/jePzHc2836+z6Pq+MAEVT80kyZK0q7z0C+JchI1IAlpl9bwmghFJz8nj0HEEpq8WlTfR2llak6x2+/8QobbrgpaaD2zvs7iEQi3H/DWsxpimorQiOYtRgnjRPdaRfa9ED5YN/UNTpL850caDt/AXJGGWkp5Z+e5XZccNA0DZPJyLA/pGetDAa0oW4Mw+6kp3zCP14JjaD49R9RRiP09g/gzvLQU7KG1r4XaavYQKfBQOdIGAxQc3MJLzz3CP2OEhbM04uFbUY9+DapClaDPmpbUTsP14MP8vivH+Wvv/E1srLcKH5dNEQZ1Iv+7lheymOvvcaVrmBy2mFpnp0jH+xkSY4J6dADv8SUUXI6SMqkxz2Jv1JDxKcPRXyqJzFtI61uiGd1EtM8KWYCiemdmH7Bi0gQJTCYeqy4l71mdupe9eiatYlzJ4893sNeKPr/pZY8VrLtQhn1pQeGh4aw2myoQmAwCGLxIGk0VBJj/tURGBxgycL5OM0qSnxFIrZKvG9uamTJwvk05+XS2lRPTXW1Po0GCCWMFPpn6+4fxmG3I4xmpNSwWiwER4ZxWQzJ74ZYDBHX9Ux+v/HfJ2HYMIfJYXW6CPuGYYwAhcnqwDfWNliAHPOr+wJBqtxuWvuGiGkSp9nA1vou7lpaitc18QauqirLV6zC683hiUcfpqZ2MarZxJqrr+Wlp3/H2nXXUFpewdDQIIODA1i8HioqK2hoaKA8z0NVRTmnm1pZXluDEIKyghyau3pnRP25GKAoCitWXc72bdu46557k8vNZjNV82r4YOd21q2/LmUfXUotNe/U0zO5/fR0uO6qNfz9j37KpuFhrI6J0lT5BYW0trZSlca+OuWzqIpuVz6DWpSLHfnVtZzY+hqhwAj9Ha3kb0zvcpjAi2++w/LFC1m2ZDFSSp77/e9YvfYqdmx5i5pFSzh6YD9ZWW58Ph8VFZXs2L4dNT4LN7+yjHXXXo/JbObhR39N7drr8OXWUhtqoj5ayMLsUxzpNbEgJ8ixYRcmTQ+KhdFMODCXQZ4KiqKiaaMDv862VtZtHKWCtjTW4xseYtFSXf2vu7ub199+j29++QuocnBClhj0Z+xqXx/vZOUxL5KaHBBCsNGj8HLrCIs9Joxp9geo8FgZCITp94dmpAo2W5jySSyEsKJPv1QA7cCbUsqLvgJMCAFSoigqI75h7HYHTqeToQwzQIVeN69+cCxZiT3+Zm9zZ3P5xtvY8epzVFd8A4NhsssDqufN06dvGxpYedlEaUqL0YhBTZ0IUISCony0Oa8TMBWfawwS1dWNjQ1UVFRktE84EsYcz/imQ3dXF/WnT/PAvXcTDofZ/Pa7DA4O0dPby8rlSylwWZFS0trRxdOvbGb91Vck93W7XQwM+cjzzkx2bg7pkWMz4nI40MIBXBa932hS6g52Q/qgMRAIEYvGiAoT0qAHySFNwVRUTThQD64Q5oWr6WzZTP9ld/K9Ho2tO3Q+YiCom3woSj0VebqqidPi4pE3drJs+TIkbgb6+/EFwqgGAyaTmWgkgkERhP0j2IwKIuwn4BvG7rCDaiTmzCUkVYzeEqK5elYmpsRt7KUkEpPx/+ufMTom853gCQai+vXf64/Q6dMHWqd6dbm7Pt9oFiYU364qTw/6y9xWHCZ9MKbGB8cJ5Q6LQQH0YC8rPn62GfUgEMCoJLiHo4PKRMtEsolK0m42MRhN3HoEoCqC9Rs28C///EMaTp+iqnpecvB582238dMf/4h58xdQWFRM/DSUlpbR0NBIdc18ghH989iyPDQ3NDAUHn2Iq8KCxazP1Bnj+yY4liaLQEb1mRu7JcCVq1fywh+e4U8++cn49nF+p8HEiqVL+OMrr7DxGt08LjnwjXNTRciHiEWwGlXCRgMB3+QazpcaDCYz3rJq6vbvIhwMkJVGNzeB9q4eDh2v49vf/AoAR44ewzc8jMVixWSxUH/yGKUVFfiHh+lob6d2YS033Hgj4aE+ykuK6O/v5w/PPUtZWTlrbr2Prc/+mmDxOjzKUU5HC7AZJYGIwGsO4h9QMGn6gFmY5jLI0yGh8Q2gxWL4hgZxjZFK3fnuFtau24AS7+tvvPoKG66+gpxsD/RO3h+KIkGcWpQ6o53Lxq2rsgqKwypP1A3zWY8HQ5qYRRGC2gI3h9sHWVdz7gPkSSkWQogqdOrEU+hC5I8Bx4UQUw8RLxJIACEYHh7C4XTh8Xjon0LcfiwKs930Dw0TDofxeLLxDUycIiidv5isnHx2bXlj2uOVlJbSPIm2Z+fAMHnjMmBDgSBu2+QB38UMVVVZf+163n7rrYz30TQNRZncU/7Agf2sXLUKq9XCFWtWM+zzceDQYfz+AD/+6S/4zvd/xLf+6d/45ZN/oLK8jA1XjxYkeT1Z9AzMPVBnE2arlWgotUJaqArEb/DDA3rRpRhjNR6JRDEaDESiepGeUATBgB9zBpJU1qJ5BNt0oxChKFgdDobjwvqRSBhjvJi3q6eXvHiWs72rm6L8UYmk3v5+vNmX5iDJZrPx8Xvu5dmnf59CT/Bke7nx5lt5/pmnUqZ3q2tqOD3OMbSsvJLmxsxd78Zj03XrqatvpO70xGPMnz+foeFh2tqnplnYrRZMRhMjI3PB1lgU1CzhyLa38OQXjc4IpsELb2zhhnVXYLNa0DSNl199jWuv38h7WzbjysoiK9tLc2MjvT3dLFxYy/79+2huaiISifKHV99k6+59fPzjdzPiH+Hwe2+w9NqbyG7ZQV20kCpDB20+Azk2jYimIACTFtQLpI2WuQzyNBBjOMjDQ4PYHM5kgq+7s4OOthaWr7wcgPa2NupP13HtlaOJIE1KmvtH2NYXZf9glH5Gn6dLQj6OmNJLqN5X5UQCv9jbRuNAetWLxYVZHG4/PzSLqTjI3wc09KpWG7AY3YHnp+egXRcAdOUB39AQDpcLjycrY21NVVUoyvPS3tZKdo53grFBApdvvI2j+z+gu31qmaHS0lKaW9LLvnUNDJOXlRogD/hDuG2Zc3AvNqxes4bT9fUZFdRBIkCevCs01NdTVaVn/kxGI3/9jb/g8w9+mrvvuJX/9bd/w3//8uf57jf+nL/7+he5fdPGlGN5PR76BjK7buaQGcwWK5HxAbJQkjM1wwO9uLNTp+Mj0YSWeSypUqNFYxhN0w8kLUVVBDsakkV2dqeb4TjFKRwOY4oX83b39JKXq2fQ2jq7KczTA+RIJIpvZIQsd1q/oksCC2sX4XZnsXdPCv2VlZevxmQys2Pb1uSy6nnzOH0qVfUjJzeXYCDI8NCZDTbNZhMb1l3Jrj17J6xTFIU1q1fz/o6JxYRjYbNYMKgqvknk6S5V5JTp1BRXdnptZIDunl6aWju4Zo2uKJcYqGgxjcKiYk4eOUQ0EqW0vIKFC2vZu3cPX/2Lr/HpzzzIHZuu51t/8RAbr17D4088zqc/8yAAoYAPTTWBFHjVIfqDCvM9YbpDJsptfgKqg2jrcRRXLs0njxAJXxy1ILONSDhMJBRK3gs721rIifP9pZS8/cqLrL76WgxGI37/CL957FFuvOlmzGYTsViMrQdO8P+9sp/Hd5+mN6xx3KfxpOql3qzHJRVRP8OKgQZtImHBoAj+pNrJfK+NR/a38+Mdjfzb9ibq+kYHoQvz3DT0j+ALRSbsf7YxFcXiSuCvpJSJO9dRIcSfx/8WSikz8/P8iEJKfYrQNzyE0+nCk5XFngwDZICygjzaWlrwenPwDaQ3G7TYHVy18WbeeukZHnzoq8npi/EoLSmhpbVND+TGrevsH2ZBfiqvccgfwm29NDPIoPMbr7ryKl577TU+9cCfTLu9Fps8QNY0jcbGRj75qQfSrldVFbfTMcqhHrfem53FkcOXntXw2YTZYiHalSogryhqMgMy1N9H1vgAORLBaDQmzXUi4TBmmy0jVQTV5gKpEfb7MNud2JwuRoZ1qTn9uCYGBwcxmYxYLRZGBnoJhsJkZ+k1Cn0Dg2S53Xql+Gx8AR9R3LhpE0/+5gmWXbYymZ0SQnDbXXfzq5/+hDVrVmO1Wikrr6Crs4tAIIAw6gN9oSiUVlTQ3NiQ5EHOFAuqq9iyLX0QfOWVV/LDH/yAW2/aRFN7E4899hihYJCNG9azKW6BbLNaURSFkQytqS8ZKArXfuJzuHLyk+pjMY0kdchgdnDo1AcsWlSL4syBaJBDe3ezYkEVrfu3Umw2MRgL0dPaxPCe/Qx1DCDsFr5XuX7CqcSdV/C3V9wMnQN03rWWPyu38IwIcN0Nt2N8/W2kpYCuFh/VzgG21QmuirzNO8PzWV3i4meP/Iab770PgKvLsijK1wezaiRezCe10bqXeF1LskZEUSfUs2jJzzqxV8uoTFKaVCW17kURAjHJjKUQii5nxmhdihhbn5Nmv4SUW7J98TZrkmShcoKqlaBgRTRJIKov233gEFmFJTSNSFS/n30HDlBetZD+QIz2E/sZGfFx1bpryBJBfvPEwywvz+f6MhsDL/2MR470ERj0c8WJBnICAfYe1JNSfpOZ1265HLmzHVN9B1ppF89ds5ji5/dQZBTkuvXPVrJWl6i9fMU8FhVAr9lIR1jy8vFOviT0JIjBYmKRx8T2gydYX6wH3WNnByf7LmcDU2WQC4HT45bVof/Ol4TIrkhQLFw6xWImmcDSwjxaW1vI9nrxDU4+PbBg2UpMZjN7dqSvsgaw2e047Ha6eya6ynQODJPnTs0gDwZCuC5RikUCG667jqbGRo4cnl5gRdM0FDV9V+hob8flcuGYxmVvMng9HnpnMLCaw/QwpcsgKwoyXmQylMY2PBKNYjQaiERjCAThSDSFXqFEg2S37sQUmpihFEJgdOfi69Vv/iazhVAomLSgVxSFrq4u8nJGs8dF+bnJ4PtSpleMRUVlFTm5uezcnqoglpuXz7z5C9n67juArkBRWlZGQ33q46e0vILmhoYzPn9+Xi6RcITevokzeu6sLGpq5vHu1vf57W9/y7333MN/+/pX2bJ1K8FgnMtssyAE+EbmAuTxyCmpwDSFxfSRo0dZtHABoOtc7zl8nBWL5nO8pZuYpuE1Qr4B/B4nwuNA1qXPv8ntxxFr5oMvCCfbOeyHpcsvo6mhHmm2I60uSs0DnA5kszg3xqlgLstsLXTkXIZzpJ2BlvEhzRxaTx6hpEY3StZiMboaTlJWU0s4FOLtV1/ipjvvRVVVnnvhJZwOB3dcuwp/MMTPDvbiMRu4z+gjZ7yyU88Q8uXdiGsWIS0mlOYezD1D9F9WnaYFOmyqoMZtYl2RjaGIRsPwaMZ4Q4mDt1tHGImcW0fE6WTeLuGEh4QExcLpIisri4GhYbQ0o8V0KCvMpbWlmWxvDr7+9Blk0B++G275ONvf2cxgf3oqBkBpSfEEHrKUku4BX0qALKVk0B+6ZDnICZjNZu67/36eefr3aaWkxkLTYpNykBvq66morDzjdmR7sujtn+MgzybMFivRUOoNWVHHZpB7cY+T7UtykCMREDo1ImGJG/UPU3jqVdRoiPKWzXh7D08oCjW4cxjp1euTTWYLoWCQSDiMyajzj7u7u8nL1YPyRICcQG/fAN4Z6HJfzLjtjrvYsvkNWpqbUpav33gj7299L9lXq+bVTKBZlJZX0NTYcMbnFkJQM6+KU3Xpg6Rrrr6Sl199jQULFrB06VLy8/JYMG8e2/foMpqJDLLZbDrjNlyKCAaDNDU2Mr9Gp2IcPXGKPK+HYCiE2WiguWdAN+8xgmk4AHlZ0DrJs7BzANr6ECurkbtOUBeQVFRV09baiuYpQe08SWPQg9foRyCJSANWJYI92E1b3moatr6S4hh3qUPTYnQ0nKSoeiEAvW2N2LO82J0umk4eobColILiEnp7utl34CD33XM3wVCYH//+NcqcJu6tcTOpHkDPEBxvRbtSP7Z353F8VQX4PBOVZMZCFYL1RXbebh99bhfajVyWtP9PtAAAIABJREFUY+GVRt0SW0rJsb4g77b6CE3hTvxhMV2A/KoQoivxQleyAHhz7PL4uosLcjSD7HS6MBqN2KwWhjPkn+V7PQwP6QoYk3GQE8jy5rL6qmt57flnJjUTKMjPp6urO2XZkM+P0aBiM4+qYISiurOOxTgnFTZv3jyWX3YZTzz26ym1S2NTcJDrG+qprDjzANnldBAKRwiFp9Z7nEPmSMtBVnQZQKnF6GmfqMcaiUZSzH5C4TBmqx0tFqN363MMZ8+ju/wa6ss+ht3fSWnzWxAevUEbs3LxJQNkM+FQKKVAr6e7m1yvHiC3dnZNKNDLmcsgA5Cbl8edd9/Lbx57FJ9vOLncm5PDwtpF7NqhmyhV19Rw6sSJlH2LSkrp7e4m+CEUCeZVVXNykgC5qqKC2265iTtuvz25bP2169iyfRcxTcNmtWA2mbh544YzPv+liJMnTlBWXp7Uht+1dz9rli/iwPE6akvzaO8bpi+qq59Yh0ZgJAgxDfHZjYgrFoAh9d4stx+HRaXgcXBXjsJLzz3LbXfehaFpL9GiJeQYRzArURqHVBZaO/j/2Xvv8DiOK9H3d3ryAIOcARIEGMCckyhSpBIlUlTOyZKDZK/DWt707t7dd5/Xb3ev77O99loOspVtWTlZgSIlUgxKzBRzBsEAImfMYHK9P3oADECAYgRAsH7f1x/Q1VV1qqrnzJyuPnVqd1suOTVb8bkycCanUXtge38Mw4Cksa4Ou9ONM8E0WqtK95FTbM70l+7ezuiYO9Pqj5azYN5c7HYbT7y1kqK8LG4qToqt54ByTyIb8vM4dMMsDi2eiVw1CSwGauMBVG4aKicVSyBE2uYDlE4b9ZUzr9OzXRzzhqkPdP5uLxyayK76AL/fUcfPN9fw/uFmypqD/HRDBQcbel7gd66cykD+N8ytJ3/b7egtfdAhdC7SA0hNTuLzTVt59s0P8AdObfAYhkFuXh5ebytt3pav3J50+uVX4PN52bF1c4/XPZ5EWrrt9lRZ30hWStensUY9e9yFxTcsQcTgnbff7jVPNBrtCG0Vj1KKstJSCs9hBllESE9Joqqu/4KdDzZ6jGIh5ipsX20lntQ0XO6ubkehUKeLBZgzyA63m72b12FxJtCcORaAsC2BowUL8DvTsO1e0TGTbEvO6DCQbXbTxSIUW6AHUF9fT1qquRbgRFUN+dlZHbJr67SLRTxjx09gytTpvPj8cx0+4WAu2Ptyq7mBUm5ePoGAn9qazrkXq9VK/tChHCk9+9fkI0cUc+DgoR4nIkSEqxfM77LJUOGQIaQmedi2ex9ulxPfKTYJ0vTM7j17GDvGfIXv9fnYX3qYKWNGsXN/KcluF0MykqkPQ0MYjEgEKhtgeA7idiBThyM3ze5aodeP+nwPsmga6TaYNHUqG9Z9QSR/PEZzJQqhKuhhTHqEimASebYmfI40Mut3kTdlLuVffkZ9bU0PLb30qK2qICWzc0FeddlBsoaNJNDmo/J4GSNGj6W68gRHyw4zb+4c3l26DI/byR1XzkREONgY4JmQh205OXgCQfK+2E3+57vBEGTRNIhGMbYcJDptBApILDUjxRzP7T0cIJghJsem2NlZ37mw0mU1+MGkdBYOTeSuUSn8aGomD45J4+bhqbxT2njKXfnOll6nGZVS/3bepV1EqNgqvdZYmDeA3KwM9hwoJRqJsG3fIWbMymTn3v2oQBtThpz8A5iXn091ZSWuxCS8TY3g6H0Vu8Vi4bqbb+fNF55l7LixuLqFn/J4PLS0dDWQaxqayErp6hvb6AuQknDpRrDojsVi4f4HH+SXv/g5R44cobCw8KQ8vUWxaGxsIBqNkp7e+wYF0WjUXPB1ihn7sSOG8eWegxRmzTi7Tmi60NsMsopG8VYeJXdo8UllwuH2MG8hrHY7gUAAi9XNjnVrSJ53J1RG4iujJnMyKVWfYDmyFbKuwOZJw9/cSCQcxu504q33Ew6FOmaQ62N+xtFolKqaOnKzO38Aqus6w79pTK66diF1dbW89dor3H7P/YgIw4qKaPP5qKysICMrh7HjxrNv904y5l/VUa5o+AgOHzpIydhxZyU3PS0Ni9XC8fITDCnIP60yV14+mw9Xf8K9N1+Pr+3CzFRdzERUZ+zrKJ1xu22x79Tm2mqmjizEsv8zgs0+nKKwbFpKsKWRyKF62lqiGMEQ4XovtU4nDE2GUBh1uAoMQfmDyGWjIdEJLgckucFhg7Iqfv76fmRaGbgdGMu3IA9dTepHX5J21USyjtYybpKFUFSRNiyHuvoGTmxeQ9rQETz5m8dpCFg45EulvM0JCJlFI5k6NReA+aPMN0AlGebva7LT2rHorr2P7fZYVKmO2OLta37jF+61L9Jrj+l9uLGNrcfMKDhD083f+fwk8zfbZkjH/4XJrpgcs65gRNH+ItQRCxoeURAIhDv+N//G4qpHwRsyCxxvNg3NZr/5QOqyWXBaDb7csonMohJagxGqK8oJRyIoTzpHjh0lJTOXsGHn2LFyikeMxO5KZMeu3fzgjoVgdaA8qby2eT/XF3oobGpA8tPwZZntajrexAfOLBKvn0Tqhv3smlxM09As3GVVuD/bw/Zrp9B8pJaM2MyvK8u0n2w5QyC2lmRmocEru2uYmxPAECHkbcONGVLNkewx96pwJzJ5RCbrag7xYUWI23r8hJ49p7vV9CVJMBjEYrHicDgQFeXe22/mR3/zTa6ZN5v1O/ZxrNHPS2+9zysfrKLankMoezSBwhkECmfQmlJEVnY25ScqSMrI4cD2zTS0eGn2h6jzBSlt8FHa4ON4s5/jzX6qWwO0hITEpBQ+WfUxIoJdhbGrMNaWaqJtLbQ01GLUH8OoP4ZqqubYseNkpHiwpOWYR0EJdRYPqZlZSP5IoqkFRBPSzcOdah7OJKLOJJTTQ7T9cCUTdSWjHJ6OfJHEDCKJGURjh3J6UBa7GURfjI4d7JTFhrI6iNjc5uFKIeJKIepMIpw6BGV3d+STYJt5hNp6rENZHeYqXRU1d82LHUBHfiw2sNg62tLTrnNRpTqeJi2GkOB2MXfePNZ8/HFHvNW2sKI1FKU1FCUSidDcFqItHMUbitIWihKMKMqOHCUrJ4+WoKIlGKUpYqUpYiVocRC0OAhZHPzu6ef5n//n1/zs6Zd5b/0u9tf5qRMPQbuHoCMZZXMxY/IENmzfQ1l5FT5/gKjF3C2vvtXPP/3iKZZ+vo1thyvZfOA4O/YdpKammjafl3BIu2X0hN3pJBL0d5kFNH2QI7RWHiWvsKuBHI1GO7aMD4cjKAWBYICWhgYycguwJib3KCdSMB7r0S2EWxvBMLC7E/A11GAYltiW4z7sdjPUUX1dHWmpKVRV1+BJTOh4nRwOh6lvaCQ9/dRbmV9qGIbBrXfeTcWJE+yNbddtGAaTJk9hy6ZNgDnTvHvb1i471xWPGMmBvbtp6iG2/OkgIiyYN5cPln8IgM/no7aHxc/xjCsZSSAY4vCxEzqCxVlgGAaR2PduaqKT1kCIUCTKsGQHURR1YRhfUUlj+8z98VrE5YAkF9itiMuO8rhQUYVq8poL+LYfhnAEuXW2+Sp/1XYzbEN5HbjtcLwWZRi4LYKImJt+eb04k1JpOFaK35JAQ8jB6IQars04Rprt0nvwaa6toqmmgrySiQBUH9hJ1shxZnjbxjoS4xY6t29F3dzcTIrHfGhYf7SBzAQHE1LsdA8GZABTdx/iRFY6TTnpFG3YS9OsEiJuB/a6ZjJ2HqZyeskpXS2GJTtw2Qz2NH7F23oRHpxWSDAS7RJP/XygHVVPQTgUwuE6eTZ2/KjhvLtyLc88/TTXL1pEJBzml7/5HePHjiE9K4f09HSy8vIYOmI0Hy1fxuh511G+byelr/wGhycVR3IqLk8K0UiEI4FWvI31tDU34PYkk5c/hOEjR3XIamxsZNWKj9i8fSe3LDADc0eiUd75Yif7y2v4/ozOmZRjlTV88Nlmvn7r9Rd+cE4Di7f3xYl9zezZl7Fj+w5effll7rrnHuI3m540bQavv/RnHvzmIyQndRpLWdm5VJQfN2eIe1iYs2bNGiwWC//643+j9PARdu/cwXN/+C0LrrmOBfMuxxY1FTsvK4Or5szgxaWrqG9uxWqxMCQ3i2MV1YwePow2v591Gzdhs9kIhMJUVVXR1tbG3Msvv+DjcjFiGBYMi5UhCVZsdjsVrQFaBKJiEPH7SE7pvIdtYkcZiuzsbL48Vk96dh6BUAhfMEpdi5doOEzLO0/hsGThtSSTavHjDjaQGG7E4U7APXo6Jak2dq19m6yMdIZY/Xz0wbvceMVMVr77OlfPmMDnf/0LxXmZuEPNPPfXd5k1aRwohbJaWbH2C0aPGoXFk06EuN3mYu2zGoKt20atEntAhM5t3RFznUGhx4bKibmPjDBnXZSCjgByp7PjZNxmDuoUYe5EqS55pIdXmPHlu8+iGXE6Zun4Vzquu2wO7rnnbp579lmKhuSRmJnJ5XPn8vh//4rR4ycytGg4aZlZPPv7X3P9TbeSVVBIcmYuRWMm8Ydf/4qxs69g+OTZXd7+1PpO3lXQEfNhDYTDFKVa2Lz3MAGrh5f3NHBg2Uv4va0s+cbfku4xv+t3Vdd3qSvNaWPIvBt58/2XsFktHG7Wi7zOBCNmXAFYDIO0BAd1/jDDkp3sL/dR4haiYuAJBmhuaTMN3Lx0sFmhxQdekChmyACjc7pa1TTBrqPmYrAY6ngdUpCB+nQ3wRumE4zCaI+VL0pLmTBuLDsPH0csFnzWJLLtJwgpC+VtbuakVnAi7AaVw0nW3iBEKcW+9aspmjQLi9WKikapPriLiUvMsKitjfUkppgP9Sr23dLa2orL5cJmtRAMhfnoQDXfnDEMWnt+wLSHwkzfcYAvZpQw7qNNJO4+St2CiWQu20Ta/nIaRhVw3EhgSFvP67pEhCuGJLOmrJ6xKadeGOtx2LhlfP4p9zM4G7SBfEpUj3FSrVYrdy9ZyLLPNjNr1iwsFgsjCodw+MgRqusaOHy4lMNlZcy4bB5XL7qRj1d+xPRFd5J9mZNAcz2B5gYivhbEYiFrWBGJKWkU5ORgs9txRoMEmmv5/JO1HCs9QFlZGTMmjeNfvnEHHreL+tpqnl/+BTYD/v7W+SR6zB/L0hPVPPnOKu657gpGFp7eq8NLCYfDwbe/822efvppXn/1VZbcdmfHF+H8qxditVp55ve/5Z4HHyI3zxy/zKws8oYMZe+uHUyaOq1LfS3NzaxatYrHHnsMu93B8JGjGD5yFLPmXsGLzz7JiaOHsYhi0vjxTBqWzZWzp3H1NNMPr7G1jbIT1eRdn0FGthkHMupIJBKJEMJyym2vNSYWm41QMNDh4hAKBjBsdlQ4RKjbzLuIMH/BlaxZ+RGz587j4xUf0drcTDAcYejCe/lw8zHsDcdJDtcStiZRkziC8NAhTMx103zgS9a9/QIjps/FFfayavlS7r5pMe8uX8HsSebq7K37DvNPD93G8s82oxRcM8/0maysrmXtFxv4+x/+oG8H5yKiqKiI666/nqeeeorv/+AHpKamcuttt/PGy3/hO3/7I269+35279jGmy+9wPCSMVyxcBEzr1xIyaSprHz3DY7s3cXM626hub6WI3u3U19dicVqI2/MFNKGj8Ni6/rDevzQPhprqxhz0zc4/PmHONwJ2J0u9m9dx2VXLABM46G2dA9l29ZjsTtJmH8DKblDSM7OJ9EKh/bv64eRunixWCxdZvYyEpzU+kIMS3aw4pBiUbqF5empzD10mHJ7MqR5oLrJdKlIdJq+AhYBZQOrBRIcYLUg9a2QlYKqa4ZjtdDohWM1MLsEqpsY+ckOEicu5LPaIFNnTqG5uZlAazOpQ0fgPngEJdAUdDAmsYHtLRmMtZ7AevxLgkOm9ONo9Q2lmz6hraWJKQtvRQE1Rw5gdyfiTjVdw1ob68nIG9qRXxCamppITjYnH3YcPEKOx8mQFBf+1p4kmKQ1t5Kz/zhl00tIWL6FYEYSTTNGkbLlANlbD7LxstHkdzOQjzR4yUxw4AQmZSfwcWkdOxuCjO6Hn0VtIJ8CFYtk0ROjigopnty5eCA/L5f8vFwiseDeVbW1vPbKq9gdDgpGT2LDey8TjkRwJqdjT0jCmehBhYPUHi3l+J5tbPe10NrUCNEomVlZ5OYXMHXyJL52/724Ij7CDZUs+2Irqzbt4JqpY7hq/DCM2I5gm/eU8vqq9Txww1WMGz70Uo7Nd0psNjsPPfx1nn7qSV7+83Ncu/hG0mKxay+ffxWpaen8+Zknufn2uxgd83GcNG0Gm9Z9dpKBfPDgQYYXF5Oent4xUwWQlp7BQ49+j9I9O3BY4NU338Z96yJGFnV+2SR7Epg0ejhRpdi0fRfHTlRSUdtA2dFjRCIRHHY7brebOXMu64NRuTix2OxdDOFwMIBhtRO1Bgn3EDFk2rRprFy5ApvNhrelhYysLOoCihOfvovFMZYTjuGAIt3WisdfhWf/AU7s9uIpGsuUa29h9+crKMjL44qrr+X195dy1YwJiAgfrvuS79+1iKOVNXz+5S7+8Rt3YTEMfH4/z7z4GjcuvIrUlBT6NnrnxcWcOXNobGjg6aee4pFvf4cJEyeyc/ce3nnjdRbfdhfjJk5m+MgSVix/n2ce/wXjp89hzNSZXHvP19m9aT0fvvAEKZnZFE+cTv7kywm2tXJ85xZKN64hZ/RkUnPycadkYLg8bFq5lFkLb6Qh6Kfu8F4WP/J3+FtbWPvq00yePgOXO4Ha0r2UbVxD+uQrCDRU8+VbzzByzjWkFhRjaaog9RRrEjQn43Y6KTt+giljTL/evBQ3m6sauW9MBmEFx/xRPP4Ay8aUmOHdjtaCPRZ202GDhJiRbLdCMAw1zVDXjAqEwDCQ9CSYMtw0noNhxGFD5o2jfM8Rlnis+CKKz75YR4LbTe7Y6RzdvBaLJYnjgQRGuBtY35jNrJQqNtiuYGblBsJpQ4HedwW82An6WinduIYpC2/FarMTiirK924nEg4R8vuwOd2Eg0EqSvcTmTARp9PN0bLDtE6ZhM/no8XXRtmJKhraguysbCYvHCWswNrLxHvO3qPUDZ2OZUgmqZ/tpvrmy2gtryXxeC3+aJQj7kTGxOX/47pSrivJYW62A0OEJUMTePFQCwsybExIspIQE+QPR2lqCUBAyEhw4LCe/w1DtIF8KpQ65d7ypyI1NY27v/YNXvnzs0SbG7nyge9RVllNoLmRoLeZqL8VMSwkZWSTNWwE2elpJCankp2aRKrLvC32kJfSw2Xs2r6VrTt2U1KYxz/efR0ZyYmoQBtN3jZe/3wjlY2tfO/2hRTk553P3g9K7A4H33r026xavYanf/84i2++lbETJgMwbuIkUlNTefH5Z3C5HqKwqJhRo8ey7J03qa+rJTOjc+HV0aM9L/gD8CQlMXfePGzRIJkZGTz3wl8YM6KIJJcNq8WKy+UkPSWZNZu2EYnChNEjGT5yFA/ecxeupBRaW1vxtbV1+LFqTsZqtREOdkZACMdmkI2QrUtkhHYsFgtXXnMdqz76kHGTp9La3ER51SEyJ80lf+MnFIVbURj4bR5anNn4CqZQVJxP454NbPv4PUpmLyBYdYTP1qzivluWsHHzJk5U1/HDe5dQUdvAC0vX8M3bF5GcmEA4EuFPb7xHyYhiZk+foh9YT4NFixfT8sorPP/cs3z9G99k0Y038+YrL/HcE4+z6ObbySsYwsKbbqeqopz1n37Cy7//L8bOmsfwSTMZPnE6ltjOfKZbRBZpBcU01tZQufdLyvdsxVtXTSgQILewiLyikdQcKMPuTsRmd2BLczB09AQ2f/Ixc6+7kfKdGxk2cwGSMxyGjiSveBSlny7DYrOj2poZVtz7ZgeXEu27s4Uj0Y4FbO1eOMGIon1Ph0WLF/Or3z5BXlYGMyePZ+F9U/nTy6/z+IEG7rznbjZu+ZKG0BGGpCRCkp1Aiw8LCqvVglIKSU7AZggpeQXYMgsBRUOLj+bGBprqa/G2NMdCmxoIQsjvx6+gbmQ+L26pxhoKY0PwJoVp++AdLM1tJKY0MdFlp2hjGYWzwxQYEX79wxL+6dfreWzxFLzE3kzFZr5FwBEzzJyxTaXaF99ZpHOBXLsrkd0iWNtdQbqN2/BUB2MyzTe/wXD7WpnOa+1uWG2xiRd7rB57zJ8awEnMLz8SQjlj6x1ijlvtO+T5QlEssfj+YzPdcfcsicKHvsWyt17D5qtn7tXXMerue1izYjlbX3+SqfMXMv+mO/nig7d55anfMGn+deQVj+St95YytGQ8P39lOUvuegCyh7Ns5zZqq4KEw26S0zMZtfBmRk+ZQXpSImMTTbcwW1M5G7btYsvErXx3yVx27djFS2kJfGtaNmWSxIe7j3HrgtvMvkUi/HTISHO3QZvZrwnDavj2qAbWbD/AysP1uGxW7OUtNHj9pCcngrTi8/u5ecFsusU7OWe0gdwLCmUq5xn6I0WjUbZu2cKBQ4fIHzacm26/mxdfepHlT/4MV1o2tgQPNlcCDpepIH5fKy0NtdQd3kcw4CcaChAO+GlpaSYUDDJ0yBBGDyvg/3roVtKSEiHgJRAMsWrLPlZtP8i8CSN4+MYrsVmt+of4NLHZbFxx5dWMKBnNn5/+Iy5XAkUjRgJQMGQot999H6+88DyPfv+HuJNSGT95Kts2b+Ka6zp9u4+WHWHKLZNPqtvvb8MZt6PUyBHD+e6Dd3K8oorW5ibCkQgNTS3sPXyMcSOGsWDu5RiGQXmDl3c/WEZFVQ2JiYm43S7GjTu7lfqXAuYMcmcIINPFwoFY/F1mkI8fO8aWzZu45eabGTdxEp+s/pik5BR2bt2EPSGVaDDA/iGLaG3wYRDFkeDE468iue4QJw6vxTN8IqMuv5bdn3/ExImTGT5qNC+/s5RxRQU89uCtfLp5B6s27eDR265j2NA8QuEwz769DMMwuGXRNf0xNBclIsKdd93FCy+8wJ+ff547H3iIex58iA3r1/PXV1/EZrcz64qrKBk/katuvouG2mo+Wf4eB7dvYdo1S4iEQ7TU1+HKK8aVZIbbc6WkUzT7ahxWA6UUzQ31jMg1Z3/DwQBWe+f6kvGzF/DBc4+TV1iMv6WR9MJRHTFYPZl5TL/9G3z+wuNYRVGnQ4SdER6Ph0e//hC/f/Ipduw9wKLrFvL1B+9n67btvP3+MpwOB2OG5hAMh/E2m6tDFCAonKJIdVtxWAS7J4GGUIj6ulqqqqppaW7EZreT4HZjsVpQgTYiEdVhrFqVivObN/9XDhtY/FgrG0hJcHBg8ggmG1Hm2IJU1NTjSUrG5Xbj9Z06LOvFTuHwkTz83cd4/81XeOnp3zP7iquYd90N5JZMYONH73Fg2yZmXH0D9bU1bProHTKyc8kpKKTi6GHGTprOa8/+gSuuv5E7Hn6UYFRoDYSoPl5G6Y4tvPy7XzB11hyWLLy6w11w8thRvL9iDfuOV1OSncLEDBevH2jga/MLeX/HEfaVlTO6yIxdb/Rgcw3LSmXonDGEIlGa2wIEsJKdnIA9LRNcSRwur+JY1fnXS20gfwVnYiCfqKjgpdffwjAMxk2YyI6tm1i7cjnjr72NhOQ0Dh4uI9TWSrjNG9sJTDASnCSkpJGSmIDd4STNk0BGcgIeTxI5SU4Mw8DwNWC01lLd0MSGbbv5bMdBRuZl8A+3LSAzPRWx6tt4NmTn5nHHfQ/y+ot/5r6Hv0Vegamgw0eOYtrM2axe8RGLb7uLkSVjWbvyw45yoVCIqqoqhhR0bkZRXVXJimUfsH/fHqbNnM3i6xZSV1lOZmYG+dmZ5GdnYoTMFfCqPSIHcKyqmg9WfcqRE5XMnT2LmbMvw+v10uZr6/D30pyM1WYnFOzuYmHDsNq6uF5s3rSBnTt20Fhfx+33fY3rl9zEX994jeElYznS4KVh32YKSKEx4sEdaSatuZKA1UMkp5icqZfRuOsL9m88xPh511G1bytHy0q5/9Ybaamr5BfPv0FmShJ/f/9NZKSmUNvYzJ/fWUFKSjIP3LIYw3L+X/kNZgzD4J577+PPf3qet157mdvvvo/J02cyaep0ykoPsnL5UjZ/8Sljp19G0ehxXHnHg5Tu3sH6pW/gTkomMSWdnV+sJiE1ndzRk0gdNhYj9t0oIjiTUrE7TKM4EvRjcXQayM6ERCbOupyP3nyJIVMux7BY8NUcw19XiZGZTeaQYaQVFGHxN2kf5LMgOzuLf/3BI3y26Ut++9RzTJk0kaJhhdx58w3UNzZRVbqPqIpiFcFAxZZ3mqZyIBKlpi1K474y6lp8OJ0unImJ5BQMxTAMLNEwwWCQcChAOBImDNgAazQKkQgSjSIiSChM1O2AcAQViZLY7GXIoXJKbhjDgYiV8vXbyB/a81vBwYg7IYE77n+YHdu2sG7tKrwfvMvoGXO56q6HOL5/Nx+/8Wdyi0Yx/dqbOLZrC7VVJ0hKSaN0/27mXHUdW75Yy/o1K8gpGEZUBHdiEkUl4xg3bRZ7N6/j//z0f3PlVVcxvTgHi8Vg9phCXlq9mf957QQWF6fw840V7DxRz5Wj8lm1cVuHgdwTwXCEptY2QhGFPxTGGwmxu7yGWn8pzf4wQ7IzmDtl7HkfI21ZnYIzmUH+fN16ln74ETcsuYkZM2YQiiqmXHYFu3d8ydK3/4I7ORUjMRWrw4nF7sTu9oBhYLWb8Vv93lb8Pi8RbxNtjTbEMDhMBF9bG/XVFZQdOYq3LcC0UUP40Z3XkOm2fXWjNF/JsOLh3HDL7bz8p2d56NHvkJlh+p7NuWIBv/75T5lVU012Xh5VFSc64iUfP36M7JxsbHY7Sik++/QTVq1cwbwFV7P4lttZ8cF7/Od//Ds52Vm0tfl57OG7SErsunGFUoqP123l4w1fcu28y3jwgfs5XHaEXbt243DYcTpdPW5eojGx2Gx36b4OAAAgAElEQVTdfJCDGI4UxGrrCI+nlGLvnj1845FHWfvxx7zzxmvcfs99ZGRlk5iUhHfXTgquuYvyT9fhCrXgs3ioTRtLVCwURyuoXPMGnuETGTJ8BNtXL2XO3Pm4ExN45Z2lJLkd3LlwHqOH5BAMhVm5YRsfrd/G1bOncOXcORiGod/onAUWi4X7H3iQJ//4R/76xqtcef0SXC43RSNG8cCw4RzYvZOtG9fzxYqljJ4+h6KJMxg6ekJH+eqWNuqOHqR81xZKN31K0cwryR0++qSHlXDAj9Xe1YVp4qy5VBwtI3fMFGpL93Js7Qd4hozg8OFdlK1XZBaNQoW92sUiRvvai1A02uFuEYpN30aVojXm6WQxzN8qS1I+U67KJ3v8LDZt3MCnW3bij224I9EI7kQP1oIxRNJ9+Nt8eL1egn4/0bowdk8KAcNNqycTZViI+CPgV3gcBtmJCShxkpSYhC3gx+lrpam5hbDDQVZBNnmpHhJsQjASpanVR4MvSFNbkMOBEFV2KxUuO6luB1kSYO7wRNLL1lCQbi7UVg7ze1tZHShLe0SZ2PeymOfKsJohSqEjioyoCO1BiyUS+z6ymG4bNouNEalm/vYJ7vbYxXYVRiLmmzGn3ZQd6nDfkM5oNbHtlZXVgT/aNXqM09rukmHpCIUZ7ZBj/u3cHtrg8lkzuXzWTA4dOsTnn37CO2s+pHhUCddcv5iamjq2r15KJBIlPSeXo6UHSErPYv2nq2lra8OemMTBo8cIhiIgBuHwVqzBFkKGk7AzmZdWrOevbbUgQkJKOuljLmNlYgknjlkI2FsITVrEvi83YU0NcsQ1jDSnBacRc93B4ODBg/z1vc3U19eRmJiIzWbD6XTicrlISkpFJRo4EuBoSxuvfbGH74yf09vH9azocwNZRO4BvgdMAtxKKWu369cDvwCKgUPA3ymlPoy7PgJ4ArgMaAB+qZT6Rdx1N/Ab4FbMR9A3gO8rpc54CyTVSxSL7jQ1NvL+sg/50Q++S2p2ewQJ8yaPnTAZf8pQWuqqOFZRSSTgJxL0429pQEWjGA4bhmEgNtNFIuxTeDFjtdoNRYLbTUFuDvPGFZOflYYlZHZDBfSOTueL0eMm4PN6eem5Z3jkez/A5XLjcrm4bO4VrF35Ibfe8wDuhATqamvJzMriaNkRCguHAbB27Vq2btrEI9/9AWnpGYSjilvuupf777sXB2E+XLGS373wOplpqRw5fgJvmx+Fwu10kJrk4e8e+Rpup5PX3vwrhw6XMXPmTEKhEE1NzSR2M6ovJBeTXsLJM8ihYAAj0W7OIMfSa6sqsBgWcnJyufuee/jVr37Flo0buPL6Jbzw5O9IGj6eyi+WUZc0g0aBxEgDBU078firCGcMI+uyG2jcvZ7y+nImLriB3Vs/xelycc/Ni8n1WDl0tIJXPvqM7QeOUJyfzWMP3kZ2RipKP9icEzabjXsf+gbL33uHJ375M0rGjiMjM4viMeMpGT+R/FHjqauuZP3qj9i7eR2T5l+H050AIhhpeWQWlZBZVELVkUMc2bSGg58uY8iEGeRPmdshI9xtBhnAZrez5P5vsH73QQ58uoyhV9+BKz2bVIeVxrI97F2zFKthkJmV3WdjcbHp5amorqpk5/ZtVFRUYHG4sFgtRLxhIiFzYW1DXQ1KKRISPXiSU0jKysftSaIubIBSVNR7ibR4MaJhIILEXChEDAybgcttx+F0YU9KICMtDV9LIw1NzVQ1tpKfmsDQ9CQm5KeTnuAk2e0gyWnrMgkhNhuG0917BwY5w4qHk1dYjM/nZc+ObezcuoUT5ccoKCwmJSOL40dKsTuciGEQjUZQKko0HEZh3h8lHTunoAzzIcEWbAF3MpKYit1hULlzA3V7NjFu0lTufeR7eL1e9ny5ha//4O9Oas/ePXt45eWXuf2uuxk5ahSBNh97d+/i4MGDHDp0iOrqanLy8lEIx46UMW7iyS6P50p/zCA3AL8DXMAf4y+ISDHwJvAo8CpwJ/CWiIxTSpWJiAV4F1gB3ASMBpaJyHGl1Cuxav47lj4a00p9G/gv4G/OtKGnimIRz8cff8zM6dPISDdjnXbH5nCQljeUtsTO7WdtMa/8nETzSTLNZT5lpzitpDjN2Y4ki1lbu4uF5sIxdeZsaqqreOPll7jvoa9jsViYNWcuP//Pn9DW5iM3v4CKE+VkZmVx5MgRJk4yg6tv3bKFRUuWkJbedetMwzAgCtdefRVJdsFmtXLblTPxJLhQYqG1zU9yYgKNAcWvnn6BwsKh/OA736KqrhFEcDldpPXt5hIXjV4CWOx2QsFOH+SORXpWK+HYIr3S/XsZPXasuemO3c5d9z/IM3/4HTff/QAz5sxj4849eIaMZMTOFUSUoDCo8wznaMoUihNaqVn3AZ7iCWQk2NixeilXX7+YSDjM28tWUNfQQHF+LiOHZPP9uxaRm5mOsuq3OucLp9PJzXfcxczKKkoPHqC6soJPV/+akWPHUTx+KjkFQ7nilns5fvgQOz5biSEG3uZGskZNoHjGfESElPwiUvKLUG0tbHzjGVIKR0HaMAAi3XyQ46kp3UtOyURc6aYhLCLkjBzP8Z2bkICXE+XH+2oYYADrZfwb1kCbj9aGOppCbRiGBavVQKIh2rxegq1N7N+7m4Dfz7gJkygZN5Emrw+rzYbdnYTd6SQl0Y0rIQGbYdDS0kxzYwPHK2vwtTThr6sh5PdBqxdXIAix9UFKDETZCdkiWO0ObPZEEhI9FKS4SExwkxz1khLxkpzghEDMva2HBbyarrjdCUydeRlTZ15GQ7OXwwf2snv7Vhpra8jIzaetrY1wKEQ0FCSMlyiGubGXYcWIRoEotrAXFQ1iREIQ9qP8rbRYLYiCUCTMto3r2PT5WkSEgmHFrP3wA1xuN2NHjWTyeDOmxfJly7hi/nzGjDVdJx5/4gnycnMYPXo0ixYvZuPGjaxZvZpINMr0WXMYOxgMZKXUcgARWdDD5YeAzUqpF2LnfxGR78TS/w24AigE/lkp5QO2iMgfgO8Ar4iIC3gAWKKUqorJ+b+Bd0XkR0qpM9su5zT29m5qbGTz5s38898/dkZVawYe1y5ewl+eeZIPl77HohtvxuFwUFg0nEP79pKTl09F+XEmTp7CsWNHueHGG2loaKC+vp5hRcW9hvESEeZMNY3peB/kNHsS5VW1PPHKu1x1+SxKxo7j8SeeIjUtDYvFoK3Nz6SJE/uo5xeZXgI2u4NgoKuBbLfaEaudUGycD+/fw6JFnQsrM7OyufPeB3jtpRdYcse9RLdsxeJ0cyRrDl5vBJ/hIceooaTmY6zNTtKnXUXj7g00Jycx6eob+WzVcrJz87jx2qsYnZtkPgSF9Q/uhSQtI5O0drenq69j+6b1rH3/LcLhEKOmzmbElMvIjm0t7ve1suqNF2iqPM6wqXNIyBkGgNOTzNDJszm65RMmjDDTwgG/6ebWA/VHDjBi3vWEgLb6Kg4e2kFeyQTSCorwVxym9MD+C93tDgayXh5d+w4BXysRpdhWW0VSeiaJHg/R2I5mNrsdp8tNcnIy8xffSmFhIWKY28dEuv20tkd/aAsrgo5knNnJJCTkkgD4Gkx9Djf6scV8BVJiLoaF6W5GZ5hv2oYmmZNNmY7YZjyttRhtTbGBjH1Dxx5i290dIG4zHouNaLsbRfcdWsUw1450S+v4NxzoKsewmAegpKsrj0TDSCTU8T+ANeaGgWHtdNNov2aJtVlBNOadbcS13x4bvPbdY7tE1Ig9wLQvfIvE2TTdp/4MERJiz/j+mPuMNTWRzJnTmTptGg2NTZQe2EtZ6SG8Lic+n49QIEAkEkZhMd1holEz2otIbHY5ioiBqAjRYAQRc1c+073UiWGxUlNbR3Orl+T0TN5+5x3WrtvInMW3MuGqG1j1xgs0pxUTjUSoqalh9E1f50BDDSv/8iqhYICptz6Mt6WJvVs+o9GWxMRRRZxPRJ2GEXghiCn8ivhXRiLyNlCmlHosLu2/gSFKqdtE5DHgYaXU5LjrtwJPK6XSRGQysBVIVUo1xq6nAvXAJKXU9m5teBTz6RtgPLDzAnS1NzKAvpwW7kt5g7lvfS2vRCnV8y/5BUDr5aD+LA3mvvW1PK2XWi8vRlmXgrzzppsDbZGeB2jqltYIjPuK60lx1+mWp/3/JLqhlPojsddWIrJJKTX97Jp95gxmeYO5b30tT0Q29YWcr0Dr5SCQN5j71tfytF4O3nvb1/IGc9/6S975qmugrSZpAbrHtkoBms/gOt3ytP/fjEajORu0Xmo0Aw+tlxrNBWSgGcjbgKnd0qbE0tuvjxKRhF6u7wP83eqYArQBfec4ptEMLrReajQDD62XGs0FpM8NZBGxiIgTzL0cRcQZOwT4EzBdRO4VEZuI3AtMA56PFV8LHAH+U0RcMR+qbwN/AIiFpnkB+ImIZIlIFvAT4E+nsRDoj19x/XwzmOUN5r71tbw+kaX18pKQN5j71tfytF72LYNZ3mDu28UtTynVpwfwMGY4me7HsNj164FdmE+xu4CF3cqPAFYCPuAE8A/drruBZzB9rRqBpwFXX/dTH/q4mA6tl/rQx8A7tF7qQx/9d/RbFAuNRqPRaDQajWYgMtB8kDUajUaj0Wg0mn5FG8gajUaj0Wg0Gk0cg95AFpF0EXleRCpFpElEXowFQ2+//jUROSQiPhFZLyLTupX/GxHZKSLNItIgIptE5O5TyLtGRNaJSKuI1IrI7y6grP8QkcOx/NUi8rqIDL1Q8r6K2IKSn4lIjYi0iMgbIpLx1SXPb99EZIGIKBH5uFudD4hI2SlkntW9O1N55/KZPNu+DTT6Wi9jZfpEN7Vear083b4NNLRear2MS9d62d9O0Bf6AN4H3sAMip4GLAfei12bC3iBhYAD+CegCkiKXb8XqARmYe7M6ALm0W0hRJysBZgLHe6I1ecEpl4IWbEyo4Hk2P9u4L+Azy+UvNMY63/BDA9UjBlP8w3gg7Os61z6tgCIYO4ItSSuzgcwd5463/fujOSd42fyjPs2EI9zHIOz0ZVzub9n+j2g9VLrpdZLrZdaLy9yvex3hbyQB5AARDG3zWxPm4+5CrgQMxzOn+OuCXAUeCh2/jjw6hnI+wL4aS/XzqusXvr6c6CuL+T10oYjwDfjzocTt+K6D/u2AAgDfwfsBiyx9FMp/Lncu9OWdx4+k2fct4F29LVenof7e9a6ovVS66XWS62XvbRB6+UA18vB7mIhcUc77X2eFDs2t19Q5shtjaWDGUfyJhH5dxG5WkRSehVkBmOfCfhFZEvslcNqEWnfYvG8yeom9z4RaQJagR8CP76Q8k7RjmRgaDeZhzB3ZJp4lnWebd/a+Q3mU+UjXyHnXO/dmcg718/kGfVtgNJnegn9o5taL7VenqpvAxStl+dR1le0Q+vlRaCXg9pAVkq1AquBH4tIiohkAv8zdjmJr9irXin1GuYrhLHAi0CdiKwSkfE9iEvFHM9HMGNX5gEfAktjynQ+ZcX38UWlVDKQi6kQO2KXLoi8U5AU+9urzDPlbPsWVz6Ieb9/LCKeU4g6p3t3JvLO9TN5Fn0bcPSxXkI/6KbWy97laL0cmGi91HqJ1ssuDGoDOcYDQADYA2wA/hpLr+Wr96pHKfWeUuo2pVQ2MA5zav89EZFu5dr3tX9WKbU9dkP+N2AD5pxnWSehlKoEnozlT7vQ8nqgvf+nlHk2nE3f4sq+AhzG9E3qjXO+d2co75w+k2coa6DSV3oJ/aibWi+1Xl5kaL08z7J6Qevl6cvrN70c9AayUqpcKXW3UipXKVWEOUB+YB3d9rKPfdAn07lXffe69gK/xPR9Se12rQkow1Sak4qeT1mnwIrps5PXR/Liyzdi+v7EyyzGfJLbfqb19cBZ9w34B0wfpPxe2n5e791pyDtvn8mvkjVQ6Su9jF3vb93UetkzWi8HGFovL5is7uW1Xp6+vP7TS3Uenc4H4gGUYK58NIAZwAHg/4ldm4vpr3M15l73/0DXFZDfAO4EMmLnBZgrKnf1IusfgeOYr2GsmE8qFZhPOOdblgF8H8iKy/9W7MNjPd/yTnOs/wXYBxRhKvprwLKzqOdc+7YACHer8w2ght4XHZzLvTsjeef4mTzjvg3E4xzH4Iw/u+d4f09b3nn47Gq91Hqp9VLrpdbLAaCX/a6QF/rA9JOpwNyL/gDww27XvwaUYu5lvwGYFnftVmBVbDC9QDnwF6CoF1kC/AQzHExjrOzkCyTLAJYC1d3yD78Q8k5zrC2Yq2fbX328SewL5QzrOde+9aQUI4Bgb0pxjvfujOSd42fyjPs2EI9zHIMz/uye4/09bXnn4bOr9VLrpdZLrZdaLweAXkqsgEaj0Wg0Go1Go+ES8EHWaDQajUaj0WjOBG0gazQajUaj0Wg0cWgDWaPRaDQajUajiUMbyBqNRqPRaDQaTRzaQNZoNBqNRqPRaOLQBrJGo9FoNBqNRhOHNpA1Go1Go9FoNJo4tIF8kSEiPxaR2nOs4y4RebiH9OdEZNNX5TsHueNFRInIgvNQ1+pYXUpEHotLTxaRZSKyTkTu71bmx3FlXj/XNmg07Wi97KhL66VmwKD1sqMurZdngTaQL03uAh7uIf3/7ZbeW76BwirgMuDluLRrgJeUUrMxtwaN56lY/q190zyN5ozQeqnRDDy0Xl6iWPu7AZqBg1LqUH+34QypV0qt65a2GnhdRL6LqeAdKKWOA8dFpLmP2qfRnDNaLzWagYfWy8GPnkEeZIjIZSLyjoicEBGviHwZ/+pERJ4Dbgfmx70++XH7tfZXRl+Rb3X3Vy4isiCWZ3xc2ndF5FisHe8Cub20ea6IrBERn4jUiciTIuI5m/4rpeqUUlcqpWYppZ48mzo0mvON1kutl5qBh9ZLrZenQs8gDz4Kgc+AJwA/cDnwrIhElVIvYb4WGgqkAN+NlTneQz2nm69HRORm4LexdrwNzAee6SHf5cDKWJ47gHTgp0Bq7FyjGQxovdRoBh5aLzW9og3kQYZSqsO/SEQEWAsUAI9g+hodEpF6wOjhdUt8PaeV7xT8C7BMKfU3sfPlIpIJfKtbvp8Cnyul7o5rdzmwUkTGK6V2noVsjWZAofVSoxl4aL3UnArtYjHIEJFUEfm1iBwBQrHjUWBUH7bBAkwB/trt0pvd8rkxFwG8KiLW9gP4FLPd0/qivRrNhUbrpUYz8NB6qTkV2kAefDwH3A38DFgIzMB8VePswzZkYr6dqO6W3v08FbAAv6PzyykEBAAbMOTCNlOj6TOeQ+ulRjPQeA6tl5pe0C4WgwgRcQI3AN9XSj0Rl36+H4T8gL1bWlrc/zVAGMjqlqf7eSOggB8DS3uQc+Lsm6jRDAy0Xmo0Aw+tl5qvQhvIgwsH5hNmoD0htrr1JkzFaifI6T0h95bvOHBFt7Rr2/9RSkVE5EvgZsxFB+3cFl9AKeUVkXVAiVLqJ6fRHo3mYkTrpUYz8NB6qTkl2kC+OLGLSE8rVtcAG4H/JWbswijwP4AmICku317gZhG5BVN5Tyilenr67C3fW8A3ReSXwPvAlcB13cr+J/CmiPw+ln8+cH0PMv4Jc4FBFHgdaMFcDXwD8C9Kqf2nHgqNZsCg9VKjGXhovdScHUopfVxEB+brFdXLsQAYAXwMeIGjmAr1Y6A2ro4MTCWsj5X7cSz9OWDTV+WLXftn4Bimgr5A51P3+Lg838f8ovBhvhJa2N7Obn2aBSwDmmPt3g38F5B8inFYDbx+lmN41mX1oY+eDq2XHWW0XupjwBxaLzvKaL08i0NiA6DRXFSIyGqgDnOBRUSdxgc55ltmYMaRrFFK6biRGs15ROulRjPw0Hp5dugoFpqLmdswV/H+8DTz/69Y/u7+YBqN5vyh9VKjGXhovTxD9Ayy5qJEREqA9u01jyqluofE6alMHpAXO61XSpVeqPZpNJciWi81moGH1suzQxvIGo1Go9FoNBpNHNrFQqPRaDQajUajiUMbyBqNRqPRaDQaTRzaQNZoNBqNRqPRaOLQBrJGo9FoNBqNRhOHNpA1Go1Go9FoNJo4tIGs0Wg0Go1Go9HEoQ1kjUaj0Wg0Go0mDm0gazQajUaj0Wg0cVj7uwEazWBHRAQYDszH3LZzAqB36NFoNJquCFALrAXWABuUUoH+bZLmUkXvpKfRnGdiBvEYo+CyXaq1EuVvRBweJCEHIzEbXGkYFpuZ17B0HhYLAEZcmpnH6JIPQCxdz+PLdJbrrLd7mmFI7FwQEQxDkLg0Q7qdG4IYYHaNjvzteTvqiuWNjQNi0LXubrIshnQ52tOsJ6UZJ+WxSNc8J5fpue6e6jFEsJhJGL2kdTmPye45zTzvqMOgY4x6ShMBA0E66uklje5lYuMp9J7WUZ+cVE973aIUqCiiomaCikKPabEjGo2Vi3bmjeWR+HzxadH2c9U1X3vd0Qgqav4FzPNIpLNcNIKKmucqLg/RqJmv47yHenqrN5amYnlUxDzMtK7n0UjPeaLx55HoyeU6zmPtaM8XMct2laXi0hTRiIqru/M8GlVxaWY5FVGxdkY7ynbKipWNtvdFxcp0PY8qRSR2LyMKIkp1/O2edvp5FFFOTjtVGS9hKghQgZ9qgtgRcnCyhaZrgC+UUj40mj5AzyBrNOeIiFiACUb+zK2qtQqcKYgzBZTCkj3JPG+3RjQajUbTKwlYGYGVESQA0EaECgKMx7OiigC54iQHB1/SvBj4TCnV3L8t1gxWtIGs0ZwhImIFphp509ebBnEq4kpFDCtG7jRwJGmDWKPRaM4DLiwU46YYNwABIlQSYCJJS6sIkC0OcnCQi5Pl1KQrper7ucmaQYI2kDWaM8WRHCLQhGqtwsiehLgztEGs0Wg0fYADC4W4KYwZzH4i7KCFVdQC1InIlUqp1f3ZRs3gQBvIGs2ZEmhyA7PEnb4qWrEZFQliuNORxBwkIQexJ/R3CzUajWZQEiJKNUEq8FOBnyCKLOzMI52V1BYopcr7u42awYE2kDWaM0Qp1QasxlzvhIjYo2110w2757No/WeoUBviTsNIyEESc8CeqGeYNRqN5iwIEqUytmivkgBRFFk4yMXBZpqylVLV/d1GzeBEG8gazTmilAoCn9NpMFuVv36ycqZujJavRwVbTR/lhGyMxBxwJKPNZY1GozmZQGxRXgUBKvEjCNkxg/hLmtOUUg393UbNpYEO86bRXGBExADGG/mztqnWKlSguXNGWQSQdtO6MwnpODcvd83T/r90O+/I2yk8rv4e6umQ16XBXQ34LkXOrFxnMemaHN/EuHBm7Vml/cpJ6SfLl45zOWV617q7lenajY529SarM016LNtVfueZ9JCve730IL+nPD09ZEm3f066RT1UICf9Bqi4P6qX9O7X6Az31i29x/p7qjs+TYHqSItPjyujuqf1nEf11CfVc5rq3kcVV/okee3/dq1HKbq2u6e+dDmN63OXtnfWHd/FLm3saFLXcl3q7iVPZxbFSd3uoX+qa7H4ZneptqsYdXIedXKZ+L9WpD1KxfXA50qpFjSafkAbyBpNPyAijyql/tjf7ehP9BjoMWhHj4Meg3b0OGgGCnqraY2mf3i0vxswANBjoMegHT0Oegza0eOgGRBoA1mj0Wg0Go1Go4lDG8gajUaj0Wg0Gk0c2kDWaPoH7WOnxwD0GLSjx0GPQTt6HDQDAr1IT6PRaDQajUajiUPPIGs0Go1Go9FoNHFoA1mj0Wg0Go1Go4lDG8gaTT8hIqtFJCAirXHHkv5uV18jIs+IyDERaRaRith5an+3qy8Rkb8VkfUi4hORg/3dnr5ARO4RkU9i9z3c3+3pL0TkP0TkcGwcqkXkdREZ2t/t6ktE5DkRCXX7Lvxuf7dLc2mjfZA1mn5CRFYDK5RS/97fbelPRGQ8cFgp5RWRFOAJIKqUuq+fm9ZniMgdmJuJjQa+rpQa0c9NuuCIyHVAGuAC/qiUsvZzk/oFERkNVCilmkTEDfw7MFspNaefm9ZniMhzQFgp9a3+botG084l+YWk0WgGDkqpnd2SokBJf7Slv1BKvQ4gIg/3c1P6DKXUcgARWdDPTelXlFJ7406FS/Dzr9EMRLSLhUbTvzwmIvUisktE/llEbP3doP5ARP6HiLQADcAtwH/0c5M0mj5DRO4TkSagFfgh8OP+bVG/cHvsu3C/iPxMRBL7u0GaSxttIGs055mYP506xdHuUvHPwEggE/gm8C3gJ/3V7vPNGYwDSqmfKqU8QDHwC2BQ+OGeyRhoLl2UUi8qpZKBXEzjeEf/tqjPeRzTvSgDuBWYDzzZry3SXPJoH2SN5jwTm/lwniKLTynl66Hc/cBPlVJDLljj+pBzGIeZwJvAUKVU9EK1ry840zGIuVj866Xgg9xOzMVixaXqg9wdEckCSjE///X93Z7+QEQuB1YDiUqpQD83R3OJor+QNJrzjFKqFfNV6ZkSxfRBHBScwzhYgXwgAWg5r43qY85hDDSXLlbMz34ecEkayJjfhTCIvg81Fx/axUKj6QdEJEVElohIophMwXy1+ko/N61PEZEsEflaLHoFIjIK+P+AT5VSF7VxfCaIiFVEnIDNPBVn7HzQIiKWWB/tsXNn7LhkjCIRMUTk+7FZY0SkAPgtUAbsPVXZwUQs5F/7d8BITDerd5RS/v5tmeZSRhvIGk3/YAP+FSgHmjEN4xcx/ZIvJRTwMFAqIl7gI2AncEd/Nqof+FegDfgjph92W+wYzDyI2cflgIXOPhf2Z6P6gcXAztjnfz3gA65RSl1KsaG/Q+d3wIfAOuDr/dskzaWO9kHWaDQajUaj0Wji0DPIGo1Go9FoNBpNHNpA1mg0Go1Go9Fo4tAGskaj0Wg0Go1GE4c2kDUajUaj0Wg0mji0gazRaDQXiNhOeu/1gZz3ROS5Cy2nrxCR1XG7Dc4+x7r+//buPcSqKorj+IKHsTYAAAVxSURBVPeHOqZGRkkGJpH1jxaFiFFQEWUWWEqUGGWJadkLypSi5z897DFEUTkapSEiFIpETSjko4cUlPQwA9HQ0lIxemmWWa7+2Pvi6Thz753phjLz+8Aw3LPPWXvdGZhZd7POPsWnGXa33VHMrJNcIJuZVSFpeC6u1hzuXLqZ+aRHL6+F9KRJSVsl/SjpmeKJkgZJ2iJpYBtx7sxxzMzq5gLZzKy6m0j7VI+QNPRwJ9OVSGqqMrw3InZExH5JA4CXgZnApcBESZcXzn0ReCQidpaDRMQvEbGjoYmbWZfnAtnMrB2S+gDXkgqwVmBKaVySZkjaKGmfpG2SZlWJ11vSs5J2SvpD0keSziuMr5b0Qumaf7VpSOqbj+3Jce6v431UzbOOvKblsZ6luIskvVGY4x5JX0v6XdI6SRNL56+W1CKpWdIuoN5V+SHALxHxWkR8DKwChuaYVwH9gXl1xjIzq8kFsplZ+64GfgY+ABYCN0jqVRh/HHgImAWcDowHtlaJ9xQwAbgRGA6sA5ZJ6kgLQDNwCXAVcHGOc0GNa2rlWSuv14FjgVGVCyT1A8aRfi4Aj5I+QNwODMtzzZU0ppTLREDA+cAN9bxhYCPQN7e7HAeMBL6Q1B94GpgWfuqVmTVQz9qnmJl1W1OBRRERklpJfzPHAkskHQ1MB+6KiMrq5Sbgw7YC5YLyVmBqRLTmY7cAF5GKygdrJZPnnALcGBHL87HJwLYa17SbZz15RcRPkt4GrgOW5RhXAn8Bb+YYdwOjI+L9PL5Z0tk5Rmshpc0RMaPWey3K808CFgB9gAURsVzSXFLrxQBJi4B+wHMRMacj8c3Mylwgm5m1QdJppJXZ2wAi4k9Ji0lF8xLSKmlvYEWdIU8FelFoK4iIvyV9mGPVG6OJQhEeEXskratyTa08681rIfCqpL4RsZdULC+OiD8kjQSOIq06F1dyewFbSvOtrZJruyJiKbC08jq3gJwDzAA2AJOA9aSV5TURUe1nYmZWlQtkM7O2TQU+j4j1hWMLgVWSBpPaBDqicn5brQCVYwfaiFts6ejonPVcU09eAG+RVozHSVpBarcYnccq7XpXAN+WYuwvvf6tRj415Zv75pB+R0OApoh4J4+tBi4ktYmYmXWKe5DNzEryzWiTONhfW/E+qZ1hMvAVsI/UB1yPTcCfQPHmtx7AuTkWwC4O3ZLsrFKM/aSV00qMfsAZVeatlWc9eRER+4DFpJXjCcAO4N3SHCdHxKbS1zdVcuusB4CVEfER6f9YcbGnCejxP8xpZt2IV5DNzA41BjgRWCepXHy+S7qZ7VHgOWCWpH3Ae8DxwIiIaCkHjIjfJLUAT0j6AdhM6g0eCMzOp60EnpU0ltQ2MA0YTG5TyO0UrwBP5l0gvgcepkpBGBG7JbWbZ515VSwE3gFOIfVmHyjM0Qw0S1Ke42hSIX8gIl5qL7+OkjSMVKQPz4c2AH/lvun1pA8CjzRqPjPrnlwgm5kdqrKd27Iq54wC7gN+Iu0QcRKwk3QjWXvuzd/nk3aF+BS4LCK25+PzgDM5uGXZbFLf7YBCjJmkm9GWAnuB5/PramrlWSuviveA70i9ydeUxh7KcWcCLcCvwGekHTIaIhffLwHTI2I3QET8Lul60lZ8/YHHIuKTRs1pZt2TvDOOmZkdSXIf8ZcRcUcDYwYwPiIWNyqmmXVd7kE2M7Mj0c35YSgj/0sQSXMk7WlUUmbWPXgF2czMjiiSBpH2OwbYmm8Q7GysE4Bj8svtEfGfd9Ews67PBbKZmZmZWYFbLMzMzMzMClwgm5mZmZkVuEA2MzMzMytwgWxmZmZmVuAC2czMzMyswAWymZmZmVmBC2QzMzMzs4J/APhAjPuiKxzYAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 720x216 with 4 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "vlim = 5\n",
+    "levs = np.arange(10, 100, 5)\n",
+    "\n",
+    "fig, ax = plt.subplots(1, 3, figsize=(10, 3))#figsize(10))\n",
+    "# cloud cover response\n",
+    "cf0 = ax[0].pcolormesh(lats_icon, levs_icon/100,\n",
+    "                       dclc_icon[response_cld.index('cloud'), :, :],\n",
+    "                       vmin=-vlim, vmax=vlim, cmap='RdBu_r')\n",
+    "ax[1].pcolormesh(lats_mpi, levs_mpi/100,\n",
+    "                    dclc_mpi[response_cldvap.index('cloud'), :, :],\n",
+    "                    vmin=-vlim, vmax=vlim, cmap='RdBu_r')\n",
+    "ax[2].pcolormesh(lats_ipsl, levs_ipsl/100,\n",
+    "                    dclc_ipsl[response_cldvap.index('cloud'), :, :],\n",
+    "                    vmin=-vlim, vmax=vlim, cmap='RdBu_r')\n",
+    "\n",
+    "# cloud cover in control simulation\n",
+    "ax[0].contour(lats_icon, levs_icon/100, clc_icon_djf['T1C1'],\n",
+    "              levels=levs, colors='dimgrey', linewidths=1)\n",
+    "ax[1].contour(lats_mpi, levs_mpi/100, clc_mpi_djf['T1C1W1'],\n",
+    "              levels=levs, colors='dimgrey', linewidths=1)\n",
+    "ax[2].contour(lats_ipsl, levs_ipsl/100, clc_ipsl_djf['T1C1W1'],\n",
+    "              levels=levs, colors='dimgrey', linewidths=1)\n",
+    "\n",
+    "# tropopause in control simulation\n",
+    "ax[0].plot(lats_icon, tropo_icon/100, color='tab:green')\n",
+    "ax[1].plot(lats_mpi, tropo_mpi/100, color='tab:green')\n",
+    "ax[2].plot(lats_ipsl, tropo_ipsl/100, color='tab:green')\n",
+    "\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].tick_params(labelsize=13)\n",
+    "    ax[i].set(xticks=np.arange(-90, 91, 30),\n",
+    "              xticklabels=['90S', '60S', '30S', '0', '30N', '60N' ,'90N'],\n",
+    "              xlim=(-90, 90))\n",
+    "    ax[i].set_yticks(np.arange(0, 1100, 200))\n",
+    "    ax[i].set_ylim(1000, 10)\n",
+    "    ax[i].set_xlabel('Latitude [$^{\\circ}$]', fontsize=15)\n",
+    "del i\n",
+    "ax[0].set_ylabel('Pressure [hPa]', fontsize=15)\n",
+    "\n",
+    "# titles for models\n",
+    "ax[0].set_title('ICON', fontsize=16)\n",
+    "ax[1].set_title('MPI-ESM', fontsize=16)\n",
+    "ax[2].set_title('IPSL-CM5A', fontsize=16)\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# colorbar\n",
+    "fig.subplots_adjust(bottom=0.24)#(right=0.8)\n",
+    "clevs = np.arange(-vlim, vlim+1, 2)#np.array([-1, -0.5, 0, 0.5, 1])\n",
+    "cbar_ax = fig.add_axes([0.29, -0.03, 0.5, 0.037]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf0, cax=cbar_ax, orientation='horizontal', extend='both',\n",
+    "                  ticks=clevs)\n",
+    "cb.set_label('$\\Delta$cloud cover [%]', fontsize=14, labelpad=1)\n",
+    "cb.ax.tick_params(labelsize=13)\n",
+    "del cbar_ax, cb, cf0, clevs\n",
+    "\n",
+    "fig.savefig('figure_S3.pdf', bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/.ipynb_checkpoints/figure_S4_streamfunction-checkpoint.ipynb b/pythonscripts/.ipynb_checkpoints/figure_S4_streamfunction-checkpoint.ipynb
new file mode 100644
index 0000000..77e087e
--- /dev/null
+++ b/pythonscripts/.ipynb_checkpoints/figure_S4_streamfunction-checkpoint.ipynb
@@ -0,0 +1,327 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Stationary eddy stream function response\n",
+    "\n",
+    "This script generates figure S4: cloud impacts on stationary eddy stream function response at 300 hPa."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated (total response, SST impact, global cloud impact, regional cloud impacts)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# simulations with global cloud changes\n",
+    "runs_glo = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "\n",
+    "# simulations with regional cloud changes\n",
+    "runs_reg_TR = ['T1C2TR', 'T1C1TR', 'T2C2TR', 'T2C1TR']\n",
+    "runs_reg_TA = ['T1C2TA', 'T1C1TA', 'T2C2TA', 'T2C1TA']\n",
+    "runs_reg_IO = ['T1C2IO', 'T1C1IO', 'T2C2IO', 'T2C1IO']\n",
+    "runs_reg_WP = ['T1C2WP', 'T1C1WP', 'T2C2WP', 'T2C1WP']\n",
+    "runs_reg_EP = ['T1C2EP', 'T1C1EP', 'T2C2EP', 'T2C1EP']\n",
+    "\n",
+    "runs_reg = runs_reg_TR + runs_reg_TA + runs_reg_IO + runs_reg_WP + runs_reg_EP\n",
+    "runs_all = runs_glo + runs_reg\n",
+    "\n",
+    "# responses\n",
+    "response_all = ['total', 'SST', 'cloud',\n",
+    "                'cloud TR', 'cloud notTR',\n",
+    "                'cloud TA', 'cloud notTA', 'cloud IO', 'cloud notIO',\n",
+    "                'cloud WP', 'cloud notWP', 'cloud EP', 'cloud notEP']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read stream function at 300 hPa"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T2C1\n",
+      "reading T1C2\n",
+      "reading T1C2TR\n",
+      "reading T1C1TR\n",
+      "reading T2C2TR\n",
+      "reading T2C1TR\n",
+      "reading T1C2TA\n",
+      "reading T1C1TA\n",
+      "reading T2C2TA\n",
+      "reading T2C1TA\n",
+      "reading T1C2IO\n",
+      "reading T1C1IO\n",
+      "reading T2C2IO\n",
+      "reading T2C1IO\n",
+      "reading T1C2WP\n",
+      "reading T1C1WP\n",
+      "reading T2C2WP\n",
+      "reading T2C1WP\n",
+      "reading T1C2EP\n",
+      "reading T1C1EP\n",
+      "reading T2C2EP\n",
+      "reading T2C1EP\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "sf300 = {}\n",
+    "for run in runs_all:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.streamfct.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats = ncfile.variables['lat'][:].data\n",
+    "    lons = ncfile.variables['lon'][:].data\n",
+    "    levs = ncfile.variables['lev'][:].data\n",
+    "    sf = ncfile.variables['sf'][:].data\n",
+    "    ncfile.close()\n",
+    "    del ifile, ncfile\n",
+    "    \n",
+    "    # calculate stationary eddy stream function \n",
+    "    # subtract monthly-mean zonal-mean stream function from monthly-mean\n",
+    "    # lev-lat-lon stream function to get the stationary eddy stream function\n",
+    "    sfstat = sf - np.nanmean(sf, axis=3)[:, :, :, None]\n",
+    "    \n",
+    "    # get stationary stream function at 300 hPa\n",
+    "    levind300 = (np.abs(levs-300e2)).argmin() # index of 300 hPa level\n",
+    "    sf300[run] = sfstat[:, levind300, :, :]\n",
+    "    \n",
+    "    del levs, sf, sfstat, levind300\n",
+    "del run\n",
+    "del ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "sf300_djf = {}\n",
+    "for run in runs_all:\n",
+    "    sf300_djf[run] = fct.calcMonthlyandSeasonMean(sf300[run],\n",
+    "                                                  months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "del sf300"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate response"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "dsf300 = np.full((len(response_all), len(lats), len(lons)),\n",
+    "                 np.nan, dtype=float)\n",
+    "\n",
+    "# total, SST, cloud\n",
+    "dsf300[0, :, :], dsf300[1, :, :], dsf300[2, :, :] = \\\n",
+    "       fct.calc_impacts_timmean(sf300_djf['T1C1'], sf300_djf['T2C2'],\n",
+    "                                sf300_djf['T1C2'], sf300_djf['T2C1'])\n",
+    "# regional cloud impacts\n",
+    "for k in range(int(len(runs_reg)/4)):\n",
+    "    _, _, dsf300[k*2+3, :, :], dsf300[k*2+4, :, :] = \\\n",
+    "          fct.calc_3impacts_timmean(sf300_djf['T1C1'],\n",
+    "                                    sf300_djf['T2C2'],\n",
+    "                                    sf300_djf['T1C2'],\n",
+    "                                    sf300_djf['T2C1'],\n",
+    "                                    sf300_djf[runs_all[4:][k*4]],\n",
+    "                                    sf300_djf[runs_all[4:][k*4+1]],\n",
+    "                                    sf300_djf[runs_all[4:][k*4+2]],\n",
+    "                                    sf300_djf[runs_all[4:][k*4+3]])\n",
+    "del k"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot response of stationary eddy stream function\n",
+    "\n",
+    "Shift the longitudes from 0deg...360deg to -90deg...270deg for visualization reasons."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAIrCAYAAADye29aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3xT5f7H36dJ06TpSveiLW2hbGRPGYKIyhBQFMFxGYKoeHHh1nv16s/tFfdCRRRFURRlKMjeq0IppVBm906a2STn90fSkqZpmxQU8Z7365VXTp51nvPkOd/nc551BFEUkZCQkJCQkJCQkJBw4HexMyAhISEhISEhISHxV0ISyBISEhISEhISEhIuSAJZQkJCQkJCQkJCwgVJIEtISEhISEhISEi4IAlkCQkJCQkJCQkJCRckgSwhISEhISEhISHhgiSQJf4WCIKwQRCEDRfhvE8LgtDsXomCIKwRBCHPg/sCQRBEQRBe9OC3WxCEPS6/TzrDioIg2AVBOCMIwjeCIHS4MFciISEh4eCvbE+d4Ta42EP3z+su4T5x8ysVBGGTIAij/9grkfg78LcWyIIg3CAIQo4gCLKLnReJ/2k2AW0FQUh0cx8CGJzf9QiCEAT0cMZzZQ0wABgMPAn0BTYLghD9R2Ra4u+PU0DsacZfJQhCiSAIl/+Z+ZKQ8ILfcdhD989rbuFKXfxmAQLwsyAII/68rEpcivytBTLwLY6b4ZaLnRGJ/2nqhG69EBYEwQ8YBHwA9BIEQe0SfhAgAza6pVMmiuIOURS3iaK4CEe9jgSm/WE5l/ifRhRFI7AQeOZi50VCwg2d0x66f065hbO4+H0PXAtogXv//CxLXEr8rQWyKIp24DPgnoudF4nzQxCE7oIgfCcIQrkgCEbnyMAjLcTJcMapcsbZ4T605uxBO+khbqMhRkEQegiCsFkQBJMgCPmCIDyB4wGsJXYBJhr2FHcHQoFXARuO3o06hgAisLmFdHc7v9O9yIOERGv5BBgiCELXi50RiQvDJW5PzwtRFLXAUSS7KdECl7RAFgRhgCAIPwiCUCAIgl4QhAOCIEx1C/Yt0FMQhC4XI48S548gCH2B7UAaMB9HD8CrgPuUBdc48cAWHEL0bmAyUAX8JAjC1a3IQySwHkeP7W3AXcBoYHpLcUVRNAM7aSiQhwBHRVE8jUPouvtliaJY0ULSbZ3fVd5cg4REUwiCcJ0gCEecYmWLIAid6vxEUTyDo47eevFyKHGhuNTtqVs6cg+fZkW2IAhyoA2S3ZRoAfnFzsB5kgxsBd7F0UM3CFgkCIJdFMUvAURRzBYEoRIYARy6aDmVOB9eBsqB/qIoGpxu61uIcx+gAQaIongMQBCEn4HDwH+AVT7mYT6gBq5yiloEQfgFcB/Oa4pNwBOCIESJoliKQwTX9RBvdv5GEAQl0Af40EMagtO4+wHtgfcAO/CNj9ciIeFKMg6B9ARgBP4FrBEEoZ0oiiZnmG3AyIuUP4kLy9/BnoKjva/14H4DbjbRaTcBYnHU81jgBR/zLPE/xiXdgyyK4lJRFF8QRfFn4DfgeWARjon4rvyOY0GTxCWGIAiBOAzhEhdj7g1DgB11xhxAFEUb8CVwmSAIIT5mZYAzvdMu6emBH72MXzefuG6x02DOCeQtQD9BEBRAPyCAxgv0AG7G0SCYgYNAPHCDKIr7fLgOCQl3IoFpoiguEUVxOTAGiANudwmTCXR1PsBJXKL8jewpOOpkHw+fdW7hEnDYzVrgDA47+iTwho95lvgf45LuQRYEQYOjt2M8jpugbreKfLegZTieGCUuPTQ4HuTO+hgvHNjvwb0Ixzw3DY6FGt4Sh+cRiGIv42/HYaCHCIKQDURzTiBvBRQ4HuLqplp4EsircBh2G1AgiqK355aQaI4SURS31f0QRfGUIAh7cdTHd53OZTjsaxQOkSFxafJ3sacANaIoNrkDiwslOKaRiDh6zs84xb2ERLNc0gIZx+KR/jhWWB/GcYPeiUMwu2IGpJ6PS5NKHNMIEnyMV4Hnh6JYHIaybn6vCYc4dScChzGtoxCI8RDOk1sjRFE0OEXHECAbh8DNc/pVC4Jw0OlXNze5yEMyFV42CBISvlDShFucy2+z81uyo5c2fwt76iO1kt2UaA2X7BQL51DftcBToii+KYrieudN4Omawjh3A0tcQjiHAbcA0wRBUPkQdSPQXxCElDoH537YNwL7RVHUOZ1PATHORSN14dKADLf0tjvTa+MSTg2M9TFP3XEMYbvvULEFuALH0KOn3mMJiT8KT/toR+MQMXWEOb8lO3oJ8zezpxISfyiXrEDGMU9TxrmeDQRBCAbGeQibgmNbF4lLkwdw9EBsFwThFkEQhguCMEMQhIXNxHkNxyrlXwRBuFkQhDE45re1Bx5zCbcMRw/IEkEQrnLugrICx5Cye3p6YK0gCDcKgnAdsBbHoiZv2YTjnruWxgJ5Mw6BrEYSyBJ/LtGCIAys+yEIQhLQE8f2hHWkAOWiKJYjcanzd7GnwYIg9PfwcRfjEhKt4pIVyKIoVuPYeuhJQRAmCYIwAfgVqHYN53wq7YBjnqfEJYgoirtxLCw5g+OlBT8DD9LMPDpRFAtwLITLAt7Bsao5HLhWFMXVLuGOAdfjGHL8HngIx4rto27pleHYCaUM+BR4C1gNfOzDpWzBMX9YwLNArtueSBLIEn8mZcBip/CZAPyEY4rFJy5heuPYyULiEudvZE+74eiJdv+84kMaEhJNIohii689/8siCEI68D6Olf/lwJtAIHC3KIqRzjATcLwsJNa5SlZCQkJCAseLHYAuwHPA/+HY8m0PMFsUxUPOMHIci7HuF0Xx04uUVQkJCYk/lUtaIHuDIAhfAnpRFGde7LxISEhIXGoIgnAV8DUQL3UySEhI/K9wqe9i0SzOBQDjcQzFSEhISEj4znzgNUkcS0hI/C/xtxbIOF6dOcd1c3MJCQkJCe9w7nSwHceiKgkJCYn/Gf72UywkJCQkJCQkJCQkfOGS3cVCQkJCQkJCQkJC4o/gkplikZKSIp46depiZ0NCQkLir8YpURRTWgok2VAJCQkJj3i0oZfMFAtBEETRdom/Pt1qvdg5+HORXzLPX63G/hcZhPlfq1rnw1+tWvphb2VER90TBAFRFIUWQnttQ32t062te+dTZy9kfb+U750LUZd9TeOPCu/zfXCpV7yLkX5L/JnG8XzOdb75rIvfgg39izUVLXCxK4+Eb/yV/q+/mipy8lex1X+lv8qdC21Hm7vW1pyr1QLXldb8AQrF+Z/HwwXXXU9zQrmp7HpzGc2FaU2653tOb9PwJdyFxJc62VTY5tLw5Necm2sZeBO3LnxTefB4//haEf7oCuJruNaGv1RorVH2Nl5L4bxJx5swLdjQv6ZqaAqT6WLn4Pz4o0TaX1T8/aXwxlD5WI51AsJgMCCTyZDL5ezatYvCwkJ0Oh16vRGbzYbdbicoKAiz2UxNTQ12uw1/fwUKhQK5XIG/vwJ/f38CAgJQq4MICwsjMbENsbFx2Gwtdgw2uDyTycSJE8fIyzvG6dMnqK2tRSaTIQgCx47lkJ9/htraWmprLdhsNmQyGX5+MmQyucuxDIVCQVRUDDEx8cTExBEbG09oqIaOHbuiUql8KqfW4qlB9uTf2nR9pUkh7Esj2JoGs6k45yOQmytcp5/r9bqLZbn8/DWFq7unMN64tTbe+bp543ch8FXwtiRYmzr2xq8loetLuAb3ktWKwWDAz88PhULB7p07KSgsRKvVYjSZsNls2GprCXbaUL3BgNVqRSGXo/D3R6FQoJDJ8JfLCQgIIEitJjQ4mDYJCcTHxiJ4GjVp5o8zmUwcP32a43l55J05g8ViqbehuSdPcrqgAEttLRbLORsq8/NztAEyWf1vhb8/MZGRxEVFERcVRXx0NOFhYXROT0cdGHhpiuc/YvjA16c3b+M09yRX59eCDb20plgUF9f/FkURvcGAOjAQQfBORPzh/FFjT3/0GFhr+Kt1X17oMnLx1+v11NbWIpfLGXHllURERCKTydBqqzl9+jSFhYXY7XbUajXx8QmkpaUTGhpKQIDSaVj90Ol0KJVK1OogZDIZFkstZrOZ2tpatm7dyPHjuY2ycOWV16DRRGIw6DEaDZjNZuru14SENoAfubnZlJQUEhubQHx8G3788ev6+LfcMheVKhC73Y7dbiMpKZWkpFQUigDkcn9kMhk2m439+3fwwguPeFVs/fsPZ8qU2Wi1Veh0Veh01fj7K1CrgwkLC2f8+Gn4+/t7lVYTxe21vze2s7lG35Ob62+ve7Zaq6DOV2FGRwM+TrGorq7/LYoiBouFwDob6kMhuwrmlorEV1HbXHhv/JoK39p0fXXzxs8TvtwDvopb9+Om3JqK60santzqbKhSIWfU6NGEBAUhl8up1mo5e/Ys+QUF9R0JsdHRtEtLIzQkBFVAADI/P/z8/NDV1KBUKAhSq5HJZNTW1mK2WKi1WNi+dy9ZOTm4M2rIEOKio9EbDOj1eswWyzkbGhuLwt+fw8eOkV9URHx0NElxcSxbXf/mbObcdBNBgYHYbTZsNhspCQmkJyU5hLm/iw3Nzua+F19sdH5PXJaRwSMzZlCl01Gl01FdU4NcJiNYrUajVnPLtdeiaIUNvShcyHa3tUa+KXdv0gsPB/4mUyym3nkn369aRXRkJAXFxQiCQJBaTd8ePRg/ejTXjR5NjLPRkJA4H0RR5PX//pcHH3oIm81GSEgIVmdPRx1RUdGUlpYQFhaGIAhotVrMZjNvvvkusbGx9eHcG0pRFDl7tpBly75g+/bNDcSxUqnCZDIC0K/fIKKi4lGrg1CpAvH3V9Q/DJ46lYfdDjffPJOYmHiKivIpKDiDUqli1arlCILAY4+9hEoV2OK1du/eh6KifGprLc7zKDEY9FRWllFTo2XPni3odA5hlZubxb333tRkWomJbenff1iL5/QFvb6GsrICYmPj8fPzIycni/37d7JjxwaCg0Px9/cnJiaOkpIi7HY7kZGRxMbGExkZxfXXT271eV97/XXuu/9+j34VRUVoNJpWp32xmH7XXXy1fDkxUVEUFBUhCAKBgYH06dmTcWPHMmH8eOLi4i52NiX+Jrzzzls88cQj6HQ61Go1drsdo9FY7x8VFUVpaSmhoaH4+fmh1WoJCQ7mrZdfJjEhocknF1EUKS4tZel337Fh69YG4lilVGJ0jjYP7NmTpIQEgtRqAhUKAhQK6lTQyfx8bDYbt0+aRGJkJAUlJZwuLCQkKIhv167FZDbzfw88QGhwcItPO/26deN0YSF6g4FApRKlQoHBZKKsqgptTQ17s7MpKisDoLSykhsfeqjJtBKioxk9cKC3RewVeqORgtJSYiMi8JfLOXT8OHuzs1m7YwdhwcHIZTLiIiMpqajAarMRGRZGfFQUEaGhTBk9utXnff+bb5j9zDMe/Yo2biQmMrLVaf8ZXFI9yF0yMjiUk4NcLue2SZPISE3FUlvLwZwcvvrxRwCm33ADpRUVJMbG0jEtjdFDhtCubduWT/BnTBj35QnpfPx8Cf9HzKm6GBP6mrg+i8XCD6tXU6nVktymDaNGjADAbrcz5sYbWbdhA3dMn06bhASS2rRhzNix7Ny1i5OnTzNz9uwGaZUWF7Nt2zayc3LZvHkjP/30U6PzaTQa9u7NJiYmBoDKykoSEx1Pqf36DeTUqZOUlhajVCrp1q0XkZEx/Pjjsvr433+/hd69BzY5taKlYenz9WuJhQuf5MMPHQavffvu3HjjPSQntycxMY2IiFj8/BrPW23tHEpRFOnSxZFeTEwCVVXl2GxWUlM7UFZWTEVFaYvpFReL9en62rP269rVzL7zTk6ePAlAaGgolw8aRPt27Xjh3/9G3tIcEF+6HFtzXyUlAb71IPfq3p29mZkA3D5lCh07dMBqtZJ15AhfLHPUw+m33kpxSQnJSUlktGvHqBEj6NC5c8PEXArKl95k19++9PT6ksaFdmvqty9urcXbDrHm6nJLvcUthautrWXDhh/RasuJi0tk1KirAZDJRKZPn8yPP37LzJlzSUhoQ1JSG8aMuZYDB/Zz6lQes2bNaJDfotOn2b1nDzm5uWzavJkfVq5sdE1qtZqcHTtIiI8Hq5UavZ7g1FQA+vfsydnCQopKS1H4+9Oza1cSY2NZ+sMP9fHXfv45I/v3bzyyfCEmol+A9vLVzz/n/tcc793pkJLCfVOnkpGSQmpCAvFRUeds6AWqSEK/fgDER0VRqdVitdlon5REeXU1ReXlLca379jR6lH6jZmZ3PGf/3DUuXtOUGAgQ3v2JDUhgVfmz3eMNvo6Cb45N1/jtTAKd0kJZDEnB7vdzsZdu8g8coSzxcWUVlQ4hmmKith7+HCjeG1iY9nx5ZfEe9OzfDGGC87HzRs/b/FVUf1VJvDJ5VRVV7N5925O5+djt9up1un454wZFJSVkTFkSIPghpMnUalU2Gw25PHxHpPs2KED2UeOeDiVHLVajc1mw2KxYLFY6v02bdpOv3796xvzs2fPsGrVD6xY8S2bN/8GwNdfr2L27KlUVlY0Srtv38t59NHX6Nq1F+CdIHD388bfFz9P/hs2fM3ChXfz9tu7iYlJbj6yE1+nobke7969jo8++hfHjx9Cq63k2mun8Z//fMb+/Vt4663H2bNnU6O0Jky4hfnznyIpKRV/f6FRur4OKddPtfBVUXlwE0Wx8ZzI1t577dsDPk6xyM/H7ufH5h07OHDoEGcKCiirqKBKq6W4pIQde/c2ihcbHc3OTZtIatOmoUczjVNzork1orW5NJoT1BciDU/X8UeYOm9Hk32d7tCUGHY91umqOXRoKwUFeYBITU0Vt946D72+kqFDG3Yw5eZWERISikwmEhnpeSFn79592LNndyN3mUxGUFCQRxv6y7ffMnLYMMcPq5WCoiJ+WLOGb378kXWbNwPw/ccf888nn+Tk2bON0u7TrRtvPv00fbt3r0+jRVrbBrUmnjPOj5s2ceuTT7J78WLS3e+pC3k+J5v37+fJ997jwLFjVOl0jL/8cr57/nl2HT7M4++/z6979jSKM2nYMJ6fM4f0xMQLO4XVWx3TjAYSRRGhqSkovuoppwb4WwjkY6tWUV1dzf7sbIxmMza7nciwMI6cOEFmTg6FZWUczsujd+fOtEtK4qPvvquPnxLvGJ4VBIEAf38yUlLonpHBbWPHkpKQ0PSJfRSmNkHgh19/paCkBEttLXKZjDCNhjZxcSQlJNAmLu7cHM3zmSzprV8dviohb5WYr63G+fSguSKX89Xq1dy0YIFH73HDhxMaFMS2AwcQ/PxQBQRw8OhRMlJTmT1lCrExMQzp14+E2Fj2ZWfz79deo6C4mGqdDqPJRFJiIlt37myQZlhYGFqtlr59+rDDza99+wySkpJQqYKIjo7lo4/eqffbsiWb1NR2iKKMEyeOsXHjGh577O5GeX7ooZew2WxYrTZkMgUqlZrExAzS07sQHh7dqJj+6PmVruh0NUybFlz/u2vXETz99K/NR3LS2udIV7+qqgImTXLcp8HBGmw2K3PmPMvYsdPZuXMVixY9R0ZGd6qqyrn55rkMH351o7Q8CY2metFc/dwXFDX4djkuKSzkSG4uOceOkXfyJDqdjpKyMjKzsjh6/Hh98Mv79mXTsnOjBo3S8/Tbk1unToiiiJ+fn9cC+fi2bWh1OvYdOoTBaMRqtxMdGUnO8eMcOHiQgpISDufk0LNbN9qnp/PxkiX18ZPbtKlfrKRQKGifnk73Ll24ZepU0tPSzhWcKx5Ec3NmxGp1jO6sWbOSs2fPYjabEQQZQUFhxMW1ISYmibi4Niici2taEsMtuTWXn9beU39GD3JzD3a+COTNm3/g4YfHezz3sGHXotFEsH//dkBEpQokO/t32rZN59ZbZ5OQkMDAgYNo0yaJo0ezeOaZJygszKeqqhKj0UhycjJbt25tkGZISAh6vZ6Bffuyefv2Bn5pKSmkJiejDgwkNjKSdxcvrvc7/OuvtGvbFrlcTl5eHuu3b2fWo482yvNLzilxNrsdhb8/apWKdikpdGnXjpjIyHNi70L+SV5itlhQ9uhR/7tnx47sXbq05YgXoNcaoKi4mLhx4wAICw6m1mrlXzNmMGvcOLZkZvLQ22/TJyODsupqZo4Zw/jBg307r7c08yRYWlnJkZMnyTl7lrz8fLR6PaVVVfyem8uREyfqg3Zr357M7747/w7GpKRmbeglJZDbJiYSGBBA57Q0IjUa/ASB4ooKOqSkkJGSglwmo3fnzqS5PZUVlZVxurCQoMBANu7dy56sLJavW0eVTsc/p03jtQcfbPrEPrbur3zyCQ88/3yTUcaMGMHKdesauI298kp++Pzz5s8pCeR6tDU1nCwp4YcNG3j63XcZ0K0bbRMSaNemDU++807LCTiZPnkyH730Et/98gsTZ84EID01tX51cn5hYX1YTVgYaWlp7PHQw9YUX3zxI336DCAkJAJoeIlarZ7t2zewe/dWKisr8fdXIJfL8fOTAX5YLLUYDDpOnMhh375N9Oo1jLlzn6VLl0H1afyZAtlqha+//hdfffU0wcERfPJJWfMRXLgQArnuWCYTqaoqRaFQERoa7DF8SyLBNc3zFcjFxcVk9OiBzM8PvcGxkNITsdHRDOzdm9SkJMYMH87Q/v0bBvDyTyouK+Opt94i99QpzlZWcu211/Laa695LZDbJiURqFLRMT2d6MhIZHI5hSUlZKSl0bFdO/z9/bmsSxfap6U1KLDSsjLyTp4kNDycDZs3sy8zk+9WrqSsvJxZ//gH77/5ZsMCrKMVAvnjj9/hwQfnNnkd/foNY+fODQ3c+vQZxocf/lafhiSQm3ezWGooLT3Brl1reeutB+nadQCJiamkpWWwcOETXudv0qSb+PjjL1m/fjUTJjgeStu0aUNAQAClpaVUuywKjQgPJzEhgcyDB71Of/mHHzK4b1+iQkPPOToL2GA0snHnTrbs2UNFdTX+cjn+zh0k/Pz8qLVaqTEYyDlxgo27djGoZ0/+M38+Q/v2vSgCGZz64KWXABCdU51a5AIJ5Dp3URQprapCqVAQolaf37lag1vlrdBq6TBlCrU2G0azGbPLqIIrURoNgy67jPSUFEYNHMiVAwe2SiCXVVTw1KuvkpOXx9myMoYNG8Z777136QtkMTPzvP7A17/4gvmvvNLA7drBg9EbjQQoFAQqlY4J8gMGEKBQIPP357E33yQmPJyQoCAEQaB9cjLjhw2jc4cO5xJxKfxqnY5VmzaxZf9+dh44wB6nMVAGBPDQ7NnMnzmTjXv2sG3PHo44hzweuPNOxl51VaO0fBbKrvg63ueN4PXUyjQVt7m0WqPQXLhqwQLW7tlDu4QEIkJCqDGZKNdqqdbrMTgXZ3RPS0Mul7PXuXjjtmuuISw4GHVgINknT7J2xw6C1WqenTeP6ZMns3HXLsbPnUuERkOgSkXW0aOMHjaM7fv2Ua3VNjh/927dqKyqoqamhoqKCjQaDWFhGiwWC2aziYAAJcXFRbRr14Hg4BCGDh3FXXc9hCCc2x7N294ugKKi0/zyyzKWLn2V4cNvZObMZ1EqA31+XvH2mcedjRsXkZu7i99+e7fe7dNPz99u+NL4NyVkPbl5Cq9Uei+km/KDc2K56OxZ4pIdU0wiIyKYMGYMK37+mU4dOjB0wAAu79+fLu3aER0V5ei1cincirIyDufmEhYSQnREBNFhYehqapDL5ahcTvbThg28+vHHlFVWAo7h6f3Z2QAsfeEFOl9zDR06dMDf39+nKRYt0oyN+WDxYu544IEGbtdceSUGoxGFQkFgYCDxsbFcPXo0yoAAFAoFj/7rX0RGRBASEoKfnx/p7doxdswYunY/15vmWn8rK3X88ssqtm/fzP79e9i9e4czW/7MmfMAd975IDt3bmXPnq0cPZpNVVUFt9wyj5Ejr69Pw1eB7I2bp7ju7i25tYZmnjl8vh+USsf3iy9OZd26L4iNTSYiIg6z2UBVVSl6vRajUQ9AWlongoJCyMx0lP/1199CSEgYoaGhHDuWw2+/rUatVnP//Y8yd+7d7NixjRtuGEtoaChBQUEcOnSI0Vddxc6dO6mqrsZVa3Tr3JlqrRZdTQ0VlZWEBAcTFR6O2WLBZDajUiopLCmhY1oa6sBARg4cyMNz5ji2R6vDhwLOLy5m2apVvPrJJ4y74gr+7/77CXIXhxcCT/eO1cqXK1eycdcu3vvqq3pn0cOuG3Xhm6S17fqFcjtfXMqnpLKSmOuuAyAiNJQJQ4awcts22rVpw7CePbn8ssvompFBdHR0w7UtcjlVWi1Zx44REhpKVHg4sVFR1Oj1+Pn5ERh8bqTzly1beOG99yits6F+fuzPygLgk1deocfIkXTs2BGFQvE3EMg+9N419efabDaKKyooq6pi1+HDhIWGEh4SgsVqRW80snrbNvJLSzFbLNQYDIjAw9Ono9XrsdvtrNu1iy9+/pmTv/xCUlwcP23cSEREBJEaDQUlJURERKAMCODphQtZ8v33yGQy7HY7oigSEhyMJjSU0JAQQoKDCQkJISM9nTm33067jIxzwz++CmMvb5rCs2fJLywkPjaWOPf9IVtSae5uzm+7xUKtyUSAQuF9i+Lrzejity0nh0FPPsm43r1Zfv/9yPz82Jmby/zFi9mRkwOCQGBAACqFgjKtlpToaLRGI7U2G2qlkqIKx/xfuUyG1Wbj4WnT6N+jB9c5dyu488YbiY2M5Km33gJAHRhI14wMDubk0CYhgeGXX843P/zALVOm0KdvX6bccgsADz/8GO3bZ1Bba2f27NsbXULv3gO56qrrGTp0LFZrLUlJHRAEwdtiBqCqqozx46MA+PLLQsLDYxuF91ScvvZ21bnZ7Tbmzg2ittbx0NGx40iGDp1Ljx4TGkdqJr06vO1Jbq0I9rUXrSnR3FIa77zzDnffPZfk5GRmTZ/OE08/zQ0TJ/LEggV06dy5yXvIZrOxdt06pt93H8mJiVRWV3M0L48HZs7k5Q8/BODW666jrLISs9nMuh0OYfLbokVoQkKwWiyoAgIIDQoiISYGunUDfJ+DfHWeDU4AACAASURBVL7Y7XaKSkooLS9n36FDBAUHE6HRUGu1YjAaWbthA6fy8zGbzRhNJgwmE08+9BBanQ673c6WnTtZtHgx2ZmZZGRksHrNGkI0GmJiYjiTX0hoaDgqVSAvvfQ8ixZ91MCGBgc7thMMCgohODiEoKBQkpPTmTp1Dikp5+6pui3zmxO8rmG8MV1WK5SXF1NZeYbQ0DjCwuIbLKZtrWgWRRGbzYJcHtDIr6WmwNuHSdfjY8f2cv/9venV60qee+4nlEp/jh7dx5tvzuf33x1zfZXKQAIDgykvLyI2tg1mswGrtRalMpDS0iIA/P0V1NZamDXrLsaOHc+4caMAmDbtFjp27Mhjjz3qTEtJj+7d+f3QIRLj4xk6aBDf//QTN02YQP8ePbjjgQeo0et5eO5cOqanIwgC/3jgAWxuc/X7duvGDaNHM37ECGqtVjqmpfk2ZUIup7K6mvC+fQEo2LyZOE9rk85ntNbN32azkdCrF8WljgXFA3r14p8zZzLZOdXhvAWvt51QrfFrrVD3ovw+XrWKGS+/TGJUFHeMH8+/Fi1i3KBBPDlrFpe1b99kJbfb7azfu5fbHn2UxJgYtHo9R/LymHfLLbzhnJJz87hxVGm1mGtrWeec4vPLkiVEhYdjtdlQBgQQGhZGYnz832sOcv2QxPk+2bjG97ZH1hmupLycvtOmoa2pISUxEYPRiEqppFqnIz4mhvKqKnR6PSazGW1NDZaTJ0Eup7a2Fp3JRLVWi9ZgcHzrdGzYupWvly/HZDbTvWtXbHa7o1Fxbpyu0WgYNnQojz36KDKZrMnrsdlsnDhxgpCQEDQaDf6CgN1uR7DZEASBWffcw4effVYf5fVnnuHeO+7wqVuloLCQ9du2kZefz+/HjqEzGNifm0tVTQ0xYWF0SkpCbzIRGxrKkM6dsVgsJISHE6fRoJbLCQ8KwmAwEKJS0SYiAj+7h6Frl98Wq5XTFRWYTSb0FgtHS0oIViqZ/803WKyOjeJNViuF1dWM6tSJtS6LNBM0GtpGRqLy9+f/bryR+MhIYkJDeXH1ahRyOfMnTGDRxo08tXgxk4YMIUytxmC1svnQIfYcPkyERgOiSIRGg1qlIr+khHapqbz38stkOLfgeXTBAq4cNYro6GiiYtqgVquxWuXs3LmLo0ezsVhExo69gYKCQg4d2sdHH71Bbu4h1GpHw96xY0/i41MZOHAsHTr0bLFxttms3HBDJHr9uWHLgQOvZ8GCZa22h025mc165s4NauB22WXXMWvWd7hzIToaWtvoW621lJXlUVZ2GpkMdu/+mczMX5HJZBiNNej11SQkpJGff4xZs/7FpEl3olD41adR16PmrUBWKuG226aydOkXREdH07//AH74YQUAn3/yCVOnTPF4D9UajUR16kRiXBzPPfww40aNYvvOnQycOLFRWfzwzjsoAwIoLC3luXff5bv//peOdXN869KFP04gX+g/1M2tsqaGfqNGUVxSQnpqKlqdjtDQUMorKkiIj6eispJqrRZRFCksLMRqtWOzCdTW1lJZqUOn01JRUY1Op6WqSsvWrZtZsWIpNTU1dO7cA5vNjtFocG6XKBAcHEa3boOZPv1J5HL/Jk2d3W7n7Nk8VKpglEoNgqDAbnecWxAEPv10Pj///Hr95Vx//XOMHftIgzSaKsa6Y622iCNH1lNenkdBQSYmk5bCwkz0+nKCgqKIje2KxaInODiatLRhWK0WQkPjCQmJQ6FQExgYgd1uJCBAjUaTXN+z1tRDpdVaS3X1aWw2AzZbLQUFh5xTpO7FZjPj5yfDZqulvLyAPn1Gs3v3uT2Aw8IiSUnJQKkMZN68f9O2bTLR0XF89tl/MRj0PPDAo/z441c8/vh9TJhwA2Fh4Vgsenbt2s6OHTvQaDTI5XLCQkIIDgqioLCQNgkJLFq4kAznzgrzZ81i7BVXEB0RQXxMDMFBQciBfZmZ/O5clD/56qspqahgX1YWb33+OXsPH0YTEoJapaJ3ly60TUjg2iFD6Ou8H5qri3a7ncQhQygsPbcDzughQ1i1aFHzXfXNuTXhZzKZULmtbxoyaBAbf/65cdyWjHJTlcuXp7sm0rCazeSdOcMp59a5a/buZc2ePfgJAnqzmaqaGlJjYjhRUsKCiROZP26cx92KGtHMEOGc117jvZUrCQ8J4YoePfhm40YA3lmwgDkTJ3qMK8pkxA8bRlBgIM/ffz/Xjx7N/pwcetY9bLiw4sMPUanVlJaX869XX2XZe+/RrVOnxnmUBLIHzkMg11FYWcnB48cZ2KPHuaEa11bVNZ4X48NnCgvJOnwYf39/AoOD63daKC8v56qrr6ZPnz5YLBZqamoACA8PJzAwEKPRSM/u3dmfmcnOXbuIjIykqqrK2SthIzAwkLbJyURHRhIVGUl4WBhTxo9nYJ8+yB0WtGGZuHzXGo2s3bYNg17P3sOHeefrr7mqXz/S4uPp1rYtIWo1XZKSaKPRkHXqFEdPnya/vJzCsjJqTCb8BYGz5eUUVVVhMJsp0+lQKxRUGwyU6nTEhYURFxpK54QE+qakoDeb+fXwYc5WVqKQycguKiLauZhAazLROymJ/WfPUuncizg6OJhKg4GU8HB6paQgAF/ubrxy+tlJk5jQty96s5kzOh17jh2jWKslJioKrV7PW84tAgH6denCzkOH6n+rVSrunjaNGVOn0t65wnryhAns2b+fzp07U1FVxbZt2+qHDwVBICAggNraWkJCwqip0VJbW8tHH/1A794jkctV2O129uzZxunTufz663I2b17J7bc/yqxZ/6k/b1N/i15fzcSJYfj5+WF3PmA8/viP9OgxpsE1n49AttttbNv2GYsWTW8Q5rbbFtG37+3Nxm0tvghki8VIZuZKtm79nMzMXwgPjyc6OhkQad++L0OHXo+/vwylUk1ISDC7d//C88/fBkBwcBh9+44gNjaZsDANyckp9Oo1mOTkZARBqD+PyaQjODjQ+YbEc+euE9QVFSV89tmn6HQ1xERHsn37dm6cNAmNRsMQ51aCKUlJREdG0rF9e/r16MFc54LSnxcv5uorrgCrlanz5vHFCofALtyxg8jgYOSuBdDcn3WJCuS676LiYn4/coT+ffoQ4tyw31M4O35ePcefPJnPkSMHEQR//P1VqFSB1NbaqaoqZ9asUaSnd8XPT4ZerwMgODgcpTIQk8lISko3Cgpy+f33jYSERKLXO2yo3W5DoVARHd2W0NAY1OoIgoLC6dPnJtq3H4xc7t8oH3U4RLeN7Oy1GI168vMPsGnTQtq3v5KIiHTi47uhVIYSE9MJjSaZkpIjlJRko9UWUVV1BotFj0zmj1ZbgFZbiMWix2Aox99fhdlcg05XTEhILCEhccTFdSIlpR92u4ns7F+orDyDv38ABQWHCQ6OdLxYS19BenpfTpzYh9Gow263odHEodWWEh2dTEZGLxQKBWvXft7or5s582FuuOFWDIYaSkvPkpm5h4qKIqKjozAYDHzwwcL6sFdcMYL168+ts1GpVMyZMYN7Z88mpWtXAG4cP57dBw7QqV07qrVatu3Zg81pzwRBIEChoNZqJSw4GK3zJSPfvPEGVw8cSKBKhSiK7MjMJOfECX7csIHlv/7KPVOn8oaHhXuNhKvZjKpbtwY29OuFC7nBXWidh0C22WwsW7GCKbNmNQjy5ssvc5ebG/CnC2SzxcJPW7aw5JdfWL1rF7EaDSkxMYiiSM/0dG4cPBi5TEZgQAAhCgWbDx/mRufc6ZDAQEZ060ZKdDThwcEkR0UxqGNH2sbENNjxoqa2FpVC4ejY82Dgy2pqWLx2LeVaLbHh4ew6coRxw4YRo9EwZM4cAJLj4ogOD6dD27b0696du//jaCNXvP0240aMALmcWY88wodfO16QdXbnTqIjIprePs6dv5VAzspq2XhfCOPuii8TwLwd2/WQRnPbIhUXF5OVdYiwsDCCg0MQRRGttgKDwUBAQAAbNvzGp59+QmrbtqxetQrBZsNqtSKXy9FVVnLi5Elyjx5ly7ZtfPDZZxiMRi7v35+J11zDuOHDadumzbnpFi431IsffMCC1x09JkN79eKtf/6Tzs69VxvceJ7GM+u+m3AzWiwUVlRQUF3NgTNn2HfmDDJB4JoOHWgbHo7JZKJTdDQhcjmiKNavNC3U6TBbreSUlxMfHEz7iAiOlpdzoKiIk9XVnKisZH9hIQecC+yUcsfCDblMhkwQKNM75tfFh4VRodejDgjAWFuLnyAwd+xYss6c4Sfn0HYdCdHRnNi0ibOVlbz2wQd8uWIFdVu+jRw5kr379rF+/RYqKysZOnQQJ0/mkZ9f6+xN3sTkyUMBCAhQ0rFjLx5//F3atu0CwNSpvTlyxDF1aPjwyaSnX8aYMXeiVIY1yINr8eXlHWD+fMf8zXbt+vLEE2sICPAcviW3wsIc1qx5nTNnfsdsNqDVFlNTU0pkZCrp6QNp23YgGRnDiYpKa2D8fLXn3tLc7VVamseqVc+wf//3tG3bm0GDptKnzwRCQkIbhXePa7MZ0WqL8PcPIDNzPeXlRRgMFZw5c5T9+7cgl8vp3Xsos2c/TEpKO7p1Ozdf/PrrpzFlynQ2b/6FrKwDHDx4AKPRUL8ASRAcPYxt2rQhMDCQ7Oxsbpo8mWefeIKiggKysrPZtmsXn37xRX2aFTk5aIKCePyFF/jPG28A8N7zz3PHZLcXmzRX0M4eEZ8Ect3bSH0dvm0pbFO09OTjftyCDXVf6NeU+ak7rvMrKSklO/sgQUEhqFShiKJIRUUFJpMeuVzF3r0bWb36EzSaWF5+eR12uwybzYpMJkenq6Gk5CRnzuSSlbWFtWvfx2zW0759f/r2vZ7evccRGZneaO9yqxV++eVNli69B4C2bfszZcp7xMR47un09Z6prTVhMBRSXV1Afn4mZ87sxc8POnW6mqioNOx2E/HxnQgOdmzJJop2FAoZ1dXF2GwGSkuPERoaTXJyBwoLj3Hy5H4qKk5SVHSSY8f2kZu7HwCFIgB/fwUymRw/Pz+qqhx758bExFNdXYFSGYjFYsZms3LnnfM4diyHlSt/aJDX6OhoTv7+OyVFRbz90Ue89+mnhAQHY7fZmHT11azbupV9K1ZQqdVyzfTp7MvKwnLoEP6CwJ5Dh+hz440AKBUKLuvYkbefeIIeHTsCMGL6dNY7dxW64aqr6Na+PXfedBMR7i+hcKlvh44f57Krr8Zms9G9Uyd+/eorIt2nW3hZd4/n5fHam2+y//ffMRqNFJeUUOLcR3zQoEEMHDCA4cOH065dO++2TPN0H3rzhNjcnCGn2+miIv798ccs37SJ7qmpTB0xgkkDB6JRqRqf2y0Nk8VCfkUFaqWS9YcOUVhZSYVeT25hIVuc86mHdOjAQxMn0i05GX8XW3bdgAHcd911rDlwgAN5eRw4fhyd0YjW2R7XlUtidDQhajVZeXlcO3gwbzzyCEWVlRw+fpxtBw6wyGVnsqKdO4mJjeW5N9/kMad4f/mJJ7jfKa69Esh/t32QAe8syYUSyk3dGK0w7vVGXn5uiyL37F6odsfT3q1GnY7fNm4kXK2msKSEZd99x5fOCqcODKRNXByjBg/myXvuQQVs27uXJT/9xCcum7DPv+EGXr377oY3pacbtDk/b29odz9vC0Uu5/V9+8iqrCRKpUKlUBCoUmETRRYfPMjTI0cyqU8fTDIZW44do9bPj4Nnz1JhNqPRaBAEgZkTJ7J47VrOVlRwz+TJJKWnQ5BzykFQENk5Ocx77DGsokhERCQdO3bl7NkzfPLJhwwfPprPP1+FyQQbNqxixoxrCAwM4p//fJnnnpvD7NnPcOutjwNQU1PLsmWvc+DAejp27E9R0Uk2bfoKs9nIk0/+TK9eV7v/jRw8+BtPP30FCxeeIDo6pUERNFdUoihSVVVEWdlJ8vMPk5W1nt9/X8Po0ffSseMwAgICCQmJITQ0Grlc4Sz6WjZvXkRpaR5RUW1JSelPXt5OlMpgKioKyc//HavVwowZSzy+3KQ1otm9PgtCLevWvcqvv77EiBH/ZPDgGURExDUIb7fbqao6SUVFPklJHQkPj2yQVt1846ys7cybN5DAwGBGj76FxMRU4uPbcuJEJu+9928AbrxxDl999W6DPCgUCubNe4Tu3XvQtetlpKQkcezYUbTaCnr37klAQAByufP1zQYDarXacQ+61edTeXko/PyIi41l7gMP8M6iRQBEaDSs//rrc8OA3hSc8+UJPgnk8vKm026uJ6q58C3hSyeDJzdXG+o2J8aOn0eB7M0cZNfLaMr8uLtZLGb2719PYKCGyspitm//kbVrP3JmTY1GE0/37lcyefJT+PuHcOTIDrZuXcKGDR/WpzdkyGymTn3X55Gd5vCiw76Rm7u/+5z8H398h7y8PWg0MSiVSoKCHK8k//nnz5gx4yGuv34qdruFXbs24+dXy5Ejh6iqKiU62jEaMGPGdL777jsOH8zkvnvvJSUxsYHtz83LY96jj2I0GgkPC+OyDh3ILyri/aVLGdCjB9uWLgWrld927uSK6dNR+Pvz1mOPMevpp3lkxgyemzcPcGytunDJEtZu20bvzp0pLC3ly1Wr0BsMLH/7bSa4L4CXy9mZmUn/a67h0NatjgX3LRWSE5soUFxczIkTJ8jOzuG339axZs0q5sy5iyFDRhAYGEhMTCwaTXT9VoQ2m40vvviU3NxcEhLa0K/fIPbt20VgoJqyshIOHjyAXl/DokXL8PcXPFb/Ru25awWvO/bk5gxvralh4ddf85/PP2fu2LHcMWYMiXVvAnXeAKIocrKggLPl5WTExBBdNzLuVgn3nTxJr6eeQunvzz8GDSI1Koq2MTEcLijgyeXLAZgzYgTvuu3W5S+X89CkSfTKyOCytDRSEhI4lp9PaU0NPdq1Q6VWg7NDzGC1olapPFbUs6WlCP7+JMTGsuCFF3jx7bcBCAkOZv2339KrV68G5/V4c9RdUwuvmvZKIAuCEAf8H3ANEAzkAXeKorjR6S8ATwF3ABpgJ3CXKIpZLmmIQC3QQRTFPBf3T4BIURQbjhE3zoMonjrVtMW40D3HdVzAHuS63g934+163NJleDPq435f//bbeuz2Wj7+8H2+cVbgmOhoenTrhgDcP3cuz7z8Mhu3bQNg5aef8tCzz3I4NxdNaCiTRo5k0fff1y+aWP7CC0yo26bKZGp8g7p+exLNnsI1JbKba9maKgRPlr+uYXX9rjt2Eb4Njl2/w8IauImiyNJVq7jjnnuoqakhNDSM7t17MmrURMaPv53AQDX79u1jwYKp2Gx2iorOYDYbueKKKTz22Bf1l3LixBHmzOlYn/XOnYdRVHQcuVzBs89uJyQkqtGlGgxGHnqoM2p1KE89tZHAwJCmywWori7h7bdv5/DhDSiVQcTEtCUmJo0uXYYzYMA4wsJimoy7cuXbfPDBXc7iVBAZ2YaMjIGYTAaCgqJITe3NBx/MBOD992sICHAYVW/rdkuC/ujRdSxffi/h4UnceONbREamOvNyLpxOV8Arr4zEaKxGry+nttbMPfcsYfDgmxtNj9Drq3njjdls2PAVY8bMYuXKDxqcs3fvoYwceT0nThxm1KjrSE3tgE5XTEpKOhERGq9u+To8Nmwu9fmVhQvZvmsXM6dNY+jAgahUKt8EaSvepCdWVzd9T3kzAuRNvlriAnQyuApl9w6HpgSye3Zbeh5w9d+3bxMmk4Gffvqc1asde0OHh8eQltYNudyf6667m2++eaN+Du/jj3/D8uWvcfjwVpTKIAYOnMzWrUsxmx3Tw+666wv69p3SYt7cj93x5OdrG+F+j7i6uf5uzoS6frvHVchd7gGXP0YURZavWME/7r0XXU0NocHB9OjUifFXXMHMG24gSK0m68gRJt93H1abjcLSUnR6PeOGDeP711+v73U8VVJCypVX1l/b4F69yC8uxmqzsePbb4l37jbjeqG1okjXAQOQyeVsXruW8Ph4j6MTdccVFRXcddc/+O23X1CpAklKSiU5OZXBg4czYsQ4YmLimvwfv/9+MQsW3Frvl5SURvfu/bFYzISGaujWrS+PP+6YdnHgQBVRUY1HxNzL2c/q3AqtqfbUpZw37t3LvBdfJDI4mHfuvZf2da+SdwlTWlHByGeeoUSrRWc0ojeb+fD225lx+eWNKmONycTcr75i8a5dTB8wgI/d9rPul5rK1P79ySkqYnSPHlyWnEyBTkd6bCzhYWFNPux6rIBNuTmP3168mLUbNjDrttsYNmgQatftAL3pQXbuitJqgSwIQhiwD9gCvAmUAqlAgSiK2c4wC4DHgduBHOBJYDCQIYqizhlGBEzA96IoTnFJ/xMkgfyHCuTg4AAsFgvXjR/Ps888g1ouRy6X88WXX7J95042bttGgEJBp/bt2blvH9MmTuSeadPIys7msxUr2HPwIMVur6QUnZPq/5cEcm1AAB8vW8Zrn35KSVkZERERHDt+nIyMDDSaSHbsOLcp/rBh1zBw4NU899w9DbIZEKDCbDby7LM/07v3aP773zvZtGkpnTpdTm7ubgIDw/jHP96ka9cRTQ7HWa0O8fjSS1cTG5vOzTf/H0plkMewVVVFfP75g2i1pTz44DJUquAG/i3ZEJ2uhpkz4zCZHHPfhwyZSmhoDBaLhdOnD3LqVCZKZRB9+17PTTe9Wp/n1gpku91OUVEWR4+uY9euT7BYDIwb9yI9eoxvUB5yOVRUnGb37qWsXv1/GAyVJCZ2xWTSMnDgzYwaNZuoqOQm7ey//z2ZjRsdL+uYOHEOZ8/mYjTq+eij3wgIUDbZaXkhBbLHQpAE8l9SII8aFUt5eTH9+o1i3ryXCQwMRi73Z82apRw6tJ19+35DEGSkp/fg4MHNXHHFzYwZM4+zZ4+zbt0ijh3bQ2XluX3V4dxWif9LAtlaU8PipUt56b//pbi0lLCQEPJOnSIpIYG2iYlsdHkB0+Bevbht3DhmPfVUg7wrAwIwmc18+8orTBgxggdee413v/6aYX36cDA3Fz8/P959+mmuGj7cYTOaEFiiKDLxlluICA/n1ddfJygkrEGZ1lX/srJSnn76EU6cOMbixT8QEhLi9X/mqItGRo5Mrd/9Y8yYm4mMjMFms5GT8zs5OZkolSquvPI6nnzyDdRqWZP/izcCWTQaOZyVxfpdu/j0hx+o0Gp5Yc4crh8woOGWkyYTZ8vK+GrTJl5esYKiqiouS06mTKdjSv/+zL78ctKio5usjLd99hmfOf+vf/TvT75WS3lNDRsWLCDIPcOe7uULIJCb/HY/booLIJCfA4aKojioCX8BKADeFEXxP043FVACPCCK4ntONxF4Cbgf6CuK4l6n+yd4K5B92aLoQgjm5iyNuwp1d3MRxU0ZZE/tz7lvKyUlhRQXFxAbm0BcXCIGg54nnriLb775lI0bj5CenuExawaDgezs/WRnH2L//t0cOZLFnj076NixM3v2HGqQxboGXFdaSo+BAzme5+jcX/zOO0ybOJFlP/zA3Y88Qsf0dIJUKnp16MA1Q4bQz/maW2pqGgte50JCTKaGx02F9xTOVTD7+vTgrUBurpc4LKz+22az8fKKFby0ZAmW2lo+WbiQwX37UmQy8fi/nsFkMhEcHM7y5V8C0LPn5VRVlTF58j2sXPkpMlkA0dFJ2O2Olc15efupqCgiICAQrfbcamqAXr0mMG/ecq8uU6stZfHif5KdvYH585eRkTGwwaWfPHmQe+/txpVXTucf/3iBiIjIRml4Y0MAjh7dR1VVKWVlxVRVleDnJyMpqSupqd0JCnL0cjfVQDSlrdzDr1+/kJ9/fgalMoT27YfSo8dNZGSM8LhieufOj/n22wfp0WMSoaFR/PTTczzwwGo6d74ShcLPK40lCEaKi4+Tmtql1WK4JVvd7GuqPf1uzs+dFubPuSMIgijq9U0bHt8MlPf3pTvNPcx6cvO0H58n5eb0s1j9nNmzkp9fRGFhPpGRcSQmJmE0GlmwYB5LlnzI+vWZdO7czWPxm0xGDh3aT25uFvv27SI39xD79+8gNjaRrVvPePybamqMTJnSi7w8x17Vjz32HtdccwebN6/gpZfuJCEhHaUyiHbt+tCr1ygyMga5ndM78d7a6uJafK7H3miXlvoYPLm5xrXb7bzz9us8/3//h9Fo5IP//pcrhg6lvKSEx555BqPJRERoKEu+/x6AQT17UqXVcudNN7Fk5UrkMhlJcXH4+fmh1+vJzsvjVGEhKqWS8qqqBtc4YsAAfv388+YvxnlcrtNz333zWbNmDR999CWXXz6sQRN07Ngxhg5tx3XX3cLDD7+IRtN4a82Wbom64+PHM6msLHZ+SgBo164raWndiY6Oqc+iN+Vc10z5WS0N2s73P/+cJ196icCAAIb26sWNV1zBqH798LNYGrW7X/z6K3d//DETevcmOTycp777jpV3383VnTs7dpjywk6ZRJHcsjK6xp2b8tZihWrqKczT05Unt5ZEtns+PFF3Lc5pME3ZUG+ax+uA1YIgfAUMxyGGPwTeEh3qui0QC6ytiyCKolEQhE3AQOA9l7R2Ad8CLwIjvDh3Q+oK48/Ekwh2P/Ykhr2YXuvJzWAws3Tpe7z//vP4+cmIjIyjtLSAnj0Hs3q1Y6WmUqlCqYyjosJMcXE++/dvJyWlHZWVZaxc+SUbNqykbdv2pKV1pHv3vowZcxsmUw1xcXFUVbnXX6f4UMWwb//xej+ZTGTzjk1MnjWLHpddxuo1awgQRYS6N4XV3ZRK5bnjmhryS0vpOHMmOqOR/DffZNPBg6zJyqJbRAT9k5LoqFYj1tQQolAg8ySa3YVyS62Gp//GG4EcFNR8enX/qULBxGefRWuxsG3JEtqnpIBz8Ud0WBhLlzoMelbWCdq160S/ftegUERy2219sVplHDq0k+eeW0NFRSF6CSXxhQAAIABJREFUvRWbTaSysgy9XodKFcawYXcREBBKTs56Ro6cT1hYYv2lN3dpAOHhUdx77xIyM3/ixRfH0L37lSiVSuLj23PNNbdSUZFNfHwqTz/9UaM0fH3wjo3t2eB3azSW+3W5h1+z5nnuvvsbOnQY0iAN92OAn376N0OHzmb8+Kepqipk1aoXCA2NA0SKik5RXJxNTU0FCoWcbt1GERHRcBEjOHrzU1O7NMpTU2VwXtQl6K2C+aMy4k2j4cnNVzXgTR7k8sbX6Sl/JlPjBrGuMimVDY8B7HYWLVrEc889C0BsbBxnz55l6NArWLbM8RArCAJpaUmA6f/ZO+/4KIr3j7/vckkuhRBSSCF0QgkEQgu9l9BClw5SlSaKBUQBC0hVEUSqIqh0BEWR3pHem5QAIUB6I73e/v6422Rvs7e5KD9/+vt+n9frXrM7Ozc7M7s788zn+cwzJCbGcP78aSpUqERqaio7dmxiz56fqVKlGjVq1KJx42BGjhxOZmYG7u6eeHhYaioHzpwpdDWZmytw7txp3n23NxUrVuO77/ah0zkUcPUtcaeTkmKYNKkuycmxrFjxkLCwy1y69CvlytWmWrVmeHvXJitLQK8v9HgibUa1bk0pnVK/IF4Tm/TPfO/ifwVBYNSowcTEPOPYkSMEBAQUVL6spyc7168H4Mnjx9T096dzs2b4eXjQsF8/bO3sOHP1KntXrSI2MZGc3Fy0Wi0pGRnEJSfj5uLChIED8XRz4/DZs0waNoyKJs8EFsduXaHVwcHBjpUr17Nnz0GGDetLixYdsLMzUih69BjJjRu38fT0Zfr09Wg0WqKji9bTmqU0APb29fD2Bm9v8yJlZFCQr05XqPxKhyq5YiyKs7MdWsk3sXDFCtbPn08Xk69n0tIwITNFFOQ5O3YwsmVL5oeGkvL8OR/s2oWXToeQlkZEQgJ3oqNJyMhAq9HQqVo13EzKpFT0QGCpUsb7KA0q1nyv0sZSAyWl51YgyFLHB3LRWtmvWpOqCjARWIKRhxwEiD5dlmNUjgFiZP+LAcpRVN4Dbms0mi6CIOxTuF4gGo3mFYy8ZqPIFeQXPoopiOweit4mVDqM7Ox8Dh8+wNOnj0lMTCQlJRkbGzscHZ1IT8/g0qXfEQQD3bsPpXz5KowZ0xGAzZuvUr16PfLz83njjZ7s27cNH59KJCZGYzAYaNfOj4yMVNzdfahTpxl37lxEp9MxePBUxo//FHd3c16pWI3oaOtAm5iYJ7Q2uTVLS8/Gw7cc6elpDBo0mKFDh1HBxwu3MmWIioykYbVqALQZP55TV64U5Nlu/nzuPXvGgCZNuJuczMbr17kTHY0NkGsw4O/iQkMPD1729aW1Xm80/ygpymq0C6VKqinIYg+jlIfCzPT3q1e5dP8+x774gmriIhOFe5crV5kpU2aSnAzJybB7dzTh4c9wdi5DcnIGzZq9XFCV4OAxPH16hx9/nEZiYjShoVNp0OBlvv12AA8fnqRNmzfo3fsTtFob1VdcvNaiRXfq1bvJlSuH0WrzuXnzNK++GoS9vT2LFm0V9XnVSby06vL8xeaSh/I4tTWZubk56PUaQIPY7YgKgXhcsWJtDIakAsTp9u293Llzkm7dpqHXS9yAAQMHLmTVqqF4eVWhefNhdOs2jVmz6im2U5kyPqxfH6lYL7mUtEtR6qsVpaQoq/wmL0pKWnl5nFo9ilOUrZ0kyMRgMHDo99959OwZienpJD1/jq2dHc5OTmTl53PqwgUMgkD/Pn2oVaMGHbp3B+DCuXM0aBRMfn4+gwcPYvv2zfj6+pKamkpmZiaBgRVJSUnBy8uLpk2bcfPmDXJycnjzzbdYuHAeviZFy2yrcWOJ1OtnkqiYOPr1M6LEer0tLVt6kZaWRrduvRk58lVcXMri4eFFTEwkdeo0ICdHy8iRnTl79lBBHgsWdCUi4i7NmoWSkvKQLVu2ERFxG43Ghry8HLy8qlGxYgOaNXuZGjXakpNTVClQU5Slx0rvslzZlcYVpyCLcvXqJU6ePMbevcepVr0mOXlgJ1WcTDcrX7EiM99+u6AjiTp7luioKGYvW0bi8+eM6NWr4CajQkO5++QJs778kqcxMbw1ciQje/dmyPTpHDp9mvHDhrF49mxzd18i6KGzKzLMNGnSiZ9+us2ZMwfJzjZw8+Y5+vdviI2NLe+88z2xseb0SEt9nRq1Ry6W0GIxD+lQ5ewMubm5iAZ/0b2gXg92kgxr16hBcmoq5Bk53gdOnuTw5cu83b07ZcWbmCo9PzSUAd98Q2UHB16tX5+ZbdvSbNky8gzy993oDSpz6lTlSkhDuSgpw3+2P7MC4VHzBmYuxnQKOr/5La0olha4KAjCDNP5FY1G4w9MwqggiyLnamgU4hAEIUyj0awFFmg0mgPy67K0a4A1UEDR+NdIdnY2W7d+x7Jli3B1dSMgIIjSpd1wdXUjOzuX1NTnaDQ2jB79Djt2rGXFig+pWNEfb+/yjB07m5SUJD799A3OnTtI6dIerFp1gpUr3yMqKpzvv7+Ch4cvGo0dzs6lRfMAOh0WeasllXLlKvD4cS6xsdGUL1+OpKRE7t27Su/enThy5DCxsbEFaX9au5ajZ85w6soVGtepQ9OaNfH386NNtWr4OznhYGdn1BoBUYNMz8nhbkQExyIjmXDpEkk5Ofg7OmJrMOBrb89Kb2+cLW2M8jdK2dKl8ffxodGECfy6fDkBVavi6uZmlaP0Y8e2kJGRgiCYdzgajQYfn1r07/8p3303jo8+qkx+fg5Nm45l+PAf+O67ISxfHsKYMdsoXdrNQu7m4uHhS6dOw9HroXv3kbz//pr/E4OLkuze/S2ffPIqeXm5AKxefYGaNRsVSdeu3QiWLx9J1arBxMSEkZmZSnp6EvfunWPatMMFbX79+j6++24SISFTad16FFqtDc2aDSU7O42DB7+kYsUgBg+eR1paAi4uZahbt+PfWt//youRnNxcNu7dy8ING3BydKRhQABu7u64ubqSZzDwPDUVjU7HW6+9xnebN/PJokVU9/enSuXKvP7662RnZ/Pmm1M5evQITk5O7N9/hCVLPmXfvt/4/ffzlC9fAXt7e0qXLo2trcbMl/mLEC8vLzIy8oiKiqJsWV+Sk5O5ffsPQkJacunSWWJiogvSrl69k3Pnfufs2UPUrFmf+vVb4+tbmTp12lC2bHWkW8uLE+3s7AzCw+9y9+5Jtmx5g5SUGDw9q6PV2lKqlDd9+67AwaGo5eTvljJl3KlRozYdOzZj8+bt1K/fgLIeLlb1oTsPHCDOtPupVDQaDTWrVGHRW28xeuZMqnbpQm5eHkNDQ3ly/Dgvz5hBh4ED+XHtWjzLKeF0RcXT05uePYeTlQWhoS8zdeqKIgbN/yvZt28zH388muxsY0H27DlDo0ZNi6QbMWAAY6dOZV1AAI8iI0l6/py0zExOXL3KqQ8/RGcaU0/cvcvoH35gQqtWjG/eHNvcXIYGBZGZk8Nnp09Tzc2NZR07kpCZSWl7ezpVrvy31vefItZwkB8DBwVBGCuJGw6sEgTBSaPRVAEeYOQVX5Ck2QPEC4LwsulcAF4SBGGHRqMpa/rPRIxUC+s4yCYvCkrQ+V8BaNTEUr6WaBLp6el8//1qVq78jICAeowf/y4NGrQq2AJVnl5ppnn8+K988MFguncfQ/PmodSt2x6NRsNXX73Brl3L+OGHJ7i6Fv3oi5utljRebtW0txdITX3KzZuX2Lx5BSdOHASgfPnyeHt5ceHiRQA2LlnCkJ49IT7e+INCBVkaZwqFpCQioqN5lJFBXmoqG+LiuJySwpfe3rS3sVHmJ6tVVo1AJ+UdizxjMc7Do4A+IQ93379P/7lzcbC3R9BoaBAYSL+XXqJr6BDKlvWS6/8Fx7duneS991qzZk0iNjZlFBGGmJgHODuXxcnJuIDOYMhnzZpOPH16hQULYtDp7Irlo8mrJ6VYy9Pb6QzqCyVFUZrtK5nPJO2dk2eOtKSm5uLnZ8fq1TuZPn0sycmJdOkygM8+26qIwkRFPeXq1ZMsWDCk4JalSnnQvPkARo36nGvXDrJv31cEBname3cjovHHHyf57LM+eHpW5uHDi4wbt4IuXSYUKa6SYUHNUqdmMbSGrmKGPP5ZOoJU5M+imAUmctFoNEJ2tnEireg2ylqTgKX0St+l9FwNoZaEmXl5fL17N4t/+IEalSoxY8wY2jVvrrzgygJH8eDRo/R76SWGDxtGr5496dSpExqNhhnvvceixYu5c/s2/v7+RctoqWNXS6d0Lq+vpH5PExK4cu0aK7/+mr379wPg4+NDhQoVOXfuLABLlnzDkCGji3VSIHaNmZkCCQlPCQ9/SGZmLhcubOH+/ZO89NIyqlcPUa2CGr2qmGa2au2zeH7u3AFGjgxFr9djMBgICqpP3z69GdSrF97e3oX0Pdl7d+7aNZoOGEDksWP4eHoqWv4ePX2KW+nSlDa5LjPY2dF3wgR+OXCA9Kgo9JKC5WAnZQUWhEpx8nZWMmyWlA2o1oVK14mLw1Pp0gI9e+r44INNLFv2OgkJMQWuRF1dwRGjZxRx4Im6f59TJ08yYNasgnuWcXKiV1AQq0eM4OClS6w9c4ZgX1/ea98esrK48PAhXbdto6qrK+ejoljUqhXvBAUVLbxSJcRQzXKrNhZbS2pX4iVLrAKiWIPei2LqQv/SIr1NQHlBEFpJ4uYA/QRBCJAs0vtSEIR5put6jIv03pEt0ntJEIQdpvMPgFHAGaCUNQpyfr6g2n9J5UUrzMXdIycnh4kTh7B374907dqfCRPeo3bt+ibzsrGNRe5ZcX3w+PHNGDz4XZo0MZqUcnMF7ty5yNtvB9O8+QDeeGMTgmBjsf7FjcHWtI30fX/y5CK7d3/C5cs/maWpXLk2U6bMp2PH9tjY6Hj69BKBgUF4lzW9yNHRhcqwSLKKjjY/hiKKtCAIbH/yhInR0Ux2cGAmoJPQL4Tc3ALVQ4rNyqdNNiISVJyCLIZKCrJIGPP2Jr9MGWxsbEjU6zl7+TLrfv6ZI8dPULq0K/7+dbG1taN8+doMGDCbR49ucvTor5w6tZlSpbx5663fyMiwkfb7gOUONCbmPD/8MJysrBSCgvpRoUJNmjUbjIeHu6KjDXmn6uwMjnpT6ygtlLSG6y0vlNiW4rmKpp5va8vPv/7KwRMnOXr0KHfv3mHmzHnMnfsenp5e7Nx5El9ff8X2iIgIZ/jwIJo27cqhQ1sKilC+fA3s7R1xdy9HSMhoDAYN7u7l+PLLV3B3L8fs2btJSYnH1bVsiWhrSnGW0is1gyUro6IiKj9WOpeLpRsUs8BELhqNRkhPF8zKbFa+F6kgq9XXgkaWl5fHywsWsOngQXq1bs37Y8fSuHZt0OsRTMiXxtbW/H8WZjkdundn7OjRDDZtMAFw4+pV6jZpQu/QULZs2IC91EJlTV0sxSnVUSZXHzzgk2++YYfMN6x/pUosmj6dDs2bY+/iwsVbt6gXEICTu3tB/cTBvzhlTnpNEATOnPmFr78eSevWE+jY8QNE3+by4qrNYaydYFqjIDs7g61tPjY2NuTmJnHp0nm2bPmWI0cO4ezsTP3AQOzt7Kji58e8t97iTlgYP+/fz9Y9e3BxcuLAN99gp9Wqv0+SD/NqWBhDJkwgISmJ/n36UCMggEEDB+Ls4l2k3ZKTzY/Fa9JjeWiN0yaltrUWt3FxMXDjxq88eLCPBw/OEhZ2hcmT57J8+UxcXErz88+nCQ4OKFSQJWNozMOHVBk8mP7NmvHd0aMFZajp5YWdVks5FxfGBgYaNzjS65ly8CB2NjYcDQ0lLjMTTweHws3DlNpZrSMsTrm1hNxYqyBLxh4l13yiWKPnuJg8pP4VBbkxcBr4ENgK1Me4SO89QRC+MqWZDryP0c3bPYwu31pT1M2bVEF2BsKA0sBhaxTk7GzBIkhR0jHHWlHLR3rt6dNw2rQxmiGCg9sSHn4PrdaGESOmsmjRm1So4M+uXfeK/E/pwc6cOYBGjULo2HEMmZlp/Pzzcn78cQHu7uX58MMz6PXOqrPV4sY6NcBHKuL7vnKlO1lZiTg6etC163yqVGmDp6c7Tk5uuLqa65fS0M8P7NISxQYqDMVjC0rzo6wsql+5ggaoptNRzmBgo50dnqbeJ49CxVip+FpZqEOiLEs1STUFWaIYF4QKcc9zHbh58zrXrz/g7t0bLF36Ifv2GXj//a5curSfGTP2UbVqZzQajVmnWlwHKh4nJ1/nzp0jPHp0iujouwwb9hGdOvU1K7ZSVbRpKUV7d+m5koJszepAtZHQpCBHREbSYdw43FxdGdinD2998AFuZcqQmJTEsKFDqRVQl08/XcCqVd/Rtq3xs8/NFbhx4zIXL17k0aMw1q37lFatunLy5F6z4vj5VSUpKY6AgMZkZ2dx794VQkKG0bnzUOrUaV2k2EpVUTp/EUqz0v+sRpPVxNINTCbqkijICQmCxXoouqSz9MKqEc6V0ltRt8i4OMr17g1Aq/r1CY+KwmAw8Prw4Uz77DPcXF1JuHataMEVHt7LEybQqEEDXpswgfT0dNZ+8w0fLliAl6cn5w4cwLV06ZJ3mNa6oxRFcl51yhQexsRQ2tGRBSNG0C4wEA83N9xdXNQhRQvfWY7OCH3JP23RghUfH8mwYVXIy8vFz682en0ZxozZhINDOYtVVpLivgdr9Bklq5Y0zslJ4NatWzy4+wdhYWFMe+898p88YfDEiWz75Rd+WbuWbi1bGikZSu2spCBLCnL70SMOHjnCmUuXuXbtKtOmfUhIyEDFdpPGSRVkJUVZDVW2BmNQag+xL09Njeb779thZ+dI69ZD2bjxLcqU8SIpKYa2bXvTrl1bliz5mBUrVjG4u2kjlPh4rt6+zfmzZwm7d4/F27cTUq8e+8VvxiT+7u5Ep6XRyNubfIOBC1FRDKlWjSH+/rSXriCUmxjUUIbiTJtqcdYqyBK0+K8ad0QRN0/8014sBEG4oNFoegPzgFlAhClcIUm2CHAAvqJwo5DOonJsId80jUbzkSyff634+VXiwQOB5ORUfv/9AL6+VQGBV1/tgoODExER90lPTy0wo6tJq1b92bt3LTVrtmTq1GA8PSvwwQfHqVSp3gtHxq2R114z+kCWftDiJjv/G+Jpa4u7jQ0x+fnMK1WKHSkptMrOZgFGlyr/JNFoNAQG1sPHpx6dO/dh//5f+P77D/nww58YMsQPD48Kf4nT6OdXFz+/utjZvcavvy5gwYJ+tG+fZ9zf/h8q6ZmZhIWHs2vNGs5ev46joyOJSUkAtGzRglFjJtCsWXPat2+Fo6MTDx+msnLlYr79djnNm3fEw8OHGTM+p1ev0eTn55OYmIinZ0UuXTqGk1MZqlevj42NTYk6wv/KP198PT0Rzp0jPTeXA2fOUMHPDztbW7pOmoSjXk9icjLxiYl4uBXPy+/fpw8LP/+cnt27E9SsGb7e3hzYtYvghg3/T16UByskw5wli8ALFBcXNzw8yhMVFUaPHtO5fv0In37amh495lO//oDiM/gbRaPRUKdOHerWrI4gCOzevZsZ8+ez4YsvOH3hAj6enlbxlS1JQK1aBNSqxSQ7PUuWfM7o0YMICwvFwcHxBdbixUpeXiYxMXcYPXoLSUm30Wi0JCUZ/SA0atSOsWOn0KhRc7p3D2YIkJuQwMoNG1iwejWdg4PxcXTk03HjGN20KVqtlpgnT6is13PiwQNKGQw08PFBl2tcE1KsZv8fLFZ9oYIg7AH2qFwXMCLMH6qkKaIlCIKwElhpTRnA8sygOAT5RTxza/PQ60vRoUM/AK5fP0deXj6lSpWmTBkP7ty5TMOGbVT7xbw8aNWqJ59/PprJk+sxbtynhIRMVnx/5WCGEhioZv5R+y7y8qwzCbm6WmYlpKWBn59xMHOrJKm0fNqXlmYGKTgDT2vV4t3oaMoKAutsbQnNyWGiIHAdo5JcTczKFBZdd1v4cucBdiZLia043TdLKKmgWA55AxbzAhgva5g3bxdz5oxh0CBv3N0r4uZWmYyMwjTyZyZKbm4GGRmRCEI+9vZ63Nzc0WptePbsAUeOLOXevSPExhp9VCcnh1GxYg2zZ+DmamoBKb9bDn9IQzn8oQQpWTKbydtKxvUIu3kTgA8//ZQ2TZrw46pVdB1h3Enq3KlTaA0GYmJjcXBwICMjnZCQBsTFxXHgwGl8fCoUKYafnxt5edClSyerrR/WijU6itI3pwaqKDWf6E5Rp7PgYshSZRQgPNGs+GdUBqnHNGn2xrKKZTSa9HV6cxdSZuXU6QqPpWlKaqaSFwRw0uvp07mz0Uz+xx9kZmXh7OyMr5cXF65do2u7dub/Vci/S6tWjHzlFaoFBjJv5kzemTDBmC4tTb2MSi4J1FwXWIuey18cpbpb4iwowIx2JlORmyl09nOUZaFn48Y7rF37Hn5+fjRtuoqlS/uxY8ck4uJuUadOP8qWrWtWDLVxVPq4S6rfS9OLzSWNE/O10+nQANs2bGDspEl416+Pj6cnNUSf+5bENFhlZmXxLDqafIMBvYsLbl5e2Nra8ig8nGUrV3Lo2HEePAgD4O7du9SpU1/1FVBCiZWMcFIEWQ2Vl/cP0jjxcYvliI29D8DevZ9Qp05r5s8/wLvvdgTg5s0zbNrkSGxsNJ6ensTFxdGkfXuePXvG79u2UdXJqcjan9JeXpCWRofq1QsLLCrIlgppDcfMCouiWZwaB0fJJKFT2AioGK73iwROrNpq+p8gIn/OkmnIGsveX2mokv5Xp4Nvv/2cR4/us3fvVurXb86jR3fZseOyGYqs9DCzsiA8/A/s7V3w9CynuCjDUpx4bu2CA0t6oCXTvzUKsp+fMaxUyfgTjwHK6lMgzNhJER5uDMPCCmkXYpyUfpGcTMf0dA5L3M8EAu8CnTG6S1FSkKVUC5HCL4a2Go3ygjw5jUKsjJ+f+bEpTEyzMyuuSKeOjQ3HxsYPGxudYnuL7ZuQEM4ff3zHyZPmu0UBaLW2uLp607Bhf86d20hKitFzSJcuA2jcuC1vvGFciObmajAvgFgg2WJI1d7dkunSkjnM0q6D8oWPzs5M+PRTVm037lrXtH597j58SMVy5XgcGUmN6tX5YtEigoKDsbe3N/MlXlLd48+Ipf9ao6/Kz0tKyTCjX1hr50aiIJte8JJQLO7eFSyWVake8jU2BWXOy1GecSvREkSxRnuQ3Wzlpk2cu36dg6dPE1SrFjfv3+fq3r2UEbeUVfqf6R73HjxAr9dToVw5yzQK8VwNPSgOeZBfsxa5sVYBUVpgIPZZYpypvzK4uhX57MW58rx5fTh3rnAdibd3IJ07zyIgoD8ajUZxna6SFEexUOIei6FSnHhstmYiK4vHT57g6+pqdNUmb28oKOyT+Hi+/+033l+6tEhZbW1t8Spblr69erF91y6iooy7GXbq1JMWLTrQq9dktFqtiZZi/I90Pbn0WHqtJAqyJZ1Sae2IJcriL7+8y5YtCwGoW7cpjx/foXz5SkRFPaGinx9fLVxIkK8vent7zCoj1ewtKQzS91/WtmYVKOl4YIlTo0Kx+Ku7YsqPlc6lEhBgDP/KRiH/enmRMwolUZpJP3v2gM2bV/LGGx+zdesqwsJuUK1aAM+fR+DlVdtiGfPyjO9LUFAts9m2Gugkv2ZpNqzEp5J/5IIgzipzKKp2FqqatqbFMlIFWdQppfkXAZ5quuAmastKGr3YO0g3ItHp2O/iwuXkZNYCa4EbwFCMfgYHmEqqVFowvuR5sjitIJhvVALGj9jS12jhpVEac/PywM2tEvHxxkm6EgCVmytw/vxCTpwwek/Uam1xcfEjOfkRlSq1ICbmJmPH/kilShV56y1/GjYMoXPnUdy9e4SwsEvMmbMNLy+YMGGCsTOUL3y0VkFWQ8iliJZ81LM0U1VomBWvvw65uaz66SfOmvxkf/Taa7Rr3ZradesaKSi5uZCbi1anK/CRqnMuXIChVkw1cE6eRh5n6TFLkS21zrekCrLYfOZ5aAtRZZXOSc3xvbUiPnYlRV+p/HLEr3Ass0PnbOwLCra91evVkeZiviWzwgCPnz3jyx9+4L1XX2XDrl0IgkC9mjUJDw+nTL16RfOS5Vu9YsXCl8cSSiyeq8VZg0ooKc/FKR6y+irOSKSKh/j9urpaRDa0eXl4eJQtcsu8PJgzZwfXr9/g0KGv2bfvK6Kjb/DddwPo02clTZuONyueNfM16eOWvr5KccXlWUTy8qjo41P02UkyEXJzWbZ1K28sWVIQV7NKFe48fEjLRo24fvcuW1asoG6jRvjVqkWzZs344vPPOXTkBNev3+TDD18nLS2HUaPeNivvnxVLxgFLfYACvdai/jh+/HwMhly2bfuc69fPAvDmm8MJDe1AvfLljBQUsZ+XZijNWGw7+U3lZiVLFVNSkJVmOkpxKjxjqecjS+OpNK6kCvJfkf8IBfnvljt3rjNqVEcmTZpJ06ZtAXj2LIJ1636levWiyvF/pXix0WhoBDQCxgBNMarqVzAqyP82Wbq0FLm56VSq1JXu3Tfg6OjJo0c/snfvJHJyMmjZcjwPHpzi5k3j7okZGc/59tsZREc/Ksjj+PFjRgX5Hy4ajYYxPXqQkZvLgbNn6dO5M68MHIi9iwu8IJ+zxcnBg3s4fPg3WrfuSNOmrXn0KIyfftrGiRMHuXPnBgAPHli2phkMBvbs+YGLF49z9+5VPD19CQ0dQbduL/0t5f9PkzsPHtBm+HDeGTOG0PbtAYiKjeXn1aupX/u/feifERsbGypXDmLcuOW0aDGJWbMCsLV1ICLibIGC/G+SCj178jQ2ltb167Nt4UK83N3Ze+ECL8+YQUpaGq8OG8blGzfYvm8fNjY2GAwGPvjoI+7cuVOQx4ULxwsU5H+yaDQaQkJGkJOTyOnTB+jQoQsvvzyB8uUd0CYX9RM+tILXAAAgAElEQVT9vyEH7t9n9/37tKlalbYBAUQkJbHl+nWO3bnDxUfGccmwbx+WenRBENi8YwfHzp7l0pUr+Pj6MmjgQAYMGvG3lP/PyL9aQbYCdDGTFzqzUGg5rdbA1q2r+fzz2cyd+yW9eg0iNvYZer2egIC6ODgIODuro8FKQIcUnFAyicrTW7omR4uNCKeIcKSbQvE8ExDdvEixWSNynJtrRI/i4pyIi3Mx5We8JgIdSiY7nQ7q1DHykh1FqoIa2cvZueBYXOxWVxCojnEP81qSEsqc0hSIFF2WhjZy1Kg4W75cdDrF5JassNJroaF7cHLyxcPDn9TUB5w6NYvIyFOkp8eQnh5DZGThjoRffnmPBg38yc/PJyzsCLVre3Pq1HEGdGpj7BwVfEsrxikhyNKCK5kilCBPU92LvIxK/G6TNCpfng3vvUdKejod3niD7T/9xLC+fYu2swTpEPmvjx48oGv3Hjx69JA5c+YxbdqMYq30oiQnJzN37kds3bqJtm07MmpUX8Xy7d9/2QxkEZ+TIAhs3vwVX3/9CV5e5Wnduif37l3nxIlfsbXV0779S4rcY3kTSYF3tfL+ZRirGBG3mrcWQbZUfunrotcb+wI7vc4clRIzKYFVRhAE1m3fzruffcbiadMY2bcvicnJOOr1BIh+i+X/VRsI1Gy1Shwe6UdrjXvEF+EYV1oPOUInXZ8hWteKyUO0Rri6ulksWoUKtfDza0CfPksoW7ZFQROoFVf+zmRlKb8Xf1qsgQglhdzy0Ue4ubhQq1IlniQkMH7uXM7fvk1cUhJxSUlclyjC144coW6TJsZdGU+fxdnZh5Mnj9K4cY+CZlcCXS3RI6RtJW0PpfHOGopFcQwEvR7q1KlH27bfkp6exrhxXdi583umvj62eKsE8CglhW7z5nEnKoqZ3brxcc+ehW7cpB2fQh6peXnM3bePdWfOEBIYyIDvvgOgtKMjz8UFNsDv69ah8fRURJDXbtzIh3PnUrZsWUJD+2L3x132/PYbuXnQucuIIu1X3JBsDaqsJtZ2s/86BVlJ+fszYu1/i7M8xMVF4+HhRXh4GB9+OIH09FR+/vkEAQG1SEpKZN26L9BoNISHhzF0aA+Sk5OJi0vA1tbWzPWT0haJSgqy1DqipCyL/1dTqMVrubkGChXidFmYBkjpFmBUQUXvCQ6mUI/RcQnExZUx5V/KrB7ScktpSQE1TQqy1MeOqMyJg0F8fBGTkCY3lwSMe5z/daOzRIobvGQ9nRJf1hIVUbwmHnt5NeHq1S84fvwYERH7zW5lb+9MrVptqV69FSEhL+HtXdl0SxtCQjrh620guFFtI29b5M4oLcSzxomnUs8iVTgs9UTF9FzxSUlsvXCBXBsbnEuVwlmvp5SbG4IgkJ+Xh7uDQ0EZcnNzuXfvHs9TU/H28+PI+fOs+vZbMrOzmTBmDLXq1OHRI+MCxVmz3uPgwX1s3LhZZSvgwjItmv8Rmzf/wJFDh6hTpw7ubi6sXLUKLy8vNBoN0SZKyuDBnfj88zV07NgHjUZTYD4WBFiw4DXee28ZL700iWbNSpGVlcGcOd9To0b9Ik1oSZQUS2lzFy68U2LTvzhRX6RnOU6eXn4MgF6LuMBPK86rrFB2YuLj8XRz4/GzZ0yaPZvo+HgOr19P3Zo1SU5JYcn69eQZDIQ/e0a/iROJS0wk8fJlHCxN3qwVaxRrpXIrxRXHWVYbwaUNrtRG8gmomqlb8m3bmRbu6vXaIlZ1GxuB9PQ43N3LodXaFNyqpPp8SUVJCS14jFlWoAySTrRx5cos27WLt5YuZe/582b3cdTraRscTKsGDegfGkq1ihUhKwst0LltazLy7AgKql0w3CitHcvKMt/uWRpK66BEj5amsaQgW6KXi8eCkMjvv2/Fzi4LD49SODg44etbGoPBgCDk4+XlXvDQ8vLyuP/gAYnJyfg4OXHizBlW7d7N89RUxnXtStMqVbhj4l/P/e03frt9m59ffx0/0SOMima/eOdO1pw+zaGPP6ZB7dr4rVvHwm3b0Ov1ODs58SwuDoAeU6ey/OOPGTx0aMGmPga9cfHoKxMn8tFH85k4cRr16lUkMvIpn3++gVq16qlyuJXeSaWJiLUTtJK+s/8qBflPjtUWG1PpmlSk/ZW8YU+e3Mfq1XO4desSrq5u5OfnMW7cVKZOfQedToeNjUC3bi24d+8O/v7+dOvWnaVLv6B06dKkx8Xg5uZmVkipomdnupkYunjoC3g6UrqsqP/IOz+luko/djG9RqOlcI2miL+KynAuhcpyjiwNFCrWekm8MUxNNZY1OtqpiH9eV9dCrnJisjGdm4dH0cVd0t5KVsHTubm4AL4UqvB/SlG2BkZTmZEUty5H7aM9deptbtz4itDQXfTtu5nU1Kdcv76MGjW60KJFb9zcjIOW2FZmSIM12zqpfQCWRE1DsjQbk0teHoIg4Pn22wSWK0fb2rXJiIwkJTOT1OxsbLRamteuTft69QrKOOittzh55QpVypcnMjaWugEBtGvalE9Xr2bWnDl88tFHbNu0iclvvEG/3r05evw49eoF0jQ4mAmvvEKP7t0V63ni1ClWrV3L1TNnqFa1KmRn8/bkyXTr3BlBEKhdty5+FaqRkpLCxInjmT59EmXLzmH37mPY2ZU2VVXDO+8sYtu2VYSGDmfnzluMGdOG+fMnMGPGKnx9/bG1tTNrGqVBVOn9kF4Tj9V4xvLHaGennE5NxPuXdKCwpg+VxtlJb2DhZodPnuSjzz/nwrVrlCldmpzcXF4bMYL3JkwoWOPQfuRIrty6RXkfHwb16MHitWtxcnQkOT0dB/GjUDOrKTWyfFarUkaLYg2EJVVklRReuRT3val9gyoPRKezK/LXiIhLGAz5uLtXJiXFQh2tKJqawmuNowO9HrRZJhRSycmwioI88+uvWbxrF9unTeP7qVOJe/6cz3/+mfZBQfTv2BGdtNOUWgR0OvQm/ryaMmwJERbLbYEGbrHdlOY04rF0+BPL0auXO76+VWjbtgfx8emkp6eSlZWCjY0N9YPq0qdXl4JCjnrjDfYcPkyNypWJjIkhoEIF2gYFsXDTJj7euJGPhg5l57vvMnH1ano3bszx27cJmj2bhlWqMD4khN7BwUalVvZwL9y9y6Ldu7myejW1atQAvZ4JI0bQqm1bDAYDNWvWxL9yZdKA12bN4p0FC5i3Zg3Hjx6llM6RLFOTz5v3JWvWfEHfvuPYvv0sgwe3YebMicyatRwvrxrY2+vN5kXFjadq1H5Lz0x67f8tgvx3SFracw4d2kaFClUJDm5f5PrBgzuYOXME06Z9yoYNh0lMfEL58pXR63VmDR8bG4NWq6VRo8YkJCTw8M4dKleu/Neg7/8K/kA8WOQ6/VPl8eND7NzZySzO17c5Dg5lcHAoQ//+a4FC7wT/VtFoNAwJDia4UiVe79XL4s5Ja3/6iV9On+bQuXP88dtvVCxXDnQ68m1tCercGYAd69fzyRdf8PDxY6pVrcq+Awd4FB5OzRo1KOfrS2jfvjy+f58KFSoQHR3NkePHuXPvHp4eHjyOiCA9PR3/unXp17s34Y8f8ywyksA6dbC1teXi5ct4eHjStGkzHB0dadeuI1u2/MDTpxFUqRJYUJ+RI6cSHf2UwYObMGfOd/z22yPq17dh1qxheHpOY/fuJ3/JT+v/R0lNTWX79u2U8/YmpHXrItf3Hj5MzxEj+GzmTPZ//z1Pnzyhkp9fgWIsSmRMDBqNhiZBQUTFxXHv2DH8K1f+u6rx/1Z8fKqTmhrzl3y0/1/I77du0fLNN83imlSvjruLC+4uLqx54w1j5P8yVenvkO7dx+DrW5XJk2cUAZpcnI3WgQ1r1rBr1y72Hz/O1R9/pEblygVWhIbjxgGwffZsPt26lT8iIqji5cWBa9d4GBND5bJlKe/hQd9Fi/hj6VJq+vkRk5zMiVu3uB4RgYerK/EpKWTn5hIwejR927ThWUICjyIjqVujBvZ2dlz+4w9cXVxoHhyMTqejQ5s2fL9lCw8ePCCogWdBXUaNmkhk5BN69Ahm0aLvOHLkPtWqaZkxYxTz5r3BqVPx/BPV0X9eiVRE6sISSo4gF4ccP3hwjUuXDrF583xSUoybY7Ru3ZeUlERCQobQtm0/RowIJC8vl+nTv6Jv31EIAvj4+Bfcr3CGosHW1pa33prGwYP7uHLpUqH5S8ksZwmBMIUiIuNmUjbcvJ3x8DDOgqWLm8F8Fqo025e2h8gfLkSJpaE4WEkRYoMsnQ2FaLJ5mJzspGjll8e5OavADgowhcgpjsCIIoMRQbbkxUKLuUeLgtDalbhiKCubpXmOHFXJy4vh/v3f+Omn0QVpRo++irt7TfR6e9XFv4ouk+IVuJSW4AulsDjTtJpfSrUl2KZjQRCITUtT9vdrkmU7dvDZtm3MnTSJb2fPxt3Lywxdu2niDybEx3Pkl1+4dvs2v+zdy5LlywG4c/cud+7eBeCrFStYOHcuPlWrAkYPK7kSH5/NmzRhYO/elC5Thg7t2mFjbw9AvkbDhUtXuHTpIoKgQ6vV8tZbH1ClSjUzKoJOp2PmzKXUq+fE8OFNOXUqDScnF9LTU2jevAe5uQI2NsrohJwapYR+KFEZpGIJvbVivwzFvKylqVkLyErl1q2bHDlymAUL5hJvsl/369mTuIQEBvTsyfABA6jbujVp6el8OWcO403+sf2l/GKJ6O3teXfCBHbs3cu9U6dKyPmQiLRzFkVpcYAUUrTWf6b8mpTuUFLOgtK3aq13AOn/iskWcrCxsSMh4S46Xc0i6aT/FcUaRFip71KiDxTs+JmVoUwFk3G842Ji2H/lCsMlHisuzp1L7XLl0NvZFXXPotYfSvomZ2cjBcCSeV8N/VVzP6Y07qpRLOTtJwgCGRmxuLj4IzWwSl3hrV2/no/mz2fOlCms+fBDyjo5FbzngiBw+Z5x595n8fHsnz+fm2Fh/Hr+PJ/t2gXAo9hYvjFtfb78yBGWT5mCd79+RdsNCKpRg8G9euFUujSdWrYsQOcNdnZcuX6d8zdugJ0erVbLm9M/pHr1Gmavf06OlnfeWcj27T8wcGBLzp9PpHz5qjx58oB27XqTmysUu17bGj3uRWOP/yoFOT5euXGK467I0ys1YkzMU6ZMCcLGRsf77x/k44+Nzujr1evHli3vs3DhK5QqVYu4uEjath1G06YvF6E4iC+8wWBg+/aNaLU2nDp1kgb165vfTG3Rh1JlQPErczR9NWLoW8fob83bW1vg7Ut0wfb0aVEWg6srPH2qNV03ugbKzBS5xc6AaHsTwxzMFWMw+pIQFS5bs2uWBv4STe4VHqQfRk8WEzHuee4h5iv7q1Qp1snSaBwc1AcetdUTpgrkKXDO5IPG8+fRLF7sU3B99uxU7O2dFU2S8u1G5XEg8z+rZCJW65mV3iep/Fl7qTTU6UhKT+fQ7dtM79rV/L6mMCMtjTe/+oq3hwxhuJwekZeHjU7HuMGDuX73Lg3r1SM7PZ0t27bh4OBAw6AgDh45AsD1S5co4+pK+5AQfHx98fHxISoqioe3btF/6FDOXbiAkC7ShIrWLz9PS926wdStG1yENipnrTx5EkZWVgabNoWRn+/EwoUHmDy5KU2a9CczU3lXQ0uDoxp7Ry5qE/0/oyBb0qOUlSjLVn2l9PHx8TRoYETeDx88SIdORmtJr+7dWfjFF0yePp0G9erx+MkT+oWGMnbECIsamSAIbN+9m8zsbM7duGHsQ6UrnCWhSEtRBUCUXnfXwqwKXNVZu0hPaVGx0sI9JTqHmg3Ymm/Qgr/xIunFfkphvHNx8aBLl7f5/vuxDB26AxcXb/LyinYV0uKURMED5T6sQMFT8zUqGxcTUlMpO3ZsQdmTv/iC0g6mcSonx/izZvIvVaJNx3auOlPZCvlK0jpL5zqm4hSEagq1NC9Lcxg1v9AZGZkcPfoLEyeOw9fbIFlZbyxAVkICU2fMYHSfPowKCTEvXF4emvx8pvTpw5lbtwj29ycvP58tp05hb2tLcK1a/HbuHABXvv4a77JlaTdlCvN27KBGxYrcffyYB3v2MH7ePA7+/jvCgweFFZC1s1avp2HLltRv275IHyrvu6KinhITE8mePbcoXboMS5bsoH//+nTo0BdbW9tilVu1Ias46sSfNSj8qzYK2bNHeaOQF4UgX778PVu3jkCnsycvLxuAqVNvEhv7Bxs3Gt05zZ0bwbp1g2jWbAjduk0CCl9uSGb69A5kZqZTqpQzb789jzFjupGamo69vX2hOxYlT+TFeRgQRenrlXsW9/YuIK9m6IwI8dOnRffiePrU/FgaRkdDUpKIwokKcjqFCrIoNhRuv2G8l62tcZGenx9Uq2a8UrNmYVinjvE4KMj0r+QIMO2+hrjyWAzDwopsHpKfmUkaMBqjr41NgEAhgqyVhTpJCQtMuNJpuXRzENGzhtpGIaZriWl2RRxEyDepy87O4JVXjPtyL1z4DFdXI+ZdHEAkR1rER1vgtQKUd82TOoiXIzNK/GSpWDM4F3fNdDzs66/ZeOYMLapXZ3i7dviUKcPliAgMBgNrDxygfrVqvNavH9cePyYmMZHU7GwMBgNhz56RlplJWQ8P9h8/DsCyBQuY8u67BcVs16YNP//4I6XKGBeF3rlzh9Zt2xJnWixy48YtkpOT6dOnF0OGDCU4uAlZWTlERDyhU6cu5Odr2L37R5KTU3j99Y9xdXUrMueQr2PMycli2rSOPH58kyZN+mBvX5r9+7/krbd2ExjYvWhbYhkQVFKQLYnaRN/EQinRRiGHD5dsoxBLZbU08O/6cTMjRo5EEIQCFP/isWNERkfTc9AgAB5ducLo116ja8eOvPPaa2ZlTMvKomOvXqSkpmJra8uiuXPpNXAg0dGxuLi4KDqi+LPrAIpD+eTKizYrwzoEubhVR2pizURX2mkoaVimTiNHZ0RHLW2CkZho4JtvRhMfH8mkSfvIySlKE1J63mobf7i6Fu3PRDqAYp+ktIOVbHaanZuLfvx4AB5/8AEVlGaG1iLvsjaSxmXk2RXcXl40a5d4WPv4xFDefna6QmX41cmTWfP997Ro1IiBXbpQtUIFzl++jCAIfLNzJzUqVuSdwYO5du8eMYmJpKSlYRAEHkZF8TwtDe8yZdh38SIAS159lamrVxeUs0WdOvyyeDFlXFxAr+dRdDSNhw4lwfR8rvzyC3lAj9GjeSk0lOAGDdDqdDx89ozOHTpg5+DAjp07SUpJZfbsD3BzK1vsd5ibm8vw4V24ceMiHTv2wsXFjc2bV7Bw4SZCQvoX+a+8ba0BP4sTeV9r8iD5n71RiLXSoMFwHBzcWL++BwEBPQkM7I+7exW8vWvj6nqCr75qTX5+Hp6e/kRF/YHBYODYsa+5fv1X4uOfkJWVQnBwW1q1CqV582DWrVtCYGB97E0m3f/KixMdxg1DugKvAiv+b4tjUezsHBgxYjWHDi0rUI7/E+ST/v3pWb8+OYLA8JWFu8lrtVqcHRy4eO8e765ZQ6cmTSjn6UnpMmXIy89nQI8euLi5EZ+UxBcff0ytNm3QAPlJSVy/eZMjp04xesQISpUq3I2yZs2arFm1igWLFnH16lUCA2vTsGFDDh8+yo4d21m//ltSUlIICmpInz7diI+Pw8fHl6ioSLp1G0Tjxi2LrY+dnZ4FC07x7Nkjrl07SGpqKlOmbCMwsFOx//1PkoEDB+Lp6UmHTp3oGhLCwL59qVm9Og3r1+fCoUM07tgRQRDwr1qVO/fvIwgC6zdt4qfffuNJZCQpqak0bdyYvqGhNG3WjJVr11K1alVcXFyKv/l/pUSi1WoZNWotCxZ0Zt26gQwevBkbm3+eSmCn0/HDyy8z89dflZXj/6cy68036di6NYbsbAZNnlwQr9FocHZw4NbDh7y9fDkhjRvj6+FBrfLlyTcY6NeqFW6OjsQmJ7N0wgRqjBlDZk4O+QcPcis8nENXrzK8c2ejcmySyn5+fDd3Lp988w3X792jfmgoAf7+HNuyhc2//camnTtJSEoiODiYngMGEBsbi6eHB3Hx8XTr1p3OnbsVWx9bW1t++OEwkZERnDixn5SUFBYv3kjr1j3+V9rvRUixX4NGo5mEUQepZIq6BcwVBGGP6boG+AB4BaO/r3PAJEEQbknyEDA6HKgpCMJDSfx6wEMQBKtaSAQV5bOL4ibq1iLIeXlw9eoFAKpWnY2jY0MePzZey8goB8D8+Y3w82tHmTLNGD68qGk1LMyHffs24+DgRO3awcyfv6roTaVmOfkOaEruuSwtp5VPP6Xbj5pQTkdTWN3Pj+pNjQhoYpARWVBDkI2IsxFtjY93NxXNvQgYCZaLIQVdpVtOi3EuuozCuqv57JVNTQ0Y0WEHYDfQBQgAOmCkXYiEFhEPsQNsRJOcFJqVb9eqBH8Uw+1Tsn6C0UR88uR6du9eRlJSDKNGfVoASsuzVQM4CtAXJYhaCc5QgnykBRbTK4kagqwEJSrBiqbjCl5ePH3+nI937aJ/kyYMbdWKJ8+fE5mYSBU/P7oFB+NbrpyR6iLNV3LPGw+NXUWVSpXQ2tkR1KABQcHBABh0dmbfdecufWnWoiuDBvXk2LFDXLp0CUdHHyZP/ojJk41pIiKiWLPGOJXq02cca9fOx94+gPBwZRBLeUfWylSo8ErBvcPCrOPxKiHIlugLlkR+HxFBLomI75Ua11QJ/VIK5Y/fTmfcMvu8yXz7/jvv0KJx44L309f0ATRs3562LVrQpUMHtOI3KBG/ChUYOm4cTk5ONGjQiKVLvy7oFtTARqnhTQ3Nkou1CLJe71jAWXU17VbnXMl4TZuVYV1B5MfFidKDUTNDODsXbNebpdBXS7My/tWWadP2snBhB+bM8aV27c506DCF6tWDzbK3lm/s7KxAo3hqPVosjRMEgR9On+bL48eJSExkfo8eyg9S6QOSplPyeargs93RVEFHV72pLlqLPGNLxbAGQTaj84g3iM4qElcuO5sKWi1zN2+mR9OmvNK9O4+joohMSKC8pyehTZtSztVVeaGl6ab3nz0DwL98ebR2dgRWr06guL+yrC/v1qkTHUNC6D9hAr8cOsTt+/cp4+vLR7NnF6RLeP6cr0xI9NixY/li6VKCTKZgtX5Meq1KlQpUqTKu4Lw4TrEaWvyiOcdyKZZiodFoemG0q9/HqHO8DEwDGgqCcF2j0UwHZgIjgbvAbKAlUEMQhFRTHgLGlVs/CYIwWJL3eqxUkDUajTB8uHlZ1cwdf6VhY2O/JTLyc2rXPoaDg1E51OshJycBZ2cXoqN/4tKlovu31akTSuPGHejadRIVKxrfCD8/8PUwfRByjkN4uDmnQQzlyqK0Y5GKlMwkDaXKn5R2oUQfMMWl6NzMiiilZIhFk1rypW0v7wCktAApQwGMlIsK3qb2kNIpwsKMx2Io1dxlSnOuICB9fLnAA2ArRk7yzxh33LPDtLmIEmdBqY08PIrum610zRTm6BwV5zLXrl3ls8+m8vx5AqNHz6Z9+34FnZg1A7Gzs4LrI+mNlMyU1m59qyYl4QOoaU/AkOXLufjoEWPbt2dK167GhTRqlZc2guk4w2Bg4rvvsv2XX/CvVg2vsmVp2boNEydOwsGhjEmJTWPBgo+5ePE07u5e9Ow5iICApnh6lrfYHGlpMGtWBxo06EWzZlOKNKUYqlFK1cz5ak2r1FzSplQTeRqTv/4SUSzE3QLV+HzWlrlgwBfJTZLG2LJlCx/Mn8/JX3+lrGfhavaExERKOTtz4OhRQocMKVKGHj160qRJKyZMeJ38fOME3dq1cWqmcbW+3xIVRunVVFuioLRuzhoqi5IU5w9b7g5Q6X1Uo07LqSn5+XlERT3g1KlN7Nmzgpkzt1O3bhucnAS0Wm2xfGOz/sqazVTUODJZWdyMiODNH3/kSVISH3TpwsDAQHWPG2oPUM11qDROqX9S+yjUtDk19E6NyCyJG7t4MUdv3mRM+/a80aULjpYs0UplNMVlGwy8tmIFG48epVq5cniVKUOL+vWZ2K8fnj7GtTEZubnM/eYbTl64gIeHBwNCQ2nRtCkVRH6khZc3tGdPmrdoyfTp7yo2h7xpihNLoKW110uaN0CFCsbQUh/6pzjIGo0mEZgBrAEigeWCIHxiuuYAxAJvC4Kw2hQnAIuBt4BgQRAumeLXUwIF2d/fvKx/hW+sJjY2AmlpndDpXPH03AGYdwqCkM+NG35kZ0cTFDSXoKCeeHoG4u1tjpSKoRsm7rFcCZTya6WaqUkjFZKSAPOlcWJVRBQVinposEPGtRVDufInVZqVQtNxZLTxDlIFWQlJVlKUpWgygF1ybGGdi2sH2U0FE6cxD2W+sRZYB6zSaGip1fJFfj6T9Xq+LF9eGWWXE3yVUGWl9K6uZGdno3N1JTklDwcHh4J2CAt7QNeuTXn33Xm89NLL2NmZL/5Q0jftkC0QUtMIlKBNa4mYokhnNVJRKpwahGhhhD9z7x5Dli3jzpIl2EvddlmjICtoGqmCwJ3wcKKioli3/nvCwu7TsWN3GjZsy5kzRzl2bD8zZizh1q1bHDq0g9u3L2Jv74i7uy/VqzfD3t6J8+f3kJHxnMqVm5Kfr+XmzZ94990MMjPNd38sjlJqDRexuL5HremtUaTE84gIY1gSBfn5c0GRM6kkagqyFkOxFe81dCi5eXn8tnVrkYwNBgNVg4IIf/yYme+/T6/eL1G3bj2Lr77SUg3xXO0TUdJT1OqqNje0tKhKTKPEybbms1F75sXMQ1Wfn5IOqrYMQZz07Nu3mQ0b5tO6dXe+/noBAweO4auv1lKqlPEVK+ivSjo7kSHqOXl52BgM5GRlobe1LdjZ7UlsLA0/+YQPunVjbPPmxj6kuIenNoOzZoGxJYuYJSkOlVNq6BKQ5a+Gh9N98WLuLVqEk43CImBLlgXxXBaXnsPYAn8AACAASURBVJvL7adPiUlMZOPhw1y7d4/QNm1o06gR5+/cYdu+fXw1Zw73Hj9m2y+/cOHaNfR6PT5eXjQLDqa0iwu/HjjA8+fPaRAUhFuZMmzYuJGM+HgcRCugtVKcBdOaeAtpLfmRtwSWOhoNQi+Gg6zRaGyAlzC6ODgNVMa4odkBMY0gCJkajeYE0BzjbsCinAd+BBZhtIb/Y8XYWBlkZ1+0cN2G4OAjCMIVKlYciKen8ir2/8rfL6OAnzQavsjPx1WjYWVWFl3S0+leuJKyRPIkNpb1e/fyLCUFTx8fAmvWZM22bRw+fhytVotWq6VOnbo4O7tQr15DWrfujJeXL0OGjP3X+Rh9UXLryRMqeXqaK8d/QUqVKkXjxo0BaNu+B4cO7efcuQssWfIht29fYcGCDTRp0pbatdsyYMAknj/PJDo6ibi4J1y79jupqYmMH7+BBw9uc/z4CqpV60y/fquKuau53LkTRFbWXezsGuLl9Qvi7pH/FcuSk5vLPpMbKblotVoO7NnDuUuXGDhwIILmv+s0/ikSEjKI48d38vXXC3BycubHHzfQpUsXhgzp/6fyi0xI4Nv9+4mIicHL2Zlafn5sPHGCPZcvo9Vo0Gq1BPj64uHkRICvLy/Vr4+royMTW7f+j+1Dbz97Rnl3d5zs7V8Ij8DJwYHGtWoB0LVtWw6eO8f527eZ9/XXnL91i68XLqRd8+a0a92aV4cPJysvj8TUVJ5FRfH7xYvExsWxbuVKHoWH89myZQTWrs2a5ctL5P+9ZceOnD1/nkb16/PL1q14KtCr/mliFYKs0WgCgTOAHkgDhgqCsEej0TQHfgcqCoIQIUm/DignCEKI6VzAqFhfBW4DPQVB2FccgqzRaF7ByG0GaAhJFLoXk0o+8t3cih5LxUbh2A5zLHYScJNSpc4Cyl4F5I4OKlUqRI5F60S1aqANN9GupZ4ZxFBKtwB4+pRcE3IssqSyoMDDsIgkGxRqJ9ZER6HXBjHUm34ADmKnI/F2oUa/KAilKLTYEBKopWC7XCnHSk4XiY62RHguvA7mkJFp5p0veVfFJ1XQgUqQxwQHB7rFxHA+2+iJRANsatyYl8qVw8bk+cAi7cJ0HG0wMHPdOn46fZqhISFUq1aNuLQ0Tpw/z/GzZ1mxeDGvvPoqGltbduzcia29PQsXL6Znz15s3bqFt9+exvChJjaRGsKgwsEDrEeLlcSamboaTKhkI7Ygefn57Pj9d3afO8fRmzfZ8NprdBbdlKjlr0KxkMJ0OaY3WY7wCoJAerpG8RqYI46xsWl89lkp9Hp3srIS6Nr1OhBo9l9L3qcyM90x+k15itGry5eAF0aCj3ynyVzJubxfKm4rafHNlvZLyOKMaQTBaCItCYIsmFA6tR37zEsjoU9IpRgOmyAIvDlzJoeOH+fGWWMfKn/+Bp1dkdfc0rNT2kldDNXoMcV5HRDFGu6oJYOH/Fpx6K81RhmlT6S4OHldlCwZanWXGm/y858zaFBvTpw4VpDuu+XLGdynD7ri3DyYbhKXkMCsjRvZcfo0A1u0oJaPD7EpKfx+9y5Hbt5kybBhvBYSgjY/n12XLgGw9MAB2lavzr6bNxnbqhXj2rQpWmAlsQZBVuvXlBpfKkpIbzEIubw9irO45BsM7Lx6lV9v3mTvrVusGzaMHoGByvWT1tua+qnQ5QQbm8K1IMWYJ7KysnCoWJFSzs6kpqXx+6+/0lxcZyBvK9lxxVat6N6uHVmZmTyJjmbDggX4enkVuUcRsYb7pVJm1THOBCH/VQT5LhAEuAL9gA0ajaat5Lpcy9YoxCEIQphGo1kLLNBoNAfk1xXSr8FI4zAp2Xcp9LUL5oquJWVYmk4a2sripP58FwCXgHUWOxZrOz8tBssKjZIilJZWZMuODIzuzACyJdekdAupaCncZU6spbR2epOiqY+Kwtm0P7vzlSsAaES+oJ9fUeVZSUGWENEKNoaQ1k8+2sXHmyvLYmjJhippeBtRGZZ2CgqEOHdXVwJzczlvqpsAvHz5MseysljQvTuuog9kJV+ipuPJH3+Mh6sr13/6Cd+yZZVHpdxcEAQGmBaPPLx9m30H9jNryhQ+/eJznt68zt6jR3l77Fh6duxYIg6eRbOclNMixql1AEpxJbHlWmHDTcvM5JWlSwmPiiI0OJi1U6fiZA2P4C9IocKjKTJGW1KoUlKcadZsGWfOGHnHJ04MxN//OLa2nqoUC0HIArZg7Ppex8h4bwCEYFwSehyj0rwQKIX5du3SY7CsNMsVVmlfZa4YFyrNPpRYkpNBpyv8Vot7FipKsGKcKb95ixdz+ORJvl2xosjALCrn0u5BjU6htG75ryjIalUpbr6otmbVWmVYKV/x3BpXYEpzSLXyy4/l5ZDmZacTXbJpqFerhpmCPHbqVI4cOMCn48fjXrp0sdSuN9euRafVcmXBAsoXgxb2bdkSgJiMDDaeOsXsAQOYsXkzacDO8+eZHBLCwObNLWegpiBb26+pcaTUxm5r+3KVWUpGTg6Tf/6ZmzEx9Kxdmy9nzMDF2dk6OlxJXzyZaDQaqwm++rw8vl24kFHTpwPw8qRJnPjhB3zKllWnnABbP/6YkNdf5+2BA7HPyyOwRw+6N21K+wYNOHjxIlEJCWz/6CPjuyWvp7wu1sRJxdIYKHIsLIhVI5UgCDmACfbkokajaQxMBT4xxXkDTyR/KQvEWMjuI4wjzFBr7m0uURhVPrnCC8oDjByFkQ8wSrId2IaRCWJj1WxfKvJ3xIAWrSXYQamn0+vRSnYBE0UcSsXXTYmXLKaRzkykirJYXCmqLLKHRKdZjiZfsi5xcdiLs0rpgjU1zw/yRpLOqKUjmxoMJF+MaGnUkPuAlnGKV9aqReunT/ns7Fmux8bSyt+fnx8/JmLfPra8/joubm6qRMK4tDR69eiBb/Xq5nWSigwxeG3wYH7ctYtVa9f+D3vnHV9F0f3/98296QVIQq8hhCYl9N6LFOkgCAgohIcOolIEBKR3UEAQEGnSpCMiRZBeAkjvnRAC6b3cZH9/7N2bzc3u3o3lefT787xe97V3Z2dnzszOnDlz5jNnxKWolSuJiInBIS2N9mXLKnrksLvzS56XLSkJBaUNJn/UtKVEMh7f+fRTvL28OLxoEe4SrCIngE+VdOVXk0vWPqvV92xetV6Tk6FUqeE8e3YWo9GD9HQv7t/vRKlSRzGbnbPFFwS5UlsXOAA0sIT9gIgyWwVIjnkGAKWBwogiMAnRd7gZiEEUkzXJ3mPlSrNEWgryH4B0JSfn/FvbI5t3d+zZw9fffsvyxYtxlMm4VHOmYixd9Si3aossYB8KqhUmkb2FFukaH58zncteN1NStpX2kykpwba2CPkz23TV+JXiZdkDIfsQC0eMoHbRoizctIlLt29Ts3Rpjp49y7tPnvDD2LHkMZmUK9OSSXhMDJ1q1MhUjtUqSUZBHTqw/eJFFh08yOPXr1n800+8iIggyWymu63bFnsFVMsrJ5NCpRU/6apnNVADZyznpevGjTgYDBzp1w8vaRzT4l0Db/xHjB124RxmM/3eeYdT586RkppKiQIF6DBoEMdXrsTNVvbblL120aJcWbIEf8uhL6dmz+bUrVss3LyZ6xZ3Yc1HjqSavz9lChemWN68mNPTSUhLIy09nciEBIrly0efVq0w2ML3cqo865R3+gEk2d9zBh4DrwCrM1CDweCCOIqcUXpREITXwHxgmiWNvwm9Bj4DpgA9LL+J/0uG/qU/QI5GI30qV+ZI794AHL1zhyJ58uDp6krdSZO4YDmGU4nMZjNXb9+mce3aOcrTycmJA998Q8kiRZj70UeMff99AJaOHPn7C/I3p1nffsudJ0/YPG0a7jndrPE/okqVVvLmzSEcHJwRhDSePu1DenqkjjfLkbl9YhjiilaUJcwb8eBzLyAcOAZcRHT+8xxRKd6BeKxNAv8X6U14OJ9MmMDQTz4hqF8/Orz7Lh+PGfO/Zutf+p1kMpno2bo1Ry1+zE/dvImXmxsFcuemzpgxnJYggwokCAIXHz2iieRSTG+eRiN7P/+cgMKFWRgUxKddupCRkcHXQ4f+obL8nWnx2bNcDAlhS9eueMmxMn9j+mrcOC7dvk1cYiKuzs70nDCBNxZoqBaVLFiQ7pbVgi6zZ3P1yRNCo6LoXr8+vl5elCxQgDweHryKjmb76dPsDw7m4v373Hz6lJS0NBbu2MGIpUuJiIn5q4sI6LAgGwyG2cCPiFLeE+gJNAbaCoIgGAyGxcAEg8FwB7iHqFXGI44EarQAGAx0BJR3cSjSNCAIkNwGSZYUR5v/2Dy3tbxIVplfEQexF4gQ6x7ACaCdGMs4SHXCITceKjkfkCMK8kkzaD2nL0VH4xIXB5AFauEk+y8vEWRHPmaQHXaRBNmOW5bDLiQIh6TiJAJuSWKox+PH4rMnT8DXF7MgcNfNjbecnbNabpVMF7azbDWXZBLZCgi5qUPpLGY5KFzBup0XCNu6lbaTJxN85w5zx4/nVUQE78yaxbp582jduHG2mffr0FCcnJwoaivclZbZzGbS09OZtnAhU1dkbvy6dO0a7apWpUOtWvgkJIgYa70WBi1Ssw4ouTRS8jtlG1+PxUWp7GYzv54+zZfbthG8fTvO3t76reFKpBRfqiNTJiTAxWJJNpuVF2TUnsmrw2z2pEqV2Zw925cyZXYREbGN6OggihffYcOGKEsyF3QyEMXaceApYk8ahSiPfkZUin8EPkW0ONvuHmhoeX8I8AlQyvIsncweq2ZJBtsVsLi4OMx66lZG7fv25asZMygubZJQIp3WlYyMDA4fPcrR48d58uwZR44d47133+Xy+fO069IFgP8MHqpoOZauemCcavBGNbaVjGq2C1PytJQMofby1+oqeiy3gpCO2XwbT88K2USebbpKz9UMiva8aVghFMnJEK8wgCnsfcgFhG/YQOeZMzlx+zZzOnemc6VKdF6wgJXvv0/HqlWz8RedkECK2UxAkSK6zOcZGRnM3bqV8TIZWqlUKTo1bkyHhg3J5+eXKd/VKsO2YnKyKqK2aqdm/TWb1RylZw/TkO8XQkKYceIEFwcOxMPZ2X5Z9K78aVlK9daLRn24mkzMGzGCd0aNYv+CBew9fpy+n3/OgVmz7C7lbBk+nIFNmvD41SscjUamtG9P6YIF2R0czK7gYNYeOcKKDz9kwbvvZquPgY0a8dnmzfi2b8+PU6bQxrJ5W3d92FB8fDypqbanA8uy1FFNBYCNlmsMcA1oLQjCz5bncxH1qmVkHhTSUvKBrESCIMQbDIap5PgAtHhgMyK6A7IibJUwxVLYZUQPudeBOoiD1m1Efb8x8A6wBNECBOIAtxODobU1Zy0IklwpVsSQlRBPrPGSsLx21g4NlkwkfLCZzEVZ6ZqhECaHYWTI4mETzyS7T7OJJ09LajYS7tldEHB784bbwCCDAS9BIMlk4hNfXzp4emZXyOSkBCmQSB5fL5xCyYexrWs2y3v5PDw4e/QoF69coXb9+hgMBgpUr06Hrl159fIlbhYckoSNdEwXMKen8+DVK0pJuy4tnT0iMpJFX33F5Rs3iImKolm1alQtW5apK1bg4uREsqWzXb5/n8v37wMQHRFBs9KlGRwYiK/kskdpcqCw9KY4EtquucrDtLz429lRpLVxy7pZSyb4+4wZwydDh1JE7i8zJ+7mlMLkg4zEmwQLANw8pNarb/FLTW76+HQHkjl3rhMNG/7GqVN1yZMnCZNJnCLKqyg6WpQjSUlGS75tyVR8kxHlUgdEpbgDop1AsjTLJ+klEGXLGMRFtJGIcqg+IiTDXrmktA4Dh/DyCmLw4MG66kGiiKgoPp42jR/Wrcv+UGNQPXHiBDNmzuTc+fPUr1cPs9nMb1ev4u7uTvNmzWjfoQOLvlxKQYtv1VGjPmHt2jW0bt1JFR6hBbVXYkuJRRcX7XfkTUmP4q1XGddAFqgq0fK4SUlPuXu3H87OBcnIiKRUqY8pU6azLl1HCZeshNqTrg7m1Eym4hXGHq1TVyz3PhkZ/DJ6NOcfPaJO8eIYDAYKBQXR7MsvCZ01i1zSyZYWhk1OTjiZTNx8/py3AgIyGTKZiI6PZ9HGjQTfuUN0QgL1q1ShafXqjF+xAgcHBzIyRFlz7cEDrlk2tL+Oi6NF3boM7dMn0+AkkQ7oRjbSmsgrNUY9mB01DLJtGjLePty/n6E1a1JC2vuj9sFVJhaqGGQ9OBu9pNQRkpNpU706myZOpOOYMdz69lsqDxxIfFwcHnKohUq9NS1VKtOTgUXmd6xQgRYBAZS/eZOTt2/TtVq1bB2rmKcnG4cM4U10NG2nTGH3Z5/x640b9GvZkkp+frqLtGzbNmatXk1IWBh9+/ZVjfe7/CD/L0jcpLcBUTmuh2iFkRQFRzJtrEabsJXAJkRLz8+Ig0s94GugKMpWaPHq6OigaqWS7/GS62hyF8Mg7m+z9Y3slfxa/PPgQaZHC7mHCxs/wWlRUVgM0lbPFvGy/8k2Vzk+WUlRlvvqkOORba+SNVm6ull+0v8DwEKDgSuCQFVHRw75++NkMCh3TonUlMCcVrStgqxkVZY2Bcl2y0vZBwdfolmz6jx4EEGePJnHl0rZz549lcOHf+b4L0fFo8Itlu9Jc+dy7uJFhvfuzYfjx/N2jRpsmjSJjMhI0eWNJV5kQgLrfvmF0fv3Zyl+u+LFCUlIoKyHB1V9fOhauDDFlRzA29ahkuKrhL9WwobbbEZMNSufEKWEZ1SzVDmZMujapQueHh6sXbIkMxEtLUhLUZa3Fa1t+zKNwNazhZIHCiWYuzxs1iwDffo84OTJyURGXiYwcAteXpVUvSlIYXFxUo9KQux5YYgeMbogwrScLOHS2kyaLH4i4rE2NxHxy+2RVq2yW5DTyZRL0YgeNQ8B/YiMnE6ePHly5MUi4sYNqrZuTYsmTVgyZw5u0tG9svq3nSgtXfoV8+bNZfLkKfz880F++OEHatWqw/r131NCEmqo6xNKeoR0VWouWn6N9bjdzeleKbU5nJISrEVKOpo9C29Y2CEePpxDRMRFvL0r0L37UUwm1yxdVmmxzHZ/sfw+i5XYtkL0Vr6OfnwnLIxyM2cSOnMmBXx8MgtlKfS8gwfZcvo0J+fNE0+ps/xmrlvHz8HBjO7VixHz51OpbFn2rVhBhsVtppRGVHQ0m3btYvi4cVnqtXP79jx9/hz/kiWpXqUKnTt3xt/fX/kjyMleo7RtoGqnBWk9y8mMz2Si7+7dJJvNbO3XL/OZ1oqf0spfTveY2PIhJ62OoNKJvFq35uTixSzduZPj166xefRoqgcEaFvgbf8DkfHxFPz4YzpVqcJ3/fvj4uioujRjNhiYs2cPv965w7WnTwlq2ZJpvXrZnWC8SUxk2datLPn+e2aOHEn3UaPw9vb+c/wg/+8pD7AY6A0UQUR72KO1iGea5ENUjkEcyIpqvHMbmEt6uheCsBjR/fO/ZEttgA4uLlRMS+PXtDQSMjJwUnJq/jekSpWq8MEHg6levRT/+c9ImjRpSfXqtZG2NX722SSuXbtKYNWqNG/WjMSYGG7dusX9x485tGYNUbGxRMTEMM5yGpitP0hvd3ealypFSW9vcjs58UFgIN9fvco+y2YEoyDw/ZMnfHLpErMrVmT906c0ypuXZVWq/GN8fw4fNIg10nFu/1AqWbITwcGzqVVrJY8erefy5d40aHCBzKmiPRKAc0B/RLmyiEylWI0cEWVYKrATEbNsj+4AS4FqwHSgGHny5NwXs3eePJw+cIDStWpRrGhRJknHyGrQsmVLGTt2HGXLliMoaAAAFSpUzKIc29LDhw9YsGAGTk6uTJu2JPPgon8pC+XP3xJ//5YcPFif169Pk5oaZ13F+LtTmXz5GNWkCeWmTWNYkya0eust6pQvb51efdKhA1efPiVw+HBaVq1Kcno6t1+84M7Tp+xfsoT09HSehYayzTLBtpWheXLnplnDhgSULImbqysf9urFrp9+YufevYC452Pbjh2MmTiR6VOmsGX7dmrVqsU3K1fmyD/v/5KG1KrF4tOn/9ds/CFqX68eC7ZvZ9mQIew4dYpeCxdyedEiZU9GCiQIAhceP6bHypX4583LlkGD7L5jMhqZ0LkzE0wmlh44wG+WcVWLLty8SbcJE3i7bl2OffstgeXKgbe35jv/MAU5H6JivAVxqXIY4sHC9ciER8ihFkbEs9X6At8hDl5eiFYeZ1k8bP7PBJLIyFhPcvJIDIZS1hh6V1i0JpClSonLqW4lVJZ1bBJ2BLw0APBKJ+pJJZHbo2xPn5M7uzMpXG0R3A5kzwsXF67lzy8qde7u1rAsV7C/Tqp2hqsSnEIlzNaimGzRO5Sso+DAlCnLef/9kXz77SIGDeqDp6cn3bv3ok6d+jRqVJNt27Zx4cRx9v74IxUqV6bP229TvUIF3DMy6P/FF7i5uFAxVy4RaK5wtFdyeDiPIsXNXwudnambJw/Br15hNBi4FhXFGD8/HASBYmYz9+PiKGI0IoSHizt0bS3H8rqT6lXJGi+ve4tZKcPDK0u92DuKV56kUrLiMwdSDK78dv0mGblFIeNgTlVOWM+yoxLJ+4EtiDQ5GSdL3XjndrHwlt19mLwZKcD96ddvKZs3D+DhwzG0bbuUuLiTXLnSiNatT5KU5GSNJ70n/Y+MvE9y8lFiY3eQlnYBk+ljzObxiD1KUpBtMcjSVR7WDHHbhuSyzdaCnILodvI6Im65Dn/Ii4WLC4VLluT8qVO0bNuWzyZPZvPmzdSqU4/ixf0VX1m9eh2dO7djzZpNLFq0DC+vXHTp8q6mhXXx4rlERERw8OA+evYcRPnylTQXEORk2+aU3pGLkD/Dgmybj70wLb7l93o9VfTqdRJXV4Oi+FOyEquJSydThrIVWMt8r3VUpNK4ZCGDoyOLunZleOPGzD92jP4bNuDs6Ejvhg2pV6YMtcuVY92wYVx49oxdZ8/yVrFi9HrnHaqXK4enjw8j58wBoFa9etkryfI/1cWF+49ELzGlq1SjdmwSp8+dw2g0ciE4mGHDPsFkcsS3QBkePHyIp5cPoWECjo4OCt/DyZK8EyY5/ETK27bRyPE7WsqevDHmJL6LCw7OzlwKDdWGv+XUI5E9129aJMcJ2TZ8lfcXjBjBf2bNYsTy5Xz78cecun6deuPGcXbOHFw1rNQPIiI4eusWOy9e5NT9+4xo3pypXbrYt3TblKV5pUrM2b0bQRAwKLxnNpsZMGsWB8+eZfmkSXRu0UIZBqpA/zCIxUvEpcsjiBvqiiOqapURXbOBNHgYDJkzSAeHA6SnD8DBYQhG48Qs6cr7vCBkIMKsvRHPJ9kJXEWEX0t8iOmaTNq6nNJ5G0qHiDi9spyvIj88xPZI6idPrAdppFncsMkhFomWq3zYlXDD9rxDy1HcyO6dybShSbAKF9l/g2S9ksMdlDCvetcdlSpTSl/j2OdUk8iR7DwRTayhkrxwcRE3iZw7d5iff97FyZO/EhcXS9XAQC5dukRiUhI927Vjzn/+g6e7O2nh4Ti9/TYATcuW5VVsLL4uLgyrX59uxYsrr+WD8gZFuSBSWjbTi7+Wu+ID8d7yP9GcVdFTqiulTUxKn0p+P336UIxGIzNmfGkNU8Q/ag26Wng/OSO2/7W0dxkjicnqPneluUxsbCT9+vkzZMgaSpfuwEcf5ad3740ULNgqS73Fx0NoaCghITu4enUMBQt2w9m5Cm5u7+LoWEgTGpCWJodkyN3HZQBvASuA6mTtsbMRjQEBwBrEyT1IMk4QigE5PCgkIQFcXDh67FeaN29KyZL+CIJA6dJl2bnzx2zvSJ/i2LEjDB36AT169OHzz2dkiyePm5ycTOHCrvTuHcT+/Tv4+efLFClSXNMWYG+fkxaOWUkZ1qMgy/nWG6aHtJBjSn1ECT+shahScuHu5iKDVegBe+cEm6JVeFlhBUHgl4cP2XnpEr/eukVEQgLVS5XiyuPHxCYm0r1ZM+Z9/DG5PT0R3N1xKFsWgGYNGxIaFoa3jw+DBwzgvT59SEs3ZmNXYkNLvtuyBdqILTlkTNcmenv+CLVmXwpK66f79xOdlMSqoKDMZ3pxxtJVSUhrxfu9MBSNyo+LiaFE164sGzWKd+vUoUSfPiwKCqJLrVrZ4odFRLDn0iVGrl9Pl5o1qebnR5caNShmbxOmyjggCAJ+/fuz5qOPaFajRpZnk1evZtnOnZQsWpTDq1eTS8J6S3VVSDSsqsnQf5SC7Ogo4OICRmMG6eniLNLBoSDR0dXJl+8lIGAyOVghEfK2mZ7+mjdvAvD2foCDQ15VCJIgmMnqCWMQoqW6mA1HmbhnV1dxEPbwyK67FCiQHYMsV5QlZdl62p4CBpkXL7KctAfAq1ckWbbX/xEMstTkJJuUZFeXe7hwlpb87Sirf4mCrIKvlRQfSXlRku1askltoHJzyUAQBB799huXrl6lsp8fXh4eTJo1i18vXGBEly5UK1SIqIQEhJgYjImJ+Lq78+TFC97dsYOw/v3JJ+2KVfL3rKWZKjGnhC22nYXJT0SUXy3xYpPFdiqdz6J0uIKSQqAmZwGCg/cxdmx7tm+/S2mLr2i1OpU+aZYTFqXMtSxVSsLalkGlq5LFRcZIhoubNXup/MeOneCLL4bh6enNzZsX6dRpBF27zkIQBEJCwrh0aRenTn1PaOhNihevT8WKIyhRorniGGoPppi9CewjKWkQJtMj0tPFHihO1vMiesWomaXY0iTdspcpxyfppZodSEsTuHjxvDi4+PkTGFiG+/dfYTQaMRgMGBWgUpGREVStWprTp69SuHARa7jtpxEEAV/fTANFv35DCQr6iCJF/LPEt/ep7Sm80r2WMmyvWamVQam56bUg25vDqSnI9vqP1kEhWXDHWjMGvbjkP9IHXVwQBIEnMTEE379PhdKl8fb05IvNaTUvUAAAIABJREFUmzlw7hyjevematWqJCQmkmo0YvLwIG/evIS8eUOnLl24desxPj4lAOW+pVdB1jF/zlKnVn/QCquBmrNfPbMwhTo78ugRLRYs4Ldp06gs97evV+HVE18rDS1SU4bVJk5mM2evXGHovHm4Ojpy/8ULujZsyPKhQxEEgTcREew8c4ZtJ05w5dEj6pUty9BWrWit4AElG2npEJbr4eBges+axaMffsBdtmG0aJs2rJ81iybSiYy2jcECsfg/gkEWyWBwwGSqa60jo7E0iYlLiY0VvVv4+u7HxaUNyAzuRmM+TKa6pKWdwdm5g0baJgShFXDQErIC2IXoBUPnsZf/0j+aDAYD/n5++Pv5WYXg6ilT+OngQXadPMmKXbt4ERFBbGIi33TrRuty5TAmJFDUy4u8rq6g4TYG4FFaGlGpqQSYTFab4D+N6tZtS5kyVXj8+JZVQf4nU40aDdm9+wpLlkzn0qVf2bx5Nq9eveL06a2YTE5UqPA2tWp9SLly7wMCcXF/HqbWZGqHwTAdQTgJNJc9KUqmtfnPJYPBQM2ata33VapU55tvljJx4icAfP/9blq3bpcFy+nt7UO9eo04e/YkXbu+p5l2x47d2b17KwDffbeMXbu+Z+nSLTRs2FL1vX/p/w4ZDAb8ChTAr0ABqzKy7OOPOXLjBtsPHWL17t08Dw0lJi6O+TNn0qZVK7yePsXHx4ciRYqSZAfGHxb2jDdvXlG0aFmcnf+ZUrRp2bLUKVWKWyEhmQryP5jqVKxI8HffMe+77xi3ciVf791LamoqW44fx+jgQIsqVejRoAGHJk0iIyMDpz9xX0KL6tUpV7w4R4ODad+kiTW8aP78pGdkaLypTf8oBblCBfFqOxF6/rwZr18vxGTyIV++AURGjsbV9S7583+EwWDAbIakpKuEh98mTx5fnJyUDXjx8SAIlxA33MQg+kauANxA3GV+g0wfzKlIg1dSkqMlLRdN66UtycNLlSoJWI5rtp3l2JwSB8CrV7haLJOukmnQosylp6VlO4ZazYJsxSNLjTWn3hK03Ikp4Z6UlknUpvRSPjbpppod7C6raWUl3StaYTR2cbcODKR1YCBER/MmNpb527YxcPt2MlJTIT4eP09PDAkJipbjJ6mpbHn1ikdJSaySKdDvGY1MNpkoYjDgYjKRBkSmpJCQlERURgaBDg44OThkLUAOl/a0Vsq0LGxqyAbx6kDNmh1YtOgTEhLSadiwi5qzCWt6Hh6iJdtJWppQgpeoAfn1LA/I7zVMd9LJll4uLuJxrgAlxPb85ZeT2b9/FSEhIVSuXJJ+/fYQG5vOtWtnefToKDt3DiN/fj+mTbsBKK/C6l3FlhfpxYthhIYOp3TpCxiNniQlveL+/WeULVv9T91wJPUd22ps2LA5X3+9BA8PTwYMGMbUqZ9x48YNRo/+zLpp9M6dW9y+fYN+/QZjNisbpMxmuHHjKp079yA8PIxTp45ToUIgN278xvvvv82FC8/In7+o9T0taIMcCqr2+dWavpbxS8tarBdGIZGSbNda1daCk6otfCg5MNA0BtoG6sRbZnlXTwVqCQiVtJvXrk3z2rXBw4OIqCi+3LyZTz77DKPRSK68BSlRwo+0NKMiHOr16xccPPg9ISGPOXhwhTXZmjW70rnzZPLlK4mjozPp6WaSkiKABOLjowkIqISjo7Oii/gs38oinxzkH0Fr2UEirT0VGsuYDiYTnWrVYvyOHRhcXelerx4Ge/hhvc/0erZQI3kHV+psSu3EbMYBGDtwIJuPHePqvXsUK1yYHTNnYkhL4+ytW5y8d49x69fj6ebG07Vr1fOXkw4LMiYTw7p3Z/TSpTSoV488Xl5EJSRw/cEDatWoob5sYy9rfRz+PcgCWcpGCQkuvHjxnGrVVlGs2ADi4/tz8mQzwsJmU7nyJkJC1hAdfYLChcdToEBdUlKy17nZDEbjFczm6kAgsB6ohKgUSxSPiE+WKKulUBAgPl6seL1tW54/QIkSxXBTwuHKQc0grpcrYVwBY3IyRnu7r2yZ0wK/2fOtqyTB1QqoxIf8Xds05O9ark6mVLA5elg+iCqRloJsXfqPV9FeFPjP6+XFnK5dcUhJYdCePdQqWJCb4eGcf/2aWg4OXIuN5X54OM1z58YxNZXA+/fp4OJCaQcHvA0GIgWBmSYTsRkZlE1JwRkoajDwXBCs+HGAvU5OtPP01F4Xtrd+bENqy8dKSdjKSPmn7dx5EgULvsXSpSN59OgOfft+hrRqI49nm66Ti4LYUdJu9GweUiOtQUNj/dopd25+3bCBriNHsnz5dPLnz0+JEiWpUaM277zTggIFcvPy5TPrZF3plHR7bCutgJcp05ujR/fh5LSCihU/5ddfP8NoFChVKgo3t6xeDXKqxNm+q7Ra7uLiQkjIc6ZPX0JQ0Ah69RpIly5N+frrhSxbtpE9e7Zw7NjPDBv2KQ0bNlVVDG/fvkmjRoEUK1acAwdOUKFCcW7c+M0aJzk5VnPznTxMfpXe0QPJ0BumxYNtuX5PmJr+mBNdR02htu2XTlJe9pQ6e4xIjVNFAVJNT36vpoDZVLRPnjxMHTMGT29vPho7llq1anPz5g1OnTpF2bL1uX//Jteu3aZmzeYkJ7sxYEAVKlVqSb58ZShQIIBXr+7TocNUzGYz48ZVxGRyJnfuQsTFvSElJd6az4gRm6lXr0c2NiGzr8rZdpM3Nj1yVUnYqZTZNv4n3bpRunhxRq5ezc3QUKb27ZupoP8RBVmjIUluHLXbvRMmyxhr9YGvJMzlDVH2bO/KlXQdPpzp69aR38cHv4IFqV2hAs3q1CGfry9XHzzIvgFdjSGdCnLXtm3Zf/48X27bxuRhw/h84ULSzGaiU1Lw/J0K8j8Kgzx+vDKvq1cH8ubNVTw9i/L++w8wGkW/t7t31+fNm9P4+w+mcuWFpKWJlaJk9Xn9ehcREZ0tKcZjMLgjCD0Q/ZVKVuQOiJtlJDLaXB0RT9rO/PbyPWxKPpJt9V4lOKlD+OtMAKkcSCoH4MoLo2RCUSIlBdkeIE7LnKFEWiOVGk+2eeoxq7i46DvoQs5XTjBWcnOgbEKS8uYNo7ZtY8WJE9akC7m68iY5GbMg4OvkhCtQ3s2Nn4oWhfh4Po2MZH5MDCm+vjilp4PZLLq6MRgQgBrOzsw2m1kTH08ek4mvCxempmUzgWqDUsIgW/7HmkXMrVLTUXLhaW8MkK7S//Dwe8ya1YN33hlIt26DAO05lZtJhvVTmuTZMqd2+qIeTVFrMqgG8ATSPT1JMpnwcHe3TlSFXLmo1aQJ48Z9RvPmHa1sKynG0r2eDWdSs3v+/BJr1rTDz68h166J8ARPz4IMGvQbHh75shX3iy/Ea04wyAkJgmIXbNu2IefOncTHJy+XLj3F1XJseI8erTh27Gd69fqQ2bO/wsvLzfqObbc/evQw7duLEIrQ0Bi8vLwYOjSI775bTdWqNbh8+SKtW7djy5a92XjTUpTl/7X0Fb3zRb0TDD0Kr1Z8e8+0wnKq/yilZZV5ShVib6VGzy5He0YPLauErL+lOTvz6eTJLFm5EgCj0YS3d16ioyNIS0sjVy5vXF1z4etbmEmTThAfD7t3T2bfvi9YtCgBB4fMNvn06UUyMtLw96/NL7/M49Sp1Tg7u9C37wqqVq1nzVqPtxCH5ER9s9+cGioU6ujh69f0mjmTd5s0YXSvXlnj/UmzKulESz19Qu0zKh0YZb3ahGWkppIYFyfKUEuYkJZGow8/ZFC3bvRs2VK9jrRIoz5uPnpEk969aVG/Pt/v2QOIri2vXbhA4UKFMicJFo8m0uLc/4lNeitXZuVVqtclS5pz7554YnXjxhOpV+8jHBy8efPmBYmJ4bi7BwJZ27h87BUEgbt3p5KamkGePFOJiTGQkfGKmJiCstzqAmfI6uM0q4JsMDgo9f9sJyArOBrI4oRAKb7037qRQGvDl5a5xJaUOpd0rxRm+56c9AjhnOyysOVDzo+eJSQtXvWSkvCTC0mLMhf14gUfb9jAhbt3uWk5AbF2wYK4Go18GhBAq8KFMcTEWONnxMXhYDAoK3qW8j1NSWFzfDxLXrygf/HiTCtTRvQekkMvFqkuIkZPa5OeEhtyC7JEatV95cpxpk17j0GDJtOx4wd4eYmbzZQGI4fkxExG9CjISmZaeTuSM6zEqFqYXmiPpfN998svLNuyhfP79+Pg5WWNL/eUIWdbL1pEXvfHjm3k/PkdNG06gO3bJ+Pr64efXy3atPkkWzE//FC85kRBjokRFAfGfv068dNPuwEYOvRThg4dg4+PLxERrwgNDSEwsFq2KpRXrSAIzJ07i9jYWKZPn4XBYCAyMpKCBX2scZo1a8nRo4dISMjZmKOlKCvF06sM69XvcvpMi36PLmD7356yraTsSM+zKM16NvMpPdNjlldiTq4gy/udpX/FGY18PH48Zy4Ec/PmdQCqVWuM2ZxKx45jqVOnHTExBmv/io3NwMEhK2TItn1GRb3g6tXNHD68mPr136N373l4emq708viGcS2PpSMUL9n3FWom3PXr9NhzBgmDRxI/06dcNWDqVGCZMitxRZFUM0eJJFem5WtSpBFYdYyhlmu2/bsYdrSpVzZtQuT3PqshxE5QxoThm0//sjGH35g2ODBfDR+PNWrVqWkvz+TJ060xpMmC06Whej/U5v0AGJjX3Plyh7c3X3p1WsdkZEvWbKkJk+e/Epw8Go6d95K/vwN8fQsYm3TSpSWFsmTJ+OIitpHenqMZYf4pxgMnjg4TCcjIxcwHFE51n+U4b/0/xfl8fDg28GDITycM1evktvVlQBBoOG2bUSmpmY7/MNBx2EgxZ2dGefjQ/1cuRhw7x6H37zB5OiIi4sLNfLnp3utWlSRLMv/Y6pSpTEzZ25n7dov2LJlKePHL6BBA9EVXmJiIs+ePcHVVaB48eK4CunsO3CAfbt3c/r8eV6EhZGenk6HBg3Y9PHH/B2PlHj44gVj5s3j582b/9JDCBo06E2DBr1JSoojKiqUly/vUrFim78kr8jICPbs2Ym3tw8zZnzJp59OoWnTQC5cOM3WrW+xfPkmmjVrTv78BTTTiYmJYfLkieza9QORkZE4OjoyevSnuLm5MWXKNPLmLcDQoUEcPXoID9tl1X/pX7KQp6cn3yxdSiJuHD58HldXN3LnLseQIS2Ijg7LLkN19MM8eYrQqtWnlC7diHXrPuTWreO4uLjg5ORI2bI1aNOmG2+9VeOvKlKOqHbFiuxduJAv1qxh6ZYtzB89mncs3heSkpN5EhJCOlCiSBFcnJ05cPw4e48f59TFizwLCSE9PZ3WzZqxZeNGXP6G/exZSAjDp05l97JlmcrxX0DvdujAux06kAzExceza98+Zk+f/rvS+p9YkA0GwxDEkz4KIp63OkoQt3BrvSP8/LPIq9kM16//yrhxjfHxKUJ6ehqDBm1gx47JNGw4GA8PH9as6cfUqeKRzkqrJPHxEBZ2iqNHu1K4cAdKlpzL8eP+mM0RlC79AGdnf+ukOTX1MomJN3B2fl/xlDOtCbJ8FVfJY5feE4KVNj+pQX5z0vZysnQpJ62Va6vLITU/klrL5fbMOmqZ2luGUmJczy4ZLUu53NWP3Nopg8N0WrKESnnyMLVly6zP5O8pmXxsGlKKoyO/hoaS4uKCo7s7Z54/55vLl+lZowbzP/gAh3zi4TOKyw6Wa2y8gzVLPYgFJYOs/F7JcGE0Chw5spcZM0ZRqFBR3N1duXjxLIUKFULIyOD5ixc4GAxUqViR7i1b0qRiRYoXLIgQHU2XKVNwcXDASRD4+cYNVr33Hj2qV1e3IOfEWqPWPpQsWtLV8v9ZaipNxo9nTK9e/MdycqIihsSShmS1ycl+Q6X+FxX1GrM5jTx5CmcpihSnaVPx+nstyJcuXaBly1rkz18AszmdxYu/5ZtvFtO+fTf8/cvQt28HHj6MxGg0qnalixcv8O67nWjevCULFiygdu2aPHz4kOvXb1K+fHkrv9euXeXKlcu8/35fq2Lze6yueg1zf8RSa3ufzfqqlIFWZ7EJs4WC2YOX5ISU4DNKbMi7g1VeK1lFtXaX2rMqK2VuK19VztKOjBbr6NUr+PTTnnh5FWbw4HlZtt4oiQJ51Wcfi1O5desEDg6JeHk5c+vWOfbtW0mTJp2YOvVLcuUyZnvP6l9aLvNtM7VnQdbCL9iGmUS/vgdPnGDEjBnk9fYml5cXpy9domC+fBgMBp6FhODg4ECl8uXp3rkzTRs3xq94cTCZ6PnBB5jT03Hz8OTw4UPMn7+Yvn0/UBSXSnsLtRbhlD6ffJjMsjphUx8vnz+naceODOrTh1H9+6tnqqfxqjFny6TJRHh4OElpaRT1E42btvhrexbk/7qCbDAYugMbgSHAKcv1A6C8IAjPNN4T7t7Nip/78cctzJs3gjp1WhMcfIySJSty504wM2ceYsiQQFateoOXl2+2sfXChZ1cvvwDDx8epk2bDfj5teL27R85dKg3rVr9grNzFWv834sG0ILLaoytWZRhJeiWls6nRWptUK1cWjJOfrW3Sp0FbwrKAFito93sMSK/15oxaM1cZAWwPXVOPqlSQkJIWUhJeXlkWMt348wZKrZrx9xBg/j0vfdE5ViOc5AyyMnuQhnfz81mmnzxBQuCgujQunVWRhROE5AUN3lZlGS7RDlVkLMs5TqkcuTIYchIoWnNmnh5eUF8PGazmbiICPLkypUN6xGbmMh3P/6Il8FAQmoqk3fvZl9QEHXy5tU+YEXv5Eqrzai0j3OPHvHu6tV80qYNI3r0UJ6p2rYjBfy8XGnWsRKZhdS6QEnR8c0fgljs37+LTz4ZRKNGLbhw4TQBAWW5ciWYnTsP06RJVW7efJbF57FUhT//vJ/t27dw+PDPrFq1hvbt2/PLL7/QsWN7jhz5hZo1a6KHsu0N+KtIL9ZCa9C210lsSa3t6Z3AK72LOMhrGTb0dAt5skrjTBYjB2Q1BmiB7PUaO+R9REFBTjSJcvjcuTs0a1aOoKApDBgwOYuCbMuOPEutri0fd5OSQhk8uBmDB0+ie/f3VOsjx5ACW4bskcIgniYIHDlxgqTkZJo1aUIuC6zLbDYTm5iIt7d3NkGckJDAt9+tw9HRnbS0VL74YhJr126lZs0mOWozSiyp2ZTUnjmQAWYzly5fpmuPHvwnKIhxH32UM2ucGkN6FGRZXFvFWLq6WeDrfycF+TxwTRCEIFnYfeAHQRDGa7wnSNg1eSHv3LlF9+5taNCgFWFhIRw79iNGowmzOY133vmASZO+tXagFSsmcurUDt68eUHv3vOpVKkFuXKJo0x0dDwjR3rSrNlY6tQZxZ07B8iduzyC4M7t29twdy9C6dJdWLYsL/XrT6NGjYlW3pS+m1bDsaf4KslIvfJdutcK+z3CVI03Jeu2koVcgsY6mROVD9BQ85WlZHLTYhC0NxfacWMnWS6UoLFKbNgqyJK8f/LkAc2aBTBgwBBWfrVAtJrJFWStyYFSWVWU/c2//MKgxYu5u3cvBXx9dXkXyTA5/SlyPJtlTalByScAegZYS5ggCBT9+GN29e9Pjfz5c45/VDIpKRVGacYHPEpI4PPDhzl69y7L+valc/Xq6sqwng5uZ6VDj1XRluxZP2xJUpBt6eHD+3Tu3Ip69RoSFxfHvn07MZlMpKWl0aXLu6xfv9Uad9686Xz//UZCQ18yffoMWrVqTSnLaUeJiYl4erozaNBgpkyZyt69eylfvjxeHm7s2r2bPHny0Of998nt7c2Ezz5j+rRp2ZlUK7ieCrFnidJq9Hq1Bj2CUonsDODZntkLk1YryIp/V1u10GMhVJrwWxVmUvWtBioJSqVM7SjIGbm9efbsGX5+xenRox+ffbYao9FIeHj2g0qVdFUta6ftmHX8+B4mTuzJoUO3KVSomO5FSUX5J1FOZrpysmft0qn8Sf8DAwNYuHA1NWs2UjSK2MaXs6rHgqzVTENDnzFz5mQOHjzAokVL6NGjB6BiaZZfbf/rrIdsjFhIPqG0Td6egvzXgekUyGAwOAHVgEM2jw4h7oLLMZUtW55Dh37j4MEfGDhwDNevp9C+fW9cXNwICKicJe7OnQsZNmw5S5ZcpUWL/5A/f0nrs/h4UXE5enQO06cX5Icf+rN6dR3WrKnEmTPTMZsTiYl5DMCZM1MBcWNKePh1oqMf8U/Z7Pgv/fUUGvqCZs0C6NatJ3PnfvmXYlYL+/oSm5DAsi1buPfkCenpWoeL/3MoKiGBkJgYykubD/+LtPriRWouXkzpfPm4N3myqBz/HyZ//wBOn77K4cM/0a/fQMLDU+nTZwAuLi5UrlwlS9wvv1zE/PmLOXv2EsOGDbcqxyBikQFWrPiaAgXyMXDgAOrXr0ulwEAmT5lCTEwMz58/B2DGzJmAKENv3brFgwcP/pWh/5KVIiIi8PMrTvv23Zg3b6XiyY5/Fvn4FCApKZF1677iwYPbmHM6+fmbUmJiIo8fP6BcuYr/9by3bt1IvXpVKVy4CNev37Uqx/800rE4/6eSL6LLhzCb8DCyHiEFgMFgGAgMlO7dzLHiH+s0Rrx65/Ziw4YN9OvXmd27D7J+/Ro8PNby+PEZSpUaaZ0xlS9fmZcvj9Ox49Qsk5b09HQ2bfqM+vXbU6lSPZYvH5uFj1WrblGoUDnS09PZuBFq1WqPp+dhvvhCdFOSK1c+Speuzbhxe0hMjODmzV9xc8tPmTK1cXbOjt+zB4/QMmbYwzJKcX5vWE6X5ZQ8ZclX9iXLsWQ49fV1w9dXnLY5yV9Ugl1IVylTLTyAnPQURm7ds/ARG+9gZcPWq57cWCJPVskKs3jxEJo06cOwYeu4fh18fY2WeilE7lLipros0BM9y5RKphGTibKOjnzavz9bjxxh+qpVeHl60rhuXXp260b3bt0U68UBcLKpk6xepbPGz0LJObS6yRuqHtdRlvKtO3eOFuXL4+7jY3/5Q4tfe0sisv/pGRksOn2aFWfPcnrUKMoUL65eFqUwqT1J92omFwWBYDuFcrJnSQLrMak5IdtkpWJ4eHiwdu339O3bgy1bdrFkyTLWrPmaEyeOMXbsOGv8wMBATpz4hTZt3s6SjiAITJw4gRbNm9OuXTtGjByZ5fmVS5cIDAy0KsEtW7Tg5PHjNGzWDIACBQpQoXx5Du/bR3R0NMdOnMDXx4e6tWtjVFKc9S7L6l3G1duW/+jSi71lYg1rcZa2JPVlyzMXl0xvBbZkbxFOLl6l/1K8TBHphJsk2LXapr2617MkDowYPpQunTvzzaptQObhpBILcrK3umcvy2LFAujffywnTvzI6tXz8fDwpGbNhnTs2IN33+2luO8oaz5S75VLUacseYo32Xm35VUvWfPXaKYbN26gZs36eHp6qzZneXzVPBRILuKkq8kEGRkZbNiwnK+/XsDevb9SocJbQFZ/05Jd1mSBnWXzt2ybuVaj1QjXcvuql/6rEAuDwVAICAEayjflGQyGycB7giCU1XhXEO7eFW9UhM2WPXuYOHcuv+7ejZOrK2Vq1SKgZEl2bNxIkcKFeRISQkClSiyYNYvyb72FyWSieq1ahIaG0qBRI27evE2FCuVp0aIlGzasB+D48dPUqVOXkJAwgoPPEx+fyK5d2yle3J+YmGg2bFhlZWHChDksXTqLatXqEhr6nKioCKpWrUXDhk1p0aINxYv7ZetscXFx1KhRik6devL553MxGByzKcNK8C+1MOmqtTlIa5+BPR1USdgo4ahBGWKRO7eylzI3ZK6/5Fe1HWV6JKI9LV5yg2YSFfZXr7IrxkoKsr2sZ80qRnT0cxYufEWuXPk1fW0quUFzMim4F7Kj7IeGh5NmNuPi7s6R48fpNWAAXl5eNG3UiEoVKmA0GmnWuDF1a9fGYPG9nC1dPYqG1jOlNLQwiRqS+f7Ll9SbMIHVQ4bQvkYNfRJcL78KYWaDgeaLFxOTlMTWoCBKF5ZtjMvpErj8Pb3xtUZItWeW42lzArFISdGW93v37uHjj0dw5MgJvLy8qFy5HIUKFWL79h34+fnx4sULypUrw9QpU6hUsSKOjo5Ur16d2NhYKlSqxKMHD6hWowb169Vjw8aNAPzy8880adyY8PBwzpw9S2paGpu3bsWvRAkS4uNZsXq1Nf9506YxY/58ateowauwMF69fk2tqlVp0qABbVu0wL9o0awy1GwmKT6e0o0b806zZiyZPFk8eVJPW9OrDGuF2aalRvYUY61nSgqyiv/uVJwUbQxq4sSWRS1YQpZ9FlLCSoBgJUuCWvnkeAeZUAxs2JCrV69y48ZTihYtpojqUAqTz7Ml0kLcyas2Pj6M5OQkvLw8OH36KMOG9cDR0ZGmTVvz1luVMZlM1K7dkLp1GykqzXLKiU5nL46999Sa+osXT3nnnVp88cWXtGz5brbPoYXokxt/5HxoTTocHDLo27c1r16FsHTpFt56q4JiGfSIS6X3crpfQUlBti3n32qTngVikYioDG+XhS8DKgiC0EjjXUE4f149cUtNzlu/nmXbtvH9jBlUCgig1bBhjOrZk67NRQP1ih9+4MTly1y4eRN3FxfuPntGSmoqVcuU4cLatRRq25bXUVHWZMf26cPsoUNZtXcvA2fMoHLp0ly9dw+AQhbPAS9fv7bG37xiBd07dsRgMPDg8WMuXrvGwaNHOXT8OCajkeFBQYweMgSTpTWkCQIt27fnuOWgiQyzmbR00eJo63VD+i9d9UA7lXyy6jmgzN4GRS1ckhbMV+7nWX61DbMKYbUDUfSYRLQGlNy5rYqx3GqsdB6LlKXWPrFMSuHbbyuTnBzNmDFPMZmcNT2aKOylU9y8ad00o+RuQqHsp86cwWg08uz5c27evElaWho/7NlD0cKFWb14MSUl6IKWNffPUJqV4inwq3R/4f59Ok+axPDOnRnoVdQQAAAgAElEQVTbp0/2d3NiObRj2ZqzZw+bT5/m/NSpODuqOJrTYbXIdq9HGbY3Aqo9ryui0nKiIKen25f3y5d9xew5c9i0YQM1atSgQ8eOvN+7N3369AGzmW+/+45fjh/n3PnzeHh4cOfuXVJSUijl78/9W7fwK12aJ0+fWtMb2L8/K5cvZ9PmzfTu14+qgYFc/k08Xc/V1ZWihQtz78EDa/xvv/ySfj17YjAYePTkCReDgzl0/DgHjx1DEASG9OnDmIEDcbKMbukpKbQfOJADx4+L99evZ8Ka9Hz/P1tBtqcd5VRDUNJaNTZ+pFqsl/ZsDHpFp5SNkk7uEB+bmYmUsN6BQ6UsZhcXatSqzcOHD7h37xVubm5ZklRyHJRTe4kShtY27MqVMwCEhoZw+/Z10tLS+OmnXXh7+zJ//rf4+5dWLaaWPcOWP7XwnM6jlfK6evU3goI60KXLBwwZMhmDwaBLNKrxoyW6Nm36io0bl7F//284O7vYVfb1zA/V3tUKywn97Q4KsWzSuyoIwkBZ2D1gh71NenoUZIDNBw8yfulS6gcGcuTCBUb36kX7hg0pU6JE5szP0hJuP37My/BwKgcE4Js7N3M3bGDs0qUEFC3KfQteTjh/Hkwm4hIS8PDyEhsZEJOUhKuLC0eCg1m7bRuCwcCVmzdxd3Nj0/LlVKlY0cqXIAjcvHOHASNH4uPtTe9u3Zi/bBmXr1618l2tShWq16zJjRs3OXLkV1JTs7vl+ldB5m+tIMfE3OObb8owZkwsuXJ5ZqmX/6aCnIUs8dPT01m4dCkz5s/H3c2NuRMm0Kt9++zp/k0UZEwmQiMiaDRiBLMHD6Zz48bq+anlqWP0uh8aSu2JEzk5dao25vn/EwXZgQx27NjBmHHjqFa1KmfPnWPggAF07tyZ8qVLZ7Oe3b9/n6fPnlGxQgXy58/PV8uWMWL0aEr5+/Pg4UMAhBTxAPW4uDg8XFwwGAykp6cTFR6Oh7s7h48dY8OWLaSmpXHtxg0cTSbWL19OrerVrd9JPNDpLgPHjMHZ0ZH+3buzYNUqgq9ds/JSISCAFnXqcPLSJc5t3pwJz/hXQQb+GQry86goipUoQWhoBG5u3ln4/m8qyErdLiMjgzVrljJ//hScnV0YM2Y6Xbt+mC3vv4uCbDZDRMQbundvQlDQODp06P2XKMgvXz6jY8dANm06RrlylVV5/VdBtkMWN28bEN27nQYGAf2BtwRBeKrxniD8+KN6wjZfNiE5mfHr1vHVgQPWsICCBSmQKxd3X76ktr8/Y9u2pUrhwrg6OVnffxEVxc7gYLpXq8bdsDDcnJyobvExCCh27AeRkQQEBfHLnDk0qlmTWZs2sevUKYLXrcvSquJSUoiOjeWdoUO5dvcu3rlyEWnZ2PLj+vW0adaMtTt28OGIEZQuVYpGjRvTuVMn6jV4m6Qk0aqspSArrXJphdlLw/aZssVUnyCSb1TWoyDLIRnZThG0t1PaljEFIZyY7JBtN3R8fHYnE0peLLQGmbS0JBYvdsPPrxXt2m3F2dnLnp6eTUFWOtVJXqcO5tTsZVaTjgr3qYmJHDx0iPHz53Nj1y5R4TGb9W9v1spTDylJXHkl2YSt2bWLKUuX8vDYMZzcMo+VVeUthwrP/nPneHfmTO5/8w2F5SBHrbL/XtIr0fWMBm3EA0RyoiALaps4FcqWnJzMxEmTWPDll9awokWKUKJ4ce7eu0eNatX4dNQoalavbj2aGiA0NJTtu3bRtVMnnjx9ioODA7Xlbt8U8gp59owiFSuyf/Nm2rRowZKVK1mxdi13Tp/O8k58QgIxsbF0GziQs5cvk8/Hh9cREQDsXbqUdxo3ZvuBA3QfM4YyJUpQs3x53mvVihbVqpHt5K4/oiDbluX3TAj1TJTU+ogO10GJ5kxFWUu+2xOd0lUJSmeFhUmyWW/CCppppitEM+7ujtSv35CNG0XvJ/JqlpLX62FICaGi9ExLMZVISj8pKY1Tp44zfvx/OHbsodUyqzUs5bRZaIlJpfe0aOfOzUyfPooTJ55gMrmq8ijnVUsE2T47e/YXgoJacfjwXYoW9csWX+leb/PX+1wtjhb97RRkCzNDgDGIB4XcAD4SBOGEnXcEYdOmrIF2rAJpKSl8d/48P1y5wuWQEMITEgDI6+7OG8t/AF9XV+Y3bsyQw4cJyJ0bfy8vzoaFEZaYyFcNG9KyWDHW37vH19eusaZtW9oHBGSTGImpqbh5e4OHB4YuXQBoU706Izt3pn61agxeuJDvjxzB2cmJauXKceLyZaYNH565VCjrseeuX+eno0f58cgRLl25AkCnTt1YtmwVRmMuQN1Dlu0zvdgtPc/syT6JlGblSgqhPauybXx7HszUOod8XNPCcGvVh5q1XUnIJCen8NNPfREEB1q33mS1uKmNa7b1oWZVlq7ZFGS1wVxeATbXFy9e8FaHDkQfP66tINumoXYPOTeJKI1UCh9XMBqp1qgRk8aNo5Nk8TaZ9CnISuZ+G2C+IAg41K/Pg++/xz9//uzx9dSpEh85IbV3tEYFy6ElOVKQLZZczXxlYenp6azfvJntu3Zx+do1wixwMh9vbyIiI63x3NzcWLV4McPGjCGvry/VAgP55cQJIiIjmTN1Kp3btWPdpk18tWoVKxYsoKv0HWWUmJiImwU2YSxYkIyMDFo1bcqwvn1pXLcuH0+dyurNm3FxdqZqhQqcvHCBCUOGMGnwYJxlRg7MZi7euMHhc+fY8tNPXLfANzo3asQ3Y8fikytX1nLmREG2raM/0kdyOprnUEGWHxCk5BpNLy7ZNkstpVnepZUwo1ouyeT5p6WlMWpUEHFx0WzatIv0dIM1jtZ4p8a77f0fVZDNZnj5MpwaNYrx228xODo6Ko6P9rZg2PKqlL+CzUC3dVkKEwSBLl0a0KvXYDp06JWtLHpJTSEVBIGKFT3YuvVUFs83OVGQ9eRnL0z+TBdm2aIh/60U5N9DBoNBEJYsUX6oJswUBvwXcXH8FhLCm4QEktLTORkSQnF3d/Y9f86t2FicHBxIzcis2PeKFGHzixfW+zNt21InXz5l/IAlbN2pU6SZTDiZTHzxww+ERESQnJrKzY0bKeDjQ7NRo3BzceGMBV7x06pVtGopesSwlURhYWEUKFYMgHbtOvLdd7sAbXiEmvKstDSlphCqPdMSqnosESoHJylu5pOuSkqiltCzzVtOWs1Dq07l8ZV0Ltt009KSWL26Bg0aTKVUqS5WfpRgKFoKspKibFWQ7eFhVCRgbHQ0vSZMoGj+/CwfPVo7/u+VnvYkvnS1rRBZmGRRMpuhSZMGdO/eiwEDBtnN3smUkb0sajtSLWGtBgygbqVKfC5hnZUaiPz/n6lIqYXZFsyWRowAcqggywwDunhReP7y1SuuXL/O6/BwklNSOHXuHPl8fDj/22+cDQ7G2cmJFMntANCnWzfWb7duOeHo1q00rV9fk9fvd+0iITERVxcXpi1ezLOXL0lOTubSwYP4Fy/O2z174mAwcPbyZQB2Ll9OJ4tHDFv+I6Kj8bUc2du4WjWOSRZxe99Lz3dVutfbZ7QElNK9luXBzoxbOkUzpyti8qyVlMqcGCrsFc82r5SUFDp2rMvAgaN47733rfG14IBK/Gopw/YUZFslS1Lww8Pj6d+/L56eXsyfv9bKhx6jkpZiam/BQMu6rJSGPOz999+mYcO3CQoanS1/PU3WnrI6cGBn/P3LMGHCrGzP9CjG8nC94lCpnIqKsVqClgn538IP8t+Binh68k6JEnxQpgxDypdnc4MGzK5alZtt2yJ068aeevVo4OPD6ipVEDp1orCLC+8UKEBox44I770nKscWepOYiP/XXzPv118JT0ggLT2dxJQU+tavz4DmzenTuDEPVq8msFQpJvTqRXk/P7y9vDi9Zg0tatWiXhVxpjVixgxVfvPnz8/69Rvp1asv+/bt5tgxWxfS/9LfkRwdXWnV6msOHx5BUlKk/Rf+S/QmMpIaffpQJF8+Fn/00f+aHd00dOgoli1b/Jel/9WYMczfuJHHL1+qxvmnGBP+aipUoABtW7Tgg/feY3C/fmxaupRFU6dy5scfEcLCOPD99zSsU4dls2cjhIVRtHBhWjdrxvMrVxDCwrIox1HR0ZRt2JBpixbxJiKCtLQ0EpOS6NmpE0G9etG7SxfunjxJverVGTVgAFUrViSXlxfHt2yhbdOmNKpdG4ABn32myq9P7txsmz2bAe3bc/zSJfaePKka91/6+5CzszNz565g6tRPef3a1jPs/46ioqJo3Lg2Xl65mD//6/81O7qpf/+PWLNm0V+W/uefL2LjxhXcu3dLNc4/TYb+syzIU6dmDVSaAmmZ95TMgfYsbkomUOCXmBj6nTzJ87g48bHJRGp6OhmCwJlJk6gTGCjGe/CAZmNFv8ovDx6kYN68WabdgtEoLnErWNXkx9MmJ8PLlyH4+hbEwcFB0SCmZQm1B7Gw9dajhlvT2qhmb2YsFU/HqqCiGzR7bnrUltSUZpxqhjO1suhdhbWt+x9/HEVk5FO6d9+Bg4ODNX+tjYxaFmQvjwxtt3ca+I+wyEi6fv45dcuXZ87AgeoVoYf0mgeUPoyGBTnD5KRoqV+3bhWrVy/m2LGbqqwoGdisy73mVLsdJbBzZ9ZMmkS1cuWy1V/ImzcU79mT/ZMn06p6dX0dICdy5veYcD7/HMihBdmy50EzP72W0j9Ipy5epO/o0Tx69gwAVxcXUtPSSE9P5+j339PUYvU9GxxM3Q4dAHgSHEzxokWz8CMIQiZMSOJRiW+zmZevX5M/Vy7x4Imcdu4/sgogJy0smO1/pbIomW7t+JLM8BCPKVbauCcXJ1oy3JZ9JWtnTotnm55UJHn/nTv3M27dusK6dfuzHBiitVlaCzKhBlmwboTWqPvw6Gi69+lD+QoVWLBwaRY+7I2xerbN2PIp3euxINv7Lvv2bWLBgkmcOvUoW55/tOlKebZtW5dJk+ZQu3aDbJbs8PA3lC1bmA0bttGuXUddEAstXUL+X9WHslYYWI/SU5OhOlj8G5G0g8qW1ASL1tqGVphEltrPEATmPnzIxehoynl7856fH80OHGBmo0b0eustilogEB/s3cu6M2coFxBgFVLBz5/Tq00bUs1mek2ezLo5cygq4QhcXDDYCDr5McDJNoLL27uw1WG62QyRkdG4uXkgfUZ7Qk3KSqnIts9cXPQpvGrOD9SqVP5cLlhsO4s8jiRglHBuSkJPSQ/Ti92yfW6vr9lTkHv2nMPEiQHcu/cdtWt/qJiPHkGhSEqVpAG76D9jBgH58jGzS5fMkVLOkN61Oj3xleLZSnkZVibVbDkyV2Hp9+rVK8yb9zmbNh3LspRq+43k2UjxMrN0wsHyX+2j5s+blzexsZk8W+LFJiRQpEcPSuTPz+jVq0UFWYnsNQbpmZ6RUkmD+DNIrVOq5a2lIOdAWRYEgUXffcepS5cI8PPjw27daNC1K58PH86H3bpRrJB4gM7QyZP5etMmKpUrZ03/0vXrdG7bFk8PD3oOGcLGFSvwkw5xMZmwjmpaHdPyv5CHR5bvExsfj6vRiKNcoP1eUhIuOSVb4ag3vvw9KX9JJphM2Q4UkUeTX9U+tz1lLies2r5vKx5sx6XBg6fyzjvlWbv2awYMGJYtb7WlfzWZr/TMgYzsda/QV4YMH05+b28Wff45JrPou9/k4YYaKXU3+af9vfNUrfhKdfrkyW2mTfuITZuOKL77e5us7Xu+vvmIinpj5UF6np6egr9/PooXL8G4cR/RrVtH3enbynfQOK7a9r9WGGSeNa2Wvy4u/y4UHq78JdUqR48FQGsgMplINxrpfuUKhyIiGBkQwL34eCrs20fDwoUZ37SpGM9TdOe188oVejZpQqzBQG6LEmxwdcXk7s7gXr0YNWUKZVq3JlFSTkymTMXAzl4ipaK8/XYZEhLiOHMmUbVIckpMjMHBwYjJ5GEtrm1HkisWeq0JSjLalm95fFuS6wxKz22VHXk8JauhBqxVUWmWp6mlDyqR0nfJqhM507v3PNavH05GRgQNGgzC1dVT91iqWPd627WNIhYTF8fY1q0xJiUpF9C2Mdg+V4tvL0wJMI6ytVgJs7dp0yrefXcwhQuXtWtRkN5TVJ41Zj2C0UhMfDwRsolDREwMRy9dYuratdR/6y2+GjCAKh99xJNnzyghnWKn1DntWfa1wOzyQtgr6O8hPYqX1gCjV3mW8ZqRkUHfzz5j99GjDH3vPUJCQynbogWB5coxdZhF4bF419h75AgdmjcnLiYGX0sdGwwGTEYjwz78kBETJ1KyalXSo6JEX8e/ZzyQCZvaXbpw+8EDBJm7TWtcBWU1LjERAfByciIb6REoWiTPU66w5+SbqQ0WljSkU8vUWMupsUPtfb3P1Aw38ucGgyNjx85jwoQg4uNj+eCDIeTKlVtRTEmkZBSRSNHaqNbmbcKjo6L4OCgIk9lsnYA4WOJ4eXggnaqnZHSRzVcAdYu92hikRPa+idR0Nm9eQ9euHxIQUElR4cxp2mrGibi4WKKjMyGFUVFR/PrrL8yZM41q1arz3XfrqFjxLe7cuUP5sqW1GbCQk8SnHt0uJ5N/HfT/HQY5J7T8+XNMBw+yIyyMV+3aMa1CBbY2aUJ6v34c7do1W/xLs2aRx8ODKkOGMHD6dG49esTOw4dp07Qp9Wr8P/bOOzyqovvjn91skk0P6YTQQu8dQQFFsGABLICCgoqK/X1VFLsvNuwNsKGCooINQUQQFYFXpPcOAUJCKqS3TbKb+/tjd5Obm7ktCfrTN9/n2WfvnZk7fc6cOefMzAA2rV5NaEgI69ZrHthhGC+88Bnl5WXs379VM1x2diqPPjqMm28OZ/ny1xsl7SYYx+DBE3jssTUkJ+9gxow2fP75PWRmHv3T85FVUECYzor5/yN++20Zl19+/VmJ2+FwsHTVKsbecQdOp5NrPBcK/bZtG1GjR/PhihU8MXEi6197jWVbtgAQ4V15NUEX87/7Dp8ePfhs+XLS167lxQceYOGLL+Lau5et33xTJ/x/P/+cNgkJDLjqKm6ZPp29hw7xzQ8/MGrECPr37s2GlStp3bIlP/36a6Pkb55n/8f67ds1w6Xn5HDJk08SOm4cz3/5ZaOk3QTjuPjisSxe/F+OHTvEuecm8sgjd3LkyME/PR9ZZ84QHhr6p6fbUKxZs4zRoyeelbjLy8tZvXo5U6deS07Oaa6+2k2rt27dREJCBPPmvct9993Phg1bWLVqJQDR0dFnJS+NjX+GBBm0deJeGJXK2GykOxw8eOQI3UJDmT9gAIEyo1ErYA0NrWMg2iEqijmDB/PQ1KnMXbGC86dNo3ePHlw9ebJbGo0f9z/wMK++NZc+A0eq2hEbWb07ndCjx0UsWZJCdHSLOjuQvc/l5S5uvNFtAjJp0iuMGnWfV1gjFPjJV/NKya3TWVcYKFoFy5tCJEHWMndQxiU3vxCp1+XvSsmxN7zczlcev1KqLMqTSBIggiheuaAwPLw7HTosIiPjJD/9NIf//KcfU6e+y/Dhk3SFYPL3KqxYtTIpisDpZPfJk5wuLKRbXJy4o4hEOaLCyzuKEWmxQDKtZU4hEHwTHBxGcvJxWrToUCc7chhWoXr+N/zxBzfdey8t4uIYP3IkU8aMwe65pvizFSt44eabefS669wZKi9n44EDzLv1VkKtVm2Vj5a0WO0oGNGJGWcDou3+WlDLj5Yk2eOWnZPDAy+9RMfWrfl45kxC/P2rw1oBa1Xd3eZtmzfnzUcf5aFbbmHuokWMnDiRzh06MPHqqwGw+Poy49//5s1332XUqFH6Ulq1vg7gcHDekCGkbtpE89BQkNm3yttE8venhedIvZmTJzNj3LiaA1TlMKpREeXN+y6QWquGV4OGZN8Eyajzb0TJYdRNmR+lmyj91q0788Ybn5Kbe4r589/h0ksHMGvW20yZckud+av2eDeQEb3MORwcPnaM4ykp9OnWrbaNiiyTXj7BFl4jqRfNmd5/I8PeTBdXunnTDgoKJSnpGG3a9DQkoTbajrt3b+Ghh6bQrFkkY8ZM4LXX5uPvH4TTCYsWfcbDDz/J448/g83mVhL9/vsG3nrrbSIjI0HrGDY9TVV9JchahRHg77VJb8AA94tZVZZBv1Jg9enTHHM4+DA5mbEJCczypinaWWbkxovw8OojdoqLITU1mSuuGESnTj2YNu0pevUaCmhrMOX9QZIk9uxZT2JiT0JCmgmLpIxj586fKStz0KPHFbWumpQPUNHmAuXGPTV7YzNqOaNaeKMmCPJ41UwsRLdAqZ3haWYzhAgiXkfES23dupp58+7jnXcOCXlP0dF24O52gXbZLYNgaHfI9IULqaqs5PWJE2tnRMvEQq2SvOEN7pSUH9cmrw/RAlG50AP4/feVPP74jaxcmURERLhWUtXvtSZKb8SyRB5+7jk+X7KE1x96iAmjRtUZCHO/+opft21jycMPg8NB8unT9Hv8cZJfeomQgIDanVzE8ArSrI7fiF2JEQLukWib2qR3+HBtR7NmG1qECigrLuaXLVs4mpLC/O+/58JzzuHNhx+uvYlOBL3FmKyR0zMyGHDRRXRo356nn3iC4R6pv/KMXWX0crvF3zdsoHObNkRFRhqyFV+zbRuFeXmMGTRIvSxai0hlJ5VDRDDl+ZHf1KQsoNaYFRz9Jr89VEnfjW4o01sbqfmJsq1Gt9Xon7wr7NjxO7fcMonk5JNim1QznLmalEb2/NRLL3E6O5t3n39evf0FhZHP/yAmBXrD3sgwFdWvF7t2reGxx8axdOkhYmKia4VRi1uPSZ4z52m++eYDpk9/mbFjb6wT37ffzmf58i9ZvHgVNhtkZmZw3nldOXjwGBEREcZNX8wyHWbQ0W3m8c/YpKfczaVFVA0yxZnl5Xx86hTz09JIdzjoGRbGwKgoXuzTh9Ht2oH3hiitw3g1jleocFprDYhmzdqwcuVJVq5cxOTJw3jppe8ZMuRKzdW7/NnlquKBBy4A4M4753DZZXfi51dXmiH/tk+fi4T0Qi45FREzkSbZSH80SkCNSGnNEGZlc2jxH/K9OqJyyuvGDLTmTTm6dRtEbm6a6nyptMn2/ruJrLu9A+W3vmlg+fbtfLV5M+tmzqwpuJEJXm8MaS1UZf9afUa0gFLiggtGMXLkWObOfZKZM2cD2psy/WxVYibUk5irpIRX3n2X3xcs4LwuXepwBpVOJ1+tWUPfli2rZ7G3ly/nlkGDCHG53G4iBlm0ItKyN9azS/4zoFwoGYVMzJedk8Mny5fz4ZIlnMrKolu7dgzq3p2nb7+da0aMwKK8vU+LaMjFh8qB7HGLj47mxI4dfLV0KRdecgmfLVjApOuvB5tfnehqv1s9Ufgx1LN/5LVXX+Vft99OtexYKebzfHzhkCHqRqPKb1UY++p/NSInGvhyePuoKE3Ru9k2NQi54NRMEvKmNSsAkcfhrdJhwwaRlnYKS2V5tQ27rnRGmajMzbvA8vYjuRT6l5Ur+WjRIn779tuaXcCiTibgeEM9E4x3g6R807nWsDdKApR1Kvquf/8LufTSSbz55iM888xHdfzNMuCVlRLz5s1i7tzlDBlySR2Zi8vl4rvvFtOiRRuKi91lff/9uVx11UQCAyNUNolaa5hkUWG0FpJmVxgGO97/tA3ytAMHaL5mDXuLivhq4EBSr7iCjSNG8Fa/foxJSKi+Aa2x4efnz5gxN/HSS0uYMWM0b7/9gOFvfXx8+PDDJEJDI3n33XtYsODRs5LHJpxdOByl+Pr6n7X4yysq2Hn0KB/88AN3zp3LC5Mn09Z7S9zfEA899DK///4Ty5Z9rh9YBz4+Ptx74408+NprQv8NBw5wPDub5zz7DMoqKvh00ybu9hw71oQaPPzqq8ReeCFb9u3jixdfJGXFCrZ8+ilvP/ww144ceRZpqB83jB/PqqVLueGmm7jr3ntNfX/8eDItW7bkwenTuW/69LOSxyacXRQXFxMQEHDWztatqKhg1+7dfDR/PlPvvZenZ8ygY7t2ZyWtPwN33fUce/duYsmSDxscl8ViYfLkB3nllQeF/vv3b+fAgV088sgrgLsuFy36kKlTzY3Tvxp/Lwmyd+WgXF2Y0cPLnncVF3NXmzbM7dFDXSQlUiN7/w1IB7RWgeefP5Znn13Ck09eTbt2fbj44htwuSzChakczZu344svTpOUtJ3IyATdoirdjAhB1OI0K+CqryDMrIYF6gpf5AIokZDPiF2yyHrACzXpr1r7yf2SknbTqlUPoV21XNKiFYcz2L2+DQ6PwGq3U1VVxZKff2b56tUs/fFHWsXFERcVxRsPPsi4ESPqiivkESszoCy0lnTZpNRKTwIlcgsOjmDSpGkcOrSNSZMmCbWZ1TcMFuufHhFstVJQUFBzdKTMr0tYGMVlZVTm5EBgIEu3bKFPfDxtfHzqHo+nIjWqjlMk6RA1rtpAaWxJskHNmi48+dp+4ABTRo9mwbPP1nLX+kZXgixyU37rafRLBg9mxddfc/m4cfTt04epN9+MTbbwVKMTsbGtSUpKYdeunbRoHlV344Iob3plMCJB1lJNycVqWiJFpbhO/q98Fr1rwIxkV0SnRM2nF4fICkWL7Hif9+/dTbdu3dy27FpqKlEk3pN0qH2KlCRJLFu2jJUrv+eHH76jefN4mjeP54Xnn2fixIngvapdXng1eqrw8/OkGR4eWO2lpnwSRaXnpiU8B7DbQ7nmmrvZu3cro0ffWjeASQQEBFFUVCjc1hAb257KykoKCsrw9Q1l7dqVJCS0o3nzznVO86jd7u72qD6TWm0yVGtvvU5nUmVhOLTFYrkbmAa08TjtB56TJGmFx98CPA3cDjQDNgN3S5K0XxbH+cBTQC8gEMgANgF3SpJUqJ9bFcbYqFhdgS0FBUxo2dLYaBRRDlHjKCbmwB/fCZIAACAASURBVHA7Ts+mpLqqfAuXXXYVbdtu56mnJnPixE7uued1XQbZ+22PHv1Vi6mnofD+Gym6twOr3XmvlrZeGbTyprV/Sc1NWQYtTbeanZuWya2RyUNLRSZ/P3BgJwkJfVW1psoyyJl97zfyfDudFUycOIaKijKmTLmZF55/nhbeo8g0zA10Ud+xoRGFvExG+ro3qb59u/Hqq99VWzfVYoiV5VNhkBf+9BOvLlpEWk4O791xh9AwMBbo16IFk+bPp22zZny1bx8fjxlT17TC+69FrI3MXvK61GqXxlKZG12VGMCazZt56s47ayYyrVW4lpsXaitG5UCQ/V927rns+eUXJt9/P9s2b+a9uXOrmRG5klSUfPfufdzJ2BqwYUieV/mzWRMLuc5dHodiUSAkwo20cDXDIIvC1Wf9JVpXGKGxO3bupK/nNlrNxAQJKI9XdTggP7+I2267hpyc00yceCv33fcfWrduVf1pXgHY7W7m1h4eWEN/RHRV1Gc84bw9MtBur2YI5U1sbP6v8TNDkjp06MYPP3yk2gWNtPuqVV8xb96LZGScZPr0t+rk0eEAH58IevUawkMP3UibNp359devmD797VokVLlWrL1Z3l0vVnmmtFZfZ4lBNrxJz2KxjAEqgKO48z0FeBjoJ0nSHovFMgN4ArgJOIybER4CdJIkqchisXQFtgPvAR8DJUB7YCzwtCRJp3XSl6QePdwvWstWwSpRbXK3LF8OgDRuXO3woo1ISs5Jft2Zzi1G1beEeQaXfFOEtyhnzhRy7rmx/PFHLnZ7QK1iisaa2TlOTxChJXDTuldelK5eH9RaVyjzI2fK5fVmxGRTNE+JNumJzMqVzS2a19TKZkQY+MUXk2nffjgDB94szLdycaKl1AgOhgULZnLs2H7mzl2M1WoV7q/zxml1VmhTYaOiH9GzCbcqrJrZUCZRXl5Oq1YJbPvjD1rHxhrrvIrJy3LJJfzn+ut5cvx4rBUV4gtWgIL8fL7asYPTpaWMbt2a7tHR6iszI3WpNXuJJlYjBH/PHsDkJr2TJ90v9ZUyKsph8aicpcOHjS8ItOpC+ezNm4iL8v57nkuqqogbNIiT27cT0bx5rXDyC5hEVaq5qVPUTsq8qjHIIjGZEhoCllorYq0FrjwdjZW/fJOe6CY9oyadamgEsiCcukX074EHptGzZy/uu+cOcYYVfcbLFDud4ir94INX2LZtPW+8sbT6xj4D3a66moW3dWrkR96vqzTs50XQEy6pDcPKykouuqg1H3+8hsTEznXiNcJD9OxpY+LEf3H//S8jST510vSitLSY3377ijNn0hg2bDQdOvQSsllac5vqfhKRm7JiRAVTNqTOJj3DNsiSJC2TJGmlJElJkiQdkSTpcaAIGOyRHv8beFGSpG8lSdqHm4EOAbyH710M5EiSdL8kSXslSTouSdJqSZLu0mOOzxbuadOG/s2a/b+4Hzw4OJSIiGh27970V2elCWcZLpeT1NStREV10A9sEEVF+bRt28V9ecI/FP7+/kyeNIk77rmHYpHoXQelDgdBdjv3XHaZbj2F2e3c1rcvjw0Z4maOmyDEI3fcQdf27XEpN+L9BQgKDKRl8+Zs8Jzu0YR/Lqqqqti2bQvt2zcuDU1M7FzrOut/Gnx9fbnqqlt49tm7KCzM1/9AgYqKCgICgpg8+UHdegoMDObyy29hypQn6dChV32z/JeiXno1i8XiA4wDgoE/gLZAHLDaG0aSpDKLxbIeOBd4H8gEoi0Wy3BJkn6rV269XL8RNaTWUtWzcpvVowf9165lUWoqExMTa8KJpAKiJZloktbQ5Xuv+/Tuag2NslevHB0O6N27FxUV6dUnxJldxRvRQCjjFa0+vf8i9b6WiYURjbuakEl0BI7oW2Ucco2uWj0ZNSuU2yUry64mQRbVs1a7OZ2QlrYJl8sHX9/zOHWqxk/LvEUkDff+//bb26xYsZjnnvuNpCT1cDXx+1XvqNbSzIrKrCUhsorOtdSQDFoB5X1kfiKK5HSCw/3trEce4eZ772XaPffw2SuvuDeBiSR9Crcjx44xZuZMxg0eTKTVWqO+0ZLcGhHNaEkV9dxEanSlit2sCE8PTmeD1PBKPHX//fy4di3zly7l1muuUU/TTP6MSN/kA1QmyuuemEjmyZN1jkazBgdjs9XubaKuWa3alYu65GmJDC7V8iiSfOvVsd6AVIvDCHFSBFfSGKez7hSrpSkUudVHgmzkW+XctmvXTgoKCjn33BGUOqw1bSuQxDoNCCAXL57H119/yKuvrq7eliBKX05TvXNFjclbDV2ttqHVM2fz9k9ZQkIaqAhfHcZmq3O8obybisjUffc9zVNPTeOpp25h9uxvDW+kzcg4wV13jWHo0FHExMTrZbEWqRHlzQvRHC4fj3XO/Rd9rMX8aGVSB6YoosVi6QFsBOxAMXCVJEl7LRbLuZ4gWYpPsoAWnuevgUuANRaLJRvYAvwGLFSTIFsslttx2zS7YebsLS3i5PELttm4o317lqSnM7Fjx9rfeiGYOIvKyzmWnU2ZxUKP+HiC5WGVRNV7xok8/zKC7mWa/Ww2fv55FV/O/5CQcLdtk/L8WOWzqMha4bWYOdGAkh9H43UzqjlS+onSFDGmyjSNmjbI49PiT0TaTK24lIyykXjVeC7vc3p6NjZbHFlZbsIkmgzUNEJK9eO+fV+yatUsHnhgM05nK5KTxeGUcRmZy9XCqftZBW5+4jNKldBrNO/E4HQy77nnGHDFFbw/fz53jB8v7sSy5+MZGVz+1FP8+7LLuOvii2s22miZNuhBb2BpQTlQ5R1AtHO0MaGlglTmR4+bcTgICA7m7ilTWPLTT0wdPx7hVCsgTMWlpRxLT6estJRubdoQoqf5qDtz1gkiSRI/rFvHnEceEa6wrZ669fN8q7T/rJNnUVpGODytFaZZ6HGZRsaSbPzYNPZUyNdpWus5Ld5dK+tm6bjoG69fdvZpoqJiqaiwUlEhjkM0z3j/5c8bNizj3Xef4MUXNxAV1b56H67WHCeyZJHPY3a790jBQPzsDaR/av4eeBlIb7/2s9uq+7Z8vV3z7MusWe9w1VWD+fTTN5g6VXyKljzJ9PQUpk27nKuvvpmpU6ejVBiZaVu1NjVM6vQkN8qITUWuiNZk+MNAbyAcuAb4xGKxXCDzV9oqWLxukiS5gJstFssTwIXAIOAh4HGLxTJMvpmvOjJJ+gD4ANz2c8IDa5UwsvKWhbmtWzde+OYbjlVU0M4bvyyc5OPDH2lp/JCczOGcHJLy8zmWl0diRAR+NhtJZ87QNiqKCX368OioUeB0cio3l4SYGHccIk5CYXQjSRKzv/mGfl26EFJQUD2By5ln77dKiZui8DVhqtOqKavoIH0tIqLk9fWYyupcaBBNedoigmVkjhERdzX7aCN5EuVPGYfDoV0e0UpdzVy1uNiJJAXXORBBi1lV+kmSxPr1N5CVtZkrr/yBiopWZGYaY27V4jdyUIuIUdeyIXOHk0nllJWntWpTWXUEWix89txz9L3uOqZeeSW+Xmqt6KhOl4sFP//Mo59/zn+uvdZ9TFt5eaMQzloQrUyNQC6uU+uYfxaDDOJyaE1EnvxPmTSJZ95+m/0nT9K9TZu68drtbN6zh2Vr1nA0JcX9S02lbfPm2P38OHrqFG1iYxl73nnMvOEGNw09c4YWYWE10i1lvhVMoiRJvL9iBR0SEogODKw7COUcgiff3v7oZSZAoQURtYkRLaYWjC6eRIPQSJo6RNdbPpvNKlz0G+keRmmzyawJ3dTIQ3m5k8DA4DokRCQAUWOQJUnizTdvY8+eX3jwwaUEBLiZY1F8oilcyzS29l4Xq+dbj3TZLhhnIlpnpELkkGWuehEYXCNkk8+Vdrudd975ggsu6MpNN92Ov7+Yt3K5XCxd+hkvvvgQ06bN4KabHqyVlBciybBWFuVF0RMu+RnteGZgcPyailWSpAogyfO6zWKxDADuB573uMUBqbJPYlBIlSVJSgMWAgs9zPIR3IzyTWby0lhYn5XFaYeDUF9fAFKLi1l8/DjpJSWE2e2cKCrix+PHubV3b67t3Jn2UVH0jovDLygIbDbySkv5+eRJJixYQKUkUeJy8fKqVWyfOZO+oslCgDcXL2be99/z1csvN0qZcnJyiPwbn3n7T0dJyWHsdnUVlRKFhYcoLj5ATMxQgoOjcbkq+P33aRQWHmfixH3YzWhW/iGI9yxAT6SnE2qzseXAATbu3k1xWRn+Pj7sP3GCHceO0Sk+nl+ffpqeCQnGKHgTTGPDli2kZWQQGhICQFpmJouWLSM9O5vQwEBS09P5bs0abh07lquGDycxLo4+nTrh77nWO7+oiPU7dzLmySeprKjA12rlmUWLWP/CCwzt1s1QHj748UdeX7KEL59+ulHOXs7JySEyLKzB8TTh7ODYscPExbXQD+hBauox9u7dQZ8+5xMQEIPL5eS99+7l2LHtzJlzAEkK/J8jD1FRbh7h5MnjRETEsXv3FrZv30hRUQF2ewCHD+/3nLbUlo8/XkmPHv0afb3+/x0N1P9gBfyBE7htjC8CtgJYLBY7MBQ38yuEJEl5FoslAzAgGqbm+mYtGJEgy+BTUoKv1cpFP/1EsK8ve86c4eoOHegeFUVBRQVdo6OZOWwYbbxpK+JoFhjI+B496DVjBp1feqna/fwXXuD0W29hly/d5Es4z3tyQQHPzJvH1tmzaR8SApmZYtGcER0WcPDoUbqOHMkF557Llx98QIx3N7fNVqOKkX3vXc1WVd8yVZNFLTsmrVW2Vhblq0T5alx5NqKWOk8kqRTZlWmpyNSko2rCfrXyycvlDaNGRJxOKCvLJzl5Nv37r1EVFCgXyGlpW9i1a4onP82RpEqio4dxwQW/UFxsryUtMSOF1qsPeTgj0mI1N2+5vJJkW/VNVYLC68ETLjYykhtHjaL39dfj7+fHwC5dGNy5M7HNmlFcVMTogQN55447aOtlcrTUJnoQdUa5VE/LTMPM4FBza0zUVwqpEc7Hzw+73c4VU6YQHhrKrv37GXPRRfTs3JnCwkI6tGvHlrvuon0LBUPjqbvw4GBGR0dzont32l1zDVVVbinnsMceo+SnnwjUGlRAWl4ej82fz/rZs+nWtm3tcmqJpzxQajaSk5Np264d5wwcyLeLF9PCK2wwWS91yqrnJ4pDNAiNcnKifuj51ntcmTJJtaGhNq0q1+Yi4Z5wb4IHVYJj+OTPyn+bDQoKivngg9eYP//7OuFVrKzYt28XTz45HoBmzeJwuVx06DCQp59eX80cmxnGBhRdgMqNrTI6WH1UnDwhI1o1EeSZq9aSuMP72e3YqiXZnmzYI7jpptu58spz8PPzp3fvAfTtO5jExPaUlBRz8cVX8MILs0lIaCdMQgkt+3Wt7q8sqvK/1r4AbyRmJMgN4OrNHPP2IrACt4TYezrFDOBySZJWeo55exy3JPgI7iPfhlFzzNs03OYZ3wHHcNsxT8Z9VNyNkiR9ppO+JD2kymtrV5hOZTpdLjamplJWWcm5rVoR7K9xw5lGIxU7nWw4eZKPNmzgp/376dGiBf999NG6Eg1ZHNfNmUO3li15csIEt5ucyxBxbmplkrn9e9Ys3vrMXZ3rvvqKYeeco84VqXBR8iO41IiO/N8MRINAydyKjnSTu5m5116NUVbOO2pMovxfryxqCwuAsrIqtm+/B5erlF69FtSJQ4tfOnLkWfbvf4pLLz2Cn58fQUGtdcui1mX0VKOiOIxsFhS5iW5kl8dRxz5ZbyOcwq2opARrRQVBAQHijip3E3Votc6idVaSmpsXejOD1urPCBPmDePROJk65m3/fnF6RumDClwuF5s2bqS4sJDB/fsTGihjwNSIhaCeSgoL2bh7Nx99+y0/bdhA2xYt2LZwoeZ11be88AKxzZoxy3ubnnwgizqngdXv4489xgsegcfqFSu4aORIfWJnlAswEoeIOOpJKrwQrfIFA1O5x0VvP5lW9/BCfj2zMDKjnLcHyos8KislHntsOunpp3j//S/r5FuLDn/66Wu8//503nvvIFarndjYNsKT84zyospuJDomVHTevrwpam3m8yaqRae8EE1q8ncD9nLeY+/y84txOiE4OFhIukTJGuHhRdkWQdRN5W7eehNufNQaG6KCKP169gTUaaiZkRwHfOb5LwD2AKMkSfrJ4/8yEADMpeaikIslSSry+G/BfaLFu0A8UIr7TOXJesxxNRIS1P3qyyA7ndiAoXLphlmuzxNfMHBJeDiX9OpFVVUV3Z56ils//ZRhnTrRq2VLPly3jkB/f+676CJeXbmSLcePszEpiaRx4+o2uDyf7mWUuCwCtzfvv5/8wkI++f57zh8/nvP69OHwyZNk79jhZtYNMMhWe80h5iITOKP8gVGIaLqan3ysy22+zDDIorQ0qkM4GailpXZEY2bmMU6ceJcJE47h5R/Uxq7V6sRi8aGyspCiomNUVqYQEdGb2NhE/PzqntFpJL96fJnRMmuVXTRRKSFvuzr2yYqxqenmdBISFATeBa3eeDHDwKjtWNJyU3uXQ43p1FqRNYThEqVvNIwWg6x49wHOu+CCGgej9aPwCwoOZmR8PCNHjUKqrKTf5Zcz+fnnGTFoEL27duXTb7+lqqqKh2+9ldcXLGDjzp38sXMn+374oebseWUZlPnVGsgePP/MMxQWFjLn3Xe5+PLLOX/YMHbs3ElORga+HnO8swp5HkWnaRglcl4IBmStPS6ALdhPs+uKohduwDXDoIjyK+t3XroQ6NF0Hs9M5513XmfnzkO15gjxyQhOfHx8KC4uIj39ONnZJ2jdugtt27bD6fStlbRalZqZy/SYRNEBNXWko2r1Z3YRLlIpesMp2j0mKrCaWdZLUp5NZdJG5gMtqKVZ3baeucJP3ljygMpnUeZM0lLDoSVJuknHXwL+4/mJ/HfiPhv5fwJWq5X1M2bw8R9/8NPevTz//fc4q6rIKynh7Z9/5t6RI3lp/HjaxsWREBnZqGlnnD7NJ99/z90TJjB0wACumz6dvt26NYptXhPqj4CAGKxWX+x2fVOhzz/3EvBggoJaEh9/EZde+itW6z/3jM4mNEEOi8XCL198wUeLF/Pzhg3Meu89nE4nuQUFvLtoEXdefz2zHnyQNi1a0CreuE2/EeTk5DDn3Xe5cdIkxl19NaOvuYaOHTr8OcxxE1QRGRmJn58f4eHNdMOec467rQICgoiJSaBv35G89dZabDbfeglxmvC/h0YUTfwJUEqQjUqJtdz0JB1qI8mAe7TdzowxY6rfv968mcUbN9I9IYHckhJOl5YyVLSZTrQCMiJBttl477vv+OD77+nTqRNzv/ySHYcOcfOYMbz99NPGVlE6Kyyltx6hMbrQU4tHpMqSP2tpprTyaFSjXB9pqpqJRUbGTyQkDKJly+DqY3LkecvOPszu3XMJC3PbfN1002GaNetYKx9G86Yn/DOicDFaH0Yk8H8qRBIDufhD7RtvOPm/8lnLTctPT2qs1C3KwxihbUZhtlMowlcJ7paqqWrZGTuyZ1UbVAN1HBEezkOPPFLttOz771mwaBE9u3UjNy+P9OJihnXtWvfbBtTZ/E8+YfbcufTv14+Fn3/OieRkrp8wgffmzNH+0IBkWhN6Yevb7qJ45apomb2qn5F6Mztn6okRle4ahGT9r6vo1asXLVpEUllZK/sAHDlynA8/fIP4eDcN/frr7SQm9q2VjPxEIrl2VKTtUpIFkZ/evFBvDasW3dHy05vclLTRZqu5mt2rTbCJbzkVkVVTZRKE1VLyCed1e82511a74EMjqgCDGf57McjKUyGMMsFGCJce56Y1cepNqp7nkspKlmzdSpuYGH7cvZu0vDyuHjxYO19q+RaU6eMVK3hy3jyaR0Wx99gxAPp07MjbDz2Ej9yu2gDjLbdB1qsOM1UkcjNLU+VZlR8bq6D3deJSfmuU6VP6aUE0oL3vy5f/SkrKfykvX0f79sPrhD9+/Gd27ZoNwPjxH9KtW3u8x8PqrQXN8FVqcZmNw8imPlE4+Xv1JhWtFYbRTqYFNbpQ79nLANTSrO/KrDFWG6JdVQbypXVEpNp7DWoz1TXFEDPUWsWs8PVl6Y8/0qZDB375/XeOnjzJdTfXva69vvhi8WKmP/IIbVq3Ztv27QB06tiRd2fPNi89Nruw0gvXkPbXSleujje7sDA6jxrJhygeRZ9cu3YtW7du5bfVqxg56vLq7Hu79bZta/nkE/dCZubM9+jWrRfebVbyYor2OyrdROtsObSGqlaR1N41PzRD/+oj7VAU1Gqz1TleTc4015dM6skp5OG8UN5FUHuB41ed3+oP/2cZ5IQE4wywHrSWR1oTs94GH42OPGXECN7/9VfWHTzI8awsZl1/vbG8yd0UZS0rL+fbTZv4aNUqjmdmcsWgQSz46Sc+mDGD20aPrjshqsE7Eco2bhjZG6K1ucEM82yEzoqgxvwqi2ZAOKZ5drDRfZJa88PatR8AkJe3jYSE4XXC79/vjnDAgDFMmDBVtSx6z/X1M8sgG11geN3q2CsW62yEq+9YU+swWrRDZULWjaMhK5f6MsgNYZTUGGSVtJWMcf0YZDHMFMMb9vIrJ3D++R+wdt1/OXToEA8+OIMKxenwoni1bnksLy9nydKlfDR/PoePHuWasWOZ9/HHvPnyy/zr7rvrhNdFY4Qzy1wr+7Gav178yj6gxSHWJ59GoMFFvT7bLUDYuHEjF48aBbj3MXhJhb+/exEzZMgIpky5HYvFonrGvvJZr6hKmB2qhtYeIromfzZC68xIhLz/IvqnIOa1mGaBJkmUvBLypIx0fz0S6g0nPyHJqvSszwLNm5ap0E1oECwWCyufeILfdu/m3I4diWngOZvbjh5l/KxZdGrZktsvu4wNBw+y8cAB7rvmGm6+7LJGynUTGgOVlRVYLBYCAkIYOvTaWn75+dl8993LrFnzCY8//iN9+476i3LZhCb8/8eXXy5l7dpf6d9/IAkJzRsU1+49exh3/fW0btWKKTfeyO49e/hlzRrunjaNO2+7rZFy3ITGgMvlwt/fH19fX8ZffXUtv5ycHN5442W++OJT5s//hosvvqZRlUFN+N/E34pBLg2OadD3osVULamWEfGofHWiZmwqd5PD6STc35+rBg5UD2MCjy9YwImsLK4YOJDFv/3GrhMn2D5nDlGxsdrLYI0lr7woWjcFiarIqGbcjLZID0YUCmqLaLM3x5mRDkDtsowa1Q9Jktiw4TR+fn61wjz55MP8/PM3PPjgm4wZcwmiW3eNNKcZN7NSZSNlFx7x5NCR9DammxcilYQonBxGJKvy54ZIf+sZh1Kaq32rpgq0biNVpCNPy+xYNTKOzQj65eQ3ICCEUaPGAu6LEUXC0br9W3xb3n+efZajSUlcPGIES5ctY9OWLWz7739pHh2tncn60m697xpaqfXRLsgrV6u89dVcyOfMBmg/hl5+OeXl5eSnp7svR6rOtx/PPvsEn346n1mz3mTMmLFUVqorhUQCU1HW5G4i6bJRxY6hIuu1uxEJsigOsxJkvXNCFSdgIKAVIqm8Vhb1/EUsmHKeri1xrn3evs3uV1eDZHD8Gj4H+a+GxWKRTp6UdMulxRgYnaNq2UWq3T6hxkGKuEUz6hG1Qgk6a05pKftSUth09ChRoaFcN2IEQd7DBLUOFBScDepVU4rOFdZy0zr3V150reowWhV6DJ4RPkXPNlaNQVYzvzDCLEuSRHi4e9Bu25ZE27btavkfOLCXUaPOo7i4iJwc8+NRjwCbXUTUMYWQPzeEkRXFpcXcaqWvfBa9G4FaRZhhZI2sqmRuVVYrVqu12q/CKbb3VxZJ6daqlfvfzDnI5eWS7mJO5KZFsurL8xnllYwuDo0uAOX9Oy8vj727d7N582bCQkOZOG4cwfLbHbQKoOdXn3CNGX9DKlirAvXiqm9ZddK3x8RQXl7O/l276NqlS60F3e7dh7jkkvM5fTqb/PwqysstdeYerWna7DnI8ixqzTNq0y7UPjfZ6iityYjWJKt1EYFWhvUYZa27FzQmTa9Jph7rI7q8y2w9y9+t1iqsVqtp3k4Zp1dW1RjnIP/lOHNG3U9rPJtnmGQ3fSk/Njv4tRhkvfhEacoKFhkayvndu3N+7951C2OEw7Pbazq47BIO77+RSzvUxrM322Zv49OqBlGbakl4RUX3opYAwsD8YDRN0WC0SFX4+/tzPCmJ+Ph4kElaq6qqWPH9QmKio3h/7hwighU3K5mF0cncocFc6jHGWn5G3dTiEJWhPlyZCPUlEnoTiRaD7Hn2jrMTJ1Jp397N2f7ww3oGDx6qu4ZWqw4vg2wGRi9hk6ejfNZyMwOn0zjza8ZPLZzozN5mISEMGzSIYf371/gZuQ3pbFRIY8WhNVdprY7kfko3o6ucs8ioBwQEsH/nTtp16gTUaDoqKqr45puvsNvtzJ49H5fLorrO1sqmFpThResAtWI2RpNqwkgC8sFmpEL05gNPXN4xJdfQ6LAtqtnVc/fGkZ2dzUUXuU//+vDDnxk8eKRhoZWyjSIixGlWf6ft3YQmNKGhsFgshIeHk5yc7GGQ3aioqKBrr16Ehobyx7p1xCqO/JMkiX379+NwOAgJDqZz585/dtab0Mjw8/PjwgsvprS0hBYtWv7V2WlCE/42CA8L40RycjWDDG675L59e2KxWFm16nfi4mqPKUmSOHJkP+XlDnx9A2jfvtufne0mNDJ8fGycd96lFBXlEx/f+qym9bdikMW35bghWvAaWbhqLI7qB6N6A6NhtCCScHn/ReJUxT2YVTa/WtJh5b8RN4ej7rXP9bU4MVNMA9of4S2zWvGL8qYnxVKmJbTDdTo5d8AA3n7tNTrGxhIVGUlJQQHvLFjAsePHefGxx4j18amjIjlv9Gg2eo6aAsg/p+ycEwAAIABJREFUeJCw0FD1DMlhVGeu56cWrjGkxUbTVHPTQkNUxGpuah1P1OE8fnIVJEBYWCyLFrkvH/UKK/XUu2ZIih6Ki41XRWMLSY0KL41+q+Ynb5JatodGxPR6ovuzpd1oKLQmQ6PfikR+ehJho2JUrThEboJGPe+885j7wTw69+hHTEwMRUVlLFjwIQcPHuCBBx4nLq5lHe3lbbddzvr1K6uj+eWXbEJCog11AVHxGgKtNP1ENMYLNbGoWgINyZzoXd6fVCZIuZcoq42pXAkKiuDtt2vaVH7sm171yd2M4G9lg7x5s3pejfQpowxWrTu/1ewHzqYNstHCaHGESsMnmcFTld19z7EaE+z9z8+v66bFNJvd1OeF1uDRM2MQtZ/oX1QdGlUktBtTugn7jIqKNic3l6guXQDo1rEjGdnZFBYXExIURIvYWJbPm0ebuLhaZf/ljz9ITkvDz9eXAV260KVdbdtlw2goM6zmZ5apMMv91ZeqqunWjC4kve9G7PJ0DNe9amAtW8f6Msjevb5mbJBPnmwYva9PkxiZnOrBL2n6aV6BfDYY5D+DUTYyq2tVjJ6/mW+NxFHfNGVu8o2peXl5xMW5deIdO3YmNzeXvLxcQkPDCAuL4NNPV9KiRbvq8A4HbNu2juPHj+Dn509iYl8SE7vXaka9vTFaMDolq81L8vmmli2yUb5CLeNm+Aq1whi0QZabkCmz2BBaZxY63Ui16ImJ7v9GsUG2WCzNgReBy4AQ4DhwpyRJ6zz+FuBp4HagGbAZuFuSpP2yOM4HngJ6AYFABrDJE0+hVvpaG82VbkbbXu5WTVSNMrcNJYBGxSZqE7ma5EqF05Mzxt5/77OIGTbiJpIge99FvKLeQR+iKtDia7xx6EmIlWdhKled3riMzHeaAhoVziYyNJTkDRsYeu217D9yBIBrL7mEe2+8kXueeYa2558PwNevv861I0YAMLJvX+jbt3Z8RvucVjijDLLITY+Dqy+DbDQ/RqElATMSXiQScTrrNrq8fMo4nE68F2DIh6pSEya3hzdbRWZhdO48m9AcPwJ3vYlO6aamxak3g6zXv+X/Ir+zAa0GM1qBIgIoGgfef72Gq08+BG5ql1QFBDRj795TjB49nCNHDgEwcuQV3HLLdF588WGGDWsPwEsvfcbIkZNwOqF79/Pp3NlNW+XaGjNNa6Roym+05hTRXOiF3R5Yc46v/F85gYk4TlHGRYUwuzAyADfv5D09Qj0qo9GfDRpXHxiuDYvFEg5sAH4HLgdOA4lAtizYw8CDwE3AYdyM8M8Wi6WTJElFFoulK7AKeA/4N1ACtAfGArKr3prQhH8eWickkPL772SdOcPSVavYn5TE9JdeIigggBtHj6ayspIhcoa4CU1oQhOaUI34+BZs2nSEM2dO8+OPyzh0aB8vvfQwFouFMWNupLy8nP79z/+rs9mEfwjMLBceBjIkSZosczvhffBIj/8NvChJ0rcetym4GeiJwPvAxUCOJEn3y+I4Dqw2koHwcE+mDWp61BZKcr/qI91E57XqXROnhfqKZPTUw0ZsCgQSZJG9cX6+uomFyE/kVh8bZC/qs0JX+p8tAZFZhYFXFWjVkrR43GOjoph2ww3qEZuV6hr1MxpnQ6RhIsmtlrjFiORWLX0jIkizIgtR/tWk5Uo3wZ2oVpvbz8/jZrNZDfVdraT/SjSGpLk+Wn6RUM0LoTmFF2ebQCjTEfmpuTUEZ0OCbJTo6vlpTbwCtyrFrWx6UlenE4KDo7n66ltruYnCieLQil/5rAUtkiQiZ6J/sRTZc4pWsKzelPdgeyPRUz8ZyazITU11qwE15YMcIg2a1pRRn2HTmNowM1GNBVZZLJYvgeFAOvAhMFdyGzK3BeKQMbuSJJVZLJb1wLm4GeRMINpisQyXJOk3s5lVmGjWFEJQCs3NGQ7BaGgIx2SWWdYjNFo2BVoMstxIVnG+cbEKM6zGIMsZX7mbGUKkVmStAaQMr1cdRsezVlpaTSofzN44xETNG8YPq9fcQ8Q4Ge0zWgybFvUwQlnkVFvkZraxtOIwylwanaGMMN7KPJkJrze5aO0UFs0Q3o7hcZNf1+pnr1EpG02+MdAQ1eefkb4OPwUYOKvbSF+rL+2XozEY4/o0sGj8Kv3k/dEI96IWn1raZhtS4KdmTmGkqYyerW+kGUVF0JvHjPCPoqqX51/E99ZUr9dkIRA/u6e/K+iJbuHV3rUKpnQzOaHqdS1REbzfidy8MDpMjNA3o/TODFlMBO4C3sBth9wbmO3xm4ObOQbIUnyXBbTwPH8NXAKssVgs2cAW4DdgoSRJp5UJWiyW23HbMwPg51CYKBudSJVuah3pbIwyPTeln1EGWbQ5SMYgVzjdg0vvvGKtM4yNQJQ1L4zOMWrxKuOX/xvdP6X00yNmSuIrJ24ixlhZLnda7kWJlwESRiIicKKMKBOSP2tRDxETrPRXfqesFDl1V0ItbiP5lr+bCW8kfS/MMs9a8YvSkncQZXvIO6eorRSd0Crzq3M7ns1W41YnHwZPNJHByD6OswWj5E/LTXPznReNxSAbgRYTqsy8WrwNEZeJ4hUxw0YZYyPQIs5Kf8W/8jZI+bNZBtloNo2G1VpzaMVvtkrl6SjnGVFTuatZcTtc9S1xOotFtXcjaCCnqealtmBQc1P6GUVjCAIEl9pqht0hSdKjkiTtlCRpPvA2cLcinHKbtMXrJkmSS5Kkm4EEYDqQAjwEHLJYLHUOKJQk6QNJkvpLktTfRD6b0IQmNKEJTWhCE5rQhHrDDD+dARxQuB0E/uV5zvT8xwGpsjAxKKTKkiSlAQuBhRaL5QngCG5G+SbNHOTnm1tGmJFA6UmVjfiBeIVlVCXlfRdJokRuKjbIFU6roSPXzKqQRCdFyLMml6J6342sCM1q6tQkwgYuNNO8BU8ErZvHnE6x1Ly6/IpVv59dUFka4pKc3Fy27dzJj7/9xoJvvmHx7NmMGjq0dmKiTJlxq69EyagEWeRWn/HVEGlyfVAf3Z5IP2hEPVnfNjB6JrZGUmdbgmxEaqz2bOgM44a4mZUWizLfmJJZNRiZZ7T89MTyjQk1lR9icwr5c0OaQ568HIWFuRw4sIPNm1eyfPkHPPHEZwwaNKZO2vVJ12w1GyHDZoXy7ufa84zyGdySZi9qjasGQmk/roQWO6QMo6aE8aK+/aIhXd3MpxuATgq3jsBJz/MJ3EzyRcBWAIvFYgeG4mZ+hZAkKc9isWQAwbo58NoLaMHppLyiApfLRWBAgKHw9XaTodThICktjZ6is2rNjCQ1AmPApsBrVvFnMMNyJlgtLT3iU18GWa2K1IiIUYZaayDJ+VilWkxeFtEV1jX5sMpUY97rzGsfSfX7H3/w+ltv8d0PP9TJQ2BYmNuMpqFMaGNAL86G5NGIerA+6sT6MhqiMEbqVE7xG0Pf1wgwmmRFRQWVlZUEBQWZiscM36Z0czgcHD64n97du+Pe8+2BSK+uR2TM6m+1YLadtPqLUT95Hs32HSPzjfxZRERFYepJiOVmFaJmNDPdqlWFvGn37NnMwoWvs3r1V3XCBgcHCOc2MyRDLy9GocYQirqDGhnRCyN+rs3UNjZpEnVjrTT0ur+W29mGmWp4A/jDYrE8DnwJ9AHuAx4DkCRJslgsbwKPWyyWQ7ilwk8AxcAXABaLZRpu2+XvgGOAHZgM9ABe1suAVFnpPdAZT3w1fpLEyfR05i1ZwodLllBUWsqgHj2YetVVDO7VC4C8wkJSMzNZu20bB48dIzUri5axsVx3ySVEhoXRr0sX4qOjsdhs5BUWsmLdOs7k5xMbEYHVaiW/qIiQoCBCAgNJycwkKzeXSqcTh8PB1kOH2LBnD8/dcQfjRoygorISp8tFWXk5kiRRVVWFn91OeEgIHVq1cuddrXcb5ea8h3Qr7LqMdiR5tCI/JTOstiFPLV2zxM+brtq73spae5VtLLxWHEbKIjpfWbRCrmlOK+XllXzyyQI++uhDdu3aVR3XLytXcuHQoVRVVeHj41M3wfpIYs82zEh6G1qW+pa5nrNepdNJSlYW8374ga2HDpGcmUlhaSkhgYF0bNmSJ6dO5dyePRHe2CFieOrRLk6nE6fLxcvz5zNo7FhGjhxp6nv5xVCSJGG1Wmu9p6ef4tNP57Fw4TwKCwvo23cAN9xwC4MGDXHTwPw80tNPsWHDOg4e3Ed6ehqxsXGMH389kZFR9OvXl4SEBCwWC/n5+axa9SM5OdlER8fg4+NDfn4+ocGBhIWFkZKaSmZmJpWVlZSXlbFj1y7WrV/PEzNmcMN111HpcOByuSgtK0NyOt001GolNCSEju3aufPekEWWF3IOS4/xVBN/6aG+/VEPRrmbhhBW77/JcHrSRS1oMU+iME5nGd99t5BFiz5g//6a20fnzl3OsGGXIUkSkuRTJ46z1SwiGOkqIqZZ1O0aEoeRtZVZWYJefDV5c5KWlsZHH33A1q1bSE4+QWFhAUFBwSQmtufhhx9n6NDzQUBFG0A26+TB5XLxzjuvM2hQT0aNGqUa1tRNehaL5XLgBdyS5BTcm/Nme06xkF8UMo3aF4Xs8/j3wX0U3BAgHigFjuI+CWOhTtqSj48PPlYrVquVispKEmJjKXM4KCsvx1FRQUhgIDeNHs1t11xDm/h4fli/nvnLlnHw+HEkoFlICM2joxncsycDunQhLjKSQ8nJLF27loLiYrYfPEhxaSkBdjsVlZWMHDCAlrGxZOXmUlVVRbOQEApLSigsKaFVXBxxkZH4+friZ7USFRZGt8RE/vPxxxxOScHPZsPXZiPA3x+LxeLOs9PJtgMHCA8J4cMnn6R7p060bt4cu79/ozDIWseriTbkyaW/Wn7yuP6XGWSjzaIWh2jRYbPBiBFDKS8vJzU1lfLycm684Qbi4+J46IEHsFYp1GFNDLL5cApUVVTUYgxrwWajorKSlOxs9pw4wcaDB8kqKOB4RgabDx4kOCCAiSNHcuW559KuRQvCwsIoKinhqzVreHfpUqqqqmiXkMDIAQOICg/nj337yMzJoW18PHGRkYSHhBAbHc3Eyy6rLSVVIC0ri4179vDLpk38vGkTRSUlOF0uCktKkCSJvl26kOdwMHr0aN544w3DN+nZbDYsFgs+Pj6Ul5cTH59ARUU5ZWVlOBxlBAUFM378jUyefBudOnVk9eof+fzz+ezfvxeQCAsLJza2Of37n8PAgecQGxvH8eNJLFu2hMLCAnbv3kFBQQFBQUE4HA4uuOBCEhPbkpWVhdPpJCIiguKiQgoKCkhISCA+Ph4/Pz/8fHyIjIykR5cuPDNrFgcOHcLP1xebzUaA3Y7VQ0MrKyrYumsXdrudT2fPpnuHDrRJSCAgIKBhfaMhWggjaGKQDUuQ69NUN988iuzsdAoL8ykoyOOqq6YQGdmcW255GJsnP2bnoj+DQa5vU+n5NUYcWvmqqqrCYrGo0rCKigpSU1PZu3cvmzZtJD09ndTUFDZu3EhgYCDXXjuBK68cQ7t27QkODqekpJhly5bw/vtzqKyspE2bRC64YCRRUTFs376ZU6dSadu2HbGxcYSEhBMREcX48Teo03EgMzODrVs3sn79r6xdu5rCwgJcLheFhQVIkkSPHr0pKytm+PDhvP/++0Ia+re6arpi1y6qJAmnw4G/nx/J6ekEBwZi9/OrNqfw8/VtUDrFpaWUORyEhYTUjqu+kgNFuDN5ecxetIhdBw+y7+hRTmVlERQQQHxsLM3CwjiYlETHdu24ZPhw2rRuTUSzZgwcOJDY+Pja8dlsdRhjOaOqxdyKjpQxeoOliBnWklw3lEEWuTUWUWiMOUPkp8cgp6ef4sUXH6e0tITJk29h6tTrWbx4Ka+++gK7du1g9OgxPPHEk7Rt21b/OCulm9q7mpsezIgNzDIVKvmXKitrSzcF4Rzl5VSUleFrs2H38alLqBVp5hUVkZqdzc/btvHsp59itViYcMEFhAQEMKRHD4KCgliwciVbDx/meHo6LaKi6NqmDYO7dSMhOprYZs24cOBA/P08tn2Cxq+qquJkRgaHT55kzdat5JeU0KtjRxITEjiZnk5mTg4FJSV8uWoV906axKO33QaAy+XiVFYWxaWlZOfksHTNGj5bvpzz+vRhcO/ejL3wQpqFhmKz2YgIC6uZmLp2rdYuGGWQMzLcGi2n04m/vz8pKckEBQUTFGQnMDAQSZLw9697Z5OZyb2kpITS0lLCwsKw+wkC6fVNHY4pLz+ftz/8kJ1797Lv0CFS09MJ9NDQiPBwDiUl0a51ay4eOpR2CQlEhIfTv0cPmsfEGEvfjF9D0NiMsZbf2WCaRW4yP60TK0TvZuaP7OxMXnzxMQoK8pg48Xbuu+8G3nhjIYsXz2PDhl+55JKruPPOJ2jbtkPdCFTiNeJnJowR1LepRO7yZx8fqRYNFYVzOBxUVFRgt9sICAjAYrFopp2fn09qaipr1/7GzJn/QZIkxl17LeHh4Qw65xwiIyP5eP58tm7bRlJSEvHx8XTp3JnBgweT0LI10dHRjBgxArtCbS2vy8pKiZSUkxw9eoR169aQl5dL587dad++IykpJ8nOzqSgIJ/vv/+W66+fwiOPPAu4aWhGRhrFxcWcOZPN6tU/8PnnH3POOefRt+85XHHFVTRrFomPjw8REZHVNDQiAk0a+rdikKXDh//qbIjRAIJUVVVFbl4eaadPk19QQKvWrTl67Bi//fe/nMrI4ExODhs2baJDhw5cOHw40TGxHgmQH5JkISQklNjYFnTu3JWoqOZYLBbDzK2am9LPC7MS4bNJRLT8GhJeixAZnU/UwlksLjIzU5gz5yUyM0/Rr98gZs9+iZ49e7N69XoAjh49wtdff87nn3/K119/y4B+fWpHZkbkcjYlx/JCKtIpLS0FIDAwkF379pGXk8OQgQPx8fEhJy+PouJiIsLDCfT15WRaGmmZmWRkZHDo+HFOpKayYccOcvLysPn4MO7SS4kMD2fxihWkZGQQHhpKeUUFZZ5FcqUn7eZRUVw9fDjFZWU4ysuRqqqoqKwkKzeXk5mZnM7Pp3VcHF3btmXmbbfh4+PDig0bKC4tZc22bRSXlTFuxAguPuccerRrV2PSoiyryM3I7IXbhCFm8GDO5OXx4axZ3DJuHBt37GDaE0+QV1hISFAQMZGRdO/YkZn/+hdRERHC+q1Gx44AXrMzQwxyTo6kmWWdIgjdRWGEG4Hqy5XoEJ2qigry8vNJy8ggv7CQhObNOXHiBGs2bCAlLY3c/Hz+u2UL7Vq14sJzzyU2OhqrxYKfZ2EVGhxMfGwsXdq1o0VcXM1iy+z40arUxhiLRhpNL8zZZp4RS45Fz2bdwM3MnDqVwnvvvcmhQwcYOnQEb7zxHO3bd2LVqi1YrVaOHz/K0qVfsnDh+3zwwVf06TNYHJkK/kwGWYka5rWMqqoqAgODOHRoL/n5pxk4cAg2m428vByKi4sIC2tGWFgwp06dJCMjjaysDJKSDpGaeoJt2zaSlZWJr68vV155Nc2bx/PNN4tISUkmLCwMp9NJSUkJ/v7+VFZWAhAbG8vYsddQWlpKeXkZkiRRWVlJdnYWKSkpZGZm0rp1azp36sTTTz1FUFAQy5cto7ikhN/WriW/oIBrrrqKSy++mJ49elRL7msVTIb69pPevdtz4sQxXn75baZNu5ft27dy//13kJmZQUhIKNHRMXTs2IVHHnmGmJhYzfr2klg1Gvr3YpBPnhR7qvVWM9IvNfxZK3XBu7cDFRSUsHPnDjZs+C9nzrjNPcrLK5AkicLCAtLSTnHw4D5yc3NYtmw9/fvXnHSgx/CKwinRGMJIs1Ljsw1vmpIkUVJSxC23DOT06XTCw6MICQkjMDCE2NiWPPfcAnzraCWclJeXERQUojdXVL+vXr2cm28eXe32738/Sq9e/XjllZlkZqbz4IOPMH369Orw77//PnPmvM3e3bvVbS3rM/OYhcHGcTqd7Nq7l9nz5vHN8uU4nU7iYmJIy8igU/v2HDl2DKvVSkhwMCFBQWSePo3VYiE2KoqE5s2Ji46mU2Iiia1a0btTJxLi4ih1OJj/zTc4ysu5ZuRIenbuzP6jR2keHU1cdDQWlwuA0rIyDh4/zqrffyciLKzarMnXZiM2KooWMTF0TEjQVMeZroN6MMgAltatAZj77LP8umEDO/fv59G77+bW667TNLkQolUrd5wmGOSCAuP0vjFIn+Ed83p9tQEMNLgXbTt37WL9xo3k5OUhSRLlFe5bVAvy8zmVkcH+I0c4nZPD6kWLuGjYMGP5/jNglkA2ZPVjoi973SRJIr+wmBEjhnPkyBGio6MJCwsjNDSM6OgYFiz4rFor4W0Wl8tFSUkJobKTWPS6wK+/rubqqy+pfr/zzn9x7rnDeO21F0hNPcm0afcyY8ZT1XEtXvwpr7wyky1bjtRe8DYCzgaD7HK5OHx4Dx9//A7ffvsFLpeLmJg4UlNP0q1bDw4dOoCPjw9BQcGEhISSnZ2J1WolOjqGFi0SiI2No337jrRt244ePXrSqlUbKivLWLhwAcXFxYwePZY+ffpy9OhBoqOjiY+Pr6Y55WUlHD58mBU//kizZs0IrJYoe2hofDydOnXSpqFGtewKd7MXJQUFufP88stvs3nzH2zZ8gf/+tfD3HrrXao0VK29mhjkhuL/AYOsxRulpZ1i8+bNfPLJ+2RmZvDllz8RFRUvDP93Z5BXrJjPCy/cQp8+5zNq1BQSE7vzyit30rPnEByOEmJiWjJmzO2EhUVRUlLAoUPbSUzsTnR0fJ24vGn++us3PPbYONU0b7zxASoqHJw5k4kkSURHN2fXrg2kpCTRqVMvfH1txMa2oH37zgQFhRAd3ZyCgjNs3ryO9u274HK56NatJwEBAcyZMwuHo5T9+/fg5+dPUFAwVVUunM5KZs/+gEmTJlbnrbKykrZtW/PWG28wbty4/5cMckFhITfccQfHk5M5kZJCm5YtufqKK5hx3334Wa3sOXCA6MhIWrdsSWlpKTabzT1ROp2cyc3F38+PEKNbyhtavsZWZ9eTQf5u1SpWrVuHy+WiS/v23HHDDQQFBtYvX00Msrqfif6SfuoUm3bs4OPFi0lKTuanL76gdUKCdn7+TDQig/zV0qVMmDqVIYMGccOECZx7zjncdOedDBk8mPLyciKjorj3jjuIjIykuLiY7Tt30qljR1q2aaOazooVK7hi9Oi6/h7cc8+/cDqdZGVl4nS6iItrztatmzl8+CA9e/bGz8+PmJhYOnXqRlBQMHFxzSkoKGDt2l/o3LkrLpeLrl27ExoaxiuvPE9paQn79u3G19eXkJBQXC4XFRUVvPLKbG688RbA3dQul4sBAzrw0ENPc/31U8zVoQ4ai0EuKSnmnnsmc+zYYVJSTtCiRSsuu2ws//73IwQGBrF37y4iIiJp164tpaWl+Pj4VJso5Obm4uPjQ2RkmGr8jTJOjRb2T2KQV636keXLl+FyuWjfviNTp95JSEiIqax58c9ikNPSGhZJY6+sjc4gKuHUOoYeI5uensbnn3/EggXvU1JSzHnnDad//8HceeeD2Gw2Uxr3P0uddOrUCdLTT9K6dQdyc7NJTj5CWVkJDkcZubnZpKQkkZx8mKysNAICgnA6K5GkKsLDo6iqclFYmEdFRQW5udnVcbZv342kpP3V71arlbCwSAoLc7HbA+nQoSfJyYfo3LkPDkcZnTv3ITIyltat3arp3NxsiosLmDPnieo4/vOfD+jefQCrV39DYWEeoaGhxMTEExUVhyRJ5OZm07Jla/r1O48jR/YBLk6cOEJ6eiqlpcVkZaXh4+PDgAHnkZ9/BqvVys6dm8nKyiA6OpauXd32VLGx0YSHNyMmJpYOHRLx9/enoqKUbdu28e6773Do0EFOnz7N8iVL6Ne3r7gxjJpTGGlAE5NwXn4+ew8c4PV33mHZypXcefPNvDJzpvhIsMZgbIx+Wx80dHFtli7UJ5xaHj37Ev4KBrk+4eobXpfJNtuPnE4yMjOZ/9lnvPPRRxQWFTF86FAG9u3LQ3ffjZ9fnfsMzw5MVsTJlBROnDxJ+8REzuTncyQpiZKSEsocDrJPnybp2DGOJCWReuoUQUFBVFZW4nK5iI6Koqqqirz8fMrLy8k+XXNpbfdu3di3vzYNjYyMJC8vD7vdTs+ePTl8+DB9+/ShuKSEvn36EBMbR4cOHbFYLJw5c5qioiIee+zR6jhee+0tLrhgON9++zU5OTmEhITQvHk8cXFxVFVZyM7OokWLBIYMOZ8DB/bhdDo5fjyJ1NQUiouLychwz/PnnTeMM2dO4+Pjw/btW0lLO0VUVDRdu3anU6fOREZGVdPQxMR2+Pv7U1ZWxq5dO5g3710OHtxPRkY6X365lHPOMWdmcbaRn5/PgQP7mDfvXb766gsmTbqRt99+h+DguqfdanWTRluANjS8UejQS9HJJ1r8kF5YPXgVGP8MBjknp2GRmBWJ1MNd62ibhgg6vG7r1v3KrbdO4PLLr2LatH/RqVNXqqrMpakFo+FtNigrK8Nut6uqNaqqqjh27DA//7yc55+fQY8efUlLSyEmJo7ExI4EBYUQEBBIREQUrVu3o127TrRo0YqSkmL8PWry3NwzSJIPoaHhVFW5KCoqxOEow2azIUkSLpcLSZLw8wukXbsu+Pv743K5qlVq6ekpHDiwi4CAII4c2cvp05mcOHEEq9VKREQ0AQFBlJeXkZt7mvXrf+KJJ95g3LhbapVTVHYtN/lzWVkZhw7tRpIkHA4HFot7Q4DT6WTr1k0cOLCX5OTjpKamUlBQQNeuXblh0iSGDhlCjx498FeqBs0wA/UgcoePHuVAUhJZ2dmczsmhuLgYR3k5Z3JySDl1iqPHjlFSWkr3Ll0Y2K8fFw0fziUjRrjNUBqLuT2bttP1Setsc4D1/cYj/mhsBvmvMHlNcc9RAAAgAElEQVSqb/pqYbUYh9/XrWPsuHGMvuIK/nXPPXTv1q2uCv7P6IM2myEaevToUVb/8gv3PfAAvXr2JC09ndjYWDp26EBoaCiBgYFERkaS2LYtnTp1onXr1pSWluLr64uPjw+nT5/GarUSHh7uMcsrpLjUUYeGBgQE0KVLF+x2Oy6XC6vVisVi4dSpU2zfvp2QkBD27dtLZmYmR44cASxERUVXn1hy5sxp1qz5hSefnMldd92jWXQz1VteXs7u3TuraajL5fIIgpxs376Vfft2k5x8gtTUFAoK8unUqTMTJkzk/PMvoFu37u4TTow1R6Pg6NGj7N+/n8zMTHJyzlBUVITD4SAnJ4dTp1I5evQohYWFdOvWjQH9+3PRyJGMGjXKvTCrDy3/M+mlWTRQDWWEYTbqJ4JXeffPYJALCtQDNHQDQz0YXi8aW+ilFe6ZZx7/P/bOOzyKav3jn0k2bTfZNNJ7I4VAEoqIIggiKl2lWBAQReHar1csV6/lJ14rlmu7isq1oqBSRAXpIJ2QEAiEJIT0Rvpukq3z+2M3SxI2ySaE6nyeJ89mzjlz5szMOe9855z3nGHdul9YsuRbvL374Ovrd17ah16vp6SkCKXSHXd3DwRBwNvbVJ/69o2noaEetbqBQYOGYmdnR1lZCXl5ufj4+NG/fxJubkree+/TDntnemO0/FxeB1vfk9pvf/fdl8yf33Z4b/jwEchkMuLi4rnqqquJioogNDQUX19fZDKZ7ROcWoVVVFSw98ABSkpLUbq50S8+nsR+/c784EJL+spK9h88SH5BAYXFxRzJyuJgejoGg4HBAwfi7+dHH29vlG5uODs74+XpSXBQENFRUQQHBXWYb7fo7Rt2sTwozrVrVwvm7o/uCGS1umf2/kJc2t7owbYW98ori/jmm69ZtuwHfHx8CPDz6b7/dw8wGAwUFRWhVCrx8DDZUMEszBMSEqivr6e+vp4hQ4bgIJNRWlZGTk4Offr0ISkpGTc3Nz7++L/Ie+CScyGbxtke++efVzBzZls3OJMNtadv3ziuvno4YWHhhIaG4evra2XOyJlYqxdVVVXs3r2bkpISXF1dSUhIoH///tjZ2Vm1yVVVVezdu5f8/HwKi4rIzMzkYFoaGo2GIYMGmWxonz4olUqcnZzw8vI6bUODg89cwhN6NBpyTjhXL/m94LfV3U7IztJJAtnWNBe5QC4oyGfFiu9QqRp4661XLOFvvfUhc+YssC3js2Du3OmsWrXcsn399eMYOPAKXnvtBQDGjZuCv78/R48exsvLm7CwCOLjExkwIIW+feO6NOqXo0AuKSkmPr6tL+Prr7/DAw880qkHTosx1mg0aDQa00SWDgxnfkEBz730Eit/+YWhgwcTGhJCfUMDqWlp+PTpw7b160+/lJjzMBqNOPv6otPpCAkOxl2pJDgoiMSEBGbedhtJAwZ0eT3al6NHSAL57PKQBHKX6VrHFRUV8d1331JfX88rryyyhL/+2ms8YZ4gey65f/58Pvn0U8v2ddddx5jrruPpZ54BYNLEiQQFBXH4yBG8PD0JCwsjoV9/Bg4cSGxsrNXhd1u5VAVyZWUl4eGm5flaPhL2wguLeOKJZ2yqH1qtlqamJtzd2/rptq8XL7zwPD///BNJSUlERESiUqlIT0/D1dWVbdt24Co/c66Et48P1dXVhISE4O7uTmBAAImJidx+220MTk7uunC9MddCEsht+GsLZLW6bWAvOsnZ+tWf3qiP3c3jt99+4fbbb2Hu3Pvw9u6Dq6sbgYFBeHh4MnjwFXh6ep59obqgtLSUzz//L1u2bCQ1dT92dnZkZp5ELpezadPv7Nu3l/r6ekpKimlqasLPz4/CwgJ27NgOwN1338PHHy+xmndvu4Gc64dBV9WpJb6+vp5//espvv/+G+Lj+xEcHIKHhweBgYFEREQSH59AVFQ03t7unDp1Cj8/H5ycnHB1dUUmk1FeXg7Ad998w2233WbJf8OGDVx/w+nZ3ONuvJF5c+fSrNFQWlpKYVERJ/LyWLVmDWn79p0heNVqNTPuvJOt27ejsvL59q+++IKZd9zR/Qtzrv2CzyW9PYnvbLElT7N1745A1mja2vuLxTWxK87Wy+WPP9Zzyy0TmTXrbvz9/VEoXAkKMtnQK68cgre3d+8VtgPKy8v59NNP2LhxA/v370en05Gbm4e3tze//fYbe/fuob6+nuLiYhobG/Hz86O4uIitW7cCMHXqNL7//odzdg8ulvfL1jQ2NvLcc0/y3XdfERsbT3BwCO7uHgQEBJo7YRKIioqhTx8P1Go1Xl6uODg4oFQqcXBwoKysDIBPPvmc2bPvtuS7c+c2Ro0aadkeM+Z65s9fgFarpayslMLCQvLy8li58md27tjBsGFtfZjVajWzZs/mjw0baGhoOKPcH773Hgvuv/+cTi61Od4WzpUbWU/cWjuK6yR9V/qto0vU0nd0eQhkjcZ6ZA8eUGfzGcwWzpdBufLKQRw8mMrUqdOZMuUWBg4cbPqIRE+XreqE7l7KZ555mtdee7VNWGBgIBUVFbi5uRETE0N0dAzz5t3HiG4sndSTa3sxGniA5mYVBw7sp6KinJqaGoqLizhxIpejRzM5ccK0/JlcrqC6usqyJiWAo6MjMTExrFjxE33Na942NTXxw/ff8dTTT9PQ0IBCobD4XDs5OuIil+Ph7o6Pjw/R0dGoGxvZsWMHlZWV5uUBNQiCgK+vL76+vnh6eODm5oaHhwceHh5otVr+tmABcXFxtp/gpSZoL2a60wDN1v1sBLI1LkQnQGvORQf8DTeMZsuWzUyefDO33jqNgQMHExkZ2enyX+fLF/vNN9/gyScXtgkLCgqivLwchUJBdHQMffvGctddc7juujFndaxLtdmo1WoOHjxAWVkpdXW1FBcXkZd3gmPHMjlxIgcAuVxBTU11Gxsqk8mIiorm229/IDGxP2D6QMaqVT/y5JNPUFtb28aGOjo64uJi+hS6Tx9voqOj0ep0bN++nfLycoxGI1qtaYlVX19ffH188PL0tNhQd6USnU7HfXPmkNivn/WTOVe9xBei0dnaW9TTNL2Qf2dar0VCXR4C2bzuaW/QGwL5fNLQ0MD//reUjRs3cvBgKtXV1cTFxREWFk5wcDA333wLERERuLu74+bm1m2fOq1Wi0qlQqVS4e7ufsaQFHQ88UWn07Fv3z7++dxzbNmyhW1bthATE4O/v7/Nxz/X9+NiezC0tOuWSTMNDQ3U1dVRWVlJeXk5+fknycnJIScnm7S0NAYOHEh2drZ5yDGciIhIAgMDCQwMJCQkFHfzF9ZEgw61Wk19QwMVFRW4u7szftw4AgICsLe3x8HBAblcfl58Li8KLrYbD72nvMzWvTsC2WCwbu8vtc7/nlxCtVrNV1/9j02bNnDw4AFOnTpFbKzJhgYGBjF58s1ERUWjVCpRKpXdbiM6nc5iQ1sEU3f2TU09wL///TK//baWX3/9g4SEfgQEBHT3NDvlYmwOZ4u9/Wkb2tBQT2VlJRUV5Zw8eZITJ3LJzc3m4MFUUlIGcuJELmVlZRYbGhQUREBAACEhoRa/cIPBQGNjI6qGOioqKlAoFEycMIHAwMC2NtQWPdIbvb/ns7fofLmH9XY6G/NqrzMkgdwBl5pAbk9dXR3Hjh2joKCArKxjLF/+A9XV1dTW1uLr64ubmxtVVVVotVoCAwMJCgrG39+fHTu2YzAYcHd3Jysri7i4OJqbm8nOzsbV1RWFQkFNTQ1+fn7065dIQEAAXl5e9OnTh+DAAPz9/XFzc8PNzQ2FQkFjYyOnTplm6n751Vd8/c03ljLGxsbSp08f5C4uNKhUVFdXU1lZyfVjxvD9smVtzuevKpBtobS0lJ07d5KSkkJYWFinvV42L/vzV+Fiu/EgCeReoDcuYX19PVlZxygsLCA7+zg//LCMmhqTDfX29kapdKemphqNRoO/fwBBQcEEBASwa9dONBoNnp6eZGUdIyamr/kjD8dQKBS4urpSW1tLnz4+9OuXiL+/yYZ6e/chKCgIPz9/lEolCoUrrq6uNDY2Ul1dRX19PStWfM8XX3xm8beNiemLj48PLi5yVKoGqqqqqKmpZujQYfz885pun/PF2BzOFlvqQmVlJTt2bKN//ySio8OR2bBTj5YX7G4aSSD3TjpJIPeuQD5bekvQ9bagEUWRo0ePotfr8fLyQiaTUVJSQlFREcXFxfTv3x8fHx9qamqIjY3l6NGjODo6kpKSYhFeBoOB48ePk5mZSUVFBTW1tVRUVFBcXExZeTkqlYqGhgZUKhUKhcL8MFGi0WhoamqisbGRkpIS6jqYVDl92rQzBHJvcKm/9EjYjvQiQI8EsmgwnNN2cjkIMFEUycrKQqvV4OnphaOjo8UvtaSkmLi4eAICAqmqMvVAHz+ehZ2dHSkpAy3Cy2AwkJOTw7FjmZSXl1NTY+ocKCkppqys1NLTrFarcHExLdPm5qZEqzXZ0KamJsrKSqmpqbFaxnHjJvRIIPcm3VkS9HxzNsfssW25UH6BF0ujO5/iurf278KGSgJZ4pxhMBhoaGhAqVSeE3/pc4EksiUuFbrq/WjP2dhQqV1cGLqyoZeTNrrQXNCX7ovlRl6MnMvKdTkJ5I6GByUkJCT+avREIEs2VEJCQsJEVzb0knrvs7f/i0wskpCQkLCdfFsTSjZUQkJC4gys2tBLpgdZQkJCQkJCQkJC4nwgOZZJSEhISEhISEhItEISyBISEhISEhISEhKtkASyhISEhISEhISERCskgSwhISEhISEhISHRCkkgS0hISEhISEhISLRCEsgSEhISEhISEhISrZAEsoSEhISEhISEhEQrJIEsISEhISEhISEh0QpJIEtISEhISEhISEi0QhLIEpctgiBsEQRhywU47guCIHT5iUpz+XZYCQ8UBOEDQRDyBEHQCIJQIQjCT4IgXHFuSiwhISFxmovVdgqCMEcQBNGGvxfa7RchCIJREIRmQRA8z/mJSFwWXLYCWRCEaYIgZAmCYH+hyyIhYSuCICQBacBNwGvAWOAhwAPYKQjCXReweBJ/AQRBSDSLjGsFQXAxv6Bdc6HLJSEBrAWGtfp7wBz+cLvwJe32mwUIgBNw23kpqcQlj+xCF+Ac8iOwCLgLWHphiyIh0TWCIDgAK4A64EpRFKtaxS0HlgOfCoKwVxTFrAtUTIm/EKIoNgmC8B/g/4BrL3BxJP7iiKJYCVS2bAuC4Gz+96goirs72XUWkA70AWYDH52zQkpcNly2PciiKBqBLzH1vklchgiCkCQIws+CIFQJgtBkHjF4uot9Ys371Jr32S0Iwo3t0iwVBOGklX3PGHYUBCFFEITt5qG7YkEQnsPUU9ETbgGigWdai2Ow1OeHAHvg0R7mLyHRE5YCIwRB6H+hCyLRO1yGtrOzcl8DRAL/A74GhgqCENvbx5G4/LjkBbIgCCMEQdgsCIJKEIQ6c0NMMUf/CAwUBCHxQpZRovcx++PuAqKAx4DxwGIguJN9AoEdQBLwIDAdqAXWCoJwUw/K0AfYxOleiQeAG4G53c3LzHWAAdMw4hmIolgCHABG9zB/CYkzEAThb4IgFAqCoBYEYQ0Q0DpeFMVCYB+mXjiJS5zL1HZ2xmxAD3yLSSSDVJclbOCSdrEQBOFa4A9gM6ZGoAauBoKAg6IoHhUEoQaT8Dh8ocopcU54E6jC5IrQaA7b1MU+fwc8gWGiKOYACILwK5CJyR3nt26W4TFAAdwgimKBOb8/gPxu5tNCCFDZ6nyscRIY0MP8JSTaIAjCZOAD4GNgJTAS+NxK0p3AmPNYNIlzx+VoO60iCIILMA1YL4piOVAuCMJ+4C5BEJ4zj8xJSFjlUu9B/jcmv6IbRFH8URTF30VRfE4UxV9apTkESLP/LyMEQZBjehH6pgsx2Z4RwO4WAw8giqIB+A5IFgRB2c2iDDPnV9AqPzWwppv5tGDL8GKvD0FK/KX5J/C7KIoLRFFcJ4riM8DvVtKlA/1b+XxKXIJcxrazI24GlJjcLVv4H6bOiGt7+VgSlxmXrEAWBEEBDAX+J4piZ0tqnQL8z0+pJM4TnpjqblE39/MCSq2El2ESnt1d/icAKLcSbi3MFgoBH/NDrCPCzOkkJM4K8wo/KcCqdlE/WUl+CpP/u8+5LpfEOeVytZ0dMRtQAVsFQfAQBMEDU2+33hwnIdEhl6xAxtQgBaw32tZoAKnX4/KiBjBicqXpDtVYf1nyB0RzPEAz4GglnXe77VLAz0o6a2G2sBGTCBlvLdLsBziIrodDJSRswQeTm11Fu/D222CyoyDZ0kudy9V2noHZXo4BXM3HqzH/5WCq97eaO9okJKxyKQvkloYe0EU6D043XonLAPPQ4A5gptnHzFa2AlcKghDeEmDuRZuByWe9wRycD/iZJ5K0pIsC2s983mXOL6RVOgUwsRtlas1PQC7wiiAIXq0jBEGwA97DVOff7WH+EhKtqcTUk+bbLrz9NpjsKEi29JLmMrad1rgLk8a5DxjV7u9xTD7Qt/bi8SQuMy5ZgWz2V9oDzBIEoTO/zHDg+HkplMT55B+YeiV2CYJwlyAIowRBuMe8ZmtHvI1p5vUfgiDcIQjCBEw+b30x+WK2sBxTr8g3giDcIAjCnZiGoU9ZyU8NrBcEYYYgCFOA9UBTT05IFEUtpgklnsA+QRDmm1dpmQZsAKYA94uieKwn+UtItMbsQ5oGTG4XdYuV5OFAVfvlByUuSS4729kBs4AcURQ/FUVxS+s/TJ0N5UhuFhKdcMkKZDNPYVp25jdBEG4xN8gXzI235Y00DvjzQhZSovcRRXEfpskmhcB/gF+BJ+jEt868TNpw4AimheJXYPKtGy+K4u+t0uUAUzENQ64EFmKaxX28XX6nMK2QcgrTxI8PME1wsrYKgK3ndRBIBtZhqt8bgA+BeuAaURSX9jRvCQkrvALcKAjCR4IgjBUEYRGm5bbaMxjTShYSlziXq+1sjSAIQ4CEjvITRVFvPu4oQRBCe+OYEpcfQufz2y5+BEEYiekrT4MBLXAQeEwUxTRBEG7GNHvV39zjLCEhISHRCkEQHsT0MuYFbAHewfSCNkoUxS2CIMgwTcZ6XBTF/3WYkYSEhMRlxCUvkDtDEITvALUoivde6LJISEhIXIoIgnAD8AMQKHU0SEhI/FW4pD8U0hlm5//JSB9VkJCQkDgbHgPelsSxhITEX4nLViBj+mzm/NYLm0tISEhI2I55pYNdmCZVSUhISPxluKxdLCQkJCQkJCQkJCS6yyXTgxweHi7m5/fqZ9olJCQkLgfyRVEM7yqRZEMlJCQkrGLVhl4yPciCIIgGw/kvqx3G837MHqPXX+gSnD9kl8y7Xa9jvORXZ+wef6Vq3Z7OqrmduRoIgoAoip2tBd+SThQNht4qmkQ3uFTa7F+lrV3qj49LSpdczJiNaEc29JKqJt1tvBdNIzgXVudSsGTn8gacr/O/aCrRadobx4vp4XsxVMuLoQznA0drH/Ttir/KxTnP7ba32mBv3p6/yq3uiM6qgK3Xpjeq0TkXs3/1G302dGFEL76nfyd0Vg+sVeTupu8xtlbQ7lbkS6Xid3Qxz6b8F1qYnuXxRVFEo9FgMBgwGo0oFAq0Wi0qlQqj0YijoyMODg44Ojoik8no/GOQndPaALc8qEVRpLa2Fp1Oh729PYIgkJWVRWFhITqdDp1Oh8FgwN7e3uqfo6Mjfn5+BAYG4uvri8x8Pc5VlTzXVf1SaUrd4ZwL5AvdBi8Seip+e1Lnzucj4mJvE61tqCAYUCgU6HQ6GhvV6PV6HBwccXR0tGpDZbKzf/7LZFBbW4tWq7XY0OzsbAoKCtBqtRYb6mAvdGpDAwIC8PPzOzuxdb5u1oWoFBfSzlxOAllC4kJiNBpJTU2loqKC5uZm6urqKCgsJDMzE3t7e3x8fPh93TpKS0tRq9XIZDLs7e2xs7OjsbERBwcHXF1dsbe3R6PRoNPp0Gq1GDoY9v5y6VKCg4NRq9U0Njai0WgsccHBwdjZ2XH06FFKy8oICgwkJCSEF156ib1792JnZ4dCocDJyQmj0YjBYCAyMpKIiEiLOLe3t8dgMFBRUcG6db9bLUN7PvroU+bOvReNRkNtbS11dXU4Ojri5uaGUqnEwcGhV661hITE5YcoiqSnp3LqVIsNraW0tIijRw9jZ2eHj48fmzato6ysBLVaZdWGKhQmG6rTadFqtZ3a0A8//IyIiEgaG9Wo1WqLDbW3h4CAQBwdHTl6NJOSkmICAgIJCQll8eLX2bZtK4IgoFAocHZ2ttjQ8PBwIiOjcHJysthQo0FPVVUVa3/91aZr8Oarr/L4Y4+h0Wioq6ujrq4OmUyGm5sb7u7ukg29iLikfJCPHy8lPT2VjIx08vPzqKmpJjQ0nCuuuILrr78RpVJpdd/OXlA69fGzNjTS2RtWR3E92aen6XqTnr7ZdXe/nhynN946u8ijqqqKlxct4p1332XSxInY2dmxctUqS3xCfDxhYWHExcWh1WopLi5m3E03MXXqVJRKJfb29pa0Lb21rSkvL2fXrl3cfOutbcIdHBzQ6XRERkYSEhKCq0KBXC7H0dGxxVeKvJMnLWUICAyiuLiYwsJC/vhjvSWf2tp63NzcurwMGRkZJCfbvly4s7MzOp0OQRDQt6uXmzbtZOjQYTbnZQ1bqrper6e6uoqammpUqgZ8ff0pLy9FFEW8vLzx8wvA1dX1rI519OhhVq78gfr6OpKTB1NXV8vJk7mEhUVwzz0PWHrVzzcth20xd93xQS7PyyM1LY30jAxOnDxJdU0NIUFBXDF4MDfedBMeHh7nsujnll68H7b2Gve2+b7YBiPP9rFTW1vDRx+9zvvvv8qYMROQyRz4/fefLfHR0XGEhIQTHR2PwaCjpKSQUaNuYPLkGSiV7p3aUJkMTp2qZO/endx115Q2x3VwcESn0xIUFEJ4eAQKhSsuLnKcnJywszPZ0MLCfAwGA7Gx8YSEBFNaWkJBQQEbNpy2oRUVp/D29j7jvNprg6ysLOISEmy+Li4uLpaeaa1W2yZu05o1jBoxwua8LHTzZhkMBqqqq6mqrqZBpcLP15eKykr0BgPeSiUBfn642WBDO+NYdjbf/vQTtQ0NDE5Opr6hgZy8PEKCgnj4vvt69jLQm3pBLgc6tqGXlEBuvT1z5j0kJiZTV1fD/v272L17B0OHXs3jjz/DqVOVBAWF0K9fvNWHZOtrZe26tan83RG9rcO6iu9OXE/S9ZRzLW67Sm/r2NfZ5gEcyszk1KlTeHl5ERgYSJ8+fbCzs7MM7bkoFJa0V1xxBXfNnMmqVas4np3NqVOnaGxstJrvwYPpDBhgEpx6vZ5//vMZCgoKGD36OgoK8ikvLyc/P599+/YyMCWFzVu2WPZ95OGHGX711fj6BzJ8+HCbzsMaoih26LbR3apWXFzEt99+yahRY3jppefYuPH0A+Sqq4YTHd2XyMgo+vTx55ZbZqBodd1sPYY1RFHkkUfupaSkCJWqgbCwSGprqykszKewMJ/Gxq6/W1FV1XP79txzT/Dhh29ajcvKqsbDw7PLPHraXG2pwr6+pt/uCOTW23ffdRcpKSnUNzSwe88etm7fzhWDB/P8s89SXlFBWGgocbGxbV+yLnO3i94Uxl2lORcm/3wL8ePHj1BZWY67uyd+foF4e/tYbKhOpyMmxsmStl+/FG6/fR7r1v1MXl42VVUVNDVZt6GrV+8lKWkIYBJy77zzPLm5WVx77Q0UFxdQUVFKSUkhBw7sIjl5MNu3b7LsO3v2fIYPH42/vx9XXXWm0Ozq+d8SJooiDg7Wm5XNnWfmsNLSUj7/6ivGjBrF2++/z/crVliSXDV0KLExMUSGhxPg58e0CRM67Oyz6ZjtePDpp8nKzqaxqYnQoCAaVCpOFhVRWFxMvUrV5f7iWax883/vvsu/Fi+2GleWloafj0/bwPP1/G9JczkJ5KIiI8eOHeaTT97kyJF0SkuLqK+vw8VFTkNDvdX9Zs+ex4cfftImrKMGckal70zwdhTXHWHcXRFtS3x3uNBi2JZ0nVmwVoiiSKNWi9FoRKVSERAQgFar5eHHH+e/n39uSddYW4uLi4vJh82KkBsyZAgVFRW0LIcVHBxMUVERAHNmz8bDwwODwUBmZiYbN502yps2bSE+Ph4fHx+LMNXpdHz11VfMm3cPAFOnTuPEiVxSU1Mt+zk4OODs7AxA37592bRpi009n7bQ0/exzuI2bFjHrbfeyIsvvsb8+X+3qRf1bKrszTePYufOLcTGJqBUejB69E1cd91NqNUNPP/84xw6dPpaBgQE4+rqRmxsAlFRsSQkDGDKlBk9P7iZiopyGhrq8PcPw8nJqcN0vSGaWrCl6YSGmn67I5CNKhXHsrJ4/d13SUtPp7CoiNraWuRyOQ0NDVb3mzFjBsu+/faM8PM5OfR8zdrv6px68x5fCIHc1Qtpfb0aURRRqxvw9Q1Ar9fz8suPs3TpfyzpMjJqUSrd0WqNxMTYn5FPTEw/7OzsyMrKAMDHx5/KyjIApkyZiYeHN0ajkby842zfvs6y3+ef/0a/fil4e/tabKher2ft2u/5+99nAjB69ASqqipIT99r2c/e3h4XF5PQCQkJ56eftqNUunfYhjp6/rdP362OtBY60wlmtm/bxoibbuLlZ59l4aOPtu1F7W1NoNcz6Z57WLNhA7FRUfh4eTH6qquYOGYMzRoNT7zyCrtbPY+C/PxwUyiIj44mLiqKfjEx3DFu3FnNkQGorK6mpq6OsNDQjm2ojc96m8NsSX85CeTi4pay6tFomjEYDDg7u5Cbm8mPP37H+++/QWhoOGVlJQAWf6OAgEDmzr0POzs7BEHA2dmJvn1jGTAgiaioMMsxeksgi6JIg3kylkwmQ+7ggJ2dFcMrCeSu03VSuaurq1n926CbTDAAACAASURBVG+s/vVX1q5f32ao6vOPPsJoNHLvAw9Ywry8vHhm4UIW3H8/crmcdevXs2nLFqIiIzlw8CDphw6RX1DA1VddRVFREXv2njbCKSkp+Pn64urqip29PT/88EObIi1Y8DfGjze9+fv4+HD33bPZvXs3AAsXPsnAgYOYNm0aL774Ai+99KLVUy0vr7RM6jP52ilwcXHp8vJ1RG8KZJ1Ox6OP3s/333+NTqdj7tz5vPHGR2ddDls4eTKX1auXs2jR0wDcf/9j7Ny5BUEQePLJ/+P55/9OTk6WJf3s2fN5/XXbytYdbG2azc3NFBfno1Y3oFarqKurISfnKCUlBeTkHGPq1LnccsusTvM6VwJZVJt63fXmcur1elxdXTly5Agrfv6ZRa++SkREBCUlJRiNRkub8vDw4JGHH7ZMVnJ0dCQ6JpakpCQiIiK6Lmw3EUURlUplGVZ3lTuf4aJ0LvirCeS6ulrWr1/NH3+sYePGtTQ3N1niFi36CBcXOX//+2xLmKurGw899BwzZ87H2dmN3bu3sGnTL0RGxpKRcYDjxzPIz89hyJBrKC8v4eDBXZZ94+IG4OsbiIuLAkdHJ9asafvSdcstsxk/fgaurkq8vPrw0kuPWAT0ffctJD4+iYkTb+ezz97g3/9+0ur5ZWSctqHOzg64uMiRm0VQCxdKIBsMBh547DG+XrYMtVrNHdOm8c2SJZ3v31GYrfHmuJOFhSxfu5aF//43AI/ecw87DxygWaPhpUceYfHnn7Ot1fPujkmT+Obtt207fnew8Vmv0WjILy6mvqkJdWMjNXV1HMvJIb+oiKwTJ7htyhTumzXL6r42HfNyFMhXXHENDQ11ZGUdxsnJGTs7O3Q6LT4+fkRFxSKTyRg27Bruuute/P19OHQojbS0A9TVVVNQcBJPTy9EUaSysoyVK3+itraWp59+hpdfXmTdraIHAnnj5s2Mue22Ds/j9SefZMXvv6N0dSUhOhq5kxPXDB7MuJEjz0x8PvyOuyN6z6c7hQ1xcx96iC9a9WwNGTiQ4zk51NVbH01oz7+efpoXn32WT5Yu5X6zkI7t2xeAktJS5HI5lZWVGI2mupGUlER6ejpgalByuRwXZ2f0ej0Gc5oW46zRaBBFkddfe40n/vGPNsc1GAz844knWLV6NXl5eZb8PD09LRNStFotjY2N+Pr6Eh8Xx6y77mLGjBkd9thae7DbMnBhqz1ubm4mISGAurpaAH77bQ8DB15h/QCdHLu7aVpTW1vNwYN7yMrKwMPDgzvuuNf6i2cv01k5dTqRdet+Ij19L1lZGeTmHqWo6GSn+U2cOJNXX/3KpmNbu925uRlkZqah1RYRHR3N9OnTbRbI11x9NfX19RzOzDT7Y5rqmo+PD/FxcTg4ODB06FDuv+8+/Pz8OHQ4k927d9PQUE9OTg7e3t6IokhFRQWrVq3k1KlTPPLIoyxe/HavmaudO/9k1KiO3YtefPEl1q37HScnJxIS+uHm5saQIVcwZcqUM9La0vPcnZ7w8+lacS7Tt6R58cXH+eST00PgAwYMpqAgj9raKpuONW/eEzz11OusXPk1jz9+FwAhIRHI5a5kZ2daeo+NRtMkuoiIWPLyTC+zps4qOc7OphE9UTQiiiJGo8mG6nSmEcGHH36JRx55rs1xjUYjb7zxNL///iMFBbmWcA8PL4sN1el0NDWp8fTsQ0xMPFOn3smtt96Jg4NDt8VwZ+lb6Eow65qaiEhIoLjE1IG3Y8MGrh4ypNN9Og3rKK6T/Wvr69mTlkb60aO4ubgwb/p00zOlN9w/baXdxRPt7Vm1cSO709LIyM7m2IkTnCgo6DSLyTfcwMrPP7ftxlgJy8zOJjUtjaLKSkJCQpg5c+alL5C//norCoWc6Oh45HIF9vYiTU2NKJUKq9epJazld/nyZcyZc3ubdC++8IKl21/u5ER4eDgD4uNNkXo9q9auBUAplyMIAn3Dwwn097fEt0GvZ/POnTz0/POcLCrC0cEBmb09eoOBuvp6jKLI0ldfZeEbb1BRddoAjRsxgrX/+Q82YUtlPVfC1JZ4W9KeZR7/t3gx/3rtNeJiYtBqtSjkcvx8fLCztyc1PR0XFxciw8LYunOn1Szj+/ZF5uDAjFtu4d5Zs3B0cGDDli38e/FiqqqrUSgU9EtIYMXPpyeTDEhM5MTJk6jVpiFIW/jsk08IDw1l6BVXdMsvtwWj0cjJkyf5bOlSflq5Ejs7O778/HMGDRzY4bWx7NvqoW/NfnbDptLc3IxarSIh4bS/2OnRnM7z6IzedDfoaR7dfS60Dnv77Wf59tsPqK+vZdy42zlwYDvl5UX4+gYxePC1REYmEhgYjr9/KP7+oXh7+yOTyTo9ZutyVlQUs2/fJurrTwFgZ2fPihX/5cSJTK67bgrJyVFMmjSJkSNH2iyQt65bh9zNjdi+fXFzczMPp6txtTI5z5pwXL16NTffPLlN2NNPP0tUVDSOjo64uMgJDQ0lOTnFEr927S/o9XqUSiV2dnaEh0cTFBTc4fnv3PknDz20gJMn85DJHHBwkKHXG6irq8VoNPLRR5+yaNGLFtcngKuvvppt23Z0dQnOit4QvhdaHLfEf/rpO7zwwmNER8eh0+lwdnbB19cfOzt7Dh9OxcHBidDQSPbu3WY1n+joeOzs7Lnxxqncdts85HJXtm9fx6efvsGpU+W4uMiJiopn/frTNrRv3/4UF5+ksVGNKNrmMrNo0SeEhESQlDQUV9euJxy3b+dGo5GysnyWL/8fv/76I1qtlvff/5JBg4Z2uF9XYrmj8M5Es0ajQaVS0adl4gAgtlqVqEtj0x2Dbav7Z0/juipHC11dJJmMf3/2Ga9/8QW1DQ1MHTuWfYcPk19Sgl+fPoy+8kr6x8URFhREWGAgoaGh+Pv4mFxSbHzDKSsvZ8PWrVTW1AAmd5yvv/+efampTLjpJmLi4hg/fjxjxoy59AVyerpoVfjaGlZcnM9nn32CQuFCTXUVu/fswcvDAy8vL7RaLWqVij82bULp5oaTkxOi0UhxaSkTx46lvqEBo9FIxrFjeHl4kLFuHXIHh7aToVpVlr2pqYyeOxd10+khq1uuu47+MTG4u7qiVChQuroSGxLCgJiYc3XZTnM+/Xu6ijsLxdOgUjHkhhvIyslh5y+/4O3lRXVNDR/9738sX72apubmNukHDRiAQi4nMS6OQ0ePsmPPnjbxY6+9lleeeYbBY8cCcPP48Rw5dozjubn4+/qi0WoZO3o03//0k2Wfa668kqPZ2cTFxLDD7EYRFBBAVEQEOr2evfv3W3qUW/i/f/6TBffei7eXV4+ugSiKfPfDD9w5dy4Pzp/Pf956q8t71V7gtLafttrDN998mTfeaNt7s25dKnFxKdjC2XQ+nI/5YN3pZW/5ragoYeHC2zh4cDsAo0dPZf/+jUyYcC+33voA/v5hHebd1KTlnXcWkJGxDYXCHYXCnYcf/oAVK95Cp9MwdeojlJScQKfTsGLFu+TlZTB58nzzEKDZfauhhmeeWcKIESb3m267WHSjjbevQ0VFRXzyyX9xdnamouIUBw8ewNXVDW9vb8uox+bNG5HL5Tg7m9wi8vPzGT9+Ig0N9RiNRjIzj+Ds7EJq6lGLSLfm43jwYCoTJoyhtrbGEjZhwiSSk1Nwc1OiVCpxd3cnKiq6jSC3xtnUpd50hThXgrc7aZqaGrn11pGkp+/n+++34OcXSH19LV9//TFr1nxPU1Pbya+JiQNxdpYTHz+AY8cOkZa2B51OZ4kfMGAwb7zxOTfcYJqYPHLkDVRUlHL06CHc3T0xGPSMHj2B1au/s+wzbNgojh49RHR0HPv3/wmAj08A4eHRGI1GDh7cbel1buGBB55l9uyH8fY2vaj3xIPvl19WcP/907jttrt5993PO0zXWZgtx24dv3jxmzz99BNt4vfs2cfgwYMt250uDNCZMbI17Gzy6Gi7ozAbhHFZVRV3vfACG8xuHdOvv571u3czZ/JkHrr9diLCwkw2wYrw1QMPPf88G3bsQOnmhtLVlXdfeokl331H+alTLHzwQU7k56PR6/l46VJ27t3LQ/ffj52dHS2rLlVUVbHkgw9w8/MDLhMXi7MVyK1/LRWyXYVobm6mvqYGjUZDs1qNwsnJ1GNsTnckK4vE0aOZefPNXNG/Py+9/z5e7u708fSkpLwcbw8PnJ2c+NPs+P7bxx9TV1dHQ2Mj9SoVdSoV9Wo1dQ0N1KvV7D50iFB/f4YnJ5MUE4PBaKRJo6GxuRk7QcBTqWR4cjKRwdZ7XGxl+aZNPPbGGxRXVACw7qOPGGttKZmuRJfRSFFZGYeOHUOlVnMgM5PisjKiwsLo17cv9vb2RISE0DciAq0o4u3peebDrwdPK4PBgCiK/GfJEv7+/PMMSkpiwvXXo9Vq+WrFCpqbmzlVXW1Jv+Kzz9i6cydjr70WvV7PsZwckhMTuen224mNjuaHTz/l4Weewc/Xl7tvu41Hn3uOrJwcfH18GDFsGCtWr0Zmb49oPueggAAenT+fqZMmEZ6cDED+4cPo9XpS09O5ZdIky3D/U88/z7fLl5OYkEBcTAzllZVUVlWxaetWBvTrh4ODA9NvvZWByclERkQQGhJi0yQIvV6Pg7u7Zfu26dNZ+PjjpJjLc8a9OkuBvGTJf/jnPx+2hD/88D958smXz0jfeZltS2eNnoiaI0fS+PPPjdjb29PYqKahoY6wsCji45OIjU1EoWg7AbInAnnSpFjy848zdeoCoqKSeO21+aSkjODZZ7+0iOP2eYiiyNKlL7J27WckJAxjzpyXSE/fyjvvzD/j2CNG3IKjozNHjuyitDSP//53F4mJV55xPa4we7icT4Hcmo6uXcv6rhqNBo1Gg7OzM8Gt7Nfx47n07x/NzTdPZfjwkbz22su4ubnh6+tHSUkxnp5eyOVydu409QivXv0bDQ311Neb/hoa6k021Ry2f/9e/Pz8ueqq4aSkDMRoNNLY2EhTUxOCIODh4cHw4VcR08OOiJbzXL16FQ8+OJ/yctOEs59+WsP48RO6vB7t8zIajZSWlnDkyCHq6+s5dOggxcWFhIaG06/fAOzt7QkJCaVv33iamrR4eXmf1Yo0LWla1vJdtuxznnpqPgkJSYwZMwmj0cjKld+gVquoqTll2e+DD75n797tXHPN9YBpxYrExIEsWDAVZ2cXli3bzIsvPoqLi4JZsx5g0aLHOXYsA09Pb4YNG8Wvv5pWarC3l2EwGPD19Wf27IeYNm0OV1wRCMC2bTnIZA6kpu5i7NipFj/zd999gR9++IyYmH5ER8dTVVVJTU0lu3dvJjo6AZnMgfHjpzJgwBBCQiIICQnv8Bq1rtpGo5GQkNO+7BMnTuWBBxaSkjLknAjkzz9fwoIF8yzhCxY8yPvvnzlafDEJ5MO5uazfswc7UaSxuZlalYrIwECSIiJIjIzErbVPdw8F8pA5c9h/9Ch3T5jAyMGDmfPCC1w5YABfLVpEdGjomaLN/P8rH37If5ctIyk+nteeeoq9GRnMeeyxMw5387hxuMjlpKancyw7m42rVzO6tRvr5eiDvGePdYHs7GxdBJsXB7AukPXmCV3WVEMXYYWlpXy9ejUZx45xz6230sfDgzqVikAvL6pqa2lobCTY2xt7e3tiWmbStKZVpWrWaNiZkcHOQ4c4nJuLg0yG3NkZFycnDEYjVXV1fLd+Pe89/jgGgwGV2eh7KZXInZ1p0mhI6duXipoa7n/1VZJjY/F0c8PFyQmtXo+riwuRQUEcy8/nhz/+INDHB3s7O7577TUGWFu3sYOhimO5uTz+73+z4c8/8XJ3Z0B8PEpXVxLj44kMDSXtyBGO5+VxNDub3JMnUcjlODg40KzR4Ofjg0Iux8vTk8amJpRubkRHRBAUFESgvz8JcXEMGTiQBpWKzdu2UVRSgqOjIwfNlVuj0aBSqzl2/Dizb7sNnV7P0aws7M0CNjoigoljxvDMK69QUFx8xin9Y/583njO1Auq0+ksTv9arZbXP/qIz5ctA2BwUhIzb7mFz5Ytw2g0UlBczIihQ1n05JNk5eYyY8ECBvbvT4CfH2s3bAAgNCgInU6Ho6MjChcX+nh7ExMZidFo5Gh2NgMSEhg6cCB3TZvGifx8CoqLEYBlK1eSnZdHVk4OXp6efPnhhwxO6aQXzHwvMo4cYcBVV7WJSt+9mwH9+7e9Z1aEcncE8p49O5g06Zo2acaNu5VPP11hdZ9zQWcPIY1Gw+bNv/HHH2s4fjyTkpIWnzWBsWOnYG9vj1yuQKFwY9u29ezevQWAu+9+mKuuup6goDCUSk88PPzazCLv6hrp9VBZWUxGxl62bfuJsrJ8MjJMPckPPPA+Eyf+jY8++jtNTQ34+ITg4eFHcHAcoaFJ3HmnF8nJY3n22dU4ODjR3Kzmueeu4/jxPQQGxjBx4qNERyeTkHD6/rZeaqr9rW15v+2WQG49rNsaG99GurtyRUd1pKSkhG+//YpDh9K5885ZBAcHU1VVRWBgEDU11dTV1RESEmpyazPPC+gIjUbD7t272L17JxkZh8wrw7ggl8sxGo1UV1exbNm3LFr0Gk5OTqhUDWaff5MQb2pqIimpPyqVinvvnUv//gPw8vLCxcUFnU6HXC4nMjKS3Nw8li41fXjCaDTy5ZffMnDgIJvPOTc3h6effpw//vgdDw9P+vUbgFLpTlxcApGR0Rw5ksHx40fJzs4iNzcbhUKBTOZAc3MTvr7+uLjI8fLypqmpCblcQUREDAEBQfj7BxITE09KyhU0NTWydesmSkoKcXR0IjMzjezsozQ2NqLTacnKOszkyXcgk8k4ciQNJydnDAY9YWFRjBkzgQ8+eI2cnMwzyj5t2t28+aapx7Xla3Z1dTUYjQY+/vh1li//Ar1eT1RULHff/QjffPNf9HodFRWlJCUNYeHCf1NWVsS9904mKiqOuLj+rF27HICgoFD0ej0ymQNyuQJPzz5ERMQgiiLZ2ZnExiaSlDSEqVPnUFJSQEHBCeztZfzyy/ecOJHFiRPHUShcefvtpQwZctUZZW9PQUE2w4a1rVPr1u0jOXnwGWl7OvIgk0Fq6n5GjWrrYzxixGjWrNl4Rt6duXXYYexY8HZmqDpKZ/7VNjWxbtcuVm3eTGZeHvllZQiYXiJuvuYaZPb2yJ2dUTo7sz0jg9/Mvb0PTprE9QMHEu7nh5ebG74eHjhaW8+4kxMsq6pi95EjrNy2jROlpWxPSwNg0UMP8cy99/L0u+9SduoU4SEh+Hh7ExcZyaDkZDySkxmWksLGZctwcXamWa/nxpkz2bprFyGBgTzz6KMk9O3LiGHDLMcUzROLrV7cy0kgb9wothHDLQLYWpg1gdyybYcRWobiWypNc7PNArnNb/v/Owuzhg0t8L3vv2dfZiYebm4oFQpEUaS6vp7G5macHB3ZfOAAuWZ/vDVvv02tSkVTczOODg7Uq9WcKC4mu7CQ4/n55JWUEBEUxGOzZjH9xhvxbvE9tOLTs3rzZibfey8Afby8+Nvs2TyxYAGuCkXnLbrVtlqtpryigkatllNVVSgUCurq6sg5cYKS8nJKSktJS08n/dAhnJ2dGX3ttUSEh9Pc3Ez/xET6x8ebPtGsVnPV0KF8+e23lJWWkpaRwYDERGKjozmem0taejonCwvJLyxs81WlkMBAAv38UKnVqJuaKCopQW8wIJPJaGkNOvO9emLePH7dsoUj2dmW/e3t7ZHZ21OwfTv3PvMMB48coaiszJJ+UGIidz/5JLNuvpnq2lpWbtiAg0zGu889h7+PDwePHOFf77wDwPQJE7hx5EjunDIFR/MnLpNvuon0TNMD6devviIxNpaQoKAOr6nRaOS5V1/llbfeskQd2rOH/omJba+9jQJZFEVSU/eRnp5OU1MjFRXllJWVcfjwQQ4fTsPPL4ChQ69h9Ogbue22ORgM3V/u52xdJVr2F0WRnTu3sWLFN6xZ8yPx8f2ZOHEa/folERwchiiK+PsHQqsPhOr1pv1++OELCgpO4uTkzK5dm6isLKO2thqVqp7ExMEkJw9n0KCRDBp0HTqdlhtvDCIubjCRkYlcc81UEhKGkp+fw/HjaeTmmv727/8NgFGj5mAw6Cgry6WuroLy8hMATJnyLLW1ZRQXH6Gg4BAazemh6w8/rEGh8ODjj2eya9c3ADz22M8MHjzljGvW0UjYuHGm37MSyOfDj8WMLeL6XI1MfPrpR+zbtws3N5NbhiiKVFdX09ioxtnZhR07tnL8+HEAfv55FfX19TQ1NeHo6IhK1UBeXh7Z2dkcOXKYwsJCwsLCePDBh7j99jvw8fHpsDx//LGeCRNuAMDT05N77pnP448/1Wad267Opb6+kcrKchob1VRXV+Hs7EJ9vYq8vGzKykooKyvhyJF0jhxJw8HBkWHDriU8PIqmpmZiY/sTG5uI0Wikrq6GQYNGsGrV11RUlHLkSCp9+yYSFRVPfn4OmZkHKSo6SUlJPq0/AOTjE0BQUCiNjWoaG1WUlRWj1+swTRgWANGS/u67HyE1dSfp6fss+7esHrVvXyHPPvsghw8fpKDANDl57tyHuPrq0SxYMIPp0++mrq6GTZt+Ra1W88Ybn+Dj48/x45m88opp1Yrx429l5MgbmDp1lmW5sKlTr2XXrq0AfPnlWmJj+xEcfHokpz2iKLJ48YssXnx6NaG1a/eSnGxlwpwN90gURQ4fTuXw4VS02iYqK8uprCwjMzOdQ4cO4OPjx5Ahwxk5cix33HEvjo6n24E1M2/TiHdPdIve5KL15/79fPPbb6zYuJHY0FCmjx5NSmQk4QEBiKJIgLc3Du1OWhRFvv7jD44XF6NwcmLToUOUVldTrVJRp1YzMCqK4f36MaJfP65PSUEEQufMIS4khJSoKCZfcw3DExM5UVpKWl4eaTk5pOXmstY8T+juCRPQGgzklZRQXlVl0TPPzZ9PWXU1mTk5pB07hrrVtwcqUlPx8fPjvoUL+fQbkw396oMPmNmySIItGsX8HO7Ihp4/69gL6PWm+tAidFvf+5bzbQmzdm3aVLLWFax15u0zbufT2umbW3eRyc7Mw8oD6+EZMzqNNxqN5BYVERYQcPpNzko6vV7Pmq1b+W7dOn7bvp1/vPkmjU1NTBg1irDAQEL8/blt8mTCgoIACA0M5Lqrr2bjn39yqroaURSpa2zE1d298yd4q3CFszOR3t5nxI2h7QOz9fJm7Wk9/PSPp57qdLjIaDRSW1WFd3Q0AJVVVej1elxcXBAAvcFAeHAwa5cs4Uh2Nj/+/jsqtZrjJ0/y5c8/46lUIrO357n58/nv8uWUVFTw4bPP4uvqyurFiykoLaVJo2FHair3vvgiXu7uLJwzh7lTplBYVsaaTZtobGri3smmiUxl5hnLAHKZjLlPPEF2Tg6v/P3vACx75x2W//orO1NTeefTTzmQkcGY4cMJ8PPjb7NnE9PSe2Y+PzuZjPE33MArb73Fh2+9xbixYwmLjLReL6wI4xYaGxvZvftP3nprEaWlJQwdOhy5XIGPjx9Dhw5jzpx5DBgwECcnJ+rr6ykrK6GpqQGlUkljYyPOzs7U1FRz9OhhFApXUlLa9r50prt6oslOnszjkUcWUFBwklmz7mHHjjSCg0POOC9r2yAwY8Zc9Hqorj5FbW0t06YNIjAwCldXb/Lzs9i3bxvz54/lmmsmMWfOM9TXV7N373r27l3PsmWL8fT0w8HBmfDwFCIikrn22vuora3C3t6JsLArcXSUM3RoCI6OcgoL0xgyZDqOjh6Wsuh0zZw8uYfsbNMnbI1Gd44ePUhu7umllWprm2m/bn9HI2Y9prOL3117Zkv6VsezKo/blcdR1r0VWWxl3rwFzJu3wNohkclMAiAnJ4dQ84Ttjla/MBqN/Prrr3z73Xds3rSR55//F/X19Yy76SbCIyIJDAxk+vQZREVFARASEsjYsTewfv06ampqsLMDlaoWLy9lm+N3dI56PSiVcpTKiDPM3jXXjG6zbTQa0ev12Nk5dprfrFlnDkm3P8f6+lqGDw9Ap9NSW3sKURRxdnbBzs4evV6Hm5s7y5fv5MSJY/z223IaG1WcPJnDmjXf4e7uhaOjI/ff/w/Wrl3OiRPZvPzyf/DzC+CLL36ktLSY+vo6Dh9O429/u5Off/6G+fMfZ/bs+ZSWFrNr1xbUahWzZpk6ZxobT69KpFAoWLjwPrKzj/Dyy6aOh7ffXsKqVT+wd+8OvvjiPQ4dOsBVV12Ln18wd945j759246UCoLA2LGTWLz4Rf71r7e5/vpJhIZGdviot4ZJGjSRlraTJUtepbAwl8GDR+LiosDb24/Y2KGMG3c3ycmDcXJyRqVqoKKihLKyery8PGhqakQud6KhoY5jxzJQKFxISbmiw7btaIvN7GrkOz+fB954g8wTJ7hnwgT2ffwx4QEB1vdtV9kE4K4RI0Cvp0aloraujqSRI4kOCMBHqeR4SQnbs7K46fnnGZOUxMt33klpdTWl1dVsTk9n8U8/EeLjg1EUGRQbS3J0NHPHj6ehsRGtXs8V/fohl8sJDghA6erKgawspo0di1efPpZiaAwG9h46xNZ9+9AZjXj7+HA4O7vNOs5aUey4R6E1Nj6ELqke5HXrxDY9w61/rfUWt0/nKGslkFtaw4UWyLaEdSe+k3T/XbGC+f/3f8RGRDBl9GiiQ0OZ9/zzjBs5kqraWvaYlzBb9u67bN27l4+++QZ7e3sGDRjA3oMHLfnoS0qwb73YdycCubPy2Dpca9P61J2FmX9FUaShthalm1vHIwCt/lep1Tg5Op4W7e3u98GjR7nnhRc4nJODs5MTof7+3HD11cyaPJmkuDg0Wi3/W7mSA5mZuDg58e7XXxMTHs7GpUsJMRum7MJC+o4ZA8CVKSncMXkyby1ZQn5RETtXrWLYlVe2PXeZ3bV4JgAAIABJREFUjIqaGvyio3npn//k2SeeQOhgVm/L9dXpRH78cTmbN28mL+8EBQUnKSkpJjExiRkz7mLOnHmIovU1Zjdv/oOpU8datvv3T7asOSyTOdCv3wB2797B/fc/wqJFb1uGsnpLIGs0Gt57bzH/+c9bPPLIEzz88N9xcHBocys0GgNLlrzPmjWmh69S6cF77/2P+PjEM5prRsYBpkwxifnIyDhOnDh2xjHj4gZx7NgBbrrpHgICIqmsLKZv3yGMHj3HqomwVgXbx1njpZfiKC/PIinpZkaPfozo6Gts6lFqsWe33GL67VYPssHQcYJzLJBtjbdFIJ+N6e3MTLXQkUD+6uuvmTV7NhEREUyfNo2+MTHcM28eo0ePRqvVsmOHyW/6s8++4OjRTN588w0ABg0azIED+y35qNUtPbCdn5MNZqrDuLMZ2OwIURRpbq7Hzc29TXhHj7LGRjUymYNlxKx9umPHjvDoo3eTkXEQJydnAgODGTXqBqZOvYukpEHodDqWL/+KtLR9ODg4smTJe4SEhPHjj5sJCzOtv11cXMjAgSZXxqSkQUyfPpvPP3+f3Nzj/PDDJq6+etQZZWtoqCcuzp0FC55k4cJXzBO42qZpvS2KIhs2rOTPP/+gsPAExcUnKSsrom/f/owffwfTp8+32rkjk8G+fduYOfO0/2tCQjJ5eccRRRF7e3vi45PYv/9P7rzzPt5992OrLlVttEvr39Y9yK2NU6t0Wq2W9776ilc/+4xHZsxg4e234+To2OYEjVot//3lF5Zt2kTRqVO4OTvzxWOPkRIVdUblysjPZ4C5gyfa358c84hqawZGRZGam8uMESMYGBXFycpKUqKimDdpUscCtqPu89YXs126KydOZE9qKhNvvJFH77+f0aNHW0/fHkuvqcnWnFUPsiAIAcCrwDjADTgBLBBFcas5XgCeB+4DPIE9wAOiKB5plYcI6IA4URRPtApfCvQRRfH0bIcOaOk97mxEoVPN2dlTraOK1v6J2EJPBHL7G9a669uW/XqIkJQEQIi/P9cOHszwQYNwcnTkzaVLkbu4oNfp2JOezgN3mIYLRw4diouzM79v20ZldTWNTU2EBQejamykqroaWWAgYl1dx+fVyfB++/+tbZ95ynbtsnc8HdP6Wnbxyi8Igkkctz9wB08XV3t7MBhMf//P3nmHRXV0f/yz1EWQKlWwYUEFxIYae8cSe01ijxp7jbEbY6LG3mOLGqOxxx5Fjb0bjBUbYEN672Xh/v7YXViWu3cX45s37/t7z/Pw3GXu3Jkz7cx3zpw5owoLj45m1+nTRCcksO/sWZLS0vCrUgUzU1OuPXjA49BQrgYFMefzz7ly7x5LfvqpCBv2pUtz+vx5BnXvjpmZGbGxsQzq3p2b9+5x888/eRISQufWrTm9ezdeKi24VuFxcnXlwa1bdOrZkwb+/rQLCCjWR/IpFPh79uxm5sxpTJ06kw4dPsbDoyJly3oUubFPVxvY2xd1/9W5czfatu1AZmYmL18+Jzj4MTdvXmXTptV888232NpaFUtDmwzxTZuQkMBPP+9i3bq11Kzpza1bd4pcSKHmNzIykunTp7F37y7atu1AZOQ7Xr0KIzw8DB8f72Ll8vGpy9On+bRp40l6evGb444ejcHW1pGcnHxycor23bQ0abEh1Z3E/p88uSg4T0szbM74K6QejwbfTKdrTBkq+6Tiae6giWmaNcJMTIq2hT6tq0gSotkX5imxCAfMrKzIzc3F2cmJph99RItmzTA3N2fFihVYWFhgJAhcu3aNL4YPx8nJiYBWLSjrVIbDvx4iMiqK7OwsypcvT0ZGBrGxsVhamqJerORryTdd5RJ7VwL9gN50paiQNxkWFjY609Gu71Kliru3jI6O5MCBn4mNjebYsf0kJyfh5VUTGxtbrl27xIsXT7l16wqTJs3iyZOHfP/910W+t7W14/LlQHr3HoxcLic2Npq+fQdx794d7t8P4sWLp7Rt25nNmw/h5eVdLH+FAiwsrDl3LpihQz/G17chrVp1kxyrgYG/smjRKIYNm42/f0fc3Svh4OCBpaVyPsnOVv6JkZmZQ5H/mzbtwowZHRCEXN68eUZISDD37t1i9+7NzJy5mDJllFfYa2qT1f1fVKWkA5skpaSw6+hR1vzyC55ly3Jj0yaqeHgU0xJHx8Yyd8cONp8+Tce6dYlOTCQsK4uQ16+pXbZssQ7k4+yMsHs33l99RbpIod+sX49HmTLkGxlhpFoYSQ5YQxfRIkLx5tmzOt+Jpa+9+NanotOrQZbJZLbAXeAqsA6IBSoBEYIgPFHF+QqYDQwGngFzgSZANUEQUlVxBCALOCIIQn+N9HdgAECWyWTCoUNCEc2wen4X0xZbWRUPKziYl5VVXIOsGWbI7Geo1DHEmFBfmAadv32bP548YXj37tjpua89PTOTP58+5ZfTp/nh4EH6tG3LvsWLi6SbmJ7O5aAg8vPz6TFhQkH4t5MnM2vCBJ6FhtJr9GgePS2czGdOmsR3X39dyKMW75qg2NBq065CqYWOroVmwSRnaDuK7Q7oUL+8evuW5Xv2sOX4cTo1aoR/jRoo8vKYvVl5jblt6dIoFArSVG79alWpws+zZ7Pl+HHyAXcnJ0zNzHgTFcWavXuxtLBgdN++LN2xo0g+/rVqcevYMYNW2ScCAxk8fDiffvIJ3yz4jtKlSxdhOzw8isGD+/Ho0QO2b99Dy5bti1eqBKmzzMnJoU6d6pibm+Pi4kJMTAzGxsZ4e/vg41MLf/96NG/eHCMjo5LdRqlFL1+9YsPmzVy4fJlnL17QpWNHRo8YQeOmGocFVUw9ffqUMePGcffuXWrW9Obatav06tWPIUOG06xZi2LgVnutGxb2jBs3LvPkyT2mTFlJXFwScrklpqbKCV1MRGimIaaskepOUqRPROg6S6G+SKokGuTsbEH3osUQtaQh7/SRlIzT9U5EtkixJiU/rl27xK1bNxkyZCiOjo7ih6BUvzMyMvjzwQP2Hz7Mmo0bCWjdmlNat2gmp6Rw+fp18vPz6TZgQEH49AkTWDR3LqEvX9Jn2DDuqnboACaMGsWqZct0M6lRXinRZeiCzRClhBjpaypDwwCio9+yadNy9uzZSpMmrfD3b4xMJmPBAqV9sY2NLfn5+aSmKk0qPD2rsn37QXbv/pHc3FzKlnXHzMyc8PA3bNq0GplMxujRk1m/fnmR/Dw9q3L9euHNmlJzz6VLZ5ky5RPatevF2LGLsLa2LRI/KSmO2bP78fRpELNn76Rhw4+L1ZG+ujQxUZoQDhniQ16eAmdnDxITY5DJlL6hq1athY9PXfz9W2JpaVxsnIudsdKFZd5GRLB+2zYu3LzJ45AQOjdtyhc9e9K8Vi1kajCrYjj05UtGrV/P7efPqVW+PJeDg+nZoAEj27ShlZcXxvnSi8aQ6GguPX9O0KtXLO/bl/S8PMxNTCitvv1V1/aXdmH0vSuJplnjndRdAGpS4/f3PqQnk8kWAs0FQWis470MiADWCYLwnSrMAogBpgqCsEkVJgBLgSmAvyAIQarwHfzdADktzfDZT5ck+lAAWSQsMi6OZbt3c+/FCyJiY6lXowYDOnZk16lT/Ky6uOTNyZN4qC4sUSgUGBsbk5eXx+W7d9l9+jSX797lXUwM3p6e+Hh6EpOYSP3q1Zn7+ec6pZ4gCCRlZBAWHo63tzdmpUphVKEC9f382L9xI3JLS1zc3IpWqlaHFASBX389yuHDB1m1aiupqRk8f/6EihW9sLd30AuaxarP0PFR5BAmFG1PbRQjhmx0qGH2njvH2BUr+KJLF5rVqkXL2rUx1dB+RSUk8CI8nGaTJvFRzZosHTWKxmPHMqRDB7afOsXAgADeREejyFfeFPXk1Sua161LrkJBTl4eF27fJlehoEnduqyZPZvavr66XbBouWyJjY1l3ISJvHv3ji+/nIGpqZxKlTxxdS3HvXt3ad68LhERaVhaWurVrElhFbEwg8GwgVrICn5+9OjcmR6dO1O/dm3MxS5XUTHQoEUL2rVpw8yvviL4+XMaNGpEdnYuMplM57A1ZMiLrZelupGha2gpMlDeF5Nn7wuQtfMGHW6mpJDVh1VLlliRILYI16SYmBjWrFnOn38GERn5Dm9vH4YNG8H+/XvYsUPpjSHk+XOlrbBCQV52NkZGRuTn5HD1xg1+OXCAC1euEB4RQY2qVfGtXp2EpCRqVK7MwhkzdJZZEARSUlMJef2amlWqIJfLKV2jBuXc3DixbRtyc3NcVWc8pMr+28WL/LxnD1s3byZXEHj8+DEVKnnh6Oiosx+qn1Ki7n2bTVfzGCqbAwMPM3v2CPr2HUbDhi1o1qwVZmZmBXFiYqKJjQ2nVat6+PnVY9mytbRp04h+/Qayd+9OPvlkEG/fviE3NwcjIyOCgx/RuHFz8vPzyM7O4ebNK2RkZODrW5vlyzdRp059ya6r+TsxMZ6FCyfz8uVzhg2bjalpKdzcKuLkVIGQkCcMGlSDo0cTsbKylaw/XfVpyNiWwohi+KYIplEfXMjKonrz5rRu1Ig+bdrg7+ODXI3vRBSALaZMoX7lyszv04fX4eHUmDYNxfbtGBsZfZhVlS7hpUug6QPI+kCz6qnLvalYEdQe6/6KiUU34LRMJtsHtEQJhrcC6wUluq4IuABn1B8IgpApk8kuAx8BmzTSug0cApYArQ3I+7+GsnJySEhOJik9HTNzcyzlcjLy8rgWHEwpuZy2DRtiY2XF+OXLWbt/P5P692f64MG4OToyatEi2o8dW5BW3erV+fbHH0nLyOBtdDR3goPxcHYmPjmZCq6ufBIQwNQBA6hUtizmJbiKVyaTYWdjQ10bG97Ex1Ne5Qbuzr17LFi1CgHo3b07HVQ2s9p08eJFVqxYzsmTJwAoU8aVtWuXFbjccnJyoUqVGuTl5VOmjDOVKlXH27sufn5N/pYrg9+HQsLDGb9yJefXrMG3QgXROC729rjY2yP8rnTfg4kJL/fuxcXenqPXrjGmZ0/8a9QoGMRh796x8cgRNh46xNdffEHgli0A/HziBBO++45Vc+ZQp15xl0Ni5OjoyM6dP7Ny5WpWrlxGXl4ejx8/xNvbj4iIcGbN+ua9bvH7d5CDvT19unaloer61ZycHMJevcJLxM1X+7ZtWffDDzT098e/USOcnZ1p2NAfCwsLrly5UiRu16692bx5f7E0/kf/WZSdnU1CbCyJiYkYm5pjZWVFWloWV65cRS6X06JFa+zt7ZkzZzorVnzPF1+MZdKkabi6ujFz5hQ6dmxbkJa3tzfLli8nOTmZiIgIbt+5g5urK8nJyZR1c6N/z56MHz4czwoVkGuiQz0gQSaTYWNtTV0fH6JjY7GoVg1QXm27YM0aZDIZXQIC6NpefDfn6s2brN60iYPHjgHg6ubGyjVrALC2tsbR0Qkvr5rk5QmUKeNIxYrV8fGpg59fswIfwv80ioh4y6xZw9m+PZDatZVu8bQX305Ozri5ORMfLxS8f/jwFc7OLly8eJZPPx1CkyaFdrxv375h69YN7NixmbFjJ3P48GkADh7cz5w5k/n666XUrq11fkMH2dk58N1329mxYy27d68gLy+fsLBHVKzoTUJCNJ9+Oh0rq+I3Tf4TycHOjp7t29NM5TI0NzWVF2/fUkOt2NKg9rVrs+TXX2lUpQqtq1bFw8GBevPmYVOqFJc0dowBAmrW5NTo0X9LGf5JZAhArgSMBlaitEP2A9SertehBMcA0VrfRQNaS2UAZgLBMpksQBCE01IZy2SyESjtmpXMmohv4WiS1DtJEhN8+lZMet4npKay7tQp1p8+TWJ6Og6lS2NjaUluXh7pWVkYGxnRxNeX/RcuAMpt+PCYGPxr1uS7L77g2bt3HL98mScvXzK0a1esLCz46cQJGvn64uHsjImxMYM6d6ahjw/3X7zAzMSEBj4++sui/q2hBdWuOPcyZVg/fz5PQkLo160bt+/d4+z163Ts2xcTExNcnJ1xsLfn/sOHREcrJ63WrVvi7u6BqakpNWr4kJOTx8KFG+jatR/GxlaEhT3jxYungDGxsZGEhDxh//7tZGSk06ZNb8qXr4qJiSmOjm74+7cuYMvQbWf1AlkuV9lrib0Um+wkJsA30dGkZWYycdUqDs6di722WYuOPlDB0ZGl+/aRlJamtGHWyKtS2bIsmTCBBt7eDP/2W4JfvSIlLY2g4GDGDxhA+yFDWDZrFoN69ZLs0IUrZSPGjZvCuHFTUCggLS2NixcvYG5uTrNmrYtt/Us0ezHS9V6nY3sRrcOr16+Z//33/H7xImOGDWPa+PGit082b9iQBcuW8VnPnrx4+ZJNO3eSkZnJrMmTmaqxQAx7+ZIzZ85gXbo01atUwdHOjvCwMIaPHs2P25TawYYNP8LIyAhjY1N69epXpCzq5/soPt9XWSpGhsgqsf7/V0hXu+cjYh4j9qFU2IeoHM3OCSQlJfHD9u2s3bSJuLg47O3tsbW1RaFQkJaWhkwm46OPmvDrr0r/3O7uHoSHv6VChYp8991Snj9/xrlzgdy//ycDBgykTJkybNv2I02bNqN8OZWsqlqVRvXqEfz0KflZWTRu0KBoeXSpHrXLrFV+JxMTNs+dy/1nz+jXoQN/PH7M5aAgug0dirmZGXbW1pR1dibo8WPeXrqEAmjaqROODg7Izc3xqlyZ/Oxs1q9cSe/u3bFzdeXZs2c8fPyMvDxjYmKiefz4CYcP7yYxMYGOHfvg5lYNMMXe3oW6ddsik8n+ktmFlGJf87eUcu/Vq3dkZKTz3XeTWbduP2XKOOvMQzONSpXKs3HjOqKjo5DLjYrY5FapUo7vv19My5bNGTiwP69fh5Cbm8u1a1eZMGEqn33WhVmzFjB06EjJbql+Z2RkxMCBExg4cIJK2ZrBrVvnyc83pXbtVgZ1BX2kq5xQWH+aXroK5zNIS3vH8uVzuX37Et2792fevG+QyWRYWZlhpHGWpEXTpizatImobt0Ie/uWTXv3kpqezqQ+fZj7yScFDIfHxXHi9m0szc2p6eaGjZkZr5cvZ/Lu3axS2fU2rFABEyMjTI2NGVCnTnEbMl0FVFeIZoNJjRfNp3Ya+gCfBH2ITS5DTCxygD8EQfhII2wh0F0QhOoymewj4BpQThCEtxpxtgOugiAEqP4XgN6CIByUyWTrgcZAHWAbBppYnDwp6NxuMCTMYBtkQ00sdNR6REICK44fZ9v583Rv2JCp3brh5e6u9DYAxSRITGIikcnJ2FpZ4eToSEJ6Oh0nTSIiLo6Ahg2ZM2IEVcuXp8nQoVy7f5+oM2dwdtAw/P8rk5fU/o8WCs0CLvzxBxZyOfOXL+fi5csAVKpUiZiYGNJUWz1z5ixi4sTpBlWp0ofkHW7e/I2oqFfk5Sm4f/8yHToMoV+/L7G2tnrvbagSey0RmUmE3FzeREezcMcO/nz+HBd7e8o7O1OvalU61K2Lk61uzUJkfDzzfv6ZK48fc3/zZswsLIrVc2hkJD+fPo2boyO9OnfG3taWx2FhtBk4kJGffsrXM2YULZRGu6gBsqEToJr0bZdqvtMOEwVREpJIyM2lSu3atGrWjC2qA4v9e/bkF5Xttmb8xKQkNvz4I0EPH3L41Cks5HIys7KwsLDg5K5dtGzSBIB5S5YQHhXF2mXLKFWqFFFxcXTr14+79+6Rm5vL+HHjWLlqTUHdaNeRPjMKELfCKukxBZHqMNiqQN8OI4B6viuJiUV6uriJhYmJDl+rulCAPoSlD22JMaARFh0Tw8pNm9jy0090Cgjgy6lT8a5Zs0CGatsix8XF8fp1OLa2tjg5OZOSkkKvXp15+TKUNm0CmDVrNj4+NejQIYAzZwJ5FRZW4M5StJz6zi2UZMBpxMsRBH4PCsLSwoIFO3dy7g+lZ4sqHh5ExsUVnGGYM3o030yYUFQOa9gU5qA0nlTvrt+4cZfz508QFvaSrKxc7t+/RsuWffnss5kYG1tL2s5rsShKhppY6Nolj4p6w759y7l37ypOTmVxd/fA27su7dt3xM3NpVh8dRoJCTEsWPANgYGnuXfvAValivtBe/XqFT/v2kUZBwd69OqDo6Mjz58/JyCgHd279+K775YVKZ++8/j6wrTTMBSISclXfXPbp5/6UKtWIw4dUu42tm37MTt2HMPKqrBbGGVlkJqayvq1a7nzxx/8GhiIpYUF6ZmZmBgbc3zRIgIaNIC0NL4/cIAHoaFsGjkSK5mMuNhYuq9fz62wMHLz8hjSoAHb+vQxvIAl0WTpshfR5Y7sPU0sDDGHUeu7/oqJRSSgfbXOE0B9okvt48MFeKsRx4niWmU1zQdCgU8NyL+AtDXIH1KzIpqg5opGTRKqt1cREXx/+DD7rl9nYMuW3F+1Cg9HR70MOtnZ4eToWPD/l2vW0MTXl1UTJihtXU1MyMnMxEgmQ25ujpWWi5YST1RS5RGrVLmc0DdvOHDuHDO+/77I5x936sSw4SNxc3Nj1aq1tGzZlnbtehYIYLF5p6iwkVGxoj8eHv4FaUZGhrF162SmTu3AlCnbKV++spqNAhJrquICSzlQzHSp4cQklla9yGQyyru4sHrcOA6eP4+lhQWvIiI4eeMGkzZsoEG1anxUvTq+FSpgYW5OBWdnqpZXOqk3NTGhatmy7Dp/nqycnKK3Dany8vTw4OtRowrqGaBm1arMHD+e8XPmkJKZySc9elClenVsVP6npS7+MESrIdWtdVRDQZimfVcBoNLRvzMyMrh3/z5xCQnsP3KES4GBNG/fnsjYWARzc2RaLsfsypRh1pQphLx8ybkrV6jn68uF69fJzc0loF8/Zowbx7odO8jPz+f6iROUMjNDyM1l45YtlLa0JOjqVU6dOcPgwYMLeFOf/hbbRJDSzuqSM2IKDimSwoT68lI/dR3Sex/S5rtou2vtvEgl8CEyF3n3NjqapT/8wK4DB+jfqxdBly5RwdNTb0WXKVMGW9tCn6mTJ4/F29uXc+euYm5urlJMK8jLU2BmZkZpTW82mrxJgWFdyEr91DMIX0ZHc+jmTb7cubNIeEDdugxv3x5Pd3dWHjlCSz8/+gQEQFxcUdCgTs/KCjMVKpLLlUC5fv061K9fh6QkJWiOjHzNsmVfMnlyGyZN+pkyZarpLIqUfkXfmkZqytRUJNralmPMmGVcurQfubwUsbGvuXLlLIsWTaV27frUq9eIOnVqY24up0KFcvj5VQfA1FhG1SqV2b49gszkRKyM7IrxU8HFhTlTpxYGZGXgVakCX8+dy5Bhw1AocvjsswG4u1fGzs5Oa7exsD4MmVMM0Z3pqlNDxr0mH3I55ORk8e7dfZKSEjh6dAfbtl1j6NDGRES8IzVVAAoxnZVVKSzlpZg+bRrvXrzgt0uXaO7vz2+XLmFsbEyXGTOYM2gQaw4eJEeh4MqCBVhZWCBkZrL92jXyBYF7M2Zw4tEjpcZYm/7K2JfSxBhKhgpdA5IwlAzJ6RpQTSusKvBa9fslSpDcFrgDIJPJ5EBT4EuxBAVBiJHJZMuABcCNkrH8z6Tn795RTWWjs3TgQBIzMthy5gxfBASw5fffcbWzY0SHDgal9SoykkEdOijBMRD05AmDFyzgUWgob48dw1J9SvRvorJNmxIRE1Pwf+8uXWjUsCHtWrWiZu3a5Kvcrv3www5A/06MPrK1daJCBR8ePrzEyJHeTJq0iXbtBqIpDP5ukpub81lblQ2jQsGkHj2ISUri5qNHXHjwgB/PnOFFRATPIyLIO3WKttOnc+7PP+nbvDl/bNiAdQntgMcNHUqHli3ZuHs3n0+eTNibN4wbMYKvpk/Hyr6M/gT+jZSdnc2S5ctZv3Ejzk5OJKtcAnbt25fxo0Zx9cYNmrVrx94ff6Ssk1ORb7OyskhNSyM1LY2Y+HhACWwA5q9YQe8uXYiJi6NZ165kZGXh6ODAqzdvmDllivLmRW/vD7hi/h/9nfTm3TvK+ysXyt/NmkVWbi5bd+5k5PDh7D10CFNTUyaq/K/qTevNa0aOHFNw29rDhw8YOXIoQUFBhDx/jr29/V+b8EtI3hMn8vhtof6oe4MGNKlZkza1auGrdudoYsKOr5QeHdD0M/8eZGfnRPnyXiQmxjBunB9DhqyiTZvh6Hds9a8jExNTOnVS6sTUwDQjI45Hj25y/fpFfv75R8LD3/Lw4T3y8gT69OnNoUMH6dmjBzevXMHR0bFEbTZ48GCaN2/Oxs1b+OKLEYSGhjJkyAimTJmNXP7PtilWKHI5eHAZJ06sxdbWkbg45YVTY8a0o1evUYSG3qNfv4/YuHEP1atXKPJtVlYWCUlJZGVl8Vp1UVV2jnL3fO62bfRq3Ji4lBTaLVhAamYmztbWvIyNZXK7dtRwdaWGq6v+HZH/J2SIiUV94DrwNbAPqI3ykN5MQRDWq+J8BcxC6ebtOUqXb80o7uattyAIB1X/WwEhgA3wuyEmFuqrprU185paFoNdo0jttxqiMdD8rXpGxMfzR0gIW86exdPFBUEQ+On8eZJV1yPmnDxZAHoLGNcmExO+/+UXwiIiWDl2LF8sX87vd+8yuls3xnTrhq225kObJ108isUT40Fka+PqkyeYmJjgVbMmtmpAI+IuJCOrcMsfim5Taxy01bvdFxPzilGjlD5vp0z5hd27Z9O4cS/69ZuMvb1zicxs1M8iba/O9H1NanSoDFIzMig/ZAgXlizBxNiYRpMmEbp9O44atwGJbhcZsA0VGRtLv8GDCXv1ipCQNwXeGtTsl0SDLLW1rytM7FtdFBISQs2aVTh//gr29vb4+dWkefMWXLp0kQ4dOrJ//wHmz/+awMDTfNK3L9O//JKgO3cYMnIkz168wN7Ojvz8fPZs3sz9x4+JjYmhSqVKnLt8GTtra1o0akRDf38UCgXBz5/TolkzSqmPI6uZ1KrTHIVRsaEsZkYh1k8HjGe0AAAgAElEQVQ1w8TEQUnrvqQaZLEuA9Cli/JZEhOL+HhxN29iPIi6P5MaD9q/xf7XzEAkLCohgbuPH7Npxw7KlSuHqakp23btKlhkZaanI5fL9bpwWr9+LUFBd9i4cStjx37B+fPnGDxoEJMmTsROLUOl5HxJ3Jjoqg+NsBuhoQhAdRcX7LQXy2LbBZpP9R665lNt2qV6pqQp6yMpSfkXGxtJmzbKg1lTp+5i9+5v8PPrQOvW07CzcyuxzNDFrpiJgCE76Lq8TWVmZuLnV47jx09ia2tLgwb1Cb53j7LOzoVMijEsNahUGcTEJdC/f18ePnzE06fvMDExKdKMmuMc9MsHQ6CBFGlt0hZhOyEhnGnTyvHVV4F4eFRizJjK1K/fmTt3TuDr25SNG8+wbdtCLl48RLdu/Zg4cTbv3j1i+PCBPH0ajJ2tLXl5eexevpxnYWG8e/sWL1dXfg8KorSpKS18fWlYqRIy4MHTp7SoVAlLc/OS25Do6wzawkuXGYX6fykTC6ltNY2n1A2y2uz/ZRMLQRDuyGSybsBCYA7wRvXcoBFtCWABrKfwopB2anCsI900mUw2XysdSVLXldQkokklViSJ7Z/qUuuL7FO7OTvTxdmZLo2VHvGiExPZffkytT09eRsXx7u4OCq4uEimgUJB/+bNqTxwICHh4QiCwLEFC6hTpYryYJOmelbXZCQB4vWWXXOvR9UJm1SpogxT3pMq/h0gl5cqkpWh9a8NkO3tK7B06UO+/NKH5OQEZsw4wvz5HXj79gmzZh0CTIs1lRRQUShUZhaaTGnWvdT+oBRp9Y/S1tZsHD+eVl99Rb8WLTAzMSFbcwGqr/OKrO4EY2Ou37zJ5Vu3iI6NJTIykpcv31CuXPn3BmlixdRk4313stTfnTmjtE0fNGgAKSlJTJs2nyVL5gEwY8ZSUlONGTBgLDt37mTG7NkYmVqybt0K5s1bwIABn2KmYQvbql27ggIOGTCgWMEqlCtXvFBQbA9V2f5FL2SQy4uXVXM3W8ykQeysp5qkuk5JFyWGAOT3JX1du7BOjArHzfsmrDlGimdQLMzF3p6OLVvSsWVLMDEhPiGBPQcO4Fq1KukZGYS9eEGN6tWLmIGoTUM0qV+/Pnz11RSioyLIyMzk0IED1PPzU8pQMZBrCEDWREyGpKFR7kY2qpvnUlOVf9p1pH6KIUhdhrAaZGVrXxBFLgcPD1f2739Knz5exMa+ZerUIyxe3JFXrx4xceJvKBRmklYiUiTVN3WwpzMNTZMChQJMTS3YsOFHOnYMoE+fvpiZmZGlDdak5jnNxDTsJ27ducPl69eJjowkPj6O169DqFbNS3QMipFYF37fNaNYnprsy+UQHHwVQRDYsmU4mZlJ9Oo1l4MHvwHg88/XkJ4uo3374Zw9u59ly+Yil1vz00+rGD9+OqNGDcVSlqtMMCmJdqDsu0lJDO7atdhKwMPOrngf01UZUuFSgNdA+2G9+eh7p4NKughU03/UVdO3bgmiCwp9tt3FrmksibbYEA2KJmmE/XTuHL9ev87Fhw8JqFcPuZkZP30panVSjJYfPIiQl8eoTp2w1JzJNfORQkWGvIPinU2qc2ueCFCH2doW03CoD5Co7eGg6JjUXqlrVr02i+rxNHZsFSIjQwBwcirP6NGLaNmyF1ZWpgXsGKK50LuLoGuSKwEKfR0dzY7AQFrVrUtT1S2GBYUR6ahRKSksXL+eoMePiYiKIjsnh6pVq+Ls5EToq1ekpKSoXA+FArBv32/Uq9cQKyu7YmwbqsUQU7joeidGuvJRKCAnJ5vQUOWxhUqVfNm2bTHr1s0uiGNsbELp0jZkZKRhbGxCz54DaNOmE23bdhZtxyKaTKkFoliBNDULKlMgMQxkiPZIn4gwhN4HKOuaR9S3qpZEg/zuXaEbLUP40s6zYPyIjQextinpjKSl7dh/7Bg/7tvHn48e0aJxYwRg/08/FT/wLEJr168nPSODMV98oby8QNfY1qUtFgsTE17qZ0nmD+0yq59SMldTa6z+rd6dUj0zKEVcnDJI85mUBNOn1+Hlyz8BsLEpS5s2C/H17YdCUTguSgqQDTmDpTllaE8fYlOKlRUkJYWzffs2mjZsQKuWLcXrWYPZ2Ph4Fm/YwK1794iMiSEjM5Oqnp44OznxOjyc2Ph4TE1NeR6inEP27z9MkyZNsbRUHnZPSxOXAdrzl6E7oYbIYTHFnhq3KBQ5xMUFIwj5VKrky/XrP7Br1/iCeMbGJpQqZUN2djpGRjK6dBlI69btCQjojq0tWFupME9SUiHjmr81Gde3W2Jop5ACyGLATEwLLPZODPDpEIqaO4WGLPzUG+LvfVHIP4X+0wCyIAj0+O47Gnl58dX27ZiZmpKTm8ut1avx9/IyrNBSo+z/GUAOC7vLmTPrOHt2e5F4+/Y9pHJl738UQC4gMRSiUb9RcXFU7dKF1PR00c9HDhtGtx496N23L76+tahduy7r16/BzMyMnJwczp4Nwte3zj8OIGvHe/HiIT/9tJynT4PIysrk7dtQqlevTcOGLenZ81N8fOpITrD/A8ji7/7bAbIgCHw6dize1asza9EiTExMUCgUXDhxghYtWxZnXIo0+f1/CpDfvHnIsWPruHJlc5HsP//8D1xd6/6jAHKBZwZt0zgtYRcbH49P+/ZEx8aK8jq4b1/69erFgFGjcC9bltYtWrBs9WrMzc3Jzs4mMPAqDRs2/scBZPV7dVhCwlN++20Jr1//QV5eLu/ePaViRR/q129Njx6f4ONTv0g3+R9A/jAAueS66n8jqetKV/1K/Qb0anw/FGVkZdHv+++JTkqiV+PGfLV9O3JTUx5v2ICn2gBeF+lDHoYANn2ISQwgS606NPed1d9q+F7UJjOV8LayEu+smsmpk9ees7TbrlKlOkycuI0RI1bz888zOXZsHQC7d69i1qytBq9liphaaGcmFiY1oekjCbTz9ZYtzF+nLMPimTPp2bEjv12+zNdLlnApMBBHd3eysrL47fQ50tLSePDgPqGhSg1yjurAxapVi9mwYb9oc78PLjGE3mcNZmfng4eHH8ePK9289es3lVGjlhZUR1SUPltyI9Sn9c2sNNqlBIVNTU3l2cvX+Pn5AUbk5+fz5EkwDx484ocfllKjRl0WLtxcTLZoUlZWBqGhQbx8eQ8bGzeqVWuEtbXbewNksTAx4Co2NN+X/qq4EzW50Bwzhso2KVIoyMrOZsDUqYS+fs2iGTOYtWgRRkZGPLl6laqenkXBuFTnlZKXmkJHCiDrW91rxxdLV2xwiMkHKZmrSdqdQe3VwraUTpFerpwPn322id69V3DgwDyuXFFe0Xzlyvd06SIuR8RITFxK9UmpBaAuuV0gr3Uny5L16/lqyRIAvp08md4dO3Lp1i0mL1zI1YMHcXFyIjs7mwt37hAbF0diUhIxqsPm2aprl1etWszBg8dFweqHIEOHg9h0oxnm5uaFp2cDrlxRKog6dx7DqFHrChYTatMadfwchcqDk2agxJxdjDQbV/VMT0/nWVQUvu7umBgbIwgCwdHRPImMZOmpU1R1c2PnmDFFd3e0QFpmXh5/hoUR9PQpbs7O1K9Rg3IeHoVxpDQEIqBZW+mhb01a4nmxZNH/vSRlgyy2UBH166l+iqm6SgJCddR6RHw8Q1etwsrCgitLlpCSorxXPiUjg+dv3lBZ69S+WBqSvIn1BDFtZ0kNzKQAsnpgiWneJYR3KSsrFFb6T00bqhQEKFWqNOPGrebq1YOMGrUUb28RdzRaaWkWvYgrK31SSfN/sYQNRTsigz3oyRM+btOGXzZvxtLenuchIVSoXJnEpCR81RcVqOjs2etYWZUhISGeTp0a0bJlJ8LCntGmTV/S0vTPw3+FxLqi9m+p4aKmxo0n4u8/iqCgo+zcOY5q1T7G17eZpLZf3e3y89M5dOhH7t27w3ffLcHFxRW53AwTFWguNs616NmzZ3Tq3r1ggeHv3xAbG1vOnj1dEMfTs3ox2aL+nZDwkqNHN3HkyCZcXCphamrGkyc3ady4FzNnHvgg9axLoyulQX4fUih0rwMNSVd9AEbvqDZkdtIx7qLj4hg+bx75wPU9e1DHysnJ4eGDB3h5eEB+fvFvpfjQ/P1XNMjaYfpUimIDU5vEEKfmO/V7MT60ymREfoGM01Ut5uaWdOq0lIcPf+Wjj2Zjb1+3gFVDFtqaU4QhxVKzKoK59E5LUm179/Fj2jRuzKH16yktlxPy+jXujo6kpafjp+Ux6vKhQ7i4uZGckkL99u3pGBDA8xcv6NevfzHF24egf0VaLVuOpG3bIdy9e5Jt20ZTt+7HNGtWeCOjZldQy1A1QM5KS+PHvXu5ERTEovHj8XB1FWdWs9E0GiksOprOixfzROUVo4a7O9XLluXQrVsFnzrY2iLT9vWv+v02OZmNR47ww5EjlHd1xVIu59r9+3Ro0oTfNm0qFl9SAMrlRe4A0HzqmoPeV0b/RwNkKU2+kSLHMI2BoaBSD0AWBIFdFy8yZft2RgUEMKt3b8xkMq6prmys6+nJ3RcvePzqFV9266a7kLoEulhZtMslVT59KFQKIKvj61qBSszgVlbWIh8Uj66NS6U6tJmZEaVKWVG9eh0qVaqhO+L7kCESX4qkEI1GRz3+yy+8i4zkxIULfLdiBY8ePxZNbuDAUXh61kEQzHFyqsLjx0KRplWbAnzIVbMm6WoPQ9aTGRlJ5OWBmZkVRkbGyGTmVKjQh/Ll9/L6dRRubuKKsLy8FM6d2wlk0rx5DyIjHzF7ttLt+sGDu9ix4zgff9xZ41s1XFMCZs1mOnDgAP369WHBgoVMmDAZa2s5t2/fLFZOW1t7FAoFJqqP1U0lCAK9e1eia9ehbNhwnl27lnPmzG7q1WtNkybtSqSU0a5HMXyo/f+HBsi60tAHEArkqq4bFNX/GxqmTaqwfWfOMH7pUoZ268bXo0ZhLgicvX0bgFpeXgQ/ecKikBCmjx6tPHAnhvbFyFA+DI0vUQaD47xvQxqI5qSyz8uTYWpaGgeHWlhZ1SqQIVL6D+0sNYGYPhCsfpY0zEydp8giYu+GDURGR3P68mWWb93K7QcPROtheP/+1K1Zk1J2yjMbQnJyoTmgQtobiiFkyLgxNA3t8Z6ZmYxMlo+FRWmMjIyRy8346KPuBAUdIiUlSmf6iYmp7N+/m+zsZLp378HrkOeMnTULgN2//sqBDRvo1bp18Q9FcMKJGzf4+NtvmdOrF3P79MG0Tx+Cw8MJDg8v8ml5Jydy8vMLtdYahSnXujWftmtH4OrV/HjiBJsOHaJl/fp0UDk0kKwwLaGVj5Eo5FE/DWlHg9vFsGj/I23Kyc1l98WL7Lt8mdoVK3IlOJjkjAwCv/6a2pUqATBtxw6WHj5Mj0aN8K1QgTl79gAwqGVLnNSnmv9HJaaIiDCSk+Px8Kjy72blvWn3wYOMmzWLZo0bM/LzzxEEgfGTJ9OpU2eGDBlJ3bpNsba2KSYI/hNIEATWr2/H8+fnMDe3Ijc3EyMjU8zNrRAEAWNjE7p3X1UQ/8qVbVy+/AMZGcnY27vw5s0jqlXzJykpkgMHVrN581latvyYZ8/u06JFOwYP/pg2bTrw2WdDaN++E2rvKdr05s0bJk2awI4dO+nffwAAqanZ7Nu3n+rVa1Ktmh+RkTEsXTqP/fu3cf78SQYOHM/gwePR9LndrNnHZGVlUq1abdzdKwNQt25rOnQY9K+rxP8HlJuby94zZ9gTGEitKlW48fAhUXFxHF+zBn8fHwDmrl/Pgs2bad+kCS0aNGDGcqVZQP+uXang7v7vZP8/mpKTw0lJeYODQ3VU1gb/cXTot98YPn06jevW5ZPOnRnWqxcj586lXZMmjP7sM5o3aICttfW/xnbib6DNm3tw//5h5PLS5ORkYGxsgoWFNYKQj0wm47PP5hfE/e23XRw4sJbk5ARcXFx59uwRtWvXIzExluXLl3H53Dl6dO7M9Tt36BUQQO/Ro2nXpAmDu3fn448+wspIfE8oMiGBUT/8wOYxYxiuOvSQs28fB27coKqrK3WrVSMxNZU5e/ey68IFTv7xB+N79GByr15Fdpl6t2pFelYW9WvU4OK9ewC0rF+f4T17/svq70PQf1TPsbLSrUEuNOYXWUpIHcjTEZaWkYEpYK7uOBrvYpOT8Zs4EWcbG8Z37MjzyEimde1KgJ+f8rY0lUZ59fHjmBgbExQSwrHbt1nQvz9tfH1xtNatVdVLYloMsbIYog3XpJKqp9Tx0tIkNaZqd0xWVsVBjJQGWQoQ5uSkUaqUFXK5qSTbeotkiLpaMzEpTZWeLSFQumzbum8fp8+d49fjxwHY8uOP2NgpfXwOHDoRmUxWYOqYlCS9yyvVnT+0Bln7f7HuVMiHjPj4t3TosB4/P+XlOTk56eTnp2FkZIypaSny80sRFhZJRMQN9u4dR8+ey6lSpQWZmRF4enqxZcsIQkMf0K3bJAYPbkqvXqNQKASOHdsPgKmpJVu2bGT06CHcvRuGo6OTqokUxMS8w8bGlj//fExkZCQPHwZjZXWCN29ec+jQPp4/f4ZCocDLqybt2nWhd+8BdOv2KefP/8a3306kQYPG1KhRr6Ass2at5vPP27Bp01dMnryYxo2bMmxYGzZtmsm8eVvo0eNzg+tRX7sYssP4V+Z7zfMt2mmJ5SNppqanI6ZnZGCcm4vc2LgoEwoFSamp+A0eTGkLCyb36cOL8HDGd+tGx8aNkZubF8iVNb/8gqmJCU9CQjh34wZzvviC9o0bU97Zufh4NGR8aleG5ncfikp6WFFs107zqe0HWeJEsuYhJU0WtMOysrIKxqIaIOubIrTDxKr0Q8kdNRWY9KgyE4yN2XnoEMcCA/n15EkAfli4EHfVTbTDP/lEubOgyaDIYTDtLXpDeRUbl2Lvdf1vSHx1WHLyG/r2XUKXLl8il0N2dgb5+akYGRljbW2BhYUlKSnR3L17gyVLxjFmzByaN+9EamoEXl6VmTNnChcunGXSpKk0adWKEYMGkQ/sOnIEgFKWlmw/coShM2fy4vBh3J2dQS4nLy+P8KgobORyXsTFER4fz4uYGE48eEB4XBz7Ll/mydu35Obl4eXuTteGDenfqhX9W7UiMCiILzdtwt/Li2Yat/GtGDeO1uPHM2H5clZMnYp/zZq0GDGCuRs2sHbmTMZ++ql4Q5RQ2OmKXtJ2KYhXotz/zVSmjA7n9Vk69ml07RdJAOSI+HhmbdvGjnPnsDAzY9+XX5KUnk4bb29cbG35ITCQ5ceO4Ve+PCenTy/KoEaty2Qy7KyssLawwLdiRZ5Nnoy55lXDukgTiImkq3dGUz+1e4DYXtmH2GLUhZTUT1VehUC58NiFFECW6sAODjakpCQgk2UhVwk/DesFKcsGvfaqxUiTMUNQuBgjcjm5ubmYaVwY0rt3Xzw8ymFq7lhwuDgrSynYdXlQUD8NAchiRTRkjtZFhmyNavLh5taChIQoDbfZlqo/yMmBmJi7HD3aFmdnP9q2XYO391BkMhm2tl4IQi537yonv+rVOxEQMJqzZ9cTGvoEC4vSpKWlcOrUwQLegoIe0qRJa8aM6cOJEweK8b58+WLateuItbUNEydOx8fHDxMTE+7cucOZMyc5dmw/xsYmGBkZMWnSXGrW9ClykZmXV0WOHbtF7dqObNu2hKdPC72OzJ8/nAEDBmGqY2wbAlY0yZDu9FcAsroLFjGV0Ga24CkSpu8MhEJBTEICs9atY+vRowAcX7SIhJQUWteqhVuZMmw9fpzlhw5RwcmJi0uXFuVBEIrkaWtpiaOdHVXLleP54cOYqy+EkYk47dA8KSZVWYaCfTUg1bQz1g7T/P99bZDFbAU1wbDWpSBFvFhogWddptDaRZfLbcjOTiYnJx31uFSzoEli8vhD9EN9JFZdubm5BQfAAbp37Eh5d3dc3dxAtQgr0it0AWS53CAz9JKOVbEpQsoaRtd0og739m5GZmZMwWUqVlalMDEpVVCksLBHjB/fCk/P6kyatIgBA0ZgZGSEXF4NS0uBo0eVsrBp0+aMHzuKdatXE/zsGXK5HFlKCkcCAwvyvfviBe5lyzJ43jx+OnGiGF9LDxwg2N8fS3NzpvToQe1KlTAzNSXoxQtO3rnDlM2bMTIywkgmY+Ynn1C/WrUilefu5MTNzZux79CBNfv3k/T77wXvxi1cyOedOyO3tCzeZiKaMiM5BYe2tUlK6aCrzqXoPwogGyUliM/MhgI3CUSREBtLzbFjiU1JYerHHwOQmZPD2qNHOfvoEZWdnTk4YQJjtmxhVJs2rB88WFyDofodn5FBVm4uA1u35sKDB5hrGq+rydAluKabB82OYwhA1uTREMSkB+iJxtNFmhOEGijLC0GyFLtSyp2KFctSo4YfBw+uZuTIrwri61DcFtWE6ZN+JZkhtAuhzYhcjkKhoEy5cgU3gZ0+fYVGjZoUsJGSIn7uRwogS2GVkmiAtIttiPDQt/5Uhifx8OEmevS4pXMn4Ny5YVSs2IOAgC0AqD3dKdMyxcHBk/j4UDIzoXTpygQETCQgYCJnzqzlwAHlNnvv3l9QsaIXY8b0Yfv2cwXg+PTpIDp2rE9+fj6BgXeoWLEyDg6FE6u6nB07dqJjx04G1U1+vhH29g706zcAZ2c5o0dPZMOGVVy7dh9XV/3g+H00x+qn+ncRF2sAiJuWSFGBDBVjVgrNG7BCSklOxmfwYMLj4piocc5i5d69XH/yBJtSpbiyaBEjVq9mUKtWbBs3rph80KSkzEzSsrIY0a4dv16+jLmZmfh409ammhS69NMsii7SKR/EBp+YLzD1/1KD1VCkJeXmTeImvQyVL2NdOF07ewsLB9zdm3P79hJq1foamUxWZJqRUlhIsWuou03Np761TF5eHpUqlScqKgqAc0eP0qp5c2R5ecU/0GRSK2FNjwdSzWdokxmqL5Eqn66w7OxMTpxYyerVFylTRjzdZctG0LhxW1av3g0UrVNTUxm+vn48eHAPY2Oo4O7OhJEjGT9iBFu2bePbFSsAGNa3L7WrVWPg7NkEbthQAI5vbNpE52nTiE9O5s6GDVRydcW+VKlilRJQrx4B9eqJF0qz45mYYKJQ4ObgwMeNGmGVl8e8wYOZv2MHt7duRS4IRXejxXCLxlOtcCtVrGKK12dRWaURBmBvL/KBRlEk3/4/IrmZGS52dkQlJfEiMhIAVzs79owdy+wDB9j4++8M37qVU9OmMXDjRgY2aULDKkVtYAVBYN1vv5GWlcXqkyeZ0Lkziw8d4vbKlf+OIv3XkomJCYsX/0j//s0xN7dQ2Yz+MykyKqoAHG/duoNGjZr8mzn615OZWWkcHHw5f34QPj5TcHNrjaWlGxkZkQhCPg8friQh4SEtWmwhPT2KjIxoIBUQSE19gUyWRvPmk4mK+oM7d35BLs9n8eJ2RfJYvvw4bdoob6e3trZi9uzPMTJSum/LzMxg5syFfPvtdExNTTE1NSM1NZWUlGTc3MoiCBAa+gJbWzscHMoUbslKUHZ2FklJiWRkZHD9+hX69x/EwYN7iIqKBHw/fCX+B5K5qSmuDg68iYnhVXQ0AHZWVuyeOpVlv/7K8sOH6bF4MWfmz+ezFSu4EhxMc2/vYulsPH6c5LQ0Vh8+zNAOHfjhyBFOrV37dxfnv5qMjIxo334ze/c2RxBKUbv2V/9ulnRSXFxcAThev3o1rVu0+Pcy9DeQmZmcGjUasHjxEAYOnEn9+i1wcSlHTEwEgiBw4MA67t+/wfTpy4iLiyYuLpqcnBTy8/OJiAgjKyuFYcNGcu/eHY4c+ZXScjNatW9fJI+DP/xAz44dISsLOwsLhs6bh6OdHbGJiaSkpzNv0CDGr1mDTCbD3NSUtMxMkpKTKevggEwm48W7d9hYWuJoY2OYDM3NJSoxkbz8fC49eEC3Jk3YfuoU4TEx1K9e/V9VlX+J/qMuChEePzZ861/zt6EqN4WCPTdu8Pm2bWTk5GBXqhRBc+dSoUwZVpw5w9T9+4ldtYotly/zLjmZdUOHEpWUxPXQUMITEnibkMDh27dp5OXF1J49iUpMZNiaNbw9eLDwxDUYvkclpq2RUiV+CENVsaWvpjZDewtQV5j2OxE1gvoEsdROpNQqPiTkKT16NGX9+l20bdtepwbZiHzDPZToYkCXCkVCo6W2c5s4cQpr164gPl4w2Ee7Lg2ymGJL35CQChPripphutLVVX1qnp4//5U///weudyJN28Kt+xkMiNMTW1wdW1FXNxt8vIysLBwQS63QRAU2NlVxNKyNBkZ8djYOHDjxla6dVuAl1cd7t8/wx9/HGbevOP4+PgWujIyy+fLL/tw7twhfH39mTZtEc7Ozly6FMj27avJyEgnKysTc3NznJ1dSU9PJSkpkbS0NM6du0qjRoUnqaW0PE+DH3Hw0CFOBwaSmpJCOQ8P1qxYgWf58sU/0kW61GQl0NQWPKtWVdWp4ReFCPfvF01Dkwep3yXYtTt8+zYD168nLSsLK7mcoEWLqOLqyqZz5xi1dSsRGzey7/p1HoaH8+OYMcQkJ3Pt+XPC4+OJTElhz6VLNKpRgymffkpGVhbdZ84k+sYNjI2NRWWN1AUw2iJSrOhiw1jXBpoZWhdXGKpB1pW5NiNimYqVWXUwVZ295h0QYpdbaN8RoY6XmBjGjz82pG3brZQv30Wn9lRMPojd+SBmMi12UYg+c2rtdBct+oavv56HkJcnXacajKr7hdg0aciuna5dMl1Zik2Zmk0qwqKkvLly5Tc2bpyPo6MLFy4cK3gvk8koXdqaxo3b8PjxXVJTk3FycsXGxoa8vDzc3T0oU8ae2NgY3Fyd2bhpE9MmT6ZVo0acuXCBQ8eOsX/jRvzVoFShQMjMZMDMmez+7TdqVanC8jFjcCxViquPHvH93r2kZmSgyMvDxNgYZ1tbMnNyiOOw4+0AACAASURBVE9JIS0ri1Pz5hFQR4e7Va22ehYVxaEbNzj5xx+kZGbiUaYMy4cMobqHh+EDUZ9aXooH7b7j61tQp+91k55MJhsDjAQqqIIeA98KgnBS9V4GzANGAHbALWCMIAiPNdIQgFzASxCEMI3wHUAZQRA66yujTCYThMBAw2d+fZOO9req56CdO9l56xb3Z87Et2zZgmhP4+KoPm8ebWrU4Mrz5/wwaBDXQkP58eLFItnO7NePp2/fkpaTw43Hj5k5eDDTR45UvhQbPfpMFHSVRddeu/p/KYBcUiMrfXtkYlchaccXkaqaAkxqW0uKxTt3rtK3b2eGDBlBp06daNq0GeamQtEPSwqGxcjAwZujKHRBEx+fxN69P/HLLz9RpUp1li3bbTAY1rX20SW037f+/orM0bfuFASBR4+2c/HiMCwt3bGwcCI9PYLSpStSrlwnPDw64uzsh0wmK8hTc00FsXzzTVk+/3wvzZr1KHgP4l0xIeE1HTpUKODxjz/icHV14N27t+TlZWFkJNCgQTUAKleuQkjIC4KDQ/D09CxWZtGzDroKrVkpYk/tihOLb8g32u/aKbXqJQLIKrtgSb6keDXg3eiff+aHixe5PXs29StWLOhQr+PiqDBlCu19fbn45AkrBw7kYUQEP5w6VeT7mYMH8/TVK9Jzcrjx4AEThwxh/uzZypcqkwL1bZ1igPCvYFUpsCOGVaVEo6irUanBqM2A6lmSGyB1vZO6KTI09Da//BKAj89gKlbsRLlyrYppBHUB5JJOB9rv9OGfjIwU9u7dxa5d2ylb1p0DBw7/pSlTu46kFlWaslY7fe160C6LlAmJPvmq+V4QBE6e3MuYMZ/g6loWJycXoqIicHNzJyDgY9q2DaBOnXpFZKiJSeHtwYmRkXhUq8bGlSv5rGvXooUWwQuRkZG4dS6EY1EHDuBsbc27uDjS0tKwNDbG4/PPAXC0sSEhNZW7ixcXwUqSckMsTJ+tivZ7fSsMqYGtTV26AH8NIHcFcoAXKP3DDwKmAXUFQXggk8m+AmYDg4FnwFygCVBNEIRUVRoCkAUcEQShv0baOygJQF6/XncEQxpCn3ACYtPSGHX0KE5WVmzo2bOgYnNlMtZevEg5Z2cszczouHq16Pd1qlVjav/+WNvaUrd6dVzc3cWlgvp/Q0aNJt9SWnApFGWoVlmTpAChIUZneqRfPvp9UBoyn1y5cpnAwJPs2vUzbm5uBB4/joODg+EARF8GOsqiyx9jWpqCw4d38e23U/Dza8Qnn4ynQYNWKBQm790shjS7ZpjUcDBUGa5P9kit2Z49O8bly1MxMjKlffu9lCnjY1AX0+xO2dkvWbiwEjVrdqRWrbbY2Ljg49MEBwf3IkA6IuIRjx7dxMXFmUaN2pOdnYqVlSlWVtZF0jU2Frh69QL29rYcObKPFy+e8OuvRzAyMiqIV8TO15BFpr6F6vuCbE3S1WfHK02LSgSQly83fFLRJENWTap48WlpjD9wAFNjY7YPGVJws1aekRFrz57F1dEReysr2n33nWgSvtWqMe3zz7FxdKSOjw9uXl7kmIhrTMWusxe7NljfBppYcaUAkCEAWRc4kprvxaYsMb51aTZ1lVMfIHz16jqPHx/n/v3dyOU2DBlyltKlXXQCY+36kALIUpphXfWRl5fH4cP7mDlzArVq1WX06Ak0b94aMzPDDmdJDTMxgKxP8aBdB/oWUGJhJVFAAPz++2lmz55Mfn4eO3bsoXbtQi2tFEbU3DF99+YN7tWr06Z5czq2aIGzoyNN6tShXNmyRQr85MkTrt+/T5nSpWnfsCEZyckY5+djo76mT6OSLgUHU8rYmN/u3+fa06ecmjoV43wDd2m1f4v9/1dJCoBrN8LMmcBfAMhiJJPJEoAZwGYgAlgnCMJ3qncWQAwwVRCETaowAVgKTAH8BUEIUoXv4B8GkAESc3JovG4dA+vWZbrabkdjNIQnJODx5ZeYGBvT1MuLulWq0K9pU6pVq4aFtXXRrUBdy2b1//8DyDqzlwoXY1Em5DFk6FBsra1p3bIl58+fp2e3bjTx9//bAHJycjp9+wYgCAKTJi2mXr0mepvgvw0gp6dHs3VrVbp0OYKLS4sCbVRJAbKVFWRmJvHo0V5iYh6QnBzF06cXad9+DO3bf4anZ1WuXTvC0qVDaNKkK2/eBPP2bQheXrWpVas+Tk5u1KvXCAsLS65ePUleXi716jVCLjelc+dmBAe/xdPTvUj+/wPIOqgEABkgJTOTZitX0tXPj/k9ehRNQy4nKikJ15EjMTE2pqGXF/Vr1KBf69bU9PbG3M4OExOTQrlpa/s/gKzF94cGyOqnIAgcOzaG/HwF3t49efHiFDVrdsXTs+XfBpAViiz69+9MWloqc+YsolmzVnq7338bQE5MTKBuXU+2bNlDu3btMTXVr9FXk7ZJYWpqKnsPHODevXtEx8Zy8cYNhvbpw5CuXfGqVInAixfpM2UK3Vu04Pnr1wS/fEntKlXwr1oVVwcHGlWujK2lJcdv3CAnK4v6np7YyuU0mDuXkCVL8FS7XPz/DpBlMpkx0BvYCdQF0oFQlKD3jka8k0CcIAiDVP8Lqu/6AA6CILRWhe+gJAB50iSDeRUlqYrSGqn1N2wgJj2d1/PnF42n6u1rL13iUFAQO8eNo1zFioXvpAyvVN+q7cdKIrTFhKp2EdTbKjqlg9S+o1inlcpUCgSLST+NtPL1X1RbYlJvicfFxeFXvz4O9vY8ePQIIyMjIoODcVL5ySxSTqmZSqMsb9++5e27SKytHXF2duHSpUts3rwOOztHMjOz8Pdvgrm5NVWrehMTE83KlXP45Zc75OcX97UpBXilQLCaShJfHwDQfpZUw6EL+z158it//LGB/v3PiU4yUkBd3ySTlhbKL79M5+XLOygUOeTlKWjVqj9jx67G3FwgOvoNjx5dJTb2FdHR4dy/f42kpHjatetGaOgTgoPvAQKjRk1lxoxZxbpsoT/1orPovuPH+fP+faq5uzO4a1dkauexUi5H9Bk2SjWg1GpCTRs2ACUEyMOH60dp+uSk1DuN361Xr+ZueDiJ6gN2Wg275fJldp4/z44ZM/CsWVP5TsRDQ0qaEXFxyiBNYKx+6rKvBcMAsj6Zq69vSr0zVGMq9vv/2Dvv8CaOrQ+/kmVbbmDc6MZU0wwYTO+E3sF0QifUmIQOoYeaEAKEFjoEQkIndBJK6L33Dqa5AW7Ysi17vz8k2St5tVoD9ya5X87z6NnV7OzMmdmZM785c+aMieTwhBJsYQtkW6aVkBDNrFnlcHb24NmzywDMnfsMHx/zyaRUmaVAs0YD4eEvCA8PJVeunHh6+nD16hmWL/8eDw9vkpJ0BAZWxtPTm0KFiqHTJTJu3GAOHbqO2soBFtbKLofNbIFhqfmqJcmV3caWG8WKB4Dff9/PN99M5dChk7bBsGUiNj54aGgoI2fO5Py1a7xLTEQFtKhZk+UTJiAkJvI8IoKTV67w8OlTXrx+zambN4mIiaFlUBCPX73i7IMH2KnV9K9dmxnNmmVK31pFb7t/n7MvX1LEzY2+JUpkeCFRCqg/BGRLdUSATQa/+tZkqKKhUKVSBQCnAS0QD7QRBOG6SqWqZowSbvFKOJCXzPQVcEulUjUWBGG/gnz7YbBtNtCDB0auP1C425raazQ0K1qUtVevSo/mQEijRoSYbHrE+clIVcuNFdZm8UqEnrTGT228OqAx2q2ZThnTaEQA2pakkMvU8l5O9agQFMseX2stf0syVpyXuzvrli6lntFVX1paGm179OD3LVtwdnZWPMCnoebEiRN8++1szp49Rd68vkRFRaLT6Xj9OhJv75yMGDETQbBnz54N2NnZM2vWKIYOnc+LF0+4efMO+fOXNCuSrW8rVTxTmLgZWjZJa/JQbuCXm/vI8WMi8fzJlE9SUgqPHx/h+PFJFCxYH61Wmg85gCzFh5i8vAozZMhmNBqIirrLs2e3qFq1uREAqXB1LUCNGgUk52xRUc/55JP8LF68lUGDgunQoTcFCuQ2S9/kX1Ot0Zsx1enzz6lctiw/7dhBckoK/Zs0ySiMGBCD+X85408lWuiPTTduSI/aUjJRzoDSWnwTaTQ0LVWKKy9eSKvagM/atuWz3r0NYSJtcZq7wfWSCfhGRZnfi5/ZAsji6perYqVKJ2u6AFtgUUmV2hrGrPFnmYZc3xaXU/y5zNNxZ9SoXxg9ulp6+JIlbZgz5zDOzm4260P8/OLF0yxfPoczZ/4kf34/oqIi0OkSefMmimzZsjNhwlzs7R3YvXsjgiBw7dp5xo6dQ1RUBJcvX8XfPzATj0omDHJzTlvyUm5uKlV2W9rz9Mm3pe9xkRA1HamdrE/j+PHjTJkylqCgylbloVVgbKvwgG+ePGxcsAD0eh48fcrV69dpYTzyWWVvT/68eenk6Skpp6IiI/H+/HM29OlDl5Ur6VuhAoW8vAxx5GalOh3Bu3cTkD070cnJxEdHM9TXNzOPSmYuSjVIJrKGyxSQIg2ySqVyAHwBdyAY+AyoA2QDTgK+giA8E8VfDeQWBKGx8b8AtBcEYYtKpVoEVAfKA6vIiga5Zs2sgTQ5SSQztT/x8iUNf/6Zbxo3JqRmTfN4Ur1BfLUMc3fPOPddtLEEpJd6xG3KROL/coJTrui2xkSrJ2bZIgmGsgyGs6r2lCKLNPp+8QUr16/HwcGB5ORk3Fxd2b1+PbVM39NK+zB51vj666n8/PMaevceRN++nyMIjuh0EBr6iOjoGAoUKIqdnatZEebPH8G7d/F4eOTm5ctHfPbZDKKjI8iXrxT29g6Z2HzfasiiPMxEWRmIbfFgur98eTtr1/bCzS0nzZrNoFSptqhUKpsDj1TeMlY5smHitKS6t1YLzZr5EB0dCcCnnw5l/Pg5qFQqyY1F6RPK+Himz57N1h07mD5kCL2++ooK/v6M6dWLKgULcvLcORKTk2ns728wJ5FDakpBsyWakyrouXNAFjXIuXPbVnUpMZ+SUo+K4l948YI68+YxsXVrRpmOk7W0TxDJRrHWOFZn6CtiMGwJjMX/lWqQ5ar2fZUStjSnUjLXmkYxK8OY3KKd5TPLe7nyie/nzfuSzZvn4+ioJSlJh5OTC3PnbqdmzQaZ8hK/Z0pnyZI5rFy5gB49BtK37xDs7Z0AePbsCVFRb/DzK4KTUzazup8/fyLPnz+lcOHS3LhxjuHDfyAq6hWFC5fCwcHRqozMqkxUqoC0MrezOfyb4jkgsVHTSkb7Dhyga58+eHh4MO3rr+nYsSMqlYo01NIH+8gVVEnhlQJTi05UfMQI7hpd4X5WtSpLO3Y0rKjZcNE099YtVt2/z+wSJehz9SoBLi6M8vOjpqsrp2NjiU1MpJlWa5Ch4k4qNbO10pnFeFZcYyZEkr751PSBEhLSw6VkqKK1bkEQkgVBeCAIwgVBEMYCV4ChQJgxSi6LV3zIrFU20RSgMNBVSd7/bXoWG0uHrVvZ2r49n1ep8lez8y+9Jw3s1YsSxYqRnGxYMg8qW5barVuz/KefFL1//PifTJ06m8GDh+MoOlbN17cQJUsG4uLimumdNm36c/ToVry983Hy5E7atctH377l6dev7Mcp1N+UDhyYzbp1fQkJOci4cXcpVy5YkV/Mv4K2bQvF3t6BkSMXcf78EZYv/0bRe6OHDqVlw4Y07dePxjVr0qhqVXpPmYK2QQPqjh1L00mTmLljB6fu3iUqLg5BEBAEgWS9nnfJyTyLjSXGck37f5RexcTQZtky1vXowcimTf9qdv6l96QWLfpQpEgASUmGdluyZAUGDGjIzz8r80l94sQRxoyZTkjIaJycnNLD8+f3IyCgPG5u2TK9Exzcm5Mn95Mjhzd//rmTxo3z8OmnFWjePAuuFP+BtGDJEj7t25dd27bx4N49OnXq9LeVoddnzSK7kxNz2rXj6suXTLLwQmONhhQvTrcCBWhy9iz1PD1p6uXF4Dt3cDp2jNqXL9Pizh0mh4VxMj6eSL0+Q4YKAu/S0niWmsrbNCsThf8QZUFnZEZqwBF4jAEkNwDOA6hUKi1QExgp9aIgCBEqleo7YCoGs42s0YdokKVINLO6FB5Ox5076RkQQNNffuHTgADWdepkHk/pOo04/fQ1ZfMT5GzR+ypYpbRxOp28BlmrzTDPMPFqyafVWawF2TzGNqsFM5GtihOlUaF0aW4dP86Js2ep2bIlR06epGenToyaPJnnL18yfvRo7C0qLA01er1hFhoa+gQXl+xZ2uTj61uUSZM2MGxYI2rUaEnduu35+utPGT58odIVHcl0bcWTM2OwRlnRFlvmJQ57/vwWe/ZMZtas63h4FPpg7bZUntbesVYGeXGgZfr0Y0yb1pzPP1/EwoUDyZGjOE2aGE5+Eys5XV3VxnvDQD5h2jSmfP89a7dvJ3uvXiycPp2xM2dy+fZtAM49fcqOS5d48OIFupQU9KmpCIKAvZ0dHk5OpKalsbdtWwJdXMwLZbJFETMst9TwIRQdbUjHpOqSq1iljUh0vRYeTudVq+hYqRLBK1bQ+vJlto0da3iuwGA1TeOgeK+jElKyKmtNkyy1Umt5r9TcwJYphmV8KY2zFB9ZtXmVK4NlWK5cARw6dI3r1y/RvHkFLl48RseOPViyZDKxsS/46qsp6coDqb74/PkTcuTIbhYmJx90OnB392P69M0MHlyPChU+oWnTvkye3IGRI1cSH29dEapE7siRLVhhufhh7YBDZ62FGaPU0oVFRvcfPWL8lCmc3rOHkmXLZjIOV0tVri2NsBKSakgK0rAH/hw/ngazZrGwY0eGbNxIyVy56FSypGx2dsDIsmUZff0661+8wMnXl/mlSzPxzh3OGg/TuqrTsT8ujgc6HYlpaegFAQGwV6nwUKlIAXa6uFDZQnOcatQcp5GhOZZCK2pjPHViYnpZ5MjmMKlSqWYBe4BngBvQBYN5RTNBEASVSjUPGKdSqe4A9zC4fIsHNsgkOwcYCLQGDsnEM6PDCQnUzZ493W2QInMKy3tRmD4tjeexsdx4/ZoVt29zPjycaTVqsOzaNQDK+PhIr8eZ0jSFSfEhfmZsfA7GzqM32gpLjYtabeasQFnbFz+zHOPEeYn7gmW/kJ9fiNxhyYFgOcbfBzEpHbAlqHr58iycPp3Px41jza+/snfjRuYvXUrNxo3ZtWMH3qbNeyLWoqNjiIqKpFq1epj2YsmxBRAW9oxdu9Zw5coJOnUaQuHCpfDy8gQgd26vdCGaxTmbIiD7PlhKCQ6T+1R6PUREhDF1al169pyLr28hyfi2lKZS+cu9o2ROZW2wM7V1F5fKVKzYg0WLvqR37x+ZO3cIT58+o3nzENlDDdzdnXjxIpLPPuvFiStXuP74MV06dODPNm3o9MUX7D99msZVq3Lg22/R2NnhkJSEo+kM7fh41p87R61ffqFjiRJ8W7cuHibmxEesmpYpbQmE96SDqanUFQTspB7KoTMrSEyfmsrLxERuhIWx+uJFjj98yJRWrdh06RKCIFC2cGGbaYjD3kcZIKcbkZqYSolyJXJVr8/cb8R5Ss1xlIguSxksTkMqnpStq5x/cGu6IiVDpkYDdeuWZ9Gi5Qwe/BkbN65l69adrFy5jGbNqrJr1x5y586w4zfJAJ1Ox8OH92jcuAliK04pOWL6Hs+evWTfvrVcuvQnLVoMws+vFFptDgDs7T3TAbKUMiAre3ls1YfcZEbqtG9TmFqXAFEKdoeKMnwdF0ettm2ZNnQoJfPmNUxglWCYrAp9W3hI6sOItWumq/G+XLlyfNm6NX3Wr2f9kCF8uWoVoXFxjGrUKOM9CdMxlUbDmy5d6HPiBBeMQLhl3rwcrFWLT8+eZX9UFPXc3dlTtChatRpNUhLa5IyN01sSEqj/5g1t7eyY7eiIj7Es6pQUQBoUi8n0XKmbACV+kNcAdTGYUcQA14DZgiAcMD43HRTSH/ODQm6I0ki3QRaFDQQWA3uU2iADfFehAsONp5/YNLYy3qckJfHr3bs8i4+nVt68hMbFcSkigqXXrhGfkkJ9X19aFS5M77Jlcba3p8POnWy+e5eYYcPIZtL2yPUeW9NKy55ksknWqxXbyslhSjklkFINh2XxpISIVmsAxrdu3WLUqFH07tEDR0dHmjZoYL4cZGt2mxWArGCio4SevHzJ9HnzmDFxIl6enoyYMoUr169zcP9+BHuDFsRU96GhT6hTJ5CrV19i8FpozvbTpw+4efMSOl0Cfn4lSE5OokeP2pL5enr6MHbsd9St2wwvL49M7Ga1eFnV/Noiuc8it7FJp4MJE7oAMHz4Btn41tKwNtjJtXFb74IybVBCQhTbtrVHpUqjRYvv+Omndkyb9jTLXdnd3TgwAknh4RStUYPaQUGsmz1b0kA2+uVLcoSEEJgvHxcHDOBaWBjFNBqcTDu65Ta6GOlSdDT7IyM5X7w4VapUYcyYMYptkAG+zpaNCSbH/uICyZyEqXd2ZvOtWzyMi6OWnx8vdTouh4ez/ORJ3iYk8Enx4jQLDOSzxo1x1WrpvWwZqw8dImrzZjx9fDIq3jJ9CxvkBJ06k6cKqZPgbJ0cJ7Vv0pqzEVsA60OAuhTA0moN3liuXfscf//+ODioKFCgBc7OasW2rlLA2PKZnOy3pUnOtCcFeP70KZOnT2fqhAnkypWLCV9/zZHjxzl++HCGtwmNhjTUhIeHU6RIIZ49C0ejMTAp/gb37z/ixo2LxMUlkDNnEezsNPTpI23S6OLiTrdu3xMU1BInJ8+PMqTI2Ybb2lJk+p9+qqK4MSrZVCRipM+sWbyOiWHH3LkZDGVV6MsNHLY+tOV/WwOCqFzRcXF0GDOGmHfvWPHFF9QbNYrIdeuUn1AjIeuSExIIOHSI0s7ObDVp0y3qNPbdO7I/ekRBOzseurlxIy2NQsnJuKhUoNOl2yHLgeUbGLS+l4KDKVOmDJMmTfp4fpD/ClKpVMLpevVod+YMu+vXp5ynpyKAfDUigrY7dlAoe3Yex8TwMCaGkh4edPT3p2WhQpT28kIj6twAiSkpRCQkUMDT0zqC/H8MkPV6PSePHePbOXPYd+AAri4ubPvlF+rXq2edub8YIFsW5m5oKMUDA4mJjMTVwwvIqHtBEOjQoSmBgZUYMmSKGds7dqxj5swvqVixNgcP7qBcuWr88MN2duxYQ+PGHfHwyMHTp/c5f/4YO3as5fbtK+kslChRhhkzFhnT01O8eGl8fLyyVLy/E0Bu2TIv7dsPp0WLYbLx/44AGcDRUWD8eDWjR99h2bKGVK3am+Dgr9Bo7LMMkJOTk+nZqxcnzp3j4KpVFCtYUHoHWXQ0527epPPatbxNSOBtYiJLGjRgQPHi5vGsDLAP3r2j5blzuNvb02LkSJo0aUJgYKBigHzJzY0m796xy9eXik5OigDyrdevabN7N7nd3Hit03EjPBx/b286VaxIi4AAyhYogMbk+91YuUl2drx68wa/AgXk1XD/TwGyIKQSH3+MW7cW8OzZb6jVDrRosY0SJZqYxf87AWTLinj2/Dm+/v5EvniBl5dXeiKmTdrBwcEULFiIyZNnAxnfYM+eLYwZ8xmVKtXh2LF9+PmVYOHCQ2zduoK6dTug1Xrx+PEDbt06zuHDP/Hw4YX0PPPkKU7PnktRqexISkoib97SODv7/GMBcvEuXejcsCGTBgzIYOgfApABhMRE1HXqcGnRItpPnUqHGjWY1Lw5jvb2WQbIqQkJfHb6NPsjIvgjMJBSpkNKJOr0ytu3dHj7lqi0NN4KAnM0GoYZ87QFkB8BHTGYfLSZPp2GDRtSsWLFfz5AFkJCWH73Lv1+/50z3btTuYDRcF+mAfnNncvIKlWonj8/gcuXA1Atb15Odu9uiCDReJNTUzn98iUeWi0BpuUjKbQoJf2UeLYQSTWxT2TT1crmUTN2P0SAS4FgOYFhCnPQZD4tJzkhAZf8+dHr9YTfuJHhb1iOSSWMWyuEZZhUPLlw431UfDzeBQrQs3t3xk+cTMGCBc1k2ZMnoTRuXI3u3fvTqFEroqNjuHv3NitXzmPQoDHUrduUwEBvFi/eRLNm7SWze/fuHcWKueLi4oqHhydqtR1PnxpOWq9QoSIXLxpch1+8eJm3b9+SL08u/P395dGftQFLaV1aMinxwU2ePKTaolim7dr1K6dO7Wb48PWZ4isB2dbAs9Rg977tX1xcqba+ZUsg1apNJW9ef/bvH0yOHL60bbsiSwDZySmVUaMGs2PHRi5fvoqfadIjPsXC4mSLFL2eqOfPWXr0KHqdjmm1a2euYFEFJqWmMujECXY/e0avYsWYUqECjitXAln0YlG0KOuSk+n+9CkHS5fmE5MPd6kCG9FZmR9+oHOFCrQpXZoS334LQKk8ebgxc6Z5hYpm3Hp7e07euIG7hwdlAwIyx7PIU+wCU87xh1KnIFl1FKKkHYrv5TCGlIm1HLi1t09h0SIfkpKiGTnyKe7uvrJDihRolrNBllKEmB2lblk48b1M54qOicGzSBE6t23LpK++omjhwmYd7XlEFLVq1aBDh660ahXM27fx3Lx5m9WrF9Kx40CaNu1IpUoejB27kubNe0uOd7GxOvr0cUOttsPdPQ+CkMbr108ByJ8/iGfPDOA5JOQCOl0MLi558PYuLqs0Ujp0u7tncslNNlcj7JLq21KAUEqWixjaee4c644cYfO4cRlMZmWZ0dbMTKoRyM2WxCQniEXX6p068WWXLgQVKcLns2eTXatlw7hx1gGyRFiaIDDy4EEWX7/OzXbtKGRSWlobhHQ69IJA5Lt3/BQbS0RSEnNy5JA1aUkRBL5ISmKzXk93rZZpLi44RRo8Gn2QH+S/Dfn58VmRIgiengw7cYKTlSsTm5iIq6NjZofixobZvlw5Nty+Tf1SpSjs4UHebNn4qU2bzI1D1JBnnDnDwsuXeZ2YhRB5gQAAIABJREFUyNuQENylDHhNH8sWyWlMtVrUroZ7Z2O6GlcHyfZuurcFJEwk14+kwuTyNPOfbDG6OKSlcWLLFhzs7fFxczOvF1sqQiWk0WSOLw6Tmv0qmFF7eXkR+eIF8xcupFy5MuTJk4f+/QcTHNwZb29v/Px82bJlLz/++ANt2tSmaNHiFC1anJEjx9O2bSdGjhwEQHBwG6vybO/eHQC8exfP2rW/0LNn+inr6eAYYNWPi1lknLzpX77EThCkEaHpqmQZwVZjkLEHdTCOEBpX50yvirMuUqQka9ZMkWwzSj+xXPOQ0/DZWlWRIqk2Xrz4ZPbv70W1akuoUmUTO3eWYc+eeVSv/qUkQDaNhe7ukJAQy5UrO/nppyk4ODgyb95G0tJ8iTDKf3cvZxzcEzJegHStsj2Q292dCvHxzN28GfLlMy+06Hrwzh2G7t1LCW9vHo0ahYuzs3xB5ShfPrq5ukLu3Iy8e5dLVasSl5yMs7s7dqZ0LdBc66Agtt26RbvatfHPnRsvNzdWh4RklEkCEc7ZsIFv163jTWwsr06cIJe3d0bFi1GdRF+VG++lRIGlbJQKM5g1mKchpeSTa1/W8jeRnJJBCohlPLOnd+8/cHQEPz/f9HimOHIaZKmrFA6SdOOpdPlG6j/g7uhI5LVrLFqzhqDatfHx8mJAr1582rkzOX18yOfjxZ7t25m7aDHNmtWjcOGiFCpUnEGDhtOoUVe+/XYMAA0adLHKxqVLe0lL05OWpqdNm1ls2ZKx998EjgFOnVrNxYuG1blhw5Kws8t8JLXYHl1uiJD6VmbA2HSV8i+YRQ1ySRcXzt+9m+G30BoYVjJQSzUCmeUMkyJEb6Wtp2/YJ8O5gNbLsGE5vT3pdEyYOJHuffsyZ/x4Nq5YQdlGjZi5Zw9ju3bNrFmxAMhxOh17799n0oEDpKWlsbVtWwoVKiQ/szVqljVAbp2OoLdvGff4MeTKZT5YmEiv52hSEl+Gh+Or1fIwf36yiTxTydE/S4O8dSsAJ+7do+bYsUxo1455e/YwrEULJpt8bVoIgLS0NHqtWMGV589Z06ULgfnyWVdJ6XTo9Hqc5s7lm1q1+PbcOQ63a0cZsVZUbkamVCJKST+JNbIEnXVN3ocAZFt9y/QsfQlJbiRRCtKkwpSovi0Zlnqu5JlM4VMEgbNnz7Jw8RL27t1Dnjx5adWqDRUqBHHx4gUSEhIIDu5EpUoGGzlBEPD19UKrdWLKlJmEh4fh4+NFu3YdcDHZrBuzuHbtGkmJ7yhfvjx2goCQkkJcXBw3r16leuXKoNORmpTEi7Awsjs4kN00yZBChKb/cqDZRHq99TqSWk+0MhJbHm4jvi5dOperV08yceKWdBaVLF/beia3gmJrWdxadUiRacyIiTnNzZvtqVbtNnZ2rzh6tDKffHKU/PnLWFYHrq7w7l0U69e34tmzy+TMWYRGjfpRt25Pcud2NYsv1kCZwpw1yWYDa/y7d+SuUoXnmzeT3bSkaCzoqdu3+eXoURbu28eWYcNoW6mSua1/hw5AFjXIvXqBVsvF+HiC1q1jSu3afH/mDP2qVOFb05HQFvJMEAQGrl7N8Vu3WD10KJX8/a0PwhoNer0e+8qVmRoSwqJff2X7smVUKV9ediBPMw7Gtr6/DVer6Vel8UD5CoWcVlJcLFsAWQ7cysUXd1VraUgqNmxNqrNaaIkK0APnr15l8fr17PzjD3L5+NC6aVMqlS/P5bt3iY2NpV3HzpQrVwMwfJ/Klf2Ii4tlxAiDr2NHRw/q1u1AWpqbmZx5/vwG0dHx5MtXnuRkDYmJaaSkJBAaegVf31rodJCSkkZ8/AvUajccHd0lx0I5bbGXV0ZfNVmLuLtn3GfTGsfCrDrglpt0AEtPn+a3GzfY+9lnmRkW/7cGkK01GimzTpNpp8R5DEqxhFQbB7h79wrNmzfi3o0bvA0Lo2Lduuxes4bKJs8WFnUU8+4dLceP59yDBxTx8aF3nTr0CQoim0m+2bKNEtVvUmoq3tu28aBhQ3zs7MwKcS4mhl/CwpgXGsr60qXpki+fQYaaGN+2DfhAP8h/N/L19qZ3/fpExsayYuBAtpy27i1OrVazpls3RnzyCU2XLiXFtBnGCqUa/eyNPnaMYjly4Ggnud/7X/ofInt7e2rUqMGGDb8QFvaGFSvWYGdnx6pVKxAEgZw5c9KlSzATJowhLi6O1NRUAgLKUbp0Gfbv301o6BN27NiGh4crMUZ3NSYqU6YMlStXxt7eHrVajZ2dHe7u7gZwbCQ7Ozt88+Y1gON/CN26dZnvvx9Gixa9/mpWPpiyZ6+Kj09rTp0qzps3p0hJiSYs7HezOMnJ8Vy+vJKVKxszc6YvuXKVYPbst0yffo2mTT/Hycn1vfJ2dXGhW9Om9DCZK4go+JtvcHF05N68eQRXrvxR/aLmcXWlb5kyPI+NZXXLlmy5ft1qXJVKxZKBA5nUqRPNJk8mUc61CxnO+icsWEAeHx/cXN+vbv6lfw5pNBqqVqjAugULeH3nDj8vXoxWq2XVhg2kpKSQN29ePv20C2PHDiUmJgZBEChWrBSlSwdx9OhOXrx4zKlTu2nSJBvR0RFmaefLVxo/vypoNA5GGapBq82Gr2+t9DgqlRo3t/w4Orr/t4v+3nQzLIwBW7bQu1Klv5qVD6ayZcvRvWtXipcpw++HD5OUnMyuP/4wi/MuIYGf9u2j6fjx5OncGV8vL96uXcv1b75haJMmZBP5ys4KOdrZ0c/Pj24XLmCp8O1slGu3q1Wja+7cWZah/zgTC/R6fPPlY2VAAOj16PV6hqxZw8mwMH7ctYsC3t5M+vRT7EVqAZVWS7dGjVhw/DgnXr2irp9fRprimZ5Gg4tGQ1CuXFwIC+P0q1cUX7uWHsWLs7JRI+zUaukpli1zC1Nc00Ah/i/1zDi7cTaGad0dJLUeWdUgW95LaZDTbdT0yVlXW1uW11pYVkwsrJGlOYVYYypnaiGTt1qjwVmrpka1itSoVhHIOBWwb98+DBkSQv78nhQsWJC6detx48Z1Vq1YSt68eQkNDaWo/++4udhnaN5NWUnVny3VllQ8a8+s1a2UtsGSDzFJxDctpWlErgkBfHwMxwF7eeUwW7q0JPFnES+Bi/9bPpNb6ZAy4VCyPG6tuKb0vLwW4uTUndu3+wDw9OkBHB0r8erVRpKSHhIRcRgfn6oEBg6lWrX1eHt78eIFxMSYW0+AvAbZ3d0Bd3eDVwdno3pq3pIlFAoI4C7gX6RIeiG8vb1p37EjRYsVy8z8+5KfH2i15NZqWV68uGEfRFoaXx46xOHwcNafPIl3jhxM7dQJBze39ApSaTR0aNyYRX/8wZGHD2laq5ZVTZe9VkvdKlU4cuYMl27epHSDBrRv3pwNS5eikeqTYNbO5NqTZdux1lVM9a1Ug/y+ylRbslSJllhOGWgrTNacQo6yWmiFmmQAjVZLUJEiBJk2nhqZ+6x7d4aMHk2RIj7kzZuf2rU/4fbt24wZ8w358xfk4cNwWrbcg5ubFqPXLkkTL6nvrWQslPt+tlZpJStaiaCSaqBGcjcq49whQ2MqRbZUuJYTULFJqCgN0ypNvIXiW7ziolReSrXJseO/p1nLbgwb1pe4uDgOnTtHkwcP+HXrVh4+eMDB48cJKl2aEV26sGbGDHxMJl2mzLVaczMKE3MKxsBZjRrhv24dV7RaAnPkSOfZ++pVgsuWpXiuXNL1Z4P+WSYWL15IduJh06fz6NkzfjtyBIDcXl7smTmTQNNZ3zrDzsbao0cztmVLmhQvLr1mp9ORnJrK1ps36bJnD7Xz5uXUy5ekGOsoedAg7E22K1KdIStmF3LPZCSiqZHbWLnJRNYAstUjpqUysLQvtiQlYR9iYmHtubX4Smy4lOQlIkEQuHDxIseOH2fEmDF4enpy8/x5Tp09y+Tp07l68mRGZIt6e/v6Nbfv3KHnqFHcf/KExjVqMLRTJ+qXLWuwoZdCeDaWl9KvctJfqj1JmfbIbDC13EwaHw99+3bBycmZESPm4uLiZpU1a6YQUrLPmhmf3JK5Ek8wtswu0ieG6jgePjTY2Tk6FsXDowPu7hVwcioMRPDu3VHUageCgibIVhtIn6RsbfVz/PgQkpJ0rFj2IyqVitiICAqVLs2FI0fwM7lkM5GpIEb3aVkysVi50hy5GQs+ftMmbj57xo5TpwxJu7vz24wZVKlQIf19QRBoMnQo/dq2pW3Dhpkrz2SylJLC7uPHaTtwIDUqVuTi9eskGj9IwpMnOJlWSqyADNOkVK47yE2GrHWfj2G1ZEly2Eiimq3aCFvGlwPZUumKxVYmgJwVMPyhdktSTFnIHUEQuHT/PseOH2fYqFE4ODhw8eIjLl68ycSJg9i+/YHkkeIAkZExPH16h127+hMWdhU/v4aULDkEb+/GqNV2kjoDS3YknKeYmVOIr5ZmF84akecKKXcrci5VJOq27/bt6PR6FjVoQHYlM0M5exFxYSwZ9/IiQe9gxq4U25KTAxEL1oYUMWyxs0ugaFHDdy5UqDBt27ajasXyFClcmMjQUE4cP45er2eqyXOHLeGvpNPr9Yzeu5cX0dGsa9MGlUqFLiUF37lzOd67N/4mgGxZj8MMHpj+NzbpWRphGyvHM1cu5v70EyP69WP28OH8tGMHrSZMoFeTJozo3JkTN28yfvVqVGlpVC5bFsRnfYsapT41FceZM6mSJw+727en+ebNZtk/TkigmJxxt5QW0xbQtJaOlTRMp+o4aDQ4WHSoNJHFjKKDPHQyYNVaD5G6t6axtSZQlQhaW3Gs5SlFGo1y4W6DVEDFcuWoWK4cQ/v3p0KtWuQqVIhJo0YhpKWRFBOTYZYj+n5dvvySX3btooivLw9CQwHYf+IED548QQWULVyYMgUL8vL1aw5fusS9Fy8AOD9jBkGFC8szldWy2ZoQSAyYpnan1WZsfpk4cQZjx35Oy5bF+fXXg+TPX0IWfEjJOUt5KFYiiIW2qalLaT3kimJLyZ45zI1s2eYTG/sFjo41iY4+TmTkSkDAyakEen0YKpUaP78J6fxYA8jx8RnjlIlXV1fze9O1T59ptGtXkXU//0GdOo3Zv/8oen0a2fIGkGBF6ZF5G5IC8vKStB/29PFhx8aNDAoOZtFXX7Hp998JnjSJnq1aMbJHDy7eu8dX8+aRlJxM9UqVzEdLEaWp1TgGBFC8cGEOr19PvU8/NXt+7949ypaVOHpd1J/FMg5A46rOJK7fB+dlFSBbsiZF7zMvlwPISkC2LZFnGgfSxwCF2jLJ8Uv8LKuVJAXqtFpUQAUfHyoEB/NFt2406tKFgIB8TJ06AwcHNdmzJ6LVOmVKYtGiPhw+vAoPj4K8efMYgCdPficm5il6fQg+PkG4uJQgKek1YWF/EhNzE4C6dU/g5VVdsihSk3A5JaO7u6HXZfPykleQia/WZvJ6PZPr1SNk7178ly3j965dKZMz5/uPVTIzrTSNAzoFnmAsWbQka7bv4lUbrdaZiROXM2VKXypXrs2pU2f4+ed16PV6SpYswdvXr3kbHc3U8ePNM9VqpZG6wg0CE7t2pfLkyWyPiKBthQocvnaNt4mJ+JcrJ68gk6F/FkC2QhGvXwPwxjgl6t66Nfk9PGg5ZAhfr15NPm9vFg0ZQvPSpQ2aOonljJexseSdPh2Ar2vVoravL2W8vLgWFUX1PHk4+fIlex8/pphIff8v/f8mtVrNjg0b8AsIYIrR/VWDDh2oV60aK3/5heevXtG1dWtyenqyae9ekq5fx0GtpnaPHhy7cAHd6dMkJyay4+BB7DUajl6+TGJSEkNbt2bgIsOO7F0XL1K+YMG/5WYBX18/fv55NytWLCI4uDYrVuyhZMmKfzVbH0wuLkPQaqsiCOdwc+uKq2shHBz80GohNLQXTk7+Hz1PN7fsDBw4gSVLZuHi4kr//p0AGDSoBytWrM7specjU6RRdkYZbeg7NGxIrpw5aTtsGDNWrCC3tzcLvvqK1p98gp2VfRmRb97gU7UqALNGjqRmxYoElSnDhWvXqF6xIifPn2ffkSPSAPlf+n9JarWadStWkLtwYSZM+AqArl0bU758Hfbs2UBo6APq1euEu3tBDh9exZIlCSQkOLFyZQtu3drN2LExxMXZcfv2dlQqDc+enSAlJY5ixYZw/nx/AF68+A1Pz6r8Hbdc5cuene2dO7Pi/Hk+Wb+e7e3bUyNPnr+arQ+mtm37UKFCeW7cOEnbtl0oUaIgfn4FcXESGNSvH16enh89TxdHRya3asW3+/eTx92dZvPnAxC8aBGbQkIMJrJZpH+UiUVMjGA2OTLNkFUigX31jz8oU7Ik6HRs3raN01evMr5rVzyyZZPdbTpn715G/PYbj0aPpqCzM7qUFLLPnEmycVNfcU9PUtPSuGdaFgDl6gElRmdSYbbW1JTMipSaQnwMUqp1eF91jYlsmUfIfRcl7yklY1n0ej1Hjh2jYefOmaKUK1GC0kWLMunzzymSNy/o9YS+esXt+/dpVK2adQM6vZ7tp04xauVKtA4ObB8+nCK5cllfb87Keth7mPZIaSTEbPz44w/s2rWDlSu34u6eQ/JzK9EgKzW7sOUbV0ppY40Py3sTWVZfauotQkNrU6LEbVxdvTJVWxatVjK57UpOTmLSpBacO/cH7dsP4uzZP3B1dWPgwDE0bdo+UzM1jaNZMrE4eVJSdjgGBZFsNPw8s2mTYaUN2HX4MH+cOsWEkBC8PT1l++fSTZsYMGECdw8epFjRoqSkpOBTvjzRsbEAlC5enNdv3/Ly0iXzgljeS4VZ6dtpqD9Y7Eh1Qcv79yWlWmW5Z0rEmRIewMKkTqoirBlqW7NbketUUoxYdhZjh9Dr9Zx68IDaJm9UIipSpCR+fmXp3XsiLi7FiY6GN29ecPPmVUqUaGp2kIwlay9e7OXChaGAik8+2Y67ewmrbFj6PLYWZvpvCjOdpGnmG1mJetbCfGDFmTOsPnuWnd264ensLG8nIuWxQsZeJAHnTOYqFq7ZM7Fo2TzE7U7G+ZasY6Tw8AfUr1+Za9dukDdHduv1YcvA3Epn1qem0mbaNHafO8egZs3Yfe4c+by96de0KT0aNMhcj7UMGz2tydB/FEB++tQcINvZpWBvb09Y2HN+XDKf2d99h1qtpm/PnswZPx5XU9lsjKDHbt+m7vTp1ClalJ979iSXiwvPo6PxmzKF7FotMTpduncLwahlBqRBl5I1MilDf1tgWAlAtsYX2Jb2SgCktedSI5TpmhWjVGt8yqEX8f+sAmQl9SZHFh1Vr9fzMjycFr17U7dKFQZ16kSfceOY8cUX1DTZcirt7MZ7ISWF8T/9xIxNm1jUvz/2goBWraZS4cIU8/Y27Mq1BZClgLJUmBKDSYl2moYanU7HkCFfsGnTLwwfPobPPx+Kk5OT1eKlpKRw6tQpzp8/SVjYc5KTU6lTpyXVqjWztj3ALOx9ALKUKaDl+G4iy7FJEFJ48aIWOXJ8iqfnYCVzCMWDhjjM3j6Vd+/eAgkMHlweH5981KrVkv79v870KUwelLIEkO/ezSgUhu9gb2/Py9evWbJuHdMWLACgV/v2zJ04kezZskknZtHezly+TO0uXQgKCGDzkiXkyZmTyNevyV2xIjm9vHgZHp4eVzCaDykmOVmkcPIrNj9T0gUt7y3pfZ/JiVJbc3ZbIjmr+Zu5gQN5gGzr9BXxLi85sCzVSUTALjU1lTCg1ZAhBAUGEjJ8PIMH96VXrzHUrNmQqKgMu2Qx4JMDeCkpApcuTefcuQnUqLEABwctjo4O5MoVRN68JVCpVJL9Um5/gbVn6vhYc0bkALK4/vR6kvV6hq9bx9ozZxhWrx4j69fHxdHR3PRFJAT0qamcefmSE48eERoRQaqdHY0rV6ZNcHAmG+Q30epMANn0XzzBUAqQsyrXDP4I9PTtW59GjZoREjIy/ZnkOQtKAbIl6Q2ufV/HxCDY2VGsTRuKFShArcBAvhs6NHPHKWNw5fm3AsgqlWoQMBLIDdwEvhQE4biNd4SrV4X0Aenw4b306tUMJydnmjRpyZIlyylTpiiLFy9hy5bNRIS94uAWg39WayPou8REvpg3j91nz7Js4ED6LVpEeEwM12bOJMDXF/R6Et69Y/SWLRy4cYONn32WsfFPTEoFeFbVA+8TlhXKquoC84HGkiQ3/MkZ2MtpQKVGrPcpg0xZsjwpkOPNCr8tPvuMxjVqMLhrV9vxpcKMdXT88mWW7N5NUnIy9mo1p+7cwcvNjRWDBlHe2FYzkTWA/D6TMIUrGE+ePGHoyJFcu3GDcWPH4uTkxJ59+7l37y6CIODnV5Ds2XPw22/byJ+/ANWr16FAAT9SUtKYN28GU6fOx97ehTt3rtOiRU98fHJLbtKTA8ji+LbcaVpTgImbpCCk8eRJf1JSXlGixE5UKrVsNdgCz0qV90ePriE+/iUtWw7Azc0jU5xq1QzXLAHkFy/SGT1y4gT1goNxdHSkWf36rFqwgAqffML0ceM4cPgwdx884OSuXeaJWLTXRJ2OEdOmsXnvXpbOmMGomTN58OQJZ3fvplJgoLFudXw1axa7Dx5k7bx5VA0Kkk4vKyTXP7MyuTf9z6KsM5EcoLY111fKmq041viQCpMTl2YnpcppQuXOAJfblCYlT7TazBrQXLkMP+N9xz59KBNUjaFDR0oC5KgoZRt1nz8/w/nzC0hJScTe3pHnz8/g6OhGmzbLKViwsmxfVaIxlQpT6xKUAWQRs89fvGD4mjWcuXePccHBZNdq2Xv5MndeviRVECjo44NXjhxsO3WKPF5e1K1YkUJ584KDA7NWrmTG2LF45s/PjZs3Ce7cA19fX7N6U3KUu7j+xGTZZuTKLg5zcRGYPfsLQkNv8fPPB7Czs5M4MMfoPctYD+mMWFv6sbyXYHbDjh08fPqUAZ9+algBsyyIcRnub7NJT6VSdQTmA4OAE8brPpVKVVIQhFCl6VSuXIt69Zry+PF9IiMjqFGjAg0bNmH58mX88suv5MiRHUEQJP3eRcfFce7KFSauWkWRXLm4u3Ilr1694nV8PB2rVqV0/vzpcZ0dHVlgCW7+pX9JAQmCwNkrV8gjPmjmPalmQAA1ja4N0esRBIHl+/ZRdexYrs+eTTGjR4O/mvz8/Ni+eTN/HDnCsuXLSUlJoWGjJgwaNJi0tDQePXpEZORrhg0biZ9fETOZV7p0WcaNG4qLSzaePHnAhg3L+fXXU7i55frLypOWlsKTJ31JSnpIsWL7UKn+e3aMtWv3NBukPzZVqVCBNk2bcvXmTeLi4ylfrx71a9Vi6Zo17N24Eae8edM1zJYUGxfHuYsXmfrDD/h4enL3yBHexsTw9MULWjdqRJDIzlir1fL95Ml8P3nyf6Yg/9L/LAmCwJkLF1BrP9yXdr58VciXrwpgWhUSuH79J5Yvr0VIyHkKFizzwXl8DMrn6cnG4cM5cv06P/7+O4lJSTQqW5YBDRqg0mh4FB5OeHw8x775xuAWUoRIK5QqRcg33+CSLRuPnzxh4bJl/PnnKZyc8stn+h8kvV7PjBmDuXPnEmvX/mF1D8N/grq0bv1B7//XNcgqleoscE0QhM9EYfeBLYIgjJV5Tzh50tzEwsEhjeXLv2Hz5uU0bNiS7dt/RhDS8PHJxd27t1i4YAGDBw1KnwqdO3aMIydPsnzdOrxz5KBtgwaM6NoVlUrFlWvXCOzWjZvr11Myf36SU1JwMC5fv3z9moR37/DLmZO5O3bQqHx5yuS30uCyqhZQumSoUOthlQdb+UtdRUvoIL+yIZWEmjRpDbLCXalmV8t7qUzlNOpZ1SDLhSnQHAuCQNU2bXgRFsbZrVvJkzOndBmsqZkUmq2MX7OGqw8fsn38eDTiU4TEvH/MVQpx2krbnVJtn/F/msYBQRCoXLkS48ZN4pNPmkuaTGRFMWPNg5ClBtl0TUwUePnyEFevDsfZuSBBQRvQaJwVW/uYrnLKeyVmGtYsXwCaNjVcs6RBfvfOLCwtLY35ixYxd+FCglu1YsOmTQiCgHv27Nx/+JBvpkxh1JdfplfU5WvXOHD4MOs2bcLFyYnWTZowZsgQ1Go1t+7epVStWpw/cICgcuVITk7GwcGw6z88IoLoN28oWqgQc5cto2716pQPCMhgRKlW6GPQ+6pubaWlVO4YKZO3iQ8gKRlta0Vaqrs7a0XL3WCuNbZUPUZFyRu0Ssl5y0YstlUw2c2KNMh1Ro7kzqNHnD1yhAK+viRosklqQpW6ehRfTfT779N5+PBPQkL2oNE4KFpAs9ZnpbSimUwJsnBKnFWSYsTC/kMQBGrUqku/fiHUrdte8lOZ2JFbcZP6fFILAVJa9vv3j7JixXA8PLyZMmUTHh5uknVkWRSzfWa2PqCYxEzKkSmO0Rfz38LEQqVSOQAJQGdBEDaLwhcBpQVBqC3zrrBnjyBpFnn8+A5mzRrIsmUHuHHjDPPmjefNm0g6derF/Pmr0j9I4cK5ady4CYULFWTcsGEG7bKxFSTGxeFsPEAkoHhxrt+5Y5Z/h8aNGdq9O1W7dMHNxYXYU6fe3xBNjpSCjKwuI0o9kwOVNgCyUqAsaecmZ2KhRLpLdYKPAZCthZnClYBbIDkhgWqtWnHx2jVeXb5MLpN2V8ZuymaYlcnEzUePKN25M6cXL6ZKqVLS6YvLIL6+T5hUerYoK33B+B1TUlJw8PMj8tYtvHLmzCQ5k/VqyUHRdFUaJgWQ3759xoYN/Xj9+iH16k3D37+9wa9mFs3hLItleS+WY1IDjimOVBhAly6Ga1YAcmqqubw3gbP9+/fTvWdP/jhwgAsXLjBh0iTCwsJoHxzMxp9/Ti9koZIlqVmtGgULFGDCsGFm2qDk5GQcc+cGoEpQEGcuXDDLq2n9+sz46ivK1asHgBAeLt+nlIBmW5WvtO0pbctK0rA1wcxqXnJ9z+I1Tpk0AAAgAElEQVRq2A9gCJJbpZZKSgxQ0oGyFEAW2zYoNQi2JLlNZrlykebjQ81Rozh1+zaPt2/Hr3x5wzMvL5I1zplYk9tzYNnHxWF6PYSFPWD48KKMHn2IkiXrZaoXy3vT//ed/IoBopn9rYkhOQWSFCMSmSbr1QiCgFar5sKFJ+TIUUDSQsZ0zcoEwzJ7SzZcXSEm5hUbNvTn5csbdOr0NQ0bds1k6y1VV1J1Kjesm0hukilrFmp89HcxsfAC7IBwi/BwoL5lZJVK1Q/oZ/ofHS1diYGBraladR9jxvRi4cI/WbWqGa1b58PfvzphYRnx9Po02rUbTGBgBd4aT0vVGDvbhn2/ERBQhh49ejNixJdmfPTo1o1F8+eTnGywj8mVOzcPUlMZPm4coS9e4ObqSu8uXejZoUPGS0o0oEqA0fvSh6YjBoQa6x5XbWejNiZnSEPtqsnoeaYPKWdnJKdNFachvs+KJvR9wsTCSqICvl+1iviEBHQvX+Jo2mRhLU1rpAQ46PW8NW4erTpoEACfd+xIvaAg6leujJuLi3TaH6IpF8fPCrC34NsW7T16lNKFC+OZkADPn2fq9A5aLR6mMFdjB3fPiGMSilLjjhxAvn37FlOnNqBFi4G0br0TjcZeMfCWG4il/ls2J8t3TXEs0/0Qk4v4eMtPbainevWb0qlTV7p2686hQ8do2Lglvr65qFyliln/SQP69u1LzSpVMhVq+2+/4V+0KF8MGMCg4cPN8u3Ypg3Lvv8+HVDnypmTJ6GhDJ04kafPn+Os1dK9XTv6ffqpMtllCzxnRbZ+yMTVRNbkkJwsknr3Q9IF1FotplMv5cSUtW6ZEW5Iw3Saq1kHklvesCU3FcZbtGMHzyMjSfj9d5wcHc1cszoYefIwXt0lTpq1tmJkWU6dDl6/fgvAN998AkCTJoMICKhL6dINcHTMbsailDZVPJzJgWapSbBWazqh1DkjzD2bWXwzLaoUiSZHJt50Ojh06A8KFixCvny+JCVlzl9KFsnJOjkFmfhZaOh9Fi+uT9Wq3QkJ2YJG44Bp4Uocz/JgYZ0uM2/K55jvZ/pmbQ9yej7vleqHk6XaWiURhiAIy4BlYNB+yCU4fPiPfPNNH77/fjDjx6/lq69+ZMqUvuj1yXTt2g87OzvGj/+e4OAaXL0ajqOjW7p9cmRkBCNHDmHDhs38+OMi6tWrx+HDhwFo1KABa1asAMDFxYXfNm1CSEsjIjKSnfv3p+d//PRp6teowfBJk9h3+DA5vbxo17w51QIDqVGxIjmyZ8/MtKGM/LpnDw2rV8fzXx/L/xM0f9kyUlNTs3zu+/tQjaAghJs32XvkCGeuXcPNyYklW7bQduRIJvTtS4USJShbrBh2ajV5fXz+4/50PxbpU1NJTEriTUwMnqal1/8w7dy5mh9+GEO/ftNp2LCvpOLrf5lmz/6eL78MYdCgfmzYsInVq9fSq1cP7O3tGThgABqNhu9mzaJB06Y8v3cPT0/P9DYeGxtLn5AQfl6+nA2bN1O3Zk2OHDfsu65RpQq/LF+eHnffxo28S0gg4vVrduzbl57/yfPnaV6/PiO//prdhw/jlSMHwY0aUa18eWoGBlqVj4IgsOnAAepVqoS3h8d/uJb+pf8GLTlwgHCjT+7/NPn7V2TPHoELFw5y/foRsmXz5ODBlXz7bXtatRpD0aKVKVCgLGq1Hdmy5UWt/u/Z0H4IpabqSUlJJjIygmzZcv5X8rx8eQN79w6nQYOvaNgw5KMszPyV9I8ysVi61NzEwnJCnZgYz8SJ9fDzK8OXXy7l0qV9LFkyjH79ZlCnTjs0Ghgy5BMuXjyMl1du7O0dCAioTHj4M0JD73P0aBhlyph/0a1bTxIUVI1Nm1YwcuRnFChQiKdPHwHwySeNOHTogFn8MWPG8fnnX/Dq1TO2bdvKhfPnOHP2LOXKlqV29er07t6dgvnyGSLr9byNisLD33DwwIhBg5g9bpy8ps2a9lQuniXZWu81/beY+ibr1ZlYy2o2Wq1Cbxcf08RCSmtjyaCSZwo1SjUbNODEqVO8fPCA3MYlZ0UkV5m2ViIs6q3XyJEk6nTExMVx88EDUvR6srm4MG7gQLq1aiUP3rO66iH3XErtoFCT/NXatWw5cYLtkyZRqkgR84dKv7fUGqBE2JmLF6lZrx7Hjp2gcuXKZhoUObtnay7lTFdL7e/HMMkwXY2npGbJxOL1ayFT+uJ8EhMTadmyIfnzF2DVqjUcOXKYkSOHMmrUaLp3746aNFq0bMnuPXvImTMnjo6OVAoK4s2bN5w4dYqkt29RWaxc7N+6lUb167N+40a69etHiWLFuH3vHgBVg4I4bWGKMWLAAEYMGEDYq1ds2buX81eucPryZQL8/aldsSK92rY1+BQ3UnxsLG7GA0r6t2vHj2NFW1mUrGAoNeuw9fGUyiRrWlRrKjIlaUhodZP1GasoctpAMVkzB3DWJEu7jwgLMw8Tm2KIXb+Zrpb8WjkqufmCBey5cIEnGzZQIGfOjGfWtNYS6ZrKL3c4m5xlw+zZg3j7NoKkpESePLmOXp+Co6MzrVqNpVatPqSmWu9yCpT9kuYXYjElp4W2zEdM4u86a9ZUNmxYzbJl2yhSpJxZmd/HJE1umI6IuMLixeXp3/8YBQvWUOzFx1bZrdWfrXqQI1N803z6b2GDbGTkLHBVEIR+orB7wFZbm/QWLRJsqtx1unfMnx9MVNRTevVawIYNo+nXbzHFilUWreCk8PjxBRwctJw6tY2nT2/QuHF/goIas3LlSLZt+84s70OHBGJjwzl06BeKFSuLSqUiLOwRTk72FC0awKJF43j7Norr189RqlR5mjfvRK9eg3FyckajgdTUd5w9e4KjR/9gw4Y1fP/9Qlq0aM3p08e4cP4Uq9es4enTpwBs3bABBzs7mjdurMxMw1qYkme2hLBFrxQfDiGHX61lYfpvmZVan5w1EwtrGVhb7tNoJO2QlAAVa1mBtN3TvXv3KF6yJJcvXpQ8MUyKD0XHgss9kwOhxntBEDhx/jwhkyaRI1s2qpcvT+/27Slkcltoa81V6aRNijclxmxWyrv22DFG//orJyZONByUIkUfCDTeJSZSqlcvJvftS0/Trmcrm1/StJntH5X4Y/6YoPlDAHJ4uGBjqdIAknv37sTdu7eYM2c+s2fPZOLEr6lTp256/NTUVM6fPY2zszO/7dzJ5cuX6dWtG61atmTS11/ztdhfPCC8e0dUeDjrN26kTKlSqNVqQp8+JTklhWoVKzJ68mSi3rzhzMWLlCtVig4tWvB5r164GRyokhgfz4kLFzh04gQrNm9mzpgxdG7WjKNnznDu6lXW7tzJfeMR7jvmzCE1LY229erJy1Bbz5T0MymSG6BsTews41uLJ6XQMP23aLfJenWmSZxUt7RMRpQErq7goDP6+BXbIpsAsjjMsiPYysDCgW5oXBwFBgzg/IIFBBn91GZ6zxrZ2jEHJJPZJMMWIDQV5erV06xcOQSNRkuRIrWoVq0HXl7FMhVTipTM2W2BSqnPbgtAbtnyK2PGfMHWrUfw9y+ZSf5kBSBb238ZH5/EDz8EUL36UKpXH5iJt6wCZPF7SruJNZID1KbtQX8ngNwRWIfBvdtJYADQByglCMJTmfeEpUsF2cKC4YMZ3LfsY82avsTEvAKgYMFK1KkzEBB48+YJ+fKVIyCgKfb2jmZpXb78Gxs2DKFLl8Xs2TONokWr07Hjd7KNOzr6OT165GfChE14eHjyyy+z8fUtzMiRCzN99BMnfqdPn0aZylChQiWWLVvPvHkzWbduNV9+OZwhnw+kYMGC1gWztR5pSyOiZApmRQibZuVKFDPWkpeqS0mtsukqlbAlv6KeZMmjkiqzReLqkKN372Lw8XFn2bJV9OjRK0t5yqUv98zqTl+JAT45OZnte/ey5/ffeRMdze5VqzLHF0tQJdpfW+Ajqxpki/ARmzZxPyKC3wYMyPrHVNDWN1+6xIjt23kwbRr2Ju2neIC1cTpAmqvBkE1qE4zc5iEp0KykikzsG83OPwggW6YppmPHDjJwYG+eP38GQIUKQfTr1x+NRsOTJ48pG1Capk2b4uTkZMbs/gMH6P/558z/7jt+WLwY/yJFWGI89tWMRIWLDAvDx9+ftYsWUSBPHuYsWYJXjhys+v77TBVy9OxZ6nfvjt6icsoWK8Yv33zDjxs38sOvvzK0SxcGtGlDMUs/4UraaFbiWf63Jeze55llmJQ60nSVUAMnY9gDImWjK1UkKRybfnKc6TAMa8515TbnKeBXl5aGU5MmzAsJYUjHjplXu+S+i8xEQQqUmya8UuDP2oqRXp/Cn3/+xvnz+4iKekJIyKH0+EpFnIlVpZv6rIFKa4DTsnlMnTqRU6dOs2/fH5JiXm6TntyBTab/ly7tZuPGvowd+xSNJgNTfShAthZmmb6YsgKabZ1G+lceFDIKw0EhN4ChgiAcs/GOsHattHAHaXkVGxvBuHH+JCREmz3TarOhM86GS5duQdmy7ShZsjXXrv2Gu7sv9vbuJCa+JSVFj4uLDzlzBpCQ8JKoqDvkzRuAq6uPWSNUqRI4dGgBTZsOxtXVlRkzGnP16gFGjdpE9erNcHd35ty5A+zfvxp7e0ccHOyM9o47cHTUULCgP/7+RQBISUmgf/92PHx4jydPHgIQHNyRYcOGU6FCEPb2hm8oabhvC7V+qKpXpIlVkry1wV0uq0xAWS4h0VWsJVGIFWVJSXVYe++PP/YxbNhAxo2bSqdO3bIMym11cCUKU1n3OHo9kWFh5AsMRPfoUcZpfHLb3+V2VpvIGhjOyqgh8d0jo6Mp8913/N6nDwEmn9JZnaHJ5PU6MRGvhQu52L075QsUMDzLAkDOtERs0txpnDMNKLZAs7Xqlipe9+6Ga1YBMsi3IXFYXNxbAgL8iYyMNHvm6upKvLEAzZo0oXXLlnTq0IGdu3fj4+1Nrly5iIiIAMDd1ZXygYG8evWK23fvUsLfP8P0yFgonU7H/CVLGNCjB9mzZaNT375s3L6dX5cupVmDBrg6OnL4xAlW/PwzdnZ2ODs6suzXX/l17lzctFoK58+Pv9H1pi4piY4jR/LoxQtuPHgAQIuaNRnXrRuVSpZElZpqXqEfGyDLVaw1AZjV+NbAtTWEZQEIrXkusCQphWz6IRjxsdI+w6wJYmvAXqLxHTx7lgEzZjCya1f6t21rnpbcDFPMuJw6XGqia7E6ZO1sFNP/yMg4Bg50Z/58HXZ29jZXjCzJloZVil2lz0z3Ji8Zb16+JLBaNTatW0dlozmS1NgpZU4mNamynDi8fRvDiBHuDB58DF/fmmZltFY+JdpiOZNaMb0vUDYtoP5dvFgAIAjCYmDxfzqfbNl8WLDgLa9fv+L582vo9ck8f36V0NDLREe/4smT09y4sYsbN3ahUtkhCKmZ0ggM7MPt21vR6Qw9pHnz76lZc6hZHEdHZ5o2HZ3+wSMiHpMvX3H27l3MunVjKV68AkeObKJr11F4e+djzZqvqVOnNUOHBtO4cXu+++7n9LScnJzZsGEvYDDN+Prrr/jxxx/YunUj06d/w5gxo/5DtfUvfSxq0KAJ69dvp3XrBlSuXJ38+Qv91Sxlom1791K5fPn/ykbCDyVvV1cK5sjByadPMwDyRyRPJyfyuroSm5T00dP+p1OOHDl4/jyCsLAwbty4TkqKjps3b3Dp4gVehYVx6tQp9uzbx559+/hq4sRMQBqgS4cOHDl2jFfG5fgp48czcay5NZ1Wq2X00KHpaOL+o0cU9vNj+fr1jJk2jYply7J5925CevakRJEiTPz+e9o2akSX4cNpXa8eG+fMyUjL0ZHfjJrnhLg4vl61im9++oldx4/zVffuTO/T5z9VXf/SR6L6lSuzY84c6vTrR63AQEpYO3fgL6SLF7fj51ceO7vMB+n83cjDw4OihQtz8vTpDID8EcnJKTve3sXSFY//K/SXaJDfh1QqlbB1qzSv1ib9ljM3KZu/5OQ01Go1r17dJSEhiT/+GMbjx4coUaIz9eotZdu2Rrx6dZpq1aZRokQ3PDwMU47/Y++846Mo+j/+3svlckkujVQSSiD0LkWK1EgXFRBUFEXwUfSHBURFEQWxIOojimLBLiIqKAKiAkqTKuCD9NBrSKghpOeS/f1xt8lmM7u3dwn6+JjP65XXbWZnZ74zO/Odz/c7szN2O1gsxRw7toZatZoTHBwlNFqPHVvH5s1ziYmpy803j8disZCSsoZXXhnJ6dNHAIiMjGPlytMlz6ktpeLiYrp1q0dGxgUyMy+xadM+6tdvKLSsFHi9ubYIOlN7Wg+yUdLeeGm1ZfG0eb52Gy9fvHBa+TzNfnrj+AF4883prF+/innzfiwhot448c3G03MoiZatyLLMxKefZu7XX/PDV1/RrH591z2Rt9isB9mXMD3odObHv/+eE5cuMe+mm7xL1yhMlcZXBw8ydutW9g4dSnhAgHgNo567RuuNUnuSNffU6x+Npi5FTnzt7w03uH698SCfOqXvQTbTrsr0S7cgxQUFWCwWDhw8SE5ODpNfeIFF33/PoOuv55PZsxly++2sWLmSp594glF33kmi4qUH5MJC1qxbR5NGjYjRGj/u9Ddu2cK8+fOJiY5m4pgxWCwWNmzaxF2PPsqBI0dK6qB4165yzyptvuWtt3Ls9Gkys7PZOWcOzerWrVi79Va/mnVxmQkzUlQePMhK2yy2BwmPF9Yrhl6yNgr0E/FGwarjq+p+5gcf8O3PP7Ny5kzXDjyevpRVpy9yX+rUR5k1JO57mVmWch7kjAzXEs533pnKDz/MZvz4JUREtC4Rw8yBG6IqMfLUG0xS6d4rc9S1W5Ap06bxn507WfTZZ+UyVy810ZbFU5jyu3HjYubNu5vHHttNSEiMbvn0XovolemNbUazudowdb1r73nyIP+tCPLSpbJpsmOk30R9WN2QL13KByQKC23k5Z3Hzy8Af39Xi1MquKjoEps3T+SPP1yO8KSk6wgNjaGw8DLXXfcGMTGuxS35+aeZODGe8PB43nzzBBaLBbvdRXzz8tI5cWI7Dkc4bdq4rDpRA7JaISPjDBMnjmbKlNeoVauO4SxbmSUL2rPNRZWlhqfpPjfMfPSmx028IZrqAVl0YImnfRvV/2tl8pUgmyXNhYWFXH99B26//V7uuGM0ejBSnEYwK5uaKL/86qt8PX8+P371FdFRUcafcYvCRFamUXxfpqUF8f44cYKeH33E2QkTjPM3SKPctUYRNPrpJxZ07kyz8HBX5ak0eEFREc9t385DnTsTHRxsPKIZDLrq+U+j9Y8ivqGtWvd5G14R5EOHZN12a6bNlzG6DOq/oKAAWZYJCA7mwoULWK1WQjWbjmZlZTF52jRee+stAPr37k1sTAyXLl1ixrRp1HJ7Dc9fuEBUnTqEhIRw4eBBrFYrOJ0UFxdzJi2NP3buJDgoiM5XXVVeNgVOJxcvXGDUs8/y8pgx1FevSzbbbo0I8p8NPcWjt7RAexhHeHi5AzdEqyP0stDLStS2FIheizpumUMz3IIUXbpE16FDGXLttYwbMUJ8YIn6pBB1BnpftunsnKGto2JHqJAgz5v3Fl99NZunnlpORERcmXuiQzj0xiVR/9JbxSVSI4qoRmqnhCBnZXFg715a9etHtnIImsCoEi3B8bSLj7qczz/fmqFD36V27atRw253bTu3bNlz9Ot3HxER1U1/kGc2TA9GXbSue3L3v2qJha9w60XT46G3DgDlWpYDVPciKSqCvLws0tPXEBKSREhIEt980wCHowZt2jxLYmJ/MjMPsXfvO5w8uYarr34Km81FkLdu/YJ69bqRlXWO1au/pF27YTidEmDB4ahOy5autXhqEqc0HCXMagWHI4aZMxditbrCPX3MW9JgRBa66H8lnrr3qq818cvQY/d9WzmdXRpLm5RQVswfu2rG4WPE5bTXWjlEjhkjOUTlkiR/Xn99LgMGtKFZs3Y0b97a0Lo1E66Xl1FZlJvPTp3KB598wrqlS4kODzcmr3phgrbgtSfOS1zMyWHg3Lk83aOHWBaR3EbtWf28Kqy63U56djbN3DsnKCgqKOD+DRv46MABdpw+zaIBA8qyBGWUUEYlpeEpdawOy8srGdEsDte9ILsda7jrIyolKUV8kXNMtFbULJTXYWZgEcEmaFei92tT9tvOy6Oa+zjXnAsXWLNxI7Vq16ZR/fo0ad+e8LAwpjz5JP369uXosWN8+OmnLP/lFx575BFq1akDwNdLlnB127YUFxfzyYIF3D1iBJLVigWIq1WLOOVLG6M2Z7USERPDwlmzxJaztx2zIsTYrKFoJh8jS0c9kIjeUQmhCiqXldHsm+gbPDM6STTcqMVUDs1wOIIICncF+gFzZs+mRZcudGjXjo6Ky0+bsJFxrx1QTeokC+Bwf4CrRJs162U+/ngGs2evJTQ0TjdL9ditB73h14wKFd1TF1e5DnInfDk3l+tGjmTyWNUhaIJElPHXarWY0hHaOGFh1bl8Ob3cfVmW+eqrh1iz5h0OH97ApEkr9BM1AV/1l7fd9m9FkP8qnDz5PatWXU9gYHWKi53k55/Fbo/muutWY7OFYLVCTExbNm58lKuuuo/Y2FaqpyWiourRtOn1fPjh7WzfvoiHHvqqUuSaNm0SwcEOHnnkiUpJrwqVj3r1GjF06Eiee24cb7wxl5o1a/xlsvy0YgVzPviA2jVr/nWeLx/w8datXFOrFg916nRF5bb7+XFawz6dxcU8v3MnHx04wNoBA+j6/fdkFRTg8GShVqEMlq9eTZ9bbqFaRARWq5WMS5fw9/dnx/r1hLs99le3bcvUadO47eab6XB1qQdKkiSS6tShyzXXcM+YMSxeupRFX3xRKevnX/j4Y/Lz8ph6xx0VTqsKVwZ1ExO5/7bbeOTFF/ly8mRq+/91a37Xrv2JadM+pFat+iXe4r8D5i5YQPOGDXn8vvuuaD7+/nYyM0+XCSsuLuKXX/7NmjXvMGnSep5//hqysi5it//3H4z2tyLIiqHjjYWlvjYyIEVT9OfOHWbTprs5e3Y1nTv/QnR0Mrm5J0lL+5GQkMbk5ISQk1NqxTRs+AC7dr3MuXMnaN9+InFxHUlN3UtkZCKtWo2jWbMhvPBCIufOzcLhEJ8OpniIoazXUuTgOHz4AN9//w233DKchARj4jV33jymTZ/OhLFjuWPIEP1KUpuyIm+hGbifs6iubZp7ZdJVJ2/gCrWUXIuXd5ixso08yCJ4qgIz1vUzz7zC669PpW/fFvTtO4gRI/6PFi3a6D7vCwcUTTlp1yAXFxVh1duxohI8vR69yqJ42gII8Nnvv/PvAQM8uwtEbhhPL9Bup7C4mO9PnGDrxYu85Z6mT8vL4/716/n5zBk6RkVx+PrrWXzapfjTz53D4T7iu8wSC6PyqWUUvCyr3VYm6EpB71XoTVtq7QBlVkj3PEZNBsdPneKexx5j+Zo1/DhvHn2Tkzmdns7SFSuoX7++ixyr8K9Ro3hh+nR633ADkyZNokuXLuzdv5/EpCTue+ABBg4ZQnyNGqRmZpKQkKCvzI0GhNLCcOLMGd779lvu6tOHuvHx+m0YWLBxI5MWLOCRXr24t3NnvRow/xLNDFqi+EYQeZBFfVAFW5QrvsNRoqWF7cSMmEZqRD2kqMXV7syQlwfh4a4WFuoOfH7iRF58801ajxjBgHbt+L/rr+fqsDDjLeAEswjl7qkFEUwbWtzCKXVjsRQTGuqPepLJWxUq8hxXZPmAqPmXPOuW+7P585n48MOgmR3TZipaxmhGlRcVOdmx4ycOHFhL377PAZCRcY5vv72PlJQV1KzZmsmT93PsmGuzsnPnThMeHiFMSyuaGRiNo6LJQ7ND3N+KICsktiLfCxndUxNkWZb55Zee5OQcIT5+OIGBye6ppRpER98DlK43Ul5OfPwEEhPHceDATH78cRh2exyZmfu46659ZGZacDhq06LFCBYunMqgQTPLPKtArTBEL1jdad5++3NCQkLx95fKdSyFHMmFhXRJTmbT5s0UFRXRtH59cwvNRMJ5C0/rKRSYJRQlQTZhvZnJSp3llSIjWsUWEhLI009PY8yYR5kz511GjbqRJk2a8/rrHxAfnyDUV56qRPurHRMtFJd5z5mZmezas4eWyvvXWo3ueGV+RZkaaR29Z83cE+XlxrmcHOpER5dvm0Yk2ERYYX4+z23dyjt795LocPB1jx4kuQnbqwcOkFtURErfvlS325EkiT/On+f+evVIstnEo5E2H5HVrY6v7egq6Okl9a8v0OMMojjqqVqtqDZBvxSV4/oRI9ixdy8D+/alb9eu4HRSPTaWfw0fLsx87EMPMebBB3nn3XcZMXIkkZGRHDhwgM2bd5Cb70dYRAL33HM/Tz39LG+//YFLF7iNixKDUO1lECl91fz3rEmTQJaxKERLEF/OzaXvjBn8vGcPxbJMs+ho8Uswo5Qqw5I3uidiWHpf32niBUVFoTV9jLYr01sfL1Ityj1tlag//hN1Vbv73QaEhfHspEmMHTqU2R99xM0vvEBSVBSfjB5NLT1FbtTY1XWj/CprRxSBsrJKHTzh4eTk5LBjxzY6dGhNQNnjE8rJr85G+zrUYgk4ufB8E6O9gPXqW40z585Tp1kz17Ivgw8azXIqJYmcnCIWLZrG8uVvEhqawPDhnxMV5TqMZO3amVy+fJ5x43YTG5uAJEmsWfMGnTuPIC6uia5u0daVmW5ldM/ssCNMz/dH/3wo6/FEndKbbyxE+kVJo7i4iMuXM0hJmYrFEkTXrjn4+QUK01dQ1uNiIzb2UWrUGMO5cyupVq0+Tmd1MjJczyQljWDFituJimpPp063oH0F6g4l6khqBAb6M3Pm+2KLU1HuhYWEhYTQtWNHFn/2GY7gYLE2M0uAtBVnhIowUJEyc/cki71UcZnTJPYAACAASURBVKrrSOvtMtMWtNdmOp8na1/PAxAfH8mECU/x0EOP8OSTD3P//bexbNkaoRy+EuQyH2WqlP/cOXPoec01hLj/N6wQI4g0l+hdmXE7iOILXsCgFi24Z/58fh4zBlOT6nrkWZXv1rQ0RixdSu2QEH67+WbqKAeEuOvM38+PZhERxIeEuIKLivjh9GnW9O7tmRiabXgCaKOJdrioCEFW0jYzWIu4fwnsFmyijyVwfYCccekS0996i9y8PDJTUlwn4hlZsapf2WnhvvsfZvgdo1mzZhU1aiQSE1O7JJshQ0Zw++3X8/HHnzJkyG0EBrqm3JU1rFZ7UOlsk2iQUOXlZ7Xy7hNPKCdAlK0kVeU4bDY61qnD96NGER4Y6LOxJ2Q2Onnqhmnv6+VptAxIpKiAILeBqLcmHspWo6i9isZnPYjUg9pJpKShtLWI2Fgm3HEH4269lfGvvMJNb7zBlvHj9VmoJxixP3Wbycpi/hdf0KF9e2omRJCZVUpkPb0K7W4NRhxCtA+yKMyIKDud5XfD6d17EKP+dR/ff7+W4OAgTR2AU2CEiz7EU18fO/YHb789AocjigcfXEdoaP0y8Z1OfyIiGmO11iA7G4qKCtm+fTH33beYrCxx8xSRZZEq1xtj9YYikbFmBrozZf8kZGYe5o8/XmDjxjtZuDCa5cvrkpNzjKuvXomfX6BPafr5BRIbex0hIQ3KhCckdKdfv7f5/ffZPPFEIBcvnvIq3aKiIpKSJIYM6UF6eprH+BaLhaXffsvKRYtc5LgKfzkCAwOZPPkF9uzZ5TlyJeDoiRO8NGsWo5SlNX8zvDF4MBdzc1mwfXulpFdUXEy7OXMY36YNS6+/njphYeXihPr7szezdE/Pz48epXVEBA0FcasAx0+cYNqMGdz10EPENG1KYtu27N63j9ULFrjIsQ+w2+306dOPhg0blwlv27Y9M2d+xNdfzyEhIZBDhw56nbaUlET7W2/lVHq657iSxDf33ce68eNd5LgKfzls/v5Mu+02dp048afkdyo1lanTp3P3qFF/Sn6Vjaeemo4sy3z99eeVkp4syzzzzNVcc83dPPzwcmJi6peLExAQwrlze0v+37VrPpGRdalZs1W5uP+t+Nt5kEXeYk9TPXoGeGrqMn75pS82WzVq1bqd0NB21Ks3CX//BiVp6W3R4mk6RW3xlY0rERc3kBtuuJFVq27nlVe6cuutn9K6dedyaYiMYT8/Px56aDIzZz5LkybVmTPnOwYPvrGMHKK9Sr1yoyr/m5mvqMj8hRHUeQtMb4t70FWvmxN5wLQienLM6Dl8PHmLjfZtFKUdHm4nNzdXaEV78iRr0y+z77Vm37vLWVk8PHEiQ3r35sYuXUobtRmvrhFEprpo1sHsTISBd9ECzBw6lCEffECThASaanctEJVB+3JVcvhZrVxfvz7r09MZ1apVuWf3XLjAxO3b2X7jjWC3I8sybx44wCvt2nl3FqrRdIKmnHpdUzMRUOa3IjD7Sgybgt3C2rVr6NWrOxEREdx28820atWKCePH0zgpST8jg7pQbx9p1Fe7dRtAt24DeOyxe+jfvxtvvz2Xbt26u8RSzTBZlP6lcYdPf/xxJrz8MjWSk5n33HPc2qlTeXnN6Euzs2QiZS4KM3LJmtHbonRFeerpdndcm9uTHB5euu2X8ojiIVQnrdZjWq+zkRimneaO8ucRBzgcFBQVUWyzlawVFr4XM/1SBLcg2Tk5jHviCfr06MGtQ4aA01nSvvTKZeQRFo1LovhGSyy0/6uv1emW6gyJxx9/g9Gjr6NWrRY0bXqV0PusGT4APQ+yRMuWg0hJ2cDVVz9Ybju7jIzDLF8+jmHDNpfc+/XXmXTv/mQ577YR7HaxKtdC9GrNjOue8LciyIquMNrRxRu9sn37VAD69TuAxVLNVBqepo0MlhVqING9+3usWHEbs2Z14YUXzpZ8uGc0XWC1wpgxUxg06DamTHmA/PzCcg2nGEv5qQHRtLM5QcVxzZJsXyGSUcAmSz+iCNLlIp6UsFkxROmLuJGeHGoiu2PPLho2aFC6JEIFm+ohm+qdlqShQNBQcy9eZPN//sPc+fP5bft29h4+TJ+OHXni9tvFc/RGA6z2WhtH2570rDtvpj1FhpnVSudmzbirc2fm/P47LymbV3pDkDXXXevX54Pffis/T2q1kp+dTe3QUJrUrg1+fmw7dYqsoiJ6NmgAylpV9UilXIsWDxo1GlXjMSLIejqosmH0evTyfOWVlwHYtWs/8XHVzM2rV0A2bbLPPPMGly5lMHhwD3buTCMmJraMrEF2cdt8fMwYhiQnM+b55ykq1tla0oNRU+5/IyKmjqd9kZ4cEWaUlycSrGa1elCn65bN4ibKoQ5HCSkUFU9NirUOCpEeVosqElfvfasf2H/uHPXi47EEBUGBwX7/RqxV0Ffz8vPZsncvc9esYdOuXew9eJDunTox8/nnSw0IuxWnVdmWDl2oszLjZNM7SMPIBhdB1GTq1m3H0KFjmDv3Yx5//CqPdploaZeaLCckdGfVqudLtqEuuzyjgMDA6litLcjIgJycPWRmniAmZoBXBFkEdRcyIs/qa53VYJ7zMiuUJEljgNFAojtoN/C8LMtL3fclYDJwLxABbAbGyLK8W5VGN+AZoCUQBJwGNgH3y7Ls8YxCI1JjpIdE6QBkZR3gmmtWYLFU82iUa/PRk0Wkt/S2Y7TbQ7jppiWsXj2RadOac8stX9C6dQ+hLtN2iPj4Bnz22fIyearzsVo1HhRRAdVeFbNs0ajQ3no6POWlzdNggLDg2k/W9YilTBIiA0pPTG32ov89kWEhMdbI/Z8tW2jRpIlntuNOpMTg0XuPeXl8NH8+E199ldrx8Qzq3p37Jk4kLjKS6g6H6xQqtWYy08iNiIGI+OpViFlirJenG43i4vhx9+7yI4gXRPns5ct8vmkTL6xaxU0tW5YnyHY7V4WH42+18vnx4zSPiWHStm2Mat0aS4Tqq2sjwis6kEC0oFDZnN9qI08zaBgR5MqwO83YsupXrPda9u3by9y5C3E4oihwgtV90ECZtfB6ggtInYViYf/V5q88GhgYxOzZ85kxYyo9erTgjTc+o2/fPiX3SwxLQdusW6cOP374YVnXmKgjG3k9PFnQIsGNBiZtP/D0sr0dhLSMVi9/7XSFw4HN3YarqWbvjA61E82+itSdAVct3+5U/W37iRO0rFdP/KWfSO+oWabOl3BzV6zgsXffJSEmhht79eL9ESOIj42leu3aLh2qEUX9K9p1Ki+vvGievpEX2M+GH+lpIXqNSnitWo3ZsWNOmSX3ohl4ve+L8/IgJ+c827bNZf3656hRo2c5guzqr42w2aLZtesjIiM7sG/fs9Spcxc5OX4o9qiZlVei4V9EW9S/ZshvpRNk4CQwATiAa7weAXwnSVIbWZZ3AI8D44G7gBRcRHiFJEkNZVm+LElSE+An4F1gLJAN1AMGAoJvQq888vPPsn59LwYN+mtPE+ze/UUaNerBl1/eQsuWqXj3Wqrwd8T2nTu5qkWLSkvvi8WLeendd1n24Ye0bNRIrOH+5ujdtCmPfP012fn5BIs+IzeB+s8+S/Pq1Zk3YgS9GjYEHe/hW9ddx9TVqzmbk8MN9evz0NVXC+P903H8+BFuv30Qly79tTp03Lhn6NixO3ffPZDdu1NxOOyeH6rC3xr/OXCAq+qXX/vqKxauXcukDz5g8YwZtG3SRHNm8//G51pt2yYzbdq9XL6cQWBguOcHBHj33dbY7ZEMGPAJMTF9dOO1avU6u3dPZv/+f1Oz5g00bfqYr2L/ZTDNxGRZXqQJekqSpPuBjpIk7cRFel+SZfkbAEmSRgBngNuA94DewHlZlsep0jgMLDctrI5XT89JoZ3qEXllAgKihY4wEG9zpP5f5N43svBEhr0SlpjYi/z8y5w7d5Lg4MQy8dUWk5Hlo7ZUSy1O97SY3Vb6ZbfKW2bKlSQSWP1r9Imor+4vkRfGwIOsDlO+eFb2gBQ5O72dMdBea0UThZU75luV0YGDB+nTvbv35FXHg7xr1y5uSk6mZY0apW4cvTk9URqi+U1Rgzby0JidZhaVxQTiIyJom5jIR2vX8mC/fubdKe5fWZbJLSxk1siRtFAfNSyI36dDB/q0basvr5GnUe01Fp0bq/FeGR1HWxFvsQh6nlhPk0MKRN94+Pn5lXikSr1fytZrAnjISNFTiidZraaMukvnzl3x8/PjyJGDNG/erEyyNr22qfyK3IAiGfUGIT3lb+RBFm0RYYSyLjrP8Y0GIfWgouxXKnI9KjIK2q3N4SjxJitrldXT8GY8yKJZCtFWZ6I2c+DUKdo1aVL2AfWgr9Vt6l9tBg4Hu1NTubFHD9q2bl16T+TOpexaeQWiZqT2/poZCkXNyOw2bwpEn5goYeHhUbRo0Y1Fi2YzcODjgL7XX7Tk1PV3id69vyIuroNh/NDQHnTs2KNE3oKCshMXZmZf1e3FiO+J6IjR5I5Z+OSqlCTJDxgKOIANQB0gDhXZlWU5V5KktUAnXAQ5DYiWJKmHLMurfMlXqUAj/armfqI1UFDaWAYN2suSJW3Jzd1FSEgz3bTU12ZJuahxe1qv2qjRAFJSlpOQcG85OcwMECLeWzYv5cMChTSXbzDCo55FgogUrVY4UU9VPyuCmalFPU2rkU1Zn2yzWrE5yio2PY6tFcNIRFG8Mh/M6ZR9b0oKO3bvpqvilTRTRwZGx549e5i/bBkvjRkjXkZhRjOLCu8LOzM7zewj3hg+nL6vvkq4w8EdytHTJrSfMz+f5xcsoGZUlGtpS7kIXr4DBd4S5PDwkuucPFdb1JvOFGWlzsYXmBkgvNGvy5YdZvDgFmzZso127doI8rNhs1vFiXioc1uJsKVkxNM3Hj179ufXX3/mqquaiSO4hCr7K3IUiJiN9hltWkYEWTSCq/fb1UtDb72dGQvKSFGB+cFEkUO0hKhk603Xb5DDUbLUjfCydVTgtJgax9RVb7O6x6OssuzryMmTbNi1iw+fflpcTtEgqEAwKB+4cIEvli9n4ujRZfusJl6B0z1+6HzjJLKfzKgR7TPaouj1fVFTsFrF9avcHzPm3zz6aG8CAsLp168s1zBaYlFQUMSGDa9gtQYTFta+HCk2Ux+ehiWtHKLyiUiwERdT44oSZEmSmgMbATuQBQySZXmnJEnuT4DR7pmTDiS4r+cDfYCVkiSdAX4DVgFzZFk+ayZ/0SEwCkSNUGQBKb8ua6oRzZrdS2rqZ7Rp87JwMb3RAnujhi6yIEXOJOVeQIDM0aNrGTToOUPDX9RIFKgbi56jQy+s9NoiCFM+zrCVGxcszgJ9l4H602ejnuQtRGTRSCOoBh7FO2WzWks+gPO616jT1xZBJFuZ+E7STp+mdo0ahAcHGxJfYZim/s5cuED/Bx/kidtuY3DHjsbGjAI9K9MIIgvRCEYE2df6BhrHx/P9uHEkT59OuwYNaJSQUD6SpmHLsszot9/myOnT/Pzii94zTE8kRDt6Ga1BdjhKiLHo63CRntFzfPoChTeY5ap6RVfs4qioOgwb9hBffvkJjRu3ERJplP2Jle8iPLUhTQGN+KYWGzas5sEHHzZXV+pI2jZh1hgSsRizBFnrpc3IMN7CQDuA6ckpglnDVW/QFJVdLa+Ru1PtqFCItFFdAWRpyqcp+5kzZ4iLjCRKOfhCxCC1Okv0vu12LmZm0n/sWMaMGMHtN98s/F5AIcaiYUybnRbeqD+RjSQKU3/XohiSynimyKqFIl+9evV4440fueeezrRo0YHIyBYedYwsy6xc+TBpaX9w001rS04wNOIcovQqorvMGO5qOUT2kbf5e7uwJgVoBXQA3gE+lSRJbaprF6JJSpgsy0WyLI8EagCPAseBx4B9kiQ1FWUmSdK9kiRtlSRpq5dymkbTpv9iz56Pyc+/aBgvKyuFM2e+59ix1/jjj6Fs2XIVW7c2IiXlLlJT36KgIK1CcqSn7wVk4uIaVSidKvz34/CxYyTVrl3hdH5Yv552I0dy94AB3HfjjeWPXf0fRfOaNXl52DD6TptGsd4OBG6cycjgxilT2Hv8ON89/TSJsbF/kpT/HNx440h++mke584Z7ym8f/9+fvjhB15/4w1uHTaM1u3b06h5c+4YOZI33nyTU6e82xNeiyNHDpOZeYkWLVpWKJ0q/Pfj8KlTJImMYy+xYtMm2g4fzpA+fRh7993/GB1au3ZDHnjgTZ58si9OZ6Fh3Jyc8yxcOJTU1E0MGLCYsLCkP0nKvx5e8WlZlguAg+5/t0qS1A4YB7zgDosD1Dt3x6DxKsuyfAqYA8yRJGkSsB8XUb5LkN9sYDaAJEmyGceP2pIw+npUuS4uDqW4OB9//7OEhrq+Ur9wIZ2cnDT8/MLIyDjCpk334nRmExraFIejPomJNxAU1ARZtnHu3CrS0xdz6NCDdO36OxaLna1bB9Olyyrs9jjhEgutB/nUqd/5+OP+DBgw1eN6I2051eUya6V5mobQwmiqx263YXdUA8AWrkyHqY7sFO0VY8Z9JRLAUwG1L9rIm6CXjqe0zcBomsPpxObnR05ubvm4Oh7kwsJCigoKsAcElKSxfNMmRkydyheTJ9OrdWvf69TsvYqY/kYmvQKje+r7bnSpV49jZ89SVFCAxWKhuLiYA2lpZOXlEeDvz97UVDalpPDZypXc07cvU+64A5u/v3lZvYmn7bBqD5TGg1zgtBjORnlyVquz8wVGxTPK28hbJssOZBmOH0/D4XAZINnZZzh7No3IyFDOnz/B+PH3kJmZQZMmzUlKSuLantfx8NjHCA62s2bNan7++WfGPvooGzduJiIigsGDB7J06Y/UqlXLVDn27NlN//69eOqpyQQH+5WEl9lBRi8RkXfUbDzB1gvqZVyipEq+TVCv71V+lfXARtMLogWfCsy6MUVh6v9F6WpnA9XPGLk71f3DjCfb0xSq04nN6SQnJ6f8Mj6RfrdacRYVUQgEBgSUeJDXbNvGrRMnMuell+jfv7/Q8y3yHCv/G3k0jcTxIKqwisq1Y9G4oZodVWZtRLIpv23bdub8+dPY7QVYrf4UFxeTlnaI3NxMCgvtnDy5j+PHf+O33z6hVavhDB48F6czoIxsRkshRGU1moQx6z03gsizX5HhrAKjHuDyQAcAR3CtMe4FbAGQJMkOdMFFfoWQZfmiJEmnca1l9ghvBgbRoKMmzMqL3bZtPgUFlzl9eilnz65l166vOHVqCyEhNcjLy8Df30G7do/QoMFoJMlSLs26dZvjdD5ESsrb/PprO2S5CIAzZz6lRYsJZWZzBN8F4O/v5Ouvh3PLLa/SseNwXYJsdmBLSzvOgw/2Yty41+nYsS9FRVK5eL52bHVZRDNqylGvDkcoAEFxDjFB1m6E6IkheDNHZVQob+9XFlT5yLLMO599xkN33WVMalVhb33+OY+8+irtmzUjuU0bsnNy+PLnn/lq8mSSFXJshll5gq+axFPeFSHGShwNya4XGQlA9+eeI8LhYNPBgwTb7UQEB3M5L49qISH0b9OGDS+9RP34eNf+xWY0p9F9TyOa0fS4O47e2kWzIlQG9NLUhpuZ0gRYuXIRly6dZ/XqZezYsY1Vq+azc+cGYmNrkJOTSWBgMLfeeh/33PMgfn5+5aru9tubMWLEA8yd+wmdOnVAll0TkW+//R5TprzgUebi4mJGjbqDKc88w7333gueDkoyKrzVStrZs3QbNoxXnnqKAddei8VmK42jecfF7mUjeXmUO65XnX3ZMrueEToWlEHCiCBr9+hSZ6S91oM3RFrvGU+6WsRszBJkAzlkWWbW/Pncce21+kxV8/zHP/3Eva+9RuuGDendvj35xcV8vnQpX/z73/Tp0kVfXg3M9gmzMCq68iv8rsVIEKtV9aF62S0T1WjQoAYAjz/elcjIGuzevQF//0BCQqqRnX2ZwMBwmjfvzyOPrCYurrFwOzijIVy07MKkjWnapvJ2ePJWn0qKMvIYUZJeApbi8hCH4NqdYgJwnSzLP0qSNAF4CpcneD8wCegKKNu8jca1PGMhcAjXOuY7cW0Pd4csy597yF9etKisrGb7sujFKdcFBcWkpKxm/fq55Ofn0rhxHxo3HkhgYJihs1Orb2VZZteuOeze/S6nT28EoFu3GXTqNFa3QTgcsHz5C6SkrOXpp5eVlEnUILRl1rNMc3Oz6dnTpWRvvfVRhg+fQmBgsG4DFtWXKF3lfxF59+QhV4dZ8nLEXyR56wE1EtaoAv9KWK18t3QpU15/nW3ff4+fn9vT5aFxZWRmUqd/fzIuX2byv/6FRZa5s18/EqOjyz5ndO3OXySTkby60MvHSHN6u5DfSBarlSynk/lbt2K1WLi2cWPilfrw5JXy1KG0aXhyceisuVR7kNWeKCOHoDfe5f79Xb+SJCHLsse5YUmS5PR0uVz62nxEM21G8YuLi9mzZx2rVs0hLy+Lq67qybXXDiYkJEJXZyi/2rAlS75g7tz32bhxNQATJ77I+PFP6nZpqxVef30G3323kDWrVrmmyPWUv15FatphXl4egQ0bAvB/I0bw0rPPEhISYrgm1WjTGDU8EYTSj9J0TmfQhnkamLSCmCXSZrwo3vRfBWb6mfpaEH/59u089OGH7Hr9dax+fvp6TZXG5ZwcGo0cSeq5c0z+17/AauWOAQNIUraJE3yQJ/Ige9qRw0zRjdq/aCm7xVngvVWtSaTYahMufc/NzeG77+aTmyvToUMvgoISSuIYlVmkK7y1n4ydbcZhIiKtLbooT+29ai4bVVeHesMc4oDP3b+XgB1AP1mWl7nvvwwEArMoPSiktyzLl933f8O1o8U7QDyQg2tP5Ts9keMrCYvFQuPGydSpk1whS1CSJBo3vpPmze+kuLiIixdT+PLLjtSo0ZrExE5YLFYuXDiMLBeTkFCPU6e2k57+G0uXvsRjj5ne6c4jAgODWbYsgz59wvnyy1dZt24xw4Y9SUbGeQYOHF9p+VTBe5xOT2fQvffy3fvvl5JjEwgPDeW9iRO55ckneeLOO7FrifU/FA67nZGdO//VYvzjYbFYaNasK61adS0J83UZyKBBtzFo0G0UFxdz4sRB+vVrT5s27ejevTtWq5Xjx4+Rl5dHkyYN2bVrJ1u2bOL555/jq6/mV9r6UbvdzuU9e4hu3Zq3P/2UhT/9xEvPPMPp8+d5fOLEf8w61f9GnL98mT7PPce8ceNc5NgkQoKCmD1hAgMee4xHhg0jNCrqCkr590FgYBCDBo0oZ4NVwQXTBFmW5bs83JeBKe4/0f3/4DpcpEIw6ww0cpaJnAlWa/kw9U4x3nlf/YiJacKgQbNZvvxeLlw4QmxsY1JT/wCgceOepKWl0Lx5LwYPnkSjRm09Th94M/Pl5xdIu3Z9CAoKxeGI5JVXRgLQp88jSJJkyqmihloe0XpnrTWntlC15887HEEEhWsiiuZu1IUzY5qK4C2BrAzCadDw/GQZi8VC327dPOZ597PPkl9QQHZ2NodOnuTUmTMse+ut0nXI2rxEYWY6i6/edXWHUXcs9bUv0HvOKC9tnmbdCN561EXPihfml/xq16PqTZboNfG/wgby9nWKplTVO5dpX50nh7zr2kJCQgNeeeVjnnzyYY4cOUDDhk3YtculQ3v27MPu3Tvp3bsP48c/SmetoeRtBWreuz04mN7duwNQp04dRowZA8BDj07Ez89SzrvmiwdZ1A6UZWp29zI1i6h9qbdcMzMr402Y6Frvnkj/iJ5Vhxv1OROzgNZC1wdlNzRvLm54qjQeeOstzl++TL7TyeHTpzl+5gyLp08nNDy8UmYXfVV16vja7PWqyHSCOrDg+l5IBL0x3IwH2ROX8ORFVv+vp0q1alWPI+mhIsOS763jL4JR49KD6IUYvUyjMLMzVFYrJCffQnLyLchyHseO/Y6/vz9Hj26lqCiXpKTJ1K5dn6io2HIy+jp+O52QlnaUjRu/Z8uWZcTGJtKt2zCiomrw0EOflKxHNhqsjWA8oJk3MPJK1iq7Npe3hdvLM2+zLN5smBEqIw0Rq9Dg2PHjxEVHU1xYCALvR0FBAbsOHCCpVi0++vZbJtx9N+2aNaNmXBytGzTAqm64evmbkb8Cg4JhXfky5SpK1wwbEzEvBXoEuaIGg14HEM0BIp7WFDVnvTD1r/a6IvCUjq/2p7ocImeEke4QDX52O1x77UD69BlIUVE+O3f+TnCwlT/++J3c3CzGj59E48ZJ1KxZ3S2BwY4mXlTeiVOnWPLLLyz+6SeiIiNp3aYNsTExfPLxxyUzP968Q08w2hPYbrdh0R6Cob7WfonuSRBf4mlhxDY8sRGzfVvn3vG0NGLDwnAWFIBymqYqfqHTyY6jR0mqUYNZS5bwwMCBdLvqKmpER9OmZUv8K6L7Kggju8IwzBvvmF4YpVuWKUTZk5PL6MNEXwmyEX8TLS/R2zVQjyNV9uv9WxFkkfJV4C2ZNNuHjYxhs7Ba7URHd2LevIksWDCN0NBIMjPP07XrzTz11FflZPX1JZ8+fYQHH+zIxYuujUPS04/yyy+f8fLLvxIeXseU4vZ0zxuCrKdvtWew2+0W7HYXWS7ZI9VosZc6QW9cXJ7CPKXjLTSy/bRqFTWrV6ewsJBAwRz0+998wwNTpgDQomFDnrjvPsJDQ8vKJSLJlcF4DAalcvmbTVOJ502d+sIIRbKZdTGYURJGI4nAxaH+cMvI02jG+1jZBFn7OjzxJb2m5kkuozBtFUJZ+1jrHHVVcQBt23Zk5sznmD79GapVi+TixQv07Xsd33+/RL/ARkIJhDyZmkqnG2/k5OnTAJw7f563Z8/m1xUraNC8OQUmyL63MOp6TqfqwBQRQ/DWg+xLPL17okKY7e/e6ix3+st37yYuLEx3e8fPV69m1JtvAtCkdm0m33knUcrWjl5+Gm2z5gAAIABJREFU+SU6Le9KwYgo23xsV2USUUEpldKurA5LObWu1w+9aR7eqn7RaxGRYT3/hyg9PZiV63/jgPG/CQYPnkBwcDi33TYFgISEyjlHvqAgnx9//IRHHulO374jqVGjAS1adOell37h7bd3ERdXp1LyqULFMPvrr9m8fTsvvfee8H71mJiS6z8WLy4lx1WoQhUAGD16HJGRUTz22CRkWaZu3XqVkm5BQQGff/MN3YYM4ZYbbqBpw4Z0ateOn7/9lr2//06D+pWjq6tQMczZuJE/jh9nynffCe9XV766AnZ9+CFRYWF/lmhV+B/E39KDrIXRbKs2npmwishinFcYzz77NQsXvsXw4RO5/fbx5Y6Q9wbZ2bl89NFUvvnmLZo370SPHkOZN+8lAGbN+h27PdjQ8WiEinir1FMyZiw9dV7K9I9F8S7l5ZU3ZT0J6u3Uni/xFIhMb0EasixzMs11mEzP9u3LNdidKSnM+Ogjnrz/fp558EFxuto8fZXZbHxfvNXexKtoI9OrB7OdyahOTXqZ1K4WtedY+a1MD3JlQPHqeOsBqozXaabZenp1wcEOPvhgAe+//xpjx07g0Ud9+PBYlXF+fj4vvvkmM95/n7YtWjDkuut4bfZsnE4n5/fto1pEhEso9wuylcwWlPct6Tl19eLp/WqvdR8E4yUW6vJW9OWKoNYPnrzKRve8GJj/OOE6ZqFn0/Jni+05cYJXv/uOsTfeyIt3342kt++52b6tI7oZqJ/zZmwXVUcxFv3TJ/UGVC9m/CxWa8nad/VjolWP6rFdHV+vOXkzfOi1f7OTgXqoiA79WxFkEeFSYETEjBSR3vPewJtZ3F69etGrVy+v8xS95KlTR7N06RxmzFiC01nI9OljmDXrF1q1Si7XkNX5GfFNo7xF0z9qGHFFEWkWyaagDFHWW5+sJ6jZXllR9iGyzNQaTnVv3tKlxEZG8uWMGXRt166MDK99+ilPz5hB786deWTUKNeHeOo8PEFvy4CKWkSisqh/K7r0xZPVZmaAFYV5UhJGg6LeYljlV7CnoYgYg+tbKrME2WjqsjKh5OUrQfbEw7Qw+4rNwmqFrl27kZzs+tC1TNP3ge0//PTTvDd3Lt++/TZWq5Uxkyez6N136d+rV3nhVS+qdJ9ZW4kc2vOJPE0xm7XJhA+aJUq6ifwFMCu3zv2F//kP4UFBLHzoIbq4t+FT8M5PP/HIp5/S+6qrmDBkiOtAEG0aXtaDkQ1hlhCqw8yoRNH9MmKLrEwjZ4pRwiooBNxqLTX8RLaXqI0rv6IuZ9J/VE5so1cmMj6MwozeiSf8l/Qcc/C1bxmNi6K0vCXQ3hBkX6DXAa+99nr8/CRmznyMsLBIJk16h86dk8vwFjUZFq0pMkuSFRgpdb04Whg1WO2v8LtbEfM2Gs09ZWoGnkiXSAO478mFhdw+YQIAcRERWIqLwVKqiCyyTE5uLplZWUSppgiF+Va2dWfmZaiv9RqXniyVPTibKb8nD5GaBOt8YCe8J9grVf0hntH+xup73nz8or2uKPQIsqfdNSpTLrNNwoy+tlp1ThkzSZD7du5MXk4Ok157jbCQEF574gn6d+miP/2l6e8KsbBZrdgc7jah2rnEjKEjIgPKtdeHRIgSNmtgegtP6Ro5D4zS0JFv8LvvAhAeFISfpawHX5IkCpxOzly6RJxWh4rkMUMKBI8avUe9vqHHX0VxRHm4qs1VXotIRrMM3Oida9qz1WqplGZjpgl4St9MnXty3pkx5oXymItWhf9G9OkzlD59hlbqAFqFK4Na1aszafRoGtYpvx68bbNmhAQHk19Q8BdIVoU/E/n5uXz88bMEB4eRnHw34eExnh+qwhXDwN69GZic/FeLUQUTaBgby/8lJ9OiZs1y91rXrUt4UBB5BQXIskzVTtX/uygoKGDmzCkEBTkYNOguYmPjr1hefzuC7ItxZGZm1ZN7v7K9ykbw1qmn/RV5hkVTgGqvspHDxVPZRY455X8vDfXy6Yvet2ju0sjdpRffDDyZvqJK0ljyktXK+YwMBvfoUXrIgNOJLMu88sknvPrRR3z04ovcdN11+mmp/69sL7K2LOr/tXWp5CM64lXPhSLyPmsh8n4Y1a3oWaNOrLeHkLbxejrCSbPeWG8ZhfKrPfDsxInDLFgwHYD4+Na0atXHo6e2MqGcUmzURYy2pFPgTfcxchoa6Ri99NS/uh5Wkx5k4f964erCaJWp1VoSVsarXNK+TBaw5CWYUPSewvT+V8KuRCMzm6YPeV/IyWFQ69ZYNN7j15cu5aXFi3l95EiGX3stUlER+Pvr6y4P+ZvZvUKvOZl17psRR+xpNvAke4KJaXPtvu0VgdFkghqe7mnrITX1JO+9Nw2AOnWacO21Az3K+4/xIHsit6J46jCjNMyQZr3/PYXrwduZMbMQzX77um2LEYzqTT1Lbbbulfhlpk3NjuZXYhdzUUGNwtTpqu41S0ritTlzeGHcuJKwC5cuMeHVV1n4zjsM7N27XIOb9cknPPDUUwCEh4VxYscOHHqbQHpjrZklBEbMTUUIypAGLYEQxfPlveiVRR1WmQRZ3XjVR8+6F/3kCZZMmFlbXKNGUz777CJWqw0/vyD9cl4haJdYeLs/swJPusHEbK5XutIwrtl2a6YwZtueqJ2bGVS012bKYnRtlgyLnvOmv3tTpxW1qtRxVXXVtHp1Xl++nH8PH14Slp2Xx7jPPmPu2LHc1qULqE85tFr5+IcfGDXdZZAGBgRw6qefiDB5zKM3ZFd7rzLGddHWh6VpuUm81Vb+Az5PHUtzX20QePu6TRNNg7J7Elf7TFxcXVavzsBqtRIYGOxxmaiZpqmHvxVBVvSNGYKlF6b8miFu2vsieXxBWYvQ8z1PYUYQyaj2GpvhLp7SNyLIIv5h5KyzWd3E2NutACqLIKsLpve/WbavwtOjRjHo8cf54ocfmD52LNv37+eVjz8G4MW333YRZHX6VitbduwAICAggJtuuIHAkJDSzfG1eboh8n5oi2m1ik9UKueV0BtEoSwZVitmrZJ2OstPU4hYmZ6wRqioBSwiyOr/teuNseA08fW2p4E1LCxcN562KBUxkkWo6Ed6CnyRy4x95Ml2M02UvR3dzRTIaHQ3qx+0197kaSSvL/fM1EdFCLIZ2URQ14/qxU/s14/rZ81i/rZtTBs6lMPnzjHVvd3b8wsWuAiypm5/378fAH+rlaG9e+MICdF3bFQCzBJovXt6qkvb/ss2sZKdjcvc80YOs7aSUf+s6Gv3Jl5gYJhu/MqQQ0HVPshVqMKfgOuuuYbrOnfmaGoqtzz+ONM++ICbevdm55IlnEhLo3qHDtwzYQL7Dh4seeaTmTORz58nLzWVD956q+QUrypUoQpV+KehV5MmDGnThhMXLjD8vfd45ptv6NeiBXtfe43svDxiRo7kX2+8wa6jR0ueeXPsWOTNmylYv55Pn38ef72t36pQBQEkWZbNR5ak6sBLQH8gBDgM3C/L8hr3fQmYDNwLRACbgTGyLO9WpdENeAZoCQQBp4FN7nQyDfKWv/lG1jXUzXiEvTxIx2ujX23pGcGT1WPGAjKy2Mw6SyrDqSKqI0+bBIjCguwCz7HyWxl7ZVWGB9lsozFoeGczM/lsyRI++O47Tp89S3S1amRcvsy5CxcAWDFvHj2Tk8255d0opvwXx95aynpt3aI9vldUp97O04s2ivXkQjQrvPK/t+/KYAG96GQ8dVFEYcr/ZqtIgTfFv/lm168kSciy7PG7JEmS5EWLZF3dURkeZDOvwuxsksHmIWVnnMzOJunNMHlTQKOCaq/NhhnB7GDhqRGZLbOvXmVRGkbyeILB7NCFvDzmbNjA+2vWkHrxIhEOB9n5+aRnZACwZPJkBnTtKu7Tyq+J7wvUQ4qoiZmtDjNF9GUiQntPlK5ZmOUcemF6zcpXj7oRPD1ntvkDKBO3ejrUdFVKkhQOrAfWAdcBZ4G6wBlVtMeB8cBdQAouIrxCkqSGsixfliSpCfAT8C4wFsgG6gEDAdXcsRgOh36D8JKnmCLDRg3N11kyvXBfCLJemDcNz0wZ1emZGRd8IciGCznNLrHwloCJKqoy5ra1laSkZbUSXa0a40eMYPzo0RQVFZFy/Dh+NhsN6tZFCgwsfd6AIGuXUVTGmOR0li+6639LmewtannKRjTPsrRLLoyuzcAsWRHFE1nW7l9loDTLlbTVoYbR3rgVKbovUMtn1LdFzxiVUS8PI11rBkZEXZiwL41fdK0N06s4b/O6EnJ6q+sqgwF5CvMVHoyIag4HD/fuzcM33EBxcTEpZ84gWa00TEgo1aGi9HxtgFcInmwfX+0sUfFEYWbJqyc5zaTnSzxf4ldELhG8aSmPA6dlWb5TFXZEuXB7j8cCL8my/I07bAQuAn0b8B7QGzgvy/I4VRqHgeVmBAgPr3yry1tirMCXxmB2YPTWKPe1UYg4jl48ozA9J5xZgmxxFugrZG9MdTOWiKeC+RJHHc8Lbebn50eT+vX1D/rwgMpUXOq2YAwVYXYTyDIfiRi9F28btlGY2VHALFPzcRBVR/P2UDN1mDeoyPiu/jBXnZZaLhF/MyuzWVtFkcXXspTKaim/TlBkDKmJqXGCZf9Xh4ngKU2RZWFG6XrqB38WQfYkkxYiI8Lbl+ypX6quLUDjxESP8XTzMJBN9KrMFkX0us3E93TPV4LsCyqbbCrw1j4UdWUzcX1tfmp4swZ5ILBZkqSvJEk6I0nSdkmSHpBK9q2iDhCHiuzKspwLrAU6uYPSgGhJknr4LnIVqlCFKlShClWoQhWqcOXgDbeuC/wfMAPXOuRWwJvue2/hIscA6Zrn0oEE9/V8oA+wUpKkM8BvwCpgjizLZ7UZSpJ0L671zABERWmEN+kw8vaerzDrwKwsb7Gvnii1BedNufXqT+QZUv43WhvucSs39a9RIbQCVQbMTDt4E+bpnsl4Znap8AV6XkUzEG45pE7Y2w5QUei1BW/cmx6SFnlefXXcmUVlNHGlafmqY4zCfXHgG3mVzZTX6aR0r2EjBe/tnpae3Ge+zGAYhVUWKjofbYSKeIL18quMRuMpzCgvgatXfZqcrzzBSIearXYjnWzkofZWRm9k0oPZGSWzEzNGeVSk+3g9tnmRtgXYKsvyk+7//yNJUn1gDC6CrED71Z+khMmyXASMlCRpEpAMdAAeA56SJKmr+mM+d/zZwGxwfWDicOgUwocGYYTKJhx6YRUZLD3BiD8aNTRPdWSWN4L+LlolaZiZK/E0z2UksKg3eKpoPY3oDZEVFdpMfB1mcODAAf7YvZsePXoQERnt87jmrWI2q0DLxi+7ZlmXNOslXNkdQYFZ0qwqjGLAlW6jJO5XerbclZqirAgUnmjGvvRFViOd4qvNaXophjqS0XoXsxZNZRJIbwcfI4Xt6QWaia+9r/zvDQvxNr6Z9ETX6v/1iK+HhnTo+HF+T0mhe/v2RMcITq8UvHeL1Yrd7ur72nNh9JqTEYEVvRYjMUThZmwOT/B2PPAmTW/iXWldWBnl9KZVnwb2aML2Ag+7r9Pcv3HACVWcGDReZVmWTwFzgDlusrwfF1G+y0gAH5dqmoK33lTlmcqMZwZmdaSZNESymdXxnox85VfEEXV3RtDLVCuU6FhAIy+QNy+gMgmy2Xuq68LCQlauWMFXCxfy8aeflhFl+vSXefTRx0yJX1lGnl57EN3Ta5OK17vkvVfGYFpZMBp53GGK3DZVWTxxD23yZkTQQ2VWl17zFsnhLd/zpB+M7nnbzdQoaV+eBDZjyfzVVo2vRNYofmXKpYanQdPXhutL41GFO51OVm/bxvxffmH2N9+UeXzKgw8yeexY47pRHQ6gtCm7vewHu2YJsva++lf9GisTvnAZLf4MFe1tM/U2fqV4nL2Iux5oqAlrABxzXx/BRZJ7AVsAJEmyA11wkV8hZFm+KEnSaUDHP+wdDh7cz/vvz+LcubP07NmXG28cQlBQ6YlVsiyzc+cf7N+/l5MnT1CjRk0GDBiEXcC+CwoKyMnJISwsrOR/m82GJElkZ2eTmpqO01lIfn4+69ev4bXXprF48S80bNi4MopShX8Qzp0/z9wFC3j3ww/Zl5ICQFxcHPfecw91EhPp1LkrSUlJf7GUVZBlmZSUFLZs2cKxY0fJyMgkJCSE+vUbcMMNQ7D+SeT/4MH9NGpUo4xuqyykph5m4cJZnDuXSrt2venefShBQaXqWZZlDh3axeHDuzh79hSRkXF06zYYh6O8LIWFheTkZBMSEub+vwA/P5cOzc3NISMjjcLCQmS5gG3bNjBz5mQ++2wZTZq0rPRyVeF/GxcuXeKL5ct5b+FCdh06BEBEaChjhg2jbs2adGrThgZ16vzFUlYB4OjRA+zY8RsnTx4hM/MSQUEOatWqR+/eQ7HZxAdZVTZOnDhIkyZxOPSWJuDFPsiSJLUDNgBTgK+Aq4APgImyLM9yx5kAPIXLE7wfmAR0BZRt3kbjWru8EDgE2IE7ce2QcYcsy58b5C/feecorFYrFouF/Px8atSoSW5uLnl5ueTm5nL06BH27NnF8OGjSEqqz+LF3/Dbbxtp0qQZABkZFzl16iQREdVo3bodMTGx7N+/j40bfyUgwE6rVm1ISqpPYGAQx44dYdWq5UiSRH5+Pn5+fjidTiRJIjjYQW5uDjExsfj72/D3txEZGUV4eDXWr19N/fqNKCgooKjISW5uLiAjyzJWqz8Wi4Vhw+5izJjxFBWV37rUkwPDzFS3t/dEMOsh0pvx0t5Tfm3WYnOmt/Krt7+xmWnSisw/GU3jicLMutQFaUybMYOXXnuNwMBA0tPT8ff3p7CwkIvnzxMe7jp1TXQcqBrerlTw5LT3BE/tQxRmaubA0xyjr/CWuFqtFBcXs3ffPtLT0zl85Ahr1q3j6LFj7N+/n+7de5CUlERYWBiXL1/mu+8WUljoZPDgIdStm0Ryck+ioqJYt24D6elpJCbWIS6uOmFh4QQGBgoNci2Ki4vZuvU3Vq5cQVZWFoWFhZw7dxan08mCBV9Sp04dpk6dyh133GF6H+QbbxyFxeKHJPmRn59HbGxNCgvzyc/PJS8vh/T0E6Sk/E7//iNISmrG6tUL2b59LUlJzbBYLGRmXuTMmZMEB4fSvHl7oqLiOHHiIFu2rMJmC6Bx49YkJjYgODiYU6eOsW7dMiRJoqAgD4vFj6Ii13t0OELJyckmOtqlQ202G9WqRVKtWhTr16+ifv1GFBYWunVoDrLs0qE2m+ugh9tuG85jjz2BxVJ+nWiZdmZ2OU9luPrNwBcl7Y3cZt2YntI1Iy9ceVelGUVjtfLaF1/w7AcfEGS3k3b+PAE2G/kFBZxZtap0SYUvs4GieO5fRSd761U2O1RVRnO7Eg5+b1BcXMyRIymcOZNKaupxfvttNampx9m/fycdOiRTu3Y9QkLCycnJYuXKxeTmZtOv383UqFGXTp16Eh4eyx9/bCIt7QQ1ayYRFRVHaGgEdnsgAQGlOlSvrmRZZvfurWzcuJysrEwKC51kZLh06LJl86hZsyZTpkzh7rvvFupQbw8KuQ54EZcn+Tiutcdvyu5EVAeFjKbsQSG73PevwrUVXGcgHsgBDgCzZFme4yFv+a23ZlNUVERRUREBAQEcO3aU4GAHdrudoKAgQkPDuOGGQdhstpIKS0s7zcGD+5FlmfDwCOLiqhMdXXYNUnZ2NtnZWWzfvo2jRw+Tm5tLXFx1evXqR7VqkeTm5pKfX4TD4SAvL4/LlzOJjIzCYin/wdSpU6c5evSQmzj7Y7cHIkkSkiRRWFjI8uVLmDbtKYKCgmnYsCk1ayYSG1uduLh4wsIiSEnZS926DejevQ/x8TXL5XGl9bg3U6fK/2YIsnDQMqNFKlvhG8GXgnpbIbg67eoNG8jOyeHa7t2p37IlUyZN4uHx46mRkMB7775Lt27dkCRJ+FGeAm+VakXsBbP3TJMVvbCKEGQTGv/kqVO8/Oab+Fut3HzTTYSGhFC/Xj0A1vz6K1u2bWPn7t0cO3mSXbt3ExUZSUJCAnGxsfTq1YuYmBiSk5MJcoSWSbewsJBVq9aybt1a9u9PYfXqlWRkZNCiRUvq1KnLsWPHSE9P49Il12EG8+cv4Zprughl/P33rTz77CQ2b95AXFx1BgwYSFhYOP7+/kRFRSNJEp07d+XChVP4+/vTvn170wT5mWdmU1xcjNNZSEBAIKmpRwgMdBAQYMduDyIoyEHPnjdhswWUVOm5c+kcObIPWZYJCQknOro6sbExKBsYWa2Qk5NNTk42+/b9zrFjh8jPzyY6Oo7k5H5ERkaTl5eHJDkJDi7VobGx5XWo1Qrp6WkcPnwQm82Gn58VhyMQi8VSokNXrlzBk0+OJygoiCZNmlK7diJxcdWpXj2eatWqceDAPurWTaJ3794kJiZisVjKG2dQMSvSDLxty2Y7tFk96KveNCMr+MawKoOVWa3Issyv27dzMTOTPh060GL4cMYMHcpLn3yCv9XKR1Onknz11a725Y2OVl8bre0R3FMf2CQavhSYuae91kK0osYTKosQnz2bxnvvTUeWZfr3v5mwsAhq166Hn58fmzevYceOLezfv5OTJ4+yf/8uwsIiiI+vRUREFF269KFatWg6dkwmMLCsDnU6nWzd+itbtqzh6NH9bNq0koyM89Sv35zExAakph7j3Lk0MjMvUlxczBtvfEvHjj2FMu7b9wevvz6R7dvXEx4eRXLyIMLCIvHz86NaNZfuatXqGiIjzyLLMp06dao4Qf4rIUmSnJ1dMVl90XcVJRx6cS5evMD+/bs5efIYZ8+mcfr0KTIzM0hIqMWRIwfYsGEV58+fJTQ0nPbtu3DNNcl07nwtkZHRSJKlZKlHYGCQkKj7Cl8IstE9odfQyOuhDlP/egoTPesJ3rA/vYJ6q3yBt2fP5sVXX6VaRATFxcUEBQfzy4oVpKWl8eFHH/HdokV0aN+e2e+9VzLdZESUwbu2fSWqB7zw3AnCiwsKOHbiBEeOHWPd5s2cO38em83G0BtuIDIsjC8XLuT4qVNEhIeTn59P2pkzFBQW4m+1ElGtGtVjYxk8YABZ2dnk5eUhyzKFTifp589z9Phxtm3fzomTJzl45Aj3jxqFn58fS5cvJys7m8uXLxMUFIQjOJiePXpwVcuWJNatS5PGjYmOjhYW2pNHXxQuyzJvvjmDJ58cz+jRY3jttbfciv7fLF/+I9nZWZw5k052dhbPP/8yAwYMJDIyUpw4oKyu8OYkvZQU8zq0MnWBXpiZe3rIyMhgz55dHD/uMj5SU09x6VIGCQk1OH78CKtXryQ9PZ3w8HDat+9IcnJPkpOvJTo6BovFQkCAywgICws2rUOFRNsI3g4g3np1r7QH+b8UHy9ZwsR33iEuKorCwkKsViurZ8/mwqVLfLhoEd+tXk3z+vX55LnnsAcHl0/ALEH2Jkyl+0X6wdtX4O0EhyzLnDx5jBMnjrBt2wbOnk3D399G376DiY2NZ/HieZw8eZTw8HAKCws5c+a0e8mTldDQCKKj4+jX7yZyc3PIz88rMaTPnz/DyZPH2LVrGydPHufYsQPccss92O1BrFy5hOzsLC5fzsDhCMVmC+Caa3rRtGlrEhJqU79+E6KiYg3lNtvslHhz577Fiy8+yODBo3juuQ+RZZnPP5/JypWLyM3N5sKFM1y+nMHDD79Inz5DiYiIKpeW8soaNHD96unQKoJcgWeutDfX6XRy8eJ5li9fzLZtG9m8+VcuXbqILBdTUFCALMsUFOQTHR1HgwZNaNy4BaNHjyc2trrPef5TCfLiX36h0OkkPDSU0OBgQsLCCA4MpGZ8fLm4vhDkw0eO8MasWWzbvp0Nmzbx3qxZ3HbrrbTp0IFTqaks+/FHOnVybReenZ3NTUOGEBERwbwvvgD+PgR59erVvP/BBxQWFNCkcWO+/PprcnNzSe7WDT8/P06npXE5K4uoyEjCQ0NJOXCAU6dPk5aeTnRkJHUTE2nVrBk14uPJyc3l4y++IDc3l5sGDKBl06bs2ruX+Lg4ateoQUBAAIWFhVzIzGTv/v38tHIl1cJdSxgkScLfaiU2NpaE6tVpe9VVJNaqRX33sgh1QY4eO0Z2djaNGjbEz89Pv4CVQJAdDtdzR4+eYevWzUyc+CiRkVFMnDiFkJAQoqNjiI9PMLUO759OkI2gpOd0Orlw4QI//PA9mzZtYN26Xzl//pxbdxYAkJ+fT0xMDI0bN6Z58xaMHTuOmjVrCtOtIsj6WLpuHbn5+USEhhISFERocDCBAQHUru77eKTG8bQ0XvviC/6zfz8bduzg1bFjuXfwYNqPGMHhkydZ8vrr9GjXDoC8oiJuefxxABbNmlU+sf9igvzbb+v59NN3yc3No1GjZixe/BXZ2Vl07NgDf38b6empZGdfJjy8GhERURw6tI+0tFOcPZtGeHg1atdOolGjFtSokUheXi4LFnxCdvZlevceSLNmrTl8eC+RkTHUqlUHmy0Ap7OQCxcucvhwCitXLiUsLILAwCBAwmq1EhUVS1xcAs2btyE+vg61a9cjLCyijNypqce5fPkS9eo1KdWhJuEtQW7a1KXqfv75OIcO7eGVV8YTEBDIww+/gMMRSrVqMcTGJpTMgonwP0mQ8/PLyloZBq+vs2wV4WWVicLCQtLSTjF9+lMsXPgF33yzhg4dulZ42sXsAGc0KHo1vS7SHpp7x0+eZM/+/bRu0oSYqChycnNJOXSI+NhYHMHBFBQUEOFes2sWG7Zs4e5HH2XfwYPC+2u++45Au520M2eQLRaqx8ayZsMGtu/cSbcuXbBarSRUr06jJk0IcTgICwvjwoUL/LZ1K42aNKGoqIjExER+WraMG266qUzaAQEBFBcXExUZybBhw/j3q6+W3Dtz7gINGtRj7dp1NGvWzKsyeYKois22F+073bKTo0uHAAAgAElEQVR1K2t//fX/2Tvv+Kiq9P+/77SUSWbSeyeN3lHEwoII0hRRcW3YdtWfq2tZ61p33a/uquyuhbWsDRd7Q8SGUqQjJRFCEkJI73Um0zLt/v6YyZCElJmQgMH7fr3yysw55545995zn/u5z3nOueQXFrJz1y7a2tp46N578VOp2L13LyOSkznnrLP4ad8+lAoFcbGxBAcE8HNeHnK5nDGZmSTExhITFdX7hLPeLqyBKq6BdO5eyngjlDvnXXzxhaxf/w0KhYKsrJE8+eQ/mDNnridcwRs6mtGhoX0RyMXF4gnZBl9tQG9pA2UwbGz39thsNmpqqnnqqb+watUbfP75N8yZM7ff7Xz9nQ56FdknEmLR+Xsfwre6qorc/Hwmjh5NTGgoZouF/OJi4qKi0AQFYTEaCfPFhtrt7MnL45o//5mCkpIei3z38suEajTUNjbicDqJjYhgx88/s+vAAWZOmYJKqSQ6PJzRI0YQFBhISHAwutZWtufmMjI1FYfTSXJsLJv37uWC227rUre/SoXd4SA6PJzFM2ey8s9/9uTpDQZS58/nu5dfZvKoUYPv/RlgWvfY5f3797Fp02YKC/P56addNDU1cs89fyYoKIg9e3YRH5/IuefOYc+enSgUCmJi4ggO1lBQkIfT6WTUqLHExSUQFhaDuidvuRecqCPQl3InWteddy7j668/RC6Xk5KSyT33PM2sWYu6hHx5S1qa6/9pKZC9ZaCeXl9F8MkUyGVlR/ngg9fZv383e/fuJC4ugVde+YDRo8f1WH4wPDrepnkb7yfabJhMJuobGjhSXOzyJlZXo1arsbW3e8Sjw+GgpbWVb77/nj3793u2/9211/LaqlVd6pw7axZRERG06HTszcnhzClTWHrxxZjNZiaOG0d0VBTxcXGelUjyCgo4Y9YsACLDw7n8kktoMxj49ocf0Ov1aLVa4mJiiImJQRRF6hsaSEpM5LyzzyY3Lw+Hw8HhoiIqKisxGAxYrVaUSiXp6ek0NjYik8lobW0lMTGR6qoqEASSkpLRarXExMSQkJDAuHHjueSSSwgICEAURb777jvy8w/x2GOP8uKLK7nmmmt6P1GDSJ/esR7O3//eeYdrbrqJ7Kws7rj1ViaPG8fkCRNcHoRTefH40tkH+oTYj1juTk/eZF9EcU8MRCBXVZ2YQPYmz5t8X/C1a3hbvqamnLfeepX9+/ewe/d2IiKiePPND5g4cXK/2w7VMfQ6VtqdJooiZrOZ+poajhw9yuEjR6ioqEAdGIjNbsfhcBAZEYHTZqNFp2Pjtm1s3bXLU83/W76cld2Wk5x73nlEhoWhNxjYe+AAE0eP5reLF2MwmZg0ZgzRISHEx8Qgk8kwmkwUlZYycdEiAMJCQlh24YVY2tv5ZssWWvV6NMHBxEVFERMRgSAI1DU2Eh8dzezp08ktKMDucHCkrIzymhrajEbarVZUSiUZyck0NDcjl8tp1ulIio2ltqEBu8NBSnw82qAgosPDSYyNZWxGBkvnzEEdGIgoivywcyd5R47wxMqVPHXXXdx8+eUDOzHe2AdvPc09fP9s7VouufRSkpOTufdPf2LipClMmTKFzqvhDMQZN1BT+0sTyn3hrQ3t61R3DBCfFgLZ4ei5rYNhQAfrfj5UnaPjJDc01HP33Tfx00/buOKK65k8+UzOOWc2Wm1Iv09QgyGI+8rrTWA1NjZyznnnYTabyRgxgvqGBg4XFWGxWAgICCAiIoIRaWlkpqeTlJCA0WhEpVIhk8lobGpCLpMREhKCw+GgtbWVVp0Ou92ORqOhqakJo9GIRqNh9syZxMfFUdfUhFarZdyYMXy2Zg07du1CrVbz84ED1NXX09bW5pkVr1araWpq8rT1mquuYtUbb/h2MDgmjjrq1miOTUCoqamhvr6e8PBooqOjPeepoqKCvLyDlJQcpbKygvLyMnbv3kVwcDAzZpzDnDlzWbBg4YCE1IA8wp2wWCw01NRgMBiwtLfT2NhIeUUFRYcPk19YyIG8PJpbWgjVavn2s8/ITE8fnAtrsDjZ3mVv8+g/XMZbOsJmfRHITU0929ATEbSn2kPs6zYtLc388Y83sW3bJq64YjlTp07nvPPOJyQktMdrbbA8xwPNk+FEp9Mx45xzMBgMrodvtw01m80EBAQQHh5OWmoqWRkZJCUkYDabUSgUKBQKGhobkQEhWi2iKNKq09HS0oLd4UCj0dDc3IzBYCBIrWbWOeeQlJBAfUMDQUFBjB89mi+/+44ft20jOCiInw8doq6hAV1bG+ASKeqAAJpaWjztXXj++ax9++0B35gNRiMOpxNtcLAnq66xkdqGBiLDwoiNOjZBtKq2lgOFhZS4BXZZdTU/HTiAn0rFeVOnMnv6dJbMmeMqP9QnspsotlgsNDY10ea2oU06HRVVVRQVF5N/+DAHDh2isamJ4KAgvvn8c0Z74+V24+vkbV/TT4a+OZG6Bmpzum8XFub6LwnkfsoPF4H8xBP3snv3Nj766Pteh6RPlkC+5JIlZGVlERYWhl6vx9Cm54xp05DL5VTX1HD48GH27d/P7t27Adizeze1VVXExMSQmZFBUFDQ8TekoRhD7YZer0cmk6FWqz2/bzKZqK+vJzExsecYqgGKnq+//pqFC+d7vkdGRhIYGIjdbsdisTBx4mRSUlJJSkoiISGR8eMnMHr0mAF7Fzs82Eqld9tbTAYqKyvJy8sjJzeX79av59ChQ1gsFiIiIggOcq0SExYWRmJCAumpqYzKzmbMqFGkJyd3PVaSQO4/D0kg98XJEMhPP/0Y3333JV98sbnPNVA7GEpdtXz5VURHxxAdHYPRqEev1zNlylSUSiV1dbUcPnyY/fv3sWvXLkRRZPvWrTQ3NxMdEUFmRgbBwcHe2dATnTDTLa/NYHAteeqeLA5gNpupa2wkITbW5QEdJNf/xh07mHX11Z7v4aGhBAUGYnc4MFssTB4zhpS4OJLj4kiIiWHCyJGMzcw8fuKllyeyw4YKSmXvhTrVZTabqayp4VBxMTl5eazfvJmDBQWYzGYiwsLQBAfj5+dHeFgYCfHxpKelMTIzkzFjx5KRnt7FWywJZO+QBHI3BEEQRYfD65vLQIYghsKuDCb19bXk5u7m6qsv8qR9++1Opkw547iy3nQgXwz5ypUv8uCD9zJnzgWMHj2aSy5Zyty5c2hxew4WL76I2Jho8g4dIjwsjKSkJNLT05kwfjzjx48nODi495nip+JK6QVfxEt/zTaZTFx22RK+//47T9rUqWfw1lvvoVAoiIyM8sykPxE2bdrA888/y65dOzAYDCgUCkaOHMX119/EzTff6inX+VDdeOMNrFv3JXq9nvj4eDIzMhg9ejRzzj+fadOmERISguBw9L2zvk4o8iXvRBiM8e/+8k/0AjuRsh24rydfBLJO19XeD/Ll4xWnYq5GB/X1deTm7uPSS489tK5bt4mzzz7vhOvu71iuWvUmt9/+e+bNm0929kguumgJV111OeXl5QAsWLCI+PgEDh066HogTUwkPT2dcePGM2HCBDQaTe9L1nVmMMfCT+T6HQSB3N7ezuW33MIX3x2zoZlpaXyzejVyuZyo8HDXmuIn2Km27N7Nc6+9xsYdOzCZzSjkcrLT07nu8sv540039bjNbQ89xMfr1qFrayMuOpqMtDTGZGcz+5xzOHPyZEJDQnoW2QOxKwO0RT3dz4bKTJ/K67onvLFtHQO9p41A7okTmeF/Mq//gdLe3s7vf/9btmzZ6J6BL9DS0oRCoeSttz5k5szZx20zWBqhg/feW811113dJS0/v5B9+/axffs2Nm7cgNG9ZJZOp8PpdBIQEMCIESOIi43lD7fdxsKFC737sRPkRDx0vpzT/sqWl5cxcmQKCoWC6667iZSUNCZPPpOEhCTi4uK7eA6sViv/+c+/GTEiA5VKhZ+fP+vXf83hw/k8+uj/MWbMsdjylpYGPv/8Y+rqatm2bQvl5aU8+OBjzJ59AX5+fhQVFfL555/w/PPPceBAIZkdU3XdOJ1ONBp/bDYbkZGRtLW1YXG/XjUgIIADubnH3trnjSthqD3HnbcbTEU3mK7Bk1Fv9/IDEMgnuhLQyWAo7KrNZuOWW5azfv3XaLVaBEFGc7NrjsDrr7/HnDkXAkP3wKBQwJo1n3H55Zd0Sd+z52cKC/PZsWM7GzZ877ahLk+yw+HA39/fZUPj4rnxxpu49NJLu2zv86oaHQxVYPcgDwHU1tURO2oUADdfdx2pSUlMnzqVpIQE4mNjUXYIUHe89YqXXyY9NRU/lQp/Pz/Wb95M7qFD/PX++5k8/tjbGZtbWvjwiy+ora9n+08/UVhczGP33MO8WbMI8Pen6OhRPl23jr+/+CI5GzYwfvTo49oWnp1Nc0sLkeHhGEwm90vBQC6Xc2DLFkZmdX/xcDcGI5B/AIJ6IN7n/vIGo/xQ0ddh7G8loNNCIHfGG3E03J6IYmI0tLW18cEHnzNv3gJ8eZ3tYA1FgCve7OjRo7S2thIeHk5KSgovvfQid9xxO+AKH4iKiiIyMpLk5BSOHi1my5YtANx9111dVmk4EQZjiHooL/au2tHOhx+uZsuWjZ4XRVRXV9Lc3ERaWjppaenExyditVp5881Xeqzviy9+4LzzZnm+/+c//+aBB+70fE9MTMJsNqPX65DL5URGRhEfn8jIkaNZtOhicnP309jYADhpb2+nqamR0tISDh8uxGAwAC6jrlKpMJvN/Pe/b3D99df7PGGo3zRv8n5JDIZaGkqx7J6ld7oJ5KEgOzuZiopyVq36gMWLlxwTVr0wVEJZFEVKS0tpbm4iNDSMtLQ0Vq9+hxtuuBaA8PBwoqOjiYiIIDU1jdLSEjZv3gzAjTfexKuvvtZn/QMWzB0MxrU5yNe3w+Hg/Y8+4vuNG6mtraVVp6OyupqGxkZGpKaSMWIEifHxALz46qs91vHlhx+yYO6xlUleffNNbr7zmA3tiNvWtbUhEwSiIiNJiItjdFYWlyxaRO7Bg9Q1NOB0upZYbWxuprS8nIKiIto62VA/Pz9MJhMvPPMMf/j9709sxwf7gXyAormD4SqQ+0ISyD0w3ARyWVkpmzb9wKuvruTIkcOMGzeB0aPHkp09iuTkFOLiEhgzZmyPsbODKZB7ori4mEceeZgff9xMTU0NAO+//yHNzc3Ex0aTkZFBRkaGT6K+P4aTQO4Nk8lEUVEhJSXF1NRUYTC0odO1Ul5eRmNjAzU1VVRVVaDRhDBz5mxmz55LcXERR48e4ejRI5SUFGMwtBEWFk50dAyhoWGel8eYTEb0ej0NDfVoNBrmzVtITEwsSqUcpVJJZGQkERGRREdHExISSnBwMFqt+rhYRkkgSwL5dKGiopxNmzbw2msrKSzMZ+zY8V1saGxsPGPHjvPYqZMZelJeXs4jjzzI1q0/UllZCcA776ymra2N6GiXDc3MzOxX1MPpKZB7q9tisVBYVMSRo0eprK6mzWBAp9dTXlFBfUMDVTU1lFdWog0OZuY557Bg7lyKS0ooKi7myNGjHC0tRafXEx4aSkxUFGGhocdsqNmMvq2N+oYG1Go1i+bOJS4mBrlcjkIuJzIigsjwcKKjoggLCSE4KMg1p8WLc+Q1kkAeck4vgdzePiDLdSoE1VDR3NxMbm4OBw8eoKAgn4qKco4cKQLwLB82duw4goKCaW5uwmq1EhsbR0JCAnFxMWzdugWHw4FWq6WwsJDs7GwsFgs5OTm0tbVhNBoICQllwgTXZLHY2FjCwsKIiIggNLTnWd4d3Hbb/+Pll//DpEmTSElJZfr06Wg0WrRaLf7+/p7XxUZERDBt2rSTdchO6NwN9nn3tj6FwuU5qaysYM2aT/nxx42MHz+R9PRMRoxIJyUljYiInl933lNdJ1rG1yXgvMobSLlfCqcy1KODYSqQT0Xcc2daW1vJydlPXt5B8vMPUVFRTnHxEex2O8nJKWi1WsaMGYtGo6WlpZn29nZiYmJJSEggJiaWnTu3097eTkhIKIWFBWRkZOJwOMjJ2UdbWxsGgwGtVsvEicfb0LCwsD5t6H333ctzzz3LhAkTSE5OYcaMGWi1IWg0Go8NlclkhIaGMn369B7rOGGR3B+n8lr18bedTieVVVV8vnYt6zdsYPzYsWSmp5ORnk5aSgqRkZHevUVxoPs81J19COc5DFQ3DXX3GMz6Ty+B7IUHeTAZrNnmQ43D4WD//v20tLTQ2trKTz/txm63ExYWhlKppLq6msrKSqqrqxgzZiyRkZG0tLSQlZVFfn4+KpWKqVOnodVqUavVNDQ0kJubw6FDh2hoqKelpYW6ujpsNhsxMTEEBwcTFBREYKAas9lEU1MTer0egKamJtrb271o88nrd6fKnp+EBTlOWf0DugmfqqeNoeBUqzwYkEAe6Fryv1QG6zQ4nU5ycnJobm6mtbWVPXt+or29nfDwcFQqFTU1NVRUVFBdXUV29kji4uJobGwkOzubgoIC5HI5U6dOIzQ01LN0ZIcNra+vo7m5mfr6erfYjkGj0fRoQwVB8NjQ/u7NvdnQIRfIg8FweyAervzCRm4780voAv2tJS8J5GHKqRDvBoOBuro6DAaDx1OiVqsJDw9Ho9HQ3t6O2WzGZDKh0+moqamhpaWZsLBwT3xyeHg4MTExg7J6g8Qvj2Fxcz5dGMAkvZP5YCpxPEajkdraWgwGg+evYx1jjUaD1WrFbDa74mHdNrQjXrnDhkZERBAbHelavUFC4iQxXByGvtDfUpmSQB6mnI6dVWL4Iwnkk4gkkH+1SNeZxMnmdNQc/QnkX8A4ofcIPb3AQUJCQuLXTZm3BeXyE3u9tYSEhMRpSI82dNh4kCUkJCQkJCQkJCROBqefz1xCQkJCQkJCQkLiBJAEsoSEhISEhISEhEQnJIEsISEhISEhISEh0QlJIEtISEhISEhISEh0QhLIEhISEhISEhISEp2QBLKEhISEhISEhIREJySBLCEhISEhISEhIdEJSSBLSEhISEhISEhIdEISyBISEhISEhISEhKdkASyxGmHIAibBEHYdAp+93FBEHp9NaUgCNcJgiB68fe4u3xpt/RWQRDWC4Jw9knbKQkJCQkv+KXaXQmJgXJaC2RBEC4TBKFQEAT5qW6LhASwDpje6e82d/od3dL/22mbb91pM4A/AiOArwRBSDkpLZY47REE4VFBEKoEQXAKgvClIAhNgiBoT3W7JCQkJE4lp7VABj4BBOCaU90QCQlRFBtEUdzZ8Qcccmfld04XRbGy02aN7rTtoii+jasvBwNXnOz2S5x+CIIwBXgCeJFjD2E5wF2nsl0SEhISp5rTWiCLougEVgG3n+q2SAwegiCMFwThM7eny+weJXiwn22y3Nu0urfZKQjCvG5l3hIEobSHbY8bOhQEYaIgCFsEQbC4vW+P4HoYG2r2uf8nnYTfkjj9yXb/f0kUxR2iKBYDbwK3CIKgOIXtkvgF4qvtPY3srsSvkGEvkAVBOFsQhM2CIJjcF+1rgiAEdyryCTBJEIQxp6qNEoOHIAjTgB24Qg3uAhYAK4CEPraJA7YC44E/AJcDrcA6QRAuHEAbIoANQASwHFeoxDzgBl/rGgAp7v/FJ+G3JE5jBEF4C3jH/VXnjnOfCXwBhAFzT1HTJH6B+Gp7TzO7K/ErZFh7CARBmAH8AHwOXAqEA08Doe7viKKYLwhCCzAbOHiKmioxeDwLNAFniqJocqdt6Gebu3H1iemiKB4BEAThK1whDn8DvvaxDXcBamCuKIrl7vrWA2U+1uMNgtuTJwPSgf8ARcAbQ/BbEr8u/gpUAA8DswAzcEgURb0gCHnA+bji5iUkwHfbO5ztroTEsPcgPw1sF0VxmSiKX4mi+A6uGM2l3TzGPwPTTkkLJQYNQRACccVJru5koL3hXGBnh5EGEEXRAbwHTBAEQeNjU6a76yvvVJ8RWOtjPd5wJWAD2oE8YAywSBTFliH4LYlfEe5wio6RiJ/cse569/dcJJsp4WaAtnc4210JieErkN0X7HTgQ0EQFB1/uIZ0bMDkTsUbgZhT0EyJwSUUV5+t7K9gN8KAmh7Sa3HFr4X6WF8sUNdDek9pJ8rXwFTgLOBOIAD4VBAE/yH4LQmJDiSbKdGZgdje4Wx3JSSGr0DGdXHJgZW4BHHHXzugBBI7lW0HJEEx/GkBnEC8j9s10/PNPgYQ3fkAFkDVQ7nwbt9rgOgeyvWUdqI0i6K4xz2B6t/A/wNGIU08lRhaJJsp0ZmB2N7hbHclJIa1QG7FdZE9hsvD1v2vc4xmCMcuRolhintobytwtSAIAT5suhk4s/Pawe61sZcB+0VRbHMnlwHR7skgHeVGAFnd6tvhri+xUzk1sMiHNg2Ut3GtZHGvexRFQmIokGymhIcB2t7Tye5K/AoZtgLZHXu0E8hye9i6/1V3Kp4CHD4lDZUYbP6Ey7OwQxCEawRB+I0gCDcKgvBCH9v8E9cD1XpBEK4UBGEhrri1TODPncp9hOuha7UgCHMFQbgKWINruLl7fUbgO0EQlgmCcDHwHa5JTkOKKIoi8CgQCdw61L8n8aslBclmSnTFV9t72thdiV8nw1Ygu7kPuFQQhHcEQbhIEIRZgut1vh8JgpAJnifMbGDbKW2pxKAgiuJPuCaLVAAvAF8B99JHbJz7YelsXJPc/gN8jCs+boEoit90KncE1+on8bhWRrkP10zsw93qa8S1KkojLo/uS8A3nKSVJURRXAdsB/7koyddQsJbpiDZTIlO+Gp7Tze7K/HrQ3A5pIYvgiCcgetNUGfhikkuw3XRPCGKok4QhCW4XhYS4/Y6S0hISEgAgiBch+vFIMGiKBrcaROBvUCaKIqlp651EhISEqeOYS+Q+0MQhPcAoyiKN53qtkhISEj80hEE4SlgqiiK55/qtkhISEicKk5rgewO5i8ExnVei1FCQkJC4njcIWllwKWiKG46xc2RkJCQOGUM9xjk/kgAbpHEsYSEhIRXJAF/kcSxhITEr53T2oMsISEhISEhISEh4SunuwdZQkJCQkJCQkJCwicUp7oB3pKSkiKWlZWd6mZISEhI/NIoE0Uxpb9Ckg2VkJCQ6JEebeiwCbEQBEFsbx/attrtQ1r9sEUxwMcob7eT4ey7gDcnpr8yvp7c4dQZfD1B3pYf5HLOQRiwGk6nZahRuV/OKwgCoigK/ZUXBEE0Gnu2oUN1XKXz1ZXBuqT6yu8rr09b29PJ6usEDobNHUgHOVmdaqA3Pl+2HexyvpYdSPlODIZN72CwTqsv9QS630Xbmw2VQiwkJH6FiKKIw+FguDwgS0hISPySkGzo6c+wCbE4GXR/kBqMJ5qhfNg90bq9fXDs6XcG06vsRNa7Z8Nbr8ZgeT98OKgOh4PKigoOFRUhl8uJDAvjm82bqamvp81oxGyx4HA4cDqdBKnVtFutGIxGnE4nKj8/lAoFKpUKlVKJSqnEz8+PoMBAtBoNkeHhXDx3LmGhoV1/tNsBNJlM1DU0EBsdjb+/P0fKy/nmhx84UlJCSVkZNrsduUKBIAgUFhVRUVWFzWbDbrd3PDUjk8mQy+UIgusBWhRF5HI54eHhREdFER0VRUhICG1tbfz9739n1KhRXdrQnxfBl3463DyOJ+JkGo6czIGYX7r9HQiD5RnurZxCcWyfeyqjUBy7Vk/Ym9z5+wDtr8PhoLqujoOFhchkMqIjIvh20yaq6+rQGwwuG+p04nA4CFarsdpsGEwm7Hb7Mdspl3s++6lUqAMC0AYHExkayuLZs4kMC+u9HQoFZouFmvp6YqOiCPD3p7SyknUbN1JcXs7R8nKsNpvHPhaVllJeXY3VCxsqk8mICA112dDISEI0GtoMBv5y//1MHDu2zzb1eiyHwuDY7QOut9/R3x7o7X4xkCb4qk18tQfDKsTC4RARRZHq6mrKyspobm4mNTWV7Oxs5HL5Cf/GUBn/kz26P5DtB3NUpmfD3Ht+jxdZX8a3tzxfRK+XafWNjXz41VckxsaikMtZ+LvfAaAODMRssRAdHs6YzEwcDgcllZXMP+88RiQloQ0KIsDfH7lMhqBQ0GY0EuDnR5BajVwmo91qxWa3Y7XZ+MPjj6Nrazvut9OTk7Ha7RhNJkxmM+1WqycvITYWmUxGbUMDkeHh1DU0EKLRUN/Y6Cnzv5dfJkSrxSkIOBwO0lJSSEtJQRUYiFKpdBl3uZwfNmxgzvz5PR+7bowYMYI5cy6gpaWVlpYW9HodoijS2NiISuXHV19tICoqqs/D3M8hHxIGo387nU4MBgPBwcGeG+FA6j7RtnUgc99nfAmxaG932dCamhrKy8tobGwmISGJ7OyRKLo1ZKhH170tN1h1ncoHNW/OcX8CuK/8ju+9lekp32N3fbW1PgrjpoYG3lu7lsTYWJQKBQtucr2zq8OGRoaFMTYzE9Hp5GhlJXNnzCAzORltcDABfn4e4WkwmfBXqQgKDEQul2O1WLDabFhtNu7/17+obmg4rilpCQk4nE6MZjPGbjY0LioKlVJJdX09kaGh1DU1oQ0OpqG52VPmzaeeIjIsDKfTicPpJCUpiRFJSfipVCgUCmQyGaJczo69e5mxdOnxx6IHoiIiWLpwIa1tbbTqdOj0epxOJ00tLQiCwMYvvyQuNnbgcTTe5J8oA7xAerOhvTKA/fAm7KOj+f2FqQ0rgdz5+xnTphGi1XK0pIS6+nrmz5vHVVdcwcIFC7yrcBDjJk/EMJ+K8Fpv8dWo95TWmyGHbsK4J+Pb/Xt/BnoQPRxWq5UZV1/Nnrw8ABaddx4VNTUcOHIE3ILTT6XqYnA7yFuzhlHp6V3SRFHEbrdTVl9PXWMjZdXVvLduHT/+9BN6g8FTLiEmhrTERHILCvhm1SqiIyIIUqsJDA7GT6XyiNqS8nIAUpOSUPj743A4qG9ooL6lhR82b6a+oYEnn3iiq+jp4dkTni4AACAASURBVC7Z0b+rqqqwWp34+fmhUCjQ6/XU19fR2NhCXt4BHn74PhYvXkJe3kGKi4t6PW4bNuQwevR4bw9zv323uLiQ0tIi6uqqSUpKw2QyUlJSxJYt69my5TtPuVGjxmM0tuFwOAgMVKNS+REcrOHjjzd13+XjDkdPKBRw22038L//vdljfmlpPZGRkV7XN5By0I+Hxq2QfRHIMpkMp9NV57Rp0wgNDaO0tITq6mouuGAey5b9lsWLL/bcvHw9dwM914OZN5QDTCfKidjLvkRwf3k9OiX6sqc92VIfHRV2u51Zy5ezZc8eAOafey61jY3kFhQgCAJ2hwN/lQpLDzZ0/7vvMiEr67h0u91OeW0tNY2NVNTV8f6337Jp7150nWxobEQEGUlJ7Cso4OuXXiIuKoqggADUAQHHbKgoUlZTg0MQSEtIQKFQuGxoczMNOh0bd+2ioraW/7v3XlQdKqrzQe2MO626thaHIKBSKlEqlbQZDNQ1N9Pc2krhkSPc+dBDLJw3j4qqKnIPHDi+Hje7t21j6pQpfRoKX2J/i4qKOHz4MNXV1SQlJWGz2Th8uJDNmzfx5ZdfesqNGzcOo9GI3W5HrVbj7++PUqlk5/btxyrz8aK554EHWPHCCz0WrywqIj4uzuv98DAQ8d/bNv3Y0GElkJ995hl2797Nl+vWkZaaSnJSEhEREVgsFj746CMAoqKiqK+vRyaTERsby/MrVnDJxRcfX6EkkPvldBDIpZWVLLn1Vmrr65kxeTLvr1iBQqHAbrejHD3aUzQjOZlzp0zh5ssuY/2OHezNyyO3sJDymhps7no3vf46giBQUVvL1pwcXv7wQ8/2YzMyGJOezqj0dO6/8UaUSiUAjS0tRJ59tqdcdEQEgQEBKOVyYiIjEQSBzbt3e/KLN24kLSnJuztlf3leuJk6929vRMR///saf/zj7wF45JGnWLz4UpKSUjxCfDCFiCiKpKS42peRMQq1Ogh//wCyssZSVVXGxo1f43D0XoFSqaS01HXzHYhArqmpJjd3HytX/ovs7FGkpqYyfvxEYmJiycw8/uY9HATyv//1L7bv2MmXX64lOTmZ5OQUIiMjsVqtvP/+ewDExsZSU1PjChuKjOLpp1dw2WVXHFefJJB9ZzgK5KrqapZccw0VVVVMnTCBj199FZVKhdNqRZ6a6ik3IimJc6dN46alS9mRk8O2ffvIKyqipLLSY0O/e+01/FQqqmpq2JGTwwvvv+/ZPj0piamjR5OZnMyDy5fj5xameoMB7XnnecpFhYYSFBiIQqEgJjwcpVzODz/95Mk/9PHHjExNHfobmK/l3Z/f//hjfnvjjQD85ZFHWLZ0KWmpqS4b6k0cDb4JZLncZRqysrIIDQ1FpVIxZsxYqqurWbfuS2w2W5/bO92hJIDPF01dXR37cnJY8cILjMzOJikhgSmTJhEdFcXI7Gyv96ELkkA+HkEQRLG9Hex2LBYL+QUFVNXU0NDQgE6v57sffuDr71wepQ4B1MELzzzDFUuXYjabEQQBf7Wa8PDwwXPx+9iRh9qAD4ZxH8gIjjfGvV9R7GOaUa9nw44dbN61i7LKShxOJ4VHj7LhjTc4WlnJWVdd1aVNlV9/Tbw7BEA5bRp2d2xbm9HoKbNk5kw+27Spy3ajUlNRKZXY7HbXEHVjIy2dwiK+/fe/ueDMMz07um7LFq5+5BFaO5Ux7NhB5kUXUV1fT3dSExIo2rDBFSrk612xn7TufXAAziAAmpubeOGFf7By5T/44IMfOPPMWb3W4Wtab3lNTfW8//6LrF//ISUlhQB89tnPbNnyNatW/ZOJE2ewfv0nXbaZNm0m77238bi6B/rM4Wta9zxRFKmtraW6ugqj0cjUqZMIDg7ucRuf4kLdAsIXgSy2twPQ3t5OQWEhFRUVNDY10draypbt2/n0s8/cbe9qQ//xj2dYvvw6jw2Vy/2IiIjoYkMHW6x6kzaUg0lDZUeHSgR3/O8p7bh+1ckImPR6Nm3dyqYff+RoSQlOp5P8oiK+++ADGhsamDR3bpdNS3/8keT4eLDbiT7rLOqbmggKDMRgMnnK/PbCC3nv66+7bDcyNRV/lcpjQ+tbWmhoafHkf/L001zym994vq/ftYurHnusSxndDz8w/aabOFRSQnciQ0Op/uYbuocKDclJ6C+tl3pbWlp4/oUXePyJJ1i7dh3zu4W29ddPvcnr/vNNTU288sqLfPrph+TnHwJg585ctmzZwD//+QyTJ0/lu+++od1tG8DlTc7dv7//Hx2qC6cboihS39BAZVUVBouFCePGodVqB15hx3npx4YOK4H8+sqV6Fpb2Zebi9lsxuF0EhkeTkFREYePHMFkMhEfG8v1V15JRloaDz35JAVFRYSGhNDS2kp8bCyiKGJyG/m05GT+8uCDzJ8zx/cG9XJnbGxt5S9PP01NbS02mw2FQkFIaCiJCQlERUZy/uzZ6I1GVCoV4eHhhIeH4+fn16cn7wQiBXwq0xlfBPKQCOP+ytjtPPb88/zlpZd6bF9EaCjhGg0qpZLIkBBqGhrId68BO/eMM4iPjOSa889n5sSJrNuxg4UPPACAn1JJu83GqKQkDrnDGDpQ+/tjtFgYERdHcXU1AEq5HJvDgVKhwE+pxF+lQhsURHFVFQABfn6YfvzRczBEuZzC0lJG9jCqseA3v3FN6sPl/VQHBpKVkcGY7GwunD2b4KCg3u+A3cRwXyK4t7y++p1OZ2DSpGOi7vrr7+VPf/rHceV86Z++9slnnrmV/PzdtLebCQ4O4b77/kNGxjiam6vIzd2G0+kkJiaJESOyCA2NAE74fuZVnt1up7i4iLy8AxQVFXDkSCEFBYf4+eecHvcjOjqa8vLaHuvqNx6/E9WNjVitVlJTU70WyK+/+CL6tjb25eZiMpmwOxxERURQeOQIhUVFmMxmoqOiuPHaa8nMyOCpZ59lz759hISE0NraSnx8PKIoYjabXR7+5GQee/RRLu7Wn/sbmeie3vlzU1Mr//jHE9TUVGG1WpHJ5Gg0IcTHJxIaGsWMGb/BaLQgl8sJCQlDo4nEz89vQM/ZfbWjr/b2hTcPTZ0/+yp4eyvXW/kuArmbEVjx4ovc8+c/99jWiLAwwrRaVEolEaGhNLe28nOh6yH1/OnTSYqO5op585gzfTo/bN/O+bfeCoBKqcRqs5EeH88Rtx3soCMsbUR8vMdGKhUKbHY7Crkcf5UKf5UKjVrNUbeNBRA3bz72WS6npLqaEZdfflybF8yYgcPpxCmKKBUK1AEBZKSkMGbECC48+2y0wcE9u9R7O3B9HfAeynW2vx10fG5vbycszN+TfuONt7Jixcpey/dEX3nePAc8/PDdbN26Eau1neDgYP75z5eYOHEyTU11bNmyGafTSWJiEtnZGcRERfT+431dRN40thsOh4Oi4mIO5OdTUFREYVERhw4fJvfgQU9IWGdUKhXtPcSc+0qtyYTJZGLEiBHDXyBff/XVBPj7MyYriwi3B7iuvp7stDSy0tNRKBSEh4a6hrc7nRxRFHE6nZRWVHDdXXfR1NxM/pEjALz0179y6zXXeOdN7kwvVvBfr7/OXY8+2utmV152Ge+6w0E6CAkJoaWu7rh6+7rYBkM0+4q3o0t9iYweh/b6E8rd0nbv28dHX32F3W7n58JCQoKDiQsPJz4qigdffNHr/Xn4yiv56/Ll7C4o4Mqnn6a4poa4sDAQBFKiotien+8pOzYlhSa9Hp3RiLHTk3Zf1H72GdGdZ1B3M6qtbW3sOnSIVpMJlVKJQqVCLpcj8/PD6nTSZjBQWFLC6+++S5vBwIN33sm9d92FIijoWH24+okXh82bZ44udE9bseIeVq9eAcCuXeIJ28j++qi3/c3bPG/TvKkfoK1Nz5Yt33H99ZcRHR2DXC6nurqrIEhPz2DMmHGMGzeBuLgE4uLiOeusM7t4kHvazw5B43Q60TU1ASCXy9mydSsLlyxBJpMRGhrKAw88wL333uu1QL7+yisJ8PNjVGYmkeHhyOVyaurqyEpPZ2RGBkqFgtCQkK5xl7hEidPppLq2lqtvuYWGxkbyDx8G4Jm//pV7br+9qw3t60B2Su9pdOO//32V2267udf9WLBgCevWfXZcenGx6KnDm+uh829605f7SocTE8Yd3/vSYf2V657n738srbtAztm7l/+9+y6CILAvJwetRkN8ZCSJMTHc//TTve9IN+6+8kqe++MfyTl0iMsffZSiigoiQ0LwV6mI1GrZV3RsvsKYlBQadDrM7e3oO3mb+6Jk1SpSoqO77nynz3qjkV2HDtFsNKJUKFAqFMhlMmRKJTZRpM1opLCigre++ILG1lbuv+EGHrjlFlQdC+D292TRy4HuzeZ20FvaihVP8NxzjwNQVna89jqR+7a39s+bvB4dWj010Ftl3wsGg4EffvyRi6+5htCQEIKDgiivrOxSJj0tjbGjRjFh3DgS4+OJj43ljClTvPYgO51OdDodAHJRZNfevVxw6aXI5XI0Gg133303jzzyyPAXyKJ7Jwd6Z/74yy+57OauhjdEo6FVr8fPz48APz/ioqNZMGsWfioVoijytxdfJESjQeOedZmZmsoVixZxQ7ehew8KBTV1dWzevp0HnnySsk4n+/8efZTfXnopMpmMqpoamvV6FHI5Z06bhjY83LN9B5JApsc7229++1s27d7NjUuXEh4cjMliobymhk179qB3h0pog4JQyGREhISQmZDA5KwsTBYLOJ18v2+fx3DfPH8+T91wA3e/8gpvrV/fpa0XTJzIxgMHSIqMpLimxpP+m3HjKK6poVGvx+QWy0lRUbQaDLTbbAQFBNCk13vKa9Rqfn7jDZITErwzwv7+XdIcDgc5+fk89OSTtOh0vLxyJZMmTjwpArmlpZU771xETs5WT/q8eVfxxBP/+1UL5G+/Xcu11y4GYPHiSzEY2igszOPaa29ixozzmDx5GoGBgT3uw7Ztm9ixYxsajZaoqCiWLLmIPXv2EBQUxPjxrgmOMpy8tHIld919N4GBga5JTXY7BvdkpJriYqJTUxEEwbcQi6amgRkH946s/eYbFnezfSFaLa06HSqVisCAAGKio1l44YX4+/ujUCh4/G9/Q6vVotFokMlkpKelcekll3DzrbciCl1XH+poWl1dHRs3buLJJx+jqKjQk3///Y+zbNm1gIKamkoaG5sRRRmTJp2JWh3qqUMSyH0L5EuXLeOTzz/n6mXLiIuKwmyxUFFRwabt22l12y51YCBKhYKosDAy3PHBJrMZmSDw/a5d7DnkGq6/Ys4cXrn3Xu576SVeWbOmS1vPnzSJzbm5JEVHe0bdAGaOG0dpXR0NOh1GiwWAZLcNNVuthKjV1Hfc74FAPz9yVq4kIyWl74Pay0FyOBwcOHqUR154gaqGBv7z179yxoQJJ0Ugt7Xp+d3vLmfjxm89+RdeuISXX/6U7vyaBPLX33/P/GXLALjsooswmkzkHDjAjVdfzXnnnMOZU6eiVqt73Hbrjh1s3roVjUZDVEQEi+fP5+e8PBRyOZMnTvSUe33VKm69+24CAgKQddhQt0Yozckhady4Pm3o8BLIbk/KgC1ct5NZWFJCeEgIYVotVpsNo9nMt1u3UlFbS7vVisVqJSokhGsXLUJvseB0Ovn0+++599lnWfvSS5w9aRJ/e/VVwrRaIkJCqG5qIiI0FD+Vij/85S+0W62cMX48RosFg9GIf0AARqMRvcFAm8FAgL8/WRkZ3Lx8OWfPmEF2ZiaCUonV6cRkMiFTqVyeJpmiT4Pfy+51obm5iR07NlJRUYpGE8K8eRej0UT0adS70/0CFEWRwsJD1NVVkZo6grS0EV3K9XTB9hpq0Zea6/R51aefsvzee7lq4UKevOMOrGYzb69dy79Xr8ZoNgMQ6O/P4nPO4f3167lu/nxa9HryS0uZkJ7Oh+7Y4vPGjmVnQQGPXXklZ6SnM/uRRwC4Y/580qKjufNN1+oFSrkclUJBqFrNwkmTWDBpEktXrODWOXO45+KLeWvjRjYePMhDl1xCVnw8TpmMyffcQ5Nej0wQCPT3x2K14q9S8ZuJEzl/2jSUCgWXzJpFdHi468B0vpN1/O+e5u+P0+lE7l4X+YP33uP8C+YREhKC3Q7ue8xADmmvaZWVR1i2LMNzuhYs+D3XXfcXwsKifRLD3tjNwRDDHX1Sr29GpZJjNhsxm3XExaUQEHC8WPW2/u5pt99+DZ9++j9uvPGPXHDBfJYtm8vttz/An/70mFsU9lxPcfERVq36L++/v4orr7yW8vIyPv74fdRqNcZOMfCBgYG0t7fjcDgAOHzwIBkZGccfSLcXzCeBXFfn202te363A1NUUkKIRkNYSAg2mw2TxcL6LVsora6m3Wqlvb2dkNBQbrzySvRtbTidTr7auJHbH3iA9157jfnz5vF/zz1HsFZLdFQUVdXVhEdEEBgYyD33309raytTp07DbDZjMLShUvljNpvQ6XQYDG34+weQnDyCa665hQkTziYjYzQOh4DZbMViMeNwCKjVwVitA/P4dcZgaOHAgY3U1h5FrdYybdpFhIRE0Rf99TlRFKmqKqChoYKYmBRSUzO7lPNRt/Wa12FOZDj56KOPuPyKK7j0oov4+xNP4LTZ+N9HH/HcypWeBzA/lYqlc+fy7tq1LF+yBL1OR15xMROzsvjAPddn1uTJbD9wgLsvv5wF06Yx4447APj9/PmMTUnh9pWu8AGlXI6fUokmMJCFU6Zw8ZlnctH//R+/mzOH+xYv5qMdO1jz0088vHQpIxMSEASB6Q89RFVTEzJBQO3nh9lmw0+pZObYsZw/aRIqpZIlZ51FbIcN9fJAiKKIbMwYAN59/nnmzprlWmu+tyeLToIYutpZb/pTSUkJM2emedLnz1/Gfff9k8jIWDrjrbb01g760mc6f5bhRBRFWhoakMlkmEwmWpuaSE5KQu3nd3yDBviwfetdd/HyG29w07XXcvWyZcxcsIC7bruNvz3yCAEBAb0+bZaUlvL622/z37feYvlVV1FVXc3qDz5ApVJh7bQaSmBgIFarlY55FAe3bWN050mBHe12z0c6fQRyb66AE7V+Xt7xrTYbT69ezervv+dIVRVXzplDhFaLzmgkLiqKJp2ONpOJMK2WdpuNVx57rMee6XQ6MTqdbNq1i4/WrmX7nj1UVFVht9tRKBQEBATgcDgwm82MHTuOb7/9Ebvdjk5nQBAEgoPDUCj8aW9vRy73o7GxnvXr1xIUpCE4OBSlMgCr1YpaHURiYhqPPHIr33zzsWc//vGPt1i6dHmfx7xzHxVFkW+++ZjNm7+lrOwoBQU/YzIZiYyMISUljcOHD9Ha2uK6IYaEcvbZM7HbrcTHJxATE0tQkJqwsDAsFiPBwRrS09NJjI8lNjYWP7ncc6wd7e3o9XpUKhX7f/6ZgoIC2s1mDEYjR44eZfaMGWzevp0jpaVs27uXUI2GtMREFpxzDg/+61897se7jzzCb2fOBGB7Xh4yQeDMzEx2HjzIBQ8/THpsLONTU0kJD8dis7E+Nxc/pZKimhrOTE9naloahyoreX/nTtY/8ABz3EOQ540cyW9GjsTudBLk709kcDBpsbEgl1PV3IzOYmFiWhpj0tIwtbfz4ldfUVxbi0wQ+Hz7dsI1GtLi47lo9mz+cMUVKDoMs79/jwLZ4XBwy5/+xH/feKPL/lVU6AgM1HTpshbL8d2+P+Pe+XNtbSnLlx+boQ6QnX0Wf//7ti7bnQi9iVDvPb02DhzYSXn5IWprXfHi27Z9RWVlMYIgEBCgRq0OprTUFQqQmprFihXvMWbMeGSygS9W//bbL7FmzbscPLiP0NAwamtdnrF77nmcu+9+jKqqcpqaGoiKiiQ8PJKAgABE0UZMjIolS5bx+ONPkZKSSlHRIaZMGd2l7iVLLuHNN9/C39+fhoYG1q75jMuWLCEiIuL4k6ZxnXOfBHJVlW+2cQhOtB145vXXWbVmDUWlpVw6bx4JcXE0ueeJNOv16PR6omJiaGlt5c1XX0UICAC6ChVRFGlqMrJt2xbWrPmA3bu3U1VVht1uRyaTExAQiNPpxGIxkZIyin//ezOCIKOtrQ0QCAwMcwvudgTBj7a2Jnbu/JyAgGB3XgB2uw2FIpDo6DRWr76fTZuOLft3003/Yc6cW7zdbURRZM+ez9m372tqa49SVvYzZnMbISFRxMWlU1FRgF7fiM1mJShIy8SJs3A4rERFxRMREYtarUajCcNmMxMQoCYpKYO4uHgiI2PRav09vymTOdHrdQQG+pGXl0NxcT42mwmr1crhw4eYNet8du3cSmFhIdt37EATHExacjILL7iAh558ssd9efXRR/ndRRcBsDs3l3arlXPGjiXn4EFm3n03KdHRTBwxgsTISESHg2/27UMpk1FaX8/4lBTOysqisKqK1Vu28NUDDzDfbUPPSE9n3oQJOJ1OAv38iNJqSY2KQi4IVDQ10WoyMSE5mTGpqVjtdlauX09BZSVKuZzPdu0iNCiI1JgYFp11FncsWYLK3U96czKIosidTz3F82+/3WX/WsrKCImI8JTr6Gs9OR46+l9/UqO2tpLZsxO7/E5q6kg+/vjQcdv1h68PRH1o/S5i2G63s3PbNg7l5VFWXo4gCHz7/fcUHD7scvAEBqIJCuJwcTEA8bGxrHn7bSaOHXu8De3Py9Hp++tvv83rb79N7oEDhIWFUekeaf/jH/7Av557jsrKSmrr6oiMiCAyMpLAwEDXw42/P4sXLuTZp58mIyODI0eOkDG6qw29YPZsPvrf/wgICKCpqYnP16xhyaJFREdFHX/STiuB3OH9GKhLrL/xNm9EcqcT3uEZ7PGRrKee2VkAdfzvVM5sNqPSaJC7hxWsdhkWi4WkpBh0Oh1qdRDBwRrXE15Lk2cSYFLSCIqLCwCYO3cpOl0rFosZpVKJwaCnqqoEh8PBqFFTACezZl3CRRfdgFod1KsgUChcF/i//vUwQUFBHDy4F52uheuuu52UlHSys8cRHKwhODgQpVLAarViMLRht9soLDxAW5sOhUJJXV0V9fW1WCwmmpoaUavVtLXpKC4+QnV1FXV1dSQnJzN1yhSMRiMbN21CEAQsFgtjR49m7KhR2Nrb0RsMTJkwgQ8++4yyigqMJhMhWi3ZaWkcLinBT6UiISaG3Px8rN2Wrbnj8svJTkrCaDazNz+fgvJyWg0GtIGBjElJYfWGDQCEBgXR0mk9TQC1nx9jExN55/e/J+O++zxp2bGxnJ2ZiZ9CwTNff01IQADtdjsmq5VQtZpR8fHEhIaSX1XFocpKLps+nZsXLuTMMWNQ+/tjUyiobGjg9uefZ9327Zw1fjzb3n33+H7R7b/R4SA0PLzL0jzvvfcl557rWv+7JwPe3cj3LJ5tGI0mWlvraGysZe/eL1mz5pkux2LFinyio31bmsfXYb/+0uRykdzcHXz11WrWr/+I2NhkRo4cT1xcMqIoMm7cNGbOvMBjvBUKaGioY8qUGABSUzPQ61uJjU1Eqw0lISGFqVPPZurUs0lOHuFZI3XNmveIjU0gIiKalJR05HI5drsrnq2s7Aj5+bl88snbJCamMn78FEwmAw6Hg7Y2HStWuOYgxMYm0NzcQFRULJMmncGaNR8AcO21v+PZZ/+Dn5+ca6+9jDVrXA+ue/bkMXbsqC773mdI0okI5L7u+B30Zid7+t4Xvbm9FAosDgf+fn79jp50vw6cCleMtMFwrH9bLGCxWHA4lNhsck+azWZlyZI0Ghqq8PdXo1ZrEUWRtrZm7HYrcrmCiIhkamuPADB16hJMJj1WqxmFQonJ1EZjYwl2u43k5EkIAkyceDHnnns9anVIn7ur09Xx/vsP4OenpqwsB52ulgsv/COxsRmkpY0jMFCLn1+gO37bhtWqx+l0UFaWi8mkQ6VS0tJSTXNzLVarEZ2uCT+/AKxWA+XlRTQ0VNHYWEtsbCJjxkzDZrOwc+cGQKS93UJW1lhGjx6LKDppaWnijDPO4PPPP6G8vBS9Xo9Go2HUyJEcKS5GLpORFBfHocOHMXaLEf79ZZcxMT0dg8nE/oIC8ktKaG1rI8jfn7Fpabz7ww+Aqy8qZDJs7tEPgECViuz4eD6++27Sbr8dAD+FglEJCZydmUmQSsXf161D28mGagMCGJ2QQGxICEfq6sgtL2fhpEncsXAh00eNIiggALsgUNnYyP1vvcWHP/5IdlIS+e+8c6yf9HLftTqdhI4bh8k94gjw4bvvsnTZbwHfbWgHZrMNo9FMc3MddXW17Nr1LW+++bcuZd5+O5eUlHHH9Zne+k/H9+42sT950T2tsx0RzWZ2793L6vff54PPPyc+NpaJo0eTkpSE6HAwacwYLpw169jL1+x2mltbCXeHf2WNGEFjczNJcXGEhYaSnJDAjKlTOXv6dDLS0hCUSkRR5MMvviA6KoqY6GjSMzPpWMbO6XRy9OhRcg4eZPW77xIZGcnZM2agazPidDrQ6/U8+qhrRDcxMZGGhgaioqKYOvUMPvnENX/r2muX8+qrr6FUKrnuuuW8884qAHL27fOEqXnlLHXPEZIEcn953T/3ltbXU9IJCuTuaVb7sRjktjYbSqXS0xybTcRqdSKTydi5cyubNn1FYmIGl156Q4+70dDQyM6d61m16jmOHs1HLpczbdosxo8/kwkTphMQoCY6Ot4z9KNQwEcfvc7DD98EwBlnnMeTT75y3PqvvXv3ej80ndOcTid5eXnk7NuDXC7nwjlzCA8P7/lcdWC3Y25rw9/fH8HhQBRFKisqKC0vp6yqikOFhTz1+uuAK9xC7Q5PsDsc6NxD2ZfPnElxVRU5xcWIQHx4OCPj46nX6cgpKSEiOJhG9xJt52Zns/H++5HJZHy2Zw8/Fhayt7SUPaWlZMXEMDE5mTfcb4ca9eCD5FdXI65eXyNguAAAIABJREFUDQoFa/fuZfE/XKs9ZCckUFBZyaePPsqS2bMBuO+VV3jGLYyjwsOZkJXFXTfdRFp6OiNSUjwPS537TFVNHQkJcUyZMo1Fi5Zw6633egSBL8bd6XTy7bfv8OGHf6ey8jAqlT8hITFotdEkJY0hK+ss0tPPIiYm3asXR/TEYAlkuVxk/foPefHFB/Hz82f+/KtYtOhKEhJSvep/nSkvP0pzcyN6fStHjx5m795t7N69BVEUeeihZ5g37xKysgI85dXqIG644U62bv2Bw4cPEBoaQXb2eL7/3hVvOXHimQQEBBIXl4i/fwCbNn3DPff8lcsvvxqHw0FpaTH792/nxx+/55NPVgNQUqIjNDSYP//5Hl566Z8APPvs8/x/9s47LKqje/yfXRZYYOmIoCCKWFCxYi+xxRJNjBqxxZbEJBoTTWKNvcWeYtREo0ajxlhjjb2G2FBRLIAFUUDpIJ1l4f7+2MJlubssyfv+3vf9vu95nn3u3rlz5545M3PmzDlnznysEyD+WwRkycb+GwKy/iqdVoSVlYLiYi2pioq0m7dLSuTcv3+F69cP4+bmR/fu7xvyiKuak5PO/ftnOHZsJQkJ9wAZgYGdCQhoS5067bG1dcDZ2RtPz+qGd//8cwfr1r0NQEBAGz78cCO+vg1NksWS8SAig4GHPnsWyb17N7CyktGlSy/c3auUIZ+UYFVclFuGhybExBD76BFP4+KIjIxksW7Ds9LWFkd7+1IeqlMihHTtSuzz59x88IASQcDbzY2Gfn6kZGYSHhODq4MDGTp+2zoggD8XLsSqpISj4eEcj4gg6vlzzt2/T3M/P2p7erJz/HgAOixezJ8PHmh5KHDm7l26L1kCQL1q1Yh+/pxfPv+coV21YSbn7dzJ/O3bAaji4kLj2rX5dNgw6tSqhX/16qWbmkWVT8nJwbNhQ5o1bkz/119n+owZWNk5lGlvS3ioIAgcPbqTjRuXEBMTiY2NEje3qri5VaVWrQY0btyeBg3aUaNGXYt56D9TQP7t4EGmTp+OXC5n2MCBDBs4kDq1a5se5ybSYuPiSElPJzM3l4cxMfx5/TqhYWGo1Wq+nDWLEYMHYy3eXAnMnzWLk2fPEnHnDq6urjRp3JjDuoNKWrdujb29PdWr++Do6Mjx48eYNm0GY8aMNQjUV65c4ty5M2zfrhWGU1LScHV1Zc6c2Xz5pXYhsmjhQmZ+8UVZvP+rBGRTtmNzdmRLHTQtmQTMzb5Gm6sMacaCsXjAGg9epdLA/KUYvjktoLk+DhAf/5ivv55Et24h+PjU5v79ML7+ehIA1arV5PnzWAB27QqnsDCfs2f38ezZI86eLd144e3tS2hoafgzS4XhyuY3GxbOVIcXESc2Pp6EhARy8/Oxs7bGXi5Ho9FwNSKCfp064VelChQUUKhWU6xWcyc2lozMTFxtbJDL5TTz9eVSdDRKKyta+vtrmZvoW9n5+aw5e5bQhw+5FRdHbU9PEl++JCEjg+l9+zK7Xz9QKLgVG8vMPXvwcXdH5eDAV4cO8eu0aQzu0QOAzKIiBsycSZFGQ4/27anq7s7cH34gMSWF3T/8wKBBg7TfFPWPS1du0L59Ky5cuEHTps3NCASlpMnPzyUq6i4vXsTw/HksT55EcufOOdzcqjFixArq1OlASUn5TaEpKc9ZtaobBQXZ1KnTEX//Njx5chWl0omXL18QF3ebtLSnLFnyiGrVaku2rTnzoJQsZJzvxYsYFiz4iMTEeL788nuCg9trNVWifpOY+JyLF4+TmJhAvXoN6dWrD7YSPnNnz55g0KBeANSr1wA/v9r4+tYkIyON/fu1C5WAgPo8ehSFm5sH6enao7ubNWvD5MlLCAxsgrOzq6E8QRDMRsAxN9m1a1ePx4+17h9vvz2GRYtWUaWKazkaSYbogr/mg6wXkM0xFEscLaX4pfi5FAGkiGGuA4j5pTHv1F3VGjl6o4/+WlBQ9r8eLakqV1RN4/9paU/ZtesTmjR5Ey+v+iQk3GHHDu3Gb0/P2iQna03Rs2ZdQyaTcfXqr6SkPCY8/IChDDs7J77/PhNr67JN9lcsKuaeiUlrjsw2ClH/EjGQZ/HxxMfGao94lsmw11llLt28Sd+OHfH38DDw0JKiIu49fUpKejpudnbI5XKa+voS9ugRFBfTtm5dZCKtMhoNuYWFrDtzhovR0dyMjaW2pydJWVnEp6fzSc+eLBmiPZzmbnw803/9FU9nZ7xcXVny229snTiRkToemlNURP+FC8lXq+nesiW+np7M/+kn4pKS2LJ4MaN05Yh56L2YGBq1bMmFc+fo1KlTGXcK8VXcV/Lz84iMvEt8fAxxcbHExERx/fo5nJ09+OSTFQQFvWLQuor7UUZGMlOmdCcrK41GjdrTsGF7oqOvoVSqyMxM5vHjWyQmxrJ1630CAgLL9AfjtjK3dhSnyTXqUgSAZ48e8cm0aUQ/fszaRYvo0r59aXvo8iSlpvL7mTPEJyZS39+fvh07YqcvXPSBi2FhvPK2dtFXv3ZtAvz8qOnry8ucHLbt08akr1+nDlEPH2JtbW2wdga3aMGSL7+kafNg3Nzcyij7/qoCplu3Nly/fhWAwYOHs3z5N3h5lQ3x+XeUDBYJyDKZzBtYCrwGOAIxwDhBEC7onsuAucD7gCtwFfhIEIR7ojIEoAioLwhCjCh9C+AhCELfCnAoLyBXpDKQygfS3PLvCMjmerJYCJa6GqcpleQVlN0QUFH1KhKQ16yZSEZGEunpiUREXEAmk+Ht7U9WVipBQe3p2LEfGzbMwsbGlpcvU9m48QpbtizizJm9ODq60L37QMLDQ8nKSic9PYWePd9i3brSUHWV0eCZU8BXpixTcT0lCWGqL5hLMzOLvsjMJDkri3WnT7MnLIycwkKKiovxdnZmSKtW9AsOpkPduuy5cYOhRmHnhnXuzKaJE1HqhJv4rCx89UKwDtxcXBg3ciRzPv0UG90A1vePEoUNOTkaZs2axrZtP3H+/B1cXaubFZAjI+8wbVpXPDz88PLyp0qVWri716ZBgy64uwfoIiRIk+/ata3s2DHagFubNu9Sq1Y7NJo8VCpnbGzsWb/+LQDWrs3GxUVVpq1MTc76q/HaUZw/PT2JTZu+4+eff+CTT6YwYcJn2NlZG3DRl3f27Bl69+5Ot27dCQ39g8LCQr79djUTJnxchq56jU9Y2DU6dmzDwIEh7Nu3u0yeZcvW0L79K0RGRtKsWTu8vatLMvB/hCY9Kiqcp09j6N69Jw4O5emmp0u5RaO+Yf/qJr2KVlTmxogl480UVFZbLKVI0F9dtK4NJUr7cgJyTk55AdmUkkF/b/zM+P+BA9NJSXlMXl4aDx5oD6GpUiWArKxEAgI60ahRH06c+BKZTMbLl4lMm3aZixe/588/N2Nr60Bw8GCePLlKTk4aWVmJNGzYg88+OyFJFuO0ygrIluz5FaeViXahF6wsV8uXJ6YFE1NSWhrJWVn8eOEC2/78kzy1GrVGQ1UnJ0LatuXNFi3oVL8+RyMieHPlSsTQr00bdk6dip3OupacnY3PkCGG0/oAXJ2ceG/wYBZ8+ilKfTgwsRLKxoaZs2bxw/r1XLlyE2/vWma7f3T0A8aO7YSHRzWqVfPH29sfLy9/mjXrgq9vXQMP1YP4f2jofhYuHGi479XrXerXb0NxcSEqlQp7e0dmz9Y+P3kyDXd3t3LtYsLjrix/ELedrhKpycms3bKF7zZvZuKIEUwdOxZbve+wCMnLN2/SbswYurVqxZU7d8jNz2fpRx8xbeTI0oroOp4gCNyMjKTNiBH079aNPSdKo3MArJw3jx6vvEJ0bCyt2ralhq8vgpUVMpmMEoWN2SlWin7mxLCoqLs8fBhJ9+49cXR0KvNMaryUWQzC3z8oRCaTuQA3gVBgDZAC+APPBUGI1OWZBswCRgPRwBygA1BPEIRsXR4BKAAOCIIwVFT+FiorIFs6eKW4pP5qiRpB/N9Su4eUttgEcy/zzAzDF1clN7eYgoI8bG0dTW4gMO5Qixf349q1Q3TtOopx49Zjb6/VrMXEXCcyMpTbty9ga6vk7NnSYz9XrTpCYGATTpz4lcOHfyIm5n6ZMqOjhXJkEJPGGKTSKvPcVF6p/+UGwd9ZVInubzx4wPy9ezl37x4+bm74ubtz4s4dPJ2c8K9ShSu6jQwALvb27P7kE2bu3o2niwv2NjYkvnxJkSBwJSqKcX37MuGNN3hj/nweJyTQOCCAxwkJNA8M5ODGjbjqzVNGwoIaGwNqn376CbduhTFnzhpq1WpRrip5eSX8+edv7Ny5hKCgbgwduqxc1c1ZJEBrvj1/fjFnzmj9ap2cquPoWJXiYjVpaY9xd6+Fn18w7du/T8OG7c16EUkYS8qlxcTcIzT0HOfOneHixfO8NXAgc2bMwNfbuwxyarWa3Xv3snP/fk6cPUtxcTHOTk680asXb4eE0Ll9+3KxfMXjdeU337B52zYio6LYs2sXMbFPsbOzY+zY8cjl8goNVRUxcFNQGSFIfzUWbgwT4V85SS8trWwHMKd2lcpXkQnLHDHMVc5ch5Hgk+L7PE2pu4X+KsVD9VXJyyuhsDAXmczRbFX0oNHA9u3DCQ//hSZNBjFkyM/Y22txjI8PJyYmlMePzyOXK7h5s3TB9f77v1GzZmuuX9/JtWs/Ex9/uww51q8v5aHmSGTJ1PN3BGSp6cuwGJMi4N/Q3NyKjWXR/v0cv3ULX3d3alWpwrHbt1EplTStUYNQXWxtPZybP59p27dTxckJe6WSxMxMSoA/791jRI8eTB06lFFLl3IzOpoG/v4kpqXh5+3N6a1bcfPyKq0YlGE2evfFKVOmc+HCaRYuXEPDhm3KVEVreRO4ePEQW7YsoUGDVnz88eoyVTL3Xw9WVgJ7965i48YpALi7V8PVtSqCUEx8/EO8vPwIDGxBv35jadfuFYsUCYZ20qjLtUHU3bucu3iRM1eucObyZfp16cK8996jpm5Dmh5JTUEBe86fZ+eZMxy/do0ijQZnBwf6tGnD29260bVZM8Nx30C5jvfd7t1sPHSIiIcP+WX5chJSU1FYWfHx2LFaTboJ1yipNZX+vrL81dKxYUw3g4xQwVHTloglU4EXgiCIlhIYznnUaY8nAUsFQdinSxsFJAPDgPWi974DPpfJZCsFQbhhwbf/a+HevTuEhd0iKek5AQFNaNasB+HhoUydOoTU1Bds3XobH5/yzv5an94/uXfvInFx93jw4BopKdoT5J48uY2NTanZuW7dYBo0CGbgwEmAhkaN2vHkSQSXL/+Oi4sHVav6EBNzj7S0RD78cC4qlYqGDYNp0KC5WdwFQSAlJQlPT69/KE3+VZCUkcHoVauIio+nTZ063Fu2jBoeHrzMyiL86VMuP3pEvlptEJAXDRjArP37ORoeTlhMDNZWVlTVTezFgsCrzZrx5MUL+s6Zw5PERAAidAfX9GrfHlcLA6DPm/c1v/66mbFj+zJmzAyGDfsYKB3jT55EsGjRW3z88VY6dhzOX/GmksvldO06m65dZ1NUVEBBQTK5uckoFHKqVQvExsauUosbc/Dee0MIC7vEq6/24M03B7D1p024uLhICl5TZs/m2vXrfDx2LG8PGsSw99/n8Y0buIsPZjEDkydNYvLkyQYuKhVz/H/wnw2PH9/n1q2bpKY+x9s7kKZN+xAVdYUVK4aTnBzL/PlXCAhoXe49QRB48uQKjx6d58WLezx9eo2MjFgA4uKuY2NTanb28WmGj08zunb9mJKSEurU6Ux8/C3u3j2Mvb0rzs7epKQ8Ii0tlj59ZmNrq6JmzZb4+jYr911jHF6+TMLD4/8GD03LzuadNWsIf/KEdnXrcnvJEmpXrUp2fj43Y2O5/PAhmuJig4C8MCSE2bt3s/fyZa49fKiNx+zsjFwuR63R8Grz5qRkZvLmzJmG+Mr3Y7SG6fEhIbi5lN88KQWzZ39JQEA93n9/ICNHTmTs2MkgOrwmLu4hU6e+yfTpG+nde6TpgsyATCZj0KDJDBo0GbW6kJycZDIzk7Gygtq1A1EqpeOl/xUYM3EiJ8+do0f79vTt3JkNc+ZoaSGWPnUwa9MmTt+4wScDBvBOz570nzuXB1u34unqaqL0svBxSAgfDxumvRGrsq2sTL/0HwaWNMubwHGZTLYL6AI8BzYCawWt+rkW4AWc1L8gCEK+TCa7CLSjrIB8DdgHLAe6VR5bhfSSWgyWmtwtWb5UtHQxXupJaVCk8um/rds8Jg6XEhFxj1mzZnPjxlVat+6Mp6c369ePIi0t2ZCnSZNOpKfnEht7itTUeCIjL+HpWYuMjGTCwn5DqXSkSZPXqF+/B336zKJatXoUFRViba3VjElrrhT06fOxAUW1OoeZM0dw4cJvODu7ExzcHWtrOQ0aNMHeXjp4t1xewsmTh3j33f4AHDt2nZUr5xIWFkrbtq/QokUb6tZtgCCUUKVKVWrVCsTFpTS4f0UgzmNOa61U6iMYaFe/CqVN6YrRUpOhrsCcjAzaT53K0M6dOThzJjaiUxqdFQo6OznROSiIwqIiBrRuTWDVqhTJZKTl5zOodWs2nj/Po9WrKSwqQiOTIdjYsO3sWdb9/jupL1+y9tNPade8OU+eP8fPz49bUVEUFhZia6zekaCDIFgxePBYGjfuxkcf9WPjxsVYWyvx8alL584jiYy8TlBQV4KDR5KfX7G5WcrDqOznlVhb18DFpYbWz01ePo+UUcUSDyMbRQm3bl3jxL69NNAfBlBQAImJkmPz4vnz+FevTseaNZHr3B9+3byZRgEBPH3xgsiYGNJfvqRQo2FYnz70eOUVs/4Lch29bQyqhlKfRHHdpGhUGaG6PE3LphmzCj0ZxGk2f2c2VSqlP2gKWVN+CabM6+J3jcFSDbK+U0i9q9do6u8LCrCxVxi0/gAxMdGsWDGHmzcv0qxZF9zdvfn1169JT080FFe7dkuKiyE8/CSpqS94+PASrq6+5OSkc+fOAeRyG+rX70utWl3p1Gk6np6BFBerUSjKutro0dCSVE6nTuN0X1iPWp3Ptm3vcPv2bygUNtSv3x0rKwXVqwehVJaepCgGQRCIiDjGV19po9LMm3eJY8dWERFxisDAjtSp0xY/v4bI5QLOzlWoWTMQJyf3MmUYsbAy/VbMVozTxH1Zz0NtxKd2WurrYdQf8nNz6TBrFn2Dg9k9eTK21qVuUo4KBa8EBfFKUBBqjYa+LVtSv0YNBEEgs6CAt9q356dz54jesIGSkhLUgoDc2ppfzp7luwMHSM7IYNXEiXRr354nCQn4Vq/Orago8jUa7IwHk+5eGx1Km1RSImfw4DG0bNmdMWPeYOPGldja2uHjU5vevUfx8OFdGjVqS/fu76DRmHajMAfivmJjY4unpy+enr4Wu76IFbH2Sol5TKTlv3b9Ooe++YYW/v6lH8/MlOShf9y8ibeTEx1r1cJFt19jx5EjtPD352lKClEvXpCanU1hURFvtWtH37ZtyzOoshNv2QpXwBylxC1LWYkxWGKNKwP6/m0j8UxcbsWfxh8YD3yN1g+5KVpNMGhdLvRL3CSj95KA6pSHL4D7MpmslyAIx819WCaTvY/Wr1mHraJiCpj6D9KUNtc6pgRePUh1CKN8MZmZrL96ladpaaQXFpKZm4uNUhtZIU+j4cqdO2g0Gnp260arFi1YqIt4EB+fR2GhHQkJTwkLu0xaWjI9egzn0qWjPHp0m1Wr3kUuV+Dr24jatdvy9Okt5HIbJk06gpdXozIbh7Txs+0pKaGMgCzhf2+oglpdwPHj2wHo1m0Ay5d/xIMHETg6OtOv3whcXd2oUaM2UVG3mD59IUqlHb6+pStHJydnhg59FSsrBcuWfQ9ARMQNtm//ESsrK5KSXhg2QoWEjKZ37xD8/esaNopZ0mTGzSGaM8vca+Ugue6/1m/TxkVZfoLPySnXpy5dv05BURF1/PywdnEBmUzSLcdWoaBpQID2v0bDV2+/zR8PH6KwsiLi6VN6NGli4H7z336b+aNHs3TXLvZfvEjj+vVR2tjQb+JEPN3c2HL0KLvWr8db4ohVjcQ6ztvbn61bI0hOjic7u5j79y9x/vw+ZDJbxoz5qZzlXLzz31juMUVfc0NNKr+YuTs4CFy/fpGSkkwCAgLx8dEehqBSgTwny4BU88BATh08SGBICHGJiXy3bRt/3LrF95Mm0UzE8AvVaoa1a8cXW7cyolUr+rVuzYl583h/3TqeJpcuJPWQ/OIFPerVk7Yp6wUAo45mo1SiUVSsVZZiEeZkQ6l8Us+MheKy+bV4SUdyrgD0M7Dxxyuy5RsjYUoBYalyAcriYea9ZxkZ/LB9O08SE0nPzycjOxtrW1tUDg4UFBdzOSyMoqIiOnXqStu2HVi2bAEAly/nUFLiQHJyPFFRt0hPT6RTp+GEh5/g+fNofvxxNFZW1lSt2oAaNdqSlHSf4uISRo3aj6dnk3KbL+Vy09YSqXFRVKTmyhVt3ORWrYaza9cnvHhxH5lMRufO47C1dcDLqz7PnoXTr988VCpHRo8ubVWl0pHly1/D2tqG0aO/xdbWnsePwzhzZiNWVlZkZiYRHx+Jg4ML3bqN4pVXhlC9ej1sba3K4CFuRrFQLJVm3AxivmnjYqTgkeCXUh+7ERlJWk4ODfz9sXZwKF1Z6/Pr/tuIeCgKBSvffZcr0dEobWy4+egRb7RpY+i/s0aPZtZ77/Ht7t3sv3iRFo0b42Bnx8BPP8XDxYWNv/3G7k2b8K0uEkEMeJUm6dHw9PRl796bJCbGU1BQwp07VzlxYjdyuTVffLHNENXkrwhuppQ5phQLUiS1tRUIDQ0lKy2F2rVr08BXF1/ZyA2qed26nLpwgWYeHrxIS2Pt/v2cuXWL1e+9R2s/PwPiRRoNg5o3Z9ru3VwND2dwixac/vxzJvzyC1GiU2P18DAujr5BQeVlHjGDMq6MBIGk+GVF7uuVcbEwBVI6UvjHCMhy4LogCDN09+EymawO8BFaAVkPxgZcmUQagiA8kslkPwJLZTLZSePnRnk3ABtA58NsrP0QN5ZUwxlPAuI8ldXCSLWS8SwmErIjUlNZFhrKiZgY3u3YkX5NmuDm6YmzgwNFSiW5BQXIHR3p0LkzB0+d4lJkJHK5nCVLltK2bU9++OEbdu/+haSkBIYM+Zjly48xYkQQOTmZ7N//EkFwKtfYlsxNYnKYI4OLiwc3bpT1kUtJieHrr6dTWJjDqVPniYq6C4Cjo5ITJ44Y3p0790t69uxLYGDDMtrxYcOGlunwRUUCd++Gs337RkaO7EVCwlPkcjmentX48cdT+PvXN8mQpIQLU8JcQYFU95AbhGW5+AUjDVXzFi0YGxLCkp07iUtLI9DPDz83NxrWrInSlNSjS0/NzkZpbc2Zu3e1ArIR4h+89hp5Gg3D586lmocH306dSr8uXVi0dSstX3uN3zZtomWHDpKfML4WFspwdvbFygratatJgwbDJDcv6elhbm+NGKQEXuP8Usxd7Pa3bNkETp48QFKS1hS6ZfNmRo0apdVs6JHKzOSzwYMZNXMm01eupECtxsPJidSsLN6YNo07ixbh4uAABQXsvHSJHadPs3/sWF738UGIjycmKooGHh48TU6mT1AQe8aPJy0nB5Wzs/a9xMTyDs/mNJUKBXoLhBTtK9q6YHxvrp+aA6k+r79WxNyloERhg1whwS9NzU6mVNtSzypazRqD1MAU4XH/2TOWnTjBkbt3Gf3qq7weHIyblxcuKhUalYqcvDxkjo60f/VVTpw6xcmzochkMmbMWE6jRp3Zu3c9Bw5sITk5ntde+5DPPtvHrFkdyc5O5YcfUrC29jCgYYGcXqGwY/zM1dWZrVvLToEvX8axY8dkioqyePDgHEePfgmAnZ2S27ePGfKFhCykRYvX8fcPKhPTu0uXkDLlCYLA06d3OHlyI/Pm9SUp6QkymQwXFy8WLTpBzZpBkkKXqeYzbkrxvV6rXIZvWuCX3LBhQyYMGsTXBw7wJDmZpgEB+Lq50ahmTeykzPEi4qdnZ2OrUHD61i1eb91a60Amej6mZ08ycnMZM2cOHi4uLJ00iZBevVj+88+06tWLvRs20L5LF6NypQeOdvO6LwUF4O3tR6dOIZIaTal7S6CyIof4valTp7Br168kJCQAsGHlSsaOGFHOHDgpJIThs2czb9MmCouKcHd0JC07mz4LFhC1aBEejo6g0fDb9ev8ePYsO8eMYUD9+gg5OcQmJBDg5kbUixd0qF2bkxMmkJabi4OTE6463mtSMBYtdMxNJGIFj5SSxlJZxhzLkQLjb0rJ9VJgySa9p8ApQRDeE6WNAH4QBMFBJpP5A4+BVoIghInyHAVSBUEYpbsXgEGCIOyVyWSeunfGo3W1sGyTXmGhdOBLcZrUphNzKjQpqcHcpCE104mkh6vp6Sy+coWwpCQ+bduWD7t3x0l/Qo/eL0p81f/X5SlRObFw4Qq2bdvI1KkraN36FWQyZ3JyYPXqz9iz51t27nyBQuFZaQFZyjoitZNZf2+clpeXwuXLxzh2bB+nTh0ylNu37wA8PDzZsuUH7O3tOXLkPC1atJTEwdwqURAECguL+e23LSxfPpVx4+YwbNikMu8a/7dEQJaqZ5kNKeLdvyY2dt6/f59Pli3DQakk9vlzYl68oGfz5gxq25Z29evjq/fbMiL+3WfPCJoyhZQff8TDzU1a4pTY2PnOF1/w065d3AoNpUlQkEGYyyuQk5mpzSbu3sZpYtnznyEgi5Wv4n1Txl3cwaGI4GAb5s79hvj4aDZt+p7X+/bl0MGD5QRkPZKPoqNp9tFHKK2tSc3Kwt/TExc7O/Z/8gnfHT/OkYgIFvbty6DmWl/43TduMO/33+ndoAGH797lxxEjeKVBg7IIKxTSArIZ/w81ZTd/SXWPf4SAbM4oJtb0ldtsIFf4AAAgAElEQVRoopvnK7NJr7hYQF6QV57/Se1sM7XbTX9fmQ1aYqhgYN7MzGTx6dOExsbySdeujO/TB1e9JtCIX4p5aFaBliCZmfD992vYseMbPvhgGcHB3ZDJXMjJgR07ZnLgwDK++uoRjo41K412ZQRkKYEoPz+N27ePcf36AcLC9hnSmzd/HQ+Pmpw8+R1WVtbMnXueevXaSfYbcyAIAiUlxVy8uJNNmyYxYMAUhg2bblGfk+prUvOBuQ1iJl3XgEePHjFu1SrslUqeJiby+MULujZuzJAOHWhbrx419RYzI83Ng4QE6o0fz9OffqJGtWoWD5JPlyzhm40buXHhAs2bNjU8E290tnQPoiX9QwrMjW0phYIUnR0cBFQqrfLsxbOnrP7+ezq2acPFgwelQ7bk5BAXF0fDceNwcXAgLjUV/ypVUFpbc+LTT/n25EmO37vHlO7dGdm6NWg0HL57l89++43+jRvzW0QEa4cMoUdgYFlETCEMpkMxGk0SeQVySdrrr5WVZYzvTdFbqj+DIQzy34pi8QvgKwhCR1HaQmCgIAgNdJv0ngPfCYLwpe65Eu0mvSmCIKzXpRkEZN39XGAMcBlwtERALi4WtIPSkt3WUgJyRcKzOamhAkafnJ9P1V9/BWBpp068Vr8+DjY2+NeqRWxBAUpra7z0Jg4zAjIuLjRu2oIvv/yKxo21K9/nz3PZsmU169d/wbhxXzFw4CRyc2WVGrwVdRxzAuTmzUtZtWoGYnB2dmHUqA+YNm06Hh66CBw6f2pTilX9VcrcIa6LPhTXxx/3pXbthixevAdX1yqVHjRSCwF9HvF4NggcqKX7kf5e1D9e5uSw7ehRzoaHc/HePYqLiykRBIJ8fQldsIAfz5xh9bFjJKSnM/n115nx5pvIrK2lmbsxY1EqSczLY/WmTWzdtw9XFxfqBwYybepU6gW2lpIpDf/FV6l8xlUxZ8oypRHWX40FZHF3zst7wq5dXxMefhq1Op+4uFj69evP7du3yMnOYum8eYzu0wcr3WEsYsSTExKoO3kyQdWqEarbvKiHQQ0bkl9URKC7O+riYlyVSlZcvkyHGjU4rt8wYqpjSwnDxhK9qFJ6AVlMv78rE4r/VySsGD8zrpI+AmBlBOTCQkHrjy/Vvy3hk5ZGvbBEkjAamBkFBbh9p/Xem9e9OwNatcLO2pqAunWJy89HLpdTvbYu1raEgKxWaDWbmZnQq1d7PvzwC4KDtb68aWn57N27gQ0bJjFs2GL695+OWl0aTtNcG1q6CDcnIB879i0bN04q81ypdKBXrw8ZPHiGwY/YHA+VAnNkjokJZ/783nh7BzBlym7c3av9ZUGiQiVDge7kPTNKhjKELiggOy+PHSdPcvrmTS7evUuRRoNcLsfHzY3bX33F9gsXWPrbbzzPyODjPn2YN3So1u3FQuRSCgu1PHTvXhxVKurVq8fkiRNp07mrWQFZnPZXrbR6qKjvmFuIZGY+Y8OGbzh//jgajZrHjx/Tt3dv7kVGkpWVxaLp03mvXz8UEovdzKQkan74IU39/LgQGVkGp4GNG5NfVERQ1arkFxXhbm/PN6GhNKhaldBx40ozWkJncyFrRfy1RGd1MLfmtpSXilEzvpfil6bSwHDS9N+KYvE1cEkmk80EdgHNgE/Q+hIjCIIgk8m+AWbKZLIo4AHakG85wC9myl0FjEO7CfCMBXiQkwNKpQ02+snMnC+UKf+oyuS3lHMqFFjb2DA0IICskhIWXb7MVze0QTqCfX35PSoKwHAykKRUIuolbdu25fbtq7Rq1YU//jjLjz+uJSkpiUmTljFgwCdYWckQ84m/KiCb006JB+rDh+HUqFGL994bR//+A/D3r13KGCkBvQa2RAMlgMT39RuLbJQKQ4gdsa+wuC6PH0cyYkQbAKpU8WXo0EasXHmSmjWblCObFIibT18XKctQOYFQpTM/izOKVdUiAjq7uDBh4EAm9OlDcXExL9PTiX7+nM5z5pCfl0d8Sgp34+JIWrcOT2dnKC7W/owJbkKl7uXpyZczZjB3zhwio6O5eOMGPXv3ZvjwMcyYsaoM3qa08iYUOSbXglJ0lLKAm8qvh7i4KD76qBFDhnzKihVbGDCgNR07duXgwd/o2rUrcz7+mImzZvEgPJyPX38dH09PclNTWX/sGGH37vEoIYGXeXm0qFqVtKwsIpOTaeXtzZ2UFE49ekS7atVwEgQKNBruJSTwY9eu9PD1LZVkzTFy/XP9MzMVMkdTqUm0IuFKf2+JgCzur6bGuV5ArgxolXNyw6bEMg+MQUpKk+KXYrckKWQtGawKBQpra0Y0acLLoiJWXrzI2itXkMtkNPXz48RdrTtXie4oeqnOrPeRVSrltGrVlsjIq3To0Ifr1y/yyy/fExf3hPfeW0z//lNQKOSS/KEiVCujuRL/T0i4jaenL/37j6NLl7fw8Qkod1CIFir2LDc13qG0PyYlPeHTT7UWlqZNezNxYmOmT/+dgIBWJnFUKsvyZH2a/l5qSOm/q1IZuauZAtEHHJ2c+LBvXz7s1UvLQ7OyeJaSQrNPPyU7O5vE9HTuxcUR//33VHdzg8LCsoiba0CNhirOziz87DNmT55M5MOHXL51iz4DBjB8+HBWfbWmzGFDpsalJYKwuTxiZbix1VNcFePpID4+lp496/D22+NYvfpnevZsyauv9uLIsWO0bNmS7Rs28MnUqURFRfHZ0KHUqFaNfI2GDQcOcDU8nEfx8bzMy6NRtWpk5OQQERdHyxo1uJeYyOkHD2hbowb2VlbYymTcSUhgde/e9AwIkK5MZVcDEtK+uRjl4giSleGlptLMoW1pVQzlV5RBEIQwmUz2JvAlMBt4pruuE2VbDtgBayk9KKSHPgayiXJzZDLZfKNyzIJeg2PsC2XjoSxPdaWyLOPWp5l6plCUbzHxCNE/04NRy7kqFPzSuzcolaTm5aFycqJEEPBfs4bAqlV5kJJCemYmbipVWeYugcewQQOYMGkS1av7MG3a57zxRgiLF6+jSpWqFitrjAejcVX1ZDC1shILyHv27AJ0sQMLCoA8yDGjEjb+oFHB4kgBUuT096/PiBGfsW3bVzRo0Ia6ddvy7rtNGTlyMYMHf1EZxb4hj55WUnuyxPntTY04qXQdIlaAm6MjbevVY3CbNry5ahWLBg5k7alTJKal4ak/0U2KuYvTxbOT7r+tUknTBg2oXqsWLxISWLpiBRMnLsRed0iEGBXjq5SPl/5qTkAWo1kZwVgP2dlpWo16STFffvk5rVq15Y8/zgIwb+ZMOtavz+GffqJ5z54s37yZ9MOHeX/lSnIKChjavDneQUF4ODjQ1NkZWY8ehoH/srAQe8Dayqpi7ieFeGVUvQoFBWYUpH/Hq0AqTWps6suSWrcDVKtW/jsVQWkX02rHbVRmGIQppYH+3liaqqwVzogYjgoFP4eEgFJJel4edioVcpmMOgsWULtqVRIyMniekEB1D49SAknwUCeVimHDQnjnneEEBTVhypQP6NNnMNOmraRq1eqSWkFL+nVF2kBTzwDWrNksWY4pMNe9pTSb4qbQaMDTsyYDB85m376FeHrWJSRkOTNntuaNN2YxcOBCyXoVFJjuh6YWEcZ4qlQ2pYsv44dSnVmHsJWVFW6Ojrg5OvL+q6/Sb8UKlgwdSnVXV+KTk6muXw2KyxD3AWMQ9U8blYom9erh4+tLYmIi85cvZ87c+Xh4eJgdZ+YWruL/FfUdU93eFJ/VaODFizQ0Gg1qtcDcuZMJCmrOqVPHAZg7dwntXunIkYMHadWuHd9u3kzajRtMXL6cF6mpvN2lC6MdHHB3dKS5h0fpgjInh6yCApToFFaWatSMEZeqhDi/qNMYK8NMHeIjrrsplKRkmsqCWDy0BCz6lCAIR4GjZp4LwDzdz1SecstlQRC+B763BIf/JPCwtweFgkPR0TgrlTx/+ZJG3t4cuHmTdzp1qvD9jh06oFarWbBgLjt27KZ581cMneq/AeRyOZMnr+KNN0ZhZ+eNnV0Vbt48w44dc7l8+QCtW/ejb9/JWFuXP0r4Xw0b3n2Xr48eJWTtWoa0bk2Qr69Wc1wBXI+O5vazZ2Tm5KB0dKRm7dpYyeU8Sk7m2w0beJ6YSF6e1oyZlpaMvX3Nf3JN/jrY2trTrdsgiouLeeedT/HwUBISojV1jx03jhYNG5KUkkJqRgbWCgW+ISH0btqU/VOmYJefX94nRAfOtraVVwH8D/4jwc3eHmxsOB0VhcLKipTsbBr4+PDbn38yoV+/Ct9v0aIlKpUjs2dP4ocfdtK69av/VTxUJpMRErKANm1CsLf3QKXyIjLyHEeOLCUi4hhNm/alT5/pZWI6/7vAd+++y7eHDzN09Wp6NWlCS30Emwrg1qNH3HjyhJe5udiqVPj5+aGwsuJJSgqrN2/mWUICefn5AKSlpeGhd9P5NwRra1t69QpBJpMxcuQEqlb1YOBArcvl+PHv0rF9OxITE4lLSMBKLqdGx450b92aA998g0otckPV81IdOIlXOv+DCsGio6b/HUAmkwm3bwuSTuziNEO8W6mNeBXp+f9qPCwTmtJZ585RCHx7+TLNfHy4n5jIvXnzqFGjhjaPqROiVCrUajUKFxftDmaVqtxKzJzmqiJrqZQGWUqTXO7YUSm1pDn1i5QNSaIB8wrkJl0d9c2yceM09uxZbijOysqazp3fIyRkOUqlyqRGWH+1xIdWpQInldEJUhVtWLJEpShFE911d3g4YzdsIEsn/IohuGFDAuvXp5avL+u2bSM1LQ0ANzd3HBwcOXjwDg4OKlJTITVV+46eH6amlvdLlqqKOVOWKbrprxbsOcXDA3bv/oYZMz6lU4cO2NjYcPrsWap5eZGXm8snAwYwZ9QorDIySpE1Zu6VUXmD9E4XMcL6Snh4SCMM5GFv1q/7H+2DbO6Zqfzt2mmvlfFBTkgQyrSreNyXG++mNkQbP6toH4c5Px6piouQWnz8OIm5ufx8+TJ1vb25Fx9PxOrVBNSpo81jZnOQWq1GoVLpDpeQS7IuY7QsbTsptCuTXwyVNXyYYjtg2k++oACOHFnA4cNzDd+SyxW0bj2KwYNXYWenPZzIuF9IWRQrcjs1xOqV4qGW+nuZsthKEPfArVu8t3YtaVlZGEPz+vUJrFePOn5+fLdtG2k6PuPk5ISjoyM3btzB1dW1wn3+lbUcWWJFklK6isem+Hr48AZmzfqANm06Ymdnz7lzJ6hWzYec7JeMGzWKxV98gZVO+Ccz0/zGE0sdqqXMCKYmBDHz1/sdq5wk5yBLNMjmwBxPNKX4NiXn1NVGHP1bPsj/NpCZadpvtrTd9O4XTiJTvhmJWsp/TsqMaGxONNWauuf7IiNZf/Mme4YOZWVoKLkFBczq0QNFUZG0SUgPOuZgA/oAxqBSGeqi9+V1ciklRAkVxw4Wo244RlSc2cAdJDizORtIRZOeOXuI7plCYSM50YjhvfeWMXDgAq5c2c+WLZPJzHzOmTPfo1R68MYbC8wyJLE5RWogic0u+oWIxYcxVNaUrys3raCAoAULePHyJQAf9+pFZGIip2/dYvO0aTxMTmbMG2+QqtHQbtAg2gQH8/HYsdx5+JCIO/d58CCSdevmM2PGigqtYVJgbDKUym+u+Spj5ho/fhLR0ZFs2bIBAE8PD4798guNqlRBrp/UpGy55sKwVdTgUgKyxIpIbWNDfFISObm5NG7Y0LCZpMCEMFxUJJCfn4Nc7mhAw5z3lVRaZSyXUmmWmgelQLuPoxQfsYlZqTRyuzDH/8TPxANJSpIwbjMLecbhO3f49tw5dr//PmvOnuVlbi5z33oLm+Lisis8Y1N7QQFkZmp5qK5/2SiVpWPaQEgTnd4UjuYkoIIK8kt9QwdivGyMcCtR2JRjw1LjUjyOTY3Nvn3n0KXLDCIiDnDgwGQyM59x+fImrK0d6dfva723QxkUzZFDKp9WwNPF6bZEeqkIpNw0dJCRm0vrOXN4qDuNdFzv3sSlp3Pk6lV+nDKFJykpvN2rFxpbWxr370/DOnX4ZNQo7sXE8CA2llsREcyfP4s1a9ZWiJYUS7dEV2ROcQPlu66UgKxSQe/e73P/fiS//PINoN0kv3XrQdq0aYrKRvcRvRRq6qOmVlV/U0AuKioiPiODlxkZNBVFXDIVGKegAPLyssvwUP3VkjV0Re4XUn23IvnC5Dcrl/1fCzk5ZStbUcfUM3x7lYXV1BcstsWZWqqIl5DijyoU/HTrFnMvXOD3oUPx0YX/upeURCsfH6rp4wkag5gLGo8QsS+gxNZMg3isuzcZHtVcz7JkOWwpBxDfS3EAo28olJYFdLW2tqVjx6HUqdOTCROqEBw8GJXKR7IppNARp4lRk5y3TbW7GCqikZl29vj8cwB2vfMOIa+8AsDlZ8+4ePcu7yxbhp2tLUf/+IOHcXF8PHQoKnd3Hj96xN59paGhiooKDN3A3FxkyTMxmJMzpXYGmyONXmaaOnUxHTq0Ye/ePSQ9T6BK9epaX8WSkvL0k0AoPT0dTUkJnhU5kUsgXlxSwqxDh9h95Qpdmjbl9S5dSEhJYePvvxN+756hGKG4WFJbnJ0tEBf3gJ9/Xk5ExHnS0uLRaNT07z+bN99cUK7OFWlBLOmr5trKEi2LKTCWaSW/rz+JUmlfXsgRv2C8f8LUxmhTArIUP9Hl3XnjBp8fPMiBDz6gobc3AA+TkmhUtSo1VCrpnT1SQrmlnV4PlRWMK0qXopu5gWk00OQKhUE5olCZjsstRVKpalpZWdOs2SDq1OnJnDlVCAoaiItLLcN7phZjYoFQ3JzmpgsDthWt+sxJNMaFisDtfe0ZYls++IBRPXoAcOvZM07dvMnYFSuwtbbm9NWrXIuM5JMhQ3Bwdib++XN2HyoNUVpYkK9TGJXfHCle70l1scr60Ep1Bal1pzGv1a8BQ0LmULduU86d28/z54+xtq5CXp4cG128R0PwAuMCddeMlBQKi4rwMg5yYGocit4tKSlhwb59bD93jo5BQbzWuTNZubms27+fmyIeWqLRkF+gpaVYQM7PF4iLe8TWrSsIDz9PUlIsGk0R/ft/zttvryxPrArA3DC0ZOo2p6MUw3+UgPzvDql5eUw4dYpbSUkcHjyYJl5e3NOZxQcHBVHDxYX4zEx8vLz+xZj+Z4NK5YaXV3169pxKlSpN/9Xo/CUo+uorFFZWFMlkrDtzho9+/rnM8/zCQiJ0Ic4+HzkSv8aNAdiyZQtZGhuio6Nwd6///x3vvwru7h6MGTOG0aNH07dXD06ePcuo114zmT81O5vi7GyqOjnxx+PHdFq9GoB2NWpwcswYHOSWnSMX9fw5w374AYW1NfNGjWLk0qVsOnasXL64p08l3xcEgalTXyMmJoKOHYfSq9dH7N27EI1GTXp6gkU4/A8sh4y8PCbu38+lJ0849MEHBPv5EaPzH3qreXNqe3oSl5aGr/iUyf9BpUGpdMLbuzFt206gZs12/2p0/hIUbd6MlVxOsVzOlrNnGbN2bZnnhUVFXNOFOPsoJIS6DRsCsP6rryi2syPqwQPqNv3PmT8cHV15/fVR9O07ki++eItz544QGDjOZP60jAyKXr7Ey8ODsMhIWr33HgDNa9fm7JIlOEsd0iIBj1+8YNiqVRQWFzN/zBjeXrSILcePl8sX8+hRudMn9TB9+lvcuXOJzp1D6Nt3PLt3LyUjI4m0tHiLcPhXwX+UgGy80JFS1ElrxHRmc1O7a6U+ZJzP2CYJZOfmcjQ6mmaenvzx9Clzzp5lWKNG/PTGG9jZ2XE5Lo6FFy7Qp1490vLyCFiyRPve8uWobG1NaxjN2dT+jrnKXF0tSbdUdSXGy5w6o5KgL0qtzict7SkuLrUkn/8jyGLy45akm9Oy6yDu5UvG7dvHpdhYfN3ccHNwID03F4CBbdrQuWVLWtWvT3CrVlo/dF1fkKlUODpaExwcZPA7lvIlt1SDbMr9RH+1RIMsVdVLl05w5MhG5HINzs4OODiocHNzRBAE7kZFUadRI0OcqNj4eH7//Xcyc3LwcnDgXFgYR8PCKFSrebNlS6b16oW1lRXVXFy49OwZ7osX8/PIkbzZokVZVxgxcioVRRoNkzdtwtHJiUMrV+Ls5UWNOnUYMXs2/Xv2pFnLlkQ9fcaGDeupUbMm7703gTFjplO1ajWDBlkQ4Nq143z44Tf07j2RcePqk5ubybx5l/H1bVSeACboYWm+f0rfNfEtU//FLkf6aBdyS906LNHOivhebnExR+/epYmXF5djY5l19CgDmjTh9tSpODg4cP3pUxYdP06PBg3IVasJnKGNx566di3u+ohAUv4iUvhYoJU0aRUy944pMNU3pUzX4qsYRP4wem2+fj4Tf8Ic2aXHqZq0tMe4u/tXuu9VxGMM5ehJZalpRfwBE5YFcfqLnBzGbd7MH9HReLu6UtXFhSSdCejNdu3o0qIFrQIDaRkcjJVIGJTJZCiUSho1bkyJjVIbmVQj7YFgbhuTOU8FSzXIUvTTvxsRcYaLFzdQUlKISqVCqXTA2dkZQSjh3r1w+vcfbzDaJCTEcf78ETIy0vGp4sbFCxc4dOIE6sJCenTsyJKPPsJaocDT1ZWbjx/jEhLCLzNnMqBDB2zFR38bIVhcXMy0nTuRW1tzdu1a3KpWpXa9egyaMoV+r75KcHAwMU+fsm7LFmrXqcM774xlwoTZVKtW1rL7xx+HGDt2HkOHzuTDD9uQkZHEV1+FUrNmEPogT1LeAVJ0k6LzP4tv/kcJyHpBwJx50KzJR1kBN7FEytBotCbbEydY/ccftPT15UFKCm18fdkdEkIH3WEggiDw2vbtZBYUIJfJaOvnR90qVehcuzaSaywxwlJ2F6nKWtIrLHHq+StgDg9zEpY4TZfP0vlHX+zjx1dwdfXB0dHZ7OLIXDNWJFQafArNTZgVTaYmoKi4mCHbtnEtLo6EBQuo5u5Oak4OJ2Ji6Fy/PtVr1Cj18Sop0f4qKL8iK6Zx3c2BOJ8lbvzGdBcEgSlTetG582B69BiCXJ5Hbm42Gk02VlZWLFnyFU2bdwCFmuLiYvq8/z7VPT1p3qgRUVFRNGnUCHdPT77dtYurT56w6ORJzixcyCc//kg9Hx/CHj9m3dWrfLh7N+90786SMWOwNhY8lEpOhIZy5vZt4k6cwNnXlzS1mpjsbIYNG0ZRURFqK1tGjvyMzz5bwt69Bzl6dCddugSwb18Ujo41dH1LxuzZB/n223fw9+/A8uW3Wb9+LPPmtaVt26EMGbIKlcpbkg7iNHN9XKrNzLmy/N1hW9HiRuq+vP+uhCOz+CWpTiYqsKSkhAVHj7Li+HGC/fx4mJxMsJ8f2959ly716hnyvf7DDyTq/Ig71qlDbU9PugQGorCxMT1zmpppzS1yLXH/kEoTgzkJSGrgSL1vpnzjvSamijD+pN5EL4bY2HBsbVW4unqVe98YXf3V+CBKKZdUyc2ef2UPSwVzdJFGw+gNGzh79y6x33+Pny7e77Fbt+jQoIF2I7weKb0EJoG41MZlKTcrcwKyBR5DklWqaGx//XUv6tfvQefO7yKT5VJQkENxcRZyuRVjxy4mKKgrOTkgl5cwfHh/nJ1VtGzZlkePHtCwYUO8qlVj2ddfcz8mhunr1nF60yamrlpF/Vq1CI+OZsOxY4z79ltG9urF8vHjUdralkPwfFgYv/3xBwnHjuFWvToZhYVEv3jB8LfeokijocjKio8mTGDeilX89tsxdu78mbZt63Dy5G2qV69rqM/q1b8zfXoIwcHd+OGHUFas+IDPPutAhw5v8tFHq/H09DVu6XJgyVC2VJdo8WLQsmz/HqDv75XRllkMuhcEQeBiRARrDh2ibpUqLBowAE1xsXYCRru5atHx4/wSFsaViRMJ8vaWbDmZQoGzUklmQQHvt25Nyxo1GN66NbZSyJoCSzXdlX0mNXmYyiP+byrNnCQmxXF1aSU67ZT4fHZzxeuL8PdvSFbWC8l5WQqNik7BFF8NzN3ScAWWaEV0iIzfs4fvr1wp80hlawsKBR4uLgzXhwA0R1OFotJoSBUlNUdLCWfmBGRTKMpkMvr2/QAPj+p06jRQks7JyXlMmzaW338/ROPGjdm9fTsuLi5QUEBRRgYuzZpha23Nvu++4+DJk7y5dClKW1uyi4rIyMnhwr17dGvZklUHDjB+zBj8vbw4HBrKnHXryFer8alWjT/CwlCr1VTp3Bl3d3c0Gg2vvtqDwMCm2DsqOHToGJ99NgkPj6oUFwsUFalxcnJDrZaVoWlw8BuMG7eeL75oS+fOo5k4cSt//LGNy5d3cvnyTnbsUKNQWFs8HKW0Hmaa+x8qIBvzUHMgljP1wpm8IsR0//+MjGTN/v1Uc3Nj1ZgxFGk0WOvKTddoWHXkCGtOneLPuXNpWrOmSQ2Wo50diVlZjOrUiY6BgQxt3x573ZgpVxFLpH6pZ6YEN6ndl5UY72UGkDmBUCq/xCrVEoW21CdVqvLkqlevAdnZL3B2FigulhmeSfFOPRrmItno02xQl5cmpVSylZUqdXm+2LGDJfv3l8nu6OoKSiWuSiXD+vY1jzCAiwtZOdr+LI7+IxVxwTgYhFijLGEQKQd/RTjTl9ux4wSsre1o0mSAZFWyswtYtmwcZ8/uo3btQNav34OHRxVUKrCzLcbZ1RVra2t+3rCBM6dP89Znn2Ell+NgZ0f6y5ecv3mTTsHBfLd3L2OHDCGoTh2OhYayYP16UjIyqFm9OmF371JSUoJ3z564u7pSpNHw6iuv0KxpU2xsbDhz8SKTv/gCD48qgEzHQ12wtbUq0xe7d3+VFSu2MX58Z3r1CmHJki0cObKZ0NADhIYe4Nq1fGxtzWtuLO3/FYkrlYH/KAH5nwklJSWs3bOHU2Fh3IuJIebFCwDWnzxJWk4O73XsyBd9+uA/fTpd6tbl+LhxBGY4DBIAACAASURBVJnxJRYEgRy1mu/69ePLc+f4ftCgvzez/Q8MYGWlwMbGnkePLuPj0/ZfjU6FcObBA+adPEnokycAbB48mFHBwVrXif+DfaKoSE14+BneffdLk3kWLZpObGwM0ZGReHt7I9O5lwAoFApDvNIHT58y5/33mTV6NJciIpixbh2P4+MBOBMWRlBAAGPmz+fk2rW8MXEiAINfe41dv/8OQKe2bXn/7bfp0acP1s6uODk5lZm/MzM1PHkSjVptjVwux93dH7lcXm7Sa9OmP7a29pw+/SNjxnxNQEBrHj26ymef7UWhsOZ/oOV5P+zbx6lr17gZFcVTXXSBn0+eJDUri+GdOrF8xAiqjx1L+3r1OD1jhlY4NlNeflER68aMYerOnWz56KP/TzX57wAnp6pERZ2jTp2u/2pUKoQL9+6xaO9eTkdEALDhww95p0cPrevE/0EeWlJSTHT0Kbp1m2oyz5Ytc3n4MIKjR+/h5eWDq2upbVomk5Gbm0tJSQmR0dHMmDiRaWPHcu3WLWYuW8bjZ88AuHj9Ok3q1WPs/Pmc/fFHXtONsX5du3LwrPZwpw7BwYx56y3e6NkTa5UKZyenMhqn4uJi7t5/iEZjhVwux8vLHysrq3I8tHPnPri5VeHQoW188cV3dOjQm9DQYyxZsqNC4fhfBf9RPcuU9qMyStkyL4muiampfPKNNoTKzhkzGLpkCQ1r1ODEjBmMXreOjX/8QZeGDXktKIj4jAxqentTxnlGBy9evkQA5hw+jJ+bG6tCQ/myf3/pZXxFyx1T98ZgicNTRWDum1Ia4X+ABllqRShVhPEzLy83hg9fzNq1bzFt2lFq1mwqWYaUedCs9kOTZ5lNzVx4HCM6PklLo/v69QA09PLizvTp2o0MEhoiSdulxNWcEsYcLcWfNLfyNudGYcZTxtC0anUBCQmPKCzMR6MpQqPRCpB6vG/fvsamTd+xdOlaVE4+ZOdqNw0BlCgUqEtK2LBmDdfDwmjaoQOp1tY0ee01nB0didRtXHy1Y0dO7NyJWq1m8PjxTFizhgb16nE/Opq58+aRVVzMiVOnOHMx1CDw5uRoNUZlY8Yq8PZuWGGY5WfPosjNfcmiRadwdrZnwYLDTJrUEldXx7+slTWmv1QZf0UDZQ6MI+eZ8/UTPzc8MzPu03NyGL9cG6t858KFDJ09m1rVqnFu5UomrV3LjosX6dWmDf3btyfy2TNqBQSAs3O5byampwOw4NdfcXZ0ZPXp0yz/4ANtjGpL+KUpFZMp876UdUgcTUhqnFuiSRaD1HiXYkoSfgzmYuAbFy81LqWq4uLiyDvvrGDjxmHMmnWYOnVamuQB+qvFMY9NhROrKHiwVIWA52lpdJ4zBwAfDw+ebttWVrlgytRlhHCJSstjxNriijTI5pThlvBcqTRzU6eehxYVFZGYeA/IR6EoMizC9fliYm6ya9dyJk5cgbe3bxk8MjMLyLUuZMOGzVy9dJFW7drxsrCQxh07YqdUEq3joW2aNePP/fspKSlh+MSJjF2yhHYtWnDpxg3mfv45tg4O7D58mHMHD6LQI2vUQUqQI7OSExjYoBzvNLZSPnv2lMTEeHbsOErNmk5s3Lid115rg4+PAz4+VAiWumJKwV/lof9RB4U8fmwaV+MKS8lmhsEsjgAu6vnR9+7x8cqVhN6+TX5hIQA3vvoKpbU1I77+mpsxMbxYv57pv/xCDTc3Frz1FqDVdGTn5/MsLY02c+dSIgiMe/VVhnfoQMd588jevr38gNZf/47d1JxP3V8FS0ZvRWlmnon96KSsmeYsncaWuj17vuHQoQ2sWXMFBwcnQ7nGE4SUi4WLi84cCBUfBiL+qDjNlGQq+i8IAvIPPwSgcP360o2iUszdnP+HTppXK53+MnM3NyeZWsuYE5DNdeeffprB9u1LAWjf/jU8PLxJSHhESUkJMTH36dr1dapXr8GdO1dJTU0mNzeb4uJi0tKSKSkpQSaTUVxcTGFhIbNmzuTo778THh4OwOTPP2fZ0qXaMQUkp6bTqFEDUlJSAHj8+AVqtYxRowZQUFBAkybBFBQUkZAQR4cOPSkulnPq1B4iIq6we/djqlf3r3C+FgSBrVtnc+7cLoqLNTg6uvDgwS3Wrj1LmzZdytFBD+aEYfG9ORnPVJr+gLHKHBRSWCiYdK+VwtO4ToaDmEyMh0fR0Xy6ZAlnr1wxWAFCN23C082N0fPmcen2bWKPHGHpTz+hsrdnxaRJhu9l5+byPCOD1m+/TaFazdiQEN596y3aDh5M+u3bKMWdVIykMVTkU2xsG5diQKbcAUwtjqVWPlILXRcXs6Z/fT61LkiaKd5orv3+H3vnHR5V0f3xzya7m00hvQKpQEhC6L2FDtIMVQFRQOkoIkUQkQ4CUhUURYooIr0XQYogXZFepCOQAKGkkLq79/fH7iZ3N/fe3aCv5f2953n2uWXvnTkzd+bMme85c8aR/yzHdes+Z/nyj1i+/Dh+fr6SstPCvuXcyg3NUTkpxZgcSXQglTkUZtbevejc3a2fkxJeIhlqqUuxjLSVlykphX2QHdX1xawquaLJAQpy97Zvn8KqVWMAqFKlGUFBESQl/YYgCNy4cY46dVoRGVmG8+eP8ujRfZ49S8NgMPD48UOMRoNFLpCVlcWwIUP46dAhjp04AcCbffowd8qU/MWLqWlpxNSqRfL9+wD8fuECOp2Ozj168OTpU6pWroyTWs2NW7do3qwZGq0La9as4ciRw5w6dYHY2Nj8elByIZs8aQLffvstWdnZ+Hp7c+rMGbauXk3rFi0c14DtCVgLSSySsfXjtwRDkpOhdhVklUo1COgHRJhvnQcmm7efRmWK6zEO6Av4AMeAQYIgnBelIQB5QIwgCNdF95cB/oIgtFFkwpzGo0dCkepQbnB3ys4svDzV3LFnL1/OsFmzmD1kCJ0SEgj18wPg14sXqdK/PytGj2bBpk3Ui4+nf9u2vL9kCSvNpgiAGf37UzIgAJydWbptG1qtlq3mEFUOjYxy9LwSUemeFElpO47AhrbvYmqMjmRrz01QbjwTBIEPPxzKTz99z5w564iOjjGtUJaQlZZzK6XY0Z2ebBkpQl3ee/yYz3bvZvuvv/LLzJnKdSoh3PN3JTJvYCEl3KU2n7MHeEsJ5qIIdzlks+CenrS0xzx9mkznzhXzn3FycsJoNBIaWoqEhFbUr98cf/9gvL29MBj0BAWVwMPDlaysTDw93QkP1zB37hK6du2F0Wjk3LlTlCtXEUEoWJWu18Pdu7dZt+4bZs16P//+4cP3uXTpPKdPHyEtLY2wsBhmzRpCRkZq/jOLFv1CdHQVbElKBpvqQ8/t29cwGDIoUSKcwEB/xUlE/qY8jmo3FhJ9BItQt21+bqYmUSQFWcjJAbVaMk1H/PmsyiOjuX3+9df0HzWK6e+/z8utWhFudqO4fPUqMQ0a8N2nn/LZ119TIS6O4YMH88HUqSxftSo/38kTJhAVGYngrOGbb74mKyuLbdv2ylaVLUnyrc+VFiSWa6UQBvaUZlvG7E1+bU1XomNmtjVabE/sPO+QIk5r6tT32LJlLd98s54qVeKtZKhTtnmHT6mQDnLKsJTvti2zSkCMzb3klBS+3LiRFdu2cXHHDoeEl1GtLSTepRRk8X/ijTst/zmi6yvJUPHYU1QFWaMxkJb2iNzcJ3TrFpOfn0XxLVkyirp1W9CkSUsCAkLw8fHCYDAQGhqMl5cHz55lEBDgSUCAOzNmfMRbgwYiCAKnfvmF8vHxJlRYVIi7d+/y7cqVvDtyZP7tpKT7nD9/nhMnjvPw4SPi48szYsQ7PDKHrwXYvXs/CQkNpGWEbZ/Lzsbw7BnXbt8m/fFjwkJCCLAIMiWkzB4p6S1i673tx/D1Fdfpc+2kdwcYCVzBFE27B7BRpVJVFQThDPAuMAzoCVwGxgK7VSpVWUEQ0kXpGIApQFcH8vzbKCwkBHdXV4r7+5tibZo/UAl/f0qXKMG3e/bQumZN7qWkENW9u9W7bjodM1etolLp0nh6eNC0enXeaNfu7yjG/wtSqVSMHj2HyZPfplevRqjVavr0GUnPnm/KxmP8q+jJs2cM+eYbtp48SYuKFflq4MC/lZ+/mp49S2Pjxi9Zu/YzRoyYQ8uWXXn8+AEPHtwjLCyCyEhTpAI51FWj8eLcuRPmtDJITX2Kh0cxKlQwKbO2cjMoqDgDBrxH2bLl2bBhOXq9AVdXd2rWbETNmo3Q6yEtLYMvv5xE6dIVSEzszfz5IwkNLUtRSK1WExVVVnKR4//IRCFBQXh5ehLg50e4yHYaFBBAdFQUy9asoUWDBtx/9IjwihWt3tVoNCxYuJBysbF4evtQr149Xnvtjb+6CP+vaOzYDzEajXTo0AKVCt5+exjDhr2Tb6H5uygtI4Ohc+eyYe9emtauzbdm953/L5SVlcH33y9jy5ZPGTBgKomJvXn6NJmUlCRCQkpQunQ5RczKy8ubixfPkZ2dTWZmJk+fPqVYsWJUlon9HBQUxPBhw6hQvjxfLllKdnY2Op2ORo0a0aiRSYZmZWUxY8aHlC5dhv79B/Huu0OpUKGiZHpy5OzsTHRkJJg3AHJ4146/gZ7LxUKlUj0G3gO+AO4B8wVBmGL+zxV4AAwXBOFz8z0B+AiTIl1DEIRfzPeXUQQE2WAQ7M6oxaRoHlQwsx06dowOb73F1oULqR4XVyjdPUeP0vQNk9BWOzujNxjo36ULcdHR1K1Rgyrly8vPlsVHR0nORiaHRMmhy47CL5aj1KxLAiazoFFKrrm2ydtmZSGrbbBtSIx62RbVaDRy5MiPvPPOQMaM+YDGjRuTknSXuNhY1Hq99DJkKUREDhmSggxsz83Xi374gfe++opO9eoxpls3SloEgZw0U0CQM0W7ElmOtuiHnGeI0vdw1O25qAgygMFgoF278sTHV6dr10FUqFCjMAMyfIlJEAS2bFnO6tWfceXKGUBFxYq1GTFiDpGR5dHr4fbtK4wb9wqXLv2Ch4c3TZt2IS6uJtHRNfD1DaZYMRNa9+TJA4xGZ7y8/DAYDPTqFcObb35CnTovWPEurh8pM7MtIKglV7odWY5ScsaRDiLOXM4f3Q76YUsqlUoQ7t+Xtfo4EkZMcpt6Cfr5l19olZjIhnXrqFu3LmDdfw8fPkSjRvWs3unevQ9lypSnfPmaVKxYQ9E7QoqUQEk5FyIwjwu2UKGcNUkKVVZiyNanWAJBtliHirLMQclqkT/O2etgNv8bMzP56dAh3ho9msE9evBis2bcvX2bcqVLozEYlP0MxPUgZYqwZVzJgqZWs3zbNoZPmUKbpk0ZP2wYYebwqZJuexLbcUuJdzFa7Mg9ezJUyVIpNg7IdV8546tabZJ9vXpVIzw8mu7d36J69TpWz9nyIJUGgLOzwLp13/H5559w9uwpAKpXr8XUqTOpXNkENty+fYsePbry88/H8PT0ol27zlStWpuqVWsSGBiEj49JzqSkPESlUuHn54+Tk5F69Srx/vvjSUzsYN3upPqLuFLl1vnIWXKK0vnl3Jrk/P7NG3A9t4uF1cMqlTPQGVgOVAWeAdcwKb0nRM9tA1IEQehhvhbM770E+AmC0MR8fxlFUJCFR4+sKsDWTGh7biFFRUxG4WzduTNZmZns3bRJkp8m7dqx9+BBtq5eTYsWLQrMFQ64GUjxK6Uz2+VbSZlTUvAcsdXJaUc2de/ougspGSlp/ixKYrak13Pw6FG69OtHnapVWbttG2WjoriwaRNOmSJToeWo5EYhlac53yfZ2Zy4ehWNVku20UiVUqXw8vJCq1Zz/MYNOo0bx+65c4mNibHmV86p16ZD5+qdZF2h5ZRhKd1MVC1WWUqNSXKCXEoxFh+laM+eLXzyyUQ2bjxhlb9UP1Bqurb8Z2Sksn37UpYte5+oqArExzfk+vVTCIKR8eO3c+vWJQ4dWsPFi4e4f/8GT5/ex98/FJ3OnXv3fiMzMw13d2+0WhdcXYuxfPlvaDSqQmW2LbuHh0npT0q6QlTJQDw8PBxfyeNoG5OrYLHzp43bDdHRQBEV5MuX5duhxMe1VZqLMgd//fWX+P3322zZclTy3TfeaMP+/duYOXMN9eu3Q61Wy8qTP0NBllNUpNq+lRuelNbliIJsZ/IrVozlkrdNzjZZSb9gR8zUCqDL8XPnePGdd2hStSrf7t5NyYAAbixejNqiKzxvWxZVdKogcPz8edSurmQLApXi4vAJDESr1XL2+nVadO7M7i1bKF+tmqmu7Iw3St4wjshQuW5cFF1fznvG9luJu55cVR06tIfJk99m166z+TLKUVLSJdLS0li9egXjxw8nJiaeOnUacOXKZVJTn7BmzT6uXr3K1q2rOHHiELduXePx4wcEBhbH09Oba9cukp6ehpubO35+AWRmPuPq1WScnJzQ6UQKskylGo1GLp89S0lXV4q5uUn7BToSGlCp0FKdQ/xhbI+NTRFc/oiLBSqVqjxwBNABGUB7QRDOqlQqyx6V921euQ+UkEhqNHBBpVK9IAjCTgfy7YvJt9lElorKb03aQn85ApiaGqZF8GvN97SoRWZTnYcnu/ftw+jtK5nG5h3fk5ycQmhoKLl6LJ6t6Iu4oEKOP/ERxJ3KKZ/f/I1PbCXG85gs5KayNveUfBcdkZVWHUlJkVBCJKTIzEj94GB6Nm/OVPPWzbfu3GHaRx8xOjHROl2xVJXKR61GEAQ2nj3L/D17uJuaSoCXFxXCwvh01y4AEsqXR6PR8Mtvv5Gdm0t8VBRT3nwTlbMzkbGxBSv0FdASo1pbUGSRD5ycwmuvqkTs55OSTi61CEcJQZZK30IWE9zJk/vx9PREp1Mem8Vtx57Ppenci+bNh1Cv3utcv36Skyd3Ahq6dJlMVpYzvr7laNu2HG3bmvgzGPTcunWGjIxHVKjQkDt3zjBqVD2GDv2K8+cP8uxZGv7+XoXqxrY+PDzAxaWgwOcPHCDOstWxGNJX8tG0p+FJdRS5/yzpPw9Z3pUSMuZzS9QER+fgFrL9Xi4u3pw8uSa/emzTmDhxLQ8fPiA4OMxqIamMa3OhPGzJ0TZv2/al0tXp3KTxdEuCtmORFMlkalGMHZ07SfGdv+DcdkGCWHg4Co7YVHQNb2/ebNqUD1avNiWdns74RYuYbHEXlEpXpj0JgsC2M2eYt2kTtx89Isjfn9jISL4wxzJOqFULrU7HL6dOkZ2TQ5nSpZk9Zx4CKoIjy/H4qf3xRk6OyMlJKcVXTOI2IwUuWP5zJDKSTGCS/KNU88nJyeH06b14e3tahW4Tl1nu2pZs60qr9aRLlwG0adOdM2d+5eDBXeTlGXn33TlkZTkTFFSWN94YS48epucNBgPXr5/l8eMH1K7dgHv3rtGmTWXGjp3FyZNHSUl5gq+vH3o9aKW6gogB55o182+fnDaNygEBpgt7g5sjML6FsrOl+6jUZNcBckhBxuRbXAnwBjoCX6lUqoai/21haJXEPQRBuKpSqRYB01Qq1S57mQqC8AUmNw4LCv2XUGpqKg8e3CcxUd5/2NXVldBQ+7u//I/+eprwxhtcunWL9T/+SHZuLu8vX87t5GSmduuGr8axmLWHr12jx7Jl6DQaJiQmUiY0lIeZmRy4eJFuCQn0ad6chtWrg1rN7fv38fDxod+MGez7+WeqlSvH7K++YvTgwf/hkv5zKDk5iRkzJrJ//y6io+OYM2fZfywvNzdP4uMbEhPTUPE5Z2c1UVEmM6JaDZGRlcjLy2bSJNNkqUaNptSv38KhPNu2TaRsVAQx4eG069mTKYMH075Zs39XnMy/kDIzn/H779dp2LC17DMuLjqCg8P+Qq7+R47S6PbtuZyUxDcHD5KRnc2ULVtIevKEaZ06EeDq6lAaP1+7Rvf581E5OTGhe3dio6N5mJPDodOn6dqmDb06dKBZixbg4cGdu3dx9fbmnREj2LRpIw0aNGbmzA8ZOXLyf7ik/xx6+PAB06ZNYN++3YSHR7Jo0Yr/WF4eHsWoUSOBGjUSFJVsZ2dnYmNNPstqNZQqFUteXi59+nQEoEaNGrz4YieH8uzavDm+Li7UDg+nw6xZfNi+PR2qVkVr/9W/jZ7XB/kH4BamRXcOu1gIgrBWpVIFmt8ZCDShKC4WOTnkolWcETrqCiVn2jD5J7YlICCIDz+ci6dn4TidtunLWassx6LM+uR4U7KIFkJk7cEwchnbXkvZ1xVcLJSSzTdd6iV8NuVMK3J8y6EgorJO37KFUd99l/93ULFilPT25qsuXSgXHCydrqjyW3z5JYkVKjCgWTPTgj85G60IHli1cyfjFi7k44kT6ffee6g1Gm7fuUOfnj2Zb4lgIXKjsBSzKJZcOVBSCgyXAyWl0A85BNm2CUjRqVNn6dmzOw0aNCIx8WVq1Kht1/xpOTqCICshmbbnFpJqzmo13LhxiuHDK1O9emuuXDnOnDnfEx1duVDZxdG43HRGbty4QetWrSgTHk6ZiAiOnzzJ/UePqBUXx3LzpiTXv/iCyKAgZf85KdRNfK7UxmzhKXOctyK5WNy6ZW3mN1vh7HmDKCG4tveMRiPDhnXCxUXHu+8uwNPTRzINqfQdbRNSZA9BlnIHthyl7klumeyok7AlI7F7gfmeuM5tj1IiybavOmWkSYeysRwdtVpIyVXRvU/272fwmjX514EeHoR4erKsSxcqlbAxEEtA9e3mz6d+XBxDX33VJEPtQKyZ2U5s376FESOGMHPmEvr3f4nAwOJcuXKe1q27MGvWctmx1tF2ZLl2BKiU6qoSnjJW3dMRBDm/XYkyuHjpEq/16UO1KlXo1rUr9erWRWUGc8Rumo7IP7n/HLEGOaKbXL9+ibZtY6lXrxkXL55i2bIt1KlT03pdBhRaMHPn/n1aDxhAsJcXlaOiOH7hArcfPaJeVBRfHTliqochQ4gJCHDcB1lJWZLyfbH9QObda/+Qi4UEOQEuwA0gGWgGnDBnpAPqAyOkXhQE4YFKpZoJTMLktuEw3U7Wyi5kKGodSrnXOjkZmTRpMBkZWcTFhbJhw1YSE1+xetdewyzqQC7Fo5RiI5WXrNJiT4FUekecqK0ZUafLv2fZctZNJ7+4xwljQboZDjqAOTJqKPV68/nIypV5qUQJph84wOcnThDi5obWaKTdokVsaNeOeIt5R1w+UedKffaMYk5OqAyGwgWT8dt8uU0bfjxzhm6DB+Pr7U2TBg3YsWcPvn5++WlLBf1Xas9S47DUd7fdAMKWTfFRSmiL71nHulXuWEajkY4d2jKob1+GjRyJoHKW5buQh5SEflgUcqQ521JoaCVeffVDjh/fxOuvT2fYsJYsXXoOnc6/0PuWNIw4ER5ZimMHDuBp3j3z6Lp16PV63jRvYAAQM2gQ4YGBRJcoQVhgIHk5OTzLyiLPYOBxejqlgoKY89pruEtNPOVmM1Ijsb81r0Wh3OAwkw6VXFBOUFYopEjOz1EQBObMGcHDh0nUqfMC+/dvpFWrXlbpSQ3Mjs7tlXiS4s3Rtib1nEOklJidBKXGIFsxrNOZNzACSBYpwZYg6OJg6GDfB1nON0qC3oqPp11oKB8dOsQnx47h5+qKl0ZD+yVLWN+lC5VDQuR9sIDUrCyKubvnK3pyLidimdi4cVteeOEAvXt3wNXVjapVE0hNfYqvb5BsG7D3CSxZWapFynVMTg+zbRdSiq9Y97KcW22g8lTG5cU8iAuCQMeXX6Zrmza8//bbOGm1YFlvhWmstcTPt7hVKi1YF7cjC9lTlB1xUbWIqcDAGIYPn8eWLct49905vPZaG7ZvP0NUVIi5bkwTQDdvb6uKLunvz4mNG3EpX55dJ0+yb+5cXF1ceHvevPw8Ks6fT5ifH9GBgYT7+aHX68nIzjbJ0GfPCPP1ZV779njaDnhKCrIUyGA52iFH4iBPA7YBvwPFgG6Ywr61FgRhh0qlGgm8jynM22/AGCAByA/zJkaQzdcewFXAC9jjKIJ87JhgNUEu6loBKVdQtdqEeBw9upklS8ZTrJg3JUtGsXnzUl58sSeTJi2V5MfRmaztuT0e5b6v7ZgqDu2n6NMrNQI+r6auBL1LkbjnSa0os+ecb5uGOF0HJUBGbi711q7ltDlu44fVqzPzzBnGV63KoAoVCu9q5+FBdl4evtOn83DsWNzNkQIkFRUbTTM9I4OktDQ2799PnerVuXD9On0GD+bnI0eoWqWKlb9xUdEMJcuIeLJkrx3JFcVJn1v4GyhNqtRq9EDbnj3Jyslh77p1OLm5FepsuXon2bI42kzlgFhHgTJxvQBotUbGj0/A29sfT08fzp07yOTJ6yhduqIi8uPhAd99s4Qe5gg2wUFBBPv7827v3rw1cSINa9Sgcmws5SMjuXXvHi5qNe5aLRq1Gl93dz5dv55HaWlM6duXehUrFllBFsfChvwgFkVCkK9dE6xW7DvyqcVsybEsCAJHjmxn8eJxaDRaSpeuyIYNC2nUqBOTJ6/Jz8P2KNUmlL6/I7zJGXukUGLLf7bf2k0nEdlCCWaU08qVTH9KslMsNy0fS6wUyynIRfHZlDKzSLGi15OwciUnzFuHT2/UiBlHjzKqbl2G1atXYGGD/PZqMBop1q8fd5cuxccS6k+sQYqQPHHs54yMDG7fTmL37m2UK1eZu3fvMHRod1asOEi1avUk2ZQDpuTkgj0gS1wdUt3RcrQtilN2pnSIIbnM1GqMTk50eu897qWk8NPixailBnspjV6iI0opzUrWOkcNI1JN3NlZYOzYNuTmZhIREcexY9uYNWst5cpVU+xXWnJZtWIFXV5/HTCFhPT19GTsW28xaNw4EipXpkKZMlQpU4ZbycloVCo8XFzQODvj6+nJ4m3buH3/PpN79aJR5crSbVhKWbL5gJZdFe1tFOLIfDkY+MZ8TAXOAC0FQfje/P8MwBVYQMFGIc1tYiBbkSAIGSqVagLwqQP5ncO8tQAAIABJREFU51PNmirmzDlMVFTtorwGQHb2M7Ky0vH2DsJoFLhx4wK7dn3F6dP7uH//NkFBYfTpM56EhEReeaU8AK+9NrTI+fx/oMdPnnDol19o1rAhGlfX/N14/onkodXya+fOfHb2LIMOHaJZiRJ0jooicdcuMgwGRlUpvElEckYGXjod7lp57yhBEBCMRjAaeZyaSkjTpuhtpGzNatXo+OKLlChe/E8v1z+BFq9cyd3kZE7+8MPfHjO1KOTk5MRrr83hgw9qM2jQfKKjqzFzZl8WLjxm993XunenbevWPE5KQqPREOLhgcZgoHaVKuw5eJDhM2YwokcPRvfuXWgkrh0fz9c7d1J/4EA+7N+fUb16PRf/RqOR+/eTOXz4JG6WIPsOUqlSKj7/fJ9d/20pys7OJCfnKb6+IRiNAjdvXmbXruWcPLmH5ORb+PmF8Prr79OoUUf69DGFdnvllXeLnM//B0pLS2PfwYM0b94crVb7j5ahOrWaY927s/TcOd7YuZO6JUvyS69etFu3jvS8PCaYIwGIKSU9HY1ajY+UactMgiCAIGA0GklNTSU2NoL09DSrZypWrEGLFh0oXvy/01f9m507OXftGufWrEGtNGH6h5FKpeKNN6YzYEBF6tdvR3x8NcaO7cW6dWftvvtyx4680LQpD2/fRqvVElysGFqtltpxcfxw8CDvzpvHgA4dmNivX6GZe73y5flm504aDx/O6G7dmNKv33PxLwgCycnJnD79KxqFdUl2v4ggCD3t/C8A480/uWcKaeaCIHwGfGYvfzF16zaOL74YxdCh+3ByKoxMickysdLrc9m5czJ79y7g2bPHAGg0Lvj6Fqd8+ca0azeCuLh6BAUVR6NR8ewZjBq1nAsXjhEQUD5/QmhL9hBkqefkeATHfD1t/88/d2T6XJRpsy1zNvcynz7l21Wr6DFwIHqDgd5duzJjzJiCDq4Ej4oRkaLu6WkPnpepfJVez8CwMPqULInGrMhtSEggetMmBpYujaenZ8Hz2dkEazS4ODuz/7ffaGiOk2ipvzO3bjHwq684efUqWTk5tKxbl5E9eqDX6xk7aBDZgkBqZiabduzg2M8/cwxYt3kzMTExfPjhdJo1a2t3ExNx1VtIwoJZ6B3xUQkxs0LHUuzsiiVnz1SrGTllCjOHD0ctfs/GnqnV6dB6WPtdix+xzVKtVnbPsJBSv7JnUdLrITi4OtOnn2fEiBjmzj3PkiWjuHz5N0qVii7Em4XfjAzQ6bSgCiIk2hTFQlADaiMRERGUfPIEgyBQIi4OIiIK9Tl3oH9sLLeys3lv/nzu6/Vs2rWLL2fPpnGjRtaZiRD4fDDKDBb27/8KO3Z8R6lSpRgp2vXKEXr99YnMmjWS8eMP4eysdkiGGgx6tm6dxo4dc0lPN1litFodPj5BVKzYmPbth1ChQgLBwSVQqVTk5sKwYYs4eXIvZcpUlwVdpZAuOcuAgiGj0LkcIC8Fvln+K+Qp4Ki8RPS8I+4LGRmgVpOVksLKr7/mzbfeIjU1lde6dGHO+PFoLLJBLC9t95YXI8i2iKW44YpJCmlTsgbaPK/S63k9NpZXo6PRmJX5Te3aEf755wyqWpVAcefS6/F1cSHQ05Mdx4/T0qJAm/+7ePUq/ceP5+dTp8jMyqJ+/QSmTJlOenoa77wzCkFwJiUlhb17t3P69HFOnz7O99+vJzy8FKNHf0Tz5olWE3Ixqw4MB5L/SVWVWi3vt67VZxbU+VU7llCFxjvm008Z0r492mfPCjKyFTwSclXKHG5xe1SL4kKLSWootlw/j9uqh0c8c+b8xttvl+bjj8/y++/XOXToPGXLlstnsfC6Fq1Jhrp4EljeFORArwY9UCIiigiDAcPHHxNcvjzExxdiRAf0rliRhzodo6dOJatYMTZ//z3zJk+mdbNmsp3fdofKAd16s3r1YkqVKsXbb79duIBmeq5Fen8HqVQqYdmybKZOfYGkpIu8994FXFxMNkYl4b506UsYDJm0bTuBlSsHcuPGcUqVqsXUqUfynxO/4yg9j4LsqBlcarGU1L18Z3glpdJRRdOWSTmGReep6el8tWEDQ6dNw2AwkHb8OMXc3aXt4EoBJ6WiuivZ18Uk9yHknjHTqYwMKu/ezf4mTUgIDS0wE5ores316wz+/nuOvfkmYT4+JlOgqyt9vvwSby8vPnztNeqOHk3bhg2Z+uabkvbac9euUb6G9SYZrq6uZGVlERVVmujoGBISWtC9+wCcnZ0VTcpS7Uh8rbQoqVA7sSfIlRq06Pu/v3Qp569fZ+OcOcqMyPh6iN0vxKw5YgKUuyfHtkwRGDbMi/feO861a3tZt+59+vRZSO3aL0myLddf1Wo4fvwgL73UgFmzltCjR8/85+Ws2Pv27eXEiWPs3buHunUTGDFibD7v4qPYI2n//r18/vlYkpNvM2vWfrp3L/oivRUrcpk2rS03bpzkvfdO4eFR3Co/2/rR6WDx4h6kpt6jc+fprFz5Npcv/0RoaDkWLjwnWTYxKXXPorjT2JKScisX01tO2bHqK1b+9wruXvZkp9S1BKWlp/P1+vWMmD6drJwcHh04gK+Xl30FWSq8m+VoD/iwHJXu2ZJEA7mSnk70smXs6tKFpjExhWTolitX6L1kCYemTqV0SAh4e5Ol0/HmjBmg1TL7/fdp2bs3VatV45NZs6zC31myu3DhErVrx1qx4ucXwKNHDwkNDScmphwNGjSlT5+3/hACK3413x1AvIGM1JjlyN7UIC9DdTomb93KwQsX+H7ixILMpVAzKWFkuZZo7FIbTDkSW19pOJAitRrGji1B//5bSEo6zdq1w+jSZQ516/aQnJTKyVWA69dP0rlzVcaP/4xXX+1fqDpsVZPDhw9y+PBBjh79iXLlKjBhwjQrfqVwuoMHf+Kzz8Zw8+ZvzJmzl1dfjQH+/EV6fwvl5LjQv/8uPvmkCVu2fECbNgvsvvPgwW9UqtSJzMwcbtw4jkqlonHjNwtNssWVf+rUdr78si8GQy4LFiTh5OSsqLDYAzblJuo6nXzfsX3e9l1T55VoCZZrR4S7o/C2jAD1UqkY3KED95OSSH70CHVeXmHl3JHpqpJvn5y244ASrFTOSjod31WvTu+jRwk9e5ZmwcG8HheHObotncPCuFm5MrGzZhHl7U2mwUBSejr1Spdm5muvsXTnTs7duMEPH39s4l1cR+b8bt+6lZ/f7m3baNWuHVlZWYApDNbOnVvZuXMrFy6c4ZtvFhEUFMKvv/6OWl24vVlI7rNYCXUwa1YSdW+5dgQysDPQJlapwokzZwoGCnvoh41motXpUHvIu7FYspdTvOTYLcoEo2rVXixa1J0ePdbQu3dVFi9+EXf3SoSFRRcap6TGrtzcdDZt+pilS8fRrl1/atbsydWrBfnYIv+W9yMjGxMZ2RiDwYdffz2M2b1TsiunpeWwatUs1q79mAED5lOpUiJqtWPhCm0pI0NDr15bWbiwDevXj6ZDh2WS9WIhvR4ePLhO6dK1MRpVXL78EwAtWw6xQv3FvAP8+utePvmkB9nZGXzxxX0rVMtek3Ow+eUfHZ3IyPnk63QOruNQkpdS/9uDLPV6PIFBiYk8fvCAq7dvo83JKazNKKHEf4Ysl9JAHChLGVdX1rVsyeDvvyfg4EFahIfTq0oVipsXQLcNDeWDJk2oNGwYEX5+ZBsM3Hv6lFply/LV+PGsXrmSIz//zKpPPoGUFJzMcsFNpwOz1enp07v52a5fv42+fXuSkvIQMFk2du/ezu7d27ly5RxffbUEHx8f7t1LRicVlFdp0BY3vKcSbcCR3ZnkGrTCxKldhQr88Ouv1gq1FFpsq7BYnrGDBkhhVbZFEq/rsreLoFRWMTE9WLr0dTp1WkP37vtZsaIprq7VKF68nKKub/lPpcpk585P+O6792nW7HWqV+8vKUNtm2lgYH06daqPi8ty9u/fzM2bhctsOWZk5LF+/cesWjWDPn3mULFiRzQaF9l6s9C/SkEGcHbWkJi4gCVLXqB27aHs3z+ZypV7EBXVUPL53r23MX++aSHB+++fxMPDj8BAeX8mQRBYtKg3jRv3Y/368dy6dZrIyMJ+qv+jApoyaNDfzcJz0cslS/JiSAgbHz7kh/v3iVm/nvohIdQNCaF9TAzDq1alZVwcm3/7jfaVK1OqVCm0ajV4e/PL9evUL1cOP09PHj55QjGNBp2LdYerUrEi3Tp3JunhQ0qWLMnOnbs4cuQo6enpXL9+k5deegU3N088PHxwcdFRpkyMFZL8T6c7Dx+SmZPzd7Pxh6h165n88MN41qzpR79+39OixQfMm1ePCRMu4u3tJ/mOIAh8//1STpzYycmTuwgNjWb69B3Urt2syPnXr/8Cn3wyDqPRWMiPW6/Xc/Hiad5+uwVxcbWZM+cYgYHhkhb0opCzs5rExPnMn1+DRo1usm/fZMqX70xsrHRM6H791vLRR/XQaHRMnvwzxYoF2I1fvHBhXxISurNhwzR+++0ocXEJf4zp/3L6oE8f+6aPfyB1KF2a1pGRbLp5kz2//065L7+kTmgo9cLCaFe1KgPr1KFppUqsO3mSdnXqULpsWVw0GvD25uTly1SJi6N4UBAPHz3Cw9kZV5sYy+XLV6B799e4efMmJUqE8t13Gzh06CCZmc+4du0KXbu+io+PF76+fnh4eFCqVKTZp/TfYRm/8+QJ6X+0Q//NVK/eJFxc3Nm69Q169DhA06bTWLIkgbffPo+PT7Dse4cOfc3p09s5d+57AgLCGTVqE3XrysdNl6M6dVowffpg9Hp9ISuCXq/nypXzDBvWkvDwcsyceZiQkFIO77X0r3KxmDdPIDsbrl49yKJFCbi6+lCqVFMyMh7Qp89+q+fFE+TU1BusWtUPrVZH//6bZd0q9Hp49uwxQ4f6UapUXfLysnnnnQNotW5Wz0idS13b5uGo2U8qWIKtWVByK1Ql9OM5TOiS96T+t5BtWnJosaOIphyPch9BCkpUSsOmLE+NRnY+ecKPDx6w9d49UvPyKKbV4qHRoNFoWNGtGxWLFyevWDG0AwcCoNVocHZyQqVS0aVpUz6fMAG1baxFCQjS4o8rxbaYpMAHyz2reJpF8UGw1xYcQKWe6fW0/egjGpcvz5guXQqYcxTOA6uGLd5215FtYKW8corqTWQhgyGPL76IpkyZtjRqNJa5cyNJTFxItWrWIR6zs1O4ceMHTp5cy40bx0hMnEBUVBUiIuJxdlYXGaSznL/xRmXatRtI27Z9rPgdNiyB+/dv0bx5fzp0eK/QZzQvBC+Si8X06QJ6Pdy6dYIvvqiBTudF6dIv8OTJDQYOPFaIV8unysz8na+/HoBen8277+5Go1HJAo+5udm8+qorZcrUJjv7GSNHHsTV1dNhpF+pHzgqQ4vqYuGULbEVfVHhbSkqivVLnL6Ui4XS9uZSacjJcMtRySXhOaH9NKORnQ8ecCApiS23bvEkJwd3rRZvFxcEJye+6d2bahERCF5eOJnlhkWGolLRsVkzFs+ejdayLkTOHm/La1HkmdR/cv4+ckLGXp5SZPMNsoxGOi5aROXwcKZYZKicX4JSB5BYbGJxsRA3HbnQ2XLuF3JDsu05gNFoYOPGOEJCGlGz5gTWrKlM1aofUK3aAKui5OU94fbt3Vy+vJGbN/fQrNkUwsKqEhwcj7u7RtLK7ohcHTasDgkJL9Ox49tWn2P8+Be4descjRv3oVOnseTkqKzK1Ne8T7OcDP1XKcizZgn5bdBgyMNoNKDXZ/HRRxGMGHGLBw8u4ObmR0BA2UL932DQM3lyGG+9tZ/ixaMl89DrTejQkCHWSE7v3rspU6Zp/jNS78mRmA8l3zep8FJS96z2O3ckdrCjJnQFM5BVh3XEz0vKrmNP6Eg9Z8ujPROZXBqOmiRF5RPc3XmYm4u/ry8qYEVSEu8cPkxCWBjVIiOpHRaGm68v5WJjcdfpuJ6eTqnevUnZvBk/SxB92w+pZC+y5UNpEJUqi9KESGnSIVUfSvfM/O4+e5bm06ZxZd48SptjA0tKMzmBD9Lhd3Rukms4paInyfnUyX1upX6amfmQo0cncOXKWvT6TOLje9G8+VySkn4mLe0aly9v4ObNvYSF1SU8PIGKFV/Gy6uEohLsqGX77t3LjBpVk4ULb+Lu7p3P78CBYYwevRd//9JWZbGUzTxHK5KCPGGCkJ+W0ajHYMhDEAzMnVuCYcOu8vjxddzcihEUFFdoXDYaDYweXYbBgzcQFVVRcY7co4cLessEDhgwYBsxMa2snnFU33RUhiopyHJKM5h99Is6ifwjVFQFuShx46VIDhGS4ksOZHBUY7L5WA9ycvDz8cHZyYk19+8z6KefqFuyJFUjIqgTHo67nx/lYmPx0Om4q9dT8pVXuL1+PaFly+anYXWUGoPkZJeczJeTjY6CSlL5FoXM/B+8fp2E6dM5O2UK8aVLFy6fVJmlFGUJhSFTb3Jdc0RBFv8nBUAoTWjFlJv7mAsXJnH79goEwUiJEi9St+5iHj8+SXr6NX7/fQPJyXsICqpF8eIJlC37EsWKhSnOAxytjocPbzB2bBVmzryEu7vFURJGjizLgAFrCQ4uX6gsAEPNgcr+K3yQLWSqIA16vQaNRkeZMi348cepHDz4EQAJCcNp2nQsanUx0fNqQkOrkpR0XlJBLpANKmrVGsDRo5/h5RVKaurvLF3amgYNPqBBgzFWz0ulIeZR6tyxslm/Z/X+H0EulJRg23uOwl9Keev1YvhNPl17PshS6copw7bnlmcsz4kRF6k6MvdCVXY2gQDmCWR3X1+adejAnnv3+OnePVacOMH5R4/oWqUK3/bowd3794kODsYvL69gMY3tRECnQ3BxYfW2bdxLSSG2dGmaNGhQEGbGFoqzLYMt344qvLYk/gb26tlGMbZQs8qVaRwfz6HLlwsUZKk8xVLV1iFX4h0nQGdGky3yXq+3PrdlzfYoVTyFLAHQagNISJhPZGR7Nm5sysmTH3P16hYEwUBgYGXCw1tQo8YknJy05OamIggl8gcVuW7iKPrh7l6WUqVqc+DARurX7wlAbq4BZ2cXnjx5Iln2P0qmvNVYhoC4uPb89NMMDhyYCUBCwhBathyHr29BQH0nJ2eioqqRlHSe6OjCCrKYr6ZNh7Bz5wx8fcN5/PgWn3+eSOPGI3nhhUkYDKr85x0pi5IoKsqaJllxVpT6VJJ7jshXKZJq1BaZIacc2fqp2mscjnQIORTVwo+U5U8JbNHpTDL0yRMAOnt707BFC35ITubwvXu888svnHn0iBbR0ex84w3up6VR3Nub0Lw8uHPHlIaEFU5wdmbD7t1cvXWLSrGxNKhRAxfbkJxSkw0pkMZRZdi2bOLzogzwoufrV6hAmypVOHj9OvExMQX/KX0rC0mNhSJ+dOa1HQ61fztFUJofWl/7EhMzh4CADhw+nMCNG0t58OAgBkM23t6VCQxsTtmyY3Fx8SAn5yEGg2nTIjE/SuC50j1X10jKlGnEjz+uIyHBhBwIgoCTk5aUlMf5saqLKkP/lQqyLQUFxbNnzzgiIhJo0mQMR44sYN26vrRqNQl//9Lk5GRw9OgSbtw4xIsvTldMa//+Wfj4RFC37hAOHZqLk5MWgyGXvXs/oHz5bvj6Rv1Fpfof/dMoyM2NbqVL062SaW/6szk51Fi0iBaffUbLKlUorrA7z6b9+/ls/Xqu373LFctqAiC0eHEG9uhB+ZgY4suVI+XxYy5eucLREycIDgyk7yuvEPgHdk77T1K/pk3p+emn/HztGrNee83kn/0vp9DQJpQs2Yg7d/YRH98PFxdf0tOvcfnydxw/PoWMjLt4e5emT58rf2q+7duPZ86ctsTGNsLfP5yHD2+QkfGIiIhqSG3m+GdTUFA8O3eOIDS0Bq1aTeHo0S9YufJ1Onb8kODgsuTkZHL48FdcuLCPtm1HKaa1a9cCXFzcadlyFDt2TMPJSYPRmMcPP0yhUqUuBATE/+cL9D/6R1KATkfXiAi6mmXlJYOBut98Q+0FC+hZvz4lFWTojkOH+GTNGq7fucPlGzfy75cICqJ/ly5UKVeOmKgo0p8949ylSxz+5RdKBAXRs0WL/IWD/zTq06QJXebN4/TvvzO3Vy90/wUy1M+vPiEhHUlKWkdo6BtotX5kZ9/k3r11XLkynaysO+h0QXTunPyn5tuy5Vjmz29GTEwzAgPLkJqaxIMHV4iKqv/caf7rvobY+mxpS5a1LfHx7YiLa0ZUVE3Wr3+TDz8sQ+PGwzlzZgPFi1dg8OA9lCwZJzlbyssT2LJlJPv3f0Tlyq/QuvVMfv31azIzH+U/k5n5EE/PwgryH7G0ODIJtUpfaQZrC6WIX7bHpBT6oQR/KZHUlFOMeNjyqTR7lzP7Wd4Ve9sroa6OoB9S9hzLe97eBe+ahXh5Dw+WtWpFl02b2HXpEgCfrF5NYp06rDx8mBO3b/N227b4+PnRbtgwFr/7LmUjI+k3Ywbnb9zg7KpV3Hn0iA8XL2bf/v0cOXOGZ1lZBPv7c+/BAwBiQ0Lo2Ly5smnPntnPUaTDEZOy6PqlRo1IqFSJzjNm0H72bL4bPpxiSuiHg34P2nxLoWObYDjSxKWAFrlqS0zczcGDI7hyZS0+PrF4ekZRqdJ7eHvHcOXKCtLSrlkBfBaSMoxIedRIdaugoJrUqvU6W7fOomPHGYwZE4OHhz+nTu0mNra5Q/XgCMk1AYsMLVeuDXFxTSlVqjbr17/FuHExNGv2DufO7SAoqDSjRm2jdOkqsqJgzZpJrF07lgoVWvPGG8s5eHAJGRkPABUgkJn52C4vtv9LIcJKq+L/kI6hlIi9e38mRGdBTk3Btwvfs5xLuVg4ijzaIqxiHqVCHSjZ4aVcPCR8Y/OhPPOkP8bbm28bNeKFbds4umIFALO+/pqXGzRgzc8/c+DGDQa3akXJsDBaDR7MF8OHE9OlC+9/8QUHT5/m52XLeJqVxaQvv+TgsWMcO3eOtGfPiChenBt3TREwSnh60qNVK2V3QylS+n6ODt526MV69bgZH0/X2bNpO306a0ePxkspXTmEX/y8Wo2Tue51OhOS7OFR+BXx55Eapm1JysApJ0srVlyNq+v73Lu3Fg+PWFxdIwkPH4G3dyz372/gyZPjUsB3IT70+sL9W2yYFh99fCpRq9ab7Nw5gw4dFjB5cjwajRunT28nNtZ6s2ZHdbZ/lQ/yvHnWvFoKOWyYyWTn6urD2LHXcHPzQa2Gb7/ty6FDi+jd+zuqV39ZsR1v3z6HdeuGkpDwFomJHwOwcuXr/PxzwVbTUVGN6dFjT6F37ekkMlGuZH2QHfGzc9LnyrsZFNXkbsuw5agk8KVISply1DdWjk+5NKQEuK3zqjiYviNOVuIySn0EiW1SBS8vNt+6xcwLF/jp7l10ajV5RiMqQG80Eu7nR0pGBmM6dGBUly6g0/Ht3r1sPXGCFaNHoxLt4qMHDEYjLlot569fZ/ySJWw9dIhJffow5KWXKBTn01ENw9HnpepeqR2Zz7Nzc+nx0UdEBAQw3bJyzBG+pGJvSTjh56rdCrlhSn1upXHbUXdCJd09OzuT1avL0qzZegICqlsVxfbccu2ogmwqxx1mz66MVuvGkye3AXB39+Ott34gNLQStvQ8PsjTpwuSvI4Z401WVio6nSeTJl3B0zMQtRrWrh3Kjh1zGDRoOQkJr0qabC31tGPHYubP703Dhr3o3XsxKpWKL78cyL59BftBRUbWYsiQI/nXjugnSgqynG9xUdaKOmF0bGIuxZyFJOy+RpyKpIep1WZeQDqcmL0QY7Z8W0h8LeVzKxVSTmlzEvPRkJVlibAu6aViqSGL84Ozq2shBRlvb/D3Z0dyMjNu3mR/UhLuGg2Zej1qJyfyDAZCfX15lJHBuy++yLhevUCnY92BA6z88UdWTZyIsyh6kMFgQG8w4OLkxMWbN5n81Ves2buX8T17MqJzZzQWLcyRlWcg31nlFGTbduHIZAXIzcuj7+zZFHNz45O33pJ/R4ovJRlqru+0DCdZH2SpsNpS29FLyVBxUZTkqoVUqhz274+jUqWlBAUlFCqKI+4USjI0I+MBn34aj1brzpMnNwFwdfXl9de3ExZWE1t6910LX/8Fi/QWLJDm9cCBz1i/fih5ednExbWgTZuxlCpVB5VKj9Gox9XV1HDkJmQ5Oc/48ss+lCpVn4YNB6DXQ0rKdcaNK1XoecsAY4+kPqaScBfrYVL3pNLIF6ZFFZJiJh0QAJY93qWSEddpPj+OKsPPqyBLLVx5+rTw7lL2dp4ypyvuA/m73FkKJrVSUqwomwW9wdOTzTducPDRI+YcM0UDmNWpEzvOnWNBz55Eh4RIj9zivGwoNy+Pk9ev8/Ynn+Ci0bB12jTcXFxArbZWlu2dP+9Ex1ENUq/nyp07NBg8mITy5Zn6xhtEBQbKp2HOX3B2Jik1lbspKejVauIjIykWFCSNPJnP0zIKAuArKchF3QdFCpixvXfo0EjS0m7TrNlK2aoTFU/2UygJ/JSUC/z2227Cw2uzcuVrhISUo2TJSrRo8UGhz/Y8CvKsWYIk+nvs2FK++24QublZxMU1ITHxA+LjG6DRGNDrc3F3N4XfkgsmkJubzaxZ/QgLq0Ri4jvo9fDkSRK9exfeZn3x4sIy1BaRsj2XU27tKcNSA63UpKWQ7LI9l2IKMKq1+Y864tYqRUq6jtWul/ZmgJaMlLQX8fNKMtRytAToTk7OP89LTzclYf5BgYJsACybZtsqyDowhXiDAgXZ3x/MaxiMfn5svXuXA5mZzPrlFwA+69aNVSdO8EnfvsSHhVnLYanGaPP98vR6fr14kWELFpCbl8fOadMoptUi5OUVKMtyJNUApT5WURFkqTz1em7eu0f9fv2oGRfHlL59KRseXvC8HJ9qNcmpqfz+4AF6Z2fiIiPVdW35AAAgAElEQVTxCggoPFZ5eOTLTqVFepbPLrUwWtzGpYoiNazb/nfx4njS0k5Rt+5GcREKnTuK00n99+jRFa5c2UKZMs349tu2RETUx9OzBC1aTCv0qewpyEX8sv8cunfvHJs3j8bfP4rY2BZMmHCD0aNDCA6OYeHCDrRsOZrmzQfj7KxcxEuXfmTFirfx8irOypUD2bVrOkOHHsbXN4IhQw6h1fry8ce1yM5OpUmT9/6i0v2P/m3k7ORE+1KlaF+1KpMSE9Gq1Wi8vNh+7hw/Xr5sUpCLSFqNhlrlyrF24kTGLVlCQGIiuXl5uLq4ULF0abo2a8bA9u0LI8t/A5UpWZILS5awYNMmqg8cSL9WrRjdtSta4OD581y+cwfBYCAqOBhvT0++O3CAzceOkZGdTXhQEEYgNSODY99+i39ICA8ePSLA3d3uttx/Fd28uZ3Ll7+hU6eT/9F8goPjCA6Ow2DQ4+VVnKSkszRoMPg/ktf9+7+xYcNw/PwiiYtrwowZtxk+vCTBwdF89llXXnjhbTp3Homzs6tiOufPH2bBgrfx8PDjhx+GsmHDR0ydeoSAgDDGjTuEh0cwEyfWJD09hcaNB/xHyvI/+veTk0rFiyVL8mJwMBPatEHj5IQ2OJjt586x59w5k4JcRNKo1dSIjWX1hAlMWLKE4M6dyc3LQ6fVUiEigpfq1mVwmzYmZflvpojixTm/ciWfr1tHnf796dW6NWN79cLV2Zmffv2VS7//jsFoJDI4GH8vL1bv38+mI0d4kp5OREgIKicnHj55wtHvviPEw4OHjx7h5+lZKL7630UPH+7lxo2FNGv2y380Hz+/Mvj5DcXJyYi/fyy3bx8mMXHhc6X1tyDIKpVqIDACCAHOA0MEQTho5x3h888LeE1Kusj48XH4+0eg1+dSt24v7t27QHh4FWrV6sYHH8SxbJlpKiM18xAEgS1b5rB58yxefXUm1au3Y8CAUDIyHjF//kOKFfPPn7jl5WXz9Ok9AgKiiuyyJIUgi8FJKURECi1WMj04jH5IMGdBh5UQNKUk5cwilmtJlFsqM9tMpGA+qRXV4qmvLeohvpZAkA15eQAWDgHysXJni2Im5T8ngSBb3ROdN/7oIypGRDDn1VelQ57JCWaJ+1k5ORgMBlQaDUfPn2fi0qVk5eSw77PPcC9WrHC6jiDIcmYV23NH4dfsbJIePWL4ggVsOWIypceFhlIpKgqjwcD15GRS0tJoW60aLyckUC4qyqQEq9WMWryYFfv2kZWby6PUVAa8/DLzx4zBydOzsNsFWkkAzHJd1NBvSu3/8uXv2bixOx07biI4uE6hKnKEioqSiJ+V++95EOR58woQ5IcPrzFmTGl8fEqgUqmoXbsLT57cIygogubNBzFoUCgbN+Yoxnhev/5Tli2bTN++H9K4cRe6dy/L/fu3+Prre/j6hohkaC737/9OcHBhq5xU2eTqRwoZdiRihZyp1kJOVlJAmsSWNCWvL6XIYVKkhCCLxwg3ncj9Qi7kmlyjdlSGihFjKIgmkZycf55llpuZQJa5DHnmo5ECGWqpXp3oaO7FqHx8TCfBwVCyZMG55Wg59/enzezZlAgJ4fO33pJGkKVIxlKZnZNDXk4OzkYjxy9fZsrKlTxMTeXHmTPxcne3TsPe4FZUy5wUj7bnZr4fPH7Mu3Pnsn7fPlQqFWVDQ6lcpgwqQeB6UhL3nzyhdc2avNyoERWio/Nl6MQlS/h882byDAYePn5Mz86dWTRtmik2v7neHA0BpxQbWYZt2Xu//76PffteolGj1YSENJKtEin5p/SMo6iy3Kf6x4V5U6lULwPzgIHAT+bjDpVKFScIwm1771sKGxkZy7Rpl/j881fx9Azg1q1jPH58h/Pnv6dYsWIYjQaSk08TEVEQjigvL5dnz56wefNs9u37mmLFfJkz5ygBAaEcOrQJQdDz9dcPcXMzKT0F7VeHj49pcV529jN0Ovd8XqR4E5Occmu5diSsidwgWWCWNIsks7nPCWNhU6CEm4RexgPCcu2oedC2XGLne53OyXxuWnCl1kko9EouIeJRRry6wLaixc+JF7NYnpdQTJ0teYgmifm15MhILBW0WqQgrzx9mn2XLjG0U6eCkU5upJcjUb24inhvUqsW9atWpdU77/Dlli28/dprhconm5dUQ7WXvyODrvk6pEQJVowdy5P0dIxZWfi5uUk+B4BlJz61mg+7daNbQgKePj4IgkDzUaPYsXMnrZs3L9QGtDodvuY697AJaSTntqlkjZZSkLOzc9m3by4//DCLPn02EhZWR7EabKvMUbJnybf9/4+AXRaZo1ZDaGgpZs++ysKFPdDp3Ll79xxJSVc5eXIz7u5eqNVarl//mdjYWiJdJI/U1Eds2PAZW7cuxs3Ng0WLfqJEiSgOHdpFaupDNm26h7d3SD7vJv61+PiYlGNHZaijTbkoft4goQyLK1iicsUggtzcXqp9FTVymFot/Xz+giUPEx86nSda29h/SnZtOQXZNk6hWIaKZaflmYKBtHAhHCAnRC5sCv6yYuBh/eXLbDt9mjUvv2y6J4UqSXUWceWLyqfz8EBn/q9hzZrUrVqVdu+/z6c7dvBez57WDDsqQx2VqzKuFYWOej2BHh4smzqVeenp5GVn42/ZYVDqeZEM/aBrVzrUq4e7tzdqZ2daDBnCxg0b6NS+ff47bub6Vvu75RdNamhTkqGO4iW5uXpOnJjPTz9NpWPH1ZQoUaAcK8lJR2WolGx05F1HZehfjiCrVKpjwBlBEPqI7l0B1gqCIOvDoFKphMWLC/vPPXv2lC+/fINnz55QuXJrDh78mjt3LmAw5FG7djvGjNmQ//zo0S04e/YAfn4hTJ++ndDQ6HzzgyAINGzoREhIFEOGLGTLls8ICYnCyyuINWtmUK9eJzp2HMbrr5ehZs1WTJ26LZ8HpT6jhFzY62P2Zk9FIXGjUUI4nmeh7/NOsuXOxddWC2ikhLsS+iHhP2f1ntIiPQXF12qhiS2C7O+P4O7OV3v30uvjj/nmvfd4pU2bgrQdUVaVEFwbOnrmDLVffZVLO3ZQNirKvuYAkhMM8QTKQlaKhAxaDChrCfbQLgvZ1IfBYEDdoQOXFy8munRpxx34MaHLtuN8URQYQRDYu3cVy5aNpkSJGHr1mk9QUJQSaC5bLEf6kLj4Utdyfeh5EOTPPxcKNY2srHQWLepLSspNEhK6sWfPUm7fPoden0fVqs2YMWNX/vPvvdeOY8e+x8cnkLlztxIVFYezs8nrVBAEqlVzwsvLl48+Ws/KlfMICYnExyeQ1as/pkaNZvTrN4kXXwyjSpUEFi360WFlWK4pq9UyE24L/YlQv3jRnSNNX24JhlyWcoCJoyCKVBEs14UseWIZKra0WRBjy9ESkvLOnfxzISkJMCHIFkDRslhP7IMs9j0GcFeprFFiMKHHFgRZfCxZku/27qXrlCksHDOGfn36FK4QqXUc1jNc6zJLfRjg10uXqPLKK5xavZqKZcvaH9Dl/lP6CGLexNfPK1ftNShz/toWLTi+aBGVKlSQjghgPlp23rO3jsMRwwWYZMHhwxtYu3YUvr5hvPTSpwQFRSvqFXJggxIAYTsHsq0Gm+oo9Bn/UQiySqXSAlWBmTZ/7QLqPE+a7u7evPPOaoYOjcNo1DN79il++uk75szpSp06Ha2ePXfuICtW3MXHxweNxrourlw5hUajJSgonJEjC4dVSkh4CYPB9DWOHduOwWDg+vUznD9/CFdXN2rUaEFISInnKcL/6L+Mjv/2G70+/phtU6fSqmbhlbN/JiWbB7eh06ZRv1o1mtWvT6W4OJz/CMz4D6Ab5jB3EUFBdp78cyk3N4e5c3tz9eop3nxzGeXKJRRZx/q3katrMYYMWcGIEZVJS0vh449/4ciRTUyZ0p6EBGsZeurUQdasuULx4iUK+YffvHkZjUZLqVLx9O3bsFA+TZu+jNFoUtROnjyA0Wjk0qUznD59GBcXLXXqNCfsOfxM/0f/fXT+5k26TpnCxrlzSWwkb5L/M+iheSOTd+fMIaFqVZrXq0fl2Fj+CWs7/gjdefiQPL2e6L+4T+n1eSxdOpDLl3+iW7dPiY1t+q+VoX91C/DHNMG8b3P/PtDU9mGVStUX6Gu5tgXbCmYFzkyatJtx45pTokQoTZt2Y/36ySxb9i7167fGw8Pk75SQ0J6PPurKvHk70GoLhHtWViYffvgKL700ACcnZ06d2mfFx6+/GtBqnRAEgfj46nTpMoArV3YwaFBbADw9vVm/fiY//HCegwd3sn//ToKCAnnxxU6UKhWNq6vKil+HfYalGpX4nhLsZCYLMig2PYgn27YTbyVytJGLXSwcRcPlzchOqNUWE7rp6BYs4dpgD6q3TBktaIk4rrE4cymk0vK8bYgif//C9zw86DN+PK+3a0erjh0L8+GIWU6qXcggBm1atWKXry/zv/mG92bN4ustW0h+8ICX2rVjyrhx+Pj4oLKY58z55Oqd0DvgGylyOMn/BpajVmcs7FMj9m0Q8680zZeBEzYePkzD+Hi0BoN0zGqx7VnseoPJ/UJrPvcM1uWX2R6CnJJynw8/HEBeXg6rVh1Do3ErlKUUciKHINuLnGFbBXJVpARUPQ9Jy1AnJk7cwdixLxASEkrLlr3ZtKkuCxcOo2nTjnh4mNp306YdmDixOwsX7kan0+SnkZuby5gxXWjfvge+voGcPHnAKs9Ll3JxdTU9X6NGPdq168a1a/vo0sUk9v39A/jii4lcvnyLAwf2sG3bFoIC/ejYoQOxkZGoLLulZCi4Eshd26sIOdTY5n8ntTp/Mxy1h5Ps42KyaZqS319JDorbl+W57GzltiCVvsUNz+Lq5uHhhpsowkE+k0pQvflcZX7GPTkZXZbJC9mSpdgH2YIg5/sbiyJWWPkdR0QUutfnzTfp3KoVia++arpn5jVXLwqdZ+MPa2LTLKd02gI3FCVEFmjSvDk/LF/OolWrGDN/Pt/t3s2dpCQ6tm7NtA8+wNfHByeLm5iofqTW7yg3PYsMLeBVbU7OybItu3hQFpOtDJVqNOKjWs3mH3+kRtmyuOblWctQifpwM5fLzd9UZ97e0vLSnsX56dMUZs16i/T0hyxadAKNxkO2jpRkoz03OEctc5aqel7Z+Ze6WKhUquLAXSBBvChPpVKNA7oKghCj8K6wYoUgWVjLvatXf2X06Oa8//5KatRowpQp3Tl8eCsLFuwhNrYaTk45NG4cTK1aTYiKikaj0VKzZgJ5ebmMHdufQ4euEh6uoVKlapw69TMAFy8mExgYxM8/H2P27MkEBQWzfPmXAHzwwSQmTfogn8eWLVtx8+YNevXsye83b7Ju4/+xd95hUhTNH//M3t7ecokDDjhykCBRomQRFFCCKCpRFCWJiAKKBAVRVDC8ioIBBBRFwRwQFVRAcs45R8lwwHFc2Lv5/bE7u72zPb2ziK/6/qjnuWf2ema6q3u6q79dVV39LZfS07m1SRNa33ILTW+8ketKlw76qmdPn6ZA7doAHFi0iFLFJFpomwI86BlJmmxAW5lMwk3u4Ux6VmxYkR3QIJpHDNmXGO9bbKhCFInuF5Iwb0FkByBbbMgzrtWbN2fz1q0c3L3bqxFTLFysSBoyz/hfIh1ycnLQNA2Hy8XRY8co7jvtL1++fFSvXp2oqChuuukWHnqoL3FxBSyFlPm3nTWHP55sRnqAT9mOOTFekFgnc6HAhfR0Go4axW01azKuRw+cRqxTmZ3ZTkwvyeSf63T5iz116hwVKhSnS5cHeO65l8mTJyGENVnTq8zoVhOKHdAsI/M3MNzOI3GxmD5dt1xLut1w4MBWBg++mREjptO4cWvGjevJb799wTvv/ETNmo1wOLJo3rwUNWrUp1y5irhcMdSr1wi3Ow+9e9/N1q0nKFrUyQ031Gb9+tUA7NhxkBIlSrJ58zqee24UZcqU5p133gbguZEjeXbMGD+PbW+7jZ27dtGza1eOHz/Ol3PmcP7iRW6pV482N91E05o1KVeyZAAwezykpaeT4NMy7v7sM8oZQMuqAWUNqlq4ytJMnV+2AJOFWjdZ922zKLsnI6sFmEqGGqIr0ZkeujlPvJrTxAC64lg2CjEXIAJkEShLQHOz9u1ZuHAhK1bsoHz5ilLxJ5Id+eRyCm4mEoWDYd1wuFwcO36colWq+NhP8svQxo2b0qdPPxITC4V1M7DDo6w7+cGyzN8hguDE6ZmZNBk+nAYVK/JG//5EX4VYica8JevX58+nUbt2MVq3vpenn36NvHmTbIFb2bcN5wYaRm8UQlbjKpyb2n8bILvwui510XX9CyH9baCqrutNFe/qc+cGB7mXCY9Nm35nxIh76dp1EPfd9xgDBrSlT5+naNr0dtxu2Lx5LVu2rGHbtrW43XmYPftLjh37g3vu6cSMGTNp374Nc+f+5M+3Qf36LPv9d36ZO5eWd9zB/V278uuCBfxx7BiNGzSgTs2ajH/nHf/zLw4dykOdO5OSPz8AJ44c4ccFC5i3dCkLV6+m5vXX8+Gzz1Iof37weDh84gSvzpjBhM8/B+DUnDnExceTx+xfZWd0RagREVfjMqBsx91JJFXx4v8yAa5aVcrKMeNXMciEK+OC94cImM0+y3ZP0pMVIAp+4TALgD/+OEOdOtfzwAP9GDz4uRAztF0NoTktSMNgY/l8KTOTPPnycfLkSTZs2012djaff/458+b9yLBh47jhhsaUKnUdOTmarWztTEDx8cJOexVADifcfb9PX7hAlzfeICY6mq+GD/fGUA0HYFT3LHZ46bpO1z59iHG5+HDSpNBKy/6/wjEUDjSbmkBKBht33OG9RgKQ58xRKxkAtm1bzhNP3EmnTo/Qq9cgBg/uQseOD3HbbXfjdsPWrRvZtGkVmzevJjY2lh9++IbDhw/RqtXt/Pjjj9x77z18/fVX/nLLX3cdu9atY9GiRTRt144enTrx6+LFHPnjD6pXqkS7W27hxYkT/c+P6tePPvfeS7ECBQA4dewYPy1ZwtyVK1m4bh2VSpXioyefpGiBAuDxcOT4cSbMmcMrX3/tff6jj8gTE0OcOcpBpP3FTh+SgAzDn1P81rJYspEsiqzIDgCx0lrLtlkYhrBEZ7r3hwiYzXs7Tp8OHdMi0+YCxD0bQpQK43e6MxGAw4cv0LhxRdq1607//i+jaZpSJoE9322DDZdTcjCMhNLT03EnJXH69GnWb9xGdnY2X375NXPmfMPQoS9RvXpTSpa8jtzcwPe+UoAsOxTMhQCUzUGJVQJF+ODn0tLo/tZbZHo8fP/ss+TxxdEPaTRVmh2Z63bTs39/0tLS+Oyzz/x1NivlzGyKVxnwtUpTabLtkMF2x47e6z8CIPsYWQls1HW9j5C2C/gq3CY9OwDZ6YSDB3cyadIz7NmziRMnjtC8eTtuvPFmunR5AKczmpMnD1OuXCkcDge67t2RGxMThcvl4NVXx/HMM8N54IEeTJ/+IQB6ZqZyBjt25Aj1W7Xivrvv5vCRI8z+9VfefeEFOt9xR9AXzr58mf5jx/LTkiXcXKsWM376KSjLp3v0YOPu3fywdCkHvv2WUkbs3GsAOSSPfypA3rfvKJUqFWft2oOkpIT6fv23ALLYSFk+015GBqxatZyXXnqejRvX0qlTLwYOfMlWtn8HQAbI9ni47YUXaFWrFk916PCXAOTFy5fTrW9fNi1eTJIPlAU9J/v/fxggO51w+PBeJk8exZYtKzlz5gSNG7ekQYPmdOvWg5gYN8ePH6J8+VK+Tc4ecnNzcbuduFwOJkx4i4EDH6f7fffx8YwZAOjnzyuR28njx2l47710aNmSU6dP8938+fzniSd48M47gxrIc+kSg999ly9//51batRgxvz5QXV8on17jp49y6zFi9k7aRJlDSBmrqyq8qq0awD5LwfI+/adplq1gvzwww6KFKkYVBdzHQz6KwCymHGWJ7CJbf36NYwdO5oNG1bTpk0Xhg4d72+CfxpABq91sf0rr1CnQgVGd+v2lwDkNdu20faee9i6fj0FhH0j1wByhOQL8/Yx3vBuS4GHgZ5AFV3XDyre0zdu1C2xnyztm29m8Oij3UPyioqKIiEhgSFPPsmNtWpxU5MmuHJzyc3KIjc3l61bt1L1+uu5cO4cTqeTBPGwcoOE/48eP07xRo3Y8sMPVClThlemTmXip59y8OefvaZAjzf+4sLVq4l2Onnzs8+YvWwZvVq3Zt3u3TSpVo1RXbqQPzGRdbt3U/vRR4l2OskbG8sttWrxYp8+XGecqhNuwjeuNgG1MfDtAuRwgsr8fzgBb843nJ+omcT5SSbwjavL4xP4ooCxA5CFqwE0ZZERjLT09Ez697+NI0f2MGHCQooXvy7sJ5PJphD3BXEXeoQA2TjtSwx7un37Lrp1a8Jvvx1H0zRL07+N7JWHDToy0iMT7pJZZuGGDbR56SWOTJ5MPiNjgwnxKqar0kwddPWWLdzYrRtbv/uOyuXKyfOUNYA5X4mZUjxpzVxlVR+3I+hr1fJeIwHIhgy10zxOJ/z445c8+OC9IXlFRUURFxfHE4MHU79mTZo2aUJMVBS5WVnous7WLVuoVKECly5cQMvJIW9iohK5nTp7lkLNmrF2xgxqlS/PpK+/Zujbb3P2p59w5HoBTVZ2NgtXr0bTND6YN4+ZixbRq1kz1h84QL3rruO5e+4hOSGBrUeOUHXoUOJiYvDk5HBnnTo8d/fdVDQ2K/3FANm/aPY4Qrq8lTv9lZIMZNhx9RFJZFvEsuI1JQUcqWe9/4jHrakAssxNzZehoVAQPeOMrM6f9zB8eDv27dvAmDHzKVGiUlDW5s8i8xCwSjPe87tbGGTxEYzxa5bzqalw4MBh7rmnOj/8cAqn0xmRaDauMiWDWYbGOrOsjw21KVCW79rFLWPGcOC99yhkKAFUfd382/yc6ZnN+/ZR/a67WPv119S64YbweZnLNzdIGAWESikRyTe48Ubv9R8DkH3MPAI8hfegkC3AIF3XF4V5Rz9/PjxANoemOnjwIJ9++imbtmwhLS2NZStXkpGZSXp6elD+Xdq0YeYcb+g2Z1QUHp+PW68OHahbpQqPvPQSOTk5jH/qKR7v1k1dP18HyRMTw8DOnbmpenW6jB5NSr58xOXJw+nUVAolJZEvPp53Hn2U64oWDQJplzMz2X/8OF8vXcrI6dP9+W6bPp1K4gQeiUbEwmfTLABk2OVqAGQV3hDzlU0odgCFTNjIhI5sgWzmRbyqfKFUg/H7719n4cLpvPzyKvLkifGXbebDrnD3a5AjkcIm9YSh2UpNhdWrN9C//518991+P0BWLZJsZG8Z0jTWKfGpM642V2aNRoyg96230qN582AmxKs5PRwJz+W5/XY2T5lCOWMhapdknT2cZsYGkFYp1o0sE70Kt4gAsiFDZU0mjQ/s8XDk6FE+nTmTjVu2cOHCBVasWUPapUtkmDrHQ3ffzbSvvK4VcXnycMm3gatzy5a0atCAh8eOJTMrixf79WOEOeasmVdf9JcYl4sBHTrQrEoVeo8fjzs6muTERI6dPUux/PlxO5289+CDVBRlKHA5K4sjZ88ya8UKRn3zjT993YsvUtOQoWLlr1TJoBq0kvBZVgo/M4lp4WSn+SqToXaMN1aLXpBvtxAjLYo8WoEXmTFJFQVy0aJ3WbjwTZ55Zh2xsdYxe63kqizN4NXgVxrKUiTfg+bvmJoKW7fuonfvm5g16w8cDq8PunmbhZX23uDHrgwN2msjMhJBPLYWY8dyV506PNKiRTAjdgGyrBICFbr7bua++io1K1e2l4csTxVuCYNlwLSJ08Y06fOE/WcB5CshTdN0/cwZS1OsckYxXS+eP8+p06e5nJnJhu3bqVKmDJ/MncvW/fv5aeVKAKqWKUPTGjXYd+wYP61YAUDXFi34z6BBpMhWYAIdPn4cj8dDdHQ0o99+m10HD5IQG8tHzzxDvoQEHnn1VWYvW8YfvqXz0M6dGde7NyHkdHrzueUWL09ly7JqypRgPyIZH+G0H8JVpuEyrn8WINsFyiqALJ7yo5IJYh52m8PMm1XXkv1vVS+xrMmT76Bs2Xrcc8/TgFzLLTtrRHwuCBgb1wjNg+ZZb/HSjXTrdje9ez/B3Xf3B6wnL3O/kNU9nHD3bwIyhLxsdgyjEWn3/PM0vP56hht+BeH6v0Hh0IePBkyezNEzZ/hy6NDA0ayq9lUNBFlnEJ+RaSEtBL7l5AV+6R4JQNZPnJDzbyU3LWRo2oULnDx1iszsbNZt307FEiX4fvFilm/bxoING8jJzaVSyZI0rVGDk6mpfL3Iq//o2KwZ/3nkEYoXKhTaLsL16MmTZPqOVR89eTI7DhwgT0wM04cMoVC+fAyaMIHPFy/m2FmvVrNPixZM6tVLWm9d13F07gxA2UKF2Pzaa8Qamz4typem2QXIwkDOdXuBnd3DFlRkFyjLxrHqpDTzcBPLEqsrA5yqIafS/KnqLA6Rb7/tRIEC5WnX7gVALi+t0lQaZNuRpHwVM1vhVq7cQq9eHbj77t7ceecQwPr0OdXcYeZN8NoL2tsYIkNVx4ZagOZOb75JhZQUxtwdHLox7ARpk5768EO2HjrEd08/jTMqSv6Qzfa2vVBVKSBk8tVMYWRo5K3wP0AJcXEk+ARkFZ/ZrUZZ70l5F9PTmb10KWWLFqV+lSrMWriQu5o25cHWrXGaJryVmzdTv0cP6lSpwtAHH6RQ/vykZ2TQskED/yT73ogRRNerR7smTSiQN6837Ykn6Ny8Ocu3bmX8F19w9uJFS16dTieHv/iC+Rs38sALL7Bq2zaa1qz5l7TLNbq61LXrBMaMqUP9+ndSvHiVv5sdANavX89dd93G6NETuOOOziFR2f6p9Mw993DHuHEBgHyV6cX77qP8ww+z8+hRKpUoIX1m9x9/UK5IkZCNl23IPqoAACAASURBVP8fKT42lnhfxJ1KvugDdXya2UuXL/PDihUUS06mcc2afPX779xauza92rYl2jRRbdi9m5q9elG5dGlG9+xJ4YIFSUtPp1X9+v4DSN598klibr6ZRtWqUdg3oY3v04d7GjViyebNvP3jj1wyThOTkKZpHH33XZbu3EnH8eNZvH07rXxRXq7RP5tat36DiRNrUKPGXZQoUfvvZgeAHTu20blzMwYNeo077njAj1X/6TSyfXvqP/98KEC+SvRs585c/8gjbNy/n9pmK42P9hw7RtnChQNKiH84/bsAshFexkxWmg4rLYnCNp4AdK1b1/tPWhqd69cPfse3Ohk1dSovfPABAEUKFmTqt9+ycvNmzp0/z7zp02nRuDEAM3/5hbwJCfyyahUbjx71ntQD3NysGTc3acLwhx8O5cM0iRSPj+f+smW5/667FI0jqadVunB1+Muy12FlCrFINcjm52XaX9mmFnFRLHPJsmO6FMuMhKwWrRKlkfC7FK1bv8z48R0ZOnQ5BQsm+p+XfW4xr5BQPyonK6uVuOn+0qVL6fjQQ7wzcQJt7+gcVLaYjahJstIGie+qhlwwOXz18/oGOJzO0LjJIvky06OieP/XX6ntW8SGkErrYVObnOhwULpgQc6dPQsFC4a089Ldu2k8bhyvdOjAkFatwmtCzGWrBoVMg6xS0xlXwz4YCRkbrGS8q2So3XtOJ3FAJ2MRn5rK3b4wlv53fPy/NHMmo3wytFSRInzw44+s2bGDU+fO8e2ECbT3udN8M28eMS4Xa3buZMX+/dSvVg3cbho3akTjevUYdt991nXyUdH4eO4tWRK9RQt72nPxt0p4yUh43tBUut2h8tWu5liSrSVlZMg1pmYLnahpVh0uam4C1W+DrOolk3kyLWrwfuiiNGv2Jh9/3JmHH16J05lfuSFPJoeN5/x+x1bzv+JDOHwF7Ni2iXs6duTFF1+jdesHQuprtrSJaebsnc7APYN/q+cETgBINBpI7JMKWapnZzNpwQLqlikTroDw6TImPR7igHKFC3Pu9OnAJkyhcdYeOECdMWN4rk0bRrVuHX7+MvNgx2oo88GRaZUNCiND/10A2WqpZgWGVcJdfM5Mpsnp7IUL3Dt2LIs3beLGypVpXqcOY6ZNY8mnn9Kodm3/8+1792bX/v00v/128Gk/Tly6RMf27XE6nbTq35+pr71Gm1tvtebbiiT1W7luHYULFAicNiZKM5VpOULJHA53qPYKmp+3mmPMAEwEX2aALFZP5YoRzrRnV4AbdVQJcvPVoBtueIiVKyfx88+v0L37C9L8Q/yNxXjCdgCyFRmF+N4d/uyzDO3dm47Nm+ONtgjO5NigR8VsZQsX8bvIwLNZVqs8BOLjY9XLMl/GsxcvZtWePSx7+eXws7Mq3SJ/g/LHx3Py3LlA5XzttvXQIRqPG8djTZrw+rx5PFmrVlAc3ohWW7IBoALIMkdP41q9uv1yDVKpu64GQDbI5Hpw/tIlurzxBr+uX0/N8uVp17AhI6dO5bfJk2ler57/+a5DhrBiwwZat2sHvgNuTmRmcmfr1qQUKkTbIUN4f9w47jJkqN3BbVGHNbt2kS86musKFpQ/K/4Wv52q7hJh5/K3hyMki3BkRykhsirKRIPMQEwGmmUb5lRiR9dz8R4uLZL5f5GiMA6ijo42FsuhstPYGGjwWaZMF7ZsmcT8+S9w332vSwGyzMUiKO4xQIai74ok+5a+PEY9/TSP9OjBww918R+vLX5uO91OVoxMhopTQOjc6m2/WKPCVuTL+Lc1a5i3dSurnn9eLR/tLgbNTPrISobuO3qUOi+9xOMNG/L6r78ysmbNYBkqXs3l2OUXrCdqWaexQf8ugGxGTwaptCCRkKmxcx0ONhw6RJMBA2hasyaLJ01i3YEDPP/uu4zo359GPt9gY1TuOniQPPHxfLXgd9q3vxtN0zifnYvujuOJYU8Tk5SPtg88QE52ttfEEG6SEeskQSPtHnuMU+fOkb12rdf9Q5FH+uXLLF++nCIFC1K5atVAPX3PGicQ2Wkec1NZ9T2n02LjT0Yon8YJVa54t+/dQHgY47PLDs0TqyzTiIA3PTs721eSIdZyhd8G5WAI8AAZ7RKNpnl5EwW6bDFuHp9dukzi/ffv4sSJ9XTrNoyqVRvjdmshdfG3b4bH2kFQpt41M2B13+OhevHiQeGZjNOmCiUnEzhtK8C/8dtoS5lcDKdFMrMe3He8AF0FlD+cP5/+d91FfMGCwTO2DDmomJKRj9G0jAz2HD9OjKaBx0NuVhaz165l7vbtfL52LW/feSdl8+ThrcWL2b53L5WNzmilNrIi2YpBTDPP9Glp1ruNroSM2dbOpHMlZKqbHhXFlmPHaDx4MPWqVGH+W2+x89gxnp00iUE9etC8TRvv87467j12DHdcHJ8tXsq993ZB0zTOZmvgjuWxYaNwJualQ9++ZKWlER0dLe9gVn765lV1Whr3v/oq2w8dInPWLFxGfsazpu94OSuLFfv3UyAhgeqGNcMsnKzIl5f3lMcI2lfKv2Q+MOSn0+kH487kgEw3r7dPnw6VoTJfZV2/ZORAQF6KstT4nWO6imTI1GgMeZqdHQfAuXNxpKXFhVRF9MkFaNPmbWbObM/EiVvo1Gk4VaveTHx8QIaah4aLrMCpi3Y309ggPTub6qVKwfHjftlZNCXJV7bDX75hqJEpeFX7OUSSdUXzdwQHbtEiZy7URx8uWkS/1q3JW6iQmgFZHirmhHuX09PZdewYMcbYz85mzrp1zNu5k0/XreP1Vq2omZTEm8uWsXb7duoYu4xVYzWcTJfxLdtpKtvoY4P+fQBZVrFwjWhn6SbpED1ee42Pf/qJfImJ/OiL51kvPp5+jz4K8fEhGzB+/W0zP/zwLaNHj2H48Kd56KGBfPDBB7z55qdER5dgyJDXmTv3V96cMJ1u3XridLoIHOHrK1oAJUEbCSQAaf2331K8aVM27tpFbXHnqKl+X82fz0MvvMCFS5d4f9QoKl9/fSAvX2GOeKePjwBIsjOHSiMuqEKSWQknE/IyjkEVj7w02lkWlUIk8/PZ2Rl4BTzAZd81m4DAVwl14+pG170arXPnDIEeLVX8mefKEiVqMHLkdrZsmc4bbzyEy+WmX7+RtGrVMaidg763WSKGW/iF6fe6rrPr4EHKJCV5Zz+J1M7va/P40l7Bdfp0qKyxGyUvEisBmICyKZOlW7fy5pNPepmw0FxcKW07fJj3f/2Vz5cupX3t2txWuTJ4PExdsICh33zDkzffzLIePahQoABDfXHLK7hcwSeIReLbE1zpQJrx2zzOxc50hZN6EJkXFnY1RnY0yCL56tN/4kTe/eYbnE4nc2fORNM0GsfH0/PRRyEpKSR04hdfLmPOnNm8/PKLjBgxku7dBzFjxvuMGvUuaWkpPPTQWH7+eQEvvTaNBx8cgNvt8vedeJ9V1+HJsheSxePh93feoVDbtqw+cIBGlSpZ1u/7jRvp/fHHnLx4kfEdO1LdMM2KPlN2tJIy7WQ4LaZdGWrk6eMpIENjQ5QH4SJQGOcDBOTmJQKyUwWaVbLU7fsT883G0F2kpsb5+A2tcvHiVejffxuHD89gypRH0DSNPn1G0Lr1fUHzgT8Oe1qGtZIhknFkenbXnj2UTUiQxtbPn5zsl52i3DS08uZDB8XPqJpPZd9HlKXG7/h4nwyVCOKl27czsmdPr3peFmpDBZANkskHt5tdhw8z+bvv+GzRIm6tWpUOdeoA8Ony5TwyaxZDmjRhcbduVEpO5vlffwWgekxMaINEovyx4k2cgFUL5nALWh/9Ozyl/wZasnkzn//2G++OGsX22bNtvRMdHU27dvfy889rGTnyDZYtm0/Xrn2pW7eR/5mHHx7CjBnvc+nSJUVO9qhYSgr6zp3B4NhEOTk53DN8OBcuXWLdrFn0+osc9K+RmqKj3bRo0ZcPP9xJz55jefnlx/jPf578r5X/84oVJMbGUlII4v5voXIlSvDFb79d1TyzPR7Gfv45TUeNIjFPHuYNG8Y7Dz7o34C36sABht9yCyNuvZUKvqg18w8fZk7r1jj/JRtM/m5atWMHH/74IxOGDePgTz/Z2tzodDpp1eouvv56JSNHvsu6dYtp06Yr9evf4n+mZ88hfP75VNLSrDc326WC+fKhz53rBccWpOs67d95h5MXL7L0qad4/JZbLJ+9Rn8dOZ0umjR5iPfe20afPuN5662hjBvX/79W/u9r1+LJyaFCydADoP7pdF2JEny5cOFVzTMnJ4f/fP45jR5/HLfLxZyhQ5nWr19Ahh48yBONG/NMs2ZU8vnN/HbkCF/cdBMuqygX/zD6d2mQDZKpqVRpZpKsTo6cOcOuw4eZvXAhe44eZdm6dXw+aRJ3dOjgfcC3nBM1Hmm+lWFoaDQnFSq05umnW3vzPhJgp2rV9iQkfEnNmqXo2vUxBgx4mqioKOkK0tDmut0uXD4Nb25uLkNHjaJ1kyY0q23a1SvRMEQBp7//Hj0qiuTk5GAnJ0m7GdoYmQVbJJnyKyQkmai1satBNjLzrXLj4xP9ZjZZ2CLjXmqq9crbq6EwNBuGy4dd86BLci/KV81opa+erOq5uQ7q1m3L1KlL6du3GWPGvCYpk9D+bGTidsvNT+b3hDbOycxk0nff0aNlS6/fl7jjX9Qk+xrV5WvUosnJJCUFAvqLVyvFqR1FhEEypZtLYhKYMWECddq2pV2rVpQ3AH4YlyJpYT7SdZ3GgweTN08elr/0EuWKFAmpTMNSpfhk1SqGNGgAGRksP3qU0+nptEpICI2RFYmGykqDLLpsmPOwo8mxSzKVlXGVfTxzmQpz6B8nT7Lr8GF+WLiQXYcOsWztWqZPnMi9XbsChFjc0k7L9w14mzGKwoVb0q9fSzwe2LkzwEZKyu3kzz+T+vVL06FDPx55ZDROp1PY2OUiPt47bmOTBW2SsIlp+Kuv0qxqVVo2aGDtJuOrl5aZydmxY8nOyaFQnjzBTqHhNOpmjZVZ/lo9L+HDlgZZsjstMdlNUlLA5xeCw4nJQqNdvCgDMIbsNGRhFgFNsFmTLFK06T0Idrvwao7tRrKMjta48caWfPrpajp2vAGn8+2AJTF0Mo7MwmMm37O56em8N2sWD7RogSM9HS5cCLXCpaX5ZWdJ3ya1pCRX0BwlPi4LASfOp+IQtbLMie8HLHMuPx/GCx9OnEitVq24o21bqvmizyhV2bLCTP+3GDSIHI+HRW+8QaXChQP5+eaXhmXL8tavvzKqeXPIyGDjqVPsOX+eO/Llsz5hVWXtl/Fhbhi3O5Cf0QYyWWpThv77ALI446p2Karsvb7/L1y4wCdffsk3c+awduNGSpcqRctbbuGh9u15v0ED8icX5YJhrjeBYbvB10Mpkaee+o6jR3fTp08FsrIcdO/+NHnyhPpTiXNmfLzP9cHt5rUJE3htwgTqVq/O7Pffp7AZVJgEaIG4uGCmZA6kvjxku65VLktut8mlwnyNFCCb7jmczoAJVXLqs/ENDOwvY8PjcZOdbQbBOcgBsZEWfoUrA8OyKsvkUFJSCqmpp4KeN9rcJYJgg1ThL8IwN3HWLM5cuMDATp0CwFLGuFlgpab6zbTGtWhK4NAR2eJARla4yzI8penBMpUr81S/fvQdM4YfJ03CbcQBv8KJLzc3l73HjjH5kUcoJ4lYkZqezvDZsxnZuLF/UI9fs4aBlSoRlWVaBIqCQAZkZHUzu4mI31s2Y8oa7s+SDCCbBY9Mrork8ZCWlsYnn33G97Nns3zFCkqWLEmLFi3pcmsb3nivPvnyFeWQaeOXLJ65ar0RynYsXbp8SYsW+xk9+jpSU7Po3v1l8uXzytDgWLIGMIwlNilQhwkffcS49HSqVqjA3Ndfp6jZxUVcgAH5YmPVbg9WZH5OtoFCfFYFhlUy1My/UQffPSNyjHjIh3lTXGpqIC3DdzDGxYu+uYMcAiDYUBpkE6pcMO05CSGZMiLHsnqqNUfRoimkpp7B4cj1K5PwEPqCmUzf1pIERqZ8/z37/viDyf36BSZ6M6iUdOjE5GQSS3sb+EJa8GEjYpx5M3vmq5UMtZoCjCOejegbxStU4JnBg+n7/PP8+uGHxObJo/bJDqMh03WdXYcPM65PHypdd13wws/pJC0jgyHffMNjvgN/AN5Yt45HK1XClZsLuZLjvsXBL/KhIplsVLnhquSZLHtbT/3TSCXcJWnm88CN/nBXzy7Mnz+P//znPT6YMQ9Ni/bfz/LAgQPWoEsmyMMtgMRvGRNTnpdf3sLQoVWZM2c6U6fuBoL9a0Xlg/FufLybS5cuM3r4UF596y1enTKF1wYODG0jWccygyJRUJgcQ53u2JBmttIQKhvJDB6sZj2r1arHI/W5l2mVVYq806e9gj472wC+LgKaDVGTbAbI4jWwYc+KbVlVRSxl1OXkyeMkJRUOUkYZlJQUiyvZNOHZXUl7POi6zrKlS1m1bBmrN27k5wUL+G7SJGLF7eFWKN7MsOi0CAH/xvj4wA7qZEHo+PgwjzkrtkMC9nvkLz352GMsWLmSt2bO5KmHHw5ufDugQujrUVFRPNa+PSM/+YQOkpji6w4fJiEmhkd8vnQnL1xg3sGDTK5ZE4wTOMV2k62EVJVXzW5m8Cx2GhVytEuqVYxJpZiFK4wSzsWjjz7C7NmfMXr0RF5+5VscjsDJnOfPw4kT8nFgXM1p4Vy6g2VSGQYN2sXrr5dnwYKPmTDhmD+vANDzXr0H1nh5S0xK4uyJE4wZNYoX3niDMR9/zLuPPRZamAhqjf9VE7asH8omfDv9VgZeVP1KZQmIj8edlGj8BOQn44lKhkBR3nwvG+7HQLBMNGSoIRvNG59FcgnP5RHyCFZGqKosDrejR4+TlJRMZqbm5ztW7CCy76ci4b6u66zcvJkV69axdudOZi9ZwpfPPkuC70Q/24sZYQ5M9DV+YrK3wXNTXMqhrFLmhmx+FygXR+h9p5NH+/dn/vLlvPLRR4weOlTdx8y/Tf9rwBPduzNiyhTuM2LTC7J2yx9/oAODmzYFh4NUj4dv9+5lT8eOoeHoZN8lUn9xcUyZFy7iQj/Cjc7/r53pDhzYx5Qps+jRo693R/R/mYoXr8LMmZfJyLjI+PE9uXzZ3qkNbrebV8aMIXvvXl59+um/mMtr9FfQvn0bKVPmCsJ0KejYsWMMeOIJylapQq8BA9h78CBVKlRg1ddf08SI7f0vpaioKG5v3pwDhw//6bxOpaaycufO0NPUfFS/TBnOpKdz5MIFAD7cvp22pUuT1xU+0sv/N9q7dydjx06he/f+uP6G9ilQoByvv56FwxHNpEndSU8/b+s9l8vFmGHDyD56lHdGjvyLubxGfwXt2bOJcuWqX9WDe06eOcOgceMod/vt3D9qFLsOH6ZiyZIsnzCBW80ujf8ycjgctGnZkgOHDv3pvM6kprJkwwbi8+SR3q9VtizZOTnsOXMGgBnbtnFLyZIkXw3r13+RbGuQNU3rD/QFSvuStgIv6Lo+x3dfA54F+gD5gJVAf13Xtwp5NAVGATcAscAxYAXQT9f1C/a5VqjVRe2HyXxnXoXu27eHSZMmUbduJ6l7hNWCXsxDds/8W8W+2+1m3LjdzJo1gGefbcsrryyUPi9aY8Frhnca6gDDp1RmkzGvpsxksVR3eLJwu10ht8xNL90xLjvRI5wG2Wz6EJ43wukYLgiyI41l30/WPVJT3T4W3f5QQ8Gh36xcLAIhiowYnqIpVxz3MiWCt8wAT1u2rKNYsZqcPh24L0aKMOrqdKrjFBu0a9c2One+lQ4duvLxjJ+4/vqKJCb6XDaM+hkFiEGjVU7FotnMeE5mtZH4TBimPZdKDRKOTIOoQc2avPPBB+i6jib2GTuaHN+1x9ixfDZ/Pu0bNOCVwYOlPMW6XHSrWZO6U6eSHBvLybQ0frvzTnkdIq1TODJ3Grc7Mh/ncGR8Z5VWzVenDIvjx43XMjJg27YNTJ06kRtv7BmkMJUpUSO1wqmqGeydEk3//tv57bfBjB3bklGjVuDxaNZ5CJpk/9czgyyxf6lM0eZ3xKtIKvkXzj/LjhVJnP/MaRkZfhlgyHSZi4WVTyzA6dNuzp0za3/jCES0kMlQM8k0znEYkS1EcaKSoUYf3LRpLWXK1AoKymN829ikJGtNvQXt2b2bZp06cVerVnw/bRqVihfHYXapEkmWZpQhDhRzmu/qcLuJNQNGmfuHqt9J5KvDnC5Q/bp1eeG118h1OPwyOohvGYgxXR99/nkmf/YZ7Zs3Z+Yrr0jlsAu4v0kTGr33HkUSEzl67hxzu3eHmBhrba7MVGROD0cy0GYlaGxQJNL9CDAU2I33GzwAfKtpWm1d1zcBTwFPAD2AnXiB8C+aplXUdf2ipmmVgZ+B94CBeEdWOeBOQK7KMZMh2FWCQiHcxUFm/F69egHHj4e3MkQwB4f8DucqGh2dQM+eU3nggRguXLiI250Qkq/5u7riJWYDWbtY2yflPgJCoUZcRTH0W4hJXNX5rPweZCYQKx6F542QeOI+FJUfvjhnyDZKZGRE+1iLDsnDTGJTyUK6ySycMuFu0IEDu6hRowNHjshDNNqZa0V+p0yZQcOG99K582vk5sK+fWK+3nZLTi4E+ILLm/uOeeOZUYBZkFj4OPr/VznQmd+TVVDhdlC3XDlyPB5WrVpFPZk2xwZYnf7zz3zz3HPc2bhxcP1MY2hCp04MqFeP05cuUT8xEYemBR81JoIn8yRnclcK4dGOk6FB4QRNpGSMV/EkFzFd4N/pjJXONRAMVPbs2eCXoTKAbMV+ODCs+pzm+dPhiKNt2/cYMyYvf/xxnOjoIkHPSfMygHJKSmhfDie77JBVP1c1iB2fE5FkAEuxEjFkgSgTZdmbm8MbHdI7D6SmJvhYTODyZXHTMwRv0pMpGwyjtZcPTYsOkeUixpfJUCNs2u7du6hU6WZ/3xOfi4934Hb7Qq6ZInrJ+oKDXGZNmsTtbdrw1ptvBgo3y0RZ/5B1YrECVs9ZbsLAOl8b2EclY6qWLUtiXByLFizg5qZNrfOQle/r/x98/TXTXnqJ+9q3D66LKa9X+vShb9Om/JGaSqOCBb1nP5w+bU+e/ZkxF4nfY7js7Jar6/p3pqSnNU3rBzTQNG0zXtA7Ttf1rwA0TXsAOAl0BSYBLYEzuq4PEvLYB8yzywNwRROG1YJixIgvmTZtKKdPX8LpjJMu3GS/zWwYJC7+7LgZit/S5YqiXLkbWbNmDi1bdg6pXqhiyRHY8W+O6SfTIMuYkmkBFYwH+TXZAciye7JGlW1SkqwODO2HLNRhOOGu2jBrRzEnm+tkim8ZkDbIKDMjI5XduxfTqNFzQeE0VesWg2TNl5PjYefO3ZQufSN79gTyMgNvY2JJSYklOcUbqsi/21lkROYkqhLWMtAs+192T5VmalQNGHb//XQeOJBfJk2inNXR07KygB0HDhDrdnP7TTeByyUHtwJVKF2aCqA+fQ5CwWY4ZCern0wbb1ytFrFXQmaLjhWPQGyy27852IzbDJk0bNiPTJ7cl7Nnz+Nw5LXVXcKBYdUeG1l6oBk1SpS4kZ07f6JYsYdC+Lb+LA7ifYtHhyhY7FRGRVaVtxI8VqpTGR9W48xKlvp+uwWZoALIouyE4PVzMHY3+ofbl4fbthw1yrGjeBCbIzUVMjPT2Lx5PvXrD+T48dDABTIdgEoUaZrOxk27KFu2PBc8AaudO8V3CIcRoUm2wzRSC4NBooVOJMX3CwF2Yl8IJ08MGfrww9z/6KP8/MknVK5QwbphJH1s39696LrOXe3ahfY18/Px8VxXsSLXQWDykeE3UxlB9ZSZNVRkNQHLxpUNuiIfZE3TojRN6wzEA8uAMkAKAtjVdf0ysAho6Es6DhTUNK3ZlZT5V1DDhh0oXLgsv/76/t/NCgC5uTnExib+3Wxco7+YTp3aTGJicQoWtI69apd0XWf69O6kpZ2mceNeV4G7fzb1uusuBnbpQqenniIzS7UhKJh+WLSIxn36MH7QIGKu+RJfNapR4zZKlqzJggVv/92sAF4ZamgOr9H/Lp05sxO3Oy/Fi4duso2UdF1nyJDeHDy4j/vvf/gqcPfPpm533cUzAwbQqV8/LgfvvlTSL7//zo1t2vDy008TZ2xW/B8n2xpkAE3TqgHL8ToNpQF36bq+WdM0AwSfML1yAvAF3eMLoBUwX9O0k8AqYAHwsa7rpyzK64PXpzmYFFpGY9XgdrvMSUGWT+8iQ6NFi558882rtGw5ADuhvdLSzrJv3wpOnNhNZuZlypSpT/HiNxAXl8+ft5msFEviYic7+yL796+jbt1WSiurqBExzGUumQZZ5XYhri4tNFe5OCQacsnuWBWF0/aLWm6VBtn32+UMhKCzUp6L2cqUQSpFtl2yYcmX5mv8f+7cPuLiigXxZc5XZgAw/jfSsrIu8fvvQzh2bDfduy/m1Kk8nDvnvSfTIIuRPwylaIpPQ5K/dHwg0VjtW8XhMjMiY84uRWAeNH4/1q4dv69dyyOjRzN11CjrvHy/v5o3j37PP88Pb75J/WrVgi0XZiFxJXybtR6qvi7jU+ZTo4rQY7cDysi8gzwMJfk0qzKlpzdN4+abe/HllyO45ZYnMdygVOMrO/scR4+u4uTJnWRnX6Zo0TqkpNQkT578UoW5rEuI9wzS9UwOHFhC7dpzpJ/TSmkUPH14J353fCzOJPnzELCm+cNpyeSiTHDL3CjM74hXUctoNk+q3jOn+cp0JQVkqD8IjRDcxixXRS2zHX/xKzFu2DE6iWkZGXDixF7i4oqRmuot0yymVMNG7E+ZmZeZNOlp1q5dw8cfLyMnJ95/bkGwgdVwTfGeoOhOyo8jIz3AkHG90glGpi1WWRHEziwzW4eRI71vv53flyzhoQED+HTCBDQjSIHFQJs9dy49v/KdrwAAIABJREFUBw3iq/ffp6kRO9yKZJrbpKTQNIPEMiPVyptJ1nnEulvxYJWd/ZIBr29xDSAJuBuYrmnazcJ93fS8ZqTpup4DPKhp2jNAc6A+MASvq8ZN4mY+f2a6PhmYDKBpmu7/8GaBIRFErninf6OTccscPg3g1ls78sEHgzlzZhdFilQKuZ+VlcFPP73OunWzOXhwA1FR0ZQtW5eiRSvjdLr46qvBHDy4npSUiowevZGoqGhWr/6MevXuJuQYaYt5Pz39Iu+/35vGje8mLi5K2kfN4yLYJOlzPUjyDl6HJ8ueGcPpJNc0oXnCuAob/sgusfOZmVKBHbudXSEw3G6X9FsadKV7a8y/rZ6RsSn+b5ZlZnfCvHkT0PVMv4VKJfOsrtnZaXz9dW2Sk+vSqtUvXLqUJ4hP1d4ukUf/XJ3sIDnZ239iS0s286kC1qqEu92JIhxAFmY5DXi5d28qdOvGe4MHEy0RfnpUFFv27OHladNYsXkzcyZOpK5xxLrMnm8ltK34EK9WAaGtxp4dk6hMuEcYokhKMtlp8G52FXG7/Rt5knxhwmRjqnHjtsyaNYjTp7eQklIrqDjv81ksWfIGW7d+z7FjG9A0B8WL16VgwcpER7uZP38ox49vJCGhCMOH78TtdrN+/efUqHEHLlceafOYq5OZmc7UqQ9Tq9btFC4cK21ig+xiDPM9kTwes/HVIeHNJbiF+YB3srBp1uxbFbTbTKigKuC4GQhZgWdTpePjY6X1MgNkFRg2/7ZDMuWP6rfVNT4+EY9vspK5y6nWnMYQzMy8zPDhN1K8eCWef/430tPjSU+Xr1vFT2T8bxzt7P+2SYIrhh2ZaHVP5fMnG7cy2RVGjmjAuJ49KdmhA+8fO0Z8YmLI87qus2PvXl6dMoUFy5fzzaRJNKpZUz1RmcksX93uAFiW8agCyCosI/tfNafYlKERAWRd17OAPb5/12iaVhcYBLzoS0sBxDhMhTBplXVdPwp8DHzsA8u78ALlHmEZMMIX2NSoSDZX+rMx6LvvJnHmzB/kzx9HVFQmS5Z8yYIFn3L27B/ExeXl7NljJCYWpHPn0VSoUA+nM56oqODyzpw5wZgxTXn99VvIyLjIoUObSEr6ntq12wWxZzVQ33lnELm5WQwdOs3Sb9/cN2QCy4tZMpg/fzbt2t1JdHQ0Tslizv+/Yv+HlfD09yuf4He5CVXjyhpaRaoKS1QXsfFO/wQlFmGlyLMq0up7yFgKB5CV4NPktvbbb/OoXLk+xYuH18xkZMCBA3PZuPE9KlbsTlJSVTIyLrFwYXeKFWtF/fpv4XTKv5950jDjH6u6GPFik5ILBXwyVf7JKg2KbHWiEvxWZNL0FvPx9dH335M3MZFlW7awfNs20i5fJsblYsPu3RQrWJAH2rZl0ogRxMnCEckaQnbimdhwZgQh89OWTSBimZECZDsgyC4Zu/tlMlSGXnz8G9Yb0SfZqNrcuR9x/PheChaMx+3OYvXqb1i06GNSU/8gJiaRCxdOEBOTwG23jaZMmYbExITK0MzMs4wf35R3370Zh0Nj//6VuN0zaNiwm7IJDLbHjx9KZuYZRo36iLx51U1gXiOYMUZ2dhYLF35Ho0Z34HLFKPGM2FSqzyp2G8Pyl5Tk1c67RFOP2ewjLlJVG4yMQsUdbopVQWySG098MMh3Oq33dlgNT1lXtCs7zaypZKhZxCxaNI8KFeqTnGwNrMVFz65dC1mw4HXq17+fUqWqkZubyZQpPShTph69e08hKip0vSKKAFm/k6wnhQVRQDnmNL0bBKKtKipWJlxjyT6SuQ9IKlPId9zzhzNnUqxIEZb6ZOiFS5dwx8SwYdcuUpKTua9NGzZ+9pk3jrOdGMYqfmQTtnhPptVR5WeVl9Vvqwnegv6EpAW8PswxwH68PsYtgNUAmqa5gSZ4wa+UdF0/p2naMby+zH8L1azZjJYtu/PAA+XJyfFQpcpN3HyzdxBdupSKyxVPmTK1iI4ONR0alDdvYZ57bgWvv96eQ4c2AfDKK3fw+uvbKVbsemX569cvZPnyH/jkk93Exib86fqcOHGM7t07ArBy5SZq1Kj2p/O8RlePjh/fw6pVX/LCC9ttvxMVFcO+fd+yb9+3JCSUAhxUrTqI668f8Ncx+g+nWLebdwcOZNrPP+OOieHW2rV5qW9fkhISSMvMpEhKCtcVL35VY6ReIzlVq9aE2257kIEDbyA7O4sKFRpSv/4DlChxA+fPX8DpjKNYsRpER1trbeLi8vPEE8uZPPlOdu78DYBJk+6jZMkbKFeuqrL8LVuWM3/+TD75ZDcJCfn+dH1SU08zbJhXhn744WrKl6/zp/O8RlePzp49zIoV0xkxYpPtd6Kj87Bp02w2bZpNgQKlAJ1bbx1Au3ZP/HWM/sMpJjqaaQMGMHX+fJzR0bSoU4cxvXuTzydDUwoXplyJEgH3i/+HpOm62SvC4kFNGwfMwashTsAbnWIo0EbX9Z80TRsKPI1XE7wLeAa4CTDCvPXF657xDbAXrx/z/XjDw3XXdX1GmPJ1feNGuepPYobMdYaeAiVq0sxpmZk5ZGZ6QjQGBtlVel24cJojR3awaNFMVq36jmnT9uN2B05eE6+6nkX//jfRqdPjtGnTJSQv1SLHShEFsHTpPLp2bQXAsGEv0avXQC5ePE/+/ClBfNtV7oXTiMS6ff53Mi2jLICquYFVJhDRYiA4xuX6zFp2T+Ay10UWwMPtDmjKlCt1WYbC1XBbMVf99OnLPPjgbdSp04xu3Ub776nCEBrXdeu+4KuvOjJkyGUgGGiI2iuRLSvLvMw/WdzVLjuO1m8WVu3itgqNFYmZwmDefLWbZr4ny9cOyfqpzJYrq9+VaJCtVFUyW7Fxbejd+qFpGrquh10JaJqm6999F94EK+kUxngTh7h5uJ8/n0N6uofo6Jiwrupic4jkdEJGxlmOHt3BqlWfsXjxLD744AB58+aRNo+uZ/Pooy1p0+Y+OnToGVLnK3UHWLVqIQMGePeTd+nyNF27PsOJE+dISPCGj5PJGvsaZO9vcZwZ/7s8Pr9WMU65uaFl5kO7hUq01VmegFXArubYXJRq6In/m323ZWXJrGpG1c+dy2LQoDaUK1eL++57OSK+t26dw1tvtWXixPMkJCSG8BaJiBF/y7b02Njmg9stiY4hujqFk7XG/1YuHCKp5thwH9JKKxsJqTTeKlkabt41/x+Ob/N7HToA1jI0EoD8IdAMrxvFeWAT8Kqu63N9942DQvoSfFDIFt/9mnhDwTUGigLpeGMqv63r+sc2ytf1Eycse63Zl9ZqLlPdszt/m8lK4I8adQ/79m2mWrWGlCt3Ax9+OAa3O5YBA8bx8cevsm/fVgoVKsaMGasoXLiQvcIEUvXV//xnOJMnjyM2Np70dO9g2rAhF03TbANkc/5W7pBm2evfvGC1ycsOgpVN3LIFkSDkZfhEla1fOKlcBCJ1ZBaFjSlW0a7jJ6lYsTyHD5/H4fAKaFkTpaXBhg2rycpKJzU1lZMn97JkyceULn0jnTtPsi0Pzb9V+77CzKH+axBQVvklh3O7MMiu8LMze8meD5dmVbbVitiOiVNWv3AzsR0XCzO/Jb2h+iICyFu3hudB6BQGeFKthVShE8HesBH/F6v+4ov3s23bcmrUaETFijX46KNX8HiyGTlyAlOnvsbOnRspWDCFb75ZTpEixS3LDOceYf6dkQHTpr3A9OkjcbvjyMjwHogxaVIWTme0pX+/SOKnE0WB1eZZ2SLVkZFuL/yiSCoZGi7N9EGkmxBlvhCyydXOeLcCbibZmeWLm7x9+1Fq1CjOunVniYrKF9Ic4nXXrrVkZFwiPT2VEyf2sWTJJxQrVon+/adLLUt21tSRDmPVFgK3W1AuiYNJBZDNA9GuW5uqMir5Y05T5WEnTUZWPjKy+2Y+7M4LVuVXrgxcBYD8d5OmaXpmpm7ZlpHMW1ZtbwcQh1tAifdzc3PZsmUVe/ZsYsuW1RQsWIjU1LPs3buNXr2eonnz23G5wkfas+LLKn337q20bVuVtm270aJFRx5/vD1duw7k8cffCHpP5t8fqQZZIsv8/8e6c+Uzq2oWjRQcqRyIRbAj6wQqMGfXF0rk07jK0CdwPD2d4vXrc2bPHvIWLQp4Bb9MHlapolG4cAnKlr2BQoVKcMMNLahf/w6ys6Nsy0MZa+amUinqZZO5X6Db1SBboSaxAuLvcLOUXWFttx/J3lWVbwWcrf7/swBZwrcftPhERyQAOSdHLu/DYR3VZ7XbD81kZ2jrus727WvYu3cDmzatIX/+Aly8eJ4dOzbx8MNP0KZNO2JiQqMP2QHIKpy3Z89eOnUqR8OGd9C69QCeeaYFt97aly5d3gPkOEVGkchL8WROWVqQ4sEOQhfJDmgIB2Jkmj+7WkAVj6oVvKlBzubmUqRiRQ7u309svFeGWuHHRo008uZNpmLFeiQnF+eGG26lQYM70fVAPSPprzKWzezbUUbIZK5SqRROg6yaEOyuTu0AzXDA1K71SyVrVWSXD0larkVE43AyNEIOr1Ek5HA4qF69PrVq1adjxz5MmfIS7733Eg0b3sro0f3YsaMPAwc+c9XK83g8DBlyHz/++Blly1bihx8+YdWqhYwb9yktWnS5YmFwja4Off/rr3S8807yJsrjtC5aNI9nnx1AmTLeVe2UKctJTPRGSTRkYHa29NVrdI3+J0nTNKpXr8uNN9alS5feTJv2BhMnjuWmm27lmWceY/PmNTz77AtXrbzc3Fyef74ns2d/SKlSlVm27Ht27lzL449PpWHDhyKNkneNrjLNmTeP1rffTkpKChck32LdukWMGdOL0qWrAPDWW8tISSkP2MOM1+gaifSvAshGfEKVdsCcLiMrBWAk5hTzb9n/5nybN2/KG2/A/ff34Kmn+nPo0Lag8IAqPsMpqS5evMBzzz3O8eOHaNWqA3Pnfs3NN7fj9tu7cdttna7IOiyri1lh4HYHfpt3QHtjbfqO+0z2nUiUlBS5dtZM4jOy0AzmD/FnNMgq06FIqpW0r2G++Oorfl2zhmZVqtD7gQcA7w72/L77DsdZ9u3bxb59u1i0aCfXXVdMqTAI13x2lPKqIAZhF/h2NABipxE1+lb3rPKPVNtgfu9KNCIRN4hNfiQaYUvtpsJi7fOwiIh27JCny2SoXSuciuw2sawfylwkW7VqwnPPQY8e9zF8+FB279pIott0YIzwnWS+rjKFW0YGXLqUxtixQ9i3bzO3396Fn36aSePG7WjcuCMtWtwXZPwyX8WuLLaNSrlnDlVpJZICSlQjnFhswNXJrvbQzseVVUxMt+urGIlPPkSkQf7+yy/59pdfmPDccwx4/HEAElOSSPed6BcTc55Dh3Zz6NBuvv12O2XKlFdui5CxZXcKMouDjIzgCBhW1VSWE24uVDEXqQZZvGfH4mYnnIw5TaY+t5OHhC9jLIvVC+n+EoW6+bdIPg8LS/pXAWTxzHUzmdNVc5nVvHul86ddIN22dQMe7tuXRx65n9jYWIY/+ViocLdg1GwiMDrJ1q1bmDBhPHPmfEu1ajVxOjXmzv2a775bSY0aNwYJBxU+MZPYCcX3zGkyoSD2f7M50e0WYoMaoJlc9ewlMmUnTXbPLkA28xGpi4VYWbGRgF/XrPEmX74cfBiHr5E2r1hGSqFCvDZ2LI0aVfDfBnlUMbtuvipWrwbmU2asaitxlvlvqnVUixmbpjq7i9eQtAgXqqpudyUAecuWq/fN7cypsjlSlA+q+dO/YVYYlw0qlmVQv3706vUQ7pgYhvbq5Z0YLJhzCIwYsdsDMdy912179vGf/7zB999/TeXKN5A/f15++mkmH320gHr1bg5ag1vNB+FOZTdIBc5kE7+4ZyvY9Sk4nJhxhLSDXOsVQLjCVMgjHBiO1MVCnEhkQMwCIH/5yy/eeqalBTRmaWnE+jRNB/avJzk5mTFjXqFOnYpomtwrwcyGlbuhlViSre1lU4BqbFtmbKZwINfO4iecfJVVQlaW1X3ZylYWkldIM/aNBXUdYS+/cU8lE+2sD62aCP4HAXI4ihS0iv9HsmAS7/k3MAQJEblQeGfkSF7q35+8CQk4HI7AIJdVQvjfYWLO5XQy45NPGDRsGMOHDeOZEUt49LHHKVeuMi+++DI1a9ZF09T9XQTNAoshJHY0WbuZgbHYRuLJRsY1VGHgIBA30obADyfNVGBYJfCtJgGr/GUkSk5BSp5JSyMuJoZ7GjTgrmrVgoJurt64kX5jx7Juxw7WfPUVterVg7QLACT68hDjapoFvth3zexbsWsHJMne8/u/hltlqrQTdpb24j3ZbGS+byY7gDfMADeD4QwLDaJVt7iSuSsS4X4ltGePfQWBLE3WnEbTiffDbQg1/vf714obZtPUC9fXe/ViZIcO5I2Px5Gba1uGyr7xp99+S98RIxj62GMs+eEHhr74IomJiTy/4Hdq1myCpgXGWWqqesOV3TMOZGPU/LyodAi1zMnlqvfqIHAaoDfN4ckKWaxbdiyrPRhW+zNUoNkuSFMBZKGsC5cvE+92c3f9+nSsWjWgZPB42LB+PX1HjWL15s0smT2bhs2akeX0upSq3GJEGRrJ2As3buxW08jPFS5DO0IgHEqMlOzIVZmZR7bL2wDF7lhb7tQq5Y8MNKvGnN3pRkbhd4hdo6tKmqaRL29eLzj+k7R0xQouXLjApzNn0qRpUxISEnj77Xdo2LDxtfiv/yDSdZ3kxx/nUmYmL3fvTlJcXND9t2bNYufBg0x76SVqVanyN3F5ja7Rv4fyJSZeFRm6bO1a0i5dYtY333Bz+/bk5OTw/rvvctNNN12Tof8wyvvkk6RlZPBC164UNJ0G8+7MmWzcsYNJr75Kw7p1/yYOr9H/Gv2rNMiG0s2gcJoOlTVA9p5MK2BWOgSZ/cyaDqvVc6RLGpV6W2Bo6pgxTHr2Wdbu3En+fPkoX7kyZF4Gt447KTgWr9OpPknNrAW2Ytdqt7b4rsqCLdMoWbW99xrQiLiMCAqiGjWcVtl8L1Lth0rjEo5872pOJ8nx8ZxOS8OVkxPSiK/06sV3Cxfy4PDh9GjZUpqVK97bgPHxoT6VkiKDNCIyCqeAMK5W1gGXqP4wq72smFL19XDMyrTQsnEiXs1pdjso3rCBdjUXKsOFOS07W+fUqSM4ndEkJBT2h1206rp/RvshI0PZakcjrGieIOW7QbJxbBU+EHyazVTJjn2ZasnKsmP+LTJjvkoqM7FvX8b378/6/ftJjI+nYrVqcO4cZGd7Tw4j2HpjxyPHruuTuUoyLaaYh53ICPIoGS6//AgqXCUEzKo8u75d4QaEmWTj0kL1XiZ/fvafPYvr0iWIEiKXeDy88OCDfDtvHn2efJJet92G5vHg8ofPiw0p3qwJls2J4aZuWf+387zYT/zyNF7SkWQF2TFJyRhQCQ+Vplj8bRWmA8LH2vaF6Us9bR2QQxasw0qrfPLkUUAjT54ilqFrr4YM/VcBZPNkLTN3iKSaP1VgWPzmQYAYAgLdrj1ABroMCve1VLOXj2EnUK9UKW+aYXKKj/cfEZwY7/ZlEZm2ReZ+ocKgVmzL/JLtmGHl94zjpWMDJn4ZYpfZ1OwiwkhMUjKQJr7ru6frOqnp6Vx8803iY2KCytl34AD93n+fW2vVYkz//oH+YmHbdrpjbZv0rNiyIjuLH4Pi4x1ekHwlJJtMVUDZru1SlWYFkE2dUbUR5Eosyua0/fu3M3Cg10owcOBX1K3bQSnAVd32Suj0aXlTiONStt6RfWqVZVwWpkx6oJDdmK+RAGSryd1CyDjdbuqWKOFNM2SoIMtdPv/W5OTQsSfrSjLXJzsmYFGciMPCTr8KBwaMhbV/zMpWvzKSFXqlANlcMXOlxW8lWSmcuXSJEyNHUsjl8imovA198OxZBkybRt0KFXhx4EC0zEzT9zPc1AIHosgwuazKqgWOQWJedp8DL/uBKgvfR6aViETo/xkBoQJJak2W1MUi3RN6aJYsrLdxtRM59MSJ/UybVhaAm276mOuuu0/aTQ36U81x5a/+PRSJcshqsWMFhs1pLrKCATGoHWZkMX7DCQyDZGg/nKZL5tRn5GXk57sXGx+PzKPGqjOJ7WcHW1rlKVs1i2waV6O5ZDu7ZWUYm1Qc4sQtm9mNdDsALJLnjP9tADHN6aRYvnzM3rqVLk2b+u+lXb7MdX37MujeexnXty+uhISgPI4eP86Xn31GVlYWCQUK0Ld3b9sKA1maSlB4PKFuf1bPGWRo1mJF7YfZTCEbnOIEYJ6BxFlGJFU72yUbz4cDIXbSVGAoIaEUXbu+gcuVhwoVWl3x2vlKyQAHqiEikhUgtJgP5afDGREXTgunw0HwjChLs6OKDddXVJO7KDdN8lKWn4OANvJKya6SQTYd2F3Hy8Cf8ZzLHWbSjJQiQe+y9yIos2hCArO3baNnSoo/LcvjoXTv3vRv355X+/YlT4ECQTwcP3GCL2bMIDMzEx03vXv3B4tT/GRYP1KArKqOWW8jij/j6oqXgBNx0lSBZzFj2aLRqs3DASgbi0yZ6SILVwhssloTW90T1kHCtyhKrVrjcThiyJ+/fUh0GTvznd1u968DyNfoGv0bqWPt2rw+bx4eh4P7Gjdm0/79PP7BBwDsP3YMl+S8+yb33MP+w4f9/3ft3Bl3Ysx/jedrdPXJ7Y6jVauBwF8Hgq/RNfpfpI5VqjBpxQo0t5se9euz8+hRHvvkEwC2HjxInphQ2dimSxfWbdzo//+ee7oQFZX8X+P5Gl19ioqKoWJFb4i/v1qG/qsAsmEGVC2AIrUGyDTI/lNtxOWL3VPDzGmypalBVl/XXEHR7CLTEqu0HwLF+u9bu1uIWcoWleE0xnZIpqG0o72UW059mmSnJ7htgh8KTRM7iMzUKFNzGyRTkYv/SxpubJcuOB98kPvfe4/733sPgEJJSdzVpAkrt2/no/nzaVS3LqWLFiXK10HX/PIL6Q4Hubm5FL2uPA6Hw9IgIdNiRqrIseOHLtdQK1xfRDuieZDKNCPhGJZ1AtUzV5Gs+r9V8XaHt5X2Nlz+V0KGDLUjE0WlkJ1jyEV3CulRyTLbqiwtEg2yFdnxVQj3vmgL96UZvqKG3BGNVqpxKeu2dmWpHdFv18oRUkerNLva5XCdXfWucU82eUtkxujbb+f5YcNY/ckn9PzkEzRNI39cHPc0asTibdv44LffaNK4MWWKFyfKN6H/9uOPnLmcQ25uLgkJJXA4HKSmyqdplQXIPC/JpgArDbJVU8pEo9PpCMzT4eYeK5LJUtm7VpYWc2XCfBf/1SRAMiShD2XeUlfDYyfc0JZN03YoIlGraVoRYBzQGkgA9gH9dF3/3XdfA54F+gD5gJVAf13Xtwp5NAVGATcAscAxYIUvnwuq8pOS5IJGFPiyNDuTgctpcSyyzLXCuNoR5HaRikgyk3Q4ISPyEcZk4nTGKh8Da0xpRx6KpMI4dqxy4QR+wHQoMCyzH8ucKGUCQzURhwNsxv+SxowCsr//nrd+/JEnfAC5bLFi1K5WjV3HjvHAc88BMGnsWPo89BD4DhBJ8m1QlHVJVReTVSHcN1NN5qrnxavU7UI2G5kZl81K5oKsyM7YsEkqC6Ns0QjWizsZaBJ/RzrvXQ3cn5wcHiCrjhpXAeT4+DB+xiowHC7WUyRIxeq+SsjI3lMIHiMcpaq/yFiyu8hSUaRY1Aq4RUx2zfCq9rWj3bLojBrg+eAD3l2yhAFTp6LrOqWLFKF6pUocSE3loZdeAmD8c8/x+JNPkuuOJTElllzJ+syObutK1mUGic/LvCKMq9QjzbfB3qU6RUz2DcTMZAoeFXqUfUeVW6cMcPlIdjhPpGvScF3MvGg0l6cqw8Su+nl7j4GmaUnAUmAJ0AY4BZQFTgqPPQU8AfQAduIFwr9omlZR1/WLmqZVBn4G3gMGApeAcsCdQFjbcbLPMiJrRBVAlo2/kM13aRnBKMS4Jxs1xvVK0dyV0JVKOEnZ4Tqf8biqs6q0GSr27YIvVVXE3wFQ58Ch0iDLGDFLLnEhYhek2QTI3n+dDO7dm8G9e7Pz2DG27tnDiq1baXfbbQwtX54ChQvTslkzSEoKCaJu9yS9cOxakfi9ZXnIcIm6qzt8VY/1b5IJYdyuZSTSyqhWfmYylWFowJ1Oh7T7mLuWKAZUCz/xfSs8pqqO6v9IqHjxgBYZ1HswxDQzGBbBsx8Up6XBcZs7b4yrHblq/i1SOESoEnaqvmET8YZb+KhINd7CgWyre2Ka7X5ip41kg0D23JVMCHYAsu8aFR/Po/ffz6P338+ec+fYsmcPy3fs4JZmzRjw8MPkL1KElrfcQpYzljSF4UKm2/qzCxcZqfqHON2YhwZAkgiUVX1X5rOsEs4yspOvKDhsTuh2MYSKzAoIVRcLN4b+MoCMF/we03X9fiFtv/HDpz0eCIzTdf0rX9oDeAF0V2AS0BI4o+v6ICGPfcC8CPi4RtfoX08Vy5ShYpkydGjXLlQQXaNrdI2u0TVSUrkSJShXogR3tmsXsjtUcT7tNbpGtikSgHwn8LOmaZ8BzYA/gCnA27qu60AZIAUB7Oq6flnTtEVAQ7wA+ThQUNO0ZrquL4iUWcM86Gc+Qg2y/7Qmj0d+WpNqG6tdTYeZIlX3hNN+yFbZ5ns2NWjhlCoqvGZXQW5XwariQ7XqE8t2mdtBxoioCjWr/Kxs4nYqJ/tt1+/HlJblcfiP3LRruFCxGSmp8pApf2XvBrtdeLXJhmtPkEZZZQq0q/2QkZ2OJ2Pc/7hL6tJuJ+hGOA2yRZGWdDU1yOXK2e6Gllpl8MlSv+tEGJc0lZuaXRu2TFNpvif+b8c8LHO2Ft9TaNDMR+JG8i2tvl84RfafEf3+vMPNVZGo98JZgFSkkolOpyyYc+BqJ95uqnW0BLtTt8im+X8rJbqdsSqTAaq9N/Gqop6eAAAgAElEQVTxLv9R2iHfJz4+9CzyK9EgqyqjGkMSmWqcLCyzwqmmUVEc2FWG/xnMYYciEbVlgUeAN/D6IdcAJvjuTcQLjgFOmN47ARTz/f4CaAXM1zTtJLAKWAB8rOv6KXOBmqb1wevPDKhdLMxpQUcUZ5h6ocdj3x/SaoOdSCpdfrhZ0s7XDCclVaYQc0cOUwVVkeJ9q30A4fK3KstqvKkmlLCFiRUwjzwR2dgRIqpvJivTXL7xv+w7+tKyPIE4nVa4wa4FU8aaVXWs2FaRlfuF+V2R30DVA4DZf/hLOIBsxXgkpKqYKV8HgQWXEUPc41HXzy4YvhpY/0qpdGn77oVut+kIaAi4UIRz2gyneDD+t2v2vVLQZQcgW/mSSJ43xqiqi4rsmIe71ZpQVRWZGFGJfgV2sS7EnLHsWTu2bruI024FZUBZ8q3SM7zfJZwrmpltFWsqfYlV1SKZv0Q+VDLU+6zhspYICPGsMzJCzyKX4ZZIBZDVhK1amUmyUOmqzFgi3JaUP7OosT0mzHnZewzwzhlrdF0f7vt/vaZp5YH+eAGyQbrpPc1I03U9B3hQ07RngOZAfWAI8LSmaTeJm/l8z08GJgNomqabF1HGSiW4p9mYaK2WJZF45Fu1sLlHRIpiwo0ysWPKwJZxlfUIi04su4rZi666RnXs+g+Zy7Eq04oPK/kpy9fYHOCQjQKVptIgWWXsLFGtmLJR0VynK0QoWAkKFUsq1swAVQb0wpGd7yxz4RYnGZlGNgCWfZue3K7gcW0u/EqRplWlZY1jumf0J5fTicv3mGwjil0WI2E7XFeLlKx8kF3O3NBOd1qBMqwQiCrNLqo0/1Z12HDyMlJUqVLFWhRvVaTV85FML1ci+mVs+3/LyrSDYmRo0a4MVclGsXwZEFN8q1xhA7PK0iZjR1U9sSp2qifLV0yT/TbnJ17TJNaJ0GZw+a8uWdSLSACyqqHCVUaBL6zGhKztr4RtK7ILn+xQJMerHQO2mdK283/tnXd8HcW1+L9HvfduWchN7rKNi4wJGAcSahIDDoTwkpAQHjySwPslvBRaEhLyIA9ICC0hlBAeBHhJ6GBCsY0x4N6x5Sbb6r13Xc3vj13J11dX0r3Sla9kn+/ncz97d2Z29szM7tkzZ2ZnIcv+X2Zv01zSpODiVTbGFBtjnjXGfA+YAXRjGcqKcspjjKG+vo4nn/wDK1YsYdIkYepU4bnnHvG3aIqiKKMeYwxNTQ289NJjXHfd58jLE5YuFV544T5/i6aMIbzxRawDprqE5QBH7P8FWEbyF4CNACISBpzFAMavMaZWREqBgRfxxemLTG0DdC+6uti6cydVlZUsmTuXyIiIfnu+FdXVxEVEWB9pGGgSkDtcekuFVVW8vHEj/37uuYSFhAxvGMNdmDuPSH+uVXduhH68x/31rIKC+i7yMBRHniceME89yB44dPo/kWshhuvac3eO/s7pJqx3qNbJ01FeXsVf/vInfvvbX9DlIsvXvnYDn//8l4clmquzdCh4W0X9eZV75HCVyWpvD7zKAwkzlHZ0l4e7a6bH89/VRWlpKQ2NjUTHxZGenk6w/bGXEKf67fbAB+HpIEUPvXXhlX/DIi3NPt7dEIXT/x179lBaVMSS3FyiIyP79SBX1tURExpKaI8O9WS0zh1BQZQ2NPDi5s38e14eESEhnhVoKB5kd+5XD0fcnE/rLqv+RHM34uZJuw9WPHdF6c+73O/Jjh/S6RvWs++tzvRUN3rafvZ+71Q0N3OKq6pqePHFJ3joobtobW0+7vSXXHIdS5de3m+7DFRkb1WKJ88qd9eCs750l9b1trXa+3h9GRYWQlCc5V13O8o+kACDMVCbepDc2VMv4qC8vJTa2noiI6NISEjHdX1xb0TrOd9A95CHM06PHev5qfkd8LGI3Aa8CMwDbgJuBTDGGBH5PdZ0ib3APuB2oAl4HkBErseau/wycBAIA74JzAZ+O5gAaz/4gKCgIAK6u2nv6CArLY2W1lZa29pobW6m4OhR/vjXv1JYWkr2uHHszM9nxfnnc0ZuLgC1tbUUVVSwasMG9hQUEBYSgoiwfOlSEqKimD9lClMyM4kICqKgtJRXP/6Yqro6UuPjCQDqmpqIDg8nOiKCwspKympq6HQ4aO/s5GBZGQ0tLby7ezdfWriQzq4uOh0OWjs6MMZgjCE4KIi4yEguzstjnOuE6t4W8VAjDmZVejn32N0MhMEM46EyRJvSbZjz/jHDoZ9EnsYNhQGEG2hdyK4u2LlzF7/97S9ZufI1OjqOvX+9bVsV0dGJfdJ7Irqz8ekq1nDacCDl7SnOHS9PhrqsMh//EAig2zcF8pCmpiY2bNpEwZEj/Pnpp9m+cycJ8fHExsbS0NhITU0Nt/30p1y5YgXjxo0jPDzcOrC7m+7uboIGeGI6G9THGtraGGMoKiqiqamJzq4uKisr6Wpv554HHmDxkiV85zvf8aoc695/l0Ag0Bja2tvJSkujrb2d1vp6WpqbKSwp4Y/PP8+BI0eYkpXF9vx8lp9zDp+bOZOAgABq6+oorqpi9ZYt7Dp82HIGAF9ZtIjEiAhOz8oiJz2dyKAgjlRV8ermzVTU15MSHU1gQAB1ra1EBQcTGx5OYW0tpfX1dDocdHR1cai6mrrWVlYeOMBlc+bQ6XDQ5XDQ0tmJEcEAwYGBxISFcdGcOWQlJBxfp4NZkAMYXZ5OUhzMIHbeOg+ND/USHeyB74nqDwpyeUG9P8H7E6AHX3hCXP8P8mzr0Z29t0U/72fs3r2Xhx66i3fe+ScdHe0EBFjHrVxZTHx8xnHpnY3QgYzh4UyVGqg6BtOhrmrNndHsnMbdM/zYuY7pzaCw4zudXjkd+iuMm33XNuuhpaWFTz9dz5EjR/nrXx9n586txMTEERsbR1NTIzU1Vdxww09Yvvxq0tMzCQsLp6sLAgMNDofjmA4dRAzXejbGUFtbQkNDA2DpUGO6uP/++8jNnc11113XbzHFWoDCM0TkYuA3WJ7ko1hzjx+yV7Fw/lDI9Rz/oZBddvw8rKXgPgdkAC3AfqyVMJ4d5NxmyaJFOLq6cHR3ExoSwuGjR4mKjCQsNJTw0FDiYmK44aqruOiccwgWoaSkhGdfe429Bw9igPioKNKTkjhjxgwWzphBaEgIxaWlvLFuHfWNjWzOz+dQaSmtbW2kJybypUWLGJ+cTHltLd3GEB8VRUNLCw0tLYxPTiY9IcGalxgcTFJMDClxcTzy+uvkFxUREhREcFAQ4SEhSGAgAnQ6HPztgw8orqri+5deyqyJE8keN470xETGJScTFxXFnqIissePJyoiYnBrcSAt6YHSAe+UwkgYx56Eedpp7WMgu2OoroB+cOch9LSjbozB4RCWLJnJvHmLePvtV0hMTOHHP/5vcnJmMmnS1P4GP/rk72lYfwxFLw6knNyFDbff119Yn3Yf4GlmjGHrtm0EBwcza+ZMLJV1jNLSUnbv2cORwkK279zJJ+vXU15ZSV1dHbmzZ5OclMTXv/Y1LrrgAiIjI3uPW79hAw89+ihr162jpqaGvIULSUxM5NMNG6ioqGB8Zibp6enExcaSmpLCfffeS0xMTF85gY6ODv75j3/w0Sef8N6qVdTV1REbG0twUBDJSUkIsGDePGpbWsjNzeWmm27CGCNuM3NCRMySvDy6HQ46OzoIDwujwNahocHBRIaHExURwfWXXcYlZ59NaEAAZeXlPLdyJbv27cMAcRERpCckkJeTQ152NmEhIZRVVfHaxo3UNzay5dAhDlZU0NzWRlpsLJfMnUt2fDwVjY10ORwkREbS2NZGfWsrmfHxZMTF2XO7g0iMjCQtNpbHVq3iM/vz60GBgYQHBxMQGIiI0Olw8M+NGzlUUcGNX/wis7OyyE5LIz0+nozkZBKiothbVsb45GRiIiIGnlPszngezKDu0aFBx3u63M2fdP3vbt8VT2xKd0VwDu8Jc+s9HEyReCLoUBX2IAVwNqz6ey65xvXo0OXLF5GZOYEtW9YREBDIj350P9nZM5kwYfqAzzZP22o4utPTfkJ/Yf11enq23oa5k8OjZ6cT2+3Pd8/KndurQ3vqoby8nN27d1FQcIRdu3awYcMnlJaW0NBQz/Tps0lISOYrX7mS88//EpGRUb3Hbd26haeffpD169dQU1PF7NkLSUpKZfv29VRUlJKRkUVychqxsfEkJCRx++33ERsb77acnZ2drFz5Cp98spYPP3yfqqpK4uMTCAoKJCUlBYD5p59OY1MTOTk53HLLLW51qFcGsj8REWOqqz2/yge7yzzNwxc4XYkOh4OP9uxhy7597Coo4EhFBWXV1RRXVVHX2EhWWhq1jY3MnzaNCZmZJMTGctbChSxdsIC4mBg1kPtJD2PHQF6//mOuvfYqmpub+eY3/52//OWPvPrqWt599y0ef/wBQkPD+dWvHmHZsgtPSQO5tPQINTXVhIeHMG3aDEJCAiguLqKw8CgZGWk0NjZQVVVOe3s7wcHBJMbHkpaWRnZ2dp/COBwOiouL2bxpE0XFxbz7wQfs2LWL7u5uIiMjiYmO5szFi4mKiuLpZ5+luaWFObNnk52VxYxp0zgjL49x48eTkJBAbGysR3XU0NDAR+vWUVdfz5zcXLJPO42jR49SXlHBgYMHufXOO7ni8st5+MEHASgoKGDtunU0NTVRXlHBWytXEh4WxvJLLuGMvDwWL1pkPYRcG8k2sEXEYwPZ1Ne7t+acLxh3r5C7Sz9QHkPxSrnSz8XW3d3NuoMH2XzoELsKCzlSXU1ZXR3FNTXUNTeTmZREXVMTcydOZFJmJokxMZwxezbLFi4kwVWHghrI7oQb5Qby9u2buP76K6ivr+Xqq2/kuece5S9/eZ+NGz/iySfvJSgomB/+8PcsW7b8lDSQy8uLqKws79WhoaGBVFSUcOTIYVJSUmlpaaaiopT29naCgoJIjI8lNTWViRMn9pG/u7ubkpISNm/eTGFREatWrWLjpk0EBAQQGhpKXFwceXmLiYtL4JlnnqKhoYHc3DlkZp7GtGkzyMs7g/T0LGJj44iKiuu3np3D6+oa2bx5HXV11UydOpvTTptMSclRqqrKKSw8xP3338bSpRdw331PAVBefpSPP15Ne3szNTUVvP/+SgIChC996TIWL17MWWediYj0vTfskYb+dOjYMpDLy4dnIDun8aUi72EwbTZQnFNYQ1sbn2zdSlFlJVW1tbz2/vvszM9n2qRJJCcmEhAQQEhoKBIQQEx0NBlpacyYOpU5c+YwY9o0xJ4L2V/+nn4K0lf9A2f6sze9DXfF2x5wfwx1zuhgYd3d3Xz22S42b97MP/7xPFOnzuLiiy/j61+/iIyMLN5441OioqIxxvDhh6v4/vev5Cc/+R9WrLimT17eKvKR6OiA+8u6o6OdLVs+xJhOZs/O4+23/5emplry8pYREBBIVVUZra0NJCQkEx8fR0HBXsrKiqmsLOXAgb0cPVpAc3MTqanptLa2EBERQXx8PPn5e5g0aQo7dmzjtNOyGT8+i7CwUDo7O6mtraGgoICsrCyam5tpbW3FGENnZyfV1dUkJCSwYP58srOzmTFjBt++5hqCg4PZuW0bTU1NfLB6NY2NjVyxYgUL5s/vHZ71qNBeVKwxpvdrj2vee495c+fy8GOP8cCDD3L+uecSHR1NSnIys2bM4PLlyy05BmpQe4qBVwZyj5PBneXhqdHsGuep0eWKp4bWEHplTR0dfLJzJ0fLy6mur+eNdevYtm8fOaedRmpSEgEihIRaH2/t1aFTppA7fTqzpk61dKin1giW3hipvoG7MNf4AYfLPW0X57CBrvOhtJu972743VP/lTGGvXt3sX37Ft544yXS0sazYsW3+eY3v0BCQgovvbSJmJg4jDFs3LiOH/7wMm644S5WrLjBoyL7woHgCYNVlTEdbN26lq6uNmbPzuPdd1+ktracvLxlhIWFUFlZSmtrI3FxCSQnJ7F//x4nHZrP0aOHaGysJyMjk7a2VoKCgkhNTWP37p1MmZLDzp07yMgYx4QJEwgNtXRoXV0tBQUFZGZm0traSmtrK93d3b06ND4+ntNPn8+ECROYNm0a//Zv3yY8PJxdu3bS1NTEmjWrqKmpY/nyy1m0aDEBAQFeO248reNJkyxV98wzb5OXdzZ//euj/OlPv+Wss84jJiaGlJQUcnKms2LFFQQGBh7Xwehzn9hTxE4OA7m42DsD2ZOw/vYHw5uu/UDdfQ+Pa21tZcuOHdQ2NtLd3U1HRwcmIID6hgaKiotZvXYta9au5eWXXmL5V77S51yeeDr7C/MFnhq6nqbzFRUVFaxbt44VKy5zG19WVkN8vDWM01M3R48e4cCB/Zx55lmIWJ0RZ6PKXR0+++wT/Od/HpvrdOaZn2fy5Gm8++7rdHS0c+mlV3P77Q/0xm/c+Ck33LCcVasOEhFxbCh/KG020h2duroaDh3aw86dn/DSS38mLi6B0NBQ1q9fQ1bWJM4++4vs2LGR4OBgUlPTiYyMZs+eHQQFBTJt2mwyMjJJS0tj8uSpTJw4gays0wgMDCQw0LB27RpaW1tZtmwpERERdHd3ExAQ0Oc6aWtrY9OmTSQmJhIeHk6gGIKDg0lOTu59eW7E8aCixTbKvrZiBZ9s2MDiRYu49ZZbyJ09230eAzW4PVToMwPZnTE8kCvPVZ7RokP7SdfW3s7W3bupamjAGEOHwwFAfWMjReXlfLR+Pe99+CHPPfooX7/ySs9lc7ePZ53twXDb8fdFj9hd2BCH96qrq/nwo4+47Ior+qYFiooqSE5OPu60R44UsXfvZyxevLT3/uzu7t94Bnjllee5+eare/fnzMlj1qwFrFr1Ju3tbZx33nLuvPOx3uPy87dz3XWf5803DxEdHTssPejpsZ48v9xdTs3NtRw8uIcdO9bz978/QXh4JJGRUXzyySrS0zO54ILlbNnyqW3sphMTE8PevbsxpptZs3LJyMgkPT2NyZNzmDBhIpMmZRMYGIgxhnXrPqKlpZGzzz6bqKgouru7EZE+08va29vZtGkT8fHxRERE2B7XIOLjkwnp56VZTzsdvvDU99BjIH/5y19j+/YNzJgxhx/+8HZyc0/vtw/bx3Pco+MirJcZTw4D+Yi9YIYvan04ytx1f6QNZDfHGmM4cPgwGzZs4NP163n5lVf4+tev5pe/vItQ+yHsjKfFHY4SGY5xGxRkvQhVXFxMVFQUHR0ddHd3k5SURHd3NzU1Ndx77z08+eQTACxatIif/vRWLrtseW8eU6dO4/bbf05ycgr19XVs2bKZhQvzuOiii+no6Dj24pQT7777Ly655HwAwsPDiYiIoKGhgZCQECIjo8jJmUp1dTVlZaUYY0hLS6esrJTx409j797dOBwOUlIs4y4qKpq0tHSqqqpYu/Z9pk+fjcPhYObMOYwbdxrr1q2iuLiQQ4fyCQgIpKuri6ioaHJzF/DTn95Dbu4CwGrbmpo6LrhgJjfd9Auuuurf+8jtii+MYG+V+5EjBzn77MkAzJ27iNzc+Vx44WWcdda5BAeL22P6O89Ato2nsvXgk9GEEXqalpaWsm7dOtra25mek8P8efMGPmYgPZZhvXzkcwN5qE4GTxmCR9hj/etuv58wYwwHCwrYtGMHH2/YwCtvvsnlX/4yd99xBxH2g7Pf/Nzhy979EN2ZzfX1FJWUEBkRQZfDQVdXF8m2Dq2tq+ORJ5/kgUcfBWD2zJnc/+tf88VLL+09/rSsLO656y6Sk5JoaGxk8/btzJs7l+Vf/jLtDsdx9dLTAfjoo49YuvQsAMLCwoiMjKKhoZ7g4BAiIyPJyZlGbW0NZWWlOBwOUlPTKS8vJStrAvn5u+nq6iIpKYVJk6YTGRlFSko69fX1fPjhSqZNy8XhcDBlyiyysiaxfv1qSkqOUlCQb3spu4iMjGL69HncfPNvmD17CXBsmbcrr5zH1VffzNVX3zykZvCmST0dBXXeLy8/yqJFpwEwd+4CcnPnc8kly/n85893q0MHymtAvefp6IBNf507T9SUuzBP1Ian6qS2toL169fS1tbKlCk5zJ+/aEBTKijIjee4Z6sGspu4/sIGYpQYyMYYXn71VR5+7DH25udz+rx5nHvuuSzOyyPvjDP7Fd+fBnJ3dzfPPfcshw8XMHnyFCoqKti/fx+trS20tLRQWVnBoUMHqampYdy4cTQ3NxNirzBSXV1NQEAA8fHxtLW1U1tbQ0dHByJCSEgI7e3t9FzDOTlTmT07l4qKcqKjY5g9O5fXX3+VQ4cOIiJMmjSZlJRUpkzJAaCysoKWlhZWrnyrV9Yf/OCH3H33b1mzZhV1dbVER8eQnp5BUlIaxhgqKspJTU0jKSkZh8NBVxccOnSA4uJCmpubKCkpIiAgiCVLzqG8vJSAgAA2b/6U8vJSkpLSmDp1FhMmTCExMZmYmFiMCaS5uYnS0iKKi4+wbdt6nn32UZqaGjn77Av45S8fITnZdWlx37bbYO3XQ2dnJyUlh9i//zPy83fxz3/+lcOHD/Dooy9x8cVf9caZN+C5T2YDud94NZCP7Z8AA/m1t9/mkSefZPvu3Zw+Zw7nnXMOC08/nbOWLBn02H4ZQQPZGMPzL77I/oMHmZydTVV1NfsOHKC5pYXW1lYqqqo4WFBAVXU149LTaWlpITg4mMDAQKpsHRoXG0tnZyc1tbW09+jQ4GDa7ZWWACZPmsS8OXOoqKwkKjKS3Nxc3lq5kvx9+wCYNGkSaWlp5EyZAhJAZWUlzc3NvP32MR36rW9dy8MPP86HH66mpqaaiIho0tIySE1Nw+EQKirKiI9PJTk5pVeHHjlyiKNHj9Lc3Eh5eQnd3XDGGZ+noqKUwMBAtm7dQFlZEYmJKUycOIsJE6YSH59EdHQcgYGBtLa2UFZWSGHhEXbv3shLLz1GQ0MNeXnncdttj5KamjmkZvC1gdzZ2UlpaQEHDuwhP38Xb7zxAnv37uKhh57hiiu+eVx6b02IU8VA9tbcOnUM5IMHjw/09EEzXGPYXZg31oAPlfuf/vQn7nvgAe644+dcccUVboc+fP1s7+9+WrNmNRkZ46ylrhoaaGpqZObMWQQHB1NbW8v+/fvYunULb7/9Jm+//SY33vgDyspKSU1NY8qUHKKjowkPDycpKZmJEycxfvz4ged/DkH27u5uGhsbCQkJIT9/LxUV5Rw4sI+AgACSkpKJjIykqamVqqpKioqOsnz5V5k3b75HeXtyoxcUHOCRR+4hJiaOiIhIurq6CQy0vMdbt35Kfv5OmpoaSU/PJD19PDNmzOXSS/+NadPmDbEWjuGNcg8MNBQWHubDD99l377dVFaWU1NTRXNzI+3tbdTWVlNdXUl6eiY5OTOYMWMW8+Yt5OyzP09sbFy/5xzKqK07hm30DuWmGIlepbdPh4EuvCzrG00+MZDdncsXxjB4Zjl4qhOHeoE58dcXXuDnd93FL+64gyu/+lXC3K3Z5osepwd5rP34Y1KSk0mIj6ehoYGGxkZmTJtGaGAg9Q0N7DtwgC07dvDu6tX84/XXueGaa6iqqSE1OZmcSZOI6dGhCQlMzM4mKzOTwMDAvicaxjPNGENtfSNhYWHs3buXkpJy9u/fh4gQH59EVFQUbW1tVFVVcvRoIRde+CUWLTrD40tssBkhxcVHePTRu4mMjCYiIqp3ya/Ozi527drIvn3baWqqJzU1k5SUTKZNm8uFF36dWbMW9lPrg1fFUMIDAw3FxUdZu/Zd9u3bRVVVOTU1lTQ3N9LW1kZ9fQ1VVRWkp48jJ2c606bNYsECS4empCT0ydut8esL+8bTAg1wHw00fWikzDJnPLl0B52XD4O+6Dy2DWRnfOHN8CRuqIp8sPQDhDlfjI8//jh33nk7d975c5KSkrn44osJDY3sc4yvOXDgAB9//BGxsXFMnz6DKVOm9H4mGCA725rwX1RUiMPhIDg4mEmTJjNnzlxmz55DamoqX/3qlX3mPQ0FX9stnqQbaq/3D3/4Dffee1vvflhYONdf/18EBgYxefJ0Fiw4k+Tk1H47Bq75u7tkOjs7WbXqLTZsWEtFRSnR0TFMnjyD889fTkbGeLfHrFv3HmvW/IvCwiOUlBSyb99nREREcsYZS5k/fyHJyakkJiYTFRVNWFgYSUkJpKWlHzefdzi3Tg8jsvKIL4490RfZUIbUh2MgD5S3r41hb6wMX/SoBjGQn332Wf7fj37Ez++8k5TkZC688EJrSbjBGEobOYUXHDnCmnXriI2JYXpODlOnTCGgZz18YEJWFmFhYRwpLKTbGIICA5k8YQJzZs5k7syZpCQlceXy5Z4bwO7iPHx+uRpAgxmynvSzvE3fw7PPPsg99/zncWHXX38nAQGBZGdP5fTTzyIpKW1YzhXoYt26d9i4cTWVlaVEREQxefJ0zj33K2RmZvemcq6yjRtXs3r12xQXWzr04ME9hIaGsWjRWSxYkEdSUipJScnExsYQGhpKQkIiqanphIcH98nLrbfTXYUMVln9hTnjiefE2x6DF2lGbG4+eOfKhpPMQO6ZYuFLfGkgexPmQZzzhfTyyy/z+ON/or29jTVr1vSG/+53v+emm6z5Vb7oSPbHd77zTZ577vilqv/2t//jqaeeYPPmjWRkjCM+Ph6Hw0FiYhIJCQmEh0cwYcJEpk+fwZIlZxIdHT2kc3tbruEYvL7MY9++fSxbNpWgoCBWrLiG2tpqrrvuhyxc+LnBMwfy83dRUlLImWee22ekoK2tjYqKUjZuXMuDD95FUlIK5557MRkZ42lubmTHjs289dY/+PTTw8TFHb9WpDWX2rq2xo0bT0xMLBkZmURGRnHeeRdy9dXfOS69M8MJ83gIcCBG2uAdzjEn0uMMQzeQhyqLM4M9KH3Re/L0XB7y5ptv8sijj9LS2nqcDv31r37Fbbfeau14awR7kf7mn/2MP8wyfRAAACAASURBVDz++HFhf3/ySZ58/nk2bN1KWnIyiQkJOBwOkhISiI+LIyI8nImnncb0KVM4c9EiYnvWzvbWUPHQmePOMHb97+2gw3AGKYqLi/jiF8cDcOml19LQUMuVV95IXt65fRO7oaBgL4WFB8nLO5fQ0ONHCjo62qmsLGX79o95/PG7iImJ58wzzyczcyItLU3k52/lzTdf4N13D5CWlton75ycIBwOBxkZ44mOjiUtLYOYmBjOOutcvvUta+UMb6cDQD8Gsi8M4+Hij6lGQ8Gbh/cgKwGpgTwGDOSbb76Jhx9+iGeeeZbMzEyio6MZN24cCQkJxxlOI3l/GGNYs2Y1q1d/QG1tLQB3330PR44c5r777iU4OJiQkFBKSoppbW0lMzOTQ4cO8tFHawE477wv8uab7wzp3GPVQG5r62Llyn/y7LOPsW3beqKioomJiSMlJYOsrIlMmTKD7OzJpKePp7q6gm9960K3+dxzz5+56qrv9u4///zj/Oxn1/fuL1t2EXPnLqCqqoKKilJKSgo5evQQ9fV1rF27j6ioaKqqKggI6Ka9vZ2amiqefvoRPv10Lc3NTX3O97Of/YpbbrldDWQ1kPtnjBnIP7v1Vu65916eeuIJJkyYQFRUFOPGjSMxMfH4zucIGsgAaz/5hPfWrKG6poZuh4Pf3HorldXV3HX//QQFBREeFkZxaSktra1kZmRQcPQoaz7+GIAFc+ey8R1bh54iBnJHRzcffPAy//d/f2TbtnWEh0cRHW3p0IyMCUyaNIOsrCmkpY2nvb2Va645q28mwI9//CBXX31T7/7rrz/L7bd/s3d/yZIvMmfOYmpqKqmqKqWsrJDi4gLq6mp47bUdpKamUlVVZi991kFNTRUvvvgnPvlkFU1NjX3O9x//8SN+8Yv71ED2B6esgVxcPLSDR2pIYSTi6KukbrvtVp5//jm6u7u5+OJLmD9/AbNnz2b69OluvbIjfZ848/TTT3LDDd89Luyyy1ZQXFxEamoakydPITd3Dl/4wvkkOQ0nesNot1M8Sdfe3k59fS0NDXWUlBRx5MhB9u//jMOHD1JWVkxTUyPV1RW9LyhGRkYRH59IUlIK3/veTznnnPMpLDzM4cMH2LZtA2vXvk9lZRnNzY00NTXR1dXZuyxPREQksbHxpKamU1h4mPr6WlJTMwgMDCQ4OJikpGQSE5NJSUklNjaeqKhoYmPjSEiIIy0tg2nTZvTOyxzxaRS+6Il4m264x/jq+OGee6gv6bljOA81Xz44R+jh+qtf/5onn3qKzs5OLrn4YhYuOKZDj/ui4UhMhRkk3UuvvMKV1157XNjlX/oSxaWlpCYnM3niRHJnzOCCc88lxV4urRcfOngGWgp0KNMjvDWGBzeWO2hoqKWxsY7y8iIKCw9x8OBnHDlygPLyIpqbG6mtraSlpYng4BBbDyaSkJDMt799C0uXXkJZWSFHjuxn9+5NfPLJe1RWltLc3EhLS2OvDg0MDCI8PJKYmFhSUjIoKyuipqaS1NRxBAUFEhgYREJCMklJySQnpxIXl0BUVDTx8XG9nuQZM2b0rprkzUxMr6dYeBM2WvC3Ae3MSTXForz8+MDRotQ9TeulvK4Ka+fOnXzwwfts2bKFXbt2kp+fT0REBJmZmVx22eVkZ08gNjaW3NxcoqOjqa6uprOzk/T0dKKi4hARCgsLAYiNjWXfvnymTMmhvb2dHTu209RkGVtxcfHMmTOXzMxMj+cMt7a2cv311/Lii3/j7rvvYfr0mSxefAaxsbG4+4b6UPDFPT9SxravjnU4HFRXV1FYeJiCggMUFOznrbdeZt++z0hNTWfixBwmTJjMaadNJCMjg7S0DDIzs4iJiUVEcDgctLQ021+bqyAqKoYFC/KOa0dfO/88jR+WoTwSvRlfH3uizzGUdZDr6z3P/0ToV18fOwifffYZ773/Pps3b2bX7t3s3buXsLAwxmVkcOlXvsLkSZOIjYlh9qxZxMXFUV1dTXtHB+lpacTHxyMiFBUV0d3dTXx8PHvz85k8aRKO9na27dhBY1MTTU1NxMbGMjc3l/Fe6ND29nZuuuUWHn/qKe664w5yZ83izMWLrc+Me7qW9xBuUG+/BuouzBMbzRs7bji3iMPhoLa2muLiwxw5cpAjR/bz7ruvkp+/g6SkVLKzc8jOnkJW1kRSU8eRnJxORkYWCQlxvTq0tbWFpqYGqqsrCA+PJC/vjD7t6ImDwNtBaI8dDL42lE9Vg/qkMpC9Ue7u8EVFDyUPH5zXnRLr7u6mqqqK/Px8XnrpRWpra6mrq2Pjxg10dXWRkJBAcHAwJSUlOBwO0tLSqKurIyQkhNraWnJycjh06BBBQUGcfvrpxMTEEhkZSWVlJdu3b6O9vZ3U1DQSEhJITExi3Djrgw5RUdFERUURGRlJS0sLNTXVNDQ0sHHjBlatep/BrqnAwEBaWkbuhhype91fOqS7u5u6uloSEhK9Om64l91Ijah5vCLFiezNjGReI8VQPjXd3DyyMo0m75AHGGOoqqpi/4EDvPDSS9T06NDNm2lvbyfRnsZWUlpqORvS0qirryc0NJTq6mqm5uRwqKCAwMBA5s2dS3xcHJGRkVRXV7Ntxw6am5tJT7N0aFJiIpnjxpGWlkZM9PE6tLqmhoaGBrZs3cq/3nsPY8ygetTYHzrxBE9fjBqqg/xETWsbKtba8tUkJno3iumLQY+RGGj263S14R57ohmoIk+qZd7UQB4yDQ0NFBcX985hNsYgInR2Hhuad6arC6qrq6moqKCurpaKigpKSoopLy+jqamp19scGRlJQkIiMTExtLe302Kvy1lfX0dZWSk1NTWEhYURHR1DUlIScXHxLF16DitWuP/qki842QzkoaIG8jAYC42tBvIJpbGxkaKiIjIyMoiNje3VoV32teJupKympoaKigpqamuprKykuKSE0jJbhzY309TURHh4OIkJCcTExNDR0XFMhzY0UFpWRnV1taVDo6JISkoiMSmJJWecwdVXX93nfP1xqhvIQ0UN5BE49kRzyhjI7e3+FsM9o+Sh4IvlU0YLY+n+O1kZ6cvaJx/0GIyT+UKyXy7zykAerTr0RDBK9PRwGUk9f6r1MX2Nv3xwzvhcr57MDTmIDh1TBrLDMTZkVRRFGWl6ln31xkBWHaooimIxmA4dU13qwMDhf2RCURTlJMPj9S9VhyqKovTBrQ4dMx7kE42IbDLGLPC3HL5GyzX2OFnLpuU6uTlZ60HLNfY4Wcum5RpZTp5Jq4qiKIqiKIriA9RAVhRFURRFURQn1EDun8f9LcAIoeUae5ysZdNyndycrPWg5Rp7nKxl03KNIDoHWVEURVEURVGcUA+yoiiKoiiKojihBrKiKIqiKIqiOHFSGsgicraIvCYixSJiROQap7hgEblXRHaISLOIlIrI8yKS5ZJHqIg8JCJVdrrXRCTTKT7bztvd74ITVR47PsqWtUhEWkUkX0T+n5flKRWR21yOucM+3+Uu4c+JyIcjXTYftpVfyuamrOki8oyIVIpIm4h8JiJLneJFRH4hIiV2O64WkZlO8Z+KyJ9d8vyGXY4fuYTfLSJHR6IcvkBEbhSRArseNovIWf6WaSCG23Z2mv70xQ0nvkQDozpUdehoKJubsqoOtVEdOvI69KQ0kIEoYBdwM9DqEhcBnA7cbW+/AowHVoqI84dTfg9cDlwFnAXEAG+ISKBLfhcA6S6/D3xZGAYuD8ADwMXAN4DpWGW7R0S+4ZRmsPKsApa55HsOcLSf8FVDK0ofTkRb+atsvYhIHLAOEKy2mg78AKhwSvZj4Ed2+EI77l0RibbjP+hH3hNWDl8gIlcCDwK/AeYBHwNvuz60Rws+arserqOvvnhmJOUfIqpDVYeOhrL1ojr0GKpDT5AONcac1D+gCbhmkDQzAAPMtvdjgQ7gaqc044Fu4Hx7P9s+ZoG/y4OlHH/pErYGeNiL8lwHtACh9n6ovX8DsNvpuBy73EvHUFuNhrL9Blg3QLwApcBtTmHhQCNwvb3/BVu+8U5pDtnlqAcC7bBIu06+dSKvTS/qYj3wZ5ew/cB/+1u2kWo7O8wAK/xdniGUX3Xo2NEzqkNVh/pdvpFoOzvshOrQk9WD7C0x9rbW3s4HgoF/9SQwxhQCe4AlJ1Y0j/gI+JKIjAcQkSXAXGClHe9JeVZhXZB59v5ioBr4KzBZRFLt8GVYXopPR6owgzCUthoNZVsOrBeRF0WkQkS2icj3RaTn278TgDSXcrQCHzqVYx2W0l4GICKnAePscjRh1QXA57DqZNR5P0QkBEvOf7lE/YvReW+Bb9ruZEd16OjQM56gOlR16IlmTOrQU95Ati+2+4HXjTFFdnAa4ACqXJKX23HOfCgiTS6/2JGVug83AduAoyLSieX5+Ikx5g07ftDyGGMOAEUcG2ZaBqw2xrQAm7GGm3rCPzbGtI9MUfpnqG01Sso2EbgRy1txPtbw2D3A95zK0SO3M87laAE2cHw5Ntjha1zCDxpjRuP8uSQgkAHKOQoZdts58awbfTF7hOQ+IagOHVV6ZkBUh6oO9RNjUoee0gayPQfrf4E44NueHILl4nfm61ieBudfow/F9IQfAGcCX8bqWf4/4D4Z/EUX1/I4zzNbBqy2/692Cj8H388PHBQftJW/yxYAbDHG/MwYs9UY8zTwB44piB5cr6+hlGMZfmgjLxmsnKMJX7UdwH/RV1/k+17kE4Pq0FGnZ/pFdWgvqkNPPGNSh56yBrKtLP4G5ALnGmOqnaLLsHpoSS6HpdC3h1NkjDng8useMcFdEJFw4L+BHxtjXjfG7DDGPAy8ANxiJ/O0PB8Ai0UkHmsobbUdvgY4R0SmA6mc4GEnH7WVv8tWCnzmErYH6HmposzeuvaW3ZXjNBHJxnoYrbbD1wBnikgC1ss4o25o0KYKy1s1WDlHE75qO4AyN/qiw7finhhUhwKjT8+4RXWo6lA/MyZ16ClpIItIMPAilrJYZowpc0myGejEmtDfc0wm1puXH58oOT0k2P45XMIdHGtfT8uzCuvlix8BlcaYg3b4R1hDJFdjzdPa6Nsi9I8P28rfZVsHTHUJywGO2P8LsJSEcznCsN4ody7HJ0Ab8F0sZfIxgDEmH8vr9kMgiFGq3G1Fthmnctp8gdF3b/Xgq7Y7aVAdOmr1TB9Uh6oOHQWMTR16ot4GPJE/rGVvelzvLcCd9v8srAv/FaAYq5eY5vQLd8rjMTvNeVjLqKzCmqPW85ZrNpbr/3yXPI7LZ6TLY8evxnoL+xysye7XYL0o8QNPy+OU7hDQADzrEv6pHf7WWGsrf5XN5RwLsR5CtwGTga9ivTX9Pac0P7HluAyYheXBKgGiXfL6wE631iX8BTv8M3/fg4PUxZVYL8p8F+sh/CDWg/U0f8s2km1n64ueh7LzL8rfZXRTZtWhqkP9XraRuA/tdKpDT6y8Y1KH+r3iRqgxzrEr0vX3F44pZXe/a5zyCAMewnpTtwV4neOXhhkon++eqPLY8WnA07aCawX2Yg0NiqflcUr3pJ33tS7h99jht4y1tvJX2dyc/2JgO5b3Yh/Wi0HObSTAL7CGo9qwhvxmucnnDlveX7mE32CHP+zve9CDurgROAy0Y3lDzva3TCPddgNcy7/2d/nclHfE78tB8lEdOorayl9lG4n70E6nOvTEyzvmdKjYJ1UURVEURVEUhVN0DrKiKIqiKIqi9IcayIqiKIqiKIrihBrIiqIoiqIoiuKEGsiKoiiKoiiK4oQayIqiKIqiKIrihBrIiqIoiqIoiuKEGsiKoiiKoiiK4oQayIqiKIqiKIrihBrIiqIoiqIoiuKEGsiKoiiKoiiK4kSQvwVQxiYiEgBMAU4HwvwsjqIoiqKMZvYBW4wxrf4WRPEMMcb4WwZlDCAiccAimPoO1ABtQBQQi9XPEjtlAMcGJsRlGzBAGnf73qRxd07XuKGkCehHfte0/aUR+i+HuzQDlXm4aQYvR4D9NzDQjgk4fhsY6D7MNe1AcQPl7cnxvspnoLy9Ketw5fBVnfeECbZOdzisbXf3sa27MNe07sI8iesJHyjvocjhrYzeyDHcfAY7fph13vN0Ni7/AboHiHO37fYgjbu8+8sHl7huD+TwJM1gZe0vzVDP0V9Zncs5FDlc67wKKMHSthlAJvBPmAQUGDXERiVqICt9EJFAYDrk7oRaoAEIBOKAePsX7nJUj5EVaP9w2ga47LtL4y7tUNJ4crxz2pFOcyLO4Wkad+1wbCsSQJA9pjTQdrhpTsQ5TmU5Anoey11dfbfuwrxJM9zjVQ6v0vQ8n7s5Zmy52w4U118a2xQ/zvjzJB93x3l6vKOf43wt60DHjbSs7uKcaccylIvsXy3WEzUTeB+WAZuMMU1uDlVOMDrFQkFEkoA8mPKGdbvGANFYKiLb3tfp6oqiKIoyHEKBCfYPLCO8DigEFsGqEmCcCOnAeOAVmAbsUy/ziUcN5FMMEQkCcmH25mPe4USsPmwc1m0b6kcJFUVRFOXUQDg2Lptrh3UCpVge5hmwtxqYIkImsBrOB9YbY+r9IO4phRrIpwAiMg0m7bH6qTH2D2AilqdYvcOKoiiKMhoIBrLsXw/1WAbzGfBOMZAhQhrWm/IvGiN9c1GGi1pGpwZR1kt1HUAI1vzhcKzFJ/QSUBRFUZTRTCTWK/GxWG6tLiyjudmfQp3kqAf5FMAYswl7CQMRSYMJpdZKFAexBnNiODbIox5lRVEURfEXBmvyYyGW17gYyyBOx3qZbzfMAvZUGOPuPUDFR6iBfIphjCnj2Hpf9pzkhlkQvxUOYd2WwRybkxyPLnOsKIqiKCNDJ8evbFGN5SnOBD6FLwAbdc7xiUcN5FMcY0wXsI3jjeZEqM6DKW/CYaypGVEc8zLHol5mRVEURfEOg/V6fI8xXGyH93iH98BUYH+5rlrhd3QdZGVQ7HWRp0HuLutFv3osA7nHy+y8xu5AH+9wXofXkw90uK7b68mHQgaSYyhpnD++4SrHQB/oGG1yBDL4h0ICej824bp1/kDFcNOciHMMRw5fpfGXHL3rILt+oMLhOBbmuvU0TX9xnqQZLXL4sjwjfI6BPn7h7kMhrh+yGCjNQB+9GCifgT6sMdgHPk5UGtcyMkCa/vIZ6IMj3tZHN9aHQgqxnqC67vHYQA1kZUjYX9ZbCMwHzgQ2+1eiMcV8tL68QevLe7TOvEPryzu0vrzDYNnEvwEO65rGYwM1kJVhIyKbjDEL/C3HWEHryzu0vrxH68w7tL68Q+vLe7TOxh46kVRRFEVRFEVRnFADWVEURVEURVGcUANZ8QWP+1uAMYbWl3dofXmP1pl3aH15h9aX92idjTF0DrKiKIqiKIqiOKEeZEVRFEVRFEVxQg1kRVEURVEURXFCDWTFp4jIIhF5V0SaRKRRRD4WkSR/yzWaEYuVImJEZIW/5RmNiEiCiDwkIntFpFVECkXkMeurj0oPInKjiBSISJuIbBaRs/wt02hFRH4mIhtFpEFEKkXkdRGZ5W+5xgoicqutsx72tyyjFRFJF5Fn7OurTUQ+E5Gl/pZL8Qw1kBWfISJ5wL+A1cBirMXk78P61LzSPz8CHP4WYpSTAYwDfgzMBv4NOBv4mz+FGk2IyJXAg1gfI5gHfAy8LSJZfhVs9HIO8CiwBPg80AW8JyIJ/hRqLCAii4HrgB3+lmW0Yn9Max3WJ0wvBqYDPwAq/CmX4jn6kp7iM0TkY2CVMeY2f8syVhCRBcDLWJ2JcuCrxpi/+1eqsYGIXAS8AcQZYxr8LY+/EZH1wA5jzHVOYfuBvxtjfuY/ycYGIhIF1APLjTGv+1ue0YqIxAJbsAzkO4Fdxpjv+1eq0YeI/AZYaow509+yKENDPciKTxCRFOAMoFREPhKRchFZKyLn+lu20YqIRGN5QK83xqhXwXtigHagxd+C+BsRCcHqZP3LJepfWB5SZXCisZ6Jtf4WZJTzOFan6wN/CzLKWQ6sF5EXRaRCRLaJyPdFRPwtmOIZaiArvmKivf0l8BRwAbAWeEdE5vhNqtHNH4GVxpi3/C3IWMMevvwV8GdjTJe/5RkFJAGBWKMQzpQDaSdenDHJg8A24BN/CzJaEZHrgMnAHf6WZQwwEbgROAScj3V93QN8z59CKZ6jBrIyICLya/tFjIF+53DsWvqTMeYpY8xWY8ytwAbgBr8V4ATjaX2JyDeAOcB/+Vtmf+LF9eV8TCTwOlCMNSdZOYbrnDlxE6a4ICIPAJ8DLjfG6PsAbhCRqVjz2682xnT4W54xQACwxRjzM/t5+DTwB9RAHjME+VsAZdTze+B/B0lzFEi1/3/mErcHOJVeEvK0vq4BZgBNLiNuL4rIJ8aYz42MeKMOT+sL6J0n2uNxv8QY0zZSgo0xqrBe9HT1FqfQ16usOCEivwO+BiwzxhzytzyjmDOwRip2OemsQOBsEbkBiDTGtPtLuFFIKe6fhzf7QRZlCKiBrAyIMaYK6+E7ICJyGCgBprpE5QA7fS/Z6MSL+roNa4UPZ3YCtwCvjoBooxJP6wt652y/jeUVvcAY0zSSso0ljDEdIrIZ+ALwf05RXwD+4R+pRj8i8iCWcXyOMWavv+UZ5bwCbHIJexrYj+VZVq/y8azD/fPwiB9kUYaAGsiKTzDGGBH5H+CXIrID2ApcgbXcm77h7IIxphhrikAvtlemUL1YfbGN439hvZi3HIi0p1oA1OiQLwAPAM+KyAash/MNWMvj/dGvUo1SROQR4BtY11OtiPR435u089UXY0wdUOccJiLNWPffLv9INar5HfCx7Qx5EWvpxZuAW/0qleIxaiArPsMY83v7bfr7gURgN3ChMWa7fyVTTgLmY3W2APa5xC3DWnv7lMYY86L94ZTbgXRgF3CRMUY9Vu650d6+7xL+S+AXJ1YU5WTDGLNRRJZjedfvwJoqdgfW2tvKGEDXQVYURVEURVEUJ3QVC0VRFEVRFEVxQg1kRVEURVEURXFCDWRFURRFURRFcUINZEVRFEVRFEVxQg1kRVEURVEURXFCDWRFURRFURRFcUINZEVRFEVRFEVxQg1kRVEURVEURXFCDWRFURRFURRFcUINZEVRlJMUEYkUkb+ISL6I7BWRGwc/akjnGS8i74vIHhHZLSK/FREZiXM5nfMxESkWEf0crKIoPkcNZEVRlJOX+4F9xpipwHTgHyN0ni7gJ8aY6cA8IA+4bITO1cPfgNNH+ByKopyiqIGsKMpJg1gUiIgRkcn+lmcgRGS1LacRkf90Cp8sIn8Ske0i4hCR1f0cP8P22raISImI3CUigU7x0cBy4H8AjEX5SJTFGFNqjNlk/+8AdgDjR+JcTuf8sL/yiMgvnOr27yMph6IoJydqICuKcjJxBpANGOBr/hXFI1ZhyfyCU9hM4CJgn/3rg4jEA+9hlfMrwF3Aj4BfOiWbCFQCD4rIFhF5VUSyfSy/O9kSsQzzd0b6XAPwBFa9bvWjDIqijGHUQFYU5WTiKqAE+Lv9f7RTY4z51BhT5hT2ujFmvDHmq8Dufo67AQgHLjPGvGuM+SOWcfxDEYmx0wQDs4BXjTGnA68Cz4xMMSxEJBSr7n9vjNkzzLw+EpHDbn5PDnasMabIGPMp0DAcGRRFOXVRA1lRlJMCe3rBV4H/w5qfOkNEcl3SzLKH3efY+++JyJ/t/yvsKQ0RJ1p2Z4wx3R4kuxB4xxjjbAC+gGU0L7X3C4F6Y8w7TvHzB8rUfqFvk4hcLCKf2dM33hSRBHvqxyoRabbTuNZtIPAcsNUYc/9gBRCRmSKyUkRq7Dz3iMj3euKNMZ8zxmS7+V07WN6KoijDRQ1kRVFOFj4PpAIvAm9heQ9dvci5QCewx2l/u9P/A8aYlpEXddhMA/Y6BxhjjgItdhz2/NwdIrLQTvIFYKcHeWdhTdm4Hfh3YAnwOJaB/QKwAggCXnBZqeJPQCPWVA9PeA1wAP8GfBl4CIj28FhFUZQRJcjfAiiKoviIq4CjwKfGGCMirwJfE5FbjTE9S4HNAfYYYzpEJB1I5piBPMfp/2gnHqhzE15rx/VwA/CEiETZ6b/jQd4JwBnGmIMAtqf4v4BvGWP+aocJ8CaWMb5HRM4ErgV2AVttu/kpY8wf3J1ARJKw5kgvN8b0GO3veyCbcx5PABfY/4uAlcaY73qTh6IoSn+ogawoypjHnvt6KfCEkzH8AvANYDHwiR02B9jm9B+sFRfA8iA/MfLS+gx36/+Kc7gx5jMsD7A3HO4xjm0O2NsP3ISNw+pwrLPP7Sk1WFNA/igifwBWGWMqvBFSjWFFUUYSnWKhKMrJwIVAHNb0ih7exTLEnKdZOHuJ5wAFxph6+8W27J44EVljL7O2Q0T+3vPimz2HeYuI7BeR1+yl1BgsbgSoxSqvK7G49yx7g+vxHW7Ce8LChnICe571F4Ey4CmgTETWisi8oeSnKIria9RAVhTlZOAq4FDPWrwAxphO4GXgChEJtA3WNCzPJRw//3iZvd1gb79sjJljjMnFmrbxX3b4H4HbjTFTsOYA/9hJhoHifM1e7LnGPYjIeCASl7nJoxVjzF5jzOVYhv55WMb2myKizyVFUfyOKiJFUcY09vzaSzjee9zDC1gv7i0Dej6ikWFv5wDb7dUXbgHe6xnmN8bU23kHYBmdRkRSgQnGmLfs458ELrfT9Rs3QrwNnO/ipb4SaAXWjOB5fY4xptMY8wHwAJCOe8+4oijKCUXnICuKMtb5ChABNInIcpe4QKAduMoY8579Vbq7RSQN6Pn88qdYc2nPcT5QRN4CFmKtRfwjO32RU5KjHPtaXOYAcV5hLzN3kb07DogRkRX2/lv2Kht/BG4C/iki92K98PYL4AGXpd9GJfaLf/dhdWoOYb1Y+BNguzGmxp+yKYqigBrIiqKMfXrmGN89QJrLRORG4GIsQ+wKLP03DvgH8IgxptH5EmOWXwAAAZFJREFUAGPMRbZ3+b+BG7FeUnP3Yhy4vBw3TFKw1nJ2pmd/AtZLdLUici7wMPA61vzg32EZyWOBMqAcuA3Lo1+H9VXBn/hTKEVRlB7k2AvfiqIopwYi8m3gQSDWDKIERWQmlqfzPGCzMWacHT4VeMUYM932SLuNGyDf1UA11tQIx2ByKJ5jT40JwFo6rtIYs2KQQxRFUY5D5yArinIqMhfY6c4oFZF4e05xD5cDu+zPQR8WkZ7pD9cC/wQYKG4QLsP6cMnNQyuG0g93YtXr2f4WRFGUsYl6kBVFOeWwvbd7jDH/4SZuIvASEII1dWIP8ANjTLk9d/YZIArIB652eqGv37h+ZJjKsS/HHfV2HWClf0Qkg2MvY9YYYw75Ux5FUcYeaiAriqIoiqIoihM6xUJRFEVRFEVRnFADWVEURVEURVGcUANZURRFURRFUZxQA1lRFEVRFEVRnFADWVEURVEURVGcUANZURRFURRFUZxQA1lRFEVRFEVRnFADWVEURVEURVGcUANZURRFURRFUZz4//rlBArbrkvnAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 720x504 with 7 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# shift longitudes\n",
+    "dsf300_shift, lons_shift = fct.shiftgrid_copy(90., dsf300, lons, start=False)\n",
+    "\n",
+    "response_plot = ['cloud WP', 'cloud EP',\n",
+    "                 'cloud IO', 'cloud TA',\n",
+    "                 'cloud TR', 'cloud']\n",
+    "\n",
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(3, 2, figsize=(10, 7),\n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "ax = ax.reshape(-1)    \n",
+    "for r in range(ax.shape[0]): # loop over responses\n",
+    "    ax[r].coastlines(rasterized=True)\n",
+    "    ax[r].set_aspect('auto')\n",
+    "    ax[r].tick_params(labelsize=14)\n",
+    "    # set xticks and yticks for latitudes and longitudes\n",
+    "    # xaxis: longitudes\n",
+    "    if r > 3: # last row\n",
+    "        ax[r].set_xticks([-120, -60, 0, 60, 120, 180], crs=ccrs.PlateCarree())\n",
+    "        lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                            degree_symbol='',\n",
+    "                                            dateline_direction_label=True)\n",
+    "        ax[r].xaxis.set_major_formatter(lon_formatter)\n",
+    "        del lon_formatter\n",
+    "    # yaxis: latitudes\n",
+    "    if r in [0, 2, 4]:\n",
+    "        ax[r].set_yticks([-90, -60, -30, 0, 30, 60, 90], crs=ccrs.PlateCarree())\n",
+    "        lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "        ax[r].yaxis.set_major_formatter(lat_formatter)\n",
+    "        del lat_formatter\n",
+    "    # cloud impacts\n",
+    "    cf0 = ax[r].pcolormesh(lons_shift, lats,\n",
+    "                           dsf300_shift[response_all.index(response_plot[r]), :, :]/1e6,\n",
+    "                           vmin=-6, vmax=6, cmap='seismic',\n",
+    "                           rasterized=True,\n",
+    "                           transform=ccrs.PlateCarree())\n",
+    "    ax[r].set_title(response_plot[r], fontsize=16)\n",
+    "del r\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# colorbar for response\n",
+    "fig.subplots_adjust(bottom=0.08)#(right=0.8)\n",
+    "cbar_ax = fig.add_axes([0.174, 0.0, 0.7, 0.02]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf0, cax=cbar_ax, orientation='horizontal', extend='both')\n",
+    "cb.set_label('$\\Delta \\psi_{300}$ [10$^6$ m$^{2}$ s$^{-1}$]',\n",
+    "             fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf0\n",
+    "\n",
+    "# a), b) etc for subplots\n",
+    "labs = ['a)', 'b)', 'c)', 'd)', 'e)', 'f)']\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].text(0.01, 1.02, labs[i], va='bottom', ha='left',\n",
+    "               rotation_mode='anchor', fontsize=15,\n",
+    "               transform=ax[i].transAxes)\n",
+    "del i, labs\n",
+    "\n",
+    "fig.savefig('figure_S4.pdf', bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj\n",
+    "del response_plot, dsf300_shift, lons_shift"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/.ipynb_checkpoints/interpolate_cmip5_data_to_common_grid-checkpoint.ipynb b/pythonscripts/.ipynb_checkpoints/interpolate_cmip5_data_to_common_grid-checkpoint.ipynb
new file mode 100644
index 0000000..fb47236
--- /dev/null
+++ b/pythonscripts/.ipynb_checkpoints/interpolate_cmip5_data_to_common_grid-checkpoint.ipynb
@@ -0,0 +1,444 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Interpolate the CMIP5 data to a common grid\n",
+    "\n",
+    "Interpolate the zonal wind at 850 hPa coupled and atmosphere CMIP5 models (historical, RCP8.5, amip, amip4K, amipFuture to a common grid with 96 grid points in latitude and 192 grid points in longitude.\n",
+    "\n",
+    "Save the interpolated data as .npy files."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import glob\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify CMIP5 models and simulations that are analyzed"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# models\n",
+    "models_amip = ['bcc-csm1-1', 'CanAM4', 'CCSM4', 'CNRM-CM5', 'HadGEM2-A',\n",
+    "               'IPSL-CM5A-LR', 'IPSL-CM5B-LR', 'MIROC5', 'MPI-ESM-LR',\n",
+    "               'MPI-ESM-MR', 'MRI-CGCM3']\n",
+    "models_cmip = ['ACCESS1-0', 'ACCESS1-3', 'bcc-csm1-1-m', 'bcc-csm1-1',\n",
+    "               'BNU-ESM', 'CanESM2', 'CCSM4', 'CESM1-BGC',\n",
+    "               'CESM1-CAM5', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS',\n",
+    "               'CNRM-CM5', 'CSIRO-Mk3-6-0', 'EC-EARTH', 'FGOALS-g2',\n",
+    "               'FIO-ESM', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M',\n",
+    "               'GISS-E2-H', 'GISS-E2-R', 'HadGEM2-AO', 'HadGEM2-CC',\n",
+    "               'HadGEM2-ES', 'inmcm4', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR',\n",
+    "               'IPSL-CM5B-LR', 'MIROC5', 'MIROC-ESM-CHEM', 'MIROC-ESM',\n",
+    "               'MPI-ESM-LR', 'MPI-ESM-MR', 'MRI-CGCM3', 'NorESM1-ME',\n",
+    "               'NorESM1-M']\n",
+    "\n",
+    "# simulations\n",
+    "runs_cmip = ['historical', 'rcp85']\n",
+    "runs_amip = ['amip', 'amip4K', 'amipFuture']\n",
+    "\n",
+    "# time period of simulation\n",
+    "timeint_cmip = ['197501-200412', '207001-209912']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Generate latitude and logitude arrays on which the data will be interpolated"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "lats = np.arange(-89.0625, 90, 1.875)\n",
+    "lons = np.arange(0, 360, 1.875)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Interpolate data from coupled models"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "ACCESS1-0\n",
+      "   historical\n",
+      "   rcp85\n",
+      "ACCESS1-3\n",
+      "   historical\n",
+      "   rcp85\n",
+      "bcc-csm1-1-m\n",
+      "   historical\n",
+      "   rcp85\n",
+      "bcc-csm1-1\n",
+      "   historical\n",
+      "   rcp85\n",
+      "BNU-ESM\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CanESM2\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CCSM4\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CESM1-BGC\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CESM1-CAM5\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CMCC-CESM\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CMCC-CM\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CMCC-CMS\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CNRM-CM5\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CSIRO-Mk3-6-0\n",
+      "   historical\n",
+      "   rcp85\n",
+      "EC-EARTH\n",
+      "   historical\n",
+      "   rcp85\n",
+      "FGOALS-g2\n",
+      "   historical\n",
+      "   rcp85\n",
+      "FIO-ESM\n",
+      "   historical\n",
+      "   rcp85\n",
+      "GFDL-CM3\n",
+      "   historical\n",
+      "   rcp85\n",
+      "GFDL-ESM2G\n",
+      "   historical\n",
+      "   rcp85\n",
+      "GFDL-ESM2M\n",
+      "   historical\n",
+      "   rcp85\n",
+      "GISS-E2-H\n",
+      "   historical\n",
+      "   rcp85\n",
+      "GISS-E2-R\n",
+      "   historical\n",
+      "   rcp85\n",
+      "HadGEM2-AO\n",
+      "   historical\n",
+      "   rcp85\n",
+      "HadGEM2-CC\n",
+      "   historical\n",
+      "   rcp85\n",
+      "HadGEM2-ES\n",
+      "   historical\n",
+      "   rcp85\n",
+      "inmcm4\n",
+      "   historical\n",
+      "   rcp85\n",
+      "IPSL-CM5A-LR\n",
+      "   historical\n",
+      "   rcp85\n",
+      "IPSL-CM5A-MR\n",
+      "   historical\n",
+      "   rcp85\n",
+      "IPSL-CM5B-LR\n",
+      "   historical\n",
+      "   rcp85\n",
+      "MIROC5\n",
+      "   historical\n",
+      "   rcp85\n",
+      "MIROC-ESM-CHEM\n",
+      "   historical\n",
+      "   rcp85\n",
+      "MIROC-ESM\n",
+      "   historical\n",
+      "   rcp85\n",
+      "MPI-ESM-LR\n",
+      "   historical\n",
+      "   rcp85\n",
+      "MPI-ESM-MR\n",
+      "   historical\n",
+      "   rcp85\n",
+      "MRI-CGCM3\n",
+      "   historical\n",
+      "   rcp85\n",
+      "NorESM1-ME\n",
+      "   historical\n",
+      "   rcp85\n",
+      "NorESM1-M\n",
+      "   historical\n",
+      "   rcp85\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../cmip5/'\n",
+    "for model in models_cmip:\n",
+    "    print(model)\n",
+    "    for r, run in enumerate(runs_cmip):\n",
+    "        print('  ', run)\n",
+    "        # 1) read data of shape (time,lev,lat,lon)\n",
+    "        # uwind\n",
+    "        ifile = glob.glob(ipath + run + '/ua_Amon_' + model + \\\n",
+    "                          '*' + timeint_cmip[r] +'.absTime.nc')[0]\n",
+    "        ncfile = nc.Dataset(ifile, 'r')\n",
+    "        lats_cmip = ncfile.variables['lat'][:].data\n",
+    "        lons_cmip = ncfile.variables['lon'][:].data\n",
+    "        levs_cmip = ncfile.variables['plev'][:].data\n",
+    "        uwind = ncfile.variables['ua'][:].data\n",
+    "        ncfile.close()\n",
+    "        \n",
+    "        # get zonal wind at 850 hPa\n",
+    "        levind850 = (np.abs(levs_cmip-85000)).argmin() # index of 850hPa level\n",
+    "        u850_cmip = uwind[:, levind850, :, :]\n",
+    "        \n",
+    "        # In some models, orography is masked with very high values.\n",
+    "        # Set these values to NaN's.\n",
+    "        u850_cmip[u850_cmip > 1000] = np.nan\n",
+    "\n",
+    "        del levs_cmip, uwind, levind850\n",
+    "        del ifile, ncfile\n",
+    "        \n",
+    "        # 2) interpolate data to new grid\n",
+    "        u850_int = fct.interpolate2d(u850_cmip, lats_cmip,\n",
+    "                                     lons_cmip, lats, lons)\n",
+    "        \n",
+    "        # 3) save data to npy file\n",
+    "        np.save(ipath + model + '_u850_' + run + '.npy', u850_int)\n",
+    "        \n",
+    "        del lats_cmip, lons_cmip, u850_cmip, u850_int\n",
+    "    del r, run\n",
+    "del model"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Interpolate data from atmosphere models"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "bcc-csm1-1\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "CanAM4\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "CCSM4\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "CNRM-CM5\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "HadGEM2-A\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "IPSL-CM5A-LR\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "IPSL-CM5B-LR\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "MIROC5\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "MPI-ESM-LR\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "MPI-ESM-MR\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "MRI-CGCM3\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../cmip5/'\n",
+    "for model in models_amip:\n",
+    "    print(model)\n",
+    "    print('   amip')\n",
+    "    # amip\n",
+    "    ifile_amip = glob.glob(ipath + 'amip/ua_Amon_' + model + \\\n",
+    "                           '*197901-200812*.nc')[0]\n",
+    "    ncfile = nc.Dataset(ifile_amip, 'r')\n",
+    "    lats_amip = ncfile.variables['lat'][:].data\n",
+    "    lons_amip = ncfile.variables['lon'][:].data\n",
+    "    levs = ncfile.variables['plev'][:].data\n",
+    "    uwind = ncfile.variables['ua'][:].data\n",
+    "    ncfile.close()\n",
+    "\n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "    u850_amip = uwind[:, levind850, :, :]\n",
+    "\n",
+    "    # In some models, orography is masked with very high values.\n",
+    "    # Set these values to NaN's.\n",
+    "    u850_amip[u850_amip > 100] = np.nan\n",
+    "\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile_amip, ncfile\n",
+    "\n",
+    "    # interpolate data to new grid\n",
+    "    u850_amip_int = fct.interpolate2d(u850_amip, lats_amip,\n",
+    "                                      lons_amip, lats, lons)\n",
+    "\n",
+    "    # save data to npy file\n",
+    "    np.save(ipath + model + '_u850_amip.npy', u850_amip_int)\n",
+    "\n",
+    "    del u850_amip, u850_amip_int\n",
+    "\n",
+    "    ##########################################################################\n",
+    "    # amip4K\n",
+    "    print('   amip4K')\n",
+    "    ifile_amip4k = glob.glob(ipath + 'amip4K/ua_Amon_' + model + \\\n",
+    "                             '*197901-200812*.nc')[0]  \n",
+    "    ncfile = nc.Dataset(ifile_amip4k, 'r')\n",
+    "    levs = ncfile.variables['plev'][:].data\n",
+    "    uwind = ncfile.variables['ua'][:].data\n",
+    "    ncfile.close()\n",
+    "    \n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "    u850_amip4k = uwind[:, levind850, :, :]\n",
+    "    \n",
+    "    # In some models, orography is masked with very high values.\n",
+    "    # Set these values to NaN's.\n",
+    "    u850_amip4k[u850_amip4k > 100] = np.nan\n",
+    "    \n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile_amip4k, ncfile\n",
+    "    \n",
+    "    # interpolate data to new grid\n",
+    "    u850_amip4k_int = fct.interpolate2d(u850_amip4k, lats_amip,\n",
+    "                                        lons_amip, lats, lons)\n",
+    "\n",
+    "    # save data to npy file\n",
+    "    np.save(ipath + model + '_u850_amip4k.npy', u850_amip4k_int)\n",
+    "\n",
+    "    del u850_amip4k, u850_amip4k_int\n",
+    "    \n",
+    "    ##########################################################################\n",
+    "    # amipFuture simulations\n",
+    "    print('   amipFuture')\n",
+    "    ifile_amipfut = glob.glob(ipath + 'amipFuture/ua_Amon_' + model +\\\n",
+    "                              '*197901-200812*.nc')[0]    \n",
+    "    ncfile = nc.Dataset(ifile_amipfut, 'r')\n",
+    "    levs = ncfile.variables['plev'][:].data\n",
+    "    uwind = ncfile.variables['ua'][:].data\n",
+    "    ncfile.close()\n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # find index of 850 hPa level\n",
+    "    u850_amipfut = uwind[:, levind850, :, :]\n",
+    "    \n",
+    "    # In some models, orography is masked with very high values.\n",
+    "    # Set these values to NaN's.\n",
+    "    u850_amipfut[u850_amipfut > 100] = np.nan\n",
+    "    \n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile_amipfut, ncfile\n",
+    "    \n",
+    "    # interpolate data to new grid\n",
+    "    u850_amipfut_int = fct.interpolate2d(u850_amipfut, lats_amip,\n",
+    "                                         lons_amip, lats, lons)\n",
+    "\n",
+    "    # save data to npy file\n",
+    "    np.save(ipath + model + '_u850_amipfut.npy', u850_amipfut_int)\n",
+    "\n",
+    "    del u850_amipfut, u850_amipfut_int\n",
+    "    \n",
+    "    del lats_amip, lons_amip\n",
+    "del model\n",
+    "del ipath"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/BlueYellowRed.rgb b/pythonscripts/BlueYellowRed.rgb
new file mode 100644
index 0000000..1239e84
--- /dev/null
+++ b/pythonscripts/BlueYellowRed.rgb
@@ -0,0 +1,256 @@
+ncolors=254
+# R    G    B
+    5   35   80  # blue temp_19lev
+    5   37   83  # 
+    5   39   86  # 
+    5   40   89  # 
+    5   42   92  # 
+    6   44   95  # 
+    6   46   98  # 
+    6   48  100  # 
+    6   49  103  # 
+    6   51  106  # 
+    6   53  109  # 
+    6   55  112  # 
+    6   57  115  # 
+    7   59  118  # 
+    7   60  121  # 
+    7   62  124  # 
+    7   64  127  # 
+    7   66  130  # 
+    7   68  133  # 
+    7   69  136  # 
+    7   71  138  # 
+    7   73  141  # 
+    8   75  144  # 
+    8   77  147  # 
+    8   78  150  # 
+    8   82  156  # blue temp_19lev
+   10   84  158  # 
+   12   87  159  # 
+   15   89  161  # 
+   17   92  163  # 
+   19   94  164  # 
+   21   97  166  # 
+   24   99  168  # 
+   26  102  169  # 
+   28  104  171  # 
+   30  107  173  # 
+   33  109  174  # 
+   35  112  176  # 
+   37  114  178  # 
+   39  116  179  # 
+   41  119  181  # 
+   44  121  182  # 
+   46  124  184  # 
+   48  126  186  # 
+   50  129  187  # 
+   53  131  189  # 
+   55  134  191  # 
+   57  136  192  # 
+   59  139  194  # 
+   62  141  196  # 
+   66  146  199  # blue temp_19lev
+   68  147  200  # 
+   69  149  200  # 
+   71  150  201  # 
+   72  152  201  # 
+   74  153  202  # 
+   76  155  202  # 
+   77  156  203  # 
+   79  157  204  # 
+   81  159  204  # 
+   82  160  205  # 
+   84  162  205  # 
+   85  163  206  # 
+   87  165  207  # 
+   89  166  207  # 
+   90  167  208  # 
+   92  169  208  # 
+   93  170  209  # 
+   95  172  209  # 
+   97  173  210  # 
+   98  174  211  # 
+  100  176  211  # 
+  102  177  212  # 
+  103  179  212  # 
+  105  180  213  # 
+  106  182  213  # 
+  108  183  214  # blue temp_19lev
+  110  184  215  # 
+  113  186  215  # 
+  115  187  216  # 
+  118  189  216  # 
+  120  190  217  # 
+  122  192  218  # 
+  125  193  218  # 
+  127  194  219  # 
+  129  196  220  # 
+  132  197  220  # 
+  134  199  221  # 
+  137  200  221  # 
+  139  202  222  # 
+  141  203  223  # 
+  144  204  223  # 
+  146  206  224  # 
+  149  207  224  # 
+  151  209  225  # 
+  153  210  226  # 
+  156  211  226  # 
+  158  213  227  # 
+  160  214  228  # 
+  163  216  228  # 
+  165  217  229  # 
+  170  220  230  # blue temp_19lev
+  172  221  231  # 
+  174  222  232  # 
+  176  223  233  # 
+  178  224  234  # 
+  179  225  235  # 
+  181  226  236  # 
+  183  227  237  # 
+  185  228  238  # 
+  187  229  239  # 
+  189  230  240  # 
+  191  231  241  # 
+  193  232  242  # 
+  195  233  243  # 
+  196  233  243  # 
+  198  234  244  # 
+  200  235  245  # 
+  202  236  246  # 
+  204  237  247  # 
+  206  238  248  # 
+  208  239  249  # 
+  210  240  250  # 
+  211  241  251  # 
+  213  242  252  # 
+  215  243  253  # 
+  219  245  255  # blue temp_19lev
+  255  255  200  # red BlueDarkRed18
+  255  254  197  # 
+  255  253  193  # 
+  255  252  190  # 
+  255  251  187  # 
+  255  250  184  # 
+  255  249  180  # 
+  255  248  177  # 
+  255  247  174  # 
+  255  246  171  # 
+  255  245  167  # 
+  255  244  164  # 
+  255  243  161  # 
+  255  243  158  # 
+  255  242  154  # 
+  255  241  151  # 
+  255  240  148  # 
+  255  239  144  # 
+  255  238  141  # 
+  255  237  138  # 
+  255  236  135  # 
+  255  235  131  # 
+  255  234  128  # 
+  255  233  125  # 
+  255  232  122  # 
+  255  230  115  # red BlueDarkRed20
+  255  229  113  # 
+  254  227  111  # 
+  254  226  109  # 
+  253  225  108  # 
+  253  224  106  # 
+  252  222  104  # 
+  252  221  102  # 
+  251  220  100  # 
+  251  219   98  # 
+  250  217   97  # 
+  250  216   95  # 
+  249  215   93  # 
+  249  214   91  # 
+  248  212   89  # 
+  248  211   87  # 
+  247  210   85  # 
+  247  208   84  # 
+  246  207   82  # 
+  246  206   80  # 
+  245  205   78  # 
+  245  203   76  # 
+  244  202   74  # 
+  244  201   73  # 
+  243  200   71  # 
+  242  197   67  # red BlueDarkRed21
+  242  194   65  # 
+  241  191   63  # 
+  241  188   62  # 
+  240  185   60  # 
+  240  182   58  # 
+  239  179   56  # 
+  239  176   54  # 
+  238  173   53  # 
+  238  170   51  # 
+  237  167   49  # 
+  237  164   47  # 
+  236  161   45  # 
+  236  159   44  # 
+  236  156   42  # 
+  235  153   40  # 
+  235  150   38  # 
+  234  147   36  # 
+  234  144   34  # 
+  233  141   33  # 
+  233  138   31  # 
+  232  135   29  # 
+  232  132   27  # 
+  231  129   25  # 
+  231  126   24  # 
+  230  123   22  # 
+  230  120   20  # red BlueDarkRed23
+  229  118   19  # 
+  228  116   18  # 
+  227  114   18  # 
+  225  112   17  # 
+  224  110   16  # 
+  223  108   15  # 
+  222  107   15  # 
+  221  105   14  # 
+  220  103   13  # 
+  218  101   12  # 
+  217   99   12  # 
+  216   97   11  # 
+  215   95   10  # 
+  214   93    9  # 
+  213   91    8  # 
+  212   89    8  # 
+  210   87    7  # 
+  209   85    6  # 
+  208   83    5  # 
+  207   82    5  # 
+  206   80    4  # 
+  205   78    3  # 
+  203   76    2  # 
+  202   74    2  # 
+  200   70    0  # red BlueDarkRed25
+  198   69    1  # 
+  195   68    2  # 
+  193   67    3  # 
+  190   65    4  # 
+  188   64    4  # 
+  185   63    5  # 
+  183   62    6  # 
+  180   61    7  # 
+  178   60    8  # 
+  175   58    9  # 
+  173   57   10  # 
+  170   56   11  # 
+  168   55   12  # 
+  165   54   12  # 
+  163   53   13  # 
+  160   52   14  # 
+  158   50   15  # 
+  155   49   16  # 
+  153   48   17  # 
+  150   47   18  # 
+  148   46   19  # 
+  145   45   19  # 
+  143   43   20  # 
+  140   42   21  # 
+  135   40   23  # red BlueDarkRed26
diff --git a/pythonscripts/__pycache__/helper_functions.cpython-36.pyc b/pythonscripts/__pycache__/helper_functions.cpython-36.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..071e9cf1613c94c8898b1070f31e4d5f6ebe2060
GIT binary patch
literal 14187
zcmXr!<>lIO_)J1fA_K!?1|-1Dz`)?Zz`#(viGhJ3g&~D8harj)OfzLMM=^t0ELp5k
zY+x396bG2*jN(dRNMXw1&gF^XVPr^QPGM<bh~iCQO<`+ch~i6OPvK}`h~iJ-OyO!_
zh!RNQPT^@`h!RZUP2p={h!RTSPZ4Ngh!Rc_Oc82fh!ROrP7zHJYhjEMO%YF#XkmyF
zOOZ^GYGH^HPf<ycNs(<~jFL!EO_5JgXkm<!Oi@fxYGH_yN?{CU&{TT~@{FG*<1NnQ
z(xS4|__WNDWRMUDvoSC*fUq;jg8_^T3@MDY3?&R%j5Q1?OyXc?r?B=i*D}^HW-+BO
zq%gEHrLd*2w=$(MNiw8xNHf$jmM~|r)G%hTrm#seq;RG&l`v<qm9VF9^)lBo)iBne
z>9S!+;f9N`r!m<ulyGEmW^vUp)G(#+r117K*D}|E%s`mQB93k@OATWRTMAz*)NGJj
zYFMBmP}kWolrU#;r+{HPGdi8l+{{?RlERn5kMNHTLk(k!0N96Me?m>=2aCW>P2sL#
zfrbOB>sg?#XRTwYW2|GSVXk3KV+v-_6!eSYb;>DCjZDqS$uAE|O{rqhD@soadCA1U
zz@W(#C6JPulbIV|o{?FST3nEroO+9+I6JeTD8Ib8h>?MT;Uy^jz5EYiv4C_i-eOHD
zsVqo+36}f^5n}XvSqD<l2qNl1Vm!B)3R0ptic%9(;**QZZn2dm=9H!u-(t!uxW$rI
znv-*jwKyZOAoUh=USi%Y*0h}b#FAU=xykuC`9;OI#C<aJQWJ}UQ`2)(^GZ@voI%35
zi3PVf(~9zQ<8v~LOK!0y78NB{YO+OfCg&y=#OEdErbcmq^_L_jMe)E`@p-A`QLMR@
zxrqf)yvTw^QEXsQqm>LrQVa|XzdZDF^Gft{N{dU1QVk6C3)1wH^plJ&3`{Hy^s`C}
zDoav};`8!LQj_xYvy1gzgM5q(j12WNQgaGYi{jHt^O8$4^Ye=J3My~$rKjel7A2OX
z#)EC(1SM`2P;zHvVdP@uVw7T(VH9B$U=(6xVp3pKVKib?f$$hvn2KZ=7#Na4fez9D
z(hABSAU>o3U`%03VNPdGVF6|3bY@USPT@>vPT>M&;dJH{-Z?C_%$W?eESU_Q3>7XV
z3^k0+j4lkZ7BNh<thH=43^lCabjO^+2TH+^R93@g!%)JQ#Z<#m1Ik4LDT2LB9Sk7R
zLW^*QOom$a3WFLZ7lv4kS`Lu9c7`;@6rmL17LFR`8V*SY7lvj~+7;|&s$s9;uwf{y
z3uowHs9^`EK#@cfCI$ut=fs@k(wxMSRE3g^RE6C9ypoKZN`>6i#5{$>ycC7v)WqWa
zJP1EOO(9VsJ+mw|PoX3;H&vlHwJ0;SSdU9VK|ujbgcheNBqGZx<fow+Squ_LR47X<
z%1lhkNmVGxS4c*+KQ%EAY*c<(YLP->PL6_CVqR%tQDw1?f?H}*5tylvT9T{>c3oP2
z5!l%fR~9S4_~jY-IjLZCushVTD81MUEDv&fN@7W(l|o)=Zb79&UJ5w<DwJoIWWb#c
zQULKLNI5u+imeoUGK)(f>JpQZic-rm6TvAB><Ey{4UHfMKtl+m73xm>dO`7E0uA_L
zJua{_gHlUMi}H}%40c3LWjrXNtQ34f(FG4OupA^XzyX0ABM5Im+=5{ML>RB`Tg)!0
z$+wuj67y~`yQL=GV)jiey2b2RPy}LC-eUGD%>xlRx0oGE({C{crxx5|_D?Rk#q5_~
zrpXe;?BeAX#q8_o8^!G9<ru{r?C<CIl81qT0bH<YGTvfItjH`*1{GwWyap-|K}DP}
zD7%U<FfgPu)G);I)G~H3)G$giOk^r#35FCE;POI~=@yfo!7WyBAZRk);sG<DAq7@Z
zBn>K7xNJbhRdRlAft?%3WRNv%3{^Uy^ymx81&Mhn!QkW%3SK>%oc!d(oMJmYghox~
zTb!wRrMcijrAUy0f#DW=USb|7PBb}hv4E1zEjF<I#Zm0gfQ{mTGU8J*lS`uD&I2oE
z%q!AiU|@*ihNuBYP81u219rP6W05W>q(EM{C4tMWN+1t`3M>X84n`2<V`gDwVH9GN
zVwPe7m34fKQcOiApb`xfvY=1~(I5=2@g*1-7(jJ&4TA`SIH=BINMRHPvx6Blnf!`C
z#U8{tEVmddZZQ=Y++r#)yv0;t1Qvx5U?&QJ3SdyvBEGORF{LQ6Bs19$<Ty}hGcXoe
zf}8+mGcYjlAvZd<FoK+r!YB!<ewid0vRR6BYC!EPh7|TzW=V!xP*Vid?&1LRz>Sj<
zhAgHMhAie9#uUzMkUp+#76*oAMi8t8$*_Q$6Os(gpymgoB!f6ZEprJ&7HbV-4RZ>U
z1Ovz}5KEjvk|Bk)nYoswgdvNqh6NN9k_=G2%(bi~>?IsEEH$jn%rQ*0Y_$*`8`!OE
zDNK?KHEf_pPcus`M-9jXmKu&`MoETR&KiyqhAbG5tB$FTxsIidwT`V0B+iKBdgg3U
zQ-&p*0q%Nkuug^=Zm{dQL3WYgdTy}mL3+t|Jr9cOdF!|luCL*&;i}=O;Z0)+X3*sJ
z183tRP!*XDN?8mHmJSd`L!d)?wa7a6hgB{1;578||NsC0i>$zT8m!dv08HfpO-^Wr
zDlRNdO|42Tk_2Th*7A(hqSRY#iACwTi4`C^F)uy!7F%XsNor9+5hy8v6O|_4EymJY
z%sGiAQJk51DLIKH@x>Xp*m4sqauQ2!vE?L|WagFJVkrfYj0LwC<8QH)re&5yab~5K
zKoo<SnR#G+FeCCZZow2lnIHvu8IS}IYOR3FmRo}9sU`8LDJhi@(=zi)0zru$l(iXH
z1Q_`k`B;>g#F*t6#TW$`r5O2`_*i&QMVR@Rc$kX3k+TOka`t!z&Y_@WP{RmHawKLC
z%mg;*vIi(pf!isZBqS(sS^^W$<Wpn~DlI`tr^p7xvIP-#Ai^F*AkqtW5vVg)<OmY=
z01-|g0#q6nxqw)%AOciT6uE;~o*=>tM1W%*On?hK5savh_wxX?zl%YIDm3<)QDUE&
zkEzH96w{z$6_gD?bs-3YY%dPNT@Z4Ei#}LE$OGnq`b&)2EJX=5OexIS3`Gf`UK>);
z!U8T@Sdoer<~$`dHEft_pv4a}xcFfPr8{wkT9(Q>Xz|GcFFsj7{X<EH6!vCNQ3EPI
z!Nn`M00QY|u4MxkpR6@(;Np|LmZOBDhP8$rWM&OJC@t5pr*KFzG_%xl*06%@<pdX>
zTs53XJnnFYJR=r{63%R{35-P^j0_-H!j-~X!d=7E%qY&#%*Y6;6nJX6N*J<uYPlmB
z@|YqRYPf2+!KsQ5DOJ7HfR{iGZqTxd!5_x3L@TtajKV;DCWX|ZqWmI-%sd596$fhh
zDPW8G_`JkCMXo9xh2Yc@1xRrKZn<Wqf=VDz1K2OoPXW|!&B@P8&nziTNmT$RU@%b?
zN4j04*rdq|E@aVi$t}*j#5_m|TZARA+~NW|$`$1QTdV~|pfZ%XxTL5E)Hu`RL1d&`
zOgZ^Qlw>9eTp>CSRGflh4Vs~t1ejEqK$(h(5niY=3o!{WGBNTovN7^76$OJb7^r~*
z%3$ma3=FIc3=EJA1};i#7$g|L^*tjfv(zwy_@H`Uf+3x$nK6Yig{haR7L*(z@=Q>9
zW)yi)TY<HPEsZ&tL6bT0Ju?G?f=eo>iJ4!Vs*s$MnG5P>l_wVEX6B_U6r~my<mVNq
zLb^ndZWX*^l$lqOuTYX-l9&T-{)74sF!eeL!NDO4nYjgt$tB>Vl$?`angSJoH1ENB
zP&;<%Ir&M6ISSY<2X&HkL9JFq&nzjiI5kBfKM&He16!e+lb@Uoa(QlQNk)E(9>Q;6
z`#{|m4X~3n5q<;vBT*qaKd+=HGpQ7uP4d$ek~2Wnb}=aTK#VR*OaXPD${?M#f};F_
z)S{Bi)MBs)@#+r_4k=d900&84a#3nxajK@CLS%laLSAZW3fN(3`K3h)#hJOFUM_ej
z033jz&MnyPVui$_RE3hn?9@Dk)Xb8M)FK7YXa>a1`8n`-1DmB0VyL6wY^bS_4^@R0
zt_W)sG(wDY6r7DTAyEQ~L9hv^UC*+_qWBO)XG1H6oWv5{ocufmr0ypoT0orxP&xrA
zMe+*5Xs|g(&PK$VW8`dv+Z;pU%`wDhjuG+xGIBOVaSu4CFgm>@`6X76T!Bbo`Dutm
zTavGU8Xt%NDlRUu0>?Wv<K*X|DTSMe(36~#Vx<61BhcIh$`7a(py>iPeKi@2v_NBR
z%#gCx0MtqVwLmo4qd36vWaw-NWf?geL0N`ymXWjJE#{K^l3UEh#U;0xlXFtgo0lS>
zeqTJqBgOG0nYo~>dlXb8f?5p>5*$o?j6xvHSQHK__BcRg9s>gdNETG|fs4H!M6n0&
ze&8tfK=m%9*kb_~drUQ~5)3tLHOvyAULv~$Lplq*hy>NP5VfpOwJZ`0HSAEeY$$5E
zYdAoyyc%wB$ALMqn2qKIrVb=Nb>Za=EM`H)L3v_HYLP-&VnKe9f<}H3L}@WNDT1<Z
zW}ZSyW?EWmQEFa^LQ!gZW`3Tg0=hwv)C1N-#{w8U2u4id3w9XZ0$2f2`05~+)98T%
zHVK?Lz{PkXmaqYZDN;#KxTH?aOwTAmDhG=7Kv@<VXOOx8#Tf|eF(L-+JmLy=Xqm2~
z5RS842b+djw(BT_6Is58lTyNmqn3rBv<JfAvct&PD4dj1J{*5JPrO-%Ad8XW29nT`
z++|3-AB~(1@%a&C6$#;Ggx@SfQv7I$FT6luPqe$hit&dR3Gs;TE^vYzJoO`Hc}h(E
zT9#N~rGT8F(F;>hD+^N1L7QZtmM(g60}cvMIs{`#xvWr<k(dW*U4k326ja(gQC#4R
zX9!BOP&O!Tji78$Vui86=^9Dg5Y9FXN2oChhlzvK8x@6s8VI2vA`CS4%UqUNfL`N^
zf@^$ZNLawD{MVo=A3Us}2&?kh7}*$wm_dCWHbx<)q6h{ChLGpr>c64PAsN)?0dcsH
z`#+#I3upkKh6yxkS;GYCf=e*eut<O=kC?Mrid0gVYFYDGQW$GlL1UmG`D}(_2QZr*
zJTmK1!j!_&%-95~_(3D8j5Xl?5qR8{t%L>CA+KSRV5ns;Va;L#O?(x#l(1&8*Dz*r
z)G%goHZ#?7<O!58po)OiGBq<6Z2+rf%HpVD0;}bOsznm1VJ^B=!&Jitnv|7fsNqau
zs$p+svSG-RKoSKtMBp+tj47-T_28*Cjucji9?;Zt4f6!XBBL6n8rB-N8dh<JR?wI(
zi#S6KXAL{Z2B^8nvTzx&xo{bn*${nTvpH%w!2=K+e&8WeQ0OzH>pIK4eq<(PUnQTD
zpJ$+uUs_U}nF8(^7J)iSpr(ILeqM2Ao*sBu08D6df!mk2Ske-cii`X~qod$q(agMC
z%sHufx0rGhZ?R++`#RoYtx7G*FD?R2pcH}Hf|^`WEFgPsv4Q#(nR!uc5W{b=7MCOz
zl|->6S0?9VCP#6Cx$&7P6}Ol&4Wc+Q4dRP4GSf<Kv4iyGmzG4agEZ!smY}CsKCrs<
zqRf=|<otq4MMegOV({oEqZ|_(GYg{xBL|}hBM&1NBdC)OAz2v3m?Riw7}*%*m?Rh#
z7>iOsZCB(Z3z~5Sw_SgM+OAAl49yHFjM)rDHYJQHOeIV;U=h&RPYSa*1DMa;%mCtp
z$ATC^NtBTxg*BL=hB<{Xo3&^{2}>4h4HKws+RT{6*33}L3Kan-ey|8z2}>4x4MPfR
z3TrDkL8P#O5(Fq>K`S15nQGZVL-=`VU^5wtzLjvKaDcN0X9`y@OAJ#jM=dAVR89<g
zI3bw~$sSNL#A{CtJ7|bK@hT(6%xzVEUSbZU6OS}c3m;GbjW8ubI`hyXvbZ2MIWsLY
zHANw*QXwZluROIFGM<o=pO>0gTmqeWL~X?qWedataJfvRB^aGzw0<n2v5}KlQf!6X
zNd^t&gGSAeW?4ar5>*XsXbn{n$j4R+ATqTm4-^ED@i!#PAR%F;016K@HDK>y)WD#s
zqAJ%4JmU(945Sc4i44$i31rX*5?l~l!Noz97<??SSOHQ1fJY>%SU}^2Rf;~TiDjvX
zVMkEi;GdkDn3t4ToS6rjtArFS(0(X%MkUR`O_Q-G5!5l|yv3ZGnO775s&YUR6StUi
z6DuHv2{WiHi3Uj+fCx|))a1IwT$WgLiv<+)w?G9)F*x6Y!VSy-1x^%qPJUiyUP?Sz
z6vhF|utCBkilr>E$S{f(6gh_I<%Iyq4^H_NQJ_Q&>dm@<N(|66CW9~!cufWeBMTD;
zlMtg2lM*8v6R7lnuvwUjvO(np3#eXWU|;}EJAp8`oH&6wcJ5TdkirZq51^BYkm*C%
z7&>PwXyF!UH4|j54``y1p@uPwv6iKTDT}!VM6#5yrm*xf*RrOtmN0>;vlO-(7H}28
zn8FBJZzKV(FhJF(2xwIYQw?}@98?`a)q|=NM$mXSNKFlE3Zo4JL<XV~JPpZ`!Umd<
zgs6asgH<utFr<K|LE)>Mm?asq*h`qQVD4h8I9I}fq>3>OtO8^oc*V)OTK0-1P!&*<
z&{VY4a+EM-ae_)Q(7F*&Sy#ghV}Zu^Tfyr|K)Px`<tKX$2R1d53?d-6viCB9O~b3Q
znNb=vq5w9@hG7C@p;0(P9mfR5LV<9GI`$g2U<OStq!Ifn14zG8A-^akwFq22rk17V
z6oc|ddOoDF7~<~;;ue<{r6ne(YBGYWK1gO@cmSDygys-%bqXdlxxl&N7E5tvRVp|~
z6bXUy0cd2qNEE~Z833+HZ?S@N<}J3o#Ju9tTusg*Ls09Dr64D@EQ+(FD8C>-GcUyu
z!8D3u$pgu;rht^(V$Lruxy6)|SQG>@7CeCjCcv{uGN6I)GSCoca$*iBKg5F;cND~f
zjV%V{4cOo}2O}S&3=<op5Tg;J6r&oG8lw`U5~Bhm2crTb8>1N`2O|?>Q6U2ZgB!f{
z2O0)~SEXi*44`QePzGRZW~ybaVa)=!03nOnBpI@pYuUhJ%#sX9V(cKX8qi`ta7F>E
z;{b~>qNwAnVa;M`W?*EfW36G&Vr^zfVaaAFuB%}OReC9`*$hQ1YFLW8O4w7_K$#M>
z=r4sG+|J@i;RIKooVDyV>?vI047KbvY$+_@*>!GktMf|@OVN=M_7onF&Kl4<ONJCa
z@FW;p4JX8{2r`8qmbKGZKy&dWTv?#uC*~Ah5e85u%i?KfsO5s`s{yUjL=*!c9o%&s
zb)0ovHQY69HSFLKegVH*j78uX!&}Tb`FY@?`{h0c28Jpza92bD+z3L{E5)F+11_du
zC2?j3BLhPbsJN;UMbVO20-gzi>4<ayr%o`T$$N__FZmX`OJYf4acapePFSr{3{HTz
zSd(+|i&KkIL8&SYM1YF<DCYd6TyTR5lBhv0DFPMqnmkdgnQ56hsYMx})C(%Bb5hH0
zvF3oXQxq?Fawj*nxHvIAwK$3`FBz;f6J%@_NIgqVYFTj<NLPGbaui!mYFTDpN)$V&
z#Lr1BLoek8!OIRolKFY5U>hcZk}_zplz|ac%!@FBAO|B8vjigxBL|}xBL}kpn8nAa
z#4HAC95NMEfounbSu&_C3kpv~=;9G@ng53cyl{jcREmPSDiRDSOxX;@8Z}HQ0+I}{
z?hQz+$N*9oG%?mNXED~WWHDwl7rB%$fZB;oj5Vx96Ka^Vn3_T5KT|V9HbZeo4RaPV
zn9tnIkj+xuQNse3X9AI6c^0rd6Nt=aDVk6MT1LXy#8?BGKmykapxOEqK~QZW!BERl
z!vreJK|GMVQiMP(35HtE5@yhnkrE~lDZ!A!md%j=tc1CSvzf7k2}DA~CNLJ+m9T)i
zQz?uR3^kx-FHDjQ5)2}sr7yw=|4TE}azQ#_V0A1YyP)crQbZ78BF#|CJ%KT=p@tch
zQEPc>Sim%I2^*+mR>RZG1k#_y(accG2Nq+h;YAYTui*j9@qoH@&7cK3ykI_W4HKAV
zN@u9$N@u9$u4pLXtl<OKMI|vzwF0$*HG-h{n7~+ctcEL#D@7EPq4Pp&1QEW=W}U!T
z^a3Oc5d*6*0`s|R1e+Oacxphg%UB}_@>vaIjbI8RXc-TP1rm{FfXoO_U@Tk_&H#1+
zKimaEwZb*RU>7hIdDL)caixfX%@3&&Mub~7>jb8vERZZj46MQk%;&BVZf30Etq}r+
zWsNY%z8a<)VW<n3AR=%VFcoTrGnBAp@zijE(p@uCEf<)_4N8H{OtsuKY!jG^Budz_
zKq1dp!<E9+%v8db#a{!8MMls_y97fsQ!`Vo2wV*}Tn#tGb)c96s}TjMsS&9WZDy(!
zD`CqL0GS5~L$DfVu<Zgh+$l^*I+<&^K{N8%OcPj&RBE`g1WVYmgqj&^#cR0XY>66i
zkPmAmYb3z56xei0usJYSGS^CiMWw)^;E7ZThGynksT!^taj;3k&5Yojz+EGO#OF+5
zui=nj096Ix^vqBrQ6mm&V~8+-<_ttYi?O6?Bq1W=AaxuP3^klkai~ghh8hkO6X5D=
zrSoQh)*68Qmr%l%B~ruH%m}t0<VzW_2se_5Yz;$=Y>f=azFO(L7|;p@u-+||0x3)>
zoH?SoVzqLN4B-rUax4rb;@MmiSc+zVRwRJdAf#}ChDM<454dZ%(wS=IYvgJeYUEQm
zK&yj$S!$*8I7%2&ctPrF*e0+P{V0*hk}Q$PlB$tzW~>owW~x;vk;sy+k*-ll;p=6p
zl`fH~VJnesW}3iK{G&!XORk2knXy*7Mmm^5QykLz2UkZ`@)enob-b0Cc?!9u#U%<!
zsS25piPFrxbj2#=iu_VYx33b!04vD=buWq&K`VSgYrz$(G{AECMG9cWu+a%{`v=ta
z0+|hx%*=xiWPmCd1_p)?_C=r$ye8u<e$Zm@<ox`il+3)ulGNfVt>Wa&f=a!-l+4`3
z^i(9b6_+ID<fNu3WTrt{cecj2*g>n#Q;SP9nQpOyTYR@za`RJCtK`8Ph3wSI^8BI{
zxETgI3WlJeLu1fd(%i)2Y;eU%1feMp9!CMU?~rQH7|_@Xds<FnNl9uRxB|TeTEtnD
zoKc)#RFax<i>)Ldw3xI=AEb~iv7jI|F9qCOyv1IW3RzFjm6M;InVgstpAYIur4|?8
zVoxth1x+~JVoA=)EV#v%SPWXfe~UFUuf*8s7CU(9y|EE!iCcbYUP=@%N_Z7jgRJ8A
z%q_?-Dgm#=D2fG%u!Fn{vV%Q6wFJbz#RDQ!Q{ut%%D1>Oi!<|zOA_;vQ*W^(<>%+z
zVoS>e1-GVRQ39w&XRgT1i(;<K%!^_HMRpVmDC%!<CugK4XD5LiQVd!}SDc-iQdA34
z&ytdwQxOFsE2G#ez!6*=#a;<zaDdDJ1zZ#d$Q%&s7E>l@IH|J88022Y%v+4Pw-~c-
zu~vZGd5g6YOtDo!Xr_wHTTGRiQ7jdi1%^>9m6-*GMW9V8Q5;aKGNU-4c4b0>gbiXd
zD9MzAj6!dNa6?uKf`_GUfLb3@KrIL+4Mq+|9!3sk7DfRm<Y1Culwj0i(qPnK=3oGI
zI7JviGzhaWfELqoG4e19F$yqQFbXju*nEt9%xsJ*j4F&gjAD#pOduH^@FH9>@Nz!^
zW;aF|(7+d?5F;NW7b6qcK0ZbcMj<8+(C95AA9!G_Xc4Ge3(7qp2ZGw{pap>7CeAU?
z@E1cC1E@<^%L=MQYS}=QM=huu$PDTVLK+3xEX|C?1|_V`3{8xn?kiXZTnK|@yx=ly
z;E_)DG>~5Q5{?w6US?<)kfnyXnJI>;ma~?t!l#6*h80|CI@EHPaMv)@a3k8+txVwV
zAZTk3XAM^hGiYa13TrP%4F|d^8-~J~aE3bW8jfHFO*TlU4%$0&1Gj}WnTtS?QZyCR
z&;unhO&&;&%mE32S6MSB=H%RB0ZsZrGAwE*?G{IFYH<c=^sy)xqy-d`poT7Z)G`V*
zj*$-@00ohWC7ED$W)w?aNoH;oYaVDo2}I@RWk#`rv}6{Uf|F|HEk=xiPF_fI$_H(r
zFiO#9Vqhqi0mT;^7c(0p8?y)_8>0v#8?yv6Xw|12qY@(%Q_%|07z|TLQ6z|Fbkk&Z
zgZf+g7AtrY0;GuH0JHUS6CpWUFgLNJASb^hCo@S8ykDmH78`^v5(7DptspTkC9$}O
zAH-qLOD%DBaWg3@1?5pbNYRmBP?DJo>eqr-J%XGGUIGqYFAH933SNZ>UMU4$HvpbJ
zfOHx_LoDE4B&78X3Q({&ka8EI^U7h9o1apelWGTA!C$P#z`(!(-d+P*h|a^zA<3b`
a!OUU6A<Lo8p~hjxrOctvA<yN;6%GK6;63U9

literal 0
HcmV?d00001

diff --git a/pythonscripts/calculate_significance_bootstrapping.ipynb b/pythonscripts/calculate_significance_bootstrapping.ipynb
new file mode 100644
index 0000000..afe9638
--- /dev/null
+++ b/pythonscripts/calculate_significance_bootstrapping.ipynb
@@ -0,0 +1,1092 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Get masks with significant responses based on bootstrapping.\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Functions for calculation of significance based on bootstrapping"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# calculate bootstrap distribution of annual-mean or seasonal-mean\n",
+    "# time series with 1000 samplings with replacement\n",
+    "def calc_bootstrap_dist(data_ym, lats, lons, nreps):\n",
+    "    # decide which years to use\n",
+    "    ntime = data_ym.shape[0] # number of years in simulation\n",
+    "    #nreps = 1000 # number of resamples \n",
+    "    time = np.arange(ntime) # artificial time vector\n",
+    "    time_bs = np.random.choice(time, (ntime, nreps))\n",
+    "\n",
+    "    # find u850 profiles according to time_bs\n",
+    "    data_bs = np.full((ntime, nreps, lats.size, lons.size), np.nan, dtype=float)\n",
+    "    for l in range(nreps): # number of resamples\n",
+    "        for k in range(ntime): # number of years\n",
+    "            data_bs[k, l, :, :] = data_ym[time_bs[k, l], :, :]\n",
+    "        del k\n",
+    "    del l\n",
+    "\n",
+    "    # mean over years for each resampling\n",
+    "    if np.isnan(data_bs).any() == False:\n",
+    "        print(\"No NaN's. Calculation worked.\")\n",
+    "        u850_bs_mean = np.mean(data_bs, axis=0)\n",
+    "    else:\n",
+    "        print(\"Bootstrap array contains NaN's. Exit function.\")\n",
+    "        return\n",
+    "\n",
+    "    return u850_bs_mean"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated (total response, SST impact, global cloud impact, regional cloud impacts)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# simulations with global cloud changes\n",
+    "runs_glo = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "\n",
+    "# simulations with regional cloud changes\n",
+    "runs_reg_TR = ['T1C2TR', 'T1C1TR', 'T2C2TR', 'T2C1TR']\n",
+    "runs_reg_ML = ['T1C2ML', 'T1C1ML', 'T2C2ML', 'T2C1ML']\n",
+    "runs_reg_PO = ['T1C2PO', 'T1C1PO', 'T2C2PO', 'T2C1PO']\n",
+    "runs_reg_TA = ['T1C2TA', 'T1C1TA', 'T2C2TA', 'T2C1TA']\n",
+    "runs_reg_IO = ['T1C2IO', 'T1C1IO', 'T2C2IO', 'T2C1IO']\n",
+    "runs_reg_WP = ['T1C2WP', 'T1C1WP', 'T2C2WP', 'T2C1WP']\n",
+    "runs_reg_EP = ['T1C2EP', 'T1C1EP', 'T2C2EP', 'T2C1EP']\n",
+    "\n",
+    "runs_reg = runs_reg_TR + runs_reg_ML + runs_reg_PO + \\\n",
+    "           runs_reg_TA + runs_reg_IO + runs_reg_WP + runs_reg_EP\n",
+    "runs_all = runs_glo + runs_reg\n",
+    "\n",
+    "# responses\n",
+    "response_all = ['total', 'SST', 'cloud',\n",
+    "                'cloud TR', 'cloud notTR', 'cloud ML', 'cloud notML',\n",
+    "                'cloud PO', 'cloud notPO',\n",
+    "                'cloud TA', 'cloud notTA', 'cloud IO', 'cloud notIO',\n",
+    "                'cloud WP', 'cloud notWP', 'cloud EP', 'cloud notEP']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Number of samplings / reputations in bootstrap function"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "nreps=1000"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal wind and do bootstrap calculations for ICON (locked clouds, interactive water vapor)\n",
+    "\n",
+    "Get the seasonal-mean zonal-mean zonal wind with Climate Data Operators (cdo): cdo seasmean -selvar,u ifile ofile"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "###############\n",
+      "T1C1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2TR\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1TR\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2TR\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1TR\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2ML\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1ML\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2ML\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1ML\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2PO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1PO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2PO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1PO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2TA\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1TA\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2TA\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1TA\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2IO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1IO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2IO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1IO\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2WP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1WP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2WP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1WP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2EP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1EP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2EP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1EP\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n"
+     ]
+    }
+   ],
+   "source": [
+    "u850_tmym_bs = {}; u850_smym_bs = {}\n",
+    "for run in runs_all:\n",
+    "    # time-mean\n",
+    "    print('###############')\n",
+    "    print(run)\n",
+    "    # read zonal wind for each month\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset('../../ICON-NWP_lockedclouds/' + ifile, 'r')\n",
+    "    lats = ncfile.variables['lat'][:].data\n",
+    "    lons = ncfile.variables['lon'][:].data\n",
+    "    levs = ncfile.variables['lev'][:].data\n",
+    "    uwind = ncfile.variables['u'][:].data\n",
+    "    ncfile.close()\n",
+    "\n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "    u850 = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "\n",
+    "    # calculate yearly-mean u850 for each year\n",
+    "    u850_tmym = np.full((int(u850.shape[0]/12), lats.size, lons.size), np.nan,\n",
+    "                        dtype=float)\n",
+    "    for i in range(u850_tmym.shape[0]):\n",
+    "        u850_tmym[i,:,:] = np.nanmean(u850[i*12:i*12+12,:,:], axis=0)\n",
+    "    del i\n",
+    "    del u850\n",
+    "\n",
+    "    # do bootstrap calculations\n",
+    "    print('##### time-mean #####')\n",
+    "    u850_tmym_bs[run] = calc_bootstrap_dist(u850_tmym, lats, lons, nreps)\n",
+    "    del u850_tmym\n",
+    "    \n",
+    "    ##########################################################################\n",
+    "    # seasonal-mean\n",
+    "    # read seasonal-mean zonal wind for each year\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.uwind.seasmean.nc'\n",
+    "    ncfile = nc.Dataset('../../ICON-NWP_lockedclouds/' + ifile, 'r')\n",
+    "    levs_sm = ncfile.variables['lev'][:].data\n",
+    "    u_wind_sm = np.squeeze(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()\n",
+    "    del ifile, ncfile\n",
+    "\n",
+    "    levind850 = (np.abs(levs_sm-85000)).argmin() # index of 850 hPa level\n",
+    "    # DJF: do not read last timestep, because it only contains the value from\n",
+    "    #      Dec of the last year (note: first value only contains values from\n",
+    "    #      Jan and Feb of first year)\n",
+    "    # other seasons: read all available time steps\n",
+    "    u850_smym = {'DJF': u_wind_sm[0:-1:4, levind850, :, :],\n",
+    "                 'MAM': u_wind_sm[1::4, levind850, :, :],\n",
+    "                 'JJA': u_wind_sm[2::4, levind850, :, :],\n",
+    "                 'SON': u_wind_sm[3::4, levind850, :, :],\n",
+    "                 }\n",
+    "    del levs_sm, u_wind_sm, levind850\n",
+    "\n",
+    "    # do bootstrap calculations\n",
+    "    print('##### seasonal-mean #####')\n",
+    "    u850_smym_bs1 = {}\n",
+    "    for s in seasons:\n",
+    "        u850_smym_bs1[s] = calc_bootstrap_dist(u850_smym[s], lats, lons, nreps)\n",
+    "    u850_smym_bs[run] = u850_smym_bs1.copy()\n",
+    "    del s, u850_smym_bs1\n",
+    "    del u850_smym\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate responses and store significance masks for ICON (locked clouds, interactive water vapor)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Calculate response\n",
+      "    T1C2TR T1C1TR T2C2TR T2C1TR\n",
+      "Calculate percentiles\n",
+      "    cloud TR cloud notTR\n",
+      "Calculate response\n",
+      "    T1C2ML T1C1ML T2C2ML T2C1ML\n",
+      "Calculate percentiles\n",
+      "    cloud ML cloud notML\n",
+      "Calculate response\n",
+      "    T1C2PO T1C1PO T2C2PO T2C1PO\n",
+      "Calculate percentiles\n",
+      "    cloud PO cloud notPO\n",
+      "Calculate response\n",
+      "    T1C2TA T1C1TA T2C2TA T2C1TA\n",
+      "Calculate percentiles\n",
+      "    cloud TA cloud notTA\n",
+      "Calculate response\n",
+      "    T1C2IO T1C1IO T2C2IO T2C1IO\n",
+      "Calculate percentiles\n",
+      "    cloud IO cloud notIO\n",
+      "Calculate response\n",
+      "    T1C2WP T1C1WP T2C2WP T2C1WP\n",
+      "Calculate percentiles\n",
+      "    cloud WP cloud notWP\n",
+      "Calculate response\n",
+      "    T1C2EP T1C1EP T2C2EP T2C1EP\n",
+      "Calculate percentiles\n",
+      "    cloud EP cloud notEP\n"
+     ]
+    }
+   ],
+   "source": [
+    "# calculate total response, SST impact and cloud impact\n",
+    "# time-mean\n",
+    "du850_tmym_glo = np.full((3, nreps, len(lats), len(lons)), np.nan, dtype=float)\n",
+    "du850_tmym_glo[0, :, :, :], du850_tmym_glo[1, :, :, :], \\\n",
+    "du850_tmym_glo[2, :, :, :] = \\\n",
+    "   fct.calc_impacts_timmean(u850_tmym_bs['T1C1'], u850_tmym_bs['T2C2'],\n",
+    "                            u850_tmym_bs['T1C2'], u850_tmym_bs['T2C1'])\n",
+    "\n",
+    "# seasonal-mean\n",
+    "du850_smym_glo = np.full((len(seasons), 3, nreps, len(lats), len(lons)), np.nan,\n",
+    "                         dtype=float)\n",
+    "for s, seas in enumerate(seasons):\n",
+    "    du850_smym_glo[s, 0, :, :, :], du850_smym_glo[s, 1, :, :, :], \\\n",
+    "    du850_smym_glo[s, 2, :, :, :] = \\\n",
+    "       fct.calc_impacts_timmean(u850_smym_bs['T1C1'][seas],\n",
+    "                                u850_smym_bs['T2C2'][seas],\n",
+    "                                u850_smym_bs['T1C2'][seas],\n",
+    "                                u850_smym_bs['T2C1'][seas])\n",
+    "del s, seas\n",
+    "\n",
+    "# calculate percentiles of bootstrap distributions\n",
+    "lp = 5; up = 95 # 5th-95th percentile range\n",
+    "# set axis to calculate percentiles over nreps=1000\n",
+    "# time-mean dimensions: 3, nreps, lats, lons\n",
+    "du850_tmym_perc = np.percentile(du850_tmym_glo, [lp, up], axis=1)\n",
+    "# seasonal-mean dimensions: seasons, 3, nreps, lats, lons\n",
+    "du850_smym_perc = np.percentile(du850_smym_glo, [lp, up], axis=2)\n",
+    "# new dimensions:\n",
+    "# time-mean: 2, 3, lats, lons\n",
+    "# seasonal-mean: 2, seasons, 3, lats, lons\n",
+    "del lp, up\n",
+    "\n",
+    "# create mask based on percentiles\n",
+    "# true if significant: both percentile values have the same sig and, thus, 0\n",
+    "#                      is not included\n",
+    "# true if sign is the same and response is \n",
+    "du850_mask_tm_bs = {'total': np.sign(du850_tmym_perc[0, 0, :, :]) == \\\n",
+    "                             np.sign(du850_tmym_perc[1, 0, :, :]),\n",
+    "                    'SST': np.sign(du850_tmym_perc[0, 1, :, :]) == \\\n",
+    "                           np.sign(du850_tmym_perc[1, 1, :, :]),\n",
+    "                    'cloud': np.sign(du850_tmym_perc[0, 2, :, :]) == \\\n",
+    "                             np.sign(du850_tmym_perc[1, 2, :, :])}\n",
+    "du850_mask_sm_bs = {'total': np.sign(du850_smym_perc[0, :, 0, :, :]) == \\\n",
+    "                             np.sign(du850_smym_perc[1, :, 0, :, :]),\n",
+    "                    'SST': np.sign(du850_smym_perc[0, :, 1, :, :]) == \\\n",
+    "                           np.sign(du850_smym_perc[1, :, 1, :, :]),\n",
+    "                    'cloud': np.sign(du850_smym_perc[0, :, 2, :, :]) == \\\n",
+    "                             np.sign(du850_smym_perc[1, :, 2, :, :])}\n",
+    "\n",
+    "del du850_tmym_glo, du850_smym_glo, du850_tmym_perc, du850_smym_perc\n",
+    "\n",
+    "##############################################################################\n",
+    "##############################################################################\n",
+    "# regional cloud impacts\n",
+    "for r in range(int(len(runs_reg)/4)):\n",
+    "    # calculate u850 response for bootstrap distribtions\n",
+    "    print('Calculate response')\n",
+    "    print('   ', runs_reg[r*4], runs_reg[r*4+1], runs_reg[r*4+2], runs_reg[r*4+3])\n",
+    "    # time-mean response\n",
+    "    du850_tmym_reg = np.full((2, nreps, len(lats), len(lons)), np.nan,\n",
+    "                             dtype=float)\n",
+    "    _, _, du850_tmym_reg[0, :, :, :], du850_tmym_reg[1, :, :, :] = \\\n",
+    "          fct.calc_3impacts_timmean(u850_tmym_bs['T1C1'],\n",
+    "                                    u850_tmym_bs['T2C2'],\n",
+    "                                    u850_tmym_bs['T1C2'],\n",
+    "                                    u850_tmym_bs['T2C1'],\n",
+    "                                    u850_tmym_bs[runs_reg[r*4]],\n",
+    "                                    u850_tmym_bs[runs_reg[r*4+1]],\n",
+    "                                    u850_tmym_bs[runs_reg[r*4+2]],\n",
+    "                                    u850_tmym_bs[runs_reg[r*4+3]])\n",
+    "          \n",
+    "    # seasonal-mean response\n",
+    "    du850_smym_reg = np.full((len(seasons), 2, nreps, len(lats), len(lons)), np.nan,\n",
+    "                             dtype=float)\n",
+    "    for s, seas in enumerate(seasons):\n",
+    "        _, _, du850_smym_reg[s, 0, :, :, :], du850_smym_reg[s, 1, :, :, :] = \\\n",
+    "              fct.calc_3impacts_timmean(u850_smym_bs['T1C1'][seas],\n",
+    "                                        u850_smym_bs['T2C2'][seas],\n",
+    "                                        u850_smym_bs['T1C2'][seas],\n",
+    "                                        u850_smym_bs['T2C1'][seas],\n",
+    "                                        u850_smym_bs[runs_reg[r*4]][seas],\n",
+    "                                        u850_smym_bs[runs_reg[r*4+1]][seas],\n",
+    "                                        u850_smym_bs[runs_reg[r*4+2]][seas],\n",
+    "                                        u850_smym_bs[runs_reg[r*4+3]][seas])\n",
+    "    del s, seas\n",
+    "    \n",
+    "    ##############################################################################\n",
+    "    # calculate percentiles of bootstrap distributions\n",
+    "    print('Calculate percentiles')\n",
+    "    lp = 5; up = 95 # 5th-95th percentile range\n",
+    "    # set axis to calculate percentiles over nreps=1000\n",
+    "    # time-mean dimensions: 2, nreps, lats, lons\n",
+    "    du850_tmym_perc = np.percentile(du850_tmym_reg, [lp, up], axis=1)\n",
+    "    # seasonal-mean dimensions: seasons, 2, nreps, lats, lons\n",
+    "    du850_smym_perc = np.percentile(du850_smym_reg, [lp, up], axis=2)\n",
+    "    # new dimensions:\n",
+    "    # time-mean: 2(perc), 2(response), lats, lons\n",
+    "    # seasonal-mean: 2(perc), seasons, 2(response), lats, lons\n",
+    "    del lp, up\n",
+    "\n",
+    "    ##############################################################################\n",
+    "    # create mask based on percentiles\n",
+    "    # true if significant: both percentile values have the same sig and, thus, 0\n",
+    "    #                      is not included\n",
+    "    # true if sign is the same and response is\n",
+    "    print('   ', response_all[r*2+3], response_all[r*2+4])\n",
+    "    du850_mask_tm_bs.update({response_all[r*2+3]: \\\n",
+    "      np.sign(du850_tmym_perc[0, 0, :, :]) == \\\n",
+    "      np.sign(du850_tmym_perc[1, 0, :, :])})\n",
+    "    du850_mask_tm_bs.update({response_all[r*2+4]: \\\n",
+    "      np.sign(du850_tmym_perc[0, 1, :, :]) == \\\n",
+    "      np.sign(du850_tmym_perc[1, 1, :, :])})\n",
+    "    du850_mask_sm_bs.update({response_all[r*2+3]: \\\n",
+    "      np.sign(du850_smym_perc[0, :, 0, :, :]) == \\\n",
+    "      np.sign(du850_smym_perc[1, :, 0, :, :])})\n",
+    "    du850_mask_sm_bs.update({response_all[r*2+4]: \\\n",
+    "      np.sign(du850_smym_perc[0, :, 1, :, :]) == \\\n",
+    "      np.sign(du850_smym_perc[1, :, 1, :, :])})\n",
+    "    \n",
+    "    del du850_tmym_reg, du850_smym_reg, du850_tmym_perc, du850_smym_perc\n",
+    "del r\n",
+    "\n",
+    "del u850_tmym_bs, u850_smym_bs"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Save masks as numpy arrays"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "np.save('../../ICON-NWP_lockedclouds/du850_mask_tm_bs.npy', du850_mask_tm_bs)\n",
+    "np.save('../../ICON-NWP_lockedclouds/du850_mask_sm_bs.npy', du850_mask_sm_bs)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Delete masks"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "del du850_mask_tm_bs, du850_mask_sm_bs"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal wind, do bootstrap calculations, and store masks for MPI-ESM and IPSL-CM5A (locked clouds and locked water vapor)\n",
+    "\n",
+    "Get the seasonal-mean zonal-mean zonal wind with Climate Data Operators (cdo): cdo seasmean -selvar,u ifile ofile"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "MPI-ESM\n",
+      "###############\n",
+      "T1C1W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "##############################\n",
+      "##############################\n",
+      "IPSL-CM5A\n",
+      "###############\n",
+      "T1C1W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C1W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T1C2W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C2W1\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "###############\n",
+      "T2C1W2\n",
+      "##### time-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "##### seasonal-mean #####\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "No NaN's. Calculation worked.\n",
+      "##############################\n",
+      "##############################\n",
+      "###########\n",
+      "## Done! ##\n"
+     ]
+    }
+   ],
+   "source": [
+    "runs = ['T1C1W1', 'T2C2W2', 'T1C2W1', 'T1C1W2',\n",
+    "        'T1C2W2', 'T2C1W1', 'T2C2W1', 'T2C1W2']\n",
+    "\n",
+    "models = ['MPI-ESM', 'IPSL-CM5A']\n",
+    "\n",
+    "for m, model in enumerate(models):\n",
+    "    u850_tmym_bs = {}\n",
+    "    u850_smym_bs = {}\n",
+    "\n",
+    "    print(model)\n",
+    "    for run in runs:\n",
+    "        print('###############')\n",
+    "        print(run)\n",
+    "\n",
+    "        # time-mean\n",
+    "        # read zonal wind for each month\n",
+    "        if model == 'MPI-ESM':\n",
+    "            ifile = model + '_' + run + '_3d_mm.uwind.nc'\n",
+    "        elif model == 'IPSL-CM5A':\n",
+    "            ifile = model + '_' + run + '_3d_mm.remapcon.uwind.nc'\n",
+    "        ncfile = nc.Dataset('../../' + model + '/' + ifile, 'r')\n",
+    "        lats = ncfile.variables['lat'][:].data\n",
+    "        lons = ncfile.variables['lon'][:].data\n",
+    "        # pressure levels and zonal wind are named differently\n",
+    "        # in the two models\n",
+    "        if model == 'MPI-ESM':\n",
+    "            levs = ncfile.variables['plev'][:].data\n",
+    "            uwind = ncfile.variables['u'][:].data\n",
+    "        elif model == 'IPSL-CM5A':\n",
+    "            levs = ncfile.variables['presnivs'][:].data\n",
+    "            uwind = ncfile.variables['vitu'][:].data\n",
+    "        ncfile.close()\n",
+    "\n",
+    "        # get zonal wind at 850 hPa\n",
+    "        levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "        u850 = uwind[:, levind850, :, :]\n",
+    "        del levs, uwind, levind850\n",
+    "        del ifile, ncfile\n",
+    "\n",
+    "        # calculate yearly-mean u850 for each year\n",
+    "        u850_tmym = np.full((int(u850.shape[0]/12), lats.size, lons.size), np.nan,\n",
+    "                            dtype=float)\n",
+    "        for i in range(u850_tmym.shape[0]):\n",
+    "            u850_tmym[i,:,:] = np.nanmean(u850[i*12:i*12+12,:,:], axis=0)\n",
+    "        del i\n",
+    "        del u850\n",
+    "\n",
+    "        # do bootstrap calculations\n",
+    "        print('##### time-mean #####')\n",
+    "        u850_tmym_bs[run] = calc_bootstrap_dist(u850_tmym, lats, lons, nreps)\n",
+    "        del u850_tmym\n",
+    "\n",
+    "        ##########################################################################\n",
+    "        # seasonal-mean\n",
+    "        # read seasonal-mean zonal wind for each year\n",
+    "        if model == 'MPI-ESM':\n",
+    "            ifile = model + '_' + run + '_3d_mm.uwind.seasmean.nc'\n",
+    "        elif model == 'IPSL-CM5A':\n",
+    "            ifile = model + '_' + run + '_3d_mm.remapcon.uwind.seasmean.nc'\n",
+    "        ncfile = nc.Dataset('../../' + model + '/' + ifile, 'r')\n",
+    "        # pressure levels and zonal wind are named differently\n",
+    "        # in the two models\n",
+    "        if model == 'MPI-ESM':\n",
+    "            levs_sm = ncfile.variables['plev'][:].data\n",
+    "            u_wind_sm = np.squeeze(ncfile.variables['u'][:].data)\n",
+    "        elif model == 'IPSL-CM5A':\n",
+    "            levs_sm = ncfile.variables['presnivs'][:].data\n",
+    "            u_wind_sm = np.squeeze(ncfile.variables['vitu'][:].data)\n",
+    "        ncfile.close()\n",
+    "        del ifile, ncfile\n",
+    "\n",
+    "        levind850 = (np.abs(levs_sm-85000)).argmin() # index of 850 hPa level\n",
+    "        # DJF: do not read last timestep, because it only contains the value from\n",
+    "        #      Dec of the last year (note: first value only contains values from\n",
+    "        #      Jan and Feb of first year)\n",
+    "        # other seasons: read all available time steps\n",
+    "        u850_smym = {'DJF': u_wind_sm[0:-1:4, levind850, :, :],\n",
+    "                     'MAM': u_wind_sm[1::4, levind850, :, :],\n",
+    "                     'JJA': u_wind_sm[2::4, levind850, :, :],\n",
+    "                     'SON': u_wind_sm[3::4, levind850, :, :],\n",
+    "                     }\n",
+    "        del levs_sm, u_wind_sm, levind850\n",
+    "\n",
+    "        # do bootstrap calculations\n",
+    "        print('##### seasonal-mean #####')\n",
+    "        u850_smym_bs1 = {}\n",
+    "        for s in seasons:\n",
+    "            u850_smym_bs1[s] = calc_bootstrap_dist(u850_smym[s], lats, lons, nreps)\n",
+    "        u850_smym_bs[run] = u850_smym_bs1.copy()\n",
+    "        del s, u850_smym_bs1\n",
+    "        del u850_smym\n",
+    "    del run\n",
+    "    \n",
+    "    ##########################################################################\n",
+    "    ##########################################################################\n",
+    "    # Calculate responses and store significance masks\n",
+    "    \n",
+    "    # calculate responses\n",
+    "    # time-mean\n",
+    "    du850_tmym = np.full((4, nreps, len(lats), len(lons)), np.nan, dtype=float)\n",
+    "\n",
+    "    du850_tmym[0, :, :, :], du850_tmym[1, :, :, :], du850_tmym[2, :, :, :], \\\n",
+    "    du850_tmym[3, :, :, :] = \\\n",
+    "        fct.calc_3impacts_timmean(u850_tmym_bs['T1C1W1'], u850_tmym_bs['T2C2W2'],\n",
+    "                                  u850_tmym_bs['T1C2W2'], u850_tmym_bs['T2C1W1'],\n",
+    "                                  u850_tmym_bs['T1C2W1'], u850_tmym_bs['T1C1W2'],\n",
+    "                                  u850_tmym_bs['T2C2W1'], u850_tmym_bs['T2C1W2'])\n",
+    "\n",
+    "    # seasonal-mean\n",
+    "    du850_smym = np.full((len(seasons), 4, nreps, len(lats), len(lons)), np.nan,\n",
+    "                         dtype=float)\n",
+    "    for s, seas in enumerate(seasons):\n",
+    "        du850_smym[s, 0, :, :, :], du850_smym[s, 1, :, :, :], \\\n",
+    "        du850_smym[s, 2, :, :, :], du850_smym[s, 3, :, :, :] = \\\n",
+    "           fct.calc_3impacts_timmean(u850_smym_bs['T1C1W1'][seas],\n",
+    "                                     u850_smym_bs['T2C2W2'][seas],\n",
+    "                                     u850_smym_bs['T1C2W2'][seas],\n",
+    "                                     u850_smym_bs['T2C1W1'][seas],\n",
+    "                                     u850_smym_bs['T1C2W1'][seas],\n",
+    "                                     u850_smym_bs['T1C1W2'][seas],\n",
+    "                                     u850_smym_bs['T2C2W1'][seas],\n",
+    "                                     u850_smym_bs['T2C1W2'][seas])\n",
+    "    del s, seas\n",
+    "\n",
+    "    # calculate percentiles of bootstrap distributions\n",
+    "    lp = 5; up = 95 # 5th-95th percentile range\n",
+    "    # set axis to calculate percentiles over nreps=1000\n",
+    "    # time-mean dimensions: 3, nreps, lats, lons\n",
+    "    du850_tmym_perc = np.percentile(du850_tmym, [lp, up], axis=1)\n",
+    "    # seasonal-mean dimensions: seasons, 3, nreps, lats, lons\n",
+    "    du850_smym_perc = np.percentile(du850_smym, [lp, up], axis=2)\n",
+    "    # new dimensions:\n",
+    "    # time-mean: 2, 3, lats, lons\n",
+    "    # seasonal-mean: 2, seasons, 3, lats, lons\n",
+    "    del lp, up\n",
+    "\n",
+    "    # create mask based on percentiles\n",
+    "    # true if significant: both percentile values have the same sig and, thus, 0\n",
+    "    #                      is not included\n",
+    "    # true if sign is the same and response is \n",
+    "    du850_mask_tm_bs = {'total': np.sign(du850_tmym_perc[0, 0, :, :]) == \\\n",
+    "                                 np.sign(du850_tmym_perc[1, 0, :, :]),\n",
+    "                        'SST': np.sign(du850_tmym_perc[0, 1, :, :]) == \\\n",
+    "                               np.sign(du850_tmym_perc[1, 1, :, :]),\n",
+    "                        'cloud': np.sign(du850_tmym_perc[0, 2, :, :]) == \\\n",
+    "                                 np.sign(du850_tmym_perc[1, 2, :, :]),\n",
+    "                        'water vapor' : np.sign(du850_tmym_perc[0, 3, :, :]) == \\\n",
+    "                                        np.sign(du850_tmym_perc[1, 3, :, :])}\n",
+    "    du850_mask_sm_bs = {'total': np.sign(du850_smym_perc[0, :, 0, :, :]) == \\\n",
+    "                                 np.sign(du850_smym_perc[1, :, 0, :, :]),\n",
+    "                        'SST': np.sign(du850_smym_perc[0, :, 1, :, :]) == \\\n",
+    "                               np.sign(du850_smym_perc[1, :, 1, :, :]),\n",
+    "                        'cloud': np.sign(du850_smym_perc[0, :, 2, :, :]) == \\\n",
+    "                                 np.sign(du850_smym_perc[1, :, 2, :, :]),\n",
+    "                        'water vapor': np.sign(du850_smym_perc[0, :, 3, :, :]) == \\\n",
+    "                                       np.sign(du850_smym_perc[1, :, 3, :, :])}\n",
+    "\n",
+    "    ##############################################################################\n",
+    "    # save masks as numpy arrays\n",
+    "    np.save('../../' + model + '/' + model + '_du850_mask_tm_bs.npy', du850_mask_tm_bs)\n",
+    "    np.save('../../' + model + '/' + model + '_du850_mask_sm_bs.npy', du850_mask_sm_bs)\n",
+    "\n",
+    "    del u850_tmym_bs, u850_smym_bs\n",
+    "    del du850_tmym, du850_smym, du850_tmym_perc, du850_smym_perc\n",
+    "    del du850_mask_tm_bs, du850_mask_sm_bs\n",
+    "    del lats, lons\n",
+    "    \n",
+    "    print('##############################')\n",
+    "    print('##############################')\n",
+    "\n",
+    "del model, models\n",
+    "print('###########')\n",
+    "print('## Done! ##')\n"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/figure1_robust_response.ipynb b/pythonscripts/figure1_robust_response.ipynb
new file mode 100644
index 0000000..09183b9
--- /dev/null
+++ b/pythonscripts/figure1_robust_response.ipynb
@@ -0,0 +1,793 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Robust zonal wind response\n",
+    "\n",
+    "This script generates figure 1: maps of zonal wind response during DJF for\n",
+    "- coupled CMIP5 models (RCP8.5)\n",
+    "- atmosphere CMIP5 models (amipFuture and amip4K)\n",
+    "- ICON, MPI-ESM and IPSL-CM5A.\n",
+    "\n",
+    "Note: for ICON, we investigate simulations with locked clouds and interactive water vapor. For MPI-ESM and IPSL-CM5A, we investigate simulations with both locked clouds and locked water vapor."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load own colorbar"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mymap, mymap2 = fct.generate_mymap()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify CMIP5 models and simulations that are analyzed"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# models\n",
+    "models_amip = ['bcc-csm1-1', 'CanAM4', 'CCSM4', 'CNRM-CM5', 'HadGEM2-A',\n",
+    "               'IPSL-CM5A-LR', 'IPSL-CM5B-LR', 'MIROC5', 'MPI-ESM-LR',\n",
+    "               'MPI-ESM-MR', 'MRI-CGCM3']\n",
+    "models_cmip = ['ACCESS1-0', 'ACCESS1-3', 'bcc-csm1-1-m', 'bcc-csm1-1',\n",
+    "               'BNU-ESM', 'CanESM2', 'CCSM4', 'CESM1-BGC',\n",
+    "               'CESM1-CAM5', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS',\n",
+    "               'CNRM-CM5', 'CSIRO-Mk3-6-0', 'EC-EARTH', 'FGOALS-g2',\n",
+    "               'FIO-ESM', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M',\n",
+    "               'GISS-E2-H', 'GISS-E2-R', 'HadGEM2-AO', 'HadGEM2-CC',\n",
+    "               'HadGEM2-ES', 'inmcm4', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR',\n",
+    "               'IPSL-CM5B-LR', 'MIROC5', 'MIROC-ESM-CHEM', 'MIROC-ESM',\n",
+    "               'MPI-ESM-LR', 'MPI-ESM-MR', 'MRI-CGCM3', 'NorESM1-ME',\n",
+    "               'NorESM1-M']\n",
+    "\n",
+    "# simulations\n",
+    "sims_cmip = ['historical', 'rcp85']\n",
+    "sims_amip = ['amip', 'amip4K', 'amipFuture']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (ICON, MPI-ESM, IPSL-CM5A)\n",
+    "\n",
+    "The zonal wind fields were extracted from the data in the archive with Climate Data Operators (cdo; https://www.mpimet.mpg.de/cdo):\n",
+    "\n",
+    "cdo selvar,u file.nc file.uwind.nc"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T1C1W1\n",
+      "reading T2C2W2\n"
+     ]
+    }
+   ],
+   "source": [
+    "# ICON simulations with locked clouds and interactive water vapor\n",
+    "runs_cld = ['T1C1', 'T2C2']\n",
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "u850_icon = {}\n",
+    "for run in runs_cld:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    u850_icon[run], lats, lons = fct.read_var_onelevel(ipath + ifile,\n",
+    "                                                       'u', 'lev', 850)\n",
+    "    del ifile\n",
+    "del run, ipath\n",
+    "\n",
+    "##############################################################################\n",
+    "# MPI-ESM and IPSL-CM5A simulations with locked clouds and locked water vapor\n",
+    "runs_cldvap = ['T1C1W1', 'T2C2W2']\n",
+    "u850_mpi = {}; u850_ipsl = {}\n",
+    "for run in runs_cldvap:\n",
+    "    print('reading ' + run)\n",
+    "    # MPI-ESM\n",
+    "    #print('   MPI-ESM')\n",
+    "    ifile = 'MPI-ESM_' + run + '_3d_mm.uwind.nc'\n",
+    "    u850_mpi[run], lats_mpi, lons_mpi = fct.read_var_onelevel('../../MPI-ESM/' + ifile,\n",
+    "                                                              'u', 'plev', 850)\n",
+    "    del ifile\n",
+    "    \n",
+    "    # IPSL-CM5A\n",
+    "    #print('   IPSL-CM5A')\n",
+    "    ifile = 'IPSL-CM5A_' + run + '_3d_mm.remapcon.uwind.nc'\n",
+    "    u850_ipsl[run], lats_ipsl, lons_ipsl = fct.read_var_onelevel('../../IPSL-CM5A/' + ifile,\n",
+    "                                                                 'vitu', 'presnivs', 850)\n",
+    "    del ifile\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (CMIP5 models)\n",
+    "\n",
+    "Note: All simulations were interpolated to the same grid and stored in numpy arrays with the jupyter notebook \"interpolate_cmip5_data_to_common_grid.ipynb\"."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ipath = '../../cmip5/'\n",
+    "ntime = 360 # length of cmip/amip simulations in months (30 years)\n",
+    "\n",
+    "# coupled models: historical and RCP8.5 simulations\n",
+    "# create arrays with dimensions (ntime, number of models, lats, lons)\n",
+    "u850_hist = np.full((ntime, len(models_cmip), len(lats), len(lons)),\n",
+    "                    np.nan, dtype=float)\n",
+    "u850_rcp85 = np.full((ntime, len(models_cmip), len(lats), len(lons)),\n",
+    "                     np.nan, dtype=float)\n",
+    "for m, model in enumerate(models_cmip):\n",
+    "    u850_hist[:, m, :, :] = np.load(ipath + model + '_u850_historical.npy')\n",
+    "    u850_rcp85[:, m, :, :] = np.load(ipath + model + '_u850_rcp85.npy')\n",
+    "del m, model\n",
+    "\n",
+    "# atmosphere models: amip, amip4K and amipFuture simulations\n",
+    "# create arrays with dimensions (ntime, number of models, lats, lons)\n",
+    "u850_amip = np.full((ntime, len(models_amip), len(lats), len(lons)),\n",
+    "                    np.nan, dtype=float)\n",
+    "u850_amip4k = np.full((ntime, len(models_amip), len(lats), len(lons)),\n",
+    "                      np.nan, dtype=float)\n",
+    "u850_amipfut = np.full((ntime, len(models_amip), len(lats), len(lons)),\n",
+    "                       np.nan, dtype=float)\n",
+    "for m, model in enumerate(models_amip):\n",
+    "    u850_amip[:, m, :, :] = np.load(ipath + model + '_u850_amip.npy')\n",
+    "    u850_amip4k[:, m, :, :] = np.load(ipath + model + '_u850_amip4k.npy')\n",
+    "    u850_amipfut[:, m, :, :] = np.load(ipath + model + '_u850_amipfut.npy')\n",
+    "del m, model\n",
+    "del ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean for all simulations"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/mnt/lustre02/work/bb1018/b380490/outputdata/ERL2021_data/pythonscripts/helper_functions.py:64: RuntimeWarning: Mean of empty slice\n",
+      "  monthly_mean[month] = np.nanmean(monthly_data[month], axis=0)\n",
+      "/mnt/lustre02/work/bb1018/b380490/outputdata/ERL2021_data/pythonscripts/helper_functions.py:71: RuntimeWarning: Mean of empty slice\n",
+      "  seasons_dict[season] ], axis=0)\n"
+     ]
+    }
+   ],
+   "source": [
+    "# ICON\n",
+    "u850_icon_djf = {}\n",
+    "for run in runs_cld:\n",
+    "    u850_icon_djf[run] = fct.calcMonthlyandSeasonMean(u850_icon[run],\n",
+    "                                                      months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "# MPI-ESM and IPSL-CM5A\n",
+    "u850_mpi_djf = {}; u850_ipsl_djf = {}\n",
+    "for run in runs_cldvap:\n",
+    "    u850_mpi_djf[run] = fct.calcMonthlyandSeasonMean(u850_mpi[run],\n",
+    "                                                     months, seasons)[1]['DJF']\n",
+    "    u850_ipsl_djf[run] = fct.calcMonthlyandSeasonMean(u850_ipsl[run],\n",
+    "                                                      months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "# coupled CMIP5 models\n",
+    "u850_cmip_djf = np.full((len(sims_cmip), len(models_cmip), len(lats),\n",
+    "                         len(lons)), np.nan, dtype=float)\n",
+    "u850_cmip_djf[0, :, :, :] = fct.calcMonthlyandSeasonMean(u850_hist, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "u850_cmip_djf[1, :, :, :] = fct.calcMonthlyandSeasonMean(u850_rcp85, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "\n",
+    "# atmosphere CMIP5 models\n",
+    "u850_amip_djf = np.full((len(sims_amip), len(models_amip), len(lats),\n",
+    "                         len(lons)), np.nan, dtype=float)\n",
+    "u850_amip_djf[0, :, :, :] = fct.calcMonthlyandSeasonMean(u850_amip, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "u850_amip_djf[1, :, :, :] = fct.calcMonthlyandSeasonMean(u850_amip4k, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "u850_amip_djf[2, :, :, :] = fct.calcMonthlyandSeasonMean(u850_amipfut, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "\n",
+    "# model mean for historical and amip simulations\n",
+    "u850_cmip_djf_mm = np.nanmean(u850_cmip_djf, axis=1)\n",
+    "u850_amip_djf_mm = np.nanmean(u850_amip_djf, axis=1)\n",
+    "\n",
+    "# delete variables with time information\n",
+    "del u850_icon, u850_mpi, u850_ipsl\n",
+    "del u850_hist, u850_rcp85, u850_amip, u850_amip4k, u850_amipfut"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF responses"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# ICON\n",
+    "du850_icon = u850_icon_djf['T2C2'] - u850_icon_djf['T1C1']\n",
+    "# MPI-ESM\n",
+    "du850_mpi = u850_mpi_djf['T2C2W2'] - u850_mpi_djf['T1C1W1']\n",
+    "# IPSL-CM5A\n",
+    "du850_ipsl = u850_ipsl_djf['T2C2W2'] - u850_ipsl_djf['T1C1W1']\n",
+    "\n",
+    "# CMIP5\n",
+    "du850_rcp85 = u850_cmip_djf[1, :, :, :] - u850_cmip_djf[0, :, :, :]\n",
+    "du850_amip4k = u850_amip_djf[1, :, :, :] - u850_amip_djf[0, :, :, :]\n",
+    "du850_amipfut = u850_amip_djf[2, :, :, :] - u850_amip_djf[0, :, :, :]\n",
+    "\n",
+    "# model mean\n",
+    "du850_rcp85_mm = np.nanmean(du850_rcp85, axis=0)\n",
+    "du850_amip4k_mm = np.nanmean(du850_amip4k, axis=0)\n",
+    "du850_amipfut_mm = np.nanmean(du850_amipfut, axis=0)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Determine where responses are robust (CMIP simulations) and where ICON, MPI-ESM and IPSL-CM5A disagree with the robust amip4K response"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:58: RuntimeWarning: invalid value encountered in less\n",
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:60: RuntimeWarning: invalid value encountered in greater\n",
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:63: RuntimeWarning: invalid value encountered in less\n",
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:65: RuntimeWarning: invalid value encountered in greater\n",
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:68: RuntimeWarning: invalid value encountered in less\n",
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:70: RuntimeWarning: invalid value encountered in greater\n"
+     ]
+    }
+   ],
+   "source": [
+    "# find indices, where 9 or more AMIP models agree on response\n",
+    "# 9 or more models should agree on the sign: set threshold to 7 (9-2)\n",
+    "# (because we sum over all models and positive and negative signs might cancel\n",
+    "#  each other out)\n",
+    "# 9 models agree on sign: sum = 7 or sum = -7\n",
+    "mask_thd = 7\n",
+    "mask_model_amip4k = np.sign(du850_amip4k)\n",
+    "mask_model_amipfut = np.sign(du850_amipfut)\n",
+    "\n",
+    "# calculate sum over mask_model arrays along axis of models\n",
+    "# -> how many models agree on the sign\n",
+    "mask_sum_amip4k = np.nansum(mask_model_amip4k, axis=0)\n",
+    "mask_sum_amipfut = np.nansum(mask_model_amipfut, axis=0)\n",
+    "\n",
+    "# apply threshold to mask_sum arrays\n",
+    "mask_u850_amip4k = np.logical_or(mask_sum_amip4k >= mask_thd,\n",
+    "                                 mask_sum_amip4k <= -1*mask_thd) * 1\n",
+    "mask_u850_amipfut = np.logical_or(mask_sum_amipfut >= mask_thd,\n",
+    "                                  mask_sum_amipfut <= -1*mask_thd) * 1\n",
+    "\n",
+    "del mask_model_amip4k, mask_model_amipfut\n",
+    "del mask_sum_amip4k, mask_sum_amipfut\n",
+    "del mask_thd\n",
+    "\n",
+    "##############################################################################\n",
+    "# find indices, where 30 or more coupled CMIP5 models agree on response\n",
+    "# 30 or more models should agree on the sign: set threshold to 23 (30-7)\n",
+    "# (37 models in total)\n",
+    "# (because we sum over all models and positive and negative signs might cancel\n",
+    "#  each other out)\n",
+    "# 30 models agree on sign: sum = 23 or sum = -23\n",
+    "mask_thd = 23\n",
+    "mask_model_rcp85 = np.sign(du850_rcp85)\n",
+    "\n",
+    "# calculate sum over mask_model arrays along axis of models\n",
+    "# -> how many models agree on the sign\n",
+    "mask_sum_rcp85 = np.nansum(mask_model_rcp85, axis=0)\n",
+    "\n",
+    "# apply threshold to mask_sum arrays\n",
+    "mask_u850_rcp85 = np.logical_or(mask_sum_rcp85 >= mask_thd,\n",
+    "                                mask_sum_rcp85 <= -1*mask_thd) * 1\n",
+    "\n",
+    "del mask_model_rcp85, mask_sum_rcp85, mask_thd\n",
+    "\n",
+    "##############################################################################\n",
+    "# find indices, where sign of robust response in amip4K simulations does not\n",
+    "# agree with ICON, MPI-ESM and IPSL-CM5A\n",
+    "mask_model_icon = np.full((len(models_amip), len(lats), len(lons)),\n",
+    "                          np.nan, dtype=float)\n",
+    "mask_model_mpi = np.full((len(models_amip), len(lats), len(lons)),\n",
+    "                         np.nan, dtype=float)\n",
+    "mask_model_ipsl = np.full((len(models_amip), len(lats), len(lons)),\n",
+    "                          np.nan, dtype=float)\n",
+    "\n",
+    "for m in range(len(models_amip)):\n",
+    "    mask_model_icon[m, :, :] = \\\n",
+    "      np.logical_or(np.logical_and(du850_icon * mask_u850_amip4k > 0,\n",
+    "                                   du850_amip4k[m, :, :] * mask_u850_amip4k < 0),\n",
+    "                    np.logical_and(du850_icon * mask_u850_amip4k < 0,\n",
+    "                                   du850_amip4k[m, :, :] * mask_u850_amip4k > 0)) * 1\n",
+    "    mask_model_mpi[m, :, :] = \\\n",
+    "      np.logical_or(np.logical_and(du850_mpi * mask_u850_amip4k > 0,\n",
+    "                                   du850_amip4k[m, :, :] * mask_u850_amip4k < 0),\n",
+    "                    np.logical_and(du850_mpi * mask_u850_amip4k < 0,\n",
+    "                                   du850_amip4k[m, :, :] * mask_u850_amip4k > 0)) * 1\n",
+    "    mask_model_ipsl[m, :, :] = \\\n",
+    "      np.logical_or(np.logical_and(du850_ipsl * mask_u850_amip4k > 0,\n",
+    "                                   du850_amip4k[m, :, :] * mask_u850_amip4k < 0),\n",
+    "                    np.logical_and(du850_ipsl * mask_u850_amip4k < 0,\n",
+    "                                   du850_amip4k[m, :, :] * mask_u850_amip4k > 0)) * 1\n",
+    "del m\n",
+    "\n",
+    "mask_thd = 9 # icon should agree with 9 or more models\n",
+    "mask_u850_icon_na = (np.nansum(mask_model_icon, axis=0) >= mask_thd) * 1\n",
+    "mask_u850_mpi_na = (np.nansum(mask_model_mpi, axis=0) >= mask_thd) * 1\n",
+    "mask_u850_ipsl_na = (np.nansum(mask_model_ipsl, axis=0) >= mask_thd) * 1\n",
+    "\n",
+    "del mask_model_icon, mask_model_mpi, mask_model_ipsl\n",
+    "del mask_thd"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate jet latitude in model-mean historical, model-mean amip, ICON, MPI-ESM, and IPSL-CM5A control simulations for the Northern Hemisphere"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# latitudes in Northern Hemisphere\n",
+    "latind0 = (np.abs(lats-0)).argmin() + 1\n",
+    "lats_NH = lats[latind0:]\n",
+    "\n",
+    "# shift longitudes from 0deg...360deg to -270deg...90deg for visualization reasons\n",
+    "# and look at NH\n",
+    "u850_cmip_mm_shift, lons_shift = fct.shiftgrid_copy(90.,\n",
+    "                                                    u850_cmip_djf_mm[0, latind0:, :],\n",
+    "                                                    lons, start=False)\n",
+    "u850_amip_mm_shift, _ = fct.shiftgrid_copy(90.,\n",
+    "                                           u850_amip_djf_mm[0, latind0:, :],\n",
+    "                                           lons, start=False)\n",
+    "u850_icon_shift, _ = fct.shiftgrid_copy(90.,\n",
+    "                                        u850_icon_djf['T1C1'][latind0:, :],\n",
+    "                                        lons, start=False)\n",
+    "u850_mpi_shift, _ = fct.shiftgrid_copy(90.,\n",
+    "                                       u850_mpi_djf['T1C1W1'][latind0:, :],\n",
+    "                                       lons, start=False)\n",
+    "u850_ipsl_shift, _ = fct.shiftgrid_copy(90.,\n",
+    "                                        u850_ipsl_djf['T1C1W1'][latind0:, :],\n",
+    "                                        lons, start=False)\n",
+    "\n",
+    "jetlat_hist_mm_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "jetlat_amip_mm_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "jetlat_icon_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "jetlat_mpi_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "jetlat_ipsl_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "for lo in range(lons_shift.size):\n",
+    "    # historical simulation\n",
+    "    jetlat_hist_mm_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH_nan(u850_cmip_mm_shift[:, lo],\n",
+    "                                     lats_NH, lons_shift[lo])\n",
+    "    # amip simulation\n",
+    "    jetlat_amip_mm_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH_nan(u850_amip_mm_shift[:, lo],\n",
+    "                                    lats_NH, lons_shift[lo])\n",
+    "    # ICON\n",
+    "    jetlat_icon_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH(u850_icon_shift[:, lo], lats_NH)\n",
+    "    # MPI-ESM\n",
+    "    jetlat_mpi_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH(u850_mpi_shift[:, lo], lats_NH)\n",
+    "    # IPSL-CM5A\n",
+    "    jetlat_ipsl_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH_nan(u850_ipsl_shift[:, lo],\n",
+    "                                    lats_NH, lons_shift[lo])\n",
+    "del lo\n",
+    "\n",
+    "del u850_cmip_mm_shift, u850_amip_mm_shift, \\\n",
+    "    u850_icon_shift, u850_mpi_shift, u850_ipsl_shift\n",
+    "del lons_shift"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Prepare plot of u850 response\n",
+    "\n",
+    "Shift the longitudes from 0deg...360deg to -90deg...270deg for visualization reasons and select the North Atlantic region (otherwise it is very slow to add the dots for the regions, in which the response is significant in the CMIP5 models, and the hatching for the regions, in which the response in ICON, MPI-ESM and IPSL-CM5A does not agree with the robust amip4K response)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# shift longitudes\n",
+    "lons_plot = fct.shiftgrid_copy(90., du850_icon, lons, start=False)[1]\n",
+    "\n",
+    "# North Atlantic region\n",
+    "lonind_west = (np.abs(lons_plot--90)).argmin() # find index of 90°W\n",
+    "lonind_east = (np.abs(lons_plot-35)).argmin()  # find index of 35°E\n",
+    "latind_sout = (np.abs(lats-20)).argmin()       # find index of 20°N\n",
+    "latind_nort = (np.abs(lats-80)).argmin()       # find index of 80°N\n",
+    "\n",
+    "lons_plot = lons_plot[lonind_west:lonind_east+1]\n",
+    "lats_plot = lats[latind_sout:latind_nort+1]\n",
+    "\n",
+    "# MPI-ESM uses slightly different latitudes\n",
+    "latind_sout_mpi = (np.abs(lats_mpi-20)).argmin() # find index of 20°N\n",
+    "latind_nort_mpi = (np.abs(lats_mpi-80)).argmin() # find index of 80°N\n",
+    "lats_mpi_plot = lats_mpi[latind_sout_mpi:latind_nort_mpi+1]\n",
+    "\n",
+    "# shift zonal wind fields and masks\n",
+    "du850_rcp85_plot = fct.shiftgrid_copy(90., du850_rcp85_mm, lons,\n",
+    "                                      start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                      lonind_west:lonind_east+1]\n",
+    "mask_rcp85_plot = fct.shiftgrid_copy(90., mask_u850_rcp85, lons,\n",
+    "                                     start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                     lonind_west:lonind_east+1]\n",
+    "du850_amipfut_plot = fct.shiftgrid_copy(90., du850_amipfut_mm, lons,\n",
+    "                                        start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                        lonind_west:lonind_east+1]\n",
+    "mask_amipfut_plot = fct.shiftgrid_copy(90., mask_u850_amipfut, lons,\n",
+    "                                       start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                       lonind_west:lonind_east+1]\n",
+    "du850_amip4k_plot = fct.shiftgrid_copy(90., du850_amip4k_mm, lons,\n",
+    "                                       start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                       lonind_west:lonind_east+1]\n",
+    "mask_amip4k_plot = fct.shiftgrid_copy(90., mask_u850_amip4k, lons,\n",
+    "                                      start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                      lonind_west:lonind_east+1]\n",
+    "\n",
+    "du850_icon_plot = fct.shiftgrid_copy(90., du850_icon, lons,\n",
+    "                                     start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                     lonind_west:lonind_east+1]\n",
+    "mask_icon_plot = fct.shiftgrid_copy(90., mask_u850_icon_na, lons,\n",
+    "                                    start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                    lonind_west:lonind_east+1]\n",
+    "\n",
+    "du850_mpi_plot = fct.shiftgrid_copy(90., du850_mpi, lons,\n",
+    "                                    start=False)[0][latind_sout_mpi:latind_nort_mpi+1,\n",
+    "                                                    lonind_west:lonind_east+1]\n",
+    "mask_mpi_plot = fct.shiftgrid_copy(90., mask_u850_mpi_na, lons,\n",
+    "                                   start=False)[0][latind_sout_mpi:latind_nort_mpi+1,\n",
+    "                                                   lonind_west:lonind_east+1]\n",
+    "\n",
+    "du850_ipsl_plot = fct.shiftgrid_copy(90., du850_ipsl, lons,\n",
+    "                                    start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                    lonind_west:lonind_east+1]\n",
+    "mask_ipsl_plot = fct.shiftgrid_copy(90., mask_u850_ipsl_na, lons,\n",
+    "                                   start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                   lonind_west:lonind_east+1]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot maps of u850 response in DJF for RCP8.5, amipFuture, amip4K, ICON, MPI-ESM and IPSL-CM5A"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAGoCAYAAABMsNRRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydZ3gVRReA35NKQhFCUzpIEZHyAVJEBBFBERRBsQFSFRFRVETpHaQICEoRFBBBBRFBOggivUmRzk1ChwAJIaEkJJnvx2xuNjf3JvcGQoLu+zz7ZHb2TNnN3bNTzpwRpRQWFhYWFhYWFhYWFhYW7uOV2RWwsLCwsLCwsLCwsLC417A6UhYWFhYWFhYWFhYWFh5idaQsLCwsLCwsLCwsLCw8xOpIWVhYWFhYWFhYWFhYeIjVkbKwsLCwsLCwsLCwsPAQqyNlYWFhYWFhYWFhYWHhIVZHKoMRkdoi8rOInBWRWBG5LCKrReRNEfE2ZOqLiDKORk7yKCEiCcb1Tqb4dkZcaVPcTFNeSkQuisgGEXnGIc9QB7nEo7kb97TeIU2UiGwSkeddyIuIvCEia437vyUip0XkRxF50iQ30CHfKyKyXURed8gvUEQGichREbkhIqdEZLaIlHCj7u3E+X3vSSuthcXt8m/UB6Y8AkQk0khXOX1PKNX8E59L/XSkdfXeKxFp6GFeuQ1dVdXTelhYZEUsvZR+bkcvOclrhZHXUBdlNHSIL2U8o1ARKXW75VukD6sjlYGIyAfAJiAI6AU0BDoAR4HJQFOHJFFAGydZtQWiPSj6IlDbODoDAiwTkacc5Faa5BKPP90sY58pTUcgO7BQRGqahQwl/DMwCwg1ZJ9CP49swFoRuc8h78eNfF8HzgA/iEgH0/XpQE/gG6AJ0Bd4wsgrh5v1f5nk9+3suVtY3DH+5foAoAWQy1THO81udJ1230Yeju99bWC7h3nkBgYAVkfK4p7H0ku3zZ3QS4jIa4DbHT0RKQdsAOKAJ5RSwbdTvsVtoJSyjgw40A37BOBLF9cfBCoZ4fqAAmaiFVF2B9ljwHeGTCdTfDsjrrQpbiZw2iF9LuAKsNgUFwrMSee9rQc2OsQVMe53ikN8X6OOLV3k1QgINMIDDVkf03Uf4/73GecBaMUx3CGfZ4y0jdOoe4pnZh3WkdHHv1kfmPJYBVwGtgLnAe/Mfu6pPZvbyKuE47O/Q3X0z+znZB3/rcPSS1njQA/OnAdeM57VUIfric++oXFewZA/BBTK7Pr/1w9rRirj+BQIBz5xdlEpZVNK7XOIXoh+WVokRojIY2hl9n16K6KUuooeXSqdluxtlHEaPcJULDFORPyAj4ClSqlfXKRbpZS6nkq+ccDfJNXdB/AGrjqIXjH+Wr9pi6zIv1ofiEhh9Ezzj+gZ44JAYydyoSIyR0TaiMgR0aa5f4lIGRHJLiJTDbOiCyIyVkR8TGlTmNCINjPeKCIviMg/IhIjIodFpFU67iHRBKmEQ/xAEVFGuAQQYlz6xmRq1M50fzOd5K1EZKBjniLyiIisFJFo9Mx94vUWIrJVRK6LNnGeLyLFHPO1sLhNLL1EltBLo4ADSql5btxTFfRgdhhQTyl11v0nYpERWI3ODMAwZ6sPrFJK3fQg6XXgF5JPm7dFT7une9rWeOmLktTZSKSZ8aGOMT7abtsdOykjJ5AXsJmiq6NHWhanN1+Dkhh1V0pFoZV1dxF5UkRyiEgFYDSwF1jrZp4bRSReRM6JyBQRCbrNOlpYOOU/og/aoL8ns9EdgpvAmy5knwC6os2I3kQ3wH4BfkCbDb0KTAM+BN5yo+zSwJfAWHTj7jiQbP2lCW8R8TEd3u7dnp1zJDUgR5BkarTUw3wS+Q1tpvQ8MA5ARLqgn8dB4CXgbeAR4E9Dz1pY3DaWXkpBpuglEXkc/fy6upHno8AfwCngSaVUmBtpLDIYn7RFLNJBPrQJ2ol0pJ0NrDZGUi4BrdAvtkeYRkzuB/oZfz83iSwBdqBHVwsC3YBfRaSNUmqOh2UURY+ohGM0Bkzx4Plz8BYR0Dbb76A7ZBNM19ujFdQfprhtwNNKqdg08j4HDDbkbwB10M+3jog86uEHxcLCHf4L+qAtcEQptc0obxHwoojkVko5NoxyAM8opSIN2fvR7/d2pdTHhsxqEXkOvabp6zTKLgjUVkptNfJbARxAv+d1HWQPO5xvQq/JdAulVIyI/G2cBieWeRt8qZSy6zbRazw/B75TSnUwxW9Dj9Z3BMbfZpkWFmDppUzXSyLiC0wFxiiljrhxP8OBSHRb57Ib8hZ3AasjlfVYB5xGO1oIQSu6n4E8HuRRGLhlOo8G+qM7HwAopd4zJxCRX9E2xCMAdxRUHYcyYtAv951Y8GjuzMSiGw6fmeKGAq2Bj9FKthh68fdyEamnlLrmKmOl1Er04tVE1onIfmCRkef0O1B/C4s7RZbXByJSAyiPXg+ZyCz0CG4r9CiumS2JjRWDxM7NSge5w0CN1Mo2OGXu0Cil4kVkPvCJiHgppRJMsi+in2ciUW7kn5H86nBeG71W5Aez+RC6zofRo+ZWR8ois7H0Utq4o5d6oZ/dMDfyAz3z/RwwWkQ6KqUXTFlkLlZHKmO4jJ7tKO5pQqWUEpEf0FPSJ9ALLyNFxBMFFYZ+2ZRRl1NKqfg0yk18yT8XkQeUUufSKGMv0Am9XqkCehRpvohUVEpdNGROGX89fQ61gHggAjiplLIrW8OM71P0YtYZpvjEEdtOJJ+9cofFwDX0tLnVkbK40/zb9UGiqcwSEclthHeg10y+ScoGS4TDeWwq8dlSq6fBBRdxfkB+h+v/KKWOu5Hn3cLxuRYw/q5xIe/4jCws0oull5JzV/WSiPgDfdBtFn/jPBF/o85RDs9kPNrL6CD04PU7btTDIoOxOlIZgFIqTkTWA0+LiL9SKsbDLGajZ2AqoG3nPeWWUmpnOtKJ8dedUY5oUxnbRCQEbWo3EHjXiN+JtnduRkqllRq7DCcTzqho/N1hjlRKHRORK+gRqPRije5Y3HH+zfpAtEOZV43TvU5E8otI6QzuvBR0EReLbjS5S+JMuJ9DfF4P80iWPo31l47PNtFcpx3aDMiRzJ5Bs/iXYOmlTNdLT6A7ZM5m1j42jv8Byfa4VEoNNjpdvUXkplKqxx2ttYXHWM4mMo6R6A/waGcXRaSkiFRydk0pdRj4ClhAymnlDMEwI3kZPQN03tP0Sql1aDOVTiJSxIiLRS+0bCoiLV2U+7SIBHpQVGLdkk2ti0hZtGOLM57WHWiO3gdrWzrSWli4w79VHzRDr2UcBDzpcCQ2ZDJi7xYzRUWkVuKJsYj+ZfTahgTXyVKQuFbkEVNePugtGswkNjgDXOTxiEOc4z48qbEZ3VkqrZTa6eRwZx2FhYW7WHop40hLL+1xUrdERxRzjLDTjp5Sqg/wBfCBiIzIsDuwcAtrRiqDUEptEJEPgS9EpDx634STaBvip9DTua+jN7Z1lr5bRtVN9MZvLwDL0OZ3BdGzSNXQ+xikl/5Gvr2ARNvmEehN5n4S7RZ4CdopRRGgJdqbjSfmAH+hR5jGGmYEO9FrpPqiF2HOShQUkf5GnR5USp0w4laj7bv/IcnZxMdGnnM9vWELC3f4F+uDN9FrG8YopVJsxikiPYC2IjIgA+35L6D1ywD0SO87QFk8N3vZgfY6OlpEvNAdpq6Av4PcBfTM0asisg9tFhxiLP7+EfhWRMYBv6N1Xzt3K6CUuioiPYGvRCQ/sByt1woD9YD1SilLT1ncESy9lHl6yXB2sd5J3QBOKKVSXDOjlPrImJn6VERilFID72TlLdzH6khlIEqp8SKyHegBjEF7yYlCN/7fRncqMoMQtC3+aPSozXV0I+IZwxlDulBK/SMiP6FnpYYrpc4ZNs2tgDfQHqdmor3jXEB3iuo5LPBMq4x40Tuf90a7IB2M9hq0GeivlDppEvdCr+ESU9wBtF13EXQD6RQwBRiSDtMGCwu3+bfpA6Oh/yww21ljxWAG2qy3Hk4aDXeI42ivocOBMuhNPF8zZsndxjB1egE9yj4TPeAzHj1TPcAklyAinYzy1qC/o+2NNLPQ3ko7ov+nf6EdXLhtQqSUmioip4Ce6EasL3qmfQMOZj4WFreLpZeytl5Kg/fQ7ZgBInJDKfV5Wgks7jxiOf2wsLCwsLgXMdZ4+Cil3HZhbmFhYZGRWHrpv4W1RsrCwsLCwsLCwsLCwsJDrI6UhYWFhYWFhYWFhYWFh1imfRYWFhYWFhYWFhYWFh5izUhZWFhYWFhYWFhYWFh4iNWRsrCwsLCwsLCwsLCw8JB7uiMlmr0i8qYHab4SkRkZWS9PEJGJIrLEdF5cRH4TkRMickNELonIehF51iHdQBFRLo6bd/9O3EdEQo09pTxNN1BEPLJFNZ7lV56WZfHfxVGvGL/XMWmkqS4il0XkvrtTy9Rx1CtG3HARWWXUU4lIOxdp3xSRXwwdpNLzrmYG6dEPRroSqT0PF2leFJHzIpLD0/Is/nt42lbJau2URCy94lE6S6/8R7inO1JAK/TGcZ5sUDgaeENESmdMldxHRB5E79MwyBSdA70vUl+gCXo/kmhgmYi0MMlNB2o7HA2BOGBxhlf+3mEg0FlEymZ2RSzuGTzWK0qpneg9fnpkVKXcxYVeAb3nSAB6o9jUaA08CKwGrt7xCv47WAScR+/1ZGGRFp7qlCzTTknE0it3BUuv3IPc6x2p7sD3Sqlb7iZQSoUCG/F81/uM4ANgr9EIA0ApdUAp1VEp9b1Sap1S6jegOXAaveljotxppdRW8wEUQm8OOesu30eWRSn1N7qB+0Fm18XinsFjvWLwHdBFRDJ7o/MUesXgPqVUXWBIGukbK6WqKKU6oTfmtHBAaS9N04BuIpIts+tjkeXxSKdksXZKIpZeyWAsvXJvcs92pIyRmseABaa4tiKyUUTCRSRCRNaJSHUnyX9Bj/Zk2v2LiD96hCbNESqlVBwQCaSlhN8ELgAud/02la9EZKiIfGRMtV8TkaUiUsA4fhaRSBE5JSK9nKSvISJrRCTaSLtWRGo4kXvfMI26KSI7RaSui/qUFJEfROSiiMSIyB4RedGN+3hfRA6JNoOMMMpwTPcj+v8dkFZ+Fv9tnOkV07V+htlFtPFbdTTjWwwEAY3vQlWdkppeUUoluJOHu3Iuyp8pIqcNU8fNxnt5RESeM65/aOiDq6LNbvM7pM8lIpNE5KyhB46ISA8REQe5/4nIX4ZeOSMi/YBkMoacj4h8JiKHjfzOisjYtBopIvKoiKw2zJWui0iwiHztIPYzkBto4SQLCwvAtU4Rkc4ist/4DV8QkQUOOiXT2ymJWHolRX0svWJhJ9Nf0NvgKeAasNcUVwKYDbwMvI6exdkgIqUc0m4GCgIVM76aLqmFfln+cnZRRLyMl/V+42UuC7hc6yMiRYAngR+Mjpc7tAEaAF3R0/N10c/vV2Af0BJYBowUkSamsioBf6JNFdoBbYFcwJ8iUtkk1xEYD6xDz6rNBOYZ6cx1LwpsAyqjTaOeB3YDv4jI86nc8xvAWCPPJsAb6I9VkIPoBqN+td14Jhb/bZzpFYDX0KaznYEPgefQ5rV2lFJXgQOGXGaRql65S+RC65HpwItAGPpdHovWUe+iR7efxKTTjAbjUvTM+1igGbAC+AIYZpLLB/wB5EMPHr0LPAN0cFKXOWgz6bno/9kItLn0D64qL3p9wkogHq3fmgCD0bP9dpRSl4BDRtkWFq5IoVNEpC8wFf0dbY6eeYpEm/YnkhXaKYlYeiU5ll6xSEIpdU8e6OnPHalc90L/QA8D/R2u+aDXEnXOxPr3AhIAPxfXxwDKOKKAFmnk95khW8nN8hVwFPAxxX1hxPd1eFZhwHemuAXAFSC3KS4XEA4sND3/U8AKh3JfMcqYaYqbAVwE8jrIrgb2mM4HYsx+G+eTgN1u3KsvWnn1zuzfrXVk7cOZXgFCjd92DlPcG8b7W95BdiawKRPrn6peMWRKG+9gOzfyO21+V92Qn2nk/YQprpIRdwTwNsV/gZ5l9zbOmzqrF7rhFAPkM86HAbFAMZNMdvTaUmWKq2vk19YhvzeM+CrGeQlzuUB1d3Up8D1wNLN/t9aRdQ9HnYLukFwHvkgjXaa3U0x1sfRKUpylV6wj2XEvz0jdj/6B2xGR8iLyq4hcQDecbwHl0LM5dpSesbli5JFZFAKuKqViXVwfDzyKHj1ZDswVkaap5NcW+Fsptc+DOqxWyWevDht/7aaBxvXjQFGT3BPA70qpKya5q2jTpnpGVBHj+NmhzF/QHwczz6BnviKNWTgf0etMVgKVRSSXi/rvAKqI9iTUUEQCnQkpbZceiX7mFhapkUKvGKxWSkWbzheiTT4edZC7RNbWK3eDa0qpDabzRL2yRikV7xDvAzxgnD+BbqzNc8hvDuBH0oxybWCrUupkooBS6hqwxCHdM+iG0S8OemWVqTxnHEN/H6aKSGtjxtwVF7H0ikXqOOqU2mjnDN+lliiLtFMSsfRKEpZesUjGvdyRyoYeTQBARHKif8hF0aY3ddGNnL2GrCMxLuLvFsnq74jSziR2KqV+V0q1AraiZ6lSIHpt0kN47mQiwuE8NpV487MKAs45ye88SWZ7iUrsglnA+DhcdkhXAN0RvOVwjDau53VR/9lok4ia6E5XuIgsFJESTmRvoD9eFhap4eq9DDOfKKVuoL1pPuAgl6X1yl3iivnE1PhypW8Sn1cQEK6Ucqz/edN10M/8AilxjCuAbihFk1yvJP4vneoVpVQk2jzoLPA1cFJE/hGRlk7Eb5C5/2+LrI/jO5n4u3P2DXUks/VJIpZeScLSKxbJyGzvUrdDOMlHamqjZ0CeVkoljlQgrvd1yW3kkVlcxmGtUBrsxLXnuTfRszyeuIG/HRyffSL3k/RMEz8SBc0CxsiNo6K5jLa9/txFeWedRSqlFNrOfKqI5AEaoW2gf0J3rswE4XymwcLCjKvfdgHziWjHJTlI2Ri61/RKViIcCBIRP4eR78T/R+IAzDkc9IqBY9xl4CZ6UM0ZTvUKgFJqD9DS0FfV0abTP4tIZaXUPybRIFIODFlYmHHUKYm/lwdI+5uU2fokEUuvJGHpFYtk3MszUkeAkqbzxNkG8yzVY2g71WQYHl0C0WuEMovDgK/hJCJVjMWSjwM2J9f8gFeBZUqpi3e8ls75E3jOmAVMrEdOtBnin0bUafQaqVYOaVuSsgO/Am3vfMCYhXM80hwJU0pFKKV+QpsSPmK+JiL3o0d3jrh9hxb/VRz1SiJPS/JNElug7d0dXQGX4B7RK1mQP9HfpJcd4t9AjzJvNc63ALXMpjEikh2tf8ysQL/397nQKy4bPIkopeKU3lqin1G38g4iJbH0ikXqOOqULegZh1Q3580i7ZRELL2ShKVXLJJxL89IbQL6i0h+owOxFT3V+o2IjELPTg0EzjhJm7job/NdqqszEm19a6A7HYDeRRs9GrEJPfV8P9obTA20J0JHmhryd3PvqCFGuWtF5HP0s+yFVvqDQbs6FZFBwHQR+Q7tgrw0egTGcTO+/sB2tIfFSejF/XnQHaJSSilnXnMQkWloRxxb0NPqZdGeCFc5iCbOTm3AwiJ1HPVKIjeApSIyGj2SPBr4VSl10CF9dVzPrN4NnOoVABGpB+QnaSS2uohEAyilzNtIPAw8bJwGAMVF5CXj/M8MHLBZjt47Z4rRiDyA9mzVCRihtDcrgHFoT6OrDH0Zg97A8oY5M6XUehGZBywQkS/QOiYB3dltAvRSSqVopBprUd9Cb44Zgl5w3p0kXZMol7hGbvIduHeLfy/JdIpS6oqIDAGGGQOhywB/tPe3QUqpxDZLVminJGLpFQNLr1ikILO9XaT3QNuoXgbamOKeAf5B//D3oX/U64EFDmknAOuywD1sw+QNz4h7Hu2CMwz9Ip9AO3Go4yKP34zn4NKbjot0ChjqENfOiC/tEL8e2OgQVxNYg+68XgPWAjWclPO+cQ830aP3j6M7SjMd5IqgveicQY8SnUN77WttkhlIcu85bxp1S3xWIWhlmMsh72+AnZn9/7aOrH+40CuhaJPRgWh7+Wvohcu5HdL+D+ODmsn3kEKvGPHrSfIEmuxwkBvoSg6on0bZM4HTTuLd0jdo75+TjPc/Fj0a3wMQh7RV0ebANw2d0Q8Y5ORevAwdtNeQjTTCo9AjypDSu1Y5tHlwiJHmIrqxW9Mh7zpGukcy+3drHVn3cKZTjPi3gYPGt+s82poil+l6lminmOpj6ZUkOUuvWIf9EOMfd08iIhPQL8tzHqTxRjfsP1VKzcmwyrlXl3ZoZfmAUup6Ztbl34qxQd454GOl1IzMro9F1ic9esVINwJ4VCmVmftIWXrlLiEik9GNHVdrJSwsAM91SlZqpyRi6ZW7g6VX7j3SXCMlerdo5eRYapLpKiIhoneD3iUidV3k4Rg/UETMC+w8ZTRQX0TKpimZxMvoGasfb6PcO8X36FGPrpldkX8xb6NnrO6m6aPFvY3HesWwpe8MDM2wWrmPpVcyGGPd5ZtAn8yui8U9gac6JSu1UxKx9EoGY+mVexN3nE08il4TkHhURU87/gwgIq+gRymGo01bNgPLRaSYQz43ucNrB5RSp9HrhxxdEKeGAB1V8v2TMgWl9z7ogN6czyJjiEFPrWf6/9vi3iCdeqUYMFgptT5DKuUBll65K5QAPlLJ97WxsHBKOnRKlmmnJGLplbtCCSy9cs/hsWmfiPRBL8ArpJS6LiLbgH1Kqc4mmWPodUmfGeeh6LU8bwFvKKUWGvEDgZeUUo9gYWFhYWFhYWFhYWFxj+CR+3PDm0hHYI7RifIDqpHSS9oq4DGHuFPARGCE4UPfwsIikxFNexHxzey6WFhY/DsQET9Dr0hm18XCwuLfgYjkEpHXMrsejnjaoXka7d9+unGeD/Am5c7PFwBnC65HoF1OdgKmpFWYiLyFnsUid1BQtSvhWWFfOguLLMUJpVSJ9CZuXjBnwsaI61TJle1btDnJf4r8+XKrS5cjM7saFhZZjdvSKw3yZo/ZF3WTukGB/0m9UqJ4AXXi5N3a1tHC4p7htvTKo/cFRIbciOXNonnmzjoVkWX0iqcdqc7ADqV3ZzbjaB8oTuJQSkUYnq0GiMj3aRWmlJoGTAMQEbX5QhQiQoLJHDFeKT5t04pmbdpTs2FjIi5d5NDunaz//TcO7d5Bpz6DKPNIJfI9UAgvLy972luxsXw7fBAnjx9lwMx5ya4ZZSfdjGlQzc/b2x4e2O416jRuQrM27fH18nIq42VK62OS8TXJABTMps8/eb8b61b+yrAhnbkQFsG48T/zeJ2KHDl6iiED2/JM4xpGpZLSH7qe5MMjLiHBHr4VH28Pm+8twcGc01wvc33N4VhTXrmyZbOH452UF3rsCB93bEPegvfT84tJ5C+QtDG4uX7mPB3PzXW/cSspHG+qekKCc7NUL6+kenubXjV/H+f/I2+v5BOzPi7+l+b/mZ9JxsfL+cSu+Tkn3vea335hXO+ejP1pEaUrVHT5PwLXvx1vU3ydgjmLOy3cDUSkRCF/H94tHsTM01d4v2ReNSHkcpZRTneDS5cjSQifQIqBc/GmWr2RTJvwOtWqluHM2Qi27Qxm9rytnDoTzvABLan4SCkeuD+3TuvlD8DNm7F06DIZf39fvp3aLdm1xHxTCyulqFbjbQYPaE/TprXB1eS91+NOo8NvORd/s1VLjh49Sve+gwg5doTZX39JoxdasGH1CibMmc9DFSsDUD6nt/MMXJRxKdaki03vtvm37OXwbB3ft0TKRn2adJKrmj249Zp2dHZoz24GvNOBCtUe5cPhYwjImSupDFM+rnSYYz3MuHrXxEV8or4GCDLP5SZsNIVN+4gnxDqPT/Vacv2YGl9NW8voCctZt7QXJUvkdzudKyRn+3Trle4l86rg67G8WzyIaScjEJFiSqmTt12pe4gTJy8m6RVJ/k4Veqg3O9d9wgMPBBF64jLbdoYwbdYmlIIBnz3Pww8VI3++nMl0x7VrN3m+1Rhq1SjLsEGtk+sUAC8/U9isb/S/MTY2lgdL12XRr99QrVol1xVP2os2Gc7e+fj4eN5oXA+UokvP3uzdsY2530zm1Y5v8/2UiazZd5yg/Pq3WDa7OM3LjFmXuPouqlTaMWau30oq5Not5wXejNPLz/Zu/ovxH73HY882pe0nffDzT2rfuHr/XekLx7aAWc7bw7zM8b4u2ivm55oMsx4CSMdSO6UU/fp/y29LNvPHmvHkz5/H4zwcEe+66dYrHYrlUdHxCbxdLIhvT0UgInmUUhG3Xak7gNumfSJSAHgBvSdPIpfQ2v5+B/ECpJylSmQi2o//h+5XU/PGE48yf0bKiaxbt2Lx9dVfszz58vNYo2f5ZPzXvPx2N8Z/8gE3rkXj5fAD9/Xzo2OfgVyNCGfRN57ve6aUolzl/7Fo1p31qD1qwiSmTu7JxK9+Yffuo3w/qy9zvu9PePhVihcrmHYGmcitW7f4bsIY3nzmSZq83pZhs34kT77b/6j/W3DsRGUmIiKlA/1CmhXMSTZvL168Pxe/no/iv2jiV7RCfx6pPRxbyEVsIRdp8PxEgkMvEn0thnc+/JHgkDBu3rzFpGnrGDP8FZ58ojzPv/IlJ05dJDgkjAZNhmELPo8t+DxNXhzOZz1bsHbdXh6p2h1b8DlswWdp0PhTbDYj3OgTbLaz3LiR1Gi+cCGcBg0/5OjRU1SqWIqvp/x2R+9x5k8LeK/PQKZ98TmnT4QybeFS+oyewOWLYRQqmu5v213h5o0bTBk+kI9eb0GnT/rSb+I0sufMxfXoKM6EBvN+i+c4ExrC6dBg3ksMhwTTrUUTTgXbOB0STNcXn+V0SDCnQ4J5p7kOnzKFT4cE8/YLz3DKiO/0fGNOhdg4FRJMx2aN7OH2TRtyMthGaHAwLzRqQIjNRnBwMA0aNMBms3Hu3KW0b+gO8uOCbQwYtogRY5fyyos17J2o7TuDsQWHYQsOo1Xbr+3hZq0m2MMNnvvcZTi9iIjfr+ev8uL9ucjm7UXTgjkpk93vxH/RxK9g2T7M+XkH7bt+b9ctnbrN4ebNWKRjQ48AACAASURBVM6cu0Ln9+aQkKB4tGoJihXNR8ni+Xjz7Rm832sOwSFh2IIv8Grb8diCz3P+whV8fbyZPG0Fc+aup1ETz5y6KaWoXr0SkydrT+qXLoVjs4XS4KlXCQ4+aQ+HhYW5nae3tzdzV23g5Xad+HLYQK5FR/HD6g20e+9DEuLjyZMvn0d1vNvMHj2cse+/w9juXShWphzPte3I5fPnmdSrB+dOhHLuRCgTer7PuRMhnDsRwpgPunIuNIRzoSEM79qRs6EhnA0NYfDb7TP7Vu44SZ2oTXesE3U7iMh9K8KiaX5/TnL4eFE/b3b+lytbljFR82SNVDu0BzS7O06lVCywC23yZ+ZpXOzGrZS6CfRHO6zwqJVd9pHKzB4/hs2rVySLj7sVh7dvyvZfkzfepGrd+hzbv89pfsf/2UvwwX+Ii7tFgmk0NS0O7NhGjxcas3nVct4bPNKTW3CLhg2rs+mvycya2Ye6dSuzbdsBEhIUZcsWueNl3Sn279rBGw0eY+uffzBnzV+88GbHlKP8/2HWLFrAuN49Gf/Tb5neiQJt0lfQ34cSgXoks6C/Dw/n9KdhvuyxaST91/F4rVIctV1kz/4zyeLj4uJT/IZFhHc6PklggB/Hbeed5rdl2xFOnwknQSk8ceZz+XIkzZr34dix0wwd3MHzG0kFEaHRCy2Yv34rg7+cwsOV/8e6ZUsoU74CuXLnvqNl3UnWrttPm/q1OB0SzOx1W2nYvGVmVylLsWLNfr6dvYEfpr9FnjzZM7s6NMibPaZizmwU8NczqaUC/cjn582L9+d0/wP7L+GZp8rzwWcLibx6I1l87K14fH2Sz1J5eQl9ejbDx9uL69ccZiwNzl+4wpXI68TEupjScYJSip9+Wkz5hxsQFxfHJ5908fxGUsHLy4uWbdqz8K8d9P58HCXLlGPZgh95rMHTWfr7v3HZEpbOmk58fBz9Z84l7/2eOGj9d6OUom+/GSz+fTN/rP4i0ztRAI/eF3ClblAguYz3plKubNxSijeL5skSG+G65bXPGE06Avxp9s5nXHsFvb9AV2AT0AXtkKKCUuqEIRMKTFJKjTHOvYA9QBnA5o7XPhFRG06Hc2TfHnq2eZnZ67eRt0BBYmJjeanaw0z6bQX3Fy9pl080pRrYsQ01Gzbi2dfaAMmng29ci2bxrG9Z+8tP3Lx+jYYvv8aLb7+Lf7YAl6Z9Eh/Pa1XLU7hkKcb/8jsBgfrjdadM+wCCvPW07K1bcUyfvoQhw2YxaEAHOndsbHogWcO079LFMKaOHs7SBT/x4eCRPNfqNUSEyzeSPh7m/P+Lpn2rfl3AF30SO1GPEKfSNmEAt037UEp59MUyTPpC3i4ehJ/pWcUrxTcnI3ihYE7cMfETkW7oAZaKwDylVDsXcu2AGeh9URJpmhVchYuISgifwO8r/uGtHj8R/Hd/AgL8uBIZQ4lK/QnZN5g8QaYPiXijlKJ2g6H0/6wlTRpX0fEmc5pLl6/x9bTlzP5hPb6+3rzVsQndujbD19fHpWnfpcvRFC72Mg2fqsqihUO1LNwx0z5IMp25eeMGsyd/ybcTxjLs6+nUf7apXSarmPadiS5Jn4E/sm7DAd4bMZnHGz2bIl9zy/y/aNr35eTVjPtqFeuW9qJE8Ts7+i8523usV7qXzKuWXIiic7E8yb8dCYqpJ8I5GxNX3BMTPxEpA+xHewBu7UldMhsRUSriS6bP3szYr9ZxcFs/RITg0EvUaDCK80dH4OOb3BwvLi6eMlU+5de571OlUnF7fCKnz17lq6nL+X7unxQokJuubz9Hh3aNtLWNC9O+Q4djeaTi07Rt25IZ00ensMxJWXH3TfsciYqM5Jtxo/hxxlQm//wb1WrXsV/LKqZ9Z0NDmDakP6dsR+k6fCwVatRKka+Z/5ppn1KKPn2n8/uyraxdNZb8+XO7/galA/Gu67Fe6VAsj9oacYM2he9L9v+Ijkvg21MRnIuJC/LExC8j9Iq7M1L10Z2ebxwvKKV+Aj4A+qI7R48DTRI7Uc5QSiUAvYBsrmSc4evnR4VqjxIfn4AY61e3rF1F4RIlKVLywRTyezdv5Nj+PTzR9AWn+QVkz0H1Bg15utVrdBk8khNHD9PjuYYc2+e4BCx5HSav3kCBIkXp8GTtFLNjd4rr129SpWp7Fv32F78v/pzOnZ/PkHI85VpUFH+uXMbIzz6i+WNVaVSpDNFRUSzetpemr7yepUehMoPl839kXN9PGP+z7kRlNokmfU0L5kzWiQKt6D008TuL3oD2WzdktyilcpiO9Z7XPmMY8+VaGjxRlsuXo5kweT0And+fS/GieciTO5DxX69i9ITlAHwxaQWtO07j2vUY/jlwktHjfwdg7PjfGP2FNsebMWs1ly5d5e1OjahVoyxTvllGnfof0/PTGYwZNx+A0WPns+AXvVXIkt+38NtvG9m/ZwbHjp2hVJnX2bBhL0uWbGb5iq1aZskmVqzYZg9v3bo1Xfd66cIFnq1ann9272Lu6r946rmsoVeuhIfz67KjvNdnDRXqzaBijY/Jkzs7B3aOtXeiHIm4dJF/duhncmDXDnv4n5072G+E9+/cbg/v3b6VfUZ4345tzJ08EYDZE7/g+0nj7eGNa1fa5ffv3G4P7zXS7tm2hZ3bdHjH1i1sM8Jbtmzh4MEQp3W9eVN3lpb8vo3Fv+s8lyzdwZKlO3R42S6WLNtlhP9mybK/jfAelizbkyLcseu3DB/zO+uX9WL+rzsYPX55CpnR45fb490KT1hmD3uKiPgtOh/Fi/fnStFh9fMSnkufid9XwI50VSgLMHrCGmzBF4mKjmHMl2sYPWE1383ZQvmyBRn31R+GzCpGT9BOj198bSI+3l5UrliM0eOXMnr8Ui0zbjGjxy2mUKEgIiOvUaVScQb1a83oL36has3unD59id+XbmXJ71sAWLp0M0uWbAIgNPQ0Y8f05dCh49So2Yw9ew4Y8afYskX/3rZv/9settls6brX4KNHaFylHGHnz7Fw0y6q1Kydzqd2ZwkPC2Pdb78w7pMPaFenGu+/0JhSD1dg8soNVKhRi8O7dnB4l/6JLZw6iYVTJ6UIm2UO7drBISN8cNcODu66Z3+eKVBK0evTqSxbsc2YiXLfUuHKlShAf5uWLt1sDy9e/Jc9nPib9ASzSZ+j6rgNE787rlfc6moqpdaRiucdpdTXwNepXC/hJG55ank6IyY+nrAzp/Hx9SV73rzExMez5IdZNHrlDW7GxSWb7QBYMO0rmnfqgn/2HPZrZiW/cdliJvX5hP89Xo9fpkxi6Mx5nD0RwpD2r9Nt6CjqP/8ikHLko2ChIvSb8h27N6xjUt9ezJ/2NQ2ef5HaTz9DPocpYvOMhmP9zFyKTerTBgXAggXrKV7sfpYt+9keH66SRouCYpPiy/ubvM97ByTJJ9S3hy/cTBrhSTHqHLfWVMZTKer224L5fNKjOzeuXyMhIYEKVR/l0br1+PjzcZSuWBkfw6wyMiZpNNU8guJjeub+pvjsTswx7VUyz6y5GOk2k2zkxzxC5GJE2t0ZqWTPSp0yhU3jBJK0xiQ8Lul/NGXGt0wa3I8Zi1dSrEw5e7z53lzVL7U6upoBc5O3Cvj7UDLQz+nFRBO/Uzdv9QYGpZaRaT+46kDWtTtNg4grVzlwMJT8+XJwNeo6JMSwZXswj9cqCQkxxNy8QWTkTYi/TuzNGP7YcJBxw1/GFnKZazdiIeEGUVevEnsrDuKjWPvH32zbYeOZpyuxYvU+3nilDhXKF6Fn33m80qI23LpCxOVLxMVeh1uV2LJpN7lz56BsyZy0bF6D02fCeaPNUAICfKlapTSPVinCls27yZ07J888XZEtm/+mbNnL1Kp+Td+AmGezTSpdkq99CvKBhT99xTMNazPjmy7AeX2YRxyTTfOYZr1MI5xBPkn5BvmaR7CT6mEedQ5yfM3j1wMwZepi+vafTUxMDCJCjcfqULf+q0x8qwEFylXE29ubU0B20/tiHjnOUagwxQsVBqDWY0l1rV0nKfxYnaTZ+hcbPmkPl3qqPud2baJ63gAWxl4jMDCQqkHZWBATTeOKV3kw52YqPQXEXwPWULEeEH8dWET5OuiZo1gbjasCKhaiD1G7oiETZZiSxyftW3rrahTZcvizZcN6ULE8X9dLh4FmtW+y5U/9fJvWvMnmDboh8lytW2zeoBvHTWsre/yBPTv5dfFOXmtejuK5zxFxIVQXEn2ILRt1p65Z/fuIuGiYqt44ScSlc2mGoyMucOtWPFx33hlMg94VcvrbTfocKRXoxz9RNzl2jU44GZB1REReBa6glwiUTk+FMpuIiEiO2S5R+eGCRERcISFB8cOCPTRuUI6IiKsQf52ICMNjaFwU6/86zAtNKiLqRlJ8fBQREXqwvW//b/lpwUbyBuWg56fTePrJh9l/4DRVa75L82Y1yJc3J80alWXX9t3cvBlLs0al+XvnGqKjb7B53QAGD/+Zxs+8RoP6lXmxeV0aN6oO8UepUc0wCY0/yoMlvCHe+M6Z9ILrd17z1czJvPP2W/ToP8Qe52rmKoU+sJP0/bsUm6RLzLNTMWlY2SQkJPDduFHMnTyR+Lg4vH18qFyrDlUff4KXO79D0TLl7A3yBKXsHT4vEWKjowHI6e/PrWtat+bOlo1ahg7xFrHrGR8vL+oY8anNSJnbQS5nsQ19qCtlmp1WphlpV7Pb0dedyyiH2WzHWfBEjP+xUooevRfx15bj/LHoPYICzsM1w3Q9mWMT5xYV18KvkjtbEFs2bsXP14fnnirBlo1bEYHnGz3Ilo3pG/h79L6AKyUCfe0mfY5UzOnP/qibiEhTpdTvaeWXUXrF4w15MwsRUevPRXJ4z276d2rD7I27OP7PPvp1eIOZG3cSYOosJbJt9QqmDxvA1ys34OuvfwzmxuqA9q9Tr9mLNGzZiunDBpItMJC2H/bi4M7tDHmnA7M37cbXzy/VxntsTAwbly9h25qVbF+3htbvf0zrru/bZdwx8wPIZupUlA3YRL0nu/H+ey/TomVbe7y5kR50K6kjhU/OpPAd7kiNHzWS76ZNZuS3cylV9iH8AwJIcGHyF+/CHDK1zoIr7vWO1Mqlv9Pj3S5889sKSpV9KNnHwHxv5nB6OlIP5/LxaKpcRP7qXyb/4wHerjtj8UrR90jYaZI7jJlmeNF0ludQoEgapn1foU37wtGmwCOUSocroTuMiCh1aSRLVhxk4Oi17FjTnSUrDtJz4DIObe2Ft7dX8o6Glx9Tv93A9z9tY8OKXkmmMqaPSrW6gxg15BWeql+BNp2n8ESd8nRu34CFv+1g6KhF7No0MqU3L4dwdPQN5v+yiSXLdrJ23R6+mtCV1m887VI+Key6I6WUotxD9Zk18wtq18ztPI0ZFx2pZPm6YQrkrCP1fo+JrF6zi/nzl1KsWDECAgK4qpLqYdZXcS46UmbExXtuDpsbMk7rZapfUthkjRrvqtES61wmmbwLGYcyVHzSK6ENNzTaGh6mz/uHMVP/Zu1PLSn8QA57PABe5t+pydhDnDdCUmBqfEnBwZ7qlb+HlStQJTX9fj0+gSHHLh4FokzRKfSKiOQCdgJPoZcJlL4nTfsuDmPqrO0sWXmE3+e1Y8p3W5m7cC8bfu9qCCV/bweOXMaBw+eZP7tLsnjQHYSi5T9hzeKelH+oEA2bjeaDro1p+uz/mDR1NctX/8PShZ+mzNds8ic+hIdH8fOCDSxZtoONm/5h/o/9afR0dZOMG7rE4Z2PiYmhSJEibN++nfuKJC2vMHekXJqgmXBlPpisIxWX9H44dqQSEhLo91Y7zp85Rb+vppM7Xz78AwLB9JuMc8P82B2Teledp7vekUq4Mx2pIaNXsGTFAVYu7Eae3IEOv6G0O1Lumv9J9lc80iv3Z/NV75cIStXS6XxMHBNCLu8guYXdXdUrtzW0nRmUq/w/SleoyHejhjGqx7u8O2QkAdlzOJWt+fQz3BeUj51/rnV6fe/mjVSrp0cpL50/h4+P/jE8XL0GeQs+wL6tTv1lJMPP358GzV+i39czmLFmE/MmjefQ37vSeXeaY8dOcfjwSZo2ddzT+O7y966dTJ04nlUbt1Gpeg1y5Mpl945o4ZqYmBh6f/Q+wyZ/S6myD2V2dVKQzVvh65Xg8sjmrQDClFLVTYfTTpSbbAAeQXvzbAm8hnY2kyWwhVzmi8l/ER+fQM8BS2nVcQ6DP21M6MlwGrzwNcEhl+ze/GwhF3mybjl27znJb0v3aC9nTcdgC76ALTiMJxoPZ/+BUxQplIcGz43guO0CEVeu0aDJMCo9UpQLYZHUqtfH7uWvwbMDsQWfJzj4PA2e6ae9/NnO8nzLoTzxeAXGjOxIubKF6f7hFP5Yt8fu8e/cucse3+dff23H19eHWrWqZsBTdJ+lS7ewbPk2tm76igoVKpAzZ0677r2bhIaG2r3t2Ww2e9jsTfFOER+fQIMXZ2ALuYwtNIIGLedgC43AFhpB07a/Ygu9gi30Cq26LLOH236wCtuJSGwnIunw0Wp27bvApyM283DZIG7GxGELvUKnj1fZ5Tv0WGbPs223X7GFhmMLDadV55+whYRjCwmnWesf7OEGLb4zhWfa5Ru0mJ2uW/R3T6+cd0OvDAFmKGUeubr3sIVcpk6NYmzYEkL/EavoPXQl+fNmxxZyCVvIJTp1/8ke7tBtLi+/UIVVfxymZZsp2IIvYgu+yKvtp2ILDmPt+kOER1zDz8+HY8fPs2W7jYuXorAFX2D+ou1s2HSIHbuO0+DZwRy3nTPplnPYbOdo0LgP0dE3CArKSZe3nmPp4uEs+mUw7TqOJizs9jxIL1q0iMqVK1OyZMm0hTOQJT/M5tzpk0xetIJCJUoSmCMn3t7uDSIs+m6a3Qvf6I/f40xoCGdCQ5hrmPz+mwk9eZkJU/7k1zlv6U5UOoiJuUWDZwebvms6fNx2Llm8p/gI+KWlV7wSAIIzU6/ccx0pEeGDkV+wdO4sSpR7iCeaNk9VXqkEcuUOcnqtWJmyrPzxB777fCgHdmzludZJbixLln+YI3s86xAVKFyED0aOZeA7HbkWHZV2Ahd8P2clr77yFH5+mddpSUhIoOd7Xek7dAQF73f0bm+RGlMnTuChhx+hVv0GmV0Vp/h6J6R53EmUUsFKqRClVIJSaj8wGHjpjhZym4gII/s3YeI3m8ifNzs1qhVzKevlJSiluO++gBTXfHy8yRuUg58Xbufo8fNEXr1Ok0ZV7GWUK1OIq1E3UqRLjRw5AujWpRkf9pzq0sGKO8ye/QttWrfI1HWMN27coHuPSUya0J1cuTLfy9y9xKSZ+2hcrxhBuT1aWnzXuBN6RUSqAA2BcRle4btAQDZf6tQozpCxf9DhjerkcaIzEvHz8+FmzC38/VIOKhQpnIdbt+L5benf9Oz7M9n8fahVQ68L9/byoljRfPxz0LP24ZP1q9C2dUM6vjXWI++ijsyePZu2bdumLZiBRIZfZvKIgfQaNR4/f/+0E1jY6TVwMe93qUfhQlnPe6ug0tQpPt5uOczLUL1yz5n2gZ6StR3YT8EiRclm2pTRPG0bHxfHzM+H8NfSxUxavp4c990HJJ+2XfHjHLavWUXe+++nZeeuFClZCtCeXbo1bciUlX9SoHARt8zJzFO6Yz7sxknbMSrWqEWBgg/QpNVr5M6bz23TviNrRvHOu2PZsmkyRYvVsMffTdO+2TO+Yd7smSxd9xdeXl6cuZ40726eXrdM+0hm9nD4jB91qlRgxYYtBJrMHLKSad8XjwQ97uhowpFu+y7vVkpVS1UoKc9UTfucyL8C9FJKZe7UCEmmffrEm+27TlLx4QcICDSbRiU1bG7EQNeP5rFrz0l2behn8q6X9L8aNW4F23baKFokiM8+akbBgnogZ/tOGy+88gWHdn9B7tzZ09yc11y2Uornmg8kPj6Bav8rTaFC+Wn3ZmNy5Ahw27Rv+vR5jB4zla1bFpHnvsvO05jJANO+QYMGsX/fHyz42Vh+513faRrLtC+5ad8R2xWeeGkBB9a2Jn/+JAuMLGTat3NSpbyp6ouYBMVH/4RvUErVSyWfD4BhJJn/5UDbEx3KCvrCXRJN+/SJN5u2hVKzWtHknvpM/5crV2Np22UO167HsnaJaYtN07v56YCFBIdepGTxfPTp2ZxcufS3fvHS3fTs9xP7to3G3983VdM+x/jY2Fs8Vvd9ihcvQPmHilG0aEE6tG9ieBh1z7Rv8ODBLFu2jPXr13Pd2+TR9y6a9g37sBu+vn58PHKsvi9zW9DF99Yy7YONW0/weufZHN7eh8Dspk5+FjHtKxboo3qVSb2DFxYTz+AjV35SSr3qstwM1iv33IxUIg9WqEiO+3KjlOLY/r3JPrARF8Po80ZLQg8f4sula+2dKEeeebU1A2d8z3vDRlOohG70KqWY1O8TXunanQKF07d+vsfwMTzfpj0578vN7IlfcDgVL4DOaNasDlX/V5Y//tidrvJvlx3btjJ8QF9Gf/l12u5S7yC3YmMJPnKIK5cvebSvV1ZixMB+vNrmTR4sUyazq+KS1KbJEw93EBEfEcmGVkjeIpJNJKVGFZFnRaSgEX4I6Afc2R1nb4PeQ7XnzdET17Fo2QECAnz5fPxaOr6nt8wbNWENvQcvITj0Eg9W6cf2naFsWf0Jo8avoPeghQAMGr6I3gMXABB59TrlyjzA+M9b8+XkVfQfMp/4+AReeGUsj9UsS+7c2ekz8EdGjNZp+wyYy6ixieE5jP7CCPf/ntFjdZ59B8ym5qPleOXlemzeepCPe00lJOScR/fZqdNr5MqVg507ne+rl9GsXLmSiRMnMm7su3e13BvXr2M7coiI8PBk34lhw3RDt0+fPgwdOtQettnOOM3ndoiK1g2ZPsNW0Xu49tjWZ8Q6eg9fp8MjN9J7hO6s9hm1md6fa7PyvqO20GfUFnoO3Uil8vkYN11/S/p8voneIzelTDtiA72Ha2+QfYb/Qe9ha43wGnoPW5NqeMCo9Xb59JCmXhG39Mo04EGginFMAZYCjVNLlBXpM2wVvYdqR1DL1hyh/8jVxMTE0fmD+fQeor0j9hm6jE7df6T6k2M4d/4q1avoTkqfwYvoPWiREV5I70ELGTn4Zco8WBBvby9y5Qqgz6D59Owzj+6fzKFGtQcZNFzriqEjF9C7/w8AjBw1n979tKnmvv0pnYj4+fny+29Dafx0dfz8fOnSdRxXr17z6D779evH6dOnOX78eDqe0u2zYsFP/LViKW9/1u+28vl25BBmjBgMwIyRQ5huhF0RfTWSE8ePEnU18rZm9DKLhIQEPui9kM8HPk+gC+dT7nLmrHac12fgjwwcOt8e7jNwnj3ce8A8j/MV0tYrPu61VzJUr9x9w/Q7TMihg7z77JNUq/ckT774Mof/3sXm5b/T+LXWvP7BJ27byCayeeUyLpw+TYtO76QqdybYxo51a7Ad2M9zrdtR6dGa9mvZAgN5ttXrJCQkMGfiOMpVrOzxfR08FMqI6m97nO52iIuLZ8zIIUyfPImxX03lkcqe19tM2NkzbF69gsN/7+JWTAw9R40j1316dCE+Pp7jB/ZTtmJlvb/GkUP0e7sd16KiuBYVxdWIcOZt3k2xB7Nuh8SRvXsPsnzJb2z750hmVyVVfLwS8E1jRspN+gIDTOetgUEi8i1wEHjY2DfmKWCmiORAO7CYAwy/ExW4EwQG6OFBLxECA7RKPB5yiW9/2E70tVjES7AFX2L691uoXaMU1asUI3t2f7y9vQnMpj9APr7eeBublvn7+dj3MgvI5gteXkydsZZs/r48WrWUPd7H2NcsIMBPO7UAIiOvs2//CQ4eOkXOnNkICsplly9dpiivtqrPE48/QuXq71C+fPIZp7SIi4vjyJFgqlWrBHi+xiq93Lx5k88++4xffvmFBQsWUNT5JJbbnAw+zsY1K9m/cwcBgQH0GjmObAF6NDU2JoYTx49StkJFRIS927fySSdtdhQZcZmrkZHsDzlNocKF6dxZb4nYvXt3e97du3cnT660O5o7dwdTvWopJny1gsBAbzq3q8eEr1cR4AdvtX+cCZPX4eeTwDsdajNh6l+Iiqf7W48RkM2XBGOEPSBb0uc3Wdg/efzx0CscCY7g9ebl8DF+J44ydyLs5+uFr0/6B87SGoBJbd+fRJRS1wH7MLuIRAM3lVIX012xTCIgm68prJ/z3AV/M/377VSvUoTSpbaxfPVBjhy/yDcTXiM49JLztP5+KfJJlNm05Si1a5SmXNlCYDxeHx8vAgP1LIK3tzeBgX5s33GUYSPncz4sgl9+7MuK1X9z7VoM73dvQXDwOd7q3JRjx07z7cwV5M3rfODZFVeuXCEyMpKHHnqIq3exPxEddZXRvT7kwO6djJu3kJz33Z5pWtUn6rNvyyYGv92enHny0PqDpGW8169Fc/nsGUoYa563rlvD0O5d8M8WQMSli1yLjmKd7SxBQXlvqw53ioSEBCZO/ZP333mSCZPX4SXxvPdWXSZM2YCvrxddOz5Omy5zCY+4zqstqzJhynoCA/zp3E7rruzZ/en0Zl0mTF5L9uzZ6WTot8DAADq3q8+Er1cSEODPWx2eYsJXK/Dx8eXdLo0JyOaLmL59iabo5t+zJwgqTb3izgBNRuuVe8q0b80ZvSjSrJB/nvwlZ0KCKVyiFAd3befh6jWp+kR9Sj2ctGdPqlOvDtfeaf4srTp14almSWuvkpliGWW/Wb8WDz78CIVLlmLp3Nl8s3IDufMl3xRx//atDH/vLeZt0x/mZBusOdQj0GTaVyQhmsKFCxMdHU1kQsqNegG4tDopHBedFPYzvciBJu+O/gXswaM3k1tWFI5byoEDJ/iw52SyZfNn1nefUrhw/mTTteHxSWY+p68lTS1HxyaFzRvfXY+N5b1GT1CifAUq1qxN8KEDVTc91gAAIABJREFUHNv7N6PmLQSE4d06c2zv3xQsUoQ6DRuz6PuZ9Bg4jBZt2iMivP5UHT4cNJwadevjCrO5Wz6/pGfrcoNMs5M4V1Po4J4JD8mnvpVSPNVkCC+/VJd33mpiiAQmk7FjNpMwmwga5Z4+fZGIiGgqVijkvI5mE5zAlzw27ZteNcfj/t6pJ2mzI8pt0757GRFR6vJo4yTpf9qjz2ICA/zw8hIOHwujbu0HafzUw5QrU9CU2D3TBqUUD1Xry8zJHahdq6wLKZ1XvuJdeaVlLQID/Vm2cg/bNwwne/Zsycqbv3AzE75axsY/RqSsR7LfWfJBpH8OnqHp870IDZ6f/Ddu/m35mfZsMpuyJrjYX8Zs+ubghPHq1evs2RtMtx7TKFe2CFO/eo+goJyuTY+8THsBujAZvHHjBqVKlaJp06bUqlWLlStXEh4ezqJfJxEREclLL3fh2DEb5R8qRq2a5Zkzdw2TJ75Li+Z1ICGGYmU6s3rpQMqVLezwDEzvdpxpfatZJlm8c3O8hPhbTuNVgikcl3xH0oS4WFMa83ueQFxcArVe+4MB7z5Ms/qFSIHJtE/MHmJ9/FLI2E5GER+vKFsyyRzeFf7lZ3ts2vf9ozlT1Rc34xWdd0enatr3b8HRtC+RVzvNpWa1opw4fYWwS9d4onYpnm34EMWLudhQOZl5XfL3+dateO4v+xm71veiRIkCOEV8uH49hnwle9C105NEX4vhwKEzrFveD59El9KGzvjy66Vs3HKUn3/olXrZDuHVq3fSf+B3bNn0lYP5YFKbIVUvns4wfbf3RyUNUiuluHolgv07tzPs4+7UfrIhHw0dRbbA9DlJsNfvYhgv1qzMsy+9QsVqj7Lkxx/IHRTEyGmzOBli44PWrYi4FMYjVR+laImS/LXid2bNmkWDBg1IiNtAYI6nCTu/mFyOJowuTX1NetPcxnCll12Z9rkyC05I3qYxXwOIvnaLh5/+kflfN6JmlYKkwLwxsHfSP0zM22sYy0gOHL5IzpwBFCvipAPu8JuVAgM80isls3urIRVSX0t7/mYCPfdfS9W0L6O5Z037QI8+Lp45nSIlH+SZ19rQf/r3vNSlW7JOlCdcvRLB4T27qf1UozRlw86cpvvQz2n30ac83aIVw957K5k52s3r1xn1YTc69x6QSi7Oue+++6hUqRJTp071OK27KKXYs30rn3XpQOHir9LhrTG82PxxVq0YrTtRt8m2VcvJlj07H385hSZt2vPusNFUrfckPVo8R9dn6/PgwxVYeSiUdz4bQPjFMKYvXUvLth3sax1OhQRTpESp267H3WLRkh2EXYykc4f0zRQnJCQwa/ZqGjT6hMrV36Hhs5/Sf9APxMXFp53YQ7xEpXn8l7CFXKLBC1PsHrTqNpnIzLnbyJHdjz83HePzgc15rvEjvPPhj9hCLmoPfs0m6HDwRRo0HYctOMzkwS95eM36g5w4eZn8+XJgCwmjwXOfaxlTODgkjHrPDCMq+iY9uj3Dzt3BlCvzAG92/tru9SgsLJJLl67y/sffMXTgGx7fZ6lShfD19eHXXzdkwFPUJCQk8Me6vbzSehRFS3eg+0ff0KN7c36e+5nuRN0m3377LTVr1uSbb76hY8eOzJs3j2LFilH/yVbUqNmMli2eJezsAt57tznR0TfYvfVL3YlCe5Y6ey6cEsVdNDo94ErkTRq8PB9b6BWCT1zhqVcX6vDJSBq+/pvd297TrX/HduIqthNXadR2ObaTV7GdjKJx+9XYTkZhOxnFi+/+RfCpaIJPRfNGz632cIe+O/h8+hFyBPqwZN1Ze/w7g3cnhQftsoff6r/dHm7/6SZsJ6M4HBxJrZZLqNFiCXVfWUa1FxYz8Ms9HD9xlUbtVtrr0LjdKoIT69ZuVdoPwAmWXkmOLeQytpDLtO82H1vIZf7cFMyvSw/g7+dDp9aPEhjgx9P1yxAXF0+HbvPs+qftO3Pt4Vc7fGfXOS+8PsUebvjCl/z06y4K3Z+LDt3mYAsJs+ui48FJYVtIGFt3BKOUomvnBnz0XmMOHD5L949nYQu+QIMmwwgPjyI45AJDRv5C/96et0WrVClN6InzbNq0PwOeoiYuLo4/V/yfvbMObyr53vgnSQ1KaYsVd11k0cWtuBdfYHGX4l6gQKFA0ba4LO7u7u5SoUCbChWoW5Jacn9/pKQJ1Cn7ZX/s+zx9ntPJ3Llzb+49mTPzznvOY/1ndzrUqMj6pQuZvtSB+Ws3kNv4+0VrDmxZT9vuvZjtsI6u/Qay/vAp4hQKhnVpw5AOlgyxnsJdz0DadeuBnp4er1+/xtJSLSbl768OJExMvi+Yy0kIgoCXbxSt+53CyzcKT59IWg84i5dvFFLfKGq0P0Kd6gUpmM8opdwvWqdOih/T8m++kVj2PorL2xDmLL2BSTkHWvXeT81WW/ityUa18qe3WvnTyyccT2mYWhE0WR00O/g3+JV/dSB18cAeTMzNObzRkVGtGqFUZn/QGR8Xxyf/jyhVSoI++qZbVxAEchkb4/JEnWRs2Kx5KGQyDjiv0dTZar+QijV+x7Jbzyz3RSKRsGfPHhYsWIDXhw9ZPj49REXF4rx0Ie1rVWbmyEGUqViJ9+67cH21nWlTeufYnqibJ48SJ5Nx2HkNLo/uk5SQwOCZ8+g2ZDhjbJcyat5i9PT1adquI/MdN1OqvC6Fr0nrdmxcbpdG6z8X5PJ4pszag/PqoSmzfFnE1q1nWLnmKOPHdCHA5wCvn23iwSMP2ndZmOP7xfTFQoZ/vzL8AiIpXTIfK52v8/JNwHfdf4UigdCwWBKTlIRHpL/3QBAEcucy4NUbP0QiEYtsevLaxYegTxGaz8dM3Er/vk1o0Szrk0W5cxuxe+dcxk1YTXBwZLauJy18/hzBLJtdlK44gskzttO08W/4vt/OqyeODB3cNseUAvfu3UtAQAArVqzg4cOHqFQqtm/fTs8eHdi/z4mZM8eipyfhz74t2bJpCsWKpcz0Gxjo0aJZNZYsP5ojffnRiItXsumwF3NHVc72/dt88D2+gTLGDqjMjf3taVS7IGev+zHL4ftSdKSG//xK+nDe9gAzUyPm2V/BevaZ79pXk5SkIipKQUBQJEplBtQnPQlJSUqk3iGIxWJ+q1SEk2eecfvuW0AtzT94pDNzpnenWtWs0YUBChY0Y+P6yQwetpzYWHnGB2QB3t6BLJ85hdZVSrN11TIsO3fj6lsfDt58iGWnbjl2nvOHD+D93oN9G51wf/USfQMD1uw9Qr0mzdl07Cw9Bw3DwMCAPkNHMm+VE/nypShBFy6cj2LFCrJp86kc68+PhPfHaAKD5cwYVTPbbSxxfMz9p/6UL5OPu6cHscfZCp+Pkaxwvp+DPVWnAMvIp+j9BIHUv5baF6eQM6RJXepbtiFfIQuuHjtETGQEE5evpaWVbvDyNbUvIjSE+cMGEBUejjIpifg4BTGREVgUK0GxUqWxXriUilWra45Jjdrn9vwps/7qzdrj5yhb+TeCAwOw7tae5p27UrtJc1bPnMzf1+9jYmauOTaz1L4aZmpahrOzM3v2H+DCrXtIJJIcofYNGmJPUKQxo6fPpnqdeohEIioa3tC60anTlbJK7QsLD8f96SNcnzzkxa0bVKjxO5NXOWOklS/G9CuZ0lxa90Ahk9G3RQOGT5lB9wGDSQ0/C7Vvnt1JpN7BHNg1UUc1MbPUvoCAEGrWHsrNKw5Uq1Y6pRuJcgqVGIT7y/VYFNKi43wnte9QfaMMqX3dHyh+SWrf5+AYfmu4graWlWn0RxlmLTyDoYEeR3YNp03LKl8drPuufPD8TP/h24iJjSMxUUmsLI7omDhKl8xP+bKF2LB6ACVLprUaom7r3MWXjJ60i0c3F1GieH5c3QNp3XkJk8d3pGjR/Kxcd4and5dr9gR90490qH1fPptrswV3Ny9OHV+oLv9Oap8gCLTtaEPxYvmZOqkb1bWe4S/3Rvf/7FP7QkNDuXPnDnfu3OH8+fP06dNHLRqh3Vfle61+aytcxfP5cyR1Gk1n+6ZxtG+llePtJ6T2jbZ9Sj5TA5ZNqU6aSIfa5/4hkjZDrvLkZBeKWaT4IrkiiUL1DxH1sr9mb97XyA6172SjXBlS+/o9jvslqX0eH4Jp1mULNasVoU+3GoydcQpzs1xcPDyCOjWLp62sKNLjyXNfRk0+hCIukcREJTGx8cgVCZQtXYCK5Qqxw3kAZuZprPYmv3s79txlxdpLPL45H3NzY+4+kNKj/zrsF/YhPDKOS1dfcf2CLWK91NVKM6MwOmTYcnLlMmLTxunqgu+k9iUmJlH3jxH83qQzfUeMpmTZ8mkGn5nZf5ceQj4F8ez+HV48uMfdKxcZNmk6/UaN0x2zab1fOiqEqnt8+PCRRk3GcvHsEurW0aJv/2TUPkEQ6Dj0Am2blmDK8BqkiXSofbcffuQv64u43h6Nad4U2rnUJ4JmVrvwfzUFrQN0ms0qta9cHrGw+vf00z0EKlSMfxn/P6X2/WvFJp5cv0rpSpWJiYygVtPmTFi6Ur3Bbs40PF1eM3jGXAyMUv8Czu/fTeHiJZmxyhkjQwMMDI3Ib1EYwywkm61apx4TFi9nel8rZq/byB8tW7P18m2WTRzNsa0bcThwXCeIyg7Gjx/PqjVr8Hz/nkpVqmR8QAa4evUZd+6+4eTjDxjnST2JcU4ht4kJ8tgYYiMjiZPLUciypgRknCcP3foP5Piev9MMpH4GvP8QxOYd13jz2CHbbSxavJORI7roBFEAO3dfR6lUkdNzHRKxQBrjp18Sc+0uYj+/AyudbnD11ns6t/uN2/e90BOL2bl+AOcuu2HVfws209sDECuLx35BN5auuohMFo+9rRWLlp3h7MXXNGlYAYVCLVCxYFYX1m+9jp5EwuJ5VtgsPoGRkQHzZ3XDZtFx8hgbMmd6Z2wWHcc0rzEzp3Ti4RNPatcsRbN2djRvUpmqVUry9K49jVrO53NIFE/uLMfI6PsUlhbaDiNfgY5ERsZiZvb9fmDfgRuEhcdw8YxttldkMwszMzMiIiIIDw9HLpcTE5O1fH0WFmb0tGrAzj03dAOpLOL2w480b1gCm+X3MDHWY9a4utg4PMA4l4TZ42ozb+VjjAxF2IyvzfzVT9GTwIKJtZi/5jmCUondlFosWPcKQRBYZF0VWycXtT2hKrbrXfH/pOD202B6tyvOAmc3FltXxXa9G4KArj2xOrbrXREEsJv8u6adJdPq0sv6NjWrmFPMIjcL1r1EEAQWT66F1dgb6IlFJCYJLHJWl9tNqc1i51ckJqmwm5I9NWBJBitOkn/JpG1OwWbpFQQB7Od3YNjEY5QvnZ/3XqG8eBNIO8uK9LWqSdNOG2nWsAwXj41m3tKLCIKA/fxO2Cy5oLYXdGPQmL1YFDLh0N/DcNpyC309MeuW92bekrMIgoCZWW5s7c+SmKjE3taKJSsvIJcnYG9rxfLVF4iOjcPetgd7Dj6kYq3Z3L40m0dPPenRtS6OGy/j6xeK6/O1381GWeUwlpJl+qYEUt+JNWsPU6RwfqYvdfjhue/y5DUlOiKC6MhIEuLikMtiMz5ICxUqlKBF81rsO3BdN5D6H0GlEpi/6hFLZzZk3spHiEUCi6bUo8/4q7x2D+XMtvbMW/WEPMb6zB5bi3mrnpA3jwEzx9Rk3qonmJoaMmN0LeatfIy5WS5mjKmDjcMDTPMaceTse/6oWZiNO58zZ1JjbJbdxMBAj1hZInJ5IgtX3mLhjBbY2N8AkYilc1tjY38tW+MYEZnwKz/BSve/MpBSqVRcOLCbxu07c2b3dkqUr0i536qhEgSq1KmH89zpjO/QgnF2K6jVRHfyS6lUcnbvLhbv2EupipU0K0OCIHDs76106NMP4zyZ4/K36dmHAkWKsHTCKNr37sfw2fOx33MY6Vs3yldNZxYxkxCLxVgULkJkRPa4pV9jreMxliwe/sODKIB4hZzjm5zxe+9Bv8kz6TNhcpaOd3/1gl3Oa9lz6eYP6uH3QxAErGfsZe50K4oWST3pc2aQkJBIubLFdMpWrTnK1u0XeHBrBYULm3+7avYdyEHVvv8X+KKep1SqcHEPYtzwxhw9/ZpChUzo26M2fv4R5DM35sad93h8+Ex7S/WkhghBc2xiUhLuHoGcPDCebbtuAyKKFjEDAZ6/8iU+PhGJWKyZ4ZRIxJrBgXpVQNDYzRtXYdjAFgwcsYmISDkzpnRl0IBmmJubUPP3MshkcSCSYGxslGyLMTbOpbbFKo0tICJPntzIZOpZS2MTQ41dsKAp4eExmkBKJotT18lGjLbG8SSrV4z44UEUQEhICPb29gQEBLB27VrGjBmTpeOvXHvF0RMPeHpvZabqx8cnYWioh0yWAEkJGBsbIJMlkJSkZilIJGKNQqOeRKyZoNCTiNATf/l+RZofez2JCBXJ5WIRpGKLgOuPPrNyeg3eSqM1fZForSLr2OKvbfX/KpVA/uTkvRIxCALMcnjOO2kUw3qXx8hQktxfdX2xWIReBivV6SEjdS3lLxZIfVnti46Jw/1dMFYdqvDCJZD85rkokC83A/vW4cFTX05fcKN1981ULFeAgvnV7+OX7zEgMBJf/3C6dapO5YqFKZBP/XlUlILXLgHUrK5O0SIWpfgxtPySSIRG6bFjuxqY5s1N8/bLaWtZnXJlLXhyezH7jzyiQH71mCc+PlGdiyobyJ8/L0qlCoUinly5vj8p7pq1h7l1w4mkfyCBeKCfL9vXrCBOJmP+ug2079EnS8fv3XuJ12882b7Z6Yf0LylJSXy8UuN/gBRbJMI4tz6y5Fyfxrn1iZUlaJ4BiUSERAQyeSLXHwTQq0MZ9PUl6ElEiEjxS19us55EhFi7nC/lal+XkKgkf75cGr8nQsTJ8+8oWCA3Q/v9rvFHah/1xb9lL0hXU/vS9yt6P0Eg9a+i9t35pP5R2bN2JY+uX8bp5EV61qrMrhsPKGBRWFNXEATuXjyH04I5tO3ZhzFagg+xUZF0q1WFxZv/pl6zlkR+CiTwox8fpV7Yz5hEqXLlWbPrIC3q19Uco50cUjsh3BfKX3hIMGN7dKT/2El0+nNAppLGGnwly66T+E3LHtu7K72GjKBFh846SXvLfU6RZ9ehjWglcdQ31aLH5GtGq7YzmDu7H60apdwr9cm1AkfDFHbGe3lKHi3t61ZoUfi0E999fW9UKhUPLp/noKM6c/rs9VspX/k3TZ1cerpxvLGBehQX4OvD2G5tcXBwoHfv3joJg9NMcpkWBS+tJHU6tq6ijc5nXyfP1MLOgy9ZvekBL29OQl8/+ftMiwKRVvuqBGYsvEgeYwNsp6mpEOt3PGHN5kfcOTWQ4kWTKX2CFjdCpLXUXnhplql955pKmhhlMGBqfSvp16H2hav3No6fcQL/wEiO7hpK7qIzSAheo56lTf4eVSoVew89Yfai09hMa8eEUS007XhKg6nbwoHzR8ZSs3pxfD+G4/sxnBevPzJvyVlqVi/Oob+HUal8Wupc3z43vn5hNOu4mq2Og2jXulra9XWgVS75avOzFo2uToPJbHEeRd065XXaeq9M2XfwNX0lxdZ9p6pUH8GJIwuoUlHr2tJLApuZ5I3a7+RX70tSkpIDh++xZMVxChXMy5E9EyhaWGvDeRp0GhcXb9r02cehLT1p0bi0DiVah16nRb1TKVMvT5O2p0XN0/bFaNnC13vuBN3/HXZ6cutpGGedammCbVVsyj0XElLOJ9JaWhYZSLRsPUYsdqNxTTOGdCoCgN12KZcfhnFmbU3y5f12sKzdVt6mN7JM7bvWQi9df6FQCnS5q/ylqH2CINBz6EEKFcjDvGmW1G+7gQDXuTp1k5KUbPz7EXarb7BhRTf6WKVQrh488cVq0B6unxhJqRJm+H6MxPdjBLfuS1m98S7NG5Vh3+Y/KV4kjcnRVPyK69tPWFpt4dLRUdT+vXjadODMJGIV6wZMRcqM4Pl9B4oWzafjb8LFXTR2WtS+9zLdBL6mpqb4+vpiZpYJWXNtai/oquHqlKdN74+LS2DHzsssX3mEalVLcmjPNExNtDqrQ69L8St3772lx6Dt3DhtTfXKX/VVh7aXwsoREuNSqqRBB9bxGZnxKzr1vxrTAJPtXxAZncCuZX9k2K52om+RXso9EOsZ0G7oVSYOrkKnliVRqQTGzn+IT0AspzZbkstIT/fYr8a5+hV2ZMmvVDQRCZvqpv974S8XGPJE+Z9qX2Zx+/wZ9qxbycld21i8fS96+vpER0Zgaq67GvDszi2q1a3Poi07uXvpPK8fPdBsGM9rZs764+ewnzKeNhWKMaGvFTsdV+H26gU2DuuYvGAJI7t3ZJPj2kxvBs1XsBBTljhwdPumHL/mQkWK4ifNmUR3SUnKfzTBrlgspkmHLnQbOpKI0BD0DdKfpQoOCmTp9In82aIB1tbW6iDqJ8W1217MtrvK0e19UoKobODx84/sOvSCjq0rAbB93wtWbnzIjeODUoKoHIa+RMjw71fC+m13KVVjMReuurNodgcsu67H1MQIb98wLLs6I/UOxcs7hJpNlvF79WIsmNmB+UvPcez0C42CnwhYu6wnzTutI3/ZmXTuu4kBI3fxxi2A5Qu7IVck0LDNKlY5X8Oyq3OK+l+yLdVRAgzGsvNakpJUTB7bmgEjtmmU/TSqgGmo/3l6fcKy0zK8pJ/xkn7CssNCvKSf8JJ+opPVYry8gvDyCsLc3BhP6ScAps3aiZc0CC9pEA9vZj0ha5JSyT8waayBnp6EQQOaM2RAUz6HRGOgn/4PrdQnjEHjDtOq115WzG+tDqIyic+hCo3anvRjitqe9GMM7YbfwOtjDNKPsbQfcTtZMU9Gh1FqFT5vfxkdRt9H+lGmLh/zAKm/DKm/jI5jH2nsnlOfaewWQx+w7Zgf80dXYNRiN6T+cqT+csaveod3oALvQAUTnbzwDorDOygO63UfNOXjVr5DGqhAGqig88QXXH8STumiRgxe6Mac9Z6cuBlCQXN9ImOSkAYo6DzlJdIARbL9Cm9/OdIAOZ0nZS8R/H9+RRdOWx8wYPQR7j7yYeKoRrxyCUQRl6hR8xsx+Rie0lA273rM89f+jB/WgJ0Hn9Gp305NHaet95kzqQX12qwnX/lF9Bi8l5Xr73Do5GuclnWlzu/FKFvHgW17nuLlHYZl9x14eodq7C/tWFptReodhpd3KBNnn2LYgD9wcLqBZbeNSH1SlEiDQ6IzvrB0UKxoPo1f+R4IgkBSUtI/Ol4xMjJg3JjOWHWpT0hoNPoZ+BUXtwC6D9jEnyN28bdzf910JTmMmNhEvPyiaTv4ko66po4K6MdkBc6h15N9VCzth99C+jEWW6c37D3lzeTBldL0V9Kv/VVyudfHGE07q3e48fBlCAXMDfHyjaJcy+O8eRfOyjl1sRpzI1kFVN1PL79oPH2iaDPwgka5NKsQif4dfuVfFUhdPnqQkMBAlu85TMEiRbl05AAlypVH3yBl5uPJ7RtMH9ATx/mzKFKiFFER4SwcN5yVMydrgqmqtety9vV7bvuFcu7FW7advszi9VsZNG4iHXv24citRxw/fJCBvboTGRHxTT8iwkK/KavZsAlBH/0IDgzI0Wtu1cWKSye+X2VKJlPw+o0XVX/LuirP9yAyLJR1s6ZgUaw4j69dxsvN5RsVtMiwUJwX2tCjYS0MDY04/dSFqVOn/qP9zAreuH2i/9jjHN3RhyoVsy8V7/E+mG4D97HTqSf1ahXn4AlXFq66zbWjf1G65PclF0wP/wY50X8S5y67o1QKbF3XFxMTI4I+R1O5om5ujdMX3uDiHojT5luULpkPuSKBCdOP4LTllqZOs0bladKgHK4Pbbh6ypqa1Ytjv6ArvbrVolgRM/ZtHcymv+/j8f4zCkUiXyMh8Vv6ZsumlYiMUqBQJHzz2fegXevfOXT0+xWWAgJCCQuLpnTpwhlXzkG4v/XHZvExShbPz7HTT3n7LvCbiS//gAhGTz1BvTYbKFsqHx8eTWBw3+9LMv4j8cwtkjcfYnCeWw2L/NmnRr3xjOWxaxRrp1ekVJFceH6Uc+5eKFvmVsZA/8f95P/nV3Rx8fp7DA0ltGxcFkMDPY6ecSG/ue4q8Y59T5k45wzu74MpVzo/L10CuXHHi4MnXmnqdG3/Gy9uWNOxdWUuHRnG3069qFyhEB1bV2LcsIZUq2KBrcN1Vjjd0SRA/QKVSiAiUsHXaNOyIjfven6XcmBq6NGtfo74lZcvX2JhYYGJyfenTMgKrt94xfrNFyheND+Hjt7FS/rpm3v0wfMT/YfvoHW3dTRtWAHP5/Pp0uH7t3L8KFy+F8Tuk95Ur2hG3jzZo20C3H4SzJq/3alR2ZwC5kas2uFGjCyRzXaNMM7143YJZeRTRD+BX/lXUvtEIhGebq6M7tCC4mXKUa95SyYuXs7bVy+Y3r8nCzZsY8U0a2o3aUarbj2RRUexePxIDt5/Qaly5XXa1VaR06bO5SWRcUMHIZfJWHsoRdZSHh9P68ql6PLnX4yeswDDZEGLJJUK2zHD+L1BI6wGD0/1GrJD7YtPSKBt1bJsOnaO32unMCeySu07eCWJPfuucvHcMogL1O3YD6L2fUFoUCAujx7w5tF9XB49ICo8lOp/NKROo6aEfv7E+UP7aN2tB2Nn2mBRVL1XqLqp1gv/E1H7/AOjaNRpByvmt6Ffj2TnmRY1Ih1qn+/HCJp32cTCGZYM6Vcbb99w6rXdyM3jg6j+m0Uqfcw5at+tVjQxymARrcEVfjlqHyI9rt9+R5vuG6lVoxg9Ov+OzfR2XL31ngEjd3H47+H0GbqD3la16GNVm9euAcxZfJrAt/aYmWUuh0hsjByrv7ZRrnQBtqxLYSKER8ZRqvp8Zk9uy6wp7VP2G4n0sOy8isnjWtO1o5Zc7XdS+6IjIylZaQxuz9ZSrLhWsu41N01IAAAgAElEQVQsUvtWrzmM+1s/dmydqvuu/EBq3xd4S/25fc+DW3ffcvu+B3J5PM0aV6RZw9K4vf3EkVMvGTmwHjOtm5E/n/G3NN2fiNr3VhpDx3FP+Nvud1rWK5B8bq1+ZJLa5yaVYTXzDRvmVKFdwwK8fBdNrxmvubm5DiUs0le/+l5q36O2pE/tS4KWN/ilqH3qfyQcPP6K/qMPUb9OCYb2q8voIfU5cOwVMxddYPeGPvQetp8hf9ahb/canDzvxt8HnhHkZpOmquLXCA2Npm3vnXRtX4WFM1tpyj9II6ht6YSDbUfGDGuUItogklC5/nL2bupPvbpaqUe+k9rn4xtMvaaz8XJdT14tSl5WqX1bbWdgZGTEkiVL0r5obeQAtQ/UK2Hv33lz644rt++6ceuOKxKJmGaNK9OkYXnuP/rApatvmDzOkkljLDExMfpKRe8rH/M/pvY9eBlK38n3Obu5GTWrmGe63a+pffeehdBv2gNObmzJH78X4NKdACbaPeXRsU7kM9N9BnKS2lc5r0jY3TD9On4y6HOf/1T7sgN9A30GT5lFsVKlWTF9IqUrVGLLskXMWuVM/Zat2XbpFtdPHWf3WgdCggJZf/ICJcqWy7jhZBgYGKBUKilcVHe5ViKRsGDdRqYO7MODG1dZvGkHFaupOc11m7Xg6e0baQZS2YGenh5jZtqwdJo1h67fy9ZSt59/FLNtDrLe0TrH+pUVFChSlJbde9Gyey8MJBJCPwXh8vghbo8fYJgrN7uv36dw8RKaPVI/K67c9GT4lNNMHtUgJYjKBry8Q2nVfSvTxjVjSL/aqFQqhk8+yawJjVOCqB8IiYFIZ7N66sjZ3FU/M+bancd+fidWOl3HzSMI+/mdefbSj+XrrmJkpM/C5Rfp1qk6LZtVZPhfDXn83IepNifwD4igX6+6mJnlZtHy88QnJGG/oBs2dmc0ils2dmeQiMUstumMjd0ZjAwkxMUl8fb9Z5atvcKcKW2xsTuHad5cOCyyYty0w2zbfZ/rZ6bw9777mJnloVXzyixdeQ6P90HMnNwBm8UnMMmTm9nTOmGz6Di5c+ljM7MrNouOo6enxyKbHtgsOoqAHvaLB2Bje0DdnyVDsVmwV20v+hPrMR2wnraDE4fnYGO7D0GAIbaZz83i6uqNw+qjnDmx6Ad+O2mjTOmClCldkCF/NQUhAR/fUO7cf8+d++4ULWyKxxMbCuX7PgGMI+el9OlUlvlrnmNqLGHa8KosWPcKU2MJU4dVYYHTG0xyS5g+rBK2zq4YG4mZMawStuvdMDIUM3tEJRZucEdPAvNGV2bhhreoVCoWja/Cwo0eAFSvYMJYOxea181Hy3oFWLjpPQgCC0aXZfFmTwRg/l8lsNvpgyDA/L+KY7fHD0EA22GlsdvliwB0a1GQDlNe07K2Oe0aFsB2kyd7LwRhP64cO88GquuPLMvi7dJU7aU7pCQlCdiOzvzvpDYkBun/NqkFN/4dE7c5AW3VvrNX3mLZtBwdWlXC1uEquw89J/BzNB1aVeL6HU8eXhzHiCnH2XP4BWVL56NXl+rMX3YF+3ntsVl6Wf3OpmM7b3+It28ERQubsGT1TeSKROznteX4WRd+r1aEcTNP4bj1Pm1bVsRpuRUrnW5gnFuf2/e9uPXAh4hIOfYLunHizEt6dK2V7WsuXaoQ3TrVY67tAdY7jstWG8/u32X37t08fPgw2/3ILkQiEZUqFqNSxWKMHtEOQRmPp9cnbt9z5959d6r/VpwNqwdh+s8ulPHCNZQTV3xZMrUOK7e5EB2biN2U2izb7IJckYTdlFos2eBCfKISu8k1sXV6zUv3SF64R9CyvgVnrvtTs4o5tk4uGBmImDP6t2/8lYmxhGlDKrJwgzumeQyYOqQituvdCItK5MyNQCwbWHDn6Scqlc3LX9Pu0rN9afKZGbJg3UuMDCXMHVuDBeteoq8nZoF1LeavfYFIBHbT6jF/zbPsqfaJM+FXEv73fuVfRe3TRqkKlRg0ZQZtevSm/G9VObDREecTF2nWsQufPvoRHhJMveaWbDh9mZMv3lKzQeMsn2PxilU8vHeXFXOm6ST7bdmpKwPGWOPn9YHxPTuz22k1CfHxBPn5Uqx0mZy8TAB6DR2JSCzm4Las78EKDpHRps8+Jlv3oEvnDEL7fwgFChehZbcezHBYx8RF9hQunnrOmJ8FcnkC1nPOM3zKaXY6WjFtXNafpS949yGYFl03M3eKJdaj1OISl298ICxCztQxDXKqy+lCLBEj0Uv/71dF0cKmzJ7Shj/qlEIiEXPg2DPGj2xGyeL58JQGo4hLoGL5Qjy/PYtJY1pgUVD9i6rtxrVX+VOzN6/pw2vXAG7fU1NrvpSPGdaUKpUKE/Q5igatV/DitR9KpQofvzDMTHNrtZOZc2Vcx2ZWT9w9/Dlx6mGWf+Sk0kDad57D2pWjqf9H9mXEcxKlSxVgUP9GbHfqz+K5nShUMOdGO5m752ndfy1bq824eCXn73xmyZYPdLe0oGo5k28O0H2u0m4zKCyBXnNcaVXXnEql1M+Km1SGcS4JfdpYpH1sDo4/MvIpv5pf0b63pUuYU79OCSaOakREhILAT9E8vTqBAvlzExouIz4hiaqVCzFyUD2eXJ2AmamRVjuZe966tKvMguXXefY6ZXuBShBoUr80LRqXxdc/gr/3P+XwyVeoVAJR0XGUK6OVd/KrNrOLlfYDOXH6MQ8evs3yse6vX2I9oBcHDhygfPnyGR/wgyESiahQvggjhrRi15ZRzJraGVPTzLEPfhTSfpfV/wSFKDh2yZ8376O4tsuSMsWNv6nzrZ16m9KPMg5d8OPA6oaUKqq+7o3731GyqDHlSppk0Gbq7WcV/wa/8q+l9n2BGPj00Q8TMzOMTfLi9vwp0/r1wKJYcTzdXVm++xDNO3ROqf/Vrui0qH1fErxGRkTw15+9iYqIwGblOn6ro1Y8SUxIYGhHS6rUrE2Qny/vXN+gb2DAVPtVNGrTPtVryA61T5lMA/HyeMuwTq04/fAlhYsVzxS1L17PgmbddtG5TQUWr0hRLvynqX3a0L7utFT74Oeh9j17/oGB409Qq3oRNizvhLlZLr5BJql9/gGR1G+7jiVz2jN0QD3NNfQdcYiWTcowZtBXmcZ/ELXvQVe9Jrn00j+k1onEX5Lap40PXsEUL2pGrty5OHfJhYGjd1OimDku7oE8uTGTerWzsd8w+TsNCIzE6q/tGOc2wGl5T2pULwlAdLSCui0d6Nm1FvcfexEQGIVckcD5oxOpXVPrfN9J7fvy7ty9706/wY64PnfEzMw4U9S+4E+faNh0ItOn9Gbs6E4pdf5hal+a73xaSTB/ImrfzSehjLV7TcdmFiyZUIncqXBtM0vtc/eR0XW2GxtmVKR9Q/XAWGSgR/sJz7HuW5KOjXQHy2nhe6l9L3voZ0DtE2h0JumXpPZpw/3dZyqWK4CenoRte54wd+llChfKg+vbz/i7zKFYEdOsnzD5HXnnGUK3gfuoWK4Aa+06Uq6smrYb9CmaOq3WM2ZoA06edyUpSYWffyRvH82iaDGtJOHfSe37giPHH7DI/igvHq3D0FA/U9S+ay6e9G/TlAVr1jOhf89MXbYGOUTtU5enkfw2DdW+n4nad+rqRybZPWVYr7LMGfUb+qnticwkte/e81AGzHzMYccmNKypphuLJPr81v40e1c1oW6N1JPL5yS17zdzkXDAMv19Xb6xAlZXkv6j9mUWxsmBjnZAIhaJKJ+870kQBBaOHspC5y3EKxSsXTiX2nXqkVtfn5ioKDzfulGrQSOUSiXbVi3j3rXLtO1iRYeefSlRugwVjUU8ffqU6OhoKlqqk6rlKwj3r1/l4MGDzBzSj7rNLJm6yJ6ChYuwatdBBrZpit2mHZjnL8Dp/Xto0KQ5JoYpzsVQL3O3OFHrgda2E5LtYuUr0Gv4aOZNGovDnsPE5UvJV1DDTGuApLylMc8+MuFz1EH+tL0B2v34Sin1bUzK+ZLitV/MlBdcOzDSCQi1gj4DrUBIu05aQWKx3LovSD49LWeYqDWblRiZYiu1EnAmaanAJGmVp+GwdB1QxhMI76WRtO97HKdFTejbpQKCMizllELqgaKOY9IZYCVx/OAHLOvlo18LiAt4qvns1t33LBxdgrhP7hn2CVCvd38HxBIR4u/IF/P/DV7eoYycfIRtjv0AGDnpENud+iEWi+jUdwsbVvam34idVChbkPatqxAdE8dUm2Ps2jCAsAgZ46Yd5fCOIcQnJNGu5yYsCpnQvlUVbt77wJ5Nf1G6hCn3HkkxNNCjQV316muxwrk4sbM/rXtup2VXZzq1qYS3Xzi7nPvguKQj3Qbu4diuv4hTxDPN9iK59aKRvnNnxJRTbFtjBSgZOfUM21Z3BZHAyKln2ba6KwISRk1LriPWZ+TkY2xb1wuAiXPO4LS8OwCzF19k+cJuFC0ADeqVZrbNdjY7DuaIfTv69VAH9Mfe+NOra7Lsutbg6dltdwrl02PsnxaQ8K3wTobQyYmWxgAmrYGNUmvjvNagRUjSeufTCHi0g6Kv62kHUgGBkQyb94IN82qCMoHx9q6sn1sNITEBawcPnGZWBnkC1o5eOE0sh6ASmOTshaN1OVCqmLTBG8fxZQCBSRt81LZExCRnKY7W5XgjlTFy5QfWTihL4+qm/DX9KSvGqJkMC//2wXaIOmBetsuHWT3VIh6rjvgzpZ1andbxQiiTLNWDbadb0ehLRHSqasSpc36UTlQHhw7nQnn8RsayTpEMmuLN3K7qYGr+8RDseqoFcqYd+Mzq/moq8bSDwawZpJZJn7o3e6prGfmUn2BP+D8KL+8wAJasucW8qS0AWOZ4mzmTmuPrF8ZCh2scPu3G2b39mb7wEtWrFCImOoZBdhcY9VcdoqLj2Hv0DbMnNmHJmtvcfujDpJH1ad+qHLOXXGeLQ0duP/Bl854XHNykniweO/0yx7d3ZddhF6o0Wseov35n9KDfmTT/Bqttm2Ftc50KZc0ZPawWj14E8teonWxf1Q4BGDn9Moc296BQweQVjLQmBbUnQr6eMEn+v3eHwuzbn5cVy7ayYGY78unvSqmTpDVxqzW58/juZ2r+0ZC23XqA7EDGNzjd3IqZmDRNK0hKa7JWy/foTLyotH7zk3R9jJdPOCoVjFvwkI22dRCAcQufsmGemj453u4F6+dURQAmLHXBeXYlBAEmLn+L00y1ku9EBw+cpieXr3qH84yKCIJIbU+viIDa7tGqECt2+lCkgAG9m+bBy+MjE1e9w2l6JRAEJq5+r7bjEpnolOy7EpUafyWoVEze6MO6caURicUMnOPO0LYFMVdF03bgc5ymVCA4Jgm/QBm5EsPxeB2p8YciiRjrZW9xml0FkVgP62WuOM+pBiIR1vaurLfJ7laIjMcq/6CwY9p9+F93ICeRlJhIkL8fz+7dZs2C2Ww5cQGLYupVlTkjB2Hd14rDO7Zw/vABbp4/w5iZNvj7+tC7eX26/FGD7t2706VLF4YOHcqcOcs16nIikYj+/fvj4eFBwcKF6VS3KiOtOnDv2iWmLXFg3phhlKtSlZnLV5Mn74+RrAYYOHEa7968QuqRuQF3hd+qERURTlQqyoP/IX2oVAIjZ91gnnUd+napkPEBmcD9FyE0q/ftLE7NKua89ohM5Ygfg3/DUvnPBLk8gdjYeD4HR7Pv8FP2bvkLfT0JSqWKYeMP8MolgKs3Pdix7xGxsnhGDW7E2/efePLcl679t9G1/w4GjjmA1cCdrN10R0N5kEjEFCuSl8tHhqFUqnj41I/R007i6vGZMqXMmWF7gbo1i1OhbAH0f2CyW+sxrTl0/DEhmZQ+rl+nBG4ewSQl5VyS6F8F8YkqFu3ypVyxXDSuno2Vh1Tw+mM8tUvqrgyIxSLKFtLnw+dv1SF/FP7zK1mDIk49qN+46wmBn2LY6dgdfT0JSUkq+o0+Rr8xxwgLl7Nm80Ni5YmULmnGg2f+tOy+l6cvAxlsfYbFa+7xyvUzJy9+0LRraCBhzKCa1KtZGL+AaBp3PYCbRyghYXIG9KzCO69wmjUowYxxf6TVte+GSCTCeUV31m66Q3z8tzmNUkOtPxri4fr6h/Xp/zMSk1TY7/DGfkJ58hrnzPpIlExJnYq6s+6F8hkgEkFQaM6qyKYFkSgzfuV/Pyn8r6L2PQ9Tzwh8vSKljYc3r/Hm2RNad+lOucpVAAgL/kzbqmXpOWQEZvnyU6ZiJW6cO82qXQcx1NMjMTGRd65viPrgQocOHZBIJFhZdaBa1Ups3rwMkbikpv23MUrkMhl3r17i8unj3Lt6mdjoKI4/fEXZSuq9AtqrLjm1IgVqvvNamxmYFyjIuJk2mvK0VqTeypsyvFs7Bo6xZmyftDeR66xIqbRXpIRUy7UTDmcm+XC2VqSS/rcrUofOfMB552vuHOuuyeCd1rK7NtJakVIlJVKu9Rmu7rKkrBZnGWDljrd8Colj9axMSjNrrUjlqnEky9S+Z30NM6T2Vd0f98tT+7Rx6rxa/nxQ3z8oVVK9MvDGNYDW3TfQqllFmjcuj0yewMeACNYtU9NS4uISefnGn7fvAunRpQaRUQo6/7mNXl1rsHBW229mVCOjFJy77MGJ865cvfWBWFkC4R/mpU4n/ZqOqrkgrWsQfyXekhYlR5Kb3gM30LFtDYb2qah1DmXqxwpKqjZxZM+GXtTJxt7Tn31FSpWoRaPTLk9IKdeh2im1fIEyDZGWZNrchpOBPHSPYf+CKqlW025LFZVyrcqIFBqioCWdHy+IqDzPlzcLS5L3qyS7NsdCsDDVY2Ib89T79BVEBinPTsFRHlmm9rkNMErXX8iTBOodjv/1qH1pQUhi75HX+AVEMmpgXQoWUP8uXLnpybSFl8lvnpupYxpy56EvBfPnZpZ1IwBksgSevw5A6htB326/4eUTQeeBh5k9oT5jBn8rFBEcKuPMZU9OXPjArQd+6jakU3S2SKR0XOsZ+o4VqS92kw7OzJvWmvYdGqWUS1JfkfJI6EjD0oU4+8SFJoVvfdu3r/EvWJFSafsibV+i7Xu0aX5J2v3QpuClL/5ks9ETRYLA2mmVMqyv7T+0acLaxwRHJ9Fgwhu89tZBYpzyWyEykDDI1o0OjfLTv6OWEJu2eqhYT8vWfT7y/HE+S36lan6xcLRD+qkgfKNVdDyb8F9C3pxEw5atGT1jriaIAnXC3ApVq3Niz9+0696LghZFCPmcQl/Q19enWq06DB06lMKFC1OwYEEuXdzLGxcPJk60/WYDZm5jY9pZ9WTZtj1cf+fHtrNXKP4DRCZSQ7MOnblz8Vym68fHxenk2foPmUNUTDzVK+fXBFHfC58AGSqVQNni32agb1izAE/ehOXIeTIDsZ44w79fCXPtzgOw0uk6cxef/cZ2cLzGk+e+zJ/RnkMnnmvKT51/Q1xcImcuueLlE8KdB54EfY7Gxu4scxefxchIn3OX3ejbvSZmprkoXTIfN06N4fDJ1yxbe4Md+9T0Tpull3FwuoWZaS7efgimYd2SfHKfR/9eNdm290udKzg439HYy53uqm37ayxde1tj2664rqkz1+6C2l5ykbl2F5PtC5rrtbE7w9zFpwGw6lybU+deaPozd8mldO9ZXHwShgb/KmZ4prH7lHp/xcIN7qzZ46W2N71n3QF1+eKtXjge9QfAbpcv646pN/fb7fFjzdFke+9HVh3219jL9qsnic49DCc8OlFz7OJdvt/ae/xYvFs94F1yJAi7w+o9rfZnwlh6Ru0n7C9GsPRiBK8/xpPHUITT9chv6gSEJ3HgQfS3x6ZhrzgTwpKTIdm+bxn6lUxKef9/gc3SK8xdciVd28MzBJk8kYIFjLGxv8bcpdeoX6c4Xt7hPH7uT7uW5XnlGsSxc2oWio39DZauu0uzhiX54B2O3dp7VKtSiC5tyzNzyW12HnJhydoHzLVX+4rlzo9Yt/U5Iwb8TvOGxRkzqCaXD/Zm1aYnmjorNz7W2CfOe+ToPbDqWI1TF1wzVVelUpGUlISeXvZzHf1sWLbpDfPXqv2q/WZX5juqV9xW7vBggbP6vqzd46lR8HQ64MOizZ4AOB70ZdEWtf9xPOTHom1SANbs99XYq/aq7WiZkoDgOE19u+1STZ3F26Us2eGtsR0OqH2L3S5f1hxL8VeOJ4IAWLLfn/k7/fijsglL9/vjeETtu+x2+rD2gC8NquVl03F/Vu/1Ube51QuHncnn2uzJ0u3q1dFFm95rrmvhRg+NnVVk5FdEP8F45X/fg38AIpGILScvsHLnfspXqUqBwoUJ/ZQ+D9zEJA+XLu7h8pXb3Lp1K816BoaG1G3cDAPD7CdQzAp+b9CYQD8f3ru6ZFhXIZfz9s0ramVn1vgXh1leQyKjc275+sHLEBrVKpjqLGBSkopcGSV2ykH8F0hlDQKpqw9JJGKG9KvP8d3DMM5tSB5jQ4I+Raep8AZQqGAerp8chePWuwQmi+ekpnRkbGxAqeJmmuclM6prmbNTV1Xq2LYGt+69wz8wKkPlro8BkUTHxFG1cuqbjf+/QOc2pKVwlUZ9nXIt21BfTHyCKt06aX5fqdR/4h1HEVO9VOsoBYEvjNA0z0XO4T+/oovsvqemeY0Y8mctenSugqGhHsa5DZDJEpLrpP4cmpsa0s+qClNsbxAj01r5+CpBr5GhHk0bpK2Sm9MEJatO1Th53oWICFmGdd1fvaBoiVLkK1AgZzvxP0RW76cqdR2Jr3yRdrn6H9M8esTFp84myoyC6Nf+xy84ngZVTFL1S4lKAT2tCebMtJldiESif8UEzf87al8m2kEWE0PLSiV4HBCho9Sno1KVrAKzdu12nJz3UKtWLQoXLkyDLr2o10TNTNBWqdPGj6T2AVw4fIBda5az//p9TM3zpUnt23kxEecltuy/epcqJmkP1P+j9n2Ly7f9WLv9FRf3pCg+fg+17/p9f6Ytf8HzEx2+ycR98Jwvl+8FsWtZJjnr30ntcxmWp0ku/fQPKb8l5j9qXxbx7sNnOv+5lQ/P5+t+kIoC3cyF5zhz0Z1qVSwoXMiE4QPqUqtGsW8bTYu+ksPUPoAVa85z7OQj7pwdTa5c+mlS+/Ydec6pC+4c29kfcpVOvR/p4Rem9u2/Gsx9txg2TUt932VWqX3HXso5+DSG42OLIDLQ9fHOVyMIjVGyqEfmBqbfS+3zHG2SPrUvUaDG37H/Ufu+IK13+Cvcuu/NghU3uXN6sNaxX/mFZGGov8afw/VdKJXKmVO4YB6sh9emfJnMUTvVHc9Zah/ApNknee8dybmjk9UJhtOg9s1Y6c7nAH/mrXKiIgcz7ut/1D4NVu71RRGv0uSA+15qn9PpT7j7ytkypTyiXCnfkchAwpz1nhQrZIh1Py0V2R9E7atWUCKc7mmcbh2fKBWtD8n+o/b90zA2MdEEVBlh4sSh7N27l/79+xMREcHF40f/gR6mj459+9O8fSf6NP2D/paNqF+/Pq1bt+bjR10J0Gf371KncdP/US//3TDLa0BUdHzGFTOJlvUtMDSQcPFO4DefBQTLKVzAKJWjfgxEYlGGf78SpD6hDJ94CE9psNq2PoCnt5atXe4VorG9tOp4+4aSO5cB/gERREUpiIpScOr8G6KiFKmu8CyZ256lNm0Ji5Dj8vYTe4+8ZPikY0h9wvD0DtWywxg+6YTa9tGypWEMn3wKqU84Xt4ptlSrvtQnjOGTjmjskZMOI/UJReoTythpB5H6hCD1CWGl4wVCQ2MYNrApBgYSfmu8htotnfi9hTNdBuwhIlKh0/c7D71p1rD0P/TtpI24uCRCw+Q4bntCSKic0HAFjttfEhKmtp3+fk1ouEJt73QhNDyO0PA4nHe7ERoeR0h4HM57PQiNUNvr970nNCIev0AZYxe9RPoxFu+AWMYtcUEaIEcaIGf88rd4B8jxDpQzYe0HfIIUSAPjsHb0xCdIgVeQHGtnKT6f4pAGKVLsADnWjp7EJygJCovXHOsTpGCSY4o9baOXxp6x8yM+wfH4BMcz90gwPqGJ+IQmMvdUGD5hifiEJfLcR8GHz4lcdJExW6vO7MPBvP+UgIGeiBkHU8qnHvyssSft/aSxJ+/7jPdn9bkm7Q7K1vfxn1/RxZf3znr2WY09ca6WPeeC+p31Ccdayx4/65zGHjfzrFqqPCCSUdPOIvWJQOoTwYgpKfbwKefw8lbbYjHMHFePRnWLcfCUO8fPvVPXmXoRL+/wFNsnxfbUsv0CorTeKZna3vqY0DAZoWEyHLc+TLG3PNCy7xEaJiMkNAbHLXeTy2Nx3HyH2ZMtiYtLoNof86jXfBH1m83mz0FrUCh0f1+f3b9L3cbN/kff1o+Bj38M0o/RjJ73AO+PMUg/xjJmwWOkyfbYRc+Q+sciDZAxbslrvANkeAfIGW/vjtRfrraXv0WaXD7BwQOv5PIJDh5IA9T2lYeh+H1SaOp7B6TU8Q6QI/WXaWyfIIXG/3hr+SvvoDgmblDbLWvm5dT9cB64RavbWfMen0AF0gAZ5++FIhaBl3/KuaT+6j57B8iRfoxl/NIvPlN9XdIAGdKAjFclU0OGPuUncCv/KpL7l5UNURZXpLTrWCRTqMqVK0+MnycNS9RPqaidiyA5D4FEDE0aARQmMMACT88oquRJHgyLSqR+bKIWJzhRSzEvlVlgDYxSNpSHq1po7AC51sZirRWw8QvtadvrT5RKJSJB4P61y7Tp3JXdF2+S21gdwT9/sJjhk6cjEYsJT0e8yUKLVpZPP4sUs6/zN2jKtfI4ZCYnDEC8lmPVWWGKSb08MTylSlxKuSpea+ZIe0UqM/le1BXJpYwlIkJGXLCPVne1ZqS1Z3UUCRmWA1i3zMO85U+oZ1SB3IbJz7JETClRDM6n/alvoaRdnRQlry95XaJkSTzzkhMcmUhwRCI1KppgWZWaGJoAACAASURBVNuM7OI/+XNdCEjw9o1AJBIhCALevmGIReJUbZEYjQ3a9VUUL2pK3rxGREfHUqK4OVYdf1OfQJWQwnNIfv4N9KBhncJs2CFQuXw+9MRKvH1CEZQKRKp4vH2CERIjEakS8fb5jCo+HFRKvL0/oVSEIELA2zsYpUK9v+WLLagEdR15MIhEeHsFopSpefCBAZ9Rxar37YR++owq1geA1y/ciGqlfp4WTGlIgXy5USpVCMCeIy70Gb6fiwcHoJdMzbrz0IdxQ+qq3+s4rfc/vdxROjc8M6tQWu9tGrmcFJGxhIXFceq8K+3rq2kopy++o219tXLqqUsfaFPPGJFIxOnLH2hbT+0Xz1yW0u4PU1RJ8Zy5IqVt3dwIiQmcveZDm9pGCPIEvH2jSAqLQCVPwFsaRWJAGIIsDm+vKBK8QxHk8fh4RxPvHQJKAW/vGHV5YhLe0mjiPfVAqcJbGkX8O7G6/EMMDfLEE/VJTmK4HPkT9bX4ecQQdUvts4I8FETcVM+Ih/rEEfFIXR4WmECki7p+5OcEIt+pfVlUSCI9yohZey6UsmYiYjzU9zD8czxlzCQcuB9LGTMxci+1jwsMUCD3Uj+MH3zl3LyrJFwhcNc9gWYFlFQrrI+PX/YGPBnKFKc/qf7/Dl/mT2JlCRpbLkvQrGDI4xI15TJ5PELy8x8TG4egUn/X4REyihQ0IjhERuCnSITk98LHPwJVkvo58fYNQ1DGIwjgHxhN3WrmiET5WOYEYiEJZYICb59wVAlyBNQBnlIRgyCA1DsUlTwKZbKtiPyMQoBT513p0DgfgqDeC9qhsXpV69S5N3RonA9EcOr8Szo2NQNEnD73ko5NzEAk4vTZ53RsYoogCJw++5SOTUw4ur4pXr5R6usViVm77QUjR9ix17kDIpEIpVLFq4fXOORQGouYZyDWmljMrF/RuflprFal5Vd08sKlvsKU1dUlgPioSFQqAal3GHHBnwHwkoYT/zEIRCD1DCdeagQCSD9EkPBWDwHwfh9BvLsYEOH9PoIEN/U9kL6PJNFVBIII6bsI4l8BiIgIUWCqTED+yAupexSxN+WIRCK8XGOR3YpDEAS8XGXIbsUBAlIPGbKHCcltxiJ/lohYIsLbM5a4NyoMjPQomFvE2l1S7Kzy4f0hkvi3EkS59BASk9hy2JeSoji8PaOI9wxOPjaSBM9gPkcn8exlKEcMEglXCLi8iyXBN3sKpSJRJvzKTzCW+VdR+15HxH+xNeXZDaSmjR9DxcpVmDN1UkrFVAIpbaxec4iAgHjWrFmQ3CndQOrp09fYLlzD+ZPTU/qY2UBKkrVASptSpydWD/Rsx48kXiFn1a6DKJOSaFq2MHfefcTE1FSTYDgjpJUsL03kZCCl+nkCqc9h8dTvdwvvi620uvt9gZQgCIzd6g9iEZtGl0AkEmmCpUfvYhm8zofjNuWpVkr9bPiHJ7L5fDAHb4VSvUxuiuQ3oKCpHsfuhrN0RGl6Ni+AeeeHWab2eYw3y5DaV2pdxK9D7YtwyrhiRkh+xrsN2MGAXnXo010ruXJaiR+Tj5m24BJFLIyZPi5Z2eqrH/vLt3zYd9yDPetaax2bCb/9lW/UTpSonXxDJNGiAIp0HUBSkoouAw9Tvkx+nJd14HNwLJUabyTs3Sw1TSetZNTpIYcCqcwl0dUeLOkOrnQoNWnQ9nTsaLlWuXb/tPYjaFFldKg5CepzuwQlMvlUJNeGp9CtEmQpxygTU45RJmnR/JK0zqG170UkFqFUCYy8GkfVghJmNVAPQL/sR7ruk8iMawou9MtDkTzqMq8IJdtfxnPBK4nfC0kolEeEuZGYkx4JrO+ch6al9Cm+KjzL1D7fyeYZUvuqbIj8tal9adH50koWn4x67f5m7aKWNKlfPLnK17+duolZAQZYX6ajZSkGWFXSKVcfn8T+Ux944RrKapv6pArtxKpp+Y6vcxpmYjwmkuihUCTRvNdRenSowBzrP3jlGkzfced5d29k8jn+fwRS2lQ9Xb8Sl2q5INPqnw7tTsvfp0L5u+ah4O/7MewfmC+5zazv7xZpBSSiXPooEgW6bg+ld10TxjTLqykHOPw4mkWnwni6tCx5jCSIJGJe+yrYcDmMm64yapfNhYWpHnny6HPyYQSHZpWnZtnc5P/zRZb8SnULPeF8//RTCnlHKGmxO/q/hLz/C9St35AbVy4BkzKs+wUmeXITHZ26ulpCQgLDhk/Hzy+QW7ff0LJFJqWscwgikQibNesZ270DLSuWICYqksaWbTAxzZlcJb8aTPPoERWThCAIqcvEZgMikYg1Q4pRZ+Z73vgq+L10SjDdoFIerLtYYHcwkKZVTbj+OhoXHzn9WxbgzqqqFLdIGbD2bW1B66kuVCyRiix2JiDRE/0UuRd+FsxdfBb7BV1Y6XSdiEj5N7aD4zUioxTYL+jCinVXiYqOw35BF5auuoxMnqAud7zOrEmtaFivNI+e+eoGUmlgx/7nDB9QhycvAzA0EDN9XCNs7G9gllfCjHH1sVl2BwN92H7AleBQOYUKGLFqXhPmOTwkj7E+s8fVYd7KR+Q2kjDXuh7zVj5CTyJi4dT6zFv5CEEQWDqrEfMcHiIA9rMaY+PwAEEA+zlNsFlxH0GAZTYtsVl2R11u00qnj3p6Yg5t6U6DTruxqLqa8EgFg/vWVAdR/2O8cA3lxCVvlkyvh8PWN0THJrJkah2Wb3ZBFqfEbnJN7Da6kZikYvHE6tiud0MQYLF1VWzXuyERKZk3qiILN73HSE/FzMFlWLzVi9wSgal9S2C3y5c8EoFJ3Yuw5IA/JhIV1h0KsPREMCYSFRNamWF/Lpw8BiKsW5lhfyGc3BKBSS1NWXY5EkMJTG2Zl2VXopAIAjNamrD/hZyPUeqB2vLbMgQBptUzZOUDBQJqe9XjOBBgSl0D1jyNRwCm1DJg7fOEZFufdS/U9tS6hji9TKS8mZjdronEKyG3noiZjXOx6lEcggA9q+gz+IwMcyMRKgHcQpRULSjh5kAT/n6lbn9mo1yEx6n461gMj0Zlb7U7I58i+cVWpGyWXlG/U/Paptg2ltjYX0u2W6fYc1tiY38DQRCwn9sCm/9j76zjrKj+N/6eubHddKN0CYiUYmCiIrZiIChggIEIBiWxdAnSYYsBGKCEhIB0LJ3bCWznzZnz+2Pu3jsLe5ddBP3yk8/rNa99du6ZM+fOzHnuiWeeM2GzZ/+EzQgEuw6ksmZTLEJA5Psd3fV3/Ae38vH0XdgdKuPf70zkrL0UWZ0EBZpZ/ls0x09nETm0E1PmR5GTbyNySEdGTN/LJ0uPYDYZCA404nAKxg1ux9SFh8nJtzNucDsmLzhIXr6Dce/dwoS5BygochD5XgfGfrIXq10hckhHD88M7cTwKbswGGRGD+7A8Mk78fExMOLt9gyfvJOXn23GDXU8bRE/PyM/Le5Ox+7fMWPRfrJzbbw/wEuH7hqOyZ/Fau8uvdaAyV8nYLULRr5cjxkrUimwqIx4oRazVp8nz6Iw/KnqfLo+i5wileGPVmLOphxyClWGdQ/XsEVl2EPhzNqUS75NZVi3MGZsysViF9zb1I8T5xyM/yOPj+4NZtLWQlQkPrzdn4lbizBIMKSLhn2N8E5nDQeY4c2OGg7ylRjYyZ+JWwoJDjAyoEsgbWqaGL06m1duDWLK+hyCg0y8eW8YMeccVAkxMHZlOkeTbCRmOpAkaFDVTK87QhnxVHUiV5wDo8yo52ry4KhT9L2vcoWvn7aO1CVmpP4H2jL/2Y6U0WgkMzOjQsfUqVOVH1fsLPWzb775mapVK9Gvb08WLln7j3ekAHx8fVmy6g8yz5+jUtVqBPr7X/qg61Fq+PoYkGWw2FT8r6CjXnqeE1UImtS8+J2o3vdWYv2BXOLO2ej/QGVubxVCkU3ldIqF8FAj/j4GVFUw9+c0bmsZfNkdqf/i+wp/J7y59pVI49pvNMhkZFVMGhUS5EPa+XxXPiXPtXN/Gnd1rk10fA57D55zlUd/3gtd+KSL95dSzrLwReUL9mXfur7k5FmpUingf3I5BW/OUSXT6K+PG5Y4uHyuVuVwxPKSj9koUbw+qdcyl6cMF+Bcm6BGoISffrkvV6L+bXz47YwDP6PE4I4+bE9yYnVCdLaKUxUYZAm7IjiQpnBjuEzVwMvjhktxyoWTF//f4+85apZMI0sSGVmWEuoab/kUq1Xq1AjiZLRHtaGPP3el0qpJBI1uCOHA0QxaNonQ8vHy8Hnnkwv5p5Q0pZYAalYP5Njml7BYnVSO8MNg+t/jlb8bFdV76dPrHRcvxeHBvjI256Wvf7mw7p+MQpXaYQZMBumi9F0a+3MgzoaK4O4WAUx9sQYffptGRr6CUxEIIXA4VJauT6d5HT9Ml9nhuSSvXKGB7r8T/0lpn6Io3Nq6BZFTZ/DUww94El5C2nfiRDw9HhvJ6VNbXIXySPs6d27HB++/Tpcu7al/QydOH11ElSqh/5i0rzhMBs8vqd4x8Lq0r2LSPoDmPTby08x2NKwT4CpuSWnf+C8TaNckiHtbBpbY787GcvH0+pRfzpNRoDCpl+bQJulH9l3YYlf5ZnMmn21IJzXTwY3VfYhOs9Gqvj+ZeU5CgoysGNOUAF/DZUn7ot+vfJv/JaR9Ncadvy7tq0gIJ4WFNhq0G8+aH/rTuqXOge8S0r5N22IZM+1P/vzJ5crlkp+oqqBBpwV8P+8hwkN96dh9GfE7e+Pna/zHpH26RKXj69K+Ckn7VCFoMOEcB98MJ8j1nqRe2uewK4zdbqNHQyMtIzz3qCxpH8CoHTZqBsu80Va7H3qr8eLHIN8u+PqIjR+OO8izCaoHySTnqTSpJHO+UNCokoH53QMxGaTLkvalDq9StrTPLmgwOf26tK+0KEPad/Z8Ac1uX8ChDb2pXTPYleTS0r6vV57i903xfDv7vhL7iywO6nX+in2/Pk7S2UJeGfInx9Y/efGaiVdR2ld6vnrH0evSvopI+3KKVNpNSuX0R1WRJOkiaZ9dEby/rpABHfxoEFH69bxQ2gfQ+9ssurUKpOctgSX2g8flMzPfycJNOXy/MwenAhFBBtLznDSq4UtihoO7WgUxvV8dJEmqsLSvVXWTWNc3vMw0sVlObpubdd2175+O5cu+JTwigq733V+h4+rUqUpSUiqqWrLhffToURISknnwwa6EhYXy7FO3M3vur1eyyNfjX4iGdQM4k1BQ6mffrD/H0lVpDJsfi6KUbzBCCMH327N59jbvdrTpuQ7avX2MzYfzmN6vLjFLW7NxYjP2z2nJ4CerM3tgPX4e14yAvzFLJpkMSOayt/9SxMSl0/WR2cTEpbtxbHyGB8dllJpGjxOSspizZDtdOt5QshNVRqSezaPr45+7ypBN18e/JCY+i5j4bLo++R1fLT+Kn6+RoeO2IoSgVZNKtH1gGTEJucQm5nJPz5+JScglJsGDo+NySu5/9ic3frj3r8TE5xATn8PTr/7mxi8MWE1MfDYx8dls3BZ3Fa/0lY38AjsxCXnc+8JqYhPziEnM476X1hKTmE9MYj7399lITKLmjvVA3y3EJhUQm1RAt/7bNJxcyINv7CY2WXPEevjtA5oLVpqF7h8cJS7VQtxZKz0+PkXcWSvx6XYenRJP3Hk78RkOHv80lTiX693jc9M0B7xMB08sPE98ppP4TCdPLEnXcJaDJ7/IIjFboVawgae+zSU+WyE+W6HPrwUk5Cgk5Cg89EMhv552MOYvK+9ttpKYp5KYp/LhNpsbD9/uwcP+shKdrfB7nJMTGQoJuSoJuSrv/lFIQq5CQq7CgLWFbE100OWLPL44bOfDW31Y/qQ/wWZY/LA/zzQzE2iW+LCLLyn5Kk9/n3fpi19KXIpTJPN/q7kRE5dJTFwmfd5c4cZ93/mFmLgsYuKy6DvIg19+51dX3c+i15u/uuvjs6+u5MPIzfS4vxEDh/3h3n9vzxXu+nv308uJSXDhZ1cSHZ9DTEIuMxdHcTo2280PsS4eaN99Oa2ahGN3qIyctgdfXwOLvjvJvS/+TkxinlanXvxdq1Ou+uXmk+dXERPvws/9op03IbdUzomOz3Fji7V8Vu//3yI+1UJschEPD9yv8Umqhe5DDhOXZtW4ZeRJ4s7biDtn49EJMcSn24lLt/PYjCTiMuzEuXgmXs8zmS7+mX/W5d7p5JWvMzDKsC/JzpOfZRKX5SQ+W+Gp7zSeGbKmgJXHbYz9s5D4bKd7vz5NQrbi4aUsJ48szmB7rJ2WNUzauTIcxGfYeXxWCnHpDuLO27l7bBzth8cSl26naoiRVe/X5YuBdahTyczzXUKZ0LsWMWetxJ+zE3f2MlyQpXLwSkUN0q5C/LeYDVAUhSmRo/lo9LgKTwkGBPhRvXoVej43kEOHjrv3L1y4kJf7PIPRNQP03qAnmLfwd/Lzi7xldT2ugWhYN5DT8RfLtA6dzmfkolhWTWlJeLCJn7eXLp/QR+w5GwMWpxDoa6B1fe+SvOwChQAfmW+G3EjHpkEYXKNElUJM3HlTCDc3DMT3bzZIJINmclHW9l+L8LAAt74hPCzAPVgSHhbglruEhwWADhfPDISHBZCba2HyJ5twOBSSkrNJSs6mz4BlGk7Jps+bP5KUkkNSSg593lxBUkoOVquT8FBfqlcLIr/QRlxiNvFJOYAgPMyXZT+f5OmHGxIR7gcS9H++OclnC3E6FYQqCA/1AQRCqG4sybixlo8HBweYNDmbBP5+Bjf28fH8EK1af4aklDySUvJYtznmql/3vx+C8FBf112RCA/xcUuMwkPMrhQeDBBWjIUgPNjkSqMSFmQEoQ3uhwUZtesjBKGB2vURqkpYgAEJUFWVUH8ZSbiO9Zdd+QjC/CWK70uYn6yVQAjC/LS6XCdURhv81+5LoGuQd1+qk4RclbkP+JJRJMizqtrMoxCYJNWd3igLkLStwK4SudtO4zCZYB9PnmbZDfEzQFaRSr0QmfY1ZBqHG5CRCPGBKgEyN1c3UitIxiSDJARhvpcpwbkUp/zXeMVVv8xm2Y1NJsmDjXJJ7Aof3UCWqgh+XnOKV3u1JSjA8wyHBpndx4aH+brPp6/7Nar5cyY+l9Ez9+Dna0Cgya3OZ1p4qlt9QBAR5kf/ZxqzcNkJwoLN2qGSIDzEB1XRnrnwUF/teQMiQn102NdV14RXzinG59KLePm9DSSl5lNkKcNC+H84Dp/MIimtkKS0Qt6bdICks4UknS3k7cgDJJ8tIvlsEa+POUTyOQvJ5yy8NuaQexYwLNiI6sYml6JIEBpoBFUgAWGBBkAgCQgNMCBUF/aXEbiO9ZdRXbLkMH/ZpUzQOKdumIGEbMXFM679vjLrom3sTHZwe10T+1KcJGQ7CfPVCEIVqgejEuqrHXsk1UZshpM7G/oQYJa0c0nabHiov4zk4jfZINGxgR8fPlqZmuEmZElCIKgRbqT9jf40qelDeJARCUFJcWD5otiQq8xN/vd55ZqS9l1qQV5vkj+93K2+2UmDBg2YNWsWPXr0KClNU3UNBy9T7ZkZ2Sz5bB3zF63hxOEFzF/4G5OmLWf3thnUru16mc6Zz7MvzeSWtjcy+I1Onnz0Mhj5gsa0t4U0Sxyjl+B46YV7k855k9eV9n9p+8sjSfAaXmQL6gUjFN6kfY5cTxLdYpmK1dPJUeyeTqstP5feIw7ha5bxM6jEploZ068+rep45AL6Ren00+wAqmt6/fNtuWw8nM9nL1ZCliXUAhvZFpVuS7J4/1Y/Hmnsww/HbGyKsfPpA5pUU9XLfFwNbSEEHb4s5IUWJnq38iE80HPvjLpOkWySySxS6Tw/m6iB4QSE6BfC8zwfcqDnmagyMLrC0r64yNq3+V+iM1Z1SMJ1aV9xlGPhzOzsfBp3mMwvX/em0801vB+vXyxaJy1JS8tn5pKD/Lkzme0rH2fU9D18v+oMe399nJAg7X4LoXJXz1W8+lxTnnmonpfvU8Z99fJZuWU7ng880FD6a7ZllaOElLYUSRKUlNfo05SQ7SleJDg6jiix0K6zJN+UkNTonTf1Ehyd1CY3LZ/XlmUSESAj2xWS8lSmPRBAjQDPd3XYdIub23XY6sEz99rItMGw1jKSJGErcHDWAi/vhhHNZdqGS3wVr5JlgzcaaFyhlFLFLYrguZ1Oet8g8UhNiVCz5zqZdDPWslHmdK7g3Z1Ofu1mwuiScBmMJe+RQccJTb8oqrC079yUumXyRaFd5YZhSf8daV/GRO0fb7+j5ZCfxcVncsuD37D952dpdKPHBKTE4vBcIEfTfRabkM2k+Yc5n2Xhuxl38vbY3ew7msGO7x9wL2fgdDpp/chvfDqqPXe0r6r7Dt7qf/karl6Pl6XS05RDSvh3o8R1E3pXTJ1sT/8KgFcJn54j9JLfMjjGqucYzz1Ojs9n8KpcqgcZsNsUzhWozO8eSKBOfq/qHTx1bQyn3bP/oz8tVPOXeKOV0b3/dI5K/y1OFtxupFGIxIQoher+0Luxxg/694+K+SC5QOWptXbea2fm0RsNBAZ55HwGk1wi/eY4OzN2WljdO9Td/vbWVgGoOiShQrxyUy0f8cc71ctME5vuoNPk1OvSvn8yTCYTy5Yto3///iQmJlb4+IiIYIa+9xQtW9Sj/a3vsPizdezcMs3TiXLF+4N6MOPT37HZrs3Rl2s5Vm05R2KahdvahlMlzMyuo7lUj6j4i6yPtAkkq0jl5a8zybeq7E608/IPuTzQ2IdHGmsE0bGWkd2pzlIXXS2OAjvYFMHbt/gS4lM2h0T4y3RrZKbZzEzm/lW6rPDvxqUlOP/+VPk/GR+NWQXAlFkbS8WTZ23io7G/ATBp5kY3jpz2hxvPWvgXt3e6gZ79vuXdEb/x0bj1gObcNXLiJg2P38DY6Ts0PGErEz/do+FJ2/lq5QkmfNCZ5LMF1O30Bdv2pNL9nnosWnYCgOFT9zB14UGG9L+JweN2Mmn+IQBGTN/PhLkH3Xj0JwdceB/Dp+3V4X0anraX4VP3XoSHT93DsKm7NTxlN8Om7Lpi1/dqRdSxTEbM0L7vlMXHGPGJdk0mLjrJyNnHAIhcdIqP554EYPT8M4yeHw3AmPnRjP9Ce49z7GfxTPlBW2tr7FdJzPhFM/UY90Mas9ZqLq2RP6Uz4LtMHIrgfL5CTJaT4+edfHbAyty92gDfpL+KmLtfayBN3WVlzgGtETV9r41PD2qNqJlRDnJsKgczVZ7d5GTGYSe7MqDPbqgfCG3DJRbFqCQUCA7nCJbGKiyJ1RrJn8UpLNXhBdEKET6Q54Cv4jT+mXdG2wDmnFD59ITWoFqbpB3X8ScHb//lYNYRrbH4ySEHMw9pv1Gzo+zMOFBx2+TiuBISHEmSfCRJWiJJUoIkSfmSJEVJktTtsgv1L8awyHV8NG6tC6/3cML4DXwUucGFN/FR5MaL8YStfDR+K/XrhHDLTdW4/YkfsFqdDJu0nY8mbgdg+OSdDJusmV+NnrHHXWfHf3rAXa9//C2O0BAzx05l0+Du5fy5O41NX3Xjky9OMGJGFACffHGSG2oHMm3JcaYtOc6ImRqfTF18zJ1m4oIjbjxuziF3vRs544AHz4xi9KwoN46c4+KlGQeYtOCwGx8+eWkFx/9qfDznOKM+1dRIo+ed5uN5pwEYsySO0Ys1WfTYr5IY85U2QD9heRpjv9fWHZ26Kp1xKzRumflHNpGrtOsw8KccknIUWlQzEp2lcPicQqBZYsF+K5O3a9yy4ICNKTs1bpl3wMrUXS4cZWP6Po1nTLLgi5NOpkc5mHHIzrs7HAza4aRVhMQfyRoPpFsFP8VrePZRhSUnNF6YfcTJ4uMaD8w67CTEB55uZGTuIQcLo7T8p+62Mn+fdt4pOyx8usdCp9omUvJV6k7OZFu8nYlbCpn6pzYIPmFjPuPXaN9x/JpsItfo/ALKG1dI2ne1eeU/15EC6Ny5M4MGDeKll1667DymTerLbZ2bsWPLNOrWrXrR521a16dZk1p8t2L/3ynq9biMmPNdPO/2uoHePWojSfDsPVWpElbxjlR4oIEV/apQOVCm5bhUhv6ez/2NfRjW1WMuUTtYxixDbI53b99zRSpV/Mtf1SY+oL3wnZxTntm+iodkNl5yux6e8OashU6qIISg0Y2V6dGtOes2n/FybNlYliXuv70ODeuHsP7rHpqphPtMWqJud9ZGFRCTkO81n8vC+u9yGRKMfzsu5aao/VMq9O7Up/tAEYI9CXbeuyeEljXMOFTo3cYXo+4F7XLlCQSaJL6804hNgW9iBPOjoUkQNA/2HBvhAykWsOmduy64dxYFIsxlfHcdlpC4s7qEQ4UiZ+lp/m5cIV4xAknAHUAIMAL4QZKkelewqP9IlM/d0YvrnS5N6+aVCQ/xYcSUnWU8qx6s/yVShcBokJk79laaNQjlsfvqEhR4saFMs4YhHDmVw9l0z+yKt/JQ4e9SOr4WozzX39v+0qLQpnIwxUHnumb6tA+gwC5oXd2gSeRUL5lS+u4wX4nHbpA5kin46gwczRIMbGGgQYjObM0P0oo0PvPm2lfoEO7ZsBKnLaU4vkaJbg3NOFXItYpyuZ5WKCTp0pxSvoHfq8or/zlpX6MAbb+iKNStW5e1az6nRQttwbrySPvKJWVzydJWr9nPmPHfs2fTUFehrkv7rra079iZXB59YwtHV96Bwylo8sgmBjxei0qhJgJM8FiXCCRJKpe0T/tMO19KjpNqBqf7GVOKnMRlK8RmK/x8wkb7GkZ6NjeXKu3bnuxkXpSdb3po7n/66fFiaZ8QgpWnHNQNM9C+lokP1xbQsLqZVzpqx1xJaV/C7Ea3+fuU3bGr3P/kdWlfcZRD2lf8XBcW2qnZYiyndg6iapXAi4/3Iu0rIXHzItMplr4t+u4EazYnsmJeyTWf4Lq0D66OtG/zsULGLT/LuoFVyShUuWViKsPv9MfX6Vd9dQAAIABJREFUKBHuI3HvjRo3l0faZ3O59AkhOGeBMJ2UyKYYOJMvKHDCF7GCJ2pJdKwklyrt++OsyqFcleHNtWvtY/Cco1japwrBj4nQvrLMjcES7+5y8nBdA/fUkq+4tC99YZOypX02lXpvnq6wtE+SpMPAaCHEiooc92/GlZL24Xo2klPzaXXPlyTv64efn7Hc0j69TA19p1y9mFfGzT3CuQwLs0e2d32H69K+qy3t+25PPqv35vFFzzBOpzu5f2EGY+7yR0KiRpDEbXVMrnNfWtrndBl6OFXB+XyVKn66QR5VEJWhYjbAiL0KkbcYaRomlSrtW3LcSa4ThrTTOM3s7+H44raLQxEsPWTn0aZmagQZeGRZHqPvCaBdLdOVlfbV9RUbh9cvM03MOTsdR8RWWNp3JXnlPzkjBWAwGHjhhRf46qurx83d7mtDZlYhu/ddO05Y13ocPJFNp5vCMBplth3IoqBIYceRXHYdy+OVyWew2r3PHJUVNUONJTrqW+IdPPhNLgv3W+lQw8juFO+N7fNFgmqB3quaogreW1fI+D+LGLa+ACEEqfkq1YOvjsROMhkvuf2XonyufRl07TGXGK84k5i4DLo/t5S7bq3Pp0t20vWxJdr++Cy6Pv655tDlcuSLic8mtthxKz6H2ATNcUtz4vK4YMUm5mlOWS587wur6di6Ktv2nqXL06s0l63EPO7rtYaYxDyiE3I1960Ej/tWMX6k71o3fnbgBjfu9e5Gt+PWK0M2ufHy36P/7VtTZuQXOjR3vt7riU3KJyYpn/tf2URsUqHbnS+m2J3v9V3EJhe5HbRik4s8DlqpFuLSLDwy/ITmpnXORo/IaOLO2Yg7b+exaYlsOV5Ii+omnlyUzrK9hUjAtO0Wfj9l5601BTzzYx7xOQqJuQrP/1xAQq6Ge622aA57+Qp91ttIzFdJKhD03+YkuRAcKgw+AMlF2vbaXoXX96r8kKiS6xBszxCkWgTTTjpJtWh4+ikNxxcKYvIFKUXaNu6oJ58RBxSi81QG7FSZeURlwkGFpALB3vPaS+hJBYKXN2rlScxXeXmjncQ8hcQ8ld7rrJe69KVGOXmluiRJ+3Rb/zLzlKSqQCPg2GUV6l+MS7v2eZz6Srr2/eZx7XttNTHxOdjsCgaDxOJvjxATn8O9z5fuzHnPc7+4XPUucLPstaaEs2VsUrGz5R/EulwuN25P4/vfEog6nsX9fTYSm5TnTqPxzAW49/oLcD6xiXluHJNQ7KKZR2yiBxcUXpuvO+w5kuXilkJeGh7l5pNnhx8lNtVCbKqFHiOOaxySZuWR4SeIPavjk/N24s5rzp/x6Zoj34TfsmhSxUh8lpMXv83GKMNvZ+yM31bEsE1FJOQoPLs83+3A+dxPBSTmau6cz/9S6K6zvX63kJSn1eV+mxxYnVod7/ung6QCwafHnPTZorA8VqVxqMTQ3U6SCgRJBao7TZKLB2JytQ5X73Waa2hCrsLzvxRqjqA5Ck8tz+fJ5QUs3G+l+7ca7yXlKozZVEh8tkJclpMnv8giPstJXLpd5/h3Gfddki7NK0YDwI3/Jq/8ZztSAL169eLrb366atPNBoPMG6904dOFW65K/tfj4jgRm0fjetpMwL2dKpH0c2eWj2/BBy/WoUaEGT+fv9c5SclV+HK/hcHrCnimuQ8GCW6tJbM10UmmRS31WTpbqFLFX0JRBXk2gaKqKKog16aiCsG2BAeHzips6x+KELAh2kFqvkLN0KvUkbou7bso/P1M7okWfz8TxWKEC7EkafU6JNgXgyx7sEvi5e9v5rGHmvHLmhOuY7WZB38/lwscaNiVazEG8PfV0kgSLlmf1uh1p3Hl4+9n4NH76nA+0+peU9bP11hs4qXlU3ysDvv6GNzYbPLYuhl1bmoG3Qil06GiKNqWk2fz4FxrqTi/4PLfr7msEJoTlJ9r9kUSuBbP1gZL/HwNSK4rpGHt+vj5ypohnwp+Pp4ZYQ9W8S9ed08I/MwSsel26kUY8TNLdG/py5peQbStbuSZlmZqBcv4GiUQmpOVhrUTaJdfgMCDEfjK4L4XMqRaYE0qROfDnVXALEFlH4jK0Zy1PEIbQbE/YLZduBbgde3XjfMagL/OCSwK3FEN4vMF0XkqdhUq+WrH+Bg8XOVZmkzge5nV/5K8or3LkCaEaKfbFnrNT5JMwDfAF0KIk5dXqn8/DDr5p2zwuPYZ9PVON0hn1C1catTV0/p1gvllfSwA/j6eeu13AYdILkfIYt7QnnktvRsLXHXHqBn1IQgNNtOlXRV+3ZCo1SN9GnddM5asdzpc7MpWjIvPdSFHqeoFfOLCTmfp+y8Le+GonFxb6dhLPtm5NhRFoCgCq2622aS7dz4mudhEs4Sjrp+P7PlNMUuuGTCBn8tSU0JgcwjqhWnHNKwks7pnIOPu8qdmsEzNIC2dnxHtWIGLW1z5FGOhpRHFPKPjBKcqWBmr8GOsoKofmGVoEyHIc7jSCNWdXqDxVaZVEOHj4itXOf2MxU6AKhlFggg/ic8f9SfLIkjJVcixCoJcrqGSEOiWm3J938sLqRzSPld7Jebf5JVrStp36z33M3DUOOo1burer1+YVj/XoL91+gVr/Uwl9cHtqwWTlZWFn58fXhfk9bZopLcpe8WzIGxWehq1mg4lI26GZjlc0ZAq+KvmTTpQlkyvPNLF8kj4ynNu3bXRy260w71MnesXztRL++yevJQ8TTLVc9Qxnu4QwiMdtbWa1GzNsGHLiUJm/JbByteqaelzdeW4YI0Lu8VTXrvuhQJ7kZMXNtip6idxR1XYnS6oHyTxYn14ebvKKw0lbq2i+9F0tWzGHFRpFibx9I3a/ddL+0y+BoZus9GykszLbXxZH+fg7Q1WDDLs7B1EqNbiKuHCZQj2TJdXH5lWYWlf0hetLynti3j2wH9G2vfM47cw4ePHqV9Xt76XN1msPrw849nZBdS/eSo5MSNceeklqwW6Q7wsAulF+qaPE9FZdO25itQ9L5ZeNi3Tkv+XR9pXnriSdrNevl9JmZ+XhbTLIcHR71csnjoPXCDv9bJYpmsR3vumpjDm3gBuqa3JXWzZWpoVJ+xsibMz/W5Nqq3nC4dOzufUNcKKikr+5ubaDLyyx0GrUJk2oSbWnXXSpZKBjuEmBh0qYlAjX2rrGsuyy3560ikL91U10j5c+8zX6DmHj0Hh/UNOHq4h07WqxK8pKrPPqAQaYfUdWsPddIHxjUk3yNR6haPC0r7M79qWLe2zKtTpfahc0j5Jeyi/BYKBHkKIa2oaQ5Ik0ffFDowb9iBVK+nkTeWR+ZXAnq997EQaT736G8c297pY2udNmuatvnjhmD/3pjN00n72rHywBC9ctGj9VY5ycVJFeQtKcKI3CaT+mnmTBpdHFgylvyagYW1/26nnWPlMELVDtLpXLPudf8BGlkXl/Q4+rnPr2rk6mZ9e2qc49PsVipyCRzYK7q0Bd1aCGafg7UbQJFjm8b9UvuwoU1m37rFJ1o5/cScMby3TIkyr/kYdLxhMEo+stjO6g4lbapmYdcDOwsMO6oXKrH064KL0pgvWu6w5ObNCvNL6Bn+xaULTMtPEpFlpP+h4uaR9V4tXrqkZqU5338frj3bjz9+u3GK3wcHB5ObmXjrhZUZ6ZgER4QH4+VXc7OB6VDzyi5RS+fXXAwV0usH34g8qEHF5KmeLBJM7GXGocDBTEGiEL6NV/AywIVUQlVmykSSEYFe6IMJXYvZRjaAXH3fyyWGNML864WBnqkLX2hrh3FffxIHegRx+OdDdibrSIZnl6659ukg9m0Oneybw2jtf89HonwHvrn1fLNtbah55+Va3Q9fk2VvJy7cihNBc+yZtBjRXrrEzNJetYRP/YuKnWl7DJu9g8jzN+Wr4lF1MXRDlwruZulBzvho+dQ9TdHjGksPUqRnIiGl7GT9HSz9i2l5Gz9zvxpft2lcerHP2+7dc/qKOZ3kcxpacZOSsIwBMWnzK7awVueg0H889BcCYRTGMXqSN6I9ZHMv4rzTX1rGfJzB1ueasNe7bZGauPq8du+IcszZoTlMJmQ5WHtE6YhM25rvdq2bvsWJxNXKm7bGx8Ij2uzwzysGC41odn33EyfyTWt2fc0JlwRmtwbIwWmVBtMqRHIFdhXAztAszklCksjdbQZIkQkwSn8VpDbAfk238kKzhZYlWjucpNAs2sCzRzreJWmPuq3gHX8Y7UITgUI7gZJ7LrcsmeKIm/HYHLIqB+We0Ms89qTLnpJZm3jGFWUcv3+DmSrmBSpqGeglQFXjiWutEFcfh42k0umUCB4+kVtzBb8JmPhrv4g2Xg19woJmk1PzSXftm7nXXzfFzotz1ffLCwwyfrnGC3oVv+lKPO9/0z064HS+X/hhNkWtgUZ9+0oKj7vSRc4+48ciZBz34k0OMmX3IjcfPO+LGkxcec+NpSzx4+tLjpWJ3mpkHmbLoqBtPmH/Ejcd+WlyGKEZM9zgH6l0ES8cH3d9r5KzD7u8+avZRN4eM+vSY2/nz47kn3c6fY+ZHu50/x34Wz5il8RrWOfWN+8Hj1Dfxl3TG/ZSuXef12UT+prnYzdqaT+T6XPJtgq8OWZm4TRuwWXTQxpSdFn6PcZBjEUzbq9X3xUfsTN+v1fFFRx3MiNKqxKJjnrbE/ONOdxtj7kmV4VGClmEQZIL9WZDrgLVn4btEQedKEhOOq3wV5+GiL+Mg0wYJhbAnXds/54TKZyc9PPbJQSfZNsHWFCcLDtl5s42JXs2NPHSDVren7bExY5fGk1N2WJi4VRvgnri1iAlbL2NdVUm6YgvyXk1euaY6Us/0e51PvvuJaR8O5q/1a/52fpaiIqxWK2bz1evkrFl/hLvvaFrhxX+vx+VFrweqsXhteol95/Oc/LI/n96dg/5W3qdzBC0jZAyyJmJoEQazjqmctUDdQNh6Dhy6taOEEMS7JiBq+HvP16pAkNnzfPiZpBJmKVc6JNN1aZ8+buvUkK8X9eXr7/eQkpZz0efeXftKj8IiG2aTAVUVXo8tl4uXFyc9geB0XC733Frrqrv2VRT/W/F33LS8uUvp70XzGmb2JjlKpDmTqXCuUKV5pWJJYDnyLAXHFWpSmuJoHCizN0sh3aZSw08mxapJhgUeXsm0C4KMEoFGqdQ8Har2Tn+xZEwIMMouXrm0GdhlxRWUDM8DmgLdhRCWSyX+X427b29I1y4NuPfJJWRm60xmyuV6d3Ga9CyLe+0n8P48q15weeJUXB51awSWqzwXY/H/CFNqlI9bRKn7LwxJkujZ1p99qboZMAEpBQKLE+qHlKMMXjACsm3QKszDD/1uhHVpWhvlrqoS8Z5HElVo32dPJlTz1fHGBfk7heY6WqxZlCQJoyy527f/hmtfeTtSXEVeuaakfXsztB7t3u1bGdm/N0vWbaFSdc/ilxWV9v2+/Ds2//gNa9dqI0VXQ9q3Y0cUj/acw+fz+vDgfc3K/I6lxnVpX4WkfQ6nSrWHt5PyZRtMRgk1u4Dxv2SQlOVg9hNhbrnd5Uj7Vp+ysTZRZfqtJpw2hQ/2KqxPEay5B9amSPwYL5hws0SzUIl5J1W+i4MQM3SoLDGq3cXON6BNfbf5uojtz/gRElTyXl+Yzr3/b0r7Un/tfJu/b9nkE3rftv+MtE/kLQbgx5W7GTb2F3ZteJ/wUJ0EuILSvmlztnD0xDk+m/2EtuMqSPtWbYjj1Y+2sXzevXRqe/HyC65MS/5/XdpX8hwVkPal5Ti5a1ISx4Zo19qWbWXIhiLCfCWGtDO5GxKXI+37Jk4i1SJ4vYGRfLuJoYctxBepLGjrz9o0O+vOO5nYIoAws8yiOAv7sp34GiTuqGSkZx3PIKBe2ucQTl7c5eSn20yYZFFqmist7ctZ36VsaZ9FoWaPHWVK+yRJqgvEAzZAX/FeFUJ8U97y/NshSZIQWdMB+GTeJr7/+TB/LO9LgL+Odyso7Rv88QZ8zAYi37/1qkn7Pv85jnFzjrBqwV00axhWevp/IP4r0r6DKXbeXZnDHy9pvSZboZM+qwu5tZaR3s09BleXI+2bfUIl0CTRp4GEzapyx0ZQBPx6u8y38SrLk2D9XRImWWJwlMrpPDBI0PdGeLqh5znVS/USLPD2Vgeru/tg0M0wG3XvQV1RaV/DILFlbpsy08SkWLi5z74ypX1Xm1euqRmp4mjT6Taefe1NXrizI9M+HEzW+fMVzkMIwfLPFvPii2W8Y3AFonOHBvz63UBeHvA5P/50fU2pqx0mo4zZKPHZhnRU13BcoU1l26kiukxNRanoEJ0uDJJnhO9YlsqWNEE1X3hhG6xKEqRa4ESONmK8NhVmdpAZ21bm9SYShQ7hdutKKtCcu17ZbCetUMXHCJZyOGxfqZAM0iW3/1LExJ6n68NTaXtTbe7q0oiqDYfw2qDviDqcdJFrX9rZvFLzcDoVYuIyufORBcz/fA93d7nhAte+L12uXDl0fepHl1NfrtupLzYhx+3U53bfutC1L8GDmzUMo2olX3r0W8c3P5/m3hdWE5OQR3R8rhtflmvf0M1u3P+DLTr8pxv31aXprTv2tQ//vGr3SAhwiECK1NrkqU3JUtuRaruDM3l38cWW1kRbuhNteYRlu28l1vYosdaHWLT5JmKL7iS2oD2jvgomLvcGYrOq8OLYVGJTHZpr3wdHNde+s1Z6fHyKuLNW4s7beHRSHHHnbcRlOHj801QyChVyrYLb56QTn+UkMUdhc5yD74/ZefLnIl5YVURCrkpSnupx58vXOWIVqry6QyGpUHPYe3u/6nbb+z1NIc8BqRbB2OMWzlpV7qlsYGBUEX9lKlgVWBRnIaVIYW+Wk2bBBp6tZebmUCPzY6yctaqctap8ctpOmkUlzaIy+7QTuwrJRSqjjzpJsQhSLIIhUYLkIm17bYdKcqEguVDw+k7VzUv9tl4eGV0JXhFCJAghJCGErxAiULddM52o4ih29Yw6nErNasHUbTORdvfM4diJs5qD3yCPg19J175fPa59r/5CTHw2h46dY85nh7ijY82yXfueX+Vx7Xvx95JOfYk6pz63a9/GEo6XXdpVYeCLjWn/5BpWb07SOfV50sfoji2xPzGfWP3+hDzP/qTS05S9/w8XztOV4QJc7BBYAufT41VP2Xq+86cb9x76lxv3G76b6KQColONjP/STkxWI2Jy2/Hd7tbEFN1PjPUhfjt1P7HOJ4l1PMHq0w8R53ycOPuDfHmgPfGOW4m33MSon4OJy6tKXKYfT06K09w+XU59sec9zp/FznWPz00jPstJfJaTj1bnkZav8lmUlae/zyMxV6HQAZN32XjV5Zrndv7MU3lpjcedT+8C+spmu7v+FrcxCp3wc4JWv1elaI39h6rDczu0ThRAVJbgjb0qR3Mg8iZNXtwqlBJ8peexLIsgpUBobp95Ci+tsbid/Yo5MD5HoefKAhJyNAe/p77LJT5bIT77MmTDUjl4Rf73eeWa1fA8P+BtHnjyWb6cPZ1+D97FlK9+pF7T8s/4fD13FlZLEU899dRVLKUWHdvfyLqfBnHPI9No2bwmTRpVu+rn/P8cAhknwdjlqqiSDwIfFD+BJKzIqoVGTfP4IzGClgUtaFqvCh8MUflQtTHn92T2nttDx+qXodVF60gVDwb9nCjoVlti21nBQ7XgsToST2wWRGVBzQCNtNpGeNY2s5TRf6vuL3G2SFAtzHuaKxnalPh/6z2o8sbQt+/n8LFUMrIKebrPZ1SKCLz0QbqITciiQb1wOrarzdJlB65SKbWICPNlcL+bGDJ+Fw3qBV/Vc/2ToQgfipQq2NRKWEUlbGoEDhGKuPDnyugE2UbT5oWaHRWCejdUAV8fkEzcevtNSH6aprb3q57DImdqf4ViYcz0bAz+VmR7Ia+9l4OhjhHZWkC3J2KRa9ogIwHZkIXZIKGocCZDISrFQYtAaBhhIPJOX55aUUitv6EaltAWyARItQoeqGbkeJ5KvQCZV+v7MOSIhTyH4GCuk2q+MoFGiQaBZddfgyThZyh25/pn4lLSPUn5bw3QFIckSUwc2Y3ouEz6v7uCFwcsZ/7UHuU+XgjByCnbqVrZjxvrhl7FkmrRvWstvlgZy6Bxe1kx586rfr5/KoQcQMOm7VGDOiFM1Xjl7dcQlaqBZOTp3h75Wev2VjA4QDipXtsCPkZAolY9J1KQP8i+3PWQRxXS713POWZ9A8JRCI58htbLxCfEDoqdVyrlYapiRxSl0/72GORK6aiZ0cgS5FgFozYVcVNVrU5P6erH+5uK2HNWIdf29wZ+i49elQI1/eFQjmY48WsKHM2FmALIssNNoVDVF4JNUJaxcYSfJhtWVME/0YIodu0rM8ov7btqcU1K+5z6BRqFYP2KH5g5fAg3Nm1BSEQE4ZWr0qBZc9rf0ZVqtetcJO07emAfA57uwTcbttHtpsaek1wFaR+KZ2HZBUs2MX/pNr5Z3IdmTTySxLK/+P8/aZ8ijDhVf+wOE4rwRRVmFGFGVWVUYUBgRFUlhDAgMKAKCRUzKlp6B+Hlvy6qHZBA1qRaOemp3Hj0Qzif7ElSTmlf7HkHL2yws+ERM4P/cnB3DYksG+w8p/JRK4ln/tTeYwgzQ68GEk/V9zx3sk7bXmJBXh+ZV/6w8VwTI90alVy87mpJ+879ee8lpX1BHdf+56R9JZ5f1c4n8/8kctp6WjWvTqXwAGpUC+GmFjV44O4mVK0SdNEzvmbDKfq/u5KoTQOoFBGgy+vKS/v0aUbP3M9f+9JYMP52bqij61BdQ9I+uxpMntKAAqUeFrUaxWIJo5SHj5SOWcrGLGVjVLMxSvkYKURSC932wl4XznQ6UPFFlQJw2I0oUiCqHIQiB6Io/qhyAKociCp8EbIJIZlRZT9Uk6fB6sg/T2jycho/vxhZdfDlc2F0CPP8bn68qZBgH4m32vlclrRvd7rMp2cU5rUz8dYBJz1rm4nKUchxCO6rYmLyaQsOFYJNEs/W8qFDhIf7vMn2zLKTV/c5ebexgZahUqlprrS0L3/XA5eQ9jmpdteGCi/Iey2GXtqndwBVFQcjJmxg6bf7adm0KpUi/KlVPZjWzavQ7e4GhIX6XSTtW7rsMNPm72XPb896llS4StI+fd1+4+M9ZOfamfZhO2pU+XtGTRWNKyXts4kICkQjCtQG2PAMYJvIwsx5zGRhIhujmoGRPIwUIHl5/UAv7VMK7KiSP6ociOL01f4agjROMQahGoJQjYGo+CJkM0I2oxoCEGbPi0+2rAR8jn9L64HfI1SFP14Kpp6fp+wD1xbRuZaBZ5qYLkvatyFV8EuSYHYHmYc3qMxoC5/HQmUfieYhEp+cVilwQJgPDG0q0T7Ccw59e0Mv1cMocedKGz9286FWmIeHrpa0r02TELHti85lpolOLKTN09sqvCDvlYxrakZKLaXTpwL3PPE0zW/pQGJsNHnZWWSkpbFuxQ/s2bqZYXOXuF/cVxSFb+Z/yhczJjF02myCqtfkQJZHw2oyeCqaj7GWGzcK8HLf1b88WNHNcpQgQk/N6P/yXZxLL+S+x2ZTOcKfd16/k5d6dnDlVVJbW/r5vFgyl+N9pLKiXPrncjTo9G8aqk4FuwjDqlbCqoRjFyE4XJuKTyk5FeehIuFAwunaFCTVjoQNSdgwOrPwdUZhdKYj559DVopYviWZxb+lUCUikNYNInipcwTPzDzBj32MhBRkaGvGSDIJjvqYHp5KVuvRmH58DcmquTUqFyzSO22PDQG83crIpwftOAS82czAzyedSAK2x9qx2OHzU4I5NxtYFg3PbRF0qSxRPwDyndCtiszSEwr5DnitocSyJIVMG7zeROKHkxKFTri9usRHexUKnFDPTzB9pwWngEFtzcw8YEcyyLzXwYdpe2wM6OBHoMuQQrb8vWFmSTYgyf/+KM7/TBhc0wn6OiXbeXtgdx584Bbi4s+TmVVAUkoW0+ZuZc6SHezZ/CGRU36jsMjGqPcf5IEnFrB7fwLrlr/BjAW7EALGj+jGsHFrMMiCMR/cw7DI9fiaJUYMvp1h4zcR6C/x4VudGDZhK8GBBoa+cQvDJm0nNNDEe6+1ZfjknYSGmHnv1ZsZPnknwUFmhr6u4cBAMx+8oWEfs5HWzavQ5qEVhIf68MnoO9h36BxCCCKHdmL4lF3lxuOGdGD4lN0IBJFDOl4aD27P8Kl7EAjGDb6FEdP2IgSMe68kLhEuzlCEmXylMblKUyxC41sf6RwRhj3s3rObffuPMurNpkxffISsXDvjBt/MtKWHyM61M3ZQW6YtPU52vp2x77Rm6tJT5BU4GPN2KyYtPk2RVWHMm80Zv+QMDodg9ICmRC46ikDi49cbMXruaQxC4aOX6zNmcSw+qAx5tjZjv0zEH5V3Hq3FS/PzMAXX4/kXXqRJ8zfYuvFJPv/qW/Ym/E5UTDavtfNlyg4LdkWwKtqJzaniKwT9mpv45JADEyr9mxqZfVRBFiqvNTEw54SK3S54taHMwmgVAfSsbeCcTTDrtIMWIQZ+TLbTMFAisUgw6ZSFGn4y41r4sSzRTqJF4TZZc+oTwEv1jCyNs2OUoM8NJr6Kd5BmFZy1CnIdsOmcSvMQA0tjFQTwRiPJfd63mknMPaXdizcay8w9puBU4c0Wl8cNl+IUSb42Bm2vWBhdgxq633ZZthE5sgc9n2xPcmoW85buZHdUGr9tOMOSZYfpcHNtxg+7l2GR67HZFBTVyaKv9tPzsZYEBIUybMJmhIDIoe0ZNmm7xjMf3MrH03fjcKpEDu1E5Mz9FFmdRL7XgUnzD5Ff6GDc4HZMWXSY3Hyt7kxfcoycPDtjB7Vh2hcnyMl1Yd3+2tX82Xc4g5t7rCY02EyHmyrxxZTbGDf3MDabwthBbRg5MwohcOGDGAww6s3WjJx5EB+zxEevt2TkJ4cI9DUwtF8zRs46THCAgcGVtsVwAAAgAElEQVQvN2XUrCOEBJl4t08TRs06QmiQiUEuHBxoYHCfJoyafZQgfxPv9dXS+/nJfNCvOaNmHcFklBkxoCUjZx1GqIKx79zEyFmHMfsEMPDVZzhxrgGVqt4ICM6nnSY5bjPdO1mZOm8zDruFMW+1YNTsowghGD2gGaM+PYYQMHpAYz6ecwIBjHq1AaPnnUYAI/vUYcziWISAkS/UZvznRxHA8GeqM+6bZISA4U9UZdwPaQghGPFMDSZ8l4xTEQx/oipTVqThEGaspkpkmW7gmed70+C2D9m09nk+//IbGtfcxpzN58m1wZBOvvgYYF6UnWeamFh82EaeXWsbLDrqoMABg9qYWHTciUWBd24yMfeEE7sq8VYLA/NOaWvGHcmGGce1ZQ8O50CoGX5JEWxNF9QNgLah0OsGifnRgpN50Ks+zDsDwT4K3WtLfBMrCPUT9G5kYPAuJ1GZ2pIvXx+3E+LrdHOdn1ni9Zu0dovZLPF2O1+m7bEhG2BIZ3+m7LBcnuGEVB5e+ffbMtdUR6qsqF6nLlVq1Xb/L5uMJJ457f4/OyOd4b17YvbxYe6qP6jToNE/XkZJkhj5QXeGDXmIrdsO0/etZdjtCv1eKrvHfS2EU/WhyFkNi1KNIrUqVqWyToqjYJZyMUm5+EkpGMnHKBVgUHMwYEHGhowNSSlAclmGeDOVKPHCZqGFgzGFfLzwDGuG1adKiKDbuN2EFwRSHQvPzVZ4uJGZXu38CPSBGoXH+WDU27w/cQ70mIHppzeR7DrrGld4q/DFs03JRRBggCQFTLLE3VVgdRrcW1UiuuBi5x+HKtifCfszYXWyoH6QoE2ExMDtKu2rStQNkqgbJANKiXNJF+RzpUKSJaQrOavw/zgaNqhGwxsru/+PjTvPidNntX+EIDuniLZ3TMTpVHj5+Y506Xwja/44TPHdK9vh6hJpKB82yBLTRnbBZDKQmJLHgGF/cust1WlYL0R3LsqP/46Dn5fvog+rWokcpRW5ShMEZsxSFpWN2wk2nMQkaTP4hdnROOza4JT+tcYS4zb66+DNZevC8hTPYF2YRiqJNx/KZMueePrdeZ6mcad4a24N3nmjLwPfegeb7TUObluLxb4Dg89OqlOIQ4GzRcI9olzeewcgSxKhJihwQm0/iYOKwCTLvN/YzNAjFmr5yaUe61QF3yY6WHtWQZbAzyhhUwW7MlU+aGrkdJ7icdPyUoYrGZfilOuc44kWzarTomkVtu6IAyDtXC7nMzyz1Wnn8lm5+hg9ujWh7ws36xb39uRRUSe98oQ+ucko88DtNRn2Rite/nA7v25MYmdUeokHyDunXYgvLs+VxhZq0vneLtRr2JF0zEhSLHu3fM7Td+Tw5Q87AHi6U0scuvaEV2dCvGBvabxc8wsv/5GEfBIys+jeLJ6fJmwkv8qtvNa3D+8O/ZC0ojepG7SazGNbEYaT1A8p5Pc4QWJeyYHeston+n9MskQtf0G+AwKNmrW5nwHurwY7M6GuX+kH2xTYcg4Wn9EWVW5fRRCbJ9hxTtCttsyodga3zfpF18HbNfFS5kvHpdsq5XlH6mrHNSXt252uNXr1M1NOHVZ0syaLJ41DNhjo9e77yJJE1vlzvHT7LSxcs7lEJ8rfqJNJGDw9Wx/d/grPSHnDqqXE/sNHU+j29HxSjo+95makFGGiyFmdAmcNCp01sKkRxZ/gJ2fgK6fhJ6fjI2dgFulIkuoqns4RR7nQtU83jV6OjlR6Uh5dPzjBmBdr0b2l9i7E3ugi+nyawL6RdfjrjIW567NoWsXIx/cHY8+1sSnOwfLCNoyfMgvZmo1x7+eIqJ+R1EtLcqyFCtNPCmr6QdswA4OiFFqESLzdUCbfCQtiVPo1kLgxUHteTLLK4RzBxOOa/fm7zSX8DPD8NkGTUIl0q+Cnbp7ZuQunwb1Nr5sDPM9mjQkZFZb2ZWzvfpu/X9ljKP5tf/rvSPsKv9f+KVGn9HXN8wz0HfAZHdrVo1/vLiAUTpw6S6d7p3Jq7zCqVrl4BFr7X5eX/jPVMxsudHXhQtlORWPtnwmMmrab3b9W/P3PCrtz6XihrGOFgCK1DhnOdljUWkg4CTacItRwBF/pLBe6/XvLy6tUSS+T9CJz0kv+AFRr6Y5acWdyeODjMyx+sx4dXSKFVVEFfPJ7BiveuZnEqg8T3Ow+fP38QXEgpR1m65eT+WjlcT5oa+Lhelpdddo9ZdXLbi6U9hXYjUQed9ClskyI0UjkCRu3hBvoU9eHZIvKyhQHL9U1U0W3rlxUtpPFcXaaBMv0qmvCIQRvR9loEiwjSzCxlV7+5zm3j1GHL1j1Q883bVZWXNpXdOCxS0r7Kt+66r8j7SuWDJeo86W/JvDQM4t5vU9HHr6/KQiFLdvj6Pnq95zZ9RYBAa4bpeMR4Sw5AFjh5/8yXPg+XxHNqk3J5X5vypt8sFwco09ThiRZAIU0JotbsVEdGRtBHCGEKHy42ISspIJG7+BXOq+UkAnr+KKE46fOtU9coBYRVs9nh07m8vTcNFYOrEGjAO18S3YVsuWUhU/63EJqnUcJb343JrMZnDbk5P2snBfJ1I2JTLvdh1trGFzl0yt/dG3hUvjm5W0KbzaTySlSGXMEutWAgY1gXxasToFBjSHcJfGVEPxxFmaegruqw2uNJRILYeAuQYMQibqBENnB42Zr0L+uYC79NQTjBS9c1ZuVUzFpX9MwsePbu8pME51YQKtH//hXpX3/b4eIrEVF+Ph5utzhVarSa9BQZo/88F8sVclo2bwGdruTlNSL1675XwshwKqEkW69ibiChzmZ14vEovvJtjfFKFmo7LOHen4/0yRwKfUDfqKa+S9CjKfwlTPdnagrGU5F8MqMWB7vHE6PTuHu/XtjirizsR9mo0TXpv588mgI3x+0cL5AI5mu9U30jTjI8Lf6IOUm47xrCMorP6K2fxFRrRlCMmguW8VOOIUqSYWC/n8ppBQJgk3wVTzICCbdJHMgWzDuuMKgKIXT+Zob1/cJKm/tVxhzVPDhQW1c7r3m2sufow4KRrSRub2ahI9MCQe/xHyFxDyV3i63noRc1e2E83fcBi8MyWC45HY9So/cfAt5+Va6PjyDmLh0zGYDwUG+DBy6nJi4dLo+Mtvt1tW1x3wXztQ5+GXrHPyy6frkd8TEZxObkMPdTy8nJj6HmHiPE1dsQo4O55aK9c5d0XE5TJqzj6OnMjl+OquEE2D3Pqvd+Jk31rrxi+/84XHtG7LJ49T3vs7B730vrn3vedL3fGuj2wnwsf7rNBfBhDwGT80iwfYMSfZHcaihVDZupYHPIqqb/sBPvrgTBXAuw6K5jfVa43Eec+N87u+9/iLnsdikAh545U9ikwqJTSqgW/9txCQVEJtcSLfXdhCbXERschEPDdhDbHIRcSkWHh50kNgUC3FpFh756BjH44t4dkosgb4yNcJNxGXYeXxWChuPF9Gmpone86Lw3/8Jxyfcz2v9+pK/exnO0Ho0fXkGQ+6owo/RTl7eaHe79vXb6ryka9/Iow5CTBKHcwS/pjoY1czMyTyVQYcsjD9pxSzDoEMWNp13EFug8GZUEQvj7Dxd24SPDA7XYGLLEImO4RKP1TAw5aSDVIsg1SIYc8zpxu8f9Jz39V06177dagnXr8uJS/LK/4AE538pvvnxgJsr9h9OISfXQkxcJr0G/EitGsHc0rom7e9f6Hb26/HSD243v3t7rnBxhYs39DwQ73Hwi030uHeWXnf+KOHmF5Ood/bL0+3P44Y6Qaz7K5XohNwS+/XHxurzudC175VNxCRpWKunBSVxsn5/AQ/03XJRmphEDcckFRGdeSPbUl8gjSexOYws+3IGIjmS/KTlPPPGj5q7YFI+z7273Y37fLjLnX//EXvd+PUxB9z4jbEH+T/2zjs8iqpt47+Z2ZZeCF16772pIE0UQUBfLCBF6SjSsSFNKSKgFFFRUcSGgoiKiAoo0qR3CCWFhJZeNsm2mTnfH7PZbIDQLPi+H/d1cXHn7JSzu3OePeU+9xN7NpfYs7kMn37YFzeGzjxO7DkHseccPDUr2nD7PO+g96yThtvnRScPzTxV2LUvyXDt6zIrjj7vXWTc/RFMXJ3qc+2bvzmH+iVNZJw5xuSXX2LzpA5MHv80v3z3FWqp+nQZ8walQgNYeUL19Q0ude1LsOsM2Ogm0V7gupmQY/RbzubBLq+Mr2IQ/HIRJh6ECUY+Yvr9AU/+ITiUIXhmD8w8ChNqQd/K8OJeQaQFXmgok+sRdK8gk5jj50TqvW++g19Bv8XPwS9D9Tn4ncm8cdc+SbqeuHLrhzH/M9K+S1GyXHkST58sVNa171MsnT0dTdNQ/gWdRUmSaNGkIht/P0m/Rxvc6upcBiHAoZUg212JbE95PLox426TU4myHiLIdI4A+QKypBWc8A9h4VdnkSR4uVfZQuXf7c5iXMeCDZ2lQhQ6VLfywzEnT9QwHvd6JRR+XX2AvM+GE1q9JZ7mg9DbjDBOcOVSKuMCktnGPGEm1GYG2cTbKCiqk0cS46kcHUex3ONk7v2ZEFMmgQqMqCbz/XlB7wqC6ccEHh0CFZjXCN46RaHOYrUwiWphEr9euEWrwZJ8czk4boMKd0ReNvFRtnQY23fG3aIaXQ5FkalcPow9h248LcRfCd1SHS2oNYOfKY1GJqXMGwlVopH5B63kbhCLVp+nSmkr2XmFf/R/OZLLgm4hnPYaHlUK0TiybhcbbQdpfXwjYX3fo+Mzs3ntscHUDLn+DoNbEzg0EEhkeww5VKBJonaozJEsnYFVrJQNkMnT3Hxyxk2IWcIkwfjqVqyKxAl7wb0iLBJNI2/h79q1YsrtmFMkgoMsnL1QOLVCr4frM+KF729RjS5HmRLGxPTpM3afbPifhkCiWcuOiNKDwFwcPTEWKfVzyDvMts27eKJds2tf5BbgdJKbznUD6VA7kHWHjNVEVROk5+m0r1ywytMw0sP877dyat82mjj3EtHrDca9/ApTXnruhu7nUAVpbmMSN8Nt9DPMsuHOF2iC6iEwtCrsSYM3T8Ckw9CmhNGFq3aJA2mjYhJrbRIlA26FhE76r4gr/7PSvu0bfuLrD95l9udf+8wmAB5vWodFa9ZTpkJF4NZK+wC+XXeIYWO/omObqnzybq8r38d3/j8j7XNq4WS6apDlroQqgpDQCDKdI8SUQIg5AbOce+Vz/bXB15Ps7k9I+2Z8HI+W5+Hl3nd4y41l9zsnnuL9vsWpWtLM7jgnJfEw7Rc73evYeKBcQYPrsyqbx2uZubeiCc2tIwIjEeUaIco1RrdGguoE1U1ajpscl4edF1XMAUFUqFiJBjWqYAoOR7iduPb9RO7mFahnowEwK4JtKYLobMGQqsL37Pk7ZJn8rMeLcua79O+/UtqXvufRa0r7bHU+vy3t8/GCZ3bpx5vZsuMUy9550leuaTrBZceSHjuLgADLLZf2AXz45TFemLWdpx6txewXr38P5l8h7cvV7iDFcxdOURKzlEmUaRehygkkyRsfruMet0raN2phDHVKmxnUydgXp2UY+1aqjI9l58gorAocOK9SQvIwan0ez98VQKNI0Grej9ppCutWfU75HfOoV0y+qrTvUKYgyQlvRAtyvFX8uLmZUL/fHY9euIOwKdlDngZdSxd0vPxle4qfmYN/+T8l7XMe7X11aV+eSrFmX92W9uXDL668OudnHE4PM1++31eenJJDzTvnk3bieWOv2y2W9gHMXXqU1987wovD6jHmqaunm/krpX35Er402uORorCIJIpJWwjiBDfSvb9V0r7H5yfQu1kQXRsYbq5aloM8t6DWrIvEjo0kyyU4kaJRyip49OsclncP4o4AUBs/gXb3CJa8NZ+H0z6jdJBcpLTP41LZlSJIzIF5hzTyzYd/vV8moJDTdeFP7PN4QbgFuvrNSftL9fz7K7JfLrh/QtrXuE6k2LGy81WPOX0mm7oPrL3t2vd3oEzFypyLi7msvFyVaiTGnPINpG41uj9Qn/s71KJak1fZsz+Rpo3KXfukvwFCQI56B2nOuuSqZZHQCDYnEmreTYglAUVcxx6ufxCt6oQx55P4y8pLh5u4kKWy9mAOizdlERkgcSFbp2V5MyDzS4zhdtWstMKqEx4koF0ZmV+jkxHRP9Gh/EaWHnDh0QTpLolv4zSK26BbeRl7ns5WB1SvL/GjqEGt+x6hTtsuWJs/yLblC6i2dzkrEzQ8usTAKrKXC/pUkvgiVsejQ7+qMp+c9KAKmadqKCyP9qAJiadqmfjwsAsdiUH1LCw97EYyywxtaOX9A24qFpPpXNXKL7EezDaNTtWs/HTq5r4TSTYhyf+zTf9vRakSIew7aKRJ2PBbNPsOJPDc6E6Ehdh46ZXveXPWf3h9wSaQJJ4b2Y45i34DoTFhRGvmvLUFSVIZP/xO5izejiJpjB3WjDlv70SRdcYMbsLcd/agyILRgxoxd8k+TIrM6EENmbtkH2ZFYpS3XJElxgw2uCQJxg1pwtwl+wDB+KFNSM908nTfuixefhiTIhEWauG5YU2Yu2Q/utCL5BOGNmLekv3oAiYMuw4+pAHz3j+ArsOzg9ryR0w9St7RAJOUzcHtH3I2ZjvjhtTn+w1nEELQ7d6KrN14Bl1At44V+GFTApou6NaxAut+TUDVDP7hyhOkZ7oYP7g+C5YdwePRGT+4PouWH8Pl1hg/qB4Llx/H4xGMG1ibhctP4NEE456qyYLlp1B1nXFP1mD+J6fRdRjbvypvLo8BSWJM38rM/zQO4fEwqld5Fq5IQHhUnn2oLHaHyie/ZTOoU3EWrU1CdroZ1iECm1nira12qhc389I6OyZJ4FRhyxkPB8/qPMl6DokqPNCzD3v1dD76fim6qtK/hpllJzSEptOvmsJ7JzQ2nTOMJcwyNImA3hXMrErU2Jys82AZ+OacBwE8WNrKd+eMeNW9rIUcT4GtR355z3Im3/GPlDOx+qzBHy+vsCpRQwjoXVHiywTDta9/ZYnP43WEgAE1ZD6JNXi/KjIfn/CgY8Slm8G1Ysr/O9e+68CcRb8hhKBa5Shmzv+V8FAbzz1rxApd1xFCMHXOrwQFWHjumebMeXsHQhdMGNaAue/sQRfw3NNNmfvuXoMPb8Ib7x9A02HC0IbM//AwqioYP6Q+C5Ydw6Pmt51juN2C8YPqsPDjY7g9Bl/08XFcHt0oX3YMt2qUz192FFWF8YPqkJnlZNqigzz1n6q8/9VJJCTGD6rDvA+Pgg7jvFxGMPqp2rzx4TEUCUb1r8kbHx1HkWFkvxq8+VE0JpPEs30v54oiGNm3Bm8uO0FkySp0eGAQTqkCOZnnqBq2kvc/+hZkwdgna/PGR8fRNMGEQQYXQjBuwJX52Kdq8uZH0ejAuCer8+ayE+gCxvarypvLT6LrgrH9qjB/+Wl0AaOfqGDECiEY9UgZFq5IQBcwqkdpFq46iy5gZNcSLFpzASHg2fujWLQ2CSFg5IMleWt9KrqAltUCeX9zJnGpbp7tEMGSbTmoOgSYJRZsy2P3BY3jySq5boFbg9LBMsv2O/Ec+Igni1dn8NMj+XpxFo+71vHxUQ8eAYPqmvn4uAdVwIMVTQzcqJLpgVrhEu1KQZAZ7isrsyZBoHmgTyX4NA5A0LuixGdxAlnCx1fEw+MVjWNMJp0nqsgsP61jNQueqGbi4xMaJkXQ1xvTzLJGv1pmPjrmQTbBgLpWlh52YzJLDGpo4/0DbpAFw5sFsmSv8yYFS9K1+yo3miLob8Ctr8ENwKFefabWf6WqdPkK5GZnk3rhPFGlC3I23VG5KnGnTtD4nvYA5PqdI/ld3+QumGXY4/TLB+S3umWSm/u44qfTLO032x9p9ctN5TnixzN81GqGLvfVZef+izRtWuMqq1t+K0H+M9j+M1D+M1NFzL74QxcK2VoN0rUmuEUxTNgpbtpGmHIYk+Q0/OWdoF7HDHHhGZ4r16OomR/jfRS8J81RhFOflzcqpXAwNpe85GysZtlXLmk6OZlOdp/Ko1KkwvreoczakktKporqktl71visOpWVeO+ARsVgaBNlZn+SUa+2pWQyHTrfnhG0KCHxcAUwyRL9q0osOWqYRsiSICk2mrjFr1Lut/kkd5nE3U+OwVWnKvLcqTjy3JhlHaFIOARYA2RUWZCrGblaNFkiTzW4C4FTN/Iw5GoSqjAydWerEvkTyVkuwfFUnc5VYf9FlSCbzL2VLew9++f2MtyGF/k5g4rKF+eHu+5uSnzCR+S5A6ldpwabtp4BUzgREcHEn7WDKYTM/GZqjiDDLjDJEpjDybDrBFhNXi4ICbKAOZIMu0R4SCCStTgZOQoRYRbkgOJk5ipEhAX4eHiYzcdDQ6w+HhSgINsiycyRMJtlZGsYmTmAULi7RTlOxudQo0okstlKpt14ZiSTmQy70RYkWSEj22h7stlKhnc/YZFcMZORfx3FhIcI6jXvQZyrFRHFHezbsYLH26WxbP8f3s9SZ+eBJAC6dSzP3iOpeFRjwHTgeBoOp0a3jhU4fCIDe66Hbh0rkJ7pJsuuIkkyHo8g05tZ1q0KsnI0JEVBVWWyctzIigW3KmHPVZFNFpweyHMJZLOVXCd4VB3ZbCXbmxVbNlvJytUxyRJKQABZDrAqMnKwlYgIK2f2ZCIFWcjySASbTMhBNnTAIZk4kydT9w4LnSooDGsZwOzNeeiyhDXIzJaVb6EFRdHk0RFEVm/AliWTsQbnkScJFFlCWE18FqtRLghWtTexNNpo4I1KaOzI0NGBqEAXundPaVQA6F7ZdFSA8PGSQTrCGxyiAjXf8SUCVfLneiNsGiqABMEW8Kp7sNkkHN5yk0Umxzu7bbLIOJBQ9cKr5DeCa8UUSfnr98r+qyF792hLfkt/SmABFxoZduPzf7hpLeLOrDb+NoWQkW181zWqliA2IYdyZcO95br3khFk5Eg+nuNUUDUd2RqGQ5VxOjUUWxAuVSYnz4NsCUDDjN2hYwoIQRNmsh0uFGsQGiay89zIlgDcukJ2nublMtl5HmSzFadbItehIpnM2GxWwkIsnIzPIdsbEyTZRGa2ikkBJJnMbA82i4zk5cFBZiTFRKZdJSzEgmyykJmjER5qlGfkqESEWnw8PNiMWy5DgzadKV+1OR5y2LHxPS7E/k6jwbXIsLuxeFdEMrLdPlu4/Djmz4XQychyXVZ+Gc/y9qMkuSC+yQpZ3iVj2WYj09stkQLMZDq98STYRpbbm5okLIAsVfbxHF1B0wUdG4XxwaZ07KqMHGzDbTZhd+iYTRIOk4lkh8q4jmFkZbrIdApCQ80Ik5s8NwTtmMNeRyiPPDsFEd0CKXY6eXYHlkATbkUl3Sl45Gc3lUIl2hdXmNDMyrydDpAkWlU0szPTg2QSBISZcCgqVhkCQxUcikaQqYCbLPiOCbXIBISYcMgeLGYJa5CJXEkQagJLoIlcoRMkS5hsCnahESCMXJl2TcKbpYUsl0AxFfCbgiRdR1y5Le27bkiSJH67kHXVY/wHUroQzBwxmPot76Jrnyd95WuWLiEh5hSjZ80DKJSsV/IfJBUaMBU1kPJb2ixqIGW69kAKYMyEDyhXNoKxIzr8IwMpXZjJ0OqRoTZGJRirlEKkaS+h8skrmkNcj9TmnxxICSGoO/ww34wtR9VSVvQcF0nZKq1nn2Pv2OK8sy2XXLdgYssCVzy3o+B+TrubsVs8bD+v0f4OmanNzZi9NprRKSqjtqv80NlcSJLj7+bnL7vRhYTt3kEEdhmBduYQee8/A3lZWAOKSMLrv1Rukvx44YBwPUnubjTBnSRJW7IO9b+mtM9cben/H2mf+yfjj+sYSKG7add5GuNGdqXr/QX7Gl+c/BlBQVZefq7b5ecWJe3RrywfvCxh9rVQZOJtD48P+44e91fj8R614AYTchYJXxLdEFKcDcj01EBCI8J8hGKW/ZgkZ2F54k3KiK5Y10L18JMSFyXzu4q070rxxqPqlLl/C6c+aUxooAktPZejiU56vRnPnol38NyqNKqWMDOkTsHn5PFL4G23u/lU6cYjQ8fjzE4n/OBnSEnH0c6dYEdCLh+ckFnSMQxMNuOzlhU8mZmQa/weuPweCY925e/CX8InSwXcX8JXFPwlOMql8cYvxtT/0nXD0j7PqYHXkPZ5CG+w/P+PtC/nM+OPQvGgqLaqUrPpFD57fwBNGpT2Ffcfvpw2rSozsG/LoiXCUPi1IhLKFim9L6p9+f9uF4oXgvZ9fmTqyEa0aV6q8CnXMXlb5PFeuEQU6eJOcqiDjJNwdhLBLmTcV7jCtXFd78+/X1JUP8YvaXohmZ+fhFe4L+nTeKV+SRkemj57iDNv1zLOz3Gy6Xges35I56dhxem7PI2HGwTQrWJBm/RPtptm11kT1ouH+w3DnpxI8eivkFNOIFJO883xXLZdNPF6x0hQLCAraJoEuelILvtl1xJFGFf524j7xwb/Por/MUVxxe/4Py3tqxsldq3pcdVjTsVnUfveVbdd+/4utOx4Hzs3/FSoLKpMGZLPnb1FNSoaNpsZp+vv34StCSupagtOuwaQorbBIqdTzryaipbPCFOi/xaHvb8Dh+MdWBSJKiULZvu+2p1Dl/qBbDzlotEdZr46kMeoH+3EZ2rEZ2qM3WA4yZzJ0hm7xc2YRiaWdLDwXZxOXFaB+82PiTr1IiXDccvr2jd0u8bZPCOH1DO74Wye7nPfOp+nE/Pt+yyYOAqpTA2UAW8x9oiNs/7n5hQ46iT6Oe0k2DWfA8+ZbMO1r/+Pjstc+85kaj73m/gMlUdWZBGfceMuOJCfkNd01X+3UTS63t+YtT/uw+XyEBObRPsHZmC1mjly7Bztu8wmJjaZmNhk2neda/C4FNo/uICYuBSvm9/bBW5+Pd4jJi6NWH9nv7g02j+8jJi4dGLj06/IYy7jhhPg6dh02v/nU5+713klXe8AACAASURBVOYdiSScyyYmPoMu/b7xOX09OvQHH+876icfHzD2Zx8fNP4XHx/sx8fMOER0cgtOZT9CqqMqsnM/5owljB43jTMJScScyfK59hmOYT/48XVehzGvk9iZS1zFiuJFOvhl06n/+kscxgyHrvsGbvI6huU7gOUSm5hL56HbDH42lwee3kns2VzizuXRdcwBPl9/kZrlA+gz8xRxF5zEJbt4/M14OjcOJTHDw/4EJ8u2ZROb7uGRz402eCZT4/FVds5kalzM0fnt+6+IXjyAtOw89A7j0Hp/gBi3mSbz/mDpz3swPbcR09gfMI3+HtPINQRM/g1l/Pd4/jOdtaUf5LzHyrk8wcxjGuccgnMOwevHC/jsYwXOe/58+hF8MWrq4QL+0sECPnZXgVPfkC0qibnC50qa7/o18Neb67BeK6bcjiuF8dmXf/hixYBnlnN3y6osX/EH/YZ94o0VKezel8iBI+eJiUule5/lvvjQsefHPje/9g8v87X39v/5lNNxGcTEZ9L+kZXE+rn5xZ7JNHivNcQm+Dv7edtjn7UFbbPP2kJtMMav3cUkZBsSuBk7C8r7rycmIZvYhGzue/JnP9e+Xwpc+67g7GeUG85+MecD+XLnnSToA8nRq7J+7aeIs7PJSvyRzgPXG857CQXufzF+ToCXlvd4enOBa9+47T5Hvuty7Xtlvy9WDH/1oM/Bb/C0gz4HvyenHfU5+PWafNTn4Nd94lEjblxw0u2lo8ReMNz8uk2NpnnVQOKS3fSYE098ipv3N2eR49Q5k+ahVSULL3yXyZlMlfgMjUdWZPmc7h5fZSfTodL24qe8MnYIbsmCp91zuB5dimv4Ru6fv4OZq/5AHbYOdfAa1IFfI4asQozZxNleK7B3nEhqlY4M3Sq8jsR+bqJ+/GxRjnx+DoGJfq7CCdmar6+SkK3Rb53jr3ft80r7rvrvtrTv70XTezow//mxOPJyCQg0NvnFHj1CpZpX3yR5K2AxK7hcf36TeVFQhY0MtTEZWgN0rATLMRQz7SZAvvi33fPvxKqt6TzcPNS3inj0nIulW7P5oH8Jzl50GFpjFdLyrr7ialMMRz2b3yzK/lTBfeUkNpy7sdXavVs2cX7p85QdMo8Rr8yDr0aBfnODnb8TkmJCUv6nm/7fiq6dm9Chy6u8Mau3ryz65AVqVC1Fckr2Vc785yFJ4Hb/Nc+gLoWh2Voy4OlaaJKO4jrA24uWMGZglb/k+tcLIdkoV6E6uq02AoWmLQPQA6qA7qF6TSfCXAb0jGtf6ApYty2Nzs0j2H7UmMndH+cgJUvlwaahgAchIDFDJSHz6hNO7gsnGNa7B/UqluTFB+thKlmdNYlm7gzPI0Lk8H2Mk65ldYTQ2JJTjPtaNCCwZiv6NH8QNXcCmdvWUOyTFcCFm3oftwLXiimS8t+hfrlVaNu6OrPeWE/j+gW7/jOzHNSoWvwqZ90amM1yIQXQn0GZspXQI3tDYF1qheWCfTOyfQtrv9nMAw3+ORc+IQeBuRg16haH4DsAidoNy0BQOOh5lCztAdlWyCToepGcqTK4fYTv7y0nHeyKc1KnjMWXwDfLKch26oRYi5ayHT+4hzG9O7PgoUp8lVGZvm1rs+a0wKrlcV8ZJ0J183W0kx4VwRRZhpSQepSs35agpj2Y23kCYt9q7NtXAkk3/B5uCSTpOuLKrd+m8D8t7QN4beQwAoKCGOWV8o1/tBuPDnuWlh06Af8OaV9sXDJ33zuVZW/3pVP7Wn+ptE8VNtLVxmSo9RGYCZFPUcy0C5ucyo3g3yTt03RB/WeO8MnwMjSoYOODXzOY930qr3QvRs+mwWw9nMWgFRm83i2M+8pIvu/VX9rnyjE+sw+OeNhyTuejDsbKlksTtF7tYn1nE6EW6bqlffkwyzrmlv/B9ugUtP1r0b6eBEJcJu1LcwqK2aRbIu3LOTH87sAA81WPk8svvC3tuxJ0N0II7u06nbata/Ly8w8BULPROFYsG07D+uX/NdK+/YfOcl+vlaz/vCeN65e6aWmfRw8i2dGITHc1JHQiLMeJsh7ELDsKyV2KksT8GWmfJizkaWVwilI49FK4REk0Aq59IqBgxyKSCRCJBHECk5pYyOHr0niTk6dS4z872Lm4PiXCzcxbeY4P1yUx/6mydGoQwtebkpj8bTqLehXn7ki/BN5+0j5XrhFXpm93kZ6nM6eNIS2+mKXRfZ2L3x+yIjyFP49CCcDLNsLauhfm+u1B17GveBXX7h8Kv69/qbRPTxh5TWlfSM13bkv78nFJm/d4NJrcM5NRQ9swsG8rNE0nqsqLRO98gZIlQv410r5N287Rb/zvbP2yCxXvKOyVfSPSPreIJFW/ixxqI+MinN2ES7tRJGfhmPQncaX3pxGAQ5TDKZXFRVlclEKXrjOu6BmY1fNYPTEEeg6jOM754sqVpH3n0ty0Gn2Eo29UR5Fh2spk1u/P5u2+JWhR2caSn9P48I8cFj8SSYPQgrr6y/FUl4YQgpG/OCgdJPFiKxsAR5JVxmxy8tOjQYUc/DR/uSESWrnmSM0eg2p3gTsPfdWLcGpbobr+G6V9TeqVEHvWXd3N+lRcJjXuWX7bte/vxIjpsxnWqQ3bflpH83Ydid6/j7rNWtzqavmQlJTF/T1m07JpRc6eu7lZ1CtBExbSPI1IVxsgMBMqn6CYaRdWOf0vu8etgtOtU7GEhe5zEygRaiIsSOGHkWWoVNwYHFSINOHwCNYdc9KmRACLduYhgLFNLMzd6QQBz9ZVmL/fw4qTKotaW1hw0HC7alxcJtgEy07qjKyr8G60jipgRC2Zj2LBqcHwavBJnE6eBkOrynx+RifHA0OqynwWL7CfWsXIkGJYO49g68FoWp36lI9OaCQ7BM83NNHrZxeH0wSPVVUoESSR4RK81MzCwn0uVCExtomFN/e6kWSJ8S2szNvlwmyWGNsygDnbHQTaZEbfGchrv+dd9XMqErJ8fXthbuOKkCSJj99/hkatnuNkzEXmvNqb+IRUVqzaScP65Zk4bTUCmDnlYSa+shpFErwysSsTX/0Om0Vi0oROTJy+juBAhRdHt2PijJ8IC7bw3Mg2TJzxM+GhFiaMuJuJMzcQHhrAhBF3MXHmBsJCbTznLQ8JtvLCyNZMnLmBQJvCxDFtmDhzEyYTTJtwD8OfX8enq47w4L1VmT5/BzWrFmPmC3cy8bWtCAEzXriTibO3IQTMfK4VE1/fbvAX7/aVv/p8W77+LYoadTtiNsmcOLyRIwfWMXlEbd/xMya04OU5fyCEYPqEFrw8ZycCwfSxTZk0bzdCwPRxTZj0xh4vb8q0BXvxqILp45oyY/F+HE6N6eOaMvvdg9hzPUwd25o1W0MoXqYRJctWBxR0XSNASSPu1C5Sks/y4D3BfLF6DxlZuYx5qg7vfXEMl0dhWJ+GrPzxApbAErRtXZ8zKSFEFG9DutSWXFcqpw5v4KGmR5m2+CiKpPPykOpMfeckVlmj7wOlCQpQaDj4AKWKmUFA79bhdGoQwoyvk8jOdGI1Sazca2dfoM7Iu4J4bXMugZJgeLMAXt/mwCo0hja08MVxD7287nfz97k5kabRoqTM4sMqmqrzbF0Tbx01XPWGVYW3TxidpoHu/cz/ZS9BkSUY/PJrhPadzq9aFHX3fczSWOP4odVk3o8x3PaGVZNYcELHpsCI6vBGNAQoRozy5++cMp7dEXXg7WgdAYysK/PWMcPN79naCouPqKg6jKp/k92Ca8WU2zHnMkx8ZbXR7iZ3Y+qs72nRpCLPT/2O3fsS8KgaJUuEsPC9LQghmDnxXibO+MngL7Vj4swNxrkTOzLl9c14VJ2ZL7Vj+vw/yHOozHzxbl5bvBd7rpsZz7Xi9Xf2kWV3MeO5Vsx97wAZ2S5mjG/BvPcPkpHlZvr4Zsx97yCZ2QZ/fclBsnM8TB/XlNfeOUhOnsrD91Xg4eEbqVQuhJNx2SxdedJo12ObMOnNfSiyYMrIRkyevx+rWWLi0/WZPP8AQYEmnh9Sl8nzDxAVFcljvQca6hjNTXHzNt5970MCLW7GDqjN5AUHCQsyMW5ALSYvPERIoIkJg2ozeeEhAm0KLwypw+SFhzArEpOeqcfkhYcQuuDV0Q0MLgSvjirgr4ysx5SFhwkIimDIwMc4cfEOokpVRZJlNE0lIyWOysUPs3HLEbIzk+jfJZhFn0YbA5felXhn5Xks1iD6dKvO+l0QHlWBmtWrkRXUjSy6YQpOZtum1Rzb/R2T+tzBq8sTEAIm9y/PrC/PkZTh4Y7iFqqNPIHFJNGuThA9mwax4WgeLSrbOHTeTY5LIEnw1h+52N0SL7YxnO6ynILn7grg/f0uknN1fo5TGd7IzNydLsa3sDJ7p4sgszEueWu/C7du9B8WHHAjkBjd0MzCA27Yt4VnYnbwSUoZHhg7h6he8/nlnWnEb/mWgTUVFh3RCLbAgJomFh1WUWSJZxuYWXDQQ6hNokdlE59Eq4RY4KGqZj457iHQLDG0gdFXsZng6UZW3tzjwmyCUU1tzNvlQlZgwp2BzNnu4KaWbCTp2nHjShnd/2H8zw+kgkPDeGHREqYN7k+DVnfRoNVdBIfemmRy/tA0nVXf7OTlV1aimGR27I7jyPELDOh7/TlfrgQhZDLUuqR6mqFhI0Q5SZRpF1Yp7S+q+a1HkE3hh2k1yE3NYcY3KZQKN1GpuJklm40Vy8FNrLSsYOH3GDd1jjq5s5yJ5mWNQZbNr01aFagcKrH9ooZVhqQ8wbTdHhpFgdUrQzFLgvwJFgWwes9XpAIuCVHAvce4f3kPT7OehFesDafgt/M6B9MhR1U5nGZc+8vTGrUj4Vg6qLqbUkFg8s5tWRWQlYJ6mvy5d0baepOtV5ItSMrVV6Ru4+ooWyaSt+c/xbgXP+Op4Uvo2b0pY5+9D4CRwzv4VkFHDe/omz0eNaxdAR/a2reqPGrIXb7V2VFD7kToxqrGqMEtfbKPUYNbkj/tOWpwS189Rg1u6VsVGjW4BanpdpZ+foDPvj6KxSzz244ELGaFRnVLAmDze2hsfrOF/jzAZqFS9dacynqYOg0DSIjZQYdGCXy9b4Nv5rWoc21+DczqV271M1gxW2Ty1Rgmk4zNakyWlyxbhyZV2nDa1YS6zRQy0xKIVPax7seNXDh3mheG1Wb1H4dxuDRC2jckJzMR1aVhkTJx5iXjcukESsVISjyEquo83jqBj745hMUayqB+XTiQVo6Gdz5OiraXANtJ3yx+gEVCFhKlo6wM6l4azeWhY6MINuzNwOb9bK1mKBum8HDjID7aZifHqVMqRMGqSCje78imgKwJJEmiUpjE2RxjcHQxT2dnkuDdtmZ2J2mo3vZr8UndJF/8ALDI4MlMJmvx07gGL6Fx50dw7/sYs4TvGbBIAiSYFy1YcxZqhsLrx2D1WagdCnZPAR9ejcuu7/te/LhZ0lHkm++USIrlGq/f9KX/ZzFqeEcft9nMlC8XySsvPsD0uT+hmGSe6tUMs9m/rZmuyM0mBZP3R0JRIMBmvKbIEOBVMMhyQbksFXAksHmPkfy4LBW0bVXTOHg8jQ+/OoHZLHPmfA7LvzlNzcqhvtUIm1UG7wqpzSJjUgrKFRl0YaJBix7UbNiNLGEl9vhGYg9/wzO9y6EIB8YvLARYZF+O1QCLce6VeP59AyyyL04G+D3cxjEKOdSgY48ulCrXkHRJRpZPc2zPajo1yWLhB5vQdZUWg2oQf8zIBWkR1fE4jGTmZhGKIysBBxCkuTh98DQA7UrewaKvsylTuTl3t+5Ei07DCA6NRLABm39OJROUjbKwfVhdZnwcR1qOxpw+pVn47UXyF42qRSnEpio89Wkaabk63Wp525EQFIhPBGFWicYlFc5ma5QPVVgX4+FAss5/qhvfo0kSvjxPZkn4Ph+LAgIjFuUlJ7B2aj+enPsl9To+ROLv3wAKFsWwQgfYkaRzNAMy3VDcBhsSVObtU6lXTEKR8PFOFY3KWRXj3vn3yl8xtyoFuXKvola8BqTriCu3vi/zXyXt+zbucl2nch2yO1mSWLF4PtH79/LCoiXYAgosSIvS+RZV7n8Pf27x02ma/e4daC74kuuHGw/Ejz/+yLMjBlCyRDg1a9zB2XOpVKsUQUR4EK9O6gFuP9mdavdR/yR8/nI+XXUbeaD0yiR77sIjIgiUEyiu/I5NTs5/QwXnXrrUXaQ7zw267vhfx98ZplD5ld21AHTNT6Lol+SukLTPL+GdyPVPqFnAtSwHOS6d9otTaVfRxNi7AikeJOPO85PjuDR0IRj6k5PSQRLpTsHBZJ0JzS10rVTwA6WrV35P/m873W3I9AAyPBLFAiQEEtPy7ufLlV/zUFWFb04XLLX/p6aZr6M9vv/zsXuAIZOICjSeH//lcn+ZnxJUEFhKT7t4w9K+3LgX7w4MvHrwkUq+8v9H2netGCj85Lm6X246oTF2/DvY7Xm8vXA4ZrP3ublUmlekq951yPmKkhj6S4S8g7MvVu1mwqRV1K1VmrDQAKxmcLpU2t5VmacHtCpauujlQoDdXZaLuQ1wa6EEmi5SOngvAaZLVrGvQyJYVKLuS19TNRuZai0y1Tp4RCgKDsJMJwg3Hbuh1fPrSbSpqW7Sxd2k05oQDlNC/wbJO0/q7+inuQribKHYk+XgYoabeyYco9edYYx6IIqwQOWy2ONSBQ8tTaNVOYUjFzUSMjWmtQ2kfWWj3aqX7Fnzlw9rfvKc1FydsF5vIIKKkf1Bf4oFGM08zSEoFiCR5hDcteLaq9JbHw3wnesfw6RLBk3+kuGqS+w3LO0TSZOvLu3LdRNc+bX/P9K+fMlwUe28iFggNCd9Br5NuTuKMWtqz4ItB4WShF8lxhTVzouSBvof4ycLzP99fmvZQV5dsIvWzcuQk+umXo1Idh5IYsyA+nTvVKlwNa4goxMCsrWapKitUEUIwXIsxc1bscqZlxxYxPaB63HtvOQYjwglS69PlqiHRjAKdsKkw4RKh7BIWZefU2TsunafRtc1Uk3dsSvNCfNsJsLzg2/CSXcX0Xe5pH9z8ryTB6ad4ulOkQztWIxAq1wo0a+e4yLbqXP/W0n0bBDAxpNOHB7BrC5hNK9gxBV/90DdWfj58I8rydkqgX2XIeWmkLt6gq+/kea1c2/6QcE+3439Q+nw8ZX3/R4YHk5UkHzpx1EIirXwalKZWak3Ju1rUEbs/WXwVY85FZtG9VaL/92ufZIkTZUkSVzy76Lf65L3mPOSJDkkSfpNkqQ6l1xDSJLkliSp8iXlyyRJWvvXvZ2i8fgzo5n6wSeFBlG3AnFxcfTr1493Fg7n5x9e4Yf1e5gxrS9frt7Nk0/c3GqUU48i0f0Q59xdkRDcYV5DOfPqgkHUPwwNK07uwC41IF1uR5LSk/NKf84qQ0kwjyXRPJpz5mFctA4k1dyDHKURHinihpd+5/+QSlyym7hkN2O+SCEu1UNcqodx32Yy8Yds6pcx4dLgol3jWLLKmF9y+TXezcxtDh5YmcszvzhJdeisPKFSKUzmg/tsrDyhel1o8t3zClz1DqV4+QY3h1IN3n6NkzZfu3hum5t2q53c/ZWDCb+7eHZ3KF+u/BqAb05r3FfJ6KSUDJQY0dTK6p6BnLfrdPfOJpUMkpi+1UGzD+20/CibM1naZU59j36ZbTgQpqv0/Did+PSbNCeRZGN6+Gr/buO68Mbc4by/ZFzBIOoWYd+BBEY9/xUrlw0gJ8fFTxuP8/hDDfhm7VFaNilPTFwaXXp/6nP6emTQSmLiDce/Ps+s4WRiKMeS2pGQ3RqPR8XiXMfMV8dy/mwMMfEZDBr7o88ZbMDYApe//qPW+/hjT6/z8e4D8x3AsujY6xs/vobTZ7I5dT6KL36vz6m8/qR4WnH0eCym7NXIKQt44qnnOXc2/hJXsXyeXcDPZF9Snu88VuA2dvpMlp+zn53Msz/y/TcfYaceMXld6Tz4d8Ot62yBm1/cuTy6jthL7Nk84i44eHDCIeLOO4hPctJm/DG6Ng+nX5twei9I4MR5F3Epbu6de5bJ36Qx+ccsGs9NwmaG5fucnMvW+fiRUCpHyDy20mi/Z7I0en+TY7TxLI3+a3N9bqJDf84jIVtn/G9O7lqRx9T3VjFt7mLuWpHH+M1Oxm92+niuR1A5zOiTPFjFVIhXDDV418oK03d6Y1e2ztObnD4nrifXO3yx7smfnN76GE6hN4VrxZTbcaVIrFu/j5jYi8TEXqT/0Hd55eWeDH6yHb2eepuY2CRiYpPo/vgin8tfx27ziYlNISY2hfZd3yQmrsAd9HSsvztompe/S2y+I+hDS4mNL3D7jPVz/Mtvv/mOf8u+OsqE6VtZ/mZHBj1em193nOOuJiU5fjqDBR8dLmjXT3xfyPEv5kw2p+OzeX5BDidyenHB04mY2HMoGctxJ31O136fEnPGcPnLPz42Id/V83Ke7xYYcyn3ugXGJGTzwMBNnE4ux8mcHsR4BpOut0BznuOzpdMQ5+aQdXYdQ57/wXAITLAzeOIOHx82eZfP5W/4lAI3v6GT9/j4oJcLyvs+v8vHHxv7B/b4zyHrd7LM9xDn7OTnCJpH7Lk8uo7a53P2e3DCoQJnv5ePE3PBwfC3zxARrPBQs1COnnXS/fU4YpJcfL3bTtMp8Uz+PoNeH6aQ5dB4f3sOPeoFEh4gUSJYNvoDH6URn64Sn67yyCcZxGWo7L/g8fUZ9p938/gqO6N+zKHZh3ZeenMZk+Z/5OtvjP45l6YfZNPlCzvdqxuTrCWDJCyKRA/vCtlDtSw85Mdz3IIen2cZMS1T88W3+EzVx+PSVZ+76c26DP83xJXr/fU/AbT1+9v/E3kOGAc86T1uMvCLJEk1hBD2S86ZAVx959j/MDRNo2/fvjz//PPc27EGn6/YTOOGVUhITKFOrTJUqVzihq6n6jaS3c3J9NRCxklJ82+Ey4d8FuZ/92KjADyE4qK08U8qhZsSqFJYwRBd6JjIRBE5KORiEqmAjC5Z0Qkgx9QYu2QMIE1aEqGezQR59iDdZM4IgNQcnb2JHj7rG8HSbXbG/GjklMp06GxP1Ghd3oQASgdJdK5kYfJWFz2rX3mFJtMlCLdJxGXr9PpZp0tFmfhsnd6/6HS8QyLZO4H3Q3zBlMzaOI1e95bjsXpt+PLLLykRKPF8SyuDG8DcXcYMVYRXAjWmuY0n6+vM2Ork25PGwCgpV5Dh0IkM/JsChGwF+erL5bfx3wOHw02fIR8y/7VHaNaoPBeT7dzbria79iUSGRlAWKjtiucJJDSlEv2HdMRtq4KkZ/PzD+/Tra3mW6n5KyHkcLp0748nvAsooVSpmoni2I3s3M+ieWt4b1abv+Gul+OntZ/RrX0ZRNh9PPTYcAQ7r+u83w5lk+vUGHR/CZw5Dg6ecfLU24nkOXVSczTqlLVi0SHIIvNgHRtuj8BmkjArEpcsvuPRjHf65k4n287pLNhjxIXfEnUssoufzxg/sat+2OA7Z22sVoj3rSVoXFLhtTZmImwS7x5w+/iivS5mtzb4wJ8cPLbORddKf3OHQ7Ze4/Vbv5fhNq4fGVlOXnxtOzWrRlClQhizFu+lTIkgft5ylm4dKxKXaL/ieSaTGd3WAC2wFU8NiQI1GSV7NfNmLeGd6a3hL34MhKkEekBDXp07Dj0kHLQsNq7/nPuaJCFpWZw8thfp/kZ/7U0vrwWkfs3m3anc0/FhhGYHjlzzLIDVf2SiCygdYSYjR6PXggQ0DbovOE9ogIyug1sTNK9gJTNPo2qUmXtr2lgf7bjsWul5Rj9k3jYHa6I9lAySmLvNwZrjbooHwg5v5p9vv/ved05SrijU93iqgYVBTazM2mqstI+/O4Cz2Rrj7w5EAhK9fM6WPPac15i7zcH4Vtdn1HHjkK8dV6Rb35e5prRPkqSpQE8hRN0rvCYB54G3hBAzvGUBQDIwXgixxFsmgDkYA67mQoi93vJlQJQQous1K/onpX1F4c9K+xy5OSx/YzYJJ0+QnZGOrChYrVaq1KpDncbNaNKiJVarjSP797Lvp+84d+4cGzZsQPb8QO9+c2l3Tz3W/bSXGlXCeW1aT+PC15D2CSGR5qhBiqspOmYilINEmXehSK6ryPT+vLRPIOOkLA7K46QMTsqgEey7hoUUrFzEIlIwi2TMIhUzWUjCb0n7EmmfQMIjlcSpVMKuNMWtlEPWcwjJ20xI3gZk3Dck7XOrgo6zE6lb2szeRDdRARImGZ5sbCNcETQtrSBLEh6X0SlZG+Php1iVhR0KAkFqrk6xAIlpO1x8Ea3So7LMmtgrr113ryTzbZzOY9WMTsqXpzQer2Fi0vDe6B0mkD2/M1FkFnKy8Xfn8380J/3m4NMjbvrUtfBq24C/T9p39rW7AwOvoTuOHHtb2pePq0j7CsqvU3ZzndK+5OQspr++huiT58nOdiDLEgEBFhrVr0CLZlVo3qQCui7YtTeWz7/aTlCglc+XDgTdTduuCxk/oj1TX/uBgU80Y/gA754qr5xH1S1k5JUnzVEVVQ/EotgpHniMcGs8kuQvXykir90NSPtU3YrdU5EstTp5WhlAJ0hJJNx8nBAlHulGHQqLwPVI+3R/p1MBKXo7sqSWFNN/IUzd7HvtStK+7FyVloP20LZ+KH8czyE8QKJCcQv31gumarhEg3IWJElCyzI6N+9uyyEx1cP0TsHeaxbU6cWfc/j0iJueNc2sir7yZ/xQNRPfnFJ5rOfDkB7Pl5v20aumMe/5RbRKr5omprSyXibPK/gIjO/xUvnflp42n8zvL5f2pb9xDWmfi+ByL96W9vl4EbGgSAnun5f2xZ1JZ/ai3zkVk0JungdZlggOMtOkfmlaNC5D8/qR2HPc7D54kQ8+P0zjeiWYN6k1Qteo1f4zPl1wLw/0/56lr7elS7sKharg0YPIUOuQqdZFIxCrlEIx88tCGQAAIABJREFU825C5NPX5wdwA9I+VQRhV6uRJWrjEqUAjWAphjDpEIHSpXHsOq77J6R9hZJ+axoplt7kmhoQ5VpBkGNHwWtXkPadT3PTZtQhOjUKY/epXGwmuLN6EHXKWWlU1kTN0sYgIj8OTVuXSYRNYuQ9xjYAoRXU44VvM/l4r4NH69v46tCVLdp71raw6pibxx57DDnpCF/8dpQ+dY2+wKdH3PSpZ2F6u8AiXfvykZqr02BxgTna/mHhPomgP/60tK9hObH317FXPeZUTArVm836r3DtqyxJ0jnADewEXhJCxAKVgFLAz/kHCiEckiT9DtwJLPG7xi7ga+B1oMNfUPd/Bb569y3ioo/znwFDCIuM5OAf28lMSSE0IoLN677jnelTcLtd1G3clA53tmDu3LnIsoyqaqz/ZR+TJz7OkGcWAxAZEcRzoztf9X65nlJcyGuFS48kSEmklHU7ZvH35AQQgJso8qhCHpVwUA6BBRBYSCWQGKziPDbOYyEZWfh3VK5vbllCYBEXsagXCXL9jkupTLa5LVnBXcgJuIvw3G+x5WwtcoZ8xupkhBC8dF8YM9emk+vSSc3VWXvUQYfqVjpVMnPwgsrhJI1xTS3M2WEEmNGNzbyw2cGGeI3xzazM3OHEZpbIdgm+iFapHiFxMsO455pYnR6VFdbEatSKkKgfJfPlKYPPaGmhdKAHDRjd0EyxAAlVgAgvj8eZx/I9SYxtamXJfhd2N4xvYeXtPU5yPTChlY1Fu504VYNHBsCT9S1MaRPAnB1O8lTB1HsMxxuzWWL8XYHM3pKHrjh5+d5QZm288ozgNXF7Repfj5dfWUm23cHop+8jMiKIH38+iMPpISjIyqcrtvHs+OUoikzzJpVp2bQyzww2+qZnEtPYezCRb388zN6D5zh49AI/bIimfu1STBzfk193B1CuUiMUxczFc9GcOLKRp5+I4uXXNhkOYC+1Y+KsXwsc/Gb97i1vU8Cv4f5nCwznmcHd2XsyklJlayMrJrIzLxIbvZJHOjiZPn8jHlVnxoSWzFi0lzynyozxLXjtnX3Ycz3MGN+COUsOkGkvcBVLz3Jexv2dx2a/ewB7jofp45sx8+0D5DlUpo9ryiuL9uP26Ewf24TJ8w8ggFdHN2TKwoOYpAMMfmYSafK9rPs9ml5tkpi6+BiBFp1x/SrxyrunCTLDmMfKMeWDODLsKr/sy6JN3RBUl8qcPqVZ/FMaF5I1Gpa3MnNtOgFCpVFZC3N/zeHeqsYq92ubc5F1Qf+GNhbtNCZLAFZFe6hRTOZEmk6dKBkh4FiaTu1iMiUCJbY+EUrYC9PY8eVbjCwRzfJjhrPotscDWX7Mwxt73YxrZjhlCWBs0wI+prHhpiWAx2uYWHFCpXaksX9z1m43NpPh7jV/n9t3/PzdLlTdiFE3hWuuSN3cZf+/YOKUzw1Hvqk9mTj1KwSCmVN6MnHaSqN9TeleyOVv4itrvOU9mDJzLR5VY+bk7kyf+zN5Dg8zJ3XhtfmbyLa7mDmpM7MX/s77n+zm3rZVqVwhArdbo0TxQPYevMCWP85w4MhFnvgjAbNJptM9FQkONKN4zQvGvbqF80m5ZNndpKY7efTpX1ixqCM7D6RQqlwduvfoSbanApIkEaLEseabr8hMPcHLIxozad5uggNNPD+8EZPm7SY02MyEoQ2ZNG83YaEWxg9uwKR5uwkPMTNucH0mvbGHsGAz44c0YNIbewgOVHhuaANmf5BAxSpNaHVXW/L0skiSjJVkdv++nLgTW3l5eDUmz99vuPaNaVzARzc02r4QvDqmkY+/MroBkxccNMpH1r/M5c/gdZmy6AhCCKaNqMuUt44gBLwyojZT3jqKEDDtmRpMXXwcAUwdVo1333qVjg9PhnKP8OX3x0iM2ceUoVV4/dMzON2CyQMq8saqc+Q4dO5vFk6uU2ft7kw+H1eZpT8lYTbBE60jWPR9El/vzmFit2Is3pzN3gQXO+PddKljY+bPWbzUKYz5m+2k5uiMvieYj/cakzhfHXJSK0rmeKpOvwZW9l9QOZys0ae+lTCrxNiO5Xnq5ZfZ9ME0IuynmNDK6G+MaGpl/J2GM3BYgMzwZgHM3ppHWIDE0y0Ml+AQKzzTIpAP9jppVEph/0WNeiUUPj/kpHd9G0v3OTHLMPbOQGZvzUNW4IW2wby2OfcmFVLSdcSVW9+XuZ6B1E4M2V40UAJ4Gdju3QdVynvMpT35JKAsl+Ml4JgkSfcLIdZf68aSJA0BhlxHHW8JMlKSWfPhe7z9469UqGRs/xr7SHecjjxCwiN4ZOBQ3vh4BbJ3dSzfbAJg+47jVKpYkvR0ozM8Y/JDbPsjBo9HRbhVLJbCX42qW7mQ25Qsd1XMsp1SpnWYtdNYFQuOXK2QQ9afhUeEkSUaYacOKqEAWEghlIMEEk8AZ1AwZkjy3WD+CkiATYvFpsXitJclI6QnaaH9sZhbUvzCm0hcPnsdaC2wslIUCA2UWT8sijmb7JQNU+hZx+rT5o79JQ9NQIVQiQ8PufkxVuOecgrH0zS+iFapGSkRnW609pMZgoeqmvjmtEqdSImZd1mIsrkwyxIjGpgJMwsU7zRboFngUL3cBFJocUT5JtiTE8mf2JEkgdn7oyRJArN3NlhGYMrnEoRaDb4lwcPhFB1Vh2IBEi6PUa/N8R4OJWnkuAWlQ2/yO/+X6Ipv48o4cfI833y/h5MH5hERbkMIQasOrwBQPCqEiRO6sWbFswWb0P1moDf9fop77qyK3W6UPTvoTpIzg3ngoVHEZdxB2fIOzpzeQadWDlYu+w4ASWrtc/wCLuHyNbnZJBMYHEWKswGde95HRLHyXHBCaEQKJ4/8TOdWecz+wMiFZL63BSZZQjLlO4NJWK7AQRRwcW0uSUaSUOM6ArO3fooiYSGfg+y1kTIrErIkKCnWcPqsoFm74bj0JZiUaCRvTDOZJF+ephIRFgbdX5z/3B3Ful0ZBKISHqRgkuGLnXbuqhYAkmDzaRcf7czj/ppWqoYb349Jho0xHub/4aR+SYV6xWUOp+jUKy7TrqKZ5V1MfHrUm9fuPhOfHfdgtgUS0epRdPg/9s47PKqibeO/sz29hxZ6DRDpUhREBCmCIl2KqBTpRUGBQESkgwUERNSXovQqvfcmvXdSSO+bTXaz/Xx/nLC7gQQCr/V7fa5rLh5m58xOTrl3zjz33A9mvZaAvMg6kM8HHEpmj/oP23zWSIVGLuKuFJjym5k1d2zU8Bf4qN4jxwoigvy/4F09DVP+xZwnmoeHumDf/em+u5sKW15UxU2jdMw5NBol9rxISkKSjvRMA99MfYMly0+h1eUSMesICoUMdzcFC6a34fVXSqPNMvH5mCbMXHCa3Lzci7cjtVQu78PZS8n4eCkpXdKL5JwQOvT8GG/fEuTaDNy+spuoW4f46P0ypCffQpUXyVAoZMhkTv8hbCkUMse7tUIhc1D+FHKZA9v8A0KoULURUeamdOwTAICNdK6f30JC1BmG9wxixY2LiHl/u6QUKDzuKwr2lS5tlIW0ce1HKc+Pew/NFQ/l2Di+fRa9Bs2h2Zvj2LFsmFQvF3i4lVaW990vVvOib4sArHaRJqGenLuVhcEkYraKLDueRYtQd3LNdnZcMxCZZmX1B0Ecv5uLMS+4tfeWkYvxUtqC2iUVXEqw0reeG35KO83KwaTmHnx5wkCTEDkTmrmz8IqS2q0k5pNFr8VL5cSoh0QX6U8RXXxnvSA669tUUrL0bS+WXzKy/76FOSclfGtVQelsL+Oxfp7NhCLgyl+/QvPMqn2CIHgCkcBM4DRwAigjik7+iyAIS4ESoii2yfu/CHQVRXGDIAgLgZeAusB/eAZq39Lr0lfICqEzuP4GuMq4Kp6Dm211CeMq8vUlXbSs9DS+GjmY8qHVGRAxFU+VdBfG3LnN6K7t6fL+QH47fIASpUKY+f0yVGo1oR7OMO/Yj+fi4aFh8kQpGhk+6Qc2bb1AcJA3CYkZLP22Gy83Ko9oziIjtxLJhjBEUU6A+gpB6ov5smvnS67nmuS2MDrfI6HuhxQ7PRXJEutioBIg4s49PLiNO5EoxUcUdp5ihYbBnzIOZzsREYFsRSMy1J3wNu7Fz7jjico3jnqja73zPL35dTwXYk3ULa2WVsTbelHKR07Y3FRHm4dh8b713Zj5hg9pehuBHnkTPR8n/U/m6fwRE/LAVZSpyPF9FX25dxAFGZ4Xv0ETeyBvrM5xCy4vya6hefL8NL2dF+Y7Fcu6halZd9VEt3rurDvvpOnc/LoKoaPvPDu1L3nxy+7uT17lEbze/5+h9l3MkO6RwijAQiH1hSl4FtPkB37/Z1BnffDgAZ06tad7tw6MHTsIxBgATp68SsdOE/h4dBdWrjrAK01r8s2XA5HL5fmSdvd+fy5Nm1Thww9exWqxsWG3jZphTUhNTWbLppX0616CF2oWf6qCn+Q/mYZktrmjM5Umy1SGXKs0yXFTpOGtjsNLGYtarpUmTY8m3i6KMuh/k3PIlaZTSMJgwJGQ1yaquWfqj7fsBsXl+/NTAF0Smroq+7nWh3U6TLrWTKUyHvh7yPju48oE+aoQzVZStdIxVfpecLS/tUjSYgryyX9jiIDFswp6v1cwer+IKNegzL1PQNw8hBxn+gp7Zo7Td8VD12SgNvGx+kdx5dJgXwCH8lamUkWQp3TvFg+Pf3ZqX/bSp1P7ig/6n6H2pZula1Do8+9KGc57ziW/CPS/R9U8n3LMjZuxdOw+m4hxnen9TlPH879t50UGjviJMcNbsWDJYT7o1YCJY1pJmOei4Nei4w+M/rAhHVpXxWyRsfFwScJqNeZBTBT796xlaC8vKpb1zj8me8G03cJV+KR6k80HnaUCWZYKmOz+gIi7PAEvRTSeigeohCwEoYg48qTvK4oVNndxbWJzPd/ONmbRh2j7h/gLxwkQjheapNz1+IfzN1EUCW66Cy8PBf4+SmpWcOer0VXw9lCAzU5qpoQ/lbqcdhx7d3UDAAf2OPpEwORRHb3nS+S61wFBiTr3OgGp3yGYnL8drnMobE++RoBDVTA120qN8dGO+mufhUjj8JQj83EjVWclyFua8wQNvPVs1L465cTzxyY/sc3de0lUqTP+763a96iJopgDXAcqAw/V+4o/0iyYx6NUD+1zoCLQ61m/++9idy9fZMybralSqzYNWrzOrKH9GdCqKd3q1UCfk838NVs4uX8PmWlp7N60nh0b1uQ73m63s3XHWdq3re+omzrpbSZ90oGw6qWYFdGOVp2XkJCq4V5maxL19XBXpFPRcyPFNOeQCTbSM42SWk7PX0nPLJgPWxSziF6k05RohpFId0wUx49jlGM+JVmLD5dQUrD85R9tAiLe1lN4mH5Dp26JSV6m0LZL96cRlWwiKtnEqGXxDjW/katSHGp+CVlW2oe5U7eMirQcG21+yOCzPdmEeEuPwds11MRn2djRz59BjT3osjyDHJPoVMlLsxCdZqHTokRH/52+jiNGrE5cyUFE11hMTqUPsKZeZ9Lw7iRd3uNQ1InJU63puirLoa7zUHnvodJOdIaV6Ewbg3/N5u3q0otOkLvAuqsSwK07b+CNGtLL3PvN/Rzg9OwnVvX08q/96bZv3z5efPFFunfrQOXK5enc5UNeqN2XSlV6EBjow/o1k/hl5X7sosiC77Zx4ODlfMebTBZ277vGG61rYTRruJdUm5phjXgQeYJDe+ZRq6qRJm3mYrPZ+WD4Ou5HpXE/Ko3eg9bkqXul8/6IjQ6//+gtDpW//qO3cj86g7sxVhatEbme9Cp3Mt4kSV8Ho8mGwnyK+XOGQtZ6dCmn6NbvP0TG5KmBdV2XTw3sof9atw1Ov8cmImOyXHxnmyL50VnOPmOcfd6L0jrUAh0KYz1/dfit+uwk+kEq5N4gMbsC9x7oiYzNpvX7B7j/IJvIuBza9D/ymLJfZPxDVS49xfxVeHsoeL1xALMGlaf3F7eISshl4Jf3qNL3AuE/xdDlZX8AurzsT47RTv8FMQ686jk3khixNvHlPietwiQMXg2wJp3gp9mD0P82kQfxqQz/IdbRfvRqJ6Z9tDGD6HQr0elWRm/WOvBk+Can/+FmHdGZUhQ7JE/Nr2M1Fa1XZFH7Oy3DduRQ77tMwmYkMWRdBp1/Sn3s3iySPRVX/vp8L/+LtnbDCV5p/RnjP34Lu93OW93mUL3+OMIaTqBBvfJ8/00vFv5wBG9vDREzdrN7/00Xxb90mrZfwpmL8ZQv60u/MWe4k/EGYS/UZ9nS7zi+ZwaC+TY1m//oUPVs0WUN96MzuReV6fK8O/3IGOez/9C/+0DG7eTq7LvRkns53Ugx1efGnUQUhv2otYvo368f2qQTxMU+oFXPvGc5Ov+z7FQOzKJDv50Ov8ew/Q4lz74fH3L4/T497PAHjj9aoD9gnNN/f+xRh0Jgr1GHHH7noQcd6n+tP9jn8Dt8sAGM98kwh9L6/QNExmYTGZtDm36HHYp/bfofITJOT2RsDm0HHpP8OD3tBp+iRKCajq8Ww24XmfB+Oe7EGGg/+hL9p9+kUpfTNP3wAl1bBAFQIkBFtsFGjsFGh3HXiEzIJSrJwvS95Ykr/jlpxUaTJlbDlnQQy+Xx9Os/kJgEHVGJRt6KuEVUkpGoFBMdZ9wnKtlEdIqJjrOiiEoxSfV5fnSKmY5zoolKMROdaqbT/HhyjCKdakvzkk613YnYmkHNz+MYsiqVQT/GU33MPQb9mEBUyvMIiAn/iPnKM8/EBEHQANWAQ0AU0stUK+Csy+dNgbEFHS+KYoogCHOBL4BTBbX5O5vNauXr0UN5d9wkRKuFuSMH0WfMeGoMHUlCTDQR/fuwbM9h/rP7MEd3bef6ud+o0zC/rPkPP2zDz9eTunWcavCCINCzW0N6dmtIZloa4eGTyLA0RynTU8b7GF6qeLA8556YR8wuyskRq6ATwzBQDgB3IgliD+7ccVBb/i7mn7sJo7IKae69KJ4zvUCKX0GWpLVwI8HMmLWpNKygQS4X8HWT0b6mG4uOSudy01UjzcopWdzJG393GWN3ZONfwKbJx0zphaJsS75Y8Dqq4JKIFj3nj+6nvvwktrTrpCWnwEMhjuewsc3c6ddAw4zDBl72kLH5honi3jImtfNlxnshlHyWMMejJlM/nXf8r/2plpOTQ+/evVm9ejXnzx1g+IgIZkz/lBrVu3Dq9HU6vDWO08fnc+n896xZe5grV+5Ss0b+zd4z5mzi5caV8QsoQ2RSJWTYqVj8CjXLQLvmb3D3bhyB/p7I5c+2fiYK7jRo3AGj5lVEWRDNXgNsKSjMp1j0/RpGflANgCztc07A/2BzXWgqzJflXsHdvxaiqTJC7tUn9heTYGDboTiu389m0/5EvD0UaNRyerQpwbTv7vDbjWwifopm20kp+rP+aDr7plcjNtXE+O4lES3OFWhZUD3GzpiNslQ57PoENi+fTbuy18FmIj46EV4s+XudBgCqBcpZ9IY06dlyS5rYbLnpnOBsupxLg7LPiS1P3cvwz8hZ+f/JEhIyGDzyBw7siGDV2mNs3XmOqRHdqVopkI2/nqNjj3kc3jGKW+cms2zlKe7cjadEsfyRpfvRGbzVtioqj0oMHTUAQTSgyt3Khd+288Pc1vx2IRGV8tkjyHaZL3ZVdSZ81hWzVxkQRQyGaygMB1BY7jBvzlaWzGwBf4qW57NbeqaRAD9JETVdayLAV/2YLxguIfp3oWz5ak/tL8dg5ctl90hIMZKSbsLfR0n1ip7cjMph+tJo1u9PIdhfybGLUhQ6Md3MoI4lGdSxJJN/is7Xlyy4KfIyXXi3SSBiTjTWu4sYP209Xw4qzR9xPj9p5UNspo3+TTxpt0hKu7PxojPatfGMjgEt/J6j5yKo9v0N9kgVRbVvLrANeIAUaZoENAPCRFGMEQThUyAcaR/VHaQ9VM0Ah/y5K7Uv7/+ewD3ABzjwT6L2Hf91I/vWrKRmoyYc2bKRyUtXUbpyFTxVKkRRZEj7lnTp2483e/UFwEPlvMihHqdISkonrFZfDu3+PP9EyCJRN7L0fsQkh2AXVRw/sp0h3S3IhLyEmWbni1S+5LVFoPbZ7XaMlERnr0G2WA07GhRk4S1cxVu8hJICktS52jOGx38Pap/Dt5jJVVQlxXMIXjn78M3eLNU/gdp3N9FEyy+i6FzPg4YVNBy6lcvuq3reruXOnE7+fLohjeXnculb340ZbbzyjUMoZKIp83FDFBToK3TDUK4TyFSosq7hnrIPjfYcgmjNl0TPluGSQPkZqH0FWbrcSbtRBDnHG9jvxrNT+9LXPJ3a5/b2v9Q+Z5sC639Pat+sWbM4e/YsQUFBnDx5hB3blxESUgLEGGw2G5WrvsPC+cNp2+ZF6QBXlUCbgVu342naahJnji3CYAtDKTdTLvgaKoXzuVi74TTvDv6Znl3qs/TbLs7jC0vOawok01CebHNxQMBNkYaPJg5vVSwqufPeLtBcFf/+AmpfSpqB4EB3hkw4yOJfrjGod01AZPEv1xnUW6LWLf7lOh/2rMaCz18iKVlPts8o3IR4SggbnWN9hNp37HwaPT4+Q683SvFCFS92Hkthz4lURvcpR/+3Q6jY/qijfc8Wgaw6mMYHbYOZ+4Ezmi6arYiCHF3xHuiD2qDIjcUrZQuarLP59ii54lC+5JzPSe2D/OqB4Qf0rLhs4t1aEhasuGyi74sezHrL9/mofbmbn0LtM+IZ+M6/1L6H9idQ+0Z+/ANms5W0dB3JKVq2rBmLv78n2E0YDCZKVB7BkR0fUfuF0tIBLjRhbLkcPx3NOx+u4/SBOWRaG+Km0FLWez8KmRNXvv7+LONnHGX0gPrMCHe5tAVQ++yiDJ25NJmmquitpQA7HookvJXReCkiUcoel/QuLLn3X0HtS0nPJTjAjeGTT/H9qlt82LMaot3OkjV3GNijCoDD/zbiRRJSrej9P8GbywSJuwru12Zj/Z44xs65Qt+3SlO+lAe/Hkrk4G+pfDW2Bm80C6ZC24OO9j1bF2PVnmT6vVmCL4dVcvZps2MXVGT69sTg0QiV8T5emdvR5F4tdE7jig3PS+179Nhxv2ay7FQO7zX2RFApWHpEy/uv+DK7V/Fnp/bVrSieP/nlE9vcvZdAlbChf3vVvhBgNRAIpCLti2okio4nfzbgBiwE/JDEKV5/JIdUPhNFMUcQhM+BRf/F2P90s1mtrPv2awAuHj3E3M078Qty5n46sn0Lhuxs2nQp/HoaDCZEER6dyNrsMhIzyqLVB6MQ0tmxbQFz5m1iWI9RBfaz63AMx88mMm1sI/YciaX1K6ULbGcV3dHZq6O118RCAAIWPIU7eAtXcSdG4ho/muTkb2apmWaC/G7jaTpOtmcrFNYUPHNPPNZu6rpERFFk4luBLNidjrtaYG73IKZvz6CUr4JrE0sxa6+W6bu1zHzDB6VMwC1vs+XMQzmIIoxv4cmMA9mIwITXvJhzOBuLTfKXXvOnUbdwAkpVJubyfs7tX8nQJjl8uzcDncHGxM7FWLg/E63BLintHM8mK1dkQitvFp4yoDOJjG/uwfxjOeSYRSa85sXXx3IwWqTvnXtMj8UG45t7OFRuHvoKNzOftPJhxh4tA9prKO7730SkVP9GpP5GlpOTw9y5c/Hx8aFixYocO7oBb2/ny/KChZsoXTqY1q/XL7SP7ByRL76Ygd5aCzeVnrLF7qIQTPnaVK0czOAPXubw8XsAhE/dJal+TXyd8Gl7JPWq8W1Zuc1IldBmeHoHkmvI4v6dPXR6zc7ns7ZJqmITmjuV/VxV/gpT/HNR+Zs+/mUmf3kKs8XO9HEvMXXeGQxGK9M/bcLMBWfR6S1M/7QJsxedRaszM33cS8xdfJ4MrTHPP0eG1sT0cS8x57tzZGZJ/swFZ0hMMTBvSnMadVjLmcvJ9O0SyvINNwFY/Iszp8viX647/O9X3eLk+WSu3s7k3e4pfDR+LmtWRTG6b3ki5l3Gy01gzAfV+Ozba3i7ywit4IWfj5LigWp6vRHC3QcGalTyYGTPssxZGkW9qp6cv51DrYoelC+u5s7yuizelsTMdfGM61aKqavicPMMoM/QCCwelbl+chMtvbYybW0coigyqWcIU9fEI4oQ0bs0U1fFIQLhbwczbX0SIiITWnoxfXuGhA8tvZixR+vErv06RBEmtPBy4Nj4pm4OPPmksaTEJQLTW3mglIObUmBcU3fcPeUOgYDnsn8jUn8rS0jI4MdlByhezJeGDSqzb9tE1Grn78bnM7bQpmWY8yUKOHcxlk3brzB90hvMmn+U6ASRWbPnkWmtR2LcdVrUvs3ULw9iMtkcSp4xcTp6d67Oum23UCplTPmkKeEzjqJWCUSMbkz4zOP4+/vTp887RKdVwN3DF6Usm8tnN5EWf4YR71cmfNYJfL1UjB1Uj/DZJ/HxUvPJYMn39FAwbkh9Js4+hbubggnD6jNxzmkUCvhs1ItMnPMbot3OtLENmTj3DCIi08Y4/akfN2DSl2cRRZg65hn9j+vx0dRTuLsp0epMfL/qFjWq+HH9jiT9/f2qW45zt2TNnXx+rtHKz1siads6kS/nzuKnH77GYDAzZeQLzPnpJtl6K1NGhPHlsjscO59G22bF8fVSEhmvZ9O8hsz84SaRsXqC/dU0qO7N2Rs6+r1VkpBAFYPeLsmsYZWY83MMBqOdiA/KsWiXyMsdP8bPvTQXDy/n0tE1TOpdii9+jkUmFwjvU4YvVjxAo5IxtkcIX6x4IKmSdi7J1JVxeMhFRraXcMZbIzC8XRDTNibj7SZz+F4agRFtA5m2KQV3mZ2Rrf2ZvjUdlWjjo9ek+Umgh5xrn4XwwzEdglrGjbmVWHIgk6mbn4ex8M/II/XUZT9RFHuIolhSFEWVKIqlRFHsLIriDZfPRVEUJ4uiWEIURY0oiq+IonjtkT62y+l9AAAgAElEQVSEh9Eol7rv8uqfGo36u9jxbVtIjI7EbrcxZeWGfC9Roigyf+KnjP3yW1Tqwi+82WxBECA727nyYjCquZ9YE60+iCDveEJLnePjQTXRG8xk6Qre/+QaSHz050kUQW8vS7y1A/etA0m1v4KcXIrJdlFBvogSsu14CDFFy+3wJ1pKhnPil5rnj559nYpvHmf0l7fxz92EPuEEmb69yHF76bHjXaNYKgXkmkVsdtFxrjRKwaGcBzheoqRjXfopYGyGyl1oM/wH3Lz88bk0lVMbppGZHFW0gwuvLtTydVmI/9wmUz29FMEEQfAXBGGzIAh6QRBiBEHoWUg7QRCEWYIgpOeV2UJhYZ7/QVu0aBFpaWn4+/uzffv2fC9ROp2ez6csZcniTxxKXK5mtcpIzghA49OcevUaoBbuUL7ELRTyxxdHaoeFEPFJG6Ji0rHb7fnuJaXSjVr1O3A79XXqNuyEQa+ltM9ptqwO58q5rajk+vxR4iLcn7/Xfesa3S5kcZote+7z7X8u8f7ovZy5LG3PXb7hJrVCJRGMQb1rUqdGYJ5fw+G/26kSV29Lk6IVaw+i1erwDKiZ17/r3yv5Pl5KDLk252eiiFopw00tRwTaNfbn7uoGvFZforEE+SrzPfsaTz/aD5iHVRPCgdWfc3rHQgTRVvi5dT0PPOP55+n1bkrnY+iu+i/Vr56KK0Vb/CkqrvxrT7bZX23GYDBRvVoIv/xnRL6XqOiYVH5acYT5c/oUeKzFpia0VgcGDZ9F+QqVOXdyNYd3L0Aus+W7gUQRypTyZvTABmRmmfLVA1jsbtRr0pOWb08nJbcu2vRYzhxeQGXvdVy7sB2TMStf+yf6uNa7PAsUwX9OvBr22Qm+XX6DHQcfOF6art/J5N1OUiSodvUARySqdnV/h1+jsg8/b4kEYNeeI6SkG3H3rUxhplbJSEk35RuDSilzyM+3bxrIoM6l+Gq01L97HuvBcZ7lQbzeew4aN2+C0uZx6chKRySuUBwo9Dw/jntP9AvoP8hT7qgP8lb8F2RC4R+BK8+s2vdX2V9N7bNaLIxq/QrJD6IZu+AHmrTrgFLupPB4qlR0CC3Lz8cvUKq4U3vjUWrfyFHzEASBaRGdUCjdSUn3J0vvg0wwUTY4EqspmfmLtvPJ8Fd5vcsPhI9oyOvNpb1UT6P2iaKMLGslMmwNMIsByDHgLbuBj+wqKlyS/D6RUvfnUvtSMkwE+6sZNfMKP2yIoX9niQLz48YH9GpXkpU7ExzNe7UtzspdSbzT9Q0mRMyk+INPUVglSuSj1D6zVaTLVzFk6qx89pY/r1ZzQzS6/J2ulJhHwtgOFT7AElwHQ/V3sQbWRJ18Eq+bC5FZsgtU7QP+MGqfq2Lgf03t0+162d1d8+R2ilefSu0TBGE10mJMP6A2sANoIori9UfafQh8hJQ/TgT2AfNFUVxc1HH/UfZXU/uys7MpVaoU2dnZHD9+nJdeeikf5SfXcAe/gHbos/ciF5z3r9ViJS3Di3StJ6Io49rVsyQnnGFAn9poNEosFhtxsckEB3nh5aUhIVHLz6tPMGb4a1R7cRqbV7xLzdDiiKJAuj6ElOwq2EUFPpp4Aj3u46bMKhrFqDD7k6h9KWkSFal47SWOur5dQ1m+/iaD+oSx8ItmDpqfKDopfwDJyVkEB7gx7LMTfL/qFgN6hKETq7F27XoGdq/M/IgGj1H7tNkW2gw8jrtaxrQR1Wj0gl8+LLZnORfI8ilnmW1YlQGkh4zCpgwi4P5UVLnRj/9BLljyR1P7HlUNVvg5Mea5qH3WQ0+h9uXi6dPuqdS+ouLK39n+ampfQkIGpSr2A+D25flUqVwy3zGR92N59Y0ZxNz4GuxOOp/ZZCMtpzyZ+lKICBw7sgcv+RU6tw1Bo1FgNFqJi08lpIQXbm5Kbt9LZ9/RGAb3rY1/6HzunxpIYIA7dlFOmqEaqblhiMjxU98lUHMdtTzrqap9j52mv4Dal5IuPcelGv7iqHu3UyVWbLrHhz2r8e3kxg6an2izOXxEOynpRoIDNAyfcoYla+7Qr/sL5BDK2rVrGditIvMm1nuM2hebaKDdoOOUD3Fn6ojqhFX2zjcvs+W6UB5trseKmBUlSfMbjCioKJYyC4UtLT8WQP48B67n5g+g9rniluu8BZ5Dta9eFfH8mSVPbHP3bhxVQvs8ldr3R+LKXy/A/gyWY7KRY7KhN1kLLOl6i6MkZpkdJTbT5CgJWflLks7sKK71aTkWR0nXW9iyfBnJD6KpXKcBoc1bo821YLJaHcVotVK8dFmiI+9ittkcxWq3OwpCWZo3f50dO88zZfZ5rt4pSWqmO5s2rqdt2/Z8s2At4V9sIWLGXnYfvEv92qU5fzXF8eYtKDWOIpMrHQWZCq09jEhTH5KsbRCwU0K5h4rqnyimOo5GkYUglzsKgixfEeSKpxeFqsAiU2qcReXuKHKNR4FF4eblKKPn3KL863sZ9MU1ftgg/ZD8uPEBP258AMDKnQn0eas8AH3eLMvKXZJI5Or1OzCkniVbBaqQ4qhCiqOuVMJRVKEl8Qwrxa7/NGbSsKqEb8/imyvg1qiioyRXKk1SXnlvn4XkSmVIrlSG7ttMUn3liuwrMwFds9lYfEqyaukcTDlrSSsdSNdVOsSqZXCrVR63WuVRlgt0FK2gIiZXTqeFicRki8RkQ5dlGTwwyXhgktN1rY4HFjkPLAq6rNQSr3QnTuVOt3XZxHl4EefhTbdNBuI8vIn39qXbZgPx3r7Eu/vQ9Wct8R4+UKk4qtCSqEKfcyO6rALIKj65PMUEQfAAOgOTRFHMEUXxOLAVKGiJsy/wpSiKcaIoxgNfIu2p/FtYptH4xJKRm1tgSTMYHCVFr3eU6xnZ+crxlBxHOelSzqQZGBHxBdnZ2bz25tuoq9XlXHoul7TBjnLP2gwf/0AO3A7hjqkFtw3NuJFYgztRpUnL9Mbb249K5dPQZlzm82krCSg7AoVvf7xKDOG1t+ZRqU4Ei346zYhPNzLu822cv5pO/boVGDL2V27H+nMj4SWSdDXAlo7aspeIiEkkJMRyP0ZH/9HbuB+Tw/2YHPp/tMPhz1p4DuTuUilklTBda+f+AwP3Hxho0W0j9+PM3I8z06LbJiLjTETGmXmt+2YiE0UiE+289s5WIhPtDj8q3k5kvMhrPX4lKkF0+olyzl4z8lqPrfQZeYjitZdQt80aenauBUDJ4t5M+qQtv+0exO0oPZFJcvQ2b1r23kl0soDB5kGrPD9X9OD19/YxdnhTTm4fwps9p7B27XoAlqy9y8V7ZuKyNLQbdIrYLDcScrzoPf4y6xa3p1P7UN4Yeoav1qWTZA7mzY9vkGgOJlkdQsfPI0lShZDkEcLbM2JI8gghMaAJ94LCsSoDEDJW8c6s0yQHlic5sDy9l6Q6/AH/SSXJpxRJPqUYsjSZBHUACeoARq5MJlZQEyuo+Wizlgc2NQ9saj7emUOs3J1YuTsf7zcR7+lLvKcvI/abiPfxI97Hj8H7TBKGePvSb7+ZRH9fEv196bHDRGKxIBKLBdFjh4mEoCASgoPpuvZ5E30/BVNkFZ7axTPiyt/a7mUZuJdl4Fx6rqNcyDA6S2aQo1zKauAsusbOkv2yo1zRN3eUq7kt85XrpraOctPSgaER0l69gcNGEBg6nAxFZ3Dv5ihlqtYjKVmHSV4K3MpjUVYkQVeLu8lNydSH4OedTZWQWyTHn2L4+I34VZ2DvMRU/KrOoVWPTVRo/BM1mq+g++BdDA/fT9NOG6hauRg7jqQR8a2eG2kdScmty4XzZ1CbtmLM+o22PZdzP0FOVIKM13psJTJBRlSi3OknCbzWcxuRiQJRiaIDE6ISbbTsuY2oRDtRiRZa9tpGVKKZ6AQTrXptJzrBRFSiiVZ9dhCVKPlvDtjj8N8ZeZiYZBsxyTbe++SYwx8QfoqYVIhJhb5jjzv8sLabKNXwF8bOuki1SlJEu2enGohyN37b+R5jR7Sg95hTGPHiQbqCriNPYJL7EqtV0/bDo5gUfsRmuXE31siJHR/RZ9Ac1q5dC8CSdfdp+cEx4rM9icv2pN3g0yTk+iDzKUFIKV+aNKrAG0N+o2HvkyRaipFoKUaH0VdJkZUmWVaajuPvkqwIIUkewlsT75Hg1pTkgLGkZ4vItKtIk6no+Hkkie6l8uFPkroEb0+NIklTkiRlMd7+IopEZXHiZV50nB5JvMyLeJU7nb55QJzKnXg3Lzp9G0ecmydxHl50+jaeOA9v4ty8eHtBArEaL+LUXnRekkKc2ot4L1+6/qKVcMY/gC6/aEnwDyDeL4jO36eQ4B9Mgn9woc9K4aYuAq4Urub80P5oXHlO/eT/LdNnadn8zUwAenwyqdAV6hJly5MYEwOPqPQ9NLPZTsOGr7BlS2NEUcTHK4dA33TqjmtAWOVMOvVagFqtoGL5AIIDPYmJzaReWOHhYJuoQGuuSpopDKvohUaWTLDyKJ6yKIm2999ssvyd7eEqzUMfpMkKwM+/RtGnY3l+3hLFwO6VHZ8N7F6J+RPrM3VUGMEBGhQaP5auu0TPbu344bvp/Lj+HgO6lOOb8bUK/E5BEGjfLIj61b156YMztG7oT52qXgW2zWdyL+QVRlDbrTz2lM2IGfs5cfgqPZvV+R3OxN/AhBAQ3J/WKlAQhHMu/18iiqLr0lAVwCaK4h2XustAQavNNfI+c21X4xlG/P/SEmKiWfbNHACGTfqi0HalypUn8UE0Ib6e2LPSQbTj4+NDUFAQGo0GrHcY9GEHBn3YAWwGKQebKCKz61n4/V6GfrSMcmWDCPD3JDjIGx+/8nwwIAKLvAyCqGXd6q95t0sp/q5cy7QMAwF+0v0aMXM/KzdepliQJ4eOS9SZhCQdIwc0ZuSAxoybuheAAP+n3t8Os8nL4FWmHZZMLe+8XYvVmy9TspgHAX5uFETKlctldGpbkY277vPVj5d5qf6j2T/ymyh4YA/ohTEtE5/cFQi29Ce2/8eaUPA+XefneoASvyOu/GsF2LUL59iycjkqtZqx4REFtlEoFISEBBEdnYa3dxkytB6IIvh56wjyy0SltILNwuTwzkwO7wz2XOx50Qi71cjIcetZ9OMxaoYWRyGXoVYpqFCpPrUaDaWeyheZPQWF+RhLf/yOJt90KXAMf7Xl5jFUIuYcZ9XmmyDAyH71uHVXej5XbbpOj47VWT6/AwH+7nz+5bFnwpW69V/Bu3QfBHsW5csGERWTSs+OVUlMKVioRyYTeLdLKNUr+/PuyD1kaI34+xbOHAkKLonNpytYU5k7/SNmjakGf1sUf15TFQFXjAAV/0pc+UdR+769EA0UGqXE4kJnKCwy+eixrpQcu8u5cK2f178b9y6coUG7txgyZ4Gj3lvjfA/1UKlYNmsqcVH3ibp+jXW/SfNGL7Ua7HauH9lLaPkyKBRyfH2VBHpHolY5w6r1G4/g/MVo/rPoA8Z9to6Lhz/mxZbfcPTX96hQzj/vj5IeQKtdQ5q+Ehmm6thR4yZLIFB1Hg95bH4aTSGUunwJ5J7QrigmuPJDCskwPfzz0wWq2iCKeS9MEo0m38tWqsHhi6IdIyWIpw+69CiK29dQ4TWnslbUvjYEebtcRxeqzcMbYeXORJZvi2fPgrr56kEKjz80izyINP9h2OQ+BGQtw0N+0/GZXOXmcoxL2D3HCYyWeGfiYmtC5mPjABDcnHRPmZsL7+ORmzNfiNzbCeCKUr4O37vJ/mem9l1KyXnZzf3JPwhVPWVPpPYJgtAUWC+KYnGXugFAL1EUmz/S1gbUEEXxVt7/KyMpfMrEvxiABEEQDyZI16wwat+z2qP9uC68uF7hDjUrkpGaQs8hIxg9ZaajXuFCa5OLdo5tXMWLdWujUasR3L2R+wVRLY+GFRERQdVKVnr1fE06wEV1y2bKolz1kcTFZ7B13cdMnnmAtasWYLT4oJDpKeH3AG+3VARc8KAoiXpdTSxEqOZJ9D/XzwrJWp+SlktwkCdDPtnOd8vOMvi9Bkwe25xiNeY42rzXow7L1lxk8Psvsmj2W08fn6vSIYBoIcNYiYSchqjlmZT13ItSZiA5Weeg/7lSAQva6DVj4TkuXU9jzcLX8/60xxVUEy1t0NmrUk6+DJWQ8Vgf+Ybkgt92s/NaWDKcG7WtSc68fq7U4EKVuVwSlOdrr8m/F1Lu7+Hw/dqfemZq3+0c+xOpfQa9njrFvJ5I7XsWXPk7myAI4m+p0u9CYRRgVysK9ri2eXQx9+FnoigS5itd10+mz+HTMWMcbVwphmbjCZYuO8+LDZsil8vx9zUSHJCNSi5FIwcN/47Ob9alVYsw6QC7k1qmzcik3AsRZOly+XXlB/yw6gGzZ36GDV/UCh3Fve/gqU7Lvwf7WbGkUEpjwZThJ81bXOcoDjXP8Qf4bsVl+narwfJ1TmZX8tWhTJ57iu+WX2Bw37osmtW2kLFaCq5HgonU3JqkGOrgrkiirOcB5DIzyak5BeNKATZ84iFkMoF5U5pLfebDFRuiCA+MHTDagqmg+RmFYCjyPM51/mfVO+cottxClFhdcKUwKqBrvcxlfiP3y79w7dVo9zPhSs069cRNx889sU30vbu0rl31idS+PxpX/o1IFcFKVqxCzZdfpUWvD57YrnxoDXauXI4uM4M7Vy9TpeYLYMgGbQo1K5Xn9q1rdHizsZRz4REOa/iY9qSk6ejb6yUWLtlL70ErMVtslC/r1N432zxIy61OprESInK8FVEEqK+gEZz7iP5Or8UPecYP1WweVbV5cLQTE4eGOV6YHv77qG/GnwTeQY6Bmr47UAADulbgh/WRDOhSDj//EtzU1qGC9zXUdhfeuYt1f70YM5ZGse+3dFo1lML1U36KktSx3i/HF0ujUao8eHfUFPRmJfvXj2NIWxPTV8ZisYp8NqgSs366g8Fo4/Ohodx7oKdSGY/HvufAlWxO3c5hYtcSLDyiIyvXzoQ2viw4mo3OaGfC6z7M268lx2Qn/A1/vtyZTq5ZZGLHQGZtTcVig4lvBzFtcyoIMLFzMaZtSkHhpmR8d0n1a9D7bhQPfH7VPZvdju0JnPIiWg7wSCp7vIGCeEGPtvUGcv7ql6g/zUQRQbQjs1mRiSKiTIYok1Oz/os0bd2Odt0LyE1utSDLyQSDjpcbvci+ffv4fvFiftx+gOIq6dnQ6/XMnz+f0SMLfokQBJg5pQcqtS8167Rh+fL3SEnTsnHjAuZG1GLi1F8lFb5J7Qn/YrvkT3y9QDW/6eGtCJ+211FfFAuffjDv2Nfy+Z/NPoLFamf6hFeZ+tVRDLkWqc2Mg4h2Ea3OxHfLzlEzNJhrN6WcJN8tO8vksc1pXL80p87FMvj9Fylfxo8RAxozb3p7Zs47gi7bxPSJrzPtq0PoDRamT3ydyXMOYTbbmB7e8hF1wcPUbvAWobUakxh7jXPHlzBuSC3CZ53A003OuKH1qf/GWi5eS2VQ75r4+ajx8VIxdlBdJs457fAztCZ2HIwhKlbHT2tu4uEmY9zgOkz68iwalcDIwR3Q2atz/fxmqjTMIOKbi5I64ui6BfpTRr5AxLzLiKLI50NC+WzBNUQRJvUq5sCr8PYBToXSLsUdan6TepRy1E/qXjKfium0TSmIokh4RwlbRGDSO6Ucx07sWoIZeVgX0ffpVJmC7GmYUkTMeRZc+d82UQS7DawW6XdfLkdERr3GL9F3+Ee0aNfhsUNMJhOpqalotd40avwKmzdv5qeffuLaxfmoVB5gg8TEDH5adoB6tQqOBFgsNl5qWJ6hgzoh17zAjJmhJKcls2LZVEKCMpgyXsIQtVpBxNhWhE/dhaeHkvGjXiV82h68PVV8OqIZ4dP24uujYeywPN9bxdhhLxM+fb+k2jesCeHTD+LloWTciCaEzziEu0ZG+KgmhM84ilIOk8dIiqB2UWT6uJcIn3UiTynU6Y8eUI95P15g16FoLl5LISw0kKs3pT3jy9ddJ6xaEFdvpVI3rBjfLDnPolltUalkuOe9EDxVlTRPvVAUYdr4V9h6oiwVq9XBRx3Ff76fjclkZvr4l1nyy1UMRitanYnFK65Qp2YQ53f3YvbCs2izzflUST8dUp+qzZYjlwl8NfkV5iy+gFZnYtonjZn13QUCStTnpZaluXhyOSsuHmHqmAZ8Mf88JovI1I/rE/H1eex2SXVw0lfnkcsEJo+qy6SvzqNRCUwYXIuIby7iprAw9v3KTF54E0+1ndG9yjFlyX28PRSM6lVW8r2UjOpdjimL7+GpERjdsyxTfozEQyYyupuk/qeRi4zpWoqpK+NQaRSM612GL5bFIGiUfDa4Kp9/d+e55qYi/wxc+fdFqgjWc+K0IrWrHFYLi0Va/Zv0fk8iIiJo3Kgh2blGhn44kOrVy9G58+NqcwBvv+lczDuxawSrN16gZmgJBEHAZPUkVV8VrbE0AiK+6kgClBdRyyXFG3sR9n7/WebIs+AShRrYo0qBESnXl6XCzIoXCfRCAEqyCkXefT9vQh0mDKxCoL8HA2elsnrdCLp368bscR3wsW1HRv7VZ4VCRslAFV0+vUq/t0ry1YhKj6nWNGk3Apvcj/3rxpCacBson6+Pokz7C1WzeUYYEXEG6Qvr83nNsWfvv7M7gEIQhMqiKN7Nq6sFFLRx83reZ2ee0u7/jQl2GyqTAZVRj9xqKpBwsWD2DJDJEbVJiDK55MtkyEQRITcP3z28uXY3ii+mTScrI5129WsQVKw4JYOD+OCDD8jKykKvL1jZ02rT8EqLHmhzfMk12fFxi+HMsV/p17MsgiA+QZGJp9YXxQrrvyAb8unOvJenIK7dlKIv126m8F732ixbe4k6YSUIDvKkY7vqNKgTwrzp7Zn97VE83FXPMH7pqRJFaNjsXSpUaYKf5g6rdy9Ao7bnOzYlzcDFa9I4Fv9yjeHvv+AQMMqnDqqU0aBWELMWXSDAX+PyXSCTK0m2tkSnTeLmhV95u2GNoqlgFUkdsTB1smdU2fodl96ehilFxJxnwZX/PbNaIDdbWqC1PI4rArBsyWKQKxCToklXKpHJ5cjkcnLsVnQ6HYIg4O9v5tSJ/Sxc+A1paVmUq/wuAQFehFUvQ726FbFabegNpoJGAHJfho2cSOmyYRhzczh1bD2i6TYaeSwgRVmKdN8WST3vv1Pe23M4mpkLzlKzWiDXbkkvT1dvphFWLZCrt9KoE1aMNs3Ls399N75Zct5xrLtLVKWo3yWTKXiga07FaiFcu7Cd7q0ysdnyR670BguLV1wB4OK1VFLSDOToXUQb8h6RkJJeVKvkx5lLSY99mVLpQb2XeqKRJRF587BzDC7f8xDrnjzmJyvvPeYXpc0j7QUX/3lMFMWn4oataCyqPxRX/qX2FYHa5yqZrVY4O3iU2me32+nXrAEtW7zK4AEDUKvV7D10hD0HDlKqbHn2blzFsaMbqFq1IpgvPTJ4F968RQq3mizuJGeVRWcqhYANP809At2uo5IbEC3OyVNhyXn/DGpfaobZ8UL0UKWmT8cKDulPgNhjEkfadY9UcIDmyd9ltyMiI54eGMWSlGIFGpLyjV20W7mZ1YL6LUY66g4fPkywn0Axw0KUYobjRkjNNFPxzeOOdvc2NCLIL28SZhPJcXuJTN9e+Og242Pc72jnSsP7/0LtOxmX8VRqXx1/TVFU+9YgYWR/JBWcnRSs2jcIGAm0zGu/D/j276La97tR+0QRpTkXjUmP0pyLAFjlSqxqN+wyBWKe0ItgtyHY7ShEO9htCHYbMrsN7HaEvFUR0d0bu6cvcpUaQ04Ob9QNxc3dHR8/fzQaN5o1asDRo0d59dVXWbNmOWdOLqBEiQCwGbBaZaRk+JGR5YUgiAR4pxHok4rCNdmla+JN8a+j9qWkSThWrKYz6eJ73WuxbO1lBr/XgEWz25OSmkNwkKf0ofCMa3+PUPvsoozEnHpkGisS5HaZYPcrebn0XOlv0jFDww+7JPPF4S+c+kre2CV6Tt/R+/hl8x3e71qNJTOaOvpJNTcg3daYEOUG3MWoog33H0ztu5hhfCJe5Or1NCkdUBTVviLhyt/Zfldqn92OYNQjM2SBScIVUaUBtTsoFCBXSlQ/uw1sEp5gtyLabChFG3abVGQC+Pv7ExAQgEJ2mvj4VGq+8C7eXm6UL1+CrCw9Pbo2YeHiXfTo+jI7dp3l1MHJeHu7gz0Xs1VFijYErT4QmWAj0CuOAI9ISRL9oRWKE38uta8gNc/3ulVn2bobDH63FotmvCYpBgc+zipBKIKc9iPUPruoIDb7JbLNZSjpcRp/t7uFjnHIhIMsXnGFQe++AODwF01vkY/y133QDtZvv8vAXmF8N935yCQYXkZrDaW823rUJLuM6f8fta967briqkOnntgm5v49OjaoWRTVvj8MV/5Rqn1/lV0/cZjsjHSyM9KJvn6l0HYyQWD11h188tFHxMUnMGTkKFavW8fls78xfNIUWrduxoyZC5/6faIIGfpS3EtpRI65GIHud6gatIeSnmdRyQ1PPf6PtodiESOmnKV00w0Mn3KGlHSjg7r385ZI+nSUlN8eRp4Ko+0VZKIooKMmMXxILuUJZD8akh5vhxxNYFO6d+sMwAedq1DZ6zg2mT+xuvzRpCA/Ff3eklTuXq3vh1olQ6e3otNb2XveSKZ3JxSGGxzfv9ZRv/NkOroci+QfSyUmQU9knJ7BUy6RlJZLaqaJBaujSNOaSdOa+XZ9LJtOZXI9JpcRP8YSnW4hOt3C6A0Zkp9hYfSmTCJTzUSnWRi1JpXIZBPRqWZG/pxE9EN/eSLRqWaiU02MWBpPdKqJrBwLu85q0Rls2PIWDGy251sEsYviU0sRbQhSMu4UpKTdg0VRvC4IQlNBEHJc2n0PbAOuAteQZEe/f67B/wGmTU9j/ZKFaNPS0Kalsf77hWSmpzp8rYufmeZSn6G2zL4AACAASURBVOcfXPMzyrR4/NJj8c5OQ2Y2koWS9fsPE2tXkWi08/OKFaRkG0jT6fll2TJSDCZSzXZWrF5Dsk1OsqBh2cZfSVJ4kqryZsWq1WRotWSkpbJx+U8sWPcrSpWKlKREUpMSOXbsGFlZWcycOZMqlUOYv2CzhBtZXtyNCSEjywt/rwyqhNyiuH8SCnn+ycv4yb8SGZVKZFQqy1aeRqfLRafLZee+m+h0RnQ6I7v23UKXbUSXbWTX/tsO/+KVhELOpNOMRiu6bBO6bBNbd99y8W9zPzoDXbaJdj3XUKzml0yYfpC2LSS86NW5JjKZwG+7+zNmSBP6jdpCdo6ZyOgM+o3awr2odMkfuYn70S5+VIbDvxfpWi/5/Uf/yu24ktxMaUemsSIK8wVyUo/Q/6NdREZruR+dSb8x+4iM0RIZk0n/sQf4eGAdTm/pIlFx8hL6Lv7lGmcvJdN75F5K1F9K10G7+GWzhHtL19/izOVkBow7wv0HJtKt9dGlXsBmuEdWtpltB2PR5ZjR5ZgZGH6SyNhsImOzGTzJ6Q+fcsbhj5p+kcjYHG5H6nhn0jVuRucQlWDg0+WxElYkmxj3c5zTd6kfu/SBwx/zcwLRqSaiU02M/jkhD1vMDF8S42gz4sdYohIMRCUaGfTl3UKv65Psj8aV5xrUX2iZaalkpqWycdmPDn/Tiv8465f/5OL/SEZaKhlpqWxY+gMZqSlkpySScP4E8sT7yDOT0GdmkCvXkKHy5ueNv5JhhQyjlZ//8xOZ+lwyc838/PMKtHYZWlHJL+s24luyDMUqVKFE5VBCQ0MpVqwYCoW0GFGqVBBHDy8AQUCrzcZoNLN2w3HKlA5k5lRJzGz5ymPYRYHUrBLcTXiBLEMAAZ6xlPA8yukT29Hn6NHpjGzddS0PN3LZuuv6Y35WVi5bd92QMERnZOvum3l+rsPPysrNwwojWVlGtu6+LeGGzsTWPXfQZZvI0hnZuudunm9i6977DmzpOWwXkTFaeg/fRfHaS/jo8yP0fLsqAL3ersakUY14r1t1xgyqR2SMli++PEFktJbIaC0jwvc7/OHhe4iMlvBk+ASnP3TcLoc/+NM9ebihY8kGFTfSOpJtLsOhPcvQJp8lMlpLv9G7iIzJJDJGS7+P9xD1QEtkjBaT2cbpbd14v1uoIzq1eMUVqjRdRvHaS+g9fBc9h+1i/XbpOVyy8iq/XUwkMiaLMdOvobVUR557juETNnA/WktkTJaEOdFZRD7QMWD8MaLyMGTghOMSnsRkOfyoBzoGhp/k2p1MVu2M5cPJF4mM0xMVp2fozJtExRuIijc4/Mg4A0OnX5f8eD3DZt8iKsFAZGIuw+fdIyrRKPkLo4hOMhIZb2DY13eJSjASFW9gyLSrRMYZOH0ls4Cn5Mkm8nRceYZg0B+GK/8oal+OSZoMuC68KYqQb8QVwK3Wwk96/pUjZ33MjWsEli4HQEpsDOVqvPBYvzablcDcLNxldvQqd3b9dp5azVrwQu16VK9Tl6N7dnL48FlOnTqVp5qWL2exSz9y4jNrocsNxlOdQSmfCyjleW/+oo+jnSB3rqTIXTdR21zymLhETfJFrWSPrCK7rl4UIhiRmm4iONCNYRHHWLzyBn27VGP5hrwHfc0dPh/7MoPefSHf6sqcyU/eUFmQGW1+xOubYrQFoZGnU0KzF09lEoJQgNS33U45606mfDaawUOGExAQQAYwdepU1q5dK608zXmLlFQ9wUEe/PjDK0RlLOOjQU0IaVTF0U3T6pVJy9VQruQ9qg18wxHt614b7Bbp3HepAFFRSYgWOzFJZiTWg52dx1JpU88Tiw2+XReHaIcUrYX6VTxQVyyNiEDcbgOqKiUAiNsbhaZaCRAhbkc26qolQIC4LVrU1ctK/qYs1KFlkCnUxG/UoaleieIVi9G1sXRt5G7S6vzqX10FaIputt+H2ocoihlAxwLqjwGeLv8XgU/yyt/OohKTOLJrB1Vebo4AHNq9ndBmzRFFOLx7B9WbtQBEjuzeQY3mLUCEI3t28HLLVoS4Kena8hWsdivJZivLFn/HK336IwKb162hZJ0XEQSBI7t3ENa8BXJBxpE9O6j9akvkMhmHdu2g9qutUMhlHNq9nbqvvY5CJuPQru00aNUalUzGwV3baNSqDdOXrGB07y60ePNtatauw0uvtWbSV9+SmGRkxKivuBedg8lkwt3dQsniOjRyHdLvRp65YENymgFRJn32Qlg5vH0lbGnXurajTdvWLzj918Mcfp1aBaziPmIadwUPl0vebFfLEVXafTiKt/qupW+POuw6eB+An1ZdJPnmRJJS9Hh4qBgwagOBQcGIQFRsNoLKG1GEqNgcZA4/G0HpiygKRMXmgMrX0UZQ+zl8URmAXfClY/dmWNRVkImpLJj/JR8PqQmaUkTFmxA1JRGA6PhT4F4OQbQRnXgGwbMcQV5ykjOv0LNrfVatP0fJEr4I3qGs/lXKL79pdySd33qRjb+eoe3rtSlWuRkxKXcRAzqAoKTOC0rcVK+CVUfnSnknxJzOg+RTKL0lTEhKP49MIe15TM90JuXU6c0YjWY+nn2V01e07Dx5gWPLGmNWq5GHSHtnLRodyvLFADCq9agqSH3mqrJRVSgl9aPQoq5WFoCMHTloapQDIGFLNm7VpRfY+HWZuJeriAicu3/vqde3IPudqH2F4so/zWJSpGjBud9OUvnFxg6/Yv2GAJw/c5pKDRoBcPb0SSo1kNoYtel4GDL/j73zjo6q+t7+506fSZv0hBR6FVGxothQFOkWEEWaCBpAFFFAQi+hd0goIr2IghQBQbCgiIIoKNLT+6T36ff94yZTICFE8fvTV/daWWzO7HvumVueOeU5z8ZDIUPp7YnBZKXAbGfR1CkMrVT3PHpwH7c/2gGAL/bv5c4OHQGRL/bv5a4OTyEIUnmnvgPQaKX33LWvpJLfJzn172PTlx35cPE8QsLCeejee7jz7nsYPXUmvv6hvNj/fa6k27BYRLw8jIQGF6GSmYFIuj8b6RBw6V45cYrdRPceDSrPYqN7j8p9VqKrb6V79zBnebdQF7+eM6ZbiLO8a3Bl/Wa6dwl2fI8H7vfG29+TqPf2sH33JcwWObv2XwJg66eX+PHQMIrL5UyN7iblhRS1iGqp3lKzGlEt1VVuViNqpHNXmM8hqiW/zKxG1EjtLjGeQdRK3y2/9CesuruxCLfz4GNeyEQDCvtZdu87SOeOgwBIzPgWu64VggCJGScQPVuDKJKU8SMB9e8DUaRe6CEyMgt5rsf97Nrzo6PdDz3Yipf7PMbW7V8TEqwnuOkTiED9lq1AEFFqjCRlyVD4S+K3ydlnUPhIexuTs04jqDyQCQLJGRXI1Z7YTBUkpZUhCApEwc7V5GIGv3+cywlFlBttjIm6C6Xag5ScJBQ+gQgCpOQkVvpyUnMSUHoHI2AnNS8FlV8o6K2kFmWgDqsn9WdKDKgbRCJTaUgrzkRTvwGCXEVq7lU0AeFs3fEzdbWbofb9HXDlH0Xtm3VC+uH9MwOpG82K1bQEr3HJ/q5VOlWm1IKNn78+Str5c/Tr2onw0BC2fLKLTq+/5Zj18VQqOfjJduaNf4+vjnzBnXdWdlTMB93OLZqyKS73JTMvEqtdTrBPAgGeqQj2Gig4NalR3cxAynZzA6mq/U4jJn3Hqq0XGPB8MzbsdHbepcHURYnuMvMxBLmiVjWamkwUBXJNt5NT0RaZYCZU9wPeygRuyLaqkmMVFRht/pjtXuTmFdLsfqfkq5MmdA+xc7vxSPcPmT6uA48+2AAAi03D5dyn8FalEuEtUf/caJMW5/K11ejcl2gtK3L4tpISPvsul9kbk1kxoiEdx/zO+y+HM+CpIPSe189V1ETtk6ndk9fJlM6VO4XWuUReNZBq1+NjTp7JrjO172hidntNLdS+h4K9aqX2/f9ggiCImy+mATUn8XbDBcDDZsbXUo7GbsUiyChSaClWarBXvjs3Uu1zxauafIuxghNfHOLXH0+Qn51JeVkpej9/Zq3Z6IwXBD5au5Kjn37Mug/WYLPZUKlUBAfm4u1llt4b6zX7aF2wwTUJpxudzxVLbjIxqCv1rjp/2Jg9xK07yYA+d7Fh+y+OQ52qew8QO6+nu4Kfm6+oobx6xT/HVxEFcooiyCkOQy6zEaq/io8u58aYcu33czmHId9KUKC0X3nYqC3EfXCEqNeeJHbJEBq2GsGhPeNp1tgfUYQr6S1RyC00CjkvHWx10vEwu8uf28qcydJdMcZmLGP1jkR2f5nBu/0bMmDCGcYNbkK/LiF4aKV2CTLntZEpXChJrhNiNdB8ZCp3vJGrJExo9NgO0rLK60ztO55dUiu178lGIbVS+/5/MEEQxL1JklCK67tdI7UP0Jor8DSWoLBbscrklGk8KVNqEavBlWvrcVP6dMUVl7iyokKOf/E5Z388QUFuDhVlpTRo2pwJ85c6YvxkNhbPmcW5M6dZMC8Gq1VAo5EREpCDp0clTrjSgq9VwnTFEmrCjJvBFSuGnBKCAr3cMcZu/t/iSjUxNruM7IIw8kuCUMrN1PNPw0vn8n7X0Qx5FoKCfBj21hri1hwiamgXYpcNB0Cn74khbRueOhl2u8ClpAZ4aEqIDJZybWJ1biXA4vRFU47rKbCbnNhvt5iYvORnElJK6PxoPSYtPsPY11vzSvcGqFTXY6orxrgnEq6e1u3aj6nqw1QYrYTft4GiEnOdcKXFHXeJH37x7Q1jUhOu0qfdXbVS+/5K+5dT+0S0gp1guZWmSjMtlSbqKywEyqxocP/x2bNsHnuWznUr+/X4MQ6vWcGIvi8SEhzEu2PGciEtwzGIunLuVwZ3eYJNK5awbPunzkHUNWa2yEkxNCE1pzEKhZnGQacJ9Eqt/Qf/L7Aqpb0Rk74j7P7NDB7zNau2ShLgG3ZeZsDz0krOG6+05sP5T5B5+lVWzHzMcfwfGURZ7RqSSjtjqLgXL2UKTbx34aOqZRDlYjLBik6RjV51lSahuUT1l/JKDejVivUfSTL0cet/wpBTSlm5GQ+ds8NhKGsJCAR7nKmuajeL3XKJiYuluPnrrzIl9iIAi7ensuOIgbBANXtP5GOyiCz4OIN2b/7KtE2SiuCSXRkOf+G2FKZ9mATA3A2JTF0lTRDMXH3ZUeeU2ItMWiatWk5efo6SUudA2Gazs2nXRc787g6WN2s2Uaz1799kHy2UpMf3rYlj+4JZAOxZE8fW+ZL/6eoVbJkfg9ZmwSvtCqGmYmSinc++PcGsuNUUqnRsXbqQzfNiANg0L4ZN82Y6/C2V9W+aF8PWJfMB2DB3JtuWLwJg3ZwZbF+xGIC1s6cTM/IN4qZPJOnyRRBFzv54grzsbDYslfYRTXzjVV585F7qeWpYszIOgNDQUJo2bYqPt/mm35voqTsZP+WTP3TNDDkSc3PYmD0Et5rFsDF7qvUHvvkJceskjZEN239hYB8pF1vUoPtYt+wFsi9MkDo7wNrNJxk/XZpgmrvkKOOn7wdg/tKjjJ+2r9I/wvhpewCYt+Qw46fuBmD2ws8d/sx5B5i3/BTxWXeQUxxB4tVfaBr6M/MWriV6unRs9PS9TI75zOHPmHfQ4c9adLjS/4w5Dn8v6zd/57huDeoHkJ0Qi6/egzkL92A0Wli+8hCz5u+jzOiF2arhp5NfVnvtqiYvo2d9xfiYrwCYMP8k0fOlGelJS846cObAt5kUFJnx81GSX2Rhcuwl+k/4lWkrrzJ1pbRyNDXuMlPipAmuKSsuMHnFhUr/PJOXn6+m3OlPXvobk5ZI9KIJC0/TbegXZBj+GH38P1xxt03zYtg4V8KBDXNnsn7ODADWz5nButnTHf5329YTWJyNvryAvBwDBR5+zFu1luWLFiEKMrf4dXNm8GGl/+Hs6aydNU0qnxfDmpipUp0L57Bq5hRAylVXZTs+WMn6JQto0KwFd93fjp+Of0vrtvc4Pv/m0AGee7oDbVo2Z86sWYCMsDAtjRt5OgdRf7EZcqSJhGHvfkJw88kMe/cThr27i+AWUxn27q4acWXAixKutG1Tj9Bgb7IvTMBXr2X8jM8BiJ5x0IEt0TMOOLAlevpnDmyJnr7XgS3R03Y78CR62i7GT90FwJKVP3Pq9/rklwRx6cIJtmyYiZeumOipHzN+ipTM29WfPGOnw58+Z4/DnzV/n8Nft+lLxk/aQuySIUyOfgm9Xlrxnzv/EyoqzOh0auYt/JS1G3/FZpdz6PN9jJ8iJfidOf+go81T5x5lfGUevQlzjzN+9nGpPXOOM3nRKal8/kliYs8gEwTSsso4fDyD5Iwy3p39E4/3+wKQ8GfB2vMuvtQPmbT4F+Z/UOWfYe4aiRU3aemvzFp1zuFPWyoNaicuPM2EeT9QUGSi52sHKS2rWTK+JhP5Z+DKP4radytMQMRPZidYbiNIbkMrk26CXZTmT6oWn0QRMmwK4q0qQO4uR1JpHqKVVXGxqD08mDRtBjK/QIZOnonZZGLFlPF889keho+fTI9XBiKXXz/St9sFcgu8yMn3AkRCfFPx985GsJVeF/u/sBGTj7Nq60X6P9eUjbsk2t7GXVfo/3wzNu68zBt9W7F82sPMfv8hx4DpjwycXK3C6k9q6ZNYRQ1huq/xUcX/6QFk7KwnmDK6HUEBOnQeOuLW/0TUwHsICvSkrNziUPoyWr0oqGiAv+YiKnnt19ztEbhGqcZqE1EqZXhp5eg95YzuFcaMzanY7eL1x9bRrj32t4t5DBx1pPrgm7A67lf415unRssz991NhKmIIpWSXUe+ok33Xvx2Nb7a+yuKosszXFeVNpGKslIiGzelQfMWfLlnF68MfxurxYLJZCT69YF4KwQ2rV+HRq0GL1+ahYdUiy+1WV3ZCI6Z4Pd2E7fuBwb0uZsN2yWlq6pOzbV+1eDJNd/TnEmdHKtWDhGJG5g7o8B1Q/X1il6iKND8tido1upRbHYb3361jtSk83Tr0PMPKObd2A8K8nGo3pWVm1BUshXySgIwGsswZF0Eak7W665wVf25LFYRmUygTTNvFHKBdm18SUyv4PYmno6VzhpgqWbFLbcY5/+S00s5dCy9xvbWZrVhiv1vlZzjr7fanh+5zUrvTh1pWj8CCwIfHzrC5aQUXh030ZH89mbqudanmnJRFMnPMdDqzrY83rUHr3fryNjZC+nW5xVyDdlMGjGUtre1ZFVcHHK5HE+/QCKCjMhkf+1srmPVCRg2egdxH37HgJfuY8M2CUPiPvzeERu3zik6cC2uLJvVjbmTO7F4lRQfFOhZByXP6nzcfLlcSUZeBE90uoeS4lwahlxi6/q9NcY7/Ju9EJWm89BgLpREH0xmC0qlHJlMhihC0+b3olaayc1JuonvVVN7pP9UGK3IZAJNIqUV9nZ3BpKQWlJNPTfyr1cxvbYNAvDJ/niOHk+7yStwjd1EX+Xv0JX5V1H7/GVWWinN6GQiNhFybHJy7TKK7TJK7DIQZCgR0Ql2QhU2IuRSfoZ0UUWOqKAcGVqlArVoQ5ZyieahQRjtMC82jvy8fEYtXE5FaSmzXx+Ij58/YxYspV6Qk897p6/EgxdFkZL8b8jM0WOxKvD2LCdEfxWVonKZ3JWSU5O61i2k9hlypRc37IGtjrKqwdPrL7dk+bT2jj1SAILcdbnbJUmgvG7j8iJzA9LLHkUhGInwPIJWkVf7Qa5WAzfWrR0KT8ceKQQ54Xcs4MSB14gI8yGp4EHKLX408/0UhcxF2eoG1L6ycisHj6XT7UEf5JVqjraSEjbsz+TYmULWvNVIqkMUeXrseQZ3DubFxwLc2/cnqX0Hv88hbuM5GoR7sXLzuTpT+z67mt5eo73xAPjJMN//qH2Ap81MPXMpIFKg0FKo8kCsZaT/Z6h9n6yJ5dO1q1my8zMWjB1F4xYtGTklhtzsLKYPe5Uxo9+lWeOGoNaCXyiCUsVt3i7Pu+1rp38LqX3DRn9M3LoTDOhzDxu2OxMkunZmQBpEXevHzu3hrrzndnFqotTUndpntGhJy22G0eKJXmcg1O8mFcWutZoSBstd3hnBRR4ZOQrvlzAVbMFuF7icdhsBPtmE6JOd8bVQ+/ILjRz7MZMuj/g7nhebsYxZqy9RXGYh5k2JCWC12rmr9zGWjm3Jo/f43VJq37pPUzn5ay5qlYxV2y7Vmdp3JL3gxtS+8jK6NQ3/j9oH6Ezl6CsKEREo0XhRrvGkuhnEmpSE60LtE0WRuBmT+eHLL4jdtZ9hz3WhW5++DBgxiqSrl5kx8nVmTJ9OveAgNJ5e+ATVQ65U4qdwyclodSamv1XUvmHvbCVu7TGiBj/MlHFdCG46zhEy8KV7Wb/tFFGvPgiiSNy6E0QNagfY/re4IigoN3mQltsYs1WLv1c2wb7pyGSu71TdJ7HczBVXXPzs7AJuv3sYhrRtVJRDfFoEoQE5+HtlOuNrofZlZJVy5vccOrV3TujYLSaGT/6eJvW9eXtgCwBKyyw067ibLzY8QasmTlVg+PPUvqmLT2GzieQXGlm5+fc64UqzNneKcZ9/fcOYtIR4Bj58z3/Uvr/a5Ii0Vpq4R23CDvxsUnGkQssvZjWpViVFdjn2ytG1BYEiUc5lq5rvzTpy7AoiZWbulpdzt1hESE4it9mLaRLkT0aFhQzvQC6fP8+TvaR7OGNIPxq2aMnUNRvw0vte1xaLxUJSUhIpmQHIZHYahBuIrJfnHET9j8yNwvfAVqYt/ZnXX5ZeqtdfbsnaOY+S/uMrLJ/WHsAxiLoVZhdlGCruJK3sCbTyXBp576n7IKoOFhTo3BxfRe0rNQVSag4h0OOS2yDqRpaYVsLDLx1i8Psn6PnWj5y7UkTnqB9IzCinSYSW3d/kciVVUr7qMfEigT4KPv46l+4TLpCYaSQx01jpV5CYUUG3934lIa2chPRyur71Mwmpkipg56gfSEgrIyG1lGeGHiMhtRSbi2xxelYZYSEebpTKulhVHqkb/f2bLDsliZgBvclKSSI7JYnp/XuRnZKEwpBOPWMRZRYrP+WVMWLQADJSk8lMTmJi3+fJTE5y8ROvK5/w8nMOP/ql58hMTiQjKZFxfXqSmST57/XuQUZSIvHnz/H8Hc3YvW4N7y+JY/bbw0hNuMr9j3YgqsfTrJo0hmULF9AgIoxcq0CuXYmgVNX+5WqwV6PWEp9gID7BwM9nUqqNqaLZGHJKHLPBG7b/xMA+Un85atADEj3v/PvEzu1B7Nwe1fpwcytPGZlFxCfm0qHHShIScyv9WBKScohPzKFD92VOv9sSEhINxCfk0Om5WC4m6bmacQe5+TZUth8xFX9Px+7zuRqfTXxCDh26LiI+0XlsrX73ZcRXqhpWlSckGujQZQ7xCQYSErLp0Hkm8QnZXLyYjihCckoOCala7HaRkoJLpKXn1/hdOzy/mfikAuKTCug8aD9tu37CyCnf0fLpvVy4Wkh8SgmDJ56mZWMvPvs6i9ennSUhrYyUrAoqTDa2HsggIa2cEZWKWAlp5bwxVVLfSkgr47WJpyU8SS2j37ifHOW9Rp10+J0Gf0VCaikJqaV0Gvw1564UoNXIuZRQVGO7b2S1YcotSAL+jzIJExJZOHoEmUmJZCYlsui9kQhZKfhWFHIlMYlfi4xczsphwbtvklGJCXPfinL4McNec/iTX+3r8Mf06enw3+3VnfSkRNKTEhj1QlfSEhNIT0rgree6kJ2exnv9evPz998S++kB9P4BZKam8Gy/QRTm57FlQQyr42KpFxIC/qH41otErrwJ+e8/YYacYgw5xcStPQZA3FppD0zUq+0d/65b8RLZl6YSO/8FYuc/R/bFycTOf65GXBFFkQ7PriU+MY/4xDy69Fnn8HsN2kR8JZ688voWhz9o+BbH+/7aiM0u/kbiE3K4mlDIh9sLSMhshcUC2zcvoLzoNIlJWbw4INaBnz1eXER8QjbxCdk80XW2w+/QZVYl/kh+fKKhWj8hIYv4hCw6PDOFhIRM4uMz6fD0OM5fSEGtUtLh6XEkpSkBG/0GjiU+sbLOzjOvwS7p+3Z4di1XEwv44XQGjdp9yODRXzB84jE6vLyX+GRJ2e/7nw3sOpRMQmoJTw/6guw8I14eCp4ffoz4lJLK8qPEp5QQn1zM0wMPu5R/4fQHf0l8agnxKa5+MU/1P0h8SjFXkwr5YNt5VEoZo167o87PishN4EodU/b8FfaPHEgZS0v4aOq7FGRlUJCZwdYpoynISqckP/e6WAUi96gqCJWZ+b3AyGfJBSydNI68rEwKsjL4JGa8VE9WBp/Om0xBVjoFWensXjiDjMxMjqXmseHEr1yyKDAUlyIzm9h3+Ag/mVWUB4VjF2TIFQqsFgs7Vy5DEGSMnDEXWTUrZUajkYSEBCoqKggNKqBJ/Ww8df8b7jE4cytUt/9p1daLTBrZ1n3w5H/rBk9VVmKJIL74OXKMd+OjjKe+1+coZNUnFL1ZyzKUYTLVkM/GxTKyihFF0Ok8SSu+B5W8FH9d/E2dQxRFdh9Ow1+v5vTuLkQEa+n51ilmj2pJWKCG+1p582hbPYt3ZRIWoGTFW40Y0TOUCynlLBzWgLAAFeGBKla81Qh/byUiInovBVTuxdN7KR3L4r6VKwwRITpWT72HiBCdG8UiPbOUsJDaldNqsv8GUteagM5bX8nDEPD08aWhTkUTLw2/nDvP2cJyjKKIp4/ekYfH00fvoEl4+ugd9AJPH30l40GKl8gUIp4+kiqeiIiXjx5RkJ4pL72eM98f4/1+vVGp1Uxdu5mgevXw0utRyBWYzRba3t6a6ZMnIVNpmLcsjiIbmExGxr8xiMzUFLKyrk8NUJvNnPw8kRF+REb40apFqKPcsUdh9A7HHoWgQK/K2WCIGtSOdct7ue1tch0k1eTfjAUFehIZ7sv6FS8SHuZT6b+El6caRPDV67DbRKePDIvQhCkzo/nrSAAAIABJREFU4rDKbkMmGohdFo1GkU1khB/r4wYQGeHv9MP9iAz3Y31sPyLD/YgI863B17N+RV/kchkhwV7O8nA/1q98jcgIP8LD/Vm/6nUiI/wpLTcSHuaHf2ADrEJDVHIDDSJ0BAd51/hdffUaQMRut5OSVsKdLf35bP0z2EWRHlHfYLbYUasEWjfxwstDwe9XnauLtzX25PSFYux2EblCQHpwRVRKmdNXOcs1ame5h87p+3qriAjRSTgz417Kyqy0bKTng1nt63Tfquw/XKne5EoVogAI0Kd7N+ppFBhMNtZ98ikWpHK5QinhhgAKtcrhq9Vqp6/TOXydlw+iICIKIp56CWeAyslbEdEuUl5WyqCODxMQHEp4g0aYKirISkvFbDKSnpjEsR0bmRg9HrtciUFUET36bdLTUklLSWHYqwPIybl1k5uGHGlFdtiozQQ3GcOUWZ8RNfgRAKIGP0xQoBexC3qTfXkmsQt6Azgof5J/Y1wRBIH1y54nMlxPZLieuPk9Hf6C6V2JDPclMtyXmImdHf7U9zs7MGHSWKc/ccyz6PR3YVY+zX3tOuGty6Fx6FmGDLjNgZlzp/d2+EvnvVKJM/58GDvY4a9fOYT6kU4/IsyXyAh/Yia/QFioj6M8PNyfyIgA1q8eTkREAJGRgaxf8w7FJWVERgayZuV0bITg61XEyqVDiAjzk45d9bpUZyWm1QuRrpevjxabXWRe3Gnqh3uzZ313fr2Yz28X80GQVjkbRXhiyKtg274EfL0lplT/ng0pq6jsR4ng6105UScKlX4l9lbG20XRESPi4tvtDl8QBOx2keDAP9aXrFLt+7vjyj+K2jfze2lzreuytivN79qlbyUibVUVeAp2zpjV5NgV1/Eta0rce20S3vPHv2bL1DH0nzidezp2RhAE9Bpp5iZm6ACsJhPxv/9G7MGvaNjAmcPIS11J56soQ5aXikwmUD/SA638N/cTuizLutNu6q6i5TzW5KC1DRuzl7gNZxjQ+zY27HBK5w98sTXrPzpH1IA7iZ39lHsyOpnLjLdMXXv5DZbNrTYFmXmRFJX7oVYaCfFNw0t3DfWopuNdz+caI1Pz3fFzdO05CUEQePqpewkM1GMXQ7n99tt54YUXOF9oory0FJ2HB9s/XE1OViaTJk1CKCuC4PoIai23ef7g3g6jS54ck7RnYPSEPezef5Y963vRumUQormEx3p9wqS37+exByrlVMssPNrrUwb1as7w/rchyBU8N/Qg7dqGMHb4fY4q3ZLluTyPgsJ9JlDQuOyv0DasDBd5stscXh30DH1f7oigeLzO1L6PLyS1V9dC7eveIOhfQ+2bf1JKHl2FGa2VRgLkNtJsSi7bVDjzs7vjQk1Umxsl/b4WV77a+RE7ly9mWMw87nr4MQA0lWI1I7t25NUB/XjmyScoF+TYA8KhcoKmKkaqx+m39HR5dl3pOOBG9TNkpTsU6AzZOQQFejuoNq57FACyL00lKEBXPY2mJhpcTe/yzca50fbc40UR8kv8MRQEY7Mr8NSWEuSXh05TzYSMG3bcZDuA3XuO07f/LLRaFc90uh+93hO7He67tyU9ez5MSVlrTCYTnp6eTJkyhebNm/PUU0+hVCpp1KiRtGetJpplJdaLokjfwXH8di6ZAzveICLcF2zlNL13Hvu2DqBFoyr1wzIe6PwB8yY+xvNdmyOi4P5n1jHytXt55QWnLL1rklDXBMOuFGjBhS6M2okvNpudOx5ZxLL5fXn8kZYIXoPqTO3bm2S4IV4Yy8vo3arhv4bat/KsRO2UCQIq7DSjHC/BRqqoJg21G5XY1dxwxSXGBTpQK9xBRnYNffjjFYv57rM9jJyziBZ3SbdFVbmPst8DdzBp0iTaP3A/FQoNFt9gB61Q5bLXUl0DxjTzcGmI6zMOGLIMBAXpK/1sgoL0DBsZR9zqgwx45TE2bHbGZyeuBtFKUJAP15kbDfcmKbluVsO7XVN/RabGboe8Qi9y8r2x22V4e1YQFGhEo6k8vxs+1XfxIxxufi16CuvXrCJ69Nv4+vrSqVMndDodRjs82P4RnnymM1cyc7BZreg8PZk88g2e792HR9reDmodsuAIBEFGSy+XdleDMTabjac6T6DCaObAzvfQ6z0Q7Sa86w0j7eICfCohPD4xh4eeXsAn61+lfbvGmC0iLe6dxgdL+9LhkSbOel37nW70cJdFAFd6osq5laHcKKNJm3f4cn80LZrXQ/DsWydcaXL7HeKiz268HzwjMYE3Hn/g/5Ta948Um0j85SQN77qPQyvno/Py4rF+r/N53HwCIhpwX7deAKiw01ZlRCfY+bFYpFil4GDsfGx2O52Hv8fncfMRRXjqjXc5tHI+iPB0lNPvOuI9DsbOR0Tk2ZFj+XrbOrqPHMu9T3W5rj2DJ07j3HfH6P/OWILCwt0+E0URSgugwIBKLSMy0gOVSgZ/IZPPsSl87AHi1v/EgBfvYEOlet2GHb9fN3iaM+HR6jN83wITRSgq8yMzPxK7XUaQPoNAn+xbokj4++9JPP/idD7eFs3tbZpz8PMfKSkpR5A345tvvmH06NGotTo8vbwpLy/Dbrezae9BaRDl5Yegvn6W5OrVNGbHrObQkV95/JFWdOvYEJtNZOe+X/nli1fx1TuPadJQz5XEQsdAytNDyZIpD/Lm5OMM7y/ld4gZ+wBPv7KP7Dwjc95/CKVSztWkQtbtuMDMMe2YuewU5RVWZo5px+QFJ7BY7MSMe4joOceJmfz8de079MVZ0jNy6d3r8T983Wz/QprNjexA7Dw6D3uP+MO76PP4g3ipPdnz3Um+PnmabiPe48iGVVSUFNNtxHsc/jCOitISeowcw8E1yzBVVNBz5Bj2xS3Cajbz7Ftj2blkLogiz789ll1L5iKXy3n2zXfZuWQOao2GZ4e9zY5Fc/Dw8OD7g3tpcsddJJz7jbsefoxN82Lw0et58Y0RTJk0gduaNsFQYWb9lm14+fjQb8QoVsZMwdvLh1dHvcfyGZMICQ2j7+vDb/r7OmR2X5OeobgPvmLAyw+wYas0obBh20kGvnwf67eeJOrVBx0SxHVdYbpVduDQWb47cZmYKb1Yv/U8TVo+jl4fTF5uCj/9eJDRbz7M7AV7KS4uJ2ZaX5bHHWRE1DN/+HzfffcbQ6MWcezLhQQG+XHo8CmMRjN2UeDT3cd4PWo+er0vOp2O0tJSwsPDGTFiBHK5nAYNGlQr/PHrb4nMnPMxP568TMcOLenW6S5WrD7Cmd9SSP51MtPnHUIURWKin0AURSbGHObjD54jOuZLRFFkzoRHGTPja07/mk1M9BO0ahbA6+8dJDmtiLJyMyAQ8357omcdQxRh5tgHiJ5zHFGEmDHtiJ77PaIIsyZ0cMTETO3taN/G7T/hq9fx2MMt/vB1qw1T/m2Ys3vZXBDh1bfeob4pH5kg47LKhw+WLgZR5IVREj6ILlghiiK9Ro1j55I5iKJI73fe55PFkt/nnXHsWCT5/ceMZ+uC2SCKvPzu+2xfPA+b1ULfd8ezbfE8dn8Qx7xdBzj95Rf8cPggA8dOYPuKxYhmMx9/uhsftZIvv/+Bu7r3ZnvsEkoKC3kjegobly2kpKiQ4ROmsXfbJrq/1O+mv++wEYuIW7mXqNe7AhC36jMG9OvAhk2SeuWGzV8z8JXHWL/5a6KGdJQGUGLtTJK/2kQRiku0ZFXuWffyrCA4oASN2uo+EfMnbf+e3cydMZXvfjmHl8zG0aNHsVqtFJusbF6/ltcH9MUvMAilSkV5aSlt7riTh9u2AaUKWVA4QjU5Pk+c+J0ZMZu4dDmVDo+2pri4nGZNw0hIzObFF9qh13sQPWUHcrmdJo2CGDVuGw0j9Uwc8wwfbj7BPXdGsG7rjxw8cgFvLy3L5/Wm64txdHqiJbs2v0b09M/w8VYxZmQHomccwNtDztiRjxA98zCeOjnvv9We6Jgv0eq0TBj9BNEzD6FUezJlfA+ip+3i+A8JtG/XnE3bvnMT1LlZE/ln4Mo/ciDlsBqUSVSI3K2qQCuI/GLRYLBUoFFdq4xUfT1udVb+Jy8jlZTzv/La/FXVNiM4oj6NBgyupn12KMiG0kLQetKwvswhUHCr7Ua5FTZ8dPaGg6e/ahBltcnJyG9Icbk/WnUpYf5JaFR1l8CszioqTDzTfQIL5gyl45N3g0zFoIGVnSf5Y7z55pvY7XYulTlvqNVmhawkSU3GJ+C6Oj/4YB/vR69i+NCOHPx0HMeOX+DDLd9z+mwan24c5BhEZeeU8t33V2lSX8+VpEK3Ou6/I4jUjFIyDeXUC/WmRWNffj7Qm5ffPMK42d+zYOLDN/X9aloo/mT3DwyP6olS+cdfXavdjvxvAD5/F5PJZDRWmHmy65PkFxVz0qzl5IUrzoBboJpVnZ+XlYGxrJxAl8kXURTx8fTAvziHoMaNOPbzWW7r2PUaFS+qrbM2MxikvS9xaw5J/37wleOzDVt/YODL7Vi/9QRRr7YndkFv5kzu4kav+b8yURTR+4aQlNWYe9rdRUlxHpFBSRzYvY3ConJHjCO+jj/YJrOc0jItZquckhIblxM82btnA40a+6PRiAwaFIJcJiLIFLw1spd0L2TtqaiooKysjIKCAux2O/Xr10dZzf6SmTGbWR67i9Fv9WTCuN4cPnyCxbGHOHU6gZd6tUOjkWi9hUUVHPryMr56LfmFFW7fq+MjDXhl+H6sVuk5qBfixaA+bdh14BJ6bzX3tw2rjHe9brX7VfbJ3rO8PfwpN2GUulrtiTP/GeyXW2UKmZzO7e+npVBOenEJm/d/wSMDo+qMJ3XFmfSEeDy8fYhs1oJTRw47ygN99XR56AG81UoOnzjFL79f5K4e19zvP4AtBkMBAHErJRW7uFWfOT7bsOlLBvbrwPpNXxI15GlilwxhzvSXq1+F+j+w8goNmXn+VBi1aFRmwsINeHrcmsGdxViBqbwMm9VCUX4+xoIc9nx2gOBAf/x1aoYOHYpcLiffAlFvjcJut2Mw2sBUgWgqQywplFYKA8MRZNdPzowYMYL9+3cybsxL3H9fKz7ddYQDn//EyZ+u0K1zW8dqpiGnCIvVTJNGQeTll9IwUloxFEWR5k2C+Gj3L/TrfS8AnZ9qTb8+97Fz7xm2fvzTTaoa1hxz8XIGs6b2Yd/BuifjraqvNlz5O+yR+v+O2qdA5F61EQ/Bzi9mLQWi/IYJeW+G2vfTnu0knP2JftMW4q11dmCrqH0AHirnzIWHUolgtaApMiC3msHbD3wCae3tspfBfE3eojpS+wyGIscM8bB3d14nRwzXJKOd1QFDblntg6ZbRO0rNfqRltcYq01BsD6DAJ+sylWoGyjc1IHaZzSaqd/sNY4dnU/z5hHuMfLHHO6FEmlZXhRFbAXZCCUFiIHhyLTO2fUqal/fV6bR6en76NerjbMuk4scsDkPq9XOEy9sITO7mNVzOvD6uC/59dCLKCqpFqLNyovDj9Dx4XCG9G3tOLSg2Mo9Xbbz1qt3MvLVNs4OSx2pfS3uGsX2rVO5884mlcfUndq3/uzV9mrtjTnLLzUL+9dQ+749+zt6mZ1Mm4ILFjU2hOvoeVVWPbVPRC/YkSNShhybILgpcNVE7duzYiFmk4lXxkQ7qDM6i5FAk7SfoMDDHzROyoTaZaWjrtS+YW8uI27VZ0QNeRrguhWpqMGPELvwZQzZec7BU01UYlf7i6l9FquS7MJwCkv9kMtsBOoN+HnnIRPEG1ABXewG1L5yo4acfE9KSjWAgCCIyGRmLlxIolmzprhuIZbJ7CgUIqIoYLdJSTmrTKPRUK9ePXTXJrmupN10ePIdxr/3LE8+UZlH0OI++YK1kLIyEw90XIi/r4Y3Bj7A8rXf8+2e/k6csBt5qPsWxo98gC4dnatGyalF3PfMOhZOfZK+zzV3lNeF2me32/FvPJGLP88iuLKD+0eofdsup9dC7Stn0J1N/zXUvh9//R2dYCdTVJGMBhH3y1kTxshcfhv0gvR+lQtyRJd91zei9q2eMIaIps3pNmgISrmUusXDUoFvRTF2mYxCT383ZTW5y7F1pfYNi+ohrUK90R3guhWpqKHPELs0CkNWjnPwVJP6sKv9xdQ+s0VJVl4QxWWeKORWggKK8fUuk2DbLb4G/KiB2pdnFjGVl1Kan4u5XFJDFgQZNlEkMf4qjRs3dmulTCaTVIZFEbvdhug6aFBpwT8EQal2u79V1L4WLVqw6+NxtGrVQPrAlT5c6efkFNO2fTTt2zXl3rYN+eFUPDvWDXSEiXYrje6cys6Ng2l7ZwNH+Zlfk+n47Ao2rexHpyeaOeutA7WvuLiCes3fJT91NSqVdO3qSu1r1LqNGPPp5zeMyUxK4J2nHv5Pta+uVlFSzJoRfclLSyYvLZlVwyS/LM/A3WojnoKdsxYNBaL0wNltNuKi+pJ7TXxeWjIb3h3i8LdOeNPhb5v8DrlpyeSmJZN26Txar5o3Dl9rCmMpuvx0ZDYrBIQh6IP+1Exflbklq6tMUGfIKSVuXSUlZ/tp94SXS3uQfW40sXM6A3/dypOr2UWBrML6JBlaIBNsNA75nUB91i2h8tlFKC7VkpnjR1p2A7744hvKzG24nBBEQpIPGZke5BdoKCsro6ysjNLSUuxlxdjzMrGnX5EGUTpv0FR/HQyGAoKCrldadLUvvkkgPauE7NxyHrk/jIhQLz7c4b4X5c2BtzFj2c8UFTuBxt9Xy9c7nmft9t8ZOekYV5MKebLPp8QnFxKfXMSTL+2uVPEq5InenxB/zUoXgMVi5Wp8Fi1bRv6Bq+c0s02s9e/fZFrRyrwVq/g6MZvstBRio14mNy2F3NRklr/+soQDlX5Oago5qcksHvISOanJlGemoj33PbcJZbQQyrlbKOEOWyGBxdkseaMfhpQkDClJzBn0IoZKVcCYAb3JTkmiICebEwc/Iys5CUNKIulf7CXYWESF1cbo8RNISs8gPSmJUS90JT0pgbSkBEY815m0xARSExMY2uNpUhPjyUqvOUeHwVCIwVDomCWOW3OIKdG9yU5YQuyi/sQu6k/21bnELnwZ4G+xAgVSjj1DYQhX0ltTWOqLQkzivdFDKM77ncTELDp0nklCQnal2tU04l2Ur9LSbrxJ3mhSkpgWSEJKIOXlagL9S2nWOIdWzQy0bFrItq1L+enHLTRtmEtkWDEhQaX4+pjQaGx46Kz4+FgIDAwkMjKSFi1a0KRJk+sHUS5myCkgONhdUrhDl1kOda+uL65kxQffUlRcwc+/ZtC2TT1ycst4/LmNxCflE5+Uz6C3D/BSzxa8Pekog97a61D8m77oW9Yv6crY6V9yz9MbHOX9R35OfFIh8UmFvBh1wOF367/TEfNETymZc3pGEQqFzDGI+qNWG6ZY/mW4ItisHM8uYfLECWSnJmNITWLD5PcwpCZhSE1i/aQxDnxYN+Fdh7/m/bepyEylkTGPJvZSmthLaWMrIiInEc/8TAwpSUzr/yJZyUlkJScx5ZVeZFb6k/u+QEFuDlaLhQkvP0duSiJeeen4VRRRarVxvsjI2y+94FD5e+v5rqQnJZKWlMCbz3UhNTGetMQEono+Q05WZo3fzWAwYDAYnKtQK/cyZdJAstM+InbZm8Que5PslI3ELo0C+NusQNnsMrLyAriS0oCSch1Bfnk0rZ+Mn0/Zn+6jlJWVkZuSQH5aMlaTCa+AYIIbNyekaUvCm9/GrLnzuJicTmCDJkRERBASEoJer0ep0aDSeaDz1iP4BCALikAW0QwhpD6CUl3j+QwGg1t/xWq1VSr+RXM1Pov4hGweeHwyiJCUnMOe/T9z7PglPv3sjFOJNCkXpULOG+98xNX4bEe5t6eGyHBf+kdtZtaiI3ToEUt8Yi4JSXlOdcSkfDo4MCqPDj1XS+UJBjp0nc+Rr84TEeZHp55zHFhXV7OL/wxc+UcNpMqLC7HbbNhsNlSVM7UioNLqEIEH/NV4CzbOGJUYzFBWJMXbbTaqZuBd40VA7rKS5JqHQ+YyMyNXKclOjCfl/K+1tlFnLEFTlINdoaLcPwxBd2s6JlUqWgOHb3UkqauSJI4a9IDjX1c5YnCX/v4rTRShuNyXhKw25BaH4+tpoEnoObTq8toPvom6i0o8uZoSSUpmCPlFXsjldi6c/4H0tEtoNRJdsLBYTUaWJ4mJiSQmJpKUlISYm45YVoyg1iH6hYDfDRJkItaa2PTot0kMfLENRpMVo8nGnPEPMXXRKXLznTM17e8N5ZnHI4ie96PbsfXDvfluVy9Onc1m865L6H3UyOUy5DLB6csFfH001VJAlUoFrVqEc+bM1bpcvuvMarPX+vdvsv3Jhfx07ry0Wi2CSqN1rFyrtFqqroZKq3XQxlRaHZEeKjrU86ZF06b8ll/OsawS1u/4hFyjlQaeamZNGI+i8tfZgT+iSJXQh1KtwWKswJKbzZ0+Wtrdew+pFRYullopKXdSuzQ6D6rkujQ6DxAkNSQvH1/kcvl1CqEGg6ReOuzNZQSHv8iU6Zscs8RRQ54mKMjHITQBuPn/12a3y8grDuZKemsMheF4aIoJ8jyNRnYFtYrKd0SGr94DmVyQfF8P9/IaNvGbLXLSsny5mhyM0agkJLCIZo2zCQ4oQaW0OzpSOq0aQQC12oa3t5kAfyOhIWVEhpcTHlZOvdAKgoOD8fb2RqGonWJrt4vX3SNfvbPNPt5avj+ZSN/e92AyWVGp5Lz/9mP88lsWZrMNuUyGp05JlycbExnmzaWr+chlAnKZgIdOScumAez68Hnikwv5/KtE5HIZXp4q5HIBuVyo9KVzOXFGhq+P9EyG1ZM6uSmpf06l7T9ccbcvM4vJMVor7730/kr9CskXXMoFl/LOjz9K+yBPPBQyNu7aw4+5pVwoqiA5LYPGXhru9vNA5+Hh6MNoXPo2ap0OlVrDlbO/0LZNG1p7qfFWyNi661OuVtiwiKDR6RwJVbUOH7Q6HQKCVGdluc1mo6ggH6vViiErk8L8fKKioggODmbKlCmOlaioN7oTFOTrEJoA3Pz/a7PZZeQUBnIlpSG5hf74eJbQrH4yQX4FyGV/riNuNBpJSUkhMTERm9WCT3A9ghs1w8s/ELlC6ZhE1+p0CIKAUq3Bx8eHgIAA6tWrh1+9SHxDw/EJrgfe/thVWooKi7BardL1z8/HVtnvLXTxJbq3e9slPPREoZDe8eKSCl55qT15+WUE+HsxavjTTJ19AL2PFrlMimndKhSTycrOfWfx1euQy2TI5AINIv356MOBLF31LTarHblchkwm4UZVv8VXr5Hqkcnw1WsrMUeGr15Hi2ahpKTm4eWpcWBO3U2sFVNsfwPK8D+K2lelrlVdpuNguZW2ajMXzCpSbDXnQbh29FpT1mSt0tmhNuakMr6zJNW59fcE1BoJuFzpfDqlEpnVjHdBJna1DotvCAiC25J4mM7ZLj/5d+4ntFWfINOQKdEBgxsOdZQN7Psw67d8S9RrjxO7qD+INgw5xVKH6GboOLJrZjnc6DU3QedzWca1C2qKilTk5qkxmeQolQIhIVp8fBo5YlyVbLKNzjZdy311fRarPhNMFciKcpFbTdgUSio8fLGqNCDIWBT9HsHhEfQaOhyzzQaiiNxuw242SfLSCBhtdkyCHFEQ3FZafF2S4uo1Et1l7Cu96PrKQJ7q2sPxmSvVQRAEPlg4h+yMdPZs2cCp9AJUKhWLo0eTm5PDyvWb8Ku8xYWFhdx2Wwvq1w+n3yvPETVsvKOez499z5B+L/HlD6dpGurcq3W5zP1ZLDY6VciKTNIzsXziWPTBIbzwxpsAdK0fWGdq39IfLrZX1ULte+OO+v8aat+kby4D7gpZdhdwdi2vouYFyW3crzWTa5fxm0mN6RraTqDMRlu1iSybnN8saqqU/1wpOVnnTsOln+nTpw9mZKQoPTHKFHionDjhSuFzo/O5PJdapZK8HAP+gUEsGvsW61bF0af/ALZv3OCIyc7YBdZSZ+fGlQZid6Fr3Ax+uFpdVfdqOMZmk5FXHEBekR6bXYFWbSTYPw9PXcXNncONbuxCnxEipE6gwUB+vrSXQ+bti1wfiNXlnllszu/63qCXeaJbT556tpcbRpldfNd4N+qmy4Cp6n69/Hg7JixYRuu7pX0I1f3mzB07CkEm4+i+3Rw5nwjAuMH9CI2I4N3pcwjWSN81LSWFDve3pVmzZowaNYpevXo56vhkx3Smz9zAieMr0WlcnkfX+6h8yuH+VuQE5tED+vBIp6507v0SAHf7a+tM7Vt5NvmGeGEqL+etdi3/NdS+ad9dP+FVU4Ldqj5mhMLKXVoLGVY5v5tVbs8oQJjcShu1mSSrkitW5++zK2U4/ttDhBoL6dy5MxXISVZ4YBLkeKgULvHOd8c1ma/r751SLqcgJwffwEAWj3uHnevW0KXPK+zfvtkR881VifruHxh0Xb1u6n52l/5OXSnDrlYThbeGcotVIC/fg/wCNXa7gIeHguAgNTqdoka1Pdc+iut77ooFdlFEsFpQlBYgqygBQcCi86Fc541rMmxXIYQ3e3TitXETuaPdQ27PgWu9rv61SoxVVnWPet7ehDWHjxFUL+y6710VHT34FQJD6vHbqR/YcOQ77HY7w599hse7dOflN9503K9Lv51lcLenaNS8BW9GT+X+R51iVvs+jGP/7l3s+vwIgWoX6rjoTDieb3OmTEgrc9KK+z/9KMPGT+a+R6T67vLT1AlX6re6XRy/ff8NY7KTE5nc/bH/qH11sYOx8/l6kyT68Hmc5AuIRJQbyMwrIMUmqfMdWbvcEX9o1SKH/3nsPAAOrZzPobj5ABxeuYDDK6/3D8TOY/+KeXj7+ePl53/jhokiHiV5iIIMi08Qt4LLNmxkHMENhzIl5mOihnQEIOq1DqxbOcRBzamy//Wsst0OeflaLl/xJj1DGliFhWkRSSUcAAAgAElEQVRp1tQLH+9bkNDPakaRn4kyLx3BbsXoHUCFXxhWtc4BVHK5HLvrLKcgYJMrKFeoqJCrMMqVGGUKxJu4F6nxVzj/8ymatW5zw7hGzVpw4OPtNG7eElXlQPr9KdM5eeI4+/fsdsTp9XpO/riPV/o+y5y5cW513PtAO+574EG2blh3s1fDYQ2ateDymZ/rJDJwrdlFsda/f5MdXb0AgONb13BkVaW/7QNH+XdbVjvKv9m0ijMfreFurZmM3DxmL1uJCYHDHyzlYKyEGwfj5rNx+SKuWpTUU9gwnjqKDJGDsfM5uGYJckRyj+3nmaZh9OrVi40bN7Jky0cYZQo+WjibXask7No0L4YdcUsBWDdnBluXLwZgzaxpfLZtk6P9M0a/yeNNw5kw7DXWrZKete0bNzBwgLQfqrrZ4r+L2e0COQX+XEptiqEgAJ3GSMN6KTQKT5MGUX/CLBY7WVlZXLp0ifz8fGReepQRTVH4h0r7EmowuUKB1XprNpyfPXmC3Ows6jdpesO4Bs1asP+jrbRsc6ejbPy8xezZuomffzjuKAuPjOTUqVM888wzLFq0yK2O5557FD8/bz799Fid29m4RSvO/Xyqzse5Wq248gdUu/7JdmTVAr5YNf86/+jqhQ48cS2/vGczrZVGcm0y5i1dzr5YKebzuPkObFm7fDHHfvmNBgoLhq/2cDBOitkft4ija5YSLjPTp91dPPnkk6xYsYKFGzazcZHU59m1cjmb58UAsHPlcjbMnQHAx3HLWDd7OgDbYhfzwaxpALzeuQPdWzciZuQb7Fy3RjrP9s20vEPaPtDr1aH4BwY5BlF/J7PaBLIMOi5f9SM3T42Xp4XGDUto2MBDGkT9qcotKIpyUOWkIKsoxaLzpiwgArOnr9sg6lqTyeXY7TeenDp59DDr50j35ZOVyx335aO4paytvC+bly5gwquv4OHtzTef7blhffWbNufzj7fRvBJXZDIZExbF8sGCOSRevuSIa377HWw58i233XU329a491cGvDaU3Jwcjh/75obnqs4at2jFb6f/OK6I1I4rf4fFoH/cQKo65b1IhZVAXz37T5wGBPeYGnx3TL9etq+ssICc1GTOH/+S0Y/fi1yhoN/EmY7VqGtNXVGMwmqm3NMPaqGH1WaOfQ2rDwIQt+YLpozvRXbCcmIXDQT+7+g4drsgDaASAsg0eKNS2akfWUqTRiX46lV/fi+Y3Y5QmIPSkIJgKsfq5Ud5QDhWrdd1g9OAkFAyU5L+3PmQ8i7MeWcEA94ZS3B4xA1j2z7YnpKiQoJC6znKPDw8WL1pG+8MG8qJEyewVc5ihYWFEB4egtFo4uzZs454QRAQRZGg4JpphjXZQ526kJmcyMJRw6koK63z8SCtytb295+5mvN6qBUKhj7bGbsI6w4exVLV4a5GTSvequBiUio9HmnH45pyBnTtyLMP38/9QhEvPPEIaclJDH/nHY6cPuuopy7KXfk5BvJzDOxYK00s7d26kZf6DwRg0OtRrFs7juyMXcQuH3XrLsUtMlGEvGJpAJVdEIyHppzG4UnUD03HQ1vxp+ahjCYbaenlXL5SQm5uLt7e3jRt2hRFQL3rBF2qs6DQeqQnJ/3xBlSayWhk2sgoxsxegJfPjQexDz7xFCVFhUQ2cuZv8Q8MYsaKNYwe+DIXzp1zKDc2bNiQ4OBgsrOzSUxMdMTLZDJsNjshIX51bmu3Pn05fuQQiyaNo6L8j9Gx/8MVd6uxH1KNwqRaEBnSsxNFpaWcMand6ErXQsueb76n2C6j7zNPMP2NAdymNNK7w0NMGtqPJnITv//2G/1fHYz2rvaO36I6NBpjeTkFuTmcr+wAH/xoC81uvwOA5wcNoWPP5zl6KYXx85fWre7/gdntkJOr5fJVX3LztHh7mWjauISI8HK02j8iWuE0wWxEnp+F0pCMvLwYm84bU1AkZi9/qEZV71oLDAkloxZccX027DXgv7G8glPffMnYhSvctqBUZ4927kZJUSFNWt7mKKvfpCkjJ89gdL/epCUlOOpu2LQ53npf0pMTycsxOOLVajVms4ngkNDr6q/NXhg0hI8+WMm6JfMxGavJ81eLieJN4Mp/1L6bt5qofQpEHtVWUGyXcdosqS/dyG6G2vflh8s4+sESAO58sguvTp2FR+UPoV57vVKf0momsDQXi0pHmXcAWhcJ3LpS+xzqWkMlKe+41QeJGtKR2MWvuaukuCrZ1KSCcwupfaKgorhUR1auHxarEp3WTFBAKZ5eLmPxm0hSVyO1TxQRy4sRCnMQ7DZsWi9s3v4gV0i0vapjXO7X2ZM/sPj90aw+fMwtpsLiPKHR6iy/ltpXXlLCxysWc2zvLhq1aMXsTTuQy+VoXe6Z6hqgKirIZ+Kw16gXHsGUxbEABKikZ27Hls3Mmz4ZvV7PqVOnkAkS7WHHjn2MeHMK27dvp0OHDuRboMdTHXhnXDTPPv2Eo+5rqX2GggLkcjlKlYoikwmbzcaJwwe5cv53tiyc7XLp6kbtizn2e3tVDRMCVfbufY3+o/ZVmrNc5CFPC0FyOycqVBTfRPYIAZEAuZ0gmQ0fYyFKuYzPP/+c+KIKHugzALVO2sOoUzmfs5uh9i15fzQ7163h+UFDkMtk7Fi7it6DXycubiU5BgOBQUH4yb52b0w1qk7Sl/3fUftEEYorfMnOD8VsVaPTlBHiZ0CnuZbCV8ekvTIV5eUKcvK0lJRKe5x89Sr8A+qjrkyKfu375UrbcfWP7NvNni0bWLJt1x+i9uUbDGxcMp+je3by0JNPM2X5areYa39z7HY7Rfl5jOr7Ao926sKQ0eOkuiqxZ1PsUjYsX8htt7dh+579DvrwihUriImJYd++fbRt2xbs39GiVV8+3TmTls1dOj3XUPvKysrQaDScL5W+j9lk4sv9e/j19Ck2r1iCXC7HZrPVmdo3/2TCjal9FeVEP9r6P2pfpVU9EzJEHvY04S0T+bZcjbEm+pqLqWTC/2PvvKOjqroo/puW3hMIhN6LNBEQAaVK711AkF6kNxEQUVEpglJFekc6AtJ7kd5BOsmk10mm9/e+PyZMJpAQEqzrc6+VtW7eu3NfmffO3HPOvvsQLLWTT2LF36JBsNvZu3cvSQpfanboisLN8cy7Uolfhdq3ZOpE9qxdSds+/ZFKJOxes4L2Hw3g0znzUSUlEpQv/wv0P1f8XdQ+ERlpancSkryw2WT4+lgIzad3FNPNZSHdTNQ+mw3MBiTaVCRmA6JEiuDth9XLH9Kz2pmoeS+oQmfs27V6OU/u3mb8dwvyRO2LVUawedH3nN2/h3a9+zNo8ufZBq6lOALEqqRERnRoSd+xE2nVradzLIAlX09n94Y1vNesJV8s/AlpeoB38Tdf8Ou2n/lpxz6KlipNQU85xUP8ufUkkuLBGpebnpnap9Vq8fHxIcbguJl6rZbj+/dw9dwZdq1fjTw9058bu1K4QmVxzLo9L+2TFBnOrM6N/6P2vSqcynsxkU7lvTBTCnJR4EJUMinRUc4+ydERGe0oZSbVPlfFv1Wj+mQo9U0dyfWDu51OFIBMoSDibvYiEzK7jWC9CkEqx+AblGdK3wvqWssOMH3qBySEL3M4UX8jjGZ3wqMLEhUfilQqUrxIKiWLpeLj/cfUhMJigqQopKp4kMkR8hXBHhjqNFTZwcc/AFMeo6cAZ/bt5t7VS8zeuJ05m3bkKDTx9ME93itZkISYaA7u2o7FbM60v2vPXjx+/Bi5XM7ixYudkZ6uXduwdetWunfvzqlTjvS4Vq3Gzz9rJaPUlBTmTZ9M6yplaFWlDCO7tSMuUsmuFUtZPftrNKmOReEzNu7I03X/FznODFVMJOtG9yYlWokqRsmaUR+iiol0bne0lagPbqCAXOBSgpbZQ/tkqQL6fDs5OpIHkTF81KE179atQ926dfn888+JSkxGnZLMnH7d09X8lHzVuwsJkRHERoQz5YOOxCnDiVNGMKFrO2IjwomJCGdYm6b8fu2Kk2qzY/Vyhk76jBOPopk6dyEA+fL/86g2AAazF+HxZYhKLI5EIlIsNJwSBZUOJ+o1oDO48VTpz1NlAAajgnz53ClX1pewME+nE5Ub+PoHYEyXLs4Ldq9bSWxkBKv2H2f6omU59r9y5hRNyhVFrlCw9+cNL1BVPhw2kmsPnvLw/j327Mx45z/++GMWLlxI8+bNuX37NgBqtQ5//6wLJ8fEJDNy5EgKFixIsWLFGNG9A+pUFQu+msbahd8jpDuHm09fytN152RTbP93dsVhT3Z+PdHZ/mXmp8727vR2KZuKIJnI6Rg1EZFR/Dx9vNOGbJgy0tleM2GQs7344w+5FxnD17PnUK9uXerXr8/MmTPZu34VqfEOZb85/bqT4KIUGq9UEqeM4LOenYhTRhCnDGdy9w7EKSO4f/0qYzu0YM/alQDsWbuSFt168tOB40Q+ekh0RDgGnY5hHVoQG6XM4cr/Wuj0bjwJDyAmzheFXKBE0TSKFdE4nKg8QhRFRIMWSWIk0uQYsJqx+QVjDS2O3S8kx7lJVngVu6JWpRAXEc6k7u2JVYYTGxHOJ93aEasMZ/Wsr7hw5CDfrt1Cqx4fMqpTaxJjY7Id68jOrbSvWpZ8BcPYu3HdC/uHTZnO3it3Obl/L1d/czi6EomE4VOm02/UOPq0bERcdBSCIKDX6fD2ydquPHoUxYiB/ahQOJS3ypdi/EcfYLVYmDF2ODvXrXIKLR36PTzLz78MopjzXOWfUJ/uX+VIPQ9vuZTyAZ6cOHeeNMurvzT29IzFkeU/8OTyOafjJIoi278cD4CXfyCdPvmKpgNGZjuORBAI1quQIKLzz4/4CundrDDs47kvqmsNakH+/AF/q2yo3S4lNik/T6KLYbYqCMufTOmiMfh4W3L+8CsdwAaqeEhQgtWCEJAfMX9RcH95tuQZdOo0vLJ5uV8Fdy6c451mrSjlkvZ+GQoWKYaHpycbj/9G+cpVOZoFP1kikbB8+XKWLl3KjBkZ1IfAwEB+/PFHevbsSWJCAoIgvBBNstvtnD9xjK2rl3Hol52sOXKG1YdOoVapOLN/D0u/nErbPv0oX70mHl5eVKxRK0/X/d8aqdwjv6eC3p07EK4xcy8164m/Xp2a5XaLyUiS8gmiKFK4QmXCylSgXudeuT6HlbO/5s7lC2xf8SMtuznkyjv1HfiPXafwDBarG1GJxXkaVw6LzZ2w4GhKF3qIr5f2tSh8eoMb4VHBRESFYLFIKRCqo1xpFaH5PZx13fICbVoq3j55V1u9du4MTTt1o0jJUjl3BsKKFSd/wTCW7z2CTCbj+oXfXuijUChYvHIt0z4Zx4oVK5zbixUrxowZM+jatSs6ncFRbPy5e2o2Wzh1+hazvtvKpUuXePDgAceOHePJ/Xvs27KJdYu+p8fgjylZviLBoQUoWa5Cnq77P7uSexT1caNSsBeHz11EqTVn2Sc7u6JTpXDm59XY7XZKVn+bvjMX4x+Sezuw7rtvGd22KQlRkTTu4BAvCS5QEP+gYPxzWhv+N8JklhERFUBEVCB2QUKRQhpKFlfj/RoFdUVRRDTqEOIjEJKiQRAQAkMRC5ZA8AkE6WvYFXUaXt55m68Idjv3b1wjOH8Bgl9xSUDBosWoUO0t5v28i4jHD4h6+uSFPj5+fnyxaBkT+vbg5EGHqIMoipSrXIXuA4YwoV9PLBZLlpkvrdbAhQt3+XTyTyQlJnA7PJoN23/h/PGj7Fy3iv3bf6b7wGGEhhWiQtU3CQrJl7drz9Gu5GnYPxT/amrfGwoLYXIbp00emEVpplTo89CqkvENCmHbzM+4uHMj1Vt24tr+jOjep/su4unnx5dNqtFx8rfUbtXBuc/fM8NBcqX2FbIZ8LIYSPYJRu5S4NUzm0J2z1P7nlUEDy3Y1rk9IXoLCOaMheHZFUD7E6l9Jos7Km0wabpABEFKkF8aoSEaZLL0tLNr8bVMBXlfLW0u2qyIGhWCLtXB9fEJBP9gRJeFmpkoNdlQ+/ZuWse1s6eYvHBZrql9upgIJndrz08nLxKWL/MLnh21TyKR0LxKWZbt3s+udasICApm0NhPnNQ+wEm7uXHjBp06tePB/ZPYbDby5a+OQqFAJpPRvE07YqKj6DtoKB92bu/87Jp9R+jbpinr9h9ndO9uLN75K6UrVmLl3JksTV9o+mbd9/D08+ONWrVp129wnlT7Jh+5lSO1b/q7Zf6j9qVDKpXQyMeMmwROGdydSloKmQSdKhmfoBB2zZ7G+R0beadTTzpM/NK5HcCi1zG1UVWGLNnIG7XrOsf1cpO6tLOn9qUmJwHQrVpGwdUD6dG9oHz5M1GJM9mYv5HaJyJDZ/QjVZcPjSEAiUQkxC+BEP/EzNL+2VH1smmLyNHpPUhK9cVg9EAus5MvWEdgoDVjjvOcat8zvCq1b8XcWeg0akZO/zrX1L7b58/x7ZiP2XzuKj4uypg5UfvqFg7i+ONYvh03gncaNqZN916ZaFLPVPuOHNjP/JkzOHv2LImJiRQtWhR/f3+sVisjR7Rn1+4zrFz+CbVqZNyDVav303/QPM6enEfbjjO4desWhQoVovvAoWxZsRSAOo3ex8vXl3rvt6DNB73ypNo3/cyjl9oLi9HAN02r/kftS4dUAi18TRhFCecM7gi5sCtyqRR1UgJftKzNpG1HKVQqY22dq13JjtqnT1UREJKPtOQker1V0bl9x61HAASG5Mv0/Lm9RNnPFX82tU9EhkbrTqraE53eDalUJH+wnqAgc/Y+zisW0jVpNehSk7GajCBTIAkIwe7h44xMPK/a9wyvSu37YfJ4ChUvSZdBw3JN7Tu9Zye7Vi5jwZ5DmeaUL6P2qVUpdH27KoceRTOqc2v6jBpPrfqNMlE5n31fO9et5szhA/ywYSsPbt+ke6M6BAQFo9Oo+Wr2XL6d/hknL12ncomMY0yZMoVvvl3PyeML6NbjGy7ceYCfnx+dO7TjxK8OOl6dxk3x8fWjRZfuNGjROteqfWHlKomDV+5+aZ+UqAgW9nj/b6X2vaZ8yV8LPw85uxbMxsPHl2Z9h6BQRfHYYIIC5TiyeA5uHt407juM/UvmIHfzoEn/4RxY8h0PLpwh+v5tCpQqR/wTh1LJtf07CC1VjoQnDwgr+wa/bV1Nm+ET8fT148mlMzTp2DnTcZ8hE7fYbMMic8Mid8+k8uT6MhhdtmvNZqec6LxJ65xrHDr1HciO1cvp0m8QsV7tUMhkJJlfPF6I+4sT9leFqzOTbHnxZRdFEQxa7FoVErMREQmipw+CTyCJbmWJNeZsROyZFkpqXugjs1nxNGrwsjombnqFB2o3H2xSOWh1mcZ1NUCuzpDJmrH99r0HuIUU5H5iGgZLxnbXttmW9XmfXbWawMLF+Om772gzfCLZ4flJj00m5+TDKO5Hx1PQ3Y+DD5SZpGefGT9REoh34dK803YU77TpTMGyFekx5Wu+6PQ+Zy5docmHAxg3bgzJhcqm1wmC608d0qKTx45EkMr5bMJ4es9dxbX7T5HK5ZSoURfPEhVwc3enYKOuzJzyWbbn/TLY7CKS/zOazctwdNlcGg4cx9kNyzDpNDQcOI7fNi/HpNXQYOBYzm9cRstBH6AUPDi8ZikmvY7Gg8axpH8XYu7dpFqLjtw4sBOA8zs28uT6FRKfPqBG+x54+vqjkMvwCwnlxrEDKG9dofnAkexbPAdvHx9aDhjOrgWz8Qvwo82AYWz9fhZuCgUfjJnAxu++5feLv3H/2hVKVapCheo1uHftCmUqV+X0kYO07N4LiyAgdbExMa5MV68Gma4zyC0q4x/Zw4y24JJhzq0j9RxsdimpGj9Uan+sNgUymY2QADXBgRoUcjvwnEjOqzhSUncEAdLUbqSofDCbhfQyC6EEBQUhlUozOUmuTo7d5doszy28d/3f6mJvnjx5RLlq1UkxGjP1MbvcZ50LA+LpnVsUr1iZHfNnce/COZr3HUiswUjyk6cEhhZg6/ezEKVS2n88jp3zZ2O1C7QfOZFfFs4BUaT18IkIosjUTyaSmpTMjh3bOXvlGl3GfMLO+bMRRZEe4z9l6/ezsNlsJBstlH3zLfwCg6jVtAUyuYLTv+zg9G0tMv/CNG83jTXnbyBLn3DdSLsDwKAJW7GKIp0HDCGsRAnqtu/MlhVLKV7hDcYtX8fW+d9x5/fbvKlxWQeRC+RECf5/owwfWDIHURSp138sZ1Z9D6JI3b5jOLv6BxBFGvQfjYc/7Dl2BmOlhs4+Fr2W63s2k69EWZLCHe/p+R0b0eoM3Dm0i9DSFRm8cjfHNqxCIpUhDSjArkVzEWw2mg0dz4HlC7CYTLQZPoG9yxZh0utpP3IiW36YjWC3Y9BoOLFlPcUqVuLrnQcp++ZbPLx+laY9+rB74zoMGjW9Jkxm97LFGLQa+kycyvbF8zEZ9PSb9Bmbvp+DxWJmwKfTWDvnGwZMyvgdcnW4rpkz2nJpBntC5tInswR89tke0WbFrk1F0KY6mCwyORL/APANJEkmJ+k5HYPssp/2TM6Q2SFuZVAj0aUhtdsQZAosvsFOcSubS1DW1a64jm/JRiL9+c9cOn2CIrGx1PugN9sXL8Bk0NF59CT2LF+MUaul/ciJHFj9EwZ1Gm1HTOTo2p/Qa9S0GT6BZd98SZEKlXiSouXAysWYdDrajZzI/mWLMBsNtB0xkV+X/oDNaqHN8An8umQuNosZs8XMF59O4tH9+0Qb7fz66UQ8PTxpO3QUO+bPwsvbm7aDR3Dh6hUunz/DrG+/5OqJo5SpWp0WvT5i3uihrNu0kfqdutGscX36fvIZ9Vo5Av9R1sIAjJm+E41Wx7bT57h87DCkB2kr1nybIhXeoO8nU1kzawYXfntOF+AVIJKz3fiP2pcXpD/AUkTyBwUSl6xy3ZyprVUlYzbqib7v4I/HP3lAaMmyAISVrUj5ug35dN9FytR+F3CkT41aNZ5+r0ank4l27NnQ+Z5FkQFSkxzt7z4ZQ+tKJfnaRU50x+rlDJo45W9TwREFAUGrQoh9gpAcAzYbon8IhJVECCoAbrlfY/A8FFYzAdpkQjQJeFpN6N28SfDLT4pnALY8cI2fISUmCr/gkJw7ZoHI29cIKPBi/YWc4JBct2Ex6nH38sq2n0Qiof8387l9+jjht67hHRBIWOmy1GjWmirvNaZmi7Z4+wXw4GKGtHHBUmXx8PblnY496PbZTAqWdUQKZe5uyOQKGg4cl+lBz2s2+T8KTu6gkMnwdHfDJDiKVVpMRvSpKcTccygx3jiwk9DS5QGo2qIjiU8dwZoruzdhNhqwWS0YNKm4e2YUx850i0URk97Bnb955gTbF81j2bRJmAx67l+7AsCTO7d4670GbLv5kBr1G/35F51LGM1uRCfk50FEcRJSQnBTWClSII5yxSMokC813YnKPWw2CQmJHjx45EdsnBcSCRROL7MQEhLyQqHbPwLxUZEE5oEqKYoiCZERmbKOz7Zn1XZ9CCQSKaIoYDbokbkoCz7/WZlMxvA5PxDz+BHq5CR8AwLJF1aIoNACVKvXgNJVqmEy6Hly97bzc8XKlie0SFHea9uBT5auJqyEI6zsGxiEm7sH5fNIEX4e/9mVzMjuu37W9kh/dHXpxbetRgNWk5HrezYDkBT+kErNHMyYfMXLcufQLgASHv+OPjUFo1aDwsMTuZtbtr8LpnRl101fT2Hv0gXcOHmME1scpROUv99BnZJMraYtaNmnPwO//DbriZTjnyzH/zMZTaIoIpj02BKjsEY9REhLQuLmgTy0KIoiZZEG5HtpGYOXwmZFqk5CFh+OTJ0MUjmWwAJY8hXB5uX3h5Svef5a9GlpL50zAA7ZwWdN0dG222ykJsYTVLCQcyzXcbNqI4pIJFIEm91RWNlqcQgbZeqS8Y/C3Z1a7zfnt1/3oE5Owt3Tk3pt2uPp7U3BYiX4cMIUEiIj0aZl0EyLlatAqTcq83aT5nyyZAXlq9dwFJz38MQ/JIQy6TL5L5xbbiD+O+zKv4rat+xWJOC4sT7YqSrVc9vqQZKYXtTRJRiwbeZUZ0occLZbj/sCnSoFHxfub2pcDN91qk+XqTO5sGszo1bvypSFCvTKgqonihTXJRKpMyIvXAqpREJqchKBIflYNGVChvINsHvtSlp07cGBrZuc47Tu3ot9P2+gU9+BTJozP8t06/PtrChkr4rnM1LPHCh7WjIIdnDzROofhN3d22lE7NmknF8pIyUIKKwmPA0aFDYzgkSKwcMHrcILIf1an4/e5CYjlZoQx2cdmjJt11F8g0JylZGyWy1837YW0w5cxN3LO9O9fx7Pv6TzerWm22ezOLpyITVbdaRqo2ZZZqSetWf16Ujjnv04sGIx9Tp2p2H3Ps4xf106H3VKEt0nO2pFGC0Ccz5oQZsRk6hQtwE6s+O6L+5Yz8OLZ+j6jYOG48qM+rJ+2VxT+0btu15PkQO177sm5f9vqH1TTj58YbsgiuhTU/AODMZLKvKuGM9jt/wsnTWDK79soka7HkgkcHn3Jmq270GrcV+gS03BJzCYfXM/58ruTZR/rylPr5yj0UcfE3nnOh/OWpqJdmPVpOIXHMLGGVM4tXU973bowpld25z7V128zfaF89i/YTUte/Vl7Kx5zn2u9A4PFxuRHZUYIEjukpGyv35GShRBo/cmJS0Ag8kTqUQgwFdLkL8aD3eXMV+mQpZNRspiU5Cc4k2q2hNRlODrYyU42Iy3d1gGnSUb2l7mjFTWFOHn/3+WkXry+x0m9OjEmrNX8PD0eqWM1DMaqDopkSltG7Hs0h2HFLlLpNTVDrm2HecIk5vUYNKWAywfM5Cun3xOySrVM9kVV4qWm0zC8EbvMOjLmSyfNok+n37OO81bOSP6S6ZMIF/BMLqNGAuAyWhk4Hs1mbZ6E0XLZ9C4Ns2diTZVxeAZs4HM6m3tSoTmmjQiMtsAACAASURBVNo3/uj9HKl9C9pU/7+h9n1y7D4ArgF1XUoyXoGOuUeIQqSOJJFrknys/W4GN/dupmqbD5BK4PqezbzZ9gOajvrcaYcOz/+C63s2U7xGXfTJCZSs+S52i5mWY6fj6UINtutU+AaFsPXbzzi3fQO123bmwp7tzv1123fh3O5tNP6gN30//ybTs5XdPMSVzpddH8ickZJn084pIyWKAoJOg6BJQbSYQCpF6huIzDcIiSJDVdj+3PzBFdlmpMxGJNpUMDiyrs9YNzZ5xrjZUfVeJyN148xJVs34nNl7jyKVyTIxa1ztgWv25dkxou/fZf1no5m+69gLx3ad8z6vCCkIAqNrlmLB1XCmtXiHCWt3EFSwUKbvO9PcRbAx4O0qfLpiHfOGD2L8ouVUrPm283uZMaA3dZq3pGlXx/rcNFUKg+q/zcKDJwl2KQczf8IoQgsXofuo8S+oHjcvEpwru1Kg7Bvihz/ufGmf1OgIVn7U/D/VvlfF3P7dSYyKIClKyYX0oryRcXEsGtyD5CglydGRLBjQBeWdG5zfsRFwOFDVW3akWJW3eK9Hf1KilWyZNsqpfrPoo7Y8uugoYLhtxiSkMhnJ0Up+P59R1FCdkuxsp6VnmqSIfD1jBq3fqcWiyeNZMHk83aqVY86YjzMp3+xObx/YuomW6fKTHT4awOeLlnHoXgST5mQoBP4VEEUBuzoFa/Qj7KoEJG4eSEOLIStYHMkfEYkRRRRmA/5p8fhpkpAKNjReASQFFEDv6ed0ol4XkQ/uUeyNKvgG5T4jZTbokUgkqBPiSIlWsnrCkFf+rEyh4JfvZ3D75GE8X2FBetX6TXhw6Ty1W3ckUZlZtaZsrXd4dOWCM1ojkUio3b4bv+10PLuqGCWrR/YiqFBRom5fZe3w7qTGRJIao3SqyeUF/6n2ZcbuGePYMKY30XdvkhoTyYYxvfllxngWdKzDwi7vsvubiTRo0ICverfnyi+OYMiVXzZRrWVHBi3bTnLkU1QxSiwGHWtGfUid7v14p3t/kiOfYjHoObhkNhE3L5MSrSTizg0WDe7BuimjGd+wOuMbvsWprY4I8Zld26jxvqPsQVBoAYx6HR0GDaNijVp0GDSUWGU447u0JTYinOSE+L/tftntUpJTA3ioLEZUfEGsNjkFQpIoVzyCsPxJmZ2oXMJikREdF8DDJyGkpnni72eidCkNxYrq8fG2vX6duhxw/8Y1ajZohIdnDpFjFxj1Omb17Yby/l3cvbyc52i1mPmmT1cSIiOcKmqJkY7frx8GfkBSlJKkKCVLR/ZFIpGwbMxAIu7cwKjTkhSlZPmkUSSmf3bZp2OdCmxLJ4+nYs3aXD91AndPLx7euEacMoL5E0YRpwyncOkyHNq8wXl+Cnd3GnXqysGNa9GmqohXRhCvjODqiWNcPnaYiPu/83nPzulKbhFM7dExT/fu36Cu9Vdi7zfjSY2NZO9XY0mLjeTXb8aztFs99s+cQFpsJGtG9aRBgwasmjaWm3sdWaibezdjVKfSZ/FW3u7aj1++GoPFqCc1NhJtcgJVW3WlcOW3SIp4zMVtq1EnxrJudG8i794gJVrJt23rMPX9mqwcP5Rz2x3PwIU92/ELdqwDrt2qPSmxMUzfuo+WfQc51PwiHc/D9F5diIsId1H2C3cq+8VGOBTkJnRtR0zEU2IiwhnbpQ2xEblXYssOot2GPTURa9Qj7MkxIIrIgguiKFIOeVCBTE5Urse2mBGTYpAkKMGoBZ8A7KHFEYIKgpvHH3YN2eHRjWu8UbsOSTFRfNW7C4lRjvd6Vt9uJEU77MD3A7qTnG4TFgz6wDGnjVKy6YsJKNzcnX2SoiJfsCELBn1AcnQEyVFKFg3uQWJkBCkxUYiiyNw+HUhNiGPVp6NIilI6j5voouiYEBlBSnwccoWCe5cuUrpKNZZMGe9Ud5zyQUeKlSvPlRNHndfkFxhErSZNObptM1az2ak0W7x8BXb+tJjoJ4+ICX/qUB1Mf35yC/FfUkfqX+VIuSIkKBCLXUBvE5w81oM/zSPi5hXObFnDm80cPM43m7XF2z8QuSLrFE7cw985vWG583/lrWv8unAmPwzuxcYZU9g4YwoD3q7C8mmfsnzap/Su8QY/Tp2INjGBLVu2ALBv/Wr2rVsFwJFtm2mW7rG37dOf9n36A9C+T3+mLFjKvjtPGT/LUZE+6C9U2hJFEaNWQ2L4Y+yqeCQKN+QFi6MoWByJx6tPGl5yABRmPb6pcfhokpCIIjqfINICwzB6+Ly04ndeYNJp8cijspaXfyDBhYsR+fvNnDs/h1ptuhDz4C5j1uykVPWcKTHFKlbh1qmjXNq/m6Cwwpn2lX6zJoIo8Phahtzwo0vnKFE1c2A3uEhxCleqjj5d9vx1YbMLOf79P+Hu0b0kK5+w9uMunFo9H7vVyu/H9gKgS07k6iHHwlnl44eUf68pAL4hoXj5B+LlH5jlmOd/XokhTeX836BO48DiWXzfpwPx4Y+5etCh+KhJSeLNJg7nKTB/KB9MmMLMHb8SViJDLED+GhOIPxKCICFJFciDiOLEp4SgkNsoWiCOssWUhASoM8Ro8gCLVUZ0vD8Pw/Oj1noSHGigbKlkChfU4OH+1z2PBq0WL9+8FTsPLVocRJHoxy9mOHNCtfdboYqLoXzteuQrXCzH/kXLlufq8SMkx8UQ9JyKV7V69VGrkokJz1DpunH2NBXeymyvfPz9CSkYxu8Xz+f6fLPCf3YlM34/to+Ty+bw4NR+Ti2bw73jjtIm94/vIzVGycNb1wG4c+oQAWFFAajQqDVyN3c8s7ErN3/dijYpwfn/o/MnSVI+4ccBndi/aBaa9H23ThzEN915qtWyPQVLluazzXvpMHwcAL6BWY//d0AU7AipiVijHmJ/Rt8rUAx5oVLI/IKQvEbwVbSaEZNjID4cTHrwDUIsUAIxID+8QnHuPwoGnQ7PPCr2efj4kRgZgS4ta/XGl8EvJD8GjZoRS9Y510y+DJ4+Ppzdt5tHN6/j9lzpiNrNWnLt1Ak0qRm/a1nZlZqNmiIIAuG/38n1+T4PkZztiv0fEPj9V1H76nf9kJ5Tv2bDjMmc3rqB9l27kyTIObd9AzVbd+byvoz09ecHHZNT36CQTCnP56PtU+qUpsSbtbCazUT/fpMarTpx5dec6/NsvXidHfNmsmXLFlp/2BckEvatW0Xr3v0YO3Oek+Ynl0qdAhMyl2jq8ynPP4vaJ4oier2e2IRELEYDcjd3CAxF4unjjJxmR+F7JWqf3Y7cbMDdkIbMZsUuk2Py8sfk5pWl2k127efHzYnad/nQPk7v3s6wBY6MX27FJnZ8OoDKDZvzdvvuuaL2ObjOKgJDMjJhL6P27fzhW05sXkv52vUYOGsRbh4emcY8umElyjs36fvtfExWkVvHD3JoxXzGrd+HwYVltfDDlrQaP4NCb1R7bWrfgB1XcqT2/djqjf8bal/l5h25fTCDPjB613lOrV7gpNf4yURO7fqZWu0+oPnYL5xUG7ks47l5/jmZ/m4Z3unenyeXzpD49OELKqG12nTi0t4dPLNpVq0K//T1fp6KrKl6Htmogf7Z1D5RBLXOh4SUYKw2Bb5eevIHqfD0yFqu+QW8hNpnE9xIVvmSkuYIigT56wkJ1qFQuDzSr6AM+kdR+3asWMqT+78zOj3YlRtqnyAIfNmlBV3HfEL1hk1yRe0TBAGDOo3AkAzKeXbUPne5lEUTRnHh0K+827o9Q2bMRiaXZ6JMrZv1FYJdoN+U6dgFgV/XruTS0UNMXbPZafcFQaD/21WYtfsA+QsVeW1q39Bf777UXlhNBlZ0qvl/Q+2r1KyDc10TwBtNO3D38C6qtu5O45Gfc/3H6ZzYtYVqrbvTZPR0p11x/d5d1UNtFjNzW1Sl1aRZnFu3iLTYKKo278hNF9v1zM7U7dyLrp9+hVmtcq4jzo7S9XdR+0RRQKLXIKYlgWBH6u2PLCAfkldcl/0yap/dagFNCujSHEFc30DwDULIRj0z2znKH0TtWz/7a2Ru7nR+RrfNBbXPajYzo30Dhi1YSdEKlV6Z2ue4D1bMRgP+gQHOfS97Dr7s041HN67Rqs8Aeo6bhEQiyWRXfhg7nJJvVKLjQIfy4LrZX5McH8vouYucfQw6HX3frsyaS7fxf05vILfUvnyl3xC7LNj20j5pMUo2D2r5n2rfq+LU1vXIPTw4vdWRst699Wfnvsv7tlO2Vj0eXjpLscpvcmX/Lhr2GsiJdT8hAA0/HMTJ9cuw2gQa9B7M6Q3LnRF+5a1rlHzrHWp3+IDgQkUpWulNIu9cp37XD53HbdqjDwCHN62lRa+PCAoOZurUqXQbNxmvgoWRSiR8OPYTAtO18gNdNPMD8+VNP/91YLVaSU1NJTU1FavVilQmxz80DC//QFL+iDq6goDcqMFDr0Eq2LDL5Oh9g7E8W2P1Jzvo5Wq+w6ppE7lx/BDVGjV7Yf+900cAKFmnMQ/OONpl6jXh4dmjJDy+R0p0JLo0FSfXL6NJnyHcPnkYgMoNmmZq3z11BFEUqdSgKXfPHEO0251tu81OlYZNuX3mOHarlWqNmnHr9DEEm42qDZtyevsmrh8/hNlooFDpstz97RRvuvSp1qgZPgFB3DxxGKNWw92LF0AiwTcohHWTR1CgXBXq9RzI0Z/mkhYXRcHylTm/eTlSqZQ63ftzbvPyF677VSAI4j8iivNPQb5ipajergfXftlEoYrV8A4MJqhQcer2HsZ7fUch3jrFF6OGYPUNYdW2rSSmqan7wUDO/rwC7CL1eg7k3OYViIKjvX/+DABifr+Jm6c3pWrUoctns0mKfErUnevU7dyL4LDCtBk6ljZDR3Nw9VI83BW0/Ggg+1YswcPdnTb9BrF72WLc3NzpMGAI25cuxNPDg04DhrJlyQL8/P1p36c/p/fvJSggkBrv/vFzU1GENK0vSamBWKxueLiZKRQWg4/X6xXQBbBaZSSn+aNS+yKKEgL8DOQP0eKmeDYzyFtNvtfFW+82YN33s2nYrhNV69TLtE/54B7FylXg4uEDWJFSrUETrh49iNlooHarDiydMByDTku1+o24fOQgVrOFt1u2Yd+KJdgEaNFvCAdWLcVis9G83zAOr3aseWzcZwjH1jsK97bsN5RD6dtbDxjKgVWOdvtBw9i3YgmiKFKr8ftcP3Ucs8HA+917sWelg+beeegIdi51TGje79qTse2aUa56DWo3a0lA/nzERjzl4IY1mI0OacdKtesikUj47dc9tB/0MTt/cny24+Dhebp3OdmU/zebE1y0FGEVqhJ77yYFK1QluFgphmw5y90ju7i8dQX9xk/j81FDUaq0PJaKXDrscLrq9hjIhZ8dtcJqde3vbBeuXB2AG3u3UKBUeUJLlSOkeClqtOvBlV82UaTSm3T5bDb5CxfmWXmLS/t2YxdsNOs7hENrV2C3W2nZbygH163AZrHQesAw9q1egd1mpt3Aj9m7ahk2q5UOgz9m94ql2GxWOg8ZwfafliDYbXQdNpKtPy5AEES6fzyKzYvn88HHo3J1X0RRAJ0aNCmIdhu4eyINDEXuIsaTV4hWC+IzBwqcpVWcohQvcb7+DFw9cQyb1ULVuu/x3fCB6NRpfDT1Sw6uXY5gt9Gy31CObliB3er4jk5sXIXNZuH9Po62YLMiiiLe/v7cu3CWohUqcXT9CgSbjaZ9h3B8/XLsgp33+wzh+LrliKJA4z6DObL6R5BKeL/PEM5t2oxcKqHpR0M4tHopCrmUFn2HsH/Vj7gpFLT4aCB7li3CkKoi/M5tTHo9UpkUiUTCrp8WI3dzo33/wexcuoiAfPk4snUzBYoWRyKV0nnoSAbWr8WKr6Yx4LMv2bl0EcpHDyhbrToH1q9BikjXj0ez7ce8C6nlZDeEfwC171/lSDXt0QdvLw+q1m/EzVPH6dytG0miglNbN1C/64e816Mfnj6+nNi4CrvZES016jTYkWGyimjVaux2AbNVQKdOI/qeQ9lIsNt4fPksLQdu5t5vpylX8x0mLF3tjOR8OG6CM1rcfdR4/ENC0IgiwUgI83YnxuKI6Mp9/dCazdnWs3Ld/jzXX57NAkzXdo71xEURhdWEt9mAh82hB2qWu2HwCsAg90A0iWBSvfAx10hGTrKhCsGOn9WAv82MFBGDVE6qmw9aqRs2iwgWh0qQa80m1wc9q4hLVv+79nNtO6M3Mh9ajv2CX1csocBbDTG4RHh0Rhv3r191nG+ZOty/dg0A9zJ1uX/lKvF3LlG4XluiYhyp8osP07h15iIAhrBa3Dx9wTFOgZrcPXcVwW5FX7AWd3+7it1iRlegJvfOXcdmMqDOX4OH525g0WvZOPMr7GYTMncP1nwxGYtOg2BzPBsRKVaeHvuN5OC3+P30NWwmPcnBb3H3ygMk7t7sOXSN2BuXsJkMFGk+jLPf9EXvFor8rorw8DgEEa7cjkOpTELh4cHNxxoiIzPW7uUG9v/kzzPBotfSdvwXeAcEINjsjoyfaAe7HYVUwm+/P0RiNdPl/QZM6Naa87fvYVOIWIwmrCYjNruASa/HbrNitYtEXHNQpSJvORT33unUC4VMQpkatalQ4206jvmU3Qtm4+3rg0ImwaxTo5A5Ind6jQZ5YACCKKJTq/ELCMQuOOyVlEAsdjvqtFREwY7VbufutSvkLxhGpfRJv+s7FKnLPGmIkWZQwOTSjMXBrhHHEDcJouioqaJPScBiseDh4UGRAvnw8/Nz2C3RJbMluBR5fAW5dLNFRnKKD2lqd0QgwN9MSLARD3c7SDPqZL2sDp3z0C7Zs+yy5y/LgFuzyFaFlS5Dp2Ej2bFyKeVq1c6UhXr0OAKPsJLcvHwF0d2HwMr1uH7pCu7evhRUmYi4f4+QUhV5kGDk4m+XQOGOe5WGhMckg0zBrRg9ETHJSCTwONFIbILDFj9OMhIb72jfjdUTGed4r29E6XgcEcOd/Vs5tWcXZp0WvSqJXT8uwGJwqDzGeRblvtJRZ+XcExX3lY61cwUJxGK1cujAUYQy73Ds6BmCy1Rh99rVlK7d0HGLCyRisdp4EpXA7VgdMclpCDYbj5L0WX95OeCvcqQkEok7sARoAgQBj4HJoige+EMO8AdBr9EQVuVtmn22kJu716NTq5H4BKJLl5e/phYJf/SAdu/WopLMhl+typy5+TtpBhtpqQ5HQGOyo1GrATj0g6OWYMzda0ikUqq374VerabxyGnIPdyRK9wx2wSsggRjWho6sx2t0YDFYEBjsqEzmDDqtKQabGj1ZgwataNtMGHQqEnRW1HrjRi1GlQGCxq9AaNOS5rRjFavxWw0oDWbSdNqsFksaM1mUlJVaM0ZmWnXeYxrFksmlYIo4mbS4aFPQyrYsSncsfmFILh5AhIwZgRospsDucLV1kmsZuS6NKQmHSDB7uWH3TsAUa5AsAtgt7zwGVumzE7WzBVLNlmoV2HuANy/eQOL2UTn0Z9QoGRp7l2+hNZkR6szYjboSTXYSNOaMOm0xGssJKn1mHVawpONJKYZMOs1xN+7SUCpykTFpXAv3kBMkhaLycDtGD0xyRpsZhP34/XEpagRrFaeJpuIT3LMbcKTjcQnqJDKZA47k5CCwt2DizcesGvhXDz9Azh35AhRt644VBJtVjz9A1FZ5FyP0vAkOhEvP39uRGt4EpOIp7cP0U8ec/rkWTz9/LAXKENYxWqcO7SfeoMmoIxLIlmVhl5vJCo+CXeFjBi1nrjEvM1VRDHnoO8/wa78q6h92x476uwYrAKypBiqBnpxQ/QhIcWhfpUdfcKV6vU8T/vX2Z9yNZ3KN//KU6ecrp9nho/ppcjayQm0GshnNaB098csU2TZxxWv60hlC1HE02LA26RDIdiwS6QY3LzQu3lhT4/EvEwi8lUcKbnVTKDVgLfdgghoZe6kKTwxutB2XBcT/+mOFBDz5DFbJg/l4w2HXnCknsHgMvF69sKdnD2SkvXbU7hmw/TjZr7W7CIc2b0rMpkUk1rFgYkdqT/pRwwp8QQWK0f87fPc/3UdJd5rS/k2/bIcx24Xubh4IoVqvk9o9cY82reSp0c3Iwp2mv5wwtnv1tqvkHv6ULHrGBQuqflf+tfINbWv18YL9eTuL6f2relc9f+G2jf9jKMIZU6RLQ+JSGUvO0XcHM6W2iYhwiJFaZZhEDK+Ak+FhDWjP+LxZYe0/bNC4gA+7q40vJypNtkVv3Sl+b1K4UzI7DBlp6LlZzeiSYrHYjTg7u5OaGgovr6+me1VHhwpo0lOUoo3Gq07EgkEBpgICTLi5uZij7MppJu9I5X1ROh1HCmAS6dP8vP87/hmy+5MjlSSLoMCmazL2P7sPH7q354WY6ZTuGJVgEw2ydWGyZ57W13nAc8/g0lP7nFo1gSajv8WQ2oy+cu8wd2D27l/fC9vdR1A1RYZ9Q4zUYylEtYN707DweMp9MZbHJ7/BfdO7McrMJiBq/cD4KGQsmF8f0q+9Q51ewzM9GyOr1Uy19S+j7bfzJHat7HXO69N7ZNIJN7ABGANEAm0BDYDlUVRjHidsf8oSCQScdShe0DmOYfr1/us/refXKS2v0hxT8e2BDPc10t4bACzi12RigKbP+6ASvkYr4AgRuz4zbnPVbXP9TlwbWem5GXdJzs75Eo3fhm1LztHyt1mxlOnQmazYpO7Y/YJwK7wQC7LOvP8qo6UxGJErktDZjYgSiTYvfyxefuDiyx6dvObv8KRcrUBp3fv4Pbp4wyYtdCpyAugMWXYEo3L3MVqFxFFkdW9GtBt/hZ88xd0nJPLHMilhnwmqvnzNsa12LxMAk8unubiz8toMHAcRq2asPJVOL3qByKunqfpiKmUr9swy3EVMgmzOrzHgIXrCS5cjPWfDCH8xmXCypRn8BKHSJZCIjL3w3Y07DWABh06ZTqP/pWK5squhJSqKLaZ/fNL+2jilOwc0fa1qX2vY1f+VWIT03t1IV4ZgS41FWmI46EKwObMHFmMRhYMciiZJEdH8OPQniSnq/OtHtkLVYwSVUykU/FMFRNJ1F2H4EBoiTKs+XSEUwUl/O6tHM9HLffAjoRg2+tTXfICiSjgbdKSXx1PgCENJKDyCiDeLxSNp5/TicozRBEPm5kCBhVFTGl42q2kKjwJ9wwiwd0Xs/TvTWjK5HJs1hcVwh6fOYg6LhJ1XCTnlnyONj4KbXwUZxdO4sz3E0h+fIcnJ3ehTYhCmxDF6Tkj0SVEoUuI4sTXg5ztk988106MRpcQxalvB5P8+Dba+EhOfTsYbUI0usRorAYdyY9uEVCkNJeWTSfh7mWKvtOchDsX0SVEu4yZMY4uIQo3nwDubluIPjEKmYc3NpOBgtUboU+K5uK8oeiToinyXgcijm9BE/sEfWI05+YMQZ8Ynaf7Jog5//0/QRWjZM2oD1FFR75gH9aN7k1qrKO9bFQfjjyOY/39RBatXofJYqaql51WfkZqKzSUF1Tku3eCNyVqhvbvS6FChajcuBXJ0UqnLcpQXlKSGOWqnqR0qic9U9CKV0YQF+lQUXumqDape3vi0hWQxnZpQ0xEOImxMa99D0S7DVtSDMmRT7FZLPiHhlG6dOmMLFQeYTDKiYgK4ElEMDq9GyFBBsqVVhFWQJ/ZifoHQa7I2q7o0lKdSlmqmEjnb0rCkwfMbl0LgyYNuYeH8/lJi41ky/g+pMU62jsmfuRsb5uQ0f7lsyGkxTrUOPd8Pgx1bCTq2EgOz/kEfUoihtRkLqxbSFCx0tgsZu4c3E619h9SuEotDs+b6hxn/5zJpMZGOpTivpmAd2AwUTevsPvLMXj4+qPw9EIUBGeftaN6U7tLH85tXsHqkb1IjlY6n9W84K+yK6Io6kVRnC6KYoQoioIoivuAcOAfFfh59r0cmzfF+Xt0Yv5nzvbxH6ahjoskKiqKSZ9NY8n1OI4r0zAmx1E/SKRPmEDV5OvUUKh511PLW+q7fDx4MCEhIXj4+ju/x83j+pASo3TaseToCFKilawc3ouU6EhSopX8NKyn8/tdMrRHJnW4pOhIp11KdFGYTHBRdXum9Ph5z85OZb9ndullkNpt+GiS8ElLQCII6P3yYQgsgN3N87UUgiVmA24pMbinxCK1mrD6BGHOXwybX3AmJ+rvRlJ0JAmREcz8qCt6dRo6dSpz+3cnOTrS+V04fmsc311aXJTTPsQ/uMX2sT2wpNcifGZD1HFRqOMi+eXTvs5nafekvpnsTGqM0jlOanQEsfduOm1Ramwkp1fOQxUVgUGdyuVtq7EY9MTcuY6Hrx8hxUpl/h10mT+nRCsx67U8uXqBlOhIYh7cwds/kGJV3uKnYT1JiVaiiotCFAWOrF5CgjLcqVaaGBmR6/snvoJN+SfYlX/OE5dLWCVSjEgJwEYcr1E0Nv1lrtu9L+FXzuXQOTMEiZRUhSchVgNugg3LX+RYSEQBL7Meb5MOmShglruR5uGLRe7OHzI1EUW8bGYCLHrcBRs2iZQkN280cg9EifQfUQANQJ+qwjsgCICkpw8ILFzCUZwwGxhUiVh0GhpP/pHbu1a80jGsBh0pj29hUquw6DUoPLzQJUZz6usBeOcLw80nAKtRj4dfIAHFynF/zyo0UY8QBQGJVIoo5Ex38itcmpjLx7AatNzbvgAP/xBKt+ybyUC4+QQg9/BEHXEPj/LVX+ncs8N/1L7Xg1UQOXTyDIoazQhwlyF9cIkWzZpRyMeN1ArlkCukNHr7LRr/+iuPktQordI/XbY7rxBFEbtGhT01EQQ7PkEh+ATnQyqVvVYlBKNJTmKyN1qdBzKpQP4QLcGBRmQy8eV1pf4BSEtJxj84BFEUCb97m6LlKrxU8ere6cOIokDP2cuRvqLCot1qIfzyGUfNHLsNu9XCxQ2LUV4+xQFVIvWHTkGw2wksXIL6Q6dwfP407hzYRsX3OyCRSBDsxthJ5wAAIABJREFUOduV/CXLkfj0AWa9jktbV1Gzy0ckPc2sKBhcpDhyN3esptcPBua4liFvNZlzhEQiCQXKAnf/nCP8NTDaBK4m6Fm8cQktB4ykSogXb5QphaeXF0abQKopgOpvVKB9s0YcO3eeNE85yS4ZjH8URBEPgwYvg4OWaPQOwOzlBxLpa0XvJWYjMq0KqcWIKJVh9QvB7uX7h6sC/xnQqVPxCQgkLTGR+KcPCS1e6qX97x3ZjVdgCDI3d4dy4SvMu7RJ8RjSUoi4cpai1d5GsNs5vngGUTcv4e7tg16VjHdAIB6+/lRp1YVfZ32KV2BQxnzlFY7h7u1D/OP7KNzc0SQl0mzIOKo0bo7y1lVnH08fP6Lu30GnTsv5xuSAv2vtZW7syr+W2gdQyG4gn2DmMn4ISPJE7bt7eBe7Z03lixN38PfOcMhehdoHjnR7CWMqepmCeHe/LPtk9dk8UftEAW8XB8okd0fn6YtVnnHe2Tk5r0TtE0U8rCanA2WVyEhz80Kn8MxcbDe7VPlfTO27deIwW6YMo2ydRoRfu4BMoaDx8KkUqdPC2ceV2ndo+kBKNWxPiXotM53Ts6bVqEcbr0SfnIBZnYJ/kdJcXvEFXkEFHOtG0pKRe3ghVbhRe/hMjk3rhVGVQIn67ag1aDoAJo2KKytnkBp+j+DSlfEvUpo3OgzKdLznqX1GVQLHP+/J+3MPcGh0Exp9sws3n4AX1sU+2rcCm0lPle5jnNvyQu3rtOq3HKl9W3q++R+1Lwu4UiRc+7vaci83Kde3r6G0J3Tt1g2FBMyihCS7DI1UQRpyRCR/O7VPtJoRUuLAbETi4YU8uCD5fDKei2yVQV9C7bNapSQk+ZCm8UAqFQkJMhAcaHA4UM+QnSP1D6H2bV+xlGXTJ/NWg8bcvXwBd08vRsyZT9ibdZx9nlH7RFFkYa/mtBr3BSXefDvTM/Hsd8qkVZMUGYEuJQGjOpWQIiXYP3Mi+UuVx6zXYrWYEaxW/MOK0HjM16zoXhfBZqN2n1HU7D4YAF1yHEfmTkGfkohfaCFKv9uUSs07Z6LwPE/ti713i/3fTaHnD5tY3PU9Ru+5hNQlWv+MDrbvu2kEFS5O0z4DnfvyQu3rtvH6S+2FzWRkR/86jwCNy+Zloigue9XjZHFcBXAAeCKK4uC8jvNHIzfUPkc745/s6m3JpRLu/byIBpVK06rZ+8gloLNDtFlKoiAjySYFJH87tU9hs+BvSEVht2Fx80TvHZipBpT0uf5Z4YU5kM2CXJOC1KRHlMqw+wRie0UH6p9C7dvw7ZccWbeM8m/XJfz2Dbz8/Plo1o/4l8wokv2M2mezWFjeqxEdZ68lqEjJTL87z6h9RrUKbVwkupQELHod/qFhHJr9CWFvvIkuMQ65hyd6VRKFq9Skbu/hLO/VBMFuo83kOVRs3AaAFOVj9s2ahFQmRwLU6z2M0rUbZLIrz1P7fj99hAs7N9Jm7OesGtWHT3adxqWL87lZPnYgdVq15+2WbZ37ckvtCypRUWz69aaX9tHGK9k/rv0VwHXcv9Su/OsyUpvmzqREtRpUfa8RGomCUImZfKKFBNxJjAwnf9ES7F00B6nCnSb9h3NgyXfYkNJ4wGiO/jQXm91Ok8HjOb58HqIo0mzgKPbO+4Jfvvuc3p/PZO+iOYiiSK+Jk1/pfASJFLXcgyCbEY3dgkH2B9d8EUXkdiseVhNeZn16BsqdVE8/rPI/6FiiiJfNhL9Z78isSWQkefihk3tkpN//gQ53gTIVaTlmOvo0FTW6D0SvSuba7g0UqdOC86vmorxyCs+A/OgSYxAEG3arldTIh6g3P6ZKtxHc3LIIszYNiUxO1MUjWPQa/AuXwmoyIJMr0CVGk69cdQJLVKBSl+H8Nn88SCTUHvYNDw9scApJWPRabm1ZSJVuI4g4vRe/sBIUrFaPKyu+cjpN9/etwWrQUrnrCO7tXY3NpKdyl+Hc37MSu8WEb1gJfpszFLmnD+rIB6Q8uIooQLkOw3iwewkSqYx8lepwcd4wEq6fJKxGY8hjfQ1BEP8RSjf/FBz9aS5NBo/j3OblmLQaGg8ax7nNKzBp1TQeNI7fNi/HmL797IafMOl1NBk8jjPrf8RiNNB40DhOr1mI3Wqh4cBxHF46F5vFzM5t67gclcxblSrQ5P33CbEbKCx3wyrCjXv3eRKbQJn327JtwWy8/fxoM2AYW7+fhV+AP+0GDmPT3Jn4+QfQcfDHrJ/zDX7+AXQeOoK1s7/G19eXHiPGsnLmV+QrUJBO/XMxh7RZEPQaRI0KpBJkIYWQ+vi/VtbMZpOQrPIhReWoSRcSZCBfsD6zA/UvQZW67zJ85jzilBH0mjSNuxfOcWrXdippTZSo8ibf9e6IXRQJKlSMhKcPsFttFK9Wi2PL5qHw8KReryHsmTWZuEf3sJpNpMVG4ukXQGi5KqRGh5MWo6TZ+G9QRT1FsNvxK1CYqBsX8StQGHdvX2RyBYLNRkjxspxf8wMiIvX6jaVg+arE3LmK8soZvIPyoY6N4r3+Yzi7+gcQRRoOHMvpld8jiiINB43jwenD6JITuXvkF2QKBYd+mE6LcTOcfZoPm8CxZfPQpap4cO44l3euJyisMEN/fPnEJTvkZFPS98fltEZKIpGcBLLrc04UxXrp/aTAesAC5E1q8E/Eb6t/QBRF3u4zigtr56e3R3Nx7XxEROp8NNq5vW7fMc7vulbvjD61XfrX6zuGhJRUPps0AXP12xgvH6ZqmRJUKlOS8hIBtc5AisKXIwf38/vjpzQeNJYTa3/EpNfTYth4jq9dilGnpdXHEzi69icMGjVtR0zk8BpHu/3IiRxY+SMGrYZOoz9h7/LFGLRauo2dxI4l8//H3lmHyVGlXfxX1TI+ycRdgGzQxXVhWT5sgUUWlsUdFndbPHjc3Z0YkIQkxJW4u0xGe6a7x3qm3Uq+P6pTXZNMZ2aSsCSE8zz1zJnbt6Srq966t+655yUU8PPIOx8ypV9PopEwj737EeN7fsvj73wAgFmOkhkKkhr2owginowmRJO0eHDMY9BSFFPAjeh3gyAgZTRCSWuoPftOwjbJ4Zg1pB+RUJD73/wvoYCPC677P1p0PIuWnS8gb9tGti6agzn9F6qcxVQ5iqgoLkSRZZIzG5KUms6+JbO45sk32Tx9FCGvhw6XX8vyId/iLSlGVVUsyalYklNo2LYjhZtWceY1N3P7R735ZWQPynP3c9Prn1OwZQ2bfxiPJSWVsM9D4Y5NnHvjnawc1QdrahpPDpnBmOfvpSR7D83POodlI3uTkpbBXx5+jqUjepOSkcl1j/yHxcN6kZqRwRX3PMS0z99myah+BD1u5vT9irSGDbnp6VeYP6QnFquV259/AykcZsKXH7Ji+iSsySm07XxOvc+fSu1tlVjfNae2OVK/Zlw55TpSFmsSJTFd7g8Tx/HkbTdxRhbIRbls2rWTZu06Yk5KQo299TRZraixCZsmqxU1lpPIFHtDYklKIi2rMVJEc54xG5KQzR+rdWjvfe4FfopZzN797AvMHqVZ0t71zAsAVFpSSJfDtAl78JmsVFjTiB6HzE9UFKxSmGQpTHI0jEmVUYGIOYnKw0agjgeiIpMeCZAWCWBWFaKiidLkTPzGDtRJjAbNW3HZPVry40BUYe2kIdh3b0WKhLFtXY0gipx39xPkLJ+NIJq44P6XyFv5k76+23YQ5671nHPnk7S+5HqSs5pywb9eZNf32u/e+Y7H2T9vAqgqgiCQ1fE8VEVCNFtAEGl79W3Y1s4nq8M5oGp3s4qAyZLEmTfcS8XBXaQ0jOWbEgRMFi2DuhCrAyCIIqLVypUvd2fRh/chh4P4HPmIZqv+9lIwWxEEkYYdz6fFpTdiMpkp27sBS+qxJQ79Q9pXHeZY3hJBMOkcQdC5moAjiDoXTSY00x8wWSyYrVYat2mPz+9je04Bzf6WzJLRIzn/zHb8/da/c/4ZHbn83LORVA+B6/7C9rx8/VgOdWgs1iSE2JtIa1KS/grbkmQlK5bM+1/PvUSStQ5J5aSolpAy6EWIhFABITUDoVELPRYeC0JhExUVKVR5klBVaJARpnlT70k7/6kuaNepM+06aQ6CYUlCEGDm8EGcd+MdjHr/FVIyM2nc8WzOue4mdi2dR2bzVlq+FYsVwSTyy6Rh7F46lzZ/vpxrn3qdg2uWooomrnz4RdZPGowSjXDuTXexbuJgsMAFdzxAoCqebLvT9beTu3YpHa64nrLcvXq5yWql7cVXcdkDz1Kyf6eeqNSYsNkoLbQkp3DezXezZtJQIsEA4ZjTn7GOyWKl2RmduPSuf7Nv2Tz2rFrMxjm151GsCbVKcOr48kZV1b/VVkfQbpJRQHPgdlVVT0RSjxMKk9V4ni2GckuCcmvNdQw8NasxomjC4/WyaW8Oa/fmcP3jL+HfsIBL/9SRP3dK5fm7b8XtD+A0R9mRloZ8yDBFEAztGwFL8qHnkRZrQHseWZKSY1XiXBBNOhfNJqyCxps3aUxmyEtKNIRVkVCBoDUVT0oDLJY6JrusAUIkhNnvjrnwgZKaiZzR6KSa/5QIh9qKdz7zPIIgYI2dt8at25DVrCX/eOF1Zg0fRJN2HcjduoEzr7mJvSsXctldD2LNaooaiXDuLfdg27XV8B5boHjnBvYunkmTTufT/JwLue75j9j6/WhUKcLlD7/ExsmDdbM0a3Iqrc+7hHYXXYl912YQU7jlrS9YMawHmc00x1bRYkUQTQiCQKdrbqT5meeQ3rgZZovW3gAtPoiGtjSCSEpGJhfeejdbf/4RRZYJB/1kxNL9mK1JmM1a/bbnXUjDxo254ra7GPbeq6Q1iOeyqjPUukiGf/u4ckpJ+37M1axd/ZG4LjgYkWlBhDaEEIFSxYxTNlMUBiU20hc2DK8ah0gBMpPNjH3/RS66+R9cf2d8CNI4nGlEdUmYQa6lqLQkTCvCmAA3JqqwUKmaCKANudcEEZUkFNJQyBQkMpBJQ0EQQFKhCjMu1YRLNROtp7o4USL5dGTamCI0EyREASoUE8WKFZdqSnicRiS2SK+5TiI53+HHV20IPoFsygijzM8fc8GZ9/lLCNZ0Svds4o7eM/GH4+/CQgannIKNKymc2YMzH+uGtVHrmncAWAyShkAgPgE9FAgTch7AtXIUTf/5jeG4az7pxpu9mhQganAVDHpRAi7EjBYIJgui4Ro8/LqV/RW453VBDVbWW9p3x+BfrjUfelgmwKxnLjttpH3d12vytETXrxGJ7imjJCbVqv1ufZ66j7tf/4BzLotnftflMqpKQ1GmiRKmQSxW+wUzlaYkQpZk1EOdqQSJMBMlyNTle6qKVZEwhQOYQ35MsdFTxZKEnJyGmpIBZq2hY5TRmBJIjA9PDB4JBvC5ygj5vNpLhqwsGjeKkJRUh3fPBtmeEcakunVJEp5IapNIvnP4sy6R5Mco5wlGtTwu7959K407nIU9ex//nfwTpT5jMt/4upvmzWTjd0O5+5uRmDOaxbdvqHP4vRw1xLFgSKZ401LyV83hyld7xr+HnPh7HEKiEcWor4qwu4KMVh0xWwySUEv154nFLFBVlMPCT58k4vfWW9p396hNR5f2hYPMfem6E5KQVxCEocBFwE2qqvqOd3snGoIgqC/P06ZWyNWef/E6ag3y8sNhMRvuwVjsGPfkzfy75zgatmwT/ywWfwRU2iSpnJWk0MKioAJOSSQ/bKJCNaEiVKsP1eNHsiERdrVEvaZ4XMkyq2TIEdLlCMkxp86gaMZnTiZoSUYWTUdsN9HUhWrlgDkaIjngwRINoQoC4ZQMwimZqPXsQKkJ7u3E0xJqjyv13aa2fs3THfxhCSkaoctdN9DmgsvwV7l4uPtIqoJyjetumT6avLWLuPWjQZjTqie5PQSz4TeVDms0RSWF/Qum4rYd5PJnPoofb4K4ZAwlxnJj6Aq5y4n6fTRo0xGrIZYkWY0SdG2Fop2bmfre00iRcL3iSsMO56h/+3TiUev4SgpZ8uG9JyQh77HGlZN/hp4BnzxyH46C6g5XJbZC3nnmCRYVV5HtDpESqOQia4hbUgM4fhypuYgUFxicuGIOXTGXm5FvPoMgipQV5jPk7Rd1d5Fh77+uu9aM/PAtnY/+9F29zvKpE/RjUxAoJpmtZFBMElZUOgghLhb9XC14uVTwcoHg53zBz58FPxcKPi4XvFwterlE9NNZDNKMKFEEClQr2+RU1irp7FVSKFGt9e5EHQmVJkKUi0wBLrMEaCpIOBQL66Np7JRTcalm6tKJOlmxe95U3I5COlx5A/m/zKVh+z8RrCxj+7gv8ZcV4S8rYvf4LlTsWceeiV+QO/kjWvztCQTRRN6UTwm77IRddnImvF+Nh1zFhF12Dox9l0ilnUilg4LvPiBS5UCJhgiX5RIuy0NyOymb3QXJXYLkcVI+5wskT5xHY9w170skTwmyp4Sqn79C9pYge0vwLvoGJewDkxXf0m5IVUV6uewtQfKU4F4Y577Vw8i8+f1jOleKoiDXspxOOORqVRFz+BzxyiO4iguPcL4a9cqjegwZ89qjulPWmNcerbZuua2AclsBpfm5OHOzqzv1Fcac+mwF5BYV8/wzT7OyxEOeL0ygzElbyU9Hfzn+dcuwlhUTsBfS++VncBTkVXPtqyhxxr+AqiJKUazhAEn+KtKqSsgst5FaUUyST8snEk7PIty0HZEmbZDTs/ROVH2hBP2UF+ZSXphLOBCgWbNmdO7cmVatWtWtE3UKQhAEbnnoMTbM+UHLt2MvquZqVWkvZMwL9zLzizdZMfgrLMmpyNEIHkch8z55Bo/DhsdZyM+fPYPHacPjsMXLHTaWfPuK7iy6tv97yNEIVYX72TD0Q80ptLSIbWM+x19ahL+0iO3jvqqRbx3zhc63jPxM5zsmdsNkTaYybw+re7+Or9SGr9TGUoND6bKv/4OnxIbJbKVB207HdJ5qiyknKq4IgtAeeB6tweMUBMEXW47NbvBXgu7U1/djna8Y8CkeRyEeRyErB36mXwMrB3yi8xX9PtT5om7v6Ov+9PnLuO2FmKzJzPn6Td2lbeo7T1BZXEhlcSGT3nqCPXlFzN7v4Pl3P2RnhZ+GRLkmPcrNKQEupIrKeRMxuRwEHDaGv/xoNQe5Mls+ZbYC3Z0y6Chk9ZCeZFY6aOcr5Ry/k45hN42jAfL27yPHHyEvpRHFKVm4LSl6J6peUFUskSAZVU4y3KWY5CjB9CzcjdsSSm9U707UbwlZknSHQ815NY+Swny+fPz+mDur5uBXZiug0ukAQWDHwlm0veBSJrz5hObIZy/kx/8+hdteyIHlcxj7yF/ZNmMklz/6Bot7vK3FEKctFk8Kde6OXTNzPnkGt6PQUEeLPwcWTqUseyduRwGLv3xOizklNpZ89Z+Yg3FRtfJFX2jc47SxsMuzOp/f5Vk8ThtyOMya4V9Tum8blcV5zP7oadyO6g6lruICvnv7CdIaN+XRgVPrf0LVUyOunDpXaC2IKCpbygPM+PZDXvmiO50aJPH844+w1ullRy0JBq3JKYQDJ+alloSIjWRsJGNVFTLVKCmCghUVa2yMTAIURPwIhBSRMCIBRPyxkasT6YpnQqWFGKWNGCFFUAmpAjlyEg7FgnQKd5wSwb5rEylZTSk/sB2PowA5HESRJUSTGSkcYM+ELjS75GbSOlxEevsLjmtflsxmiJYUIiX7SWl70Qn6BqB4nYQ2TyD5vH+gRkOoihzPzG6AYDrGxrAKwunVV/pNIJpMupzqaAgrKnn+CCM++Zj3u/WiRbKVpk0a0yZmfjOg6zcoqkpEUfnm449okmFFNElYqhyIqoJoHHUBFJOFaFIqqjUZ2ZqiN0QSTeyuC5RQALmyFDXkRzSbyWzWgtQGjWiSdEq9iztmbFmxjHP/cj3716/GXV6K1xvR31CX5WVTmrOf9hddxR2fDWLDxIHHta+sjudisliJ+D21V64HdkzqRsRbideeh2i2JBzZEhPk9qkNtbVnTtT7GVVVCziV3/odJyzJyXVybXSUlrGhxM/GEh/ORdN58KlnaZps5okH4rl9/jFsIGFMyKrKlV0+plGLBlhEgVsH9iMtVTOeuf6F51BVFa+ksHLVatpeeiVVUZn+PXrxStfetDiWzhPoHaiUgBuLFEEWzfjTGxFJTtdlq793BNxVnHnFdWyaOYmsVu3xVZSSlqVNB3Ds3szaMb2wpmVww+vfkpyZdVz7SspshLvwIMHKshNx6DqW9XqP9lf8lUjAj7fUQaNWNSt8rCmp9d62Su1xQz0J4sopL+0zOvIZk5yFohKXJUdoaVHY5DeTF5N4HS6ryEgy0f2BW7j/g6+5+Jqr9fL6SvsSSX6OpVN0IjpSFhRaEaWVGMEsgFsRKVKslKtmfXj/WHEyS/umvXIvlz71MVW2A2wc+TWW9AaIZivtb7ifonU/0/qau2nz1/txlXsN+0p8Jx5N2gfg+LEL6RfdTXKbPx91W3WR9imxE+L96T0UXwlYkhEQUaMBMm56H2urIzt+FeMfrbe076a+K641WY8u7Vvw0pWnjbRv+MYDVCmmEyrtk6IRPrvtGl4fPZ22Z8Td6BI59ZkMcckaiz2iqpCGikWRMKsyVlXR5uuhyWMUQdDmgooiismMZLKANUl3sjIfgzPo4dI+NRKCqjJtfpVowtSwKc0aN9IbOtWc/YxufkfDKSjte/KK83l/8hzWzprO3KF9ScloQEpmQy6752HWThvDjS++z9nX/71aQs1Q2HBM9ZD2Acx//z6ueKkbma3P0L7HcUj7REFAVVXmvnQdciREUmZjIv4qVFnmlm+mkNVemw9mlJFNfOCiekv7bh28vlZp35I3/3ZCpH0nOwRBUD9etIvKqHBCpX0hbxXjnrqV5yYsIiUzPuekmvOeUYpl4IfqWAWVxmaVVFEhRVBJFbUpBgAmESRVQEJAFQ+95DUhmcy63NjoYnz4y5lESb8Pjz2WaJj0oBurFEEWTQRTGxBNTtc1ZcebLuJUkPZFgkHeu+ES3p61joWDurJl7jSS0jLIaNqSc27+JxunDOOWD3rT6vzLkAzTUw6X7R1CbdI+gGlPX8dd/eaSlK7Nrz4eaZ/JJBIJ+JjwiNZuzmjWGm+pltPwqfGLyWzeWpf2HUK3G8+uV1xp0O5s9eoPxh+1jr+0kF+63H9CpH3HilOu2z+x57fMGTkYgGl9ujF/zBAAfuzfnSVjtPJ5g3uwdMxgNoes7Mop4JLUKB2sMktH9GbRUE13vmR4bxYP60X+js14XeXsWb0cgB/6def7vt0AmNG3G9P7dD2Cf9+vGzP6dv2ffef6IBmFs4QQV4h+2ooRXKqZLVIqW+U0ylTLcXeiTmb8MqwrVUV5ZHXojK/UTufbH+OmngtofPblODYspPklNxFyl5Pzk3bNOJaOwb5kNADOZWNxLB1zBLcvHUfx4lEAlK2ZQumKcQBUbfoe15qJKGEvwYJNuNdrTlfe7bPxbPhO49vi3LdjNt5NGvdvn4Vvs5atO7hzJsGt0zS+40dC26eTctWziA3bQjSEuZnWyAnE6gS2TiOw/cdqZfWFLKu1LqcTLrcEaGeOsmLicBYM0eLDqokjWBiLFSsnDjfwYSwapvEV4wbrfMmo/vq6cwb1YOx/X6XFGZ3Y8NMMZg/qBcDMAd2ZNaQvoMWQ2cO0kYtpfboxe/ggAKb27srM4Vocm9CrG5NHDcdrTaV//wEMGzeRirRG9Bo0hKnzFuJJb4w3raGWoyU5HdkS70QdN6IR1HI7OPMhHMSU1QxL206YGjQ+bd4WH0LhgX2kpKZRtH8vt//nNW56/D9c9cAz3P7W52ydN4Pmnc7h7Ov/zoqRfdg8dQQA68b1Y+s0zZRo08T+bJ2q/aabJ/Vn44R+evmmiRrfOnkAWyb3B2Dn9IEEKpxY0zLZ/f0gds/Qro29Pwxm7w8a3/fjYPb9MPgIbqxTjf84mOYXXkfrK24m7KkgpVELALZN7MWOqQMA2D5tCFu/63/M56m2mFLXSeG/F9zTKIK8YS4A68f3Y/147d7fMKEfG2J848SarwcjN647/9u3SW/cjJTMhqwa3YdVo3oDsHJMf5aPiPHxg1kyXIs5qyYMZfEwja+cOIyFQ3sSUQVmjBvFsP792B+10n/0OL7pO5Dt0RT6jp5Aj34DyFWTGTlqNMP79SEomJg9bIDe/pk+oBeTe34LwOTe3ep1TsxSlIbechp5yzDJEv60LKqyWhE2dKJOdUzu1VU/P9P79WRKL43PGtJXP4cLRg1mQpd3adP5XDb8MIGk9Aw+mL+dS/71DJkt21KSvYs2F11F4eZfANj+4xj9Otn+w0g2T4rxGSN0vmnKYL3O5skD9PLNk/qzbeogFEUmEvCxf77WDtk2ZQC7Z2ltm+1TB7J71mhD+Rid74rxrZMHsHOmxrdMHsC270dgSUmj/ZU3ktG8Dd7SYlIbafNCSw7sYs2YvqwY1QeAlaP6sGJk73qfS5VTI66cctI+s9msNxZMZrPeLTCZzaix7rJotqAKAgoCY+Yu5tm7buXyDm2ouP5q5q/bEqtjosppZ+qX79PuvIv0RK6iIT+LKQEXDfMLgn5NEmhNSScU48lpcW5NTaux/HAe8HkRBYHktHSCsQncyWnpyJJ01GSQoE0wbYREM1GiMZpzTolqIS8i4glFSE4zVdumkYf8PpLT0ut49k8+RA5JMk0peEuLyWjRBtFsQTSZ9ZwpKY1bkNK4Be1ueZLceSPiK4umeLcyAVdFES2lAICAoLsxiqiKhOQpw9r2UoNNPKDXEeJcBQSzXizUVEcQQDBjbvonLG0uRU7Jwty8M5gsmBq0jNUxxfPwHGNi02hURhF+peyYpyAOFBZzXsd2PH3bDazdsUd7OyuA6dB9Lgg6FwycBLy8yEb2xjU89Gk3HDkHEM2H4pUFU+ya1JwfY2518XlaAAAgAElEQVSiZrOBW3RxgdliQcBYB52LCUbMjwuqCuEA+Kog4NWOKbMxZDY6Lme/Ux2bli7m0htu0h0ULTFX2I6XXMXZ192MKZaTTTSb4s8gkxk5dn8K5vj8U9Fs1t9sC4a4LhieZdGAD1WRsaY3QDS4vxpzQAkJuJiAC6KZ9BYdOO/e51nlqUQ0W7jksXdw5e5GiEmzBFFEFI7daS0aPXpMkWv5/PeGwpJyXr7vNrL9KpHOZ7IrVxuxTfgbmWvmokm7ZvYtnY1jzzY6/fXvR64riphiRiKag6QhLlnizxeToe0SdwyM1xcEDLz6dsw6N+m8trYJoBnfREOkhf0kR0MogoA3JZNAcjrmU2j+09EQ9GntkKS0NK2NGoPm5hq79wXRcA4FyottXPi3W/BLYLZatTaoAI3bn8WVj77CpumjiYYCsS0J8XanIOpcFePloiCiHnpOiSJCLP6IZjOoIuX7t2NJTUeISXdFU7wtrXHhCC4Y6hjjmGAyIwjad8vq8Ceannk2iixRlr2bthddxVnX3kJFfjaCEI91x9JNVtXa44pxRP+3wikl7ZuVVwJAIBqXT3hDRhlGnBtlX2YBzrVEaG2WCKkCdsVC7v69LJ48jr/c9wCdL75Mc4wxm/CLWidMTiAtMybXSyRZS5RMNlGduq5T3U9fpZlFpWOySrskhSQRgjLkhET2B0WCSt0v28OlJnq5UfJTh80Zv1Li4665/tFg3LfxWI3nyROQWNztbdpeei1trrlTL6+oCuvc543zvTsLdR40SPYAlEi8HnKcq8H4nAXV70LKWQCWVMzNL675wC2GpLfGnF+KITBIkZrLAazx9YUE2wov/7ze0r6rv15Yq7Tvl3f/evpI+3YU0IoILQljFVRkFVyqmTLVjAszUoJ7qaYkhMunTWTBmGE8/XlXzr/mumqfQQKHPRI7WSXipsPcrmqqkygx+OGfiYqMEPAiBjwIUgRVECEtE6FBE72Rnkj+Z0QTa/0fleURY9wzOFjWV8JnLE+wr8OfdYnkQ8Z9B6JR3rn3Dh56/W06Xh5PyGuUkVf44w652fb4nDi3N15ufNgfLrsJBuLPM583QPb4/5J51uVkXBSPY0oCTamxQ22UhybqaKekxlNnJCdX7xxbDWYhi16+qt7Svmt7rDxqvJAjQdZ+dOtpI+17Z+EeLs5Q6JyqkiRCWIG8AGQHBIpCICVoH5oMDzxrLHasmzCQ3NWL+Ps7X9Hq7D8fMfWgWjLmam6btfNEcmPjPqzGYzLVHJOgemywqDJpkSBpkSBmVUYWRAJJaQSTM1Bj9RJJjI8XiaTZ9ZX2JYpDibZ/+Hcw/m9cxx2K8u4tf+G1gSNp3OFPenkoamjThOJxoaA0GF/XEFeM6hHjsUaj1Y8vEomyscdTtL/pMZpceGONx268/03VrgOj5K/mcrPhGkqyGq4Bc/XrY8x9f65XXElv01m9+I2RR60TLLOxufsjf0j76oqPH7435tqnuaCUFOZTaiug1zMPUmrLp8xWyMDnH9Zcs4rydSeuUlshLz/7NItsVYQiUc4wRbjp3DPp+tUX3HnxefyJIGcRpIPko3PIReMqJytGDKjRtW+swbVvQpf3KLMVUGYrYPxn7+h8widv6s5d4z94hfKiAsqLChj91rO6u9fIl+MuYaNeeRRXzF1w7OuPUVlcQGVxIRPffJxoOGQ4AyoNzSoXpcnc01jiliyZDkkK9ojAkioTP1SY2eY36Z2oaChIpb2Q795+gkp7oYEXVCs/VbF+8jDduWhZ3w+xbV1NwzYdWTfsc90Fa8f4LwmUFREoK2L/d18RLC8mWF6Md0V/3TEv9EtfFF8piq+U0IruKP4yFH8ZkTV9UPzlKP5yIusGoQQqUAMuIlvGoASrUKoKULzFKGE3athD9OBclJDHwKtQQ26i+36M8Sqiu6fF+d4ZGg+7iR6YhRJyazz7J9SwW6+jhqpQgpVEdk5GDVaiBFxEto1DDbqO6bxFo3Kty+mEUlsBbz/zBPMKKvjF6WXRsuVkqBHONYW4OFxK+1A5YWcR/f/zEGW2QspsBTFeoDtcldjyKTqwj+++/YxH/vspTdu01Z1FHbqDk8YPuY86CvL56KF7Y458eXz44D9xFORhz8/j/Qfuxp6fhz0/n3fuv0vjBXm8+a9/UJyfS7nRte9YoCiIQS/mCjsmZx4mT7k21yqrOWrLM1AbNqvR4OR0g6u0hPz9e7jgymvwVlbqv6nRibGiqDDm7lhQzdXKX1rEqm4v4Cstwl9qY23PF/GXarFoQ5+X9Li0c8S7BMuLCJYXcXDK53hyt5J55iUU/9STSKWDSKUDx/y+RKocRKocOBf017n95356naK5fQhXOghXOiic2UN3Hy34/mud7xv3IaGKYkIVxWwb/Kq+3+2DX9WPZ1O/l4/pXP0RV6rDZbexZH8xT77XhRn7yzlQ4aeNGOTOZiqPt5Q4q3gdoqsYj6OQFf0/1t38lvT6QHfqm/f1Wzj37WDbj+NJbdSElMyGVNoLmfT2k7pT38Q3H9cdRMe+/hgVRfkGN9FC3U20ItYOGfJi3Fl04PMPU1ZUqF/Ph9o2PZ5+sJrLnLMw3u5yFOThLMjns0f+hbMwv9p3FlSFtEiAZn4XLb1lNAj7kEwmKtOyKG3QAl9Kpt6J+r3AXVGuO/V99uj9emz/5JH7sOdrbquH2q6HyrevWEIkFGLSN59RVhR/jpQXF+gOii7Db2p06jvkurmq2/O6M+fqHofiTFEsztgIlBWxsa8WZ9z5u/E5cklvezbB8mK2x+79gJHH7v1AWRH+smI9Rhljl7+0iDUGfii+eUttLP9GcwH1OOOOf26Hwa3UWcc5tAaoqlprTJFOghGp0+pJWRqS+GFnHuP/+zLtO3XmkQ+/ZM20sfzfI08jqyrb5/7Avx95hKZJFl578lHKQlH2eYK1b/hXRqZJpZ1VoV2STEOzNjHVERHY5hOxhQXk3/G8p7pAVVWcu7fQ+s9XktKg0f9sv0JSBmo0iBpL2HuqQI5KqIJUe8XTDCpQHpaYOHEywTMupGmyiejBXVx7zdV0SLeS9NzTBMwi/hpeJZcX2/i+d1eS0zNoE0vmetJBVRDDQUxBH2LYj6CqqKIZNT0LOTUTLNYT+lb4VIcUjdL9tee549GnsCYffQT3REEQBKwNmuLJ3fI/2d+JhBQ9ekyRa/n89wpZlslzh8lzh9kyYxT3PfsS5zZO5cYrL+EWk5ltpX7yMzNqXDfkdbOo14d0vOoGpOBJly4L0DpPqVKEdClMqhxGAKKiCU9SOn5rCrJoPi7H0N8bZFlmSvcvuf7+h8jesvF/sk9LekNAxVOwh4y25/5P9nlCoNYeVyTpt48rp4W0z9g4mPjBy2Q0asKdr7xLSkamnjwTIPVQIjFVJUsK0UIJIgAOMZlSQUuS+b+R9ilkmVRaWxXaWBUamlVUFUqjAvkhgcKwSLjuo6O14lSW9qmqyorh3SnYvok7vx6DOSkZv0Eq82tK++Tyfci2XzC3vhqxQfsjD/wklfb9+YPZ14qWozcMt31xy2kk7dOuhUTSDUFRaSdGaC1GEIBy1YxDseARtATWiqLQ95l/c+7V1/H3p14gMyOt2j5+U2mfoiCGA5hC/njnSRBRUtJRUtJRrSmICY4j0fGdDtI+WZbp+vqLVFVW8OmoSZhMJlyBuDrg15T2la6fhWP5BNrc/zkpLbScTqeCtO+iTxfWKu3b2fXu00ba99bCvUD1Z7vRxS0ZhcsawnkZ2lyQA37Y44VSSQAE5GiE6a/cy0X3PMZ5f7+PtJT4b/dbS/tEVSFNjpApR0iRI4iAJIgEzMn4LclETJZqcaUujqGng7QvEg7R9fmnSG/SjGe+6okgCPjDBqfPX0naF5UU8haMoXDxRC7/72SSGjQ94thPRmlfaqtOaufnBh+1TriimL2DnvpD2lcfTOjxDT+N0E7s1N5dq7n2LYq59s0Z1IMlozVHrPlDerJgmOYcMrPXF+xatYR/vvURi8cNY/aA7kB1p76pvbsypXdXyk3J9Bwzib05ebRWQnSsKiLn5x9AVavVnzmgOzP7a9uZNaAHs2J8zqAe/DSwBwA/D+7JvME99OP5ebDm7rVwaC/dDWz1uEGULP6ei1Oi3Gp1cWvDKOemyPhDITb6TPzosrCoykx2yFTnTpSrKF93SlkzcbDOV40doPOVMVeVUxWTX3uAPYt/4rbPhrJl2jDdDWnblAFsizlQHZg5hAMztWsj/+cR5P88HIg54G3RksRFdn1PZOf3AET3ziK6d6bGD/xMdN8cAKS8FUg5iwCQ7RtQgxWYml2AVLINya69WZJKduhcdmxGKlqj8eINSIWrtDrFG5FsqzXu2IRUvE7j9o1I9vUxviFex7YaqWClxvNXIOWv0HjukmM6Z1JUqnU5nfBjP+1eXjBmqH4vLxo7TL+X548bRt9+/VgvpbFm517Swj4uNAc5P+CkQe422vhK+Pcdf+eua6/igmSFFs4cOlQWcV60is7+ElqWFdA67KFo2XzWTZsIqsrEnt8yfbDmqjShxzfMGKJdq+O7f830IZqL2thuXzE1Vj6665dMHqRd2yO//YJ5UxJke1dVxEgIs68Ki8tOUkk+1qoSxEgAOTmdSKOWhJt3QG7YDDUp9XfjlHUioaoq3772Aq6yEj4YMhpTbHL21uXa/TatTzcWjtEc+WYO6M6KicMALZ7v+EHT82+ZPIB9szW++/tB7J+lxZx9Pw5m/49aLDLGpbx5w8idq20z6q3A0qApvoMbKV05TncKLVs1nrJV44/gxjolK8bhXD4WSOxEals4EtuCEUfsN2fOCLJnDTnm81ZbTDndzCZ+GdOXX0Zrz9e1Y/uyZqzG14/rx7pxffHLAj369ufd/mPY54OO1gj/agUPtVS5zLefs52beeOVl7j/qvO4Vi7izkZR7kip5O50D/c1CnOjqZSzSndxdrJE3rzvWBJz51s+dqDuJrp8/BDdTXTp+KF6O2TJuGF6+2Th2GF63Pt51BC9bTNnxCDdZW72sAGsnTyGplIQ68GddPSV0zLiQ3ZX4rWkYE9pSGFqYypTMomYraddXJnU81sm9fwG0JylJ/bQ+OQ+3ZjQ42sAvuvbg1dv+StpmQ1o2rYdM/oeeu4M0Z81SycMZ+4g7XdZ/d1I3XFx58wxugvf/jlj2DVjYIyPYs/3mjPn/tnDdffOA7OHcGCWxrNnDSF37nA63voU1szGZM/Qroe8ecMoWDxe53kLNX5w9hByF0zQtjNzCAfna+X7fhxM9s9anNn7w2D2z9Hiye7vB7FnlhZPdk4fyPbpWgzZNmUAmyZpz6/Nk/rrx18fqGod2isnwYjUKSjtS5BPo1q+kBqLsWfvpWHzlliSkqutm4i7fT4mzVvIk6+/TWqglPtvvoEAPkouPJ/t2TmHH07iY+DIcqugcm7HtnRs1YLLUsLc9vITWMxmJFVmt62cmSvW0eCa27HbHDRqnaFv6VhR/QVKgnN4iqEsdz/l+Qf58+33k5zRIPEPTwJe/UdKUD9BeYyKTc9DdmxFkQtQm52Pqio1Ci3rf5rrcAzHiGhURuT0atQcDw79dhFEFq7dxOxlq3ji5dcwuWw0a5RFkknh7jvvRFJVRFSKq9wEQ2E6XHAh+3Zvp0F6Gp0zMrnpqssBkAIV/OOvfyHPWYKgKtXjT4J7syYuKDKiHMUsSYhSBJMUxiRFEGKfK2YLclomclIaqjX5tGvcHCs2rVjKwV07GPrzMhTd2SwOtQ5x44g6Qj3qo5LW6k9U7ViIObUBqe0uQJGiJES1kFb79UOi8uNEbXOglNOsI0Wi+/qwZ1BZlYdlFQJ9vxvJFed14rZbbqZ108Z0bNaIjMwMAqEIlR4fbkmgIKcASZZpde7F+JxldGjVnCZpMhc9/E9cHi8VSVHsrVuSY9Pmo6iJElQdBRlpqaSrEhd1OoOmmRl0ljz8+bEHMZtMqHIQp9XKmu3baX/13xg7dBSPvvPBsZ+j3w1qv78K9u1BkSTe6D2QKbGXZUduxrCuUvM2E7dzEhyOIQA16HA+pduXk/fzcGQpihBTt6gJ2q41tXmOWn7Yd4+PYB1bnDk0R+poOBnmSJ020r6Dm9cx6aPXeHfibLJatNI/q1HaB0e69qkqDdUozZUgaTHxSFgVCCISQZPaSYCCQFTRLlsRFVQVM1rHyYxKiqiQKqgcylOmqOBRBMqiIk5JpFwSMahG6iSRO16cqtK+Od0/JrN5K65+9EU8BnnM/0rap/NAJbJzC0rFPlBlxAYdMLW8HCG9WXw7CaR9arAS2bYGxWdHzGyLmNUJMSN2ff5K0r6OL0+9VrQkHbVeTt97/pD2xZAoCa9JhE0LfmL2gB58OnUOaQ20BJlJh8kZDv0vqgoZqky6FCZNDutyAEkQiYpmFEFEFkQwSvgEAUFVEFQVE6rWeYotxh9dRUC2WFEtSSiWZGRrcrU0DYejLvKa01Xa9+7D93Hd7Xdyx8OPE4jGOzD/K2nfIXgrKihZNgrPvlWgKmSe8zeaXPso5rQsvU4iaV/U7cCxeATBklwyO11F1gU3ktq6868q7TvzjZlHjRdKNETeoAf/kPbFkChfn8kksGPWBPYvmc0DfSdjtmq/mTG5qVF2lySotE5SaWOVaW5W9OelXxEIKAIRVVuUavew9hbdjIpVBAsKVlQsglpNpiQDAcFMSDQTEMwERHM1y/OjufYlkiufjtI+VVV58x838cg7H3Dp327EY5Dz/a+kfYcQqCjh4A99cO1fjyCaaHHFHXS49RlSGzbQ6ySS9nlsB9gzvT/BCgetLv0b7a65g8w2Z/1q0r6k5meqbR8+ev6pSKUd27iX/pD21RUfP3wfzsJ8XMWFfP34v3EVFRIoLaLvfx4kUGojUl7M0JceIVxeDJUOxrz2GFQ5CNv2M/K1J3j0/Y9onCzQqkGSvjRJiy9pVou+ZCTFl3SrifQkM1JyCnlJDcm2NMBpSsErmDEL0ECQaC1E6ChGOFMMc7Y5TGdzmE7mCJ0sUdqZozQSZZIFhaAiYIua2RYws9JnYbY7iSXeJBYddLAjx8ao1x7THQLHv/EYjvx87Pn5THjjcYry8ijOz2Pim49jy8vHlpfHhKPwwoO5FObkxsrz4uUGbsvLw5aby/jXH8OWm0tRbh4T3nic4tw83L4gvrB8xBKIKjUukhxforKqL7JKjYsiy0x95wndec/If/joBZ3/+MUbVBQXUlFcyMyvNHdEZ95Bdi38kabnX0VRTi6Len+M7UAOtgM5rBjwKUUHcyk6mMvaQR+TvWUn2Vt2smnYRxzYvJUDm7fimvc13r1r8O5dQ2DhZ0T3LCS6ZyHB+R8j7ZqLtGsu4cWfEd31M9Kunwkv/RopZzVyzmoiawcgO/egOPcS3TEJxeNETG0F1gzE1tcDItG905DyVqKUHiC6awqyfReKfRfRbeORnXtRnHuJbJ9IdP9PqFIYRCuqoiLlzieyZxqKKz++fede5JJ9RLaOQSnZh1yRS2TzKJSKvGO6jxRZqXU5naBWOhjw/MNQ6USocjLohUcQ3SWIVSUMefERLJ4SLJ4Shr/8CBZvnFfu28q0bz6hYaNGpMphcJXQ7z8PI5WXIJWX0OPph5DKSwiVlvD1Ew8QKCvDlJyG1KgF7iZt8TVoTjCtIYo1BasokKJKZEghMsM+MsM+MsI+UkNeUiJBkuUIFlXGbDIjJqdCRhZqw2aoTVqjtugIbTphatEBc+OWWDOzSElOIclsTrhYTCZ9MYmivgiCoC+Kqta4RGW5xsURlPSlJCTXaZEVRV+MMB6HEaIg1L6Avqiqqi9H+x62gnxe/eftbF2/lh0b1jFv6mT2H9jH5p17ePO+O9m8Yw9rNu/jo4f+xZrN+1ixfg9fPHY/K9bvZv3GffR/7iHWb9hL9q5sZn34NNm7sjmwdTeLv3iW7G272bNxB0u/fJa9G3ewd8M2Vnz9LHs3bGPvhm1s6P8aOdu2k7NtO7vHfoJt7x5se/eQ/9MAhLP+Tsb/vYOp1cUE/GFyR79C7uSPKMk5QEnOAfJ/7ElZbjZludnk/tCd8vwcynL2cWDkayjJjWlw7bO4c7eRM/G/OPdtY9fI93AePIDz4AE29XsJ58H9OA/uZ1O/lyjNPUhp7kHW93rxmO6jP+JKdSiVdpRKO6v6f4zgtiO47awZ9BlClQOhysG6oV0QPQ5Ej4N1Qz7T+aIvX2LLlKHc/uoHrOjzEUKVHaHKzuwuLyO77MguO9Peewq10o5aaWf8209SUFLCals5j730KmtLveytCrJ143osSoSGQoTmkpczLVHOtETpaArTTozQXAgjuBxY5TDRaIR1a9dgD0TI8UXo2rc/m90h1rsCPP/cc+SUV+EoK+OrJx/CU+IkxWIhxWI5Iq5YTaYaF7Mo6ovxXq0v6nT/C0LC/dW3vjE2GssdebmUFBZQUljAt/95Qnft++TRf1GUl0tRXi4fP3wfBTkHKczN4a27b8Vd6SK9ZVs+fOhesvfncHD/Qb567H527M5mx65suj31AOs372X9pr30ePoBtmzex5bN+xjywsNk787m4K5sZn3wFHl79pO3Zx+Lv3yWg9t3k7NjN0u/epac7XvI2b6H5V8/R97OXeTv2s0v3f5D/q7d2HbvYn2v57Ht2UOZo4yAu5I293Whzb2f4dy8mPVdHyVn5c+s6/kCjgP7ceYcZE2PFyjJPUiFrZDV3V+k9MAe1vd7g0CFk07/fJWQz8/Szx6hNCeb8sJ8ln71HOWF+ZQVFrCgy7OUF+ZTWpDH3E+eoawwn7LDHB7rBLX2uKIqv31cOQWlffXH4u/Gk57ViM6XXnFCthcWTYTFFEKq0XhCQVDBhIokKahoo1OBGAeh2pup8EkwHHkqw+8qx2SxapK+kwSCYEIwWREanIkSLEepOgDqUYal5RCIZsSss1HKtiJmdkCRw6i+YtRoAMGS+qsc5x/SvhODmSOG8Ld776dg3976ryyISEkpSLFkrmbj21tBiCdHTPBW91RyiTyVUFpcRPO27RBNx5bs+teAmJqFYLKSdO4dmJp1JrRxLNGS/Via1+wO6duzCNGaQvoFtyEIApZGbTBnNse9dmLdEqgeI/6Q9h0/VFXFsX83V97/JJnNWtZ7/VAojDMYpSQoMXHYSJ78ojuoKuO6/JdnvuyBisqYT9/j+a97AirDP/6Yl7/tBSoMHTOOV779MwgCO/bs4a+/kgLmdEQkFKLVGZ2qGXD81rBkNAEgqXEbMv70Fwpm9SapUeJrrmDJJBqdfTnhylIyWp1JRqszcWxaxIHZQzj7nud/lWOsi7QvGv3t29KnlLRvdn4pUF0CEjG85YrUMFTuq6rkvVuvpce8ZWQ1a14tmRwkbpyoCYZ9jfsLRY0dqZo7SUZ+tI5UonrVZAGycZiZWmHU2AoJ5HsAxo+qDbUbPkgkrzPCWKeusr1jRf7m1ayeMIQ7vxkLQKU7Ls8zSvvycst07q6M28dW7Nupc9UbrwPVJXzI1WV/9YHiKUTxFWNudXWNn0tFKxEbdkJMjwcvVY6gVB5AcecipDTF1OQ8BGsmQlJ6fMWUTJ1GNg6ot7Sv+RPjrhXMR5f2OUc9eNpI+w7FFSNqi4uO/Dze/9c/GL5yAylp6Qnd9Q7/P1G8MSfoMJ0sHan6vj0+lrfNiaWVtctrEkpzjiLHqWlbC6dPYe2Shbw7QDOQsLvjkhpbZVzmW+GNxwWvPx5vSivi8j9XuVfnAYN8WDqsYWA0dwmH47KdcCha4zrRA/NRfOWkXfkEFotBZmXROn/O716jyS1vYm12pv6Z7K/EvXEagZy1pLa7kCbXP01m87jEHao7+q3/8IZ6S/taPDOlVmlf6fgnTxtp3xe/HAQSu/XWJA+z7dzEvO4f8dK4eYhmczUJXyKnvcM/S8Trm2DXGGPqKsc7HtneiapzOBLFjF9D5pdI8vfj0AG4yit46P1PAagKxO9tpyceG8oN7ZiAYdpKuSseezzeeEyKhGqW+SmHjdIYR4PlBI3HipWjMadm0vKvD2NNjsvC01KTUWSJlR/ezl8+nkRyw/iUhUBZEdk/DaMyewtNz72S8x58i4yshvrnh0v7vnv44nrFFUuTM9Qm93x71DqS20H5jDf/kPbVBxN6fMPMYZpLyaSe3zJ7hMan9u7KT8M1J5MZfbsxa4jmEDL0vVdp2KwZWc2aM7V3V91Z5WTDmolDWT5C04KunTiEVaM0vnHKcFbHnH+2TB/F2rGac9fWGaNZNy7mUPd9nG+dMUrnW6aPZH3MxW7zd8P08o2TBul8/bh++jbXjevHugnaOVw7ti9+V/UOxolGJKjNJ1g1uo/+fevK108eRuMzzmHDhH66U9/O6QPZOU2bxLl/Ztwdy+hq5dkwBc+G7wCQ8pYh5S3VuH2D7pgnl21HLtuu8Yo9yOW7YnxvnLv2Gfj+OK88oHMl7EYNlKCqavU6FfuQynaihiqQQxV6uVSxG6XyAKYm5yNktEOVgsil25GKVxHNX4KqSEglW5CKN2j1i9Ye03k3yqkSLacTxnfXXJV+GDbQwAfpbks/DBuo8++HDmBCj69Z9uN0WrbvwPRBWpyZ1KcHY7t9BcDobl8xuuuXAIzp9hVjYuuO6volrrIjO21/4LfHDyM157pZY4bj97gB7VmzYLQWQ2YO6M7a7zRnqmUje7P1+9EArB/fj92zNb5tygByF2hx5uDsITiWTwKgePFoSldpvHTlON1tr/yXCZT/onHX2km41mhOjMYYZXQWDW2fQWj7dMzNzyZcsF4v926agneTVr9q9VgkbymWph2pWjeJqrXafr075yEmpdPu0b5EKgopnvEJ5Zt+Im/qZ9gXa+6CtsVjdDe/Y0FtMeXwxt3vHYuH9dLd85YM7607sC0b2ZtlIzS+YmQf/bm/YmQfFvb7kovvuJ/lY/qzZHivI7azYJiBAIcAACAASURBVGhP3YVv3uAeusPb3CF9dBfiecP76y58c0cMirvwjYy78P00YjBTemkN1JnDB+vtImOsmzGkvx4Ppw7sw7juWnybHnMSPd1hdOczuvZN7tWVyT21czu1bw8m9/yWvN27KLcX6ed/0ejBumvi2u+G69fAjplj2ThBe6bs+Wms7jyct3CC7sJXtGwShfO1+9S+YhLFi0cB4FgxAfsSLRY5DnPsLFmpxZmSFeMoW63FitKV4yhfO1XnUb8bX8FOihePpni5Vqdw/kjyF08gUFoIqop9w3wg5gQ4fyypTduQ0qglLS+7ibDXxdoeL7Cq52vY1i9k57SBbJ+qtSe3Tx3I9ikJDDaOCvWUaK+cch2pw92Naio3ckfuQdp2OruGdX8/SGSmQgKnoDq5hJ0Ad7g6oy6ONIdxv6ucpmedd5Q61MwTfnCCvq/hGASTFQQRxZ1b80R3U3JC6Z8gmhGSGyNY01GlMGrEQzR7JmrIYHgRObYEjVJUrnX5A3HUFFvW/DyH9mefV2OdRK5Nv9f483tCRWkJjVpoI8QJ3fkSOYIel/NV7ds8VG5u1B41EkB221FVpXp9kwVUUKVIjeHNktmUlDbnI5ithErzCZXmU7l9Ab787XrVqv3rOBbUGldqSGT9e0aiZ2ui+KAoChWFuVxw052Jn8WJLg2M2zFWql8jU01wnSd2qjyNUac4oPHcXTvIata89k0aOgWJT3kdYkWd3DurbyapYXN8tj2EK+2GetrfpMzGyNGQXl7tmhTAmt6Ac//1GgBhbyXZ8ydT8MtPBKvK9eOpKjxQ85c+ClS19rginwTTZH730r53bvkLH46eRIv2HQH+kPbVgFNR2jfmmX9w/ZtdaXKG1kk+GaV9AEqwAqViN6oUxNTsEsTUeCI8qWiV5tKX1qLW7QhJ6Sg+B5J9HWJaM8QWFyPlLoCwp97SvrT7htYq7fNNfeoPaV8CqKrKv8/tyITNu0lJ0ySXf0j7jq8+nBzSvnvO7cDgJWto2ES7T09GaZ/ZYiJi30lg63QEFBpc+zyWJh3j0r6pb2rSviYdOBxJSXHJTkqqFVVV8RxYi33+YLLOvorGF93EwSlfEPW66i3tS39gzFHjhSqF8X//wh/SvhgOvx5DPg+DH7yB9+dt0cv+kPbVv87h+K2lfeFQkCcvPocR2w7qc6RORmlfaqqVyt0rsC+bgCW9IWf+611SmrQhLTUZgOXv3cx1XaZjzcg6Yl2LJf67JCeZUBWFgtVz2Dl1AGdcfxfNzr2MdYM/JuytqldcMTXqoKbe0uWodRSvk8C8D05uaZ8gCC8LgrBDEARPbFkrCMIdhs8FQRC6CIJgFwQhKAjCckEQzjtsG6ogCBFBEM44rHysIAhz6nqwG5csJOD14ve62bR0EQGvl4DXw5Zliwj4vAS8XrYtW0zQ5yXo9bJ16SKqSp0kpaRWq3MyospZRKXdxtzuH1JZnE+V3cb8nh9SFeOLen1Elb0Qt8PGkr6fUFWs8WV9P6HKXmDgtjh3aHx5v0+osufr5W5DHXeszpIYr7LbWNznY9x2Gz5XKVtmjCFQ5SJQWc6mGPdXVbBx+miNVxp5ORumHVkeqHTFuXFdV7n2He22+PeN8QV9PtH5wr5ddL64/+dU2W2YzBa2Th2G22nD7bSxZXx3fCVF+EqK2DWlF/6yIvxlRTgWDiFc5SBc5aDyl1FE3SVE3SVE9s9FCbhQAi4i+ctRQm6UkBupYDlKxIsS8SLZ1yGFvSgRH1LJpsO4L0F5dY4pCSypkHkWsnM90fwFRENu5LAXNVyJLIVqXFeJ+KpxKeRGqcrF1PYGFNGCtHc6YpNzj+la+2NEqjoCXi8blyzE7/UYuLvG8oDXQ7ndDqioiqKX+zxa/fWLF+D3evB7Pawz8LWL5uP3ek47edPJDLfLxbShA6iqKMdemE/Pt14lKTmFwuz99H/vdZwF+ZQW5jH+s3cpsxXgKi5kTrcPcNltuO0FLO+nxUxviY11Q7vgLbHhLy1i14SvCJQVEaqwkz+zJyGXnVClHfu8voSrHESqnJQs6E+kykmkyknZksFE3U6ibieVq0bqMcq3biyytwTZW0Jg03id+zaMx5TRjPTrXkKwpuOa/zXuNaOpWDmSiKsIJeTFvekHfZsVy4fq3LlgoL7fgtm9iFQ6SG7agbT2FxANeNg3+l1SmrY/pvP5R1ypDldxAa7iAub2+RxXcSGu4kLm9/sCl92Gy25j4YAvqbTbqLTbWNDvC4r37CAlM4t5fbrodX7q8Ym+nR+6fkhFcQEVxQVM+eI9yosKKC/SeKktn7KiAiZ9/h6ltgLKbAWM/+xdnAX5lNkKGPPJu5TY8iixFTDyo7c1Z2BbAUM/eAtHQQHOgnwGvf8W5U5HtVh3eAzcsGQhQf+xKSF+T7Dn5uhOfUM+eEfng95/E2dBAc6CAob89y0c+fm4nCXIskRxTrZ+/sts+ZQXFTD58/dwFdv0tt+h9syKAZ/iMcQWX1kRgTIttgTLiwlV2Dk4vRuhCjshlxZngi47YZedwtm9CMe47afehF12Qq5iiub2JVzpIOyKxyIjD1XYcWdv5IwHu5DR8QK293mKwgWjCJQVsXPcp6iqgq/crsc3Y6zzlRSxbeyX+MuK8DoK2Tz6S5r86RL++k4fCtbMZ3W/97j48XfrfZ5VVa3DSPdv/0yti4VPEfA+kI3W8XoCmCkIwqWqqu4A3gPeBp4E9gOfAosEQeisqqqx1yIDXwMPHevBXv/3O4iEQghAmzvuQopG8Xs83HbnPXqdzm00LgoCf2p9DwPf+A9/atuW8886C9DysiSCnOCtRPURqfjDINks11gnYBipCkbidQKRxD+4RRBQBBWPsziWi0HjgiCiouIpKY7VVPE6izSmKHhKilAVARUFj7MIJXZRuZ1FKLKCgIC7pBhZEhBQcDuLkBUtaawnVkcBPI4iJEkrdzuLiMoyij9A7vrltL/qBsyiSO76FXS8+kYsJoHc9Svo9JebMJsE8jes4JzrbkYUBfI2rOS862/BIgoUbFzJhTfcggo6FxEo3LiSi//vVlQV/KV20pO0/ryv1E5qLBdNuLJc5xGfm0Mv4AJeH6GohDWjIb6qSipjeaI8lR7sDm0kyVVSgXLACYDf40FxVsW248XrjuVpkYIIh2QPkh9B0rajht2IcuwtT9SHKAhavp5o4DCuIiDUUF4zN2WdDamNkIt/gYodkNoSVAUxuXGN9fWrNMYFQUCO+jQb1vbXEo16MTe/gEjxMchwJIlTUNX7q+HMli1pddOtWCwWrElJtL/tH4SDARpkNeLsNvfr9Q5xV3kZ/8/eeYc5Ua1//HOSbC8UKdLEiuVar+Vnb1iwXSteG6Bi12tXFFR67yBI7xZ6EVARBOkgSFdBtvfeS3aTnN8fZzKZhIQtLMjCfJ5nn30zc2bmZJJ5c86c73xPWFg4F7ZqDcCFjz6h3ym94NEn9LlULnj0CUDlovO0uHmoxw2usXGaJ5lkiBMMcYBZ24UhdQtDw1e00cNcnzlcjXM2BdKVV2dUyKsaAfKpcdva2hzrscFBz7hfGeAYxjLlhnztcHo35LPzctn0809c1f4eiu2VJMbHEtGwEfsOpxJzOI4/0otIz68gPiaeAynFlJY7SU9MJCWzlIpKFzkpSeQV2HG5VM4sK3ciBJTnpmn1tlCRn6HuQjsllfkZSKcLp8NBRUE6Tof6bCuKcigvU3eiHSX52MtVXFlWjCxReclZUU5FhSrvsntiEX4GEZc/Rtlvs8BhpyQkEmv0mQir5/sh7SX6HFOusjzcch1HgWcktrIolwv++zFt7upE/PLxR/toAnO0SYOrs/4Uo0V0MPbSUoIcZbRqEExFeTnBjlLObqTm79qPg7ZavJdKmoYLQoJt2Bx2zoxWyUHYi2kRrcq4ivJo3VApCcpzM2jdUI0UlGan0rqhcv8syUylZXQoAkFxZiqtGkQAUJSRSsuoSKRUcdOICFQbI5Um4WFIJHlpKTSNiqZR06a0NrSpWj34sOc9PfCfYz4v1VFBeY2GBShT3bwScE6pAHUKNDpljC0Wi67Myc/O0rfJSE6mWBtVTk1MJK3QjhACq9XG3r9TiTyjGfEx8TRNVs+HJ8TG0zijFKQkLT6BZnnq2s9NSaK4tAIQ5Kcl0dylppEpzU7F6XSBhPKcND0PlOem4TDEdnslQgjsuelUVDhwOV3Y81R56XJhz0vHYa9ECAsV+ek4K51UCEF5bhqVlS7OuPJeCg7tJHvPL1BZTn7MHhq1u4bgyGhKc1JxSYnFKijLTUVYlMlsWXaqkhVjoSRLlQmNakRk89Zc3fkjgkJr4UKstH1HL+MI8Bt5AqmVtE8IkQt8CkwCUoEvpZT9tXVhQCbwoZRyorZMAkNRHa7rpJQ7teUzgCZSygercUx53Z13s2fzRoTFwlnnX0BybAwAb/cfwj0dVf/M5XKpL7l2kT113WWMnL+MVmerwbC67EgZJYY17Uj5SvuM5Yzryh3+pX1ew7hekuhqJKlqyvysAWQBAWUEho2rM8mvL4ESnvF8FJapi2bd2N7YmpzDee2fBCAl1SPHy0zL0+P8PM8EmUapjDP9bz2W+alex5P243fHTbqcONO2Issysba6BUtYk2ptZ3TtEw08Wmv7piE1lvaFdBhys7AGH7Vc+Yp3Txtp35XX38ife3Zhs9o467wLiD98kKCgYPpNnM4td3fQ5yFyyzKklNzQqhFr/04hLEI1VI42Ya1xXX3tSAX6naiOxPB4TbQZSH4dqCNl9/nBNU62W6h1Xka88SIX3vUoF996NwDJuR6pnlEybDfka2MuLjaUMeaewnzPRLsVdu8PxjghuFHaV1Zqxx9uCR+gu/bJyjJKfhmKoyCFxg/2JqKFR/xhnKjXZnD5Cwv3zgERUaF6vKXb7TWW9oU+MKpKaZ/9p26njbTvrIv+RXp8DNagYJq1aUt6XAwh4RH8b8xkzr/yahxOpz5XmtMFJQX5dL//ZkZv2q/vx/j7GhrkySuhNm97fmsA+XCgOJDs7kRIhk+FjlRFgLxinEQXoKBMlRvZ+WFufr0HLS66HIBcg5yvpMzwqIqhjWjM0eXlnrigwJNXykrshvKG9+AzZ5vxuTmXT4fQTUiIITdEqA57ZXEuh6Z9iKO8hH+/O5mo5h6H4UCT9gYb8lNYqPf39OunrqxRXrE0aCNDbvnwqGVcJVlUrOt/ckv7jAghrEKIp4BIYDNwDnAmsMpdRkpZBqwHbvTZfDuwEBhS28pmJCex+EAsC3b/xZu9B/LNtr2MW7Ga8b26k5YYz+hPP6TLLdeQmZKsb9O8VRvSkxJre8gTxobZX+kuPZvmfMWvU47u2rd70TTdkW/Poum6c92exdN015fdC6fo8e/zJurxjm/G6eWNrnfbZ4/mt6+VC+K2WaP57VvlZLV15mh++24SAJunj2Lbd8oxZsO0kWz9Vjk+/TplJJs0V6tfJo9gw9eq/JpJI1g/+ys9XjdDubisnjicNVNH6bE/dyNjbHQ32jpzNDkJh7EX5nJgwTj2L1D7TFo1RXedMrpgle2eT9mueQBU7F9Ixb6FADjif8URv07FGb/jSFfadGf2foPDXu1d+7yWa7GwWCGkESLqLCxhTXDk/unl2qeXN9Yhez+OjN2eeiZtVnHCemqDdFRU+Xc6YbMFsS42neV7DvLBgCH8dCCO0d8u4vPXXiQ3O4tuLz7Hc+1vojBfddCFEDRv1ZrUepBXTAIz70uVV2cPHcCS8So35qSmsOsHlR9WTxzO7gXKEWv77NEcWDYDUO58B1cod77988dxaKWKDywc5+Xal7J2NgDJP08la9M3AGRtmEWOlpeMOcrovGfMV5UHFlG5f9ERsX3vQux7F+jly/d/T6MO3Qk990bKYzYCeLn2GY9ldAtMN7h7Ja2apruB1Yaq88rpNSLlqKzgrmdfYODydbQ6vx13PPUcz/caxPBXnuPbwb0Y/tIzdLv3JuYNU854P82YSEVZKaWFBSweM4TFo5Xb3sLRg1kwSrm9zR0xSHfbM7rGfTNysO6w9+2Y4bqD6LdfjtQdRL8dN4opA/uoePxoJg/orbYdN5pJWvzriqXH/bycKsweOkA/50anvkWjh+hOiT9MHMmKcUOJOqMJuxbPZqPWltu7aCo7v1aOfH8tn6G7DR/+cRZ/LFRtsJifZvPXIjU6HL96DoeXqXZU6q/fkLxKtbsyN31L+roZKt74te5OnLVhtu4OmrVhFtmbVB7I3jib3G3KqS9n0xxyt83Xl2duUTkn49eZpK3/TsVbFtPkyvZc9fZEUjcvJm6VymmHl31FzA/quIeWfMWh5SpP/rV4PH8sVlNHHFgwjl2aU9/u78bqDoQ1Q9aL9kq1OlJCiMuEEMWAHZgAPCql3IfqRAFk+GySYVhnpDtwixCiQzWP+4oQYocQYgdAQW4OwaGhhEdGcdn/3UB0o0a0veBC7n+mC51uupqYP/Zzza138q1mSQzQtt2FxB2sxYSZJzte5iuBnVj8b1u104tx48CuL1WXCRhXx1HwKHFJTgYRTVv5vPfqxOD3RV2ZY1TrbpsFYT262UPg/dduMy+clVX/nUYUFuRhCwoiumEjrrr+JiKiorjy/27glnvv4+6L2mK3l9Pm3POZP22Svs25F15M7KmYV05DdCcqKcnNSCNMm+S7OrmlWo5qgXJCdZz6AubzI8tbgsOwhEQE2Lbq3H7MVJVTXKdXXqmsqEBYLDRo0pRGzc/EagviqjvvIaJBQ36ePY0mrdoAkrRYpY4QQGTDxqTGHKqm61qAMsbR5hp+vvXEe+ykoDqfBVLicjpJ/ms/IZENarTPQA7V3hv4fxHYdTnQPgPX3xocSmjjM33qFmCfAdultfxiSVmNvFJPpH1CiGDgLKAh8DjwMnA7EA1sAs6S0qNNEUJMB1pIKTtoryXQUUq5QAgxDrgJ+DcwjRpI+0JCw1j6VwLBwd6ShOKCfJbMmMLjL71GcWEhL7W/ke+27yMiKpqlM6dwaO8euo1QoxamtK/+S/uyYv5kRa83uXvwUiw2pY+qL9K+2lKX0r7g2z6rUtpn/+WL00ba17Lt2SzZccBLHmMRgsy0VJbP/ZpOb7xD7ME/eefpx1i++yA2m41x/XshhOCN7j318m5MaZ839UXat2f9L8wdPpCuU5bp76u+SPvA25HPOKHmiZL2hdzZ5+jSPmcFFb/2O22kfe2uvo5PZy08Yl16Qhx71q2m/XMvcmDTryweO5Tu365ACMGsnh9z1iWXcft/OwGmtA/qv7Rv27J57P55BQ/0magvry/SPoDwcE9eCA7xfO9OiLQvuqUMvvb1o5ZxleZQuXX0yS/tk1JWSCkPSyl3SCk/BXYD7wHpWhHf0admHDlK5aY3cB7wbE0ray8vIycj7YjlkQ0a8tw7HxIWEUnTFi25+pY7+HGuklKce/GlHN6/74htTjby05LJTUlk1rudyUtNJC81kW8/6EJBaiL5qYks/Ph5zbUvkSWfvKC57SWyrMeLFKYlUZiWyHI9TmL5510pSEs0xL7L3eW944JUtc8CLVbHUrG7Dvmpicz9sAv5Wj2/eb8zeZor0ax3O+sORTPe6USu5jLkjnOTE5j+9nNquSHONZZJSeCbbq/o8eLe75KXkkheSiI/D/2EbbPH0u6OB9g1cwDFmUkUZyYRu2go5TkplOekeLlgFW+ZrLtd2bdPxlWcias4k4o/FyPL8pBleVQkrEHaC5H2QirjfkJWFCMrinEkr8cVMC6qRpnax9IndrnrZi/EVZZHxf7vkGV5VX+x/OGoBEfF0f9OI1IT4ikrKTliebMWLXnx3Y8ICg7mwsuuoOVZbVm7YhkA7f51GQf37z3RVTWpQzKSEunx9GOkJcSRnhDHuA/e4uaHnyAvNUnPS4VpSXpuLMpIYnXflylKT6I4I5lfB75KsebUt2HwaxRnKmetHaPf1F37/pr6AeU5qVTkpZE0twcV+WlUFqSTtvgLPUflrhqMozAdR2E6xevH6Pmq4rcpnny1c7oel2/3xCVbpujl89dP0PeT/fMYff8ZPwzT49QlfanIT6MiP42Y2d10d6+Y2d0o0/LngUnv1e6EVpVTTrO8cmjndjIT45nS430yE+PJTIxn2ucfYRGCq+64m1m9PqFpm7YU5+cz9q0XyEyKp0GzZqyePYXMpHgyk+L56oM39G2HvfaCcttLjKdnpydJS4gnLSGez599nLSEONIS4ujx9GOkxseSFh/HJ089Qmp8HKnxcXz05MOkJsSREh/H+x0fIiU+jpT4WN574kFStfidxx8kLyur6jdmQkpsjH7OB7/yvO7aN6zr0/rnNfTFp0iPO8zq6eMpys3W207zP3qewvQkCtOT+LHXSxRnJlOckcS6Aa9Qkqnc8DYNfY2STJVbtgx7ndJslVt2jnlTuYBqucWel4Y9L424bz6hIi+Nirw0Er79FHteKhX5npxTkZdK8nwt/+SnkbLgcyrzVXn3cvd+7HlplOd6cldZdjJ7xv+PsuxkSrM9+a0kK5ntI9/QHfy2DHudkkzl4Ldh8KsUZ6p2qTtnFqUnVX1ifZGy6pxyEihoamvdZQFCgDhUZ+pu9wohRChwC+oZqiOQUmYCw4C+2j6qzeQ1m2je+qwqy931+JNsWrUSgAuvuIrkuBgKcnNqcqgTTlTT5jRo3oJHug8hulkLopu14IFPBmMJUncWQyKjQUiQEBLZQA2bSkFIRLR2B0UQHBmNyz2BWkS0PlQVEhGtD7KGRERrd19UeSUo8MRSSrWtFLhQx0KqXYVERmt1acD93QYT1awFwWERhEY20PYvCY1SZaSUhEY1QCLAEFuCgnjss6E0aN6SBs1bGOKWPNpjiB4/8H4vPQ5v2BiJGjUuzEghN+EwF9x2P1gMdzuExX9s+IpLYdP3I0WQbiIAVn051mBPGUsQLin9xy5jGQIsD7Sty7Dc5beMsQ4S7S6ZVjeXBKyhtVf5OSuq/juNmLf5d8IjI6ssd/+TT/Prj2q2hn/feDO/b95IZWXNknh6Whqvv9CZ5MREEhMT6dy5M4mJiSQmptC5y7skJqaQmJRB5y79SEzMIDEpk87PD1BxYoYeZ2XVshNtoiORRDZQcpufv56JEIIrb7/Lk7ukwIXLkyelJDgiWgslQREq17mki6CIKLVPl4ug8Cjt+pVYw6IAqVyuQpVTGoAl2DDCbAvFnYcxjBRLQ36TwhhbkFK1MaRx9NNi8ezHmButhqFPm+fusgjxuGhZwyKVmkGi1bkWmHnFi4+mfgcIbEFBuD8Xi83qFVusVq68424KMtMBwTmXXUVhTqamhBLYQkL08iFh4XocERVN05ataNqyFe8MG0vTlq1p2rI17434kmat2tC0VWs+HDmeZq1a06xVaz4eNZ6mLVvTvFVrPh09gWatWtO8VRs+HTORJi1b0bxVG3qMnUh048b/zMmqZzRr3UY/5//94GP9sguLilIWdkIQHh3Nz1PH0ujMlpzRso2nDRYVrSvdQiKidSlmsNY2k4At3HMNBoVH6SNmtvAofRJua5i2XEqsoZHaSJOKtdaDJ+cIsGiqFpcES2iEakvgWS61/SAlUs8DEonEFq7akNKFnt9wSYLCovT2SZBWZ4mLoHCVGxHoOZPaDHZKWS/ySpXSPiHEIGAFkAREAc+g7NAfkFL+IIToBvRA2Z8fAj4DbgV0+3OjtE97HQkcBhoAa6or7dubr05YiM0zBNkk2PPpuKUyubm5nH12W3Jz9mKz2Xj4ka489d//8PTTD3vLZiCgLObPIv8SPuOQbiDZSLkhLvOSj3iW+1qhl1X6lwAGkgZWOqqW+QXCV3VnHKK1Bpj0LyzY6nd5aJD/8sbYOARvlCr4yv+Mw8/GiQvd5620sICBj9/JsyNn0/ScC0jJNkx+me8Z4s7P9ywvLvLExokvS4o9y40SHIDS5MOeOmXGeFZUlnFcsXgPg4uwaE8c6ZnIVzQ7T4/LF71UY2lf0HVv3yyMjSs/VGwZftpI+2TlavVCGuyxnR4pFi6Vd/74M5mHOg4hZr96aPbaW7ozdEAnbr/1Uu9tXb6SLMM6Y7lqVdAgvzI0prEY7kFZDbaylmD/ZQAsN+vhoRL/Mr/qSPsCWZsHkgUdbdJOoyTJmMuNNA7wVTVKF42yxcoA8utSn05vifY6PSmRN+67nSHLf6FRs+bEGybVNU6caZRZVxjybyCldLndIMcxTOCbX+Bdj+wsjyw5O7NAj/WpGoDKAHMwBRlkNFENPN+DsHDPZ2+U7IQYJH+RUd52xFFRnnXLX76uxtK+4Bs+qELaV0nl9jGnjbRvXVrBEcv9ydF2bljH1CED+HLZT0gp6Xj1JYyc/z1tzjvf6/oIruak314TfVv83ys37vdYZL4On22rmpz2aMcwEmgi8kBlarKuJvUIJO2zB8grBeWe3B+7fy9DXn2e7gtXExoR6TWhd6FBAmxsvzkNkrxA+dTY9jPKjY2yYqNcGLzbQYEkw8ZcYswTjRp7OnXBwYY2niG22fwvDw/znmFp0n8urZm0L7K5DLq801HLyLI8KndPO+mlfWcCc1BzRK0BrgXuk1L+oK0fAowAxgE7gBbAPT5zSHkhpSxGSfxCA5U5FiIiIqioqNQv+BtvuJqdO09+eZ8/9v6wUHfw2zl/CptnKNcXL9e+xdN1R769i6exY46K9yycose75k/U453fjtfL/zZnjL6fbbNGs22OepZs68zRbP1aucRsnD6KTV8rfe/aKSNIO3RAr9+fm9YC8ONXw1gzSz2Mv3zcUH6cprZdMnYIK6eofS4eM4Sf50yr1Xn4Yfwwpr73Iu1uas8fa5brDn67vhnL799o7jeLx3tcbn6YTPwPqj5pv0wndY06bsavM3WXm0DOfo7YNThi1wDgzNyDM2OXiuvAtU/tx7Otl2tf9j6cWUou5sza/qKKbwAAIABJREFUhyP1N7U87Tfdoc8R/yuVf34PKBevWmFKcGpFVFQoZWWec3Pj9Reyc1dsjfYxatzPAPTos4iBw1fq8ZCRP+jx0NE/euJRK1Tcez5DRqrPvUevecyYvfbY3owJ34xRjqA9X3iGNu0uplGz5swdMYh1M1Xu+mnCMLZqTqTrp45kxzzllLV5+ih2aW5+22aO5vf5Kt46czQ7507W413zlOvpjjljOLBIxfvnj+PvZSpHHf7+K92Jy5ijCrZ9Q8E2JU0v37OA8j3KWcvoOGqMjWWM2xrd+Yx5L2X1NFJWqzrHrZxI7ApVt4NLJ+n5s1aYecWLKQP76M54xnjywD66S97kgX34af53VJSXMWVgH6YM7MO/rr6WCX0/18tPGtCbif17AfBV/16M79fzxL8Zk6Myc0h/3SnR7aw4d8QgWl5wMT9PV9f45jnj2TBVa7fMn6y7Je9dNFVvm+1fOkN389u3dAY7v1bL9y2Zrsf7l0xjl+aAd/D7qRxYoFz+Dq+YzN9L1bGM7Z/4HyaTtnYGoPJM9mblyJe1YRY5W+frsdG1L32jcvZLWT2N+NWaU9/3XxHzo8onB5eM5+Dy6YByK/1jqcp7++Z/yZ75qg67vxvLdq2daXSHrhH1RNpX5YS8Usrnq1gvgV7aX6AyR/RApZRfAV9VdfzaEB8fT5s2LQjSZHHBwcE1luCc9AS62ePfiMXH5MnHTUUcWSiQI00g95VqmP/V2rnlj42/sG3ZPOylxTz42Uh+X/qtYffGA3vVyHDY2r+vGlNntkdVv69aa/ucFXVYz9OHwzHpXHC+53HQ4GAbDkcNR5g0qmUwGSiuM4vJ05uYA/t46Y7ryU5P557b7wK0/ODOhwFyZkD30aM6bokjygfMyV4EuN4D5YQA2wZyAKtT176qOkonQYPnRFJdB9qignxanXuevjwoOIQKw8hG4O+VycmC8XM5vHc3sfv30KRFK9rdeEet9+PtIuY/rlbeqOH1HtAtsBpty6O5F9YKd0fqaJwE0yrUakLef4KaSPs2btzIhx++zdYtak6EhQtXMnPWApYtnWZK+6hf0r7SwgI+f/hOnvi0PxfdeBsGBZ8p7aOW0r5LO98sLEe/h1Kxd1qdSPuEEG+hZL+XAd8e7caMEOJ5YCpgPNEPSinXHWs9jnLMakv75i3cwncLNrHoWzVB4NgJP3HgjyQmjH3VlPZRv6R9GSnJPN/+JnpOmc0l11xHvt3zY21K+2op7bv8xaNL+1yVVO6fXafSPiHEBcA+YIGU8rm62u+xUhNp3/zJ40mKOcy7A9UI6eQBvQkKCeH5Dz4xpX3UL2nf3l2/M+DFZ/h06te0vfhfZBV71pnSvlpI+8KbyKALHj5qGWkvoPLgwjqV9tU0r9TWbOKkpl27dhw8GKPbPF555SXs3v3HP1yr2lGUnaE7+OWnKve8xX5d+5QjnzteaXDtW/l5VwrSj1zuLu/eT0GacpVxO/W5HWbyUxPJTU1kznvKnc9e6rEHLynIY+Ibz5KTnEB2ciJfvvoM2UkJZCYlMPKlp8hKSiAzMZ7hXZ8iMymenLTUo7zbI9ny/UKCQsNofu4F5KWnsmzAR7qD36bxPXU3mD0z++mON3/PH0JZdgpl2SkkLhumO1MlLRumu9wYnayK1g7Xna+Kfh6ALMtFluVSsXsmLnshsqIIR/zPJ861L2mdcu2zF1J5eIXHqW/fN8iyPOXitWEYruLM2n2pXM6q/+qOVKAfaqqD6rBFShlp+FtXl5U5Fi68oAV/HfJ8f6+8/Gx2742v0T6SknO588FhxMRmEhOXqcexhjgm1rA8NoM7HxhITGyGiu/vT0xsBmlpptnEsbBo2iRu6vAgs4YPIiMpkYyEePp27khGYjw5yYlMfkvlNHfuzUtNpCAtyeCemsTSTzVH07Qkj7upIS5MS2SllmOLM5J0lz+3+1ZplnLiivn2Mz1H5awajqMgHUdBOqVbJngcR3+bqjv12Xd4XPtKt03Vy+SuHadvm75yhO7Ol7h4gJ73/v76c/1YuzUnLrcrlzt/bhl2dLvhgJzYvOJmHPDb8djxsZISH0tKfCyD3n1djwe//9YRcXhEJBtWLteX79u+lf3bt5ISH0vPV57Xl3/U6UmS42JJjovljcerfKzc5ARRkJNNWnwcafFxDHzpOe7o+DRhkZH06/IkWYnxZCcl8OWrz3g5Hns5LRvaZkY3P3f8Q8+u3nGGavP83Odl5ZKnuYaW+riGlmWnsG/CO5RlKzfOw7M+wp7r6+bniY2uffbcNA7NUOVLDPmqJDOZbSNep0SL3W6lRZnKdbA4Q9Xz5z7Kqa8gNcHLHbrGSFmNvOL/RsAxUqO8ckp2pJo1a0azZk3Ys0d1ns455yzy8wvJzc3/h2tWcywW5ewTFt0QYbEgBQSFhuMeTw0KDdcdotwxQhIUFq5GU92xy+WJvcp79uM+Xmh0Q4TFhrBYCI1uiMVqxWJRdbBY3a5DCiEshDdohMVqw2K1EtGgIRabFavFSkTDRlisVqw2KxENG2K12rBYa/aV279hLWeee4G2fxsh4VGqPlYrQaHhCKsVYbViC43QY0twmHdssSIsViwhYQiLBWGxYAkOcxvbgMXb1crtiKVc8rQzZLHprnoqJsDyasQu/8uVY48EYTMcN0j/vLBqDn5IqO2EvnBCZwqXUi6SUi4BTlrbTIfDSXZ2AQ6Hw09cqMfNmzUgPT2fpORssrMLueSi1uw7kEhGRj5Op8tQ3qnFRTgcTpxOlx5LKYmMCAGhTcDpjoUnBpceSySREepRUokkMlLFLuk5ltN5XBqoJw0ulwuHw0F2drb2WXjHOYY41xDn5WQHPDdb1qzi2vZ3Ed2oEVabDYvNRlRDTx4Lj1axEBaCw1RulC4XQVqMlHrOlNKz3OWSnlhqsVByQZu7PGANCfOkH5vhWrZ4nEW9lPfC4CwqLF6x3zJWm2GxZ5TSYgvW85s1OExfbg0Jw50Q3fWsKVXnlbqV4AghngLyUc9un3RYrTasVhvhkVF6HBYRYVgeidVq46Ir/01BXg5OhxOr1Uazlq1IPHwIq9VGZHS0Xj6yQUOsNhtWm42GprveSYOwWLDYbGCxUFKQz+U33QYSQsMjwKKu1ZDwcH3UKzgsXP/dP7KdZmjXudT1GBSqldFit5TOFhqujQ7KI3KL+1rWY4tQbR5AuiQiWPsdwRNLKbEEqTIu6cQSrNpCSOnJV1JiDQkHzfHY5m6LSq0+qN8yY308bc6aI6WsOq/UsWS4NnmlXkn7ZOkC9cJLdnOkBAfg7W7zaHlmAz55tz1IJzffP44+n9xL27POYOXPf/J+j6VM+/IpOj11vWd7o0TGarCAtfmP/yy5QY+NEr4SQ1xcUeG3jO/EbcV2p9/YS9oXYKLf6kj7Ak20C4ElfOGGIdpIw0Rsxjg61CAbMUgug61Wv3EgCYIvdocDe1kZT1zRjimbfycyWtkUZxR5hqXTDZPa5ZQYzrlhiLvS4f9uhfF8GCfEA0hL94y47d7hkfZVpnliL8nfMdhvimjP5Loiqqn3uqgmehzV5Aw9btHK8yO6t1+Hmkpwlljb3PGwJTTwD7GsKMaR8NNhwKhNmSSlnFTd4/g5bj+gdTWkfeNQ0r5cYDYwUMpAs9IeO0IIKfPUg7tekjxjjnF6pJ9PdF3MQ3efS5cn/wXAeTdOZfnMR3A4nKzekMj7vdezcVFHbrymRdUHN14LxgmSrRGGMgEkfMacZDHmrTD/ZQCst+uhURaXUe5/YvGa/jb4Tmjsbzn4l2MD4NroiY0fuSGvB5RGeskejfJGjwz2UGlrADJSU/jP9Vew+mASVi03FdgNshtDbJRsGycGN6Rcgo0TUxoSizFfZxmkfTFZ3hLh3PwKQ+w5dnyMZ8Q5P8+Tk4yTbRolOFHRnu9Bw8Yee/WoKM93IthLduMtJY6K8Oxr+uOX11gybDu7w80iKCJgGVd5Ls6ktbvwngu1VnlFCBGNMrdqD3QFzj/ZpH0Hi9XbDPh9N0zCfdPNj9Kr53vcffetOJ1OGjT8F8lJ2zj453rWrtvFpz2mcHD/VNq1U9/hI+TDxuvCGAvvz1jHmFeMZQLJhw2y4EC5AwLnj+pI/qozSbD3YwIB3hvQLiLAV9c48Xl1CDDBeYpB8uvOEX/u/p3PXnuRGeu36+sKyg2PHxjkdl6PaTj9nw/jYxDG2Hj+Cgxtl8QAk4cDFBR66puT6/ltM0r+jIRFeHJogwae/BEZ7mnjhRragSHGdqNhEt5G4d7Svj63tatZXglpIG2tb0Uc5caxqzgFZ9rWdShXcTcnNK+ckiNSAB3aX8SPa/7SX5/ZLIrs3BLue3Iyk2ZuweF00fn1b4hLOGlvlB/BX+t+0F1ffl8wjS0zlAvK7kXTdee93Yum6e4ouxZM0eOdcyfqZbbPGadvu3XmaDZOU06AG6ePoqL0yIlJ/yl2rF/L+Zdepnei6prfvxnrcciZ/yX75o0FvB1v7PsWY9+rOvCOhA044n4BwJnzB86sPSo+Fte+tB04UrYCUBm3VncLdMSuofJPNflr5Z/fU7xL1aFk51wyNnwNQLrmxFNDurkydyMDyGyklDgzfwfoJKW8xvBX605UDVgPXIqa0Ptx4Gngo+N90O59lBve0LFr6d5XuecN/XIT3furZ6eGjNtG9wHKNVFKyeDxasS//5ht2O1OcvLKufyuOQybsBOAmx+bz3u9VfkeQzbTc/hWPe47erseD/pSiwdvYsiX21Q8cD1Dv1Qdih4DVjP0y19V3P8nhozWHP/6LmfQcLeb30K+nPDjcTkvJwsrf9hO98+UMnTYiIV0/3wGAENHLNDjQUO+08v0HzCb7j2Ui9SgQeOO2N+aFcu48Y679U7U0di0Qj1n+83wQSyfohzt5o0czAotXjBqMMsmqWPMHTGIxV+N0csv/WqUXuanSSr+Yfwwtmq5d9vM0WydqTl3zfuSvXNV/jm87CvdfcvovFeycy7FO5XjVumueZT+rpy1Crd/R+F2ZcCTtWEWWRtU+aRVU0j6SZ0Ho0PgwSXjObhY1X///HHsm69cVX//bpzuDFYLujkzdgbsfEuXE1fmboD/1lFe6QtMlbKmLeOTkw733s6PP6pr3Wq10rTpGaSmZnD9TW+yeInKBxde2pWyMv/Pt5j88/z6w3KuvaM9Uwf1ZcrAPgB8O3IIc4YOAOD7CaNZOGowAKumjWfZ2CEA/DJzAivGDVXx7El6vHrWJL3MqukTWDJGxT9NG89SLf5l+jh++moYAL99PU7PJ79/63Ez3vXNWP5crJw5/1g0jsTVMwHVzknfqPJG2i/Tydj4nR6nrFPLE3+cQuxPyrXv0JKv+Gv5DEDljf2LlfPn7u/Gsmu+cnXeMWcMWzXn5y0zRrFGc1f+ZfII1kwaXuNzaj3jEpyZewKul84KnDl/Ajz1T+aVU7YjdduN57FzTzKFharHXVHpJCTYSvOmkaRlFPHIA5cBsGNXLXSbJwMBnFKqEwdymjqZnNyyUlMY0/1D/vv628ftGIHfezXOQ6BzdVzOYTU+u+ruScqDIqo1rty//K53FcQgQhshpdxa1b6EEOuEEDLA38aqtvdTt1gpZZyU0iWl3Af0AZ6o6X7qGuNZvuCcRsQnFaqHgqXE6ZIEB1lo1CCEwqIKHr1PjYDk5KlRh2Ny5/OK/X/u9UVRcCx439k23vEmQBz4/Pz9xwHG9u/F82+9W9NKVLn/QPkkoMsfgcp7HbjK8gHzlbfVo9+4rhwgpZSbRUhDXAX+pwNw5f6JiGqDlPLvqvZVVV4RQlwJ3AWMrJPKnwR06HA7P/60Tn9dUVFBZGQEYWEhZGbl88jDakQoLS33H6qhydHYvXUzi2ZO5T+dux5bfvZy7TPkumq4g8oA1/sxORsHcv+rjiNoHbiDOlK3KLF7cYrf9c6svVgbX4iUMqOqfR3PvHLKSvuQDu55bAJvdL2JR+6/hA4dJ/POq7dww3XnEhkRzJ79qVxz50g2//QeN1x3jtrGlPadNNK+4Z9+QEhoKC/36E2J4Rya0r5jk/YBCCGsIrSJw9L0ciyhjfTlsqIYZ/o2pD0/XEpZpxaF1ZH2+dnmv0A3KeW/67IuPseokbQPl4NL75zJ1GH38H//bsEVd81i5qgOtGkZScMGIaxYE8fDLywjbvPztG3tcV30iyntO+HSvref7cjVN95MlzffodSQV0xp37FJ+wCEEGGENCy1tbgeo8TPVZ6LK3sfsizbJmVNbSv9HuddoD/gnqsyErACfx7PXFETairtc7lcND/z3+zcsYKzzmpF02ZXcmD/aqwikcaNo5kwcRlvvDWK8qLvCQkJNqV9nFzSvq7338lTr7zJ9fc/5LW5Ke07NmkfgBCiCcENsmytb/GS+LlK0nAVJiCLUyyyDjoyx5JXTtkRKYD7776YWXN3qLkaiu1ERYbQsEEYNpuV1i0bAnBO2zOq2MvJQ0letu764nbtW+LXwU+5wRSkJnritES9TL4W+3Pnc50kD67/vuFXbnvo0eO2/6KMZN0JZ+PwtynOUM5a6wa8ojv+7ZvwDs4i5Y5VtnYwrrI85ea3Z7bm2leEI3HNsTn1lecr+85DS3GVetwCZVkurpIsKjaPwVWShaMwg/wf+uEszKA8L5WY2d2w59bMAdGNlNIpy7MvcmXu0iV+bkmfpemV1GUnSghhE0KEohKSVQgRKoTw670uhLhPCNFciy8CPgeW1lVdAhETl8Wd/xlLTFw2MXHZ3PnwBGLjc4mJy+XOx2YQm5BHTHwedz7xHTHx+dx4dUsef/l7YuLzyc0v5/VP15BXUE5cYgH9RyuJXlm5g/ZPLSImPp+YhHxPHO+JY+Pzaf/kAhUnuPefR0xcDnc+NoOYuFxi43O485FJxMTlEBuXrdUzSzn+PTCYmNhMklPqjzy5NuTkFBITk8qd93xMbGwaMTFp3HnvJ15xTGyqXiYmJpWYmBTuvOt94uM9DSen08m2DWvp8FjHah87PzuLXs91JD0hnozEBAZ0eZKMxHgyExMY9LyKMxITdMe/9MR4vXxmYrxeJjspga9ef5bs5AQK0hINjn+JrB/qyT97pnTX3fzSf/A47xVumICzMANnYQbFmyfrTn15v07AUZiOozCdtB9H6eUPzxtAeY5y69o71bPPHeM+UI5bWcms01wE3Y6ChWkeZ7DaIKUssza9EqPEzy3pk2XZ7eqiE6UxCTgPuFL7mwCsAO6to/2fcCwWC/feexuzZy9CSklhYTFRUZGccUYDhBCce4565jIkJLiKPZmcaIoLCzh8YD+33Hs/ToeDlPg4UuLjeL/jQ6TGx5GWEM/nzz5OZpLKCUNfVG7GWUkJjHnlabKTE8hOTmD868+QneKJjWUytVg5ISeSlZTAqJefJiclgZzkBCa/9azeDlz66QsUpiVSlJ7Eql4vUZSurvFNQ1+jJNPbzc+em6q7+ZXnpelxWXYKBya9R3lOCiWZyWwf+QalWcoh0O0+WpjhceczOpTmu52lUxPJSU5g1rudyU1JJDelduovKWW29YyLvSR+0lmBM/sAsjjlzLroRGnUOq+c0h2pV7rcwL4/0ti8PZ5DMdmc29ZzJ795sygqM4dyZvMq7hqbnHCKCvLJSk3h/Esv/6ercsriK/FzS/ocSWtrNgFH1XyGMo/4BHhOiz8DEEKcJYQoFkKcpZVtD+wVQpQAK4FFwIA6rs8x8/Kzl5GZXcqh2Dyycsq87sZFhAfx5y/PEWQ7pVNrvST+70M0aNSY5i1a/tNVOWVxJK0VRolfTSR91UVKWSqlTHf/AcVAuZQyq66O8U/Qt88HDBk6gf37D9K4cQPCwkL1dffeex2VpSv/wdqZBOKP3b9z4WVXEBoWVnVhk1rhK/GriaSvuhxLXjmlpX0Ar70/H4Fk4fJ9ZPzVE2GxYbc7WL85hrvvuBCMN8dNad9JIe3LSkvl5XtvY+7vfwKY0j7qVtqn798t8Wt4Hq68g8dF0neyUxtpH8B/nl9CqzMj2bIzjd0/d0JKF7l55fwVk8uN/z6zegc3pX0nVNq3cGM6Pd95nUUblFmIKe2rW2mfG7fEz9roQlwFMXUm6atP1FTa5+aaax/g2muuID4hmR9WzgJXDElJmeTmFnLFZWd5CprSvpNG2rfq+yUsmT2dkd8spKjCuy1gSvuOXdrnxi3xsza6AFdJWp1J+uoCvxKbk5YyJWGRZbFgU40Vlz0RgtQdRlmeCMGtVFl7EgS3osvjV/HKh3P53ws34ixzgD2Bu55Zwcbt8ZTG9iWILIS2jXAl6jGkIIK1O5f2LLBpDd7KIrCqRu3FoevBohzlEu0XgFA/XjaLIET7vQqyCMK0iyCrTBBhU18ymygnyvDlSy2y0yBYfRwpRXYaaz+QKYV2zghTcXJhOU3D1Rd87aqfyPlrFw+/+TELpozDWl7Cf978mEWTxmGrKOGhNz5m0eQxBDnK+c+bH7NwwkhCXA4eeetj5o8bTphw8fjbn7Bw7GCeff8TvR4lDgdNwtQx7NLFGVo9KiQ0DFaxA0FUkKqrQ6K/JycWwrVOWVSQlVDtfYeLPdjcl44rH9AairJQP2fqA1D7PJAeQ8OoCK5tpuSXKSUV+vZnhNn1/WZElxGpzcadXFhGtHb+kgrtNArRzl+R55ylFtlppsXJheU005LF31kl7P56LBK479UPWbxsIhLJbZ3fI37lZKKDBVc+/BrLp66kUQicd0cXti74jTMiLJx7/aNs/34qTaKCOOeK9vy27nuaNAzlnMtv57f1K2nSMFzFG36iScMwVea3DTSJDuXcGx5jx4blNIkK5vw7u7Dn51k0iQzisgdfYd+KyQQ7E7j68TfYuWg8ZRkW7u/6Ppu/Ho29KIiHX36XX6aP4FiQUjqFEBc5M/P/sra8GUfS2tOqE+Xm0y+W0r/7/QwdvZS84iD6f9KBoWN/JL84mH7d7mHomHXkl4bQ76O7GDx2GUVlYbz63I08/+58rr68DRX2KPoOX8agCXtwOF18/PJlYIum74ft+WLYL1hkIb0+eoQvhv1CiK2Uz95/mM+HriYyzM4n7zzM50NWER1Rycf/e5jPBv9IoygnH739KD0GrqBhNHz8bkd69FtCgyj4+L2n6NF3AVGRVj75qBM9en9NizMjeev1p9WbcdnBoj335rTr+Um93qRfb41t54NQ12Gxw9O4LnFIPXeVOdCvtXKn1GO7C9y/lRUuCNU6D5UIQrS4eTCEuH/8fW8ayiRAa1FW5ur1mDplPjGxOQzo+wpDhk4lv9DJgD5dGTZ8Jrn5Tgb0fp5hI2aSW+BkQK/ODB0xi7xCyYBezzFo2NcUFsOAXp3pP3gyJWUWBvTuQq9+71NRaWVAnxdZOLYfRdlJtLNtoMcXk+ne/RkiIlVejy8/H3deKgwJwd1GKKxwEKbNfffjyuXcfd/9jO3Xi6CIKF56533G9e9NUEQEL7/zAeMH9IGQUF569wMmDuyL02bjpfc/Zsrg/pQ44YX3uzF7+EAyi+w89e4nLB03FJBc8Ngb7PtuHFJK2tz/KrFLJyCRnHtLFzJWTwUpaXr9cxRtnIUEIv7vWUq2zkFKaHzHCxRqrn5nX/M66aumIKXk/KveIG7ZBEDStuObHFr0FUjJhU//jz/mj0NKuKTLO+z5eixSSh5842OWThhGuAUef/sTplfnwgmAlLLM1uYOnKkbweW48HTrRLlpZ1MufFRk0aO3kuwN+OIBevT5HolkwOf30aPvSiQw4LN76dHvR1qfGcrPq37iqivOo/tH7zLgs/acdc6bhIUGU5oylB4DflH76XE7PQas0/b5JD37zaLSFcqAL56k3+BvKbXbGNDzvwwaPo/CEgsDej7D4JHfUVAEA3o9x+aNW7jxRvfUL4WenEEJCPW7i6vMkz9c6z25w9pQv2YbRzYC4Wl0J5Z5ckmZw+XJJU6pX1N2J37jQLkkzIoeh1sxtCUMbm7GdgVARZ6nbeHMBaHdVHLled6TM48evReoc9jzUc9n1OsxevRerOLeHcGizkdjw7lpHObJrbscCbRuHMI1jQuJLYkG4ekt5wUH6XWfOHs0JbnZvPlZL8YPG4KzrITXe/Rk0qjhVBYX8Vr3L5g6dhQVRYW82v1zpo8drcdTR4+koriIlz/5jCmjhuMsK6Vrtx5MGDoUUWmn04fdWT15DEHSwaP/68bUIf2JsFno8OqH/DhpGHmlTh565UN+mT6CPDt06Pw/Ns4ZTbnDxt3Pvc6Wb8ZQTDD3PPM6m78ZTZE1lPs6vc6G2aPIDgnnoRfeYPW0ERQGh/HIS2/x48RhOIJDeeKVd1j+1VCc1iCeeut9Fn85BIfFwvPvdWPuqEHESslrn3zGrGEDqd1MUh6klNm2ljfgzNwFTntdSvqOmXo1IvVP18HE5CQkQUp59j9difqKmVdMTPxi5pVjwMwrJiZ+OSXzSr3pSJmYmJiYmJiYmJiYmJwsmE9Em5iYmJiYmJiYmJiY1BCzI2ViYmJiYmJiYmJiYlJDzI6UiYmJiYmJiYmJiYlJDTE7UiYmJiYmJiYmJiYmJjXE7EiZmJiYmJiYmJiYmJjUELMjZWJiYmJiYmJiYmJiUkPMjpSJiYmJiYmJiYmJiUkNMTtSJiYmJiYmJiYmJiYmNcTsSJmYmJiYmJiYmJiYmNQQsyNlYmJiYmJiYmJiYmJSQ8yOlImJiYmJiYmJiYmJSQ2p1x0podgjhOhylDJvCSGk4fU1QogcIUSDE1PLkwchxPNCCCmEON+wTAghnhVCrNHOS6UQIlkI8Z0Q4g4/+3hKCPGrECJfCFEqhNgnhOguhAjzU1Zqfy/6WTdHCBFf52/SxOQYqU5e8bPNOCHE1ONZr+ONIT9IIUQ7P+tvN6y/S1vWy7BManlhuxDiGZ9t44UQc2pYB9+/fJ+ytwkhfhRCpAohyrW89aMQ4llDmbMN27/i53gRQohHlR/SAAAgAElEQVQibX2/mpwvE5Pq4ptTtO/dd9pvrtS+9x8JIdb803WtCb5tCiHEDJ9rNksIsV4I0cFnu3O1srFCCLsQIlMIsUUI0denXLXyxlHqd4kQYroQIkE7ToEQYoMQ4m0hRKhWplY5wmc737+GAerznLb+99q+J5OTj3rdkQKeBBoB31R3AynlDmA38N7xqlR9QQhhBeYBM4F4oCvQHugGhAJrhKHDKYSYiDrXMcCzwAPAAuBT4FchRHSAQ/UUQgQfp7dhYlLX1DivAEOBZ4XhJkU9pgjo5Gd5Z22dP24GbgCeAVKAr/3dQKkBHbX9Gf/ucq8UQjwCrAXKgbeADkAPIBu438/+Ar2nxwHpZ7mJSV3im1NeBx4CXkF9t1cAE4B/CyFu/ycqWIdk4blmXwYEsFII0R5ACNEW2AlcCfQB7gX+B2wGnqirSgghOgK/A5cBfYF7gKe14/QGXvXZpLY5YiBH5qpAedJ9c+4qIcRlVb8Lk/qA7Z+uwDHyNjBbSllZw+2mA8OEEP2klI7jUK/6wqeoxPWElHKhz7qvhRD3AJWg7jyhkv67UsrRhnJrhRArgY3AaOAFn/2sQiWwV4Gxdf4OTEzqnhrnFSllvBBiI6qB9MFxq9mJYRHwnBDiCymlBBBqxPlxYCHwvJ9ttrlzqRBiFfAn8C4wrZZ12C2lPHyU9e8Du4BH3XXUmCmE8HeDcBHQWQhxjpQyzrC8M4Hfk4lJXeGbUy4CDvr+7gohFqI6FetObPXqlAop5Vb3CyHEL0Ai8A6wBnXDNhJoL6XMMWw3VwjxUV1UQAhxATAL+AHo6NPOWymEGAb4jrrXNkfEGt/vUerUGrgTWIm62dMF+LAab8fkJKfejkhpd35vRI2IuJeFCCG+1OQluUKIkUCQn82XAY1Rd0JOS7QRog+AFX46UQBIKVdJKUu1l92AA8AYP+V+A6YCnYQQLX1W/wYsAXoIIcLrqv4mJscDf3lFW/6SEOKAJg9JEEJ87GfzhahRqXqbVzVmA21Ro0xuHgWsqPd4VLRGyy7geI7ONQYyfTpR7uO7/JTfCMQCz7kXaA2bO1ANLhOT44JvThFK0t4VNSohheHRA9T19aAQovEJr+hxQkpZCBzCkw8ao0aS8/2U9Xft1ob3UAMFb/i7WS6lzJJSbvJZfLxzRCdUm7sXsAn1W2Gtg/2a/MPU5x/89kAJsMewbBDwEmoY91lUY+CIu8PahX0Ag1TkNOQaoCGqU3lUtM7RRcD3/houGstQDa3b/Kz7DGiKuitnYnIyc0Re0e6SfoW6IfCgFvcVQrzls+1moDlKSlKfSQDW4y1z6QwsBoqruY9z8NNQqgFWIYTN58/4e7UduEcI0U8IcbkQQlRjn3Pwfk/PAcnU77v/Jic/vjnlUdSoxF94pGBuNqNu/t5yIit4PBFC2IA2ePLBdtSI1FwhxK1CiJDjcNi7gN+klGk13K42OWKgEMKhPX+17CiSvc7An9qN51nAmSi1jkk9pz53pK5GfSldAEKIM4DXgJ5SyuFSyh9QsrVAP/x7gOtOSE1PTtpo/xNqUDb+KGXc69r4rpBSHkBpwz8Wp6HJh0m9wjevRAM9gX5Syh5Syp+llIOAwcBnPncUDwBOTo28MgvoKIQIFUK0QDVMjnZX1t3xaSaE6Im6UTPvGI7/F0pWbPwz3vT5BHVXtwcql+cLIZYIIZ48yj5nARcIIa7XXncC5hzl5pCJSV3glVOklLtQzxGVSCm3GmVhUsoClAyuXucQw82P1sA4VKfBnQ9mAxOBx4BfgULNAOIDtwFEHdCG6rVtfKlJjrCj3serqFGrD1E30TYLIS42FhRC/B/qZvRsbdFc1KhctQ2NTE5e6nNH6kzUg8VuLkMZJCx1L9AS11L8k63tw6RqqnO3t6oyPVF3oepEA21icpzwzSs3ABHAfOPoCPALavSptbugJiHJ59TIK/OBENQD8c8C6ajnGwJRjursZADdgVGozo5f/Iw2+eaPR4Frff7eda+UUmZKKW9FNTi/ADagOntzhRCT/R1TShmL6nx1EkJcA1yCKeszOf745pSqqO9tk1Z4bn4koQxovkB7LEAqXgPOQz0PthAl+xsGbBd+HIADIYTwHbmuTlslIDXJEVLKNCnla1LKRVLKDVLKycCtKGOKHj7FuwAu1IiXu8O8FHjYvLlc/6nPZhOhQKnhtTvxZPqU833txq7t43QlSfvftgZlzz5KGfd+kvytlFLGCmUP/Y4QYrS/MiYmJwG+eaWJ9v9AgPK+dz5PibwipSwSQixB3ZE9G/haSuk6SjvletRoXB6QWA2jDt/1d+Atn9lfhdmEu56/oZ7DRLMcXgC8JIQYLaXc72eTWcAAlAx5u5TyYFXHMDE5RnxzSlXU9xySiXL0lUAOkCSldPoW0gwdvgS+1Eb2BwAfo54f+7Kax4rBuw3zAjAD1Q6pTtvGH7XOEVLKJM106Fr3Mk26+F9gC1AkPNboi7XlTwJ+b/6Y1A/q84hULuoZHzfp2v9mPuV8X7tpqO3jdGUH6u75Q1UVlFKmAAeBh45yx+c/qIbUr0fZVV9Ucupes6qamJwwfPOKO0c8yJEjJNfi/YwmnFp5ZRaqQXQZVY/c7JRS7pBSxlTT7dD3PO48ppoCUsp8PGY4lwQoNg81wvgy5miUyYnBN6dURX3PIZVaLtgppYz314nyRSvTX3sZ6Nr1x0N455HvteWrgWuEELUZ2TvWHCHwtkt/CGWwcRPqRpP77zttvSnvq+fU5xGpg3g/pLkPJS95GKWvR3s4+eEA25+NcpI5LZFSVgghhqMemn/cn3OfEOJuYJPm3DcUmIIaih/jU+5a1F2kr6WUqUc5ZqoQYpy2jyrtQk1M/gF888oWoAxoKaVccbQNhRBNgXBOnbzyM6pRka8951hnaPP51RohRBsppb/R74u0/34fMpdS5gshBgJX4WnImJgcT3xzSkC0NstZnDo55AiEEK2AVD/PHR312vWHlHJfgFUjUaNT44UQHX07c0KIJsCFfpz7jilHCCHOQnWYFhsWd0GNSLpvNuOz7nkhxHlSypiaHMvk5KE+d6Q2AV8IIZpqVpY5QohJQG8hhAMlxXkZ9VyOP65BPTB+OjMQuAL1XMEM1N2cXNRzH4+jHgZtBCClnCqEuBEYJYS4AqVrLkO5C30I7EfNE1EVg1DzUd1G7R4GNTE5nvjmlXwhRC9gtFATSa5HjeS3A+6QUj5q2PYa1J3IzSe60scDrfHx9D90+Cu1xo4vO7Rn0VYKITJRD20fBMJQzyd8gOr8HtFAciOl7HMc6mtiEgivnFJF2QtRbZaA399TgE+B9lqbYxdK5ns5StaXg5rn08hZQgh/E/Vu0dQyRyCl/FsI0Rn1TNJWIcQE4G/USNMtKIOIPgQ4z9XJEdqNaAsq32ShPrtPUc9CDdDKNENNFj5HSnnEM6ZCiHTU/FSdUc+Rm9RD6nNHah2q0d8BjxPKxyjr0C/wPNg3Ahhu3FAIcRXKjnvRCarrSYmU0qm5XD2LGlGagUriGaiHt2/THop0l+8qhFiDckf8DnWuY4AhwAjDnFNHO2aOEGIEai4FE5OTjXX45BUp5RAhRCpqbpIPUCPfh1CNeCMdgF99Jpk0qR3zAyxvinoYvx/qZk83oAVKThOHyvUD63A+GhOTY2UdR7ZVAtEB9T3edZzr9E8yG9X27ITqeESgRqF+BvpKKZN9yt+Cfzv4jvjM92dESjlfCPEHyuCqJ+o5+jJgL/A5au7LY+EAagL254EoVF76BehteK7qWdR79TsxuZTyLyHEZtREwL1MB9H6iajPn5tmWnC+lPKBGm43ELhWSnk6zyNlYmLih9rkFe1h6QTgEynlnONWORMTk3pHdXOKEGILsEJK2e/E1MzExORYqdJsQggRL7TZt33+VhjKvCGEiBNClAshdgohbgmwD9/lvYQQ/pyVqstQ4HYhRLvqbiCEcD9EaCYqExMTf9Q4r6DujpZhPndjYmJyJFXmFMNcQ9V1rDMxMTkJqI5r37Uo6YT779+o5wDmAQgh/guMRmlCr0I9H/CD9tCdkXLq+JkkbQi4q1av6nIW0EdKua4u62JiYnJqUMu8IoCu2vM7JiYmJjrVzCmNgS6a+6SJiUk9ocbSPiFED5TmtKWUslQIsQ3YK6V82VDmb2CBlPJT7XU8avKxV4BnpZSLtOW9gCeklJfWwXsxMTExMTExMTExMTE5IdRoHiltDqGuKAeSUiFEMHA1sMqn6CrgRp9lScBYYKAQoj6bXJiYnDIIxdPmNWliYlJXCCGCtLwScAZnExMTk5oghIgUQjxadckTS00bT3cD56DmEwJogppgNcOnXAbgz8hhIPCS9jehqoMJIV5BjWJxRuMGV+fkFlSxhYnJaUeClPLs2m78+JnRrl9ySriuYdg3KHnaacXZZ7eWCQl+HXRNTE5njimv3N0komJHQTntz4g4PfPKWU1kQpJp3mli4sMx5ZXrG4YVHSqp4MU2jZiWlHfS5JWadqReBn6TUu72We6rD/Sd2VkVkjJPc8zrKYSoygYUKeUkYBKAEELKEs1t2BrmKWQJ4aFHvuDlrvfx0H9uJTk5i23b/2T+gl/Ztz+Wfn1eovXFT9L2nHPYtnkTXf77BGPmzOeyq69l6Gcfk5aSzPjvFmOxWCgpLiYi8shpp5oE+/+8Hr6/A/c91pEnOr8IwLb163in05PMnreIG25RvhqNg4xvyN/8kRouNRfby68OY8OGPQzq35WMzDyGjVzIlVecR2xsGv36vMB9Ha5T5Z0Gp3FXheEYhvnebFGeOMijnsx1tPE6dGKx3bOrAFLPIKvVs1uLZyDz4ijP8qSEhfz7mq6MHvkOX45fQWRkODOmD6dlSzW5+Lp1W/jwoy8YNuRNbr/9KvB5nGTd2t/o+HR/5n/bg9tvNag9je/V+P4qs/2XCXBupKPEEFd6Yl+nZJfntcvp2d5Z7tneVVGmx9aQCL/7CmnomVRdNFCTtS9dsZuX357Dyrkvc81VbcA4EOTyfA5qZ07/sfCcc9Hkk7bUEiFEmxYhNv53dmOmJ+UjhLhUSnks5i/1joSEFGTlar/rrr7udSaOf5err7mYuLg0tm77g9lzVpObV8gXnz3Pxf96grZt22LVro1169bx+OOPc97Fl3JuuwvpM3YiAJVOz2fnNHy3KgzLHdpyKSWd7riB1z7rzf/debfX9bhn62a+6PocvSbP5KobPb49VsP1aJQYWAyDAR88+wQ5Gem89ukXJBz+m2/Gj+Gmu+5h+/q1jP1mIRdddgUAF0d65tM+VNpaj9uFGaZbqcwzxIbHOVwBrlNLCF5YPPk7N/gZ/GHMm/sK1LV6aP9ePn6pE+deeAndho0mJCpaL1Pu8OQS43m1G5aXVXrPhVnplIZyns+ltMLld5tiu9NvGXuF4fM17NPh9J9LLZbq/f67XFXL7t37OvjzQnbN/YoH+k6lQcu2CMMxrFZPbDMsD7J618P4enD7i2qdV4KCgi5rFST439mNmZyYhxCiVaD5fk5VEpJykJm9j1whnbS8fAS//fQSLZpHcSgmh22/pzBp9u+EhQXR7a2bufD8M2jdMhqLxaL/PuTll/Fwpzm0v/V8en58l9dvAOD92vd6A+z2Ss69sicr5r3FlZe38b4+AxFon5ZwAJxOF9ff8QWRkWF89slTbPvtIKPGLuf5Lk8wYeLXrNobQ+OmTQEor/T83vrLewBlhmu11FA+v8zzu1hY7ilTUOb0uxygsMzzuqTUEBu2cS/PPbyb3VN7csbF13P+o29TWu6pU3FRuR6Xl3rq8f/snXVYVFsXxn+HoZEUlbDAAFvsFq+t12v39WIHYnejWNiigIooKoqKomI3EgKKhV3Yik1IMzPfH6PMUCJh3fu9z8PzHM7Ze5+9Z87ss9+113pXUpK8f0mJKVmeB0hNkNeXpijMjyny80iy+S6UFD5/xXe+uny9oaSw9tDR1Uw71lY4ll2Tz7n6BvJ1oZamfP2hqSG/h7qa7Piq93oeBRyhw8JNaBkUQUVZ/oZRnC80VOV11RTKaKqmd3qbWMc8z/PKkJIG0o8pYoaV0sdDtl7RVUzP8zPxza59nxOLdQTcFE6/Q5ap2ShD8aJk3qX6gjVAMjD+27spQ40GU9iwKfOiJzklFVVVZQRBoESJonTr2pSdXnOxHdGZESNXIJVKCT0fxMDe3XHy9KZuE2s0tbSY5riSNy9fsNXViVB/P149e/rNfZFKpdSo14Dt650BePs6kjH9erB62+40EpUXbFg3geVLhjJ/0Q7OnL2K69rReO+cTUxsPKVKFstzuz8C+/b706tnC0aPXU33bu05dnRbOhLVvccIViyzk5GoDPDzuyonUU2r/eiu/xAcOHyVoWO2y0nUT4QgCEJ5LdWn7YtqoyFSorORNqU0VK7/F138LCr154Bv5ryMyckpqKqqIAgC5uYm9OndgsOHltC2TT1GjFyOlpZWGolKSkqie/fu7N27l3V7DhJ45iRH9u7OdV+kUilV6tTDZ9OGdOevnA/Ac/XSTCTqW7HM05u+tqNxnj+b+zfCWeqxg5krnfn4/h0mJfL8bvshSE5KYp3jfIZ0bEM/u3HMd9uCjp7+z+7WL4M7J/akI1E/E4IgqJioCOGdjHTQECnRrmghLLRUn/8XXfzMaq0kMCRzzvnkFDGqKiKUlAQsyxli07MaZ/f1x6JMYUbPOIKhgaaMRClAX0+D3e59WbPxPOeCInLdFyUlJerXNsfZzS+vw8kEkUiJYP8V9OjamDET1vPs2VtOn/JixoxRpKamom+YVT7tXwepifHc2r2Sy+unUr7rOCx6Tkakqv6zu/XL4Kr3eiIUSNTPhCAIhQ6/iaWzkQ46yiIaG2hSW1fjlxFlyc2iqT+QhIK8r1QqTRYE4RIylz/FBIotgb1ZNSKVShMFQZiNjFDluCuliDLmxZjtsBszs+K0bCFfjKekpKKqqpKurCAI2I3sSlDQdS6GBmM/dRKbvLyxrN80rcyd69e4d+sGEXfu4Oq4gDO3Hn1TP65cCmP25Am8ffeeaY4rALgYcI7V23ZTt4l1boaUCYIg0L5dXdq3q/v5hIhLl+6RlJRM+fLFv175JyI8PJzNm4+go6tFoL8zlhWapF3z9w+le48ReO92pUkTk0x1/fyu0r2X/b+aRO0/dJVhY7dzxNuOmlV/7qQEMpe+F4kplNFSBcBYXYVyWqpYFlJL4T/milOvTgUGD1tBieJFqVGjXNr5lFQxqqrpp0glJSXs5wzE79wVbty4QbFiMuPGhw8f8Pb2xtraGjefw7x69pTkZJkFMyUlBRWV9PNTVrgUeA6nOdMRKSszZsGStPNXzgdgP8SGee6eVKuXMfT02yAIAq279qR1154AqIpE+B8/QulyFujo6eWpzR+BwMBAbAYPoYRZGXadC0W3WEab3X8bd054c9V7A+0cNqFrklEo98ejlaFWMoCRmux3U1ZLjRuxSXQz1pHwH5tXWjQxp/vg3QQdGoR5aYO088nJYlRV0+8oqaoq4+z4J+XrOfHkeTQVymd+Rxw9fZePUQkkp3zDbtJnSKVSfI+EM3nOfkoWN2Du9A55H1AWUFYWMWJYe0YM+5weS8USN7cdtGjRiF+ZO7+6Gsglj0UYlLOiyZydSFS0c670H8LV3euICDxKm7nuP51Egcylz1RdBV0V2e+muo46N2KTGFhCX/oruPh9047UZ2vSYGCnVCqNzXB5BdBfEITBgiBU+Jx4zoSvx0BtAx4DA3PTWU/3UXh7jqPvgBW8eSMjo6mpYu7cfUZx06ytH8nJqUR9+MAmL28aNbVOd828nAUdevTFe8tG1DU02OHmQnJSUpbtyNtLpmvbliQlJeF9LpSGf7QEoHbjplmSqLCwsNwMMR3EYjGbPY7Rqdscpk7qhbKyKOdKPxgxMTFMmzaNFi1aMNK2C2dPO2Gp4BXi5xfMrNnL8N7tirV1/Uz100jUTvt/LYnad+yhnERZ/XzrvyAIJc5/jKdN0fRurNaFtbgVm4QgCLlS0RQEodznHHK/ZSLaze6TWO8ylr+6zCIxUebKGRMTR2TkB4oWzUwypFIpycmpJCbK3TMMDAywtrYGoFL1mgwZP5mV9jNoWbU8213XIBZ/ffET9f4dY3p0xLCYEc4HT1KxRm0AXj9/hv0QG+zdtuSZRGVEclISO9atZe7o4QwYM7FA2ixovHv3jhEjRtCzZ09GTrfHycsHo+I/dxf3V8PdE3tkJGqeOzrGP59EqaioVLkbl0yTwlrpzrctUoigD/EIgmCam/Z+93llw/K/mDW+KR1tvPiijvzkWRQqKiK0NFUzlReLJaSmSkhMyjqDQrNG5owe0oC/R+yiQZu1eO6+RE6qy3fuvaZT3w00rGvOif1jqFQhsyGzoPDpUwIODquZNt2RSROHfbf75AfxH14TsnYqV7YtoUq/GVQbYI9qoV/XkPQzcMNnPRFBx2gz1x1N/Z+/q/jFpa+mrny3UBAEOhppc+ztJwRB0M1Ne99jXvlW1z5roBzp3foAkEqlu4CxwEzgKtAIaCeVSjPvacvrSIApQK72UdXUVGjUwBKxWIJYLPNjPXb8IqVKFstyt2bXrtOcPHWReg0bZyJRAHduhPPi6WP62Y5m1vI1XAoOolvTuty5EQ7A04iHOM2fQ8TDh2l1VFVV8btwhSJFi/FXvWqcPytzNSyShaX0xbNnPHjwIDdDTENCQhI169qxectxvL1mYTuiY57aKWgkJiQQ7HeaVfNm0rt5Q0xMTHj69Cnh4eEMHtwhnUtCQGAoS5a4Mt9hUpYk6unT19y89YjLFzdgbV39Rw7jh2HP4fvYzjjL0T2jfhUSlebSp5bBfUQkCHl18XMGLhZoR38glJSUaNO6Nu/fx6TFnOzcdZbmf1hhYKCTqbyPzzk+foylRQu5no6amjyGoHDRovzZvQ8t/uzE+7evOXv0EAPaN+fZo+xdcvQKG7L1zHni4z4xvN0f3Los+zgDjh7KsztfVvj47i29GtUkxO806/YdocVfv4YAUmxsLCePHmH2lIk0q1MDc3NzAG7evEnLjl1+aev2z8Dtozu5tteNdvM2/RIkStGlT5Thu1LLu4vfbz2vCIJAuxbleP8hIe353bzzKn06V0ZZOfPSy2XzBYqb6FCtUtYu/KVK6NO3mxUzxzdjgm0TVrgG8FffzUS+jsm2DxUsjAg5NZGr11/wR4eV3LrzMtuy+cGDBy8pX3kIt+88IDTkAI0b1/0u98ktEmOjeBJ6mlD3xewf14UT03qgWcSEVgt3YVihzs/u3i8FqVRKuLcLT4JP0MZ+Y75J1IcXTzi+fiXvnmdLBXKEoktfxqkjHy5+BT6vfNNiSSqVnuUr2/JSqdQFcPnK9dJZnDv6tTazbiiVFy/eo6yshJGRzEfefct5Bg3qD8oVQJBbLK+8jqWfTXO62QyiRYPaaecNVGS39PPzY3jXvxAEAVNDfRzGjuDQoUOEh4cz6M8WjB07llWrVuHt7U0tyzLpumFQrjRTJoxjzboN2I8ehkWFivTt2YN27dphaGjIh8/xhqYlSqBWrCf34mRWI7FEbg3KKOoglsgnT3UVFXz3bKeQYRncDhxDEATuJaUXvTBQVRCukMiJXrogUpE8ibpi4LhhBmOYmrL8MVAMzi5ZSLY4PHboINPHjSIuLo74+HjKV6lG3SbNGDN7PlZ166Omrs5H4GOcfAvYIO4aXboMw3u3K43riCDpkuxCilzJqKRBEiP/sQDewad32QtoJMvrSFLl5yUp8t1DcZKCEESSXAhCKpGPRyqWH0uSkxTOpxebkCbIA0bF0fK2JDHy/qVGymMc1WuUTjvWNJc/K7sOPWCcvT/Ht3elcvH3iN+9z9RXRYg00rsXiNQV/ldSsDlkDDTOHQYYqIjSXPoy4ouL35OElEnIVDa/CkEQegFRyBJxl81Px34mbt58jEX5Emkuwu6bjzFnVr8syy5esp3ZM/unI0+K2LVpAyvnzgSpFE1NLeatXc/ZI4fo07whK7buokaDRsREfeT2zeuUsayYFu9jblkRl/3HOOLtxYwBfalatwE1GzelXOWqme7x8skjTEqZ5Xqch3Z6Uq1OfRas25TrugUND89zTHeYTHJSEokJCVjVqk1j6z9YvGoNzevXRlVV9ow+i07JoaX/Fm4e8uTWYU/aznNHxzhvu3SJsdFEPrlHEXML1LVzZdDNDpMttVTTXPoy4ouLH2ADeOTU2L9iXlE15NrdFzJxB1VDJBIJm3de58COYaCWgSwJIhavOc+OjYNQ0lDI2atgz7Jf6MtWr/NYlDPixcuPHNs3AdeNZ6huvZpTB6dSuWLxtLYU69etb8jFwJqs23iKpu1X8WebmnTqUJsWf1RFS+srtuxsBI6yOnbZcASbv1uyaLHd57pPKK8lfzY/pGT9vlEUlbkZI38/Kwr0FFKV141WUxBpQP5uTvgs+CKVSgne6U7Qrk1IUlORpCZjULYaRSvWpsYgewR9cwQlEbEJEPlSLlYVEyNvKzZa/p5PSVFYMyiIxygpCC2oqChneQygpiZ/h0skcg8QicKaQ0mkIBakIAajpi7/cJQV2tUqJP/OFAUmFAUlNNXT90NRSEJTQ35N9bMYhFQqJWzbaiKvnqPnim3oFi4sH5PCWNWyE5tQUWhfVYm7F4PZOMkWu5XrqFBB7i6fW2R06cuILy5+giC0lkqlx3Nq73vNK79dYPmryCg0NdRITRVzLfwR589fYuuWlZnKvXjymBFTZnDYe2emGAU/Pz+6d+9OlSpVGDp0KDY2NkyaNIlDhw4xZ84cYmNjmTx5MocOHUpz11HEl/rHAkIwMjHBZ/dO9u/fz6hRo3BwcODvEaPzPc49WzbRe/Dwn26JdV29EudVy/Havp0KFSpQqFAhHqXKJzalbPp37lyI3J3vC4n6D+F4wEvGz1xdej0AACAASURBVA3lpFdXKlsaplP8+8no36JIZmVKRVgX1uLUuzhbQRC6Kpze8FlFMw2CIOgA84DmyPLL/Z4Qx/Pq5StUVUVIxUkcPRbG+w/RtG5plVndSlCmv01b1rsdoFfvgfLfp4IRx9NlNeLUFDz3HmCbuxthgf4MHD0eY9PiLJs5mXFzFzFpQB+Wbd2JgYHshZVmWBEEajZswo7AME76eBNw9BAuc2cyaZkTzTp2SbuHIolSVAKUKvweM2hRIpJK8d2+hekrnNOdj0uWGyfOv5WLOKgry40NtyXyHWVFZT8EBZFHRdVJ9U7y4/gMohsiDabM8GDfgRAOHvClZMmSaGtrcy9R/pK+EJWMTJMIEhQUvBSP4xUWOfEKynmKanyKx5mNV2R5TbGOYhnFuU5xESFRWFwISvK6ytmExSlnUO3LTsVPUbUv9fPxnVP7uXN0Bx0XeaBdNL2blqJSn+I91FTk/VNTVuLJlVB87EfTY54TRsXkVucvY4q4HJJ1x7+Obhld+jKipWEhQqMSpgmCYKdw+t87rwCvXseg8tklf7NnCKYmejJilQUG9G3A+s0BNG1UPtM1iUTCpm0BHPUZT6UKpjT/cwlXrj1h/uyuGBbWZrq9N767x2XbD5FIiZHD29K9SwN27A7AyfUI/wxZy76dk/jDukq+xpicnILnjtME+6/KVzv5hVQq5cDCybx9/IA/HdxR19VHVVOb6Dj5jzjq/0aZLHHFeyNPwgLp6uiBhm7+hHzuhYXgNsmWIUtdqFA3f+7oj+KT+atY9vFrgiDQwlCLW5+SHARBWKBw6YfOK7lKyPsroFYNcypYlmDegp0MGOrEyhWz0dbOvDA0LVUa2ykz0dHT4+jRo2nnv5Agb29vrl27Rtu2bQF4+/YtysrK+Pn54eDggJmZWZoilyICAgLS6puVKYOGhgZ9bQbg4+PD1atXcXBw4NqVy/ka49OIh9y/dYPm7f/KVzv5xfWrV1m9dDHHA0Jo2rQpRYsWRVNTM+eKQNOm9bJ05wu7/LiAe/nrITlZzLgFF9m0vBWVLX++j3EGCJoiKSpKkmz/1EVSgDdSqbSWwt+GLNpyANyl0q/p+v8eaNemFhKJhBWr9jHMbg1urmOz/P0DDB/WkWfP3nDpUnima4cPH+b+3Tts2e1Do6bWvHv3FtHnHd/Wnbvx6vkzxv/Tg2UeXtSo3yhT/UtB/gSdPEYhHV069x/M0h17cdp3hFXTJ/Lq6eN8jTH8gmyBXLVu5t/lj8SJk1fY43Oe0IBl1KxZkyJFiqCu/n+1rJyQ9CmGkM0raDV1ZSYS9a0QpyTjYz+aLvZOmNfM/BxEXA5hx4xReWpaPYd5RUNZChD5X5pX+vWsw/VbL9ngEcjUuQdYv7J3tmWnT2jLkZM3ePHyY6Zr9x++AUjbdXr7LjYtZnrYQGv8Am/z4cOnHPtTtKguY+3+5PQRe7w9x2MzZC3v32cMe88dfA+GUKliKcqU+X7xV9+C8OP7ePfkIf3XeqFfsgwaugaIvkHk57+O2DcvueqzmT/t1+abRD24FMJ2h+kMWeqCRe38v2eUlQRUc5pXZOuViJ85r/x2REoQBDY4j8TJ5RBlzI3o3Tvr2CGtQoVk1mJBQF9f9nD4+fnRrVu3NHUtS0tLtm/fjoODA2fOnKFy5cppJKlx48YEBwena9PPz49Fixal1c8IMzMzVq9ezdB+fYiLy/sOxAGvbbTr2gPVbFyHfgQkEgmTx4xk+tz5mBbPvVpgsWKZlV78/G8wYUbuJaF/N7jsuEvZUtq0aZZ716sfARWRJMe/nCAIQnVkSbczbwf/hlBWFrHZbRzTZnnwZ9s6NPtKzJ5IJEIikaKnl94lys/PDxsbGwwKG/Li+TNmT5lI5MuXtO7UDYCwIH+SkxLpajOY2o2bZmr3UpA/0wf1o2HLNunOl69Sjb6jxrPAbiipqVkHon8Lju7eTtsefX7qLndSUgp249bjtGII+vpf3xn9P9Lj0s71lKpjjWGZCnluIyE2hi72TpSyyhzDEnE5lB0zRtFnwZo8tf3/eSUztLTUcHPqw7CxXoweZk2VStnrbairK5OUlIqebmZjZemShfnwMY69B8IYYreZwgaFaNbEEgANDVXKlTHi4uXcyaK3alGdHl0bMGSka46iFV/Dlm0nsenXMs/1CwIJsdGcXr+cduPnoqL2f6NMbhC6ZRWV2/dGJ4/GmS94cCmELVNH0nfWwixJ1O0L53PdpoA0xzlFWZTzs/u955XfzrUPoHhxQ04fdcDczCjbRYFYLGbNAntePXtK5cqV03ai9uzZk0aCBg0ahK+vLyYmJsyfPx8HBwe8vb0pXbo0Pj4+XLwoj0f7Ut/Hx4fGX8kT1adPHw4cOUafzh2o37AxmobFaN+tF7r63870LSpXZeGUcQydOI1ixj/HynPQaxupqan8PaBgdkD9/G/Qve9Sju7Jv9vjr4x3HxNZ6naTU1tb/eyuZAuRIPvLJ6yB0sDTz7/BQoBIEISKUqm0Rr5b/wmoUtmMM8cXYVW9TLZlkpKSGTvOCXV1VUqWNFE4n5Q2v5w4F4jvXm9Mi5fA+/BxRIUKcSHAj1F9uqGkJGLAmAmZ2r1yPpDpg/qx0H0bRU0yL7Z6DBvJhbOnmD3ob8pXrY5hMSNadOmB+jfuEAOUr1yNvZs30G3gUNQNCudc4Ttg2eqDVLAsTvu2tXMu/H+kIfrlE+6e3k9P5/35akdDWydLEvXocggHHKfTZ8EazGvUy1PbOc0p3zjnWPMvm1eaN7Xk9IHRNG6QfUhGbGwiA0dupXaNUmhpZTagqqmpMHSANVu2B2FW2pD9XqNRU5Ptthw9EU50TDxNG1nmum8L5/ahXtNp9B2wmgoWppQobsjfvZvkSiG4erUyuG8+Ru+e1qjlYj4qSPi5r8KiUQtMLPPnpvhfQ+Ttq7y8HkZTuzn5aicx7hNbpo7EZrEz5Wtlnj9uXziP89jhuW5X+Ia1yq8wr/x2O1JfUKtmOQw+Z2i+deteOovKu3fvGNqlPZeCg9jrf5Hw8PC0nSbFnaQRI0Zw9OhR+vXrx4QJE1i+fDnW1taMGTOGcePGYWYm21FQdOf7Gon6gmVrXenSoxeCILB24VzCL13I1dhadeyCZZVqBJ0+kat6BYXb166wxmE2S9e4ZEoMmBf4B8hIlPf2SdRSEGbIiNRUMRGP3/Pp09cl6H9lzFsbTo92palQpkACuL8LvrZN/uXvG7ABKANU//y3DjgMtP5+Pf/+aNSwElpa6kilUm7fTp+g++nT1zSxtuP164+EBq9PE0OA9HmkJk6fyc4Dh1nuvA4TU1MuBJ5jbL+eFClmxAQHR/QykJiwwHNsWuHIQvdt1GzYhKygpKTELNdN1GnWHIlYzNo503n55Nvy3n1B5/6DUVVT5+alvKdkyA/8/G+ycu0RVi8b8kPvm5KUyLvnT0lOSMi58C+K4E3Lqda5P5r5zOkiUskc9P/ocgi7Zo+i6/TFeSZR8A3zivDfnVf+aGqBioqIlBRxmpveF9y+G0mdPxajr6fJiX1jsm1j5eLe+O4ew+olfdHTkxGWhIRk7CZ6smZpP9TVsxZ0+BrU1FQ4uGca9eqUIyEhmQHDnImKyp03zdw5/Xj0+DX37r3I9f0LAldOHeWW3zH+GJJ9jNj3gDQlEUncO6Ti5JwL/4KQSiQEuTlS12YMKhpfj2/MCe9fPMVmsTNla2ZPokau+lpGpKwhkPO8ovwLrFd+yx0pRdy4cZcqVVvy118t6ddvKCEhIezatYvW3Xox3n4hiQkJaOjoEBERgbZ25qC12NhY9PT00q4fOnSIO3fusHv37rTrOlnUf/z4MT5HjuN36iTPnz1l4/p11KghI7ZaWlrYDB6KVCpl3drVVKxqlem+OeHR/btUtqqVx08lb5BIJGxxWsGWtSuZsngF1WvUzFd7kZFv2L//OGdOH6VNSytqWpUB4tPudfduJJbliyEIAvcfvqHPIHeev4omOiaRhIQUHlwYTxmzn2M5zwtuPY7H5/gTrh36ubFtOUFZSYJKNgHu3wqpVBrPly8TEAThE5AolUrf5rN7vwROnrpM6/bT+efvFrRvV4/AoBvs3nOOCeN7MXFC70w74Yp5pBQReM6P2XZD6dSnH9cuhtKx7z/procFnmPSgL4s3rQdqwaNeHz/LiF+Z3h09za9htthYibfHdM1MKBT/yHEf4pl97q1lCybOSj9a5BIJDyLeIhF1R+bry05OZXZDrvZ5uXPjk2jKF06a3nnb8Wb58+4GuDHrcuXUNXQ4O8pswCZBT01JYXXT59SrLRMPv3Z7Rt4zBhNUlwccdEfSU1OZt6xUHSLFM3vsH4Ynl0N4V3EHVpMXlrgbX8hUT3nrcG8Rv4kq3MywGQU+8gK//Z5ZYf3RQaM9GTU0KbUrVUa//MP2Ot7Fce5nRnYr2Gu23NceQSrqqVo2+rrv+mr1x5zNuAW9x9EMmtqN4yN5R4yxYsXZrRtex48fIXnzgAMDTOnfPgaYmLiiY6Ow9Lyx+Z5S0qIZ89SB+5eCKLnwnVo6OQvH1TKxxckPg8n7vkdlDQNUK8m11qSpiYjiY9CSUtmyEh9c4ekUDeQSolPigGJGN0e61BSzR8hKWhEPb7NzT1rqNF3DIXNK6a79jDgCCnxcdw5dQCDkmUxrZB5Ny/y3g2uH96FVYdeGFtkTi/54s4NjrssocOoyVmSqDsXQ9i9bCF2ThuwzGKnKicISHOcV77FQPO955Xfk0gpSGMfP+zDgH/+wKy0Ie5ui2hYvwJ7vcZSp05F4BRo8Fnv+wKkkkmFS1sdqlcCeAMpsGrlLObbd0dNORjEoK0J1aqWAaJAGpWmztWpUyeKFy/OmTNn0NHRQde0dJrs+asEWRxDeFgoWto6qOjoEJOYmO6+qZL0X76WgnX7/bt3vHr+jNLlLSivlc2CV/GdpKTgiqSgHkayXGSjvIqCupaSXCYTQCvlCXfvv2LcFE9SUlK5cm4apUpKIclDXkhhk6hSdptUiXI1L0l8Mi2bu1LOrDBNGlkSfvMlLdtN4+ie0QiCwD/DPTgbcJeKFka0a1mJtW7+2I+vg62N7IVQq/VWHt66SUkdY5Jj5M+6OF5uLVOUKZco7GIpypRLEuTPiqAgM5ryQp56QByfPu4k5rWC/Gmi/HnRM5VPksqq8rYkn5KQSqXMWB/B+M7FUI98TFwkiM0UZNgVrFaKMuyCcmYr4ut3CUTFJmNhruAOKpU/L4JS/n62KkqSdKpjBQGpVGpfoA3+ZBw/Gcak8d2RImXb9lM0blSFk0cdqVJNHp+SlJTEggVrsbHpSpmymRcRwYEBOC1bgoPLRuaOsWWuk2u6Hd7LwUF4rF7O8q07qVxH5lM+/K9WNGzZFjUNTSb360mbHn1o9lcnTD8TA4BL/n6UqVQZ5VwGUj+5fxdtPT30Cv8YAZSEhASuX7+O7fBZmBjrczV4CUWK5G6RlhHJSYlM6fYnVRs0xqxqda4H+rPcdhDDVqwjPjaadRNseXrnFqUrVcWsag0CfXbSddJsarXpiFgiYU7b+iR+iv2liFR05HN0jTLHoUa9fMrtE/t4GHSC+gMnoKya3uUr+tVTHoecpXS9ZuhmkUsq+uVTbp86QNU2ndA3LUXMm1eoCFL0jGX3enz1AgE73Oi9wIVS1fLvaplTDJSY3Mfh/NbzivrnOUFBwvz4OW8WzR/Ao8eR7Dl0nyaNK3N+4kDKlc99LrDUVDHObn6EBK4BdYUQgAyy5QkJSTRoPpuB/dsQnyil7yBnTh5zlIvpfC5/4qwftWuVB9Fn9zxpNvGYiu1Lkgi7eJPKlUqiIhJDqoJwhdLptEMDkcKzKyjmU8yafCmS7mQFKfTYpBQS4+KIuHGNDbOmUKKyFSM2H+BtogpvYuTv2A9R8vXA23fytdf7t/K0Je/eyPNvRb95Q8LxaYhMayJoFCPlxWWSPzxH2bITJEaREr4DacIHlPTMEDT0EL+9hXKl7oiKWIKqFkkH7UiMjUNdL/3aSjFFhrKChLeitLmqmvxYUyFRs4amvK6iu6eilLmWpvzZKqR4rKHM06uhXHAaS4dZq7CsLf99q6kokZwQz06PpWgbFqH9sNGYZzCaq4gEHlwKYd90OwYtW0cZK9kmgaLM+dNrF9g2YSh9p9lT1cKMwoaan8vIxnPtfCDrxo/Afr0HVg3zlgdREHKeV74lRiojCnpe+T2J1GckJ6fgvP4oo23bMah/S2ZNz14R51sQFfWJ0At38fWZm2PZJ0+e0Lt3byZOnMjBgwcZOdCG7ft80yzVSYmJzBo5lOHTcu97WkhHhzKWFfHZtpnKo75fhvCrVx+w3u0gO3edorCBNgP+bsLU8e0RifLvznfoxD1UlEXs3dwTQdUAqVTKhJn7sP5zBfHxybRtWZm3Dxw5dPw6+w5dw+/QGCqVlBOPZ6/iKFMye9nLXw3HL0fz/H0yA1vnzfVGKpWy+8hjPA9EEHL1LSrKSozpX5GJgytnK4+cVygJUgq4yd8bXxYGSrKXVXR0HFu2nWLFMlu6dW2KZqFK8rIKhooLN8Op1bQT+qUacztW/rKXSKVcCDjHBJteLN+yE33DIsRGR1G5Vt00qfKwwHO4LJrH8KmzqV6vIakSCYnx8cTFxjJ9lQuXg/zx9dzMrUsXsPkcUyUIAjEfP7Bm1hSmrnJJk+NWNMooHmdMTWBYvASCoMS540do2rpd2vnY5KxdU5IUFjDxCiIXIYkGaccpErnyoEgQkEql3AgL5bBnP84cPkARI2N6DhlN1wFDeCIIPEmAOAUJ80/J8lwu6aXNFcakoEF+2ssT0/IV6WW/jBSxlGrteuBpPxHHAb34EPmC+p37MMhpK5eP+/LwUii27j7oGxfnU5KYhIREYj+8R9nAmOgEcbrFmqLU+LdA0Q6RTl48mzLKCnNqRiOGka5clObLdxZxOYQAt1WYWlZGt7AhTf7skPZuURIEIi6H4DtjFH0XOmNWxSJTu0/CL7J34ghsFjoRG3EV3zVzeHH/DoKSEl1HT6ZYKTO8Z9kx1mk9FT9LFKvmc95XEr7+GeZ0/d+Op0/fcOx4GH16NWPcmC5pOevyiqDzNyhRvEiOanmvXr2nWDF91jqNQiwW07LNFBwWeGI/2yZd3+wdtnHyyIKvtJQ1KlcqRcSjSEIv3KVu3Uo5V8gDJBIJV4P88fFwJzzAD0PT4jQfPJaqLdrLCmQwVOcWKQ9OITKtiVrN/ohj36FkYkXKla2kXPFA+uk1yuZ/oFS0CpJXl5HEvUG1/jgEtc9iOYlRoKoFyhpfv8kPhFQq5aCDjESVrJ55p9l32RwS42Lpu8gFs+qZjSgRVy6ybZod/RatpYxV5us3gs6xa9EstPUN2OE4Dy9HKcPmOdKwXQdARqLmDx/APLeteSZRX/A7zCu/NZHatOUMOtoazF24m2WrfHn6wD3PMT2pqWIiIz8gkUh4/vwd5S2zt5xKpVLU1dUxMTHB2tqaBg0a0KBxE5xXLsdu/ETu3gjH12sbZSwq0LZ7r1z3RVlZmUXrN9O/XXP+bt8Sc3PznCt9Iz59SmDtun1s9zpFdHQcgwa043roYoqbfnahy5g3J4/w2HmV1FQJy5yDaNK4CjWqlWD5/M6sdA3A2EiX3t1qg1RMt4416Nbxc6xfnDyxsHU9I5ZsuM5a+58r1fwtSEiWMH3Lc5YPKolKFhnrvwVbDzxllWcE04dXwWtlEz5EJ2EzOYjAsDccWP9HLjNXfx0qSlJUftvoyO+P5Sv3UMbchDHj1rLGeR8XQk9kKWpT0syMSlUzJ8tVJFFWdetz/XIYsdFRRH/8gK5B4TR3vqVb0kugiyVi1NQ1OOi5BdeFc1i0eQerZ03hxN7dtOraA4AVUyfQuG0HajVplutxaWoVYrqTK/bDBlCtVp0C3ZmKev+efZvWc2LvbpRESnS3GcR4h8UYGBZJZ1HOL4J994AAp7dvwqx6bUzLVaDfvBUcXr+aUpWtqNDQGolUSp0O3anToXu6nFAiFVVKVLEicIcb1v3tvnKXn4svEuRdpi/CZ9F0BqzySPf8Pbp6IU1dz8yqTqb6Dy6FcNJtFQMcnYm4epGb/qdoM2gklRs3IzbyBStt+/PxdSRTN25LI1GKuBGSe3UtkM0rX4M4H8pw/wY4LPLC0qIE/QYspXHDyhzwsc+zgmZSUjLR0XE8f/GOxMTkr8ZHKSkpERMTx4MHLyhb1pTtW6dRs64tjRpWpkXzmkgkEmwGLWX8mK5Uq5r7tYaRkT5rVw7jn0GruHJhDZqaBaeaF/niGR4uazh7YC+6BoVp1LUXg+cvRVNbhycf8keeFCF+HIigbUTKw7OgWRRBqygqNfojvnsEpTItUNIrBanJiIrXlTkRqym48KlqI6hpI34aBBV/DZEpqUScLYm6dsKXK8f203PeqqxJ1OUQ/D030G/R2izd9e5eDMZl7GBMzcvRY/wUKtdvzNsHd1g2ehiPb9+kjnUz5g8fwMx1m/NNogQh53lF+f9EKu9ISEhivuNe2rWuyZ/tarF1ux9Fivdjg/NIunb+ehKwd++i6dl3Ie/fx5CSkkpCYjIvX76naFE9ateyID7+62IHgiDg7e1Nly5dqF27NpaWlrhv30Vb64bcCL/Go8dPeProIT7nL+d5oixXoRJDJkzBxsYGPz+/bHPa5BZjJqwn8nU0zk5jaNSoiox4KrjkFRTcVvzF2aBH+Ac/wcbWk0b1zNno1Ifxdi2+qb7L3AbU73YQr4MRdG36a+9MOR2IpJqZJs2q5c1tKfJdIrPX3uKoe0uqWsrc+bQ0lTnh0YrijXbz9kMiRQ0KTgpfpQBipP6tePs2Cud1B2ndqjZ9ejdn2oyNGJvUYtdOZ5o2Tf9SyRhz+exRBKP6dOHhndsUMy3OjBEDefc6kiJGxlSvW5/4uE88uH1LRqI2b8+UR0qrkDa9R9ixfPoE5rhspGHLNhQ2MmZcj458ePsGg6LFuH/jGu4nA/M8vur1G9Gyaw+WTB7LQnfPPLejCKlUygK7Iejo6TN33SYsq9dA+zulbhi+cj13LwZz/9IFTm/bSJ0/u9J+xHjaDMs50FwQBLrbr2L9oM6UqFwDsyzyKP1sPLoiJ0lXjvtStcWfGJeTu5NGXA4hYLtbtup6Dy6FsG2aHQOXuaKtX5hzXh7M2HkIA2OZEmT0+7fEx8YglYipUDtz/Rsh51k+Km9iIDnFMvyXidT9+y/Y7xtMDatyOC4chN0YZ0qY/83h/fOoVi17lVCAy5fvYztqNQkJyaSkphIbm8Dbt1GUKFGU2rXKk5CQ9FUiVbq0EfPnDuCvLrMIDnDC2Lgwnlum0rPPfFYsHc7btx9JSREzaUK3PI+ve9dG7PcNZeoMD5xW5l6dLSukpqYyoV9PylWvwUJPb0pbVODNp/icK+YBatZTkby9jfjtPcQ396NcpgWikvVRLt82x7qCSAWVWkNIDlqB2NgCkX6pHOt8bwhKoixJ1OMroRxYOptaf/WgavP2ma5/MeLYOLpinsVO1L3LF3AZOxg1dU2me+xES1cWl1aumhX2W3YxuWt7zh89yMx1m6nWIHOexFyP4xtipL5RbOK74rclUsdOXMWivAkfPn7iD+sqrFo6ELEE7Mat58rVCGbP7Jvt1rn75mMUNtBm2eIhqKoqo66uiqmpYa5Ubxo1asSSJUto3rw527dvp2pDaxavXMPgvj0RSyQ479qPnkHhdO4qucU/tmPYuW4N9+7do0KFvOcO+YKzftc4efoKN8M90Nb+vjKlBvoaiJSU0lxmPnzM3QSoq63KwO7lWbfjDl2b/rpSyY+jxGw88Ra/RXn/fhZtuEvfP0umkagv2H3kMWKxFLG4YBcgIiUpBeC9+a+E994A2rWpQ8SjSIYP/Yt1LuMQKRvTrftwpk6xZew4+2yNGstmT+XJgwfMWulM9Tr1UNfQpJhpcZQ+l78YeI5lMyazdPN2ajVqmin4/lKQP7vd1tGuZ19c59tjWsqM8lWq4Xb0LLOG2vDw1g1cDp5EXVMzX3lfBk+ZRYcKpfkUE00hnfyrS545sJe3ka9Ysm13ruO2cgttA0OkUinSzzGDcdFROdRIDx3DYlRu3o6w/Tt+OSIVcTmEo2sW0WfBGpTV1Ll7/ixjth9Ld91r5ij+XuSCWfXMO1ERV+XuOGWt6uA2fggtB9qmkai7F4PZPm8a9dp2JPjwPlJTklEVyd2RboTKSNSENW7M6ds1U/s5QZSD5Vj0HyZSWzxPMeCflnj7BPKHdTXWrLJFSUmgRdtpLFk0iP42bbM1ui5e6kXrVrXp3LEhqqoqaGmpY2pqmCuJ8hHD/+L2nac0azGRXTtm8kczK86cWEr33g5ERn7gcqizbF7Lh0fKyqWDMLMcUmBEaucGZ7R1dLGbv+S7574T1HVB4fmUpuRuvaKkbYySoQXJEQFo1PwFiFQWn9fjK6HsnD4cDW0dOozPHHKiuNOdFYm6HxbCGQ9XdA2L0mHEuDQSBbJ0Q16rlxEb9ZHZGzZTtV5mEnUlKCD34+Ab5pUcrv8I/JZESiqVstHjNJ071GX9ppNYWhSnejUzEEQ0bliJIbZrqd1gLC5OtjRskN5nVyKRsH7jEXZ6TsPKqmy6NjdvOU7P7k2/eWu6f//+GBsb07t3b1q0bc/ZkyfYffAoiaoaVKmZ+UWXWygpKWFqasqHDx/y3RbA8lU+OMzp991JFEB8fArTFpzifsR77Ke2ZerY3CXsC7/7gRXuNzju0QaZSsivB6lUyuzT8dj9WQxTw9xLz35BQpKYGpXSKw45e97BaesdTm9rjXFRzXRiE/lFQaj2/RuRkpLK5i0nmDqpB0NtnbC0LEmTJtVAqQz169eg/4AJ7Nt/FmdnZ6pVS6+SFXjyOKd897F0kydtuvSQt5mczD5PD4yKl2Da4H9Y6uFFzSzcHRTzSFk1aMzJfd6M7dmR+/Bm/gAAIABJREFUIVNn0+mfgQydNoeD27dgWT3/qXTU1NXRMzQk5uPHAiFSXi5OjLRf8N1JFEDM+3fsX+1I7McPdB4/k0Zd++SqfsTlYK6fOsTQDT7fqYd5QxpJWuhCqao1cRnchdYjJqGhLdvlfnztIl4zR9F7/pqsSdTlEM5tdU3njpOSmIiRmewdd/diMBsmjqBKo6bcuxTK7J0HUVWXk6hboedxmzGJCWvcqFzv6x4d2eH/O1JZ49OnBHbs9MPFaSROzr6YmRkxrKxsN6BubUv6DVjC7j0BOC4aTKWKpdMZal69es/JU5dZ5zwWVVVlNDTUEIlExMTE4XswmD69/0BJSQmxWJzm4pedkWz1ypG4rvOlQZMxuK4dQ7euTbgY7MyTx68wNzfO9ziLFNElNVWco6vht2Lr2lW47D30QxKISz+9Jvn6HpCIUa7YCSWj3Cmbil+EIY16jFq9gd+nf1Ip4uTEz+kLMhNoiURMcnwSymrqaYY7RTy6Esr+BZNQ1dCky/TFKGdIgxBxOQS/reuy3em+HxaC5+zxDHZ0Ysf8mRibl1O4t4T5g2wIDw5g8lq3LEnUtZDzLBydtzxSOe9I/fx55fciUgmPAVi2NpA3r98wuGdp5jt+oJj2R4gXgyDCSAd8t/Vip084PfvOZ6hNA2ZP7ZjWRPTHON68+cjHyAekxirz4tUnnjx7z/2Hrxlst4Wly3ay08OWqtUUktspKwRjK8njeMJjG2BctxkTHVcya8RgbEaOpWKjP0hKTU2zNpvryF9WBl9ZZ3xQ2Lh6lyx/MPT19eVESvpMXkh8L5uWFM4rqu6kxpIQH0/xYmrw+mC6GqnxciUbSYqC+l2K3AdZqhDnIJXI2xUnywUixB8U8k+IJQQtMccnUJdlW85wYLcfLralMS8k/1FIsskX9Soqle4ur5jbTp/iD8OJvaygfpcsv7dEISBdkWekJiv0VZr1ed3yCrLq4vR5M4zayb97pUJyFyX10nKhAUFZFa9Dj3gh3GT8uLqofg46Sol+n1Ym6elz+S3eydWMRMXki1eRgRaGuko8exFD0nuZi6WH7wtWbn3MIcfKlFL/SMLjj0jFBUek/u/alzWmTHfH0FCHP9vXJTr6E4aG8u/J3LwUZ8/sYqP7cVq1asW8efPoPlAmBBN4zo954+1Q19CgeCkzUpKTiXzxnFfPnnLz6mWWz5qCSFmZ+a7uWZKosED/dHmkJFIpLTt3p0L1mth2akNCXByea5az9sDxAhurtq4eMVEfMSlVOt9tJSUkUMToxyQO1ytajHmHzhHiu5ejG9dy7cwxbOavREM/Z5GXd08j2Dt3Al1nLUfPyOSb5Lh/BJ6EX5KTJKs6+HtuQEVNneptOgGfSdIWV3rPz3qRk+aOs8QVc4WYB+3ChnyMfMH9S6G4TbKlatMWPL15jSke3mjrywVDboWeZ9XoYUx0dqNyFjFT34qcFjypv8jn/cOg1gGpVEqnju15+SqKl58s0NE35KG4DXx+Falbwtj55swdb0dD60kscHGneYdOaU1cvhWIBGXMLAayfLMXpqVK8vLZE0L9z+O23JF1Wy/RfcAQVs6eitMGdxo1tc52nSFIn2FrN4n6DdvSqnVvyluYUbVqWSpXVXBRlmSTE0mi8K5Op9qnoIoL6Otp8fHtc4yN9OXqfwAihToq8vdoeJS8foyC6E10YiKJCfFIdfR4ES1/P7+Pky+UPiqo7aakpn+2FMmXurp8mautl7URWUu7KpLyG4kJP8bHsP0oxzxAz3okKRJ53aQk+b1FCrH40ujHxN7YjU6LKWgZpo87VVNQ5NMqJDfQayio8OnqyuOtNBQU+TQ15Pd+dfEYmvpFMa5cO506n76mMo+vhOIzZzT9HV0pW7Nu2vkvuHMhmOPLZ1KhRk0QBNq1T2/Uvhlynp0zRzHJxZ0KtWX1VRXI2J1LF9g6zY6pLu7Ua2LN6Y1rUIv7SLnC+kilUib905M7YaGs2bGXxi3bUElHgVakyHKhNm4nYPdoI4Jq7tI2fZNr3/9jpHKHIyfvcvv+W5a7BnDhhB1qasp8+JhAYYP0P47AkEe0bGbBnlIDGTZuF+1aVaemVUkEQUBfX4vjPqPo3Hc9UdHxFC2iQ6kSBpQqURjHeT0xNtKj+Z+OzJvVi+FDWuVoDbkYeI4F40cxeuZcDu/Zybg5DumuX7kUhlXNvOeDMjEx4eHDhzkX/AaIxZICV4D7GkQige5NDZEki5m59Tk5GZbefRKz9kwUOy98wraZLt1qFvoxHc0D/C++ZrLjZY5s/CONROUFV+/GsP3wS7wcZRYwr2OvWOzxmEOrrSilXzBxcRmhIpKi8n2a/i1x6MhFwi4/ZL/vecKC1xATE4+eXqFMwjVnzgTRt29fihQpgqurKxZWdYiJjWHmpPHMd3UnLjaawZ3akJSYSBEjY4yLl0BVTR3TUqVp1LItS6ZOQElJRKvO8liES4H+rJg5mXELHLGqn55kFTczp22PPmxevgjHrbsoVc6iwMZsaGTM88cRWFbLfY67jBCLUxEKIHH3t0JFVY3G3foQFxuL/+6t5DSxRL1+yZnNa7npd4IWwyZQpnbu8/XkFS/vhHPGZRGt7GZgUiGzMMnzW9c44exI7wVrMbeqy42zxwjavYXh63cjCAIRV0I54rSQP8fMonQW7jYRV0I5vHoBfRasTUei7oYGcickAIu6jTi03gmr5m25dzGYaVsykqhgti2ay1inDfkiUSCbV76G1DzIn//OOHDgAGfPnuVK2AW27T2AkZEx+hmScYf6+zHq7+6s9fLhwe2bHN+3h5JlylKuoixnj0QiITUlldTUFGx7dsTIpDjGJUpgUqIUizds4fyZk4z7pxf2ixxp1NQ6Ux+ioqLQ00vv7WBlVZkJ43vh4rqfda4TC3TMJsb6PIx4IyNS+YBUKkWcmppn8bC8QElFHd0aHUmMekvSi+s5zivimFckXd9H6ps7aNUbiHLh0t+tb8aV66CZhbHo8bWL7Jkzmm5zndJIlCLuXAjGefxwGnbozDX/s8zxOpDu+q2LISwfNZQJazakkShFXA8JYt96Z6a6uFO1fkNO79vD84cPKV+1OlKplOmD+3H+1HHW7vShccs2BTfgz5DJn3993sjp+o/Ab0Wk1mwMxriYNvu3/kPJ4np47b2KWUkDVFXlw/ALfEDrbuvp0cmKJXM78uxFFH/1dqF7pxqsWtwDQRBoWK8sT24sQFlZhIpibg5Btt1Zr3YZeti4cC7wJhvWDkfHIH1QeXT0J3R1CxH5/BmT+vdhqccO6jVqyrqlC3j96iV6n3OUXAw4h/sSBw6ePpfnMXfu3BkHBwfGjh2b5zYA4uOTuHbjCRUsTYGCIWbfgnfRKYx0eUzNsloE3IxFXFKZMsVU0xHU6AQxrn4xeATF0NlKi3OTTSmm8+s+mnciYvh7QhAeSxpSxUIfSfLXxUmyw6NXifSYdpNVkytQt4oeB05HMtv1IYdWW1G2hGa2O3b5xf/lz9PDdcMxTIz1OegzFwMDHZav3EOVKmXk+V+EEnh7e9OzZz/sxk2ke5+/Cbt0iY6t/yAlORnn3b5Y1Zctzk/eegzKyigrK3Mp0J+pg/5mgfs2ajRoTNtefZkx+B9CA89hZ7+QW1cvMWNgXxzctlGpbkM+RMlc7b7EP10JCuDm5TBSU1MpV60GSQoS5NnlWVE8nzGOSvE3V6tFa47u3Y1Vq3bEJilYghPk9zDWUc+y7ttP8p3qF89f8f7tWyKVtIiLlLsgK0pxp2SI8VP8P+O1L1BXkddXzF2i8Tl/24sH99i/aiGVGjThYeg5zK3qUti0BIIgEJ8ss2DGvn/L8U0uXDm2n9ode2K34wSaOnppn1FuJc8Vx6Sp8M5RPK+ssPB7cu0C+2aMYOASZyrWrZ2p/J0LweycOgK7VeupUKc+96+E4bt0FrM8vDCrVJY7YaF4zxrFhDVuVFcI3FZTlt37WnAg17w3MXGhI9UbNE6TTr977Qo7Zo1j0PgpeKxcRJtuvQg4epgNvscxMpXnq7oSFMCascNx3LSdWo2apOt7XvA7yBT/SLi7u2Nqaoqb506sm7dg9pSJlK8kT3oaFhTAsG4dSIiP4+71a5SxrIDzonmcP3uKifMdMSlZmpVzprF2134qW9VEQ1MzndvfhQA/Ak4eY/KCJbg6rSA2JobJs+bwxUrm5+eHsrIyVatWRUcnvRBS505NaN5yLFKptEAVYTt3qMWuvSE0apA/o8+j2zfRMSiMRqFCxMV9n/dgVkh4Fk7c9cOom9Ul8UkYGJRDpGmQrowk7h1JN31JfXkVVYvW6DccgqBScEqFWSErEvU8/AKhm5fTba4Tpa2yJ1Gt+g3mjNcWZu/wQVtfTnBvhpxn56olTFizgUpZuPNeDwliycghzNjgQaXa9bjsfxaXOdNYtvsAhYsZMdduKOcO++K4xYvGLXMW5cgrcpo3hF9gXvl1V6tZ4Oiu/rIDQcTNO68ZNHYvFmWLMHXuERbPaUf4zZf0HLQV7802jJi4F/vFR9mzZSAfopLoOWAjdkOtKVemGAAaGtn78JYra0Sw30L+HuhEv0FOHNgnz60gFospa/E3Qwf/SYp2dZZ67KB2o6aoqKjQqHlrzh07TMd+A7gYcI6J/Xvjfehotvf5FrRs2ZL+/ftz8+ZNKlXMezLLQ0evULuGOUbF9CA65/IFBUNdFS6srETQrVgCb31ipU8MSalSGpTXpF5JVV7HpLItOJaWlTQ5Md6Ekl/zf/wF8OptAp1GBrJgfHWa1zfKczsv3yXRdfYtpg405y/rojyLTGTssrvsX1Edi9LfNzu6TP78508+vwoO75suO1DW5px/OJOnuVOrlgVLl+1g0sQ+nDt3DltbW44cOULfv/8mJTWFafYOrFq2hLevXmFZRe5Pr6mlRbJYnEaiFrt7pqkXWVStzqaT/ky16cXsoTbEREfh4LYNq4aNiY36SLealRgwcSrdh47kWnAQs4f8g8MmT9wdF3A5yJ/af8hdMiJu3cS8Yt5ztjRo24GN82fz8c1rlHXzbj2+cvIQVZq2RFX9+y4kMsK0bHkW+J7hblgIN4LOsWeVIyJlFcrXrEvJarWJjLjPpaP7qNaqI2O2H0W7cJFsSdv3wINLIRxyWsTAJc6Uq5VZ1OLOhWBcJ4xgxHJXKtSpT+SjCNaMHsKoZU6YVarCzZDz7F69NNuYpWvBgSwcPhD7jduopnD9yf17TLfpRbchtnisdGTYdHs2LLTH/dg5ipqYppW7FOTP9EH90khUQSBH176fL671Q+Hr6wvI3PYP7PHGeeVyajVozJ6tmyhR2pxF0yagpq7O6m27mDT4H7oPGIy773GO79/L4qnjUVZWYZXnbmo1lH0/innhQv3PMt6mNyu37qROY2v69/ub7u1by1KnzJ2Nn58f3bt359ixY5QoUYJVq1bR36Z5mkHEwqIkmppqXLlyjxpWX1cNzA369mxIvWZzWDS3J4V08x6Lfe6AD007dvkh8VGK0ChRlSJdHUl6eYvEiBCSAjcjqGmiUqwC6JdB/O4+qS8uo1auOdp/OiKoaiH8BPeO5+EXOLpgHD3mr6V0Fsm0b184j8v4EXS2m8i+tcuYtGErRUvIRTBuhpxn+aihTHTZSMUs1DtvXgxhycghTHZ2o1Ltety5HMayMSOY574NM8uK7HJ14tT+vSzc5Enj1pnV/woKAt8QI/ULGIV/KyKVERNtG2Ne2pDR0w5Q0aIoE2YfwnlJV/5qW5ka1Uqx3TuMSbP38+JVDCf2jUkjUd8CdXVVBAFMjNNbI0QiES5rx9Kj11zKVrjK0s3b067Vb9acEL8zFC9Tlon9e7PMwytfbn0AKioqzJw5E1tbW86e2Zqnre6XL98zzX4XyxbkLjC7oFC6mBqli6nRt5khkph4nrxLJvheAkG3YtFUVeLwaBPMivzaBAogIOwtQ2ZdZEAXM/p1yntur6dvkug04yYD2hoxsFNxpFIpoxbfYmSPElQr//2l3kWqAiJRTrPPf2zV8xmqqsrMntGXwkUKs9hxO5qa6sxz2I6XlxctWrTgeEAIKxYvYPr4MRgYFsHzpD86enppiXZBFvM07TOJqtmoSbokuYV0dIn+8IHbVy6xbOc+qtWT7WRp6+kzZOosVs+czIk9u4h89pT5m7ZTtW4Daja25kqgnEhdPR/Iwa3uzHDdlOdxFtLVpd3f/dkwdwa2K1zy1MariAec9ljHgCV5q59fmJQph0mZcjTr2Y/EFDGvn0RwPyyU2xdD0C1qxMQdR1H7htipgsaDSyFsmTqSwctcKVsjs6X4duh51k20ZcRyVyzr1Ofy6eN42E+j65jJWDX9I22RM9nVPctFzo3QYBYOH8j0dZvSkaiIO7eY1KszrXv0IezcGexdN+MybyYjZ89PFwv3hUQtdvfMkkRdDMybB4VI9evvJpm61n/TgKOto8OMeQuIF0vZuHIpr54/Q0NLC/cDx6hsVZMtR05zaPcORvfthiAooaSkxIqtu9JIlCIuBPgxaVC/NBIFULRYMWJjYzAyMcHf35/u3bvj7e1NzZo1sbW1ZeDAgfj6tmbD+sUUKSJzL2zRvBZn/a4UKJEyNytK21bVmOXgzcplw/LUxs2wC5zy9sLR+2DOhQsYgiCgUrg0KoVLQ5V2JCYkIY56Qcrr2yS/uoGSjjFa7RahrJF/kZ684sX1ixxdMI62M1ZmSaIeXAph6zQ7mnTpxb61yxjksIwyVaqnXb8ZGpzmzpcliQo5j6+bC5Od3ahSryE3LgSzaPhAxi1fQ9W6DQg5fZwNC+wZOWse1u3+ylQ/ODiY+vULRhFVUPqGeSX5588rvy2RqmRZjHnTWoEgYp1HCHMcT3DSZzjVq5jyKjKGuPgUuneyYtLo5ggitTxZNhY7/E3bTguYPnMT8+f1TyMx3btZM9L2Ghs2HmFAu+YMnTSNf4aPIvL5MwRBwHmBPcs8vKjduGmBjHXkyJHs2LGDjRu9GDq0b67qvn8fQ8v2sxnyP/bOOyqqswnjv7u79CoigmJBFGOv2FusMRqT2JLYY69RY9eoqLH33nsXS4ppflFBmoANu6JiQUDpnV12935/rLC77lKiaGLicw7nXO5bbt25M+/MPDPgQz7v8s+gES/naEo5R1N61ny7q9ivCnm2mu/3RXI0IJENs+rRscWrMxw9jFXQdeV9Rn7qwrAumnnOhCQQHStnbK+yRXXK+UIQhLeaK/cuoXGjqjRuVBVRYsGSpQfYvOVHAgMDcXd358mTJyQlJvDbzz9y9NdTVGzY3ECuhPr7Mn1w31wj6mVcDvTnefRTzC0suRN2hZoNm+TO0W3wcM7+/APXLwRjaWVNTORjaqjVxEZF4vZBVUBjRM0bNoDFh3547Wv9atwkRrdvwaWz/6Puh3+NVTMuKpIVQ/vQefRkKtR+vcWiooAgCDiXd8e5vDv1umiLoGdmF10x4MIgPTmJ3VNH0X/ReqNG1J3QILZO0hhR5arVYNesydwOCWT0qk141GvAzZDz+So5184H8MPm9RojSqcOWfi1MKb17UnnPv35cdd2vt+xn+jHD7Gxs6fTl31y+10K8MtlhzT2fQr192XSgFdbcCtIpmg+n/9NQ6p1+w60bt+Bn0+dZuWc76hUtTo7fvoDJ2cXnjyMwNTUjF5DR9G0TXvWL5zH3HVbaGDk+YT4+TC+35es2H0w14jKwerN2+nfsxv2drZ4e3vTqpWmfd68efj5+XH2bBC1andg44YFdPnEgydPntOmdb0iv9blC3pTvcEUen3ZGs/6lQoeoIP7N28wrf+XjFu2Blf3igUPeMMQBAmyYmWQFSuDxO2vF0EvakRfD+Xa0U10nLES15rGi3HvmjyC0hUrcdXvDJO3H6JMZW1plpvBgRxcPDfPcL6cRZxpm3dSzbMRVwP9WDpmGJPXbqZ2s5ZcPR/InKFfU6dJc/qONqzdF+Lny4qp47h27VqRXfO7IFf+FdVk9m36iotnxlG7RmkuhUVSpdEiuvTainuduZz8/cYru4fdKzgTeGY+/oE3aNryWy5eCs9tW7ZkBBWrVKND1x74/HaSDrU8OLp3J9FPI5m6ZFWRGVGg8YJt3bqVGd8tJTr6WaHHZWTI+fizuXT+2JOpEwxXDt6jYFx/mEHrCdd5GJNFyJF2r2VERSdm8+mSh4zrXjrXiALY/2sUg7q6YiJ7Oz9HiUxS4N9/HYIg8PuvywgK2IS7uzt//PEH1atXp1/PriQlJmJja2vUiJo0oBcLtu01akRdCjjHmllTWbjzINtPnePXQ/uY8OXnPAq/A2iMpId3b+Hg6ESXfgM5sXMrA1o2JOjPP6haz5NrwUHMGzaAmZt3vVZYXw7MzC0YvXAFO7ymk5mWVuhxqYkJrBjSm/b9B9Owy6sX8fw3IuruTY0RVc/QCMoxooYv24BUJmVON01y9rwfTuFRrwG3QgLZNX92gTkLX44er2dEPQq/w9Te3flswBB+3LUdr627qd24Kb8d2k/XQUNz39NLAedYOGFMLjvkywj1P5eb8/sqeC9X8keQvx+Htm1i/oZtHPe/gJOzCyf276Zrs3oM79GF1lXKs3ruLEbP8DJqRF0I9GfDou9Zs8+bhi0MlXqZTEaFihXJzs5mw4YNPH78OHf/oUOHMDU1oXXrpkyesgDPhkPw879Ko0avL0dehqOjDcsX9mbwyA1kZxe+dEn040dM6tWVb+Yt1gtj/rdAmZFM6oOLKDNSjLYr0pOJvRmCIs14bbyYmxe5cmQTDft+Y9yIuhTCiWVeIAhUrFWPWYdP6hlRt0ODObF+FQO+m2tUvtwKPY/3uhVM2rCNap6NuHUxlGXfDGPaxu3UbtaSh7dv4v/7SeyLF2fglO8Mxt+9cY1ju7fh7e1dyDtSMAShYLki/APkyjvlkVJnRBvdX8EJIB1VynN6DtjHxgUtkcqkjJ3lQ013FaTdJT0jm9v3EqhbqxSiCEs3hPDbmQd81sGdnp94UMrZGqQWhN14RmqagmaNygPgaAY+hzuy+8h1OneZQue2bsyf0oQSxS05vqQMLXvtYt/yplhY1WL3sbssnFweO+t18FxzbiZWOvkH5jpKuKAfV+uQxzZKDRlGjbIw7OsmjBk5gqP7RulTkGY91blHz3O3b9+MIyYqmgVj2pFx+5C2+x0dGnX0Kb5VyVqqcXWijnKlU5xCzNTSgOrRkevsz07Tbqt0aMqzs3QS418KmlcptP8Lefw2lDp91Do5D7rU5nnNmSzXhg+a3NPes/JV9XOSrEprWI4ePM3kc68rLJrsSd/P3DEtoRVKYlZM7nbmswjtecRohaTyiZYKHeDXwFSalDejb3VZbpsyKhHf83FMbmlFRkC4Xn9dsgl1lvY+C6/pTZJIBSQFhva9R9WqbgDI5XJ69erF1q1buXrnHvt2bsOtgjuZQHJiIs+iIkmMj2fBxG9o/GFbdqxYzKPwO7Tp8jn2xTV0uMd2buXAhtVMW7WBuk007HzbTp3j2PbNjOrSnnrNP+TejWt8v+MAVjY2fNvzU1YdO0lC7HN8T/5IemoK3ls2MnvLbmo2blpk1N21mjanRtMWHFqxiK9nfV+oMRHXrmBlX4x2fQeTJn+7Hp83BaVCQXpSPFZ2DsjMzAzb5XIyUhKwsi+OiZH2bLmc9KR4nNwqYufoZNB+50IQhxbOZOiyjZhbWrJqZH8GzFlCndbtkUkl3AoNYu+87xgyZwHVjLDnXQ8JYvOsaUzZsI3qDfXDZk6f8KZ+y9Y8uH2DBXsOU62eJ8rsbK4GB7Jk/1HN+AshrJo5lVnrtlCjvqESdi00mPXzZ7Pm4HFqGmHvKgwKkin/gJzwt4q76ZoLVqnVWk/S3iPUa9IMEYiNi8Vr3Ej2/enPrjUrePooguFTv6NO46Y8j4kmNTmJshU9yExPZ9qQfoSc8+HLoSOoULU62S8IZoLPnaVESWcCY2OZ9CKdoJZnQ7avWkqtOnXpP2osg8ZO5Mq1cFxKl+XX33w5G3yJhzeu4OPjQ+kyn+uftOCv3dYtn6Krr+RFhQ65EeG9vmjBvsPnWbbqJ6ZN7qE3/kaKdt40Hcpz/zP/o2LNOnh+/IkeoU2KzrcvQ+d7rkf+Yq6vT+l+InVZdW2stSpvlg7bs1xn3swM7TnpUp5n56Fj6MLCSj/33sJCIysSwy9x/8QaqvYch2PlCpibac/X2lJG9PVQgldMovPMNZSqrMlltNWhP4+/fZFzyyfQZ8FaajXRso5amWn63AoJ5PDscSjkcqZv3mEQEno75Dxrxw7Fa+tuGul4MnNozi/4n+PXzev5dsYcPJu3pLSlCd5zTzBl+kymdi8O3AZXCZ9WqEONI7sZ2SYVQXVEewBFHNUqw+eb6kH2Pnix3i8qtGVfXg0F6ypvkdgxT7xThlRByM5Wc/9RMhevPmffiTv8vv9zyrlqCBp6j/6V0/6PWeHVGlNTKfuP38RrQlN+PhXO3FVBuJezp6JbcU77PcTERMLQvvWYNaFFbhjU11/W4POOlZi99BwVm+6iVWNXPmnpxLKpdek/KZAI/140qqPJwdKts1SU+G5yF9xrTub2nWg+8DD8WL+Mah4OJCRlkZQix6LA3u+hC7Va5Jtld5g0pAb9Pi+aEIPzEVm0qGT4JKqVMefWUzlly70diSCVSZD+EzI0/ynIUQZ0lQIdJeL+/fskJCRw6NAhgi9cZM9vZ1Fa2aNUKBjWrRPhN65hV8yBZu0+IiL8Dj0GDefMyR9ZO3cmFT6oglQmI+x8INa2dkTcuZ3rTRCkUroPHYmTqyurp08iPTWF4zs20/zjTxgwcRrfjx7K9j/9kUileA3pz9zt+3JzYvIypHTzsV7uo5vHJddh+usxYQYT2zWhy8jxqMy0OXphT7UfQd0QuWwnDyLD73LjaSomMq1CYKazMmimo7yYvPQh1GWH02fCk+hsa+c11zka8jx2AAAgAElEQVSGJI/oAt3r1jtXlUxnO29NfumA3nw2eiLuVdz0jmEiFbgZHMjaccOZvGE7Vd08NNcn084bfjGU+YP7MnPzLho00HoSpLmeID+OLviO6UvXUMOzIYPaN2fywmV06PYFAFeCAtg0fgSLd+ynUYtWueNzPEmhfr78snkd81dvpGGLVnhYBGhPXJXB3MunmDKxJx+1rwsogAAQlVSt4opt5F4aeHrQqDUMvvA9iEnAKYPrr9sS+p/5Fs0K4KvlpkgLWBmW/kfD+i4E+jO+35es3HOIujrsi/HPn6HMzmaV1wwuBvqxbPdBGn/YFnlWFv0/akVCXCybf/idHSuXEHD6f3z9zQTCb16jQ3V3KteohZWNDfdu3SAlKQlTM9PcdAKJIDBq2iw+69WPZTMm07h8SbIVCibPnIU8S87EMSP432+/8umnmvqaDx48oEKFV8/5NQZBEFi/ajj1m37LhHGfYVoIBcSjTj28N64p0vP4JyAx/BLXd8yg3ohFOFY2LKgec+siPism0erbpZSqbhhq+ehyMCGHNtNnwVrcjXi6b4UEsm7sUCQSKRPXbqFaA/2FlrAgf1ZPGovX1t3UaWK8juGUgb1Z+cLIz0GQvx9DRo7hwYM7VKigqRNYunRxZDIpkZHxlHF58+aDIBRCrsj+/nzuf4AtV3QwNZXy047OmJpI+H3/59Sqqkk0fhabzi+nIxjQsxqPn6ZgaiKhSiUHunbyYOfKDkRdHMaqOa1o0agsl/43iAt/DOTXP8MZO+MPPQpheztzVs1pxaPggfToXIlffCIZ5RVCdGwmdyPePBWeubkJn39Slx9OXipUfxMTKQ1qlSTwQkzBnd9DDz/4xpKWoeKb/lWLbM6Qh3IauRmuZjfxsCDwbkaRHacgCJKC/95Di7CwMGbOnEmVKlXY/ctpypTXeKru3bzOo3vhqNUibT/tSrmKHlStVZc2n3Zl/tbd/HLtHq27fE7Endss3HWQbX/4cHTbRvatXZE79+VAP5ZPGsesTTs4FHyN+i1bc8r7EFvme3H/xjXOnz6F15D+eG3drUcsUJSwti9GtcbNCPM9Xaj+lvYOWDs6Efvgzhs5n78DX0yaxQcNDBOk71wIZu244YxZtYmqDQyVmKtBAexbtZSZm3fpUZTn4FKAHzOH9GXKsjXUbdqcE7u24exalvZdewIa4od5Y4fnyZ6Xw/46aspMGuoYWTlQKLIJvXCXxo0M5VTL5tXx9btemMsvEryXK4YIPufDhkXz9IghclC+UmV6DR/DBX9fFm7eRetOGsPmYqAfpmbmVK1dj6Az/yPgz1N82qsvo7/zYvWBY/x+7R6DJ0yhRYePmb5sDYIgIIrw9NFDvflLlytP/9HjkMlkfDFoKD6n/2TdiqUEnvPN1Wt8fHw4ePDgG7n2ChWcqexRGt9zhXsHy1aqTGpiIonPC5++8E9H0oMwru+YQfWB840aUc9vXSDMezOtvl2KS3XDHPZHl4M57vUNrb8eZdSIun3hPOvHDadakxY0aPcRNV+SQTnsnpNXrDdqRF0K8mfKwN4s3rFfz4iKff6c2OfPiI+P48DB/+XuFwSBFk2r4uv/luSKUAi58g9YE/5XeaQAOrUpT6c25RGk2ktzcrSkaiUHth28RvAvfUlIyiL6mbZatrm5jKaepWnaSOt5+ONwH9r22MukOf9j6Uz9pHJ7O3P6dKtCz7bFSc9QEnjpOW5l3jzbGsBnnesyY+5xpn5buOJnSpUa2Xvvw19GYko2tTyskUqL5uv/JFGJXCni5mj4k2tY0ZK5x54Db6cAsSa2+P07UVh8+OGHfPXVV4A2XAcgIS6WtJQUTM1M+XrsREL9fLhx+WJu+80rF9m9ahnzt+/N/YitOnqSMZ93xMTElMq1ausYSZpwjc69+9O5d3/SUpL5ac8Ojm/fnOdKYlGibpsOXPjfb1Rv/1mh+qtVKiTSf09VZzcdCvsc3A4J4petazVGlJFwu6tBASwaOYg52/ZSo6GhEXY5yJ+ZQ/pqKO5fPL/kxASq1qmHIAhaCvKdB6jf1PD5Xgz0z2V/NdYOcPFSOJUqlsbOzsogzKpZk6oc8vYr1PUXBQrKgZIUUTjqu4Lgcz6M7duT1fuPUt+YkR3kz88H97L+yE96RnT1uvWJjYkm+slj0tJS6PJVH0zNtMRMNnZ2NGndLjcnc+W+I5RwdmFIlw6YmJrwyRcaQqoQP1/Wz/di7YFjNGzRCkdTgbjYWK6FXUEQhFyK9ODg4Dd2Dz77pBEnfjpPuw4FF8EW1WpEUf1Wi3u/adzaP5/qA+dTrJJxI+r8uim0nrwC5yqGnqjHV0M57vUNXb3WUKGOYTju3dAgflqzmFGrNhH403Eq1ayt155jRE3ftCOPRZ5zbF38vdFFnPMB/lTy+IAhfb4kJGi9XluzJlUICr5Dnx76x3tTKEiuCP8AK+bf88bmA0EQ+N+h7uxe+RE1qpTAxcmK6Of5J1fb25lz6nAffvjtDn7nI/PsZ2Upo12zUpibvZ2n2bJZZe7df8bN21EF9s3KUnLxWixN6786QcJ/FXbWMpLTii5EMzgii4blzY0Sn6jVIqZv0bB5nxT+1+DsbFgvLPicD6vnzmTxtr0s2b4Px5LOOJZ0Ju6ZJo8zR0leoGNEATg6u7Dq6El2r1jM+tkz8jSSwq9f5fDGtfQZO8Fo+/2bRbsiWKtlG24FB5Ic+7zAvqlxz5CnJuNY/q8xcr1LyClm+fnIcUaNqBuh51k0chBTN2w3bkQF+LFu9gzmbd1LXR0jyMbOjtTkJL33w5iRFOrvy7rvZxXI/uofcIOmTYx7zVUqNWZmb6+sxHu5oo+xfXuyeu8Ro0ZUqJ8v21cuNfp8be2LMXnRciQSCRPmLaZO46bEPtOPKgnx88klBvFs1hK3SpXZfOJXFkwcS3JCAiF+vkzo/yXjvebreTIdS5Tgw7bt8PPzy6VIL+qwPl181qUhx38MIiUlvcC+D25ep7hzKewd337JgjeFKr1nGDWiYm9f4vy6KTQavdioERV5NYTA/Zvp6rWGckaK7d4NDWLb5FF8Mfk7qjRogqWtHekp2qiosECtEaVLTJODSwHnmDG4L6O+m2PUE37C+zA3b1xjx0Hv3LC+HKhUasxM345cEQShYLlSRIvdr4O//wzeEpwcLenZpTKCIOBS0lrPI5UXHIpZMKxfPQZP/J1eI39m/KzTBIQWbMC8SZiYyFg8twdde28gOTn/cLDzl2OoUdkBa6u8iw+/h3HYF7Eh5Wgl5UFctl6oaA5ikpW4FHt7Co9UKiCV5f/3HnkjZ6V5wrxFfNStBx920jBiOpZ0Ie5ZDBf9tUqyMXa0qIcRKORyUpIS+GX/HjZ4zdAzjK4GB+Z6qmoaUeIvB/qxf/XyIr0ma/tidPx6GDsmj0CpkOfbNzIsBNeanv+qlWNd3LkQzPpvhzNqxSYq1zdUYq6fD+TIulVM3bCdmo0NV9ovB/gxa0g/Rs+Zr2dEgaaO2MPwO/m+HzmehtHfzTVqRD15og19ciphT/g949+kp1HxlC7lYLTtTaAgmfJfkyur9x4xGo6ZE645aPwko8/3UqA/y2dMZtWBo9Rr0lxvgQY078e0If1zjagcuH9QlaZt29OnQwuGd+1Ew5atcS7tajC/v68PCxYs0KNIf1Oo7OHK510a0af/ItTq/HNZrgUFUOMNhS//XbCvYOjpjrtzketH19No9GKcqhiWjsgpttuk9zDjRtTFYLZNHsXgJev5oL4m3M/K1o70FA3R1fXzASwcNTgfI8qPGYP7Mn/bXuoaaQ/18+V62GUaN2tBs5atDNqjohMoXap4gddeJBDeDbny7/wSFgAba1NEEVLT8lcYAMYPa8TGRe3p1KYCkdFp7Dt+6y2cYf4YPKAlbVtVoW7zeTTvsJiWn+6gc+/9RMXo02r6hUTRvGHpPGZ5j/xQ1B6plh7mCAKcuZNl0BadqMTZ7u35pwWJUODfexhHaICfdqX5JSXY0dmZZ1FPmT4kbyX5SlAAs4b0Y8Gug3y7eCUNWrXh/q3rBPz+K6AxkvatXp6np+pyoB9eQ/rTe+yEIr+2T4Z/g62jE0t6dWb1oB5sH/0Vh78bTVaaPvNS5LULuNb4+2tHvQncDgni+JoljFqxyWjO1PXzgSwfM4Seo8cZNaLCzgcya0g/5m7dQx0jSsrz6Cgu+vnm+X5cCPDL9TTUM+LJCD7nw8mTgbn/f/lFS27cfMTly/cM+moMqbek8PBerrwMY0bUhUB/dq5exsp9R6iXR87Kgc3rWbH3cK6RlLNAk9O+c/VyluzYp2dE5eDTXv2wtStG/9HjiHz4gPM++nmPQf5+rFm2hOnTpxs1ou7ff8qs2du4f/+pQdurYvXyISQlpVHXcwTNW41jwMetmTFiIAq5vv51PSTIgJHy34b4u1e4//seqncfZdSIirp2kUve2+k0cw1laxrmTEVcCcX34C6GLt+Mh6f2Xlna2JKeksyN0GCOb17PjI3GjajnTyN5/OAeu/4MoK4R+RMT+YT7d26x8/AxLoUG8zTSMBrraVQCpVze3gJNgTLlHyBW/gHRhYVHDv++UJis1QKEdoWy1ly7ch/PGo65+3TZ9kSVdrtZNSlUs+PZU2vuP0pBkagRalILbV6URKb1+kjMtJTnqiytEiJm3M7dFmR5e4nU2VplW1Rq6TeVmdq55n4q57MqLmSr1GQnqjgdlkjnzzawq7kE8xcW+qk/MhlYy4xHS+7r0YNbFdMnPBB0WbV0ac51xigyjNNv61KQ69KZ69Kc50V5rn6JRUtUi0bH6EKu0uZlqNTa80jL1rn/Ojy7cqW2f5ZKe22PU7SU52nZ+kQhCcGXiMpU8fRBJslntUqLeR0dyvPgu7nbqbfjtHPFaZ+dUocaWq0W6eUs4uX9HPf4BMxe3HNBImAbrWbjZSU1M5NpVFLn/r+4jAylyLVYFfFyiM+CyvYC9R1fXXq8pz9/Ndy9e5czv/zIuoPHqd+kGXKlvqF99/pVVEolkxevMm5EnQ/kyOZ1zN+5n5oNm+Sy6kXcvYXURMbV4EAOrltJ73ETqdXAcGU27Lymfd6OfbhXrW7QHh8TTei5M9Rp1orizobhvPHPYrh87ix1WnyIXQlD1s/kuOd0GjmBjOQk1GoVaVkqwv74AW+vcXT9fmNuTtSTqxeo2aln4W7aO4S7F4P5bfsGuo6dTOV6hivBETdvcPHsn8w/8hNulSobtEfev8eVQD82/HyKMu6GYY+P74fz4PZNPGrUMvp+PLoXTojvGXb9fpbyFT0Mjx9+F58/fmHZzLa5+8zMTPl2bFcmT9/G7z/PRaqTt1bR3YWVa36iedNqRgujJiamceVqBDExSUTHJNCyWRXq1XXP+wYVgAJpiv9+cq23Cg8rzf1IyNY8E39fH3asWMzg8ZNo0LSFPqumIOSG463YezjXyJIKAq7lyvM86ilBZ/5k2tD+L3Lm9N8fyYvx04d9zaq9R/Bs1oJnQ58ikcpy2Tp/PxvA6F7dWL33CNUaNSchW28K/H19WL90B9OmTcO9Uiv9Rl1adEkhI1wkmnfJ1BR+/S2Qy5cvI4oid1PkHNi0jjnjRjJhxToEQUCtVnMzNJhvFi5HIghYmxnPv9Rl+czK1vYpZqn/cmVl6+oAauPbOmVZlDq6h1J3v46OYiyaBNAL1zcx0ddNddlLE+9c5MyWKXT1WkPNJlr5bm+hiUa5ExpE2C87GfztOKo3aoqFiTZKxdLEhMsBfhyYNopFOw/ksj/m0JdHlilNuN8Zlo8cxMo9h+j/cRv9k5S/YOIsBj0qWwNBmv8VWt2FzFhqFId2vUEt38zA7uVYPKENOxc3y71GdbYct+LJLFiwg6r2DajspmHFVsm1ZXOexSRz434aMfEKnsdm0aGRAx5ltVTzfwWCUAi58g/QZd4pQ6oo0bBWCULCYvUMqYKgVKqR5ROPefl6LN+vvcDxnd1euQhwYSGVCnhW0RhyylgJTSpbMXTjY2b4p7OspRlKEcKeqaj/Figq/42wlAlk5EOX/CpoXwp8YmDBZRVe9aS570g7Vwm2JjKmnFeytYVARTvN/thMkUP31Rx/qKaMFTiZg4Mp7LonMq2mhNalXu0de0828RJy6qKodRQE3bopEk3dNY9KFiydPQMHB81q3K1UrSy4GHCOSf2/olrtephKpZjr0GOrRZEL/r7MGNibpbsO5NaRylGkJGqRhOgoZg3qy6Lt+/SUbIkgEOJ7ln0b1qBWKxkyfjL1jaxEX/D3ZdLXvVm8Yx9V3TWkObqU4BcDzjF/3CimrlhHZbcKevTnZrLsXOKEhT/9iV11Tb20+PRsanh6snHMAPy2Leej0dNIT4wnPf4Zrh5VDWLTdZUGXUXIwkSaZz/db6AufbouRbpUZ1uXmly3j4XOfjtzocD+mmNr28LDLrP52xEs2r6Pxi21xU7NXygzwed8sHwczI9bpmkaskO1EylfLHDVg/51KgJXNX+65A+ClCY1wGNSTQaNukgD82N6bQB1q8HnVT8ALmv+RG09GxQpeJSDDrNLgzIUckrUiSq+6e3Ezz8k4DVjEfOmtModMvqrErjYNOWjT77jus8QXEpqvhcRj5JYuSWYfceuU72yI6WcrSlezIJFS49wdFs3WjQuy6vgPdlE3vD39WHgVz1Yte+oUU/jxSB/JvT/kuW7Dxl4qswtLChZypU540bkmTOXY4Qt330Izxc5LyqlEukLORTi58OWZYv0wg1/8D7ClUsX8Vq4OPf8Thw/TvPmRU9sY21tnTuvbaKcqrXq8vXHrTm8eR1fDh9DxO1b2BYrhkNJw3zUfwMir4YQuG1JnjlPd0KD2DxxBNM27aCqpyE7X1iQ1tNd18j7ExP5hLDQYDZ6/2jADvmq8BrfgKZdj7HpwC1G9NbmYc4ZW4uypazoMMiX6yc7Ym35opbVg1TW7H/Azz4x1KhoTcniZlibCaydEMmxRdWp4f4KZFovcqTyg0T698uV/6yW3aiOE38GRDGqT5WCO7+ApaWM1Ixso23Z2SoGTz5D+MMk/IMjad6oTFGdaqEgCAJrBpeh49SbtDqcQbJcpI6zFFuz9wrzq8BSqjGkRFEsMqNYEARm1oLPzorcSYYP7LVtDUtK6OchYd0NFY2cBAKeiYTFi3QsI2FPKxkuplqluEs5GOSvZo/1q0XmSiSa2mjv8deRY0TpIsTPh7njRrJ89yGuBAcRFnqedp92zW2/EHCOSV/3ZunO/blGlC6S4uO4fD5AY0S9lPibnprKd8O/Jv75c+Zv2WnciNKd34inI4fY4Ptte4yGC94ICcolTrB7KdFbamLC14vXs6zfZ9w4+xvpifF80LLDv4qxD2DVrKlG7z9oc+LCLp187ePY21mSmFS0pQ5kMgmHt3SnXP3VjPq6Ps5OWoWlW+cP8At+zPQFPlT/oAS/nbnPlRvPGNyrNtfPfk0pZ21URed2HnTsdYjwoBGvdB4FyZR/aUpdgQjy92PgVz3YcdCbSg0NleAQP1+2rVjM8t2HaNC8pUH9t1A/X2Iin/Bp7/5GjahQP19mjxmaOz4HltbWpKel5hYDXnfgWC6xSUx0NFPGjUYul9O4aXPGDP2aHQe934gRZQyW1tas3O9Nv/Yt8d6ygcTY53w6cNhbOfbbRk7OU/e5ayhX21jOUwibJ45g2LKNeRhR/hzdsFoTLmyEmOaCvy87Vy+ndNlyRWZEAVhZmnBoXQfqdDzE4J4f5HrbBEFgcM9KnA58ytz1Nyhub8offlHcf5LBsB7luHywMcXtNAtQokJJvV+j6TLxKjcO/vVC3wKFkSt/vy7znzWkzMykPI/LLLijDsq5WPHDqcdG2w79fA87G1PmftuQzXvD3rohBWBhKmFfJwuepYuUsBSwt/kPPV6JVBMLJ6pBIsXU1QOzCjWxK+lOasgfZIZf+UvTmb74cWZmi1iaFt0PNSUb1CK4GWHL71lBwpkoFTeTRDqXkzC/voAIPEwTcZSJmEgERFHk+COo6QBlrQznKAwkMuG9R6qIkKOkrNhzCM9mLbkVdon451rmu1B/X+Z+M5ylO/dTv5mhknTR/xxnTv5I7YaNjSrxq72mk5KURPuu3bl77Sofd/9Sr/2Cvy+rvKbnPb8OO5yxmPkrgX7sWboglzghKdMwb9TKzp7h234gIzkRawdHRBNzgz7vOsbNXUS1uoY5Cxd0cuLKlCllZORfg8aQKpjo6K/iUWQSpZ1tKFnCUChMGtmILv29MTeT8c1gT1o3K09mZjYRj+NxcrRCJpOQna1i897LdGpb0egchUFBMuW/FtoHmjpNS7+fz46D3jRr2YpnL4Ws53iSVu33pp6R3+fFQD8mDviKlh07Y2lt+FxyiCteNqIAXMqU5VJQAGu/n83KPYf02CFXL13EF336cePqVWZPn5x7fm8TpcqUY7fPeTLT0ylWwgnFP6EgUBEj6sYlfps/no4zVho1ou5fPM+5PRsZvmwjdTw9scnOQimRkC1IQZQRdj6ABcMH8v32/dRqbBjufTHQj0lf92bigiXsWbOyyM//zoNEPGuVMAhZBJg+tAqDvwulaT1HpgysRLO6DiQkZ/MkJoViNjIkEoGMLBUH/nhG99ZOWJi9wkqKULBcEd6H9v09UKtFFm8K4/sJfy1huoyLFY+jja8mbjt4g3GDatOyUSnmtthHXHwGjsVfLS70dWAhEyhv9/e/WG8FJmaY1fgQ80ZdcPRoiCCRIKrVgIgg0ayYq7Pl2DX/jKQzR4g8tgmxAEYyXdibCEQnKXF3Mh4Tvvp/idQqY4YheWne+DUS2peW5OZI6cLKRGDvhzKy1SInH4kM81fxKE2ktCU8y4Sq9iJJCk041MYmxucoFEylCCb/kXfkDSLU35fx/b7UKCnNWpKVmcnudatYfeBYbvukAb1YsuuAQU4DaOoMTR3Uh2GTZ+B36jfD+c/58Mvh/Uz4fgkNW7VmUKc2jJg2CzNzjSGTE863NI/5L/qfY/pgLfGF8iXWrCuBfswZOoDpm3dSzQixgi7MrW0wt9ZY/7p5Bv8WGDOiQv192bFyiU44VN5lMAoLe3tLlEoVqamZ2NhYGLSLosiUmYf5oltD6tUuPFHQrsNh9O9Zw6j3vLSLLRdPDSI9XcHW/VeYsXAXT6JSKO1sTVxCJnWqlyQyOpWype04sqXrK9fOE0zz91JqloX+O8ip07TryHEaNzPiSQjw04bz5cGettJrOrNXb2T2mGEc9g02aM+pM/ayEQWQmZFOwOlTBsWAszIzOXpwP4tWrWPvjm3Y2trRpLmh/Lh27Ro1atR4hSsvPOwcimPnoCFEeZl84t+A0ytn0HHGSlxr6teBMkUkM+IW1hFhrF6+DCcbK6RCOuhE86ozRDJNRQ79+DMOrmVRqNWIEv1w8g1zZ7J0534qVavB0mkT84ygUSpVjBm/mYnjPse9bOFZnPccu0Pfz42XuahWyY6gw21JSlGwYd9tJi67QUKKAgdbEzLlKqq4WRERmUnDarYsHuX+apE9glCwXDH9++XKf9KQ8v41AisLEz5u5cpfke1lS1nxJDrD4GW9GZ7IvYfJdG5TDhMTKT06V2b9rsvMnlBwEbr3+OuQlquOeZMemNT4EImlLar4KJL/txdRngkyEyQCKKLuIX9wlczkNBy7jqJY2y+xrNGUx1tmk/mwcMyLzuYS7j9TGDWkjl9MY/2ZZEraSjn5mbleLkZeEEWRXyJF5jfIW1FJkIv0PqOkvLXAN9Ul1HMUMJEIRCUruZMCVjKoVkzA4jU8SoKJFKEIvWz/Rfj4+LDsuym5SopaFDm8fRM16jWgau26uUbU0l0HjLOz+Z9j48K5LNq+D6dSpTmyY7Ne+0X/c0wa8CWOJV3oPnAIgiBQtXZdfjm8n679B3EpyD83nM+YEXXB/1y+7IFh5wOYM3QAs7fswsNIOMl/HTnPTzccqiggkUioWKEkd+/FUK+Om0H7ynW/s22PL5fCHvLnT98Wak65XMnhH29w4feBefYJf5BAsy57aNbQlU1LOtKwbmlkUhUPHiVxKzwee1szPOuUxbQApSU/FGxI/fsM8PyQU6epppH3J8TPh+2rlhn1JIHWSFqx9zBnfz1Jx+5fUKpsOe34cz5M+rpXPjlTPhzcugkXV1eDcK8/fjyGm3tFpo0fwx7vE8yaPIH//fYrHTp1zu3j4+PD5s2bOXjw4GvcgfdoM34+papp6kiZCiJuZirKm6kpJhOhWnnUVcuRgZTnyEgVpZhZmiMV1Ty/d4eom9do0KQpxW2skaYlYp6RQrqNI1hY5UYaLNt9MDenztTUjLhnMZRwdsHX15eWLbXvxdTvdnP4qD9paVns3dK/UOcel5DJ2cBIti3MW48NvhpP19EBfNS0BLvm16Gmhy1kZ3E7Ip1HMZkUs5BQt7LNq4ffCYWQKybvDam3DpVKzdy1l1kzq7HGGPoLCbBWljJKOJgx+LtgJnxdhRo1NCu0O47cZkCPDzB5kVQ9aWQDmn16gIkjPDH/j8aFFymkMiSlKiMpVwvTmu0xca+HOjMVxVUfskJ+JvveBdIU2h+bLmufqJQSe2g5aZfOUnLALNynbOTJ9rlwpuBq7i7mUu49U9D+pUW5G/dSmXEsjuOjXZh0OI7fHyj52D3/OlAxmSLbw0VkEqheLG+hkiwHEwlsbC7TezWdLAScXixgv25MsCAVEP4BRezeVeSsNC/fo6UozkhPZ8fq5Wz94Tc9I8rTSLjdBf9zTBnYmyW7DlCncTNNTanERBZPHkff0eN5FhXJ1EF9qFKzDq07f5q7aDNg7ATmfDMc1/JubFm2MDec72XkzL9gm3Ej6lKAHxtmT2f2ll3UbtKcjGzjeZ//VVwK9M99fkVpROWgciUX7oRHGxhSPudusmTVr4Sc9aL9Z0sIOB9O00b5Fz2+HR7HzMVnqVPdmfJl7fPs9+Jb05sAACAASURBVCQqhQ8qFufY9u7anaKKCuXsqVDuxTjh9fLeCpQp/660ugLx4MEDbGxsDNjx0lNTsbUvxrKdB7CyMYzxTktNxdbenl+v3CEjPY0f9u3ieNDll8Zr2vMeXwxvn/P0aNWQJTMmMWjcJJxeEDkc3LqJrt170nfQEGxsbPhm4hRWL12Ua0idO3eOyZMns2PHjiK8G1okJyZgV+zt0WcXNeLu3+T6j7uo/ukAHN0Ni2HH3rtB8K4VNBzwLWWq1aGUmYiHpYibpQqZAFHJ6fz85/+wqlgT60rVsLXQLtSWkMhISUsjXi3Bo2NXsm1siBFFbAQRq9Q4rJOfkZ5hiY2dPccvXKeYnfY371bJg4jwO1haWWNvr93v7e3NsROBXApaiWezCYTf60ClivmTely89pzpS87zSTs37Gzy9mA9eJJOm8Yl2eJVM3efGvjAzYoP3KwQFa9XQkYQCtZV/gn1DN8pQ0qZ8YKmWsxjZUuHFj0vinSFQkl6uoKMlGSyU8315tKlPFfrhICJKm2f02tqsutkNN1HnyV4e332/h7DgROPOL22Nql3rwJQUqWm8QcWrF3yI8M/0b6wZqW1MfYyC30BqJKn6Wxrc7dUqVrKc1WCNqxQnaLdVkRoKSwt7bQvvS7luamFDouYUl+xUyt076dx2nFdynNFpvY+yfJYLdBlWtFNqVArtfOoXjoPUS1CSQ+o1BSpY0UE6+II1sWhWCmEF5OI8U9Q/rIU9YUTSBQZWAJYg7VSe95pWbDwpoipBEwEgahMkQGK8ygWDKDUyCWUGzEfU6eNxP66B4Bkub4RZC7V3I8ylgJH/kjF5LrkhTJ7mSyVmnUPE2jjaE3wT0rKy83YGiQn7XFOmI5huA7A/PBY6tlZ8FVJK3zuaK/bzkz7lTWTqUjOVhOXqeTyI1MsdEL3THQSDEykBT+v/CCYyhBM/37h8y5CoVCQlZXFrVu3iNUpc5Atl6NWqYh//gyFQsGJ4DCKFTdkBE2Mj0Mhz+Jo0OXckBZTMzMO+AZzYNNapg7szYjpXnTp1Y9TJ7z5uOdXuWPrNm6GjZ09wed8WLrzIMUc85/fxoiyciUogJ3LFzFqzgJqNjJcaYy4eZXfdm7lk8EjsXSt+Er36O9GzJPHZKSlUqFKtb88Nik+DrlCbvT5paWlM+DrbynhWBypkMTDR8/YsGYUZUsZ/83nhcqVnAkKuUevntqch6dRCfQauJ49W4ZS0b0kA/u24PhPl/I1pNLS5DTsuJ0po5swelCDPPsBFC9mwdOYVFQq9SuH7hUEwTR/deK/5pGysQoDNTjItJ4kB2vAGuq7lAChmPGBtg7gqvnt3r+fiKlMSnkTJe4vEvixc6CRaz6GiE0qni4a0pgLwT8yf8FaVk4axOHDPzFu3DgUaclMGTcGkxeMlP2/6MbC2TO4GeyPKIp069YNb29vqlfXKbEg0Qk9FJ8U7gYIhnniPj4+XIuKp+0nnxm0yXSiOix1qL+LW+pQk+uEJ7+8QKUL3ba8+unuF/Po//L2jfOBHFs0iokbthklhrgTcp5fVk9h3vrNVK7ojpVSjkxUo0ZAYW7NxdvhTOj/Fcv2HMothmuRnsTE0SMo5epKVuINkpLT2b97Mrbm57QTK5NQWUqJSvJAyHCmRelUXK12IlFo9cZaZROJ9PmOvtXro7aWo7wPt+4lMnLYSX7e0goX1Vm6tinJ0d37GNtXI9tVGbr6pSZ38/FzOW3HXmNqDxf6tbEg+VyQ9j7pGEaiQonFowwe3kkkzeealiI9Uyc+8XUhCAXLlfceqbcPExMJO+fXo+/UCwTsa0mpEmYFD9JBSQdTpvQrR+itFNqPvUJ6poo/1tSmbEn9BOxxPUrTb/5tBnV0wqQA+sb/IkSpKThXBkc3KOYKxcoglKmFYKP5AIjxjxFT4xCf3Ue8648YeQ3xyVXEpGcFzh0QCw/TRT52EYjJhMuJIuM8QJWWROSK0ZTsPwOXbiNAVBP7274852nkIOOPGDkHo5Lp7mLHM7mSP2LTqGRlSh07jfLkZmnCqbi0fNn9slRqFGqRDiWsX/TJ2/ixlQnUspMx6nI6PVxN6ehc+HjmwkIwlb62ISUIghmwAWgLOAD3gOmiKBom+7wrUOnkP+pSV6u1RCWmgoyPWgOE4qi7gl8atqwbzpRvB3IpeD12dteNH8NGShs3K+CO/n57KZ3WdsWz0Sn2LJmMRCJw6fwaXFz0C60unNWdOfN2sm3JRwhCuOG52qCdX6Iv2wKCBGYP7oO3tzcl62k9LZkvPFIX/M/x46ql9B07kToNG5Km0H4Q03W2M3TqrKh16q+Y6yQkm8u098bkJYa//CjJje3Xo0LXGatLMa97DMfyblhZa5jrcmr5AKDy0T+IMtVwuzS0dU4FXpAKybV9Nmz5k4SY2zSr5cG9B88ICrqLgyoYVYzO/cjWWYDTrUuos2DXuw10GRbMiJRHLJlcl/NhcUxdeplhPcvSstJT5I+f0rhSMpMXXUT+qLjB+Bzcj0jBycGUCb1KQuYj5PK8f9OVSqgp62xKiSrLWTvbk+4flcuz76uiwBAcsWBP+r9SrrwG3N3dmTlzJl9++SXLly+nRQtDD3N+qFzZnc2bFlGlamsaN26Mg4MD/v7+uUYUgEwmY9KkSUyaNAlbW1u8vb2NFut9XeR48k8EXy3yud8GUhMTWD5mKBPWbtEaUaKIiajGQq0kKzqSapYSfvv5J01trOxM5DIzkkwtyJSZE34xlFmD+2oozHVy4rZt0NTSUilV3H8QzfPYZKyszPS/R4BUosK12C0spHHEpFbnYUIjytn6IpVo5PeYr2vRZeBJFNkqpg6ryenAp0z4PoiFUxpQp6rG8G7u6cTBn+7nGlLG8Cgmi+rlLBjWUVNrUMwnYKFxRXMyT4pUmxPJ1r4laOpexEREhQrtK3iB5k3Llf+kht+sriNDu7sxzOtywZ3zwMKR7lSvYM3/1tbBvbThimTdyjZUKGXBCb94I6P/WxAB0dYF9QftUbedgLrfLsRvfRAG7EDoPBMa9YGSleDxZdQ/zEa9vD3ZK7qg3DoQ5aFJqP9YiXjjT0h5XuCxAI4+UdOrnEDXMhLMpdC6pEDxFzTwolJBzPbZpF47j2PbLyAfGmdbE4FhZR2QCQLz78VyKCoZd0sTOpXUehMdTKQIQHx23sZRilKNrYmkUMmWgiAwxM0MuRqiMt/MCq7GI5X/XyEgA54ALQE7YCZwRBCE8m/kpN8BdO/WnPZt6zL2242vNF4ikbBh7TgaNayKz5m1uLgYepw6d25CZqYcH5+/xkIJMHDgwDyVpJxwwP7fTjZKsfsuIceIKkqo1WpWbQ1lzqQWjBvaALVaZES/GlhZ5h/Sawxurtb4H+rAo6h0SjU9xth5F+jdxY3JQ7QeNM8axbn7MJXk1LxXd6OfZ+JSonCKi1QqYd/yZiSmKHgcVfSsgfBerrwpjBkzBjMzM7p3715wZyOwsDBn44b5tGvXjl9++UUv7CsHbm5uBAcH06dPnzdiRF25ciU3Z6y4kWLg7wIe3bzOvG27aVK/Lk6KdMrKk6mUlYi7PIlS2Wk4mcuwdXIm0cyapxb2PLQqQZyVA5kmFlw9H8C62dMMKMyzMjPZs30LnT/ryk/HvbG1teLbsZ/rFdbWhSCAo9UDXO0ukpHtQERSa7JVGhlQq6ojwT/14E+/JzjV38Oc1ReZPLw2A7pri4c3r+9E0JV4VPnUyIxKyMalWOHkmqWphD2DnYlPVxOX9tejYwrEC49UvjKlcHmdb1Su/Oc8UjmYNLASlTtFcDsilQ+McVEXgEplLFk30bD6vC6GferCqsOR9PywRL79/o0QBSli6VqoK7ZCXaE52L4IcVRkQvQNCNmP+OQaPA+H5BgQ1ZrQvtfEg1SRqExoUUJArhL56amabmUknH6mRhCVeBbTFMKNO+ON29jl2NVpSWLo2TznM5EI9HCxpXW2CgcTqd5qeqJCRVy2EjdLUyIysnHMQ1FIUaqwLYRX8nx8NiXMJLhbS/mwhAmlLd4QIYREAq8Z3iOKYjrgpbPrpCAIEUA94OFrTf4OY8nCwZSp0IfY2CRKlMg7ZyUvNGxYlYaNaubZLpFIGDOqG+s2nODDD+v8pbl37NhB06aG4XyXgvyZMrA3i3fsp0rD/Nn7/qs463cfK0sTGnpW4lFcaTxbjaNCGXN8rqdgIiTjWSkGmVD4chp2NqYcW9eSiCdpVChrrU9edC+JpJRs6lV3IOhyHB+1ME67HvU8k1JO+TPDiqLIjqP3aV7fCQ83W7q0ccXNtegNTaBgmVIIfee9XDGEr68vN2/eRKVSIZfLMTP7a1E0AB07fkjHj/sZbXv06BG9e/emT58+BAcH07dv39c9ZQN4eXnlLuLcSn0DCndRQhSRiWrM1EpM1ErM1EpM1Soq1amGIADZ6agAuURGitSMBw8fsmrmND4bP9XoItTVIH8WjBjEvG17qfNSMd3TP52gfAV3vps0nnlLVzBx1BB6f9WK/QfPUtbZlOZNKxvMB2Bv8RSpRMGTxPo8SGpHObtzmJKMs5MVpw99zpPIBNzK2OqNuXAtHhOZhBLFzLh+L4Vale2Mzh2ToMC5AENKpRbZ5pNMlzpWuDrIqFvWlFJ2byAJUqBguVKIHKk3LVf+kx4p0BQx/KJjGQ7++vqUtnnhowYORCcouByeVnDnfwFEUyuUFdugaDuL7KG/oOy+HnW1TxCe3Uby51Kke/ohrPwQycERSHzXw11fSIrKO+ftFXA7BWrYC8gkApcTIUUJIfEiIfFqFt9RkJMOlnrtPIq4aIq3+rzAOQVBwNFUpmdE3U9XsPZhPD7x6VSwNOFBRt4rxylKNbayvIWMWhTZ+ziTXY/k7HwoRxRFEhRqHN5QHpNgIivwD3AUBOGCzt/QfOcUhJKAB3DjjZz0OwIbG0s6dWzAoSO+b+wYfft24KzPFR4/LjjMVRfGjKgQPx82zPdi8Y791DdSx+pdR2Bg4GvPIYrw5LktCxet5G7Cp6SKDbCzs0OhtsXasTb2rp14kNmLVKUhC19+kEgE3MvZ6BlRx/94TNMv/mDTwbs0r+/EuQt5e+GfPs+klFPe+VlyhYq+EwPwWhPGtGWa6IunMRmUKvlmynIUUq64vJcrhUdqaio9evTg+PHj1KtXj5MnX78o9Ms4ceIE3t7eLFy4kAMHDpCSklLkx/Dy8nojnq6igFStwlIpp5g8DZfMRCpkxFM+MwEXeQqO2RmYqZVkS6TEm1jw1NSa+2b2hJs78NjMjjOXwpg+ZgSfjZ9KtUaGdZ6uBgWwYMQgpm/cbmBEAfj89jMJ8fHsOOhNWlISbdu246eTF9mz7zTDx+3K97xtzGJxsz+DiIQHSW1IU7oCYGoqNTCith4Op1WfUxw8GUGzesXxuxhnbEoAouMVuDjkbUilZKr4Yu1TVp5KZNnviZoxySpc7N6AX0YQCpYrGt3K/e+UK/9ZjxRAr05l6DY2CK+RH7wax30BkEoFBnVyZuvJGDaMfzcTtwuCCKhL1SG7Rg9UZZuAVAaZSUgiApHc90V4FIyYpY31FYrQaDKGh2ki5Sw1z7JhcTjeVIa5VOB5lsjVJJW29pKoJt73B1y6jcC8lBtZURGFmj9FqSI8TcGpuDRq25oTn62ikqUZp2LTUImiXg6Hdow6X4/UrVQVd9KULK9pxdxbmVxNVpGgECn+hijKC0k2ESeKYqEKrQmCYALsB3aLonj7dc/vXUe/Pm2ZNWcPY0Z9+kbmt7a2pG+fdmza/BML5g955Xlyigkv2X1QL2Y/B3HRUTi6vH4R2r8Lwed8WDxpDNeva/LV1CKIakHLhqmSIJWoMSb6VWoJ8mxL0jMcScgoS/2mFsizkihheQsbkwdUqBGJhbmM85eimbEpgmXLFhOp6IStUI6S0jNIhL/GhBgRmcaZoBhmrQqjdxc3FNlq2jVxZtisEOaPr2V0THRsJhVc846mOPr7Y6JjM7n2yyfU6fILYbcSiYzJwNX5DRlSBSWFq1UA0aIoGlJNGuv/Xq4QERHB8ePHad68OQ8fPmTv3r1069atSOZWKpVkZmby6aef4uamWQRo27Yte/bsYfTo0YSFhVGhQgUsLCyQyV5PVaxdu3ZRnHKRQKpWYaGUY6aUY67KRvZCJxF54WWSmaGQyJBLZGQJEsQXxGUvk1bcCg1m/dTxjFm2lir1DcleboScZ8vsqXy3eRfVjXj6b4QE4mJnzfQtm3F2cqKC84d0bPshgiCSlBjBpg1rC7wWC5NEKtj/j8fJzXmc0ZHiplcpbnoVCZpczVv3Ejkd+JTv11yl58flMDOV0raxE5uPRDC6l7vROWMSsmngnreM2HUuGWtzCT5TXWm+MJJv2toTl6bC2bboPVJCYcgmTFUA90VR/DLfjto5i1yuvFOG1Bff+OM1qDyVyulU+C5EiJIufaIuA98HzhCXqCA1JgELMynqZG1ohh47SZbC6H51pvZjKeowlegeo0cJFQ32x/F9Qwk2pWK1p11MP7xCsNCuAIi68+rMldd5yJy1qw+6D1Q3AEBU5ONOV/0148YcUFmXR+7UgCynZqjsKyDIk7B4cALTqABkCbch80XStQOA9kep1klUf5m1T51HoU+1TjyvSqePSodtMGfsE7mCj1wl2DtonrlluuY+hWeKlLMWcbHWPONstQTh0mHETn0p33MwyVu1NVtSFdpnkdMfIDrNggNPk7GUCrRztOZRpgI3S1OKmUopZiLlfoYCDyvDsIt4hZJS5to5s1RagZOVIeXs82Tq2FqSkmXBh8WlrAjXrAgKanOeZWiuQ5fdT6p337KM3rN8IX390L4cCBp6zL1oSgmOLpJJ3zL6D93M/Nk9cHUtmhDcBp6VuXP3zXm6AYYN+YTW7b59ZUMqNOBcbjHhGkbY+y4H+HH39k069f36dU/17UKtRi3P4MH1qzwI9WPfvn3cvXsXpVKJWv1yzpmGyEEQ1EgEFRJBRBBERBGyVdrfsZVpPCtXLqPvJxaULKNZ9RVfSNrwiCQsZIm4mR8lNtuTeGU9lCobXKVHC33KKpWaToPPUK96cdbO8mTPDw/o2r4sDWoWJz1TyY3wZKpVsjUY9+BxGi09S+Y578GfIxj+lQf2tqZMGlKVlr1PYWYqwdmxiBPCc1BgaF/hQ7f/DXJl9JiVzPEaSPHij7Q7RR06aPFugXPUzGHXVp6mQV01S5ZcBuVpw466xDeCjhYgGCcVuXfvHo0bN8bb25tSni25m655Nl8NGobX1EmU/aA6S+bNYfLM2TRr2Qo9jkBdNr6XGfzU941fnw4hThWLPBTuvK5BF3r3T2V8+6X/RbWSzCwzUjMsSEu3IFOuef9l0mysrDKxNMvEwjwLc1M5Ekk+7+jL5QFKw8zP1qAxwV6UU1FrdbQunWHax9OAROBX1NnJZMjtSJM7kJpoTx1XJ+pMmYKgSsRedhVLWQwSRSypYhWUNtWYOHkJjyOuYi8GIcnUvkOqFG2OY47OWkzyG4nFviLesRnxWVUxf3oaIeJ32k33p7WHCes6WzL/z0g+aWtD/UgYfjWJu9t8cTDTYVF+oZuF303F3kVOsl/Ci/unf08On0tjTnNzLKOS+LKyjGYLnuBqLZAZkZj3vXtVFCq0r/ALzm9KrrxThlSDKrZ8NP4qG6dUpn3DoqlDYGMpJSVdhYXZmylykZypxsZMwOKdutPGIQJZpVqTXqkPagtNwqgs4RbWF5Zj9vgMgs4q7N9FSJmi0NRqehk+MSK1XkpZEdOTyPxzB5advyGjUn2ywy/kO3ecQklCtoohZR0xtbAkPktKVddSlHRxpHd1FWkiOFubEht2AVWWRsCJosi9dAXNHKzynDc8XUEbR41hXcvWjEpWxTEVBCxkb+YuCqaSAplwCjWPxo27HSgJfCyK+fH7/HNRxrU4DVp5cWz/OBo3zL9uT2FgY2NJampmvkyOr4vY2CRKlzYkoygMRFGklmcj/B9EIwhCLmtfDi4H+OE1/GumbTReR+buxRDWjRvOyOXr8ahvSAF8MySInXOmM2zuIqo3NAx3uXY+kEWjBjN1/VbqNDGWUxDAofUr6T3mW2oZ8ZS9uAiEbLnmT6kAZTZkyxFUSpRAWQcbynbrjoW5GSYmJshkMmTSJ0gkIjlPRFTJUaslqNQS1ColoiggihIQFZiZZGJukoG55DmmskzOnDnDwM87G5zGid/v07ZpKQRBjZNpMDIxkWeq9iSLNbCjcGRGAZdisbaUsWdpEwRBYOm2Gzg7miMIAt3al+HoH4+pVqm63hhFtorAy3FsX2A8p02pVOMb8pwjazThmiP/z95Zh0dxaG38NzNr2c3GlSQQ3N2hODWktKVQXEpdLpVLXbl1KlC7daBYoW7ctpQWCVIkaHENIUJ8d7M68v2xIbshCQQJtP36Pg8Pk9mxlTlz3iPvGduUUYNTCTXralH+/AzqWjWM1/1d7ApAl2638u3XL9Ky5dmVfVaFsDAzJSUXRijk448/Lu9ZOkmiAAry8jCaTNw0egRzF39J916V789169bRvfufu5dSUQQcThM2RwiOUhOKKgEaISY3cVEFhFlKMepdVWajL9w1iLjcoTg9FpyeUJxuM6qmA1TM+gLiQ7fTd9DTLJ3dk8SywLoiOwjRjnPzfS/w6IN3okvqiU3ogNn4B5He79FrVYuXiaqbiANvImd+RmniUFx1BkDK1fz4mxdT6RF0+Xto791IQkomJvkI/RvoWbrPy7jWFQO/BS6VYzaVlrFV38u5pSp5To1Oif7X/93VyM3tDFhqa0acINRAta9mJ69Nu/KXcu//NTKZbq3CGD99N+882ISBnc+PTLk8Ch6fil5Xe3fTrwc89GloqDWH6mJB1Ydhb3kXnoSe6Ip2YzmwCEP+JoSCnMBG0qV/j9c21LH4gEz/pICzUOTR+DkbFlRh+90rF2DsMYLIO96i9Nd5OJfNBm/F+0sfEYO5XhMaRDXljdTGtGzZgpDoWK4O2qZz0LLscnJ89XKOLvueg3v3ogJxpzEGXk2rMDPKXO7o1BKR0usuCJEC/gs0BwZqmlbzTvs/GZ59ZgI9urfimpGv8uPXD/kHpQZLzypBMtkVoqBVR0cLcoswm/Uott3odFLF7apDdRFYMUj+PkjO/H/fL+PKfk3AdaRyNLb8mKdI5+v8dfEC0DZYuUvqW764dtshpt82kTmLPqNx14AT5VP859iYtpJfP3qHlz+aR6fLeleY6wKwec0q3px6O89/FBgGHNxbuDltFW8+dC8vfujfv4K0uSiyYfVKnrt9Mp8s+YIevfz7R+mOoWkaLreCw5ZLqVOPy61HVf37CoKGQe/BZPJgNHgw6WwYDS4MOg+CGvQ9BsudA6h2vwCCBKpawkmGpfo8/nil17/sBSZck8Ib//2ND5/r6t/G62LfEQdpGzJ596F6OHP9kXh9yU6MsfXJ0/dEOPIDUtlvp7oqA4ANP52gS7JI6cYdIInc3d/KqH+tZM2LTRlUX+H2/x7m3/2M5c8QwSCxeoeNxolGLEVZuMoCwcElMC4VdBJIJTl4HP7PyQLgEKm2m/M8CdaZS/tq/Hz4W9iVt968j/nzf6L/wKmsX/su9eufX5lsYaEdo/HsVSKrwk033USjRpXbDRbNm8MfO7az6OvvqyRRK1asYOrUqWzbtu2CXMeFhMcrYS81YXcYcTqNaAhIkoLV4sRqcWExu9CJQc/2C/B41TTw+vR4fXo8Pj1er4THZ8DjNSIrJ78rDaPeTYQ5l1BTIRZjEZLit8UDekbxztztvPBwIOCUtimXg4cy6Rj/G5q2gRKhC8VSF1whU4nxLMF0MvtVBXTuHMIPf4Bl11wWHa5PUsMWtG3TGk+9gTz4xDUAFMtuHup3gE3bd+MNO4SUtwux6Ij/3MdkuiXpMFTjy7lksBoCNl0QBCJNwgURCqsSNZojVWNfptbsyl+KSAF0aRHG+4805Y6X9rLyvx2Iq6H8a1X439oCOjSxEhV2YYxTVWiZoOf1VQ5WHfLQL7aW1JJqERoinsTeOJrehGqwYtnzMeYjX5cPV/yzjVgcVE/kyfUaPlVDX5by/eyoRs84iKpqJJPPQ+Hrkwi95l+EXnkzId2GYdyxFskSjmSNpF5sCvpwP2FvqKpkZRylcNd2bBmHWX0og03HcrguVGN/iZMNRQ5GNqlL+6uGkNjncupdMRTjmjSunPMBQvHxaq9ZLe+tOjtjNOfIOZT1cbJH6vyIlCAI9YDbAA+QExQouE3TtAXndfBLgEFXdWDWjPGMv/kd1v/2DGHWs1fGOolFX2zmusFt/CSqltClY33uemA+11/TkU7t616w477/1iw+XvQZl/XpS667IkHbmLaSaZPG8PLcT+nQvYpywHVpPDplfAUSFYzNaat4eMo4Xpq9kE5VqFttWrOaByaO4tW5n9KjV280VcXjLOW404ndLiPLGmDBZJSJCHNjNjowmbwY9T4ENei5qDorHft8MeaaBnS9fleFdW8sOMiEa+piNgW+ZwGIKFpEbvxj2KJvIPLE7DMeWxSECpHx93/Kx+nVCAuR+Gp9Efl2mdximYRIPQ98mMEPG4sJMYqM6B1d7TF9slarAcKqcEaHR6nR+Ie/lV0ZN+5KcnILmTj5eX7+8VVM51H5smDRckbeUKP2sjOiKhL1+6oVZGZkEGq1klgnqdLrJ+dAffvttxfkGs4XmgZujw6b3YjNbsRTVpJvNPiIjrRjDXVhNnkRCA54nfu5vD49Hq8BT9n/bq8Bj9fgz2KXQRQVjHovoSGl/qCO3o7Z4ESSFJCLAwcsM63jR7Tl5nu/qECkXv1wJ3eMbYYkCYCTaG0FZvca8ozjyDNNJNSaRIT9G4TTzKMUvSUc2vYb+XtX0tcdjmz3cOWnIaQ2ackLY9pjNzSiU++rcFv9PZauUjs7t2/nsPw7Q+I2o5GBUMWH67TSegAAIABJREFUJasaurMopTtv1KhH6sw0prbtyl+OSAH07RDJlGvq0PmmTYy7OoH7x9QlOuLsBpdqmsbs77IYPbB2Zxp0r2fgw5GR3LKkmNdCjFzd5q9BpjQEPPHdKW00FsVaD53tIOGbn0Jvr5kow+mPDaolHl9kU1RzDOhMaPoQNMEAkg5N1IOoA1ECQUITdf4BvpIBPA6kbZ8hHK+6bMYgCehF+PaIyvX1/QauyAtrTsCEEpjbTasQIQdQi09g++RxXKsWEzrsXixteqHYC1HsRZRsX4fz6D6cGfv438YDrM8pYnxyBCU+hf8eyqdHpJnnbW70okCeV6GpIx/hwC7ee/o5Hpowmk7DR9P1g7nkpv9O9rqVFO3bTWl2JgQ1ruoEAa+qUX3xX2WU+FSW551bZlqQBITzzB5qmnaU8hj+3wOjR/Rgw6ZDNGx9P3ffNpD7774Kq7V6VbSqIMsKH8//nVefvbaWrtKP64d1QhRFBg1/nS/m30GvHqcfxVBT3Hr3VJq1aFFpffq6NKZNGsOMOQtpXwWJ2rxmFW8+/fgZSdSLH82vkkRtTFvJf1+Yzsx5i+nQrh2FWcfwlNrRVBVRhNBQPVarDqv5KLqTvTbKhSdM1cFq0VNi9/HFz8cYfoW/R6SoxMfnP2exdXchX8/sUL6tQc7C6liOPfwKzLY0jO79pz22JIJc5hPtzHCx/aiLqUNi6f7wXiRRoNStciDLTZRV4ut1RXzxVFMKbDIdGldvMYwGEbdXRVU1xNrj8xVwJptSE5vzd7Qr9907kvT0fTRsPIr77x3B3Xddi9F4dv5KaamL+Qt/4eelL9XKNf6+agVTx49k3mdfcmDfXoYO7MMXP/xM81b+ktJVq1aVz4G6lGV9qgbOUj02hwG7w4DP5y/Zs5i9REWUYLW4MRiUUyoHzu4ciiri9hhxe414vEZcHv//ahBh0kkyJoMXS5gNk9GDUe/DYPAi4a5YLqh6Kp8gCNZQAyfyXXz3y2GGDvSXf5Y4vDzxejpbdubywX/8tS56rYhE9zsUGoZgDx2I29iSSNsSDFQ/T1AS/DLlACsOesjKzOWy6Fx6T/kBn6LhUwV+vrsF4fVa8WNxE4b06UTn7v5ecaerCF3GOqTDaYgZGxBkf6DKIAm45YvYuCHUwK7UgNjVtl35SxIpgH+Prcuoy+N4dVEm/e9M5/MX29C4bs3ViD78Ootiu8z1fWp/xlP3egbmj41k3MITNE000CD27IzoxYY3ogWOZjcjRzRBchwjbOuLGHPWVBmhqAk0QLUm403shC+uI3JsS7SQyIobqTIoXlB8CIrPbwjVk/9kkD0Iigc1qg1qo34IWdsQ1s1BOLyu0nW5FZixy0C7a8bTsO/1PLblBx765T1Gr/CyvRjanXLqk/Ad2UHRrCkVxCZKgpZll4hSRoDWFjnpEmHGJqt0jTTTN9rCM/tOcMjpJUIvYbPZKF76OSt+W0rqVdfSYOhw4jv4y4K8DjuZK35i/5cL8dltROglSmSFyBpmiUp8KuF6kQGx+nMiUxciI/V3hCAIzHx5PHfeMpCnnvucy654lh8+f4DkpKrnbVSFp19cSkK8lQF9LgyxOR2uHdoBk0nPjZPeY+uap4iLrSxIcLaoikRtWL2CD1+fwYw5C+l8WZ8qy/kenTKeF2cvoH0VPU2b0lbxSBmJ6liFxPr29Wls/t/XvDlrFlaTAQqy8EoSIdZwTKFhyLZd1E0pK4s6zSDJ2oTRIOGTVcb9ex2Jc0Po1tLCgpc7oSgaja7+mQPHnDRKCTx/wmw/4DS1pzDxDmKPPYtE9VL1kigglzk8by/NY9q18fy208ETIxMY2TOSOjftYOP+UvJKfDRJMtG+0ZlDLiaDSJhFR16xj/hq+h0uNC5ERurvCEmSWLjgKbZu3c8jj77Lt9+t4asv/kNUZM1DZ/dMfYsB/drTsmXqBb++TWtWM3X8SGbNW0L3y3rR/bJe6HR6Jt44nN82pLNl00aee+yhaod51zY0DVwuiaISAyUl/pJeQdAItXiJjXYQFupBJ9WgfLoKqKqA22vE5THhcptwekx4fYFqBFFUMBk8RIaVYDJ6MRr8GXBJqqYW5yxLdIwGHTl5TobfupQ/lo+lQYKO3xYMwubw0qDvEl6e1pbIML+/KKAQ7f0Go307RWEjyIueismwCWv+d+g9GZWOrROF8gDNu2tLefqKMN5Mc/DW4FDaxEu0fbuY7XsPU7DlEBuyZMblm1HN0SjJnVFSuiKn9kJuOghkD9LRtUj7fyHu0BrynA4UVUO6CJmpmqj2UfPSvlrDX5ZIASTHmXj9/ibMW5rNVf/aQvumVqLD9cRFGWjVwELvDpEkxlQu0dm+384Lc46w7O32GGtpVs+paFdHzwNXRXH77Fzem5xAo2qc+UsJDShtNAZnozGI7nysO17HdPy38jK+s4VqCMOTOhBPw6tRIv2lBKL9OPrj65Hy9yDm7kKw5yD4nKD60Gqg2idrOtQWQ5A7jkMb/jrk7kVc/TYHN68h36XRPlakffv2zJgxg/j4eNSsvegH3IoQncLAPQ+yLKd6InUmxBoljrtlVE0j36vQ2mrEJqscdnopCTOhahrpJW72Orz0ibYgCAKK28XBrxdx8JtPCU1KIbJxC2LadKD+oOuo07MfKx+4hVBdESU+hZpMrPzkqItf83wMiNUzKdV0bkRKbzibuuL/d2jSOJGFH9/BjJlL6dznKTq2SyUmOpQ6iRG0bZXEgL7NiYmuLDv9y4o9zF6wjvQV0xBrMCTwQuCqy1szcUwPxt/yER+/M4mkOhfWsJyUSH9t3uIqJdKDy/mqIlGb16zisZsnVCZRsg/RZcdTcIJ2yXG0u+MO0BshJBRCQokP9w+pTVu5guP71nLHHRd+SOiZoGka2/cUUmzz0rOjv3LBaBApdQacNkkSuLZ/HF/+ksODkxuUrxc1D9FZb5CX/AgFde4lZv90RLXqsvwmdYzM/s2vkHUwx8PYPlGcKJH5fZ+TlikhhJslXvwsi5gwPf8ZX7nkqrprj4vUk3nCQ/x5lL+fDQT96QOEgnxuzu7fBe3aNeaH715g2oPv0q7jLbRr25CY6DCSk2Np17YhAwd0ICysMrlasHA5a9b9webf/3vW58zPL2TTpu106tSGmNiUSq+vWrWKee++yRsLPqdL0P05esJE0lb+xrjhw/C43cyYMYPevSsHQQoKioiOrh1nRlWhuMRAQaERj0dCEDTCrB7Cw7yEWryIwtlnnTQNPF4DdqcZe6kZl9uEVjZOVSfJhBhdRFhtmAweTAYPep0cyDCdqtp3jlAUla3bsvB4ZBrVjyq/Lpdb5qRLHhZqoF/XeL5dfpyJ11UUKgnx7MSUtwe7ZQC20KtwWzsheXMw5a4ipGAdksuvGNs4Xs+STf4ZpgcLZNon6WmZoGfjcR+yqhEfKvDAz05izAIzLvf/7kRnAeK+H9Hv+xFNlFAT2iCn9kZu1B+lYT9wFnHDiVc54VxOYuhFCIwIwpntiu7Sa9H8pYhUlVF0RWX8lfF0b2HlQKaLQpuP7AIvs7/N4qd1BXz8ePPy5l5V1Zj9zXGe+ySDV+5qSINoPaoj0GdSQfI8WOY8aBulMFBO4i0JpG0VX9UkwBv00B0VL5EZC4NezqBeRCY3tTcxrJmf6EnmwFcRLNcuBfVVBTNzMSTw4xJMVf/QxNAgEhl0TOHUpmJJRAOKrcNxhg7A4lpHpH0JYrwX4lMq7V8BVUin+6Q4is2DcZnagqBH78vAWrKEEM9OJFcO6IFEIE7DL6DiRwWp9yC59uDvwn++dLT923BZu+KoOxLlhjfwtNhJlF7CVyeJTyxhZGQcRVg2leisrbjaTsbdbhITx/zE0Bm/MqNpWAXKcsp4iAoy7B5HoDW7WZ6N7/Ig0nqCHnESx50+bm2i4+FtMguyCukWrWNEYlh5U7hRCvw+VE3Ak7ufkhP7sa39jhM/N6PNE29humEyhU88Tv3QihLnACZd4DPQixolPpVfy4jT8jwfN1c9BuKMEEQJ4WLV+/xFIQgCD943mEFXtuXwkVzyC+wcO17ISzN/5PdNh3nthRvLt/X5FF5982deefMXPptzM/Fx558ZOhtMf2wYUx/8lNbdnqJdm7pM+9eVXH1F6/M+7r4/drDw/Xf46NufaNiiVeXXd25n2Vdf8Obn39GkVZsqX//sw/d4K+h1QfYi2YuQ3A40TSMjOwtzbCJxDZogGQL2ShAEdm7bxofvvMVH7z5+3u/lXPCfN9KZ/dkeJElkwnUN2fTFlfQa+wv9usZVKNm5YWAC/3ppN9MmVXR49N7jRGW/TUHSfRQn30xURtVzYbo2NpNnkzmQ46FHs1DW7y1l2rXxDHr2AJsOlDK+bxRPjE2uVrDI5pSxGKXyh/nq7SVMn3MUVYXkuHPv9TtbnMmmCKeTlv47QqwcWBCFY7z62quMGbudzGPbyc8v4WhGDo88/hGHDmfz7/tHlm/rcnl4ZvpcPp77E8uWvkCoNagt4FRxmqBzFZY9RtJWrmD6k3cz9YnpFJrbkGurSGQ3rF7JAxP9QZK23XrgkWWyg7KG/a4byT2jrkfS63j2xZe4T5Po2qMnJ2e1rlixgtGjR5Kdtbnq9x8kBV6hxC24JLdCb6N/G59soMAeT1FpEopmwKQroU7YYcJNx5FwlgvBoAb5br6K/cKaGnh2+nwaTjWZUqUepUpdfPiFdozkEiHsxCRkYtSy0ak2BDdoZSNTVOD0hXmVoSmnyrAHjWgpu8a7n9/Jio15eLwqD0+uz5fPNGPq24dI9RzGtiHweQxN9vHJwj+4LqwQJS8glOOxn/QT0pGUt9Ea90NtdgWO5BsoTRmJVnwcdc9q2iasZXrBFv5Yfow2VpUfVxdwSzzctEbjmx0wOgXGNpH8dkV1Y8sJfPeiTsTm1QjNXYthz++IwmtsDWmPoc8tPPr0s6gHB+NZ/hKCLbvyZ3AhhSeEmtiVS+/L/KWI1OnQKMVcsbTCrGP30YBUaEGJj3FP/YHPp/HdS61okXo2HSkXBoIgMK27iXu7GFmfo/LocideBUa0vHgPu+pgCx2CI3QAVuevRDi+OKdiUkUwY7NcjT2kD4LmJdS5GotzHQY5ILRwoW4xQVMIObGCg1uXs+BYN+6edD16xcbSX34kVZ/Lxws/p6DYwZCGOkYp8xDrDyDsigdI/XgNvx2RGZh6bj/9pmGQ4YQ4o8COYr+gxQNNQnh6l5NeMboqnR1F0/gtz8P3OW4EoHuUkWu03cydM5ubbrmVmVuWY9+9hVPrAk6W8J1EuF7k8jgdy07IDE4UiTjHgb2CKCBcpIzJXwLGMjIfrOpW9rBv1boJrVoGZrF4PDIhIXp/dFKTOXI0n2vHvkt8rJWNvz5I/dSYynXx1c07Cd4u2OkIVmUVgoRwgiOiQcfRA+8815PXnujK978cZPIdHzJ71jVcfcUpg1yVoCxa8HuVvihfjAo6x7B2MOzT8UAGCEFiKWVOXIduMKrHSKAUWFdBVRDxMrr07ca4vl/5L1fTyMvLIy8/D0EQiI6NJTIyktYtS8r231LRwZLt9G4JvReMBmWHfxOoKCRRQVnRVeV6zRt4n4q3YkZI8QTNY/EEXlN9blZsKuCDRX+w6j1/71Pf2zbTPNJNgwQjw6Ys45qOYYzqFYVeJ9AWFyVFbn7/4QBtY4JmFrq8iGRhdsTjbDYBx6YI9AW7Ks3001SNVlECezdkk+BW2ZOpYEj18fFVJm78zM7gSA+eLYHSnZMBRbes8d4mN++sdmA2CNzSK4zxXUMZ/fxxZoyK49qOoUi5+XiLgoJ0+qDlU0tmzle17ww25R+bE0DHjm3o2CFQMpx5LIfIiMD9uX37IYbf+Awd2zdiR/p7xMefXdYnbeUKbho9glkLvqBzFT2Jm9emlQu7dKxiBMGG1Sv58LWXef+rH2jZvhPrl37FhBHXsfDr77m8R5dy4YnPP3vnrK7rdHB7LeTbkylxxqIhEGY6QXToMcxSViArVMPiGK8ahl2uh11OxakkABICXsziMaLEjVjEw+iUwNwj7SLJZi35KYu09ALWzO5CTr6HK+9KZ+6DjVAUjfEv7GNIu1Cu7xaBKAoMbB7C/YvzOVboozq9R8FtQ9jxDeKOb/BKkWiNe0GjyxA7DCO02yh+mgTunENM2JFO7t6txLu38krHDB7YrDEgUajSX3H4ND7YKbP4gEK0CW5tradTnMrdi1fz7L4NNB8yErHvXSiTFiJ+9yji4XW1+Imd2VepSY9UbeNvQ6ROxYkiL3GRgUyN16ey42ApK95oS8Oks2sgv9DQSwL96ht4f6jIlG8cl5xI2SwDsFkHYXGuOScSpSHiCLmMEstgVMFMqHstYbbvkFT7mXc+DxSVKkz+bwYPDy0lMX0tAM1y3dwyJ5d1DySwcj+8t8pGtt3GgykzcVz+Kk/fNYaJz8xmahcjE9qc/eduFP09WE1DBfbYVV7d62Nsio6HmppYeMzL5TEKCUEqXkecMnMznFgkkQcaWTGK8Pw+O9kehZLZHzB62BAajrmDrU/cWuE8C445WZHvLS/hO0mqptQ3cVMDzzmTKABB0CGIf9tbv1aRe6KELh0DJVyOUg+Hj+az7Ku7iY2pXO53MWEy6bhhaAtMRh1Pz1hZmUhdIrhcLo4fP47b7SY8PJyYmBhCQsps8J9N9hM4luNiypPb+PDpNsRH+23EC3c3YsaCo/zv5VYs21TEG59lUupWuP3qOB5elEt2scLQl4/y5phYhrWrKChkPvglrnqDsfV9BdOhHzDuWITkzKuwjUkHTp9Gi1iJV9b659s80dvMB0MtvLnBzRP9RJLCAnYl7bCXB5faaZGo55e743DLGle8fYI1B9y0TzEyvPPF/y2eyaYI//CoapF7oqgCWcovKKG01M3HH9yP2Xx2pZmbN27gptEj+HjRZzTrXjVJ+njmDF6d+yldevVBPaUk42SmataCz+hURrLGTJiEz+tl5ksvYLj/3nLhiT59zrEsogyaBnZXBAX2BErd4YiCQmRoNjGWwxh0ZcGN6sXpyqFqEk45EbucjENOxqv6P0ujWEiUbgsWMYMQMRtBCwSvLnZ+dOcBO9Ne28V3b3bBatZhratj2sRU3vo6m7RZbfhxYxEzFmeikwSu7RpBiEHkXwPCufy1LN4bFsplqWforbfnQfqXkP4lPp+IkNSSL7S2XNm9A027X07ry28AoE1BJu8vW8iHS77knsbuCr7E8uMqL25V6JEgsnSwgcN2jXtW+2gRJXJZHYl+ySJs/Rzt4GrU4a+hXv0kwpwxCM5aGMYL+InUmezKpfdlLv0V1BJKXQrx0YEfXmKMkQfG1OXR9w+z+JnKDdWXAq3iJNyyRo5DJanmOhkXFA5zD0rChhPi2kxkycKzLgN26xtTZB2BT5eE0buXSPvnGJSs2psrUAZF1bj942yuamtheJcw1LI5LVuPeejVyEiIXuCqFiG0sChc8YmN2ztvQNdmBw16DOP9IUt4coXznIhUihkOOGBgnMgHnQw884eP9w+5OViq0jJMYubBEkYmWWgdZuDbHBfrCr2MTAqhc0Rgltjt9UPJ96jEGSWOfT2PJrc+RGS7bji2+8mgzaeyIt+foVie58OraqwukLk8TseU+qbzIlEAgiQhSJc+Hf5XhKPUg8US+N20apHE5LE9ePzZ73hv5phLeGUB9OuZyo23foHHI2M0XloTX1hYSHZ2NpIkUbduXdLT0zGbzQEi9SeD26Mw9uEt3DM6lX5dYlBcfmcufa+d3m3DsZolru8dQ8NwgRtnHGJw5whmr/TLGntkmLfWXolICYqb8OVTcbUch7vRNbgbDkUq2u/PMAoSmiDy4AAVAYjVlbJy0E5e+nwDz6zbzs+7iulbX8/geSW8OcRKuwSJ6T+XsuKQlxeutnJlkArsvMlx5NoUWta5NGJGZ7Ip/+9K+84CDocbszlgV/r3a89lPVsy49XPeeqJcWd1rMceuLd8hEG+t2qSNHP+Z3TsUUVP47pApqrTKZmqvgMu5z+PP8rt+/YEhCe0Y2d1bSehqgJFjigKSqLxyiZ0kof48ENEheYgifIZ1e4AVE2H3VsHm6cedm8SKnoEZCy6bCL1u7DqjmAQ7ahyINt/ahn/xUKRzcuYh9J5+b7mtGkShur1v7/03Tb6tAkn0qpjdP9YovUaTy7K4prO/mzlPQMiMOoFvtpVemYiFQzZi3Z0C1vTN6Ou+pjr64kcD6vPYrU91w0dRMNRD/Lo0Dv59svPaPHHJ8QoRby0Q2F/icZLXSU6JfifG9EmmHGZgRKvv//8JAR7LtIPT6CMn4t6+SOI3zxYK5J4glATu3LpIzR/WyJVN8HEgcyKpRy3XFuHFz85iqJoZRr9lxaCINAuQcf6TB/D4y7+w89jaEhR5FiMnt1EF88pU7+r2eeiIVJsHoY9pD+SUkhMyQeEeLZeNN3ad37KxyNrPHVdRdXF77aV8q9eAeeiTphE9xQd3+/1MmLfj3h6TaN1yxZkfLOBErdGuKlmV6yoGjkuEAU4UVaObdYJtI8UOWAXuLOhkZZhOrYUSrx9yMbyPDeRBni6mZUwvYiqBc7T0KKnYVll6Yk1P1H32gnUu24Sf2xfi82nEqYX6RtjYEW+l17ROlYX+Gu2l52QuSFZJfx8E5iC+E94+ByRWjeGIxn5FdbdfUtfBg6beYmuqDIsFgONG0SxbuNR+l52fhHjc4WqqmRnZ1NUVERoaCjJycmkpaUxYsQIsrKyLsk11QRPvfUHqUkhTB1Xsd/py19PsOiJpuV/t04107iOiW2HnUzu4ydTo3qE8UO6HVnR0J3yfJFKswndMIOQnXNxNRqOEl4PQZXRVBmPV8FWouKWNWLrJyC2HckjHcbi87q5be1cUo8uYd0xN3d8ayc+VKRtHT2/3RaF1VjxHu7T5BKT0zPZlH9sTrWoVzeOo0crKjvefee1PPzoB2dNpJ57dSYdO3eptL5iOV9lErVx9Uo+ev3l8kzVqcg4eoTiokLemDXznNX7ZFmioDieQls0iqojxOAgJWY/YeYiBO3McxFl1YjNUwe7pw4ObxwaOiTBTbjhAFbdUSy6LERBqdAj9WfA1Oe3clXPWG68KiAWI8sqP6zOZ/q7gcqB/q1DeWwBbDnsol1Z5edljUL4eGXxqYc8LXyqxgkXGCXIcQGaRnTJIbLSDzB3zWeM69WS1CsnMGLsBFyukXy5cC6pWfN5rrMLY5DtEgSBfilV37dCwWHEtHdR+05FazkY4Y8fzuoaawbhL2FX/rZEqkFSCD9vKKywLjREIsqqIzPfQ734i6NkdCaMamXkkeWlrMtSeGXIxWtSl8UI8qNvRScXEFP04WmHu50KRbCSb52MR9+YUOcKIhxfI3JxlVPsTpUuDUIqOSyFpSpJERI5JTJZNpWPVjn4334fDo/GmEO/ktV0HAnNB9EuIZ0N2TKX1z/9MOb9xSrZpRpp0VfTdcRAGun1XB+tQ3I5sC37hFHswhEkkZ4SouPGJAtHnDIjk42VZladCk1ROPbtfBrfPI3PSkP5eV8mfWMMjE0xc0OynnC9iEF0szzPx+Vxugo9U+cKQdIhSH/bW79W0ahBHGvWH6iwLrVeNDknbLhcXkJC/hyjDW6f2JHrJs7jrindefbRKy/quX2yQMaxw7hcLmJiYoiPj2flypXl5UB6fe0NQD9flDhkLmsfVal3oMgmUyfagMuj8McRJ0kmDZ+sERmq4+WxCUwbGkNsmI4thw6yM8tLu5Sqox2S8wSWTW+xLVvmuF1h2o+lFLvLRircHI51l4QmGVBimuFpPhx939uwF19F1w2vM61wPSUejXt6WaoVnriUOJNNuUCiZ39LNGqUxIGDFQMMTZuksHdf5lkfqyoS9fuqFfz35eeqJUkbV6/k35NGM3PBZ3SsQn1z7epVTBkzktETJnH33XdTVFTEPffcU+Nr8skS+UWRFNrC0DSBMLON6PA8zPqCQP9TNdkiTQOHN5ZCZyp2TzwgohdLiTLtx2o4hkV/AuSqFTH/LChxyAwfGF9hncen4ZVVYsN12JwyB467SQ7RkBWNcLPEyZrGZgl6it0a2XaFROvpb6IteSrHHBrPbVZxlbl0y68K+AzPdhD9+hdFu/F9+gjaqg/I7nIH4265E23MaLTlb6Glf1Xj9yVs/hQa9kLt/wDCsc0Itpwa71uzE9TErlx6w/K39aYa1DFxMLPyzdUoOYQDma4/DZEa1MRAv/p6+swpYUeOj9YJte9kaEBh1EQ0wUhMwUxEreZGSBHMnAi7B1mKJto+F4trQ+1d6GnQtYmZWd+dKP87z64Qa5VIDJd4/qcSlu31+AfSlRnn1Rky037I5fNXruDGYVfSNUlifWb1RMoja8za5OWLvV4ua5nKs28+h+IopjjnGBbJB8kdCGnZk6ynroV8W4V920cYaR9hrCjPehrs/3UpEYPG8HPZQ3NFvpehCSbiQvwGcFKqiZEp+gtCosBfU/xnqCv+K6JRw3jmLFhTYZ1OJ9EgNYYDh/Jo3bJm8tS1jdsndmL4NR1o1v01bpvYlZSkiItyXpdLIuOYBVlxk5KSQnh4OJqmlZOoSzGH5mzQo100y9dlc+sN9SqsT4ozkl3gY/vBUh754DCSAIV2hdQ4A6ASG+a/n3o0NLFmv6taImX3qEz/ycGvh300iBSZ1stMlzoSh4tU6kZIaCoIihdd7nZ0udvx7e+Kq/u92C9/jRtDX8Z48Mc/JYmCmvRI/VPaVxUOHMikuNhB5vGKfXNxcREoikp+fgkxMeHIsoJOV9lpPHAgk/kLn2bcuHE0atSo0usb16zmg9df5o6HHq8yE5W+Lo3Zs17htXmLqyRRm9asZvG7bzBn8Zf06NWLpx97hO7duzNx4kTCztCK53LrKSi2UmIzowERVjuxYdkYDWWle6fpkVQ1kWJnIgWOZDy1BWDRAAAgAElEQVRyGJLoIca8j3BjBiZdSYUMVm39sjQEvMThJgkPiagYAAENARDLl/UUE8IRTBxConJmrUe7aNZtLWJonwCZsoRImI0SRXaZT5bl8fY32ciyhturkhStB5u/JFEUBbqm6Fl71MfwVlWThgKXxtNrfOwpVkkwCzzZTiDWJOBTIcIgoFbXapF/hLpLH0LeOhfp6vsRr3kCxZYLR9bX6PMRNBXpf9NRJn+K2mks0q+v1mi/muPMPVKVFCwvAS79FZwF9OHRAGhKUM1r0HBIVQ7U1davJ1LskMmxKSREBpzlxilm9h93M6CL3ymtdthXsFy4L2huSFRgE0tqTGCboEi072AgRW8sqTpdrQZNhw7RCwxooGfTES+tokR0dQOZKdESIHxiaNByeEjQ+qABcrogCeEgJi/qgobMSl3xaM2JE/6HtY4BCMyXEILTpEHLgiShaSKZvuuRtViS9V9jiS1CEJtX+f6qRXA96ymDPbUgqdBg2dDg9SflRfu19DL5nc8wdm3Lv1/awvuLM7h1ZAPEcCvLNvkfSIoGYwclsmBpNmMGJbJwqV+qc/E3P/HNy6351+v7eWlIa/SnqL5oskL/qdtJibOy7r16hNbpSAEQl/EqyY59AHgyrBT2epfGd9xDyKpXyvf1uQPkSfYElj0OHwVujWiTgNseyN49m67wVSbc+PFshndpyhcb9nJtMnRJcKAXA+9b1AU+N0PI+UVg/umROne0bZXC9j+O+bNPQb5y00bx7D2Q+6chUgCxMaH07FKPTVsza51IKYpAXp6J/AIjOp1GgwYNyvugNE0jPT2dlJTKc2wuFDQNLgS/6NE+mmff3VVpvU4ScLgUDmW7uHVoInl5Lmb/UsDr3+by8shAefGA5mZm/lLM7X3DOTXs4ZY1rvigkJ519fx2U3h5aZ6majSvZi68/vjv6L6aROnA5yjtNg1dzlZ0vryqN77EOGMvQ3VDTP+m2F7s91OCia8oJJYv66Vkfl+1gqnj72Hh/HlMmTIFTepfvr0ANG3akn2Hk4hJ7MGhUg3KXBFf2XPQ3/N0Dy/NXoAjOoWtRZ4KA7M3r13Nw5PH8vxH82jSsTN2j99H0pU9hzenrWLeW68z4Z77adO1B0rwM1kUy3uq3lz4OU26Xka+V6NJ48bUr1+fXbt24fF46NMnKMMl+sfM2Gw+CgpLcLkMiIJKZLidmMgSDHoZfM4A85GDgpC+4rL3ZqLAkUyRtzmKZsIo5JGo/5kwaR+apxQ84CMgJw6g+ir2VCmuIEVOh6fqZVeQH+n2oiEim+viDWmIHNoAX2gqsqUeSH5DL3hLEH32skYrDTQVQVNB03Ba2lCi6wKSir5gJ6aMnzBmp0GZUmgbl4dnV9qxN/b/rXn98yh1qkL2rwfYm+7mvo4GRjXV4VM0vJszsDsCfkIns8yXm3z0EF14nIHvqMSjp9ircWe6j/5xErPaGjCIAj5F5GSnRkZ+xVEqxqD70HrSx8jYiTj/Trj3B8RONyBl/l6+TbAqXnDve/lycRZk/4EW37zC6BgART5PiisINbAr/5T21Rp0OpEBXaL4eV0BEwYllK9vmBzCweN/vjSwSSfgUWo/YucjgnytPyEcJoytZ7XvCaUPTq0uifqfsEhnX3JwIfH4a+k43Qrj/r2Wb3/1SzO/v+QQYRYdE4elMPebY7RuEsZ/H2/J9DsbExtlQG+KYe6XO5h0fQv6dIigYZKJpiPXM6xXDNPGplAnxk9U1+20kV/i49dZbcjLc6Po/ARe8gQyYDpXDiHHfsSVchUG6yIku/8a8p0qMebAjV3gUokOEZm+wcfi/Qo3NpZ4sDkUevzf9VdlH+PixYv5fkwLJpoEIs9TTOJMEASxImH+f46tJZ0BMOoC5rB5cAlFUEN1pOkg7ds14bf1hQy6qkP5+ibNGrLviAdMKRUlzqGitLlSWWK90nJ1jdanHvdM26gezCESHrfbf8zgMTIV5roEMcLq6q+Co35CIGikYqKgJIq8kmhUVSLCaiMhJh+ddNw/6wUQBYmUBMC3+/TXHnxNFd5rUHBCFin1hFPqCcflsSCrRhRVh6rpENAQBR+i4EUSvEiCG1FzosOBXrQhyXmYyEYn+IdUKu6As3VSCj0pSuVEgYfCY4WEWXSoDg+7j7koLPLSNlxhflYpiRF6Zv9SAMDsXwq4v51IjMX/ufWwepnlU2j31FGub2bg4Z5+Mqn4VNZkykQZBZ7qrAeHD4ej7NxBcujBAbbALepE+HY63PIlttTrMa0N9OPpjIHfls4gkl+qEmMREfWB5QpBwaBZjKcGEasNKtYQZ7Ip/9icijiecZSp40cya94SrrqqHxaLha1bt9K+ffvybZo0acLevXvp0aNHpf1PkpxX535K+6qEI9JW8d8XnuH5j+bRsWfvSup8m9NW8fCUccyYu6jKYdub164uP37nnhWH8YaEhLB+/XpeeuklsrOz0TQNt9tNcZGL4hIfiqJh0IskxNmIDHcjUVrp+KfCLVvJdzalxF0XDRGr7ijRxh0YlcPlQZIL6SEpugh85gb4LA3wmhrgC22MpvOrfgk+O3rHYczHf0Rn34++ZB+iLavKHnBNUdEEHb6Ipvii2+JJ6ou9wzQcvjsxHv0J896FNI4tYu+JinO80o74iLeKJIeJnCjVCDP6j66von9/QB2BTw+pDPlZ4bpkGJca2GZzkUqLMIHJ9c/TnVdl2Pod9BiPFhqL4DiLgE32bug4Ak2UEC5wf9pfwa78bYkUwFU9Yvj6txMViFRynJGVW86uce9iwKTzl5PVJjQgVxiGgEq8sPSsIrjFSmuKlfZESpsIl87gENUiThT4SfD7n/ozQ9/+epzxw+oz75vDdG0bRZN6Vt55og0jr0piyhNbcHsUYqP8jt9Tj/6LKXcn01b/KvfP+INfNxVz48A45izNYfYPOUwZ4o8WfvR9Nk1TQvj324f46Iccxl1r5KHpIykoKCAuSILYfGgxrqSBuNpOJjTtWR752cEnWz2Ma23g2X5mnlztZuEuH9c30fHlfr9xWbxfwemG747BDakC1yX7ydTIETcQXvAd1DKJgpMDef/Wt36tYsjg7ny/dF0FIlU3JZZt2w9fwquqGkaDhNsjn3nDs4SqChTaY8i3JSArOqxmO/HRRZiCHPsLBVnRUVIaSUlpFE6Pv5ZIEBTM+mIshkIk0YeoOdEQUDU9igKKZkBRjfjUaBxaPTTlJPlTsGq7iRR+R0fl72vFpkJaN7QQZgncH/OX5zO6bzQ6SWBoxzCeWpLLxB5W5q61M6mHtZxEARgkga9Gh7E9R2bkYls5kQJIOybTK+XcMsGC4wTCrh/RWl+Dlj4HwR14hp0M3jy6rJRPtnmY0NaIIArM3eJmYnsTLwy+OL23/5T2nR2WffcVs+YtoWvvvgAMHjyY77//vgKRqlu3LkeOHKm07++rVvDvSaPLe558pwyCPUmSXpy9gPZVkKQt69f4X/9ofpUkamPaSt57qfqeKpfLxXPPPcc333xDZmYmDocDWZYRBLBa9URFGrCYDgV8jGp8a00TsLljKSxNptQTjYBMZMhhoqTNGCV/tkq5AIlMDQmfPgl3RDLekMZ4zY1R9GUVRZqCznkMU/5qDPY96At3IbpP+ElT0MlP9+sVNBlD0R8Y8ndg3jsfX1Qr3PWuxt1gGJ56V3Lgt0/o33x+hX0WbXMzuo0JQRC4upGeJX94GJRatXxzuEFgcT+J1bkar21XGZcaeC29SKND5IUhE9qWrxEvmwxthsLaj8vXF7g0okOEapeFnN1oOiPENIAT+y/ItQAINZE//6e0r3YxsGs0D7y2F6dbwVw222fX4VKa1btEWuOngV4S8Nay0EwJ3XALqcQL36MXbGfc/iRcWhK5Sn/MwhFipdXUVNnvQuOep9fx3sI93DqqCW2bRbJtTxG33tiINx7vxMRhdZn06Aaev68NAOGhelxuhfU7SujTKRqnrg1OQxuSw/8g/7ibj74tK/P7JZBl+uj7wJTuvcdc7D3mJ23zv16HQ3mYr7/by+S+kcwY7ydckqcIc8Z3HAvvT7gaySdb/VHq+Tu8TGhjYOEuf2r+y30y1zYQ+fqQyrD6It8c9hvnz49ofN8H7nn+LaIiwrG/8WUtf4J+/CM2cX4YMrg7Vw56kLdm3oFYViKzY+dRWraoe4mvrDKMRh2eC0ikVE2gyB5LXkk8sqLHYiolJf4YFpMLxAsntCErIvbSMEpKw3C4LICAUe8iLuwIoaYiQgwOBDUoyh00YFjzBWyb4i5F0/yZM7fHgF1rQQltsWutsEjbiVM+K1Mr9WPJTzmM6Beos9u038HiVQUse74ZoKLXCezP8fD+uBimXRlJrFVCLalc4RBqECpkpgHSMmWe7nXuvbnixvkorQYjt7kB/YYPAXj8Nyfzd3i5obmez3f77c0n2wKZvblb3DzQ169iGmOp3cjtmZvC/yFSwbh86HUk1Q304g0ZMoSHH36Yxx9/vLy8b8eOHYwbV1G17/dVK3jo5vHVkpz0tWnlJKkqEpW+ZhXz33qdFz+aT8fLeld6fWPaSqZNGsPM+UuqHNa7Zs0aRowYwRVXXIFOp8NmsxEaGorVasUaakN3sgz9NP6MrEgU2mMotDVHVk3oJRdxlh1EhRxCJ3rRPDX3T6qCIljw6Bri1jXEY07Fq08qH24u+oowuvajz/0feudB9M6j4HKU76t5z89eCoChcCeGwp349i7E2fJmGl9xB092GIS6bhqip4gVh7ysOOzjhStDAQ2zXiAtQ6bYrRFRjZKwIAhYdBBlFBDCYhEiEzGa61AnzsSVDc1YQ4wIOj2CzoAq6vFk7KM0fXmNr7vArRFdlIl2aD0FdfsQs24OgqbyzHovn+6VGdVUB5rGp/sURjXx+9Mnlx8P301BQQExCc0vKJHyl/b9IzZxSREdrufybtFM/+AQL97TGPCXbd1xXXVzoi8NjtsUFm338PKVllo7h5cYCoQBWLQ9WIUdNd5P0ULIVoaix04d/Q8IQs0l0i8UTmah3lu4B/BnoxJjQ/jh/T7075bAR58f5MlZ2/jP1Nb0aB/D6g1Z3PjARl59sDWdu/Yl23g1PikBnZJLmHs5hkgDU65J5KNvs+nSIoyjOS5yC31MGZKIomrMWZrDuCviMOpFPvohh+sG9+Or734GYPaKIh4cFsvJVrlnXvuYT1ZOZ1yv+kxoZyzPSDWJ1jGmhZ6Fu3yMaaHnsfYS97f390jpNQ+fH9G4IVUgKkRPaKtu+NI+vXgfqCBcmIaS/6do1qwuDeon8sprn/Pgv0cCsCrtD26dcnHV8c6EHbty+fp/e7hlXMcLcjy7K5zswnp45RAsJjspsUewmC+cWqcsi9hKLdgcZhzOEEBAr/MSE55DhKUQo96FoDrPeJxTIQgg4cYkFGASsonS0ijSulEk9aCIIqKUZYB/9uDS1Xk8Pb49qqrxxufHefvL47x+Wz3qJ5j4+tccHl6Yw9y7UmgSX/2jM79UZcF2Dy3jAg/4fKdKpk2lbZwEp6k8ONlHWWnZpRFdeARh/0pykweQtGUBhbZS5u/wZwA/3+1jREsDn/3hrZSRenVVKXM3u5jYMYQXh9Vir9yZbMo/NqcCgkkUQO/evXE6ncyfP5/x48ejqippaWm899575dv4e6pG8sqcRVWSqE1pK3n1sQfLSdKp5Xzpa1bx2M3jeXnup7Tv1rPS/unr0pg2aQwz5iysRKI0RebEnm1EhofTs2dPjEYjycnJhIaGBvrANEelYwbD7dFTUJhCcWkUmiYSaswnyrIbqykfQT63SiEN8ApxuIVU3GIKHqEuPqM/GCJoXgzeI1gdv2HwHkVXvA/Jl4/AKT1S53TmM0NnP4bz58d5YEMjZs2aSXGvF/jgmdtZ/LuDD66zEhEi8sG6Uj5M97BkRCiyWtm/0gChTgto2IXI6E581KI9hhB/MsACPFTFeTVFRpB0uA/tIG/xq5BZtc9X6NGIMgq8uEPli6MqIxuKcPg/LNmUwY3t47mrQTGf7vUTy5P/g59ABS+75EN881ZfbuzfiScTK53m/PAXsCt/ayIF8NoDTbls8gb6d46ib8dINu+x063lxZMZPxMKXSrjvrTTvo6OEnft3M4aIrnCtQh4idW+r/HvTtMgR70ahRDq6hchCWceknehcKLARVx0CHc/tYb3Fu7htjHNuG1MM95buIfJNzRix94iRk5dQ0qiGb1O5JfZfWnWwP+9piSEIIkCrbqMJN88BL2SQ4zrE8ye9PLo82tTG/PIhHpcMXUrHz/anCYpIcRGGli+qYj0vTbeus9PvB8aWQdfm+mYDY+y4KvVTO4bSWyYDqXQQ55D4ZOV/ian+asPs+2uSP7VyVgeiZ7ey8TUTgaiQ0Q8Dl+5U/RIG5HbWkhEJdZDa34Fgt6IcnTbRfts/8lInR8EQeCTOY/Qudvt9O/XjropcRzPKqBtm9RLfWnlOJJRzKDR87m8dwOyc+1n3uE08MoGsooa4XBFYtC5qBd3EKv5ZMT4/IaaaRrYS40UFltwlBoBAYPeR0x4AeGhNkwGN4J29uTpdJAEDzHCSmSfnmKpDwY1ixA2UOLwkZJgosstW4iP0hMbYWD5C81JjvW/x6QoHRajSHy4rspZUUB5eZ1OhGXjApJmKzJkuibp0IkCcjVu2/TfvXy6T+HGRn4CtviAv6cS/CXBo5rqYMdzfJqey+ju9flPGxfjWhuYv8PLuNYGXrwylMd6B3qkHujld7bavOEfAzJ3s4t/D7ASE1o7Edx/MlLnB71ez6JFixgwYAA9evTA6XQSExNDYqLfM/V6POU9VR16Vs4UbUpbybTJY3lp9kI6VNEztXXdGh67eTzPfTivShK1KW0Vc2bNYMachXS+LEDSNE1DsRfhyc3EohP58MMPcTqdjBo1iubNzyw2pWlgs5spKAnD6QpBQCUitJDosDxMwrn1WmsauEjGIbSilCbIhkgAJM2BUc3A4lqPST6AQTmG5gjYj1NFKS4Gil0qh3f+zr1TpzJj5tv0v+0VprS6j+gQ//2QECoSHSIwd5uH7/f5GNtSz/TeZUI9UamoVz+OLslfaSPu349v4zeoJw6iFmWzZPsJcgptTEhWkH0+NNkLioxPEbF2H0z0tXeR8sgcHGu+onjRc6BpFHk1Ig0CM/cqfJulMThZ44eyr2HJQRXIAGDxllzuamBkVFPdaTNS/mqbstaFXzdx13Bjua9z3qhJRkr8JyNV64i06nn3kebcNH0X/TtH0rm5lQjrpZ9jomoayw76eDHNf5NvzPSx+4TM9S3Pd9pqZRRIg/AISSSoS9BRCtSsBMehNaVUa0isuByTWPtKUeXk6ck03lu4mwnXN+KTL/0ze95buIfMdaN4/M7WxEX7jUxJcSnb9hTRqVUUpqC3lJIYyofvvoAl6Qq+/eZrhLz53H1jCqfGnWIjDVzZNZpVW4vp2SacHQcd3DtrP9NvSg1sE6EnW/Px5KP38VjvXOLKZI7zHAqxoRITL4tlbloeYy7vSIzlCL5TnIXoMglzzRQGdTui1euILqk98bH1EST/71AtzEI+sPFCfpSnhSAays/9D84NdevG89bMuxg9/gVaNq/Hddd0Q/oTlBjIssrib3bx6PO/YTbr+WXVIY5l2bjmqmbndLzi0hiyChsCAgmRR4my5iKK5//b0TQoLDaTXxiKT9ah0ynERhUTHlqK0eBDUIPK5WrJ/45RvscrxJOnu55E8Qh1Yk+wfn53CjJt7DripGuLMMSgqHWH+iFc3S6USW9nUuiQmTEihhs6BoZ/55cq5WV1sgo/H/RxW0eJDcdlZqz3MPPyqgfmFrj8b/BklHfxgUC0d/H+oMjvXhnwK8IuWneYextbeLafmXu7msqDN8HleyeXJ3YMKc9I1RaJAhCk0z9X/pkjVT0yMzMZP348M2bM4PHHH2f06NGYTCaGDx8OwKZNm/g/9s47PIpy++Ofmdm+6WUDhF5C772jgiJY7lUpNopIFRUrCKgIiKAioiId6SABURGvqGggNAGliPReEtLr9t2Z3x+bZGdJIAG5gvfn93l4mMy8807ZmTPv9z3nfM/Lr0/goxVradWhU7GcqL3bE5nx5ljeX7KKxiWQpH07t7Fy9kdMWVRyztRvOxKZOWEsL02eRguVJ0qRvZB5Ga8tjyNHDjPlnXew5uVhtVrJycnhzjvvLPF6FEXBZtOSnWsgN8+A1yui1biJicwk3HQRjVRw/tfp0HYo5chT6pKn1MEjhiAoboycJsydgFE+iYYsBPziMfDf8zaVFXVitOwYZSEt5yTpCTOp1u1lQs7Xh/RDADS0SNSIEFlXEJq74g83z7XQEwykRzYkIrYR3q2fIW9fxsRNaTxWCdpHwfZ0mP8HTG2oQc4XURQVeVEULiRsIP/Xn6jxUQL26i0RdAY+PpTHxmSZe2JgU4G49MaLcF9F+OYiPo+UOYI1B9Pp06UJkYajvNlGx8jGWiKNAoqs8Ewjf45U4bJecvnEtB64l0jDzzfx7gllsCu3fizztyJS+nCfaITsUblkPf430euylbi+SwczQ3rb2f17Fiunt0ajSiQOlNlWSTu6VUnTlVWa5yooqo+sWlbT0LJ60bKgmrVUCpKgtuzL5tVZJzFoRVrWD+VCuovO5fUEG0X0dcshRfhD/NTLol4lea5VSaHrVPLnWtWypCPLU59cVxsitfuJMGQCMcVcoWrVE6GgX1mRSM/qikGTjSUiB0FTz7+DRlU8QlQTP9WXskzqX/42I56fz+z5m+j/RGeWrPSJWSz94iQDnujM4uVbGP50V2Ib3h/QVXRFF10bFPxRoPglKwIX0uKoUT+KtfErOH9yM5Ne60VwhdBAZTR3DrKskGS9hBwUwvDZmfy8/SxTXuvGgEf9lcYVjxWv4wTJ9nZU6vEEZulCAdG7yJA+tZgyZzQD0+rSLHIlWmoUybMDKLIHD0FkS12wSy0BCQEXweJlDOIB9GImctbv6LRJCKNb4D6THnB9npQcf1+quO2AGO51yVw3RAPchMHw/3f0eqQTCVsPcvpMMhcvWdm95zitWsYVa3e1+i83G+u+OcrLb/1IlYqhtG4Wi6SRUBRo3+r6Zce9skRyVnWyrRZMulwqRp1Gp/3zs7mKAnn5Bi6nheByazAZnZSz5BIS5EBQ/trZYgEvMZ5VXNC+QK62I5HOdYBv8q19w1AgsMyNIAg8e28Ua3/J5Yk2wdxZJ5AYRZkl+jXWs/SAk2iTQJZdYdDX+RzN8DKps4G2sX7bV6jmOWG7g1VHPfSNk+gbJ5XukUJg9TE3fXp0IdL4q++4pmvnPr1zbzAvdTIXEav0fO9/h1CJpeR/3QbqWn8l8l0FdYCuEgKiUZUCWbPxBx594TXE6g3oUK0+GzYnYKkQy79fHM/crzYxZtATTF6wlOpNm5NuteJVjVX2bU9k6gvP8MoHH1O9WUuyHH5ZcFEQ2L9jG5OGDuCthcuo07INdo8HrWrS549fdjJm4GNMWbiMJm3a++XTXXaEjGQUt4uPP/6YvQcPEWYpT/vOd3DowH7ufah3wPV4vV7yc5PIy9eSl6/B641AEGRCghyEBmUTbLL5hh5uu5/dqBRNA3IbVUTIZcsnnwbkCC1xCrGgeDB6jxGS8wtGx0FExYEnLQ8PfmFSOcsfYujN9H/3PXn+47lV5UnUZUvUKppquW+1lLd6vewteb1vn0CljJCMrdDtZdKzQvAeyGTaIZl156FbDOhEcMnQswI4LtqZeFhh47I19P5d5tlO9Tl4JI80m8DedC3zT7ixeuHZGnpCNRoyHWCQZHLcCqFagQVnnPznspee1XSYJ01izZo1dC8H3xXUy92UEkiexjXTMEaQiAjS4+23iBH5DqLXj0BwCcgemXCtT1HU45IJEcDt8CmRmgFHHoxpbmbYnHVEnPwR9/c/ctMgiKXbFfHmOx+uF6USKUEQJgBvXrE6RVGUcgXbhYLtQ4Bw4BfgGUVR/lD1oeCbe6ijKMpp1frFQJSiKPf9ucsoHWOe9g1wFPnW1rK4kOpk0LTjfPhULJ3qmWn5yjGWPV+Vx2ecYcNr1Uvv4Dpg85bnsqsTZvEcFv0vpe+gQpqtPm7ZRMXQPf/VENTUVB9ZmD1/EwBLlm/xk6fB3fj0w6eZNrEPFktomfq7nFWNPEcUOxPjOXnkR5bP6UNengO73Y1RB8dPpfPtjydwOawcP51FcoqVhJ0XGT2yLXPfu5fgoOIvZZj+GOmORqR7WmPNPs7cAqI37/MTDBgeTWykDS05AfvIaMiS7iBHbIuCRAgHCOF3DCShNfiJqE2+BTLygvjP9LAKKVbfR9ugkj/Pcfjvj0b014sThWjVepFmPQVWDXiMD5d+TnDjzhxxQYzBv++2LQl0aFqDiOCC3BTlnP/AarlvtUR6gDS5ivxfRRIc4Pc/LjBs9CbWr3yG2rXKUaf5eBK+fYWO3acxa8bTYAgCxVNyX1fIqtucwVzIqIPbayA65DyW0AsIkp6iiRL1h0stMKF+pgKO5Vt2uLQkp0ZitRvRaV1ULn+Z4CC3376oJ1mkkr03AVCft+i/fwETQ1dZLoSGPEzKceyaBijOdQj45IyLDnHFBMa4Fcn0ahnM63eYyLG7cSkeRKebw6letp51ERss0rWaBqcXVhxyMrSpnk/uMSHJMql5HiKNIm9uc7D6mId/1ZD48pTvGlYf95L4iIGRTXRFs72j2vg92i939IlXuGv3ZFjDIVQ6MAPdOS2ixm+chRJCDQFkh4cICWSHzNgNOUXKflN7BFZTFYx/cnKlNJvyj825Klp27EJ0OV8InyAIvLt4FeDzNBUKRzRsW4KnaXsibwzux5vzFtO8dRuM+ZmIXjdOrQGH1sCBvXuZNHQAr89dTKPWxSXU921PZPWsmUUS6QB4XEh5WQj2PKw2O8OGDKHXkGd4aPiLPHFPZxOPZIwAACAASURBVCa9/Q69Vq/knp73sWXLFpo0aUJOTg55eXkoihlJkgkK8hBiyic4yIkoKoF2rIxwyNHkeOuRI9RGFkxolTQinF9g9uxDwoHX/udClm8FlKwkFNmLEFmJTKfCOl8UHT+kwNPV4b5YEVGADKfMxmQfKVsTvxa73c6GfQ5i9LD+kgu3Al0tGuqFaMhxy4RqReaddrEpxUOXaImENJ9d2XgmF86sAXwkqnt5+C4ZHq4CYxqKvNhUKgrDizQKeNs9DZHViN78HIKrdMn6QgjV2xBlKYd341YAMh0KETctvO/2tytl9UgdA7qo/lZ/eV8FXgIGFLR7A/hBEITaiqLkXbHP28CjN3qyf3fIssKID04w4t8V6N40hC92ZVO/koHL2W5qxOipWe7mMWunHMlF973ohDxi9d8XiESUcV9vMOn2BoTqL2DWZdy0cypEamoOFktokRdq+OB7GD74noLlAvI06fEi8lRWEpVjiyQzvzwe2x+Mf3MGh3aMQZZluvdeQG6eE4Ne5GJSLg92r0OIGSLCDLzzWgdGjPuZ154r/pEqhCjIRBgOkWJvQ7nwWIY+Vpe5K48wqE8DgiPrEKRsCmjvxcBlqS8OoSpB3gOEezdj0N1GtctE/U1VWPv/ir3btxYlZrcsIfF725YEnnq0F8mXrm8S43rhcLh5fNA83pvchw5ta/HBJ9/zQI/GbN91knvuqk9kZFDpneCTIk7LrUxqbhW0kpNqlkOYDX9OPQvAKwukZYaRnhWKKMqUj04nIjTPR6BuA+lao3wCq6YBbrEcOvnyVdv9cCif38462PJ6FRxZNnrOSSNIL2B3yuS7FO6upUOLQlykhkYxIsczvLz/i5Nkq4LilVl5xMNDtaSiUghfnvIWkam+cZJPRlhV/LKQRIHP6ySbonC2HYkl6zTac9uu+zrTrXJR6OHSA05e7my+uUp+pc0Mi7c+Kfx2RSGJUmPvtq189Na4IuEI1xXhfIUk6oMlq2gUVwN99mVAwCNpCLHnEmLPpUGInpVffk1Ipap4ZC+KKp9k3/ZEXh/8JNM+W0XTtu1B9iLlpiPackEQuJieRd9/3c9TL47moScH8t74V3lkwCC+/fpLXnj5Vc4e+R2j0ciFCxfQaDSEh4cTGnwOk8nre7e9Dq4XLm8QOe7q5Dir4lSiEfBg5igh8q8YOYvXc20xi9seXjfkXCZLE06EXuDhyj4yFaaF/tUh2wX9d8lUMoFRArsXaseEsuGbjQCkqObYfkz14JQdJKZ76BQlsTXd93wkpHm50yLyU6pM74cfwpORzBcJO3kwVuDFOiIvNJCJKKhZpc5lUsrVRWn5BMLBrxDO7rquyxJqd0Kx56Gc38+UfV7iT8v0qi4yrumfJTli6XZFuPVjmbJ+xTyKohT7whR4o0YBUxVFWVewrj+QCjwGzFU1/xh4SRCE9xVF+fXPnfbtA5vDywerLnDkZB4ZuR4kEQwGDfWqmWleJ5iW9UMw6ER+O5rHV1tS8XgUnn8kFiUzn+/359KjeShrd2TTrvbNU+xzyFFcdD+CIChU1H9TIBJRtp9aUSA5vyWC4KVccNnV/UpDEXkatYDZ83/whfAt3wL4vFEpZxcyYezD102eCuF0G7iUURODNpe+Q1/lnjvrcOcDnxATbUYURUY/14WYSB13dKjqC7Ny+zxIn391jPq1o0rpHcJ0p0ixtyLHW4dPJmYyblhdNBGdyVDAzNGidh5CSJKewE0kFs8aguSDBVvKMMP+V0HU/UOk/iQKBzlXJmYXopBELVoVj1Z7/TP9GRm5TJu+nqPHzpOTY0MUBUxGHU0bV6F1ixq0blkVr1dm997TLP98J3E1y9H/8faAzDffHWTUiK68M/1bBjx+9QkCNazOUJKz43C4gwg1pVIh/AR/NuXLKwtk5oSQnhWK1ysRFpJHuchMNJpbGxVwJUyyLw/TIdW+KpHKd3h5dVUqneuY6D7tPCFaqB2j4Y5aBmoEKbSsqEEUBNx232Bm5i47KVbf5NWKQ35v2RcnVOSptoY32+h4qalc5IW6GhTA2ekVELWYtk8LkGwvK6LMYlHoYb/GeqLMqqK9NwOl2ZR/6kiVGXu3bWX0U1cXjvht21a+XzyXDf/5jnCTAdllx24IxmYMxo3A0d07+e2bdfQbPIyYIBNifiYKYJdhz549/Lx5M99+tZ6K1WuyYtaHZJ87RbcObRA1GvJkkfh161n00fu06NiFgc+9BMCW775l+oLF6PMzqVSpEvn5+YgaDVWrVsVsNvuU++TTxc71WlAUcHqCyHNayLM1x+b1pW8YhGRiND8RIh1DsaeW0svfC5OmTCX+uwQergyDagn8kKTQMRqe2gWSKNMhWqB6EAyqJhGlg3C9nUVt7iP+q2+oahKQBIFTVpnOURJb0n0e863pXu6Ilvg5zcs9MRqeqaXh2SceoObA17k0tT/9OoqEF9SoLCRRAZC0eLu/AfnpiAkzr++CQiwIdbqgnNxOps1N/GmffY8/LTO8rvjnPFOCUAa7cuvTFMpKpKoLgnAJX636X4CxBSF61YBywPeFDRVFsQuCsBVoRyCR2g2sA94F7roJ535bYNbai+w+nMuArlFEBmv49UQ+afkyeq3Ayu9TePGjk7g9Mk1rB9OsppmxT1ZGkgQcXoXNB/J46QELLy++BEBksMTQu0sf1F8LDjmGC+6HEXFTRf8lOjGn9J1UyHVVJt8dS3nzbrTS9c8olYQRoz5j9oIf6f94J5as8Ll+fSF8XVi8PIHhg+/xEacrQozKClkRuJBeGwCT+Ctnz2dw5lw6s6f3Jicnn+531aZSbFix8IKDh9N4c/oOnh3UqtRjaEQHZvEcud7aRGt2YIk0cF6ug55ktPhm7d2EcFEaiIye8vJyjPJNrKdwM/GPR+pPoXCQM33JKlq0L16HRU2iOnTuAly47mO8MWkVly9nM/CJToSHmfl562HsdieKovDJvB/oN/Q0oiDQqkV1WjWvxqgRdyMIAjnZNvb8doZaNSzs2nOavfvOEWTW83ifNiUex+UxkJJTmRxbObSSg0qRhwkxpheE290Yk3K5NWTlBpGZHYJXljCb7MREZGEy/vWKWWWBhhw0cip2TRwh7i0ltknKdJNnl9l00MrMfjEkXbLRo76BSLMUkB8LsPuSm9V/OOlYSUPiBQ+PN9AVeaQeq6vh9VY6Xm7uT9gujUQBeGrdjbdKe3Q7PkLKvXTD1zqlm5kX2xmJMou89l2+v2hv96A/nztVqkfqxrv+/4Tfdm7zkahFK0okUUf37KSy6GbaO1OQRQmbMRibzoxSkHN1cEcik4YMYPycz5Ar1yJNUdB6XOg9Ti4fOUjHls3p3Lolr49+haTUdDweN9UqVeTs+fOMGzuWs+fOY7NaefCxJ3n1nekAnDt1krq146gWaiRbNvHSSy/R7o6uvDnmleu+PlkRsDpCyLOHkWdriNvrU5c0SBlYDHsJ1Z1GciUVtb/55cRvPtShbIWS4iUtA8T/kADAuvPQNlpBBnZmwLj6cNEm0DVGwKQRsLn9L8xzd7di6LDh9HnoQZ6tqqW8QSBUK6IVHfyY6qGrRcPwGjqerOLLkUKAKj0H4Dh1ANe5w4SXRJ7UaPsERFVHXDcKwWUt+zSNzojmiZkgSshbFhBhEOhVXSzySEUYhD8Z5ieUwa7c+rFMWYjUL/jC9o4CFmA8sEMQhPr4SBQUSgn5kQLEltDXWOCwIAjdFUX5rrQDC4IwBF/u1W2JjBw3n667xI+fNKVaqO+h7z3pGA6XQmSohmceqsjqyfUQBAFBEIrEJgD2nrRRMVJLRp5v3diHLCQctvJ010jwKkhXiXe/FuxKLEnuR5BwUFEXj068PiLkVTQkW1tgkDKIMBwHSi5cbLe70GqlEhPoPR4vNpsLo8lAVpYvxnb2Al/y4ZIVW+n3WCeWrtzK0EFdmfPxMKZNfjLA++Tb34nRqEOrLf54Fm43mfQUHj4jJwaHO4jKUUcw6SR++mokaRn53NW5dkC+yaBRX9Lnwfq0bl6RJSt/Y9KHv/DBm515sk9zVf8yNrsbk1HrLyxYgFDpKEnue7noehDZ68UpVCBS+Nk3q0Ys6dyJFxMVvQvQc/mWqwVdFYJ0W8QV/x2Rk5VZNMgpiUTtTkzg5QGPqkjU9ePkqWQ+X7udYwc+ITJMg6Io3NHjbQAqlA/njTEP8t36FwH89VsK8P1Ph+nYtha/7fcF3z879E62bD9O74daIIkyoiiiKGB1hJKRH0uePRIBmejgs0QHn0O8AbsDPu9TrjWI7NwgrHaf9zXIZMMSkX3bEig1jJ5j5GtboVyFPMZVMLDhpUrY3TLNqhrxxvrv06B1uTzf3kR9i8TMXXaWHXQyrZuZLhUl0m0yUSYRj8vLs819AhNeV+keKDWUIAuuds8jXv4d7aG1oP1zIXKFnqgl+3zfhyX7HNg9Cmt+d9K/pYmp919fNEAR/ga5DLc79u3azmcz3uP9pb46TwF1oGSZzBOHaFwuAkFjwRociUtvBkEoyv3+/ZedLJo6iTcXLKNBq4LJE0HArdVz8OBBXh84kMioKKbMnk/VShXJSPmdypUrs2T5ciJq1Wfk5Pd5Y/hTvLd0NW06dik69MU/9vPO25O5nJrKgH79iatXD5vVisvlQqvVFrNDV8LrFcmzmcjNDyLfVg1ZkRAEmSBdGtHmUwQZUtG6z/rb36wb+l9EYZ23Kfu8xJ+R6VVNBBTizyj0qua7H/FnFB6u4vsN153z5Sb1aluX+J1HeLi6jk4xHmY0kzFKUD1IoFm4b8zhkRXG/+5mRE0NUXr4evNW+nX6N0unvYWy/2dsJw8gO+0MrGrgoViZUIMWXWxlYi2V0ESWx1S9PlpLJbK++rT0C7HURGjXH+HkVsQzO8t8/ULNtoh3DAVLTeSVoyDN540c11Qq8kS9/afD/IQy2JVbP0MjKMr1DfcEQQgCTgNTgV3AdqCyoigXVG0+A8oritK94G8F6KUoylpBEGYB7YFmwCLKKDYhCIKipPkGE4FJ2n6yoLj9y+p6AbJXlch9JVQqK4qsSixWq/mpVALlAjXArFwXA8fuoWoFEzNerV+k+PfHyTzue3YPw/tU47ttKcRVDebT15uh1Qb+2OM/PIBGEnhjmE8EY9xHR/lhVxoxEXqS0pzMe6sZLRqEozH6E4LVinyCxs/CRUmL1VOe89Z70Ih2qob+gE6ygUb1QVQnb0tXEKQCxn85syLpueWoXv4kJoMNtOH+NiqlviPHIovqRxy3+u/frsQtjHqiF9OXrOa79fGsWTiX3oOGgqKwZtE8utx7H6nJSTz90mjuuu9fXInCiurvLV7pT3yFoo/J3m1bmTN1EoNHjyvaLrrs6DOTkfVmdh0+zphBT/DektU0K0jMVasTPdy+GSf+OES9Js1QFIV3Fy2nSo1aRb9d4fFnLF1Nq4KPSF1jgv88ZLh0OQSHQwuCL2TQZDKRmWdDcdnxyjKnT2zn3w/U8O1gO1nsHgOBhsFzjYRZlQfNk33Kfx4uf76Vvt5ylADd02tDEIREa8qcDibTtWd5hOCBvymKcnMqud7GEARB+e6CLw9QLTahVz03anWtg7t3IokSDVu2DlivlSQO7N7FxJeeZcYnn9Kytd8DFKFReaRKEZtISsrg4T6TuK9HC8aN7lX0DGxJPEKvJ2fy8nM9+Gz5Vu7r3phpk3ohioF2pf+QebRuUZ0Rg+8A4MnBCzhzLh2324vBYODTj8agM9fB6TYhiW4izMlEBF1AKxXYOPWzqV4OEJjw2w+7O4iM7DBy8oNQFBGd1k1YSD5hwfnotGWYS75ajpRarMKryi9UF+RVvzvqZZc/r9Pr8CdMq5XAADyqZPU8bzXSjIOIsX2CNu1g0Xo5x39sOdd/bG+mv6/W7yWT41CIi5KQgJndzcQEiXjd/m+Ix6VWBQsMbVQrfQmigBJsQanQCKFCPeTI6ijlG4AoYfriacTs82h0/t+lTGIT7pJDKcdttrFkn4PeDfSsOeR/Fn9/1ULDd1Ov167sVfI+u6a9sFqdBJUbtlVRlOKxsP9jEARB+fFSVrH1VxbILWm9etkjy6AoBLvthDnz0aCQL+lI1prxqgaQpSkDJp05zZQh/fn3kBHc3edxdAX2LXHj18x+8zV6DX2GdfPn0Kh1Wx54YgDNO3Qq2ld02tCmXyIpNZ1BAwcwd8ly3nt7IgaDgXOnfqdK5XIsXDCaSpViwO27ZkUBuw3y7WasdjM2hxEFEY3kIsSQQrAhHbMuE9GbWXSuXpu/xIrH5o+kcef527iT/O+2J8l/fz2XA3M5ndn+59mR51dwdtn8dsVl9y+rhA5xevz31eH1v2tur0i2SyFMJ/DpSTc/pHoKwuuuj/Z9PnksUc07cHjcIGS3C/VrKxbksiuKwqjfswjSCARpRCoEGZg8aSKWlp2LVJpd6cm4ks8iBYeij60RMD6U7fm4jmwnZ8l4kD2YtP5z1KtyL8UGXZEemghOK/KSwZDhm4BT2y61oqFT1qBteAfGboPRVKqLNzed3PUfouz7xt9/gbR9phN6qBz8m7oJ3PODcl12pXnTqsqviROu2ebEycvENX3tc0VR+pa135uN6870VRQlXxCEP4BawJcFq8sRGL9iobiXqhBvAaeAx6/32LcLDhzL4bFXdtOzo4X7OlsY8tZBTpzPJzPHzeJJjVk7oxXPTTmI2yOz4psLdGll4fH7KhftrygKG7emMOf1RkXrJo2MI66qmV8OZvPkg1XpPmQ7x769m5gypNbkuStywdYNnZhH1bDNaMXrFzawOcyk58YQHpTpI1HXQElF+H7ZmsD8Ge8yfclqatSpy5qFvqjONQvn8tPxC7S54y4mjXqG6UtXF6uYDoEkqmWHzsU+OIXhVO+owh0Erwd9dgqKpOXXE2eK1I2alaButCdxCxmpqXS6+17qN2vBoBdeRaf3Gx718QtJlOL1kJOrx2rTYbNrcbo0qloNPkNtt9sRdAYuZOXx9GO92bXlnWveu9sCgu62SNC8XZBcMEDWqr5oRq3/A6om47ENmwCQZrMVDUbAN2CJbdCIuZu2IAkCR1XyuxoxsmhZFEoO3RUFgb3btjJuyCv0fXoY4fWa0rPfKi6cPoXDZmP2mq9YsaIOI599A6MxnPc/+o67772Lbt1aFIXEulxuvv3hMBMnDgdDDMhOFi8azaw53xNdriF167VC0egRBBuxkecINWf5FLUwUeR9vip5Uj0vkgmrTUtahq+IrihCeJiOsDAtRqOEIERdnTCWFYpaAVCtMKgiWNfr4RDEolp1AGnZHiwRPmnd3NTTUBHcUgV00iHVoeUSl5H8g5HKERriLBpiQySGtDYhFYgqBJQpwB/Hf6U6nhgRjDusHg5LJ5yRzZB1Bc+L7ELjTEZrP0BQ0pdo4gSgSoC0c0BYoeqc1McWr1KsZ+q/w3m5my+cz2jMYckeGwPahxATG4Qvzfk6UZpNEW6v3LjbHoqC2W0n3GlFq3ixiVqSdWackhbvdagP79z0LZ+OfZknXhyNwWRi2jNPk3z2DKIkMXnp54yc+A6zJowjPDKKH9fH03+UP1xPcDvRZV3mxMmTPDfqBSbP+Yz2nTrTovW3fPDO23RsUx6Px8udXUfxx6HV5GaFYLUZsToMyLLveTToHESGpBJiysKotyJ4VATzb+B6KiRPc0+5+C7Fyx3RIj+n+e7/lnQvHSM1JGZ4uCtai6wI/Jzu4o4o37vwc7qLjpE+O5qY4aRjpJ7q7e8g9/RxZPfVJ/gFQSBKJ9IoVEu0XqJTpIazcydx/rN3iahTH3P1ehgqVMMYWxVvfg5ZP8XjvXQU9+WzeDKSMLiKk/jAA4hIdw1HumMw8vmDeFe/jGhLL7mtKCFWbohUpyOGRl2RYqrjTTtP1vIJ2Pd8C14PhhKYRITe54Er9MT5QhyvN05HKINdufVjmesmUoIgGIA6wM/AGeAy0A3Yo9reESgxeFZRlFRBEN4HJgFl9yPeJvB6FQaO3ctrg2ujk2SeHLufMYNq0u+BWM5esvPo6H0kLOnI9uWdWL85mR37s2heLyygj6VfncNkkGhez+8xEgSBfvdXpN/9FbG6RAQBQoNK/3lyPTVIcnRFL2ZRxfwt2htQRpJlgYvpVdFKLspFJpW+wxX4ZWsCzz/Zmw+Xx1O1VhyR0RZ6Dxpa5JE6e/wYk0Y94/M0lYFEXYlftycWhVM1KYwZV2R02SmgKPx29gILPnivSN2oEOkpl/lx/VoS/vMNf+z7lTZ33EVc/YY889obAURt7zaV+lr7TigOG0peFootjwuEIQoyRqObiDAbkqQgigqStg4GgwG9Xs/qH7cx8rGHmblsDZUqXWeFwVsBQXNbqKX9Az/sVitjB/djwqz5XDp9ignPDWPE2DfpN+xZ9u/eybBeD/Drrnj+OPQjS5eu48CBndStWyWgj/emr6F1q9pUqRID+N7rjJwIunYfiiyLiEoKo16YyPdfjbwhcqMokG8zkpYVjs2uQ5JkYix6IiL0NxSK/FchNd2OJcrIs2/tYt7q4wzp64sCmLf6OIN7+UpOzI8/TZ/eOt4d06XU/i5kulm7PZcjl910q2MgwiQSF62hX0szeMs+UFAkPfaaD+OocT+yPhLBa0efdxBd2kZ0thNoXZcQCkaagaTs5qEwJ2rq/aG8+mA00cF/IvyuNJvyj80pEwRFxuyyEey0oVG8OEUNlw1h5AuaYjUgS0NWWiqfjH6BCUtWs2fz93wx71Mee+EVqtaMY9u3G5g4uB8z4jfQttu9fLN8Mc3adySqnC9jQ/C6MWRdJisrizHjxjNp9qIidVK9Xs9rEyYSIW1ja+LvmINqcOJkCIoi+LzSwfmY9TmYjTZf8V35+uXPbyWyXArhBZ6nb5Nl7rIIbE71vds/p8l0jtKwJd1DN4uGflWM9KnkkyB3e0UeLK8npCACqbvFRHDBco8YE5ZKVTFElePslyuKHTPF4WVPtoNMt0zjEB0hWpEaZg2NQ3VFqsuyy0n+4T3kH94DgF7yE2qDRsVKr/WqmcLQ9H4HsVZb5L1f4P1mqk9NsAQbLjbuganHywhBESheD56zB7Fveg3X/u9xuEq3dWMaigyJU0oWuCgThDLYlVsfMlyWOlLvAxuA8/g8Ta8DZmCJoiiKIAgfAuMEQTgKHMeXQ5UPrLxGt9OB4cC/gM1/6gr+Yqz74RLhoTqS0xwsWHuGbz5uSYNaISiKQvsmsHD9eTZtS2HAv6rwcLcKPHJP5YD9UzOdvPHxH3z1UUvEq5Ce34/n4vbIPP7qHtbN7nrVc8l01yfF2QmTlEJl8yYkwQWUUrysBKRkx+LyGKkacwxJvL5Zw80bNzBuxCBmLlvDxrWr+XzhXPoMGsr46R8zfMzrnD56hFlT3roqSSqNRO3dtoUZr4/x5aR06IRHlhE8bvTZKYgeF38kp/NCv0d5d8lqmrbx18k4d/IET9zZjqZt2/PHvl+p26QpOzZ/T2RUdED/exK38Nbzw4pIlJCRhOywgiAiBIdRMfgoIcElfL80vrDHhIQEPp02hZnL1tC6Uxfgh+u6f7cE/6j23XZYu3g+jVq2Zufm79n50w8s+S6BilWroddoaNyyNcvnziIxcTc9e97FU0/1AblFwP4nTlxkxsx1/PbLrKKit8mpFtweDcFmKzGRWXz91Sa2Ju5i6LM65s7sX+ZzUxTIzg0iPSsUp0uHVuOlvCWX8DA7orZ4AeLbAanpNixRJka+kcicFYfp/3AcS9YdB3wEqhDz4/0qY5+vWcuLQ7vhynYRHVby+7HrpJ3H5yTz78ZG2lXXs/6AjS0nHNSMKjtJUABXxS5Y6z+NbLKgy9iL8dQi9Bl70YSqPX9/bez/nyJRUAZ1rX88UteEohDktBLsyENEwSHpSNcFY5d0vg/QDdTAXD93Fu17PsCGz+Zz+fxZ3l//LWFR0egkiWp16tGnWR3OHjtCrYaNefjpYWgLw/ncLvS5abidDgY9NYhRb79XrMSDoijs2pWMOag5PXqYOHPmD+7uEuIP6fXeRiU/rgMzj3vZkKRwdwx8XxBXtTlVKVLF6x4jMaCqgccqF5AnGUJVqRshquVg9bJGJKJRSwAyD+4JOOZv2U4+v2SlTYSeaiYNWzMcHM/30OIqduhGIVVtgvbJqRAUiWf9Wyi/fVlyQ70Z6YGxSE164j2zD/cXU/Ae34kzXx0eXTb7dOMkiv8p1b6KwCogCkjDlxfVRlGKYjfexaftPAt/Qd67r6ghFYCC8MC3gDJkwt0+8HoVps4/BsAXPybx04K2VLD4icvXCSlk5brpe2/Fq/aRl+9GViAs+Oo/viVSz/C+1Vn1bcnFWhUF0p0tSXe3JEg6QyXzz4jCjfnIrY4QMnJjiAhOJciYB5T9xX3wwQf5+uuvubPnA9SsU4/PC8L5Pl84l2EFJOrlAY8yfclqmrcv7okK8ARdhUS9MvBx3v1sZdH+kj0fXW4aIHAkJZNhj/ZiysJlASQKwGbNJzKmHLLXy8er19OyY2ccVisej39md0/iFl4e8CjvL15Fiw6dELLTEBxWhLBohOAI9mzfiqVpNkJIoEexEAkJCfTq1YuZK9bRooTru20h6m6LauD/wAe71crSj2cQHBpGbnYWy77fSkiYPz9x1YI5RMeUo3v3LlftIz09F71ei9EUzPlLEeRZDeh1LqpVTMJcIPZQvZqFgU92YdfusqlJemWBrNwwMnLCcXu06HUuYmPSCAuT/6tFum8UqWn5WKKDGPHaZmYvPUD/XvVYEn8YgCXrjvPkv2qw7MtTV/VIPd6rKx/O/YZVa/YwqGc5po+sUewYuXaZ1jUMvPvvCAD6tQ4iO8eFpoycRzaEk9/+ddyWpkhZJwjdOxWDckbV4m88wVGqutZtK7/zX4HkdeOVSh/kibIXvdtBiCMPjezFrtGTqw/CpdH5cqRuEFlpqWxaDDMecgAAIABJREFUtZQISzkq167D26u+wGD05zeu/PgDmrbvTK2Gjf07KQp6azY6Ww5uj5dnn32OfIeD1p3vDOjbZbdx8eQxgkLq4nblsGzpR/z+++/c123sDZ/vrUShByrLpbAhyfecfp8Cd1lENqfK9CgvMriajn5VfGF+Tm8geSorwhu1xJZ0Hkd6YJkFu1ehcaiOhyv4fp/OUQbsXi/6m1R7TQgrh/6+UWib9UDJSsIzfyDKpcMBdeuKUL0V2vvGQ1h5PD9+inPTPJALx5d/tffnf6SOVGkJXIovU39Cwb+rtSn2aymKMhuYXeoZ3kZY+/0Fjp3Np3J5I1uWdiJIrxKqUBRemX6YhRMbY9Bf+2ETgMwcF5XLl5wAVbNyEJOfq8/8+LPkWd0EmwONcYa3NemeloRqjlBen4B4gyETNmcQ59Nro9W4iAkvmbSVhNTUVLZv387XX38NwE8bv4aP59Fn0NAij9S5E8eLSEpJJGrPti1MfH74NcP5Xhn4OO99toJm7Tv6igXmpCPZ8/Bq9fx68ixz358aWJFdhbMnjnPx7Gne+mgOLQrC/UxB/sKke7dvDSBR2HIR8rNQzKFIoVHsTkzghX59efT8shLvwYEDB+jVqxfx8fFUaPk3IlFw0zxSgiBEAAuBu4F04DVFUa7lif4HJWDd4gVkpqViqRDLJ/EbMJv8g538vDw+mvwGKzZtRbpGYSeNRqJ378dJyaiGIEC56BwiQzMDCE+LZjWoVsVCjYbPIctyMaGKQsiyQEZuFOk5FryyhMlgo4IlgyCTvaCIbslqnrcCqWl5WKKDGfHqV8z+bDf9+zZlyeoDACyJ93uihj1ej5njWzDl5WZFOVJjB9cqypF6bWAVsnR30bzrawAs3HiZMU9UwpPrITrEb19DTSIZ+V4URSlSKgs1lm1A5Y5uRF6HN1C0Zsz7ZmI4+x8EZIi4eTUEbylKnTku22Tf/4pdicpJwSNqcOoMuDR63Fo9KKCRPejcTvQeJ1qPC6lA2MolaUg3R2LX3JyB4VfzP8Vhs1GuSlVenbUAnaqeXeqli2xc9hlzf0gsWqdxOzHnZyJ53VzOtTJxwps0vfNujs2dhdNhR28wgKKQk5pMfmY6tvw83JrLtGldAa2mAw/3KlWI+bZCoTT51N9l1p2Df1VUeKmOyP0VYEOSwv0VBIbW0DKwmo88ub0QprtxYiNodYTVbUJywsZi24ySQL4nkDQHlXV25lrQ6jF3HYC52wAAnN/PQdixGNwlKDqHxCDc8wJi/btRMs7jmT8I5fx+FYm6Fbh5Hqn/pl259bqBfxN4PDJT5hwBYOKz9YqRGwCr3Uvd6kHF1qsx+/PTPNqzEg1rhQAgywqX0x3kWn2ekjyrhxlLT+CVFZrWDWX3gcAEwCxPI9I9bQnVHKW8/uei2Nnrhduj42xqA0RBpmrM8YCQvvT0PP7z/X7S04vXoBrxzHRiYmIYOXIk//qXT3nv0aeHEWmx8PoHn7Dl5CV6PNKX5XM+5oNla4qFAwD8unMbc9+dwoSP55ZMonZuY9GMd5m+dDUt2rRDyk5Dm3IO0Z6H2xzGL8fP8unUt3n6pTElkqj9u7bzxdKFVK0Vx/TXR7MnMbA2zK87trHp8xUsXvcVLZs0RMhORchMQdEZUcIs/LojkdnTJvPRinh0uuK/c3p6DuvWrePnn3+mS5cuJW7/z3d7SE8v2Smbk3OL48UL5c+v9a9smIWvtlwMPvGY2QVlEf5BGWG3Wln0wTQAXpw0LUAABUCSJGxWK9Vr1ylxf0WB3Dw9dnddBg0aTLDZQa1qaYSH5pKUlIHN5vNGpaRkMXPWt4SHm4mMCObIseK5kIoCWXlhnLhYm5Ss8hgNdqrHnqN67AWCzfbbzgs14qXVxNQaw4ARS5n92W4Alqzex4De9QAY3q8xC9+9g6Rf+vHJRN9kRyGJAopIFEB0hJ5yYU769OkDwKCe5Zi6/AJ1Rx7mlcX+uk1x5XRYnTKPzE/jwMVrqMGqIGuDsDXsT+5dHyC4bYRteQ7j2Y0+EvW/hH/sSgByTWF4RQmTI5/w/Ayis5KIyblMdG4qofYcNF43Lq2eHGMoaUGRpAVF49TenEiBrLRUNhREiDw1/q1ikzAetxuj2UxkufKgKBjseYTkpCAoMqdyHbw/40OGvz6ZxO++ZeSbkwkK8eVzy7mZWLMy2LptG/mygCVaYeHCDdSpU5nk5AwyM6+hQnsb4e3fPNzzg8KE/T4SBfDlRZ9n6vk4ifh2Es/H+e7ZnyFPalS+/1EkvYGsK8L6ACqbNFy0e5lzJo8Ux00gLhotxg69iHr9S4J6DMNz6Ges7zyA67tPSyRRQsPuiM+sRYjrhPzTp7g/esRHom41BP4WduXvlf2pLQixuoqKk6D1f9gk1c0NuM3yNT5+akUot59EyG4ni5Yf4vjZPFo1sfB47+YIghAgsa7IHqpXDuFilo4K1fzKXIJKolQQNXRqV42nXk3gk5WnkCRffamwYB0K8OqwZiSlWPlw4WEaNK5B61ZV2X/ay733+ZLKM5z1SHE0Ilh/mdjIi4hCrYILVM0Qq6SJ1ZLlAe5RyUjaZTOyIlKzqg2d8dGiTcu/S+C5J3oxc9kaks0dSC4Ic3Z6PGSmpTJ7ji+mNikpicFvf8DASdMJj44mJT8fjyyzf/9vvDVkAG8uWEqlxk1JtVoDhB0O7NzO5KEDGDtnERUaNSU5X6VApSgc3LmNKcMHMXbOIqrVqYOQeg5RUbBqDeTqzOzdvZtpIwbx6qz56GvW42i6T51GLpAQPrp7JxsXfMo9T42kVvPW7P/hG0YPe4rOvR7jgaHPcmT3Dv5Yv5LJEyf6JGOz01AAt85IflAEv/38I28NGcC0RSuo17IN+/P8RrRykL6g2OpQjh/9iYiIUFAuEKe65b8eq8E9HduwaFU8KdEdiqQrRXz97E5MYMOi2axduxaATJU2RYRwRbqgStJZE1SPkrH8KuuvAbE6iGWQg7wGBEEwAw8DDRRFyQe2CYLwNfAkMOZPdf7/CEs//oC8nGy69Li/RM+t0WQiNDyClKRL1IkL/KC73SKXkoPIt+rQ6zJ55pnhJCZuL6rvFhERhCiKTHrjMX786QCr4xNp1yaOVs1rsPe3M9Sv6w9Bdrr0XMqojM0ZhFFnIzb6AkHm4gIHly5lsGX7Tjp3akxsbHEFwkuXLrNp0xbuubs6sbGWEranExkZgsFw47Puqak+2zx7oW82fcnKXxjQtymLV+9j+MBWfDq5A9PGdcISZcLrsGKJKv1ZVxBwibGMH/8wbzxiR+dJptajvgHPZz9l8OpDMUQC4WaJhNcqsyIhkyeXpPHaPaH0bVRyXqoianHUfgh7/cdRdMHozv2M+Zf3kbR/A0GaG4FYPBQycHvpE0j/S3YlQ9KDUY+gKOi9bgxeFxrZi0PSYpd0OPC/zy63DAXjCZdKsMSjUopUi0ZeqWqrVhwVBYGl700FoOtj/YisUh2b24NOlXMXVq48Dms+HmseIXgwu2w4tAbsIdFERIqM+2QeWlGkafsOTH35Od56ZjDhERF89eWXnDlzlokTJzLtw0+YMm4y23cc4t7uLWjapCZ7fz3O3V2bFJyk6vd2q1Tk3Nn+63Co5M9V5Qg8VpX8uUry3H02XbXe38aaFTiuc+T6/7bn+Jcv5Pts45pTvpu58SJFuU/dLBpsTgPpbl+bPAfYPP4hskMli+6Wy+6DMEZZqNd/GOXbdOLStp84t/c3kAOH3no0jKoWxc4sG++fzOWR8qE0DPFP4kaZ/GPNUL27xGVRUBCCItC1fQR9+16IoRa8Z/ZhWzkW18lfC1oJqNOcHF6JkAeeJahbfxwn95Gx5E08GUm4vSKFYcbqa9WqJty1KqELraqEw82N/tOXwa6U/lv8t+3K34tI3SJk5zgZM3UHAO+PbXvV4nPVKwVx5mI+rZpdva9HetTgkR41kL1uXC4ZBQWDXsOXmy/Ra9h3aLUi1SqHEBVh5GJSHs0a+QY7GfaaJOf7SFSlsD2IwvWLShTC5RbJyjYQHuZAp/O/DAkJCYwfOaRIOMGpyifKTEvlzLGj6PQGXE4HDw14mohoC25VDPfBX3b6SNS8xTRqHZizBHBgxzbmTXqDsXMW0bht8YrtRSRq9kI6NGlEiC0Lt6jhsjkMj6jh4M7trPxgGq/Omk/DNu3JdgQOSI7u3smsF4cxbMZc4pq1BqB1jweJa96KNx+5l9CoaNJ/3cHkiROxixouSGY8CJQPDQFBYN+ORCYM7s+7n60sCgdUY0fiVp56tBeLVsUTEVFy3tSaFcuKirEm2wMHooXhgj9v/rHEfXfs+IN27f6CiVehYlnCs6IEQdir+nueoijzVH/HAV5FUY6r1h0A/nY1YjKsxQe26oGJXhVioV6+WhvNFYZde5WaVOlJl1jwvk8uf8CYN8gqKGYSUJ9KFClfuQqHjhwmOLqLb6WioHUYIDsNUNBExBBWtR7zv91KLRM4nU4EQUCv3cMns9bx9PAPqVw5hoiIYKLLV+FCUg6VqtUEfQyKAmmZIaRlmBEFhdgKNsJCXQhCJAgqVUChUkFO4FN8uGId1qiOHHeC26sqMr59Ky882YfpS1ZjjbiT4wWTMHFm333y7T+SpKQk0BQMEuRt/mOolARTL6dgsfjesdSUzKKi3SNGLWT2gp8Y/vSdDB/UkdkLExk+qCOfTuvJtDd7YokOAncmFovP4y9I/k+ccMWsvFhwDjJa0sXeWMV6hHh3ERZrQyCUQf+uyML1F3mqRwzlqoYW1ZSSgIH/NtOmZTT/eucUd7SLoWKB3LFQMFhVBA1pNd/CY6yMPvcAIRfWonWch/pRSFeE8okqOXS1xLq6hpXX7lK1UdWd0qmuT1VfSlGtJ8hQYhvRHPgNCTyv01w3hEqlbLcClP//YlcKoQgCDo0Oh0ZXVLMQuCHxiGtBUhQMeMm+cA7XpTO0aNmSAc+/hEH2oCCgx4tB9mCU3RhlD9u2bgWXr/5Svj6IPGMIhits17CxExg2dgJGjQY58zJaex5V6zXi8cNHGdj3EZo0qYkkiURGhnLhYhqVKkaWdGq3FJlOnxT3u4fhi4te7q8gcH8FgQ1JCt1jJIbW0NG3knBDOU/XgmQwUOPBvtR4oBcoCkdXLuTkl6t9rv8SoBUFOkWaqWjQ8nlyDjXM4ZjKKDgjRlXG2O0pdM17IGh0eI5sw7FqPN7juwpaFB+zCqZQIp54B0O9dli3riE9/gPw/nfUQW8cujLYFQdAjVtpV/4hUmVAn5GbyMt380jPGrRrXu6q7apXCmbD5gu8t+Awe79+MGDbgs+P4nAqPDugIeCTO9ercqnem/0bAB+91YkJM3ZTJTaEnb8mM2VcV9JtcVy2NiNYn0ylsL1FRdtuFOnpRlAgOsr/oS4UTpixLJ5WBeF4GWmpREZbmPzSs6xZOBed3sBHn39JpVpxREQHzjbv257Iyk9m8Oa8xTRp17HYjNmBHduYPGwg4+cupmGbEkhWAYmaOH8J7erVwujMx6o1kmUMxQsc3LmdqSMGMfrThTRo3bbY/sd+3c2sF4fxzAdzqFFAogoRHlOe9g88QtqebUyeNBGboOWMFIRcSIhVJGrC/CUlkqi927Ywa8K4IpIUWDbNj96PP0m1GsVnUPbuSOSFfn2ZsXQ1jRs3LrZ925YERj87nSO/Lyqx35uJE1YFY+mFuNMVRWlxje1BwJWxnzlAcAlt/0EJeOkRXx3yfw8aSsUaNa/arkLVaqxfvIBVn87k48XLkXIzEDwuFL2R1evWE12+Ij0e8YWkCYKAweAbIHvdXt6fvhqADz94jj6PvonFEsb+A6do2SIOq01HUkooTpeWkGAHFWLy0JQQygpw/vz5a+YE7k7cwvQ3RjN9yeoi+6FGoX2Jj49Hq712TPuIkTOZPXcDw4fcC8Dsef9h+OB7mDCuN7MX/ORbt+AnUk5MZcKYnliig8GT5yNR1wkPZpLojVMoR6R3I2HyLxQOJWa8UofRD5cjOqzk861b0cDT3aKYuOYy80YEqrNaI7vhMVYm/NwsjDm7/nIFvlsBdXH2kmDzbU8upSDvP3alDAjHTajgRY+MHgWDIqMtrNFTMYr28+f7G7sDi9W6BRGnpGNd/Oek5+SQa7MzYNzEgDYzx7/KHT3up3lB6L0ge9A48lGMwXgVWDx/DgBvjO/HiJEfkpOTT1ZWHrXjYv97F30dyHAoRBoE3v7Nw5pT0KM8fJvs27YhSSG+ncRDFbRFYXs3jUQJApF1G1GxSzfKt+mExmji0rafOLJ8Po6MtNL3B6qbddQN0vNjmo0Hyl3bpomWKhi7DUbX/F7wuHHt+gJn4iqEtDNX30kQ0bd9CGPPkQh6M9krJ2HbsR6uw8v2V8Epl25XztoUgFOl6Dn8V+3KP0SqDKhgMTP+uRa8OuwariagUZ1wFq09SUa2k0PHs2gQ51PekmWF9+cdpGuHqzPr5wc1IS3DxtN96zF72SEGv/IDDqeXEEs7LlubEKI/T6WwAzecE1UIt1siK9tAWJgDndY3I6Ye5FRo6TOcE0aNYNWCOTzwWD++XrkUAJfTQbXadQiJDAzp2bc9kTcG9+OthctpVALJObhrh49Ezfns6iRq2FPMXrWGBhViwOMm0xCCVWcCQeD3nduYOmIQYz5dSP0S+j+yewcb53/KMx/MoU6rtrivqOVydPdOXElneGfau2TYnVwKDg/wKu7fsa2IRDUtoc5VoXrgsjXraNexOMlSoyQStTtxCwumT2XG0tVFxX7V8IUL9uLrda9fs++bBa8sX1dBx6sgHwi5Yl0I8PcIkr8NUKFKNXoNHcm9j/W7Zrta9Rvy/erlvPziC2gzk1EkDUpkeRxo+GTaFPo/83yJ+wmCwBvjByDLMvfe25qYmHAe6jWBpk3qkpNfgexcE1qth8qxWYQEXzvf58svvyQ+Pp4uXboU+7DtTtzCS/37MmPZ57QoIWdRbV9KyiksRGqqL/xn9twNvv/n/ado2+z5m5gwrjfDn76zyCNlif5z30AnUSTRBy8mynlXYVaOFWujJlFpOW6iQwNJ1dC7o2j+0lEupruKvFJeKYi8mAfR5x7wkaj/JyjNppTR5vxjV64BHTLVsBMhevAq4ETEiUAWGhxI2BWBOWNfpMODj1C/dTsMWsmXZoKCRhRxiBo8ooReo+HQ+Ut8ucCn99XnhdEYTT6PZGZaKl8tWUhcvQZ+IpWTAQoooVHoDRpemzCJiIhI2rfT4fF4eaLfFFq1rHNVAZu/Ahl2mUijyITtDlYd9fBAFYGvz/ls1bfJ0LMCbEyC+ysIhOsENCV4aW4Eok5HVIOmxLRoS0zzNhgionDbrCTtSOD8jxvJPlncrpSGLpFmPj6bQbdoE8YSJmFEcyjh9w0huOND4HHjSFiOK2EJSp4vDPJqZf00ca0x3PcCmkp1cZ/cS9aa9/AklU3F9VZA4e9hV/4hUmXAZ9PvKlpWruH6bFIvApfbF+rSqc83VK3o+9C/80pLTp3Po43t6rHxfR+oVbS84+s+LFt3jMmTxpFqa0Ko/iwVg39BEP5cXgtAelYwChAd6fdGqQc5x60KGamprFrgm3H6euVSdHo9LqeThwcOJiLaEiDJemDXDt4Y3I+J85fSsASSs3/HNpa8/w7j53xG43Ydinuqdm5j0YSx/8feeYc3VbZ//HNOdtI9wi6FsvcWQRT3RFFeZCrILoqigAiIVhEVBAEVyhTKnqKo4EDZGxmy917dK0mTnPH7I22S0paW5au/1+919eKQc54nJycn93m+9/jefPvjaiICzORodKSag5FFz63557bNzProfd6ZMot697Ys8KM5snMrkwf249VJM6jeuFmB9z++ewdrvhzD7K9nkZKRyaiJX9Lj4wneNN7DO7aSEPdOkSTKXz2wOBJVGPIWmZMWLKNJIfNnZ2d70wVbtPhr1HEkRbktWd1cHAe0giBUVVU1zxLXBw7d7sT/b6CqmBQ3FklGq3j+BMCt0eLW6Bi3YGnx8siqyqMP3E/3Zx7H4XDw+YSJbNu1m8CQUJ7t2JXM9DQcdluhQ0VRpEePp73/3//HTLZsTyG6UiMyMkUiw7KIDM9GLEG0pG3btkRFRRV4fffWTQzq1pHxCYsLJVE7Nq5nULcORZKoxMQ0rNZQ+r86nvip3xLbtw2xfdsUGpGyWoOZMqE7ccNfwBoZBPKtPwPtSnku8SwCEuWZh97bzaNwDJpymq9XX+OVR8IZ94rPIRZk1tCxVSjTfklmVOeyAGSXeh5VNBJ05R8nNHdbKM6mlNDm/GtXCoOqUgoXUbmVVWcVA5fRo+aSAV2ejLUAXcZMBjwrR8nvt62/7ndetV4DgkLDyExLpWuzeoSVKkXl6rWoWqcuktvttStaRzaCPRM1IBS0OgwGPT379QfgwKaJHNj3NUuW/s5TTza/u9egECTbFCIsPvL0fBUNK096nqOrzqk8W1Fk1TmFF8rD27Wge7SG0DskHgEQUqUGjQe9hynCittuI2n/bq7u2MzVXVtRXDff9Nw7r05DdYueHek5tA7Pn4Yf+EB7Qtv0RTQF4NyyHMdPU1FtaUVnKokadPUfx/Bgd7Tla6CkXyM74W1ce39Bkv5+USh/qKparN2Q1f++XfmXSN1BVIkKJDTYQGS4CYNeQ1mrGYtJx6wlx+jbuQYrfz7HqXMZxFQMvuE8OkMQjz03FLtUmjDjccoE7L3tSBSAJImkZlgICXbmq43yX+SkJCYSbrXSqVc/Fs2cisFgZMry7ylfpWqBdL49WzYy/8sJfDhjLg1btipww+/buplRfbszcnoC9QqJRP25bQuH13zL4oULETUaUo2B3iiUZ78n3W9Y/CzqNm9ZYPyx3Ts8JGri1EJJ1LFd29ixfB7Tps8AjZbz5gh2//4rz12+hLVcOQ7v2MqXA/sxauY8GrQoWLO1e/NGRr/5Kp/NXkCTQtQFi8MfWzf7FpmFkCiAi+fP+6UL/jW9qe9EREpVVZsgCN8AHwqC0AtoADwHFPyi/8dgkN0ESjkESE60uek2kiAiiRpAwOxyIGIHB9j1ZrJMQaApaIq1rhwstjSCwoP5de1aZnw9B0GjwWixUKVGLZbOnk7nPq+yZsVSegwYRLi1oLgD5KrxpetJTK1IpcqVCQrMoVREBgZ9yYl7YSRqx8b1fDU6rsh0vh0b1/PGSy/yzfLCSVT//v2Jj4+nW7cnSUjwRJ/ip33PtUvLiBvR3lsjFTf8P94aKcBDom4DbjWQS+42aMimHIvQkXlD/bykdDdfr/bIxsxem8LQF0oTEeBLy+77WAQPjjzBkLalsESUxRb+EObU9eicBZUR/z+jOJuilMDm/GtXCiJQlYjCgUVQSFe1nMaI4w4ILtdqeg+yLBNRpizlKsWQnZFO5Zq1WDVvDu169uWHhfN4oUMnLDkZqAYTanD+TJTNG9bT96VRXLm4gjde/4/nRT8hibuFpCyZyEANw3+1MXe/k/a19Cw76nFwrzwp83xVLStPSLwYIzKikZZ+0S7CcrW27hiJEgSiHnqS2j1fw5mWwo7Rw0g+uBdVunM1Rg+Em5hzIZNWYR4Huqg3Et1rBKFNH8JxZAcpyydgTjla9CkGRaJr+hy6Fi8ihpZGvnYa++I4cnb9CPI/R/Cm+IhU8Wvju21X/t509AY4eTqJEaN+4NTp5ML3n0lmxEdrOFnU/tMpjBj9CydPpxS+/0waIz7dzMkzaYXuLwyiKLBx0eOEBunRagROnsskJSOHzbuv8cmQpjzaqjyjv9pzwzncioWzWc/gkMIpZ1lH2cA9d4REAWTaTKiqSHhY/o7jtWp5FOH69+9Pi8qliRvYn35DhvPQ088x7dvVNG31QAEStW/7VuZ9OYGur79Fw0LUxg7u3MaSKZOImzmvUBJ16c891A02Mvitt5AMJhKDIrEZLF4SdWDHVpbFf8m70+cUSqIO79rB2vmzGfDFDGo2Kzj/yT07kU8dZNInH2Ey6DgpWNAEBFG9yT2c+nMvR3ft4IeZ8bzx5YxCSdTebVtI+GI8730xtVASdfjwMUaMGMvJk2e9r6mqyo6tW7Db7WzbvImF06cwaf6yQheZJ0+eZMSIEYiQS6IKYsT78zl56kqh+06eusywd+cWuq84KKpa7F8J0R9PM+5EPE27Y1VV/d/0HKsqgbKTKGcGFXLSCZJyyNHouGII4nyglUuBVq5ZwkkOjOBKcGmuBlrJNgRgctmJzLyG2ZGJzu1EUBREWSIgM5ngzEQEVcUebKXcvQ9is9uRJInUxESOHfqT1KQkhnwyjgqVYpgzeUKhp5WdreXk6UAuXzGj08pUjkolqtzNkajCkEeSXns37oYkatK8pQVIVGJiIomJicTHe9KKEhLW0L2bJ/oU27cNVmuol0QB+UjU7UJRNVx2PwWIlGUpOjKLHRMZoqPHU6UAeOWR8ALpfeUj9FQqpefwhRwyS3dEUNwEXv3mjp2zJKtsP27DJd12FLlEsDtv7d74167cWWhVhaqqjZrY0KJyTDVzBDPOOySLFlm2HKMXrkBVFLLSU3Hl5LB97c+ERUby+kdjqRQdhSUrBUWjQw0vi3//g0sXL3Ly+DF2bZ96R86lOCSlexb+Q5cnU+f987y+MJG5+z0Rn2WHXTxf1eOI6lRDy6f3G/m9jY4RjTyvhd3h3vORjVtw/9ip1Ov3FqlHDrBp6Ksk7dt1R0kUQHmTp+ot3a2gsQRSdcgkQho/QMqKSVz94jXcl08VOk5TsR6m3pOxvPcrhqdfR0k8Q/bM18ka8wKuHSu9JMopqxzKUJBL/ru8LaQ4b/59VIq3K+rfwK78syJSBk/qxKZN+3ih80SWzXuTmOoFi7TXbzrCkBFL+Wx0Z6rUrJVf+lvQsH7jQdp3mcmyBUOoUremb59s945//6ONfDDsKarUrup9PW98HjSF6NdXLA2b1rbmwzE/otdraVj5fY7dAAAgAElEQVS3HPc0iWbjH2dZtyORrb+8jSYiHAppouuW9Jy9VhNZ1VKp9FHMBjOIfrLX/mP8m5T5y59rfZ8nVfKloFxxSKiuVCCRY47G4PKc+8eDX2fZ19N5qkMXVi9ZAMCimVPpNPBtXuj/OuXreSTM/aNNe7dt5pN+PRg6eSbl6zUkxe65PnnHHNq+lRXxX9C23wBK16nPlSzf9dOqCoGJ52kWVZpsp5vTooV0VQd2N0quNP3RnduYEzeU7nFjiKzZgKTsHO/YYEHm5NHDJHwwnBeGfkDVRs1QFJU0u8+IJR/ZT0OjRJ1OL5IkiRyw6chWZEw6sDucnDl5im+mfsljrw5DW7EeV7J8EuwAu/b94a3pauYnPJHs8vxgd2xcz6SPPqT/sPdwWJvzZ4aKoiiMHjSA339cRWpSIoEhoXw+fxm1mzXHKUn5lNvmrNnAWy91YNycRVSr5ff9an0ppAD3PKohrFprUiFfb4ntG9czqNu7dOjVj1uBfGdS+1BVNRVoe9sT/UMhqCoBqkSw4iLY7UaLiksQSdJbyNIaUXJbH+iE6/xVgoCs0ZJlDsZuMBNszyDQ4VvQe+4yAbs5GMkSDIJI+UoxzP11I9PHjiY4NJxa9RtQv1lzVs6bzdVLF5g4d0m+t7Db7SQmWsjO1qHTyVQobyPIkn1HekGlpaTgdrtYs+cIASEF1SvTU337Q8Pzq3jlRaFiY2OJjY31bPdry5TJgxjzcQ+s1tDbP8EiIKkWLrmfJUctQxntD+ilkjvJxvevzNvPRBQgUXlwSSoWi4Wc4MYEJH6PRi6eoJUETrdC7/En2bg/gwy7wokvaxRI9L/TmPtLyYrir8cdSu37f2NX8lRvJT+PeUmkzZ2SQqggUUOTgwaVE5Ke87IOSQXwPAeuJ6WiIBS6bdb7bI/JX7Ex95iKterwxQ9rWfzVBCLKlKVmvQbUbtKMH76eygcjR6LRG3CFlcGs9d33YToIq1Seuv37gvP7fG06kPwiUi4/J7bLd0/Jdl/N/+VLSVjDPeI4UnYaialOrGEGXJeSSUp3Exmi461xR5mzNYsOTSws2e1JN1yy20bbGA3fnpLpWF3LkOoq/SuLhBlUspMcaOyQnrvsyHD61Cntbt8aKsvl23bKmkJf90d4rfrU6NKT0Gq1yL58kb1ffMKlLevuuPpiHsw6GRkVqzWU2sPHoY2sQMrMoZiO/Ywxd8lnCvatA5XStRAfjEWs2gLVloqyfgbyvh8h5TyqQ/HQbwGckohdUnn3gMLhTJBUWNnSgN3t+44V1XcPyX7bYUbfOsRfej0gyHf9DBZfCYrG756bttMJ3FwkrCSpfX8Hu/LPIlLA+o0HGTv+O5bNe5PW99fOJ5kLHhLU/qWvWLHgDe6/r2ah49t3+YxlC4bQ+v46+XtS+Y3/Zu4rtGpRkKRduJROhXKexYPbLbN2/XE2bT/N2fOp2OwuNBqRpQn9+CTuecDTX+qbVfvo99ZiVi97jYpRhcuDuiUdZ67VRJa1RJc6itlQeN3DbSHP+AqeglKAZV97FCJXL1ngJVNtu/ciNDISc2jBRc3+bZtZ8uUEhk6eSd1CapYObd/K+AF9eOurmdRo6lPPE1SVSNWJ1Z0NgSYOXknGXb4K6nUruzwJ8zzhiLzzjsRFOdWBVoVK1Sry6OJFnv5PSgZORGw6AaOgYJBdmBrGYHe52Zuj54JbxF/6MzPpKr/PmUrHT+KJbphf3Q88NVNfvNHPW9N1PfI87Z/PXZKv78+Gn35g345txI74gNEDY3miXQeq1a5bYPyuTRuY/MkHjJuzqNBmxf4oLFK1c9N6xr37Np/NWcgXH96aOMUdqpH6fwNnIZ5+p1T4frNWIFyUiBRkwkUJreB5EKWjIxkdaaoWnSSCJJO36NFpfJNpRN+9mFezkK4LwKi3oFdkdIqMILvZuvsPdm/ZTMrVKzhsNoLDwnh7whR6jBwFeFIJVi2ax6wxHzH1+1+QjUaSs7PJynSjzU5H47SjigbU4DCcASGcQ0SwF86i/D16ShHb4GviqAsIoEFulNa/RUKesyAoNIz7Hn4s33skJnrsTV4UKj4+nmtXVhE3orUn+iTbsYYKvtQgf7uu+glh+Ntrf0eWvzPJ7xhR8CwOXLKF87bWSKqRCpa1BOmvoUrhfkN8n0Mb4COHSqAveh9VNn/fQN95iDjUU4TWqwOAOSwHU2ilfMf4z3997YTi8C0uVD+Zc8XhZv6vSaSmu5nVrzy9p13iu50ZdGgeiDFXZUzwr3vR+R7nosm3wBL85NX95dL9ZdcBNGZPTe+UH/7kVnCnFjz/yxBQqSzmEKVxk62K/OkyYVPzvuPbixw4srM4sHkDJ/bswp6WjMNmo1zlGPrHfcyrH40FQKuqrF08l+ceaIkpIBBXeFnUQtKObxaJyTasEZbcbQfWCBOvvbeJqQsO06dDVb54rykDxx5i5orz9GoXhZLt4Oufk+jUOpxFWz1EbcluG/+ppWf5YRdd6xkY0VDD4MYq4SYBe5qTMMPd6RhuKVuemi/1oXSTFjiSE9kfP56LG35Ble9+TXNopJUWcV+hCQsjefLrOE/sxnR95xtTMMLDA9A2eh7Vlob8yyTkbYvB5Sh0ToClFxRC9AKvV9Uy75ybDYkKjUJUNHep67pTUll67NbSCe9QjdRdxT8qtS+PBA0b/JyHRF2HTVuO0v6lr1g277UiSdR/Oo/1kajrsGGzb3xhJGr95lN8/9Nh7/9/WXeMrv0WoNWItG5ZhU3bTmONCPA2xDx89DKPPf8V73/6Iyvn96Zp4+hCP1ceiZJkHdGljt1REpWUu4ABSEnyeIU+HjKQh6tHMXXMR7Tv0QeAF7r3YuSX01h18DSDxhSeJpSnrtdhwJvUvbdgut2RXTsYP6APg76c7iNRqkqI4qKWnEl5xcG+ffv56cQFXBWqlohEGVWZGmo2FVUHSZk2Roz+hLUnznFWNHNZMJKZ6wsIFGSyMzP5afVqNp2+yiZXEJckLf4k6uSeHVw9fYJnXh9aJIma+HrfIknUrs0bvelKhTVPtQQG8tOyRQD8uHg+/do+mX/8pg0M7t6JAe9+UCiJ2rp1a4HX/JHXh+qtDz8lIy2NcydvTW1HVtVi//5FfmhRqapzcZ/ORh2tk1BRJhkdhxUTO9VATmAmDR2F9esoFoKAJGqxaw1k6M2sWPUD44cOwhwYRM1GTdm7aQOlK/h6Oh3d+wevPvMIqxfNY9zilVSIikJvS8eSeglDymVEVw7uwDDU0pUhMAyuj4j9RUjJtT39+/enVKlSxMXFERsbC0Bsv7YFUvjuFpxyAGfSH0JR9VQKXE2Q/sbCErcCm0PCaPYQM20Bld3bQ5WyRkIsGtJsMqO/SaTXtLtTe+V0ySz96SLXUm6tSP5fu3J70KNQGxtRGjeXZB17JLMfibp9/JQwgxWTxhISaSW6Zh32bVpPuRifyNWeTesZ1aMzz953L6bAINwR5VG1xYjh3ACJSZ5Mj/6Dv6FU3cn0f+cX+r/zC2XvmUvPt9cxdYFnLTV9yQkOn0xn5orzAMxccZ6vf/asVRatT6FDU48EePcWgYx/zMIffYIZ/ZDHcRJuujsLfwCtyUztV17lgfEzCa9VnyPzprPu9W5c+H3NX0Ki9BGlmfH1HPTBISR/2R/nid0FD6rzJEL/FdCgDcqWucgT26BuSbghicpDtEXArIEkJ8w642bO2VsXx7gRslwq352UyLmFzEeVf4Zd+UdFpPIiSa1aViuwb/2mI8R9vJJl816jdasiIlFdP2f5wrcLJVHrNx5k8PCFvvFS/qLJ9ZtP0b7nQvasG+h9LSXVRmlrIMPfeoQ2nWbR5onaTBnXDpdLYvgH35KwaDvvvf0ksT1becmVP1QV0m0RXE2LQlVFoq1HMRuyCxx3s0hMTMZqjWDwgP7MnhbPK31jsUsKS2ZN47nnnuO7774DPNGo346dp/ugd7w1UKGRkYXOeWDHNj7u14PhU7+mZrOC6nwHt29h5dSvGPTldGo3b4GkqJgVN6UkBxZVIt2Rw9sjRnDPS32oUb9ge6IjO7fmJ1GqSimclFNzkBHYcuYyg7t1YsCk6YTVbEAqHln5vHXr7m1bmfN2LN0+nYzOWrnA/Kf3bGf9rC8IiihFzA1I1MAvphVOojZtYMJ77xTarBjgyP59HN63h8nfrGZ4z6682DuWeV9OQJZlNBoNe7ZuZnD3Toybs4jGhQhPePpIxXLkyJFCr//OzRu9fajMgcH0evYxXnljMLMnjSv0+BvhJusV/sehUlkrUVnnRifAVVnLJUVHhipi8PtN38nHeVZ6OuUrV6FNt14M7/wCz/fsS5eBQ3DYspn83jB2rVtLv3c/4Kmnn8HosqNPuQSApDPiDghFNgaAKKL5L0oR57VPeL5LN1YuSAByo1DXrhH33pN3NYXPH04pkDMZD3rsa8BqjNrUu/I+doeM3hSGG9CqdyatD8DpVtFooH5Fjxv6zacjmLex5CmJN4P1u5J5ZcQffPpWHd75/OBNjy/Opii3GVH5/4xg3FTFgYjKIclIkppHYO7cNbNlpFO5XkNaPNeOT1/+D92Gvc9jHbuSkZrCF++8hZSVweQvvkCrN5AZYsVwGySq/5tziZ+5jm4dm5Cw2EMA4hP2efcnrDhOt3bVSFhxnD4dqlKrSgi92kUViEj1eDySTx4PYOQzYUQGasg5n06E+e7btcj6TajX7y2MYeGcW7ua40sScGXefSGNPBjDwqk/8ktyNHoOfPwmkWkHChyjbd0Nsc1g1Av7UX/8GOVKyR2rLgUsWmgY6rmWL1bQsj3l7vw+15yWGLnlFklaCdYqf4elzD+KSHkjSUr+nifedLwFA2jVskaBcRs2eUjUsvlvFUmi2nf9nOXzXuOB+wqO37TtDO17LmTZrM7etL7lq/5kyPvfs2ZpH15/ZyWhISZmfdEBm81Fu+6zMBi0HN75PpHXSVfmwek2cjk1GltOMCZDFuXCzmDUF+9FKAqJielYrSH07z+C+Knz6NbtPyQkLAdg9rR473Hfffcdz3bqyqpF82nfow9hkVZyiimS9EiYf8zwqV9T/977cF3njTm4fQufvdabwZNnUbPpPRgUibJuO0GKGzcCO85fZXC3zvQbP5kaTQtKpHolzHNJlF6VqaTaCUQmDS2/7T/C+AG9PPsLGX905zZ+mz2Fbp9Opkrj5gVStU7v2c6idwfQfUw8C0e+id6UX0b+8E4fiap1T0HhirxI0pcLllOvSTN++3EVLR59wtszY8+2zcybPIlGLe6jYfMWrD7oKQLdsPp71n63gnBraeZM/KzIdD5vH6lcglvY/vdf7+vtQ/Xb6u9p+fBjDIwbfUtESlL/Te0rCURUGhldlNUpJMoix116XHcgzeVGWDN/Dj/MncUni1cybmAstRs3o8ew90hPSWZkt45EV6vBonWbKaU4EW2pyKKGHEsIbmMAqkaLXnNnCtFvFSm5KcN57RNWLkige/fuzJkzh9jYWKxWKyh/DYmyu0I5l94UgEoh6zBwd0iUqqpkOyQ0es+zQXsLrUkybRLbD2XySB1Lvh53mXYZi0FEEASSZtZEVmDW76lsOWanZfXCny23isvXHLz0bBQDusTcEpH6N7XvFqCqlMVJOZzYETmOhQz1zkZZVFXlh/gJHNq6maGzF/N5v2480r4zbV7pzdXz5/ioR2eead+Rfl07IYoiGcFWlOLaMhSBxCSPEyF+5joAEhbvpnunJsxZtJvYbg08+xL20a9LLb76sBWj3qjjrZGa+HZthveq4q2RGtqhHJEhOtxnk4kM/GvsmsZool6PAUQ9/BRZF8+xZcQbpJ8sWhnvbqFOz9fRBQTRq2sX+hqSibxOb0f3UE/0Tw9EPfQL6sqRoBS+hkt1qpzMhPrX9fW1SRCm98jmf9fSgEOGJRecXHYolDXdWaKaaFfpV19HhlNl0dGbC0up/DPsyj+KSBVGgjb6p+MVQqLWbzxMn9e/LpZELZv/Fg+0LBjJWL/5BB+P/41lszrT+r4Y3G6Z9z75mblL/uCnZX1oWK88p86mMGzgw4iiwPMvz6ZSRSvxEzp7olDX1WApisjV9GhSs0sjijJlw84QGpB4W0Xg/Qd8Sfy0H+j28qMkzP0VgISE5XR6uTuL5s7JF5Hq0KED70yeyRtxHxdQ4isMeRLm705PKLRP1OFd2/nstd4M+WoGDRs1IsyZRaDiQkbgmsbE5r37WDThM/qNn1youp6XRE2cSvXGzYlUnZRXHajAGcHMll1/sPizUflrpvyQlw7YbUw8MQ0LSqCf2b+LRe8OoNNHX1Kl0T04HTb0Jgt538qZvTv4afzIIknU7s0bvZGkRve2pNMj93H5wnka3duSUVNmcWD3TmZ+PoaREyczdthgJElCq/X8rMpXqszyr2dw+vhRJs5bSqNCIl1bNm7w6yNV8P3zSNb4uUu9wheJVy5jLXvrHeT/rZEqHhpUmplcRGoVjrh0nJU8C4s7LADlhdNhZ+aHIzmwfQufLv6WMtGVuHLuDL1HxOF2uRjWuR2tnnia/n37YnbZkDQ6si3huHXGfEImdxOpSYlem1HY9keDBrB01jRe7NnX2z6hU69+zJ4Rz5gxYzwk6i9ChqMsFzMaohPtVAzeiEGbhXpnRbW8cLoUtBoRVROCRs1C4ObSfuw5Mg++tg+bQ6bNvaGM7hGFTutZzLSuG8ibM87z3nPhCIKAVgPlw3T8sDfrzhOppBzKRl5fgFFyFFvL8K/NyQdBVYnBThgSSeg4jQkFAW4oxn9zsGVmMP+DoSRfPM87c5YQHBFJ4vmzPNG1G7bMDN7r0o4ebw2h0+OPAJARdPMkyuvEfT3e0/Ot14PE9nqQ+JnriH3lXqaMe4Exw+/x1kiN7F8Pa4THmZlHovJg9ZPY82+G/VcguGYDqvUchKlUWU58s5ATy+ehuP96mfAyLVpTullLDs6bwsXTJ6Fm/vTnPBIl7VmN+GNcgTVmHtKcKp3We+LAz5eD7pV9IiONwwR+uKzyVBlP43azFgI0An+kSZT1q6+8E7hmV6gZruHNJjoWHb25jKuSEKm/Q43UP4pIXY/s7BxCQy2cOTiegICCD4Ds7BwiwgPZs3UsAQEFm9lmZzsICwvkzOHJnv3+6nzAxq0nGTLyW8Z/+AT3t4hh554L9Bv8LaWtgexd/yYXr2TRus1knC4Jt1vm88kbyMmRvCRq955zjJm4hqEDH6NJw4ooisi5pJrYnMGEBV7DGnwJrebWnu55xisxMZ34aT8AkDD3V7p3a8+chGXE9nuJj76YzfsfjyHSauWKQyJ2wADCNSqS01EiEpXjsBMcFsb87fvQmQo+tB22bIJDQlm6YSsRgoLBlYmMQLLWRKJowG53YA4O5c34OZgCAgvOb7MRGBLGuF+3EWI2EiVnE4BMBlrOCmay7A4CQkMZOmcZJoul4PtnZxMQGkrc0tWoAQVFPJx2G6aAIAYvX4/BbCErJQlFUTBaLNgkz35zcCiffPtz4fPbsokfM4rP5y2hcYtWLJ41Da1Wx28HTzH81d48Ua8qkaXKMHTs5zS+9z7WLF/CuGGDGDp2IoIgUK9pcyaOfIdJS74plET9sXUTs8d9zJwlKwpt9rt100bef2cIc5asIKaprybt2uVLWMuU5Y+tmwp+aSXAv0TqxhBRudfsJERU2evQcVW9uw/0/Vs2MvO9YVSp34DPV/1KcK4SnkarQ5IkZo8ZRc269RjYszsalw2bMYAcSyh3RILvBvAnS58MfoPls6fzn1c8NZXXbz/T8SV+WDwPgKWzprH19FUGDI/z9rb6q0iUrGhIyqpJsq0qZl0KUUEb0Iqu4gcWguTUHEJMKqJ44+t84nw2Za0mXIL1ptP6VFXl88UXqBtjYdKbVenz8RFavXGAjRProgUaV7Vg1ItM+DGZt57xpF33eDCESWtSUFX1jqaUXk7MoWHNW5ea/yd4jv9OKIeTMCTOY+QSeu5kgrCqqvy57idWfT6K+g8+Ro+PJxIU6HnGaXU6JLebmR+MoMlDj/L8M88guBwkBUagvcl0vjzy1O2lh0iY9zvgiUZdOz2JuMH3Y430hELySJRnu+Ba7L8JS6XqVG8fS2idxuQkX2Pb+4NIPVryiKy5dFkCylZAZ7agNQegNZvRmkxojWakHDtpx4+Qdvww7iyPbciWFCwaIV/kOQ/Wxs1p8NrbpJ04wpYVCwnS5o8OGeu0yiVRP+JcOBxTUOFLeEVV+eqIyqPlBLpXERiyU2FXKsR7AvQ0DROYeUrh16sSj5b2zPFoKR0HM2XalPiTlwzXbCqtK9zavX0nVfvuJv5RROq4/BwA1SyeLyXADAaLSl7prdsv5UxRVTAC1eG0qkJuima+ugE91Gvqdwnk9d7NTesv0a7bHJYtGMr991Vh7e9/0rXnfMZ/+gqdO97Phk2HGDthE3EfxDJh0gomJxxk564j7Nw+HW1oc9av30b7F4ezYsVKmtx/P263m/Pnz+NwOihXrhyhISGekysMqq8YOjExrUA9Qf9XxxM/9VtiY2OZMmUKnXrt8Hp/B4yZQJdh4wiLtHI4LRt0ZpLSsj01PRFlkNOvIqddI9ES7l2I+V+3fDelIBIWXRkXkO3wqXa5ZBWTKhGpuqleJgwNbrIVDWdkI4mqFsUtoKgSoMNQpjLZskp2lsv3veRdbkWLaI0mFInqUiZuFfa69FySNCiqG9AiWiuRrQpkZ3vGa/2+P7PRTHaWjdFdX0Cv09H04UcJDotALwpUrlmbB55qg6tsEA67HZNZy8rvVvFgm7Y0jIok1JhHvKtjK8LrZAwOodNb71CmbgNGj3ib379ZxuiERSS7XDzeqStrViyh82tvUrtpc3IkiffjZ9Hn6UdYmTCLilWqsfnXn6hWrz7HDx2i4X2t8829Z8tGRvR6iQlzl1CpSQuuOCT8f46bN6ynZ6f2uc2S7+dAhu8c9+zYRrX6DXnzpQ6FnndxUP+tkbohKupkwjQqux06LktadHcx4LPh2+UsHP8pfT/4hGaPPJ5vn06vZ974MZw/foSVq1YhKjLpgRG4dEa0d5BEpSQlEn5ddCmvLcJ/XulD36EjWD7bo+6Z9+/12z8snseznV9m1cK5vNizb5HNge8WVBXS7aW4lhGDpBgINZ2jTNABRKV4EqWqIKsGBCRvNGnN+gt0fH0dwQE6nnygLCGBemRJokntUJ66vzQ2hxOXS8Fi1rLgx0Ti4yfjFKMIk3++qfPu/8kRdhzIYMXHdQi2aFn8bnUa9d3HuWtOYsK1aESBBUNieHzEUWqWN/Jkg0CeaRjIpDUpfPdHFs/fc2fEOhRFZfehNNo9VvbW5yiuRup/zOZk5lbXu/0kz/OugQWZMqKTS7KWY5IWyS81y/94p9v3PL4RoddphHzb6+dNZ/cPK3j5o4lUaeypCc6TW9fq9cS/+zaXTp3ks5WrMbns2HQmcgQN/hlg/s/afFFv6TcSEz11evHTPY20E+b9TvcurZizYBOxPVpgDZHBJXlVOOUcX7qr7PSJack5vm0p1eeEkJP9jk/1HeN2+F0nv5YgTkf+xXSOpPXb9p17juz7TEJIKaLb96ZUq8dxZqRxaPYUzq39AcVVMsdLWM26xDz7IqWaFMyUUWQZyWFHazQh5maoZF++yIk/9/Hd1p0kXjhP7TJWwiMjCY20UjGqAqXKliM4OoaMsyfY/clg9qRn8XgZkfKBdkqFKRBcGm23D+DaUQwbPsVY2og51BfBU3Nl9hVV5ZVVNlIcKvOftxBiFPmmsky9mVmYowIIz627m2VV6PqjnRbVtTS0ahgcLfDESjdKmJtG4YLfvL7PpfGT0xe1Pue6weK73oZQX1DDZTZwbNlF6jQKJ6S0Hrh5DYB/a6T+oVi/fh/vx81n2YKhtH6gLsgOJk5ewycfdKJLpwe86oHfLPuAVvfVpVzZCH5Ys5shgzsRHV2GTZt20P7FWJYtjef+++/HZrNx4cIFFEWhQoUKBAcHg1r8DeUlTLl9VrzGa+q3nn/j44mLiyNu4hSv9zfb6Sw62iSI2ExBBNnTMbtzsOtvwjOkqhhUhQDFTaDsJAAZBUhGx1VVjw0tzpsMsZoFhQZGF2EahSuShj9z9Li9Xrnifx1Xz54ifmBven4yicaNG7L791+x27Ix63Rs/ulHxg19E61WhzkwkBy7DUVRGLd01Q3nvHbxAgsnT2Tn+t9o1PJ+Gj/0KFt/+pHfvlnKjF82ERwezr6tm5g7/lOa3P8gJrPPmAQEBjF07ERGvdGPrIwMxsxZRFBICK+1e4bU5CR6D30XrVbLvm1bGNHrJUbPnEfTQpr95qXzLV+2rEAz0+3rf+PsiWMcP7CfD2bO5c12zxR7na6HrCj/ptn4wX8RokGlmsFNsiRyVdYiCkK+Hi/+i5yiUnAc1/FyuYhLrRVh5YxptB82msr3tibZ5vH2BBk9Zrnvx+M4uGUjH30YhwGVa6YQHGjgOuLvv+Dx3xavI1uF9ZqZ8M5bfJcwi7bdegLwbcIsnuzQhTW5PeWWz57Oy4Pe4fnuvVg5ZybPd++FKAismD2Ddq/0RhQEln09nfY9+vDRF1N556OxhFutVDNt8bto+SP9+aTNZUfhrxeVHicWtFkut44LyVE4nBZMejtRYUcwG21A6XxpL8J1rTIEVcbmDOZKelVy3L6IuSrbOZ6xjg0/PUmQ/gK/rDtKjlNCkXJY8PMFer73BxazjqpVKtGg0b0816E/5aMqUsa8hVDtWcCTdqu4fe93+NAlxs46zK4/U3j4ngieaFWai1cd/HE0m60LWmE2ehZ7islJTEULZ7Kgeg3PsrZ8JHzYL4b5vyXSpk00Or2GsYNNdBl5iERDIAM6RxfwbguinxCKX12f4KfgKBp813LBqjNYLAYee7h6oZ7ykqA4m/KvzfGhguBCAo5Ldz5ZWJYktixN4JXxM4mpXfgEru4AACAASURBVLCcIfbzqZzdu4POg4cRoRMR3ZClLz5NNCUxkXCrlf6vTSJ+2vfE9m1DbK9HiJ+5lthejzBl4iuMee8RrJEFs0/+ThCNZko/2QXr4x0RBIHzq+ZzePlSJIe9+MGAtdE9VG3XhdBqtXBmpnNsSQJJ+3bittuQ7Dbcdru3xYGoNxASU43Q6rXRxdSg0j0tiXsi/zNbliSuXb7M4fPnObtlOwkzp5GamU2AVmVA1dwIoahF8+KnIGrQfD8CQfaQvQOJEl/tzOF0mkzrijoerqRj12UJh1vl2w4BaHPJtyAIRAWLnM1QqBnsea1yiEjvenq+OSHR0KpBrxEY3kzH6+ucDGqo5fmY26cHMzZm0qiigeqlby1dUOWfYVf+JVLXYf36fbTvGMc3i9+h1X0eifULF5PZtvM4S+cNZNOWwz71wPs8fYKqVi3Pm9VjcsfvJe7DBSxbGk/z5s1ITEwkMTERvV5PdHQ0RmPJctATE9N8hGnqtzgcTuYkrCG2X1ti+7X1RqSsVivpNrXEHmCHwYLeaSfMkY4kanBpi7jBVRWdqmBS3Jhkz58+d+HoQOSiaCJF0GO/hcxEAZVorURVnRsF2JvjiULdTGqDKyeHL2Nf5rkBQ6h7/8NYQ8w89dIrAN5ok9vlQtVovAuD4kLAa5YsYHLccJ7p0p33479m//atfDMjnpMH9vH+1wu8JOr9Xi/T+dU3UFWVC2fydxeXZJkLZ04zdvZCGjT31DzNW7eN4b1eYvqno2j+4MPMGDOa0TPn0ahlwXS+PBL19aKCJApgfvyXiILABzPn0rAQ9b+SQFIUNH8D4/N3REWthEGAXa5blDK/CVw4cgBbZjo17i14HwBUrF6T5lWiCXY7SDIE4NDe2UVXWnIS3yXMAjwEKg9rlizwkqm8nnKDx0yg5+DhhEZGohVFeg0ZTlikFb1GQ7+h73qdN391JCrLHsDFpChUBMpFXCAkIA2B4j3KLsnA1fRKZDqs6DQ5lAryKF5lZUt8/9t5Hn3kYTRaI25UHmvrQK/JRitk0fFlLZKsRyIAt+JZMBo0qZQ2/UyA7nKh5Qrjpu/n85n76d+5GrGdqrJ280VGTzvKiXPZ/DT9Pi+JunDVwckz6cSUN3Pqgh2a+qJNDzYK4Y2JJ3C6FIx6DffWC+H3qY3oMvIwOq1AbIfo27qOK346x+vdayMIAgPitt3SHMWn4PwNXMd/AxhRiBAkzso6pLtgY45t20BIqTKUrVZQvRggpn4jGt7jqScOdGbiFjW4xRsvBfOrcH4PQPy077l2egpxw1/AavWkhP6tSZSoIaJ1W8q27YkuOIzEbb9xdsl0nMlXkZzFpzSWanIvVf/TlZCY6tgTr3BgxiQurP+lQF84fyguJ6lHDnBs/16mnUvl5fIh1IyJwWwtjTM9DWd6Cs7MDFAUJFWljF7mnQp6IIxKwb5InPjIq4hR9ZGWDEWXfhGAMbtcrDkn07exkb6Njaw74+LDjQ6S7QorXwz0kqiTqTIZdpnoYJGz6Qo1g31OlvvLaUg45Pb2EnwkSktUoEj/35yYtQKPV7y9dIxV+2181NZTdqHobv7eKElq3781Uv8l+Key+GPXrqO07xjHssVxtLovxvv6T7/u56nHGrJz90nGTvihyD5U69fvpUOn91n943eYLWGcPJUNZBMYGEj58uXZsWNHoYIChcFqDfUSpm7dnmROgieEHj/1W08jyw+m3VrdgSCQag4h0pZCpC2VZEsobsFzG2gUGZPkxCy7MStudLk3qIxAtqglSTSSLeqwKf55uzd3EweLMnX0LoJElauShoNOHTm32CvD6bBTtXFBKfM86PR63DdBGHZvXMercR/zZIcuANRo0Ig2Pft6ahEEgT+3byGudzfKRFVk9eL5DBozkQnDBzFg5Ci0Wi1/bNnI/C8n0OCee8nK8EmlhltL8fGs+XRu1ZTls6by+cJvaFBIHy5/4YnCmvHu2rSBzWt/5s0xE26ZRAFICmj+XdQUgBaVyjo31yQN6crdF3A4uOl3Gj36tFf90R8aVaGU20aQ7CJdZyJLZ76jS6605CRCIyJ5rlvPAhGptt17MWjMBGJHjsrXDsF/2z/qXZJ6yzsNVYWkDCuJaaUw6nOoYD2HQZdLoIq5tV2SkdOJ9ZEVLdagM0QEnEcUPGPVnCzi3v+Uk7uHYbSUJdsRgEsOwCVbsMtWNIIbjejEJCYToT1IoO4COvHGKn2/bLrI7E/u5ZEWpQFoWM3MkB7VvHZFlVw4cmQ6DPmDYIuGl58pS8L3l+n/fBmvEyg0SEeNimY27U/n0Zae7yG6jIkFnzbk4d7bKRNppO1DpW/pWiqKyra9ycSPbkViioNpC29Npaw4ovQvkfKgvOBCBc5Ld6f28siWddR/5OlijxNVBbPiJlNvuWG9ZWpSYn4VzpcfY87cX4jt28ZLoP7uMEZVp8zLwzFWrE7W0b2cnDSE5OMnSzQ2om4jqnd6hdCqNbFdvcS+yZ9xadPam+olpaogIlDWqMN2+QK2yxcKHFNUunZQ6xfRtOqOvHMZ6sFfINjj/N54SWbe84FUj/A8qxqW0vBWc7x2BSA9R6H7KhsNrSL1rRp+O+vmST9yVClYQACOpSlUD/E8h6qFinzeSke/dS6CDXCP9daehdlOhZOJbhpEeRyAzshmwM03+/4n2JX/OSI16q3XPOp1Pfsy8vOv8u0bNCSeZYvjaN26AUi+h6Pd7sRmd9L+pQmeSFXLWgXm3bhpH+07jGTVdzMwGEOxWLQEBmixBFRAp9OxYcMG+vfvz+HDhwuMLQpTJg8i7v0eWK2hmE0Gb5qf1RoK4q0vXmRRQ6IlHKsthQhbKkatEaPsRp/rTpURsGt0pIk67BodLkGDK9/NevM3ria3oWmURsKpCuxx6rnsvvXbT2800uTxNuz59Uee6PnqLc/jj7TkpEIXhYIgsH/bZmZ99D4dX32DVQmzyM7IoNF99xMSHsHqxQsoV6kSw3u+xNiExchuN3Gv9ebBZ5/Hkiuyce7kcWRZIigklC2//kT95i3ypdDs3LSBUW/0K5JE7d68kUHdOoKq8vh/Ot7W53TJKoL83zc+fzfk9Yo64b65BU6wIBOj8XglExUtiYoWVwl6nbtzHJiCCi5ELLKLMq5sNKik6i2k6+6sOtvEYYNYlTCL57r15M1PP6dHbqQJoMeQEd7tonrK/behKAKXksuTYQsl2JJGuYiLiGLJ7meXZOBMYj1UVSQm8g+M+lyvb+5wa2QgD7WK4YefD9GtkwmL5rxvsFR4OnZxOfqJKQ5KhRfMRPD//X/7+1XSMt04nTLtHrLy2dyz/LozjcfuCfMe07dtWd6fdZbW94R7Vf0qlzfz7cQmdBiyhwtXHQzoXKkEVyE/Ll2zo9EIlLF67rO+nWvcEplyFWNT3P/aHHQolBLcXFN1JbIRAmrurVlyN0pRduV6BMouBMCuKzpLJq9mMp8KZ/x/GPNJb886xHmtxOf134CgM2J9pj9hj3ZEzkrn1OQRpO9en7v3xuuP4MpVqdm1NxF1G+FITmT/lHFc3PAL6i1kc1gNWkL1Gs7YXVS1lDyzIOiRroS3ewPl8O8oqz/Lty8lRyXCXPC+8Lcriw+5kBWVZIdKlzp6Hl6YzaFkmdq55EsQBLrW0jFmp4tZjxq8Y+uEe8jU4M1uBjeANpVunkydSJaIDtdh0HrmdFqbAzNvag5F/WfYlf9ex8a/GClJiaQkJbJk1jQAlsya5u15kodJE17zkKjrcOlyKj/9uo/PPupaKInavPkA48cvZuWKjwkLq47JpKFCeROhoXr0ej1btmyhZ8+ezJ49u8jzS0xM9tv2NVzME5qYMnkQ166sYsrkQTf3wYuAkkumJI2OAMmJJGpI0QdwzhjCKVMYVwxBpOtMuETtbaqDqZTSSLQ0OIjSSJyXtGzKMXJNvn0ObzAXVNq7HSiygkZb8LwO7tzOxMFv8NqoMaQnJ/Nkx644cxy4nE76v/cRX40ayagBfRkzZxENm7egSasHaPbAg0z9+AMA9m3fyoLJk/hs7lISft/Kro3r+Gb2DO/8e7Zt5r3X+vDlzNmFkqjNmzfz2YghTFywnErVa3D6yM33ePGHJCvF/v2vQY9KRa3EZUlDVgkjpHoUamlyaKxzYBRUNEA1rYv79HZqaHIozuGgMxi5cvIYiefPIKoqkaqLWmo2FVxZSILIWUMw6cV4i28GaclJpCUnsSo3je+7hFmeyFQRUae/IyRZw9mrlcmwhVIq9ArlIy+UmES5ZT1nk+ohK1qiIw/4SNR1CLiJhU5JIMsqWu2Nv8O1O5Lp85+KXEt1odWKjIqtwrApp8hx+X6L7VpHUjpMz1dLL+YbW796EGtn3MPMby7w/YabX9iWK2VGVeHiVc/1+DKuYPF8SfCvXSkeZQVPFfBFtfiaEb2g8nSIiyeDXVhKeI8DaPUGzh/cR0bi1RseFyi7cAui5xlfCD4Z/AaP1qjIJ4Pf4N1xX7DxxEXiJk4B+Msaat8yRA2mZk8TOWIp4U90JX3LD5x6r6MfiSoagVGVaPjGcFqNiSewYmUOfv0V6wZ048K6n0pEogwhYUTUbUSlp56n0tPtCK9VH63Zgl4QSuyC1pgshLV/i/B2b5C16xfS5w9BcudPWVYUT53tjbDhnES3+gaS7SoWncDrTQyM2ubMJ+Dwci0tGU747nT+CFuzUhpmP6Ln8/1u9iXf/G+3aoSWsylu7C4FVdDgCiu4ti4earE2Rf43InVzuJSZmfuv7zX//En/RrH+BWiz44Z7Ula69aR9jz7e4uigsHB+OXrOG4XQV+nGn7mBKKPO55V+4KUYPpv4Pa/0i6d6m48x5Nbg5N2MxrotGPF1HwTJhTv5IlnmUHak5OWD2tBWb8iC7X+iAtuTPA8rUfDJdY99e6C3eBvwbr89dmK+z69oVE6n5H5uP7EKp19DXf/muv5qfDZX4apAV7DgVhWQBJBAURWKS9fzH+9w+94jx+17XZIVgjUKDcwSVp1KmiSwKVvLJQdA4Sp5/o4F/4euVuOn1OenGpNtc6ANCCXNLuH08xaXDfbNn+30nV9+z0XBdBxJ1HLyShIBib60PKekYKhUm+HfrkcjQo52LdcuXEIQRS5kZGKpVJUWTz+HM8dBRK06JNk9Batdho4k9tFWHDt0gAefb89HcxZ553ztw08ZPaAvD7Zth9FairrN7uX7PYdxyTInM3wFr1ezcz9T+Wq8vXAVKhDdsBnbN26gTI3ahV7DkkCSVcS/gRfn74RonRuRkkejNKg00znQonJW1nFW1qMgYEahnMZNBY2bDFXDFaXo+ao2ac6a6ZMwZCbzwtSpaAE7Itd0ZtI1RlRBoKQluunJSYREeEhQXtqe//akYYP4fu7XPNutJ8926+mNSOUd93eHogik28JJyiiLJGupYD1HsCWjxOPtTgsXkmKQFT3RkX9i0mcXyXNznBJGY8kejalpDg4cS6ZOtXDCQgt69lPTc5BlhStJDmrGFB0lCA7QcjXZiUHnsW9Ptoxg/o+X+Wz+OUb28ESZBEFg/IAqPDhgL7/tSiW2XXnaPFIegPKlTLzXtypjZp3i0eYRmEwl9yCLosD9Ta1s2nWVTm1iih9QBIrzDP8dPMd/JWZ/MJwOwz7K1yDeqJNIFwSu2JX86nx+x+S9XtWkkNcbtazGzUGHnzKaVsSWloIlNHcd4SeYU7XJvSwYOZBtKxYwZd9Z7+v+YjNaQfCk9WmN6P2ch7rcNOO0pKR8Sp1jRrxEq5iKwEVw+j075eueo37iMarLt0+VfCRA8dv2f10tgmgLfs9/jc5PSdDou8dNgbmfQRAQ6j6F5YHeiBFRyJeOkjypN64TfxAICLqi7bG5bEWi2vUg8p7WSA47p79dyPGVS5DshTtc8t4vsn4TwmvXJ7hSFYIrVUVfRDSwwcULuK+cRbx2Dve1c7jTU3BnpKKxJSNlpoGqYDFrCGr9IsGPd0NjCebS2oV0GTaW8S1FmlhzexkGeP416gT2p8PDVTz/F02+zyboPdcjLMRFqqjBaFYIqBpOrxiVVeev8F2GkVdaBiHoPddwUqkcXpx8mdVJGgY/HU6LXKEbK/BGYDoz/8xiacdoRD+j6f99CUbfk0rM7UNlAOpUyeGQLpj76oWgU33BgpJCVf8ZduUfRaRuBenJSd5C6m8TZvHbsfPe4ug8id92r/Tmnc8mFTlHmfJRhISFk56agnIDj4SY6zFQtPp8PVj8cX0jS/AQJ/9/87bzCrrvPu5swatOUKljdlPFoOBSYWe2hlM5IuodbjYoiCKKcnPNL4tC4vmznPpzDx3f+eCGx5WqFMNv82dSpnIVdHqP57rL4GEMfLI1f6xby32PPQlAUGgYE779ie2/rmHhpHG07drdO0e9e+6lRv2G/LBwHn0GDr6p8yxXpRon9+zIlwd9s1D+lT/PB4NWoIxWJkURsedGo/wXNoqfxytvmRCtl9ELKpuydSRKGpySj7wfcSu8aAW928W5dDmfbLHBz4VojqrOCy+8wMiRI7ErIofdejIUkQBFC3gcHya97zz81kpoRIGMlGSCwyOYHTecXxYm8FjnbggC/Lwggce7dEMAflqQwIPtXmTdiqUArEqYxdzdh+j4xmBCIiKxu93o/aSN/VX/NEUoABYli5zXlgIA2U+FpoiGkQAIfgt+TcEURrekIS0rnJSMIGRZg9HgokLZFMwmHQilip43760VmeQ0C9eSgtBpZaLLJ2M2RQAR5OvQ63eOoi4ASQwHU6XrlATzY/3Gw7R/aQbfzO9DeFRVz8fxSwnfvOUYz3ZdiiiK3NOyLoZQj0qe6s7JN4+qyNSpm82Hk3bRrH4pTGU8ZOar0RE0abuK55+rR9N6HsJbKwo2LYti8fen+WLFJdp39EWPOvynFDO/u8rq3U46POEjyPmU+vyUWkWdL/JWp1Zp9h7N4qUOt17zUqz8+S2khP+TsXnZfJ7qOxB9kC890yioZCsls9tRBoVMCXIUKGdQOegncLn68zh2f7eQJs915qm34shOTSEgzEOqKjcqum7Yex6KhAg4NAVdNWlJnij1iz37ehtsV65csUTn/N+EEN0E8fE3EcrWRL54BMes15EOrcfluvEyVx9emvLP9cHa8lFkZw6nls/l7OrlSLZsJKXwkI+g1VLuvoeIefZFAitEo0huss6fJWn3ZrLPnyb74llsF86g1ygERFclILoal8MrUrNqDMENmyNe169LVWSkzDRErRZNQAj2g1s4vnwSA1YdYXR9vCQqD7+dcSMKEL/NxsNVio6gV7Fqmbc9myfremyrKAp83iGCtl9d4YFqJmLKeexv/SgjKwdWYO7mdKb/nu4lUgDdWocxd0MaW47ZaHWTTcBrRJvZcyyLVg1CiMi4ubQ+8Pi6ipc//+/blf/3RCokIpK23Xp6I1L+JGbZ1x6Py4rZM+jz9ghKly7jHZedmcnBvX/w87fLWbkgAb3ByNBPx+eTu74eouQpIh0z4m2+mTOLF7r3YsjYiV7y9NnbA/lmzkxe6N4LwU9CuN0rvQuNSP03irhvDyrReplaBjd6AU45RQ46tNjvDNcpgKAIK6mXLxZ/YDFQFIW5HwzlyZ6vElE+6obHVmnYFFt6GlXrN/K+ZgoI4M0JUxjbvydlypajcu26CIJA6QpRRJYph9vl4uyxo0RXrwF4PMsarYbQiIibPteGDz3GukUJxI8YQu/3R9/0ePB4cP6tkfLBjIpZUDlzE+mmlY0ymbJAolTYg1Yg2S0QqSt4jR2Z6Vw5dpCDa1fxQPX/Y++8w6Mouzb+m60pm7ophBBagNBrkA6hCYLSQ+hFQUBEBEWKgDQRBAVUFER6J4KgCBaU0HsHqaGGEtLb9p35/tiQ7JIOqPC93te1Vza7zzMzOzt75rlPuU9Jpk6dytX7cdzyLIW1CA6NpVPGs2vdKpp2CWfvlkgAflu3Muv9X9dmP9+9eRPNu0awe/NGXukzAE8fXwcy9LxBkiBd70JSqiepGRpAQOOiw8crBVdXqdCZjjqdkgdxnuj0atw1egL9E5DLC77uA4t7c/NWXL5jbt+JJ7zvF0SufocmDYNyvB+1P5r3Ju3Ay9OZmR++jLdX/q0m2jQryTsf7SO4pHvWawF+Lnw9rQE9Rkbx64o2BJd0QxAEQsp64ufjRHyigTv30gkqblv0yOUyBAF8vQunDGuPXp0q0Lbvj2hcVEx696Uiz4cXw3P8T6JxeB/cvH2If/gQN2+brXeWScRbC/7tKQSJAJXEpQwBkyRQUyOiEiSSEhMBOL5tXdZfs9HAmV+2UKFBMxQqNZcP7EYbWJKOoyfluX1nq22topcrsb8y544dldXmYOr8rxk2blKmMFf+aYL/JiTf8sg6DEFWoQlS8n2s309Ad+jnAosX5S5uFHu1H36tuiFJEjE7NhKzfT2pSXm3ppE7OVGyRTvKvtYNZx8/Um9Gc2rBTO4f3odoMeMkd1zsCAqRpLNHSTp7lBW306jspqCxnwsuvn4oPbxQemhx9vRC6eGDwlOLUq0idd9mjh8/wfYHZj6uAXW8HY8h1Sgx9k89ZqvE5Fb5K+G1reLCgj9TqRiQTZgr+Kv4oK0XA5bHEvl2IMU8bfe9KiXUeDjLOXnTQGK6FW+NjWQ5q2RYrBK+eTT/zQ8D2hejx8QLqJUyBnUs+u+/UBGp/1L7/hmMnj2PgXYF1WBTmnqU5vc4aVn99QLmfvgBAC936MKv567hnZkCY59G9zgEi4n45FS2rLBFwLas+A6DXs+OjWtpF9GbHZm9WbasyGbmm5cvYedfNxyiT/9cJOrZwUtmpaLGhKdcIs4i41SGnJSsG8bfc6GXrFab07/l3xcqPxh0Gfy2YjFHfv4B72KBtOz9eoFzlE5O1GjRFt8AR4WsiqEv0XvMBKYM7IVvYAnmbtmBTC6n0SuvotdlMKrbq0z9bjXV69k8yEnx8fjYEffcYDaZkMnlyDO9/qIocvvSX4R17sbqTz/m1/Wrn+hzm8X/iJQ9fGW233SstXDpUB5yEa1C4oxOQV7R3DiTQCknCZUgYUFAkiT2fDuH45HLAJg6fyFdWjblhlHOOecSuBaBRKUkxLNr3SoA9m6JJKxrd6I2b8ozItW2d3+GTJ/NwPGTs9L/nlcYjGruxfujMzgjl1nw8UjCy1OHWpUZ8RMKrl/S6RU8jNeQnqFGLrdS3D8ZLw8dha1QaFgvhOWrd+c7ZutPx4lc/Q5hTSvnSG/atuM8PQevQ6NR0bJJMD06Vwdrah5bsnlU/bQuNKobQDFfR0ddx1aluHozlWY9d9Cgth/ff9UCgKG9KmEwWmna/Ud+XNqWaiG21dbDBAPF/fOvHTUarSiVsqwCaZPJysVrSUR0CGHGgiPMWngs3/l54T8i5YiI8TPY+MlE9keuoUHX3nQfOw2lAPpCRKSKqyTkAtw2ClglgVpuEPXFVPZt3UCtDj0J7diL49vWUb1NZ878sgWAK4f20LjXIMZt/hOvgMB8t+9iNWOUKRDtopVJ8XH8kLk2+WHFd7zz4ZRc1Y0PHb5Eg/oVi3Iq/hZInkGIjd5EqvQygi4F628LkI6sB4spfxIll+PZrCtlXx2E3MWNhAM7iY5cjinxkfMk531A6aqh9CudKdOuMyo3dxIunOHs4nnEnS78byXYVcH1DCuNrFZMcXcxxd0FwCDPzjpwUVo4l2xl9iUzn9aEmnYk6n6GxPKLFrbfMmC0wvLXXKkekHeqoihKlNYqqOCnxNvF8TP1b+jGrQQLTT6+TedQDZ9G2L7nca9psYgS7WffYuPIEpT0sRGwuFQLAV75p70bTCJqZfa1nWGwcifWSPtGPoxdGM2kb68X7kTZQaJgu2F5DuzK8+uWfAZIjs/2KuZWRD1h7hf8evGmQ1rfyYP7s0gU2PqieBdy8SGzmPAqFkCXAYMAHMjTIzIF0GXAoKzo0yMS92/LCT8p1IJIdZWR+k5GVAIc1SnZn6GyI1F/H1zcPTEVsolebji280f+OriXwZ9+xejv1ucqNGGP+9FXGd2wCrE3r3Fk509YHuuA3jK8J6uOnsNiNjuQnFZdI5jw5WImv9GH88eOAJCRmoqrmzu5IS0lme/mfsIbDWsyqFFtZg4ZQMK9u/y5fiXrZ03h4R2bkthHdnVXRcGj1L78Hv9L8JFZSBVlGAspMhGstmKV4JbZ8eaUkZSQ9Tw+c93vkxmVuvjn9iwSVaZMGTqENeKOScZJvSIz5bXw8ND60KpXPwBa9erH8Nnz+e7IWQZP+4Q3p81i2ZFzvDltFkOmz2b50XMMmT4b4LkmUVZR4H68L9diSmE0KSnu+4CQ0tEU84nLJlEFwGSWceeuB9dvadEblPj7phFS9iHenroi6XV4eWlIzzDkO6bTa6E2EvUY9h26Tq8311GtcjF2//AG67+NKDAFd/ehu3hVW4LJZGX1D1dzpKq8P6gaN6LCOf1XAj/vtskmC4LAqNerMWtcPdr228HFazaBotR0Ex6a3Bc8D+L0jJt9hOL1VlOx5UYi3vqFpBQDU+YdYcrnR0hNt9mzI9ufTBW0IJvyPKTg/JNIS4xnf+QaAA5tXospKZ6EhAQMUsEXY5BaxChCrEng9sME7sclsG/rBgBO/bieZgNH8N7WQ/iUdFRpvHvxHB93bMLm2XlHo2SShJNoRi93vE68fHzpnLl26TxgUK4kKirqEEPfWVzg8f+dkOQqjKGDsA5cjxTcGOHQMqwLXkM6sNJGovKBa7VGlP5oHX493kN36woXpwzk1rKZdiTKEUqNOyE9BtLi67WERPQn8dJ59n84gkNT3isSiQJwlQsYCoie3NOLzL5kZmxFpQOJAvj2LwvXU0XKeMpY/por9QPzX69sOZVBpSkxeDjLWHfU0dkjCAIfdfDm+NRS/HgynRM3bfZOJhOY3NmXgWGevDbnNg+SzYiiRIZBROOUSetYnAAAIABJREFU+/3xdryJMSvuUv6tCzQcd4WhX1zHbBH54LvbfBUZk/W7P7P6CSLdhVirPA/rlf+3RGrRpLH0r1uVRZPG5jvOnrTExz5gYPuWAIRUrc5ny9Yyce4XhduhKCKzWhAVKsZ8Op+fL1xn0peLs0hVlwGDmPTlYn6+cJ0xn87ng0/ns/OvGzkEJV4UCEgEyYw0dTJQTG7lmlnBrjQ1d815e+mfNfTpqaicn1wa+trJo9Ru3Y7SVWoUqt7IK6A4SrWaCRt3UDy4PCf//C3HGEEQeGfW52z+diEbF2Z/t37FS/DuJ3OZNvR1khMSEEVrjv5Boihy+vBBNi9bwi+RG5i5cRvT135P/L27nNi1k7UzJ9Om/5vUDmuBk6srVeo9mbqW2SoV+PhfgodMJE4sXHBejkRJtcgdkwyzJJCeSZ5+mTeFL7o05Jd5UwC4/dCWguOjsskR7/hkDAAlqtbmy+WrsQpyzuiL3vQ3JcFWsPvGlE9YdOgMb0z5xPYZtNlpoh52KaPPM3l6BKNJyfWYUiSkeOPlnkL5kjfwdk9BVshTI0kQG+fK1es+pKar8dWmUyE4Hl+trtCKfvZITs7A1SX/yFfJoJxpuVH7LjNp5q9UquDHyCFNqFKx4BougFKBbgQWc+XQVluK0aFTD3OMUankLJnZmBFTD7Fqy9Ws1yuX92LSO7Xp+c4f6PQWRBGHmjywRZyOnIlj1uLz7Dlyn5M/dyXy69YcOxPLhh+vMvvrk4wbHkrDOgH4+7pQs8qTXTP/2RVHuHn70Di8DwANuvbmlyULCAsLY9ns7DrcdDvnyyMISLikxxNjFNj1xTS+iWjCvIXf0CU8AoBaHXri6qVFkiT+XPI5YBMh6jXzK26csjnqDm1eS1pi7sX9msw2wHpZdrpXUqbT+f3Z89h+/jrvz56XY15U1CHCuw9j0RdDnuBsPD0kwBJUH134Ksx1BiBc2oX8u67IDywGQ97peABybXG8hy4gcMTngMDdL0dzde676O/k3ktK6epGuYjXafn1Gsp17knc6ePseW8wxz+dTPKVi090/DqrhLoAo/ZHrJWxFZVU83R00omSxMH7Vs4nSoxr6FwgiQIo4aWgZgkVm4f6c+m+iZsJOR1SHi5y5vTwo+/i++w6ny2q0bCCC70beTDku3u2UgAh550qwyhy5paByZEPuRVn5PjciiwcEsSO48ms35PA+j0JjO5VkoqlXKlWzpXivkVXQ30UkcrvYXkOxED/X6b2JcfHsXPNCgB2rlnB0LGTCpT1nTVmZJbYw0dfLKLnwMFZi2tzIRqvCVbbRSplenkeEbQxn87nDbtUvRc18vQIAhIBgolSchNOgkSsRc4lsxKdJMP6DxcTx92Mxq90uSeaG3vzOuf27yZi7JRCz3FyccXN24ekB/cJrl6TB7dv5jquXLUajPtqCbOGD6bb0BFYzWaGtW+JQqlEJpOxZNY0PLRa4h7cd5h38sBehndpz9dbd7J+8VeIokjJ8iG81Lot6zNvvge2fY+XtxcRb49G7ZR/3UVe+K9GKifipcKl9ZVUiygFiDbK2f7ZRxzfuo4ar3ThzE5bes2pH9dj1Ov56/et3AmPYNAHkxAz04G7zPyW9s2bUEpj4Wi6AmMhPNP2WD51An+sX0XLnv0YNPUTB/L0oiItw5U7DwMQkCgdcAeNS9EizCaTjDv3PNAbVHi46/H3TUelfLo766Urd6lUsUSR5kTtu0x4/yVM+aAVc77aQ7cO1bAX1jl47C4N6+aeblUmyJ34RAN6g4U61Xy5djOFhrVzkrDm9QP48qMGzF16nr6dyxGXaKBepx/w8XJCp7fw2Xfn0HqpuRerw98ru3Zi446bDJpwiD9Xv8zGHTdRq+TUqKSlTbOSvD1xDwCLVp/Dw92Jae83eGIRm/9S+3IiYvwMWr7xDgBT29o88ns3r6fRwHf5/bsFHN+6jtBOvWg98qMsFb49X05lzrYNNGjXiTM7tgKwc/NGoqKiKNtzBHIP2+/+kV0ZsuxHSla0RUdf6tyLoz+so0HX3rh5+5CWGJ9Vn/UIXpIZK0JWROqLCe+zfdUyXu33OuPnLMh1rZSWls70GQvYsvlbGrz09zcrt4fV2RdjqVYYS7XG6haEkHwbp5/ewXL5SMGTndxwazsITVhPJEkkLnIBSX9uyhTDybn8VWg8KN+2JyVf7oDCxZV7B6O4Erma9JhbT/05LqZZKOmSe+wi1SxxLd1KEx8ZpTU5z+/i82aSjbCwqYJ6uZCoBJ3I2dt6apZQoXW1za/gr+RGggW1QqCcn5ItJ9Lp39Ad7WPbf62WhpgkM/N/TaBWaSceJFto9cktinkoSEi3suFAMm5OMjYdSqZ9TQ1umYqgX/ySwOc/J/DD6CCGLbvPkSsZNKqkoUkVd95dZDtfX38fg7urgqGdA/n1cE6nQUEoTI3U85Da90IRqYRMaWl7RS2dKZebplLDK30GsHPNCl7pMwA//+ybUpLBMWXDZLWSHB/noJgnc/fkZnK2BHZeoUNRkrJkh2WSiHNCAgq1hqTHc6BdNVmy2IWBfQqEmMdzk530pMEs5jomN0nVx58/PicvyJEoobBQRmHBWSGRZJVx2qTirvHRZxUd9me0OyYHBTS7XVnz+QFIdgPNdl5le1n0mJs3cfINJC7NMZx//k62d8rHw67I0i87evXz2tXUaB9BnEVN6l1Hb5b9scvtpNKsVglRruL8rWTuxaXg4+LLubvp+Lpl70Ojth2LMjAYbWAJPnlnKI07dqVUxUq8OWUmo15txeVzZ3it/yC+mT6Jmo2a4pQpYJKaeY18OW0Samdnzh46QPHg8jTu0IXIr+ZT6aUGjF26lhIe+ReYFgTLf0TKAQZJIEOSUZhaPj+FyL24BO6kqji+1VbwfWbnFqq16cy5X3+gapvOnP/1BwC2Rm5k0NBhqDXF0Pj4oy1ZlorOVuLNAteNMpR29zP7BU9qQjzudiQpNTMK9cf6VVl/w99574UmUgajkoeJXqSmu+KkMlCy2F1UyrzrTx+HJEFCkjMP4zQgQFDxZDzc81bYKwqu34gltHa2DPi16AesWLOXgX2bEly2WI7x+w5cYfb839iyZgiLlv7JmLeboVIpQLTZgn2HbvL510eYM7k55crk7L9z/XYKIHHpWhIZOjNuro4pV9dupbL191t0al2Klg0DmL7wDBPmHCOkrCcdWpaibbMgBo/fy8kLCfTuGMx7Hx/h9xUtkGfKRj9aaEz76iwyQeDwqVg6vVyGwT2r8O3aC3R5JZiKwV4MiKiS6/EVFv8RKUekGmzXs+TsCUDTzj3Y+8MG6nfsQbLekmU/jm9dR1q6jsu7thLSsiOX/9gGwKEdW6nYqiOXdm2jc3gEuGuRTHLMVgmZTELt5YNcqcI9sHTWPjuOmUaHt0bh5u3Dpk8mceD7NYRF9KXvpI9xz5T0VxkFEuISUXkUIzk+ju2rbCnH21ctY+SEj7IcvGq7VPfoSweYNCGcJo20YM5eGyE8toS0i3IJdo1+HzmaAWR2r0t2aqcyTXbEQu6lweRUhnTvtujd6oAgR5lyAecTc1DHRCGIZix2Ta5VLo7HofKQIdXujlSvH5KTG9LZnUh/fIVb3D3cbF8HOn32vd2ocEPTog+uLfogqJxIP/EHSTtXYIiJpjiAF1jtHF9KWfYaQWlX4/S42ISLMvt/yy2JRv5QzdeI3K6Ny5kkiQ9OScwOlfFSMTlgm+PkZlsXHH1gZc1VI0PqqAmr6ozaJ9uBqgz0Yv+lDN74Nobl7wcTUMVWLiD3dsHTYMUk3uOYzIPTMbeJ6FqWoJdLOSgGypRq9h57yII/buHspGR7ggcZeivDertQs5I3gyYc4GSKCwarwIbTFoaOD8ua637uBJDAd6cF0oyQ7luKcu2rM8rzLjt7b2XCiLp8PKE5UQdvEz54G5FLOgIXKAoKVSP1n9jE34dhMz6l57tjCpXa4unjy6t9B7J99XIUKhUhNfJuHGbfr+XrDz9gx5rltOszEIAda5bTtUdP+s/KW0r9RYMMiZIKC8FKmxJfolXGWb2KOKsMnrGceVGR+uAuxSpWf6K5MRdO0ez1kUWeJ8gVSKIVk16HKp+GwIIg8M78b3gnrB5+QaXw9PGjTOWq1G3RmrKVq9Kya3d+XP4tJ/fvoWGmZHqZkEq4aNxo1aU7foElqNQkDLClbbl6etJ99Lgn+qyP43nJK35eYBAFdCYpa+EDkG6wuwHaGepP501jz9aN1Hw1girtIriwYyNV2kVQ5/UJVO4+AmcPLWaUXP51E606dUfr7U1ydCr6lCRk7n64yiRiDDYVJENyPK5e2iwp47qdegFwbKvNo9z5g2msnv4hB75fQ6NufWgc3of9kWtoHN4HmasXaZnHqLQj+/bP1Y91a5TlEWnIy1lj77e0V/nLS/7cAfYLLEU28dcbZMTFqUlNUyGTSfj66DJT8Dwc5wh2csuCoyqeXq/n7t27GAwGNBoNxYsXR6UqbMetgnHr7ue071AXnF5i394f6NJtGpEbphBcqZrdMdk+d1TUaT75fA/jxw2kSbOa9H9rLRMnvw3utuOP2nOa8Nc38f368ZSrY7NVgp2ketTe8wwathG1Wk2Z6i1JN5/HM7AaCr8qYNURtf8q4QMi2bKyH5VCywKwdmkpWndeSMd2nqDyYPzck5QppaVjh0a80bc+36ybwsU4f+rUtEXVatbzpXTJK3TsUI9JVUvRolkIACUqpOPu9iO7D91nxPAOlK/x5L3poBDy5//jNqfDe1OYNnIo5+R+3DLKqPZqD85t30Cl1p24+Lst8nT5j22EtOrE5V1biYiIoMabk9CMHEXz0lp+jpc71FOmPLiLi6c3CpVjytSjSNSB7231WVEbV9PxrVEITko8fHyYM20K2zaso32fgQyfOSdXVePHERxcHDe3nGn0e/ZfplnjkGd1irDIPNGrqpNRsgYmlwoIVh0ud7fj8uBXFIZYLHE5+z/aQxJkWCu2Rwx9Hdz8IHo/4u9fwYMruU9QqHBqHIFHq9eRa7zQn/ydh9uWYH5wM3PAsylTkCSJDDNoH8tuOxEvseyajUSF+uTc19EHVkbuNmIUoX/NnKlxBy9n8MY3MSwdVoLGVRxrrhVyAbNFov+0i/hp1TSu7Z1j/v4TcfQec5j1nzVAkimZNO80gf4uhFb3pW/ncrwz/QiXopPZsqg1Hd/8jdh4Hf4+tuugagVvalbWElY/kFGDatG8oc3eFPd3xVfrzJghtYk6cIvwN38kcklHwhrmr4ic+4l7MezK/zsiZe/NLWx9wMO7Mfy6cS3vz1vI1mXf5unpXfjhGH5evZz2fQfSe5SNRAFZfwE2b1hPp/c+xOMFTNtzhIS/3EqI0oxrpmTrNbOSJFHO89CgPiMxjugjUTQZ9F6R51rMZmKvXSKgYrWCBz8GmUyOaLVi1utQFlCfpfHwpESFEIIqhHD89x38tn41E5euyVp81m3RmuN7/swiUr7FA/ENKE5QcHlCmzUnSW9rHLJn6/eUqVyNMlWKfry5wWyVHLsf/49j7sfTqD96ZoHjdMkJ7Nm6EYDT2zfSf+1eQnsPx8VTi15vwdnD1selweAPqdl9KM19QDJkcGHnZkrUaoCLUkZyYjwZKl9+WzCVUz+up0bbLlmqW8cyPdRgq3Fo2K1P1mLowPdrmLnrOO2GvJsjVed5hyhCSqqSxCQ1er0CmUzEV6tH661HoSj8dWixWHj48CGJiYkoFAqCgoJwd3d/4lS03HDhwgXOnr1E69ZNiIo6xMyZq4jcMIWwsJo5+mFFRZ0mvMcUtkROoUnjajx8mERiYhohITbit3fvGcJ7TCdywySaNckpTBG19zzhvefw/eoRdO/3JRaLSHq6EY2rzdO+7+A1wgcsI3LF6zRpkL0ICSnvh1wuo2SQF0vXHGbi+2358P22Wcf3SuvK/Prn5SwiVaNqcQxGMy2blada1Wxxgg8mbcFosvDL5hGENXn6xfB/Ean8oRMFtFotmjTbeWgx4iPq930bF08tMqU6yynTdPhkGg4cxeDK3sgFCbWvlqsZ8NBsu86vHdjFsY1LKFe/GcEvNc11X27ePjTKtB9hEX3Z9vU8ojauzlL4BPh5zXJ6j/4gV1XjHNvLhURF7T1Pz4Hfcv/qZ091XiTkpAnVSHGvhUlpuz4Vxnt4xK7HJWUv0sOcNYO5wRpQA1PjkUi+IXD3LLKfJiHEnMKqyyXSLchQ1X0V53ZvIfcKwHDxEIk/foX5zkXM5me/LD6RaLvlVrTjOifiJcadlJhbV6CWNqcNOxFr5d0oI+/VUbLikhUPtaNj7OANIzN2J9lIVMWcTt1D51KwWCVWTq7E0E+v4Ors+Ln2Ho9n+uIrrJ1Tn6Z1/TCLci7fSGXm+7XoPXo/bq5KXJzkzJ1Qn8Z1A3i5cQl+ibpD/242W9G4bjFu3U0n4tVgAotn95/7/LtTDOtbjVMX4ugx/JcnJ1GARMG1lc9Dat//K7GJtTM+5P3mtVk748NCzzmwczu3r1zGbDIxd9RwOr3+Zq435uT4OH5ebSNMj/4+ikS16zMw63lERAT+Xp5P+1H+VbgIInXVRmqrTYjAMYOaY0YnksR/Njc6P8RHX6JYhaq4ehe9MNqQkY4gE3J48goDmULBkZWfc2X/76hdC06xq928NRePHqZVeC9uX73s8F71Bo04e/hAViqnIAi81ncg21YscRhXsU5drp87TWpi0XOMc8N/ReGO2Ba5kfTEeAfVvcehS07AxVNL1fa2gu+2XSNw8dTi4qnNdXzMyf1kpKcx7/PPObR0LiCwd+F0wsLCWDz9Q079aFNcPPPLFmq07QJA3U69sqJSDbr2xr9sBRp1sxWrN+pm60nzIpEoSYKkZCVXrrlz954rVqtAMX89IeWS8PfTFZpEWSwWHjx4wJUrV0hMTESr1VK+fHk8PDyeKYkCOHz4MK+8EsaxY2cI7z6MSRP72UjUY9i//yzhPaYQucFGogAePkzGy8vW6ylqz2ne+2AxkRsmEdYs5/xHJCpy7RiaNamMUimn/5BFHDl+HQ8PZ6L2XWLixz8TueJ1whqXd5grCAK1a5Rg6qyddGpfHcVjkcewRuXY/lt2QbyTk5IBPevyzbKD2fvfd4VtO87g5enCS3Ucld+eFAUXhf9v2ZXHYZEETCK42t1GH9mPpsMn03/tXpoOnwyAk6cPx1MEXOS2RtyHU2zX+YnNK9AlJ3L/0ln2rfiS0K5989xf9/HTmbfnJB3fGkXURpuKbNTmTbzcuSsAr2b2lIPcVY3zw6Prd8PyN4s0zx5WyYkkWTNuKUYTp+iCJDjhofuJgOQZ+N/4EE3Sb8jE/NUzAURXf4ytp2Ls/DU4e6L6bTKytYMQYk7lOl5W9iVUb69H03s6UloiqQvfJHHhcMx3nkxEojA4lwJh/tlN1U8liIw7KTGrtkAtbc5l+PE4kcVnzcwPUxOgkeHp5GjnDt4wMnhjMlO7++dKovadTmLgjEvIBFiw8Q4xsQbcXLOJ1N7j8fQdd4KpI6rStK7N6a9SyWnZoBjX76RRLcSLDz87wfr5YTSua2vT0qxeAHuP3svaho+3M6+2KMWyTZcc9t2sXiDrt10hfOjPbFz02hOTKMiukcr38RzYlf8XEalHNQR7Nq3O+vvGB+MKFZGa/mZ/SlXI7onQ9LXOuY7z9PGlfd+BWREpTx9f3vr4U3qNyk4f7PPue1RVSyRbTRgUzy7V5J+CgEQZhYVySjMicMGk5I6l6PLM/wRMujTUmierFdJ4eqEtWZY7Z49TunbRlO/KN3+No6vm0/PzVQRWqVXg+HI1arF4/Ghu+vnTqF0Hh/eq1muIyWjkwrEjVH2pPgAn9kVRJdSxM33pipWpXL8RB7f/QNt+g4p0vLnBYhURnoew4nOCV8N7sGvpFxzZspZaHXrSdtQUIJs87V04LctbHPb2ZEa+NYxaJbQsi5Hy/G0cWDiZOp5TiYy0Ncu9dTSKR+XKR3ZuzaqlCu3Yi3ajp9Bm+Fg0XrZF1StDRqLJJEzdx0/nlSEjXygCBZCRIed+rDMGgwJnJwuBxXVoXC02GfJCpmJYLCLxCSYSE68giiIeHh74+fmhVhfdAVJYpKamYjKZCe8+jMhN39CkcS4S0HtO8+ncTTkiVVWqlMZisbJq9W+8P/ZbNm+cTNOmNXLM373nHN37zCVy7RjCmlYFq45+vZqwfPVeDv8xgdiHKXTvv5gtq16nScOcYjr7Dl7j96jL+Pu5c+b8XTq84pje7KN15cSZGKJvxBNcxnbd7NpzlRGDG9uOf98VwgcsZeu6oUyZ9TM//3qO8M51sj/fPseFUWFhKcCmFPT+/wIyRHDNQ0nycafM5QwAAZ0IGVYBtQL2LJ5Nw34jssb4lqmQ7/4eZeeERfQlauNq2vTuz6jJU5kwcgTmUiEUrrGAI/bYOwEa5N8LMTdYJWeSxDokS7UR5Wqcxat4WregSDmeZU0LlvcCSeGMoXpvjFW6gyShOLYM5ak1CBZj7vO9g1C2ehd55eZISXdJXzkW06lfM9/8e2MKGRbwylwSnkiEJddhVm2BOrmk8x2PExlzxMpXLdTU8ZdjsEhcSbCSpBfxcpZx6KaNRC2J8KRhSE4Stf9CKm/Mv87KyZVZ92ssJy6lcXB1Q7zcbbVR+07YSNTqWXVoXMdxjVy3upb5yy9yIyaDGaNq06xe9vfbu3N5KrfaxJwJBrw9bVHzPw7G0KtTc4dtBBXXEH0rhXkfNSGsUSmeBhIF2438au3/KbzwEalHUaifvplHs+4270yz7n2LJPvrofVhwAcf8kqvfqjyuUkP/3gO605eZPjHc7Jes9+Pu68/JpkCJ2v+vQyeR2gEkQZOBkJUZuKscvYZnLhtUT6XJAoAQYbV9OTn2cXDi8QnUOKp0r4XEd9sp2SNl5Ar8m9QB3D+4D7SkpNw8/Kmbe9+Du/JZDJe7TOAn+xSQ1t3jSDqpx+wPqYUee/6NcpWzbkoexKIUsGP/yX0GjKcI1ts/d5O/biejKQEor6axtKeTdj12QQu7LCl813YsRFdcgJpLj6oZeBfgK/E2UNLRIQtglWlXQRNOtqeh3boQfsPPuG9rYdoN3oKQBaJArJI1CO8SCRKkiRiY2O5cUuD1SqjRGAGZcuk46axFLqXk8Uq8OCBnitX04iPN+Lm5ka5cuUICgr6W0kU2H6TBw+eIHLTN4SF5XSyRO05TXiP6UwY1zvXSJWzk4oR7y4kcsOkXElU1J6zdO8zJ5tEZWLaxG6cPDADo8lC9/6LiVw1NFcSFbU/mk/m/U7jemV5GJ9G3Vql6Naxlt37V+n95ip6dK7JklVHs17v3a02G7acwmg0Ez5gKZEr3qBZ4wpcuvKA0FrZi52ofZcI77eo8CfMDv/ZlYKRYRVwlRfuRIgIXNYJ3DHYfjgWk622zr1YIBUat+KV92cUer99J32c1V/OKsjQarXIxcLQFUdERZ1m2MjFOa7fwkCUFMSbanHd+iaJUn1chBuUMC+kuHU1LlJ0oVcaEmAMDCO16xqMNfqivLUHp/U9UR1bimDJRXBG6YTQ4i1kb0UiC34J8y8LMH7eyY5E/f0QBDCJNhL14Rl4K4RcSdSpTBI1p56cOv620KVMAI1KICZN5FCMmTl/ptlIVJmctnD/hVQGfnad5ZMq0aSmJ/NHlWfHvOpUK2/LKdx3IoGxn19g9aw6NA3NeV/Z/MttLkan0qFlSUb0d0xH9tM60yi0GGt+yG6/0KtjeTZtz5aQjzp0lyHjdqNWyenfrdKTnSw7SIWwKc+DXXmhiVRKQrxDFOq1YaOYu/skvSd+XKj5927dBODy6ZMAONnVvNg387V/XhBBMyhUOFnNyJ7ASP0bUCJRWWmikZMBZ0HilFHFKZO60M1J/y0EVq/LnTNHuX50T5HnXjxykITb16nWplOR5wqCgKu2cP1hEu7f5dLxoxh1Olp264FTLuIUL4f35OBvO8lISwWg2Wud0Li7s3rep9nbeXCfxPv3CK5ecASsMBBFCas1/8f/Ety8fKjXxdYsu1aHngCc+9nW/PLirq2EtLJdJ1Xa2dL5Yow24x3iKiHLRekv+U40AApjOhMnTqTZwHdpOnwygz+YSFRUFK1GfgSAq1fuaYEvKoxGIzdu3CAuLg5PTxPlg1Px9DAXmkBJEiQmqbh6zY34BBNubkrKl9MQFBSEk5NTwRt4BmjZsiWpqWkolTmTNfbtO5tV89S4cU6Rm0kfLefBg0R++H5K7ul8e84S3msmm9bkXIQqFHIuX7nPqPEbiFw1lLAmFXPO3x9Nt4Gr6BtRl1t3EsnIMDFkYGOUmfKP+w5FZ9VUjX+3BSs3Hsea6c19641G3I5J5svFe4hc8QZhTSpw6swdvL1cKVPatqDas99GoiJXDS36iYMCbcr/ml3JDTYi9WRzE27aFqwPr11EEGRFTk1/1F/OItju7c7mgtPm7LFv/1lmz1nP4q+GFYlEmayuPDTW52pGP+JMDXARblFKvpzi8p9QE1vo7UiAqVg9ksMWkvbSBGS6BDTbh+G692Nk6TnrqCSZHLFmF2TvbEPWdBDShd8xftYB655lBTbufdYI9YYfYmDxVZhVk1zT+U7Fi2y4buWz+nJCfbPfX3PRQmUfOXqzxKITRsY2d8uVRB28kMqCrQ9Y9X4wTWra1DfVKhk+njaP38HTicxbc4NP36uSg0RJksTabdGcvWxr7D1jdO0cadP7j9natSxe91fWa+OG1WLX/rv8+PsNYu6nc+VGMuPeqkP92sVwd3M8xph7+QuF5IWCbIr4HDCpFyq170Gq7eLPUulw8nBQstL6ZZMce2WphMyifYB7KdnPd6yzFXcb9TrWffEZ7y1aSXyGPqtfS/MIW4Rr98bVWRKiBSFZklEdkGekESs43vwLm9mQl4qW/fzCvJ7XGLNVQiMTCVZZKKlP37R/AAAgAElEQVSyIgNumuRcNCoxiFCQEp/9hWufn5qXxLr9dW4va/54bzr7cSo7eVB7tTG1MvMm4OdHu3cnc2zdN1Rv0sLhOGSa7EhRUnp28sLmazZD8FfkT5QN68zDNAnS9Dg/VoRZu1R2yqCH3XsX72c3rLPfn84kIkkSX/V9BZWzCx5+xbh/5S/SEuKwZsq7qsrV5vx9myHRqLPvpGqFEm2JUuw/dorilapj1GXQZuREvnqzJ9V72Bof3r8di0KlQjSbUKkKjoIVBOs/JH8uCIIa+BpoBXgD14AJkiTt/Nt3XgQoBYlOY6ZRr8/wLHJTrX0Pzv28gWrte9D4rUnUHzg6K/XGKApE6ySquEEpZ4kzaXDSaPM4+qjBLfEvtmzZQvny5YmJiaFE/RYA6K22YvPyaSJX9M9PveHTQjTqEVPiuZqRikwmIzAwEC+PosncpqUrefBQg9Eox8XZQvHi7jg5/fPnqGrVqnwwZiiffb6ERo3qZr2u0xkICNByK3otLi45SZ1OZ+DsuRvM+fRNWraonev7JQJ9uHV1BS5OOZmlTmekRKA3+34Zi4tdM+C0NAPVG8/C39cVN40TSoWcN95Zj15vsyv1QktnzjcR4O/GrbNTcXFRgWhEQOD+g1RKlNCiN5j5YlZn3p2wjfffaQVAYlIGggAWixWTyUrxAC9uXZjtsP+ioCCi9KyI1ItiV1L1NpGDdGO2UzVBEglxgYwMMwZL9vmwb3nySLbe9jz7Wtn56VgATm5ZiUyu4JX3pmXdG+0VOu3vL57O2fcLVztlS71gRaNPRRJdkMuz5bQVstwdqGm6OnTpFk5kZCRNGufjJM5Us5QkyDB6k5BRijSDHyDhropB63wVJ+ujWuHHHIuC3T3fznEieLiicw4lzbU1ZmUgctNDPGO+xenenwh+EvgVQ2W3rpMQkHvUI6NyfyRNIMrYszjv/whl/F+Yfa3ga4vOWOy+F4tdGx2rKft1+/WK/bpHrsj+XuSq7DWC4jH1UHnmesX/jhnxoo5iWgVtG2iQ231fggwO3jbzwal0vuvsRr0Stm3IPWzn4OC+OFrVdGfYr0l893oxmtTLTjeW+9rWKvvOJPPeilvMH1uNpnW0KJwdyx4OnE2n9/izbPiyJS2bh3D7bioNO2ygbGkfPNyd2Hf4JqlpBiQJQsoXo3zDntmTVVqbsM6ITWza9ANt2rTBWuILoo1ykuWJvDOjFZ+uWcHXmxdTPwR+WLuSFNZw1GkmZvs07hIA31AUSFLBDpjnwa68UEQqN0SMn/HESlbtBr9N7PXLHPp5GyaDgUovNSAlIT6rX8vuzAJNyJYQdS+gd4tRkJMmydFi5p6kptDu2H8InjIrwWozAUoRqwR3zHKuGRWkiY9+2P8+uy8sileshiEzklMUZMTeotQziu48gi45kfSEOPrNXULyg3u8POQ9bp87we6V31CrTUec3dzznKsNCCTx/l2KV6pO1Lpl7N24EqslW2koIDiEag2bsOXr+fQaU3ghlbwgiv+YF0cB3AGaAbeBdsAmQRCqSZJ08584gMJAI1iJSzNhUrpjyiTeoa9PoErXITh7aMnQWUDlYfubia0ZNhJV30dGIy8IdRcQJXBWCFC6I9E3bzNhwgR27tzJ4G1nADidBiVdBEI1IikWgQTRbtFi5+kwy+ydCNnfk1qRuy2R2Xkk7BdUjy+K5LLcnRN5yaLbz7YfIwiCbaVkyMAUnwyGDBBkyDy0yD18iJMrkKyNc90mQLzJbgFpMWNNfICYkQoKJfj4oXPWEG0WyC7gyD7v9sdh/3msYsFeqsdlcvOSzfWt0oKYHYe4kBaATCiePb64xA0AHRjtfp+mzDTcq3cmIZV6jX0Jtsar9h5dF4UCikGqCGqT421XKZeDCxAMMXav+zgJnL92BoXTUubMW8L9+/cJDQ1l7dq1LFu2jA8++AC59zDb9j3A2wcM2B6xBit+Jb9nz4OXqV6yATOmj2DXjz/g4eXFOQYDENAcPIqdZ+K3evq+NRJZsEB2snPRazELsinP0Oa8EHYlN6RlXjZuCjAUvm0aAL0XbWXVG+1JuX8btasGV8+cctaFhc7FA4XZgCY9EYPaBamANPXo6GgiIyMJCwsDyx/5b9vgyv3EIPQmDXKZCR/NdbxVF1DJbX0Srfp8p2dBQka6og7Jvi2xKrQozPfwjPkW55TDCFiRclmrmLyqk15hABb3cshTruN+cCLy6P3/aoHC4RgLb/+qp1dVNXfSctqpI3fMDP0pnUWvabJIlD0uPrBgFdL57vViNKqQUz1x35lkBsy4yJpZoTSpkzPLYc+xWIZNOc6GL1vSrL7Nnv11JYEyJT2YOrY1ew9d58DRW3RoV4Pjp27xyZQuDvPthXXCmjcnICCAmJgY8C3FpLcHc/rIIcpWzE7ja9OtB+u++YI/tm2haYfcNQeKghfBrjzf+Vv5IC0xPuv509QQlK1qS9EoVbEyMpkMD60PLXvaalmaR/TNikqFRfQtkEQ9QgIqnBFxLVTJ5D8BCa3cSn0nA41djGjlIpcMCn5Nc+KUXmVHol4syFUqLObCh+gl0cq5tZ+SdP0CPuWfTkrckO5I4ESrFUkSyUhOpHrrV/EtHUzMX2dpFDGA1m+OyndbPkGliL1pSwfzL21rBBrarqPDmJ5jPuT3dSsxGYuWjpEbrKJU4ONZQJKkDEmSpkiSdFOSJFGSpO3ADaBOQXP/SXgoQCXk/MyP5MzzwvV0WHdTZHm0lb+SJS6nSmy7bWXxNZEJ327kp59+onSTV+1mCBxIlZNqhaYeVjR5FJ0/1xBFSE2A+9cR4u+C2YDg6YsssBwK72II8sL55iRJwpoSjznmGqIuDbmnHwSUQXBxe+ZKfEWFUq3CZCj878yg1zN5yACSExMoE/J0dQGpdo3gHyEpU62ze/fulC1blmPHjjFnzhyGDRtGdHR0ntsqWbYcN67a+ueUrVARZxdXWryabVcEQWDMzDks/+Jzh4jIk+I/u1Iw7IlUUSGTK/AtZ7u+mgx4++kORBBId/NBQkCdHAsFlCIEBwfbSNRj2LPvfNZzg0nJ7Ydluf6gEmariuIe5wnxj6KY+9UsElUYSAiky2ty1/l9EtTdkYup+CR+TbH4GbikHEDIZV1lcQ0iueYkkkNnICrd0Ryfjeefb6GKPfqvkqjj9y0M/0XHwrYuVPKVY3yMPB+6Y2b+YT2LXtPQsKQjmU3UWXnlm4ek6EXGttfmSqIOnrWRqBUTK+VJonqNPsC8SQ2zSBTYnG8376Rw604SXy09zJYVfYi5l8ymlUPp/Fp2RD1q73lmzlqXLawDlCtXjsuXbVHFMhVC8PDW0qhlm6w5CoWCtyfPYM3C+UU/YY9Bkgq2K8+qj9TT2JUXcgW96ZNJTGxdl02fTHrqbSmUtos3/N0xWa8N/GgmC/aeot/kmfSbPJN5e04WKq3vERJRIgLaJ9LEeZaQ8JFZqa820sDZiEYmccGo5Jc0Jy4alRil5ytaVlRkJCXi6mHLBU64fR3Rmr+L7+G5gyRFnyVs+qZC1znp0tM4uXsXx37/BX1aCpIosmfFVyzo1IDlQ7qQnhiHUZeBm48ffeYu5ce5H/HHdwtsBO+R574AlK5Sg5vnz5CRkszqSaMIfaUT4eOmO4zx8vMnqEJFLh8/msdWCo9/q5ZBEAR/oAJFbW/+D8BH+eSfOdYAP98V2R4jci5ZItUC1szC8MqvOQqMmCWBqBTbKqqJmxllLgTuuYQkIdOloXx4GyElHhQqJG1xZIHlkXn4IOTVmDcXiPoMLHejsSbGIji5oAwsh9zLF0F4Pm5HiXFxWY1Joy9fRCwg2rVz0zqSExJYt/cYLoVUEk2MjyPql5/ZveMndBkZmM1mpr83gnolfRjwamsS4+MxGAxUrVGDb5avplu3bnz55ZdYrVYEQUCSJKKiolizZk2e+6haO5Szx49y48ol5n00nq79X2fkZEeBggpVqqFUqoi+9FceWyk8Cqxl+Jv8is+zXXkcT0OkANLjbOnpVVq+9tTHIsoVpGu8ESwmnOPuoEhPtjlKcoGbW87rOmrPaQYP/46EZA+i75Tg2u1SpOs98PO8S4XA83i7xiATCq/UKCGQJlTljvwt4p16I0hm/AzL8UuYg7PxfK6EyKLyIbnMMBIbfInZsxKuV1agPTgMpzt/IBRQovBPYMwuPQvbulC/hIIEnYTWRUCUbCp8B2+bGLo9nXfrO+cgUQBTd6Zw4b6Ztf1zJ1H7/0pj4pIbNhJVw9Zy526snh37Ytm59x67Dt2n1+gDVKvgSddhv9F31J88TNBjtYq83Kw0/cOrMHj0Ft7s9xLNGpVFQHCI7kTtPU94n8+ZMK6Xg7BO3bp1OXr0KJtXLWP9km/oP3wk/d8Z7XBsoU3CuHXtKinPoGXLi7BeeeFS++w7dh/4fg3thz5dg0q1swuCIFCzaQuH1+2jT4WNRD2CVRBIlhR4Y+a25PSvpPd5CFYqqkx4ykX0osA5g03KXMwMiv9/QEZiHPcun+f7j0Zy5dBuVC6uvPzOJMo1aZvr+Jt/bqJs616oXHNPs7MYDaQ+iOHCrRTSEuMpXi6E1R+9j2tmWl5ScgpOGnesZjNvrf+TlcO782XXxtR5rTsdx86kZNXavLVsK1tmjmNBzzYEVamJPr3gAssy1Wux4ZPJOGvckCtVvPxG7t7G6o2acfbAXl5u266QZyh3WArXkNdHEITjdv9/K0nSt0+6T0EQlMBaYKUkSU+mr/w3QZLAV2VLiH5WcPbywclDi2dQcI730q0Ce1PktPS00lBjZm+aEp5XdUxAsJpRJD9AZjIgKtXgEwBq2429KNEjq9lESlwslrQUUChR+AU9FxGox/Hw/l127/iJkb3D2b/rF7y0PsxctIyXmjbPMVaSJL5ftph3p8/G2dUVcy4LUV1GOndj7vDw/j2S4uOpUKkS7w/oTVDZYNJTU1i2YC5mkwmtrx8Hrj+gaflAGpT2Y+L0mYwaO56Wbdpy8OBB+vXrx3fffUdQUBBHjhxh5cqVHD58OM/PUT30JbasXo7PlJnI5HIGjnw/xxhBEGjYohWHdu+iQuWiqbA9joIaY2a+H/C/YldyQ7rFVgv8pETKN7gSosVCKa0HckHkgVngaWyHWe2CQRWIKj0JVXoiki4Fyc0LXD2AvNP99u6/zP5DGWzevJX78QqcVEaK+cTh6XwXhbyIOYtAhliah/JmmAU/lNJDfA2rcbGeQ0DKNa9HlLmQFhROhn8bQML51jZcb36PzGy73z4vK5w5rZwJDbB92XdSRdaeM3EvTeTAHQsWET5p6UK9oJznec8NEz+c0TO7oydh5XPWZO7/K40BC24wbXBZMvRWNv3xkJJlzPT/8BQ1Qty5eltHzAMdAX7OBPg5c3FXBJVabWTDT9Gs/7odxXxdWbzmLIs/68z8xQc4cOQmarWClMxas30HLhLe53Mi14zOIaxTv359PvnkE9Qe3nhpfQgfMMgh1RlAqVJRu2FjTuzbQ4uOjqmCRYEkFWxXMiPdwf+mXXnhiJR9x+5HTSqfBg1f7cSGz2cRe/tmVlrVs0ACKrzR4YGFlHwM0rOGiyBSWmGmhNyCURI4Z1Rx1yrHIj5fi5VnAf/girR+axy6lCQiZn9HRmIcp37cQLkmbbGYjPy+YArpiYnIFEqsZiMpd64S+vZch22kxcZwalck9/86SeLNq2h8AyhWojjOrhpWTfmA7iPH0OHN4TZVm2+X4aRxo2KTl5EUSlSZKnwB5bNlQt20vvT/bCmHN6/mp8+m0nd2wVLCXv4B+JQI4vdlCykRUpmYS+cJqZezxqR646Z89tYbxN+IJqRGLQa8P/6Jzlsha6TiJUkKzW+AIAhR2PKJc8MBSZIaZ46TAasBE/CUOSnPHsmWp4tI5YaQNj04s2kRJl06ri45G3THmmUczxB4SWOhlquFM7p/zkYUBXKTAeeUhwiAxcMP0cUNpaJotw1JFElPjCc9MQ4JkHn6IvfwQcijsP3fRmijpoz/dB4xN2+wcfchDkf9yQ9rVvJS0+akJiczbdRw9DodMrkMXXo6VouF0CZhDtu4fvEvfly9nPPHj3Dn2lWKlyyFX/FAlCoV00cOZfL8r+nSdyBmk4nIZd9SPKgkLdp3QC6X4+rmTnJiAhXs6g6Cg4PZv38/kyZN4uOPP2b//v1s3bqV4OC871mVatRCr9Px69bv8fUP4ObVywRXrJxjXMMWrZk94X0O/rmLxq3a0HfYiFy2VjAKWctwX5KkvGwG8P/HruQGCVtPIbcn/LnX7vY657+ZRJi7GbkA90wyTmY8nSiLpFRj9CqGzGRAnZGMLCUeKTUBi4u7rW5RkriXImG1WhFFkcQEFR5ejejYUcDLPR2tZzLO6swUe0vRSJRB8iNBbEiGVB4lCfhZv0cjXUC0puc6XhRU6Lybk+bTAUnugnP8HtzuRkJcTK7j/208IlEAbcspKeUpY+8tMxV95JT2lHMj2eZ4uZcmMukPm5hVkkHi5D0LlfyV9KzjKMhx4qaB+UsfsutMKkqFwKJt9wn0UWG2SBy6cJWVH9fGzVVBvwknGdi1LO2bBfJy4wDSLSrUKjkWi4WkZAMjJu4mcvGrhDWvw8BeoQx+dzNL1x6nRrUSRO27xOwFu4hcMzpXdUaZTMbx48f5YOZcTh4+QHJiIs7uOZ3T9cJasmTWNHZsWEPrrt1p061Hkc+fRMFrlUzfVbQkSfnu4O+0Ky8Ukdr4yUQixs94pk0q1c7OlChfgYT7954pkUpGgRGBsui5JMnQC3+PApWQmb6nlVnxllnQyCRECW5ZFVw1KbE8x57up4VnQAkaRLwO2FT09KnJ7Jg7EYvJxK4FUzFlpFOpTTesFjNypYqynYohV2YrUkXv+YmjKz+jcttu1B8wCr8K1VA6OVOjhAYAQ0Y6/j62RbAgCIR2zFayMYsS4R8vYtXbEdRs1zXHsdXv2hcv/0CC6zYs8HMIgsDQed8yu29nDOlpxN64liuRKlezDm/OnIu3szNLZ89A4+5RtBOWiWel2idJUlhBYwRbuGEp4A+0kyTp3853zYF4s0CQk4RKANMzSndVa9xxKxaELiEWL5+cRArgulGOm1yikrMVpWDmvE6B4TlJtxVEK2p9KipdCqJcgUVbHIrYZFySJHQpSaRnqlc6adxx9ytGsvR8ksZHqFClGhWq2GooZYKATC5n9aIvEUWRsYP64hdQnNadu2G1WFCq1ZSpVMUhqrZp8VesXvAZ4YPf4t2ZcwipXgtP1+wFkUWvxzUzVUqpUtF/+EiH/X+9cSsThr3OK685NvAWBIHp06cTExPDoEGDaNw4b0EPAJVKxaLvf6Jv2zAMeh3XL1/KlUiFvfIqMrkcmUzGrHGj8S5CD0Z7FKiuVcgaqf8vdiUvxBqhjAs4y0FfxHTHmmVL8PbCr8mwSFw3KajibOUVT5EbFoi2PF1kW1Q5IbmUQDIZENKTEPXpttopQUaKTEBm5/gwGW5Rs7obSiGlyPuRJBmplrIkmauiF4sjYMJHthd3055c658ARMGZdNdmpPk2Q1R4oE4/j9uNlSj1t4HCNfD9JyBJEr1+0jOhgZpqvo5rvjoBCixWiQ3nRT5q5oJZEph7UIfJKjF4axoNSypxU8PGcybGNHKmV+Ps+7soSszansiK/Sn4eSqZM6AEvZppcQrIJjB6pQtnLqcwfv5frPu8EU1Ds8sXPN3VLJ3djBlfnWLzjqtsXvIqTesHATa7suizzrzSti4e7s74+rgRueY9NJpsNcdHSEtLIzg4mD///JNOXbpiMZu5cfUSleu8lGNs+5598CpWDFGUmD/+PbS+hSuncDyhBdsVsZBrmb/TrrxQRGp/5BqaDRiBxtsHucYbnUl0kPq0LzpLMWQ3ZrM34Eq5o6HRmaw4aTxISkomISP7nBktuefX2st6P76tR3iklnVMcCZUpSeEdI4bXUjJ59duL0+e13azIaEWRYKUFkooLPwfe+cdHkXVxeF3Zls22VSSEHpHqiBVIIEoqFjQzxJEsWAXsWCvKPaCihVUrCAKRCx8FvRT2RRAivTeAwkBAiE92TJzvz82yc5md9MIJIG8z5OHYe6dmTu7s2fuuffc3zHJrkitbFVmv01PhlOHTciln4ervVq1q8rOr9MogPmVW9ecSxHuSjrNeo9AjXy59jPTPvMV26FVHNNuBxh8q5I5Kv6AgqLo0GcASR++SNq/qUz6+g+MZu/YYoCcnWtZ/827TP7kG0LadvEoyyuTU9IFkJnrFrMIC3R3ADek5ZG1/xCBkS3JdeigVPTCqXnWQnvHcrQEKLF53OuRfPdz5t4fzG0ffUfOoQyiOnTheJHnyN6B467F79HnDEcvy1z32kzevaV2U+aKwimRPy9lJtAdGCWEqKZe06llYx50NMOoSPjlkEDFU45Ya8jtDvfz7qGWp3neA0tlu83BoUiOAswG3zMvqhCsK5SREXQKUGlntHPAoSNdNVJQmsdN+zvSPvuBRrfdC9TkPDJo1ipVVO0zasq8VPjKjlccGIvy0BcXuMJqzBYcIZHoNape2s/GoUkc7SwLaxOCjJxcyMtGUhwIYwBExVAcEEixA7TvJn/pGrT4UxisGE7iq46WylT7tJ+VotlvU1VaduyMJSSUp++7i4z0Azz/xTfYNXWcqlqeYiPll0Us/GIW035aTEybdgAUqiqOIvdie6NOR2GhO5WCth12RWHL3j3EdOzMisPZPu/pupfephD4PT3b772WfxeRUUxb9AfZhw/RvntPdme7z6m9butzhwHw0IzPmDKudkpbp0qmuJQGb1fySly/DafGZtgcKklHYEIHidhm8Mdh789EmxakTP5cQjAgVNAnUGXTlt1sN8cQFNOaYyWC7kY7nQ0OIvUqOwkkPNA94GE2uH+3gZptg+Z519oFSZLAZAaT2UMVs3uwu46tRIfJ1N71H+dWz8YLTSfH4NnhcSpGjhW2JbuoNYoIwCAXEG1aTrhxGzrJjupwOw66ANfAg1MEkRPUj1zOQWAiUN1BmPM7zKY01M46oAPgSsGgRS1w9//UYvc7PKBYY3sK3YIywu62JUJTR2g7QZptSSN5LmlssRJg4unQImK7udovh7j7H0t3FHDPl7v48rGziBsUic2u8mjSKqZuNxHaMphLrm3Du/PT+fDZrsT1DUMyu7/HjxYe5OdtdiS9jg9eGkxcf9caTp3JUl5nzfocbngqifkzRnP+eRXy3JnbsnzLHnbty+ODD59k+HBXeTYXlldpd3Ex2wE6wSq7HUp1b/Jt7s8yuygXpFCICuXeL36kKD+XzJBW7Nx8oLyOtu9SHOlaWzV08ms8ckMCNUVQdwM01aRWdqVROVKDrxqPpQ5moSoSFBJKYV7NR1aqoljI/Gt3OVP9jcX8U2KiqMaJbgWBkiBcVgiTVYIkFYusYpBcsdaHFR0Zdj3HVNm1/qn+11fWK8OuuYHPH76DXqPG+HSistPTWPPzAjYs/p7rnn2Nll26eeT5qAnGoBAKjmZiLyzAGGSp+oAqCApvRlB4M4rz83DKlSdcjGjRmie/+4unKhrMaqCqarXkok8USZLaAXcBNuCQpsN+lxBi7klvQDU5ZJdIPQ4jIgRXtoTfDkNuzcP8vTBaQrAXVr5GTiDxb6GefQ6JziYn7YwK7aRijikyaU4DhZzk9VNCoHPaMdiK0NuL0TvtCCSc5iDUoHCEoQazUEJAcT7kHkVyuhwoER4NAUENLg1ETZAkiWtuuYOXH7qXGx94BL1ej93hOVC5d+tm/pj3NdYfF/Lcl9+WO1G1ITgsjPTdO3HY7RiMNZsF9EWz5jE0ax5DXvYxzMEh6CoJzWzfrQczk1Zwc7+aqw9WZVPqyuY0Frvij2w7/JsNAyNgez6kVSFoF2MUDI8QRBoV9tlkHn/hZa564iWCYlpjR2K93USRTtCRYs6mgCxFR4nu5M36mkw1yzNWbA8kO7clOUUtEegINmYQYd6JxXAIYffd77KLUI6rg8kTPRHIBLOFcJZjUA74rN9Q0Osod6K0pG7O45nZ6Xz5WBdie7tmkUxGmfGjY3jj6/3cm9CKCS9u4+vnezC0t9uhXLkplzn/zeDHJUeQJIlv3uhf7kRpSVqRyX0vrGT+jNHED2ntXZ66jc/npNK1cwzD405MsbiMiJatiaA1+dlHUQNCPGYsK9Ky9yDGf/4Xs2+ofBbdC9E47EqjcqT+8+gLJ+W8psBAivNqno+oOhRpnKnBJhtr7UbySp0eXwRIKjE6lSBJECSrhMgqAaUzPXYBBapMpqIn1ymRqeixCwldw1xqUC9s/yeFdn0Hs3tVCkfTdmMODcccHIqs05F7+CBf3nc9Z1/0HyZ9NJeWnc86oWuFtmpPRNsu7F+7jM6xF1Z9QDX5+c0pKA4HF056HKEKwlu1xZfAZkA1FcIqogqogZhSrRFCpNGQVRQ0bC6QKHYIRkbBda3h54OQfoLj3IaAQGxVOFJlFAmZDSVGttoEXc0KbXRO+plslAg7x4SebKGnRBgQtXVIhEBWnOgUh8txUhzITgc6xYFE6cif3oTNEo4zIBih0/lNzunr3NiKXA6Uw4YwGBGRrRq9A6XlnyV/Mvi8Ufw89yuuuu0ubIpCaLNIJEli79bNPH391Vx2821M+/E3WrbveELX6jV4KDqdnl0b19O9/8CqD6gmr951C226nsWYW+/EYDTSrGVrn0IfllDfoahVUVV/pq7GbhqTXfHHsmOCDhaJy1tJJB4QHKqgtm+UoE0gdA1W6RLkUvtLztOTbpcQOgPFFfInZmGkEB1nUUTLkhwyTaEU1zAUty5RVInc/GiyC6IosVuQJIXwwAyaWdIwiYzyehXnEkrUKI45+5GvdEFCJUTaRLhYiqF0eqShjxP7+j2lbs7jlrf28OUTnYnt5bmWyLrmOIN6BDPjuwzmvdSTLq3NCCGQJBFUyDcAACAASURBVImUNdlMmLKJMSOi6NU5mKfvOovhviTOV2Ry3WQrCz66mBHnejtR1qX7uP3h3/jhm0lcd+ss0tIO0759TJ3d83u3XUPvC6+gR/xoV58kyPdkR0BIze2KoGq7IRqAXWlUjtTJQAjB1hVLuf7J50/aNQqFzL/2APobixkSYEMVUCgkclWZ44qObFVGLws6GJzE6BVkyRUCVyRkjisy2aqO46qOQuFW6PEKa2sCgL3rVzN68lQyd2xi5i2XYTAGEBTRjEFX3cT6xd8zZNxtDLn2VppZ6mbETghRJ7NRWjJ3bCE7fR+7V6UihMBpK+Huj76l4znecci1Qameat8Zx44COGqDS2MgoY3E8mOCFbVUb1WcDjI3r2bg+Ek1Os4hJPY6jexzGoiWFdoanbSQHLSSHagUUyJk7MioDh0OScYpyciSgirJKJKELLnCgHSqihEVveLEUOo46TRvHEXWoeiNOI1mFIMJpzEAIevQ19TxsZcg5R5FshUhdAZERAsIDD5tHChw/cbXrVjOR7/+zaKvv+Cac7phMpuJbt2WMTffxoIZ73Hncy8T/5+r6ySniSRJqKpKoA/J6doihGDPlo1sWb2C5Yt/Jq80xO+dxVbadDmxAaUyTnFoXyNA4K9f5lBh4QHBuLYSV7WSmHdAkOuALhboHQatzKCTwKbCmlxYnSdhMcsU5+eStWcHMZ26ep2zCB0bCeJsuYgWtlwyCQXDyV2PmJS8gRHD3VERNoeB7NwwjueFogodJkMRLcL3EWbahU4uneb3seqk0NmCLFtfitS2yNgJl1YTLq9GLxUinNXPFdnQWFrqRH3xcEdie3muaS62KazfWcCgHiGMHBjO9c9uIcAo0719IDdcHMMrX6Ux+Ya2vD0njbmv9yf2HG8nKmXVIa6bbOXbd+L9OlEJd3zHd3PuYURsNxxOhdBQ94xZbk4OoWG1GzgBKCnI51h6GtbP32PNzwvIO3IIgNvmWrFE1mJNVEVE1fLmdRzaVyvOeEdq78Z1OGw2zho4hEL7yRvvKBA6UorNROgUgktnmqJ1Cq317rAyu4A9Dj2ZqoEijdPURPUozMkmO2M/Lbr2oHXPvpx90X8wmoPYv2E1a39JpMuQ8zh37C11ek1bQS4BwbU3RL647OHnWfNLIpv+/Jke8aPZYl3Mmt9+aHKkTgHZDpifDsMjYVikTIcgwaIDgpwaLmXfvyqJsFbtCW9Tu9kJgcRhVU++akRGEIpCM52CCdX1pyroy8ZzKwlDFIBT1mMzBCAMJpx6A4rO6JH3qVby44rTlU+qKA9kGTU0Cik4DBpILqi6ZO/2bRhNJpq3bsPtj0/h+kmTwRTAautf/LVwAWMm3E78f7wFZ06Egtwcgms5M+QLSZJ4aPoM/vxuHiv/t5iBoy5i1Z+/s+rP30+ZI1XdReGnC50DYVclYXuFCixMdzlTY9u4BkHMOolcB6zLgX1FkKVIHtErW/78mY4DY7GE+04W7kQmIyCMViU5tLDlkq3XYTN4y2fXBVbrcq674VX275lPXn4AeQVmCouMSECIJZ9mlgOYjQWuMRWHt5ESAgqcrThq60+R0gIdhUTplxKm34jkrN5MfkMmdVshk2cfcjlRPb1V7T5dlImiCp6a0I4hvUMpKFYINOlYlHqUH5OyuOHSlrw9J43ZL/X26UQlrzrCM+9ucTlRg1t4lZc5UYmzrmFEbDcURSU/v6TckbImradIH8i5w2oYbqfBFGRh/AvTSU78mgMb/6Xt2QPYv2E1GZtWc1b8pbU+bxnVWSPVEOzKGe1I7dmwli+fe4zzxt10SnKZ2JE4pOg5VO47CYIkQYROQVElDjp1KEjVEJtowhfblifTecBQdKXrOkyBrpmidn0G0q5P3YXIlFGSm01B1kGCImqncuWPjgOG0nHAUGI6d0dxOug2/AL6xo+qs/OrQiDVUTbw0xG7gN8yBXsLBCObS9zSSebXgyrbqxn9m75uOcs+ncbgmx+ounI1UJE4jp4iyR2qE2jUIQmBHhWLTkYnVGQhMEggJAlFkkFvQJF1iFLnxmNRea0bo0JhDlJ+tqsnZAlHhESArDutZqG0pPzxK7EXXAy4HJKg4BCKHA4GnjeKgeeNcgs71BEH9+3BbishOCy8Ts87+MKLGTDqIr5525XzKu7yqxh0ge+ce7Whqtm4upita0wMDhXsK650nIMch8uZGtNS4nAJbMxVybS7ByP0pUJLQgi2Jf3O0jkz+M+z0yu9riq5nalmhdkUmIIoNAbV2eyUogj++WcjS6wb+fWXn9i+2+XwGw1OosKPERGSg0GvgNOPhLnQkWtrS3ZxZ4qdzdBLBcQEpBLCemTJ1Tlq6CF8VZG6rZAHvjzI+/d08OlELduQw7S5+xk3qjlDz3Z9fsGBru74lSOiiAzV88H3B5n9Um/i+kV4HZ+86gh3T/2XWa/EMnyQLydqL7c9+F8SZ11D/LD2AKxcvZfWrcKRZZnUpZu4Y+I7/G/5nSd0n5Ik0f/i/9Bh2AX8NWs6lohIzr7yZjqee37VB1cHUR27UjeXOhEalSNVFs6mdTSKHYpXOXgqh2iVjcrWE21ZauWb5x/lgnueoNsFl3PguFuZpOIxWrTX9ifsIEvV/WYlCoVEoVMuldn1Xgnjz6nS7tcqDGqVvfzVr3hO7b36e2i1n62Hgp/qWzVRu+1P6bDiGgytOl+Qyf1ohmi2w81uSc6KHZhf1qRy0ZjLGNTe3QEp1iwK1z4Th/Lc4QI7MjwNfnaOu8ygVQl0ahXbYP1X02k1+BJyHBZyDrsW1ASaNappmns1apR9dNrvzu7+bAoriF6cfdWt5ds5TqBUQfBEB2DsNgc6cXLk+E8ntuVDRrHg0hYSV7bRsTxL5c+MypM97lryIxsSPyJu4jO0G1hpupwTRkgSDnTYdNVT7TshnA7kwlykwlwkoSICLIiwyBpLojdGUv+3mAk+ktmeLD6e+hRjJ03GUMNF/dVBkiTGP/wEUPeOjd1W+bStYm80CuV1QrAezo8Q/HrIvU+rimsoVfPMFfDtIff+UIv7N1ymSpw8eyZb/lzEHW/OpNM5A4kJ8fzdBWlESSyl28VmM3LBcSy2Qiy2QkSx0SUAo9Mj642g04NO7w7nFaorn54QCCEIlh04HA5sNhvpucex21XsdhWnUxAa1o5rrmlDoNlBcFAuIZYiTEYnkqqZgtMM/KAPpsRh5nhBDMcLolCFAZO+kJahGwgzZyBLKqgah0DVhPMp7sWqQnG/w1XF4XM/gHBq1PkUu2a/e1vV1PHYrzmvtpOnVfCTNAvTJY0gj85oJnl1FrfP2sXXbwwmfljb8jJZ56qXtCKTl+ftIzjYxAP3DCGwredsU9KKTCa8tJLvPh5N7MAWpce6neCUNfmMf/xXEj8dS/x5mgFioyuUzpq8iWvvnsv8b18gPv4cANblDOC2R4Zy51PTSD0+FHoM5Yuld7KxsBgKswA4VujuA2sVrLXbxwvc2wWa/lR+gZPoCya6tgsdbNrpGnXMPe7bma4uqhBV2hVHA7ArjcqRqitUVeW/77/OtU+/QuuB3tnqm2h82EtKWJ30N3c/9/Ipu+aRjcsY8mjVCXcbGg6Hgio1lMwb9U+ZPLlD08nRl+5zAj8dURkeAUOiZNpYZFKOQpbdXQcgyKQDewl7tqXw6qdziGrRCielax2RyVZkQPKbhkArc242uDtSAZprBOjd+7UOU4BGhc2k2TbWQv5cu18IFYoKoDAXUVIq1222oFrCXRLJFRB+OuaVddj9DVjVtE51nILK6mjLtNc7fjSL7RvW03/YcA9VKq2UdIlGhr3Q7u6Q5RT7lnmviHagqdjm4N+kJSS88C7bDvsOb9I+N9qBM38DYtrza7crDkSVOE7MsXI4KrcpShXlpxvLsiG2GQwMg1U5tT9PYU42y+d/zmNz/0tkqzbVPk7IOmxh0dgVJ/rifAwOG3JxAVKF1fna/x3RbGdptvV6CaNRpiA/mx9+XMQlo8/m3MFt0VG55KCiyuQVhXE8vyNFtlCXgIQ5iwhLBoHGXE/H6zQgeXUWNzy2kq/fGMTwAd6RKmXCEG88OYgpb/1Ln+6es02pqw4x7r6/mff++eVOlBbr8nSef3eNy4ka1sG7PHkTCTe8TeL8F8udKIDsrCOk793DZdeOJ8/eeNacCSGqtCtOP6mKTiVnnCOVn32UeS89id5opNfwUeTUNCNeEw0OIQRvPzaZAfEjadY8xqNjczIJat6GrE3LCW/V/pSEhtYVisOJkE7NZ3Q6oAiJJccg0yaIbwbXtYECJ+wvUVEFhBogVHYQYtRx87tlYTeen2+eIrHXoeegU4/SgNc+CiHAXgyFea71T6rqGrkOaQZBoaA3uEL6zgCcTidTJt7GlTffSoDZjF05+e8KWacjomUbti5Lomd83YXdnQqcPtbBaFGqKD/dWJsHkSYY0gycAtbWIsNK5s4t/HfaFHqed3GNnCgtQqfHYQl3r4tUVfRCBcUJqrNUhEYCSSLU6ArRlSSJYL2EwWDAaDSikw9itS4nYexEvps/hWFD2+DSpva+niqgoCiInLxo8otDEULGoC+medg+woOOoJcKvQ86DUj59xgTnl3v14lKXulyor54PY7n3lvHA7f08ug3JK3IZNonG5j3/vm+1zwtT2fsxF9Z+Pl1DB/a3qs8KWWzy4n6+iHi4/t5lEU2j0FRFTasWkH7Pud4HdtgEVXbFecp6u9VxhnnSH3/5gsEhzfj+uemNarObxO+EULwxesvkbZjG9N/+PWUXrvNsDFs+34GoS3aEtOn9gs2TzWKKhANYIFmY2NbgcS+AkG7IOgQ6FpMrgpXzqnVq1aS4wBz9wGoARZsAvSSy8C2MKp0NDrpE+Cgm3Cwy24gzaGnwYjJCAH2EigugKJ8UByu9U7mYJfzFOA7qfXpjKqqvPTQvaiqyn3PvnRKrx2bcAPzX36Ku1q2pVXXHqf02idCk2pfRST+yhLogLhIMOsgOavKg8pRHXa2fPsRY2+5k65DRhAhOXDNawvCnCo2SUdxbfJFyTLIeigNSZM1M9VlycQBQjSnzs8rIGHsRBIXzGTEcO88RkJAYbGJvDwLuQUhKKoOnewg3HKMsKDjmA1Z7iWU9T+BUOek/HuMG59ex9w3BvueiVp5mMffWMtX04YzY+42unUKZfKtvdzlKzIZd9/fJH44ktiB3tLkKStcTtSCmZf4dKKsKTuY+Eiiy4ka3sur3Ol0csPd93HXVZcwd9laIpvXnfz5yURQtWqf2gDmQs4oR6rg+DG2LrXywuIVGM3eoSlNND6+nPYKy/9czLT5PxHgIwHvyaTN0MsoPprJofWpjcqRcjqcyJUugW7CH8Wqa+3UtvyyheASx/Zu5/eXXuC2r34nHx0WUZqiQLiUfg849Rxw6ojQqZxldNLT5KCDwckep4FDyimeoRLC9eZxOsBRgmS3gb0YSXG61n4FBEFoJARakGSd5rAzpxMshOD5ByZyYM9u3vn2e/SVJLA9GZw3/jaOpO1ha+qSRuVIVTVyrJ5hoX3gEopZfFhQrMCAcDDLsCHXlWbBF0ZJ0N6k0tqk0kLn5Ja339CUapJNOVwnyJONZBlO/ntv9+40EhfMJD5+CKi7XU1wSOTnB1FQGEBBUQCqKiNJKiFBBYRZ8rCYTm/nqQybXeXGp9cx5+W+fp2o8Q+l8vVbw3lv9lYMBplPXx1ePpCfulobzuft4Fj/yeD1metYMPMSn8l2rSk7SJjwGd998ygj4np6l1vXou/YhXufeZ7tmzaw4q8/uPT6m+rgzk8+omlGquGx6ueFdOgzoMmJOk1I27GNX7+Zzad/LyM0wrcc7MmmzbAx/PP2Pfz7+Qv0vnYyZlMoUl0u8j8JOBwKsq+YjCZqiOtFuP2vn2h7zrkeI7u+6mYrOlaU6InUKXQzOuhltNNd2MlSdRyXDOQIPc66dKpUBdlhQ3bYkZ02dE4HKA4PxUah04MxAGG2gNmCpDujXgk+WZliZe0/S5m35B+MgfUzGzf82puZMekmigvyuOjOyeiNJo81Wg2RqtYynImOFLjEaaxHoViBwRESPUNdznqOU5DncCXbLRGCFiZoYQJZUihRYcXqDew6nE2H+EtRgdAAPSoSKhAVbCTUWUIzZzEWm50CHOSZLOUKnXVNx45tMZuDyMtzUFwUSH6hgZIS15SVQe8kNLiI4KASgkzZ6ORS+3KGfN3ZuXbmvNyXOB/JcpNLnai5b8dyMKuE47l2/pw9ulxoJGlFJq/OWOc/nO+fDMZN+oOFH19C3GBvJyp52U4SJnxG4pe3+XWiEq6dwu9bbwPglgceYfINCRw7fJjrJj2AqqoN2q40rZFqYOxZt4olX3/CQ1/+UN9NaaKO+OGzjxlz06315kQBmJvFcP7zc9mc+AG/P3o5qsNOu6EX0WfsPYQ29zaMFSnOOcY/X00nc/Ma2vaPpUv8pcR073tS2+x0quUys02cGHuW/cmepf/jxpkLq33MUUVHarFMlEEQo3MSo1OIkUpc4THIFKgGiiUdJchIQjNjJQQyAp0QGIWCjEvG3qRISEIgCxUDAllxonPakTUxD6pOjzCYwBSIqje4lKYMJtDpm0KcKzB35vvcNGkygRZLnUubV5cWnbry4Jz/smj6S7xwybmoisKAy67mojseIKxZ1fbuaPp+vn/3NTJ2bKNX3EgGXPofWp/k2S2nswpH6hSsMWvIrDgO63ME0SaIMkG0GUL0EG1yhf0dtbvWVR1WdPz5/XzWLvqWOz/5juOKq6Orxz1Q45RkjhkCydWbiHIUEWorxGIrotgQgBAWFJ0eVafHWwfYTfbRLDauXkm/QUOIiHLNpKiqiup0oDidHMjLJi0tjejoaBRFoChl4idmzGYnqOl8Nfsb3nj5OvfM0xkUvnn0uJ1VW/Lo2zPcpxOVuuYo077YxbfvxBLbP5ph1/7BlHv7ljtRKSszefnDtTx73zk+hSVSVx7k5ff/JXHGRb6dqOX7ePOjVSycczvDh3bxKt+0aQ9ffvUrS/56D1EqjtNvyDBm/Z7EW088yLc93wVJ4qLrb2LsvZOBqsNEj+3bwYqv3qEgK5NWA86jQ+ylhLRsV+VxtUUIUaVdqar8VNCoHKkyKVCN8qRfCXItOcdzmP3U/Vz99OsoITEcyXerKWmVwE0ahSytMpI/pa3qUB0Z9Yr1tPfn73hZrrod2ktolcCqK4tcUyWsmsrpVrw3bbu0qmQWjbSrobSOw25nyU8L+fnfLTQLCiKnxB32cLzYLZe644hbFWjTPrcK1rr1B8u3S4o84yy0IyBBFncyQ0uwe1vWfEmhoUF0vPJhYuLGYQ4ysT/5B3554noG3zmF1v3jve67TFJdqCp/vf0kwdGtGPXoGxxYs5Rfn7+H/7w+m/A2nTxk7e2aZNFSNb77ylAVFeT6H8Vp7OQfOUjSB89z6dQZBIbWNOePRI4qk6Pq2OYQxBgFoZJCmKQQjY2yQV20AkvVEFsSkoSq0+M0BoDBhKo3oRqMIOs880g1OU8+yc46wprlS3n9s6/ruykER0Qy/sV3yErbg85oIvmbz3j7hjHc9NLbdO5/rt/jnA47Hz98Nz2HxXPBTXeyzvon791+Lc/+lIQppG5zU2lRq3gZV1V+uhFSmhdI+x7W62RKgAPAEadcrkljNriScGOAgsyd/DP7Ax6b/T09OrpDxYI1cvjBRq38eThO1YlcmEtgcQFSnvv9J+t06PQGdAYDZoOrPUIIjhzZz5Z/1jJ0cD8ipIM4Dx3C4ZA5pHr2DUJDQ5ApIDDQRoDJTmCAjQBDAXKpgZr2wmWgaNQlhSbMStLM0OuCNduaCxj8DAoIbefYvS1p9uu011IrGEdFowaoat7vilvoQjjcfQahGXTSSqkLVbOtGQjIL3Iy6PJEvn3vPDp2a+Vun+z6jK3/HOT6x1axYMZFjDi3NRu2HiU7185lF52FLEskr0hn7H1/M+/DCxk+1C2RLpXOKFqXpzPt4008+8hIVx4ogyY5tyESa8pWEm79joXzn2F4XG8AsqWLy6vsOV4Mrfpz79sJlADHC9wy5DZLKJPe/4zMvbvJswt+n/U+910ykjHPTCemi2uwJVsjeZ5fKnluLyrgl+fvo+PIsbQd1ZP9K/7it2duIu7F/5Kb7/6M83Ldz19xkZ8Y1uoiqrYbop4Gu7Q0KkeqtiTN+Ziug+PoNvQ8Cmz17702ceJkZR4kJDScZtHN67sp5QRGtiIgQOasK+4iutcQ1nw6BWdJMe2HXeyz/o6/f8JeVEDcxKeRdXqiu/TClp9L6sevEn//i4S1aHlS2tkU2udJ63CXg1ydgQDtAMi3n33E+WPHc8H5QzxkqLWS5QBGjdOtHSzQabbLnJxiQJFlZNWJTnGiFyqSqgKuRetCkhGyjE5vAEkGWUav05cuINdh0shydw2q4Cypqe5tbSdE22nRdn7kTuWb2U63YtjhkqqfHe1nWVnAo+cAUtUDPIrmpelvEEdUc3DH12zTnl07adu5C5LRSInTSaEmD50/mXPtOyWvxF0nV6MI66ykM6AdxPfVXjmyDZIkMWLiU7TuF8vnT9zP5U9No33/IRi0kv2lz5n1yw8JbNacIRMmI0kSA27ozoE9e/jy+Se4aPLzmEud/oqTB+oJZrZsCu2rPUIT0vvd2y8zZuKDNG/nLW/tF2MAqjEAwqIwqoorj5LTToBwojgdOO128oqLkCQJm81Gbm4JQ4cOxmIJRFVsGA0KQYEODHonu3bt4/kXP2PKk1cxZHAHZBkPe7F8+TaGDD6rDu++8bHnQD7fvneen3C8g4y773/Me/8CRpzrmknasTeHvj2jkGUJ6/IMnn1rBfM+vJD4c1t5H1+qzvfDF+OIPbetV3ny0m0k3PgBiXPuLXeiaookSbTs2BlToYMbXniL1b/9xLeP3ML1b39F807dfB6z7tv3iOo5iE4XjgcgoFUv8g5sY9uCaTQfeSeyMcDncSdCdUL7HI76d6QabnBkHVGUl8uKH79h1B0P1HdTmqhDMtL20rLtyZtSPlHCO51N77GTSF/1t986u5J/4ZxrbkfWrEvpN/ZOItp1YeHkBP54/RFyMtLqvG2KU8HpqPyvico5mr6fTalLuGDCXXV/cklC1RlwGM3YzcHYgkKxBYVht4TjCArFaQ5GBAQhTGZXuJ6hNLlm0yzTCZORtpcWbRquXek0eDiDrrmZncv+8ltn45+LiJ9wr8es48i7H8cUaOGz2y/nl9cep+DYEb/H15aqbEqTXamatI1rOJq+n9irr6vdCSQZyWRGDgpBDo0kLKYVzVq3J7pDF7p3786hQ4cYNWoUev1x+vZpTudOwXTqkEu7Nvm0jClk29YVXP6fiTzx6MUMG1LqRGmwJm3k7vs/OfEbbeR0bBPsf01TqRMVf657IHTv/jzatw7GujyDayct5qVHB/t0olJXZpSr8/lyoqypu3j2pe9JnHMv8XHd6+x+Blx8Bb0uuILd/yT5LFdVhbTlf3DWZbd57O8+7gkcRXls/vB20v77DkpJ3Urbu8QmKrcpSgMI7TvtHakNf/1K5wFDCY2uer1KE42H7RvWc1bvPvXdjEqJ7taPI9vW+FQ8E0JweNs6WvYa4LE/ICSMYXc8ztXvLMBkCSHlo1fY+scP7Er6Gaf9BKfJS1FUtcq/Jipn1a8/MOCiMZgtwVVXbqLRsH3DOs7qfXZ9N6NS2vQZyIENq32WFeflkns4kxZneUogh0THcNnjr3L927NxOuz8/dHrbPxtIduTFqMqdaN6VZVNUZvsSpWs/nkhsVdei95QC1nzKtiyZQsJCQkkJiYSFzvIq9xqXcdLr8wlcd4U4kd4r9O1Jm0kYfzrfPTenXXetsZGsMX7+0lakcn4B/7ycqIA1mzKIsCk49pJi5n/4WjiBnlHm1iXp/PKB6v9q/Ol7iLhlq944ZmrfDpRq/5ZfgJ3BG36DGD/hlU+y/Iy9mIItGCO8FQVDGrejrNvf43O17+ILTuTjD8/I3fjHxTsXlFHSq+iUfRXTn9H6u/f6Hvh5fXdjCbqmG3r19DznH5VV6xHgiJboDea2Ju0yGuhtSRJmEObUZLvO+V9cHRLBt1wL4ERURzctIodfy9i4f1XcmDt0vI6R/dsq1W7mkaOT5z1f/7GoEv/U9/NaKKO2bpuLd37Nmy7EtOlB8cz0ti5fIlXZ8VkCUZVFJy2Eq/jJEkiok0HRtz+MLJOT/qm1az5fjZzJl7NwS1ry+ul/bvU69jqUKVdaQAjxw0ZIQQb/17MoEuvPCnnnz59OomJicTHx3uVWa3rSBg3lWeeGu/TiUpO2UTC+NdJnPv4GR/W54uyPFBz3x3p5UQBpK7K5Kc/9jD/w9HED/EdznftPYt56t4BPp2o5GW7SbjlKxK/uJnhw7xD76xJG3jonhOLjmjTewDpm9aQtm6ll10xh0Viy8/x6RxJkoS5eQdaX3Qniq2IkoNbyV7+LekLnsSRvb+8XtGOlBq3qXozUvXvSJ32a6SOZRygeaeu9d2MJuqYvdu30uXhJ+q7GVVy7sQXWT//A7b/NoehE6cS3dU92h3Sog15mQcIbeE9hQ9gDo1g5IOuZKB2u8qBf1NInfkiLXr2p/cVN/HXGw/Xqk0OhxNJVLZypYnKEEJwND2Nlk125bRjz7YtdOruLSPckNAZjFw+5W2SP3uH5V9/xJjHXia6g0u1S5Zlwlu25vjBAzTv5LvDG9aiNZc98TqKcD3L262/8tPU++k6fDTdzr+MxW8+Vat2OarI9yKaHKlKKSksQHE6adbCu6NdFzz44IP06OGt3JiSsp6EcVNJnDeVuFjvNTfWpA08/tSXJM59nPgRvb2FHc5wklYeZNx9S5j3/vk+w/X+SNrPwcOFfDX9Cp9OVMrKDK69ZzHzZ4wmdpAPJ2vpPl794B8Sv7iZ+NjO3uVJG0i4q/I7SgAAIABJREFU/hW+/n7xCd1HUFgEFz3wHL9MexpL81YMv3cqIc1d7TFaQgFwFOZitIT5PD4wphMdrn6CvNxihKqQu/EPshZNJajnaEwte5Kz7Isat8m1RqqK/HQNII9UlTNSkiRNkiRpgyRJeaV/yyVJulRTLkmSNFWSpIOSJBVLkmSVJKlnhXMISZLskiR1rLD/S0mSfq672/FECEFe1mGCm3ln4m6icWMOslCiUedrqER378+o5z6nT8JdLHnjQVZ+OQ1VcSKEwFaQV6NztekfxzXvfo/BHMQPD42l56W1i6NvmpE6MUoK8pF1OgKCLPXdlCbqGHNQUKOwK12GnMetn/xA34uvYvYDN5A8ewZCCBSnA1tR9dcpSJJEt/MuZcKsRRTlHGP+Qzcw4s7HatWmJrtyYuRlHSY40juha2Uc2LOLGS89R9ruXT7Ld+/ayQtPP8nunTv9OFEr+HDGj3yf+ALx8d4zUenpR9m56yAL5z3hcqKa8CBlVSbvfLqJBR/6zgOVsiKD6Z+tw6CXGdbfR/nKg3z45Ua+++hinzNRKf+k8fr7S5ny8AU+naiU1I28/mYi3897moHnDjnh++l94RXc/dVvtDp7MAsnj2Xzr/MBcBQXIElStVMYSLKOsD4XE33NNOxHdnBs8WtEjKy5ToEQohoz3Y1jRiodeBzYicvxuhn4UZKk/kKIDcBjwMPABGA78CzwP0mSzhJCaHQxUYCXgVquooRmFgNOhwOEQG80oqoqtqLC8nUKWmWkApuCqgoUpxOdJjN9eKDnLWtVuLTbnlLcGil0jUqSVuVIu9+fQrpW2asiWvUqf0pW2jZp61Rnv87P+WuDVlnK37n8qWVp21Sxjk3zI7Vrtgs0Clm20tGHoIhmLN28jaKY9gAcynPXWbsjt3z70GH3Ixgc7E7EHBLqTrQZGKiVkoWsI74dHGOA77j1wiJ3GI0ku5VrdLL7HloOuICLzxrIsg+eYsn0p+gYOxrFYadlnyGUPUa6SiTxA82lz605hAseeJbYCfdhDg1n2azXfLapUpxOzoCo3hrhtNsQkoxOr0dxOnHYSvw6Sk6HHd1JWMNQkbXLUpg/4z2unzSZc4bFnfTrNQHNoptz7MjhBi1kU4Yky/S/fBxdzo1nwbP3UpJ7nOgOXWjWpoPf2Sh/mEPDueTJNynJy8EcGs6vrz5S8wY5HSdWfprRJtyEw2bDEhiALMs4HXZMssBkdr2HtClJTHo9AccMBJkD6BoVWr5fK3Nu0cifdw1Iwmpdxz2lM0nxfTKADFdhqdy3NWkjU56fw4vPjmNghw1Q5A7fRDixJm8h4cb3+H7uJOIGhEDxPk8FT+GkdSTcMb4HYAebO2VIObKpwg6d7zLZWPV+rWKoVI2uqT/lUfCcNfOQP3fLoktqsWbbdx2P82j3A9alaVx7XzLffXYVI4aU2gvhfsaty/Zz+2NL+PTNC9my8zcOHyumbavSNbWKWq7u991HF7vWTAmBwN2HXbp8F1fd+gOJs64gdmA0OEv7MjpX38Wasp3Hpi7ijZduJG5oJ7I1bbNXcHi0KqPa9D9ZBe79xzT7O42+maizR2Cd9gBZh7JR7DaieseimkIpKlUmzc93f35aZT3tWkhjaBTRY55BtRWiC6jFemJXbF/ldRrAjFSVT6sQ4qcKu56WJGkiMESSpI3AZOA1IcRCAEmSbgaOANcDH2uOex94WJKkN4UQ/9amse/ffwcbUpYg6/S0Oas7B3fvQHE4ufXFaQy+5PKy9parFcmyTFh0c/KyDhPRynf4VBONk7DIKPKOZdV3M2qEKTiMuIffZun0B1ny1qNcOGUmUi2ziptrnLdIg2o7oxInVsXsByewZdUKDCYj7c7qzr5tW9Dp9Dwz83P6D4/HqNOV2xWdJKG2jOCFkmLOCjUTEOh6qWmdXm2+JvAcDPHMSeeuV1Gq3Gq18vJdE/gh8SliY43ACo8X+Yb1Ozi7d3vXf7SdAG2HoqCy0UNtp8VP50fnflFG6N3qkRHBsZWct44QB3zvl9r43J3t512rlWp3VDKaWtbxiIhuTvrBDNraXJ9pRq57dqdY01nwNyjmb2DOpnnXV5RC9/dT9DdQV7GOKSKahNc+Zf6jt7L2t4Xc+O5cjxx02m2H5mIVB/wCjDoCIk8gublShRhOVeWnGdMnXEX69s2YAoNo3q4jGTu3YQ6y8NCMz+nYu0/5epOy/kpky1YczfThrPhAVdXycLz4+L5e4XZlwhDff/MIcbE+ZqKWbSPhxvdInHM/ccO8ZzqaqJz8AhsJd3xP4iyNE6XBumw/CXf8xHefXMaIIW1oHhXE4aNF5Y5Uyiq3RLo/4Yk3P1lP4qwriB/qQ70vZTsJN89i4bePMdzH91sXhLRsz6gpn/DH1Ntx2oqIfarmoXngyo1VKycKXI5UVXajAYSa1miNlCRJOiABsADLgA5ADPBHWR0hRLEkScnAUDwdqZXAQuANYGRtGntwzy7eS12H6nSyb8smWnXuSl72UV67OYHOffvz21ez2LwsmYc++RpDqGuKPDymJccz05scqdOM0MhI8o42LkcKQG8M4IIn3ycnYy+RHetOvrQmCKcdmvyochSng/kbd1JSUMC+7Vvp1LM3B3Zs5/k7buLLlNV8NPVJMvbtZdo3CwkNDUOWZaJbtuZQ+n7ad/Wdc+NE2LVrV7m6Vmysd+ffmrSRmZ/8wvw5D9X5tc90IqKiyT5yuL6bUWMCLCGMf/sr8rMOEVW6XupUI5yVd2jEGTYjFR7TkvtmzcOZl8PhtD207dGbPatSeX/y3bz80x+8+eBEZJ2Ox2Z+jkmvJzgsHMXpoCAvF0tIaKXndjoVtxNVAa0wRFys98ykNXkzr7+9iMQ59xM/vAeI+u+INjb2pOWQOOsq4of5d6ISZ13BiFLhieaRgWQecQ2EWZen8+ybq3yq+5WVX3vPYn74/CpiB/sQnli6g4SbZ5H41R0nzYkqIzCiOcMen4WzpIjAZi0oOeV5WEU17Er9P7/VGg6XJKm3JEkFgA34CLhSCLERlxMFUPHNc1hTpuUpIE6SpNHVvO6dkiStliRpNUBBznHMQRaCQsPoOSSWsKho2p7Vg7irxvH4xcPZtWYVnfr0Y/HnH5Wfo3nHLhzeu7M6l2uiEbFrwzoiTtKi3JON3hRQb04UAKpa9d8ZRGF+PqYAM+FR0ZwTO4KQ8Aj6DBnGgPjzubZ/d3KPHaNZ8xgWzXaPyLXr0pW922unmlgVX375pX91rdKR5qcfu+qkXPtMRgjB1rX/0ry171mvhk6AJbjenCigapsiziy7YisqQm8wEh7Tgm6DhxEYHMKg0ZcR2ao1k4b2JSQigpKiQpb9ughwzUy16dyVfdWwK3q9zqcTZU1az+RHPnULQ1QsT95Mwo3TeerRy11OVAW27zxUizs98+jYLsy3E7U0rdyJKptJstsV1m/Jol2r4HIn6aVHBvpW91t50C084cOJsi7dy7Ov/EziV3cQH3dq1BNNoc0Ial5PNlFQjf5K/Y8KVzeuaDvQFzgXmAl8JUmSNlFFxTuRfOxDCLELmAW8JklSldcWQnwihBgghBgAYCsuQvERDznmznu5+Na7eWjWXMbc/QDLFi2kpLAAgJadu3Fo9/Zq3WQTjYO0bVvZt2Uzgy65or6b0jhR7FX/nUEUFxT4lHW9/cnnGDdpMi998Q033PcQP3wxC2ep/encoxe7t24+Ke2ZMGGCTycqZenm8pHm8rC+JuqMVUlLUBQnA+JrFTDRRJNd8cBeUuRz/4TnXuHKSQ9y77T3uPz2ifz61WflZe279WBPNeyK7CMk3Jq0noTrXuadN2/36USlLN1Kwo3TSZzzIHFDfUhop2xjxqwlVV67CQi2VFwb5nKixk38r1c43rc/bqNb5why8mzlTlLcQF8zURm88uFq5s8Y7TuP1NK9JNy+gBeeusynE3WieaQaJmrVNkWt/5nuajlSQgi7EGKXEGK1EOJJYB3wIFA2fFFx9ika71mqMp4HOgHja9pYW1ER2YczvfZbwsK5+oFHCQwOoVmLVnQfPJRVv3wPQMsu3Ti4Y0tNL9VEA+aHTz7kkptuw2AKqLpyE944HeC0V/53BpGZtpcSH0pn0a1ac/PDT2AKCKBb335EtmjB0j9+BaBTj17s2LThpLSnc2dfErfreOnVBX5Hmps4MYQQzH7/La6/54HyNStN1JCqbMoZZld2/bvC5/5Wnbpw+V33otPp6Bc/kvyc42xf61o23r57D3bWwq6UOVGJ3z7N8Lhe3uXJm3jh1YUkznmQ+OHe8v7WlG0k3Pgh99xxXo2v3UTZTNT3zJs5xsOJcjpV3vx4NReOaMfDL6T4d5KWZ3DtpMU8NclPHqnl+0i4fQGJn45l+DDvtBvW5E0nnEeqQSJE1TZFaSSOlJ/jTMBeXM7UBWUFkiQFAHG41lB5IYQ4ArwJvFh6jmozNfEXolpVPcU4ZMzVbLT+D4C2Pc7maNpeinJ9Jz5tonGx5PsFbFuziotvnFDfTWm8NI0ce/B64iJ2rF9L/vHjPstzs7NZk5rMiEvGkLL4FwD6nDuUdcuX4nQ4yD2ezerUJHKPZ/s8Xj3BUMkNG/Yw46NFvPnqhCYn6iTx9fvTKcjN5cKrxtZ3UxovTXbFgycT/6iyjk6nI+7yq/jnf78B0HvwUNakJnnU2bxmNbdfNoqNa1b7PEdBQTGRkaHs3fEV8SP6+CyPjgrlh3kP+3SiCgpKiI4KZu+maZzVxdeKjCYqI/t4MQ8//yfffeq9ZuqRF5Iwm/TM+2kbbz8X59tJWpnBo6+ksmDGaGJ9CE8kLd/PWzOW8d1n1xI/rIN3efJmHn5yNm+8N6PubqqhIESjsCtVik1IkvQa8AtwAAjGpcYXD1wqhBCSJL2DS8lvG7ADeAYoAL6p5LRvAROB/wB/VbexZ/XxjgnWUqaW1XvQYD576kEC9SCbAuk6YDCZ65czYPQYDyUl8FRf8tx2fzT+5MX9SX/XtE5lZTo/cuae8uw6n/u7B59g0lV/yll+66f53i9pjItGdWtzXoUwTZtbnUUrjZ5fur8wP4/PXprKre/NJq1Ix49/u3NnREW5VWECze777tzRrW4XEeqWWg0PjCjfdlSIsdUqWx057lsxJjfPPQpSWOS+D4PmGdJGXzg159SqcQUGuNta8dnUKnVZTO56IQEnlkdbqApUHVl7xjBt4q2uNUk9DuAyc5QrAVmT1vP+69/w5KMJjLwijCvHLmFoyJ8QAl06RPDvNw/y0uvf893XDzKiVak8rUZFz5qylbN7tiQiwoeUulaNKEfzMtDK+irFnN0WFsy8CNRjkHustE41Fv3Kxgr/r4Ycsc6dFsCfbDDyf30fK/mxN/72V8RDelmz7XH8Dp91Ivx8HhFmzX3qPEdydxS5OjWZ6QeY++E7JKauJsxiIVdjh1qEuD8Pp8YhVjTbkh/FRq0Ny9akSDhe5Gn3tKp6RXb3dqFG6s/hR9pP9fM/7bss0ODeVjSmo6Jqn9l4Yu8LoVb+TIozbO3lkIGu/kqgJlVCkGY7oLSPMfK8kXz61mu0Dwuj3dBYXi0pplXBETp37kzy32/x0HUvkvjt08T324krCw1Q4B4YtgC92ivAfijESxbcooMe7QE1A8p+xpo6FlmhR1uATPCXQs3DRpj9VAJ0wb7rae2K3h06u6PQ/Vxrf1NOP8+KNgS7spljbT+oueYdG2HS9GmcW93bWvvmIX+u+UCcmrQoGqW4EkcJbz0/mhHDOoDDnXpl3aYjzFnoioZKnHkxsedEoNpd51MdLhuTtPIQr328mdce6cewPiEoxQXuSzhsJP1zkHH3/eWSSO8biFp0xGP2I3npDq658RPXmqkRAKkAyNI5Hp+H1hZpP1ubQ6Poqdl2+rE32r5pQIDRZ53K2F/jI0SVdqUhrOmuTo8sBvi69N9cYANwsRDi99LyNwAz8CEQDqwALqyQQ8oDIUSBJEnPAyfFhQ60WHDYbKiqiqzT0anvAPZtXs+A0WNOxuWaOEUs+vQjug6NJ6Zz3SulnVE47a6RniYA3MIOitVjf1m4zPfznyBuWE/S049SUOjuELdvF8XTU7/l54VPMiLOWzzEmrKVhBs/4ODOt0/yHTRRGxwOBwaDgQ9efZ5rbrmdmFbeo8VN1ICqQvcaQAhOQyQ4NIyiAlcHWpIkhg0bxqpVq0hPT+fxJz5xOVEj+oD9aD23tAlfNAsPJH5YiNf+u5/4E0mSWDBjNPFDWqE6SjzKk1Ye4voHU5j/XjyxA5p7HZ+6KpNx9/3FvPdHEjfYx5qqpXt57MUlp1R44pRTFtpXGQ3ArlQnj9SEKsoFMLX0z18dr6EDIcRMXMIVdU5WxgHCm8egLx390RuNPkUqmmgcrEuxMu+daWTu28vdn/1Q381p/ChNjpQWX8IOqambytccxA1zOe67dmfSuaMr9MWavIll/2xn/LVxxA/v5TVDVOZEJc65F4PhxGYQm6h7rNblLN2axzefzOBY1hEWLltT301q/DSCDk9DZP/e3bTt6F4XaTKZ2LBhA/fffz8L5z/B8DjvcN6k1J2MiK1HhcYmyjGZPO37R7PX89qHq0g/mM8vX11K/BBvdeHU1Ye5/sEUvpke59OJSlqRyVufb2be+yPLJdS1lAlPLJxzt881U2uWpdBv6GmQxL06jlQDSKtwWsb35B49SnCzyPL/h8e04NjB9HpsURO1pTA/jw8ff5Axt9zJrGVrCG/RNGp8wihOV6emsr86RpKkLpIklUiS9HWdn7yOsVrX8crr89wjwaUcycolOioUa/ImEsZPI+GqIb7VszROVLyPmaom6herdTlXXX0Xb055gkdefI2/Nu8hJOwEElw34aIqm3IS1LUak13xR/aRI0RERZX/PzIykvfee4/ExESfTpQ1eQvX3V675KhNnFw2bTvKE6+kkJNn4/dvruaCOG+J9KQVmTz7zjq+mR7HiEHea9KSVmRy3WQrj9/d16cTlbysCuEJ61qm3HFz3dxQvSMahV05LYdKYzp05NDe3QghkCSJ1l17sHDHK/XdrCZqwR+J8+jWfxDDLiuTOvdWV2uihqgKrgwFp5QPgVWn+qI1xWpdR8K4qfyw4FliYz3Vr7p0bsGadXtIGD+NxLmPIkuCx5/xtLPW5M2MvanJiWqoWK3LSRg7kYsvjscQ3o5h57t0kmxNEQsnTpVrGU5KMs9GYVcqo23nLqT+8Vv5/wMDA+nfv79rptzhKVhhTd5Cwo3v8d1Xt53iVjZRHR59MQmHU+WX2VcSP7RN+VqoMpJWZDLuvr+Z/67vmajU1Ye5brKVb9+JJ3ZgC69y6/IMXnh/HYmfjvUpPGG1riXh2im8+Om8urup+kSIatiVk7JGqkZ25bSckQqLjMISFk76dtdiwqg27SjMOU5hXm4VRzbR0Fi55E/OHX1pfTfjtEI47VX+1SWSJI0DcqiBsEx9kJK6kYRxU0mcN9XLiQI4diyf9IyjfPzBROKH96JP73Zs2rIfRXEZ+rJklwtmNzlRDREhBAljJ5K4YCZbtuzkwiuuru8mnVZUbVfqduS4sdiVqjh7wCA2rlmFvVTk5PLLLycjI8Or3tLl27nz/s/4cd6DTWF9DZCU5Wn8L2U/n755AfFDvdWlk1cc5M6nUpj//vk+najklYd489ONzHv3PEYM9naikv5J547H/+bFx8/zrd6XtIbb73iN7xa8eHqE9eGy2VXalTqOoKmNXWlUM1KBpWsN/Km1aBVd+o84jz2rUunTry+qELTv1oOC/Tux0JZ1yVa+eGUq974+nfMvv6r8GK3ikla1z+hHLa866nxaqpufRHsurSJf1yDN8Wqqe9tDZUYzAlKsVQKrxKsXfkZjPY7xo6hVQSGoHK3SlrzXva1R7+lp8TQmO3TDyrcLbDZsJSVsWrGcR96ZSZDRpRATE+L+0Vw1sr37tJohAa2qnVbtLszsVh4KMbm3Q02eKvx2xX0fWgWvQrv78yxyuO87eadbQSnrmHtBqfb7NmvV+TQqWhbNfm1bwVPFT3tPUZaaq+VoOE7xMQjwH8okHIUAoZIkafV2PxFCfFLTi0mSFAK8AIwEGuwwanp6Ovv2ZrJ29Sxat47yUGVylR9lz95DjDqvD4WlghOhoUFERYawa/chDmVm88nnf3H0aD5BgTXK6tDEKWTtmt/Q6WTS0tLpO+jc8v379+zmh6+/4MobJhBajRQbTXhhEyU5SIZA/zVKjgOEnCl2pWO4y8b2DNbkvrSvc28rpYpwMdC7WxTZ/zzHyPjuKF0KOHQondy0N9izJx3r0j08NOUXdq+4hx2ptwEKomCn58U0o/JCaEboNX0ij/1+kGT3O0jSud85ktHP+0Kq0IX0UAbVbPtR6itxuN/nWjU5rcqcWov1vNp+WrrmfX7U4F4a0DVI8zuXre5tbd/Foe3TaO5VaNT8FFeUjMWs0KltKNde2rF8Jkqxu/pmSSsyefSVFXz0wmBi+0V4Ck9IMsmrjjD+keXMe3sow/qGoNiLkIU7T2bKykzGTvrTLTxR9n4q7XNZU3Yw8ZHv+fSThxgR14M1eZ59CbNGLVLbl9CqgWqF+vSavod222Z3fx5Go/szNge6zxlkcbdbV1EatKYIBWEvQNL57/OI4mMAMfVpVxqVI1UTzhl+Hos+/5gr77oXgPDoaHKPHeWTKY+j0+spKSzkzXvvpFf/QUQ3qTU1SFYk/U3nnr0IDgur76acTjypZK0bo2s9AsmHBLoQAuXIGoBbhBApdXC9F4HPhBAHGmyi02Ov09oMN15iADbBMUDVvOhUJ63NcOeVAYiCCBb/dzE3XOS6lxaROo7sSWXU2IX07+1a5zAofipH1t5CRFjpC8WflK/qdsar1cnRfl+abVnvfslIevcLU9Kd4EidpJU/14iwajsUUjWc+ory5x4dkmoMxGjxGMSpxsyp7JZgluQcWkfCJ5/9j1Hn9aCHyZUTzJq8iWefnMNbb0wk/uzD7Chxq4LaNIMs/uSZZT8pKrRoB2tCAjw1ph2ajl5Osfs7O5LvPm9eiW8pdG0qBW1HyF/qBM9BOs/fY6DxhAJUnlKOrLHqWg7zOWAohIqStQ7geiHEVq8KNafh25UaMHpULxb/uYmR8d3R6WSiIy1kZObQ7/z3GdTP1T/pNHgGxfseJ+AE0180cXJY9McuLhrR1mt/0opMrrt/Cd9OH87wQT7C+f7NYvwjy5n75hCG9Y/yPn7lIabNqkR4ImUHCRM+47v5zzPCRx6xxowuojtK1nr0MQN9lgvFgXJsC8B1QohMn5VqRq3symkZ2gfQ69xh7NqwjuJC12iB0+HAYDQSHB7O0YMZ9BtxPgDb/CS5a6J+yTqUyWuPPsAN9zxQ3005rRBCbJaCWqBmb/NZrubtRTKGUB0nSpIkqyRJws9fqiRJfYFRwPQ6vo1646L4dvwvZX95B9buUDEadLRuYWHXvlwuG9UegC07fSf3baJ+2b4jgykvzuOBSa5w4TLhkOlv3kN8fOV5CpvwjxAiSTJYEHn7fJar2duQglpSHSfqTLQro0f14ve/NpX/3+5QsAQZCQjQcyAjl0svdDn3GYf8ZpVpoh7559+DfPjFWu4c75nwOHnFIZcT9d55Pp2o5FVHePXjzcx9cwjDB0Z7lSetPMT1k5N48p5z/AhP7CRhwmckfnnbaedEASiHVsgIBbXgoO/yoxvQhXehOk7UybQrp+3QhjkoiK59+rFxeSoDRl6I025HbzDw5MdfYg6ysH/HNtYk/c3/2zvzKDmq6w5/t3v2RaNlpBlpJFBAYCIkFiGBQCs4LD4khyVsMWA7BAMBTEw4kgIKCWBZYMCAAYfNZguywHIIOQlxDmBpJDRoHSGQDBKy9m1mtI5mX7pv/qjqRT2tpWfr7tL9zqlzXr9XXf1+VV2/eq/eq1vFgzv+OY3k8/YLz/AXV13LJX95FXsaG4/9BeO4Ce77Y6bkDGjTgiFIdmS0T9saCNZuhpaD+cezHVWderRyEfkxMBzY5t7dKQD8IjJSVcd0tv7J5OShfSjun0vll9WMO6eU1tYAWVk+lnxwAwP65fD7BVv4n0+2MHTwce1Co5f5l5+8x/T7r2LChWdQ8dnX4cAhkyd7rxHS2wRrNxaQ3bde8koOm+KnzQfRxhq0ed9xtTdORF8ZO2Y4u3bXsmPnfoaW5tDa2k5OThabVk6nZFABr7y5nA8/WkdZaeGxN2b0OtMeK+e5xy5h5Gn9w3nlS3Zyx0OLmfu888xT7DOCi1bUcPO0pcx9ZgIT44xELa6s5rs/XshvnpvCpPPjBJ6o2Mr0n37KvDf/jqmTOkbv8wKqqiJSEmitr5bc4sOm+AUbqiHQQqB65XENCPWkr3h2RApgzNRLWPjB7wBobmwgJz+fPv0HkJmdTf9S549ZOqzjUKyRfJYu+AOXX3N9sqvhSVS1XZv3jQrUfB6eUhaa0ucfeDaq2l0911eBU4Fz3OVl4EPg8m7aflK44uLhvPO+M6JX19BKYX4WJQPzyMjwcerJRQAMGWQdqVQjEAjwyYIvuek651nM2+56kXlzpjnvATO6jKo2+IvPIlCzKvy8smrQ+dy8b6Tq0R7UTQjP+Yrf7+OyS0Yy57fLUFXq6lsoyM9mcGkffD4fJw11bnjZtL7U41BdC5+vrebqKyIBQMqX7OTGe/6PV2dPjBs4YnHlHm6etpQ5T42P24latKKGJ19Zw2+emxI3RHp5xVau/+H7PD3rmridqMqK7piVnxqoao2//xkE9nwRyQu0Edi7Bm3YPUS1216K2Wlf8XRH6rK/+R4b13zB+lUr2bV5EyXDIjH9+w0cxG+/3kr/ko5/UiO5HDp4kKod2znj7HOTXRXPEjvFLzSlr317ebc9cKCqjapaFVqAeqBZVfd0128kgxl3j2XuB+v5esN+qmoaGTq4IFw28vQBNKy7g6ysIzzjYyTVl4XfAAANU0lEQVSNbzbspl/fAsrKBgDw+sv3xu1E1R6waZmdpX3HQome4hfcvw4pKDuuKX3Hi1d95bGZVzH75//L1+ur6FuUS15e5O77lZedQfPWGUmsnXEkVqyu4txRJeTlOc+nhjpR7/3yCiZfEOc9Ucur+NcX1jLnqfFxp/OFAk9Mv3N03E7UoiVOJ2rea9cy+aKO0RvLF67mwdtv7QZlqUPsFL9EpvQdL13xlbS8vbFryybyC/tQFPXS3RC1+/byzepVjDj7XIoGFHPWhMks/u8PAKV/SSm1+/ayrnIFIsL5l17R4fsH9+1l3aqVnDVuPP2KO25/354a/rhqJaPPG8eAgR1PAqPrNDU2kFdQgN/f/Y3R2n17Wb96FWPPH0/f4o53gvbv3cPny5cy6rxx9ItT7iVCU/yC2X0TmtLXWVT1kZ7cfm8xqDiPC84t5aW3v2TE8L7Om+2DQerqW1m/8QBjRvU/9kaMXqehoZm+RZEpZxMu6hiivrx8NTvbhXETJ/dm1TyFM8WvqB5/dmhKX+axv9V5vOIrI04tYcQpA3np9QrOGV0Wzq+qrmP/wUZGnnqUiIhG0mhobKVvkRNMRlV5+z/WMf/dqznz9AHhqH0hFq+s5vGX1/Loj85k4nkd248VlTU88epXzH3mQiaeFycwxYrdvPDOBt5//a+ZNL7jbKpPF69h1uw5/Oz1tH0/dVyip/ihgYSm9HXhNx853nXTqiM1rNBp5wUK+3DKcGd0qak9SG6Gsz+XLF7MQ7fdzNNvvMNpJ51Ert/Hd7/3Ax6+905uvO0O9q9dzbTbbqFkSBnfrF3DsqqDBMRPnvv95RWLmfG3N/Psm3MYXjaEHDfyUZtCtk9Y+ulCXnn2ae5+YDojhg2lNNvJ74BWRdLBzUDoOtIIuGaodUBUu1XrDi8TtyxYC+Le8W46EEm37wGfO186sBd8RVH57nMv7dXg7xfJ9w+ISkc19qIjhrVXQ4bbgWzdDn433bYbMtwTv60aMp2TXFt2hfO1bTdkuHdQ2qog00mLbkLcNFoX2U7TdsiIdFZO9+91qlC7nb4FypjcBU5BYTb4+gCwoei08H5qag+S7T/8GAGo+MP50cdo0R/+jR/cNJN5c2cx9bQ/gYRuZrSAFFC+sJLrb3qIefP+k6nfckxqQ13kFDnQnBne7va6evLcmOtjhhVS6Ibm31DUSP8c53jvrGtmoHtXsaahlUH5TrolGIxKBxiQ66Sbg0H6ZUfaHPlRoxpNAaUw0/ns82VQkNn1TqaqtovIqEDV8rX+som0by8/IR9G04D7/1cgKgpa6LQQFA2657koqsIdt5zFfQ/P54E7xhIMOOsMGftrGhrbaN/09wQ14guiiqrzXxEJhtOogvrdnw4AoWMaIGLN7ZEodxoEyQxVOhwxT1Uj0fNUkah8kagQxBqMWi942HcO/42MqHx/5PfCExiCUXUNRuUrkRc9R8+2iI1IGBueWaPS8b4jMevEWz+0Xui3Q/s4Utfa2gby87OjvheMfCfYTmNjG8PKimmtzyFb6gFoI4ssnxPBccXKNfxsxv3MfPIpRpx9ATmuFzQHNRwNTzWSDqoSCvwkUbXzx0SDagNCAfR8EinP8EWi7PkEsly/aQ8EyHavWU2tAXLc1ym0BJQ8N62q5LkeoarkuunWgIavl+0aSYd2Z25m19smqtqQMXQKgV0VoIGRqkd6v4a3OTPzYydxaHv4+kXL1si1t3lz+PoXbN4BGSXcd9uFzJz9Ic88+lcEGuvR5p0MPvOXDCrOZ8eSWyDLmSamTXVIVmTKmLbsQrKHHD3duhvJcp8Jb68GN5+2msi2dB+SGZ0OjYg0Q0aoYd8EGW5bgrbD2xK0RdoiBEHcNoo2hNs02VF/sTafkOX+95tUwtfXhrZA+PxqCkCum25sD0blazi/JRhZJ/Q5J9w2UHJD504wEG7X7WnxkeWmC3xF4XMQaQNx22K+lqi2WAuIqy3QCj6nbVV7qJ2Cgj7gLwW28OtnndEgBVS3hPfhssqV3PgPi5nz/NVMGK2Q5XSWtWUXkjOURcu28fNfreef7v02ky44CdiPZDvr+Khl4cpGbrhnAb9741YmTbnIqUdGJvicY7Fw4Vquu+lR5r33JGXjzifi0dCekxPet1k+X7jNW9PYRH6Gs972Q830yXK8f9vBZvq67ZgtB5oozo2kB+U715RtB5ooiUoPLoykhxQ6EWur6lsoK4qEQ/+YzqOqNRmDxxOo+RyCrd05pa/LSArV5aiISHpU1DB6l32q2nHoNAFEJFNVu/etdmmC+YphxMV8pQuYrxhGXLrkK+JEgchINV9JpxGpSlUdm+xKdBURWZnuOrygAbyhI+YldJ0i1UyplzFfSRG8oAG8ocN8pcuYr6QIXtAA3tDRVV9xR6FSzlc8HWzCMAzDMAzDMAyjJ7COlGEYhmEYhmEYRoKkU0fq1WRXoJvwgg4vaABv6PCChmTilf3nBR1e0ADe0OEFDcnEK/vPCzq8oAG8ocMLGjqQNsEmDMMwDMMwDMMwUoV0GpEyDMMwDMMwDMNICawjZRiGYRiGYRiGkSDWkTIMwzAMwzAMw0iQpHSkRKRQRJ4Tka0i0iQin4nIuKhyEZFHRGSXW14uImdGlS8VkdditnmriKiIPBCT/1MR2dYDGgaLyFsiskdEmkXkKxGZkmYa7hGRL0XkkLssEZEr00lDZxCRu0Vks3vcKkVkUrLrFKKrx8RdR4+w3NX7inoHL3iKu23zlRTQ0BnMV7yH+Upq6DhRPQXMV9KBZI1I/Qq4HPg+MBr4CPhERMrc8unAA8CPgHFADfCxiBS65fOBi2O2ORXYdoT8Bd1ZeRHpC1QAAlwJ/Llb15qo1VJag8sOYAYwBhjr1ukDETnLLU8HDQkhIjcCvwBmA+cCnwG/F5GTklqxCF09JiF+CAyOWd7q8donj7T2FDBfSTENCWG+4lnMVxySreOE8xQwX+nx2ncXqtqrC5ALtANXxeRXArNwTvbdwMyY79QBd7qfLwUUGBa1zibgLqAW8Lt5+UAr8P1u1jAbqDhKecprOErd9wN3prOGY+hbBrwWk7cBeDzZdeuOY+LmKXBdsuvdi/sn7T3F3bb5SgprOIY+8xWPLeYrqaUjTr097SlufcxX0mBJxohUBuAHmmPym4CJwJ8BpTh3fgBQ1SZgEXCRm1WB82e/GEBETgbKgLeBeuA8d72JQCbdf3fhamCZiLwnIjUislpE7hURccvTQcNhiIhfRG4CCnDueqSdhmMhIlk4dfoopugjIppShk4ekxMRL3gKmK+kpIZjYb7iWcxXUksH7m973lPAfCWd6PWOlKrWAUuAfxaRMnfn3wJciDOcV+quWh3z1epQmao2AsuJDMleDCx38xfG5G9U1e6e73oKcDfOHY3LcYZenwDuccvTQQMAIjJaROqBFuBl4BpVXZNOGhKgGOfCeERNqUBXjkkU/y4i9THL6J6teXLwiKeA+UpKaUgA8xUPYr6SWjpOME8B85W08ZVkPSN1KxDEmV/ZAtwHzAUCUevEvilYYvIWcPifv9xNl8fkz++mOkfjA1ap6oOq+rmqvgE8T8SYQqSyhhDrgXOA8cBLwFsiMiqqPB00JMqxNCWbrh4TgGnuNqKX9T1S29Qg3T0FzFdSTUOimK94D/OVCMnWcSJ6CpivpDxJ6Uip6kZVnYIzBDhMVc/HGU7dDFS5q8X2WAdxeM92PnCyiAzHeTiw3M1fCEwQkf44D8D1xBDtbuCrmLyvgdADgOmgAQBVbVXVP6nqSlV9EFgN3E8aaUiAvTgXwGNpSirdcEwAqtxtRC+tPVz1pOEBTwHzlZTSkADmKx7FfCV1dJxgngLmK2njK0l9j5SqNqjqbhHphzPk/F9EDOrS0HoikgNMwpl3GWIJztzl23EO1GfuNtfjPMz2jzhznHvipKgAvhWTdzqw1U2ng4Yj4QOySW8NcXFPzEqiNLlcyuGaUo1Ej8kJSxp7CpivpLqGuJiveB/zFSD5OmLxrKeA+UpaES8CRU8vOEb0HZyH0S7F6cEuAzLd8hnAIeBaYBTwLrALKIzZznx3vU9j8t9187/qofqPA9qAmcAI4HqcyC/3RK2T0hrc33gC5089HCe06+M40xi+ky4aOqH5RpyHTm/HCQP7C5yHTU9Odt2665jgDJuHLhbRS0Gy9fXgfktrT3F/w3wlRTR0QrP5igcX85XU0HEieopbL/OVNFiStfNvADbizDneDbwIFEWVC/CIW9aMM/Q6Ks52HnYPwk9i8u9y81/sQQ1XAl+49fsGZ+60pJmGN3HuSrXgxPf/BLg8nTR0UvfdwBZXdyUwOdl16s5j4u7zeMusZOvrwf2W9p7i/o75Sgpo6KRu8xWPLeYrqaHjRPUUt27mKym+iCvEMAzDMAzDMAzDOE6S+oyUYRiGYRiGYRhGOmIdKcMwDMMwDMMwjASxjpRhGIZhGIZhGEaCWEfKMAzDMAzDMAwjQawjZRiGYRiGYRiGkSDWkTIMwzAMwzAMw0gQ60gZhmEYhmEYhmEkiHWkDMMwDMMwDMMwEuT/Ac47jlbN2Ys2AAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 864x432 with 12 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(2, 3, figsize=(12, 6),#figsize(10),\n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "ax = ax.reshape(-1)\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].coastlines(rasterized=True)\n",
+    "    ax[i].set_aspect('auto')\n",
+    "    ax[i].tick_params(labelsize=14)  \n",
+    "    # extended North Atlantic region\n",
+    "    ax[i].set_extent([-90, 30, 25, 70], ccrs.PlateCarree())\n",
+    "    # set xticks and yticks for latitudes and longitudes\n",
+    "    # xaxis: longitudes\n",
+    "    if i > 2: # last row\n",
+    "        #ax[i].set_xticks([0, 90, 180, 270], crs=ccrs.PlateCarree())\n",
+    "        ax[i].set_xticks([-90, -60, -30, 0, 30], crs=ccrs.PlateCarree())\n",
+    "        lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                            degree_symbol='',\n",
+    "                                            dateline_direction_label=True)\n",
+    "        ax[i].xaxis.set_major_formatter(lon_formatter)\n",
+    "        del lon_formatter\n",
+    "    # yaxis: latitudes\n",
+    "    if i in [0, 3]:\n",
+    "        #ax[i].set_yticks([-90, -60, -30, 0, 30, 60, 90], crs=ccrs.PlateCarree())\n",
+    "        ax[i].set_yticks([30, 50, 70], crs=ccrs.PlateCarree())\n",
+    "        lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "        ax[i].yaxis.set_major_formatter(lat_formatter)\n",
+    "        del lat_formatter\n",
+    "del i\n",
+    "\n",
+    "# plot contour for 8, 10 and 12 m/s in CTL\n",
+    "levp = [8, 10, 12]\n",
+    "ax[0].contour(lons_plot, lats_plot,\n",
+    "              fct.shiftgrid_copy(90., u850_cmip_djf_mm[0,:,:], lons,\n",
+    "                                 start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                 lonind_west:lonind_east+1],\n",
+    "              levels=levp, colors='lightgrey', transform=ccrs.PlateCarree())\n",
+    "ax[1].contour(lons_plot, lats_plot,\n",
+    "              fct.shiftgrid_copy(90., u850_amip_djf_mm[0,:,:], lons,\n",
+    "                                 start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                 lonind_west:lonind_east+1],\n",
+    "              levels=levp, colors='lightgrey', transform=ccrs.PlateCarree())\n",
+    "ax[2].contour(lons_plot, lats_plot,\n",
+    "              fct.shiftgrid_copy(90., u850_amip_djf_mm[0,:,:], lons,\n",
+    "                                 start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                 lonind_west:lonind_east+1],\n",
+    "              levels=levp, colors='lightgrey', transform=ccrs.PlateCarree())\n",
+    "ax[3].contour(lons_plot, lats_plot,\n",
+    "              fct.shiftgrid_copy(90., u850_icon_djf['T1C1'], lons,\n",
+    "                                 start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                 lonind_west:lonind_east+1],\n",
+    "              levels=levp, colors='lightgrey', transform=ccrs.PlateCarree())\n",
+    "ax[4].contour(lons_plot, lats_mpi_plot,\n",
+    "              fct.shiftgrid_copy(90., u850_mpi_djf['T1C1W1'], lons,\n",
+    "                                 start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                 lonind_west:lonind_east+1],\n",
+    "              levels=levp, colors='lightgrey', transform=ccrs.PlateCarree())\n",
+    "ax[5].contour(lons_plot, lats_plot,\n",
+    "              fct.shiftgrid_copy(90., u850_ipsl_djf['T1C1W1'], lons,\n",
+    "                                 start=False)[0][latind_sout:latind_nort+1,\n",
+    "                                                 lonind_west:lonind_east+1],\n",
+    "              levels=levp, colors='lightgrey', transform=ccrs.PlateCarree())\n",
+    "del levp\n",
+    "\n",
+    "# cmip5 coupled models\n",
+    "cf = ax[0].pcolormesh(lons_plot, lats_plot, du850_rcp85_plot,\n",
+    "                      vmin=-1.5, vmax=1.5, cmap=mymap2,\n",
+    "                      rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# jet latitude in control run\n",
+    "ax[0].plot(lons_plot, jetlat_hist_mm_nh[lonind_west:lonind_east+1],\n",
+    "           marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "           markersize=2, transform=ccrs.PlateCarree())\n",
+    "# stippling, where models agree on response\n",
+    "ax[0].pcolor(lons_plot, lats_plot, np.ma.masked_values(mask_rcp85_plot, 0),\n",
+    "             hatch='....', alpha=0., rasterized=True,\n",
+    "             transform=ccrs.PlateCarree())\n",
+    "clevs = np.arange(-1.5, 2, 1.5)\n",
+    "cb = fig.colorbar(cf, ax=ax[0], aspect=15, extend='both', ticks=clevs)\n",
+    "cb.ax.tick_params(labelsize=12)\n",
+    "del clevs, cb, cf\n",
+    "ax[0].set_title('CMIP5 RCP8.5\\n(37 models)', fontsize=16)\n",
+    "# amipfuture\n",
+    "cf = ax[1].pcolormesh(lons_plot, lats_plot, du850_amipfut_plot,\n",
+    "                      vmin=-4, vmax=4, cmap=mymap2,\n",
+    "                      rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# jet latitude in control run\n",
+    "ax[1].plot(lons_plot, jetlat_amip_mm_nh[lonind_west:lonind_east+1],\n",
+    "           marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "           markersize=2, transform=ccrs.PlateCarree())\n",
+    "# stippling, where models agree on response\n",
+    "ax[1].pcolor(lons_plot, lats_plot, np.ma.masked_values(mask_amipfut_plot, 0),\n",
+    "             hatch='....', alpha=0., rasterized=True,\n",
+    "             transform=ccrs.PlateCarree())\n",
+    "clevs = np.arange(-4, 5, 2)\n",
+    "cb = fig.colorbar(cf, ax=ax[1], aspect=15, extend='both', ticks=clevs)\n",
+    "cb.ax.tick_params(labelsize=12)\n",
+    "del clevs, cb, cf\n",
+    "ax[1].set_title('CMIP5 AmipFuture\\n(11 models)', fontsize=16)\n",
+    "# amip4k\n",
+    "cf = ax[2].pcolormesh(lons_plot, lats_plot, du850_amip4k_plot,\n",
+    "                      vmin=-4, vmax=4, cmap=mymap2,\n",
+    "                      rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# jet latitude in control run\n",
+    "ax[2].plot(lons_plot, jetlat_amip_mm_nh[lonind_west:lonind_east+1],\n",
+    "           marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "           markersize=2, transform=ccrs.PlateCarree())\n",
+    "# stippling, where models agree on response\n",
+    "ax[2].pcolor(lons_plot, lats_plot, np.ma.masked_values(mask_amip4k_plot, 0),\n",
+    "             hatch='....', alpha=0., rasterized=True,\n",
+    "             transform=ccrs.PlateCarree())\n",
+    "clevs = np.arange(-4, 5, 2)\n",
+    "cb = fig.colorbar(cf, ax=ax[2], aspect=15, extend='both', ticks=clevs)\n",
+    "cb.ax.tick_params(labelsize=12)\n",
+    "del clevs, cb, cf\n",
+    "ax[2].set_title('CMIP5 Amip4K\\n(11 models)', fontsize=16)\n",
+    "# ICON (locked clouds)\n",
+    "cf = ax[3].pcolormesh(lons_plot, lats_plot, du850_icon_plot,\n",
+    "                      vmin=-4, vmax=4, cmap=mymap2,\n",
+    "                      rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# jet latitude in control run\n",
+    "ax[3].plot(lons_plot, jetlat_icon_nh[lonind_west:lonind_east+1],\n",
+    "           marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "           markersize=2, transform=ccrs.PlateCarree())\n",
+    "# hatching, where response does not agree with robust amip4K response\n",
+    "ax[3].pcolor(lons_plot, lats_plot,\n",
+    "             np.ma.masked_values(mask_icon_plot, 0),\n",
+    "             hatch='///', alpha=0., rasterized=True,\n",
+    "             transform=ccrs.PlateCarree())\n",
+    "clevs = np.arange(-4, 5, 2)\n",
+    "cb = fig.colorbar(cf, ax=ax[3], aspect=15, extend='both', ticks=clevs)\n",
+    "cb.ax.tick_params(labelsize=12)\n",
+    "del clevs, cb, cf\n",
+    "ax[3].set_title('ICON', fontsize=16)\n",
+    "# MPI-ESM\n",
+    "cf = ax[4].pcolormesh(lons_plot, lats_mpi_plot, du850_mpi_plot,\n",
+    "                      vmin=-4, vmax=4, cmap=mymap2,\n",
+    "                      rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# jet latitude in control run\n",
+    "ax[4].plot(lons_plot, jetlat_mpi_nh[lonind_west:lonind_east+1],\n",
+    "           marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "           markersize=2, transform=ccrs.PlateCarree())\n",
+    "# hatching, where response does not agree with robust amip4K response\n",
+    "ax[4].pcolor(lons_plot, lats_mpi_plot,\n",
+    "             np.ma.masked_values(mask_mpi_plot, 0),\n",
+    "             hatch='///', alpha=0., rasterized=True,\n",
+    "             transform=ccrs.PlateCarree())\n",
+    "clevs = np.arange(-4, 5, 2)\n",
+    "cb = fig.colorbar(cf, ax=ax[4], aspect=15, extend='both', ticks=clevs)\n",
+    "cb.ax.tick_params(labelsize=12)\n",
+    "del clevs, cb, cf\n",
+    "ax[4].set_title('MPI-ESM', fontsize=16)\n",
+    "# IPSL-CM5A\n",
+    "cf = ax[5].pcolormesh(lons_plot, lats_plot, du850_ipsl_plot,\n",
+    "                      vmin=-4, vmax=4, cmap=mymap2,\n",
+    "                      rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# jet latitude in control run\n",
+    "ax[5].plot(lons_plot, jetlat_ipsl_nh[lonind_west:lonind_east+1],\n",
+    "           marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "           markersize=2, transform=ccrs.PlateCarree())\n",
+    "# hatching, where response does not agree with robust amip4K response\n",
+    "ax[5].pcolor(lons_plot, lats_plot,\n",
+    "             np.ma.masked_values(mask_ipsl_plot, 0),\n",
+    "             hatch='///', alpha=0., rasterized=True,\n",
+    "             transform=ccrs.PlateCarree())\n",
+    "clevs = np.arange(-4, 5, 2)\n",
+    "cb = fig.colorbar(cf, ax=ax[5], aspect=15, extend='both', ticks=clevs)\n",
+    "cb.ax.tick_params(labelsize=12)\n",
+    "del clevs, cb, cf\n",
+    "ax[5].set_title('IPSL-CM5A', fontsize=16)\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# a), b) etc for subplots\n",
+    "labs = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)']\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].text(0.01, 1.02, labs[i], va='bottom', ha='left',\n",
+    "               rotation_mode='anchor', fontsize=15,\n",
+    "               transform=ax[i].transAxes)\n",
+    "del i\n",
+    "    \n",
+    "fig.savefig('figure1a_1f.pdf', dpi=400, bbox_inches='tight')\n",
+    "\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/pythonscripts/figure1a_1f.pdf b/pythonscripts/figure1a_1f.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..9582f108b433fe508f463fdffbdd27bc16aeaa6a
GIT binary patch
literal 842594
zcmY!laB<T$)HC5yU2{ia^)4<$1p|frq%1BQ8wLG<#Prl+1tSFmg&+m}kjjEo1%2nl
zlEj?+bOk#*uGG8~kU|S24Xza>?!hIAC8-J~5KV6Rc_j+Q5OzRfNl9u^o`NZe%cUPs
zl%E`&TA~oGpdaAkrl22^T2Z2)@0pvJp6UdpouRa+Lac&*a7JQEW?s628AN-8e^ORz
za*2XDh>PSLLjxrDIOgT$mlP{RgY-M+=ar=9l@u#jf^=}{yBFn`7ASzc=^U(}?~+=U
znVcHr?xdg}te_uKl$cjskXV$Oms|<+IYhmk9hbguYD#9JQ+|a)v;xR73sVC<Lkmk&
zOA8|dV?zZKBU3#CLkn|Lkfi}2GfH4V7?fI^Us{x$TC4yHv>+~Mn1X^C$p;|!fdUrf
zG`Gy0lGGvveYc#%l2n(}<ouLW1%02?y!4U`1w&9&1%WgcmlUNY=5kfcxmtUAlgiG*
zr~m3)^_IG-eyr2^Db#D`%)4@#XZJ-Ni<ID`XmL}K_Qm(-7vE7fmgzXrapv8dWfN1k
z>}x&5D!^CISoh$aethkZ)B9uZJk|d5f4|=U&!6^xxPL$P&(riD|M%Bg{CWG?{q(z6
z(dYL*TpxdX|FQ||&uyP|@lD(QzrT+ke{Wy+!I|e%`kzbZ?d*bfEPLj>kLCXQt=Faq
zx9!`0?Adx#(Z5e8+%ettsH);dp4-o=@;B>C85_Aj{IJQl<LBP>=Ye|szy0=qzMZcB
zb+cb@|KHEY=j-jep3N;@w^9G0lJltw-+eE(&)2vAv2*{QC-!>#XIcHOIs5dQeS^u@
zd-iX>)|*sZId^)JZ28k$8#4Z+*cpV?Boxi~_}M+@y506io9kP2|E}+s|NHAxbNvVL
z`Fi{R{dM2llqA^vBqF$H@AuQ|>%V_2zxem@{rI}SSD!B5|8K(1Gi4S6n|6e3ntObU
z-8}VOCB7$r%2Z8@{PZ~T+S#p}Z|K%rc<Wvl@zQftU-??4epk*<#WeX#n|N0)eGv2F
z23P&trOO`#uYUSzetg`&r=N~@?@#mTn9BBN-s`hVdAHYGsXJ?`*6!=`HOi@ET~NTG
zty5Y)F0m{*6XTk&&h)v+WRu^soKmuPZ)>?1YHc2GYhAvEb9P8c&l|<uxn~8|UI@Bs
zSoO-Ydi(0{vZvjPcTWqc%Fg(9qq#%(!$%>7wKp9jZr-hCKXpXL`qst>`Q(ZJ_9Z;E
zoZj@UBzLd7f7~a<go&oX4~!~wwnZ(quQ<sbu5`=MWdfJ|#+`{#Z@69r8SvCkO5D&E
z<aN|MbPe15S(8l4YqF2qHDCF0@~hV3D-D53#Su0duVV7fdROmrtI-ZS_U&2K^>@7Y
zr%0PkIlI$ky$OT#)2IzMGuQ)n>)U!)A4<wP9r>#{Byj)Ahs=he970ihcHP*RnsdA_
z;b!cukF~z;FC#W`H%d3{JvhBxVLq2w@x}5@Y-Y!oK51onU=g5G@_}tet8nGQnt~rU
z-q_YjN|zn|V#}V{fBiu+`{jm33nB$rUvPOepIxt%wzO@}mv;)j?_^ZstxW=^dfKus
z{Bp{1!#b&rk1zS<X{`&2I%sAnuIR`hZBb)tp|{98XTswxU(Rox)ULGqNPyS;W9>_p
z3KaRDE{Zul;hZ-Md*kVnsLj6`&Yu?e_%r&VU*yCxXYXy|;Z+yDac~yg>5w?^Vr#MV
z4ZfAW6Bug5d<5$XjMm@0De=p+;d!yFW#e1H*M)^o=144<YQ<?-B=!5Z*qlD*cdVUr
zv@gluIi<+%mS&xD@VdnZ+u5?y_3s+*-+Rr$C`7N_IPxXq-SszaPjZzJ`l4gv;r(f=
z!WTCVPg9PszG=c{OWV!zx{gnGkQBS0!oP9$-s^#1c0T9j{^rE8DkLX2wn8Ow`>z#I
zN_8b?o%38p9cw;pzSTNo?kn94Uv}eI_jU1GWm;LXbdQ_7I?{KwD!k>LTXT}l{b<eZ
zZLI9+_FT&XZ}yg5Z?wF@Gwsd3N0WOCuAgxGv+N76=zkUG3%?7l%wU|ub~?btQ!FF@
zy7E^}F)nqE=yT6luHI3)%Kua7mcpca0n_`eua?RtygZ?4d}PDZxb9f?ki34?u0xBz
z>FO4wWM#}Sx!C_QYGdW5kCJJ|>OES&^tQ>g$Zg=Bur_E>Mx;T5w~R`ne==W;yCZ)E
zt5Wof*lN!|5^F?WnQ@!X*m!VHYwV>RLUjxko;-4OY|4-2kIYKg6887U%Y?5Eg(s93
zUf}tDuJe*%itFa%(|%_P8|{>M>>JHi$T{I`P-%5AcR+8Fd~sh~jy_9dsa$X7>#NIc
zHl4`2DsNU_^YP>A)88LtODuOPW0AVp9b8wgwLw|*&VBWnC;kXN>0HdR(9*fE)uc-F
z&VB~=-92%x%gPucyG2uH8a`e0?fMTX)@!nM{RWN8k1`g2H`^q1JNfuC(ahr-T5i|O
zHE$GXuwPwgS9HNAk7>0?kJ9ec+G$LSL%3aXLINHzzBsDV^p4q_;a|R_<h@-MttJJL
ze*E*qRJI*DuX<j!{&oHJ=?jxQ*tLy!yQH{jR9<~$*qkBfr0|Jd`NGw;4%SoR6mLiG
z++rs(Rrti}x1A<EuUrmhJrIwTIP1W${LqT(n^FGn1xp0ZKFi#ke6ef;s|uG(VzuYG
zRUcz&O$uW4H`J$^crofccf7X9jq?|?jL_;AYICwC6*(`H=9iS&yY%Yi#ZJCAG+)NN
zNKbseXvMjx*udG1e~;8%?Bv|=m3Pn5`zq2cnxCGOi1NI06w9eRzW&mWGxJn<*mJkP
zNRZ0u@!X$pV1F&4dG*1SOON0Fv9fWtd;Q5X+HVVZU1rYydRgp{e$csidvPNkTj^6t
z58nS{kk#Ud`>x!1Gmh)dCzGF?Z}@iyxSKPs<>T_czV8#GdTZgTtna<Q8%&$nJk4vK
z8gHAN9U|8g{qV)>uR^yD9S^YBcxFrF&v|dJgxK{IIn5U_ViB+W<SbL`vtvf>6z6xG
zIVnDuFS10JwKnseocl-E>fE{&k}aJ(**0vOFO$32?FL^FYwZ3&>j$zCiS|1!zr0V(
zST*TjhUo?cK8u~_ZVBpeSL#;@Ia|A24eaGvQ*(V|Ld^;#TU&`%9?OG~OOAQg2CqrT
zUNuKldBzI%tT~}9y{s9mcDgyiQg2ynIOq7x-LdZ2t`9ven^)!tnKHC^xS8!bJYxmd
zYWCoJPg=T_`R#Hn@830@vvK(Z`4uzY?KOM+y=cCS(Cyum*16VX_;K1YOfNCe+kGr3
z=WBuA6GkR2rsqe_AGVzMR<^xi%N!;xK8>9|)+xUq$4q&!_{hf+hjNp{D@EEGh4jy=
zi!VzooBmmDyV8M`KQ6al|E*>$@<J-<h?x4N$=m(*7fhf3=lEWA3%=JMHpEUybN|=k
z&ubfW?sro3hF;cNKiBC0us*<L{-XcOy?rGr3N@@t?B05J=9@Ood0wmdIDzGl<<i5;
zecZ1m)<3A7U&bcinIbw*#$S_%_i|#5qQvvsN^yqR7W?;axs?u>9n`nH%X>p9BWBL*
zgO$%~4^Fi`Y%$-6pC`0a*C};L@T9%RY$P^4aB*K-aVflpB|_r-?`xk6D|4E^*dLzk
zug`eg=f=kw3iJGXxc4%r^6kEV-_z)X&AF)t4L1Mh=S%DGy;117A^eH$?#+tLrK=V%
zc%(dMC)>pur@r`C(F=+<^89ZJIUtwR{;<?`qxkvPLN_YIXTKJ$dnH^ed?!p|QrWJ1
z*I)d$dB4Z4J>2DUrIo{Lm7RZb{57sT7rnnc{LO9kT?ztcUsYC?-jiJ3ek8y6e9xT+
zlMafue*S-E*5dbavxEF~+vaR^YAt?wu9QWF`G>S0|B?LE3YnkU->v5B{SZxTyV<q(
z>$8f+FK+H^Y25BpSmcfEANsVuDSXfn{yXgQPp-3fzCJtuG~MD~WiRi(Bb|oHd-u)j
zKePX7%lwBIY#u6^zKLq`zd!Fm=kwl2>T`ZoW!p48uh>_e|Mr7+;Rng0{YMusm)^hM
zX~myzezrM#BZUv2+rA<@?aI{etdei^5+@#GUdex<cuz?(!?*bV@67-I`o3M@&0BHq
zdcpQ%9Jc&Z8;d`v?&SHq!zH)=Pxt))M)Ch%9^apHeb4XRv3Zw_VpGoRuivhJMKe**
z?*H-k`~Lho|N08|vjqOD55z(ayYncVn|3Jsv%{$~vzujwW`Ap(v3qg7w*}L2ALAs2
zw}-eDp1r(Q-=h44y`bgp!R|7()$eL9%znS)ERW>zr{}DN-nkzrv^j98r;w#>YtT`{
zsK?w12Q|z;@tm3(J%!22vzaTSzw!E2sbvh6542B~CiVQhHSLGjt36WOuE*3x5;;Q_
z$o@ZDl-qH!BY&cYYm&$jby@p|H@3HE3FXh<ppdKHoUw-K?UlZwBmF!vDgSI*<QF(P
zwx~t~CT^*jGW*dCZT+8lj2#yi+N93hlN<k#O)yNGL(=QX$8T-s58_U&O?mQ{vu?Jz
z;Nd;2()G<U4(qDRP8}D0vOkeeYS#}1@vkj$JEUJQq%_D)pKY>6cK+@LzJgf?i>8&u
zIq5EFu6V0wx${t`?46sg;yt%dKX_2osDF@a@B8+m{bn-?-yheW|75|b>D-lZ8_b%V
zZoE@2of5O>bZyRs9}0VZX)7Pl^PQ;wp)5l0hNIwzZPTkm7tOj<G?B0CK#S9dn{t)i
z3(Oyz9`<YvzqZu2@%EQAnJG^FD`tsH?bM%sx9IxR-7L{Uk3-FOI5+KS3)^a2v|jYx
z1d}q=l7^Ne()Sc&H7osY8@}Lu&%k$p@8x%~CMB^w&QGR>P5!+q#Ay8mk@pQBpZ-yJ
zJNF{1etG@(*M~zAyEe1zY0qAxa)P(_qIE@E?N0U9@TNee)TAAGzCE#b3IuNGT1@o)
z<-GZq^u0#5<it7+@qlzkn-6w(Sa&Y)=`EN(rABJ~+~DK{xjWC?Ihf5_(j}EtGJb7d
z@wTvH)#p3adY6kX-23^oGRp3D?6v4DZ?-MYQO!o2C$~9>9*7s*v-S+zxz*+?n#9Za
zFE2A#G5-Z?TcI!~(}De_ozG_Ys;4n5m!Fzx#3?b=L{fpXt#XB~Y>W5H4Mx(p7dne?
zT6^Z?H=e7jU-#^JK6QfY6G!E1V(v2&tZO#5dUMoYxZ(2T<H9zZ&S@|5!bMInK63O<
z{#qOLS8GwucdlNq8y5<gZ5m$JWGrIuWm3>R%Csdg@xq~y>ysXI3l&<LA7RdL*dP2=
zWJz+TK!TQxO%sRSi;k-&rrIlO2c+*?Rj0z7pjn#YyV(5XDOoA=AA#q+u5_~9?ys6T
zk!M55%2n$fg^pi7uMu@ku7run`$gp@`MDf(=G4wRBRtV8Qtzr;@v#85EpGGHB#GBD
zKDCX!cy7nq>`J3uvN3|qE=Fs5)&4QE^K{Oiu==4!`>F``q}?hl>AAKC`D}Fk{lwn?
z*~qVGlNYCVbw9hi+UHX)g&eKhWj-8Nij_>hE&2AdP=oCEwiTQ+=2U85e6vAS$^F`v
z$L5Ji)q&FzPGoZaK3vLB+^rCKxv%U^#H0uFP2Wn$e|{|{efr!1dx`MQ*q3_^G+Ij=
z{hJ)Fui1NidlmcE>g?l!!ct`>SKQ*5u0(!c&_4f9bCd3|jlth1Wz33xAb-cP;i^i%
z$%73m{C>*3P4Jg^e{n-}J=2#JYeN(_O)Pi&RQu}Dw2t|O+<!iAVR^Ld<oOjF7V|7x
z{r@88Sw*>GmKz@yJz?W$sGl%<_7<VL%=bb$dwa!_YwSN3C10vsc=5n8xlnhuDD%$W
z#!9Ty&F<ggHk%Z(&Cu%gu>-sfdMj;tSIzw7dScal6U)b~7t&KdR)xK1`_0z$t1kO}
z!OU9>OQO!Q7zW&Uq%iC3E+<<9yLnqA-<{EY!(Vx@VAY0&6S)2@^x1gH#pJEjw|1rV
zuQp2duR8o<8|!HYW%m2>pUi%$^vwC}md%wI{kYw??OsRjtmzBC#cbGI8)<)0P5OTF
zU%hSW7yl?rW<)$VV<B5_y6#J80_W2ii5~K{isFmX+!mky#*&t^_~KE6sqE9uBx9Q_
zxh2AS4OckxEBmjGm+XCOCsbu5nf$@T?c++nXEQdiR<OO=E>---b<^T^kF?ZTWDc-|
zef`rjlkKbFf^Mf&_cPK<D{id~&AaJmv!tlm@HLY~N9@~ctHd(;3P1Qf>WnJp_n(p^
zdU{1)#<Ij6i{|&4n_OPN{%lg&j@2y%%TD@8Z)fy=y;YSlE27kE-C4)CFJiwJ?Y%MI
z?x#>nt%YCUlt2{`QSBGO7j9|Q)W{!;I+u3L!9mE_b%!6DYrxhU7fd7<xQUC!T$*0y
z5wN^3_UQdth5?7G-?+|RBUcg_XV%j0@bIf+VdUkT9qW5M{Uokk`DDYYpIH2A-Jgwm
z&kpV|U7|TnBTxRE<Q}br4~28C&-vD=-F|+3O~M}qt)LxRn`$=-G+tE8X!+VV>rUHr
zo89hH*@Jd2OSg_V^qI$0Lip=4!}~39n-3?P<~qM4ah8}nS3&N@TBC0LC(Voc1>YQB
zG}m0BXx&B^Wet9Iwo(P2iHWBRue5hf@D1D%Jg-3VciqL=GMfe8B^+DTw_&ZE(7Dvp
zQ#aV}`ow2vtj5CrWzFWtVh$Y-0)Kwq7aZ_vh4z+e<qLbiZQggg;^V~~#W(&;;49{N
zvcS01YGQ0k_vgm!bG$Wt$10PK2LE|DA?rcxk5#sI8zmFcGK6<{FPGWKt0D8XRkD3!
z>Bo|t0iS;`-sZVoW|yOKQ0o7j?{k@VzyGyGQm6PzdEa%JT-GhBs+08&zT8pV@OwqR
z!UQ?3Wp<ADE$hC`GtEh^XfK(;wAH=#ZmixtO{YC?nY_z(b>yqQm-%O_@?PY5{p}sC
z5qsv`5w<clcYE~n`QArm?D@8ff6lvhHQMFc!e4V4Yuo2?hw$}<+@1T5?eTu@y3=#@
zl}{}ew>bQ7j+lgGUF<XN^(Fgyu3NnLIXBHi{U?w8Urx(eg`DoSCxsmU*(_}S`{;*_
z;`jA4Ziauk(o=5nrC*__CFz*@wcmUG-DcX%_wvHe8nOCwe`kbqFs|FvY<Vv7hbVvN
zL)CY&ub$7{D7*I1e!Y*J_pb?8z5ChvkaO*)YkbQK+V}gJ{Np^ryqNi;z^4!U<sIZI
za+)4Kb#7#z(Jo*2@9_Vh?fd`S-~Z?N^xw=OcFYw#H4lV0<TKQqsM)kZ_3JI030qD@
z&(dA#``h92-HZEGKQtyEGiVlmmHg!JTXDA+&eaUHH{|!NztKK7zpD7efinpk_-~Zk
z{`J4n{%8SH`3C-@SF`UOv=cf1__^5cfSM<3zq0)f_;IbA{Wrts!_vQbzb*W5t$_VE
z!)!LWn@RFqkL#n~IColzzD<z#YEgKbAiv<tk5?JZwHll%_Yc~M#3{Z{kS{QLKC!yF
zR%7PuZAa}ym?X+J@NX#jaYy&tLXmr1xf}Ug8@pxSIIo<kzb*ZZ^THn>qmrk!>V8}J
zVd@3GZwpTdFVX$B@Wk(zy5AU&M^32ku3f>Wv$?r;#hwp$588$JOXY3kpBi{a_KkDz
zhjrx}_#d!LDDJL3&~kl8bL|RGJ!7*Q?X!Lu)OFV~C_8kezi|#db}vExg4?+p3Gxqg
zlcwl?W6Zm`^?ic8R&uWOjrJ%N+oNp110;EGAGAC0e9tb~H_o~<=h!C8zxg2cJ7IeA
zM*gy&V!snkCT!$)+9vykxihA01AkgD+neT_M;L!6nAIMzo8Wni@7qCx^9{8IXUr1h
zd5ZaNw7;5}n9y8nU}TseueD7tcO$>s7PdFe50ekezG)T=Y_4rMdQfWn4fe$hY;T$a
zC78c49#LX6ztMh(;|1Thg&&M6*nbCP94gzu@0QPZgMD#2`<v#Ar<uPoo_>^ipY3<T
z+s31I5x)~R@?W!weA8^2&h|TD?V_W05!zWB_^-W?degl1qS)_%8IsBDzY}uz9<`I`
zKiDKAXQChe=Kfyg;2FZHAo1Nt?QZNfyurSEs@U%Y-`z*;7HA90=WgJ?wk7&av*}y5
z-wC?AkJ=p&Gk$!crFO%&dr9&)?txqs$M&ZAE5FXSg$KBf%f4xzc%1R~fp43dYd8FB
zIcg_Sx%~$FN8_>${MXKJxWWEo)r_+4+Jx%+N%Cu=lQ#0Zb@Sd}e?2YYjdQ8ZpS+Fy
zIp?i!u)jVQ@#gTVS?q6`zvk(DJ6L5d_WQuMZ3pevq$M4&iwHlFAg^^f_)UVmR`8EE
z3G%C++`644zs5avBmdOGqq1+9e?OOf(`;HN_B-L3><0d+nyqCU_@C`&d(*6VxS`hI
z*wrL?o|o)znoW0!{Z8mvchoLoarQ?3Q09-)Z<-UgF#b;H-FVb4qBv(G|23KDH_a0#
zGyYCEyXB~zNZ=a~_cn;T>!_W?R)YljH9J9Z)(48Sc;;^l1E#-CkY95<VIzOoT&XvQ
zS5@nNJD8Q#U8~V@^?ic;nnT-fuxBgid^;#5(p|fO?L?CNjd$iZ*t3u6d^;GmSM;}o
z^h}TnE8TAgXGL|_ZpiCBY8SEnSd#pM7Q@z~Y`+uye~bN2_^Z%dt09-O|EOKW`x8m>
zYpPQ=^0ThFz3m3OS-b3;X4zv&@^7|?{Z0_i-^l+hS@+vPp|eTyIumujF>)_>lDmN)
zTF(DYICkrxT}$`|{(kHHjr{Jl>TeDQUYGp+VaI#1-vuV`Wc;m{9PX*Lc(G^aO?#ON
zzEd*mD!A^*1?3*HlleM#Bfq=IJVqw4uE*=5-yFWU!T8(574KzwYOgOpd!v2vKI3l>
zGqls*9KN{2_}zmQ?`7uLzp_r2zqh$9SL5vjzTh|SSG@13t?1{--N64|>3vV2h01%8
zoprZ&2!DGxL3UZkkKIRdkJ;^U56|Do-~Ounn4L`7yp8<qbGP4UckVV!mgjQ^bK@T`
zcwS!BTx)UVx-iK8o?4452Zg^qydbkLAuax5u<^Ht7wl(k;D3LyKKjjJMOn2shYk1J
z`*z5_IXv5DiSD<D1=ebB4o}R;*~rhXynpLq&2JCa3s0zL`hDO>vBeR)Ki?R?HL}NR
z>=1tA{44+Wew~evwm+7;wnqH>M;|9%nfA)xGEY?Ugwk!Y;@N*z<v;lzGH=3^r{50=
zzhkUR-2ORlW|#Zi=~ANVsp{WOi2b<ra)A$X-$_^I?en%<o6Eg;7k{isK+SmR%wyLa
zE#@s3t6U^d=^1x?=P8@(6I{#Zo-vz$=2*>=8o4b6FAQSu_-s#GBEQV|Z2DzWH4XhU
z8K-254wvN3$(inK&wn=ETCCzJS8mYPV~KyZ&9__eXre@XkA>F_CAsX!kEP^#UO%$v
z_<YItfV{ZM$GA!1Tg=WRMala=o~d&EYfNy`x95*1skl9RYZE4HGiSN#NzH3X`KN7`
zX`P&L<?}xK_uj&F{!dQn%r7|nOT$(5@edKxIXj>AKCPXu@2V$yU1hVX7fWcj=pCU;
zLM{Rh*`Awrr)^C=#8feFmQks1Q}lst-%HMApNlbh{9#e~FSWz#S~jh^Typ<=&7M|;
z=D4P1U)Qqe8(N*&oni5*&g)z3%VP=crj_4qEe#U28*en6p5VRX)2ppdH5Z$2wg|Bd
zFbFi<oL0T;<I=W+md@P{YkqcL<SAF(rg^qJwJF!L!zRTyuZH{ibSs_J`x09xzu5K6
z#4nI9XM&WNg{D-9!OU5mxi1%HC4DsASlsN@)GxYa#}QrLlH^at(-L>^ST3Haz&vSz
zsfy8ktEAG2XIZQ7n!fyQ``Lt9yz->>o@XoH`J6f2aXs}!mhSd<MtO>g*6VX5OOG4+
z7B634xlz)AakKW@YbLkmKDB(XHZ!uf+APm#VSHY{ucU<kgqR8avO=#m+5TKoen%~S
z{g?AA^?ugAziPiHS<3Fr@~?>!KLn;eiJhYIU>9$;sNi{)t1}z~irr>bU$cFA^lYft
zjdMK>vlREL--~NfU$XaLdWd86>bU{QiIb-u^?fSwezMI}-{7kv+rnS;tT-C}E;Q^$
zA3tYur$pGArq_2at##?qo@%+t^;1F8i{MQ0uDDlsy&v3|($pw&VUET+{U2qiffCDZ
z=38W)R%d<oalzape4iq%7Pn5Cqhm19oH;ckJ(oSBUF+@4=Zb7zH~4xtPT9LKHtDT^
zj@l)SR-HH5$2&VMe>q>Tlzfuf$FoKJY;MHzuSc|IE}ELM{b+Dh;RCUTzQ30^jvc?~
zzxt}gDT7awi?8-aah^%**rHJQrc7m%c8J%!ZTcVQR_5<2+kAJTk>sD4h>o{{-tUcP
zpWO39TsJ_ZW7(rwE5jl}ox5*Kl%+E8*zJ8*n}5VZ<wv0SDuFFwzJB>P=Dp>8{c-Y-
zCklbnY`Udaw_V8aOPzJ&UV&41XvUG5tGK!KwlA{cbPrmwz0lT8TVTN{C*|4@C7nVC
z)0IEBhtEA+7PQKLE4#~NJ;ynr$2VU6%4(5mqI5*=6zidv?t5Ro{B+>vsbr(NtoKsh
zGrNrnf@eLK^t{z+%~SM3!Yn)VuiQE2zPnp}k1G5~E)-aJ^3DX$NioNIu66eKbFX-O
z#Dj&&Iiq=jg!1ut-9771Enb;2eMWO|Fkicxz(+B6MpL%y+!<?Aul`tFyKKR922qLW
zWwRDfb7xIBv*%AlN2}~y)_)NTPrO=d#t|a6r#*1B<n(5HvwICcFFHT$pKJN@>iL%~
zI!E5A$L_VV`m-_3)kbQ2hrQQMUEf#dPxD&NiD)kRyynULg=H+0H&rDDz0yd%$hG>o
zo9TrIdLE)nPb@BN{JJfy?CZ}Xms~>qSJ!hKZMc6iDm#1L|8utlwsL>yNie?H+#G%&
zqjb_M)nk?mH>T{U`!MlZ;MIj$POP@4i??2DzWq76eA9#d_Y=+b+*F;yYd#}=^VFjY
zHJQybCUG1r+OnwcoL0o#(hm{0Ql>bsddOyKc=cLBZ`+h<T_vlh7`OI%oLr%^;qPAI
z9ZF|Imb9kdJ-B^Wwv2#AVCd06`_e@f3knY{Irl>Nqg3r0A2q#+Ix!_ne_UI0%B*O^
z#f4AG<);}pU)*U>zvsxcTZwM&)+aBA&AsMSP^2@X<xEBuhw8=tZq-O#ww4<YwL?4w
zJ}NkT34GT3Q1C@SG*7c(NQ>hEC-b%c+~(}t@O?#d&%x&Vj=R_BB=D$2tXgu^rcCT~
z=OV|oZYFz`FY6s%w*2Vp7Rl$;{ei->BO{+03%4q~Ju*jC%xU(o_3=k#1T3GdESW2k
zb8=5*d`9Qp=Zfhv$1YeHO`hNX%4D`}r_Ku2_QX{!hs&JIen0u>y?gi6Z^m<!{layk
zHm0W@IPqM<_2>Bw+F{JPTdp*mbSYU}t2S%nsf`>?g{zh<cRAo#V&z%rua(m@pD)ga
z$I0W$47IG!^U|Z!bBtE={1W;T(%=7w@uE+bxAMZ)8-n&9XKuXOXgNDLn#)sgz3=kO
zl>FpX4>yV>b-hkmW$VAm_w+3RO@96rTRm^|EM0ay>QK?M$xPjWuGhNu-BA@Rv&dR#
zyL8pp@U~*keD((-AFH|+ym+<x`(?(I(&fy&VL<|7v#sZ@v6B__DW6uy(w|WtHgR%S
z%Hxv<b=cloZk=%Y$yDJx_vdKe@_R7%P|>l%1LAz?e@*n$W!YzYB+vM|x<fbF^5Dzl
z@{G@G*FI=AGB^^zDzlYo%K@P)-TaFsCr18ETJfj&TKFEe^N(Nh9{jvRpI==e@$APf
z+HJZYo<uzTu-5y=fiSu9)LC_E7X33tcb~HocHmmBY}oiBGhN~}(@~%Ft#eDu1RnFa
zJ2Vt7pYmY!$|sYo|L)4Y@^{61nGH2}rr!u?H&zvNUtV&<O^09HW}!77`@G~<cb$us
zh2pOJZ45uO%&fjMQ{u;~gx{;G(-Ni`rF34Z*d>4Fl(cu-;|cQ<en@^OzEaL~RHk(9
z<InFOCKRx|Q5I>jo?e}{{?w;8>*p065!+K_^6v7U&5c%anpZV->b5YfnAr1J(5A2a
zlwsjfmu(*(zORfwZ#6F<;9rUIHq*6z*G_Av#2dxC%<Y?fWZ~++G0}_Pclg)#TQT<^
z+_9_2wyr6ctN&fk(!Ir;(J7az&)gPUTzX-q_%_p>2kiY{Y?9nk{-yL^8<$o5QEle>
zTh|P&{_LwxTyQznC9dXJ$iut#2d7C)O`lk^dVkT6O5=_fx_{2iRSW+V_k{EIq3)w`
z-TceB(=3By^Q=QxeVAOh?y+!pksn9>RHwBDTb}pv%=h|wV)y#b{oOpFs_e$I=YLd;
z`#9m5SFQf+!{S;;YV0efiJv}PVRt%{kNx?%?K8OU{=Cb)M?gQmV|l6X2d90{QzyO@
zbN&Cb|Nn9Oy2GFJ+HA64JFrhSe-^k~_2|7D?^nJxI#l#XudO}2=l9?5*#~W2%;7h%
zPd{RPc*2L;h&r}!$-(Du&CD^KG<jvwBz7x*#rhn%Ty2wOKU1vKB>c`R)%!HICt6*u
zF`K(Du!`;H=F_X^w?CVF(#TtTzH<Gtn6>ZsPcfHlHcs9>^(Bwp?Jb9Au3u8<Hb+Z6
zMQ&GjTflqG$;R=1hbw%pW=2RiFY}sw_5NnV&mS!ey_KG22c<7dOl<J-zI><HS)6n6
zHKV1I^lBbHO1jb{^u6bb%gG0KOrP#fQ)J(_=ZcWzcaz&ZORv1yDs|env;3*`g@{GV
z{w(|1bw_bpdYS1lP0Q-!pyV{39XDzo{fG#kuHLTpyJGSZ-cnDmI{&bH9s4=A%e?tM
z=lNXYU)w|$?_BPYzVKVy<_*($cTN{}G-eBHnYPld$?-zv$p!nx3?Fu9+;H0Y$jsE=
zD*t}oQO9dSnsWtLK2QyDKUrjPZR?o~&$Md|+e{9BeBC3k%OT<TC)?~qvCan<izlvm
zoUJJCn0r9@&8<59KZjmlk@`F-xK39@`Jn5B@bXGs9cK}?Dfw5DRKHu9>{-j(b3Utl
z+D^Zk8`|4<n6k&(&F{OPAkk{R&bM2{pl-_{11tHhT$(=_X12;qj+x!myIRFl;+J|@
z-qkbT?|!Z|KA*KmpRILE(e}C1JiQ;RKViErvbLqedjFCXb9w2Fp%!O!TpPj`eQeBr
zcz9RmiG;{QyS6Afr~b{&n78a8_dN%nYSGRNKdDP8OO>i#uGG2sQ7&&zKt2b1T;%UX
z(VL9;lD{^(%-~YlC|jKLV4|+75W~wWuUNIkPyaA{X`OKRON<|*?r)XAocxyHyIf9<
zS9hwGeJyVkkKkbO3z>Uz)%gRA8Ed~kJXvhM@X=+DO{O>PX4~FB@GS7B!IgtrDRw=p
zx*Dr80#r8!R_wX&wtdOcYhiy+H0()kYg&1%o#pnbrr38<ktvEFWsjzMB)wN{b?RC*
z`TCR3Q+#<Y-O@ezCyCWSEF)mgvLDG({06Q$i+g69eD2vAF28k0ms@Yund0x&eMN4@
zD+N^evWw<!-do|8r0<+pvMss&YwY@yOZ60mYuYb|eE5Fnb=)B~(@fi~rtQ_~E^69l
z=R-~@_Q+>n4AReDDC7BT>y;qoM<+#(O_mJc_d8s4W<AS)sZ%K%giRjuE|=%gE!?-_
zf>avIqqQ?6)DA8Gllx*RlYip1<_lYj&hFx~&@y1Ky(4t>v5D7?ZVN_Mt+YRGc3<1?
zb_SQ#a7Z6nl)ZGx)S!%YjuV;M*0rWjU!W+rnO8=NM`$_E*O>y$(@QU3^F8-x*0o9d
zd0g3yl&9HdY1*pwt^6RxB+Ij*R6DqG-c|3)8+*<c{+IpX`}!Am{KDTl2The3C#>|l
z;v^}~HFw7EwF2k0;?LZFkUihaae=7vx1Cm@3%S~P=WzLov~72uud>(RbZ}o`0QVus
zPu|Uo!&E|>iXN_txWIKf@K#7o^J$ikAt~3RWP8fCuBc2qu$bv~qX3W0KCPXn*dG|g
z1>arZbufc#hw)bz4y87W6^Zet8f&Em4@7O9a9r`!^r<Gnx0eV_64+xUxw=fPV}_*Y
zr4?tSE#|bAJ<brCb;bL#g8A%?0v|5DkY2|wn|4lHHLG&r)we24jZ>SKWjPxBR7hA^
zYT&oPnqzZF1gA*&j0O`8`QYixg!j!3EtF87`Y+nQyS=D9$U68zDC<SFMGPIU_!ft6
z|F!Oh%CY9FWm4X!zbGBmWSh*|vZIzIoX79Mt1De>?-gq0_eQZDUU*c*sORQJwv(ML
zj2GUSYDXrWa?gp$o%}uR*uqn57p~Zvnr3s~+O_V(r88A5UYDw7+j68;HV0&I9-qpS
z<A0&!mCl{am!^hs*S%(HKfTGvyd`8-jJek@W1C0r;VJ^#-^b3YXkMMNi=}jKc-W%;
zNY31s%Fi#huSjLoj+(CKu}PD+ZL{n%m8qQ;$CfJUDTyDoj-KA;*(z~RdvVW2(Zo~R
zA_I;t?K8~$s#esdQa{72aBBHBYY8FU`P)~qfBf_EwEx%U7gs;52yvh4ViJ6C*Oh34
zc_NiuQl{Ucs|8=&Igowr@FbtASjDMsxtA=9wkW3-?49v@#dFvEO*ZN0{4DPOayX`1
z{DkZNbS;<it$rtyJhIlwU)fn<XDXlDmhw1SX64m=CHtfrukM>U_YUVGiIh7Mnk#ad
z;vYS^V%RSCEwEPn9=CyPkc8}lt9n7nhKesk`q-Z2ybQa=Zs+_wwOHov(yLP&gxW)1
zY@Bs=fw{k7v$*M(KA)&3$2AM*Bt8<7Z3$TF#%(xjiEZ^d3#rG(7ccxcx8ZgAYvYSL
zhUV##bJe~a)7Sl4A#~h*dga><=O!eW3pXS<JnNF_+}-CpCxhQRcR{IYY}PsLQ>WHM
z>xnr$pUus2^|0}MgR&>VGtTwQJM0ya))zR(XkB%`+WmW<t3o0?TvmN_?AqTbdMS`4
znN3ut<lZ7txpJ{bUVhEd4lfJim-#<7&9saEVD_YDOG^d+G~184#YJ<Q&v|}&%vGjh
zYxqe<xBAY^%q=#1yza5gsh9g=)U#przb)^V=f*8r-1xjk#QnG7{vGvq%s>52^Oz+1
zxQ5rb>zVCqRsQ?of8ylk86>;Mx~BiCVh)vEn{ckHWXCPeC13PD*`437zp{h3=lP1)
zbN0Phk?-+IZvCC0$ug&IZw}hns3WsZ?3&$Y$t#-obA;1n-X57V<7LJjOU+BOS15d6
zXc6#S-R$klzqP&RE9ddgyJ>N6jdJmF_xoAau^*O)e|vkG`_w~WdE0P(ws%vm&a9ux
zS=aH|T6X690^yoBa{kBv9&u*Sy#7R{_?q;*;>ppQ%hvgpZIYE;wM8@e+`<dK35UNI
zeC*cwa_YG4{qL%wl1#?uPn$j$em&Pfu3g9ea7JIH(xxD`zLMu}#1f})E-(4W`TX@#
zUQV9;kL%{l`O~s=_60-t+W3#Hch9!m(yd(j<HGk=(aNo#F6hmAcG`VvdxdR)YS~8y
z-_PCg|NdO|-~Z#NxsG(oL)P!t8YR>uFD@?g?%TWZeu!}f%ibxrEk1e{yf!~t|0+56
zS8ZqZIV<_s@1kTc|C;#+uH2Y%EN$7sQ)fShxIWtDpOlqTS7tpo({A><izn<mR~oiD
zzbV=FQzvwS&D|=l;LWGk&2N9U`J~il3!B!JH<Ks4UvOYbO7+VPx`%3cc8IpAaXWwO
zv5#+?CA_Ab;eVB;eyM)o#Gi}2;_YWPiLLo9=oR<L?!K^b`avBFU$=eF;?rW;H$9#*
zTk7nLo0eynojJg9W<mOkwNn?FC#cOdnpIo0eUaezHMjOy9=1FGbis_5EXyCQ+|ki<
zae7c>cHGA``5U$zIW=px%<Ip8Oe62l`n6}ptm{25ve`<nReE^OoMviYy)x*5yXK(@
z-cN6Dd+534q*DA(kG<KmrZm<1e40^Ik&|0=EBu*uRFdLV@1E(F0cVQen(nn**5;I1
zsAYFy7T1Xo2KFu+t7Dw{&a$%K*w$xN&fV(cpDfw8Eb+}L?W4EmN(Y~jSUC0e-H>jv
zgjW%qGYojnbNO~EZhFgWk)kE^aoerUHPe^;jMtX<SSIZrrC$Cp^wF_-XRK|~Vz^a4
zzMA70w^S#7iN1!!BY}!uJ(d-Bd{6kv+z$v_wkAPJaM_P^NukIpR>Ns?lzn{OEspzh
z&Fz1D@$?F@eev^z!^0MJ1l`H3P>PT~Ty@d&&jQa<hO>Xwt&auV`N4GY+jQ}6*X+;@
zJYpeShk0+f-@D7XsONN|TW;lw?0J`NJ^lRGu;mWx@3k9aSFb+xN5v;5cv-@e2kO6!
zSi9m+<;;kE<ZJY8*WFVoi8Ck8^vE&dIm~iqI^#3lpT~^9PGfY{`{4SGx83kzN4r`e
z)B4n9Dvq4z>=IXr9&1rs#Ifa!$m^{oYl?kbl1{l93VKdtS-AMhi{M&`*(-(Gmi&Iv
z!r%Al^!cR)S?m68Wovoz=EG7S)u<=A#;b*6+PHXI(hQgSNp2NkjI;3jy|nIf>`KEY
z?)NVL+up_9^JAk)=eeC(Zf<`Zcz9c9pW=FA>ygA2{8H9&`OB{#0wNn%DDKm~=H$M5
z*0g}R*}lf#)|-l)_}u5d!c2;>uU~O`7hiT-UEg_ysbZ!vzC6eC{}i14aDL8Ko;$sp
z(sV>qjW6(I{ocE&fnnO5?8$p4FTb|8L(lkH;HU0}#6KBcD{Z|JKCZm@X;Zb2)ML{)
zGwxi=yZir!wY5uWpSbE5_dUpG-O?jd7V&mXINmwO?e6h!3^zY;%}bK2)GfQbl}{nQ
zNLcd4rkd=f;Z0u+AGU^GSRH+3rah~X&YrUt@{iBthWyLUH?h7qV@jddyre%tH7vJF
zS*P=tomsQ%<2v)KAf?YAd!!OK=I+0A==WZo$BiPDEbi~0ZBETqYD>P(BID+C;m&TG
zN-37!i2r4)8ww|TRb>fSm`|OP5+gcCcuNcSRp~7rvb9}XA9+8m{<7fabRR~klWF4B
zQrya%4}|Ty#P;pJ{wDF6<d3*rvsWi2&zdDOd3UH-)R%<m0e4?m8RUv?4)$3UF0|ms
zQuDoEnesEwD5Z;3r2AZ7Y1_K4H&UT=ajyBbMhSjajp*n@DS79zm6jb`oDjA`;Ln=?
zlcX=R!nC8jHG<MMipOT#uVp(wIdI|ntBwm6HQ1ZqE=x9FIKQgA%W3^2JNK-@zHNWg
zYMOVfk6rD0>GKiG{XQ%C*cSU}9A*;TcF$MjN!v6Ilk9XO9=j)NggHAj-o`S<PfH3s
zVzuOElzWrKLbK<86BbBp5>syvFv?V!=cK;bCwx<KdFq_4zm(6aakFGex@Av`tX^Nv
zn8celv;5)K)wg$rO%O8X?(8fyI?Zy&Y`yF2HKET80#?)+oi^E0Q26H<1G}2rxu{P$
zYg<$_KmQ1*Th*enY;(!=WrsFD`WINcDl0*UtxdyE?aYic{o9+qm@m8OeNp*(h+^Q1
zpl_*PGS_CZJ^y{E;C;$0+2EH)mkPXF#l|{MX!o)ko7HX`Zj6dMX1;9Z)D=4fvw~+X
zTVs@cOyS%$6YEFYJ_mJXZ9VAHk}9KqWrf+-O}7^~^<=(lkuzeSWnz3>vv1Gi$W}4y
zO$PTT{5*A|aF#;cj;X0UcK75r$IRs9>`k1x%4*%NfPJy+gCjlVZq7_m=(~Szmz%=Q
z*<Gd|3r^<zeWl{~Iix~7H|C^Q!8DFTZm-SPtqV^4CwJqwL0<I4py*P~yBa$)BKBnO
zu(`3hk$?7n@zptRbOJLTSgl;=>wYh_=`#DRHBN`0^&S0kQY$#J<m`sx?Wd;l-#i_(
zvT|yC+Pv0PD{Do{<zCKwr`LCDq0rL(BCnH6GkOjvY_@$VEx+Grds*0z-8+j`>{*a8
zYwwAuKj+TyS89DZ)v{&c)%|W?uV$PTchK4z>oGSc+p_*@WABVTaUrE^_p#iUWPSE7
z^>ftkzV|&v7gp_iHpzKHp6})zP0}+Dccd<37mQgia&gT~SKmUrWqVGa;WN<6JJ}z;
zWz*|dmkvlj+&XdIyrofb&n{LM7=|sr5NW2blUBRd>4a8koRR-cZ_#^BJMQE^ReJw!
z(j6z0d;T8P&nH^?zGQg&Ga&Bq!!rxpUdI(q<g=X`Iwvc=ds(W}g_HjtK3>2u>(*nB
z?+O9})^Sm5^ky!REAq@gd}AKR=~+Rdyni#BE+@Iq^b+cMkQRS*O?$@0Yf<yLe7MTC
zK3}%H{`1bpN}JnjYgPGIn;6Rn%wKV)tjkrxy!GswQ{l&TpL`JgAFVZaeV&5=L;SV#
zdpGy4nPje2`-!ikH+9+BPW7AT+F4e;2>&-#CE>%dE&o1hu{O>0J?i^a>1I#t3vbyU
zYWbf|Px*VQW1h;D(g$rT?-=jp@0na`c`drppQCm0y;G}XD;mzt<@9xnb$ZYIX;J0g
zo>z*-4h567f{LXbpS_GKoO9OiRi^K`uEI$>a&^wyT6<cwmv3JZzQs={Sn2z-t#6+E
z{dVZGlC|#*>m7a<Ds>LlX17bmd@@@v*Z*-&g>=W{nRUYNr){{HXyp*y-?hFcVa@bU
zlfIws^Git&iO4><knNV=xvSTdBmb^BH~q_}wDx72PjfQ(n6Ef|_4lMr-%N76jX5+D
z>K3oNer^lD#e%1|pK=*CZaCUJF;e_cIRAr{E7jEc`#*$zK0CX|^Ii*YS;_fVufDc?
zOw_tRbK>oc36UjpD)rsPy(_e;oZQ}CU!QDp(_*hjva!W>zmsPo=Lj7sQTF{dZK3uS
zc9HYyf-b9!J|**+oLL|{Jv+bnpWuV4E9Euc_8iIC^6F%Ub=}run!ZbIy*@2C@Hjf^
zR&c{*lhhf~zq;SwyH&HA%a{3oNbtGarEL3B4=wWze_b@^%;{!n?>2?0E5DwcX1ko#
z)BWAn2^(xy>SUfuvnVMqvR;tJt`oGOBU1ED@c-M^-Tkjp%s6Md{NQ-VrgGX{q3c*m
zh3c-ddzIXQ)^BW_z4)y16Fd5?^9wE9Yo9A6_5W`AJ?%;Q(=V?#D6X0H-RHXh?Ii*1
zbAQh1uKbx$Gw<de%g3i5)_pkYD&TN3GW}k`=Solh=l8d>hTFe8{rt$8TITHEF7a~$
zl0UBbS+%e2PNL1jreo?6Np9ZqU*`%Rl>IhWYlqyrM6DZ@SIW;7mY>Kr&UleAIsL=0
z!26O<N^X=pwaFRXVtHuu%6hqumC~)4YoAuUpJV$zV7^c0(Y|Ze;+t$^-cLFAI=1%t
zlhXIExU>1<mN)F1+!%lH`uZ<-4@St9)wMRKCp@gS(A`uQ&?Nr&mgd!_Wxv{w-=4qm
zw6VhH*lpRrKRw*=`Omp$0iPbSEbmZ$`*KpHOxN9|Vds3$XvZDbmj9k~|9uAU`E2j+
zYpo}&?%133?R~K8KTo+c?D-4c9``#pBkD_r=+|FgwD$dVzs<M)%F#dj1eUKCJ9?+}
z>A!!0fj*7%kKU6zR8;@(wEn-}%jN$o{lD;tN%7rvrrk3NY%=TCK9W=wu2k1>dBFYi
zqNru!3i)_Wt6K>fe|c|6t2`H#kL&;H{{C~5TT8o(Wy0)hCyp=C6}7xHE3j?T68_uW
zApwsZ3uMxB<<ss)KfW&i-|vEI=N5;&^Z*0l_L#gGv3h&6O0PT%zmR9o@b=wWwke6<
zI?qap|5z?(U_bGz^UKru>~r)kns1mPGUwmCBmeH*RQBL=nb$Mb#%~8>9K+8C%rzgD
z^S_%{cj}k0+X43aue0m_ofhB!^YMK9+JA@T|9^V!x+(9e0`JtHEpy++O6@<eC0}8U
zqjyDLykp}cOCQDN6-~4Do(t6|H!q)aE$^4`<x|SV*S2RDm1ew9zAUs=Z}&Hc>3@2S
ze-?c_sKt7Jq1p+Zj*ZSse(zzP==1tRVcL{N3I5xYpGe*oIJt#?^SiYlU40KMZN9JW
zD{x1!ras+t0S|YD?LtnY_a6Iqs(IWG<G*oL{FzyqZCmEw?BB-m2c*xiu^aEun=YXq
zFL3V%YqOehe8H-d&+>0vObPb$HP*~N_u!6-Y2w=@*}sD)d-*ZHms+zg{vKn?@ySt7
zGu3T_=Y3uh{dDHMu(|b*qZ~uii+N@DSzo<rliV1sboaSzM@m$Czwu(8BNcb_KCI=P
z=(BrnX?d^yDnC8j>AkPMu&*l4H(kK<y1;IsRrHC|`Tt8pmdEZ5om=+z_^RT6P4A;i
zqx3eex?FQ`<*PaSABL3P@?86B%j9`0&t+aJzPeMN|M8OaRmJnZ++J~Rf8p8>N8kPY
zTo+dtlpVM4SH-gznX9i#e~<oTrM2O<$>vY7Et)gtyf@tWck#EYKjqpC_x&<>c}{5m
z!-K^YI#P#<pPwr=eEjp|nvY+eXkI-lvBe{BUCX}gxtY`AJ8u*k`Y%7X^=Ic(;fph7
zPRw3-uY9e6Zo7cp(G%g4*Yj`9x7sIk_G#zivqA;8180;4Ez|N5*k<OtYn#2frr|lB
zoX;=k-VdI!dy~PrOqVA!HM5_-U6V3X>!WMwPxG~W-}+zVhfKS6eCzjx#~zw-o1Xo)
z`HVvHw<h<ut9RS-B=7m0cxkR`-QmqYSLi%0b}wG7^S1J3K;*ghrSBsnXFZKh&74-h
zMrZlc`unFY6?KG8OZ&V0RMD@N;?zv_t*0*eRV~wb?&&}E={lXB;&~dUD^KMw*7?8e
z>cM{t|MZ@^RJFCu>e^A5rOcvo+waT1DV%Xte*5Hix*w(I9dl2eInTN$IyKYZqy1Eo
zom}ntQ<rq^Yk6<}lbmX)`~P>?v}w+3HkrJ(51n>deU7%b^~%s`WtWUoE&Z!j>6E7?
z&iU*Tc`mq4Iu+#81v>Ws?DJkS^?^3RLU&+7x5R>XW`eeG8k(3J8iM3O923yaRS<*F
z#!d?hluezcJ-c}i7;v~$FWVvb!=mAPXVApIw*{j0c2r*yer|c-gdM;8izB)z&JUMW
zcv>#B3p9z!x7y}Wynj!MvAF18<2$vjZ=W@!n0P)>y!f=}X{2VA-Sk`1bs$%vy4nP^
zm6jOy85tX)Ixx_>h}DqebuCw{g7LHb`RT^%z24n-+b}sTk&%=0x$TXPBhw`=$v*AM
zkDQw(S*PB;=SQUGoIT=!jUlcPif<o8p37=GSgaiUph(T`^cnTbNynL1by}S3o0De1
zVc7dR!%{YF7Q3zDb#~>vHzub;c{2A#ue$y{>R+(y&l9_5KfR_oJ8EV0mmb^B)8}5V
z)P2jnxbM+2g-Z{U+rKNsADMI1RsGW0I^(AsCYi7-XZ@gTIOWyNho*;)obO@rzj^s(
z?Uc6bb{V_&mFvGaakj<hsn{uxqm!o|n_(ETU+}ET*T41`Hrv(DG6-?U5@4WRyu<{U
zxg|<?`JUa)dq9DQ<-$Bo8>R>U?E+VAsF#*ja!R&;>1TD2PxQ{C4H6mUJEA@=4V+Q?
zYNpVnfMQ#h2xC>NmL>7OP8%GaapT0c_uIqXiQki!k;LLGVmA<*o1i$$*wj4KAYj85
z2BBqb&$ynsP2<vRi*c~)n0lI3_%!3@Gd^b;bez3Yrgd&qoRFH7*mlIoY-7VIr3f|$
zsT^OvGhbxZnJ_RHN=(Ldktt}KG%*2Xf*Mf9n@pfCYMX||MLZ2A5t)2Gu6*HA3`<>j
zo?x*Uv_+a2i!IPnbnih?216Fs_bZ(^6+OOe&iB9cztr<ht08~9>%!)>8dmB)Mim>5
z&e<Y;tF*3zv$<u*94@hoMiQ@g{J2!yoqv9}V#JhZEkEZ!eEXMSj=SV8EG`4>swc)}
zrf5N8Y8noWq-Aa>k(8Q|$(Q!DAyVv^1Dl8BoJ58t2WJ&0R2A*G#IW+AKok}yfcE7R
z;{*$HlyqX-w_EUl0f%$-vILgToNcv5E9d;Z-C&=2!P&}h2d5d&`HOE4ooh6AeCMja
zK`+07OR-x;^5?g6M;C?7Ji30F>#G(M&pGCSFZ{Z_o-;rG!dGFpt5miMi}OH72oU2u
zb5j)Onf7i3Igc6Sywi-r-%c()^m{w!kBlYaGAEuqJ2-Ds$p+u&>|dTQ@%`)+IAN8+
zg_5+|!i*<;VSM6o8D8tVUYvJ)&pz{&_$(|=0v%mIjFXHE(b7|ZB_FdP$D6-hKOIz>
za}D0#)QJ6ezm0KegkjXPLv^yk$3IMBjc2;wwY^7FI<4z{#H!XSd^xf!^yaLtXp1>`
zk$Yq3T(LQ)&CENmh^BbBWTr&ty%6d$b6x)Ay>GF%`O|MpJTK=)NzSN}EGlCWbUvBD
znYByIH)4ye=>On(R$bp~kMn7l+<AC;viw)u!|8VI-g}RJTXD0~WtaYm372PibNZUx
zytw{^$T=IcB@@mmI0nTuWv5Pf`*QkXW+4N^?K%!+;fv;|W*)!v-+11~pNx#RgI8h+
z9Ac|CLo?I}bM3blVpimFuJ&7~+)#g@(rj|q-g@cN)}B&2J*xJLw5`6KI-Hz*>R9%c
zjp~QQ-UV6lE??QRzH51U?1IyYM#1?pXJZmpZ8(wVxAB)m&B9M_p0%tGohNZ<x(_F>
z!Bp#=?O%Td&Y4!DvYWf<)s)^-hYZ{=eRuHjoxQxZ@lU^gWtL;W%xAsX)26y-iw2vd
z&(MnIZu;7|z-s9)=F9(mmhZK{^ToCSi*JdpER9fekLv{QK4wJ$=kIe4xi9!vFt2aZ
zt2_19dR7;6HmGV`H{QuCT>bHc&y>79DLbssh|Yf~X;A#bYevoypBH{H%2U>fJPeu7
z(RcdZo|g+ct6k15p2r$_^&D>&WBR0LO>dj@p7)5FpF6qM?djPsi?0jp%Pg0_UfKT5
z<MF-2A^Xl*UOl(FizAae^6Hj-6LLgO@@3m=`QAQvT43XY9I3DuGWR%khnK5+OVsWE
zWS}Z+&wuw<U`?#~;@2YS>fvhH=PO@$zKs8RYBB%OLd_TA8{eK$`5wPKc+$$?>h$-S
zf0yq#{+oY7UYI48up+jeG&V+S`2=}Sigx6<y+8N`)4HsGXDjE-y87hbZH_l<7Bq?p
zO%Ss<am1S^u(#-_d}Y%|tH%AWpJx8CyVrW9X}Qwh16wnt-yff48o0qEN%M@|x4#;S
z$Acf=7kIJLLpUwPs7OJw<M&p(`fIa&EdQ`A$t?b*;aMf1d*iNDSxw{w$4ir?roDO6
zUaGrc7l-c*>1-uQ%dJMH=a0{OXf#hk+3~85g6I4l{-Qk|#&Xu_x|I_iR;&`&uiM*u
z-Kc-%^iWo#ZJf^%tY>mA*H9AJzd&VY=kAPG8hvTUX5DUWo22ypuI-#TUv}-E<H8!p
z`B3MYP@iPgDI;}jUatjNPg!Op?)}zUILpjyNATshu^ZRlPghI4^K8TBAS2#$g$4Sv
z&j_ki-!)7WmTRB!{heUXkv%_Sa|B~{p4q8(x&N=mEf0B->(66+XRg(FD8K4Sr|9(`
z|Nq=Of8KtAdF@6lQA2E7!2-1!vh79G0m*gO>~@Bn`<I&||D4U1MLn@Wdi6R+{&ReF
zE!XzFRMwnz#eGAEo{?+iyR{m#ua$<JQi(Zr=jY@@1y>%(?Am|zR^hHA7o)%byWA-|
z6Vria#5Ns_4NzM%wv((U9X8-`uAbW@exm2c<R_m~)Te&`_twtnWLSe|CxeE5>C8>b
zY!oupIR9UK_%O-(Y59$LXU`ni>Y^`vTJ!uu?IU+we{P!DyK9rx(N%{H=0<;6F{iuD
zck-;~THcb|x#u0;+WCB1?Gb)+lNIcxz21j-?_SM_<T_hW`rmr5`^|Dw8}Zp8udayq
ziwBB6`>E)^sQsnaqZ%6x#h7XXH!-0n!51C+Hpi^}6zBAfZ@bi{LylRV&o`^v+$gQ`
z*UJ+>E5M(!GvtR~;G4G>jQ73q;<Odo_AugIt@W&pFQsN%ys3NdcI{Npx(vm-6XEKw
zRTJ(6tGNoL_-%{G>%Kbg-9n9J#cjos3a@T<wFNy(3SV8%W1X*~e^ckglr!8$Zp(e=
zSyY^;>z(zba_aMnzl=Gbi><K)Jh4qDBV)7zF3_`xMUiLsckM5YD-UUZnCEwP<>&v|
zI>w%UVhP!XnT?IQ6`hLL4xDM!-&y1P!lcIB==KMzn{oyIJM`{MKi!mmXxf4Bkm==n
z^<!^()Rwoes!L0$-t2L9!qll&U!6?UZYT=cDjS^)(<yFVqPaHc={}9<2EA8PxA|H3
zPFkQW@-Tmj^23*+US+;HQme06Em+8LdYfK{)l8K|Wr>AZAEzlQ%`Z(hJ^rKHPpRzq
z<9}-mUI(g7x|Gg-w@_`d@3dHE%bk_0HiT(ecG$&TJl686WL0DGp6lDb2xmUn`7Qn-
zyIt-7eu-Z@@7W)F7o&tF)QD}?85tX(wps!`^9~#E?0GHvxsl<K-u~l`{%`-Um%YT9
zkdWa$=d7T#v|vT&!Sjw!jzwSVne}7#$=Hv(ZA9fbw>PN=vc$Dj-{jQGmze(7;!Mql
zxG2lXQvOB?;y1s1a5<4M-QmT7H&Ry;XJ@MaYHK;)=V2-x=@;*P!F#oUhX2jF<=kFd
z*1kIbcC+4=x7q#{H{Y&QpX#qLFM1Qx^xkkEv1G|FE>HE2esNs2xpiL4r$se<n|`iP
z6pCFmr%|1aeX)b}hUeSncZRnvC@r18t#_f6rmX*eGZRx!r6<Cwb8cSR5&h%eyz0My
zn3shF&&Lv6#5O^V&}varf9p-miaf6^TlFSL_T(m<-#jx!|9k%Yluf)s|2#f@adB6R
zdv=0j&CQS7#3VZ;e~1NtTyOjKaLX&(9qk-XA34oPRGDM?ddKYLkB{z;eQJE|;BMZ1
zNz=qxwi!(RI`!zx(`5%Eq|^)jHc2O6cgabPef?78nxKycv*O&h2C64yL^W$SE$*?j
z@_W+xJZaTYz5VYKYY#3nTy#h#oYntAO29PR_i77d#lPIY+I!#Aq&tquXktR*T$N|%
zBK>|`&2~Q?*sWx!zC`kgk>I5{>yo$@avrs^=F$>no&Ku$)Lpy(8L`p6Si*|f_OOu&
zTKg(scdxS{&ud#&agKz)I@R;aJ*M8?Z|mh&(5e_^KPgIRM#lkfo{dxTAGy0Z+H&s~
zZ+&EZ<h*#R<GGe44s*Ur3e2o%yXBVmqO9QDp2NmHmQ3PDqY9Q?p7|~2#*;bh>H_C-
zr+n;j+T|G{S{O3F(C6c-P3L>BH!j_pv-$GGH;TP2-kz#z)9Zq@{%_HY)_QTvRd|EP
zlg7!uCJ%M&ohK!oSuiE=yTR7JFNK>Xx|d!!d2^1X?#!F-mcR9>;g3+88TeFl?sFqM
z^_8Dv{A%BAmc967(bCZ0bN=3&IPH_t*4qoOz6@6loY{MI`Gg%d|9j?t{Kwq4AQF5w
z8S3DM8L>@wV@uSgyKRtn9;+e8?em&D9F~6YEt<FT-n+Z?(X-Eltm4vV-ex#uI?qZ~
z`&W}XjD7097R5da{IoYGEB%?`J3X^yKO&0aceULpx;QIoqrc2a{S#Y4A{K_-UF`g^
zRYRDcLH9u;>%)CA|38YaICy<SYtiBA6s82PD|rsboG(gxL^=v4{+=lMVoAXIoQLl<
z6vD5pX<b;7)WJKAL37_~-p&~-ZZ2qVnL25e?4^%AOFl#&jO|Peh>pI^QjvB+;O4!F
zy@JMXFG?0h3TE5ezFZt=v^7wY-#5MH<6Wbm&lg2sEV*>z?kVT=^G@msD$hJ;JTFjw
zIPbP2x8aw<_0#-wzR%DMoA`m%`V=Gc-oN)I^`5VOpwkm``;CwKhl`oZWrWx6lS}&B
zY@g#jJLb4{yQ|2GJsKQ!*BylmYa)(*Pg(3zzJ>9cvhdXmRRJEML+9Qae5yEBdGns=
zmS<mFG8VhYUFj3F)!20O=^W7w%m1u7yHREyzgl(vmi{Sc&a7w=y;4@SV%zy-*(>Gq
ze*gNzsK>An%P5B#(cKMWW0aECx8G6dumK12`?}V74I3Fh&nv0&`d6<z!R#ID+n$Dr
zZ3Y}RNj$F&RQFW<ei*vMyTGjPr>dl@4M!ID9q|xW_vEg*KW^Mz_-5&&mm<F1uLX-Q
zZ&^}e9;lVOckYQF2WscvlMmgdGPg-C`c;eGMU_vkOvN`s49>qg=I!0T{O!$q@@aO)
z*Rf=7qPr6&sI{$c;O<-(L!Q_7MPeQ>yw0wi#~l>=E#LVh$Am))3-vXZtBQR)=FRhv
zJ(_>tlZm0u^>X%xZ;W+pPd>R~|7_>U5RrYNt7gv#5KnseH-lx5Sc$%p_9^!J{i!^~
z=e|E!EHFJm%_Lz>zNeb_)jh^3hdLMb9d?`@B2n%uqO(r)tnrDrVdk5xHY?;*s0u$i
z#^AzoQ+&eNgvC7@r%pIpB)5WV5^Ge#^_S9t-A&q4u5p$ux^`sOnFp(%e=9S0*8lWi
z#jc84p4Z+R4!u}fty8nkN&d_iAM0{Y<-H%42@9t2vj)waJ8`O&ZBp%ahyU|awSW9R
zdH(ZXZc&XGEiB<jY!|~4wc7RVbrd?Fz`^`}kCK0Y%Z2|XRhRz9ufD>!_kbT$r<iNg
z7t<_ngLgZOM6&}lXH1!XAk-j+`_{Wfr~Vmv`pj*+T)mySdDF+j=1ZQxzZF(7to~cY
zc9;K>j8X&^7ZTgjHbpIejLnQg3<3-`h8P%`1sa%{FeM4Mia6^n;DC+GIjkz$vEWp3
z!Ya^6&r43;1DJN36WfS3L+yVV8*L9T2-sl4DAXpV#`P?X4Ll;aZ)N9BCp~cwo+GCi
zH}f=XQJvG&5$$B+IHf5<U}>6Knt-PTv(j`nhLc-FpJH(fvF%E<S`4dOrU``UiTmiV
zpJBQ<t$<5u9vj2_TAr;~EG4>GW{OsKPV}C{tia*&eO{At!=EQMGiQYs{eNpR!^f;_
z`ij3TUdqdabe@Y;8vH%+>1@ijms@34&+TREQW81yMC(gL<JGyEkIrm$+4^;(QPG{3
zvdxcppRbz}vS~-)F{@Qpq87`ZpZc}x-Jcygr}ing8?okGv*a@?c)BgIM|knsu=4ib
zE)$kdUb*;D*@T=Q&6AJqJ9Slbho9N+SE>^1O?3-7eLndvC~b3i{7kc|i1XXW!rh-8
zHf-O+xg>|<$q9iTKF8gD>*@<%|GD?y>hRp>w|K()%0F8BWbb~gZ+Nn6XM^iIkt?5V
z#n-;(k$r!1W^&QxTIc668&2PKTz3AC{Oj-h0bOYwSi%vxz2@WuJ_1wM(7?!0LD$60
zSi#WT(nP_~$k-Tk^d-KdD~-*$^n**2O29{oy5$$;DnO6Igq`YXXU7GtzbocEHZm~?
zHZU^{J@M4Y+>B{+(E%OhVr2zxmF@(`l*<f^@myS3TuN+f$=C?BL@*89U3k=h=d~%T
z_=mYarkeB@uRnErKd*zeXrdI0!>T<gUOQu6O$yy~=!tv#D-qwHb_vV=@O_=|_=Vg}
z#a+SIrd3ODoIYZ+v@gPUTJ;XrMtvUN&Yi8FzjM6MW?O6^+_>xLeS3$^Dh8PaAA%=j
zuZ>FT<g?Kci`cAvX04QF$cfMzYqOo~tVM;JFD#dtC9?fa(}&cK6!)x+>rba@e%k$&
zQ=&!mS%<$!XY2DuzBHwe>dZ;i-)<&_hwHBrl)UEI&K|^aDJM_Jz{GXat7hpN;m1ww
z{oQXKJn6W<>);PFi<$bKmGP_#1^UJR@twbUV&f!d6_HQ1TMu+7=QIc|^na@?kg8zf
z`u*L^AUn0tuJ;UXiZZpU!j1NbPrRAccJ{wy>`g5$w$MoV`ECVj&7KyYQx<bw4%&Ko
z|L;4GKeHz%S78|_Gbgs;Wn_rffe+X%=xoUG+Lo33$+?=h=I2i@J^e3NWzG^OGbf=b
zvwTiYX}3BxX^p18tetmK`=0ivc`0V9TCVz&H>iHU!1b}V^O?x^yH}@eb~c%wVOhs*
zthGv7_OiFxtO70JT?_6UHvYw%Tf!XHF1ImS;lh%H>)RBHj`K_K9GofKt;FNy%l3b5
z(f6P`?`>uB7j;Z2`LOQi(=Vsb>+bQh?Q_|+_h(mj;W8^Omjbt}PhBO6M>m~tUUHSi
z)RsAWE5o{bRX@!$+)E@I-UxR-Hd!j;{QugH<FA?9yMn%8NvFg%V=PdUsVjU^FoC5`
zEp5KW)XnwM3SM^#{C8FFuo5x~zL(h6&N7cjr!Dv++swrYraRn%dgs1bydf{XwDDP0
z@anJM*|q%3$_j1Io|eSsE}|PG#%8F^s{rpj7e$`i#a%HEJXI7K&pBTWeg5zE#={|R
zwb~@=J@{X43YB{uoK)KR=F?K&>8Fe;MOQrazx_Xuhbiy>g%gfjw)f0UdM0%3=phxG
zrzXnM>eqGT`>p+@(^`)m>3uv`PcmV?7^7+Q)U%D2xmM;5yCz6&U$yyON&t`2E2p#U
zllA5-zc{_aa^8vruX44m6QpD8t}bLQjM~e!Gr4<m{t=nTg$EKZ_!M4?XS}xJ<fh0I
z3Z89>=V}*MPvPoaajH^V^br5#g@Rw(t}bAky0dlB%BPe5$lhWyVBOYJ`jW@1aTUYC
z`&!Fu_cN;W#s*`FOk!IhhG?xgTmPNB%#bdc#epiF=+7||UTvzEKIIm~q2%y!VygRb
zu9zgI$$geW`kD4WGNl?L*i7BOv~(p#Jjk2G#NVvr6+TZlj%VU6r&y04*97jZ^+{P|
zvtH1;KwW$>yIqKMq+FGQwTo!vI?uxqSHohn=5An;*>vtusqL9nEKe`0XKTs_ggEUj
z`9Ht<)^BcxeErv0{6=j1#Sm>0&$Qp04>Y|0-Lh5RAgHdTKyKB#W#8|cB}Q>_a^KcJ
zDAqi&$J;02&5Y!Ssv-Vs?NpTecX?V0tPC(`@z3z#G0wT9`r%Z`eWQ8Nd*+0_YVz}V
z@^X!t)S{lWxWgBN&vDKEclwS>R;t@fW~0|3+l4o6N??7)y4B{p@w*i<FIw8?p4#xj
z&v4P5G&iZb|F^&VW2!bXNXGP?1+gt8G|w5EZ3!?4FfcJ-pXAo&Fl}O|Q<tK+2g8vw
zPn$TOHAJ#GNG-BpU#Hft&C77?1+N+wi-~Ox8JeOt{9PyP1Qm}i#i5RzLK`?<Z9IOl
z{QpYvpI%$?8Fbs%s|K%<S65ng=X%B$gG#>nzN%q5H`KOGmMW4KbM!KtQQ>E}dhzy!
zGuyAc-mzlUj?%QLmorbFI$HlZBiwkh?IF`w>K}Yx{FraEW#x<L1?#z|)H-annClr}
zSi3%{aq*n8dZjrM59}n}XKE@JCgpLx`7X(jwl93gvB#`;8O<xP_>$Q6moeJX0^K0X
zJ{3cr(|@_@5*S{8`Z!O{=gRN@C7z+ItgCWP+dL^c?4nwyGvRh%_M_`=X$ua0SikyA
z>wAyeC#*WMPq@aMoOUSPMdyj(5t}1T?{EK*l>52n%*oB{$MkQ0mkfKelJm6Fv2Non
zhqd|+Yn|Ab@LFkAbw%)!!z)#8JnsH)ceGf%No=2T#sU4G&sQr~>|5e`%Qo%ymT3NI
zneJ0XrZvCKJa_tu_iLT-<BxwT+`K1h?UWVXu*jhNSfyT{QEsYBc4B(-l4D1|J-gAr
zlqL4XvD76NOh0F89b)#HbtY$#!oL$Q6_*<cEL-=|OMQEwX!)y?F`IYpnd@m3{oS?e
ztjM|7hh}~)pJBB6taary;iZ1AKP0QSvGC4){OV@*%vQJUmIt*}Ys|{3iaza~70G{c
zrH6;;<y~BUi%*Dn-<bAeR@bacS5AMpKmEI8{eMQ|M>ULCA_ciIhp)AU-YYOR3pNPY
zV8A4_Y*`!16f|U=fX<ml9cAtb(`59VxswfYlX8|Mq$RPXL@F36?7GBI^h0PO7Pk=H
zTr)(?2BtyYMb3txDWZbLb2IkW&MVoJ^=|*#7Ip0nx(-fy`jMBs>#nHYUV8XRxcqn3
zjZSv`Z)cqeI{IB~v&ebf_3q~dx9f7T1Pa^!Fj5y)x^n)?3#*F6>2}QP1^hI{D%dA8
zu&sX>Uopk6`GB>w(LKS*6Qu-H4$kuK_Vt)z>-k6f>DMJwO-kz2w2OaM7p)Y@T6~g2
zR3T#L4fZA4nsO?_ww)fEiuRg^b=;c}KIwS6s+y$0UA2wATMj(FGj&VL%o$Fs&mtPG
zmTcbjOU5VS@rIU<T8Uy;n|<e*u53x$(wCfaxZ?XEpU&2{!$JYGYo~Iqn%;l;4yW=m
zci*zNhc-o<y;pQu{L@%x%E99rDva%Z$tqlzHZ%w}TJGJ@wf7mfrPzUv)VZ^CcycpT
zcUSeb9=I@P^U}m)*XLdT{Eyu=x_U8|SRl5oh879nQn2B$h_fDp)D)&SSPUk%m1AgZ
zh|-#H?LW=SqR8X?KIEa$CrP`N?N{gB__zMG!7N9oAC5}a9}PIxeEwv1;pm5piw>Lr
zGrPJvd8&^5uBxCg{+AQl_k0o!$TSE%(i-U_>zsIQ#;Ft2jJ8WZ+~(W7CTD8M+U7DF
zHvVnPQ&)4;t;|h)rSp;JP-xta<Gl70yw{fR4c%Ao6l^dZi(iOs8DY+5TCTh6zyn?;
z)lhbJ&U4n4b?@%CO^N4n-V)X|t50ld=Fe2cP~FLT``>!zc1nNxev+$Gcv86Pt))B@
z1Af}HhU`y2y=ULGIf4q_Q@JKjo^)K5`ybErdwMd@le6vnmCJ3b5<+`ggcwhY2rtf#
zwAy`mR_`C1WsLTZ1dG;1Y?nzE_2AuAcuVxX^XJMFQVMA^rgd?}hINY7IeuK=zP9#z
zL`a0f#kVq^1wFk16C27JZ+Y-oZWi0ULjPCflo^~QZ@ZP=Ejl3Nd1g*htko}myAquh
z`^_GoUf<{S%R@Wc=T`Y*&&)GQlh;jm%{R}lwcX+HS?^SR+*t+3;A<M0H5XRRP1cwt
znc7+|GmFRMxJ>&QVVibip($T#HR|HM)plu2wCCepSRXI9xMvPqK4bC4`P;gf#XsIm
zTrZQ*dg<t_C$$b*!c_^s{$Kx5`R@<2%(jLQEKx&j`^(4#b)Z8x&~g&9Bgg6IqE$}C
zm)~zZJ@Nbhmt3b9o7<cftaJ+lj`<5r)4uoVMCg`>?`KLJEI+vL{;5)FF-rkak4q9E
zzAIw)$n9k>lSyOxyu?(eS@JcreKMDMRbhqCv72v8B~4kXuV?$G1sG|I7oI%A8eDqg
z#LUC~%X+xq#+>Ipu~YC`s>G7nQ;+quDEle~c`SUTw$j*f0?Xpnfs1=(j@G?Atvoj|
zR5^?1cZ~P#>&3$7q)e>ER@+!Ebq}9&`s7h=ZT7!=&K__Lky>pdAXKpbw)5XPZ=RUn
zyR>uj(Jw#ZiZ|^s5RLfwY^(GH->pB)^&kDPef;|8ALbQHqs6cUAkmFHbJTq5JHeOF
zNl~Er`<zAM1`9tk_kYfadHHvH*@vHxn!b1|Ixj!WEbIQr&Asj1i;4{=4f*zP8>z+h
zexBd+TBVQkm1yq4U0bZ*oz*c^*AZ4u$ewa%w!6rWhcmbxo8EjnEH2@)Bzs1_>HN~k
zb#=Qh$6i@l`u(yp*PIi50X)(LtT!&(^4$?S_kNbz{t!*c*%njyL&PU;y2;tPVrkO!
z;LwboM`5<_yW`&eWIXuI`ZuPZEs1UV85yE>!At{A^Ew-H>`vzrTOq>Km@+SHZ|VQ+
z+zZx;g8!W&PE6sbTzT@G=1XroD<A%Cdiysjajz{^eRFD-!aVKw3ukWHc=5)ggaRqG
zxCSxvgcq5;Ql=#jo0jQKb!t4S`e9~GY4wYJ{*o10Xe)Yb=1=freDuHW@H^cn3nzU(
zHBb7d^qjXJtT*R9RL?3?x>zJ?bY-*2aS0A#S2>$X*JTBdHeV~hY9e$cjoWV;<2pb4
z9zKQyrMSq3H|tz1y)X4Gou9ww_;-E>hTtujL1ThkD?23?r@DczbJ2H6%}NX_4NlA}
zR?v6ONGt-~<Wj6)0;)WMxb$7~lJmhAwb<Bj>APg6rKN(dQAq{e!eVTspkG{&n4GF$
zVxXW8zF#FLHLV27EXqvJC;=IxpHW$mk(#HVUyxdqnV+IyVxgd4m0Faqpr4<Y%B5dY
zp0A)^l2MeJs-T~iUs|M~pO#scs-Rz-S)rg`oLUCbnF=;bKQA*cRl&?uLEllq%v?d=
zS;5RwLElwD-%Y{XSV7;D%iL5!-&;Z7M?v3LLEle7-(NvLK*7RDK|cs|4UC1kf_}Jy
zrMZHBqJn;sf_}1seu{!V$W{eI15*Y4Oa(&&3kCfg1^rwuLqkIa{d@)e0tG`u69xSu
z1^r?L{SpQJQiWJ9=-3uKU_f`sxMda<mw*CK!9YPD6s&|s)AI95TvCgZi!uvJ@{1Hq
zKy9}mF0fAD#FC;+@MSc51_q$+gn@zqoE58}?~@3%$;i}HLEkSiHx+c<4J-<g2I4|0
z3sQ|?BXJ-%Dd>l1rj%q9E0}=V@8GLupevlg_QO`fITk0U=9MT|8d)mnJ0})+Kmy+Y
zWD7(_*T~ome1}bXv4XJ?#MMOj7u~4}`kp0;Iho0hdFeT+3I<&IzKIoJ2PzmEn;0qR
z2bZMghJnHp<Pk`yA_bX#1l(bW%ZtDs1NkFb!OXyb8kmb*bBqlw6if^Z6->+w6fBG_
z6wHjxxGYT#6wECQ6pYMG6^tznz}VCPA`en;Y-Xqcrj5-(>hWPNGh;Kbys@#l0tkcb
zfMHW(Lj^+vPykq%D41E8DVSMWD43fYD3}==DVUm@Dwu<?sgZ(_r74$@rKy6MshNVQ
zskwrMnX!VoiG_l>g}H*6fiZ*z$s3z0m>C)>m>U}@m|2)8SXx*rm{~x?Ks4Ah#^zig
z8srF&r$E@u&{)CD*i^yP6l6C@y{Uq+sS#Mr%-BT1$lL;qP0cOAw57R;0!ZA<(1;79
z4}?t&4HZm{3>82#xga@HOCtpfLkk5E4aP>M@PGgX3dnwNq=5p+zyK7WTp&A54J{yn
z0&*A(gHsyV76StXLjzC{frHHyo_4_T0kRH)xlAn$6hOMc;fr7x87i27jW99>Yc&PA
z$`BHrpkx4Y88S9DHs=EA24S#KCgz3;W`;)Kv;s;8U_p>92!s3tG6jS|e3(ff$C(-!
zaDl{O23VR|D!?!(A%Nlw8wQ89B`9Hn;scJs=>e1`U>KZMplJe>E|4+EU0}Yk5jbst
z(gz5G(u$dZDVLeCfdV)UfYJdPwzM#Uqzgkxx-f&%urvXqL4jgsY{CVm4UNEo1Y?8j
z2eXZ#=>|%J(gi41L3AvrA_SEQ;2I6Y0BzWCQ~>Ya2m;k2;GGgdpqj)4)Zz>RRVXH)
zrc;oDzNZ3swR;e#Vlf4k#zCO^#S~nCa_Rdjn1V}gP;Fxhs$GLXm5wR6>IBt2rl5{e
z5UBn!1$8sP)sQLFj&KE2upM0bi3(<*MoSQ=Rx*Ryk*r__wgXg0nL+JHRWO6v0V$Hf
ziy(p&^wSi;v*$rvkebsBY8ALLHG|p)t%J?LR)Xp}@FZdosJb(UTA8b04z`jDQqP)0
z?aEgGkNF3It7`>wsE-O1%%RpG>V0#tU0jfs0HpdihuR0N`oZIJL7@870%~b7sD3s8
zT}TJ1>Mg*2<pS6K7El*J+87qlP%TlgfVu(FXt02~1JsVN0J{KGO<RC1=7Kadz->b0
z`VM3XEG4)ZDu5eC$nqeIVe*cK3ZMkz?1-p}T;ccP=_e;DfSb<xjz%zLhOjypQyHi;
zoC>*T59AxD6^Qx^<S`6EkpG~9NNqLU+|0bvVo<{e9D1IH3Wng=Q_%M`G*B=C`2duB
z4Gk5HKvsd-MhZqC8-lp>Jq?W&jG%$#X=tKg1P(5cUQ-2QXkzp<G*d8!n+d9AKsW7y
z)L1AOgUtt-W2s;aHd8_0(@4P(6tEzxj0_ZvLGA{#4Hb-GRv8&77{jbGG6uC94HQ7m
zF)~pwfu;ygV+BL7=?eOuCJKfy!%Y<oVFsEh7{bgmS1<y*mP_B$Lcs`Tf~A5H)ZM-Y
z3WiYc`x+`3Lap{SQZRzL)Yn+S2y8BwzORXbG1LTKP&EbiEh26#L2|HoaLOzx4oEF>
z&d)8#&jYoVEEM#e^K<fxg2C-!=>3E4MTwPM`Yzym{sIz<a*H8J1f;H5!4RyYG&iqU
z!O+0cQb9kUC^aQB8Pptv^i1@z4&p&uJ(dOr3b304Euo%;Pr-t3U4*q$VRNvM#vjBk
z<oVdQ*Eg;ebrf)QtZGvHAFzS5?I4@ZlFwJ-7i$&w&drux`TTgz@5|rk%m4T=bAQ#d
z(|@iS$A6z$U;Aw4&#&d)4FB%mlw+`Q^loUH#=xq}$Q8vTvV}z>gEQcQ(1Hc34iri}
z%hP9wE7-!qv7?YS7GQU4@pf?reTyh2mOB=d`T)BHI74Y*Y;N6oo4Y|=MwgK(PlgJy
zMuMLQ$mT<L-m)Ix?wiKIXwFBSluE3h2gv5cci)&Eu)2FUG)S{kEq4;-=K-?WpuC##
zL(^hahXcLL)GUz*`+0zDp0Rr`L&d?1LJAL#QM(i-;O7Cd`OMuohCL55I0XtG)1c<T
z=jQ>kd4MXzC?=5svUy-CLr^PbU~C?s%CKn~!vNVlK$W4Rcf$bLjI%O4l>cUXSwCo`
z0=iBT+DimC?LnOmBTG|rkTi%5?&yISpnfTFJ&_=HC!8G-W9oH8pq;8<-^Ai<1#pKc
z2x&kX+%181jtO>4ZpE%nd0Bh!Vfxz8(B0+x&-C0fp44j7)8weoG>6$yVZxE7nprhl
z=ls%1Fz8gU+#oblL!+ak!f0BG?~**<^7q?UeVx=i$I^1A{PwW&fBV)w-dTBV-QKLw
zziHn;$nUGU?DTru(#fjx&%EAsc!~dU?F)suvdeRRF4=0v<NW2m{Bgs%Tdw(CHfdXZ
z*x*e;uJb=GpP#L=yW+OkTlBUYM%P;W%aD3^sX6KO&aGe4q@#au{rU6m_w%=f6<+77
z-)_=*x#aQNn}#oUT#mY~d)LtNx&E!mmoue~XKZ@&>2}WAy?gfi*E`DYpW8Qk^W)NY
zGrsK2_&!~A@AAiv*{^SX-Z@RG?T4<xwl5Q}MP(n)^swi$w!41p&$Bl>=3DEndB6C>
zj??{@6X)kQuia{CpE3XZ*4llJy+1YorysS?u)RNj*F340#(Uo{@S1!rYL@xht+t<*
zZMDg-+Q(h;#MiKP``Ntj=~`!J+kUOt^8VAJz30Da^zSX%n_b2CDR740H=B+tziV#q
z*+1W$fq_A@m6?Iz%EAH$h6XDUJ_d$>_Ct&e46gz#7#JL6x!4&PRyaRoU|=ZKkYQk0
zz(;Sz65DgDuU}_iVE9lbbME!5ylXaH&;Cs5JDGPZ(L;TC=B<ZQ_+<B=wR`_of6L?W
z&9~2gnqB-S{Mz&DKMfD3zkGD`Tc%ZI-9Ph}Pj-j@H=DcV+AWd&Ec(~vmrRboumAGN
z?(>hV*PgAH^N*_D_;+<*=qvH<(@Q?R`e!$H&h#Ipal7Va9{*!ma6<lK_)ks$zT+jA
z7QUZZcJt|P=k`AT^O-&J+holhZomHRe7=9Of7QIq+u|RWY~5BX=Wk_q{n?M=x8dc*
zRy&`Z-*W9M-`gGb+IQ!i-5<ovz@Qa4ID(ek7*4*k?QLv4GXukc+l3L^*0xUE{7%UA
zvB8^yQ;BbWYKI+vHN)S^?`6fsXQjRBvE~OR$zORmY5pa{mlboZ^BVm8|5fg)DD32~
zwEJstZ_l6gA5-dt{iCv%+k1$gm#?4czi*yjUD@a5FP~V4zg)ES+PwaH!TdI7n@XAc
znf1lO_EzUkPx5>B+;Z-hwN~?(`}sb;{_`-jMmR>k|7FU2{yTQT|33WrA@bki{Nw9u
zwwl)SY`eDY&%c=SKQ%u}FW24v@yRpAc{xANUy8~O-Xl>zQ*WNXeV=;2{PM|WWwzJa
z&p$f(t<vV@4)$w()e8G9t=0Zbm11BB=p0NLg4|exWMZEG@ABi1&QA1Df1m5o`}6#z
z?NucfM<zcuoLf`VrT^yocW<l88P7{DMa{lm+J16Z?#m_4$9W58E$eIMOa60h=BJaB
z_MekAe=h(3SN!tHxo>w~-lqGnuur~DO8)bo_+yiQ#~+(~cyq<2sNKKncKx{dR(|Q^
zzUK$-KAq%u?&sN^x0zQtA1{7j_5V#pk=4@4?`tLYFOJU6{r9<I)170Jzs~WOdvtQ!
zY0b4;b^o1tJL}2&roLdSy4kxW*FQQrq28z5=U2&}va+hjC3oh0WOtOVk_&jBTgAY@
zaAfe6T4Y4h;r_bn>3PQzZzO)Qll~<C{8fR6`u)mD`!jBfe@yvd68q=NSE2crZXLEM
zUlVj$!oB+V`ZV+Ds&y-^)t=XE%8RzDtg%@(+5YE?DSlDexj(y0K3=|EKhbaB?;J06
z*<bgvKkr&LS@(Zy*_=y-w@Z9}mDG61ep>E(ocUFB|6}uWpPm0X8vHkzx8<7N{%-Zt
zuPco9pHly+dD?f^4ZZIlHP_}w|2dXfy_Y*k*8cRil3L*x6&J1ePTF&AH~m-mE3R?g
z?Pbqr#QME7`0~g0*!@9TlaLW7;My<w$Li_)AJZf*ot)wS?P7W2{R)$%lb;{|GvjS{
z&8NybpS&MyvcG29ysTi=vp=b>|M+BusQ<F#AD3)3i(TF={+j>NN&P(imroMsT?XZ+
zCkEgC=+Ag8vfp++Uwg@?k1uU&mu=m*{A~5=$BGv!1O9!u^QheM_Oyyk^FDk2*?8~S
zbx@V^WOZM&p8lnyMe_4E+1)uh`E;#S=Gxrsn%g<vHMeta&+?11yE*Mo^Mg6}=d4{@
z{;~Z^nfU&~Z<b3hi_}Z;{Y+UO{K)_OLy>wn^ZLV#!>ax<{PSXa`O7q!Hd(d9ddp>&
zYtG$rZQo}VyA`?dM<#!L{!{aGwbjkDf2`)k)Cv0^TU}Em>mQYUSkeB)6o0F_Ie(@s
ze7^VE;>Y0nq1djn|9-aZ^=bQ=WbZv+?tA;G_%6FQhA%6Mwq4VUU)uduDE@X)y|Dke
z?H`}$)v-QXe{ad;Yq!e!?pxfxt2%d0{=3H~eeEiR|C?E>t=;<6tnT8o;y-cG(|`Q`
zk)LfNdF&5&O7>;Lf9m1w!8VeggWFyw+gKir&pEdI=XR0*Uc3wpD_jP!l|^pefK)0-
zEknb++uzo$XJlY_@YW({?b3<GanrucFnzzmRJP==<12%2e?(vJKXbg~(_Vi2-u{<6
zw!HmZvB~bq@sgX5ZZFII{QjZUKmEs{HZON<cv@<6^K3!I_3#g2rGLt*^3KJ+d)^nk
zEByU)P1#@bq<`OGJ{`L&;(4*v&1c><r<Oi%PS|_reZhsIzW6Oqulm|l3i@B0o`1<R
zJGXZ7ex~@R+t1ei(X+UJ^!w+ZX7;M{w_JPH{^QoPosXkaa%9>oieCJ@Whwjk>c@*)
z4yRZh^PfF0_?+$b-uk6%gScf(WSkw}k$ZdhJ~jr1hV73xY~AMkWX;c%$j29*?Ihb3
z=We-n?x*Abmq#c0^<9=<HhJ}7`K6QJ+q|q~ty*K>qkcNq=H{d8J9DppOxfG5E^F_d
zom=}N@@<0c@yWU8)PLr0&fofE|Ap9`=;ND<^?xRBa6Yen;cMqM-H(5FuKk(PnSZXd
z^M3Yi8UJhE=NG409?zfi)wkxtuh8R~-#<PH{nHT__r>Pw`S_#j4;((LI#=iUkKW>)
z{rTs9D$cue|BKDl_s=!wu8IDWKcz4D&kKvbkFRU?{A&MK-kR96zpStPWAuWb;aLm}
z4yxcn8Y3YN*8U9kSnDgiy{){Kmw|yH|M<hY$a`N+|LkA8drA0x&FOz!cc0{!dS*FS
z=G^m=Pt(7Dy#Eo@^;x_1@DKmXCryrB|91AZvsGo?S68dd>GPjVo(`&c{_D-t*}mH+
z@6yq2N6ep_#e*_J^ds|g+t&Ux{JCV>Jn^-Ur}X)+SjT<)`L>ro3b&c=-(Xp{Ubnpb
z<&v%2_Ep|U{-jmsP#Sxq)@o+_@%6>oxpf`y8-Lo(TT}dJYVzFAzbkwFCEMre#~#<*
zx2?2${|cGoKc=jH{UiER$(x_YgWE4p@jK@Hhl?lq{Px|lIo{`UAIGm`9I!4V_8=#t
zCyQLT?WwA`@o+|F&;JM$K4&Y-H$`6Axo0<jsGDca=T#aL(Y{Z7ZF1?XWhI|}DehyJ
zlixql@86Tf{+B&(|I?Yb<=VB~6-N8d`CBgU&ONFAS#|E3;u^2)wYk}QPN?Vh-p{sO
zUgBd_KWAQZ*@pYw)BZbEzuRK^PvOS2icNYStJmtrnmgRrGV%EsTsx!6Zb{JNg|8PI
z?B8~H@sGtD9{XM>JY{wKxJ}iy&$>$=AD8@8zsN-H)B6cOQ(o=P{nWf`-^!zHhWqFH
z|9o9j>!UtAI;4=y-*bE0-q+a-3=9?4eERS8UZ%;k-#@<ek8E(=i7D|n5~t5kHUBL2
zJ?pr3fkgGcFXeNV$@0CLQ4$joT`%FkO?BQE$xrgj5ARymo!hNmTg7+kzJ=}bCzEq$
zJ`OIcUitl3>olVy{3{ZzmQ3zr|ME@6Zs}IDIghSRsDFB6UH?bTe!rI~HNP}K&4A0E
z*}13U8{K8~Zwc+UZO`nlzhYchad&f7)l@&Lx;bCp&GDNiZvHambp7nLulHUn<loZg
zx$d!?Ma`!*&lmLZGB6zY?K!kt0w{&qvpvgZXHK{O6En?X@3bH8FRy&$>Nz~Y@0yLB
zwV$Qm$0x5Y6tmZS(D+x#mt1qfaDL3%pS8v{)BNL(O}=)^;H{yg|3}5+?jIFjF4(&F
z-i5WiKLexx9J@K~$Am<yBeSpF+IC<2`)@OzpS_n2Uv57Ade7U>x8GFol*QiuW>P1e
z^IFFLS+P~*bZ@Jdzt3$fUGwSWwEAYLPx{P<OaI(7oVyMbRnd>C6Do@*`|0if5o;BB
z-)70=g|Dqkj(gk2$v;m1l>Pcg;W2)><&zI@xAPjdxyAgs>0O_n@^yTVtA8C|v{n1V
zv&w!QnRdnbN0yiTG5cMz=gMcP`*XbOPEDGBsm=fMN&iQl^B)TMA6qT!C%H`hWlGff
zmrJ%@o3^`Tqb@kOYfeebzqIYovz)cO)q7UA|Cy3_D*xOc!yCn1?>G0km#llf&C=$r
z^~&_AQF)h+mhJRcfBjT(?wRlFLGiKg=c?qXv+VZVOT3i6!*1#1kG~}R*FBO?x3Tk5
zZ-1TsGG*7h%JqAfKV)QJxZpT^@=0R0Zr_~J6Z}z^4_X{qUgA@>`G~$lbd=2e<C^xW
z|8x72&%dsj^{BhL#A3<h#}fY|Kh21bxV`U$da+IB+O2<X9SgqhxUf$?J^B%-_ZgLa
z`EiNi8vc)puWPMto-gQ8m)-7rJU@MYaND2Q%Tdygmiu0JjJ-bX)s78)^7~8wI$5vF
zoo}7{%W>C_m#_cKymo8PyN{(W<n90Vzf9TjKh<icT%Dl*x&6NCYqwtBeEnt0-zSs&
zwyFM$kzV$r*Vymp=bc+~Pw#hmR)0W(@8ee9{(lB@x4f<w@n5%3&i{|LDFed-A$pG*
zQ?1I!XhvGZ$UZs|x&7_;Le2X6-LW?|9h+RcE?4H!{b!GZZ7Qo~UGmI+3mUpvu4(te
z;9a5p{u%bZ>gW6CFQ0rZN_zdHlfMM~r|q`&%k<uJ<CAB0?(A|ajjJDT%T(RV&b2r?
zxi4G#bMUg`KQ(3bZ>578a!2xCiBJDAA^!gH@>_e3%{Pz!=kwZP>DIEiPx9*fw|Uoj
z9dErGTQ}G5-Sc_Rk5zWYH?EI8{(h@?`G1wUG4lK7`&rp7Zg+RK%3K?3+q>VsrlyO(
zs?JAzEvS3^C-8Dq^-TL*tGYS!?;bIKzWVp?l22FPKYGvqz4+h8cln?}>fzD2KFr?F
z_cHD7wvtZ<>tCjHirb1`Gkh7hbRAz|z1`kfmpqU27R-4R{Oiv7Vyl_gf9%_N+Q0Je
zhY5aum%m^3%zkTd?7PG9{N>4?K3<*RH&6cZ(dxHHRp<SACSz|t?N43a+Ot0|Z+^U>
z?|ano$(tWfS^9b9KdreXF}Lj|_g&xl-f#E(=@msM<u6YEG39n~jo0xdkGp+e|9V^V
zw(w79u|)nQ&-U7V+*_~p1^?;1Y$(}otG2dwqJP=1y6XB)^?bQU+tZIrtN%~k_H6h>
z2c+R$_~X`N=UqGZu6dav(^m4y;P`TzGtpK%_aB*j?be<n*UM^WT{?MH@!k2=kL6BQ
zMNYdLwzAJUcYbi&I&SNpkNR64-?CDhzr0y?ZS?usyDn+|j=8<*SpUI3?$<NUWS{S^
zkNcE;ntxZxoK2^@uN5ZNuAb-r?T@zm@$FO0%ZqDH)t+y^HEDlF{oMPRviVJYzjq$q
zcKY(lt!BROU;aP%zIv{8-1a`}x0CkUem>tQcl^)qg3solxvybSiXDGwaBQM6@9X!E
zgZ}lM-n4XbyXC$Ol`nrr9xL=v4{!fbT32&xv3<V&N9_&kKCWN3bz9!YRj;QDzuvLo
zd*nv>bot+RGT#&zfBS1@y>9Je=dAh16OL=v`hWey`r_iplXagrESbDMF1~EWmTT`m
zXIFomef?!h?DvWlvi-qUJNMd_%aqjrp5Ui9{YUA&=dRJa@0oem<rW{;o?xGMO!MEe
zTOUPt_3t0rl{zGKBUKy66J^>;jC(&WIXva~^};UwH?Imh`ZM3Y5{SR^IQV#qm-^{l
zM<-WYyrz49OW8^PR~9QCPx=1s(66xHe=M@=mS0S~^EB~x)a#!LH(p*!ip}5p{d??%
z?~mUsek^z6`LwuC;cFis`eny;o_~7Dr=#)pGyUG>oqw5PYrkajwj-0@z6-7K%D#QJ
zyW;bQWseu!_-Hjx#?O|0t+&n0$JGm-PYM3R#Z$dE<6qlgo&YAPD!1S{JR#37_>Sv&
zxuxA@rFRzZ^9%m-c>B8W2L{I`_r;&xmisa#?s`d4Tvgnb-`+JBQakJCsQxdEdTpU<
zxA<{-=33h`)q65zCtKEYUYjSLpdMXUc=*O=J&&)lM$h{D4DDAwzIn6It9@O2)$6L}
zf6muGF4Fz^?CRS&esOiBe(L5wHRu2DzYiK04%ffGWU_hv-}{$Ne*0B_bn@=-mrHa%
zzK%I}y1bV0zx=K$DgSl$FD#A^x5<*nAAVH$m_L5`<@b&$`}Y@0fJ%a8>q4_`ZYwcb
z|C(>|=S`r{S?s*$)sAhqy=`_{9~UpH?(=`SdEH0b3x+$FH0wnlKQE+j#s6yKk>xze
zf9|}fT)x$e@8eeA;D0`|AN_Z{_Obp--_KUr&)0WuH7i^DD7ftBn~2Zn`|S9O|EScI
znlGPxe@}&n`u-nJSC@Qxx;}2%<okQ~c&e}6+Wz}b=k90zO{Z&ZBF}wfDKnh2&N^&3
zCH<PeCnuK_ms%{D-0u$>5Ck{#p3K&}{rqFf51sinv-IkIRe7pUSDiQKvuE~OyLj6(
z#a27*j!oYESaq(<a!~u^k66Z9-=F`RB&zwk>P@$2*PObvtz^^Mk4v^*Gre_qM*K~a
z(z|9qU%e8zpLKnCW_z%l?Drp$zrr31#NRgjf3+vsCi1iO+f85g<i_1S?th4H{rn^G
zmUcf?{v{RL9Q*#cJ-&LDUsU#I)w+v$`+f#m{k(g6c1h81^Z&MU*Tny`nY-n5tWBbM
z@*h2kb@m<V{`Q^f@&6x}T>8TcT7xn?W=FOmhN$ja|BbYX%6oh=)^4XIctG9TCUY%s
zu-(t|A5*I4=<Tz%?e^b!O1-`2(k=h|f00%@cgI{h>1!w1o;cmJuDC4nTE(VyAOAm#
z`1Id!Q=awT^HUP17a#i}mT_4me;uD~ecFDzqx>t5FaNP%dH6?7*~$EJvY-~#ye-%K
zf@^YRCm)vBf6n>emX{w4zS}IwJNNPU7xsR+ODDe?*3GT|eNc1mo}WLg=EgkxlX-jT
z<ILh>@%rsQuimel=2!P;`h7q3>G6MU=5D!mP5<-NN%ie(Qhz*<{`lmk`p+kiOFq4M
zZ116d|IfA0C6|Ur_wU%Y-1onv7#JAt^*LAneO$76Zv67er8|!-*D1Ejye;Mb&8Vln
z#7J)aqu_ORUg~eZ6x#iCv&nqByZ?W!)z6!M=a<QRsf*hEFWl+)s`m?IeVlC~chyZP
z?M;6y5r4<<f91OVV5`cSS3iw^UtaxV0ss2P>{m9g4z{YS>QcYn{^QWP{^KQ=qJCd{
zT=BK$S7ObXUjm@v%ASv}|0Ml&tnteJ|JnD?W1HQ({MF~%^s4LUoqzdc_3j^~`*uIs
zKkJ&_&*Ha<efw|ksS&P!X*FMd`DFk7f4`P|s=S|UyS?t`=Zeiow)^&L)>Uu2cFg{d
zpOt0Z<J&KvNZ<bxW%ct#w*RG*pZn(@o!tNE{b9UA#eM&IH!W1fa)hTPXsIA*4Wprf
zp(XrIElbeGFOVqlD;sIJ$I1+}3*9F*FTEr~!4kTQjJ!QoZ}#Sv$Xu^{{<B29Q+$#V
zE0Y*!6q_m+i_mS6x0}@__waIy95<ewlH|QvaLe(@i*GDTa@?Gq{?%x+b?2NjA8)5T
zkvSbVyCYn1Zi>o9se<xHmdBGj6I@I=S3S)O5=)$1bb!s3v5Uolfn&lX4zn9q&)2P3
z^=@4~qlU=^{nlguzb`G+e|7zQasFMcrmNfE^KvSxD1^NIJ)>jJuf$6$cYLg`pYQR?
zec~BG^S$rB%gx^R((K!x^{ZWuecS(V%If_eHriKjHh3xI#B}O=XlUqe=dzt2J3<Sm
z7azFW|6||r_JbSlC8lhS<&zEiTi`fZt%arU^R?FXZ_6s{&uI1Ee0t%A(|gs(!*!?s
zmbva0dmSgFcWSqg(=><dZ&yVGGjC)}eJv%Xa6W0qy6rkbd!`FGaWTGEZDHyA_hz-C
zl2P47E&o1!hj~X0V)8vXR+j90{{78X<@f39Wv^NDq|e)1_W7o^qUiZqd7)R|mCo#v
zWnMMw%^A6m_CNQzb4$$i43)hxQ*-@my-Rylp44+FE^%qe%bxl#dDhw+8`59@I9dF2
zPwU6(ge`BfBx)W8<@LnJ#3apX5pd#AL?OZ?=EOUBd@zv9SS@e$p=R5nj}yaQ{=elR
zm;cc4+q>*pFKW-|MD(>xI1qe!@v2$>ik2lk?^yNf#JNhD1Iaa(YggS04nASSsd#YN
z>0d&=RqJE#CFtiEZAe`B{(<4QWox_E9ZL7+;FN0nYqWTlQRvsq-T(YTeV2xO?Q7jP
z`MAZ3RcT(PnIdLSbz+JeCLBo6FWr*4wL{RaJ7??b*)B&6RH7etAI}i-Z0DW0%D2_~
zIxi^n+B9FM2D$hI3a0Oz#QD6Tbxpj{ZbQXINnIWn_gz0;&8gUUFs{Dt*OCs!HjnkO
z^7A*wrTgi9nQP;={_nJpt6M#%3T)!Zm=_Xy_3+Ge>ABaMFQ5CVVxA#kyK0ry&6pcL
zoQjRhEZ5C?v+7(}Nzcl@yQbS8u=dVcw<N1)yO2|uglY5x=IOoCpKG~IdUWT+path9
zCe2&owH%5+g>OZ?o;M@QWLeP9y{*Sr?0wkvY?^c1Y7dT;Hde<%j$3Vd3Nq3ry=mru
zmC3pZIsL2Eb{C~hE9oiZ4{*|&bN<nh@5}}t_x?=0|NV!7#I=$?^X|O-v1htK(8E8A
zOZ7ds-FVub9Oin)QeoePy(c%fedYT#AvVub>~-9s_ng8)5@FH$p}XG{&F;`#b|UZh
zevPfW)2`mB;0gAbX!d*i?$ul~)^~><tx9$Zv$$?~-b`;_^4`3%eXGCwUt>CVthdZE
zbNz>!yDhaXn>Q>fe0sJd!evQbgp13%dgDD;b1Rbfyw}~Xs5FT$echL@`CWVRv*RLj
zMJB%7E`B4+$z$QiShb70MII|i8JZ~Vs7Mw`R;fu^k!7FuRY^+!0n^0)YYYB5ah&A;
z|8%ykx6A&PW9Kh)JXmxouxH|j&cZm;#z@zT9S;s&wU4W+7jP2m+`9J2hV<ypGn-Vd
zT@y_!d)*a%aff)Xe8a}i2FEO(3nxGCP%~JqAth)aR;2$h#?-0n$cx}?z4(fEo1Ytt
zZWLavxBt_T>FX??UO8C4Ox@4s$C*3F&R_iTa(9BvL5cLR-^XT1wXRW%V}HCh-Z5->
z+==~vQ8EWOuV}Re>=ag5@+tFXtbNIsplvc)`4j&oTWSmC?%12DRHyfWO>xPWKT+R~
z|DL?6s?L4co_7;gWqse}bM)NjRkPl>B&Q$Xaq^J-QIq!n?C!PekGPoMetJQ1^&|Il
z|GA{x*KnD*U3j6l+L1$(eZKtWdXC=6>rZZiN|VrQFUxi(?T>A2TeR@0$)5*N9xWp6
zY}L6Fcd-cy1~0k#ul4h+=)|rLlPgbipU5X)Y?Fr<Fe2?AyRW@|vZJFz@lyW(LzQRO
z8o0O|Q~zxCsefZevp|s8rt@*uYo7Dzr_C!W`)ymjwKvh^S)E=KSF=D6Uy+^gJD*jr
z9L}X5y1VL~e?0q@zb{v(zTuf+Xg_DQo5#h>n^z5fIK5l5;dWGF*o}E>AFH2dy{CW?
zY@3`O{t<HOa(%44_R{~Y6LXH<tMwJ$+dp&WrjHKMe=jsX|7>uGziH!7?SwZ!mG4V@
z<rPrg%GlE>bwcY`I(N2_;*t*$)eU_W-x$^wp1SsLPUaovk|UehGp_w$l(;6hKzW|6
z!}Gqxw~SVgZZcm<bvf{$?oi7V{&&899GWcUtFp9~t}4GF${u>vXQkTP*gd_HSEsC8
z<!^lqoGKGCP!eUs#9#UU-aehh+#=GhCTPebcyrcT4{(VS_OtD(lAFa_tAx7b;KUvS
zDMb?}iDX7|u6y1bnta0N_#fZo5)F2F!|J%q<%meBtigW6$gsogVA+q7uS=gTiM^<u
z)S)P}KWpl8|68Ja`zD^ceZv0OB3>ttnJ>1;Ri}wD7*>UZmTtPa5>g_y1#jf<WzMkS
zc1s7lu_WqzTr4O{G#pG{-!f%#pW)Swb5c)c?V7Y|<Fg#s;uzDLp>x{{xuwb%d|XlA
z!*Z-+k>J5K75a)P2V2(1zg-tmYiq+4vD++u@jAYqV_D^{rOA>#ycs!8$;QWSJkV=j
zAOCdShb?o^Y6TY7!~X@Gv}S8vypxoX?0e~J^<u-RMWI*j6|nZ)T5ZA+`EiTt?yOBq
z`wZtwy*@E5d)K5@?nTRra{E`S?SE)i^2Rvf$o9sEGbgnfK9X3>oy>AiAtm+lvRjX5
z8Q49Y`NOVf@+JSByjMB=rrI}MzA>N4`91St<Bzh*Km3pDuXjAbwcIyUep7v(XVmve
zDc!LjH>_I4mwm?4YTc?;%kQ*hvGBZQbw1y;aQcA*5?zJ{s}m&W{P60~yp;BT$L>>A
zYj357Z|R(o)b(cD|1In9riP0gUZLmMvq*B!bO9lu%nkKx%3l>}IVE+Ra9bUtuH?3{
z=a<kCjadh)ITaHpI{rScC}`+g7}|1q*@-hNLgn_VB`wQ5lP0j~Q0C#*Ny}}x?f4%j
zodLUIddIt?PiLQRTDV@XCh+B-=?nGR!A|%6&c+vP#UmZa^F77x;#RXxi<f30^-a;?
zHhgWB@)8oxhHagOO}Pc@q#{3FSzG^MrcdIRm8R3<f485XcRu8Z-<n;2PED?_Ijgyx
zZ=bPk;UoQjt55IvaK|~p=A*}{T$>6Go}Q0KrYo?eY~|rWt9+a|6h*yO+~E`u;xW5(
z&qUCEdho?fyX#)OSej#b<(|^t<0dbT{o1?lm~W`S;(uBap_2uYt2j1E{k1$M;MCFa
z#%BGhlXI3@yz^i6>gOAs3#IKLp}Vh(UXJKK#%J>Gpv3*76372;_DTo~G*P<IC$TO0
zg0M4(qEfH&wQ_Hx>g0R5Q{BzLCEFtF5SPacQtlTz5_&X_dHhJ9dSK0>43`bEhB?O<
zs2{7j>wTgtaewK_mosAddT)yUe%n>Hd(B%{6Sj*T3k45KfNFyCTHtyh!8++ipQAs|
zI!lL+jxAj?l$3bSCCTzCDJ}EJ{>Jc~-`jkhzGIJ&6ujW;@Yw%%?$3|iVU<NOE=L4j
zo|k*@FY)EE5YD72R}@+*=69DxJbidZ_(WcfUKGn?PLmHev)x&ef7n*f)m{B_{@${P
z^WJyf&iH<FwP^Cbcd98*HxxVEoxik9EwohO`Q(dvq2JS2wwhmCw2`^D+Mw;Z@x$bQ
zk*eV8C&!)Vw&9D;gFCZYIyz3Y*+w7t-}Nm1ZI(ohV)?OaxoZvjbtWA9b-T8AcH+8Q
z^V%{ER_QzO%vilG{q+fL31@IMgF=Mp%!zl>nq&WO@4xlEDc#lI&tCazmzH+w7;|p;
zS?2TU{24V%zP?&;J7bo`uiEK>_FpQFq<Z`hcfafQe*5J-<|GgMV-0JjEp_x@y}Z=w
z(XH#Bc4YbY2CsV=`1Z2NJ7}S)lffTgaA^m-#<75&iN_=w%{f-4>=OBQ+iu;4`(^Uq
z)%1HDJzPKkowDj)qB!5GR~x5fUHTWc+HmnKtF^2AZ?oT7xoRb+!I>)?ZX0}^a@!*l
zmM<?SB=8)Sm=U@G6m42_HYh4Zzjd1IVU^MmlDp~D?67W$g<D=T7+&C5EV%5UX@$O`
zc4Oi1QYV+AB7*5Jc?At!W7(%%oWYS2#%%(UY?wLu8~<LVHVLJVtHUaPEs4FDEiW)%
zbNNJ`lrU~Hj+Gg^LQFSbX}h?%Dy9@tjJ^%Fof9d#=5p1yS4JW2ciUcRZeJ+H=-l71
z(7$Qn_r^v;k>rFhM`MuIk~iyeRxZ=7j7dIwv+LQ8Z>qajZ5EYHwqkXA*Xy{%a^0*y
zZMQFM^luit&E^&^Dj}iVX1L41?E$Zo*37NacT*Q{JQf>xnZtW(-Wuj)ZmH-C2PCww
zVN`_^J_T^gr?;8qm8`#)oU<}k(M?vWH^U^U$Et@>UM!i%No(rc!mBCa=U6WoF0;Be
zQTKX@YUty$j^=rekNHgGzV=T%AQ5PyG$WK}v(%R(0#0EJ-@d$`w@1Ba`n4PF#~4lK
z9mSSs6jN9Qw(AAep3vK_vbJc`(RCF!>=eSn9@~K0WfIC=hC=9R_dVxiQHQsBf}lp?
z?xgL1pUzknTjn~u_Q1PYMN+GoW?o(6b}RWqoKqM>sZx@M$C88VR+QIG4i*%0b}^fF
zZin53NZkt@)japSPjDrCnbk3qubbzVsIyYitVgRjmitbedGV5D{&eltCQ@B(Nj)aV
zJkAR>PdKG6;H~{zT7Th3V-qE8u6p>k)Jcm!+nP;yd$Pp0oCg81VUNR1-nl+zmv{_n
z0nQI)+T68B@L<`I4YJMiB<3VIg)yyce(&Qyr{cp*pQG3sgRG~2SW4N~iuWi>JU)|k
zUm|$%gsVqhC+zvEed1M($gRR(o;|2tByi5unl|CTVvA1tExQ}_I_ZAT+HSvIf9(9z
zKl@U@-`d_EcWRpRTiur}w=-sSsK&Vcz3_Q@Y}=Q`jE1k;72KXm?wLMi_N?D!-5zf~
zu72vbB<SYe*tR$?%cZ;g*Jb~F{!IA4>gU(?chX~S8T>n;KljtE{5qd?Ywdn6e{U&j
zz3-kv(NoXqibW6Yck@g<VScymXSjWl^yB)XYq<$LC%jlTan0NKYWpmgqUz~WCSOo|
z{afhnp4HR4eutWF&VPD$)ve`Ln{Mj0^R0Xpa_(owmStOa^Ii?kb2epa`_{BD(BO+Z
zG{4T|71FtNb=lrKGuKGG3%_dk`}u_#rTP~^P0^_Dlg|9SvHsfLBdIIq6-loWG}t1}
zW6Ry<*9^%_sb&myfjiD@sj5>@U2rh6YO$lskuzocpVw^ZnxSg^ifQK67`6k|oQg{X
zKEws3{j#;6AY@Q?v1+c2xS-*tyYDUK|0=ni>^bR>W;)%m$#sSFyo!lQkE_1jO0?CN
zJZIDRCTxECdf98Ag|-{M-yDAWg80E1&u^~IP3Wnd*FEj90%LOQc2I-6==sK?9r2Ur
z-V90)`dy;1``r0mc~@87`Mj~%A@qKM^eX#O=~egHlq>lqn5_>Sknrp=Y%pv}+wpLJ
zTdI0V^y=z10ZqN_?<`)<s^6M@_XYRP&+GHDTX$wvZ|gfATYR<5lt*sw8>582>+{w=
z7Fe7pkQCD52u>NuL`v&{pQ@?J@Aob1ym$PJ&rO5pmNP_V9dnOb`afIwCfE6&6${qZ
zy*Tih(HMK<_f@a<gsV4yx3IKGuemFmJ*VjGe~olAZNBXKbAspp&AIvc;^I}aj>+0~
zXW!{Mwm0JsL$b^<iRXWis%7Qf-SV2|@|*YFnQ-_1OzzcF1>X7YyR!FWr9LO0e6VTo
zD$i>7^yIehlZ1+vuUZzgs;WJ<FyLd&ie)~bwY#Q38pzO$_%%69f6+&#ZI4xR+}~ZP
z;$CMNV0S6ec}dpf&>LHJ?K!!|V3x}f1DBNSZHJ2OdJ1lpIxOs!_7X@AQ|@u&=oL7|
zabAe|!QLe`D`qG?(%}od77``{X)~YyY2X^mE^=#zmSfK%sk{n(P5CwnrNZC)%`U5-
zo_&T(*)DnSIg7jZtWW<mI3n;;cj-i~l(1q+6@@J;R=rBu9GoXN^L<88g4J60Ni&aH
z_Q=`DPhPdE>W0QrNaMNNaFK-aL*$a7=9`qvp;*tW5yjgcP5bn8lh8|vVA<W;(d!O=
zz9<v!TNcWGW(RAp^@WNn_HIncE*Coz!VJ%JeV?R|n6vVueTPVIuk_v2^FLSIWU4<A
z-WAyHrYzMfv6wG8gd44-h?Fb%7WI=ecg@r9zr0S|3e^nX`K|Wyy1SiD(%F;NG4~u3
zkuZ;8WIp$x%g|%N3yEOa*Ba$w+8w`5=NTJjSI7LG6l?ie+v-?}*7uq#C90wQJ9vHT
z4(GnOk$#{fpZTz{DsS=;LpSkb9CI9*SpBxB9eq|e$Kc*_l$Q0^10g?QP3uD^zkY9g
zIP*uJ;h*J?r(aWOT%?*g_h5?mPUA?!JL^{&E*A*DY8MKrBdR^0)!3|Awd!!5^Vcc2
z19}@4?oD_RY4Ak|)MjN%3r%Bw@V({qnRi;Rw`PS`eva^*p|tz0{gv!;P-}b3&HbO}
z^qc)|m?Uwv@l2K;bA)NNsitV#=9i}DT~_Y+GOJ_Fb~&TC=>iiczS>}MUZ%IDW6yT8
zYP)5^llV?QvDS0GG(E0-TI~LJrGkPxfBmXbKk#}IU$@WxICC8(rR)3klqT`{H!5B~
zAP{LkO`3U=&`C+vK1M^9<PLSWhdfRvE?M??8@d%}9*c`n`>3OL&*E+5p2C9<nKv#`
zQA~L$b4+!S@(!00eZBiNV&YTlO3%42t>rutbiHN5($6w^u^)x+?0WR^O!|Rq+k~Fg
zCh%07?LP6i`cK9ULxa_oNg@Xd4*&lpu!+O&m)E!FXX7)c{#)Odrv0rh@pZ-f<d;4-
zD;@~*Hrvn1Z(g%E{)W}P-*aoqqMeohORyRsmkf{&@)`k){Vfw*H$D8etn<gtIbGB4
zesy-&Pd&Zxo7hYHWt9^DejJO~f8Bib>{SY@f2~dk@pbBXshDy6LI3BIvjmLHt<SH{
zGD?3q6ExCbXPsYiR}nNc$Zh^-|F-?o$u;81GT)J!&V27~yL&Wd$ZXs<Z_-Wa&v~nD
zz!gEH=-q{^(z9z8*U2Wk7`h#@U(J#x>Z;uIwj<HHLSJ!-!<+4TL9&}qFErepv_JM@
z-t?`t2iyM7yA*#My`91Les4>*qTnWtC|4iBiEP!y_aI{vrqvC<*-h5XzdU1pP12M3
zR}b+vd>3-^P<*hrWrFL){P!Hj;Gxg%4hf~dH<|C)FEBJ+ZfO7W$O-$^t<o(MoE}t8
zx|KM!-T1uD?!WW)R`s;nRiEvA`29`kwl&Y{!PP?H_U7|(oSIVBpwWr!^q^4oB0KN5
zVWsuIUZv}NFn-wh(@xm#8FCSDubT7uD#1-2W^Zm<)m<_@o*jPp0r$@0J>W9FuFZa*
z;kEnkW?wyP5T5IQ*hJ#0xFXw`(A%58e*Hhs{~9Fn1d#e$)6D0@JDpHEaW{MQN5MPU
z+3}ZM-fu7dek%(!ifSXVE_UrVQ{OLk)2_!wCp?i~%)q9YvQj63|AN%=oVRml9<z0D
zx7nSW##4V`Lvljc=OY>ojvSFjcV^EK2;$&-efgVzIcN++aPQ%D;4#wb$={}Df(J3G
z#CYbiIZx*1n{TMVmbP?8s3LDeHlM&IjcvEq`zj?#yz45tA+U1O{;#{i1F8B)BDP+5
z;N1~u!3++3!@T`|XMz?cb#-i3=;)ZSh}%%?&xcY@L#}j&J<|m?X;i(v{-fusRk6`;
zZfBl}KSEdA)LvTm!Mtc+*K6sTjfPz50#4J;Jv=;f=~1h->FZ~*I`qhehT2|w6Jp}O
zYSpXB2`_3BeA0O0ZQ5j+HwT?rwSY}A<z&rDtKY@PXS}+xd^32^Gbei6BJcn!(_=jo
zu{!OUM>ixTgnd4$(XcUx^XkF>C$3FX=XYvYrB!Yj!u`KYdaHr9NN<61%%atWTh>QE
z*Q@S%<!12e6<1!xE%XYQ>3q?gvLusbK~K*$PG}0KJ}i1Y<@$wVw^pxXwpqNF!R@Y;
zf!XYYJ^4~e62`?_6C{H#PYvmPZoIaALc=E8b+g`_irls&*{5`ka`d;JZ_yWaF!#D2
zoS_P<670|IFKkr*|MFN1i%4})mH)GP_TL3kzZvHo`==u@H*n66c{55MRr|jS`N`rp
zwSSQy<6@=vs{GM=*KRCQcRCT&dAs?i;_f?1`tDP5HfqcD9n9!=Kj7hZ@B)j3gmUIx
z?;@V;{G#cCjLC}MC#8P3eP{-1iQlbUlkV=Ja5I(vnc40=x8wFN$(kP9xOnfi<dCW7
zJ|y3~>;1|VG@5a&DBbDAC63MxMa7A1yBFR2>Fd{;z2*AUs~-|?-t}&CIg}Zkl6K{P
zgi}*boUq~L#EFi(lRR8}f@4J2U9^jmQ0{G8v`|8M_lmlw6aE|RZebBQ|LLrLr0C73
zv+LOw@6~2H_ESURC5wc_<2_&Z9NFqpBGSvDrxn|IK5lO7H|<10)=h^tnspj%p6znS
zYSAjIId{Vz#Ywz1wP#3vo@lVIhL5LbW3h{Hp7Pp26Qu;5CvltpJX>`XJk}u`zbovW
z4M(IF_Ex)n`^9;`K*P0+%4KO=Z_iLYc4ftBi;Y>2N)7J)5=|+6)vCH}DssjIm$@g3
z(k$PWUA$ok8n2be+W+z7Csk(;#+wDzmtFqE__>~bS0(XQ_foyj>6{Rr`9Zex=dRuU
zZUWzQLrEvD<KSW2Ghuh;hseBLb!+dsJ#J4wXokw(%n^5LpYmO3)0&k<|H3a=B-LiB
zZT|o4ZrDxJTcM%5PiKV)%nu5^n=gKA>UW_{dsgOdufLJMKHMa2x^r@w>${Bb(5ppK
zbvo-!*?lI4{XTxJl3yi7a)R*;Ur@<ueSa6*#GCHBkKc%}I^6%XR9~@$W$M#XeM6UD
zZ{>eKx1BH{)!|%%8E6!D?WZR@PP|!sH#tUUZlGt4S7^Jjf7h;`ds=kzpVfW4l{hta
zaqYk7i<TN_b@;F3ds5SM^=vigN`W%I6~8ZEKeyyjM)>#VTb~*{ORqc|DqW*ko_01@
z{y~gskYvt{&82^qWXs)L$0qT1twH}988)=mjbh6L(NlXqdqd}i&P?fLzxAq}&u0Gd
z+toeLMsDSi4-zdCYJR-0aJ_1Nz;wnfhU*Xf|LqcJ+#G-4=v}k5cUdmS&kLO`+P|^b
zCA9R&*8dAueY>J_N1^3O>+>$J2c{B7vp>9M<@{q`^j#+`^zW+A(&^J5M~nT5+x)hB
z4cBj_)xX{>d1J((`19e;MSs4l>7UvAM7;cly-Y}`@zSb0_lj@K2=tw~s_MJbeXV4h
z+;Gq+#gtV^Ju1g$Tvlj#(*C^b)$!~Pu6x+_Z|gAFyvB0F)w*2J{E}eu<j{LtqK<GZ
zcU||rHk`R<&UTT*GgRF~;rh59n@SwYE-<`*dG^ydqrClo9pH9tg@V$u6(_3qy`ROV
z{9IRDBH6E5V3K_IPB!tz?{P(Mm;7~J-=Wxc;&u4iPhUKjANn3E+7q|i4%EO+=&^tp
zemrU2!KMonPcCo|4OQQ6DS8&vnyq-4z0uN5ZL8mF&#W|07InAJO}tJXbrtJYu*5Y7
z?qTEp{KnMVH$2Gn+MKl+eXG@WuX=7~Q_%w+Aa0%YCwYM*$4Tz<qEioK8+2VySomI5
z>DV->a@VudYX1NFC?TB~n*CoQL%`|NfnwLI4^3}$Tz^n{^lS%OPMR_|>W6^lmcrzD
z!e4CLHZC<gFOg{SY32<l4#rRW*`}ZQwj*nk_H*IqAY1!(vg&7CsnK64b$%w_=D+U^
zj}<4B*z&vm@vxH=a4K5)@=$ic%j-MkznOfSXSsai@AC`e-_O*lXI*}3{y~Yo7CY^l
zCcm!KS4`P>=4<KHo$Eg{32eU?Bwv)I1|Gf0_*~mP`(Q=H`W36Pbfh2mXuEk|+BN-&
zgcM`*cOfUSvxmQ>&aHNRX!>Gb*5{+Y&E3B02?n2eqx)Dn^jh{+z1@%0?w9j6UQFBn
zH19Y6s;Hig(#czH#<!d^y~Ld@q<F;n-}Quj74KDFyB?V^!J|2LV&tzAD<d{PC@=4+
znm9p1DXE@+0blZ!^GO_1-2dy06p#3VHLO41nXQy&rDK#4&ePqI>9s8>OELeA5v;V;
z>QCxf7}+Br^=Eg>grk%Gn?^7c{CxIxN6qH{w=T*vB<J6%ikr0A=B;GRg>B+IuPZ&@
zHEpYjb2^cvdD`ghwQWLbdD@0^j&BnR&8Ycl8~Xj5M7n{SzQjuo2~bsCk#>Jkn&<VM
zvm>V|d&<_NS3Nq?d_G0XZGKeo&qKxYZTEjDH@(<#G%U96X{Ubd>0=YJ1r{qlHS=2&
zxc%d~+Y?*U9XJXFtsAdDn6$nasa*puJ~<S%TPvsAAr+Uu7A~Itsj}Y030!J^?s#a(
zq4@Iydxh)W5Z3Dne?xb$o!>vDe#Qmg_15;+{^ajhRnjl@wHCGBcT*wB?q9qSd;PmO
z=afJGb)3ikt@b<W`#*28$E$YRVyW!?JEL75)la&4?~ZxfafOyAN8fkv5kGs!C#?3(
zu`60Xmj`PuPdaQLZ5=$-?r+qyAJJuP|398ldc>2zt)4@6)3V3*@BXa3WRVnFbIbAz
zsD;bflV|eIi8)#4ph64F<S%u<+smpmrxd>}J6gB<&`)h;leF+ZmJ+wvj!8&KI2#^2
z#Ovgt!0EmE?_|hq+L}@^n+yR#L)Ux#$IJ|*ULE+*d$GarnF)ttW6Nu9K_@Q9h+l8#
z&$)hw%h~10Uf4i$rEu@{0}}ID4x1l?<Y|`4+l~A!L9JKNh_i3PnZGJm4GoS7@i=)H
zoLpD4X<c;a*6Q4E;moUMor!$3&v@l3X1U~8PhKYvfs=oq+m%FXpHaRIE{^$5uWLIf
zt~d22#<(IVud1r3C{=$4wKUVxUiCmrW7`$bIs9#l7~G!kXIT9Cal)T(`A$7w>$j~?
z6LRuu-fN!F8@%lso6qBW4a(NfO;%mpaW#2QyWzQnp12;tgKKuMYbZJ%D?guf{@#=M
zE{|U)<Wz9-yz}+*cv>6~dUi_IrF&5pHjoMZ-wpReuZDPqzTcp|kG1WikVH9OV`0Gh
z9lesakIh1=4_@GqsM;ZMR=q`}WrIoQlEZBtQ~!Rw@4MQyrywe2b*;zZ4vDrDZK(?!
z%@<qR@_TObxHf066%dL!WCWVh@7UY|YNjeZ{-zjwZlmAP-F3%Ur1lx68ME|$Ns{*D
z(6mZ?DQb8`p!4?Xlkv8h;a_gG&zT3B@V_OxpC$Phlf*|635jGWP_KEt2M6!JSSODO
z=re8?Gi^Q3>KF;RB}+?vZ%X_Ua}bizqz<n6@n-4-2XG_NG+lev<5efuy~=R~HDzPH
zjrO%4yTACO%&`hN(4eTt0mE%qc4%j9lX%zFEA5@%a&d(aX14nI;8%><mW|(5{odZY
za?0vO-`cdJ%9;g)9EzS5fEF8+KKZjs8&rVmZ38t&wKh9)aH`B(`6<5O)VU|Wa{XFu
zckWZ?aZ{JFklmkt?&Xi4(k&AbCe@wzw@@`Rc58a{o38e?MQOc)owr5fS(JCm_DD!c
zD0do)<q0@3c}CoNGr#P1@RjiQo3wAa_!zq8ZTf#WaQEqTKLjK~<r$O9O(i52b0xny
zCQ&TaGQnY!*26XD_LwE^?OVH9JBZV>-Sx@cU5SE%JMBPo|K6q&MY0k>=8wz_+7fsU
zO7tz<9~1PMLsM+~nyvLeu5R7*EKtNOSE%y+p0CA+#RM--I1&BrmDBb$TeaUzTmP?g
zwcXs!K8uzGt$JQG%`?P!X_Za-%p+4)uDZ|UT+iO40?wLq*c2IAkLS65TwZZ?UrYE~
z*7Kp-Y3DwjUA0Q;WaPfc(9r#__Uzxh;*0u0i3t8<b4~~3A4pwM%j?9{mHsA7sQ*Ez
z^x@TI7mBZP<;5EAQ4UVbkDd5))&8wFTVER5%#IBazo4M9;K7ZxDsl%`o3(|%UGRLB
zsnPreCtyRy>r=Io)FH)ZYTBfwklDC{=@%^ek8Nd=YGDzP***2h+3*LeY~@>5fBQ1I
z;_5UrXUr&Hs-mJKotHnWWB%!tIXA&82+lczN>QEk#zlX6zg8c-@lQIT=25f2;?DS^
zijApnt8dPCeye*)UNc(jsPg;QHP0(UeV^$F6x9cXo=;ETxz>8gs#|;W9v+M8|EMLk
z+|W(`SVhi4U9}}o{^-WZ?+-tg(&cimyzQ9a>ulDUf6d=-JEc7PZPAMfp%-O0X`3xB
zRF|@6SzP#p>zGBeVb#Had)^)emOa;xJAanjCv)=uxefQVUe72#Fe7&3{dF0ePv6Q5
z|6?h2zWJgZ%dxt>O@`-o@NRvlYRUFqRpo%pIoaJ)EA>C_HQuuOJx^k$X!gblY}MBH
zUrW2V_)HADz2jtM{_;nE6RxafUM$Mn6WDH;W_+pAWcGxh$CA6Jy6p?kjo?sBdD*h`
z{=FMXe-?!ro9Zbgb$q$qzUQ6H>ySO1$DZs?__DasP|fgI4qJY)%880&c}pk$4}D#E
z=n`mnz&~Qw-+6oM*m{}k!0Q=QcN+e9GgU{K@A22b%Jbfz_8Xr#$5>kb>GI5wtBrH~
z>vo0Soqzq8WVY?GNE5$go<BYn4c~=?V*ZJ(@AvxSW3k`b*~0}oJfNHk9v(0b%FAx8
zOsSN9ozI^9JI}!GpW?Yt<<o4}W47Lo(k@vSb?>?*W*hmG%9PK=IM+RRXA1}g6ub!&
zsQ;n=a8>PNu9&Us|1zzQIxh!a)sVP+|CZw)-n@tmc4(f^(3HG=QU%NUTM}_wo9C^b
zRy|pGlg18n%Xhx>>Tc=XU%6`Klvg{g-*h#v%32oEFCBIh-1z;aYw)G~fX5=x;QX0P
zh;1VEUEy!NE3U?Uh}oKWGfV!0ic*{6r09u!(n`nFR__517Id2|*vQ(mO8UTu-oRGF
zIm{fK8Wv^RT>^1i6B}2Xz1f*{*eFll;Nc!$zt%2IrE{NHm6E!;V%#22nm@6g=Q)ED
z6Ib8eQ-{8<^5u@(n)q@nf5-WV_1FDwiGpYE*2ix>by@vw*XD#XbJ&#Uu`nl}0X2XN
zc;MQ2tJmLpZuI~5>n(DswThqfKnt>Vo`o)qNHnmznBm5p{3KC8$j1gHRKiwmt^=3J
zH;X{+;c1sc&w{4YI(eO%I@8~T2_Q;>UH2ERI~U7$^}v00H{TPnjcz*x^O&#pZph32
z$ELVcVNc=K-AP~FBsyPT+j)B4#@G2z<QH=si!yn2A>+X6Z&e0TtM7>J$>LN*84Y6U
zR#XCwI8<h3T)9_pbgQ>pM)KRMs#1x0yB)oprXKKEQ+R%=#?g%RJd2lsiuUwVy~l6J
zh5MF0)p-J$?@O-X@7?eI*wSFvKcoI0j!2tai?Zc+lnqx_vAF*>FW6Gg*7L*6z$Vzt
z(5)^!M4<Q2a;EkRH`07--k<cz*?rwO^dFbsRQtzfR%`#Z6fb{S#2*kOb?c6DVCkvP
zru~U?4C+>~?~@QZsNW`YP`}NlHC}ZmKhODaPlLAq)BR6n+vH3&RpWkYexc&nx`J)#
zd6j3i)T50I*X`)tvDLitnn%?4Nixmfg@TkIM%oI6mRgj*S+xpz9w?59Ia%Y_fi+F3
zElYimhy<r>|GT{Vf5;6rgRJ~*+PB^?m#yCvx4P`6sKnwjajDQa<+rmr6j=|Zt30zW
z6VDEruHbgDXTz25mLmcad#~yL*}pKF+ih-#gwQFyNg?lLW(IGRXr3@Bpk?E3i^cm`
z47<`=Qax1Wn7O98t*!d+U!vD&I7<vXr184}vV3DlZ#K6<g}$Qdq6f+4tx`Yr8>@w-
z;<ul=c{DA4lU9+~?7ff7cCC4?y7TnqZ%qfEt1fZb^3dsI@VuvI+Y1*y3ErVl#Uk$V
z{wV9k^N)mHt=FsI{Q5^cR=@k<&0UA&O;%Nhgr0q)^kaM9idB5ib(;RqyS?J2<zut5
zzAsG^pY3g#(q{JEBV=w-ze}j>v9+;&kKA<a5B5gMu^-;U&(rhprroh45(mwACf?`_
zogQEL$oqQA!3BwOum(JzL~YjDr`+djztvpp*x7r<aVMLb^Qqi972n0V&v#5X8oXWZ
z*t_ii52QLlOWU5vKkvB<TG;mIXnm=q_`GV49(6g-oxSY*jg5ve*W2HVih4AI+KDJh
z)}wWjb)YSHMaZYf#uLdokacX&J0PRcx<?h3sE8!KnRYZ{|MlxTR&pg>iDzA$C6wgD
z?-;h&{<y@Xxlgx&*0`0+ML)aYR`z(_+~=XDH)q;D`nP1&yzfU&9ERwBmcPa|nO*98
zLeKl8p2ujj&5DO-zfF2E!E|Tc>K_}$dh(w4&psx&T4{6igS%msEXg`|AZF+tvS>Ia
zXo7WWSn=iGvYmIkR&GCc@n+;dRf$(?(l^}K>$mjmxhX2)d|NzAAV{dopiDfGXOW<@
zaudd+Q1d*A#LTVQbHeNAq;eY_+m_R+sdOnJUoz&pf>KhKxtq3>^m79aP0oGFhW|Id
z&W?$1l2A3-vCu$qi9pNJ`~Ozf-+Np%)8X;foK{68BfHG0>c?GOcs?F`;r{rM44b0r
z!E#XYuI*hZbVOt6$FOId-rK+aUu83I@2z8Z&QG&i^U2^?#12OfPmM!2Vp~44Nd0)T
zRk_LV&%C|ord|C5sn6b(o%#LdYS+ZyGYht7&702|?RGBRmHE{_n^m9=!#s&fiIyoX
zN<DY~^lr^~<M3Fn=iyJEA2aI1IL~Nxxv|_9JY2?8m9*p8s=L=_y^k?9f!1y9;JR)4
zv?NIQoK9M^|L*l2lFwGX&78ru_?Oa=2Jocko+d+-R0HlAdK?uJnz;A(EVU|mW8>0e
z%(-8k+2@^?yYj<h^_TiwmFPf*#h>FFF8(YusQYcMc<dX$W6$^Xhb8v^J=YZF8)j5q
z$9L>qsPM6OR~=<`yYJ^;{P$zW=?VYV_wDMvm%se3+s5@P6ePa+)tma=y!BGQ*ZOa7
z#W%Jy5?3?syfVCZ7~CvB){zjVpB%P$-Wnt8^}<Ht-ydhZKYY>dspQ+k6}37E`~iCw
z74ToET({!S`hyM<`>X}lAD8X0kDRslr1FfbrxRYRc;t6#&vb$KcgHW@JHGcMcQSb7
zXqL&Eq6#<D)K#x8e`DOgdeutMs+aH@Zl1@g2Jd8;9xsS1ls2w9mb>Cx(?UUmFDeqh
z#3Zsl#W~fyY$=>-#rs&xwDGZ)=^Ha2+oxthQjE^k2QO?+cwqvWIuq4V*6~$(xj`{#
z>q)DG%UOcTbHobw8QjrOYE!(~#b$CS!DQh>>0~qKiyXg?3poAZc<8|+TJvU|hq8{a
zlGd^gi*CV=4oxkiJn7(bmIYe(z8b4t_|R)OTQOtF-(-PD{vVIOOX}@(NZab5tOKrV
zKduh@dv$V|>-yRUFD1dt5I=ewEYoig^lxl5TxRGdll-Nt<pRfV$u@yU{@~=jJ3?9V
z#2T?2$SUZZ=}RkvLPPn}*PZcu&FP)Cv&lf}_JtkdJd2-0n~fJZ(!Ls{nR2ns-#dx5
zz`pOBoy^-{i*+Ru>-&Q%YF!RoP_A&b?F_$CoA9KNm+kTd&|+sD<qnhMp_5~;-s}R6
z7wt~bJof#<k7|>7hb7J@_e?iDwnAO|o_B}-_s2Kh9^PpERPwER!IpYv_utD8cH}ZI
zUd`3BG&Zo&#HB~q^wFX;?my*;kKM|5invMiW|_RQF?4e3;Lk2pF?-~(rg(aDWi88P
z^d58L;jf(j8Od)$zvoK_YlgeN<qbFa!KV0+rTERXBP*hrkEIFseD`(knWb`M$FojF
z%lY!<JuCZ4Q%;-4dS0zK7Xn$P^MKds59hNRUrn(u&pF?6L*F7bohvu(-#pvaZR$L2
z@0Z-3w`ciFy`u_8<|p*st<8{ecpTXycvOP({~Dngp(4E;+mzehN_;so;fr(GPSwn<
zk8?n)9z)Nq2~#NC{ir)ZWqY%rGjp<vp&KKw(;v;F9x*M2a=j8#g4hh<@SYueFSkB6
z;j7;6MWD*~iQ4b}xwm4=j<z3I@ry%Z_v(WOBtj*U&5uRwaqO^PD$&_(5XNe>I<j}m
zaSre1T8C%Zg_fd<hAv0u6~?P8wY9ihTfFh$`4jfX9ziVsVhUPxw@5OvUr;Q)`V*+e
zop`6K;FgHtTh?vv>pN$>EGW~Q((_SF!Z^SAp>#4^vd%q)BlClLT;d<UEsBwMR+{AI
zd=b3lEHj@+SiGtC!KIDyrN8b+T78?Gz_W&Z@fz-1LXZ3%#FM}2?D~geU6A4qhrb{C
zd|LM|sZG1dn(bMAIk`gY;Cj8)jve*~Wp;00RH!dye?X$$@R%i9C>t1^Pf7(XxzxA$
ze)GB!e37_OaZnKZ{h9MDK0YwcnB)F9DiRve687$om%nc+WJ#VA`BpkPOJvim3fZ3R
zb*zzd`<<-)>^pIllf2u_eUF@f8nW%pI(e%q&F2e1lf2V5TX_9D_G@oK&VOD5yN`|?
zA3weoNPaHXu`yRP?JM*5F5Q-jonONwc4yyj+c?|rK}J7pJ<+kC_5EH3PD<AQ9@Q$X
z{QvyD5qr(M?$s{G{;iL<db+j#qqNee&Hq2l3x1e=#jfj^xmj~zx$Th~yCjpANGTo*
zVNNOC%C=d`NUq*2`Oi7|wUYw>K4V=T^SQnzCMDy=?wO`b^Zrdft0X?JRQl8E{YBD6
zZ+_<~vl^zbB%SDdzw7#1EuDE1`y$t7y!$WvV)e=R=8e^b%01s^YRSBP|4+8(TjPJ0
z>&NYDnAi2cmoJe{{{L^y?Gw+tqU78jcbF#HZ=QVrZdfIFBh4nQU2}auVsu0=KueUi
zSFSn7Gjom`8ho+Xwue8uj+5tVeQ)hn&fi{L?aym|%sV*MSNz-6!Z)iyMb5l?vd8Y(
zwk}p_dcIivyt~Ny74o`2c%IdtJDv1q`zfnuG6rekZ?<dSdb4TUZPEI^W1kbY@HcLZ
zU!Txpoael@+Ose5u6NPqDoGw$R_Cuu+a7PZ9bn7WCU<<=_r`_O4+PYT{(kj3&-p8J
zkcp9@!D`F%4^A!P{{710Tc~`G_S{cj-Why*rzxW<Xd}P3!tPwt!pjL~YS}*9KTkC{
zbV)0ztHZ>iTg#-QV}{b&ZH1Hn&RSVvFH!pXK!z)G@|DD%n>=T4&ro&Sbs=)5(#_r;
z<72%UB8Ahh{<-bQRdCKb=?bgSYF4S4TcbG@Q#gt0BfDwjCr^`j=#-w?(c!b`qkl%s
zltmNktvwjeReJWEbV%EpaQJh}(!*N(>GL*}M2i;NSO4XaVn6V~ruyxMdDEX9`%np)
zTTeCpzxg^}=+(<N`hL#a8>RdH@U-)v-&}pU+Ba|Uj`MLJ!I5wl)J6%}%J2Sr&-u8u
zpg2gGm%jen&kDiyD|XJ``zx;bph?Q}hE;0D+}FBGKr3i>e>%Afyp?HFLh{<<7Tw1(
zdoFexDoH#}J(G21@>SO}uS~W*me}@KW7}f(=zk${y5GNq3ZD31vnFHLhV^~P@n0WG
z&iVA^o%D^}_D75V<=V)9Z!p}z+*5PzL6L!z(x$}o*FH{OC#ktxiY@-c+=)fe+Gi3^
z-j1lZmbhKs{P82dV^94xCd0D4Mv3if4z0OYC%MV$K6m8YTESa_{yTaPE}nk(m{4>a
z%ct{Ms+YexzF6Is`C@hH;sUnBby1vdo=YWK1keX}v?d3fJKx*C#q0ldw@sq3VOY=_
zT~MoN`9_At8a5^BDO<lTo)CIA?1a`|_M^U;I|a@JPTDV6C(v^?o-z5n{Lf=6@*5;p
z@+SCPaR|$gX<QTcoAua-H{dn8B4xk4t9j1LwVRrRc^dvOOcOo0X3>nRk%~fB0v{RX
zxjv3FscSIgOYSK~Yh4FcR!^ROD5C#ZZpNQtO*Z>uYm{#EX>4o$E+iPK_c&|jd!ok=
zbc`Qg&ZuGUWnU`sM`E*8*ISFmw?Cfdyx;sNLhbRZbB-oS87>BHBFQR$HorQ)CeGzC
zYtC`+8-3jKB+y0~+WxBEfQ<SsVeHjS2)WD9mfxe*Bbf8p&E#IYTj90Vz%yDsZ#k-O
z1x|69CVfyQ+<c0*_IVA?g@T795_<%{9pN~=qxL|{<@c7NTFX+dJ(?jR7##A%NNW0@
zo<GSfw|8_L+r3%B^?<PQ+xvV<j<Vswjc2kN-EJkfEWK{0V3)i%&N?&vOP54a$DX|P
z4{d8Nt+U`hb|%x{k*9&dF`i=`$vp|u`in2NyPY$B&m?qg&7ps96*lD@3$+nFu_n#*
zP~794XEI)Ik-JoLP*WP~$VA8-LAS?Mkiec1DsuZ^`g$dy34xFD-#9;JkUF1)Wi5PL
zirq(1*iy8YUaOAH+AInhyAbbfm2iFd|L7W}8KEMZAMHJ&G-I(!{bMnccMgvO|4VT8
z2)ZgaMIJR+?dZ=_xKVJLzd2;=`GEXclV>Jf4id>B$zi24uJRr|n;|K9CNN0su(6la
z#f&2or4oy8#XjuBSU1tSap|?#KyLXDEoON<JGHzLTP_~xpX*dQPvXPHu(x90uLqvG
z)TcC|K1_SY)*IoyH^O@>*j{_tdubhB0djY-+C0b(HoeoJrd^+^<bCJI?=M#HCEN5H
z#vPMbJa3I&QrL2X)#)2${S&SCb-w-acj=Zr5>M*w!i-{Xgdg9y{?`W{zsjob9N*rV
zf0$Db9rCy|t<076;*9L1{PTy@d-9zh$DM!jP+Q_L&#@OrUmg=Y^9odS7(4z{+V&V!
zcKBu5^?^#O_)k7f`&fTxom(#|(%kBI_T9tzYD(80Nv+#w)mMA9eR1un%exQX*uA`9
zipz%@nS-A{io^weZ=87CRKn+R;_5Yq%a!uNZJz9LzNDod{iaKQ(MKK$-Sv$hH^d#3
zNWbF-o_D-<@5#={y*zDwO$)08Zx`OmT_MNp+@E~<_kj!E2`j!O#Fy^k^*v;A(CJds
z^TXeH*5&Milwk*VT+;M^&zJmu-l0IDgP$*UKYy$vQI&Zx-Qa(59GkLEuF^8_y1Lk`
zvYVp0+dfVNEw`H<yOFu)*6f2f_Hyy`1a=#iCHI*9?!K_o?bi7js%}>K$%=+$3qA^(
z%vt-O+u`3^1y+mas)nnWXI^FM4J~>bdT~OB$K4Gb9XS=DE-ubV_5UNU?aTWAAg5uU
zRL^Vuy<Ep;zu(cDy*|$9kdo5%$ooNY<zDyZOq+8wIB0pwizyu)n`PeK(5!qs<@SW@
z2Pd3<eb>$E&%LPWibg5BcqW?r?c|lTdTMql|J)AVnd?fWm6lyDTE2eH{$ED5Pir1N
zygpa2;^?b6SI@;hzZ)O9e)g<4T?+#Z{NiWd{V<2$ruq6~$uGTv0%r9Gs?Kh?6L(Vc
zc6gZe^S7%@BJS*+T@`w#_G{k$9lx_4$tP}!UwiOg?RTXw@1CqKsNM5jYfgW8eCub!
zw(yWs)okuD$L?HT@ZM6tyOH~NYhmE_`=JpQ@1heV^dA}(IL|x!@|uTg;la$Em&5OG
zte+S;?fv$*T|V#I4su*cYGi!qm~;H}jXpttYqgC}*C(7-zVRvfM)>lL>(y*(O?&oM
zb5)x+?Y#|(sd@b`6LbZ3mMH&kon+s6?E1kEdX2N!t*Jg~K39IuzFlYa^shhN(tNP_
zM&I;}vdZ(ye3DN8-thGJhNqwezG3|`O!LB<w-$W8)N8qIok3ydzr^#G{zxvC>W#K_
zOTFv8YL5J;_p1}64nA0Xqi_GgvN>P3Bnw5~YuB}J)3paB<XY3GFIOkNxjXsBZu^7x
zYGuwJuT9X|9r!4@#U<sv__n_9b?W7h=lGlO{43b^w&s(0kJ5XmP`$2;;ZF^k7}G@S
z1a577d47ZJ|7EOE_dYphR9-!M;Zyc?=XllN3*q7H8`t-}YrpsRHKd2`WG&~tyZ6A{
z&q-Ko!aJ=#PH%ND)$63Q--5P#WuTjnmP$-@()^|M<zzhbW8t$2Z*~YK-PysGlv8)y
zeD(5sv-huEx?E*%^hz9ClP0{;*$&x?l%`cSFZ^oCxgeSE>Y-ov9FN#uusG<%{-<)F
z4FR7ennAlWlq8h9B6)wLZ%uyqR*#qU#og2_yn|5Zwm)`m4+#yGFaH;kxn<v<1@p^V
zcCY<(Ld{^;#U0$eN_EWpbt<CvNk-SPZ?X9z`)0Mqx2vHBd@mKg<?&RTGqt&Wtl>FR
zZnvh4<!#)g|2tMm;NJMuw&eTmr)Ap9=4Ef!{&rjR+#&mghPxk~KX}2+;Mj$Nq!6zC
zPq*y3yY7e8wm-`+eEKGw@TOk$_bV-lth?Tu+M>Qsx^u6$VPT*_Ny5I*iE|Gwxa)27
zc-7r?A7sNtlL-uPUBAN>?2@u}ub6vmb4Q2fr#h2ujTZyh-JYG`Qrzse`0@tnxzns`
zx4Ip<`pL3-J7aaZo$}o68xKe{E;6Xy%G2|jdFItcyx*<fwg_ypICLrh|C2q>!X%WG
z-p6h^HTkiUQrn5y8GG1{{ZNsZsjS`d`5eFB;eRJVSuNZpMtA<^^5YxJpBo>ll;-Xc
z)Zn@te)_-+u9UED^LwXk5?^ln7jOD~^L4(}HhVaGcFxzebUSKWeRNv&yuEc&QSbi0
z+4@*Z;x2f0=l`{5Qg)!mXT)2MTc0QWIUagc!hb>I`8aDOiNo)2zRrm}`~S^W=TPMv
zeU<a~Mi~~_3%?61tyi;I@Xmj_)#O!H4-BvA-dQ2?DSzkj9iqMZRiODFg*HQ2iV@vX
z?WtH*K2s|D;*G{*wi1Uw&-`GB)^#j68@hX~=(CfMC8Ur!qUqC;Lb#T`SRHVCee=hU
zZ^6mCh5<B~w&%_4P=@ELrY<Viz8X=#dwrqtnb6yp4S3zYx^^%YU;UONTgjRX9#umj
zCUmL7=JcoSUhEhB_d??w*-|O_gSHi)%(TkauRZiV)Uqd`A+lBeOYU*`oc3wk|5-`w
zxPEQlOsf~GSF0Uq*t_kUsjtjmyD#q^3!XT&_4+l?ZUoTq+JkeIf;`pB_k$Lpewlu3
z?msu1YUZ?_ER(#i5>vObYrN^2;UCX>nS)LKXxSg$ZI9P1mz{j$lU>eF!<?U>4%eI2
zn*Q;;$?x?N_ycU@cd)<MB(1uS?Yr7}`FFl?B0J12B^aeu_Z@Q#1#L4ptks?#61;4c
zU9S9x-K%DKt$Zb0c69pzgE*$g=M)Y2vQqDQ>sjcQ|9WNpP5)iVuUF6#xk9Sf`oaMT
zR}-c~$i-;<!D;TGl61Xaa=dTFuPlk`?;_vwSgN;+pFbXHBY*j+&GT0CLzh%0@kuL%
ze!E_8zE;feQ0Bz7+b$xHvRzb}dNk|J>hCxApV(64y)EhAy}4`Gd*!jTF>SGd?pa`c
zTchKTIq>!^d)cE{`(&nGAJ?S~y7kA`oi`~lik?^>KlKg=4{JuHRl(lb?S_IU)`(@a
zEDb**;H*-2b=Cf=OY2^2<+rg--g|D&7VSFDV_#Se9%&lPi4Wmg4$5<-xBj`_dAU0N
zhUm<DzD*aqk9nFHxC!<i2xyqr&U}4$r9`8g>c6&&i&w3he6}odmU?LD*MevNFU`Fs
zJnc*oYof`vg@yVOZvLsZ`a4hlJos|;nV{)6!he3xi|k4Gus^}Niclp~&2s+u<O;iY
z%*rnoAGr=0rAv=6MIEJcn;N2a^u_8TiN*xcw5`0iKmMLq)`L;8m9kWSm%g!kKAZA3
z-kx<@2B&JzbtiPRtV-m3Sx|Z+c4O7n-E;N_ZVWMZ3cqr7=jn%_&BzA5tEvpv?dI#L
z`oX?X;@G9z8>M=AGja||%r-domGykqQS_=trGVx2>Dbd97mh`JUlIu0l<dl#({gcz
z<KjHtBR6uyY_+9MpZy@O`hIqsgsEpo;aOql6N|uGEg(CUKhDXty$xE*F>7aUmdPwz
zH~C`~g2|vx%x0+%=U=I8d#oV!U+{JzyTr%nPZ^c}YF(8N>t@_(Jhu3sp^$`fmmACG
zuEenBc@j=yhn@C^U6}lH_j|cH3;u}s1;{ZjzI@ByqTH*PXSs>{feRXbO>#3*g-ZIX
zg}zwMG5f0|C1_yMCcO6iuOkr$uH;B5{k~w)aBMSlyA8@tQpFU(9Pg;-HaC;P|3t4|
zWB9y7{cTtKn<8(Pp7wZF<vP)xC8hc&rLx}o&NE%J_hd0|Z_`5Ngan>Y+vjE>@h-|t
zZO0B=aP;qCztg6+eK+s^H6oj%IFD5#b=OdK@-n9#nZ){0usW~es^0FT<&a||_z&OW
zzag6Yjd6E)<HfdPdL{;LvpuAGx6Ged-{T}H@BUahBV@Yb>IP|6N!6u>m*kqiPdYl`
zC!bUE-(7wxDs3G(XXFw*G^!nJrM`9>vh)@_Ocpt{!aX@zU=!Dr!divRQ40jWN$i=f
z(`N2^#KiT;&D*s;;Ay=#M^Cu>3L49vlQU>JCLncPEP2UA4{^I=O1+9E|1>!wSx;5$
zj)|;v>jW)X?lru$`G~^LVp+Xe)zW&Kf6K2eDw}y%zIo$!9f{cRgBJO=`X^&gnLjgI
z^Z(keX`evB^lJBy_m(kwKU__ecEl9$h)c+QiBG7Qsk=N@?C|Cnzs_UdxZF13XoBuD
z`!|vQ>_7A7X3yp~-u>r)`^6th5~lX7$<I$H9P8NGD+j8h&tx(1^ekNUe1j}#`&3?X
z0Za6~x5CN$_AQ!d`2gSM#nsz1;OqD1uk4r`QTlVL`o5C0nzLa8lQWs`xjjxb2s+<j
z`0GkrW=G)UGD-IPGyQh<ng)w2u0C03pm1!~Y4LggZMHoAU(M08|4rMp|AyQC-2ZuG
z#`^UcXLA3@^v>VMeN3>YFl}po&&t3P@RihdTyHJ@svN@@<={{h^*-@mz(`(q_v`jP
z$VNv{JCE-{+wIwEkDh0UoV>AFv}bPgfgOdsM^^0TGQ75r*YFbO8LepzYv%2bc{h#y
zl0x@$(A?npa~v_{9-&*SW0xg?R<)E}`XH5k@rQxb{Nob!uR9Gp4SyM|PM&eK@XRXy
z+lEgwk4xX^OW*kP{;_HIn|1Fqx?MQu&d4*#{Qs$+5A#ApuTJzWvn)BW>P6YVd)ZsU
zEH3T7a3kjBu{4u^rc(D0O4uKi&`<6W^beanBUC=El;?J#%<YTqZ)bekQX>&v#}zGi
zaNnz=`?`|i|7zSwH>huZa$f(<^$Rnu&iqxnd(mCJ*XnP&{+3np^#0A*5<cT&{o;>8
zQhOzon?T)J<#}t=3|HHoc_p#!vBkE<V7LA>*!D+cn@v;g)$ZC-vENy{raWK#gKfXY
z9tkrmZgcP;p!u!+8Kr$YETh4vb~Ik>a?_TQNS-Nq`(lKA%NnLUo!5bfpt~eDN$ACG
zi380j_PnvO|9ehQe3NKf$B7>*5`Qy5OJb(YoapelNMIA!j*VyBIZw_%v-vvT>;K({
zXQr>e8+P>0`Smi%#Y?5<rLQkv^iks2f%NsV`pG=|LAxjq^M{9hwy%C0aMdp7IB4i@
z+WbS{;k|dO#W${hR`*S+!+6Gi$7xQGO*N{o!%FMdnJsvC{%VHB8rR2%Givyf|MaRK
zQ#tnH@S48Fu;YfS?Q)J!SuUHOU|rXx``>KaA2|cIvIfB|pErgymrqf>v}twXht@kc
zt+#KjN(=6tZ{xn$!|k_k!karx$Ji6VyWu-F=7}U7h}mizef;sdomso3*!ttjBu_6|
z@0Ea=99Q~S>|f#`!N27yzifqF^hMaz<HmB(9-QQ7HpiOfSs%y0WlDbSuIP3)tRql*
zp8YZ9wMDP2CtTfJ&wDI<(`}u|5cSWQ?eV9%4=7cYS4ur(KX~JhsKK{C6Z3n1v2{$m
z#c<4pH|6Uw(G#z>#wYM7x+aG9uga48&LI2o4P(^fDQj&VF7IH^=u3RhILoxkgsIK#
z-~~nlgSJ)kiltZSFZx)@_%Hpu+yXm8k>n>Sp$s+2Pv(b4_CSuVN$5E&@pul}BrS&~
z*SACVqMOWrns2C_uleNO6L0ke*1g5~ML`VzHfNm*xw`!Ar@87O!J46<JwZQKt(qC+
zd&}BN+Bp1RfNY8MD#Psyt3-Hg8QbPDGbd+gm7dF;u~PivhkM@OT3~<i(SWP>OQmP&
z-1)!W*ib=x|1|b<5-!SZZY<C(V0C9+xthcsDBIKWcE^LxgQo0V&5B7amzAR57ESJu
zXxpK6Dbab!sefG`mtE~PJe1MGEq|C}d3xr8^%q+V^IR5}?c+Pst@Jf-W3Tk7sZ-OZ
zv|Qjw>@hgTQJwT5F37|uaAM(ZgNIk1g@BjL^KBGxz5puF-?XvECo5Gq9CbA*ns;As
zV$!xf9mhgI6~jbO#URpd?!sf}QuVgTCKcR(s(Q=(2)vHoByEqIMDGSrMRb$*$o&ez
z<T-AO3*?`OY<{Y0%4Ou`mE0n3;N_v1F#~+e6W_k$RV>pYc@9;0g@&rnp4;_I&;Yc5
zDRQxUa$a(fazcg(k1PXo@`_iM+ZX;)lDhX?HQ`0%e2Ff@qD@*1`wTywU!`-*&V+Bl
zN1bCGNj)tXk;exbwF@uZwkX-B^v$}Qox8MGN}b-hAn&6@ZQkN#uU)ral<80C(U3UF
zXpnaD)sou*wNkzQ$*;FH2<}$xpLRXrG<QRO&!5d)%N|OqqMYQCG~?<5^|lE~fty+X
zy($h{Uv9ANfCzWIa*vy-RH?*b!}}8dA{BpbKb$Pmu=M-8Q-*)sJ(Z8GI4p7X9oPLp
z^zmwsqe(f9`tz<FI-b6;SNd*zG54~Ei7ySg8r0e9EF@PQUL$3=+AYWZZjpujK@*RU
zkdeJ*Um+uVcIV%NwySdNdbp6mkn11^diHnUAbbD7H2A<BQ~fz^122z<GqP`$_}>#=
zdpf&9!=WdB_UE&oA1I;gJ$$1t_{JxWZGSkn{n320`u72j8<zS9G!$7M)P8$?I4nQ=
z%um-l>nfl}8K_=pV~>CA*z+;j#LoPB_4C87IqskWKDtgO`W~o&|8mvf+f~h+N>J~h
z`n%4zt4kB+f3D%J^WR}nbD%C)*zl;x&D{Tu(YsHt%h=3+BQ|w!*juN?Y94Hl@@r(0
zbKDmzB%i<BS90@r7U!`|a;kf#i?nb3mc7@*gGX@Ve#SuXq^Q&;_6QS}TMmDEd%62I
zs@NDFN`1dtRpM*onXE>(_o_z|FV)Ekae|IL2wZJb<$J`Z-IZ-Kdq-y1YNZCYNBMgi
z4bMdOEPb5mE|sjYEoS4>sCW0)iZqKbKaVUon5Gi9>!IR*iTcK4u|W)aN!HL>F{e^~
zTk@&PeTi>YgM(|2IM{cq586Fvl~7$W;l^!=6g&Pc)Bc+mK5kAte~g{cc*39Lkj0Gg
zHSsdy8)a)}Ts1uN3N)(*u3QbiUG>cQ>A&G=fAaf#>~0UvSI%QopCvLIx{LKrZl~Qv
zgCB=~nt5|AYZOs%Q>^&YEU@@#^Muf=XD3|U`dV>y3fHZ|Qi0orCH7k$uUFP{{<Yug
zm06X%_wL?J^A8sFU|9e?mGSv>k#5L3qg2SQ*J+z~-h{Lyo*CQy%uc9TB-tZt?$jfF
z-J$2~`!n*3_qxW}GDiN*VdzO;f9`U?|FR$3YF_Gqd)3(2C+(Ro(#gN2&2^do{>M|o
zYrmVjK3V$zv+eRn&h?ee9<SE_GfV#SaDS}or*HfJFAa|S{i1zcv81)!RbRcwpXV-q
zUoO4ha?{P+I|Z4|w<A>lE2?WhK0MpyQgXV{<%#Qld#pWi=BN3cw-(>6w&We&ou~Y_
z|G!E4>0bVPp^1SV6W^Ub7Gd?z@YDHI*Kd5(m~-%a`6J1e;&<6=eoniu@zXrMO(OoM
z$dMnLbN5BY-eQRC&0%|d_PevSo0+rqy_H8Lmbh$*j*op&mUplBn%#z3KZ8!)4G#@1
zP1zjFC%fsJ@Hr`Esbc9>f(9mBZF~(2Pu1ITIX~u@=lFGw<5A-m$ubU)Ik2w^II;Zm
z385czO1-w;)q7um6?}9d(&-Ls7GB${k{$7VQjGKBgcl4Fd!~zY{q0H*uuTv6$n#60
zIpYZSHZj|E84bg=H^YNnmK=<fS>)()q(t_C;iXFH%|{ek69dyPq{i$&VJr~<+N0y4
z_+amnBVW?vc?Bnagl?QDkbPiy2uZci-~Vstp3fI{7dalk>E}ZREfrVSg{oUr|7e_W
zncCnjz3>bFiWdv*z8q*>)ymwyP39+eRmM@(SB!oaIG$ce_BymMx;1BaXGoOfiWb?e
z%Y--$`#e3e=G>~YJ#*{c&%6Y~d!>s$*okjm{P)G#H_~fAR2aQyHQtfOyHN4Ry1mD)
zRGsumJ(_(Z|E=k=eb;vJ&fj`{#+vCY?dhtf$L8@ErCm6_ql0bT-eW#J54V5Y6}5ie
z-fvRDuT_6p%-i{GRnnDDA6l$3WYf~*?geF9%t?8+XSK|M^vX29F#kn2jpkhH-M3_|
z^zzSY5;=_rJq@133Q5$?ICvRi?u{Ndk>1G?kC~4BxVb-^^Uc)Ow$8^J3S~6?d1glR
zE_(T+?nbN0hTjjTY`g#b#kVW|?_{0+zHj(=FV0|5{)=NDV>g87E~pkvj#*Kx;3WB<
z=i0o_zk0*%KA7HX+MC6EyEtLXd1sy*tIal4e^WcA;3&X?i4qSh{q~mX{pk9C^>@9U
zuS84dALnvkUS;(7zL>LVi&f?Kw6FK?KHqrl+RAxnewe?Dihiy5+-SX-#Hzj|&es~}
zs<iao4w<x6?R*x`Eb_V0)IoYq@yu{(-j#}b4JD@DdSbNx8prd~OEw;g(J=b_-S4;i
znHUX&&z#E>J7#vXKHDQWPw~oG4ZB$3&xU<Jcl7=|VQTdJp>)wRhvpXn^43wEJ<o(L
z<}Kgb-oewnr7dW)<CSg7HqIOkre_~inLLTTr10sLvbT$C(xOj+N;5z4u47xKBzU$x
zor6)pjm_9pTJhYZDBjBHCLHO8Hs-D=6C6$6ZSh~X;`~(2<%xH8CVuj)XcJ&aOfiVx
zEci%gV&&FzFV7kof6jO+vg&fy-&I8tEr!R=oVj^VfOlb@+sBu)X7s<F(SLeI|M`O)
zrl2s8+dKKp&x7BxoORC5`M0A=R`QJT?Y#@7oc7K+y8L(I*QlqD-)1$Ra+j9iJ-74B
zYF>{Nb(!9qSC__1TPs&NbF>MlWKTT!HIt)B0UaGW?HwFGy)LR}<7Vgmi<#>RK1-a<
zc;H{+J6B@yZQ;k3yS0A=SF>Gje`xQ$%g{~zSc81GVVi)`Mw4Qzu)TTmXN>);%$Rlt
ziTrjpS85jCwXysXi*jz`ME@qmr&pPjn<VeNKA9k89I<^Pd#`Xt&0BfpMnfGFpEpx`
z_j*+(O}HTO?J?U^?H!JhqO)a-a|8SyPD_*CZZbPzL+k7Xljr$f_@u|#wmjEResyJV
z)m4kuW2z=~M<m3KdHndU)wp-l1%pBvvp(ggoe%$?XmPMundVtHzqs~YU)F}x=02-#
zJ^3@Wc(4BYd#a($p}C({EzFv{n|IrR2PzVu^f<eUdn8l**(8l$B>OB*T%4H1!=0@1
zr+VsvxX6qd7JSmjCw@9IVZU&mz`5o;>sK+~g+*6-l$`mwKIM4e@`d+zK8%=sU1MS3
zC*!bAMV7<dsTYoCth~9x*3H4~Wbzi9^TEQe(({~Zt?HNge%~38rKa?1j-t|{+>cJ&
zfh%{`T;R;@y8MVq@M7BXhn{o99?f$6k{@G!MOJUIiM_W=^p*JD{COP7Df-&q)jd)#
zRPMU{$Yq9OtF`>QIr(2D{_8YM>^-a#+2zb*svcvw>GZCRUh6kmzPNfw)?ixRL5od=
z62~7U_b9%f#Aax;D1N@Bk*lg%Myg-zd0CCE;<IOUo)R{YU0S_<vg4CG4o5Yf@@2Yd
z+uAIV-ck`@{vvFP)aQr45B9%)`jjW;yljT*83j?r=BRU*<&wksCFTasQ2iX(u~DQ|
z;^aM{GeZ9B-@R*$)0JmYzRdnOqVJH!yS*=a71!{(U%7tc)xkYkdymu_<ab5dpSpgH
z_v_X$>r>a6n)BQ3g&YMBB%ay7;G?#b+OZ7=Zim#5ZHdyqSe3dk@sUN2jQc6!#oyG`
zSPo~eN^p2;&~bvpxcFkMfx^)<#_xofx8?P0<YbFZII(+4;fhK8t~x&r9%~9+{1@`r
zKx+P?kFv)kj!Kl*CVe?u#8izi(AjLp8qw3{QDXUVHoxP4?kf0Ns8{^>^y;b7axph&
z{eFE*{qj_{-)>8mNILfyv);Y&B_qx}Dy@zqpQFhw@x<hVzTFcXPwZU(QCdpbJ0a${
z#P+D#WSc66y{G>09{X#*F#NJu&*Sf>B_7v@{<-vkD>W~rxTGjGF&D(jPs-u~pL`5r
z7#W!x7{EjgjTH<OK%&H-)EwmQ#HH_&nw+1K8jx6&TdV-m>YSgGUsSAMtf23lpHrHf
zSFB)YU}>qKA5fH<l9^nRU!-7YpkQamrSF!RQ<7SwpzoHGSdt1cMM2*qH8VY<L;>ZX
zW-|o?g&+m}VBf^zYz6Rv(m`DM!KFzhl?AB^`kuLo>8T3(Az)5~e^ORza*2X|cxFmT
z2E=ANJ1(gIE9Shtd$H`%4k6YH7Ty2<Ki$c1+kKMvnBK~bAzJVMUg4cqYT&k_K;X9h
z|39Bu85n-%+}>9G`yfx*_LCob%5QID41RPyVfo6qd>*?Gv(JCnpU%#}&|vmnYyP#{
z{qJ{0xv%PDuW;6qVPMG9N>7|%eAOw$f`Q@6^vyXZW@eRw#24_1@-Z-cefsB9?YWTE
z!4DZ23W6=Ud*-YZTXcw#A;Iu{Rs*_GlWxu3A%Ff^{CnHEfBiN2t%A1NeYh?4@v|EP
z14Hr-$aNl&JL?}ZFff#^0N=<Bve!WtY-8W?Hw+967jkZIi{C!yABUIwWX4lA6KrA*
zgX~)${HNUfpD$P_1f)siW8R|r00y5myjDRgQ<OkLDo?9i=N$gD1kDnUtnyBS*KKc$
zBIbcqiIf}so*yCc#3!_Yi=Cn2=pJo`sO+|vtuEQC`q=B7XCG!{IIw6QcgNA^Tk2<}
z%x2!c>{Z2s?+d|(egI$Y3UMwtfCAbf7rnMJGca8FI760!fuYYP-0dHie&3v8!>8}I
zu6^uVw64{5#??iP3@2WvSAIVJ@yplJ-yV}0gC804t89v_{O85X(6FQ|{pW6Tx%*cy
zrZgDwt4M<azuR#3|D%jQJzJR>9BS82Z$1W!n=mN`h8?>fYkqw<-70E!&7SV_UG*<j
ze=^^EYk1z+;u*KoI(XpzSaSFL%jN6esfNa!3n|o+VQAQGJ!8+l-LIQJ-|f>|(p5gu
z`07$nh<vHZxqmCgK|Dxz;;XE>kHQQLD-N52?iRxIA|x0Bz;@WAu`@6z?9RPi_wW0c
z=Wcbm_b;k^>Q)O{JMWbe$Q5^Py^i@-()?I$_xEjP6Ia!&dJT&5ckdF6e!W|F?e^PK
z>)HYzGB9k&e{}o<`;xBHGhbza(!nIZ)}>vOUxB>Ma0O&v!n0H1>`S0R2ka(4vsn2F
z<bpeQ58C{=8@qP<?WwW6o9}Mkz|5ea_x!!9*Vd|4-5{$Pto}@uVqidtBand%uRz*i
zDNt@RGXukfL-+r)oXVWc80#_B^6CuvRfW9l3=MN<zTPdpdp6Gtr&X#!vA(U$3<c$D
zC*OLkHvd)Zs{RsK_|*g*SO3fGAv)bSbPiH-09o~5a@qCMQky%jF|K@6w5$u1kM7((
z_@wmFp0HIro(9Ewfg<<w@o(?nNnLPRbu~CPH~K}DFv9_f^Qns;883aO#=L8S*Q)5H
zLEsSo0lv2mSFBW=;bUMh2)?Ye?flaW>sc||{nmv9d48?G9ic15uw(NNlXuUj)!y#U
zRGJ!M?*DZC6$XZXTdkj3?O0v<+t7E(q*u>Yf)azem0A|Fhp2jJOk)Tr%`A+vSCDsJ
zWwG+nvLz5#K!O&e*7@zae<rn+(JLP<>6$$W<d+ZY%Z1lBb4I#P4huT!DH?7um5ZI>
z!RyyK)2@9CEXf9iuj*CVpr1$m85kDuT}LkhFuexOQwq~TiOl@dWvR8kpk(HvwQ@<-
z^&_S-3=RMHoI4hm|MN5?k$GvYyqCM+5F^8n>$^Lz9AsI&wKMkS)Y#a)+M;|64$Ck1
zPg_1g%Wu_=)}WOI3=HRVP4>?A19|Nc*z4eOsG)e`)j7u|gH&A&2C1@IYbPk<2~t%C
z=KuSe$5(E!Jv%okyeu_5{5{y)^RM5$^wRzMTHmtwxw%SHLxT3+PB>k;my>~EL36eR
z0|VG-21ucbB|U<pZbSa<ZO`}n*WZ8i{MbabwUC$!`dce}y?~*Cb<epRzxTEomv;S~
zp%&z+dewawC=q8@nE$q%CmMUVHRK~GODl%%>At=@#Dc*gQg*&Dze4DokisBakT)8v
zKrse($AUF?OQ-o=&)zjFq%i2H=T}gHdCj13UD<`LAs^Q*?JCy|-SZl3$^j;;v{>d@
z9;#DAID>O9>&G%Oy!o~HK~T-QPcaKJ9fVgdnWUAg1uCop+V=-BGoa=yxP=T0AZ2@Q
z)b#1KdG{|q+2xwQbduMq?x09rDTat+=PNH={+RM?tLN))$zaRozd97Zl93_%#@z2R
zcmBOwckS(QlZjqhEA6hfa<Mb4SeYzl+5mC;WG;4whyzC=Z#gooEb{~<TN_Z4V_4w~
zE|NicP|TqA>-D<~L2oC4BDDhK+zs1MlBs%V3&<Gf<Ihh)JbRPW6q;~<TkiS#`TzDE
zJ>RQ*yWHgG*1aJ?o>Psd-apKkRwcXYpMeQuyzb`tcMm?PP|3`_WEkhEIyEFXXk|e|
z<~`ofdWpFWd<Pf3NceN}zsHW+Jy~y^v{o*$$`g8CZNYG0uZ;hLw22_cS1$u)!PL9O
zRoC4?DH175Hf$=YTkH=KTv7#6^gT&QLLC(S;md;_GF+D7DX?@;Nzj#T_IdrbEH%8$
zG%egW#NvR@ZswVv*nU(mS3dcg?YOVivDMe~mQ3<m^;pfZjvsWz4Y4)ByChJ(Ewess
zf9|x+>~;%EKfKH^TEM+>$*$a0eJ2~TEe>$3UwnJFwEugij%?W)t64lRKz_^uH7BxO
z{g8OtEWf^_L@{&^_sU1HcMPU-vCmlfc(H7QW>H@_s3^fKT+?pFDjXHca&WRdt_>=I
zPS4cxYh`A*QevPu+aes4gDqCpf&BhNrmxW}%D$_v{CWd8?|h6ctP9|mc)pXTdm_8U
zoAW<}<!h{tt$qiVbl>%3{n|=428Mt(!b$r7T8^KoikT1I$Lv+gJzim&pc%Jv$u9p@
z7wml18g|z4EvT26-jMgv^5*LYmoI{<SWneZ?fRu`XSP`HdV7!K!m9*>%JOhXxi~ds
zZHUDI6Io{Y10rxQt?J}rXVB1o-kJpRBCJ|W)HO|z(&l227nh8%Vw=zCTef}vKgK^L
zyW3OG7@yb$YBD`Y-g-p#iA@+J_Xky*%i7FPD>KQQYJ8P_s(o1YQgFzhcwKSm`bWk}
zkPE(;N-j9IQERf+IsG~&28L3in{0D#Z+rW^UfKS~#amCVf0OlH=V9vBn;dEsdR+36
z6d!{_+4|xm*Q5V!I{9wzTHj+!e(gAPe3jd(Fi`Ds<(}^kKDDN`zSC}BWk~G{?Ts}B
zwF#yeZ8xY;PhT~sNN)9<m1UsvD{N}<rJ2T|ewO{Akk$;OG(E6tl8(za?{guRPi?|1
zgO7rgdY!biJv&ot`JCfg>8oNP)|}PhPn&~oP0Dwxx7Kqxwwc}ByM61)86ooFKO(Mr
zT+IU4!3+lsiLIX+YHyeQJ1lp5+uvPJAN#VET)dvrAa#6|&ng9w37@Lwvd+8r`=%Q6
zt{2%x4!y~tYT$N)!q)Q3`>wrwTsS$*GPpM2XY$stRchcCP@L;Y&F32@f!jb1L6_BE
ztnq-CW(oC@t6#33>C3+%dtq|vd2k)AD(fSxelELs*(uHE8&Ayyrx}H<*Cf-A^OQPF
zK3`_&FcW0youB7D0&jojuK8%J_~~^r!vT-_dlzQkJNy4nGN>s3l{5Ks?W|Qy3=F9R
z8yXHl;cM=&GkmyeceVmtpr>{(-L<8Af8y4Ry5Bz!RTRx*V5nc8JnQ4FCE(UYmx-kD
z(l6mzf9Bua{Ov&*L&Ji;%wz9j!IfO->)7j{NS_e6t@3l`^&r)kQLWBXPFpY>*cGK;
z*rRw=6jYJK<SqPZ2<eDet`;-w;cC}l7G~J6?(WPpUtacxga<tQP%max&e$Mz&)1%B
znX0UBl&7fqf^Ib}nY!q`S?ml&uVy6kWGG$z5fc8ndp@X21~pP)tw4|!;K~t_tYD4C
z$A;DnlXGu>`}6(frHAKxb&dEKYObBPJQ<#|37XiK{K{F?y`$}LeVqT(AA1=X?#3;b
zTrS*y4bmWa)x2`u;zJMr@39u2YR+)r{*7&GOJ@}t{N1qnYI&(9sN&Q<`SalFkV;Ua
z%0ufpOYEv0nux{-!=zI?YgUI8f+`9IhKSCUH8JNx!h;`vsK2+D=iSdw3=DQp=hy$s
zoSP=&WB(@WYiz7n>*4yo^G>dO3<VRfXC8ZbWbsyTwp;QmVb$xLWosE293+YHci~aL
z?YX~8Pk)?sW$o?$ixaaPCL69~U^wyMxr^TI7?ZbCHa(X*_qx$y@An0uTDxS4)P)ou
zEd~amQ<mbsD?YEka?f@TzulWT?i(IA`rCxD`UNmB%qu$Qx>@qO?VMIUH6Q=27dA36
zESPci`J(dp%!Gx@xfmEMO232K&nYpjn|I$h^hH!+2@^xZ{IL1mWnmWFwucP)_)Z*2
zo@y-0z%W1c+V^1p*2{$~_P0|S{B0+^Jf8JcNQR+d`JCd5IorCM?Dij&zhCb@nQ@o=
ziKYBC4q6Nh%TC*f`&w_@v+58d1B1l*s4P$-0A)BV?Xr(QPJdgw`n2u#esjqM%2yjy
z=d~|A_1T4iL11FB-Yl2@Z@xWGuCuy#J9{z@`)bpx?s66GlV9&T@j(Zw!s~hb%C~aM
zns48~dv({}<F#5>8`P467#Svno!gmV*1WHM^PQ0Dq*YJ*L>U-TMP_t=3$a*jv+ZD!
z*lx>UMurcOX|?{>kQ!89LM*s-ml#}nmpHR-P0=zYh6kI^{F-N1!~6WMqm9K5Szk7Z
z39HU*WMW9@0r}rbdrqH}VS1$HgT@}qFnLc_28SZc=ZjYUu&oBQyR~_-cEFKa-;W^)
z;OG4lO;==n*)n{;X8-O}3zu2l7s9}h@}XF1damBAGOwMrvTfD2KJ{D7EbIQP^<A>d
zM3jNS^N99@kHr_ad_K9D>&@N7SJ|K532ZT&`07#!1H*<bC+{D&oY!<-NtA&>Co86P
za&eQMC<8-ClCCKO!-Bp-QNMHfwH~Yt3{!pfwM{P8(g&$Km31+Qk-<SWdRsi-tJhAe
z&M#wPXmFhyZo$C7uzJHZB072J>$m>PI(7g5x6`7&OI~@T9xY&CIQ8SZ)VbGBe%$Q^
zcZ;sZgG{|zTVGqU>33eZY;f*MyGtw#40%tVR9nc33$sno(o5H3VA#<ym5qS`)}B@u
zJ@-y4`ttO9lc2IE7Gztn2fymvoV${NVZn^|>%V_~*0-_@RKt2)trBNoSd;zR^77js
zoF~A&JFOcoTbUUgB-6HoQX_JlgNg*0E#Oqz=bp0oxzv&Php8RxI?HsfE?vpMkl^~<
ze*355qCf87w)5AOpfFxH*_(0q=a+q;R`aX(!Hf(CF7@qeFE*HOx8rqI(9x$ptPBj-
zCAVKX@NP=gFPmsB28I<XTP`s$Fl?5oKlM`o{LDw!Gj~?YmCf0;*0*eX_`{I26U+<`
z@{awTdh1<I^)HbaErx{HW$bs{Yuf(&eb?7~`}eFZleEsgU}I>lT&%t`$N0(n$9qd+
zd@^#47Ia%LXJX(oU{_e%V*KQ6HZuc*M)IBS1q=)f>z0A?Axd8ysTA%z{yF~kw!eFn
zH+7X{PmaG`ZZh%Jmd>a985i{ATK`Y%@5|(jQ9RG{^Y`6r>$lIzE4Y*L{oXaTAX8ID
zhOqA+L6TQ_e*R8~XRqC2wsE!QZjd7w6+mvA_x|CN8cR>ms9CJ7v)#&qBEJhunHU=W
zEITt{?NT-dhAV|Z51+*JIcqU6oX9`Lv-7!>-?^20LKqk(+`nr4<bAUp-><yfr10P}
zRtAv-CWoS%X(#T#e`is9b_=*6(HY|F%g}JOwkC=x+{4t_?*GCV28M>v2yb2n<ZcPJ
zzEb~X-EE*!_a)QiwZ3d6h0jA692lQ5Ecs-kD12_h{`lMS@BiNIy^Ab0wV>@!?S%!U
zt7`8onHo~aX2GCwM%wmd>TJdS-*SHE&dV)fVz`!Cb)fc0`U%kB5zN}2)dgkZ4m0+#
zb%Zb+*yY2&qyGob&lQI(E6(~r1Ly24#rpCucPExQ2(M&lnB>FYp?907l6#-oKb>HK
zdc~vl%rD;0_F!eGxi<GXPmt%<s#O`FR?39=TdyFp2RPxP6f7S<+gn~&klWC3xA=FT
z+RdP)Rqq%S_AhhI(LO7=WYVgvRrTse?9FX+jeXo#^_xguI9j@LnSD0HhG{=c*4>!n
zsI_v{vR`%Ezc=4L{=(zyN;T$P5|g<YGKy|nHira-dX>I@|M1Bg$)aUU4c4cBzS9Bq
zfLMd(hFGj+y(1CC$ng4<Wjc5WKyzhYEiXF*gN7T((V!@Qv(C?;cB|e>hKACobBsYl
zAa|yO+-Lsv;`70f_hqFQT-`wpHO2#TpVpL51NFuZt=z|d%V)khXoOINd6th4E5nhy
zmFE<uhD;60O*;mvYLP=6BR@le<@n>0?%dmTcPAw_zU&LxKg&hVHGA@$l?)AP+vgg4
zsD}22+%BAb-Qi>2y2}%@wx9gCI3stGu_(iZC)<kIRxZ(+{Ob3D$K~7mFHT&w)$?a8
zBZKd?s>R#2cW+vKcXthcy8F2%#dIx(9h>L8KL_eYZ4X$rJKTcXHk9Fji{<^fOS>j(
z<$Vn)Uk@6I@p>2c@X4RPx^p261?eb~Wo!Q}VPZ&r0`+)nP^9jzwbOI5AG*$BU?_yR
zb7shG(ft>V9o$#N`)2)_7r23wL7*HQD_1>A;~p|FFswNQ%J(Qm8YBo%22m^itu9^q
zYJdFAUtMZJseY-MMGWi2>hFJir!zGqG`M#E?O(9+T4*Jxx_jRY8V<P{TQmRN>XW-;
zx7zJ_thN?3oXEv+?8Hwy4NwYb4W3)WzkKm7DTh@%=D>6v^%PaVIvKqzf5mb+{0O8h
zmr#EGdjVva!Q_S1xr2viRNPtGb$TX}!K^{G@+L1TDnPkaF?3r9gMr(*?~W^%OnUVy
z<o5aK`KP6hJYNRNuZmZ9tz=kme#7>2()+BvRj+ETG@I<lz_5TPdnF^b!Ei{x99Q0S
zu~=~X`VUrl%+tCiXMIJoU{T0(@0kBQA}^nTTi8+Bq6|F~Ki39mtz5EeUH9Z$8QYt|
z6+qThBu$s}Ko!A-g9l^7Cxh!NBtKr>F_o=M{@9nwZ6Sr0!HfqaEbp^J(+6_31S&Z8
zOPl<i{Q^>xBtNN<p90DbSA%Q!?|%H?+dfe6N5h=6svp#;@0MP6%kTT8T}`F#pfSLy
zx=4=IyIKj#f*ZJqX_kEabA5g466Mt%+s%IdKDuFPl-1OwCmDC#`dq92@b`j{AWu`Z
ztNZu2f8O;qQyx@#z0XjZ8WP0oT^emU-*LynA8*v3YiLak3G(&)TD#%v?%US0ZcL56
z8G0-BqxZRVfgh)=x^98^+hV`g@T)(U-T;dJyNaRbjz`Q+<|}?$!|Nrg9(u<%cy5Tr
zcN>k`C0*cPd}PyX5Pt4DG_j;Wnlh8Q)Ss8ffkMzvYuy9MmYqfW*ucD1%jacV@Wq3M
z=8o2yVVYel|E2IkdA9KGP1?J?c5Bz2{K>-<AL$+l;-A{K`h9u%oPDPuoz_l}kBzS8
zKCNMU_-xsJw&Fe>P;PkLJKH>jVCsToyT^sQj&94{pJy4Huxsnd2I%Nd`M1{vORLyy
z3qN?D3k=a(xx{PgtKVDye!O@8?v1<9fsE``)~7*E^X^>)vh+yEeRf`}WiIkH$)MuV
zV&#sebb)85eoBE-hs8>zW3~Lt7dJ>dfXAq!<|eap`quM4laU04Vcype<f0Ok#z2*m
z&je8Tdv3Kl&LuSKpVS#kBXF_&YGt3+oaT1JkAk4sm=h9n(3k@jH*-SlYhkt4l1Z;N
zugueaZp=}$)~w4*b!y1wpxlGym+eoB9JyaL|FjejICa!6>ArpH4^P#vgm9=|Cuv22
z3alsT;FyHuMM!8Nh7}oJRs8vLzG3O3d7!q5m)6Q<OLncDb6(+&*LQ*GSt3)tv{te$
z|5d*A#r)axwpHG(E(axi)u|zOSH9DEZp=|GJU`*7j4NmuRCDFN`)~g~_{MK0d7(8V
z$n)y-SLcfCnhT0A$2VKLvw=#Jug4tkAAVU;0Unv36SBH^je_ptj6K;aAH{l$zOR}Z
zqAu!pj=vV1ywDTd@t<l3bY=VP*4KZ#1sXk;jeTPB?8Bt92Pa4TFtw<4Vq4?adRf!L
z^2H2io(!eXReF50DrU1YWR!ji&)O}#{^k5XPkmU!PgHL67Tq48CAR58rRr5Z$Y|8d
z-<xaq+`j54F6$cwS2W#NboJ@VIM871oRGrS;9B`DnY9(i`*R&8cdmTEWqH1ACD(GL
z*;3D^hJcdI13k0+Qczvl3?6VyU;y=sv5b)ifMTT7#&7$LZEvsZF6Z|7pCuGIVb@mA
zb0Gz-bJBN*91W7ZKW+1oN>z}#rm9!JXHP%gc<*jS!TXQjWPOX4HEBPwxxG|tW>>3D
z33&K5sMr5%?S*Fv@oRlgz2{mt;d9RR)rWQ`ah{$F8rd&P4R0<t{aI~cc|W5Vs=4d*
z%&x0XZPtU5EO;8BcXff7l}13&xy`Ylnk6Fk+-EOv`tFLhoeF6O9SgOv6n}McCfI`M
zph7on`sY2Mv1p5xkHY*-e@dNu)y^L_{c{ewq?p%NaO>K7)|C6AF^bP`=7qPG9~GKr
zz5dOqb#G3sV|)MV_m8!Cpmy)__siDe@Z#3W`OFLqr-<w&<=+1Gdf(&LCDGgEFQ-Ik
zt<EvNdp5o~DE4|wNY<S2Ake6_^6npX+rRFX{=H59a!Qic4kwW353M}0>=-oYcXYqM
zTx(jnef72W@;ggHVewOF8N6}Voaa-)Sz0vQ;_Auo1x0oLrW=F(rWbn0X=TI-r{_~c
zc0+<!9l1X6)0%VlD(ABGhbQAwzTEM80iWElBai37RK%PMS)=#7QWew!2s$e2@wN8C
zg2xZHnn_+bIs=+!T7x&XJUyqq5;Wv}aOJ=E)3rfW_Wl36X7jvwbSY%Qk=%Gt^8%Ej
zRHuggmY#8$nSmh{e^VYbq4<0rw`N`I^&puIF^fT|9Be@7p^&idwl{TrT=g>hbK<wl
zUj|KNP4dzLO`|w#)h}gR`F7ul@_d_p*`V<_h=kWFo|PdM6T*+bu4e#eIxX;w6)1@E
z!n8#B?zp~g*GL8xi{SbMn(ID-#s!gvvfd??3r>2uS`$)Uf@Xb0)j`1mQg`BYf<|Te
zb$0jp;8|hl5WI)zd#6<u;z37uPtdw|bScOUQODagzzrR+Z$N~p&eZrnEDQ{<3P4S1
zq&XK@F9W&F+kca>q3-s!zklApeDr?*w)YuAk@0aLzk>rHD@p5mK|<(y{ZH4U{od#1
z7VQDepn&tT>eVkHS~4eIKPUxF1%W1xA?g3ksdZg%y;_-HTmB75;X(_XcdtUUWIW!^
zV-A)_l>v{cGF(}BsPT%@>j^#JU;wp@p$uQorH2~7N*sCw3SoFqzniym+Z=vri><%g
z*RrpFQC`n+`__|+3lqRj2NAPopE8w+xcd6_&kC8FpwZ-)=}O?-0w#)scY@bHJe1-i
zYCih&-hVCEURr%(p5;+`IAneGi3wRglckF0fimFLyFokKn9H~S=05no&a5Irc%|2}
zR|W0Kp>3OELG?6f9`;SO`IHi$EPIRXpytUczP_tMbKc6oghuF&L@iN1gWz-iyFv9u
zUR6V@&KDl9t=^!53uz`4oO}!}zq_PyIeadtyxQ@SQEbx%V+}~@-wm2q%H?C*(V09S
z)L@h?STk+H=Ll#5+#IyB;K93lyoPHR2OZZiThJMDGid9s!yB~@-_)BL5~S)``Y$=_
zfUixsawk7`{j4o{_RBg$UN6fEeHJlw;^#e}wEu20Xlj+=%0tjpHO^iGXoPmc-3C{c
z`Jiez>tcv(mdt7+NKj1;i4W^$<NG7yGOv%l7u1<-4G|75)hJ%0_4Dh8<@3WW&zG%S
zGAYXol=t4;mM!PY`=0=+rcJd&+ix9T#go1pG>fM`m5cpd-lH|z&tn2WVU#u9eE!xu
z#u}lp`uEpYJyE_3IR}n^lLd7=vaWv#;g((fvPcd*FEv>!&kHo^2pdy&Ze=#P9lJf{
zmrxL>1-&)9YE^6B)e_5oXvt`<3bOCrU5(ENFD_pUnhskt^;PpJnbo(oKJ$3Nvt`9z
z?^fnLSAXsFKK|T<d6vgi-O$yyj<4!@`8@O-I3>)w)Jj_B6xo*h`{(`3rBCWXOF1@$
z><uaRzPj+t##M^X!6o}$-Kp6Y2hLsiTy^^8-nG7c+o!KeSrvAB+ubJ-S0Cg|_tIK9
zY00PV`3{?#8`J(TZ<XHuKS$i$CpDoxiK{<6$g|W{>v};$Nm1PcUC|9)bCjDw6~SB3
zjHa=!NsQlgV^M?fa}ymwA&f|c3Crf(mzc;E;ff^VV6~cmjq+0;)-zL!Q^1}1yCGUK
z50dZo)~?-t`>J~x>y(Mb6E=by&!BiIpJF*LegC~`EB*XjrO<-p1XtDL+AEjr(g4lQ
zl2CXBLB?h#ePNz;$5M2|7VtQf(c`HhLA9&6uNO4*SIU;(yKAxO<lJCJ);lSCCV8#m
zFI#wsQSW=+fh^e{eY3Y{&F9is{HH?os{5=hT64TwnN3bt8aiq<?4MW+ZV{-XwtXPU
zWKmoY<DcF+k3q@97BpcD%5%z_LJnvZ_3?m8uIp30TA6Fk?7q0Xbj=%yXm*oGJ<$NS
zpC3UJ=Cfb@NngScWqaMDv)=%c&rZHt*<if_Gy{Fr9lQ>L&^j5=LZ7g&G50=d?>Y3i
z!Bu7HCMPwKupE&8x<NDeFFqEp`1QELpz>~=&*bW5MjM=ML%{*Oh`W9%o5^k2sxok$
zHraYP(<u%6I8W89>AM3SGRPYju9~}<;lxa?2chRag4#`>>00Bhbz6+v5WW-lUkV;4
z+%Qe*!kVw$Z~p)JeEti6omgqr3SBLR@&{A-d}9tXrroN&J?~%KJY!LZ3tv8JJ=f3*
zz4K~ih{XY~d%Ww}59hgq$8PqVvIMtFTe#RI7Jj|FpwGXb&1B{bt_7WeA*-yH|B~Mm
zCMgG6We8n`mztLXT4rboTGj_*7#bKFn1kd&97}VOS0TC=C062GhG<C9GDJ%Q0|kAb
z)V%bP3<XOI1;{c)l!b>}L@qphGq-$($kA)<=ihAFy@92ZDak>=#ewx`3uo~;%VtLV
z^_J;J=Nz3QTI}M=>d45P<`Uw-;#f3IX4={J-;ckXC$lTv>WtI=@0IIv%1cAfmX!Nm
zU0Gb`t|GkfZT`Pjkw4!*-!7lO`@I<J$#tvu|MlFy=jZZitFQjoc{6Y0)-^l18>ZjM
zR$zV4tm6~D=(a_}{ynb(_6b^5Z~eGsjn(1z`*QY}>??`7QoZ|8qwd`NM-16VZ`Do6
zGGSbhbn3Z(Y~`76y;}-a_|E5Mud`chR#f-t+cEZ)zn*_q*R$ReJn^%<i&-pxz{Z)}
zq03VR4!pYZoO}K13+MNBme-zApS3sJj`jZb@4NM-by=^k?W&6X|8IX=U0GVnt&K-g
zF81f&`+iGb`!T=%YmHnr7x@)(7w`SlvtvHMd@g*>Jaxt_=aqit|1SQy;Jf!t=)DW+
zeU<0)S3WO~H;dwm>#X|OCO@e}@}aC|xTV;NSISCfle1@BJ@iqpYz<??)34|M|79@o
zsN3{llhJ44^<TC{|8)FV`|M50ue`eNsgIWy1pL?={oO}=f3@=C&GKHW&I<}oJQjac
zMmF$8h5UWy2Uf>l`<~Zj*y2^S?(g-9{D0by|2@UN?eEz?U-V5s?besppSUpP+t#yx
z-t~0&Fh%_Nx_|1oV-vePo8RBLxMI=2cEjcGO7`?yGjCXM<YU+6B2|XBljm@LjTin}
zY5#Fsbfv=!r{bV(e^~ba-Xs|OV^yK}K5Ik!u$liEc!V`GcK<$k-Nx|A`BgrPPdv(x
z-|^~0pW)>G3w7pujnW)<9GTcxUL?Zs+%hgdN{`{ex+8*XE{hw+pLl$)>~wupZBpHr
zz_)+iop$qim|Z1&P5xoIzfT%tjm*#8CF`^8W=MZtx2N>Y(|-QBF@9I?%iq6V{{2ev
zN;m6y7W@sOvUA@(ImqDi@!FP>U3Gt6x*wkvFMTgKvCeotW5Lwrdq2&07MGIW|0rvI
zZmqOw>w0PDla6)YRn9Oqe1F8Z&HCR#!^GQ4_qPa5Y)TXRR{j0L)JyV9`O1yHSTh{A
zipj02nmPY}_uEBPMT>UU9(?ncpE2R_tY_Ej&;0o_x%$W5>Af>Q1Qac}Z`=7n{(!Wn
zpUBreFQh-Oy?HV#SNt{W`sH^#&rZ6`@Z;pmtjj?H_r9#HJ9Fb(Zu!+6A2@y|3BTk&
za4xRwRQ|U48Fl~EgWnXeRyaPC{%JntgjU1!$@8`M+^@(x<+nK^`oxb8am#D=OYiwG
zd@I{=>x)UHvQ5FC>-z(u{@phh)ZhEFz4OFghAm&V1n&zfsNDJSr?~vP@_4f>uKOl&
zKHYjN?`@EKurnmx-!$BcKkCj)-O&5Lyq3@9(_?&K+@5{*h}`}*_Wt|!{hPeP?YDJy
zoQP(~ww<f<)9dzzi<K{y)qPK0yzE}|v4Bncr>`xmetLOdru;Xl2KAtM?+i~@RPD>i
zTYE6~ie=fl!~D@NgBW6XetUX3?sru&N~^a0ZJXos(BinRsonoy-DdMX8q2TzzD?fQ
z^StQ+<xDOSrVj<LnAYwylUwjo?Ed4$TYrS}<yYS4JFxm(SXQGN|IzAuIyQ%ECO>23
z`Mk&b--eqHK8WP*KC_hh&f<I4#{xFZpT5>?KIeh|LDMrB4(!c*rBQXKqUD-g^4g2L
zxBmFMt!mapvDXZ%wiRp((=L&dGM#Xx?ymit7m+dCA9}vqerjy`Z=8H0Oa9A^bOQyk
zVvWe_$4`fGw`H%s+P+NZ5=#SP=IWQ}79k-~x6f(*3F?+lTE1G+(xLWYUg4IYZW*(y
z75#Pll&qq5Dl=UFeNlP+%Wut=GtPZ3iIbh+V5@9XeRtnHGwTC23}MS-=5Jwnu<Xm%
zH)ipxB{SCEoc8LB$t}Nd;|sYnK6>6O+z|9yBz~)q+MO$k-(E~)nDfZH-)8B*xerV4
zv5TEeW7G?LZyVn>>9BI}=g76eQ*QD!WE)?(5*Dj#x9LjG3#q$SviYkwzs&gT)cey>
zuXs&R^_BN~OAl@IXMFM0Ie$-Td~wvVO`Dk)uih`RcYS%%Tf2E?w-a5jSp9!4GSBrb
z;|`nPSXE<2x5&(G_cpstF2DIY&r9mwHnTs5Y|k%7?M>D_u;>rR>Z1N<`mOu_nonZ)
zWv_6%$i9z9by3~((6$>Ft4}7YTQP^loUUV%$X<B$*nDaJdl!;s|Mm5ISUGXQ!I$b!
zE}wtoz>xQSxAZ$9tJIA@-=4R)@%~)S7ZJ(o%<R3Tw?quZSXGlR`3mo14pS=F&oE=s
z&Wlc$-~ZE0uUpUGd19OH?lUtlo>Y`t&$Pm4YsDRd8>hAe2mWoi>=?#a_AyuE;>IU$
zCu}iLi9GKYwnCjDJ#~%F<_VjM7JYo7yZ->E<Q7?_i+@G=pUo6mRP|`zyK?h8OYTj5
zeP;dt>k1Rjmv`~ZU0_;WdC%m)kv64GZ;KeTCa>LC#{A$)&(ysv8}y17Pj8R^_w~Kp
zyvJ9T+|{1=WBT@6&%>ra7Wu=RbEC1=_HbiQwtjh>j{X6)qw<o@C+FSU&b#K7j*`;v
zOpTM9a)r3x@*emosa-A7aHjdN*+W_JgpUX2SxQ)(>s}#Ov)lXI)g8_r$u0Z8@0Nde
z@x#Kb&#&cQIn8Tfm@QKO=6--u!^@So{C69gUbK9`#t`&-)65mCyI2EH3jb4{)p<Ql
zdv9sNj=q)0pG-a(>f-Xvq-ML{r`^iy3QzcaejQ&@bg%ZWwBk|cFL`U;y>)+maoxx7
zneO}gw#T*oV_cCtdE=(l3^z_WZT{;2$HeXV#&4&MH+$XsxTNs!s_wfUyCw_A`c6Ew
zv+}xW`;9MaKm4s$ln?1NuR7#>Qf{Bg`4cCUwjbEQa9<`oO`gFmWu1>~xo+F{+^R^G
zF!_YHt8YiW-*%Gs*;W1LGaXJm({H_A80Y=C+GWLiqtC*AA8$-lRM0#+|A*C-6LT`o
zFS@jm!KY9A^Q@yYckQ}xE$TkQ+p74UjGUiSw=H#y{+}GT=g%RVOQN}D|9^d0{>!T0
z=DEz0U<*&rrwzQHg|C@<*%?23vHSOx#@OV4S-Xu+Mr`twJaDOp-zQnrvi7>)=T`PT
zQXj)x*XP`RAGKe0Uq#NooatBgr&aC<{(SB(Lu{P$?btsHSI#~5J@)TAzlIJEW@WeX
z(0NNtSBLX`aC~!+n^9Y_TFZLFrnP6yr04xiO$jfb`ZuEQ?|(D>b+u~pVQ*V&4<EX?
zW>4PX%hq>)?b$9Sv@`LiiR_&jntzS<w+X#uQ)zkg`jGl!(Ufvo!E@&q-7LHA%Vj@D
z{+3ydNW6U6w5UthzpGcz-;ihYls`A)<EGhjKYsFA^z*>yln;!anHf5k;csW{Tw|WG
zZTjM*zPAhq^k?enUMqi*UH!SMYPU>;l9JG?pL;AVBU9|PFHB1`)!%pj;J2%Nm#p99
z2U=$wF4~b%c<Ay&$pr`REdKj0q~X$!=)KC?pVSrpGBPCHXN=wT<$TFXwQIWXQx<Ps
z<Qx~n)!oBWSDQAw{{{EA&FAH;?(W%9l^}dO+}h*D{QsNZ{(aMS*u?VD#QUAgzkNJb
z_g&i|GpWKz_w~zif2AIV2tnhm8j)-p^e%JXa!tLOx8+XA$A{}@h@IM95?v*1{8{t=
zt?##1*GE@8PdS+RZ>Mi=>X~(Qw+hNUrDY1v`#(GxmZI?Ut>SvsUCcojzohTg{Qq{w
z&Nb;eEI-tqUC?CUIaQF@cuewt=2hL*&$G1`%bl5c?AVvWW!5=o_kLSkYwaQu?*4mO
z^qP75gZtOt_FLep$}44>d27$pWx3z?e0|L&^yBr($7Uwp0kO+=K3uWYV!qpV-^L#%
zx3c8UiIl9Uwlxh?PU>6VS!?lJD*92bopJx4y#LjlvdPP?E%@|r&7O?nWd&vqrD^;R
zYo5KC*}2%gr9R%~>^r~MhSggn)|aOx#%cbSXF0I*VtdIYJJrMQb3Afo`=fG}7v%jB
zj;h?aO~C4YiTTPCI@2dPytGX`d2#3WcMqMftXk&&-=g^7pQS%;{-_pCJShG5*6%xe
z8!DnQA6Y$1e`xkj={iH9;3uoh^H13J?d0PKyXx_c+kS5MJ;VF|w!eD4v+uq%d)DT_
z7q9-LJ~<ix=Tzah-W@v^PTK2Ub!XM&oL{+Jg()xD#dD*#hv!MFt>rE6vh;lP`|lIq
zhF8A=-F5tKIltPQ61w>(>*MryCu_M=&5QezmTBwlIVchL@654qm6A()R){b7^SRsX
z{Gv%YnUS0u7VuT?`ZmW`D6GEhY2QBUcPuK4*KYK;*ACozCtl4dW|!C8E&L}dmY&N9
zi;VUZ*JqE|wcT#sTAsBxPi^SV;6Hr#bxQPH^UOa1Z`K|DVO>@ERW62c$$8Id&*ucW
z*}QhYw<B6sPR6|8mgKAd|D!n1eV;T*t6}?M{*}64R)mDNX#V1EFxS~y%))SfR=wE0
zrT5*Ryk7C&gduoSP229{=Py6Ef8Xg7<Z=9f&Fq}0<qzZ@|Bm|p!nT}u$J=SM^LD)3
zWaoG%PHywkhhe5?Pv6|G8gk9l>gXNMh`C$7U*u2K+<tyGgG*(?ia<3j&(Mqe8RjH!
zeEhMc@3(<fl0eXl8&+r5G1R<u^j^22b7!ZS@%%d?OhK3HmfhQ+`BVI4fsVk&=njw7
zs@K%tuIe^E+0^X$GOA%`Ab0<NMuE3R)nW|Bo32k;U;pCrL;>rBz3dm)WU*OY{@WI_
zaPmvV|E2Rh53(#-@GoU=;^fa4*b~*?-g11%yefA~PO!H4_E_EnS7&<9<2i6R(EW<_
zQtvAhooYAeZ@KY#NlVooD>I`Re<JNai|)KwV0z$`m6YV3$umpdp5zT>%WFO?z%)DK
z<=-zeCgiO+XH*{4e|_J)w6|HNHtSBVxwGoiwu{#1pEF<3-8Es|x@S+azTSS*<nMdG
zs=Kmp^KyNL^E>YLSYI&@yEpabkxKR-j<Zb}{!E;I`NZ0*r#>wCchza~M&6AtLIeDT
z<5JIX-`m3UVE&7!(5+T#hqgc9XONk2S<m)V!MgKnYUfJdXWTIP^x7Rqa(~I{esbP#
zqo8f__SKP^-n0u>0y2*2n@-f*{>E_aO#K`7&W5rU?|SS?%osKr_8n*BTPnS7{k+ER
zJ9D|q7$1~}-!ACov#OTf-g;k_bAy*Zuku&V+or~D9rv~b30g+Ax1G89>(C0lH_Iix
zR)&@Nyg4AraKuZ0${JRQ^u1qAO0Jrx&RAVHo1dwmbGGk}_PmEZYZq^u*E?~-vx~LX
z#h&|LEXlv?taR4o_V)nk_wlc<hQ<A#&yaRRW|#HJJuY^v2WI;05r4U(Vx{s_)#Vw6
z4wZH*Ty8zrV95IHYGAHlY?U8B|9n++ICH?}*(+w8@QU`_@Qj(~Y`}})j<O=ri9rln
zkDAiI{4GDGud*cT|5LqJ!m_j9+Y4uE%;h|Ax$e920VCD_YO}aL^&X06_~G4d`|IY;
zZ9A@=60WSB;_2q%@@lolmEVO=x3THWC|Y|lC_Pg6?(8G08_g$g)Ue+v+@M-o?6<YB
zNSA?o4`19?ck`?J0vjhj+@`}L+Yqt;X385*7w!$FKbRs6w^%toE9E+1)INnd#P8sp
zMMd+<Oc{({rLe@P?|oYP_nmt~>XkVYwkGcgzvDCG>bEn$v{VbS+JaP{G8{f*?`^u}
z{n2fl>r|K-pTD`n|I&SvzE5uN>;@Lr|GOMBSQzZDoGdI*ep<<J?CEb^Z7F#<Z@mrW
zORcg~eY*e19`Jgcts%SASJ%I1<~50@jNg7un3VK4;{VRa`7s8v3)J2_ty#0+^vzjv
z;J~ncwMlXEt%d);7;J9q-?FoP)jvPUwOhY4Z`do6zwx!<|MZqGYQh)n*iWo6$)2ev
z<!^sz>c$vn>Go8;8TBStb}T(^Je}u+u+w73iu3R5A{=}R*KAzf`N7B`^;r2=4~A#6
ztS&NmPj*>mcKN`e?%XmZQ}K-GaEq`+k@E}%UDBbu&+cW=*|e%t{DJ+eU!nKzy|0T{
z;F5a(-}z^$zUq#9o_iS05<XvlQYd9*+sT~gE(@IH83P_3ONp!9yYHOcx|`;^R&>S2
z_U7G_(45D1z_#xDVWHh&4Dq*Oc;2kAz9;s?TJ0#m>d8BHRV%wcZ2V?5ahjOceT$t}
z4qEZ9yX60=YHqL#@5-0IZ(Cje*eg+cL+si_pY-4V_k0kYE!?!Zw<3mn_qy{(`Bc3p
zEnTm1WsZE=ojl{s^ZWeITdohdf59W${J_Uqv2Lsit3GRP_Hw9-%FNP?UKd~5IVruT
zF>x;I^-FRWl|7G&dtPo^b^Y}(zLV!t`)AdzjQnxD<GS3APhbA--dd2gCM(?|;rZ{r
zdYRtm%pW@L|K-@ww=e7Q=URJ<=xqj*1U8)rdUrZmechk$zxn6w*!W)2dW+Y;sX41o
z+4%j=7Wpr=eb1tzd%w@6wB2{y+rEmgV2RoKfc3L~mZt2IQBb;DYF}~K(@6R><Fk2Z
zzWZ_dXPI2E@8cFP@4DW|8fG<_??J-U{qd>l*1PYQTz>oC=Upq~&*sDjzYe^w+u{78
z%6RefWWSTY-!A@|IyqOH`MFx3YRprgtE>2q?>=|s8LQi!UoQ@Ph$;{0@9L`YZhy=(
zyC!GPq}MuKmTAj8%B${tILc`|$70%@R{?it2|eO(&-&bOxpe0A@X8G4OF?Tm3*UX;
zEx+!<U-`$qb6(wvYv7WPn9z5&ZQbAe>R*TDm$~bf^%bvp_Q<P2knid<ySHL_2hKlb
zJN1-7C+|_Y{hbF}N{?~>oLDTM|9PvQo^8;@70K@(Uv0jxnRsX}<Bq!vZ^b<Sk;-u9
z?E4*G8#1C^%yYRb`a|!<|C66jUe*`2&+Ab!y>7YV**}H`PPr#x63iQJtX#J`>Yd|E
z?q|%saYlJ}IqSZw2rrG^@gOF`y)tO}#dFpkl}8yC{934DUb0!f=Xqi0WGRRCjJa|w
zj$-Rr*_A)tV_UIS`tteMGfQ8JSLRi${U2bt=3n}m-~M+>-U(W7zrADf_mZo75B>e~
z&i&ez>ozjRLS>=fVpDAT?X4xV<Kq|e%5?MlIfpa6D_FH_CWG+YRcC#<@=cNtE|2yz
ze!zcMUFdYZuyJQ@?g5_g;->p|Pt0RJbNh!|N!a{r>UPn&GWE9t%>_dBBJOFu=8BTp
zkRP0_YC7HR*_qeZGPn<L^Id(W7Tq>^`~KH6^^%)y*VmMP2{v1Lz<K(#$p@U@m2BWE
zkYJc9`}dvuHyeR{-QMRfaefp_x3O2P*>J|~8aH>zmF4QY-^}N&ivRenB*Aa}nN-&&
zoD6e5t-oy2UMsumtgByS=AB(v(<?U}(0p<0{mqZR4jZrce)dQ(s(zluqywgTUybi;
zUOKXa|JU7q843AP`TcJ$yxem=&F%ipmnXk4ZBjSkY1p`Jt#|9)U$(zzTNbBJRQ<U{
zp7Gi3_bEkJ<ZGjsuPW|VTR$`YQa_)&wQBO_<oD8htzH#IPV)M=F!RxdvLBC9oH_q|
zNV>bh)AH=nU%b~6m(KK^d_SPsUsq3k&7{<2)84YJ?|XY)gS$C!?^lNTDOb;{)bMZ6
zIqy4j)A9Ys%tMS7uBV)p%&d5Sr-eQ3=)03%?>>lX&(D`HUU5+PnQFbwmt!Y7FJ6j#
zT3Rlz%s%V2TwVSC-xHZ%$^3k|Dn;4zt*@WEc2?Dw<vDRzOA?)~=bf&(%GXdFxBlqH
zSvP)q?!E1!eBFoNh<*RuH!~w=r-(l~W7M!Jd|Ri?ExVkO+K97-u5Zii9@$KNvCetj
zQNB+S4E5KZ7M2Jw$lk7<@gYQ~s#<)xbaou;h8yovo_{&wzD@1(v6;u7$xMs&7rw#U
zFk5!jS=nu7<{vBXHqZQ|cd|_=LViB?f*&V8_*Ng@u)IajymuXU(x1{-Q=MbaW=vC#
zEn$o|H#X2*_><v(*NKgv7t3`-uAhJZX6ws6@7CN&`M&A);$ssy^;b%KI@D9mw(8`Q
zkYk^;Km8AzpQ*<ZZY5?lwXc8Cyy-XJ$8RoQt^ehIsQOV6?rKfOEBh|Ty4>P1|1WpR
zXjzW>g1%*ZCq;dqnH_nb_r%GZVV<zy%_o^xRcC)XG_x#q>Don|r>$@AeN*|k@$Z9M
zwNjmL7ApTZ!L#{b?rDa!^xIb}?y;{pncV(mS^iA@7ZTg^;(20wuZ8vQd7fd~I$dJ1
zx9|NGNs0QZlMmYV#U%aN{N~V(`>T^1tRAd-&GhPEWaM-aU7-u}Z$JLpfA_xR*CU<h
zmT>!f9sbHNIVb+Rq|5ue8BIrc?Bl<h++OMI>E@coaOPz6<!s0Kk;k~BYB!sEzq`&T
zaYgmilCbx_i}|O|aCZuy$tLr8f8d{a0tai98Ke^viudkk;Ai>Z)mNMNVWpnuHc=mz
z6@?Ys)kM`9ZmPt{v48OXah_=||Ftik<-Na-Je<K96y8vF^tbJTFCE$Q<m^=6d@-#x
z&!3eW&%42{j59JJ>+ih<_2yOQ=QPf__;2T_9Sff<bdf({&aleN$^F-V#tm2Qe&3L=
z{`oX!p7ZwtO=PpK{<%1Hm+-~N9e<Yyb1S52-gNq|B)(*0>zhUUo6o6AgfTzbm1{Kp
z%alC-H7c{F@4b|KWsZvf5n0~X$L|OWP0UrF&3uPXY17fk7vt7_=JyGDY0<F%&ik5u
z7jrZj#CP6wo4z}}ZU67u*cJOTtR6)66ra>;klc2i^J^BvyiTi2(e7PWDlNUP7M6Dv
zE3P;z{$j&y|LQW{bHD7qEwB688E1NTnaqN$(?1?ByxqIbCQjk_>}?5`y)!qvpFT6M
z?v9e@Qr6cA%~#cZjxT2LDLSvb;;iW7Me`@mx;?kP=Qp##*~Okqk4f9){N8o8!Q%6Y
z(qD6z+*uUrz9LKAd@KJ|wfuq&r|!HkDyV$paVY$rs!iC*|0#mA!lma{9zDV3@b>IP
z#r<EKvl&nQQvd6i$!{Ui6Pa!xv}mVl`o$M#1Wk{8oEp4PRgKrg`fBa(>dm$vl@b(p
zRx<5nurU7>(AZXVWyy>+vP<G`G~`sxoRrSE!bk7xBU9Do_0r!<HvF@C|IEiXocW3x
z@BW<|%$7x;=IgY){b}CJsq>d`+_sdt!Lf9m^J0b{XQrNdE&J=4)uatiCY-r`%dy^R
z)xuxX+4~Fb@6OaZQ2%Z1iCOVqFU&~REtQxv|4PawAOF76vVB)Q#9QjE*3HYG|5h$e
z>T|-G-|x0ErdNpx>nNEs8(922X}tJ*PF?o=0=uUnaiU!M#j7Tlvif#}J@r~~y|Fk+
zZpzd1ax#1?_MAU?eX-{m=E%>{_R~NAelc%iZRcBV#tv?yJKpj)^e26d%-xgfcYls;
z>9UIXhp*mRdiUzZhcl+^-Q!-ne)old!|6e-p|atE@9t{z=7g;Feph5}<n-Lo&B-Ku
zi<p(mdCyb!7Ry|gJcu%O`PR;o9scc(pN!sV9{v-btamHFY_4wpX4xtHR<r8aq$9?b
zMf3S~$+hfSvgBpu;^b)p!g}A7*M+DHtW4d)Z<w=2RQ!g~7W43(mtU4zgqU&5vBY?F
zi2XA9w4|nX-p<E+j^{kS@M-bftQDy-Z*-^Zlzww}n@~dQS)XG{-<b?d^Z4Qy^xZJ6
zJ}#cWT+MU$$?LiSpO)LbuB+UC&HmqEiH{4uuK)V&Xyv+j?@q3ls=E75^V!Mj^=vbe
zuYX%xx1Q%*^mGUD7ppF}1m9WlTj#Uq%#zwKGD~L8T;A4r^qk3(CYj5N<o%`_^RJ3t
zk}Io{%$}NZ$7=V~M5E5ndpLU;5?ZA-jmrX>e{a?cnLDxRZ(LWY>dcy*)5Rubly#LP
z-Cc3}mrC@pFSFR@-~8TbbSKzMX|m@F?E_0&GS*({F#Nwz_Hh<}Y}Pub{l!PJ7u~I5
zaAUag;>jfKIV&twU3dMMk@7v8TXNmak9~pFt52r5ykT*P<tS9&^R{a3os|!gUtigu
z8+XPb=-;z@|Nd5#_rK(tdjEcP#-W~VDcf^m9(J1uY`CQS{I1Od6NXhWozfM~?UPcx
zkIh{!ZT{X(UFwqVx&HqwGXi!L^B%}n%ClMMTQ#rX?q}un8P95O|J*B`k>h))$L+BB
z4&`0v=a#N~7a`-P)B0<Te#Se$ubP~DrT>1q)@OHp@rw2*B0VbeX5D9#dw#?uv-q#(
z+_zuF--!EOVg1Bt{>seAPG<I=hvi@1c(6;oieL@6z4%bYXEkP@H+E~Xo_WsHKj*Px
z#g@#~XK$6?TK+yZ|No!(H_68xZeQJcRsQKJyN&JKC6<S83+|pOc**?!+VqW&qs-e^
zO_?L`^=t3`TXTEb%`$2(|A<f*VmLKt#x=QBqWq<m{)X`tEDe=;5f7x!u{<~|vfTOk
zdiEKQ9K5amS0-CC<e7a7%+_MmJG<%BWxKzR*Vm_=jo(xhTO$#!bN=S~s`R<JI^B~E
z?q0bNGgHVfplY>Tf#Tbpjd=mpZvw8CH2%DMc89kAqKw&cb^rTAk0gdy8%vgFhDy6<
zb-%L;FMsshno)LH*s`*MTIPh<cia=-ZDk0R^=Ek?F)@3QT&MQtRh#l}F{(I)nq_Xg
zGQWNQqiaupOPo8H`uxTHy<hI#5N+Jz=&`+jn)Tb}IbzCxzU^QB?Zj%?zDs}EYqr|`
zx@Kj_AhODE)2*kq4SN)poI9<2cgO0zU#@y=zP#}F;+^Lol!m{EJp4Radg9;3^E-1s
zahXJ<WvWEleY$X_RMl~=kA&EB^}5c;_otUCU2?e0<Wp+A`bpZZr#5#EZ?Dq-+cEul
zvO!(pd+D~;qfN3G?`JH2weRJk1Lh*<7#3U#QxoVG`O9~pJo8%DF7JuOJ{@g4*5ofg
zS$mqxb=L7cA0u5h%$-}uvvTg=tKH`F_7q?Hwv)-%dCr4ZWlJO<m?cIFo~@7Bo4u_!
z;!r{BX}zQVW>Yd={Oi~=YqCr5jnAL>vl-$Fm+Z3p)jiA8V*R_#oqe;`Sp;Q&$#&f(
zx>2pw!sz<6d4~5-?`J&LDWR!%*e3n=!M~bE6@tuOPIlL~TvL25P=}ZI{KtKT$8YzW
zN<|f)YW&sDxYKMZ<JJcK&pFcycGvZPYv$jRqIcl<xhtiU&A(qPXJaxrzU}ieR;yRH
zK7T7otzy{Oy{zRK<C;88)vFBaJ7+X~nS93M<3cmzi&@9T_<#TSyPa+Chc5@%-|zgp
zEL;Eo{mAOArEjj6aEJ1(-D&#n`>G#>#Wyb5PK&==cam3gvYnoJ@}{}JM4uMh?M`#I
z+raifI(?OK%q-!nfo3{o0gvZNf7<5u;^UJo`ycFPD)8^~eamy;bQ<5xY*&|U(R`uh
z(`M|8)7kv|>hC?u%`s7B<}xSTkMkF+ySX#3DNp_?dD^ofJ=&7>KBK|CuU8@?H{I0q
z|C^a7@c(7N+}zcB{<PI9EiwPbZ9Z+?^A~?T#4W=LcKXE@#ZF(P_*o)&@y7x|!JD6U
zMO$@td|?k&tu~+eEtG548rF!{c@F)OaT6Boz3{UCM8u@GecO0<?Xb^tyYS$ql=`;l
zxoTHl-f_I#nY74RR9doB=KT37;V&-7WLj%Cvv!qo{r8!r^mf15yP35=pGN#+h=|Y1
z<34&;^?dEo8<Qd{c083THJjY}yhHb$sr;>qx2<gYGt%9v9z0o68NB!8?yF(V1#ebg
z-03^H`@X-&@*k6oLtlSmleY|xo_8tavgY$$M?AXNELBS9g**K{v+~a-8PT5YOb>zu
zf3hT${?W<){=xavqN5%!CM+u{i7wVD+558ne{v1qjLjh{6I;cNT3s91IXPThN*4D<
z=G}N+l(bt#kHP--j1$We*-L%qJj<Tb@Os76{B7Fi+mt7q`yjRJ{GQa{;<@iv1t0sV
z^hy7KKPPL{jGY`aGJQ8i*(%sv*!(^>OMguVzwrwz$vsg?>l>dWE$>_WyDa7T<i~3B
zkM$~Rx5w?@ZLIx&nbfYhZF`lsKGn8<b*%hT!ps;=#!IS+JMQku?tl8G(^P1|wqB3J
zQ4QjgMJ%tD++I<8ri<5Q>X~z=wkC^Z*d6&JH?PAu$b47&wTkdL6NP8;e&`g}T{+`y
zbeu_Qzh~g%6HVXsZeBD@pTLwn#p>`%uFsR0&MJJ^>22rCec5h-+ZOB1#r~PQW2ah5
z-xO>(Jz4aY&KmBWAI|j1?+9f*aH%A!@$B5LZQU9Af1X7jJ93}#SjELlRt>3@FPN+h
zjHc{)pYcxZ@J^Muge2z2G7MUGytaSgKJZ@CFD~!S_VA+X>$4Z_HZkw&uqv0Gyd~mA
zlj*a=pJLTm{bXNUTA^<y<@j{=xi!mN%Z$FxzBcDwKyTSku1zOXXR(G(xF`2sy!X(p
zm<{h9n$6VTaN^*u{ePOBo8l|IjD1(mc`fJVWycUP?av&+xlzSw@6NW^u`JlOdB(d3
zE0f-C<6G{#qEhSannek044G^<k25~AoT|6x<n6TMHa8gjjwLj(#%&4V{;)$__h#Dt
zixV%V{7vS2sgSeumuj~S@7yo*mNU$F8Fgod+Iz38>$b;tq&~N}(6ce3%I(OVlfExE
z#}|Y~#C_TS`SP2sSwd^|FPT_59$#-QTeO2~ZhD7s_}8LkPP6wg1iW*s@!@E2znib2
z{Y^$t(pPI<*&*+(|JE~v?4G#9sQ-p1@A^JZbM*pNhLd~D{0)^}&*f0Jc6cont(3H?
zc1dJ!zI5OPso7RZ@01z(yf3fXsr6H_PTM?sm*lqnEBED0%UaMl`{D_<RtGz)=`-H^
zicB$CS)=&9L-DZhi!AnC(~gT|ytx(dy{@N^ebTBQGT9cPDqAPsO7Rx8{GHD&C|JqU
zP%^po!pF^r`A>VVyfXia?9<aG`!wojmaZw#dYrrR;|<&Q0kzvMDERO{IeTUDQ^)Vp
zr)JGv^hWJ!bJ3Qz`OCl7OxP}X@mzr&!&BM2*^Z?QLZ4gY^Hxl;oOtru4CiYSlUC<5
zt?{Y%d^z`F>$w>s-*0qW`D>eMk?^qP1oQVj!S>I~vuoeIxv=~>6N61bLx4Nu{>{}(
z)7!r*SM{3aKTCRXBXa(h{dYY?C%eB{*J!{TljCH&S=eVcyTtlU%D&lN_c#2zTF_8$
z9DBv^&GacrGdIsyyk@R_@6)9PpB<my|N6_^IQhsQwf7UY2;CO>%X1(|{!EG1{#OSV
z?Gq_DdH$B;u6?2>Yi;+JUc0(wKI?&5Hh~LEx^qi14G#OcIqz;c#TeIXy=(i#qwg8j
zpVeCJeB``&-A0CF<M{Fx!Gl-LkN#}#ef#+7E>)4NYmaAm%l}JwlQb!)ZliJWjlNr}
z_-|%?W4<KaA+t!3p?v54fWDGC(>cyRcIm9n_&vq&e_593oaI|ga@yT@-aO&za47FY
zo*U1($9{Y2cCVOz{eGhVwR*<3=pCE>HGDbm>95?h{Lih|^X04z6%`j4JuLkk?>wi_
zG_dt%>OJ?ztNZU)zB9kVvO;>1gKV79yWFUsbEj;nIU&+ls=7Y!--QS6e`ombzImc^
z*Q=h=>F+XC4p!akT)1TEtiZ+3CTKI>+fbBSt8ll?>G%H0{qh&@=%&wnmw#@@td<gH
zO-1e%uX7kH7WrM_X}EnSUnAYAO*tp^x{ltxCw(8zpTGWd)#XP#t*`DLP0y=4V`r7V
zqVHnPi*@s?_dIh^s9m^mzw}J!Ys?P}y~EeDRoH(0`RsnWglE=0eZiL|=l;AlQ)jZc
zl7IboZeJV2p7(Xmx(w^D@D?p{*t>p(?d^YCdGjOW>b#bv=jW{ymQa4TK5v)N7lSQ(
ze!I%QSu;s(&-B*{Vp-ST9@uQE?Du8%@@w~^gJZY;jO~9f_%GRN$>|*ZOAii<G@tmj
zGJaph>zlt{IS2ijP+75r+28l0R>S_{^(XW$GhW-h`j3jzC9VPu|HZ3CZ1VrO-006*
zQGavMhs8mECj}RZRd)TFV0ihg;O6GU{EnO7-zF@XAUkPq!^^nzxbHW9-~TH;^~jUe
zD+)b@bN}ie-D<7d{%S+^y?%zr(r=0%v&+j&+*9-L@sSOG`u*qa_;n;U>bUNCK11D2
z+`m))ZalPyzu~)Koz|%<*T0tCVklL3AM#N9SVY05yV~7)Glc6BvhIJ<jkv7b7jAv5
z$UN1>+%#u*zw7?;=vQKrhl?i^_|H%|(_2;)dUc}6u647|vq$9o`^Lw(A}si~?a8&~
z3$;%--uh|3ulWD}z8CX8x$izJ?iQbwce3*3GOP0Nr%}DRyIx*7^|h>zv8LN<lh4A$
zko8vg-nFLB;JbL>xb(J!&W<+=_rH94Q)TvMujIpBAIiS$-a7N6Y5%!Yd8;~&l^q`i
zc1krcPma6kQT(-F|Htp#7q9YoT#VVR{O$D&%LAJqL=`iCJRQ^gGWrTb&D><&$Pere
zYhSO^wR->RZJF`T!1Er(v6;sER7zr|aGdJkjlL7=vSf1N-z~P4n;kbMipWa-mC9Si
zIqip?y0-71h)edrp3Jj4?V+_MB7-d|L}K2)^5a(~Upki5d+*tivbuFM<@PhLIA_%y
zel3Q3hrMFfCb@*LdCy<&yS8Jd^6w?W8#>iXUhFvW*(6Q*#E+Y&3N95D|6YHfV}ZQ*
zTdO;N{B3`D=Y89IV`9pwofn_qT6s3x^HS%L<cHloHZP|i3o8xwyE{qja8FfM-kG<q
z7f;N%T=d#kEGLfp!|c;*GxUyB$L6Vqr?t%Q`jr3v#{EYoRrB8~@n2rwp7VgwLP=@q
zt7T^=>(yPG@bQ*k_q_M{Nj*3BKmXCqy`kh#hvWB{nmc*XNBE?^)?ZYcwCvYTi>w<j
zl$DfjAL&z#+-)u;5|h5J*zL)ZQ%j#c-d_CL$1H;_clzDES2ta`d)KY#+58#oi$Cq&
z&40#X`n{*!Cs>91?{c^aX@<mW*cBRYUb#?xlYv#j?u-0YAJ)fQeLv%h=FvUICLXhQ
zSl>K(Sm~qahuw9*qO%ikF2DZ1a-HDGso60<<{i@${d{T0qOSg3YJX>o%;MW{==Ykt
z&zJuDCbPJd_W(=y?ScmG&gHM#tNA@eL-dqx^LL8OE&Ihb-z>sKB_*fm-=k##uJ*af
zp*=i{ybO&^(_ijB`ZjoOpl(&0+V08LE2^`8PJC6G-J+L&IemB23c2NXytjFse(2_U
z_4@Lt=OVm}Y)fOGt!xUJFY`NT{xVSp<CwpmS4&gxz2|7}`=xd2<$)!?p8w|eu6k~@
zU$|3yUh%%~`<eC?EUmj&e>dcvZP4;xqP2_o<yP~aKVf_Qblyt8FBi*}n@znW=l)*s
zx7!v|oyF?X>rA^J+hq4}9NZN1)tW2M;JT&!5(%GQ3<kz?C+}&ySvh&N8e8ev;?i!{
z@Ed+7-FJGPytlna%iCyPPwk5nJ9Nyg_lfo~rCeNUnZ9PdvIL{i={p{m(l15lJLL9U
zT(ncl_4&5)^|8)Eor3Xa*nSw@ni8~1O8t&Xkd0`=s)v6Uy*2CY?U}ukz2u$k{fbq;
z)a~p0=B?dp|J68ri_nAlb9N`qe#}tryu~E>Qn}u?2O3AK?|pf?>&V9?Wq*>7Z#C&^
z`PLs)8dFz$PgS6}``#+)pm}=x^VgM_G70|Ef3~9P-<pDpoEu7N?(ptcDOz{pLu<XM
zijw;*R;~7Vxmpj(=O)P%A5dN}^<&Obj|q29aX3HkzY-=~ns>wO`@S1XQdkcZiEm$=
z@A)a`iKT1x9Rr&=`xLr7&(FCO#^wLZv?%3k!yRL-E237blRekY&f<y{d-2^$;n|9h
z|I!3iQfE$o{JvD>x_7p7&A-`6f)g)HpJ*gHf6hf07r*H2KW|U?7fod2kD2-COKIBU
zr{T*st<0$UnmzYLk8Mb}R^%e1bdJBg0auNRPyShSZ{2l1?`2jW&+ngDKixLsxn0<|
zoUED;A^baqbMjr5*@!2v%UJdKU!q>r*KI3%cb^TJxlebu)NbwIUKO#}<g~R<<>zKC
zS+M+Dn7hr2khcYutENb@9zK-Ye^04$V%pV>%?r~rSemNS?$2Z3DP3I^zViC(SLegj
zB>ktHQV(8Lnb$By>YR9=hrrSW%O3{)PJ9#A)#kaj$oTlTeVyCCd)OB5n<%V5>2J;Z
z_(^tr-jg$8(jA3m{q(&f7aYA)Fj+hJ$bvfNfXB5BnI6Y?*2i4BmA#^l@!sx-maY%|
z!ucZQ{@-E9mM>NM?K*ei?!?$XCywrYAIm#)aelI_1K-uf&zJ2uB{<8q=!*UiukZ8a
z#RWADm5yt6-?O~=?3lgKy!LpRDjAb|WnQy-58e~pZ2w-x)Gs4sB6H-4H=CBO`*x?$
zTQ@L&U1{lUyT}cPm&)sORu+lfe^Yy)xnCqE_m9>8CySCj^OHS)=B|11P3@Pp&7s)v
z1I%fGhJ_#QroX-9vLu1?K#E}I_sNC()4%m-?|-W+oGjOoE_3U&_66D1TTWW7>&+^U
z+hlR%9K)VxKK(g`k_@4InTf{(el*r4eLrJ3Pw-XI!{}x4kG62%4e>c=zwOtt9}h0e
zp4};PdS4rBambzbeQl4|mDP&fFfe+2sdvKJ)coMdX(^k&I$dW>6g{?S^PE?%ws)6n
zdM{rbEim;Qr<`|<n6oycUFj-+GmQ}T2^-Iyk8^ITdiBQUjMqHgg?xY6{_d_j(<$BB
zpFQKk&9+05-m!P4*j^}jBPsViYsHHN%ACJ+iuD+3^$msn@63PH*1qfhSN;R`e6M^Y
z9Jx%zmug;CS~QLMkEngR(UI`^MeBmE-HhA6S$obp^Di6fZXC_~WyZS0=k&p6&ejKy
z?pS-ccaHh|BWp#aR{yz};om&>ORUM-lx%;mV3RG6=jO+}Oi^1hZNKDMy9sIG8T~W9
zSWPuQ)?2F1SkTtIcT=C1;hNm{1zXKuyT{&CF22}M^VGmud*Utjn3DIl#|jQg$;iL^
zzs0&gjcu9B-j$ba_`Gsc@_y}`{OtF>SrYr+3lx77WQg%uF{AC*D+!xBHxJ(LxTIHn
z+1Kbmtdw20-MY<puB2I>{4uxII!<U;bKCQ{H%YfoRv3Mn#g{v4=Z?)+jKBBo^US@^
zU+cw_eXh5zyq@95`Q<yl)^2tGraJj@L7O3?^_7!e%r>dpH~dKXb>WJP<zbE&@>3F~
z?{JRSTA#Y5k8}SL=9+*HTz6AU>?}(KqKlOscS-I$d|YsIMWN+^^tcjJ$t<1!=N-+@
zEiMt?bIn(CKSQ|YuFGFiew@Ghr0*}!^2^VK@7->SWC*>jvip>;nW5bet?<i2%bxip
zpWI%se2Qz?^_6$Zzt23R)!lEVuC$xUZrOy)RjZSpZ(H(PV%rvOnbn2|l6SRSRkuGK
zX{sW-tiVTTr5W%1|0m8~o4h!4liKk-DUo|tiT~czFaKwn_~(ZF@tUtsAN+gw_W9fN
z9ntG;%~B_>-f~2C?_oz-d->JP8?7p39z;DiT3C6?^2EYdRgwz}?N}sOEu0Q6T{i3V
zE$*1u%J?*s&jpjh;+PLCo3UM3hS$I%um0E>e(7UJWggr;n|t3scxC|aWY4#bz41Kd
zFW&Dvs`SasVeRkC^+AF`6E{en`(avU%B1}%_OYpg=-WdNH`wpmeaK+0#pKi(nS1yW
zI{BS~7Y5h=SQ#JFf38Q~Yem^b?j3VqE{m@V?+Tmsy6oqrwNGAj1b>@zT6$H{#`#ul
zZ?81poH*y!TVD2y>E>*lS9m7{`#kSjHT%xlo|^89=W<WViC(p<xpI{+Vp*_|D3|%>
zUQ^C)&hwU<KdZOQp5=4w>hx=Yx2;agu{>ZE-#u+&H^U0g+_xKjq?O+uw3eP;|Dw%#
z^Y*js#haM>ou!=0rQY6|@MQ~E`wqc7iSs8_Y*b+|cb>lV#nb}p#k*B?6Ft)Q2~E0C
z>HTQevn-7iHLff7OzfWDUzjHR<ucE050?OQ3qF&_eG)H<?o8C&H77>cRrKev-M3j+
z+bp#G`{#0Ee9ymc?9OEeVinh1`1$a~(^rirXK_h3<%@TDyga%&>DZ)o>&kS6V@<_O
z!izH}POMGnnH}|%aot6QIRVw{ZbvhI<(Yp=<k#C*F_WTB9`@$>m{t6=V8cG`JpVnj
z?PdLzZrl+s<UjqGRBXh~-5nkmB?A|pUR`r8r`(z$)$-T9Z`b)h-#(@sx5M#b>ZYF-
z`(Exk{`?%nm3j03tg)IN@~pMw?zAlXSt)<)-Yu_=DP9wE>rI#YuT=eji^`MEynP<m
zxqSDEsm1&9ZngLQxTo_c^_s4gbElo#;-bwnvRICah%dg(d}r}g#T}<U1>ebkQ>3u9
zc~Aa1)lP}xw?@eiH%wQ&oT0k&8Y6c@m%rcHu!HI)ZI$jTY7IXwwK^BUGUHpz-nLha
z=2J~{FGkA>oIklz$aJ}?zo`6#_Y$19ekxrL(GQd037C9J&`J49O@W@L%h7Wd{{L^C
z709hp``n**@$a$;Z+4aU`3bJRzNh|w$fI>iN|$~x23OA$ovspL{QjbGe=Gl+4{4@7
zrA8%|)+K%$b<}rGY-SW^;bGcyfWt*|_l@qme=a0>Og>wsz%cLkdG&=Gr54}6rk|>Q
zSpDl$i^(o44lmrjt<&~ep-$kMik}Bun7v=T3ElAN#Fn@D);2N6TYd<fc2Z_{n{w!Y
zSi1aFrL!xin;7ofGUwF_Mu|5e)0u3R%sjXJ`0khHf(wNcUaV4kY{KxX>e5u694n?7
z>x5Ux_MDw+{^(e1({cu_y6#hZ3d5SbPc2ffKHhgpw|DJ~+m~;7IlG_d2><AJ$E~E;
zHgsF^H~I6jeb@fU&GVMs&#1$9=gKRER~I+jQLe3>s_#8BFWs1dt@85pEhZMFE;|;-
z^1AnZe;h77eYXB?OJ@y_6FZp?tYNQmJJzf0BkE!2yFdKmgKGs%w@#fu-@kG8mkY+m
zm-MFmabS)5e=1ewf~~9g(?3ixj|6HX?w-jMJ*&VFbe#7ev%%%X=ax7dC-DmizRbx<
z=I<<@cgtkXpOlS>3`UEYwbt#ojf&=su>AE;cpFcrNtNBJ2UmFH6r*|jrmX$>>(Yvw
zoe%HW-+7+<faO+3Tw@H2jz7zS`N^?dA3Bb$>ioDfJor>5!{wm)*Jo_C@sPc=iYviw
z_peI_3m!{POK|Vy`m;N}zh-T{?@L9YS3eVaT(l27N-X#7x7_fo<%iW{i-e+*kMq}a
z&z{6%Z#ADqDCl!N!<|{qytxfieg-gq65qOKz28LMbA?8B>c6UA&p1-eSCh17e`?!-
zuP0b;Khq2B{I3;a82EObzSQi4tkrf~E$S=`Bl1>lzc>5f_q8uhg&K<gtNi^<QE=iS
zLxw#MKP*2t^O)#_V>|L%Gaq=*``R$)M!0;yd6D~}4=sG}ba+|pe-c`Msi5Y~>Hoe>
z-sO!}SNkv3SnVqR$a$b?h0|BQD%D7_6N$Os%-m-R&dia^Wjh*c^Y&k?vr_If2A|Ro
z!q&}R*Pj_}zH<Kcsye@h$5USQ{MJ4nc6a96EMtYYN+*oFrn~LmZ*StIv7pg4HM(py
zo5p&5rB5;rrEfwOKe<tUI*Gk`>tAQ3w{>R!W=*+xdi&+G`;UelxTF3}w??#K&*}fm
zc23kkyO3?``Shs2tWU&WNlnXUY2`h}tmBnF=c4@5vo@~-v)=Vql^<7ow?pLHf362&
z6ZbQ$;&MGRVam0SsnW95_g9?w@`U~GzQa4+>bGx@-uyN6{_&+j@t?#Q&ZU@?O)%Ta
z5dSowd6|ODi->+En}qUOo4ub6w>)USB7UMj=89^fq2Mv~pI_gfy%hQ(zxF0uL!eR;
z+cH((7eN<(erdcv-7!*S^I2B6X;<TQk8a$$HzOq^EOBzonmO-2Fguj;MP9l(zi>{m
zEmwi8ve;|)_bTZn%vQON?yP03IJa7E>C)4jfAcFoJne74H%;eH?AGx62Ek658y*ER
z$V}UGtjhY0xGm?+yEl}6om}+0x_jUJX~%n2_j#UQ?(+R;aiP%<fd$9@PiSB`9mDLf
z)0}U;Qj%K5ZOhn+7jhaj<GyNCUy1qDa)PBnOIE3hvCO3NmSpsiWSw?KGrOmIw;FoS
z-BT<Odi`0<BjeEbCpBeXG4M;U9_W?Z_Cxo;tS_gc*E5$M?7F{+>B0U<>lk=0H@{_w
zUa7im&PwM)8PZ%KynS_7r(AA%wMW`JMaUtNFUZYG>Hd?Lex^HVCI^`Kr+)Cd##}RT
z--SvBi<wC$=f<vD+U)8QCAZ#+_x;O*M>{%hbhyvh{69ue@aBKz*Ehqi*WcRy)$zRU
zHT!?Zs*>dlU0jwp@~vXbc6Cvikg>*jjfmjNwV&1<ocp@Fqh|iT3)_{HHm!d>_vFl4
zh95uW8@Mi4?UH!lY<)E+Ib&*#)ci0@=GJOED{iqjdGEFKFJ!v%^{t*|`?BJBmB<4#
zedaY^HynJ;_+s+DfDF3>D*jeegcoXj|JHxDc|Y@?jMek>+OFS9xV`H1LcP7QV$aWZ
zU9f3bdb8VO^#Z@Rj@PUa&U?LW=6Kby1<cG;{96`VIZ3a-M|JtE<96(~H+J6TUB81@
zt^IH?LyGNI9$khRFH-uMVxEQd$KPst%3z<Wwaoa=92J8{w@TNol8B4X|CjwY;B!2;
ztIMrho7?@YGM099%#m8ZB_v!@Nl9sC@XWLY!O?;f^XI(uZcu+A{AO2F$&9?SE-w2{
zhxjbswdtytZ&P&si>?o1H_{(YedHuKQE2x4m+#rviwRCFo>#aee&6S}T7nakH{VTs
zrL1%?B53=EDxI6&E;>D`yJYvAxVz8daHHF`D}N8W>#=R}2)TUwgQVr5i|>9Oo6V52
z`q#4VI}RQD^cMQfx~Ez9+IZ5%ol&tbtST-pzH{^2$Iy^_qCbEC(Aj^v*5ptAj^^0U
z6NMRe*zWFr-Sg2_;m|z?sl6`8XC}XutQ2XexwF8->#yF$cPiBkkuTTFY>-=^rl_;Q
z@6rmHgrKr*DPL#To_eUqy2Gpd0FTPYhP4dZ6V2W;>J)ECEZ3d&G+4~-@6!M0oNUU!
z#40JVE>F`6SC6m`a#?cQHZt~(yNi$c;s&dx<KHIjbv@Fw)5T0!Fml4mDZG2`$Oanw
zn>pRd@9a1sDd}}putfd&uQiAE{_gNFn0Cd`M$WscyW{D`lzq*-)t1wytQR<$r!&*m
z%_U`euI$^s_&vt{E-rEJGXGz?uun;8@^p(^^BJZ`hATgM7_q2NN3!{w(_5EU@Ae!i
zFgW?lYwnDgJxjkHnDb}pn<rj^6WN^KEdTKOhM&p}!FAaif{q;C=<>K=-Pw>ek)0iz
zKMVOwvPN>rn;TD=7-9GGbvawy{qGm#a$jvwUc;sPX>IQISDzWvldYL;60BMlKfSyB
zq*uc&AI~Y<*dHkQ?|Q<N&#>m?t4sZz%ga8VuzFpXq;j|7*1OVIvo|HaNzZlZVg7M&
z^RsuGw@h4oE4y;yJR4~_7KOmfTTJRIJ*p0+vK=%0ye@|SV$|DE9+{zcAf^15$OEax
z4F5i@*||-W;i;sKnw90drwO~~-SWP2Ve-_2DL1~TuygyLUutd_RQf4LP_VMfKYDuZ
z-klx^dMm3dvh^pnuJ7!alHyUmK<G>9?QgU0Mg-Mm8D)C)3)xzqzm$B+#ih&cj!p2%
zjBkR16Aksgs2}jPk@J3%=;HEkdYs6Pxg8#Flh|jUjq_0EE|TzmvVGm%TU#?P@A92(
zwpN+z^3}eQ)BOM5e4p3h@p|Lutd&crefS^x?^i|Ss_rY?niAfxq_kaKyt=jbX1$-^
z-!DFKnYhiYbr;f<l)AHQUQXa%!CrAL)5&Ywji)C*hcoYa@3Ow;(YzEfg@!^+Ua!jx
zlXSl^eVP@`;LmJS&YX}JWqPQPA$jksiH}W~9x%GUisDHty12{p;DwOplgBm1=H)U<
zJjpd@E_yDcQ0wNm{3lyO@g>nn27@Cf-E6l`UlXgHBvo6qbe>0S+~bZb^CoKD|G2SS
z&0bEY@Rdd!_lyo34JD=P%PM!j-YQmjBlK+a)=jNSO54u#YOeg8+_}a|Ep)=OvnRhV
zU&EHm`b6?xzv^N2&W;jq<pVc%Ik+rYJ6UVXyjyXpW$J=AS1!2Lxaw7BN5u^F1FXxw
z?OGR|xI#fhtK-l5*p(e8v@cKAP5CY;82MxU@>-q(hWE#X<Z5DFp8QJG+`KE}*}cd6
zY;(7{#}-NXX5Ks7xk_tuk<8iZZ|hhR9CsfHKAXjO@AE!?M$1dK(#Mb7(U`^T@P7)c
zROY^tuoPX}ISt#h=gfC?IWlpJX=#1$<SFk>92UKuaHNN&y3K{D*faLX@5;`QmvtY4
zHScfTy8TuC?7BZGwb7>SW-l*2-=ZyF^Y`rMzoEtVMH<9qSFB`caF<!3c|YK#%{||M
z>2(YZvVUF#JNTKfC|G}8os;=Rp5b#aTYjsa;p5cf(Ki!sl{{BIxBux&{`xr^?e^Ta
zIFiO@)BaO@&O~k9vVv;M{VU94-e1xEs9whuv9WQ<w;L-sLVs>hun&`8Y;y30?Q+TH
zL$iD~Y8*}fKkrQC!{B&ThkGn5?y3|Y^qF!?=9TpOt+DTVs}8Hxzn<H5`g3Fy>xY^4
zwOl7U|1;eCv?K7aWKqH^q2Bu@?yaXUhi*B!_4A}&l>-6Qr<KzK*UxP(TEBvmp*%u&
z-(i~y+uL(Y;x1=eGQ6%jB6C;1p-0G^vGRn;hkye|7JT5YeR$c&%IUAkQRb_+m*{Lh
zdU$nkkII4Pc6@5q%mvx+L{0to@p(8tzB%C_ufcqa1yT)`hS_&-GoCnH@|scdr|2FL
z1H%kM;f75mJ7?_jyW;q8smSy4n#EdQJ(zkv<Qr&eG5@gn-WA1M(0ugLtRvsI-<kcj
z<NwRvUxrn-R#FLb_di?L@J52O?!~z;A=WQ@o@JhzvX8;x>NL-Dt$e?X%ATx<{c`++
z<M+6-OZRS@yxQu-U;8q?X|5r|>Eig@EzA$3vRl8K?dzIboOexo-bKFsVm}vkon~<R
zePemUnx6~@JXZ>I&so}k@xzv?W%`UKbq>3x{}VLr@!9p|!`xeL)!W{!(JpjTtJ1G%
z@ml><Ph<bm-i=ER+8_J=vF6;_s#eWC%j7pKxcZGfmOo|gJN*OkaV#F1st=X?UnQ4>
z?=q5I#dzxRp(nFqY|XP&Bx^Gso&WE5EWzm3!7tCYU9efOGg?oI`NM{#o4(J!e`3~`
zR|Y>_x?ftYta-F_;p1nn)7Jb>-)E%ozk-87zAT`7|Mln3R+O~HF(=h-_2RG23QbX1
zSy#P$$@Q-h%bxH5mT7R4XTzig2Fj-y?KT7zJ%9CK`=nb-E#BYIdzIF<@>8yz<OFVW
z<^=n8&v#p584f%t32V*GX1pf(OKV~7dWns8uVzMDZ>U|xT^_T_bzh;8(*?H8jQ>vT
zoo9bw))eoL^C!Mfjd}OB>R6&_XY$GZx^gWAZ9TRHo8^7KUt?ImrRnW^rh@eyCRV?0
z&NTGD(<D7>>CS@c(sfUT(tqbnEoaOsiqENGN^o8KDU3m@^lU)+n)OQIs(q?||GW!!
z2%E!rU|pTb-3;Gn;;z9@*SxEJ`{LA%=Wo~7NnT6cow3tg=FJA)bqopn=e)isVm#A)
z$*z~zi+@)-#BSQx)e_e!?U@!E9KPo*Q<5c9L-XH^UpWkN{_z@yzeNs&x2JR6(2!fE
z%5HHrx_X7k(_YK##ij|Vw^m3i33o}aYqLtN71gX{TQTG7=Lyf*Vk*w$MgM%cUS@)D
zHIv=bXc=CIqQ{vt<_fb<`X6_8j@9xHwz}4fJDull^=yu6;4fbH+~q)%`98n<S!IT?
zW;UV|Ps}_vcQ$MAMBawH2K#CM*Jd%QrBrp<^-H>E)$Q0iy;b7UgsNo*_1W&bvgBi}
zo~?^qt-bZLvFPQc7n+qWF|UZecD;d@_3N5F=h~-*GW~z$bF|8xZBlEqpWkzJX~mQk
z$vSUm73*(a?D2R`ak)XD`mZg17D|^ASP$${Q&LK9+?86(d&41sadP$Ed<zra1y;^h
z0fLfD4qvyMf7xIoxG%PSQs}<Dfmuv*r|mwIlVN+{wWQZd;g6@4l#1*gbYy!wG}t;#
zWjJ4Pe}hz3TbkaEliA+O_ZQR{8BTC(zhho?<-k48Y`MEG3v=?>cg+-4-Q2h(@xrv3
zTpxVfobEGjnBCD~67)JdY~@8}rlLg7A4*qOH&&~sR#zTwe)scY!LE6~Bi<A&T6uP*
zjmdYvv`(wHK3>w<DHHV>)0XL9o|<v`^5)VDzoa%e8XR1=_MGJ8>gG^})0=NG>exPb
z_dfZq?=#zN%Pr@K%wINdimAHQrSofkZ5Qwe;5pqV&baDQzgL#5(cVv0OdnPY_p-Cx
zNHjPgwVK&w#s4=`{jDEPuammDZtb_9I_GlFO8CXqX5ZkiKO3L^@9pBxORQRZ%2O_c
za(@+j*>xqJZG)W-!$0i_h3jn<4itvyU(7mo%3E=9^-NVahR7ec+xY(K-E^4b5tZp)
zp1J1T@61h|Hyvbuee()`Qo<0&{lAuxVZFtr8i$6`FNs@Uyxp5F>JZvKCptHr`NQ_J
z^WQZ+K6aE>a`mL6Gaq%>C0)zd@udIU8rJWuMiGVk*%HowxGyz3;H8hyr3Qx6E4F|C
zAE|ZQ&AB@Glv<R#Y5uzHrM`QO)sFUvuWpaMy*ln>;CgjQKe=xg`#0V6I$+4#_syXy
z{m(guKcZhd=U;n&U?v|6OT<#m31LEZP8YWyTRrRZ5tT3I4!)B_CTMEzOsKk&u(9k%
z>F!zgq*dMbZ8Iv<kbJS+`&%qS&C`HfSJMgiVqHWt)^%82TF92rYr2151H<tM9<kCs
zdCvW7^q=2&wvM4^L!D#u=|z*mb@mp2xA>fYQgFTAiYTkvJ1Y+A+t!>ux^I?j^xDqo
zq9-S08Xm4ZKm8ATz&)j3H>?{<fBtG<XqRA4P+j}y<izbet&Vqgo;&2fIcDG0BObT8
z*PY6?*O{wkvA{9^gY6R0@7Hz<&3@?7T=b9o$w{U?PhA^kozd!zz3#SFsc80$DLU*C
zsj=$+4i+5V{7-*>^QGIXKFlt@_dB0)jqlzJY1RY#HnN)@e0H?2R7v3g*L8*qy1^UO
zf*B*~b3)$<3->OmKlqEaO@cG{+(*yii$+?Ve<v1;-s5)Y4q0vuTGYGd<>JSA`|2YZ
zr6t@MXU;WomVbG>rtjgOd6$o*XfW(u8~;I(p?=PjmhfGxb3!=-cJD1VjpJDI(PlTl
z$C)a@Uy=>Rb6&eSIHZ;M8%}1qQED~CM*EW8^G?s%Sq=3$IotMd1O&3P6vweV$YsyA
z5otKu|7OCMoR3Kjr@}rSH~m}fRyd=9L0xkdQ-x{m!oQ{`o<0{6thC$S>G^QwE48A{
zz1eaMYfjAjb=K@EgQ=faVSaj4*Rl9(MjzjBGVGaMu;)Sk0nPij8yLEM7=LKyPSl;o
zupy;baN^pcnKQ0f7kBNG+Iljmdf6kk1G^UQuiwLH@n&C~{iOQ6uO8ohbUsVt5M$@`
zugnQOlWjRUP8?C6p!hSlQ*VDZPyD$z>T0fk5AmfheiL(DzTsWumKU0_S&Uk@t)pHt
zyR5KP`F7{pR)))ySA>bJw(sMe9pd0{?nPVnp-I+UQ;%?HTfRDyviGg3yXXIz6R#hd
z*1t3F&zt1!j_Y?``kC43@#2x?#QfZ}Gkq1@r7nI_T?=Y|9=W-Xg=L8=E9>Q!Mc=MI
z|FQVP6<2k&+MI2hPro@~ZK$04>O2b{!vl%gyjACN8P0eoT|d#;#2m-(t?AM)9a}Of
z{HoPW*Itw5MaTC3Yv}EIcK5N9w$z(~4`t^<_lq+;Uuttd`0n~;ZkL=_%-ei6=S!~=
z_y77gyE<3w^S}4JIQX*me9Qf{mv+n-<lbsEY2DWZWiCzET@S4rGc=nT7<LxO`qcid
zw-)ad$tiqr)W61XwOGYHr!4mDElehgPC>KIGbH3rSyo*rd4n&Wd-sF?wQae+PuDVV
z&-%KrcyZk!?Yk>>H)qM%X8)`0oY+%yH0<Q*?OMz$HYGpeyK&&=L7#;E^R_-*spr}I
z{ia|P<A=zu&8%)svu2dUEM~Zt{%v=^+xMgy6-8ov>Anm*?*D6*3;v+WFm?Biz@Ksq
zS5~m@dXf3qaK_v_A6?EYvFzV@acaY^ldDzK?_D>nE}8!9+!Nusx3_L}PvXl`d$T1g
zp7X`xTBoqfD+5dqWU-5v>0PW6WH6p|^4aqqwJdo>rAs+WK8pOAaV0`YNhvy%d5!nW
zI{6J7FD_F$8u2KG?}1~~!}ODJ4TrNCf0$i6u#rFE{OvOzn&T&>ieJ@CjoPfE|Gkg-
z%kQf5y#1HIJ!O#5x^%MO(!;YQ6Z>AhO}e~Bbi>0U_mnRkV$6@?pC<+PnXj62N%dh!
zyC{QBhj(Y_ewhc}(QE(ke5jrl8^RmBZ;kq;y~T0WZTHvOma49P^_SsKX#W1E$7FYF
zz71a(**4v@WU)45Y5y;8hOGZ=J4~x|3Jn(6d}#@M{_4lvTbJw^R(KUu{$fj*yY}u3
zONPUn-Y(jBsd~%n2#Lw(nbf|9+^O2z{IE80){5UB-QAKFY!Wt_@}K8JsGGII{DAlu
zikH4Dh;GmOf491P-o@<YQOE0Zo&KlW%)KL(eD1}9k2@b;(H1P(wxzw-jBC|_Y3Cet
zzSdt_H>Fu$(|hgaqecw>%95=L62GiJxu@q>;VkJwKLuL>1*L_Y4r{LTN_{Y1x_aBm
zd)>Y4Ult#Gw(yeiexts<Gc6|HlW&mD*|H#V+vfN^+k1sF|0unV+T-9V6XU5BsPAR_
zJDmHW=Y8gaZQQn;D~exO|E|7r`pzbv1xj0g+F6_Zzgpq)|CXDJ%9hic6Dz-Sde$X+
zYb&nh$z-x-v|PIEPHOEB(^F+jp9nH<ou0lc;H%=p_YZ8fxq94R>6V@m)m*^$S(D+p
zi)`Rx&v%ikk5=Ztvt4fy5)~`Cbp5WP*(pc&vqvN!e(6)cwwSZY-uBK?oAb({YaV}!
zQeVpM(<U8%kinbn1=HSs_uUsJHdwhWk7{rY^h?a@UYh+Xdy{I(%7-H1)>c+0(;`1z
zkH7r)=7*D)mj3J8`NcrSusU9EYlVY5ulSF<teLmgU1fOfzcu2I4}+W4{r-ksZL8Yv
ziIuvTySMMU6gB^U$MT|rt_K^M8KeIdNy$ypld@E9b?%9aow#$&{yB^OmMGu7y7j;z
z7TL)mB4?Qt{?Glx6tnDQR701C#q^cauO6TKZJU(5^(3ENMo)L&U%?e*eNX*i>WRp-
zjUTk;PL1?$dnhjD8T-&}*Xm^X{m0r)&wJ)sf2y^P<%;GyzYTmV40Gp1--}wB@5VMM
z^!(dN>t@bp2#YG8A<buCe4THV+Ct}_rm;&JrL@*84J)1eER`X9R*IhF2F2j~vZmgL
z($njwJBP2_pdCMdX5xH@T7&ASb(Ks9_$|x)|FK`;4D6F-{BiMp-i)kkopMf$(xR)>
z%&cCW&|^4LcKPRv13L}Auj`XMEt__^Xd};qzcE#6Nxx29Z7ne6o#C^K{h8*h!}(ru
z$7NY|^i@f@{@$9sWQF!8iNvm7Up8zi$_!%uu<>ftYi6<F1<M~>Hmut9K!2g}3hO`b
z+B$xHk$+Kc&h*D+@9ssdjkm8etjU@4OG^Jn$?6FmC)P8ZUbF9-EW?g#dC_0>Yd=4G
z@!_c=!{@ixl(rq6Ui5tL@h+DqZ>+QS=37l${!K`5=aFe)<p<b~2`VXls<?8vqO!5$
z#OLf;Z?4B>Wo2c9(6s)@_nGTw*%e0Zz0V)5^C?$fF!NsSqOGT|JiPr*W5ZW>TNl2&
z`?YEoZ0$IaG<)lh!^aukye&6hQo-opTfP6c-~;9NOjF!_on~d0eQ<Z1J+Xpe&CR=~
z{l3oNn|0@<Mzovl*Bv*^iw|b-T{GCJG57k-g!85M?faOEIMPb`Za3~y@DhI@C(Q7#
z!>Yj6^XK*5dadVzE$6i=UD_fR#3im?Aj&W|$F!_@<8l+-JuaGS&Q1P)nMw6DL)fqR
zIU90C4+Q<U7J4Aw`jp|l3*U<rQ_gv|s!N-D#HM$4{NdYh;}P4z!weCf?#7va5`Qqy
z%agk;(-56o8s&0?KRNekwUW~88{YRGvT?I_cWkjZ`o50k$FXawN=lQJ+5NI-?@0(<
zDt=dR;yL^8rvF0qls>KPII*lVD#tTZU1`&%GgZmA`)uw0yq|q`V*<CJ;LPN`V$AVo
zb#dZ?6F2|KuoC-Pwb$f^*u9L45?%Y1*@HOu{EL2Em+s=?CnJ81tGh=v=_1P|KbMro
zugCiSnr2OSRW;`$zpVGOsP)JEo&Ga~<j>l<<hJZjSqA^NS&ToAlsfcuKQ|~o6>t0O
zm)u+HvU}@p^JO2{Y}3Eob?vHuLV}r|ca(HwFCXl4c*C%G;Vl1#j)v2w-`48c6>(1x
z7wVif^P}(n-GUFqn;BMhE3@|n1|OZhyv=!c6vI20#cG$bQm;f9#kshsG3jjDQpd5D
zT_R<xVeqPymyE8nUY_1yW%F)rt%mz8<`1*)-xbh|<qNo}R(!I7cTzmVGB<h4sw*q1
ztK5GtdB?XyrE=Z@?q6m9Errim2#30Cn4-GelHq$q&gz6^W@dTX!6^^L=gz2Mx%vF)
zhk5yrmrtwv7%<K3bpvnHg{%g}%+qsN57fn#xQni?TzPPQ!m|H1G7ai$WA4c|{Ey7>
zF_tl2(byq!p7l(Q!{bj++V3gt+IE8Zd>`LdhR@7`FMB7KIj9}|x|<>6xnsVQl(b1i
ziq?VWN=iX{WD*umeIa{Q)Am?W_IbvF=5wxkj0rs*9XjW1_B|7xy@q|p^BA?oYc9SK
zQ~!Clmm%Ilpy7*k*L$Wl#g*&VAM8`V|83f{lac$UKCH}Y`LdTMLOAWx6&W#A+0ve<
zJdI$p2#yt}*RXNeO+4CuL%lm&=0U8r{B7S7o&VR~=dt`aw3OkCS9F@qk*Z@>eyiQn
zUp-=Luy&cXuKmNaUb}_oBUZR?H_=H+6fo>PbAD$1s?%>g1aGpPP;v-xk(fF`?+o{s
z$thl)PZ?SNGfXh*uRPFp#+YHr*#Pk<=4*RzY+iUzV$qCXts+T*bLWD$h$M8jYTQX@
z%+m4uX3wxFXBTg1TUq%;W`+%`X3Ovz)LhqDcUn-C|K;?Z3tq?Y9r#>Vu6%%hAEU?n
zhd0GG?6aK2tM0<DI!8z7(vlm?F3-w)Co^H^BL4%M!VaiCW!S7#eb$_5Ls92M1@+mI
zYz*@w!yAh`);9i`uq*84gVLY#@7Nxw6l3o3h)#)T__gas=lezNlcqaAJCo2;8TWsS
zK=ya(0}<K1^Q7%v%pwJim*ggX5AHCWcEDZE|I<~*7u(LT-hF;^kK{Eb8#h^_ORp!)
zo&WXx7T2no>+_E;Ir#kxXXnEQjut*^?g=$4mHaLx9m-UbvNqJ$R%$Nei7!p83)G|&
z7k{|=zWl_aS8Ftx_7tg|aWH4F`?_12@!sOhrI&XvwB>j*qe#s*pW(x$hq6A-$Df%p
zbSs_Pk#*HlCD?UUY0=)LZszM*FK@oK;ODCq8=q)P%PaV#q;0mEex-4nCUeEb(_+CF
z1sksaedpHj{ly&Ry;|3gGicwrEp%^<P(tVwsmXbIcO@+^us2LMzWPOk!B%H$l`cd0
zQJL5Bl3vr6-oNGLw|DLO9hW>_U-+>(n|+e2=*^A08atl2I&p@+<enmB?j*FRML4r+
zLB|P`?{PidT`n$hal)31mUV?Iv+s+(;^xw~U!(cWK}98{ZuN+)uRekkZ<Qza?cMNf
zhuP}uYvT5%ef<-tt#fsf!{^=CXB@tGT6Jc(^^uSh!m>N`8M0#M9ASH+eVFl|ceG3D
zwKWyxDef6+4ri|gwww5wR~3gQ7a6UQwz@GRzMS!mi%9hHr_8T=4nDCyAGb1IQGe4D
zkHuUK^FbcxuVD<BrYGpr`Kx)?_VYV+1*UIJs#h?RzI%^h&$NBZx*04E2d!3TF6g^^
zE^5(N>0=2-*}u=U$|jl|Q0bTQZm&Aada+hoxu3DXdzO%t#j_-?-`WfomcIgm70UQ`
zB-kBT^<_1isNzO7u9Cjl$|*0T4tJNIz4*>V;JiD-&jokCG@Z7$Vf@*h_fU7;{7nrL
zm;O=szRQ4VftuOgZ~GZe`*m*m{%XPWZ&!8Vn5P}CzWU<M-Lib$q9uu@EBD?LK6xmd
zF|6`pP?ghXhG*<Xz0#`lnG5PpeRgLSJZLDcq3gftT7CTeBNOKycK^m;lu`DUJB6!~
zZ}IDe=Vo%Jd48XH%qo3?_`}`(%vXNRPY;;;^K(+M)q&zGCLhaB9S?{N^7k*bD(Cat
zc4*(B3PJ5WWA=?rmJHdKGUwjqjyTu5xKTMeU2lf&+I^;Whv&{b{p^fEgVg_0=RCFt
z5uieud*Me0nVFAD@(<kAdHU+|M)x-d#Xk3nPh@<ics8tX&XQ;54W>sky<8SXyXIwW
z64}3G{(@VzhEK0uWe^LN-gUB{K{Qj@mDwyNWcAP4BI%}wm(1REM62(H>AM$U%Do#^
z)@bh6UNG}d&<4$f*oVK=4y>AM=Is=oA+$b|_im2skvYfiJ}EPn%#7rIm$QZa3Tsyy
z^U9WzZEIO0-aX^*JteN1Gq26>+LZXuhuG7Y)_Bi#d(CrTm)+yH3?^Ie-!D0`PNee9
zi7dg1xiS1x0yS4}zmun?{JYh~MT}+H_1-C~j=Q)#d9_4+Jzr;s&E{)IznQ-FYigYI
z{i@;H-zOLaCtgwx3R`l~Dn247EIc<<((7s0Eq;qLcf(4I-({CeZ)|Fd`&?i!BWH<8
z9B05}o#^=4Tn(SD<(aLoRDHBKo{R78YQ@&{HvYFP2Uc%9damZ##C?0cTwS=t7=5<i
zT5~P$;*LqCU+Y*B61~Htcgi;u$L1auiq$GLs8pRT@w$PxfxY1gSN(T}ywxdlnGWRr
zKYuTh-79cw{hyoCB^n-GN3>UPXhn3$c6{ynwK=XP^vye`jT@{teBBzIb5u<v@SqdV
zp#{5N7wO;m@#kMfT3LE|y4kzAcW=g?d(NNwe2(SkH+N?mtIvD>+eKdI=b0$Im3=m?
zRwsWdu9~N|Y30w?cW3uob2YdJ?|s9}kn)H1R;eySe(EPD*J6fK#fn?r2fa?OzJ5FL
zWWb3xFTO@)?_ye@R_rICv~Affxr^-Qx4-i|6fAS|U&D6BFzflJ&hbr*P))VJ?9OOp
zdvs#Ki$b-_e_w5@YYKg-Q?%`CcTe7|J?j>JxX>`8_%U}$^@F!(;{JLtEMmRmopz)4
z@YQP*<K7#@wtqUe^TyMSv7V`?wtom_NVU5$zvTi4Ls;plJF4^8Cmpj*>wdf@^Blig
zNJX+svB$B~ucn@3Gn$tj^|kw3zg1byj^Y6I?{n|7UpT{iZc6<9qu*5Hm(|>S&Jgx1
zq2B109&5r;-%cit*G`K~8M=#7J0B@%dsTVmn&|OX_GLLAUp;Xyhr`XY&EIn7AAI>w
z(ZOer{|oiq`7<PiCfYsBc_|=jdq;7bwr60Fugeor54CL%g#V}C-1bdw`_s3(7I$Cg
zPh0Z#)`jw&b@y*Zv*&gyzFzSxd(Wp2Ehmh3y<1*vEc#}l-Iu`K%YL`7uikv(-F&xl
z@xFF9;dq;hkCz{pwoYEU^7Z`vY#Xj@&!5=wJomD;-0L}w&%VCjoXi%rPSy6Rafhm9
z%49`r6SkP5uqk1#wuh&uy?Ax2(B<cc`lR^cl*fDBj`7*byh==F%(~U>5jdUEIqvtX
zr|VY6hm|)7wSNEM_Idx|W8rrDd+)E^zMAca^7I(1T@mpWU-vmiC!H`-Ww;}KtL}M5
z|Hl1`=RLeCdF$D2_6|Pw+j0%AyxVS<?Kj+L%Xx<5dUiDPhtjutt50vc`zo!vYs*iY
zq`I@SSDw7MtVhjbuT|wyol9ktOa)F)WKDFwwt}tVnf45crAkE}saKrmXslVsw?b&&
z<=szR8P-jmBra=vbM4!;l|H@|Itw>3ZuL1@q$9BV$!yDCeFc9M<3Ad!I4ZMe73C}}
z7CviuewK+_SDVuUotoME#Y^}6t>mx!;l4B0%*I&!K5xO2LxMLK2_@umTdL+<JGF3j
z*PirRj`nvwObe1@^{TyOd;RCe9ai3FV849E2MgA1L1&i=?lXNM+#4d^E^qWUGUtTu
zH1~TmKi<^sy7j*FluSeE%tHH1F426ABBJ6I7mC!Gr^WB@^iX+tWMkOgu&V*pGar3(
zC=0%u`!}Xyj`?kU+wE+^rB|j^um683{LAWll3Ntp)@)L^G`*)h_V8|IkI*TWu~p0k
zML&u^Uu6iLo0GeE>Gg<n55Mtk(Dhrb)g6BA(<WDGh1*;SbLG}<*mrnU-M=j>KK<G1
zwRm1;R~*9vwN{-AZHE%mmgql}*v@6m@FCGnZ=Wo~@;3W;)&r}PPFuU%_^)BLjb0x3
z-6?x+b}^g7s=%Xl7vJT1vv2!!<;m2^$vfAjm?f;*W)ima!Oxk!*(OiKF3Z%OjL#Fk
zb0MXHS2w2X)tPM!b297KtUt%O*L4a1gD<|9FHV%byFF8N$r_Qjhr$^+C-<bb)cbDz
zcftI6t@!rM%VhrQYFpoac{$sb;r;VVWm^>w|9SPo`_7{xmpld`O`q$HYZq1XOm+L^
zbmUx);78xh+e)v!*t>G^v|HJods#M^{r+Crt-sd(i+8E->+n^IEU6o3l~^_}y)}E4
z&D4bqKMvlU-cz)C<J9uN*o!IE&Tso~t^X=6II;D?2jA?3biVhO(+@~GxBcb3;_49>
zo@``v#mndK^tJB|)k^ha!$Y*0;?uk(6_?Dmd@6ZbCh3IbG0WdV-&I@YGh`VF23$&D
zKA`e?@~_YSmmVGpfAGQAdQwG@x9po!mJX{b&-_&_=}!GSpPzqk!h=TZvM<->`W#Wb
z_Cc+Exj?QM(@twn;~)K2Sqq}4P2U+7c=KDgQDJHCoy|3;U*|LY2(h=}?6bMPe%BY(
z(i@j;MH&vjPN~YZ)V;+$;gjY5o|?xO5B|N}c{zW-%kRZ=#JDUY_TNA3csucg*scfr
zY6Kmo?p8>4S8%?$o}F<bi)B3Xl$T5&QW<)#mbSWO$NrjRr6c;{-^HJ$Ci|wz>^SxG
zG()kSgjGWK6gH`&$qXwvk`kt}eSiJkN>!TkIM2brr2UufF*^M9+H0d>`aJA8&y0;H
z**a9pcXDn>y;gQn`eW;ajuVD@{r7}RcjOc^yj!*S<JQ#OH{Z?WJTU1zyL!Cm&cN5t
ze(g%DEnSv;ka_o$4>4x~qPxm$U%qm`_cyVQw>V_?U$F*OeMY%|s!6NWmaXHT#3r@+
zQmp+O?iP2=un8ZwDk<e3vnf2itjB7(-scZ#q6_MD8ZZ1ye}7Kp=b5EHoP76A4wQ|I
zzmYcg@7!f~XUz5Ra{iX_-}}kDwYQ>Omb?~PVU;I(plE&XscWGO`%?}rnB4f`l6!Me
z!^K|<d!M?N&+(XC%JBb-^tU^))92pUAO73wSfz>F9-e|%C(~xDmH*$U<G0T2OeE*|
zw+lagJM+PEzrUKr<&SIk?cb4m;h99ul9D~2=fz%ebXoFxZU4KaKY#Bjy%Q?AubNHg
zR*LO`_t%yOGKfw);OKvsUGKf}f5sp`n|VEK({(oOtIs`L`DbCp=C$7?3T{m;xBYwX
zdaziyb^Y{c;W?rI)x3kZZt`!6+UfLy_xbl#|7rsCUObhqdHC*y_yd+|g++QVcUR3@
z?w8_hoOp?y;mZa7S@TYXmD)zk-_SbOMDitHUCg?BJ0Ip8<(z+0CwTq$m;H6w=Q-|_
zUv_ax>DS!$F+An`4y%Cw(_Aey<@Z%zP?M~AD3G+_(Csd5hGmuK_m_T|u)yi9<;9!6
zUs)fB?LKoV?_)LVfe`t1aaFsN|Gap5YiC(X-=o~CM}N4i=Q=CTEnOeKEXDZmvL*ky
zv*&D&IlI*{I^{#-+36AX&kxDp-+m{yG)pduaf8yqtYz;$e>v9>c=kH8&o%y~*#~#_
z8J;N=z8CV`TXg=9@FhFX8|!S0*Jfkb_Bh|hy`?>*{&^@v-r~pi?mzgUsLyjt&Uvop
zwS);@tFH=Ad?s~y`@;1d5uS1qPiohx&DvotoVJ(0;pxp!oED;wx@EP#*j~!m{N>5>
z{JVx_GMoR(Pds+)-P@|T3oE8H?Y`}?`$JmT)!3b8i@dzLH}C8D^U-*5eBucu=daVZ
z>=D{_b>j0q+myClh+xX!ax9f$vytHjyYn}LZFo1R1>G=_srs?|_sw-*X7hZwEgG2j
zzgN6H|Jg_OXD`ZL2{7E5a@{F?&6c(QHH8l!KC}5~=r_5frGZUni@#m>J+UFY>Dm1!
zud9@Vf+{DxU;i=0D_s4X?VhgJ4PDcsex8(PUr{inEGFY_!}Z<s-ndOKf3tkuugQ%Q
zD{t4oU2HEuZLw|ViROmvOJCL=TK}~){E1i6+Al8)=YN$oDwLPp<d!WOP+Xy!v0=?I
z?>XuBR|V&le-D%qSozv`)yw3wmU2uh%EaDhWu99mC35FQTJ(ONhEV_8-``HY_T$<A
zqKd1ZLK~ibJnqk5zg$0S?f)sl87VB<+xTw@IKS1rlpDW1+-c*~6Il~FOp00doT+`%
zaB0Wq*XtY3sLZ}1U{HEUw6@TdwP3~nKS!=eamz}-pZ{--*?0B>U5%EqGDbpoOlE!C
z`1jT{{!=#<L%SmMH?VFE`D^xs;rh$`ik+V$x?eJcyirm5?qXYan(g@A&9l0W7VqBl
z?G1Cw<g^tvQ6*;cvK6e_`^<0mcE0v}Qyk6op=<xP-)Gk|#2=O2cEqdVtnD|W`5d-O
z<DV{Fz-xGAn)BDQW=d5x`<tuW&t|D!`mpoGbA7+W1@q<PZ(h&8T*i7R>WevZK~9Ok
z*@xZl{mU#3`^5O$@48QqFL)%LsQ&f2t4kllA|avYO5BY1daP><&;2vouUW_4z$<y`
zUfKzh*izwyyfstS|2p^j?(Khf&dZ#VI-SIPrt7Wih5qty*SF1ch+z6uwfES0=10dr
zot$Rrv|N8{@A}FbW5JgNTc4^}`5lp~Sh{)RoZ7C{2X&_`ocnHPtZ;+pzu<V$;+lGO
z$xTj^?=xD@(C3;uW5vcr>&$+>kA8S1y3qVx?ZdjXiemfT+d>@H26OY`A0MxG|Ekt2
zrx#t9?bLfk*S+=a?_2jwc;9}~KCr3LUAF3gKEvsvio2mMQH%x2HH}@%*S(%pJK3ng
zt@*mq(?yCAPSd7eKKjvBb(XosqL)_-4irnd>^3P&xb$iJhr_S3o4U&!A}%b5Rq1`e
z-?#SmulbBM_fKw~_~`WEhi^ao6?}2x7dpybC-u(WmLZ(+y-+BV<iz*d>y?x)Es=V#
zb-`JKD{TjVDeUZQ&I{w**l4Dj%rL#@dha?Of2BWX5>|J8-qv0-KXRh_f9u~ys#eF-
zekRK0=6v5<d+yim#X{fa$={uR#mq8%+712=zx6qn-Noy<l8(BB&sff$+qzKf%XQI{
z^Y6;6zq($<&9YQpcE*wPi+NRR)lxr}S}&Jl_}*qePxj{3xl5}ryPj|Dzw>UJX6*lG
zADqs!8*&=*_q_8iGGsg6=%#gKd6MWvb%q&_)6+g5_#yv5hFkhmYklUi2TSMP<=W4f
zaC*jKD}%zzfw!N89k~Bx=0c+eeP#An^No+!efusV$Z4tk=hzYMS6}Alh@bmeo)h_Z
zX<zY7>G$T7gJU=jT+4HvoyBs%_NJMpaK@F1*Cj4b*lco1qa*9O%C=eapY6VJc$d|-
zBVSc5m>=ld>&oy3ybL+Hvi@F7?T>!ZiAmPnEt?YNzt}vRhx`3syH|_0TrRJAa%EFO
z%kyCO!-Zz$y1|UQR=wSn6QmaK^xf=cv%?eA6t$o3`R&zMwc+UNjoDw0hvqG};os3d
z|EgH*IZLHi5zMmx|IFXA`&y8U=I;xy1Xryu%RBakpL>!|G5=rQ(iitupTGB)-~QQt
z_urW%ZWg=@<y#j__^0-mE8*wX3f>g^xtkZRi&@2gOM2b*gbXc*&_8EF#TloYlv%o~
zUSs=}u}ICn{><5?-S@YJJ6)5Pu*%>2^*#S#&hJq+`QKGSw~IG?zI?A?`4{K%s|+VU
zs?MJx!Ms6f`}gO(8{dSp9$25Zx9NmmL$+G?h46XJGxZp3UM}uk$jWeearN#Qu9si^
z7oIrxt>Fou?AEU@HZVLm|5LJEzB#Y|{-eNE3w3@jJUc_8m$M*N+~|pxY^Z0h>zhZb
zj{cpO-1C<);>{)2)--0Hua~`KV_ej2Ei88FUo0=>uAXPSbYVwJ-WG3dw&y<<Wp%wU
z+A{sQ>*K5s<u|Q0OiXN+?%;6lyYRuCA&ak2UoVbf!?E1;7ADs|tFBmC^5=~If_Z-~
zUaI|H_Dy9odxU%Ux@}5%??g4L4(R<`_098CagQg1ebv-|%m!w&zom4XZFI@x=dpBu
z!CHH*tzyb+n@6tKH!**Zs#`Jpcj3Os%=Wvs?}~U9q#b$4w|r8qsm_YD^^?-qe!BWx
z<lK?px(!p~POp|{);Y7vQ8Fp-klp18)e%hY?<?-kzIAnnwrKk?#*p0}HKnYNrg^<~
zdMwEhBVJlyy?XhKdhedcHPLq;|9hUh`VfbGZ9(%hKZYb_gIp7Z1J@H)G*n10*rYd8
zoHugmN~@KA-@G&<ckv`FY~ORSm_bx;{htdl4fZw0m%VOnHmbT7V#4*{^5RG0PE{7A
zmsg$FYOuY;@#^SPQKxFX2^!sj{|ZDIw$E~@``P5ywf0k-UVgdyhfep08V&pJdR<9g
zS~~Y__JzM6PPg5?vvPW#=~1<PIc7h4rSE>_Sl>~iD*bQ$xv(c9uT&}~xxf6!>HWF0
z_RI6tzh2y6x^eQp#0?$~k^Y^^4E$A7{&7CMvhU&?){5tb{+*YS=Sx_6{|!AI&S;?b
z)wTaoVOe<4v#FkH@fTe^*ZVj`&2qlUmhC%vL&nvv<9nL-^X@z>(jYnS=-b8}JM3l$
zuts#HY|LT3;_J5S2Y1qq4Y^Xw%eS_0hKa@4om^DPu)b<a+chSh^Q&AXA00m7zyFr;
z_eRC?3l(Sh;*K5-eekmMn$(Aa*+KU=#lKFtF>_<A=d6R0yH@NuVXGb*_gVVD_qe6@
z%s!`<+0IOQy>jCHe~%aR8mgoVFdVO*cAhnSeYoIl)o(u6H(h6Zf4A*POPy+4=1bq%
z-S^nip3eyH)ED|&|6OF_y11p6tGYe5FOsrfC!%w?O5Ql5KKtgM33JcBD>%2fvhsV)
z;ng+wo+$}+dg=Z=Kkf8#|M`)6N=mbe6SlpsjF;0_+H`&Q%Ui)!4>@_K=|^wdVxf2A
z>l?1^zvf+$DL?5~Z@WY3?(64_yOv))v^d0AU+ff<^YQHeSIkdVJ4PpYcxBkBoYMKs
zcOdC^@I{Zmsn2Ww9_m$pyKwv3-&$_v2dXb#oBX!EPpZ48{!y3m)!oz5FXgUExLEqu
zPHyQdg_?vg-BT(H@0LEin{w||Z5#8I3M+G4o`$t2?%3xEGT(^}cIsxR^E^N8(ra@U
z)4fX?Z}1;aTK~Nu?qT=$wRwlCeT)8y2u?iI+4=akyNk<{T`FIB4jTKps63fzo3O5<
z;|AxR?>*}`6#4!!6ug)da65lipXTk}{g$`hzNr^g`t*)TaH4n2rnqPF`@X1Z8ExJ8
zMOBG^N@s`6W!nsEo|8YKTw<&_Q|EQKi21}Mb>5xs?XpiukaOp&NxOop?)qE1$*-(%
za#@n}Kx*RbUX{uji?|x5@9lcdSToPJ*{FA!?x#P8+F}-_n7VkbbX#2ITsGxi`Nv?H
z^*u9Z$-VwJ<?V}~lkYw{<5_%~@!G%ZT3Iy-i7K@pyX_g&DyH_a&6w(2ZRC5qsNt0p
z*D9?5J7$e?&I`hVw_m;qdVN``L0+%+$70R01Kv}wpIDs1c_3c1?a-8%?DbPZ?#IQu
zNabE!?H~1dac}2$##47w6kKvle>HV=R&$*2n3vVOKf}v+J?rFS4i>Xrgb&=Bqj{@l
zy`%ZwFHb+z+ME-vWNwfR+O+U_|F;DxMT#v;Q)fssbX>l?J>clsrd!``h!uFo=bkV%
z2|Hta_=*<?`<tBU=klv$CPbxpoD_&&y7d>I@bRfKUj=IpE&dYVaP=oQ+tsBdQ#H+>
z2=!_)-utfgkNbkJWOU7m*R2xHlS>6=zdJwmg0=M71xMsvmvwTxxcqzjar#^}rPi$z
zm0!EM9NCjrG_TaYv*XRf!rA#ZLtTy($zT2PPsG@G-Cq}%l-2V*wcn+uu3fV;+x@)8
zWTu1j_bqv*EI9G3?XrGjZC9=}`hoq=TQZ;XS{}3zoH$L+{C=iVQtpRawI|Pr+^!9F
zahb%wO?Tn7mAm8T&YS+{Sa%=)-aXsZ)bBhy>E6Y-LqEfq$Md4Kaag*C=1let2fHr*
z=18bp_0~+6J))p)w#wIk3@i4X=1B}*=E-`XqW@C4VxvM%ToC66j|*WElP+<6nAC2^
z(_p^VKbYaz(mNk^Uu$|LzFfVi;XT8F*DG&lPw;2VvPpRzB48HDKQDX@V}(_QHqXhK
zOb_;PEjqo3{WW{(j*|B!cPtLZ1*abF5Z)`2x>lur`Lgs+Zs%AV(m&b#ZQhk`eKvSn
zQ(?_nZj;%*8@)Yedo|n)oA~PgQa#TrC7gn%?n^zedsD~jvEW!r!9wpV1%_?53>M0}
z#Zss3<lMJTv7O^D^M-3{UwA1j(p@!q;l!2OZ4yNN+IE+!y^?>uIOVU~!S@WS@6MeX
zdieW1o#-in|JZ&QWN7nv-sEj4kMT0muk=m-{aA*f%x~|@YvQ%9-}wC68REIdFE-)F
zw2#>>9Uj5of3z+=?aGxCT(P&~rtmp-la_P3Zu$LdU0vMHZn2Asy3ib)U-i*>clo|o
z&p)_t{~ewBh+Au&Dfb)B1I+JQ?=$(FUgtRTsk%nbnPsegFOwRk=0$Hh&-h{fhv&~$
zGi2@B8RF}*{q?^Kg`Ls2rd?!^juDz8Eflbc=Ry8=(G|}bwYZf<cYo4VnQ+?d30FJA
zJE4xVrx>PLR!QE?tI_(~y<*iL$B(SN<_+$BbD558xAeQJuA~&b%RBkMu2RsYd+W2G
zGKear^-X54@GtDkS5f-3>9BO^jVi&3j&EbM)ZJ1qiXRn!6RfrAqfg<V(-Zzp?C6kr
z7PTx(KXqTMc7>LUkB#5E%Rf8>C;p7zDe`jLqT(Z)9<T~dtP)>dEBbX#luY~rrQ_1x
z@sH$nSM51oT+j4pa%!{Dsof05&D#!5U@6tueSN9R)Qfc;R@c_DB}`p@Ws5jJ(*vW{
z|I7)U_3vNbIkx}(&Og$E6Ze`GYGz&cby>0?OzZ3p75xwM9?j8HQo1<rbp2jkrAu$-
zl&rrL<&sjFdgmkG?XHd<orW_3H{D|E`-(LKAI@khQmK<mNWBmyA#`~aSHh;#Z4Q5z
zGQ3V|Q?O><pm4YRh)09w$K&Qk>{ar|<7ata^!0Yz`<y#JCh1yS@tnt9t}bzk>lVD+
ztn2D>FGjR<OK0BeZNA}KR`hnfF6ykBUNbQ*o9%XV<x1}-hgBMWvWlv&34YS_%Zs(+
z*V1FJ_q_izeOHT1d&k%LnUx#lW<5(4Ym9biEnKkP_Ao=o_1n3D%&lVOwc-LNf25u8
z{KtC0d}DjJ-u9G-|4a69N7<xXA3pDOdHb3jQg>K1%(U36=35Fh#6M1(-OgMPC!m(v
z<tEIKA+|-f%_Zh})#I%{ue>r|^}Sfewrb(ssej%~H96OPjp2?!`JY!&yhS`pN?*g7
z4RpTkNL$wB{dV4Qk<|izTP3GIF<Pj}Fm<-8{M-C;Dee9~nVj$2?oJNj@w;vN+l}E-
zd3_Iat?Ulh`o4(ztsfaqb7xGq{nAl)@q3fmkqI1U`wWy`MeN=E*6;Cbzln?IrrmZw
zzRNmK-KqWV8}aIz$3+Xi&;BLM7;(q!RmS8anXI2Ctp4(DW?X<*Ve9d~3_K-ruYNUO
zO}}y{=#hoZ8LM5t?tHml5xuhK<d+@BrXnw1eR*rv(UG&6ufc!uzjc2ZcGzgl{&PI&
zdGxG*+Gi%Xc0FfaQ+m$u-|l0tOrE*+E8V-aSUGFrm8~yR7_=T=HIrjVaGzexv$9~?
zKaJ@Y{dajB9;!&)@-JsRRSxRHJAIKg+ZOu6;j;LfnP=Dyvo&Uwf7%z7^HDr<<rcjT
z{aZU^Ui>|NDrnoj>5p$nG;C#6w%9PYFEhK3>z06X(!7mUeJlOvU(!`kvi_SX8&RK_
zv-~1+fq1<4G0j^~K7YJBLF>Z)FzM60N=lcC^caGbDo?$h&Me}y=E=0rw(%})a~@?Y
z=~O-6q&O{@Gx$;Pp_MVom6N~dFS=J?Z`PxKF)nR!;ezulzppc#yK_iO=Izur?fV(_
zvH2$wtH0@Z#@!ZBc>mzk|2t-x`OH~UKUL{Gc=!H;R)WZj*T-akO>SMz@M@#*d*0d8
zw`}?HLv2mlruFg`XDlv0*R!3r>x+u^-6Vh4D&`Mizq+Mgu@y$uG!`!S-gxOfW5l+d
zUw<YyeAR0{V6$ZA)}<Dw_nGcDX`Xy1b+WcygxKY&HP>(M&GKlUt!*c@sl2K@tNehe
z@Ue*vg$vee$6jYLh-&`R70y^AyTSM0g%93)m1WB_9992n+H`HR{oGoA$Uf|B?mTOT
z?=9N7Ki<t#j;;*texBYi%i`z7xLv<<WL~`P*t*R&!evRw_lJ4>x76%4{s!#7VRgJ)
z&yMTxgzPQW&koA3YWVrP`ua;@+q#**&aC|Jwf3Vn!w!>YFP`mU-FV32!u5$4UNeNe
zQ@Zql`EM>C-z_!y8@GPxO+7dJobv0HipMjG4jf&sc54}Duj;hxcZH81y|9q&!SNZZ
z|E}>}qA#1>ktiJN|6{f1=k;Imt!)2a<teZ7Hea#g+W)od8CUpBd3<kzdr6i4I^&&Y
zONEa!2u#gbeM9PiUG}tRug}H(I<Pmf^!#gno?8p7gl_%+JmYuHPXz`$-dje^`CDxM
zoGW}icmGFs&ADZ40w=w6lotNGmTRxIw6Rx_)7-Lt^47eWVV^q|Emk|SZ_~2;#d4hK
zY`L=!hD*Kq81Te>pY_sUv%3r*!Yep7efD_$<z$}GtF|qgg(<mlv+ggn`06)P$o$vb
z3sxqQt5*6YAG|+-y(LeB|Nn`}x760_D}54Vxc#a<FaO4J{l4jKCRe)jR=?f<a?U%)
z+d<+|@ix|%T0>SWV|s5gDYoI2Yu-sAp2{<|5ARnUy{h@{;FkdL4rUjZTeebhGxYE4
zPA<!fiD>-k^IBqyYUzTbynOdhUM>Hs!~Ec1(nNIz3(E{<-hG><|Bar0cVA}La+B*F
z2St5dZrMplUh%oFytpkdWe>{%|4JKfj@T_`mnQ4TZR%X1cKx=}r3%vntK2+q8$1!@
zUG^$}@56~A%gvQs-@n#e?lt?jvhB%7+-Ekeo^SG-Rbuk_SEs_=t0v8SZZ49!_VA>)
zt|<Zx{p`654~B<iE`N5^B+P2v)!&alUi<E5BXON4cb28Jxu4YC504hq@P*&BwE6z`
z?~x!u>;9wBN@W!<&K;D>_%QwL7j}Pl#t#amR=@t;+f?Ac>EXg_lAA9~m~S#K?XJvy
zxpfa0uT?rcX)WW7l$eQJosT{;{F!m=_xjUC3}S!9-g#!l-83o|llnB}_?KrtD)M(9
z-=V!HD(Ua%Lkw$;f1Gn=2>I$2cX`>ucdtY53cd4;JN??%+d0i5<bB`l!|ZDkPx2`R
z?GjjU=*M|+A=%P}fBRIfMwPt3mfHPoZL~>t$oe0Zd)@V_@4WK5_hO=`H}6l^*RBjc
z9V{!Y+f>~d+)i!Yz_If5&3MkI-nZgpo-^{UZ#Q}M=Ip$io32jqZz);5eogcbkJVcr
zCU$1LxW?ERnf_sZ<1Isr;#ia252oeH%Fmwvsj{@j|ImA1CvQf(liQBA{c&L4W}#i=
z@;LvVpkQV^Z{EqNJU_ipA7!w4YjNe7`HG$AqI9zhuFMwIljU6VN-dXRhq=IR-kp7_
zyx$#D7OR;sH^eC^H8&m#JZ#p{@#4~Pr{&vMFO#U-;IX9Qe|p%iGL-`i6aO+Uw#YA7
z>Qc@wZYjfR(%hvcFpni5SL7IX2lLisi(`c^GFES{$h`jhd3C8u!PJfz4v`?Eowp{P
zKbIo;_?DfLQqiwRCl=Oscbqt_q;xw^U&*K_Z`)d<l%8Y$T^%Rb^WFJ!e|3EA7xwR2
z_3P{J*Ir&;UR~ZG@>-o;m`lm`v?8%LCQqbmS2alR|6I?gHM{dhCQpw=GGn1W!|J)t
zXVdSvDejMXDz@^M>47skGqX;p&-%l9VE(xopQl|-SgObImo?y`jlyf5f14-2J3r^O
z#TEU1$}<aR@BZzPVYx)>P}+?h6<iIgV&@$H#~q=0y__v;diAvlv!|^3{c4BO%gSe-
zRv$9f{4A=ANiJ9EmVftJ)bJvoM`+911)6WZPV(JV`uf_+9lLfd+XcqUc2)ho!ueTv
zzOh58c>BKxHY-l6D!aI_b#-(UhG@&^y;fD)^l;6r&vH7VKZ~D;Cx_j=<m!_0_TpN*
zn?5er_Wgdf!t4Cy(k)3wUqp50_Q`&_W8NJ*{oeCErBCn8n-zJ~`jzK>x6(~ZwHcRn
zb%>m0jR=;g<lt4h<Xh^VH(~J`>m^l9epPw`FTcF`o-aE;V%f8#14nwqbzJ|iE_~~D
zDCF;_Cz-ZMbIv-&_U$fTv$SrDn$@l1_yeEZZb>&x-}Eh%M^ep1s^R|Yw-I8+lY6|+
zN(VkaqP9A$vB>k$ydz0pSKRL3z_KMu*6Pb*)xJd%$CYEB-w$_jdAuX-&Ag}iDJMjh
zGX`8P|6FOf{rIokpzH_I4KHV!UJ?*Fn;aaZo^b8MY5n?Sw=)OJldj!d#<WI9bYf66
z!?%?#kq>w(oga%b*xdQC{D!si){tnSD9#UwX=_bbj;=iyy(sDEs;y6@R|UO~P575~
z@og#dgHpkX&4;J{Gje*|dSK$O?0@05&njOpWxe*^`lNAxrN~*+hi~Ufnq3y)d0X-*
z+A{aZ-{;?6XZTljd%ZHxy0z!`g5z~vUL0=@mES&QvLbkyu&Ya4N66}ZmRon9op4%4
z;_K!5IIV^Arq{)=ZQix4q)Ps-&9fyuvokr`+!=r9l<nUA`ET<4Tgoa*yx(`c>7DuR
z?ukqN?Q&xJ*DZw>>{{Ak67zP=-^14mLwPIR_P&?3e<7lMHEwV0cRx>$eHk0R#;r2E
z7|H4x{<pT;T|U<~hxvehdL;L|T=qL=MN>B?Ye-k${}>zdcjBy2rW#!#&L5l3znpw?
zebNb=+<l#UJTG0z%9TE6R2!O>W6W|Un_-Vs@fYLY>G3}kDog^myj|(<v!-cPr~kZt
zd$(V|XUM=KCRlm;oy(g4|7XlxpKwCy>)Q*nd8?O~KXU9|BRpMpqU32F#?8tMQ#Y=k
zQQ&3vpnI{5to!4+WnPnvytnFBb$A$8>)gre;H$ePrTOcRddb9H%jQ0cTpYK&;`_v^
z^4r@lho?0KFR0-<puDl&IdJl1%j;V`cOHCnl)>0Zsc6x>y$d#<NM-2xc(K4aL1qWj
za-RyF>hnpFIlHdc-+Zle)m$w7nuT+~o8^yNZ>(FC5%I-~T{`Zb%~7#(<_C!r3tqj7
zQ(7p`XmKn4F)!oAZ_nKMKI^P8=YOzhMKbeS*B?7G{d#yRojqC)<#*b?d&IfB;P{nU
zA^B6AU0m|m7wo?gdoBLi)GdM=mfq8!?$T$%w|e%T`$iVKd1ktrM@>7n)G+VI)_>nN
z$M<+JtbaK_X!3rBHMt5(m&z=2EIeJF2s51fcD2ko@6yFx@p@bNzicX+vH2g<=D4s8
zQ+#^=T~*Hcwfo<n{_T4n$?rB^>2vgO1~<dKtNd%*?p<_tNnvLY%iL0MTirc=e`oyt
z0~3lxZlCL&m1$9Ou<G^aD<(yMBtP+<bv0bw=pER8vx+%J-?hDG!{H8g_4@U5m=C<X
z$o`%^!HHXN;<?X_mh3+h_bIA#?yp%VGI84boAc+HZam0(rapxIbZmENw6Dt9nM#+Q
z2EVSWuz1;ZoP*((tNfLam^1c1DU(nBdcS<uuaCSumM2bp*iy0KjqUMY&tEk<&Q3ic
z!@H*B(f-OW{JU4b@ckO76qNO}>8b8^!=7fhrwsN-WcHf;$;&c5_3!zazqLR3+GL*8
zKit<MSoUh4{G~4wO`iz=-?aD`|Myjf2X+bGd!;9|>+CAqvf%Zvl$44r7|f5!=+@ob
zw{y<TJ936rEUYI59_>(HS|RIPSF~hqRPK)NQXNxoO@5Vb-8Cm&ch;YW)0QionauD;
zq}rn7QP&UYp8B56j*3PG-^$}^3NENg8o9r${r3Kk%b6vrTO#lOJv1--`pvD^>@Rrr
zU9#jaex%&2oPM5p#`{Irw*Ndnu{wL9>RXSq&0qiia%-F8xL5ReTm3uzTdMZQC#=u;
zxb~~@`oH;45<buM-|_J&r*?x;^=I=h9zWV5ii0=XuDN=HC39&t^9TFwi!Qv}_Wtp!
zx4U~b&aS;yAtNG_%edpI&)-&U_StK`u%1!eR`f{zuB*$EdxFmMq@RZ@TyJ+}Rb)x3
z#Zyji{r9%q4f=bd_sKEzTU_XiX9y^r;Bk?)>_x#L$;pcHoNJjYBK_7grb*cDWm=}P
z=H!n>?|%HZ4r7xDYu$P&>aKjG-rUu@E%#S$w`E*#DBIVx<XzN?poK5jJ>KFw`Obn5
zGk8Aqdi?+R|4#NEA?_K+7O$PR@K4Fy_&MReHudgI>f0);mL0M=zb*9TSK;^F`E_S=
z%bNBl#X4j@JYH_}L`0rZ<>bXQ4TiW)RW19=1Oz88`dyGZ#d&V&Z1crkr}oa;R<wN1
z{8@^R4?bC;=TS0Mw^MzR;`^HiUkS8j+r%&4zIaz>m;JrHw~K;muT)<1n{TQ0_wChf
z&-_+;`MzGZMCMSVb(_<pB8Hw_`3o1<9%s`|+WfU*b^VGtW{(;_|0>lIo5*%e?flNb
z=Wl<<?$G}j^g3s?oeKZbG!K4;b?g6{8$RLt+V|tW_wx4TN2O}>=6G?<dCRDAJJdcm
zcd5jKtmQS?(Y&u$ca;_K%YLji)tUY6XJ*{(9r+9f)<+#?PiFX0e(U~$3E3@WwH2BU
zPnU<4Z(4kM_lbal6|+9a{z}Y0otX0X<He~}uiM^kx*^eZZ0%mr#kt=r_pokXbn(W+
zZ<^Q4o@mLo-}t2B@Kk;IR)L!$4ZEASotY50Cec${P|)(A(6oqc={crTC#4t7aSLLa
zmFe>0^~!7ig%TDPhMvxzHP>pEgqFQ!>E)>m`E0p!6c_IitxRrNw{?2Z_OA8i&0>4!
zx?SE?vEL?i;>$&$4D(H_o=9xgp0m7#uO>A%$Dipyn^y<Fn7N3^wGB(Qc1*b?HRt}e
zqLmVtw(^&G?0mUT>Q{Nzs;{A<C6|<D+_rt%Em73*s657cl7V-#*@X$7_jvfdXWh2E
zaxdpaRI#z>E$_&GYwpQ2^mtXCE6RDYtXlPIG0)BxW0{Jtm#fS7{!(9Lm=(@?rtD$j
zNwNJ=`@i3nYYhMXN_WzxLmhryr-Dxh=q6=fVLs+;<j?uPDOCQid%Q>N`kyy%PS26w
z(AdVa=<uX!m$EtQ_m^$GzVEKyE3<mXRl4QZQ|}yHdHYl5lX<H(edF#<DCW5upZ{oS
zt}Od*-kB2rVt2Eq%~HJlVna%7w&j^i{E^iw+|OR}WT=^3v}H%t0bifJ!5o%{C;6@^
zuv=s~<&p5*oYJ@Y41e<C1Y5gpbu6!UU7daZ_UdJMAJ_QT29`)N99LhT5q#cK;-2l-
z&peigH5qoKCER{>OJ2M_qfNEd+h2Ctmc7TTn(A*KTK&w-D%tb!{@Ba^ef^ZP8^77T
z(kYL5wOq2OO_{-f>w&cLVaAFheLw&1*%^LR$@kXxXsN3Gf481p9&G<uCE=juZKi@q
zu<BZdANv=aHAs=qj!5zp__*bJ&bOFY!Mmn&ua(|!|G%W}*thWi@yVGi2mZc{IXOW&
z<H*lU$JvP|?5uQto_^)kR$<*#5)gZh{ZiK6d;AP*{1#}xJ!RDJFmqnY305n{vPJ%f
zkG1f5Yne_y`b&6^cAFhbg4--f>D}wrT`hSk-jILU=Hvu!6ZQww7Mwj1{V6;sT0AII
zPifPq1L1qM<<=W9q)%UZy)OCezv+2>T|1SO=5-%vlS%XK?dZ5zeD}qR%;n<#X2)|^
z_Q{`Le)C_Nap{4}mS;cDV_0DpS@db*QwDw3+*ZZgdmg^<Qd9LZShq>3`x4JRUD?IH
z^Czy0ZDxF&FloLIJ9v;aQY|aul767?*9zb3j~^@M{=E3aH2H>jgZ3r6^8z;Z%st$<
zxSXdI@_E~NMHJf{=rK|43Ne|r{?hkZc_FNBj#l=Pyc-@#D5q}?ym;79XXP!k#H-<q
z*Or#oN7QZFd}m6)q>s!8l#1=2DNd_9xjn6Im*K}<$q}C-9<AEWFd@z?bMC`6pLyPU
z9%*J+vMw~?gyg#o`75`_PWj2x+F2Yi>CEgmAq?L<R{wp@V4+#*+U*w3E1%?Tuu|>P
zf-URPPjK#PFZK<$o3yTfk)nSgpZ7Yypz?eMKfl#~Pfyl=X{Gs(=SQmX-wl=w{>w^j
zo%1$a)}I)DWovKKwqp}m%L+?WjVGt3y<s?TVT;}dZ3gq5;%2Yz{cm{Dowet@%4*}8
zoFA&At{Xq$INJQI<^7t<<*G%d21h3LXSXaY>^r(qIL<q0cSdZjV5R2TM$eb0+?0&+
zb1Ew<T`PasFP&>u`s&Kg%V|oRUbLmJKD70=&t;CM@!z9#l|H?45S-{6zO2~MdEJE%
zkFpPS`q%A#W!$vo=!C+)avpCrmG?Z$8EPiqQ+1ovbF#g4eU7^O^Eg34OZf)pOS=~+
zre~P0G5VvuKUvL+)%S2@pSxA7>D7J)u_fib(v!cb8r%wcaLc^L#raniqneA({FlGd
zeyG=4%d@|03)y+?qs{V3UcTlPm%D}TskiQ9iF>7?^i{3hzFt#FNj00nZRy{=JUb8P
zZPVgoZZ<nQ!SdGnUYj%0Ny03<7fw20dwG|~i}op2le>1$I%ztwU;o8PVMeuO|IhO5
zbbhhI{;PTHHM7c8=Xsy@JdWI_KULV|=nuh{v8k66?fqtNt?&)adB5?`^K$t;UwZ5h
z&98s+_JmaB=8ldl>luD1ywy)Tq3Lx#ICD<<S)JtpH*bDS(7$am)wqhGAoHzW_^mCa
z%X6!~-u=HJ+0W+ln!{C5GjDsHi+W+^V;Sr6hWDxB*4^_I%QqMqs!h0Q^u%~!VPE?9
zMN|9&Ij_0@*}C|pZz`X2RtQ)8+}nCg3HJ5t(>WR*rcDbzA@jVV>Az24c%9vW<8{$R
zZHFhRuVZ+#CvQDt$m~0tfBL^xW!RIRX4&d-rS8K-&3Ru;517o?&3t>}^7e|$?Ti8W
zHzXM**X*04$gw8!Tz&Jl!xI?i{5}}J?ANXe#)Q55`7SQ}E;Eg1690j3iJ9CpD&{ab
zrdyuA+-+q3g!$axgfg$MYor<W7yscalK2$rarE}F?vA;C--g7mPvhtav-(wY|4b2A
z-*XxN58aycOO+UYtF5p2p)S9~BLCGEtt5|B{)wRs`5hg)O%to0B{}OA_xwBN&Ys(T
zFukm(MD^*)=e;ku54`;JDU^4~=Y{va@~vr{#kg`ygvqVMlXI13GZakk=;&dLn7Mza
z6Hnj@i5LE92|*Dp`^sz%W**tSh4I0+I)*i0e9Q%BaeRo=(v5p$kdl^cUHzmIluQ`y
zyzg2$`z4<(`o?>UuX(-2_h#{B8=p%>F@IRdb?LFC!As@?`I;s-j=YREa&Tc|D45Y9
zd-J(sZPE$*b4)(Vx|tR~^f@kEQ)QK2$GqW^)o07~QLpCM+qQn=E0p-Ouj52(gXpJX
zz623=u8uY<14HhF)+0A3vhVoyZp*Xv{Fd`-!zwCvY}H^-2;_R3E1kJ^&E$>~dl}wn
zCVltFO#5c^#K4^CL&$|RiJB*&zkkM-r9c02&gSUN=>;3AmwIn4$<^YulgfLe)t-6v
zyQ$zzE(25B-#j~gRu?sJDXYag+*#xQ{`_(?pE&bbZx{WVv^@58%d*I$E8iSwDck>a
zY2oJupZH|u@8-_6u72R@@atqZ@6I#A4!gPzw#`{~G-XB2)_mQv=U&$=e@{wXck;)#
z?cKrRzN_wE%v<?fYmtR|tu(LY>1zx+p1(!YPQ*&dREFp}o9*wey7YT@DCg-<SF?0>
z-`=u9`^&1iGu!SwVP-hTcZ<ha?}Nvc$@@M%teCj9EOGAxy{)^P{w{p2EFKXT6yD6c
zvt?Ptth7J;ybnVj3m%($BdPoCce|tus?O`*DJv;mZ|&Z;`l;!*pGJ3FbW5l6SavPF
zQCV@JOroekHtDwzyJ>o-$HzAxp5M)?o_Jy9X@;=6$}N?Rq7wfZAFN(**5C=lQc+H;
z$*r#2)N~lwulzHbJ+JcTLs{P^ZVv+&ZL+jx&uv#^pD|&9{>rSJrxyZ)xZWA(#H{!n
zxJhJUTW{lW<yzOLCrU5Yo{X5NXUd>umA|Bkx6mY-HQ=gdhIP@b-juBW!B6I^TE`Y7
zhCKVQP$|95#igyg;{@N$&8H^luc`BLS@Pr2g0}`N{_j^zJn@*fT)yVEX!;+n1MW&+
z#TY}fcJ)YYj>+#x?)GZ9dbWAnVF8P;i^SvWUn?r@&1P6tee2}8_V#7W8>((ESZn%3
zPM^8J^+K9NQ+mZ0sgt`lJ1v~p;P!k)`iZ(C2UCXnrBe=_-VnG@`L^Y{kK%2;U19r=
zyt%h$@!r$BzA4>hoFT>adTDLmpD^ByJxo4T+|3;(mG@t{tXjNlO0-Lg1jF<Wj~AA<
zRrMFHNfq@uGybs4Fy^sz*r?01;o!xoI$2tmDpVbQE>lwax>n<WqhoaT3DYh$<|`(g
zxA>g(3RYe14srW6>Gt`WH`b#0TbD@RKFgYLRqf!ctP{3vOc&HLjEkoAp8lEkercF^
zQntPIGwa<^r8>Id;jv7IkDXb|Fr%<jyq_i4q3mYSrmMwk`XW1d)g3Z3e2dQP+o0IS
z-f$)5yOGE4<X^vLpSfm!D~u)Aaa!iT$Q<<~!+_J>_b&CXRA)8G(XnCOpcf&n7sb9g
z|AtM3@|~Tt7wDcaQ|;gJRYf`{_ILG{&*g6Y=LJr$X7Fy>qENEf)U^KphB?x6wnS{c
z_*GTudARF$<<0lyt6KIhSave^$MVnxVp2tuzB8t=WH`K#J04r@yqQ6_Fi}G~F<$BK
z+cnXq!Et*x#e2J-T)0bYcg^bqImS=)lo{*%<Me|?Y{kCv{n<V3*72DOUw-P{q(3p&
zE%@W%;OAd^L+8BT%GU6;nmuW%;_;t+2~G*q^(z(AlIpS(mhC7|l}?XW3VQTR<$mJ4
ze{OCEjyyQFo?&tGt}0vYK&P)6w<ju2H{vvl*>UlkYM#mFqUrJCTNK;wq*$>`U%Y4G
z(m&yqdvcP$svc)c>5_h){A&`&()q9SzpS~KZMtI<2h-$CoozLeT72R!7yqxZXwSQH
zDUyLzPB8k;j>5^ue5K6uF6}6sY&u^x!h+kjXhKIvkJasx^=#o%-5pa{i{CcBYTui8
zKx3ktlG3NMu9hW>=iM;O;5PEyyDz-fqBgVgO48M~#Wt&_N1W`cH!rkcEAPr;Xk#t@
z_?t0eYkS9ugA6hum-2VV6dGy%o9s0AvB|sg%P%BqGg7;*Oa5LJqs(o#?uUxAlnL8|
zZwY$q=BdsSd*{L6H;4Cf-^t#}b9xMa#I{K8yZrqg=hTmTJ2qYUJ4N^2hEu0~m_(Yz
z*D~%fo6&urq2ZTP=A-qh3^n`f4ZgV)FZ!0}IQyab;XS_u8^rIN%P5#@+qTkhWg*YJ
z5=I3D)vB}SFGsq#u({s7JpU`-F(vimOdH%Ur2X(&?-F}bMEv@X3llHDeKf0hbN+h8
z{1==DBoD^?;W^+}T3dD|x7OD{%`)KR&VQ`i`Y#{+_<oiA^7XpW(P3ewr_+>_KAmU$
z*cf?No`-v?&rSscdlhH71#y=c-#%U=C^&JMlF}x-WpBQ1yq|J&R)k5#uENHzs>N&m
zumAn-^?LOe@8f=LD^uOfKSMrx_fKB&oA>Ll_V$OS9d>Zuw@Asu^1}2ZJ3q=xl*BLU
zHruGE`P1(sSA%7((n@x(H92CRcOSc^YgHOpQT4gx^_p3kC+yi6N>9bai+^K!Ao2G@
zZpB)cQYPjQtM`^^|5o3Q_$Tt8^IXpv1EvL=0)G@=?Ed8{Uf#cUXSPcG&mXayvKA}K
zOLE+}y(!ZDI-~zp{)b1e*PE_qsW6e4?Xu+KrxTmb{%ZQXd<R#<-#7gW)xUPH>o_ZP
z=h@8<@`(>mN_z&SI>%mkdVb!)m>O>ey-WPO;V*iv15<Pl{BPRm>C#uM!#F>*VCTu>
zT^${3r39)T=m-i%Uak)cS$pa9zb(HiR_-caEuOt8WsYJ$XUW^GjU62k#@~xhZ-1DZ
zExWBwL9Mf+g!_N@=3>p9o8nIVj0SgpRm?7%nOg03-KxNAhxy-<*=ufRobX=9s<5Ec
z^efxuzw=Els@!!IW7s3t<EtbTmcB}FPfO53_phsMSId8WzFev5;F^_hpK<+{nJ4Xc
zqV3M}G6tqwYc5pG*>L=DIKyPu6tx5D2XClM%TWy|tw~Tz=~{IB>*~;N0)i7yf4SV|
zyjW}N-<$6|PqmqF9P)CGGvZmGw!pM;J%d<ld`)%8;@wvJ8A5U;djgg0Uo~&JWu0Lb
zuenJqO8e{Tx#?eLy1R$os%pDCb<eGXYXzGRPF>D;jjj0YqN|3F`<dNqs(d`&d^}}*
zFe24=qr?@v6|d8K7X6QWJVDvT<%!7O5MkY&J7&+_^<I4Ot1OT9>kMM7#c%x>?mP?H
zz_{R3{7rLDmnB=+7BGDNDjK<ak2IgS;Kawek!LP1(&F9l=*P7Av$b#Wx7j>&Zg_bx
zW;Zi~|Bfj(tOqVfZuf9;v0~aO!2iVj==p5@jsFY;1z%<?<=LmO>e9_HcH^zZ3}RBB
zW?dAR;pTpkslifDnsu%=qn360T@}HJ`xxfPoY-pYvGM8ssKSmqyIA|UmurMK&8hvl
zZE3VHn=_LdL(ln;*S7ccXBV}Uf4t0a#44t%<HZp>iRXRE4F?W!8Mz5(&)@z?;q`%|
z40oQa3I5e{b?Tn$Czi4{D=O}1?m6Rg`)hk1!;VvzogZp2wC$Kua<S1<f$z<)38E2c
zyW)bkPS@bq=6IpzXYMX*t<BIsd#RA~uQMza_R7BR|FxH9+r25xHjCx|ur~VQZU&nf
zf`=y+m^1h`?I>Bs5gV}3{^+i{hso(o8`dtKX3Ck=QRr`crAd`xecGa@##tLGmoIdm
zd!8}NtXn^0g=B91$(F>E6`~2D0^#RGbnk7h>nP>>c-oQSOP9<A1OHWiCwJAhH6_TV
zsP(KXU!vWZZ!_&viB(}x%|XwqdmTIy)23|rox5<u^PJb|5nI<ke!<D$vW3Me^ZVX!
z57yjH*Wl<fGM&m%+c|k<Y)p3Mf(_nJ&Wct=DXdyw&s-yTWU8^#$FF5oS2+XuthLg2
zSMRtL!4M|3u+sT$22+ZP{Ez=H-~Rr*G|XsutM#t1*<2eo#ohTR`(;hpKj~>x0xS;{
zGsajdZ;?;_{=D4%|IB`dg!tc&1=faCD0;N%TogOe5+7E3Rj+=F%eRPS=9xeL=El6b
zyZY)Q@!ux<^f;bh7MuAhu34d^>#gAa9}8wEO+99J;n$Y#WoHV{W+oaeahM`Cv42Iy
z^*zUwHl5{pou{{3yKZ8sy>8d}l^bh$53qe-8R&LXuHn#$dlx=uR|gmw<#m)RFod-f
z2%inK*c-V`*F=QpIP*q9NxKVarV0A1+?;M)mywR%81cO~o3B6nktoBw@3%KSkzsOi
z3H>xv?R!XM{f|}IkCYF7XMEuCcfr2KtGkb1HIfKQQF#z^<~wKa@}Kv1HO{WfDpxZt
zv|`$wp>gw8+(y>e)eNh)_u9@Y4B1+=d`<lId?)vtx6RMIc^$ORn&H;&=+)8Ao3j=y
zTyR12T*&^~$yG1w3V!H@|C+GZ(Z*ukyNgi<=6Z+Xmzv%CbaTs-I~)$T*Ti2>-_^6B
zTBt4mQJCXp)%glan|7|ttPM|C*}(Ji@}IV9zjDueGniJbDr?>UtflOyT*Gyl<5dxs
z5i#4`OEO#MCvClJwPJPJweK49nO2-BKKkO<^=a+ws&bc2eVGcnIz(Q+DDicW;%~c?
z`1+^A*B9Jo{=d&$Vr7udy3Su2P;zd475{X1_RDWJFeJqM;Z*GX@c3_p|L@-nKd$&c
z4tki}5P5Uos{JN^@4fTXdjH|l{X1d}#;#9_)<zXfyx3NfX@7ZN{=VHxXU$Jfv|{;o
zdDgG8nut5=Ub#P5w=2ZT%YTRYvx?QG3~wGUuhcZ)v`K3D#2#(cpuhL}>|Kl>9$t+8
za*N@>Yc;O)<mEqAWPJAQJHAXedi(7?$<x<Gm%hKbIrCBR*PZqTg-gFw9N3oPm{V}4
znPEq+RbG~AfQ9w59d?3`H&yrN$8vs13tRuv{Hxe2`I3vCod3$^9(ERINXwsP`<uto
z^RJ=Gf>)OvIc?astzet+?)jwy4<AZ@xo~6AXU6`&6YF&Yv%h!Q-HG}9{OHyxfh8x4
zGC*d{(pmFtW6NFV-7Bn@rrp=MnRX(y>z)GV(|oz7Q>Q<0V_5g~;vBwd)1R(Ve>CZ`
zSN#EP+xPEwos+WOd?EE_=gk;)TaW5PJ526Yw(g7X^NG>i!ogmia@@%IoRHMA@<UIw
z_aB`-_53$&zO8pkAACLE|M%nS{x<vHA7rn`7Cqx+=9|G9@O1H=s*mBfYUe&uJAIY4
z;q~3~TOQp_o?|S%Qt8i!H@y43)tNsyT+^Guxs5R)YSYe#oqf?yj{lgTarjv4*7;W3
z7km8v>>m2?<fW-`s_(Bp+qIB+Ud5{?75zV?x1QV_b6)c%!-qxg-Mg%1XRDw0dSH}p
zf4$h~K<lsTr`~U6j-9#7By;b(?KNpn3*urEw2IocSl*N>k63xs+&cG2)%$lxnh#&v
zpYvkFdxllVWA7@zy1TufZ9D(>3PnHGALkaI^>f(b-PPf-S28Q*?A)7``P;6D&RUT$
zXV2|>87BF{f-7&-RC1L%$ClqMy?)JDZ^o?5#XLLD9+aQf(Xr;ey;;qQpN`S(tFl*R
zuUZX4w`BImZZdmTw$AVKDp&V7@rj}{KR)bOZx-?Y-ka%XU0u??#l5V1)c#*=Vyd1}
zmXeZDs<dF_HML{2n(a32@vHlnZ<hDHU0*=(=ic&Av2{}o{aBegQ;eSI?p|}X{M&!k
z6_-D6lk99)m3u8dPlW%E?XuRZ`Sb30xu|?mWSF|Ua_*{|KlUu+w=(GO=8;P96x;A_
z&KZ7zU9WXE#($c%^9&2aFP7Xk#rhY!BIGxH77FKn`z@g2VBO&@`Sm}u4`xNDb4$Em
zdgPVgOU?RSr5>jDW9}+1sp^h-TKQ=w!<$!uRU6!|U;D@XTkCzgjlw^}y?)E|Cr6gC
zBqZJQJ<HR0@tJ(>p&)^`nlJx95zoI{dW~`J+MiA<9;VH$ezWWULuUW?^TSNS|85rM
zDO$Gr`;+v0(mVb#{8;avxtOcq>qh-uSK?Tt=DrN!4rVkf@s2Z`eo-R#``7$t#d*u@
zUw;1TbM2lzul_9QmzK}scDz+p)_z<)r8VzSrr6vDmbirZ%pp5lx4cVGKmNhyx_lJl
zhoUt7Ntv^zGp^BFF-4}$C+K}~?Jhg5v)4qo&y{;=m^LRg-et+pLVZ2eu30YLysn}Q
z>nlX#*$!OHbLEx4_H6a{wYSSXn%dOo&b*kNGN+iK!X(3(r?Po!T2)iHz>5EWB;FY;
z<LxR*I9h%0E4yG`xpnbz|GNFF=XIQrXSiP-yMX<{%x|9sVn5G(pY2hsqh%-ke&g)$
z760ll{k3j(ym_>0)n2oRzv?o3KmM*y3fJAX=f=FZHIL1_ZtaxOW<FodpuI;eb>U8i
z%{E=XU#QxhTVnsWqG9RJy%{?zc@MOJ`un`onKmeNpE_long8)~;5z=|&&lyIT>E$I
ze7t=IXFyoI%R9ycoBvl^J>2lX%k)6{T{ZPyEyefcg<sC?PyzYmFav|#iASQLfj@)Z
zPcQpeX1%M_*i}AT{(`5=Ii`gA=}}5a>h+(hc-FLO89z7QsLv3dw&w2|1I7i%j!S4e
zHwM=WI{1nmS8Z;%)!`GL?%P`?`a4nf<yHCIDBcg9;ofVXF&pH!Z^`u#G`;GZW?7#R
zz-yoeviFFu!ychXwu>5v`d-c}Tc9gdyQ9P8ijVl;y;}9$0q<VgZlAwxt6DH;zCEkP
z`uPj5ZEjZMl9t*c*=DooE?dLYo1c{~*!F$dlj3UC_Pyu4h@d2w$_3?}f*vZhOJp@d
zXP#^h-6Qp2b<dW$rdM3kJT9b3eCnLun3FcWS}>t>mikrc{BqS8b)`!o<z;(g;>(#I
zi2F~UIms|A`FrXi#;{<C`_meyZT666SO*%<vD>K45WHzy<4?&0@tN~V{C8+SOcdN$
zDwSSwM!8E|J@W6Jlr2|p?Uwwo+S2~y3Jv{?=}+`C42~GveZ19t--qRg+TLQR(%BO4
zyhGmXyLZ3gd)!%5hBcqVF0cPS=jt8)f6ot9@h(u?A37nWm_d*K7LRk>!c}eOQ(hN+
zX1M43eol6HFVnKW%n6=rGX6bUdiJjWisg1&=2!M_bGjZi_vD&+FK<qoW67}p*WIjX
zFFBSdtxPj;S+QMXws))RR0jVg<&##izA+F=n056We?xh}=4U&;#smloN@lq7uK#46
z@5g$Cd-qf6St}kr0;MMLdWM>bOS@mjJwBT`H#lGRK>sJMhP7L_?e|OGGiPOpV~Xc#
zmb33N-||lVd1vMswjaj-D&kU^Lz6F0J!PEp#6&=F<%vs2zdVeab<NV+TtrY(vD?LE
zR&=MSTfLgnr4MfX#p@y!lr}{w9iLga`=wC9;{NY`r{|>f2nxR3=6dI&%^UA5rfr8N
zq?-r`YM#GzRLj*xW$)S>wXQBtydyP~l-90Y+$<<)xwrkd<!U_v!HK~(vTt3Vyx+I$
z$E6pK_X=I{njNU5Bvk)!&nxdQ;zqTdin>x=Dfux$YD!8k-yV6Vt+c6bPoMXZdlfUk
zbai-q43_JEv0Ezody3Nf9jSls2Nc`AoVy@w*NVrLi~Mx>FQ~YD2NjX~BiQE^$?v<&
z@nM4c$3<JtM9GAyUO)Wy@!ZmnUzqwYTdncjVYPb7o@Lo;_CH_7e^x&*=g%}5jY!T9
z)h{QO%gwzXe`JEIlPSaDqVHL&a!V$A=rf$-5WmBEKx+LBIp6ZonHA@+zw`OiBUQ)L
zu(l@0kl`N7gWw08muE@@Ew*DQPkmjK%{b5Rd5`Ryx1L{*_AJrOTe9l9eC3_jM`ulb
zxckU!5!LmRx4C)-oNX=!>Go4TbJFp4(h1>Nx7YuDv%w<weYYBejam@X0q2R6n7_o?
zAAEe|ZK#v3=eoW&ZN_V6zQ>mw$%wgA@L!6j>D$D8Ej`Z}3`N+aj+Xjv(=%tjBpN@9
z*C1+%F2i?AuX&6KozoB9l4V$P&!+HmKf^yQTYsjAS>eCUKK>DU>AlI6(d>!ktA{g8
z4fow=bX!__>Nx|q3m@wP5%-hJxEbER5#%+^N`JWJ<z{i6nI=b)^_HAAuwRxMlqAQX
zkR0WG^I@Mye9+$D3&$irHRW!y-aVhez;11D8{>w~rQu>rd+N5_d(&Pq=O(|pdBv4q
z2j5S;xu5Yp?=qXj{NwR@(Qy~s{wxc>bK7olPg{xdeUs<u@|ElhY^<CgSTmgY7WKB`
z;LYhF6+UGlcGujG3dS~7X;dDKSyr<2vA*~g!?ryRt<8PsFI{!AXZ$nyn&t1vy?1>&
zPH(zUmwM=V+2$28as0c(vzG0=S$icmg5kr){IjfwXHT?`sWRkm>lKwfy=&Rd(+ta*
z9wyuuxoCRbI-2Q2h0nv83|A^NP31$MzVN<QUa)@2Pw5}m%-y>-PT2P#c-_MrqW=^#
zqIoJ0_T8NGcuO>+%lo4$>RW^!*v9_pxSP+}%b2ifdPwnp@nbdrKK{=C&vqbLPJBnG
z{7mLcM%s+$nL^TZ*Jh<<#LK?({!~+cdxGje))eoRN=r^lf4(EsuAX3XAS84{|Lvd`
zVSFm3+itItO4xec?(JQMnrZVQ@9{7uc<-OZ-O*u`cFjhTx3bqyc2Cmxzpl1Uk`ta~
zo@Wf%%N!tS|4(8~@4xs%YX6qn_D!GXx!Co=W1+`|3^Gr`ix~sohgAPGJzrbF8@WiN
z;rHgkmD9B3=Wly<<H3nDwMjLZC(kpixoPIetvEI9vtPe8Uqaokw#tjr4f>m>FTI&x
z6<_!MK``5%y#H5!v*z|I+G{lHyxhBw<-nw{m-EV9mgpC5-aMU+$N#fHy{MpN<oRzR
zwpx13KMZ0I@5xv;efGw^@w{o%-`-d6I{LL~+ldMCXP7J0xy6I_hq5iJeH1qF_AS#L
z$BG0h&)?4etIiPjRp<S~&o1XLoz=I#wq0!V@v!w*1&;ptV!Tbt%ukK+%$Yx>v(7R;
zX#P?j=Um_V{`K7$?LYq9>p$lt$}v23ubj%y^x%GG^s}RJPp9qOo~krET<ztTo?>y?
z2s;aA%NCy2PP>ko{{H_g7*<bmxwZ3BdT(iRxOtK8`t_ffOyl-_`LtzTT=7EppUw<h
zR<~x#y)ikyslugcX85{`OaABH4{`ghlAZ5ceE#eP!(t|e<>|kSe!n_f>Go-s-j~>=
z>Hpsa-g68u4KMksk^gP(*PJ_#?f8FjCB&`u`Mlul^=qQbb04Q~p1J7mLg#xkq>Q&W
ze&yfBdCS1rZlREK+{SHn7d@V9F3x%xy=%4A&b==}_x1OkQJ=rnoB8|c{pq%H>vvD{
zXOoDuzHGDN`;5|~KWEB+x;pioa+1}=((<jZcYIF#J=?HT(RLZbnbRwT;urs~VRe{U
z9(7LT%?=)+)R%j2)bXsUtNz#|_VMY_{)ngXJ5!&};r<YooBR2}8QyEE)9XIJd7!-e
z_nlq+JQ0G%GL<Ke-<+42>=eIX=4EwVy9Yb3UW<*Yo;jsza>LbokyXz6)^crA_4cVP
z)Lwh&q#o18Y=(Jjw-(C1*?8e+%dfk;;-}n`y*oL?_O52eWS*a0Rg34%U3jg0M|#{3
zv%lNE?Uwq^STMD`)lFFT{9%^uf!FHSteIc@_{oxP#)<{kj#Yk)lKY}6yRY+=XIO0L
z>xGLCF8H-X@?`6!hpXb}CO^N`|C#@?*fP}_ou!d)c3e4_XZmg9u}|8`wb#rT|6JXZ
zyXopa^_ar?$amjW|4w)5_ez^-D&#D?qOHf{d(Nk#E9VaUy2U-Kd_$?nH=lr&uemoL
zy8i3j*2^yqqrJ70RK%<p3o6&1?aq6%?qYDbaKHW9-`*cTSQy8fYwGZ9T`u#0^Z)JM
zU4hHvq~|A@vzAr-`FZefRPWa4O1;9j(|*VQ+r+kHXZwUL+eId3pX;^SBRk<;S?T1>
z^Y+|18@}xDogaBAWubZBR2TkOcVx*1gDb6}6B?(wXUctC5cB1M-`488Z$%!rMozQY
z-}LT9&D*-Y&laz3%PXArp7TIq=8dg4eNQ*O;^))v)a0m@_+PS4ckTAGf}GQ;m>x$=
zU)QoSEg@-zX}6*<pW5EH&;LJdPM*JGN~PsDKmU2vizdFC_vUq6)PLU9is@EXy&_(*
z$_pNEDBWgT9KZklr^eqdN=^NRl~(q?J0I#4H%G@eeNUTta6-$@37l`&C^Je_Cr!56
z^04A`w)n)RmcLIKdOm9CN~LXm{$aU1N5k}U$vU=i9fc<CtJHPtZ~2N@@atdx&+E7G
zVb109S*g$GpYQF{aP{ZCrQ<ATEc?Lr{_LwK-TJMzE?k+Wv3tRyqU-WOIqNs(y@+`u
zXeP7iNr0Klq4@J`3KJQ;TJ{+-{uE2kT*)S@TmSQ&ci-*J-p)H^8)AdAEMC8fWjwIx
zbJ^~r57%s45PqRd^3#l!4D)~7d-Ip!N@|EwQP;f(k5k$mi})r?%9^~&(&*mnl@d$3
z4UElt?G8FeT6Hn+FM8{lW6K;{(Ro6vhJC}XYsPzeg4WFTb(j73Vb_W45hcAhh0U%s
zMm@RY-MXD|+SRqZvBf_h8wpN)_L^auiukk4q_+y;_uo%6f6j4tb=~<mqrkT>M1r{D
z-@mZ6v-t7rgxnUZ2iN~IH~7CTn;pW~<8d!fV2;3jML+xPi5J2oKh3(3)v&!bzg+0R
z`O@sgb*cxne>obb%TE5Y#`|r1^161eMpc{om0tth15UQ{uRZ+FC{+KO$izp@@&A%{
z%2h<VJc(nt*4q4&kL^L%6E=2-je8@6o=tDuY1v@(gnu@3-LkctFMO<vWxZY3yx~g2
zvQM6gMq*Vb>g-nCO_lWC$Fktkq_ACr4NpF;*&V%hUG)jUO_x^iJjmo+F4Ox(wwzJ#
z(of5Sorbn2r?b!Ao8TOK(fxtT{@JpuS8OAXon{DKWhehjc!8Se{O$khqx(;=zkB+&
zw6<)To5*~2mALBMTb?dU8q<DM>ql+e#`K_c;xwrW6T?qs|K$=~{k&FB{UdpG@}Adv
z5$Og?j<!lxR<HVY@zbtTU702M`F{&cAIwd*>1s32REc*zb1VP)!R6aT1z#?|EE?Jq
zvV21Ao@nW)b4$#U_!Ith`mHhKO{iQs^-ufcZ?XlKeqO)x^M<y3-&(c``>X3`h5mc{
z!b5BR=|o2sXS<IY0oVUdvvAt=&~VARw=yg(m$|mBZkiI~<KnVSj{QiQx$PDyvpw6w
zJ)Wo?Z%L77*wZ?XpIt&+D07W-|BDlI*%@!VFS)aF?>Q$m$*jol-xz<top@-`=7STs
z7Bi;(zVm{SL1*pf+*K!A-u6D&;`5gEfcH6PSK}|7zuxXiJ8H$g`c|yVE@nBY?@CHW
zY!?LNefu^VWldVV^Rj&h7gyN^XQ}&U)iSw}-$O36NpN+tK1lxOt-55DgdNL5ou(6Q
zU&R?F2X9SeJHVA5b${+*{~xoC|5~a1wx>#IHlx9n)eG~gPI(Aw{t|3(pL108v~86j
zgIGoSEsjZ-wqLdR?;6b`t*>>@@XUR;(yUE4+Dka%8P065t6}fl^#14vhYE{C<10U>
z_+L?-yx6sC6{FnOtml5OTVjvg^Ip{zwY=6aFn*FvgNB6DtS>+QEO=`mBCwmWZg~%H
z=A_QkH5pkJE-H^Me_nN4J&)&O@Rj6s^HTdeO@CBgUOY1>I_qPu;A!Um{yCz3$68M<
z{qOVVQ?q)p`N|D?7Q4ILBzd+z3Q>5d=B67UxrO!J&74b*LmOJJwa=X3_9WnBP{U3^
z_nT)I%YUEg&9JQFs{7hc0qQ)<dDq-@bJ=#~@4|n5T)tX!*4EWuVYJS_x-9Wrb@q#8
z5!)A>H4qWdl6{k{G-blR|N5U6uN7yU79~H;(dre)c_stRJ$Gx>7{urQ$PJl($?u6T
zLtWANcEQM$$}pEFatw9lzdGuk<mgTO60P^qzCmlU){O`9@0oSJe>GjTTJ`fC`LiaK
zVhKyXCfXi&tU2G>Vg9>S)@#0A=Vy4KaOt<|@x%LfpHTdz|6O$Qvxl>!w+T!<TO#u4
zjC$3y#am^1_jRV59Qd+et$~QpW5&8KTRlq?zo$pO*KFAO>wT4jmDY7$T}DCe1<M~=
zHFPQ|x%N$+{MOY;>eb<o>&~9x3$JxpGFy+eaQb4W+a2q2&wktbd)Cc#u><0c(TN%=
z{}_MVxUROJJtD}y@~B7!&jP3acbPmcz7PG`ulsSw)DGSGWt%(x)K@>3RSTW?_2Fe>
z9!ri67s10?-IfbAG*)P<#at{6{o}JD``T60^y_m3W6v-apJQ~1QD)<5(Bo=i5j<(o
zBB{3TzI<uEfBWsiyz;v*?cRU>VG$d<{oVTZoy%AI&9yq-ThFMWFFMie82|2Dmuo-d
z?Z}V)nN@z|u~PLN(RUMH|7zcNagkinq^IGUai<hL3(w|cMDl)^W#8P(w!+l@JDbsM
z*;_|fuKegPXdXCm^304mzrW1h-1OIH#Z8g*&fg7>u3)Gze&v&Uy7->?%vo7N;nO)I
z=A2xnC^#{4TdD@DOZPV=CGWp7MaPW<Cz?3l4Gz>+3d*`;sn%8I%NAb0`SjL~4j$2o
z7eMFD&V71EH81IhzpG2iuA3tF?`glV-=|b{H?;k_+rGH^_y3OB{z;fz=rCjLwudXN
zwY+A1VR&F<-~LB^f<a~RvKhI;#@sh}J5EGRlZ$5v*&=dNuEG6o*>P8)d*zi94J+l8
z--uXi&fJ(CBVRnFFn0S9D<(7jn=vjfY0+T|MTDMZbgutA>8`8GtJ<RHv)<PydmGK4
z-f^NraAH`q3!k9i#1D3-LqnhapFH>a^M5Kzmu@Dv%oh;+`CjPz*T2@jeQ$+!MY_1W
zixc_n#?0t#vSgdfN9oCo8IfIak{f4toaoQ~E2(p7+KkO-B>8OqNeNC|D14;l@y>@o
zjOxF*Dk;skQghW({~zhHXVE|H^n697+%o&3?1oR__TBG`Uc6IM(k=?}Fg4%9{GmNp
z)Jrk3FZIpK#~rbZ6&IFYT*r7I#l(*9gvDjA%~KidJ7&nRY(5-VDI3lZBl*sPjbZ)L
z6WI*elXZf;&YA^W(pq#d>hYFazAnpEyXJ2(uK!>6>vOrV;Qg5O=k^?VqINnfF6eh-
z#|bmrqf5H(zmYW$K7H!4V5EiGosCW|F7rNh-1;5pvgEAV$NU|C;_U?|vL*|C=a{7{
zc`@?H>D6mAZWj5e3r_s6_pQ)l@;m*vm-lF9Y}tRr!Y8G^^283WvbvjRojyD|uzUTD
zJl7rbKbH1<IN_Tsw^RAi{eq0dq_A~s&jdv7%dER|`1y<lKPTMOmQRVC5ah7Me5d&y
zW1aMqE)7Nd_qF+o+6A-zxzDgfPgCaXF$Np`OUF1PWnb4OJn)~|kY2XnEMvr!4G)@E
zYJDp{uxIs08-_i%eU6;H|0VVTzk-%;yEeo8?8j5qG0Hb@K3kl1O<YaU^VrTA%b9iZ
z)h-?NoH0k?`M-w^<@0{~HylY9y{*fdwAqnOVDhJzW`Yy1Gg=(nrnI!+#fC%wSH3f2
zh<Sg#Ae}Lx%s`$kV){pc^7iL(vn^M8_<er&WA@{vy^r-7bUX^Q4m{aDPv(dI&wbAh
zmy6z9BbTtzez}Z@>m92S`5#uxPA;tJh(A2@)cokqjuXWUGk2HyT<o)Ubt#KtK4A4;
zg!?@6nlBZ~UsNX;BwndlpxH8ETiLV<rE;csCskZOHpes8o44HkaZzuj^|Ird4bc<-
z<TjkyKIc>z;~B2bjyLhlF6wzX2d>=xeCkBL(z)l;D)&5nmXX7>{8x|e!v)(`GpyQu
z``Tg=zFdZi`}ZA}GyV|Yk+5oVzW%1iuE)<a%$W33;=J39#oCkBy!!X@o;IKQ?#mwM
zPk%G(fAQc<>r+YfcoXm0T_1yI@!VzHapb<^YKFKkxfa2zi_+EAr9NanOO|2Xv9(H%
z<-l)?_XP@$bt0dy>AYV%E1hA6+#Q+J+T%U<9PjL~pZ>$ywQG`YG-E;A{$@S)AM^7M
z%kmz`t36~HdU=JqjQ8)Xg3s5b-Pe5omiJt%;b~m{v_A|gtESxAEAwG#lY8EcZDQB>
zOUzfvsND=(DkAikQR3nI1!+oqm&PBq{AxL$+n)KRPi0T}miCUx*Xt^q>e8AD_gs%Y
zwoLWJfeJl_*H!A56Aa&d?FyPGmfq!(8~8KksEcNv&z0+0_3WmZkN&^9UZA%0)?N2@
z=~J5}j)Z8)t0`S_c6suh<*$#xp64#P8#+2vIu^?tySgm-x<Y5k)5Zyghm@8IZe<m(
z_&rfnRr}1G>(>{APxRZ$F#oq{%=4&4ALp1ZInc6ipSF?_dqPZ8onOY!zK`#FOw9d7
z%#080sSOajRphUKecFsCGuh&euW7jU-&DSN@Ohv*(-rlTTvH^I57+<8J{EegSh9U@
zmxb%LRku1@Rw*bc2I-_T#3g>QmM%YghObl4#QNc8;kKK%pKREmTWRuV_nI$WR~Bj9
zOnP)#c)7;ezG4RX?D(>x)6WW9x4gb@zT0sf+k^bPwVzu8quyR)SkrARDa;VDyY!HB
zPDao@`PmUow)H3Vp4IERENi_z&+my*(3Bj5f0J@#1Wr~sySVUu&fX!Km)pZyetOpW
z`g3^#n<wr$UAKOQ$M)9FUu!G9T$Yr+v0C+XpOTW1(Z_FBj3&$0Uw-rCshGNNS-AO0
z)dSnMxoWnyo?QB>I>M#G@u9H(Z2S86e{Xy-(0nm{hySGwEwbBL6RO_aoOP2yX5JG%
zwY;Y%+%nFHDlYfB5cbgO{D)1sfnJRt1seW)ny>rxbK|RRG6_Y>Vw|yywf;Fxdf9w(
zpICI<&6N4SRXcCa<p|jA_)V(#*s^o&_hMbPna_J;FZ8QcL{)oUd(OF2OApm-w|{)U
z;c#}sSHE6~2X2qw75JW%_T1IS@St_ZwQKtsPim=bU(NPoiJ(;Rv5DuF+c~&AQDa!Q
zX|1QG$vxH|N53aJZ)OZz@@|G%^<Dd0uc!FjI>Wr8T<r(<df#oUvNy6Us5(63*<;3t
zX$AKZzj^89_MC_*oSE$1Cn%W7f53N}sb=djYliHa@6*3TaR<oHd910%dEvD;!?W-H
z8^d<77I6J_4ftd$5bJ8u#m@LXx$&XkrR%TtMbG^=&!|{fnALUOM^rG=+8}hh&(6KQ
z9Vd=ot?Qp{db^|J#3DT<rTn_s`Fl2Z+FGg}`yExku%lznbcGM5B?~%E9Ll`+zN^DE
z+UW4ldUwHzR)T@ii+=R2^mtdk;aP(4`*)$fmxa=pw@mNoSYjjf<MeSQrReYdne%?E
z>+tAic`3X7UWCgN+dcQUcE7IP>+9l@#qcjVa#B#ij7x@>|H^JTGiOEZo%?~(t&t5r
z%n|pkQu8N2eem$cv$d}oBpy}vdR~?|)3bi5n)<fSomvO>KXUDQ^vP+J>?Iw8gIk{7
zixhZkz`0-#Uqa2RduziO*K~TX|0clTT~!(TS<%7Qp*-rWqO$t3B{B~TPj^i@^q7U=
z+{fY*>(r(nudM64>EX1RQ}}i8*GKjZ?tEL{rTPEl=AU2mTdJX7O5ap{Plnwub|t0M
z*9`ME>3V8f`0PCQEBxDs{1e9+e<*rvO)|?gQ1ugf_2dmp#oQ9JrB!?8@T$F@b)NH8
z&BCV_m*-UOz4&);$BBgucM_wg1y%Tz$!#pGla;=Ex5xa(@`ryGe3`=*{3$!CRsGDr
z_w$oyJFlPV_-M1-jHmt#=XY$GC6?&^U1(xB<BjXv^p<|uaqF*j_3`D5^VuF$&Uec;
zS!zA+|FKgY$2Irz@&r$Q-n8Qz-?Fgq)SPK;7nmAY8FeNU#~n$3UVnC}H}8Qx30KX+
zxSIU9=kDJeHUCfBeug!lzxY3!_AR=+zjE5?U-6%QaV@g6Si8|mZIkuw8Anp$kDJVP
zW|lkZytdf;%JTh3PHtJ>S~x}K!rPBopUbE9DJz=lW*t0L_kmM%!=uTD>2GtzvfsAH
z{ZC{qT(VJFM@fnMp!N3GhG}yo4rfnV_w&`EZ=L@F<?HXN1vCCPzNXRD(NSXFd7ABq
zQH1>gH>Ypwu0CW>yU4!y-RvOoe0PPlvWbF%KbiJ)H(Jd+S><9b#cjOaSJ~c0Z-?!x
z&*zz&cHduOQrX5-w^YkiT56wapWp0>_qHvzdsb>?eMrggPH%eO3T}oQ7P~gSO;Sia
zS<G&2*VVl^CR{DBZo(mssZEDuUc7yBIwEbUiL$Hye@}tDaOuxhcW+sJc5%7oF3+Wx
zt@>zQdgn>Y-QSc11$Sy>D)L)zYY{BWo4<7yhv!MbeYYp=im#Q_7XDRXe%*i9-)9}u
zi_?}_-mwwv)JwSdX<?VBf0=)R_mh?9U0hDR<9^`RH^oN6*z$5_=Opbj>yB>S*JH}5
za991ByB%wUwf?7xk;V^a)!yFqwV5|lKGT||!C5&<k4?jV@e!3({j(c#(mzf8dv-ei
zV`J5R*V~hrbGU=JrcJ79xVW!ptIPx4__k9W_ZjX@{kD6)QPv^(4IhpcmlrAJ$M;us
zmHCxhY(6Qy)9~{?$%ow+8{8#k2S=4S-cg*V5b(=qiDsneoIOTf2RF*ptg6bN#P`(R
zX?LaV0g30K$Il67_qIN4U-4+mmgB}Zk1KUg*)Q<*>OS8;qV)`(MXEQ~WCn_t{&}|c
z!IP<hTz#TSc0avycE*|Wb#|O7jawUYZ-V=h^z!HJ^UuGZ`p@(C)zvPG{;JBm?v;;!
zpZ#^ei_4RyI?m%;B(kMaZR0jBb<$)C>oO^fzU1yAmE)<Rw)EnU=x^`LwI;J{`RuYN
z_au8@e)Sc;ns>^A6Vn<?_Vabk2wLlH9OECjDPc}L-(|jhrV0PAsH!t>n0?&ZoH>%^
z>psp68jBQ7?2CGZXP5Z8EQ#lxuw+X6(MnI>Bj?|Tsk~XH(R*~csozUY<Mz&uDf*dT
z0%l%vce(TTRz{hqpyqjt>;G&7C$1B`+Soa3M#WW=d3D=6I_AvGIMHxpQux}H0bLD3
zf)m}AYu$Z4yWLz!aN_@`_ODm&{Mhp2?zu^^t}bfJJ;Y_t%Loc~+VJP(bbelHcl!0L
z*Y)CpH;pfb`5F9Cy;>*B5iY{NtE<DL$mrthqy2Z)&pTaO$Eu{X>EQ0^$E&or<>)IJ
zSw3dmFDy9mgzIG&LBY!JS3;FOJqlW%eeI6AQjl2mCw+!5xe;?CZ>$gR>UhZ@Z<f_@
z?_tp1t=A(z*ya70UHm;fX_bULyTh~6OSi8v+KAsY;Z2D2ynZ@vmx7}w$K?LE^Lp~9
z6`SR6P*uNqZIOt{>BsYC_i(m{^?C2nyp>@U|Mkeyy?gK9%2`$X|K-KJFkz=_hkq|h
z@nO!e;1;-*+~X;=J9$#J*EFU-Q+}Q;@_oNSbLCg<`gw~g0@x0$IL34F=E}depC8Eh
zd6mU;T&XXZ^ZepJv-4K|-aj{-c=nqy<9VrTksRBC?n*(c%x%97jy+HBIgoL~B2rwt
zg!}d+&TUIISbhB&q(Y@$Cw-QPpK$uao5`!@JWo8kxVmbO?5+c6Ba3`nreA)daYkwH
zOHBt0-rF;Ivs)gX)Uy)&;E|9&_gv!7^c&L_iI}9#tS?e_)0oSB;MzXVuH`u<f;Mlr
zYHm6o^!%>5^rd+-_aud<)Y%s+9rsMLP_23Ve)6;H=3$lwC-V+(DSvvs-2ZN5;HGB|
z41AeKIF<z*`d!D#HFaCY<%Pvp4lOxd-}&f$-1Xc~Yd^p1*>HK;&#DjSw#{g|WGZm(
zu-RS7@^_|dC&hnNK2Ws&h4AVvMfJJ!Z-y-rF-uF^xB7Ed`^ClW+fNj*6nA{Pa78xw
z;@g+4tF`Zxbl*3bbL?(n-WJV=VG}nA>vh?Fzn!(_^S4<O--Vri&Tx9uhev<J6PC{W
zzlY^Oa&u5yheY^$y_xrQw@=x%e_KmqN!KIx=?o8YCh)9dnRb7_yPE%e&iEO(f2@D3
zyV&<wlKI@ffq7CdZtMLxxK-75xnu4cb(4~^Uh7ti>pL>uGbD7M**b&gU0V1HBZe}s
z+KDqCv98eC-8^~qr*4+nH@hD3mor{S4qz92`9|*I{Mx(oFUcL)VI(!*pi2Du!-t<r
zy#*&;nmu>AsC#$IH<ky#&epO1&^=ej8}%k`&!1V-l!~+-)CQ@usuiy_4ExPo;PtBe
zR*0iOv9a{_uM-`$maPy`QVaHzHT_=3wO8t+N_}BaRpR}(Vay?BRz->TO^<x4Sdr4L
zeB4t1*;|cA%RDNdm0uQ{pSbmU_`}uvv)(^Td_QyNEV+i+ool%nzArDl>eBG)K&p$;
z)CucDq8B}x#(#+a{wDQB@=w1!x_+kbWpd>G`;mUKk*+rPr?uDrIl)r>rK9TqhaV54
zZ0;0zYR_cYU^08f^!p6^4DHXe|Iq5~K2v45w=1qPrBdzxysk;Q_7ygV`Ce8CI;Txn
z=FN8!QH?E^Dm%vO?=xfHu4jkmx<27a_x=Bu`FroK$J3<O&6QMs8kfFye`d(*&^TxL
zm+y9eNV^%N@T(_(*B+jLWV5_D=7{-i+Y{Xt8WO*}x7^>a^T(}glAU))+Dqq$TzjT3
zE&OT6;N$hXOqy@^gLUF|v!i7TkMFu29sl^xkG|QfmcM`H;T!t!!}NU<&)U4M?4IOo
zUwp4#`h-#D6IX^A8+NQ_xS{veRn;40dbP#n-HUU%1G#3G8g5IOvBl<*>E{*8i&tIQ
z5#hF^czMA6$?~%s#q;joSC`)Ro4>c>cYoWerrYkZ(+#}e9=NYu^*7$?QPNHBhWy)I
z9WpEjIx}NZ54{kcBelsrUN~>M>xFrXmh^Xih<aQ%Ra!jx`FqA`$1S9)_-+>e*4?$;
ze7E|-P21*He~}De-=LBDrDnC`^nF|JT<&uzNMEx3d(`%=fBtnGuH5YwTi|l&cdl&V
z<{u&FGcO#QaoODasO^PGeyi$)*Ay3J-qxG_<!)jBzeY{&TRa&(!QO$F5)wpp_U&0L
z^TGJQ`EyE#a~fRc?$X_Pxz^&ketghAyG;k4?Vo&a;p>Oxb%HyWc^)|$xNP;4M_+a7
z-XGhaD|Xe&;8W8~&!nhd>v>n7)mw9DWuR%)k&|ivE2YF|8vOdOJ}ori&W6nlcH7oE
zX%_67XR>8#hsVvIo3qq*1v3c83r>BfWE0r2*zDx8?AzJts@vpVr`P^jm7V(P5#Q0)
zTSxK_@O13?b0tMSJH9;m#q2Blne?sxrRdrFyWC@nnC@qCum7U_hOGWKdGD+rGm6~^
zTPVWM>n&=$wqE1W-owJPTf~L?cRbJO|EFD7@qXfKKiiDm=M)8BnsYXs`l2;!`x=HH
zLJh4aoBy_3tGCO0W<RJfGmd-tYkyY^yMxuv$ah^oS9CK!vi`}>pm|PM(@XD%=!4^J
z*Ke;=RgCjwaB*33^lYhNY<lnC<J$~VMZL~Pa-aU@6@0xzOKZIe-~Et<+tg=9&zrm`
z+No?cOTt~fK4lA8`FC|2_s`Zm*b%c^Avb%4hTUfq2I(F8*8gYSn4)6Su<7lU6M0wT
z?-<_Meb06J<$n|F<o?Jx@5&A3->|B7)w<`*SC-aGDNIxDd7OMvt(IYjcCWXS{IP#!
zamIY9ryZ9syHh2;TWQLpluH|xly>(Uub;Jd$I6b5J0`1rXPf2T+Qu0g9vV9Hzn0y<
z!__U9xbryH&z$D}tLBpV)XsNXP5w@*QsNdr#j7Yd@pt(0S5@UVc~gtLkBRCY+EeuL
zt&&pgbBX=FR$n_TKlI41ShHr$iZyF&(pGewNW9LTsC})4F?HV0ut2G^d=7`%&T4#?
zoqcYm$aG)(!u>PV=ia$~{Z8-QRgBlly%)a@b6*xa;ZFC3zY~pnu1a28n(^KusXw=e
zWxj#rdcQ5Y&YEts*0vT@RSBCNRF_mqw7F=zD!jJy{>jF^b2rwd`fe^)?)6;O8Ea;$
zKL2`pq2JB?GdG(*=bjGen$*eg^>#-`iD6mdKew0hwX=Tz@x6VoJoP!l2Ip6Ob{Ezu
zIx2rQ-d8o@=7+cx`}rmA4C^-QI%|5ZW0>>yUOjWb#DhQgu01Qp@pXIJuh@BPYRV<@
z|JlDS3cvAkPhG*Y@P3o&b@nA|-XAhryhQF2_uWvD{V&rt&CFH4bWLXZ$p<MBpWmM~
z{_=W3jK**E3HzP(rDHz5m~ngk?jLXVFTZ2<Nl8Zg&Gt1uk*pt<<cfL~CdoBVzf*ZY
zS~4cfNaj<4*woBR2ab4s@w#isFlC>xK(rD27M2xBo$Jz)Hs#*5VKC}oyMOyg>Js7p
ziM--Wk)e+_JO2L9dU#q5|A&>iqFxh|g!KP^(U=fu+roG3hfnrQ<yf_?9>FWWZo0Y2
z;l?C>MXkQbz)vUK^8S@KB(D6u+lJF2RBC7Qro$;tU-%aCDpZHFADp&_t7?b;#$#`J
zmp!R}c|21#b={Bfb15^WgniZJYTkQ(j{mr@D&TR2NW$D)QLl}g0-YBf5x%@<$z^*x
zqjQt^jd_I5GHi~vHAsIfu5xVhywhFhyC$_b-+9u>ed(8SPVtx7d1jNQTJoH?I=3VF
z%gz%m+KeX@ZUqF^sFa+uIc{<#f9j^<n+N^fm#A8(wQn+u;?MYY>5PT+2Q7^y8b1?K
znsXyAsk`3auh&&@<&%$JX)ND?UwiB&r0qYQOKn_jGf(X}Q)H+?h=}|TvqM%s9(7mB
zU6!b>tlw37>0Iy994Q9j;;P9NQRmd>^es7AXu#kMN-&eZ1$tie^SV~L{8U?C{D0%;
zi79`3>&<`bxJM=~%M^e5eOcW`_64FvBHnN0Grb~as#vV)ejWbs`RdP~8t!K&AN$9_
zV9Ffy{mX$e!~3C1N}C+J;<_dYpIP_1I&>+snaD)mf5k3~8dh(be#UY4{rS~pUUf~I
z>cj-U|2!eBwl-+<^YVz9_kaI7^vt1Zs)Xp#ayyoY%RVVHW)}a^4LpAF+288V&%F#n
zEk8@IySC}r%<8>jLK6edzrA!mP@3UP<B27q4kD`VQ$iW`=s%jaE#^+-lEZoGcRqc(
z!MsRjqu;*o{F_&2P8BU@o^Zd^+4<xFYdzWDU$YXv6^rw5`DE^UVxjtEtJTh==6?(^
zx=NRhs!0FIS`@vk{8UHV^9u9eD_MDV>72=or#@FW3tGzRzgjkTzPt1+(`u>W{OGoz
zIWr<Z+9@d&`P?x!d7hJgfBWu@`l3Hi&V2Df?7*Cwdx1|9{iB)gn5z8veWagxXRkuY
zl$JeQ0ol(!EHr;Czi?@Ix!6RpWpCo<l}p<*|1ev>ead^Gn?fGzpDl2;3SrPWA1cP-
z>gkrjdEolF)$^Xp^<TIZ`1?(cnb%I!{g0M0`<!^K8?B<b-tO@AS+bS~)|_{{Ic=ec
zdi1QHyMKSW(x$%L>|dhP^ye2oxlY*9Q^<Ei;T7}$Kev3J+u3Y=X#VjMXQk+5O|_=V
z=-Wn99vyM1lzX?2CpLzkTkTHuvkC8X-TuiWd!?10S-&m7^Z;|^-t?DePWb=%c5$iF
zr7FiA4;M~hjyMu>>(`}iJWD+!xm{BAv$v*N2v?s>jCZk%$liW#^R{gacc$E*%{N0n
z)!sf=QR#ep{JeSbhBFP>8YY7i-6T~8&g_qE->Q~B+$c5AKT%0(FXIk_^X0j<U!*76
zO|I{lttZq}%e1}J^1!TZ+e$T#p3GyoGkwYNGJnZ($Gi5Q)lMB1v6h?p{kPZhV7oQ^
zv-_9Z$4mU%xh?eH(Isa;9*l3*WbIjbwLIaHoixwC*M;fx=53a_*m;w^;qa&WWWkq(
z|E?eT+$^e_`AL)EFUUbt-ZNZdHBorT!SHQU>F>3Vb3G^Q|MHv3K=;M(YhI0)giovq
zi?=hBzH)7wMfA~`le(se-gw)3jIY++#YJvgT$r<_AD@um#B!b09!JuYlr|l@_Evkj
z%ifr;e;+e1kD4@T(z<6cYOiNsS(&!9p@O+#-nP_=%f-45YxlC=u*+u9TDHIV{(ipu
zh9`cudilk^wCc+B4(ysT?KQ)`&AQ5r=NW(cf0y!Hf7p%Zg;)){%YOg6t~Xv?X=M>n
z6_;T+@O4{ih4B#^xu_g%*0p&Y?T39{rAPM!t+~U_V)}2@nI&H(v!mTFy!_ss?HM*#
z?#~hquSTI++#6J8)HjMV1>8%?njD>U_(SBv=aW<ZhE2JX#H2BAgYMzUa@h<P*SGa8
zD4w0{`AntXJY>q8q`sLdXGC*FHy^jWTGrdK;PP6ghFj6a(cgRmCw<m*@cn&7_H+N^
z3fYus_X|7O8#KlEEHu2B=f28$zf*0=n|cPDOprrDSp(MJ>=)TR<I#cVx2HWk8hGsE
zt+ODD>>19360!9$)rrru_P$K))1RLn?RMej7PbX`%vVHqn?y4jT;9gxe~zc%fp^fS
z-TUi8jRhwzPkZupS(ni1hCU^w{M*wWp7d8z`jmcJtLfadQU=r6H?J)evF2yWo49tt
zMcxzDti5W-jU6@=uhMWmxbc}mMDcAa8_u;X6_>a5By9GzbqLMBZ8b$H{rcC&drUu=
zCN0?#w&dr8=z7)%akssuC@pV4*&egCH&>Cff@i_H)?7))r9W3}^?OsZbl#!BHJ46#
z_S7uORqWis(Xb%O>b1=ixfhT9ZU;?yr1mA`!hZpN#s{xr&CV8Iy}0b4U1IR2H09e-
zQyx7_`rK}zw?qB8S-JeQRP|faglwYPUQbzfw)(HJYv+@MV2>=fhTs{~*74VWeYX2k
z#)qBv{v@4>|LHCcGC6JgRfaWOB`>~yPmC_woU7@WJX?xEPj|Dfi)LAw`LZQ>D{>V*
zciQB5+iliWO_)-{cVPM}&mbM+12ZNi%;V2n@KZUoPj@9>5pO*A96pEMWjcX6o7+#;
zo_O4-fAvDzYTGjte<^O8%F?y&DZ`zl==PvDZ(h!rbiGN^TK+Ht!@7;S$^kK42XfAy
zTyZ0Hfw11stjiy6o33wYNUPg?>^8%nquY3vo{)SpW7725ZJL5JIRY-KJPY`lq<BE(
zw$>D-^!(#f_FM_^>5O4Mz;N4$$)%j(-9}w!%{;dC#><`@RZI3tF%Y<+v^30uqd_?5
zbU@dvx<1WH#T^qr7j9X_w!;4Sw!Q}istmgn*W5_iW2k!GR54iT(@f#tQa@zh)O_SS
z@N1dz<`Aw4b<bATZ1bEcB>9qM&ED;uxvB>rWH9X8rt7SkC702(S!m*gxqXI_)$@+^
zbbm3v_xZuIu7IwFbD|8Qb8}vwm{Gs;dC|U0uS(w5F)b(xzU?$6=~#=mT|%^*m`wCr
ziOI91qi$VGntq}CnRwxzTtzR#;BV3le{)`+Xsi8Suw2dfo6y8bZ@+5<&Hm&+>y3C*
zki`t9y^nKGpXlr3ed#OzqVSsjhBwFN+40_eb;J66o|da3+pImRlT8<IOPcJ-Ad?a8
zwvC4`UA5%8_4#k#6K~8j*JJ+i>5!cr&$R4aGcPfoE_L_bcrq`obHe?s?RA%4ExRR=
zeQ3#IDaq80zl%*D9#o5$`QkO}tR2&We+;*sraXEU$#8Cq?qb6nd&_GxKHN6!m016N
zy5Zv5>YHNwI?pn0mzp}O!EvM4d8vk}xw)@1M9%6(h^PC`JMl|7H&)JE!e^(=hL>B~
zrCZ;d-CemfNZ<~~fw$XIO{V#tHEht2U(0R(*SPFN-U_i`8z0UO?)vqrzmHB++x+a#
zxoxc)M}1ePGL-t>&lI;RyR_%|H-VSMzqP(UjIR$1b1%&+*IQp*`QKRWnybX*jdj`I
zTFvYk0=9PNDtb*U7Glu9J?)`-?)g~{?f$M$6+FGWf2F{dN7wEtDM`;YQ+#tX_V%&-
zm30O41<P0E%6e`5%*4Q)d-}ulNrLN+C;yu_Gw$|9mv_FoAGYOGoT@lJN9OHnulg6+
zTUhPyZx4Fm!}eq6gMR|%e@_{zZ4FN;d#C?pPo$jdbi4O8at!%DG%u>hna)c*E57zd
zn&E-h+d_Z%f4+TZ>Phyy#yj8rKjZrRs7ZSoQ%L!jz=ig27#+S&+g7UK>hI0qc6-`H
zZoY^|5|dRWTME7!b}#<^cw6{-)(0Z?tiK#jsI=_5y^YWHCQ}1<?&%YpwrabAC)Y3E
z-KPDQrQxaVqkA{GI1)H}of$RmUjQj%Z`gl(+C*uu^#$c6m;W}1&wN+^x#D$n!!K!l
z&MC8Z-7I0y+rHL0@QDjU*>+v!a2}J{MtkPQeGgMJd0M#syIzU9<#(17fwf!=`&T~>
z-FW^g!;exg`-+k(*@n=UxzA=S64-pZa_{xk_e|9e&Sc&4&vr(f%u<O;mIcciE-!79
zV@&wH#j2k%!T!CueOWH2`_C2Y17p|@d{LXWJY3V~9{Y^sXjeVM;@&N*UbH-8)bT5D
zdAB|>dQ;sSPU+v8hS5=L86E`Owi0o5sbl+bV_R3uCP&)?-Y-k;nr+<f;^LJ4*Nb_-
z&5!TBH6b%a>)9V%X84&u<<Zhm-2=hfQlCtD&nUM1^MRSFhXp&WTV~CdP4t^lwljA5
z^Js=QsiDn_B+A&iO!pjlD#x(RYw`1RhO2KUf0Go=^pVIf_S+Dsd%$PzG!4fGIt*;L
zr%ep*^C(}ReAudie^R+tt=*{^Z)P_N><<=|jnz{6Bx1+ETH|IyQCv-Wq-);K5EqwA
z5u7psN=lQIM3&|q+0dS5x@XJIrO86US-HBZ0)H3`4sYv{`D}dP&XvFOm=)$8S-00;
z;x)@b-R<F=d)9y46SaH)B9{xx_#Q~!HY(~_xnT0HOK1Q1@MLFnUuTe*wU2N9VTV3p
z!HMdBWkUitCI1!@oS2_;`h?;9Ia*3a8cR>+=qh~*p4DuW{UuRJNqPF#f{cHk)n9MA
zHp5c&Gs87@vxQrOV&-rkP`GVW<de@J=X3MDbc1FlfAp>niD`3Y9QXOq+-UMRO+@v%
z4QIgpEvF-w9JFb;BHZ_!@!GQeN2}u3=r(#<tG#>o`QF>b3_PF916)r|ddYA(cl8NN
zf5r($K37A&znJ!IL-V6t&eHFyUVE?IjMvXxeU-uc?an$;)uytq46X0?T8nx}ozF7R
z{CU~mEcVmtcEiMzp7XfpUa+Wt?BFA`q`Fo%IB?U^nvL_aqutIKT3(EMJz>%8pQUpq
z{M+IDxSLfi=EWSAeeWKB5f+@d{I5(<;HG0Pt3-d9^_@7QD&2V^@$>PXs5xtH=Lia(
zTu|`ghdqC0aA;^~Y$yn9JsVr=^SL4a-QJ>HpX+jU=_#h_%(H&mtXh<E+?b)%b;6X_
zsp-c8e$Gz`T(pp@A${{c@71rb?GB!7S>Gx7%lAWh?`NR{LGkS&Q`XF6{Lq{$TKQnb
zhhK}oz04IVpUw86RQcWJpVkkhZKa+z%QoKM_Qbeh<vzZZ8aFS=dCXb2c!GxP?FVO9
z>{ov%_amD@TdH{Rg@wg;e*ZDtv#@e?>b~2PZZbTskqrvmbkxOqZfdlf9miYag$HMy
zxohvJA3VjTTj+?Oi%v=0n^#-jZsXaX>$zf6#6I>Z%MKJeJapf?>&>Ski=W2*)wjDZ
zGu+rZ(frmY;qPYJef*srGBJ(sx1}&M<b5gja6LKeFvAb;SADEb_m5}YSza?SeZ$E*
z2ARt@eovXR^Vr_=(XlRWR;_2_^WN;3_=WjFjy=e;hMrgZHtQ<)=hT!h{XJ#>qrlW1
z{0!k{|LpeOFV6q`dxG|y`D#nK@=tcuGFsd@uPCaTZN|!F>zJ$)-KHJ9#zym9gHI;!
z0b#p4Y9)7y7F8a;zqUNsskUK#vX<AjEo=|?ZX12_KKXL>-Q(3xIU7#SW3YL0x^~w-
ziBvDSPnMM@k22&udcUA+lJ3)h7oIO{Z&=8%Y<jong;MgfUgO$b=Rb7JVY&Wu?t`Cs
z3{gKoQF+p*fpc5vlerf<Qr{WdX>Llp#>cSc!y1NJywW@4ChxlZSIX!NH^b=~`LMuE
zkA)jDw}nP5IK6qD;ZM^;GxjhX*!u78vL}b68onM5E<ZcPe}RS5w5iJudNX+Etln^F
z18bk*Pt};|wWq5Zw)S#|b}#&|^CNk|d}S*i)*m|T%-UXNcen%M=S*E|ZSz24vSi+;
z#m5<T+`WI>#QMdDIZM{gW-!n$wRb(q9nSPXFe6ZeXI^U0$&$$hYs+~ZLWO_k+OP#o
zJ^p1=*QB0c29HULwrqH5b5&xpyqSogB=3R0+gz8P-0GnAQ$<vDxeU_*#%-w)i%<6-
zo8j|PWm7z_L$2QH2d;W*&bDQ*_B{A}s$<$S>-Sro&(6@lER(&jqvK25lj&xznIdYZ
zBR<yc)V=$C@jfM`+x|D!AJ;zX;xcdU<lnp7s`&T+yX(sE`u_fm-xE4KUMpVrF=1!W
z_c9hZDkJMP^H5mer^Ck>Vv?fUTz8!}FrIv}*jK@0|DF3q7p}W(dhxRU&X>y4!>`#d
z6}RSd9{6c_ZIwpmB_@Xb#uLpntIl=RY*>HtFR%Z4Ma##xmK*zM|6Lx;bd)Q@r|Gg&
z!sCuZBIkd|zLaynSsxT3lyK|V%Hx8OOdq_~ebw@s^@rud!d%g^m&WI7JM7Q?{5b8K
z{4z7u4F+@PZp~*@dmgo6(UOz(jQ`T3TT{(`pS3w;Z2kOC*!dmLlFq7^%bP!0<*#(j
zT2wy9_6NuEd*>c;lvf-tKKH$(Z$I0FEiUbgo=kksFzt3&;%xiBd>eF{4_QP8MWyB(
z^^LZ4OncjQ*P2<Q{`sT3v%5Rq{Aqt#;QwP1qj%!n`!>gnz7|G3i`l$r$x#glZnKkN
z`wuL#{Zz1cD#KTIx2?HG1;5+Qu<u<y)3Yo3cg2E}-(GAC{-e)Ol>c8uRacL7!Sr0o
zYng>-3irvq^giOvkTZ3O`|tjSf}j_BuUly^V1Jx7L7wx#K1-oh8j?w?3g72MyIo8$
z(vF+6rrVP%_MW3l%KWYk)~b2kndS`VPRtB(J=wv`XmMj(&!UCNx(Ajlsf}ZOU?h0c
ze$ERi3yo#b><eDX$Om!Fo69JX8SVDbKyZOwrpc{!3_6**?CbgsRD1g0nu|a9e8)3%
ziq8&)2I1V(8gf3Tp4+RwP1fR>XME=7m&&pqQU3a;XEUrWmWy4k@iM?nz9BdFwT9d|
zR)wF5PZTF!7M!P3YV+j#v69`44R)53S7}Hl#5Bs^o)+lxN4vLo^96CiWluH+P2|1K
zyrwf!@~>=zbFoHP;3d_RB1YMyXm`QHWfHNI%cZU*c*$uA3Ra3V6fds+EBRsRi3N*H
zW-Vm!x$aW`^Ki;hAHg;8MrTb`lh5q$)!b%i{7Zh-&8i0R;-w*hMh}=7{5I(>p0R_k
zAtaLZPUlJ6b?IM&74#VIZD+85?zD7K$}v9%oh!HUE1#$_L@j+)=BImL?n7TG;U~ZH
zN|viLyb9`Ds$qHj%51G?YqEYmFJlM_XS?(5?yb=0rf<Gao0(;IvHE11bA0nO(br#A
zvPNuf%$0R*{WyKe<fx6QAx}<-GW2x4+Bjb?aB4yV-`e|$(Qbx?N79e+e{w&@J-K%k
zLzug7h8dHI@8YESey<s_E}ddu@x!@d_4hkhYLhFN8a6MwCB|IyV7i6tNg?Cxx=Y)7
z7AfU;8`--h`}zG9+4^B7!-kN>FGP25iD5ZVwyjh|G%@;9_Ot7LOb_%Y`j#_A?e^bz
zb|pj4X5Ga*IBrkUnIq%Q{2?smGA9GiSMRxtQk*+i8gA{+l|9;;?Io5zap|rcMTfu7
z1bx*UUZmZBqUj~p!|)(FHv73~1n+@|H)Co{8Nyw*n8foMTvadZn#5~8`w^%6?Q4N4
z9}>RjZ@PEvZItYGEmO@KRlgSb25w3e4z^14t6G{Zy1!yk$Sm37$BB_~e+>`3y3{c(
zn8D&Ge`ePtUfDW>)8B-1xC4zIx-pb>WV~d}Pz*RKm-=2h_)|lb_bd_iW9_SbStDY<
zeC-v9?lD~U#5VS!iLTiS_6ogCFU1(zZUik6v25<qoH<RavrWik8RH+Zo14TLw%-(5
zB4Vysyf0^=+>y+p8Jwx_JEm<aYLH*68PqkanK5Gf<Xl;=V=~+aI!-K`{^(5iq9>h`
zG#k<!vL@v)9jI5D?Z#9vOV`!Qu(&7k;g)S{olnlWkY8B1&X%F#?lh&P9h$RQGdy3b
zo%+o1HITDvKXb%t%j&6nimeznn<^b->(!In6yTx~B6jo3ybh1qjlHswfksQdUR6>m
z3f-D2>lL<#bA!pMOn-&FEStI>sV_767P5BTRg;-~A6!F%!x{9ps(5HdnME*WT=b7N
zxz;j0Pfy86d)3-|(<h3mI_tgBP%?Tcd)umO$}zi-wzIoC{s>)d>*#oKQcHDziRtNA
zr#Gxw9Fe(3*Kp~!lDI_?>5r|WyE}S*AK5k`Y3asx&FumcBcd057E(Q5BDv}OzGwb{
zdfQho={VV{d$F=}l7E>+-Tk&(qWU%Yft{Bm;@BhP?q1_-c>RVWsH<1FbHO+NmHGii
z&dKTg(H%$pyyuwuWyZw2ew^=n%w^xM*VA48PH6}Z;{4!Kk{oG!U~!p<rt7iQf}1DJ
z6n|wNG5Kgp`ChYSrD_MZn|;wZdW><MY^1@rinH}srbzM}_<wZEK8}FUXO*pset2}p
zGyM4T#s1~KMB(QG4F9AqS6MRLjtX2NBKpif_h;L-QjOkkd(VjqPOLLr8|>ne!X7x~
z&Zd)7m6VEp8lAS9ax6HE_d|})>XU6H%SBzi3_o%)++T5gtH2Dl56(Wx8JY*!!&o$3
zkNjh}@_qYS=a0?l3|UE^BYYVmmfbT@-R{HkAn~@5Nc@f~m(NyNGwfZX5!BVjx0ONr
z%10?4De3Q7)68!l-LmR)=t<_^)4DqDEbP0U@StC}bE{OA_Y|9g1sxrGG9z0b2``+=
zurb|u_FDFen_WsvBRF&!e)!%kYCZItp`<r+E|0<K&rGf#+jFmemeP=#o0>AGqvMVI
zWh+;gl+R_ovN3@|#SI-6q9IclE@VU-#ksh&9osU?scxfQr0d6t%&sn3radbQW^is$
zIi|+T@<7MBYs#Vpv8D&yx20<6^`2j15$Cexbl=6^%PubFMN?un<<IQceJqU0;c;%~
z&*MFjPu9%SU9`>Rq-vUb#9dWZm)Tkk{mD`BY!UCL&a9H=Z4a$cFyVhtepgUWMUCmo
zmj1jwLJc=kSd@y6+*%*?%zb*$g)h#=jcnZVTK+x4f|=X=OOj)rWOv_t>vF92<mudB
z_t)Q7^;&G`EmJyOMC3MOL4C<$PnPQ0pI1Gdn1B7yteJjU=Qe*{7pQ4r$FSn=fo(iT
z{hhcO>w4$qv`l06F|hBCa}?Ryta~Dat7}^*!~9#*7MeUbEY<$q)y3?t(you}f`X6J
zQoH*uhELgdW%tMJp<S~S&$^a~s|WlDTzR=Td`Fbal5>A-%)WK;#^=91Tsu|C?XD`T
z=kuzD?Te-Dx#r97`|{KC$j2?e;-|U^%wpc)(H$l(70<jTTkz^P%LCy`O8;3CuASX(
zYpQ!_Mofb1${>X=tPePE8;R`yY0mK5b*nGi4<DB&l?+Zow|?H_hz{D`F1pey(LkzU
zan9+0KWY37?>e$(GksXt@%en5{f~E*7gx*pwl7UN>+!kv%E@hfNAqW`W%yyZD%a{j
zg`hc$S>O9L9-&-~dsk(0SOzdP>7QGDi&IG{+I?!9o^YXA@wAHgDGMS4gErn={cQc~
zpxaJUJpL56%wD^bS!wpH?v5)RN2Gc~x#!A@{U}Ob`s2liuyjE|%b(Gwou+8~*{G_v
zGir)%=8Wk&c^PYJzW)CeVqyRP+3C4c7cIW|`PqpVzW&i-i=MP-GCWNc)IH5GPe?Fx
z>op6HFk90-TRYAa{!vxG9k|M*)NSVe`QawpmKf}0ZP=?6b?Tt4U|o={PF=x@V2zS}
z$=*qqeYL%;WM1recl(Ceq9<(!8SaQ&4C4II@UwFAe*TOVF8eQRRF&K5E263@%<#k6
zI7?LPZ20lK&)1mlyuMi4ne2V5de3qV&5W&b3yQ*TTTQX3i7E;67ZJR<F?z>B*OeU}
zOWniM+cs5gwJ#6r>Tc9^amkyT6WuP<9?!St#^yuI&P<!Wx1i|2t7#i1@zx6po;4Nl
z__I}&clV(**3HKjFHiO^@s2pz_SePb)c%dS&Yj2gqmACH3r_rdSTD?2|KlcAKk>QK
zH6jzZ3~M9OquYi0^Jjl~?BZh88k^La+bR5g)n_49ZlA6q+YVuuKU-CeF4fMwG3`$B
zzvW=@B<{6}F&DP1VR(>#?(|}Y52pfye%UhApImOS)PdtH>x|W&Ke=X4XV54Q@|e$h
zU|XE*?@-3oTOLfCWEsuyp(9t)EAQv#nKNqgdyX(ORD|nWW{7H=HpQK6GG?&2wT(yh
z_?(PKk?x%xC#EwL3w_bKeQEWD4U3jM5@pzRW7@(evyL;Yc%!1URFq-;&9EgRVhcqd
zgqQ~~wa;hYe*Rye%aW&hN}ra8Ddhzwx_<2ZChO|*FFU&JQRn<^OCIqE3cgg&3oP2I
z+O>Yh7SYo>s{{6YG+lV6ykmuKU{Tvf)vMD&HSYb$^45CRB@w-8Z^wyMKkN9`X{Z&(
z_oj+=ng3JU^?QDY$NmY%`ZJr>H*350-<qWGc)jjSJ*7(<SC_n2TjVWsH2=ypmYFg)
zgkGjkvoJFK_SSxX<*a4bf;Sz%A@p^+2=i_xgO&gPGQ1J^{mnI?I(_B!)~-ox&)#RZ
z<Vt$UWk^Rp*}SXrO7-#hiW5u?$vT<Av+R}?e4V&0RpVzuRg3OVtzT>X=RW&bHbs;5
zz&!?;G?3TMvv$Ah`|)$yi|xOx{@)Me@6nD-I@i1E{Z<Q$x{bzvS4d0#J=XT{XV<Ry
zsX9N!8Ft^Cw(v>&w(zx#E2QKu?@PZijc4;BZ%u}I>??9pquU;x{LdU1+OUZ$H7}*O
zq$o8p7sSd>%Hp!LP%uycF-*-YP0V1Th9*!^8yf|Er_7S#fYc)A{M>^4ywtoB1q%gz
z=lq=fqTqtW<WvQHm(;S%<kTQ{CoX-L)a3k>)PTgI++qcgR<N>S1!J&=(%iga1w#W%
zO9lOaqSTbk<dXa%1w#V`J3B6Yx6GW9)FK6ax17Y1REQ}G`W~s7=@}&omIek2`aY?7
z=_MHomX-<z3PB3`!M=&b*$S5CARd=~aA{IWWkITfzGrS?da8nc2$&P$pOlrFT%w>K
zo|#gT0kPT6jtlDliaBrY-rcoWLyGM}%Di3wqtD4K(Vpwqqx9)BW47$slD8^dTzi@-
z>TTq<pL+Mb`tAIRotv!1w{Ldz<V)FXAR1VB|7pzP39`P^re4z9A=Y4KRJAHQEa3a^
zzxOK6M=zT@{e5lDHp%RH5!>&p?#XEk39^3pCSJ2otynm}K_O-K<|y?!(aR?UpL+bU
zV3KOl<Nb}RT5Bp+S<mwE*~8dmar<+K>D|2T_Iu3}RL&c#DL>gFug&cp$m4jwZ>r`0
zMvF_o=e$~4{{Qt}#={l%`9|j!E_7e_X~!kDtq*o`=|AEXa8K&~Q(<$(TfXO^%1^ue
zPs>&p8utj#2%a_dq?v<;)>3UJl{wEJc3#_UWs`ZXZ4PVox1t2`%Jf;vM^AlGX$V;J
zr8uyo<@1-<8Ky5PQs--=hi66`Jjn^-+iH9M@DZnJxe;?Jm|K+Y#fWP>{PU?$VYB#@
zirNjYW`6uzEMM|2^Vx@#$+;18a+qC|?}-Q|ZGG`3*Q1_6`~7eITQ~PC^$U1^Y^C~d
zA&aeM-L3m)PO1PYn__f8;#}Wh#>v<BTdB_odNkQ@y=V4vw%i!gGhW*mnS}DWW~FR>
zaX9tUyYJP%IW4VcZ@KbD;d)Bw%WRh}^8(@gh6zVzZ?Y3U_jmuUoZxMT59>c^S;WGn
z74dzki(05|vrv9R!;#sK{!K2B`eKp&zh#2(<nGOlO8S3_mdpq}m1~`Umid-&e%253
zhdI;Ucf@|!=ydLpo6W(d)9)7j{k0(Z$P1z6Dl1kremgST>z}8E^;7Gl|7uS+&PkKr
ztbcBr!Q?M<KL1$#P0dlf^X4&ChAry%u1wx?>A-@$9|F?dR`h1(97*5xY(w!iPBWkL
z7kC9`Rs>(2A05>oS#t2{=F^X_38xrKMHjDku8iB38&}R<$Wk9IwZY=!vTgP+YXcP3
zqrdZJ<R6UfTl3AkRFUr{8;9SX%m;U*?OW&Yto|yvw<NWyPs;G5nM2JZU+L#UeCbPd
z{BEUr-}2};pZxa6lrZk+JidDv9|`Bry6I<O-7MG4_c&m7&SsAG{)`mq1dd0(-qM`U
zBab-wNekOB>D~4@$-w6<kl&!#VcuIS_T63Zy-fd}=8ZpFdHb?g+`nsnEplD8;nMi_
ztA#3jQ~3?JJ}%q)e-Hoj-5upzcXjWHNT$Da$nU>+c*Z4-<?`CWKN%Ja<nQ`XKJC_e
zB|VGS+_Uq7?|J13pNZSeyYC}+)Mu_#olU$30w0%6|ChaTZ9z%=?-{bCVH&DdpI((e
znw;CPvBO;U@8p7S-j;{Fjn{W<{&+Jm{lXmM7is#c=dLnZACXSbdE^_fZnZ#M{@VMm
zZ;GCzFH?_bci5gBbMLHIfnQ)kz$4%C`d`yNJvwfY?4f>Z#ff5XzU}t6()9g~PduTv
z<16zTpFN!m{uf(>y2>4>EH``QQmq>J$i~f5o$0;4(t<ZPC!GsY5c#OqAuRh;d-IiD
zd-|6BI9=0KegDvRU#ap}*LOtk<6!Tw(6eKHro*~OF#pkv8lLpv@5VWwnJVO`dCFYk
zv`|U9bnAtT$SSR^n_7iMJKXkgE<GyYH+^Li<MZWD@7l?iNX7>*WD5Fu$@S*fUvpMC
zI7HpZ&{LhWA^6Iov;Nk%57g&BxnrsRV4A<?t<r-pqV!DPiLf3L%4hQOwMe#Y5zb;z
zUoX5N>cr00J3nT&?9z~kot^Xe3Cknl{G?U$3T}O0?ez7@DLXIgj1xN}=UFu9t*$kg
zf9vKkOHLk_J)Eo0dolA>F6s|m7(DNB|F#KVf**0Q_^-F;-l4o<Q`N^~NBMZ%_jJCg
z58c1_sm@!+)EI_#dCurJ>E+-4g)e;@*>3b?*Q4}{k9}|Ev#s#m!>Lz4E$W-dRyKFr
z6E0i7u<!o7ZgQc#%>GNET>G*OXD&MC8dk|xA(;Qjd)CrtYz2<9pZ|UQ@r1^cx&BAz
zto~M%b?FxS`%9Lmzn&JoeqKIY+d%kZ8i(lo!!K{F|8@0i|DE^eUw?V-x>#XdPR$c%
zOO~bXU5B-=bh7BU?vZp|`@CS+dEwJDZia?!mVdQxd3emsR{JA-hjtv1ZYY0r*5Q+I
z-@jD0^#A&mfyX^7JOn4Y?_u;<?$z_`lEk@l&I+^t@BR2tzN+Byl$qbIeDdPei2f#f
zZ+Qt9<7&zB%H^i2s&j(f^Nz%o7IH1@n6hH=iiN7YmIti2Ci$#Pwz%%jxoZyNLN@bN
z(+=DbzfpHiu&8dMhl%8!<t#r0Qp$v0a;-7>P<MrS9;4sBOb*Kn6L*P31Rpr3+wP|_
z=P>ii={px6Ox^HPc(Sa>R?l50`D}ADPB6|mu+wnP9?$r@vyZ)#F7SSx_i9qy!Y@HC
zJH$A=_b~ogkR%hb@%uv;JLa|*zuoi>1e^(FW=J^xvSsn%Sm%}NesT$4&GS3N@>#Yd
zt9UZ&gXXTn7|Udfm&dP4PH;*$ab6Mn$?aj)6LE1q24hV#@3*&4-Cg-*<CF*e2E88f
zzMKJFS{xD680Refd-C^<#~&|rpA!DV>%@H1lJoud-IsnZaQNY>&G*6asKu^7hI9TV
zzu~zNVtsFonDyK=28NmyM&7z1`-_iU-^G4^kK!7!Z+w~pW;^{kLFya5Io1D7e0O8@
zX}vjb_}5iBM%h@+WqQ~g%+#P6D|`6oyZB=-{rhiJi1(Xo3luF_V{z5OAvyb={yhI@
zUd->A<UTq6-fHS)^x)#k#QLj^htG%ISTt|VK?kn277UwL?T9MTFRa?KJWi%0b@i8!
zbvyoFt#<Y@TF1(e{xZNfd7JdE!biT|dMB2@uKj+}D`&Zb+U?+TL75CS0fy&N<{8eJ
za{EK@yv2Garn8n;&Sy%TTxi4a%*^wU=Sj2RZ{Lncf3p<!c%H*JZK<>AOi7`0vz*Oy
zW|^LH(u^u(SQeh3yLDe!pLvzm{y$oblZzwfcr!eh&3CnCmfD<t;TMl8CtnJ&Hm&?#
zXZPaO#wmY=<3cUBU%yzspwab<%;CywJ1a%sopLt!e`g-EF|w+wFY@H))4wdf%<}uO
z%-M8l8Rzl`+8kFeu5(*gFmKJ_i0`M2Cat|FS5d^-qj#j(qO;kubL!T~MI7(lFDtG-
ze)jj&PV=uU^6X^~ot4B-uW?eDv;6Fw;#X(7FYgL5eZg?<+`=;w$C<x%nx`(El0IRT
zPd~2^@2!POt_xZ|Pl+|vFS6phQZo0}m3OwyuIJ>#6mCzMWPW<J$IUeR<x#784PtpE
zq87IV?~Y%`#TUv{*}gmSgrtV*p~y#POT|}rbcf#jy?*{F%PcdCqYUTn9O`|TQlQtS
z#ke*{=AgXj0-c*`eQzdgt`rC^@;i31{1Ah%wDrR^VL$!k<#wG9ZFYRQc3M!uwCgLG
z?El=2w^aXqA-?jJs9QQidX=uwxqrP+_C#IP{9zOs$YEJ9jrB{i*ZQ-UZXfKQqkPlJ
zQE%GJFY<>gZRB3PxN6g%b}(FJsc~WV%oR4LPgScQJld+Xe$Uot6BhH|?}=Eqp#IR#
zzwh3!nsuM|uIYbM_eF)ei-VG-?(tu{;ph1-Jk?rpc~<X}3y0M{U;e~%-FyAKf;(AC
z`3HlaGw(?$X^nMEkA3+)rA6i=TSxw#>5~7}pI+~#Cm40hQn<_ff8K2y$rDni|JI4;
zTY2f9JiPVXzUhtk{%>1;B>w-82RHry{#vDUpSkb_=MwMCTBYwAuhiz8sJ5FH=(Q;)
ze9eQn{-B0jjou&c>gWDVILP-ds4GUKv;WSVD9J}x7|+^$dByVJWzOr#*F#J%r1P{Z
zEqi&q<j%y*Qw5jrRGY8XUfZf17uKsdWl!t-prXFT{J(h~yg9LN?YCbQH{b4Dmvrdn
z{9WPi%V&B{3{HLOwf3~~xs)9@cHOyVF<)D=&hm+D_hE_8ulafI99%fHn#p>dx$XP-
z(!btZueMFQRqd!#S5<hs*6;hH#W@%Cc3L#qEAQxgy?n*vh{H#NY<GvH91Ag-ZcyO5
zlzm?F74NM==T-()|1F&0w6MEM@%i=hQ~w^?aBKZ3U#{SbO)JVvm&8}yOtzDp@1^c&
z$jfYTf0O(izsNcTr-M~|?G9b>LRwqZi?2S~v7_Zc*77`k-Ra8RH9nz&21_?9pLxI5
z-^*KM;j0xwn|)OE^QO%E_4Vx?%gS@_at^Ma)o|&B_gabIQ-wR@{yB#{SjCZMdW7{x
z#KcwWegDopD{)T3Z9m`T-Q`Qg`maURM-;E$z5A2Ea>v;U@A5zGdwBg5!}V>eH)Pyq
zc6E{P=}=2`Js$M<yzJ@yHHQj~u5S3;;PqHHbHOX=qOiQ9XG61JCbd^Q6*k@UX3ONi
zU9&kt1ka?e$==Z0b31Ed_U2EUujqxfu0KBGkXU4HxYRigFWz}EKjoY+?U%TfrCfbs
z*^g-()`#4$ot3=2D?!bQ`M%av&jYI#7fi6QmefpL^5&J<(SXvO^StiQS$m>$Uwl&K
zV;jcPt87i{n5RzTT*jvOyjg2XX2yHF5ZwtGOJ!{z-eI#8wB~zsTxWitqWUdUu?b46
zR=r|6cqLirO}ADPr$z66Q;o@I=f4PgraJ%d$}6Y)?U^n9iERsi5;^OychcwTD;ePy
zlW%v}6jrA8oA2GOsu9YvxL{pf^xEc-THURyl;Z`z+}(EKdFt#5pZ|qUJU=;L)w-t}
zcKp5Qz4v*b&b+b^!82KBwSR4UGBsM~;T65zto>*Emd?8Orj+&4{zS)9OW61gd@|2&
zQGQ~u?kb!1x*0os{)PPg7SH<q*ZcnC%6r$<{Cj$YJ^Av5-@A)z{B@_7SIm16nf4=e
zmG=6Sh|W)Qj{ROZXW!!bRgG+iqKrRH^|Y{_n(*<LVaWH@Z|)tvxxVR}^Euth^;@^H
zY)=#3q#$}xH^Q0ceaKPyX=^uW^*xNSocV3{=7X=Vow$9?b>-rj`~KZK?*79yPsi2p
zT<*=stGg0({H~WAwf4Bkwf~nFbGu#F57X;EuP8r@ExF&&n6jp8+V{}Pdd{g9ob09l
z*Wa7X9J47W^iGb8c7ko>cgs00*8Q(#>}mzyuIb%oTPV}_<j$FhWFIwGALpZ=4(>eb
zFlSwC%UUz;o`)f|JN-{tMa6QNzY&zZwK8<c_w&4_QUzU6f18;aHAUYjEWIMM_gAuP
z+RC|iuTI&|A0+rX^u2dv-qsU6rtC^{H|;tR>pV}*`jOa*6rEL%W>`(DzZ;pgw8{OH
z^0Vx9s<w-cES<kOeT^mii*uekIwJYER2+_Iy7P>0#j7>{{^q}n3y<-&2wlFSw*KwI
z!mP=~vtqqBAKP}sxiYKQw1F*bT|wBra<?ZvYt<|E?2MhW^qQTCx>)3NllX51`|RUQ
zo+jBHO<&_EAedG5YUU=VI`i-M4COyxzI9vv8E??1pPb9XRcAz$eU(}mXKk0dTKNfs
z<D9G+>1QpUEkF20?^^8QD?(4hr7|{GzihV5m0D<4ZJRn<>j}$}Gs2oHey*8Q?DlfU
zfo{e*$Jkb>8VUQgSlRBC?b@)F)pwiq_7-Q$`+Ce1*Ul;4=lXibfy;NU$2u?{ogE!_
zh;wVZBU`ald|GhaRYraOgjDaRa~7J*-FxYGMPSwE`HxBt?cC9B>ZN!h!SA5H|Ibwy
zqc8hfw-@c3%i6ZV>73-c_e{^0Z#7904SZ8;are8y)47&gm+BY%`SttQev2(j%fvXI
zh6o#nrJ5$)Z#~*uA)gr2Jnh@g7U6nz=_hmkmhY@F&)LeIyRZCNNUfu&!#0lXm$<tA
zyK(<eo4nm5Pq#2>+AW9WA#dMW*693;y{cRJ|Du`wmA0K(4iSZMKPJ50P$^Z*KJ%(W
z?M04Px;(Yq@efvVrtb(|m4D*pr|zo%3~!{rcq;CA`FzfnqCGoR)#mJ}xct{8#`sBz
z{<ok<@iqrGx#j%6EZs5VHox_pE%JJOK0OgfYj4!?sn@Cg*w-p+zWA)L@_XwUpSqK6
zpLmteR-d|=qfT<&Tl=eitas{m@LJ4Vq5Sb#+3vrRAE*64ZZ`i_SMB@vN1a2>o-A3v
zWAFdP#U=h<_cUf4%le%v{Y>HBlIWVETi*Y&F77QW+Wcbum#X#aUCYd#h-mIQEI&8D
z*R)|D8%X6c#d}M3N4WEb9F;xgW3lj&FU#!5TD)>BM#;TOJkt*@47^o$vu$RF`O71-
z%Pkupo|4(8%~}$XU0?rGNwn7OBu`55`?h<FXH5AVd2hwuSwBqQD*4L27RbNUX)f=#
zhyVG@U&>yIyt{60KYA^q`Gi{zo5s?=voF}y+5YXHyW+_5`;+|k{47&?sIu?znxF@M
zmKWE@^E{686IS=Xb;G80j`4)$skbb@Y76gKH$~Lv=JR(+XDf<-&sbVkYi@OHcD((R
zi@SQNE%MJk4>XC`b~|Q4noo%L@-<>1Dyy%oZj}CSa>Y1%{_aUt+0Oj2SN^Xt5vY{c
zGt-jq57__y<@$WNUyQG(Wv{8#za9H(_WiAuF9r7V)LJ^2EPcmy(rnGilYbod{9Kwc
zy=4E4PuC=^zs^nH|L4PR;r%KLrW{*;Z$j+HMaBE~NV?ATa9q3QnC*0>v)87sZ&gTp
zJL9Uty*EEDE8NTZmwl@D;hRPEwFOPeQ`DcXUGTL+l)qRwUu?RO_=7cvH_qK`|D+|w
zrTF{K)2qV6ibYCi{#36Ftx58_`9J58f4YgpWSIxErn;U^ulu5T`@@xBu5{(uTD@;i
znCUp}@hsoFW?B9_<NH4%qd&g+XuE2&)1IB7bsbBe8ryGqxN^DksrLA+{<m{(F-UY*
zOwN0{wE42AhsDjKU$Ph7TKT4MoAb6qj=jegzY;DG_^v5qcg4fH)1LkCMRV`)uWWyP
zOg$UpPEY;(>G$=|eK7~Klb0>7&NkwzOkMQgtNg4t6|N85ZuPxv|GIK*h5xyo$6tue
z3=VdgxG8FhBDab6+f&Z6OXb$gfAeD7M2nuZW4APXLVmk$EQme0QTD3l;_N?c`!9y}
znt#sRc<F%OACGv02Up6jMf^-~(M|rf(mYH2Pv_6RD1q)fk3G{fx>wocAI>^5JJ_qY
zWbNf0)8|CjS4{pF&cF3u<h>lGP#@jjDZF97Cl*9qT3DYh#HzdV*No`d;or`>>^XVi
z%gcvx&f41F{nEHBh5VAeLtCxG);Tbo63RcfN;coG_N2qV>($KPY~=ctTL1mX{ycwO
z{r?5;zE|ITIYY8Db?(mv%2^vW9Df1Qb51D#TvkDM?lq?Ty-YdH%T0e=s92Tl_Wk>*
z$A#x6uL|4!^s_G~LyY?E6b*@du{l!&OL)>B3FW`vV6glCB=Z@<*B*s0s$eddTQT_{
z%gb)1zK0e$rdwoAp6t_>JRS1nufTGhiucde?lHtHyFPt+&YsB4g8im#!LJTV?~|RD
z+p>L`)EPyNk8BT=KC1c8zBv1(_r9+Z=iU}g`Lb?y_pILPX|*%w8qV1_Z5Ol3J%*T#
zKXzNKTXE4ddNaFdDo^^aroP7oD(WXRyyoa89<Mp>v4?SoQsE1?-d}4Y_e45&v;?OZ
zzW0)!6Ljhp^L6i>|KXR~-%OLT<;b3RDJ+m7CNV8)+ca<PH3b}2XM#?Lm0c6gWt;f@
zeMh|IGQN!J;^n^F*BMeK=WYtkt-Us9Q5m;U+vG!guRdC3_hZT@?eD)m7-!20$IN@g
z>tObAnb1eI+XkHNQtSLhwKws0$K(jl`0CMV&QKXt#Ub@eR_@=Ll%ClymOndo#&+Ve
zNnaR(|2S^{u5UASvCM_IXS<J>7%)ik+>Hre?>Tq<M!VF8mf}^P1s@jF<v9Nls$2Oh
z#qU>PNHUvwyj({>K10var?Zc!hvh5XJQaK;?_>H((N1&S+Wf<R*X!Lb_PXks{hR+u
z&7Y-$Z%>F>nsmQWbKqSS@axy*YGxzW9`knT55Jl>DfgR-3HWH9d47M+udkcCmoLrd
z>HTXpC9IzzqVc$RcSOyMrK>J*s_)H?e&zN1-#jVqzSvHy*~u<P_1l6imtTo^wf_Cj
zdlKUI3}1}y$D}?J{@a%AwQH?-zR><9-%c9}*RMFXaLq=h##x0@#<u$&xk))JnyK}F
z-zqcP?(NwN=O50L%s1NhBrH$z>6G-+OX&wir~I?=`SsZCCI1tFJL{caS}>jQ+9P@N
zk-JLCA<GbhdnG6NXYc>??ytRC-JWA%bF1FjtG?o}WH6A)Ey>-QeA3FjU{A~ESGMf+
zr`DdxN{~!;`Fif|=ISl-rMu)6x(Z|%FNmc?sOOXjT0Km;|I)sCsi?eSWv;{Y*8bIc
zesi~5IsK9`d*Sq%XTy12Z#E&Thfh|D<X@_<EoQ#uKG&kz^8LNVeO85hvyT_{nOGl>
zV~AO9Cv)+X?An_`e&2s~x7P<~y;@S^dG*(eM{#d>UaoLsOyJP|zL0&ZhrV{zA<N%R
zCpX{UZ~P?c_oB0XR`2J(k}k@dyX+w&!`T`0!|putwlo*8eYixsF3QCEr(Ax}zlzU~
zt>rU?uer{h>T46on^34#?Dl2(cQ%>on!T6)UB5r&?@>Lwx?i>Hzi)r_vEq%$#lQF7
zU0t_cK1khY+S%?EPq#7~2$U*M<egA3@7kUT=lm{l3l+uP{`~9Z=J{9GvNUYia&d9Q
zw`X^4HeccT^;Mwe&t}C#C0p~=Hmp71V#?rQn4w;*vs!)5&vVOXC_aCA>aiPx1Iw+9
zN71$qV?;hH^~)5^>v_e%5YX8&Icv?kia!%RZ;>oLrj_;WsO3!t4X2}a(@d97^tQPC
zZMi$ArT_A2XVjKm?4R3tk>Sd+wVBR`H1+)|B($F}FdQfqI`?*(z}(|!uRYGQygXqk
zW5YC+IrTnsSjx(LuTS2jwy%$&A<)C(|F5qCCs^ig<1AxbWn?JTptr@;)Wc%FUC}v{
z<#*T18umCd`x!HIT$b{?y#KH3p_^t;cg0P9%V%hLmZ4#vip+vm3-fgh4Ldz8!h1`P
zSDoE%C+Kp+_^h)9!x^od$I(+;4!<qiefRx$Q+<Z44K?xyOzyl(bg8e(XK0l9W*1tl
zQe`8z-*5Tvzwca_8r07w@g6IfR{T_J*Z<Ih>KRjiNip2Zl$<@WVATveW}p4dA)>GT
zd=%hgsBO&>d#>=1VQYl~JHx%5&DYvmHY<gTpXIP*DDapaF>NZF*w)Vq7E`wFf93G4
zJnn`PgWku2KcaVkCuqx9bEe1se!l&Wv*Xe1&#QW0bA{S7Ts+as>S>Yld&e;rxkZ|n
zge*2PW~~2haPEsudvL=6-u4(Zh7Id0-b9+Yds;XsA9X&rNz|MnC3@l4DFs=P58pIy
zZjoWw@i$N4_Ll6++vm+Y%sA^5pQSbTrl+;b%WIi7tl24UHld)w@XdNF+d@;`15@g@
zX0u9f{j175@4v_rMq8OMtF3c|_>M1=Kb0cl#K)kWadU;~zqQ))eee67e>i1fHY>vc
zO>5Z`LEop#_a9F*-}-Iuo8R%*_p5)@SDn+vQyUWW$|})isT4E+Lk5)~^RTPSDym!O
zJd)jZB!6;&#F^hSb)T<Uc~DlL;l;X~#n&vJTzS1@Y0cV}!yaGaD}{;}X1Hy3(@i~g
ztCTm-LB4K(3p0=B3C08|UFoe}`>*~`Z2Bv|=~sZ~=5ufOH^o~o|HRVjGjGpkr4yRG
z23_y7g6Bp$KVIjz^4bTlRXZ)p-(5exR_v_AovF{2mJ2W(e7k?&vfkisqx77&H(5%5
zc+EenKc!$sWBEdz?Ek!$z2<BQvQhVrWr<XjEyxncv9qf-ds4yIo_u$;L2PJQiM>7J
zf+-ySGxPpk_<MF`zV@a)2mhJZ<WFh|o-{9v_YrS<R`^_o3qGgSG@lyIc=MI{l-}L4
zSF2U#yeheHJK$Wma3I5s=+o2QJvx*zb=p$D|9+h9KDk1zcbFIg{BLRmeVuCk@~)FM
zuK~Zmt)AZFPEU0nhM4QmTo=8p*Lf&#eSPrHN>Rys4{v|psd$*dVA?m^Iohj3wr8fF
z-zVyRDAB-bjZD!b27{RazR{0+PgcBK{=C4;XjQ<4#KgRL7x)+%4A#Zj&YW`L(~s2$
zzp4D%YIv+b!gED87sG<azQ6O|%)eKE?ZL0_Z|bME1pBOHmb^Tbb5?I;J_ExksTI-=
z+g{&YK4tQgujZQe)5Y`ig!l|q!xn4BFhpFd`EKI==4wj*=ejE=E51FO+Y)^24ztC6
zlXa2L^n4g3yw^8;y!W!|-}{}_9Eso8g~+Y`xQtz!SK!=A;k#AL3=C)Q{D1Z7b!Vmj
zA<cxdjB}2Os4;A~`Eu6db7_C}zL3b7cd5Erh_ARS-j{)4xz3Fp>^l$Nw!J;)spXv2
zJP)Q!E&Lmi&%m&3`~7SE`(8QRnCJ7YO|-u6!Ih6w3sy<|lH%4_Z{xoH4TA#Tcj4Qw
zZ}*<u{c_F^_UrPy?x{bF*>q*;y#-mji{>Y+OlD;8_N=+sWj%Z86+eZo{ZpP7oGLDz
zTDsKcs2szJ<-XR|wb^#>`0V8RXZ(%hRKLGtd9q_6m*O*4HinqORm%mJM;FC@=<~gi
z^I7Ggh}h2r_VATqvsP|mZdm%p<WW`3UY7G_{z86gf1jB>ig#jgNVdM){IDv6IroFW
z&1as6G&83xjtiTpdZ|0+-u_ed3wALxR9NNgbAMm{_R9jd`&-|s%#o=&bN^kv=pVo7
z<_t$JZi?M!WUpIipSwdmgU|htrd#=+mG50&YcM!?n@autQehmkd;TR~sl4S(lM4Kz
zEsK}O7hMdqi~PBQ@qmohSLa&>d6y@(1h;MZtNYPN&yM-(MuvvMxxI|eTYkT^Ha+t0
z$oJ*n*?f}bUVmX%zWIu8$24=}YnE;dF(0#Le{$p5VjAwV(`HM><#{c^XM$v3T%Y$Y
ze#`IFp!H(aHgarDj3++atEn+j?fm{@Ui}8Y=?fNUKK5PovV4Q#<|}^1T>Gm3lzwZD
z73#Rbe4y{}?Xp`FtJWQveb!#$X#($;Ni!QgEL3}obgxeMr#I`c*rF4q>ozeoJgQ6W
ztcqRGDgEW)rn3&Rv7GA1eey5qYCP3?yU*#-DRzzqS*echbs`V4TIKC;_xuwp<y4<M
zVe-3Bh2F=$A9gV_s7=1k8ujzzY{9+XUmx<jJEh>$&R6^1s{DJm*!;cp<!9{-60SFw
zB|eoqbaRr9XntFrNV<jm-(3w)bsmNYe(-P)%U@IW)Qqj6+eB$LU$^StegC)?n?L@>
z*>1-Y*1az!J@nC1vHrU9vZc@TmTq}-k?}!vnSJ%=X6-Hdn%wE{O}0KR`xS2d?zMT(
z!<em3u3`Somx>!0RwQ1S7w@RqY$^ZWys*Okw(Ri*$DIyo9?<RL?-X~wpPhDdF|$M0
z9=EIu?-I5hnNa+y^2-~eFB*QT%JZ%Y`Nf`&3$N6F&eU+MOaK4YS(}wD#rOB>wOQ*4
z`ALfP`(3Z&{qa!Go8gyHL$TM&X|*?*mRN8umze&v{VWq_sMjI&1CMwfh?Fet?ElZ^
zbIi&?$j?*m#Lo|b3bN~aH|lvaSY1j<Ijym4)6KLF_rhbg2idq5g>^4m_aM9}bur_#
zr@He^Ro3aR*|Fl3gkR#i8yjS#82F~v=GFOHm;aKlH@&A4ru=Y<`4J9HeLh|W@t2$G
zf6rUFFG2HV@|UD(Qrwc?ukK-(lG@wICgn2gx?ttsYiZH>LBIO?ADyb6vFgsVDT)ub
zJbuO0aAK2qXWj=ZZ@Zc)JLAIUMP6PInHB0&kfw9g){=qmZ<daqsZ!J&C6Q!7Ve!Q+
zhof5j8O$;j+6wmHSARF%d~<wH<$sZ`mdjT(mLF}Bk!mPSx$={BHm9!Nwj+x+KfAn7
zw9Dzx%A;!+fLt$ePUi2YcXKBkNs`&SMOEg<@fYI849+j^9haSGwyUGGEAUWe?%ZN-
zh6h%)%azWFJ-%=>Z|jS$J+-Pj?Q9KAb-brDve%u~KFpDSl(Y1UbFL5bv4RKjt7HE&
z*vOXEnE!w9F??=slhL=`=GM;(y!LB6`<c(Pd>zMjfg33j><PX%r|#dj+g7(Uck{ff
z#|j?Uhb&_dIJjQy=cyet!~Wf^HuMuKRheTKlOX6*X2^Wt!n^;aA8&8@<Ztcx@y&7e
zSNs0uFUXah!p*}_aY_3}nbsv6?tt%K7sa2Sy7m4fuYcvgtCPOo6Y4nhl;J>W)MSyj
z-X{w!vyTY<E}u4Q&f%uCU9pS~a=8aJ&hb5PvEKA{`}3Upb?JdyHzpl=UTksrEyI-u
zS_}=1F5Jcw*9L^$*5*B7xhA>wwM>Kh-Pr+tvVBc&OPenz+%eAWtGjsbcfq{lX?=fL
z7!nj_$6n~k41e6#+ih09C+E0bj*ms0Zq?1pixzBXmuFbe{rCFaIj^i=W=u78tW?{}
ze|(84LqiE~-hBU+k%BL8zVo&en0WrV{ma!sciw+LQO(3qFm0c&xGuBX@6Ig2PjA2G
zO8mO?Bb`UR&?Mkqs-55}MTV-C7q?%GKehPd(kcJX1bLsd)Qe(h*j#dd@x|qHZyYPO
zaN=Xw(6>oe`tFidb-Ek2#lO*gymY6cV9t7z0*e{RZyBFGFky@6>PuspYSdshclzF~
zS9qR<Ed6rm(m%#E%gPq7NzHuxMz><_#z@&UVsD#R7(A97mziewHmL7@d$C3A+B?U5
zPWSjQa4f3*z51xWc2VW4PplKa9P?Lf*Ie1gP_gsg{ENz2%My~`uJF~=e0XP4{0!#B
z!Iv3*)~8N)`@V8g&$^Y#8~f~+|NC{_JMsPZ-IJe*GqWBpv}0cL((CVgwn*<-uiqQo
zm!B4Qe<g8FQQXY9(2n`cTHpP_@3*xD<bL_<`#$$!{Bq%Q=eEAOP#3H=vGM><gOZ74
zVak_~V7~h-?G-Ec%r$P?9Kv{Y0mEZ~B8C+%#qrK@mveejO^>Fnw6(03=$pWNKs2iB
z#IH1I&F$0Av~0F#dJ$9~#J5<Wh(Y6=u+-7HS|^)S-*fP(*YiBz5d0$NhRWIFDo+>!
z`d3^&w%IiNO3bXKWj7+r+YAL1*&8-*;aj-nO{LwxTR)r4q9<jnEdF}ucfltcZj)Py
z>vC6K&XC%F@5h%Xww4T+tMgfdUj6yomi+m*scL1_*EM|iiyk+ym6R@R{L-9d^Zc2V
zMB_x62G=D%u9=%vQ?##cE?T1=oS?h)ui!5J?k96ZzZE7q@iDx-voGgC)#K__`%k^-
zS}Rs-_I%2(yA5@3=f2KTaN=Xw{)FrQ$9UI$lbt(lS8LyVR?sD7C|W1)_si1c^;6r|
zb-EsZSr6#0PWAV<UUK4Hj3vuytvLnrgw8KtdZ>Xr$L06?+N_<b3<q}qop*Kpz86-1
zH<o@Y37*>WdCLQbwLddI3l=eG#68S*yi}^A9em|jsNq8!*=KVyugT3w*8idQgkgej
z`;IoLrMsMF?>l5?7wT`}f0_T;o1Fcta+&y)7><;z>b>{A;NJh&pO#(pUEER}t?(r0
zlJUHIQ=aQGu;!MrnaFD{nmVcOuEs6ZInhxkZeB_Iyy@tDr*+2RybN7CB!23oA6;nQ
zTmQZ?XrAp`rSpv4dvd3It+2T=gW<xNwA0o5?+ZJhJ3c@2$n}dQJkOUVT;Kn`p}%7D
ztoZiQj)QIurm^c6t>6AqZB=RDwwBVjY?rEdo-e)k_QUn-Wj2Db%-LN9?-+Gne^C51
z`<G>pcC&Hk{bQ$gsm_W1d)e@}mFJ&NUiW<pG@q|66IrnFNZHP;`wb0o?ly~`o4s4P
zX!foDR_m*HwBFwRXI8EsBxO;0&q|eHmDTO(73-(*+eepW)n0us?_HIt^6%-t&CJ~*
zb*DdDZkm^D;lDg<=DRuODF)TN3RAvMoU`$lqOqoR;M?os`}Uc=w`SjT$Zpx|`33h>
z=Uv{*x3J={_dOZ!&DR;aw6AKvxUu_!-jq$xm@T>AeOeg7sUG-y>;E}cHK*rYUv0>&
zp}M>AU6APdoB#84_D)dG=sr91f9kw>VS8Ur)l5Hca@1p+_T~eOCno%e$oaKeR?248
z#uJwnUT&Jdapym^ckhnYWi1b~`{(`LHh2B`-vw?HcQpNLdd_=au3q)u-rE%nQ){jq
zyT1F-R@R$6nM<}Dy=$F6o89*BUEfD%_bH~YG&S)0rM_Uw?zZ*z1ze0zEUoR+pG$uE
zyK2XqEJL+bTLpK{5x#F(xVz@m+B?T56qt3Gi%b+MZINl<c`1DU-v8=TU5>v^zdc+p
z;C^62aar{yagCz7b2i?(?_a3-c^AK$koUi(GweST%XGo~P5TR;E58)((#k#jXq}Dw
zg?-}XPjf84M%G?gK2z9_&Hrvd{{-fMtBK5WgZSs?J~ggdXC<WTs`2*G+CS@`N-Dj{
z5fD1Z=_kwZ;&oEG;it39HZ?nGpQv85AT|D+;oGCd7M?89T{}Ll&}MLbwp`Y3-o%f)
zHaC^-D0iMeDI#X}Y5#EDCp}xwr7Ubxdl@n{D)!&?ou=-Zf-RSM6r67!&%d<#k=JYf
znG*k}{I#1i#eeCam|mxSMdwnU&k;R0tt4&b-{b2iJFi-%P%3aB@@TlY$Mhe&jAL8h
z@hxxpTgB>oI=A9xB<sOPnb$onR$hr=*sy7Hewp2$ZHM<?{9dv1pVQkTr3cn~oHt|g
z%oRGP{#=IF;w-}@Q|SYqf3^h~+kGkV-ziiS6t}5T^|?yj9l?CJLpKxFNyS<mWY||a
zXa2Uu5By($U3OY~^_OR+>lLTvGEFLAXjq_ibaoK8h-zJNS8DYEN&nmPwN`I-fAU7E
zYHC=I#n*|Z=jYT4oijUZ!Ehn`%*ENqZZCNJ@pR(3lk+O3{Wy5b*<Ad&kKVc81%99J
z2{A~7zdf^H{)J2Hw@b&`pRzu_@e<P`(|w7N#|r9-!U98YhJIjFyIjHGzF6M(D%;0X
zTo2~$l5A?(eEcRS!&}z*^S>qeRSWj^zx;iEE|=xkdAk-`aI!OSEXmr#InS2o{q=9L
zhdR}#E}Xs5XHvndx&G%u7&4ZfesOkc{xyGz6YHC|&iCQD+mkV=W%Ef}{-$7QrZZmZ
zDzR@jdDXmnc4|?&)R&AjKZ~y`wyijRlT~N+HwM3@Tw(9c)@;7H_*-{&#<8r60)126
z81GG8C1f5hwl3s;oTR{ydnYV!wFYw<*Vga%e)DL{;k0hY;Qkh7!M&@(MKw0;Xu7(<
z@zb$cq7}cl1-+J;6PYCt^-X&wW1Dft`as>iFTFN?u@!!0yV2QLi0?~C!9=eH&6Nz{
z!ix59a-3VvKE7bXss2o95`%-lVv`rbdqmUMto1cNrP=bl!07D9GxCBec2{0ZVa~|e
zTofj{UwdB4Ba!@@tUMVxpIR0NpAd*kf4RndFGJhs)lOl7`+a2c=Pk<RfB9_YQZ`|W
znzcozdl@s<|7Fn)&2HNhS|D_P59f7H3xPg1hJ=jkuRomVfAl1`jrCN9=b^@lESdKh
zA_7*5OK=!pQG2LTsCjALX1)fCQ~T~e`@4U}PKUx^RhjAR+6Fz$XLLWYtbMm@iu0oj
zXV)LksVhBiGtJp{^7^G^t9Q<s)p~1%ZlPi(!zrs6^{VAXdRNUkF0rVj&7S+8`|a8J
z1q=-HypFbsT7B$f-Rcx*FlS}jN=Ak=YtJ6=`?X~Yn>2H}?!*Emo=;2+ov&=WjKiiY
z6xDU?$u)>RRJfOs;Y#w0wjXKU7GHPFU`)tJy>9((#g*zzqZTdpAFhXXrmQ)b=e9(b
zafMce>F&*y-}iU@f3be)lcwpSdwgaTtXa&@u=w?jnR4sS2k5^#ut3eng5kiFbtR9&
zIT#l4*?3woI9Rm5zoV1Xkr^&29cjbG7Z~utDE*LOATOwK!~WuSw}8QeDVD;1s;|Tu
zW*l3eW}8<0|Hta@Z3h@sWEd2t&A6=Blrwb&bNe+fi?d-NEDWbky}O*g<%;u@cB#PQ
z&K749Z?!zmVqvH|`C5I)T2AK~W)B${l({A;-O*|-^t1?H$;h~1+os?v>$co=WRlpB
z{H!Io=4{4PDTX!4cV^FEeg2>~nqy7QvleECo~3Wj9`V|)cK2h;1CZ5QHmzn_Qa@XT
zxjD-4;ff6sbBiSs?tiT++B)l+h-uoV<=@$^e66tYx*D*qhGE4jkKo-=+a$BI7xs!C
zFUVWPeC%Nit4Dc6y4<s+Q=+c__2tO>WGEvstAcsW;)6F%*BN=<Vfe`QXm&l%^KjoK
z?>!2vm#_FH8sU;uTE73j^pV-e9}BMiWhyFfc6NS2*^=wr>uMM}R-WCnsiAjY_0|uk
zg*elfhXq*+OlFix(7buJ@YIE~N3)C{TsZ4%%(#1+hlP2#we!V1Mwwl9#=5R&qQZ?C
zf3Gnq*nR)~D&|KQ@)-BjgmkXYD!4f_({x7H`I<1v!#iVVtbTTCx#UN-gyVnL|FzdP
zU7xdK<(nw3iYSeTcVd1XDVwpSJv*E6*6Hlm>Ms<1HgE@=isF2p_Az6Tmksm#{H%PT
z0})v|oCdY2*^9V>qx2rWnXykydCi{U^OD>?%Absl^K=guh}E93`<u!B-E75MugNb%
zSe{J|)SkAA$Nz81eW@KD|DRm{mlY#%cTx6ATe<!zQD^Q-Wfk`^)_Cl^`r~zfbk+S0
zg366-9i6(f3d;6~^_M*jo?XoI;6io9kF6CY<>z_3H`})B+&y_mZ0^!;Q||7M*?B=@
zQOLGJEv6}^7tTC<)0vgnessZ<rN;||p0BE{Uv=!*hNex;W`3>>kDkptKJk;*LbGV5
zP~Eu&dC#5uwCCGwHk-x}d~2qZ_?_%cf1laEtq)Ug&s;OFz_0M><is`01RDaE++XVZ
z(|E2-+M`;FmD9Iq&)?j&$L8Vn&gU&G97}7r&e@^0rs8l@&%--;oaK%&Kj$PVGB#MY
z^s={0PrE0SnLVSw<#Yes36D>y-@Tdh`Sp?Nxut458NUd9J2>_4)_JxGJVNIf!|kTV
zM6NrY$$26CM%9fAymwUQl;7WO8}nz*q#NsG=7sy&G`u@>?#+ttE$Tkbhko*3x4CKb
zEK7WjE3boN;_Ca|(#z%_R#K74P~016c!*gb?7q|wuRRybHi&StbDfxRCV_!nVVU0N
z%df8f+{DX0so=q?rn8e6Wg7NL-H%=Mt9TaAG}VU(RDXMyrPXjXH1J(MRDHDWRe$z`
z+=w|X%%Le;^xn%0HZt5gJ#YTEj|ZRs|NAfG<F3DNZs#Wm3h_NTogKa@TKW4E2DYO8
z_t)?F^=5(_W8K68h2VRCwlv8zE?5x6Y|;6@WMUX|*`M{_*$(8a+io>mchNDP1@qo$
zTuPlZLyYm8<l#n{#QUYZ4vuHDzBbt}QDx#}_uE}`{9QrKG2_Jyy;o<<pY|e2>SD?P
zHBR=fmF2h3@LD!_eRDo^PU?dA<<>6QR}%|5G>SGS)=3@U+9#f5_x0H9x$F0CiF9D%
zZ2#BAzp1_^apkiozshDUViP!Z&Uf{fjdT0?^Zu<)VAl1t_;O{L^L*KgOXlmdE-#H`
zS+Ve**7;YtFT4*WTK>MwV-&UZmhR2ha|;<<#1^jW+rWEaZi}<IU|Ndnjkf8BcX!^>
zZ3ybR{{QXj7XiK!EsuKV7o0q5nZG>BrB{-{KZ@l>B2T-WU+CG{h6+wk@4fDudr+p~
z*thF)88N!<8H|cXob3^pq&v?Zd-nC?t*!MRkG;9VR&B(-U}^f)-`OuuPZQmg!>svb
z@{0$*v{S#W{-N}meMwF3E~(cpyDJ#id90~;9I~xlS|&Ysp?<Q3OW=mMfAdaFovvyk
z${=iA^YW~2kh8&sWlrTnd}~dm6YKw8a9{fWV}12mlOJ1om)kA1W!|yq=4I3Uvz7$U
zzq`<~p<IYhF=Xwm@AJ>)U(kx-EZra1Uwe5T<CG7pXRQ^?&wHNl*J(cCVAe&G&=dys
z>Lbcmm}hD7Uh><+xM0EGi~qFuz5ehe$~HA^Rt59@o`)CCePw0q$~mmjdr;#xr$Ku_
z@5F`DI}S<kot8}Uc(UQ{r45WcxyucO@*gZpe3x##YZJ4@^<b~f#`YftXT@{NsZ6_l
zeE!aLj7=6_tC(-Hbs4lBp78DU_bIpRA0%7qr`uPjPBLc*U3%V4IDdf%XS-OIP2=Xz
zH=qA`Hf4)Jo=`>Z&-Jk#Vh<T^d|9(vSBrsl=2ExV<!;YU*ZqHe+IpYr+h1Dena>_)
zPMADPM#{L&*>&sVv;U^=VKY>dJL#Edz@Cuth<A?a!vOEiabF*bJioqV>tB2Ay|JlN
zvThuDr@*j(#!R-#GeL{@Y&!3ywoYi;kHx%gQ{xut%9lUA&Uj*4c;o7IinGn@f^Hmb
zkK?nidpdQl;4#BZ=Kl=lsY<<=yPV;4P~c%vAwJc)z2=p%-_F`qtz;0mS-hTKJbcDJ
z83wfvt8Y%qePDI|VSwAI$8TI8ojsQ>K6Cw_Z29>AwG)dNB#tKTt^G0mfabH+0S?ES
z&0UX4eiIMU{@t2xy2JSUKjGQ;V;-BjFr@rgHzD+BK!1xf<8rzC`qu5M-f(4Z71ztI
z-<cWAsAQnX8)f9(yV~m5Z0GLt*FQP%F>FxK<_);`wc_)yw)pwJk&<gZe*Rv_R=}|0
zl!fIHm4^kMRr&uOX<f4RUaG2Bzvoa=HiOBA%d__U^Ssj7ry_I8S~_27cB7Kw^W^HT
z?G9`O3~JNrmivI^KB<O%aeZ|5b-#YwoE~{!^?M9HD}TJ^ZCIru!&UwMZ2X*=-(D+6
zb&FUBe)wtsM6aQCmbAo_tyfNzM7+P=VJ=?3an(b%f-QF#tV1Rl=yA4B;+t;w``>Bp
z{X*?+0u7tD$Od#qW<9yFe#-6sdo5ef&0|`#@_qLG245k*qf7RbE%WHNzg4p#<M!lt
zS3dDD?D@0G=JInRhOZtLbEbWgYw!(y%=><dkOQw|ciE~53vD^ujrgWpthNmk$kkE0
z^^M`eQNJq}gB(<a_@2wGbKJ8sMAhy>&4zu#2iC0Q74SW<j4Lfw*L2lt*?b0u2d;-6
zw)FH|d@wEa`|hOuW()FFe&1O2ZYc}Hg|^77kdO`Gwio_vDZl%CRqdbn#|aDvzVtkt
z@G9i_kB=259p;5B{80=HuO}2}tdA^@U&p}kpt;3)(wD#~k5(pk{LK95KC@1;{50b#
zuB)dQmU~zfT=ny~;K0OSqV}+0&0_|?@AA8nI(k_cX7sc;8)lciIQxky;`raX@VCx2
zLVWBYPp#W#&)>E)l+W;h<|<zfze5XqX2|}Eo5FVB4$m`(lzTr;%3UpQ>-+fZaRp}-
zL#S<b>{MNsWS(}WkavPL#{(HfA9NkLcD91gMfu@}$-j0@|6L#ZXI1}yr9P%5-s_E@
z%5*$lxBKui3vHMDJkJTAx1}a;+kg6Z^rw$EPq=akTwci)-^*1id027RiMKANbBoIb
z7A!vgxG>9R`Kx0Lzg1++jz}JOc=*}Ei&L1kOq^GI<;;bNEzbKay4!T0CL5$bUBvL>
z(Ul6m3-ekItJ^+PjG4J*St8qxcN_Gs&U4Zi;+y$p()?f3oZ~*PyvVBYsKCIzmOHlM
zvHJgodgnf@uC$JxasU3~0)`{s*X+G|L!iCo@O~YGfNNiaE@d(GJo;GiCyK{yF=y}0
zrN<b=@}+GqaT%DHuUcTp*<LSkpmR;x>lZVaVwUT*DyYb~Z9S*EvHRiY$M)-j^BCSv
ztuhkc;dJO>nQ;R%!&FYo3q4cWEE3OFe7>i)RiE*paDvYMX)+A64BHOhD4+VS{_eWH
zEXB`%m;cMpO@Dm$Lc36c)U#EN@j~ZbwaF<}-2ZX?zut|yGuK6O-vu5}=4P1Sd#G_i
z8{d3}?qFkQccF8a*j_o8-*4D3h3A07v)Qr?jGh)gD?ENL6l8k9RlZ<>IA=R^|8Zy8
zyRKdvm;X8YkBNs*&msBU0>@k-KKr$Ea?57TcZ^;p#eJ4>L;lS)kzb$eWXya5l<&X)
z&iU<8wRoInYSUikh-)&vA}y&r>6!9ZUq4<ScYCw`o3^c6>U%^49Za&)GR{k!d!@Fn
za{ggiNo$KQIePCeu}L%~%B*ldlvt#B_wUJDGoHWG+3}cx!F=<T2jA`+7@TG3_`)R6
z!X+s+x!^(BY>gXxet$jU_kn#KgP39JWoE${OOJWjq)c+0#Q4JRH><AX;l|r<&urFa
z2<R$f&zexcz_7}A5#L!4i-IbK<GSVyUKf`+6bkWuUi~p)FB@mWW}e3m(n5UAC###E
z2OkrE_h<D4W(Pqj5e@G{jkj~Rmx9LKjvDZpC_FTn*L2qT8v`E$gQ2Gd&&rR^rfr1`
zE4;FqSnu9lnwIf(R?B;D<$N`1hMF5W0Vb*eNB-8Cw;jF_wT=Cj97Ds8e_!q~?0EID
zVvFP*^Hv6iXP@uw+dbQI*Yk@eZHIZfuDdT=!FXZPvL(~|ztukfD#UX{f^Tw$*(7EL
zpM>SNKm1ZZS*)|3S^c3wf4XUj;q#npscZ!d32L2tTc6L*eBG}6&|voFX3O@g(<+!5
zj4i8;ztnC2@qytU|LT^*E#I8at@QHR!`Lu$#^rrXob8r-&qti@Q+mY9aK>fN%&W&I
zZk;A&Tx}!wh?k+jy31VZ`%Dju4F_%I7-n=<7;k*voIOp-acO$bqpg#?1Q@Or-q@7=
zt6llwh5JVtCvVc8(_zjKk~+&lLsNJ6^~WyTDjhv7z6frv6VGQzkWG&+TYp@#wZ%Eu
zu=%WR;^B~Vh686`7rH4tyx@1HV)CX?EhB~pM-%)Ct_3Zg*zoaL-TrQK28VeKwbJuc
zWZI@rcM!@}{m91f!}UbxNgdOqpMD}o=l^@ZgU^(KVXLRbm+itTr;bVAWMla8^kap@
zWKO-03^SLyDepIO-cs?o!sduHLqo=;&&v&EnzSVHdG0bWh}&9ovQ<8+wviL!6P(&*
zzKNG%!a0|%7j3Icg!p==tkUl~4l*u*X}#av=LH!LL-ySK`S^&*q#uiBf6-@Q5Zidu
z{6b>K`@a&N79rQ|?k)K<Q<RmV;q{rU?gxv5)gK02U#XsT>xlGCwuXQ$UR!g^_{+NP
z3QC^-{_&FxpQvlMxt0!t!qJ<d(O(U-tVM%+9|m++Ff;hLl_zls@rAZ@nJ-()$RK~p
z&i--coB&YUASi#c=TC2Ea|VO<ezUy^+;QJ@&F{?=o^L3_C7jRD5NsCzdBVSU?Fz?k
z-P-ACF(pLnUd;cskL=kQu57r!;CK)3FNuSm7E=l<7B4M~UGR#r;YSdY&%_CvZyKKX
z_iV<_Y*XvGww&!uxA>R8(f3oh$KX)&($aC!0};;l)r*eK-n5^Uf%WCe{d07=T-~iW
z+iNuY8M@3F90bLk{cd(<Z7KO?;AxTKWqCEqjqf8HgWJT~{hN+4WlP4dxGp%S<#1-F
zv$?6>zxe&D7cn+)+DLynoM!vR>5}30EJq=}=Or?`0<#$oumrse7pv60_tp2-!*^LJ
zLVPQQ-cR4M|3RoBgTZ_$#q{Ua-cMD{Q<NtZSWKIj`>K`q^JNB!x%=L~O=*r>JXK$!
zsKn_IXboD2-p8!<RTHy?7;b#I=+JZHu}tCY&rjCsefYC{lWpVi#~)vFzyJRGt8&m2
zZ%}Ewoa1I%y>W;<gZA${g}DE!3CtTm-QD&2cbxL`KSf&e-?XT%x@GT{wsNDc$DYog
zml;a7-}k%wKWm$9Wmv{(u6<VP6ADZB*n2Y{D>$(vi($d^FJ^}(i(WoGPbe&F-L3WS
z4a3(?>9JdAC}SqF=WdYacV31C(^qXjpvC)7r~0;DMgO9Mm$FI}9~SssWxaf9`@;8Z
z3>UmN*QGaC=3O>VKls@9VD68vs!5khD^oM3Nv%{0ao%n)o6(^<_E)#n%F1u2bwje_
zN@va7nH8S0U&rOp!{Fbm?pUcX#9S#_yH-i*d)5B#!UgVsKF7T8x)RqoD_BKl(v^Ki
z!r5Y?EC)6P#mRm6CC}_SH=yj-i}nBKUJ|>m{onC@m)-VA^Ji1E^Q)(8{_NLQzwC3H
z!9nBZdpGXe(tX!fq>6+bJFM>dZPz`4%g?6G|Mf{x&Q_|m#o6%s`dkK$)lXN?zpb(;
zfH!;P^+LJ2=s7Y$UuU27)O_^lZ{FrB3=KP?j?KPa-X{A~bM=+HSC{vD&vbu&a*oZ*
zR<(y8*1KwzFt}Z`xK~sE^Cs&-x0kQ8Kdu%k+BLbr;=w281>GEbKWy$z_~W+Od*w0x
zY0J;1OcHmUCdH%k?pKLp{+}oEdQJ?FBwpldF<V}}W`8f{=f$b~*A|>k@HrsCR~@!)
zDnp0o?U38$oay?9Yo8|6{<-#h)&u6$=D!DJimz%JwlOmtx%B$u?47E1%3I<OEoCd?
zn|szE)Y$*#(`Q}vmiJX;^31zkm<^bCgKZ@jJ~eoiBESA@-pLo-mDbh5qA#b+TFS=2
z<G{Xg(reb;mhEeE_RO5UGwZ12VMYeF4GG7$H*S)BomPCq?5Mr-nb2&vLkC4n8Imrt
z>1sQ<*MI(^y*1IvPg;nN!GJCHz|N)e_v0-SJB(dU+zfoRZFdVZLrb#6^2UHxnf=B0
z)41P%ul}>B!~YN?L)*g7$1krrY~k<x#x+HVk3k@Cg&^Ciu4@bP1?IQRS*0Swz;Ntx
zs)YNAOr7_B?Jdj<29~u?H{aq>lv}sv?SZEgL4(acA<+k?KHa>E@3D!rvQSai<N^i;
zi33OSKL{7qoxEMn$<EMlv&Xb&^XKTVb%jYnd<+cC(zPcW#TA!}faL5R`P*dgG3;)i
zbN24}8`+%gx!?c4+H1+M#)H{qk>xa*8~-gYd0ME%dfbv=khp$o?z4x_R^7d37w76>
z!N9<?K1(Y@-g1{sj0rDid&oKsh6QUjolIP|Gs}9v#df9sM}IW881}sVSixbyz#v&y
zy69SuhM>gZhb)>L3@hGx)h|A6;Agw^npkvi3p2w3n@25kssde3+*E(az~GbD$G6cl
z{{1tHWwY1GXK=RHuP|k3P|z#8pDuOm=Fgp-&gWc(_!thH`O<u!_m>0Ta=tlRuP`ty
z6Scn=5_MtgH>-^=vl;HZ|K8pC;^)U7?M8gb7Jp9jaxz35;p*KtJx$O15F^8k%RcWj
zHFuvib@F?AN$%r{sZ;B&sLZ)~_y6ke&lnEuFL}8mW7+X9?YAFD32{3fik$Aj%pg2F
zli_*SKE?E{m-L=K3Y=UJHf3&Z%u)se7IVY<rEd;c2$;&0rK--^8Y8(~FrT5rVfx3e
z8Eb#u;XEQa`}v18H#BdoUVU9K{%W`{qeJNIwKLi>?=Sd#xvWaZb=#iD-^G7UegB@n
z&Y}B+b|`1M6KlSxg)PGi??aZW%k1~9x^;6+Er;fhzu9VYqQh2tSp-kaWth=FVRFWP
zX#=m$t9Ex@&Rx1keyw=XG+zt<<yAZDU*)p*Rvutu5Swy|@xrzA9rugfnB@A8{}Vj<
zJBp9{+uW&aX$7gdCf6kxcusZ88_jw3Gvrl#YRy{aTI=FBJr8-#?>f)0VajIT{|>$X
z*2ijFzbni#S#W8+#7WPIwKGKC-8dr65VqlmFo(Y6+kXzMSASS8y2bxw$sey@=K7yZ
zqE<f1<Vg<+KgY10mmz_5;_Tn=F0YGg4KDQ#lQ{YF#=$0U&6L>-BgCJGnltDel{oh{
z<+c2tnnQk0E4Rda{mObRsqdkPOqup<<KBllS$)-P3<s=xt9?G}ZkQ(I5p{3Ij~{8A
z><kGx$)$bDtG9DF&VI@(wd2QvBe|bh=Pva=mUZ#5W|7beF2)2V@4Y`3COc_tGARG3
zx<tBrgH`3Dn|VCx26z2+7#h6dm}O<%ZOZC?{fgQ2{P=C1uGoO9$$^h=swZ10YnE0W
z-BZEP5WFns!gu$jyY9bQYdhm|E&Kk`PV?pe{_VC=owHTPbQ<pg8K!SPS3F$YeQD$I
zN!vF?-ki^&ROl~XKlRt$?)cPcw+!^+ycfrKFdW!^GU*;m|K01e1I5bL-CFiHrfNr1
z%&GD;gEnLP$7T!;HJvk;`<i53sO7Q<e|tq{&lIIsTl<d{9Gg%m<YCHS(0;MqdQ++V
ztDE;5f}3^U-~aq8<Z3AIxvJcgzh|8@<vaLLJg$D{TEjV<l3N%XGOx@&>D;AscU6CL
z#sAl0&n)WZr#U~*;!M}t#LJ+4;l^6!6C3w!lKj2c;rIVpe;2d<z4cvT_IA%hlJ_3_
zzRzW3@S0V@klqx#<LdjT+dTy*ZuXMnWM}Be-nUP@d6x2|xu16ZTF3J^M0b09yxzl}
z#Dm>j3}WUV8Tit#TEBRizh~tZ#+zkkC!?|szt}g2gMmT*o4D=jTb0=x?%jImza{eX
z+c*9ahZz|-jx+c<#LnA!zB)6F_vY^US4(PhEH_Twe%tpDBSS-X*M4o|J`TlKI-Kb_
z%&~F|0Y^^d-f#MC_eJFI+1~p4yXkx5J*R)abO|(a&)`w?Bf#rmzW4vfY~5kzCjwcS
z_p})IG!_{%6de7xxBiz_wF2M%w}1Jq+U9KZuwZZqu*zL6`Ltts%N(!YLIy9?@-F?`
z#F+XWR4_CY*OgxT-hB3%`?<1rk6Y&Ss0!a|iQr^sV6aeE&M=K;jy=T4(4luOw>rzh
zx_tG=%?|hL<^Qz&xm?YBLj2DiCI+LPPdZ$Z@4i>>{TKaFU;lTmZhTTUPdbm5HAC3q
zx61o^+zVHgeTg;o2UQt7pT%c5B%PS~GAG}%q1f14x1)dYzrqbi3qfj=OZtx|KR5Yj
zx>zS<)k>@7>$H+B1Xo^Td~kcg+_k}bUKd+f3twF&x8p?rotg}rhT_QuN+(VmYgsd-
zJ@u2fKK6>~ZO+@TpZ7Qh@>CgmSvc-Jx7^WRhe0EIO`YzZ5MIm2tEybREu4c+Gc&k+
zn->@L?arp)%j<h(4BI>{{=S{#uRJe^p`evL&~DAn_uuzd<$Fw;lDy?v;hn&*54<cM
z7q&7m2urKpIJ5kcf#2_oimP3>U&}rr#GqjJ@!77z@JhX-5`Mw*;<?96_x$+D#jyI~
zWBEhpW?f9TFa2BYT>J3f^)Rcwsxk}=335Vy*6$87FkEmb+rBxje(O_%z7}DpM-2-!
zvltAv?>Xt$JZnwz=K43c)Z2Nsp5KzD=zfTiL1D#ryN{1Q&d?DF4K*<134bHxm;O@y
ze!+7wh6DSKn4jdCn=7^F#&VB`e{P-Fq<a6Eg_i{bL!*vq;M;AtpURqFWhs2MW#-B)
zs&m}5_G)r6EL$#^!ciNXvG;V!krLg9E(?FLF<jenlY7>_Y?HrydAH7ZAMJKJ#QEg<
z#n{hG3=G#kUc7zrr{>ZVE?XbA75@8jkAb1V_WSSH`tREuEP3{p3(l*kw2?dPI?=1=
zAp-+X!V882!P8wIKH_<7!kr+*$KarlcX;wzkD9DG2ebanX%X(eZOpJ?li7QfMjqzW
zd`@--j+Cw24{qq|GyM8S)a2JBW+6Z2yuAzzzj+?;Xoc+G|Lx|ay_<8db=FNPNa8GQ
zWpI%B{ySEi^DNKY)v9xLz00r4=Vs_hT%K)OI5~?UJ%G{w#I0ak=69diIhQXwa#;Sq
z4kN=Zf&8RXJ6dfYExfb;dcmvJQsw1)KN`0@x8CC-%iv-7cenn^S9_07ty5Zi(|`3X
z$F=36-WC^E9%PKTkY)Za%C2Saj{Zgee(aY|wR`6o@qz2t*U*XiCLR`nJ=L6y4!q~j
zP5w5qiO+wz*YoHbDic;*l5MY&JXvfZ8f%}nIG&%OVB#_X3vh1xxwQYVNc@%!AGKXn
z=j^&u$;6N#^8V(svya}G);S$osb~Gf!<}J+&fSI+a{cbV7^VIOOgm+%d)o0(X5trP
zX@&%^<xQu&ulml4*t|3AT2OY%)=+)M1yf$$zOeJVUSIsvKX>2O{aqTmm@SoO`P|^;
zJ6<y~Ea;xHan_WWTidP0HyhtflK>^BhDknYrvnV0%vj3CaG_T-%Xnf|kjaelEFN{G
z>Ff+X>(2)5`S9+;l<dpgYyWD4A~5^6tnYWL*(bSY&YoX%Wu5lapQ<tp4P`ucT^@Hl
z**W9IDmEuhbs2L8hJ>)HONo{y`odpa*P1Xe2pnaZd%DRk==fL1=D!lf`|qo3|KEK6
zi@$N@B?&$Tfm<f#*PCsg*mk{twCn%WzjNDFZO)$DmRu~q+vn<S8yQzK=R=*YSJ@c2
zKmD4*-`=cy^Y4Qx6E-`Yn>jl&i-F<l-&ZEwX7ZOVAN{Ov%=O{t#H(p*bX^ZIGQ3E>
zW>@kp>69+JzgUgV^DZyfjg=znrtfJH?pV#iuukK5f>ozb^2vu2PEW1){O{(M$Mb}W
z%=T{x+P|mm^=zqv<$RTV><lv;d)Y60cW&UFI_K`z`1*LQdvpG-Ix=x-Xa9q~LV5nl
z1+%2S=rA^9*jdf}D(AC4y(!KyZe<<&q{FUV=llN5;k7I}mvSbkJE<v)k3s5m^>z2h
zX64uN3J(TOmtEgn`t7P-x@ukhnUxvNs|}x?m*8V?$Y%aJX+8g>l<XL<PJ8p16yKZc
z8~sj*94laG*t%s8uf0qDj{;?TxgGP3?(O-Xk<^$|S0<tvesBkKn2?{y<9W^u2Q+1)
z|J({b-L+@wzUuxJ-+C;vjJ<goX83;BE0X#Cf7P$({at^rJme^PBUk_R-h{44OLiz7
z{4v*X&b2$D3=OO1?Opm;Gj#bfzdu<!?Dr}9{l1s#{q3~z#{a?wfoJX(bKA9NEPwLd
zJo?bfgm>Po3{oEXKI=_(Yp!p$Ssm2ADgXMTUw*Fd()}+Kd*5u`SXOL5yY*ad@o&3!
z8E%FfUtafq?d;9`R{YS^swQ>z?{~46Ht#M@J^QZ5bQ!l*O{V|HcpdFjn<ekLxFpp-
zug^7ZV`gwE|Iy&yd(y1?`0OcDFB_Gq*9rYdU8C5SZ+%<7X5Fp6_-MOV|9ldfO4%3_
zMADc0g}gdFE$c;h&b_1R6L*zF?Xo{J`A0xl#P7<|9fot3zt`O|O^RW|qPg#`toiut
zV|=>(kB{-6wmn?*&T-LiwwNv7-<;Z@9CAN8Z<-Xtf&EIyXE*U{rEpx@`TpO96W=4;
zCrt7bDcco$kQdbF=qr7H^jqyYyIJqDkH<zDCF<zTzhwDm;Su*v6&Z$x`XhU`*K&XO
zb5bB`+JOs8Wy>U<2Ry3coOhU!;o0;}T_rbN4|91{PCj`-Ht&|Ved40IQJVcio)!!Y
z)sK$PHj6%#a?G~)oAbH9b<+zN8cO$may}E<z<=M!GEaRf2jBVm8`N+7Ypdj2KD#j8
zf$2bpQPjN+cXvm>$xT)Wp64ON$FO0`26LHYK5a(<>+d>ef|wb?3cs07|GMo-z>Pbs
zg@1N=fO2l4#DT{0+2JiM%nUjy9W4oUQcHgC)3a%3X85qudzyhU@28rW4aW+S0=F_c
z<X&`hdRPDUf8>_4d>-~)>d6)i2cnw3H2deaRWQE<mH0KQ<~ALf-CZ};bHWd+$-nEr
z-kYNW>aes`&D|NetMfzcI=;ehUKR`ooOXRbf3EMI#DSkj4fythx>dKkzE2h2|KVf!
z&G`BKO0Sga+NKmRFw|+?nCbmf>tLHA3%}(xkRQJDh{{^$2Jte!jTij>`)}#Jeg9Ki
zCPyA(WC+`MGr79-gk1meXYzZhiuPO8XvXfEdoHO(PBG<2>E1p6@9Qn!-g4RZ!$n($
z2Twnweaqdhu6}RJ5)bFfxqo!~yPp>%75XwcxQ9zUiqGd3%zyChH`7YTLyQa>&lXFo
z-*c!I@{?b-g3%%QH~+&of2Qxbe`|lT?mdB+rRTC{+ihqO?l{HApmagW*_L<N>c~t6
zh6S3Ot3)OzIo*u0*~QJdy!l9A5yOJ%{ZALxn_iZ*wbZq9{;{><SKswruO#Q|g6f24
z)61(3Kk{F)E`G$z{8BDtlc&X6-l|0m4Et65&I#sAoV(eX?r613$d6-{4a1BB=O*-R
zo40Uk?XhLwo+><KV3?wE#$cnxY0ftrqDq1%`m-|3nCd7R(baPK-1>^eZLAClIyY@^
zu*Jr2z7l0n!psmb?cY@gsrwhE7re6C^Nr^LgG1=D6}m?!=4KXKzT{|kIJEM_T2_Vz
zsV|$FIwqv=^Rx(6i7Pcc&&kkm!shlFJ8j-6>h~BN1m1lC&HIZ?3z~e&jN!t>wu%h4
z0t=OgCQolMGc>F^6QrG4&)~j?kzvOn20qQ6hg%-3Vs7}hM%Y&JW1Gvdg08}=j0_It
zLVmH2co`gQe?`?yE;zM8LY1K<sY^=7`_M`cQ!WOEUQY{Fi35xb4GJoAqChUy&$Byp
zN@dRKD+?I}x~}@BKjoNo;&*{j<xX`5mM7;PXTAHryG~qQWzOZ0xeNlA{iN3l^Squ=
za4NW+$)Wnu*-dfn_Zpv_EVg(KGPJ|fzE_>|dCQd3$Idb{WSnQ<^LOGi=UlE+ssTD5
zZp~pv)z;?)K`U(;6%=?)J{*+r6WXfIz_O(A+3e0N4~yw5Y#A4b%ic7#mE)H+_%?HC
z*_qW785N|~-;2BRT7Y|34X6a;aofXK=3z1O$~=Y(trdrNpH<FFNG}xf<J+pvP@;H`
zp<QJT^E*Zc2Z2Yt6Pyk)GO#J!E9jbiMSF4qL&L^S^X}iJOn2UwTc-Ph#!Kd!S5NXi
z5jmk{bNc5=0h5^=1f)`fB+f+kwtSwf&B&ni;Z-i5tz7@%&yLsgWQER|U1wl$QM>m+
zSM|w@$7>&~Yx<G4NuPlwk)eHakkOgfe=7ect6w!ynZv6U%)oKTcw@>AqX6TlH@^ld
z1iyQ{+kUUPf=u#s1_tNqZx23Om7e$aoy=&){qU>&@|$P*j}`no{Ktf$<M0|Ty<K(B
ztL{vGdu3n$?%A_d=G1qZGYE8PW{DIUKIbVvHFJsj!#}5cl^8mlcl$WL=6N=y>Os<!
zzjsr%zNoMG!^ZGPde?PVcTN2>H_ct*H$HIV+qi$fhsE~UKQkEw&Rp25edyMk>r30^
z*I$-wjm&z)%h2+eQ)ZV3kAb28(Z9X*_n&>4BUbFsAF2CmxnsWu14E_I^qKqaALbRB
zvnzG~&qJ4Iu9;VmX1k7o;fd!-%Y|{XC)+A#UR&|la!#(}xp0ODo|k=+HJ8VHNSIJ}
z_0O-<53GNjzQlRlXbOYCg#~l9o=x7w;rRXX)lV1hU-Pwi#LK|Y9^~Y=eopeyHNLOa
zWEdDc3}d2B+<tJ@|L*@?djj9;%qrk{z`!u!-7jnB?(91YWi_7b%qn1Dc(7*f2LrG7
z^{m=zGRzhX3{N=kCGXi$`7u1qV`I`GMuuZTd;CvkDb1N6JK61zdhxXC$IBUI7#Nma
z+2Q>A-g>^P)6LqL8CZmV9y8eUC#r1C-)SP>f4si3+==&%hsE~j4Hq~W81AOJ&-J=J
zId5%?@WLaE3=g`_+O3WLrk|}k$M+l?1H+Hh9rrf1Ff+86#k}uw)hSK0yC?In@Ox%3
zx2nwHN(O<L?|p(XS6<8H-CTaQ+HU#Mr(xY}3=He4+vc1Nm_F&ttJEc-#|rKUGchz+
zyjrWb*Xz(tk;(#IhK2`^O4O|Ho!uY7adi8iy8Zfd3qWFD6ci_}bWRtQIa678UWoH}
zB^$%X%=L+>*Ne}+e(bF>$M+p4BSXO9tirts`*(R<TsymffnmX<s{V_|L(HC}h}`|{
zzDA6ffnlax|8c+aKR^AuePq4vpPj-`y#M~@{RI~d=eV9TW{{ZmZI-2o{CUa0mpp0`
zGs<@A&MIJN2$(kO{NY()v$vON7%rC;yY*cjRL4wsf2G4~?*!wdnq77?Hvhc;yq+)p
zNHZ_P0f)G|Uyi8z<UKxbqWvOLq%+y{{nKx+m5+fO)N{nKbN22J@#m)9_G3I}-^R?q
zpqt9?rSmRi=UW31@9EVz!<;a2<@=96P5@~Tn|#e^iT}6X{~nwLHEkO^t$fZT_|4mF
z`TXl~&`@MZc!5FsN`)ywdGe7NM_V522{JIeUCRILNp0n^<!u}GXW#$73zQrh;)06K
z`JIT&VtD>Ed|~cCcToQ*>+C$4?j1r!M*DL4<ahtfUcZ;0oq@s1qUP`Ezjgm#9O?e6
z8JTy~P$r#?fx+=j`ORRfb=^D<mP8vqWMFWR=~O(P`^)9{<}3TUjq*7;9ttrqnAytp
z@43qQW#j%_l{tq?e*9y9pStV+!RPy}*ccc-<k~-(@Xq+*9NlX@`^AeG7#`fdIbm`9
z-k0|0A8zsN-K5Fz!8e{aPp?JjpQpw5-+NO(Wc-XiC&a+OHt9y~)zg2U)^GP~)^aOi
zU`V)}SS6TW_9aHwD%G=jy4h?N1_r@5DH0#k;?HTfoZDBSkzcvH>9ucuUV||+!=j5R
zhuPOBoGkdiHOV>Y=HDpGs^{l}>Q=m&b$^vNgG7^>^gh*Z+bb>W9zWmrg?-_r^jWg|
z!jCUxWk?X*wJ&{ZHQ)2=8-JcK)^t3PY{|fIVA(QlUKzH4i>wR`J08_<|LlKA<olns
zRr@nC_!$_)E>>-Qab#y!`?}+bk6jrAx|T_5EPDRCKuEHYu_5&(8$-IQzeS~X05e1K
z#Wl=JOFS%InkUEAzx>C`z%W7SorIs)s>1#33~JBB)F&+TKV-RP!@mCyl4O^6u{3PB
zvx$Z4m08<nVar)d1;1)Cv^;&MGGY01ovmkQz0N6BTgq_Yg2_{d$hq?mSK7$EKh62(
zxb*iTh6F*WT7}yOV<%^PJ-z<6&CSz7F1H;SB2G=6CYum^XX_QS*p=_EOl2@&@ii+r
zn!x#d`WwwX&;Btv=tm_kX!|JC_uGoWz>wFr;9><QJHw0yMwtbZDuw#GgculZcv~d4
zcOK4@V3=@7D9gdtUijRU&@<2cB>ylrOxv=@A@sk>oc?w7e=3w$GaTqBlY0H*E`I_?
zecaa0ELMgUr}la*XsisA@<{o>&cIZ(TvQ`<XA3h!Nn)MUg<}Ue-E%oWXNWeWvH4ld
zK4Z?@(AZ(_P`Fujj)>e*#)fHo{<39c9&KS}U^wG-h>=0dsDatUtnARqdHHFJq!<`{
zGT*c?Gq|KNuxI2SYFT`Vg`pwUcSZq20|(CohS;9D1vZw<3=DgutsgQl7)l;stO890
z96BPsV6pvPa|VVPjVm8J2ng{pOwhNzA#s55){NX~vu+79%reYlW-*CA#K>^VLNxzQ
z6U!_~i-$Y%Sr`~<BEDPBIsRBtnbBe15wj~7crV=B#hHHjZ(X=J^MQSbD;68FT7g!!
z8?i_$G&RmY%*b%-vzfmFXfZj%jN=D5kMC7t$T-8mCvg7&XZq!@TYu_qU}IR`VeX)@
zSyhH%fsi?4qatX?&5qf^!331=4fr|P87$Jeqzt+?3ZMJBl&NPevxC`L4S@?cIF}1;
zU&+9b5CB%!|4_KE{1$^l?rh%GnpqA$ht*{m7#hSmkLzkMFwAIg+5GmD&Gz4a^Jd8~
zT)wb^F?puq!<H(M=U;c<VrEcFV`CAxHvgWq!K(0v%CL{KE1%Wv&t_m?SfI-Je9n87
z<TY#z43B0cPP?U_y4n5SWz$dm49=VVObq6D3Y|N;%IxXmoA!!N7#JLkC#%eP&?3XY
zkl}pDv#6FaLy^7VVaA>Y!LySKoYqS6GHm`Nz$b9WhI9Ge&7pgCu!1MFf2xQvs4bhx
z%%=K~fnk2#QR(0-4L_E7S%4D2Ym>PLE-V8z{#~s<9%JA$VButE_|aa$?31vq<#OSo
zTaVYX?Pq0R$N^1<9{W&XV^hp|;116NhT;hYLA5P1rM3*+7oIRCPb}~YILd6G9W2_A
zdFGqUIo;QRbJF-<nfwrC&~QD?+LLhzl*V*G4QhsGhUtf1?npCX;7Q-yY2wN&ab*rC
zJHx;G_hgqS@HhvGm_GP-{f)x}rEP58o}ceqatq9rSg)_aFjIt&fg!*>?BR|TYz+A_
zeGZ1H-0APXeQ5YzC_bGrV(w<1i13?-EDcnPWJDPl3>=;wvJ@75-kkEA;}aVL!?BE~
z_BHQy&DM**Q#WGlcq+j1YUQ4X3=9mJuf+TG7cnp>xc@!G$iPtKBGM<x&cNX0B67~1
zeZS<|4hDvVz@4q1pY+dRWLPli_Z#(qgJzT8*fTH~1b%7z+|RgtYnnI{LqlYa#r|L;
z28IGtO=-XXPYti1VPHsz)oeAMQOVB0u#7`%&b-29^#?8*FfbH2I<^-77BhIaoRQ(c
zD>+s9_WfL`80U(E4(bM-D{f?LY;Fva2XPDy3`jm$+`TBV66eX{h6<pg$f<F%xS@fe
z0_13Ml*7cih&)XE?X``$5{^8sj+c8ag8#48C^ZgQcjiFzHHEZ8+<En14*dM{_3ZKc
z^M5>;`S`Kz=lg%Yw$J-%{QIwLL;be>@%jvY7lalpP<3$hZfKguz^cp06~!d7g+(KS
zGk`LQ)|=P48@TVNIwWkRf@wrM%;0wwV?pC?7LGMk^$ijBpV=435c5Efk!dvzLKCO`
z0~E{)R2>q(ePw#URL&_7LA^wS)0+s1feB`i{hQZ|Gl=i-Za9!dY2E;tMr<}4pkU76
z446^7mtn_&SSFS*YL^Xo{Xa0l?C9Na=*?@^1FY|a6gChWH&iJ!2Pl}Mm_*Xz^%?XE
zrZY5NrA-xpJ(>q7m@fz|7@)dgV1l`68p8n94FeR+TUay(rfwLZU>>c4Y0_@RQfT3<
zf<Lg{X0KQa>S92z_DRi4fpj)NEqV~k$kN0dBoAU6nvvWCq0iMuh6YB^4hZ;eBS=>%
zh}_GK-rhXBUghS@>mP*$XIAEimVUqS^xGE6i?bNL-7?BLSh<zmoSYunJ3DQ7@Za&%
zp`>;RP6=;a(?cfPj=w9~x_kAjeJN>25)bxG6hA*v``4$>&o{4gSATTG``Gq(SN8wn
z&*d+kz3kSJlAOzb?uBO_kL6oq`%v~qdditi$DJ<QXI}pNeea3)db!p2v$tG}`u*z8
z_3!&n?V5W2nY`Wn{Asm$vo|%aHr{ZadG@xiak4X`X20@3Yvaot99sYJ-Tk@S^s|li
z|83IUzO-}yzTe{ff159zIAFKk?30WC+R*aK2TkvcjnWbproMP~Cvocgxz7&ANdKJd
zEM3W+_kZWs-;Yl0-1;bX@7(PFb=yOaiDg;;5&E=*w`L{3WJM`o$dMCTyJc?ValhTd
zTwS~T-R29w&(AjdVrcU0<i0EObM9?fxcYO-_sTccrSsR{F1oiR?Ck7oQKtFdOg5ah
zuDR3S+f%t|xv@de+1c0HJ}uh{Qt-af@b{Wc&z+v!SY5!tz;MsLm6?IzNq_|dg9G0n
zWG;D8`)d6^-^!e*GD*uR?$0jEt>&5IoxRrfs_*TWS$w%smtOYFIX!>6`>~w))7{zp
z(hvN3JaOgQ<xeLzuAOJ6+ka*6zA5f;a_wPJ^+9rx|5jNU7Fg}Ci&(9EJ$H5AmwT&~
zlb2<#>N~T$r=}>nZaMG0OlG#cb6@w_6@|;)lsm2bH%2bg`M6n;)z@Tc%MHJlX0Ba-
z{ga3Oe)eT6|IPnbT$z$Fb)o#7pWAGVe$@W{_w^IM<7aaj1_p&r@X&?^h}k|AnNDBs
zE&q4BK6>8lX}?Y+_J^{)Dc0M4GyU?d1Iu`2Z`f@=Yp4AAtla7z-7WW~y8nujv;6z|
zmsb1~_o(dK&y|BiU)NSHiNAli@Q-Y={)&mwze41HCRV2W+G6u*3h$juuhXASd>bQQ
zsngH1$2=-~Z(YuH^QRLVlcgh<{t<fd`h<5vw7#{@mF>SyY^_PSy|s>c%eCvj^!@I$
ziQPIJ^6&DYEj=|nXWD;h@2bo3kGyh{fq|j^323Zpf-`7*$#Up26|3I2o9RB?`SODt
z-?QjT*KOU(HlN?vd&l_e#BJB-nw90Gehr=WT>15x<)2QJ>GfYRf4jMSuhpl;;`77Y
zqq1{<RaT}{uUQ|of5GoHm)1X>X!yFe_R0RK?!V%%yT4k0u+e=1Z|sG*_>8^Pi<GZ#
ze>(Bnw(LswUtfdbQtu{D-8XIi)_uJ;^J;bPU)r1hHT9Ho?d{~LhPR{k=iZw(|3#f%
z{Dn--|Cxzay){dHmVXiti7($}70NvO8lQXpVbD0<&`s<`V5c9y6951AuL}=tWjO2I
z_g{0r1_^!MH=i3Cm#5kB>TbCrzDu)T=lp5q{{4FWJ$D(HtqnF@*t}n(-zHT#I#wQ3
zUNEzpZ8%jGFPFJ?ZTZ#Cy4rC0om1SeeX`DtKL0fI75lZQ+v}dTZu9=x^sO=U+|$r)
z+rKhLZ-3>Hy|&jkRQKusPxD?WC$oLa{k`i?!20;TYx}<Z{uOMn;r#Mn{ZZ3ihWu~Z
zW%)~*kAY#xr*udreSBfr;qA3N|M$PVK3DA4xu+BNU2}i6+<3#OZvk?dYu7)OeewFh
z%P*f!*e%P<Sn=<^SaD@al;6|PWyzH(XSTdC{Pf|d-0C-JPZrkQNuBy>b@G$Fg?mFl
zMNnyf>$ZuPB`b=j>7Ol=tX!S{{8R4cy?0Ze%-;P=i`o47iSxep*XyreTf5Ker<{bv
zhR?ev>aX}3WH<L~l-$jAPgh^w{^^9t^!l6p%O~!4JJbG4|Mv-Z_nUUs26uJ-f#x~~
zZ*@te%lZy)uVvUDzrXIb`-kc;r72m~*Tq-8Kk#eao)b~_8*;VRZ|cp7ia%|A;rD@!
zZwr_EUXJ@ed&6m`%O&yiW}ar>_IR1^)6UfX>Cf}54L&^R*~9K8cmCJv#dQg{4`grH
zx^G(l+W6Dlxzmq-I&nbj`Y)~g)5>eN*2UXz`{i_dcl)aozjpn3y>s8b)qOeF<76|}
z#>$;8zx6dnzEY##W}o)|D!YB)SnPitB)fCX)9t@*omOVf<9{lC<*d;s*3vz?`L}8`
z{y#e7U3q!hFRjxnZHjiRtS@F@V6chgVrO7Dv9N%Fp+RN{GuyY>=<|Qgu1v9>?*8rK
zbz8S%JUUx=V`i<jy14yQ<JY*j)H5bm7uVYDX=ncFd?WjEnNh*=t$WK7^zNH6`#aA1
z#VTv?;nj<;*AwF1*F8Jo#H`HxzOm8Q`g*<fwTaRT=D)U=|C;>z`&0kEy84xUF><G#
z7uCw_ynL?wsqBsCH{QLgDt+?yXNYX(+P#+YtCgqcuIkI#Yh&d9RMz6$(}}kapU5o^
z-oL>4c-TJ6e)FfbcK39yPRxz{!#hlZz9vHM)%8y&YSyjabj|%0yV)kM+9g}J+4lK_
z%AOLw{3l>u<m>R_wehpA-P+URBkF6t#&Fs9{NEh^CRE+u_tyDG^Q}|MKQAeNuu|^!
z<a=8fgMZeGF8}2beQH0;=eN0~DQ^z>WLM@{U9Y#Brv7XH_S<Hk!tSqoy3%gTg~_FJ
z*z>kGRwwlPN?T1AjMlHeoAY&j-`0Jn7VcwYj(5Jj)&Amk1_p)$41=(dPGqTr)W7I+
zwys-lv&D8AsPQPdVeV<=zftll*I$Zyeg3pE^KToYAiKFQ1NP0je8A2=mHGSU6DOA1
zT#CAVD*Ep4u=u4mMrV(I(%QXpzTbQ{y^Pwar4Lv`_s{abVKVi<bl!uydDE6!T{_m6
zJAdNZI;*dt%QCgr8>Owaw|M?5`$J6KBLA<U%PN=qMxT4iy=&g--!|9n+4AJv?AYX9
zN7qJv{~`Y;_1)Epm0JBW&zJuWi}!n48^`x`Vsh;hli$Om>Rop4_x4(z{qFx4*=(wf
zi%(s<zDTcs%e7xy?SkyL&2@YA+$inA4L6=U%>7>{{>t5aZ>syP3me}S-{yHS-8L+9
zZSK?PUEkO4^QufqnYu9im)-Ki7g*QcH_QI{@y@kR+^gc<>$tXO|6CX+e}8ItWpo{H
zUi|&(?)x<NFWSDH|LVkRx1#K~)!A=2|J3?zmEQf#*QrnTZj3v<e(OHli~YAV=Y5OJ
zNMQdaDS4yu@!KHTNWabdhj^PF($azSOqTus^lPD&vH#`Y7E}Ho-*Q@u`MFWqulaZM
zu1=hOys>oNs((i>TsePQ`F3*clNh<k_pg-mPbo7$ztrZJp0IG=JEJ1qejdFL`J3+h
zr?_vM==-{MwSI`aq{07-|IK4+=l>4dH=jMPp>FN|tf<%7KW}W?y63`yjk(u9Z8qC<
zDyn`_^zD87*7toW{%L#R{MXyd_MKX=^pD((SIW0*|2EZq-L}u`ub=eo=Ud-zxbQ2Y
zuGHu2^j{BmpFg#FkHz1M|0@_67#xRg#|jb&k3U>J>|B~QZ`t=kjhk_Ir<&)kdjHvB
zgWR)E7Y^_i%=o{>>QYqnGx-qrJihi<C;H>Aynp_>UZ?-e@?To{r<B)j{TU+{IsKDI
zJUD`;{%YL1Fj+eC>8{gSUu7kJ<*&|6xV&uP>d!9Wn)}V?ZOVM`?9QwAy>*)XTdrOI
z<Wzh2dF1QeI-7cZ{$^IP{|b|jEUzr)leC!oHs;^aoqPUmvMP#w6(5lOQ*Oqq)jcoy
znfufKmgJqD?|k~S_}5Ur;nD1bQ~(x#KF!{Kb!O_kQ>U-EKg;Z&c$Y`!c8I*?nWrgt
z)1U0n0TmJ}_gzShU9J4T);7fb->1d(k+PYW{ZA<;U;Awvc2n+q#M1coWv9L$IB~*m
z*{8ER=db)1@ZKco{+7njw&nAd?Uie6lz*A|;0BxC*-v}+omy#U^u>jLPyX+nHbsAz
z*%bZDElsNZzG{zG_Vsr2s}uK4t+$)T9~a`jtUh2L`?8%i{Ab#eOP~B-7b5ra_6aA~
z&o3iOQ!KB_pWpe9m6L(tLyG2*9oB*LbdQz%xSfCQ>cYxdtCUacsg}l^VmB+$V^+@1
zU}qDPy3sh>`R5667RUv)ee}FbpDeR8+Hl^!I#}-Karr+RtS&v9Kh-@dJNjqmGT*1S
z)0T(2xw*~Ty1Y6^d3xIP;>_K1{qELi^}i|8^Zy>X`u%}Fk3XHryEcD{`?~y7%E$Xx
z3!gr#{xmcy`r7VKXAYeB79cmX@99LwzeYw|uGzC~TWe(~n}2%soj(g~ivHwPE;&1l
z(tgW}TC1Ak`n7#$KZnTP+_vwq*74N-iFeNg|GbgM_cW!pPD(;E{_I_zoLhU=U7eV!
zmw)T^>*ZG`PXGM;>cneNv;Ch=Tx(}E)japf{@`Ch^KYIGvETM`!*Q+LjLY-hynJI4
zWIuglE1TT;pY2a4uKcs@=bPA{YwK3-w>-XVTb$jt*V{tf&wZVE`d4Xb$^-FLTg%q`
ze{@IgUu0<tIH$}w9CWYo@yb6Hbw$x~m6dD!cy88N8JOhuKb;v@zoP&DDyxt2`}c*o
z>plO}ICt7FU*_SE6^<vqeL8ci-R7^qjG}9&=C0~n6TS1J+qu*eXBXDw9A8?K^Ezy9
zM)u!JG1s>4@yY%ivTp&i^5p|s*RxBXh?igOyf*KDXzjASHnoBCBJH&MbDn?l(9e&0
zt-SrL{O-(~*$bU(m(=AjD}VN_oocV&zvbF8|JB0t_uhW|bmuks^ToAO8z)}7m8$*!
z$(!Pw{;%7A-7c=2y7u4en^C)Mr`fZy)h&}>|J2*q!05xti&55kPv^gEoY>gEu5sew
z7`e!2^&zsE&hwqK|9;$)S061aX|N$vevaR;$}DST`%Z_*-rg1`8@cS07W1>6drp<!
zU8S7;^G$U2+n+0CCNoce_H4s(E#_@@o3dYr?X!Aby0-7k?mKgstv~F)H_d<l)^FWE
z*{@DK{3jiho9<`I&p-A1&!>pF5?A+Y^ykdK9<F(R&hMGiY{O>ON65{zTkE%H-xTqm
zUk{&Hdh^#-E29s7yX~${^sZgPyLXZNx~H{uYx-+`ev6T<{JL$=sT=+e54c~yyR^>n
zwY)j=eE#J40A_20ga^_^2M#RjtzFJL=bYW|KW{?*?fm&*nN3mDyW!GDe!jfu$(rcO
znQOm)^0|AU@$Bgk*~&2a%(c94KA%nOpP2l&WZF&}BY)-DX1u<kym#ij4%>J2+||a5
z%byucf8Xd`JD*+eh5ovy%)hT*;4O%m_Ugp(<^HRc_4}VrytZGX|4rJe`F?lP-?Poz
zy49*^t^GV^{}SmcC-%PFl&QZw?mso(#k+Tb-&ggjH%(!&ukXuD&rO-Xf9L)%cR9J&
z<xzicJo|P0z*DQD%y;sy-Z%boy8gA(&f<3s_tu5+-<JO4t+cteKZKt-eib;Mumld)
zX)ls`)D|_*Z*H{O{B_^q6T3py-E_Vl*=^aA^6<cw11A#o`gOie1Xc9R>}F<LFY|@4
zxAEm9%%8t0uAXztLfMGzpLRdKy0fM<ZtiN~w~sF`e>zkB&DEVXj{2{oWF>dZVzxKG
z{!44O?v~T~4?7yo)3b9|_VeuFWY;_EzP<g`i35#)zujGGbt&ri)qMF?%JKU(^-Fe6
zd%yK{)V=4wcW0L_+4}9<+1S!2@7De4yI1z}-JI9==bpCt6l}5KLPPrb{8h@^w=aKn
z;^neG&t`yghsUBJKX@l!Q?mQ8(cbT}VUh;E!KF_O`av;ar>tzf;rg<(yLC)9FuzH@
z{d(`lwXgYB|9Q2~#^?h_i)5wE>+NUre%ovc_*-)A*NFq0x8+8crsOQ#eR`?Yr_<|C
z^WPSaw+(Zz`~56Nw(|44DA~-lf1iQ+)7RJE3vqw<?$q+)y;JVbxqkWtpN-wL_l?Kf
zKb<)6Ql`(l^ht%yn+;ysxpCiqNFS^HyRGuupAh+-EBj=Q?XzZNV3?=YI;iJ=iOdLn
zhwuM>(ERF*jjwf&O=R-(O=q6YkcoIP`Swz)PoE;@W~{9bl>b>-JM-GF(v($MR#)8r
z?XmlmS^DVf(mfv8Z?EnQcfXb^9l0{&^;2ePiOlM`=eC@-&P`yS6t^w+&GR(P{cOkI
zZP|DFs-(rX_R_U|F|U=&r%yD$V$T2k)rtQVUjt-+-d}%O`Te_7_U8T1KP_AP`ovtb
zgt$}lWo}2+702m6_1(Q+`#!_kt;dglI$Ku%-C{$))dT0xZhKq8Kj+o=14i~2=l54?
z%HP=hTz#0#r9GVg?_|9e|JSWHo9<0@-&S0ia$w68cQ(KMTesO>OMk^}%hNMO{hRUJ
zSIS?xt?o~8pJx6w)NZxko|sqc*KVB_w_n#+^KIQ9ds$GMb>616-(Q_LP|xRkIYj=}
z$r$@>se11Z9$#)-_TXt@yK7YT+pkM)KD~<BcUdp{=i0gz@v|C#S3X#oxpwdD)4R)J
zPHjJ19xt;>`F!4~{j$%qf0|mn|H@bKW3%|xiR<rAvENnqz4T|+zF(hazXGL%{C(^C
za<YHEiqU(To*RAI|Df4){x=0{>Thf*D-Ny`y?1Ad{G8dhKWWL={Mcjl>0$fR(0TUO
zKZeJ^Ab5P|@r8T;d@D1mb^6zof1OzVbmH46xs|VLr6q5-Eh{sau3ZkAftx1&bmFyJ
zHNo*ODl4CSNUU74{^`W0k(DV?r<9%T?0m0IjJKZ>ezR(Q-<Mw}W>jjuKVY|-r$^_j
z`YztP%=-ObQ@72Z=3e!8ZJp)y@Rjx#*Y1^(u)He&YUjUwbL%7K{&@55eYpF)`LBQ9
zxs|E;{y=x|&#>w})ADB@&;Ds%wRZn}ztbmHKQoxV{GHy@%RfK){%orI_q4Y3NwxlK
z``2r0|4;5;rTqW%=ldb<b>FYvesyBowC_KkZL6{0|Kq_nP*rvAH2*4P`MQXI0hV)5
z?YB5Te`-9F{Js_Ww>BTWKh&!q@U&OqjeS4YSY2K}{nd$W^U5QZeqU>~X?|{h^6Y8O
zl}`%R^qm1sn$@i6+j4E$<@TpD_g$MFc}jV$ozZmjwYg81FWY);+59l|IJx>5*~(JA
z|IbfctFByPWso&*nXKEioqICvs{-See$@w!i2eKg>BQ4@Hk+=wv(0OIyV2%S`@F4n
zy8S*+!@r#1&ia*F`pEtC=TBPlwaaZT-8%p7UuEf&!@)nFR>qySXPN#h|I1c8qYqL!
zYi(mrm*29P>Moam+Wfiu_NTKy|4Vyfe{KHt{<n|)?N;^KRLAYRylra@zfE;vu<Xx&
z-(TN%T5DS$w$Ez2`O}H%Unf34e=7WQwf?F2Rr2?))fX}{FwE1zTCer}XMW!1dkM6(
z4t?nzXf0cQQWlq`g|P)l9>g{@FeZ8J9SwK?SXde>==-GRrI%zV7#f&B7vGV!`{&Kx
z`jVKZrSJEqADi|>KH&><j-*nf?rGlxYAv@sg?Y?M_U0A^^E_F!$GnocH@3?&e3zKY
z+p7E3o~M18_L}D^X6nVM81D4+h*7%rCrahUsjan3CibSMBzlL0<(y8?oFQ4Qa{3d$
zr~8>Rb^k5W>um13U%D8PZj!#_?_YO2|8wno_y4|GoHW1ki;bOE=E=LJ%nu(=3H<x(
z)V{sWGqdj>tFpRwCM1Gssi0E->DjfWfBn96<?Z3EiTP)EFX;N@(uZ|x^K4I^dA98g
zZ~x3QHJ`41`T8h)#!P8(@o5g3Ehip-N{jd1FKoNGe{p~LmgsYfKHp#TIsM|#=M5G+
z**cE7u6+GU!`S$9^U6m5=<63#zioXln!Vs+xChL>sn&&Gzj#knua&8NaemV07kh-~
zZeQ>@ZB3~0wO8&drRQy5XE|+`Vj90qK7Y=Z^_9ttoW4?upSJC}86NJiW?r4{rzQQ1
z`#;W8eE`#VRdCJKhWm06zEc#GR;}8w?)2)84k4G-#^x*PHCPsUD!bg9X8!vXS4YF<
z>rR<A@+)etXnoZY>~vZ5Qsb+RrJIO?(kuJ)SpILqf~*~Vsd)ka12~)}yLIf*&Hr{)
zRDd&mee0zPyMUi7LcMP7Udr~`YEs?dOBuXAf6TJfIHtID*y!bd3w_tJ{Qllmc51cX
zvn=1cJfFO$dTVxS!rDvk<6d5q3)}zsR+>?<|Fv@0-ZQVZr?e^rNGX2WvFB#^<@YY<
zUp#)1{ONtm_L*nyw49so`g}g~qI6z?-fpA+_4`tSbL(esQc8^teZTLGsAl=vHd7rG
z-RoZ*<8R_$zBTLJbuSg6P8X$#9+=c--+c!jOKbg(yE9ob^4rv_C2z7Xo;eWPe~pJ_
z{^>Q6e1DFrhb;Pa(K_VOytDE_oyV`ot{3uOx345haoe?$xd9!#Q`f%_;{3%}=f6*9
znNaQh+s`v1LNxv!wt6wCI=@|S<xhbU&y&7d8%ygty>fO~G1a=Z|BrmTy7Brx_SjEO
z-Ci=kUrA2ou$vvi*|RX^sqfv*p?|MrU8+%d_(rBvE$!Kp_~q;KZ4aK2IlHF$_iN=d
zXM9svzTUJfO<~bl2Nmmv2aXCe7Hb{6vrgy?o4}u1o#R#t6%y|SD%}O&Oe%XL#JpRD
zgQcAD;NctLci3x>D!!Ri>+nHOp+a3iLfKk7|J0|6h3h;&H@0jp)@|E5&91V)cIT5P
zm1$}3B9r*<On#G)_Ux@@g0(qwB5#V|9Yz*@rh_t}oX^UpCYUuyJdb2z>Guh+n8+@2
zP%rbip5X@XCWiuX0h^xMqqP^pWe({XHaz(2@S#w_f|2EW#c%O9x$=_FS8VB56&Ad`
zRlQl*@ytgS<NrtY?U{eR*yh}s?>CvPcQy+brd__bLDAsYS%(5+fjf*W-<c17ysUMw
z(`;&oI*-Dm$2Q&}PV-db!dP}Mk=>mlU*>5n@JCJHqxX&Qk9IFsS8(h;!qD`c`QY)!
z2Py(*!gq$xusQK<V%a*)w~zO6c1$T=b5*5fzQzN8p{uvduLuMxIGl30B(I<qnH8%)
zcfR_eewKdc1zRMP-g7;lv(dZehU&kjl1EcIeqPpdw`;XKw)^1QsMzP~UIM~jZ=3Th
zX-efaQ0>szTFdC$xL^+FG8Lg8^JT&%oSzi>UJHLyr~a(>!-s#WOMXkdXY<y(cFJF5
z0Yl)0eTp_|e`T^avp0R?eHi$<YDq3vi+#G1L!C;E)k4p1#ZTMR-U`kCJ$Hurq1*rG
zxXI7@6tFr_DkbgN-Ix6j&0gQlu4-;}2xd3_oDiF}Aa8>t$LqV<Vh3d%J}3yB37ndc
z7tWc++);RMFO%YX?>%cc$~>*hIvZn!SekY>JV<<_{jPc6BZ0C`Mwa*NP4^j^${7#J
z-9K^U+r+|koV6J)bHAk&D6P;tlar@^mZj3*n9S*0C)T{loNPH|YRFx02a`Q)N4_~b
zw6HgJ6o#n!<b`uSvvv5eKf%_Hq2;IU9_J^rrHRv9HhS~CnWP|)21yI~PVpc2Cr!6u
zb$Jt~;H2GnKw=}O`LEAiI`YEyUM2EU4`0;Gkyv{5!{4yVomFqw>xHt*aLNm*N^Nx6
z`z`$N={1+KZj=R{&gyh?=xODa?fB`v=kM8jI>C}_%0B2e)lXp)J2+>$(#8PgqPMZS
zZto%$AFjD$eUX)EZuXHc_RpmhvF7_v+n7#^uVCh$w)%eGPc5x0`Nz|^6}8GN&s91;
zae6;ZF|g0Y^w^4H5>Ji)c52<uGiu)~Hg64=@$B21_j%=a7#^2OlLsk3U#V!qzd5Qi
z(sseucdlP9_U^sibvJLpXR|loI==nPI2L8wJiq^}LrXZrLfxd(M`mPj=3c%s{eqaL
zV!f+ondSLP$1jm*vgFGiX|65zMb|EID5~_)^Tn+8fx9>EvOnT~MS10G{pjm5Uc4=D
z8})Bq|GKO+_nNqQVEYkwkB~b>b3Pw>p*`cO<D0v|QSWEHSS-DJujuZ(4$pIc{Orh>
z-><kPRK0Fd)Cb|KJy&g;<{!++n)rro5sPZawcGVKBR8CryOD5z!@eWGA~&sD(P5;L
z=lrNvMJvy;%yZ!rr|s&t-#cebm@&U<TF9;aAALoym0I51|1Ey%&Vxarfr6qQI*v?r
zy^bLzMQ<iKoovnfUj0tk)No?ev@e1`Cvz?`toD9q{9aIXQr)6^XLzT0OfU-Qabf9P
z^ZAymtLAY_{V6do?y3lRsz@XkEVOIZ+_|ANr%)hVxlp;YE4r^ZPNJ4|vsK65YOmL^
z!nGyI+qWlemwvH_*Ir)m?PtT5t*?&whj7;|nzeCP`$yvni??^~EwKCR+rM>bEz|Zb
z{Tb1>#BD)Qb*|EJi`?caLF<pa*uz@(;Q8b0KMH@9UGq-a!R1=oKEb`|-nsQ3X5Vyw
zdnfSf@4qMc9?sHjS#jg3#dB7{w5Rn<o1%V|-`LH+o<Y9;1N(*DOU<3O_fKv9oY<DP
z|A$_kT~EIA+I_dz2o(IeG40mB2gROKC-_gnQUQT$rL&qpSJc&}-oLk|^~t{8uO(|N
zUuWD~{eGn+hy3}ZS9VNCj^~ASs+O+{==^ni{b7ktxz-)KpWWqajfk&IvQH`95~|AP
zq#lw~B=7x>P2QuU%m4E~p67qcbq${H-(m7OQ}fhb;qECFXHuR`o*A0gU4Q1xogEgo
z1=+&Jvm?{x?6!$_gwJZUxXIXJ$-z<_qB`StXwyxGre=o%c7Z#*EarMaoIMlgPF=yV
zRp58m?+xB|ksW(BrIahBm`19LX(z5-+OM}+zjl4Zb58SRVn@Q<t!K=%to?R>`P#?L
zn>n%-x*zZ<R0wc9Tj6D}eKpHwMi%zQ2YLz>EF8~dwGQryRJEA3vUkOgEfBNc&Fz>g
zxzuW-ptWF?c&&(hqP_Qz%HKuG(dUKkW$@eN+e%nW`{jRZjk~*8B7X`8_emw}M#oJ}
zxVKp7Oug5lM^~NRXumtGr}<&C%GJ&ZqGh|EE&jn_FBsUAvDJ3MubH+J6qHtZ<;Dk?
zvMS9qHuU2uvtG?2cri)k(rx{YuE5}#pPNn{z4z6uuvg}su2AQl3G+KN97@jY^ZR>7
zjzd83>-^2@*ncl~_))BOtn*>9^=byei>fMY9wA3&oth&aqW5jx_Ri1WeoylF#p}KJ
z^6u+wufKYTJ^b=+>%pq{Nxl|)s&hBoo4(@6lJ{}aYrd;G_<Vb}^<bIa`?&5%?v3mB
ze1CWK-I31wk;|+EtGD0afHalN?ez^;-~aO_?d$CMxz&vsN8YzoKd^q7`%FRL$J_$`
z8udMAQ_LCy_6xsD{A&F$SIt<S)#<0-4))rH;y}SH#cxx8%`M;u>2UkwVp*CrQOIsp
zeE8Mf`qi$dVpk`wy>)l%-`rDCTltw6t_|J2*iZFU{(ipX15sOjw=TC9O^ThmE9~vM
zs~f^{gLCVDw0QZvOFpUgp|NGf50m$kEuOyusr$QM=SS4mIo2B^II%UlAZb1<b?(-!
zThkPN#C(&q0X4zSSOqTs<!K|i!h&<+iO9+qF8_rcUOYeY_ouJG<G-sFK?Czw*EFor
z6HZ}G&&^#cY4DG=re=Ah;)6A7*P1dPOrNY}IJ5Y-%+XC(ww7Ls7dp?@leIioOj=RM
z^7O{_UK`h6Q`pFA{n7Q!UGpsxYTxqA%c`~0QWLgsfB0N^(NBp(=iS>sOD_1)dC1sd
zadz<ac^2k1Y8^jSge*_)T)(ez?hkF1Z;9&Xrfxo2Zd9yvF6Y+%2uX?LKJ^(t)xYt6
zHwL$1M9l+zl_pM}^ZS)V*&{|3o;OFDZ|q(UwoSaOnmcVP|8Co!`TgZ4^3Fegz5o?n
zR{6*LuL%C(;al=ef2E?=FJ>22@3pU&e(q%YrxKX^jE#%MLsG*niLukgujt+C182Uh
zljpP-vg>)MeI?!CtB#~Xl9xbW)^8>yP@^P0Z^M=NkRz5V_mn4|@SOMJuA`Dy6|^vB
z>0}a7;OdXMuAKYL;R3W3qOFxA(&;GFIp@ip&f^<|h5e3*mhQe^Jbwje=a>K9?6YRf
ztlXey8eo3n%$ePnrGs-f-`kL*UFM`xG%Y!P?U8*|9G&7Dguf@gpLZ!~#*N)~Z@gVQ
zV`}5wdu{XkJDw$T*vrrT(V6A=eD_D;ugrgV()QiZ1XZS&7y@Hw+`JPvOEROw@VL=z
z4N+Z1A<OJvb0fNraH+^$NQyZkaaUro=w>5>)n;e37X381aNPJsva!HI(HDDClAgOX
zK22S+BFFO2{7To>s@OFx9#3@qzvO8OJ@p7l?#b#2d{-6L*MhaEJrNzn5dYzamR8Lv
zhXl(%Lfy&_-I?~gd<vbC%=6<`=E0(`E0V=GUE%;GzaKScf|5dK+`KdIt7DzPF`4WW
zG1F~xL2ZHUYpOUq+O9X;sN?APpdet_x2omjTdjk8*g5X8vixV__<Y+Tfk#z)Vg^&{
z+QXOZ<ojw(%Q>?hbAr<x-&DrjxZT)&X?Ej=bHeB1N^UoLH?lV-^gTLsuPo+A9>YP$
z7_K|5-i_|F3KHLkO?`0i%)$jq7g=^y{@TA~Vd<kc>Tfom{OSEIb#JDv_nE5d2dA$&
zK9=!fOniNDqH6?mWJ_y`pbc6XE-qlh#PZp5YQnzBE=ufcTlYOu`8IXuDLId?qC!#X
zvu<>5?)xCDs^Pfh;J&#0|6kXo%(dNca9`ryztiWkzFy{_QmiI4#ii-)i7Yvx4GSVv
zq}<Q#t)6W=;oXrS^`xlzE0h#Y{c&OZBp7<rJY?CbnWhgGGYH<)es?;Pi{+`$j}!eY
z|J0Yyo$A`*a<1sj>aH^frj|X*QU2r7xn%x|>-!e=cL;F?vHdy8a&g99!>=>He{xZo
z_~EJQ>N91xlrFjyy<1&w#BBWe=Leg@YjyFHwwA8>x=$thb;Rph&uiB<o^^;|zB&7B
z8N<Qm9_d?dh0eFj?tHj;KzC8|4%R&JyhiIqxmvXh=Kp=)Ptz6hU9xpYU=h>rRnN1k
z4+u*ys%~DOmiEl$+O%)#GiEABM&FW8Ow04iF9^7Hg~w%!WJe0S0A@(mNN#`Dzb2G3
zFDQI%hs)y()-R%EO5gO7-=FhT+VJ_&35VCh`pfezF7Nno==N^AVk29DS9&`ODvpa^
zw%%~G{G9)aBmJv|v@S-8g?Dx<J8NzHa45Q3H0fTevi|BL4lmw^K6?AiJ><~`fBEpv
zYx^0K#E)3)dEEUeUuNRsbH{`0yRzr^bN+f|tBAcTt2EKWq<ZSj+bNJyjmZDOkYSC;
z?RjgKC!h5>>eu0NPRr+g-YV8d%~u`nY!FBanIVvz$dh!$KPhaX@Xrqu>!z*wnZ+9T
zsDA&HeGebDGrK(h_wMYKuZz~#cXZsV_*67ecq#u~H<$c9Da+XMew@}?^h5igN#XPQ
zdG1&K-@TF_6L9iy-;v|fHC$dg=Wm(3s{g;_5sP0;om{HNEzj>=FJ{Ah<ZL|qBjb9;
zy}z$i^#s0amRQ`q;P&}==E%9L8`iW<JMcVt4NGm$UyhnT|LPB^ulg!k@bB*Q&_{Q|
z|1oDz-L<YSs{8e2^`Eu3cJ=9PUSGRDg1L8Jq??ZOBRiFSuVogqC)dn!@J|Zcf56(s
zSWW!bt6+~B?#^(-V~#zAUfqdFVRvVQYNw?x=r{W!c(I0O;b*^+drjwNZwxydv08p<
zUd6p#&mvy6&9MEj$9BWTeb0K2`rc_g66|4;*z@?DVU@w^kMmV;MxNZfq@ZZw`dbq%
z8d@3+`I35qqj-cjzdE)i%21oRcFRI=(Kokz(Py!edp%pNnzl-L{9ScBYY~fJU}%<c
zla|sVmW!{>@V=7oYTm)tDe9qfT%!BVX)W(H!i$_vw)(|PGJbgSeEaN{KeyI+s1!M`
zOh0K@t-kqR@wKlB_JV;8FCw0?edRyuILG~wuFAcm64URV*7CNSD<JBnSMn&}T#LHB
ze4dbI=KE<<YhHuf9Hs^zZ?8~N-BP}O_QZmk@3#{6>Ywa;_~G4F$9vO7g7m&zW%jVx
zSDkCoVL0dBUbBez-c#17)qlTr;7sm|<V)r2r+xM-u{*gte0LbzHLbtzrslm(Of%k_
zXnWCY^2}-@>-jo)DQS5zHs3p3&$*Z%lXxGw=-7mGPexPW*dlHr{=^>HC?4VDlH@Q@
z%@Da26gtXncC#-0-2CEC@rxSJV9us%t8!Pp%?}P+vS#(GyVLh7JzaP8)+s4PowZT?
zN4BPWUVUZXDslC!iq;I9TjA3AERU`|b=boX(j?O=(S6Q|Ct~%smD}vstO+f?-;TA|
z2MMOlu4z1O9`bGP4t3*AZ?spxym5We%*NevYb81CrhCM*|9d2?75MjstXARqXZ$OV
zJbt|{yi+|q-fFEtboMSkjU#QRu9vT5*}89m5VNoT3YYtRd$kIAk{rSw*zmWg^$MKb
z5ti21z3JKG)#*me-*Z5w&bFMGtF|j;n}F|`GoCigCadN$Mortb?Hq&eBgqAUZ+R~0
zG=Yl#RV>B3y$qzGDpm>E^r(xuZ8dgy*yG&O7-^U`RTwl*XS{xSAzS%Fo_BMO%{d>N
zbZ)NiKhvoXp3HUFQTfWmOWB3>g0V&O??Sfz(>I@lUwVsUY{fVsmi^ccNsc_WChLX=
zbqW@BQK}XfmkE7rVRW(KaM{DnA;;LXGhB7X_th+)?U@eFXE^kQxzSJ}dC8_rO9U4&
zy^x%9@UKPl@rCOxR-XN-9-1T-Yn07lA9!HC%BrpTD-;(wG)!q+V($>L>B_D+D|`PI
zdCqg*VV@_ga7wZ~7E!kJoM~pu3WcJD>+?>`obl2B3XkyhpPfQSTvqa$vIRXoCzSwc
z%*<kPv=sL7RQX_U`F71Qbv>m*xz0xIUQjr&PUNmF)k|06-}_qk5O_o-%l+Ml8DERn
zoR#CaW!~bx_VvVVngajkbTa&$_+jV7P?^r{6Myh49P3NqF;<t4jLf{m5$O2DX}i4J
zqpsa4+XNPyfEzde58Y4OTkV@)AdvAYAx&<LH}4f*Gv>s-)n}D<FmuSUG+C|^I`dZR
zU=G7UM}-~WaH?GG_2B{6)CYI#6t*b_wzC|YG2=o@%L;}nw)6t~a}T5~p6^~}_k3sh
z$s9%SkcxkOu-BJ_9?NeD&vt>wRK9*(QH`e|Ap>bh9Fv$a^>&Mzii`33vlh+Y)7Gt(
zjF~Apqf>9DE=%Ceq93;wE^^w-r_;_V+}9%C8PuzBTw>`fhnqz=u2ubt6m0=HX~QR%
z>1V{8Fh@U?CVD){Wu2xUz%F(m+-YAI*L)*|BP}gz@<OVU@9UphZ*x)g97~<<Yi;*M
zQpq97J)dTN3*2@$g)d##CQ>xbY<qfb{T+eiK2r`uxsO^xxAd9**Go8`d#k-5ZIQRv
z#E8x#%uzkv5{spiw<LwJrCn`{bTyGb`{J?WmyMEh*E2XpADPx^cv0xqvN_^+#iSp)
zC#ed}FYmk9Y<SGpKjNg<Jk{38+_g(fPda<-X)yejh^M68C!PJ(dCgUvV<d|`-W-u|
zpPT$8A?)#d-+6PV+IVxRi~o9c-GgPKfdRq#!F@y6#Vbx<d0jZY1lDf<ziD#<tdaEo
z_oPx+*C~pH(n99RJyAV|@4Ysk5>uXd<-Oq92{A8@T=ig?)1m$9+mh#Yfx<$c-=623
zdPL);x{_AEfZ#<_L#0Ja<_G=Pi4xlUzrgoj2kT1P8u459wdpyJX1x$S7SVJhN#&Hm
z>WvadcE}WeDSRoD61uIY<Hey3rU8LYAB`jJrp-~@wWp`!*qgobVsXAxJW|z)BDsU5
zwU#|Q+<I?sOKeio^q!*%ZIaCr;z<&Rbz0ZBB~6$r*}UeSHM^bL?}NvGGW^<+)AaeF
zgoS)}<LB>50jp0(tX_C!bIOOPMJntWZ`PF7ew+1k%7>rE)%*5T>jpM4xh((eUh}?s
z$*Z^>=WN~Vh0-TV99r`%mfKJ)_VtU$POK?kUv!Ho?7IK2{mlPg`d_|m(viQI>N4B^
zcV}7MHK`wy=L^cl`!3q^!oM!<d}Wqh%!|9MH&mD2P(8iARbuINr=Ew|hR1H$oX`s6
zj6A!(Va+b>1MV+_J{Xqi{?gbhHD~@_u{qOYxX(S;Z;aYo&6PE^uKrQy+swJ9e<i||
z3)O|<k4or*t7>MC8rijX+U=^A#jpnEopOI)$J`mOxRF0u=7<ESLzZ^6H*#xI7~8K5
zXL-T1#|5n3yFAx@u}3nyR3dxoE!nI^%JM=xme#u5zI4y`P@wU|P)(uiImurVdYC<W
zzUu^To|Nu+FJyw=%_hURBNF);hCXLjNpH?Nx`yY=#Wp*oS^bJ7bu4rLOU<ok&;H6G
zFmdb4{WDskp2vdPbMKd~du*-W$Fs%mW6>;&&yQQh@7?=4^NgiyrGkv9aHQ%4i`O#B
zmTZPvj~!wxxWcCGk>6zX`}4{WhZ0sTkLfbUB-Y0@N$kIn9CK)mo5JeP%?><Ym<pfy
ze)xDT?#svK{cO+u&6_@}U-&t>aK+XAzA@Ukd*D{kQKyA#CV~c?W*Rex-w!qxu$y=E
zN-axA|J^l0-tS@-3Vq!k-)<;m%T-wJn|ws``l}UQJS~1H#|u7fe3JJe5Ii9ibM5Q$
z&3dn{hktv!bHdJVY12hCKh8LLM%{Sz9kKs2X6`I3ta@-wEzNAR-`biSeS!5R%!Qkn
zIf@~pLjU8REYWo+Xcuapx%;ZbncnV@LoSb&xapiz2bK7FuhT8$|MwaH@SSr|*WpaT
zbP@27)3UnHXTEop&MQdHI=}T*2D`EG^7H?GZz-)Q5JR4>=+w0JZg`-l%4XcZ!f-}q
zyO%+J80WPPHx;>({tHV4m9Br)p2N=!F0c#d96aGu=DAVm+vb+}+x5*iebsr``|ZHz
zYt4<p`&-_2NA~yW9FjXBAU4VM19-4~#;wgRsyn<p51vuZ;z@fK%K6Mz>);;|ff{xJ
zLlpzI<Q`5=UyqJE*Vh-=@j&X$Lbl1b=G<Q?ln1h=PH7QK;H&R<FYo_8&lEHWwW(i7
zcl|7;iDzbdT$p0Ac8!pWOZUWxz9YU8i*2q;2&b9OlW!Gx>b$eO(|Ds0=l5MpJUX)<
zFceJmP}!yQv$KQA<@lS|SI)m_WDpG8zc=z!!haEt`g1LZI|bIIh$<-UYB{poV^6Ok
zTXC;pV%X!KfgFK$Q>v$12&+#lSnu66#Ug*d{>eSjStV7VHlo}~C1`VS6X*5&d(8}t
zKX*tqt5<)&wZJmH<lKvzT`g*r-)GhT<$8YjfaIJfcURjszdx5UT}0dQwolr-lfRxl
zR|Snv-Ca}nd2_D5Krd`$N`{4Lzwo=0Kdm3ih3yx<muB=i(6kLSAoa`PdGCumwV>(6
zJJ-$^*!`1D|1jI4Il5uSLp{x)L+)Q+ud4c<y53`Fw&|MC-MhE#_l;crEm2|1)~xa?
zD_#D+y`Bhe2%25rnl(G?_u*4frt0$EW{v$$0<%n<o@~0ZH49`w+WOGXAXj3a7!c}o
zS#(n?{+B<b1vmYt>~7fX;LfeTPJ(6!15c?xT+x*B)TicQe`Cd)#SS59e#V==OssE`
z2)8wvn0c|}X{X*td&VQ1)+>B`ZtmFgeSMq6QgbJs%}kqi`AoQawA@hpar}Yf<+BbR
z4?o|~pFTObJa2ws#I#-8{C;^qy4eu;HpIo8)BUVV*iw%*g`nDyPr>k><N{Ai=8`o0
zMb5p4HEbH!xXv^5uJesOee+3?+0Qjo=lI$!PM`cf<(bQzn_KD=%?*yp_#1roe<S@a
z{aMAFneR`_KhzLU`lGJ$Pq0(rn8iDp#q67{8d|>T-0ZPa`;(e<(PV1>J=?Y;j4C`m
zg#yWQE+x&F5h|W`wJGwgvwY&0kA2UQIZ(ShZ{vfUr+i`W@R}BN-TS#P>mScWx6bg2
za7-|IU<R@)L^-gv#a{p1=DOa4ll+yJMX?6<opOKAmiFxPL-#}dE&Rzp(tZTbRtq{m
ziBV}8i{R32`U;C!3<K+*v3dXfsVp<Kx~JHKN3pPQ*_`Hz7^f-hXI<Vu>-4BHTK%!}
z%4QW0&^%kkm0fa~kV!Vf*UuxO|8clKl}i@sJnT`D7`9hJ`CVIaF0=LhiWUv|Q||BO
zoRuEd^_VIB_o-)FKd0jSzGV)=#>V{Dma@HKn>n+x{8#?H+iT2qZh!K$(BhB$32NCq
z2Q?-@wZZRqp(nlW?S1B3`670$x17@>)}D?0&|or8yV?~g`C>6|t&54gGjuxtZp3Q&
zgtbQTZ>Hp$&vedg05=Zx&+?cYnUNeR-SD)zAjEM~ky@PVqwOAl%1esmK^>}pAsu>}
zu1Tyy{27LNNj-Tz7rP=QXM{?piC(OcfV8MOE^w8^8Eq_9syD4!;l28y{<Eh~UzNUV
z$yfX%tFqyO`%X>%$g>@vv!AVIp7mL1mh!BA>uLH?OX7ZS4AT=hdQnv>u<3}Yht6S%
z>xn(8ufF>H5a`4<&`{|Onm4=r3p8)0&3sz?iN}wL8p_wFR)^hFdDgS+f@;L-qT{c^
zsuS2+H*D29laqJ;*BX0?<UZ4sb*JZ<%{(009UZop#pQ6eLykR*%Z;gzi|iL4F_>Au
z@JNE${<(8Sf8FS_yHKgvVYx(aO{fHDr9e}}UA;B$HiX?ZFSLt0_OpWPIkR|LYdBNj
z3q4JtLs0^^r$h==%ZYz0dr<T^O<~RFmd)aK%N_(JgwIorF3>Cx*JG8-Jk+{3I<$#B
zd<Bd7&&Gn7jI~E+uo+GlIT*Dyc`eVHP=VFATd&GqTXnnrv*4kh1_gHC9`o!o{2R|x
zxY@g_Wy5*3=lVCNe_i%f$ME&rM*V2^-eL{bmbLEg;JQX^lIxDIIw$)Mo{9D1Ns~Ky
zu50E@|5YrXPir0gGu>fEsYA<z0}^V-W>^uhQ0};-PnPixFV#=CR9&5ZbP7#TxRnsU
zetUS)^fjB=&2E^l0XIGGigYaT+p*}*=2`7Wd_C?o+1Yg%ddVjFEDkI7n_R}Z`+jGo
za-OqNe{7J9%gp&24t9&Qez$r3PXE@>&*T!47(4y42*)MPa+9@dj;XJ6dL*TywOlsY
zDd}D2rl_BH-XGZ`C_3-Vss%0cH70%${(8&&i(sIV<EaMwnF>;y&6nAIz9%a9q;J{$
zP?^p;(D=i}Ow0LGW&|IK`ne&jXRFt<g~G8)_dceCwW^%E_1=5aw!W?Rrl;h}X7ANM
zdCO{>BuBPF_2!#=3U{jFnWS%(JrvuaeCyeM_JYs%*RNzzf6ub$d6vSbopZm%1hHga
z?b~X!A<S`2o_JV!#OgfxbM73^4<Gn>qu;nfCf#7+*#|ylo)ZPG962-R#H~yJSd5ER
zvb}$U)=0d(Z>5)=#in$N$7K^U$MkusUOZ{<f|3kAr{0-mzbQ<0$4VDfA*qG3$pN$c
zllU~7wq_lVl8jib5VoCrwe_0N?flP`TRv~(fBx8X&cV5rb3fnoVkwK0k<6%7`umn`
zZe~oy!?&^XEoaJclunNUwdh{T-gspFTs`E`@lejG8M@u8j~wl`U;J|QoBEXFGs+)+
z@RvW|XJ~Zcm-)@eh5gqm#rfX<NQzONSD<$9w7Ow?NNUn_l?7po3s+oypb+x?4(E!z
z|BP$i{jZdG_W1t1hMzx{yG_0E)#BWP`&DbayPC1*%1#%hi*G{H@+Yg7U*~D*Pyg%x
z^|kizZ+xkDcWs>4XPQ2@d$#q%rcV>5avxd6&s=z%z2V0Vt&YIEHajmyYUiI@VBX=o
z)uCpCREM;fQxBJLl1`6f&kxTtS|v*B?LaG@(ykqo0<Cy5+I%YaqxP9Iz1_<lcPy|;
zdFr84q_)fO7^rsm*u8T0yilzpJYq|{^Bf-~_Iz9<cKC<{WY8@kEcb=-qMscL`=Lvs
zF8q{Ikh*+)eyID*nKRJ`^|aMu0^~MDwH>MTsJU+G#(xYn*cN&AV!EeX+6ILq%P0I0
z6I!3t(=73LirC>JYjzo~4m)$oK^|;{gwyl6FZQs`HBVkUYh#$b*WC|$O3!Y*!fROl
zpt3q)aqU^@^)qJdi#hR%Pi3CdBF<zPP?s}O*5S~BHP4=HR*|m_6<8$O$?PE^@mS%Q
z#nPh&hO6_=tP<U9birNvS4W0j+l5MXt9-}jXCqcCN33qV!q>X`Z7t)fpxJ^Uf`Y0Y
zVd;4R|0h@*);^tg)zo8+Lz3mMh$-1UnyFK-bnaYH^Ci@=Llu<4Smqe&2z9!IFS)Y$
z$&9_<BlqvMK7cgBw^R6X_`Art?x0aVSNZA1y@pHI{IN0=pW44qi^K5A$u(SFOP1`7
z&f2g}`K7r|@3jL*@)yf+ice`@gE`WdxNe{R$>Tg?Efox$$II9AvKzL6XCiAmCtZE=
zK2CbZPTpFdU+=CK-RnH3Uim%i`l$m^OYiT!wAOY_o&46bDbMDudEX^9^XmJ>Mc{ZT
zQW3KhzAM4JU-+G&!7-WIX(B0X+?Q0hD|{3<c4OgD14B1R#Wy1q9AHT=7IV(E?>=YG
z?s8sAK}tMzZRqWg+xM5P@rZ;^J8qq7YAK|r!5_KPVNDeOk>h!6j~0IwNPf32^z##*
zs^%LN$^zT<*dNt`rX8PZ9Em6qOF96aX-rIAJ4@aEIe1DDTYdFu3Z8L4OF@ed;`0MK
zU%9^z=&UxY_fVCKFW>8Bv-8)b%+?!GmrI=#%|iC=^HyE)m368_MwO%Lud+9xoyh{s
zo0y)@Q%GC?FHzQF|M#*Lp=a9{gsGZ4u6;J$p>%y;LMi`$<B;!L-yf{mb77It@qJZp
zs!iwBLJt+kKJs1EIn%N;y#X}FcRJ|$HOU1xUA9Payha-jbSMzuc*oS#{_)766=iH1
za|$~Q4YZG~`Q&pZ$@M~|^|ez6qF6VE#YWssT)V3_;;z8C_A<5?dT)6yNY4Fy)9K8G
zn@^g1mdm(*obtHLM*QZ1;)%_h-{%zlt$BV^+j4fzG~pwVR^aL1KW&abK2tN_cEe<A
z3&C_V=4+)1J+m7hq$%uR=6J{6^mut_lW?w<pudE}k!FV@yBi(|D$J-3ZK~YwW$<5F
z;18#QkG+6Ivte7O;WD2yX<)Zy$zNL~nf+BQ?E9p!yLM~xpvCs*LYZ`fm1iHQhbFo0
zKC&49LagVit1CT16gSEw>zv;FStlusd#>@dQ|((ni7yde?sDhB$u(S_G2pdWOU<rG
zY^YD;$5@Lsr!4HTu=qra{v!vrB>T*q@psmmusP3P?ed&+dgg~^{NkMUfelP9j=$Ro
zk016FvLw&2{CVPTrI_Js)6D5VKE=eEcOLdQlQ6wvvcyuyw6uG3|9$^O<oYZQKBj}Q
z4j(uK&OqBF@4qo`<n6RlF=(58L??`8?siC{B>O6~QF4{{VU2`^{O>}$dj}-%Og(Qo
zUzg=->&&xnU*>yt%Jmo?mpc;!o}An?YwtT%1*tgZq~D4PhngLZSgaCK+rFCRvz$VO
zxWJ!cg){l!@!W*4R`s;?yDn5h8(6EM4Xlm3{&#);D01%jUWb-2riVNAKB_r}Y_oCb
z($c!}`an^{zXu*aCTd*mDC!AZ#WzK_J$LQ$`Jod9Hizvj_uQFWx_YlgbMbWSHB@DE
z<5TV{jjSK0PFTOl$+pSAW2JDN$_H-q`=%!DPda~U2syo;RHU-X(9QIi#{5kA)Z4z#
z3a%ZR9GaL`Tz&2PabCk`5zPXR1=lNmj8^%U&?9i{#X?KP{&Nd{yJ!k&Ppok0E)+~I
zN$v?dbLzmFTL!B;o-LNFwQ069Tl`tnA*1_-k)c|Y)9opr7u`-${^PO6<<V!*KoO|o
zI-}JRdA2vbQ~lW;R;SmK+9y;nCcin1XPBtQ{MxJbh}G^v*W<UXvz#Kuaho}Q)B4xG
zuWzl<&s)UT=|1sBr(vJf@fQcz@F^rFgeiV8G@qw>^rGsyBkLz}C?zHktho9T)-GDv
z`bxS(Xo^Bq{{PhUgI3iE&9#Sr3B67~xoeTqsR=uHJ7*iZ=^mT$+%3#gWzu88&2jhM
zOwv{eQx-ho9rn1a(>&YM{;ST)E%lFQzY+cZH0A%T`p{==-l49pAqpE=I#+W&Ic%?I
zc>C#Dy^nf^b<;(xz`ds>{U_%82=v~JE}CE2uK{WSrsXYgX`0fQq@v{UMS0>G?=U-+
zNm7o*4z8C}&$%R}ZMw8erIRI@M=xY;kk+KPnallSdXLQYs1Z%xVu2C>_oj=uPqz@h
z@9-$x<IQ0ScEe+ux^112rI4v1yIU9BT|OJOoU^`I$!(Q?EK2rR)Y7u{Suaksv*cyU
zU);83eyIy$3{GN3D97em(&vTp&sEy(O5r|MA(*@eRP&%$)jtJG{$-c^lU;Kaw5)5{
z{u`WI&+P`y$lmvkJzfrO)IEA?QuypRxBi~JuZ`6+w+VBqoU=Oa(dXE6%0hsfW0RC@
z^O|%2<~(cIWBL5&i%Ewi9$)nqcr0Gk<2~alM@ng(Ku2So!nr-1cK2>|+tq!z{@~9`
zw}O8xR`o`FTYqiu%vQy^1Q9gS5UDPIb^ZD`x2>m`ZUQyZiqjsvs?K6NbbRxSUHuFn
zH_i@CIyqN6WYNEGuMON5xhuX~SGnC;@ml!28~l;7xuKnn7dWTRxO05c?t|^-osp~i
z?=qcxzoI#6?OwU8ulra7R=?JBE<Jt!;H!V@j;{3n78B5U=={$&3N`%ob`B;VQeK6`
zMt!;Z)urUc$<r$vqyOEHT6E-l{S-I3do^plYW6<iU9`RV<x_pp`j{ZElh^B~tKIuQ
z@zVKKN8~3(&XRrndTPnPRc|Eb^9StrSIu~kJ9WY5^($EB{;i(6!1;fvi=vPK^X8zr
z;!QWc)Sp-Gvi<-2O6kjK_9}~<@0$lRzyG~DyYtciEFX`G(EU5P=A4ga+G-Wgxm9XK
zOH}M0u2r)+5=z~7E!f3u-~7|!r@w*x!R3i|`@RcL{SY&~V)BM-m)xh{oW3u7&F2>B
z;OcduC=1Ry&OG|Z8Oq2~9MXC4%v&#>G_!^W3IcanS^60c?r~O~VZNH>*nu??n?Kn+
zjC8%=ZvD&PLZ!gm@`axh*M`+btQNR->cFda$6v`Ef91Bv_W3=9H|d=A`SE!vuOkmh
zzioVevufIrp#LXleAPLrwCsn@Nwpb^y?D~{!jlY;7q&rHpZPN$EN2jOW=b|VrlCQ|
zI<>7ocLb|;t@Zxo_@fiFNdIjkXfO{vZT!1wRcFV^sntAXs@f`I${S@mXB)Uxt}`q;
zf6DdH<5Qm|s%RCgUFNvPWzmjZD*Q)G3mA5Is0hVQ{Nv)nxG4Es>8tc_4h<bE{?943
zy<snCxU;DLVX>;Vik{*}J)!*Mo`W&TPv%YSZaF^n>0$qn2T{Jw7M(7IrJiyfpp|Q9
zb}w~XUcR39+V4p^NnP)~H*vOuc=p+$Ntepk^PV|l!*nF&eVnw(^PY2(bH$k-Mp{Bv
zwP~DF2Tvp)j#{f${XOgIsROV4KE1oT?%nQt^NRBYwtyOzXU?g2$0w!b#mtf0QEF~H
z`=#!?&TVg57ZrM)7ivxD(=x1@aeJzS8YFP}6n<z3+}YuwYQUCubVjJ4P+TZW?Uu#-
z%yZc<R*GB6U(34MzSXK>>#y=P@60#uif;JuXHIp~hrqwPR^6+;sU7q#iZ}b}yLE5#
zgRiZsmFNiV%U<gxcUS_{rhNO-FLmyjU0S7UZ-LjqExYya10;9(K1kjsBzM*QdPeru
z1IK4cAE@MA6MB2g7a@!FKWwjg#jZAsoBn3+0-<}e4<@N%8!!R4N=>4ldjEep542A0
zxzY0`Ho5x&H@`occV_KX|8>if<GU}lv}|4`e|Yf`@qZE>$L+X|%>O5NBw{C9QcQTC
z;kiA0k)?llHf7Z^ZmK$`(0_Wdu?2I>e@=yIwXB`?`#F>L)SDjB*ejScLv+H`)TT9h
z`?@0~|1;U`yUb&^uZpe4X7-$2#lL$FBQK0oTE>~~Yk$l~05Qr4s;SPb3hy@Tvg=#a
zA9m)|{1cBqJ)84<vG=xw9&y8C(pVQdSj=ba+6rAWr#I)?8x8+CR&VcaK3Tn0V)2W|
z8dmv7*Vz2m`S{H9ago{1Zum$fzXV^8;c?+Jb8fADSC`gzeCE%6oE+)C_HEop>YX0R
zPvl5~F1ld$keG4x^^3>4y2nz#6pGB<o)i{WKTRa%+-FA_=SK`eY{x7*4E-`eGceqn
zvktELwy@veSA{!DU2-sr7ti{-0EoRVrb3|}KR!<qRepGWa&i7@h2nYqN(RP}nX!-D
z549WCw5|$$6=~#fWQxL~E8kdMrYNYrI)5i&Wj)iO$jki`tqb`&6;<@a6jnPbdBr*M
z%;I{Oc{Zdpox4yqHb_J1s}83StA>M!+}3sOx85`^sCBM5^ULy@8RNq>FOQ#?E8+Uc
zKqyvXv3T;4yC+WdxBTat^Lx2NMYOTub7LnNXQheL*Q{IO&E>M>{6Y>BL+IlF2{UJw
zFW+4}`)gb3?Ut6sF&z`x5A`4MQn7mvS_&fr>d-pP2wg9hEK)1uD!+Ed)a&=BS0tZ{
zRoJ3e$<ZlpaLld;&$5{E<h6ATTTj(&3<k~krrJupI&|jQw@YUnoO>*%-E{F(mwD>M
z(=UY79J`v-lN2_0##OyDTA%OE3x9f1vShvnabuQ?4irUb1#Of0cPb`uVO%!IGl5H5
z?)OS;xcvRg^Ti6Ej?{>726nkv3SE_0ER{TE_q?gf*oW{xO%ppHZnF<Gl`Rml??7Wg
z&%?_}kmY@hHH=lPk!K?h&AwFg<05<A)fd|3C2_GlpAEx1AgxUHp9dw1*C-ape%o?V
z=3LaBO|MiHr1m-btzu9*7N~lxZ1U}?5{aNa4|)ne#2sebX9E@O2iByqJ`5}cB|D_L
zBtL0w+_5Oz)~iQbBOgw6sHi_@>lneEG~0+f>HOnE_xNJ+?(iHDIWK%pZN}mq8@9_%
zH<5NI5SY$X{xAsC!`i-zg@0WDXWl2~hdVArbw4ybw7P3Sf7zGB1)mkH-a9=%9JTh>
zhA_o7QyZ_|?Y~-^{Ok0`z4ufr70}lQ=FIh#1Fa9t`J|K7b$(J#ljW)-3D3$@*^EKf
zfqIzk4GDHDh0f@&X89b?lz5F%(1|H|hQ#6pE$O0;@^4=pc6jbsa<BDV`_`zhiEEuA
zw3%1$mS0^hvwHTGXUS8&M53oZX-2Fc)ZeThna-cHAwL4#Xx+uh!ESlXBZ;R>d3B}7
zot7iI5|5iD7GF_xdl&h1@`r7kYE>?>SMT4I`N&MAYqj?$hbd=YD=%7NzxSi7=Y7@e
z_WmpSzmNR>RsUXHDJtpjxsO+COa5)~y0A1#X;HEG+QwAPFS4(v9pH5dpYQi8bDnM8
z*Gwg;F5#uy8oB2zTT=hTB(Sojqhp<=uS?3jFis=?)hw|#YlTi8shO%E6~ehFaq5R)
zNr4hkfe^V+&K^gJW`kosLg7p6Op_M<EO1__F!`*dpy14lCIa39ns#n}!kTu+Hh7=8
ztTl0uKq#lw?DnlvU!2#vfrJ9?Uc4M|cj4uL*s^*3+2=G`j_+2HKeFe_JCAMq{?~q;
zWyg9wongWI`uY0`CNa5u|9?oT;@kd!=ejZrHnx6~ReyHbVds2}t=CJRR4r=Bx4gLf
z+kw{Cos%ZM&IC`u@A^6A!`GPgLSMdp)jH^WeRWIy79UlnDFK}fUst)L6)zESOmC2I
zW=a+~rlIlixc%nNH9t3WT&dZyp#7itksk-vX7vb9KP7BufAQS;Wt**{IqlAcH1`W%
zeemarQGwkSo;m$`hoV$Bdiy0$-&1NEvi*D2igzEj2E^tCaxUudx)9-`Y6DJLOg_Q!
z31QopzfA};-y)lG=Ym<6^sQ}=!}hV|J(WJ9Td=!;`;K7l=lje%e!jmR(loi8>0+^|
zfZY8f7W}hotX~&PJT^!x^*jBFC+%vV9nTj*7x~y1H4(-4+Rr&hXftPTmCr7fSv~v0
zD(ly~mnhVx+IlP9oc*BOpg6e7yJeG_T#Da{+t1uXn|8*k&frzB0B>xYUYPywMAXy=
z%Y>#LkeDHw9JaZkz%f+fvEZ3k)1$)D4OW9POuxdf7f#O)&-!dvB6le2?cu1sZCh`>
z{3!WF?cpi&PVOww?EB=GrvtJh|9t4vU-mtx`~4mZqbt8$eo2d1fv4whtrqyKCsP@z
z%H~wRUMSz(evwdn{jVKfTmJD1>{dATP&U42^%3E7N2)jX7C0W3c+7j|m8kCO)$JR-
zg&riE@Y%7kA3VNO_`#n43|9Z``I|r2S2JaO_3zc%__}b-)%#x4MV761!8L&OB+xQH
zc}g>QYF+kJ%x|-6mp7)J<I&l<J58acMoeh69nTS2d4@;Hs}+vjdaZcO_p_nf8-bLs
zVcaQKx5{s_y1{JsEoR1%cJ5ElYDBa*t`zIw4`VJo?9>sM=+x6{*db`&8QJRh<ofY1
zU%?ahuOEr+KLpty^4c@aY`duR#uGDN9Ft(5U|`_JvH2Cakaxf6uAR1(z4i~=-2D!D
zt1QwsD8z!6`z7~?Z<SCx_5!jPa&s1FZG}5e?H@7l@L&76>kJonblkbTeCEuVi%-AF
zzOQ}FA^FvNyQ_iO4;=jkPfysv-}xTYZ3f%6S|IJ}>Z1~_@?hIi7kqYp@kh2OaNdlA
zO#<_s9z}cX=_0uNGV55>-;S8c`e}dFe?kX;-!?vf`#M6g(|SS$SEpJ};T=mi{<KmC
zPUg*A3;W}Ak7@j}=sFi|sLecA{!rA;pE{b8EYGuF>_eUZgp6;ZP3)zuxhlBkD#M%r
zYu>5hf}o+`+srHH-(==gTC}Qbrt&(+Bvzr*hQ}7|Nts%5xbo7}H8BA*gL|CL{p=C&
zwwW2~$oYMqs?x*^z0-TsPeMk5XMi`T2!M9snin6bRJrH$D7L52Qa|$N-GX=Js@mcv
zuS6D4D7I5RGC_T_md3+HQfunXTra&(ky_i>c|X3g>B7Ced2WY3-py|Qx=+Qr?J#Kn
z34GLdX8)r8llS&Uo#S6v9DaXqRT3MwlTAa*<K5TWnk5du1Z#3Rnf0lBJ@1)2Z5SJP
zV`{#8f!pwF@~2D9yqdqED&p_C)fSM2pa<T!RP*!*9$HhiRbugstASrGc16B*l;7|8
z{9T=TjEr%_1ihWCo$Ut4_;lMk4R?XZ?+>g24+01}%lp3g6It@lQlaV^!^IsZ?n0*S
zQ`aZ%%-*_9Z2A7TKXg>W*0MiJHfR2Lv8rR^x2lefNp{B?K<fP16tzp&-dc9+UqHXt
zmv?&?2(4Qm`uPbc?SFJr$cyDW@;hPet!1YIJ2t-1Inn@MEbzUy16Ll**miR2SJm==
zva-LUOp0sIKjY_RnSXjti)=;B-LJL!?@rzc`1|CQ_j1vsY~Smgtv3RG{?ePe;F@?y
z(t?+)Q(xTP7_Qpq$a5mgSvAenoI|{XHS+J-D1~=>Wjki^H}+4Ot#Is*P)A`Y%Ut<?
z=_g)oeeW2izh%XdjqB$Hc0SmA(zB)_k!`Q%j)nRL#Ua+rTXafu=Q7SZV(cJ_QWPGp
zNJ<Q`W)?YTafHZ{Ff+a3-KBF3Uw`maO)hXPGOG*})blu}HvemE(2C6`9~Y+WJHPMN
z$vYD}jAws~JlbgZ>>qf)?!&sYzWHICep^<$*d#It@-qp(XKHe9NC2&W`KxvCPrt(l
z^#+5#4hcNRB-D<55P8`4k1JW`;F@!pk#i5Oxpncl-It3!cK2MKPd9m9`@*ILG{^UQ
zW7zSHyFAzKnjg{`d0jQ!VaMj@4hjw~Tfe#T2EsS!`ip!}pDKM!@sGy_;fd8f3>R%w
zR!xZLGo1ERO8NVmv`Gb?m(O=i{Gj+yzhteNTHc40uvV3I#fADy>V7|Gn7CCmIO{O8
zl9#|?UIzo!i3k2KaeE?{Z1YG-==ns68D%{Ff_bN6<=^a#^7Vm@4}YJhnw<MhzR9JI
zOQ7{FZ?W604$vl=TjnjtOTasJ{f>kr9hq1m-TD83gu6l8%*p+C=AJir*d~;hvb41G
zeDT&<Gc0<J=)9hEhqL_FYwj~=Ug`=m`QABrrnz)w<1R<JlxKHe*00Y`eulX>ZmrhA
zX6=xs^52a&+FWFXBo^P`5HI0A_CqnP)C*r7`jsuLeERmZ3$t6aZyl1UHYkqV_E(@-
zL)#^`V#3+COJ_E=Nw|j|dQvtu;T|)~d#0v(zLuZ43I=S+JZG}<1oSwPrzG`EjSAa;
zc+H^~haKb{zg%oR*KYbef6?dqqfxf4TX%_fT<}t`F>k)75)+uYvg+;Xw#G|YKaPj|
z6#9BA-d3J7!Yw?muO*pBQBCPtJo6DH3(b@Dyl2|oeC)N?dOuU%$dascRO0lWh`T$z
zvFA9O6%C(tFHcyX)VNDZFF>|mo0)r^^fODx9}_ipH%UzAe(&5Nsk%i^GoItfCYB>R
z%2<-7%rt&?xYqQ@jAY)KuQ$C_E4IikJiW?b^Ul3%esqRU{GlsUZQ#a{{3XlK&2Y8f
znJn?NuR_0mSpE7jW%s$(866s~Nvc9v)>W7+?oYpPJgsCO6GyIKbXbo~#;VgLvy0+x
zyjDY6s|p$6MeaABa(Lc;q0;5^#vs)ln$P34HQw-uwOrWsL{TN~fW&VDJma4Cd$;~l
zy!J}))cjYz+HH~f{53asJqvi%x54(qQc0Cp6DmYH=Sn<YQQRYU<`shwTbiho{NAXZ
zKxns^&C0%IYgdNdx5Tyk8m`7p-TzY~>=E%RTm!|w%Q&pn-&i*dwAw%bv?b`?Kklnd
zrQZ&;{Si#{xYKszti)om<TJ&}t5t+fY8T8q<GnV|`BAgS8rG!R%youoMd#96B6?jE
z^dn<Er;BvVn14LoGxZgJ=uAd=){Yg2cIl~CXE(0;1Ku+HXcbdRsGrL}?GDGv^I8u3
ze0ndr>=ZT>jy&u6$ZOY<02jIWs<kdtJOl#s(++@#q;J<jhNQL4pUmx0xY+Mvq#yZn
zg2%ZnpH~V8s`ynaYUc}f&OGV$dXkDzkKvAht)~|6*|<<wC|ntJVJK+qxE7QaE*=jo
zxd&RG^GD#C)}o(3#IC*4TeB`_${In^2B}YVukrn$d`s;|!5SB)?Pv830=te#J(sYR
zcnppsNFDg%vBs~Aqic9d?zNq}ue0sv2epTHRHF@!bxS<v#WoJ!zu<HH;?M6B*2*y|
zZMrsf^ES0ho7O*gXcL|FyZQc^KeZYke#nOIy?;OW&k^x=jE}hGSs(e^aT$iKX_dG>
zHM!@->j_sU&UX%b^)Wd*>v#QUr5``?jDH01P1EXobx!Eee-;7n|9qY8;SN3aKbSiL
ztCWvOXt%FvlialHhhAE0jrDWAO1+grldZ(TqgPl~j$h0PuDdopq_#|<#^&{|f8SpJ
z`o@>)dN*SJi_CMk{8CTeHGN;Eapc!2;oqT6ecM(Yad^?<mB3@gW~iX8m^Nw0Xa0sA
zi}^aXUU%;KuG=7SJ+@8a>HCDR{n>@DCfSOo-S|02@zX-<nP+ono<4rY@!8~=Q%kzz
z6Z?uDKl*ZDt@_N{m^+j~dnHtl>^P#Na!u*u^r#+ViN&(X5;H;tHorQwrp;8o_Qhj{
zUq8xA{`r>dOHF!yZw`OHK;^}`XU@F5%w&Jo=ENDuc`RvtM&`@@1%=3_LJqpXI(R&b
z`-qXsJLgB1Jr{cn&t)2(O9*>AV`^h0>qU3*UlP}9zAXGKU}b*cXWg2sg=<2WoJiZC
z;8ItjZd|N0)#Xgpv=5)Z9dJu~reU1Fg?(On8u-ix#GK$>t%G~qRcFj+YI@J0)W&iw
zp(ilqNUVoV?~!bY#gfS~2PK|wSp&7vuIa^M?pmJgbH6WCa?F*ESp7F*_2Y=uOTzA2
ze>Rst>h&c3Jfj+DdvisAtIHIHsNDbS!7b9c59V~PJQC4!q(~+2ki^r=pC48(lIxUG
z5qqk-I_2P8|K^C!BRTJd+?n|2h;_Ow(hjPdr)sCP=wI=*qtKS=-~G$#()d|Q4ox>U
zoGLMWLWOwecEe*2zSLCAv*>e?7n=Tg($xJA&MkMG<C3(kyi>Vw-Y2E6;3lQY=YOjv
z%7XS9{a+K>=?Pg}${{d$Z}nD=9>bfvms&b!ypJ<i{-|^8K>2#!=UXKBAe*DT!Y1#p
z&P{lhc=mY8`#9a_Y*zE1++7{Jy1YAwjoayo`-iz7%!()MRDXSYsoNjF9qju+%S)vl
zR@~?OzTwy04`!2R_A@Q4QNMF|hG=%AVH!NKbclggGGrc?U`rD{vSydT>cq3|^1mz^
z?EcBltrwn~&v@wb=ZBn1_Ssjp{?Gqs7P0!;ZvE=3r=jD-m*;YAT;~<Ly6k#Z1b8D-
zjgzVY+nO~uL%1V34JRLI`<|VBwIQOI`N)dKty#0D#WhKY?mxcf%GRvMr6=!kYdt&|
zC8~*iEDJPAbaU07d0S1RL;kAF>)Zm_EgczMA9M42(zTb)SNk7EM%Vvx*ZTP5l&RK7
zm3dpYZhdy<HP^<4n;xfgHG+3Z|2WGx^~G<$&0Z^(Yb@+PZr;G}{@lrD<_CMmmO88J
z^Y615-rFyg^dK@i`YhLpS4NIu1=p@!o5lDzzUbW~(3a|z#TQ+)x{Zw8w|-VQeaYP9
zt3k2Qd4^C9W)42agP_`HYJ%OYmd#S2E>nlL1+z%9&%2s+LQ6f?I40qqm#b|5EV&>;
z+lJX>*EE;DsIzBu(kJ)7pL20%^4c_Z#q`PNU)+4M*)@9xq#1he<e5&3&5|3|F(=;<
zhOJ(;YiMC)+0Vzaf9cU3YlJ=?37pz-9OMWNI~Epq6Z!N|rOyQ$IiK|}F18o2cTAcT
zb(Zgugb=773*YY%J0lddDZ94i;&E%xn*Dp7=b|rE8ee<GaV^W?oBqs6OpHpaw(4hf
zO!~(Vcrxg9)ytYi4fZSVED-Ezx!-xhwk`UIk;=O7PGR?yn2aY+y{1~HQX_FVd_~mB
z%_*;5ZLjAOFjVc(*m{*&P_<*K^qkI=b1qDIC)~q0lNKqeu-)xfbh)={NkEH@_ng%K
zX-^_%*UGAJ1vF^bWX1MxxykGZTAASYW8w#E!N*5FJooWYJ(j4_r*N^;@C<mu=6Gka
zhsvi(SErVEHg<gXc(Q`)_1&PV#cdAowX4-LW|p%DG2dQOzW!zlBTIY3gE-w|E4&Qk
zLph&?ojJwO#Lsw8@a%D~sSobfO`UPYa`9(Nr!_8*h-;`YUeo$~v@avc6tr&jw)<4j
zYSz-3jl05Uo_)JC@<{%~8_X^iEG}!pyA4+fotdk3a1Zz9Uy1_Ht~Ykr8qDlB_*GD%
zcf<uWc|QTm<o#g>`ST0<&pNb(E%-dCb8fd<uxo3TY((5LzA3u=E0{gN=PfY)SDITF
z=2S69!*!8NXI4*Oui>fK^QR_aUxCos70UhKv_ZUU>n>)Wgr7``%RGKeJg{D>_GzEt
zD%%In9D(PeAiJ8b-vjMxN?CV$+w3zBcUgK&Q3_lxxc{(3Vozd1k3!nj)=1v$$i1C*
zac=Vd3;APah{kccEL<I}(vop%lQ_Tm(>*4;Z*bTPX-~Ky*7F~{W_r%SHMb14nKyGS
z>eu^XxaQ{z=jVzgc?&-OjaY5IY`@I@8=$oZCZ(-wlRiy<^SbKtE;G<V)7$1PU2}eD
ztJL)ziR&q3NuF~#36DYGf`4_Wv4y;=(~0+-)~ElOKWZuk?ODp*aQyo1{gVPVK@WOa
zv!dhn#2uoYQayqNpvK&rzfns&Z%@$p>J-+ha_ULsqcxS+`iqpfCiJg3CAZ$^?ga3*
z?obi)jY}LNe{#L6dFA4IuEo4|hsTM{M<NSfAD{WXL&(!UaJ}t4cb85UP3C_oO&M=|
z0tNTGKhhEE+>`RuxoM(D)w;0EN3#BDp&pNPI+y9>=Ox+HKFU&g=k#cQa?kwap2HH4
z=S;gQd1jUDW}^%40<|Rz`xDPr%3JX-EQSsbW>3AaO8a(Zc1y;qO=h3{AAI{SxZGK(
zYrcl-BQX`ZgA)6%B+WS}0jY`&S3?6@Ua@2!|J?m;=gO;U?Dlw`h>W&`HlF5x*|0=+
z>)(U<YAq7&KW=Yz_;XX9De$vmM_`fg5sjJrhST<RN6P+7Kaq9)yTa=CTN?PECaeT$
zcs@xhkmc%ECfvn#q;_Py5$jKs(K?&geWCK}K=b{scRn&I*lqJteRVx<y^wVNtbW6!
zc9Epor_s7xf&Q_-6<0UgYF*s^+)2;w)%9k6#k46mLb#8xuWsCtsCZ<Bf#R`45=T1b
zA6et1{^_CfJk@ib?gl!$)UH1s%>1-mPt8m2l+TG({L=(tvpi)V`hNcR;^BAUt$(+l
zUfF0G|2$iB<74;CM-SIJi(dKvWcJF}uIK+e{NOZo#Ud4Lmj=CAT#i@%Z}STHGF{6t
z|G)p#1<m!#g*ZDHBLx$~oO--<e#krA`NJbHzg8s4=4)V2;KO!_!{Lr$e?upPzKJ@K
zwLzw)XWGL4i}FqV_v#s*A2WXNr*-awKl}f(UwO5El7{{-P2=L^SDvx5TfaT?m_PYP
z<}(3f_vtsUgJ<(Mb3O~4nqap|=*(J&4U8=EOijuT2LIEiK6nuX9p5c({2?NA-|0~(
zVk-iUp}0`vYg(Txgm$i)Z)E)0?f0w7>iP3$)V}SGJTFvtPwvKvYnxSOC&-0zJ_DVf
z#>FD-@Ig_*f{EpGwAR5tTf7YJGrI6}KA(6%Vsl@HJL)VW+CDGTIz#5f^04$ewa$)J
zLD9CL^`KLvO_UZ2p9D3xRyZtT>y%zDn|w_WGTv7?t;0phT;=?vnpY9emd}Sy(EGcH
z1ms=lXz=?{thP+(v5Ziy$DCPZJ(2D_l}4+Zgckid@etCEnp9VR^~INWTN`KoT;b*O
z55$<s&uDmacX;=M6G2mFJmF30iZFZL!9D@B@4G-C*<vsFv>A;^U$Ela7mhChwWH>~
zsF_s0zHBYenyGuL&rYs8b*8ub^7QTBBtYjJ{@-_&$MAc~x2chLPV99s=wHS18Fb7T
zYtwgzgZmkq{+ojq|FNY(8dG_Wj}&`0I(H`~^+1-)8mtCywLfyfUD&E#Y;HZ@-1Ur$
z3Ma17KiO}$f$`e!nl1bG^Ilu^_1)>X_r=${e(uQQytZoXYAeZ*4(JIpE8JD9zQ+Y{
z_Ao}SUEQ>%Wrk<c<6eh5yJR}PAB@`SJ9V)@^2Nvw#_X$RSHHDS-J138H;%&JMd@PB
z<Td&yS2OkJuXs~!_<GNxSLz@4ECNr-3l%r~khaNweeZVTik|{U4s71G?VNt2M7X<w
z_E+%fGV5#kH&rckRlTx#+qP>wEc1O=xd?__=WfyH-*hg}=aFSs;9HraM)|@^J?=Ce
zQI>cN?SO#JFagyUcHj<(a?81`#t!9~=?&nLsN<7n{yat9^vU3@I+YVOVOw(=f6ug(
zOMmwJP2=1%b2^M?H!=y$p7_H|=(mBJ@iB`gL+DVN;p*BKizRFKblT}<Vs-%hlS==x
z&T-5a*!0{%Zfl8MAb68Ddsc^rfI_OmOMZc=I=TuU?Nrt|D@~ZbMuJmbsP6n#Enn!$
zO7-)TY_cYF2pw_x`|W_ktNN3mz1bHn^#z?-Pjzv>t9f<A(myRUz-gXp<rNQU@H)zB
z1slZ4b{Cn1-g=ZMTx>TK%1e3be&{)<hB@ppBkshi2`zt}r^sLBH8TGE&LJyd_Saon
zduv@5bk3Z~{@TX%$Ha)nBhC_!+d)gaAA{zKK>J*vm4Q2?GMM}Rc+}p;t+zr`j3We`
zri6o+LV}03ir*YOQ+l&(vSmp47f{Q>^ijEla*rWTk07LBue;j(;_>~9`j=lgzV}5<
zD&M)imh!BME<ZzWerm9qaO<n>(gQ_5n(EF8)Tww))F|%>e9I{BgngK5&zgqMx{I{I
z<5YYX;z8q7sn>ZwFL7b$WW64HZsrNwHi0-LjBzUGCyUAqj!PL$Prd!!pndbSuWPv4
zZ`_&p^=*yw8gY)vpb4(e|MTD9UA%b5yPEs)<&AO<JzqOEcIYNfSZc%5r!IJMW&>mO
z-BRQAkB{q|POr(E6Vsvo<lM<MACrrU&K0E<9ZO!n*(m*uPtDn_&mF>qZujV(Uz4)w
zQR;=Bg|o$2N~75vTa@IsExGZoZCb_=Z>@`0_y2YeExrCvENJzTyo>$!pU)4=z21KR
z-`iiIt}E}|iZ-25-gr>IdEtLuiI4Vd%*ih#n5$Kfo$2v130qjWU;7wq&&7VjT^qs~
z--NPMi<UkWJYqBNpv}93XTp=7S#+KibUvZE{&C4;2ETxJY0vzgvpiM2&hnIV&ZQb3
z(;2%9yowpr9rrV{xyMdk5WbSF{8y;*Z<p+zK(=FACNcG4AC!*W=r&}FH7t1(YX5B&
zceUsN8>JcUSEe49NULKpzTZCc{jrU|IQy<Dt2}AFK6B<*vDYs+i|5L}+xEZs#+})7
z<hS=lmwb+VWHLiNr1|HJEQ9jKgNz10WDP91*gnTyP54(I()>00;0w3Mg(e1WCnfV2
z2|6h^fTook!+B(@ulDbKbtsP2pr7NJVChrCwwdw=&wNjO<|woJutk{RPwR&^K^N2h
zZkVUx%62j8b@<6wW~&qTmL9srwLNh`V!)}*hLa`A7krE~xt7r5wcc>g_f-da!%Vj9
z`I2Q8TGZRq%I$H2{W*JQ$D7ta857jlIy<r!xww@4Rk--{;1v74CEt&;b)H)mqWsif
zFMwy!Wzm=W-(2$(5IpKXp_cWyf50h!W%U<UpQrTCRZ#Nk<*`Z@xOk&QsJY|VR0&P{
z&=qVKj~`g@+JAK$KW~qt#Nr#ho24YCvmca@Z;_bJrg%&vxksCOVR&+c>U8#n;lle{
zZS?pY<&uSG9RCq{qK0R6N{xV#ynM?>slyw0shpqmr{M0{C4#PN7kg`Gte9vz%O+WF
z{?8*$U8cV}`6AShgb92+yUKB8r)yW@54j3;*$3+OjUE3v`_9kUzohP`ZaPo%mK(iZ
zJl8bV9r+;q*U7ZQuh~$N{V{`-M6yt_$nK3LtP<T}4I4{Xk67$wO8PO&;MfzU7gtl)
zOuC;mmFGTB<&khFId1#L%9vezM*Fug8U26Db)u%ivghgzc7w2QuL7L<D(6PVrkNjD
zqj%=^*$oEo1s)&TBfMkE`{#ShpPb(DBmc_QAMfoo3}*yOhd7IQ?d$qjYf{&EEDqF+
z;MtY*;>PN_H=*L+v>Ga14Ek4S_Zy!1!;!X+-<bbVgzTY>o5I_Liq5<~BU7sPUq0d4
zxi8-{Lg(H&o1-Dk#?yGvW}(#Ps%d}b@6bFLczqd57S9XOXNql}s#2>j-smwbOXw-b
zo_r;Y>xGT$Igh^*G+30KvM#DFV%LwqvHWwr<jcxKFE4z1e^-*cdU@Q88E>lIZ2iKy
zJU+5SZ<Q4Hx&6PDk4nhjo%!L;#A3$up3m>!-&%C6A+ERIY5lqV{d<L)J5D$}=8<YQ
zIHs@f)H8o~a?Fvq-sGt&2P9;f9)Afu@p!N8jN|?PWsK@~F&owM7}p!El<NQc`AV`X
zN0S03nj*9B&2o<71*y4rKg`>BW@CObH!q7U_eq_-s|!tP?sPwteQ)?F@y<_AgKMVE
z8=naaJbsqdQFvIjBk(ihw^!!B7lhwcUl5)@fBy3`r;iDII$>U#W;b=F^NuIHY0vsp
zU$))$H{87MYBR`~O;X(#BbtxR-<34yn1ro_a>HJ(#Pz>6ginvH<VlueH|VcFc&5H#
zX8t^@&oVIwCz-a`d|L2xI@d<&waNFT)12G?zD{sHlT(p!tgU>{@g0J_)fX%HK651X
zY+fg^-0-v9n^1;o(L)<w9k$Wi{Ym23#ka@KFwgi|w@2=H;hII3dzw_UIVz8co4e1B
z-ymfcb$rjotcrtHedlj{@Vh1<ZE);z#-7%_TuE~6hQ}hq<)8){^FNIEnkY9tHrcdi
z@$KH3>;)y?AAhyzOP*R3+i#t2waaqHGuNaOQ67~`md)!pp^&vz>WzPTv!hE$ymjzl
z>&WCS7Uxuy7P*;-J-6!*TQnv8aCOff$<-HDXtu<~dOxnJoW{{Kf%{41BzGZY7Z<6E
z4ObKDt)xwq7ERo2Y`SN%>9NA&GhJLvdX6o<^V~4u>O6I@{^b`uM4Z;ITUyxHVsk0)
zpZ%#bvv>1tPJHz}Jd*c)MgPO9?^XO#=ab}qyxaPBjkepg^7U_@{T5mpetCa&Zu+y+
z>ui=)f6q#jJ8))s<@c=KtM1UiNnL&JjJoXo)ujfj@2{Sl^0j*F8c;}|$kK63=9TK-
zk@TSakb1R&8z`9Lz9y~*2eS=dg53Y6ng1D#@AJ6jtxs4fWfZQvf6JDu{BKLoeZP5u
z>vOG{X|GFPwc(z}wr+MkU*{K{4P{RL>MO8V@Y$-|s4~H%EC0l*m!1o~eZ@p5?AfZV
zSNY#su9vDjzbA*sQGf*#Eex6XQ}t)!>G>B91aCa^@oxM-{>2NQ_k7v-?Zv9Ahpq3O
zn{(mA6JFC*8<&3kvR)*)_U_^LmG3<6t}u4f=KXW_rO)BJ(NYV;U%y@uzP4qrQ1Z04
z|Aq#6fApl{ce5tdtP)KMS=S&@rTgWTkmGv2nwGs>e*`{NXmV8USoP%Ql=d^NF`ulA
zkH=Iugxx&;Om2bZ9cGhd@Ag<Ml-hjT|Hfyz1)3&FdW*e4)#u`klF4rlNW8~d{_HXT
zEw{iTYzKQr4lie=<2N<^Lg#O4)Aycy-g$kpXWG8&R<};d7)&~|YisRhvy*?cn`g#v
z_1n=u^FDKPulK5nCTX8_0+UoG%Y-JY%sj7QD8ny)I^mzKL5aP@`bCX~B|U*}jxk8F
zU*G`kMM%CN>U<m&Vc!zhe@l`}JoA`2TrPRWPr)-a@@aBMHd^&0n`&kAJ>m3KUZnPV
z!NiWgQh`T}K3CjyQrd67bj|~#pp1;oyCdY1mvrR0JQlvm^WL!Q?uBQ|!`EqjT>S8`
z#J+6PuunQC)s?S3*ASfS=<@B6fXfu6FuxOd5+<wnfA}ny%+u>)cDS0yFfHZGCa-m!
zisvWU7)frd;}HDmsm$d+<M?C2)ru)|1?H7VOG({&v#<2D)Z+<4&dOFj#{}O@<!d``
z<8?s7;qVFX^=ZMX*H7$la*C^%JJWLSmgZ|G8PohsZu6eye3$m@?yS2TuGV~i1!@f>
zm%WdhDse_8G}%BsOw({i`R~x?ST|#-sGE|jFH}hMiW?q_>oI)MwJ>@8uZ`icH&!z|
z6Fg|MXr0Y5gU`w{e%hU>G4H$DU%197{tbs^s&(<5jSoVuZreU{_iSU{vk&vGZ4XV8
zy7kyO;f2jYsWbCG-<#;KZ8+oc_tl0H$qwrc_zlytLKbZl>ir#SsF%=F*K@ITFIU2P
zr5mePX!kQb`^fXGkUwpokn#E%R>ey7XPtr~BAEa4XK=207pmoEw_;^rf9=&-w;rr-
z`+t1X1}EDx$*8Y$szWE*vVGy=t#@8}E8r%>;_jK#`zMx`>^&aQajY~$=Wv|vVTtSM
zofF$P3Snj%uI^V)UzvyRyA}1d+A-I%MsnuW4~qkz8f6){O)c`ddiv`6xkVRNuW_@R
z(J%4&py|p<v(^|&72R7cBN4e%ZSSf5h1oMA??2lyQNF|Y_-*6kq5iMWBp!b<EjpfU
z@n2noZF`yBEEwJ9B(GXn+@EEzpO@`DQ*%9E+dmr#(AKd_t8EPA4WBWG%USH2YO(9A
z-edC$+d~z$OcKg1;T!nZKS&K<-}lJ0o_GDv?*{yHW{AeI9xIu-`<0gVP3?=-Z^c>?
z{W{*B@#(N_7p|@@+*K&R!}loULEId!ISkE~ZNk;npk^iy-@}jxc5}FF?sW=RZ(qTt
z9=3|D{8@48&NP|3N>3lpXwN?M!@uCr4~1(}ch2ANnd@7^RF(~1P8NxK_|<#jkL`Mt
zxMot`nn?^{C+p@I{Cg*(c0E0H73ZIIx6WEU-G6|`$p69dwTH#-)=Yb$8+KUu&gnB}
z?rsw>lb7W?oKqmN?2&;5BU`bL>5S@-W=jUP_5%;>3@T)Jo&~Qu_-9s@L4D(=cG<@t
z-z*n1xqndW=HUR<cF9#wbgoVPsZ$ttP!43RCkM|v=4Som*pCKbp5|em469S@C2C}N
z{1RhdZeQi5<`x#i7UpTib}g?_x=yK?XVKSdAEUCR3S4Jj-Ehw;aqZXBex<j0dZwfw
zULYbhr#nv9;jx&BlxF^ps?aqi4_`$6PoDZ%>*1a7q<cNq7iN5XKd*JF`@0^k{a=^A
z`Ff4BwCq?Pn|!8ANVeSd3p_lZa(<lXXZts~_}$g3y{=QtWA<t#eF{+3J8aHxSd@BY
z5o3L~v1#j6cRpVGi4#8w^G2%k2v1C$aOr`+q|4-MhpsGN|Ky~{!iT55*H6l@Fe^H5
zx-L#s+bwS0PJUiD<x*d*Lbqe=89rxnG`My9??|Sv`L5cxH2EwN*_<$g_uSF6>Vpqh
z9ye_>jJdFleflTf2SNK3W0<z{Pd^}AuKTZ=LHvKMm#M|prcdm8o-u3waE6^cFR|*0
zfb-NjM|T<BpKh@}fgco*DlBZ@8xKy8<+kHbo?4O&iuZ4iolYJvT$sZAI_uTbEt`W>
zx|6HTS4^IHvp^@azG<fAtB6bg3^woj=qS(=A<z?|F9Aww%cRcO?%3(Xz{A&guy%*+
zVbz#f_Pg9ncWibtl`;HupytR7ez7FE?MD}Q$sK%a_)qk;R+-f5CG4wJ8bXDbntvB?
z_nnRix9JJJ)El}<eDxFEI|mZgB_x=$uisq#CZ<+fP~VX2@`bWE3Hi5GI-s5C?;=Y6
z{ROoc%}c(A&#~X~H~OXMjY-zxQma0C?OiAp8|ry=hk@NPsqS<8x4RpP&9VP8E32pM
z|JJNM@-;4|e0%?`$SV1(DzRJP*uuB>y;ij?4zEnGOFF}@dFC-s-@Dz<UZkx%E*%lR
zKBio9^^pdxnI2A4RfGyy&(CYvC1uG_`t{%bdeL=1?d{n@Kkc^)Nxr@~LiPT<U0%yp
zY4dA~EP80`mMDd-Makjxa?;Q4-%HC)``Y@g{{^4Ewd<j6pX9TBy}Bj>B{`YVT5fhf
z&RD&;s^0h1{DDp2jPMN#J#SL_H?HJNs@cZaGh57YeOBp<tBWj-c+5Lwv&+BY)zs@7
zcl{MHejRPBUK5=DEO=&Qp7*_kw099fMQ(8wvejR=|LisQ7kMVC!;#FG`dF-I<6%+f
z;}U;wtkwg!3c)4&qZ!BdCq6r$^eq11negU|8*kX<br>2OFE9U8eZi*hZiejddj`^0
zHL7V(o-h1l^=;LP`Kqn8tm`{J9?$rbcP(%ae=>ot1Z&}%x~%yhnkvr}{%+ZE^+VIu
z4HvDR^&ZV#<NWya6#ls5aiU*0ABp?7OkrI@qJ(XR&5Tl!_lG5#*GX7?TP0t86;wya
z37%1Ybt;+1*uH7z`@?6NEyCIh*SNi9ofX~5qqL~1+OVlgNvU~-X>rpp=R%3=i#H1O
ze%ZxSdEnye5V^xo=B8dtFO2zIX*kU<)yMzf(}~W^-z3CX9A}7r+njPB>SWH7HI;KD
z6qPP@uo<bZuor1B<m>%@L1O8jhc7|{?YFGGn%DJY*7<Hjv#Ex*tkd23c%`rJURw6q
zVpiSZONnMaf6Z2T@K%1GHTTfIrt3#`$oJ0NS6zDK#J6`_@7BaG`jYjleEr)qG6!vz
z)qc+c_21_|ySv&nj8SIwm)+sJ{;I6L@1A>g=FcUMcQ4{g`}%u@kl`n$I`x`OE9R?a
za((6!YcV|hzGbfAw%tiDBo;%%V?B5{z+L9^iz8>|A3d|5>DbAu2_-sZXTZ(Hz_cZh
zhNj2O3$JEH1`D~_{rFP#;_9b=f7s@zgUy^c_l=?1x(12u`s|O>W~|<}GLNZh>kpnI
z4Lh@D&vH9-DrW1W9g8t5OcqChmh4Xd>XO>KANsZ%>zdbXpUO6`D^<#@W^tj(mpK#d
zuI>Bxd)37cy``%PzuWF#EY-iQ*2#2U&fXsjlX5cOSTB@#{km?ex9N)4u2&`A)&!ci
zZGRuw%h<uVx9Lo5n?doW{&(@~8ee~uw`V{0G5(CZ|9abd+8Y&m)|40-FE8M~Fe97)
zg4XXFcbKna9%)LLQQct0<JWLdCYbk`+|>lWhJ%U*JNS9_^;nA?i>YonB-bu+_@;K^
zvl=DV&`;~vU9{~Dz0@4~=|#=gZ?`@@w+M>_8U1EP@ypW{`Jb#0TI@V=_ywn!w8W|u
zv+Bvyk8fV$Q6}Y{%x0j@n^t$#YES?9LZg#szDMy|@0{MNvU%Oi<F{1U4?a+kxWmoX
z-*E6Ge`s@WN0v%2gTzSziIb43PVs8Oz4cOO>e<=q>z*~M-^fW=F==x|cn!D+e4_ts
z_x0;6yM;>ExU7jic5Cl4x3WJjv+P~3q{x~JO<Xqd(u7ahE~3|}EKZ9(JNaSp!OE9c
znM__?{PClQ-M`?$-zozsJ1zESZ~IQIohWNR(b2~wNp^Yo=K>Q0NtYD;cn4#H6PpiC
zabo^|((?POSI1aQ-mo1Mw%j52^yBqJ%Qbg@nrwQke#t|bEAse5&(Fn1Nv17pgbxWn
z`&f~})^>mM!in;{@p@HLT^`q()b$$rrAit-T=isu*Qv+fCq>>3ynb&6BWGILy|p)w
zN1rWU|B{t&%elC;XD*xXUYNttl(?_D6cjG%2NL>LvVqz^><1nQNZes(>u)}|$JNwg
zV~}aZc6pxTm-r6#L>>-MZH@?kwmbZ}=$nIDn*HVL%T%4-CT)HExA1K58<X~#UvsC<
zY-4|P<|DfixS4hLEZ^f)gIo8Rl5bllv<N30v0Nr)^?e1~=i3P%^bCHaC%ib{3_8Ly
zVZDg+49hy1yP@kY{^gD9H;C*1R59($A|dX>Gd#0SKfD+my;?5&^y({ZYue;{y`~2?
z8!osUdOET7%Fgenb}OElBNO8JZRts`mY*x`)<|HM>rRG`eq3_T_E4MpKdkm}YHHZ#
z_1mhPrg~o$Nb~1g=YI0hUZK?&Rz$KK>t*YCcl@}b+f=*So;mmBLvNQn+mO8K)Y`<f
z+S!k#pMSF`-m{m7Cz0>W->NA(-Ugq4$0nCD9$zJYd=<C5dBbAqgBN>ut#cPxf84mj
z_8p`0n}_;w%V#;=epz`bccWyT$(!1s)<}czuLF1eQB1RYA*C&guJ^b^T)%RK?YD=b
zTc$so!RS9De9G>(Z5ytB*im|C(d^?@-i6X<GisQ7FWvb0{nmtL?TB4>+Gq0bI_7nJ
z<E!HvUmd#0`{0FJLCNBEuMOL-Kjw(*udQJHfB((To5EMG3rnU5tle67b7kIUscX^d
zYt|arYv1ZRwZiE!pNU<wVOXl9QDRn60jsy<`>XS`W>{-kf7`sI?}WRQU}W)^>=VB>
z|NnJ{Q|+s3>Xk(sMSA;VRoe`_p~~Os&#~6h{<b+~#)<hx9cuowk1t;@AgO78G2j`C
z5l@g**Ts%ShE2zM<{dl~dh(#CPU@cPd0f3BQay`L|J=Da&CgNC-&+1yX~vz-V`=)2
z)ij<w;F_lQJ@Hxdx{a3#*ZeA6v#X$l*<zQV%-t2Qt9l-OwP?DYEFX7Ja*w`e@mF1W
zo){MUS5YkcpY*f_^G=*FS0<)^(o^plKX>EO-gEu2@1Cars?~Kb|0`d)yY;~z_?Q-`
z1@mU>mzkh3El>+4HOxRKRQai#YT~jd52~i<$j7vtsedQ8y4xb`u|e2#p@bg3#=>73
zJ@2ZkKUDqsasFYI&E16(@84JPtbg$N=|+k5SjMe5nhHv5u58+tS8;yE;#BaU)qS=2
z^76+SKXx3>{HG)l|EniUXK(S+tSvR~*m@G@g!Jr|vVRrYv$a(HoAdg<(v`<DzH?rk
zVb{O3+)*x)H}P4D{9S8%&g;ps#u8EW`>G=)D%KxqGT8L+_pR%uizfcByOJ02XM4QL
zq7U`^Q_R==JLjeJSiXK%*uJv!y{kT+>5>k4Jd^eM>SNb?xvoZdS1nDta{1=cu7wvR
z_h$wCslB>j^ZM0nbN{W&3ix6DxGT|tCw;wG%|A7zUk_v>lXAs$e%Ol%FXh`mJul*C
zr2WOE%rAptKKy)Ims&FYU*1utqY<UQ*Uz0AvrFf1ti<Zj?T;fIRmEB+%6?w2nDmXw
zVW0V#zb)2pY8Oc-?LBj5&OO}^j>W$d+7rzzc;2x#3nv&H4{6@%ZaRZGp#a>?IDRnU
z-a4r>-&e35pLV8Z4U6Lpsn30n#Md0|&9U>YSbX(E)6awlJ4)Yl&+g}IPc%*82`+@U
zfL9%qVQ6+vD3F)1;bZ$eA<JO@TB$Sf-|W(w6n1<N7L;^Zdu`+2mpKL<9k1T9^1n(?
zSYjg`-g$86yQz*YTUdI(H1RemoMEj07R=%(u<4OHs4cQ4`S<0U3j_sw=a}{jD;pd9
znb*7e$cLx9!leW+x|+Co3be>1>@(?Dc0aN#rTY7=ynS+o5;yPd-8TEZ_Z-;h*3}u`
z?q=`)xsRpi<-NVzqGz7o9qxF7GrBa*Zf4}ql#{2=oROVr{pQ=<Gi$83$=uk*-qWWb
zp<aFP0(#)EHupCkl<f{>PPV94<v1ksA<#Se?}fPMGShh18ic=Hw`^jEQTSW#gdNXT
zt<4VWop%0igJHtDTg#U5_iMOC@3jigb=HP7PV5#+U4Fi?MEFT#8`kuzz|r*J*z|ud
z-|6-)UijQdx;?9Z-FoSJAIqLyX;Y8Re6Uht>KsK5C%%o}ves<sKf9MPc!znynXS8%
zFG@ElJekmR!~D;zH@^E0eU9L4GBCBCdDFw_^)<G`w^WKRB|HmXEBr3`S<0lD?{)JY
z^IzCt&+0gX``a(oUKh>%ZXp}b*u-s{;PH8R$1EfD3Ckv43g~fTmiqQyy-DE=>+eV-
zuOle}6Zh_67nD5WqC8XB$F1v>MfWiYsp*~qEjyF#y`5a7GF={Wey*^A)TEQ2Jx^J(
zqKDIjZ{f$=l0B0YIE-Cir$DR71lY(-`p&Iadd_Tr)THpFVO6eGae48wg_dX5<gY$s
zvgP>9$NW>~DRMaFU7Qxak~j3U>DGnYwwdr^4*xj{v|L&$wa@75)oZIhZ{PCtsvNJq
z)Q_!e)^B4=J|MpH>glU%`-(5DUel()vHAHmgU$QS7Ao5dr1x!4?^`|Z+RVd!C*!y8
z<8k{Posd(_-c!KTV{tsh`MKQHggR-Sd#r5#WqAHp8h{qeFAWDJ)Z(tn^t7&@mUE`u
z>z;h6Ibp_cPV40xzdthh#v*aXaL$i=&BFIV*=qTz?+-(Me)OB8wI5RF?+AW&f!oQ?
zAm6g?j#bXZv+14pl1yz9^Gwc>GH`J4_YBUa2Z#JqCOB@nXB8KnSQoY>lK1sm;cHR<
z(--W@Wpg{VIWd5X_nhl`u?2<PQoY8qT8;wC5)X1JdHp;YmtFa>lk;<0bdsrxzlz^4
z*c24!u0Qj#E<6=p<@nrh1zW7$YAF}-bJ}jF>L0cw3G~hn;N4Z?WSa4%C2L7f>ng`7
z0lbU2S3O+bYAmO{Fz4f1o78^+`|o7EG=3m*HYehT=Ib9qQu2}7&(=icn0|@hS>_hD
z=Xiv}I#>Sl4;QuX-SHw(V7e#IBcsl}JA58>WG5cwmlO-@d2pzUF{aC~#oO@P!=RqW
z>yApd7koVScSptIH5WBfj=ql)`I5XY_)Nc2<SG;G%^it*^$T^5<?KU{GAxI43iR&Z
z;bv2p5U=Tb*mT}@$Ae;q=^cCzg)Y|aaQU($JMbm*jul^mR~=j_YAg}4@XW{EV%p#R
zOS1}f7S5A>ZwT)1=lm=H_4jY6JTfpYPOoB|u<D$G#6|^)m2p^xbbbis#R|qQmbw$U
zP^wR&$v||b{_i!rW>tBMgvajWSuLc!e&s~b_l8^MiXU^|E$3ao+i|(I*xdU1>&`R(
zM_;`gU-<9BxBS?R{gWx_#5YZl4Ubh^w`<laq4hDr%G&pmF=ur^B1^r~gw9>sE#-dr
zxa|Lx;Q1ZH<13}3GZapQ6tyX&91jim(90?h7M7Tw%kX%atH9#0c8Tss0?L(K)mx2C
zedU&!O}ELjKYHfZwKJUeugv@zk~Z!3B=Z?Ft*1?yqsVcy@TzD~YiX&pRQyq|I}caI
z%4Tnu&)&|x+P2}U+`+8=UGMr|Z(jDB<6dBVV3NW7sI^BD-fj4QrC%!P*^^&i?#<wz
zbsRpkv;GKA<qD9AS4%67Esp5if5gkCW2(gqY=*u$KS}&!AJ-#U(IeKcmVe{apK)Af
zyMISCuYLrt^xEWm5qFMRne4N<JAsQyFm~y>sE<9@HwrOFbh2+OV~^dsI{EFl<gMk2
zTiG|<Qm&|XiT!?@XP#<>JL|_jtDf%<R{VY5w>CvjEGR#BYjm)`ONzkOG{1m)4Zg=!
zCSi*L-J2%xhO7GRd{t3+NB-tVx#Uy!bH!L3KQ#Q+kyN<U(cyM(*6~h3C8gdB1xN?|
z`GpGp-aw(2oE=()r~a4f_x)D3zL$Js$35MxvyWf=B0UW>ZL@ujYu1U~;fmIl72j{w
z31}PM-hI97b8TnPZqS5{`TglDuFiX0zW$o5=mBf+9S!y;Uwsb*Rc$YSl&x%z{A;($
zg~#zk-|BS}wAQS?eW5}^yKwjFveGqo>(<=WTl0+}teR!D?W<k(dur8dCS85sa@P9P
z$GID3{!BU^v(?vESuoYj3tY$bOyOO-Zl<YfB8O91Olj+rMP=se7#@FnnsA4w_^R1e
zUx%Kf=?ZM%+U=A7y=SXV%3_^U4EXkAi~IHKyzeWlFBd&72UTSe%MuTpOSwCrPkqLd
z9sj@fYQ~RaR#$iYo_9a6*ZsELLMi`kaeo2~x0!sK8_@H$bpNfTQdhn%%IYcGw?gXh
z?e8m&F&t@#b9@F%`k&%DKPRRft?uzldnWRZQL6YYV^pgA?COSPke+iu`$0~F8Of^-
z-dQYlrV*-Ql~j#nxlYf{Zw#%mg29{ES4@z-!)!7wmp@=l?3%J;S@ZKjdFjNxC)&%T
z0~{45?LC<;(mZ1_oALfE*?Y&ITg*&(R=u`u?w!+alOnhO+Y>PRiGqX-OLO(X2Z9C`
zKNn_g5De^HBFLaD$)tP}-1)OvB6a3>sPboju0vCPY+UyPT%MK0?&MkHBCB0!*SqG7
zQrmoRCA>yhs?+1LN2bS5(?wmW&pvKytu*?RQ4m+Pm4WxSp*BbG<5jC$E80TcD|g!$
zWrI8}{l|sP@M1@)Q<W*dJ2Pm~<rAw3bF+=KkEY3o`E!cbugi;3b3D<udR@%x=`kku
z&jLC>XQrfz8U6uP-HNYUJ}miZDY;R~=^7`v9yek>{Ql;J6a8)a;(NUoeYBH0{H{=h
z<v?iX<BDUVpOf3JzWe*{#9C0{rlxTabX`=pZm#M5z00P%T(GL1IaBy-nRBrcN88VL
zR}%{mqot^AMX{?7j(A;taCc_-mnH*NyEUs<iW_B?-3?5*G4)1`Z||Cle#f(kX|>U*
z&+b<!oRg_nD31BM<=maQf-8O!(*xGnE7bBPA$DiM)v4dT=J10eQy|pr!1riV(^nh!
zGwynDcSV8Zhf|mD2Q(T!5O1^jaw=74;?--X<mz?zgvCb8Uc2tXjDBk^{;TtvZ7>If
zT9}R)mb)VQzvsE*bHBD|O<$!rMZPt%Gc@Ch4%1^d=A@b$nWT`HpXaz=HJfYsW=2I3
zXy#;E<eUR@R$Yo?YYV7*vT&W&#fa8pf7eNf8@SmYdvPd^bwjw|o6sv$-32~ZuzlXa
zZXD0qmMs*mb}VFap0%z2WnHtw{cU^wR|VKrtY00PVbgQ0JEF7N@Yn+Fw!W>mA&Xcx
z+)|$54q7;KPu|_&bM1_ud3zSuH6?%TsQuGYdFF1J^Np;EJ63rY&nE9(x}!JEWMAX4
z`;!9lD%P(yzsRvr@PL<1haqSo&YHW>r4m==z@w(eKK!$Q3`JJB%O2a<b#rnGMlX2l
zvmN1EM5hL}9+S<eVM|`4wD8OfSJiEc7N#1fg}z<cw0rR~6R}(8Cs`>$rx+%DP5=LO
zrm)Ye?o%sVlQpH}cYE<H+@o>k)>=iSddF|CUbX$zkyQJ%oM+L=%g;W()OK+@<!>^@
zvXQ5GN?Vf2qKuve52K#CX_Te~h9CQL1=0;R{1J7x*^G7Lg10pi*B2J5OU?GwFyC|i
z>i3I3Sf#2r3h^iPfEN8^Z-<U7Zgqz&1=(ZYm+<Vj!Doegf$arr_?EhVeidyev13W?
zm90x^PfD(vYSTLDc=gnfMH{7h&qj1w8ywrcPQvP19(27@R)2zAV7OdzMZL_iGxv|2
zi9ciwUh!en-EwE|&P<gr%+H_MynfYQXL469W@#43)8jQ)rv5iHnD$pxDn6Fe(C(*a
zN8nDTB%f;z>-CJkygKB5WA%a06OP-nDfaKT<gK)s{%OKato?_8tRE{NwYvN1V`5Sq
zR@1C@zI%7<;)lZa%YR%A_I;7O8d3G!>uSc&JG>HyEmlgDo7P=fEs_1&?@fE0?CYT3
zi|>S28P>{qzi+bHB<1w;;a;yJ8-6Z3cV@ZK<~!5&96EDn;?1__-~7_9$yUqN74u8v
zvmCUz%H1}Pq1h5N6#~oL`Vx2e*~)doczYW627MAZ)lwP|zU%RMjZI;l-*;(69-iYZ
zzge8&)852)>UR?TJ90a|8W|T?z2DD%_HDCl+sy|CJH)XJZOXAXSMJU-xW8CR;_yZ7
zg)tQzue$o3V+%`8X>EMX)w}ZbsubSWk%#mn+NE#SO#9%r`XTG*g9i$K&+j3&&w8J^
z+1}Tw@}s~NQTg^=k3_DC-d`yd(HXHj;_cFmADtaMi^5hP{8wTo;o|c3+b7nq#s)#4
ze(8gl@23=$qMD8snMiqnQ<#=X)+Wi~^>+`Mt!qEq&gv+T);hn#Ls@D=-&_CmW;Yj;
zqH8vOJ!cMls5V<Cba?vfxJ(xp@ryq=dNnwowte4a)#|1++wl7>-JHjBzV1``oVQXL
z+yMC6aTq$Z{>Wt0p6cB6G`<GIx4W;GrKQQSC+{j>|90J($g?pT;>#+(XN8`04-V^m
z&6{#<msVu+wpV9rE`2<E{`8qw=JvZI|2|89EoWf$!TRCk4|6|+*)p=#sn-bY6TY{~
znEgP&eqp<lugVXB+7oPTpXPq>Ji~1KzTr%(QKIaXsh_PMt_gj#cb(T&SVtJtNFcK#
zJn^c)DgO7NO4$3u0iP_s-MV$jLaOTAPWJP^c0H8slP#5+cVup(*Aao1pDSGcCnxME
zfBx&1uE68qwF1oFZ{1pS-D$m^;1@24z8{KDJ_ZFCCahlz>QSc$uQH5%c1^B5^xMXr
zm*cs<v-RvObJeMG7T9w=R295>Yw8Z><UOyu7J}M@>p^QA*L;Jn1pMxv|IOCnW8WcL
zhve)xk70f7rj||a-_*`Oy!Qms-JVss#@7fkX8zDF%};IS&wG!|{xR_W4%UcI3k+w@
zka19Mm|7tKo;ixxU3+77?TyuYBi<%LmS9xW%Rm+!?pe(DIHLE~>**#!OaH(ZU!0w<
zlyz#3!z?#1XG1C8j2q|U7uL*ljm`WVyt~fiPsR^}w)atYo4;*NnbL7mL8<yDlaf(K
zr<;-bj2@Axg<`#iCVG<t-if5WRqN0Qov?S;u0;GD_h_M0b0b3@F-W<YC5K&or@zBG
z%j<EM?W`zuV`KGMZ`+=+7#qL8_NHy^GwEq-m!_S#<bFu!RhFm}|Kg8IVUM7zDc*id
zMhnT~;AJNJq~EWQe;kpz@5aho%Z$sHvo3mOuzBBFqstfM()-fI0<|Qa1wI9aPt924
z^0+R%hg)K?d~!+RdZrtzIlgJVI;GrDY13SJhuQ7B*O@&@ug-LCc^bMTU~5dUbXNA&
z$3ccH3k|d`riLsEY<6QlmT^GB)bjn*JAs&^*sgA-H3uKBUK{#6KlAizTd6ve58f*A
zxxB|3*3VrveRZ_#^9A9NypAW_W2bggw&p>5p-<+SKN(>sSNSxr_S$nj^rpnKmK*2J
zwA?7R*tlI>eJT4vgYUv+e!JctU3mc1Shd)=on3t&Xzsv|_1)o>2OiJ0*jV13Rgkna
zt6=$=h5FTUhd3X<KliuaEM{uNuePn`miBqF+g?1|?2^AxYMz0))bqS(4sh9LW`TRW
zPV;I)ov-PP{SHnuKf?>YsdcNf5>%7kCT*R*=%KpN35BS9+4WnO-3*5fHSB*Avi<A<
zk4iHhuZ0J9zPQR{lIM8%Blo(1WoH)Mdhf8<Xtv>U>s1^*TJ{s&>=sqMZn3Jakma?z
z)Nx`~VZ1YFa^|73z0?o?b34Ps&BZ1Le5+W$I_kWeT-NptJVdP^5I-gQzVvHjdh)&Z
zD=N*-MZEWx@jgBaiDWxyAU&u1?6;<aoX1#mlXoo0<=6Wmb6{zW^A46gdA&yKcTs=7
zGwA*MJteCki<L9=ob!%=PlYiWHxKNxs+^l8a$D%tPXq9PfDU2-0BAs<u^In>fZkbo
z_<(@Z&LaD~2OET6acK)?Pv2N}`qGEY{&lP6e@#q&JSVlDRhl99$K_=cFYwFE{#^6-
zd&uKsYhNdvUQk`<ZYuZpkMF9FcdvEJYaM&GEPj4KPwChFw^(lrmF`_3rTqWfqAZ@b
zHx^4V3ouu)&g4$@y6W=m`EGOb-j;dAc{;4168h9J0nAn_i=%+ov@`K{^!I{SbAFs3
zb?qAO`@%B@-*a;oHYx<4lxzx+n7X3`>mb0@S|$0)CG%BR|9^hGbCUjFmD)qs|CKNX
z{;_s{`}pYp&)hC0ANI#;nK}y;1%zL{&;IywJ^Qixf5sgj?cW`d*eZ2o#}<*Q(kjU>
zTDKVXO08_S(bGR<bF7}Fa!wVS(f{wu6+g@GTPF4K|F3L`)$eZ{=QS)Ys;yGr&wlpt
zjoxb;-}7!>csM-in2^vZx%Z`Ck7xX0mI99p5NxKh;+uz8nPR<p#cDYdz6C_Ld8M|B
zXXL3Gfd;gXa=ZdH46dEwe8qn>F{b~Rm&v8qMjWZ9b+igsrY}}_-yb9OD(QWb0>|dV
zb<=nvv}Z!bv_We-9iFj#ZGU8NZsA8csl{Mt95Foa=6Fwjr%6uC`)Rk%KF;{X>)n3S
z;Op%bN~TZlt~Ti2wM)Kt&HK39{7F4I@8fQt{jTb@epx+e1YAGx^NeqISI-13;+s{z
z{#pcU!J13&<6eH7d}hsZ@ipqVRvCXjdFGV5w-s!>#&X5#qZxPFjvbar-mTr%XZQ=U
z?CqOYQ>9C6<q^YvzcYU#&-~Gz@iWW7O3eD%s@yE8P7ULrTd&%`S*0(@$tXR$Mw8Q7
zfNQbP^t>3xV{cC%+#&gFRqm?U4HDhw9e6-<>zOKR&V)|3_QIMHPqaa&(_fZdx%r{@
z*u@LQ=k{)^i#L_p_wZh}x2at2@0Ki^&g$G;==AxNz1yVb9of5Wn@JzqIDpg4MQ^rl
zU0P`JWliyV-4#ObOGC}v)QyX|zBBah{Kl|$Q~z08hu|IT8E3Y#uQ>bwG*Wvt;awo_
zGY6=OP+p{|bIqH~AqDRlxk_87c5FQzu{$*rGzj3KQJj+h>CPM9b8}2){0x2l!OrgZ
zNfqP!*`{xv#F<Sxvnx$5d$J5mb8|w0zJv`Eo4S1nubI-Si6%@5D$WTizYjbpG?>vI
z(p<SeE9IZ(!kkKI1D5M`*Z%<1i0`Z0Rtp)jUCa9@U8e-9={Nahs3`d=FI9Ycy+do-
z%;U%t;ct$w2{=}<e)Vh{>CbiUXEzr%&p)A{CbiMeWBs#-83{%mC*t-sq$Ny9Z`N#u
zE!#S+GR5}Z>sM>imHD?uN3_lNQ0~<Lt+6z*S62>mK4GPpv-h=JKe$zD@@etI)2{0$
zW$fucX2ALMoX)Dh0#a3G$$sS_f)c`0zytWUYogDRH}_qhc9nIZ56JuXTX#K*jR?;G
z)iu+aA)WnSvx62PPj^c;&ce5-kPW`55K9H?5_;M+XvNyl{;f|#vz)^Y_q#1Uz2cxm
zL2$Tkd+OTf_g24YQ+Tp?9oCYPOFFl5>#YFZc+Q_$*;hMbmnLyIC59|IePDfRt!aiy
zLJwO{pz;06klf2N5BGJdZ*QCVHMj45|Lw<TK7PAo%%Uh?8rpeG%j8}8(H#wjzYN_#
zyAAesC9Gex&ZcR`apM`sZD;)SGKiUc!^m(Md^-D+c9%i-uBg^yhcotcOx+<4Z6`w4
zEv>c%XU(36e+!{|VXR-NTZHxBIPO2=_?=wymbGoi*FF}zYjZ8S>vo3Q<8DZd`<ggq
zuxuczzgxH_>6^>fuP$toF4=42%U0c9)AscmXSVj4^Ih8(8LhgogSmIMr$%{NVCUM5
zjGH}?q1CG%yj!8!+seJBP5XF9t&59kppw$Ae-eU%zcn)FZul|d>)}b2CXe0+obq@1
zV)*&}tm%84U8a0mem%frU-I9CGq)yu_4ev*oxini$Bq0tz0LnC@_%gk`BQWE0ls*}
zMUhwYeApi!GBnVWZO)RnW-~k&dr0CWYnP)*5l>a=Ly0f1E;VFb*m>VUPW*h5T$Spb
zX654wpSzDMeD*&6V4dvIjb8c(VrQH_z}Zy(Y-t($1&anZ2GEUwkQG+^)m!<iw~Bw}
zNS2e|@k!$FnSMyWzwc_I%<3;mo~=7=)+(H7`nlrn`^6u*O}-`dG)q92PD9$XXOtoF
zk@yTe!cr-4{FOl8)V)?$LJ$K6alDQn&edGWgLE(qiQFDybid;sbg&@I8a7z)Igz8O
zoNIB}#Sivu$2RSEdc0a&@tC?jr=eE3L(fU67gtl;;$nYrREt)~efn`+;mJqy<%<2!
zgH|b)uf;ZA;1v0A@wBa_hpUgt=z=E!X12Y4mnXw3Uv6<Wp5?Lk{J`F&<?BKqGnze<
zy9&b}yYKDVxb5B9$(zr3YNYSGvG&^4jPIPs>vJQc&HsG+d1mA4Ths5cUY+;#pTOZ~
zv#pHhpE^?%{fW!C`1quf!*A!FS(9HXQGK97nd8{XID;>ULio6cfX!#QE28oZyB^gC
zYES&hp73J!L5o(lV+U^O`h&&`c3-smLfm-4g!E1W?R(9;9_6jj=36oK#2$GbJ3cn|
zg9ju){rJ?xi1R{q2d(a$c(%F4Jc?I;20vTh?f)rvYDz44Rx2jY=t8O-DyMO5eq_5s
z`(4|vM-5S(XMP`i@HnA>i|3hjD08yGu>)~a7d%u~GU|w0%l7;7%>)6#tI^S&*RGrg
zwTssY9sXE<hUFl0@v6I$QmZelI9c2C$Y@<V?*RhC0nTEjVrj?cWR<ra(=-v<*&i5l
z%<^@u=d-&(?%P1yHeL(1PkalW*gle(Qu+PXIi2_3Es=(I!NUN2E2dh!-5q}ULH~gn
z&v;XIzwXl#C%W&ib)S=a^JCi;+E1+?uKh8$fPM3?xgR{k_6wKYm6xrkpL68*;uv1}
zt?>1AT*X)4fm#H`SNAcrWv{!nD-ANT#0+XF{QA(5wB_pQ7}G?t6~$N0OnY0V?##;l
z>Rdgi`09pR)AO3L&R5lUD1xS?Fgj&ZZ2G`;eA~R@cLz7`%d2QlcAwj(UYNe1(tzcl
zb!*`6j34sMhxb}vzn<49F+ZzSV#oDsVtd7^N;?;XZ@7MK+OdlV_!ax7H+3<B+72?j
zwzGqJUm9)yW&xTupZhNeJZ-L>L~Pc)H@lWUKt}rxv&pt&cGLErY@OuzO>O_O>dEg@
z(v(lG$$qxc>?EW~(DHkRC1_UQ`9%Si_h-D{@+~N2=w$#MSPdFUeG@AGEld7emi{xr
zV>WgL==%#7<DQM5Q0^?S$5?;s>a*wnK6F3a-^QQ(W8Kx*Y<q9F&KW#Po2Kh4C^gT>
zP$_OYdBR4j>A~DXEAHNrSlRUE>Q&y~kwQwKm2OD8DnK><=L`;Lp=eMfuk7?>|FiE8
zdV0058D`Esb7oG)HtAWyXU^=2-YmUsR(`~`bITPuHYeC+m5WM&diTU^(lqP~ebzk}
zJgpz4ki}>G`nHxa@7uy>6={M?D-Br^#Y9}*h7r3ZB3@NT<?Z?w)o^jWkpAa~1zO(x
zc&&A%?G&5FmRV8;Qd(Er4w-0Oi0C?I)KkcOY=_<Ry{EFUq%GE#X@5l=H6m(eZED>M
zTCVo<eU!7&N|TWL1(7{_B%1=Z=v>+!n%Z~k@fml}u7=ws&#ub|Z_eX2etn<$u&JT;
z9xk39!Q&E%J%Q8O6hsWWXINi7dFQZ2;vQ-B9`*wd{#qpdxx4d!BF8ZeW@mw}nXYI4
z?D$&TooDC$MQrs$&a||5&+>l1F)%g;sZID$Xkfw0_Imp&wqpn448N^n;hn*)&2hBV
zam&45g=<aw_bob`6#<^;zxK;@@2<01CmIXcrKW<)1h=U+-YtucxrgNcjY!{aDOIyX
zFmP>UjI&ErU(c<|j=+>Qu)M!X%3li~mo`VQX8TkD->B|Y^Y=NWEGbH^G2l1sI&I<H
z6mUeRNcV?L54URhW2cjhF&dTjdQ)m-#J$X7y1n9;OR;Wy@ypbZW#Np-BWyXx4P;v1
zO6;<}TyL14cYK4mc|irYdBF`%wqprB2PGEE@XlPVCSrW+)bTiP`8jo|7k_^L|9AEB
zOT2euxzEY}dVc)UYIe19&~o-)@v^Hnz790lR&TvhN+S8Xb4JbUE-Y&dn-n;lUOqZq
z*QFq0;r%`fR5zJyS+iF9p7AuxZ{QBA_@0d`IeX5VH56V}>Ihuz+~Zo<G0~=V?<>2B
z_ib1fdh7(P67QRvynm(f=apx8&Z_1c7?<muT)t7F_x6P!TE}iY>{^)I1D)a6+XWuF
zFFf=3zQN~o!_Vszo~=IkBEqLB;EBnRGxj{5@11@wsFc}#(dygYM6;3~Md^PGrT#Y@
z(>FZkh<ERhO-Himk&VAJIh`hcZi+lDv%RmjaP>ph)rpHs&qx=ie?coIpfd?J;HA#+
zozLurYe0j7r)DubZM^K2A|QD6Hh1O~@B*uu!dK*r5_IOaOSq<;*z6+E5~FZlXyFaX
z4gc=cqOS0MazJ7>NEL_E#>Z9qxANrNFXyvcpJ`ipe@T`3J9p*RyRUz1mVk^m*LGf7
z{qjC|Rn--YCEVJT-?c>Sx6e=cy8FsnE93bkHRo?0TvIoFR&}zW)b@oR4UXM-hb?Fq
z3meyq8UN>!PzNo!k9f9<^XU0Y;5lcrQ1F~{&MMxu>mn0dGjj0tDNonRVbmL-4DYlu
z@W5y9f9qe|p4r@{9=-DQ(THUaK?|zp>Px*$etYq2>0!|9@qyrkmU+y{?aFNdH6ed9
z*h5Y(+~1!4@7n*i?0=8!u1frveR-8&mDy4$iNn#cQ+oq<*vxMF%kFG=qkhBs&8O_l
z%60aDR$5<M(U#rs?9Q{0Bl1Xu>fs30yAi7EY#qvXeq&$-H4zee0{h$;KkK~fmN`^A
z@ppmx)57b1r`QYBpDqt+4%YrOuVaFJO8%!qhFmk!XU1=>+tWXD@=1Zud&3U<rI}5t
zT@(FVF?;eE&*tL?6Xb$;pZ#4m@uzxgQi@>mR37-omF9!T4?YmNCi;J2)`oZCyy2=z
zJa0ljO0({H#vp7OX>W#DOnv&y<5ccWllm;SV@xKX9^{lWPi9rGpY-OK?`MI<J9?zK
zen%Q5{k6#2ZYec`M`@FIsDe^**|Dd8zQoOtf40&q=GaY8(c;Ev@BPO`@%3@oj4@~e
z89Zm4WV&D?XvuWj=h>|j;@1_O-5Y*Vr^h+t1*phs`x-dG=JamU-_O^cIiu*Ozk5Nc
zk@0s`$T;$63yCw)A<e?tq0QyuAGSYo3KKI7JBhUM>5rbo9`4s%peZFS_Qef9cjr!>
z+5FAo^E%L~=-VaF=38FM;4^-GzFE+Hu{3Ww&%z%OOOmI`9L@gcUvYMSd*~<mgD>J(
z*^Ye(3r|fJ(fd%pKP&rca;{~~##qpx@g8ZXjSpvkHWgQHZ&LuJBb3Ay&>-?>`XYEu
zakKMqc(kpdyR$~wv&CNPIs;qX&MFz?nJ65CEOUNeDWU{f<!p5ZvdTI7EohZ<tzKKe
zn=|fHE6j<U?_GF5FxdCa+b=ev6<N;DE{I!y4ph}kCcX*=os$r9!6xzBB$V~er+q-v
zy)*uswCtJGu5~hRPp2CPaw`R2@pF{x$NQGf4BLs0;1duwz)wK<ym?VB*J7?->kB(9
z_iJ)groRg{;$AGutNY#XR!7j!bIRq%4jrnSc17@~hqBV^_Y7Gb9?J58wa-{4|I+M<
zGMTn$qlSH~__N-f;hqnr{()L9y@%?i@d*D6X1lm#YrqfGIp3GP8d80KZ?!H`;SZg3
z*Wj7rG0{aLQko_b$p!zaOG_7TIC)rT$MuC9mEK2k{Cqk~XUZQE_y22!tlKBp+Q|LZ
zJ(l}zwLwc#y4@<4UN4g{yqkFc7^MAEOZz9(cU3vT<+{i(^F`(Pc~YEz5A0;Tu<O@C
zc}p{fT_1PvV4RQ+NjuN-e#kQ?-;7`Q@#<88$CKx`NKDmMIF`cu<&}{$WUsLef90QK
zflmS3<Zs_G5vtN#DplmpiIO;>$#se-tIhtDuN#u9cIPK^%f2qsIk4%=x?>mL3HM!&
z295DDCM$5b{rF+h7Eq(}LwV1${Wqtt^}1)bUh3W|m!6e8_vLGg83Vu6?@2cg`F~VR
z>DKq}kIN39`d=g+Sae(e@+tYhahtPj3NP!f`gr}y0;&6Zg4RmCe)&k~XvPBm>6*uw
ztag974H^Z$|6l2%yYv6AlkRT#_1j#a_s`}2%g6rjEoBV+vVSGp-&eP%iz@&8-&m+7
zy!cn=*Q{rU&aA9j>9}^1{SV_6tJU8{FojO~#S(HdKfh7y=HKr(A7z#I%kP_Dw<A|F
zQ0w38FD`5PYq!mMaq8s#W&ZnjUiH87jeEtU`f9JWtDk&czl3*<(CT#ygqE*f{mJmm
z&MzCK*E-*qem-O7&cpv&mnvR6edf%|z5nH&C`hC=AAW#sJs)U`=G#>VYx=Vic-+^s
z@c&_N)3SUmb@y_Fs%?ZS;~qKtQ{M6O4`%O^r^)1VQ@WW!$jQhx+MgpI?P&tpxMq@#
zt@j46Z_cqF3s-3SCB}Z7yQ*<&$JXwvab0cmJCF|;$k&e#uxD0&dUJ;t&$-g|JW7jH
zGj!Y+H?~Ah*sgVw*>c6|(2Of7#?Rt*x8}yg-*`QpqbWe=M`wr0BF5J@{*{<zxVR{%
zpM8Af1P{;t^v7C;H9Ox;b#o~Z?CrnMG0A}YQ<!R{0()sGSFej%^1H3kHwg4g&&V(&
z-vaIbI%C6ktmJ*%?bw-{XYG8zSo8f>-8Iu)k&xxuQ(jM8{#~`=Ea>0?%qeT5&7V$A
znm%);^|U3@dH2trsjBL%UbMFQzzdG1!cF2lwrE>y;|zXCNZi>NVQRqk&FiG|3`_5V
z68Xa3cbRJ@$?cJ2+#~n1a+*!!^*`(Z;lI+-*KY~|tw#tw?5+#yn9em0GTXAsIB4DO
z)tM@f<{ZBChZVGBV#eW3>mp5~?8=#s8Te@(TLxLy{kQY)1?^JMD({IOAbSR8EA+2{
z?Be?6pSpU|Rr7;i7dY7Mih6n@S&tp}40noJ<-NV2aqBt7{PVt+9=4XTer00QY0W%!
zh2oh;rJZuu7p?o#-}vy}+}GLL9eVt?I`Q1e&hC!m-n+}?g7%H<Z12Yz585Xj_jWwm
z0PQsUt~^#UGrC$P?B?-je)XDnqz#_k65aTur&Z<5ESs4A8iVg~q2RSE63OhxDz1xy
zjsid*&)R$QJHye9(8=!XP5VD@HHfL6e800TnQ7~Ti8V0?Z4{~}KQGSzH1|x7%FNQU
zHrLc<f)~ckEs!@>pM0h!zfiiq;n@9!6C>yQfAEr9mtc3oF_sstol9<aH~_Rb{cFaP
zjcwlZY+?@DloqcmU3%94?XQa;Ajc1s^4~f?DNsqRx#P`K?heq%_{lj5MnNIRB2A86
z*ikT5;*ieC!=h(`&AS(r3A;?uIuRFpcf)*DMWtSoMH{}FPk|jjU}CSX?3(Jcppc{2
zt|xJQk#dDPf4G7ClLbQT7YsH@ZeCSZfADT#uvGY)i&w2?&a}LkV{W2819XAB`9J8a
z_>YSl#Onpq9Oc#}$enOpAGYwLfs}qy&tAMEi9hpXRwGT0Tk9nh&xpJqHZwD$-}tz3
zx5m_Uif0-h?U4IS(ggX3sdZP2DtIHKSIbRb12MogsB>z@l?4|Y45bX*e9u)+y^3X~
zhO0a4N7M1}=+$|#%XQa(%lL8efd0gqt)>#p`^r|ut;;K&(;Qc6-ZFD?zgDDA<?~rr
zLOZ1(!{O3D8!d|W*cOA9?a7q+<n8>5XWia&jGb#~*I)c&TkkHh-ko8+d)>FUyV=)U
z`kmogU-V7Oduqk{)ssxmaBiGClXK(qf~0(XKXbmO#CPg%=9Jv-4sHZ(<0weV=l9D5
z?Twtnb*DYJ@wjzi(tGHlLqB_ozF2`)$<1u)J^V?rGk<eh!*+-J|K?1d`sO(GCfEOq
z@a%15IS<_c`E2u%O4jNPUQ7|Hl~vOcroL(4_2_Xx_?$z#F6D>vg0@4h`4(jI2Q&u%
zdhO$_*GztQL5`V<dOdyat8J1Jn&;abHBBtU_eM1w)6KZkW+=1&0hh5ld+4EX<4=x!
ztN!wtXl<4(-nF>vz>27XDIGy|m(~i4$<8(SKl$&i>_-`YuGc9onx!Eq7+XI@PcE2u
zS4D_v#*-CU7mm2Eax8h-leFYd=i)BMl8-C0F0?LQ<*3}2wIql;r1{03ECJP!!~Wa{
z6e<{11x%yst!w{v{M@<c<gc^e_x7JTZ>rt5?26XR6-~Pqc`xsrl0EN$*3J@<RW9+*
zdkSS|PQUO=`Fqz^mnl{cY-cb08~9qi)?QGswnSvrlQ%3OoXN3**F<CMqYO26H%^Us
zbFArV%8x%T-#R~DP4?!!)Nw9?_t-1t?4UIlms~A)Hkn&^ei*M;O_XVe{bDJTsKrt#
zbK=%XOt}=U-S*IWca&*H&ep6C2bPB(whvq?CB?hC%}qR{Im29Hlf<Oi`+pc0uPOVN
z{`m)Yec^J;u<w8G<or0dJbZGLs(AK-buWBmLr#i@Ppx5Fr6O2x?1%88_<FC!Cta`Y
z-;k~-DeS!`{qrU7Z~pmv99>-a_i}|6E#h3&QvdeFR7a`67}E@+by6);Jt8_MM|8U8
z9a)QXh5_U}15!>hC{>qG7oW)RhrmGw#S`ygu3o5&e6o8o>iGqvEnkp0d{g^inquG8
zT#K;&B@4X%T{Ydce4|&@1}~-xTPM(dubq|C?(|DrylL4rYn|6W8Dsru=i8NuHCtY9
z{IXrTWLNUVpWn-Er$nyUuzUX_&}Kld^#`Wi*?A$LH~bav)fcP0Rvl~oXm~ZE<lkP~
zu8j}=JiH!~yyf@$(8qrtD6cAf@zp(a@oW8qH&_k%a{q?~naa&RCXf?k5td%C=ANm$
zd9m%ig5Gzf(>HqYteDiP64UR(wC=%8;ehb;x>?O%?)|?Y`50v9w*b|<Gb(RN{kP|m
zh;8Ib%}XgRDN0Su1+nszvbYQlOcV?hKr9m@Ln8~gusKxJ#zsNkDYK+FAhpOjKer%1
zFEy`3!9qdbIX@@AD7YXoIaNX5CABOwIW@@LiA&!lH90>eH6XDlw^#wB6|AgS!5FNe
zG&iqU!O+0cQb9kUC^aQBxg@_x!O%d#&W=mpEi<PiwMaqVEhn)g6=I5lzDH_idPa$Y
zg{85AzE5gidP#<Yp@FG_fkKdiez0$1akhe?fiZ~7r5{|HR8m=xs-W+go0y)epdSL}
zMEECVr6!js=!a*ffHhlMf^35ZLB*W6cQ01Gvbwb4_Kx{?{_CEvosj?hJk!l7Jrlj2
z8v5-Dcep0qej`KZ%(wUV_pg_|z3uPc^Uc-s<USSr7j_PbjlTNYMbshDvj6R>u=R`D
z?#tI+Z+>z_Ipy}YQu(*jL;mX5y??%bkL8le?Dqnp;$dH{0$Bqh&L!_&b#?WM=SLpD
zx}`a*{KSWh{i{~(J#_Q-wSzKyopZEqFRPlnf=NT?`Nq4;R^@eFeOj|>+UJXPNx{3<
zKP)-<^YwDB2E!t`+o4BSKC&yaTeoiQtGI`E5|_ugiZUcWvDvn|>vZJNS4DQ~*g|4I
zOYt!<II!K-o--%>Pk`w3&0G!T7)s9Nmfz>JT+LA74sw}A=pFZS$FFV;eJgtIo(y~O
zcfO4)b7sFPUBtCu!<^$~vsdlX44eLWWz;$M-<`g1_qBbtdG=K9z3inuTgy9Eaj%9s
zJ@)FW&@07{3QOOLoV8A=*b*Nq`s+wA14D!Aj%iX13<2$;e0a#?-~KF}e!c(Rw&Q`*
z`6UfnSN-@q`>_6crU;MsjaMYyud1(#xZ5CKHPgNN`h;WI7Uv(w->Z5%fiZYRReU})
zKC;3$?qan6V$}cbp5oj6LARv~9(lfPwO0=<WM0PbVEvrqWuYH6udPZdWv<(lD)&}>
zRoXs&_2>5CE4ofcvTo>_;~p4VXt_Ef_FQ|wIrrajQ?+>+7#K<;9)id-F%M1j8w~z#
zQe5?@D2#E9((}NO(3o>tVbeb=PWgOsU-;GShb(`XsnxZwdbG@5fN|BS%A9b~`B9=r
zpVY+kuFP6rQ1#sIqE$l2s(Z6{J^8bhafZ_Kjj^E*wZh6DITl^jIc<B(-)H0BJKw4m
zn||c|mAq8_-_SW^<*qW01Dod@*A6XTEw%XAzM#_it8{O#7hqsGkhyLt8w10Y#8zgk
z<j2~Y&kf#3|K9t5L?CpP-WsL{vU>OT@0ydI9=gge<ZYbpulKR?$6U76Rh?+i3|Yza
zz$v-!ZH?c#&6~ACm#@B6zx3LjUk9)2%NQkag|2EcXZ&z!MzZzer#9BBgG5)(`erw0
z&UuT_qbr#hl#1rf4LzzGes%Amm$3(W7i#&5G9+7UTd()rKOpo@?&=tCUIvC0hq>4p
z7*;H<ZoRx`*1<2`^H+2QvmTJ>d%ODdPvH>J^4qJvaXmj|`OU1<;Ap4f-jJg!nI0Ty
zNVZ;mqOvSZG<;dschfodu3qiDdZR&cRfuaF!-qb`<7IYQ&u>OfU3EG5P2D4P28IJg
zF_{c-yC61Vl8=ACew}@L+y3~f%D*q#f6tc?+Uc@YD^zk7L&djh9p9py=fxl&t+d+r
z|NlJoihrk0M_0GY+y@7vT_Ed$jf}_3)J|2Fg)M#c^zZHZrQ6J(B}DIa&N;PgQa)D$
z2m6y%Mf2w7o?50f+v~gCoH_31p@pj$8ahA$UzoW%ZC$~ocT;Y1@`6**fw`an?TTKl
zbvN6Bfq`N9*_ek<_E>eTvIu2xa5=Ym^Qs+NS6$lMw)xt-+1{Yk#;{{E)Sz41bN1e8
z&R<;K;d?XWlP{yd!-km9bDKB&-V8|z{$IWC?T;Uz{CVQE^9-=(EX*F<IOk${{@kjN
zy?g#Y3t(bkm@@HQE!fsba0-W{b4;>E{?4}C+lRyBVk&oi{+HagVppOlL(jy|HY>cY
zo?TsL&;R`Az2ld^+^at$5Nf`Lsll*l9((A@psWA1x9+W;zhV2zW=%hymrJ$Q`G_*a
zWbFLBVAT(iRgZ$7ta()@?^hgsd4AZcu3%P%n@?=`S9Jx8nlCstm5qU+!D>wbh};!!
zarXN!pZeR|L4h*C_uS_Nt1LnbnO7~_+gAJ`*XPdrRgb2vW@_NpEtd-sogWoi^J)&b
z9BUB1ANL+qKCFsm1r?I~tAdtheg9lg_b2X}!oQYJUqEuZLg8M?T^$FqkwNTHR2Bn+
zgKU@ucJjXc|I5{Z+wT9KFY#%o_tBL>tPGVPrw4`Z%gU}Z{h?^N{JnizhgK-V2hQ7K
ze_amlUpAjTbmcD3(BJE?%!;<$vGO}85QA75<Tu@^44As=cgWYh{LhcvVFu+1L@+GN
zdN!4<O1vN$TslE~&=oAYJ#1?BN=A%gDJlYzpd>8MH?MjWa&&Fz)wqXmp32ootG9g#
z5?#*4u<2x_T!`p$t-QR@<ksRnQ-!&A+*4#;7EpRvi($uwqUVmGtKJ2Fee`)10|SHD
zBQIv`zDEv~`|R6uZ-4u4uY7&#J6TBWxRR+M5*+=zDzCnK{?O+B@24_*oo9WwH*}e*
z6`CLRRZnVnpWX6w#)|gj-CCjB*Jk~ndh6ca@B8YKI(%<V@m+d1WW8`GgM8?-hMZut
z)L?b9(zCw{itIWAMVD*&fpS1Yx@CVj$cJ|quBvV=Zl7Bu8d|vOQ3&H6<>w#0Lg%d7
zaXV}$xVmxw&ZYjmx;6CZ%C2BgHTWR%+~cXBw6lHfu4krmZok_n90HPK{m=(0U<+40
zdKUl+w6lc<<?jV%Z_=FYwR>fp`YHyyRc9D)F3UN!%r6I24m~&2pTF`8U*^4A)*w$^
z2Uqb14G{m_`g_EmfuZ3kIW?YE=&HW<FH#1q2fS~8`!(4huR14u=_|F+-s=VPj_=>|
z^%f|)mU><NI3bRC83V_xI+3%LAQg6@;L7g8@3*r2FPCchh0a;^eeMdTA1lBW+Nwt(
zwzGfQ&6)H6#cD0T&^u0{3@o}OIpJ5AXyvWd3YTJFV0g9R5F-P_s~I~FWyUci{yI7x
z6fV&#xEdC;_Pt#-3!It|wHrwCbR_Es9cXx4hi?tH*jqe5L)HKk9?zFqC_cA;%dq|F
zjdfmE=dS+uK6qoDzKcM;+b82Ckfgu#)g(>77i*bjJl%G@EOgbW@V)=;#4|87gyIji
z<KI7?W!4k@UJYu8tqdwXIU(-(s+gUE67Rvryo=fTd(LB&S}o|S!IJW~9}NOGoZ@1a
zIJq%)>Z;peTmO5l-TAe7eY{1=0g+W9E2}Dlr!xjKloW!(@?7ZUd+n1yYfc0ul+&S%
zA1)PvS`8~hk1jtKiKya0>1<9Y!}%h)^`PL`oqM%go0p;dLrp~Hzq7AryU%ZbI8k#?
zDf^GA(hr3T7~~=z>O45I@%F=c{@pgm{@qLewO@jf!TjRi@T{}TO)t;)UtM+i%c?oQ
zy+j>sE&CUNllQh&dk^g_=-cZn>r<HIv3~2SXHnVlD|e-I%?Uk_t6RP&NOZnaXbo5B
zN6oVM!!KiF=SKAMN(3#-YB2ikb@j(8P!j1{St}B{)a&Zj;2%>885kDyWzKJBW?(3=
z)RtjjSipya?0dg{{rcS7|LR^o{kmBGU44?r6QQfCnmqG=&0Ke2Uy$kES1pXe4Bof5
zT{s?f#iDCf(9&0{H2;0KIrup|?%plyCqMqFw~4F+w^mFyg4MF#d7`n(Yw9ZQ<r$#t
zKBGDJE8oVI>lB%<+z2-_O$}Cm@<*4U=v3v4&6=|}t=s~sIM3%7g*}~89KRCOID;iN
zi_pT`+s?*3Tyj@)v+%TuAlYEnHA>GXI)=^x#aMOd%ecdg3=9^z&$!f|mrjNmfvG4m
z`};?o=lg<CN`_UB{{8)Z9a?bib<SCpeS*RC+f-lQn^!n3>$w}|6v_R{IkhZD>+Q0C
z-)nAvH12t}cCT}sU1y+aL~rfVtfZ@)%*z<KcAN|hnW_~k?kD(bMFOb(yQEs457cBs
zE<G{Xkn;4yRPpe6@Amwkp_sagO=I)=5Z)E9YLEPzs}VQ#;ddsFMK{1^&!3(2-E_|L
z>i4xD@BBT^qZw@KFtc`PR!!)7#$bk{SM0#ia!d1;_8ji{iEnaOeZOrjcPV@As-4$v
zg|E_^sgy2S5Pe#9eaO+}0pN7h_3rz_DV2W{8|H-iUS3`FPCJz0>l2$UP=#E68>N(Z
z5%<tUKf~Z}mHVoDCVRD>?+aoL@ISYB1t|EpubuTx>fFKYhK2i|uQ{a&3f}E8aGSy)
z)$=#5^!x*z`RmJ1G-!scky>zOUy$j(S1ogndnv5F<sKNiDkL^~tE~OZAA8q0{;@p%
zQjvL?MgZ7*s~kdC#q)Bk`eMDpYpPbLc3347BLl;gha^?lysLLTXMLgdmnHP+$|l#T
zKV?IfdQDwb6&n3{^+EoVmbL#4o$btBmoCqn*gfm|Z_ZVx0$9DPD-Nvx0kJd`(l$PI
z(0A{5dE*qHP~P%?oU3L9u^!d=4pGs%`q#bo$;FHlHfLGZHGKpX9p9`^)c%m|@n5TD
zw{_KzE2|y_PhUT)a%tn7|1V~5)>=O2w-=~t+tEK~Ke+M+Rao1@pCWt9INahaw}Q|9
zA3^6<%>hMEq2=lac18dAKrsZW8t=q~R<~}RUi~3=j>IMH^iav|e>qom?cTukD)M!C
zz*SY}Dv+tmUqvEU{ySE!>bd=oCDeCKlULXuNJy*-oxNOvfx$s?oe2Zho&|D`<6~{X
z?QOaB|BZ`cU*1#X|88%n;t8=@Dxh@!edTvLpWiRg3SAX)cL})athTRzdRFmlbai{m
z3a!W6>>Wd!S1(u<S_f({E?rdy^1}AD&6ZW|Q*MSxX1^_)9aS3~a6W2(vso&rInZhj
zZ4R7_oEm(tcBz)1=$WaXFRlaEc^09C*TYKJ7rfgLETIqTe8im7LJHE|xzL7F$@+q#
zI9|<k(L&4mCQz&CVC|DXvY@7sAE>{wu9Elpw%zM{K#?*>Ylimo#j%jGW!0l~YqQoD
ze0ydwV|Tg7Oy8*+ujOrDdDWct>zc3D86fAGg;sz%>^A+CKYf;#dwjljPf>E!sU2_q
z1Fk;MT9GyNzGLXBkd>=qw^n{)WMG&=Al*U=h})m1$Hm!K-IjBYwS&}GQR}!qRaAVr
z_oO^vs#fT#X)Ch!w0*Yu_jK)bK1qXCkjUz$Gw(h?665NSt^d7p^BvxAFSl7T9h65w
zK6Vt^{uk=wIjho*@3$8xF`73(WS6lYFyQ{nw<;?L+~m50y&LT11*)W0cFmS!IIQ!<
zdc`VFNFY^*)@sjb&QE?+z5*O6JLZHM%(#CLoaR?|fighp&sE>JmY2U1Ud!CJB53KV
zAkmbvc1XxXEzSD9^X+#hmXFKD?VYP2&FEEJ;SlG7vgwo1+3BL-#7RQuH{|NNqK)oh
zAuk~T7PjWr-l#A4ciZ)J=KKZs0)m!iP1Vwtxfb*urXuVA)TrXu?D6{xz`f(3tudlc
z!hb_##a2POzxkk=KUg%q@^CFE>%+75>MsAg@V+plp<r<4i+lCC`;Oq2>e0K~PHnvc
z>f3<&8x2;V9?oh>pZ)j1Z4OZM95lEr|JJge9ny5g(m4iolM=W*7M*zy?M$uc@?WTB
zcl2Gh#opDcg;#H6bPib=6uOw})9SyFbif_@mhwLGsu0Jh{C`brenZUsxms@fzoIk6
z7j`P@Z?bA%5wz6ns#fTg3#C>2-Y$*>rOjm_Th(t!Zx%1fI}sQ5e!~9m@*mbHRfL`1
zzdmGTkm<fIqeshc-?qCIx-w{KR#@n+?+<0_Z~vJJuGK}Ccl|!`a|a|5&RMl1_jcO4
zf}(d*AcfzmM<Ipsmh#|^0H|Es9zOM*sSE={!{xMf1%D=1#efTk&^cP~l%GEa^$ILN
zK|ifh-tXMq>5!5GT@t0{Kb8Y(N1XyS`q^^24rST6<bpX|Ij`!^Z<n1vWA^rMe3g~&
z_Addc164+cS7~JadaU&v=JDKfM?mTH<vnnVYZm^YukQzQZ*Q}$d3to}a_jf@Ip9Wz
zR_H1_E0x0syZS$6goDyPPw4LT4{h#Ozwdtj4xxrEByfiNZcq`c3L0e6voU-RsqKvd
ze}W1~bZ`3kT>NV{M|kyW#%1g#x?9$Vn6B&!K6=)-KIUo7mepOsqRX}3Z3{&%`!DW2
zlo@v+;TLNYJ{_0i4qN^(TlW5Y4!CwgkDzjc((2aD<`0f+zi$2HmL|AivogqZLDwN0
zaP(_=UM;JU`Uk4=b84$jxG$FgwF{PdUA+SuVJln;3gYi8t2Tl<DiIyXJ>Uq8!Hb&z
zfBfIO-mH6HpLF86p6K>mWj)^Tw0KY=OA=ju`sa=yuyOJ6@$fqTJg?-=Lq9jZ+XqU+
zYqYp3KF1h<`tYkl?rvTMYNfB0xpSrZf1)$nijCm3yQXW>GW&H!(6s9ndjEI9wCH4?
zEqC?>fm=CQp?BKdt821C!S#Qb==@zZSI=nke$jjI4&3TouH`5Ced6arNO#R5w6Hq#
z{^MY~S3iH}{Oi2;@%-b;6JO@b2ROe!`25ZUBffp#8IOMx4rZ8eu>AVXk4IK+DL-Ky
zZ1ItS;lSCSHgnw1s$Tn2uNn#|u$@9pbiW9PTwMYwfVZydT3_((+wWHUe&Jw9Inlc6
zhsgG|kop(YcRsqZYj$*KWoz*s>#FcY>S61^C9_v(BB%`k3anM-Z8_x@?o12}=7B#!
z`RqX+r0l{)?n`Iy*^qnt{{NcF#y5~bHn#1cMC!W|V(qGsl|iL3q5n<iJkS6AQ(Hg(
zt!z<EJ*ay86?4^B<R9lMu)XH1L5?r;dVd{~|HN*ER9cqr1`QS5oZ_o`GvukL-?_{C
zAvIUXT0KyU6Vw`-vucNRNNC(cpYnG03!&hGdh0H5jSf+o7o7?nH~s8rxjq9LRC7Wt
zpWcC&Ddo3Uozk9j`(J>6061V{U@b35&9~b*^r`5%>;KNZ`nwD4o-0nXwe+9oZPx@1
z9c)^uGFxlkp`Tf`pO5=<&jOVeKhHRW%0#=6QsLJ6CQtw@eRX!#+jHt33=9iq{8|r6
z$KR0~SD5UNw$=~4z!MVF#Shi(_<vdv)CdLjx>s@Se(Miz4}{E>3;Jm~=eg|1PuH5U
z$?r8@@`>wt_J8aBA7&ox)I@XvZih`RygeU0yaw{(*|l2x4p}}tvZ;sxRCtCQ)eUjI
z>}2m4>I;%x*%iI|6nIb<HpKco@be~~%j+Ydf!Vq$BkF}ZykU?XDjNUL=gxcfU`R6n
z+zt+Vt}X!@vO{E(Ux!wm(w-w+U2s4EoEW}{q~7_a4sPzRx;HaPyR7fe&P7gtX8+pD
zbQm-gyb_d5KnZK*uaeNMpi;IVed>QNUIvC8(m4CKHyJ(u#`V6_uHoIyIQ?ocxHJIA
zhu77@sjFSh|J?Pp@B4n~^WWn<fyk1F|E?{NGyVSN`oD8`cmJQE2+;$I)R2|GPX8|W
z_c-Ca+?_9(knjN&rJ%7GNY%4?)1jXWp4H9&VPU}$0L`0V8F1nRje4R6X7jB4u32@N
z?2w=b)p3w?4IcYk1G4J*ySpV1&p$o_8capx>s61CGC6pdb<?5BlBCF+){xdCEWGY+
zKJ^@w;z}!cK_m09NW{*5TwQh`<@UC}|Nft7-TeQaz0s40|I|UPH&C$*4h5~c`t=Y0
z*q{IX>#1yCyGj0A*+p<Uuc@nk{9Oxja{Al5SALg*^9LlCfXQEXmaQppiqnf*4#{ZX
zo;)lJr*AvO^*r#F{M9!tY*@mgIuz1O4zuW2y523}4{3$MG=qZdPE=@^g<|&KfakEb
z1X8ene}CUzd(MB0AC|aX_HX|5(-)pw%kaZS{J<Ut`R?QIeEr3Y3=ClpL1iM&0TswV
zOW*sOj0NK0YX0fgTh;A6Gn^nPCupfw<<#?s8wKap|E-hx!}JZ>j1K{&?a+T(^-I}|
z-~LT|S6h1qM^w9>)6$lS@cI1x=b^_ZERj7wXVnfycnCp8bT`a+_WSL!cq13opfX=@
zii<sMR>c&{8Bw7~^%jD2E;6;1S^3Mq;-mL`Ar%DJ{kpMFKNlpdnD5<sr2c)KzOGS1
z2RJ_lE%gd*)Pm%}di<?*TWf|Nzh3P(c=Z0SKhMuQPo+Q&LQnv&S{A-D%Eaf}ck@5j
zKk7gGJmKE&eo1)3GTnD7e&s=*v-fW_uYZ5{3S`0zn!b;PM?O5@<@e_w{{nC|2#<5=
zV3;o?&;n}fD%9F6q2<|AyJhhw15g8Md)QP_zLYKHCoC+c%#pa{jVf!t9TbdKAN7@x
zf@p2@Q(=2Xh6bxWZP+L4kW2cHw$=>ql5THnU%zKh*zdy=PHeqf4Q^Y5LtAw9r%DTh
zL!Z~*?_bQnI*ZrxUn^2p3tfMTi~XHmoykq>zBhOOADPhndo?sbLR{ayueCU^Tt;3X
z9Ws~>&1UZcQd^m09`LoFUcCa`{DYQR%<$l7;C@o$J|9wXLQ1Rh+gjQ(4}$Zm6KtUa
zZ;-Iuz3mhid&QRWDKDXQ;uJ{D_`^5yA;bT|Km8i#x9|JoKK-8J*=TqiH-*~qgNq%|
z6d3M#7f3$8znQtAXIpOdk5i|$PxDK_)56!Hj_U;t?&sMj?$z&;feVXDCbcrVyp{E;
z;;%Ul9Rh);hk0N}J-qn#5Cg1EgOu5K;--RX62ye{2YG${G$U1q(8<W5usuArm3hzW
z2Mp#PZ-7b~Xn=+sy}J_<3>`0RwdPuM@xq<CDt4=HeJQ8M>+eFUADNGyM@i4SoT0Yv
z4`POo$!`EPc%kF-5cZFGvJ5`os^1=6|3OrmJ;o&noGw-dEqxU;b+zl^yMJx<YW7;q
zvbj@v16+lI;(t}b)crxs{}xvkSnkV&)T~fpQN9l^9t0Q_B5Ghnh7S{+e~XKKhr@gO
zw>=Btq4p>Q)PaRmR$H$y#O>++ctkX^s@>$h{onaF84_IM4m0XqsA;nM8`NvLy6DtS
z@CZ3HU>iW`=Hk7;XNMM_@6==qfei3MB<HN!VH6r>aiD(AkLtDenD1{5jtK>i@_<W%
zkkoabI_HCmusF~FFG`R=0tT4`1(M2ENCPzWC!_&d@wWjobOtWJwGyXZFKB3c?tC6T
zY@NIc>{?K<J9X6@kW&`#UF`P$`t;i&ewN>-f|K$T-<u(~z^QrS=bQDYEy7??P-Vq_
zLiPDWBk-6WJVC4tg*7*spKN-u_1v-(D4`Msva5bgDaYeTXulPb%r1pRK4j?s#uu?S
zK0YrP)Ha0-gPElUXPT$BGMm`QoA!mXf`-%f#8mLC0FSsr8Z1R&x!UvIFfuUABDTz#
zk#l?7{{KHeaed<dUT+DWsrgcOJvis~YwlnD_rvGIs;gZET<ae){Qp?9q@wcmL2wE#
z+OstT)a!!;Z1Gf4z7HAiGm0J_dT>O984{?Vi8e?pdL}3dFsc8$o7#Zd-d?Vi=K#$C
zu-sSB_-v`)viJo$>7k$)fP@OD2$BXBS~jyP-dNA5`Xy*N8>wj@a#R<TFaI3xTzsQJ
z5hYHygzDS*z5Bk2?V~!&a!3U{E9(!-`#%ahe?lA2D}Po0zb-$6mw{me7lB&q?`QkH
z;;Fy){_j+rzdK}(R;avGQS>*_`2mklEbzLzE0lT4&G1!XYj4ep=dJTN_Yz!lUH$Ex
zcY5C=;Zrh_AuFS{fCmq*UINWmADr=wMg1Lk;`lw!PTk*K{u;$80ZX$ku3|j(MmuzM
zIB1eMp{aScop0zItpriaejZSn`xH9NZVsL<o^}7&m-{K9g{!<at=G_m%!=%I$>_`d
zRy));I}|c63R#A8{EVpI=e>@X?;l^I<rnJtO;q)%jS;8<Ft=Thxv+NWs?4>kzHz1N
ze}8b>!VofYc)8wEJSqMoXSS?lNURa46Un?vFQhIW)O##_=JjfC_y#*ea4XYw*$!kM
z7-qfE4)qStm8=tHU|`UDNaW<QZA_UJcwG5?JWur0Ro<)Ky}9#ltM|^ZbIQ$Hq1|D<
zfywbJwIa9vmOA%&@BICro=pJF#)Pb_+TXR`?@e4qFj(ExReIqS@hi2!bGx~(6Z-Bc
znxzJxG%rnu#8pDD+17W<Km!svSzmo)KZ91bRD%|vgiZW>0@Qeb_xoU@%j*_t>7|Pr
zgr8Gx2Bk<?A;-I-NY@lJ%l1yxZ_?><n*h<}ToJAqiV$<pPuDO#J5`wiYV_(s6Znqo
z)u4qPmVD3N$tDGxO|1zoPmBM^Y1+qQmKyvz50qX`EepGU<z2SL`Q*5N=U~&&tG=)P
z@%qTSR&!7!28FJCRn+=@>MEwt+0V5>qfq#l3PD;Q8*S@B6Moy@7G8Pk%;vMu>uUR|
zhMh%nl78Wq&o<0S+TXm&F7Rt+@AZOt+OVZpL0=bYC9Ip{-sZh3fwQ%qJv7$zC<ACR
z`m|M{#l8>Lph5L_hqM;-%sH;@q4)e|BxoMutnHVxHS&JvOhHYG16oCLl0{($)t`Vy
zpH4?^J&wHiBW+#5tm%<6>fW-37OrXtePUzuWKEO*iJuwaqSH5L`QPVy{^0hEAF`l1
zkm;MbW}KeL`0UhA>lIqFK_krlb8a+)8eyh8xK6A*^O0-P>B_ROscW+u-lqS$udR3_
zyRHqgXl2#2FvjAiHb!%1ADY-M8v08%<m*nw`HwGfG7z3yI&RLtBjgUK-5R(wD^GO8
zG^69%9!emez6yPR8#K<G|KNJzO;t#U{tjk1y|QpmlL}~s(b~Auso&yPnl|(8t9uAq
zi~<Txg|$-9pbA~J%5d3Ue)Z>afzX8Hd`{~}%bfl)&>}TH&@9HkW^jANa&^N_8Oelo
zpxL9KLU0;{b~)aO`h8~NxUBzY5oGa1f}T6u4DILd7pw{a%?$4U44qxp2L<odsg`k$
zMW7WzkBY+PZul+b_kPy<BT|K+_Ci}I<4llr6i9kgXz#|~pt_jhbm3A)JTu8qS74n_
z4$+NbJu~(5iGp3H4BMZI{FV**+PTWV`p>+2nH1ai%Zi=*_J6*oxGF?-B{-8*EI-BA
zzV*s)*^tu8s|;`Re`l*_=bO)!-t>L$cfP=-uY^Mx7}jXq{aw&E|IN8YpfzX=!l1=e
zHJ4U`IX9P7gZjA-w#?L?Gbg_els6d~axU#{oBa9ZO3=z82A?Nc7gvQu{$XIa@^Sz3
z<>klye?W$9<^)Y$#S_ZFpp*WYho6B#L;3FS0tN;Kzs(p;Gn5vH-Hx|E9}8C7`+a=6
zbOk$4;8HCk7KR3?viQT9b-#Y!V?RHC2Y3j<wT*!xz^%Hq_~GS)dwsv!t+bT`bt<$N
z7{o691ufffSO@k&>&{CI@a2>4-?^4o`mTB@zA6Z`wx{9HGSF(MC#8=*M}d}`F?eL$
zuD*4>W^(!a=hNm$fY<ObFs#TbZ~a_v{{R1Zk;nc5{-8ycTA>UKSH2~I#=<rTT*u$;
z{P%PIJ@1eI{_dH0PjUWkhYg?#kBQ-cmel;EKT7-gD?=bY+`1*)BL27k?^)*s{qKO*
zgsr+K$;5D==-0jW;tw((A1w0^20QsyT3qIWpHE7E8AF_W;#qYW1A{}Y{r_v%{_KA7
zxW4W6-{4odx97FbnUQorAXI*>l)~G6MO!mKMeI!NInT6me^u`TEkSI^0WCQ?`gBd!
zthlY)*MkbsJI(ozk4%UI)sVjbpRznq)3f1^%UHX4^Q!*5S5C#>ug>gefBE;$Bw=vA
z3{Bx;kVrn@x$4Z#$k3WDMxl4Bk5yj;t%G_>ZdJvQ&?Ef(p!xESGm}2QS@UXfX#TBj
z*XLUqXUBuq&(<I<5ngp~JyV0B-yHV)^B+Cc0p+iIGDZ%!YC%hpkg6+IhU>dNJTXo9
zHYYuO_A4nPhjX=%xls2IP;f$4cTL}{wLJTKC}`nRzgOrSErt_n&np8$K{XiL8*NDZ
zzKDDHWRDtXAru2-HQkOmp_aTi!msaXoBX+b6)3HxO#W=MLJL$UU4OS4G+p1<ytBIf
z#uQ)G`yvc6uMbVW-f**c-rQW!@(9cCS0R<ryM3Tu9jL4NwN8|wr|^-@kAEWi=_f18
z!oEJ6z<BB1>g)4exj^kIh&zxo3nu%<y!~H3{knMjo5ib7;AKx*Myw1yh7VLipS@Y5
zWp|W;^LyxH(>c#S>gVq*1JBWQ`7kns@BCv^;d!7dJw5cJCfkXf>u-V9XD%pTE)Q84
zb?1vSGlO~I!^#g%*>mTH)|Lc|&)U5{Z6E*gGhQVOpmLQVp=Zu>M-Xe)vhcTWwXv;_
z5>*5>571KGuP_Vt`^S#F4?qp}V{cY}yWPBQuSof4TL(~W^!1+rgT&(RHWeqKfg>t!
z<Z!5V>)$)ytabMFBiBg*{^yMQv_e-&egCqAmw`d!F!HP+>R1J6HgR8nzFfh|9s93u
ze<!;LG;zZ4>SX1yz@=WHd$PV~T`d2Xp%S_(j*oG{ygBJIp{qi^qOXLiUBT5*y0#Rg
z<*MV=E#DtLsrj`6lpe~beePKdT02%0dRKeSJ=Qzmp_8X;m>v{e?tg1}-U5`*V9g(B
zp%1Ehve+)Kw*t*@#GKP&&@=ygV;<C;1}w{c&lSxp1U2oogSY;!w1^Ln`SR=OcQepn
zlDrg?gCWS4kd?1wi?)D@-3ZWfEBGQv%qbv<NKL(MtXtKAqZ^c`uLxV3bx{i*BEQd_
zU0+tq^J1ssUit5fy{-y{GUz;ip0WRqr2AB@(CY8`pmj<|s^jeqk1Wesb#EC%#Pz6j
z8PLF`)s2u{ppbco5;8HjR?XC&v&A~K%&B?Rjya(WS0+Qf8ileV>GoDof%O39SIENO
z?6>=Nh8%smh6xfgg{vN23fmfPQN5G>z8h#E;>xPoObM~sa|=OBk6yiab?N`Vztt7}
z=T4{RpMU@IrL0h8(+aPvi=dWzO<nbEu5Bzc1H&ng?{?rhQOvZ0EV7S3@AclGufM~$
z{R1r(S8`@}a1OK@R4epto!q(4d;6Ea+zYFz4$M8@yedR=HDuYQ|Bc&M4vMHl7MM0z
zpRPOx8d+NB6Z-vk!K~Y}{>cP_GDC&I-yU#*;um_S0b?oA{ny5SZSQ~<a2{xWnLY=c
z`Bpt*3-PVy1vTz=+(!+tb*tWIT|{&=7!Pc|4O(ri6}ENvp-Kti`lbr#diI9o?Y8`@
zf<l+QItm)ANKnMz2L1@`%~d~r398*7-8m)(uo+upLLUd0#_>hJcw85<vZ|Pa;c0I4
zm&c6%cbx>S-xWn!5#%y;m3ccuf$-(?7NDiLA-YjlzuV0bE(VQ5iZYm3@*i6s2A&~&
z#l0F-1C}$Iw}ILpcOuUj_kp?-Sh{JTCR`3^u?qt{Cq{w#jB)P{ZZAyo0JYv8E&E@@
zG@<cx0(eDW$kF9HHmurs$nxH)PSzOkD(E25nM@6{XVe`7EdvI1E5+ptSs55M2q2em
znB_1;<cHmkT+rx%<j!>^?<atUQx<t$RSjkMQ2O}u0<F-gt01eu^`F0xy|m|lr{b!R
zy^*X8@#c1*7+3?EK&}3M@At1xNY9J)z}hPol{csO-n?=>^!?$JKOyPloz8PfchGtX
z>k!B)9!Nh6veX<@`ZQ=kY7S5hR<nB>DAXV|7<f)(9eCZ&dlpdH&9FipZr0AIEugj7
zUm;FCx~eSxaOJ&gr`0?5I)mDGflFWg)nfRu>mw*ClR#7K3=9l9$MF}nknFR|zT^4o
zuQ#p0+f}qeCu%Zi<ll~~uQ-+q$|P$eu2%4-zd!8ApNFWS4*2@mKL)QB-<knh5B`nq
zOI<Z|U^0Co^MUD~6V5{i`3n=Tp85Xp$shAlP>XKIW>BGBxa!fhRYgc`?mkdMh*e-&
z{B3Y`4-dkvt5E8rj3PPs;xlnj*#cXxi=I}$*2@=u1?@oDymvly?r>FhI|C%!uMPeB
z%ee+T-+{a|4Kgr`Ox{QC6}>tH4_>3t-QnH;s;{>jPFy=*4$>-pa1$I_;35Ti$qm;%
zmIJjGp!BmW>lSDU_+wBz2VThJ?OgRv)bBl09uFvV9vu8)><8Z&5C_@@^1$i%`Q%yk
z1@>ti0d1mwzI%_q6F&Zn(YYv$kzqpQ_xP2j^ZESh`&Mu<Of&dvGvo6c&@jlITu}F$
z`#G#!(~4(hIIUS<76w{tyz0@ZkhlBVF7MuDwNXmi;K{jAh6$JFf;LpFlrlK_PQ8u^
z)JM1lo>hxE2P$-+yIwHo*0AnDSyddW_n+6n&pv&1^}M;ED}zioy{bPiY*YXA>Ds-{
zeedg&I<y!f4&_2@3<K}4Fl4{|N;WB2{;mkalC9S?uYwk=OuG%Kp-!#if-m~_3%#=~
z*ErlFv;5SXmbN*e3<hq{;9B+Q8)%0KXj$;BGopUyR@bd$f;MeHlaAnpHFLI>-H)+c
z4Qm^LYWu&xzpvkW=;mqLA7)kUH?Fvwvod6^E%n+8TEP3%?CbvLxBKRsnCHKh{q(7F
z=c@8m3<_&+Lp-%6>+>H8Qo2#O;JJ_;pGuzpJ<hYUSd`&O$@9&dLCa%ok3#ksRLla+
z3l%-rVmR^gTzY!wsu124Xf+f@OqTBFU%qqg%k!H<84n08o6lZ6Z!T!L)$UxBU0)^Z
z3ue9lI`dy$c__n%mY2^Df_LAndXyJ!`qmV@&aEySv2|s+*1LpPp!PCsdF#6XR));G
z-`=e8n!3s`boc!B&yT^QkC#ECkB{1*(V!K&Dlg(Iah<SvvJ4D5%U&04+%H~dYxtyi
z`t;DHUZD@Q!n@fRejS-V>(AcjJHaE3Q&)L~{`2Bxuvq`|%;N{kKmoMK3nUn3!EoTK
zpG~}^17zkZ88pw+@TThj#d1(ydK7Z>Z7BMNpqr-pvrPV0Z2-mm%C6h1HyvVRICs0c
ztN6o}=g@8zXb=!I$UUdz&zZ+Z?0>;#F{iC2aoC<gCm&qZ{M6}!tSAL7Z!ll^snUYs
zK=i!%i8Xtx;x1V)sf2C<Xa~)YGR)cjohSMIYxTAp;2EdVT+q@4iRTYIPr5+d44#={
z_|ai)GjSJadsX4~wIEMGwm#S?J-^xmYI}lrA91lWNIc)>ztayiF!zoRG<|xYviiI?
z-@Nr-_%?!PtY6)lBFe|`VcPTOlKTHGw?USAt_oSX%X6y#9~K6NS06x|FcI@d@P0dF
z>=i;D|Ne$y-Im<j;SZu7+n4`-4eIAe1hXF4eE;yvMWB5VAy?OZlJavr-`_BOdmL!`
zK6w>`#kNNqK}+kNu3l4+b?f)U?{*IT?O&o+b2W5q?R&dQZ>AGuPk`Q<O@|)tnX|s@
z325gZXtU}gkOv`A2k|wCe7NVCs?M_bxjN~h4DU~Xb}WJ>vOx1+=l06j2&mh+6^Ai`
z_Q#Y#=H7c(ZaTDb<@bxlk1m=eocN-}5Eu3C#yYR5t3HL!US2*mC;B-5m*=m9L90?!
zqD2|%=URuQTW?z(v~*P#bZDR8<ko?7-W@mYgGSUmLs<`4gLb{H3@SaW72d7)`aS>e
z>mU1nPf}!Fwqp-;Uu)3PSKC7Wd97Xc?D69Vuf_Q!4UW#xVo<tf1+w-PDEj71DLy*^
zz6};M+4L?UOMA}km$6O#6H&y`Cm_zfHCgX&_%|pSX{&4@sC63o@Jh+U#VPs0?7`sW
z)}jY^r`m6WE}uIh5@wP5bzQ&zn&s>~lEDa1+}4`^13aim<Z^+S%-h@6A4uQ-=g!;p
z_Y@~~_k8C&83{@t$?ybHb?4V<!}E^M+xDDzC9}vYbP{Ad_FyP;U*N%)pWbVSt_qpD
zCd+?=d7A!<I}`S<fsUyydu>}d%_i>dABNIDzb*;cgH|T*jhy<f*5dg6Z#tmn`05jt
zDJLRbW6nWV1fg$T1Pz!zS)&Br<v9nsO%Yy+*o%ZA#w;Hd{bK<Yt!SMc(9k!E`OtA2
z$d1OnzKoVrEl<q3aV2-^PtIGQwqmF6-}gVaJ!Vb?t*h4WKe`GwglMq()wWZASVC6@
zmF9JwH54SfatU1e%GtSLt3}-1fZq9_W$RV#Z}zo)u6e&#e;#DL5ASLwqup;mzB-o$
zu`j6$v~M-}>AhusHnkz(Rzky7%ecD%KOv!(x@y<`_Q{{)`$3uSbR>Ah)4(=Ck^3)8
zsOicsEVYfe$&5NtaZqk6f{aT0@JF10uDU|5b+Cl*x~$u~*ZwS<e@{DNK4i@A-h8Hr
zzQ<SZPWcI1Pq%72XaLYat?rABEqIzH)|z#L%<<K`H9rf7fQAXk?kaggW(wLuErVQB
zz-#wjoz;|@zv^?*4JUB_`T;Cin%n!hPOCf#UjJ5A+yxr{-d<D?{2sj2Dyu+r!sXol
z@ba+7pe0|cii5v^2EaFlf_epWLJ!1P_Ve(06`uaf5_%NWi-N4FeDa6A2sC~TnI1q&
zk^7D>XDD!HS3mUZevtfp3xA%S{q27XPQI(%_y6qux6CPNt;`Hp3io{3WY%Uq<7ar*
z*~MqR)C+?KR3XzgSD}jm(f3kny*s4!pyiW$+ow?Q;xtg-<j$&NT+ff3-VI%YFTaZE
z+nt{$0(L<5SFF^E{Q94<P5b5t&`Ar>a|lxNQa}eVK#n#5v&>8lEI|su90N0w&th;d
zO02|r7=xh#==2714`Z-2FhDwt0d!0R=r9J9(-*jiJbmHK-0~SBN3XSKmx)iCqmmrq
zz_NZ3hgQ;&7C}+tXF6S$-HallUk~?ibtN%`um~r)G$}E4b!Y?@ovSRr`K7LY&byiO
z?$};VEZctnw@vuA<-1l@E!(~8)fLPAi$jby_0?pV6-NAi&Hi_t)v`#1Yn5BAzSTUM
z%o?=L=ilap`AgO=JyXr_rF31Rg%9hDi7Q;Dw=&${eRZLa^6PiDx9)CwSF-+hP-W(g
z^r;_r)~?z3*Ec3{UBta56^l6;e*Uld`bjojHX@db{hQs>ZP)8!GJn*3dieT@eD$-s
zuaDN=je2&YUh$OzgW1)R1+QBEaD2%BbAGjLIM;!1Gnn&^F8|s8EA~UE^7`LFnI~)4
z9r$4Juh2DA-`ZIJVZ@@%ubzKr>zT1r`_qR@ZLb<ck1@B-H`}tmJDG9E*?(QapDho3
z+96;5D}47e*{Q`kFE>Wk-@g-Mxxc|@!7cNJ>FZ0b7|Q(@Snb=Zy76Y^hM=tbt%=9~
zt;wqv@1I<Fy3^8Msf{_O>vQ5&b+0el^B!ldH)@H>e?8rP^W5vTEB8pWO<H^Y?d#I~
zD{WWWC;c&=669sdX}*hRb8P{S59@;EcfYD78aO1rIe+UsSL}!D@5;25Es`ddeM~)H
zWwm<Uosi#Q``Mp=ExOAh(45O~x-KrPN%d2D?H3Q}wOzj^AGX_d@|)c}_5<;H=O4r|
zC|t|Yc>Yl7@K?T~?a`7B-;|Hu+PePDtI~Ka!-ET-+`hbN&%5p*uaz|oie69O6#JZK
zkC(UJu9I}3<In6+`@MDU+iMS7&9A-oSl)-%ui%?ZV!8b0XUrGQzN-@c%)+oe&As+Q
zVbu-sqW!z?ewz2U?wbDJ$-m;hFBJ-YYyDGjTgkUw>Q<@@>s$Y=D-N2kf4$vSyZPMy
z?_b}Gi3R@nzWlGg{hqQrvtE_$O0s6q&e^^{j{ksvS@`T3>`y+W%gWd7I4J$=LzK?y
ztKE0rPJ14+Eq3?6x#2(E!r!m>x7Tb+$(LQ~RyP^;2-F!|*!2AL<&yi162Z}$Q|~JL
zVwH8}w|wX>?5aC)H(SHu+;wJ#&sp#9V_O||t#|g9!~aY6Fg7U1zMXpgitM`h|5w7|
zzArTj{>%PT)J*<asee-lbAm&Uf06Zl%i#K~sM%}t8s>bM(rX*y^|H7nuq=G`gjw8Q
zmaFa0=e4}@YvRsd8!s{LTxHMT8}oMRahcsdyZ=qvm-l}4PYDh_RoOl7JUgryYy^KF
z&N{qBI{oxYwbiG8diq%$-^RyPx}AB-yZqv<otfWC3$nKTdDM_q_`T=BeH{xg&990M
zj;ga>gujem75o2@UflPkLBWrYpON+oab}R~{G9oqEVp|37rV*+KFJ@u?&f_D{x8Fj
ze=8>2=p2Wi?~lq!2f1P|Y~K~+^_R!s{!_b3kJ$?@Rz}opp4tETiiE!X;bqQubGDxD
zFnq4|YmelF4DClQcWn$7we4iHK3(?mzFPO}r9b5woVH&V4t;;q&m?}^6#wbYs$9o8
z?=1Ljo4+>a*)yKS$Nb}XRPS~*>=qWe!QWv0Sp3B0y_^1-ybQnY-Bq9Q`AWUUg9b%4
zP2YQccSPe$mVFDH8q}b;uKc9*EuRbf8#?*eihil6TTGF8l(xEZHsdLwGd{N%3bLE5
zvTD}cb&~Egy_)u*R`cHNsPM@bxA7#bW-os27tF)#`EkeT;;;Ol7+yTC>$h2uHQ(v2
zw8k!bW0}QTx~5wlYZtF}_B72^PAmVTo56W#uVSEXBl}kK&)fd`Y>j%XU->F$ZUd{{
z4aNheWno#{-k#pF;@u`r^S7xM_e2{`+rF6iTE^5}-sgFGkF~R^s>PHo<y&tq{KdPW
z>V1VPAM=A%N50P4=eug>@tDnP%b7pSYn`X|ct!kH?aF({yv_!1uDA2qy}I(p#b^eL
zW0U1}dd+n_Sb9&|?DoMLouJ}H>dq&57q0xdCaUmM3EP89DyCZnw|9m6n9ep0xb^2$
zP`dENs*n#(=eDm6%D!T?%=O8_hKNbCDlf{0Tk30U+x$sq{qLZg7uzTCvhTk2=3#5g
z52HTqSB1~!U9j5C&^9x3+cAl?CugrMHP_>f<8i&jduqYfT{Wfkm3MiUXMUXd@9Fft
zZ{D+1`<(Th$D`_HBT}9*?XY-~xRqqX=E-5(gc5o>!)Cv*<8Xd^^Tf%$>Dd`&rJHm^
zZym{CSoeLG^tnl;*#*HhWly=pPPk-c3jTb}U$iqZH!#4z`1d=}%@<xa%;dOJ&sgVk
zFN62)$v=Y8ZIcch^=?u=xoWjhM$n=wbxRp$znNZlN`-IMs`}ro{9zw=8Bd)T71i+V
z*Z-Y&jTp{rUJbg!;FZKD@tom;X=dul)+w#Kw?^kz`djyu9QWhyQ?dS?GUKYhP2v2H
zyQKYs*47u4{#^WWf{y(13+<Ci*YT@zB{=m3y~;40lhc2-m7CGHTJV0OX8Fg)gYEUl
ztz$3Gao-{-yk^alUZ3s-t9P<4P<h7|$+{prptkt()TtUTG=f+D?M`>@WD4s%Q0xEl
z$R&xQ@6#D4#O%!wIWX%<uUvoQQ~#}7Z@m;~v^#pRYu_0Q--|hcUcYX<uCs7&E^mte
z&%W>6p6^$#@yvhC_hmt$hLzXv=gF6P?=KSnzMgr)ohim53E`jInD-t!`fB<2d)hxe
z4R@+V9G8y`UUSHhDLr#vw5VB>*#%>bj;%LxChX{MuCSV-vBUL$`UB^eC)_6nUww6(
zp-k=i|5`x?V=4Eo>;Gx$G%bDcS#Iaa^Igx1-~K6`o<8MdsOD0u*Pg9)>sJK--?Kog
z@Z@I6wB@VjT)8;M^m>)C^YgzK=FVHacB_(Xj6VB=w@XS>PyQ@DyLHcbXUCHY4BL3T
z4z4lqu-;jb&{k=>MOJpthSPiAbsImqvpahKA<1=Zi+&wB_;{hq-_)9gCNVrN>?gYO
z{|9PGnlo;=z2#fdgAd_mQtp%AUh6H-ZJPWhR6PB{>-{$$Oi22FT+%#wQ>)*ud2+ko
zZHdmktS<WMpW6Q8vrOLfXA17?zP?W6L3@W1!=Kq-0(15Fy#J>!{i$`=p4ao(p^Vc_
zm)16Y&Z+zG%DQKX-~R{FvsuMcE(oNHN4DR!_Pg%)IQ#u&^Pd_^U;TggF+j*Mm?4hK
z{)b3{T8h6}`t+mRuR7iT&gOmiEBm}pos&i5=jNZT-SbYhgjT<sJKJe`adGSCyIe9i
zs?R*Tz`yO?A}))tY3|>C1=mfu%3g6-xc73yi3xw-gfh5#mj5|7J=;@t=HGvRo%&Wg
zujzAL^=$LO+J~uS-Y24--&uOl`{qXvwI`mNCr`WHAJIKgvF_dMGYc-h;gR+-QT<-P
z_{TW)>%=!#swM>{?byn;y7c9&#Z!VBlS>R$|5@LP67^ci+?*BH^VOpL5bMEtB70*t
z%IM9C|L2!6L*$w4^U~!tEyrg4KIm26dRf?zX@NyedDt|)bQSAT1BTgaZ0xUA_uOFY
z-n#K|O>Jhtub!uGHaE^Ycs=#t<Ev}t<tjHmxOe5lG`X_FdEa(D_*&@_bVYw@ZjJo!
z%w>1WP8(}TU$kc^KE!9L#}+a3Ovw73o8l68t&|e4S!20I^uD6^yJZL82y9-%?tQ&d
zb4T$ejj5^Ad`m9=`Vjj}#oTMURr+27ZLQ<ls=>e0FVse#%v_l26p`e2`GV-GsSZz!
zp2jiE^C?>vbGAH<xA1uXt=t`k_F~eW58Up`Zu=njT6$%Bo6nA9o6EXl(?89WRIN^!
zt93Q&%BtY?j)&FG`q%y1{-WkfYCWHg@!>m_TBg7MEZ^&5?742YGQ)RC{>;hWQiRKH
zzP_1T7I)wJ(YraTE3a?47AiI~qqgJhF0~myYpyd-o9?+Spj!OEwIW@^38m+wgbd0r
z{9MUq^TWbv-nPPx3SL*vd#__v(Angq_V)4QIT5z<2D)EY*%rB##p%pXv0uWzA^&~e
z-v3{lB@ae^h+yY8(^j?pm3@*sO>e84`#&?qX*_$^JnHtHW*((`o$cqcxbG@G(-}Fq
zMZ{8H&hzxM;cEDrHu-p*<R0tkwX6QWR?Q8){80X_gQM0=ZhrHW2QeRiz08wlcNNi?
z9HbYu^y&S=V-rmeuV3wP?FpB&^vTAPb0j|gjWgm*So_gq?OcZFNx8jOM4pFko^|&A
ziKqIt|2i71io44;f4gkA#w=iVOil9E-(H$iYd=rB@b~<>^Xm$WlfTt7oGIDpy4x~S
z*zktUuWM!dyrbMMg~b^DIKAokj?FCFm}=5(N@Nq#F6kN15`9*)SxSsq=Z(tt^n3ER
zy7eoz&r?v^qN&!D@ulyh;ewo3&g?tC%IslKIp;a;CX2DN^o^fiZDqC6TmoGm)W3cb
zKI`Uz*YjL9=rf#`>`U=x2>;|+9lLWG<FZ>jB@LErT5aaCum8ffV%f-_J_h%{8ub0s
zepDIpX_K~AaHu(x$d%&7y6Pvcx<B+iZ~r%C|8e=ZpCA0)+rO&7kwLWc+pWCAJw3(t
z@Az8UPu$O~x>U!?;JR$lT-O_i1wu8xZ%BN-bl!<m%Xe*^ReaU_Sct5{#Z1kxRMwA`
ze=oF7lUcY@kJ0wFdCwGnzN=wN_RpO1vtZ)wh6#6_G_NjWFj%3gs-WQX>#?tndejs~
zA9EQ=hK54*t^GCbEA{=d=6=r$=wnC-{`}<mlI|IeyR7a{P?lM!ep)KmQt8xj;cu7B
z-Y>uMahLkVIoj(#B;0fGz5T*I_?-~@>7d_}o~XWOe4uw&@S~sMy+d1FZm6u~DTs8p
z74|9Mwzt~%;{I}x2m6b%mb_VZ{)wFSa`Awl7g`Rer9QebU-@_A{@2mF%RS=z&C9oS
zoL=wuPT;4t!_2~Y3PPt7g-s<3maR6)to+@->+q?)FRxAIxp?~R<UI*$mjW&e-l$x6
z-S(s5Nyks${%IOFU*s2WoX!43U$=Tk<oVUNRx=6*dE_>5?0)r_p=IWx)u-d8^D?rP
z>P>nXI`OcgQKUDcS8Rm0<-yxVQ~o?JTW3B$gtLbKz!9I)O?6@ohqifXPBj&5P+gWD
zFr6V_PR?nUxclZ({I*OEJJdUTx^g_tW8&{rKC`xN@LqIfW8b!i5|46D@Xy?~^@Xtb
zMW&mRH@-Z(>MZ+%>p4rWtSzdZoAK+(0e^-)6PMhOXK+n4f9uT9@|(e&`2qLkwd#*p
zKGsPmd8dAq;5<;-x9y?Gt$Y6?Hus&jn-}aVclG(C>0i1QKV7-od8JL~%*xA$PA(Fg
z{pMpl=ZE4O3%@6y@xG#CFxBHQkN@c%Hx5rbm2`Q5Ktk-#lH(J;yVbF^uKBI<u#Dka
z`U5e)3DX&F+|@FWYj_%#bb9p^CLX__EHR0>F;j!8nK$Sq{eK|I;J4{QUDG^Y_JqyN
z6Q_K-ZTCKgneS4>ol3cHyX5VbWo}Tt6*3|7%9Jf)!bi+Sy>H(5<a2l8rpc)V?W^?r
zc=g?;Sf4xBzWJ-)PMzbM^jVHvH*+>Qplig_z`D;T>gPjIhP3oDvx&l~0uyEDZr7Qs
zbt`MSx@M^+Lpa<2JOkl~Pr?&_&RUhz?lE!um7P&~uN`Nv>Ru$wu-_td?_!zBhpG=B
z59ZU^Sa|K7OukUcQq%h}6NN0yJT)UPvb<fu>(aeH|H~)m7L%MyU0gLR4j&(W3lTpm
z?XaY&-cr$B<&1mfU4Hq`J<M-z%`BK;b+E=b>~pY9*1L!CY#-KtJ07=r$x6|S7d@49
zO7?EGJF;{hi@bixG0zRh%o=28zBHS{a<lgSR42AD`F;!8hDBy^-<36&zjQviTg<<P
zdx6SJp*$9b>XliQvFF~eZT+IxE$FA_99-W$x8wB2O*z%a*Zn%Q!>DFc=)4TImtya~
zgM#v;;KM78ao-QKyg&7M@2#v4f4(!Eo+P&0)s25~+Qm(KUL@(NZn$7KKkws}=SsJ=
zOg@NCSoNUmcn!yan0%I^+91a#lgy{F7k2-8v_H>u!@8eQ4JSQMZ&jbPbfb*)laF&U
z=P$K#PkOc8YU2N}W#RHuoi8pBexh#he$tD_re9UdR!zVD*Wl>QRLwO7egc+D_$P^-
zxg};eMW^#?$$Vyqn-j&VCw5G;W|;BjfZMI^BGvOZ;x``-5v;sBG4A`}<2H|&&6dxx
z(2Tdpe#(7qm(-5%$=|CLDsL7(bUyhg;@YiQNm{<oex&uDUV8BOoB4Jo*HToCZ<T9^
zP5PJNZrSUxX3CbSUv7$)aqr)@PJREyBV`97k4;SZ{$fU^(2>`ri_dOMJG}JlqpQaI
zE5FaQ)_-|x-MrW&+5eMIhILB+$~C*>RP*B<C@nslc=UgGT=`*5zAKy0{wwe3ywv#m
zd49CT&&Si{c6^%BEOn%A#_i5mCrr0}3tG9$TWMPOn@GDi4$-UZJgfF7UwW#yd1B9p
z`stHjZt4$u6;dfH_n_2X=24Pu`L%GfnbWpTcpRS--&4{l7M0#=Tlr$$q+4M-XSyiI
zx~Mlk-t(@#KeNb1+ra42lBNJxW1FCB$JeFrU#=r@OI<&6>hZ<Lh4i*9f3+_tI>>Ov
znT4x-)bE3${Mk#^1Iv1Z=WTCYW}n^vWLaKWXk@rcVf=>GcFdN_i;hpqe!J32;Sy*3
z?cmwcHXH}GsewY<<f{wE&h6L#7PKUP^|`kH_VPN#nY(>FjxTdqa9Q^+Tm8q|mzpj_
z6t(z<Zf8hX;k(uH{C}60&t~g?KTMVj4E?uVNoogExmY&;lL;x6PG>JW?zt;l7{DvE
z;_|Z{-Om_AZi;5>Tm36z6|nSupysJzzgp?ubkV71Ne}hYcek>wy7T|5_wVC>mRvi2
z%Ofb`vX!Ie(oJ>D57@<vv~^geKmYHFT4#IPsqgX!?zhWdKPvT~6j+`AJ1+RC?9YqG
zD)07Qk>nDwk#Vlw@OJ;LzdN=p?mc^#;eedD*<PtrJ*U>as$;tmW%uXB?w8)d=}EG0
z7r(n8bi*qD(Q$qIlCv*mXQgfX(SP~GzUa=CZ)Qk#KDqh${ke(qbM`y$mfyee@=~AE
zS3WK24L#<pwCL@p(6y8JKdklLYU#CZ-`8XBXX;3-nqrkEnK)(L?Ap24Yd`hmcqV-9
zy8hQ=ZuXY>8{dd7HY}Nc+Wt!a_pM(;b!J9QTQcw4;>hifvu0>(?lgIGYId;&L;vlN
z*^^~VqU%lKi*<K<y%m<1G5#0X-I-rJPeZlKdd|xP%Li%<+on7|qO9D!{}C6bEZ>{@
zyT84g*|*P0%+8Koa?Lo{YG>GWcDMBm|4f$)eYSL17<=jCBF&O6->sJJ3%2iT-)grt
z|E89uY+l`S`I&dlZ58=(`PKFp6OWjcFZkqsmzUwryHfig_3Y+{<$spkJh;7X&#@n;
z|4BL@)!;31Nq<{>T0PA2&9m}nEccT>`<z_9mSslT&XpE5ECJIVX0t7w#p0}e-12>d
z(23nYTH`<QZa@8KkA>=M_nEht!`~^WO^#bXN3(za<mlZs%X|a9G)p7i$cH?ZovnUy
z(#q8Bq487C-GA2p{WY`j_UK>+wxw6jOXx8FxV`SyoJVKA-ZBrlaQmbBria<DJ5xe^
z4nO>8eB(#`L+9wd{a=FB_FEJkidkH8Eor&+yop=xF*ocz%}_4*{DePua<58t-iF<#
zf%7+OiQg|u54rA>6Xd<;lj+J5W45!6J<~JS{G0Xf@0l{Y;(}{WBEFw#d-3A<fxD^<
zKlLTU9FFT=KP7IjQf<ETx6H-AZk&x8%R9p^r|<;$<^29A!5<Lvx}h_${AgEs&iADj
z0v?VA9~xgooBe;VB>gL^LZxMK48wt|W>=r_w7;7DW6z7G^T&Q}Y!kXs72>ipYW@p(
zQNBxCa#nr0K7BR!VI%evAx6!@@mB8P3|^C#zCM?d^@efAl8^^hk4=gX-VV2#Xt;?#
z!Dn9br0veK+W(R_cyyle)#9?}OV}QpH~-PyIVTrBh%A49ao>`y+gklp6+Y~KSQlyX
zr|+EZzX|p4UrB}Oy;#Z;V6tRs(5kN{f8Q^B*tUN1se=t~d2S|o)SP`?x1{;RbNfY8
zf_#sh-kS3*Tin#QEUL@nQPJsBtg|c&FLqe>trDw|-#7iqlH}72%a&Zbn6Zp0=TyS#
zgw5~2vVZAr%iB`E>e{Vkh5hsOHu06#PgG_-_II(IpxCuZ<=^+a#c#^nsj$c|(05z#
zj?H@%B;&T-THOCoP@m!8hwXXu|9+^yD|_eOJ${c=PYdn`>mPjov+7RgbrqZC+g>Q$
zoXTjC&3_=@>}s0*O<S`}{)~UV?|3SN87tOJUAT3Yea7Z~?yt(0=d<=|X)AYe1}fFA
zXMW&uAw4bF{mPX0MZ4zCn!fk<$C-S0<xQ_M<&>Q){pqJ5>VBn^VR3W)vr{Qn_6sWm
zueok}s(or=`oi75S8saUmE-6A`EkF}U&g<eRrzxYMWV#>rl0&9V->hcH(2WLlCN2x
zGueB4Bz(K%d-lCnV_H+N__yRS1_m*U*_A5GZ?o@auq#R1FfDeDzsySOStl7%d)Lkj
zTgr22+N8BA^;h<D`l#J~+O}2y;07Dj*D;ZHGt@8qyu0D<r%liAc(o{RS~5{{&#D){
z4EIhAdUayzt$5?lQ-X5uo3Fa3`$A;#rLPS4E$@Ckvv_I5u5)D@IvtLSUuWC@n~%>V
z!2iu!y`vW9n#{(MWl9r8j`B<Qomj?o_|d#e9yaoI8}kn>ee2zSPNmy(ZuCE{`s?e9
zbZ2i(al9q<we55rcdZEjoh7%M?qA(AC5r#5s!oOVwQ7eZL+urIiApZB?jF4GbB|qd
z?|09Ky5G#N$~Vl9t+LBw35pb!<8+DmZff6EA@;xFj8fS)ucfmK1zt-`za5cUCG+o_
z-XY1iaT@Js?2}wF*y1i&89SWjKRHj@`Fr@i*{%$;&-X{ZEM&Ox?#h&pC+Z4T#=hg8
zXtLvHy3)@p@76T*K26*6-J)DXWgqK-UvZx+9b67gxHFUCP2XnO^+&aDRfV%1W7?o=
zJgMgTuFSM2Z#Vw6`u@yktv6%Y@u-iizgo+)U4Lvlb8r1xEs2XtWoylupPF3FvI?0P
z``KJ(<(^xt^Th?5Rm)EDW_3g)af<lWeM*^paQjN(8@vX$e|0{pkk8A^)m58ZpY+Yj
z|C{3eP2X>3X<4h<SFKMFdhsRghF|u}O`Y%Usse-BrKKf#4tQ_0-*f)P_Kz12{Vj~G
zJJP<qJ$J8;x`)%2+`bfx9VwGP9#447eYfQPyhXd;*4TWzo1C-k#r4l~YS*XcGTz8E
z)Qf$oy^$mH9rx1f8@JSLQe)h3@ZAlwvtEz4ZpeRq{F!w9_T2Sy&#E4Md{)iS^~m>P
zRqM7Kwuq0SH9`$%{Zd-aC2VQQ=*!S8F`Ko!d|!RmwxG~?*Z<39FE&3Npj7Zfvy#2R
zI@m`4QhnZpFF#kk_+)ghI4*0iPlLy<C)F?i-1_nDgTvqZ>k4b^B$;PA?2-NcS$j)#
zMf+CEHnDqVXTNT|7_4%laGUV1J)!^j?rEq#u6iYW-PkPac$i#vxO1*IL(lGi*>mR3
zC}DVDe>%H`pJ9en;+2)lX8J5@YU7(`ZS+sg|J0Re)$hB)i_UCa_rpwQ=8eAVdp(sS
z{NLovK6a-vVovWSIah}NQL?3}rqcOuLkuVGV9cpr)BEM(`zbHCOWPVoy$GDC%71%H
zg81}G+r8=x-@2x{C{8b!cJ;E0;<WF|ZoB>-O*2q`bTlUPo9A@Pg(i!B_S!#kxazsG
z=-Y|AiNTX3ukX%OG%U(nA$<F|?G4pyCW~%oow{ef)F@eH0jJ=Rd(T!*2$_2J*7rFp
zelv9bi~r;DWX8PDEq1LE$)~FW(>Pr(GjeUcd-TK)j_Q+p**y-5Yo<4S(Ys{$D#=o2
z;zqYi^QO<8;O72Vx%%SKvX^$VmcKhtpnU6`V%e+8=qFz`tearJ@V;lD_Sz`-rJEGv
zs~dX)HhxwLae2os<JBQHgX6%Ph*w_fulusYZ(O`|ong-|$%GhD!QT~8n(EUmdHMD)
zIe(#3`^&})o2Gw{`+xF>z)NwBhtdzD_aFB#+3md2D*MFVfBm;JB{m)2;?#9K?p5nl
z6_2kR;+6|CUTsc~n%8z@!CnrZbE|YJ^}bEpzC)Sw;t}OlI%O+Tgmuea#Y#(Au{GRn
zXZWz^)GfvjXD?3ndNwb|`EBDW)7PeX6R&?;BF)zGD>?f}ZF&FGSA0`sAIufJXLD60
zVD@z9&2MgXGtPK?W$%rf7Z+;jl}qj07hhHR?!^6qhCmO8^wqL;HP^jjn{!vJvQfCD
z*Qer=t#$tH=|a16RXbQ79RDKCb)x&7<VJ>=rK$BdgW0AmnGvYJ`ug|!v$0!p&K}GC
zc~s?5;Oo-)iv1rZbu3@e`z+1S_638w-W}I-H&s%bcfF}NF4b{#pCkYEdbxAOTc7SQ
zdG+zq84uB)N!EXUw0XwPd>sEqW%-Gta&KMk8u{q<+egpgFtGpIwu^DY+JAQ$O0N99
z#-Op&WT}?Cw?#wCjjLv@r;c7Zw1mU@zG~FmXp`o5H$Odh){Je?T=h?L@vPa69~mS2
zH+}l)Y^*8can&~Yz!Zb!Ue;_4QpHd7G}SqUE-zYD!F6-vxeljl5uqnaKNu3qZ<U8Q
z9QyXVqu(=<cj-E_J3>oW-Vyc{_IE2W>+#jpPIc&hSE2pr68np<d?y0EOob#nH2tzP
zGNRArTi$R{nKkie(tF#y#Vap<{rK@<z|-AtS8Sa7BTu!9X}yNWjDKOLCw^92p=)?c
zUR6VBw@Bvk0?&@qzoN3F4k#^UugjXURAKUWk4J_}Qa<uGzqjA-e9C(3&RH4ZOR67i
z{nh)YxL8!+@7>t7!MR67W_9m)y7ujqmHNt0E<91SUGyrDzlQn7)ZUHDYYwIr@lMJA
zHqrNA^xPHEEQhzL+>+nL+OXv;WAfJLMjM1xVtuC?sQxlK{qyCf>B6(;*7sKKyS{Sm
zCBNSnBQCj4bK_Fk62HK7%fl(FpUCsE&r0*Y@^t^YyRVd9Z&_FOY0|xkqALw2^X2dO
zWL?$o!Taas5uINeH%)wJ1cZh;zU*3dMTa3`;_8)Zc1x!O*)ti0{+6x0pA@jEB<JV#
z`SnIMHzqjh+kOwZZ}<If<?B>;(@k$DTD$N}Xx*!nwPtO4l;&j3uCt1@7q?9E+!1Xj
zpnl?N?4zLKl^1?AP4{MOyB$3D*`+;eo4QTA&Q9{UTW7sO%WXL)r#!2m-@B=4!JCe}
zT>gB*&JfL|eW%<1?B2xepY8wbRPf{wp>r0|Y&%=#thQXy)5XEhb0>)>=+29pT~>xH
z){nl*_?pfv?>&7%vR>i+s_o4i+aBkv3i+d<z2ld|x<4EGbYhP_2$<oqa7$Kw=kW@q
zv&)W5xEW~vZ%eqBW@*BF_HSWctn(Olo^ljh6R&%kVVbqJ%<m0lr`<C3OQM9Nykj^b
zr}vgj-x9A{Q8ryz)9sS#>j%+p>y9+|&RoPapD|!lzwOmj4I!P)M>$tE?mhDO{X-U4
zzJI~L&#pPG-#&3KV?wIKZ85FB8yU54O3#*UI`L=U_BYEdWL60M2-y8^QMJ;&OJDb2
z$bbHQ&fBISua$lc(U~!PlYGOEi=NWG{NtX!xv-;s^{Q({tM_L4=SrTc+oa@Q-YGcQ
zxWVGwXQyj_e}&XV&YJDv&ir9l&@2CjdS!e2?A_M_UN*!On?B29&?wVd-{;q-$8h4h
zU|e=%b&7Y@&eBSe*ISr!ZZY_}U0cua=Uvb;hR-tcngX0P$^PG7PCmk(H|u2e`Z-F)
z>+NNJCc1tx-1pG*b?smE*%R{?v3W)n%?i57%CLA5*PG9a?_J9&j&|GB`@Cu1-^i+t
z+p9dzUtS!}bToGE`=+3;3@_fh1#ij^f7DV?QFW$E!riQA=V`U{$F*i2tuqzdUWyo%
zb_nZC*88-nTH)UD$SS2XkB(m|yEmVGgL3#vGlnBK{-1rdc6Y9bZJyc|*KMA=m)$lL
zezW%VgK2hRhD*$AO0Rwqj(yP>6uI=*o^ypNO18|#Z}N<Lluz63*f=+L*~1t?L7h_H
zp!>qBJa?>emh0b{%Fz6%M(Tp`jsLUj*8Jprv03ouiQbiB7t>bNE&nt9j`nK>hG%NK
z=FhsZ_2Bf+OXTwZ1RKv@wdIUj!$dukD+~=s=ee;Se|Gsoz^AsgL58z}o$gG}I{F}x
z!OU88=}xu>t8dI_HJNy9)AP&x4Y_)GQ^GZDHH^Q#nDRHk;7U@Ck$aHj3n7g#vv~*e
zv~N3ca%So06liYr7vVlQcTRvW<BP{m-eH+3Cnj%rTKL;YB}O;2ZrZ}=2WAu1rFG3M
zL;ssJ>`$uy)>3nr)l6l>daY}F?($A~$0wJ+`{RTKKCX%XTk?-Z-DWIP-?7k+c}D*A
zRr@>Vwe7wV`El6}ALbbkot$+WG6YxjC|vma{X)j3z59Kwj>tYyjDFCf700G{yU$o=
z^NN0^8$zFz&u(1wqC|SuMKSN%DVNHN9=oZA*IG%0?)%fkqR-{IXzGcVZl9Rn?L53}
zyYDsUS?^w!wTG%c{=j>nUe9C;|Aejw-P$aE<}V`N*IeUs@BH;hV~cj;su!R7cXUj<
zIcL$ahK}mvM%s5&?ZZFrG}}_tdd1YtThsS#vVRl%pARn&&VG9QhvNfd1`8X<)vQsf
z$#0_+<kq(S_xb2@ywc@Q;{CX9%tjY?x+oWPB`)1uop4K!G4he^+>0NX%mRE_cFSC;
z-o@M?G4n;<MYS*Dw=bMnxXJ$W{59^!7}j`(*uAcbWtjiy`Qsn^o}7A<TG153vg<Hc
z_M2OonF^V9!Gd94^RF|UikZNW!D%tY>ZqFE4^5L<B720?73W9FO|R10#kV)b>`qE@
z)hrJc549@E#VfB(J$iyAdFC%8rDyU=^?pn<CO?@H-poDMB8j8X^wUTG!oNpWwY2n~
zp66wq6p{Vamch&FcJN%)BQ;N*9=!Y4@crgqq2e>;3ooXemwp+Mcz%NHuK1i?&PG$;
zeR8mrWV<Wak$CIv%G}0ViJz}NpRnuNMVSWAljp2VEGG7TzIBmBeTMAM%CrCH7JfEX
zUbcou`19;p)6c24tk8}A^1o8RSL@U2bElSQES+M-&=5T*UqiP~M*3Ij^JV)kR&+#M
zy;imD>U%!-j;xa<>dUwGGU)!hf8gh=sUOR%XI;4D#?CBzjiJZ0D(Znz?z2L#IZV^D
zZy(n_nkJTU<K>^-@&9ttDx}&JZoi3GvofK{nZL|uJ<9>h%aIex81B5Oan8K-ar1-q
zw~dc#Mb&HQpG}(nX#L(rSF0FKSy|pZ5$q7sbZ7IH<yXY6%NoiXyPD^)d~2}0zx&oB
z$CAiB=l!qoDBaF`ZTw_+<wMJbO+J6Z{$IcSZO5#RLphU7X9=GWf7w*tZNWH=J#c~Z
zv5ft>PCw`Fcw_7`{l}Jh%G+W#PFK4yL8Hw)H*dPxp}R}{FDjMko}P1b(bkST?awA`
zWspdC6{B#m?U3T?<bHX#s?@uScke&DS+z{r{m$CYZ&sWZ5|WuY>&Q0MTgyLI?DC%4
zzjeE()@)1PIKEZCYC|^8y|T)8;_03%y4$9Dr?hRiK40;nLRTxTL00#=z;)xpGDY?b
z?~IF!WEtjl#wXm5kPPk-**kA($a2?P@vYl$6nZ92+m`w>y>lDGo)<OF?M!(qrI)x~
zy?E>WtS0V|zv)iGH|^he+?cvErFYV4ndeKi4{LrprpNbNb61Cig8uT~cUYyi*}sj_
zHEc?34qUVM`Z4R*2h!Q)gw`w+5Zb-?>U@!Oft$A9Zy)53FI)2>_IjPa{hy7z>w0@n
zGt_zPSLzPA$-3cKrDDTjh8>qamR(Z)?)@|H^W(@XkAi=1449GdkXtmS=HLG(R_Ruj
zNo7~udN=G|w)mSWzhA9}<;Pd;@zS=XGaU~Xv@A5b$ZoBEZs+o+&UFTiN4Xl-XU)Hr
zf5yE~WKxkmr@XV-Kf`BBcUP6%(O&d@diL~FPSP>2>X|i)?mvujnYqT^BFs`ogS~S3
zs?6WbyLU&~ZvM5`@xN-<eUHnws*iX2>Xpo#Y#sW$J9m0@FZ=E6O`(S`-LUDJrSd0N
z=7&D(qg7dQdzcf}?YsV;{eaxfJH4CTXPPb$(TM$b`or>ktG5Ss<j=Tf{AK%vvzhCQ
zU7qV5b!pC2xVf|4@}6J*0nwW$x2#xq)cvi^xksI$`LV)#jJ@xFR+BsAYI5+=TEjnq
zxr<j;OlVDCnX5j@pk~TBAFCpbn__D7{s{@_hgJli^^83~>rd~-Srz;A)}FVk+y6xS
z;Hv-2uNxc1-k;FS_(S1r)SAhg<r3O$t&%te9=7{jsWJ^n-t%YHZQZoM(>v2LUrhV8
z<k9n&uXV1Sw^g^e;U??5_?7cxmL*%a8Gee4@@o)u_Kck2w<qJ4@a3u7+vGYnN1lHD
zH7>$6^PSF|wc4$E7AlnwU09|u<rKvq{2+SZC+EZ$$$wuJXutf_^)0#X&e2nQXO({Z
zbK$Rv+2@wWIm@@2S$bS$JkGN-%H{C(WARD$xlsmswii!tU|jHJ{e}kznq4;<FROOD
z_ToY0`V$kMA7Wo>vR&-k)v43C@;vhAD!)8=r##<Es6k&g&vjZs-;>hK69Yb7kG20|
zspc3mt<mB8ey8%wKc-wdG|gB_Z%TLVg@b0Bw&pH+>2^DhJNK%wo$pKKhOhOt#$Qgx
zJ(sy>Q}Z=2KITI5Zb?3lzZX=Ee%dJJ=q!BG^~EYob;r4%2D-Di&FH^--GE1jNyE!p
zGW(I+KUR%GrPqyfMOyAk{(LNNtM`)oLrQbh!I1J6Q`=>`POyDk*4(Gs=y>T^O|nUy
zaPF_~#k-<Yd~TVat5%BcKGC&uW&PZb&nB>VHJUeUoqw;iW!cgosq5_5RPJui_<BBH
zet*DP?)QE&UxPw*j%0pQW&OqESG`?6>&HLi8UI{@3>LoU<h<A9?$04Qw>0c%ncw9L
z>c5ibmgrmzs#<S$>-r{>@ZQYK{4%|c-;YFef8F?3u6}Y&>E>q#*8kk|=lzi|M(2L-
z%XedM<j?x2wp;Js+mP4c8qza9=&J8ptk-hWRY7o%z4fiOHQL5??iR1R;+;>=QD~h!
z-$HX)?yn7n3!Oge6*=xu6s`zd_nlw;Z+hMYvu&+=XK&4YVShRNV$bZ)--I%gvevCC
zK4K}@wEpdp>-%1?_|D6WJCfJEXHw+!b%%YgCTyEM{qd9u61(;bOJ=Cb?_|$%Oqx?x
z)UBG$df?rs2b@u#r~KQ`^0d+U&CjPRgO%saOWwy-yXVQO9`E0e1%x8b1*r>r%+=<T
zZcUW_y!Ob_ioRf_t6CbJN1ofSW&3f#!Z2gW&8&4ntL9k<iPn{Mer(Iz<HfaPy-d-&
zu(#{1l)pXi&)WXv@5lE$+m<reFTE>zx})T(GvBrXn+JV&_Uc}-c-eXK*pYKmNB7&7
zFVoAJT>5VPLjJJtM(NAeGJFv@K1tW_UA4S=+UiT6d)POpnC?7tQ06x8bhkeb+W4+q
zS=9eadufRNUWb3n#b158=$^g%YT1(NvzNEcd#vJN=aF9*^ymA3k%pw-Ef>ySTEdbr
zvH9dvHfFx%)!S!hsehR(kk>U;y5^bp^S4Wj*3TBV+VWBE_}pTnHoZ?%-)ww!D!p~_
zR*%0Qz8tvqxq4IaTef}uKi2Z<@4r@mdSd_PDM4E4ek;zr>#q(8*D7e=XSPi>YuCP-
zv*O2o{s`Us@oo6A%_}{sO2w1Plm%H?qm_0f2bCHhSXQKNG_Cs1;>Vvm)A|&r)ZA8<
z(}<{amG(V;+*9<n@RliS9!^^N+jGw;0d{FSyI1A+7R)~2cRfrt*wpwBXX2y`Yxge~
zoKD}IypMTL(5_n#>p$Lmw{zhh&iThC9=8!_5G*S>CMDFk;rPbN>~e;CC9A63S62DV
zmw&Y42E*=oWsdiZk~5YZJ!U;~<`a?J4{{>k0@&&p5?UvJ%nEn;zvof8#EZq8PI{ba
z_V4AQy%ToYE=u}+qFkWfdqt>5M~QFF+l2?}8KUo8Uwr<jaDyh_TNe|d{S4~QkDd!!
zdfNH^yPiGy4QKsRb{+0nE2EuhRdM&=-uK2PKc@#iEOX6GJ|1{>U6`Wq%}?@n{JgVD
zOP22SZF{lU;rBo8#qZkR=Ulolt>U&P=e}p3dDrd}Gk!eXMbuLAi9ov_r?TwjCGUKG
z)}H!4FY}z>_u8$dZ_Y)QRkKbP<yiiT;qBW$Q=6m1o@br^{GuTF+r1>GO7(M*W`!5o
z%Fh2<aet|7mR9I)2^Z!iYxAUjTOW#5zVLA7(PO_Cu9@!}?~{Aey=Ufyi07ithd(Dj
zePGGiaqVO&^T)e)AG$25`FgVG=((B6G0ML$Si5B})c8|6Q~hU;&Eo{ypoF$&<rl8A
zSc_ABluJ)2xD)D^@6D3cey@B#gGfm5^LH24Rj2g4<}0bnTlvo=zi)GM_S|Pd50_bV
zX?STaUG++cmEmZ=+x_lECO_L^Yd1OY&fHg*`2Wq;F0~j_Yv#?9mODK-5T_jer2hKa
zpdUNfPVRD#XV57u2>xbtcFE7UBi#S8ENhk(>$)p*_U*D=8C!PpZeiVr0~49U8U9R6
zkG{;9J4eIA#5hyZXeLAO;ydqmF`ToiI^w#haf9vZ!fzfcD<)3f=WEBeIo}}U!SlUy
zv!6!g3VsbclC@*!8r}Ql>z+z<2yBv*-E0`RBs6S#di(v1<?gQYSR{g`dDQM{FVsoA
z-Yb}V_ilswH=(6helx7uS}7%25v*4lI&bgSUpqV=c-cm#1~P@8-m)_?J0)OAqHl=t
z^&PvDr)|FbVadOZ>sRNlcB=|F=gryEqu<J_RwHVc_=jb|73uCc=RzK{$zn&C&YvjF
zTlM3UgXr|Vc31PS@6SECQ-EE!npNLLPpxm_<Bu#6b02kINVYmtntnv8>h<Es=CWx<
zjAkvh&ZimEEbm>s5!3f~^P=BN&&hU9+WR}jZ29`D@2+loF8ie??0e=~8`;$973?1l
zyj`{ZUys<$Ng0QfZm!Q<`(MibpN9Xny3}9%M=ngbz2rvz-lCUW9p7I!nUtpW+|igG
zapUSft=c<FpGp7f-F4>T*6m`O&OZ)3pL=#LL$r)fz1(c(Eplsn7c0FrXsq7)P5f9m
zpGCM=jbX(9UNQFC9Y+|CZWb}Bd~`4K{<JSglf1QG=0*3~>0P#bG2!dH$$HBfYj>+0
z+t=)JWB;Rs*M+~f_&j4hd${k}K7;(PpN?|>n`>MAYrVbykHi%J=g)M+GxMsY`}(6@
zF4yn)xTf^i`7eh(FD-n|XmMcUIn~E{3|*H+*6|kY+Hq$}>Yl7lf0<P_3zssa2Rj{K
zS;F~Z)5`MWKLSeP`HMIGz43*uLitXnp0-bgoXlCqx;6W{ztrvVy|79sAf_T?@%d)i
zS%r1ef?lOJ=-#u`OX)UD-(|b)SMt^aT|U<<zIM9bPT;s{;a>iQSzq{n*iHV1n{qay
zk$ac>_wjUA8Wd?H?rpZs-X4;ja@@A?QIhH8laGEiW;;8|eO|vhN>%=W^z&WQrZ_(}
zEph)e>Ez1=KQGxNxu@E_6W-y=Kk;7e<i-9))1H|Jh#43DO)gZ|k-M<8MPrW0k1QdX
zv(Jy6Y%A}p`Qtk+%To2q^3X+I4_2<;ne*`7CdZ_=3}>&`Bs~4Zzt&<4$EwOdV&RuA
zh;2%p-*#zrQms@3Pr#!Eo7b|w((jk^Dlj>-=GpawWyg-xX_>knSD$jKF2UX9x?kz0
z?2{|>9G^bEB**YAQZd~4ioDk;_31CNzea47+op8x)s!RG-dgfCte^9?$&*RQAm-Q6
z@cVxZ5<jg^T7BbX&g`4~Z!WpFHSOD2<GU*B^2B#uE35d|n)9iqmL^Xr?-yPw{!%S)
z)#6n7A6qu9SP*9Ls{g|K<CSw|@>VsjS<>}LqCEA|qZLoDo6I_XGWpj0@TrVz3U^%<
zQ*LfPeCc!2o>{Xyt51G2^U@6cJ56=r#wYR1cTa0s$dKbvY#x7__v7Bl=X~w@E~YN6
zv)=b;$MNTt3~xFY-`6~+I@`#}Z+ml#x!;9*{nI@Z9)%b$H+%c}&(f8<H_O{wTiDdx
zH~aNCS!Ktsc*8qSzVJ*di&&(n`89R<uf1Qg1Y5twYfs(he)J(j?cKdveFx9`sW`gW
zuvZr9RbKs>r?UJSQ{~yLe`>ZS#%m;Zp7P$txZB=J{c3o&-}?nceiuJqoV4IpP39D{
zOwKtASJoVv++Et+y+r=yUDv}59fobcQtTr4XMBI_VZP|)GUlAF^swJ74Sj`nrBnHz
zcwY?4nY;F>t>H%B$j`F13O9b8(=6=qKU*C?`@_-OFV-6Eon#vBQWweCdHU(T2NM_X
zXW94l&H;f5mPa3LdE&N?T}Hs*Lm~59)9qJ91wYR^$`F6#cZG>Vq}rMM@1pYU&!4W(
zn>EM#e@9Sc?)eut4E{vg=P<He+h11lWyj1?f5kO^Dz!_lJX{#FIoQgjCM?z@%-f$!
zHmf+-{CvC6(r@<?|6B@MtSeyueulr=WOZqFdrOUwqz6kn%(GbdZy0!P>zsDEA@h-O
z*`jH0pZx47R4g}f_%|isipRCPft}N)*<M%tW8y2jY(@AX-}7r$H}`#7n(uPM__G=F
zhKs40El*BVuT+`anVP_SKz>{4$>XL>_DmbDES2f5ZDiT`&gyv0?`p@nua_|i#TTua
zHsit56Ycd2zHONPBD1E*`JbZOv#+`0Hl_uk0h&+e9x2>f8qc%q)YJZ*HaUmChZwT_
z&r42Nr<>x-`e1j-s~<cIwg{#6tu#3C>B`ADVTpe@Cdil1Uv|o`AwK4nkCIBti>jql
zUah&g?0%1o*Dcn`f#)yR-21vF!n(>{{NeL$FK?@#&s;Vo%i>r;f!m}d_5Y>iwW7bA
z<!#g9;6HhA;kVcgwlX0s0kixbg#~tezViN@x@go1?@MW(Yj!+&!!$!+|ABIbY9j^1
zM+X`H+|mgzy|T#pUhkI*Q?-A)efctzx-Um-PAxr?oj5OrVYOX-R_u*N-dN%9N(GID
z9$IrNcJCA7&2XN?ZaAT{QmP^Q(u#*13VC)R^Ltbc!rm2bw^5sXPo1B6f=BLE-Lx$J
z4|={_2^CXvKieEm-WU1pz%`~Rwu{dO75UYg`+U4<(UI|Acc*se@`_${?!$g_zBRO1
zT$y%7`uvURi!U!rc_hS`J6`(U>+e=H^Ui|womb;7{ao!~@x6GpJ?9SPKM&<ax9*Ov
z)nr)wbm6qU-S&*jq`98X`(3zZ&8GKPZT-t%NlwgR-+EPCQ2qS7+ja{=cGom~G>hA4
z`-gYJ{BzqrR5bi4n(nw`(q)%#%yuPf51wc661q{j`WdrN$y(=+nGq>9b^AN^ZB^Zn
z5j!`SA!6l}pe&gKpFR|At*R3Zo4SnevR}7#V$r4N?=CEV)*60bQF=d55BrUIg_3Vw
zp1s;*lJ$aHWyAU3DJqK@BHquETlD7p-+3!eR5UdCa2)$_;KQ3b;kyf?w*O@;*m~-o
zl$1jo)0@tyZ6-UOw9aoftgg|0Wl&mTyI9_LMmt|kirT|9BDc@{pEUoqo^0b6p-FRi
z4(#3b^~7=3EjnA@{gmjEzvSK7)luiE_GHnz@9rOV_I}+Gf996b4_)u>e%WPHE-_zD
z>N|UrJ@)gj9@`DNGj6KA7CgK2Yjm)4`swOrEOQf`V<unPYUz={x@5ZQ-Zai7=|vw4
zXR~cu{$XXcuGguLErAD)Gk;hSZR_Q-;IQl7UpzA3o=!ImJr{RHJ~gmNEdF;iqlHD@
z)Sa^aCVC&vU3iqY&qVUfjW^Tem9Ng+GihFb|C{dR$#(M@IUniN7zvy#-+R;b?!xa3
z9yb!UGM#XloFrn@xGOmHCdUTPHfhgw>G#YZIpp51*z)rFkGShKqT4opUjB8Sb<Ym7
z<;wqb4{w>Dyjn)FQ8|3ajYmlhtevNQT3qhsNFHuvIKw-K?SO!#M%`{h(Z@-b>n8JX
zD(kvjzOwJh<Ov^BXD;>I?RZYC;c2Fic2&e*vD!UpiU)kemrt4`pw+oP&7MJseP86^
znQQwh?X{O)X*}M=aZtUeU~Q1s%Cu+MGmBrDEu9i%d*AT>>ACY`F1?uZeS6kjgZtCG
zr}Tt+t*ljM7Si3|t+{l{e$AM^8_T8yx$e0BV567j(q$@oCXt#;r<i+g(^cGO8K2J_
zvD{aC6_Z$VO#g*L#Y)Co)EA%9%wN}hG<VJ1r))-RJq{Os)nw?~vfka!?=y45?DwW8
zizV&#=LUJLd{wP*_Ju+DiMt}3qV_D4zr*sOb7@uIH8GuLo$~^l`QJ_I)PFyVm0@%6
z`UI{6e(k00wQo{H4n&Dd|KU#X-Q@mk`lljwUY=gngL@VhA1KOs^l?^tPRO)xpH59@
z*y8o|i<B$F{aZJc<=ZQ{7aZ98?bS5K9<MN;v>j!slSBM&dQYj+-eD8-b@spYTfHJT
zP1jg@<^1zEpp{JiCG)<0>fF(`<jpUw$!k5oeK~quberbV5Yz7}1}=#@FTJZ526<^p
zZ@oH4%3EyTg8#248~u$pnie4=eC)eMkeBAy0#?tE@1-+?GJ8~Grw09t2--J6mgW1T
zRUI!)Uq&d&J$pUpZMQCqp1{lbk0vPp-pmkj?sZ+C#=<G7EthhC`LJo^&UtimKf{|-
zF5VOTZH{<ewmtfOKI1m^(j@}oR?^BvGTimaXD-gYryKIK{4B5BrahWEHCH!>Xf9>i
ze&ecX{?8cArJEi-(e-reRh}A@<+ZW)?#DuznbWTnuikkFB$Ac6sp#y~psdew%XcS>
zoAPBP{CJ(juq$f)vrRz_xii&v&5+V%{9$MMx&OymyOiSTH8M|m82pM??@VSe_EcQ9
zZ0BN$*3F4OfBw%i{G*!rSLeL<6e&v=&84sAWx7wdNq?EMbjqu;Y%lflP_LJHZgx*u
zW=`KRQN&$y>69b?)b8u&uAB1D=T`G<A$iSpg;Ro*lpd$KG&i5{J9j!Z*mC>oAg`yt
zoxVKfntt8FU3+QB#h#R-Od!{8?d6@`zcJ;O(9$VZr?)P=8+h-|$|*sX^WUZaz4B`A
z)K6zspYl#WKFQ5XbL!M9JMM4j3VK=|H)+4KW^Puhpqs|hkgL&AAuYT;U&FPQPRaVw
z`gQH!#jCWQzUP>39wX<yOk-)tx!99kCyO(l?>Q3s%(?5(@!V4NTfP5#<n2EE)ArB3
zZ}FH#;;b^)w3?io|9-I~<mW8!|IG4@fv0Ts&OJg6vAmN+tc4rid3vSl2nX{Q{hI6H
zb*-j!&Dp=j-D}Q!<l3hh9e8)<`kW7($+icMuQN5jbH%MMWBt_V<!dK0+zzt(dTzx=
zmK$>mo7SnVv~|DpUgw=ps5Z-wgEQ@ZS{!34Fjo2=z+k2l==F}<Az1o$Y3b4pVVX-{
zEt{f~b7YwWd$vl*mNN-u^R|a-E@hIBEN*)<XZ4hPJ<a-@;8U*EowNSV4e~PGWmUNH
znU`khu8YUY?#g=y-8vCCTQ6SjafVlDDpR+<Ua;3ntN5s{OBQjOORt>g`*QraXN;Wp
zlqZXK>2DOT<z6}^YW5ZDYfS4-iD#V4@(!~6-hQp!B>UEq%*)GsXSL1SFI4^ODdXe!
z)q$EzZ=H+dPn{Cj_N|_E{~p2btNMbyR@!o2p7$d~A+KL`a-F@C=G9++T26i6wtLmi
z?vx!n4DM#FdR}U`U7SH*MSspp7CQyL`^Rqon8vbT@|`zJ`(=3;HA*%f<YxS#{Lt=U
zRm1r^uO`0T!u+7jdethX1I1+_PX({0ACdN9J8J1H<Y)gfOTRYffh9u>kNW92mIEg_
zyFxrGRxfp_+&JAuDSPv$-Nyn~J^1sr(C($Ix>D2`Rk7BWHG7VyrkgJHV%J(arAon3
zu#zjcG_<%>=Vsu7DM7z)1cv^U_r9{~^W&G__Lc>mIec7mX~@fbL;KGs6Jq$@1$*t?
z@2I(Sm#o<SmK}TF<v#!Xe%0HlPv1@nn)_yjR}R-xYlGBRf#usya=rLJ`Tv{nP|c~f
zzfSyL)SWK7d`eLLyP}=b?J^(#+T$X+@6(nbFWU>od7P3r^Um(Jnzq@s(&0^S8PA2@
z;9{Ax6?#IGPu`KJKFZE$aN)1r&n2B4Gv+)@oBXw$Ng%%HHN#np?YH*vSiW=H>J#jx
znd)9NoomCf&XddkP6_go{SmmOxFKIpbNvo`{lMt^L0+1sHhEnuTBB+LK6Ca*dvvdy
z!ewId;)(V<X^TgDyZ3|^+w(N+GrO`ypTV<P@w9y8;tu2g5}XI(<i4C#w@vwfDYp0G
zUT%gT%ft3CS^7`O44%xXR_4rfw%_LYvwh9`XY8x-FW6tWVfn+Ymb(wmJJE8D;ZB;f
z?@YJenV-C4r3-B~a6ORs|Mg_Dm@i|+jk|8ur*pq}{<(SBGkdFJqO;N86SMY;A1R8f
zxPAFxiqL^D>0Js+EPH*XufK1q|JUtqV*bz0?mkX?9jlG`6_?fLm#kph@s3BdB3|xC
z^<(kOKXdK0RKCdP{(15&LYXr`@#6Ns9#P%Qm)CpnOf;XNTX!hz)I8t)q2(`PH1fL(
z9&TOD*pWZu`^gwC#<m@IGQLJKOgUC&5a6Xb^{YcC50~|$)pNJV21%r=Ft$Z*-g@KI
zPQ&HzH5Cf4dO9gKo7`tB@cMOj*J065&S&|eU-Pjh<gfqrWHQ_916gXh(ixhUJ9|52
zcJ0!cUcEN{O+WMTx<EIjd*Aa6GMNrUzYM>^*>L)-C|?cZ0r8jSuZ5VOwEwze(Hg_C
z;l^gYpGywbG`x?^-!{94*;uIZ{dMu!b!#^UJxHDZKl;asz+Gw2b}aP&y6?e@FjK$l
zY1;Bt<}-8{e^~#m>SKB!RNSgR@w8s%#Jb(@CVZXx<;ThkiW~3meI7Zz=2C*xfs*gH
zYa{X&FYGMKXTHz0QRlE}USx`dTix!LUz}%49PhoHvbaNV-LBnIlAHl)mi!qa$0H=X
zrSdN9>py-e@0za3LsPwAFU_fUw;X=?pZ!3o-1pP!s{5ED9@On-^yT@o%%yb~!v;gA
zlY0X9_bzN)@}@g^QTyWHtp}eduV<TV-Ef4l=h+W=hVofj)-nIRrd4NXZu0Q{smjgH
z_q*)ctxFI3rLKQHp+5PighHIg^2t|bvO5GieZMfDVaM%?sQz+pCuPrv6K;H}SATx`
z`TPo#86J23EY7?hEZiV|R>W5O%i0~Uj?IxfE-rXBDnFLDHYmlwVWPNw+-_M1q234U
z7}i`|qt(dA@2h2Yr+D`Kp4nN?U2+Y6o|t`mQx@Za>o3E%a3=J0HkF3A?wkH8xi<9G
zFNx&N*U^l2+Z5IbnC{8g#XiAhgRKE;L-f=jUOl;OW^ekU?^p+lEf+5HUitaW+s%>7
z7;?Po6@CjJ@G&~0_$hT=<ENC`P_Mlrw$rA}j?JBKAjhOIRi`*}vw!3#_NOKcVKQHD
zT)Fh&ckZuN&oxYs9v?I|E4#tO%xHb>?|kMN0T;z$J=VQuzp-&gQU9Fxhw3B5Vjh=H
zuL*J%akV{p;1YYoZ=q?NF6r}`etg=Ivi{Gl%S)ep{r2@bmpDT~>aDMPcpNU7%)0rR
z@rU6Cf6W7%Kt5V^E@MH$$t#BI?aPwCAO8L=IA?0K9_yZy+a)3x0%oaHy}$FKG3Dy(
zx0Ax+Y8OqJ`*7mN(56pup1bGmX7s4qt0cQ|_tK!`#-h~PP_L``!N<363uEwOKaiAW
z8a;vce*UB>r)J5T^@;o~`F~LD-R@QK-XH6wZ(Ry~ZNqV6VPv%(!$~HYRLvu@UMt@*
z)XXb8Y-blHc>dIBn~X{W261)mvce37$ZyXqxB7<8{kw6_h9kn(6M|N~6JroMB0bY(
z&I@6yhZ;*~O=VbfCeZ8Y8WxR@uMX8}87d_dt^Um$ew%HB=}MNmZ7QxBfBvm2OH)78
zxII-P@~+ldyJbG{3~I~mi}N`ST=w+peEO1e>6D<PTHk4#ZXQ2groywf|2MDqmlLy3
za&ME^TzPMG`mtME*Oi~^7Ot;Y=KMrhdV;TrS>?3L)$89f$jq<vZLDc{*vXx$%cyZX
zTyyD_eNWH-dKGLaz$nabbhwuJK;X)Gao^vFr)3o$>Yit*lVefo!}orJE2o{R3d6N&
z9VaUpJg@lsvnI^>Hho5y-}c3Y^77g_tl9G>eVcJ-_H?E*{wp_GrT@GC{^2{d|GY0&
zT%V#HEiZDzK-*)Y+9UP!_KGb>yw`ffJPTHMGFAQB^-r_EU08m{NH$^K%}bH}Ywq2+
z-*@pzoq}rNi35?sN_Vcc9DQH&<!%1wYp)Jkxyt2rcWFPLzU_)B%L0>!=gKB0HJDb_
z-J282pt|h|@0X7o53n=1rrkA|*Pik&bs5JW?trvNd+pzgA~&*4((uyv+TXu&)Akq3
zWwN|elfv%m2To*XSj=%kxFN6e>&L==cZSRN?marUQ}?foL_4$RqhCn@Phb5MOg{GP
z&yD2H>0A=|Oxsvj#PX?Zdz98W&HMBN#*O>(`m{g4fBcw7oT<|&UNTcXbJL@fYEcOS
z2~jlxi*M<AA3i?u{JV_#p|2nLC-bO36S1GOFxAjuCGV+=UYeyk6K+WUS5dfg;kRml
z;^tRBQq0~qwoLk<n05ZD+|@1WYCC5$mPK&-ud6&SbvR+;*KTY6tEo=eaVA;iH#~x7
zX?))Kn1}g6?d+_{InkX>U+tJ4FdY^QOpbo&zU{{j@2^G%%Zp_sL~EjcFTJ^9&D6G8
z_6y%Fp6!%;bX7ZFcftG>l@HaWyUcXvd_25j`@HwXn|*_uu4F`W1>Cu{>{XE$!@a)v
z1sCNSz9ups*Ker&StTz&JA%vLrpv)<C;#GI!oq^QcGpUNUOVlStG`dteDATjuFE*T
zrE*4!?QH6N5XW$6^P`Sqw_^N1_x=oV+Q%F*ea{_E)wWcZ{aa?`1TlS>|8wuti3i*M
z@4aK}m=P?)bYPy#Nvk!6k_mNp`k9k@@7e!ZkYO}GIa<A@=FA5!hSJHR*&F2=&I)C3
z-&<$p+hskIb?=w`TPHs0mz()--PDe|Uyiah)i6wuFTY_c*DznH&r53c{XZUc^5Hv0
zJ>D&eEY)I2y=(IP`<6T6F768F|8Oehd^!D6@_)gJxbnK--&t??9byu1^EbX&BOaRK
z`(p0v_5Mqrq$uoUxsh#TSmCl#`SQFOB@79RT8;NLf0}sK*XY-cne%_LF--e@-~QQh
zUM@y6x5x>3%#*qg|M+p^)IEoYcUvMdcE;~N739_Hou3r+Rjo2J>Sme*=LXHIVt1YQ
zIF`LhO`f{^)wD(Nc^wmXzxHEbbCX@K*qP3^aig-G-ARr&Og~H#XF4B|&k3|$dTGv#
zkk@;i<a%Sn{ur?{PD$If)`eAV>HdG+OCmLXY1CIN>2i7?&yb|TIVs_#VA;1L$JHh4
zohCim{`KGF>YaQ4%=~p^$+1|+_RZhd%=xa8aLDeB=_0oMs(%HTm6bUHFBtyWyqIx@
z$m2C^yBWM}gPT9CoKnLQFyX<{`KnDv9H*DhoUvw04#(Qk`@bFp2i8oOYMlCbdFrR8
zd!L&AUKUzfB*$HweTL)r%x{0K-;{Gcc4dg$zFptWj#Dsn|DGSLa#Mf*xcY!`=8PlT
z*p59nah7^u`RwnNDM7EY81@L88=Z`1II}LVcx&jce$Hj5O!}nV*G{es@R@shZ#M(i
zqdbP6Azrg&WE5w{tiHU`%rCB*sdLLYf8oEI;+^wuJxWe8{CcKNF@Aew*j*Qw`_DtN
z)pz#Kh&#*SAC<cP_7)dMZD&KD>7Cmg_mmud&*Yi=%5G}+@otUT#$VdL-SkS`ZuNMb
zx%wJ5>!i|BE2c>TifWa!86(msnB{XFV81qtbJv6a_wIgr<+14Mq^xVz=Ux}J_H`_m
z*(1WS(kcDx^?m1_7WO<~pT?NeyYc7a;K-ND?3=A4qa~tLRs0X6OpD@-Uv@Q(DM0Ai
zcN6)9om<mf(i-ju6<Yk3XV@NTe=&8{U)BR<?mqLx88>*dT+XUlwO;J=qp9NJG14uo
zYqYo?cb;9kZR-ZE1wXdkIR7Ic^X<D0&67B-&j)GGXMAI!s(L+iCdb-yHFpng+s!cJ
zq06572jLFg>+(Lfmx<TN*56ZH*&mi(qOzoawv14^#zsT-5B)(8tvBXWJSsb>{?PeA
zYQxn9-(E7*FS~a5jVyzY_blJz#p|ZL*S=MKhArj)nl}MU`L1uj#;$fM)==<+&f-n}
z&p!HPe2K`B@tX9+a>JpyQByBRyVRB(kz;t~W-)Cm!-H7wwQHCpW+#ce9-i`@N$Y~9
z{^G?&_a@Jq_tfR?Va6Yt1q;<w!{=1Yneb;F_n#0;J1@<pQsPV^f7n0lDAcjMzR#@a
z%hvC^l9lW-HT+gtFOt#z&)m&ubW?T0u66F`zF#`LyMG@4{7}!jrt~X9f(^dYQaAc;
zSij=U>scYQcdO~i3A{eb+Ufl>MC^!o)r72)u>bPWe+?gf^tSTw``ub*H6{J))pzF>
z%|6^GuVVM`ONW(nns-=;)hxyj6{}*`>=$UbB-9WcwDu@3pCI$k6!ns@c}DwupQ)C9
z*eTK=DQVmPxv)E?(B0_Nk#4n{XAAv3JB!OR%wJ4caCO7GvzNCfpLd(SpQ}MzXNyAQ
zw&3_Z+i%NNb=~vaDQ5mcb#95$N|&`;7wSL!{bb!Q%S~E-_O849Ssms@E}rT*sWX4e
z?d_iqwBFMFm2JFq%Bfes90TtCT`rM-<8MQY(UQP9%nnkL8_wx)+qr$yRIqY%nAVf(
zXLIN}`~K$evuCRF7}qT4`?#`$<sZv~l*5W2FTYE#4*q&9)BNSDb6NA<dDHGqHN3lF
zI-|~(fc<x_y<|CPFYxBl<jgCNn7&S9*l>;U|JR&}6Bix1W3+x(%cl~bxJ%0yDRb4-
zON;ICJtFq{NbV~AW8Zx^&N3u;=N#SoopHm14~luSUTRdcw7sr<HP=lyuOP*c;l8E9
zB!yF<(f)>!e-atmZr<mg|EX<<p48+Eo?reZxJT_S5TE#@enbA7P1hNx{dsziRm0~r
zPekpiYpc00uRO}@B6Dxzl=$@w+{ql%jx4*!*Ko*<ujI(`n2W1;5}FS>uRf;MV08KW
zB-2~%l^YIhnf=JCZ3~-@>&9CC4Jv#8g}&DQYo)h0YmWNsY=&#r8!BaYeCnN@Jxl+e
z5d%NiB}cs-ezY}2$nGmxb&&0TJKH2)eVI86QW8WD#C#4t&nPYP<{i_6hLY8VbJ|uj
zwA)<MDP&+cZEP*r(f|0$O~!x}0n_twPd-#z{<f6#@Y-)@@9EKbqITx?+c}KVLS_66
zry38;n)mM1GM1+=KgcpXue{4EpFeT>21Daqeuib%FKbF(szrP$_`Kw4-lnvjEBKB~
zy=8EIHv{X_13$I0SsfPcE$UraV8-xx@4L4C<teAHJxXkI7SepxVdFMIN?ktXS!6Ev
zf$X$w(cfJwMP77Duy4@08+GS_BtzbZUDCf|pJeu>%C8rEzs|EwIhG;f(Z@&S@6)_A
zMI+cfRhIXjcvt4XI`?X2#gDme+xOTrEQ?<2TKS>3_Q!@Guh>+@|GSK*?E6^nrFqr*
z^U?U4IgfLeP6^VN?mLnFcj=@y^=%s3+Pb<R6l=cp#??4e={vRt5BJRNIw`Kb^w#^W
zH}7O_%81I{xY5}zf2p4RGodE-SsF{PRCRByXztLeT3>#50Yk#__3OiC{uE8vs+hE=
zRMO$4ad7Xxlr{On`?-F<+{NcI?{S#7o9)LP8M$jW&U<uRzUa&;J+|z1zwZ@VCunAF
z3htOS)n0$)5teNZ6&mLhl8jF7wM(_tnK?gAV<{ig1J%jtUR|u-fi9tOSM&;sJ_Hmi
z^d=;SXNK@>I8kl=F_GcS_kGHCaTi${o;$OD<8r&*y7}T(J<}gi*`M^6h9oG@5cm2m
zk<dN$*eoBexWs_$uoU+7TZ4MbJsir#*Y93<WlG1*x&En(wHdCr@YzUJYb36WwzaBR
zdGCqI(kW8R0cl0oKZ`e5ib+`)g}&fwZd|7{zoux>=cGrT-vTba^q=<SE-Rbn(kY+B
zEvJg#JUUz4>VmG{LDzHNT{V|7?X5d|`Tt&b&82GEOG6H%Tv{XMrMdN3O}6=;B!M2A
zt((8`3&uxf?vv7Axs5lW`}?i4q1PFvJOgdwUtht?QT*{wbiMEUpa1%rKSjwGJUF<?
z-R8vHe|OSnaMiA#64cK0p?;YkpGXsH<Bc_nQO>OQ85CDfbeVo*?cGNrMS{<(@A5AF
z#bl_uwnmHnF=Nl{726p%JbU}O$?4oD6Kla<Dc{>kha)~M4f0COWt@@u>djt;7x~)^
zV^^g_9^Vz+xZv<TiGs^^Q`9CYp4s?7^RtOI+l`pGV+r!RBY7Y0JKvbCR`Wl?eX->~
zCk5TLM%*V@8a;0_xM?n(@{7sfrK93Z%QLUGT)Uy!`}amb_yT!l`7;euJ}2$)PcU={
zbYA~^;nMl~`exbkyH|3nd=7li9C2Q7o{-S$V-0h37cBq3N3wza>>Rz9qUQ{6&d8Aa
zoU<)xRb!7fyXMj<QPUOmt0sF~`_2=PH%ao+{D0dDo-WzkY5vooA<10k$m%YcH>bUx
zGVfVBC1_P(=S$bV7gNfNZqCZF%|3PIJd;6?=F%eHp7k?ZSQI16e{P?9Ku1CO+wxkQ
z2T=^W)O0>;A7E;?4qAOV)xXY&zk&B_$O4fEp+8@+U;eD*c{VZVQs6O-yE|7E+Bv*r
z^jaClU^C&6tIV`L9l{<uX_ud{&UHKXNieSb@NwaJ><c^(8A&UA4XIdm<GpV4Y<BY(
z{hPN{Dswvhp0Og`z@hUbPtjh+ije=oA`9Cz?><$V>T;?lbN->oOyy^vZglNj7nIE1
z;{EVPh}<!z9M2tx*0SGNz&WX5Rxz(Kr}5^gzw8xe%uQdP)NoTxONu+;n*I}WhNzeI
zX7`x`E(NVz&Di0im%;WxnE%kb-OMu|7HaK}W^-Zxx#N62!+tfLA{K_dGH+VuWlH>2
zT(?hhfyaEkT5gBkPejkMTyAUr%Q!>G>H{0YY;&)?Wbd0yr3|OqcCUM@;l(|3LQC+H
z=J52QZz1ySE8^HrDkbT&2Yu8q_br<-t;Bxm71M^qySnwWI<`jhf0(&5?6(`=#NU#!
z(Hg!-udSK;Yu-_ZrzI~LQclFZiC7?`@#FW6{v8YNPTt_Ne@gsiHOuh&y3gsge~vt4
zT-sg45-$0*o8g~l)WnF$IMb^c34#tA4JV(oKDJRsmA~rmlS$iSO(nOm+$mD?Ih4t;
z=Uu6J%^mj`9iiO|ds#FJ4Dxc77|ze%wf<h)npOX}A`747mIrL=a<Thg6x=JvnK5sx
z)$i$2$0qUX#5ha{==gf;+)3}-$KukS=bkHOV(_oN%Pap~u>Aa<mee|SZmrI16D5BI
z9e&rHqjy)tsz5bCiFbR&iCMyH>qR@RY^gOenWE!=(scdFZq_Q+*6B-w9J4|gT`W%(
zKUr>l@payh9p^O~?s7htS?i_vBK952;f4>T*E|}8oL4QkYMl_1zWkM+f%MMcROSQU
zKHQk-uwGxiSN7wx&;9o*^VV8CS6%!wyZXz;Cz;<>IC$pO%6-;9P<H=Y6z5O&Nv`ue
z6gEn}@4Is1F6)NNGkV+}mGtVR8$I@zR21{<`uQ1IUqcw~ZM<{)$(zq<6U}DS%zM?4
zGP87oU}RB<9K-yoyS(!JGq^XX1@2qj_LIR?S4hN@-?Lfv*~U6ifqA{_md{Mx@ub}1
zV94t43<Z;}o|~ogK04Q6=HB_rU)?tgJcyny<=yh*f9&H@^BS839)@srjf>(1Car%R
z82ZfQtRy(Lt6tM<Sh8xFF=LsUC(DYD91MI%uch%{VVnHbU0pwieLu5L>GHKLHOv9i
zZuH(-o^*+~!Sdt$i&D~z!qFNlKl2~BW{}@Er=~&Ft#$iFh7zBUz+{D_bTzw87vDxq
zJO6r1>A86>hqu)JVM+UTMs~RyV~Wd^h5f%-TwLF7*}<x^w59o=#czgPL7oDI`Oha`
zIQ1$?p)+mzk1Kbx*4<prsJ`@a-|ZE?zVix|nf@C$i0YY4Y1zD3ZHnDgc0=DIXPH;;
zTp}m`{_~fed>x-|);LxRl(XFp%6`WdG3&*_KMV#(uB*5)xyxJ$JTZH5>|x)Nr<a|*
z&#*csLxVG)>6xi~jh0wwIP=4sExjE|zfIWhul?JovHq6X?JevRrN27QXDD#_)3xau
z<BZT9)7C1fKj+!1dXr`M9Px=l@1N$&<f}_IiZW!|PJI0RqufOsS-Ibb8!R?kuk_aW
zmpE~yGXK1Vy{g7vl%F$m{@ti@eR5>$YjcKg5%1TrZgP$5T-mqU<D|*C-&@4qGNzl|
zsy)U0wTx-X5x(t$s{O8Ntd2pC3K?Fx%bnX7d1cP>m+Y(FvqT8it9=w;xa({7+w6ee
z>$_W9ID9Q%%vOG~hV{nVS?1m`@7Q!a%72HL#QA(UB(C~=_S_u1chBD36#Og2sB-E5
zY>t4GZ;e&_39FCpi%K(KILf(w{w4QEFYQXU2^xQyy3x3B#R~tUsr!W*WUnUGs1#rO
z+NY*jA<%J6{EX%MQ{{|{tDaag*ocO$Ii=e?fA6CUF-xbc3S}|4n6p`#@!Ilxxy4ta
zSPtwzx2#fv&tZ>Dre0CgHiOz*;r;8D^sppp|Jlng5yB(uSd{I$<Lb3P!MnA$w<=j5
zx&H6-hNAh50Y>Fll5Jhq{!`q1wvH?BO^uA|!sBVdtCzdHt!Xgz({nky=>2})b1mn7
z?C3wyK1b^BLA#?2yQM8|{fcF9v6!75=KXK}-p@P*i*7M}IQec9xA*(d009wE)-Q^S
zOsW|VuIt!qFa7PF>-@hrrN8NITb{)1*u}~y$g))Vk~KGX^yd4&3)3fg8cj|qo9rX>
z?z^*j@omnTmc^$v_sH+Kviy2TgZ<j8d`fe6G@JkD51OPDDI2V6JZXwxkkP&)ZJx)<
zxBuLIG`)7sNh3b?gn*RBO)T|BI~T`uwnVp@Xc(0?Pb_fy)%W<hIpe9d?MnVFt0!$O
zly|RVJ=wojUuo+y<_$JU#g>IV%t^m&mvyb~iGMVE*T&aboBH-O#BK?A+>(C%N#8o2
zY-i^sY(-qZXLok|VDn=L*ylXA`D)R$_Schse3w7&l(pvE?o}OXtJis7GxXlA)uF$s
z%u6C}WnI_&N!D|(E>YDw6p`{muJpvNZ|98pvnC$dyQQ0vgY(`zd5;1^SC^W0|4pm7
zPycy&pdd8qv+A4~90taL@k&z9W>-C)dvfON6=z?+o^+|aR3fLP`IquJ6W3WfPLaND
zE^^-@gRbTL{@9b!yY7;4>yoLK>IUzQKC=F`JfO6&cEh}`ho#TI=ASXhyU+S@{Uvqg
zKl3)^3%1VLxa>vr|H&-uQTJsS>ZNRV{Ou8aHA%$%!nKO?at*%cx?-K?KMZ~|OO0Wv
z#jfaeKYaYf?wywXqMgW+{OtEMhMd*PN;_lycD-KQslU5ofgNMS{0;eny=AYN4^6k3
z`a$5%sXO0qyOc)@SFH)XUsgKn&BKhKwysuFrR~@46ul)yKN=iZq_VcSjk%!V=_x~o
zKND{!e^)d<WXkEocjfiUFTP*fLjPH`nohR$vx*c+`l&rP*}TB<oVi0mzm@HaKihw8
ziVl)=h@Q;0h3&yZO9Q<l%U<od(EfvA`8QK%*F)Ryl?XFfM8B$)m8rSgyL)y$>#LO;
z7_a&qUG!+xQVs2C?=?<O>;He!#mzZ%x9ZW%vaCya>kN%E-)&WyHRX~@#r*cFW2G`5
z&xC(I`(UZfv^f{2s&7(#_>7TZ%?Wd%UgkAB*R4BI^0>Lu?m;xehQ+h|CrX)>W*YyF
z5_x>%NNd8Y#eTl?{3F^q7rhMm8oK|2*amCS(&q9?*C*Xp+y5Tm-p07bqfh%Mr-Mg>
zh-l1%s>5@5B1%gadKf%xc{y=0&ma3$&o;c`dGTk~$#-3U?fL!~pU<4Xz;3oqaF@B~
zMzw5*+SIRyp2l%6@>H#KjD7SWW1r~1J?a8a(}Z~*tqIByF*Qh*Uc2Ma2N5IxhV!Oc
zTEeGa&C_4mdN<Z|;vLiKy_q-SHdq<ntJ~+#_(9z;By_9h53z<zc^g+}ZDP;fWfg6I
z=P^Tto@TQ=cZBYbP_EwgBVQEwBIZ4jI<A;D=a?nK(ua-yk5re-1j%PDe$4ImZO)^|
zN#T9Hn<St0xqO*g5Va<-c*B!lrdgM|--^W=9nEW;y<ae)Hpoarv;C)oSden7o3x-M
z=Z0I$R^FWW^6qwZf$}98($g4v)|P#Kbt(4f#>4fIXMew1DRTLH<|~iobvJh`4$j=v
z=qnbR^nAMVCm{xR_2dtSo!mngPK*;aG>&HBwK}fN_&;d=l{HV_WcB}MKCmate7)K3
zGiLu5%CCI+FSu6pLPD(6%$2Q46}<BAx5~`Avhmg`@3`%&4KM6mvFr=`1E<H6z0R%-
z%DA$QsXI4HJ6SXA-qQ0Iyx&z+u{u<KJ$vas(~XA*4V|0c_td|<Xgd4v?~pYeB^}X^
z92&c1HZJVF-joq^?0#6R(W!NA@3b0}c2{_sF12My?(zQ}Wv|ONBPDE4lSh_-US#C*
zib95<>?w+W&#1ru^L=Ie+w1G9{;xUpvw>Y$CsygE^V)gGUnX3#=Jmc3yOK}RZ|mAc
zXI%U}j=k8-pw+|aX1&_(H&?>qpWpaCelT8faOS$MxgzCzCc8Y^ZTcoVC;r>*^7nSN
zZx6WXS>3E=XRu#ZDplZo|L%*eGP6P!)_r(-lwtPU_(^*kJ9;8IAC@V+h}t2Nu<=)P
ztNPD?y;pCAxvrYjwd|^V*j#zul{4R5O^uk@o5UhkU-H`U<In%1TBk4hc5Vvs<lA@g
zRk>Bz>@}(8Khs=zpXx2j5tY%=sP$$nyW-y@acb*@n6-PDW+YylA~}2F#G00~i^C_s
zn3$FR{nV_Jak;;8H~q9?TfJ|O(l*2Qrz=)+KVJ6H-s{{_<?o-OM0|x#ysmzid%phP
z?Wh^+oA&HuGl;hA{92arMS&q*&3WE^MlGJp6;EH4uj}Y|A{8h5yh9?>vAKBis;|ZS
z<>DqEF_vYl*wMBre75a03vJ;an#WG5-Zx<KD>}2A<$`&_o-e<7IloW5R?+iS@7}iQ
z9VZ%ZC;kqwKTxy$<ceD&zFu*OTdNatYPYaH@cp`Qb5-^9@4_z`4jd7lFaPyGM`C+<
zcI4qdp}uk&Y->KI1p97&{ye`dOzpT^ZuJG3&}=uyu9mfo-`VzuT;&&knUH<crMdN5
zby=OW;KX<Q_V*sMG2|6yJ^L-Zz((@BQ#!*wL%Xx=5qT@N{5!R|AURz*CwWfi@#Kpi
z^o$qel-{ira*pd>SKA&}aannN-M`0wdKG^=3SLanxl(^?#V*sIH(j&+;!ez~{F%Ny
z!}><f!7W|}Kj&A*nX@lgH8<J$>DKCn$(6h_I1ko_Or3X%=TqUjg`Z~mFn>^2(Tm(W
zyLq<g#d$YHf-4>@)%P|3p7PfJvWrVffWoP_FINh$V>78SD*3ndYw6oXlVxKZB+6I4
z)@Ar{Z)f832+>vNbs1t7*v;WOa5Qb^t>uoaG7{4p4!(-nt@q*X>VLDpgzVQ_x%GZ<
zgXz%-3ElhVt>5F{hp6Axkg(cil2SCu>wAvxrW@()h05#Z{OY`Qb4^fO8t*CwF_(>6
zv-kq0@-*j)K0Co-ykbg}LR8c__i3{~ERy06E%>=Ap<MoL?Bjnz{avTu7rc6Ct#7b&
z*3SB@r>i7+&&y_iRQMWh+%Q$G*I=#CuBV+I)}qsjyQBP9R0szaIjxlKUOh?iT0X<l
zw(eUp4fmUr{JHNmP0d>q!mVHZxX<>G{<nCsJq!1LIO3<PrZuJMuld_Ado^oL_GacT
zPIG@PcrbpGPO0Mx6VF2%?wPF-`W4Dxuzg;KWQI<c>8vi*zrjXFg19A>Z{64~FlpZU
z(uDd4(!Z~j{qXzA{$P52dyd$4PQR`Dy{`u>InVgx?X&hu^Jz0K^`CEvz3#E=PHx^G
z@&Bi@BTY;n`+Rj~TO-tSMR#$n(xm-t3$h+{#LkWKXFITQ2ipoC8@IYo`ix>xUf+$I
zBixtVEm(5<#{uaNj~_SZf0%t{weW8>k55NF3m%Y~-83()FV$@B^o?mt_SLVP@;T?m
z<?KKc(}kO>G@8RW?L>F^{Pea-xVLKm-HT_x#f57BoIOe5##ILe{uk;Dr`H^9z7k}e
zxBS5||Ct|8GerDfGSe`*XV-_%4>SMh_%Y3pt^9lKK;2>XwL$u!k3L9tMo(Y9{p)@;
zt*z-y3&S`|uk1co-_r3W&9ETii^u#Ek!9Up9)5MJx*3!&Gzh*g4fWW$X@39Z0KM;z
zcv}L$HfY^s+F-MHuJg0T*q&vV&%WPOvw_`7b&||uR<rZH>WkI(227J)7{<AK)$_c^
zc}kz^PJG_}si}i6gylSA=X4zv_j9)yq@7OHo@e~`qs)SD+sT#5U)BnV{8JC(zqg6=
z!Q771ZIJ<2jj!^0&9uAn%c*vHN#C>uon2KwKPSDodid&<%Cv<Zm(M%R-`~N(>~?65
zzffLwiIPBv?_Vv4n+p{ux6jdD=GXbU_Rh1l3yf@jPm*Vre<v=uQ>LNCCCXRoCxeY(
z;om@pQ+(SpCly`^T()8LrK-9Wh0h#PgMPa2;M}}v?(;&yiGA1ow&|2SYnLuEHCkh|
z`kw!XV>3@(DWCG|!y>7aM-3fW`yvcWKdsX@Yt^q_Ft4Lz-+2p`y7(hADneD&ohudv
z{PUQ&j;DIH?t(9;&WFcJon><P{VP>%ZOF2Zk2sVy=AUv8&Y4rTWlw>R!Zx=fy}uVm
zKB~7{sCeyH^mE7Znaw^NzE>|ic{}Oqb@!`kzgef7$IqDUWXU{@S;yvYOEO<9>$cmo
zUbcAg%k11|qNeuxQnc`~?x-vCo@|wv^=iU;zLK{_Y1g!wG<f|ir00D57iMb6$zO2K
zFyqzK3oPP$86=k3y%D!*`FXFX<aPnuf$ir!RkQoo7~Iy~u<IsUa17&z93@tN8?B1n
zXRFrDGurIAo2T}wlVwVU*ayd8;gD;Rx8JVY+gK1j{Z>7r*+Va>yZN`Orl=JqEqWw0
zv#$9#n{3*TTU$)EP44)He<^(NctT~`>|FCF(cJ%pS9!0RJxAMh4r|M@aI?VKUZHz~
z^n!#w<g(0ou~lMLRzY7?-@dJ<mn?eYb?D83DWSLbocMKC&djFjmwLb+KZcmxx;52@
ze;rtC9~yg#f63#u5{cVW!~f58=r%tT({_&ks_MCU7cvi)GQ3F(e)L<Y;r^wwvKymn
zcsJN;?>psp?BA)fn$FlS6X&Eds3yMLRQ#N|G1Z-8?UkFK=5kK)Pj#=?u2^`_mr;6R
ztgA~Av$g2~_lYa__WwMt^GEy9lEsxfm+Be|X_OgNa4_7K=-sWUJ5Qv4MabekecwJu
z@$^Q|TCJYj{?`Ax_=b;%19vCa-}FuSRL;=jzodnm;aa45*z3D{0&V}WcY5rb$?CMx
z;7zv)w+u`8oowOEoC~uOF8BI*FDZFg$*{jx%}%r-FWYR%>_GK$@#E`Ocxr!ATk-rv
z-Es%ngKkF@&dq**Cr!q|Q|U4Ds<(44wA}p~TJfab^EmrdXXDqt`m=?y8F=nzHvXNO
z`TN$lcdsvOb$|cQU9SGr2gSH2hYOF!GTgX5{rT!xo%fHt)cTe=yt-_eoptK*E63_9
z+cqQ!A2{}>gJ~=0kL7ozgIXi3RT`C6J$b(UmS@3j^JOQ!1JB>teP(~Wwn_HZ-*>L4
zSg$+X^!2;J0mCoNUh`ip$TaG1WhmY=&FL{;Y5AwUf1Axj8pM^jKZ!AXD`dF3X@wf6
z>Y<g<Y|}()yFPOy9#>Q<YT2o6?cJLFB{sz^FV!jS*TeROeaH0+HEK_PG(Tx_k8#DR
zn)ZgdUGK7v=gn+RJeG0X^4Lv=Gh1iQ5Sh|2_kSd>1bcwsu9a1Z9a@^<X&c}A?EcYd
zsWj<#Q)Em@U|B@U>f9IZGG0?-kHu<E)v#PqAkMs3%=vNCGH*tWmznW*Hi$gPzkR`4
zEAMQknX53vHurVitNJ%R;s468>&hyxe@0hh*B<ZDR(8qSn=V#=&8+cI#VNIh^D<n;
z-UrWp*8glF&@g+in6t3`&igCV-{!OzrPdf;+V)0f&NBH|F8UMQm9#!qyl6Z5^q}QQ
zc4pnpeZp5aElW9X6)*KP+y7*rXJ^NWkd93gKd>M85^`#?3fCzHyRT6^zJDYb`{osC
zg{v!no7nYPjB(92O-TlqlS?1Zo2K>lprxXCzoE&|N3)|^uHE~a&rmlvBcx(6TW0I!
zzH$byIe+@>*ltYYomH%r5&qC8N&M*|qm!B!3NCXs%;Z~|tT;j4ro}2%fJ0_JM@UIu
z>O!@s*3Av4`ulro*0Du|+pE5u7kpjzJHt7>EwAoQ;1yHTDnA~2^Wo|p#tUqYhFL6M
z@#>4thZ)WfYZ^GqR3|IEh>Bt6+C8`6ad7z-i>S=j4@ai!zOVeQ_WSs={f?oVw$9J(
z?Qxalw955bRr<UkglmdQ&yB;W@^aHz)qh$uYfYN5+5TC=fio;}jrr^>LBHD;O*(Q-
zV@mbh&u)J=1l{$&y^Z;U<DXvc=d)L(IJ+(F>}<Z*P^_j9`l=*lj^`V>3h6a<M{fR%
zo^19+%(3Ne8*A#>2Lku^N+!6da6dO#ke0ZFJ6-UYn7QJ_YUznn!mU)6o{E{}8v6g$
zi60-QcukS1F>bd1yQ-(JZSUp}rVc9?@7&$>=xIXfHQ|B}Gc|PBf2?9_x+}cSE5<5)
z#T2XVH!@kq()ZIE{O5FCXYTP_>TvSW0nvl^|EaETy?ErAnZl`;x%1>@9>3;cd?0aq
zlO{v->iw5=Bc#`PsU7D!AaU)WNP?e{(WGk)E^GcomNax&-1=}XUrkByCx`LGmDO_#
z^YS0RFMj|3cyOdip@FN53t!=>ZQ(nY^>(nl-Sdj)cIw+ns;5u6y14ADz48BqFu&Nu
zU$)D3PF?=t*utIC<~et6n7o-0uBErG=xX52MDzEyUt8bi9Y4=-kNL*Kl89ei4fYe$
zn&LJc_fXb+Y#isksMB+9QOC5%XW<);e9`zL+psECIBsWcM1Jc0y!S?hDh$_mi!Oh^
zXu{4DKhoWJj1Dcl`*_>xHLh>7t#5w3$Kh~&iq{mMqW;w^8orw)mmO=H&tPV`PTr2y
z``AftB{RbtIrrDaxt7SLdOs8nRjmF0QuuOJU7b^MV0G*6)LG2kE=MXSZgz0llrm9S
zN$H>A`>qa=I}f%h%$ngND46-?hg`I#(xpQtA{z@oM(5pMSFx+Z!~XXSTRs^hZJj-j
zj5|)uKB}Z7K7H3q%~;Pyy_xz-H<x(3$T_$?x%9zxz1mv?GoLwK;awd+&Tyt3Kf&c!
zoh0n)BDI5KQ}~Y~OEx@DJ{+y2l&!BZb=Bz-iH8hl8K1vt`Z;w%s$<K&{$H)8naxJw
z6}MMLu!>on__4*NsQ2*~VeRyp*^j3^e!!a6&;2hVlx@R9kHsrK3PwJDGMl5ul|kNG
zRG($WB(KIvzUB<uM31do`Ei;(<G(VkP`7lqYjbXeGTguS;m>yNvmwT+u`*I-D_Gc>
ztEIW*&C9*K)}0ppc=dMa|N5)tUro!D(iqkhSe=k$-e9+sNp-e=!<z!06Gb65;p*`l
zZ5bsN+Pz_vXgA&|%NA$wX>aFyEB&N8rVrNDzalvOyz0&^n_4$1pfGQ@^^{c|v&$q|
zjl@bdDi&Q&%1BzcXqi>(*VX(ihbm+rKQj;QjM3{|oHqCP8BfobU)Pys8~3%m+1s@#
zOZG{?Dzo^x%eo~yt+dZ{P2TgyO?T~Yt0`jByE-J!?Z|pv>RI!*PDM#+`H^)I2JfPh
z_x<z!?*8{<>AZz1Zqs|T#XFaJZ_26)S5u0bp2ASSUZ~LS#LMXDBQ=H+yHYZ1{_4$E
zQ!-N6*8Tit8*BZ|-u5%y>tFY%8tz(B(bVCg-~KdN?3GX||AZ4VnzNQH`1WVF=_dWX
z4lX^+an93obh<V_zNn;RseWXY+VR!@ecyicDD(FcYUhfmTvxj=Kl)1YJf9`D4A(1k
z+tk!vo!e4=F?$DdLi0zj8LS_&_xydwcHq!wnJrU1@1-?dk}f?mdq?2^P4bpg{Mdge
zFJ)4lIjx~jc`j!O`vb<?Mxw9&a(;E(`|;6vF7w#j71RE{@2LvR`nv7iyR1h^dI!ST
z+4q$*cx}!U-mS<`UJbHuXY@f$xl1Mt-vZ@lxd&R6-AR%Avgz?*;nx;dcL_HfzI$@d
z<i$c$tX19z|6g!ZWXDpo1-$XbP4Wz3H>a);=-V$bKjhS;AI?Hs^;J(?+b-iY#g9?r
zrlr|S;mzN*J}vFAnD-=QcKQ6uzQy0;F3-2Jb#=)p54n17^~*bfib_f!)A#;--nHpL
z`>(^t?GwXSCguxH?2LT4Yr4@VGe(_F=CyAb4}@xpX|9~ol<cDCD^<wF;D2k%m3u53
z?)C%(m9smvcAvSv`%VhytxWk)XV&!H>!ga_pV`CQ@b}JQJ%;nkA{H$PV)?M@dQe8v
zCrO6AIbMG1U(9Q6?Glz&ufF#+++n&*e(*mXhP!t<_gpS^GvVDMlMs`|>ZO;>c<*Zz
zm#@yODa<-sX6yH}K6r58d8{^LSM0B<AK$7IIxnd*=Xi-Tt-1E{=ADZwvz|Zs&cIig
zYBafC!D~m3@2&#Fg!%`|&PY6qocDP<<Br2$CG12)@2Tx~ac8(!a5p(^(u%#|H@__I
z@QAOzJl9o8>FuVIamzzo-tSFgNbl-6VQr?WrF%}JDLf=>+UgkhNe*8(nr(W*At<=<
zbpE=|Hm=uIt8#CaGpOD)xjLKo!(Nd07QC7KwkNW9I&(<Nkz>EP8nk2jKiN1eJ)8Yg
znW02Wb^9Auizhy3wAp?r9%WLUnmHl$<J?U`sR3nMeLKA#N$>J{%YGo}`se5UjA8C^
z;cQ>_?|$p|IGSn0!E?L5#xvZRT{LmhiIj$yao!6%59ToJzk4LXgyDE=%;&#62Mo3^
z_9+XHJk@Z|a(>~oi5vb3J@giwxU5WacBo$2^F8Y%J!W?FSx)#?@>)&FD9<;=^RuFo
zlJ<VyohO`?l!_+bK3c&oII(o%^-z!N?_<7A+o<9<-Nmr>t+vvm|3{apBwwsvKeOTS
zx$N%kS)Cnw;v|c<&g}ZL>-{>t_Ds!3YrMU_dfl*PJ<70InY+l0$;WrEi|3QYYpkE1
zb1M4BctcQf+0PGGPpPP=bhp0WQrdQPruXelObl}UJJvDz)MsCI66O{S*cp7}Yi&c$
z=iPPen{?&MzAgL~q<o0u%CCOG#?n1svu^*FoYf+!cirMG!w$_yyUZ4>w|mZPpqF&B
zL^2^iY0gHISe6Y}vkgrG107$mx5vJ<xOzd-`Wt85nVmaMgs2MNc@}V6zTvadx@_iO
zuP&eBcW}u&^S$9smvj7c_X7tf$4=H0$zi%7Ar|tyXKmZLh*VDD4Zm4}CyT^BDSLj^
z{M0iK4;SeR*E_B=uCP$}vMPV+VLPv5lU9cn+q~VXFe`(H_0Zg%ulHtY_3G;u&i{Tp
zC+_e3-zrsFR?>41uh&+tjc(TV^^y9|e4y#Vg3`GSYd#5m)9epg=FWX?`A3;lCn2Hc
zeaCB@)2GCy&egBUiHR*=^*hpKei4J3yNE{kf`{v@uXJ>H#BV(%DO&U~hQaT%#}bu-
z=3O7B9htt>_pu<aH{-u;Iro3MO_B6UuIrz$YX6GW`6i|IUecv1TXc=8I?WcWm;Am`
zUR8yC;;hhZAH9~eEMBC&!EpAYBdN;I84avn<ld_3**U3FHOK9zkiZGnS6zSRhxAW8
zsk?=-mUrdSH51IE7YFMyMLe15(V4bj*5zqO<j?v)=Dfdh`JSw6#fNWocgSozbwR~7
zy(Qe1YXkp2v2N>->EB(az2Nv_x^(d^)%hYNr!$#T0y#D@UlCu^H8<7sv2ML^%FpWQ
z_9@H0{#}~va`n$yhSRGPS@y{^7@Eapc%7CB<UMH0cK9lPS@eTLnGMNO>w1#c^S=6h
zx9Wr(XNmm<mB!2)fnObTXYa~qxN!Tgf;Z!zvpHUB%u_7Xc3(Ks*yR^0`6G79QNJao
zIc}S7dzHHTX|*o;$p7_wlw7Ydb9ZjY$*kX7w41Lg9sjF&?zP`${#=Lo3{tB;O!q$X
z<KAY*u(bB0ey?3$^~EIJoAo~R`1ezOQFlMS4RexwJi%wrH#3H7wN-Z;`F=i<v0!Sr
zuEf2L<-xD4j<uXc0jdH9mogX4v&?t(67c;OQ2wOt!P&|!*Nrk4O}zcL>w7p$-I`B=
zeXIWObyzw{-c3$e*>gkd9#e*B<!MIktJ@RqXPsJWXz*>@c@e>tzfBpYSLy~Ut;n}1
z%Gti>#kucM8ooL;vgc~@%0vzJFE3s?*=d=6=;ry-V#^ud)H7OGzIk=;)b8|+^R``^
zaL1D&=dH%2BNlb{)yr0IS^hlbYpm9q^105}f_-OQd@(~X-G$pc*kHba*8EOy!7oe?
zE??-@?KNI9IZI)qn~Te>e8vaM_m~}9^k90A{pSz7Kd#lJul&EVcQ0>QJJT$ll=++w
zPqh?3%6uNp5peBB)!GX)4&0k86Iib27y5sizEt&;=;|YRlde7C`KkKGE_xl4W>44M
zu*r&BtX_7;Yp>n^vAfVT_++6TPuz#On;f>*yRR=0I=K4U{gl|Y)sv#q&-2!&p3PaT
zBh>dX%FNekW%Y~bgYuU9SZ-7^T-)H){x8d9{u<{BwU#RGCi|0{^y0jOmATf(h#CHt
z4c>oE?8D}xcNrI{-Cg-Lq#(^m(P-OZ-OUWEq*n3U?lYXNzoKpNf@6KmOx9D1Z&&Ji
z`)1Vq{<VPX=C|d){(r74VhY&!D{%eM%PJ!G+Z*p!eN8Rgr_QGF_Oh$XlFQbO-=viv
z&CFPJy7$=rm-;i;%)4!~Nq2?kwfoni-|oKmK=`LngY#aofXM-V=Jl_A&5zFJ+;TUH
zLF{Q)NsXz+%9&fsgIMqGJn>Vm;k}VXT)?^7)W+)O)Nm0gHedfPk7)Y?lX~puU5d!e
zVp(+G&L}T=E7MlZ_|h$Jth6$8K75ZX(|m4nb?Mun2Zw#`)mNFV@O(Be)O$&`sDo#=
z;7;BRRt8y{8m}{G)Sq(wv*`KNzlG85)0<|c9PaSh_xkdrW&HarO(w_RX=XM*e*XCL
zj*dOt2kKo_(hVE#*X9KHN)_+;wbj4$qRY|fN3X?CF`J+M_FGEL*U2~S(xo$dzWCOs
zswd2xCc||=BA@k&%CtjA8EW1g(n|Rsv^8>*$pX()^RwsLaGK8Se9z7BN1ml8`5xz+
zX%h9X3Opi@9%jfXEqrq$WacSx`?Rb{UE<a%{&v307A@*14t#KEUMR!TT$d$<ng^nC
z?dSV`2`N1PUv_a+_qw^|x0jZFKE})SIa@MN!T;}}3o82WXK^{2O1g<Z<@pm?a437`
zv>3h@0rPIUuARy7N20Vn|9bR4g(mk@Lx-o@6F176O08VFXY(}{=jU%;^80wZ+%2oF
zQk$#xQKNdrr@cDUqk4DT-j$O1?Y-v2E*7;XqG61C=45r6&TK5Y@#w|_(WmvFr*wGu
zGc2o6ovp_CCXVSq>@@GW(;bhp9&4{k?_0ScP-VlS)`|W*tRxLhZuSdGz1#U<>aE+1
zUbnkCY?xF0O>%lWeoRSy8q=NVvCiv!(c+FL{8i=EEkc1)WHpM+7AT*~&RMzq(5`cv
zZv@Ko9xzr?s(j6`?b=r_E8j<fWlEv!k$SPI8Qt!`_HDT6IMLzhO{Gr)6MRoTS>-+N
zI@1zm{}Lg=l`{L3D>5f^bnMYpD#|DpoOtneu--Ja$SpNKE-v$aTUKOVXYaLN$KUz?
zjr{jg*SNem5Xg(WH%&jS<HS8BrRcEbE<wI&h9P^4*NA=Ex1aIa)2<oQu31?mi+!|X
zI4#Yx{>Q%FIV}hL!*4vD5XV*Z+b7vwTQoJH>#A+GJVTtg;L2E*4N=zlsr+r*k0_j8
zTC5~`a{l(4^1rSzKjJ;K?B>c3wX6rW-CZM|&(@RiIO|%_+&i0ReOc1z_2g&ciAM4H
z>(u0Q%~yW+Ja9Jc=i%R$H?RHY?l9+w4x4=Ux2o^%l6QB`g+Kis{`2oYt^NB??N5Gp
zh4<p^m{pJT;&xuCDxA>a@w8k?No(WR-<{%Nj|G))cXs6L^Ln@Ytoo<pH#Sb*Zhtqz
zCFSY@W_wMMiN1^P&kcHdBgR#0=4>WM(|H%3_E_Jawd-Wr``VAY!@rl6aGjUmz}(R9
zbkFJRABM*+F0bA)M65c@l+Ifl(z5#V6RyvEn#M}4{DL>Lzv#c`>61%*E65OYMDs$5
z5bOWVSCt%3)z?;4JU6JFa5?oyu)X$i|FBlKW@~PPH51RVJaD|2!pW*-@Z<Zw#eWmc
zPqKe3{UCb4?QhY^Ai3U!ULw-__x+Y|PTwN=>%a}&X^R#+{r=5h@M*QS{kr$1MaOd<
z`Z0KwnFqaPy_r&;mVDT#!SkeO&|^{AQysHg^W!T|FV{Y-XD50qeyvi&eixTn61xlk
zO|)XE4ZGlXSKHhyUaBsAj%+;pSH=pvok3Z99+ke<-I)CO+M`LIKK#rMdDgacmK=vf
z-9d3yt-sr*-@P!4=kN^`%R?V-SLbfodGcFs&FX1k$&5RcP9|mTNtE9@GtBDy<#v6k
z3&-}T7G;TwT+83`-gWW66<rIx_Hp;`U6FM6i@2bq{F<<$P&M}jS2WIX|9pA>i|0GW
z?KSain;%C%l*x6uFFhm0(DdF1ONRAr(Uaf){j+5GH(|k*_8*@4hu>U1F?9ajDwoF{
ze9xJ4)~PDxI(@ltqsQ;>VnM;o9XCET`x&15&h`6C=V>v+`*&vCUbc7hrb*6M)+oNQ
zeE*?J^uUzFS7jgH7JX8lToxhfd~pZ6{|0`xyQ~f0U0l}jh1$L@aa!85JlNpi>q*Zx
zu8zK0JL}>FdmGD5nR|{d58KDz9?N^jFx!2bx&E`#{ZFp$3=J^*`f~HPlDG{q%m-#F
zDH-?p`G|k<pZrDDWaZ+6;?Hg$Nv&Ix7~R|UUuKfbNfS9^j)t?ohxFzP&hh<WZ+&Qy
zh19>*)jcI@_nCjp?($GC*1L0pL;O$pqNUfD%)7&WCAV-&a_^yUTb0*ctv<VFz8&xW
z>n1lH*L9t!EdKFz&xE5Vn*=BBR`N4h!!Scfsc3bU?fR7`9y9Ej>2T6?UZERjNbIYK
znnPA$GSX#hf7?6`)B3yJEckR#$b{9Q4__v5+i~1|nQ*-L<33+M#s_MGf>U?xN(!G?
z^OV0V!7256#nHTeo2PsHGWYSWusK?FvV3Xgp)bp~MV$%b3OO~&`_OuOHx_Q|qt};q
zec83W<HT%+F9N}-e<wJcG=1q+&!FYc9hWKf;iAM+{(?=@1hY7WC+=GIa{jCB^FId~
zi2uFC{OF}&x$TT|HNU4gd<;~2G@H5Q$h2!Iy0ur{KC(Z&=R$pJA-m{Yv9)v67H2Ma
zBr#Vg^3uH@fAe#z%MWZ@^5ccYE*p-9<yYJJl;6KsP%2sz<de1Z&dalf*RK`ktUp;2
zCB417env;fle@`Mf&Nz|3pYtj?M|9?H}8hs?5n&5`>t3$Wq+Ku!a}`lx-z4M(U(QH
zEPifU*WvMf?Sc5J=PKDJHBG0UED*ezI_alYm4|xXnYfy8&GXj3Bi7Vj)eW@taQXJ{
z>JIt5-kqHG+zTw;-1uRheEMm^#IjR{7yc*oOiuMZmLzvGpmZCL;os70a+13jss(5M
znD}ez{$dUJRnL}L^NCHYikIAeWV2z<(%Z}*Ja1e*es=cji(;G4NavpW$N7VAmdTUs
z&+5xgZOMLo+d^3=!)W3=?%w$~Kh8A!)cZR=Q$Ogn=;Ck7FK)N`m#fp`w9@$6p5<qL
z>IYQz_c>3PYU6GpYM!<K+?%826Mu%-zl(XPx7h2Z@Y$o~>pwm`zM@Sn>z|Ndqkg)J
z=Mi2u<L|3~ieFqJYu@tzocEV^5n{pbb&JKS;%_WEdVN*CeQ@-TID_|Xx!+ADc=!DM
zaWgQ7<<&H%KUu+>j-NkR{aW5QuJY&GU$s+f=kOfhZ=C=8Z(E%A5>L5m$!E$r8)QD4
zy{-LL`~Lh5t{j_VJEr{he9(5IAos1}u{%m$Q7<1e?zp^8<Gb7CZ-t@1Ytv`ly*K$l
z{!&kVK86QE$zi+y*5sPZKgwhNx2*n-tBcF4c~#G&_eU(gFnvZ^=2khLWBD<4iS|=9
zzvVuk7tgd{dF{h{ml-wQX$HN1$CVtngr943-!g_j?yYTeuU^eAG&#BWocFS_iV)iq
z&)w8EM@V|e-u*W<Vb8Ijiy42M+L(P`t6{32{-UVu(+~5d{=F4!Df;RO+s*cT?E~ye
z%g@fKPhWC;gIab*;yV3pJc5FP_x}pcV)<cO5wrREiw&Dr_SNz;JWzdp(E5Jy`FY3Y
zvl=sYeQopnX2|`<{H#f2Ykt#0!DZUr&zj2LgmCUjo*5(aA=cv})AD`XSIo|Q{OGw!
zsHE@JnkU8$rE%U1J<X0wa6ODP{h4E=>EfI7zxE6BF}4~HkI9YuBeZ-AUj5c%=z8>-
zHJ6h`rrhM_5n+ZapQCtui$40YCft7cD*3oW$E=<6ZHq28Y_k*0w2^OErKtF}jqPy_
zU-64-{n9Jd$u*N?cn?%w{jW9a%fb&m=5f+t_x~(8^yl5<r4F;6EMBI%`g_3qDrrqN
zt#jL>X1-Y%^hvawJ9B3BH<=Yt|F4UyTb0cHtjw_g=*<1Gtg)}({gTeO)H{c9eIBdE
z-!D8%{idWINXTD$Nkwvg)asa(c5^c%dPG_)zss)d%bV7ATr&TL&Mfmjqxs*DzfLoj
zTHrJLV!BoJo&7pH{^<UE@})}YF2jyf*(XgrU3GQBu8IkMjLlA2A1P)iZCVuQQ}lVs
z_Ta>0@}1lNB{jU%W4o|K-dBIVmxQYP{Civt>U+feCj0bco(xq|syr`Y|F7rT#IJE-
zuKv4TL>+w?EhJ}ot<#NR&z*u7347hAFMKlRL#AcfikIvB5++@hxID>9Dd>C&`~O4l
zBF}{%x1Or|=v|a$Vu8z^uTwQoT~Ye6+4s$@Szi{PONn+BdQiTe^@@t%=`BmP&SZNn
z`CE6w-q6fDFQ-VYXM51QBXy@)#pS>1@7!jY9D2pK=if@^Z#$o_4~Pv~^0#2qj0am%
z@{{+kc_q~@AM<oegw*!XRZ${qv!%A{<g?~mrCUe&N_}4T^Y_$VxfpMkBiG;FtBkl{
zxpkBH{qxVZJo%vXHG8_n-1n=3ZQG9B-Ws*hB5K|Z0h92=)IV!YULMx?`ucB0rz-#K
z{QJM3vDaO%*nZAr=J7y=HS3h0OZx44U1fbGXGPPdzP{brqWs@h|4853>e%o2R(sA&
z8?FO!52x4uzPq2Hp)ihPsVC>LEl*xKv}~#Dvt*mco)CP;Zck}Qd+j6fWx`@*o%`pi
z<?fJW*nPM1ew}jq`fBq}6#<iVB`!~Dd**l4<@nbe`%uNY-``}W`lcuK9JnO*YIS92
zS6M;8owFt{4?krn`549H`^s>cYPr8b$VuxyPt~l|s_!Gje}8zs+U|YV{-e4F9vSno
z=M>jwUYcjj_~PkSiCI?`FH?Qp8)ACr`5H|*hJ@X-b+YYB-#vaWU*COiJI|@<dJHj-
zlT>_n703uo4E5bC{NOhy!&Y54*NSVL+`m_f9J;>i)xL*84AXY=EDq&3ko-<6^HNhY
z;|0y8a=Sj31b0IQ*T6HupF={f#Xr9PTR?Ckv-Ya3F*i9rG@f>wRpKzyIPTF_2}$o`
zZX#dq>MAMiEOm7WlQX)u^I6AVR~Ie)FT14|?EAI6Q2JhRYe$FO@sloQ-5nmv{Yx(_
znWMZmeZ$2$X;yCoZfolOe!s*o#cZc<s}WnmRIt%&{pG(z@%VNbmU)YuD}3Vm#F^n=
z(M-!d^SZR+OV>mnoX57M(bMgbHhaarY(o>xV^+E!-Aiu-f9`g^Q#wES$&+12w<a9^
z$`*HQ6W@c{^-C`-5xd_n7W>KR$|`LJwViMN`(6F~`<<<GIr9U}>u*i&ZDvUL`7o|~
zp{J&MM99f&(*jrfG0k|tuKKXwx9>lgF0?<0=C#@rm9}Wkh96b&>sc=@>6?)0*;9HV
zo8jp@zLu+8>3`Q<o%mL{!Amw;mznd)_WG@BuP@37YAuc0w8rntu5yM8_d@?CGfGI5
z|5YomFPQpLx`vmbeV3H~WU(*YE*W<WH#J^Alo8}~V#|{=5>wlEUg1_!`p=qh{)VV%
z>wd=j(ie64SRRyxKhC_=d{~?{Z*}SP*9QcxnVof4J-Hrnt!yvjjssU2)ENsV)+YX~
z?RzIa%gFub@1F48+CNnp;&)5=PgZ*pzg4jyUDqP;cuI+@+P`AaGjB!yTrdw~x-XXP
z>LRz}>{$-o>m40BbHajxf}(_e_$RjW$y$}XxDeqo?VimnhqvoCU(wDv6ey~sH2GJT
zN8n^FbLOl|t#0Q195a;uRvbPb*R{yg?t1hxRr%v<-ri<gx0dahaCbbDn0Din7d--k
z6WJN(8W<I4{&x#~5MHNvZcgv4GfP|pKXmHdw=Me{$*_NybaIGKEYp06z~VOcbu}7F
zO3e&AZam$7X$imWF}Au(|EqMn)n@KVsGKL?zxbazgY?~A!#Nf!Dt7JcFo~1i@nKs>
zhY9P0((UoylkI-=&C30^?C+jwu9I!PZDq;4C*nViQB>&0+~4W4-d;B~MD7MDoM*M~
z3+cViT=VeX?95B;cRq(q@e>O_92YoQ^2f2rc~1pDZrQ=pFz;Pk=I>8uSpTol-}XZH
z=&nq8+p?=q9eqFh-hc4uR>bu!tPd=&-}jjuCUP%`E2F$aC#~b@!8nQVRfVFbKR(Io
zeYX1Qf~V_ZtG`(0TsWB?Tk|lmTFOjiYyOQSb6-m@7Z*R42XC@^mwPHtxvKcF{pFPu
z5!P;<^Y1tdO>fFJ%ofsi->j~!(==tpmKUdXyiH`VQZKXdeRXo~qHxQbXG*83R|M4@
zGyGZCATF$X@~)U?UcC@Q>REfqgk&|TcNtDEgP0Cnjyt{3lkKeT^Mf)1>5G?6_^~8A
zwv2^!X7~rm15tv4D?^zK)D9lb+;bq}DbI%}K3}1VdyBm8b#1@+oxxj3+vA?Tm?z)V
znF+Txyx~6}+bQe!nDdxcdgr%a=j?Vxo(uJQ)Ytq&$RRZ;c5B||6_d()9^`68Z#?x+
zOqXe`TJnoM&g+XdO`h=i!NfxI-I5J{8@1<s{d>GH@7DJXZ}y07oy5jqqow2~(4)0o
zak=TslN?{A<w46WS&VNi^161dfA>vI2AP?kuO6+uWa{;yadYFR9q(q{D%PD8qj-t8
zLEF_OMe)F$9j%v_m|9L|{Bb7R(xg+hzVRt%*~9mX$_(_Z*&BZLvFmINW3&<W@9&Rd
znK>_e*8>@SrAs^w;g6>KO}_SKAM*k)`H$)1*Q4e=u+)>WkY@aF$?NK-*}<lwTU6#9
zP?pu%wl0*tW2gJ3^&Kn2WSr(_81+{(<{q1qYNEgG#iYe|w#2X{{0J{tAFR7oQrQ2<
zuWsEY8||c7%S}ZDciQhdbSXtj*PGF6R;6ycTH_t@nugPNo=W~d^6Aaz<<3j>R#mvk
z{FN1blk2N2IFX-0%c@&KDs%PeJ4a`kJWF+u|CBC1`Rw!Zr*AKAj&Ld19XkENgqg1m
zL#_1t{uSBrmYAJUih7y*bJA{6p?rzuA1AD1SW`MXB5LxnJ<I0Z>s-ELn~0^F%k(>`
z(aZZzy+8h`!s?9Wr^fGfk<3fOSDt@Avv}UZS3Do<whLulnxW6Q<3hHfN$29jS~orh
zm3~s#%5zb*IOp}8+$ni|`)?om_ADqZq4ER=&#JZwvr1AIRQVs_3R-tk;niHL9fe<`
z)^Su`+I=hZ=S>Zr_174VxAa}uQ<ao;N$7q)!w$dT^(Wo_iGNzMzIH>hOYghJORsL;
zGOxH)<hMrm>L%`~Ntt`DCuLk}w054Z5K>$0^qB81JCE)AS=H-<k8eMyu<2csCEL&I
zXB@<@cJE%|8J?xfzM%bjQO2c)#|6uBIyy`^ZmkQko|<#7^fseeO>s+K?4;BcI$HUl
zxk26xS=Z?X&Sz$9U?^Gn&tR?I{%0$$MNLeR=iSZ}a^&sIbtjX;Tra9-yVh)OmXBqd
zdF>64#^c5Ad&Hb4v(*S*5k30&5MRN4(U;5)stmPzr-e?g+p?ZTBkRFdnas0(MH&C1
zKb+qc+kSu3m7tK){U=hDlonlj_jbC|Mia?H_KQIi-=_=KpY-b6?&q@V-C6rL-+r&N
zjko06uW@OONW$bzo?368Zrw2J%VP$HX)nJVnze1==~<d@kJ{YP%*)NYY#-*Yx;OIX
zt?W$Gm&f@T=Dgb~A@%;JX2{GOyTDH&Ia_wS7KNOft5-Bl>yPX1!puW~hJTm64z}`L
zzBF;U`TBb91GB1>+!;=7zy3kAF803REQ6wFj8>iV-CUx449mTpLQbhBwV7Lbx_p|_
z^iXR3(yL2kwHU6cgK9u#u6rg|+P`}IIBzp?+f;_tS)CmwVT!4L-K%uhs@+|&nXkmo
zt+%7&N1maGM`XbCnE&smFJE2q&F#gpb<vCwvu@;A&C*E_acI4!>h~t*`F!=faH%Di
zuBaXS+IN3Tzgg1GcTZO?m}T;$v_Ut{d*Z%7=d&4uy#0;ObeQs(GCZ?)3Ep}_^YX$b
z)5IROh?g4$Wc_d1`=-0y{Seh8aycz(hmfJcx98c?j;W9RxmMha{K1vbxLoOnTiAg;
z*_S`Let&mvnfH<p&epy`HFLGj8ZvFKTlV-w_Mw?9AEMt>om77Antb^E-G7<pmN)P2
zzx-0@<W6&+ejTaW*BjGb9H02=(w1HGx>k64r!n|^3uxH0y{Y`|pKNZMDM#7@-_-1K
zNr_nbu{z{T)!$cj*Hj)oU;Vm%`zIeW-(N=j52W88)93K~e57Yf)x)<z`+{EySr%B`
zuCMxb=<i|Qr~NA!61wdUU%atF=0WoLHvK<VIZm}J(-+<NpklpTPjF@GcKJ>I6KAcJ
znO0P2GV_31gZW;mz59yvmZVHt>HY4Dmxy%Kn;V&>ow95H2ijlU3EH^ef9l|FnWw(X
zq?WTVpXJ#ST5BV8w2%GbE)|cxlCRW@d}7z#+_{pqLTuT_zKKr~PCF{8ueQ(s<R%m?
zmCt(O(*wQA($`nlM*IIwe>~&pInm<#p@nhxx1ASQb@OFl^xWHfC2L&D1qE*wJn@<6
zBq&(<O)+0(<I}ERao!VrUVYjB_x67CS?Xq8x$PEV>;Fz#Wn_5P@0LksGuQIcX7gt4
z)hj})J3C@n4&2+?e@i)*Y0b6U9^2LxO38koFMs%vv-UA7lMlR+i?q&UPYQB0l{_NH
z5cBNpgZGS6%7g?bYBO3CGM}+HB%OK4lJUcr9X6If`f7fC*OE46I`IBm?k=f7?+Edk
z(jkijzpy;W$!DwQT;TF|ty0%I_Jli(_f80(I?KRwV$)xt`!6Ohn$ov%_l*zdR`=Am
zTzWiR#Zkq#?7_>rlV*YwZ&glJQp%ECS5w3{``g2}+<OI2I?e3p(D9wF8s21KHcRX0
z$z#d-&+q)aF12dOqcic7lqRcbe~6pjaqA(E=|-Ec=Zk~%d@WwdFU^~F*85iUKfT$%
z&VPG*^mg}Wxe)97m;3Ju2JXLpxsgLJSbzS+l8+`cy{%qMI;-?dN5SFVYvKQXTP+e-
zJYQvSy5wZh<NwjiedgK3{#|_izu(G9H{C^Bujl=IQ2A_rc7D}rE!Iz&M$@X4l!D%z
zeQ>Sv<obuL?RzIhB_28{siCxN(^)yGaK<xl<hD%IpR?dw=>IIixb4@rx;|T$b5z-C
z_hL1x|7=-PcJ5P~!|0GND0nh9?cTQet0%-=uTq}eaYE64ea+6lr@dx1?-f?IJi`<r
z+w(3UVa`RJJn6X49s8M{Ti<^-Gf2{O<_TT~mpg7N69pKK34VBcEI0bv0&WKLYURlt
zTQ;}&-J4Rn{_%3g7ddrnzS@6v{r^%RZ2jZqjrA=@k1vl+ko5gkXwJ~PM{<ungZe7|
zwc5RzohEDttb^aaZd$eE(T_E!eeFD5Tz*N;FS>6R=i(A3ze{IH*xld%WU~J3e7tS1
z{duo$Ti>LQCGSJ$-j$d=dv))FBl6O>H~ftAP*GB9EZ;U|{*RsMK`Nb5@{AvL{F?H4
z*QJ@Sos}p3@cXO2!0-O;qszp5)ta6&o=Upz&2>s@P5Z}}9t?kaRmDG?xgX%N&p>|h
zq{X(A6(gTWFI+xl^ZNIdUo(rpPw>(`&T4XUO<mdE43mj_I5(VJe9)dn!(3g#vYT<A
zsG$7;Z#hoYPqRPD<l0{`7M$ezFa6bO(XB#)A8ps!<?{M6U8(F`>1h@>Emi%|ER|1&
z2R_~SI_XeS!-Bt;PcqcHq%b=KCO>aGnYy-W!Zl0lvuRqa^H;A=`@wua|HYXL`nR(8
zF7*6!-t?=Jhi}^_-UBxI$HJ=DO#6BK<o&wJ9UU+2YqpyQdD<~ZpZk>IY}F|uv3mPj
ztp`_fUj@H>s5rIHIOx0K%H6T@QoYQR8JATXe>>Q)w*S+9h8vGA9^Rw<;OWGYODk-T
zMLf{xo+tP!_-CQwR6Ucv%VBfYoo_T<H-ppQ;_Qvp%murBPlh+7FF)jUbner$4?LG_
z6I{0Yg@d5r%a`m6jE-DCUq0PX^XJl?>PA^cGgukoD~-$c8a2$%_2OemD0ZH`=t;2_
zL*(}NQO7sr-%ZNdqO~@#blFzFd5LdMi?_ygtT>qw#?<2%_MW|Vf3n*Y=cD-ytKQse
zcqLlpzUfKVDN}|w4^Q4Wxp-#bx!pH=ct2|}h)2D?V(Nc5{?c)Csp~n66}FbO*Xvht
zttjBzvLtEc&8e%O_M5Z4d8N4e`Oym}7ytKKs%rMtWW5bXgXxv#nW7EWU&1<%neOvy
zNS}1+d*QOTPuBWvPjhFm+o1hRxZ(9Ar3jvT%r_n#J>jYRK5wh#p<{B5*;?5fRBg)o
z42xIpQTWP~Wi+3OVUp0FyLXN<&nus0^q(^zM0?YMm03Shjaa&mrZnt~>zSi-%h#l?
zgZDS9zE-?fH*06tq?6y0gY_4vac3~8sE6MxjQDXUQTx3h1DlK3okh3yPGC8hw29?`
zwZ5C5(D8hey0)voqt@MHaWFVp!7n<au6F$iK9gBD-b`Av)Mf3@u-Hc>M{dYBxGQtd
z3psn}?}OmR^&$^U`Q7~ZSp8?&A2Qcndwo5t!h;>*E1IV2+_(KIl(nhJmT`y5N7?wb
zdG|TDOLBj0o%<&1>MbS%{UZCLGp<$$URfi_@V(NYDCk8}m3ZhK0V&&uTntS1r;8av
zGQ;hBO)VK39&*0l{xXdr@B7IKvaiDQcHKS~^`!QI-pBNFJnc<SHp??iuQDhSI<b4%
zjQ~||eje>zEDXkRw-Q26tMTo16Bf^!Sm<=<cj&?0X-~U6-t!*2yXWV&6LV&zuUs@)
znX8X2VKRH#mn<(6i?7V;jdq*Qd_Bu9IO|Uh!>*P5Yp*dHoK2ICS=`Aj>ZJ3q^V7E=
zKUu9`MbjI&fB$NHDEeA+{+&r3y!Q817~c7BN!hqlqG8@f?Pa#U?lb>?u-5B|apPl8
zs23FcsCoOq+queFnI<0}&SrOb?ecwf-dX=%f8FIXzkm7GvHkJJEc;a7BYN5K3|-M}
z@%~od87BNH6!ty$^I6LT`)`{x?RgED%e5CfZb|H1c54NDS<Ir{wrmZb4oq~|TYh$T
zRfJ3IW3zwCPNy~g@B6P7wQWWZlg9ZU8td;aoALjdP5kk7hdLR)hzj0ZF4Ew?W#?-@
z|J4)u`B%@AzB8L)&a{Za8fGzug^ptUCNihr^{)9hMeC>9oq4{gR(jd;H<fnQ@O~&?
z<?d_nRer6B=}DRP#gbcZSIy|SGLQFwm+a4s<;%~DEyy{;dNyWzP7KqAg$ffdJ-NTd
z<L=?tPFHU$sxrKHH9KLvD9c9tUs#CXL^su-9Th*A9~=+qpA~UShhvRae!(q2Tds!1
zu1`2azZSH2&6?Y`ZdvH!`ae(gKHt$0Zayxg>AN`o%x;T28L4JB++$be%b4|W?B2Ir
zeu2?dzTLAK?0h~h;CyEK+5N|r%BXS;hJ3!fl~cOr9$k?3d{M5#ec1#4*WcgU5!rq1
z?XCCQe#^yvzo}g%!Zp9DW4Bs>)P475Dw_{q*O6xyxv6`yJd)QT^oQk})eL*)JA8b!
zK%T*WN!bOK%OP*;H<ScS@v1!=@3pqA&i}=mkjafEvwTHP+1VZ~yYG9EyWwP~$n!}D
z?)+-_u;@R7z{JgAE>9Rz&u_EUxtPNKRB_U!4U2agH~QFL3{e03RC)0}ud3ENnyO{)
zwzKAT-m-TIR%M93Z*l6RcR1_CB0l{`^YT=)E`05GKetw&Va}z`d~2DM!o{+p&6b`!
z<aJ8dw<+A{eSva%T)N=IxXX*Kt=fLGDn904jFIZ4CH6btYj<DNygyIm>D#^k4wu(Y
z6Ps)G_Fm@pKabuXy}eyLU;kd*p1of#?@|i7lIDKs$V%(At2<5{^WLY?uk*${(B;XV
z>$%Z!|2sNP^r<b3+#jW@Cn8w+@7Iw|iDowL=#Gw<?-i@qeAwEVKh&<tGLO1v5uY~i
z*cBC#`9`7Xe#sO2uKyQFE!&hfJJ@sUBZa3tl}~pDEA=nz%~*K+<`#iWUJI+5A6H&}
zNlctBA0Yeh>fvpHLKPehKkq%2_hrdC|7yyNuY465O@+~GHpNzDl_`br`A(DWdz`B;
z|Gs~b|C^iozXZyj%rj(PkaXv&tn<40>#9mBmjB+?_?gjDUcu;n`eWTyr$4<8PPV?b
zlBZ#U?&+TD<n2Gz!(FazS>LfZ@7=t;Rk9KJ_foYd>rPSIYZ=aZ^G1<}0Y}8<WUEKt
z!+);+^G|Dk{r1bbwtv_96wCfvc5UW%w!3Ekem&}*|M%E^+4}YRN=A<p+P@qz-rarT
zJzsFo9$sG8C;hdD_2y?E6O^n!$F;pFtl7W4tE0!ZOQdJ2$vXy{k13Z@bdIk$yl0Ze
zO0C+x^CDzxql)I8cI4KJl)85K*ml2M4W&u{wHa>9G{3Cj2zc{lR=DtIvxn2qn{Pgm
z+x11&&w`n8#U1OP%BmChJZ1Pd<u-S=(e$`inxFZ5<8;4o2#h{+d|%2t|IK1+Z-$A6
zu*}~bZGB~D(ayO}tA5nEs4L%F)O)=5q{o4q{U4mzuU=DqAo0WNQn_Ksw!2SUF8N6w
zXa3N7Jt@Pe{hS-yON*v&B0ROZci5HBzrTMjKxW^eXS?5C{=Gr*@VWQzvy2zq<ISF<
zZsF#0EPU?l`P>b`5A;NJFC8;jd(9*G``*b<)^_j7WteSrN7wad#%qQPvnn!ESy(p~
zPV*Mx&A**+QRexZ>d*bte)gW+qY)??n&<1Ty}_Q*?Afg;U(6>b$7BT0aHwMVkWj?#
zX(qdx;or93<ySItG7?-q%1qr9+-CQ>Nh<l=%biL}XV1&+H4T|M#m!nYi}67HoGy8G
z1)E6=Iyy|M{7d&M@3fZG`g8E2r>yeJJNyT9<GL4~6e&8ks{M8Ml&4u|VnqWa_Rkf#
zlXBAj(Mg9ZCJ*kH`SQ!!zn&%|_)(Ox=8Z{Hk>O_l^$(@j@hCo1Gd=s3ogws|ilLv#
zzM~9JXUd=QoUG&*(EslI%F_ye^@C&o)a2X<IkEk_Z!pj1Y5i~0JdgkK6*ZJi*mjwt
z)a$^_oAGZoJ{6Td?PtF4)o_2Zg%el6{>h6EUCTIB;gjpPq+oi%imGY#7H7%=ufAEs
zzx@!)?(kphW;0CdkT_{tZZS`$mia;cn}Dp8O3S-@Uwqu8J>lbWi&y774*uM!=KaH*
z;rz0KBi+e&7yq=~b#vv+TbCJEoDw!}&J|xSx31I5rSVkJM$^ij3)<A9BbPSJ5oNf&
z$f7;lMA1Z_^~SVAOZT3#yRB7r)F94en%ml=H4(DLkKT&bie8S)o%v_$>TJnJPgoC3
zI-#e0leb|zXf(oc50i_VlDCpSYnu2vi{p3FUMec({$&WgEA#5tKgNi66-K5$U$>Y=
za^^p0(D4p>uIZ%8<^AdAPPNqm-_Ja{5-C{2u;E_r>c3t-u|-=tRx-*yo~U8|xM2Dm
zg;kcS>N`c1^+INSE1z_!{8WINQ74b*;*(V&JWH;mPM^(SU|zOYKuXUfl=FE<$Clt#
zOZPi}oy_>-R$)?5dEcwmuYRROT;*YUuu0|19H&WBFNaP(y5fyma<JLGm<CQg>Am6s
zs&_P$(&ikCmkDuHe)_S#ExA57O=|Dn2`sy%RA*mi(s6zv`Zzvdai@ZRYmeVd@7Glg
z{CBplyk1=BFnz@WwO(_^2U|QU#TrU|Wx8BnN&nRUv8>TL@KJ)%foVMFH(r(Ys5qqT
zJFS?R;ro(|Eqk;Ymftb0O8oo%K)>s>+K$(Z5f3J8UOJI$!Ur!A%Xx-VPQG#ZeMNi<
zQ_a)|alyS@nxfWAX1NJ3@svDpTT^PSD8u&M*-IvgZlBBEXtQ|h)Y<bU7jM30sHoIh
zDRBR4oBP98EbHB7F;8r~Yt-w!=-h7;spu|+Ro(SYH^m#eW48t}#@SEpWGL?Ge$KFA
z*}Pie`CST|7L-lNYnQk<@!I>xUb7-rRG$2CqNyk9t488q!>mjb#VcZhn!XnkPDRx>
zuQt;PIyrq)n9Gq8v+Cdcf)l4*zhVCHQ<C7sbK6~Ceyjg`t)s(Z^GD85wN(4gjxU{C
zB+hEYF6v=fWi!oba^#aI-5pbwWSEGy-<WH8nn6(Tr{l{>%Z{Dw{+}i&xbxz{rm~%v
zl+4|42hS^fAg`o!$!6oJC)I)zo9qOy8+%RHNZhJ-afhQWbC9Y2O+6*0cXuYScXX_Y
zSX9!verMs=*PTjAU+0x&e0gIcIC0PPMYae3%Pg9vboTiBS6&NVtgz$n-7zn4m&;St
zE=j|f#Ty^A>U9d4=uVne-PPgaa%IwyIUN$y)YPq8R(_3tA};t+xHLQMb%OKEKi7L5
z3}?jYBrW$g>Qbv~$bZEnT{-3Yq70)pGlrP?i!R<`Drlaq=FVKO@I=A^sdaB+8Ny79
zGL~P86?Ju4!oToCHNz^Qm!02L9a10hh6kNG&+zndV@9=~RBx*vL(IfQ7o`{rw$D~O
z&RDQ0v%Au7!Gfc13~?nH;VYQ7){5-?e&{2^ou_V#Bx1N*p58oV^G@Xe!}`>VDIC?a
z*Z-X|f&akayjdlT55y+&HDtQzD=|J#RNp>FIrQU%7k9U>V~LpN@c!7lhU9ApeG~=$
z^A&91xRT*?Q{H2tcsT10o_!&!WghrmzJI2O>&<VmhE_kp>U&HHu02<er6+nXmzunp
zF(K@c)t4q2?~eR%@1V2iyt{N|wlnN`x9a44hW%YJOa~rLn-n{B=geS_U(d1xx6~Y*
z^mMiPpQ=u0-KW=ouhgEn$XKf3*+%VU#`&zJC%^H<aW6i}!N>k!M+onBp@c1~)#RCT
zzDh2<>Ll~cjUnLX<%LfzBP{Rl3%bXpu+VPf^kbX1d6l<C{(CCpd?V9D>`L~}4I#YS
z84`L{t7$z?kDkf4!DNZXcX5WgVh-5{zwfQ`zGf|PXZ44T-zrU39gVxW!6+l^WW%-#
z*@-5SjYZAfCYOEqerhw+6<mF$v-EA&R7aO-t+l5bC-B}BDAPZ9$oJdSvQU5DrNs(n
z)1UlijN{rpD{xzulJs)6|9ap2czoFw3YCU0%h)pe)-L(C`htQti`Ul(PQ34Q`q>Jf
z+22dH<?ni7^?JGVtJ`6}esc;6o-BR2_l?g_Bf*JJSa<pJP78kM51Qu@l$n3Z^jut)
z)WZi8pF7kt%(LWgNIt~H{f{M~DR|3K;rsIc@6PyNyM?16`t9o{{Y(p1t=8VS=!5Km
zPcC1d3EDRAdSVEQeU`rsA#)!~+?K9?vO9YlQ^K9g3@$25-z*N(2zPtG$ey9za>}m|
zffE`VC*S!f!!UDR%(K4@dY)5N7prX!ocKcaoP|)&sivp@r=LzsW(@nsu|a85$jcdB
z&5O$x=A>=6J{uP`Ri&gmFmm5Aop-5|R#Z=2=^a#dYWc~GkYlH^gAGHL%Q~1Q_1VhK
z$*q@*jEZlKh?YJ3QSCp!LR8hAREGV#M9*+Owfqvef;;)trTy1s;^)`(USF$gckR!f
z6W)m?lFk!5I+iFE&wu~aN=d0Z=J&oc-2Z+?r@Y+Oy-!du)3hpKXEOiw_sU8^?_Mms
zwr6k037+jumJ8?Yom?jWt9((Fk0$$n2ae)N6Ms2Ru6@F^Zn0%}clVXKH_w+Ic5dGO
z^<&x7?<<YcPye|S>R@87@U*+8G5h44W6`TsZcXT%$X-<^y2^9L`x!eU7jq^mADHr_
z|MEJHhUa&-ui0!_5Wju1_IcBH|BB~YomkJ3P#nLUYdhnGyL&VE=DZ0P3XPkZx&F&u
zJFd$rtM!U^2CutW`BQ4aq0ov&uO9qnYN%f&d_6g!wJ>@8)_N1^)ynrTG0(C3;by9D
zeRbiV;D$>qzYfdoJ2~OU){KX%FZZ}L%g@c*SjKvzqItJO#jLrrq!~S`e&`(DuYAW&
z#g1*YPfg9+fP21{KmR^{;(tAD-p8Dn?Daij%syLnSE<SVH*lMC%WUFZweD}u?|!9l
zJ`}k>yQ|j3_u2xbP>Y|p)ViKYGgNGzb+%uVHDO8c&zG;B{r|b=-8bV;%Yu83Ki<Es
z(Q8{%^!uj~SB%BE>rK5g_Mc3+-<jx@@_Fsqa@!9-oF~~uUQH3Nj28MA)VJW_&;2V+
zy)M7{R^Y;Upsw#}|Ezw;oB8Ww5<c@>k;|P@pOWk}ZSfVK($vkz%Xe#DdL<vXD{n&c
z)Ox80*7irTIlJB$cU7;v=<>9fq5f0a=AX^>2Km<}ufFSf`00UDOvgXjtoHu!>Dolm
zA~|!e`W_$SI|2>Wt99ovH*b%cf5GMZJdIcT<W_ll$)EmkLR;#6z_k^gn{vO%etFY&
zAoo>{w%F#`{EaId-Dc@-w&CB#+-vYn^nZ_s;vKn$*Kee*c4&%Cyc9aUWUlZc&wqPP
zx$$S4e7wlquzJ$P(&xLyBi~*2<?Gz|$l+*+@n+83oBo%b4%p_|<R3I!Zw<%!wOjca
z#6zQZan$hcmMgpFD^`7X%T?9GUC!yM`z`(dn#_t=QM1>R<L>1upA)&e*8VaK-958=
z$=yXEuRcCpbs$3i#x;uw*4z~D8GG*>WSA3{`_bveuPaAdZ+EH~?p2?5Yrk8^%$Jc@
zP2(<!cz8)onZM@yi=OONTY299{<Qk~m+Y_8Z=SBbn7!TR*ED`_##P@o>E2IX`D)ph
zBNI*^XUIG3Zoc=`(bI3sChg8uYudm1Qt<REvr-m+4iZc9pIp1*hr)N2J@@qv{w}`B
z{Ox?14_o`)7pIe-&kInudVfQF+rQYa!KE|5uCfX&6OLYY_wiAOo7L@Y?%t>8%Ka?S
zn`HHS&JzLaqrvO82CDXajneXc7Q}F%ne+YiE6mYxufpH{XnEMiUwC8J${&pXY~OfG
z_nBL5atquoQ6Q|Ga6bGrbJe4{?rw9cJU$5Iw4A;Cv*?cO@)^_Llz0{{oB22U5_@Xw
z#2+^z!x=t2?KIt}G+%Ph@#_qRmp^oN{1GqM)}{U9z>D*n&g^7tsQBFQ?U%}#3o>43
zK0o=U7(Mg#)&FfrZx*hy+;nL|@we5Jn~U6U-@lfzD46j>$)Vk~EDf`6u9Xl=>wf<w
z|LrEG1vcN-dCv}F`2Ujc{q;HOq4T4y*z`2rAMdbft#R)=&L{f%@OM=P?fVrUPEF=}
z6_B7Zvvc018^(TtT7}nsvfF0f)Sf4wTOGZ)^ITa6&+NEjJC++ko9%dRU;Mu0zrarU
z4(+VTg<`*b)qf}5_gz&}_29>6&4yJLVoCdg>o#9i`7oiQW6mPG8Ihi~rx~9ee|Mex
zmF8CSloQgT2iJf6E_!Rae=u{G!o_<UN=m^CkF7MgI`4GPW)~MLCIj<tMf>JH<cz3l
zZ{B!he`sZb);BAMz?{q)eU|xF|E=9^wwV3+$SFAS*lNbp|4zJP*dwqzS$~IRkmA3>
zWqz`2R&w?-R2W^n`)m#S?FC(V0b(oL9xsfF{nB^$l*#n;d9|tcrC0qBdHgw}!F1#A
zyZRrlOtrZk=<><`*AIQssjdGzI{b5wuF1@~7JhNQP|Eg639sBUCY?O~GB(`z><iul
zsT;L-JvLczjPZ8OY(;^r2WKv9-)CI8Oj%y_+i}a%P_>@5ZhW%?8J2FGzvOaH-1eR=
zEr;`&58PEMGE3a`IQD>ANnMnHo$gPYst>unYJ4G&W-@ZVGY!8v{i;diF_(tWSMRN&
z8Maw2`LyMcb?(-W9TqHkccR~#oeN3#;b*$|J#O|kF~Q8$W!mw4D{t~NxVu{AF(>#q
zsQ(OOKGUnaj{VC0j8K)S`E9#JGfb{NSh!@5?NybeKwt3({)`DS_iVTiRDRr&{bNhj
zyYRNRE8dlV{%}mGam!P!q$Qv7N^YzY6};aq`X|8OC64XE@(GeYeuf9;PfDNhlTXg#
z%Ny<d>L0D&kNpwxon3imshIDk$1C~bx)-11vtz$8=fT#ZdrS=H)@9m@GZgIjwIJx^
z(ZnPrrJ{zShPR?cADt48ub8LwX;rGDkxa)n!D7t=)k>GLqBjIK^fSJw5&srqf6mEB
zGS%bzkwoU|^r|2O-&-359xP`mUv=;I=j=Hm&lnUc1oj9#IBqd}mGJ`hHPc^7S})x{
zCw6xLYv7%0t}cBnGD&y3JAQ~UT?lo_V}0;m;Is8q>%Y$XoAo@;Z^#OlzI6BDR)twQ
ziw^K}o~d8CVylEl%h7aM`vcO)mRB;|KX&^{L`{T+;)j;}iXRcFuYPVm-?Qt%j7y95
zXMLL0aV0P?C~upX`AQWoPVZflBc%KkT)eYQOx;=EdlZ~t+-maEc$<2h&of3JGrKhn
zJFZ(OX+2u?Rpq(pY3I1i9Y4PcWs0v<ShHuXR@fHtiN*{!q&Dp~QS8!MDf8yl?PYy)
z%o{Z(8}=SEJr!0Q;Pm^<e`$v0B0_mTB%3Z~+>N}tGIzr4Ch?+cEjG_zCHxS(y!&He
zd!CfE;*=ljJAQ;zeHC9T`sUA1jp*$K$9|ljXLsW6c3;J;!<LsP%Vl5cv~I{~m$>TK
z>iB!{t#=2-)R=w3>wo`waHx1iA?txH3q<xh$$yW0%5cAP;o@o5EZg{&@ZP!S<HE;u
zAfNZnwrG#_@%*wo{=d_`WN$OmO62nIb+e9q)N{yW3R8CEn#Qa+Z^zYirUUO^y>~j`
zThg+T!H27*VZV68Wxct%wcoZs?_P28m_+qmbCZCta)J}TGyFJL_0IJ4rP!nIuKt)5
z_ks6-*ZQRwQiP2e($u$jZ;duG7Q8I9l>ga^{m~2p^&tySUws@~wD;qK|KI+9J7?{)
z>Ql|(^KUNA?pTo^F0C+ag-TY(qD9AU^y+rr^|*2)iSys0jmIT~tDS|b4@>P%%D=H8
zLEN>G;gX}nscXN#A2&}gd*x?seE-e4>iFr?t<%r_JZF4*UirRHb?3P^tXZvecwSfa
zuj_m~K1OF|@bt~yxnTJc$9K<vNHvNd-C7o$D8Knn4fBUx`J!&sNmd7v7n=Rl5V*GG
z-e!jQo%78ZJ{9haQ{JFcBwcllWs!BuF2C%`U*Qw8V)>UD=HC6%XZTpzZ~C^bU#{~+
z%8!NV_Uf(<Xl@j-GGVy$EV}JtU&j^46Mf7R-!s~AtN(uM+2Hvuef#!zGw$gB3;x2n
z{<SXaW(#FiPxqtq{;gNZES+Bb|8LgIs7y&AQ=KT8B@=o2?UlFvU(WKaMD>vGrzr=X
zUSAPa#po#+dvudoz?XIV8vZl+6xv(w|Ir*}Yd=wN@?GVB*_u+*3cl86Co>*;D|+YR
z(GKxTXQl7DYniLNoQivH^Ij-RY~7q^Rqh(f`#uz0wz^*xmbgVdChFN8gV`k~U%YR*
z9I;r%^>TW(*QB~Lk6($K7vD}Sn|>v?MWyz|GU?e##mai+Pfe#YSUvilDfLt5>4{Im
zef}S&#{b!FJI!;FUi6H1i}gErEuCvm8{87KXMXU(V0MY$2gS8U{fskS*4YU(Bv!`C
z&*U>OReH<0<;Pohru9d^-g!MMow35oSNOL|x!1AfR+2knroE3YR9(HHuJiZvnNK2H
zFU~87E;#&t`kCK)bB=Yrp6;Rdv~I4i%JjxxAq9WVzx!XjY}bEtc{}$>m!8hpQFn5(
z_hS9o`uFUPmTjD@eW&>0rZY}m_hyOcNqby6WOljN=oUj>kFov{G3z{C&-ZO1F<N%h
zES^tN{b_3OO~UimU+uRFo@XyNJ$~PB88Ru3tK{788dJ}^m$w+CMw)wmwYSZvW%>Nx
zb8~}Tk*(*fD{a$U?HDEAN4H*_w}Z36fLCW5o6zg?B8Tf47Ck)t_R`tQnM?hJ4;W86
z{aRjrbC6U3e?iC_7jx6ud0#Vaj$B)M`O;y_{o7t0i-=5~Q^%}2yUO%X%G+d>%$H{b
zW|su7f1hTl9p3eBx{idt=i%Ki>^v`-@w0yOx!*hK%gx%2!gnQ}<!8?N;WNoBYw5Z3
znX5f7x${3=enwsV#-t5`M&?Yq)xVq{>NPxj^y<-;0$YdX-#@Jyp4EH~(_=|!*|q<5
zn&0~l(+$6`rXT6ejOo?8^yZkgviJJM>o>dJwDnI+U4H!IcA3Y!+~=k<oA93~YD|1`
z#_B7BuXL)tarwSBmD>}N3jBBc{#n*=^yjt>whaHLgq6nSFL_<1aU$;Fo-5^LEK#>t
zy%1X$x3Wa~`z-awXyu>>_rL7OcXhK)D*17DQfPy~<jr@BU&%dgU)b<AL$;3LN64jy
z70(ZJzVt7-U4H4uo$FS~TmKs0Nytt2n&7;VcYhA&fx<~j>zaP)?Gu%J+g|#bQOf!5
ztzGO4^&G2ro@RKVqPc6U>3^e&bHbUmp3#>3uRY_5Zf%HQ>}8n~`oCS$O77hKU;8Ux
zYndy@sJxXcIcT@`OW%}>Z960jo;5#wnD%uW$LgK?86OlKxYsgcx~JR@kAhh$Z=b!2
zJ?CTJ|10f6qvx{6DGc9y?(h2?vg(h>CEg_GJ?zQ0B8NFz{k$2a4u5s5;!DWPm>HS(
z>`Lg8pArwQ?wK92b>&kl^S}cKwy5_pdd%MUbQ|lw$^W|Vq+W=dwtZbu@MF8`&;Hl)
zSZ3reZSK7wA@S}?o65>G$3*@bwK;F2<z3t6mcHO;@PBsym^6d0-qNqjZZxQinwwA7
z`)c~?-InZIr(-l1v>jaA{b7Fmr8hyBmE`MUwLQ0QnY1KZ;^)JCZ{xYPp53SIeW`un
z*6SLcuNHj1zvIupsY_~tU#NQadk6JOFTCP8X`g@fJn!Z9I%lm*r+ZI2=Y897=lfF6
zR|U>b{p@-Eeh+09nZnh5X~(wwP&eyCzQ<Z$Pq`=C@Z2f;y$-`Q38`wfq7~|M&bTqy
zC~0PyPD(u8u-WIgQLN94SJN8Wmha8$nBA(mugSgh25*E(fR(D<G@A#}Q!mc5U})Hq
zmel%L&Y?D9Wmcf|V#fR<^BR51KCb=9dZ0g6<)v;zzww;!Rt(llt6%#txGmrRZa%}A
ztgp`1GLPrzue@#;bZASF$3LSsMb_jwdnWIXdT!|XYKMEo*|if?Y_BAlY*^9YCO3V_
zyWJj_q$W+#bU!*(+;4ha(B{P|nuqr-<xcmw^h#V*VJ%MyYeHmz+ue_KPy0^vn008g
zNERt=-5ez+99Hb?k@TEN>ZVwM+Z5BU4F69S#4W$c!237&zUBG5H7RY}b2ock_UF0~
zRuv=3r&4?WQ#Q}ljmK70-I4Na+houx^iwLKFoHEnN&o1-Kk0jKd3>JQS~LIJ8I~E5
z!Vx#)XS{Toes)q+%J=ZI412C>PCoUVq2l)cBws1NzN3>i>h3>%O8-If7S%fj_Ln~g
zYD{PTaC*Zm=?x}7e%lAtZu8wgWA@Z&h8t!pO6RStURXMtahZDhahH8X{0V83fA+p=
z2zx&7Ppf2j-D1C>?$4)uOXnStcsn_6(w0SbPr_nrd;T8EdbfLl+&TC1?1R>mxwDVV
z+{I`6VP@eZBVA7KS--ZZteqJnSb9Kh(v_NmW3RuQ4V|=v$vHOjr%Xdz$CuX%I@h0P
zG9^o_HD*gFyRr7#IW9I4#jW3`{r>I0d(R~0bI&vKK4_%QyI!!n^O&0K+YKf!uBSYi
zwI=<?qUF-_FUG#IvHZoo<JNYK#dAOM9Js#FyxRLj|J4Jc0e9GbF5$eBYHK_%^0O?%
zNj08x&z_zQdzQ72ZH9Q3=G6%|6o0L}K55JD-yd5y9N+4;HTXf?&YVA79HsTAJ{~xe
z)W%=VC@{NX=f0`I?u;MSFIl`=mn~}bgguH3-^CVgOqnD1_lmR1%RGg9GcFl8Jrr)3
z?wr5vw9tt;{9zo`_kQ&!)d=p=VULi~U2ppH%C)xm)z=u$`2KrT7Pk3*${)M(Y}J>S
z-tR3=HktOvX_6VMk<<<ew}mxKA97!KdPkc$u36@*`oO0lFQ4H@#%G=R-{lmdUg-Db
zU1qefyc~L-!DRg{uif{q6*lSC?2V2qIa9JOQRLY1NhS&*&2F9(UuUblJUU^vZqr#6
z&r(^H%rokdUAa5{+MWFRdz$6!r=P2r?_crSZ<5KrtwzrGk~|aSwr*0fe13;(_0{Ap
zweu#b{MC9AR&VVy>6Jdm&YMaSN}f^Plct<A(`~%2?s@6m$=w<6XDWEEo-?;-pGs!M
z^f|Y_IT?Jf>QY(D=g{V#DABsfOZdR&hi133)fmLvZ)XMCFmEW3I`HL<@~+K|CSsTJ
zg1>etX09(Z>$TU7%i@gCmGV9}oyq*(l_PP7HTnt}N^LjIpTVv-vn)$>X4zl<1iJ~9
z>V7hRr5Tqk>G7P$_~7-H*^T=dXGBkw{L-aUvhhil=PTANo7xW;a6OSx*u1~WktfT;
zy8Pwjds`-SuRGpoBA4Yni=jft_ecSo=J%EbTSfM~wfiMIX^R%a^s2CwE%tRx4u555
zw_i(o!pac0Vu|eA!%<G2&U*W_elxr*vx<Lu>&N~p+H+0@s8%U{wfS|T^j*QO`BRn%
zGg@5TuCw^AAg9^F`_k7Y9J#4&%EPsCr@@OK-={@<iqaD=nZX$_eN+9e$-kTOy-I6q
z#TM+$=SXs1_WsMX^Kte8fy=ebzO6l-QGZA1&%(PhLCx!#KAfKrr9G?f_B`8f$9E|D
z<#9{s{g9bbRI}ES;Y_sp%Zlxy4DVYOnCJYH{C>02Qph({`g!!Ui+nc|3ctM1NwjF5
zG%J<i{&%jW8~400R<R6Rb6WpgwVquc!xOU^w@rfY+&t+!(`Hi1ja(^@V4Ew}-&JaU
z-FKb)ZLL9HAd^|m4O_XA^L2TAYq%TO*B{y}mH5s3de5DEz8zogKL1o$x@5xPt_>=s
zIZQh=@8&jKnRM(qv!Z`u`w>P?`TDT?HyKXbv{WsYlK3FP@G!*U25-atmP=uFIoCcN
z@TvY5|NozoX%B<tS`P0?%NT7YKkGda(XedEV!cB(0gba;l>60d{;g!V^EP_w#W+i|
z{(JRicf_`@b;{J1KX+QdX3~k$rByNqp1-_Tm~H8Kced$t#sa6+xmBKa53h6HK5*CN
zysX_6iK_>gJcH&3+`8p5No1d@mzj}-kcrB^oHM2U7eYLv%ng%D-syO*^PVIko))9z
zxogYTwYBrUJvPbvpYdto%Jn}4l0ul*HRN?{OmSme`n5~NSts(}v7;YFbMKwnDt9cz
z^VPnhI}`8m>(8$Kd&*JAQ|@fc$E_+~|GD>_oj%piU#0Y%)|O9g7x`|;G(73u*!t1F
zp`g3#*%6V3*89ipjkxDqRY!<tmfTr5XZsdeeibXrICg{A7dnhry`NRnI9omGcYvMG
ziIO@s!)Z(I2c}3I-7LmX&$n1JoZ-tcgITA#`Fa_)uQ;#ox8vc}pC9htt-oPnwd}`&
zr;1VYKL6QNT-&>Sf8V)hcGc<(E9Lt684VUHnSU;?G_;#i6YHsY((U&mX@N;g7a7ZH
z)wg}CVsPPot-Sik%$}0W4qF#)BWoQsV~eN7d!~N4I`37|rfH{BPQIA>Wb?A4T`g}J
z`cppU8}>9s#;LcO#6MaVr=Di1U2|=+if^I*jQ`H3t)tm&Tfg^5tEY+?DF>^niv6iE
zefamv)%!2=#2!tmlf3<9N2f(1mzCwka|TY$tU=XXs+<<y6OZfPOM6lOX@+2&RlHY^
zYNxhCrjh5me?gO~V(0z#J#{?)@ve~I+>YcaediTqxL;nq&lC~(Z_Zk729NO2_i_!-
z&Y0>LeNa@f`eOb2WrGQ8`_|xTFRydGoNkllEVH;oXUd@$(@U&A&wi`&a`uxg7cOm{
zr=oc`*eGPuzKBWr&B3afdv~n=Aew({|J=N;uTy`kdP)jkvpF{D$EhB(BZgicy;J@<
zo@qaEZ~p(wwSSkN71z~W?K$b#@+y^edp4@<onGENSv7O&)<=Ci9Q!sG{x1yMm3{6{
z;H0v%BF0*a<Bfjj)*JPFJO65u$?_d$Y<;y#D-s?j?mlkfd1+R@%<MmH+NW*p-m}?H
zQu(X%uA^IZdta2^%V%v@w3obpKV`{P^V7f6RMW3dyBN8Px4TVH%$wnz)~e3=N6fzK
ze-AvKd0^3lKu@i<r(P+!bIY5hnLEvNwti-`yY@@m*23uUm!+SRt+n6Jo;pW1I_V_G
z{ivRAKHH}}SF4}L|1a#l|2IyqiCgt{zuj{6(*CVapS<{cT-EP@9nS`(|F3pVWMx=?
zJnnkmj$~E_$#?pmudXsIy#1^F;J1wdM)z0cNUEmPGMv*{*4cQ`{wjZ4tEv|7{wNj`
zn?i?MCpMho4&*ehm#hEb*}%%G(`?7R!Nlr#RQ0c(2Z?ufZtad^kC-?q;r-l&8zYK#
z=WDv{PK##f(^$qCE|+%AP<2jx&!70>FO@UO?@r6Sw|=kAud=_Kg$oZ?iijoTzY3eV
zy+B_tS5lcL_wAx$#v8i-cTb(6oAl}XC*7kN*WYj-c;~w1Lb2h2PuG6^KYHme<0FsR
zf@K8;>BZU8Z)}Vgmr}pmH)rCzqkC@j&d=Q1{W+N7-_-wiz0N#v`1eTfroUNFlO<n6
z$^EZ8A91PPk(#!^Blr0`?X{C0^z6UKB6LIVZmF}H>-}2&ZJqhN3l<#h4t-=Fl+gA2
z>HMhsyTf-gJed6FeOQtiS6%M+-(g8x@?*~1cs!LUyF7LG)0sP@3TJ0H7X;sau+h?c
zntS<U)4g{l-80;?H2r}^<g2PblCxD}_Z4l}U3ZT0U`Dpq0e4o9pKK3|zkj~Xa5g-5
zYU#bF3tQq-k8X(jkbV31cA>?!#j*~?U!=c3P<!xOd)t}xT}9~%Q=B;My?G>s7q@Oy
zQa5)yeER?2ueTMZ@yud6J()dit2q1hy26rl&r8e<zN`|-yPs4)-&DhV;g^t~$n~Sv
zHve}|oo2dd{}lIJ{l35;IhGl>^CQeXrFA<0-K_ofeCwt-i4PhAZHZsrc~7pA_rK;5
z^!)ZBees?NO6?2=MXPr*ykE9uW4wV};<3!Flk}Jp&i*-S@jPmKPBG7f%RQ4`Gla}B
z->m&-XMsMqs#|8I?ynEJyH`}VZ;zIH@@#sM&ZP~0!Uxv;nQSrXhp+9)m?gIk?ypwo
z$Y)-%Am`=Ti%+&(+4QP;Usvqk5cNzRhg!y4cWhRz{{Av2^53Mxp~8%5p;5h`G8~@@
z>rRtcy7cM8+20Z#EuItoZ&tM7-VGOSyDzGLsBS*_RJCsG)b`jrKOztPUTIx$<@LrJ
zyOXo-wri*CTT(20AbHXfzfuPN=LJ_w9da~xCcT(-egE=AkyD3E&Tm+3C?0%Rub5Hl
zQtprZ-dm<^@5(RTe_vPm=+ds^=F^l8`W&CVc>Vrg@zZ0A9<EW*eeSmZO}U3fRmrSr
z*=~NE_vG#_mVD4>v(<CbJ;oU?neJ9Jyf503k-y-?p8Y`|R{kzsb7HB{?nDu<=TA63
zoweO~&OvW;hdaXuhjZVfA2)1XSNY>@W^ZA6Okvsd*^BM($*tMNm)&9Ac=R{R^!HNr
z7PX5yt^U1x{Nnezz8jgA-QAC+80N@N3ZCAq>wNx{&*J;)QHMV~zv*w<(-di`ImLu0
zwEyt@@~Mu+o@Xlf8{(f7t-ht}x2L?Q=mk@P<Cp*cGbAs~7x@0|dUI0ycds3Klf83O
z*1Hy_^PYE&F*?`t<|f}H6QPFKq8+Q8F2C4bxN!H1CuxUIIHi~|d_LwbZ)1LR$1$FU
z{>gr^_0Qj$-Cq#zZ+@qv<kijc-miC`-RR%!_xh_$;k_F_o?GjFY;HbL-?X?`zyEWV
z-<k=(H&6M^@<t%NWn0m)%~1z)gOf^JE}1#xSvM@s{32VmZri;DYwPxf9(^)%9jA!l
z%2bJ+1rEkOmOHDTT*zct?=F1xn1jxKC9mhzP3^@$_w4KrKVpCR_|~fSt^9l69bT4G
z$RgG6vt!j|d+C|qez5*tGgn}FopAlp)obsRoWG%v>2+>@7t1^~F~>Qx|IS!5o#nLs
z#>^-0FRQ(%T99UWz;<7%#M?Qg{dZR`Rw><I@T<$c>E+H~h8w2uws=f<KJnC{ut^7h
z#Tn`r|A?^q_*A`_J-_nQvCXscR-ToWssAarwsy^ZHeUN_f5RvAm8R`F%|GRfpo890
z-)!*-2M#fP6P?y_p7GwtwTD(nDd~O_%bWkJvM_(%97~m$i91j3og|*Z@XW8`)w9oi
zH)}876ZE`Y`)=N@J8EpP>34lErAS8pHLTjsU6f@pb?sf5FQ0OkMl+sBl~l=$oZHFD
zyW!At&W4@)LM5(x98YC9zg6bO&WS!(awn{uI`6-q-S^MYeNr<_x-b0vQ#E5&cIK(e
zvm?K>mp8syxh?NglT7iupqt0P<~-x+co%oausyra>)!$W5I5cZ+Kexz{&hLbG5b1$
z*wG-1>+|OuPBB?_`qKmz-rsuv_N1<l+m-&S^y*fBE35Ci#;<!LZeH#Gp?5o2YNt@b
zNi9qBxjoV^K8DUuWcZ`m?rl{&@6YR<=k`9dT(aX+;%dEbs}HU4x_8SlX#K&9Yd6`-
zy;t_^nRS0}^>?|uyH~GUx9;BG?N6rud>Q?s=3?YV#}jJ`A0P8w;a@+`<n1q;7T=jl
z;VFOOdn3<1@tG@@`D;JVr=kb9c>N|W@qM=Q{KW43oWEuDGFNug{QQ)9db+-S<_eX$
zUw*!5Vr^;nW<GWQ=QV?_V@nI%?lxq}mEGU?{K>@w&m0d)oR{5Jw<6lntlYUjW|PG>
zn~Va(@>R7q``SOc&I?~}c=zk=DAO_>;k>u^)-2}b-*I+nVD+yTXAU>-Y;QRcc`$6R
z>VE!e|C=)%@~Yo<E&KhuaAQi@zVQ6LJPoYUQ=Ovf{xB6}2ek#}?PH6$=0AyTXXW+&
z&mS0fYE&@Xmk`*s=`^E8jg*S~FaO+5)%>TmUmY)UPQQ24U)OLp<IPVEJc~_w*dBO!
z?vib&eEqcU<A;nQ_q+4G17d%~GfY{T^KpWuqsC9g>r0neoGYK+ch`D)?6IXOx(k%L
zze|K3n2^@+^zV|buNbA;pV#HS|GzW+#pAQy3*T@toO*if;{QFj^LG4c+Wc=v{H!xO
z*SI9jyT0)CseU<zm{*alflGHBf3RwSe1Wsv^n2V6pHt_0E4^9eRbf%Q<o1tK9jX)A
z8l-Jk8?2h*8+&|7{d-jg-^w%9F6L+F#3?0SXE2$*;^T(M&%e7mRA+Igx#a&y;$e8d
z`=6(t_3cG#{xUP@Pdl~xLsUb~NmbFq7oLg=dhcVaxVD{Zv6rMw{_GjmC%a}%XN;J!
z`*+E_82$?ZtFAdepU~Bz`o1yuo$;Q+dT)(N#qX=n6@<$K8AX~iU75P(=Y^a9n@^Tk
zpBIwm{xCIP)NQNLilZ8a*V7mN&&=b`*VMM|VaqtTW8npl<IDjL+vX;=9JzRU(ZVN(
z=Y%Cx%YROKP-(KY#qMZ*p{=U+#R>e28DG6APy4a(+n<E;58H2YN0-^Y*k8Ia&!<@L
z_h;_Z;PQUu&GR#l?BHqWDqdu|s^xRkGw*$8AH5X*S=%)GwY}G>*KQ2Yo(D`dj$ym^
z{mIANud{1K7=BKZGwccII8wdn?zLY#(~r7O`nB5o^|g(cco^R4yz~uvxm)7Iak+()
zelRn*zMW;(<8;%)&Q7Ib|FR9$-R32qS1Wt(dz)v^AXPo>mtE(Myr_?@llMO8DO&5)
z_pmitDCy*sE06XXn)QhO|NWq6($c9%9&^=-1r+a*IL5SL36l&9SAsdiw=cSfSNP5O
z_(%DF?I(AJbtfy5&YzD_`1$NmW9p=5X+obrIB+zcu=%cOziP%R^Pd}(8QOnNOAJwu
zZ(jZ6LDmb?^j8YkZC=T33Vb?y`X1I(`ws2QyYPLN-=wT-cXjmD)9#C1`t3D|>-%bx
zo<lFUPgL2f`SO`_`2>-jrKd$-8E0HL!1(#Sgn0cU%X2UP?mK;Yy2d^CNn%sX4Q<n=
zRb6^>;(+7q5@F%v`_2D77EKim)R_C6QRjR9sgw}q{cH~;Ja3(N>tFqJ>j8-uXZJ>%
zy|dH~w9`3qe{nz@+mAgx=2O0yUkdzxZ)0xa%p18}yH0QCS!`8krnv6Iok-2|7t-C!
zik9=n@Eo{PdV1ws<p%RpmF_QhZrR9Ukz7&PDsqV1p-=S*uX4^Y<}-!yyJYYA*S0MC
zyRv=BR5hlbJJ+=y2x&Ney6W_aJ3bp(wrQ@O#3aFRAUt;=d+HYZDibCfsoJfs&a>Pz
z4!R!RUUlkkMNs8YUB(@I*KChbFV;xRiJU5OK$T(6%jmYixo?<`R4$Ia^6ANvm26ef
zmHR(hF$TuJ-n23D5c|I`2f6)sf9@7*p8orr?&=vfFAbO%?0YktkH?uy=SscQo;7>9
zW_)@xRk{A+_Twx6dvmG2pJw?qsg&WI?rYoXbKSoWeC2;9Iq}Nsrza{Sr9X6N&-peX
zU(#*rC!+(K`gGZ=a%7@czO49>{&8VS*i7L7Q-KEI)76)4A2)N_h)gum`&P96Q`gCU
zb%q;vL1FjuD#Hh_W!tmARV{w%UG=+&Yx0t}j22tYl=p5<XZ$gBiFDHXQ?h=a6VIwO
zXfFM9-?S&pQlMdTv}N+|jE#3ipWc7FO`Ku()W7>))xWad_~K&0f9uW3`f1^xgigk5
z)r+KUNzP+W*c^5~GI#plev6mi<-YBbW&9D<dH2DbmXEPhyvi!p|KwYcnS0-==hc!l
zz5`dd{%*77ZTO%q`us%Q%8e?or|&z?c+Bs$_od>?e>4qN&0M(J>r(JNZ^I?WXYSGc
zQu^CJxbMvQB+;i6Pbi+dlx2V4sYmPR(#dZgM!T`SW6SvVEi``e3?}RRKfThwCrz6A
zb$+Q*dg+<Eb%|3N_!*~#uDJT)nJ>fUKb#gz<PuJ*_s7@1vYS2i=3QNVt3EC*&Odjz
zi!Anv6mC$jIql(pMA!ZP!@xsq?6Njn@>~7Xj&8iG?sz}**{Xe8B|=XXGW2}WRkm$s
z4!CZ%SLn3Id+B7$f9Kacj_wIuyW`5lO%dClo%PDo`zUnZN^5SSaq`?r&071pQ?~@~
z(qa8^Vtdb*7~TU{ilX$lx|;n_l=7UFZ(?qGSb9IpgQWXLmmaCb-MqiO&r4lH=l{vF
zeN!c_p83k~=gjt=5*PKj`J3aaU-J|etDbhd8MWcz#1kS7mZCew&#1)}KNe(&`#McJ
zM<OWT&u_l_MwbNVR{WivFFW;I*t+mZdzb7<oFWu{{FlRhqf3QtvnzD-r>-^Y*nIBK
z@_b3Rt)JN(4twoOU2^!Ukj;VZJznY24AUZ-W<8v4=gXk~bK1md-i@cs<W4zMs?Wb8
zbjP&#bXD+Sk7v_OCw-ZcFPZr>Xi~_!O-FO5$};{)OucW_qow|dM?mD}DwA!Dr{WwJ
zuNAD6ZP@?oT4IQGJzI?LC$1&z4CX(k1>Stab>PpQtmV>fFWy{@x#-PsnIZ1m+C@z-
zw;eaV&unmNyU^lOl5b8i{|{I>lk+_DnJ;S>CA}>D-Iej~PfoPC`JPMZLJYp5(cVv`
z7;?5pRVkfkt8TVDyIpMYu9rU+{dWE{IbTuIQm*0g_Ne1#PnJCV5TP+M>{(D(+r$%F
z-|>I^cB(d@oJVfj%j#d#f-1lCP8FN;zxaMs&#PlMSAGmjzwczUIqJ>q@|{y}`90(N
zK6_^Qd%<mO$rY*RtFGI=dminf?Gk14;B<`tj!!p_{*CKf^HulAin4D-3sY`}?Q7j~
zs&`|A(Xs7QxE8OTZT^3KzO38T&D*(EW!^-4y#7+N#Zbz7-}*a|vig5`8;(wWc_}+Y
z@VA?@XR4L)vCWqjB=R$FSeUOWdh`L?fp6jx_ipM-dF8G0FyETO$MitrzL6GJ`kJ48
zzSAV?Zr-n5S(toV!u$)f)|H=UrG*)!%)aX$UQxu?(KhMzZ8wdHYD_-g)-Ia#;u6D$
z1)#E{IHAPq^R8_|USIMV)=0&2pX+_7bKj`v)w2Z|8atPrZJCs@>4$vH=@klYOdGoM
zCEY@eZKS-`<ykLudCe3M{_yqnrzs{3wKb;=R?R%|TyILu)i$S26VZle!8NZ}h$sm&
zEc-DnF~oHD&VVA<*<7kt`m;8at*>0`&DB+F^D4S6@Tv{(fvLILQ&t?Vy_jJ1{)5@F
zJt}V=99uc{wP<1p<Ln(ZU;Or!KJh*)dT`&Ijjw-Sdo=f-acqofzs6x@bB2O-`I4*!
zZUR2j=G{BEU2K0z$+6F8cmEPg3NhB!XN|b1mM+WpPq9Po@%9N<3SXGX)_Q+By#G%A
zLz(+lJ*%GiFywvJU2O2nUWR4zG4J2~v-mEbk5gT;torZ2Q;);=SFQ~zUhrGi=BnDZ
zAj!8=`GOfTHt)9h_J5wsw7WJIEotU^(hM(rIVG=swa<Q@Z_LYv_iKFSKb#!TJT=PN
zLcOYAZRYd(&^zKKDc99!H*cF2Z@=?WxA^yhpN`sfkD@yQ@9tqdaBp9#$YDO=;6*3H
zk4|}V<J;#Y*Y4TmzP)gy&0l4gMIIYZTlhA%grM7U8Ra{7D5}o-v-yGPyN9Kky$5eE
zFXIg^oH6H#$iL&;`4*qr$=zT!zhmFc-FXGZ+n&CxFLy}vU2CK3tHG!iwqo<|vU7)D
zF>ALcS1gUUJ+NrrzETn2x1GXjcX#bHd9f_@;Nkr%7Sz^HG`x8Fb>97#U$#GPKB=0R
z&DR>boO#2AOJ8~R@9@<P|2a)it=8?RmDu)@)BismzO&T$|E^goYin=K-WXxDREfQ*
z-?A{Q{LF_l77fps+?l6(9iQC%>CXJzS?{;L)@6FoI_>5(Q~x^KT`Ph+r+#R&&J_Q7
zEiuH_m@)3dTBVY0KeVKLrpZsgzi)rk^lrQQ-j>CGV>foZK0HN&Z{iD^i9cPX=e^`P
zP`WR*#sB;5=7}enwVxK>{lBxD&&TRcrQ(4(r*40F{N~5=?I(E!+;%51T=3I%;*S>M
zRlEP!<a_tFvh35_m+$!~&(P%=rO7F~pYcJ-eJh^Bz1#S|>MmBv`Qm6Y!(`5c*Q$5#
zTzGN&N~&)7itl{}Ut15#-(6C`8a~N<RjV??jeFaBE?xNfDq+s#*Gpb*WiVO#v-Zk4
zmWY~*GetwQc0QM3;QPMzutA9)!`p5D-q?MP)!C`J{qpsUGkes8y1f@45{Xa|XEIo*
zbbVE?)?=}TW8ZdjY?u~3?WfK5&Hot=?9S8;sFOM()W;E=5cuWyMx*q?o~$R98TYR}
zm7Oy^_x>EeI;Muk%=_IwTuGjP`x3cy+N2pPF5b!O<$A!~U|zFYLv<a))w-Q?Zk0+N
zV3)l2H+fC+rWeng!?*(z4}K}`_KW^~Em0yUh4aAPeW_C>IWok|JiT)NDVu1emEZPA
zZu#)i^mkQxrk!lV@0!yFJf5!^Ka}4$^72g4JMeqwoL4qmqEEW5eEH}5j)F@j|N86B
zrrI-Q+`F)v?Qns`><iy!#tD7ka0uqBW1P5>VRLk>$jZtI6?>xEa@Y=>wo{dGYxq4Y
z_x}By<xC$=zftF7ytH(W+J&!ETM{;T$~hg1+gTc^THbnRRieldvq@WCMBg{^I`w+e
z64_1jcT87#`SO~7)V|w_<$n2<FE<)hz2#|0&AnfFEQ8-g%xU(v-gB+DTrJmy?q$3%
z;dDaA;fcvHhcxGlu3sPEcH_+IK+7D41NJqiH4M))TuCj>UYmJFeS=$@#rd~3e*&HE
zrMzjgC~v>LB2lF6w9kpm-o?D1f5}a<`uk<8&hpY#Q<vx$=S(@DC#mLHzhiar^K)~p
z%imqu`B?q&tFC~V`giMDW`tJiakzyRSu(u6t5H(T@Nd@FJ&_FlPw(WcKd@W(*p%AS
zGa9QR-c=g61s27zMO?TSyun(xJ!a42dn`Y+zL&{+_o;p;(e_SK{6A~%!+oLGjkKC(
zxiXypJuR>(jxl1E>H0T*4ZrSuxBRDOIxV0)P;L9GuXbm5K8%T2%=uvRw|}+?TLjJ6
z9t7Pt^6I-ibN<!Xx9b_!%r4$+Tkj$4W5iox<*RVz&!oRuDlhX6<y<!4T57c{u9;_Y
z^5(Tqd?u+powsBAlPAYa+^^TZSy|%Sb4%%YS@EN)1+voTC31VT86u8v@0oP@?%U;a
zKTp3_{@Aj8lKqp5AC4WLSMes1{q5%8AKq@eRdRT7+Hp3k=S!!^-(54WV7EX&!x^rv
zo`*GNTxWO|c5uS)xi6gez1UQ@cFtAyhSS{pyx(WfZp!#{^1_krRz2!ZB0iZNa9?Pa
zDbX6VndL#`eWOzcBsbpd5jEesiD@6hgNsV<Hm9yR7JvCEXYq!`9M;o(7*9-kpD&S`
zq`)Blds-mdF5A0C=27)^rx;WcY!0X&y`xd&lC$9R*$>kW-(JUIJ<a9SfzM{ChdUl_
zn)~gm?qZoMZ+`oEoBTAn+;#3RgLk*|=db(J%q~dEiu}BFIn-N!)m@dam9yS6F4leE
zb!F@KHP<yJ&YjoKI(eD)CH2M_9*6%*@3)*iez11g?y86G*5$vSDc$xxP&xfc%=hC4
zUZ*@6cs}Va&dK>3Q2b#^{qEvj!hK8+#E;%v{&;8U!P<8(7M_S-WFH@zv-{&4wkI!=
zvL#fH&s_EPNwk~f%_rB6J<$ALKI`klL<X7AKecT8W$&atx^~^YzRKpYiLc_04b$BV
zgAZ#c?q|5Q+cDWF+Mi?IC&}MS_S}?j@OIka`*x+b=aXp#=3jPwe0gi(woHlEO@a)|
ze@+XGv-+oM#vnO4X2v4{h3ULUcN#o6+7eLYcp}nfUBt@x*I9=-Ua)Q{7XDSjBPDM0
z;4{B>#UbUqOC|3M@`NqZ0(B;t$jbZ8*0td=P=6D~yVyYKw8HA}BI_m3mdH1^|5<5Q
zc>FudgV`6j7Oj(C<GlWc{Tj989_ASWRh!!aB_=b@`?&TH^Xp#TrjzX2$NAjuF+I5P
zA@A}>BL*=(?)4`dP6o(oo_4$aAh&_PcJ&9xCns1hCVYyU5U@;^afaBdqSNn;6NBWY
zZLr+Tkl@29W!B?V!IRLIFIxBFdw|J|J)$D51v_(=w^Yy8`~6lntAOhV*MqA;TXG~=
z4Wt$rz7Yz@ZDmf|mGH@p-}6!c!?UzauB#2=7=E1F&ULus(Vt^sUv&?QzxFLX_~h!l
zNnbP=>Obmgx#zX+`J=+Sc*z`w0|NJr_82D2;#Siy<u$X?i_-iZx=<kU|8@6w6AXU6
zwEDA${omxz`;Y!)SR=U4;IKx^Uq*?C(QWo-a~?LGyrE}(h55sFqdO*>9xDE?C}cb^
zN!|aRijwEvy2_WczcPGve{$o*MTS3XT8wy=`C}f=xc_t7!->9&iq-UYrp}e0Y@FzQ
z;9k7I`Tzeu|JJ^jpH(?Gx#^7_gG@-$+O~<x%nTNXxAV;BnJ4={K|c7?@2fEmV(;F~
z@wS$}X+Jm6vxL3N&?1+gXXfos67gZ5c9+&$L~Ar&|CN&O9?Q66*^?$-W%Fqacb-PK
z#&4S;Z*zoyYE9{$|L!-PIeqRZv@d(c@Mrs#CSGNCHO8K=YY!Pm>z4F?xP9~0bCL6}
z9d|_hc=WWrXUCJh&!#bKdhs&ww(NBQUNze&y~xM@>Py!i`Dk~5T{S#MV&_M-1IPD;
z{z!YF)bQTR{{5}<tzB)#>@MmN;g&D%2RBys&-*nw%2P`4Zd6U!n@M}?TYetCyydIL
z4Y$O_MH`xYCoRd{-|ormT|a*wgN|>(rtTb*oPyJr&Mwod%}bm9;`LwSbt3V+4lj2H
zwM`T@XE2HUmeQ|W7d`FH&vFK-sMT^e-Ul-*s#9loW4Dc&u_>s=iedH?j}?hePF6Ck
zc^B<=wZM#Ff9~5Uv5YhBI8Ng0-FbPLo}uODdlPDA^DK^VV-hI3nxm}T%uumlYp~K|
zMhl-yiG`XuIWtS{B`}=RoEvudMEhTc8)vuotWq=*Oh{b4axFW<hsxf*p6I8I(UbjN
z2TV8Bk#zgHgR3F7=JX1=b!Y98qdu!L{FasGRSlQ9&9I?n>XOfPOg|R2MDZ$@hy4>=
zuyK99?A60h9n60JP=2&qIYw;a>J7$PFSl4T&f2vk_mIJ<9_>v<{rQriEw4GY?W<k?
zc*>4|qC%AwivRa7VX{tV*bvHjRLX5#$;`~)^{LOQ8rpQ!=iU(VIyYHlhr8T_ifPdw
zELW)*@haQb@gMlSFEvDXG2^s!%ayO!C`@sQz4wjj!PFz0V}#y{s!q(5s0{op8gMnt
z<LUFThNCynSt&|+{gbJU{jJL|TXl}eOy&<xnjundb#IstxGRb;H;H<z*YNY^xvoF5
z4faR*cBovB7CK)gm{9gYh*vrP9>XS;L@C8$`vd$p_wv^Lv)cUV&$}vp)`)2tIYp`o
zo~PYdH^?#suiaB>DardJZS9O5H>!mh($!?FPqnRZOMQ@KG3QmZo2lWaTyy?Up7)k{
z&t@{POcZ~1jbV=5Je$KB9lf&|#lD=VTP7&Bap^tgP4j0T@n(1<UB4n*_<(F;r*RKc
z;oi4JR|*W6k~XURcRG;w{7N_H@qH|t!;JTAzQxtBt8QOui0H<MPf_=#U)z;(<KV~R
zatsj{6)&r{1&Zl0J-ELwHAH-4M394S*Jg$tn*T2BT>0>*!71PGKN-%Zoem9a3iy=D
zX#MGz4s(Rm`;*UvTKsr?=Ov09&|r}Jth@MBgDQjXZLy+{`x!gR>tcBumOBZhOSEoi
zFMjiDXTEGG+w(k|l^X>6mYfZCU;3DF+RV2N5BqheF?^VoFMIV^s$i+*yF*T!Pw!*?
zVf61rE5jSPCZod|9j427C+_~aa;xS$ri80Ily5VIaa{S}-k+i9^;tGAy2r;eeDz%R
z4_nP$-KGjx9%`L*JEyte_MxX2)k7xjXK(1O(KK2$=l+g>PeJPUoqGPPh@4<_@~bt2
z-^ZmVR^(avF+J$M)^%J`^yFlQuOHRE)y`&|_jTEc6<K}k3EzJ0E0w5xyz1Xuf%+G@
z4Wg+l<Fh0>OMc54u&d}ld22G^$m~f=T9zzGS6%t}gOapa50k~p{VKJS{=0=9wvK(p
zFt5*k3opa<-$5xMhI_>sHcZc#byMtVR%yRJ>n6kfo0H}Qmi=QpVDbBQ_GBBD4F(S{
z%w@PC=ezjMm*`nmwdqs3lb(BTX;ks`v-r}ZlKD9)+N{UMa`|i(+wZ$T2DwaQu$fVC
zX68P*XPy%Sx2}ojKj2^UdPPvz+v#hrIZskkmC5E?ntJ%eWNs_3OU&{=uLUj@`F$i`
zL(_7ag6F26`iuAQSjJ46_3u@*`_`Z}#@V|f9{o}k^X@4Uy7}N#hsxb=z4@wFy(~7W
ze4Ky&t9MRM@|0fF@_VVzx2k%UidRkx+AAXMZ8m91>Sm$7$o)q&)DPF~F7{?R^!2i>
zmSNY!+J=7NeqN>r7WPd&S&wBNMclc*ea@?;CnkENIBQn!I&#dyP4eciM?b=!pZmP@
zutrhO=2KolpGrEXc~AN!etlEo6Q{Ghh0QPh*YCYLf6}VuCn6rbxjgBY>gDNW)3>A+
z>Poxm$^6~?f`4*c-Os6(aZ4p!3oRH9Pwv~tYH+k!X7Q~T#{3QG{ZZGq3oZ8WV@P<t
zWU)EZhE3wGZlMqVUD>y_%16{;qVbYo70;7To7FugZPQqndHBSsYsbAO`9(gAY+tx2
z`Q-9ROU_Q}+hv+G+rZGvr{vMslgl^H%?PoZ*!r?((QZ@5I}e>F1p3M_A1E^J$`jwi
zH(^rN57h%K@>M-rN=AYWpKD(mI6Z9Ja(T^n<}1-#l@~9`d7~D$JI(&G2J_Lh<;&(9
z%vA7{Wf#4<Epf{!eN|6!z3)1Q3tEJ|CoPXuUt*gjv2atnis|hm+13lgjSmQWy8mV@
zm@4k-w)H}(<$>G#QY8{U+8vnmWaY$2hV>PKDIwg|H_l|c27bxA_grP=@o%2)>K>P-
zr6nd!5ipNUnz~xMby4!k2+vFJKoUXkOS^LK7#MACS2<gKe>;z|j+Gvp$F_fVA`P{B
zHH=m@^D^u>zMV&T!HYW2!`_p&Jbl&auG@W2!?fC?t8Zhk*Mf@g#^3vQMn5{Ze!BOz
z-RCt_t38C0Yfl>-O15Qq=WF##??Cy>bNBO>8g&@mvW=a_xaWCvo1mI7<1@9=f;_eb
z<)=<gd@McBL_K10MH%x0r~5`d20PW}%3tC<$@+Zvy34+I@Bd*qpfy9{Xt5~6?Vr;U
zTTZTL_~HHN;9CX@)nBWQPt-R*%pdQ{%`X#B*6X(Wv3A4Ht)LLOw3qL}*CWlgvl#QH
ztCa42>@M`9u!DW3+wP=VhIij}4|7ZxXOyZ^mHQ+1fYmeTiSVQuDRCRz3U@eu5!{z5
zq1$4}|7(s)=?%+|342vcJtyrj{@KO*Zu7pCfg*alkA$_{mYmIKVD<6Ab_Rd1OHcWI
zecnw!aKDzr^cL^jdX^stw(}^bC>b-TslR*jTmFFZBooete*It9YwsUno!q?F!}J!X
zGQ*A|+j*38@|Y764sDENNLI;|ao8MU{buKmh)pHR`a!*Aj!y&`>fS}S3!1Sr7epP}
z_>-aB^HM!y+B>tVutyrt-9Ty%#xq7lq_9RW{uHs3Q=xGBRiTFHr3$QOttt9uhfhpx
zzBB*A+kK@HA6q7!-}gb*Q|g}XzX*5DT{9*xOxSXDq8V3;^mc<E&8io|MIOHCt@N8@
z^<JWW#bgyzkCTqcX#wjDm#*kbd~#%#f63G(%bJ%}h$X2AB<XZkJ+sVG4%!lLwEO9c
zN7eOv6F1y3)}3N49qPVa{g?M7zq*T?1s023Im0?bqI^lVx7f*97da<cZvV4s@{(gO
zPNzh>A3o7KtNrf%^QHS*C6+#vV_@4N^MaMd`p|jSf8}5K^sbr;o!QIxZQ<pN&pjpe
zcFDQC%jXtJFsN^ndBJ^P=ewf^nzwhUZo100aY=ZQblXJcc%~1jt4#YY+C`Y|d=ggA
z;I?$$O-m^+v8n!ZF7`#RH~f_TbuDp;z@+0h@9?W+K0mjS`L3#Grq*7z*}rlmk889D
zPFfN;+2*uC5a((AkCvXV>~y~ETCS2=_^R`u!S!i{Jx&E1k8tILDl9xUX-8<Hxc9Ur
z^CXT4y`C<?8er@+Y2TcO(d`qxA~rs`E5Bq;lBdD3jdh)Y471m2c}|NA>TD79mWrRS
zL@}Fv{ar2JSrMBItlE?Q3N2<Ro2s(+L1gR1z6-CscQ~HAc<^-3-$}<_{7V2CY~VC$
zR@`UZ!y2l3ySEz7sI_HoC^>p^_j!g%cl~&j#bX-Rn%AB-xFi_0KjoP9q!8=0(C?ep
zFWK@}NY~b9(!QB9p6MRWnEQ5@ms#wkcQ+TFd}_A)#TStSk34P}_s5;<$vvfcHbXy#
z>%fLL>QcG0iesH#&z!X6B}0CS#pcg$VQg14TD~((EBT^(Si{it+_};)chA+g!u*tL
z!m`>jN|_fw;@H@Hq2>pVXH>1SXSBy8wU+BU5<RlrRbGnTH|p8aVtHf6>o)Ud)m+V!
zNu7d5b5%S)+pIRYB>d{g(chCEC3#+co@kaQp*QVHby(sO^(zrZJN>%4RpZxXe9bw0
zLfHJ}El{}33rP0796re;;+0jvCdEEMGcj+inFZqM`zI{%waU001u_~UmVEO0q$`;Y
zC9l3dezLvYzT!#N!h7de=*8%4{5dHrp`Kx$>?an6)oS}|b=O$jZr58}Tfo3z{bO3<
zlt$l2-8E`Ex#rZ|(wAned+0vvBA*3I!`qtE2B#d_TMIWnnRw*8nmhmfS0I^!r+hj3
z;i*FJYCIorEwqoH_#te2>0<joDp#zfuDXbOnthK_b@7WAd0VG*U;E=+-KKY5wd(el
zdbXXv%CH7BKPDHpa}i%c;HNDo6gO_{FZJnRl4Li~-aEPV;q3qHQ~%Gq!IheqQe0A$
znwSe><tJrv85)=?7$|^Prsf8QhHzmEsHlyNg1%E`NpV1Gk#l}-L4ICpUWtN*g1&Qp
zPJU5vL1J>Mg1$>?S!Qx-kh>F?zDsIyeoAUUVo`3f0!S-ZS+RmKSVL)UUa^9qfu*H_
zen3%bN@j9NevyKqfr6bKm%dwOPDyH!g1%c$Vo55*6a{^c)XemZ5(P^G0|kAb)V%bP
z3<X02kjsJ;^n-m9i?bCB4a^h_6oR<)gG-Z2DhpB-^gVME(^D1nL%^H}|D>$c<Prt_
z@XQpjW=l(uZO|a7nDgfD?OTsl&0-6P^}qXH_cr^vO}ge2H~eid?A!HxRlKs|0cnn%
z_wu%TCtrWP^=r7zls|J0J$@4~N%&{PjII^Cz8B>Mo;as=+v}xx47Y>4r1Di;=@qZP
zR=xdmx_a5%_V4#^yfyf?CSv+~)jhe5CYP)p%EW7)Q_B|4Z%{~?z4>3szkRpgUbBA^
z^5@v*<MscKONVVzRG+nLj$@hHJqE`)Z~IJrr~l(j&-yMk*|6-reYn`PMKhW<%325i
zZ?w2{e9o<<>Hno`87^0>GnXtq@wOms;kr%6AK5yTH@fe;n|EuexRBqZ?^TP{{(f28
z!Lwktmgc?JUthi1uy)F?d<n*q$rXoP7k>%t2+jIlES#J1b@Q<lo5_pCE;+{ec9$_a
z`7g_B2zc`)Si|MePU(u%_PZC&xw|xX`-J5Eje&kwO`dn0?KF4Lc;vfNV7IHeY?rOw
zpO4#X>pmS^m=|iAD}6WQ)S_9F?9cy8nbDNP?4o=xL@<L-{pjgR-<Nab%r{$K=e#Ul
zekyTI{_m;tZ_Pd`nd13~SD?2d_;d>A^P|82oN>Q+t<BYXo}!48Xy?br6N~*)Mb$e(
zPntP6Jo0tzezWx3=QaE{RbD+<v2B;;yIDC}wenNDJ|447jeEo^Frgy&`s>;+&p+h`
z&T2jX@JVgm;`d%p8s~H`FWj|4bawExEtZ96Jhm|=3FWW)ozC}sX-)c^bdQ;5UKXqH
zrxoexozpvIe)Rtj&fiypuBqK)Fzhtf{ZoJFXT&~ZzC5NjnSF(Nt4^P@ycG~Ob%)nY
zRfaF>_e?&;AF|ZAFL`{yMW?>ZIlgsiGB0x<y<NZTIP>BPO$&i(6_@=k#bp`iRhQa7
zuwZ^Ycl({Y-`e|2YdC$%T@Ocg>h@<dN;vJwe0BcmljziELh9ixmObab{kghu&yzWu
z!#5hASfb<2tR$Qt^?R~ilVH&%Ui*fBW`9mjyt=n2J%{~9`$}mAi;v5ici#UoGb883
z&D=Hf|5e8xc5vOqD=@#}^6{PKb??j~^u<5?wRt<IYV9j8`<l>o<!Vaz7(RBI->sQ(
z*s{){^3v9<Eo!%O4!u;Cy2&=9sp9hG>!Dff+PhokbZwGn?04Q4If+wdnZiAWV1azA
zYF~@<t~yV?l<2?O=@q&ya;ojJPXBF;X^Qv0eD^<8sh^~{d^78^k~p2u&Sr_P+J2-+
zCn!BSEAW5+Wd}FG`LaB%QZ`>LXS@kdjsL%@&ck+R-gBes+GO@eyas|F)27_t?YjM5
z*3QE>W$p5+{~YU4o>}-+>hi}bmq(Lx8+LY>GygSjFOE5N&QZ5D*y?Kk@~xiy)!OF-
zg9Y+IvdMF2$p5HVb?N+t73tHJ?TzOeZt5wxah}KeS?Q`@md#(5cQH*C%5VE^ylslP
z{c*|F*B9k}n6RVcV$|*c9vM#Ue78Vd)<**QN*0DOdNU6jHcrmC_jkJQvolHetd1Sp
zG~H{}Qc$`VP!{g1_*~O+-rY1mYR2~y<_}o}-5)Y1WN8ZYRtO(|zxT?DcaK>=?D?Zp
z_%-Ul(s;48u4#u&+E#B}+uFtDqI|C<$fRAkvNP%c=bSyapHJ@dIxEVu<YQ{buGwE#
zu5fUux{(nid@jcO3g4@n6THf{HJ|6Od|xkmaF6@GB@G+rul#x^Jw})HkWfBT*1Q6r
z2Ul)MWxPE($NNNcyyuGUrj@1KW?Je3^DBfe&uCG;w<JRCNlcEv%z+7a?IQeNS1k5p
z5*ExqwCS=#%=`Yw_y512f196W&!V8dKMy~iXZj~_BXV)YV=wkJm3uDV_P^P$6S?S^
z^D$O~_ol_)POPstwVGEu<G{k0ui78Kh2QOGec`Z&Q}1Qne;4m7eEYVa4__{G?Dxbc
zvFaDiLOjCDKg!vAT1;6nBln6`0^=j!8s6}gJHP(Bc)V)<52=}2^`Zw?x@PO|@qWI>
zQ=8Lq%60j0?F~X7)42A|Km4-z(SF{)$##p2rklT*|8ctA6qPNSbqOh6{UY}314KD*
zbX6F4|9M`}*Sa_N&f5dK)^eYUI4tIV(&>+8ox&OKJ&YA<_k2|BAIi*m#^LP$HAk;9
zP~FLw+fQ(!`yNJ*<(@suGWgV!Jws1kpKJQ{$uUjs*zoP@i~Ca}Pfbg<e;>Tc=|JAI
zyZ18vJvpCWnaRDW|7L{awso^?PcL<ud$T?{n5+HOwycwk?~crVx#ZkKm2>Sb(t$IN
zMIJ6Z7x_NNY-?HQ!a0313KPQ&*Kk?$F6q&~%5Z9>>xEer%pVTDS|T~u!@}M_<&2cT
zl7FQZJ^k?;Z~QrCH@WEP6i!jrOb<qdqdP6<G=E(B@XE$1p90%dr^InR4&ghp$D7q)
zLR(?b+I#Jv7qF=majJfD@Z)l2WXO44a>&y3fti(micM8l)l~PLg$I1a8pNfJRX#oQ
z&|-aQXw8=LcK5=*+^@+C#r9e_DDgfPky;mYdnenH|7FUbY_6@64Pasj@JP4XYF}Aj
zw)<|~zAskqCySTujjNw_+c>r2O-SM*tB<{$G9W{5K0W`?r?$^sw&r!k=Gz_jpIu~N
z*psozOE=`l%)$-Qs~FTxA6MpkHGY`*dkTZTNe{P%mxcWKk`<TjAFt5c&G3DXg6#z6
zo8NLw7$V|c%J|*rEBN8<@!895&q;+RDnU{V1v$?duX-7kOI3({nBs3Wi92G_W{Vr8
z57JX3*5By&PTqUpTMpuh5~+7$wx@cOZ{2<yRutl<rMj-Z*KWeBGuey>B6pogT~p><
zeyk#R#UpO#^zeHIx?xGL*zWJpW%}TBc*msDX9Yodhx0?-xBuE$F8%LGGFMCgmq!e1
z)*dRh5X_mK+Y`dTz$F==o7QSMC-*V$`#G=0xmv`l3K^!Ef0yw)RV>b3e%nn;zV`P|
zIr)@gJ;sK9o)y<Fn?BqVvfxnF=AT!351xwD|N3w*!}WCrIq!BH4fuKeo5gQGlO@G_
zeR7}3oZEZ$>}rSE$7eI&{`VpHiSst4dpWP4UU_ZxaIWIPNxxL*bgfso;x^k)_2ThW
zi{`y?KEHQ!&*uDX?RO;t)@mIow&<K}+1b0*%d++P=9g0(xo6w2yb<!DnthV)hMfYO
z&)?M=J<pMrU0$A<b?G-Rd%AJ59KVIa?U3m~OB`nzePk2zwOXL$y1ZrbjR(`VoSq$W
zymQ^L;Pm1jClnGGo#Z|)>)P{gMOg5(?{l(_<|OZwGT7=+Y@up$aAA+E<dT}e_I%FM
zM>m;$To#ik9C%}jZT;_+b1pAR4GxXC;j+Ewq(SYWKtcV3T#29m2y_*16ur5uODo(r
z?u6xy{^y@w-$|WQ`<8jnWe>gNcP*QvU1Rn+OYIBeRa3p^QoPOdcO~2Yr*qx}>wnl_
zELvA-D|GJQJmX4JAN#*K8!rhIJrKFMY|*afd0(#S{H=~J>f6jOxyJwY!3UOezRX#C
zYwZ%1`(j-Cj%&|Z^if8s_M5WmlPP<)KAREDpQC+5Yis`F*tMTGuWWyI|C&e5pTM`v
z3b)OgI&asZ50ee^(%DsiuGQRaopE8-HV;4BniMAW^CgSFJmXZ~%gP@YlybWIQCMw;
z<3T^IWQ{j2^Fxi^o#e3m__$Y#<;-uR!~c1IUOS=c)Y+w<x%S@Q_hq-!PUI%P+V!vW
z8-MuPtACeHf3kA#xw?6mZ^w7u|M#gq{Xdu4#@ikW(Mj)xD_t&{J#_i^v^cWj=*02|
zUzVFZI?Zh+&U_~(RIh8wgvmu|^X;Es;XG^i^%l#6cRBAT-;LgCmd3|EZ|l5Viyw2g
z9&gJ2zbka=7qN2{v6aCZ?EkY*o;!DZzRt}<{%Qq$Df*HXe=6@j*1T@;P)7f5_V>MO
zRQ?5h_1wv}So2M+UiJ0oPNn+oZ-ghxCeNw*;koDMiaoC@|E>7MzcS-ST-JHkjg?=2
zWj<8R;%7hqQq1m@*xO03*TfzSa&12v_(W6lY7g&6<7ta_wloU$%2n`P(mQ%<nz_e9
z7vqb)?S~A){!Y)^ZTI%5OK67tv_-5Jzr31}8l3OTk{x{be(L+g$$M{YGd};&N5RSU
z<>K4l;(v?0oLhVKk;YBAvzx{4UeS6!f4=aaIax{xp6Tf`=0~rZ5~l5R`C<y+@t{wy
z(suq0sGB329-F4Q#m*<aH}#m>GCOnS<r&?}EIdvu$lJgA(ihhGXAIko+i$Kv{N>@@
zgZj3+YZHIj-#hpwG$TlrzmRSJ?*09*C-3o}QB}>5s~Ieue@{04%FEZRLI2JkU|aIf
zk2&hF*fy=J&Fzm@*HkR_?|UD8uqtjR>tr+UQ}>jg|9sV5+4a_o$$G`^1<J|cQ}bS#
zN4M_(92jwX+wyd7gDA(VyDGfi?cS08xp!+;?TxHdv8`6mQqRp*Ynm#-vnM-5jd6D0
zDaS`wl9oK+{_*NoR?s3Z*Z-E?x4zsKUv~8Uf{SJcw<tW>bHQZ;&(xnsC#+Qt_pp$h
z`%6kO{mqw{GoK_SiWbEtGiokcmUdHNhWJz6pGMC^gby->JT8|#_2jR%o9GV~Yu+O<
z_l|GWl4g^M7rig1dGd$GyO`{!Lho;_n80{<UXR_h1tx-L4kbLeyTVBFYF>!9g<#w)
zvlh-dJfhC$KD)cFQ(x#4m7A9S#b)B!%YJKZbsH7TdTNrN6&P`atp1hLwQl>hhpO*R
zy!$vi_}sdW%10f=7YUuqKEFlziNSha_s@G)?~nendDrcKY<CjYIy=k1Ri7V}{rlp4
zQO`XqH6FCGIojy;%DVk5tu9EIVyhfKw<Y+~v-Y0r7VE0Kru~UMuK0Y?pVeQtUe&y`
z>)RVAvnQ)|?%;PynDt2fwpk?a^MYHU%O2!rKS`E;RG~7r&dk{D$+@G3ip#~0?$|Kb
zf1O&>&JOdJtEPKy*|zAd)>aXH-i$|54IGm#FP=+H5p_OyG;hxtXVp1Vp8fT+JaA=~
z>%N9u*VdNHFJzfClW#Umw!GMvE_OA1jiq48<8=>>n9430uDs2%L{m;FXY<W0{jJTv
zN>;5}`ew1|l7hqYE^Y`qSG_iN$wF!0gGO^siF2_`yYl7lJm3BArfl2o8lEZty02%p
z(HpyIo9@0^IpOo$%X2u|f;qQux)*oJY(<KmTEVYwnS8y)_u7lYl1^|=Dz*qKk9+s`
zvPnA6a-qDWtKXk=n4fXo^HTq5V&lfA@xNrw9gn~9NL|$~>E82`bMgYU4z+RVF0t__
zF8j^+>4x^omPNNOoZ~%rZoh2Wl@;CdA4R@cWI5;G-s&eO=j>Yk`DeI}rEO^WQK=(>
z3saZRRh52{p8enIS~8RRl!w9Q{69I<LzHJkl)bfD7-(N}GS2-3W0S>I?e(*Y*Z4E{
zoxS9BrJis3`Sad?rsd5Im><74Wxm!E2FE#jfA5HxZFBkntDMh+6phTSYFVmA!hS7g
zwtKa^3bu&qek<1FTwb(yK2OWm^m8*a9x#<Z@=Y(^DrCvI{E2v&e$%<hmiO(J6o235
zkpD~X!PAXvRkbDN6qU{2Vp??0TGzN>rtZBMBO$*7@e)r~F6*j|KIN`^bGF=^<6rA^
z3|eK2&h;EW^UUYL7m<Pw|1a-s5&kLu?dI&&?~+!%7GG}n@QV2{^(PFBbI)4(@-JI=
z!q&RR<hrWaZqL~rm%cx|bM$AcY}~uTKcd&SZ{M-SZr=C&IdjdoFc_-to0%(i+&*RF
zyw+47s|WM0>{(i?^f1LIV2;fUE2}RK_RfC0*W3L#_8|1Fh$1^jcH^ASpC5$33Wzwl
zhxwf%*X)%my{${9-YT)*^fi$6&(+}a?VV*mdKupO{8}Oq)5GYOC7!=*!jyt#-R89=
z|K4`;OP!5VmM>cu<xpU}?!DK0g(Nxq*|R?`l3r2pVxL21ecV#9{em@ihZ@^2rW;=U
z%<uE_*w=Yy7TRy+*f(?Cd;6>YtTuHP%P#E`$k&_hees1&a`Hy4r=R|vyl-c=G*aJw
zNtfdCM{%~BLk=dt%@RC6rC9FiwuL)?)!l3}jqsV`w`b?+``)=%`u{|HQT;yq^!w2H
zb5E`eDzV>RviB`J!?9T_-cQesXsej)x2N)ikHx}AzEk^k`7Nh!Km2;b?MBh;EsH-L
z*c=HmZEA=4%UOB42C<pXr?`4@>1ZzKDUF<M@`ZbS#OF(o@^p4sd3U~5tMlINIsLfZ
zk=Z4!KT|eV6rY@Nm{U6c)Y<CeRS!k8<9e9SBs~zb*u?u<F#l4g`TL;z?ZuwA*Zwdn
z`TyqA`g!FBvVX1^XqG;cRz1A&^<=*LQ-A0S|1Om9lb-Fj=jV(0mUEWv?qZ#Ppz_~3
zPyh5&+1pnC-=%Q7EcjeWq~&x5`K{UNzIQh)2|a%2Z?1H{UjOrgtiNqyoX_8^c>N=D
z&h!7JS2-`(Rj1VdUL@xFys_PGO0iYy)`hROGwiziBiMN6=~ag}i`~kdXI33}y~gJ8
zjv1fwl9tv#JN-Z8>1Sbkl?8VGN6K!q9mv=u?K<}mo5bvF!`qP`Q!^^%xgFP78Du-|
zvHY;yc~9m4cwzaP^LoFI%j*@iefkr#@mh)Dy*<*>4rZct@}1d?em^UPH`G`%AKCtG
z#%{fj&m!g~=EVumpAppe-{9kFW2+ulzk<_JcZ%PK6m!?knCr37>{H<4ow7IEe0A)f
zty{5Y&9wLLjPL*WxyE&N++XAPw9-fWuPvCitiNA>kN4MYZ_GbT{`7G6wPNe#d<@T&
z?ky3{51MmBch|1`r`1_mPv4w;vAJCRyvPrxIY*MUzjB2XR$qGi+Nwryi^9Dnw|}11
zSl;7f@xJa@f4}J7ytnad=4Z%W=6)|Ga_fl}uTy5c2vg*&Wpj`I(lJ{S>wEpn$F8GM
zlN>mgr#y{#{?Y3EC1*cR?Ppg?7O&WUkvDi<(yfWPGh*-6zReBQTrGQT`Q5KKG9Ns+
zIQ{tc@EQZPYLQJ3ZoZA^_um_``%(Cs@@q{umJ9l%2(tQC-fO%2=CezQsPALnU+O+f
zZcRI=DQ!|Oz0hpcQ`uv84t`y8O1A9x#Dc0@t7QM2jCHFj`nqvj-h0(}x3zW|tE;E;
z#&>;scv>n)EB4=B?|IjEpR?andSYUM)$LW9HXCx8nF8ik6i=&|tbU=`;(eB`kzK@>
zJ+CVFTK_A(DzCL+{oSN}b1$qtH>-j<z%^<4`q<iK{HMYm)>`zM+$vu7E1j);566aI
zzq5j_$?TIq-1fYcb;Wju&Xn0aqL0t!30q7*S8Va}>5hWV@835YwBMh!-O?puw*TV_
z8KwnuDkd*H{O0VfRJp>bw{EH0xtyOcd9Ut~kA^u$OXi*Ul<u;JQDe#`qqF;-zkhXX
z_S4_5`;$~<w(gnxLvi^#!+_KCrZ1^r4mfeex9zb{MB$u0H7CE<u`H^&W02*%Ew!XN
zYpub$Ju;oWSB~Av;#^<B9N@I=<mHT(ZO=JYeU~}6oher;zv5eQ^HzmcndcrB8}3;O
z<uiD7m{(REn=Q+8<JhaEYgWHuop|W!mo@&(SHA2ja<aaiDCNF~@x-(nFSGsbZ;g)M
z{G8=ns>h*|VdYna4?FuEyLL&xe%{~hPa>_KRJ>(yFbg)nX?1+|q4RTG*UV+(%dtLv
z&ClzvUc6S>A6@I1Wb23rpG5K*Hg%f!R#>KNvlR0C`6F}k<;t*MkNtJqHuQh*wX)tE
z@ztl(oT2g!d+do<FWjC*EG^5LmU~;YUG);P&$rikL3SIyCI%d>+I-JSqJd{w-l?sx
zgRZ|`<Nwq67ek%3X|+J&R-cn$T#N7U8!i2^?)sdNnhz(=er8`L&sJh^^eDH1%c(2A
z^OYn0cQ3mAe2Gi^(y~|gvRWp7{B0QXU#iGvxk>DnvJVg6&n%d)UEp^A+&Ph{Hgml=
zKJ->N7YLtuSW}{P@5|0Jb#ZU|>jTQ4ZG5-h+H_{{-`n^5RX!$gDCKwYH>AE`y;Qkj
z(cBA%Cw>ua+4|`0@8>49qM2?FzweQV%E_5uyX;o0)u%OE4us1yPssaW`!v<$ZLQh+
zTTbe8yl=f+xs^ZYo@jJx+d{9ttU|45n_ufwV~!aqrhm?3P?+ntM~QR!+zaO)e(5on
zbpQ1EwtwxvkB4<N`}b{$I6L*9htIFaZfhSa&6&DSTbV)rt#L^j*FxcQ{-Tf1PWbcT
zWAwenPQSv<txg2@|6A@N`}Tp9+07z`hTW;l-YI9;9^dry?CzgJ=aRqNF}|0gabG|u
zUwB(t>GwD1JInrTSrE>AqlIr)XN#Z3&C@fF*;W3pVc5PuO6I)zTeIcoe(TCF?we@H
zpySZ)=de)NZ(h&Jwq5uCePsCMK6lw<%S!tvsl4;d3VE~7G_U`t%^<bWu6O5}X$6ns
zGeZ~oJ!&_RoiF;YtGQF{uopu@Vy&6g?VrzLzqAy;O1WOO*XN$QZ2g1d>rZfVp077D
zdlJK@dzhJFmto`Kl11usN<PP>ZCBU)|KoXm<wf;1-Bx>UJkb+8aO;S4nu+6~lhWU}
z|2yWE_rL1@e7=9L9wb-ynYzy9U0b-TeBN31hN*ufYZ*L$_0MnO$v&rd$+|8*<9Sj|
zP3(k2EDWn69v=(S=<WLQ_`!z%GdAq!d{*#lcDa+;IiGXJo2_mO<uN{JJ-4y>uJF04
z!|!G&KKHv4IpZ?d22NhPk8kG{OcSwua;MXZfx$%S;gVk#GW^zV{qjZc_Pt$c@T!7=
zA#BrgJ1e1cn;yT6bUJr;rS9g=%x`8}&i}s7aAW4aW&E7!sl}}_3<`FS*&j_V(3{@!
zqDCvaeb=YEq6`cP+Ct}k@j3aeFgV7P7QcdxLC4|H&+`YJ6}Wwxbv_6$(Bxjsn4#+z
zzqy88{o$Ufla{BiH00YK`CDogaF(GVPi4;eX?Lz?Z=CP!vr3Y|U|I|Fmjo$xhF`Zg
z|DRfLW6P_{@i%6Pr6-y&1o$1&G`(){;z8z|4U7GkCI7Z#NLXOMn7_fHuFvjyS20h?
z?z{U!m%skHN{R8n+`Nsf#TK_UcXq9-54DkFP|#_9-zAb}F2rZqB2zajb?vP70tN}~
zknKCzIG1ypit2rCkzsgoSayq@${g99yI#1RU~HIQ^{vyohxx6^hLz3i2N$k;9Lv7R
ze)EG4hK8x07Qe0Jluy~agk?XM<bTL;;pTSfdb7~gC$voMcH2tU>iGEUGDURWUa<Mb
zHy=+62mY(h=eDgiW7u5$c)ckn`wN#7j1A1SzqZO&`ExF3a+DEj<+7AJ#F#K;<K45L
z6p#BcudRsTu{*U-kIyWncrD|Gw!FEwZtY#(!hGgo#r2o1vojf{T}cey`gnWuo&U=f
zWM7=mTpD~_^C1I+gM#h*J74FRYW?~A<?$C8K7-!oWp8tKzf_cAXj^?_y==|V^Y_+%
zO}4!Ldh4n1CG{OG!N-rU+WaRtW^v4asage|3k!`I8jkjGSzcw&>71|j&|v2CS-CE|
z)fL$nsDHlgTl)HnRr{PW^Tok-VTTgc-k09$DD!vXV>tanvMB2LRXgt7y1IQWhfR87
zD#P~L7fcpv2&}rdGy6;I-1!O?|MaR?h8FLUmw$UhbH?VFRSYhdKQHAdbziG0AG)dR
z-GT^}Ioo*lWgDtIy}R<9gD6u&yH@_=lP{vr^Yzs4yY&1qyO+fphe>y?6`pumW55uw
z==1Kio70P|SY}V(Z!2A7(|(wRC)85m4%3(A*?B5X%fIF3sppF~YTcHWsXz2v(bM9O
z*|((2ZJ&Z)FB4|i#d%eA>YLuM^4Hsf<y9YEd9rstv*z=&t*`hQ61eVHoj>F|Upm)&
z?!TGy4lA1MY~@>`%&=ln=JZ*1IwtMT%lK|SeiPo|Jo|J;sP&%TJPdv>ZRV}K#DDLf
z*8dgxexlu$GS7<l*FBNExA!_PBU=M&%iD9mWNv(1@&2!bij11@H!gL)sVoea=H4~i
zRcv2vb}vR{&aN|BAyf7`?!KtYV6gH;^GQYLH9Zx@6ANaXF19^a=PSx^z{Sd?JOA*i
zH|zhId02mKto-;)>0wC7Q<tJ}p;({C3=DHZ?P|Ov_uKySeRy5=|IU`n*NmLsatN!v
zZ<Tzwf+3;O(E85TcbRNDPv&px|7r0m<@~)no))ENB9s{!mVLH)vFrc+?x%Ca4eMi%
zE_{Ep-%C^A{ozcFwB9u<0@rE(k7yKTh`N0HnyGhX-1_T{?XxU)O)JovvDD4)ZFFm#
zof{JazdU;^cmENm-r{3vvro^wG@&4hGgMhU==G_{9UGY&Y+v4Smz<ZYr`~>T-eFDC
zKQ-?k?C?8Y^GA?j#fu&5=ht3u+@L)34fE+6_7C1Hmz_{BYsN3B=woksWf=;@%@|Bf
z%OoZTKC|cl@sZ!Jw!+QQ!@~93o_n`6J-?k}W!NITe|2g4=0(>ymwcW1Nye{sbzJP?
zy6}_V+48#?8|F`YfA;y`#_hLtpX~@gbkaP(w8yiO=|GItm%GdNB`w|Pa^}eg0khk8
zJT0cW+TGOMlIL~l^yl0AV^(ftZdfZ*@@RMOjz=8xa^KmsPd>Rrk|Cj^S@2tl|Kl2&
zAhti8jQlSfEa%L6X7zn*$W5iaUP*U0|6xq<v_H<a`TK9dIHS#4oa*hbe!Tk?e)RmB
zt3{Ua3<lFDea-y%`>*8YvoY*C59fS)%W}R>dEvC4?ro1uAL}qUDBrcZ`K7`*cK>`M
zpIPtRSydhuIQ>!$my3E8cdz(v1w%t*$os_AZ}bE<+@D`~FD*{UPxjKc-A7LE_;vMN
z48wt{eP7=PfBF4#@m$S1znX7BtCM&2T5q~rpSCvQ(&w~ecF#E)g!=bs<{xv24^BE6
z$@g)YJ!iX2zxIb8i){Hs-<s{*e>czDY$C&!Z+B|<l&E%o|8Xba^tR8p^QZl9oEy2c
zY?isV-R{4ouhzTiy59XP!#Lr^^W5Em+#AXRgz}g5u?O#QD7F&v^R?cd@$%sM^I}R;
z+zcz;C4ay5<ydN2yIg&US?spX_$B;8etmnUhQ~1N*?XFk>4CDW%fd-ach-Jbe%g$G
z^Bhf1^~+1XZdy72vc=rTy~QjC1a6l(R35%RSAIX|>*sg>yq?^5e5%)>lg}IHl(VN6
z#pu}Pr@g6ZV))^4J;3|u_PY5}5-n$)yu;Q`mlyqD?q%W2Vsm+7YwlEr8#CX%Ts;5i
zBs;Dw+v;SSu%uVN@|_O{EepFpH!Hx+wqo<!n~V=!%lton<p2IMev|lo^Qf(IpG%I|
ztSaej-j%WcgpA+HjPw#cFaCxZTIWL6yvh-Dt;=c7SCd`kX~COY&8r^AQ@d`a=XxK8
zUn_1$zQ6WTrEN~|LABjH<=TJp(sUv?mov?FpD&s?*=0FfLypzN_Fa=>ueP(FyE0E@
zj#bMXady^A_P2TbgBi}Ku77-E+wPU6kBe?I_2lmgR(=>_e0OL5+vLU;t);ey)fxD&
z-oL+T^CUgHLy!9M)c!6lmfhBJxp~=#ya!tiucvYza8N7QG*`Ffc6@JN`z|%BNFhJp
z&2zry<^7kcwUFnS&v4tQ@v_seJZD`tHhKHYnztvk1V^4Jv=Lv<*1%%bUBv!U^^@;;
zv6j_=Ds%io3K=>Mt6f~Xcgo4IgK6fB=ikh~$i890?YC;@eV$b9W!q!K_~LxD-RoBu
z_TD?+QMc!a_u9C{2C6b<N;OOYcUPWE?R}Wcaz6FnoMO9qeC5XbBe$+u6O?_ZIj^`d
zi{Z!1==8!>!WSQhER<M%LgQGZ*F71&YQtXU1IPOk8h>B2zR(%IvBq%L;g?xIf0^hn
zXKP^I)yW}d!7bSI<$O}if;p;l!j!Hg*cD|lBv`fbTk9HRtxuX<G@*cjq2qPc-aI3{
zeBHeg>G}nn%eUXmK67Y}6vKjP0gt=x1}&P)CiN+xI>L{a;XIePLH+OIT3^dl3$I7p
zE*gsepMALT|8hxIg}ZOpUt~X|-T%nO`rkwEYl+1c%xgYsExkGO7~_rLxX0@s%Q^Yq
zy;XR0UipbEzU6B@S06oRvW!9C;C8vnla}rO;<^l%dZ<e&&pgb?@Z!jYKMr^2?z7Xo
zHlsX9DLPSS=9VM>%mbxnPno(P@odFWrUOaq>X-gWt}Pdp?=D=r>F@p2{eK@nm~oo1
zp{Q!INc7Z8O9YdS6@U4E{^1GBoQzA`*c!UNux{Qlf902tt4dAe>)$xG+TZwIv#zN6
zZf3$Rc?R7bTny8eRPsN)^3sBDQIghqyZ1}go^RmKRbmJTZ)q%P@4a}KZ&Ba3pxx8G
zZ#c6vB!q@un{hMn?NK%RKi_{BD5V52G~CQJ+Tm03XV+}gG$FOE4wY(qKL(#*WbjCT
zGiCYh8@pa|TK%r6-=4feyGY>I<Q>|rqS>l;=O!>Q9G1MzbFnxkMdI6pxZCOb_5RI1
z>^X-w#6H5mMOv4k=TcHm@}4Q~&%Jg3uL<%#X{i^*(6E{3{$j&ru{YYE7qrMQB*>St
zo3(lV{j2kN-p5O~CUDrjH~CO(bo}aRDHCUgk_G9NVV8c^{Z7C4^u*@Hd#}{B$(V97
z%<y=<Br(I}+Rabp`@+5^Z_n5+!_e?l@}=J62d37G_uVbnwg3M6!y9AP&I#%|S;=@K
zVE4mkH#UB?o02|n?J3=tz4M*;e&2ZYi~YgDiZmrr>+I*Xo}Qe~C;d4jb8lx6gTj<~
z&Qgb$yBW1DJ9pIX-<)69@5gaf?~Mzc6)X}Sp=Eqvo7XM|bCYVRpj-CyH+~fGlX)(5
zj`6Y6w8H#_SJE3=Yj<Zx|Ba5SKicNhdNP3hu=6Xet?budX}+pWkuzXkz!mEz!#=nA
zWM)y<^CGK<F?{#8hLjoXo*<OI(2IG3Z~1+vxa&24#N6-xttt{a#~9kO^G}Um;8eB;
zGv+C+c^&_B{^alNLGLtXaz3wMyRfwGdE@3t4oilR@>-)`5n>-VtH{glO1dBOPv+ct
z$Aw)-U0P%qj8w`5j=A2|$kMwSzH;x4os)8ZAAYX-gyF)JbxT~lUT)QRm_NVr_v_p8
zQQM3IF6LeAwAQ^<{oPTKr95V7ZYSS{J<sD7xXxa$9eMb(=bWc4d7<CEo)=v5&RYF*
zPHo-Gsxwa*3Z`Fr_TD(9$Mfgsz}C>L<*%-VS+;v}S~4s#KJjkBp3k;%f#2SKF8wum
z)n}P==cjh)Ut6cg{@T=9p7Uml41?ZD-hXf7L+vKd7jh3<er$#4{^^Zf^A1;*+du8(
zf36d0ZxVglqvi|`L!3>2L5b?qJ$-GPXT4cEZN}8=yPxsbP0Y@5le~PB;f&J8>}wB>
zm(=`Pb^f-&^tRouvscs>^q%!T!MLERc|E&l`1UpD>}=zHa5A4Qn$x?bR{or-;&Ywi
ziTa<ND>hb2Gdgh2_2BlJnml#>;h)c*XS?Z54i9^M`P#R&OzVGHNHVxwDE^ky9)0z9
zPxP$w4{dbzB>C>Sd2`QKv4+MH`I~WU;kL)4j+JhHF}*-9Q}Ov?yY}$8rxR4=PB1F;
ze>~9L&l<Gd_^N6Cy31Ny+xN&;DEm*^(ef?ve+I*gl}n!2#!p--eBb?jOR?qWb8|%W
z=U=w`;L;cOWy^uhDGaN%@)t>)zW;3_5_o+@QSl}<BZY@|On1rt`!kbSdr@{m=;`+}
z84cDyE<Ace?Uq)9xIFigs*;I{+f8*I#@vd3>$`gE&Dpts*KF_qAL`5SLaopx@x<;W
z&Fg*^9y2~R=X027Vb!0~dtYR>%np0^e`!n6s(Y)17<}i-dfS+vw*S8^O#0v3?rm?C
zFWp~0^M`)_dprNXzs{B1eN|lWSoqxLSDDLytq;!MaeDRYRqPI>qS8;UH9zoWyZO><
zk@r;In_*gij@;jO$=}YPXzH!qN1WtMzpCB)5U@#mK^2q0gdZClg7<zlQolZHOZi42
zzeWG5|1YgMYIL2mbJO*&QLKCc-bdHAc>jxBWY>RvGk^B8{gKZXWtF@>Iz_&-Y@Q^$
zgwn^2H@=*0wDNg8L$hk)-hj1#eD56Y-uq#yy7alQrL&9pmd}n{C!pl<(rf<CO!f;W
zykF1SbWu#(Gjg@rw>|YXdxEPsN-dWAeg6eB$E&KnYU_M%Z+rFO?A!J8|6e*3*^sk*
zo0|5{`}KccUwK#?{Pbr<U6+l`>)@wm@{8BaDcE#=b%c+oW^Z>KuY&X9W1n|i+-H~h
z@$D7Sf;nZ|KBa_jYuLYc^HgC!xnT1vUpH@ip~>iXvifD&&tz%+dZkxKzQ0}aUH<6Q
zE7SUS2iN>Qer!d#&^h~{u-sMVDFQ_dQNM3GE^nDr=3gx@-`1Cq_*DJ+-|w4M<_KSr
z_F7@j@YK(?uK3mb&^<@z{k1Ie+x5kLS^dB1WpgeEirw^HTl&_}Y$@08pA1u0T)O-J
zPKNg5(sa?=1@GJJRF^*4|JL^ImI=n&il(({MX5YIpyRhUPqLwX&++_obw?jBp4Dev
z|BbcCZ&z^Y*O)hNxh(U~uX>y@_s2K&cWZ)vAK(5f(ZkDimSV%^SI1@t*H8Mv$Kc$$
zG3Z*e?Ecnew-aOd=Fj|S;VUY{$6&B}SMtHf{@(R>BY&3P_4MU`8Ehh1tROmniPz6`
zCLea8bJ~|J7zDhw=<T=`aPaQ0V6RhJA5~|o&d=YyIY4EO@S?37&YTWg$j}*OQzyJ?
zujwn_=@DW2&&~gqJP+-8c+>4~rTW8~1&bIQSY*q@Py9acO51LmY<0?=Pu5e#&dr;+
zx%$P^w-I+A`B$httVvrd#n5xr_?}Bb)&D8;E!C?ZMxKf<jhGhpuWR|-o4QgAGdv$o
zSQnP|W834+-)Da<DG>9r`&Oa+GS8Z8g~!b^4{K7T+LxI`Gq78I-*)TC+LZSUdG3vo
z9v1Fb{H!L=XVm+=#=qEjOV_#6pXcp=7jj~w<QEqe83u(3%RZ`AeEXo`m;GLK&c9`I
zr|^sCH$|vCT;b2Kp+Rx8x$68J7Nd#z>aQ(kZn<sHTlU7}!{P1fHy9f7c;v;eRV|ph
zPc!n~#1(TGb&c9T2kz!}d$y2kwIIX1t$7Ugb^CbNi<On#ym2!)GcqdTS%HF#buW|6
z>Z>Y#8}%MPc3gK+e~#9lFZX}PCAFUBd#ka5fs<XS%4EG%Kti$T?1OF})#|dORClKs
zJq!A@Ph<8y%N<k0R~}^A6n~P3f%)w1%D+DPk9=!{_<R!X)iEi|T`s)y$O(S-;{p#q
z{O~;V(>HXP>{jjuac-5pJNwM$##M{GwrMv$`ndUn-o{t!KF-iQ;E>+V)%z_j+Vkte
z@Hvmx?rvn9yLNJcU6#3q$(<#O++!zQVr=?xO(A=QyjY)k`Nh8WlCYJI3ik1<?|e>R
z_!XVdcrCSgV&OeK3($C<kj>-*1sPce2Xn*6!B3V<FPAXWSgg*;o+h-UnmNIFYh1zy
zxwIqFuO<~JXq>fWD4dcq`?1I3{fn(Q)jPBMEqop`WOrY9o|QRY)$eXibkg6qEmb=0
zWz%kXzkRGX!OS)}?wbSqj_wPy?d1<RK8|^9(cF_IwE67u|I%)eS`SOa7H(x__;ovx
zVM0ZBZu_DHD<M7xhW{4UrOXQ}_}Cc~7M-Ye>o#}U7Imoeju-=jCeycPY+v}du`BGm
zD#XWd!2R@{k88fh&1ydX|C{|uGatu8o=+#SHGJLk{r$qG3kN?u{uRDm*-$J=j9YEa
zyx`jlr5qU&oaZj)JF-3D5F<lcc<rtS$qW%WK~CoytvT5lIF5V#eVD_et+PvZk;3WQ
z8V@tHXHN8ET@dqAB4OR!J3W;*?#$vmzCeJ%;#=+(fnt%u-`QUp53pSGvFObRV_48U
zBUr$(&+A;{d=(jn1g4vZfAypY**lrcy7W<iFFV5QVaaV{s}r)a3<|OLR@f#i*RMOU
zJ5`vE!C>*O%N#dnx)e23dRnN@*u~nwI_1k<#^r_gLgy?rI+y5nTXl}6lo|tr!ueC2
z$79(UW_V9f%{qSnb)F{6_M$_K4BNiywl8_E>dB_|HT?^t&*4WQ3>mAE7HRxh(YeWY
zt+VO5MAh!|Als!FG9JEB_+7PEuH=j6{Iod?o1<+W)-3**B=$<nVb`aXv#0nQY-T)|
zJF6gp>k;pU{!e1>pR3ELPd>uTA(~$z{Nds+&gG}vG{lx)nqSAQuyM8T%xcYk^X<2D
zudcgq(SCHz`~p4+N1<t_I47()ziU&&;lH2GK1v9UezUY}_uU@x$hLLd5&m)Jdvmw#
z+#$%;UN-aa$4h!@K|8nw4)9qWnZ4okrB`Lb(^hPpr~9m+FLwR)p3^s``YS);J#e^q
z@{c=gVs@pQSJ~E^?zx@H_q?d$ro8!-XO%D9_Avf<_Up-y_-k1PybK9J(yDX14V5<j
z^||#cs$u@8U%y!0IJp0?tVmtoQvA_@FHrT`fg``CGe~EBym98!+qLZl5tqt1pC9<N
zRw6O=imfGkgy$34^OwSpGde!8N!j1<Mfb_w+Y7c%(hCk{xi<Nt7GLFuv;^*$*S;3_
zRvcbscGvsuZRw)8Z=uE8+pb+PY!Ki4X6Cot`P=zc?RnwPe&mpuuLZlD;_<2e*{>uH
zY@Gh&!=;>KGqZNcN6dNr^W?R;YjQ7#W|iN3e0nZ-Z;@zo?<$Uf>pI%)-eNO4&2{o$
z&t=<oH(*lWE4vk|w3tG!Cpm8u`^0ytjx#6eduUdA_$I%LuLLK^u_h>a+f9-FxlnCI
z_G`;In`3^a6ddMh5VPa+-j};X<=zHSPW7*o%AOX7P0jhd_R-1-46;kiAOD^GbV{=K
zo6awqI%(fSv&!wSuiE*^a_O}ty<O}A_a|)omF_NVIomN?=v@A~noD!fn%%$jb@8>x
zhinF3H>SoOpS`g1fP~7N|9@mMoMKhi#|G&#9^<;rH+xrOcgyEDwoi8auvFa`|1)yE
z&jSXY@K1+kF1uy>kn{9}f`1QZsYf4MJV&j7A&INHdF6)#Ulekj4mEOVy$f0Rn~@_s
zM>tj}zeF#`^-yCQU)7YZ+YcB5E>8HG`Sw=L%{E?7i-1*0+o$~N;A7A&*|$67>B3nX
z`gsm&2=R$n-rHpScs&Ehi}a|9yc_<1A3K#bwU&bx+;3RcbMNU-|1S{?e^dS2_WXIc
z{rt{<Q_CwP+1aX%+L?cT`sE~S!N8bmeop@XhpN5X?){42)0nR!b0TE>@n4pW%m)N+
zIxfmg*1LCrarKo2o80#Ho#R<BH|q7}Ul)`Q7#3ShNM5&3pg}CjE>QV@LksirP=C#7
zD;Rl93bsEzwEjZs0e2z3Ig_{BmMEG(VUV)yGiR@M5MRd4YrRGJp}@tSyKVcp5)9d^
z9n!b|wBml@a42!ltI2Ql<s(*GYucZipTBeCJ%$C#n>pt^X0xn)_Wb95=2{Pno-64N
z^JOb8@vqOkzBHaC<Kcpd=U>m0JG-?^`q-p`8|OY6HTT4=E%pEQ=avP7#e)3}r=KQ0
zIbx8#=7iQ9L94AUXRmSvcwde+{QcwR+5_A6d=y@`(M^qI!5le8zKEsAB$m&5)?dCv
z$>iPQcQ<yrvR}CQ@gDQs*-tra6<pLF3V2tkf4q0|%bh7}s?y6|HQ3H%zHoW($-mc5
zf61AUD(#Ut=Lo~o{C>N<N3ZuydHXnh-qob}8RGg5ok!Zt{gPi7`g)}Bwcm?6KKu0T
zpmlE!EMCnJapU~-dofC-EW)x{Jn9b(=1;ME`RR(}9+O|}jp-rZ6Rt8I5V$*U-Op>P
zbAR1te#C3D*{gTmDfNOr`{xG^tcu&@^7i)YjrzZg8>;TjzA5%m?eXNJ(kBwOXFQv1
z{<v^&-16C4mL28{Atg4q;~(wi_0PE)yld_4w`%teSg*eFV)-=|zlVlrE=kJBKiApM
zlpwayN;%j(;E)X8?Uy#HlfIYs*PUkJJ1~iFR(Y^_fXAVQle>g1o}T^n;YPt88Kw7@
zSJIarXLqQU7vFHxnD>;Yh0n?w*6=M71=U60@;8fDG8<egF3wGrx?*(JnDfl)yKZwd
z=iB^Ai+E_3QF(h!YK<U6?~*SrhpV+CI$NBh*WNc4uz51&{ihf^>Bmy+65if?b0e3!
zIm=%2k~R6&fAx&Lb=%hKC6z|(30aSL=cqosaO8Yo>Ctb$p0~}`w03Df%dnM8>kU84
z1L^8zj&iH7tXThU^CZpnO@1=_{>QwC`Cg<Ezv$cN%SJn%Fj{HX<T4aYGp`GZeCVui
z|Nqb97N1kbvoz)9A|K_mBrrbWoid?d#mk&MC#5${Z<(|5?;RW6)bg!UOsg5Td|P|_
zl8dwD`G*1S$GlH@F`e8Vr|5V5f?i(j@816Za;sz*emr}8cbB3&Q+J{Hbgrtj+0FgB
z|GT=TJGWaGpN}tm^-(3<)*<~p@1|uEw>En91}%Pc_G!Vv&{I`w%YN0oKY#DzV<C=O
zErtzdtFL6Nj@{$==i6NNFQ@Hiuo&q3nruntYge+LU*-SjxV`<8+xM5*nBT7yX39Ry
zV3s&fCTUVZhLZ9<neSZenyQ9R{@Ao>-JMij#Bka=<CXmX$t#$dJuRMi&tJ1bNSDj`
z+|$cF0o&y~!r3=8e7PO5h>u6*;f1h=SI+*n*W<C2jGv|V@7ER!cP4|0uhyG0%$ihi
zVv5nM_0suG-PhV{ZRX9F_F?`Yur`rh=%#mXnAFkPuihWX)XkaD5gEhan4yvwC&Xu2
z=l8&5?q1Frl8@H=Gb>0ba!GCU>ixAXY7X0hbAD^jvi+J+VDYwMU($oVGmD#ow>)NC
zu(e;e=9d%O0!_~LS!O-vhN@-jmYXeLR`~ms?fd`5&f7WmOfIlce`=a8zxGz2cML;K
zau|Etgn}0fuNBlUvPi6AX<)Zy`jVn=>UUx{>s70JJ))a0cU6WkFvxmXY`L1aLbl9A
zUTadTt|~*rt~Ei*S8sl-x~o|F<ZI^k+i!0_<c(P^wlIZ(;g@l{vvBPrUzy+|otk_?
z3=1Z-I8O?eTzuQ()&yCG25}+2siFR|6R$6~Ju*L)iQz^|%i;W&hrb7`Ts*t^Q)j%w
zCP{`35}fUtM?Lw1k4rP`yV!PkkBUqkhehM!>x>B;pYIv4a<YG#d4Tc8*{@Yoixn(5
z+m#vB3-pZdIB`qo+sQ@z`NY!UcCPWno{z#>(h~V`yKZlA<WAuI9u}U=eR0O&hpT4@
zThx56+jl3PMPuTP-80WOW}JEGU?I9ZY2EeJe>f++E!(ZSO#HK@K>J1h`A26S_*tRi
z_$v4O?6TwbKYw_{{WB|?$aF+xc{EGiCa+$l+1npGehc4V#k64S?YC(crOr4Vde|J`
z`}vvTtC?}a32VO0VdhbJIKf}r{)qRviIogi-Y@@|oHLlva(K0-)Kg8qO)Dq;l({If
zAmCI=-#RY0i3LB})iuvcMe|kOUG68ofUEnOg4%9Z=av0;qushH{>uciDD10#{deQh
zZK?J=iVr{h_jwQ!vb2M*%9ml8!V`!3u$7J_VU7$(mM?6xP?7m3T*>6VJ<zE4ap`=9
z+L~-{-=ogyLVV99xW0>9)-X+QI?*^!MMiJBW%NDC{+*g1*%B;#4P6u-CUiY$e?3|8
z{=FCS%om!rW*N-cdu7Ir;{3whci;Wbzbo<Wl49vSq2>NR?ilZ2Vpwg|zIk`5T7jJX
zl1ILqzP{VO_Io!2lTj~ovZsZ>6{Cm33C>Yz5*~+c-f~HP@sM3$+9bvq9hovO91cC)
zZhQQKl_G=Jo14{6EJA$tXKpyW7xoJ}cP?4n;{7j{j)eJs;6Qm*wmaAQPw$1le{}u?
zr>h^*XS#8A+g**G)a@B@nSGBd?8W;RJThTCv-<OH_5|~11>3$|+QT+~i(zWv&+5K?
zqOMOavol<1kLEa|qP#uj%7^*)h5oFXnbB?2AX~vBWVP9=_vlid@8Yl1-r1*Ljnru{
zjab3<HexB;|CYworp7*D1rA=Lk~BW{X<u`V+~c_g8Z%`wTn;6wZNI(trOas~VT<!6
z^BE3reYd|MJ!~Z-LyzJ&2W}xg28ZIbD+{GL+5PhEo=uZx*!m)PffZ-_SK0ll#{GPp
z4V!%)JID+1O+H!I{CvAlkxgUqhf*g#hR_!Q3-mbKb)S^VeXme{!oc9;awySGH2tTp
z1j7RLzkDSM4-J-{<G(uN7~=xXy__LWQg`{R$*liSmnl;-_ccdDiM+K)EN4jJ-ng?5
z4K}{AUh?<PuDtuK2f|7W11`?L$j-1dZ+rCDlXLoQdsSH&Hq3keFZRluyMJ?L9ZqDG
zy`}7Zg(1Q4`s=St>+ApPpYb@9DClb*arp-0fh0bw@2}%+``e59gVi2x=+jbs{-%A#
z0mg=xD$B$z(}U(6PSpIqr*M_wFUi0){>%+i=kV%YUwyV+{X<QZs*G64p6>@%x_Rwk
zY?wM@^3BGU!?Wh87jIhJQNhfhEtntnwJ6QD{qQNTxEad#7!G*#J?=eMt184-qi~Pm
zLPutcqSvF|b@n^HPtKky<+!w*;p%PKT7HH%&U+&JTMk#Wb}o9yr@m|hV}kthZ6T&S
z94{W9@I92+)9_ivp5Jpf8-upx?ajB%s>Fo&{<8R(@;~Bb$WdLNu779QRJ%7O4(f@I
zeNVmaGEHIFFk{k0&r=T?8&zb!O}$~$Y0hxKT2Wnxv;F1NGe+jW3K$aDo&0>}9afz7
z-6gQLcyr_L0A_}O)7u^Awj8ctcU+XWXJRe`!?URt(>8nc`t3_?%lP=LY<H(Q!v;m>
zh6k7OL%l6nLJjXN$*)+H$;@D9<T2yu+p^7Gy&YLcrB7dCXeil!`|LBu;NAT%RAj6?
z^YvF9k-o{+5c#5WLD%u6DO06vkMx+!?PO#Ky2H-X#yin=zAR_^vqQ&bFG*%%2%EBz
z{gQjwR@V<j*HmO~t@`TXd$c0?6&u60BD0n~J;FTFN){HK@6}HfTbPt+-J7#&hh+Tp
zf0hgfo}GJlE33!w$o3@jc4zHJybK#84tHwKIJ~fP-bc4>j10$&dWE|zWnR7h`KGsm
znIU_}ztxY_>t%RS>RT7O)(G)U1qG9)yz<$S>M6eE2e>B}tXLVgNAv%>SMlr&PkEZ|
z%TDq9dU8%wkD-!<1-B4i>7ShDs$<f>9hnb^1Tpzcoe*5UFzU>mqs=YOtP7U~r${r*
za9Ug5beNm7J?QUa-=EhmF&v0UckZ6BdGqG<_(O{Er(Q*TWMf#d$n}KaoM|c#CulBp
z-C)7XP%*uB|E84pjLxmK9u{+^S(IL0B>VH*-dj2h5eN1<|G&BR`rTyR$BXyLE|grT
zpdxcl(xP<nRfY!EC3n`Z`4qM1lXFs#5Z_9n_tU@ho2wNt%xFsd()j(}9@i6=Kh8wS
zKh<$pc=#c@YTHYBvm??B%eF<kmuWF<(U`-h*#7Wej~&Az?>)C>$34kwXZUc@n?3P}
zWaPb~p5OmN%2f(>-`!XH;A@rcde>09mgM8AIuAdDw&WDoNX+7In7g-Jp#Q(nhUObT
z^J0JI=T9u&XF1iM?~o94<kDm5j*ooLtY=Hu@wo2Qukh`UPi}UO5BqqvQnWk!!QV(L
zgLda-8+{M+#WFG6U&1fnY!kWhZN>J({O99@!m`)S%A9k}sO!26pZp&maV9o~#U`@8
z-{$<eI5W;o-05g6dsGe6^gBsY3M|x}ie(;3Fi0%Ay`pehY2L)pnEBWIrY3iMaIQ$3
zDz!f7-eJ>#35OXL>{qOGK5^3cV%F#U(`Qa?ciCN^vqIi_`WwfUEzXmci7#he!|-Q{
zQPR8>=AAaLYW0tG%6*hy`jzj>9HoZ>PDv*&Ixu{AchTDBUw`K!KMnTeFTej!ydlUQ
z&;M!N*Rx@hEhW9OCbk^5XDj2h->v$V>A<#g`=oU%u5jL1tSWZpv;FUH+OwurJ}H&A
z??0R3XU;XNzGjb6s1O6&t8cHK=Q%$Qkj-9uz3|_kEm8Y--Hlj!O5K0sey5t&@4L@F
z{P6$KJrTx)=(~^3s{T3SU%Is}?UdBE+P1Hn#+K9PaxGc(#c6WEkAtEd2Q+LSpFPfR
zzgzK!&iN^3T?N->-e0P-baT>MhswWG3K$wX+>Xwkq~B$qb~mL;>-_PQN#d@{Zr{=0
z7o2`j+Wu#Mw?Ko%7cbp8T32sRo}}M9|JN<ce{Z!at)CTGY${&OazI0PuTGKD%f~Oj
z3!STTTKObpZ_V{3&;M2&owYTq*TW)4@0}8Z0q5a^%j(4Px1W{hyRLE0G;d?l+bLSs
zw<4Dw3$GGnaJp!?wYbbQ>Xg*BH=m~pvSmGO?>`>%^l<wgyNu{(1q=<G9p<_rnpgXU
zt*<^ldx(3N*uTuhGY%g-%gms*V0+j4YtL9#TWN@0-L1#jetwHDL(d}qTVW?1_Gfxz
z?BZJYE_{vpV#f&u3=NhNOxHwpJ*U0-78dwANwA3TiWVbixJ&)kgW1<s@#HR_aqQ<$
z-6B6rPIiWdlRkS*Z=PqcKf1od=MW>qvcxCbmt-v8>RcmKG;0zl*mOcxXPkWa>B?mb
zamDApQ_E}bd0H?qeCW6P=y@X3<q#u7lTq*H=1JDyotG7^YM=91Ui(Q3XfpXh==lcS
zCo%g(obKgMFJNd`U?zEE;)^Re{!>p~F7ER<vC`uZBSS-R%bXJ`G7JpIR&1)hHX(D4
zn@x3CYs=yE>*|a9Ss5OjFv`Blw{P8D^J9Up17$ebtwos_Sd!G1PiS!#Qe<c7$XS{>
zNAdm+A<p)Ybs7vat~@Jd>TZ>(`(^x#fq~)1mA7T9X9&Eii`u32TeaZ(N0qqs*MpyC
z^0l8<{i$Tq%gnGP%;;Xn=Jip#11EpH;SU;&6xNs{`cj_f)c%W?Eh<%H7#fcHnk(cP
z_6EDo*_wWN?&W!)rrGl@RtAlYm!h`vx@SDKk37W45HWN1-}ArP=akL4ng3=f8^eY*
zKbjx7NiW!XFZ^xtiOes(i@$YnKfO|x^{n7Wy<?sS1H)S1>o3z~3ML%?5<bgxR%;70
z!-i$~$=QdWiYYEH&9u&bnSNGl>)M$gSsFrLKGko3z5Cogmm&-GFOzDnoq71?bSV>q
z^sMZN_;u&so5o)AJ;f1r=;p<*RcE`+*99?DU3#Bl{J`(x!@Tv<rz-ojU!7mLre*W=
zH#x-@)tCgD6(9Rw77cuDc<kWw>sqV%;y2EozxC0A1l2iTW9L7qJ@mFrIG-V*Y-082
z$I06EpEhzXNs%a1_{6zZ$@+=Uw+>NFtvIJu><r1ZZ?2U1voDLAf9=<U`o4)=`&Ybt
zzQ6v5$nz~RZY#YkyeH-|MD(;wepex3;Jt9G-Q$<dOZVvKiWHgc7dXdPs5-}WN{VzT
zL&FI(`P+Y|7_rS*vEz}-oHy@t1&d->ryD;%S8SpEp@Em-joM$u+nv9D@%0}m(deE3
zSi744iKl(}y&smgzwMY0g!S}u%kE+O;(9XLv44N+uJ66y!h_DAeR#%q4`V}ZO3q2s
zz~%LG*k9F!&rdR(Tpae3??Cypg0!cr7#R9o`^*o!8}%Quw3~G3<TTl|qPV(*Z~Chu
zRKql`@lL(Y@LaYbvf|jUbzjvIY+GYnF0I%!HNRN=v(}0oweb%hd{gzDb(oPM;>ZWZ
z_mfVgM_rqJ(vwqVZv2DKe;&>|eDlhOm5B@srrnNT%%4*A_Ef>l^dc|0Nk6}}U#;KQ
zVmx1Ks)I7e0i7?A?Ay4^n3ElTZhk-gq_f{tUIxASb!pw^B9TkYW<J;|&+sB`Z_ek4
zvs3piEZ&`5vHf|`)<*S5f9=)m`cwGQ)wX6u9O!0ec<?DZEbGVGd!H(MqAusvwiU1C
z{&V}e_&+Pobp7bFsmvSN9yZ_NDAQ<}u6XKz;OX=0^UAH%Y%f;&H*NjBF>Iyp;y-PU
zYn2%pZp7^V{zRp&Xo70)@tq}Cwmo=OAeLS%$}r>ZlJ8&nr}X&zn&Q^JG5EmIisjcH
zi1ry6*Cqe*ZankwjN)P;4^xH%F89<`+1{BK{Is63YOCRa&(CfCWxe6A`Bo#*e^yTK
zY~P0;#;5mRlsVVrbBp1Ck(6zh?;@?ktENx>VH5i4?crvX`A#o?FTASyP{(x}V*<O?
z?phYh>$=mD|JEG#**@X($L?k462eyc>Ytd(&!Fof=USS;lwRz(O_<|#^urm485tIA
zf64Z4u~-amNUBu&iOy*S&kSO<85l&28aFrm5Y+f5SXW%2=wWgB!W>41-JSOT<aSh-
zwy*E|U~=wlceDM(0tSXdhK<4(CIr^K?wxu$_5YvXsoz2-{d7Atb9NeE!`&CZIbOWk
zZ8TfXCsxquN+f7XLgty2<Yz-^n|n(lU+47Q4Y5+=OqUYAs>QG(>Gr<-+wyYv3w123
z9|bv`dwgH!&*Mp4lZ$wkr>)que`!*~^a2J3wFD;hjz;xGfhQvSTbLOb)K$(^FZuKE
z<{lA)7iw~sJ|5b$Yri+Rpk#YDPsaV|^3GS23K$q3Y>8_A?YX?rh;Q+2xfep`jx=4#
zXIQZ4$W`ApPj3IT{eAy8hjr=a59wbR85j<Tt-GGRJ7>b*hud$zwG9uqKQ~W*qiMTw
z``T+IOb1-=ALp^_JJ-KD?|frj=SqDCPIiVFZd(EsQapGpMdeE**A=hZ?4{c>ee=Jf
zO^3t67&2V$fA?8eZRVX>6Z328r*K_9HUG<|rM@!{OTORxZFvm;<S+|{6Wg5cZ?D`E
z{pPuOt>bf->CXRKD~0?@x?^84e3-nizf;D(%h>zG%l}pLmvQ<Y;`DmV$8cV4S2FMU
zS#2_QlM0qCnaZ9JdaPzmde_A0|Cw{jROakhcl~uwC>O)3*+~r%=XTq@U+3>8?>%XX
z?c&{Yk4JK?eOc&b@p$gqkJ8&p7#Ox(tCU(Edtzci)$DiMSQs44qj@Jt-QCs~*7o=P
zId6;Dy&*epmV2@@Xn94xaq(GvF81rh#KjBKp5IjDWM^R55fkQlMaa)S`-%hu!?{;B
zd^{F!-dOf3KWv#`p_tJr#gL=%AY-aav2KWT=;c-Q>sy!^1dfK48wc0D`MiJU-MopX
z)o*Q_+sn)Tf8RC#*I_O~=S&vGnlW5xmn%r@R8+6nW_c}<{qC~X;O~cj&vEBWH~4&x
z;edZNpTsj?(;n4_B|$d~b{=9(5Z+z->wew)lBWU&t@EswoRhXPSAFPWcsG@YA>in|
z#S0|E>!<#nF@2T%o)+N~M&At>82l<F-};#U;IzKD@wv%4P=}GB;7Qe9Kl6L4hwajL
zUew=vH}A6RM7J{!85mfSChXeqWA-7_xyN2^c6qDxkb&XAA+s}QK%HNa`)rF3=Km3P
znOe2!z-0>|J_dmk$1h%Wan}Bkmf&Ms&3aa@2vj!;_&o5@y0T+`Y3|8?8}G^;+Ua3&
zH)A%#f+Jt6cuo7(<h_kQUb0MX_buIBx@$!lLQ398ESIaEyY*`S+`vZ(`9CVx?08-E
zhxg9ehbB`Z9xqj3s1U39aAoqMj+ehuzHF=sSba;T=G;yBd&Ql%j>`B6eAl@1^A7WY
zC6Deq*=av>s0{7DWEa}~&BlH5KG%>#j0}fnmc)c!Ptw%ucwY52?s(j(7}Y&zDh<6X
z0)4_u85XSk9TEKB!_|Iu@Zw+B?AQ1Sdf)OrR>h}oVxG@%W6nB(w%PA=LxudDrBWFf
znmo>{Ts04T@rNsrbGfb}JHv?tj*UG#{hk(Y<J=v2$6v^=_~zBBb*~v25`?$k&YfQv
zwRX<sVk!4SFB9iyGcZ_WU%LI|vSy9$@wc8=AK&uWJ|S6utKYI47nv9m%<q?V*!dZC
zKDH{%;3&5EJ7?9Sb?gic|FrzBNSxdI+PGKwAp^rgNj0PC3f(u`<PSK2N*M#Ojq6pM
zHgv8(Y|_^vJTaS@VOseH*QpZ^^enT;whwlhAAj*zG$=;aJ*z!?qUw`h%jN4HYn!GP
zFfjZwwCFn~c{137|8j|x`ytNsE=@lM1?N)<w>%cuZ_ctm8>+jPpPhjtclE;OF^^AN
zi}S1fx#VDB?5?==v#0-e{COtS;#mO$LzRVG-0im4N2?2C|DXDIX1?m4h&lg$RNMbM
zrnoucWqbLw7UAw?ybNY33?JS+&)A(}F;A#S?6jpcsIZ!4eM2H@Pvx|EdR|WF@+MpE
z{wTx8a6n>p+U)+13Qv#EJ1eTn-(I2fe9F!)r$d}6>sB!{T)a|iuy@f`brzxeyMO1)
z&Y3bPsOsPCFQ4ZL71`B2IB(yx_)oy>ICpve^)}H_OW7FKEI8Wy()TE5f~rwktlhuk
zQ6HbZQB*yrv$Q7d#;k989|NApI)N7af3B1)*;Z{Zm$`CjmDvQD{>`V)=RC5A)1B4P
zB7Ag-pd<sEm8rLJR?Dte8+LpsSDm-}IK#^;9-5DD2-(+P-E0}qZM#@ih9N=O(QU=%
zJ2(G`Ih}g!d&>TGj905-`n2L*%+|aN4An1px`$10D1GzX(ayf${#$WgPM*&5PyGv{
z<b&oto1gK%MMTIioPF!@z7~cLc}oMYA3h+r{}J<F`OwHhlQNepmM2`z-oLn_Wy+9X
zI+^cu)Q*3vUzXQue+yo&d}8P9a_NmFg+Vc2-3!k={IczaiUNa6vAnMBF`u{dBq}AR
z9esKKx4h?C0|DI-9sBvhHPh7ozN-Fv_{9FK#GCJbu{PYDvcB-tyRvAWT<Oy9%<d0E
z%M@2vTdfi=`ZX^<@$Vgl#5XUty!%!T>Wy58n`UprpMB5WRg^s?_|8uGx(P2?|Jle3
z+4Jv-sNg-9ES0|NeuV*JDqs4HWxYlWZyrBiVEO)8$sf)+%N}2xl3F*nU61*BL7m(I
zk;OaaAGg12a_;Hrhcgc|GCaGM#3J@5t!(OHZ=LP=+rRzpe<`dkc}w<2$z~b-X?L!C
ze?0NFx9)_M>m?aDUcd44?X7werF`Pe;oW~<zmebfXZoIG4U?A|Hhr6e=T4qwx=vT&
z#9IM|8;(`mr7iDWsg<fOTih1JZIe;3O6lvLQq`A#fBxU<#mn%(exm#qiGLzq8i&94
zRm&XUTYA^`+vP(2?5m)hb3w@cbK5Oj?}S&E=6!Embi}>Wrk$B#jee?Q)DzA*$?5Y~
zH&$x<oLcMx%8wH_CLd(IXX@$m`P!Vv6N>l7ff7Z0|DO+^d*3_D9G4C@7x@)gueLT}
z-eE?DZ4*AeaeVSH_DQm|Q{$7FTkiDfr*pD1+=#m2zAo8M+fjgB@wnF3L=%683pa0G
zkJ)BDY5t*SdL55%yJ|gTU^rs*eqG*$o5!`C4ly#AO`0K)#MU{(oi%xHyg0~kj)%|B
zW!~*eansM=ny#(C{GJRS!-nY@j~~1Sw>wWwur9XPxZ^Ja!&+8J_W4#khnYRpA2KlP
z$*MYExb*s`o=>^U6U@6;S8G1k?79w0a>|Zs1qob}<McuPWbZvzmM*^BxA1gLN4~1@
z%LO%J!6Kmg?nC6)gE5cT@BLf#`|ayM7w04VmLS)>c=&wBg^IZWd|5dkp3em>i^%S8
zjJm9TeedhGR@?CR98*D^rLu|JcRdp<vin#0vqJAsM}g|8&Hee|!7Y2QtISD!q@T#r
zu(sxQ!;eqdJI_5nU;l4*fBdYP27~!ixR+R2^B!3=lewYM%j(hVufKBVMt84o-uY$E
zPW^`r3?ZK<6(5mSyQ(yygxfM~Wp84q6hq0hA0lTDMr}Rx-s)f60<mI?#*8-%3QV@2
zbnY0<JNI?{vinJV=?vk@3~zjzl01(~um7&{&}HF9<_3$nZSDWA`KI?g`SQa@F?r{+
z<oK^z-nQNz77Pb|eTqw+{Dc1zd+{S)VM)1=O`aBeeWL;y8uEq2pLdx1Jb!a&vjTH0
zr#g$T9D~k-1TXja^H*NkC13tkG@)P@*Q9L51ns%M;}hFjkKXiq&~SIr@ymQn4)wp{
zBc@u;@l!e;!@%%j@!_+qoXgoivN0^sJ8#`vnzelEx#zBjGG9OMESF_+2tIbuyXdz?
zQ@^76p`)q~O`hChW=KdB{B*{eb9v{H9O2D=3=A&cau=kg9G$!O$}8b~1_ci9D+$ie
z3bedC&85N^8f?@Ges~^wd1@;=!-TWW=ay{nTD$D=YQH^<4fA^1z9&vOYFun#yW<su
z0>|7>d)D|XPqdtq6;sN<U@)iU^0W$Oh6{Zg#onvTv0C$mwISe*Fz@Y21yYxKm>3+=
zh5T663K$ebVvXPU9MVi}W@MPrv`*4Y@gW0)w_)REEy<}a_u40)JZ;OUpzx8+puPCk
z*Q%>kOb!n0vRh{NuQt+pJlAqganL%YTn&aV>i2S97rvUC@eb5x*}(MK@(yUt%mK!R
z89omR)SnbgEO>RPjme?@5$}gH#TF~K%wrIkz*nWc{q|WMUi+DcJ&Qg>`L9)H=ux`&
z!H)%$g_fz@dvo${YTYKUx7(XJ=bUqAVz{%@fB(+o20p$I=32@yBp4lUj@qt}SS;kH
zwpN{iNAcc=Gm_8ewtPN(JnhO>76#`I^CcTfa*Kud7!24yvUz~~B`lC{an$78InYuy
ztB-BW_q7@(Y}Vy`-qBvbpkVRWh<)Al)pIt38kaMsRycE6rke|$3tz{=&~ae(_Me(d
zjU;Zpbw2d-j41=d#7^@)JMQM$XSbf5;~Qft@SbngzDG<A^L!o@gn6}9UYY;Aeoc_B
z^P!&($y^MMH@>#>s0y2UUt2ewDe{xK-Q<F}nFkmf6z&u+X_-@evvheW=X3c-ybMPY
zncAJ6`rq}5x_|E92haLv=0fNG3+FQ^h;X)RaTT8{2|f2@YRhN&k8BK18(n(4zRf(d
za%<!ro&DdHcf0;K_<EDI;pmI$Cns;3{$-=)wwdcHCItVvm#;GCbn2&I4u;nkO)noh
zK4G$4T~qk!2kqA<hh|+{&gft<??7V5kqH8uwU*`2o;I&F>EEUK|9b2icBt7dW?*=-
zlmCAmTf=M9J1PfPMt_r!uh=!IVEJ-me?uk*hxf8u*3CQ@<o4fjRqD^KB}dziMBBG-
z&dOnJSov~6r$TCh{GN5oo=?vIZ}fxzPulC2&u5opiZV2G1(_*I%wx>*-M_|!;hy<J
z9WzOG1_$nm&gVYVh+f_YYTF07@L9@-?n$lxyZRb?*@nzRhK<Y&4!b^;w}pk*I#mB@
z7jB*7E6m5hFh^APNr{>FiJOKGK{F*gUo7ra{;@52t^PCx`_DJ}KxS=n?YJX9+3jbe
z>br@ue@@P^U(CP2T-bs^Ao59~@P{`)vv^IX-P3zmBl2nr1H%E0{>G0hZ}axo%Ou9+
zPL*O{nDe<%=6){Qrt{*gckJ{o#&Isc*yPH<AhG)5jBjs_yG3N|3O~fiz~DDC&n{u{
z^8zInFNOyVSH%Q^?;W;W{Kl?*@kJH}g~Kb{3y<C7*kSwgTYlT}1-+oQT0_)3#plWM
zJUK1j2Hn&vwm7_4g@Iv8bQ)*S?(1#uCKcF4EvsW-I3Uof{OXnB^Qygha|;+6EOLww
zlpNb9n*L+@wV*<y=l?9DRpzYpw`5?@S#R^)=3h;B%jb#JP7DlNHr#&uwd?UKE!XY&
zppL2AEn7GF;JXth2bP?#-}Ex?qFMn1gGTx8yL@erzyHsiJTd*(c^^)L>#t3JGoO9P
z!0`BHT0?8-{PQ#aUb3i5eBoTS)6;^1;liD~*VpR2&Sctizx^w}W`4mH6$XY|mZpm@
z<z-ksUa-B!==tONc>9M83=YAa%3rM~Tk2mbK6n0q5vVqEVBNky=-<W(pC4UGIala4
zrGSB9!Ln=qm)2`l8$AaNtucJPDz*OovV!G1ZogFnnW3##Y&558-OH!^`k)Y7u<}*+
zHM36V<xb~{72nS&NUL`jVqmzuk=e2BNWqU!`DH#93=Ssm>^C)Q`9G`q9WTDGqp$wf
z@Bg3*+QELC{D}{`GIf9YK?8^-Q;lX8Ydz7iY5e@=X?or7tM$8Nco+_3UVmLWxlp=#
zSNQv8mCtpYGj4lk3WLhD0|v*PzfJLY>~^4AR=DpCH-m#rr{Zx1vy1OTv);ST{9ZDp
zfRlki{%+p($4|4^>u)^kQ2VC%@Q+XX`Tq}g`qby;JZE8GIN*L<vAtwH=kuJ6^L~B*
zUa#|<f#JaJ&5Fl&{963Kp6_|p-fy10n=~01YNp6V9hsf~&)Z^daQg&ihCK!`&DPhQ
z7XFWAd)k{9zp9IY!C?A)<p}3H%*y56em5^YSa@EMk->q5UD9oj<+tbQ6&3miH|xut
zI<2l>pQ>%fz_9I8;bTVUNAtV3U8~dl*lcgPyZ!t2`uXK<_I0yPF*00yvFYL6?dDrQ
zoSi?Zce{V?*9rf0?eCX8xx&P-fz$c^=3ln$pWoiuv)=7>kp%<8fhM<iCLi<+?|C>f
zFdT4?7xwEGDYWTT-p;_l(E6{ubK|!6IeRR>zE}R^!0=#3^;`$hz2PfUTYBAox)^gY
zeB9~FIY;!h<(%?L>i}kk;)`pUx7PStyv>`bQupa?S@j?9@A(V~&TI@0Z3~JmqD&ZW
zv~$WVSY*ig+~UBJ<I=oJ3=AK1?#P_mUJ-1uIys1g;n|}1Y@bSM<<D(?emrO1|Hn7a
zYg+mRJ1`i`c_*<V`-99m<>xg#Ht+xMIPJ*D(ERdCW6uBGaqI8Dn_IGbdC-lno!^-m
zCSU4gzS>&N_k4!66~hLbyS4#In_7aMia8k;&N#pr6`}Gl#eCweFb0mJvYrbr)Nr~V
zW@q3om@Jr)vajWHZ<`Q9+H*U#fOi@XTXItm$w@FwI8^JoVD5U(^pheVKe}h8FfLf0
zZ~J~yGXH}8|Ao$Z&lcL>*;(JhaKPGJtnu1En?;A1W<IRitM@^hAt99gqZ>cpl}+dT
zm>C>W(()VZws~8~9c66D@Oi)>nhP4E|F_1UdDl#fhckK^8*X-*JCq8m&&gRN$nYhl
zI%C0dSx~vSL5q`}A>#xK--VlZIG5)=&R8hLz;Gt-UCZRNwaN@H4zTcDxW9~(ok7BN
z596#^)(<1X*%%UEE^AbL=4ZihAjanb!&*-Z28UX;f`&lQ+#5rJCi~4}EPNLlTbLO_
z5-zcEfNJSaOWCD`Ega-m+qN(M%F>W`<~9SP@0@}ys~8L}tn9m?>#<;VCuk{c*Y6&O
z2vEy2%CMCA%l7<3JMZSbvuAW@d(0QIit*Scueb6>{0u3(@8&(?HJH=F%rNJ}+q?xi
z%q*Z<d*u;n1v^kd9&!8#=kh;g6Q%taCY)p8GidD;KIi^4n)OBw0|Udetx<;<8LEsL
znO#6#bB5QTDVF<o>mHdkGP9VJANqM?!@Q~qZkKr&7_?_vKQu|&%*ennV+v?6Z;kUI
zMuxf%0(=G&UkdyETntL#M$7yy7#JA%h5Y_{etZ2jONg@}HDVFlnbg*n%Sj8P?#;JP
zmsVtFVEFah_!mRkR}O>iw|!?YGBhZt%qhNi_>AM8opI~cJ~A>aSS}j2^6SL!CA}|Y
z8J0a$lu5AaR+)3iy>QmHD^7e23?-XA4!vBU!pdpMz;L1cdBLO(4ThW(LZ%6B-RB=3
z@l-49V_{$r+va!ZWsUdCvfXq4x+$_ZbiUZu;2F7en&)nQ1_s8p#_h}uS3bRUo7Y~@
z@MD^nMQgPiGlO`ny1~w+LVOGXFBI<0IKa3};bDwkUKrznr$vJK4XQUX7tC_Mtgp{#
zp!|_7;&4{6MX%gZ%Z!`(^;duCF)%31wwx2P{q|eSy*p;J9#AW(JP@NYN0@7Ng)Iw1
z;!QcJh+|o+ujqa2VQcU@BAwvIttP|3kPt1z$MELeV=s1LivvqQvqcHA*=jQVj~EyZ
z%)91e!94RaJ43_&?Du>@5-d#`TzwOM$48bsy0AOWz4mSubIY13$IDFu)*do^%y6L1
z*}}mnll%FLOEwBccSIQ&6ufR7ddbl#bCa2YfjLEQj&@+7t;e<f3i%8S2|e*&<U0&~
zFYmXSH@l>TmqGuz0N(`vXS~aIx-m027@p)_-YLVtutKH&Ap-+Lsm2`HG<gPwA1j1f
zFKde3XJBP$@bMBkr<cpj!0=O~Hu}rnYa5?%nlmtPgp?o7Jb%VwnIZ!NN6O)wR`!Qv
zj-L5dyoiC}fX7mE83qQ0nOd#IzgIlUG+|(<Sg6%nd?{9ONj(FDg3H1~GoSC2H{d(Z
zz;NKYu0!g&C7|=bi_s1Y2OYo-IxyVG*w`3xV7P%L$tQ-p7bRBWJTlyndPjyE8Ymbj
zfQ}4DIU}5l$TPy<Ufb9!;3(jFFxyFi<C8z@bdO`wIRyfjoX_^II%8V4@9UM%e;<e6
zudDg<^0fWW4>SM0n)(0xOn=*d!S<g^-@V_@`Xl@K>2FLAIHQ<Ewy<bqa0XluTChOX
z!O^>+X&M8oE+ZFZ5(eefj31cFIRz{zGlxVc&Dgz{p`vj&3x^EFJ{TG{pSc^yu;)N5
z6H6a8VvQ6(50K5z^7I+v9_TSLxl<{n67A;!vblJ>ID>w{bcV*o)XSa3`FUV$ZrypC
zyFq-1cf)~;R4tJR`+0zDK6K|T>jCaNstymRUJ4WN^8neL`0g9i1J-v!3I(*NdGPsp
zfNUP1%J72Ff&sF5v>K*Os|rin9<7EcZK`4kR4fHC&dRWkDJ!b{BbF`+xPcGul31D<
zf#kt#P^%xruo-Mu7#SKu`y;-PD~v!rC$g_FdVBNiI+fp3uRW}HNqKfJ^!R+$?rnn8
z96j8>@E$laox!~IiunOigQO!J+Aj{yG-%*-^3at^ywh7CUw-p>$kl%*<_aEUa62}6
z>l3d0dv)`EUh3-T={a%#-sOL@>rJzs8TuZbIPce@mp03G?n$lrr+ay4@x{K#D?2ml
z>wTU-I+6YDF|*(E?fS{ueSe<qT0j43MBVjWq5QdLE}MwH-%|f0E#}!RkH?F?n&^E!
z9rdqZTkZP3H(w_nn>O$G^y#mbwg2)s{P}Iz-Ag;p<zCf47xaIfZ+lK=PtUcDXC1}Y
zZcObdob~*ZtMwDXyBq(u8_H!X|9<;f=G1@pX^ZPB+*khFB6~dcsh`jl|K+pH_v-HL
zE<3a6+_WWoEMJsJ?Z480a`wDq-n%}&vr)@G_Ilry^<j%S`%ZQ|PFlKdGK-^fyRMg%
zWzI#xN@F+6d<ph{AI@F!U}9is2=@Z@wk<{Y7#Jov4??Eqx4$NN@>#~0FWtN{BdaIp
z`lk~$n*DFS>PEj_)cfm7O}JcU%=4e-Uv-y%I+0Op#d|san)|8cpWl7i{OQEc<yR-p
z`>y}A`oZ<<e~V>KzON{^OE~%8FqFNnRyTgj^wPC`HrL&^?frAn#O;_wbnTN(Q}l1;
zYQNuUKXw1S&msF5rIeF<F30>^{U|8@%8jBkCnO%n>}UV?WS`BY%91tpadMe|p4>Qn
z|ApbP8}nW(e@*`VBjA3J{f1+r896UA{{&b*JD&S^dF*5MCoksuy}o`|@ee;c1H*}h
z1q=)gGF(HJDe~LwZT$bp+_WgW^Beytipdt|TwZDSsY^d9{d8b>!mcUq&vyUvs6A~M
zzM%4=RQIdp#{c(Nef+m{&y%}5ZHnf+UH$4v{jU$_S1JGA7w#^#&3Ri(<g;`4*`H^w
z>YFqDlliaH`lq6$zJHF8Kc&2P<*^grBIGOe`c3$9;!i6tF3q{U)n?N){agF)ol=he
z$z`%_Pu5rW<9nvuZ@nB;zqa3Sn)%a-&2?pF+jRc5Gczze39w*baNuhl+RT<4$L+vD
zo)Kkt{@{o94eQ-=GVd_&y}iuP^#0yUx{p_MU$fkHY?^oJqrZRjS1G?gceQib{vTVy
z-S_=T`X%H3>G;O~n@qoU+kYwib5D2srxRss^H<tiZh!viM22j1^2Kif@+;+UMBO)v
zTE4k%mERkE|Em*oYc=yDUz<PQH`V>vjq9KO?lc#>>Mj*+CBAlfagKY;^GvP(*@;$D
z@3($l`KM1Vx#!o$(rG5^4qW=l`m}yHg!z#h{$D44HI_O4KDNX<<04~~_*%oQ`%A?B
z%9_u8t$bQh`Rn@h;){aH@6Y|;wdd)#yWnD}$MBfFzJJXx^R=$??<e-ZxLDy}>h?;%
z>1`A!4X@#UI`N{_wyzuaJPEtEDgSAI+WLIS<ecrFyjN{pu`#u}a#eoj9kb}ll%Bn&
zr45;y|EK=hP<&JVb@{EWf3{@K@q4_;H~-Z8tuKS>*KY62HStT=`@e1GvrjL5PT%}L
z#LE<<;!xywomJN5w-a<<3o7&e_D;{(J1u?N+C8cI{XMnzNv9=#NA1sz>OQsX(|opN
zzfR1su5WmuGi%wgMa(|lKN+uD{x#e;XTR3@GvA+1%+&1PlXl$3X8ZD2E{{*%thn+f
z`uUgd(LZl&i~jkw@XWNgOaEN#G2C{$xbjJI@{*dIUftizf1Ry-`$z27^-tF2Yre`e
z_fGuvGDrTkeNNoQOwIka%gvv^I`QXO(Sd1($4XZ2FP^SkciX2|`@^?4!y?Tuxp6$x
z$Gb4?ug&pK?onIzPjTNCU3qff)a^YR*MD`5{<&!Dwkht%woP}B>aLo;D{B_t&&vl4
zqoeqCF?|l1n;{obyJ~Yr-Cp?@tFKl#^!{>A*gZ9#W$y6@62IR@$!5yj{`M(G?&p^P
zxt|gDF3r9*|CRXL$HAp3wekCyw)1~w&fd$lJ^JsoxYONv*FR0W9sD!;!i`Pa^`Z`k
z)IZi){wcV2=M;CneE+Aq&(FPHR%})Nb^G(BHCCU?-<^uSw@nYUF#GkA;gAbFHuhhh
zp}%$J+h3J^Px%w$Pb**EX>)1Cp|2~tx8**axYuse+pntIKTR|Ic5dTU_h-sh`-}B@
zCoZ1yzG2=k@m~g)zeN4F`I5!IX8Awe8`nQwUiPu!*7b9DciuhqzUl3^7`dMjayR8)
zvxnU`I(Ea(R(3<i?}&Sw>a^k;Unl?E7MVYH`L8l<`@-$N7J(|-eJ0zc?6=TAKUe(R
z>99JXbHSAtEA`?VKmQGq-Dx-F{g%s1KPyG(Jx$KmvAR3e|M{OEL9#RVU*5&Sz`(G6
zGHA6$kp^h`rF}>;=Nx-ky|wf0&dtjWx2|7b`Xp@bjAg}@rzMhWvV29So?n)HfBUg3
zS7t=UWp44mtZlnt-Z}PNQ{Ah!pEa~PUUtIvfuHo(iM6`>Ilis^{Nm2`UyHJ9FW%b0
z#9n)S*)Qd)D692NpQi2Hle$j+#;vM{?{43d)SmS^JYjXcQLpajD?2UEf7Y(8&H3tI
z9DQ1Od-n4$(fzlT^Uk$h{wDKPkA;EZUtjQWsAZp6^#1hCP1;rRO(*}f^6x15om1Vn
zz1F^Kbj)PB{?{uJB~@$ua<+e(_Om8lRx<fb_RpaAzpq7vgx$Ynxgl4-e~U?9Zq}N}
zQ}zCtIhHTjB$9L7b-9Y}EH7?Y`T6_7%(zv`pKE_Uyt(64@!!`w<Ndzco?Xf8^HsY*
z(*NqjpI3I~<}Lqpe&ODKzizxzULO6kE^htPV#~WzxA$BV&6x4*Q+C$M`^=wL?pa!x
zuy^IXMae(p2WuyZl<u46vO=lp@>kQoZQY!?|El||ZYky4p9Q18Wml%ilwN!lp71Uw
zGqy3=ZtmBO`<DE<_$K=20jcP!Z?)EG7hjj25Vd$=m0w-@XoGY@)!OTovra3Y?Jl#L
zE`HVi!qZR7_AUMAlWn_TTlUYD`)c>sS@l0PKlg28O~Uf!pQaW6J>d5G#<8gVOQn^s
zf2z){*1B)@dhH)kiR7H^%Ja-F+l0DL3;r3;4GQq(AGcUOd%N+@)&KIv;rlOuij!$W
zvJ62l{*Ia~+rRhS(uw8I&zI=@@Bcgf>%{mg?s;D)e(jj}Y|-^9tG(JAY_Ge^ol?$D
zezMW#lI8T}pH3uh`!zRg`}^CB(Z?i`t&;+umwdbRdFRfj6E4fU*DY8d_Lobh_~N&%
zA4A^DL_99}w)JCNc8+Fz<KBM~Z|0nqc%A&WceB|#ho703Zx*eMZ+yC7|55Y4+}{!P
zo3HCfxxZey&o=I~@>gwxtM(Uu{?1>e{J7|w{m?D75h3p6^V#I@@AdXm)1GB!<-GFU
zdrp^kFZ1kI!M(1%6YY1#L;6XE$0TltKb`pX;ncpI{;w0CfAYxBins3OyHRwevDffh
zbnTM~mv6>{I-4=yYPIt-XD)O8x6EvQ-wmU$a#`&ecg)%=kA8o?dh7bH-P@+lH|y11
z{O_X7x6F6hKe_JM{at3Y$?jU6lez9w_2+eK>t`kB$e-RXFV+3beEO>spANqdb3bPC
zdsq}J;37yMY1Xor_y2z1uX%RPGe42Dm#@sIni~xo1pC6b#_;Nol4-wAyqv%+og6c5
zsnsQmx%2l}hPvOITNf!Sx&42TT%`Od<>VevXKCH~$kW2r$xq6TOuKi*@c6YKCj7=z
z_s?_howENTyX*~%S2wKsZhq?0&F`0ZnQ5~~dVT-x{L{+%PbdEU`TEs~Z+{|WC6jaX
zpLTD{f4cnFzWl2b+cMYLn@6#4TmSWY)ZLoz%WR7Fz1PV)!@$6>$8YEk#elm_9fouN
zJvZ-P+F3cv?()VzeNQL+$eMG`X1e>dYo@!cr|LUCF7Yd_JY5;NN_qM(kNm8a@r}o)
zf10-6?(Yt(qViwtS10Q4&$w&;dj53xZP~R?es<_W>ftJ><7QII>m&bq+g^2lwtJ3l
za?j78_>xuqf7aN2y8P<M@9Cc=9o}O--Cb(==he$UnOEKZ{%O{=*?;}_NAI_ne&2Vy
z{ne2#%WO8i`C5Kl;`Fb8d6_m>rO!7e-^<Q^yZ!I~s}-B|^G_>Jm!InX%>3!Z+ONZ+
z(1A2~kJwFn8DIA`p8v*{x7DR7^On6j5%hlR=b(E<GcL#2%|G^X&)zB9@60`=93SI%
zb)w-hP~7x(m#xgtl)3SA0<-km<m{fBpRRwqH`j*B-OT?wajVUx;xmg@7W419q?_Ec
z@}JC%x-j{lnWc~ZdRLxYKhMhi!0D)YyK<vTmwY^wo3r!k_8!A)zZSJMuXCtf^6_w*
z%-6WtQOCos{@7gg_)B$gZ+PN+=C!|0&i*v{^WB%z=lcHEUnTth`uuSBf3GfYwYv1f
z?f;Xv!(&W=W8>S$UtazUn-%%}+OoB#VJ7E;OP}nS;@)RD-SF7mm3QXn>v@-^+&;bh
zbI^WH&~WePpxu`4uNTdI_US~WX8d#S+9ibvi_3Gqy8i#TvvBVJ%+i#V@;7Xz?!UO#
zb^WznxyN;~Y^<cDmT!K0{_4c&TJPkPp2F8Q`PW~0JYKx>+V(H&93Gdf%dWh5*}L+|
z&oH^nJ=d%5&pKAUcH@e=nby%#{V$Ha-*RzRMz8DfKTm$-f1P;w&o(QgV>iCl2g(23
zwQ<F&kKC^=f1UF=j-7#FxC~`l*xvni=}hijsoC3ZO)@+-WBD<U%4e60|DJf|*E>0L
z=Iiclduv$d<v*={U{W6SYtIz_=QAem4*pqkZ_e~r9^V(qZhR4Rf76xiCg=8-UzC#a
zpMA{3`LT5EjAI*3-SWOpEY-HZTy_2Du667>yRP~#FJzU9J|@Ah|8(W^Unh<~|5W<#
z+siPyN}c{aYv$fw_Azb$wfM`u_cfO<{j+E7{(S4@^*0tB3*K9p(EIw%kHpKt_FK;B
zuXulFYJJh2`Tf6485kG}7+Qz=VDh%YU2CH=(_+7$TlVY1TD!|PE*04MKApMK&dBYt
zm;L>$`OhShZ=X8;ZPPUObKcK4?=0<GEA#gI^K;9Cul_K(Kd<`!)=yV*_2ReO4%>Ix
z@2l?TkbfCc(N*2cetFE;TesXa?_9E*)c4|K@BE9a_nxzzzVzc!%SVh~Z?}IEtypP)
zP1-)^n8fzyTWv1=S{YUvb?W-g!UX-V@@C0B$7J_jwV%85-|KZBUuEQE{(U8LI_Tdz
z(>kI1vD03isI5J1@)Oil5^x!W(^QtEPM`@S$v-YBU*&r4^cHioyW2ipiMqeZ#BJJ2
zt0K*~jfThmuH2K_Qy6us``p*dGnaqzNcK)%VjjA8es#2z{Mn}y`j?qsjs9YlTm78z
zYT=DV*I&)>zI)?SmisY@-`aNDR$adHlRNXVXGOi$qmsHme?Ohzzc+8S@_oCzr?QXz
zIC|eE%zfX_4?(h#*MGg=lDoQZ&z>pU_uM%ZeM}-dd)2F=@P7|){<vAWs^4er^{V8H
zEB`Hi{VwSL+_3wb&VVOXSOSOm&_hRU&t?95^Sq63?=v^syXNW2dy7_mwh49j^S0zZ
z?_GIX;_<tZBa4#Vq{MT33Rmjyx*`s$4os%<=h&q@+2Gnf_uT!$^*<Mx_Pw34yvq5p
zV!`cg=a&6ibTK+4Ht2uGtndZz9xmPUVmrV7)rtSVzTIl|>2>}oWq$wc(v+T$ufLza
zIx*kgCd_@E|I_YmW_7o&=FiT3dnfaC*^$f7-rn{ueNq(v`>O4+ACKPFmZoI>eWP>#
zLh_vRPyN&HPk-g{*l%|F|HF(73{8lR4y4U7L<iaGejVOz|IP4E-R*th?$_QH%ba*`
zr5{}S<li05lfN$q$wof=wCHlStYq?;;GaR}Zp(gg9KZ3Jzwxk1-t6Rm^RE2hl3DgK
z<bBS{ev@}w?(Mv@?bAh5w{@?h?iKA0b>CO3)!$>duTn?;cKqLGE3H2LyPaM7B>3-v
zb=N<+Z@y-K*6`S_Y5Ci3d;ct%H$QHb^6RkwkFM0O$o;CD+_ScB<?~<sQ;)gMp8jdt
z^k2&@&pwr(kleHM-|uY;KdR1n{;6@U|K$I}p(L8{_)Gu2+V>5npG{;pq~89{yiKRr
zl3V}lM8jh%?XF79d?oLj?Ct+JX#MSPmVHmkP2O!ecH-Wy`T1Y93(mZhdAxx++valL
z&qp$!H`o?kWaQhOD;0nK*on`(!rbLvnLp2c9kZqX{L|#w&p*vA+o^MPV(QBMdDlL<
zU#@ug?az<*cf;N7Z11d6mVd3>&wu^XG=6_jd-(C;;^bEh(SNsD&OiPA^Uo`lckjf$
zvbTQSEfsxlpXF5ds{MNy85rW!hj>*CnVs&+oKyGd?)zzObtN;Uy6??>ZTwqby1Q?~
z-_+VCx1zqp$lbiI?6z#F%_ZaeQ{APGUz5m`x$);Sr2l1jZ2i1b@-K34LuS*rIlEOo
zTlps<yT_+J$5NlY)^`7&MW6LFs<-Ml&3n20YUi=y2kYfe8OP5#t^e}(<&{=O$9C9H
zeSiM_ovH3}>z=0HI$d?-^0Pf9`%HUR9y|Pb_VG`<AJ^}xU)5JrwIkGh-_LKkpdxJh
zd-+w$^7d2wmp?3u|F>@Lxu?<(-p)SP{b1j}*xkFQxZk@s-M#L|wm(~bKFa$zEP8cL
zK9^^FYp;)%zBSK!^|s@mPSmaLU-NWg+cD7>vNsHu8|yxu_;a0Ik!HV%_};bsSNd};
zQ%?WsKdqeH0}6ETO#HRn)qOeDm8TP*Wv=SeDgJrh*?!lQ?R%`l)sNlSx2pfkyjRzi
z#Z2Xz=T7|fdRe;FRQJA0hq?c@Sbdyt|7Xdb)E@rxPpcn%4EtBIF8in4j=hi4Z+ZU(
zu}kc1rf&c9=x=c8lh^sD&-dor?Fn%|CUL(;Lw{G?Y4Nom-|g71zu&s<!`@HM53KWF
z_s=rCcW-LFK;3e?PkYUuCjU<STe5El-qjL6?#G9?x`S4k6{Bv90Wa&yPs-x5G_^Da
z$%EL2hDL*FUyOyNv4Xx&YF>IthJvA?F?1aoS^Hw%?9D9+xjysx?<<xHoXw1T6DAxG
za%8f~P0qRRu*~|H*tzzXW$L-Rg|&+(i{6%fG~>>a^tCr4S3f^zAzOaw?n$q7pKGt&
zlC8JBFS_(?hwHKOyf+uxjs=7+(g`V2k-m9wsfUE(7p71rkBBxQtFL$XpI<rsFMmPE
zQmw0+AOGz4s4lMiXMf)Ayxw8U-QT|1cqz&UJDuKky_c<eQtqt{Uw=((etdG<^1{Qd
zler4Z-#!SOy5f!P8ljRkp{f@ae@a>9Zr36=?-*~^vqd*w2-ov1jt*aS?do0gc}J`3
z?(lzq{Ffo*<ixnC7CYZRj$zk3HFw6&RL@0QcjiyB+-3ap`2C(w4BvD8woHGM$hV4R
zvp5GI!$Dhz53UM3*6X-)#>Q=9cbPh?JtOQFS6?2-t1jI&+V2kkzStI8#ISmarTxY3
zBBiuvV*Qs_$UXE-d&d5#{+DW+T!LKW(=E2uGb~pKorzPhU|{*qaL`a;hWQiCgCYDK
zTB`gP-+U33xhrr*G&&;uPW$)8ysM9Nhkn}sX?~|hwxMzH;>$PAeoObfky(A{TRP|a
zGApT@|8zW6XY6$-VBmPi*p%#G@IP^$kk8kK6+xc_&ich4yvXYqyRo(OXl;f4tqop#
zB2+&`K1z~waoKV)GgoC(N5?9yH)WNgf)kg<I2bD=NeW+k6TGwQ(sRXGYrFP)xon;s
z_=3Sj>EfOVe<Ov8q7;=TcW4w{%j<XT=<s>UG>b7Y#b?H5|EF4B^V>7FY5mg@JR1~V
z|Ls<ay}qQMjdHf<_cvQl*2OIn3a|Zk%Y^-WoGgEb*Sx*YeBuvY-1}?ub+zA>oOk+H
z+g9gJdak-oeD(WxRS)NWIH$p1kbi3TZm}BmJKXPE%H3u%JFIx$QXN^VzQ_2~nY}-2
z)pM#HLO%Ifr2pdT)7vBbuC@G-_2M%SFY+Z!eWNxp`{}{0S-siHvZrP(()DiVU%F0n
zSGMw+(A#n5ALe<5tjxap?iNS()os@ox`+N>ShGHqng4vObn4oucU!*2N!;DKAuPB0
zt;W62`@(j}zlz%WwshjRxT!Dh>t|neQJUzXBGie6npJK2n&<5MoYgiz|I9x5@0Ge)
z(2I8ElYQskt&q*VJM~Xds9lGR$LEYcY%X8f-#<5P$o6)PQeAXsWsbdZ@f&+}E3<wB
z<9?Ovs{fu#7=Qk^sYdAM1qQdT);+Hl?)eoTt#wUH@TuR~Z`*^D=9k_&{p(HNy;Q&B
z>B(j8#d4i{GPo97wFRC`_dFM}B~<Cu%rlzLGP`HS7g@bafA%snZQuEq6*Fh9&3v|E
zroEE>tV1jM5<@;kPBIqFo!U{P*xZrv)Jf@bhu~Gqy<1&UW-Tc>!ZUeA%F?^%*e9wl
z?e&_XEm}CWBTc`#BcrE7Cuvc~WoxPbkEigdb$2|v?fInf#PW4wQ#Hc1zG(@b^<ope
z*vh9g*=JGMa&wE+|8rgySVhg{ZW4c6X4hf!YE@uo(Nd-LLV<c$433>S^IPb5*xN1h
zD^$1j8+<o5{v6?q@XO~(b5>@ocA4UA$})5D*`+7@mKhZPXiV9?#`4sidlSNy<bNr-
zeNFCpb^ep|0n?>PYlQ;+LZf(ZdrY6cI(PA|khdq;H}cGD)r(;}QhI%<qRG^QZMpM~
zZpzO1x1=}kR`oi;XGu3Kgx@d7@SECfsev^{wN_|pT`@06JFE1y$@S_hYioa3OQ8?v
z@&bE*37wpLZ!w!~nr{b}w((!tIfpY`B(*<VdYpN<EM@hY${x!Zn@TcjC$KL%t0^z$
zo5;7yWy)TM4e}gy(j2Lkmwuhr^LJvhHPC7m5RIDskuU0&?4RbH{az-)4|}wZT1NC2
zf2cd8dUo=yNzWLc{XI45nSx%^w?|4Z7zFM#pI(-HYtzf{f}3BOwGJk~Zn%-ppvb-U
z?&7mMLhfCfcB+1p!NktA1=Sx;^Z7rXF3WeL*uXN|`N$cW-uc}BVz-@F%kPgDNO{JX
zR(B^ezvI??)s^tFt$>H)S=`iwyim?(;*Ag78#~sWEjZ#*c{y!`_O=b{o@_pH^w<A6
zl2dmy$L&_GWM?jOFS^#oqqJy}uHSJprEZ-?YtO~UiscqsZL<{5(cM_T%7v#h!YWBk
zPEDxPBZqC#lW8;gre^3(c{Z>6&T7_g{XJ=G|DJErTE2MF31>CI&>L@yl#EU;j&ZO`
zOz}y1S7@1}DfA(fKd`a%tF=baexsRN+foGs_g^lYbfP2DC3yMUZ!f)F!p;QfDQLI3
z@Nn`A%&d;-o8k6|N2pn{f2xN6qc7k01T5@KTXH5{ck`~P?^TR*o?16V|70ut9Iv1E
zPx`>w`s#w+4`ytOEzr*s|C4<u;fJR}Qm@08xcM(DIzKHv8xWq87<=-wkofD$bT`#^
z4-`SZe*0Wi^Rtc18Jjs(M-HeMzxUrWU-$NTn*-CTjyMD$7sMOBuJHQsL2c@Tzp4%o
z4zeFE`p{UtMG{<3{M0GjXxC_*)o#l^x%|U(3-<mQx9w^kpRVof`*xVy{#Dhx^?FBd
zU)G<$zu?*1<8hub1;66g&3;kqttjTRXS2Ji+wK2us&+O%Hh3*K{^H^BZ!3;S$J_NC
zF%ej=F!76kXq0ze(Ce&&KddXx$6LiuIN@S^!E#PutVMSHXTdWEuRk|)!c~F^on89q
z_S~EsQI($_RCv`tX5;#4adYFFcegGk_;bDVb9$n;bZ@iLbnVBMKhA0xe^(9PseAMA
znLC?QE^ge}KXbA5UB8YyOShB<JSj@GVc(ykzfB%o-M#6X_9H%emHV4M_88YSPLJmG
zw0Ta+hZ+_6n)7z<y|*PMR=Ig4R%O<23lux8C;VU(>YN+pk{9r+TCZrk(X6d(f`OoF
z%5}@doeKYqw;onfTGf>wZ@_+}NX4%4h}4$}f4yUte)%5rB*^mqj`JDU4sATFG|^+q
zR34>88#x3gdWsZPJ+=?F_EB1NB67E__z_DLJC{cyRXt0+!%e1p)t`6OoBCPw-I;V<
z)0_XFN&49&W_o^ZIV#&?Q(e0A(mltCr>Fj0vvh7?+B@IM&zBFa+4u8h>esictvM&|
zp7M>aD`p+fvxKCzx2CQ7=e$xo=-n+2?VxSfU9F~+rmRzOc^7ocTBB%Z3SSqNS_540
zbet$|aI%;2+-Cnf;cv$4bx$O}JS*QO`Fwu8ai!x|VQF@|unyU+v46D!Z|)0MeX)Ia
z2$QXre-pdQ)M_V{qV{KtZhdx;=x5y6HKWqSnt6-Py=~_idLK$IP`)L(fa_qR#5_i;
zMROTf3CSEbc5vTf?C|hPz?TCn4ES3GI`1qzlWorLqA4_c!i`2bd-s0j&#!YnEp=Gn
zuB0{bgsj&Uy|CY++2-;`{3qV%KBD+#$C;Z?E?+)VGyn2Oqt8oB&&rs--DY{z=I;43
z`j+B%&Y!vL9@4b7*&%{aVOe#<j6TMLcUB9X$zRFxnNi_~roxY641-<lg&bA(ybyHg
zpO84qCFFU@6``Y$+9z)3gcBx7r&v>@JS02}!1+6(;RvtC9gAT8i6>-FJ^V9+HSyV@
z!}qu~AC>e78AiH@+!tu+&`EmAbg47qn9DP{>B?#oEN1t0{8x8XD%Y6*Ik}Isxg%rM
z;g=bzMkiIc;<nrtx0=%z_PpuAl)u5MJSsgUM|^B_RDMmY5Vy5Tf2An2)A{E4{urV6
z%899u51yHGgW<@X^OMimToZVoA(1SXa4-Fsb=j@+alxEv`T{ZxP1Ow#Bm~aruV(oS
zEt}IBHVSio@o-ZW+UY#=dY)WIm5Q9(qs%WB4RVS}eCpd>7HxWF`0QI-in}wYt^ikZ
z?4e4h;uLQ1v+U<(k!Mu86|+d_MPs0$+f+r6dx`_!ZdUi27}0*@Z%E+6w6tqeR?4Pc
z{b2u@>&Dx=YZ^79!kDdtmVaO2*l(%eqEvoj?q}z;DcD*p7i%snRUCZ0azy}txN)}F
zS#BqlqE4@kWvgQi?9+VL@Ef_$4!$RE-a7NJ@5!>r;whFl0!ofBd))C*nrK~Oel5>s
z^*6aS-)tk^`ak-!L%buwR^aE{=5vc~|CQ9gtgDk4lc-t1W!NgWeX_?BzPr6w<u0zW
z?fJY|_<1}3^LF|45bJX*u79%3ZvMvlXUFAx0$Xoi<n=pVK9~Czx2K81M&ZuAvyO{Y
zok;IIp}R|Zwe6y_{RZdy{pQHq%?YfV6L{BR@ww;e*Q8ury0-~LrU>R1>)m)&W4SD)
z`|`%KI}=uao<4V{!l?;2dXA)h`SFCu#zkp+Mqm1sshzhcXq-KCSV2ikU1_q7OXxY)
zsUK5<t!z?+CT@1yuW+PDW!?E>&MHOST(*maTvCr6NwwioT6B4O$C??ASKh}IOzP0-
zp2DY`Cg?kN+ih0Gwuu(aEvC%;6Hll<ayq|)rBEwfu6UE}+c%v{Jxr87_Jh6fS!iN(
ziFsJH%WV0?Ir4KY>}xC*|FKxStI*9iqqyMM>~+iMZ~dnBLoBb!eobyu{Hwf0A<AqM
zCY*<9Tm8)-tXlmXzy7)Y`w#y7P(8OIpLyb9%NJ{`4EGnihyLeY$^N{CzyH?HsMsZ6
z(^s~C7Ev$!TPf5Tv+)1p>VVzdN)fx=>zS_Zdmp*tTlycZh3ETY4X2*?EF*%g4GSub
zF4|0a9tbM=<F@V1Gr2Lj=wRF0>-{n^{)|%QF%~NY%CGaug?660cUa5ucvL8QLG--k
z!;cQD`7?U9oBvJN>3Hq`=hH`6`E66;bgX}y-~IUQ(f-|Yk4@KfVVxVhOvvPzmZN<A
z0-+a<CEq%~i#A#Pf8A=rQW20I)vprx>p`x|m7k|II$dtQKBupz&}Ae2->y3@JbPcD
ztI6KwU%OnMZM7CZQd-Y{<g7i*qto&1{qF^hi@j^kZ+#^=FD1=y&fo92`&{?KIG@d5
z$@2MmqeLX93%Ae<!zMXSCzVr9nXk1zd+Bg|bXEDs*?Ik<a)X>=Qra`O<;mu^=c_*a
z!J7Dcb4$6kY;R8ev?VCLxa!cRpSn{M{_zU@VOIFzr*NV9qO#yrk10DZT@QUWHA3K#
ztxA(e1=zsfPww~n9d}de?pUF<uhtQ%|7H9!qUVT|%B#j1JKH^`?A$b0ex35P=ZBd6
z1jRdD7OhFCpVl%b?8LoSol5C%zeTikoCwidASvK>?1+zz+C+<1m-uUPN`cQ#mDTO&
zvzRW-{|wZ*N_xil?BNmNX<~k#-)!xiX~}RTbpBqmoBuz&3g}#ITV2}maH>Ph&znJW
z9QZ50Y0c`rbPeKOZjU9k-)@OG^a~gkpPqE&M$WsrDSc{YYt(N^K4pC8`>tlwl2+uN
zta#&td%ju+b-P2EYz?%ItuRt{S)?<i-K#{s&{&9H@ng@nu(gG`OPnJoZc2UmVc``~
z&GOuqty#BUv)v2s)GA$jD^@yj?X7QCUsk+g=g(!0y~jCGgL~(qvb&BGuoYn7R?M@t
zLg~4=t8ISPoa(f?>i?kA$~wzEx_s%pgTZrL9-BA(X#Vc0aw_D1t#Qbs+U<_2>-LIj
z6+X0D5qrKgV0Y@`h~2Luqph>t?^lSe`kT4m>&55CD`$8;Dd)ST{`csICHn>6F4=EX
zF1%FAu;Ix23y&3rI*qQege93@TPL4=y?yKLR!F&a^<L*^XKUt?^<``t=QM1XO_mpb
zkg}TnM*>uWX>j`{ye&(9`)lK^+K9KY5pO>~$SErBs=Sr-Z2FwO-!m(#X3czGY!#Q5
zmOaZd>zr(&LLtA9|3dfm&kS4TjvHwG)DcWw$hqcj-kLJ`u-}SnzWL3OPv7!W@Yv6b
zoyMoyjZgI(uabWLpfZ>5-%hWBD*>I7XQPmMbmCWpCT32$BxvljNa*?MovezhChlP5
zG?wO{sKLE-tu}wyqQ;ix7mT$W*PLu^cXTmva}hHPJhC&v#4bTo)<;b6=yrV#mO{SH
z&z2trIyX%X$_NO5^G|ZBf}63L-s408!PplHMkiIe-cOUAv#H*%)IxUcIo5;SWz~8e
z-5z_okL-R?s55(o%OahrQQ>UYrXDXfes#)4T<Bts?TW;nnKQr7{OEWq(>}m6Cp_U@
zdfKy%Y(>I}3W4hdgI^T#*gmQ3M1)=$B=iK=-a2eyZ&g_LqoD3bq1)ESJ-<rr(siMo
z#D!U0#_jSR+fL6~ywXvW_alRlz1ySn9xA6I<dam(5><a~EUS&!9UHM*aP6(?4Y$50
zY_;$F{5VeG*6YR-pJi0ERvUT-y0+dj%RY6b@269TOC-nZQwMfw9re;V?zQIFt+i#3
z|4fin1r?Lv<cHLt3wg6@MZo#32H9dO#dVs*L+5oBsXUl^VUg6=DM|iS{Zd~v7!-w4
z6~nKr)8<IxGgpmHJ)3;y;FMPN*UdHpxqd%4WN;M+s4jZL+Vt1q!)*tR?&xdrWtKdk
zy8rAXfzC|<a#|PXx@Zc0^|<4|L!m4v+R6IBp7=;7=_9IJ;$ljq8JemKF6R0~FZ<1<
zceyq|wIWAW;5V<rB|X-A^+%T;Pzn_DiVmL{p5%zq21)D7E4Xz(^>@yvZ$DTa)8rDK
z9iRKHZN=ZnNnQrkjSm<E?l7|)Z%B9-%K0p8YC@eLN1aH=iz;~8)(R~vlH`SQp=Dch
z#|lt2+<QW)J7e|d@aeA6bNX`6u||8pnXe`2tTe4}MrV7ci>%P>Mva}euWeiwoiRQ9
zbK=jQS=o=&RL<zwh_!TfOtY3%P25#5v13KejE;_J?VTA(3mreUOP)UDQewD9z%bcr
zjZlf^8lf+N5vm=wT7t%QL7a;;rz*^1YC6@hV5!3b_J!_BS{G|Bt}^}>cJdgn-|;D%
z#gCVMd^O|8jen63eGIM6&J^l%|F!GX9wBZgpD7H2yv&B8Z2cJ$Hg-_~j%pVdTsGX+
zWT%%rdD%G&=WR8Lk>X)$+uRl|6m<zZ$<?~xMw6)4L(SNQLM3^vUK<_;ayF}l99kkY
z)!-z9(niamISUdME;L_I7Mz-~Z^ika3?Jr{y!)A#zWT}kAFGPb|Ib-}_v88h%Y#+B
zBUI!5aS43?pRcfP^X-?Aif3a5tH4t2h82;Fa!a)jB=^j?+MA$0Gx7Be#yeJK9nr_D
z3OC<m$TPd$Jp1giEpIcc3#)I%KmNAGpGh#AB}pv$LD#eHf0qAFi>^KrD!piT^AAm-
z>WLODa*SU%1daKZ=LOiGJo8)lefsHd#{3(W=4Hx<Ah%s}Y*z`{?D15ssOJ>eanY_S
zAtYSY<+F?AozG`hr|c72>XGA=#9sAB#<s75@4!Jz{%h`0_0y`ZoRfWagj>`7?V4Zr
zjy3j+KFThg`&TRQD!i|<>eoT$MYEWlOzuDF+cj%_%SQ<z>|<y`oi2+iSN|wem);gO
z&&FcjrTaS?o$UO|bawA9Gr2L@NlbI&m(313a}_S`2};x|jJ6fnzJ@L7Ytn~^kA@XG
z(oX%!YXz=Oyl3;=F#FN$z_fSX>x!Z`wa)|%>?Rk>8@rc_$$nh#A>;IDwaTpUQ+vF`
zlnc3q;;(BJGTH9Bc({M->%%K{8La9Edz*M>G4tmN(dWnY&iqL{^G8gf$ci1@qwUm>
z{rqO5b=0H!+?8@0t>p?tH*$6AXB-i!l5ys@^slJXtetwNJ#-Vd_DA0}M;zA*sc$IT
zy|L_X#BRGa-}Kge1DOqN2HHcKfwJcxuld^Y)(kY9JJ-zIN_O|$vK<qS$a?%?=qxws
z*ZgA9Cif}QXn%=#*vbA4Uf&X@R%{fq-XO%j_14@2x85GR^)-3x?+v$hZ@8s=>kr4{
zKQE5_e0W&$>2b-cy~eNhn6bYP>3oy6cCR|9nStDYF6tAS%bjE?G~XeKw@T-<p4LU1
zprqw{e%Qu$f3GnNl*=-oW@z}__|>T+RVt@8e+Ve=0X0G1qzDN1g2sOrO}H%mf99=3
zAwkzUYyF=!S+pN%_n70<|MATtp|i@W_cV^Y|H--M`DB;M6|u_6N#{V#@B7Mz)7G-X
zyVx78*ZuK1CVFJ*yuHf=Ue4QVcJlM2%4J_di{!&j21j)Mc(XM#VD%A`^KrA^JXiI4
z8~68Swy?4LmaP4^HiuV(%Kw<BH&+`k{`JW+J2QRC%<ABKf3_H`&abPAtPKxQIil?$
z<K%RY^Sp6toND*P9ju+QQL2xuAKuIR@*(-{FN0NjJz9%Gt0g|aIA9ZZ^yfxy<9Z3>
z{j41_XAd5U+NvA+w>>C)$(^l&VM}t>cb8~nM|4e&s4^GW6qdVhrNPt+cV>av*BCak
zU0apAKT*hL8vmm9U17P^u}fkjS3hf$Tq=lrptye5naJqHYj+2oe{eHxPQBezm$|Rh
zKde~`>Ef@Pvo-WD%e<{y7mGnU`KIhG8T(GkmYT+MJ~mVc6EyD6NN<>S^!7K&1%@`v
zB`&tU7r0s2lPcIW1Z0?-k}KF=bd<4a%qi@UlMsDYSn6crKjon9`8{6Gv;(`2sHv1K
zIDY=(<BmDLdb8puZ9d6eX7=-oiShmCC40`;WcnJr`|i&5GxYy%{Mq{)>v!YNUj(Nn
zyjBnhW9WD(r?4#9!QlHUme0{z2WuEO>bN-m$q2kS_+ny*mr1-y=XaZb4=3$-{@p^h
zQ_HYnN7B@kxNujeFUo>0hq^%pkmNE?mr_4>-M}*jonB$L-cIH2^if_G<FKr;rICes
z;?CnwJ6JvLG#u%TtnPT$y`@_2e^>USdDm5}H?28R={{rUhYj|V9`CMzcJ)6rVCm}b
zSk#_zkK=vipX$uc>N>rf6IXkQBwhKbGZQon-RWc0*(Cn<TPxr4#aDMKSfu_B;bi7i
zmNgXS=kBaix#!w{Zp~+bv*M)>Z2QGsAI;nUxI|@@3fGZ0+1qb)e4n^s)5nA~KTt#E
zxo4VOc1O8Mk0HOod*jEl)-#dY!G;Pm;=?$fv4=Jtzs9)nJVTPY(2I@ywn1iD0%!TJ
z9<M*?JoQZUBDv1?i4{_|d<)z=W*k1LJ8{LD%ATEj6>nY?c+!|roVjVS<{8JS9h<~C
zzA+!nXFllO&|x-x1xr;zNKfF|NdjlBpDy%T7rRKLv()2`|I?>SPOQ)iwe|`>^zYKs
z4{}#m=mlDPt+vf_uj<eGqQSDUX5p=k1(pKc;?L&@JPm%gVs&<#0M`EB&gkwepQUeC
zt_ZmQW|nF9y1+vYi+q$%U0m#wd3ll4*RM05DV|yw6Q%m}MPRSoRlOD8B86W!pSk#K
z3g-opG(L0H+o@**pCve76y#U<n5+`#)W7#dA&YI>mKDbgS1p#fs(9wHyUMBlwD|C)
z9wr$_IKRAb;<vB*0m+N5SDP!}9JHBt#OB@6Gp`#@yq75vyZi2Z#mu}!&c|Hdjlmt@
zvatQ);qJiFgb?SbkjFEQ2c9|HU-?J4^V6a&p_}+tKUp2osh^-)w;=QpOPHs5Sf~8z
zBkfo3LEGu1jz7pa_aBy+D!%yDffa3AY>pZBFP_mZZ#@0{q(2$9VJEk5^ol#ARVl2!
zky*PiVD(+jHIwqz2-$~q@~_^@P28BpnlAmDk4kbt!xw*2)Ac%xRLqn&O4{1ZoW8=M
z+a}55NQu)F{><->%l14ktzh?6*tBYrgwUH^lBKDS%v8KKe=z9iIMsPVg+Fj=vE$Ou
z##;|VM$(%EPEXuXm$zt<j!n-@fkieel>T|w?3gaL!pr8}{6Nk{M#+zi<k$o+f=AF5
zUX|-vc)Cn;^=cQ~+_B8>_S+_b!ya=S51sN3nfJwo$2Q5MLhrHSsb)5gcMo3fTq)F>
zppxWKurNKO$zrN8|Ma|!?ju1eQWJl;pH1en?OS*}vF8*tg5;nPH1qW5Nq;<6Yp?bC
zC${=Y=$a!6VUHGs?G}zuy&Iugw?;@ltXdq$2#LXO-|MD_?y=lI<olt0tM3QzyS`Jh
zjxY%AckVy@;-PClUr&}tcb3dztFFo)hWtNuPEIyjKWX;F3Ks2;;Zdr73*4b;Ah0xX
ztNWHL{$#ni7WR8A?CY9m{ufHWvOV1{Y~~rq-y1J~IsII}N3QP8)FZ6R|3BT;$$$Sx
zQT(FCe?K&Ju6zFPRnVTdeupk~{O>&STlK-l15Ev1+%~6ldS2}jySm>w<ozC=$}RQs
z9sj@A3O#k68Gcey#cHF_|LI|!-Rc{?^c<(g>|qHtD&t!u^|pBz*Y@nvuL@5tev&xT
zKYyFUv;O2~^|ot;`v1N@b6o2)j=3mM%jl=Z`Nbli3ODV|slJ=BLH%hHZ}fV3ON)6-
zCV4vwf)wAaleJkTG<9!#Xj9+TRV-B@^H}&hvi1orsyQ|Hd(AzeBWHBIh2Ea6oqXov
zl*xwsL7jL=`v|%45^sF454jWH)c`6m_B?m>y3=#S*~7;9%o*K}w%1p=S4^5|S@`Y#
z^cj^6l_^s%e|wYoYynE2p)Oi=M*T9OGxOP#Qd9+WJr*42s1lhb@YFHB=f6?>suaBr
zeWj279((#gRfC|hF{tHp^PdjqaeWTs&kV+(=FrTU%~}WFur@I}6!3%Uww>XsGwug*
zKD*Cw(4L{`Jqweqgsp__vq=I^oe!Tof8=jRe%s6)@*nqFbS?IJ)>6UWsUQ^hg=2yH
ziF=nS7GK^t@dRYrAi&inMN|9&Pe%l3+(b-yBU@*cLfUNiI?h15C3pL`o|9L3=kC>B
zYk#V-Aav>(&W$$Waz(o~c&MCeeRF=&gv(r(@iKjLw%$$_R8k7w*^uTSAt`M9afZty
z5usX#GiLpNgcj9!?3P!bWAAaNe+u94x*o=dtF&ecKZ^0QnX&#GXb^^dM!T?oM3lwZ
z&DYh^o-qi3X2?_iA71UOy6)SXtBP&mOodO=y$hLaxx70*EjY6I`p+QMV#gZB&MoKT
zW;4AIJXC&Y?+3q%^eOB+%%7h1=iUdK1!q*aQhsRfntj6eBvYT=^VM3oNBCW;uGX;?
z5{tE%oTm8i{5(%wldSQWyMI(%eonD||8tKj&fyrB&td1h6F*zu*7CRepSEfLug+eP
zUk^PtJ>F~$8kSM@Kd2kF=%chl&0jf%eH(dg?EY(h*s+$+c9FWmDt^0$6@7oCT}pps
zo_PH9iJ-^z4R-=nUv}=_C)x2kk2&e>+6Nm8WGgDxG52o@?0NOVUtyK`yw(--zAZof
zcx8m2vA^>Ttb;ZNRTUQ(GcT69v`FgsioPVdx-*B{D`k`d6IVS+Q;~D*kI$47esQrk
z@TZ}cyxY~*N|!A*hi15|r>&dIxGUV6S>!m^d4{tuU!1!6q`2N}C%^IZ^FpV*V^7|E
zQe0`a)AFcIuHk2IzvF+;*w~&u^W9Qb-*_`<R^)k~!Gs;`oy#vQ4*xvEsXtlbDzsRX
zV~&zbo^jlI#!h+T?}^VoMNXQ(>sD_IKc{|G$%5kxo*6a<mL`YT^}G^zcCoW^&c#n0
z$<OA_*vW7F{c%L;<A}M}kG(oySkkNWuHDgPOOfKl%p)DI=5S|qo-pxz*&(SG*!g+s
z=_Y}z9(NjAK(&Z%;)3=@mh%c)fqbi;xT%Dl^PQT}!p_Oe=?^NvBPMh6!)Nu253cxZ
zytVnH(xM;VSX&j&DHcMikfcc0(zDv^<sWo}gjrV!mHqGW5?CxLJpH3VM~7aCz|0h(
ztybbJ%iqiomi2RAUF`T_(cO96kCcSoD}B_fk~!@iGEe7|!32XefvFnorC0l0)P?@O
zNKAcIxN`-Mip{#&f#GVqCUm5|cH~Vyb7qfz;Cbt}>{^{~xz7AObH?VHL!J_k$}7_(
zNX_!)LsE#W#MKF6S1q0uihTZ%EN6EnX5RD*cS25DsqE{L(_e6$eb#Xnx2uroe0C8U
zot5fo?+%~&YZ3O=B5eP;=WCX>DHLznX>xJdGJ|4^ROStvo@HbOxH{W39O<7}!D;(#
z(Q&~q63_$_(r(bdcgFGm3KP9wtrF?1>a}Q;i+%CXogb810$sPPs50ocopF5fjN^M}
zRMxW1e4bF!c`ECH{!P&h(YqppmzBjBw=}w}bepo+edVpdFy`4M%X?qlnyUS-(r(of
z8QWDC7vEy7eA0lUJ?1Sc`f8^bWC_BDMW=!T`&jk}MX~5R*uJ#Qy6`wkbzSDp4|N=d
z#Z5B~`<@Jo{47yykoxfCF9m*=*}--?vku9GbZS&LCfE!7F%vlTXxi85v3$*-X5{Cl
z9oxP#^<C93SX0-r__w%&$RECQ;fq8%t5n{p#|T)j)Lkf>aBscNLf%J0QTlqjco`1b
z?s#FgO!smv>-3j)D}-#e@pb%V6Udy-^xmC+y5RL4-yTF%7OuHfP|}~hIC{O%=M7$;
z9IhyTG!XJ%d>lOdP+Zb{`JdkH^vT<g>vI@=W-zvYx5eBAz3p5b+O#uNbw)f(lRT@^
zE;)`b312!ExjS}d$5t1t*<%rwYq9J2){C{?sx$U46_UwiSaf2Qiu@5fm0J@&EOKYC
zbz&0?JSnz3S$d+Y*u}8t>-D;~S;*d=!@X_V4f{}~HWwXGb6>dAO2v#hu;}-jPZ}nQ
zrw+czb9_{$lIPlg$;Y;9&ALm%=8B1F4-@~hZaDRFMae!*-*a8RF_$NZzU<i9p;hfP
zrT=1V+mTOqsyPBZQzFC!zgo+xclOM1H7UK7H-Dc?%2A%DOq-HCj!gK#0Pf^us+?0W
zG|2965?WN#^NvHvdFOYHvO}jj**EVJe4}EVBWv9deVncEb%cJNne>6PY1IXrZ_e0e
zo4el2;J?)N<+VZ`5y}FVcbK*-9ND_g)*>uUX0@5j-N(0HybJ3*9n!h_-A?O{`AQqb
zJDow(sse_e3tq8(oqT4G{l~g(Irg6!qF+t><~TLs8`D8Xg&pi1eT)aME!H}Ccy>tB
z_vs9c(r*{DyFIOYBz0X*Mq9t{YP7|!{iQc$b%GX&bozR{ap<4F__*MCMhlDQ2Y-3I
zJ|EP7Yv<uP6^c(+%niMN+v3AUr<%3vHpi>3y7he(%ipr;UJKkq?JFEYu5%UUzJ9&_
zaKzhMxnr*)<3BZp-oNd!P<~EWXVd+I*=+`L&P_<esi@;aCi$ZG-=!SBc4{*F@!((5
z<^d;;pX^I5zuw1I9dtrTby}TRN85jfBk6fe{nk<k9)FwqBJrzJ$l>=6A$!{uSAA!m
z(EeSdGbTtiQsDNh#vQ4q0;|QFk9YMSOui{lC6nE{qVLNtz0Vd8Yo^(JnXY#6h4A~M
z|7$+pukGr%SC?dTukiEzP@zcuKT03tHNqb4zsGT;Hq>FwS|<Kt%L<?Ai;jO`>c~nm
zbSa&txauOmV*kSb4}Ar0|G&(%Xkq%}`}&J6tp^*VDD{5F$7t=2W&hO$9^Q5J7g^*b
z_Lo_}{I9J*{M|;m?RpITt=<Qd_b@GzTHCVX*mTE`VAUD!Tckfp)QWz3@%R0No&V((
zKBvdGo%w(J_s#y$s7K!4l73J8amn<&-0sDy|E^DaCAj-BW4Pez2|t?Ld=?%z{9@4~
z7uT~2TKCyN>%N)giO&ReKZ_Txc~^Y(Z-M&4(37<uZ=CwgFD3_ko^fEsE<-JQx2K0~
zb{X_{Ommkoet+al?TnrB$5%-oe^nv(zFj?MyYT()tdd)IUX;8kyY<jXs9fPAv&y}T
zHp?zNmZ*|BwqlP&D7%~KlBb4!l`=<d{(vg4_lM3X--?)faO0<yET6v@mb^c4|8IeM
zp}3H}Q<A(uZ`_v`4*ib0t2ldBNiY5cD%BTrf9}Yb*>3pR@64U{<fq3szB;ziYJKm!
zxjT2r6Iu)sF>U$^3-Ou9KN*ExSKcVq>CX@tYPZ{_t3RUq$fG?jqQ&vgjMc9xPxPI7
zVB$@pmWe!9)$-RfGXG>0_I#p*%Oht6rR2@07ysxG_V9V8s&%+_=J`24Y=t7jIdP9|
z-8}CdWP8b`I(O6j=_>+bzuwHA{C9oCiN{&z<KCW8j(Qee_w7~J?}vVmyw1l>J`((*
z@qFBDHq(CC=vPR1{kL03&Isy))=O>$wH(4LzrE@SjkkNx{<g=cIKSxmWL4cWXLP-V
zWM@~;w48P0(Y}n1@Cg<zE#kI&UR-RH1NE0Bt_Jp;>aYA^(9d^faq#JyLbjQ^KiBP;
z6wz};*W=9v8?_6IrEUL6Oyytv>d*?MD7lAQLO*Gx?Sl`E_2yw)<zlLH)Kh1#bVr*%
z^TM^Ezt2>C*pVw*bpW((()qnp$bNo@5X2%%dy9#e&$OP<F2p*3_O>WA=*O9f0$2wp
zI$e}5{<)lb?v_;U-KkY<=gl7f`K+n_D#X4qJ@@U3x39uGy`HXF3mr;(5m+f?qoAeu
zY|@W!cO7az_c#8SY|qs1pTpMQCHi1v8qeaYe14a&Va6_7zgwPoEIHq6MS8C2@fYWW
z4^{AVgdRDgd`ogc>c?%hY#BV~8Ds<fg})%mOYpdxHM7V$3m5(#uFpHnI)hZq6hG>o
zeJoPN0vexSHCQF!mYP}lB~dPSM!UFizIQ#_iqr4gtvkPjZeq5r>yvYTlJjYi+BBs?
zb)ouhIra;W_dF})TFjLc64#^EP}yR@?|phPzj6NL%_qBm<$QXX=~w6aCiR&oXpZn!
zZgE%TuK6?Li}ZHPpSiq$1xqx0;|3-NpYIHYvdm4eUJ|pzhhT>f&l?>0-T2-5m6Yw;
zkN8jgu;_U8i;olGcC8ZqY|&O3bLrEI!)I<A6ziwmYfCPTkzVa7v%3D+#l7tA*EJr<
zmat#!cM;&!uVT5NoH9dA@T#TkRu{v=Dq4}5+r#x#jCyAjG0tQYViV$V0WG=_Qz&E>
zGCz0g@ZBT49#<3sJLS^i7A2|hsPs7Xhc-pDy7WpfDiWVKS!<*HBxS$j8iJEuT|V;i
zcbrfP(^Ht+kqTM<$JDtQRKI5FbryTnge+K*6j^cMPR~^fq34$b-|c(8PL)S#(MrDM
zi>IDYnXFN9F)#iFWTk2FH~*;y6AUg18h_j{;f4F7*e@^U#LBHx*HgOKd8GQq#eTWV
zJ3CG}96F)&c}_^DTZzKO&Lh?@1kYYMd^dCw>qk4GFf+L`XTS|mo0Dgfc|Z2G89rlt
zR-3jbS>2dDwCN@{3wy%@IRy(gmd~fP4*pr-_2Gt<!Z%5WH!e)J-xeO<qs*gnP4VOO
z7aw;$E9A0m0u3N>C4?xRISdM9n_G}To+*F**ebc>UaM4W1N)C0_OR)dW51y6a^~Ta
zX&xchY>wTzH{neN$0vs^J56q06nVD5%jG6F%kRbq+Z!J!JGjjD4uQ<Ex15mt$R@--
zu|n9E>4l&ZzjwD*OW<E?x3Ao19=Fdp{&(lum=0~hr5<aXAJwf|q2QY4JM&gxSneuW
z(Wf3$R>`KCZcr`-O->3Ny4up{qAB#$bz-}~P8IAG@w;n~6+<61WYf+r%AR5{;lT97
zd0j<c8m^~zKQOJFn4)*&Oy`%-pgy^)F9P2-*}&EjsW}ACu)H%RXS%8T%w}F!cYN(^
zxiiVrU%QusCY!K~5Ki9ag%}@vVbz`YJ$;YQ_6;rD686L?L+T$letoyAje)$GfxXFc
z?uPvK&mJB=v)kZv$F!fy7GXOQYU+=1AM1WQ@A(3+Yl<I3zf>^V+Fh_wGgy_^bE-e^
zr$N8o8RbP!1&^JvHY}D;dv|<e*71#1y7Rv)XT%@qw|>hTxLfw_gOZx-I~VMo;KD3q
zJ@LlsN@#5xSZTNlG$3_4S?03^Xh5o1KJ8xXO!qAtrH*XOI=Hb)q$7h_fOT(kvEv%|
zN4Gupw8-Tza%ZpN$qMvM2)QdURsQpbM7h`*?k=ZodS;d<J+qV1w(koy@4Nc*&mB-l
z?V^}cx6UHabn0CF<5O}VYi&#aZ88>jkrbLe@kWo_{4?Gmb6n*NRg!jgWGM>qdfaJ|
z+rG#>)2;H%N89s^A2U_*+!yiLo{4c0b#A(AAIAB}Ol8x`Nvtj|-u^;@M|ry5^F$Y2
z`l<TQclOK4BE}sZ({A3kjI(<oz&(e18lTnvBj%;X?6Qk$EWDE>g{~_HHpwM(Up#Dd
zFgb~1(Jl+7Kwn;`5P5zlx#u=Bj<<fEaQt}lgr8RwQsiV?&e%(}Y@D^HBiXbu*|c+U
zG#iU9W78@35T*X|4GKplZ3!(Z6tG#;{J_wXLoQu%@h%I-K;NXPKD<tH7adPLUMzUx
z@t@-}e!7Sl%|D{m$#*Eil|6CIIsQWtnWe7Yp-mY-Gh1g|{2SrmQew5wGAKrW4})xc
z!?&5zVw0X4c0Bss#J^r`(+L%+A}h5p;iET}tTetUln82v_sMyOFFwAs^+Dl3w~kjw
zv^rLmi@KP`@KzR>J}a!Vd?FahJ5xTMcjouCZD$UzPF&-rUAV@pU`<;=$$3V{^rABR
zt`>{A+q}e*rcPPM)<1Ri!NbALfphosEs{E{_42UR&%atHls9pG(ui!FIX%qrS^5Sq
zyBOZ&(i+pAt2ekLR`=fuZF;fA>q3ad?cWnyV>SjBDGU8yK{!EGNgsdpzHrUEBNz8R
z+jjXH$6Bu~Z@0v|_A6BJWXTCjgqpiOJ-(u5hP(JPLG&R6-;Cs`hqX?|eB1U@EN`~`
zn%vp(R?}Tpy74G{v<5dBzq|mAcY}xQXS73;<WEW6&(Q{-g{BtVhO`;ade}6{?Y{(W
zGA#ZC8nIXfYO+<f820;}xzj!KKb!G?)xN9X0oI;%yI!d<&%D2L@v8r=R~DD;Yj6Kt
zvsUlYFXPjxE{~NRYX15+R+LCr)Z}qj+}R}t9u7*DcL;I+$GgbtkI9pb?;}q<{@HAK
zHl`y+=>O9+g?GDoJ9gbZko?f<gMnD%@kJbNrC-!vu6iO_zssiVXwj@nD<{+r1QPFa
zz|A%KKPPwF`E8qaH`cmhi~7@k^PIJBY;ES{R7;s(*cdidf|sfAlY)Tae1TS_YxPnc
z*8c=L&aYwbKWq9RFq})yeBRL&eZN8d3W2K=<4!z2%Q;o!PXy;g1r6@K$8^1gde7FL
zx%cASllgVVr(|Auuj>ZQL030C=yoW$uQv6;w4+*$ay@bqQw650iYXU%yVZ2aIer0k
zUKevEhD;L+m49}zty1QIP2Ax#^NVl3I2ZjWO-0V>k>n|-^@iJz*te{5pK<f_91GnK
z-e=A*LbnvngseTyU(NFQd`Q#J&kj9nSQfEzevxqOuXJDI^e9eco?Ab^X@Bqw!6Tps
zI>TbFM7e3x+(CBDtTy~?cIHpTuZ@$mJpF3~JL{bum4e1iJ2qX&K6B^ApMAIYJ(cPE
zuYUN<8OCRK{oIv}jlY9;E@4^o)_igCi4N-tKkS6^7oavZkefA!&+MI1DcyIqFn3K`
z;hMUZ#k+Ysly*P=sc_F(siQ?4RGBqRu1{andvd;*VBpl^9~qURf`L9e6VzHvnUf5K
zvL~!yS1RT&7d{PI3Y+yMV$SpxNjp#2*oQ6>%$^w0?ecStZP(n0dEEUu_TDZ^6E#9_
z)=g`fWbX@E04`SeZ?)nM1Kz}Q4Ul2m&EE>l3;8-9d+;neo)WjnsAytk-6|JlKZQc3
z&W(}PBG!d^<#ID$t~wt#d&W#=n>iI~mk-r^O<(W(&3=zn$fK<Dak5DjssiD4+eFka
zB;OMZulhDiW!A;V&SxKsR4u6l?}-Xrv<tN9Dealv8Az-Dw!!DsHq}$LW?Ft^Rk>tW
zoy)brecJiB;QM-C4_QB)8~Ds2|J3e9Vr`fMx?gLj_~y7Jbqc)fJnC_0k)Zq{_I<+d
zzAkbHMJt{pG*bq;2WnGWs`u1gVQ<&<g0?!vE@AHY=j_l@<0R4*v0t>~{GBChLz(-1
zvkxTef;3on1%BP?gwlv#DAX#ittiBTtD!zI<6f2+Y-ygP%~k&gk~Y?$G2lo&WvTs)
zN3OqTd?a0Q?b>sDR=Mq07qZXUx^?llW_|@NL<@fL?|F?j^Q>10xf<-c&iC>9ugGYJ
zHG4&EKr`j@ULRPTBeFQ?{H<Go*1wKz7Pxx3Zt8{46<W)LD&<!9q|WD+IJ}wBeamLX
z)6XVpT<u^~scV-5%^b=>hY#IKp~HuZxsCa=XJ)529E$AC+b#c2WsBBM$xinRkHcpj
zXQ?Vl4yo%o)gD-yC?}}fZ}9A5CrIhLtLGSwZaie{P;9kpruR9u>6=e>w@lc4@@_4j
z5#i0MJSy)TA8CGhaTVNCb}N-w{3$6!cE<6BX~!j=edJ4fcl=E4j7ssoP#5Xd#uj0Y
zGI!@ccyX_JarT+JvL);rr8(t=ARXni$xMr19a~WYnowOV{MlkLa&raJQNB9=@r$%z
z)yQ|28(@RPeNjqAzCl(=ZJr^UjM809h0GNapQ&p3`AfV=R5(~Exti5ujl&|f`tOJ5
z9_jU1GiSEeMGk%;HlcaoR{Lb`ejR)7V;v`y)VeHW7k{+(e3`JR<3-N7j$)5F=l33e
z%5mzD^0e<O^!(?zKZ>zR(tH0PMj(CS42^)P8-5?xa_mX-i8-cx`urqrSr@gLE^GbV
z3r_vBy!x<Yi<LNwewufT%cEG(6nt`J=c&oAa%@6wdW&|oxabSLUwj<YJlE)tynC=o
z;H^iA(#3wcFug@a6F%&yUnArqE)*H=DV8OXoCa>AFaOJ-w((%&&iONE9+&#$A>nZ)
z8@xCNG+lUfg_Xf7Mcq|}XC7-jdwATYW=5rWn%qUBdY0p><c^<WNb-B%Zq2!t_;%s1
zQoHx=Vp$wU?z6oo%lalh`@jrZEN^1k%Y<_VJX!zQM)uD)p8mQxcRgr5pHv}}?XC-l
z`{nF<R&g)x$_V_rWbGt%!~SZ+&s7SaY<AsTu|?`%V@TY(ZN0C8wl4PI<QGzv+9+cy
zwuoJaOQ-Kl>kP|<p(mYGrY$_~^(EqElTDFB2iEp`SKRg0@6FFj{n+<$k<?e!Ny`^8
zb-H@Y@QUV`F3cvB>M=#!RnF<jgcEM-TW3$|-SkYOx>?gZ^cwrjzh^b&^?ehcZEp+^
z+rDQ1n<5F73(8$`PEWcjm^+(2_H=?~@D{c&brn6d;-Bo|U#!nQI-hy0Uo?BCK)90E
z#1-z3>P|VWe+U^y{!mwXF_&L&S8wL&lK6wEyZBeJ^si-30yWCNr|+rQaic?9SHfSY
zzEf^}w%qay${nCaHG`YzAsZdte!DY^d5ym(J<FZ(voLqfhiuj$Rbz!$6DuS-mtTC$
zP?b_S&%oW>Vt@VgnKw`0k^6sG!MM2LXW{a_il@%tUdY%b=jvvn@KHnPf0Nw%1;^cI
z9oOv9f>`@Z5Nhonh_x1B$G2{*;y(T=+F}>4gUC(W^Xwb>JIx^bR|2Np7uLJ^=+CC!
z6N@A+hCSD}h7Uc*^lg~1q2!RuBEHVE4pZ*TTj~BRP;`ohGicD+t>5ZP#Dwk@NghWw
zov=|4T_hMiVTWvI^u@&{!Tjano?=IQJ!V8!r2LF@3O#q;ONn37B_whC>CO`>{Y3{;
zIgHhh1gU5hy?>aOWGUp$B{FqlEBo2A5xUMvl~#xDe!sKT#caN+q0+1JI(yHQBT0yz
zbBkjfrnR=Twiq%eNp%`~@SFkl*CkcjCP=vQYwHJAPUuh+)cz8o+99aYc1K|9?v6Vl
zo?=zJ+xxygO54nMCubYG`Rv}z+n2wsV)?wju=<vIV}~hI;oICPYjT&@rr+wF#J}Kp
z<=Mv~ZlaI|$7c>mgCp%;8@RzCv-<I^h_}Z!W}T@jSugu&xyKvVM*^S`hSTZm55JoB
zEzTxJG2x)v4_k)<p8n(wa-p1Z_m&9l+0VjpCqv$Li?aMWSMZ2*jrV7ZR!{>fDTJ{{
zt0gcpO0IT>yY#b%N6*|pbf!K!=lkKgF2A&HLUuRZTw}KL<zD^os#0&;#eMc{eh%Af
zXK?GE`Fa&Si@*BUeQPQ{Bu;%%#n*AT|7~EW`Mw&N&P;_kN2RsLO+6w!<~S~L{yd|v
z$^EBEMa*%5t4F;BuI{`naP^1v4ENjrc`JYH<Ez~B%Od69WU&)}q>q-_-|<|sev;mo
zA7|Yke6+$-VV;`&Z<2Nfbd>v_cdxX@lgBB?H|@@LZ??@-COpV}9NZY~oRg;K64#mg
z)#1)2sgA4N2a}H;f3Pu!!?thhvelCgrT4iU`;|6j=I=?bA5D9cn3fkg>BWsZ$Io1x
z%c}NIwA0z6;^N_MIoTJ6OI%I+0%eb`_%oxOAGAhp*OoKl=@WKZzi-zDH9DG(TsQ6K
z{PMz$A2eDFUN$++-6D7Dp01hi51o-eb|#-uY5U^Y8}}VKbH--Vsm$tcH)M4`?tc-|
ze?yl4$;61(BjP4_X7%=P8~10-+~1L0I)C*$aH0IpIZ3=~Pp4cn-U+_D7GcLfSK1p*
zQ_uM?E_8nhVx0PpAW7rY4<l;j-M{z!xyxTJRId0@S>+q!#TTyqd|xE4ESd!wC4cr1
zI!ay%86~#}tCLxsC$swVtrz!ZcK@FE^q=a}P!|`mi*C!6p_>+0otPHUcSL<cM6=xK
zPeP*S_4sFZJWXA*&OOOgXg<TDRW)UmBJvx>I*(R%YCYR`Cf#q1yV7i}lV$oU6FpSC
zLZ{7F1uZ(5tg$cCG3j&D6h6>~e6#3BGD7l7g<Q7BJ_}7vFRQ%KGI9DwtNtSjLh?+4
zlCxvwj=IlrNHWq7lzex(=Gl?=6Hn~&+7vMP@A@SVj~LGs+x_^|`IJu%F)wdsb4`2)
z8kgRqa#b0$GU0b+r_@!*W|6K|8_>#xb2f`o>z<~sU$;a4oyxi|Z%jRHTIIkCH9vcN
zhV1rtDFwBQ&&XW-wBy$1aO-0Ew7RM3>(51eefqgBWg%n_W%!jtYxZfsO8pue=m;C6
z{xG*7pS_9)G;9;%Zm0zswz07?==an8d{is&!^OGkN0L<X9Fy9gHNJ1D-hJ^fXsiaj
zhV!YQU$pA_q-VPgKDQfwj&3+{@x?jVFm-kWXrq4wXftNj9XApNsTYD<od)ENQU`x~
z?H%;x0q^cLE{Fe|+ji>P-h8$HTYh!+ez_eBI}?EQ(UZ>(Ep-|$3p?`f^Byt(FVSKD
zQ~AS>BWWL2L@>%_A2V3>{hLEbzNvFa_55a=c^_B0ykK8mJZq<bv0BgZh6vZ47y2ve
zBmb2D=DC2m#k0rxOTw1}E7o}uDkN`Tn$P&^)9;6VO0`p=vwNpn>r~Pwi+4=eeDZ0|
zr$u(NV=mt}cAwkac~<jTruKn9lRl?|R)&`Nf6C6#H{NV2OY1@BDU<(t^DLS)_1k)F
zaiN)P!dETp!@OOVd3w2@F__qKwgI{?G@HL%*jyp7*+sQ#MrCK$M1u(iT()7HNuolg
zc^#)>UHn$5sDmoQuKbA(E}(5LKQ~|e;i@U?6Xw^!sd8?a@-wAXJ5|mpehh3})Rp?s
zvDi55vBw;5_Z`3I?Vfhx>V5Af@wf5%pd}9iTdnHFU>jas)Mk3juu4?C*nedAi;FWM
zmHUnk7j>cc3*GIje4Z<5F>@++pD7MfmAcpn5?<gAtJ{BjMBJ=86K4NtW807Syvb)|
z9zX_~i}}^Jxfr~4KjvVte~r)?Xe((x;}JiV3(4|TXRHr7B*_xhN_theW{KA&;jbPx
zJx4CTC}glL`uygr`&-_VZq5^K-jA8}CWFg(|J+S)gCdKk{Nxb0_)KUjhjOD_;1>a<
z@FUV5GA@sNL1O_NwmQ121l+#9m$<5L&@Z1P_x-t9vEn+HDM}mpI;TV%a_a`nPBs0Y
zzr2fUYc6<Ks_C*@iY>c2nLC42PIW8sD;9ZnU~QMitd!Yz^<#+6t`+~buU@`<YM-ll
z%^6n@36Ck6E|DTOdJB)IJp3%6G~eZymgaswo3O|S8y`76{CtAZFxwQdJ$1&W9jUbw
zEN{h_Z9l^7@kgR_`h{fuDjCOqP<y}Um4;g>$LAZ}parI7XFo=83WjS6@e*o!Z@%s$
z{_WlQ3e68wIdczI>~({V^WvUWbuU;`aPY^!9`T;%pXzo@-f`(V*Q6ui7ay~J`Qd<f
za#i;DtF1Nn`fp}CU-{ONS75a-d;3n?I@b#?D{QhCF?P=NcmwG*;+<dReH5|vL4+-r
z%NE8CnS1=@La!(OFcZ>WczpJYi;Z&4Q6a*Rfk7MSz@QO7WNp#$Q~k+Tdy`A;?7u6k
z-xpR}wD#QfOfS&7i4L7j9owwxZKJjveR;zyco9$MS&tmIe*d&rhKr#~REq?!I;lua
z*uiNFT0hbAX~tDq9S&UM%rUjoLXOq1^eU@3p`w%?T5l;h^GTrIi3t&XN51a-zC*?_
zvO=P=|JA1>Up;jE-Osp&6nlm!Y~11y`l#@KglfmBp3c)1PhM?)q9Pb6Ciqp|8nnvd
zX^u$UFQJK|##6YBR3LkDv-?jA!q%=9$xa2WYn{lUY&d2A?}vU#44s#YgH@#tdK{VX
z0Mxa$m}=ZFvqC{y)f~EK7yGi`?}^W1XH>dKuijp`=AYd0SAH^gv-7NTdoQeVx$XBm
z^b5x#`06dtkU?b$WXK@xUgyl;2E~wJ{1&q?%Qcf^PTVuAkGO3n&$nnp!Q#Jjgkbv%
zu`X3BNqm;R<xKv;Gu|Oe`xjfsbFB5sb9*HC<;T=#hK+KdNrT0o5<|d~2Fg8^B}vcX
z&ipZ-@l(HW%|6@D8&9Q_6c=3+6BJzgOHS_G=dHUuUY}p%a{JFY+0eiGdm<ASeH2vK
z_iwp_%`RRWyX~wtd9mGc7lj3`Zsb>3rTm{QP_|C$(~a*sPd@%R2x?dAb^b3h7WjUb
z&E;+`csZU#_krX<mc>@TCYOYM>amZN+nr>2)<#wl+ZH*{Anc;b6?4|;@66q#zI1D1
zcIx|wA5(5$-qF~%by?2xO`xMD6a>`ynFK#^25KbzUEa9kF@NKaGgTjM#4yX1E`3n=
zII`!}4*5k@_6&itFI#Qy%?ao{)IU{#Q%QZk>h`)%Z||#1y|zyc_%f+p=U&_g_pL6M
zopU?aPCxZN#z};^$?ntKU=FLF)26mD@LSEi_E_u4vi+--HqHC(+EkIz?kQ5a$ogK~
zAO87Di~9bXMLs#QNS?Xyvc1B`r>YME<N4(FFxi|7bqbN!ZCr7qInXz*!RFjIN4e$y
z&7TzhQJ+xxApfrEuFtI=@v8BaA~yT{m6ViL$!**pHo@ZS2k)|K@FLlb)=@U=)WQ@C
z^+Btm+Gict{K5g5@(pZ-O!<D!fQ*f%)!F=wSgZ5ouZGa0ZjV30LhBd1GuRdt&--9=
zA+LIc#Xs9<{~IrFyoH>cAza8Vbl?3E@0SXGTf0j(eu*KDpjFtc2K@rh5<%0@&vIw%
z6gSR4ywPf1?^T1otNjHf+Zh8>zT3zjsrF!*2pWC1b=rBWc)^XW&}FiB0$g2E1ap1j
z7W@n1NU{`qJt3l3uKTl4sE+u|<ImDct}AU6>-+>78{KFlF83)?NvN|(@u$v4(W1WZ
z9njUWlQpL7arnDb;E1J4pR!?x+~ms6Qzu-X9lO)>j#I@?!O$$bKS}-E({s*CY<shc
z{(YTWvF%DydCbqBQ?)y^ZL58S&c67#5HyPlT{xi;7z^G6R4o6jaBKSdGSEOk=)Aqh
zj%O|P+VPi9tmOxjQ0Dx-W~>*S?R+2Ix^w!>#knW@z-`WVKQ}FDow+mBbE9zg#2v26
zb}s!2RTUSN8v<Jmw7k1l@qf-ZY{Qozw?6UN`JFi>&vhY-WPRR!bJ8l)y&Wh1GT_>y
zoRzQar|c4YzOHveRr)@m*V~ys&YZnvYu1B}nY<NiTDNB1&UQCkwJ)s0D|Yp^y?U4K
ztrq&rt{$@JL$az%lLGpdQBZyW?-Dv2ebW1({oTmQPd}$@ZdtXzF+I2TUodEgkiYz{
zwSKDe4s705cBSq^qf^f6kaM?I)iHs`J$JpAoNDp&j^k90Ms}C2YlRjIDb*i|f1RGo
zxba)q2aq1<Vp%WS>}>b9FQm^qh4}vtbvh5;<XpLCUE<yoXAD7Gh^%3UhOAt!)VG@D
zbKum3Z_Een6n1cP@I5}+4O$9O5T;y}5YiJEJK053$Xxj&N7Wy%&odnQ^B}XPtDv){
zHdcnkZ+R~4y(PK8BCLWf!_WPD)V1z2MP`*+58q8b_B7|y&w8`Ui?5D?kEe?IZd|>5
z`OKeo%O9sc<AbklVBnZ17tFcsUSMbDY5pTy_&Z+eDOfPEe3qP=z_*I!vwy>b>V^&}
zhXw45-9>D>dTx-se0K9np_|1GKFV$(&rKjpXA=&qXcg|u+g0@NDTlLaQd=WS{9WZ~
z_Z}A=VNwZG2sF;_S5nS%Nm3PhcE{zZ;~|Gb!7ny?31k;NRGhDxA}H)S=UB#`@Ru7p
zH1-u9_Tg9tJ$~eza-p8Ap?Kg~)k3k(&YhiJtA)xy_1HyFJ$53U6TEh|_ra9E#j6g#
z%uxL_!Bb>U#&-RZGYtkO9S(W8pE>eaNNBIeo_@La3*1c>+ZdhSbHT-0Xs*YX#qCqO
zLF;GV$**R)*y?gEw8;0hD|iHS=jFO@vu><7c;~z<^rVu<iV8E1hc^9O;bri<F+pD7
z4l9d$LqeU4YQ>s3)e3N%Qfh)jf2F$wXq~|77ay6bY8F)bKxU*De}c|PD??_a&)n%x
zzS@`k^>xj?{_IG9@W|)eWqZ#&WS{hQ(=+9j+nZM?TCljxI3B8W%00B{r+~m7agKY;
zE+yiionnoFoD)?8yIl6V&2i}0`|@FNJ9Md0h;8QTC!S{>$DP?D*J0EDZtI#&Qo(Om
ztO&U6#=FNx|7u4Os8tDCvGAea^NYbn<=hab9o-)Bu$@RJl-XObFH3*oH`BEHN}uZo
zqcg#Q3-i7gy%k~;`tj&OaGXdb$3$nRCo9%io|5s2EZS^$LMGR*viKfoCsQmpzP4}u
z#M@_DcL)V`x!4MQpWM;0Zcjx;{jt-%+}<&n2P-E1@cvQ}3m%n%6vC^Zg|Hm75I)nN
zo!lC)ePjN|>s(!L=RI#&;r=KQG(pGwLh(7L^{;idWq0J>7i>HH5WE}vZeL!3@WqBB
zi#`5uSM6z*lh2e}Zm>$h?dj1KOf%d$K5y7!^UL6~8EDpZ`@;y?>&IT{%B;?R_`-|<
zQotkD#(uI*jJ^$R(`813+H}uiHf%leFLKk;1{X=8?aGD5RaX`sZvw3jP@3lYY~!Au
zt70m7?vKL0Xh0Xp6bcKaiOKn;#(v)Qp}I@b#l`#Wd%yVq)k=$IIDT9oG<$z}ooCMt
z&UOuXHKj#Q)n%0a9eMRj_?*7?XLlXPMIxR3{td@>3O^`ZC1QI_&oM-PZo>-D>i=$a
zh5pUz3j9U}{TqcR{CvWB;?E<_6E&Y$dakZuKYr@a#;6rSF5V3bo-Pkf(tE$ay5obY
zf}IuPk)y&73@e#z&Yeo{T>GEpt+Dii$4A8%CKu@j_V~`SdMvP796bMDe^M^eJ7uD$
z$sA*)o+FYfY8Mul=vL^&bIWCmC5Lc_JBB=zR$TQj>cry^-6w?~-A*LmYMy!gn$t7o
zY{k$2wi<+`Upo}>F-m52e_=^|^WthYck?-K|IRRXan%*@-rzNDEo=Y6tq&f)$x%8L
zv+jmQrKV8%vb!2T8LH-7CsY~d$*exM#{K&(#k#H|aVmTZ-5G43+|2&A>(53ZvAqBG
zYjXeFF9)B`^kdpH(0Za5509>3k_hEkya^QT{bpwlchB74I`jXw4U4VgI}ppu)~tQ=
z_2&AkuAm*-Iu}9By(Kc<TV7RH=mZuD+`q?n<p0;>4u4L{Hy*zgeQ<FSYsH-kvBj_c
zi9*-JRi1bpDgWeS^JUPiyQJ{3WDk6&aHQ0FitTzgaWeby$-e%N*;ZeNtk31!e|a)f
z&W)&>)e)*M{x*2^$h{2hoSg5s!iB@et@%M?Ag5vbk!@89d6B$FULE~kU!5;66JGhe
z`rj{^HR3rrr-g159Z;H<bC*$?{oRd|_Z}!rzI98t%;<oDM(B34md?+Ma*TqlC+t4C
z*IUbHnVF}mrq5fJ*c05lckV1OF4EgPRb1;E!@Io58}HPF7Bad!l}%{XotdW?-M1ln
z#qZtqb1v(j|9&HH>y^7!x^?sGpL{N``)PN+vTk|u{JIjkQ#*deo{A{#GVc2(wrbK*
zc}r<8!5DU#(`z|mHi}zx&wG>Kb8=hq0qv9P?);4RVM;U-P+|@=GH_t4nl_s)y<q);
zy+Mx`9V;@+OM1L{UXSLvjzYH?)uNB$cnj7G%_}^@9d^>#=98_>r{9%N%qIrkTD@B2
za4Ewv<I{hbsu}07RvFbF&6Z>Tz%}8n`p3x(0&2{PAhU&180<}XALw0v!1GRYNBDd8
zWLfF*jT_sI=RNP4Jg-OdU1(3W=(D)i3K?dbzLs>ELb*!&ew!o8{GYdWecWmlckX9E
z*CQ*1@75`@3<Y8i?YBQjFzjL4vA<TU(So7nq(cV}&xA%6$pg2SF}C<H|6r5cF}24+
zdJf~c6-JNE%=Vo<W@lv8G)M4h&*XV=zJ=?P?yNTGS3dGs;z6N`jdK6z6Td5;DDDeO
z+!toJFYLKZ`1j<cGx%%8FYWQ@+_Jm=%%3y)9-SQ~J8!QuGwJMD(rxx^QlY4{e8S`A
zITr(R+&=F8G`-MP`t<2btGE1jvnx*)mj1j_=&w$o$WoCP=_mJWa5Y+=ePZ7>#q|fp
z1U>gWmho3}aapsdcW26+<i{$~^-p?ECK-3VpSr)t{N@Zj@AW$Wdu!eulg>G_+iS|B
z9ef8OzGa5+bJ<kCE%_&!Ej7LN+bvE8j|qi4)7SSMl$>7e_HCb`-q$y#={AQX|Ge4y
zd5QYs1Dmh=J+JJ%xcanx^;?z+A9@}aosXM4vAyES^vZ9q;#Ma=ox{IWV;ytb=Y6WL
zAHHvCe`)=2or-|k;Xi&A63@2R#(FaRO_8|I$$$8d+B$7cf22f_yj{I{zpz{%-c+$@
z_3G@a&kjzVFKsztf7SDCWl^iQt$upteeYMh+q3VzFy;mERSQ#Yn7GBwFzR(Y<>8{)
zT)otdwKw|qi5peAlGiUqZH>L|6MXE|<T;7!LU%_@)%kbgW`KxmASRk7w`*U@znYrw
zZJqaQfBqJIn`85F@}9fxv*aKB?OJvC$EUX`H5YeZ7fY=vkWT#&7rlG^+$V8+cTKNK
zeYbUM_2DC%?UxnW2paJguV4FW$1d+98{`z6zu%f=|IV(fbY^n;^P?v3_gK8US-EkM
zo33>9%^#E0AM2j$C~%ulef9WWsV8wuZ5~@3du(y!F~_G9{G#`muRQ<!(0_5k)Hlz1
z<O`1_20rW5FPnR9@5$2qqPw&AysDIP$P)9ob#9|A^O<D~Hc#gjm^a*vd{W1_p66Kn
zhL5#oO>;hKrT;lO`J>o(twVdciq=<E%D7j`ystb~*yCQ;;V$=NqWq)m(mTa#m;H?T
z+pzwfY)$D}*Ex>$63RI)H#myi<kNXxS+hSo%{FmMYWI~jrG3}+gg36;;^F;{Wn-?P
zlvqa0;bT>1QkIAHyw@LSJK7d{Yoh*vh~vkq?7y6fck^83V(<OzbPI=ys?yBq&K(|J
z3X@LEeK0{|eqmd$y>8I@OP^0nI2E&cbIu&il#n8}=@S;tSN*&+{D@ezO3^_}JNZ)S
zs=LBU#^=t@%sAP@o%3b$N3Hapf@3+FRjC^j&n7<!i(D5vrMJ#3?paUDM#-sjK6gp1
z-#Bqrewz{ho4*VVC%5@H-&SErm_Il3MUh;1Y3QX5H*TCbcE8}*dRxi-LbsM`(I;_V
z3)iz%%4nXq==*5F_whut%_nD@PmkwiUp;mGlu_@gbM8|m*5=$ff9&y`k22{mHedf4
ze0?rU-<GFRx0D<<?KZo9L6ZH^_ptdNqs`(H9#@`w@wmtFoJVDq>509+!rxu3e^~fO
zx&QIIOMNlD-jZ8$a#9}WMNX`Cp48D1!F&2lTk7hU_Z_vT%|0HtxH0U2=(&ssJ&Sse
zDg@-u<}I`B-Lq_&6wm6N*K$_mE?a&3f`ep^PI9uS<k9pMfw^sqG`i5xBkxV|^4H=&
z>wWs~oZ$PH_4Ao$HzOAx6mJW1T9tC{Z)QZ!m5mn*R8!Y@2OhinT)bX}+sw?hA*DQa
z-9lr&Bi6;oOYeFrTzY2gtf_j{@cC4OteY91CGv}oF{HOxDj(S^^&n2wX0Ozv!Z%L~
zZO%O2G1>i|ms{ofb-Q1b)n7baB7XhCQlq6yte(}#g%)+jYoCyu|ENdZ@-aXDLfPuj
z^;h9f=k#|JGs%_oo2$=#{3LDrL+y8*?qZiSl9k^JM?`A;oAdcmuWwGx%--b|k1Nl0
z6dm*QU%zZexZ%6d8OH@574m$r5Slmfc;%D7HlGCIR~y8ymWW?n{B$P2x66{c-5y>+
zO4fIU%XW0H$=<e`7tE}`xw0kj_%SoHJb|StKa$RQC)CX7jlPlbkY~5ZUa!rJ|KnG$
zDKwVe`uW5L7Z)j)Bhwl@CRaNx{%yQpQDIxhn!-NuqY-D1g)W-HQ-7}V<1s0-u&`y}
zhujYQzpj;SB9<GYa#%>v^6xwkt=!I@9qMxgCWd(RuxZZ~npqhCd#}bZ3F*Q>uQvPV
zdn%Hr^j^+cqIFq&!^AY^?%K7Rjzz1U{_v7JmwTVaPc?`l7B}~U*E8)8OA4N|czJTh
zqqw6x!V}+xb{sc6@Yti`nBen?-#?#lw)q6{x90h+QIWfT7Q{8pe>D9;e`Q=#{A+z@
zO~p{7=iKI5H*Xv|_T1vJIHW#af9TF?f$v!j$0vU1Q9k$h#q){ml~49RocO<I{nhEu
z>(+Md-1Tm@?wkGlw`M*$`KPyd-?`|wHOo{l{?7RK%%;v@icpYh@jL#<+0iF<yiPNU
z%3IcxDy?~V)$*QSEZ<*EeIK;`+usRQUtM-wu=uvb+v<}OmPETqqiYijXN@D9bLD!g
z$gQhWm5ip8A9^Mm-n+lR%>TuWntv^cclJGeqP^^*Ma>11CmHKA3)~)ao>~wmYBYuQ
z!OmT??R-8LzUDQNm%r=sd1J2a*#vLhvkyw&f8dehzdUFEHTUAWiW??=HukAfM?*WM
zQcYPL{PU7m=N@0ym=gZ3MPJRZD|u&Vp7u8;!OILyDGT~}cqTS-r#!e3cG=;4(d7p{
zf8sQ`4}6NbYd<Tz{OCQ7aL)<P7x(k<Olq8x&emTzRpyaaW#98Z;VBP}r^KxDy0a@N
z+3uK_ncdlA!b}XdGi&e8I&R3zaC7f}JI(|ViTLMo?BAF=X0QpUFxRFebnq-W$q;A6
z`ylW#gPr5Cif`iWQ&~6M**UB7^GC6SbCoTtRZfIna%W>Z>Cp9>>-Y{YzQU<2JH7ZO
zHa@nEQH=?IobB6etd~@vs#p7X{mmchW_4#JYv&khFf{OOe`shiUv*~u0p25wJxmp6
za$hhsbYwC(8eMQ_YdhgEiznfRNrSjA^ABFhAA2;o(_4!TKR<h{dtlCIkQY}k0eey8
zx@aHRi=0JMWt5nYpJX`Z!~A1gCWH0K2VPHj-dz<kiAz;J<Tk<hmqqf0%Cm{PZ(q=x
zBqW%5YR|p}o-Qh>a}<gVF1bn<pNu$ntSZpU@#E)-dbd_YOs(j7eRIdW-Zs|sklh=1
ziAerB72+D`)%ZEm=!G2buGujv_X_*eg_V@H6*iqYxS`AJ*(AfW$5!s_58lah^n82h
zmcWf#A0_fPeN>a4%zbV}*<&A1qlVMA)o)o0xO!6OZ}_qR)No;Vq5OE$`8eyj^%btZ
zpoU9qvd{dz)0pbM-Fj)Ge{%joCXnQF)njww|J}@1XOMZUwe!yA@bq*16G3gFnOc$A
zQqwD$W*Y7gn!c})Uz&CP-m-6n#}w+-ZG7%?ma7_eJ=~LDSM|gCVd5{p9on2<CMMRY
z+wgn_HGvu)u3eT`qi)0Fzkb4f?Nr8yd8>cBe}1*@1*nnKY$IQr@}d0D;V*Lw!i6l3
zg%)+JequTAbNs}_8ugeJD2Zs^)-2iU>WhwbO?j(*obSnckDY7hUR(7xOS1N=$*eP5
zv$k)&9JMu8cg{r<C&_uDCDY9zxuWbsP0bg#^HHX=`qy5+#1rSAeYGri#sf*4Yu?3q
z>q2i|on&E@Bc-hGGt;dwbdg&mFP8R@h-=_9ott~Nm6^@^;d!sm>MZ}qKC9j4K40FQ
zyx+Xss<-d_<c~M4Py9HszhlvqdAs+!Y?a<IDQkOPQ}*>c+1cOQI`99Ru<Gx}4Ve}1
z``s@s3%pl-;pR*Iv(|rmtIK|^{=7Z#wV~V1in+#oMaRCo1fDu@zwj+z!B%yft8&k?
z-ar3+cr*Kp&GT#>e)c`Gb?~m@|CPl5^3iv-?{BRB+WH^kNtb!r(|kw!uTJ2pL-z}}
z>L1;E@~vco8S4Yh?GN)9Hg9HlS0p`;ZNe<pNo7xYx_hl}RJ0hk*-9GEDV$PWI-z>$
zd{wW=AJOZ+)$Oyt_w9~+;XeCcKl`{o%8EX-);jk6f#rGIAJdmLE=iRt-j%H@IC1M~
zmmF=~OONJlaCFIu?r8(Hh<5BR*{R`XEPZ`L;`AlqT|s<IF`bP^_buLZZ0k}`&7tP1
zqAK9IL)|B(ZT@uz&rXkLUs<~o=OjLkk*r>-@$^7=dC0XH8n<?Mw5ci;*=Z$p>t1?2
zPhe(Y-8q-LZE@dQPOv`TA#{w@tnU1=_m+<{PF5||c$yISeucL*bB@aM*^0T785(NK
z(oV#lW1jlvH5a(iWA<@!;>L@w4AU$gYoyCO;i-*VG^KU_<1G0HS^gEPY|njnx4$p1
zxX=Djjl1ka>sQmC?#W)N%cQb9yZG_D9_EkLpk~0yKYpRTh5FL>6CZ1ytB4R;%JWC|
z`a6c}d541EI>)@N-g!&@+3&}GMtxf*1wN||SdzC_mo59+jN{*aS#3@{Db*Fk_iBgG
z?43fhS3mlvk%7@rS)}nV>8w<7Ja={N-byFi+Cb5W%LmwMRYUgQyR+0Hz#`c;{l~$8
zDMb&?XT|SObl78D9&+85)8&)cyqvBClbdtDCtj3vKVmY8V^X7mWJM=Wa^dM^-Foeb
z&Bi;zmzs$zl?ho?b~@q8ri-VJ-95yewA|J^!@cqEF`-)=`U`nKExK)IWN@TA@AACV
zUG~pYcYUA9re;2A<9(&Y4}u>2b=6@Fn_?7DqZ)Q7BlU5encVZ9=N8EU3<^7M+WzC3
zv-f0wieCqV1nY+d)q5;o)=YaM?J$Ao%fv=SqX}xv5@x&$uA4N>pVX*7Vd5PZw)6($
zNpmKeiY%28iSL|h@NHvZN3TNqm%?KURF#4@-_5<DIcd_A6MWy->wUd_w{7k_PV1~W
z^OsFbQ;t0`!@KRQ8@KfB6DxM6CO$r43^7C0FfZlsJomQG=UddaFAP*s*w(Q_`<*nX
zfl}C1!Mi$R@sFNvN$r~v!6#-Ew=J5|+;vZ0)ND<Nmy6q-HesbOD^;W7Tb6d<mWiag
zht^rQS-lLBN7G}@%t(ElYvv|CXQCm@rXbam3}?g-`Z0fbbtAB@G^ZtAR{F{Gv)?|R
zPHX>>x;gXw>&*6_U$^Xka{aQMkK3;19-)0q;en@`?Bg&0t2LXK`j`RiQwE9C^^Si{
z8vfpVpZ@wA^J0&g>$mhH*MAPLxR*6<T)V9CuW8DM?r)aO)uB@sYCK&av^9E9;OS#w
zW@W|4`Yj$8Jg~fF@qFJkm-mZ*M!&t2<!?K4`_*&1)^G3Mmn|_r^QF9D?=t1{v)caT
z^=B5iUFJv)ST6=mMEdtO$R#}f^f(N&%O~O*xN7E^*M4U2Gi*K{y1D0D-&rFGr*(-}
z-%6_~Iaj7lmD0BNbGz++;zos!$kH!4KQ*qtyZS!p?K-QYTdTKBU-kFHhQuEa`c6r`
zOF#K{{#I9^|C-Z&zCXQxtFw#J|4ggP8@@*SDy@|NH~r0jr>#=|)43(f*C{9a?me;a
zxY6y!r@sDYe4X;`<lo50^}l9s-f6n)RM3)tzq60d`24@{yQtFg{om7`?Re+?e_PwC
zBYBIoexBTa>Hn)`xu33iZ=Sh0^nc#Z>eH9><<I|nel0ib)~q_i>f3Q2pI`4<;xF0e
z@yYbCfTgf0ucV{_?<s+YJg=@Y_4-?Nzddg3eVwU#Zri*w@zJx6&uy!&O<j}xSgzmj
zu%x@?V}*2<o#BD+LZ5|mOjSK~e5a6ql~!TbYL#Q5pMH9MyJ61q=-k%B$$8H0)jgml
z#&?T-GmfpzshQk69a6L!^A)Xcy0cp2yO+K9G>h^A)p=j8yb}rc>{<P!_IqSfXNL)B
z;KSwC-D_vg|7n}j;Sv1oE32qM*yfLpX6v5zgr>d}-P5+|h~_@8OL32D+d_YcxCTyX
zicnIT%qb`sopK@f?4L9F8(dw4-dh}>YH)7DM|ZP(k9szzz6?E(t>HcA(dr|gq~3d5
z&8_F_OP#O#wPAkbrOO)e64R@`%}N)kf>iwHH9oxA8a#ixPUVlA+0Q-wRmCd4-TG-)
z6Zh!SR2G9d)t^sx$uYc$oS1vVj7Q;SXz8)@H!TjhO)zenBlwi(uTJEnHBWZkdb{$7
z=DJA|;U|B;+pMxXEVugdiN-&on%lQt?wS&-+qq(6+fu9EsoN)C{FZ2BSEZa<QzD#t
z=ZF3xoy=!}o!hrfoOmuibQzYSv1^gW)ibW&Zq0geck+Jr^M0@I_<t(9l3CaB{no9$
zi3vwcq<Z&mn<f8f@3yl12R+Axr#SBYv~;0P<rc3l#sfRj`7i7`vvD(f#;orQvftk@
zW=Xv8{w%lP@jP1xU*^nv%q4d=vunI9JRx~UTh4tYZ|cd#p+O=I?|kj_og+VGOcgo)
zMyFx-o#y3@FR$oK*fKY{nr((G<A*8Lhwd_@@y})p(w{K#m2z@fN6$?Y$pafQ8T4nd
zeUOo?XyN(8DmjPo97Fn<y8+W|qEuZIZ*J?@vcp~4<<d0Wpv~7T<97QT*>>p|XHs-d
zL{3A`BV)a^n1jbmb7HnX=-DZKYLffvB^q<e6;tnRGf-p#)s&_@N|S^n)H|+wi06vT
zFEmW<>Mi%0U+4*OXRE4`k#K2$m21vMSEYBqx1M*0RG2-VFPrF?t#LXQV-%Frv*Ba)
zxfk&_EV_)QsP>0>7BV<|+sgf|&WCwM&S{e^zD$b`*jZn`@YJUIta*ci<O^kH=M)8B
zwhvn}8K9NId8NhOyytElm*h5>va~<UGmzn9b+LQt-N^?gZi{h_W?6jl-K`ksbQ!_R
z9!ef;hf*G>8WqgwNh$BmEMWW2b!T;#^r=hktCvVzTVvS&_G@XHbL{3^vo)Csi?8LZ
zi1yE4qBm#bJmXb|0;btTsiJr17ipXdS~zdtEv_|@!Uj@rzJ7fld^o9jpJ>Q5In@=D
zv`<}JuaywY;!*beuJYVMg?lrt*S+>*nz(J1@w?Q=);TsuCC?WfOFVa>_V+XkvFo9;
zmkZs0q9yr2tMdNa+s_~9vEGaSBJ}yFsg7BcEwn8)NAO9U>(20Bk(-X(JUI0SyT7Vm
z;nX8LyzVWZuPXRl?P&A6kI$AA&$;u)tmdfg!xKqTxj7{pKdw<vZZqyHI_CH;bV9Z0
z)3}%ECxxE#tvfP#-mSThv^oo??s;$Lts^+`*IOk`&(1d`(d9e#%LIceznAki9R8af
zr`ls>wr%6aUgLjjboMq~513|gG~9C*?}^_%+Ac0(`xTWYZQEpi@{{=;`xLXH`L)iM
zrgeB6o)K~?;^?u^oEvirf7zb%xH)AaN5J}jC3C92zLUPPdZl@WjIep<i7$rFTb6xQ
z`ZTL<&yQ)ZjrQA@eX$i3jQo~=r+wK?$(ZN={@u|0zE*i{_<qN&)n&7?%_FswLQblL
zpX6FMY0K348)H}+_r(338L<8u_t&hQ9UM$4OLUDcP0Qq9nliEOtI%|<_PJWC!gm%<
zc`Vw-ZLVYXF5$7@If-v6X9|u5zPkzyk;0y;V;}d`>`kBgL3iCGfpE_W+J>jLR$mI<
z9UP--2ogETh_e;C^N{#iqu!nOw?3`dS|r&sHK%05M?~XywZeC;Q+utRO19Tc`!QWM
zM)m)J&`&(!NiEtRmn<(^zQZdiMl}&+!*7Q0>O;l#M}Gc$@%*>)k@Aok?^j6N51jd3
z@Lc1g_fgNU{?V*6{XgS*>c6f3%(85cX-KaxKIV9iqsVPab?K?g+JALE8nUiV;l6(L
z`3|A_htQ(WbH-|wBU`NxT%GqJq<YTkz4PDqE8Lgg|M2(Y^cwftk3r$5ybZrE_-sD;
z=JNA%=Ue<ZaDKD;oPX=X{r-O3{{LUZwudJUYA<7}`?LLhYTw_?B{s+ElOJ!DI<-T|
zRkBy})C%vy_2&xL&pY=o{b;$!nn~MtuKTr9=>P8JLeu?=r|xkNEqZ9XYSKyLkln(^
zSFC&FzT?*auXd}x&0~M@??+vK=AUnl`|S5wWlQlt>1h(F=hwo_UtNndyeA$IPcfMC
zJ=$Y+*;XHywoiUH_B>woQT*I9PTAS#=Nt6gHlI^-)I_SCe^#5!TT|Y188(iRS606=
z5UGFMul2Dta6)AYN5eePn~%W*3itTh;(d}tju)-I6ZVExX&EESNe6jJ2_<In69+&|
zoOw@|9hAJIU9es&PvhS)`Ort)ixs}+<UH*0FNO>kY(Hz-pDe|&sam2==zxa7zH_#G
zZ&(Ekc@;d^ew{cVAn7rgaZifWfyK)hYnpmKZcX{J;h^N>Ie}izAJu!``PYYZ>h~P_
z<9_akDWvViV0EYM_=B2hM~u}8j{>Mk{*Ztc;`ak;PF=q<|EA=bJ*_E*tB%OKCDt95
zbOaA?J}>XSeYdUbyRE(NyJ;(UeU+3nAG6GCo~U<ghWD`|vvsM9w;p+{aV((b)Yo_C
zzjd2f7{A!}V2M!ZBmU%fB9jw0uF>c+;-7PVlH>P`3xAJ3JYs$BV~Uf@5i`FDmJ(qX
zkHr`*yIIlQo1CIkB6C!t%fIsSU(1S#Z0T(3b02$!blUgq3=Ux{*qOe5E`wX+#y7&#
z<U}gI-Qr}ZO^Nw-Gkf`G{`D&|W8U3do!zrm_3<VD#YSxDQ!WMk@%(mkwf?Fj;%<pt
zcGYj+JnnJ)=T|XfpYS`cB$30F_y2r>cgJ5S9|lielpl)qWH=n{d-#W6g~YtL#%k7g
zp+|X--v6=Kt0qxo$-G|OIUh66RUFzJw)XKamn#tyH`PA90c`?+dgP1O&vKi*Gwdy7
z&Z5<LmYc@m%}wj1cwk1P$Vs~XS+9*XU52*(Ub^A$cWY_?KTm$fRDX7UYxJZ4@y@pX
z_xB7g?pEK<TE10EcE0-K&E*q5{+v7IW2gP{p4rhBkI!WW)_7aKdbJudB)9IrK&sAd
z56MPt&Bb|5)n8AQuMFS+SMlqsj|B@0Z6@veV!;*kWouE{FYnKO^^fPx{rBom?v<*Z
zK(n~#J<W3jpY&*ae>G)!_%8Mp{hAS~(L2`J9iRGx8&)wKicwWucb9S9x0dC%9>=`>
zTT@^0jiL71W_FGHfv)cvqt4i_sGj`#-V<-JyR-L9s-Aq?_&^TVf#AHucNx;s8Sgwb
zv*A@R<yLunN>WU^e8WeMbe?J>P`CB_D~0b`C-!!IvT(C~eBr#%|4-x=oR)XDPU|>v
zD^+RRRI$uL{~HQQ+jQNWZ*6kTx)XmkR%G$a-s~G2PG8a%F?0E-`&uhlRZjUp+flcK
zjqg?*S~JhRO;yQAQ%SSY<B)Bl(r5dbsD1d<D%E0Rk@}*tiK|%t?On|Ed3j|@gp$(p
z#Y)?5DD8d6IZ^WYbDt}@FG~G8VhZ}S6Jrt{f6w_d&$w^e((p!0$u57%2bS^=B}?`<
zM?_4G$YH4|cTep-bmok?^DQ+-hToeE@pS8Zpe6sysdoAw_2+5bJQ4aybKMd3okIT~
zAeYWp?VzRe`~JFp_D(hREkFCL4wYZ|AO2&}#K0r5+PQ)XH)Ci2zW<_!`Qx7OwyUM;
zpRGepkL}H=X$OtAN1n4dBe~pW@1^rX^1(H+S2taJWq9w2mgIvTgY=diW$Zh`IsMnS
z?YQ;*lZD)~!aFCG^Y@-P!5#F+RwL-P&-#gZ83z4p(_S6=eT-v6;A6utwg&r>Sob>S
z1is3Wl-9l(aa!`V*uq=3*R#%UYE8q^7zT|KeE#hN9w(^XyfZ*=!?MO+tH%+quFsBF
zV&zI-^StMkiAep!^IDOs+892byAv4uT}9wzbj2pkri&@%_u5@i+GagRb!Y4Cl4;{T
z_aIJp-@+f<^<kb<rMBj5*;KgwL(`4S^G4qS6ZUUxF+1d)(Y)uw-hLjQkBe?^NniQr
zeC5n{waXe$_NKhqenMl1Onv=D?jPL-BJmSqpT0b=^>O*dQ^)@1*qoC*UwCW*gG15g
z>OZ0u)sy8<&JkcV;CkTry`uQiPo0y<%}j$FDTno$4ECzb@e0a2J9*AAq^npaGqyeA
zjyv;5(YQIjsDHEZjGgjgOTGSNzDa&8APp&hy<L{1?Y_MsSVdKHqU^i)*jL*jlNwhn
z?0uEby6u`^IGty9ubA1kiGjtZ4;|a6;QW#Ob|ss!>%_SS`FHZ(lw6~_xF_^c@MAZ#
zH<c+C^^7@1(o%QtPnl+VuCTe|hLC}u!1_c{NSj+#I@@c$VY>52PMhYL_jjK;_uy5G
z^U>8Qn$lrfs!GavhdBj7vl^CfW#-rUt4!V2BdjttP5G=Fq=A2C(?>Ju#oXs+>|gkU
z`8-cr+{}4%4+igS>k9Am?+x)ZV)*R3;WESC3uRN{Wu+g6A7}g7dcOA0rkjd&H*;=%
z?s}1UnW66F`sKAVdP>+O4{M)X@nZEl(fAL|XXN!FRrggX?y~QBzxkt%G`q#(eq%P)
z0}=nYUoB^RbH2_#db_-Y>#3ThwMR^l8umf)2E0AFro3;~D>lb(IWKu<wUKm}{)!iK
z^hFm>>s^}znP+`?pm<B+x!Sdz_uM~k|Ge|+yegyo)pJYZ^W|%=8`xdGWS=DE>pstv
z_vc-?%MW^%37%RI7upI=ODBU2*RbCZz&5okl6rDd<=vCdWP8=)EM{N7w=t5<xiY$c
z-LBfhE-4!4*90X$J$^FdH;1JB-ibzexr=+EuN58pzgW8QSNqYGN9L|gx$}k5$Zo?N
zqjh!Djl$+W>RG(^%Id?1Q{|2~_3EoJ%A8(X6unWLp{nTiha77*aHrLNb74cTLOP43
z@+oi*uKoST`D5s&IlZ%Q{8+PGXt{;*F-cJ4@OxH6^;A#;?zrI7LYu?ikITvZ{A=@R
z_6d!bwm&@6H~y_idl{9m{_=&%KeN3*@3>sBetl1A&Yj1w5k^E&R5$HM+o8}R@$i#!
z>yA7}8afbqro~yfl^;5``+M>H_x%F*<rDWUPO5R2)qfl--C=zkG(%C)fAOK2%`>^<
z;+J<!?aklxaT8kSV(zCNXM69O!?`i4_n&E<-19@-y4i8v5smOip8jtky%lh!^bJ%g
zJ^$D7`R~Q^-`zXjuQ0eDXt;0jxypA3`)3~e^DfHUWywNM7Zue@@8(VTIrIJm=#&N1
zu`DyY6UVmB*|<t)@1Z+9N5xa_u}qsg<8|e^>D^NndR=mr7Tv#CFE=M?aiW~$mbV)g
zX`I@#!No-lG*xk8!R=W;XWmcf?f}hRXoJRi`*Zdjl}tZ<Y4riHS^EP|_?($-^Zc?>
z>I$LN8H*p4Us>8~eq+X*{I(LS|IZ{(+a<m%l+yd_b4>i$(s_HINw&`0TV{3M`;#$v
z(Z;;#GxlD3uDWkw!PGlPLqBnZE7@1SwRySn2y`C9ZE6f?9;2aU`7QnLZ?5hHmG?2v
zZmzC&m(_kAs|{+-fLb~X&&=%)8|>F!CG_}tj!c5`3CTZmKNL(c_N%N~I$!nQ!XH|Z
z=Z^X2y!jTQRIhF$^SH+#+_R(F^uS&((D?D=j!zcz9{x_|@BdRL_tQ6J$_u$O>q2ke
zGbvK2cRiK+c8gMKxVKW)n#7fU$xq*=Y^j~Wb3STof8L^=+1Cr()`fl+><$Kve{B33
zWwdVT)~wy@W-jZws&08WX7#q!s)a`)RzGXEK9!86G5|H#`@7$4HNCi7y`F#G+-p1M
zKY6?2@*jcspw$-#Ix<b9s&h^4k5uQry>~#eS6!pIDpa&BsB+zmvwwG5tx8!bag8};
zjW7dfFyyt-@pEzuGVd{8F#r`1pfM6q*Z<NU_7^+S`2%h}o?yHq+@`Nc`jpazT|0{R
zh4e(3ZQHbQwsGAN$@bFxPm?51DP4Fsv;WL&vy%KzUGIJEthpcPZGV`VU}eg!lKcF|
zJjOJ4*qV&P%Nnn6r!4t(Vuq|zvY9WNL5|dc?q!TN?rd_3%=M0-Vd4XlpUtNnU2xY}
z{<2N8eS!apa}Q)wRCJ9_MX1`Dy4~p5Ao!%m?wrJyoM@M*J8is5nWx28M!uF=AFGxW
zo%xt$qpq2bnS<L$Npa(K36G`B)<qW_`@@@BsA19kx=7u^c*nj8fycByu1uV+boi%-
z-ws}3r3q6yQsOEUlr$R)n<{!sE`l{LyHT-xLg2AD&2Hy|k~Xug4?gr!Tr9M8Hw&+~
zON!bnvoBpYlDb{=ERH{4oaem0+UdyO+K9^=ZfxL^EI#S6(eTi*_m+$66CX!RSg6A_
z?`Ov+p0q9{>t_AQf}WGW_J5R;UimYH!QopeE6Om;zBk5=dJIStuqKiRE-z!elP)#m
zj>j>(?jAiei)49FLtd=0?0n6ZG^sz4s{c%)Ztj@hd))G|<v9rvg?ZJgldhEdGr51t
z>)*!VHu>(>oo(kVl$K3&nZVO>@_={B0|UvE@1&p$$GY=1raoVFM}GAZuT@u8q$Vp%
zm!F<xnv}49IjeB#*)Og~XR(=Ooo(Co^^4o9Lz1s87hCbB2Ckf>6}hQx5k}g4l>h1_
z_q+qMOc@s+jEnzoXR2fN<MajwPOsFJle97)^rW53_;%1jEGMUn;pDqL@B6JEgC;d%
zuFqvr$_-7wbNX2MjfyVgc~5%|&nY~0S^Mtx{Er&WpvKlS!+TG97|(GOyFoKxmFbbk
zH%>pUm~p&Ny?@Wto=^9h-z~cR*H!;=Y|P<ZM}i*MKu2TFaTKjzbZ2$&JkWs5qQIJ|
zIVq2WV><ndRR0~EY<M(O=&=@O@p`A2x6CnbInP@>s;U3-`LE!kiS3Z~;rdgR*WKm_
zLuNT-)XjJE#uxfqY?|RFEghR<^ZMkBhdqnu6ixuGpmE(9zTD>Vh4YhKn^&g@ho79j
z(`()%t;%`YhNq@hz(+YiWytE<hSjzYciO`&v(`FO9@6uEMe);}pcyvU2$BDdhyRLv
z&X#RYTwZ;M@4LSBRD)MHZX7#icJ9aKO<%Z*ji$IBG?tftCb_5e`JUGF3u?)6p_9^>
z_w8P+mwV@o+glqW9l?ogf*Vy8E<Krd;l;l*`5Ya(O7Eopx*CRUE(`@X+ov2oU@U+0
zzS2pPH8D%HIDh=_J0;cYDlL9;gNuvbe)UOS(MrniIMrQLrV1@S=(XG>&CmLHcT&&B
zk7m*<H+|6xxFL`_@xz(pD=zTNTjw*if(NpE!#%ZkyVtabm&I>w+Bm6~&urgwECKag
zwcG9Bu1_H+?Kgacj@76qgGbnfp2fB9xW&HXmhikn*iel!|7Tgz$JSY=ir0GmxK#RF
z^@nC1=f4@xRe#_bsfjf43Q&!{@k1v3k-m*&@Ek!%Oy5}zsuMvAB0&>?j&eWqE1uXt
zwtjWGcz@W@nAqnVFTc6`{G7i`&4cGRh5i0t*Ixeb$L;!ho!bRZ9*71r+yA@$-RSr~
zlOVar`!{}!;!Ta2xTxotNa~fPJHnsu2=`C_zd0z;D?l}W^TqR1f84i~JiUCU*S*DB
zJ3q*M&HBXiHS3YY)zCj2{g30{FE0FI<M93X_v(x%{GU$j2My8u`Fv-6=*RGItdr1@
zT`c<)niZe)g}=?3*}?O4?uN?ap^x?FoE5e*n{S^eu|417XIG{PpS%gL<*jU~ITtIM
zj8=qSP1NZ2ni_I)k|~qm#KZp!t%~=2wO&2_<Qrl8v-1l6KVLs1PVRq{PVt^U*7DPS
zTx~1d+7p{A^{MQD$&)vMmmly<{1F~+%47NG>StD-Qxgue8lTG6NPT{P-{<3J<X`{$
z-rwc%!e0N~9R1M6|8}R``4MaM@B05<BRMgK7bo`=udS51%rN2Z@As1#+!{ZYzAH@7
zM_qjJK=m?%oGI@E;gp{Bs*Brs&q+M*36k>qxwHNG<BErpU&5#UxcnpA>|bYZd@*Pl
z9v8!c!?_ha=h8iGik)N*XfzzZ)5gbux{jpHm$~AiNyGgKjro%r`zIche82;$1(q`1
zIsCcsj<J05yTUTI{kc*H{EW0BRqafXR&Lz<x&3Z#MtObhKF!a+n$!d*P64gE@DR^E
zqnd0feSOnKuVYTf1A7*Rv^+}xP-V6*eQ{%tQCO#c@71Lz7Q`MAbq##h3SGOg-(pV1
zam#r=9UV80aT>87)&dO+nMmhvEbQrN?OQD2yprSS`3JLe_MAMXBAL2IXueds*CfW6
zcQ>=u8v+w_ezz=TXPvjVjLAV>60|_|<)6daSyI!hzrB)5&OW*0%jTs$2PK!9O!-vI
zfBtytyuH6Rd;Q70bJ*=*`ue%xl`mCcDSi`j4_|gL`hBQs;yM*KL&$`VLXs40rnaDw
zhbP~Z_lu4>s3X`|9a`wDY5m{${PBMA%5(S4p{sXDTzGLcLE~v!<UQ^3KZeh<QgAM(
zcsKpfxBKrw3rn9Dzdg&p_4EV#zUNYQ`>GGSyq|aH*v_k2B{lPU&fjx9_PjjknEJmt
zMtOM;d#snct`zvUV)gnw#mDPrpWN}!dCJBd<y4k+OL}&3zPqY@e`(y`Z|zrBA3xlB
z?4!r7CCd5<7S?~4RxaOPc;2tR6ziDoUFI!GQx<w{+wjry+>ciE<St{-V&?B!pp|}w
zDmIThK3n{%d@|40VgA=QjHj-5eP_^p2_4W0b^2Jkw0d%QQGQW1+YDdEic`5eqz{0n
zj@p(pE=g-#5^H%l=`o*~+{2zk$Wo0s*(Y(VJHrFzj;~0U`4t(Y*|mQ4@f#c)1)q5J
zfY$RJ6AAb10j&;~eUSD3dEuV7lJ0Zf_t(i)cDT!d7Gzw1HRpNMU)A{7>~-Ph`F1*l
z7i26A*U0GzQsg@Kpw!8D$2OzTM}|x}5jiYkzxz%}U7x0OSV(ZD$iyiQDi7xwJp6Yi
zzhQ}s%I9BAM-9$xC|qZ>chXKtFI5eT=9||~rbsOlTj}-SzqMAjj|g;epS<YCqhc>h
z{X5QB*rzW7H-?@x6~}NsW|H2Y{`mWx!Yw*`xz3yn&~iE`X>-W<#`$9$=M%bmDnmPu
zx*aG7wfh;(CVf6TVVftzfqif8U)?>2UF+s`(Hp-R87AjGQa_xu_-gW*f@6W_EKW!|
zz6*s6!`H?IX?g{yO5gk;68>oNoR94O&|rg992GLKnjE|w@P45CkEp+!=9I790$S#o
z`z^xiv4hR~sfnd`Q5SejGv+Hkrs==_%jP9XA&b^!-OTukf8A%)krUnprLM28U1mOF
z`lYV4x_0i(5Bm&t%(86T_OUN(3dx>oQs8EsZt^=pM%4hztb2Uo`jz_=%uLRolj8jv
zKHvRcVS;b$q@M35cBIYfX_CCYXSWK^(n&v(&s{yibi^7w<L01}|M288P`j@3zI^#H
zLBn2^rW6Gqwm7B35qCDdTy#3|#si*rS071x-P}3z`Q!CP$3ufuL$k<S1)?vfcPQZ0
zd0QL#<F=nC5<SKv<bX2ZfNO{+sP5gvpBC?C_KO=oPfPpYy{s`sT2geaP`%Xe8x}{P
ztLcOUSKfSQ_D00h(<`O@clh*QZ}SfOeQ%L9J?DSfWAjA4lryS_(-yb(=B8Y^vuQ)2
z&IwRj`+4J>aRs-uyi&5eE~Iod-;{V>`El2ER~Mt(GxvYrb>>P(he=Oo$B9?hT~l7=
zI2iHAPTQ}ilpbf!!*Xtap46x1*L|JuRh~Doa2A+h!aK1z$7k}yTGqg06P~gfwHR}K
zdv(d}kE&<1l2Z80{uNU$eQf;tY13xupGMD_7rZQ;)o=W~lI@^z#>}=8p(!4RcVtf4
z;I-;V#cLhO^mz5;U!|vJRLwO~TbCgo{bb8+gW~2r(d^M__saV2-`nC7q;B4^=gqti
z-*}Z)7Mn}7E%CpfAk}DWKBG<Meu~rvre%pIHwqr!@N`Y)4I{U<H_FcU)S8V~gq!s)
z)_A;m(UjTe?QDvdeqLU3-^i17&0+HkHGe)f+cdxb#3N_W+j{2bB-2^u6E?nLGn$pR
zpvTxe;MfF)XWa?Q8LLX)XzaH#JG8!!_tWXL-#=0}JO9~qbIbFuTMjQ{{4*)u|F?nU
zOFkp7A6$11wFTAfJNUV<<N4zq>1^`Gz1<<5>*G4!@jw2ZV{`f#<2lg!Z$^V@|C@eg
zGW_0r|NOPL>~0f{;xpxur*Imti2E=nNBc7W&OY%#{B1GY_f<#Qg39(C{QObr{PFi%
z*3Z4Ku1HPRmfmgo*nLi+#Rr+(ImPkWi@sm{v$ia6>+*SLZfB+6y?)#MzG=_-EnoU)
zxLux@?(1B){kVz6;>;GK72*3#rWAd)cge7;lQ{MFcxin8^n>~H&YAw$>@{swqV0h;
zj2;ZQPvbr9%rU*$<tFng9_GYVA5W9ydAj#i3dT~HA1`{R6lP1O=2W^(@d{Ke-I|rI
zEoolc(8I5@yl3_Or9Gj`Egom+e|_~~!+STsW8#w;`ksdETzi9?!B%?{@9jQDkFwCY
zAJ0RE9vnf-xmRdRT_gk>ngZ8Ea|A&}S~&Ba)!;om?o*C`<ms=0k2!pKRVT#I@bS#0
ztq0<kFI4}0ecH3a<qzZHC12mzaU8YWTsmJ>bg@imk+^g<Xz@4^E2tl*?#X5@d~Wf(
zI#BkVA!r8e&f_0RQrkCu^filvOzxhuI04#Eu?V#MaHYi2@RPYYHM4tbQ%b<2ZR)mL
zt&i^QDqMdk=B=XKafW{7hdb>b*?a=kX75)(mT4EytNxH&ym#01*`QVG=wneu+lAJ)
zY@F50zo}3+eT|m)`Uj>{xB{Cb_sr{k+S*eY>bVO#c;uU7az<JCw~>!);1t$`&JG_n
z7nhugj@wN?8}B~|*&`Hw$l~xZ`I{Bp#^<Ij4QE`xFr-81%!AoEKH^5tLRG^qx*Y{A
zD9qnrXnCLKWy!y@#?xvKU3zR1^J`|0evh|p^;u&s+v>L^^QJ#Z2hFstJnyaLVY%vw
zo|)W3p1N<hDlbhAd;pqw+jHc_)u;3KmN9u$90M(%JqN0UPTN$MuD`mm=-yWF(wgsQ
z{rMB>J{$9V-n~f6u<qP3Mzf|l2k&$8yIVTjduzF?u1c|#Hs84M_GFOYaSP=$d$|hN
zv+W26RctnW8vTzY<$l7)Cof(-OWeql^nX`KN_}<B%xGJj_pz;8!g8;hUY@e?mrDAK
z?5ky4Rr(~duhtkAnPI7{Tmz>pJx=n9oGG*G%Uhm3?%V@ity2@J>V0*CoI>(k28r))
z7^9|JmVIOJ1+C3_me=HHbYc24TZfYlvv`(N@?R)CFSlUJamDn4^%XKp&8BSn%sa2&
zx%E4P?rTtg12I&ccz1TqzP6yclKf9xl1p#St|=2c5Sw@S@_`cg#-Kiiic_|r^|0-}
z%qzuDczm5`Xzg+=2fqBfqL0VMiS1t#X!@bS_*tID)92DQ^6eFNebs3Nv(i7XFJrvp
z=ypkIaZ6~B>M;&!L9?bg7mrIePs{E0=)S$dQ6=}Ll4<tb$Kd6$xpNe@9c??xc0$AM
zando-oS4JMO1aO?*u5~MN$AW2E3<3jMyCRH+nK)!O0keXIkUXTr^6vgX;S6G#*QT{
z$2cFEUUHQ_3R;Yq^mwk58)x;>ke1f-4<gOZi5O`G?)JX0!NnyF)Yj_I-RAM6skp}O
zmD!hF>Mm(><}XX!m?&!WY|_M}<d)w1#cux(9SfYYFr?{Gy1^+oduh-Jl-TURbGxEM
z9-Ep4eLl(10A4RUgU#UPw9JgzEN+dpWy=<FqgLNI76N?&M+c~7V0<G>syjwCG-=DG
zLVM}{;$y{g3^g2VzI&;xd_51kOGv`E?D{h)tH&KP+=LvB1k{-ICpI2VQQ4jC16r>7
zATIPyz^QZTm3IFoK7ah~&PMyyDJvx)8-+461en3Qe`3AgPtS`ud(6ma7IT{O!=AKr
z5iH69-s%xsP5M$z0+ufNvB>Mnjx7r@OZ6X<-ULnlm3`0kUp>c~mHQLs-L$dJHqjAv
z{%HPh#iXXTqi(X&yx~E|c8R3M)Yg4GzA+&gw4~_zQz<LVA*vtoE+37%1H-rGY^m%q
zw@hv@J~T%Vx}7tQ_oKx(_#B|>;yvFN!1o1h(Ay|taUMKk^f5EA#z%5hin25bn}hab
zE1%=6xL|v4PD$V7*>~I4?@*VC^jX~7t7kUvD|oHVxeMoo?1O8j<|I8nonvz}^pj1x
zi{)eR5*Y9%q1CoW9)ovies`bae($_8KWLSAw&>&R(sefFYgLtk_Q!%|(?APw@5J|k
zn_VTKQK;1ALT<9sw{P4yCRuMbKTgwb*^gbn45YVjxOgZuNqlzU#<-<78{WTL;Vo^x
zIncVF$J=Fzqe~8FhsjQLlU??orJ0htPe?tl2<*9<6B9a#=jd^fc-8D15s@=*iJCF}
z+rM~|Tk^$YuAt$n%kMjvT$*;Gqxul1py$#f85=HXPL%w<^*(IO>1T?D-LfBAlBthN
zJXbBLV9r@`^FY%5z{tmIC#C-Q(z-2YP0Hft-uIQ@`SbJ_pM~s$n_y#1=`I$Jm#8Oq
zRf|53Yuy<Rt&t>QL2=@6&Dx}zwaaX-uWHecEl1url)v~|a?hrZR_QO&JJ+vtnVOUM
zxOmP-ZvSH<=|>=Ykg83gdyophd<JcvyZ_-t{juw?L8b4!vfu9Czh&|%<=-*O_~&cO
z>@H7wQEO6PJnxl>m7V*s{gu8V@{cd?`gKdp=-sZFJ=11uCf{^Bwc(ZKV!MNTtDf$@
zvbxrONt~^qo=KnW%SnBECSXb98eNNY9GT)L91OU(+AoZhAtF%&k^dJhCYEogbbs9W
ze0kCF?jY5ym|Fs%cFOVFeZI^m_tfg`pK(M3+J15IVdj|BXlG>L!lpN&5!8UQJ?#t0
z#iHpNc25-N9gP3T^RGg&c-^r(y}CIyvwGE87^;kZUxqH~`Cm)IqMnJSBKDtn=N)vm
zX+F+<zLIlw%1NpEv&ZZ=e$0k6GZ{*D@b(}4sneP6*TF2o`eDZH3yf%E=+G6K(ncSA
zjXoF}SuoF;_;%_e_k9PAD>~9YSX>n~NRv9S-Iw`>=dn8=^Ve?@OjJGr+Cuc=4aco_
zW?Q<KxVX$RTCblWB<LxrenO_F1hhhD+U7!C>9r|mY@I)<bFV!z<;2&VnDcIjn~Yc8
zjfm~yxf>f1I3?&o%`~1}?#=Ji#5>F9JU-dd(UA+<4Fuk<?6di!nDp^ya~J-Y+#0q>
z_mi4*{wBkn4|=l9&rMNb-f?I1bw7s12O_?4dV{wsvozQl>HU7Q_43d5@GB;I-``v{
zJ$7wU;mdSy$!6m(H&?I!$#(vM;=F^WZK`#hr|LvLmNTPdl}};YBWJlsl7B?cKj;@X
zdY*OW?u|pomfs|Ksn46XNA_p7X5F6c7Iz|k^)`vnMaP!n92mm6&*n?pB9Uc6QzLHt
zSXI7W*9f$v2ekK?IXuYiF3a~*@SQeQUn_2y?0H<Fk}LIeZ`e7%`pkPT^Y3iF93N}R
z>#BL?koLxDpfuTMT=($gj7L2Z-?bo(E6AvUO<$ed&UF3@>9*AkpSFTG+|2)-lwahk
z+4Ii#-Fw`7Yku;$YWjRE{VE}?Xx0?7I}ox*F{{6Dz0;l5%%Euni+kUCl+Tri*hBW=
z+e$pnE<IPg_TQxS>rAh&o^39VbBWF_o%V$qt(p<x*Ez3VjWT<4Dx|uBx4YM2=KB>p
zrBR1)Cj6bcY7d)-my6MQeT`;_uJ<YD&Y1XwE+|uXY2nrRC2LxqyeQ+blH|0G6F*mg
z+7Rojol=hdv=oMHG!~!pxJaTaXhu_MY0K+X^Lqu?9TAcIysE6b_rRk2fyL%*H$2Wk
z*XG=*5AQ6o<PX`jUVFoLW(Kv}OKL!|^kdhi8#hiITfU=g{*xa23ZrE^ZYAGYZSY;|
z$aior05qnx0@Mp|mwQ(Ifg^r({It(@)3<R<c(d-ToOilR$Nkx$RlLv2SLuL^6Pg-v
z+HLjmipj=o7RqNN72jQD_^$Qv<yC?HWc~ifiE_v1+I$K#I#n~j`^wtwM-$FUeZCPF
zpKdngV8E0^A&Z2%&2`MOZf3xypS%(<+Xn<T;xz9s3!2g-5+9y5<+1>1iSeq}^H`KB
zx&6&t4Q9PL_j|*O9_1t{PnMGoGkEs6v~Apx3Ti#P4zu-g%v-jr>woCG9qX)Lu8b{s
z+ms#NyHj#2Vx^7HEu@t;FSfx}+RR+{Z`X#P3Dqms72Mf8!+Q6r%WGHvot7yQXK+sP
zJ@ewJy}xf(%rTz#xW|#P;Yr%}AKC@q)a)l&Dl#RA900FR{v0_eA8C{01Gc~^On011
zTOWsnALyQ0e0SHO=|0RS&5U*kSvF^vbCNXR5~JfB$Q8U{-L~S`yN8aopSTg|?e=kN
z^xI>-IX6C^DEP;8<B6HcuKk+2@49}2=ARPgD8wDsy0s$$6q!GEMIAl%%E|4cWR^)+
z#L6ihJv(^SUDlL%r99hGT=UCzV#qBczX>6;dQGGmjh;;brQm(*j@`5fJ)vQ@_!iP~
z87stcnbggQ<uX-KwQ-9?p2*d8ek?ri-6MZ`&g{y!h3%Ok-&$XUCe_UEO}}Yz093MT
zFdX|7A7Ia$Q2(uzwe)vm;F2@px7-m`+ocqRrR(JbxITsN*?H)_&1~(0*o_CLu4qfy
z_Va`>d=8xX{KaFI-?yq&$)CNS^*pTl)yX|;%dXY#t^E>v_=k`8|Bg%(*~)7sPs*!(
znvG|<eKHn#`Y7ge*}L<v_ubQLzHc)(TO%U;^}chrT~-?AAFgV^SuW1J-+Xh=;*UqT
z(?8#`Hanfbv9m37d;W|Lo~JWY4Mdh2OkHuLQo=g=<c^ojDK!a}sWE@`QrB1=m2|IO
z8Q$JrYyPR{VcoQt>v^4X>VL*O+kZRyTGxq};hVjK*Zm6E>rqu;@_T;(n{y!7<CUxT
zzue{Y<n4duX_j&S?)G<_Sh(IVU20q1cd3at|Nr?PcWK9`>Xe+Ha+2R`JB{;JF67xg
z(dg0HE31QFuMGdVdS$rys|uOt@yiP5yjxhf=bNq6&wc;9-Tu|vyDI<ZUw`g@l&G1=
zQm>y&K6fiUo|!tmaj&1V|FiXXULTv=_GaHy&>1E@&z_(B@x;^r*p$p3<uoaW8P%dn
z%*-hY4<+62m^9Q~W^l6kWFXlwvGMWrJz-~S)^f$g_Ak^3^-_3urRZDvue{>^ix16e
zZrk>y_ke~XPFCo6x&2X*EU@z~Vw-b*(wv8&?P?qo8ySrzC@^=-X1kCt<<P;?a?+uP
zXO1%Sj~S3n3)%{Li}t@>A7aW2TG~6YY`fxT<KOMCk5*m|3x0N0`ZTxX+Z>TI8RDLx
zeHnpf$->gSpHEykF9h1ZTQ^N3^ekvKub5<sw2}Sh`ikHq;86&v%dI_*W?X4JyUK$C
z-9AdD8sAGuF4`yA6|}X)>VKU4X*=0B3zs*8w&@tlJ$&AY?f8+BdDAagfGU5<$`1Fs
znd$4_ZM7;pnf<hKQq+f6uQrFLzPte5zLR|(dHYUjW-@e0!SJZ0;W>_CP`$+XF7%Lb
zpGCj&smB#<?)%!^>+Jjgs2O$b44ZEFW$sz8t(z;s`+2U0Y~Ol0YgMdn=Zk=uIF1wn
zZKX|G6Z-imzGFpPR;GcLq5OOd-9BrdmHxPM{*$+CSN{mSmtT5p5ASP6qmuQyOIKxn
zeUlwI-LkCgkk4no8IQ9ndXZM1xCXA8QFeFs9sBCZ+FqiU`*z>4w*{@C^|=i_1?0~G
zaA$ur!#f4#%!waGq~}b0(vxM5SV3~7oKNGbZ};!wW)ILZ*lSkDv!{372($YB{s*s8
z(ru+p`zBmG<aV$p3)D$}k=_|}SLM!p=xUK`ib|S|CvM*1<V)w0<TT?-TVc3xzN*($
zW8u>O7qpYQb%pjmkeT1Vi}x>R@$2=9nLQqpdg9D1ln+T>&D(R#EejOiOSh!QZ%us9
z&fv2xO$xHm^?&)zr#5z9Byw|ZythV_@jSKPR)v^`Km8Yh<;aayhVqN2_4el6(e2t4
zvf=vmnY^X1b2lfRl`=h*j-{U4=d%B5;Hr7xu5cmfaE!++yDQ7K-NEPq2QoPauA1yC
zsBm-c_HW4NVuZB>o_3o}s517dUTf2~C`9vJ)5pKlV+`^>Hht{Psp%5$u|LUu?Eiz4
zGak9VG>khY_bjfpLh?6*evLoq0EgE1fA@sg9Z}~09Q0Fp&yIiLuKLIKf4TZqqAO^v
z%bZ8Yn%{j~2Hkmc)Apgqv5Kyqv*#y&oT?!?adL{v-1C#>FsA2!n)C3D@4S2k7dEyN
z4oy4?c~TDhGZ_>?Lk@;U1%03ao`Usyc`x2`YKQv%Et@!HiA&ioUio!}b=PvrrSl3w
z9bVVH`&xTs%_OaFKIoC1voToZEE|{P(ex>2cg*a)Rhbf_D4zV+?K}T*e@pxPsF!9t
z_D98RK5RR$YH7}~P5hHD-tjtiEp%DnX4?aj`pfjK9G1$6*gxk^ubkiEach#{cEy{|
z|0#a<{;=5)G=0E(PILA0q`rsyvK-d^2|n}pev!1^9%19&8#_5KcbxR;O+2C^XUsFv
z{-}@hKM~{Jl1HVNCzQYTaei{w@bHEdr8J32|ANn$Jc&7Dq9SL^``XsXC2U69iC34~
z6y=gFrFmy^D%5;@WP#ZDZ7MFmAc(JP{%5Zby6-|eszsl8^?b7Mt2$<QbgT4Z(2+*$
zJ8u2{8MXKA&M@$1@K<d=UbX$~>-tzT=kuB4@w1LG#YMk7D6hXIHCa_!HmBzN<c0H9
zMVI`rT+d>?BmDn?y;W`6hKC+oyp%jHay_rdUGCY$_8qs_e?+O;T-Q4H-Q7O^u0Z@<
z&`QL4{hH@%)|m9R-q|WQ2XaWq{My*Y&$s@F>^G~Q*c;Wq@y#UX5HJ6a#yceTehN7$
z_U`KQ3Yq;MdXl@e4UZ}Fe?H+HvzxhQt<bz|QP5ub)zVK^|CZioUw7>D$5bP)68^ZX
z^=nH}dfd^o-R9NYd+&B2B5m=MnUB&h%-^e(Q<KXrS$@~Y?etmjd~(FsDS`7J#O?hQ
z`|9dG`JnalIK-un&)bqY<+a?O|BN$>{#A0N=A{&u6s0ESf>`-USzLyO#tH@sAeM=t
zk+CsM*vJqnYGb3I@03|m9FSV%oS$2epO>0fqF|w*@0_2LUld%Bn4GGh?~+=UnVcHr
z?!=|<lA4^Kk{Xa$lv}I-(h62qtY8e*P@0=ptYBzhX{n$eP?VaInOu@zq+n>EU}wjr
z@0OWUl3Jvo@0OETk_s_JLEj@aGd-h3!NSs5LEk4eFTEr~!O+k|!9XEMK|k0xu{c}7
z(9j6P<<bu>O)9A@NLA4H%uP&BRnQLsb0YkcvQm>v6!gP0Q$U&xEG<E{L4%-T&fB{e
zqaIsqS$napcF%w9_r(YA$rQ+>pDKLw^r_*xT}~>0Jx%>W8fN_a{j~ny^ZI|$roNXi
z{59v9c{g6Po9~A-%eoie)qlILe`~s$LGQ`^_x3h%q1Wwq)&1vn7PDW~HIw-tTO-@L
zid_5ETni@GZ??DJ{i^p~-m2JTk0vgcJ#lr<w(E1a7WDq)OV>BmU$AQ3xnkBB*R!uf
z&uTT)zTI$mW#!Hg)&quFaksO>7-b#=#~)^7V6eEyXFX>Y`-T-v4<t;%7V~{rx&Gmm
zJsVc-vN|tXAZofk+;la=H`DtMZFYadVw=77oUg0zJ$8?eQ+03GsS6P`X8*&>#2fSR
zR$Z8=gZkvtG7JnC+BRQdU}&&=Q-F`$Czn5KS!UVk)51&nC5oP}x^49)|3W<Dm$1*b
z;x=<FX#9D-KyH28`8=DV6LVMpc-yewaly=4*T2mQWw2dxf9bb3vvxdu`?zoV^>3jz
zRuA$8G8RAEx;IVKLAt)oVtM@6tbfhHXSIs{u{FAzuIDjb&9LsMCo=<sgM66<hy*E;
z-?&L)L6`YYX%@MwdyKBEVcIdRe1F^KqMNoKyVk5SJTDsHbvC>DtX4zvnR1KsdNqr$
zpW?lKjkzsmUDwRye{79rkf7aSXuJEy-#K?C#q+w?S3Y{C8WOubt9e%FfvsD1cF6^>
zZs-<XzsSGbf`Nfy`ePka28IRv)-qVh{+G}9A9B9RXL0M(^M9+}1+x}RJ3HOtxhb<q
zt^Tjy{I8Si>>HHZSG<a4Em-&G>CeC3i(V^U@Vxnb(f_o1xmkZ_D6WzUXPi=WCRAiW
z<Ei(q&+XfbA3fdith;4Z%vr4l#dYBf?^k??D`}t1mi2G*Ua;Wm0#VkA<L|-)(^oPw
zFx1|7$iTo*`)0%8NSm_{zC2C}d72f*7}L61<A8P9{;qT77U!Sc`slScku&tC(DhYJ
zE1os1)^JD`z1RIOdXMS+>@U7=_j#|#3SbR5&KMrpAg8rod~QrVBSVAP91{ixhA)Zj
z%y`I;TPt3h`0oGz<CDwFn}5xDJo(m!m44M~SZ(n@i|fLTo$p=6_qBcAap1A8zP*)I
z%HMyhq(T^Dj)H7D=2x$8b^oEw?CdXP!85h~2smi!)q;Kd<^H3!OIMs)$yCw)TJ(T*
zSBz`+T$6w&o-+fdu8w47IIu5k-|OG&R&51kjtcj+vVLbLr-OaXuwnhI_rLb7{%3nH
zq<7UEt%mX)ag2Kwp9n3fdK2+y*{-Q~((kvJTc!M!3`BC|OOPYI-xjX>n*HUGyL<bd
z8p!~3={9BthJwJYeo_n!3>EFNd<+a1aFNI7-=F&V(~}p+@2@rfwOYMA-f8Np6i$W(
zvu3@Q3^83HC1L#Qw%hk#Z<nkJ*}Id4A;9<Scb-*MA!qk{zrE>lKJR|QVWCx@R6`gU
zj$W-fzaVS6s#eI`55*SU*>nDt1&8{HG8Dv`-Zx%x>TTT9C5-Si*)LmW(QW^__*Z}J
z>QgJ37}l+RR?QZ=^X}?r)^mjAAD+6j>eJFtsF_;fd$JyUf2i|s$9YEQkd;;S98gzC
zh4`NQD>mISp+hV5Hy<Ozs+B+IIbL15TJ1d_I6*9B!<Q7kzF|JxzUi;knyQi$?EPKA
zrTeuQ7A)|euX*R$+@4k6SBv>|zx(pKF68cpQ*Im#T&M2uzxM|uF?~k;^jnYihUe9P
zTX^xeys^tw-qj2ZSy}ti1FkN6b$9;Zl|TECJzl%$)p@?>U%vM(mfn%P;?&hOOb~~L
zt}B{~T!{U9Q{ZRcl4a;{RVkF=Kq)9RwZeC5{gpbm`Oeh#jfp2TLM`DE<tbNd+BYYf
zmmLrYU1i1(^?T^-Rjv1baDw6<9QD68fYKaJaz@?%hfhylylhhTpVv9<d-&3<^@<D*
znxN>)3NW4Uwc`2o>>j?zJ^QsnkB2ilL~gGw4O^-eqa^$Jjp3R#hE^$0|E&s<jbvp=
zz5DHI<kVF)o&JAi&iy)U*S%_v7Q>2V&t5NBHD}cw>rm@A1;1=H=P%X@-^|7EZq2jR
zn^)cOT{Q<BKN}D8Eq~^31j;`QLZ<O^L!agaeO<Z!;hiThZ?}R95C#jkv)3I%Ekk#f
zubLya)=QKj=45XC+|ZR=(<@$I|8?h;Is3|8(V`4fN^gg!hpw8Ws`maf1E@Rz8&9A-
z_*!xKw|aDaQioRP{MAKiRt%=KzrIfnsVfazn)P|Y&+7$Z_4zM0$46G(5C~nxx0<P8
zQ{L}aYrL*rnDAxym3eD7g6fBS?a-$oj1J78;F%iyHNCy~SM?EI=^e}<KY<bk->Oq9
zPt~$pWHK-?yg1Cq&cN{EF(^q0FBM}B(G3EZ6318kv|6FHT<g2+hj-Tt!sL#1_6LA+
zPfSPn^P0@ipO?<AdS*Q*UATAM-i2Qq6jz0`$}=@Iz5DZOjaTTtBVXRg*{dr)dC#=J
zz31Nl8H%ey7!Qa-BIT^N&0SED8`FoJ*f8tOW%K`Y@rPPJSg~XN@6|!2dGG*@yZ`^Y
z{I%nM>KNSl0++t}p~ax_dfWPQt3q0xFReLxlV5s~*VT!k3<1}`k#eg2Og&$E>LUN>
z$f(eLTUOP)6kg5nK*BVhJ@jeF)4FN*9xiD-+Ftmp+8vad3pkhW=et%@8a8#e=hf@d
zh71fV-+$NczaPEnpIzF=>Oek;pv_z!7P?Xl3@?(~WzRjbH<<HpJ>ROLRiIRny?fOh
zPy%}w`dRke=AC6VPo$>>Ox0hg760hV`E-VBTkDSoZaqCAa8;4`TB#qk7XRNCzWDmi
zdqvRKg<1@KCC|fULRW>n-F@UqtsJODF_{ftTLKbd`^56+&b6sMka*+d!mF!7YFC_^
z`I4c1=TGfEt<Y6`E24f#oqNpGzkSc27cVA!1%+dTD8u~6qV7|*LfJ#kf+{zuy>~;F
z?Rpo&P~$XvI%n|AQz1u}|Jq)Wt+}dbRgvjxh6?wyP=AST^^?;0wB!sZ8G)NpAQh{M
z?uTv#H82?7uh@EcW#y8opuE->`1#g4t>vKf6Z`f3$7NX|Pr)_JhrU_Y%R((fEkm`R
z#UHMmW?Hp-rBCVIl?*>x%=Cqq8BJZ;<-heqY*v5rwfh`;btNSyPJf@ZDnvGz^}zFr
zqk&7kt}=$!&9-J>xZu7P6g&*~@aHGPzyA)Op1gQ@=B&G$>{7n`JI)ihR7;ZSz{Gcd
zx)ys)T~#~%hxzZ%7noi<yS=YJBM`c3k|M*KcVDur&qCs2-;qDNugvSc`SI<8Hr0@)
z-YZT`-*A#qW8GivzE!bpJwa1<XI$m8Zx8+~e*%=}3VLAP+j)02a{a&YFkkvdhvv)t
ztAeHmLt3by<QMX^Z2heF1%5Rx+TN>AO%I!@U;FF1F~jXEd$z4Uwer-;Q-5`Ab?@!U
z_;|dQPhyeR)sLYJGH<r6w^$Xj@>cDMDR=S<XEL{~2wJ+TQ1rm!S=Y5gSB1o`&iYiw
z!oZMmI5G>=>H|d$tObb7jz4c_P@{2s{oz&a?KK}(Sb(&y<;qxp_N&)atx!{VZL=~c
zbonVh_8;$+Aja>?`WKtk{XK5y-<$2wFbkO*&3flf>$>n&AuD&~UEK`|kH5X(tT5*-
z?}ryf*R?}`f-BIc-udf(Z9Z)I*Z1TLws#WX^uus3@N?BtNLrD7fYey*x3`{i+21OP
zCt#~bs9)&1G^igzsb}Z=hA-I`=ZnJSj<qQ+1|_bLr+g7i8IQqsfg1o%y>r&hdS77n
z<`^jGrmm6;J#aSmMb%QTsjFUx>Haz9&%n^oU37^7Pg4ZaL^=NDH^07r-@IiTf9FdW
z?cT2yx+*G+(PmZU-k_ykSD&t8+a&k?Pf_nh#qRInOT9ujYc;r=t_O!j(p6CE+1ht6
zPYaZ<81~1$t4h@hp80A~aP6z-1zG#{2Tl#18q5mH724ojv9o+t*^P%^s)Ov@L;XVi
zz?~Bwa4;3^4!88?g%mq}XXQ1+KsrGs^_<nuraFQYhvt1><zLJDT+RQ!9w<bzppFD9
ztX`h=&o^K6TzPeUhgRq+t#G&pL|6ao(fnjxm9`y}km8|%yecGiUDl^KA`%iLQN{P0
z@2%hTRUMQXU$uqyZElxe$FnMAWsoS}%zEDRkKfzueotN6&I`)IxvLxg$4G{(3|g9%
z;_)js>-;r|+KSiCZlDCe^3>HeO}|(Cv;@^X%e9t+n=0iJ(q;wh0U(dCw)p**SyPz`
z=1g53gVKfrC76C)qy%&4&dd4Drt6_0ICb^Czf$K;9k%!=2&w?ltSX<s>L=gxn=Xs9
z^D}HgEx1*B;jDk2pIQLQ56a#?=ihxS7IONx?Q!*q7k~RD7kN!xbu6?%-qfBwbY;-e
zRUua|gPOGmo?3uo2~w+KlF7e*uKy6QmAS9$_fAks3OP8}H@ND_%iQ(g(Arw?|9*Xh
z{O8|{GL|k=wL(`tm^Ue&xA3`kvsUP;5M92Xpwj9Ms1)<MdUo}LXVAa^CF*qfS^s6u
zb><tH+3W$;^ru!bwe2u^0xeh8YQ^tzy2_`{+mrX8Zy`9hg>UA1xA@s}P?Km5qWJ?U
zPr>DtN%Q4?*C0@+gVNdez|X}2;B@v*4WoW@3f*_4GxR|HIv!<E840QM7CBwre>D2@
zPB-~``@B~KEq%ooT2Q>ap6}WoqZOd6v$=oSejP~$h6Q%&yr4c9q$h@ptkJz^<$L+P
z{XUz(Dp31ylJja%z;nG@^X&NoQ0RoNj`~q+(a*hR{l<#_yw2C;+d!f#gO-9Ka8=0O
zn52KPS?9$h_TCKvRWv@JoOlY%?3@1z+GPS4x{!1TAw^fND!t?|Q9acS>~%jB^4;!L
z*FdeO2eMnsEKJY)Lc%H-9AYr?_qt!-D}qfSc^H*+U4^Iv5sm@5OV<ACq4JfseUXtr
zZo0d-uel!&N(-PI1NO@#Rk6Cq>I@7AT(4Sz+HenKA(;>tdHKEl9vjQ5S<7zf!Yews
zVIie!r6fLAJpZb=_`7`?sBnNwNrj{Ls=zfMBzB!b_qD950riSO-L0qIAuDb@d|n`S
z{l-VboW<Y-2CDuMczg9!P>l^6A}PD^Q0L#8^QVLP?0iuI6%xdG-$A+Yi2IIBTULRa
zo1p&JQ$%8hwB<nUP|;P(jz){?LOWxy*j^d5R7=K4^?P*8Gf?9co(fh5nVO`WTF%D6
zpmC1m3KDM0-IZAnx4gK&x&5>apXA>EhR*OH3t1U-bvKqO60Y^@x~lKb3(VHkGJp$w
zP-TX|JN-lc-h4Rc$Bi&1P&*u!hG6vSn5W?SvEM#@<<oR!85<S`28F`L^$+LlQ-+m#
zkl=%n@2np%S<ewYKkvv?_431@mM3ZwTvfDc-NwT=H@Mq?OFXzYR)xZ9$X&;-7cej|
z2;oXw5b^kQb{kXQ%irtw*qs0MeBQ&q;1NIML~FWQ?}O=_<InT{E`I&}zCp^z#h}^&
znm1Q!MU*zmo~u7EfAYm!w9HxMU)n2sF7Dd*nsjh&iITfshhHsgzx;mvt71@%hl<PA
zXYB@cH}h7!<x{tu`LF`R>qX`(vvwbjESbFjO6&@ZtiLxHWbtNq3s4&sIe)IY7aW_=
zzIk6`^`95N{+jbd{#k)s(r|_O>OW^?VA#>cUBk=Hz@U(Ve+a0w%pnVuHTBQ$v_p*r
zuh7`X*%tl$4{r8?x;o&z500YHt*f%%6wIsqcEWxBm#?q}5Q_IfE_`gfJGo(%E2h8i
zGm3+Y*%nAALT|(2%E}3cG#OWkK}tPjvX(t2p?&kgQ<JM7eTFpY5qWyKR{4CeOKkUC
zOiwv%TmkC+gIx%Y`nOw;Y^lsI>6-sp^3$95nB~j2wYzSB%Fl$Oru#s(rUIn$!6ZMH
zmK_LoUVc=zpyBTMzo23t78aq~SG~!+_)z)h-!1<vP(zO^EcU_fD`N6Dezk*Jfbck4
z)f6gz<Kds}zYP3h5akHA0w&!%KDmAK!57;;LE5TC$UzBCJd6wsc_%=Ac(M2`U;4+M
z*30~Tu<VMUcY9tnEweZ;_pq;C9@Zs9FF#kDnhq*hU)_8we&gX9d)dX+`*^F5fSdO)
z&o0fHuKMa9xaArs{zHn7fx!V{H)cBnBJ%k4n+C?qCV&4uK3%*n{ri0b6-%#ZaMVD{
zqtaD+pH1f+Z~t3y`gDIEU*vvpn*=JkYE@`#a{K2ug0KcGJZG-@9s+Wt%^P9llmcZ(
z6*kJAd)f6T^ekqc3SGAelqG*{I9#b~ss9K|mYlj;Z^Pl0f4+ob)*<0bUNKqE`9IG-
za`E=rr@%EgsIr`SDrDI!TTlT1*R`GW)%Fo+5E8A*yt-=H^iBo_hVa6f>p_DLdkE&q
z1M`+;{`%MdRe3}GyKj%5PQ1y^69_A<K#iB*-e3MmoqJro@!!I!pg}j}P~EL_vABKn
z!OiN~Up(XGjl4o(#W9S2w<t8X+(P<W4Wv<vQl#zn4809%NftOmiq_n6i|*q(du*y7
zUPj5_PeHuApsQu=o2O4z|9<4ZG)MpycZGkw^Dw94l6$+%h8B4G*9u+b*6yR8x4F#R
zmzn?h^P0AcitIWI;i=4P>Z)AlsJEb*jM=Y$#%3`v9I(9!3N`3hIk@P6vTNqbeu%Vp
zKmB+5e7*7mjAh7$`Y)f*=a(1N+xy<XCjaI!q|FR>#Hzj1GJeNqb@Nw$Joc4e)&Shv
zg%usux}X4jC~4UM=|v)ucWPHvy({=;x@)aX8<H?++-1(Hn5SAO^9*yYi}@E>{N=I2
zsB3qg3bie_(Dr|~ng8vN?;F9R`;c}FG#_fkBQoe&kd^;#Z&@oNTXaAO*^5$AmwuYp
zF)=WdU;dVD!N72U7gs<*0<C7Q?1tr;v;J|{v0pfETfaxfX!rj%MPw7L7OZ-By+CgM
z>*?hY@|%8Kyoe@yD*sQ*&Z+0;q|eu1?0n7M(!CwjmWHIhUpwm$uYY*pVBEjYhc!`C
z!mrSq4-YidO>a1lT8ZA?dkS279p+<ayYgqJDM~=?oE>uW;ep+GMH_FlqJ;Gw>(DX_
zgYR#Qvz{8~mUOK2Nd<RsLFI#;$y8ZBor*taDu42GE_N2Px3WS+?bSDn>*T?M|KMB*
zO+%2N!6a+u$}*_WUiR|4eEhumcDw(pw;`qC(Cb?9ha2tX?4#rAO70`4->W-L@v%Rf
zSL@bWXSAMQ5;C*^ud`0^v7g)caK1L*0+cpt_)d5@K*mJRZLDxQaXQ%<t#!JtXsRsV
zk}$hW|35X5E;y`|-|atDmhVh&-Ll*tXOLP`S8Z1>6E4pQIC6fc{LkfwzfS-U(L>@Z
zXz8nSp^#h-uK%E8v5>MGnSA{E4a17p4b6h}@AfAmn&_)qe_QKH$^HFT@^|CElbcRY
zV4fBLE2Cb;KHYsKA@5^x=F@Mo$k{*iy_U6%#lbfJXOLbZyxk+Ze$(Mb#>M|*3VAS7
z0jPgw;m!NZt^fXwf|zz;I|c^3Bi9Qad=mTay*z&rYGNw`nUsCw<Ezg(tEQ@&@u0=Q
z_aaVfnH@bB>mT0ups$2fuKvoH3Z5<a@(`4lu#H+l0t-UMr?WGhUY7am=lki)cm3b@
zd7I+NgC7?on&N%yKbgwxXgKcwd%C==>?Y6@a|o<v^IN&;aAS7Gx5|B=e%f0dLDVIy
z4u+Ij9N^afzw(&~a%I0N?8ZZe|M3&KFZZD4gz~AN!WuN2_2Iwj^2IX#D24sI-KY52
zD;9oIT_c4QraP5F%Pb0b&+AEQPoH#A5tMD9If!@Jro)Zg5&y*}9_{brtNhuohvXr@
zm9yg1m>3vhT8Yg)JTsPMmYx39_#UNeclG(I8eVq2#~&yEx!HUB9eCUm5;Cj$!)`u2
zV7jK>?!D2~7piHsCqQ#NNd1%P-Zvf|c$)h|ybmq$yp2mmZRJkiUa{iD>B(+(sJ*+q
z?^@O}59-&(c=_%525m4vQ{Z2n+;-;cAKp}Ld?;jW^`t=+;wG)oRo|qH_U^fV=KMxB
zcAmh}yIOY7&;5^wMP<m|efz(!VPJ5OCX|P6vbXW4{@(vPU*glj#g9U2H^GNHSB2bN
zj^3kt8_IgevHvwBr|yad4dscw-&^#1Gk-65M#C<OwdB%o(0HO&=qjo3y}yesOz*R=
z2F<6P3;lcwQM`QbTm>4Kx__|`H1xvtKo&GQ2yaQ=XFM0g%)kJh6Z-)g9R0E8C_`vB
z%J3bikonE$vA^xJPWjWs90?;Y(0FLT<kwgA5aTUQq5E7mulmWCemL(<gW{@Hp^R_0
z?u-M6)2iL@4jnl|o~urWGEOhP4GoN}NaVS=RouvOucA!<>upV6yLkKTS8c(JxmWg_
zm;r67O}+DPC1^5IEdu2Bf_1aP+2DBsY1|We%oCIYQN}&zTZe<jq7Y-ApcWPKxF=(H
zAWGQ#U9D;VoU`uYZQs(vD;vzR;!>bFZJAfze6jr6v~S4{C#~;ZRP49UT=FU^^uW_Q
z-=J|C73O<y0}}&7F8&ccNICuZ^~Yu3{kQ!)A`rUDE7USgw!!-MU#6(%SAQ;c4vAfn
z_0M$9@!fX2Kb}xr6%x9Rslj^n&sS?+oeO<gzS1^2`OCw#kcz7OfDpq4&$Hp_p+AMr
zt^&=#)-!KUWG)8{7BDz00!>uLJk>%TF8g!y;hZ{~D@ovfp6P0a2j{Z(S*<=5x~}Sb
zwuLtT<0I~%k<{{E>beY9LOx%O4Bb}(N+ZYvo$^vl4BJCLUyZyvclEOL?>{U#73;mf
z+d`*HvhFJ~6r_VDLRbE}e|zszW(I~^1=FPP44WVS@;UzD!Yp<f(eK6ep`c+@hVn3w
z@o!hv{ZFht^Pauni9qNoy+Br|xb14##9in|EruPNXRSZCDlgjfzvY~%op!mYpi!Px
zpO*Tsfd(6B{=I!No0$Bum+xgk(<pxY3=LU+^@V#bRI`P4m#r^Ca^7)1>p4f|zgYfd
z--J!+toH@;&Tf6Ie18LUFpE8e@xa`x;2FS-s|Vg6{+ZwJydJy=K`9g(4tF<aeOkr~
znqom-UIVF=Fv<At?dSaF**!3L^W;KS=&DyC(8Td7^7+-Da}`%vh3fvXn{%A?+VzM%
z|JxK7?|<h$b=9}fZ-ES^l}AtB-~X+8UC33?EYUpO4>`S4L8aH5#1%oM=e4Y58fLlO
zpHO+UQTgvr%Q;{Dmv095xM1s?62!OqNv-&Ka+%h0&_s7b`ISA}uCHl2zY=NX$9u-m
zsllKub-)_DwCCXSKQ|v<`NIMpUuT6br8=kw8mRoX|2JfC=G$DZhDUoIIS6v!U;6FG
z{@=gU4}iK{d;Z7-gBmmpQyz)3YeoO)ozK9)ARhV}w92BP9J6_cEaJ2O|A$XcUS!Tn
z+rEY$I-<5KPn6+k<<Z8=yno*R`>}H)Z2s=mu22S%=c4Rdpmh(M&o`!T&))!Rzpo2r
zbtsH0T+ks~$Cv)`^5ZY(B|#JQvqBlZJQig)D@K~`fh3Gz>%ZyOL9LgpFvbi0;W9UJ
z_8qqTXq*m9bfJtJ7K2w{eF$XU&!7IW{WfGQfnnVtZN540>i?IY|F8f5Cl7ed$0~*$
zO6x5O7M=Y66jUD}7wnh|AAVGQYrLq;Q9pmPoz;_KcI8z;r7yMIWtl>riLz%!{gD5)
zZNFdO)Kyubarq2cpSqZ*p55=A`>{Cr>9=%wDae>3EQFNq{k5DkYrYw%xHMhO@Zz{O
z-yZOU{`r{~>(^O;`bjZowLlYXpk-!u&tG~nA9$IjZ{K}i#r9Y1Ee7#T|MYDBL_V7O
zyFTfJYi{+?o3$RT`wy~(9^WGzVY6V-iQ=bQG8h;ZfM?|XzbpqY39$@i_<Lnf7i1=-
zmVF6mI(PRc188gS`ZBHuuVQYOOM+{vP+xbu@Xxa6+V0)}t(XZi-NoX-zwYg-kheRI
zFlyO^*R|?`$`j=AVaUi7Cb{f>eMM!_7n9z*^@k_i1dRoKO%rtpFW<Lqbx`O-TZfy^
zvlL!`Jg0wMLUvO{edwx?+;vPZUY)yM7P@LusNLF6#qj#+RLC-`TCIlF*~N}#Q&;xQ
zc@-l%Z?*qlnR8p`eJoyiY9%BafksH*&3&HLF6(!8zZST{g86&buDkQKA&bb~Y&g8~
zXY)Bw1gv8CwX#w)bZT&E>2CY*`M;$6&h8I^Cc-_7pKXl|^}Bj?@8_7a`(Lg-^fT{0
zf8bItQHOl62d1w1lsR?&YWw7_KYjCV>aGe|S+$&N!D{RH+o3C0eUMx5rr0#JqKtuo
zq3j`eAQ;!GI*54x`s1_j+28yn3~CdL@)fe!T<FQ(trcpmSJ-fQ{%W+vBq6<ej2D_=
z@?7Ubp)+%ruDADqCN{EzSqn<nz1<CJ&4+JZwM=>bYEZLg{!KIMi=f6J(~ITLLPNl<
z-*?srkV{6;!o&G{H%KhVnh07{R+km$3Mz_2p6+8tnUITJ$JH=huRJ$=s{YznLUtcx
zK<g9Kq++X`UxQN3E`L!6W>BJueaGw2`aG+utbhJwfltrh!6)Rj8my{fTtim|g>HWJ
z64b4IPy|`igE^uI5i$JxC%j_CEk^gFfA4^%Saydn#<-qc4I0kX3;T*#ei*bg>$4C;
zc;IKPRbEq9X@~ut{kJmXTQX>}GwZex!_t^{V2SRqv-Nz>kCb~$%iUvy7Aj!#z+Hwr
z=Py~$F)`THXbsAccUo65aP7Jf8gf+$lsN9LMs_J|`t5u<DCBnsh&nim@9J6=wM1*V
z*7j;hlSWqlCu~W=j$F|Lq42!8Hzp}+&)1p9=l{6*eZm`%BTMINHLPAyDH^)e>#FE#
zwfuhYawH;`C%$>|l9}(YAK%)rrCy;$_3j6lr(WIPwJK=ot5>1i@rNs89(<ez>0p6!
zTW=VnNXbHQ2(F6;t*C`8PdpW}+@Cez)YEl~K%E^uE6~KCH+Uq1^@9J|)hoaOgtWc{
z)QaBGH7h(2oZ)u9Ulj!!*J&ufa_iw08)nde8fZBH!q2tgf2;Sbg!Hjs+4I!OD8v6!
z=Qgjoc-uEsD|oJ*sDtM8-CeUzg)H0kA_P=-S)~2dy#lVfYNjvqn!0MCRzs6s2{@Qa
zSF6461qD;qTu?ZD-~-u@XBF#r`M7y9w!W9&OoPv(eP7A+qb0NI?`<_mqAWeSs(!OQ
zzwQQjMP?VuFu%AR99Vjgc5`xBjrdkrWtJDsx}p0vEVIPvZ9IJb;gvt-si5@29SR9&
z$mss=a7)lUAawiyyfCSeZTbB7p!8A>^A&g%1?IdO!@Y-Ev-H<$#e;{!)4l&k?<q}n
zsQBFnDmAv|ayFdbc{ns=s#d7@+F5b;@}E7AXa)~TXH8dS@Vod7oba<l_x_uE1T?;i
zzg+5HpDr(9H|6dBcl#5;YaExpste`wVBx#=25ipiaNRj#f2+S0%sdX8Eht~H=`bVT
z<xfy~a3y$8d%OMb3y@j(tF@~b?ACq<yYTv2(A-+qzSrPf69b9wRp50sYqjF5im%R>
zJ@+zys+)PiaZvkabtJ2R)!(Yn&swX%V?p0Bm!I?}K<Cv&54`i+A9odReJ7H;ZV`M8
z@kWg4{f9X>dLbj5i@h0YqTYjJdR_F^57PFG3=DdwkPAu7h9g7-Hg|gr6l8DyfvSYf
zTo1rjg{<5abJgM6<GJzc46RZ=g5+++uztAoee2UNuR|fl*t!Vx`YvX+_k8ex9b^d#
zIILDjvKEM%u3rSMzlz?6yxnm4<@Y5ueXHhx7Cb`Mvw(Z7D4j9+67UEZ^756ttL?s;
z&Y5jfyE|ZNFjCgOV+~m{;FfPbb)`?~uMmcvX4CCJi(;06)|y#dKfOH+G*}2KUeAUy
zbaGu^4a)qhLSi>&ed6N;wYBlj)<Oa+zTe#UvdQkJPdhJxhm}GtjtG7@khX5os*sgg
z0jB?@&OMHuf42hE`v6sU2B*Nu#&*@E_d(U$j=eY>4H>Lo=PT-PF0^DibYkuA&4+XT
zg=HRQd&d9@Ak)<ha##1nK?W~E*CF?(kAo7JyMZp-3Q$pv+|@^0dlI{jYr&M$v96)8
zDeb*Gv-TaXG`slXmUI-q#3C<HvToY}DrQ&tUi|`DO_@J$A8a+{N+yphd%#`$(0xb9
zT6j{nlBweU-1VT4*%fj1z5Sa0pMM$pWI)SW&U!QKnevCJ3sm&141yM0XX`-A<3e(y
znG~Lb^P*Yk=lO>%Ki<96)(-BT?wl3M(4Q5z9#rpzJnag9TX5+BY>}7vDkhB=PT_%}
z-5}Yr^}ni=*%($l{a)R4JU`U_Z!OOO#y15Iq~>TaFig1daQ79l`xSHl<@sQ&`kD<{
zvUuy`#QX@z@O)=>C}T~?@6{_H%khGzR_{E5yy&EKwN}H0m$1}ycS+W#J}w4^jO6zD
zpm`{bL!edywAh4n<dMn8*&nZE&Z_(W@oDF!&A;;{Cdovt^}2d@mCQ4~J&-c-`x?v@
zmY=m60>LS6S1zQchSWcAtwkNyon3l91XKf>-T9aQ@mdflG(s5nEPnPCRHgZauJZ_8
zJDIJ^M$;HeLPJ@w4_@<@g}lORbqsu=C908E|72U7-vr5dTi+w)yjumoA*)R4Pj3ZH
zH0a;Ix-zKrIg<0A>=j{PxZp<iQcF-*?e#u=9np2+pwcB|<u2!|`)|%~7mJWLs`?LZ
zn%qT;AJ7_|V{d*O%Z4oDf9f5xn(M*hTk)=;Z;eu>fL7O@RxSHsIcL^?k+qP1?SsIx
zucv|=5TG^OpxPR`=>pt}a%jHX-vX)+R!6daSOE)Y$P%W`{sKflZ%+tp8DjVz&~hMc
z=0ms3LHPl+jRc%cim!h8RA+2|TuKH!Tg4z>bQ@fv-wOA=7tTm<py=^yv;oMKOglD$
zoAyDaw^y}ZUQ~ZxPVch?Y}lo+W3Rx4OJ~==1+A*g#Tb4Bt+(D`1?tv>+}#FQ<^L@(
z)KApG9u(5x!utElU!dW{y^o>U5Y{mPb@-txNuV7CP($8-3Z$xAmxkP!3|;4iJm}~r
zdZ2d4w)dN$gC(mzshWkKEw_*^O9qv<uQq5k$i>_aT?zIOcqqRhkgSFOuhwWaXwO>q
z;=9A0Z@1QYO<iRj@^|)M%lUtw!q!_H4`+-CZ(W^n7Sv-|l@|oA=90mwe4VxEfva10
zDuCyRueRN`{|XwKwO(~<B~l+{UHnx(>p6A)r=EkiKp-_XXNMpyv@~8B@-&3;OE9dB
zP(B%Hjb&CCq`Lr4d@=h$E0%7?faj*K&*ggX>Q>AIP{VU(*5SAR#qxQdSN&uwEIIMW
zJ#?kjKCTD5v|?Pd<G_J6dDRPZd1eNNm?r#7;vv0Zv`u7Mpq1y>9Ya@ztdx>6f>&`9
ztiu@(7-sF`TLqe}egWAYVEF69wf3H@cvgnvpymBp&>F694LG6HmYvlvyt0O=A^A#;
zYzTN#8p{Gp{;yFy0jvz_t04OWmTQIYe06vI!!<TN!tx6dyDa9cx}%P=Lty%9sKKDc
zioEdkl>dH1x^G2akvwv0dc`hK`Mg60(!E9=Dne%a*#8%mTUB--u+aW{I4grI$lW00
zTYvxmclg(g`}_}1D6V37P&_H#A@Fl)0B9^<to;wP^LA$^7egOR*o<c;c=hDg>^z37
zFlfkuCniMK-+H*D@gnaX!w^OXQ|P_{(86tuQO3(We)cRrq6{IypGzStB_XZtn=#gQ
zpLo6RY=hbd=_4-+{V$e(_PJDT#c#dB=UNOmPK(Bamy*7^>8_r?7`$N!sW5|dSTRW~
zJIMCsiZaM7e)f6+XtJGGcOz)s6{}o+<<E;36<>efUyLN%tM?EzeI31K&;N*;@{RxM
zQcF&3Ha7rGNI!jEz|fFrx}OoUxOklhXrimY*7cqTbX`YnIAX5*dhloVPDrQzj|?Bf
zhQO!h=2yXkkx?Kg=X`v#_6%h3&}ZxWkTMH~18)8Ajj#P@E&sT9v2)x%<&9dQtMcNW
zeg`iz_yJnl0-90-4GO`g*U;F<uis>3IB?YG^6UF%hA926RqG<2W?L{E*l>KitiJs&
zBWQu@b=7tCn*xRg-FbV@N7VoS_!7FFKVYhU;6l*kuf>VB`iZuX6$f|TLFZ*5?Mje?
z9mV(^t168yEr&GxAQN6Wg^zYGnz|I;jEe=EB(d$`-?N}0i=d^i_W%D^{a1Q71B2NQ
zOD@g&%^NFEFoGAuYC&xvG;8&Sf#JceHvXc&kcq3usi7-_t}Z>5d6D6O+y46#|3uVh
ze}q*UURO(3*G!jU*l_fbb<fn>^J_C8TOL5-Aipc;RO~MT%_Ufd?(`1<Mc-k+8v89m
z;E|bCF;7>O`%6XCOLX72HwRC^O<nt`I0-Z|?8^8<1C$jHo8{bl^SvSY$}hdGN3-w0
z6n6;)xBFt&uUq%*K6EK@`GMWmbEdX`eB%sG_bX0KUlGYVVRfabYWU~;fUA1omEN}=
zW?M*`6)bk<i*UNCx{AT=>YlDitACoW@S3{nROo;HuX>-Vxv=cL2JK}A?Y%ZMH8D2;
zDFAZ}O-bH-?Ov2viF5b0Aw|2dEe#Bic3+!;wp%NpZMWvq4<Ty1^_#inGenMFYtJ@2
zFsWD|(BVv%hE~F{7R%G=EX*^G&T(}V`Ksl1W>JEeD07z*7l#B#(}GDV&w0EfruDx6
ze*ERUmow+id^hi<!R{~B??0dT77~8dr#w7-uGRDMDMrfATN*!i`v3g&(fL=*y`7#K
z_bR_yeUmV#Ss51a&v@m+%xuli#tgQ1vlSRmGw$;Vdvqq0p?UACfMpY{9d`fHdGV$^
zzAQG%Zs)-d5A=3zp7+_;CSher#{YWZ9<@W;X2$dF`T3=GmFLShX3Ot?JhtO%+j)EI
z!r6b4kKd2CEB@PAonralH6)zj*{;CSpl1w!X8icP>-~xF`A=h~8+Fw#e^q{Pcj=#Z
zr}ez=ZujEpf4t-K=DQgx?|PK@Zcpx0l}hzK&R6$q^UT(b$CqCXku{g(&ykNg{WJfQ
zIKy-6xQ(3kOn;_*cszOQOv%l*Z-So*>{{pW``>K6Z@cw(>wR7BGH>sqa{jN|jU&U_
zCb_K1S~<n4qV&qfz;pdQ(-}XsU%hxyvyO4b#0Q6?*0=2c$UpC!mUG6RssFwn-|_`y
zK-<EUugboE-}!zuX`AHhuC;W^t!mFJ7ytErH%vEVIBpqNSmef})A9f2MsB6}AEo)b
zrwW$DF0K9fsM;pJn(c*4+a&w-Yo3*-Pg%u$;LiQ<DaqYygY9>um#^)cR_|V0vhDHQ
zJ)#Zyvg^$)4>N=v|Gngx!{ha-XN^Lqo~U;G|86t?=iU0d4R}qOLvKDmUSXTw@2$-6
zOJnNoUq7_vt3J1LNn48^o1wZmZr95tVu5qd@80nLc(B=PR<rG;yC$0+4XWL6`K#J<
z*@j2nT5-$tiWk*Q@ZS4&+J70Dy7E0ym*4MubI9aJu->6ffB(GeJeJ3BN8Iwlhc9)D
z&7|e0K2q1)_y6pCv8h1@e;@CgzQw=hyUD8(XF~>Knf-@<F&SKWnKk+IrkejB4aL^p
zwZB+DQ+88y?Ue0zKh3_7YrXaT{&PPiGa6FAEKGSBSNGjzxhO-qi~N~e?^j)4HoeV#
zviT~_rA5*a5fb;6)b~99GG%ojqr*u#zVO*|qPMP(|K|4i#KElZd6(;_-T(HI-GSS`
z`l<QZ`V0I2pGd3wo*KUFp-HYr=HqhzLvMHwoGr9lS^8)1|IG5UF00FZUpQMnbW`8G
zVv3!6#krSRlQ%_IG-rK&yR&G;-G&WwE1%om%;IpksFzw}Q@;1xU+(;q9j3q5c^!UP
zBsneRT)-kemIdK|_+R&5$(tkU9<gTKG@Yg0)|S^C7nW)s*v1BOU~L_*|Jk&;t3qzK
z^VZb{^M`o#GS7IQIsebnYtp~I&o5kXzxL)*PJY$3f8TXBIy3IjI=K9%|BL*G@5El;
zww7;r>O1Gvf@AIsHctxHs<r4v3(DEl8C0-te7a3$>69pz50kgoewuvv`78Sao3H+T
zcUsR^x$u5UVYYs>?cdM-ejeW{-5K<}fBZbUtNih2%WG0L;a&Y3BkpLuWsHbEd^5^-
z<<)p|6Ddip?0s*9ZnPdMERwr$cWd~(N9FNlxrdxRwe_Rl2J)qzG}G;8eX!^VD_`W2
zyAJl|o31@!(EK-LZQU$mt_EqDbyw$Hi$Bt*QZKu<b_+X0t<C#M_9Zix{bz`e*dxqz
zXW>U4`?g7Z){JFpH@DhwHWW{~a`8p_Td}B;2}{j3*H3yRe&h8jNp&WJ`%`bIPM+4g
zuA+6m`=RA2GTV0jT7Bn=RK&8sOt;tb_N?1?sbbkTn<}d*CNVl|*Lml>vE^;JJn8DB
z&wI+mb=T*wyn5_3!;M!NbKJ`OZ!WgGdD2UFQt@ZEpNw8^ago;x{&+F;eP8H4uh^~P
zf7Yjab>CCP)orG{d6~L8GBLd2CZ~I2F@uF+rK_#U;)DMqv$rq)amp@n`FgcE%g*!W
z6>kW7Z6Xum^mE7S<Y(VD&HDUh(l6)D{a>Y5uBl&lf9}nr7uzSb-n&=+S1I`O#m>CO
zZU&2MOO`25V=h>~G;MXZpW6DHuX2p|ej5I9wXzCZX)7fYtjM$ZmR7@DKIxgp{TH?-
zMs`{r|8aL_>|C{5-lYq-*Ue6soc43i#Ds~}Gq<X55oPF)&fNB}V(rPzZ%WM-ckdVO
z<gC(YzV_<V<x1JY7nZ;KF4zBAwC|wbhVw6+Pcr4V3#kU0t~Ocxe(p!^Sk{J>9bG5p
z>`7U8b=&7H*6$5x-}QBv`_KB2^2r~{b5~xLRAanw^?lwB@2z$ZeLr%tgPbvM+5ZgZ
z&g-)b8K%fwE>dN9`uvz~i7dl2zn*Buwi)KPT#9Y<OWo$1KL2I<aAL~4N=XyVz*WKw
zn~hib_Z64ixN81?SFBc;f^z1n*xsM>PWv-nh+cX4=-o96>#iI*%P`~iv$L&JTAy!;
zet-Y7j6gc)TuW`6No)379$r)TsIz+V{ksK|tJb%MPd{AtdABj+!-Xm3pEvO_e+cx@
zEZuiUQ2SBoLq3Kx<*U*e|K!|zvHW3s{ow`5muu4H&D3HdA5PXgk-gltTd3jexzo4P
z_{7&-ssESSxU1p6$?T`M0~R&ZKMC6(ZDqK(?5NXs#)N;DeljO?RW6>Mobb*$Gbbi>
zuZZE!ea|<pJUQo8KI4Zq_x~33-#y&5E>-`?&O#;|H+iprpA$6#H>Aq{41eMK@|d~k
zUbp>>2mUPmuY4fpv)g8QJ)=Igp1sS~{q!t+DZFyAb64mNw`)&@A_K17dOvT6>o?u#
zuk-8O+#>gsht4|xtxzMdVBWv;F=yA;CgjY#>%}NGEBu?~0WIybX1iYYueg|U+<p1d
zCqLGmbldn~O^<Q@yj89>(S{14ez#iJCqAr|Oj~}-G;`g{rgNX&E4vvd)?dHwwlzZh
z%WuXP*-_#5Y#MUKqVH|5-(vE2)$-sDw%=~@-EyZ4*0&w5=c+eczx1Q6()-Q=rsWs=
zy1%n6X*loP`Rk;G><#ZP8}4=L3C&^;$jiH05wnbA+U;{zbp;iDJR5%boL>H_gsWTe
z-039(-?z<o**A5&RsOufMeCLy|D|o5=eNWAl9O=X%-7fRq8_i<@7H5KO@>|NZ1KvA
ze)od6-_G23Y^k#Hq>Ufia(~DEJ`t5UL%;iog^8?)=S~aV$!!+PPrUqd;l>B^n)Mrh
zax%W#+&)b<$*(Qvj6CCk*o*A#Okz&oHXS|s*?;#!^|SB)XdBJY*|7HdysO4@N-J;Q
zow*@v{ojm=bw>_)ub%Th?ApTe+VmN|dTY9pQ&X2rRZ}!szVp8A#TT4MZh5~FW5_Ys
z>VAjKAyez6*KOOy=@pA}8gjpHb<1!2-unNm?Kb<8x3@kNZ+mx*=fvb^DhvPS|4Uk&
zDCPMw*zw)$GYig6;*s_;QT_hH^YvGTJsD-M=1tmvXIW6x+ho<*5oOl{fBpSA{cldB
z?BT4qng^frE30>?-~N5|<92Pn%fD{%A6DLX?1}TAcOeZMz8k$won@)%a*TORkDXf4
ziMKxIcsiy2)>ucaF4h0P$v`JeZdcy!vi5g-PJcV3@cUWK-+%XtR`ajQN?i4td)=gP
z<L9fEozI)je=XEPIp_7;=lZe<3GrutRxG=m^=75;DfS<BuOh4~nP<+eT3I70yjO+!
z>$*Q~+<JG{d7j<&*LT17@tfk)vaL*N`u*SM{LVT4V%gWk8+QM`9!!*q`*G?G*JBRr
z<91UN&Gs>rHi&6k+cuk&MKf<aJw=>x$Gs<K++H)hE_%JNc%Nz2zI`fXt#8=7zMec9
z`fa;pf49cEeQ$4HYkFbWyY`OXf`wU?rrFom-e2Ll`R;ici@iy9zb@I&vpAW(_J6|>
znKd(CEUTI=sb%?`(J*t%>U<UrgU^N2BM(Zgj(_%Y#_rGMx^}-V6nyzL{abqW&hj?%
z0JC2rzwfP*Nr+qeZTpGZBxTPZuXk<^;;rB)X#Ey7?TF{KDbs8p1u`tUlJk$>!2ieH
zpnbmP-EX&OcJFn*o>}c)$^7;DgIS9wUl;5b6BOUL|J_&Rjn(lATAkHT7oYrbBU?D}
z+-mXE3p!Q~noC32b6@;7-Q4!$Awz2*pOR6gc`>uN@xl18`^WiP-=EvLOStCd-&^VG
zFXnxn9mM(Dw$ks(x&QBX>dBp6lcvk4adt-TP7w<es||{W9+j`VvGvpHaG^etRF`Av
z5i`CqHLN_QET;Z8_sQ=F)2gg#y^;O0GC_AsOI>Ya3-2o4YBbON9<LetmeICd;lQ$f
zy{|=&%C#8ct8Xm2Tw?sMDlx3SB9|?7JD<UY%I=s&hLX!B2D5i;od1pW!9SPu7D>JX
zCfT!F*clBxFW1<(eE!>;BO0r~ePGfRrDNaz7`?L8kSuObpO}8Q;fdu*quFcJR~$H|
zpLcJ6(CzwFCdV`MPAoP)oBkn#p-Q^%N(|pLwYSx$-aJb4etSapw)6kZ^Ip7^*upi-
zbIbASY1MLPCApL4wMY6_PTIRBQ1HMiui5(-z2kWMJ?hgH;lICaZ#_Tw`~BXJ8??k(
z0;XCxem?n2@%;OFN0c_Lb2BgTJode}wOF1dp}6&rK_Q1O%MD3G(N;IcHKrn&u{;6O
zRxPW%=bPLs*nHsH;ovo=_#S=!wS--F=OMdY(kJz2KK>{&p=Ywm?*rQ<)pjhL@=IP|
zW3<N7KE3TWnd{XU&x^Ud2z6&@lkTfw*l;l7nJI(a<|}V^nCy7-`0TNRDUHAR-YOb0
zhhF<KJ@)JU*He8uCh!=f=bvSNw3>(K_b%3kKLs!9cuyvMZeN=DPV>`VohLbyPo6v4
zrtHjUCVl#ip54ZkEL?3TZ9i5XPC9-{W4fICDet>q%kC`Pz0E(qX6}7k&J7*g*nd^3
z_5Ce9y83_g-7DXC7_4>InH>3GarsKrguOxut1lLQl5JQUxHRR!&qGP)g$1o1?Cad6
ze_A#3T58ver)A~4CChI_b7w?kPkU*q5Pad@z4<B2YTw1Yy!-T1xOyemS@Xh{X-Vux
zXSwgOHhk}GzsID}p>=f&L&9?AXD^T0sstAAJN@l?R5ar!<FgC$dM8X<SQm9H^C!EC
zg8QY<yr<7Bbn)lix^ZTZ*V9hTysoGF?lB(_+x#P<vUYx=%@-?&z!JlmA~(Zxdz`ax
zHqU?YZhf8TgOqip{yQDoCiQDQ_t@cG#LO^T>et<V7n4aE3(rppdgaN`#kZ-ZXx)=%
z6&IG=kZRx!%-$2u;I+8B^T=(5(`(h8g<3v$C{I;QVq%DUBW~%hJ8^%7ae>N8lPi-m
zZryvP`u9;%<tx3QR~$D(Yi}GosUB7NXY(mWyFM#3wR3w^vUP6=F7i9|n_<c=v4$-N
z_c5GVF~@)L9`kD{QMV2^967P4)=%wLZ0WuUyH^F4M)vw{zI@$wZI9i;uL6_ryq943
z*Q2R%e!sDmLa8{@h7(6WEdQVSD_e>4clWi!Q|rDfA26yG4>u7_kvgmT>ciiE3?jFM
z9$KHfB>U6Up;NIYfqy3VUCCfSF|}pOVzNsnMP6e+cSWrIjwyq+aoN{dJrkaMl8m=}
z9<p0aNW<vV`#hEBUX`0t`JV?yFOOq%`F-}7v(FYm#%;FZOqbQC9=VkxJ)QYa!fN);
zi<4U89tM<(3cQ@&f0jE<VUc!VR(!ho0sSL$0<!MTc*(u+J%{n(ds#k9Sk7#Vvu0+q
zUa{=x{nbfDvppGF`8X?5yE98xM}J%=bV_LU#|=RN?svLYW%zB-^8Cib5chGneA<>f
zi}+Pl+izNb_H8iQ{Be2I!osp^RfUHVSL-t@zxmqP>6?i7$NP70O5_D{ZCDY+cBoS{
zKQztrC5y^pafaE(_NOELYjs}ce?B75Fm0xoH2((E=&L!^IoofWyqr6;ux^?;L-Eqc
z(<gl9)%jf&Z*4LAR=6~8x~0b?p17<yBL(Lb+Uumtf86CSHVKybe}h+Y7O%m@EjJh#
z#9EfyABZnp^1pA&fkS*|))QxxGinqc^{laCc&0hsxc`C$!!fqD>!%I}Gn_enV8TAG
zE%*2Ws#?xo{-(|H<HVLbl1GI6yX}AbGq~M&<06#R{o<04`IKuay5~0QU3p_R{dAF8
zXk|OY`%Gm^nRDNE%TL>(I92qVtJ235z59XoX5NRsR9LT6S{C$T$=WX-GtbsPI;8!h
z_@~;nEenh~cTI|VS`SJPRz;h8*Qpqvlup-wle~Vl<@pTe!%v^3rn~X0)*qAhn&qiv
zXPvkGnT-N(+~Yr?H_|8TEI3!RCvAEqW5ZKPH5-`;Esvjut=<&<<Lt3a=EF?fw;9bP
z+$ZV2KNefuas9PTI_u(1TjRuZXMcKo+yBn3w>xTIS(&bp(f@qz?YWudHV*|pKHPm{
zPl`j^1l?^ry`)^S&ILx<1uu)_d~?1o;ovjNWP7QK?@!g=#q0k&T+<X%-nIE|h_3lj
zo%J_1z7S2<S(a3uP`Y%}{x&tH56P-C_1HC*u47c#-}Ne^E$?b^IbWH_;V^E?e^+MS
z;)#*4p2lE2=jE1ZU!LDTHAQxFyU*osUw6whPFtzWwr=;IckR|!eg#x(lz%hQ&*`mZ
zyz$DZX!-WXJZk4!_}kgMbGKUu%~ro6Zr`f@=bd{)>5;`rb*VS_x1G1E^82u~%zUEo
zruLMYqQm0Luf6C>?sV2(8ME?NX?oV@CPxMxPL>H;{A*pkKilm8{gCVVOS^P?tLGQB
z53xVHv~lHx+BdrW`)!j>U0QS^V$*ErQ12yy_U&24^B<pH^`SP>^`}UKVd%vJQ*9mU
z6@EvbzM0N?cIMfpCACs5Qg7}*og~VjJ!jRYumd|8l(wI&^SG1i7IyUard3Ko_Nm*J
zI2d)!`nz9V;Q!sb5yjip?>nmRky48J(pPM%rnFr^=FI=!f(|>UbM{<baFylkiKmfm
zS3*|qufA%+x5VLEh{92y+cOVpDE$9rVYoqddZzP99`*babqqOQ6gW27K1gu6m()-{
zch%Wgy|dT#V(s@=CmqT=+{nB6Sk0F^d+++^USAUAmSo-bW_Rw^NwUVqf}-haZ{&+@
zN}BVEE6#hqo;z*j(TzVIsCc-1dC7P6noPrX*;QvlU+r73?^}Q3L-{|;*PV+>u6{Ws
z*#3xZ>(SoVar=Kyw3?+N=~~Mhw_@S8>osd-_4i#oDY{)nJgw-I{(=khmdhsx9)4NM
zFz3^+iF*XDTZGJ>Ewj~QcS&lk?df%wK5TJ!|MO*nZ}_}f>jNip-+h^&>d+D_o)-5l
z;j|A&{L!09d}pm*Eb|X*<JWutBqLk=r0=|0`c=*AYTec_)@A3d{1MWis<~C9J)N;*
z?%q^6%i6C;-gftWTXOJ~Y<2yI`CER>*3Az3ee=k{*?#E?)nZHqjrae0%(YT&d;O#8
z@ZtA=vYJ1h>MOi9bNja<g{gZiu3CTnmk_rjTzJi%{MF*lzbf4h|KZx8`B?l*_1|^>
zJ>KusUn+L%`zgoCytm)`_$RP&hsvaEdS@~(<H7UevF}RTJ{dAR*7~^bw&h3t6~}`4
z{3mVo(JeD~-qoky_wG6ax4JCf0p^t@#(Y=Hn0iW9m~H1My}#<O)6aL>E8kjfarz^?
z`H_|JeDiM6ewX+!ck8bB|9p4UzkcTI{1wT2UfZ5`>0?^(Ct&~YiENK#eilj=-gvZS
ze(<_GHDym9_3Ny>V9K2*C$#=e$e#ptg~zE<uj?26w-b)>Tfb(?DogEqwwo7}wl-P%
zpMG)e{sOzgb#}jXU#RLol3Hs$zy7hqf}ovZ*6!C-7EHSFP1sO8A@|zD%i4EDKgXBZ
zXnYG%XwAH{plkb^UtNd3ZS=_TYrawy)o9(|6TZm4ZsoVvQ*55h$xd|2>o%Wq;M3ov
zQ>K!O>$kks%sm?Ox%BUa`GJk?o0dmd8qZqVnbLDJYuY;N$(gJN+P$9M*?hRb`OoK9
zs(LQ>GOe}MXNmWug)B+7uCI@sX8qVVJl^==MxDi8yv!P_ABU9cO|W(d-!l9D#pY+L
zbh~4weu{j5uj0l%?kD|QFXqjboi6=ubyMTnsX^^$FP^Wqsye^RT~%Vk-G$e<7~Xx~
zE&o#C)6a0trB~vF_JmobKG<2v5;a$$n)iU!?e}N)Z<Q`P;VZjJ^J?@v=gl9k=QT9%
zVmr;4W)V7@`;D<{eFA&6(&Dn-YqwUdm$UF(vqyJ}>v^@q0b(D6E@{+kd}_PvW47y?
zXjd`kygf&a=I&$ADf75;SiVhiUEGS>Cj$LTN<UuJe#rK1dW$rJ+soTR3m+P7De<j3
zmpAF{m4zycS4lF=w+xy6`AOXF*lGv!*e9ONH#e;=EB8L!wDqIO%R}3QzbKowW$eB5
zePwS=pyS?R7Kb|3dnY}nPTQnW5X-Q>ZvA(Ai*rkN&3@1D<M`5B$%2<>y=^&tm9fI`
zPx;@Y3~Ri<{o|_Tci0zftmAnmFM7{?=2<b9p3mLredzqF8`JKYR2wqXyT6}!{def>
znvCl^dh=SNuWg*Hn5e?QYOCER$<0vrebH~pW9$q*1?3`Z>kfWUYIuIPuuW|BGWVZ~
z&fN^#ZhU*4&FZ47+CRnflfI{qn)xZ-*AYz*Cp>vDV{+oAtc8=?T;EO;zyEq7vyX>c
z=jkNA>z5WecIyXut-Soz_VN7L8cX^9pSp2*W#N^3SyLE!%JzSs*_I<TP5xbyaOCm5
zJ0t(UUH;~&6Z6`qZaL4Lt`=H|Y?zd&E_So>eV#?p?mudspNrlo7kSUOG`}FPng35*
zX7vR|sr#SfzwEACmwxNoa^?*i4rR>y-uq?An)XvwF56jO$9c8aER)x)*Sfbmu*q=s
z3cExhr$_NW)>Z4u7$kIlw7Yrf>`%2eh7TJ*iyn7<#QSDF=h64~GVb!9)L!@J3QPKv
z6KQ|7)N@Y=-Os5PKBeoVUL*6`;@7Tnp{&P^I|OI#+|_;B_I}p?8(AN?>_03vYIqv^
zD6C5IL5xA#Q^#-3+pSe^iJs0Y_fwvBea^N|asg}sw>ED+ny}O4r}%;k|J0gu?zk+S
zm%Txvp_H?(PB-r2#ob2XVV2&nEh95end~X{d-HbVHD^}Sjf>WIZI3zIck#|#(Y-Tn
z=D*mbn}5W6=8`E@G7R7MzA@^lS|t8=g7(zw@BSsn*k75sG0!1WDXH^mz=z=Zk7M}#
zb2yefY1R7~x_JJ>zD-ur;^p-}3qDRRwK#r)anZB~k9@9ZMINu;aJeFWiq4;xYuV3z
zHQE=#v$Fj7U!5;a8}sLfRg|{~&D!a*@Ph~Y??}xF_p>{-m+gq&?%J!+EpP8!&z}1}
zuWnmuUq{xm56|`d!r~_GddhJ6jr$KCR*eqB+75ZG{-c`l&X4^6ubvuZFTBX~<@ScG
z-OHy-t-pP1Io}7LNC$VF_}M}}hR%Nv&(+?0xbLXfrPKOlr$Tp5TA=Du?3(@1=JDK3
zFTW-`d0mxS^xyW#LG~08!ySL7c$iGD{oa0&VRmxfoe3{iPdVPXePZFhHN{<beLSvN
zFkJh&vU=<DzxD31o96HSxv)${xMLru{eJ(~cV|7$4XxfX=j&I!rwNNxU8J8Lo4!u`
zBHzuQKP!LDz2sc(I_vF?Wv4kAB;J+>&sk+<m(KX1`|al^g8#JAwr^e-vFv)t1tZJI
zeLdV0U$0f+`0l;`-PgA3{ryrN*X%cM*Z+INJM6(~yL}%Iu-LaQnfL$fI`-9T(uCK{
zU8QmNso|aDy}L@+uKZMJ+Z%Z6_iN4l-0O><h4FR92fB!`oVs(D{luh(-fv~+t9`1(
zR~ujOT%(kn?4$No_1|NE^EW5Mz5T0p1Z>qb-Bl~AyT{;N(0-8}d4@dc@%Jt&&O7^R
z)7dFEzIUFQxN*~!yE3ejt+P2V9&tLi|NDEv&yKwXIZw6wc+}FFHe?zeC_6jl`I@#U
z9aEQCXSV4F<>p4!SDyK}`$@t67mFV`MN~8tG3F+2J^Fjip|kg|w0gGmp0~_t-+s6>
zFgEe^cYe9x#E9&QDU~Yau2Cl@Z(Y>2>~im6Zw8&x$GUN`Z`u|=<`w_H{Q2Hjj~tvM
z>lr^7Fyue;?783TwbP)U-}G(G(Z$Z{>n>HrXWV|hc&i4_`yS4E-d=_Ue{>!@etcV|
z9h!c*l%eNiRNUIIDRUAZZYZw3+LE`YCxYv^ZP_MaJ#O`G^V=(WuCFid__is==6>(4
z-%J~n_f5`@E-dtT^geU$f98a*8yW5_d&T_W+RR|@<yH?*O0Npr?Ra@w?l=3d$I{!+
zcifxS^nY{g-9n??@v_3%mjcX8PRaG%sf_Zte?ISS_acS25hoUevbojm-6UWAV_nUL
z<EOc`dek;pRc={oDmQhPQB27x%}qxxeAp{3wuAZU!ky{|k6%sgPV)H0`?O>3leA75
zd(V}w46O{e{SEAG<*vSyG%x=4XX)x|`8NXt+0UK`{q}m=7m+`b#-cV}*)P~*(?a-P
zcE>7M9S>mO+Iw}vJApFuSw*`|@8(>;`S;TGf4zG*M9UORJR$b9d(-4g>sJXCh%&h5
z&A70+jyWMJslAbv!G8JuOIsOq)_s#<@SQ3pw^OxjNtx_@AFBqJh}ox-epFhPN1S1(
z+aC73$an9ZmlO7NU77szZ%BSjYpaazowB<97L0{<mwx<t{=cVa)t2q7GV_;h>fd=x
zxBrvRqJ26u=SHN5JWylsn(UI%%RFOxne)}Boi7ya)Lu^w;+M|rJmgZSchcg>EsssF
zE;k3gEI7ws^lS0Oc4zsFtJCg?2IaMU34O9;hisv!q+z%J8JGRtyO#6Lkocxu;8OoM
z;^SQ}G1j=y2?l?U=1Ihri%0+6?Af)4e}nSd*<PP=&Yug@W;mu<8||K)&NWeI{p2Z+
zD(~+vdcKo=`Jc^KXA6HXJG;w2{N0aL`%e9IZquHg^3Wu1%E8mtnv>0poW6Zt<GA~Z
z#Y4f9n@Z*?U%jg>er0OzrJhFyGq22j?RHn_?=Fj(*{>NGF4aY(2tRi^`^3uQrKVnK
zSKfx`<hc>ttIs{NZ@0br`iSjiG2?sDM-0l2_}%KeT>D#0cHP;vIo-N97q|6fExwbh
z+BEG|fuGy+;%v?XwS8BnnjV_``h|6*lIe%J(wEP2KUMe1;uUXhxT+%6xvX<7U#Qp0
z%y`Yn{4+sbYiDksALLcL|7+0FDXYF6tK%1s%5mATX<LxjU-SJtmK^!;-<MlFZ(FEu
zl30w5RkUVka?bgOfydS5zD@jbar@6$v;4UK2N#M72i$nvpR@Fe=2osdx$e)6PTnt!
zooIe`snhAlM~*!6QStqG^>Vc4(kt4(r&$KYFDtql=%pE2Vtp<=_P^-TDM9jmeqkPe
zxT2P6Ch2(3iL2t9nLIV<)uW&rS8S))x>TP%ztOalztjF^;>)kvmgbqZ-B;sIyj$)4
zrh!|rR#eb=gZsvhy+`c6x0$cKskSA4{de)#`}YRVy&`lVH1}&G+auGf=X-bEXGn0~
z6x$aytGRa9>q{3Io}Mjz+`q@K@6GMq8-ui7=X!}TPO(c%Uhj0LRDJ19ec`yPc{e3D
z+Rb0ShMQmYT>F>MCsNUq51UNfSUdG@NPFCbyAS&wX7e7l$hQp6H{DpB`_aY!zWI~L
zxF>B_4*V;!oV1clW^pyg(w&pmg!6o856aRxaO#Es<~YeEd!H|lyk9i&?-UUm_cs$(
zuj~xF5|<%(Zo@lQqo~d&-;Oam-8TE=7ITkpt(=_b+iUz^N|t5mZojqn+?8nyW%T%O
z-psqA>&RC)_jzlU|Lf|X^-C>##phpVpBnU<p|0oepRCx-^yju>zRP;M8O(OBT@&-U
z_U}4bsn6$5U3BtUUit8Qq0IwFCZ?rRRw=IU&o|1m-VyE7mfrAv&PTI-L0P|ddHuea
z?#q_YqCNGr{)`(RW{FRemYlmz`g}Ws%#x5`hI#7)9vra$x=k%&@|tP6HvC`Stk=3=
zW%hi+4F7YtSaR$y{MFMaH4q4YbEQ&c=5Mp_e=34iw%Db~M1DMZme2B%tkTY;XX$Mc
z%c4CPViKjpwWd#x&C$u3k#);WlGS|q@4i!ac{Ug<xzfoHBfZ=s{w{Cb@3msf)Mm|U
z(3avclv$9?_;!!sv+|6u=T33nyI~N;@S%ZS_o;_mQ?zZyDY>n^k5BA5XnV`TtZ<e7
z_n=1ilY%viCO%0kKlylL=_P5C=iG01{hjuYx!SeDOv(C8;pX#la_5r%Pv1G~NG8Ld
zDN9^dEDb(%UGQz|`9D>~R~a7E%WY9PcVx2736s3(o)0H3d1I(<dbafWq#I|fLwRmy
zM7{_*cm7V1$BObfx~GM@-ueIEW)+}vYnR4SIYxzj&l2t(_~7^YcUrgB#IGKUB5sz+
z{p`0+J@sN)w!Y3MCH8U~F2$)a%f1PE#<_>q$tLMHhdo(kJ?Asi^*_AvMQaZAJn^X9
zcFstDrj$0rzV6?F*AjlVnp-Yl4+vLk34gA2SJq~t`|Xe2UuLJij`cj=XnTqwOpSBF
z3?_q{D@ziqeXsrseG!%yA{@rVW3E5lY|@3dLHtphe9wutt&z%pUz+iM+iIJX{l8Y7
ze`IyDh`Ii46mvbpAKCYlCp?STc(hSs!iDKB_e$j%o~Y|Ys|)?I{{5t7=@*r#ze3^y
zoK@SbObf3bnw{v{<fE<kncqWX@@<b(PU4%^SUP@F{qN#7nV0{nsr}(8VM%Tg$>AE?
zCKc}8!x_E%+5v-x3c2TszMSd5FY;~q)Nn;ruIoOtj!)39DJOP6-`sMjC2}>xsYw~1
zOs{EIUf2A-c=OX`kBj5YypJ=V`LaN<knxPobD`cf-2c0J)Mo!)_SR{>`uo>G>RY&t
zW*k$x@pRF>$txBfle{Z`UF}P(OvV$DkAX8)8j~g;bgA8U%l6@ny-mM`ZMG+wrX?iR
zH|%;Soi{Hy?whXZ`z@<wSDhD&XVm$;VBuqi9S8O-h;KPJQ)=I~oJys$3odV8GH=zq
zzz7|&&#^{(w3aU4wdO_Es>sD%a{>-rem3E?$;QL23~CDtbnQ6qYo9-&9~fL5{YxcL
zC426PzhNobzk`H|TpF@x%V)~oW4-at(K(jk|K@5{)skQDC$8T8c4dj2fUoWO(4RAT
z9KtNtJ@XYi|Ay<`$62?kPFnJrOjNhaNMzho)4+fBoRy#d@{P8Q@vm)fJ>P$Xt@lc9
z`8VD3Jin8t8h-1W$k*AkeL`X3CjMELn_hfzU~#Z{5&Lm-S>J_|ZCh*~2g`Hp>e&4?
z=l;{2yH9-r@BF-U*361QKwD<fQzgyfBgxUX`7SZb7BOhw&bQp&by}qJlSam4+5cVj
zX)7w1=Y8jqGBlpQV~t<h@vR4c2F>NanI*?`fcfdwU<QlJf7>oSX_<dG-2Cd=t>0!P
zpES!~T4MXWpz!34hiL*O9wD8-UFEMXt9{z1F(a$e_s}=5!iC!(RbT(|`N{W_OK17q
z?~<02{ByZJuyeCA&wuCN?mvUi?U;4KZ1U+M)sF)5_WXao9_74n_U49QnYI0DD|L^4
z{~fa5+vwVbH#}>@PhT&&n*Jg)Q~6fxFRt9u2ObP*?v)Rei%&2!?6`SqXROb<;^{2K
z0?O%6?N;iS%_%fpxs_qTiQgAWIQzaR?7kz(utaJ9YtyaAPEC!S<aH<Wb@^eTE1Wq+
zp{;CDix#`z$$8?Jne02|<ijN2Ghf8iqcW7LE=DUCdwBL0cTSzm&-7r~5mvsqJfle>
zUqZd+u2H{p>(Pl>zJJR0-hVb>>G8Sm%vCgJ$VLh8@|4Yu&MoHB3($@0Jt9*dzg2Yc
z>g;Jt59ZC9uIkqIHgNhQ8QlYVZ)46zp5?RMJblSm!>V1~Tfa|nNtd-OaEShU-?t%U
z=G&=RnFXu*l1|^hzpv`P>fBVbD=ACrDkd;5JMGL^Vg9!(=h7OP2marsg&H>s-_6(X
zedT2&W_IiTr~E%TiBG~_K2BXF@c!g4mwnGQ%=f2-OPY2qPTL%7s_Y_VryINe?dMnF
zlc!4;#oOlo2$}RmW!Im(-idqV+~>uzeaJezdETE_dz&9mUvF+!#S>}!b8~vW?ef|)
z_xxUz*)kuR|8jk?(`kllmGZyL_&jpD%J>ZRm(Tcf#`;ya1pDjcRt2Ax*X<Ws?t7eB
zF3j<xKkfLB(`V<dQa-v(T2|(!Yl+OIOW)QTc>cI)(JpdzBFn!uv0aSEUQOP(b-~lG
zi&YLTTJ$TSVUp|Pwr}q%PuX$G^774I{#Di9(_n$C%ky_Dw!Gfhy~2OTBxOymzzVBN
zU&}5nerU3DLH3(vcB{S~SoUFV<d>kf6qOQw-whQrXA3g@&N^fi$ho!u+Og@+FGWTj
z<x@S~vrks><W=$e5!>dMO)a(8bbi6A+G$iJQ*rL1?pbxtt?e&F_fC0d^}K{(p3i2n
z-&gdRCN>mKU9*(I`cC*^zwTqkPqNl++Bti6d9{nqwl8m66s1DjHXl7OXMWHo%kC`^
zO8cJ&A8U5cX#Bc<S?T^`JgU}<?-e}CkhU)jPmYZ$Yy7sO-|$-SoMqpyT)j1=TQl>O
z*VA0~AL@I(f*h4p?#>hFEc_EZJ=#-TH)=|_^^M4!XK~^iuT8Ii(%Liayo}<chNF2=
z`(I_}EqyN~|LWVVEf3~?anWDwHtCZ6qCd{NPN)UOeD8TBd^kO`@{)bus#O}kUtcwE
zS!-xEe}0^6k^FYQ^^-&<#JH{Bai{Bqo#n%iZ<Nj|ZFl{*y<9#qS6S`%Db|UX_xU6=
zt`6FAQ7uvL*{-n4TV@xxAL}kyFm1`h#U^LF9B#hKyua_}_g$O$vc+P<wId^Pd(91b
zU6TrKC<S?jyY;HR@iDeqajm+__xy6zP{o(3Rm-o>6ghF4J>vblZO&VJ8D<;BoL=nt
zW$wn*C$+L?k4?VN`rpk@;%Tf|sC=eH_`bK!dfO(hJu6Ue?iKuY?asuSiSP2P=Wq20
za6S7{rS7F|)*efjc?$1~6HdCDZ?AXl6H~k6we5uIFRS#T*GF2V;tI2cG?|x%TrO%@
z^77;z$3ucK!pDNVG)v7G@^{^8W9CtvmTPZQ5b`L|tmN1hkBcAePDWPx%rm=Kf7(?z
z+GDcxtXz?=CohLF++X(B?U!xfw9X6emt120?>_x>v#K~_fSPpeLTCS+l~aNgee+9?
zZ_NDmHX&9zwfNAJGrrFq3X397*)w#_z3^~j`-!~zH(An~)}5&^?7wrbzU^+9a*q7p
z3x<X7?+e%Uip;vTwd*)bb_(z0_tuwu!}ru(I`(PB64qO0UtWA+<$L74Q)}tFX=?k<
z1o8G;nX7GhBJq*oX3>Nb#)f*k<RkM>@BF{)^|e6jJ(IkqguZlSP*XF$;5B2e`p&FH
zC!!bw9xVG`_m-*Q=~P8upS_#s%@s<wx%u(4@^Sb3HVci9x!V1E{wFqBCGeHx&qJ5*
z?1|kX``kCszu0}J)_x216VZ*qTe<(AY$+9ZdtlkEF2$u=RtK$B^~!(U{#?pD|8~|p
z*OTG$VjN$u#LC@1uCI`FH)pTaN89Us4c{-l?W%q9ZO5gfVn@VxU1C{r#rE+_&!wWr
zC(nKSd;XgItmko=1%3bCZ#re*Wz{71X1~eZBVi|ZcqH8|b9t*9Ha$n^a%@T8?d;$)
ztmZTJOJ#faOHT>PYKTiXU7h|?_}XSu#wM36wX%%mkxPVBJnVe)|DA4`rM^&=L3&Sl
zZ7%<T^?Lgv-PNSij3-+yxBWT$;K``vPrffdzhZUP{f#<B8JXu-$yO#miK#5kFEifo
zCnnNoid%KI4Wq-x?%ydpMV-=>cE<5V>$tONEuFGzvsF;q=iSSnYfY7vi<7y?d(-`u
z*MtC@FH`T`nAIXBH>t)f_Hl2m(<V_t^}w0VCYr1>LSIf}-0D}Elr)EBVd`Zb{S8;Q
zS1G7W)hwA3+oojhtf+U*?ZfKDeR6uAUBp{cOK-1geEG{gJZp8|`mN%Bmj)g++gIDC
z7rfE5mc3%>lq&Xy`$Dz`ykhOQ>uejpKVNCsyfEE^<xtvnoBjE04-&VpDxW$_-PUYh
zhfB_$^GBanAKN(n+5L$Is>_*U*6HfK@3)Hbea3V7?w6Q~1&^LiHFbICeQW;ZL;UZq
zc592V{VP<f%wdmwqIzy-Y04Ac@A1obsIJOoo$=PAJSQ+Z?akqsRr}WZaNhN_c+G0M
z>x*o(MD=|J?e`z+uAg;3cd_Qm9UsZ+smr*(IDN5>G%NFpiB&D<i@(09Rk@yJONrmv
zlDp@Qw!K&!aQwNJ*W{WP0UakSR_c0o-d5_J_O09cK-ZJ#+ZFOVyF0pfJehXONoelh
zcV18D1^&I!UVlff^!b^6R)=HX&so~H?d8eWdh0^hUvHZfzNq(R`>9>a=U4M;FTHX$
z`li*>=5~EM3;*pAdlpZ5wZ-Z8y~nd%#m`&4Iy&{(?}Zj`zr2vjUAix2rOj3bm&Bqy
zHv{+?@=BJuZxb->dYZQ<O*-@CoV&)yE8OyqSMR?X`dw|_=F@NPYAl^%mA3HP(f!32
zFV(ER=H??(u<nW8te4+z$gUF33paC`)_SG%7t{Bn7VH17NoH?7yW#X>eX}5kpqNch
z8dOqWwHr@lvd&v&(e;-9K(pW1lWb>?%(6J~bJlC0iSK_Gv!$u}x4v=Cm)}=)yFh)?
z(NLvTyccTo{*_$Z=u#}2>~LoBMfQeEeDAi#2+nNXdiithJC7$u6KfA;zh-c=o-)}<
zGt^mH-Aw)STN|aU;0M3Cww=ps*sU1MIWc2F(ecBrpG_iHo(#3w>wNXuf|tL1fBW8&
z<Q4ur;o7mqhR!Dse!8(_ab1eMpwl(;H)8U$mSmjsJYQQdbMpFA&ZdV$0yllRy|*`+
zQ##3fg39&{!IkH81%*`GBKiE4i}y`i|0_TAy5#CpDR&nxPrgyMwtCy73&~N+8<*Xc
zIl27D`t8;4dwXVXaI3EQz3t+ht2^{RzL))_lx2|Uv8C}*c|+;H9f@yrrA5OoHASeu
zuKhW$dsRi-JFT<x5)aN_qNtE5bm>s8)~gxa#_lt(PpYYRle@g!Hh#YOrKv%2zIRIY
zwz_P*ArT!_tA2pvd$rW`->Fek&pb$;e&O^d-SFQVOhq5?EYvQ^-t3u?HS6r21zUp*
z16xy0e7*D5OaAtaceNdJf-0jpRPU>lC0NCrIixykn(9-3_hosqjOD3{lNL&zR=3(=
zyYOt3`CBd~$IvNlziiLipY&mSIqB=HZx&xxeYhz1lz}_er(SOU<gM@j&Y$fxrSqiJ
zimmpRi6NWiWWJVFY&BM1Q=!MFp{{CkHI+|1cyDp^rSgo&yOL+8GR76pn#a1TX2ER!
z;%(C|ZP)QL>5fPdK6-z*`#g@oI_bH!i|*b29Ig{-kbmt==Hz;5`)9`&>Ye)c<(iHe
z_ia@zL7{e&b8j|=?)N#ob?F0jhNu5>D^7UqP<^`~llP|7q7_0<u5)#GpAG*ae(#cA
z-nPk$XI}Ms{3g2PAG1cWv7RNPKjW9~dCQ(luF*IY`mXdr&Dra_z8w9<>6M{2xwm?Y
zocy~BGlHGHRvu-j-+kTOI7^pJ#yh%xp-=ItJ?C8|9`MM1oua!Z{QTLnqOCk<R6h!R
zmg7C(VSd}+VXIwmT~Dk^3;T70yk#q2uZecL7B~68rwfigYQdj2z3=@o+voMPyD}fb
zk8fE0<><tS<H08N2UpKsp>v?R==UojJ?Xoqc43#d#CAVwE7-&8U>;tbFq2!GM>VHx
z^WMGBU!V2y+R&?-xOvagkZR|3^Zuutt>~RyYwY}N)@mW&l{pt8yJL4M|6RrOC*l6d
zU%fx~?tb09=lznIhb}*^jVk6opmtt&ePQO_osS|m-MK0@`_IDd!FCqwl5<}e|NLRK
z^wYe1l9$cZzo+D0uGs5bytwSv`hPQ+=W>0Rcj4?VxvGP`dcUprF5N0zf8No>HLi3!
zx7f+4?7JVV7QEjtXZ^68ldsTnjs5$VA8x7s-&Qd(p!De4wJR0}t-3imy2sgb-+sa5
zsHC4IuJfX^1pW2Ht$r?MSUM%k&}+ZE`p&slIq^5w-k9caBz}&!k#gypXN8N_%ecHx
z*>rpDyWh1H1wX9kv0ZIkWW0ON${??+yU#29{I>XZthb*>-lCnE=QP_-Os~wp&b4%{
z(VU%uyQRJ53uEhooSL_*aIgqJpL8bR$>o$V`zuz(%l~A0ep&AOfB89YOBRI^zas~~
zUY;guKV3$;XR`Oy@>+|pv+s8|UE8$!Uq#hc4~-kwclYsSO?{M68)bXF`A*_|rYY*P
zDt<hT5o*8d67tUeY`U{?)wF1jE|FcS>KlH}4GylA`}FIDwjY<=8VfaBRe9Uxe`nTq
zR?JnK)cuuDGS6G+*YSu)>L0EKt10k)`f^~?blVH_dDgPbnEB%I{e$w)Cvl~ChXh?r
z{FJW$)_m8kKWC2Jf5Ck4mg8}i87sH%efw!i;MVFov3ax3tbZUk{qN)&p>O9n=bG^e
z7JZtY(|Kynl(09h@eEA$*S$Kw&5EvECEoj%Rpn%wEoVZlnoc3#bYCG|_x$p+>R;Pt
z1X;4rzqrq_q};zpC_ehverN5v*;&k|65@(-|4&Y9ef^{C{fzTc`V%d?6PXG;);~6W
z5S|^M_2*)cbCTq{vQ^%Uaz!mM|IbU$5-)9#yO@6^LdBxQ-hWq;)9;-J!ap^{Ez)#8
zYNzt`7<0~V%}pOp)?Qi>%Wz=MKEqjEv#ic+t5{bhSoEGF|B?uAhv2lg3UZscWeT1Z
zh*j$6-Zt*l%9_el^EP5SlZ|t5&HP6b*LpuW{U}0&b)$CNd*Ap;mv(%YDM|drZKA)g
zI*B`zZ;!|e!!q7O{}cm#_HQr!F=x&0LwSn+s_{G~(n9ML{vYOEB(@;@<iqzyxtkZa
zS={FJTi&P1AZ?T|O*CQhzJ}eFYZuMn-eB?YxG%%@;@D{CP1EKtn-Y|sz3nBJXOtg@
z{p-hDqT`ESrske^%wF6+IrP3wQI+!2kky54&Gxf=*sT3~r`$FC!{waP{Or#C>l@#{
z7MQfg#(r*$$|8a7`;%k2K6I2V`th&B{p`tzk9Cij{xhvP(=h$gONN?@CgG)57ddOa
zDSaj(^ndR9DM4D%-RFKUoEc=fe9vTmp6)i=t*XBoJg@bwiF?hvw0r;irPhbTe*5-W
zh|YK|@t(23OUg8cLFG)l)P#*0RUO86&t#?^`C?Zo+7OYvm_Oz9EAHs6dz#LNNIWPJ
zt!-evIyFdZyUc<gdbuwH|L*bUN@^G8t-ZGCuugwuvt#P9&!>)koyMBPT^O|c=FR-M
zcE_1LdtQr8_}<H3d5!tfBRd8!{_m^yK5tx7sI2tx&gIqrR36TJ(f<D^m$RpEr*x$|
z+uYkzg1pu;OXO*U{N5y3xarh1`|0B6=6-CNx%Ab9kA~^~yYlmwUNL0gDSh+X%H>>D
zgXqgMI?tJOiq^O@&f7452IKrMYYu8os5u|r^n9{Tlg;A=E1sMC9Wvz9nKiZAbiwjz
zvpGLRm+WM-t?!!^mGR18?$<eS^Jnv_EnGY=TF7|LpS#;*GxQF~xbIs%c@MXPRa}44
z{PR1mMmrd7O1)@%eDjJsx0W)*t7;pGC#(#Y^*Uy8c=PYPqr8)sm7iy|h`g%L{v%X#
z>6H~f)?aycH~ycp&=u>DoE2x)GV1G7-rW{`_2I~z84pwT^|-FnI=kf1P6i&2#cit@
ze%K$c5_!O=Boy^7R&HZ3gRs4dXW7+Ti}_TO&u^H)A%Cp$*84Qc53NCW8Sffdvn()p
zw@3T?hS&G!1#)E{DstR8>xz}LPVQT|4<AglCiP9dESe?4aK>vf+sE`0MgD|_>@9+a
zA8_B>s-by&vg*03F6=QOPFws|Tvj#zUioit{{A<j?<2+EUTvN#WGfapr%tHhh+c}R
zwQPRR`j-pe{@#;$anFTk>*AARAO4v%&%ftQ_wmz}ITJ5vHSC}BI<Voj$G+FCThDk~
z9hGQkS~A;h_vzWUR?98zo8he&!rRUGZ))?TnDe{TE*j2ixuI}++o`*GzgCJc-@oy0
z$L)^nVyllc=QB=8zw=60!O%$8^5Sl`Vs3_GD*7h!TCJl0Lm28pY#CoDv+J|vES>gZ
zkt+-TmW>}TzIY`l`1rI-_1<p{ZA$|VGURsOi@QIA@#Ut&ufNYyX?Zn$&jgR@?;d)#
zUsCiAar-9pRn6DQ%Pi|{3WvR`v{=&T&Fag~sUF@Uc{aMt?{k|W!&A{s%cI?mqDo5F
zxijW%=6X=fFTF?FV5?Y{=4Y?`swsSvetddt)bR3_p`mnG$8FDJGiUwpyqmMf^qlN2
z&a`8ptzX4whAnxx!%Cz<p}#;i$?Sl?oY@akhs?K6TEDS8$OReU%j=i%J@a@LgWy!9
z>^aLVuieYv&Azj}?97%2c1yo#&v1*Hq{{H$^7=xC>px`^R+YbPHDmBG)ZVsZ(;d(G
zZpS8F`?c|Gg0<Pk+0RaeDSB6@rb;;k-VO23pS!YqdqYbNzrp?8-}o3FRBlc(I-L6;
zW_RA+-S;{EXMYm<8^3yL(5Yp5cb?x3^wRuVbBy)+k`vdxG(&as&IxIEBz@CA_eJ%9
z@TaLkr<^Ti19^<@R!q?BY`4C;Qs|e<{An(moO&5&WN%l~t<4Md47uJXl9n#m#?Z)L
z`}C1%gV6g&zg0KSUb!(~kK^Q13)46vuXnvVFzv*=qwNgQIoC^?dsJCx?ypU4z2MZK
zyE5+3QMvQenJ>A|G1)ttL1){yb8>tet{p6k-RwVY|LuQ2&U=N{tv7w>yn1TTs&#Mg
zfAQrsUiUIv%>Vd=j@7$jgRFOlW-o10^;1=j*L?a=X?be)QXQSb5bmW@qMqi(%Ph&O
zethgotb^At?M?Cj;@MU>SRUBuaO%*HN9Nhb-PI42uVen=AjH2zWP?!VW}XMu{8mrc
zrZXlecKWgIWA#azs>OSAQuK?aDSl!Xn_4CvV4Ue;&d~R9mE}aA+o#t=gmqrFZi@Sr
zuqMpw=Dic3kZcU{TDj_@m7es%DM7FPP6=t*t+DjVA<=VR)eh9!#66Z-J0)nf&}+AB
zlXHPyE2r|A#aJGjl)qhb>6O&Dm8rW<e_raP8Txy+h|tnEH{DhqhzYv+p+YBf&6J?6
zK6~P(PTK3B{#JErvW}+Ax+y`vyUhKyU&po?{4QHMC8)YK%RbcWL2QuZ#|oXFp_)ry
z&1}o`kZ7CySxBE#)S>IparJCJwWrzX|9<>4E|0DI<k+jVUe!#+soU%@=aisVvI~rk
zl(9(&9(->XXL_BpK{PFn{W^2O3ia5cMplN!!Is8rYUCGI99`Z%WB!bZA>x1icipxv
zR6O8hzDwkR+*JmN7m?NbBW|5|nSOS$ZtzTw5B^@u`PLXrV|ab3<L>vV&lb7wzPzmK
zi`>f`b@m@_j7w&&zbKZ@WN`XO%||nbjg!sz{F5`oHK)$n>#}lt*)hu-Do;0v&5ta0
zoEYR4`v2Cwgo-^uS_acY>}>c>{CpU{bc)r7Gf$RAX)L|+s)+se*Akt`wNrw6gNo$;
zuYbPF!aZ1ex>3W*B&plA6{VA#0#8I39sK!@Wk=WXWX|&%OQ-D8uUvU|YSE1^uL5tC
zI+_*D()WIPr+<IO{WX=JpPij$o-cRvomT0xc)Je=6U()hUb*-`XPL|?&FlX+=Y9zg
znp-j_$V>Nh#}YM0vkz7QKQ1#?Yb@=ve$}7Ssx_0lR_77pJ<YpWS#L|fwDL1gjk>Dx
ze0hbKLPNRm+klgG2iWJ886RMDW77Gs;h;6c<e2EIj1?zW%USk$c+G$B5~}p$#_i5k
zHH#h|a%uKd614QRsNK7KFHb>3KZ9AtjfA(p3{QWnYhKcNxptb+z1!YXl%tkzGF!bT
zTV|=*-0%qxCNDqNTW@19JtQcl_whpKE8oJW25C+4iH^JzC%bj}4})nILNmjD9vAxh
zeroDRdyd*Gdhb3yo)VPx*XFvF$OECDUYb+iE^WHGV6K<uRoj!<(RM{w-d+s8{d!qb
zl-J6`b60r%ihbk~y6<D@bm^#er^vwn*|V2US!KKE@vp9<ujQ6a2@)2LN@F$>J=<Bg
zyIgmjbkXFXRkvh2zZbbY|9bLo{>KgBeMWo=_d9o9c<8Y7#Jj}Fw~wY6DV{s_GqWM^
zlhJ}r3QTI6tZmD^ZW}c$I$|VS6>{p%saH1tL>Snu0w%M_#=LUyo!Kh4+IYvKS5*uQ
zvNbP49I84RPHvpH&620#sjqPDJX0rWpR#)y=O;|Qx+M0x-1q$-PFgQtcK7%e3-N|*
z*%h9X7~<YI_)5BM<t*yVU;p7GOT*ew#h|M2$07{pzHK>s_!OhW^a~w<k4<aue<<c&
zr@zqFI=&$I|Mq=zcP&!cbN@%j<iA^egAdG%NmRGkzIRTdNhFWM%}m4NpSu|9J}mWT
z%q(n?=l-<(X`{bTP{l{F+<=IjWf3<XG^TFs<4%~h@kXkc)2fTL7w6;@ugI_RTH48+
zvz@o$kHq_i#|#xG=G(C@Ied@d&a2$TyNsWxc6M)>xrUePsAp?%^xh4&_dJ-sd=LKd
zSh?X-)yr^|HjmRAYsKF#`LgXx^w+lH)G90cs0v@3+P$$Q>=sVR2b>v&_g-DfAabPK
zAizsA)R%vM{45KPb%&2H<#ZEzz$wo@Ihye@&zmp{?uN;_)9iLgXneggVIJS4n{($c
zHqmrve6vNATVjIb6Q($>85uJBgd12-o>5HColw0t{ZGI1@_tX72@Ezb?<Xi}yR-M0
zJ!dXx+Iq+`n4v=TZ`xkPFO4xP9NUsDZ!;YGeQkMz$ql}`7w2Mhw_hwjImaNXZ#tv;
zyxwiMLjSw;%c!1S-c#{;qxAXrceLJX&9wP!f1hpg9jAtgFT+a=6D<7?*nZl&J*4T*
zN~e1&FF*E9bbb`@xuw3A%VVx6!{NR8;kQ@4oV~{9oR7l1)E)n7wRsPpc#-XAyJKTv
zz^iq<YUh8M&G2ElF{AGD^cxc1-!!k(^`DyjbN$bvO8z-3rUYp%cWvLSV(b?_|F`G_
zq5n)hANSqOsz1>?zoh@se});t#+5f8?_AsV^8|ZgN#c5q$^7%bXB$+CHPl{Sw_KY+
zJW_Mk*Y1ClRjwAF(6M^Mknq^}{ofzocNP8Ro^ti$?s&$PAG8mc$V=sIWNY}d&GS^s
zdDca>TczT^Wgh8mS<C#m{cX%LUN!w+CNp9<B0K{!j@2>TNnQG)cVhffp`YC4%6!3p
z--SAO)v()T*2$|UI|W7imNTSfC_9xsubX^|_xqi$YT>-yaf{x5uz8&`f9)lvhU=Ht
zEmuqMJ(bFTIA-moi1?{NwU2vLzim!nNnw&_%K5VN<-LYZ@9;j2mva_R$-4G<a&KVy
zo%^<vJXe)nW)q&j>9Zc|jEQx&uNn54>5Ko8Ygo$45S_K`{)X_B+OR|o&CfdfOB)vN
zVG4M5I>>?P`Xqaey$myo?linKG{57&eCC(P8k-$A5AxkkkZ_op+2$0yjOkBmoS#}j
zi7d~7tC`zh%bG5Cjlc0p^7)UuOB=3KFfqjU#I9#fbKG$CQPqj*brmxrpPqg0eep&G
zf4_j{DZR|=pIHy6T~6A1o!P)emh-^-%<Zog&mL#G{mlQ*pQr8XY&Sb|`!7vnn&UD@
z=+BAmGqy`A?05SVv^_+|Q_N=b^312arr#$E+DXRmW|-h(drs<nr1UFStE5t9(O=vR
zDtt$0y018S@1_3(ra#N4=YO9!<HLOu&8ge1vSe-=Zu)*t?A5x(t)G3qoG$vn^`Ir~
zZ7#zMDS>571&u+k)D&(_HBmSqePpvyCc|9s9+n3go0H02*(O=)mzd5xnsG%!UEQZx
zVUM0_lqmBQ`3YsNk6iL6&GwOHJ0P-j%BpaN3Gtn4)-#5(3L1PocxP+0=7IWU*%P8R
zP2K!=w)E|YwN~GwbKiW_Roytl!QN}XlB8;$k*2EOk-bxby!J9%JiH|&kRZ(2uwibO
zUG0&8&l@Ta{&mlv@$-!5$8Yts%c@KNtg!oiRPNkAm$peqcUxaLJLSf5kp(8T`@^pa
zG%TMizG|yz!fXjyE2gPuen|zGW^n&dyej>ReZieOU9%e0#P@z$zwOJ<-xD=#=U#{|
zst7gek1GEuP@tA%w1xM<<R`7`45Q{b8P{xXV10Az%C_9q#cAnFm>KMsm*g$xj_>Of
z`u9BWu8H6(#f=6zU(P>%xuB@w(KWv-U)Q%rwzZhO^fbw1dyuLw#m}+fuvf#yFz@i{
zy1QKNQ+CJsmF7;Zy_xdp<M{`P_I~rWZ}a$F{Cc9_7bDYs3=cxxUrBLpP|BQG)}Xj-
z)jht3vyER(4`d%>ityEv|0N-Fa$`U)^8vHlLDE;N&h=YQIueu-Xn%q?<y7bk521j<
z7ux<}x(j$u3knK!-rj$1;xlHZHOlvvi``Fp^lpR2^*u{CCpG+vot=L5h3sp#-ODWA
z1q3B+>wcwnpRtd1g)PH@I8U!DcX$E<%xfHyg#U40a$>3Isi@w*J>*-2?w$SNx7OD2
z9{9NJ+{)tnw^lGFe^tN!UOKDb>xr(zo;Uw5y?gMAC0D~+&ddLAJT_wR^9fqS&d{vP
z?j*E3#q+C*!U4;33<oY9-ah+X^Dc{*b8a*FdNGLI^qhQi!+o{G85_S{mi~UZ_W<v@
zUwTy*ny)6NeZTZ5oq^3F<n~2}PYHWF8A^;~c8WBttke3){-)~<Ys6*Cb8`jiqAt&!
z;bC`k2~+Pylj^kSlr=xzZ(~lHH~E+CzPlk?(%vlzoWJkm7iL>s>#aKvb}~FMFIchb
z?%BGP%#1TK|2Uc~Wn2B}D<k8%344VfICHDc@3%So($6PFEbs43`=Z(<Z)Z+V*`%uQ
zW%bjIH-&DhPPh{KlvTm(@WhNYf1iZNGcm3Cs2?%u=<XvsdOY%ziZ~edN7yGO?Re<<
zJmuS!za<Q2S4{OYC%R5J!>^vN?2uSeG{NTLejA&EmW+(=3}g~kzZ9;Tka8kgqw%Qs
zrCBpPRQB@jEx8+F^zF$RInR(6{tWL**BvWl_$*vkW69v0+-JveApP7|C4~b_{!ANY
zd#<ed%%EXo@;YC^_IvA{tqiPYEHlCw4KA6ixKXaMuDrLoFUgs)ODJmPaYoV2aaZnh
z1?=lDzRSU3@LcOa2$Rm2sXjba8l{1^gePxithj$n^1sv46VIlp?)$q}cFiY4hG%vH
z_5p?Q3~8Y=*8b%;5O3$?D424N;m(9T6Q=$CYPvM!+L<qEYFpn6nopdZGsl=wW@1vA
z^v&MbXDL>9vbR2s{n<bLs9^rY2a9iO%iLefvEW3`Hc5d8D!dF8c9}CLtKL7e<dxUU
zlkq`wW?ZRsxIHN{>-f$m(i`5rcrS1H`BL2f&;`ti+xFbldUp8LYsNCOH5Id1y#Jp+
zIgf>9#zsD$N%!9=p8vmVn%BxLYHDBQIj!f|<~`q|$Z$I-<3jWi*3!gZifn97g6rjO
zT(J7(?3p8x?_58>s6n@m^EB(5Sw1Wg6P7rXcAn9_Y`ZfxDarn7%He;}hx}dZimlU6
z9rNFHZ`-=hGe2JzTAF1yU0%{>U(c@>4^$nR0$5(2W<K{#RY5_sneo)5H6QO!_-(Q0
zqNecVpxuuihD*hS*W2H?wz8HXBW<(e`Japp^XGnBy1MWsf9fy(^qzXV;G(Z*dw2Wm
zHC1M>;e5jOM(a&oz!|yZzkcf5OV<6WX0$MP_+07s(GMqdtIZRvrE8y`@Gv^KZg$6u
z-%Iq5zA;Lw+NxxeIbH1g*=f6$x1RM`XuXwD&2iVm`3#Fi93329d@b@?w)a-@{Ru%k
zf6psEe_Qw()6sKxRh~0V5>V8WEjxAl{DV`KED6>%Z&_<qB$MN#UF0tHl<RZWDt8}D
zzPn=g<urybJC0_}5>c&Joe?;X=fEL_@=ynf+TaPkXY@Pw+%7jOTGjZMu|nhEa$a%f
z4R<Z_Pu}GEuzGLW6U*d~HStqL{g@y85jpo|n%il{h<7)(8WyQDXuI04x@hs%ZpI9c
z9D5bdV!gt}+Kf{tt=V}*eQLUq-c>I~u3bm-<8l}b7qQ%D7P<ZT-5jnBdnQ*NwD8C}
z9eK`m=Z>QrCkg$HHjnwcx^qcP{L(46>Kn_%c|3ET3oSpi-^k{b!U5}ZJ_b{!94plF
z5X{|DWi;>XhWRyOi-pwIWtZ(aYhwQ+Kj?L$^2?(f)^?izK1}#>MKrNqaIyA{*p=&U
zUGw|7*VC=*&3}g5X=@u+oqloR!$t;XdF$&f%kG@}F6wH2ZjygpXJl!&>{mnU-X~KU
zEzT`#%9!z~CFthdxq?BZojQh<V)752?k<c^(OQ%@^(O!A^S)7WhYXJIx-hxn)Cot1
zC;IFaM=YjUNCd=X?+JVU=Z1|y?$LYOjmpf;%B^n*@m_GP{k7zl>&cyGRnzsG!;LC$
z-HTCT5!>}p_1Z$21%Ha)7U>!XUR$H5I8iqCg{On6%bKs>SKrnDbN|I(^}XL8w6e#(
z{&RcTt<|^g?$pgPSHBWy6XUIwx1fjZ#?17^yeHMuozoR&*<NQ<(A2K+h|HQBe2VeM
zm0rgD6(4gywXfVg|B0K-J12K0E%{z<MlPOhg1(YB5*L1rtBRX>{E%9wTKUV)k9lh&
z{v|5hDm=y0dCb4|W8E6Z%Uk15ZLK)S@N$W?r)rsg#~%*)S^ZB+KQo^CZmuh_fm`AH
znv16jgcvr@+2$m-)oZt_`;}0ym2)<?wSS*)-}AZ6R;<B2*Q9`(;oF_q#V<rFdxBy$
zE1mmJn20U=7%P0q{ExIvPU=17!?T1>dN6BQUwy)9zAs`Q`-0_<eYgH_-tGDP&GK)x
zS)o7XJ$+xnxp9>^Q_sf0{T_Ntl~>wm+*!(VUU}<rH-@y^=Ty@C)=vGz{bs|ojf)}`
z9X95B-eNXt*Jk)}ui!}n!?hb5Ln4;^x_xW%uBYKVYdZALnTjQ}_h#%~$Y6cRQ0YnE
z)!$QUejlnoGWo{Tp9ex2*1SpBxI^O5uiY0WHk@i*CRerU;e?#NT>>8$hP-fVj$UiG
zZqGG~y2P0|w?9n(%{j?kdG_UudDm87k-2B{#P#KJ?w9K}*|9H+x+ivjHBZ9Y$&Y*(
zrwVQKk`VpjqQClpsC@3yzHYys<1@5{c5R!-pi;J{|8R~+blS#y#+TM#dl~xJ?&?!j
zgUhX}it}n7b4g!zJUO|pm0Ol`MMzEHK`Vu0TO9LDcO1WR!eP^z`b~dKE3Fypw#1d%
zSv*KE7ic)cza(F~h~Zk$>Rq1V3ZiRgHmq`;ZPdWqroQ}}TEnMp>r7`ZuQU+heVw)F
zkfB_{?o`f=Q4Bmj+w0{Sa(uUo@lPlT=Tp`2Z=R6zX7|H3>3~iF(~asp?p4emTDx=G
zs`8s9_ns9G{QEXi&&A;Hxh=nznaJ<_e`)Pe=2s#NYrfe(if7xZSXZumApBJhqlV#)
zn?+)b7j9lndp&p4`l)xtCLZ5$K5MPf^=(s_Y$c5u)s{tfi`Ot5cv)BOeDxmF2IEFf
z+l1>5dv^C6I&hca_AbS~%gZ(fd0o|E6F!-#ylHoCw91N?!t!z1HQU$w=Eglc{N=%4
z?WsYlj%&P+?o0bU;r7&^tJQ3izU($i*IYWK%CJbGq(8`OW#cN>>C2v`K1~H9Z}sVw
zw^rBQvvaJi3f*|i@N34>D;sZ$MNhwZ)oXU|+z*k#rLMbAoYL66G01D}*2r%Cl=Unc
zU*d~g!=`&1TQ00_xUJLrV#&izu6uG1l=PhW9uo9((OQL*bB|2Cnzdt7Ma+%Q#T<7P
zH-4S?;;C4J?e*IK6aK!Q(kwYQS%l&F&%3=0|5xxHc-^KPFFd{CWnhfb_sYyq-b-Jr
zsR`(<JMf%AI>$8Zv+`T+IuW}on!)q@xjWiFS?u4vaCyw%lkf9bezbF#+!wRl5MTLc
z;}iY!yRLjPUwiWXl%P_tgS!H5<tJP&&t5<Cm$(l1?vLFEUx-*={n75R?#QxRpXcRl
zypg`AtG*$-q`x-rUWfgZitTF)UsdfrsXrws%jkewH{)q<1*;7wdM=y0?|ZoW*TLNk
zH?D`RpBi*ZJlEZG-@E;%GiSEUy#J=yoavAAJ>_C0cA?DrGv)jBy)>tOebN80_vl<N
zP188drBYiqmlc5qEK~PxY~R0L{^#oI?6>mO8cU}{CGM1p&y3^hG)k=WIxNd@`;R#@
z`;Q~x4AIKvNg8vywm+Et`g``~@B7$gbbdL>J*})cX&@@KX39F&>e)9dy)>83VlZP#
z%6_qI;n~Lx9al3fZfxE4<AjHTvWk!@(;u<@y9FPJ7c;6!^V#qoSme08ot6DbW|^Xt
zDWAH;^w9NMOGEY=HLTa2TdTovJv!HCy4KI#xvzy9lzbbLxek00sd~>nN%4*7{@n}z
z|0@17Uy=1kQ_5P&EQ?9S*KfRkZ+oD^+2fmP_Uay!lk*h)xBEz_oO|NmaL6jmZ+hVS
zobKMOSJs@Ff8~;^n2G-Es}qXic;2tv$eQ5Hwj^XeM~Kwy(uT_&41fQ6p5DXOuy;zh
zrc$D;YPna>ye0o@WExJdol_^v&>orNV<a>Eo@9{M+hDeU8$Oy#SEZlozNggO*z@7d
z4wl!!CmOVlA8nZV=+}9M(|ca{HuEyvSu4f#p(Ds^W!bg&0iHLnUP;O}W<0euB<@k_
zC;O#SZk;~#W0t23e@YAAo{ZXQTfgm=XWXZ7vf!IvRGQ`u;aK0+Uvt-0eL8)V;mq1)
zWz1hD?7NWDprk!B;U1I5wjHM0$y46NlqOgn_~z!d{btOxL(@C-O<tNsdNXk8avSe(
zk7t<oZMQVzz7K{6&MgTPF>S~=A939B#bZ+!i`e?BS+mWJZokM|IBz0@x2~C%+q2bQ
z>{Yjh)GytA=LVlZh}TrUo7%0LFS+gWWK)s4vzBGi(gLP3*?&wwtTP2aUfTBR=sd2o
zVbX3w`$D~HnOZh~mf`3SUL$GDP`CYB#x<h`*~D^=o2@6-FL$bKxMJhE@QJRxO+Y@=
zqRSjVT4T1a{`=0Yfj>o@iN`zYnbUz^&pfnV%xq)SxD~zf*--}RFR?G{8M<^;Rz<K+
z+sc%p`Z@E-0S<<1xl?kYQ&;LpGIYgf&pb3Uv(R#aWYG2F3<kP4#O|>Q8Ykahk}AiL
zVE^4J(E7f`w3y{nCe3t=;CB9J(!X^w?~Lhdw*D%6BXINL4ep>%Ra1k@_ic&RQeWQJ
za&>N2+=Wu7`qVQU#2y$vnlLe@{f%rxkoaBkyo>YiuMM_;Q@kKZE8WteG9n~ui(#F?
zT90K?-=nfj^yL$p3%`9_T&Uye$sTFH^Mj>%QJeY`iv!x}PQq189~Rud%ke?ZQ+w_m
z-dv?6vy0R;BmXlN{O{cTGWaofg9h`-cm~yFuQn_yE!wj*OrOc*eAL|J-sF=Euj3V*
zR6d`t(O)b6mT||m!(zfphsw-B#nbyr_60gS%PvT55U<V_o+<q|&Ek_GL%Iu}4TppN
z=2^=abGD|v_#xD=cv0V8X-Tht+g>dZa-Ci7^_A;W@cI6{{gDjsKCC-<<iyg?>G?JX
z!t2;Q<QR3HnRL5#g#6%a$ZJy;X1peG$K@8&Gb?Lf#?^V#dAk|J+@v{+-~Fw-V=lkv
z+n2+8{rydUzr6Q;YG$+N&D?pB3P(5V3zs}7GIM+y@PWTzMu6RcjwPuoCdazU-LpEP
zZy7Cq_o<*^?y;Xo=QE`GPP(3wURTSTpuFe?+wa;n-JW}&hIaVqP2h|y`jYyH8&o+}
zJ4G}8^ZLegSH7WlYs~AzR~>w=b+tFX$SL{GSdjc_);;zEv$oGz;c#oZ^`=9PleZjv
zB0hc6im(Ls1GnW&r}ZpvP}r4!J;jJYU0qYLF<Ecf26?sv^Nu+$XTDf{U@fD>>@ADd
zY<<SP&0szAn=QA)yPwpq;8o-1H`0H@vYOHE^Rl%|{xEOQWp<jzY~#M|!=yLcyrz9R
zG(~6Pv<af$)~rZQ`Y|K*OVA9SfNM69zU_?D4p*}?=WM<mxw=K}!Zpk2^F^yWHJ&m4
zn5XQ%(zdau!-(g@Je$sDON&ItnOk;A^c0uu+4`@D;ne*M2|FdBHJ+xsk1W@#JW)L3
zJEPgHcWYD6-PUXN{JHksR>4HBh(6f@;lgL<JI=mjI4^kF<&e#W(oc-1CLb4E?s~sM
z`%U64sl>lWe@(Pym@#3^vO<QVTi2TY<~$(v`|ehs-%D?mTU<WsW>R#W(Whv?qVYav
zg_my(7o57Zf?<J0V9!b)_B&^S>{u3Pq;YR6p7>2+TKoJX_Zd!=`^N;nP1-O|Bh6yR
znv<8lg#YAPefRuEZ8@v_o%i}AP0JYmyev0os(F;kFt6)>;yN9(J3Q+v#1p*VTugqJ
z)$CdEw$@r<<{zN~zJ%C^RV)XbZtvad{B_~2@PfPNU6vK9@4DNgna=bsXA64>+cz!d
z8#3{Jp;K(?3OE1V&af@qBIfNuS%#W*@;CO%EZUo#T*10w-T5EP2V_1My<E^Ke&O)l
zw2-}X8BW)nJSW_mv*rGSa&x9Xk2W9C|8v2fVaG1<k5&$ebNKVRUS4Nm_~sFDv8G{b
znEVREgk`rU*)7axyzyw$63_D~!QT24FT57=zO;uiRKRndw0YTk9)^FVUt7&N7N~s7
z=>5Oj=S@ZK;dYf-7Pn&8KC{iYt2^1a)9d9cPWg!3GNuDtuI$e3eKx7-gLwIJp8X63
z3s&bwJmNZgLUhTAo1qiM>ug@XjyRAzb&WXVsboI0*fle~c~(z&#=v7Fc3O=6@}imY
zwguZbuE%9=z3Dk&(Ygj*l}9so-_3FU^TX)iBgsqO@5}KXnNa5Yq*Y#h`IaTR@h{hj
zKXzb9io3JxzQ*}i?oP|!@8?R`vhl`$!S2-gyD}3t9eu;&oU+CH&4I~w{Ks|JYE^#c
zzO~x(WdBFC1MDga&n|SypNM`YS04Rep5dYu<Jv<Lf2*Hpyl^vE!i+DeW#Rq~S+6zE
zZ~bO}@chf}e7C!*3}-y_UQgg#xRYV&yGpg&ieI*rsop!!5c-GV{7#;Z?eA}I<4Nc~
zy>prCevPP|e_U&Ge$;<EXML`-==Wju=nU`o8X8Hi8y9pWxo-Tv?)tqA3Eyvhz4hVN
z?(fe-MK&s3k8{}Aq|_8NWm(AtwY~ap4!yJ6Z-36m$TMxz$#*J~TfXo7t~|Rk{hp=g
zy~@wiiua|5ZtU=Q@ubk<syKs16OXsqk#DLe*W3HGrcAk&b$;P1U;EcxC12HkGa0D(
zZe4z6?X~caGX)plX9~=HQDM62KXbyf*!1_e?>yDoUm?(-k$?5s(z5#>)^&)?`L}!X
z?t-5Ae*JH~CQS(u7M#g@wNv*;i*C=}2gkk~iOLRoviWjQx$llMLIpn+7aL7&TjQ`-
z?eUa$X{)-g;kC2P{6G9=$arN_QvPG#aj%DwlNasgKJL7jQ)J!V;s-8M`_f%LdDj&?
zZcbk^cb9PP<>_~)wjEzxA$eeyjuh*hG)vw7^L?4q6`N%kcRX41Lhvg`_%)TUAx0U;
zABy~1k^cPds;X@t<m->{*(%NY`Slv(8NN=Bxp&W1zPOxt-lTW+-O2HaQ=d+~wZXk&
z#?e{z;mXgaSiO38`~Lf^Y-fG#b%j+7E1P&4lUB|Um*0|n<$Trb7wHuhv)-+{xHnhE
z-Q?hp3ybpR>dg?lJ^8?a50&bSA1cn~{boGy>DJ77I@SLr4flVU$)f0Ly5L>~L)EXS
z%-omjG8aZBl*Dg0FwsAA_j6)Gh~9;ISKGs#hhAkhYdy5y6V0`S*)rzVAEBMU<HKbW
z{)&Fo50>02b&PA}?(*g+srf3c>3_s3wV!_fu`_<vYSsGGn_@Z7S%1YXPkF&?mcm)>
za;vf=C1!eb{I9C8it2C6zTEk%rr;I!R^+Xb)2E^vYb>W<pU9N`Z1X)io2!w$2J746
z0;_JDs0nndmE7?-e&N)9UD?y(@AB?zed)|K_2<-Q%k5BH{6;48Y4)SXkGrj8D|1B;
z=)c_gyObeE+;Rc`T}!3Mx{K4|f^?FqYa8b#2Fw1*)(T!z?I7t>D*ozc>5t@p7xiUt
z^sQ!?F{Rf2|Jt?r@24!_HB6b*H*sG}dhB@#HVfzEKTG%@_^en|Jk!$kTkP`K1kEe+
z6K7_eR{P4nV43%!S5qfOvTk@c|Azc$lX|<;j{+H{q&aH%$@p$Dj-0q`<wiyA%;zt>
z&32l7(q`PDty{jIslj8~?taD{elBrL3Oa2Uj(ByYv-XLuXNU;7+{)DZZs-1IW!F3I
zvPYd0KmG0dVymx`e#Hkud~bS|7w^+w^Do4C--SCDryHDj+cRx8quSD^@1zXm`@(PT
z<XR&lWzKZ&jF=SP>CeBs$~R38>FQg)K<2^LS+`@I`L=)BkpD&T_xf|6Dzv?sUz)H6
zUV0VMX0zbP&FMS3Ico*~9{7FI^`fntJ;SfA8~t84%ymtidABV3U2-L;Sa;*hfLgT!
zCL3liWsWW_&fVRxHsnIWtld4KA0h$|&)&_R+o6~&;`&vUf9Kqy#`3`2z_Z<p*M{q!
zVmNiH<3?oB;hDPMxADx`f7x+)eC_@2)eO_bc3zvwbC_Y-)pOsZE|#tN>h>?V__3=C
zS36_CGodLnRZXtu6^CsrD`We=(f9$AoHs|Wxl_!y*!l}wuT5VQ{_6byO&uK~(;5$(
zzcqYRx%1igTIPggfy>R4&g;CcuX^@w^*M{2?`yNRxz@}NyL3GL^`9pWxsmxSx$TO{
z5x&va&8m0ITXga7?`034xq35Bi`;+FcFy0ME)Di;x9+|mGkxC@vFcs5j2`>l_HeiA
zAKBAeT6~PB_V>-#d_G3<?HwI5%RU~LPkEWtne?^XZA)Rd<NgmXr!ri=dwW^l3A?#{
zyI&t_-+DQ^ocRF%uSc~CZyYb(U8)@!$32nfuKlguW!tV#xX>G__nvLlGQK@q!;2hm
zt`%oAP;V7j!k}?!k6iZm)34;t2V}pxxp8Sd^MZ5ya&l9?UT4(tX<z;Ap@YiK)7Keh
zU-|y3s`k)2F~Nz;W9IGc&MJ&P8!0nI`)a0ithF%1v$~qXtwCk1@k|>m=iYStlMtPK
z`&Iw$?W_N#IG+n#e?9g4H)*3p%brmAPx*}d=CA~8?LF?A&zLyVI9@aAkxbGZ&KrxT
zxOp?Iu!wTudd8f?WnVD0TfMF*E4S_~ALEsNRe^8OukOwanIE)#p=kVsw6oUo9VasW
z)%3nMywuikvp#ak*?)VdcAVf8-S9?6p)qUWvOq8IxQF76A1<}8dSt&wziJBOhBWhu
z%#0PkABF$2ExCKM{q40?)8qo8|GK-H&0F#Bipj>a(VMSTl&kGl-}5aZJHFCmTI-jc
zAETc5hSn6uX=yvP<)pt(J!fXUsjuV2!Sl9zCO>=s`AXsX%}iO_9Uh)cWZ1Jvzw4Tl
zi^9L0twny>m3$48|LjbDz5I=)oA2SuKMVbC>$T6TI~wc1*RbMCPiSDR=b|YtYwvIL
zi;_5Ts<6wXCuo7DY(<k`(^+w@cK81bw;Jb^PGes4d79vrz^{fc4Kg_oaINm;Wm~Z!
zR!HY=^L%L?rii!R4Y{A)ueIN=o5K`RU}E*+*LC$9fj8gn&Qwxb$Q>T>JY-q&v6uF5
z<GM2(8FlI}>dbw@{$03P^xigphV|9)D;BqJ*}=79!<wh-mfgIN>v>|ry2}R3tUga#
zcJlAUl}DHD-ke*%@ZLV=MwY@Ua}QlSmMWfdX~V4xAMPk7KILlo8hNEzI_u2CYiUoO
zRod@ge^cz#)yyTv4EL+!BX@8l<nA?*DAf>{Ci#ZT;+o;Bz5<g&$=S85+sfDRTo3yg
zW%kd(j>$qvYO&@nRh>iDHOtT33bl^<TKHo7hK~;xyfwTs>)Nir*2|L@c9dLP`0vj(
zrLt*LT^>2i%6PQJBqDT&M8dXx8WEg+tv{x1KIB{Asulb;&3u1d^qpl_R!+P-c~$wQ
z&xvpN=l$Ced;I3L_4{ntr^PP5`EH%&L;iZ-Z&v@LCoN7`!RMv3o+W#KUd6@^U6XH9
zz8~Fn_*0zKn=0;vwO^CCT$Vn+ox1fdQ@rQCV~6gYX4to1BkOU(`V;<-fA9X8P;T`@
zCdsJlrb&g4P4JHevCGbWYQ8Y9|NQoQ2Oh~bnH>wT&bzK}^k(XZ9sBCsT$WTy9(cAe
zyvp?Qg`9@ommF7q@w<GQ{GZR@OyI54LVBJDlm9h*;IDW&+udbb|Nmt9zdF_R;`NLY
zkAn(+_}u>0x>GwWtl)+FFS%zso~}20!o&XJebf={g)gN4CY=}FxcB0MSI?vG)|<%n
z&3SD+tMAmTgFTEtPDZXd^yMTwYkul}(bRv++p=a)UHNQvPG8e}=Df%sTuO#E|IfZu
z32SZs66=#CwnepV*5w%6IdkGTbxZ!19*#?@ZjOxq(j5CZ{mm*vTMOQ4whRqZbH1c^
zh)%!y=c%XFsjGW)Wesz7#ksi53T5;;`L1<;P{HMlO~Khlrn}FspJx^SQu?RmUd#8q
znM)E37^VhR8tq<n`Pv*YrG@hs&D$?o$o%qxNW<Ao0r9IcmbqV#7Bt*nbc)-a(QEQ$
z58J$|9Dk;eE#ezldDnftUN%24ah3byzW*!oQ$9Dpyy0<Lhu8ge^~toYEY40}j?b@N
z)W7PKV7z!&j`Z7OVS>-~m-Z!3U0?p`wh8Z}&1D(;86z&~zG`{&`&iBFkaZ7a+1uaF
zulwaY(d9^ZSBDLkg{%B#LD7a?mhX0)<C&)VZS8r%s26R1vxKB2F7>7De7yUHgIKBG
z^E5%uw^iRI+|!M0wspy_Z91!8{^7b=tiZ;yun_)9=N~;~aJpJK?P|S+%%AP=wpl4{
zdLA4WHdo!nrH(0L?%k+kznSwE@@VBpbNimkNqW7X;nZJm;gl09yVtNL6yDME{m9R7
zW=mYzj(5L5oJ&4`qqu&X_bK^LUpqtQx@Bv8T2(vQf6>zP+x&X-Ycmhsdvf8#muJ4!
zvlqPBv6W%*dAp}G;+{U(wq|B%#`OA-n#Qi>erNli`>SugsW&5`VClwXTkgJ@<d?Qu
zD?MIGNmuV*NO)k|(RsVhfBJCvRd!SNWrhuEhR0pp+~lpFDMz1WsyJ?aVavz*!`FMQ
z4;0>+=qd8R&z|@D{L_pDH#gn$s^{6H=N#XAp`qt>v)SPQW-gQ0J+F(dUv$V>;cd*T
z*2gWE{kvx8SC4bwjVHP8=C{uK;N-6J@AkI1;O>)E5BS$Fy)P_w<GRjkS<{Rv>s|UQ
zGmF;o6p9N>jkE00)5`r)yHSfnDwJ`L@D|B7se<ix?(27!GR%5peT?6SeWBh%OWC+>
zHpl;*c~q{!@UX}5?C*8F_P^v`Ej;$Hbxu(D#|vT1Z$EWCPm&RT*Za!r)TWwA3np^q
z-CpWCizDA-TdVT5j*|kWVrEacj%T{um)QRI$fU0f^~cxLn_RltbNimB`qad)#<k0;
z*4YSIUU+nWTmOk=LV^>2ozq<={&-jOh02E~uj?0D%f>GHHOarm#9EezCE{h&mDv49
zOI%!1WqcpJ3Xe*4K6b-VIcnOjcl-V@7X-G3tv&Mo&bkY87UuuTNSM1-;BoM!OJb6l
z`bxY?)_WO}lOI)E^KkM<<&{JV?=umSIupP9$n<p4`OIgE^)It7{P}Z%@3K>OxAy-w
zOPSU-x#YwB%UeU{AKt-x!)?`$$FEW>d2J4z&+2*=w!PEpS`h!X$#>^%U-UceX5^|c
z%dc0tezp9K*<Tv(qw!`-_H{Yie!G`zxchS7EWi5lfoOwQ`Sc5EtLmlatXoq5hBL)(
z?&gKlTJBwDf9rPrQkW=1{W1STrGghi|A&4qDf@Eq*lLCj!S8|G>-cv+*1NOr-T#~Q
z_F{c!Z(8aUY<e}xCc^8&2XB7Mmd}h4?{({@8;eY3s*&6x*>+`z@BA&>@5*n<X1qT4
z*fA@E!rR|0#2dP6w*>CBO}_T^zpKdUa?y$PH$HV8E?E*^;XX6=U!vc!hsPJ)etdkV
zc-ubq2M5l~nj%)m5HXQ`?*C~=CeCXAxSj3Y(ZvlLepiX?`u=#@-s)@ywjY^KO&U@!
z{<7nDDOJt>E+{zh+_nYh90Vs;&A)N9+rNLkiTK6T4E^)mUr&E1zG<xy@-FH4D}R#|
z-rFxfB(=87JmhomY1!}lc<Ma+CS%1l&CmE(HOb4ie4emb`)4Wt>x|B~`bBLXi{HO_
z^zWz8!F3yJ^(&@qV|%c%Cu)kEAG^>JTZ0sNUXwj*FL}Fp%++64rn~!i@sEXh@8U9d
zW;M0ljg=^UGqJ#Z)57}iCo(Kbmi{`en|=8XmqqG1LAzN(2HXd$6&1H|J$T$BHAU{0
z`Ws{3$d094C9~ZNGpr7zeXsqew)#NqBk$(!+AEIl*W7hpzoK~>i_qkCy`Hmn_dlC-
z(Wg1!tB;(HTiZ{@gtqXP`V93cm*$mh6nJob!CC_qU-Q~q_dZ8GzQtR>W$JD$dZ_Zy
z;u~(yMeQUtgBHA!dAw+@bJTg}Q}=8X?)~^YXY>52k?%z3EB$5E+7q(rKFf_MYYxPi
zeKtI>jQjJ!$h6ZBjQ%Em|97aYUU<imy*gVMALwphbn`(scgf>*>36^WS=(#6V6D-$
zlS>~@&X2u+=jtYY<=B(=W3%$z%oh4J#a%j8uC8-d)x@j$>-z6!EM5QVP8M!(`8Xq-
zc|(77BDcbvTjsME8+I+ZHse@r+<(v7^$}~0=deiq*tmu7`LY?0(_;e63fLaZl@Ih5
zPUSc&%E$d*>da1k*{UaO^E3G(ZZBW=B5T+2Lu=CZ?mD&hh0=mDqf2X_2_C)^(zbhf
zr1;;+)&F#)FYb}PUODB}w2!`$TQzL2L`(d9wS2}*KRyFVo5R*e!anZ0vG+sDfy240
zlo|eJB}V+evF^xe`_s&^A#&GOiK(Ti_cBzRTfC)C^nkbIRt;a7=NyxNg<m)(vFf?1
z!ohdB><5D5-D8vPin{%0nh{pKJ8GKX;RRQ;GQP2YNcKxF|Bzs)5>P*zTTdy}(sT7}
z^;_}(xQtJqtTSmk9Qw)GWyub%2S-1=P7A+Ze^hYp8ef)D-;(;6`wR-D>%Ttp_y6;E
z_xFFlFD$sRE+zD~NOsnz8^8B{Hqt)S(Q@}oI77ElroR+tX>FM6_8qnv!8}(t>0X@c
zs#DKgleIs~T)Ls_=KXKGAFs)q&$Om+|GOZDbDme{2><VU<<MqR{kHJcbno{et4~F<
zG30!^^(~bB;h&$9`uijrmi~OAG-Y|qGiIMpI`Z5G*Xl~+-((#8eCciDlFjiqO{$G|
zy<6{+Bl|}%E%}1m_S(HmBuXE>-1vFg<cvK@b~@_Mt=}^}kX-wT^T7RYtMecIo}_<g
z{bjpX=co8s76$s<RqyI}vrF>E70acwK1rRGc)!R+UrEWGiBoN@Wk(*L{;9t*NtOQc
z3XRT({xgQ$jGMOk@o%B^y3D;BvL6S&a@uU3w0hpEymi;}m+9!2u)Ees#;oLC5YDnz
zZ^@fC$9p%mJXCgdxfLt6MYiqL1%U*A^UtkHN{ZQcH{VFzpT6mM>#Hbv^^o@`KTdvo
zV6SGq&PoBn$b!119UV6JAD-ZoSB>@mcbTOj-PViS%;D7RxSPFdPBXH%_-vYc=qiKq
zo-Tc+g!<ZxoDGiU`##;B<CXnp!=<b3v2SGRPIm2cV^dwN&)3;9tK?Ss`(Ib%x20|p
zNthD;lBMC}%q{A7TTG5S?6Wj@t{BfSrTVO!>DDJN&xxmZcZlTIKbhLU*Zxl_|4reE
z7i=0#Po{QQ*u8oD!}Z?JmA}qUX9!(u>vf+wVt%;&BPr8u`4`e8Ryijh-J@nXx3S>B
zInk9h%g?LCbrfFsQo36`ax#C{8qN>t##tR59w)pP*UswjIC*W~9Zl~DRVAggkEX9Z
z_atocadBB=Qn-tM=90Kuzm=4V(!Q#jNtaIidi}y(wh1v$ExY<_JLfzIoK@ewK1fe#
znf^(}V>v<}-+7n34y>2hq96Hs-V4pXi`=d*e(Uai-O@jGQrg?p<GLQ}Ug^#~$&hVp
zce9r9d&)XXZ+(V6R{qZ441^M<9`}D%es1gajRKQDY6-qd39H?uqHX>o;JQydn|R2E
zP1CCrALY)Q^TdJS9LFsl=dBs1OZYDaf4{1EP3xE!hx&)L^O_kX%F9geoj<G1cr9ky
zeQnh)|8u*WU5^w`+ML$u5qGX|lg-7=jzan~RxFCDk3E`k%}3?sQ=y6T|BDIUtiEum
z+~3pWs_h;JmnZlB{oEV$NZVDLaar}0e++i&j2u#Df8@-$x=H@3bJg*+D+(A7sCl!b
z<R9>!e6Lsh&0EQ9d+K_oJFJ}gME~~XA8F$68Rnh*{fjZ=>1D5_zqDdO&6Za)IX`qq
zpDbk9lfTzW`6R2r?An42f1c*8Q*V97bmq2Dn#I1eg+l&C%ep&SKAqgW+Q;RLjJkNn
z_PHG=qP8zO?do#m+T{BxN=hfyXULTMhdy!b)~@@z{I;icp0?7btur4kar(^F@cu5h
zKZ}CD(hL`uC87-FthsFqqw<&@giW7hHk<L;&6z6ORx(9QZ8AIN$L~|l<7>9_=k0jr
zh<#hymi%N)C=R~9X)ePK<HKT0Cm&<55!fQxmL<s@@bua4I&KF3w)lFUhSwhsbq8EO
z{;bV<@{KtnN=oyYLbm!`e5N}$n$hC))-@Hz2VT!K)mVFl@sslA%z2xQAFLCQ`XyZO
zOf_8fC99^EeA~DBYeH&;p0|Vc@ZBl?FDbNOA+OxT$(I!z-^B9?G3|M}i8u0aGegX~
zpdto_`xbpX>^8yqstW>ydCdFtEhQT2m&ZI7^UDxB@X6`=A;k&ylh!LKZ4&(C5@Wyq
zVp!xmv#)i$9oKSf#Tx8`@Ap-RCM-Uk<{QsYwJhf0w7yfjz7^>HW)@13Ip-So^!6HE
z`-_#`v#$j#{>q>|w~uQfC&QdcpJMIUf1F;LU~=G>ZtCvy_7`ul>^`*Cs=H&yyN}Pc
zo+_pJTl~Iwrz&q=)~i4N%4R;Eu=QVQ^{IObYh7KY9h1-Bx4z@Vhfg7|Z$DbOTP~p~
z`r=B4n2DL)mrlks^fzxiG-1Z0r3|a@?on}P+~9s?<04B2nMtp5pE2<C*{^$-fA43{
zXP*DZRG-Focf5HxO~rTr9QoSap<)4gNha)@<|#*YcGN_O#c#U(Pf00R-A#7Qg+C88
z)9pS<O<%F(;PsVZ(^vnPF~iw9&3xrbXBU@gSC!I}z6Gi!J+p}He=f58aki4s$I7iQ
z7I@b7`vrDyO=K3_zE7oOO2>(&Jz3u+7wJBj#kHkSb&0^)xx#;#J``UFlMo8pB$tr*
z=iZ~6*$g)Xras)f;Jj6-$jYpVw{k;Dem&dqSZd4F`%k<6964Ti@{ysE(%whL8{`5M
zCZz|<7#}~$>Zd0tSh?NkS;5KG%~!;qFsFB&pWFUF-uZ9#hpsDmi>;1(KkCa*43>%C
zDgM3pQaj^|S(VL~j+dQgSjLjurl{x~BYiI}xb(-tpmvtRkFu%P0_}2UJj(TBdvIdM
z<718co|RmE|44r0@p`6+$M23#o4w`2vme<P$|Qs?u3~!7|3dfPg|AP;<{Q?oKXGy0
z<G1rtKE7OeZ`lWKhHpK#>-fGT-_<h=IlY}>%}a^eEp?U^X=!IYU-e%poBpY3zvAQ!
zrPsR`_ig=i=bZ_gMVowkE4%9Y%4c%lo+utTyFE<yg}mS0yylLa-BJw`T?5_uSs(N@
z<ajZ+%4hACezkI0>It?httwja*AmN`K5PyAxmLF^{n-)!kX5d8msgmtb8v2~S{Aq1
z(d9|b-<bFPRzLI^_&AO&G7-3x!FX(`)q1lOk<d1|mli>P0;XQg{3E4%W-CL(s`RW6
zy=B+V&UbzL$ZMMpd)0qQ28YxsR#(j#q=R{$o=f_d`L}H=?=1mmr!VGjS~~)2j?aHP
z^UPwywI96~q-C<s@?lO0{^P$?>%#7e!%~wLU*utUW~J7D^!345M<sJh_t}rV7PHTJ
z`e$K$$k7?;e)-x;Mc1-ct4GS1Pu?k0ARfQEZ~E3#+K;`jH2!Oox{?|2?Jm!O1t%U=
zmMiqDoanpB;t=`i(1JDxj!=QbXRr6hZ~Xty$nJgVYOjWiEAKB^r*~`LBO$&Odwrfu
zMdWSR;k<uC_aXKWuJg*g;pYl3u+5E%ul!IJ-L|9RT+j{ybF;f|p3Pgy`6uZ7TJc*f
z8xExgx`@7bKHDvbn`=LNLT$vxcfk#3uP!k^ExK#fXVb%42|q9F`^}Que{lBZ(~ql#
z(stCR)|O0~{A=?6wbx%HdlxV8=YAW`@L~1V#HbCM+72JjNqN5XmQwm{-_Iu(=o(dA
zez`DFI%(G=bDNZBw_mcIZ*sg|=6iPeryz!3$HZ;eTuyJ33_5<RVEdesGWG`_6MR2)
z=01BF9W9tS=UrzOZ=}=QzyE$-y!2uE)^|1Mh22~Hqkezg+pcckl^4Wjpq=MXY?mPO
zBD;T`Rj90*(xoCE26eXF$?{t^URr2T|0e6fos<(g3+L*+wC7Fe=?>a+mN)S5^e)5m
z^Db)bymd9d@c)d(?Ju}$>yB<_bL>pxj=12or1@Xu)LrRC*95IfCSAQSXYD!V*DDoI
zXVjkZU9K`~uSvWYPwIcKRgW$+R4D#>;HSNH>5Q}cqArJ4Kkaw2j-K3f=enMz#mna}
zmW6R0ShC=)(T^jH$;sA}pL~;hy_PLPO4RI9(B3sK=E?<c*U7tf{?p0SU+)*?Hk+-O
zCNkgNa@kzpi+kVyZrXO{f%NS;zaO<|Juk2E51Rg!{lSbAjf?JG%iH34^cg#AyygDM
zGv_vKTV7_eqfF1R=6cBXeY;t5XCDloC1-8%Np=3LE2?`L+$Zh4uyUKtDR#S8J-H{h
zM2r3OQhQSN!0Ynv$ICA5iCfMZa5Cg^*Od4vdxU>Zy6>&Wv!_7vfYfSL8KYDCYD&6R
zZDiB;<EU3vzVmtNbB?!i@zR;Gr`LWwxmR(goJRbVAf;^QYr!HnrRG)UO*-6F|KcaF
zi_5p3o~&nEJeMzw7SoTI|MCHwV{{OAS;ftV)|T&oJ!ZU7vd|+#DWR<JQ*ZQ}_f;1|
zPi9?yv#$GteaDG+@-9-R`}20j@|Z5(_in+yxreJ9OXFAdnDp7}Y4N>We@$0u(|WTR
z3v^9>c&VQ*&Ul*Z`JcgTF6V(`>o(o4o_NgYsfzK>uaosoH#{${_^bKFb4lT!BCp21
zr?xF|afxGkaA<+A$q&yL(hS$^r~Fy7=fI?zJsH;>C+aTvIsM7xZG~YM9<IF3fBxya
zpQ{QU|M<0GLPtv-%Y*q!L7UhTeD(bA^AyG`x&O^kGiFhh_Z~xoOOw~^IjXZuYSGP`
zQXj(h=C@9hlarj5vAS9_;5U!mWw*JZ@jeeHC2!@Hl)w2>yH;iSb}62h3nG|1&Gu%k
zUmtaNQnZW9m-Bgyv(i7zEoY1nn6G_qvfpZkh(ELLPR^-Nic3Ga;pk$mM>5iO3l2|O
zs;aa}m_fLxk}18z)%>M}=Eul|Ys+sgOl~h*JIi!ce9R|n2GRCE%ckemoO;77{m9Z`
zd%-_py9YAUY`6}5ZIn#^FyBqe>Ra5Q$yVRzy2_Y~<gwiN;gk0}Me34^a;|Z`TUa=M
zH;;FhIP(-!{&P0X?=u!n3O)BP;dlMLr*k%K*`Hcd<IeQHrHsKRW7<Jx-W#{}lt1Y>
zcK?o6()0da|8*%RVyj+gy-MwKz8mhaQg_egJ>NHIP48n-n-=kQp_-&2&(Hp@pn~)#
zC&CzXv;_qN_fM_~JZ#qCA=}IR|K3KHYYA!&M_ZLHJy_#!zOzhaLlyhP-3*H@@(Y&U
zEn;x9i0LzFKJ`{f>8u&!nRAKyHqJV))HfBnA77}x=H8=c$@gNOU!3Uh@}klwz5~l-
z%07JST=dHS<|B^1*PL8Z?zT>yn5^E>al%?jX}M^3$DYWkg}ZrPF52uh)y6=%XvOWb
z*W~?O=kCn>@LfbyR8&+9MCkp^Sk>`HP01*?SdGW@iNy66`F)q2_r+-*$X7~QZfKBL
z`_uWLKf|AQ5>X=l1(K~Hwbd)T)uR$64=gw{Gy8<3RX)pu+U37b7&c7ZwIEmZz>bC<
z<0Xu}(^i!HlDj8+e{#>xOzrEduin<MER8rU<|=#lXY`Fjl^^UG-l!`T$p&n`v$^d}
zO7_$hm0nLaX!~8B`|sQ;Q$w3O6MgpIFIHG(8RK_)#?DCZxb@RpZoS#@xbN+fO{+G6
z5C~`eZHd3GvhT&ebxKM_AGy+9)jK+Lq?MIE@e2z6jF&oN%Hs6msGE{f@q68hpG6Z_
z72dD;{rOq=>y8c|yH{@*Ta`Y2U(opY!=5^GLBW}m7`=HN1#UfVVrTCy_E=>3<MY?m
z-@nC_tgqj-OVCETG(@<KS3vM3$AJ!$+xaJC(la(&oGMCZGwZqR>0dtaZ(Gl+``Q~@
z4(w)lTKRYJ9@WcV)UU^>9BP|C&!%|xjEY%@^rr7KsoOlwzpqbvzi`84SC>5Y1^&nG
zbt#@TiRL*VT~wH(T)FC3x2ua9laI&xiERgd#GA%;e)_InE_W}&#l=bXeATD+uM;PI
zvR(XInsdX-jU64wiog0#U^+J;cn{NoP1D+s>{@)*Pfs`_(DJ|mljuy2j@rquyckx@
zy7T|l?>3!oOR3G9Zf)XvAT2oYTv>kc=8vJLxxZa}|M`w=*pV%bDYCQ686Uj+5|zo(
zaiRR2+Qz!8w=VV0)=G}{QffQuGeMu>0h{1N_CxBm`Bxf0Hy&rWQPH5b`svT}x$4*d
zos8Yz{OZn}Npae|jD=Io+AeXvx34+bxOQ#m!~n;_y==X+N_Rgy`||1+m8tSatW;i3
z$*dOSwA72MohN8;vi4o?uXq1-gK94PRn|_ZSiD5f{`{+|GSH0hyTApjKky&3d-<DR
z;@^!vC8e|dJIhZLeXmP-SG`?E>Uu}lb%sBRLUMx9JVu+CE&bV_-#O;D_4<zod7gj$
zOlt1#D(IW}@tJBm^9GY;-Z#D`GqlZH@_G7&Z_n+_cip*ZsPq3(<Kw%c-$HghDHNQj
zzIgY%nQk81&u>=O{dg@i`%YH&jCGgSaG&n;>CbIT(7dMd`MRt8TIsmBzpu}QJ#4<a
zzPg%iL*kL(=Ov&1DOPbcIJ+!K*c$4&^6Pu<msR3zJr~QCd`;CW_&)KwQc3gQ=r70L
zWg49o&<TINV6)$uhtbN5J3no&wy^3G`(3*7*!c{p1FMuan#Mmo{4D>K{QV!fdlf%l
z34Qzg(q7y18CMkV?cDe@y{!6GdeQ7B>Z<k31$A#eE(@GI`M#cioyF>n(af$cao1MY
zuhRcy$H4zPW2d5qlX-~K&hKGoM6+j>Ih@%zk9+O1Ezj0`kxJ*_5#2dUV7J({C%<1z
z<qNZ)^Je`?Uxqo_N}r4wHb-@sMDqu1T)Y36G*i;{=kveLTVAq`!Hd6CPOIudSdPrz
z*jv5EEY97g3^L-?ca92|`ApjBvyXX2j-HYcPeWf)d1U_Y%w3A!mhsCS+Fko{j1Ofw
zhxSWYZr$T*9#z*7?QyqkV%<;WeLW>=#*>R$@;6DoF?q6AE8*uorJ#IHhHABaS0;$R
zIHn-Yx1E2^u1i^t-Dm&#{=2l0r$O$cYIQ`kf%w}GOYRCq?8+AkoyU0~_gB*P<L|On
zm5NvyoWCYq|6g0$$|-y{epmF_)W?EKN<sf!cmL%v)nlyedA8`sk+m-Z-ll2wO=X+j
zvsKFZ<;J{px6f=0yWQlkv`+qaR7uG_kEzbk=t-q__U`vLDwcG-vAS5b^{3e51=IG6
zd}Ccu6n;I(d*+f7`-vC+y=rkfs(SU>PM(CaGfPf-x!JDkKJjkVq@XhIq^aD_=Y%%x
z?bNWgD%m-8)4a&L&D%~-u)7siZMwd4%J++pp3Ze$a#cTU@{Z+F=`ZCNY~+i-*uH-C
z$=d47X6aiV!jmU1_t~~T=~UaTdfptFEun2+E*5Y6T3gNb;oDZLhUL+nQ+T#X9jzDc
zSC?aZuwuqy-9s-GP9J*P!)rdnF+c8;<;E#-Nsp{PPjA|t6WKW1_B`j_q`8~k{W}))
zW!2Y5lUw@Kgc+}0@3oCtp6?pN+$?YP^MfDH&10W8-v8VZ+hlfff?d?D>b<kq_5VDo
zk#YYsgY~)fFM@ZQ>g-+__oD9g`+VV?Lpj_B-1Ss{`*m(vdvn|KOTV=LRynu5aoj7a
zyy%Pm74BO~&c9wHvR9w$UDMHeOQz<fvb@h7hBLR%TU|>?+2MF*_nH;kO{ZAi-JKMh
zyz|Q1759?AdAvBE#(sXw>bGy7-!@8NowfB5OLoZaM^6^KHC)nv!FSpd<N2!>d2IeH
zUt{joTDQ~oXU2~rm&DvxGu2-%`lEa=w4Tu+`uicdRXtl$tS3$qU*jeI>-ROD$OCZ<
zF~J{<4)DKiHakASZdP56?QzlVq8%MAdBrCjqJ8-EcbETDC@Q&go#D&pHM^GZJP2R^
zi0ypHK`&V@Su^&AvuS~P?=zSVOb)t`{^^PI*=zN3n-A-(PLC+*=;#pH-^D%O{g%V_
z^~tB~KCFp$HhlMW-_Lpdce4NcnMQFK-0k0<azZbRsYYUpXj@6}bN<!tKirbP&N}i<
zM6BOxo#mhDD;B-q`)XU!@(S)~i<P@2efnPQNs*Z$aw(cYO3L|at<{GY28OF<M;L#*
z%Wk@qSKLC6Ywn{Ptq*nA?<(D@d+p^_=BrJ6_lD&kn=rM8VS`bIHc#fVbMXv1Tb0aq
zM}0hyGvmX-!_#H1sHrI3e(_>aPW|)JR`GLNcTeg%9P>(4@a4*<&(+dTK4qA3;^LkK
zC!fCGQ{z?fI(+f@*({k86#sr<OL%qd*DH(ctEGQE{lu@xX`R`*!}-e8()F`BMZMMb
zzn>bia$nx%nu$-cR<-qS^Z6+&v8ngbWA<E@i0^$@=f*G}h+~|c>Y-m+Qc}2T->y@)
zKEz%z{k5k1%ZD8i{MVnI6|UU7`uCq-DO)eQF`n`Ml;XTi=+&<?lTLgoe|uZ~y0GQB
zn<scGyZF58^aTVpEAC`5Otv~Q?^}!5p6RFB-p+fqrO0{Ga`8L{{+-Ou=Qey@JGmqA
zZM6Ez=FakhHbwpoZK}&VJFe8<|Mh8q-~1b5d>0o*Pg=k0LpVd7=e79>;SBGxORohU
zJ8b2?viRTi&>agGF>gHhsBMo^yQ(mk%aW_-uZiEk@7uI_<Gb5yJmcnlc4IJmKk?1a
zS6xPnc<Rg^zOeLMeNyGg=LNhbOD0+sA38i~?wgJoyYD_XbkEMb)L-cyd-QMlrENB{
znI+fNY9}go7ql^-uTQyNJO79FF8!G@TN>L;iYhB2iY81I+jb|JdAq~Z!}VU<o=rF=
z>+fB+&q(Lei=OrrKcRnY*Z1FB9pIvJ<*#RYc~I6N<xkU3Y<ME0E&KSCvyI=?iu<RQ
zlzu&T^%vjTe?Hw8UU@A3t@?5`PvntshLGCYeaigN8T*$XI#hYO+4$^)ypjl`jS400
zUvtmjyZQJG-)n{ntDCd9Lk}OYexcvz*C%fvtUYJ)AO3{5*EY6uf2)s*KKz>TM#>4E
zqgFbWdw0zL%G3Yt)I8B3$744=)&E`DGk?j1Y3~Ev<AYL#44x|KGfvs<o5EFP^Y{6s
z>1QWZ{VSTu=RNC2)js*kF5Q35{uW9vS4qD<^?JdR^b=w47w;^8^e39f^1xz-EBv>3
zoS$uMQ#JS5uxrwC8(YUHJ>~=luBrD|m&Q%|BdX6N+_#&f;Oy7b6ICV4?&xJ0^UQQ_
zS1mTlXgig?=X{NDgX-Df6?<N|GnnmIeyectg6p#GA}1a)%$a#;F3-(Fp$s#YWJb$f
z+i=8dR%lhz_nF6EXr?a>sb!zLw#UCvK47_(`O>n9irN?U9ApO#6+M2jA?2+a!@qmS
ze;;XkrTihYYww|xS5kIea#$X{GB)J|*Oj>+cPu!2BC^QLI^^SBC8ePC5iU>8{}t|t
z`&%t7IB{#O$6L0r0RNb@IY)9LG?kLB#T8Gys-$$uBte@;@_Ep4xtyo(IQ`x%d>FM-
zZQadq;ZJ9MN~_D6R0L+5r5IW>Ur^65=8;@hv2C%w=ZhdSt_JxanTD;g3=WaoLwJ8n
zEV$Fc^;}^s;|^_*vSXGyk<TaYb8~sa+OuhH(CU5brcQp{^vb{2(Oit*=ckqPgDb2L
zIv1QZNSU@G@uV&1`86yOGorqhJ$fj$W}zI<f!vkx860zX8G^s@-r{j~+j->T)HD7w
zqGO&h)J%{1I&J=&>zqQo)q(ZG5|vx;9JwT0e?4W!{U(ihPhWVin%Q2%ZD79j*Kq~|
zZPDl33>Gs^oAu#~Ov;R_i_C0e7w6xb&~4GKn!GwP^euZpr25id%bBK>d;a?Kt)G9-
zjd!*o!kS0FN;;brgzX4iyX)$jdHIqqyxyxOOYD?wkPY5-key+w=keBU^LTl-sJSd>
zE-3W+Zk)oNuFGY<dgt?}YhF)PWL;NUqADL={%IzI%-l=7c?=IEu5Sw1ytnVR{jRy0
zd(Q8^HFFE|gQ-*ArJoS;de^&Tt9*IIg=<eFc3P~@w^KHnyY|M~T`3QK_lOF<{Cq#;
z-G=WLf)hC>o9Eq$*k<@={;}J6yWeiRU6!MwG&%3DR#Dmc#9!|Zd=?a(xp!{IpN-L4
z-;GmvbKkv}?KA)X$xQj<tmihbC8pVgzrE?pSYfo(T4dc)t9@MDSK22pF5cDAv4^)I
za_{NTvY#e@RKx8ibnoBVw&Z4N@srNDtBZbp4ri*Fa?7?YNH>)E*6W?+E&MB4o?LC<
z6g-{E_fz%H)MXO_PEM%iDYLn7a!HUhvw`B)>N}1?ITb4=c9h%^u=~)_(eZ}!fV1X)
zedlWeR=2;k>KGTPRi3%nx4bgUC~(hz=7{OH61Hx24z*+SUZ*$ZypsNU(3%5=JrT{@
z(@sdex|gBqDLFUio}2Tzz%T8OBkh!DYMUJ0F@4Pz_PO_G86^MvbZN(w3HAN|?mw>0
zixjK-`)p<3p=4K=6nlnuK0oJ5Zt7ar|8jc%A;nMAvSrS{^Y`R6Gx>b<pXsjX6@HVq
z-G004d!zfDif66iaaBk9rm+W4Za3e>8ys>W(0mI2>WhDQB98<&%zXMp|7@7Wyt{uV
z?RsLsaPIT<KE8a5b{%hah6S3&_gGitym<eYXXf%oFV6o#%`0@A`9AbK=JYfAQ6A0k
z@9B2czp~R}z9_bQ-gTDo$KCh0C5_HE{;DplzECD{sj=98ht5f#h}PK${x8X94|CJ`
zX=ozmP^xsB>BFS++l^To&lR1T?C+LvLUzvYgZ(Pi7fTxC|C%mYsH~FlId2nBj=b2_
zIs0zhzb(nM@Sh1oo$2N|e-7`I-(&Lf!fyS8-(~jeTk2H$crjGCxx9IkzxzkEwX=at
zLYifz*F}-z!ZoFrrvH_n;FEW}>2;mNmh_@fxz`3y)(hPfZIE_#NwGMfC7d!#-e%=y
znZ<om^1l??9IRKdf44`nAy)cNMVZEy@}|A>cQ=&YRt-+>-Y+|CPENV*@{SIXsZ2b+
zw=A5)lFt_X6W$`rR-d`;&PSHz0`H5s7}W1Es|01|>@&RiFz1DByW;%Lxwe~Dcbtf0
zxHErGY1<mNbjzh`A;$X)-m%wDZu0;0j=?5LGkD7<tG8|oX8n;6vz2Mfd7+`y&k&Ze
zp-lVTCG|F$6ov$&*e8<K*7F{8sa!X8aarPLc|hj%C2gB?T)wOi=BjAbTu3}AtE9wy
zknd-u?WMI6pBnWT{>)AK=jI&tx#|gHTzQ>WcweE-@0z!TlXe|fTdGhWxn!GWsf&vn
zlg?eQBa^!3&YD!&w#MzNx*q2(p631=%-m^rW+a`vK7DSjr>pn($!km}<WE|${+-6|
zO{<(`m#uvntZ|l6V#2K2wwz}k3~G|0OKcuV*VeSl%>GpOTJ+q$meVokGqWqN^m#2i
z^e9-qzWz*6ME$gVa*3g~zizZQT$wB`y=le;7KPBG3C>}guSZ4v{laIuqiFt$eMf5d
zf6H54lJx1SSyuk{taM>tt<{!oInNI*VPDf0v+!r-@o86H9NIN|4*##T?X4FN?O$^#
z(sbA1O6|Gj5&1RiK6hGipXF~km=<$o#l!X0w~o#&Y>M5nBdt8+Z`oF5dFOSDG^gF;
zxYd)BemWws>glH!*G1>=HQAPVIn8&rY3{Bs-H}R4&N=tDUz)|$FZ1*M+qd@o9$6QU
zPS7@)9j~M`d;4e0Wv3@}$F!PfS9N$C->@k#w72^DumAUWHoRE;L}eDw&cnqFHd0$8
z+jJ7{v($3V?^?^r?a(~ye%fy7_4aozue~;5cTPCxhEo|&C70YwTi?ebp&pd(`DE!!
z9-hJ#pD%uOoSk@rsjmNv=;^lO9jEQn-oFfEm=LmHL*i+tV(v3$zl+;63a_nH{~r6K
zV&}Tv69x=yOw)=Q4hkIgXP6_oMY8Qdq1OC>y4tzI@2ejyJAIw8px+~%VcA^P1E*$H
z9G3hfb9Jr6-qf6GDWQ$=U$#8kJS{2zosQPV$#d^taSRV#rlR{V<3^Ik9L58Uj<*vz
z<{a92aqh_`=cN<ZZI4sClpuQG*t4SLS1(I6x;pDvZSpldx>r&DW_n~vdeG1L^BHHv
zXcTcWFuOQ4Z@KV9)cnY$1WSjjeISG8`2`m|wh;U&dO@Xu_t@);o13;>n^5|N^}$Y1
z{mAIMZ_6(J^ac0J6|K7}YCK$0r04#~c_FoBYg^9ZT+0J33(lU1+qPtC<D&Gnd@7T|
z_k8*!eSgLZ?RC>i9y{K;++)Q3txaMd(+uG)qBl=xI!aFnTo;mWa%ye8tY3C^?*9z$
z(^~@<v`KB6@SZ`9J=gV`kd*iq)|pGMYpoXU<nh&c!=iEfrAm5a;es-$O%pCM>}Sb2
z@@{zv=M5(PKE(`fqci7>W5N?Ow-=R}{dSI5pD%J@!%_pz2frPBHR@O;%2UJmX4T)h
z^h+qy@XT86$jZiP*M7#u@6VX#&9m_g<JmQ05?}4EKHIr3e*2p21?-!TepL;6KJ`W3
zl2_*&x638!PHVY$A=%l7XS!nFQik_z84f3}PfWAkSDx4~ZHGY#_Zx4OlF56YMA?0t
zYG*r#Yt#2vAMbA};>qNg5!4Xgyu1Ffpv6zE)!!0!Z&dxJs^spUdiF!Q{w?LQ+OJH1
zCyC|Ac7(RQS;oL|DSWMK$T5otEeCuGA1>D2qCYV}cDvo)<-4Y>xvTv6n?zBA5Q7}w
zt8cmLnf#kxh40qiX`&Gvb7QLRR{g@Io8O6t&zR%IW`2v|;8TtF2C>!?mR6tI`s@0!
z94_9f(_d8iZk@Tf{)Bev&P49z!VKmt#h=5%=KOAob;-M8ug`N#DBLQP;mOZF*TTb-
zCbg-m@_I{6o1*jUOa6Od>6&YSE-rGfr%N8@+1aLdX*yf+=il2!1t(hWeb%vJ$4}LK
zw&YIj?ddm{P1<i_wd(zbO6|p;zHUqrKYw|4&7$Rh^jC`==Z!q_kKvE<jM@E656-W3
zb&+FOP`EgG`)M)t$!kwDnz81(S!I;Ix}2<C@X)lMn@cZlje5_T>4DC?mPZ5`=1815
zThA16C(6Y|j`_ilQUe`tBg0ts1KN(WADXi+-}h&Ev^mp(=kKnU{6DHS|Dw_6V^T#O
zlNl{+X3VbVG>H9w?MVEr$3G6wZQiIp>p#PUe5;eCb)VjNG_1a(m-%^C>>j1rVaIqQ
zkL_&GN@G1x&2X*gzV|t`*o*qydlt@PT3~Sg8oQpS%Ddm4r#066SoU&yMEyGJN;fMX
zqbKZ*>-Me_7TkDe<KkxzTlX%P7q72syQ!e0#QP~nK3)3w{iTb=r>@i2jlI8R{W>Fl
z+vP^@{wU9Xo%8?a*V4<E^X4g*b8gX()K&@#3Q$!Fl8e3a;BeS$<NN@TUkj&%6o;)#
zR9B4u_R;t5n!HVCLu|j){@t<Jx>iO``<#_#wAfMJn<s4@5+svC7kW=#8zW_1%71J3
zrgH)e+xTzr?7u16kZ<j7)g~tVm04bLdc>}S&8gqE2UbnLdB9NRnc#x3nXj`CuVr{~
z$zyS8+2+3sWH?M_Kk$6~%=YrT;;m`7ADr>vUig$DS&4mC-(_>FZJuvtrk~|5fAhZV
z#EOY+F;6NRRyDY-x4O6O&*C>nukYvPV}I}`AxCIp9^cf<H!HV&(fVZQkQ!mKU}4(9
z#H8*SpUdRM{t2kbOiGmI-RV)^upmtB9CJc^?ZvBEJM>SzbC}>*civ^!q_4K0{5t-*
z3r=ieUK9S+{=K4-QgDBaU}@NA@w)e!e|K&=Z)cx&!pvDOSV>7JBz{qFfw#)z?eSml
z^RG?4vCA<+MM+6ey=$v`FV~qalZzkN8S<`$m$qlkx74oU-}m9v)3W@ipGj{TjwTeO
z8XQ>Dkhkt$!rHaryMFE3<YC3scvQOUME<wpEt{ef%$9V!P5Tm(FDR(FttsbOX^&Or
z?~M-|Z}wNSCM;1@mt-?ATrj(zX-58jtw`Pr@k?YGzO$uFQH|!*xovD9e91NW^y|{N
z&JK@-Q)Pd=&nUlE`<B0f_4$n21m{hExCAaZ?8{(2u>9e5bH-HbjwvCGXVwb$ga%!&
zn(*w6)C9(ti#Kk)u&W|maAMQ-wRXn8dga2iY8jsX@4KyPCSfy^=|ir;_jf|Z|1@6w
zz1#k~>&C~!)7g`!njW21<L4m#G;_&Gjcl1qkuEA<;%m2RRY?`Ely&%%xo_t+iA$$r
z8vL7fez$DM?)j8yrN^ORe8-Vtj`*3gmpy~EZ<SAM^RrvI{#sf2JmFu{uTJ){Ruhos
z-FdpGp}cA5_n8baGVuWm=FOO%dPhl6&{Dc#-oZOIy(XJec8R}JQBpeodNnV*^?A*z
zo3Fguo<zTCP<)%i!r@VxZ_RM8T+@=d;pRaepFB2&_lsW7j+|}Gy{3Gb<knMt1@kUH
zFkY=)X?k8siudJmfrj);p?^0nHvcmr!8nEMK-6^8YfMv@?^oHU!o1>|!@jlCa*X4u
zJAZCdIIYldYK4fB?%J;+@62zTw}oV~9B_WQa?jP<46pmY+B_^g5ZmFo+}@b^XQ>R!
z2BQw^<r9NV<yq@XH}&sf-EgP!oZ00sb57lxx&8cv&nvW#%f4J;RkH7?b>zdBy!9Lm
z{yV2+a2cHQYfrpt$dnKyQ0^!F_5XRPf-`sZYTlSOn4X)wCdO5Ilh)mtis3gH8(v=u
zD0Z|zbmz5Uie40}!P%uQ(}RBGOYy9pX35~(yrX#6i=35Q2FsJ5Jn&|amQ7#jrFMFg
zOWySf$!|E9sQ0|{lKJv^#+p6cJM@a9_Af49esIGpj;YLF_#d3hR4Q5dw#MwP=7JAQ
z4z5qW8djZqGuJ3@fug>JLTqrS+UYs9oXvN)OPB`yIQFB7|Ldl-f6`&PYZ)pG8myPM
zA7g&2|8VZHbC3O*1^SxumU?QdZ9TcCwQbJ>4~D+)`yZ)q`C0d6#?`*#Tgt3gyQ=Qk
zb@$bZv`T@K>%K94(zy6^-{v*>3%)#hG4t7Ch8q`eDBk70cfoQWTeG61AM2%u)3-K1
zYu@d$Wc$-ed!H<;Fb&jp?(2RNxc8@n!MWwfm#?noZTeOF_DIeC<IA4B=5CNJOg?#F
z*Rw4K5|bX(D6DaNqO4{4XKBZYkKb}?FK+!fNu``Apspb1;8TV(TnD0k+g*MNX4T)x
zsjmC%G$-cu-gA*D&v_YY(*Ahym_ChUsFA<1>QqwevH5OJH=ZB)xi)ugZiQ=%+v-Oz
z8Dd^;PrbUh=^Eq8%->$^{crf|o@#zvTF$WGv~p?arqqqEU9Kc}G*xLcnEjBw8*kxQ
z&%Ji~?eiOMe`(tBch2c82~nSKF!BD0eqm<lrT>@lRPlfIT|cIM{dU~$knhi*^BJ~?
z3*OEY5I&c_!f@8s_oe$+zvVr!YQv8B)$8Ac$?7}h=$_;2etVv4i~X<V_qT<f4rs8H
z+`sm|jK#@+XSC%??oQk<*YMWGg)e;Lo99N^3l+Ive)*BS{F+WpiUdRFCZ}r+iyoH-
zJr;=Mk+qDvUHa#nN8{GN)(T}R1xyU5rH{u>OjBd*Iq@a7c3G+gtATwri%Tr;fpbci
zY8V+N`>@T?oj2K>X{r1l<*&>0+!_9TD7Cr&Lh-ErxhpG5FJJIvuo0|xWY!k>cW%aG
z#j6av&-*`~lqh;&fzSP`@mBwHzpH5LeZO?^`ps1Fi5J)zro5dOD9jsq!clr{TCm-Z
zOVd`yuKL_P`_GoN*(=Mm`|gIua=u&T{dUb1zl|riRxxcbJNi8&T8iPFp_Ani^Ka8H
z-2Z)fcffN~ck}%%Hxid5o=({w>aya;yIHxjx8_`4_jlXvw;MjMi!Jk<BfjXIP(zWu
z{Ix|Bw`s;7?JKKeobjmaqFgrP4GC$EPg}1CsLg#Lbm{EOy(`bZNvdU^%;!~b$^K3L
zs-XSrYfdw#cuf8F+4I1!@;?6u3k$6n-v7!x=lpH%^s+A9D(MAhwjPyReYVoG=l{2T
zw~pq#E%V%^aq+zIi<DzqohP@h{h#jie$M4ZQKvqY%``eUVX4XNIV-doBmUiQ-dk5_
za(>e68V}!>sj27Z+&8b=P%Qso>b&n#dv(gv7XA~I<Q3Z|-*N50`Mq}^{_399<q`RO
zC+GQFb;~|q)tp~7H~oguitk&idg{!6ewn-X{4D#72Q2}+-)_I3_`8qwwfEcqQ^o3J
zgeFE>hyG0Sd(D~a>XP>T=Qg8#AMTX9xb&4=-&6mtN^s)NxgA!!ZZDb85n_8~`=Ph9
zN-iWu)e27BeE;+n-pdD%ItW?+)wifCj62m3*_N~H!Y%*53+J_z{k@)FvALi*+_Sf2
zLf84~$2)}|Z(GQ{k0oJp^|syb7-HUj^xMa(V0Q1X@7BVSW1F-yeBSo&G#4ve^!xqq
z@bah?&yAJWmj2ds)2!lFPgz;xleKF7_Weh%z4n=RHaB>G{$1_o3^{-PbiG*G6TQW&
zzjk37gU#E(<z4&Z<%_pmPFq`a_vp;ZU7<}2v*e#|obx(-SD(1x&)WP|)`2cvyG!2R
z+govG>*`B6lNC?zj4q9OF26ycCgXMTt?<y$u+Ufk%WZexDm~rr@BMY%*XsLXD@*@8
zZ$5szc*#5EZWoufIWI1DOy4dr@u1$z0vDGk9q!H(;v1z;e*d!dU&a4bJQ^Fs{#^2P
zNpY~+ve2k~*-{RLNhc?4&d|#bQ}YOoEO>ERTe#o5&*$SZ-uzgZ;KPgRtZrv6GF-`R
zyZDhCqt92ZzpM*Pu6;EsX*V@WJea5%6~%nzX;Lh2TUMmY<F5?a(yY1discq@t&V14
zj~U~iw=|YruwN?d?mK6%%AZM7uHTt;XY--8&bKUnoLcMr|ME{q|MT7VS#CU0)&0-F
z;C@8*z1iJeo>!GKzc*YEUA{#lGriA_VUNTX$+kO*_OZTeZFc?&mY(<fT={#Of`^T{
zYgg7gdd~K%{$lZH%4fZo^L`wXi24%y*7m^0Pl`4VYImkh@A+)K@xoFr@#9-2ZQ%I2
zSTl0Al`g}KxwjKF6?<RaR?e{Iu{?Y(>`=!U-|pKsa(#*IAD5R_C+zX=|CHR+W421^
z!Bf_-Em8@KqA#wzR(;g^a-aSjjsvDI_j>NK6lj<T>gP&so3+~i`d`W2k30M3rCcdg
z6r8wr{hu1;z%>QJr#9SVZ^+);b)Wq}>Bb7}uglVJhHb48?!5S6iC*Sj_gj^+1;Kkw
zBw{i@?6!;fYqTx#rpl#kp7)|Vvzvu~>lS@cRo@v~^{iuKcxQ(Rn@~r}3a!P}x6U_7
zhi?1wdrOyRKTE{a+l886uQBMHe_J_Au{maW|GVWgPfx5|bvL#~boJS&4d?$pUSo8<
z?vc?3qYpZaKMuX-lVy0HP=EULzk9PH=Zkzj#mKh&BcG(h{^jY-W``#jznFLO1kbbc
z`@-fwJ%4BNuH4$A&!r#MZr|{v_7p>%$VQjv=@s{qxDI&rPjvT4F4p4rz4>X0CC7=M
zu`;=mYG3CmM#`~0y4rlHQ%g(z!|A*WXHAt>{FGr3>+IlRSn**>PL<We<O@FG9b(J;
z&$%3(BHa2i-JaK+;mkS9_*mzJ61If6XUi;R)s_{X%I0KkF0}~`R48NW-WT^=Zf=Fx
zW#_+{b$-$5MiL8bwuejcu|0UW;H<$D0j*;-RnPK%2p%{zMSu70xU@`FrMnCoUxQAq
z*f01X{rs-H>$B39X+F$7sMRq4QgG$63oeN}*X~O?p>r#(?#vxtccwqnUWK}c-K_N#
z7u?PM<;zxCu7H;>o8uQ$X|L%K-~7E<&*9hKhnIR*y-HKKb6|qG$QhOe*~juMm>;Yb
z(SIf28F0_rWy$Ju<$IQd<uNUopI*9FH}sXS_>v6wpbW7y!j}R|pINXrnCJyaf9jWJ
zsL)OR9?kqAE$e!VTgz^tbE1OY%O~>NoVy?C|5dK+P15o$d+d3;yR)KW&aJ=W)GA(F
z{rAR%M5*=68mB{6ovLE6nR&~#moHxEop(r2rFE(0=UaTgcp6sT>$<)+w{hBbq18#(
zTPz<e%$@5zhw%U-D1~ayV}J08=WebvL!S5BMF+Xtnd2Eg%#geE=V;un)Z1Acpa0$q
zy;gtzl}}yH!`h(U8&VC^YuA}xo-=pDdNYYTH&hpUx9(ys4)nS%vX*f{p=Qff_vox&
zT@fdhrDF|mPEiQ2I;b3$Zd5yaO3zBM*wdY&Wx^BZd|DZv{5SZ6X%453kl;jL$z9Re
zf`XB=E}2%FiV6Nae@j(KY1+OEMY8j4UOl|~>yU-u#7A}a&gWm9yEk-t)$zp6M;yWK
z_ix*MWVO68eTPQ5G|#*h{-Kd=@0J;NJ=Kg|yqmK*wX>sR?yqMz_q)36s(5oGB*VQh
zVA0CktB<b}6`bgIxc04&*f{|~OPjiHQ=4l$C8tXSIsTs1E4k}-nxLSkuGjYE9Uf0T
zB6WmbdV9SW7o50H?$Go7w#rIM{pzRwd^yWl-`U}@Jn?PtrsY!mgatGAC*S!v=au&t
zX`|XsMbTH?9?y=cE>%*R6!fh5kh6=+u{GBVJ+psLtjV3#;Zd#c|Lgbjt`3urA!-7G
zGdKNzucWl;?}xON5+S_zyE{B;o^71-%Dd#;?2RG{ZF>|p7t6f$4(js0w|Qg73I0X3
zo(uQB4_YYLX<l){d0H0JTw~iOucjV#kC@w;p5xCep{JBr>*=>qnqj@k%fAk$MhDoO
zXZ&TbP<JlBZU1%m%54`7mBN|%c5b@B&)~D_apBx$yJt<0aNpb7<+wI`MwjbV1IC0(
zKVIiY9B0`h?ATTnSsS)1Hh*DxFooxCZaIUV_fw&-p6~O1Cw=1*e-p!Zz*g@1){8na
zS5N%hGH1dr*Q*O=u~+|!NM>kh-KJRg@_0hQV~OAC_R1xnKJELkOq@adM%J<CZeAu8
zJMNtBcKQ4-By{n_{pJjdgEp>^@?(hE#P{r)!_(6z=F3Zq3Ofg}Y>b<9>DKDBtGAAR
z^DV46WMdcTvgDk$od3&)he}Ed>yC1+mbZ^{NvW5gI<J0>h~P`nYK!f^CcRh6yi;y%
z?O@Gg+4AmjN|t{`bH|b!({-ZMl`ci5<O>SU6w$m{6FIfxM5A2gshyi*TvE=zy!`x3
z{GLC@jcs4mhq}1boO!viY)!|Bg`K-MtVxeZne@5*@`7H&CoI!bO3LCn4j603e%3x9
zujI^d&Gqjd`<2?u<MKXyf3V<EvfOo-=JKj#DZx(vcpJK3XX_Qte!RHaAS0Q_vhiJC
zg=gcBb8a4{pL~n!#7^HA(7t^oL5#uKChbe<G7Ia;_O>xk*cdigK7I0P-U^Q=_DOxu
zuE`wVnV_^$lbMIj-01c9TP`j^a~{8F@+@3lmh0+r%w071!pf6{a<k9OuCk7Q`>1f5
zUs2aRpC`(*g)Y0eq_odiY<X?EPZ>w%I{tG!&U_2sNs3;b^Hkjbiud2V`mT->db?tT
z?oL0ko!Q0ZNhQDHi}~_}`*vNARsQ|_yQ|BRC)1{^@jCFwS4nB-zNx>wQe3{*T-YX2
z)Rb*xdE7GQ_A^P%*d<9nw`Y5Oy76~fS~p|G>BqM&ES0bQe|3Vt-GwC$;=ATwc@fOu
zRV&=`OIWBg{5hMt`>#nm{^m9xZ2ioz;uz;)b+3}j$Fr}<h`kD7;Q1kukbLKYljwm}
z#oMgo^WOwUEzsNYeR)b4lO4N<Z-nA+jSh|Ev{REWPPn}y{c51(&goSx)AFW2N)2Xo
zJI^d38!qvSrD1EQd)TZ?MYF;;?t0AUeNoSU9^-<}_^Yfgp9_>G%6xxln!<5*)sv?+
z54C@1r*%!)6X)t;*V(fzzDNIVRO<DA9wHT&L!MjA`}d{v6oZ}DRRjHBE7n@RP7Eq|
zvbX<U&AmwbX!)wC>0K_(2M@|Qq<x8d{g3g$i7DnLa=l+v^U7AOw~<$yVfk0QK{R*I
zsnCdz??QM#KhoHm5wT2U=U>&5I~9v0q_()W-Ep`&C;#k$xh7K!Zt7{qR|GDJ+^zbF
zllOwr`<w^8rx|vf`^?ho`c2n2Hn`U+<y~Ce)ftXe|3vOi{;)cK_S3dM%UBx9FV`=&
zHD@;UYT5TyZFgjTk*LH9bFl`m^RDu5^=IzieVtRE@j-ms!`C|1<|$sM51N1bt+q^k
zW@TQV<uQq-WTOL*wj6H~d&z9SPpz9{`fc9oIn_VSW?j!;dVNveL6^NXz0;j8N;K>=
z-EgM6*epWKe%dU#)CF7Y9=CcL+MYb5T~v1Q_=L(hhJ@=S_uY(}!ms39soy!(|A%P*
zr^DKeKkj;OSi5=d*UvH6A2k&<@MovYVvqg5Y2GpYVnqYJEstmN*V@gGnD&2j-GynA
zMVwP5cB!2$zv($$=U?pM)B2ar9Z^<_cryQ5bM?J-?;bbgszvu7m(63|pvGVm;(Yr~
zrs<hokNsD=@~|8{XxP2>Pi^k!x7Bm*?2Wt7CRx-i7W!cB?CbJTvDUH;_Stu=&aY-U
zwe6D@-`;F{Hfgv0CF{JC&M*76`0pa`^vjG4_iJ8Eee^tc^0WHik9dzSc@;9*k}Ge0
z$2-rkJF_M!tUs9WS$aw6{4ED9o7WzTy1Mw-)GhJ6K40RlYR-I7A)&U@!sUu=hG?DC
z{{<zC54xnJpC4TM^ql&Y_qYBoI{M(nyp*@K$L1ahaK0j4+W#da?nd^3TLs2z-KtF)
zU0+?8tMH@tcWB@9gSt~)8{aN7+Eke{ah3fqJ$bQNlbLHz*410~KKZTv$WFFdG18Ce
zfc;NC_G-J07cTmxU$1$(VEwfZRZYQtr9D^7ckObCS**R~kKpRLB{~epuie;X;dFMl
zOzFp1=0)>@{%3ukc!78JqMj$*%I~sPSl(@{cqu1;<Ky!cX}i`u^Ge>krgqLH7el@F
zx_ve^>zBuzx43z0Wvs;Gj3Pb;_A58`Xzcp_JF`sk<B#Co`%NOn($h`}^07J3*vqiv
z#P=%h=T^60bZBP_y%w|D_+R__mlr>_$9gA4UJLjw{QmC_t_0`o>%!l*SIxfK?jpO7
zsbjja$C+!}|9=nKF0kP6qu&$He%`!AKhs9_T-YgF*<U<uuWpDo+`Bq|hSFXo-jY{$
zP467rp|x!3|ERyJ%?uT1_7*(1jPk$v^4#L>OcT7iKFy84%d)0^Y4w{a3m(QilF;Mb
zJ+C;PYioMf^2fQYjE>Q%Ct|m;UwW8u>3G&0?|E;-9((>+b7NZE-}TG#PObS~(2>8q
z^Vf=^wCk6y&Umt2e^+fl>TTnfXWiFZ?{!bfexW&ixv}(aK|#Tvm)7dfl-d&7cE@$E
z_MhwLs(2b2kMGb{R&!5bWf2YVPSSqC%pmtoBlpwZu<(Zwa+Pumv`)r;ydZf0m~DOb
z+j$l9y^dehGM(uxbWL0){YKfpU$<VIICG}Qo5yq+FT?iVaqkrxwr;&GF0uA)^%HKL
z7h4z;TD#?=c&eE;oYTIv{@wpA=PGp%wa2kXOrGM{n%-0T+i-o*&IOAK8P3$aU1+zw
zBtL$QXPQ}9ev!hR1<UHo-yK|UX;xf!(sv<?bJzu*hU(h&<st``ygKiF<n*lr^CtxJ
zPcvt*SpBQp?ppV~uN_nMEBsEki@3xZ*mD+h>Cb+4ZF0hE$vZq2n<ib;X8vK;*~PrT
zmSM4<&ELhVPTZbRG%<WtdGo?5DaJbY#T^|wOcF7>txC?OKG~?Wjp<JK)%Y#jzb35N
zdCb;A{mX`F?d?hT8GY96dt}Aex_#61z8~jboj6_J)lqU~OYFn1f@gofn|)-`{y+Nr
zoMlQUT@*LC(sq~O{^CFvDW(tgTUWc-2CWwroOr>cVO8$x{jY3)Ka_YpZ~LAAS1T>P
zO>zB962Y~5)m!H8GVR|YI+0DBZ{E7Q?AJRy7Fs?3Cpqu34a0%PtKl*XZy#4p(&sa*
z%WAu|(7QnWN9<c&hqbJ?OU|Tt^4^jAyZXKF$%5ZMBOcoQ&R_d$J@?v63mJ@8t-s#o
zmiF<jVEoJrbqq0TO4F_t9l7}5z2VZEIi`Q&OWcEg_6c^FU6Jy&*}V7sR<n@lr*5g8
zp23>9e$qBkhT_Q*?c#B%{`NL0clfUUowhLQdUU|qTiLg#DJlKVnp?Yg(cDn&Z)_9a
zy*hGVKju<`u!^ZBcLQHwVY~GI$$Jyew8<nXILy5NE54k;V9~b2&-xk6B93MHtx=x5
zbKTq9zos0q+Adr1d#0+=L&GDnN=eqO75Upm>O(@mCT@&imbllgmDBi5f;T;5YWsJq
zua92;|LU^eF@BX+$9A6F34d;1oV=#)#9i+j2_6$aG6>hM+wzf%fp2xL?RVycm%iB|
zNs}%f+iSwGt@g^n-wjvKztag?aM$VSLZ!0(*Y9nW5`2BI+R0_tivqPO)+gc(zP@os
z=l-2kzghB$_UT>G)w0)gt<@9T?krAVKJdS0-B-B-{cl2NshqyWp%*p1Yh^g|h2xbO
z(O1_$yM4JUN|zxaP<rF$q#c=ex;s4nUS*Ju>YOX{`1*>>Yq1PBK51-Rv$l72+^>pD
zM(-yr;5B?AD9b4SIbO>*)OX1@x%qP&I<`EnYWU|Fw@Z{E-kLvFyzYqjo$6(J`Fr%0
z)R{PgqB58Qe|33e`@Siix4FW+KhEW+%GC1NmfN<aNKP)eZYVLy<*0Ry-@XOG!t4L+
z)eP9cm$2X~lZRtqrpbY4X?@D^mU5qZ!zScZPyEYhaeuYkS+g^%+?0x>89vXwm9tQi
zbJrx^hew~kDY_f6WB<Fx^E@~Bob4873)cUNN-yqx_fc`h+N`Y|9j1%Jb(elU8TY%h
z!{cJ%MCRTqE3emYm+U^!-kBj)xSsXI+%*?NFKfF#`MFa`>1}@5l+P<~ho*X`_5A(!
zc=>m4rA?L+B?m39PnMJ3)LF+6`cF;2f}=tI?}{wG1IK@rTPw7lSQuL}N${qZm2TA;
z1Ga|iIr`H$<>nu3{r0o_Ro97`3~S0)Maav9zP_z4duwa(={ND`|A-`1UI>%;)G5fY
zxpwWQr&bHT?Ne1!GGcyE{I^<NLA12Rp7DptpF8{64kT`O(Ud$R$obML$NqcNI^OxW
zqFtQqZ`uaTa9VD4bC%e<ttqmT8S6N2aXH&<6iMh<ANnfm<nw)3zAjI0S=?wQu2%b2
z`B%mIZ6=SorZJr1_B?n|S;oKqgkR~KjY&lzKh8+DDix_Pgq~|W$>5$FDOD@%p26HA
zzKDlSUSkzg#lh=VrJn+dE5p?%E9~j0)|k+B>TBFL=5>s=uipM!)Zy{E^kI8_t;dpo
zEDT<;hs(Ehm58Kwez|1Gv)tmGg=NvPM{TAx^Jlu<zuFAy>MBPuf6%vIy=K2;!V3GT
zf7uf4r#@~}`5PyCyE`d!VTbPgW!W3Qx6J>S@8VK+X<zE6|J%#&B?g5=%G=p8pYaIu
z<kIR`(A3pk=&P})Y4@vHn`acq#U9?3onl{nuF%lkr$ghF)BzSPHWxvcNt29y=6(PD
zIIMKdymjx^y}Nz6_TKZ43x9uG8@*q0x!?VQrtoEdE?g?Oe@pZslWgsxsww^)-%phO
zJ$%4mw#~uxpP^pjli!+V7M}IF!P-#IVtm7;!T-!_Wk!$13E?k3v_2EO@9C0abU;ej
z=kl}i?=SzCU%7D4^QfKL#E8eYpB~$I?7^R?AJyyl)EPHKzv}CHG})0sM(oK1HRS+@
znVj~_KhEs26ZJ5TuUY>5Fx%lLi%R$l{L9xiJ$_biAGmp1gq+6)6>t9j_m^)iIc0zC
zaZ&rBPx^wwr!5a};#xYxz;YV1t@IsFmn9EZC$MD;2p0aia5k<b|G$vn#G~q=-5qb#
zmFfir1<frlKlbZ;V)b0(@uT&wE>9Ht4TUzT^xpop^vAN#yE{8-zQ+`)wq|%=JGWie
zSyRb}tKZd;Z|CNY6W_C&B-g~L<aqno&I-+pjsLo_<Ak5At52KQ_am$Bb>5%5<=UU<
zT9>IE9oIY8ZB*4ax5&@dld#g?cY4>cmrqX}d*Z~Uqqlr}$B7=NHMbU<gg4Efp0i<N
zheyCX?u*-0nkzd`SpV+w_<3*r2?fE4s@iwIncLluba^8D{cq3CS{Id#1v^iO2nx>p
z{=C_oWyb%O<A)w>>QhpBe0+)eSv7CPH_R(E96zWrIM!wU<82UTmde#>c>J*5-XV7u
z^Nb6-+f`GNe%{M_S@$8G;TvE1AGQyA>%X&`%w^hD9a?<*<Q=w#=-kr*T^(;3I7+zB
zRdnPEUdUL?xNPQie<mH@Vur_8th7@$Ek7unIRDq}hVRO9-<~C0e;x4Mwqe;eF*%l|
zqI0MD)oypmacUn-T&AiVRQ~1se}-x7Td)3*YKi?5&pKo3JC1(KZEH6RpO-$jBfjj#
z-Sq7}U#eLfs`_(U%b9$iHoObwzp%r1*Qrlue~H^akZ~wo#T0S(;ySsdGYlks!dWGq
zgZ4==ohkZdbRg$*mCS)DCGHkX4csnO`Ub~TI*ogSkG*?x#NUT$@{@Dr&+hzOS<?D+
zc30<ttxAuc<)7N*(XhzH(CSBKXJjY)vpIil4!nQ%_4x!xi(6H^2~Jhp;&~k&AG{}f
z*6XNppp*6Ej%hk!7h5>5=FM8Sp(Z)V?yaVh?sK+Xe4!#Y1skTmX0?2l*|7b5xSI`c
zf>6(l3)jA!eo)I7aM{nLZI(=LsCD%><CW9)ENcDFdqCRrm^>?s?4>E(J*%~!D!DJ6
zk)i3etB29&)4>M@yQ}6lN#&`ue2=bg_L(F%YmsbwX9tgYfAA!qo0}Q-oGZ1Sb*1Na
zRa|JA-JJ`c4?894e?B~4^OGjS;T-OuuJ$~JH5?^TNoxFdT;V^T7&08!Oz}*+Ep*!@
zH$5hCp89$TyXPv$FQ1$7#81DvKmS|FdEe;peTG-fSG-CrJ6We^;2*Qp(pcrjT3$iH
z%=;W4N)jI1vTO)jlJi1UP4^aaCcoe;&JA0Zc6gkSiK%RVu$N)OrlrT#=brKNu0Ma;
z$Ft|@-C1FY|4+syEi0e8f99Tv<>n8Utk!sWG0w&19)HQ1vrbA%jI576ZoD`Ba^m*(
zJxWS1cU|b-!5Mk|uCL3H9lLbDlvT`DRl4+!q2FKZzP^&uz0SUOKO$Y09M<(+y&=>4
zTiu&ydP<L`_?S&S9oDmDxx1!Sk8b45Md4Kv{N?ZUKll{noOFD+_?AiR3s)DPoDH0}
zU+XD-+Ffoxx#;BQ6F;_T2~Jf0T~!;F{O5L`^pt&@{uBs(a8I8Y-SNom_NpmKkC+&m
zY)|XVX3zVyP{H8krQ0sA++wEulhB>UbcUz1;|!z3+q>&?tQh98J=RmmWIOhpVaB7a
zR$V;v`W`uO#wsh_?GyTGw<>V1_Y{SbNB1oGSSmR2T&9Xn)~qZ+!JieI3!EpL9@)FH
z-rHr#^J_{$+ZsDOoaU@w_|Z{N(DL%*#a^G8b05_{ydU1#@nyF`ZRXDdA;G`3w9-{s
zqnUj&m)*H^#4hF7jF8ifuD!gfeCH#bxq7@`?>}O@%PVY0`roXErE&)k_0O2CUOaoJ
zK!d4t>H^*GGmK<9Law;i^+twQg-y|rV_LygaUo2bVOe|7_b=vm_#fK;e>vaz@6wq(
zm)5Z*Oxm%rXSv$zA1V(*Q?93!B!_I8zpB;KZtjx{H;l{~4T4?jc>e3{=Y93Re^H0U
zzn9!ia#urM`e{#23Vw6r!N0%!)7I@yc_ElK=Tp^=t>-3JWzMu=;oSO7YdXV+;NMHk
z4J`9s&YijE&L=yD_-<(nmV&O_K(9hWwx$y8VuOt(;jCu!s((%J_1Iq+X#L~~{~4Wn
zhfQ^glaHkQ-to+lVa>biM`Y)*E!w<LgfI0pqi}ZZ!fY=w_UPq-nw7_xS)Ow}x?s0w
z0Y}@lXFSX8x;;#eyXch2FMT5SPi^U!<ifSfKDhe^tH-V1VLZR-aENuv%8rt#XMdRV
zHtKq58tr5Mq3|K`Y?IQC+7q@6JIuQUzbUs>o;2sawT>lXcV5iqkJD=He#%CzYgkff
zS7v$a&xPJprJ}CN+WEEWF-v#MVBKjUV{-p3<FVy;82-%h?VHMfM(XHR)#>IJzsfN@
z@-N?RlD&BDq`0&&NAuK$hUs_S{kbCRqLNZ4?3|Mw)YY5H;Lm2a#<HAugG=Fy8S3lr
zDs;czJ^SVfozFghD{6w%CDd%+@PCZ;>7C<0DK7Jz7uTiFUwMyD`yx`9o)MSG)HR9K
zo6(M^CgQQsqymYg{{2iJ1Q_0b^}P5~`Mjh@c(BTs{CU$mPLwlf&nl|fx@}ECSDDB0
z6SLK1OGH&`_lXMLT<d&bao8PQC8d|obxuh}cXxDn8vb`#RlM5W#YN>Fb82JczB_ZC
zXujFFwc|u}sc%pA*=c{?{Mo&(qa$#|HW$trhDu6LGq3#mcGR`j#bugEz}}X%t}d^t
zx;vKmx%@uGB{*^Mtz)M5|LyMZn16Y%z7d~xYoy%qo7GPf1Sh^_v^cj-ZRrhzYUX}+
z>x_O=29?SeYd**x&<}l}9sQ=Z!JR8}^236{^7Gj~v)taF&oRERQB}RWgNLC>J8p>v
z-@-_SdKT;7X8Wd2X5tn(H*eZjhGV5)XI;7bpXETyk7q@X)&8#x{}Hr$D#PT>(`Rwt
zvfB3Ky^_*j28*-X)Rw+5ST1bMV!32;$Q5hr&9d8+oIVBL<%nnAkXrNEE{$cq%*AKz
z|MtIG`mDv$?Z;Q8cPdYFZcm!B=x~T-L~(vWqKa<)iKDwTt^2xWOgdV(%sZVqZsIxp
z$vK-JrZIdw5tsE~P5rZrvG<L4y%#U+){@JLo)%QHWu;+#T5ma9Xuypn;ZYY&7d&iQ
z@M*tb^rxQr+*V<XI$jZHN(|2Z$rfH*xsN>}u3@?I-f)+?Z>g~^r=BxjVVSKP6L_Sw
zTzyBt9!Z86feRUt!Im#x@vmMy&Eg-QfzQ*2M@synXXieZ{3!QLn(;#rLsj#$pDX6i
zow)AxdG2kgnyx3#ojank!ef#jLyi0u9d%x-eA#%J?QicX{}a!3Z#Z^t-?3ZzGw)j7
z;wcV~*~}^Bai%J1K7VrEA4j#z`^1g~79E^_Y?l4zr3ZPoYbQLm+406K;oXhfezy*W
z?7R73gSGnA$qna!EtF=yw=>rF+I9KIQNEY9{%~P!J@C`e{@;{!rVO9CUiA2Cs%`rv
zGDqXm8^gjCyV;Gxta!R@4EFCUe0)N(GmYg#sgjP;rA2akx*NCs5=#h+S-sKVq*u$W
zC0DP^n1A0zMf6qW<V$aMvNim$Z8&4VE)~lpsVyt#nPl_mL$Q+1BbI>bX}4=R6Y^pn
zH@GQ;9+@L5|LfLUG57s<BV1hOZCL1{$$I9K+Kjb-&$_xy)8|TAQ}W{J-5B}bWu5m~
zd^fuY6`k9jr>JyE;gQ(tt`BQZ#@B~WK6&cRk;iM^n%eDqc{$UpMPsSMgKbaJLDp7P
znXj*Tze;@Zy?vJ-6k8;FFB0a-`SI`7PxCdCk4!re+U@F6Wja;-sMK4#-q~|RgG!o%
zV&3o{sB`4Gx`|KW|54S`*^FX(eRU~fdx}2x>AJePoBrg>G+ugQF@J3w>x_--Jwx`Z
zJY*7H6TCO_5Id_wyMD5dXYD7Jsa=y~t(gl-1e|AHSrpD@7!vh`;X(Yub<OAND-Ln}
zczIFy_l!u_496#$Q8R3MYh<2HF#nZsY>EEEnHL#O3+rhZ$Nx*_+7xtT*W|^yo*SMn
z7FFd+W;n;0r15z2{CfVkcNr}1?cpr#+ax*LMQ+i~>R)o_EoR6FT{W`)Rrp1tf8W}b
zdnTHMPdY2L;B?ZZf_+KeZ9#uncEoSm+2Jzj{geKAN=lz*R~}xpV%4&TJC64Ez5KiI
z{l_y4^S?aHKC@NspX6lU%6q$SsmNYV+V$*(i0_^(-?pGHGbF1Ewza%;<e4gF>#CCD
zopdA6#bw^_>(i?3!XMY~xv3<S?VYsgNafF}ztsynP8|CgfB)wL`M}~;EiqhOLNeM-
zw+!BXHJ-7^uku-7gVlQXKh6!Rnfb{&EJ^zg?si{aXw%>9$FRUG^F(Rm8Sj$L#ZM+I
zRdPJzeXDQAt?(nqgpQx_4y#<Fe`>q1;LI7{6u-Xtu!8S%T~}4`v((x1r1X_88D$pw
zc5ho^_G+tM;S`x5wMS`T=aMD}FN=)?ty<i4b+TQoi_5jYNuOKzw`FK6O{(+yGgC?F
zuhycdGfKyo6wZJ5_4K1TY=RSOC-X*1e4eyE{nq4#BDM?HDJgMpmQHCu?`9>MQ(+eE
z_%eCUt?e@^68^BK?M_L$#aySWbSdlh3bABww>wu9l)hKSeZCv5q{RHURq6TE$x5d;
zH{CfO*wxC%&~qZI=kKdK_Sc@av#V&!maQp$SC@Nd`~SZTCEnEs4l>M<zj|pQW5Sj%
z`+weCJSnDxkKv@<))N~AqbIorrn!2$-fwxXmg{7{YxgAnCm*tRo{#OHBR7A^k;L_`
zeGTTx)-`;ciF@rb?sHs>yb&e)BZ>LIs%1sXzcO;^*e-q8u|ad=hJPVm9d{WmjAko-
zEBhB>e?v_pP>yFk+p77u&l~?fc5Jc?=jC7S=KgFy?3!o)WoY5wuDzbW`nh@NSA7%V
z1iyzr_sPj@Q@wt3+9DCtcE%0iX3l%K4y<o~^1(2xu>H5qncW-LAAkOOM`Ucc`|i7T
z{1-0h{k?6=))379cjbr8H+Ccji_g?r%*pv??dRzm{^bUjhfV1*JpHFGvS))Q^MOCt
z8a=&I{(e`^u6w2b>4l)x@w=OU`lmcg3X0_S`(LM~bX>(aM|kJv@VX@&?M$pw-k6=)
zx9*Q*t9g1*S7-L({Y}P)M7(yGX*ezvo0@A~wyG!ZR+`#HlP_O(<$eEo?s)Ryb4J#T
z_il;>C%n2HtE}|ynTf&6CCla?EtO`t=k-6&GEM(G`;MdAgqH586j*T1mf`0AiPGiX
zpKq@&GIWTYe7U|p$2#xhDy{UY!0%Z{YTtb@J@UzXVxM@-73FuI-p#j`|8I5Ur(jel
z^PZXeCW&P;+%wC6#<WIuV%5h_mIr2aP5JxjOy0ZoxeIbty$U~T9k6+Rwv}Oj-1Du<
z6Q?|MP-qouTia_WAv}l6G*x*{+p6NcInQrRiWNWn=|}qFM~dHX>GK<N&*fy8`K0nU
z$DwoI^BLBBofz}qO5ya{<uMx;fA-#adz--06F)^ByzVVqDKJs??vuCib6)>0Fi+_V
z*yJx!8*{_+=)om+Z$2#hT=uO@>8Uv5hW`^x8T8eA3U|HEJfwfvS?QC7Lo!>E&$FoF
zoMKakzritz?^qT*C^DYSbuwObPH%7*uX*P0P2JI3|EhjcxW4yg@##x%JZolu-FB~4
zrC`?<nSx9H=Vtfs?%1Ij^v<ZX)~4y(KO6m;uZvTa9y6w;FF5vQ@hqR5XY<sT>|62F
zi(!9c>gTrL0L#_M^{$?0Uwt_I{c`li{!ROZIg693qLythKjZkqzH?d2El<;j*T2se
zJ-^UU*33g@{cZJ!{_i=au5CKA%6CRc?lOU$oI?999}ivM_`WOd=VJe;|MsG)&bKB^
z5j|=A+r{AP>}fw=O8Iv8mf5{&nmzw-hTGL!%Xf8eskpN9`3?4WJ0DN`zx&^=s~dx|
zVxvoad_D{GPmKPXyzuwO(AkUywX<%yxTMH6baL^WW&d&Gxa+btl?!)XoUU)Uzwc*M
ziuXy?*~g+MtaoeuF7s#2hX0%ga_jQNUzJ{Y`hB0($M0<!vrDU9U!OBw`A+ERM8jFn
z-oJ{g5Ayk4Iq!SK^D{5cJx^OSHSp4jK!&Z$e2z*qgxV?9a$o8FXA*p%-8ZN_bV|=n
zt8-J<+zGj6oxG>=?P0^kM`Ie?;w5iHzbkm?z5n=ZJ%(vk|J}|WT72C`Sb6#W^kXs8
zb-Z(be%u<kchWQUtgh2NksO^JG5iimUd=2$(tqzX6>}Ch$ru&f3KqG)#mwEjcz?N^
z&E}&wc1sD}S$FCe-@VG$zPq=X#$Q<2^=<C1{3<p%S=)&6|AO+z<bJ9JmFHYxeVTmd
zndSd3tt8Q4#qD-K#os1Q>^y&}C#d~RqTW8QBfJ?OC$G9M<MloJ=DzIpb+_Mc^9^3u
zP<d2D`b0&rci^7_xet#!*GA3R%JQJ{xpk?{fk`u#Z+IN>{bkJNf{&+8tkYPxxl+h!
zHgA1}7nd>9hO~?`sk#4eALyCBUPf%T;e$&rwC80#TDQEVx^~hrePySc+n>EkK5{m#
zes%xqGuH|hSHGUmt!e?<N^xu2LJ`a8IlHoFcATgx*Ngf)<Mpn*KiZ2f$4=Ql_X?L!
z{-fFTkK4sn_V$U|_f=o7-JA0Khxch)r5e4yeKoI_)vfWq6Zd_|KhX-q16Pi$ycw&q
zMdAUoy!cw_z5Fa^{OrrU{5aM!=-11*p5#pxyzghc*52~f;n|aBv#gJ>cFy?0)&KAF
z{;I$KwA=Y_E}GkMVnZaunUCVJJCq#`hcoo#?OMJ2@gx)0Y_7IhSMN{Sr}Uml=lf>f
zPmy=}e?_Lg%KmilI>Y@NVGE}y-DRjSxm3X88M!ZSQ=nCU*Xvs!&hB;po+o;H<=xoc
z4}XvSE17zihr7?@nR@H$+!v0;=iknLH%(@<_>nK?{Jt!jZ+mC;qk2n!v14v;x*4>C
zzXwk_Fq83O<&JHuy|TPkO}?gNr;t{;`P1Fi?G?*~URFOeTx(<h;f>9buOAtFJibnu
zX3uYM{QrfIGg{?@wffl(`2RXtD$KV^&saXfOmlmTlF}x>t+AqBo}aE1Dk;6zHGaR#
z@0FrbP;p@HY_r_kTQV<41P4ba|BL>&&)wHYaAH}xOPKg(HJ=$Dn$u%v@@V{Cx4+|r
zqvqepXxq9qA-wgPpQZN}%;@My;5q0!{r8S#uW#<nUbSk~wXo38|GT$$aMYhZ^4=_C
z9m|5%xsqO*MPdSW3o@Tt%=yvb$+`Kr&-d9se=6@{*UFV(2>v7U^<7cL`kZ%L{LXwk
zzB@B+@6wyvQFBk9nObKkw{w<N)W!qb94u`23ZJgu{r`0IohNcVdR7)0ndQrJuNy5p
zy*_Z;lhq~b<+A)r(@IaaZuw%cdP~b<BiEC*x?zp8D=vDTF+Jzb#XnvB4*Q4R2hXpb
zXIgWnU;c)exAL|pN4KmmOPYWDwtv5gPSvcH8kMOg4`jagF(<f5l{(!Go*%0IJmLJu
z$_D!;`RkJ%SH}b!>HnP?^+K@t<q73uPaLAGB#wvMuiM=vWTN)?!=GzP%)OBxCi0v}
zef;#9<S&iYce_&dFii9*uv~urYybV?%lq{$voqA5JFc}W(G9$?=~4<e!?|s1oHTu%
z<}(#+H0D2WUa`%2XJu2C-bvpHzr7iXi;PMhl*|g0*mmRxcP3}RQLf(%8y0+B#>=2R
zdCHm3hd5`Q47I!vuCO?(ChW!jO$s@lstY<_h<dlEF?={UqvSsi`;3PF6L$)kaXr``
z(<^84+gzkcccNB<d(P?ruPKTXm3gxM=G%n*V>pm6TeS4GX+wOmY1M<67=dk1$}c>y
zJ1VyDqhRzTw{-@=Yd0JIKJw*c1+&u8y4j4&{bqi<Fh95Zhu{O-+gekCQrCCrew^L0
z`1;heut}#+@hxTyTT<w>)?#YYrElAUr!?%iqZ|2o*ZOy{=l)*VY8#&}7dU;=@5^&F
zHI?!i&um!hq#3I9zTon*ee<h6FaG;sW8PA|6{nV6tJFHfC|v#ggV@pI#thydCr@ox
z&Ysh$dFQ}s{ccaM2Xhtd6rA!I3~J|IiEU2(9k^b8;`?g0qk9>6C713CosyF&J@?Gt
zUCVyolg;(K7B}^Fj;yrg{%_JnRg+!J)~oAI-`n(vjp5eqX$z;QRlDDA-=(JfeDSGk
zSNbi_Sw9YJn8SVGQOtd{K6eJGZ)ZNoGCz9X5OyL^r?7O3Zeo&f;34bQ&6oP^t>r}x
zPVZ;QI8(gNXtK}$?@rnuU-D0$Uf+-_>6K~3x8T>)aQE4^SG^~f-8rDi@$YTw&tLbd
zr4lmd<vqJ_?4;rUvdwo&EchC1b593&O%hwpcu(AXadqf?6<O^$lOH_(v^<yR$=%r8
z@bY)1Gdnyg-><dt%2QGAy`yjWP(e`e<o8Vhfi5m=TLc9q^_8y6Zra%qVz(<idBy2z
z(K$O$-f`d8`>tYp;j2AAU;fFA_IFV^|9R5eJL1Z#uHP;?y>IQ3#8XG~)&B)dj~A7^
zv{dXt`E4;@O<z5R1bM-UvA&0n8qVJpdF<Xj<4xfYr_@!bn{%@5naO5g)^9E{abiW_
z*N=)nr%sey_UQ)4ZKEldo~Smk6{{7OA2R-O^x(N|2lI}ZmsMR-vfP<qcwqC-J&RB9
z&)ddgVOGA--BIutXM=C<>j1Aw7vu%{9%THEex&^6vZkogrNdVaM9y`)w)Kr>Hp33{
z`P+H&_f`e$4vd?ca^PJ<+c(W=FL)2cp4(l!cizIv>F*2+7FEu?-&x15u=ID#fj5(`
zOgZ3O89IqEt+s3lIQV5cPW67Pcye;3f6a_fzazZ$7pycowlg8(%lX?s&Tjs{>&ecS
z55Ir@zdJqd=n~K4TN%9HEI%CXB{bQo*7<wx)6Ew?oR&79|K)k<_1#&Cb2KZJ&+Ccb
zW;C!_|NYJit5@uCU+>$xxLoVsGG|J-VP=w6?%l-bwxC5m%{LUj^3`hJoxb+`OvzlY
zWzVe79CqQ7pKyORU%YIx{d*z7nWA;kC*+nc%x5_9dfK!_JH9YJIGG~9-J+`Khhfyl
zO1sw14jIk^>nitUPcK$?k)FKv=t(Z7fXVYO#m`J!RyhCGw1rbNmOZ(%@uYRjx8DbB
z+)lSY@t@kPS@y>KdUV5=J%4s@(4G1B(h}8&=953IKWfh}@=wc0GwB$k$(s8q^W}ca
z6g{dutSi&;Pq^X1>h52Os|7Ebw#CYATXa-DH;idbPIh#A(5x-%StatL-GuU371}cu
zW~-D$F4Fb<xisHU;lqbAC8hIgw=H+jO#POrsbq9(TaU^bb)`+qu3ftOQ)%JL?bCH$
zd~m-Rsm*ZX-Zp`yE|oTW_C|Ena2VXa_4fABsvBqizq$71^t9*QxpwAC>d!52b}y1R
zCB|?@>%#v1e;H<E_&0D?$NW3H;`X_}-ut%%@jsb)&3xBXmUA0*T{Q#CSRUBjHrlgt
z2HO++yV)jx`|L^*;+iFmlVA9hzcVp?-?>fH)x~8UYeM~Pqdhx?8kWw@d96{h%T_+F
z&Gzn>#yN|g^sHyNCiblS=CN!>i_6>koSrXux=wZGzW!WYualb;8S-yTdw5oxp=Rp&
zE8b@(7TCStCC&BO+EJ6!kM#l1Z6lk)P4aJ2qTL&Xe;qMYeQe6(zVSph!<P-Zhr7Gx
zGge&L*5`EGaOY{i>}iporzR~d;yqx#Ew!Sk^=3uxJlCvG?k~I<;@+l3cLd#flm7RN
zsiyRL#s@mLt+?hg_lU<z-?o|}^jwaiY@6=kZtIfASNT)bl25X3E7ef-%TPOTsHrCI
zzHW?hxQ7hefjg(J*ovyQe_>8ok}EmShBYAkL}&Y?3D<Qme9CrpdD8Z(=3Ypk(2vy}
zB3V5jLIfv@MLl1d*~gl&Z0!=BuB42grVg>}x2<d}B^vhMoECUv%MaEIE?HfrXU@H5
z-<DdjnUx{@#<aj2b9fGz=*q3R@wDXelahV8viG*EX;ur0(!TWYLHjgD-)FBvr`T+0
z_pC779bhZGtm*0%Rn~KCi|^R@26KIq@za#8(ql?^J3oip^O#0MDC?{xC#}-fb2l8$
z$qw|Iz3u)i`y+>g%eNlkVBou3=4`4i7b9q<8lNrGmo#}(;4^;1^G_QuKeYIs_|sMP
zn$QiMnB^t!#I|kKSla8k{Mc&NKXbRm{+M09Z`soh<uCJoo;_3jhU05R=$fLgpTU3D
zO;~NTHIqYnGIMUWrimZJf<pV)f11+_B_~8&xx8(HTBUK0ciu+br3YSYk!YySc^%*-
zcYNcLya~CAzL&o;U!SHjZI4#2+pM{hzHKYjSb9$KoN&~PnUaem*Z-H3XS}j~^V%f~
zZk+z}|MCx}qekgg%bsZ6cB&~fWcYn+T42B)z5^P!jiv-W&pAFNCNsLjej7WN$>-U+
zPTmY*VtJ-POHC|}8>*gF%~*F-tD!&lw1$cq<Abu>MpJ~I+Z>+~lNQ~Pe~jtM3UODK
z$-NIVK&9)mn&VUc9Ns4IUn2b@lWtH}>ubgvcee2?U1E95P<8qZu}N&ZnKmTp-?rjv
z-_8&wy5abypg$pcCd;0@-`2Xsxm8murg%xNVyn|>R)+aErY)ReqQ)&Qe)HNyxqgeu
zE32=Zba8Qc$MQfA<Y={&OFS_-(eAUhNIsXCe6xO|?ot7ZOMi?^GCPw5AM5?}-Q3Nd
z{k7+{_x~92+fi#aKh0uTW_mbD-s@w+9o6>R(<a)bZr^n*<>ZI7bk63bcS9IfvE2|`
zG{tDIG^1F^jcXG*pNH(cmU3sAQqa!V4VP?=aqM*{{_7Ob#j!cPyf;^J=Edjr>kK2S
zJ^Q7n9oSObd}{BdpLcHiy^y#NvGW<zXX}a!+xV6)$=olrVA<?kSxF(QRLPAx``3mu
zJm#y|Beg=d_)--k&$R3^)1}O6tHd`X34fj%He+jZ?Zvl8Es~uMYgeaiuMMjE(Ejk?
zt7G$SX(}w;x#;!#w96}&=PG)62HP<=G;S+RIqdlP(OS;QWv7z%{7pZ`7iRzN%elr*
z-g#nabFW)m*(R`bi={wAf6nO>eSF{5B_{8xPuas=osxVg!(>l=)<Ll=dro@nxwVaN
z=@G-9eEb`Am7~jMb6xmx>&J=5|NX9?X}gu;x=54p#}<cJbDs)>{OQj)rv(}0FdsPc
zEM9lhqpp>~@89WeI()hG-QoYoC-|^w{lBrZ=BsV<KTFG7Gv-KcdFJpU+2?-#>)T?B
zrdaSZpVe8RFDf0k|3u{vY4?;3dOPpLSU*0*r=(Q7uH(v;IRaZQDQL{*a5(#ITdT&>
zb2$xH&mQePr2abQ@w5vwH+b&4&S!FY*2IZ3qu!rZvs(O>Cn&|iB9zB}`&wtsQZ0sx
zL)&@|NIseOM#sBYeZ|&~uJZ+@tM9y4WYFUeNOTDK$9ACJ+or`~<N0L{#a?G#%=TM+
zck0R7Ov{41><)+Z3eU#AV%*0Ykl-+*<j>{k+t(IOv1x92<Rd7xYr{1|wfoBgmsHmm
zdnToR+sN>RKOjM&B!=mL;I>kYQy&@LWJSCA-Kg7@>~l@#)%Qty+zdaAK7J{;2xw3>
z`FH-sRnfkrx%EsNCgw`+T=;i$pW({aZ$Ebh9{cv?tHf%lgnOmpOAJq*w6*n_vE|vG
z&^Mn29BL0%m85yTNSQ1=t^U_*`wgAO6Q|4W4vF?i{M*lHaBLfot6-&c!nRz|oyn))
zGgKUp&kq)PRC-?Yu;RP8yxNCXWZ&LrxUi!)SGG&Zh&5qPuBc_o-1Q7$KWA6g@@}|h
zeLp$%#^$=CVUAp9+RV>XZpfAFQWA<{{jeria_5mVrZttVW#*SBsm#Ck;+D{}`+v8W
zGKb7CWM)`#@5VMhSHVc}2I<_>Cscnk*cHE-Kd)xHi;LF#7>R9aCVsmrGXj3zHhNaZ
zkhe|OInX7goZ;LyUFGRp*0NWe^$(xyyu11nU+PqU*E5`@kNY=E&AOdrci`2t3EzD+
z>-1Q<uI@eZ)Vo2|Zr-m`rVR1sH<v$3UbIt9qI0GpPlI}{SAfX$<&09dZcLjP>~oh}
zUT(EB<BokV{a)8g=Xz)5yqhiYerC@nEe)>=e^@^3%@y5wRHe^ayYzT9qsP?S8^3m*
z*X@v)Jeg_Y48gb8n9gMXo0&c(X+f>#9L;s?2Z}X+x27@aeAy_$_0|4;sQS;pHyBvb
zPIT`2yh?<xnZe@vwjP<!vIq7|QPh@RmKt$-`)sa&`EF*L8}@ehiwjO%-Xt3mXmq$D
z)@RcirRz1Dwsz#)czs>u?wNHLL*_S|)qH(Y@3Q32nR0C{t*FqDkdP_9zc$%%Pkp&5
zQ2D?Un|pzQlRnEh{I%Ma`ecSOqlIDU_ET;R>^1ziXIIooOzAyiVz^SJ_UBm*uX8_H
zxr`3_Z<ulP^kdE6XPG3P*WdBvJl2wK=5f#VhVP{dA`NY7@0M%)T&&E{e{<Tz;yT6|
z^ETaPXE6TDU!A!~H}R?KNv?RFA7}rcu#?EBejOgTNaD@+En8+LD}6Tix%xJ-p)G7*
z``sPa4$n}Deo->Rd4b=i_RfxXd$d}eGIREJ)#xZGEnluR)il;+$(rTw6Vt2HTwnfQ
z_}uCFGdZD*Pn)mvi%c|)z0P8}Y*ET7Zubt4*xgdMt%`b!TZ~^{JAU2l>e~y`U0wc7
za!XstXgw9QyT{7B{O>Alxs0CIJHJ=|bN_mDI>XWbrVC7j(;Qa)n7l~A<a%Vi&Yn#x
zogCC!{_p9@-|VRJ;r-;Z$@W>+!Y3*c^q(>9k$f?sYm(+M#V?7sjXoWiJ8|#D*}GKV
zUKMNDy=ljJx%<1nuiR&o=32_ncze<&tA_R_nV>+UV=3P>TAT9c+IPR{U1w+hQtm}f
z!}d)(15a~@@B04pm;b~xVWBB!4}2_P)M?k$_L6w~*5tyro|+4vcE~GTOR3ou^64>S
z-Klqe6I=cMa%?|w-ScbX?Mb<e7Ro0SMOBmEv1fd#XS=mV)7rqueC5tdzdfGsXV`l4
z*Oa$^S69!UUnVNZ8Jl@8G}SVXN3HxMqa)u+4as6*hHJ*W&$=(nd*8D5WXk!QH}*F$
za8200bMeKUzK?a+F8LGp+;_pdcgq><Hs8?lI=7Rf;cU+76Uxl-T>1`qUpkzuq#E{a
z-hcj_{jTpnH_eX@fBw)R_UbyOnjQBwz2Yp`G`_L)e&m_=(C+EwZyrAijvp{n)LOS%
zd0KX}?&V5(hvbddJc4IQA8Wl=zV_~;1z&S{-#xCa|Gne99%GZ&R5Jy&PwO9^abWBH
zpmji=k$;tj<RyNMPby#H-iX*;nz_0D4Exl2h7Gv}+cOI@OK(gGk(W6$L(r~$Qh{;E
zEcVyT1#@#HE0<rr`f$OXi5GXPr89j9O!zMOVRG^G)ZOf6%TDJsTx{fDtsxm0#=Z36
zcd7GX@jH$^xqGT0xqBwV8}U22w`MRr-Ffgj5ARhb8=)UNx+X~$D^{L7y=d8=MO*s}
zC4(PslVv}!#NoR~e<WXguE>*)wrdP`r2ZV}nj|=xVc&+ehxlgidoMBBTqb?*CQSwz
zp*Oj=<hRA^b@{b~G26^-o+zp+e2?kJ*==0jEq;-CJts9Dvs4=}1g{PI`sI8`Lx1k-
z0Fn0N46B+;Yckw;B9eMecI&#Rm<Toq=X8HMX}$E1=>icsWrhr`rS65s7c^&l&DnV(
zmEnxf)M{OgQ@`XY5A_+Yo?rI6x8mcyxVrWAEDPeYziF}_`pJ+pZ&&ihO^3OXedg)d
z-`R7*{oU<Pb;s|1yy(@iRDbTZU>BEb_Aj<|@-nP$`zdpzg|GDdOb=JjZe@lO>4DRo
zlGD}io|t`X{hRNnu1rrk-MP6V?bhDqcYen{$=&PEe)A#2AIt4QqDS?c87vNM<C*<t
zm({DCc^|B`Pt2LdKcOkQ_U*rStOq9UoVHry-wm0D&$*{JoLaDT;&F@bty8W4>QB{d
z43GLPaYBT5kIC~U(WBzau3h7}ZS=-y$En(m_h)|YHT!?{cFmDbuG6n5hcXoSpA*&Y
z(s#NVz*YKtR$9C|+xxF`=67xRanw|t`~JR%6B4((y`8+F;z}#?|Cf8_2~71~a9(wJ
z<+bX0{Hm`uuMtt%?>Oz`r0&MQ*$n%#CV!TGo8WVFR&ce2ovpOY|0^{QzCS<rDqc;g
zsHFF0VaSh3!C8sl82UHvW8oDE<7(G;;5O_0Qz}_Axm_kTdWNN^Pf&Bf|GVbh72NOA
z?mXXD9DR-{;p&AW8{^m_=6G-In#8uA`OMa}hwSG1+1beZWi7O1=$?J5?OM7SL%r$y
zbH!q|Upwpcw=+-py>rT<ACD3nZlwt|1+m;=cStHaq2b5$VDp5I*%QP+SS0NdXs}o1
zTcBaKgRkLh?r9B4pVG~@XT7>~%E#xM$VBhO+tRWhy`KA?`@n}eo}p8=Sco^&ZA+cP
zvo?&O=6;I2@Qn}aPE2(v_Kn%j8#G(h^`!i=BhH-cPoB&U4}L#mTO7*)zW-%CCyqW_
z@}qyptc-=OeJ2B_FfAx&K2Wr_XM*`W<{9@(=HK{vqVgP{<?$n>)%TAFbWKt}6ZW8Y
zTj~@6edaTnyZn!f1}=M|BPhvq;CbQQcMJ=%*G<v#k}8Sg4p@Ek{-@)w8TK!G@n!x7
z)l3^-7nPJ%4DSSPzfNIjd*ZQT(UQZa3^sYuZkiv(4r~#byK9G_Q?L3gw#OU4rR1!C
z%eX^BTuW5dHcJ0m@SK{@dIzS2?Dg4aE!9_iZ+k3Xfbi~lnRgjJxafswc~#BfJurJ)
z>J*Xx%roY!3jZn0@YTItx@Yq1{Ylk-c|L?b5E505J++)!bB@8(21))8&adj~e|F6b
z?3`I;&UB{x>*spT1yTGDMPAFW9S~QY-FlBJpK-(H{&^d3D!DU%%)H`r>bfpd$a0OD
z0>6YBoO54msOlAa_4j%HKJ}MjhQQ@Afq+MnW>cFI1Q_;bgtpiS*}cB2Sb9I=l+Vo1
zjTdugGZi=&d=gPrc59DaIHg8#o9at(CbNmbhRe-TS33l+*1YzT{eaT>FZEu19JeQ>
zU)s0ju2;jWa~E^xGo9h_nY$?E$YX|>+-SE<!ELINR~GHyZqQylTaIOcbHFPRRpDLN
znby2biFVI?IBQbB@d>-D;tiG;j~{x@P>_)DNko<T9pi(z+eThIuU0c$%bRxcXg;%n
z#j2<N3^o!IEL=~r2#a6aurgOxl}-Ka4u)5KXJ0(}D;&0T;eE!mmF*Lf`V~tV_GCo6
zuPkiz_|5(Q>G9yR&C{|Oj=7rKvN`-$Sfc5r_QjmjC~NyBT^G-Geugmj-)E$+KlNUt
z8RRuLZ~shLhqKmq_UzC*7`xWl_5k}e5lvOU*2gDm=jJMURY}<Yn&I_Hp6SZg?Mpp0
z3+H%oo_{ed)_8HP^C7kCsSGkX-V=jvmBerzP#4|Ss`2s@?}0rp-Z!jetT-}DY3Y)k
zj18Gl@vDCp>ND(J6y+0mai`VM5S<I9rVAt|%u;n{EQl$&e3&68*?VHpsXM#}Zf{G~
zki4LL@%-0(hL|+(i9v_HtYO`<q|`W7?7)&2)5^9o$lnxNGQ~idvEtx19#v(#<{w!{
z-ZNjxUbA6R{x5T;E8n-SU2Jkv!OCLVSr?Zi;b}dBf|~b@Zch|d_08kx?68@)>c-@t
z2_-BKzRfV3{H1h)s;k$@O~MRUZF6301a6u;{fn63#FvJ-EJm9aEjd~5;_~F)&S|Mr
zv~JpcRC{|;-!QjVNof(Enpd5qQG`p%)!uETQ?zbQJNiml$x1))jqt1b%^e+gcHP)C
zVUlWe^ro2|9(U)=Fq=DFqcZLC!D{|@N=i!I?>6WxE#W*e?aZ3~%*&OXliZ!0`K9j|
z|H(U|RqZupO$391)wbMthPGRROQuLI`_gz=r<Z@5+qBK?-(p=JZTFs2*%=le^64OB
zy379ED~?U$Q}vF1RH~vAs-(2Zu}oRJOa9tU>rb=v`DIi6Jx@-4TGx4f;)XveN=moW
z%r`Ci@o>|;bKRQqd;Whkn(Z~^%?_r9dxdL@8IDB@E}0^>ceSs{{fl>Vv;#M#urS0v
zin`Adv6S7?>s+O9!}%}yYZ*>_sy~#kq;yGtUFoI{kLb0tmOYup{7*~iQib2*Tt%;I
z+m5J6->?EnzG&;5RD5lxw~LG1pIe*wR2gnDekh1}oyHK8?>aHaDTepJqSD;g0Zk9W
z8_qwHIvvKiC)0I8kX48d^MjPzR#O}*?iSB3wK*Vjo?Ap!gN^ya&b&QhY&ZYa|A=#0
zl6!u~wUbIpwpOW@+ZLIeG!PWr8Dt*E-RzL#dB|+_%^KMWPj7TxQaSA65>}HF-IjFX
z+O!&NB_-!aQC}6@Pufa<6&I8YpTBDUB>7ESRWFNmbi5J2Znf0WCAV`@w2#WKh|^kA
z4j71fnssOYWqe?*-83aAQH0@c?&*N0M-mL@I<srp7OcC}rL@!}W2?}E=-Wmj)7PB8
zd`$6?pSiM+m|&*h`{?x=2RC|K3kvGW#u%jJdW+TSDs2j1eIx8{O=wZ?&woMDK?W)B
zpBsm{EIGSwV{h8CmD^lS%7WZmn-$&mXwqKYN_Q6_F-z`xanB_0N6QVmCUM@~E+|;J
z{@gY`Rg0)~EHh-T{}MaUb!3-V>h%u^btRfd&uTKvNsDe1QhAo4r?-Bp=cFszmoAh&
z_IhdhkG;XzC2-SIRfa8P1%ZWZ4C+VB<oFI8Jh%JnxnE2XpSo9C2kg#1B+)fVPInq}
zO@4HnkcKT|h1s@^`V7}QJ3OXO&+16r_e)$ea+5WK`R!>7Sx%p4=uRpxJiUrRPF!%}
zH15vF++UM|H$Apz;Mu0@+$rGlu6?7D(p<J<TTHKYcbIf^c-%Gq82+YWewcLFrlb`e
zC$e<Q0#e@a9|+ypYs&Dw+v7BQT%@SIzGum<@F^uP*bZcGOVwb!yo~L^<Qdxnln=~R
z5;79?vD^KtPyCrnj^|wk>!_)Z9=LpQ*`OiG9&q1q*Gg7~?HwIwn0`bqd1^P`-PcDf
z>zb)*a+DuKg79stDH=>Cr&@-&EU{5j4DuEfTq!CTsiCy#*@B7O_wQ=1a!&th6lA1Y
za$iqLDLDP6*diCf4qd~Kp@w;1js@=XJF-!=zUpmD-$wD3(<e^Sd_G%$(RAI@0ZAN3
zruocORx&dAm7`V{H_2mCnycs04YyrgQqIXvE7dS$N%EG^R=QNXdd0FIm7X)=?}`^U
z@7NsF^re2Gk4wr~#?v|4fr~hoZR<F>Q*!T#&RNrSI=1N5mHfYZ=X#W#`^k=T`P+mA
zA4>SH4C^Ub!CYa#YAHWMdUwa07jy2M*_j=%^R)y+#wAl#VJ$nudi(zybX`vJ$}?Ws
z)@|~I`9X-_#0$&^w*0?+FlTv5d9J7R`9_hYnd^+}?f!?Jf2s78i-E7lB!~MzfuJBK
zug#YDAOHWT^=U><EbsL)OnB5R8J`&4F-f`S<qrEx8<-i6t9*O&_QoX5pTf&U1a~tS
zY~GwJ>&3))we(-vzK#<cPVCv-+tCrC`c0?&-_^C@s=__)Pa?Z@P6r5ao|yKbufyZ~
zzK3j^r8gOEOy_<cZz~jLlqfGa@fE-B>Hr&#6Vp`Ya7jmR(%QH<+q)!gQHsOvxvnmD
zE4Qt6_Egb`Hd+^WWV&wQbqg!~K%;~JZo!G)b4~}?aGaW^^E1dL<$UR#?{8g?T%Pvl
z;h)u?g;bf(l%2FVttF!0v`IB>VsPb_-)1lOr2ON47C(2ohNOXuOUlNoJz}QTj2o)B
zpTCu5m{MKxW*b|>x1S=*ML4CIKJ3Yr^zzf3&wAkd+OxNpGhD0qX2bWOzH-Vk5#Hm>
z1zow4UU`<Mek_=I<+G9G1NZZN3$?R;W^T683hruCH=P^h`C)>gntNx*mQ}4Svn&&D
zeYuvvrONEIpV?=#uJcLLsrMN^^me=sUcYdT*Mb~D`Be)=1RCc)?g)|J=jD=e`<v3H
zwH+Nt#C5`_ta+iSq_pdL*bJ5o@04F(m6SFu-LcK3|J@V^!<)avqQe$e2rto{=&7W1
z$zLY=)A6QdR@z>>B%*_|BU>N&F4%Tt&h0P4oVnVIyk%4~e4d@RI;|y=&$LyQdwNI5
z7vY;rnmcX@sb*Z6CSufhOXzXHCI9VlQ|~O;wqye5m1#3v{mz@6+!og_Q<-x7hned~
z-;h$~r6(-q8`6K(F>X*(lu8#_V{x-hZ>fbref-{>(*d6j+;jOD`6m6pO?rJp)z^99
zMo-@}WPH65v>>>4itbM1XN$#5{XUzPEzxv6@RXrstFH4$l^cI29aUCdAAWq7)%TpI
zdn6=Y$W9Gf6y#F!eydA{;i6MB>vZl~ew)01*JV-P70Xgioo3jon|nIolXJhjG{dv6
z{n`6f_I!Jp<T^cw<qXq|l<3w+Xa6%l|G(acD>W~rxTGjGF&D(jPs-vlG&EB%Pyn$^
z%`DALV8TX5P*EEj1%0Q?lH!2WBIo?vg8aPHyb=Wq1%2oIocyBTg2d!h1$~#)vdrYv
zAa^G&eV5ea{FKyy#G>3{1&~&-vSI~eu!hpyykZ4I14~N<{eYs>l+5Ik{2~QI0|h%f
zE`7JmoRZWc1%0=i#FA8qDGK@?shQ~+B?^`X1`7H<sd?!o848Am<_ZQ1K??f8zKO-z
z3WkQJATF1FaA{IWWkITfzGrS?da8nc2$&P$pOlrFT%w>Ko|yvDY+z{#vJDyp6?5L)
zy}N6%h7{X{lzIF9N1u~fqCMBEN9ogN#%$TMA?fN}Tzi@->TTq<pL+Mb`tAIRotv!1
zw{Ldz<V)FXAR1VB|7pzP39`P^re4z9A=Y4KRJAHQEa3a^zw_DbKWp7#3sm2z9hU6<
zg^B;}`*K#JY16i=D@c80<8az$x!UzmW#zQe-*&+V<7;f>mhXG}^Wjl{BR1808+2~6
zbvzC!UX!)!ZeIWK$MwDSMKA0we_nFZqO|SaYn%OEnFkk1T>M*Cz9eE=1@n=K_hjtl
z_(Lyyziu&J_kHp)&Lc-sq{GziF%+t7JF)5P_GO!|9Q#^(FU2Q3`t1|zXqS@b6&sCi
zvT?XBEphE=x%~R)oZ5Ev-U*Z4EkmaMeG$HeTOjJvWCo|3>!*acw>zoKS>ETLmoi@?
zJv=jdZE?QD^6A0pvyzXTN|9EO`uJ>@1LyPU-<c~@H}1K9Kg`ycZ~Cz~-6uIg9K1_-
zo}Dn$@!P|=NHD)kLgC?_-xljMdoQmxemm#IAp^ho{YB?iZjF?2T&8l5;bMpR(k=U@
z#=YD+qn$T&dT~<v>S<Q)^-~WAwFdbAa?*Y&U-y6V+5JUtBxdC>v#8t?F*%uavE6;|
zY2O!f*G9cswj+Dfsw0nVe|Jf{_eOS_J2*V@jhvrs@&0M_ViWD&hi~fZm)`eEQF)#w
zvAi>Aqh+ez3g+V-DbfmRAD8Xef2_dnRQZv@wuWZQbEjuJWjy-Dy?>8UPiLpOgU=&h
z-v6p|&VCXtTGh2#b+1O_qfNnGR#PHX{VtYpGQ90HpZaHZLD{MDBX${ECOmGO<636i
z_r>btNB6658{>pF_j)sA`0rWye15bOv%#a=-bP`4tFoS|mQTO?ao;!n#)s=NEM8wR
zYG&x|G!I?6k3ap$gyQZg+D$ob$=UBpHRLUyzX^TAVWf1Ejl*xx%D3~s$n{K^y!JQS
zmhBJp+{3<|lHDkmAp3|{U{1wlhgTAOH^Z#^FK<3u^P8_k<u=2|wbyjtJiQ}r&%W32
z{>PHYS2lKE{Z5|zR_oOq_kNA%9>zz}tD<jQKPGYRAM>f^bD`atvkuu@6`hwnefrZ6
zg1tG+JdS%ZUq08_I`??^vX|4{C;a88kU5sSEQO(6vEm}H0n5i_8_&0VjyvMy=Y4*W
z-0G0j*^!aSvwra0Wmqhbf9tpQ!#P?>ip$$L+e++wHY;}<lsMOH;x!QXxUBnsnA8oO
zN1LARtL%Ahx8>&gQ~Ul0)=Z9?_4~m&cU_;FN4y3CyxIEy`yRd#`N&dyb=UKjaLv@5
zlO3C{OZa`yX5l+&b|B)&?7m51-FihlB@6Sex0Q6|`!F}>eG3w5=L$XYMfDy-vS9u%
zD?_`2!oJA$npqR)&pgM$AZYe`Zr<@7IwFn*(-yL`sopF3e*Vr<nHnC&<Zn@1W;R++
zmbgDNTfD1JInlS^K6}KR3gLt2zdxKJs+;Lzz1PomZboL}f6<Na7aiTqdeV%gWNBl;
zG^T|e=8h&_7PGVDpPl%8dEUM4A9jX5Ue<a<w_oi1jVBBj4;;0QKNqAR^---)c<+<<
zhsAy>&Y3%T&2PzR5_{Qdj~u-$n;03`@Xo9ExpiP;#*x_pLBi*zc3evBZERq+sQi1{
zv3hCqvCTVI*1TNwMkiHWOJIVS*{pe+ue{<E&G*~-?*8N*L2^&|Exw*!vb9m8-pHhG
z*QH3V7S($!A+`@)qLULi<j>z&vb;4TeB#t=k2pksOGa&ux_grIi2A)FA+^(@=BO7u
z;(t&xBkkC&vxhAizf>uTPF^XSKWFj*ha<B$Je#xBto^;=%qa)wG$>ncpPYT9_K)aw
zNw1|HUh0#yWhEw72;cm_>Az7mLwot}qZT)7zi*DN`@i_oH=VpY!kv0u`Vt?4K4dfA
z63B1z-gV#pg2>jn_j5mAuADt_`?k_2q8q=bmQQVZA09E;HC0M`M(&)_11v{o|Ij)Y
zRQ$U3^0UhMKV0f2?(b5ly>zSn`ur7kmw2lt2^{(Q`S?|?GcJ21osJsL*|)uSH~-_5
z9EXENem@U$oLYC}fEu$!iuE3+xgH0Cj?4~xV&A^`eC}i4-^=UnwHkhTT9T@?uUMxw
zNNIKj^9R2@k{)%3Zd#rZv<lsSZZpU2YsVt0U(I|xZHjR_pL9{W;DK%}!&%<R7U{n)
z^zzpqpYS;M{!KsExf_FIdJffkHSj;yd%tDbl9u9ECwTuxc!a+7PI$pEVaJR&7k)>~
zKBU-O!TiB-kEGu#3BN}b9$VzDS`}Y?w(r2V;&V0bn^*1h7hP5KiD6H$c3Wun(nkJs
z4C{);9CP0VGu0SaXS%2hoqJf}amHBT#2tg_j)JdwPQ@<w(eU79JK%7x_u-o_`lZX)
z?T%=h?VdjO@uqY0;ug+7)i<MjC4*IvA>XQBI$K%KH|$xmuz6m_L1V4v%blC&7&CO1
zxIVI;Ti_=flJ1~X+Z}u+^z`E@mFCNA5!339?vPq*a-grN|C^p&;M;9C&N*o=OJt}C
zFyzx!f2blCmF~c0`^iSE|K36thK8xBeGg@pO@Hul*|%qJdzRk$U-r$rBG7KRhF)Fa
ze4z);U4<oSD@~`?72CcSihBEOFMH7gC2?+s&nNvYtYbd}FqR+rwmWAJXQ{<3$&Wjn
zWwNhHGnmV+(u|QheADLALcaeUckcwSO3Y_364K<|mwA+N#-*!~S&7nz-svlz)t>q0
zQ_RlgN>5aRq!>2jKjpjX^Ka)rQAYls3v72bs9H82o}9QZsoq9z|F>Ut`_FIR|Kws9
zb4`GuU-F@;Y;JEZ+R626M?Y=a6H#^7{ZE(ix}$c>85x9UziP|#nr(aepIxW9{&nlz
z$)ZsQr=K*E{K|HKUG%ZfGs(lAlDi7~&Yk_(DiT%5@XXBfkYr(6lwg(Cn*u2Y2QJxF
zC(leMnAU4vQ@qArL%=TMDC3N{#;sSZqCOv-Ep9v2cYj&DP+DP_IKz!4&ZhI1aXx>{
zva8~r&b`D^(|KRxjCNJ6N&7!1Jpatw(l4?ZKbAS0E}fTbaXwh<Jxi3$y#u1_`mT1E
zpZ;a>WtLxp;9DWTmEi(<cE)c{{$&%ATpKk<I3ZQi{eA}j>Wd3!g?2nI2x2R~l>O?Z
z|0&L0I;qdKnP%VNUzNT&=ds8$ma{AeL=}b3UH+bM?xvNM-|I`RAMW0_oRxn3W7dm(
zi~$pJf@8cUx~({s_lQ@;xWRa%8>jllLwket^^2_dN=)Zj&C;!An^pfz?ViZQ@IaB3
zr#8t4=|=2~tqc%bu-hToB78-wv!G%Vhuy@sM=7(F^sXg{JD+=f{k)yf;zzB)Y`ao@
z+8zp@3sQe15T0D7EuGTD&f~R5bCHMNiPdMzu07s4wIbx}Bb$O5Ck14+)=5}Dv=CHR
ze&QhaQEk?v(=Go_S>9}qd%&o6P3hqqpQ$HT2W`FlUQN4KPceOyQHtg!U&qwypD(vY
z{(4{cM8;j-Na8@G<8#9~U*<gCGW#Xl?Wr}@7k!S-I9O^TIW=AU<zo4EMfGai<|+M_
zUk+??IulfFBPZ8+&e%(E?%cJ3nfs@8nR~x|)08s%(YNlB<p%YpiR;(@{klC=KgeC)
zO!B}<<2$o?R;$lB@<M3;5|2WymG4Tpvsz?q|IJpP+cvfEo7IJ-OQxi_o#>R$pW}33
zs%XHkU-9pG6;7_%`+08m;+uNz`|Pr3e2tlP>2Lq$`W?3-Ywv!&y=!^eVp+M%$K^Zs
z|NGdU{@-is0VSRXDqcCYO5w7l!hTO|=O2&}Pno?p;zP)s$6q4C;x_DjT2`Q`r21ru
z%+2rbElV9_t8OUXTViqhSIgV@(h9!gGhG%11+Oa8+rRVtv3TS3GojqClY$>^m^RhC
zWs`lZ?t5|m@btnLjoRzB*cqm;36(i~bLK8_vkw<t*YC`_xbE1rnC6QyYb1E@#sq#V
zI$<Z!UjO5@hV_?%6Ab5;z1ewTc6{kyZ?0G0WX}EdU7ss)l#Bc9Rc_1f@T~4P&vtZ$
zH1`$phI^Uje^CEBc|E`PHivDGY(E6V{&G0|Y1OiN$rb%|hCQP9gC|?fW3y_#Hu0{I
zMONz7-By?Q3%@6?>PpBv_aXnL?AO41p#qO;E&S*4{z$D)`p(rgU;5k@b@ABhrn3TE
z>$dHwKhi887Rn+Vv4?%@%aEBhAxxU4(JiYMpAySB)GeL5=+@WUDy;6YcQ#k1TddaK
zn&gw4=f)Q(&bx8qgo8W(uJyPoUSptsr&=`J?qOL^QLWg`b4s;^vcK{d&v7;0xue42
zpl;&jo6I2v$8xqjUVSdbOKM*}EBiF%_Bjrlugtiy^5dyhn?HrEyHeL_Fv~{1*(|uq
ze$Dc}E7e=YJ`21L*|UmchTF|*$(R1mwuJAvwQJwx^@pN1+s#dAZR1cjcz5&9BePuT
zO4EhT7vfg7RnAIY-j$$c#e83Ds^@`Ki=z*D?(w%j8@c1k0++WFHvhL})ZZL%<p*y}
zWyj=WEpzx+aXedK{9)~@tFmifY0NAzlKN`t<aht!&KXZHYd=|WG00_go7&_EMUA%^
zUS}O8=0;7i%y?<HW#^X1HpMsI_RfEq<o7-~exiBByLi#O$>PtWcE8)eBVWJerragl
zdtdHNo7Z*a-i7HElk=__X-+Hfo9nZ5+TY#-41VtN`px|{^IA6j$h_RW?z4lKzqJ#e
z&$8qvuR}9=4B9>~39B`CxqLf8;`!g(XVzFe4WGH=!nzxoPIFowM;X7>*}B>17z5w-
zTdQ5C$9^+^z?99qtNCKt&nZf$`<K~lQoVO!Zo!VG@Y+qE9`fA~JAC@o^=JCoZu^Xq
zEzaKi^TAL%Q>|aVD*t-u(lqNQqDNU+Bl;8Pn9XUKJadQSuY`3{#*y2!;*9UzS=IOO
ziuP^=^9j>zGtb?UKe<zNdc;jd$GomBGFuNG3ESruBG}^^dM9wpu0`*3wu;D$W;~K<
z2)2DZjVUjP<@ec?o08e`@@y8`QNee+iy9W1cGobz?qcFhFJ51E>fLYqzft*bH|%NR
zc~)?DrSr_9JPX5&W3h)bS#p*n7v%|0Shb^j!_~AGTdxGkxx6%0wR$7SyZX(-kVL_j
zRS8mjPuW=yIUJc?!g^X|>9iN69Iw>oD1A--Rdw+0&I#XC-LAd9|IFdS+{pzx;?ff>
z#o8*<8@&?ZpHvj@o>y?orTfT)%R0|lI76CO+0Iz}b*W@IuekZyMbqVvNFQ6Im8btS
zv2owi_|&D1QoE=8=%_rdUi`{-o9TVksBem^f1YB`(5bz+;ib0BN46X0M>b!WeyrdY
zf2xc0nU&9L#h=|+%%7URW}>c>sfnbk)pkwoCnA11Nk$Eu7rQCG32(UDo)`B?*l)d-
z-NrYsOr7?Y)toX5J;B&yaaHU5tm0*NG}YAZnUqQ7&&oZy@J!2O+pgHG=feA!N2bPp
zTkvkbe6f)epTLouyZa|UmHB+RL6-UG?C6hMuSC6zn|^T4yWX2Ayss`lTsS9xdgF#`
zXDlD_9yV;4yxgr;bi<iqA-@%?Y-$abze+RLn;g)-U`oSu_6=)Hi_e*x8W%`^P&@Im
zMYw>!+2-mMyC-L^&w3|w{AZb1NB+b)#*fT4TQFPbvcCBvZ?%2fr<=Ba{?)u~%Gl5l
zdoZ)(?7a@FX@dGo7UqiWSmd|x#k8VT$K+m^1Uxm8`KWgHYgyI>twm>k7YIG}Wq$eI
zWW^WZ`}u_{_u9(FGlqCJH**wRTfJ=VvL>n5I}<BrJ!8swP!-85m7lj<=$yv#kVm^6
z_5U5IJF)WnW$XPCe?qKXPcR<Jx^U`>*%9vF4{q;}eJ98pdu!$ShdkRSZ{4o-Addg;
z9kr-LdB#_sl|dQ_%<S74e=n+yePh%ccgvGA{ma}nOa5NE;l0-??P)MKN8XX2vCZq6
z82r!O3)U;UtN!9={`nwpn_jDTPkxJ)-RUu#yz*Z8hY#Y<XK!Q^I92d5?V71j#PI_0
z*!V|h-<F+zKlgdBx`^hiBdWJ%J>3$ds9x(GR9CoQ^9S+nr6$R~8*EPHIwpVJk|O=g
zz<vI1-jB~#o{7rR%@zCmtSYIKS?Bt7C2Q+R#eYRSE6<fSnO<9C&d_2MuxDcKjAJIX
z@7P`)o&7LHZB872%az}^UMoKTwzZNs%-SHiw@QuUWa!x|LKBjvR4Csz5dNqZd$qzi
zCiA(<oH*;q(i4k3(%03V)G?ajoZEKVt8lHZwv(^+Z3D@VYO#B#Ud~INR`x3EqJDVL
zgQF~y{%$X<TQsTjdPMhUqsWBR&f<CTQaP8t`>WSkq^A14@Y~~AZaDvpcz)jUV+BIr
zH@Kah_hat${DrPNIHw=)G0l?r-nGK_Oj`VAR{P%D2C5&`=2mQexxOX1G<0L&sf;^%
zvC}299jCp0W+i-eT`{N6n^UYoE9XtgoiX*8#@vd}r}tZjWePr@KJD{mySmrmmyJF<
z=6>DxD$V<8)a32FPv`hW>aM6*zdG{ti!&(-!sX|)Hkf_US54P@D;|8$cg>gge}4Fj
z@3;Buos=b9G;8mAxBN}K`U+l47KnvEW-DG=`QV&qn{na%-4-9y+&5Z!o36Thc+viQ
z{qujkFypX1tF)-)a?c{ag;Odrr<J8hhZz*EUt{qxEq-Rp<nW{K|Cc0PRR34v)@*o^
zaa|?b_qlxGAAVN`UeQ#MF$?vw-o)EIW8eAM3tu<Q+PCw3&Ex00k99A9D*E>|w>R&<
zo<;8;KVB+k_Cdg=&_eX5>f?8}70=(^zyS)K$&bGLE|6LgwQ%_!lZ0i=F`<tPR>(bc
zsFMw5FP!hy%-?T*wr<@)en;L%zPqYErWx4^pDP!X|JG*CA9r(e{if`dWj^JW8%5HM
zBv&nyz1eoL)BNSCZH|+tmNk01gm?YEGNbNWv32Eb<90KCo;g+1%WlTcd_Tc;!=WFg
zY)73U#b@iP%Plru{%nepfB*W+6GSBrTk1@iV(oMN{HNFDC!SgFVtjATen(~B%+=p=
zpVls)^k$>%V>2IzJ(f$e_RI`woXVD0Z_iQps;9=TGwz#CeeI632M%?3=`wsM%2I83
zt{$#k+_o)bwS%~(u~f+HGm1;yO1JG_z4zPuDNAE_EU*5M{JffzS8VgVPdn^P?|r=G
zJ!{s|Ycuk$UEU<h;ZXSKY~<2g3$EV!(viJ#uSkv5zw0yptvUX6<-y6`FYT`<FlQvM
zWLCe&ATn{swpCSMQ}-Y7I~x|e>S3LhvG>|Guk3Ro|Ia=6_PoDzzQMIx<{O1spB_#*
zBHf^rGJEqa69?hxm6r|Yd?}i<<H+sZ`_4EYynpH*L-3Vd5tSzyKe9crayFMdGW+$R
zvq76(e0ZH(=7?IIHIDpQv2rm(kV=~L)K|M7eM~$1%_{6rVb^tG`zKTGvUx>*UiF2|
zs-c_bZc2t(ZNjff{9k1J_8#4{+`g-G-qQ{LBmBN^`jq15uwU*(XThN>3ilXd6mLIS
zDVRTPZ~2`np6AyeuKcxbQELCYWrta>b%|U*I_vd6_r3EQd>`>15Pjr3Z(8j<(Np{X
zOPu3cDs%RsRHQ3gP}iCxs&m;ko-pXEV4mQ+?c}p*d4<Yf{nnL~vEMqIcI%4E@BA4>
zKF5u||2}j?x*_M0@3yLsY45_S<JU}OE88(WKIYWV*!)i8^S1@MDwro6ue$KH!ZKx>
zp-^8%u;;JG{x{nbo~y?xrcdn7W!k(?F8#|}_7_L1E{N~kALjZ0dBM6HHs7qYmoGUl
zcDn9S((}eS*URV4-STWxf7&MYqPS&uG#iw7?p_IgZ`kO{W6)Ooio?}n&iDOa@6A!!
z%3jRpUKA%EEXub13S(4OI-{TE8~%*To3CnbFYWXA(o&rDVO{l{8$1k)UFLq7rIBBL
zNnfipsbKTD(BBVKSbnIg-rI6>(!yM^#f!9+zUXWX`nc@u&Z3H~`|SeCo@_iO^fFX^
zt!mxXbJKSGI6SL#ofJdo7A6+~tA~Gr^zYTw`}c-VjO(<To$PWnd-9Pv#bvfzrmz>8
zZC6Q6&RBWkbRUC6;P>iN1scD2uTP2o@%54KsqZoGpD)c%`E9lI*y8_L$1;63U)Z<M
zsli3+W7Dc_cHQQ=3+Ersl*~8Umh%6)f9=nQlXb7#Pk8?3u%-C)P(vLD@vu~u9T{`i
z6^C|hoN|HldBDMn$^S%rZTE{MdjEgvC0+UI;{Pct9y855tmMtd@WJHlg<6)aw@)3-
zzt=mxAa3vTX&==duV1InF>O0X^xk6g#UakQ_NEzE8N?PgrYSsDowHnTdgL)@&3^k;
zxmVg&DXQm}w!B}lIGu+<_`(9=fEO*3%g=6+Jn-|Y^L`_T$18$gZk)6HjqJ}3t5-)l
zdCOOyzsa%T@E?<7LRJq`I_j5-c3O4D2W_2RnJWHCZG&L&pKiU`!6FZq8Le4x)+t@s
z{6hO8^*O=Emz{W>x@rHbHE&jY{-=J|*{`=z(^Qk;$o3-ks+jICo7!p~KVQ}~{pQh&
zotx|b{rlOYdV=r%-WeM`)0e(yVlWW+d|4v!i{YH;TdF2!Q@{PVeZ2nG|J8HX=gzd+
zrL)c<zFXgulcB}vn1tW&cSW;*PHaEtcj@-aU^9u6Kkv=E?!Wy{?1{~ltXuaNFgyx2
zjJvpLa;3%P^f2b0hZFS9d7QIeY{g)}%lqp^*a;h<b8QRxYtBsgtn$j|jEgCQLdR8M
zzpDJ|1$C8wd__wc7*?cwZ82Uw_k+NzZNF}siY_orS7u<{T7RkfY@5%aoh1*H=bJ2U
znX^1z`-I_yi|VU*x2$9+IQqqRUd!Z^3whro6xkUV)=e%@Q-8w1!1~f&V17&SZeDAb
z$sQ*bt}pc8yfd4PLFvV%Yd-f6cv}3wRmt?^ji<l{d-K1QJ_3*DWiskVGpH?Io9TAw
z=jrc<-#z|z!|u;5L2+pY2IGkZ+kAJfyPmT9umejb!;7S|Y7vJRy=J9txgg8PATg!o
za7C;?o9H(m?%jzD4s4w1y4K&XmwwVX`l*(|!TtZ2dkjpLZ)#_4XJ!bv@VD;zeywv7
z=R&>bPWf(MmCtdp*RE&tl~P^@X{qUHDs!HS?A+D%V#%fJ8j9*yjxo3_4!+kgZG{CV
z`-;>l6POuZM<{OfvIu2)zjtjxnsCbmW(NIV3AquO34#5`o&QfVEA!j-X7YwC?u9=Y
z7Z|?gouc}1P4<7MN%b9TLcAZ?urJs+t$gP6+-GNkl5aoueV?0HaZZWh#`YYkm5zrP
zqcr4-wy-elUD2pt^mx4)Cwqp=3C0H5TU&!vWERW~P)z@ve>a?YL1W+9vt0T4+b=mV
z&i3z#6lOL{jTg7(-n8=?!wl!mZn^KS1s`H;GcPygJuszCchxncCwC6{#NCh&v)VmT
zh|hpczmO?GaH*4@*X5fQ0jdAruI&9H!)MSl_tx8-y)PAI7<Oe}c(-KF&&A((k0|;7
zoAZl}b2*Rf;%V>dzuXhB(vT=(P*}66H){Qa;BAMe{mT{dbNv-<x@Y<-p}5Htm=BoD
zGR^9B_S-xAqGr7ILxV|YO<(WI;jHDfWbj#>dSa#R+ZAVBW*>e(y+EREp7zoT4t9mP
zuQoPLD}Sf;H|()G$G7^^QCU3ay$)vIij+U5$#|e3N>4KC+xB%eSEueQwm!SJ&cSo@
zJ&C>z@u}gS=~C9}$Bsu9M*O$xW~lqQ&gtq*(<SCvq4j!yx1UR!y=U)<7c5eT6B(W@
z|9JYJhu`B~#s+P-ne!%GJQR2H$6vwaXD5A>;WNH4JvMS>`J&kWLJT`rq*i|^?z$ef
z{nfu`Z`Q}$U%C0d!b5?%Uk)k$WNFB3$-1&`O>bD)%Wc8jDjpW9tyaq1uXe=044<OF
z!f-aD?D+=cp5oNpEncUCme((D37)IPAhpBd;Pwa87!J&ms}K40?~C8o7U!7j(|;sr
zN~*gxm(OQBpxK+>H@#}k)`PoUF5Bnmni{o6U4E?jK<(m<<3-x%*cqM)Y<A7w7Md>J
zGp#`4%x9InpJ6)3gf{asG;BCmw))Y2k-$Tmp7VDv*mJ!{>KG%#G0|<tH&@qB{eG^T
zbGeo5J1?Hc3=G;C7iRvsy7tt+mrD1iiRb4D`8ihIX4UjzNHDGaZGXM^%ENE_?IwJR
zzWMQ)+QTbp49gcBIb;&Z%MiA~qg%d4{&UdHx+|7{&K)+ISa51a-5JGaQ#Q<qW@VVn
zdG*1*{F6$G>I;INJ0JVLM5gfl;gu&;r$7I7<gCS31BQSL<-+#9i|tSK-Fg4LZ}zMk
zic<=>B%b!@=pE|op2%>)wI%OB@El!Dy%785`P+8R)#T+|J}n^qiGvki6%)h6%sbUD
z=jG<9@4hzg@Xl4gKgKog;9%&!{l2jGpM&3xe<|PEp6V(Vyt-ZHVG+tx+spg>`s4n^
z;bja5f^RScgx=5d={04DlehT#RPw39!<bFazJ~RGVqy5SV{>G{Tb7{T9+iCR_tz)C
zf2F0p)MlzBL&(*QE9d@Wd+{|irMl8a&TxD1A;r+Q#yi~pn%2(cV30M<NcaESQnr8Q
zhMUh$>TLC4E4byMe?CB8nVDf-^ukp6Y<c&WFQg7Xob+RQ>K|PehJA0hJg{cwDBkj$
zvDxK=<7|E*KR#xQ_gy*@<CfS(ZT`cUpn2KkyI`D=u{LMB(Ytz)Kj(r%XS`x&I5z20
zS-*9U^6e{X59g#Yq{km~jsBoiF2b;2Qd;kue}A@^-45{dGSB={+v9L(Vb|-0OW!<w
z>&MB!^DtzOqy|rqU7qo^W8N02JSB~>fyw6G@dn*8+zcHHB9DI$`7O8Bdfq<UU52h6
z7O5_~C%p2E_f%f$6E*F&)p3pnZKHWQd-t#0o~V67<G_!J4tp}s|1LQ3aTn8f{ae5P
z&igL%;HdVU-GvM%K3puT`Ex)0cFB!>Z?@FFnf>GA?Aqe@vEs)Hx*|7w&)sfOwSH67
zX9>mtmtO+C&(sdj`k1z6`WYUVLzcPEU1GMmS$}<`>)pX1aA8yLkJ8Zi?&+7bZ~XE3
zz-*PYjWce^dzCpdPJY|cKBnC<{luuSX701CZrs)}Y#t`>>UuBrPbx6#t<JhuETPqN
zk6}Yo>g>&X-o4kD`^={K-Q9<lGBugJoXhuYVBfv|@KV;U?d+$`3>fAteXF<hLG=Eu
zj}2>CX3wy6KXfvE-L36<+RNu|eRGlV!IVAEGJn-op1S*Y%KMw|CFkoN6O=#7nfJo@
zX4b{&Z`OG2d6P6TJv?h&l-IOgwg&-m_SH|nJuP_n=6U_8I<>O1av=_nzb)>081qzV
z&!X^`yj44yF7$l+d*SB6IS>5vHe_Dlc09B)<7T$S$E1wnvpiL)Oc&g49;@2wrf&FT
z4wu>Lsfjhpa)O-88JusVyGAhITgdoedQktYH4AbgV_(Wuh_s7yF7J8w_iIKO*OJ;u
zODl#PqlRFYx8*l|(~jJg$(yY@CuvWTk?RWWBMTW7nx8$see|ZJpj!Ec{58xf4+Bnr
zpL*frEs58gSQaREyQH6vcoex!@`MAs_aV)b2Itz3->=H&WB8-KzBF!|um6;Nw*q?m
z9Jja^idjZ8efy{~=Ma-za+yxhSB42E7|xacKL2RfOHXDYKjo@RcUSr|Rv0z}UoGzu
z%*l8;|DLqL!ovIicP;z<cilPG2Wbq;x3H;xep6`45?=Eq>bZswXL~Ehe1??UnT~tT
zZQA?YsQ$d=?A*P(XYQZ#R=oF8zmfOaxq;_8SuIT%Qoc9%n<_=kQ4)Dv`u%t9W{Kw-
z(VWY<zH=Tb%3zqWn1B1S_`jb5SzfmD#I|Xw$S^c8U;fU~{y;;dFrr6z%I20}?=7M?
zZ$7`k;E*CNUv}w&y>1Yn5Z`G|BL^OaB@!iRQCo8DLVGTn{nO!GzV+hy8J(6U3^|t^
z40csLFE}H8Jgj@&iCae!Eln8q+<w1QcAM1xe=*U;bB*4lzEIuP`|v=0$YO@e+7Van
z|7m<}tvO*AA$PR0e8&0b*6qCyOAJcX=CvitFkH&qG4s;D&c7E^Wmh~-;aRRHs>JYN
zQSyX$;q_6HVjm4lj3ZY{9d6t&k;vSjC&eSEbK_M0w5%#co~We%(iwX))w*n(1lLC}
zxGh}kU-Do1>EV~T<p;v-9;of*-dDN&&wH~sT8|gccv%wJa+)zgGwM~J-`1UdS0Y_^
znVi>`TwVU<ez8RnA9qkVla6b6I@3$`i(Of>%dG4#uc`jG^HRec=IxB@Qy3)t4l>Tk
z*sde~(!)jj+w`|vuRM`qU}&oNx}-GV^3$oIH!c*Nx|emah);XQV=p!ZJKb};5BoiP
zeD<Nb|KH_Pe{b)e({g;ZEB`JJ83u;ri_d!!nzk=e-}|xn%Ul+Q8zC#b*S_DfseAo`
zmD_n!UHcaQw=sXWL1dnM#~$?w>Q1IC4$MLBGP?aopLHCWRXnAwZuSMu|9uaaoGIM1
zQi`Er=am<?U+6!T+#BvIQ-3zd`=q7bEuM7|3@_H@7q2ni(6OP|St-ZaSo-`!4oe1x
z%96=^qURYjPj5>7Bl`GOT&BZ`M8U-TEesdVJUXA!|1{jQ>Nw~7x^+v-ERxS=vM}^4
zExUBV`jz+3&m|k8woC|aX<}+Pv1;2Dwt}c%r5d+=LX6E-Iv#(2$YFWL%amoqf~v23
z`~tTHv%7kqUAV-&j?0qaz#Xlx=_SXr16IB9_OdWfzr-q}z|a!3IDGNWe4UT6ee(66
z{`T|Tnexx`|BGkRiSw`3=)V!|($-NoW?;FlI!(qe&-}M--xb3-%jY($FdFl!8z1;`
z>(06ByVoZEHwe}GJa_jWebc(>HqV95o!weB$;4hGRFvVRiKMuxhJ)_!AV2jvx8Loa
zwl0^)<muUM3|AhvrSVGo79Y=fEb~HD{o$Jn$~DVP9tjsQ?C|gw3`^Q(`KQO(X3m+G
z&Ho+xJ}0!B$e(?fq;oEv!KlJ!@s7iXYD`~v)fN6swrHR0q%OuRSj2E*f`!Y1_$xh&
zo`uy+yVX9`e^Y9CO^g#CLujVgIt`=yYaYC}`}gB(`?9wsC68(??w8%0@cG?O$@ZVi
z1P<M{U%FR|J)!FT+6Jrn@%PU2KKFD8KVEQ&|5eaq%hzvS*7Q7K_%J2t`TVzcv)n(u
z;aOsGZ&IOd={wOGOUqu}iPCy*prOd#P-1n{`9$^|(_hV6pJmQH%nFfzW*2)WZAL>g
z>jB-J$3Ojue!KRO=EfEA>`SjKEbMr!z4Ow6m8+|+O)!34r<+ml`DI!((}9R@m;2nF
zta&3OY%x8wPIv1UX^GFV53Q@8FiB6Gz}&!PzwGb4(1|&ZFZ8c|lyy<_`8B2GeHF%f
zitG$lTDNb-y`S{*3h%;qzYFrT_ZrmAl6}~`izlHld{%|<)vObFv#x9YJX)<k{a*Xz
zcOOiZw;$|p`I(vhsZEAq#qv~zNcBH!7W|SpclwC&wIj1%&RorAFn?d}mS@V*$C=Hm
z_UFyrye{_8&ZVt$d~?m#@3^SXe9v+g!;_0mOLlBZh<dcW_x92!Yuq+piTk#E^<SaN
z2}iDO>WfcbzcY(rg5G*_j+e9g9@<QO%l%FEZKurMjLa7Y-5Peru3x0R^`%swbNIDP
zjkrC#%9t~4+dhA>am|Xk@&10~Zx@k#F_XWuBpDvxdLRB}?V{eOB^q|>kN$E`{U2o2
z^Kegzk3#7F820kKm;IBs-jrj=GkyO$`&za}^s1?1ELDGWe^=kS%>UB3?X%Gf-Cn`%
zGn<6Y-@cxHY?T;eTk)#cy8Y|#@0EY#c`m4o@2Q{S`S2gVR`_pRxB7>%8vk~Kkjfzc
zdplo!VbEB2Wy6{E?=>Sz^Zy;$<m+73xP1EUo0Ail9rC~PeP&su`*XuN{GF}$ROc=G
z^Fm3TcYF3~CM$o2UtaQ-fyvh|*D~bJYR<m%EP74L<QI>7atdOOO7Bb6pONUt<e+)8
zw!tE_aE|UwhwoRe+*mm`_LYgW(ZiY*+l``sUDqqU^g%CwqS#x>1Es%3-zWZ^6C^r)
z?Yi*S_2q^EiuF0qZyM{?nv1_F`V!-<Yxl9OB>j4n<kEkv9hvokm%rb#C|sz!wz7Ka
zGp=Pd``$mi7xVhfm8dl@Yp<C4zmYsvP`9(lB~^OUQhqI|lZ+a9o8$Ht#qU3OXvVDO
zM@s!qWbz^=2IqY=J|%Ik?a1;xG5gXR(=C<=Z~MpEu_oc^OuL@oC#C6D{Ow+{cN$!4
zzx_FBeg8{fzR<b$BgQ8yop&AXay!9jq56L5ZPs|M%KGA0{FyrEvJ2MD(VhMIrkTCw
z?L8hA&n-$%C_iBknJAvmXCJWP`_1pw94~$yEdBp?ji->`?5cw+4~w3YZ>U;lzj@x@
zQ=5YFXPRh~czsj8tUEjT_?GE2!=*Gl?oUxtvj4#$5I<4t%Lc7?(c#tRCA*Gn`t{GD
z+38%wsYw2X3p}sAyJ4fwb+2va;wc=5GTA0PJoRVGk@dI!%=0?EdRF<DDK}cJb=HCO
z%#&)Zc{=ChX-n-nTFZTmyw^^d+xYlc^r0gm&J5|IJ?82EpS*c}?uAmS-Hm7Lr@no>
zbbZaONY;ZV%jUK)Gqi-6-AlRMZ?$yZv7Mjh3VX{h`Wc#G-FmZPCkNv)M$YGx6J;0@
z+*iu2+WmETNbTg`NAvD|T_}BOQh}d9k%lWP`-Bz882py9+5YC_>UCOlWYaGTfzIQq
z`FA&S+&uR4bMCE{;-?ALfiIj|*nV6ns=IZwz1ZsCuSb4MTYIkW6#HNB*8S)Yv)n^F
zPsErqywE=J*nD}+OZAq!D_3p0E^K|q^5*+Ro<CQ!Ih$XP|F~sS=Kc2K{r;N-%ouc5
z#O={6-Mr~+cJY_=Z-1@0uFqe+Gj`wo+P?=ZzufG3_$Nhzok1*cgZ9e#0`ZTy9^7v?
zIuvZaWJ1A${-*aonP!~P_<Y$Z_sk9{^N#oS<*ztSnK4f+_-5hGxM1U|k7=Jzcbk8|
zxwlxh|JFY5A0HCu_5Uw?b^4|2Ax4Hp5~*LFEj<_}c~Af8^@F?iB{eRbouL+)x!~;O
zItB-E*IoU)xD2n_>1nE;|7?6S-{jN}?Nvr?#Rnq2ZO`d7l*bBnu&)2Ls_MddzO{2~
zr?llAnw7$n9=w-TO!uyb?QiW6CY==_QzJ5ux!-(0ry}aq%D-OrFYc>eTgH1e$la{?
zP-Ed<t!z<^4HmC0?zipTdMoE>Yg6mw83yh)GTw&XyiTX<RE-%*O!6L=&WJlQ`-h5*
z#DN`eSsbin-SZ6nn&;+rY^ao(RIor@RQ13<*8Gn?7fjCla$E3V_VLp;=O13FHp+jL
z{;xyfBa3v2klBG9xAw@H1fB^?c*Ga9o|Q)<X<iHS<6WD0>=`=!?r!??)w6%$ev$lb
zi>5|zd8>H$3Fq;qi#$(C-QJq4K4-<S>+}h;_iv|LS6z8#DZ_DG`ba}+?zK9rBMYxo
zYb-c+eUlm|yW66f>>Ao>d!>wDPOWM@`2Aj|`4rWM3=DskR!`%2;WhJ(yVS?FM{4za
z?8m;o?u_t%%y1znY1_}OS?AW9c}Kh12CK?&yD=YlVRrithk3cs{Hg1A&3$|N;hS59
zclm|ysCiq=)>(dRhf8+D45<=^UFM9-+wv5q{1oP6U|3%9mfv~vB?g8A22DM0yUkt9
zq7QZM+@-`YK`$Zu-co0IW7mpI>5pfp6)-TE`4%7Fe5E?GY~TOu^^<ZXnw}Q~mDWGt
zXV7@J`?Q@`@&8-r%vL&YOH?>kz|ioscT%+7k|$li<$1TUw;3cJ%CxKu&t+mTm6(1a
zK;`+1+XjuC!h8${R)612-)y+X?V_(3>&$sA%nUwxUncf)D6+E|r61zlaY}_j;MDpX
z0>yg{Nu8aLcdmt*p(p$EvXrv_`>yDo<Jj&c4;ty%q{_e7!$N(>A;tv0-?>$P#P*k6
zX<WE=YJt+7+Q#55aR;)L%&#$S_cdm`zs%P{uYzHQ+jq^Z<cr)%g_qUlNL^c_%9voJ
z$@t)Uy4pLQ3Xb+n4+{nd5#i_T3uev~?lWD?n81{}e8tlG*$=rTuAJdyXNU;fyS=7u
zSG3jTs2c&N?Dv`{NT@AmatLL$zA3)ntNg#GeY>NtU0d=ZDF&XmIqJXb_P;mzqItjU
zhW~~4?GJh$I%F_eI#@ZIAIQDgQoR5E-3CRwT-^<QY!6fRzuf<i_ibn`hx)B^PP<N~
zue{5(HvRpn<+dN$6gIAmHNMBNU&pHLbBap)h9lAqF1&KHJ8wq+*!tLTyI9n$dY<Rc
zg3?WXuig4ta)$rCn9jehtU~*r1e}Sw-fM7UqsyV4qO(@B-94I<!I*U;f3fr#?P?o2
z!|c1=-A9+!M4ypuckw<SRBbh9^|MpUmu`A1cHqLj)knTtU1&Nt``VrCAKL;BRoci|
z>#K)p3N%(Q>u40(x&GSHy;Ixgvj2k%TAQ!Td$#VA#NCHAJZq&6EZnoLt|`3b`P&~6
zzd1Uud0AM;Jp3}Xjyw1YqgwE*f62Ya)0nPp=gqsmOZm);Y2Fsr;&0P*pDD^noyc%x
zHrvH;Q)zugS$*(J^@dGiwf|IVIV(BaZ>=+#>F1hYm!5sJ$@JmM`R^i_r&kI0nZGhv
z?J9gu_wA~(r@^<6S~vN*Cgk;A_c^_8^6l%#uD?I<>WRU|)@woDU!ua#CYXd;9%SIF
z{j$wI>zqaH$A@C6SJ@1=AJjXs>6703sop(GUR$;OTpJ#_&9tmZWjQvRbH=?QZQeb_
zl9y+&hcY&;-l!1Gdo$a)+kDLdovp<&f1U{DFtAPf6!0$M*$r-wEng(gy-i6H%s-KE
zhpi#)Qhe=4NA>oZYvvW?ot(Z!d;aFGl-cp>^Mr*KG=9mlN!vQ-hS1SF6(`cB-FjQL
z+g7gs@9X<h&uhA}<*s?jZqTAPx8?9uHn;O>1+6W`XQuk^GJCzmQk_vM<B!?AlHby1
zr>ead%5grA-``dk^K;4Rj1ZoS3`a!DiriOLEN(x1L}kwZnsym+ds7)d#S=4<862dA
zzwoNvV7;OK@Xt|G|7~fLCFd+<*cw|oKP^=JeNE~8x(w$-jZ8*r#x1#aj2$n%_FUYt
zL4=cCYuBYkGZwL3aQ$r^5UO2svyIi$q9D{QddA(FtQ8EavSjj8q*pi|YV_7J^<yhw
zIQA(nU*4_z*3>;YhadgBUd^1~C%LwpQKn(vCiVime;=-Yzw`gZ?L9rb&8Cuv8*3_a
z7k-p%XxOCv{H*<+`|r0-|0kaRK%A4^Xlm}pd(v8h914AJ6dp=Szc{L6dSc_{ywI#t
zlQf2}Q)bP-cI;nRrv3p5zA00#i)HmPSZP_?>-xtzC!CQt^Ry_4x+><%!o;!2@$TxX
zb}1DZi{*d+m@vG$Ie-4P&1_$$?vB01y~68|;+)sYDzQ<0Q{+wOGAK-$oAvXzz39rr
zsnQt^hZb&@n)|Q+z0TD+AyRuSV_bcUIWF9I{P9HgynXI<_x{UfI3HTL+$>q@X5;Y*
z+y{=7JzE~zX}*13rQ4LI*)4~gy8KtIyE|vkelxy?TW&k|nw~0isutqA>#|~2wB6@o
z3+A^4Ry*b}2Y7un^AP1Ntaz+m>(XI<I5303aBIJL6w8f7o_5BX?J|y8-<o`*9?40b
zVa#}c{TJijBR7RQJP$2we%(DO*UYTbcwd*rY{OG}lb)TFY4}#R)ks%6<tAIu3-yZ!
z|GmDtuIBKw?=BV12dB0dXypnWcqF8K&tmG^hiu1hhP*f}!MFBmpZWInD`RdpE{_a;
zI8Vl*T647%`$-<nvn~^STRBu@j!pittm%5Xoz~yE2NqW{M4YN?4tkt;y63$}{sW!O
zS2AAxVmSBj`<oXPtKw%a+V;6(b+`C}j$5TU-@2FY|Nm|FHimtXy0bn$Is0<g{r87`
z*}At?@gJBX*MIz9#(&ZKr4_#(&3wfB#L&C9%!~Iy%$>HtTg`vp%B1QuxCyQ@G&1I0
zXV7-INQ%GniEmv+?Ewb915?UYeV?*W`XgJJhlNQ{0mJjEt#Z0%bLPr!{K<8tymdQ&
z1DBclhM6<ju6tU1nG)+8KmVYpE}P9gnYtgzk2kAVGGDk}U7DLFHO1(RF=x-}drosI
zy(fs?X>bmW|2KJ4zg|JZKCin)LGzuhINNt+?N3*D`rG>1oY&eD;_{_pA2ZahJh{+t
z^OY4V4#upU>-FDs_RkH8GphZjs~0o0sogseDa02l^KI4atJlx#N}4~JqP1d!HOB${
zYd+03X)6QcZl<dS$Fa&5Pb<DTJw^Pc`*mxF>PpcaQqr3$AFH><R=!YO%6mg*LZyw|
z<^DjCo5vgDD!4Z2h?>TzJPhzTcELApdhOE*#o8O2WEc`V%?su}FVJ|LvuEdzAHUag
zCKO7wZ3?~;wC~B+_rISi{AY045E*zp^JqfGvNZt*ZqCf)m7D$2?&Z$7LpT3)emOol
z<`cu)+VB%u$t#ZQn67&znjciR<$8td=~@<s2XiB{u7sN2E2){P&cI+OdHCU^!^`gp
z+t>V1-T&`fLE(mP&6fM?yzem0I5Tx;y4d!XDixVkCpygA9aXKL+__ZbH*wmr;y(<R
zZ?Ak6|KGE!u}?+j(^CF0kxnsj=X1H)E-NCrMV74O-XzJOY*otdeFdc8mDcYSXTDCD
z{BiM1r?dXXvsePWK3<n*2=%l`@p^eyf2+^|f!rGpnJzQz;R)Qxe1FYSH{Gd^&KA7i
z#3QYeBqr`4pyeqsy~VljFyow6i_IC0omc$KWMI%X_U`?Zr5`D#>$l@P`-U~a#hdLT
z45YLs7FgukCzwP`tQ3(g4|~D1B5QM-|NIjhKC2!m72-R(B{Do=3Zu+hu>&=i;`2ZJ
zk$-3IC_eA-!#QtG-TH0995jz1)b`(ty^0&ek}b9b>@MQJQ86Qy_dvH8W0X<bVb03!
zf4oCq8$NG7nzJP-Pn5xdS%^<m*Um&fi|@uMb|!|1uE?w<R=4BzZ!hh$Z1{YuEq?a(
z!gWzClNcE?&P(uxZs{~H>=0&PaP+WHv7Bl+tMvQRu3!;yh7C-d?T5O`7b~ClukN%z
z#lo<GgR?#P<=yWAD;Lk4`>8WtVUr|-fh1@9g-84kcx3Y#7@jFVEKqpB;5X-q!aasF
zS(~NI-|;$6DB$q*V^Em#`>)<}hXNtKY9_u1Jc>D)J5)IXTIMiMtbDBg_~j3&vm&zF
z-!9(S8{@?wTybreR&>WP2|jzt1Cpn|e=MpOe9(2|+Sv*|mt>yy)kkJ;+Bf^8wyI3c
z9&Uvl#~)9e5qD*~K>O;6xrJ;6X4_RxRNj8G?C!&V@A6L`pFf>9kU_iSvJO-GnV`o)
zUn``42P>>&*Zr)`@Xc0^fAX~i5g|Tlr_i$#okJeyUe03rGId^Y11Jfte7gI`2}>h>
zhh)vO^G``yO)B_d;<D7{h+9~y4f}${Qx3{(HTk0S@PoL2(7dbLWlZKX$j;otW*Dg}
zweD8VJ)=#>zkla2VEAa8{r;@fZJ|pST3Zg+^E?m<S<+D!<;&2f@Wi1yZDrxCS-UoN
zZ&nEUcg>J>hleXyp@+qv(+-X)to?n=ya6ZIPgwk@^_YsxxtB%#Ss$g7)A*Ts{7y7Z
zQ<2FtH+?T6*Wdn_<HB@nUxCJ!!z-Lwa;rXn-*5Wk=zHFb|BD$?jKg_%ZJs8@d^<;X
z)v*o7ydR11&wuO9!?3_G*<!VH3B&T<ecx}(NHsW09&6mEB9pfGFT(=s@ADQYbEapy
zahCN=nj&Un!thvXX<_3+PYapu3+;Uyc!PsBFic&Muuz<{omn~T!s|PV-j-JDLmynz
z6l*wf<ygS%mc#!2$CHm#1iQ36d%od=zwBI&Y8HkI4ObWa+>*13^TqFoJxyJQSp?>n
z8#;?0E134}qW8Sa3(vf|g?5@&{rUKMzu7%G1|yfej07g%_;?QSR1;3g^dJA$AK9Ox
zGm%}OYrC#<a@tD6om1ZZOF4U{xcrU+OUIkK^68RUhTgpYxR~1yCQNw}P_~eXVbjX|
zg@(x%25ZkAl;PEN5NIo0AjHZ3&-m1jGn%vf8{X-xV$+?u^q5D<HO3j8H<(R5EEpKB
z?(}3o>tRt)_0e$q9R>~8*-S@0Ezacs*PU5u;=#aR=xK50{Y<yI)JcCC=gf^!dBRZ8
z)tPmnt>tjSr&;ZLOcrS}EnwV!W`Pc8`$rKTInDS~3HFAdJJ!u?Dl%<Xek_zyWM@d=
z`2IWgP-2Ly)49KO{xwYQCm0uS9JT<3+<~t36Uu%RpRMC&XxKdO`&?C-ws7T&oVw*3
zr5I+M|J#30+Q|?!?XU6RW5tzqGs^bezrn}Q^I~yf{oi=q-!FO|8g#DWUbAyOGsEPY
znRj|$@w_TMp(67vQ02*-Uh}-q3<nB?E_cr{*4TVyhS#x@t=fXFdl(xY&UveK=Y6?u
zUCsOU&_ju4=dD&;Nj8?-&$vJ*nW<Luzo>`BnU}Q&>egKy<_reHAJf9*-NOzgMu|Ij
zR4_9bTh?p{`!};~DqBJ`h`V!B-h^fLJKi^E^RzFx^nS6(`tl>v3=!=W#`2u)|Md8{
zrpG=!!ePp==J5vZkM|5Glri0Uv(wY!i=csrOx~m_UWT-yZK>OHzG$e(+~S;(6$jGn
z6?gjI8-o|3Eb0$0c-*L%yeU!3h~a_jInHxYS!-U`?e8{caG1BDJbz+=#J#D3&%EOK
z7+Atp=5tsY&RpuIbHDS^DW-3;t=2j7GB{}Nw<;Cl`}>xqbJIt+ZHx>O;Ysm+hZZjX
zs}N{#?}Qn{fqlmxCtiz8dFg(<*urGfOqsHCSH69G_OYVFoMFrIuaZrNO}dUhR(vQB
zxUypMj;LEJ-?K2JEwwk;^<2=zyVva!yIA)T>C2ZG7^Z!Cb;Z+Si-0l6)D3Hb?=sZ3
z{kYdZF)}Me{T>5@?A$2(1^2wx#uToauJJG+{MXAHI`<+185lgizcPDaf8<MT%$cCY
zi!wgC9c5vVIVExI;_(-c!Z&(bTnWmu-7>}hlo<nq&CI24qRSthJ=cCznn9s2elC~)
z<CY|z_D?<c7!IiYeIP5}8oYtE-bU`eYJS$uBRvlTW>hdU%-Qs_?cIjV3kH4y)^}}^
zEvAU5gPbUEzb-p(MyrhwU#f|mpI|;iLWyRx-1+kvH!Y9qm~wHLM*FC8FihTQ$C$IZ
zIw9_+#yL4n&USAz^>cL^a+Z4Q_OdaQly5t))jPrOkYc=7>|}AvvVD<z7#mDEEmbBJ
zoCwjs_vG)23TB4IKdvsYm+Sw_W}EuygudFUwa$kgZaFeDbKYJ?hD&>+J|9l|>vitt
zpKY7#lMcRk04n>8N+$oi%-~S4^p{YrGv7o{izTnDOOorP7#3gd-S_sKzxAK#U-Eya
zKDYL+ow``2vE}f_BO4#+c{=Z5OvsShBx}mGJmJK`#ea*P4?T2vbTw{kli&XP%m;$r
z)xX|r`R1mjn>BCM<8A-0M5ainuc@!fXDD<%VfJ!1<AJPw(jC|Lv+QBrR#aS8cz?e8
z<^)DNx&EpA$GLhQZqTjU!+E2M@xqxpYtvIJ&T-{Nt~76+UVCl(l^D~*7Q87U%M4|V
zzRK>3T<FR0VEPw1|AXom*GFvIFI{=O+^y){_v&9W6I?VDk}Yy9e8id981{y|_1z}(
z=i-ceULuF4Hiwp8W!$*DV^7kQ0t<DgQkg_)h8K$>*B4Hy%$qoM*8H&0iMbscl=m2W
z_xc|c*8??gwp>@u=di3~o0a=7d)CdBJF{lbi<izyKR)TM=F|d@ps$a7<{wzq#}IKX
zvA=SShR{ye-+CuENAG^%<hXR+tA!k#><k@xsSXeJ3R{NV>P%kV|L>2yc=fA9>t9=i
zHyxbA6P_mOY4K-i_~Z$fbXJNp{MdHWYR^Bzv@4u97O9F|`F(ts&J>x-4ettW^E_L!
z`-b$C0*h-uvPwQOe|UFl%JSe`uN&)%LvL2^wcKF*?$4I9H9<C$IV^KMEdHdQoh93F
zBI?_W+dY4dynHb2*4ZiVSMIuAm~^<<n9sc^Z=zpw;}Y>%Er%Jy6&Ut@krMFevATcT
z;K;8N+n;?mX?{~`JaPFY-iK8$JuUv6UdrL1A^6OC?%#z!Vk^(qO1C##79N}HR=8@%
zo{y7l*V!`c>JZ3(R;+c;=3dOti;aEPpDl|!+4B3hUhcJI9(INf*YoS!z6AY!H$B~c
zVTtO!C2MYr-T&8Ps%$yc!{ScfEg=TBh1L=NUN`4;SuK5Z_U(HWgFC@`ny2|cY>Es>
zKd-v^$`4O%CI=0vWnM<h7EPUXc-zWk2@Sizw-cTOH@7e|@Hp&QxzNMqXP;I0KC|`5
z<?Yqqh<N<zmG5h5e$Caun6dWJZo5^R|DW*scAZV}iHY*V4QJOHF;rb-+iDnT$uB6>
zGN;y6?$Az83kC+4g4C_sn{L^6UH%asrtpw~A^F1p*%1?)t&d1PQnlm-4J%np_Fa$^
z@3wv4U&$bYYMC|}%jZg*><kiZ^Wx`~o?3fi-ajvevrc|D?@L9+O_^H2(9ps2c*A-}
zzLj1leg+iOtI9Ai?CQMPpD#SWWsaAM3<E=wr_90EMm@ncPa>)pSa7m4FxYLKqptbn
zPS?82x(^u`3|6f=Y@vI+qh(GLNck^|uYA8>R{wPJ(-h)kU|^n|CXxR9xrOVY#M^&;
z-{&$ioG^?$F>_yd*sDMp&i3TX@qP>kE~rWWnvqj}YjT0duC5jt28B&CpRIcPM@dsf
zCWzCL;XnslmF>CRO{>+{KbwC~nt_3V)kdy=RpsOB)8|JC_SMdQTC@MY|J3D%GI`sd
zbYIA2W>~P`k>P^VF<Yzl-}o_mx#B|x2A{k&A6w#We{@%0w3CSWe>63ow`5`qGlRj-
zhgL_z&30tX>7FdwZoNzw6wE%Utvj>cOepvfKBroU!NJk$rgQWM)&<wCmtG5EW|(np
z&D;mh`={Ai@7B7$UjP1|?_Nt|OM7={N*-opi13@UQ@S%csG!;1hr6&ZTz`4rtd_&|
zF*XbalfAkp^)CAOXPsd4<%mn(H*~fx-6_JD5Ek|G_Qh-~anCAaPn)b`1!AT9?;C5`
zi83<u_+`f(esnlhcj=b|)j6U&S28mcUw&Bka<|w_zwmi~g}-hHQJu5(3GZDS-3WE2
z3)j;wFFsw7u|vt~O>)eemNQaC&)&_JZJRT<X==f<^7_f&dHatizw_o`2ou<8x_)o&
zR_Aj^4cna$FTJM3cfM;rf26D3^^*bLm<p;GE?iIBy{z(<;g>&KZb{eQ@ZI&p`Rl&=
zr`(E*L)I=eo7(g-ZDKYX!!pBzx&Pj+-&XVgYtOz555Gkp&~^4&S@*9yXx`zeuMSu;
zIHYLb-|IK=61&8T9a-}4f@7EMxxdzM(qpY1b1lo}9iG|9p2Lt}`jY=9-<50T5(hE^
zq;C562XsYd9X`F=gKgCthKBNA$HkYPZ#_LP<lCRsbK?zT-(HydIp&b$jMDjx37W<G
z*X~Z0%lLfY{J-@amiN76ML5$#-rZ+75R}$sF1X9E{jiR|c<~7?#plWFr`L&3cRwU~
z>8No+-)T;U8%w78e-8{ZU3C43VtVoZxc?Pd`}L;%aaZ)VU|^Umv3-5bie#Z3|1N)S
zoioMZ)8Cn^cK`hM6cqasw;%W4lQ!B@mAd2qS;1v*mwLn>e1CoZ{9oU5gw9pC?POzU
zxHXN-Om??}Yu&D#6PY!4*0ap+e{cC`x@>24?zCG8N2D1ZWbVuPJnQV$w6&Z6=KlC_
zYlBq$zh9jV$G1Fg{PFMj5%c*{hb28%8tXhb%FIx}ZLd{YtD*eqUhQhx{JPrzM}sC6
zToc-Jje)^ztwE>q((X&kWcao(i8~?r#o@UvXIOr^>YT)w{nJvU84^Se{?>ImciEl)
z^T%hW%H!^6ai$lEg)=r>?7jNbw{U5?P>RIzSN>nD9xZ?NK=zx#=ddt~Xr0;fw_iFS
zkyh1f$Z%l$`{!@0*O?dmzC2ZHE93k7pKqPjwvH%^Z2Eq-B0l)xb+NcVFaJIjTUYaW
zvf&&~$t{ctdETbQQ{|4TUG&?owO9Y&$CFbQPI|yx-Z^{vKDnq!p>rWA(hO?Cd*)y7
zeztF;)a6%v#eSP7*Qb}hx&6Mjzb1FqQZt)U8HO`jMe3V+_X%I+co%MdLxPXtfXB35
zJ0;ccmCP)-TK@gG?6HXj$2Nq-vN7CYDwpq$SduUNU*X!lLsjfm&u5<vl5Pu(Vn~>n
zU@&1*_AJ-mFR%OmdDUTdqpj!t^nzo{W-%w2c5kW8%VxW>ar*u~CDqJnQVa(qN){i!
z72o&f@XE(O{*}%8GGF7xugexMe@DOKnO@NLFpiI5^~G<76N1-wX#QyH-`DMRT;(AH
z!;zrJx}QWg){C4=YnYP!>(`lc?b13guPNLUu{jJXOC=n7r&Ry7_J6v?3{*OLOtm<u
zQ>gGR=eqr^)tP>_$(uhv+$896h>@Y8*hgv)s~!s{JA=Zm4Y4Pu=E_a!**Imhvb3XL
zThCdIO*>+^IMWjx&*d{LSkM@@X3_M0a}P9e9}IoeJD-7pN4etuub1IIf4}Bkh<`7X
zoBa8D_w?e;jB{oi&I#Nxm-#@}ni*#n)E%91z5ec>@2{VK>$rQ=D||}}GXsO=Dz|q{
z{JT;#W>1$|uD|(;Q-%Gj`{|!MI%OEvMQnR(Tx8liw=><k_^MWZh|bq<*CqVw<<skv
z=I*;?%D`~T?${*5@U<tVPY-(K=KNb)OvumW{quvH%r`PbOxxDq_-4IitmzYxEC0SZ
zUX7np&~(fG<=rDp38uH~*h1f5kxi0V?mc000Yig>)7=|=4qIj)Sl=x1DrbGkvQo=N
z)j2!feXm~eS&pG9a>?}dck6fUf4NupXH{;^$NOuyD2JYQKlJi_&f2{my8H|}8An1U
zUow|Y`nV<I_GI5fnYn$pg%}ug9wn{c`d7u4bNR|Wtqbq_PF~B{AmV*jXl_or`<xZm
zeq_$^a#eY_#rUQxH^Y>tcF%V3^~Wx)OZZrv*7t8!i?NWXJOe{J6Wi2jhb@Ho7zAcX
z*DzME-fJPbPgG}e<~b8ib(ZPc3<c3^ybH=WH$7<Gyt9%ywQa7iZs@18ZG|dx5?S`I
zVq`dX>-{~O|F0kShe?M<tQRfu{+n@gQhu?F>Kr#VuMZ3ibFOaOY@YXLwaX#NW?^v#
zF~eUe%Qx4R7M0Ykvo5{0Mf1a1U#)+ah5XXjAAV!R#&B&*ntsNVoAJuavN_Wkvg5un
z9N5(M`cF$Qqib8?p?7!nL4C!4pDS$ItQ#2^)=BGKN?E;qdDSF+(6rfwu-9AGZrktO
zDgR^@-{UQn9M9DrGB6xCB6jAC5Fdks$bPHEAK(8iUUAS-=aaCoO|SAp28N5gSGFcO
zzMeBb{M(kBB3oyJ=CU_^N@!)2S*QKUZs|pTOU~sJFZzoxym(!=|9tK8m_3S97Cv7U
zsk>{Pq8}53#L>-(S6{049XS{Gee$=u{nKx?HN}T^8qVnwI{)MP@gs^1J6K<EA6uxA
z1dd;6ueoN{_lwJpN87a&8@CD1U&YI?OnmcVo7Lf&^IxT|t?Xf|?OxF$?DXfL9YaRu
zg}TtlUu;Kf=Y-sUe#3p{bSutwyD7?XJwkpWhv!-`1YF%5yyK?bE@KbXU&+NEWc)H#
z<uiya*KFZQ)t}=vJ#nv%=EIOBL2L{O7DvScGxmJj(h_`q>I7v4#siy5n3oAY4_J1j
z^LvhP*~T5tLVl%%e%TBP3mmN{9@dOF*MB^DE??Z+r(#)i{)b6rBpxx<U|^_Nx#i3)
zfvopAAGbQI%yB!{Hm5X?hk@bCr@N0&RY&{%`o4b6P2c*>S8f${F*C4y|FQT)c<ld4
zC%4R8oyNn?z|bX_v&*<mcp^75L)^1GG4uS`^LtMVb8lsGoTK~mLV|?*Ax4H533rxO
z%(R%k?7i!g&Eba_88W=KbtZ3R4lFzQMz4Oh(;?3EK4}JqfKw^87fzO?Gxd3h&$hi6
zbleG~RAnji^SJbCx2t@$bEX|UAC$e4kztF%y*Xb4lf=27e@N8{zh`ZEyz#c?{73pv
z*PN2@(_x-##o*w$aN5JJ2fMe|{#X8O&F@{YY2uvV(`+m^zbnlKwXRCkZtt;vlN<lC
zFPzKL@sVSf#q6l}Tc#H<Fs%B0b*)LsXT`n$V@;nN>15<RV_tu$*n)wfw&!ZL&-A~$
zW^CT6^!wq2=kZsob=vo-%yEcuWhijH$$pu8R<(md;rn^=w=Ffoy<Yy!zuaGa>K60z
zeFXv5PXns&o7exU+GgU-%OK(NXtqhydDB^o@6R!OwdrU7(nn`+`g+Mka!JqQkF9)r
z#$or*gA#rskLNivT)45i{#%yq_wb#6e-tE748G>-TK4vX_qX&ZvG?1iNM>(OJy!fI
zfk&MsoSPxVVrxyo2gSJ$Q^cQr<`?e2ySl$*)#fQ1b35<97m;deVP?=#@!&6=GJCeE
z+SI?lZsqrSYuY|xvFv_UkScdqKW$}e!bU!Z8zGCeZ*ICNyGVP^r!9YVE6u_M_x^Hi
z&*tyRI5qc{`a>7RCkzLa*lLwDey`O`uiu{Ezan+Q>lcfkM`rqNjyn^SopoU|3&Sy?
zB?o&ic<<Z4@|UyqdOh1xizb=fqW6wSJ^XX0F!giK!!6q$I4Ck~`SNDQGM&xSlAfQp
zuR2gTPdD@aWsR-D7oCnOJ+{32_m$l8_}cmP5^sH?T)yqDV@xo;{@fzfe7EVYZKkt+
z?~DELdi4a+_~UCT6qm36DHiPY@cY}j(_;Ufli*_zxOM#R-S2s4%h#_+XwT`e{(jfo
zXzzjh$DNy=H|8%sfAHqbe}(efZr=P9Se{vOtbk#`l*4|-ahs)U7?x+XSKGVg)valK
z_nG0bi0iz=Z{_nOo_|aJ-1G2@;jg(23?0e)D&yO`a^jM9{(ZHD=i>6`cde8yh4>f@
zc5XHo(>^*o$o9mWv#0MhyqEqHTXp#E{NM8*@O`a2k-5k4Ymd}*wFhM!3?`HBy>aU^
zPn~~E?$-K6FE)kTjcAqm`PF6VrQL=y3=Q?Jbr%->4%V=#<x%Age=yN~(Wd!*zh|rl
zm3}fWZg=~>?B~0Fe%-=UMV{CP6P?fPJL2B??|Q*x1_q{|FSK}XJ>SiH@Ak6p!t*ny
zgbJ(5FeKE4|0+JnUU2N~s%cAQ&du6%<lXn*f9s|fFf^3z{p5UH{d)PE<Fk)HHcVBY
zn#Om2{tWdS55p??*clR{KU7@K@t$#Gf%>I?i(Novvg)5#CvBH+HMuuKo9FI<T=UtW
zE{Jpz--8ooA3nV<nozJS(3#O8d9lg9<X%lj_u1lGTbLO>Xr_sE?F_we{d;NRQbvXZ
z#fkSzGcp^s?e1lr53=Li+rrGS=BdFGlXn{JzA*+Go3Ai5Y?V>#GMo7LpZlryUcV(1
zL@SNjm>E8-d^KhHX4%4zYIApH9o;*B-Qp>04d+DMsb*+cWwNzcV(DtzUHz|9r<?|r
zJU0SX8kfJy-g~FGebURMjtQXJAxHb(Oz-+vZre_pxro<feDsb06*CVv#B1D`vo$h|
zYr~Ye#%2{KHeO<2*wA%0@8)XfJwM~UZFlawtb9c|z2st;@`M5ghHo~`=hk-=ZL}9(
zXw4y67b__L|K3v`bMLjYA1tnB*f4AEx*PvW<{rL&E8|OK*e~z-T$2it3YFOztae=z
z`2XtU%=v7+#eFT8+p8@ZF5LL%Y{6Rp^l$r-*{e!cyjmH!?QGxl=LJlGml++(t^4mR
z@s2cm`^cYRzr<lih9BN<e<<GDux85hYwL{LE;kB>GBBilns<Bm_fpk48h6eyHXJLH
zy8pbss`N@-t<hrj<ww&w(wArN+i$t*M96vVGeOyFt5>i#us+?ozu*3weZebkV>9Mm
z7S+3sy?iQlnA5SAo#F8>i4QmbOYl4?y`;8m`jP&t`@}$NyqUiJZhFM)Y%N{-Yf`~1
zsYi1d8cv$@$sFPl_LkZB=5(>e-<9l)3|$x2W+_)#N*~Ttskp?-(7-0OM459r>qj<*
zs*7CbPfdLL`pTpWy~k@*=Iqj0&BVZ%S?{iX&*g(`QBzE$ke};1TLuO-F_lX-6AD&w
zY!b6zI8akpy5-B7ib(~hygSX;IWS}#Se=>R7}l-lvxkvk#c>9{_MV4RQeqhy8mf*+
z2T2^xJie8kL3idNwrr!e;4|kK`c8>3JWyh`P%&x?p1YclfnnCff>Q;-j0{d6!*;p8
z$o}Yih>;;|p*fHCgaR&u24?Ua6T^WVpTOp+o)+Pf2N)X^GiD_Ug0i<Lv&9CB_lHkz
ziLc(}&B74dVJ=*4BiE;|+4FEt+5Y>nu?zwew&&}6tnbM`R&dU9XV;a53>W5AY+iGH
zVfg}Z^5ya0^Dxb(-CkvmFwX-91{bv_1(ORdb(%8>OlFjMF!y-@S3otBgZ`tlK|0Ib
zxH#22uU9cSI6UJ0a8}2ZA;II(*;$~8;*X{$nhob9vlTEXNPSEzT)$Z7{D-p=erj9Q
z8NMjpW3X14!<@&%;Gpq{cZ2_-lM9(x8}yDy+vUiWm#+|4f5^a)ERf$I0`d^U$F^Xe
z$7_5*>(_+yPbfUm@ji5Ob7kTRPeuifUZd@IFF&Z;f7+6JQUOE5g*`L+x?AR4^{}wt
zDZ#+dRv=N%`%K66(9LI33=JoE9(+)II%Pt!SYfzh&1VZ`2A0Gwsr02OGp_&q{4Y`c
zs)@=R|3|zGM-s2f8^uVjnEC0=FO3PB-#^Z6`FwJ(5(9_RVxMi@n=dZ2JpS!;;;g%W
z6dwLL%D~5PB$1)Ld!2o$@r$2jWyjg?o{d+T^S{HKL7<&c#w#+{=D3P2=kxeSybLW#
z4DC(VB+qDWjku%nd-ut#i|lQ7yBHYm<ZVCxxNu{z`4OYbtmZ`>fB(83+Ig4FzJ<X+
z-q+YPr)|!c55j-8@a(J9{d>8Z`IoUhFGJgc*k`-q(=UF$&+mNbGqdu%uJ^ZXYQ>`d
zTFQK6V_^Cuz$ZJmDm_D>vi8<t+um)nJ5^*}Z((rIdBiKobLIE`y3=)=^gdoX|Io+Y
ziJie=-r;k9|JL!}o9T02y;*H${4_s{{XS(qj0`6xTvC4{SLDUJKc{Zr?|V-p%^&)h
zNw70G6l!X(E$v}!R-16^ny&=|!vv+G6E{OXO#Az{KPdjjfkm9h8Tc3&UNU_X>Mqat
z{=Z<sgv}X;Zi;+3!pe|$D<jFH-u%THH%?1!wK;)(ybKH%|8QA4R?XOI95LbUo$X17
zZf>biVsB7rdttwE2gl!IUh8|kV(j#OOt$?0<zB-zC3zkO28pB9`>mW_RY&SQ%;75a
zU|?7<J^c8OD+dm|J}mg_YWCS6;|6Ai1Esb1`y(^EZhaSb>(G|G=4COP&9;bvA>j7S
zbww?Lteor&9B21>yvW{>U9j+Zff9=sLqhv8DZbL3KA+^yy-fXTIOm~~CIf@ums*kM
z&YSJtK0dqte2Kp!cke?628N|J&gatRd2(8Q4Z5k7Y>^u_hk=11=!*2KNYF|^<sxe#
zJD1%W>vGQjt<#@Z{O<d2A<pH$V;mSBO!zkIp$oTkv(}8_dG|NF9J=|WhlOFm4!y|Q
zCTW)I<qyB|zE+cAU|5mZw5QN(<;3QoW>D45AQJYNbMgr;zy4F&yT02;mTb)kzQUkj
z_ttcAb=hul%gL9^ja3iadH?;5zDXN1!<X$>?&hUUy2KryYxDfVKW^vvO{a7JwLGq2
zVpy=d$uhmqap94@7CKwr^Pibtz`(FzUU22%v){|FvlpBFj|KIfy@je@`A=0_+dF&i
zrQ&nP|Nq^3T8NK<L8QR!dC1)v59dgoxv9U`^?DF9LxWVD?bjph9?vRPEbB-QOtGo>
zd{BaqfnmyY^PgSa6W@QV08I%7bU$5UJZIMX?|;L!)nuF-85m50YYfsST9mB1{O{jG
zQDHs?29vOAgY;9ge{??l@Yon++m?V7gY=1vbIO0We)}7*?r*_8kCDM(k!HUAVYSoz
zDL+K{%>NgD0(H7CF5!8W(>5pmWctKv7Wv&jv)AwCXJ=rrs<4r37rrFcsrNF7E9H}+
z%ySlop3^R}%gQZge6ADKv1^!|2iAXZX}e62%=w_-dYAVsU;L=W`*AG;L(3-n<lN`>
zFR#_z_ONI-{P?x8pUJdefPvwYjNLTnMdw?JS4EtcV+L((uCtUbDp_m(_q)uwso^V@
zWq;OYU@%zp<$}_^KcDgsWzMl`kzruCF-0i$$ZXmFyGu_=JMl3v<On6Kdm&?dY5K9<
zMKhH3->@<4$=LL8uK0r|mT|hjcC!Sx#ozm{mA~WJ<MnHT7#I!&nTg9?P_-+`%zWD~
zbpPk%&Dj;xdDoodVUTE2lioLV*0n8tW%~SH{JOuB?IfkQ{cJtQ&(PsEnK$P9{<N*f
z*318z*Sqb%?KBMr28Ozy_dmKzdHLvr+_7P0<{{5`OI`*Bg~R{z7?*9o_x}6lk8Uzd
z4JR}1G%7`%53-)UOs@a<SB7i0hZq?uO&%SH+&J&>&w#B##fv!@9$nC5URvT|(Yf>K
zhvZdG3^Qgk$|yKrFr3pb<;%*>AY6Q1NMnWnp_~3XFDu<zIT$t<)eD~x&f|F=URt(s
zR<JjdgU`Egrqohzi`m^vQlCuFzPd<Dlz~C*v+=_%FaPc@@;kNa!m&h#1f%`Gq@`*V
zZrckUGrW?-z~CTQz4?k#%Y2c=IqD1(4z2Zn&{d$#`zH7);{lU9i&?THbRPbh6y)mV
z&LA-Vo79esJuSi89u<G*VAyqmg?Vbv^n$v;K&AsPcpflZf2%rY!&aXgyvz(iJM=lP
zd^Uc#X0lSqCWZ@>${#R<{(Zmg>$bCzt7k-h=VowwcuXnacI_R%|7oI?JFF|~Ss7xs
z3+Hb+>Y({~jR~mAyvLBMGrhp<b%63S1_p!nr$T%T7v?d_EST9S+;>reL1JzNvxs@Y
zAx&=+rUow^e%>uxk`4vVXL2Z?mAqgQC?j0xi4<~3PF9!MUeA!=5>>EZ-bP_Rv(+LD
z4$Qa07VLEu=3}_f%_y^A)kfhyYi9<5X=zd~lHP!p+8$-#3jmELOi5>8fAJJNw(paw
zep})Iqtt`~h6W~{TMUk8rWM?gVQNV8TPl@na-r>c0RuxrCC{9Ko;GF&cea9t8Ek$Q
z3=aB_cm=NIoPWr`P<X=3q58Gjoa2uZ=Sef9+{kxWDz!j=^Ob)}pBWss9e=ENkKwMT
z1;YW({qNXLnK=ju@i9#B+Qay0GR)vRdQ1(|cpfk~OISS2*<@qSz_2D~TTAiWr&kyh
z=H6~~Fac$C1Ab0+28(T$#}6{_2}}TG=`+c1S~gd{K9R)Cz_4M>MqxiyF=>W|@?|R+
znI}Swo?o!eKZKcqVVPmgAw~v<iiriM{FV3Jf6q3NVMbefLBmE5i`$=+x^kEq7;4W>
zDA;AwRs8?)<9hSk3=9kpZi7|<8{FTSs($j$`|{==3_NE=OcN}Odme6?XwH1rgO7n>
zi;3r<&OK=*6V5U)G>H04D$w(i%-wIKr2mA0!9jZ7VN1373>(z=A2KK#wH5C+J!z06
z#K2%;;D2c4ca3w;%<bj+H=A#4kzrt4bd!lKby}3#S33sb-&fDfT*P+7{5+_PJn)C}
zcmg-WoJB8L+RQ=^8J6%dh`&7|{Z_}IWu*`wLqTf=vya0eO||4wQ-%)bJ&ex`q7SXy
zp7!OOK4|J%pyleK$u@HR{WGQrW-d`+IAqko?BjgMb7>uWg5xav1dGjQgMJ@9G@YSf
zS_N}Y#-WzQR%{FnslGD`7#f1j(yewRbMSb9LhhMi`k~DIX(kK|0te@CE>}+e#lUdk
z;{V$_C(E=XYIHR99r?RHXIr4l1jWzqSJ^g+UR<2JiR*X|GXuBYLx!U%qJGkSb9C>&
zk&k~J$jHE;t`Tj~#l*nCG*x%bHaW{~$>$x5v-f`gx%;#(!@HA$rVHj>zbe1L$e)9O
z!6Nc0?{ePr77Ppyyhpj0O9nA8D0u!o^s`xmiJ_t0OJC;rRR)FylfHl)snw|=v-}(b
zgM!Pu{jUC(w}k&Z)4yw_CIiEcfFo_2pLKX!=zU{gIM7;TKF9R2@|mbJZ+7r8GBDV8
z-YeL);VJ{e0p6t|eSxeD3_?pp&M7FeFfjCsg;?zU{+@Aj@;!^gYzLfwZsf1nWqwa6
zkq>kZIrNn7)VvhX@#K($zd<Y`V-r(DkOC0L(9nY9lgizT5-V{YRc=VdqslEoXOk=F
zqn=I9MdaD!Z?79>$r*~c1=>GsP5B>P^tiM|VClA4)^`i!3;isQzF4id=cjFc{NDeS
z4-OmGe?4>h&sF2~zt8xew=u5Yzn$g5|FxHy8?-Yx11<<HSfJ|Q=-tpXje%8{kt>Qx
zWDAQ1WfF(pT;^_&*3o5T%9EkK={OxaK-M-*V`#m(T%5r?B8rLSjs=y&5~ptm&RS41
z+3c^+khftA3&)N^YNi}~z8yeoqnJd}=EpJINyy|BD0ob@d_u^#1840P7L7A@dl_~d
zyd<RX;23pE1tNSqaMosU2F$3fVk~H0s_Jl{mznZ1kT~BCoV6E(78v~g!t{X6+q<Db
znw`QDpJ?9>oV5#79TLC2WIez;Z5jikIUh|bKJ39TK-M~XHw;jXI6&48T#YzD_5T3Y
zhyzsr4_u9iz5d@*e`dS>emnUeAI`+vem1KAdgis==gY?D|1ke{-#Q)C4MFdxfLi^a
zu8EPQg)vAT%r+spmqMrel#C3ZofKcleM+G2R1mrMDZRbpzh3oc?ER1Np>vD>e|?)-
z-rvhuox^;wg)@?6il~65&}p4br<6|^RZ3~}EAThEiUm#zRavCaB;=}dLjIqIfq`M#
zlaD>=%hGrK{<in~pOso-HxoDi_;bbX?yqNGqdo^-T^YRmT;=&(n>G6XeZ70db0s#N
zESToM?c);Pmrq{)S-rORVc@Ow-==f-Y`k}Go8rE6wtmGIt>Vr-_N`mIR=%w{?lk+)
zl=<>$XY?KO_VudUu3x&fv`_tVX$`B{ei8fJzWX`4v;SN@tM_aF|N3cPMdoikYq4zp
z)=Y^@C-viwyJw!R&tChOtLC-H{HCwfKc7hWTiIF2&YyMd>%w;y7ane|xKx<5yvkwi
z@##OG2>4%9ox4SKo=$NM>$BfKo^HQ3?Qg7=<oR`%+})46T33Jh`h)T7wQ5`YT~_bT
z|4}cD{**tb&%fmS<z>&qz5YDjxAod*(+|h|eywv*Tz+!)<d+qeTlE~or$2D<pB;34
z=j+X7U7q3heuy||F8`TZyed6vy4U$F>#l$L|NDJ41H%HLR%Ql<D+@uxG*%*f3=9G7
zpdS3I08mF?mW!Q%VTChj482rChJj%LAH5Yz+}^eCT`>a#LxpME*Js-wU3`{kWBHr?
zV@id3?4JKd>$aB5^So@a^XLEg<m5LI_n$fP_su?US~7X*YkSoanHNd3<G0=kKmUmT
z+~l+E9}}nXKl04Zo%{IYm%LpS|G&+Cx#aPp+M@aUr(G*Mo^18=+Sf{}mp>~0o&5ac
z$gzhm{V%?+v+pwBZQr5Ze*W>vP2K9BbL*zm+GMVM`*`|hna9k!?LWBA?4JHHu&n%L
zO6;TGJGX8-_c80{@$iJXkKgxw)%*8r&itd|xs~(o&si&LUpLK9ukNY!%O|g%*DKDQ
zWBY4miP8Pz=IO6@Ew%QU{_*_pmrD9gAC>0u1lxREe}#de!E5kE2N|j2aMkDNj~O=S
z`;F(OZ0b~h9BGrec5U(bS1eX>=YDX5B640yWmSi|{SND8lXpAU&A3w-X%)tQ?vZ(k
z@v;9mAMI`bnZEY$uZNm_mv+57|F`}R=bYpHGxQ#x{OfMZ{;JYp@5=LA_~wf1)|G5|
z`?%uL$BuUu=J9nC^!W7W9dpmj{r~53iP8OiKI*Sy|8&IVm3@5jGuLM4?d6lN-7+}Z
z|KjlX{XXiSb8GDF|Eug{YXAM?*`HJ9a!V#(yY)<GU&i$RAFN-dSak2_(yx0L{W4{4
zb>8gKzWWyvC;zY8Q8UBu)`b5{Q+n(9c$5EqzIPv#g@#9*B}ZSsUdzY8z_9+<hPq#~
ze`Zt#tIw`5ns;=vo$Pb7C(q4dk4`>&xZ+aj#eW};u3t8}`>omBH+{!TKJ~8tq2d3?
zb@}r4icdG~{^g6kx085uc#ZtA$v^*A6d8TawXxjSp??0Kg58O?n}2Am)oqWp+v%_V
z+UEFV)qfS|e($dM^d;3QbM4kjPw~^Se}2ZyJ6?XPNO=Ej_02Zj_ve<%-)BCpSeJdR
z;$q+LKXvbZy+16=UiIbO?Uzd)2N(SNzJI3QvDcqViayRQzvP*nd*jG{t7)}=4qDp$
zwz2d2Cpg3Y^nUB8+57%!%(JN!kYD!LaEASYYkxFq|7e>IMBzq8Zo*d}A1jTG|8B{^
zz_3T^@SnZ)KX;vfI8}0)uZ`rce_f`>*t1R>&hwf6F=fW1lST9Ou2ss*FWvfgv;4Bj
zFaJ1NMSgz0r}l%z+%4VnJJn_L&z|gg{xM}&m-=fN|9AW4{iCAu9$T;Fb>6k(|Cj2I
zPtM!<s6Q_KcWsNA{cdmd)8ghI6PNvXxbvRuqmy?3T=ahiMrF6pt}vCK_Cw?Q$K?r@
z$J}Rr|G4D+><xzv?YF1){kMKoINv_ENcQ^9t>1FC`>NkI+{bkPXZ6SJ&u{;KGyU?(
zr~dWob946p>VCOo>$ZFKbNt@f{mir4`Tz3|!P-9`K9^it{(QGWy~}z3_+^uyriuH%
zd%XOY!Lj=n&+ZRmW?;|?92|8QWzpO78ea36eZJdWV$75OD!%U6!_xT&@8@-T7sd8{
zOzBh4J#+tTYNz^I-|769PwuenR)5}q`DBfJJ<GM*_P*-Q|Dt~BwEr&IB**{q$qajQ
zKKnm9cBhtq42;U2|9|@b*?!x^gRLyzJumt6;A5qg<g#_?w?yh!T>ta*P5$HMXD8S%
znr>NFq<4HC`;~`w`<P@W_Z7e1!Ib^4^zz53UvHlM*lec%F}Jw*#D43xAB*1heay~W
zd-wdu<Db{hv-eOpZ%=>u<mLPS{Ux9L|NV4-`Q*`bdq4HHTX)~Dx1YP`$K@Z=&!27n
zar^U*)ACF|k8j?(&9*;(Ti^5C<BJzRUaum1e_rzS^S{lvhB7cP6yZztL!gpGipsX>
z^&k8nU)=SF<=hi@o{#sZx7A!qf4hU}XUg3Emnk>je_H%x{nF%1sdGR7Id^{TW3D;%
zkJB%oeD*2PDs%1G-Lq?o#Qo#;bg291Uq1QCX5O3qzav2s+dr~D-!cF4Ndvx@DYuUB
zuSl&d{?C17*8JQ5^y;$B(u1uc`)v7F{FK-~r;oYR$I5Tb<F%IW9`!rC{v}c}C%V0_
zyKH-R{OP|NpQ|4~TPH1_aZX+~`%lrf<eH27e!p?FT6q4bNWGK%T=`2Uf2!G?61ks|
zYkjQ$;M*&oL%xGsDub}$NJi#+yldV1-!cpg3~{{=Pv8IN{xMDJ(PN+d7xLY0>x849
ztIm7#ykwKj?$iB6J?h_o3(G9sy6ukaBj&qLpHJIwn%k#b|Laz%O{I)~RQBPgW^>ob
zUf=n+&hBdN=VPyaxO{)HV}5pIUfIWGkEK_=ZoZsoc_jZuO^<xQ>5nek&rY(pdH(0l
zvs#;%JD86D(bzrR_WYK|iu*F!RsSt4n(^5GV0Z1G($6~c|2%kRG`GO$w&6dKoaGgt
zUf9&#@N+&dpM3Aa2L=X)7Yjfwkf9zIH+a%7YxWuIFSqc@duz3^)PDKor+M?`pH?)T
zEGnMw_iXugP^D16t((8Z;%M&X{k{6Pem*aMnNs}CWbT%0%U1hZNiO?gAMF#ryRW}U
zZ2pakN-_DTO7p%*u0Q|Sw{EWWy;*&Ww_Iz>d=YVU*E!v?Rqy*s<NOP!{1Loc$ZECk
zy4Aibw@${LtNrtK=N;Kci=W)TcwGOHe$%yEh4bSZRrgt5|5Fy%_p$SB-lOhsk1jud
zxn%3No3Vd7_T9|)FPQRK^S|kiZ#MIvuM5qxKKA{<QMG+cw+;7M%g;St9`)HA)Pow_
z-7S)G&5a!Sy>s)fRm%HMQ=O}GJk~0+xMqs!{4LjRZCTd+Fz0gdf-55GuL~@Wu~$yg
zi^_g`uzcSvzqZqxONxFxm|Rly?~UEul8C;KwwI%#zZYBGta-h*#K>+(hx+xOPcEj`
zP5E4MDN5S>W7dpE{m*yYJm!A$$oJy;i6{PF4z-h9ra7-fCe`NT<j*O`{;WN@-}buc
z|G3vPN@O$UK2E<?_2$P(!TR;O?LX9y@7eFIzP9vlz|G_O>2p8l&zU^u#-E$rC6}Up
z?_92b`Q*pTvrCG0^yi;@tT*pX9^cC)Tg(0{#l3y^$h;)3y=0T@<HbF*e;8JjN!H&r
zsXxp(TpAZVpX2{^mu!~#{xZc@?$XIU`)v;fUVA#jFDm=>rjndTM|T~Y?EL52mX|J5
zci%hueA}HjmrfQ`iuo^7oV(_?<y;y2+KGNq*|~lBvtOQU7WO&z`E<pmy&dZ5pzL6l
z_xP$s=^eA#C70TM_(`|T>wi8W{*~F$?+&xqJv#X;(MHnxU8CmwEoLQaA1yAqWA?Li
z?MLQSmv4P$oh7gOKQ8*w`@U^+o@lJyYWXksGT-?}Cq?WRS+6-h{bkC&e)Y9mE5+Ae
zv)pHS-SXdql0R*8&Q;x;b@uAwlA_-y*<U{SaQFPBlOHGlcoy^hXY^$MS^GgF7gGmj
z<btHEM5N;5px)TWjGIp<|1Q}m_vmC%hkwq@?=P2J-n6W{)biNm(oXf`Ke%*`J6pZ9
zzOd_<c<!B?%O?%;E_t@A?w=ohU-ZVj<&)1oJuEDfdSlK}_nD8%H*Yn|(SLOIS)k2K
zz0W5@Z6qJRz7v)0T(k1_w?dnnN4EP)*V}@|S^jazJhPm;<=V7Ao3DNRSd(13=g+>Y
zg`NACSoIt(XgXOo>yqdFM!(|XvOROY>(!gjExGl_ZP$y6l0DVm=3nyM{kOZ~($A3d
z`P&|M&tqQt>~=}vpHIyto8G*?<T;E=#p4_5ey)Ff(dzl+WShuuppKU3{J!GX7YZ-(
zoxgOn=*H5?rRV(Dym#=fS&+E7SKax}&%--B)n(T&-D;Mnf64Q_=nWeW_1s;j)Tb}E
z@XF3T6F$5BXW+TVp65k>9RIjv>-YF|FH_2U-k<L~Sr~cgq~iP%Pzz+uM_22!OAcrD
zT`FH-Szo?ykNuL#sh$3B431BJYXTa_usF85?{UrNz&}3K6=l=>jw#x0&X0ZWf9~46
z9J@CWOXtbm_f)sv(JkLBE53H?w|j?we1CiSNAcx(JpV24$;2O-9Q-%zJGkbe``90m
znSzY*N{MT`>&5%0)!N-WI+^dVi2t$A!l0VtWR0|cU;MmB8nXKPtEbLd_sH{j^yQCH
zZN4^^Gd~*5E7>#Wqt3jNJ+s$tJzM?q(aVo>OFlL4PPVc<^KoujeNX?TDC>3ERyUur
zTj_aQ-FzONaIXJSVba>IkA>p5{FU+dOFkKY`ee`J34T^_=ft;v{JY2c*!HuN>MulP
zPrv=+_2Zwle~SLSyZ*TS`R(wJ;s^cX<CjnV?0Y^u@i=qV+52<**soX|`Tn`g>SX@H
zYx@ef`l|asa;>iFP@jM2`1PHSZ*Tr74H~`e989CPWW?a(UHjezgT{MZ+w6BoUOKy*
zzpdoczta{=_&(3^n`U$U+PXutkNwDx-~Z*Bn%$W{yFWhpp=5t5)<*I?XlVDdf&GO_
z8_9ih{qJ?E%U<L6FPw7i)~~(7vKprUs&>7o$lG!)uWWZoQMJvo$+31fpP%2-cRV5c
z?T#b<U-^Dp+MTNFyMN)XqTQ)?H$H!|-e<@6^Ylv#uezDlC37OObFGisvzh(e{`_jB
z&Ch4y>n@#q+}&ML^y1fo(i$7<b8nwMoZx45=b5|Z>}7q-xu35_)-CUKuCXt#DfnfV
zEh{(g`2GcT&y4;p{gpCX@0Pr6cmC|<<v;a9|9kN=FsyI^)l>sC#!f~oVegO|u6zA!
z*Lg+;h6h(A>Ygvw_b-_7c+--}e{GgewzNO>`1I+LOHtrL$ZFkzn<h)a!-g`SUhlD%
zyX={rdouc$$>hrt?GH=mA6k8-aBlz4CGY)qpAVOv-!%Pq-{K?T3z9G0d*JVQ{Pa%i
zBl&0lE`0t}{`n8V+K5llzXar$Iv<a{{P9zC_H506=?dZLAD^u4KFitnX><R%%O}t3
z?X!%2-~Q|D7VBf%ed|tdxmL;_llM42VERw}6@B^Nx_$pd{o=dw(R=IT_V35d&0juw
z`POc(&CafP@6X^4?oc1rmAGD7d-pj51H*@`oO$=|E}eb1&{KW;?}|$gm*3yzp?-Vg
z^Ysz&ckVBr{MV*j<^{{NVAXe-d?lNvgZi%dVzT0ElQ+$O+<xHi!sk0L7Us#G-*Q++
zera;ho4RxPjq|oIOTH9!`>A>K@y2O?{?7S)d)eVzg=uSLk5!bO$#3f0zU;7keZ^$I
zeZO9;dF=51-<43SpWXhC?`NKW-}iFKV=Mp56a0R?dw!hX?B$be{>SCdf7Q(QlZ!p3
zUbeMYeeKq_CQBzjF6!d<J07_0XYS`0O8+YFL&j@|MOW(hj&-kJ+p#k+G=wLAKH2TO
zEAo?uRJ-EbnEC!MQ;d(*Px|%eo!;Cn*X*jq*2~2m(NB+i^txuoW6$HePwv_C&iKde
z(me}hC--R=%v$_K_JzswYac(p`FyNy#q_@PTb^>wwX6SJxiu^Q*pJhjpC37QuIito
z`*HK%Kh5kegxbB_k$dcQuGP;+YX5#-iTb_0{$q2=r>n=GzkKqkXtH13)7$))PcHtW
z@&7ry{$<bCRnGa}KN?q+_o&C;k-O}9|MSkr>K}iq{d-Un)7Yo}+<c$V{qw_cAbtO@
z_wsWd7+ilIY_-#>`~SX@QZf0|xGJXi2FF*c>Yto_caC4#an-pcFDib5((0a1#y<mR
ze-x>oW}~-!$GNpzE$z=`t}AZuyPfu`%Gg>j>iF?unR^#r-`Tb9cBWp`@j$D2naBGM
zm%QAu)Oy}r+4(O%`_{0R_(Wxk-wvJ=ec#;g)z7;hS=?WK{`S>uZpojz7dtNdeQv!S
z_51L9TYq(a`6J?QXZ%;V)AP~w_3u8rvx^r$-d@$-H~)KW`K<b-Y=d}Wm!wJux%ley
z&erXo^VVcZ`%ddKFP|73fBE(3Tf@0M&VQn!vV;FEUk_?>e=iD>HFwC)jf?x)`A6b$
zz^WU+^-5<he$!`be)i`xk@{KhDlBCu@ALmsH0gid)sG$TEH+lo^edRMFZ8(RiyiD{
z$u;)zIgc0HSlkCSp`(Ak`uH@}%2IFnk54=7kKMmm-tK(7(W;K8=1<LhzkC1x`C3)}
zO0Aia`)`A7iS5<T{EpRi!tu{npZ<}#`K0~D^mNdGd+>4b7j|_Hd+!|Ge^r0`$Li02
z^kTRCiM$Por;tU%V(bo7YNegpoDuivWagVb+w`){voD`CIpS`4|Co5yZ22^qN1n$6
z@1@9wFL1u^`r2Z9U;p#Wbq6f=?cDBre0K59-uZK8e?0qF-|IA}75L+$mEW7*THRVJ
zyLqzZx5~QSKfiYC>&?iT1%K|$i-}t{S^xd}%O}Ol%U?eED}Qg<<ZHL&|3B?6`LzGv
zclVc1{*_Jl<7@xXezy5_cS+G-gLzx79sAS$_Tpmpmnrk(8{7G}y<Bp>OgO$#^M6wG
z^dApze$=ko->>d`{e8RncWH4328E@=Axa?mZ1(o`+t>e=soV2-&yvZYGK=r?EWfDi
z{`F=rQ>=N_XXG5Sh_voA>if84>o%Q_OW#=p{L8AElkfLsKHD+H`tnaFr`$J_Esr|h
zSt|21g?*Oar)wgc*Zg#T5F)<z@g1v@JDIZT+h#vrf2h_jbM4(X-(RMb+bo;xANS_c
z$>ZlA3;&+~-oCs4(@D^<TlJ3*MsxRkeW5isCU)-9$^P{}Z043&?6$a=e{TBr?=Mp%
z^e>$>`Bqb4<rDnpg~TWKTUS0d8`QhR#~!m^`1=RAi$g|-4-yL4Tdf1L^d-62j29du
zn=`Er2A(sw?cIJ>Kk9hnF16Vun<O7E?r}bEdwILn!N7YrgspEjE~~jzc)P@BTP%NL
zAM@VtA4L3To8S8N@U>lYc>3RaoqQ%W*7NsF*8BJ5r=i`cyy<$=N_+b+-Rl11Q2*=X
z>5@<H>(%R=_kY{k{_@EyqdJa1bLZF3@r%m#mz%qE^6_y0OD7XM?_W49<6rl~wTAgi
z<+nc*{NnB%lb@6OZ?X3OZJEdaSZ%*H?GNwXT^;!^`{cJjmhfM9{;_cNYo&jMxBu{h
z76}cD4h$qIwEh2Z*Z<L3gFh;MPxB+Lo6glyp9v~FxaQ=Wy?l~0%dc>X;krA%cA2r_
zYm<wlmjC4V@^VMU?LU6i-yQ2%r~Q}me|Ed#QdD%=&lGw8YnJm$BKntGc)hN+{JG?@
zhHUtP_iH5|`8!Ile{^z+|GEA1^zQBdy|tuh^J#n2wY62!^-lZ$ze%<F`LNsBYUZc+
zE4J%B%0K`5^PhQ{Z?&gCfB9tX=Za4n^WQxG(fnCwe{S5n&+WO{+uMIweyFbhmumI%
z%je%Emp&#x__XNxww)*Pw{4ftyX<*fckkRs+7~`X{=W4!(kk;`8#4pL@ThSl>fS$o
z{xVIfZT^v!e|VGYrX1e%N9EiTcix{nOP4%3nl{;Q+vO>KR_lt72S#PTx3f5!d-)pw
z<CC8b`aiI#J7P6I<EpXcvB|0OpeWn)%sq3h?(Se8zc1Im+%@|tZMDBg-Mene9joK+
zk=KQ51$$<1uGqY@PyP1#C+?Nn^LnO#T(Y(7<K~x-`t#~^=brg#{@dhO{Lbe;#q*v|
zzx8nYW6$Ho32$~-)+@*UxwzTcs&eCL`E6@!Yl<iP*;R?jzj*xoqxrda6^oXiz0JSv
z<&%r4e}dm0to)-{p*_FkPg_k*;Y2@NBiL13>9N<t>*UtI)~K~QxAyT-9a;CvVD+_I
z4;Rfc-}1PgRq@~d$%{{W{#&m0;>q34uQr_4|H1{T{;_LW^<Db<-(c?l^}adnzvnTx
z`hDJe?f24aU+rH_c(v2={iUO3^*LW`GpzoxuUq!VLw2(H%}Mv?%i3G}fA-$`xIS;m
z)^FEueA=`av|6>eq$o8p7sLXsTQvkP4+XOf%q%Ps!iFTTXQkJ!J0m0Lg4WWclFEWq
z1%1!l#Pn36cir8spE9>H_QuEeDG7I1GQIN>6foZqy|O)a(YCOtUAynhyLMSFce?yq
z%Uib=cR2B99SnPVT!~B1iJg&OrbRR`hdt-&;tc*NQgwG`?mlVM?&G0wIjfD=uP<B3
z$wy#MqT-X=_V0Y6v`>God3WdhnZ4z4>+63gpSRn2XZG)T&wtkKKVR<Ux$S$(+O60A
zO?<ui|FZQ7WefS@T+`X(k4(8;p7%jcenz%k*@wz6w`%3){(EqQdvkPcr_Yw&DOdQt
zPnL8qU-E59%Qv&&q9?m#YXpNPy`NR#^@`nE*H1@vO3=UgQ+8<0Eb8xHzN9|7`?DA4
z(kT&MY5SC4x_X=}+o3scl3({_kYIw>v-y)hD=kThzB6Ugq}xkcf);76wA8(+ta|&=
zvMH-4RWEH3^79Pxj#C2*NY4?~RGc?y$uu3WliPM^rmjhG_3BuzvRO4~(z|6-60d`0
zk4*FM+;@E0nFnh;POketp~CAG|I$5^Ts3cs8J}%$X*<Y1`Ji^trq_1`{7*hrUjmYm
z6yBWQwO%`N;-uL3$11$OJqHW&Z{}Y8aLN^PkCW@lAMaSQ<WHjd%Ofpk^sZbj@Dlr$
zvR~)ez23)@CVg5Psjik(w(#230<V~<0eLdhrx=K(iD#`{9prSUS9r=K^><I=_gV9(
zHHR;4*&(g2t~%HJ-IM$Kv~$*IM@|)bv@fwJ=u-V@zkgqMAABaXwZAM%Mo0BesP3`*
z$5mBBy^CUF-&R$3H!p43Fmrmpr`Hyh>1+E>m>SpD_yjFdUFoE`Gt{eN*39+CkE^Ig
zP0}n2{Zyx^n31;c+T-L&Lb{$Jdk((z;xsh=ycHxc>DQaNHG-FQt->x%6>?%TwgBmx
z_tQgIuI#NBr=axYgCK!_FVi~DKPah{W64>k{d30@pY4ij&AaXRZ|&aY@^+^6Ppu^?
zci&h)dhNB#jz3Cz_SJPkld{Ve%EvD<d;fVxite|UIp3~?PYbg97(74s-|crbVVX;)
zXqWHZ{c}x!{as}*&80FwXR=H6-~GI(KE_M)X=MGyntMfexAPv0KELLgn7eVy%-Qm_
z*G-pB(f{+r_AGn+Uz@(?`!v)J$eJeZpH%x^Rz~JmDkpz#VbV6&{cl4#|HPN4EO`=R
z4oXzQn{9vD@jrTZ!sBGZ(@9f&R_#0Ayu;ckC}?+((MgcZylE3B-I_Ydvuxky%j+9B
zOME{oew=b;-4vfqX3_GFH_og+thq8)lkwlGnLq0+RKMnF&dlq-`BMDAlbJKu|1I$1
zi@9C1W{S^-bNp|<XeT^6bLRRj{^dtPPnNv?QlGIro@sJg+P-VI&U>7^y(A^6^jD~N
zhvb<DUyRpzo%1@m<kgqe(*!mfO5QoY<DjLss_?4I>!X~`Jli$td|J=cIa4Q{G`W%D
z;LWjPm&@DgC>a^KGFxp`;mqXyLb?n0Du(TLODj0%byDTlonJ39t^YdBkXbn8j?jD_
zJ8f0r7q8ZpDc@}Gj#VrR{j~4Lu1Udjb@w@Ko6l>+$$js^mq*@LZ0yV`m$Ynn5#f10
z>w2t%7Y8^0?r%#{etB{xew3UuZ;FqtreaRV$p`bM_*iQy=FBKnwbh(i6y$W{jP@hV
zmHCq=y)4^3MZna!UTdCEw7l=mbM8x97R>xvr8RGoSh#BSl9Zy-U#o+h&YY=PyWA+q
z=r^0@%!s*lu~UVd(w=3nT^=O&JbL0J&#N!5@6u9r;Ylm-TWTY@M+qDTTi1DUGD=TA
zxID;AGGgMSlO{8G;-(7Sx*Ze#>Ex8ZUSUg8lybpYB?^@OB6a!t@@uy!sZP!)?z}a7
zNz1lP+wGzzPU0*n-THdo+&WdCo*RdLRv*?}`Mqr0FQJ=dV&{a#YS^AvSg8Ju-u_4G
zW?s;y>YkkQXJ^)buU$GNXx*Mi&S%;0fAQ|O_&X!$)WhjE7b@P&v);dXO3*20`@a{T
z3CI6ma&YRG<^Oh=$@}cepZ$MTke4QVTxn{1Jm--+@0TkWFg;(&BGLFch^gm5r6!}>
zgFRCilndg#8U!u$RS$6N3H53aoFJ4?ZIiM*p227N-ESYB-6?<jMZ4kUmeWy2-`Vf)
zxUA2(?DD&;lXv9*OrBfEX|S{`)O!ibr8mo_d2l|t>8d+X$YV=&l#=R%%<EfHj8*5~
ze|VkIXUk6JX4&iKYVZ2(7fNV~^*y<7Zk_4@mdQd1EK67<7&RH)93U2hxQ*FMS#Ipw
z`Cmu%z_hcn7FwzY!p_RBa9_%DW6@6Lt#VU^60)E1U5V=V;@qIxeDcBKAf}w7$97Eu
z(V#+U-V}zzyLa9CIt^^a<^s8Gx6k<PZ{WH9@6-at`L+L!&*rat)cGWw*=NOt(3Ahn
zm+zNLP&yh^^i%hxKF17~gHu9u8Ta*Mcx_?%VRT6IqR@l&+_|+|{uf;pdT{#Z-2#yK
z>vQeFLG!2nTh!25Y&U1p&y_K2*>lcf3C}qbgc4Zt@(O#VFeodi9^km6sCwYq+xK3a
z8&ZGk>w9r-2>q>p-BpuuTgLyVQQ}KkZp`{SJ$r3;5L3>{1fz;TuZFcZBEmOms2&i@
z(F?5JIECTx=3AoZ;e{N0^S~C^E2$os_I7_wh*v_i&)4Z|K5w$E|8^tjRQ>O%yDsaq
zGK>OjA#fu$t?U=8!N+|s->ui3UzehJTEAw&#~Zfm|Evr0(&Yd1<KZ*m`rrO`8>a-F
zs*bN)`tip4UrU!y3G&+c<Bq?{{2$iwdzViMI+ed?qnX_Aj_ozYnoo`Ucl_VEe766e
z_4P#`_V53(?pd;O+P}a2AWfepF)y|??3q~mJZtUit#Y9DOWDF}QQ2?Hqvq_m9KUkw
zwOt0cYu?;xJlJ{uZFb?Kzth>-&u{<XS@m~fRQB5C{_k=NABppvi;lnW=tjrPp9d@T
z-^+jOOze4M9iF}RwWQ`sZB5O}DjU_W8>Tp{bM$&u<>vLu>r|+x`MgP!&9_)=oO0lU
zSx`{DwX$ld>QlCK&3QuMsuQw}RoU0&+LifRsFtdxu1V2URXsmZNaEJjDO+}GRR)7a
zZ<K02UA078)nHA4msr?g&6W8cGY>|3?F3ccJet!c?UM34d1&6V<n_J&Z2C)krj`T;
zeG1Y{{KXm^6n<DUvpDqA{ll6oy)_T7yE|p|q*TqsSFXW9;l@El51cGizaG^zwzxY*
zdQPfl;;mM&c#wWe@FWw-JHC?Ik<)~h#n`BpnkuV)b#n7sC!G}QX`XtcG}3EE-u5HG
zLH4&Y3m;{8y=v`QJ*oPU=F0P#g*itO*wQ1tW@P=g6Y%%^|4mGtZ~2nA6FUy>l<@bw
zl=5NI6oa$h=0^7|Uvl};k&jcZa7!kuiU$XMnjv;P=T=O3(fTO{N59RL_R;ULQQdwl
zIOzRpiL$*jCQjPB|Nf%|yy4SV*zWyX&pbKp{?3D64!v0Kbx+>^<WBYN7KIgT&y(D|
z{OXn*4P*}6y-6ArFR^|*557DWJjqzH#!y*xYpM5=mb(cCl6&SDg<bOXJSh+@AA82b
z^Yt_j&fN!(?V9v-O5*jrQ=uU7S{-H8+-N1$H*B-Luhi+LvMrxo)Vx{3@8pT{z}wZE
zw&itB*&yw*%}y%GXvb`$uuT$vp0ig^dfpa%X`O1&p*(>oi~oHEURj{PGE`R8w~+Dk
zjLj%qGi8JHk$DGSwg(424^Ar(3zmCsE#r4`V!OG#w(1+UgU5gVdN^gv&0iTECm$T0
zqTbBk9$Zx0-5jr@>a+jF<b!_;yrN>J@@(vmiuJjf@}R)Y>r`#fp)1_^Mi<Ukus#3&
zNOPsW*Uj}$3f#QdbSDZei>%o{sqWb0n)FASp0|FzfU2J&o%DKf-Lc6B(}RMH&RlbE
zHx3GVH(6-e?Zs_3e!Zw!ezbG(Y@RuuJGCmyZB)PR)a~P4zT}R&s?YZM9m`eH_fIm`
zG`BeZNYittmgZAC&BR@IE!8wvrUxDK>RY<xNn3^2DNc~!%t@1OKZ=&0>nT}gJFO`6
z)4K|<Q|0V^t(+z4r$SG%AJ$x1KgFoISm!C*a&do7pWW8Mc?DGur#yMHD6D^J&(tqL
zL7!F#&gb8Db*^Tz>fQpcTQO5@l=rQB5^-unw!X6J?|+9o{4Jbx?-eXNefEBcm*!Hr
zefxjjXun_OtGTr1_~QBhe;!NzzUSMuATQ1Mij%fy)%Sh9dVPw&?W!r&b+5c0Z@m8R
z)7hm{g6zIGJwB^m_v`b%byI>)z2CpfOs@Lw-R8DAH5XSt6aIgKpa0+Y@cY+l-tgvE
zrfANu3W==0*ZQnkdH(Uo@joy6PYXJ=lfQoD#~U;Ef9_p6C1_vC`{lF!c@h_@2bxb`
zad)m!^JVXwzg|RqS*4QwdU4$9)stRKK3IOWXQOtxUkmTlNlVuDS7}De%W^MYa+dd8
ze_L=+wWOwIdFqlSpKW#jm)$Ul@tSmP>X)Exc2?6SP7<HPw|vRJG&iqPv6}Obf8X}^
zb)tg4YJTtXCHu@$UoTG9?EgHMZ~2oGrDu=xZTxyMRx|UuP?FGkuWOIN@gH$&^1<bY
zArZH3%4!!~MU~HN>9+GguIO8uV^m<Jth&B)`4SuJr)|OB9UijUk>@>5-dTS<IH+DN
zb^oNxlHsb;A8Bgx=h~%oY}D3OR4BhuYWuWs-_#1PN!#qK<`y;=YtEY__KnAoXPxSn
z={C)q=Y2}~;N|7jcJtSZl4B7km-b9Kv(Iwgq+k4Qf0Sk<K^m!X{x?$+RG+ST68mw=
z75Uu4oQfM?gWSBtu07I>-0)}awxn>?dI>*I+l!fnk3Q6?YHONXcz>Mo<jjMZQy!kN
z-OHC8ea^Ua$_L(a2MfG@ZQpKDSo3=E)F~S$EuAvOWt-itA2xcaOO~wj<jh=@tjc~^
z^W_$ck8eM&?GFoTi=7^{&a2LR&ZJ*Ed!}45)l~GZxbZc?&C5!jclnaC;Ix8iL3stc
z9!`mo`x<P}d_LLN%R^}XLCYDR&K%FOQ1y(K*98@~;1FF|>g#pF@JPysgHzJ&!XU-&
z`bV$5rUkXd?oOUGY1ggH!VOad%#ZAv)U0{FW=-0Xl>f^QYp&cs-KhDp?Bpq5^0Ptm
z-@ksGawXok@>#NJ>g&ba52vW))?SgFJf$Q`=Fj&fEjwm|V=@CKxmNq7pP$#Mt|<cL
z#Wt$C>%7`vIwduKZmjTnWv#BR`g8|K+RZC1Uf$ocHu%&vcX6Y2UV6uZCvEu}Xnk-B
zPn44CkvnrfS==wO0eLDGQdpm4iJc0PV!1o#Q_2UJl!W%q8IvYW@AvjPRj8@>?%5Py
zwrR#eM&+QQB2@D5I`QCjUSY>o!IpksGUcz=wBT)auRuj`bFtx5wsccf)rE;4c#kh_
z+2Ov$LT%sIi$$ldx!;{Kg=gc}i$|wyoOE@{>PhiE%a`nN^YSn}a?Sm;X0&{1@H#J0
z*_3o@!|SY5yyq5HczJav7IfVHKC!^-mF-+Hb-wrEmwa~~jO1Cq<X=R0@?&F*)tbqw
z?T<7YMSh=~%dvb(eRj9-@$Gi6mi0{4X#@HEV%Dh*uN5^DZQfXi`?myN$}D_T0WYts
z?~D6++Rig-F81(};QoE?YL$|z>hr^zE8qLhJQ(Ry$@aX!LUsE5n~#nNHlKeyVTu9Y
zx4Emg&hyx*^|C#<=-o6i^*(<#{be@i$}Q$hG7DF|zQrQ#^0DWI9$pg6%_koSYnog9
zEdb?gon<zXH5SUMzvV!++wA$rla~LjXZAF^Hg%4Nr1s17B`F=TS3r4d&csQ@=36bY
z6ij&dcA8CJ@%Q?a#Orm(LQnqv2udR*7U1fwEy997a?*CYSLt^i%;{XNlKFb^VM)!*
zyOVA_zxZj1!JId1`+rF$tELA9ecDsu_3C}fk|nv`O_}-Smvn#sx1V-=U+wv1FU_a@
zbx(}X{(tNLCjrzu|NoKsZ2d*y`mfpEnoDbb9GB0qDLcP<-|i`&_Rsrr;IsXunxwX(
zx4rzDOQ(F=X}|MQ#hZEIeEWFfEB*z2?#%!H^kB-7-*Go;9%a}6eLpS8>u0yT&ApmO
z>3<K+`*gE?>Zfzz*N!ExuYP`CYw47tXZP2c&;L<*|2OZ_DM4}N<)1fJ|3AGLWbdQj
zQ8o5)|MI;wm&R1Sd~Y`Y$Fy>rJyVMQU*GzxZqG|=Z_T&%{pY6#ovMD9^UucV-^+R_
zoul=~rT6`LzVZ8$gr}EI=s%bzQ~zx7>$n1&GkPV5!&N<vEz*PX3i?{tdj;hcWUYN|
zy(`7wNxT_P^Lty%h@B?Cw!iWR#rgX!7KSg=#M$^i^c}wD4y);oew=dU{=6Ae-uzD~
z_IlMh<<+;tnua$`<sb_Gt$LFCaLN^9&BN=C2d(p}`Zz^}w>f>ulTTG(#oRmUEL7);
zsjJ<6<Ft0`?4st&+{>5zt2xDUZsQc`IdL|so`)YuYOZ{JR&%9#&^y-OlA4uS-N`p5
z9ejS#S5o_BD>wyjoU(CJoSRqL^W!S2rF$(^zwXsM?De-N-OldjBZX~BCOmSoWp7iL
zJo#1L9vsxalxO$1pgLxUO9mAu{+-@>?d!8CJ%7H}@Z4Kfcg$FRd9=(?v79<Nb}L;z
zzVi>h1kF2WDdy){8wbuzd#BuIm|)B!x9aSJ&k^~4o|jU>?UOfodl#wZ*Ix0iobx^c
zTpWG{nSajUhkaJzAz$hF$A5VQ8J$VFUTv(ldy7iww`=Zur>Hmgr!Gl(|L{lut)&n{
z|LxU1w<GcM=ZdEu>%4Y-obp8H;KfNk3(r6PrZ{cIUj5X`jmetlAI#xf{^XN!)EtX{
ze@{rV<=>yQ?7VVC^JP#YZgOnYB#mj`gdrJ0=V{@-%MYih{9SQYk}d!4BtcL~es9(F
zw%|poolW7LuVKngKDeAbY0{F!58HGlOTDtppRRq?8XR>0&ZCGnp}h}d{5?+^x8L~n
z!r_z}^YY_Q4uVup)0M3B$}(TNYj1(qAEm=44>zv<I%V~w{v*MYw#1)&*|U0*_s1zE
zQFAIf5<isbO4fo*Wm>1MnymcKzufjITY73tP>_H6od+>qo+opid78K1QriEq?eo3@
zuUG8B?^vsYjP%+h*y8;qwIe+}Px2oR4zizO7*?eDbXAJ!yh+9Jw;vrjn;af~NONb6
zd-r||yERuPPcjtzReD`|{_(0)8(w>z3OyNQqiVVOp#IW357rzFHd>VULHpqpmEM5w
zOHypk=*jRbU$W2i>HK$Ir+CkSRNn9R)=XB-26bJ!6F+E6=3f=qz2Yi=S=5{euS;k3
zt~7(Ipe>V(!ZuBrG)equ{gpT`$+B4QomxA$TdF?wax1l$^FMh)eYeD^H%@EWjf0G~
z3;21)dP<hXdhOJbOfvoPAJkj%-gz)G&(Cw`q(a7WE%0ERx96^#tx>NJPC0q}YJu0Q
z(?O8h_E?(fkEl}-CyR=`PEGBpJ{YVC8pPbhYuDeb`C20EFsLDup_#fyCEfJL>qquk
z*Fm*-bd8+0<YBMnLF>HUO`Vh?J^%Q@DXM|1B{g^M6Zi9s^^z<*8_By*#?Q01_>{qq
zqVDs`sV%=kPVt`Wn)2k<ADdls#n{`!!`CgdX)acrGwIi1-9FjrS09{yI7R18rd?S_
z;)kbU^W7&as_ph$+B0>Hhv%v%>2_hka?f`QfU-itxvURQ3%qXC$nBT(^Nf}A^okSm
z^R%66^k$cm>dZ~^e@6IL8vSr`^J=@{y0%Uu_3qW8Q_nYoGS^FwbzXdJ!9n%vsch-4
zUP4QGoAd9@zCU}@$pfGsRsYf8qMt8y{bb?~?VK~|+tvavx02>!gE^DT_8Vn%oLncW
zc~aQ>w=E<=D?Vm>o@Aryx%%Mr;B`XRje;(H$vb<7KTNOp-`c8V3)NCruS+cJg{FfW
z5HFmLMVvf3WeU$`sXf<0%_`pKQKz1Nocg~eZQr#jgQdHUgSwd$Ch1(1KKFFWlslk`
zSRULFD+>Meu)=Fn+rjHWm;Q<VulW!r>$9`LTF%dN_DQ`qA-UaAemk{(2H2>o=Vuf?
z`oMGU=oINWS1Y`%bp33O82pGj75XUr*XQ2tuM$q}eekhod)LAv|6l4Yzw@BvvF6E{
zJo{!Cg>9NOX;Na_LH^};3hG+z@7JuZ(md>Sd}&Gyk0H-KXwR+qkmgG9;I`QC;B{VN
zk2O7|*y=yn`_Fr0rKkG%k?F%JS72SaBn#EA^QK77xjIF9jx)Frwtq1{-M>tB`lP~-
z9}B!*y$=5OvMe~SK<u!l=dZc9z|DrBpifH_+YZXVIq#f*RoB_4O!g(H1E160-yVD^
zO`@h_e$(A48z&tF_e$<a{tw(e%jiv&hO+9@a}{2Gb|*F(-?!hfdFLnZ_F4YhzPsn^
zES>Uc<Mo<_A8**&*F|fB2Cx78&$IiucK?S9L0+2e;10>={~rREPSLKGi}>a9xl{i8
zl!O1@+yAThyz%n;ujW%ewT7=Xldt$Z_xh9|ua|pQ{`|b-+4B8crv#l!ug}~2^N4@#
z!+AkoKQB*hU2n57!b>y$^JagIrBgnwoNs%*=F$7QGR^v5JA&%|+MYfB?`*iuswqLI
z)Z;(yJeHik@BjPyTFu=3^7h|11bJz?$3c5eE0<0Q+V|s9^(_CI*ZMYFruf@$y88X`
zEpz*oQ-V&#@B2^zc4YqhDM6>?_bmJQdB?kVAdeRP`+4^HT}x-5vcEsK>GQNri;6kJ
zYbaTh(bRUZ{EWfm*!dHL)ULmYKCHR2T`gUr=6DIL2fuNO!Mrr_YoJE4h2h}`*2^xx
zKNkFGRm(}!-3C9lo(Z<%*_Ukf_n_|WKD*D1x6{iKKV;9`EOxHF?n>EmE!C~FKZTVp
zZ7DR_9grO>KY7X(ao<o-`MWl1iqNqO32f=LK0!vY;i_B9g72+z)lB@8<HNSz-_Ofw
zzfa2XoIRm;r)<v(^pdci{o2c~Bud6cOmpYI11w9IoLjypv^(g~j-9()-hLBf?|1j=
zTjL+#HA!u^*wPlm$$P&Bo{Bj6i)HDOqtT{E*7L0D4mwofdH<J2>W$LcRY6AItDX0R
z>Q56o=JjUPlLIrBELrCt>cuzbY~|{N-z@nB#}Z6`Bp6lHt_lh|zidw^e}18zMDL3T
z&vRKH(vMu9y2d}$>($LEul_}K3m@`mX^$-qYrZe+=ef5WtRd#W*QhyyZi;rzlQ&EK
z39wLITQ~DWU#EZBT;HAISA@2m6qtO_a`i#})?lM+;i~o4b~j7SQX@RQZ^#{9qkS@x
zw=QE<P|!UgKhM95rwC^0CPtt6=LRl9_<cjYPTfAN={f7oC82GH-yB+6;Wa6&S$@{4
zDLhd|e3N6N4w=n}T`~QUre_q?lzBy=MJjV9{fgE-#~p3FJK!~_ulM(vK=@nznX9Hu
z*}nYF0~y}sPo6A}o+Gg>rEKA~D$S>b`?j88Z0PjxtgJp2aq?nj&FUE?&60DxHT~Jv
zFI|#iw9W3;hi_97uP+WdbmQg>o_$j`ojeeAD)eN&@1^gL-GkB!`n)(FrxnMZoL?R#
zBNKOM=d_~c%{HF*`{$fow>ap~3{ae9>hkriXN&ii)Q+6D?)`Ct$+7NBTRu+O`}Jbf
zsSU3`h1A+VyC>-HSvzxzL0A&^^Xi9Ft{m1hwm5zH%ikH+8-)BjR|_5U{vbK$X@S?d
zyO$mv`S||$Cy`qFXM9(tPMP9!B}H6V@0Z2>A`8{ree&mf{;!CgH}C!NJB?A{LF>Hk
zsjB8o|1kOBX-UnS|BruM{q4KY+3(5k9M*zI06o2KsD1Qhn-(0_y#6RV!?CK@i#rZR
zZv|DgDyljCir=&&{UUkyZL2;mWPWee)G3MAm#(Z@EfH_*oKw4H&L*iEU1e4MjKVX0
zw`*35fjX;8T5=1MZB)OOYOX$b-6$wX{lWF4XYPEs3d+b|)cH;1|9m*k`|taoo6nNd
zzsE&;tu&7RGg+VS|EmQ{cdAbb^0NIp{cL;PSKem*XX)?q?Y_PGp8WUoS$6(?@}<lE
zeqTH#?0)}i+c<t~W4WVZR1Sfj`7>YCf0&Z5`FDSy*WUvtpCzyV|NQ#2Ag`VO>*Mn3
z6t~wFYc8E~`u*?C&xGy2&9_}LC1~H5ll)hoH79!SdlqlArY3XS6#xCt8=p1L|D?Ng
z%C!6acXL7Wk88hv`X|Qz9yDkT8w3x}Uc2>vX5k~h`hrK>&u+7j*p~ACWYp`IQT;LZ
zYu=ps^B_KL_50)R%qmvzlGI$ex4=s*YDtQJ_veGnx2rc@i}LqAnUT9E^ls0TD{*dK
z&%SN7P_$X$==Ca7Q*!0m?XQ|adU~eFR77<fA8Nko;rVyMl%7jhx4-HWV{ZqKcdd*%
zB$l%bJZ$CVnZ0nk*1So#PJ47t+rSzg{AksZ*8j}sBbpsRi$2g-g@D#rfL4WAn3%yA
zg&3KVye5QRXPg;BmxMshI5Pq*ULpUCv%9zZWR5R%xhU!U|Nm(#ezO$s_EmCcRjb3l
zM6G8#VSDxL8LkN%?$!VQ``!HCz2CooAN~L8rR=lE40ekO!bGI3BpKBIzP`zrsn;eV
z&;CKMb@QSN7fv!*oH_I}8cpc@p`WJW&RzY?Kde4Kt6@739AU9PV28xL`}fxy$GJaz
z%<%5q9?SWRA9Tdd#f$2(-G0X3+RwaW_o0iq_ZVc7AO7)tm}HRuFW`qo!)|SvyU%zJ
zc#55?7u93?{H*!T<pb^_eR-eR9vE;xx91XXuKeuyF7tshm;3fg=7M>xpTAw(A#r9l
ze~~}4e4xdyv(gRAHxvk=D*K?beqRBa)(<Z0_Z8@gyz}_?U>=*@qJomy<_zakAO5-J
zeRpE59P0%^%U#Nn431*w^k<lB!uh^p=i+A~@gv2~%}16`6+2fy(|rBO|2LUG1Uz}s
zm%?x)(&B&Oy*+B5*(x-OO5BYYe(B8FZvOdM=uGni&J!0~Phu?K7VE40yy%SdgM}w9
z%ARD{(H$Od@$782QGP?al6$!d^8>fI+J`a^idGrIMdEbk%zuh3P^L3S{t2=`pU#~5
zkB|kH>CBOTh%B&AXU_ZQMXNq`GVr_db$PHISQ}|^|IE{n$HI(qT{0pQc^Y<aF4#Bu
z^vYxEOg18x8cLE3%sO-OA0umNyFX9%!`!+`=Q%qil%@wOK3??jiE3<xh(pYi1syW8
z8I12u_dEZ;-qYsq+<y_yDvK{LeDJq@{fps&y3T*?t<$TP>!*lFG3+~6$y$)Tnfv+D
zdoQ^qTiF`c7soN)x%=!;<;wD3PHqbsAH1Fu&cMtje$IREWpN`eUWWMRdzfx)*j5nt
zYVN)Xff)=xte%S==vnz+f2*<5`!B6MPRtApf7Wl^fB0wSM5qyN>-v2e_I0;@=68YG
zB5jz@(6_O`PV19j{0R*chC3aV%mtHLKP$quoRMxgtTX30)W`$9Gt3#DM_Qm5Fz?Wz
zokEomf8-t6!&o84{XE|l$%c6+4*lGE!n#&*@dbtg<!8JHiX$!d3n1&T;(op!ZiR&z
zBbUw``_33YkS`AOT9`2^>CE}xg~Yegne)E`i65jhXZ!XuPeUMnNETjj?9fUi>87~a
zhc0@{!Qtp8Gn>Ize{TUOuE6f;^KDpjJ=S94>6M^h+#z^e&EaOZ-kcK%(-hu`iu*k&
z(gH<P-jR)*7rqy9s~1^{f}+9v(G8Xzt=FTF^&g1cbKwxO^YfmBiXj_Nps&9X#R0c(
z#-kV@+pCZ4fCtN_p*Wx*e!s2tgXIt}Eu75wVZvvw2iNY+y)vip<FN<c91I7_BmaeG
z-D#?1W;kHJsh~pbGaEz0`_zXYOrG&FFx)?P=%M8qX$FS6rq;v4Gt3zn{s?flUj~cx
zwH^)xsj)wG=%EZq*Zj1H1t(@!7XOV`VrNL0*Ls-mGaCZ~ce@}+RlXRXG)UXOvxgpj
z12YmH7UY9u{+~Yd@EBO+(4mLxzzlot_GqJg28JK1-0i;&K@4j#KJ#MR{JQ^tzbC6Q
zFt9{g-01{4*_6Bewn07vL&b?h59L65?G7D!$OdMdIJEHG9!7=-k9A}&fdu{ua<}V&
z+*yC>km4zjjIfSO7f8nL_#wsPAc4y|GEpFbeTNPy9svn->&R$<1<oB(JO~nqj<B$q
z53;y?V?l)x$h7>FhaY@E{<weo(8Eln&(Exw85*iL7F2+I-!MPn;RhCwto@Ng4^2So
z=O;fbm;y4Pe^Y@4*w*Ed7BWfq7#Io~S`UAoY0kh<BhKBfZVd9an;75ulzR*eANK0V
z%u_SU?@NU!D+Wge3wOIZ$n!rG#rT$kH2#s{ZeI*?Z{3vE!<Jxc-`>3~mwZN=p&|U)
z`+^xDYxY=hx66X$#Q2m!YVYaDn1PL(-Fo;f*p!2Z9^M1V{F~l-xECza+Ilz^%%~UR
z+YWY+w;12|WRT0sb!766fr6%~_3&JfIWe0HcJP9H+O8w>4jgF8Ix=|&KuVf*WL|*`
zwmWx7@hnI{eq+H4a6~WHky!+mIe2K{36M;&j!Y3);O*VtN(>AJhwndRU|_J;kzrs+
zXm4d^V0g0uwB<uqjE{j~!(q@y>aqw628IKC-0TbtHxfq`kA}u*+8E6#qeTG&!@w7e
zkGH3@GaQ({XaD~AKkN7Z|M$Dw#Knk<cVdsz;nHIp+nP=sKPdT+kG(-!d(T!8DJ99)
zHV?Oj53L?Az4uaCp8a@)1;d@thijK!5ICs;)_7e~|Er(;PYa8ahZrAB<I2|sYfzjN
zn6cwr#me$uCypOX6ysy~9$b;F3Dy9y$$Rf*cRRjwn+q6r%sdqBy%40KBSl1NopIc&
zxptolKZuC&F_Z^k(=_ksA;t%0SZxxHv|za7jLmr!dfe;{(i+(O<e&bKAs`%^O<X!M
z441H3<k-^6>=2I4o);Sm7&^4DS)(b&$Kcw!eVP-fI{^y4nDjkYtZSb<UU2LXqr&nJ
z*Mc%Y0RRf|*F8>$4JY<DD{!+nOhXMFF5crVc6_sRWEh-K9j0L-BmC3i#HIp<6{x;k
ze4)VS$>RlQ4lyb$#Ab;FH+#c#)X0WvIe&=p!AWek>|o_)Z%9Y=B}C5yJslZ_dCRcb
zBfYVJp`s6)Z{C3-loQ>eIcGY|FQhzVD2RG^b|q4BYi*k>`H^jtjtoPe)*eeyL=s(m
zp}<J_p2N&m<^z_k=F5@7SwzY&?TB>8<^l$bB_E!JpoH_uo(kq#F+K)$k$ZE%*#Hzh
z1#<&4EM^MkKM(_X=S=sThdp59;NoC!p2QS)1F1iTDINzBKa43}1`<DjCLUPuS7V1P
zH+#e7JtySO!Lk|1->lEh&ig+77aQ}L&(E%8A|)5FqjeTvFgSLIQ9^L1GB+gOf^yZ4
za~dWxr!`FetdIY;=gQ)W`uS3<|E5YEXgVkR^9#gVkklw5)t4$FC0Di5edG7{Uvy*|
zZtp%S`?B<5fg3n?!pyPx64alRe{WBu1w(mxxAmphhmZqjT3|-Si=}c$pX{mJT)>d`
zR;+x<_141>*F3aZe4#*R@r4f;yluO#R(?)<$Z+Sn?mLh5-0jBTpg&ydw(wzu+rozn
zr&oy_{`~ChA;ujmqwh?N6X#2ZltrMNv9ZVLu(SSGjcw1*&TeHcaNoW|d9R)fQaB|`
zwzjp$y$U>YezrL``-8H)Liegzi#dVdcwcAC#e3X{i&t=>`$sN_71N{dOw|AS4Ac(=
z6@}L&TiZZJbevdRF%ja*6T0tCOs^^i^(A5Xb7PN_v&)k}7o&3<3K-rgLOPZcA>j#5
zCes2lIy!8+JdPQP@g3lW^!h;Y0g5#wM+lw-m7FWO!5v>vG$Kcal2X6Yq{11k%oD_R
z&f$WDBFGF_T)4Q%xvD(2;bvc;jmH7O5f%*FzXX-1fa4Lv{t7W}c7;>3gO`I$#*|g!
zW`B?t_o`0^QF=pSN%4_bztW_Smvv+stUo?0*@2;bdxglv9%fKN`hZi~SVyLz8n<+^
zj!c6zZt2N7G7VPwe(lnrSOM2lkQ63R*zGQO(&Ee^Mvu=pt^TYd)1Ze_a|IVTR4zXR
z)qfzb!NdH{qd*s<c~Acyt*>hk58tth8&r9MVh$edA2jj~-harjXWgODSa6~PIS-n2
zom<=s#l`pzbZf<2MXD+xdDNvs#60OC!=6PrH0q1-9XPFtMWf9b4U-w>j$(WVvT;lM
zit!!b#w{Hw#&=+~22R6M#rO_*<C5NUW$_MWZuW%uhpY6^)5*g`w}lUv${qFH`+qV2
z$`6&|pdy=X!FteGEhu1+<L#t|Nr@4c-A9do2M=l5yZ{%v3?Bq1eqJ>JHT!~cn)>1g
z#r=;K|Myz^VF5T2m=CzSoLlXLT3&&&^xU2%fBP<e-8qMvA<kov7qnat%}}sn36$|l
zjJWoF(vZ_9O5qO;IUTq{eq)Avc|~!SyZF;Vtr$ol19j!={zq94MdV7r`LALI<A<`z
zpHE$^wOD)so@7!$<JPSAKWY3cBdk(Ma$@<O_f;bM<1GHNzqKyk@i39?z-`}i+V0;U
zg4%J={5c5}WG?qU?)w<{C+XoA`7Q77JZx*1WXLzSTrYDMROZ5pIuB5g305Beeb4>l
z_14Sv7xopmOUtD(?7917Pf>~dISrGTbV&68iLfWK?{CW=oiFD1-|_c3**u(H0y}hm
zg~<O{q8wWHBJj^^_xi8(OThKL%^8M@-6t!bzOb7EYE4432)MC&!usBM+phY*FV_Dn
z1m`0BAyD@v(B=mxH~+2jcLmPs%o^P?BCTjebqctGv6sCrc|YjW_WwuE=l{HFzvx4v
zyAc=fT%H9wMFApUo1I{l6sSz-NZE7f{=GlXxBs{p|Mz3Q{ErRFlC5oiYyo1H8dy>n
zC@CH{s{31AaRC(ic#H+LSpGcP{&4{)HCahIL_S%d0dZj)tQ=8U3=Sljb3b0cf8q#=
zqY|TrO(z@!Pas+hplS>pw}BZJ^FJ=Xf2J7}lrK^kQYSVq!jhv@7GL-<rRV>@I=L^P
zN*!NFwWX)-`Tt`5zw7tkw91!kSU8z+iYs3imb?dQ?+Y8>tN#-I|ML4UxA=EmyKs`>
zloGqEBE$ozDQn@wos#c~uzh(tB&B>_5R5N+M5MSR?e`VT`zKt6KORA`Z@;^M%RW(M
zF=)03w*wU?ef;<DUo-de55jJQ&HSJDV`Xdb4^D#VVq%ZIR9(tLk-9@3ZVT~-rnAc9
zdg*=jL@L$iy}yS@Z~d3vSBx<A&UNp(;gGxqZMT66NKg`<*b{G7bNi6ypB8ZW#=K+w
zbgT6!4LC^N0EKD&^$)g)pn9+`?$sVGa0P)<^ne<TFZ&;Dm;Zb9e$DefbC509B_}E~
z%;Ku|=uZV1)QX<)U5wUA-`o4V_htR_xL5u13_ex$_FwoUcb)~eeUBYx<4!-NyRVoX
zG#_|ixoh5MaN7Jhu}%J`e%&XL@}KAS`mr&5$eeh44>%{(Y&dvGvT*VHJKZS^4D-cc
z<{X#SnZx@1*SWn;$cq0gX5)VTE${o>+2<J;>~xD}gJyRo_SD}>czEZw?Ed20k_<?8
zcCv9lKbH4vuJk!%#pg{UEXqsozrT}(Y;w)6gNJr5jjn&LX3Wsw-+kv9xS)Eh%`0~9
z@14Ka+ov-!)I>co1I<4vNyg`FD9B5DU~N7PMKpgy!Ml{l*4w8bi{8JK@bJ#DGv#?|
z%nU!aoXCv>mlOL|A3U_Ped+r<4#!HF84A`G%mx*B6MOPOCMUeHF8|K+nT=uJBAEF5
z+zkb<zU?dCe$F7D;ej^S_DXO$^y3>Fw|ed;>+<`k%I9ZnDA*OYzu5dNs`7<w+|Q@w
z{hhlzxvi3!AwF=&Sx^S?I0g!n@5SHW-+60vMw;PA*P&cF@Hj)=mV<|O&TM>tXD^yK
zD6}T`zQ5CpD$ZvTVX@ut^W5FusOHaP<9;qTZC~+r(45nOTGzZw;8an#=HQ{7jT_&`
z*e|}o!0=skrza#4on+%)p7-8b{Je$<1Cr_;2M>A9{&Q}sF&8gGLHxwoTfhluPJYGr
zOWz)G-T&?3wvdtGop#Y=F>sZ!+~kM#oatdd?ty|9NrTPmgNG_(Ti@4$<`<D{6_(bS
zBOZ#WeEY#em9Ch|FH7spng039`xtc;$Ga^&c&Jjh^?eMg>23=jo;_5lIq`iAXkrgx
ztJ}hd_a(*7t$tDSeBQjk42Fi#I4wSKMyyZyQ})dK@y?+8J97@7<YAZ*vf~1{xpg?$
z=-%E-j0_CMe?S+(jE-=Qj&Kf!5zf&WsL}bj(b>t->DS>h8U6A0X6Apd{{H>@{@?QZ
z_5c6A1dm_N<zd*d@`P_x#r~#bC+_9-ETA#o5+jBO%ec%l7c%m#{-eG1g#3O;^X4uC
zL+anzSN0@^COvfd_XD&BW+KmLwuaxY?k{=9dwAad0;T#t;0|kBCG&yWulYfr+j9Nm
zEGF95ft#O)_b@)#_se``<>5W)dUIgLCf;KxhzA+_Q1p+yaKRxnZ0i_73j;yx7!3^!
z%?&{cz#JpeZ)>I7=~kdcmO%>o!DO9o^=5AA0+G<)$LH_;eo1`7Bq3JO5T7@C8$^B9
zeBZj8`}TFc4ZDy2xY^jcNFzbpOLB?_*QLsb-=2RzZoJw0w()M^-3IdiCs<cMn`6A&
zIQ?AZxz9E76W2_U|N4mO(uSlv)y?PZS5zN<vUyfs`Jc1vdskja^8Q+%-Iq0G?@pPW
zJPqG%SKG_xGn_de@~ESdq4@8sfQ1)7ysLVg_A`6>g5R6oZ8|zxblUN<H<`V6^A|1O
zo3vDanY7Q8U6S#()ptKyZ|m#uSaSK_b9<Ydwy%#Lu639CziPhWpOxCbb0Z)9n>t0G
zamD>Re`gtgwmGos%l!4`H+Fp4_V4S;2{+z^f7Yv5XY*p;n$0HCIh9hc@7=Z*N=bK1
z>P}6zlh~{D^2L>Fm!3S{p=?}UzQ23>Yu?v&M`u<_EU<g~pyEN!=UKCV-dydZSoALI
z@u%rB!X@$7VrTVs*jAl>|6Z&hziyNHv?X#0X5tgu@{h>hzVcOX-F~(Ot0un|O@Fq|
zhuQV>@<ri$F5J%(WqWI9pkH6{9OThUI%dK%iUL0`s8&w?EaCM{RB+;@^v8XE8Lz73
z=QBKryZ-v@nXe3M=6~8;`>!wdL&p5yp&T+c=Xd;ArEME=we7~@nkkk1b%ha%e|YK{
z{`@_1TzHzLq}#Qg`q$fpqa;IJ^44#!`_}b3dz<eohH2YNcHcV_!*$@8rd{T*316%3
zf7~9;>hQSzZ1(@+-3xwi;!EaJ&7OD9=*2pXU`9JJ!OWds6QAGzd+f@Q#N^1_JM%xg
z*_7Tqc-QN(_RE?lq5k!jmt_L=3ieLUXDZnG`fJ(~ABMQsGrk-=`0@V5+J9x*72E!u
z-SfqLHp|`Vr87RQ|LQ&?zj*f1>NKW3>6RD1UAS%6KYMY_#=nfu`D)V7?6JSU`}LIA
zYo`N3AJ2Qtu;Sj?w|?&!4#d3wHaEDiDem8?>_@ZT{@VBRXowBhfusArX%%?stu|U$
z|8Jq=_te;9GG705XDoDi#<*u<!G@IX%k!ne)9s8eZ`&4qQ_YIwtY>b@iROn4b6%Eh
zmArXo&%gb@j)mp+{@;Gg=FeBPcIJYX^?SKy`OTkw{r|?-`-?hiXVoY3s7ABgoh;GK
z5a;*R^QYajxT9LPch~(Y`4~F0T2@4GA~WNRC+izuetmHzXU4yTrF-W`XURnsS9Zp5
z95CBgrj^halM?s;XX7rTHLp$nZ~M?D6v_Cq*4%Hc$-6nX-`XABo>{s5dyLYqyCq9b
zUrk%~W>@I56M?@kR871q_tV^J$A`yhN=6(E^L-CFUV4-H`PXr=OSXI7CGx3$uKE7p
zjEm}l$uI5hX7&}nueot3u5{_)Eq^ZNeLercg`w`l&)6G3pT2mo@xrV3yMN3H5}df5
zVcM_TOBHSwZYuoymHDq}Z0nKBk9I4xO>(aLqy6~3+)DNei?`2Zdl)Bl&c2zwq1Uch
zJ4bB0_e`sjH&64{-n^M>;(5jXrknjA$%HxgW4XH6%&$nqADHvE`Q7PVzTNM?md|+o
z$$8q$!>=0oy)KJuFee23V&XlU`L<|w*l*d=*e~s;4W+VX|G072D>tBMS8D3w)3asI
zo`1&7^Kq~D!40QbK66*>F1=72xt%jj<ED#m>-XjQ7eyMZjYEspeY9G&|4`iG^vsXu
zcVhcZVmS_ktqaTQ7GqwW%zU!x`1hW;aABkKFR!W1vQMhwUu&alvWv~@wEUO$AIsb4
zuQiiR|MTzpGTlo;4YQ5IHb1XfJd62_>F+ty?2dYdZ@%~->2BV>(`UWjUV5yYob~Nd
z<2Bw@XBl_cbjbbmy`Q1*xF4Ky=S;Jga`r5@kM7-*a*ttarh8)<L(Kf0i}dzqnEKz$
z-hR@a;m?yL>t}Y#m>%6R>3{M1Aa$8P+M@Y#GZlCjeoNTC_6)1X^71p%E8ksXb1YAj
zJuc(*?1$Bq6O|iR{`^#Ou5d2n4lQqA-xB-7^D-A4{Cw-#`97=Jow55m<4)AatiGc7
zTJ?Qbz4Vn;r{lfOMd#K1-rqXQo$>Oej@R=a*ICr5m2K4dJagVL&yCUy(^FP!8wozp
zwm!Sg{7%LvoAkTB-rHxaaJ-w#x+N_9_&?27fdwyBZO_iN(OS=~uFAN1p5c@;-^w)v
zV;||&2Sxw4+gf%z%}oCHdxpA=7hk#6OO)TMeP{D+?K|Vc_6Zq|XBkUacTRJEY_d=H
zm)oyP_ajR^j9&lE;Zd!VUc2RH-Nf)O^6Qt^Y}?NCpl8igUe+12_Fhz*+#}gyeeh7P
zUc8X3=ds%+e}B3B)@pcqQ2Ro~NxR8s^6NjYWHnKZap%m@xVZ6&-$b{ztq-q-v~FX6
z6QQ_?TT^?v#P)k#?AuQNzt=5eu4^^vjHPb#bRU5~{0;2Q@7kts=~@}H_mbX=b1hqp
z{-~w@+&`7=gX_wUEvEBMOb!;gCED<KbJ#bY1GC=r#!2k`J)<CW-m0$M_3~@8pYpz2
zz4fX4;Yx<D*&q2bpZr)c{oZ|cw!1S0GE?6yJLjc({;A;spQ#@AV``08ee==VBG2HS
zy7rA7Lr}^Nj|G3TlCIR21-)~2c(O0UcB}uk^E;*bGgj^WZSbP5;<(#<m;L`5UoWvL
zYfR)*HD;FZVp&yY^zUYLY`D1Ue%JSm3(BvZ%45n&&3_@P@3!~T(Z5A^URc;g9d~bC
z{4FV<Y}>92H-0?onzHHi;>hs2m!c)<PA*Z>k}hd%N@o1&?*DUtZ1vBY8n7%!&LLE7
ztBLB~ADKeY_l()Kjo+WqoOSU=eNyH@)=92?M!J*suV4G^MBM%v`|qtfedpRD&XbMT
zlD|BkA?S0DYu@%dFPXP$cOF!(ZA^*Wn&K5=bAQ=^sLc7(*X}&>V7c>~^4m|6K0kTC
zt+Z~_^f#i$kLQS$#P3;n^T3K@@71MQ@6Ht1$fFwDoLS!!dSkmwsF%9>l#4p*H_fBZ
zvn|jnjG8>})Bid_b-({>9`C)p?BX5yQhw11cP>nmKc@F;<<`soZx>`7>Z|{~ey#BO
zM~mhPMwsu-c989u&ubdZVxYLs<9JkqWTbp&U)G-56M?^_V?MjT+4%UqNZb80Cc6x^
z)>^%P!nAYw?mYsb2cJq`SKY+jV0PTb&hQ)4hX3z4K2G?``|$ruRwK`x814^Qe-36h
z<OCj4Qj)rDdU>UaXG(i}($4d*-xsbqdR5nqT_TX<+x0MJ?ZvXc{(fMRymx2u(Zui3
z#_N4=slVWB?db4ee?0e3c_WXi+m{m!JCY}!WcVtbX8qk`?=+bnxl0c|Y+q#e;c@Qk
zo9>oLyDE#$9#|lp;C`-)%iZ|*7pBj1PES|c`~Hujo?y_|wJV$Toc=7kyo5>G>j@9T
zquRc2Ob<5aEZ=s8H=zCDKj}GDoqR!S^`bNH%nuE>tYeyePfoTgO<wwq&w~{&ino;<
zh?<(b>Y<!@ZwITb=6$h4HU=&(yCi1bT~@}qOFhseH+j$b>2Awqr@sxkJ2&=?imcc4
z)BBmT)?Hd&|2SjC%N6VRv;ueWci($(n5kFKST<ejeQfs`j-}Q-KTK9_lTZCwnY}!8
zC&$eb1}*-23q(FBGd?>io3&FaA<)eD*t{ykZ>g7d#r<4d8N6?`wZYQsGcGRE_A9s9
z*&!n=`gPSVTZ`~tYqxTj>WiHFt>~{59rvd$=cZWdyVdC_-_5x`w)ggaVXs$PzKFNy
zM36_!xjEb^{eIbN%Ko0u?PHwyxPIHc8Noa=8*&$)I_x}Wd9}8DhSmaO+YLIEv-)cy
z98bzwEIVqpx9mpc^}FBiRNudszTa-XirD_*gU_<(`tIzwd8MNFUzmrZiZoNF=7ui|
z&wnep!*w8QcOb)bwL5b~-CPnEH!j<MvZ=1GT0h!tuI~>6iSzs2x*4@{mT_wNoO-uX
z(N^1jU()V^%;12Ww3e(M{S_K-l^HBfR(Ytuy%`eeZTj-@RI}TeQ*1Kp?nJn}wY_U&
zbm8Y}{h}h1jIBi{W-|6%`pZ~x@qgRh#b>8y9-nA>c>R4-5npYSs&kj)(|u+ys1`cj
z%aD_4yJYgW;!SgIa5iM^p11t(ncbV~p7?V2*8fZCS*1JA+}`HuPgal9?a6sbU+wR0
z=sh1?=zH?*jfd+RZdkoKC*^;3`}Vie@BWJ^L`$BFv=^VT_J3}JSN4o)cRhFKdEQOl
zEPFL=?eABA_>^LMT;yu9>TaF?QI_^}ic`_<_qzTJ#&Wh7j=M~ezRK*Ql@xs_@Z@dN
z0Q+C}nw!4e=JY(f%}wfuJeNk3i;K%LhCf-hiwyrZZ=P4VY2ThVPZ#OM^BP=^Xf~-i
zvLksh^R-{jUrxC4?UGyk<V)){_D0eC`AN>K2SxK3A7sssDxN=S_GI=+_vPM&C*<#$
zAaPs&TKvn~PR18aSF=|fELswBS9O#6i{2GCKYK^7e=?b2b?0}LUh%%lH?CLAto4uY
zy?f37m@ALdUGx86lh*}U2`^aI%<o(2^t1Zdchlc%Ci}mse{<3Oo9!Nd#a!MNl}(cq
zD`X-IF1t-l+H<DpNfCqE?FxbIA@^UsvFcM=#QAPpx9kq4j?1>4D~#N>_1I+IeDv)j
z=lbi>MQcwnvNL|z$FEy?=$Ko9#Qhd#kHQVz6DPkoeQ5HQ%N?^8Zk)LIch>LzEvE$k
zB|DogC^bFca+;x(ks+-9YBOWRl=iycZsL5Km;GCLU;q26H=o29+N<wRQ2%1K?6l3?
z*c9U>0vV}qqUz!@jE*Z^irp>tHCFehR72)Ax4qAHovw}lHc6}all^JIukD+;R=ZwV
z_|I*3tiNY>a(tACtk1KGeW};BNhRb>)asGVV|jaZPW+K&k4wARzluvoP57PN%oveX
z^+;+_>hD|Dk!QDTy%}q_-)mOu3X7CGabNZ^=$!nXt#$YFJ^S8+Ph!{4pLn{V;nSk$
z{@I5U_8MFf&=4~Vo_~nH_RfkDhwReo%KIGKf+xR7HuLYxh&ms5Q|@Np*9jBuzBggm
z)~UU0>&}U4iNRkdKGYF^b;{vMIYZ64-7m!23f}E#;*8`!*)~hIUHnzol?w_l^_7B*
zm>OPg^F1<qb?u`ToueiFYUf<P?PoZmJ@Y;Djwwr5xioiZn-wqKwB-%c0S^D$A9`d<
zpT9nP$oNs~l7|kllfH56lFtm(-^BXX<w=cfxD3ah>{s0nBfV<50`@n4olv#>jYPQ5
z-B0Q_^KF@BOPTDCUB3CixMA*-wpNdoZn3o@v%I?6jOMc03zXPjy6iW9*L9a&tIRG2
z^ZDg%6G$kT7G%%#N3{Hfp@QfBf2Is~Ixkws96#!~E@axQPg5CAcLo1{A;WNuMOZ*`
z68EoF@gXPbTGU?zU)TS{%3v(}^RjNkn}4GDOjjaf>&zJvTo0{r6t{bqqHpe|{cA^X
zw3Z+H1J3tSA0}+uB|GQ-y2y_CYnEG25of#G@8e>!_UN6}Umq5y{LbM@xxVoF-G$9b
z?AQKtH>3-nTD$&op1Q1uzwlhab6?NRjx*o5{rj3a{floN1#=hW8>*;&Xa3-xXsuAP
z<rSmN^A}gnGVD<DUKz)5NAB<Lzw!t6_n*6~yzzlPgQ(u!2e(&P{9%uaWHDn;SmVC6
zy8D-PalwVZ92<SVzdB-G<XDuIqcQWX&W`}y)5lXZL$@*M{Fary^8fMaXP*8)-!{w@
ziT}34MgOJE^i|$2!E(>UdL;~&&U*Lu?t<TfN%FmQe^p-Or6_;OEYT^PG2bcnT-m9x
zH^mKCk8P`PSI)dVC1vF)+Xk1Z+wXMpuqO1HUwX;=j5$PXld6ucI8(qx(@al~gBPS5
zZp{fQ_<gEPyJz8%m3A}yR5odC{m0)Bdpo!ILgsZ_Bj4FxsteXy?u+yIr(k|-b<s-;
z|20grPCYW!U-fO)SJS(XwmN=SK4P|XRrj13-**dK{2=kns`m6go(*cNU6bl3&A6hu
z^M>22vg%ET{gylz$UQCkeY;B>!-EL@Ro|p|=gbIM@ouu>$rob(CS7y<ewa;F%J6Z>
znZ3VtJp6Lz`E1^CC7(e!IP>G{wo4J>x>wuu_lldjoprWaDN%Qqr6)yYZ}U6%j@+nK
zA08Za{C-$WTAyWJSw)b&Xz&l4>XSQa#170~d8L`}^7*pT8{Ix8VS$tD=RQAu;*{pC
z+Y?(Q)2B8X{q?)Yu}fa@TcGv-BT5rL-h0!kzrJYN&INDsk`s1VSKoB}=zLOs<&yGQ
zE80F9_gPKs)xFMOP|_Wim(M%BcFpxqSsN=CW|v$!#dPYs*rZn9QhST(NA9{h?tXae
zfWdjUL%Vvll9^8)D&${w=6{(qLwAgr?9Kx@+p?~`=%2Uu@uJ7yUfnx1clrJp^Dx~y
zV^>G_t($NAx(Nj_teEs{`Au#yb?e!j7RPU$+P3xV?ECd!&a8d@_4ZD0tL}Jy-{#t7
z-L)cuoi!dp`@fejedV`#%P!-Xm1p(iuC8C;vFx;>(k6L^t=XATKTcGJ9xJxIvGl^W
z4z*c7?|tPdeEUq5U+wBUi+%Y^zb%q7*R_dT+!fsN%l)YH%LoQJ-d*zdE|hH8SzvKp
zH~U~A!<F3EL8W4RK62g?5B#pyW_9I$y7_>gA&wUmZkECgOIxQdIj?IbnQk*_^QNjj
zw~k)uJ1eF-LpXh%r<C`);+0vvqH^zpa_tI48BTYbaUQqw;J(_uPpA5%(h~z?u@Bte
zlL|~Ziq@I`Y@YSD^p0z}&G(BhA_HeuZI|(zb;ZH(>6RO=lfT4DmDoGIS$uox<m+zd
z4_&%_hW%4t&~>f5QFCu@>a>04z2vIcuF0>%>VE9K6JuEE_p<kwX}|uP9bW~s?_M#A
zTvHkBGRxNF>+FA;zKXea#%`0I*51ut=d#q{%~OUm{TCUG@2v7Qjqg%1{^@pK!ajD=
zHRpvJuQpnj@R`q=vYqkAo*R2+B-!wODD1MhB%3Dj{V|LA)$5^C_uXn&IN^4c;r))#
zyT2Jsk1o7av1sC_vxN-H@0a{xX=vSF`|;F*)&DN1uim!q{aaDNYUY6Hw)s8_FFAcz
z4~w0(qs#L27t89SXOAShEt_T?yT(Y?n&F-63AcZ&KW;9)WwZ3D_OnYRE{)pfzxSqk
z8?X3yL?vEC!pr!mCX1GmQtjFJkLjo7awpg3NoC5c+jrrr=JjBPGbbu5vUWW``uz5p
zxP^=t^H%ES@>Fd3`NXK&$GmRWt=WH!rcKE${<c~8S?$)?Z<E4i+0C?=l%VaEtm|sd
zHGOC5eeQ<iN$Xp7&+h0jv43$cf7K%P=Wm{6Wm{)2n>Oc-{?h3AU(f7_TJT6C`f2F%
zD{CLbojsGNZC$-!%H62+KP8uIKCbT0sd%#>P)otFRr%|?xBpaFzl*Hjs$hTW>P4g3
z99fFSM?YErD~;Iy+x>cE{mu1vdUxsm6>Z?3J5T)Piye-O!(6LF6Hgzl&^ci8e6CM#
z-%eJ2|7{=npG`Nh=)dybEc52`U;K|^dRJf4h@A5Fnq^^!#?DK#V(uNf^ggJqVC~mC
zj0dhL-Q#~Z>leG}j_Xf7H|_emwrtkQrT&kk-;_&dt9)gzG+th}EP>~MJ?p<qJ##i)
z`q4J6(!TlCkGk4Ryup);R`0(r^W#~=j`!;>KYynAeoo!p!})!)_Si%nKgINa(%yp{
zou!4xuauu-dvNjOO1DX(?z`{K+GmnqP!YELs%LDq-S5a*TQBR@3rwx3y1n$4&7!N)
z&%PU<`pp^g<aNk*pW31WX)ovgy2#&tjIFb7*~QYUlFtq<yIXcuWvhMVy{}F#^}8M(
zwds2`t?c-*?blWAh-B~Eb+I&b;W-AMGA+%Lw65xJ`y<Z>U3~Jl=yj%$lzRA$?whqe
z329mDO3!aK&}~=wqx8A=zq-|}ZN29lek@&Yr{z1}sK4i3p6;y`VqEp|w}nHz_U6rA
z@OvWrQf~&ejuT-QTg}!;RK0x{m(lU^@mmY&n{PMH`}_Bp=&s_hjjr1^|Kn#!ue82Y
zY|HRYYSG=L4`ZKAN<P(h)BAaUYSgA5m!tV|qd)EVc%8TK{WaP2DE2vp$ES3BnU(S<
zv_5>#^jl#LA9slD_B@$!VCStw$Bo7e-#a^|#O+{8xL7?s_x;tdN7ETB!hTlW+mV=W
zyJl`j&MGGR{i%jC-$e44eaX!IB<K*z*lqGnBG+#H`Dwo|&ReJw{q^x-_54-M?oZ+t
zGhbUfV{=k;)2a9BF{x6q>F;L;q}MN)5qqN8J=7t*VuAiEd2^<VEQxdTs-EnbCub$M
zZ7u7MgC8sBGo9(Ux1j2H>Pf2`cTz=9++--`zIx(b!enl(GnP%S-PT=Maro8QYxycg
z%@^B`pP9YlWAU+xS;ed=58p0%`zxAZgX)g0Wr6?t?Tt6ByI%kMd9K{vEUEKsD@rbJ
zG-Y1?{6}jq`wzWu--WC6|EXWLd=(S)be7%K5{7pLtF6A@C^^8boObNn$M)Y#-tL;q
z7sL7eX{wt(+v_uBi{pFtKYw%S$)x&6?vp~7tIw9a&l2&rdF}EG7bI?F-t()Dp1b(;
zrOta2sb99sKl8kMvWDe=THpC-hQer#-q4z?(6$-#l)tp?wQ7%B_AHIz6_-!g+Qk3*
zkL51B(*E0(UMbx0UscZT@`jsx?gqH<8JK79i;8!Vns0yl(&hQVM=Soa865k(Ph3WN
z)vG>R@iTWaO1@NIy!vcbvCR$LtaU3be(j7eK6Pys!!b*{^@;-XkFD7~%SUYq@0RT4
z!LQcetv+h{kGDayRph~@k9Rq>+dKFE$=c;^d*D>c@<+lwe-AA5^;&11dvMwGpu?O0
zne|<{KT*qM#~P_?p0XBq)g&I?tSdNq@4Qa$?!bEm@irc7RqcOnSzcT7Dm*gGj72Ev
z%a&DJu1)Aj`xN!^in^Zg?UhGA7>chx)6M42uiU6!6Scal<CY`a(jQCKfBYqFc;v-Z
zFK?^gY|H&vXKXD$<z>!1r&?arepOHKdxKdg&1~P#@>HsS`=Cg9?bYiaI=i=hPwiZF
zIqA9J)!j@5UUv+YwRC*B0<W4DM4H5vw_0Af>Q$V&*m_dRrsbArkIZ0~4q*;i>UBb+
zR_oEOujzlhw!C@bU$@`d_gAFv?Ke+-_A6*!{&VnrRZyk-;dZ5oue|Tfb$lTgXS?Ce
zV@B(0xnL{V2l3CR7nm@7Oib<#Z7T~sHR0j9T`a#2+|6I@BU|vy;_Tr!cD?<QSzqJU
z|9#!Pe7$WQyZuyqIhF@2ugJgKc<0j2?J_Q`v3zTq8xOfTnfRAfp5LglnyGGAMf2~o
z_56j#OLLpDf1UchCorM+lQ6@%^dfP_2^*9zJ2U$qTW&CO%8HmnOxw+0?|#i~{@`oP
z%YWzfH~-5CURUJbd0j78o8i@^+<STQp{gtQUOHLvPu@0jt#9OXDP_f3>UvkLBbiH=
z-@WDR^5nzOWA`_gm9JlT-19*4^QYbn(GyKLGc4R6-FoEmwwTNRp!Qec@4Bbl;to8H
zS%1T9;@kJ#x1-k975`UYvMAyHe0R(I?{ik)oxOkk;;h*|><JrtpG?RWlv8ubHn6K&
zu2WZI{@L$k(yQ`oagVRXls%TZAlm0Sce{~}ZWvRDRbB5Y?!Sv%oL^nO^>VUMcmCRA
z`^AgirAPJ1Bz6bQ;;cz{EUkX5_wVI(oX7k(ZQQ8&;rjz)Ghf>&xkk(n+IeNd_DsID
zy<Q_^x`X}=_x;}fLW^Rv?`TZT|GKqqX=?cl|G(*acOCQ@4GvZnSLKA)u$)kgKihX}
z=Y8R63BDy4Vs9${D^T9L#OHg`!EKFpF7oV#;u+-+zZWulzO`m&S=zg6_EPEM`#Ta=
zi~POuAUN#q>l%*>Pj&crTsWz;@ZkFfckbuDS9724HlEaUiO*mz=fAx7ZqCuyn6K2a
z1^jHTV%@Q{ch)2|+pF8mZf~4;{luD&frs)gr)3#Qisu_$6jA=VvRwA_Q<b+TBj<(8
z>nvM;{aCL`{e6KePdt2fo|5QpkJ%V}ssEPEblz7dqN5(~+C06Ol|g&Y4^!n=$A3hx
zQrz48^6`tVrN3ht=FMX<h>8kf-lM5%8za88Ys>AYOJ=jx%SJz!f4!wm=&km5H5v1H
zZ^GBEJ6^qFYi2@StzUcL`t@I|Q<i**e!Y43hmCicrta*paTn5Vzx$wVaSZp=pV80m
zSnjfTx#YdGztGpr6JE7h;cqWVe|406>Evw97_ie*_CSKOSx(me{VR8A_Ww2sy0#?s
zcAs?auA^qw@3xh{cm6f6`n`2>xXQh<bFJHEOLltrds_VKk^8qZ`-{itOa`A1TALQG
z-Br5dML>3Uck=zXqpRE5=J_pqaw0rkonPJN?IDisYtNmo&z(~rdh|ec)$Xc?{TJ&v
zCn%o%dGGT<S>E8%S$pE0x2!XI{EM+dXM6ObC*Ss8(x_1Tu;BA9^DAFtL!0V6gb&}^
ztnzBvQpMV<a!YK@EqFdlf1aqf>{HTPb#>7W;rb=7HP8Ec{z!cJ*6C>5hpUtILPCGM
zSuVbNx_Ie+z5{Q*{Ik_(3VE7e5<GLm)VCqAe-nb2o%kVJyy|~iG&85p=~YQnn(mes
zr`0umdGKu6yf1rytuu4_weIB7|7I6=227pLIZ;XeRcdX0V&hZm7dQTIw7C7(SMQ4C
zMcc+Fe|K)3z_u#+&m{3u`Bm}BZ0Q-M&d+jddTZDZtZiGmsr$scYt@f#%CJoiJGp3$
z=8W%e5AWnrRa*Y)XR>hI>Gqjx>n=wwQmnmSv6IQLCGgm<9r=}O;vPBv+xnv6nmf<0
zlUul-8$9+|c2nNrnZ}2$t*aR#-kpl`VtOjo{5h;mN$cyJ?QHiQ8Fcbi8Zn$!R(e`E
z>yf@yy_Ei0i?$H|pI<hf{+&DZI7{t<urGOs47N{Q`F;BbhR!|g6?u|(z4vSWU*Z$B
zvUgcSYQSm!9ecU%R2|G)IN8^FCtKHS-Y-u2-xj@VXNZ_}((r!*L*JS0s=h*&4o~t8
zQraHfUGT4Dmbtl5echC$`}dT7kNllK<-gCukgNVXj1SHV{x|Dl&|lrG9cq!BcVkOJ
zR)08Ku+XoP`__-EaeikSWIo9)J$7UM=L5GlYzTPyvoKB~u6ItE<XrJ>MX4&;8(0$J
zf;HKDF4Xc~mn!NK<T1JU@Q(Xh4`KGZrKfqr<I5geE}wtr|BA!>ck<oEAGb%X2<Km~
zUa`>iT<>&|zZYKr4RStpWPL;8*@)N^-<sKW^ZnSs^+0;MmPyL1ZgbD=x>c`3-#v7^
z%6p~9)adcz1&KF*R{5`Z`c<(w{fCg?L_gugi=2X%CnS8b@=LdTUC}45X{@{R=rOkw
z5tF_h`gU2z`6QEm*!+(&51t>s>mgn^Uo7L%l(fD1KaI4EKJ50MTDIcjzdWuvZB~=N
zr@X9^WteJfB%*1a6fo!b@uQy^7=F)wr}MkJ!(;Q|{yZ(EOX<FQz2yGvTKZSY`WnNT
z@7EM|_Ak6Sb;;ffpZ4B}nDqUZzV%(k9VdRbx%k*V?OOM5%d-x%zwdr)>aCsR{i#cJ
zSAJ-|F?;RAB2$LbdpK5Vh08bjtO}~0DO6tR<?p(TQ72bnQ4$+x{-?k1440`*4Zmqt
zyu#^r?9Z>-+UYaQa~FMcdSdi>-nYX}H^ol4D(Hz<tvc`bQ1$1nKOgUVK9MV5W%lHa
z{JFSI9WNKPg&#k;=*<S+3CAkqG7V1L$@;17Z+vGO!=L#bHEbIU3V+FXZ~e6OtnS21
zkqlpBKfewy`=x7WHEqe>4Xe3?&wq$$c6D(%#ZYmgecBS2xzFoA#;iD{`TNMy4eSfP
zv6jyX<-hX#&+e_(Q4zvveIJk1I)?gQuKqn`Z}z{m`Oju=a|jPU-hD!*LC}*`>Q2tS
zXW?_Rv*+FuZ}9*0W;(CgpL2T(*L&ZP$@|Q?;g&G}A(d&2d)~Nvr@uV<YZ+(m?Ddb1
zPn;#sF86TK+`X%_zW%v=a_%dxDa>E1KdT9*M9MCix>s1!bh}-y-QAf#7#A#CdZNl9
z%kqirKZEy^67L4r%sCNoV17$B@1mJ{?W#Iwz5L{Ut<pcK-#hn9|DO!cQnsK>6Lue;
z)b_52=I`I%W2;O)yE6E7=K}YG7cz_{?0;x1yP2VF+0PA6SRc3lR{PI!>hCMYeF76@
z87%BW7asdQ^L)<L*vR}Td0!cfjm})3^=9AXXlX(AS+}@9-{JUwqBCAW@8|UL5T-w|
z3WgS8XGCfb1cbX6^sdlyV4k@8#ifLm;f8|uoo>Z$?U=Y~-Kl-1Cc3dEn&(`TcI{s_
z)9+1gRMpJ8_NOfh_!+LJXA~Rt6mHO+GLi3aZ{5}VaucL3h%*TP%~&aB)KbOf@pA4o
zhjadSyd9TyTiw&Tpj$BgMnUPX?K`CRux(I!>MnTqNa|GXto6Mihjwn7JcF<8<+Yr%
z^ZV}U#HY%zOX;$#IQQVjN2LQ<+b^|Fy_X>MuV!Pt+Gn)`HTF@f_&;cEzVI}#``FLt
zdXlTku2}sqSr8ZBv*PXN@biz3nH+YRG-p=F%6Vt9%&$#o^MANiX_<~&RsS^S=d-?h
zy=B(4UiM<b7q>RI-UTzu@0?=acwJ_3eBF$UNtHqij<tuUvuMPeJk-Y@@yOEs&GSRw
zFNP^!3S0NIuvUumu--h=1%dygm;Z2?YrdlBaQ5wv$Vz*qq+gDyHxlFCFI-{rVE^(Z
zu>m!V2Np_3nNHP9dpooE_~XoMm*+YkR91VKmE?Tah~G0ch~eGmeG6qW?JtPbGVHT8
zxPNiU6%W@6pKptf`Yc}A5Pov2%aJShEOdS{_xdb5)?5C8&#HaSnmmbq#w+P_GINc!
zs@B&`*Sp>z<*Z)j8}EH(?aFucdS_oNO@CcwD{#N)udCUaID>d8hLg9Zw7T53*4<TU
zFE{P}`b3W3RVo`I4PI#1bhcOaZetCanaq>>F3OzkwV5$PMCuItIQED+Kc}4N3|x9`
z|D_5a$!!-ZU+z(um1k#Jw!gP%)(ZvMwyEbPcf8eE@qcaj&v;!EHZI%Av8$tXD%aQF
zwd<e7ciqZOWKQzD-7?FkSFUUK-QrbyU!vb<uk^x{rL!Ki{yTPmKC{osvap}F%TCtq
zzrwoBU{7GUoItt7rDfMAPPhB;PM^Cod84<Waa)vU>iIXWcb|D2;7R^8Wm&`gAkCc@
zKeZjb7+?N%nPvE8_s@doKH6Cr2YkD*^k9ZQ>u#@W4OQEsfA&9o_RwqITk9?BexKc6
z&-%mecjau!*EdRvIHF&aw9g85aq%+0@pwu0e3@VEshYCqANw5*47%*5?vuYOXr^)q
z+kuVq_7#T+KQenSeQNTvaD9XNJF|<|B$XeYyzQ2B_=ToKW7+c8W#2aRc5rp@blX?W
z+4#G%QQG&*<y~%W&nFlknD;-;#W-)-SA~}r*LF;ftH?ZZzi{DVF}JvEsUr0q#?xOg
zJGB0v^mLU{@wV^0TUj26y_Y^UJMFr}{#-Ww#XMhr9oge;!&#;+b4xlddfu-`nH-y5
z3Aw(Eew=jL*5v=5RKA@;2^;1XOEb-sk&UXEm&UNMp!1E@-5<-n*QvcaI6ag3q_h>Y
zrHVpH-@59%6H>m-ayxeH)~A?FZeMGxt0wQ+RA#->^mnBG=R|$|&nCIat}zMk9NUs2
z=1DPo?aW&ia=b>Qv|)$+VN1hl4xgCLI31q8sYm5=erLy)n!|rS^O`eNl`}SZ)GtuG
zn0S->nYZ-!y1M+#Pb>eeSzUBu`i_sMH_muGF?;)o?3e6SGv8Nc>R9?L{~ucTZO>nm
z_X69WM^--0tClH0Y3tUqHg)j|<q3&FyI${(pCk1*Stx_Y-%6=`nVhp&f93y$r~7Yi
zoXdA);$>gKb((rP%~Sqx8{GaMe$%4C>V0kWHTIgB3{O2T>-U5&EI$5*cV5@pPVu;n
zWv_W$<SxJdbMUlav3aS&8vAoq1^kCAD&yasKXtR5_urrIGbYMP<gE0W{`cj#Wqm7-
zD#?8_J&+$g|NANVdL9qudlmCSFD=UZwtfBG+Ixz&lVx_98T)Ea{mE`4EqUlq|B3L&
z2bRv;zL}9By!xKsyea(`=9kP&_CNPkzQ^*B{_aHG?{my;k1ng4`E14VjVq<n6YqMS
zmEO7RqOjn^C6R|DUW=WwbGY@kBW^W=mXBy>xz5x*Q;#t|*l;tz@@e<;Jge0Ec`uJ9
zN!zAe`y6%edtctUUyBRUT#u&JecLlPn1SE<K+K|_=D(`-JVhRzbz5znTwS~RU5WOA
zMF}t0hwn1@p8NStiQ%Np$KL+U&F;}Z|5TWJw#5{kmuY{$*eT4t?2&%hId{Xy@50xz
z;{1(gn7p}m@7#g%9hSkf_VoVs_VnEB)o`)$+9c*zymLHfUl%RW-*@2ajoJSf?0=@z
zzWUlTbG`0+fm8V_7FI_^yjgnfylGrs)poOz_IVra+HHCH*N1=JbV-Fr)wFQs{hmal
zRJpyM44+wAzif<ttaWOA_@;;7-E6bZohqKYSjp#~cfnld18e2BU)sl)&~$w5lhc2X
z_5Xa#YAgF^mhZZbp9a@#o=!6^VcfjakMC9gw++3^+5*4SzCOKg_p_|WZ~y%1Tzmfi
zs*~@JvbN=~4!f{&<ulu*@^1dW{oeN%KXP9>{gbqh6pxX1mFj+uou3&k)Yn@TEesVs
z5HA;9YufiaDqs5K?3o*HCmp;ko|~F2clX1dj1;!7`p?(D5B;%a{<`qjODC>9b7RK;
zTUjSxq^+s4J9Bv*Z}z`mzk1o(=Iptj*14^7TUBnTW@?Vy1|I3--5nn6m(QQsuxtN>
z<vbS!mvMbr5;F1PwwFvlRHjRu|J^V>@Uc=-N9Lx9+k2n%x~>xhjf3UPe)>$q_UrqI
zpWB%^nm)`=Ym?hO{g<Gib4}r)s%g!0d)8M)?9-cDGw&Q*)VHN(6EB&^-~aYv+7}<$
zCw>urPq%;nmb-iV#+9?Z{}pLV|IN7Lz52Yz|FZnzv)q4;&!0KQwC3Y|ZO6~8)vGJE
zaXyGMvN>;Iv&vgA_2h)p)l28@oF<cgQvA24-NA;V&6dd($Gue#?B3EVc}=zcq=&7A
z(tGzO{ad))j-64Snzuz}iTUxSd9&0Xx!K+-`0J*mv}wI!!{qg=+?<Q&p7nnD#piTA
z>%Q|A%-0OQDt~&@T`Z-~9`Qh9`@-Om?aMBd7rJcon5e}*t+wK6pXNR0iHDCLJJnO*
zsIfu9z%*=svAU41>GUk=?ngmWVlzzU?7!i6y+r;`_-u)*3u=B(UT3LXcjlItsHRr=
zWMPICH;n5ZU5I|JU8>o;&F@7z+v<Kl;|w{b1FJS0&rmh#erf!YyQ1}+I{(KFtiIpl
z9xpu8TD`^k*+ovxW0RlGkJ;;ery#m)QL4(%jo)v*HIP5dF=6JTr}-=SwM7dZo9~uf
zt}S5;JyK(sVk)`3Z05>q%d8}}ZF%gfbgb@lkE3-|-PgRfM@j$KUgo)#I9cVd5$^4`
z_t>8pVZ@)X?!VHdS&_d&`J-R39yl(y?SWoye^thunR^Z#T6I4EhIjgwOJ5ef-1zu$
ze?+*O&}YN=2TOZ@GKjLRw7gMeuxMJ3q~20JFW28UIrnc@4cN2wW6gaHrA@_Kj%?Xo
zEouLEVcXR$*H~vqIv>t|+j>QQy7ap$ofosWah+{^5S%2#z4SlBnr{~jR#nH^Ep;gG
zy!Kb_hw0IZAj?nJ?)l!nw@0HaCFp-c5eLfwyH^pLZh3px${+spVg8QA&tEy}Pu^cM
z?ML+SNnZKcGiu{6O?;f{y->3}M|k3;+h^?c%NMKr{%5_!y?Bm5?w^|_+;+Z_FSags
z=elw^e?_|f^+}ctqO3Ed)wy5G+GUg!wFRuYe&nC+-z{5Xtk0ej+cjnV`{#+$?NZ#m
z6^@O)Chk8k%bD%T{luT^#xW;@Cx3BIWajb8!lP>UvQ{W<yd<l-U^c^yiDmm=oy@p=
z`O=J+v(|OW^VB+THmWwyzrlY(Vpi;lEf!zy$xq&1&hsp8Ls|QWqnA$#aP8KpzBuP)
zx`zBQ?Wb-b94XVLTW<UA^{?`3=aMsDv}X!kUH1Olqpl~HJ{(WW%r19Y&gK1jWrmFL
z)vI?WR$YFQ%)nGIr-rS8wNkCizx|>31Sju35gBzCV(%}%aCBD9wEvGn8H<)Iw0NFs
z)cCk(ePzL)T_1gHs{&?ij#>Dz<a7Dl&rcu!XMSKQIPt6djP|vbEz;ksbv<)Gnoj>@
zxnkqv-8`>b-c4KhX8IIs_g!i{3C~Mx=Wgcxw&au9uCu#NT=q?WpLy-~wTV-&SwBC%
z_?oPBXNO7sy&dni+w6HWxkvPA_eVWj=@nZquAXz0Z8ra0(}!zs``_ERv%@8g=}b?@
z8<W#J-sKCmTF#RBo7VcYZpFS6s>+Tt<8s|<`~FR9yB;&;k$B+5&DZa~oTz*yzL$B^
z^b()qv+GXGmAmrRy!ZRAhsBR`zg&!aedb<oN5`AYU*GFqKa6=}a`?vIl0Sz9FGg&w
zzvf*$OWcOtf#33OO})*mEYsU-{#!45o70!w*r$4oqcn7x^_#-i*|`zVmz-BV&1hG$
z+Mln3hcRK+@3`%~yz8IL?>_%&)-1N&JU?DsUw-G5My!g-uH$zu&3bXsDMCd|^Lxf2
z=aN-&-%2Oe*f30=y@)B>&o_L-pCjM38}(y*`0CI6kuz%HGV5#8Vb-zK`}kRofv0GF
z@VA$1xDBosJ5SBr!e3ue!QEDIHtg}4+23mUYp>{;-SP<WdA($}yMFccBCcE4m}ktc
zFgAX5bBo2pUCno6ewdo6PHRi4*q$$y|F>2(@zSy?$2hm5<?hVWU&ZukY8q}SUaszc
z$f>J!k~Z(gw6HnP9v(V3A?xwEBW7PpP0l;(Zw>jART;4VOOTx&tLn3J7yBip?DX<<
z60hwmod2rjR6VD#;KWJ!j1rGmZFhN+xc6M;YbT9=w@$e!pSk_@^*TAT;^vDd{tLBF
zdi!O^bUWRZJJi3;;QMsH^@UNg@6Yh>UsC0i`+ogiGi{9_!)BZJ=~-2;j{OVGySDOW
zTI8hZ63!kIT>K1ex2<NY(6E#@6g{=h^Owhc_w|+6%d)CwpU-fuvghZwJhtJbo>%^*
z+!UX=iykHmCq3#ro5gtV)8geTcStr|l}^{s6j#1e9O{)gb3)RBx7M0@A>TV^Y;H&q
z|I*gY5cX3}{ML<%8Ov4oa7b^-xwhg;yX~I4y#~Fe?n`wyb@F|#pOdTA5*C~7mj9l)
zVh)?GaPL2s2i({9sVfHth01T&;`un+*(d$uuf|@R9JQpb4a+@VRf<e7J9F0C<o}}!
z6|x_mt$!^L9KAE^=A!!Ne|}EzewV5F!tm^mSL^*>&n)ekR<ZK*^k*IR|E;zj%&O{q
zP-5`y!n-AR{}!DH%wk#3eQcV{B>S_A3gwNzecUuxDEawTyHJDK&%T^e{200KO%(eb
zx&7<3|2DDMeO$-<T6$ijkI(DxUpvGsHb42aLi%Y}wRKnG`gMF4bff>qi|yVVeDAoy
zzxmI+auxq=J}vV3U(LnS7807F`wd?Cd45d%9o3NOxI-fU|C`U9t3SUMZWsD+p>f?y
zfz1=kFSC3!|HayHN>=Cgw-DRCnJIDy{O^_OYU@5@&|`i0HtR=w+%vaS#ebI{m>DlB
zO#CIfTY8G5;GeDPOMZPRQs~$dsCiS_b;5G%hczoTd-JZY*=f18@9wcIt(iBkJ@Vry
zUA6e<hW6OgU904FC~n-gRgqV?p~<O3I_F<^Wpdq{+@>3BZb|Q6P04=Pkr!0*bqjY{
zrfqkMP3gmq7*Sb;W%4sGO{m;bXSK&C<@|i%U1f`=$DTfQ+v?QQ+<;q0Hr%w`l*hVu
zjp>w_l(v~`td2jPe<8vwM0Vb%;Ls<(Pu<qLp|WV%>|4LzNq%{-*x&B=qOv=WbJkZM
zEmG#WZ4=5UD*s4Mu=9;MkM`Z5so#71tWv8C&S#zKb=WZd`bv*mTieggpS}I@_qep5
zB7&J~l-#o~o#0$i?5XA4^*?4&{7K$p^Pj(*A9w#zs`#v^OILWj3=5|AUf>UH&HTMR
zNqg>3#{DPGGcBll{zlb!p><GAz!M|p*IIke_V}A#uYUJ&C6|ln@8$nO=6Z*Txx~Eq
zwri%rof|hTWA`ueEc3hjXr}+;l4Wx*zMJ{thrxIIlUvuUH`=<IXW`9v=Vu7=%Rjlb
zz}v-y^JL2(H^#e<e`n1N;)<$%k+-Vo&r9cH^ItPq7@b|-XgOWwa?PrJZ+Kr{JbCQ%
zUHjiNCw6NwF1t5v^O`Sx_Actu_rH1lDoK~MQJcN#=Ulc|G3Rxk_sw~^Q2MH5Ys98S
z<{qy?J}R>Moz!@|t@gxe5eqeE##NX0mddd*73z5^eX9SpRAxoJT)K<E?HkK-q)$89
z{JXVo<>{R77o2aWty=u#O8r@@SMxl$cAAGgZ*!R*y>?wZ!+Q4pS^?1!sr@ytZU{HL
zzWXYuV}8tn@@F~mccywzXRew3?r}BajZ^*eQWoxfmwk6_{a529D#DA~rR3_4X8z8X
zT0Uz_z0O^e1N_rf^1DrUEth-6mJ-9VwMIcpXxEQDM-Hr5{<T>;$zAH*4o}9MYLg4G
zJ0||TF-0nzk*9R6zv91(p|Z_wTTaDYVcoXXZsEx<%nzL6cTH+-<7c}6diOs8=Lc37
z-!5Ib>}W(?`4`K)g7ToaDZBK~cm2=vHQ#J*JiE1uuRqK%ZT^qOMH8z|T$7*k?8<=~
zk?ZYZi}<2zm^a)xyyKEUzk$g8<<;WpLdRVhWM;j4eC?}1!j9Fg>$dx{o9qmgKb&am
znfWyDbK?GM78jnpJ~EM|;Z?uiy#qGezi3?!JC#4v{H)UPGd<S~9yi*q(f`dGa;>_v
zyK(2c1&v|FpCmcIc%R+D!lUWY^Oke}Bg6YFEBxQL+wnEszawH;sw6KWc=NW8^Sm2t
z-(7vSI4-eb1FzA)f8RSE-|H5ZYp;~QSK<*paou8_<I~bU3guR<UOK7LUru0i$D74+
zJ0ElD9`)MESO1emQjSaH#2u3(oO7=nd=WW+R`(xf1G`$rulk-Zmps*fx|%`k%ge17
z_wDkYw8Sg>*%HP@nzB7-4$t2vK5^Rex@k|E?El`aSbFrA^yV32W^zfo`%((xFK5-x
zl(Rg0HoJ_OH}#zR@6x?h4dyYg13T<pO3o+twR0YLd_$t)_$BcG@sGu|ul&^Fyd>D>
zc~-sR-(0tbY2$t7D=~RuvHzR$h1`Xk?Zu@3SJ+2OJUux1v0u#BXCKeHx+tw@{IG5H
z^*2ntVGKTJ)6*>F9?WN&F}uy;q03&!;NP3853FQZ!t*Nl787H~s-+44f3(*ZTnf14
zAsfK9pZ$P=pkSqV!oIB`(^uE2cK&MY-8HjtpYUc@ZZnw;I{)6B>i5f5zVs%a!*8mg
ztyJDr|6^rS^*PKG6pm=V6=V9aDxWv2ZI{oXNBhN3d9O@a_Vs72?#)>%Ze8cT{yK&+
z;JV9^2`Ov+3*_E?+~4`J`C!jp*Cj7kAB+FIdEJXya$mg;6$DxT`O~LmcKPDm)usHt
zOX{4zHAQCqSf6dn^^v)@{mgg$|0h%$_8U*VFg=KkHTC|E8=v0nn=BK3;lr)+R}Gt0
zK8YWA)zP8ZG1nx_t?JMBiSmm$-^E`@^?ed_c#hF^H=dBg&GRD#?B`s0eZS5-Cw*zE
z>46tESvMFynCaGbyk2p9m!Rr1_SejjLiaPCwe67+iBbBLVAA+ux8^o)zLu*7yIi(i
zS5i_cVq>sgwr2govUGdnZPWHAePsSEb@=d_b!ESTcbz}H+4GU!bMa?}uZl0L_DiKP
z{COGG?zCt5SDVwp54f!==FVN|QOywdakaZ-=C$JU`<BO7K0lBgth<wq!QjT1t5+@N
zIx|=()lT)j75!E(mWOrHOSAcVPMrJh<169ac6+bH{R=uTf4+ISkE!APtA~m^i^Und
z_e{0xat`*&ow)IgOG6}Ug2BnAH17I9C1VDyEA64hzvm?Ho|M*>e>;Ag=rpD1`!c~6
zjMK#Lm|qoa(Eqf;(S7m0bze1(6uU9}yS2lOS?5g6cY9WmX3_mOiyFG7?PmJ0OYTbK
z)wAESGxJ<n{Bzzfc=;~;zl5y!D%sLo;&luwPAaP{R%bBZd3~|K`kyihZT;`Jeu`@N
zZY+K&_toW?oNLlw7j=cZxXhZjM*2?vtAnkjN=kg+!ouV}b$4{+*xflerS8>%So1w8
zDSJCQYSRCk?3Ykd3Yuo-r(`|LZ|S|M=URRoG7_BF_T&14bxW0$GMihb1}Z5%%Jkzc
zzaiD2`I%wb>~|~vH#i3_x|UqpWOyy}-;=U*-nGwmGo9JCTXMp5@wu<s#bX{Mc~s3~
zjCh>fJnOsh?6&(MCpP8BDAb5=j@pwVC(Zj|^Wv;q|JIfEl)bBo*%o&&(%Xe+^7U1B
zt`^uatoRxcVSdDyjp@N+iF?x-L~p88n^d1`duRH3s?+MD%#VCO%YSx}SzG9m68Qe4
zlG3Kf%lqcfyOnBpPV23)i_4P8_c8wZccWdNOrM%ps(z$;T4zT`{6Y&Q-ZD|apBvS@
zH%?Sinxx}9!#J*2HDBN4|5lS-#@7BWOPV)}J^wyWO-X5YZH$1`_MgTsE-sf|7Nn)V
z{_1jOYo15pg5=Kj$`?W}u7<cgnVoa=S!YK_x6-w^Ue)Y#D^31=%_}iao!8+p)A@Qw
z{kQpwN=nuHx0gLBl(6-8S(3j_N$q!6$4@U#O};;J-rs}-rIR~%Mg4gkw|k!L0_SZt
z6|Ef}xjG*r*`1a<8g2eIUs*|solWom8?LX;E-ts;PJ8_FcUQ+1(Fbgy9#Kq^-mf;P
z?Y){YZKquMG1XJ&WrKhBtIqYmFSA`?*Ll_l)#AIw6xf*x;`7v}>lEhg=i{7lm(k+h
z`e#brZ|*AhGX!KbCBD?$tarSO=|Rc!tvQDB4NP|)oo#G8&6xHq?O&khgPJQ-oNC<f
za@Ss#y~WhPzG<5GHHMSI{k;NPw@$M!ihkU2;z+cM%abR6eg`vz)GH}%df09GHsZau
z(!!lfPJF2BO}-qn=$nxFbc;GEljq8lE=MTkU+?Oe6ElHNx$k1d#mDQ;2I;7RJe2-1
zgGW=RM$WrTP|(`${#@4>)4ji}rd`nyI+?2z`DJB?NB@;7)}zNJ6e=kdJx@I6uX{7v
zCFKlP_;2AyhS^yzH8S2;_>Hn>U7XaXbkth^<k85p5B|HjJh|1p{dK^for$mdB9)Yc
zD$nlZ`VqF)^^mIH#)C$J^2aBgcX3fM{2VLv_LR$=xzm4~O1E@pFzNNWa{a8l{hOtY
z;d8e9pO)KIcJi|O<Yj(kHPx|94t&D1CMe8g`mi#7t?8fRVHSS+3f*x*il3DZ%$n2I
za8SkgxEs^sLq|MzeeAsKd99kE^j~Fi`;J5B8SH;to71JcfAZ2R4;|Xh)U}?Q%kaeH
z=IhBxIv;}_FUKk!yD-D-es-3Z7~`KuzVn@Ik|hqf+@F=bk!OKjx84^^hMea~yZ_zx
zE;63c<6*f*eDxlQ=PT>JY&|D4qiUNV=ULUG?fbt8MSfh;;qm0unWb0WZjJa}_({_H
zm0!(zv!5&K_xGO;k^8#7qhrsD7kd}XV~*c_f3AT4$4Z@v?yFo~{7&l_-1c-?lD4t?
z>@Eql8FOup3C*nZS^U+yB;)=<=k{;1Rx?gM3g*#wJ!J3RpQEAV>lPlw|8?X4RqpZA
zzr}9c-jQ<kG?%8uw9XEbyqKA5=R}{WewibfSyFh+#b>Uo%QLaH4)Nv;>rU-olqUUt
zpTvW+Z(O;j83#u-G}K>O8r^+{amIseedm}5Rt$4ih&}i0uWDE-X<C1*@w8zc<C?;p
z)2Eg%fAs$SYnQIdIHgZDyUtvk+qNVy_Vu;MBYnjs9*qn8)>m@0S*M=*t)%oi_0EUV
zyKk@F-?*e`rpLPMIWDJMx~g?1YP&7_nQ&Y@D1Y{AA$61KBC>Ved>t8Io{LI0HArt2
zEsQKY5Z}14Qb|dAXHe+JepS=ImzUnRe)wxj`&+i$RuPGR{i^o8LV_=Al70#Oa(n+Y
ztt&Y`cm1dDVoH}*JDRC_S&RISP~tAPEj@k7!&4<l=y(2aJtd{`KQpy<p1h}|bh*oA
zkD5x`|Kv`dJMJz|UWLEDB$}b6q*UE&y)nY~r#a)xATH}AQV$Bvv$QmJ=`$`+IvTg}
z*`Ml*|Lt0zbZT|Yd7eIb;{8n)&Sr6Ir~SM2x;y0e7X}8sqQ$GK8rtuySh?XvF!zBq
zDXaIZg`IWu(o#wIqB~*o372z!!rQx&FNs-fym!O=&!NCYkJav$S^sLfJ^$~I>4yAU
zPVAoi^TH;%2mfPMtYkS6`EtX8odNX^-%F|1eb8W-&31A5ggqHd2W<CkyP2THpk2L8
z_u}*TWP_jE{lC4M_2%<^M*cl!Nso-WKOc%P@6|o`Q#N51x2P%CgXbUHPfY&ht;)H+
zmwiU`mV*~x8%)${SpFxsWV#lE+VXyuw;x&!HLl#Bc{JzN%edDPLaB2O&k=g}Nr&O}
z^Y}nxhIboc_x-kX7w`7UYZm<Ft$HMQ%c}NA-_Avs&*cBmcD{Gs+U*x7eEBwE((CNr
zz=sokM039;m9Cn|B60uR*SOp6b8TZePG)l+&@Jnh4`RG8emdb&+N^!Lj~*X1b^CLu
z;g`rH{>hAXpLbtP|I+CHHetaV%i9v7WnSS*o9<sQVdgxLujj*E<f^(;w(ZvPMZ65=
zw{-4iN*-wVGy7}%yj6d;DCMoK)@QiQa&`Fxn;)DH-1kT4ewn;)vQg^9%+CuAt3Ce~
z-sIfBOvZUty6(05Kkt%L9GFy3Gq^p853D}0Ez{<c9Yek7*>~3$W+l&0GtK+UuwhGv
zp5l>11`VG3%x|YMGI*Pv3s5V{EWI^7<mXc3M{X0A3h%Fa`;YPe%gw2?J4!B|G_JS0
z#ac8qkwNrl^@&opNj_XJU*y+_o4vWpdT8pchk_epzWQb}*l}&}SG4@Bc3}U%?YrmS
zaz18yHpD~p)Fj?Q+4oUW(r&Nry}D~^=aa*HS0ibWwV|P9f%b#8S;68A>$Zh%d&~5g
zyHfjo+Fzwli@yC>+2OI|XxeX?`j^EHg1VQT*4VH<nEj-oRr`xsmFeYo@w>SiezB;2
zo_9X{sN1A2_h6q~EB}l9>bnKj%ob*6&fCH8YTDn!+fMDvs#7&RsQYftr5Dz3KYe)r
zKQ4D>>N}~D{Z2&><rt)X-!FJlx;NiQjdu@!!*reW+{&ln(`M)W>s=}9Y2|zA{PHEj
zCqK*x>->9e>dy(+l0?oYZp>F*eWCv0g*vg5AtI;4LOf)yGYPb$E}Z%6()r8@3w@4z
zHAE%9y7*{C`lGzPp6SbFnXUay*d~7}QQecObl}OK*FPl_*7P>%K0C5+`lF5ex^luN
z+DxmFD_QPT^vH%`&U5FYM&Iz%`NAvRzZxq|%v~=VDO`TM_OAJ5<;xHKbxSv&p1bX2
zH^Y<nwZHie2uZWfXG+-luK(+~-Ld~ItSWUZRbJS&J~_ha;J|%l+tmrWnpfMdGF(mH
zXJG!XY;|?@be*mFi&^7K*YEcW(ER)7a?u@r2RBhGLBX5h>%ZyL8g-w_{c>!FeA(A6
z3)|W6E}n2FKs!;*p8xy~iH6%o;#Fopx3aF5zpWDebnUV1i`{o$tu-!D*=_s2%B1z~
zw3}V7Y77Q8mlEV0N*n5``Z{AwR+rtIu~7d`sptQ_yUh8S3%jPrGM-rA^F;Pl_O#TH
z8#|`4WbNN)RlULYCx6tB-3@0d&c0%_JF|OU-M44v)r<ib&)#v{zP&rfpoRHF)WK&A
zbL1UPM>9?c?SB7sM`Oyl&Bt$?<h}XBTi4EP#TBFJJGWfBaqiyv&s+@CJ2ji^w|1;q
zub9m(%dkVQVH!JQLE5&Y*|U?>Lh3COw5#(su*tuWoZK|)_4M=X3je3pXDjS};qcn4
z!L`?gXZr0$oA$M>Q8i(E5cgkN@3(kDY1!39?hG?Nrrduc=FvRq|K)`#$Ji>r8t|7a
z|9kw;^LG=cGOSP6TpA`i)yL}CQprG%j$kdudEfTmb!Lpdt;4(S=dZ)3&HO(`Ov@?%
z$^Q8npS5=3^Q%*C&J>?v5$-+JxK!ETS$V^Iqv@T0_-07|=Ka^Iv>D`pKinVI{eQcU
z^#G&gyx2`|m%i6G?A<tjey-^;H<O&Xs?obIo}IIUwP9l33=w<A8IyOO$z$j-`nPMf
z#M<?W+06T!7WZ^NeYa!j_Ek(XVrLy*sTv*s=iVcW?wk?}&CHz_w{3sDaH{q0OXp)U
z79WzS-WhmZnBnWp^2Kp14^kel?{$8i?P0KoZNss5bHl$W^laEXc~b9Z#vP}BcJ`kC
z-5qk}pH11XODpD1J5?L|BBd{*XR<X@@O6d>p0gaUMe}Y@d1e2{lHvF6OEn%HwRvm{
zR-e7}oq5k=r_J_E8)ja<JS%qM1BTgcvl!;8TW6fej<U6IpTlvWZe~{uLxga=4EF){
zbtdvcN%EzO>`%lcI_IVT-V+_VeVV+?ysh_mxgWRp?3#akiHz4P{}a30cYYQ~Fy3Kq
zy_>lpt4&Do>xbT-$IPzqzWieJUr}-11?~p#oT+bDUaZjD^Z6ayrWd>_7vG(GTKM?H
z3&-}Y0yn?h5{c@4{^ah#J1-Z#($e#swrbO@|3*`8NOs(RwUf8u;JXq9l_Pqy%npXl
zIw>~!OuFg)PS2Mz4PNSTE9c5@aan%-f7Sno8z-CZd^UZ@#3e>279Q!iQR;nb{}QPO
zKY3K=`Oez8C7L&2^Fr@f4$h4ya~d9+ak<^=wOjks&xfz%*Pha<Q;U{<d(F94$o~G1
zR}UZW|M%gkd*1FxJ&V5=A2yp~EPb8f%Fbnv40KPQznmm`V3WmK@6fD@3v2aST5cp;
z9LSMoUB7M5ug`O4tVmu}JGaYMr)*L_pWcgr4F~n~4fZk3nDy^-F=K_!yNK&i4P6P7
z#oN|Y+weJTUi0+ZdgcV)3HdBJr%f4(-@e{rFDdJ3ci(#bG~4vgRt>XyX7A{e;0c&n
zcRp^d>+NImA#blYlq_(%7HKkLarm|*H?c0(+v`{o+G}Rna5pr5^Z#*0!n1A1=8LZs
z^BLBug@$_m-l8<in&Ct6p^Ix7Bj)^N6%=};#LhS&S9t40tClNo^EFbQm>T|M+pzG1
zu(RyDc<yuB_w;Tv1-wiOcqr+>cHVgF7d6-DdY&71=W=rvcCOp@?6CifBM)A!Xs?hH
zo-D`EQ&w;+nBgjGu6kg|n+FTuu;yNlKK{YK-+yIy^gf{k*GW#>x|GkJT5?)e=#iOf
zHbdO$m=__kUiZ2?PRRcB^@+N_ji;eoX3pY|S&W&dtQ~4?weC#$djHB65#8#n>rW1T
zIb-6zszYs_<<X;kEiEajOb6CWc7F-#e!WCYsnXBq*1e_Q#8%CHW5mO-z}rvvS0|TX
z>SVp57OfpxlP4czyE@l@<LWXNhW+h=b&7SL%nqFL;qJIr&%EJO!Rc$Ao_c<d-m<SX
zn$PWS#Qy8oU9;+g2{&0AMBlwT8rRXva=2qwdYxxsSZCHOnTJ{7PEJOPot@b<8z(KS
zQvPoK?^>tl+~nyS{P>Rv*{-{J>f}s!#trK)v;BQ$#W1gA=QX>-Ne|C^M@8G;baGx6
z+@>^#DJ3+Ji?eX*e<sP~EBV)c|M>TU@$RX@S%07IFx~k5b^5t&DJFkUU*wbiB71h?
zo<pU!+j-Z`&8RC3OTWf^^}`merRP$aeG7Lizg^3znN=mby?Tz|{>b&hde+DGEe<!k
zk}xCg^`C%R-M+3|t`%0hnEwk1PW+mj`Q5H)Rq&FRY3GV6roG=19(`ebZ_IkjO{XV&
zGp=|kXj?XM;ydNDHXeW5?8^3PE4rTf>u~nP@qd?XgD!nt;4LR_C*2^pF10R`Gv&td
zI}!Phc1}Cnd1>i{Hwsf*gU?KSQu{pYHZOz3gC92gEj!QLPqj1o=d$1S@p-m>>G<bc
zOav#L6=Pg?RJ(l*?;G!|zS6a=^^9&y4fmPJE`NXc?pk(xmK9rddGwXi)*b(~y=do7
z(-}W6%AET$^ZD29FJHUfwJk~7zP_Vl%dbN_c=zScU-##%LxN|3GuOoaOFgRZEKU2E
z9=x6MPI}_>En6${CulR?X7Xb5XS!lpP`35kBCZA7K9sW0&h+}CI`7Eu)h8~^2oijm
zcglXxEW54Mv$+~>t&1yBT_W*vUYbVY_czaP9qE|!TQ}6|+~=NXv$|`Wlplnw{mR@>
zU-V`X*A$&H{giXs+k%)sZ+|y)bJCWur++WId^0xvvHtv)ss9r;o_Xf<=i$X0F9g*U
zzI9j2J*}1w)w48sxj1$e<BSOcs$tuh=HyxYV>&1Ee636pPx;xUp8pq5y5h~%xq0jI
z@~Xh?X<~D4zmYlI6FadoeYH35fmdZ9xBZC77j?K={hwhvlR<Ry|GOb3dk@?YT(Mg#
zu_3CSkKy#BGRt<R5OZIfIh~ag+PPl&-a4$<uHTZ``1J8+M;GPR*TrZ5Ozvz8W|YY9
z`CGhc<%vBU2Xf`Us4U^w$<-k4VrG#Ruzh*H-NNwAa~Wp5e5JDMyVB!tHD|4CrpW%<
zEa&@e-jxt;zfISsU1heJn9Z-8AN?$a|9Mom{FWJP2Wrfli+uXFobz!nKNVKPJvYy4
z^ThTwOQ)P=d1U_W%ii*tyWf^br{7tSyn9yruKQp63*UTu@@cn4-Q$<r-tk&~-*9us
z3+E%#Ew4Xfw|=$j12=zCqLOk_{Gr)qX|2u-I}ZKrYY~w@u4Zc;`<h|e&cEw2zqJ*1
z>)ncXS#opb;zj0fH;A14Dz&C5;+CiN3imsiJHHn!X1ypUTJcWYG`nCgduYCV>GJ(Y
z`}XF9Gd$bztV<;5NX_&u$1e09td7msG;(-ra3xOc=G&W7H-5k0Gi71cVFs<s`5tNu
z6-`fGi~apZv~*6bT7OiH!Y4(B(zqY%_pi8rKx+20O%s3iJy6W%{$;fNSzGQ_t_8>D
zF4^}{X3Ld|kjFuf&)(EaefXO3#__th;*5P;u1vB#{wBD~HQe!{TkPcYYK41ub}}W*
zyQ{!*_rFvyi&l`L+~TUYVfGud87odszGn8b*Cp-#J+soAwhd=27YGGdDyvHtPTG0>
z#Z+O*r4BcO&5!*%-@K}SWn+Af_D%`Uzh$2nC@Z?UK9_1p6>GoJW|jUy<HVvrv9B$h
zuFhs(YA{toHj=lmXMsNBnsc97D^F}^keME@YgfR`@HH+cF2C~KLcTS-(kskXw2FxS
z(%XN&=t&4eTjkY+Cv7uAj{Wd9^1Ha7B_j9!Dsvg5XO$a|e`FA;h~pO2l;t~M>iFGx
zmJZvBZ%NHoOFA-kNi0~G{l>#3T=8dw!RCS)&)&rT`tdDtnZSSM1peEi|2Yke_Me;C
z_+|Ff=-%%oE17>NS2!PaV94XzC9QaH(Y9mTb=^(=A7Rmde?cz(;0NK^DZ1PFAEewb
zwoD0Kaqiq)y@=R9j!WY|dnrHRy8DXpAE)Tc>zPXRYI}c~UbvH7`tjSgvMT9ttEk+m
z%my0Y<227RhOqwMcK+PS26r#Da~F7D{kzHCwr1}e{sS4On->Qi{Lk{bO62C_3D=a`
zf(~l!es6uY^YM-7?T;t#{}*q5`o28lnWCuf3c;<jTNPKIa(%Ld(e$6W?D=H(j*gfw
zVHf^#a0>L6Rd(E%sO{?V<l!w@zBgK>rC-6wyUp+0*6_RW_Z^?ff0%t@#a`DXH@}%(
zy?RA4ZQbEx-)ffc&DnqX+v-K^x4Jvdlt*|QWK8;WxcOb%6d$%Oha>h!obRzmWX^2K
zS<pBC{gI!Oc4}@&YhFCPc~!@^vMs@do1BB!c6dBd+WTO2a{Du;nkOr!Ex3^Rbhcyp
z;Vt3fJJuI;Eca=u2)x?3<jC>sCC$ILo^(~Zv_&dm#aZL^YztOTJ~nGlPF#XX*V;te
z1CRZ(IC~~VGE6;qyEA$nQ$*~ARr-qaE^QD?D0t)0{dDDVp&IY>`#+->A8l1qy3e#`
zLuOZn1cN%$+t}kS`X4U6Fl1O)dL>hEqQa%?SNCfvUDBx7zw4=fcZZ3k?Tfk=7Ps#~
zf)hJ8GB00#rderI)mHhtf)nkM&zgEo?Kq(!IPuxa!=;m6s3>h(ajGtv{m(7!U+-6+
zHS|agNx!}RsKSJh8S6VbJQ$aJsr7Mj(c}5txNdWfqEcaUr|Fw5>ozSr_vd>^cj+}}
zCG$GD(BG>?437zIl)QI6(&fm$TiH)$o!60kWi|7CNUw9@zJ6hz#f%yZy|?rkpYOcr
zbWJK`>V-vp5}{(VKbPE3Q&Ljp4RhLKJi9$6Ju>vKo>EX8_lJdhH>X<}uJc&Aa@nRD
z0S4oqwa>HXM#nNeNjebtXL0z7d(Ch2?Nf3en>KiP7u<b!)!}aW^?d2C7B3kpRD$Om
zSr$5Nqs!*R{~R06Oxy15X?kFDne^^k8PEIQ35uREQ&aP2xFX)opT1kFVSm&2HQKYM
z{)pp>TrR<FaIk90bLIX&>V8ZPtWW$uFSUMUck;LJ!H@;}um8JJS<8^O@n%?a>#ZBn
zPoG(ru9{V0-*o45(vSYS^mnTACne_w+X<AIJ2fpV;Y}&_x468&I#jvw)w&)ZhT!Z3
z{{zdWdFeBp+j#Rv;;kDE9UW6LEFOC*DH-uSI3Dv$o@3R9nQHgf&)>3|DdO4fws;T6
zjT?K-clz=CIZ=NpL5ZQi!-w&Qi;IibGX|aQn=h_jd^pi8x>~lQZNi)dtLF*{PE>s`
zyY>XDls;?3tGZQ1$1}biEpC42=ArQ7a(T@$qxXzDU(0Oot+~#*eUIHTrUuuwE@_N=
zR?p8&vami`Z2IKpvwwx3uQF`zwLKH$TVB~SBeV7W`G;EPxYgQTYBKD(P+Que=JZpy
z;<B#?Lq^h^wZ_wa%05Wfuip4GJ;K6&NwBVqaNPU0r~N&5m=65<CS}XI;Y9N5`N_&k
zvzd1;{haVD(lH{3pMlGn?Vb98iFWxXZXN#2P%63nxa!n0`KK|NMmMdd^k|#1x4!=J
z_=Hcx)SE~Bo<ufe&At~j|2Y3*-hXTlR&2X_uIpUD93~&@tN$||u4S}1{k?4RPyM4?
zZFmYNzE_;R?4cXOoi~Z<=eF^wzEQrEpyzPc?b!40FN5dpU9^zF_>JkUjeL*FHax06
z=;ycI$%SD?QBl;-sQwG_D+G#SP2(5>qEFlmcD7O4#Iwn==_SuE7k=xH?N0^Q?e%i$
zW7gTZu0-;m+qYSD%s=kMt)9+Yc<>-^`te@Xof*@mmjAnXKi>V*SBBrw59bvvf381o
z0@G6E3A#(Ku`;}Q5v$H;Aa~I8@%>$IpPW-tQfBDBm-8gQp=-@ejoa65%M`n~)UmGE
zzASgg39Bg~&x~YT&i~83FLUnP%peB2FPl%6<Z#T8E>L_evZ}5y>zL83L+h88&;7yD
z@Oqcq{Cm2kYXz!jy=Tmk5cg+!vux|dmRs?W{H8P0CB5%$zyDui;~D$X>A!Z)+{pEy
zQeN7pJL{9JY>BzkpXW{tM$6NGi`azf-{fi7Iqhx8-Iz@|OLF*c7`$A0ETTMm?LEc=
zGYgONt?KJz-GBR>aq7aH+sXMCBRn-LGgfo2E?%KzKFwTsqRGd*{}%1DotNs&sTuR-
z-25pkPq6KEb@}9HIeA{UtILzZ)03~qxwzcxm6iB?eVI~G#80i0E>9c;C%&w|nYraj
zir~am<&XLJZvXwjryaH~Vq?)!`}$`RqOnz<M2an>rmBfAWcOkDacBE8qYttUTW@Q=
zb?$0-I6?Q5i*v^Nk88M9KQms7xSMsgAknvUsoGwhnVYsVzWFujeM0`S$;_$C{fyZr
zzl^R7sP(FAI#lp0KbYOX=0#o$%YowzTVsu<Wb9;Gur9hy>E}ZKuiV$1cdM=|>`7GW
z=1pc`aKDum>Z|Q;{Wd4f%f%%t{?;G1xmQa59@O`I{!~dxE^13oaY1LtiQ|st$|?-U
zKwH3PEj+UGtgFktdG8{{`2;8KVC_B8QY9#u&9w5qT6c%cq?;-Q6FNNJhD)BFv7-Fm
z{cWeLmcQ4UJM#+vhvQ7Y{l2|iYQN{%fh5sQWfzySC4^QTyzjQk?R{d>j(kR~$I0IR
z8CLAN`sihqHpBmuA%UB<8UnvXg&yCcEBpPL+U+w2*DRZBJ9kveB`lTKO<k75d0@(d
z-GV|K>ltPSxy|W2&ix>)RP#++o5`Oo&WqejW?L){zPqsDZOKCMia$)T|D}@+elEMS
z*(~YBw!Qb?Z9BQb#>LTMSIducWe$JZa%5CzDST0QZ*@W3<I{h;!xaLR%2uX7nHN|E
zziMlrduD+iv(41RoG(p<ocdMQ-9+x%a@OhWly0yC1&xGBd4W~_*29bv?;o!EAH%S%
z-~Psz@M43`XL-NkkJWWabk>R8C<za>&Rs5Jl{5Xs)UQ>XW{)~Pr3f?Beb_U1jZedm
zJ-Ldnh1i*1s;cihm$&SMFz>0iGYhu-JY4!qLC>gvg@6NFVv=vx=X$f*dl^4O-G6yO
zltJf=>Zap@=F9~Pub)kEm3?uadzZ8#<HD?t%rL{<Oa`aDefdmJ<V-HvbDf{zNLkb|
z<||wLv@#Y6%j~X93b}INaZY)3)~!wbw)f6-{$UMxJ3l+d%7po~`%$G`vX9JGF@AA9
zb^ab}Q84SKUahz<UjH1nMkmkuWHs5sc;|wH)eV1N#Ff^ameQS}{_Aehw(V=*@Es7y
zm)_XS#r%08@6wqQwoYvO&#=;1@XHGJh*vNDj(9q3ity;xX5(XC5dS5hT)~iI$Def*
z=kwVt4Hp*7+#r)M=Wg27+1Fp2XSlFG4!yUmvO?&D@9vYSR#GpM-9?*j$9OPgOq&t%
z@8v4xSGh@Z{xQ6fs^1W^y??<aqrSg<26pS_oO4|<`^!1qS@PPOtD0Evx_-SgdClAX
zf9$KD%RYCx`uE{v-2<1FcnB|DdBeJEZ}P#ez0G^~bp3nt_3CxKZ*h(rxxY2B2EGvy
zouYKf@#S6}?$ht=_S>KHG4f2?<XJY!^H8nb`{z?<S{FZ0F)l88ey?~R`-A5`S!=Jx
zbL~`=)jb}4wYSbcNbPb!!kZUgKV3-EJ+SMHpX@x219lg!-*1TFoPWEz%m3wHF^AUT
zxoPZ4mKHZp+wo3lb&0$B%+KtVs;(cygPlBaij{m@nd;Qb*Zhreet1!|;q)VE6W#x<
zKiKRo`8q<S^LE_$#(V9S%g2|(k!ylw=E@xZtAB0k6!pK4|0p>;+LBy<VdLFjJYnL$
z4xE){KPu<_W%dvAvea`M6fX!i{O`Vfze3aDY}m}bzb@)M?)={}*I8X~;-t<0*)Gfw
ze%>@W__koflgX#z7$cq?XJ65JESPbH<Qt>CZ@6`}8J9ivlI_g>e|3FQVN#%sv*V(t
zP5C{y>s1*<-`f>jTsYVG`@VXX2NRM-1U0u!{wArew6u1a#obnA{=(T2;fGW`<G=Yf
zwAR&jxV%YqJ@p|n?U>pu-U4^GUw-X=(;7~{a&FpoWJ2jI=Dec)=i>i{`kS4&a5ePJ
zSC8lGCLf-@H|ABWf$gnW8)3_LVWoPu>*^}MNHM6X+W-H-cA)6KovYG2zT0+t+}Ygt
zrP?PuvmU(NbJ2gd-e<=BZ8D1$8NMHTr?<AVs?9jGFiJGNzwixbFH=Hg>Q`Z2{dt}|
ze4dRP6PCXa$uInqd;Z>>ra9B6ojl=oZ|;@fc1eF%JpL25;`-80DqFvAKJ0dleVv_t
zhBr^7Tj&}2ys}%C7qu&s7tMQED%mA@L%u`Iz)GM&^JpsXKjGL^rh-)^IgBbjtNdN!
z8MdvQ{nqo+gN<7Se;=Rw@b&MciO+&n{})Z?J!QAiF6Tqy-?lfK<R0u@X<)9!UVnUN
zAb;WfGch&t41Ps#ex9kalKLyO^GAI8mCe`74mI~nGkAR7zFvI7#XrwAZheau{i(Bm
znX>oWqi0{e*c;5vv@m3;&Wc;w8QwfMQ%irC{a1ZeyYI__ZuyGu<=WFG>Khe*eCH5S
zSQ4rg8IdM>m`S4EYvYO6*W7jloX==jHSJ|=*i=PhnLF<m9DVD3SU!DSy|>lxFvgn~
zO+7l5L>m&?Iveh8h!FaDwuJKt-_|?HN)DlEld^U*7Nn&dKh1DQ?Nd+cWqEb6&Kn26
zO?0+qimP<ldYP-i`gK~hm&wk&eSgE_?p|JQ7yZinfqkac6&|6WUXFWbrf$u04lCGm
z+Nbbrz)sEvZ{wmu(d4cr-?y!2(a6ta-`{6>Z`RtJ#I<YhrOH;AGKep)ycxiHK)ZCK
zP3ozC#;1Q7hyOO-FZfHMVO4GI%d_cgZahs9-p<Q<u%|=6aK7$qo&(<{ckVcL&^^ue
z7vqN|9dp<$mYdXtaI;6wwr396?)iP!WW{AU@nRZpjj#T){{A`H*8S*1BdG=R?T#L1
zjF{@Y`f6K`@yUnYV!OQd_A@9bUwv)*K*y%=VhL-6s!2$Rg3#<V*E9cDM!#kJVfOZQ
z9q)vLTuE{{U#5O-mkarR<WF8yT0uq`_d@lvX;#iAw@$3db@=n}gX*0}Wi4$7;wE=?
zm-p7yU-~pZzq`YPY0kz>`BjZ!W%orLHf?RbTOoN#$05$#>vwehi}|ls#cr9{#(w_%
zj-2RS8Mo5dPH&Mc>I?LX|FrnF;Or|5J?D-b4UPKfn615JW2P2^t@SI@6lLxCbMHOB
z_u<3q_?JS3zna!so$~xGs#)u_Jz{>c*WHj0&hHrlCLi`XtG}XEZARVUgL?ZJDyH`S
zU_0T%*)i!VgYlY|b+K_9v+mTe_TAW0+;RNsN7eSMhSJr49sXNh{?v84oww@QI_>jT
zi=v;aWv(fUSu*#|+x@lsF22xbc*eF~F7t%YD-8|yJuU)YkL@)T4zK6t;9fm-3iF=@
z(*8^d&o%3xJ@S4udG=&C)6KPdOtVzjb-Mp5Of5cMYyDvrb5O^z8w;5l<c(Ht3P~>u
zTmN%nq{O{|fUhs=r!lN4)Zcuw$o4>s&mCc@#;pBMY8V4nhW-huO4xL)#4KL^z1OvJ
zkN=xiWzP@PjLzRS^Wh^2#$`OaK7Ls8sAA3hKdO>5`M>jLFMZj_a8H#tQu#{GZ`-v3
z%gY%hSPs0FYk$2Wp`Aw}Xd73;vZu>J41!cSLh`0P{OTg}bi2%z)HzFxck^Gr`pYEK
z_|oB-41cUQe6vwpJ?XmPRyheB*ZHgGUX7nOd572*Mg7d1&-aDz|G8Uc#g)_vuNnUZ
z&3r5;r#_c;hl=p;#%r6mEh#Qze_(f4Vuksmh6x=jrj+dbx<hyVpTpJu@8YK?UJA=*
zWV?R#M@i-nN2c^ci@tT9&s$Y=QPTU~w|+D3H|Ik>p4*sKy5qo&!p6tTY@J<}d}WEK
zJYm&Pzvq>Q*-C~P^E#)`dCXYhVeU1Jx#vo6+cmDsyh>|VF&xV&{8+lT|3>L$tJf;|
zb^(hs+^=n2yhZbs@sIXS?$tJPPKt7#w>@`B?{xcxUS*m2Sua2Tex9MzqbO@O>)D?4
z>u+?FF1<PPKc|dyLdF9_366fbnxzM|8g5RT{YzrOtywKO*3oBeF0NW4s{e1Am~7kz
z_4rpC1fFoap51=q^NM@n_kaJXKKy@OS&e>YSo$r#ZG2G|RkO>kHC8X4^W+WtqtmM-
zKM8AVDV`~@)_s$%uqi{Rf7RUdB`tf?7@|{kOSZksSe@y9_G<iP-|Mq#Dl5z?vtoZd
z{{D5b^Zbl0*X!ec#X3jM^_pVXa*ki0Y3?M~$CuPgewAO`erLz$Gn@Pz3j_^oR_2?k
zh6+U2s&#Fe%22%bUgN7n8y$Y!tyh2Eb|Uasw(WkYgem;u*?$XMe{5dA)AD)Sov&5Q
z1-rt3PrKjN`&}<_Ms~>#MXfEft{1;MpXVW~t+nvc`~0}Q=cTk>+oWg6Ik*<T4=z>u
za)3wTY69y4`(N3iTO=NAFG!9*ZX5Ak;h)%dw<A&4Z0B`fe7?)&UEuTOUyf~Xx_x0!
z#X-)^e``0(#6OvwmNM!4jX=)XogGu6HqBX;`Hf>jMvksKlcd(mC0a3ID~_-;cpuJP
zxLkRAf>u+?+IR9_|IO@8DwEr5bLaZ6^kQQZXZ5yi<+-<O*W~`4bg%NeiP+oUIW8LN
zaVzgkNZ+&O{u0rt7s9kT*WdFy(s%dQ>D`C&UM4jhovCrKdg14vm7I%KB}}bJyx(B2
zdOtby{!@n4Y%&jI{I*9WmxtOe*sMS8_xW6g9ak^pd?~0X`*!xvnvId~Uu=Jqukd$?
zkF#IG(k(5_TfSYHx$opz7nhK{q?_65NB+&Yox!?G**5BRlh?AyY?t#4Yl^qzncUm;
zUx;T`lEn=>*0ej4f)_TZcW2#u@oMtZf1gDhdQWe;^3eEAzsc_vZ)QIg?>)c$-lcOK
zw}hNyZ+JcDa&uiIRN`<z-Bqb*SMBO`KR0Y&E%K3(Vb3ha!zPE0tYZFU;n2Hz=VZ4d
zS5#(;-1!*0=*LSY?aZS=CUxc3^10t<J3a_w(YbQ|pNVPz@_=2+?3RA+;jfK9E>1Zi
z#9LxytEJ_*`OwZ-msk2-HnpLL_4?=gYRqHau<4zYU7^f7nU5JyXRVNbw)YwnkN>*O
zn{F#}o0{3Lx@gSs?`(*nU%dpMfn8p?{_n*-_l+4A*F24Rt)BgS0k7c_?-O1REpG1I
zyiaRcVb2YwRf%lJSVLcZdGr4d|F%2)9M9im<pggzZnc$b)o%66p)Zc?comb7>5#{D
zpxaLRy|M5?U+bX%-`4Cl<#&qBcK*7~DD=jG36*+R^FPddvG;ALOs#A9#7D2iU2W?N
zt0HD;A3pQ>@4Wg@-CvtaoL#%}y5&xkzy9wPv@T_LV&doH@|$iye#rl2S;t?o>5r3+
zbsxMmwcF`wn8&OB37_xqJM^CXb~^am)eRr*lU_5uU;cZ)u%M>p14DNa2iKe*t|!Fo
z=2dOmub3Srbo^4yRjq?M`wX`^q_0TMUA?1Mj_>()o%hjNN?-eG{g+R7@9cQ-s%V|w
z0}WLM8@cWKSFYP>E7{=rPxw-VYQKV%bKmBZHVk3M*iWu5SS7n#@YdILAEZ2Doc{SH
z+J8R&tWIjV)%R;gz7>2GA9(}sExCLB%AWZJx?d&~NPeCren?3{cRzbX?RDMjafZAJ
zetGO^TUcXU%l#P_RBeAVdkW*01Gjt~XD52J|C*I|xbUN|;?#xtVmCKG{TfwU?7ODP
z_vZ1$bfZJ(-8ZfMd@bu+{tu<@b=_<Hx6AMw9N#VC^ZDPy&vj*Xg%4Q;RR4WdTz=!C
zrAx6;(8bn^Gd+?{Sbe?DSR=4SvaRI84T0-crLxNUjDjH&FBjfOc6R@pXFvH~WW&nK
zCZ~4r#k<e@Q#q|{vB}0K?5oy&EJ#v6v-$kY>aZ({hLRqZaeBMkr=Om#Yhv(t)0){+
zINg}eoPDdf=-^cDFP6W~=q~q)k4buTU|YHTjE<J7-pl*+K3&`sbimSc!+rCI?)9n8
zf`XdTa`!$v8c&zI)#mJ_^}e5T{|)n7)1OqF`aP3j$FwikR?RwHY}l!hI*%dfbf>`+
zw!5Y$>$+|SOUz;j5PfZG^6|anbm1-&udlxLyfJ(qRwo~4OuT>5*=5NW;db*GV&V!y
zuY~pf{0*M7C-I`la&5`^k2P0CO}JZXw(4IB!@U#RJZCz@KJx?x^VDrt%o}f+-U)vF
z^Vr(2*_r1|*A>qdKJeVqXKs7vt{aYF&mNvs+ElpZ#i?7}i`L)0xvus2s?)JCuE+hu
z+x+LweO)}=%B$r15xWq3XT>SAZyx%*{M3ZgF3*{de^L<Wdt0zTpZD(_ze+X+``1TS
zJ^C{<@VArHgZtWB{!33QyLhM0beea?)rrO-HA{7wPCu8m{l$MZd(+2dv-5YKHnX%Z
zUb$-*`!4gWpZ)ubclEdywTL+{(+ZI`YTq~eR@E6pk^kHQa?+<0^);sK=JhG5{KO>h
zdu9I086oqV87s0Ez15tSqu#E!<)3X`_U{#M-CAy+*K63h$CmMWsf^&nGHr(FrS|(J
znF8V%;tHD=ZMVye-}PVRHS_CleCu|7;oq_4h0wd~Iw?!h1jjGjUi^z9cJA)jvOSw;
z-7S9?m#+M^TW;S!ci!fYL{!zktFA73><^x;iJBt$j^V(PCr?CozYKa*a{WrYAn&Oc
zFE1@h>U^3vb-tRT%bT0xCMu>?L0?a3ga<9mJhGHO>h|a8E{~VdWuNCH*KSdBa5~L!
z?{kLkS{8{Jq1{H!bvwn`bK4YIqgGD(J!|fr*`acU3$vTf{%)wATGbo&F<9k;ghE)_
zzl`PDl2Y?5?CxE1tBzjsCV2PHpCYT$pP4OY{P!j6FL#2A+1rx>R{x|xY5$4lMkUid
zQ_}sI_H42#X-!||-QBix{_E)zla{aBE3ozbjSb3?SI%2rynVE5y7ktTx&?M$736(6
zXKZJ<R?+*@jwK?D;j@zwYl72-Fo{Xe?P_n>c*oXpRHV(%3TXF^UG2+Iaa3K}b;;Ia
z?JnHkbMq>@9xgvV<AMXXx86_R+pB+@emOtsz)oQX{hQ0#8Om9Y*E}vYSb6B@kz-bo
zpL(y?RK65xSSh!^cs=u)vg|oL28Z>v-*Q=QUK~EziMe5Ee~xT@#qJIc!!<e!96N7V
z&0??Ek`<cze#w$Qj=^5{*9FUlJB!^6n;*FSXRx4P=7!II4+!*Md(ZH%D7#XSVSPs5
zlFTiSJI(i)e7VaU8m=3YaC+I38Mpn*!V9fUA9;zDuU;*>^XNT>imUr>nkQ!4ZEXMg
z*LT0|c2@-+G2hh(t3w@9#2Maw%$UpgVQF-Co5OX_&=p_b-ao6_<)}GFmak>*=G@qx
z6OK`gaR(jBR%f#$&I`1UdD;FjZn1&0-bd*JHRlUcvJco+N4RudXWsMV+LEmHzpoP_
z7Iy^gIr^zgbI!hvrw$sfeNcDBNt=PKdaEAm4~^AgsU6dm<7>axIZ7w5n0uV@#--Ie
zR~R+=Uy!`^f7do&<{4q^hx0m0RW*-Ey-+&;Bjk_&ybsa`BGzAvKk#_3@%;>2l}~s3
zjW(<8Jb%(*(be0M4>TXGet4%g=C;WZ-MOdA7b*!(OiFk4V5svkZ2T_wVEVMJ^3%)r
zFv}U=QwmePcB-kvmjCUylnTDT9~Sf)Uh&!;73WsRA|ZY+r|i7-`MB~&dQv}@W}3f?
zT)FF3!LsaVC9}Gfd#XO(x3B+WXc)3AX7jTX(f((D`s^*)A<dvab<%8Mev{8VReSA%
zc0QCpdqCy;Os)^x(?453(6|@<KL7Q}IHO;4f9usK9?ZQh=&{(wWj$*k-;=HTY<Fkf
z;xAu%EA-$cc82wmEy9gIMAzFa+j{PR__afIiJ!P8DD3b&z3vA0diCRdVja36!f9*=
zo?OYv{25kq{c^YK6AlKo<EI`!SKaqQ$5&KPP~VmPZ{&wy1>*#<RUIdD8D}T1m@Dt<
za>RH?W?x6gmhIbOTAIW{cg+7Wx8uaLlVMLq1SiG``*+{_=(DwhM^;~{=;N)BDy<9?
z?%UaO_pM=j@N-Snlt`&neMjsZZzrzkUCUT;Wc5!I1))?+jk<_WtB-d^o%s0W32)|4
zx18(UCZ(0L?IY(p*|Yj*h^laGo5|=o-T5qkiRbx{kEbi0x)uCV?V7^wZ!!K~*ZW=d
zeAS#4s=1T?*V^RmyZd;<_I<x{pJ~lV^5<;1CH_Pv>sAk=#N(^KSP$&UxivX+){Cq@
z?{zJT+kY@DST)f-TbyCt=55oMYD#}B<=<z1Y?4Rpv#ooCX7L*6d+J|!RC;@|&Q>nJ
zEBQgEHKp~M8CThSNn6vgu<2CiZeER^BMnT?r4H=Alf=v*ce(djgX{v?tewACn%fq)
zZ+AQC-SEB0+2nXz_Vt>WhJ&ef#ifU?A3x1-<L+Wp{fjLhRyUa)4v>z@`&hRAnX5qG
zjeDXE-jiO3Uyq;X@#sX_`kV7oZd$7KEGXN>bZ@D4NRQpu6Z2%;(r4#$+~RT0owANm
z;?-3f=0jBvw0fp2F)Dl+)L^+)zj<0qdZL|g=1q0}kITQEd$LkV$-UypHnBU4Hgv3e
zDC!d8khr<7rQ<}LT=}zgb6s4Xy>8og!N-5o{eBl0v%<9o;ztdyd42A(JATG@-RnI^
zms`cn@9Nlc<MQ6Zb5awTKC8ZVaXI2ze0oCi9}T5TC!F7hs_(J8-m9miWV(6soACG^
zzja?Nyr);4C}Z~A^qhCDGeh~pSi$U>$Bn=1%WE<T9nqC2YCGJpqw1ho>S@NX$f`8w
zgR%FoPOUo47-qjW{!#qn3px!~YtQ(2Ub+&^X>f1xSJ{S7GWw~rq^2^QXUT0{7&a?}
zdC%)x%VxQiMV&Qi$e;ACVu2~|r}u|<s~3nwGs<acu<>u1vANx(o9mERNaXve0p_MM
z&eJ>=w13eRnAWGa((CQY@+)&@l%3~`d*^c6dG4fD7o|=1Hb$tvHF))(|Li)~nW>43
zTD6_|78WMu1*Y!WV1KWOS(fof{H4Fw=65x7n(s(wtm6p??r>6`xww?K!fk3f^8@>v
zTQxTSd2Cx`_C!dPn_=1x)4R+E{zpbjGa8uv?Ci~(Jm*|X{9UcGtI@2SNk4ek{bAam
zx9`N}4v%1kod@RaN#r`P+%Y<Fg{Wv{{mrFIQ}i639{cu<MM1T5^(5!`s8<DQ$9KzY
zvS%n?o>yk~=yuDCbS0&)cT!h`of8*)`Re-8qQ+7swS6k`7X&=FZ@;K~tFxnK$Blc}
zx?;?C$-H#DdR=^r?XRy_zok`AcQ*O-cJ-6rCLOUx7oD@REPh1I(Wt0n{h^ql&9n7l
zf#`vl?Jp<sCmmD#`kY~ddsn!IbzuPOgLzIyLJ6gNMRwo0!1<Tk;Ck(x&o&Od?QWrQ
zpOg>0Sg_XMN}JY{9jr`SWBCnkKTKW6Dm3--N0-I#V~;)2&0?_g+<Sb_k?rL&b8RxV
zcV|D&5u7+-x<ZcKCch&`_C900x8CCUl#Y%)F|s#5AL0_67`Ku=<F(P*LqFP_os^`{
zY4_DLrdSES)O)>aZ%2ntY3^zNYh5#bPP&u+SlPwp-#^=ZswMk6JgzKxb1L1%#p(J{
z`55k1>bn*89rT&L#QiYW`NaARz60}bZqt~&hkruOyEa7)J=O!hGsC?vyV*a>y~ec0
z+j9PQ&4yV&EN5QuX^52e`m?A0@g&p3E-t%vuH0L4&&6fQf;6q`T{Ft(+;NXDyjPNW
zam&6JC!Vsd@94PV9XV~;){Ya8UhViBT_z$ZnKkKG&@-U}vDrS^adT#sb{m~wXb^Rb
zPW13mXQ(U8%#7mOpz`c`0yjh0GA%|6nV88J%{DMp$qT=0>*zQUsHgk8+oQ49+o#6U
zZo#SxddBPL?$6Rt`t)npioJ79A~$!om$j*{b=|YvTVh&LKAYfA=7g=M57cuVxbjAN
zilZEBf^((txnL(@hE<QebLVbzat<vod8f0lXshVKs)VlVkxU=L?z{^Uc9?HA>;47p
zy!~N4@&XO6GauJ6oH?Mf{Nj(3iW_%J^KPhdyK?&cw*5B_eo($^lr0p%b>MN~@2yG4
z*n}M38&@+LsOxEd3OTSksb=1#G%JR)P1_Dn=wNTGSom=6+c|r#-gYaywmWz3Td#Y0
z^B$$%VlF7Y^KUo94g1v1yh=w`-Tm+Q=EVO@hCQ#DpUC%y3RKK(?^&U!uJKQNfsNID
zlPlNDr0U;G-Q4|p{x<cQ#W|~{bFS37#9GL!*07H+<0F?|-_5`32j(!%iq`n)W4|Ii
z)ZE#xKtMp-=<=)J+nIabd@!_Lzv;W({=ieyFJ6_}b@bi+4NNcos+q7fnBI1Ko7?#N
zO2|E-s*6>3^CY&Ywz+&^U$DIR`oUt|`5Qm={7_DO<+w6Fb^lj}p1$8}Z6q7CgWg|M
zP`Z@H$dJ7FnMyzFgG&o?KFRCeI{u_L+y07x3~v~NPLa=&Y4@U&Eqf<k%)gV*9Pl?m
z%ARlbE8YD{ae<Fn8Ms#caSF2x+P}(u?r%A!1FMa)|1F$YuA{MpbAi(n7g_x`@_zpB
zW#U%uv`<_5>_5ZzfZw-P*aubjoOix`fa!(tf#hGyZ4YhCRyi=KDR7~^)A21&Swk;x
z5vaUfBs10iyLDc&pygFAt;D+i8_w2DoU4ATKB#(oY3Yd-*EW3-_+qHy*lhpBeYbCg
z|6{ENe&#JF!@or`JA|IU#c#@T>b%8|*GsRzt*?`l->tToVb!Gx71vnz_Q%#~nr~qE
z<+EXJmk%#z|Jy2tg3<|QKTn)H{k84Seb?nBhKH}uS!SOX@^Aiaj-PA{=e++a#WQc%
z>V4WhLFC2jj%AgXuiv}YF_)=Q`NggP`@0+ss_}8p*G<hm!FsE|uuwI)tk^be@~?fx
zlXHA~vNrBa5u43WCC^dIa=^;^dZNXFSBE-Yy)uY?e<JeRTFb*0lkY73v4XuW%3Wl=
z$w!N_HD7D@m7V;idG<|i6!W@Ow!gZPnO?j;c5GLhz2o!q(ra0N7$wa9v+(Qvs^gYg
zk|L*eM=!jTa9`S<vp#lp(&3lNcf@{rO|LDxTz67Es+QZ~PFKPCtOG0;uFrJ-YF!!S
zvg9T|!yTb5zI7MQNSTCN)V;VA>28uTebHOJs#2*Br=Q(Bo+E5qxAM=<`14PWsf#le
zxSzQ<*JQ#sd0~h6@Lw;*i`IBV$6nK9`5#lV=4<4tIp%jc9cQO{^!Zkm_*;bk<J;Kd
zt5v+YQuV-;7yEAiUmZIqg1wnnNh#>PIfGdKrJJjET3Nkc?Co`4F8^*)*o!BNq#BBZ
z-QpEY_U6~EF|M>&DQwS@bWLp5-*vJ_mh(vmrL8VvsN1$lUhHkeZ%s?z!>7}a-ASKZ
z&1hheahhkJ;H^F1xrOK6|M=W<ZW$LtziZi*{aF*|*&krx{c-T;x%VmCZhxwlyZB~W
z>qh%X`z<wW8V0=4%^s)OmEwzvCfB5{W_Wg6>&wyf+xFIn&!lwfx3IbIo8&3mv~8K+
zme<>ju1)?B*1TxuhIMIcuL~_!wAZY*{-jzz<H_&W>I@kZcV3uSe`C47iBqKA#Xs`D
z^R0G;Uf6b}Rd-&wi^dtLh5z?%_gGvhF3mXkkkS{&AG_tsb0+0$w7+=uzEMf3x?b9@
z-tjrlt(}d94W{mvI`ivymDlaIdgQ4#Z*!@r!`0R#^}eNR4yK;S^xL@q^~>~~p~mHl
zA15*V(-gh=di9C3pHi3m+}gRY(467@^No9oUKaOVpEdEg_{q}^t5$A}VK>-ru&9z(
zOgE&vrE<Ee?bVA8lYg(`pZG4`C2v}M?5io#mzIBFe(<xV?v~8DC#Rd8lxBxBhLj0R
z)MnhFpTW($Z_&*L?fjf6e>C-9{w@6b&RNO)^pxOFb}UNQHLQLvd*^sNK)i3```%fO
zvjof(Y;-t#nG;SY@S6NMt@x{S`6jdFf$M9&c^;X3X1~eNNfK>M%X_y9#Qa<|HRqwk
zv^R_gJ}8_u{^2{5Ev#;qQ^*N9E5rZgDra(U>Z;woEa2=>pQR<o_k7{&4NoiuCq8Gi
zu(o*3^KbFf%VA3e4qk{7*ABlY_f2K{QoZDSjS9VMyOo2o_IC4mTXlIXp30!@^QT5}
zWB0Sj*m*xzRQ;Y)aVM}{zUslg>ayFF?fGBiEDr|7MiuVn)HFPDIdn6FOzGiY?ro~8
z<o^039FzRB+@<(Lo!=I*m@WT5^X=rE{X2!_z%1+FwcpckC}_wo{hTq;!ut3Imk{@Z
zu?tU6n7_gyYU$<}r|0SStQ9vY3E$dz-~MACOPg4Gm=mL>l=PpcetZ38m@dw$|GcN;
zL>NPl>C9+W7xAeq|K}%PzsB8YzQ%Q?-gcj!a%G0iX4Ci>?g)3>ZHr0Q=Pj?b+O#}F
z@xZS>C8h7GpObP=s5?0`{#ad?629@(4gO4xOTW6}AJudmy_HuMxWaf(wRz4ClbLJ>
zRE|H%DraEp=x9k}SYw)hoYf`&E6;DMve?AR?)krJ1eex{9-Sq8w9fXHrpE2!wwgZg
zvl9Jff`TipihWb2UrUu%QM$Bua>ohx)0=XqDkg8a=rsBKKZ%=HFY;yGtImHu(VM+~
z%d#a)mMqx;B2vEc|L-_arle$ApMEsRxvp@}zh^EhlX_Vr?mD<UDP-v5KW65vR>9p+
zFMCjNp?-{;;?sP&x6@V_a~;?r<ZScS<nw3u=dT{5G1Mq11=;W?xXL}(kxH`gifuK1
z{d<mud(hXLGv6t$bzRMP?|k3Nwi=}`mJHg9zo_dmt~p?O_Ev?Z#A6=G1)X8GQaVL%
zl)uYf3~*U;R*1olN8IVx#~^>nd43FcrrK5)Pj#B7&$;!^rq|P=%QV)lTeouE%4`4E
z&NeCf($$h4yR7u;`WX-Jth}u1?Be1lEI4udAM@)10^f7gls5h8y6`x><4(lS&leW%
zx4-D*k`g!nSbVOs(&PIT)yuxWl$vCu_&80fY2l9#x8vn^o~eDeH|^2s>2DrAbatM5
z{?aS+_inEJCTkd0TSf0(%D~NilRZD-O=vQ&)q1}BN?{jY#3}KvuYP(?R%m{`EyGrs
zloR2n>I%x01+V@2aN(rvqQz&U<V%kWcstJ7dC_!fKih*c!RXEhnT8@9U$;b@G+&sU
zmGo|+N;eM=%ZgR;zZ=_Xp8UHN(`oen@NB+3C8bLh|FhZ87HpFdyE}iC(pxp9PizcR
z#Z^{6Og~Y$<=69Dy5&)_#pOD=vt!uzGyRzwsm$wmabMGtm6G@O|KIUy#@v4Q@8ZA2
z6Y?f@m~45!<GmH@hl4!(7H7@AbEB;6&D@LXJNaHsXWlbAQ2BFnQ_cJRcQ+<P+il&m
zV#kghE5K++#^W0djTg#pd+OBRli0gAxLR=H`7D<w64Cqf|J&==^ZxfSV>zN&<vgWs
z%gm0BJKI+sx7(He;=qz~_dmUDQ%ZZaHQ=UK@;vpL8}AP>n{}Q%uzLINr|W(FY=R=M
z*q8l$AI8upyiwau>wVswrTi%;WPZEVe%Ehvk&^p&A>zj_*P!L|m%5(ty||Uh^>xi&
zsolRP=!^ZYNK_V_DCU00E~Rs}wC4YR3xlnWKmXsy5OF)gW!BnaIlK2AXX+)K(+Z~?
zY0Q5Um_7MPmzAkp#@vX+O`EwU-DQlpu343DewHQn-;AaAq;5SrqwZ#9<9zk~`MLX>
ze@n;DmfEoD^gQXe)meV0p0FFHG_$R5+kful$zIn(Z?gIeuFsnwd7I~;kQAGXXt$W)
z#1rSwhaYc`b^H6S_Wlg6$@g~@tv7lv7wY!bUP<YGWbL2azt?^4Keu0)y=LY2rLn=*
z@4bF6&sfB%r|HAToRIoPp)}h4%Yir1w=ANht}VO$OOIi$%aW~E4{oSZ&$x81NVy|~
zL1rgY!rz1Q*tb|K?W;L??4gyIzQn`(hnBo3XZR<*d%wx6r%OJat)29Z>1!BckFem*
zkn{hFl_#!d_;JGjGOy#tuPPC*W5XWwaIJdZy)&L~PV!wZZNHNn3fmS~h&Hrt)STOE
zuike5o5!Z(at)!2-y7PN22V`VT~@SU{Wj^QMPIg@-u5vkX9w2<$#lbgldRt+zT*gP
z-V>lXm+64$#^1k>?Gjq?VrtCvRpFcZJ5KmA<mfA@GaH=R^C*X5#XkM>ZgV`@t=$(t
zvkP9bKH=i_2`>vLnYyljJ>C9q{pG{wmOR^(QpMxT9ucIYbSZ^N=SIAXQ`DqiF7wx#
zKT&$S=J(Ue+cUpx(vCj!UT{TXo6n^TIfnFO+pqi%+W$}g)%QO-HoVpOLXW$087h3u
zz5FeAFYP$t$l!Bv$(-2w8UMqwycybRlv0+b?1@lO3i`IC_IJ(2W!r*ze|EdA=qp`q
zeBY&AXit<%?5~>>vzW8x7sat3Icl1<>3;m}u8ubw*;ed0b!D4=#J^2*-Ty01%>B2;
z>{@*GzE6ji-k2q5eQE2~t$x!l`MaE&x1~O6)|G27%Narqugc!Py!m=uxXxVh7yI|$
zzti8JaKf>zCB8deZ(l<1*YlaX*>k5U7H`@5YB%5aisGAhs$S*miE+l}-xb<_&B!k|
zko80EnR~`>XTN^_?xFnJPyc7!UwP=s%nkaAb54JCyS!knQA!{4v&i_*^Wxm!WT__g
z+UuzleXF`VLr%W!$&(U>b)9!>z1R3K9@yYl`d_5&&f{G>@^|g&k36Uy)0MYr{=46M
z`K`8GvU)bX*`+FCUTWYW2jQ!Bx3u!=zkBMPOS$U$OibIsuj}u;<9V`MJloD(yi~V*
z?HlR87VWp*mETLf`*!W+L)#CB-%XkRa~iuxLHZOO))|i;DV>t*a(UW6JMsVP)6+h>
zOMRMim!ZOZ&4#Znni)X{-ej&$I?J`2H*@E8%ksT{Z+kJk+g5Isbd4?l?oF?Y)%SKk
z{>xBtWovGHw$b!@v&>Ix?!Goqz86uj<-*5z3t#z6lM&xy+jd59*Qr^*9|X&aZQ1|w
z>%=mfi9&qd)>eyJLhja!ueJQ!Tz;LOp`fEWd9gY}#Lni9FB|qoird@IR21h}%TVFY
z7sp()J@djd38Uj~*SK^;%|$vpTGp*onYOAxDC1@8|F-YzeseW+-mCRzh<F(GGtk9_
zZw{mP*4Mppm+Z<vzb%$5YPDx@>&&ryF!}SD9h)06&5wTKDgG`lIC0YQM>d=rO1eLA
zrd~hRu}b&Dn`(Uqw#xWD|30Q~+x*{FV!^S!0ZSC;{}f0FybvZ~<a?q^>tS}UNai2T
zbv`8_^X|Pkw}OdHG_E#!Yw$VGbCWhQOn&txk;n4nVul&<olegazOtK^zj(0uZoZ#>
zpk3LAz0d6y{g-<rGk06vnT6*q?yb&WJ2z<FoRavzUm2EJWH2r={^n-8_5f!s{{f}d
zR@c6TnZBIGDgSNvhXdaf1t%_Y-1Yw83SnzLj`rD=ogMjW|2=DaqH}TT;n$b`DzwEc
zI_zuz_uGkiWf~1)**0nc-8_=+#%1DBlV7*53wXal&1?3Og{EOIWout;V@}uk`TID(
z-0j<oUn_;Kl$gE5<!Ece^GW@R{TY|iXB^`@TeYLw!zHDf;TK!(bj8IjA!mO^-L<+N
zB^`Ie_SXtu(>--_r(Z94p2V<fw`%2%wA>{csd*<%yZEc``rT)q@$-V5VkS?8tE40s
zYj(sX4;Ph^<zN5$cXfY!u}`dlRW|6wuDyMQa(>@_2r?K4?`Tl`e&gZ6okxs5AG8%?
zu94VM*w*tYHf7SHf7#c{?eC=K6ihSg^-zp|R?CoPvg)sgprGbTh93(~oBr?B*UCD<
zEfr&_c5b4@59N&CJTsp-Fo>B7O?-BE?fO4kf91K~Ti;u)diN`5)uF_ba{FZ&HeYxC
zS?3vlWP<aQ-qNbRS1UF!HcVA3+&n>2PHtMswo;dOCI64zeihPH&O1e7*2{?RTbKA+
zS{Gfeo%Y4EP3DnO`+bRO-`#A-_iog>HFL(EvrKA6IyVnrvW%)<cYI+!qk($n%@5DF
zzJ7AL-(G0vb1}8rNs8?|?*IGu%y!G<cbe9Ar{=y9T2tHRv*_@o*REBO!SA*CzFK_B
z$o1dU(|Y1x)t|_fw-(Kq^QFc`S@`;%!X2B}ltivKKdf&(w`tRv359DCJs)5A9~q>y
zdHZ*ZO)u>k_RKE1E;Zx7>!<t^uG%vDjy&Odt{l#gcX4g1`kt*)2{SG}(23c1HPQ2<
z@HOQ>x7Fg@v)&xvw9T`8ugcX#&ye1We<$0YpJ4o=XL`0p;9=o->3ipWri<uZ+py&9
z@oU0=R;GWNswGtz_o+79bS~>jYx$X+2jm;FYvr8JEuQ#kS<SV!4nA+Wjj!%~DCxZ3
z$Qv^I>uZr~U&^k9%vnE4{+e6}<9?Y7oE}!q$0r28&_8$5adzSfJN6gVr&+$Ln1)wZ
zckM0>(p}1AHf_e^uP5hU{BmQha}a-ndhpIkitZQI%;s)3J3OJbq^e|=-Dgowuix)h
zEL6R|>`JxA{W;f`M>%HO9bng-mvVyDjMZn+caTf2O?|zjGu>Ba;-rfVe_s9Mdg6Dw
zmEq2uMUnfNdi*}BIO{EttohE8>vnI_{?jqryE{AzodqY(tnT|@_u*8Yl2YjN@TJ%O
z%SkPJwsPmQgZq_~+~O?cHP?#?X3A}mY|ANbDCYgPf`vVApW52_v)7$wjF|Px>A_?M
z)2(5eW=|Bl8SnAj;&R^h^VmZ#A-xNGm<}uvaSoiFRpnoLO1mYT$xTqxekPNFN`^L1
zWLkZ@_R5=@7biYu@GvahenMzL-)iL;?P`V(_otjUW;vhHFu!@*p$VyNmNlOLTipLK
z7?>V?S1LO5deC{J_2G;kTu(ihY)aQ~IGTG>>zV`?)AJ2W?id%vxvVLlbLxtg%G<TJ
z{d(Sqx4dTvo6+S{c_QKOt><&{_wD87c)sDuw<GQU#2Z46NV>)`Bpgh8IipOU!FpNo
zD#eJrZTTxd+V;M=*mkInFWhMPG{u)Q8Dype{nuwIaJh7Rdu{5U*V`TkmNt6_?V6{k
zo?)+D6V7|vG$WZOQt^q*v@a{4Cg?t{tn(7zA<~dM*>+EkjX}Ql-HesSx|*@)CrEFp
zw=Rm`drvbXn<sL?^21YmR_fkbXUgz>SqbCWGZh!sYF=4&yE8oYqG8tjSNG4~j@tf@
zX~wimUwL*OlDpsjeoZO=tPNYIoH+jd(51p?S2Mn!%cd=MUM<ym!g~4AqSi%6&$_03
z-O|<7wN>=tf9<z7HYOkM<8^hpW?y`L(ua$&$FB+tPW*ZISx3hn&@k@qpDSZ7OwexW
zt4zrLegE{kx~kX-+a!$6P3=oOslHYIAN!Iyik}U)Zv10q{Y&@D*1i7X%g?huXt|=7
zaYE8dZ=U?WY5#rpxMiFuj?(M4xfmLKz3vY?gLjtwxs#<^e+kW~Y}*$%SMHv%my63b
zrXY=rsV6LF{aJtKpO^cLrw^T;c^?1#Cq(GDJ&VKUDeE?R3+-cZlUGoZKFgiYFDf|k
zf>MKg@c)FiIf;|S-yHht*0iAE<~FTQ2J17X9^stMIN_1h{okIJ!glXe{9U%iT`E4#
z_-EcHcH<{Pw<9A(vbS^InzTpJHLzdiLE`ZhpXa%H&M}B}aoM%xTfzLIe|Em7q^3-r
zI(4e42Dg8}^)qu#v!AVrT)l2<cCyT7@B9B<{AQ^tDfMm>6`VQe(o>$D$6Av4q%L^6
zyxPCVzx2X338Us>+X}a!ll!BYN+%`oUd_L@?)0|ZZ+FK(FIc+nubW%H{}!domP$$9
zQSnp%edXDC&@M_-m35|{vt6Lo$&W1aXI;_!x{7h$_v?KZRvOE+t-0#(m)XVTi5r6u
z$6m=#E$(Nc{S+@>|H$%xQcA%YpN93unJ3?xGnU0}=V!dOQ_REsi72l+vw_inH71^|
zmy1?D=DcTpa`HaL8Sgf$#$I>fnR)4fWy7l=!HE}Y8dzpcY}<3N>a?M%7nk7iMV#+d
zsxNgjgnEXn`gaLEZ}H^+DU-0Rqa&kr&heVPvlJD+=%(M@=6E~tgY5IF54+BtoVQe8
zVWrq|k27oe!ar@B+Wfh>qhk)6gO}p(wwR-Po{H$qx1N`9{fu?EAL9dqm8D#dZ$$>@
z`{ePZUH>ZR9G0iF&@|yWoBgvHR)$ZkuSK6*3Nm`8vh2E)!cUEB?lSCHl5s@)?Q7Y}
zo!<-hDxTbw%d2Lg^HTc~SHo^smlT!*e`?OmG}-aNfZ?)_Mr~r?uj!9D{T>J>W%3<x
z*6P}FZSx(MizN-~C%ycb*si#L`i*<9oCGJbO=XZ*%b%;bT=Tbd152tRZ)HcZXjza}
z@JerneKUO@&FoQTkeKgMzgFh5ndx2ECoZpby>ebIl@8u;Zo=gk<=IzWa(Aux`e5G5
zIhH&J;ttndf4!ogVa80C`g1pKKX-9i$CjWiIPpL8n-!+ci~(yzSAXZa#n;?#QNkcL
zclxE7e`U_wW!rp7G{1c2LW)t1RcL#4^o<zMAjCP&&J)%QSC{EHJuIkvG+)74?$flt
zfBNjyk1EwHx2ok_zC*rb`O~aPFE`{@NIowS6s&YMw|lQ+#GT-i^-Z#9rkgio)}LNY
z1D38nZ>{*(^FB$P6bsy!GU2u1(&DwxmZZJ8J*Vz6cf4<;t>fmOPxPwK6fY0kQehU#
z&1>0Hx7?pCx9y<)t9qvY_im~68h3|T)OuDrZ%_8yGW)Wo_P&#6H1b{FoBT3(qV-mb
z@l-TRZu>#^U3pW}{yf|s=>KbGUOUg$=-bPR8~L0Ut=ka#HeKRV`*g+~ni<ACI}bQt
zJlwY4zbiWMp3$8d_o@qDOzC)FV4S^rbK(i@GKPeCo`3z$v`x(T5dGzuV!Mun!IHqw
zX=i7f=5H&zvAV-!$+@`4Th<*|u>Rft8~?t4HGMfV^MvoQ+R7arTWtSMUBGL|az0Gu
zL7bpww9q}Du#*b&_8w<kU0;`0{h!DD35zX*M7oeNPtX>lM*YY@|0i=!r1e|Hq|H}0
zH(zhg>hXe~fsg+dpEKWwSf==(K>sJtPdxkRcsuKaZ56ZUvn)xjIqpjP7XA6Fd2!#9
z<cV{)ur_RN+IDq9^_AJo2l^auCvwc&EVFO%t8H@4GM|)9t-EZv8^k_JW!&rHEnK1S
zL)&q7BFDVkMQ%#>x8)bVnQ8l7j{5+^M77lnVbQM-g|p<YQT(2<Pin!XDdJ`#?*9Aq
z?4n%wm=n$}Q<~23Vb7mckEb~|ZM!z1I^)-~TCh>-ozFJ@I%;KJ?_V*kF8yYlcbe`?
zp)Fh6<}5BYJ+SG^qJExMmuCLtIVa`onKrCgsT=>LyF+Gq?&C`*Pa2AtHJ|0);HX)3
zU|v;kk>>R76RR7h_Lt9o_xFHHr$o{X;fDR7rUdtwl_BndZwpi>d#i3a8`ZEhRY^(l
z@7IUl7WA4vk+El*uqS2b!iJmq8=pEVX&>shv#Qzo?{%W>vWa@{)?~}CS=n~S*;{EV
z->sfGsfW4ty)?R5q<Fe>@#@l^b?>gIPP!K`V};73)jxV2UGDMSYIw8hqWHAuD>_P5
z%U*smGiF%vMq<U>Hkl`d4YL}QCBOfAUn$L=-6$SwzU9e}N$N>+JA#TQY%||-isioO
znwf1fPgEPOHqHw8BeUV%+U6odlWGRX=n18ItBVR%i*;guFZy2cTXu6_a>rBM23E(Y
zfM3f>_xtVJ7CND9$Hl_GZO^@zxPM7Gc}V}g{npiQt#tlwoqvjH>xBuEYnTjd9hm1B
z22IU>9^vpbIHzHs%eHx0werUI_P>4c?cBphsk`d4`u0tfVtOjwVBfsE?(q6Wbu8ge
zrmQHqy;XXN{={kizW+X7{cmlc7xX}**Cz7P)we2#+s=7hc<~}3<5%sO?w^kvXFfW_
zoHJwJk>=QN<_&rG7w{TBQF*Mm>E86xsGczXO|Mq6PSZcRRLMs-Ofvpag7NAb*IqhG
zC!O$3W2h0iaP)S@FNxE;ysiI+pRHq@`RLeNiFl!fE5D}RmD!@$CX*_7VD`b7-8p-<
z25p#p;@+?Gr<*q(nX2Z^$hC8sYvg3NUTM>;HUF=#__(TH_|J+deD@q(Tz*Nnay47`
zy0|cP>06dt3kuFGexV|$yX^0&;DZs5PN|-4-lovpvd!lG)664}-kyryx7NKzG`!_>
zf`H&eB?dX(XOC7LG1<Gh!^5AUYRk??Q>Go15O!x?Yb?G+QgT7Xb8WV>-Jg{iHt#*R
z<BC?lao*xJQCTOHrI-uK4aCC__MB5vy2Ra}eeKYx|IgY?F4r;e@ZaLuuW9+-c={1r
z?*0Ww{~nKe``IexdW5swMKO*wD>gjS$lmb!<vHtLpQ;W@h_q^LmXA(2_-JAO@9$sa
zqW8SnR(#of|839zp><QPA2^zjp`xVp^k7WQ)Q*l7cjj+iQ}|l_zm@V2_Z?0yF4I`^
zJJ!FcO=&uoSbpSvcERWS-;@e|dhSm@pyb@RV4uo@o#D&%GX<_*dfFS#6mK8Mep{o!
z`p;3z`8H46U#>nKK7G2m#0tZY_Hx_JzJ0i0*xz<p%5GO$)U&t7PjoGf^&%xNmwlTZ
zpK^0n#I=r&zwBBvYlO^Aljm9NT)TDkPl>zct1|CgjINcd`#2{h>!_4akp_c1d+|qQ
zh6|46?XzZN9;j~G=;`9(bk@Zy#Ng)}hO;MF7FIGC%d9l>)peb;Q8%eS_g6y1>cXd{
zI}KV>Po(y-KUk2Uw~wD;`HN%e-*SIX`sc&8#ZOnM=nB&@x#Xk4b0p?S&U`4_Fsnm9
zGb7c-w@0)_<CU%bn;Y?Y+HB5A=U5W@6ZG~eGdzENY~!`u=*!zy2tAmYkRvp)S6g}U
z;-!}AD}%!I*dJ(AZ*H8r+;(Z~nZmnuoc{&gO3!cVZL4{r#ITL`*`v9PJG{)j{#}&*
zZap!SL7z2wa>tjx9h0`UdpE9qe8OKzY196#q4^uK9M0RN#9awo8!xqW`PcKU&)-@a
zd2f^aG}GaE+~TAwt971#oOi-%;tSVDZ!T&6S>LsIAJ3UCo{I?_49%shkE|*)F8{ou
z*=s#l`{uRvM_hJEO>#PXlxfn*T?`F}*R1s|{Z<-0aVNujmgLDDdlKy3R~Kn!-jqM3
zGxw*utILuXrgx)u_+D|8J=VgW=FBX$N$OMoZ$=J}y`OJpxPMbTa6aj!LXCKjuh2}^
zxP9qwk3W-4z4qqBCSMm9r)k$?b_HK?v_7}d_GHiF;=uE_C(O3tJUDfW1gC-ao|~nn
zA@8-7lo?)#^#m%_M{J(Bn=RGhSjLa7Pi@MC1vxYGRJ9lVzr?<NgU!iV(Y;Pv6f4;n
zjvVVu?Yy*=;k|oV&c6qXt-Ct@h&S{%Z}dtrJTQMZyLsYdO{v<&en}_wl#~|!E?HeO
ze?_z3_VA7O3@dBeLMqr3;@%!lZPIJVp7>f!n~@_U<^n^*@ur;>YMEcwKJ_XS6P!4^
zB>U~bbIDHEBj%+%YIK~DaU$7{b%xZLt+yFI?D9Ts%TP0;wA<xKS>bio;*UI+epr7M
z>MkuyvA#NG{hOCI%U%SYo?0U-@1Jj=l45Z{Uh=iw6~jg`&kU{ulOFw;Hf=S-4b|i_
zRi{#KE<c5xC;4Bgimkk|D2B-)RR6gl@4byNCts^2-J77b*zvlb(V>l#HTU1EPWo=h
z@U1ZOV)##fqttLGKjwu0xA@O!TSY~hb8p{X_J#F9%yYxDYbSE^i$pcdQ{?tx`JrW8
zyIq#$0E2()1v!QtnS%Lirbd(%WuCIQ&a|QOE&DTJb)8`SjS1G(=a({AtWMjyamk+S
zbsPsAobMTHC-48iuy}gZ{-Su3j}}Y*X?@U;TG8sro^oiztqYpXO;LQh)yIBmJ#%lm
zWD-!Y`-J1sYg*@THF>9-q_nEWU7lb1%<<5lXH!#u*)iy4_e+OAc$sE&R-r-FF~%}D
zCpmOm;=5}T=k85jzGU6?<Y}UD8`djouVJmQW0sZgYnGG?Z932V;L;B^UrU~4dFTBn
zoP7CWjj+}FJHMosS>4YFNid(JxNr8csb}u#?PG6VSk}c@apZrWx0*#Qr}rJTh}@^I
z&Oee~cj2<x*ZUi8&Ezyt>CjGZS(bk*{*ZLw>pkj>eVy;yCNs>qYWG`AimPcE!=0D)
z$EUx1`}^C&Y4iMAe|!JPXz2Rkb44$dA?Iz8*D}p0{trnE;paGZ-)7x<>bHyj3R!lG
zkPRm0t8VRiAaTiM^^bcGs`sB2XD;aVc<y;^@1NG$4=%|v@N`~JuM=!=+$SAoE#+A5
z&Jcc%q4)Pqt?uOHzn>;LsCeEETEw*?VA4W{0M*3*-9PM@4*U=j%=|go_SioayKie|
zZ?h4+zTu{o!UTg~v5Y$mev5ybAF%%BxBLH2vTf{L^(Fh|>aEc%2Q-2oT%MpO&Ro!U
z|8CjUc;~5aw5sp#Te#Eo+kpw9vZC@A7ie#0^of>XzR`5;r|)$CxBGuzdi*$=pTR-8
zYadI(*J+X4E(AFI;W}WpRepw){7Z`?x3ubv-uOH^CMhfaqWV|hM&7liQMvK^eOHV2
z>fSeeef{g~U)w`&)PI$~V^sH@Dd*uk?XNpNZ^~Y{aKa5%hWl4-N`LIJ+an;e>qytG
zl9_EU)|LNRwL{?gZiXLruP<qpGf&WFy>$6mLiN0^um6j6#h0z0p5E2*W`+Kg_fiiR
z^Uhm)|KFE|doQ0_aG~G?_aD>c7cDP0zE~u3_FX{ZT=Pf#*SC89>%8iizbtWc<oXX^
zj1Jtgsb6zzkDweE-}ivXJDd%6N<n6P4fT&-J(e&t;fvxn`2Ny4XkFON4AldxSXS;?
zdHDyYsC=U56r(L$X7CxDdfFrX^+$ZN_LI8|2l8*$t=i9Y;&amUxBs@<o;<X9@4vd+
z3<VQAR_uv7dr*#D%1okclj_$9qX#RlY&md_^#QB>+DyT|!0uR?UknK|PtTQ=TA*Gd
zV7w)3$wJMW=lEtaICh==b?EZ7@_^4d#pjc^1@PD1eyIL>BY)aOJ7>R3nR<L-`$|9A
z{g$mL=vS_iE55_2K7UX4BlG$58S6_!ogbRc?%a5~`!7TJ(ce{JL6Q4s{EZTQr7vDP
znP*Y(q(+wazuknV)<4|tVtU0&=;(|?lb4t*aXam)l638_b=7|5oaN>d=j#hjzbPKK
zqd4bsE5n<oWnsmyo#)8x-Tlvpq3U-={92J-rU$cf;x3n$EUiEKlyh&v>J`#U4}ITi
z<2>);2l1@rL%Ojxeqox6PS=>EFW*{q*8Z1Sceb^_2d>ncPKQ(ecip_p-Y~N;F--D_
z3`5w{(w}!OL@fCB@tMi<*hiD%GjA-=`04V#Wqtp<{T7YZk{7q%Rr~#Q=kK+F-Pd(y
z8P*-y(0{My;l<tgdy+U0NXehxWP0i2(L;CdwpqPp+;RHvnZG5WMcp&{zl$^MPu165
zzHy)7y%}4%)0%9*dar-G;qP?!cN6?S)!aQ55bmV^a<0L$l^!P@{m&}$#(6$J#Jm2-
zzvI8ZcS<`&PhRoPaPh*ThV8ahSB^aRf8@>9Yu(plCasN*ZT4Q4Uaa!Op1Cn4j(7H)
ze=q!{?i%kc6+2_}#Hjq$Vzawa6UE>DOt`YcRP)YJ2BAwota!s>|GYXG82KhWt3QsL
zsh;7_vx_%Yu|4vBB=R>c@@L`dD`$P0{eJb8Ifdy>(~Mff8Zm8-LCi}%@$dhia0*9m
zTDbV)J)I(rJ1yJnKQ4(oE_?U$2WNh}g!_A|_wHS07H*{YH2zO-UaXMi-l7*%AKsjy
zTk<tw%Ji0>)ePEu*O^Ntl)l+%9eGgejJ;B*^<_uato>)-GycEoP_ksf!3i_sq8==<
zxp*l4v9W!$zmlHk$3?pDqvUQMZTbCOS8QU{tlOIpWiPv~6?^B{;?Vngd|h|<KCbv}
z)Sn*LSSru3iaBu2x86l387eexO7eVsv-<JJRkw_y%=bO1ex0fF|8w*7dw()+bQBtk
z-FiH=aV2a1mY3UaT~*et`}(9;?ppo4SCyZBHk5Cg7q)b#eO~=d;cu?T%6(2=GpXP`
z(UX)aX35f!-(+@pf_+Z<($il(AKl;!x2sEkUwhlK{he#??Yw=L<7O`{Ir*)>-Pk`d
zw#RzostaltlyA#-Xr6eqpoH~6#Pn&(x|wEbN8N7zKAY1ZT4~4sQ%^vARkA_FrknP^
zYVJ<is$Eud?x9_qe9-?5>S;&#1JumEymK(U^X_ZbwT{T`2l}pEJ7uo_`-7p-1;&Qw
zM%5F2HhYR5s0l7VKSAZ}+AY)7H=Ft1NKQSHT(ff3f`xDMf9+H|H8teTgQ|6EvTb3E
zJl}RXFhwrAu=JYs&B)S!5}g*z8#aCTEPl4bB&xejg)>r8r+M?V)r+>)Gyb??dGq$F
z@4Htk?R%26J=lLv=ub~>!HI@(`G!hLmpDK8wA^&7eg10QyR-imaPdgapL$X!nIY@b
zA7_b8#|5v=cKepJ$|~yKqO^jTMZSOKzTG~Tus!gSVFGI(4^zZj%Sp3XHk?qF-q@Yy
z+<)?k`aj_Z^Z&#N+><&H5g6{wxF~SZ<HwWZjE>1MgzSH(w?_EZzh(2YR^2a~t@Cn|
zOhT=*;7;}i-#vN@jilltRhCESm#&;WPv>kl!@W~?ST`Mf+wh%b`$2*3b-!!pAJty9
zsA$pE#$W3~n@=BG!G9y>O~~H3IN6MetrnG;v!8p`RLy<Kd8Ga0b4g(at<67_lTQ?P
zEn^BinqYkPXJ*`n{a^F8Y`<ZdUSDzcqe%?+hvsnqX_FFuZq&RzLFGHsg!_$Iyo^6I
zGK_gDTe#ZOD|)Y-^krBQqwuMwI&9nYjwu;J?{3Di^Ruq_bSC;<n0Rs4uVq;-lWN#E
zDD6JwU3b~&<Bf9(9m$JB8D4J^4_g|gzS2$i&8BPLRHt`z#Bd$ZS^x8Lc7sdyrst8h
zwi72l-&@CeKz!y4tLha80>3r&@vt_yO}js7>+8Lo8%&N)p5?ziwo`1g#?{uRt8Mx2
z%Qf6w_Zif73}183?qlfNTS@Dket2GITK4aHiK&P|EaQyHTW9sgGy8abT(bP|x|VcT
z7njto=@mY_ZCAe9Ji8hHk~=Ja|MEYZLanbe7A*KLn=ag|yH5|~)uZVQbEd65-P=6n
z>P_>T|MqUsuZ(wbaZ+Y{Z&7vi==zU-HGHw@rQg^84_+eQxV3EV@f@xvyQ9`B-j?Cp
zac$ix9&QE4KfA5J8!`W=vpL|u%iA^ndIgWR(|slbvx6D0RkZgOgr2{WvvRKMgq977
zeTy|+!&!6N6xVCantRMcF}G_q<2=8&OXf4&_`=;GvR;a*B3-yVHu|+h?fKSMKCAvt
zTOQB-q3`_MG-+R#6IZ;ZFLap6@ga4Z-ZiO)|I14J7Jp@M4yh~Iy0!SYR6|z(t|>*U
z`=V{WPH|bXnaeBq@n++hEC%X!O?GP^t#Vwb9b?KEop{1ns-t7g*-J-FUL;3)J%1Cc
zr1WX6j(}ihN@o9`pR+nVCSLFH+~29BlzLvxqig2I?XUi{#Fee@pQv}gqa#OXzRisA
zeJ;JG`;JTyN>#cEUdFGo^}{647_aqAeI=!BW{-1UySVgOU-&!c6t}C(lMTi~Uv|Io
z=)K6j_mSk+X?(91e%iC*U08!=S+d8(R0ihFC5FAr_vkJyu49P^O*(nGo%@?D%YhXA
zuVKD_;;$G5o>%m4*uTuI_EgA){vYf5ZP^Z_HSA@`H&F3pP4Q=0!}ws?u~`jmQ>|i^
z+L`+1?3t!zS3CcBrgY|lTHTk7<tvP5K1^qMBhjE*`PEC<JwxumnKbkIlIXhYKMYeQ
z3QW*gcl!D2Q0Fer|JIBJi%;-11b>Jt?p(F!6N`U<dEn{O$NqoOu-A@V@uPH(jd$Hg
zBZke53soI&C!G+!B%yhwHI#ul$kJJReth=xjyrOB8rK@O-nV)8^+G#?k7vvwrIP9I
z*Q>ZQR?0t5J-MeLeP?L1Vq2P_e@5F(eoeP{lND?)^n+rUKZGnvW!Js=Sk!gX$}YQW
zN|8}U><N3rcg{7*2x9#(vtE|X@$;(=<C6}H8W##&Jkz}<wa}OOhso05WlVokj{93a
zcQ1LhC5gLVSf4%N@3*78Qs((jca|+Vx^tcX$t6er@NCe^*7TeC@OX#5r=icy4GS+x
zHfV1y-D$6QmC0{DgAQ+`u);a1n6K(gA9~$IJU@1v`0ViW_1C-om+TMZ$Ulv|YW-Gr
zv-x?oWc&U<pH=RE=HX%O^t+s{z0c*8t4q-8Qd3WtC6(GYLtR|z%D1f9%^*0j`CPgE
z#$St8op3vBY^(G=okvvgX3m28;GV-SE-KfiKat#R_2<Kj1-*t(Sa&nXJxwt>XwdLc
zbMB&9S--Qn&YgNO|NC-=h<8hsYu7(+TyRYJ!M#~&C8GQNyEjRl_#GAP`dPVtXQ`uf
z@(J#5Y!9aB#I7w7I?yxaTp+hTmu|xjl_P4K87s~|zOrehU;3wQza77>)v^D-C_bIB
z=52KO!4E}G_|45TqIoJCuYEcfb~EDaPU-2FEOi+wQiK`gdNZ%EM)-ZO*#4XA`GJ(`
z@6CQ!p6##Yj`%H=FfD#BYfEzIkL3$;4WF<|aXmA9{J{KnmgYl|@Ln;7nz}8&A3XGB
zcxL+DqWrY<yt+3Ff4}<`6Q69uXXULu;g=f6R~ZN2dF(xA`ux8qU2ooYbb|N`uhr8_
zR_%}A)_xo`rSBhK!m+muIpVi(WNqBHUuE9gjA+Jyhg<!A%QLtwOPgkXooPdF{9V=~
zQxoHpR&hyBT4>4e|MaP?>zEc)eHZbsmRpdfabVVutJ5}n9Fl$)#~bi8)OuBlmP2Y+
zS!Iz8gQWI>$-3X-vVKm|>5by8^fP4WPk$T~TXN-3!m8)7qLsz}Rri@Ld9NSJuKHr(
zz4;6^?<x<hpYUo*0h7s_`l5S$K3?Zu*rz1ym;S%u|Eu3Dxf2xaBRD^JiRp<*u^pH)
zC3R|l$B#+NV`f>uIRAVR-#yzEAz!S{x9_e?UG#Fwl#8y3Vb7kQSn^_ur_0Ckd961k
zn;ywG_-`s$$o=)4jlxr5^X@y>p6}c$zp(#Z#`}}!PC6{oJd)Qizmw&#ZgKwU{mTtX
zzTC+0KXiUJYwl!4e+k|V7mf=Q@!xv=DaY!U)x?O3?>_%#Z!K(i-aca?`<)l12aYnx
zOlr$~mt%Q;(|6nRP4PQDFD~4Fq+*hN|H(gV6Ey_n*bgXwIb`o7&up+eQ|fuyywtll
zUf&6CaC)EpS#{moBz49^#&V6H^qC%PT{nkq_KkP>f1dp-ot60Nec4rZ?<AX(SByX9
zr=)W9JZ9LTba}dEZ2q|~R|KphnY-g{Z_Qq{tmbK)+}ox35$BH`f49<MKZB3&X%l`a
zo(=1EoY{ZT@0o_(hgsK;tu42jsJgoGrTFv8O`8>Wo2+O2p>Q}nb1O$f_+^{D&1{GF
zKe)Q@suzQp&9!Rx>$ms6uzM{j`7)}lR_I6Ub>))Esih|`M?L=)eW)%tsZH6qYP!eb
zbGgmiPEW}H!?wX>aq`V|<>#)X+b*0^taQtt`NO(bl`%goBYwX&&fBatJ@S#=<!vRI
zbJz_uVsG166im#$v`LUT-|ph`dw&<dXwzCWqd2qcU<+IGCk2MMO)E>6e-%}JyZg(M
zE!LT4(h-vrTp#KkKOFE>?Nikqsoa=5w)@t~JXpG=_w$0s7SDxWmA|jM_-Jy5|E3qO
zj;xx-)~s&Z*t1g6)aLKz6YKB&&gB2*{GRFF(G#vqDmorl&Uj>Y{MKD5^(peAw}ZG2
z9DXVF{A7CN1Mgkui=<AzN$ycMT;e;K$JSHnX#2iRrwZrmWlt~jpPt2EEX*NhD*t}R
zmB>8zoJ385kh#*A7tB2IFZ15Cyj{mXPQPpWpnF9*`~9l#lLPL*aO6B~&6Yb!asJ9C
zk=H&d$Hf*e&bw^6(tYL4H(Rc~di;Wg-E{ZE&l~E_tAzh;2>a&s_UuJwm8qF~v~oW$
zy777PPtzR_{NMlEba8)STHX8fl?sR3j!88<|NH)X_Ho@^@Ak&YRjux{e7QT2`M2D^
z{=2@pr+st#_e36lvwXLi`JWT7o}XNy?p7)ulbmJy^4AUizx+j&>9;dW_ee|r3QzU>
zHK|JZQSQ@Y3)UJvF+9ES8dG`Zg;O7s%M)i6CfFwDeNoBs&sce(^WEzpRs9HA-ZHj3
z@A)0Hv~_p$u49~0Q~O4!_+!SSh!_>sXf>%o)}uf5*0t38mdsMj6=T@*uzGuSg!%J$
z^K!4<{f-;UcZD0y;W%2)JkP68adm)vy!AEP(6p8Ao7`IYB&7=T>TB-(U+4Xuk3S&k
zx%`1>N27v&(i;tpX07@tlx852^;G_Zi{O;Wj1oJtW0khr_1t;;IEz8;>b={R41ZpJ
z{an>4n(=5x&b5U-<sZC6j;inCv8~$>W^ZM2ui%>BZ^zUpdj9JkuPMG}WLk2yy}veC
z((JbDwSx&BlQJ3Pf8JZWs=IV;uzc8#SC^ch>AwFXI-zHp+es6KdACn2-aFlNVs%VK
z|2m=Exjl|w&;P%j`XuqWM7v2?@~^YCe7E<xdOR^a;L5FMeql}9()IE?&R6%Hd=!5<
zKF3(%AJdOR-}C0PEXZ56eECb>e_OZMIry<onswdM-+xwh*Kvuo_`kMs*KXb`RA%tB
zadEAEEN&+vdu{F#Y4%&k|1(COJm}YMwDs#Q={8HdV<#S;&FNgo=ffiLta`gV^O^P0
z^0yg29A2rU^mRJJl<V^{Vyq5V8QFdJxO8_ZQ$yglDV@_UdM;wRkv(yF-qXLbet(QU
zRog|lEIAs(@auMaKF<&N+3$q~Ew3BQm!B~^@B9RPk#L4RPs_J2)C@?seKv`U!#{47
z)uGm{^GhfFEeMHu`L7^ilTUx-Y<}i|YQLQ4AA+|(IF_cQG&isEyLxHN`c97w0|xHs
z8^^OZ_IPKTTQHmwJ7zKI)%H6_6M5Q}ykt61|My)O>y+287P&F|T&#c3aiBxx+^#Eq
zxt}A>aqeBWHY{>(G{Xv8-EFh4zTDzHr}5cp#yF9QcDJhBcDUaEG-+1*Nvr?jZ#}Qs
zO}2N^ZkywJI`n7k&h;Ks+kao#IQt)iX>X~sc)+BYr|vw`el02a?%ur!R{v?`f`Svf
z8Ezchz57C+?d%SZ&VSR6Pmzmb{xI>xvswBdDpNE}<Pzfi_L-ZMO!?9B^!pXL?a2mL
zPML1C^~_xOUUKs#uCmevAEl-pyQs=wGwDp_!r)M~ja83d+_h!5+u`rwvhDhshw-nw
zJH9Xpd78Ab9o+Qx5Sva{-vJ5c4a*W&in>(YO*Oyw{Y$nyzr3-p_V+zA4=q0{x7^a^
z<d)Z$1a})tJgVSauxlNEEzeQmh9zp|Ld6UW;;)anWiuR8DSzgczmum&kLAbXNoq>Z
zUlo6u(s9DhVbP{qaRwhfLCuSQ4!&3=v#P9MjVz1!Y1fnWH*}I#huPg+x3>S%ls4Wu
z^A&7VA4>n)ZNB%MRDBfJ8_Dd~+#dS^-aligd2uH+>*dUKHCekaIQ)HnQt6Ut!@fA#
z){vQhLj)~l8cG9;xvjd5Hr+ZreMhD~>-mGzO8;itUrF$obRp=&-W9GJr$u!7zVmO6
z6wvIm<w>a7wEQ3EhGUU^&lj9fw%gP1H&Z89=@L)F?mfRYE{i$d=He0>bg$H`eNU2K
z!xE;_W`&eYcUyriifv4bOd0<Ec^krA?B}asK1pZ3WxJBHVyi;F>~Z<`H$HFptT}(B
z;Jdx9PE#i+1pl&p-J<N05`9(W=KY)hN|?eoZA<r>Z`M7B@yRRc8H)Cn2i6O=Gz*C;
z+ud$ocaL#Ka;^`H#H=?fcQYAW*r;yx@2|Oox7fMX8QT@vQ?=JV-Y>jS_W1g9A1)kz
zWaDx5l4O0&|C7?^@6@N}?R(g9W8V?qvzHP)_+w{(Sj9F`PAb#zWP4)g9>xs^Zq4BR
zP`7D$TN<NIuIRmmpOqed*?p9oA+6Qr7}J{jm-o)jJ*=0MFPOPirlDAd{Yv!1FUs@t
z_IfV9Q?tJFnHfV*&#Z&?CbO<wclmtjWy5s2z%Cw^h@@Pd=8#uOFWjR`X8p~G=RGiU
z_uehXetsz5xF}-A)k9mS&pqs3r;@Z>=ilp|9rd>_Mt|LwS#v@`f+HX^<O<I}LzaYj
z>tp9J9bk!ncljTK_Lut$zkc}tc5eBM;Lu;k@1MCaTZEA{Bt&3iqe6lstMrZP_j}i;
z#_rx<`c`{g>D$z`*^#0GqK+)Cfr3Z90v#M@m8?9xrKYZa&TOAkzD1MoJV}}K{j-go
zkKZ}l@7BrhW(VJ6>aW^ow&kkTA<J(v`~kPamYnSs^#4Ck>923XS&i!lwxyK@np=0C
zNISONtmto9(UFYvsXwZp%{|YMb}MY5h;V$f`SFtXGbYXA+$6a4WH7_)v*&#qO8Vra
z&Xmf1=wuX}c<m~Ku<H@aShE~;rM}`5Th|@F61u2rYw&Ytv03u(J6~+@ylb<(=yXq=
zH@6O3#rbVqOJ~gBu9N5d&tY(W{)?~28MMxxS9|v@?Y;Q>t(Pi~{O;<Qyyd`+?zo31
zk4<Xmm@@mo?^%s`i+PT>9#*c7k<I(|WJ)xL3HyV@+eTB8lJ>qg{yfd`!`bpbi49So
zi^CQ6)_k088G1Tjh%=SvMdrOq#V=oGD?B;dbNX-7H@#+;X&<=?<F9<nO8C#-`}m~P
z_Sf7(!WuIduk!Hnyu|b2=H4SeLexr>efxhi8u-6E$1rF1xu=bfwGZm#oC;?+Q`mE0
z+QNXO<0iaDb*uY#_7o<~QH>Owp1$i%wnFBX(neKDqjkIYT}ux4k`eyB?aX;a--%~+
zjHkD(5EK;L+?#!<_4?9c%m2SaTvGbOly+|y6|B6jsrRuuqbmQK|C8k4tn3Y^B?|kt
zC71Piv)AUt3r<YsR|yN6uq~x8Rn*HcG3R8FefynQmnE;P>)DLA9jREgMMQAo)|b2n
zZZ1m>)+wd6EAKHb`L6Z({r7XPcdK=G>`?8T8>*}H>7U8-r^in7$BEot`f#q2Qc<-~
zZk@&LA1AgcDg8-{ZVPgm!Mbn$=Sc?`1SjTe|CQ9eG%dwIUr@4meaDFjg6B#!C9>j6
zuNw$XG&~pA!;;P;Ah_M7H`M;Uiqc$mo_m4`XMb})-aY4PtV_zf;Fq48Pey!@Q(LJa
zXP~IX8DnRB=*<MX8M_v%`|yfC_9|Cn*uBi$AwlrKdd8Uy2Ucy+kDOd75Ls}j;`naK
z$>EGzlYMk%&1!zM#E`jl>#@wu(>wGEMeJ|BNfMkGWnVk(%=i8Aa@vvSy(P4jHkF$H
z+}_c#<==wMpN}1ztnIR|O6|@?i;XVV9&j1@x-1EtbYa$MtIm!;Q@*@dwISzZ<yjXO
zn`KRbBK$GeLtIjR%(vsqd}d*nySFQ{DP?1Pl9^9R$DZ6%>+=n*MD#!W-1c1Fwjg=O
z{Fxu#*QNd8Nc(*CDR28V^Nx-ay<0h}Mc8uR&-+qgEhw0ouuAWJO5}tfmz+38fiGW;
zzgk+zCDbJtd6WqXPPAsonD~riHXEZ`=akttAAJhWD{jAObl?c@@eP#%3Awvn%6AAi
zc(%%23^$Ydv2v$}hVws*+g($X4v9>wzI$F#I+vy5`1*%FlGE2IJv#D=^>Un!4`alA
zmnA3FkImTg&aUNT<&$Zb4pi*9J1ybQ+3U<3%6IMhbT+N!|9Kylq?&S3RcWhS7LH$1
zw{Gz_NdJ|37sRluvqSj#^mjt)PqtUB=-6WTGivAUy^p^$7{}Z*m>KZTCm{5S&vY*P
zElb;fKCSL}!*$@zp<9OnUzw_D+`n%WJ)QaFq+QETwmPghcINd2Pmj+G4D*BpUmD3b
z%v!fjHl8Ws`L>WsaSsVjlYR4QPMRBSOUZGV$9|<T?&HJ*@(c&(?c@7p<ZxlT7Uy%O
zg|jT)Gyj?NO(3<KL2P<w$D5QaPX5BT8CnZ>pSA0;jJkN~t5NZcKY<JLr*~L<><KSl
z!4k20s*cG049)}D|M;w=FP(TlXOc1F3)R%+f1b-REL&!OY_h|N_Gh0u<|psu@tBZw
z?#jEO^PU?fpJaUP{c8D~Ph1l-dNw?gpUe1T_WtIurun;fE@!%MeWvk)lvv+>=Y|Vv
zCwUomq)S>#G^F3TcT2iK_3WK{lYcWr%t^3b%3$&5apCcf6JIATQ;FEIGGpqm_LC{E
zinTr+O_;ReS2O1&*$vqi_dVFE=lEV@^bwyJ&>R1Km+jeb=A44F;Xe&0Xxw-74!(Lw
zKRo`vBu_!fid(A>@7@-wdGyFThfP(bl8N8GUMeZ^@A=pwVP*G+CuNgLwQ#|zxV^lk
zJ69wdwjC?=|74)B(EZp)hAZFBIYik>@EUlfbbCY>EyxY^GED3;{1J2TsfNNveYaaP
zyehk2&0~E3GVZknb3?Yv93kt@Z!u*ocTOiyoxP-wQ;(;I@xkXqHYvO_?B{qqIKRvO
z@s>mPwZdKrF00#-9e3zV<~GI$?EBlY;~Y)eQw=<JOEvhrx;(SKfAO6}y4mzahJJZl
zT`ceJn!PJFb7|%&>AOzbT<q5VHjc}Po*EP~<MXxH8o5#yhTF^Dz3AP2NdEuP@8^?Z
zC!I<4{2{Sm+g^`KUKP!Y>8BL_>#w_eGjqm_4R)JW3hvmW@VaJpe3wH?>%pn-cAw~)
zBpJ^5Z+f&*>$Y{@vUjK%JI(+9S>=M#VfO=nmZi7uDH4`i;^xh;%KGRwf5wE1X`J~N
zzFZHv|Lxl~`@d)GeO>B!w%hJKI7wouh2c4`>>9bRcNcV=2wb_VGWGFJzp$h7|CQIA
z{vc?;AGm)1nIB#*E-{-VC0ET86wEA$^C_OZPf4lhl00XAK;i0+4i%pNn>&SDuXrv=
zKcRE|%Ir(hUVjffN&RM9xgav2<U_8FaKntN2b((u_~vWN&)M)e%&~!WWBp`##vK+X
zW%GOuH`t!KJ}bV8T~PAnA4aZkKcZGHw_$#06=qkY%JBS$S={G%#(U?JTHci|{m!t;
zO6}b*K8B5(wKi|wV$ym2XG%lYvdE4zq6<%+h*R3sx>0+w@Vnm{UT%9B>!$w~5xgn&
z!SHp1$Nx|R{n?Q}A2Y1sxH&21-s5B6OMQH@cg~z~XXb}Z-wx)yjXh^^_~%-FQO?%b
z|A)7!ExqxB!Kibp_sNomuXa`jIki7sZ|clsI?bT9-yoV*e(nUH$eZgK4&LB>xsV~G
z#IxjPrbEi78%&SXj!&DTCZx4^mcsL<MJcB|8cvmbp0f1FkzJvp=WK2rk=?t6Eg|Z*
z$lUeJ53bF)*1-9$+U{bgT8`dL#~oXX=S)4ff32&_Dp!{!1^=#VxE@Looam-EFEUcF
zVo8ikO32ppkJI`*9V4#>xuje<wItRxZiT3z<#L-{Q}-(>6}dItX!xY4q_la`)6(r}
z-gRaFa+QU&UM}3`@=<d0p6@r?<NPF4l!8k4o<E#+@SKuT(lzzP!KMF_r*xbU+qm5A
zzP-MZki@fncCW7cseJjaV`62QJ*U32!$UMhtbKuor@_+Xy6@&ji(5Ho?LB?nar0x=
zhFS9&!<PT^G7GFJ+_!$NIYU9)Yt#P>La7m(d=FR(n|*zLy?Ju7UtrA>$pi0Cv8g3r
ztl2&*blVTM12%z$tqqSeH*hRiRhzS$^W@3`UbcT+3C@$>EPclGc+2VAN=log9@tM4
z)jZnH`C|X^^Gj>`wHW+96rRY@?C0R``I=FBc*=?nZl;W#EDe@=hUT&jht6_*+Vu0P
zdPj%JeU1;4ay`8+ZuB%|xP1QeTj{Hv`{d(21mD`e^5Nv<FIB#A?N8vNx>n&c0`HH_
zzIT~%#})pKcAKB(ewR-?wPIEX*Rh*V_-=2S@+i6KbH~|R_m(rBO>_2D6m5C^$ziVM
z$7x&#RpPqNbH29teB7PwpLj#=rfILN-zp33FId!4w{_pPQq7~spDsLq^SK>wh7h04
zgUcC_mw#Sap6+Vn`{(lIP_^T4cnjb1+A}Lym@L~{!`d+4bmm_rt;4Suh4p!V;%_y{
z4(V!9yWe7$G5eSCgZB*HIw^tgO8@+u?P{ykn3uly3%4Q9CzG(tQU$heZqyhuY)+nc
z)Rtj~eeg@mCw(jK|8rDly12bYpex9I^8T5xf`0_>UT?|J|Jx`m>JH<EKabt@@9kdO
zVe+Q@YIOaPTY?F_?&@nR1>`3yD;ZtLF*v$JYzITb>rH=UiyXGUIuXBr+xeJ=tp83s
zL{*#Go~<d?k7s+$t8y-7hV?F2zo*Ch;@>B^E0pNWn$<ZW;j9r)!;BbDcZLmGKb5nN
zzAr7iQde-(Ji4=E&-N>AB1?a)G-FK<YF$~exV_^_W$yES5B;lW`DJ8I?Q`?lKE-c6
z-)9$>Z6&uu4Fazk@_m#4qoj1{*Ssakw>~bcf2IF1_f_noCmg~Hg7)WnhJSxHYsU4s
z+>`H>lzbO&n{cZ7oq)i^sLx8fs;74H+gZQ7b1ul{oO0o@l*q(gzqDN&-fvq{G*3Ty
zsdM=EXO-vY)K(rjJzuOs=G-5qiIwcPdgt5adi`hF=3-|e_r3quyhZ2u*Y!od$n-N+
z4d24_pe+8_FR4E|YHw!hGfwNBC%^IhkFU<h%O@2WaxuL7YBfjmRB?{W>AegG-J@c8
z9Qto??^?tB;M0w7O%HZuL_a!zZpNY`!Ydf(JGuKx%xs?_zW*n4!V-_yw)zz>7Q1@e
z?fKd;?VNS;E4f9d*6!uoZYxk*l67hNh6^fvz4l*zNi(b#R$sOKr0v9IDTRq*EWuq(
zOBvSxGMvPjf4;t>Aecd}s8W4{(I0`c_wIkLIQvM9S>L60>wB4U*TpXx_ROg8>F)o~
zazgxY^R^U?qvy2*=YR9g$=y3^ZtqUL_c^a!9$npMo3gv#rhj{4<lPl*FS3)rd%LVU
z^YHb{-zqYf7wN9-s!2?|wqgp8w(F~%x-Yeq-fdg5zoWyZ@|f81KHulRE9QArZF5nZ
z(Rp`q>x@k~2}h=6xjMe%*LFQr&9J#vV#V<khEMSvpOqNyd{UoPuxCs0js2V(ls2VS
zJ&{_z|Fr7dYYYXRixhRwc`I#B?d!2s4;T6WA+z`LuYdD@b$94QPyHJ3@=~aai&=T)
z^7$PnCjETL_hWa5$L$jv7Om*)oGpHP(f;m^6E|Pp)8hZqY0%t$OKh=-aXyoZUjED8
zPu$Zj=U>~nufwZbonggJrFW9~5sWjZyfREpQQDj(&)IO&KJsx?@#=^D3<q6O9k`SC
zr@XbOHk$Hi`QnZflinPYF!<UzVfKsU$Wtd7HaiFZd(gdc>FM$uB_$)(w~YJ61Sc{I
z>dLdby6n51-qvyFbyU;NU!H;!8@^v&v`26v&#V30wraSZ)xUXOtt!0DZp~@GZ=Ru6
zEy3zOZ>9dWbw2R5Utav!t3hz0Z#>hQ+#4@W)bsdG_?K+WFwgUMnq~TItLUPfSNFOm
z8LnoGJD1fVc+P$6uYcF<I*SsQhwrcYs4!hwL@?9zj^Ktr4J*F6H|!8$jGMu;!6L^b
zYX0|)lJyCbvYCnxe&6!1ZiDNMDLEQTrrh(on0U(RpZ09UUDsyyzp5@g_tdT^i}gU$
z?%2zo)9${RBESA`^pnkh@)Z`_`13PA{5)Unuvwd&+xJOgeEy6N!gqQ9e<86=HEyz=
zhL>6n>w&E|c@pPrNtb&wT}Av<d#ikh{<-qvM;2fFpTE7Xys!GK)bkBr^3yMw$fd`*
z9Qh(M;mxAQj0K&aw)@=P@FzIeJFsikKZZFok8=1<XAUX%x@(+#%k9Y315b|W#qRq5
zWY6#9?FF~bIk;tB_bpnQ`0VJGUGKjx;hwS0u_5r~ecj_*cuuZA^^hwh@JRtf(r3lx
zha(yGJZqm}7Q3tL_0G@h{(if$J3eJ@uWY(-Yxd09V*iWp#fr{Tn7W?v!#f*!wGA=}
ziz+`hOKvOs@=^1flN$4y>?!}=7I{y;FyGgBx`yRbn+4}Gzq}}XoOeqr^S=etGZEFB
z+m^Uj`SxxQ*XHNiF2B|6)|7(z9_`ihtW}>~<coRz<~B=vY00c(jB85oZ}2_!o8fiu
z;h)|NcP3bI+|X(J=KDWy=Te(5>Do)UGQ0$fga!N(tE3p_&zXKMrJ|f+-|2sUlJ=Vh
zvL!bM=WTuywmk81q;tIS?gigH=081fcB8V42p9LgA1>vBoVItZm#u&Lo<V{&oM}V)
ztL|@X56*pgKP_2C__xzTSwl_Nqs|O(Y9Hn?PRw-{Zs`4Qedu$@-77P`1jQO#9&ei)
zBJ(UyOX-qP$%8!$=694ZKG?Q5jCoDhZS$MYc3(Jp@VdG1L~h3KKW2*Xus(1S6uima
za5^adN`bD!uXTkxk4Zdm(rQ>HqPo6y-oE~_tPie7Chw`4VV>U77s{|YDc0}uvqK6S
zd$KP){jmRhNu19uAD1Pz49RnSK7Z_VnYCAFU)8^9itLkl_*&22JYK9Mbjs$r>eElw
z436`&cz?G4Z2Pgkb(5=?r=jAX4_AG<>Za`fV4}WHvf;PUp6X`3yV6}9EO~vKRUD2i
zdah~A{!-@azV6An4_3{(u-m?Tf<NP)WtF{;#2Yf7J)h6G?|Z?;)CSFMkpUK4o77%P
zxu4Vwy!ho}MW=4&4hDrCxmD)5*J>|hUbp@8?Mds_4G*3)OtF1*=hNH$F+~S0)8`Z&
zI+CG!RowdgL9@WK>z41`d!O%Y!Ln^}%pdZqZt>_dviOSJU(H}D$F)P+{8zg1&Uige
z*@CazbX_#_!j4Exh+p@|>dWHkEtif@y!QB3%7d-`{r?hEzv$k-{VnwQa(3s3TV$WP
zmqkdO3%_Rk>X7-J{7a8D(_cSrKO&|sn$}g=(b2MLXVr~T%>eUXx%H;?eV22&1G{Fw
zI4r#CcjuQq#c~hM8Xjg@RZ-;svf@l_e8|Ke=~wd(-8H*rS|2?9%!=}m|1HK1e)rwJ
zSe@(M5%G)BVE^Qf6LkzRPadv1lJ~{z^USj^KR=kMq?G9=C#q_@Pf|tc(`WVcna#8J
z`wPx2ysZ29yXeG!yo)v!OnrNOan{{mUteEeA0K~vN8saQy;A0RTYm0SQraBcDmne_
zhU@dHm;TaV*YDxj^!L}H=V$pv?e~20aou70t3)%=<<X*r^UL`6|Ij;H8~d{^*IV%A
zr+0R*UG|9zPTVKAPO5re#|h7T)7)EYGA}PPjelYvztlR_VH@L|u1QUKpC6uHd}_&U
zYlg?N``6uWn88|h`Mc0L^>tol&Ci<i>*_-<z3fPQ9C-1%tl`)1oZshfbN(X!>)yn0
zAHPjAZe%&GxPI%*B>~Goi^Zp0Q}_;;%jsoF*GhyIySi;Z$9S1>--fkLnnkDBEtVFy
z_s#j|@gn2;k8qbXecnA&E^w{!pY&+!Yw4?;>!Xdn&OQD<;?bUnw<qJb<Ujf9uKxOF
z@y^SyjrAWNyPVOq^UuVF&6SZ)k3LQ-I<r1PW8JdF3|lmICN*Aj__E~3dQM*^e>EAk
zf^V~S+`C$AU;Q^eeEyE`@ZwXqzgaT;`%rcwU?0;1S%x&V`2}yDS=>vFa$9qjr}*zw
zC3A)g#}B)1KmKQv^qw_6pBg+D-8Cw8cl|hfK11EwYTG4d3pH=vFutfD>vp6h_TRZu
z=Evv4_-F9muf8jO=P&;=xpcFd^PU$=H{9H3d;jr?!ko<_4G#i~1Rk8-x;_7l{+UBD
zZT{8Iix{eIPFpxd>6wd?%=v4!AN!7PYS|a*uG{;@{PWG?svY?SQ{LNN_-*LEAbGLv
znc!E`Diykvvm3h3a2NBfFevU;e5P<bSnc-m<o`DDrlNwopIay;1$|7Pkmwh<>1p?8
zSC?-Rd2w5%ZbrGZTuwL7zqhBd`&r|vQ>VN>-*0=#>9sEBQ-Fo0*V8GUllMi;`w+Kv
z{xZcL)uOo_9e3hqu6ljq@w_)1{^`$Leq(;ktJ#c#nZFt<UuNzsI{3eAX_B+6>(REZ
zVto<8m*4MbrmQ(&{*Cp4#BHM~K}S^d%QrDjoyps^Wz%}zS>nIa>hk)h7<X(j*tdT5
z9-V*DZ)e07_*_xDc+BLv7_Xhl^}Ca%veds|J+O0Is>V`}1lE@1xVbC-|F0^4q4PWa
zMM=p?!8&hi;S(2To5nKryWW_Tu<P{{GyB=x+zP*cPh<FVbsNu86-ic$&f0B;4~y<E
z5#;`J{sObbp1to+ov}-*D>5<fC|LDT=&tzLvb5=$&C`V!+_|Jx|1CT)$$(K)*u_Q8
zRJh0F)F-~OG}Y{LXB=}*i83si`ByhMs!qm8b+fQsxau>8<W}*RRO^+Vk-7)=>#h#)
znmp~;_3Q~A?OYA7_U?_peXR4$><N?E|7j^SH$9fT^x(t(xUz4Z?QgdSyM=w6G(q)K
zbl9#n3>8PWaV<63$=A^D{4f0c(!!VZj4O6&nY)&(XItRyckJ6-ckUz8&M<<<olP<y
z`uIf6;9<->^TFS&|NK--p)y{9a{<vWOk~0(wmr#iIG?*Zz)Qr~Ff!AO$E|9Ao_FxK
zSBLMM@p4(ms&wZC*BrC`A}zX->;`wYaV>Sp+_>f)&tY$=vi40MkFk}Wo2r-m*lO9k
z2#GHdj1#mEznU7Vq~w`oAgbEFMmp^K=k$5Yk3Ti%6BC@sE&faI#6g>B2V;2Oo7;b{
z&U+(!`)1fj69?B<bzPIVXI)qIvbl3xwDBLmo|*Wb8P<`@7WrRlVfNDb&h$VreeI$r
zO|j0bs>>>8E&9GkH)eHl9v`=cOmdA`)YEr-t|xlGW=;0gG?TKI^V_v6{?xhHb)737
zNZwIT{eLDi^HOa3tm#Wkc3Rv$Y~lKG;_KHv&QJ4B?q<vD@R~pEw$+UES+n0vy*zuz
zhUd@s?+uCP4x3s0%Qok9fY+3ng4Z7Yej>@0-?K%<JMYZfm97U^9{ii}eDg%J)eS4Z
zmYhDQa@Xd_HlC#>nev(PkGLD%i!x%*Juy8mKjrft``bATcf1;&i3qcY_$NpCu>K6r
zJssdRdGVqg&!>Ey)!!myUw!#j==)jmt-OPq>G916HACk_vN4{nyxLRWxn<iLC(S^%
zu8tGU(x>|G`MF5hT5m9OJnrkZO-S(J;{SaAjqNXmb#$CK_2-UG%jEF4H&^a|`hDNN
z1TMLI3DIpqvuZdu*eF~&|D@M1<c;c-Qr-Te2|h*3w*B0_uwx6)+Q<8{RD@m>J@90n
z{ru~{n~7X<a}%T6f+m@)W>e=&mtc6keWGuf{qOnjedZUHhSa%yHhlWiX4=JC35AGx
z`=z^1*gbrD?}YgBHLNTC{+r4D+vLpZ4xh{o3=4MMW0BKvJ*vR)Pfh7kju->CSo^$X
zq2(nU->r}R+;;9c<MGoBm2r<^TD3*}uebYlI5Sq928G{FNsdaDH`4z(Y`68k+;-WD
zVcHYZ`6qreZ2ny7e!Om{;j18h(Z6q!xI|@hz@B3Wc(`Ojz0E(tRkgX{f|=Ir4X+w2
zuYO}a5MH@=spiSoeg~hI-`~Ub;QJpvF43a_``8``KM!5~Gw=L`8K?cqUzx>Bi7&Kg
z?m78dcQ)(Ye@uL>a?&YXGwx-94FAHWH0L2dpS{=Wv}5+(o!VT_+fo_UKl?gu?V`Ge
z56kD39SB|D<}5jL+Lfv2%~CfrHvROPxLPA{hRv5!?KjHLL(a?pzHqeJiY?{)L&Ie$
zllC9o5|p%Q)pPS5`X4Hv<l8*oc1=m?@nK&6=b=8cW=Jht3`!MK%o&>|ri%!s@4Iau
zE&4G*_m0i^TV{+8zWupZGP^VITXCMWV5Q-oPiy{kdGb#_y_><SPIIZpV$%t0_Jll7
z%y#Y%eA;01N=R_xTE-n(=gWD&>`ISoG29uo<ZJE2@V%dO)MRgkGU;gkxvaKS<EDH=
z^`tKuwat~A!hXj+F;=Z*v@kAp->-T5^?mQd&yruQvN{|Tc|tE+P2*$SZKEkdPZ=2|
z&Hut?Rr21tBA$C)6g$Jb&u+hbnibElSLM51`g4-t4?%|4n(0%8o{Be2-L^PdxS)yM
zdAjqhBey5j-@Npwac{$}%eAg2^=~t_MjL-pVwj}jctW>#b+YftLsO3Wt&M!jHhpH-
zlk+!(7EG~d@9a3Sds?VUlDOc>>QjwYTI%l0+GGCQ&cDC+PrI(}$``+TH<r~uQ(fP)
z=*UMwhupg6U$&crc^z8!7I(@OH%`63$MVgj=I#0~(zhIC-g@rLOTpVgQ-o3{XEk(g
zOWh%C5bAk<i^jr(WqV&c3%yjX<JUb@cR5R}OSX^wLDX%dJC>{stKR0m)+pJvNA}+N
z%58IV4ZT)=vSF~kHSM9-YFCG%>*B61d=bK%RE)oGUF)hDd1^Y-pJ~TkGBXoue4lUM
zuy*l*n^kj@J+=PppT8K?6?FU^>z>%{$-E55Z(j?1@#naq>f`DgVT-01ZD%&PvW>@_
zNti(*d`9uILkrt24@B0r{aYw9yM}wiJ_YS7bJs|(pJ%Y};QRcn==PvnC5&@;zO=e^
zw=(>>ysghEeYt|eQ?YHO8mi}58Rq0iw@E)|-r!&!7yLmi-~s2XDM1IWoO_iM-6p;4
z$McihQbnw48E#B?FB94&<a?QyAvpJR!BZQCZyR-$YfpWu+J4)`<;lgPm3vn%I%2eA
zrN_c!U(X5%PMkL_RK)6;Pkn6lZL29l>IOm$|F)IxxFpuVo_kuOz-Qq^Yfv#M8@xW>
zvrhf#yhx^>>w1FU-w<!GzkTD{!YLN+(&Z<Q=f3thaGc?D&T5T>ZF|4SKDPZ|ziq09
z>N&k<%{!FVKW)5xKt%bf@k5p^veH~Hq61%SWtpn9{BI0H*0;^NDuVTl3)bgKvU)ve
zo}l^A>UPwWOUo{*KWna7nXAZYDbSF9-Xf${J;uT`$4ks?`&w7cOeX(X{EsHLN()?5
z{j(*5X|lzw*6#0TUZqEO2i=Ovvg?>HQqa2H!QwD~_3djx1vcys1*hIJb8nI84APpD
z5Y&7|H$#58XJYiH3AviB#}Yo5U)*)DE7#9tS;}3#ZLKO#|7_6xd2QPiro|`q8G1DC
zu&xSHn)7Cgy~V9<6P~cF`*&1OYD+-vmI;QEYp!L@V?1iK+`|8b?zYw?%hr7LWsu2=
z_HewomaE}(?&|=rxtC>vi}Lr*Q2fqhq8wyW&S0?f&NjZKM=b9es{UUizRcxRIAcv>
zw40+L--2b+b0xhxi`_2Fn6&$KyJq1f)6muSVX}==86Jb8V2-hDa8Y=zp=uE?!|&VE
z0v$@Orp`~Azgaf8$bGM&>LvMx<*)l6%qiw!P`@>8;S`f*nc$*m+bSdJSq0CImo7JK
zxmoo#FS;%06w5M+;7|QkDPAsf8g4xF&E?h<IHkt8M)Lwsm{;b8>6KdfTh}Vv@)gdB
zufMkIwvtkjEQ2tp{F?QDrm)Oyqf1Y1o{P*@zxp>cWy8<x3_a7MO3_!Dbk^5rw<>GN
zByU=AVDG=r4$oB?bS_Ss-{tzwbos$;sVN8MY0D%Zik_R3z0rH|dBzp8Inf<Kr%d8m
z17cUajGesc?vx3JKR-7aP28qF|N7N!D%Lg`|F~vN3*30}D8rttXt%T}@muXueC=-j
zzxXx4x+Z?U-{NiiioYZ~OZ_qqTW5Lk52wk^hNQ`xW-{<>SgRbo>zb-}*^h5))FS((
zBuw^*B|I%=7cc1ADPS!TKl|n`_O&-sGy>K)KVe#~+rL%KJMXT}YQ@>}KG)t&SUt~v
z%|`#AVwcmB3^^KaM8do-ChxoEze!hF`qqAtY@Zc-Y`d?XoUqhz@!GnV9dDLfSt@_n
z6<FDptLT+^S-64qYf8L=p!4%%k(1AFKUK2fZ`NbBW>fwA_sbLPcOKHHIRuJ*!_W_T
z8+4VUqih6NwC3+!oaeRi)r>Q3S(^_Wox(8H`nUE?{co$-61*Dqk4#Bg{+6wwt880o
z%K5zWJ^NCPC#t1i&n>l?b@GtPmZXH2xv}4BQvzEIC7<q2vwxAHvhGBM)H02I1)>c8
zx28Q*Z#<|xXG8kF^9iv<vvyvw<k6D;apBMe-IaPC-M_^c4ldkQs<HGO2SeEw-NWg>
z&K1f1|C+w^b>YQQQ-<W%hjLGUt4Y`=`If0Z^jDMc^q=Lot)@(R9^J5VTj&qJ)6<<N
zcTSI9R+{*8dD>Bdx0B+_1Q>+>OnJf27+mqD_N>W*8)>Wu{^zXzF#kZLV*QQC+Dkj%
zu@wj2+4feXAtC)g%daDW41Xdol!{HAw1Ac2|0Z2!@f`VE&1-iZ`fas*y`^xa-n-t_
zj5}`mH`ZM^P_Z&LKe~O9#QRCwIj2u>`pWaJExz~RmF?v-M}*IG#*3HoG1a_Xf9Q?j
z(*SXk&1;<l+Zb5mKN~0aMLw07eA*^1VNq`O_kzl7CWgcDI~Fv~=i0nvrzOAL^=*8v
zh5N3TZPrx|&q>`>WpFS0`?aYIe-6LhTj2PGpG)J~c@d|%VII$XHA8(2U-NBCebUob
z&dR8@$M(NEgTc*G*DKq!Qhes=&N%ST_c}wtj$GL;rB5~ojx|+U6djn$@aE;p_uUL%
z%IZJQouI2ZXRhC7mDv$z{{Nm*b-1D-K4<j_)n<nNpT|y3XZ|zm!Noha5@u@gcZ&lQ
zugK-*Ub?&M?K=&xeKVO|;~KYRiXNzr+x3p|z~Rn&_x|5~xmnx!*^;bBYk%M1TV@<>
zkslehP(w*+?HRU)TuIARp#xd^SO1<V%JA5v*Y2`R`NoG&Vs@Elcpfj>Jvo%OE6ISn
z!8`Z#3C(im4XfMd-Dh6oEf-xQIk6_&`0eRy3_crII0PPwVLtF~Tk4Z3&5S?1U-d;Z
z7}&V3k6zs4*`^s(^H6O4{uzs&%nN7CdKEu$ZOM%#Vh_$<k=18<uqWj1u2{pO(i_wE
zJZnF6hT{)YK=7XDKfU%Qi5)247W!nyN(S#>`8oTz8>Y{S<^2`=y^&KkCjY%ndijEY
z&&Han?$QkNHtH%Lm(cII5;;-KQA*IfSC08X#e1uoZ+^D1E-rDO$^%?a@(B0-?@blm
znf6FjN$K|)pR4O*Tv9e(4_rNOZ-mQ}Nou{aQfFl>t%ExyFJ!PDc=af5zSh^a*9<Sx
zquu&4`5j*Ae>l&$tXj^@V7A1n_rCh?gTiDu4_yAad*LFLhrA71xAnp;)2$BdnQ}Ld
zWyP0A9Z5U1uT48}NLV=k^becn3gL#@Ke8c#Mo+>UlHwnA*l;?WvUyw2p5T4{@VBn*
zsvj=$aaQGTKk)fLTt+abL3psS7OSK6f)hm-b{A<eEU$iTcH{Gg#`Sl5Jii)TZ}mI;
z-ov>t%a7>+U;OcqDL#gr6S)m{?%FS*zQuFpq__MG4{F{&{x(ZI)A`WC`gPoMqd#1q
zc8AAdk>`X(Po_&VdT4Jg`uoKE^Mrn%cMo=JGW_>RzN7Y+?d`?%<L{!&a_(;NDf^+3
z6Mn3$_wCN$spq#n32cb+ZCWD2md_X>7BFi=%txmeit`OrI!{ME@c-~cVfKq(!iPh5
zUW=96JMrQJ?V4?>hZ$|;6STeZX0m^nnk!nF@PF6R6XwU&wyDKCm&F~>eZQ9PZhFx9
z6XxrV=0|^0opNZ~&LI023<n->OMTLKp!90#wI_$y3YS*PCd7tCo_Zx_HP!suQGxgS
zFP29e@jr--Zx5N`Bgr+zi|@0p{4D`9wb$!C9ylj`nqG3|m75^<+<fOsK0mXSNt>n2
zznO(H`2VzAvMA-u%ZBSdE56SEwtYQU^kn@z=k3q2C9K!U-*Pf|;q5DT?z*Ui{F|FF
z?Xg?px6WAMXWCx(EO{E5b5Ea;Ui)vG#U6&8M{|!?$}^lh^ULk`S<buZx6TEbo%#9m
z-<spS3E~WTUy40kPtLf@U~zj}kIkhgO&^$^uus=m;>U1j+TYq)f3>Ha+W2Tvz{D@p
zYkd!<Wi63?_<TawB*SB^s}s0Pp0xVT<B*(uE3vTE`1ESVxQ~zRnCp~gCH|}0J^N|I
zM)y>$udT-zY%-$V=1Ge1y`O8V@l02^>UW3!_RNy(&?TB5cdyu4X#D2Q=M`O(6tx-S
zwyssWZz3&rPWAs2wTbyGYRm<z{J-D)IeUZZN~@d84G-He350A9U+OS}&*0#;u0NOG
zw_kAHr?6?#rjHr3pWoi+_W1YQ-D_+QtXDj|hxJ4I`@>pZX+7;Flm3hF_vUfxI{fP~
zP&;<^%y}mHc0KkVhrMlkO@7Kei2i>(bV^T!Xu{H5(Xbm2xsT6S!(;zKP5iS^e6Uz)
zo&3H#$Ic7N?qi)XrMXd5RalN;!HdhQb_Uh8da9iN6gx*OxcW};!-pm}(tghg;gjc$
z3p%RlRkuTqVRxy{+l^mYl6|Jl+@p5v_v`av(?Tnscs5Agtq$dC+01Z5xAgd<B^xz6
z4$I%}?%2b2;O#co$|uVv{gVpd;tQ7jY;fCX&BZ6o$v$GG;+EnKUuQr2P&RRMN7?Rg
zncEBQ^z5qG@36i0+soL$FFwmDGt`R<PSkz&Tf;xl==dDXG;#6h`8O-RShII@<k%(N
zUprqwaH9J3=l|B7ZM*m7TK>6-Uy9YYi%;A%SHJcyr|7T#<7YyCGZh5+wQ6;xo3TGo
zyKSU%>C8>znfY2Q>(4hUzqCBvk@TurIm~6xpA}n|2X13~a7!jTRHWa8gUKc*y3IGr
zr>AD!`4d0?O4;~uEmQZoD&o0V;lTc4-S9x0O(G9?Z)>f&R1|bKdCu<=g<N}|RIh}S
z4EoBtOcm<at3;0~+cWuWS$jxtty;U>qv^$uIE7A%ZJrb*s6H{Jb$SR>yi?iEOwptM
zb}T<`ZsR(=rOYeM_srhQ_biTQg!olHYT75;U;AkL21(Ak?;i?ftIwM2n|)caJLUNC
z`DJU5d}KS&HAg#4B!3UjhFjaXZg2T3_F#IM<^I5(oB``BbVckWUX*?OaP^9hTv>#)
zpx{fBt1}f_^({9_?Kqiws6?JYw`g5tpiQFP1UvDw>*}}sW?1$_DNAkIQHFyV&kwNW
zDi;}Tm0)$q^*EDx?AMMtBL7(%<`ur}N@~q!c###|R?4*Z*R!Lte=QYuE-w73%^;C4
zZfP76UQ#prMxQ&Qfr-15sH(4zT9yBEwl4k|M{+&?ez69f8!seiX&$p^M(4(DdEpG}
zPR$H)_3UP5w79gbXVSu(Yz^|0zZr@ez7w9<t#rO3DK>uARi;1c=|Q5Zy1$sBBo+I6
z7!+RW<!_H_D1G~6(}jin48cj?<I|aH<~pzKn#8s&VD9^q9#dUnI32z(sf}ZO5VqV&
z{QvgTN(@Q<ZTA^gTv)^G<#-`U)#1YA%iA8YhgaNqb5FG>^Kh?{IK#)KW_gSWzvp;{
zPBAf<|7LscX${3Q2P3;U4h0G>dlDs>xsPi>*5?;-Y4YD&=6HsRyf>M{en4(p=@bFA
z$+2BJ{MA=x3Kjb$uj;rbb@#Lj*Y)Xle7y>bxftf(nil9aqt)}a$X>M;pOa6YeZA(`
zaP%Tyc4{`G+cUT2i<US)h<3=n^la*FhK!ku!vAw6d+G6+_OLvd@*-|N^Pg$V6T2p<
zu`?JPzHhbNE9f2D0?$=>?RxA@&)ef?YbC_Hlp9T*XfEiw@vH>Hxy`zZml#;f%LaYR
zF28?%KL5&U$r)@%rYY@bY1sQ`+6s-Am!unxYVKDSl{b8DQNFD9?ooz45?8mGGl>6G
z^$j$7n#z#3L3i<#9jQxivPVwN`fS=KR?igTCd;su?SbL{Cz@VvIg!j8^z{CPoRodI
z_}-Vvj<bxOZ+F>xmifmS{lczEiq8)JY{->Vb-gjIX7abCx7irQ%zAR9SvROX?^G34
z)y%!dbR{P>+FdiSJn5Q_r+)dfJ^D(QUd}kNP2SZd>eYXzqk7_71q3U7S4Tge{9(_N
zXJ6LacI*&6>&YPVbh?%6$(Ccwd}8!(TX}U)(40BbG3?BynG9b#Gj1_9xYtZxt|3_<
z%aELVTEp-`dP9PnV1U}(ld*!jsospwUbJ;4O;q;%w4XWmwT9u3?91T`)i&P=*1hiN
zW4KtH@y0pv+^$KSyVtTmi2mz#TK{^N$NS*&6CYk(WRO<w{xO4hvUY92G7ZU%Q*Y{U
zzS^=Ru25KDuHvFx-2)QYT~mV6C(l2__rP>pt45|FN5g(sGhe0^IeFd_gC4QmGhg<k
zF!tdU{aK;TK8GgFX0*67O=;;7%WE?xU7S_AW8X*B1D{T;Z?Kb^wD`v2gFFoT@>8Qb
zCh7fWTC~}9`d>za@bnp7yyw^w3dL_*P1#~8)!}LJS>9namv&f2&L`LTxzX*D>|`5e
z1l6iDd<c*3ni6zu%ElQBXRCglIG-`ib=#Jej1uYI6M_zHiQzi1aa*az%nvdQfsV(7
z8CM0VE)Em9|I_}!QnR&__&1%qwAXH5=9UhR!v}Bnt<lKbwDP0>ZpPDAUX$14dX@`L
zbd^?`Z6_co$a^yI)7h`Ot}e%3|Jqe&B>iCWie-HaG5MYof;N@h<T$`^+sbQ7&U01X
z-CZ4L`m(rx8Esm$<m7)-F+oYgo7?(?RBx--tu7MWs_Lb<;jX2U(o7YOkUt8y)%Wf0
z=x~|K*?sfprM)Gp^G)PGrR?lD(S12bTQhW1>8qD&N>=)TZ!TpV`1kv5-YdnB`&r>$
zoR9l;X9{0k_E|`^pT*BAJ7I49W#Qttnt_`h)ixZxn5)aU<7}V8(knZ9Ij)uZ)HY6%
z-W1zeBHS7K$l~*)Pde^lBKlwUX@0u8)jQ{9z@{aRr7;=vJt|EPXqSm-E_J=RWS8g3
z`O177b=^<S$Yt1Jxa=!C!(G4dPX{9VWN#Wg+jX}@D`vi>K!b2nR6NUyvkNMwFIwU*
zEiCcpey!B<cdMUF)A{aw#xTHO*;i}9iJRtbl8y=tDvqueoVfG3-<mCJT~1z_CZWD{
zZgSLqalwiAZt||x(0p0j+0hXbm>AhU$u{*h<GsGjyCMzs(Sb{*2%J0idiSf-Av`sr
z)5CmSQtS?-n|;w(dgLWT&Yf%9_>S_=W92v&c1?<PL)hLIQ|}nDHq_skw(!THsSIDb
zGxy3i<b{c7sy2I0`8-=rLX7R^IoUdqi9gO>fA8XA9zRva*u}-A?d7rT#0UMlFQqT9
z+U9bSnZ3K?#P4aL8g&~v9!#HcY?CR&`zXOBQ@EaLGo;;^w$LJFuf0{A%aY$_7kdxN
zySP-PT5nsVvamjSV!*PZqjr(ECmAXUMeV%yac+mlbl=UgF@ZwHAue;cw7d)xzFl%Z
zvSl9ofqx)J9SUc7JsafKV<8Quyo;sFFV8yU)t4!M#dl|uQg!_%LnS5M?;Uw_!n7B$
zTYBk93JF|%JBjI#di0|;v4=y>hy+G2dLmS;wC1*|tIOi84EK+0*~b&`cH1;tAKjiu
z%ui3>-6J@q>Z}KYm5X^Cv%~xy=Tgnt>n}f+RjvNT{9!__q?d&JqxWZ&o*#H|EaLq2
z1AWfF@-KeaKI_(P=Ggf2+a|OvvhbF<tEZ{ubMCtMV(Ht=A2xhm_4@x=HV&(umhaE+
zc3b-5htLA2$G^I|BN@Dt(k!?c)w()79@HjT+->q&y5fcj#{%p1tS$1EZpS)0N;*Ey
zn6IdmWES|t_*>WV^3M;qd1)3WIJo#1a&g_y@mwQqtE6=G*>mxv^%*uXr&nu6F1)Sk
z>e;Q;(7#yPo^ghj(x)f<r<1N*eDHLh-Y9ZZ8C1GuEV`bQY~xURdd0T$jQd0ce+o2|
z``N#4yC`_<iJ-RERHcI~nHg1|7Cnw)=<CY*E%hK+aAG)vKxXYN^@+xl7q9gQ?P}Vz
zozddTHol|zWsDCxS8RLFXeT6C$<WYkzoIYhX-$gjsvwa&j1H+e=Zcoz6OQ08FwgpE
z#r%L-aN_I7<=zVSUdILQDO&ZDV{ck?yHKZosd~@Z8>`$?qMZdNY6(tU`c7Q;)8lhq
znwySqR#MvZsOq%U6pcSC6O;R%@%80osXUs)>3)0C{AZT-Iv<{%^Ln}QYR54prK`u!
zY}Ik;JR~1&q^BV?xqQLGj%07K>!yDD7oXQNJ$F9KdrD7+<*6MGaW)q>38<>qux;2F
z>2jK@ps7Sk$8_~=P4gUmrBAar#}~DUF7&Ehe&@*2;`zCXUU@qt8&0^MlVaGsPIk|n
z2kPNDPxlz!->CZgY3!09o;j&@c8gEtat9VQ7s^&yEJ{^A@c7yDW7b<&Rwr*v_TKe8
zbU~0#4da1+-Qe#buT+mMwNyG8y1?w(j+TNj8<XNn|G=ONyTlSQ!*5$nvG{Yddg=oS
z!HMr~w@J^M(%G@5{N*bZr>Knw=UZzpJ-Wb1aN_Rgw?Y^0craPF(69BiUr|(N$BC%v
z^ZIlzCd;S_`~2ItaayQ`-j7u8V@g7q-e-!got<V;otEW2#mB<I<w^g`ZK)a`f24X(
zt5sIo6#w|b>m%Ea?0j4^KX1(xk?1^iB_qDuR#PheY*JM_9J;x2;q=bjlRBUK&v{Sb
zv2bv4vD>o7sqnCQbds6RI-aB7C8IYTTl#qJGx@pGH6#<Zd7B*Dvm$c?SHtSL)76<b
z?Djr>fP;Z;*Pf*sCk^+pU(PulP;^?DA>@5#TrBGWzC2m;c*Zl~+g(*_tC*t_R=>De
z!^!a3H+0`~#;m)=SKs^zy*l0Yv!<`6n2+U&!ywIP{vGUKF}=@t#^Xw;x~i934MX9~
z)~QNQ-ZNY&6PoB2%CP=c*b))()Yk`3Dy<Qb**Eub#|hcTE-t5jb)4Yib#-!W6+NnM
zmZ_%nX=biumv-H)Nw@ZQb)4uE((+oj&E=zLaLCECmmN0t&)?>fcCD-9je^oLg%!7i
zj)qHhdhC!|5|r>G%X?K?r$qFnXqPAbs&#zpG}7XNQX^X*^{wCLvaGY?i_T<+e8GwD
zYh|MYdvq^WdL}+vuRBvu=~4~%%}rZ7P7A3ocp5)7Cm=fL#FGQlPVjYZi~D`PDx=<1
z-Rsy2T}@dZ!wZ$^vqB!;KEAJ3+F;j8-bAm!3;Yd}b593+a(H~JLutPBqP@}iRp+J{
z>_0TgZ0Wzv;ta=cPFwh-`J~{sl$bBk@s?-j-w0eL!r07UacLWms=Q2)sF|wt_l_#{
z4aYL$-@X^?4RVrUJD|8NRiiTT{Dm*cXBWIMw`%S6G1opcMd`qllGnM>ZIk4gj{oJ^
zu*Ki!cU@w1(H_xQFF^yL1&bDfLhV2Q((4DdbEW2`6qgjGCgy@z`AJz^hDN3e1_~gS
zskwoP1x(n;3@U14qoD7USyCL3TI8IcTacfZnpdJ=p`h=apOaq{T#%TYs-W+ZT9%od
z8szT8rSFoOoS%{!kXV#ktN_vqR#vQF4AxMZn^&x0XkclnpdV0_nv$7Zl3%1?XrN$c
z$EEL<nNyNlq@eGXlUR}pF-1Y&BQ-NUqeQ{dz(7IYCp9m<BtyXv?6M#Q{b1k3;%o&&
zBNGJ!g&;2d;L@a$%7Rn{eb3y)^i&1?5HKggKPf9UxkN!fJTnEP*}&2gWE(UHD(1Yo
zdw17j4Joz@OXlzTAAL?{iS}f_9;Hv88M9^2hNP=^aqVfUsJD^Z{_EZM>gM>$Q@0l@
zMc-Iv(7qvZ-l^p~-WRP4Jkh6i+AC8khTB0}a_&`A?G?ZO*5&VcuDkeL`}KKd_u5j=
zuRU8IzuDx~%DDyK^u^pK@9Z>p5ZH7!a;@;Wwb>_jzWZ2VaZ+gK$NLUfo$PF`%KE0M
z-exGA^Qv;yta<-l?qyW2oM$4r{M?0w>vUWVTYmr5ySG8-BU^{^-p5}mY(jkXh5S~1
zpX_$R^P!RSm8R!fdpgV=WIA;><$QkY|DIRk@b}8ehOuk^2KyUowr@z04pY0$uyBS?
zp=(FW=em}rFB^mWW<5`D$|>-v?AI*}jB6`d5;3!axg}}o{B9?eIpwpDugSXq`cdSk
zzt63svwuADw7l}ohEte3a$92RCSHNwisINEEt_ASQt<!%IiWr$ee1csiF5k+iu;@o
zKRP0<AoX!shrnvr_?vAf-d;YpO}DhE%G@tha{7UrrRutW&Q4J>mp?G;$n2nF5{GY2
z{3Lfi*tm?#sK!yC^7+D9QzB2AIXFD>b^N?WthVBTb8Byabnxx<&YMFNuLNiIp7{Gd
z<h+sIM>Y<RJ({nJd7dw>=@!p;Ys&m>|Ng(m2G+B;++wy22`xyqU#_}&Qf|YHBeNg<
zGj97FyYKMbRDO#|k1gNN?%q80H8-<W&>62ij7dWISwHFz&0My<_J+4`(W8i(@7X8(
zG}VNSR)Yea!LZYO>Yv#KeDas&&p9Zjvo_Cjee8AKvVVV8zEH`;8M!e`4%Lr*ZR_(m
zc@He`?}<32!_>ZD@!a-ew>^s<PC0Vw_*RAz#d{%BcSUWPP#ienY(~!6y?xJYpZ8RV
z9**3^D=?=b__qDa+6#`=s|C+Za_oNBb)@sX$z*f><Blm7k3jO559~CrlR9~FLzKK>
zZN0nA^c|K3E~>W~K6aYt&hfU`p6KkS?>+bUrn4zw+|PM@_b@(+UKM@gy4xYmAFmv~
z`F_qgvT}23)8E*chuuv!@fxsvT()$6vW2zrZl1?eOsmcrmKdvkx9ITS#^|Pa&*WR=
z9eLM1#WtV#+}5{dJO6#Rukl>b&9t!neQO?j$UNdT;QF|1@Bf~MHR2m5&gnK1v#hAC
z>w7deS^rw%i?$yr(g_NWe8vCo`FDN2(ml;zZ}$BT+H`-K?XRZOal&@fE}l0RQ@qE(
zESO*Q^Z5_usr(LSRwf<Qol(qo_l@aN868o>TGg<&cWW6OJIrPOT6_CyZvUwDe9y!6
z5BV-Hn7voTaf+hEF2-X@_r8=aVy^m__&4sn9(#S-ublrzC(`yu<RrxO$sUYslarWI
zary52eM{d+%&+|&uqANfm$%zZTxG2KT1>zHntXuk$ZQV3607w+4<!zGntaJEz3lO5
zaxTY<Qz4$|ngU%F!bi@V*O@8Y+mrvWc=aXuE1hODioN5ctRGDKeDLDJZLj$oEWH~u
zj?A{GQk#>S8^<93_urA5@fVlX&D>&U#ok)QrI-ECg>{i&zSB+<Z{1HKTN{`yDktw?
zoBPZ3OUdrYl{J~`e<aoVg(xWK=9sMHT>it^BKDE*+xvGzo*caC7$0twVKY1Qz>V`e
zq}Ch1(_uX%l+P5EJ?)l;`pxe=>!!HJFrEADH9xyt`uPhUuRRN=q}@DrlJkiAy(1yD
zJnH8d{H9NSlN6q?_28W44Y%zZzlAFWuaeE5Gx>nSk=YxrNgbB-yO-eSusrVf=e<W{
z1RR&1I-bhc<FTi6P2QoGm&D~YnCH~qO@9>6I%nOtDI52%=RbaDabQo8t3c$<%_l^8
zd3^V9>eWw+I-{9oz5n*J<)6)z-&=8RU2sS<?!)yNnprV{TDL8pHduC;e^l*#_{21y
zF<;tU;?9jb4Q~$4iLVz*^e=z%_Wk6*xtp2dI(e4-INZYEES%qF@VwZ9**Bzm`o^2h
z?_OS>I_I$Ks)Qh!xOsjm37U`2YWzF-@ATi~JGJv7j-6SzX_x*AE3cx8Kc(OJ-ETTd
zOsQc0;I~K8qwdhng|B~hZ?1QDyHdDJHpu0PU_Qg8l|qX>y)2fxaZ1VmyU1>S$#>iG
z<%`ZO_<dt~*Nocs@0xR+4rCpRy_e}5e!O5`fBE;HnVMPU-M95)MORgLSMGVaSJzqS
zzs9+v93TAFN(5&elKj%P>vEoyb-U56Nbxz{O||cWnQ9~+eY1V<*YhxDCfC)EJO!V8
zoli90IwIY`|LAOo*E*92JU1>b5HPDx+O%$evF6>B_Idkasu*~l#2mUQd93r!+^!2|
z%cuB1G3rU)lqxFKU7#y4ZFdNRd`M68s!dT}c5|d35U7oxexcM^CWC=tmDSt=ztSCF
z&k0X`HEX>=;M-@7b6DPne@-sR+r&^4VA!Xf&U3s_*L%55^JD?8OI^$=L56$_AL(qJ
zdcNVy#wmx*UyI&emg>>t#lWC<X$Ie0|9kUo<@jSi^DJK{mbxSVxyqjV@4enPGd&b%
zwg9<d@oD+Pg*~fJY2Um0&fJ2Nk>N)`>a?g8b<aEcW7zNS3DA+7>(RL3WUW^Nzt%C%
z7%z+2?p9YGzQ3{hv|jrg`x3{x3(Nm6aQLy{5<`Ml`0;{6W-SNfoqly!Oirx-_`>mg
zi<by1!<&em&Zd*kOl7;rYV)MI>@m}{CmMXy_gUDerfK~-e5qk}n2f^Au0jjZ@a}i2
ze(`2c+vV~%)qD6q-E~r_arz>r1Cg^%WcqAfk$0-n^722sw{O1ISnqycb<`xX)6)FM
z(Of~0+h(3IZrhx;=jO&M=j?QMoc=AsF?-7+hBLX7S|%GA=bkzi?f>-fChLFQOpFcA
zRw0vTDn2|?`Js(NChx{VQTBu?)@wnpGd|ADtkT+FaZYZZ<xfVlmjP#&XCC@#*O;ZF
z5ccHs<I9mJKU-;^n%66Er>^(mllixgUo79z__9>)@Xq_j;>FQ6_ufR59rvHeAK6v0
zdCghp^^C3MYz51%ytAAWuO4tr`}x&#>)eEL=V_grT$&QH!AJS`1?%*PcD}1?7TL5H
zTg;do_s~l7v2iMsRKy?8qg9W}J6%K)3Im1Cz0L3abI)nc+QpBz=!G85kJ<lL{?wb3
zT?f=|E?aZtn1)Aan94nto8l|7j_`?gGO5m4{$^F>#LI<KRvRWiOS~W35!NulcaNsh
zdPA+CseAu_S(&eGUGlm1wqSxtuaMtc!Q#*Y4cTh8PWvkl!WY=yT-MPYdgSP;H;=Dh
zPHvmU>nHhinqlRk-iLFZy6j=qW?7pfGfgt0t0LItxMrNSeeI0mP5t{yzcpy~&MgRA
zU9+5@|L*fu2NxWfopJ73nx=b!@$(p)FV^chnmZ*A%#7=9*<7z|xj3x!-`?44Oj=|t
zT(@zqzQnTm`})!^ip>?9oBkzR^dEPY-8<!QLA2?U89R>pgv?7-RqG92tigJ}wcy)&
znW}`yzryF<e&4IH_4Dq9yPwUzJyRl&+laT>@=58DliT7awTIqZKOuOlThW)q$&7Ps
z4u8G0T3sgpRZ2bAk7tre>!kJ=&)(js{deAB%jEl|vnrU6l&^~7UV2`_?}?CN$D{DR
z+h+a;SF7Bsw2vrX?p0K8@ci#3Ynx3s`&WtCd^xA|Y_a+TjlZVHx35?lZvJqFNXRLT
z;47crnV4579AEjv??k8nw#+plqJ<JgLi?XQuD?ES`ieG|yodMGE4(_M7evIoWiKk*
zXY;@`GT^uR+#N3-eVp~XCQpC8&H9+~{dFG=o?Cn=IKgnPZ(qLEx`*?t;`i3edmryE
z->=6Ld{zHd(1w&95!!Zg{i5fddv(S0-MskX1M~i{+><{nBf2U!zx)@za{aD<woAXr
z9In*wIC|coEM||Pz^f{5)d#ZESw$`FWsghgO?!27;+!w@i+40CWtB{LRHB=uI%o4z
zv7eEuw^n>~=<}2{FTU#ZX@;-N*L8hgy!D?Y_FfKd?B;n;vwKt5$)nR7wgwhXlbUn&
z&7_Wkw_8)zMG1sIW1i7|EokMUbMq?1TC|v!m6WyoTs+Ha%~qu|5vzqZ>zz~6-=TV0
z;^{Z%iEnkbZeA=BCEd39mr;gr@NC0rim#MHSvE^OV#?83`pUc0@cRBGa-8WB&N>pY
zOL}`gt4<D7d%KdSIs2Q|RmC{=b;>7d=3Kr1?e*TE^2wX`Z<z9l^LW<sqf>3gv$-ev
zhh)tb@iu15ZM(4JAlJVmD`zX5abNv?;jvV?&9iUi>Tdme{8aq>%pI<OOXqKvIDRyg
z{YpkUYo%U+)J^|eBKL(>S>29ewLg-3Z$Ho37d%UL2dNo~n`p(PFMXf*t9sUPE5Y0H
zj~ku_zv6Se_k9QNPXC`K0hu!svNR$x&lhTh3i>!7`Wdj>!O7O&@IX`+WAVfG-?Q)C
z7IKRFW3lw+o1Z^5+HYNwkK^ChcTGvAgTJfEvcvps?zG(X`wCCC1n0}Ev_BN#wETVb
zLfVp$#Y;C-l-O#Xk9p;P{L7E^_ht)E)M^TR!BZ2x)~8E#j-GP7;Fr4_PCQR-p78l&
zXrlk5MvcQ>UuL&&F1nRzz{kI3OVpm7yoTOyU61}U3D|wx=*bN0x-O%Yi3inE1evey
zTFPPB;~jctZP}rprAB-I{e5#&Y;Droy|(?jq4gV=dMR6`|1XPtw#u>X=c-5XVK>|(
z4$hjm{!G?I>)1t)_Ab@DzGhB-f1KRzY>s8}XaBx$e0MF!DQt6;?w8e%=5A6<<6HHJ
zfA!TUebM{v#ZObL-iXEj`M2s&UW7iY^SQHDdt6WUF4Z{JX}QCI>!VuiN2AWL&~Np8
z&lh*ZFa95{rndEBEi>DudJ})$EpzL9S6zH@&eKBUJwruQ&G*ETvr6#?b}c#}aqjEh
zTa_{C|4%dXJ!`o&BOs_R?Vw~fAIsSt*%rMGy(K>9a+!ie%LTXHT4UN4{Hn(5=RCbu
z>2DowVFfXH6V+=w{X-3S+dnlkHEN2!v0HjYXm3@vY}(4Xcds6qAiPlT+H<=pLPhJ&
zM-(eu(p>E&@+Ron?&nF3UdNIcmhV0B@mZMl!zo^}oxScY6Amxj)c)!B?U3}6=PEG=
zr*!|Y?=<gm-Scy49On`noeSIltha05yt933ndZ}%-DdvJwsZ!)-*0p?bk-)VTQ^Ow
zF-S%1JQP`Zzj3<ayw-gtZI|oLsMH!PKfO)#&$j-z^NT80z3DOKP;xr!XM6d&ckz4K
z&xQ?`Z`6ritbOrJ)&6108W!Qx>n@3XyY*3X_Em-Hj0aY>Ri5JdnN}yIvmoxS=&ETN
z|7HAU-|aS=arw=HbJv&2$({OHW@(o?&%^Poy7F_MVyO;up5qLD$;?-UW^$@~w9d1e
zA)M0OJtH$du0=+nZ?mwjT1G0{s~ra>S6sdkvDL-z5a-tRmu~~EK3iUR+srZhm+uKi
zr$~e6HQYA}8E<i4{pnw5^)Tkn;i}VXme%BSOqhJn&F|)vV|)A>Qd6JIsge#p*>U^K
zBc2CaOk(!zoExia^+|4-jzdiJFQ((Hj|09>%1>K4m(|Jg>XDw%NY}iZiIaWqU0M)&
z<m&f_Hb-wBX0uHHztu*bH@dld!&&WyD6h(of)3S!c}qo0cD%~otlL=9T()EPj=0F)
z=v(S(D|thfU)TF`Sl#WG{s!X<7d=0&Zc)GOo8TgRX1Q(7Lbv;lX{LGY)h^D{%d!qh
z=BfW~o1?ei;->RD!}Hn=3w^HzZ4g=hPE)))d&j*0?MqrFZ=ZbE{|Kw|IbDa1%s%-?
z7$<zm5ib56d8b1>)?NJb$rm4=ZTl(XS0%plvERP@l;dYJJ|8*pn{U~lM-lux=b3)L
zSGut>NHhIM>W+EWR+ec!_;$EJJU0I8qq7eGdUi<5->zAuy=~|I@O8aG{PULOJD<`&
zxA9MdDtkl5u~(TV&3w*R{$7~1M{>oM&)0)qZ=F2bwf<w>=dZV~zO4Ni^fb+YeZj`Y
zTXi?vGJOn^S4n<+rfU4KrOSNjzMVNIG6P&Xn=O;)PAo}WBqbxY^zHQA8J!iA*WJ6s
zw4Kr0db!TJB?r2db$`qM`1ffud-aaT-=}Pv-Tdy>+CxX2%ru{Go^m7W(e*8xcqa?y
zUy41WKKbbE+bh36wE0@)qWRQ%^}ZV#n@Z<NFE(7xJLl5V+Kl!0egAx5dH*?)^^vdD
z$7j)(bhZZnHv1)M`QnU>@wFW%cJT#-&8|FsEO*AG7jsWeJ2Kn1_4R$P^e0oLY}Q{k
z`yiNW-T&zEbFHbfUpnM!JTEzw<+wDDaf+3HigcQ3_Wa$Gv}@mYcK^C>IOl}^@jW+I
z?72TvPpGabd*`uP>6gPF%s3RhvhdvNWa~}5!n1drk9FRAaNWi3T~DHev##v??f&jp
z;oJ%dljOv<Ci}o`U+(DVy9F*^v2hYt^2);IHOGXfp7U%oE<C<wM^(17f54UcT}Ng|
z-|Bs+^f*sgW{FL${OXK?$M<hAEwqrH{;6(<_th=GK{jd6*nK{BTE%Al|Go3yOX<)1
zruFNHWTbrk)K9|2Gt{0`aO~4h6e_#oXPv$?O7hB=+ILMpe%2wcD|<w&?Q65d(vHnt
z%Vxae(F&`@%WfWGOY=8P=DKG0)Opdj@2PWIdc5~|hQF8Wo!Ry4%kP4Hso{_I|J(4*
zInDd%>|1-f*z>e_x7pm=@^kI2{Y+Ck%wMjuYqFcn#JPOI;qqy@a(gzV|4+FdG+{>F
z-@oOvrT3f&y>(-Kv2*5q5vHB5mdf62yVz;|a@97+$y3W_J}>CnVYKCwN5%cru9JOv
z(l7Z>R?KN$*l8{j_-d!@Rn5i0E9V8JbOle4zRw#{&-eW6-`}ZGWzTM8<^TM%^l9at
z2Y-3wj%H@g^)i^ayXVTZxNfVbGaB64{8mckU)rCj;QM~%|5ppIS)Ue`?)lmGI{5MR
zw5xoULVn)fSDV}SH1-_}Dfd}(Q_A(S##J`m()XL{58b@}pwu>4?)vm;wwrIQ&%W@)
zd|OE94(C0L8m@aRz4x3H&R*Kc&&vJxy7Iiua@So_mmf$|5i2fG-u&c%?;b`Cm5mp}
z*YCT`mYV(d$@a=)Z%yaDippPdPQtJHG+&)vW)wr$gj^$$oaQj;13Oz~56|3j<hFH;
z_m=k_=iVMl==;3HO!ZIqBu0<K7ix#=7EX;)u6t+1KfOTbZM^5{36s<7rIm6X&YCuN
z^|l{BL=Tj9-gH~~Yu%48jW2J%_T4CSZsqf(b|H5+SekHKhF{xPtif*d@t{yXgPu{z
z<b^liym;xo@36Fl{yA2Yxi1%`^*@by^RF(at-at^R2J9z3g&{=oXN|B_C#)G7ft0^
zp0(%U-NeA@T2H#g`#;VJxHfaO+C7FC#d}XOCG*2REdT3Yx98F3vypZC%O%!wz5bxP
z`uzW>tw)0HeW|*9cZu$EX$P~LYSE9ET8CS3DS!Qa`dpRLMw|8gN8i+Zo|^osVVn8)
z7}Jkz3bQLFuZ`O?bNAJI;;GYaElhR4`O0&?WQ1nB4g0mQ9cPvqevH}5S;n}4`?cfs
z;KdijECrHPWajpJU1D~-dT^Snp4p*KY5om1*P8d8_|oWQWz!yf;n_y<_H$NWJ$!Dy
ze*3lN%Ij>|eGls9>Tb4sW%ksMQ6%xjvU#tcZmVd|YVbR`vP3%Z*u(E;NA#a8|I)qi
z4fpa({g0>eE|~H&&%$+uIm59<OZ67r3p$srC-hgSc3RZUyu#f5%NF%*`cQb)Gy6CH
zlazeUx4K0cVmEyocpmW{Y?V8#DVje^*JJLFlbe+LO~0+Xw=YFz+0lHb7Sqc++KYJ}
zOnEnVon=UFtyuo8wi>?WaeGeMN&EF??y-wWSr^`WJbB*zu*VPQ^oTCnZ=N>yb+OB4
zy9vw(CRaGuT>P!1IdO5;9?L(glrEp|I>WoVM5DX^`3lM9i4yDyrcxi9dLCX8{$)9*
z`{T04p#63An?E<2Nq<)Sn{?xT>lA&NN13W|YIU}J49nMCE|oj_h?}q7&!U~HFZ0VO
z{@M0l1Vt~^?}|HN89n27p!*5NhKFZNO77o%l&rJ0_q&W=6910hnn6!k^(E`0A8(wq
z{7ZYWompCOwUOKjMTO&n34&SGY(iB$>bqyh6*R8z>95T>@OXXj?2^E}SsMBALh2g~
zdmr|FeYE%|!_8gygWK{K3j59T`l$BzdVQ|L;}yYMi>K`se;?>R*Mj}HU_#Zi<-HkC
zXP0kQopUQZYU1(Ib?$SI<gbt|TKDGAzfD{><GC3OlnOU4c)|Jn%0azPRWskLKQ%#I
z$ZpwzxAi;9qFxxW^D|@|WAH1?dv?w2o)`0elhZ0&_kVsPl+w=4u%(hYdE!)2i7U^l
zm=Ev$b$Jyh!~G-DZX&fj&!?GP2>fRBy85EsKkdTR-~MNxuA3bwo2K-c!C+mg{87m?
zp7dE;Pn`3*|M9Q&g}3=D;w7(2zWZj+u*O;1w}83l;TH3E4LNfr&MBYm9MoPPR61EB
z@8)h7hJvp0TC)vRhi1O7>5?ppJCn%VurTvTXa3ig;=nWAHWeo-g-RJ1vZ6PySADod
z?#IS+{fbWKF5fg2<v8tP+90~(hPuID$0-HNOao3-8m)4US94<yn7wToFX!?-77r75
zOkieU5cjm$9_>^jXCBRMS@PV3nIURY!9UZyHcOL_>jZlz^D?~fJM?pZJb$Clh0NIr
z;tRBd7c;K#jlSH|^7-ZC%I}$eyW_2s*aUek&N3+UW&YZ}-^0TG?DlonQ+7N1Y%*cE
zFukRDojL=<=LrStq_PuI)~ro6O5D7q^CH6;t(?cvQ(F$dE!%zf{+D}VZQCdF&PiZM
zF5KNN`1j>r#+Kq6?4dUcUwo|iV>R*J_uau94D(F7O(hPmRQlBW>UDVFlfBA(%9act
z{3d0(9a3zU)4KdYfRCZ}Wtgb?Lx!yq#~2&R-!0gx_;AgMtFFdQd<-&|)TX5_ZFIH$
zJy%a%>PCF2!f$K+96^TZ6&C-x=B91D$yV~`tC`B2rLyxLDG9iWtUv2*x=!v8qXNgy
zjS8Eu-1z)s_4hV|J&)2S{@^{Z;LDn<$pu^mvz)}8_!x{e@2%6l9pGi*p!|-N;Xv?l
zv%=OJ$`7w>I&_mc{pkGFYHf@c0%!9*`EoZzo0q{i)xBdb>&;L5ihuo*WvHt(YubG8
z`s9KJ!#C@#Y_nx~53H%%n$0S`_3&1oW|IY)-(~!Bm$w`?+`fy`=>%f}YjE3~?!PC4
zZ@;vhV^p$sfpwrv!^Sry3fyK{n(yt`+-jTl>)#jsi3M7h?yq|CZ`t>47ot|~=Dhcn
zbArd+h|mcWf;~Upi+Z%((}L&O<1=DKVpo<KGBlXoI?{i*e1~|B^Xhw@em|o)+b6!*
z|4HQu!-l4Zaa|YEy3RiI_psneelGa=ShN$16CcCnjGHS$f31CV^VzA6$yeLGW|gMZ
zPxyPwa;myU%BLrDMIHSz8v<*>XTLflB~@PPwY9DCpxVdwZ~OmTpB|w*%W#MG`N;LD
zs&j1^coYwL3;O-Na8t}IS^Qi0?tfdirmZw&j=hm8%a>?v&X5(b+fPB?=&5dI^^S7~
z|J{F=fBw6@mxau0JE65wsqWuD3p03iewgy|8GovNf0^p-J@qHg)&ISx#kpL?cCD1q
zdR5Jg)UB)i7&4ZnPM%^Us#NXdGBM}#zucGd(+XBy{@ljqBEs<O+NPzujn4l57=F`t
z*IZ3T&UT;NNwaG_c6kZcFeW6WwnwfqTlw;?Q}#;1>o+Sd=gbs*_8^C`K}pJF<?>yv
zLVS-mvKZ{&lNC`Y-r%^kKJ)g!t~0;uBWjY(=GJQWwH!|1lkdE|{%Kkb8^fy1J15fi
zd<j0Jd2)r5V|(k&+Wm|S3d`bZXCKZBT_4?E8Lj%zK*;<V;{w}q(ciCb{6ATzoiS1W
z3}38}pW*(#gEDhJ9SglZ^}bOcFT;a1-FKI7);F;Evr{|SONj6A54)*%gP0mjZLJw5
z-@PoeF1+~Tv@f6Q_sAbPqHkmKPRLKPnE$~ap|UM1Z`v3Sm{e`u_I~a<&Ej+IGpfT4
zdglIJHHGQpvGZL?^Co_rYjsi7h{3`5`|rJvBZ8BT`ybLw*r9k-(9?+FK-%)`zIhS9
zuRoY`)%^CIb5q({g1uK57bz@VH^)-Tn&E-#<9ny4=6tTO>H5;;U)%Y-U|rEh(+%~0
z(fJGv%eLRY*8h(q@5Vfzdu_Sv_(H#NfA_Qq<*DuUP5yF<kKxgaYJ0;Rh83&w&6gcx
zV%WZB#pFOfp>wL<vH85KwrMjj@RsFfc+hM;o7FVp+sao5Kgsx2u3NWh-IV1wm>Irq
z$xL6Kf0q63!Q=6J%~P6NCg)$cym5_1tH5U_W`=bZS1)&5*4?RBbX+ZGL*>K*F7CQL
z%B#0{Jo1?;%b=6GT=4qiS4wr;Dkl{fy)<VxIikwW5VPg-BmV2o-T$TLOrH_G)$@>M
z<^tyU3xC&l#|LFqOVwL41RPHMY+JQ|^>1zyb+w023as+9gi7!A#uYOj@QK=XI{ex4
zqwklWG~4QFar8ys{*pZz^|GvAIT)@4EN=DfH$VJ!U(lwr1=gYyT8eL-s(t#!``xco
z>U#MM5djmgvNC<U)^mG{%EKue{mS=LJPrDj75_Yf;eb`$*7wd^e!tv1SFucepZ#9*
z1R?LeZr^t<cb(*UdbXsutTMx<z1w{?d5@PzFWY(2?5T$PBR|Vru1N)5k!zXfPAdL(
zddWSd@BPP<PiYA?+_Ib1zvo)YRy{|})BFCWz1#cxkj~c2b6Vfa)zAI4IxaZys2oFC
zh8kb)wjW!Um&%kGzse2GUA)Jk*h0vUkGrhaTYs{dcgG5Sh6OXL)*qd{)luH?HqVud
zQwzAHU)&I%E>yH@{e&H#7?~2<*&Zpe&d{sdCiypSU(008_a7%6HSIJ1xSF3~hUd3r
z@BRNKFSA+j{Nt|uFZa4i+i;ejT;IH_XyvoHFQ$5(VPsNpy%~4w%UYj<(bHHT``)<z
zx_9@jdpo*gqz|uDN}I#G`d+Bu+bZS+1!X(Ui^mc-E-7jGmjB;B_|vbJSc$_svs$}9
zuL%|}UeBIC&DM&c=0u+6AwH=s6Ky92XI`s1b6Bu=^(Ee4M)JuP;gt%{yV$NfZ}H}9
zP!y3|Hskh9rLI3W*!J_>>Yr4=CGq9P^~n(mwWob~xg82umvRO<ox7PZIkxTbK2h}@
zg6Fe1m#<4*zxr?Y!jEU339k2HxTUf0&-JWR+g{FkGo#H~PsmU5*{Y@8#S<+|7;;W!
zuX<!s@U}Ag`<G)@RziM;$+AD#%(z`N83o!I=QOP|`8aK@^dX1i9)~nDzkJ^>_B~KR
zR==llohQRDqlU?Ea};g<t=h$SaaW@Ae67Vff9BtlKJcU|p7Z-|*2|1ysSL~8(pN`i
z+Gcp9@GLhtY>~LqhtXomMvX_|hGOzt8hwTQD%aiK$T6RRTPyl!_OJbW)n}$Q_u9GX
zr>)#L;rQc)>lhVgyFFR6YUQ)P1$&mSe1AA4=vQC=qf;6y8d9|%Zh8EQso}(?*)Q4F
zZ+>#vedg=br!!4?XDtmo%94I8=+0#32LTh0IduoOB<*=ux8FaeM~E+5(2nuOl17O`
zcm94#`*ynE`ToA3A3}b?i|2@O7iBP9n;7_9JV$Md#Z95^ypHXUO13x!dRT1TAu2M>
znVI46%*FBd_6kpm=vh2{+f=p(@x?Y#><$IDW^HzRpUb{6#8B$+$`cBi5mDj{Srwp}
zvJdsO>1o^4A2Kk+Y?_(XGDqptubYDJjQHmYxT!xZdC<dudLd)P<wU8U{~8`jxoy0^
z_oiig@Gn=x^Y!N+UfKFHDORZ<gW=kg*q_JWoILC69eaCC`c^}kAN*4_8C*WBcHL)`
zw`^+tPmN>Rhb<T-55GLTDOM2F=uqg|ej@7Ua?|*yU;4ujUsF5Db6k|sLA8qYzTa2Z
z`K&9J?#uXWGbdBx`TfYOBEIZPmly&%=Y@8CTl!>2iiDo#pXZiy9&VFkc%W3i+pVyS
zLH*Xm-2Jw*Q@3uGyy&HK`<NGV5#J6LhGk2t_@7>Rc;kJI|7FwV9rLqSp0w0)n#;j(
zaBA)v>5{_ZZ(Yw{)VGT8K07I%fx#r~)ynTv!$YjCU3Hyr%qaL{C(~?sz18*)gM;xe
z=J#Ct-nku|X6jhEY~RP=6O0TVOCC>I9(jM)E5@#ZFZy}Try4tCTK+9r@0EB=iorm#
zcD7zrT7!b{Ri!zZ%eN^WVoU#B&ZA!FU~uRsW2)(lrCbgXroYU7c~_e3oAPOXWR|Ao
zaaV4Jf@$xnO@3_=zFooh+~9dcH3P#8x0`Xjc0r-DYp)z$mwCD(GtYy?K3vLR#$m1y
zX9n+=p@*|0?}cX7l=@cQjP~|DvC``$ql3Uwsnp);c<W}%{cQDG`GU1FYsB78V`eZA
zu9co~@8j<RzWFCLw;NtI66IoOT77-##YfXcciNQxZ1Sjj{QTc7W+%SpAYR6R337qP
zo$D=s{#*UNzU0cXDN_pOwal^MO4sQVKky~$-kGAuYvfW->(~3$TAlDtRDUq5=S|&y
zYX=7IT|xg}D{Q^8bPNA=0|RrFKH+4G-!V7N9Qny(u-)vh-`?9&>$Y4p?K|;z{iFLn
z+b(k+kJ%bL#WN-BBEtd>UpJZkQs3vwOe*@JW^u&(>DxJmbCz<gU}KeNpTO*(I_tNT
z(X2FP9qv<emTsHeub;zHqVR;Fpmmzkns+zdPQ874$BS8WUiu{Es^F)+$@QGP-24m^
z9xhJ3I3=e1#^zh~FZSPiFXa2ri@Cjg-(23=Aq9q#Cm9!L#V$6RV!XXOd!=mIHC?@f
z4lOba=Pp^92<O^19G@L8pRvtQbDCB7>GMIiw>-FFn!Tw1M2Ts`(Y@Q5G)w>83}?;q
zYMXp%ak0<hoxkkn1iP2a{W!<9tk}z~h(T<kk?7L1(<ZD9*;24ZJ@`TIeCxx-v*$Ro
zs6S!&FeT{u?)v)&z8?FYQ$KZ~=<KE6Y%+z;@88*;Q7?Mv$Zi|?%U2mZzTefzaFO!R
zIi|hz?ZRe9QHjHq)93Z4?-jIrU8j4(gO6eR9j^NSk|lm8^NMAgQbqkN{5zjtuBkmT
z*S4s!*W)Y)gW+5A3;Ux!l+OBE`mH2*YRl&-m#kw_-Zmcf-xRsF;1yHB?y!gX-x#+j
zytJA&RWs}Hsu>0Igo^#%p3O+;+xy`5InFl=m>sH3la6ua{^I)mBgFQhjjw#s8UNX{
zn>iTXipHPL`_KLU|I~k5T`p@pyt9nY^3hqYI@wc&=c5^J83gLORyCHqiFtXwchQZk
zi<*4lQ|xSZ9=F<f>{isK$nU}om)`E5w2;I1^P^k65BJ2xO#KsmF!%KBCHtfujO9)+
zE>OrlzEJyc{C)Z02d`gDD9BsNZf?aU_xW;|@)HK0B_aF|t7fkYpRlOHJL(&^?2$&3
zxl6yTyT|bKb++&2B^x=O%N^Ln_ggeg?`YsQ`5m8g`F_pXr8+12Z{&>7^O=jyPkUMB
zyUI2kyOgfix@zX)-1A5LzFNB5Ydo9!W&gTWa?M`V+xMTn+dYNt+`R4QxEiX~T{)>6
zZuyDrWchxtf4d!oPUrrA_gSgc{^qLKn^k=eZRT1z?k>Lfp`?uE)6c}^><)#JciX;C
zoE)6l-qdye>CO48!#=bpMJ38#{_1aWKd7qlZGY0oa=(oVo3Ar8{g@|r?X}$g&Mels
zUcQ$_cISN7O*-T`F-Tif<=%(4rAPGd*|8|xj#wX>`9W?5XN=D0rCgOO+q?ZFO&``|
zY%se0knPHk(zXfWr7bcI-9q7iJ!4X{SI#RG=uEYHz3}I~mBF&jtnRBXeXW!~r*TBu
zuhK@&kFDXI-Kt03>y5H6Y@fI3_q{-`=sVl@{`=ar>`S@%((i%S-^}!|xGm(rKJ~nG
znaw||KTFhj6{3H6#q9t0@ppAy?V1PCM@yw|b;O+OWPJAM=e7#@(n*n7sg<wVl!DUM
z&s@zmL2>ct@Fz<ri1kQ%9N3wgzFqx&O>xn^XL5&6S{!)kY#teXWYM?xi(OXNGd7*B
zds%kV{Pq;7tCh8hE7wOInaUUayYJ4?%}3{K*_`HQVQNu&LhT7d%yij&q5a?9Oi%d|
zQ~vDG++T7*CGWRQ^*yxy{hxow-&IR>wG=l6w|CERVwkEDw&7sD+0_@k{yO=tE2iac
zTzs?pdBLO?GlEX7&par1g3%)6RpkG_?<=nzlZ|Ki@F%m^sq4t5TQRnKvN+Rqp6c+4
zns^>6^kX=1hwGfb_s*LkTkp^OB(TRi{^cd(ht(UedruN)pI$e2&UNz~*|e2^+gENh
zS#XreV)doR=9+T(Wp-hUS1<Toc<Q0dezubfPrP<B^2?0v<`?qQ+RDS=61**Wy3x&*
zS7tfyTC#kJ`1NzM9$420Etx&tyu_JT=$!g;S>Bv^X+b6jmIbal-s5`pi`Av2;@7`7
zdeoduJD2wNZ*+bazw4o!3G1X7SOSylZhd9jn_yr1F)sg@afqaLmH7WBzvrJYWAwCO
za0t+q->><p_2$i&;rtb6cdu@*u1&Rh{^9dc;lQ`gvr?Al3!O7NY{76L{P<PYAeS3$
zN8j$h`{LAPQ%&u=SLJqj*1R}fxg&GZ)kWDK?g=q)yhzfH`JJ}3&dFQzb>8#856>0m
z>{--sS+m(t=EdP0mIm40*N6A`Em@Z?_*VMJbA36veP>0vZAy(<IMe$#3p3o}wzGeG
zVe0Zit~%-2_qczCoS2x)ru2}3p)sV_{OIMTcW)y0^@k^^dG?skob8%9S!GVu@+p%=
z8D_mSs#?4@{$SlC%a|<>PEEgjPlYo*cyD0r<D()A%~(7{b{;a>`exCs)Tt8o>vXE7
zeQ&>FTzsfeFjJ&4)imPinpfY&7w(SndX#lqzJAh2VfF3ZVr#^BAKKhbn5uRl`0B3>
zm!?nudy6w{ft|Ge<?r9C?>^T~ox1POmly6Sc|v?Fs?QnjgfuH_?_L&j@VtCo^r>cZ
z*7}K$&IC1IShr`AWP(n!-36g~?%gwXL>!s@Lq+C==EiArcFbjXaQKnz3y$6Mx4)7q
zJTtjKN9p7pPzG(wyP&+C>HcM2rTpAQXE&$52+q))Y~LRI{^TCcc|VmqzO+j*X1ol4
zx`z3~r#KhaTblw>e_wQHzh(B#cV0mP$9k{g{go3|H@-Z&^X2Bvl8)Op?0)oAU_&qW
z4$mbs(x*xJC?tQZYj_#zD`NQA>qDDDzNk#D%vlc$fr)Gk2{B*OPF(+SYx5_w#~XZ1
zYD82X9`I-~$!E}6afO>_-{GDL=SU$xA#u64maiE)9(!%O*>7^ox@&gU(ngDZbtl_v
z(hSeG-JG@h*SuX*oRglvN<KWV{^?Pp62s6#H&YH~98=xGT(U9pd)~JP{PxpyJ%lH0
z;*FDaHu<bB!_ct2X=CCqxte<ycwHV?$}lt}Zjrp<DYHv3zaw*7%jU|Zt`bjJ8HBE8
zpFRFc$mJaW#O=Iif|wZ;rsg=;Z0>z{<#82T!@{Yt?{_Tz9shOT|LgT!p?n{@TZ&Ic
zG~ey<h-L~1{g72w|2fNjZoe*PT-XPr#6ur7_!xTDC1=|u&0m;$rSXTFj|BsRyx7aX
zr!5O67cew51l`+N8T(7TtcO>!x;8cY_7s~C)AU1zfxHYAmRH$1Zp`N2;VE!)4(D>A
zuiOki$!pU7ehh!l+sNo)!Qh}{xIC8SrdA+3-`c4KSyy}=Us*HEh%TFNw|J?XlKqtq
zE4f37e3#W^!j&05c*ofv%=MKxw1tzMK_c*`$i%<7c~cMVP?;mlbC=0MJT>~Z_I<OD
z2Ir3KK9-f{XK}5EjbT%7weaQ#)B2-1*5o{EVP@!A`lh7QYrE-P-PQ*xG7Je$`-?oP
z;wGge1WZ<+b4&Ot&)rL{ZsIe74xW1ZDE#jG?^m;;_@#{}gL=ObtFM+Y2pqiW_pPpa
z?x)=3tv`};b+;J)lsKoqirMX946DcWv=_%tu(51^Cvom?UAVL0oC@YOkE<*!|D37Y
zZJ)I5qR)Y4KaUqI3U!;1vHWgP7<0GBns?WF%vmcr+E1>rZY#Dn?s<G_x#9Mw3_`MD
zGp^r$JwtcjG^V<l^*qnFMH{Y^mGC>$Cib9f&ohgs8)vdU_C3SfHf@@Rg?YHO^Tj+y
zo3~fmd7n+SmFu6eHScEHp}TR<Heb-$di?RmO5W(AhJYi|4dw5*K3Xl6V^CtesHu8y
z8lzEf=&^!tZ^Ng^9a<>)kuBl)-}Qg{Q$uEKjThwGvL)=$M+d%%vTAQx?{DNSxVGtg
z^R&B#KemM(+PU*zr<U!m4l9P)SvF?IwW-;QxPqhf9=@5ePfU5u8`qYud`<^(!7!WO
zUwOa(-}OV=fw|i*W&Xb{&DGLZ%9ide(P9d=3N;j4!+AdJgsk>MrN5Kof3Ge~Ea6_e
z^xM1ZyRzi(tXgRHT;jm??{eSjY;SJY-?#JJZ4DC#pPY+^bC&;&77yFHXqA$0cd%fD
z@7n;wQ#*bgeJDOx=GnFv66fs7O;?=aWSijo|F>qL*(tS;Z7+4_7JSNL7q`E8DouL1
zl0#wpXNxwo*L4TmmkOVITXW*#a+Q8J)&vF3(|kuu_UGF-OxVP2W$BarwWYXAdp-~I
z)^3Ix?&#j>v1Xp??K3On{a&fQJ@tHzQoi4h(npqxj8Y!!kKGPG{fPHZ63_E8?;YHa
zPCXZSy@YYiV(-%08y8&8r3K7x`MiGagvY1UV~^c_^zHsFv9dCj17G;EAH><V{5^Uh
zMS4O3-;N(EpPVYP_497ncj(&TN4$4b=9J5Cw~hHZCp2rR6te}x-PXA`1K)G{&uDA;
zEWfUDQ>sszK?Acu@C|7nadRK;LrN+#8VeqHiO!O5*zhatV)&!pW35X)ECMe2bq5tl
z$}n(c+1szpYSq8JL4lKfoz@K_*=^2JS`DkB?!{_-&1&4x&*P{s#22$^e@gnXct(K>
ziBUgR+?Z|3_<OxfgX!PP)yxTgl50=@p5NiX@HUmdt>*v3XP_*y>FRD3=Gi?D9ro?n
zX0W^R@+8J9lVdIa|2q8pZ{5?Y>Fp+5AG%wZXTG}IZrs2uaD1vl;Cegp{Dk(%tbmB6
zVeZLn0saSnX7XkTCd@aKIg$8KiXm#<(wk3LCj<!b%_&>zX&v+Bn22e^F{^u9cKr~Z
z#dAaD;Q`Ca)6Vfv+GHG5e}7C%=Y665(rGPUsHeq|pjTxfzmGW=vl>i}KW!WT(@&Rm
zi{irzkxK=?eKBAEv^MdezM(7cg6VS^=j`G7S@48C!{N}v<!Q3N_8e2I{k&>h+$^^S
zsWPpf+8>`SyVrJ4MJDXay^>gYr<Hdn*>3l$<~*R-%X&ve#)`{GdG*aDuMW%K`hVc{
z-5U%s;d^+q;$7J@-4qq_|Fq2W+uHH{cWgD=0pC51vBwHtEIy{J_jdJfy=E=8Vuo9{
zW1Jp5-fyOS?|>a=yTiF{0{25}HkY34GEZB+E$jqiMrJW*qaMHKDYFSq_MLp|?la$B
z|7idI=T(yf9&f!Y{&_~X_=Bz^UFLqN)jJLrnu-20YIDx!ZTk^#|1taFxhY}3){F+*
zr%b=clF4lnUC`BX_)MLz;td`f+1qV<6xE8aGU#P}D>?gp?e?DicNbbVlvjC}gsu|p
z{P}2B{5qe&+nKeodl;6!vA=Qi<7s!v)TV$nVrMHh$*+=p$9VSd>~4lBpC$^gIyO80
z|Bt_tAK5<5Sn6giD0WjOBkj7zZBB#sZ>tx*{j+FhW<jf=%(TlD9#0;%?Bduc&>&TJ
z^@FCfc@*P~M4omxu5VX@!}fdLoY8mo@b{9A@3y=C$*h{jpTHrnY}uB#fFs$0=jDbv
z|4ara+xwp?iofOWFIP$ZX2!rPbM4joS5bQ!gW4+98VhChM8dw#-fh3EvQTo%;quw@
zYJX}n^os6$y2P%%<XFLq)vr7b{WG4`8GLb7UgF!(dHm-068H|V9FewgJ+yEU+hOkC
z@t@w@m-qYIHHWclO3)KomW25g%;}yMA%zwt0UP%D$t)EtQhKk<aDUBAwo03J=StT3
zQ+?|BOCI%atI1mW#_9ahPo3U!3pRGI=VdrIsX*h+smXska}P|NF!}r0$}F3f$AzH{
z59h4ib@fug#P1ISe2!i4jjR8Ay?Vj={p#xb{?_`$JMuN`tGoLA5pT?MOPNy^()oIJ
zVnJn0HzMkMPuKlFE_#YFL1h1{C-3XStDObYRt6rpIWv=2PV=SR%bf@3?)*OA!nF8&
zDF20sU&%`kl%}mL3|(JQ{M$D6?bpS7)v~w#yu0UG;A}2|gMPwnF)7oeO0RaCYsT;R
zVKsZ+F-8Wl6rOhPpm|mPKR-M)k9oPqT<(12Pf5jwr878r3_*clc28y-yLEPlD&H6R
zXLEw|ukHD#%HXms{_6gJt5-1Z^{{y2Ex$(N)4a2<71jT4@49@BvFF_zTb)4ms*f^!
zrLya|YFFLU-&YY8`SJPkqc?>b8bhiMGX``T%5YhK{ov!)zWap7IW9AA&D6$BhIuN&
z5>pIijAXC<HhpyVsQntPe+=i?b<Gd-u}xi4C80I3K;z}r+3Usglce<SF)*AtrDIy8
zqNlvsbGdwjWlX(3Q$TZzv!Uktxhr=m6|a9Il3RVLvWQdR{Q6VIwR+3}{Vj(xt@(ew
z|Nn5xM>REFZ3o_$xxFixWj!rSHbpT-=GHUb*dkoIMI@lJ<*;St_eEZzkC=HMe3{Fz
zZSyiShFF%IRS99&f)?+(^-*ojLo*461STOq^^}sE(swq!staH9n=R+pja4(GIT-@x
zL}pzH+U9M0;m?-xyU$nE{)s>A#c<$D&%+6?LZ0vN-P5UDae;{;qP@kr^6akPMXU@A
z@+vZumh>+Y@t1Wz<KJz6>dWaJ(R=}+E5g_;Tn{y_E^}&P6Jl6k$l0DO%U-bS{{_X5
zYzzt_ob5?sJ?0ELPwV#2zQg^|(?W(LV(RgmOCGWnm~Gect7PJFJlFU@Mdnn;&4uq>
zGZ}pR&oyq?^Kr86t9LxIkIx?eD71wk>-F!n^n}TVGId-#4lr2n>!04hRp6TRI?aH6
zkzpHiW6rjT;Y?4ypFMi~@j_KLk1uPSf>)h=o_^<3GY8MwO}gh8{66~CJL)bz^iS`7
z{>kI_-SmPQX848v$O?IJTE|o`GoaHwPdzH{_BkDnWFv;HwsQSntm3!w)OuRv1ems`
zZZmgqe`)C+%PZ??@uYim#*M6d<@FyIF=V{IQo(m&Udv&1+h@U5rbXdw#U^JMuFF1?
zd8_$F>EQ%Veaogj&w>|o2b`)q7kJ-EJgobf{gtDVL5J=o9{l%9$el&Oj{Bpth7jL>
z@$}XgKU1d92op}=*uU!a`|pz&x6WL8j6p14+U63Mfr<GlP{7tp9_U<?@cKpRe1@qj
zycIb(+lwEC+<$#XXt#vjV;Q4{mz67olqMAHxO-(!@PrfwrOQ{GjKicJv^3PdVDm4i
z+v3^F{V=3^#ZQ(O=eP_n%xyV*;O?X6)53ifYPpXe4rEZ?v`*?v>a<(0p1pRyUZ+u?
zF-?+zVVU|vgErRcho4*h8%kHqT&T>Mp84y7a6twGo6-F@3>+SZ9^NRZeWCRBxJmB?
z6Kf`eX%C}7wf|v8(Gq=4)%g`AWlnvMxi8F+_79lda@fEBc=FA6@BKbs-jsSv|9`Oi
z^Sb@n!HiPT+az1}tr0uB+;Y|9%&;eOlJyxX%zc$v4J8jp-a4+~`@wPciQ8f=N=zMY
zXL;UA9!|V<>bt4t>o<ISwzE&~-on_HAi@4>V!@1fum1XFY0q}*uYPOl5b@5|F*$AJ
z!Fr#|9J1#uMe-Sb&02P}F+)XW$K7YSY5S7TJYKJNo0%bCc4Su15r=xVM79OiZ^gHy
z@UZ7?H$K0P!9nwu><Y(2jh9V480Mt9$j+KraDai2;ciCl0t?RepRtwO{#}pHoWNjl
z+JJA1;zNTOJ<lHgyM9hQO+`$Ry+O%DBVbw!v%T%%^M1=NsWBFGCCX$t97?odo!x$9
zy-*PYgPY<*gC$Mx*W8(TfQ{j3?zZ?SB@K^5i3!)8&-rzK`uMc1kb&XR?)&eB_>!|N
z7v6l5$<XlQ-<Nv~J6?UP5RrE^Y-L~&`*?5P?%9^Ro?o0&FvGET!e_-=J86bFOEq6U
z+Fe-xw_DlBWb>67E(f==@7sU;1uuh7+Wx}r0v9{t+I<csYF&3ecQe1BpPiv?@{G7A
za~x+bJ(hFsT!eLx#<S&&2Yk-8P5b?K-O>K{e>Zqp_++R*nX`7`5ov}QorW_-JuJ?w
z^!Ou?&yb+@=<FK1zBSJa5@uI0GZ^3OH<$W8)5Bte;~vI_nK7N_v;IBU$G<Kz>&PU-
znwUNJ3|n{^UJK+uQ+{~i=2wfrvQ}Z|8w?>&?V>c6PYb!q%aQT9X;Q%pg|w%2J3?QX
zGR*M2$F=$w^G8pMEyBh(Y&y*u9Jnmi?Ks=r4jr34g*UjHk>UN5IVaXEJ+|xJ_uUoD
z3@O~z%;km03MAs(m^|0_ACYEg*yv%wvPn|COFwU#M1G1iLqo>B=j{JpUGcOi*(R@Y
z>X@{%Il}?{{^N(&Y<>{Op7Gzq)52s@V75q)`6gb50~apsE*9c*+}aP~eK`GZi^ii0
z8@X#i%8P<NsugbC5`3SN;fz;(LdkjM44!tkOYbX1I?b0YWn|EKdUd67n=`lJ<Fk)H
z3gk01l+UhZmTmiSuYY2Tb7|sZ-%DnU48~elg+HYDvB<jzA6mHX%Y{oi_at^PDu}EN
z%1w7Zaa^#lq3O4s!@R=_7iD~O<7H)7VzE1GwVhk;?7Ms7kLo=P@Lu`#LXe&2Z3YJ3
z3hfsHXMz@Y1%FI?e)thD!<xtc!e`&-`kfo2@-SfDMQMfyYrdQ9%{ixeTk^uz4*x?7
z4L-6lSUe4%CkbATGIw^1v**%Bz7y{Y<ufSkIJ|MzjE#=+$`+jMMts>Tj(uGAAfJ&z
zR+Q6nc5U;U{JxpH!!}>OKe<3d;YyC-M>dAGfLC)Ld~iJUaMBcZ#%}k%?(Fr94*FHE
z^wYbYE>842q!{lNt9*}v!8L}*GF5%m#Y;C2t2~^r(t8i*r)Y))qWh}^+qqe<Rz&+9
z6Mt38qW-WT>d~1kQsV#pS|k2!XK2vloBcH{pVe0TS(vWJp@%I;xRwUp3&>_Tz!LN>
zT&z;}-dEpS58q{_2=T2H+U)zgVsRH^!^PU|&rF@pohzSq$~*6bo5I6_HSaI@9*}2k
z;F;a~GK=@-N``>N1zc@&;^S4Hlzd<QolPM2QE1fGrm$d!4KH^$M(7&wsN`E6`)oh;
zEvJoKe|&t!{`+&Cgbmsb`@eKH-}|W7iX$O)Ht&(Y>%ZOJtp7mGwD@m_$orfrQYQ_2
zE}#DQQ{mwT-9s0AZ_H;~u={YCR?d~m?M~5QAI?5F8<!#cXUoG0ky$CLVm04~>uH;C
zGW;o8#T@k^vE*ErjA+@jRiZ!TgztHswD37raHC*`Ud%>@FG0I6$0UDHFLK|%exGd@
zoA>I%z<Z4o3M|x}wsmgcWhlA0>3(GOq}yN4Mjrf``Bmg5oBv~%<R3l$n(rTGeOugX
z&fIW9?X~{7yNg0+<;G<mefxT@Jh$@I3AHgc?ao5t>I}6@zsz9oa+oN6ZPoj?ojV_2
zpMUaZeB&>%(&Oo=)1(wt;=X0EGwj<N)qXs_c6)k^weV*@+j$}Rb|-eQmoNAsdt~b7
z6FR2<7M~W`dgN@uIwl?MYOa7Ad8u36bQdo$lC#s?bp5Lp=k@)S9q#>Zg-e68rb!*Y
z72mtAo*{1Cml@~HG;)OkSET7xPrv{F!&dih`@SNJ+h=>Wx`@Bu>22{R{)TicgU;&0
ze#@oH?RuMjXS{i&`gEe)`co$-$7KldvBxwre7RKU@W9}eOrFCN$?LtJqbKamQ%k+e
zt+-r^lbxYM<3!E!H}|`4*2gC1Xx)DH!MjXk=RUjJo7UZz-7rn+e~}=QKzrEAw&48v
z)#Xp!_5c06kbY>v=>(qx5`5K3_v)Dv@}|a#?c8zX-<PzH`~E*(S@&~l^VeSs`<H({
zE+u_){>HR*QL4uZ7#b2^@Lij15p((3Qs;DIpOt4e?~K2`zh?OkHm_{vi3L0ECfW0H
zGWbg^^ZF!oI`PU$ySUkRCtaM}u-QCtqTkBMEQSLNB?8$RL96Z;-{|u3n|*%$&(deB
zMALcL86*xIk-b0DWX6GSr!S<RxF9V*p`}?fi{Z#3-l(vazPhFEg=PEpyzvJQc?G^;
zI`{TU(lzn@3m5;LV0=XHO7N>~yIYtUT9PG}HwLuI>`%X+!~Iy?wMK}K!GLG3{k$~U
zW0g`#`bwYyvks?TgMiR2e6`I#RGx&WK4f4pn5TExBGvg^-8sRcyq)D%Dl!ZWC(qsr
zUuS;ddJae6iIt9r7#W(30&`hS??nZwNSH_~3l)_;dAqNLnc)D#qdf=xPjLDjVq{1#
z3vDmV5-8%DRKUO>5pnfpitcq|fg-Po1q=)?l+PX6tnf`dVz%9roOjj7;=C<#cK;85
zf0i-9RZ2m~*SKf%|8A8@1s=P)wiq%PteaYWX7L`m_9hh>28On9)1zDaJ7VvpTk&$X
zhpf|JSg>Z($%WTrw&q{2&wDQZJnTuJ3}^f8+^gOk3>+(t`CdI{p0(QU*qdda6*=35
zV*(i*Ql70UoLs=bFvD~D&aAI>8&6N~2f290or1lI?@vbF{K~BR@PqzVHU@+CnQet(
zb&MHioa_t<X$OBFoceC#F;2_Fe`9=>^WB+Wb(@jFA^zZFU-9q1|5l}W#9!HQ<-FyT
zmpu<Z)V~v8IG_}k@g@9*yP2oOpY~l049h;gUiZJ_Z0*h5yq~A$21VOF3e?vAyJF_j
zZ6=53GPtCrofGYPx2>8>bf(R<Nz7H=c3H;?#6rJ@?q+a^NG^T7{`GFLn^{X^PyGwD
zwkZ%gSF|ogI$V?C?oQ|FNo#&)Zr#2r`9z`r&PjiRrWS}5eU$2sRA*w4FIl;`(8WmR
zn@zb_=%JZ+{`!8KZX?J4k&VGke5dLC``f&_t?jpV%A3}yeqz*BvVOwztwXf^RGhsZ
zKf|wEIoD16t&h!`|83#7W6Mh>ulsZD;rHo(KPmRTEbW|o`}?H{1<Q&G7d-p={2Uj<
zBY`5Jx8=-knj3GmTkqXG<?rIDd`C8MK7Sdae?9BsWQ|V^XM?VDGMriXZO4(6OVbt3
z$N5$LS8t16YSj^(eY~14oh|&DTX8SrfsS?d>CypP?ylVOC+FC8H|?2vm#WtuD`=Zu
zevI3U!C+BOS$&h+{x>_^XPcjtI=S=FBSxb(;|*`D&DUu#ur0b-HPiau7MW!p`qQfN
zZ_UW(c(*G^dGfIWx6-FKcIPrMXm{MXQ~v(W|MZt@v!shH;!GUZuel<`!P?(sI7hK`
zy$D0YF+W`<u|I*gGx!(1nSSHw{C%IEoqAB$yFI1naEyM-_ad{l%_}(bBp4XpZ+VmG
zYc^@}K8d^E?Za-JeSUr4zB>|p3<qvB_1~CsDXp@>%ii|5;jVuZ&a5|_uYLcg?;%P5
ziIWqWvUwP0EWU5ka!Yo@gW{{N)^-<^{YpKhel|$j=fh@s28G+%X5q70=YHS*@OJj?
zSGDyA_T2jDkn(@6;hc$6tPV59*)SZ43^sf5`}<4fJFj$q`_z2Ymp{G!udQk9hu?>V
z&PDa4G8@df`m1Jkm_|##p4V|X?^CbRw~9w_D;1i{=XcdtvTeT77Wlq3n1MmJbWY2(
z6_3S^%~}2J^!H_Tf4rw(zan*b<{U?928q}Y1_54=x|L^7b$crpvSnx1cXQ48`){0F
zv#bAD!LbXf|Ckuo<kYLE*KT+kUeUez)q&$_d+PQci@5eseBQ64XM>E|j1?c7F&Ol2
z?oSF1Tbg$@dxgrILYb;30f%O~A7hSVFi`5fYt<z4+UxShZ_8UuPfPr^4|%V<;;V<n
zVc{Hx84*w7LYRg5AMkAFj+NtjRsC;&UG0u$P$|W*d@0L@RWDy$pYCmuY~aPruzF?%
zL;L1evR}STy}a&EC9idAlCCKO!-*~XU)=o4u;KGx-fPjXe;3VrGvBO@nL(hBaZW?o
zB)8+&o6UZ&eUmsRSpDtevz@)a^+DtLoqGR**rKwOYJ*SP)f!yRVqe<jdPs71lpMpg
zg?IVi{oXtC{`^YWBbzOkU%Kf3^VaWpQ?mtZoa_t?laBDr{J7cOYp1AAG-tZR$Mdla
z3p)N*|Nj#D%|WK__HXu8dYJ~ooa_u7UdwY$7t4G+GBb8>-L9oyc9#8~ud_Q|h>w9`
z&ga$p_sQp&{eP14+|KVr=Vn!TP_g%5PEW<<9NrR6b_N9j{)aj*u79-s{XVt6_W9?7
z{wM7Bnm5!OJg>{pz<T%n_qo%Puf5(c`v23W``13HZaY?R%-~dWIYU6#w*DWB&R!|H
zYU63aaKPY9d;(LaV*0Ypd!I6#JFBx*!LIMu@q=Q=86$eP^<T7=>z{l1$Mv2~0V|ii
znzL(F&%-a@YricIdEGp(fMG&z>$dYo%!hAA8dv>45Zm){qWsRE7b+N@t3703xF~TT
z@pwe#`d8P?G`gz9ldtwpFKDWo>z`H0u%q|d`qt@lgSWex>;JY+-*rS~&W<v_3p4#3
z87iJ%lPj*UpWOa#XXq}K)p0L{{OWrr+cNN^zu<f1%Kh&5U*Gq+o|B4t+AR8<b5giC
z(`_!#sbOF^5}p~@QpFi|C^L7*Z6O8+_tm8mVYlx~t()>tru>rXoMm=?J9<9n_g&^=
zNKmuRcANiq_3Qo80gn@9Kryy#(p;Ha{R^-DaOGSsyLcS~!xYnB27bIkejJ_cHB*cw
z7*0$!znK{zDLeZ_?ZUsw=0_aY?45Y_*(y(qxx9tDm>Ehw-c#?B$!F5KaZ+a86V*A1
zJmq<e3~#(^CZ7pze!FtvL9Sh{T+gq&P1F5pc0BM9BLhdu%Fe9qclF-ySgF<#y!@=s
zQr(9pMTI*L%sgkwVBxB~W7)&L>iZ&5>vy>MTnD8GTVC<Bu889G=AVN;E}Brl^s}_&
z`W^;`gviytA-ikeekzzde}nt-6E0gfRDVA`|DH4h!-nT|`}wcm-<z?6FIBKx=4sXL
zpA|OOY>M|u9%f|VSaNn!Sjokw3dbamWg5G_1x45anXV<RoFGqa++oYiaG&i}RBQ?Z
z`#Mkq!J*{o%+TY-zu(w4U2HE@nd5flIzz!xjo8)NJP&xZuAGegopbWu%{2apcU0zN
zIK?V52%P#`H-E>%IThDC7F;p#I~KlG{o$3;`putbPMgibaPaN@Yq4wZnluQ<JmS3h
z$zs~CwT0(x-ydF?u~kcgK_mN)-m^PjKAzjRbk$Rlt+QK%k9^iC+{)n4#d@F7%TeBT
z-IU_Yn|`<a*iApBYCLoi|8|A3p(<?m$Ll}%zMtCH{VV)|<S!nb3fA5V!zw=Yu7`fI
z3@cuJta$M#ILxd3^#{&ZJd5X_oVsm)-23oDD_{J&Y4GbS1A}-b*TN~K@0NR8l&+l4
z$ROcyD(FDEX<h4zmf*P)m>D*#*|@7oeq!>43CT+v#XiluAoaS6fr0B1FGqIYQjSZ#
zJ7ym%kP7r?WSH&t#?eo?(6RgYY_@3A)oF(<juqUJEL>~L@WPMTOVBz!&@Io?MqPE0
zUe808r&SCL5>fZx#hf{pG8>W>yA0>&#y3w;e#pR3lFW3^M~%a5asL0wEy5RNo{KST
zNPb?cT*VY3q!M`D?y#y1L&LID`@AP=f9gB>Z2pO**Qf5%12xskQf4>EOyLn1j=k!j
z@v!AF8w0}`t)=Q~)i1P8_-u4g@<pu$14E$Cg`GMttV?4w=N}f=zWe_B$y4>k)62_>
z_t)GK@te3ffrp)eBX`#9*X?(YpWJm_JXh@cQTG{q-W509m+X2|u~+z>grCkTGlq!X
zYyS@?hX4NB*t4km-^r|I%hiT$%nSi@TNet?mGV3xSLPvk=H%}*C4)9*h6~4iJ}x_<
z#HCw&w5k7TOyEk5b9S0jJPvUl31wjjuPK@O$Yf11KgW{yck9l7_0oJQ`)kUC%|COe
z{(5Q}bLUD!^%SQ=j0|ZTZuVCH>vycqbheQ8Hv4@|T=>D)t?ZwQ&V4y{H}(8O6VrE{
zObiR}{IB|Z{|i66q2qdm^&a;BUVZSEt6!Rb_$IHnr5K~XVx3`|@FA8`8HSRH9}}t`
zr<GsJD?I3#YCTJK&0)!Gf5YXAc-J1AVxMfGcqZyQql1Isth<U;C%>ED|9>xmS!#OF
zqw~Dmb>dF7wch<<bF5%dfj0xgGhs#Fx88RSUH=fi+4j{XeXmL#^{31qmwvH1{&udH
z1p|Zc*H@--@24-fF)sdFzWe(s;bOkf*puODD;XI!->fvKHQk>!>*|NqXZ&TmE!gvZ
zZPxH>(T+QJtRO1eat}8Hch%QvW$%tGzb_}Z?&`Zu2isd`-uTZsL*v=IovicQw*`Ot
zJv*0YdGm>MAqF1By@q=)y}9<{*0mRGTVz)JEc<(R;_ugv<>F<BFD>1ZQM%@?O@u<-
znz=Jies3()VMw@Kz4+(Fm}Ps;)NMAN@@dA`PG6s}Z9CuF?YXe&`=#>Umw)5??{|CO
z{I^GY>6D(yKd*0_xs;8;WqbYa{ZFUGgcM}IPM!UiXXodWJA3V7bHBX3|0R3cT*Ene
zzm}yiM4Y<0QurWy!Mgl=H+4CUzAyQG*yiwFp67?_;$-u9p1-W-wryu-Sd+2b+BADl
z<(`v2ZqNOH+vmH&#ad=PuS$jG)8B0Rd#`Bo6$XZX`bB$Q{!W^yF!%TMv@cQxKjdC>
z1Q~UP%~%I2!v1J~GFI>0d+FWnn{M~*epP!&Y&_uKI%k@;*Yv3W&Y*I4?eD|ti!&lQ
zxb}3<&G|O(h)p{)!x{Zl(U&KfEq*uU%Q0@PTpYry*)Qa2!N5@c>)QuD_JT#F4w6TA
zq@Sxhu@f{p$FN~tcwNU%t`85RrH;Q{B6RTKPvLJYx9=OAe^_Gt)Jcp%Ak6Kw^tS5q
z?!CD@DR+c3pLb0wU}#v{y7!?(aRlchV{cxDh@&fW1S;#K3Vzp41f`0NJ-b&)n{2Ce
z^{`+#;3OpMbX-C4-T}?~*IS<#FfjbutYwn&dxure!y`$TbQ!LQ>1x^Be{iu{J8gkP
zrBNF*!x~i&`yW@*T)a~SX0|Xhe0W*6|2ns*@!o06r^ml{T3Pkr+Lyp{&LZn0vltkp
zn|Qt!Ok)neP@c#axJQVOVZ(%Xe>ZQQe7S8$>b=%U55+;9oam1hQ+~Ae??3hLSB*%Z
z_}zSA8BhnVPV2@@?@0cr4T&5Fo%^P;F*IDYb#}e#H~V{q(VV~9kG8Hj{QdZ@`IkVZ
zcAb^Gz1n=+ew*nXO!9THB6p|98+)&v{a|r5!-3Ne&%Qa#|L2$grNF{2lUd*1Z<$(<
zROrj(;2tjZDE_X+N4C7&;y#d1>cxYPyPNy%Y5Zo>ez{#Ui{ZkJf6f-Xb*m4)cha0{
zwR-(m&Q(Tj!X2mh7?f7rRm%Pt8QJ_YOURF%tpGHtC7`s_Wr4rwsmH$ebq&3ByWTBl
zV)*dx>$?8<+>(3IC0l;*B-Xcn@y$(JuoP4{ozefTIA_YiIbY&pC;XFNa>6clcmG<+
z!<lP;E3z|mc}t!b%$GR#dWr9wgKRHfcv&c}_{5OFWNqmleg48Zx4B31SGyd_)bd!z
z%J51sZAQe+6~Ud)3w{OjGdYB^g(heU`6=^;{bOTjFx&KA&}7HXglSRSn|K)<B7cQ1
z&ajV@O1=6jQZ}yolsv;KBiCH7{ktOia+2S(EBQT?KD_e8T2=-IH8J(8dnOmG@;GB=
zc%GA?;RMfv4gQBT^;PffU}9Xr_*pZ-@mi3!&mP8x2PQ|HjT;UtCR_OK{KmkrNpgyE
ztKpnU-_~1wWMf#swpZt#<l)SNq3jHABh{;no-LnvLc-5*ofQLU+uKU-J&X)1+~d3R
zh5RJvRWmmP_yjhmdRmCCbYld~`7CE(wqOwGS|%B$_V7v)13SY4g}K^7o)+Ody;&F*
zM%)z<dtPfXbI%=N2BxCtg{I$s$L{au7dn@@%8#KVb9wJI&bCqyi|0#@NSA6bY*D|b
z^SbnfY{ooLPUJby!=2~H{BKf$pFsmN!{Li2`mQG)sy&>tl#jLH+Zq4pc4jZG^ADG7
z`l7<XqH>QxzUQHe;Ui84#!mB^%ejXo&Z%bkGrVx!6M6ad11}@c>W3LWGZ_SW@9Fj*
zcTVr|1&w{o_*=2~I(PTv0;83-j0?Cwww2Fzzawz}k;)wA+2I|xgc)`T<Tp5jRI+_+
zD`_hX0~IXH0{Ir+CnBe{Ff+KQ-`kM<oJFAMn##jBg`o@%Dc884O?Y>wNoCIED@zyz
z8pUQ#|2z3%-Tu>--V+Pzic}dKSfWybWYpr+FIlO~$z8|D&~b)=?|zU|pWQvKcUm3!
z*30)jVrrOHXL>3srOxw=!TI19e-Hbu%Ji_14q3(^&=Q_M`Qamnvo-2B${WvY?|-i{
z#~+lsIljy6bUNp$*~nS;d3MWZ`A57AM-my@yVu#58o&5CZR6wScQ4gApZ`B1&A{P$
zXko|IqP~OLoX_JQ@iMd|bxEb_UV5*;HR6uO@7*V}F0!}T?P4&Hd~0-5Z=Q{_j&W>(
za{G<@@hWp}=YDYJVEBB|B>3>-k3Y^?&i=nc^T+EFrTpmRw3RdGvoSoZU~1R%+v}}9
z>u+!U{byfvM2h|SK^qwhd8=F)8BTnD_3v$Z!}EIHtKl}Kr|k;Ok8k~@W9o0nbU?u5
z?3O7-`;K<9-!z^iS08#~#k^^L7KP`$85o=-wV&j8_3P~~^7|nBC-r5^=hHQgVhn6X
z8OytVF6qfHiLX1*vn2nunoK$~14FwK|Fa#k8%}yLgPOgPMQmNdmD}IQ_aFamx9|UH
z4Q0mezK0SA7#SW+$&fwzP4-rx(Y-~WX8*ZcocxQw{L`08G7tB$U@Kr?I3Zk9`Lz4C
zSmpIgm3-_B9eI6m;v!cHbyWXNwmhvW!)(F8;Iq=By{vd|V|>!GxuWSSYrBhW7!nGd
z&wOg1d9VNH+mC90*YDad^}_WKBLl;>xw4!c0!7!nEM}|bF|ac<G@87-%y&IHPWvGP
z14DYRXpxwgg<#tmhK9|@UPW!}+bMta=d^z*e&3xU@^rWIYxy#CEUrGz!FF|%|L=d%
zhU;%$73O1LnDG4irAwM8m&a*Er%sDHQ^U!?kiBaAt}j}g>610H7#LEzFVB2aVg5f!
zQRKYk_usWITbLPG#Fw*kcKXPk3Rrbv-u=xkhYII0I@H|Cj=1^t;GFC8^(PjX?Nn!B
zaNu2i^lQ`KS4xwwUGueIU?{k_{#@<e<1doEcq}{RPiyS@Zoe_ggn=RC<Eygu2Gtt2
zPnNLEc%J@A=;ESe3+*{63<g$jO)qO$FEReL^kaq1E8b^!rukYhIB0mEeV!N@dj9i6
zy+udn6ie{!|G&D0nStTwC3ls)*S7PEUpz`U_iX?9`2};F85pjVnLQ7=J7Z%C|Fb_@
z$9{tRyru9Jr?BPo*s60oWv9*qX;r;iH>ob^rDA$Ji1&1A)ucMp<<EZS{@V%SZ=Ex%
z=BT&ZiAvF}EzAsG%zyp1O^CmFaE|Mv3o8%K`R)&@bOYudoMWTe`t9RPQQ^MbE({DM
zf%;E;?i{_#-+upp=24I_dzbJ$d($!}mA%r8JNL7^stkj|iqz_&H4nT_ocyuPvZm#5
zeD&YuSHCeZF#P}iX2E;@>op~hj{b{wniE~fb9^QvgM+~Dzh9^Hy;fqjco_y-rYPW^
zbfR#!-NlbOThA^!b9&Y%RR)HdY8$!A)!Z)<>Ti2kXukaLb!PZXwSQBS85kJue{<%0
zX_vlouI{zp@h|7wfBnnAu%TmfGb0<n*<bsIbGWp^IV>3tnAe)_n7dOT#%TYa*#%O|
z`=;4HzroC4AaM73_rIN`QXz(um>C#m^Evm4Y+3v~>teg&^MA|EsxdM+uvkmF?YUV#
zLB_26y+Qtx{ne$<KcuV)y8B=?LqnCx%?}TMFDh`A+4Vnan%>4Y`=<Ba`ycU$e`@UK
z=u%Dw=L;!^w|{?q=;?$<KYHi?7V`di<<q_2^S=biGB8|Q__{i5_w#}}+1dRz#jk1?
zGcYi`pS8}UK*GUQoPps%SAE{j)0`q-{;Un&U-9a2+cyS=1i`i8-F|acUu*cN#K7Tt
znMdT}=UNL*x&C%R35JMic?<<%?JbkzLQ~f}@G|tcZswaJRL=9<_TG+qW(Mv{j0{F!
zJT2NquigCK%f#^b(gJ2ySDC{%d(6e(Kia{`!oZ;YVp>6+Yu~iMBeKd29H;MkD)^r_
zob!H`_F}!sK@15Qvx*k1v9GQF7qX<%Mo!C-A)=8{M&Y*o_uqfRb0k##dN$2vIKbX(
z5fF1^DqC61&c%=O1Q>W6C-cS_MjZO7`kQY;v^&Fv?l6fJiF;Ze@8e_e@p0ylF^N0G
z$e@<Mz`i17Ud!S|EDaYW4=}E~?QM~mJ#&+^niQi$vQ+$ndGk5dbN1{^IyIN6VPl86
zL+JlIdE1Z2udnZ&&tkScpqG>3;9HYxA9u?i5ct<4n#0gg*lF&-{CSPZgcA?=8A=vz
zWxW-l2N`l<<dU*@DACK<5IAE#n~8D3Ax&=+riO1vq!;WE74ADF!VvYVR64Mm=gNj8
zPyv-@T6U=LJv&2_aRal7S=phRQ$D%$hH^15BzOs{$uKBzFk3iO3#-XYRby~jwv=tv
zEQ5y(41zQM@s=2t9SSUEIuOD0fMILz+yaJ%8FyM)s(xOsW@czu`6fl0*}{QYh>xLQ
zs-Uz2A16D*i4v_F5(gM>&3J1mvsImeVNK4q7G{Pmi45!=nGaf$Pw6v!QM$*F$UCP%
zFX%RtLvH_Z=Voq`w55&zciexkmBeskyM4oARn}jV3K$xUQlu4{O4C;|GDz0(KIkxa
z5D?;Hm~hI--l2wBea`FeU3YSs8k9^{I><1q&+)zfUU#Q8E5q^*a|eyhsxk}<gv=Qm
z6+ugV?U*ebOhBV62K^g_`+mDITsZbj#FW=i;KB{g^vf$F53NdLV3={Th4Z<Ue-IPH
zfd!x;xCFVw>T}L!rm-b5EKuNo$iOUV2P(|>cv$2)GBO;nQJIq){%q&n_vM$LFwAJv
z%sLQ}=3!ANceL`nnG+ua!xqrQBaf!x-aGHhx9?zJSfI-JTt?ZLfkEIV&*m$6)74ik
z?b-6gHda}X(ZGcNA;aOBDi2L2#LninWMH_^({i~9ba+9ohlS@leFohp3<fg2;s%Q<
zh5Y82E@n(fk~_rMG+X_l$+rrdb73DJi7_x=%wcTa6jh@3)sBII#pJ(4p9T{{`rj;D
z-$3R^v$Y<sC}VtJWzOEX(06J9Lqm7jqh9OI0|F{C3=iTT@ftMV6!Kedx>!Cx>%SPo
z6@_~Y#T%wYO*;N~W90kQ9~nUle$=m4pAgJph-eSvm*{RO-mU7N9DJ17K>M^a^W_<D
zE$2k<cQ542RAG?lp2jV4u?1A?Mu1vT3}=$hwFs9jl44*<*&C3cR;(t&z>wgZttxZa
zf`P$c`&J=7h7SitOcRVQtIdfIEpASfS<A%0@Wm+i(9MggPdaQF{%1eGS18f4P=hN;
z^Y{Ht!3u#3k8nOXUu`TZy2v($nW02rXTds`qhA$PZhdENsmH+3u-sK|&f2$YZY`eN
zw~a9&&F&E6BhEMr1_lSMkKD(*H5eF9DA$3avT}*WocMH^&HM}uI$Ev|=iJ)A_RWXq
z84L^yX76b&UL4dF#Kh1bxyQ}kLB{=w#S=CLhQ&+n705}&y|H9qFzDiaUhl=mz>qdM
z^>C)W<+C1128K1--Vg7*``nOxkCCB4QApJ9v_<j(Muvu^s#<g2MjtpK&A<?GS31b~
z&@Zl3%rnAar-2(88ymvU2sbn`C;5<Y_oBo~oTr2vQt^~<3k3s(AO*Bz!MTV$7X0ls
z!&L%~0<MAHF|8AS-=Ea^J3!;}e9r0jgXReP8T?)3efGV+e9iCAlJYjiHG9(k&E8*k
z$v8gUejoFP_xtwAF~n?$ViMWHqLINFa6xFn0#ye`?}nyn46M40T(ppwQM;F6$AMTT
zmN1%HgYK2h>%|$wcX&4($fA!oA@(PJ`^xlyshm?Ff<~bUu?9<wjRx~*YNmE>9!<?O
zE*l}ad4PiX%)U5=m<M`{Osi>K1wg!sD6~dY**qG|bZKdf2J<iu=GL3nxf{6es5&HU
zrCYldQfQ%+&G+l-{(O3TJ-z0`nU5dm{mlRO%kzBAf9^$lc5KAfF9EgkL3bA!S(=%H
z<iTv1An5*~!F6?!CA3oly}Ah0eF`G?>Y}%|PWP$2tiAV8pKoSl=w0WaWG<s#$pXh6
ziT4`9S)NE6JlMMa#Px?u6Av_m$K7aPn4JBSLo&I*v0o!mWmWpGkkHBw4*e&xdw<qn
zW8qpqKiyVe$;ilPQ{7zSoY()eQscKIu2{dXJb(Sulji5WOE=|3|1?;u`#NgwomZ3l
zif=#Hc$)l0Dr)t;S<czcAM56|EwsA%Tx0Fljr(RD-)Qx-o&V|d&-3@$PXG5iPgXyD
zzV?RxzT*kEUwhs#{Q2(ZPOHjVi#MOImDt!=t6l%~WYd)UXZue6EL-gtmHqzw)2o-4
z*5t{b*DtyBF)Awidi2lc%{pKEpGVEhiLK`g{P#QY#m`-m$3Lw~Hri4o;FEkjUh}E&
z?BizB*!~~y{u9?8c7AqP{k1($PUf*!&8)xkUpM^0|KfX64~};IPF}F<#z(H4>-F~y
zZyz?es$N`a^ly>P%THIAf3h!)dHsLIwU6F`$L;UF{d|7H+V9Ud$@(P!oX=+UPdD++
zFOTvyeZfCBm(4mof9w4H|GHm2S$$l8)#PipX8(?#YJNTc_2l=bCV$;%bMw{zN7nOB
zO}=)kB0hGH?Z40Sm_=*rH2nX)-u>x(g#Yz<@%zqwZGT?;x4gf$F1B*lwEm*C|Gh3m
zS>Hc(pS6GbrzMY{mi$q;T$uEH-TeZqx(Pc=_gaTO{!#Sbbm3$5m9-@?TlSr{xsrZ4
zWZs#ti)CK9zntOo_`+9dJ_d#Z-Af7>7#d`_*clj3EF6-|!{7eozh1o4ZsxZcJ<ERu
z)<w;)iJZ6P+qbBBHJ|r{sBbS_>o@J!lTB|5lh$rcy}fGkR=b<WEqJb;44A*=+OuD;
z^7QH#S>L<RcYE36BT?Dk+nq~4eZF2FXm{r8{;BG(ciQayo&NOX<NaFxQQ4PkD~o<D
zzk0O(=ewY}d-hLJ_rLz>^0wqlQPq3yoto_ZGq@o3)cGxap2sH_zpPyGT_$6`cEP@>
z@&4zZ+$z4B_nP}}-0b6@uAhyV|0VLZ_}a%-`MdX+I$w8vT~Y4W{^`8j^2+{`iCX)o
zRek}*jDQPhP{&dPG;`uSB$;h*U*4bMe%ZOwNbdFI`BT*oPrrKfcJ@z&`!@PdeY0P0
z3spb8>s`T=zLUArg<nTcJ-=q_+of@hg%Y3)k~nMC<eha3_@{f9UP_d!{>Pa%U%O!K
zedgf58teO?sy|PCS?N%_Ynptk{Oj)rg8yptU;k9PPxtA`(wCJErE9FzWc&NXtCQAl
zEqxpLcEMw@7dtNR%G)9r{P%Y9yi@0IJO4G1oqX+U?v3*Lu&=eg;a_97^j*!=yU#2;
zdAD<A(VF{nE*t#d9lBWpDK{72o@U!;eCF#(XyDiXELrV0tyEWj+1ArR`_66u)p#ve
z+kaKFUi9B1QP)r3e7>l3&um%um%B3#8-%DQ*M53fv(oS0Rr_rFp9f=0FYQ`)Ailn4
zouA#j)87wd>izG&1WK{5FBRV|S@Vl8q_kWkzVY|rka;rI|2DqgGHv~VpJ8<lwsBVT
zGI!UMUy1+ceeGjpwZ*jm8(vy?W#`I$uPAwAJahTH^S2H!-1F*3-0L0ZmhY_Lms$Ra
zdDY{sTdpnpb$Vv`&)*9lTb29Fx(_OzRFM2ObeRIq*~Pb~eOi}Zr0xHzuKebz$)&fG
zH{EWWwm0rvw`u>=jQh{I?p)hy_0oFd(z*qogZ{b1Py4iUZvIo@-{<%L4Vb&-+Prm7
zrx&l?KPPjA-mOf%`*W5%R~Egn*u0M4?|7qJ-_yl5GRt2*$<y;cw($9)(iatcC3nvk
z*KWEjelX;J`qjSj<&U53v7eGZ`*O^_bLC$>v)@`wJ)e8)>9lthc_lu-!kqtdmF!uV
z|E@lC?v|$;ZC?IZz5DH#_VVXD-xi7NACiR;dO4bO``Na6r#F9%n8y=bX;c>*yQlJN
zYU!tR`BS~-e9onpwnuG$o9b6~x$xqzdvj$=VxHgLRVK3{xioItt0yM$t0%u~-DkXZ
zs~Ml|^j)t?H0*QZ=AZIE_uKhz;_cEr+58uodh)4quhqlmf3Y>UI`?*8-2(Z0Z$C=B
z*?BHj{H?{*_viag-hCJ_cTeSy&##um{@-G=vsS}DD*JVE<)*3gU)k0#-}-CGbB$R2
z^xad`r+<HXGWjp>+e+Q9C%v~#{a=^i{8RXD)Zc|{3=AKVG-VhV6xu<vVnrH5k$L3W
ztqrw5ra!%FFjf8WN;}JG>W5?IUx`2Mz3u$zmlj^fqc_if8#Z6({^80$^ZNXKvvdEr
zmVQi^Kc)ZtWz||gyQ}K*`qN)6+4^nezN$UzuAbbLclG4mg@5$D%8P$)E}Ky$$Mo1B
zME&!Q<MtCuWtJuzU5&5Hew(Lff6eON+~B_&`Egg{&wWyVdh)Gv<)!UWuO{~`j@iFj
zZ=3f|jn`je=6+ebZR?-C+j5^Cf6%>cTKqY?@C1oh{^w%lwq>@R3}t3u7@A>@kz9Cg
zKi;p`f33K3lkQW`)&5p}o9=$I@VdY1@ttpmXRKv2Y_6#<fB(>?&i}q`fa#U^y6oJ4
zYiun4tgxB+&$IO7w<x<4=I3p%|J*ete0%BL#7+H$65k@vCjXQ_vFz6q_3uxYpMC!M
z`c=>9eV|s<>Ezl^A@kPAy07%llm9kj%eHy<r>bB7G+!om^7Btmg6hnt|5~zj+dl2}
z*Oq&iZnB*^|KjbSdY&?$sO-yf|7GlDPW#V(Xfaj&>-9^8No!x<v07Jr{PfF<rNg6K
z5=gqeEiw9Ea%K7NfO$IoPfu3q`ENU|=N@@#@?E|whA%BPZmpZUJ-hN!lr-PhlOglI
z>|Gctt8QldMJD6lnz{vjo`3IHt#g>)$IM#{ZgvINe(L^|V*XnH^yEJMrn&p_UQOP|
ztm|(rle&9~{;eX-`8SIGh0NV@?OO3qhu2?sT1C!#<^D6`pH|HMtNou={)vjZzBAYV
z>H3#nSN<{G8++>hyxY4%)z@y#eJe4w_jABp9#DI>BL3guG>dEd7e+~!Szahu;cpdp
z?#k!t9&mj<lzSGS_65hr+}j_P=g(ig`La#8y8Zv0Rera=l~!*0x65wl74_$zmTcXo
z`<40X`P`oY^KIT4zTBN53rdkG@{c!Wm)?5pAnPvqioem$`6uJmw%BzJH%i}K_$U)G
z@0I(_r!%i@-!)bK;_a`srJHQ(wfxV0_57<*%N})q>ifp8$v^#~?@zyfcIo3IuO?r+
z^=ajw;|Jbun$};W>tEGZ^z!GS*!<{HqbvUz>*t)FeK_`KrS<$*latS{7ks>M->g%U
zA4b$!9^Uvz_O4;(VsJbtfIKrqdw57r|7<?rF4VmIbIja5)$>+OuKZJ2YQ$F`Vehr`
zBVX{(ty`}Bd$DfMuRmW(e;VA*KQ;Ml%>0;dpq6H(j{ml$j}5+h#-8u|D*GaA{+08&
z^QRksskv4a2B~#q)vtZdyQW^-_DS6Fe9A6;|FX*;H6>2-pHI}N_k3%7^X#@YPfsrW
zqxoW{&D8s6`xbAxHtlxU+%?{no9>*tUb)u)m(TG}e{ULE&Usb8QttHRLb+9w6Se$*
ztvUbo_hvgu{_C$&cGyo*U+<^?9aL`zECn@YhjQll9KWxAO&;InfVp?%m;DMnHTkjL
z<jOZE59QB4C7vtyKd#h>&wibsRgd$}ttESAuiXmDKKXHfD}NfiUVnOW?#<*)^G<^j
z_Lj?ytJ;3q8qBNWGm$$z`Q<{p%HVk=H|m1tz4@H?E^YOFGh6xd(Uq5W<-HWo)~H|4
zoBZ?Vo$XS~KJCmsz3cFjtNuAV?5Ff!y7e()U&igFkEiL)k3N2SrX8r|dTp6~MeO}6
z`LlnyM(_U{F|THg{i4_FmzM6GvoY41FXU?R?LQy()l8A!_X*VDo-j0f*+>oBXZwGa
z+<j=!p1H!$uXyJ^E4ANqBC>Pktk31%dZ_U@U>}q0<UZl-wX&~P_dmDSkx%{g`|8Qe
zd8;RzuRkTecI|#0&=7|+s0nZ~V4vmfidFJYmp}E)&i%1z*N<11!{)|J|K+;c+9y6l
z-L^bxe&6q6+xLbqcg(j|tF5xLc)I+oL8;Fvb+dErua<1Rw(a+)NA25Rr9@qOl``Yi
z{dx8)>~nUP%!%&*6}aqte5m^4+Vi=auin4#^=@$KCY#t*lXEre%XyCfI{rDLK5xsm
ztNd5u?uUxYJ~!K^CBO8!-|vgf;8JWTXBcoPW;j3pHD9~seJi!6!q#V>CcK_u6IZqF
zMxxZK$)7@JANv&87yOg!Ombz>jAgHuym#>5{>k-qrRCR?zn^~+web7D!zyzvuk%m2
z7aMY;OE<kU%3Qnk+nuey?tQK0D%<pLlTD=D>B+a-Kc(1CSHHc~E)q1N7*OxLy#3RX
zy1d5)EBxAa+T85>di~O^ZCB(kuCEW7yJo&EsPQ#-+uE=DbK2(BhsnKK-B<j&BKw;6
z&qZtfufJNdb(`%}`zyBWQK#$g_OAE8dNSbu;?=UxJ}ue$@n6JTp6_4Xk8iBWOa7~I
z`EdHxlLqpC+n5;`o&<mvDDkxpapnyE%Nq_SPAly{S$gx->@a(u>C3Y#FBP&{mE2+A
zKVBs9|3Th5zo_ivnXCNT68nEw%AF2hkZe@8cUs?7yUDfpW?lPw-c0tr-|@4Rvrf-%
zGXK7RmEWze8*MVzu6_O~rSjHejog*~ua5n;?Yk7EecyEL+4)n|qkk^q{klDEh5XX3
z*S1BM8kWku__omQXT-cKxzXpp|JpW1|5lam{)MN5e=gE3{;6mnr+?KmJ9n@C{y86m
z_GR3DzJAr@hY|lg`pe6&dd^Q=^Pkmp>i#8d3;%6DyYkN-S^nj(mTdhslaYa8PXstU
z4$UE7u+t6aKP!4NC;v6y<kGvVCNF=rU~8ews>yxVFGX3$p9UvlbN=AtqBB-aejQY2
z9-aOD_$SxZ`)8S5UH>^|e$QdK$=7a~OncwB)6UZGY4w7~8nWw`md0-HE4IF}{=n?;
zujVB?r>fr$n)gNWRQLj4esKTuW5oP9ReV<pS-)K@<p1LH$~^sf<EzPEW9Gd{im>~#
zChzIh9dWBB|Gc{URmyI=>FU|%nX~pzjXzhmyG&+9){1(;EerpYZeD9Uf9uz%e<D0z
zi>3R&KRvnd&mP%jJFPNbzcL?+{dbJM<eC2ITX$9duUYM9XQzMlWbWNnlM7eqMg3KH
z`*P)<PrvWnKY#UP$bP2F0qgGcRj1v3CBAFx=e0Ep3N_-JF30R+YX8;xZbr$Rh}XNA
zWUcO9=sOuAyX9Kc?BkzGU(b+Pwr{hx)G7W(v-)er3v#C)k2-!@vJO1p|6x*Y{B-r#
z>tDNT{-1iO?U(a{#~QmM^{*b?Fz@u_ryH#@*Y>^+uDo2h;MeKQ$181azTNh+!czA6
zw)3Jde!R<IA0C5R;1-PHHnTJJe;)?TwVgNp)svdY)ss{2uA0nuI>_$STD#1(bNlp7
z)T-mo2GyCbPd<NIzWvk5xz83pb_jhOVRtH1FTQc->qWj_uUbrr_dCAC`F{Gc$9LL(
zr9_^d-?ZLtYW#)%{{1Wbe*Jm3>G<bwyQb{7-gReH^S<9ZA8)=^c>7KA-Bacc$CsS9
z__M_BC;L^;<EJg}pDMq#^tE!q+WTg*=eM+1uJiNzdJ;6cf30dCPhCy;KBoEdr`&HI
zzny*l)$He=&X(PN%4oXn*L<0;CwJxQe>tDWz|g=4&hJCFr~>sN|CGe8-kf^Vs&C8T
zK)tWmjryERi>$t-JUo0iWbPgLZ!gYo{daB7vrpNUXJf_J)~&SW`%<8@e@^@1n7J~`
zJ_SD8_<WJ<Yj&yjPs<Zl_&@9Oye|5p!cvxh#p_KW>f5*eY54Va?XDMB3R$h>WMwDw
z$%0~GYuUcHAHRK>8+|qJecJK%s+ICDV*anG-4(Zb^6_6w9xGn>_Ul2-s`~Phn!8{2
zPV@d-`P=?A`>p2}H=bADReCo^_I|ehx9$g<*3=zl90ucD$7|{}+|QNDoN8Yw|8z&r
z)su&#=9SF3vHCJ-^ds(ic>BtlxyKjUytFuVcw^1Qcl@^EZ`b{Mcjv6^^_@05XFq@S
zBxJtK@p<(P7T4naj^`R*QI~apxjFCY^8;b?OKv>Zkk#LRJ}*DxYPapiZI5>cZ@t}F
zDw8qa{7XRnJv$k`t0zCd4V$~=nq92k)syA^*I%W~uYM5q|MI%6W&76tmRYgtvHpt7
zG5aq6vSX6X&p7V-dd8h=pLYMO(UpH%6FsaNRQrE4?|zkbcia2NA^+~nE?a12dG_hC
z*E6<Ud&l?mYN3|@vyC=0Url~&^41_T_PH59sA9gu_Z8MlS-*7awQKRy)Nii^wQU#H
z@%Pwk`$tt*|K4Qv^V!aSMP(O1Zg~51NvY)P`CI$^zt~MHeH&4_$69uB?)1eaJ4$1>
z)YgEK|MTddhCf~wt@N{-S1o7ye*Wp_-`=gPS#W#Pap_$pcW3{;b4m96mOf$Yo~Mh?
zeBICXdrm&c9ot^+V86C?Pox>Ru5d)^cMVBq@;~?bFOj9je9k`&k}a3^T@IP+^HunD
zg|6)6Yu}4riLZTphwrO!_2*U3xxVc9+x{t~Qpf+AcWsfL|F)$zKO^RsXx(SdUEzN$
zxYEdWs`}bmyZ_5<e!dZxWl!S2eZ5*H^+!?v;w|64?K&Q~uTsz6YTao+|JmMu9pv?%
zx_`;PU%Se0-a1eh$ojAJ$HZ4Z()9h$ZGW}s?zF8|k=s56{#uj$)8p}u<M+*E)wkVt
zwZ4BU|Han2qOaAP=knRkHwDMQP@WnGr<mj$+t%7d{aa!assHulPMe$4#H})8^_Q2*
zu2}W>h}FHbZ^Pzoxi)S2r<D1((-6anGv!WAR(#FH6I^*IasJ{jH=kGTzAbv=?d!#>
z9@ovg7a|^STNh~OmHj;W=k5o0cm4_aU!qy>dH32@tH@WA6Tx%qg<AJ7W&icxy}keZ
z)sx%%pO$~F(T?A8?bhR^dw!MZ&A(l`^1tn#?!#A#Z_jyVTX*=yjx^cz&;CXH<G3Tw
zHe5o!?z{e}#ZNcdM9zObIl6RXZuU<N*=zF_uQ^>hpE)#F|C?30WLwpi>*|kdbmUX)
zrl<%1)L6UKY_FF8vEbSu`|W*;LE)c1<Mrfq<>~CT;%gss<vewFzdh|!%KYjDpoJv2
zpT7TP^RKVx``43k^5+ltuj*bu@Ba=f%loIyp9lRvwD+nyXkKdV*2+7N<rmw>o%;Uy
zzKw0D`t_yHH-Ebu{8N9${$By}_SEa$H@lv?+V9#{8_DDIZa@3F@(<_R86|fvwXd|P
zw3uekwBCR6@E8~Yx9$X-vp;_=|G(Jk_O<BBO;^-!N6p>xD<yinY~Q6_ael{LZyz_f
zcDUk2=F396DeCRJU!|;&Prd!@Q{bxRYqtXIHvY}=uG}<lfBWYj`(IjY=R3URc;L0u
za_*V2`swpu@9Ez+d-G$ip5>oXcCGh+bzgS-`%{zm^*j8XR#*I^{ORI5SM_iG*!(F4
zG}`t4ef7R;>%D*a?OyxT-tySOKc=N~PJKTRWWVv+t-~8@7RcY5&R;U)RQQ8kQ~tNT
zu{f3a?kD%E<gW!f{&BLW>-l6~ZTCGsw@kwNUkED$L&ZuFzSP^-J{}IQy;Qnj-u+We
zeV?{(o^#Us+0zRPpEqwl{{P&C#qa06{P8e*zV?RL*ONc-8@11i{~W)rFZ^;jqg7aP
z?dJ2dFMmCLz^~qM?QWlMJDH-h|4XN-Z>Rw+Uo0*uN=?iKu|NwM4UItS1;H!>LrW95
zu(82l+ID4OX{n&^lbV-alA&N|YzST9SejH)S&*ur@0pvJo=Wt#tGl@cDdCk5K3-nD
z(RNes+m|2ms;5LHJz8^o5m(dZ5Sz06X{w>oddD0B1UKDOnGxXT?d2*c#*@=}irX;P
ztdIF9UxlxM*z65C6@`ahH{6xVOwlwJdd2za#;F|}4cvNLC$jY~op^U%y8WGLHj5?S
z+n#^>`^(<tzyJS!q~C5W-uq>K^?A$MCo#YOJal@(fBQ%Jyl0<ozEIn@LHG1-h6#5j
zxU_BB)A{ecoB77=<{*(6yP!=Lo?Z<Lo~o!Cd3rTWc&ZAf8*)#3d!<a8!oaBg3@Re}
zd6Ljf6;+1=U6r1lHEmF->YIz$TGq^%KIKCQ6U$l;FNP%xK!n2ONUk8J65-AAB|%Ij
zllR5CiL0qPn7>@T_uR8XOITj0)tYY1Jo$79%L}DiQ^Ty2jzLT%{rhG`Y<;2_#8lF|
zZ`O@%EmIioDtL7!dV6qQ;GLy8@%oIIzaYu>uTy;HrxyKe_u#xBY8Di<W#>QVB`h!4
zu4xv|S5|cpH}Ln|Ca=YELGGL8$AA+b&a+Kui&?THy}Yg7qCw<|vg%>^GavlfFYKDL
z#3h4MV2iA!C#NoB(>3#{lc!t|Qb?)YTICny<lWHl_3Dy&V4;{=(}`7nK}zpWe~@F?
zvS_`U($_glQkLo;p3Pw8&bHgG{EzQN%kNii+W%Vby)l_P|CjIcImPOE_7e3Ez3&yD
zTkzgj#B2YPImPQfo@KrNpYwt#m-(Mr#piY|&#yM9`=HN1_vxJI&3hLcXTH;3`P*iy
z$f=8mos$ndKJ>SH)2&Z;84KR!o?ZTJ((xOYx;i>+@@oB;N8Vplw%*YzgL6Wc?W-v#
zWUqbSa`RZ;^|v3BuWBw-b<p~@BG~9oa;^XD46}2ugPpt^Lf*VwGi6WwT%jnYB}xA7
zOP9n1E_c~??UOE3L7u<+QWvdPQwp|ePw29hohr0)f{=o=ynZDQmzrvjqN;;g+&e?H
zIa54Zr!edk4e(mx<khg}*3?k1Z7Mgyi}W=ai&lL(FS+zc>=J*^$6w{HtExJ%d1)I<
zE<GapRrBFWmJ=&4b)89>GHHeC%H>bIf|$0%XS$}SEuOMt(aGSGESikB)@@Nz0xS28
zD@gO?ypVS>>4T4(W})lkos%Min6^X~$Df4oGp~dA*MEs^-G5F)^_|mX(K#T2tH<)L
z>qg#fJT7>ZQ>;1Nlk<Y#%-lKGHEKNeuTPmag&|kO&FfU~FWs#9>Z%UEStbe1y!5{8
zZdzSD!?o5)LNk*d+e}D4xWr|d2j_(NhY&iNaVeM|9?m{R$kM^9VUAX<`hqDY_Z}F|
zn8F~bv9^b0iqJfe@Y)j|=}S}8H5qTM-=bu6DNys}e>JG5lx3$*IvN<nv?Y3rgw3Tu
z&50m3$TuGDOI_SNIWNS$j=pm0qvl782$ja}uz6koC+FXKJE!>Fk+bo=`yZUUeXjhS
zx_;5-=Hrj`|D5ukTYS#8_`d&ReV!**M5kLmmx_M+VDZOf{T;t@p3f=n7CwKZPj}C!
zOTy7}o}WK{wO%r|;!VG5-G<J!ADxAC*!rt%r+(pa7mw4djFC98{Mq^A53iVef8ptt
z`TF<gg`7F(-vs||wZHscTT)f^h0yE&SI$K(ap{v<vgG>XuZLU~#$3-2+&y>70_z!X
z+4}43`lObmyniegZW5s39lQVb)yIlmQx-7Kc*~amuSUkyqci35B&WzFc|VpasdCKJ
zQVm!6@$-l0$;XFIO##ceyb{ygIeCgg#jfR()~o+m{w=DXJ3Dxir}rZL(7TUTrc9lp
zP;yFqPS@Gs-BzlRTbBG>x+;3lgEf<cSp2NRgA6@8pS@VDp(?p0<*)bG6-Q%EYH2#&
zxN>=&=;Y;--meN)`v0o%Zb)v;%DU6Z8>()VPMxBV@k?}0*GcYkcBNiozisvAs69Tq
zE;OiVg6fZ-D`uRT`sVeTDH(lsS#>MJJUN-dc0~U7&pn!Qt2EwysmjTu>*u}J-cy<|
z)2Y(;|CN85lSSv$%1)i6(j9B}`k8~B=&4Q1<}-Lyn^$a+*t33dP|}tgUu*ge9e#_R
zQpzqX?%Y+Y`rArN)vY`BdL<9jt#tun6HU9P)I`k}+PM_0dh6|Ekqdbj&mW(4H27qb
zo$BG}N5|Qw2rWLU7u6(_^{-}4<empQFM=Nxe+hKZG>m$)NcF`0uk-swyLV1v?Vj?b
zPH**;Kdp8k3%0QA-2Bo1?QC1N)yreWeeBMePre#_auQUoGI@`5&A}&=4;n}AeV{Y5
zX5}`O2#{ftukSwKR%_=ulVTdaDJAG`|Lb6-^`9iTxAebT`6T+)loR}3a^hk0!;L0i
z-ST?UN#;9i>{Jh%?HAzi@c7weyv*<9DN{M|Yx1=wldp1}n{;ybgEe-lmH%AZUO3&_
zImxip%S%rD-ctKt8EUJKK2V*Uxim7UX~W9pvB!0Sf~;2fb@rrfUH@dcn(>v*OIRE)
zuYb@p^9`H*62Fs=rpk%?O@6DHW#sK8u!*JnV6xiogZwLlC%wMAF8r1F?lezMr)dfC
zCuf|@``|1)b<)2sE7ebXCmnC~<Scsi^VgIm|GNvkwUvriEDqXavDEM6DZPH~$wE)A
zrv92D@s`d0N}%RMO|awkwM|i2uXlO*kqq-63;Vn}eIl1EF>&{r5I#L}$&%+`wO&uQ
zfkbEOl${0Z2RY+K@TE+5d0#ZKNzWJePtqwv6^>Z4<oo5wrB70O-4<WWSo2fnZBeSN
z)SvBk@vC+(+UWn|&!?{J`57is_8BJclvFotH+}T=>^4=Y>YdM?KaSpKFaLkd&z~7T
z{?>e{TYV|RM5?#yclqwHtNyBC-Lao-rY_+9mGxLj$tbo*ezzgx2e*Fi*X7Of2A01v
zR95etv<e*cpO>(F`;}$1&ad<0MR#_eK0B$CS+}-kO`J3@`itg7+a)Z|eq|{=7Snt=
zKV-SfF>gp@PrAzGcQs{WcF268d0q+Y*Q<e4MB1$JJ9+9VB)TVEO)3DXxT2yOZM%-$
zX8XQb9Vd3UdOg`-rK;M`9lzQh<cM0;(8)*F1$IyQvhV8SrUS)YK_G)B9v0Ko{OdAT
z=x0?}^p$<-MPDwiIQjnPj|Im?8=qhD>8v@Zq*`<%#r#KLsh8OL4?7BGne7X?Ud?k&
zzpQtbPT57FEeW=&mv28lu6BdB4yvwbZ=v16i|&inx?{JnoXlNv<jG2xCmT-YeON4}
z`O(t);`DdkUmL7ci~LVMKJ-d5E2`;8i001*JJnB>lNa}c3bY4?{f_gdTwS|5c+#(n
z?iZ(bO;gak8+@|GPStJq!G5VFOFr&6u3>+Rea9}a2SF9<gejj`)1BrEEx!A}oi|8n
z<yM!!dJ)?_Jex|3E4LpnZM>ZM+)GU-=+ftlEdQ_EOPnz2O4OqHVXLBTrvCAnKk2A=
zRg8p1Z`G~RLn-DJN58DRYp<HQRplU0>D@=H=~th5v(9nb-(;M)NqSGxB%!Mp-I;kk
z*Q;`h?S3Uzth#y$%iE7Zf0I76oXq>sbut)ICTebdV)|>!iRrq_V#7T-Z#};KYRZWn
zU<Kg9?}@(6v18I#mLEymm_2pM0^4`t%a?4t{dm)_yAMPs@0?WoYRVLDx#q{buY!{{
z-`MKqbwTd?>fod;(tDDO-tN+0JY|Pt_mnSFu4+yU4Ql$f<GzyW-~Ls>O4Xn=v;M)G
z(;BLI2KwEx<&%WA9RI5}|6pYB@*^)^EUuMYdW5&^Rg(AznRn(tE$+_(hoAb5@J%2i
z4>pMHwsZEH(Dd8aPI6D$M4_|quf)}7{daTIEPT(Cu`zqn6b07*2}LIkfC@<dFPa~%
zew|QKeK+0a*ppO<toSj0&kfQwXCJYqJI<f9W}erc7r{weZkT#{T@dr^vy0k1Lp##I
z^Q819FHp?<^aG`U%%z?|O=TK;;^zzfTy}KJ>!y>zCriToRrz1Sw6e7pxy~1wEjovF
zviO{tYvKx~@$3)T^~!IO&<*V=i*0!;Z}9F*FbX%C9O#vDQbl#QkWN|c^eG2o7RtQM
z^!UH>N%F7yEODP@vFS!$ojNmZrq=k+pLBGtoH$!lkVd!1(I>3wKL4-$%bYAaXXcu)
zf@wZ+1!>?G)3ZgO$|~mMjFT)5O^f@}HbwEo8O_w5sj7Nn{<EY4P{njcNp)}e%3vkq
z$hX>&Ml;Lis;Zut`?Xf}`;0XYdS>c)%LFZVv72&LY-_zq<Ux?e*}b}1>%U8^iRY0s
zj(ljd#Lu&AcdV^np!bFwrrur?j6KVCXQ?q9^D*<5;Zj$%i(eIeRdZrwP*crDJ6GR#
zx|J~zd*8nbkka&=G`&3bx!;{V`gM2C`OkSjr}*7(bGd%m-A|MEe`0z*r~234<d5R}
zeofmvr}$j$Z)f$S<9WA**D}dhU;qACzvsi<qVD7R+xGrD_F{kaJ|X*Wtxv_RH7&kh
z_&vWvHu}c_={d#c=Kkn7-dbMw#r2%!{rUabbBfQ|{+;*n2e){<sOgjA|CKf-SI7P2
zKDRTyYMzzA|NrOq{tyk+ultbjC&GTdNoB+AOLkLFe3<rQqfG6UT)l4+#v--BCng-f
zv2Rw#90N<&w~1eaJFlO2_pr<Sq-U|zuk$?f9dS=iv*6_}elzAQ`c`m#`H|W~DN&iH
zQZ{DKo02ej`^sP?bsxXL>K(6xAH_X2bhCH1P2F_E)ZeRM)xs_-Rio6Ru3Lv==L^Ym
zitS$JBewgQC#RpGNNq#-RH4bsg(kLpdhVIaDYpBaHYgCm`Zg_m!Mx|?@+WGgUQZH(
zgjU!4%%3zhR!;od{BR?GuYyU6ol%qi1)tnurTWP=NN9Qe##R2H#uI0s-7Iz0ifa>G
zbPX#GN`^02`Fi)k+~xIwtJE|-i@sb`3~J)N2udI8Qex%`&7a@jUtaCCB<oX1QNNvP
zcX(BdMC_uS>z5=My|v2wBsu5s-FZSQXYF~=^D6jIFsIp?{J`qj$0Po7odcB@5Xm!B
zduA<p5^i&B0rQLU-K)f!kNcK2%fI_J#p7zqt<oz>s?72qBw9X5E_XTR1CcoK+$XHS
z&A0CSadulb#fnu^-dqNkFo%BW&S~Fmt7_LB%PH3E?pt@BUH2v1uH};~YrT5<?5ys*
z)%^G~=<Yhd&YoF+=J7{eVx6LIQ4IE1;MOOF56>-LofkV-Xy?%<-)k;RI=6hT_DthS
zt)G2%s&TsyTK9iqT({1z^ZZ5kUsFJ`^UCHLS00>sVfhlU)>`p3tAmq1g*bUz&97rk
zKbNvD<&cW1{$~kcv9DW#?kcI?zp&ipU-R(@mN#!-O*t{=<d)Yhu3ld9A0<RY{(=hQ
zl_{a~Cv7?&!IF~^G*{^7u9IBnK&5W9ja#eA!K83dX&pL$QrZ7`{9CS1@L3gXwAZ#S
zr|IYe&dGNl$X=VIEu>R+cDjw;nz`DMs;U-8C%EW()^2~@epPcKNX6W%lm6wu2;Nk*
z_IT^n%j;GzVNsW!v_kb|{v7*7ew}wf#sA`{OZzPrfm6XR(K(?(O_O;%uLw1te;^YG
zYPVFVZ(UL!=;jktw6)H#V(OF!kr$IbEIE1nXWxq8N1s0zF8??G7GIX<|3xP{P6nSW
zzoI!&exguL#yjnqCO=a?2u?o#V9m?<x9V>v=Sch#cTG9+gmw8MKTdzuifg~bwr;QP
zxhii|aOBD3n(S9oe!OAhcmA?e%5bLk${9<ZR0Um<?K!V)ne^%81JhD3n>xEg7ybnG
z&hXhC<}=Uhow91I<K#)Qpp<KDnUb*fcCgZXv&e%hXY6_4Gig%Zf-0?@(eo!AleX1c
zbN|rJYi~jA+f_5pO!b*GNpC^*!JF&-L2Z`oyYqw=*Q$z6&b;m!bm`}mV%6WiL6e?{
zKh&FUqj%@2=1%ANLYlMJfQ;;0KDX>{{-=;nTUq{JS+-Z&hG*CENvhy9HcLfyuHW9K
z&G(<ME>HS(<=$4!iK>(JuWn=c?WN}F*?w7{?Y%kJQ!bmO_nZ~_mk|5M{kiq?In@Q{
zFK<lVe&<j2x{X(NF1NQ4tADuKzGhnSxt%A!&+m}kz4i~+^Et)-`^wG!9a>*s{$<YR
ztI?|e4(*PAFsJz4^Y}WYe}~rJcsi&0RgQU7ul(;l<}nZE6z6?hef%-I^2F_XjDNj<
z{;orQ_v3AgiqF}8`nx}}Q#Sg>-zd-+f}OQ&{lo76FKV{`U^+j)|9<UO(6E91&-EY0
z_r1~8FFI#g{$SmY`TgfE8|x@}tI0o~9cn+dV($Zy<%>6Nwd?10|Ia1oS?et#v?_DH
zmy6ZAj7@x^wg+@)))-Y>Q&GMBRdb^95*7WdS5tiE=hp>$IDU>TIQe8kW8~!Jlk{H%
zE4}|B;q7&6(K0{IdU?l)`C(BSl{}!HK=!Am&GGYv_LY8KeC)ov`zBjg-!$K6Uf*Uf
zarr!xf6D?lFRO`J8?&eXd$Blja_05FYW}M6kD|BRW-VF5{BqlaJInn#eP*nA@W#CI
z;K~ncZ_AkmU8<b2`{%MNnvr`hJwEj7=!3s%#j2wFN^d{rw>dUp(uNFkHvg5uk3NTd
zQv17a(qFa9>qPgJ7B^36as4aVtl2$<=a0i&p`Eu=SeGB#o)>4pD<}5%_|#=SeRi|L
zmoM3N7;Gfh{auy^O)4UUYCaX7dh%j%WvN%sx2YjNuAOCHcJS~f)r0LTmV<Ph_w;)5
zx#smVrppf!U+(msFSPUOlNXDB&RKHg`SsYtav)L3b+3YxO1@mI@e4Y%Jx|YoS8m$8
z#FY>+8_k1k%MKpCWULdk)x-1s+h0>o%%3E*CRxfx$M&#Nkg4Ub3~-xzLu2NL4KCdW
zLnklpcLOEo7s^3G3Lu?#!ojMpJXx7CV@e6@Kf6Pl_PM@wIGMcR*Pcm%lf~z7X})Cp
zQ`?f7y#2La|G{4%{m;C#mMr1^@Lf>s>am~MU)|+<XMwU{(5L>I*UvaLIlJE(TYP>s
z<%GF!Sb>(Bzv|<f*UvaKIlDhSt|=|`5-YEYiP$d@V_11m@_Dqmy@zMSmiavEKuteT
zeGzVSZhKzdgh?A#@Jp_UUh?ED=e8BKCsS^f&dI;K=fR7`8(y5(UKwpORpv6dxmUQa
zw0P0`>?JBHoPBoSj{B?Nq%9IQ=eFnBeYvXU>FK})mN+wY&8#I)+-kj^aM!$k<`nM>
zl8RgH-+3p`@a?XwPa#Ij{W<6VJkh>y)(I6&&JzplRL!(4R;%e-6#tr1QS-X$j(XIU
zaN&ubK|&K8Cr?qa_?2-rWnIcS71jOE3mvzp{Q5mZMU_#~q*CkW6f4zDSw?TI(kD*(
z6mGMwBh2K#9mqB|-?##;S5r=$RnxX87Sj}rO3L~B{&Dvb6@_L{0xSj9O|v$8aOxT!
z%e!87d)6`6c@-bNt3Pu8yW6(k^7)+Kr>f_5%I<#q?ew$h&*%QW87<$j|3hj0Pvz%x
zis$c&OgbL-<>I3~plm(O{jvU^ZRO{!pWjI~uUD&k)Azsl+v0PU-w({5o^)Ky?$0&%
zyQlQ6w*N@^(>n3Q(ZkWt<`(CDE1#BpT<p>Q{D!iNc2hfiypj+6+sDB2bm^-pCsZ^U
zH{9HQMRVeB56*_OX;(Ef-)!5j&9HE0=<=53LJZ4itEw^t8F+g!EJ>I)g~8*Xjwa)T
zrvD)RgF`<Qm#{c+d2lv}h}?7cV%V}KVBG{EhP7H#7GI9==sZ_{<`-K-jph_rttBqG
zCm!FCSkNtUN-0QDHOkq^yJ516wuNZWA`_J@EEb-{hC7_RO4?ecF{nr04=>`^43rd#
zVw%&kxPMY-9W#S2<E$HRXZcJKiefTZ8C10M=UbM=GldfCIUmdkUbf_a!_U7hNw%tX
z`ycVVVA?fBN6v8nLWc=L4@6E);n3{_F>Xz{Fo{Ex(Qlz2r*7f7i9!j&wO$#W#Y<Rj
zEGd|5rMl(FM4^PqPL(lpg?3*4v#qFq3d3@ZDXB4YC+)p`=Dqg&b&9G7PI9GAEG+e^
zI{RMxd!DN50Z*<}K}mJhs_m169z<T`I%lDIare|I4AQf@4?bSv@;)qxX-)L~a3eRb
zFL|n}irOi)%(Bmpo-aRVsowv`rtZzT^KSdCzC4hZ0X2G+uUkHs+gb9~t-oJ*f7N-*
zbC%Ely<}ETIzI1n=XIOPdBu4z+jjoo{{KujdQS1Vzi<C{$j?6DU6=T<a56WutncTL
zOU61%O5fK{vC)f(>eREjBW%B|eEo?{9Xj8tV=5L1#_l+?-@&0SW`Td_nJG4UYkWI(
zCJQMf{PzSm7_WyecbVqNDX`)7S53{zn6UXmk!q?A2iBQ;p1k^NibwAh2FBg@o~%q+
z4{83*n8Hw5y7wfvpDU<O->@Jy-v~6Ab}}!B>B+UPpfYvx@=08pj76`ngG&j0i{Boc
z6QbqpKXQsSYpWHj{`TM$*f8(>tM5}oe3r$2pD3gdV|)1c*XS#!)U-ir1=h?<v|Q(R
z64d(U6l(@42(dk^bo{F3#|o{RpurluASRYo=@Bk{(KT$(y*an7*gJm;Lt<B0L0@#u
zoczYS>m06U=&{Lf|B>>c$<s^k!w$Iyv*`Qbn?gQGtg%f=IH;t0^#9XBM~1gsH@d!!
z>Oc7EvzM4okdf`9LRW^|)S53Bn_RtGrZH3|*MgZDoD<A<EuU0<RdeERUC@~RoWOk#
zdR7Kc`lXq5G;^V<!@Z2>UdOIzeyr50Y_?L}!g50N>z3CuT)o)#E%)pEv-fx@<Ce}k
z*7P$^UMyZ^rMgwTGDgCoS|x%<&e-zTidBA|^N+VOZgHPftD3ClE+6X2DX?zd|CRoo
zH6RUInv6|Xjcp)Jn9v}mmR0Ey&%SCJTK!t#<<;Qum8bhm^pYjtH~*S)qF!CqVMbM(
zYs$SRk89Y$oj{I|EltMxpH4n#Uc&N1?CjA8m6M&>_+~A6@_7l%?7~Uu&$zC~KAcnh
z?&SJ^26Z3$8rPn)e4h5-GwFEV-?i~2?@oTc^Xk5>SpCD(<?i>nCVxNHfA`z%=XU2U
zpHKV$F5^!E0|dPAOHZ$5e!(Fp|H2_%+Cu-eHNyo)HmTd2_pvfOl+NJLWxTMevF(Bo
z!&)f_=Y_Gw78VEZS@O>pt1?7w{CD!fy*2qP4kyg`Bv1TuV`%Xyj^kvoVGm+bV1*Si
z6NDHv6;v659K0BoG)!UeaMTBtMBbp%C&tN(VaWp_km~6mWjk6xC6($D7PYEP`xv*}
zWIeyff73p8hKIW+EEj^fm_pLx`L_4baUifR?v>$>V^5#nH`uStz^LWd-O+L7mkk?#
z=ZV*6@;MzUu4pb)W$;_>&#B8;FzfBFDHntoW{d7$<lp(mV81RyqNZQ?S4~MH2-AD&
z6o!nz!l)%)UJP57S?DT-1~DyAy_i%05_c_*_XN=ge~E3~yM)D|h_h_>Bq4^`D}#(Y
zycp(8e7ACmpBKZN&QGk%L3Cr;IxyeQ_HC59DudtR_=77a3o*=Ajo?`aqUTIbi1(a3
zh2chu!a=dEj-Pik3CwaV+s)*0PyrOKj-bG728BJFCuf5Q&m<uR%^&AM{CUp}+omvh
zFoIN-PZVNUD;=ez$`ECy;=P2$VRf5I7N;iTg(k($C?~H5zA%IT!g~KhpWo@!efNO*
zS-lAP;a;-R>6&@N|Mi>y|1ATxlka^_`SW1<{!44;KAtmsUblSpz5F@P=M?9?yth1R
zhb=>*1|ljvTwU61j(xkjh}&O0dao<P&*grdA)xB+i{?ZwQ2p0p1)8E_Ftc9g*LmlG
z;j}3XvCno`soG3su((^;J>`vps>626ypJJ84O1BIKHG7W`y7)d<F2!Xpt18Hrjpt0
zI?H0kJvcAqmR0lwu7992L5N}bMSV8?2|^6B_r~sDpV9~l=nS9zu5aanm>z^U8!fy4
zcGulM+Zb9>Jr+&dP$=iXjS_MUTNI*r<djtzqAuP6)gcU95^B3|-L^e8Nr>Tm<KljX
zB@H0L;cLhz-XNw2Jtg`U?4Fzr#)0Ri%BZL^oO7^#TQy+{gT>q`*5?YEj0IAElRh{G
zF(qu4{`%XC50q?p?ykST=o|kMmIEu>p49c(F<n>%8ZY>E?59)y>FsO^GR{I<RlZJ{
zQdz>d>jbE$X|L+!-SEz^;?0eX$;X%V^H%lT{rETec%Q6wS<ZfU6|VZaHxjyx<i{@s
zIvdUfocP7oV6!XXfz$Ij#r?G(EB-vlj(dA&@^j0dx0;WYvnm+WnhFX|e3|s;hEt?V
zN{kfqx9_Y98o#ETu+U`OaPsD_DJLXAjHkb*n3UbVFV=A2%WKeZM#JSVlZ6;GU#P1x
z1YPh4O-j!P6+QN##D5x8^n5wOuc*op6!619lkvhPr=J{}j2BipMfOb)V$ju^;tHbI
zYEE%|0urB;!TKCTcRfq`AQ;57fc5onuV)^d4NuIrt=Mb$+L}?o0F(h6wN&-Z_RBIP
z1}$CkU+wd6Mgf&rFR}k;{<JZ)c+3=92#Vg>LQzZ)cu>j~7EnQBrd<;<U+8D;>)lKO
zGn{_5*r`^ZH`=ey;HWv}X^Wle-e(|Rw{AMY8N{@}v~^R*90gT|D513v<|wFs<chq{
za3L+a+~xA3?0y?z>un#@{~xt{ey8*Qx1~S0-|u-13S0KN_Z5F0Ob2y6{pz*|*?+s^
zy=eaB`T9rtbz_Rw6`$LgE*IG?zvg1`OHd<bUfq+ICHg!ptKNHGJly=OoXvjjw_wln
z8#-)sHU)j!QIM&+>%)fQ?}gvot#)v60Zpl`37pfHx9HmRPpyp(U$1JtnzH0y6R1=A
zX@jfRlLk+(ZIgu_h}4>{oUtTjxs@tJ^kneK|7xlSPX5YL0!`iReKqAovuZzgcCZq=
zPh5eU2WP>geX}}3eBug@UDb@-dF=6_S5r<fPTo05Fo?-!^?Eg>Aj6s3lHuS{o>;I{
z=5@g!rksu-CD2$wVfU0Nt6ohxu~$voLU{>G#C4y}ntLg%>35V=wcD?1M&5Z@nAn?P
zSkW?t!S}W1%zJY7W(Si#KxZ)Q{8eZ58<>Be+A~2&VbesR#kH!B#WX?l7Lq$oBnMpn
zCAL+6vd{s`<vu6pzX(<;k67Zu7rkW3!~2tZ@2<1n^IzS;{j%-UGcSWTl}G=HsP%fX
z!PV=?Zq=MQ?0!pY4$i#1{K(^#DcyFeMK_dG@973EeG)rQoRw+WT<w{gJv`6HzYJEA
z-|o?w?;WBkS#{_AB8LN4F0U&Fb?`4NPpR+*nP?Ne$h-4`P>Ic7u5)uvsyC~D0XMUj
z`FF;9Ptjbc`l3Sriay)<nKDKOi4!N?^M4tvWOsaDX0Vg@g^zjR%U$FQEZ3(Tdh%j%
zmz`>A|HfBSE(n$E*?m<rbI--cn|>|sSM%w!TlFINQK7->O1R|5O0Ati^<OTwoV@5R
z+C60l|0=L~@3wh({-0u{Y83Tp2dJ0Y<?3}uuGFjLuj-4E^4T?P&pWJCwZp4pBI>^c
z9#v8e1bOSzE<J$_yM67>mAlNHH0gNj`m6G_Asan9Z##Q6oPB2o8kp*yGG*FT&57%y
zmmGPksCpo+KDX$^0l~?O`>%mU3J!tN!w%aeEH~a%esmU^6JB)W$&1CNrCvVsyyo0?
z_F~wp;w~?1X!$GStdeT}rR7KdT52+0;WB?2tW=+0^yMOGI-&oIW})2s)+H<!p$kD%
z0gD&+U(<;z5c{I}(b20RSme~E`1wL$!Dn7#K0%-Of|%y42@t!PKXKB${#U_D<xxJn
z^=8;iJu^Y*flBM9jyL9(zg8^r?>x(OuIVKAIUY^Md7^6{fJKugO=5AE*PU?&q&UI3
z*sx+hC=e$vpLF}G=0w)Xnb#$QAYG5FqA!6*LDK_sg?<K47M&v*#AK426L|ZrAvpX}
z)}{E&6<U1sfn*Sq%cM7DS99j9pW(B+543`(ILhnNzvc!9oBcnnPl@*(?YDjY=!JXj
z)8j(+KaO5hZ<rSu(JOzuy6}te4;S0IoQF%FTdA{tKeIUdWApiX&oB3v&Og>4y7L9=
z#d>+`S)W?r)q>Ss)5!Y_4Soh6wyt^4;J_}CQKS4inn7S6O6w59>9RZL?#-}e$<LDs
zQA`U&U$^tzneerjfn(;)N>zqkoSKXim_UsbP@4o)5`!9ku=e4D>7Yi-pTfMLO{%Y@
z87?%fP~5)f{Nw2jl8aRxK75)W6vf1%FAiGc^5WA(AqL0le7R+@bBoV?O{ryOi2Cr_
z*k&q2#@(%!m0EC@Q&2q(kXEa3#n;js0)EWBZvA|Yb>Z#WkInivSvBSiOraXx9UUfY
zHf-Pb-~Lm_z~VW5(oz0d_XQdRG=r74upE%g2zK&jn9~UA${cw41yr%XTCkhHXinTd
z>%M5ig)gsyH<hpc8OzAwyB<`tn6oNafZC;8RiLo{0%|b60F5170F4zaIG)S{sx#*<
zVR3l<YrnS_!<IGmg_EW*WQ6`-<TFW#LHAX>$V?SghN#Q?HIybVVR7(Ybo7B|5YqzD
zv$d)qKKHflD{4Uv&%EUAueYsv&*E_4h6O+F?!m#SV5|5i3Nh%uj-R8h>JTkbcir;&
zoi`<aE)>T_mz=XKe{<Xa82`RMS1;D{+X&cy+jD*H`#Hbg^*?skimkf*xo__KIkW$+
zULLgHtRc9w!(*p_{RRu!y?R%E*{rh?>7A<BzY)}^sGNH|fMI9qq)Fv3f|b^Pl;Bp_
z?laG8)vqZ&^Pd_@IONUT^C0A_re+ln+k|+vV%5+frV{DNnb);69iw9=f8~7;sitia
z3YtQ+o%dDNA$fP5;SMja3v5fLPF<7F$aQr6i|<oIJUQP?4QrXkvcw|xYJOmK`|*gN
zrfX9mBC@)tmh8J-%C70??WOJH%@j1JPb~G)eG7Y6uM1t5x-Lv=5Lv$1RkHc~gDak#
zQ36X_rnM+V@vNIwGiSY@*Mt~j)lW0m<g>)h`t7w!Z9b@Ppt5b=q=)m?yl1hywtdB0
zQ_GYEeqIwqG&#FJR;rc;HMMwnMy%<#TQylo#o6o7BCnIYzowknyM(24!lVr^=6Sh&
z(VThj-YeZj))Oaf(1<T^`vO|M1(M8o?&apec?&e!YWvp8$?Jlc_=HIdUW9{c=v$A%
zJv}{yWNJ-7;^7k~HHaMl@*AxFkyemU-=i;^tW=Ad!TyeQ^=b;7GcC2$t3u0hc8sf+
zQ{Wu2$ZZ~+%U3A!hEJU2AhO&w<>sT6PXsg_xz;JECU%H5PuGnrnC8J5^uZ`dsO8zd
zNvYjCC#eQCiB$Yavq;IW?Y^bhoq1g~h^eF#RPEZZtqun%zaZPwZx^Mc>JYxc?pH?V
z6o$JAzfW8OgELFzn)CmJnf!3;-#Go8OERboHVC(<|NZUl?d|#dJFdzxoc#JuRPg6Q
zop0&2>I_U`OI_+byco7Dm?`vAJcvnQ=hrDZaWlWpW#G8s=2fA^I6($qfz}A>&{~3u
zx^tjBRiFpTOvRv#HV2fw9>jo3!sqZjw?P$D>gmSK`pR3<y*BbbLqb-<*W;1*nHoOu
zn#9fjs>{G}-@!S9vmuPvq-7dI##LlaC}@~%f$G^QC-$EO^~G~+Ri8pS=RrXye)%!5
z^gz3Rkm6TGxMu6c%z6Jmz1aQhV*BIcaRs+e&t3gjdi#fUyWaXTzDPNmDLC<O(CgD6
ztvX(vZ`4&8qAvJ!-tqOi^x;3l534V-T&WnhEPxl!LYDhlS{i^9fH+35MZkmMI8)Tc
zzD5d=I~E|vnSz%klYgA)-P=WX!lt<fZgT$r|MVMn%ao};jFq-CZb&>{d-~$j$eEf?
z;v6IY{rUCl*8|S^^XJ$9_Kv&#)$Cp$|9cLG1FV1UUu1lqc5lfHa|VV8i+<z$pfl18
z40bwm+Gm<;KI3Izu#dFpH-L!NZ7g^PRr=@Lp-Rc)U#dVV>Nga`9X8xMuacSJKz*cz
z{(~8D=l3u&Jct%Mw^`=$>zU>Z41aoCKZ`(>OY6)zZn^BbaXtgXjkJe0C!jj@xStF5
zz5EKYJumU$o!py-duuPpcYzG;)tRI5`I-1<Him}VkruAc&gz4#E#FvBbY^xuNW;6-
zhg)Wtn;YdbF#MR-Dx7rh&IynM@^$8LeSYQ!QY@`AhXu;KtuyEGOo-wesSjn&?AbXH
zWQnfM9Oa*vC*(g_%E0izP3&Canc32nnhXp(=C&5|e17H@$Hl<#F6p7nfjv7f&YFJ6
zo{N>iptE)Jtjftr_ZS#>k{{}%LPGI#gvIL_;IKR3A$CsbnJ>r>22)!%H$j!AJ=`-F
z!aS4qaL;rIvnT!Go{11<Ok?Y3J&3jfLHj<w87mF)xp?=d%UHZp(r0BjATjaxtJ^%>
z&%biLFJG8wo-8TN#*i@cu)ptq@3%*}E-$*UVKyVf0h`v~%ZDnL9@?T|@+OUe!NC8?
zl`REv%M5h6cy~)OFq{##G~K^%pU#}?8a~}lhx6DN7(ToBot-Z!c8*(Qnd`ztb7qEy
zN~Pt`*7I;bk8I5h%(!uufgxeuiIqRA+gd+Q0hwE3#J~`-tTHRgqF?*Ym)15vHU@^%
zDgI~uuRl-bGOt~@a5Bgp{Bvg2wSDe5<Qt#yB87p$;C%A(Wv#{A5&Xl;m$iQOdUo~~
z4+F!q%4Z;F9@`T+AEeiR-Yl_m*)z;v8#6G>c>WXQBgW5ZwIIjt0r_WM>b*7RLCy-F
zJ4@_b@R`|PL0<cO2&8aM<z_pOAL6RBqAd80@~@?XEI;k<%l%vsX4&zTKVLfKcD?EH
z02}%8$`|7~i%zWT0K4<IpD(w%`X+59u$k9_FCWV6gsJ>}WlMpR(r%?mAXjqx`EoB;
zf-2k$@_-Ob>a?FP_w$O0v4ST-uAB<;`39KzkAg2BvJ6TIcQImMn34W>W#&T}HK-xQ
zCqO)981D**rvT$USef~7jo3}miJ<VZ{B~ta!8Di;Wa_g1ReZm%@b0<vhG)y{|D1i7
zA|l1mAZhlF>-*J5Z63$2il1vgf9F$=6ElN>!;=*nDI!uzlJn=!pU-!Sl`FqYW$^_D
z1|9)REiTE{HjiWH+5XF%yDfU}jfdMpMg|Fmq7V@yF5Zbf@w{T^sxgJ{OY6)r*V=P)
zBC7HACJ`3zgDN&FOSZBxBs81|3_PJ>;$rmgcEZCwt`E=lft|>x<nF4t_=3R6AKMNd
zs@!{Mw(Lm_69xumm%c71w}pz6K5l2@ets0wiEhoUpS@bmttSO$Ffg!n$cVP~I612%
z?>=~_awdi$8$njOVOY6i>A^#ljTov6lbc&VufY_qZU&`)umeFkt9H4C)}8Qf<9Asb
z3gp7U-fX+e!?57Jh<oertioe^dBx5(LmUpum|x~TT2T<Md#+-^!9$fU5Vw>WGc@cA
zmJxlo`lw{TX@o_&HaHMLx$;7J*WyF9TP+?xWaEBr2k|H<C;sv)4B4?>EZydE!oxcY
zKcu-Ef%CP)ea${lRQIS$>&%IUL=h+}zpy?U_;6p;oR2llt;LfeenNJ9+@*wvZ?M=J
z$}4uR52C!ph@qj~b>CTTaMIwG)|sOVaSkX~^LN+G76+$|>t+!a^`Vep@MB~6u;Ik^
zN^rzhR5rJMhDI!^S=LfIbMi&NsSH$P>^Zr#ugl3<<*_fX*tz+Tkh^e_fnnapkF9kp
z7caUXaIzx4x%IO>Lh9a=Aa_?#D!InS{X8Dwto$OV`ts)1&;1C0nD4w27?{zKqLZ<q
zz|KwzobW+bz|7gW?BF3!a2z<RGc#07_Lda|<%dmd-09ut?>qvPbRX2FTWNtZ!&F}T
zxF7dR-Tpl|<OfoH?sb0rGVT3tcf;qlc^rGx_F8Wa+~NmIw(a-i=7s9~$}9diHVf|B
z1D>M$Jh^!%f)eoK32oXa`nc{dX>IcW<%GhJ!%xNhAPL7xlA$1|HUE;6vkEBhSZsJ0
z#l0Mo7$)`{dLPBsaQw@DPg&7!X(h?yW-%ELA)%}|De)ddLEPW`Aoru7QsE(Qc%()9
z{tI(KRv+HO_+Zbk`%C(|j)L5BSXIpLVJj$;DoH-$Wq5w|zglUCPF_cfh?L#B4FyX2
zCE(aK$Y-!v|Id8o;-o^5TRs>k|2Xt=&xQ7MPyvIcuP)Um&SItbuN&B`doP(R?)SFU
z&H&^gbW`1rooN-WS=fIHRDhh3W;nO{zwfIR5qAVmYMA^nPkwMHbKiw_aG8c?<-W5s
zwiRsB|MClDC8&_=*R1Ill~MwwWw(V7^Cd5fonxE76YOJV2AgFcbi*=0UIZ!V?Fr;g
zf4tT1Pix#vP@)l$Vt62{_tiJ*1jrR!ytgG6i=DeK689n%Vj3gEy@x^fmw*eR#TPcr
zHmrZ>5|=T5=TT7kSJCcWJ6Q~zQ=AU#N*)&Xd)~Uw0~BNo4DSn8=3fGrc7Yi?43j?{
z^4xnN9PA8K3%95D#9C|>ud2bKO*{G7A<lglHcKmE*tS=aS={e)s~kAA7!Fv+yqdjb
z0>nddCm_Ld1(d{4-Txut*z(8k8C$>az5ohkh69zZ`#iyAfZM`{4|_804@WNeP$v!w
zN;U?I^(V|T!RbN6#Ab5h!#m5dOU+CK6<Szz%};!IXBAdmdsGe|+Ufc5ubzpE5f?8*
zLEJ=mXjO!^wQgRIU6;Y(LpK8}_JcDPGsB$lCvacK%}#unqq*lkIAbv~oYVdUk5m2g
z8w&p6aE9{XLqFrNJ0rNQ^>go`-?7k0+oJ?e1|RnI$oK!<ulwQn{|B4*Us#?EN?i;U
zo%8#@9NHeSFfkI8wIPwQ&3InUk2Ci=_W#e<+jHSGB&{$rtpD_L=et)1`BtD@$$Waw
zgYuO>pKjlw2&(xWv~t}~YHfoiz{aVsxR2}ahbHFqlzS!M*b(#Am)ZYE%p4qgb0$_^
z&IGw3V*T&)4|RfnynsgGxf6R{f&*Aa>96q|RxbI!;KGIBfaFZ`xuE3HxHzWjp@`it
zNT@X!8$n&fzU$o~&6+RJaE9C3S9-A(o9XYmxR-yps1LS^0qz=&9e1!9qO@*n0n8;E
zW-~fWfI9xgjtg+*pxV;$neTE?fG9lGLYTf=l7R*0_F3LKa}K%h2Pfq>X$%6euxWax
zk5znD8+P$cYS_h39n-^RPTO6cKGR}&s3n>+Hz<5wb{UkR-lP@mXhb;nwq)Hj-U}fW
zCF1*zf@&8~)139PnBT+2@!&*NX3W3=4e`TyY=VmsGFFldcg{iMZntE~nMjM){<?*r
z(0Gx;P+$$WZh}z?+#w4mGah(*X0{)wAlWe6@oWn`sz6oTc4J7?9?oNPTpo|ZxC<rk
zaA}HEkHe~|#Hivxq`2QhV@TnK?C`lfa>b`wgMXZXl+Au@3@}GHt2ejL&3`CjR}4;g
z$S%Kd@`0p!v_<Rr7!2>07*$-FDTc$UdF8WkSvB3__#w@jXW$rcR%dRw4NX7`Cm&q>
z$HFQh9_DyZ1@X4W>F_BYg>#=*fn&79sA8di{_S-qp6`PeuiK2dc(sii_U*UT<2tX+
zuRY_5%zp2;4ijImMOE;*%VvFpr_LN*Oqox6nC=}s^mFxz%Nx-2fMkvw`Wg2mGXh>A
zwYE)_JWyE~$M`<^VU6-96CH4!*xCkh>4QBs>l?OjD)=W-DFv&F%G?$vrm_{p%?m%U
zJJRAmc0H_rei!@`Mb~sd@4WU73;V-A-O-)Eu-j%m1NZaC%Ae6(&=5N>{6Kr_=ZV<N
zda!)8{v33FGL%)uG47A4dgwB*4OX+x4a|s`$++S4XRaT2OU3=L+1_9uQ-VXwdTl-I
zw%p%!=TN5&FSL$Jv|fB+gAsGW^yi`<%&$jTOkAD_t>ALfMWn*g7~Xu^!vtztVRhJz
zvZ<}Y*gTnVT~!Rbi=)rPW49#Fqz1cJcHDh}-I51-$vA?g`fLn#OXLg+uv=1bW(y8W
z5*Op}NqSF|g|uF&ix{Z-fu=oh%um+aSb!qFspl<Q!+fsu+7I45)0c67@(5JXfJ0vA
z@E*pzz=}9VW}bM9z7ya&?Jy{@Mz&Ql-&yow4^!HVJq0ooK`mTJ`rgFznQe#b!%Eg3
z!?K4KO5))9?zSYTc6`QL(0%AL*Ni8}FEZvo?1%xkgh0_aE%nd#hu{AnImz@#q%y8j
z<Dg2N=V6nH#ScHQF+7-c?4O?Lj%A<`4+e(msSgi?&M;><AR1v&!1;`qp+HcK?@anV
z28Qd24-XW81T@9?eA4bQFoY*RJP-jAa1`S^lLAta^6-EINFY*-&nFqA;@e9B#&@ar
z7#Je!+L-Sg-^0joN=N1a-!onYf%JzA+l}%U<o~{|39{>e?-}VA#`z3(Ix-K$p7DN}
zX$~5hJHYpu?bjLUhIk#Bgzie_+Go56-s{LbSPxPAFX17>edGKE=l3xF(C23V(FRem
zT}S4D|HR72Rn5G0ji8}9=0E(O*?yVTHU1FPZfIrxb9zss-DkFh*{#ff4nvsJTbXNW
zW|$YSJ>xx~t0Qw@PouCwK0{v0!vj}mnqNr2$8hJ|p+;|rRXe&{nXjkbbC_SrT%ga*
zu6GJ-!~;e#zL<-e&w82p{vBJ-*T5^r7vl#S`*=|D=M`um@W57=GFKI5zvJuq8e+xx
zVm#oIJ6c<r!v#U(9Tu|ttr+sYJbuCOpkn$gb8tnFXnolCfA@5z2W9i+W*v}ft=<K$
z+)IoYW*m7R#2ls}vk9yYRACs1@f8@D|9#Zs1S-=jbz~lR<o!A-2_Cspj<h(Cc;`#E
zF&FP#9)@L`3L27kycACtk+PCx;7NPPz+P}!|D1*i$lSAs7{iKTJc;v%7^fA%csrQ5
z*&~ko?zdQc;lfFV2TD3J34(A7U;p^>mZ?Y3av7*-@nd6{{wUqzfWXA$T@wO9Lt_P|
zVtfXUPiE+)fGv%g(8@d~4#Az=$~-3;!JXF1JSPIdo!QDfClta}lDy5!5YyPoJSXVk
z40y*)UW~86tu@(d5~z_m!<^wy%0mYAV2fqSpiWC$CG!D&F}?ydWCiCAG5Reo@Bxi1
zOyv2@)?goDallff?<Kewns|@lL%bMY0TYsrn$w3EUvV8T0ry1>@)>?ebF+JB%UlNc
zXb<mUOlWRpE)j(q5SYQR;LIV$MM~{C(DD?V=3OT`Z-Z8F3@<hpG|V}n7!9q~80Iv!
zGH-F=y9w<gF+9-Gkx@`7IsvW2m>JZQ9x{j`8DJsK&F;}5vk6*ZFdTRpVR7Iil8ps!
z_I-Q|>+~RIfC`DJk_>Y$E`QI-z>vVR-<y|#Va8$5wGz)ZfR3uR)RAdeef!_>UyKi8
zbYvR5jq@2KjvZp$q4$}sp;AYtq1z~*LE_{g#vMwZ*&0^r$TXZb%x91|bBJ+=*k`te
zn>sQL+#rGThZuKoeP(OW-cZ1xmzaF7rnYvi4kM^WW_b4bvNXfG!-p6p@~ZFsVB}*s
z9AUvQd8Ro-Om8c*!L&-|1FVr248|aV$*s%=6DpYxq()jWT%KXh5Hqut*`TYE`M}Xg
z3x?tu<_rlB8Dg3$nGd)|STKAB>1c0dHkeb%d|)Z@X5L(`?*s}8`@@V34Ddi;U`XKO
zX2%GdVI^EABP;Of=g*xV!}ssocP(A#_iQGH13YzYpZg!|VPs%<m--M?A~G--w6=nZ
z@&hvA@fM(&2A`sr5CMbhu@-+TAM*z>Gc;7kmOKQ_uozqt74NHLW?%@8&4UQs*eV7V
z*c_Vy5x5r$5eP5ngqY)c24Zl`@edGzr9N?Bn_|x1fC#Xjje!VUJ^&F&^^JxI+*|<>
zINBR!Aq|=-+0o>!BlDS!fk7|n-yy?%28IV#ZTb*_)K3tBtYdl*fsAJmfmv)&f$Uol
zfm3#KAM+dJGcYX3ymh`n48&46eQ0Mt$YZHu=VU<^b!;xk166De^IMCBK^FQQJaiLO
zO&*B+ad{CVLxbfXp5c;$>SSaYK8VeqKVQ23>+9FAKY+Uf3=xOV7c?{~neVM+W_TTG
zalmBa?0b6{8=NC74roA_iz6%!gn}nqQrQ^Rq(5Ys9xy`;)O2Sk;NWJTu^u#6qixLa
zKtqhrASN*i+}b?Qs3ViG3Dg!@bB3WIInv@l1ZZ+5VkRR)`{sg%nc(>!BW4CJ9hrm$
zFl8Xqz%xJE#taJ{U;ZwCfccCxL&hg#nTFjn%^4=7K4btjJ{pX;*};vEBas%M#s|X!
zP)XHU$;_}k;UU8t<9u+5+aUXlmtjsvEAxh<dl(yvHx@AbJGF<g;qt};hJESx7!F8A
zS}@!<$Y*%4L`SB<ex^A?L7W)hf&U<pD>^a_^&pWlF}?%#XQUY<4jf|q@xvgWA%TmV
z{lFf^21^~82d~aZGt4-0h*9tC9>#`59hnEaKmx}PG3uS#^YiM4xr_|YlO8gJr`)@9
ziGd+K<srlLWH3`b^&!LcBrx;&*O&6itPBjtJ{Zdkt5Qj47<#8q-kqI+Vb0a(&z~QQ
z|NHBgl}&Oab4i2+14F;Ynb}UvSAN81F));C`*b@ovqV}jFnrepF-<^B{p5QG9_q+2
zG+Z~xUvS_MBSQt_XEr5}K>AGc3yBXI7;KL2X%yjRXLwNfjQ0x2P=2F)g%co^EtSl^
zVtfn-?w*l8@#{-AGlRm3J&nhINb)f_^i?wRZ!Tb9h&m%((bme$AdqzLz+{lAT%XzI
zr9Wg~P?=%=K?tPz;~D7+QIPQo&v^GtXk}(7Q2ERjclr<`gGEmzvpz_zjIvSwHsc2+
zApOiU%s;4s^kqHc-P7O7%&=ifC3Al2Lk5O5$@f4#Zw7|$8Ri=rKr&60%-J9Z=cnI0
zU<A@rJ=1){q*i8z4{pzRb<!R(Fzh+4`Rwc_o(NDArJ@@&uLx22+7;B44%<|~z!0Yc
znl{{Uqkl0o14G=hg3IDkeiIia*18>RnttdIBSV{p%tUbeIMICZg@k*5KCPO5=zS0~
zgBna6G=S6*@hvFAg5khR(Y_Pl(Lm6^mCKqMO&uAA2Y0yKQ^4acpwUDnvHc=qd<+Fi
zt;(Cg?Qqawqu}d!E^c-Pi`9n&Bf*1Mph1%k=Qyz7QWU|(5W)E<g3J)@Gm!=F_Bb8h
z4H2J=E)MaT-{TLbH7|i(3Z5HlZ8OzxZDnSd<NUBl3q0&NvB&9fp4-C2o8F*=q8_kg
z4rIJX1vF|Om=W<4<Y|Xkbmbqx$}?L}uY~(>w`6PESFq_NqI%2WLG&g~M2fEx6iN!K
z3M?T*S{`l-K|x(`1#HUm#}i`bfLi1tQlLSi<7uE^K53Bx>Ue-c3FOU<V1ws$I+qnf
z28my!h)Df|#7HJWsh``z#K%iF6fiUt7o5;L2br6g+v9Zjn|)i#Lk0%*2XL#bBwO3=
z+NT~o#K`bUW)rB(18SnHFTPN4T3!j1WHb40g1SW>ZVMMq4$Ro`@%)Kx1q=;(?QcL`
zClyfNM#JRJzx5283K$wRP({DyTWl?0Xn5TfGXdJ{zHm~*<c?{+ot>Q>_j*2t1632b
zH$j{DR+6mW&&}oswJz6b7CAy2^3LjuA2e2e21Sav$W8@NZwca(4>$Jw1bJ|EC$ixc
z758dD!M4;z?*z1K@FGRT#yH;&lsv7J#8aRhj1nWRd2`I=LFrQv#SQ1r&*tZ5XV}qn
zf;AG_*_hkYH2n-%R6-xcVWFR&J%0T7_+>)|hV-WsV())A<or#RcVf>W_oSuQ_le98
zul~uv&~WgNo+-|Xr(*Y8`vbk=pzQfz@0r<CL4|sS^5--|P@DSR(LIsp4>2+{Y&Xc~
z0|mi>*E7xCHx@83JUDu0HZ!Qu`{4EL>_)IA$<NOU#P}E(_Ow+7Cp=_eIKZ8Ae)jtH
z>r++5LD6_%^O@P;hWfmudrLq?$p?$i%Z`BzXP;^A2-0YCXip~C9eK}ur-5#&_->eg
z3Ww1%%mu+(PVadM>J2^6eCFE)($a67p9R)3p;8!>&<-e{nZ3+EpNE0Lplv?rp2T91
z)dyrinhn}PI?jOn#V{&78YT<_mmoeqe!;Nr_2<vUkJs1L*6N;)`1YNN;lbTMJnhLP
z&(6-;FUY`<9bqAJ0JM_KS4Socv|z15p1XZ1sC#qo)S*OK(1Nt`%>@xh_AoLeFmks)
z1}$~l)75&IOZxI5khWGGnLg0K--jqMzV^;Dvr{D*7<3XI7Vv;|ZYZ#50IfWm9bvI1
z?H&We2Rku7Z?F+lTMt`-`jYR{9&YFWDPfw=XQu}0uIZgSUohkF9!7=(hY~qJrtovO
zOM)C!x2eFw79<d_BXjO7$ntVAK6S9M?A+~}jX+D|^ts!E!Hj9Ghkt^)qkno^51#}v
zayArLfO=^Sxng|F6YnuFY&d=Bp$y2}yu^nEOdz+IZz@;;3W6PTTb*Zt+!U)L18SIq
zdcp#rp56xr?sg@R3y#;+yX);%P;P(Yc5EZ>b(^Qk^SKxp&b>I^SpWWn;_SKR(^C&K
zFnrjMUpM{MtlyXR>|Dyoz_8==eD33WUYam4Fns?t|MRUqFHP2*VPI%5{I_?*+1Y-F
zPw_A?%y=^Y{?fF2C7@CF1I&NKvKPGhZ+B*P5J<A3p_2K?-}#l7GeKP;euMmmefj^k
zyqMm7=gTu*2Ajis82ui;<yJ4cJlmY%1J7qRi|+4wb58i?-(xsnd`9|#%e@^1kgnQ!
zgZzf#%Ik+Z5gMQCB5PcHT^~u~lDIuEjURN`=3LhX4Y+53Os(l=T>fnnXv};T$jbXk
z2X5|71C6bN-LqZ7-~cyh+#IIX*k*TulE3q3Himf*qj@AAuSC|V(hr&uxv+<^A^nFK
zb6X{NjQ$xf!=C<p!v{Tbkrt2+<@b-eY;&&Mg}K&l-_eH8yYe5p<W+rUW4L#GyF@`&
zxenCvzki4^pL=($Re0yiv(gL|^7oStFqrEiNv7S1M>4i&<7TKo-#?D#nen9f@j@}M
zPKF0=^?xP(o-8xZXJBZ!UArHujN#7H*-*n79>m%I`>|gc+!aoLK3l}%$hG+<3=AJ6
zKC@Yz^8J6zp8+(%2I|@}JeYb$`ay&kAHxTuXS@X#-0Tb$yr0=LK()TOL4E@VNMKqe
zxO;FQ_>8o|(L;<3a_RRNOhH-{KC^Lvnk4Qs%pE4TGBeycyN7WTs1X1&v|xU({DT?h
z;4Z@h(=*cGE<@abJ&d3(!-L3Yyx=Z_zhQm@sLN0>r;-`eWjN4$MjG5@kW0MB0O~Rn
zn15zF0kY_~&TMn(|5<?z`!^OaG$?&$tLSNEW_U8g{J>!y8HNQ%_b|=_RdtHbct5Cc
zvoowP$ZvQaX~E#oRLQ)jrIndM=KLPUIFJ|k((W<ngDOw=TQkg0|GT>AfC{LYB4NLm
zG49+UMuxtPw)uY;*ulnwillo-4ly!>8Rs{A2U)!IjP!%Gpiu~h7>|eke#RRUw)yYx
zVQhG9ke^@!8pQ++H?9M9kMs`iY3%+{ANe41IcS|U+PTTbpoPhxwbO=%#zw{<1z?V`
z@nAYP+0wv30da1!33MqnS?4CdnOoj)<%sz4^!E*mJ=Qmgh;C>|U<`3_IJ)kJbVR_L
zq@OpfwY0=^ZU}B%(8TNNs#!KcsYyfDQP8n!Kl8f!y81mSzw;*DopM)M{{Mv2eraju
zCsUrCt-il}iel;So_k(Q+s^!Y(Yd<s_U@oJk*3zMHZLAmwniELyuWPT)ZW?N6BQZu
zyomVQ`9m@xY!Xvr-ED@nUDp=#B=<l3b=Ii5e*N!Fzc0Pq`)I@QvQw6Y^KO*9Ok5Z7
zl(Umfcwx%TCE@Qao==GK(wutvQ_JkQpYQg6=)a$96#hH><t9%3yG2>E8~)x;SufNu
zm-p>@OG{x!G1Y%H=k=e?eqZvyI-Pm$^sMRo{&Z@^eNWxK^x*VF|KyJ+4%@svv*}54
z=ec7u=byhRSzO{48v1^EhcY+chW*|7%pWHF6;)5?Ik3OejyGn9=kHUq@4N{)HlaGc
z^V{F>Z(nxl@7Cvi-X^!Vl;8a04)fJ#dsPb~Z@OrPe*S$T`P+H<TPKyH4}a^LY%G*e
z+{7<kC-djn{++j0^DKOt^7nOp#P!$v-t04(CBBFI`IptNO7pL@U1^{6-%4ZYlvTe{
zk6g?z&V9ewq+s#euWHXl8y5YTKX<F$msb1I?a`8s^K)-aKfk}kJoaHK)4_#H-duh+
zvp{ki;~%@6KZlsK4|^PZ^IhI1dcH<To$aH|$8+B&n=||?Jhw-B`f|pO>lt^;5AT0p
z{H{!!dBxv-|L!h-`?xf|ELrO8^zIFBXYSqmu4@DL1Jk7;3+^4<%Wh+u=K5vB#-%oo
z&QHC+$6~?txWL5^?4IAVeYAW*;5VP$za?g{ImqvR?R(CFA#R26<=Ndz*IT#mxUKu%
z@|XPE+0*$-5-uM&uJS8j)0UanZ7*svS17)5xV(AZk3#n!n?E@opPXNj_U6vk`kEgF
z^PRtY1cmlG|DRg8srT+&8|H@lcjq3zs~2B?`0B*&ZQtx)*`GP~@Ep(FnZ8fmPj7ku
z|N6wZ@2Ta>J~Hj(s!ux;Fp2xXgcXaYTE%^ScIZKZ(ekA?Z|xFcG&rAUoOw=(!EejX
zTTf)f|NOh_%${u@zDoYzo|B~vGLN#>?^$-%=kM?Rp_gCpdvh-3UcjPNjGR6)rG5WB
zc4wP?F^RrwT6E}l*?EO^3=gVjXZ!j+y})+0U3W^5SE%LRzY9V$UoU0+%EIt9=Izw&
zEWcjcADH%e&%4ukzQS)q_b*v_-Ig;@+T+D;!5y))&rRbqu(V*gH%XZ7#x+Mp{~p7+
zx$Dd<ug>SH5_u;RVf%f@!`aQv+``|2ylNRX*b3{s&<m{Z`S-Uz<6UWdS@tZQQ+pP=
zm@+)L=ORCU#m^JQO6Oy0uRdc4xO8<LU)CMQ1INv-XSv+IQ1<<l>B7dAsn1!b1Z7zr
zu$lh*iQ?Xp&s85~EkS8N%|BNoa?kSFYvXLvFWR15R~^id=l`QJ`)tG+p2^A&>^^<^
zw|?W+I;p^FX@|<}>TJ_zOO751u!-30u%7Y9rMG&Ou3yu?$|rnW823H(yPLe1*iNe{
zF{~f5CPh|gGvxWjEO@s37Vnl{9L2u#l&VkI-`W$av90s^o3&S1Li4WP-PCk?_TMf2
ztC&7adL8?zP5A${`iAgT)pw`goo&1I`)#H0+Gp0M_jw8NcWh&bnZBfN4*S;V6)V>7
zbd#U-$UpkkO2uk1Mv+@KcMY8vKTMP})1J?ldwUDx1HSLoPZ)deU9NBZx*TMfOsz)b
zi&p`c9RAp9_}Bcr&3wT=(=`2wx2Y=o%q-LA*_w50mhO`Zc-$Dv5R;$2G|lo$`dh=Q
zozXw4K2|W4wg2sLu(zEs@nanOgtzZZVjmq1nDo21j#)%z&WbY&8Db{wS;YK*O4d8$
z>v_(FrN57O#ZR7Gy)*A?^`(7Yx&k{g45RPcC}!O(Q)h^^c{y?Q7S4Bl;<N5v_*~fW
zAmGtEp1&6_T&W3FI{i|RAtoUpc<#rBNZUoWTh8+TPP*6kU-^e?)vd6Vrc9;Da*OUf
zJ&^YxF6ieyr@z<dKWbRi(l0tIbNyG=cYLaQIg`tn!mqqzn3Eb3{?4qS{EW%%FXn4K
zcVD~8-pgOtt>iz=g405{L4NPMw#zbtJ=yoGw(b{xV<^X~>h(lCJj-qK#*a%Gjs*S*
zIeaRNp(bt7RX**l*6+=_@A^7iHvjU0Ut+4_#|ekNKWlsVX4y4w$HSkGuY2e4>qw%$
z@2R{x<>}IF3x0e!b>H*%$M2zjY!509pL*7$DgUkQ^^&cz&m-RE#eA#K5J|JJ+^i!k
z%Mg*bKgwIJ@R-)$>+v^lzux!bh4V?9?d?L6-s?hFt$TK}D0GjLP~+{(8;qP4Q+t1J
ziO&DKU|ZO4Y43Ma71J-<pFd-;`hJ0Rdi+e!%?nP~{0y+4aK8B4r7t1Rck0!yVYtVq
zvGkkh+bxsg3c2R8H*7rq`#M9tl=&~04-eCSmA;&*%B<cl^1_U#Ad=(c1h(A_Wg!WT
zhvvL)imR%Zc~_cV6H=V3G4u7mfJF_KSEmGd$*SsQM?a2usL#4!a$>4H!y41PEwwv}
zf<7)!U$!nF&hmw<>%#}PG{YYYl)5v0=(_&5psy_W>-_rbu`|skyzevle|q;qmxE%l
zj_cQ#Jbr&8ujAIdk5wrW2lRy3e&cyLk0GaKrFU2M<lD`qd$ObKkLs?vx2}~Z{D$qN
zRn1L?m+tS9V|gm<&0VXJ`M~w{!`sHQ;(uSsSo>;ME5qv^-VUX@th8x@FaA6_*6}dq
zW36T{YgNa){r8^z>2S`oKRbU$XI%MF&8mNrHIhFbU6|>>tt<74-@i@h=;4L+>~5an
zi<;f@7|yhud(!#W%<Z>{U1(K(kci=&n(0lm?oa-8GX8D$-xPMvIcD}h_CAVSpvCaj
zjb;Bs5B;<&b{AhbpL~ChM>VVFN6z9^YwGs*YAM&H9+Q-jXG>_Vj9*%H-H%(|=M-DC
z*_<o<QE}YtRr7x-pO|>?h`|*8FT0HU1a@T1{m1*?s7&lbVdGxYt?%x?uD;TEqD*=!
zV~uR&6M@K|5@A>U#LizcbGU7@$0o<*=ia?bCr=I9I*-?D^}o`ttCMAu{`))Mf8kxc
zu<xep<$cOc;cLHe#>XfqXRKYj@_B{n6c<G&)n;Y>eJlq=-JU=5V^7!?>N#o7;`a6<
z_FZ|~-&`xbFy+C``Ke8Rx4zu);Ki{o?~Xm)-1F=Co;?~lU;djWI;`klz2z!Xbp7cG
z3tfu6b{jm3*s9C$^W>)xjipnh6xOc{VY$9~uD#xmKYy>BdUdnWyZQ3lx!)`1GFU%<
z7vS_%H9g#*J7sO~{F%ZNIaWS+*7f${Y+IQHmO1~X83ry{lp(US{U&?EL$~E-;(vv@
zAO2hWJ6^wR_c7+LZ;!tHt7G3-8pqZ4SjX<%tCQb~f<IVB*Os=PG7NpY<M^_6wU|RY
z#Nxi6a?e=5*RTGp%=Qz847-))Gj?7vycEZC;@uk~?e6E>zMo?(i_@wv<w;Baf9BV=
z0}J=F<bSvrw<_=XtA(1k-<4W>?`jUQd(|kf^!*OQwR!Oem&M-ncGrFQoo90Oio6Xx
z53YAO|7O^5;KjC`4*Pn3Mjrh4o&Bp@obb<IdzOFs`Pu5VVv=PztLxrR`Crd5e-?S^
z^s!hj_w-HwcZuaa{gYjP%@?e#nVr3?U`5&c|1qau&udx1c|cn5I2&WZ>Vq@CUT6NW
z>||Tf`kCT&$^TZ}^x6H|GD9-a)@#kd4+*u!{o87``FhN`%`T~0oiOv4EdSdpPdnD#
z-6end^|ABY1P;&o{yY7<_?m>0YwIrhx0(5hzvMd5`>?$zoJmA_t<}9LKU*RXpT8Vf
z{#;GBFnz80SLOQU1~M`qqc<EXx0%o%=4GnI7%}xK+sRk?NBZOx&H8sfWT?-a94NCe
zx4CY5;OZ>TTIr4bnwM1FR;?*LqLsen(Td9!w>sQ^I-EWHw&&}wi7LB(be@pi5W3!=
zzC@n?Ou%+VgA;$--Y!0xfAPAS$G;uX{NG$J8}%;UcKYhfDUsRdt~Y4N|L|w9xcT6S
z9>W^r-GznCb>-7~>OJDS`>)q^xy^qqzwD9U&5D#4*Yy8Byk@2uGLemuGxE;y9Vy3(
zzEnNh^!j#n{|Dwq;|cF>F`L*m-`O|y(xuRU!gVfcZ?${X-iD^kN;PxbkW#N9cYXc3
zAof@D{MTp8v#q<ZDfx_7rrzD!x*Ng=7A@~9D@+f&)^UI5^#yNZf`!s$G=Kh_I8U-{
z`L7I_)t+2+nMQxtML!W?=;5_bDZ5lB&JcYzQZtI-!)mktD}OHhBQ?9(`S`sklhZT9
ztmKz`%Ka(me`wjn=Q~sHP0QGBr?)lDJ~XaZ(*0DrZE29&%r7-c7I8vOA7@^-n|0Bn
zYv+aoiJ`Gd{JrXLLsQBUy_(~^C57i4Vab~|Ju&0c<liC;pMzrNnEy6-)u=J=iI>#Q
zS*#4RH-8ho_d@;c_oxf&-?u)WU;S<7^7&Oh&wkkbJW{l2n#YsJJ<)aZxE*%P`)s^S
z{jE}H|H`}5Eg4c1izQB`%bIO@<~iq5>&EA^7GIvA8hF?<MmBo(Oa2*W`KL6>Y;yX&
z_SmmYYi}N0Ig9z>i!+}$>=SHAT*w@IwDQcAZ)eyU&X|5&`;9#z=*Gn3j4Q;-o@g;l
zTk=u*ZTWBig*M_FP8YFkDs^#CjBdWGcY(Q6?&J5YP0f2vH^1IJ(|pQ`<R#gT_pfG6
zx?izNv%E7cX{o`+$=XKh)7xbQ>vw!etxOf1{W^Wq^N%a*Kepd)Za!&qe7YPvlfmtm
zX)=$r-j?4gTzB2}qv6TpMMv+Qaw%VSU^~N~wf0w(qQWwQ)`gtea+|kUm-Qcu2G{*c
zvBDD^FQ0oe{4kE)zCvqno8EP~NeeT>Qaf}wj5RYCuztH3cJH)x)m>rv$sT6Dap%uu
zE-}lzG;i18)ZT*WCnsy4PJ8p)?WxMe$|HFfnH@sT-HkDPCYQ14qYBHd?5MAN-m0ND
z88&D)FIuf5AfdkhBEP6w--<(%wf$P(r#=f<ls#ced9c^YRoo0SGOG-)Ip?`6e_s9L
zy!(xWcdQDR{QoB%Sf&$Nxu1E%xyb#$iWw@dUo?|(_SXKJbnGqr50ytn4BOJ)JeaR6
zmFm4p^R7Zv%E2_v_y4!^dYxs~=qUKHSGqw>@aPd;`=}~2Q$B&sk1E{TKdfgoKFMo5
z@s&`>&so?1elYa)6}0~~|N37KpXiUZl|d{0gp7;lw@#id(p;GL=|4kVkA+I!=fHJ5
z!3<q*K2F}{7Ps5{c2H!^tm(`;r_b#$H>_L#eXi%G_Tvmcj4#(*IW+M}XzJY0E+Prr
zrh4Xw&QzD4GK+14WldKB3&ZI}r%oO^E~mcvK*Y?H(hW<u?dUlBJnp$v!348M%P*XN
zUH4<gvZ*&t8C!|htmBw+cKVe4N2kfzeVo1b?t&>lwrt~;y%BDfx4788<Ii5-pT^Q_
z*b*E~A1_)takI>VGv2=2r*QhPBxEg%`dE`Bc>P_zakbPPy_lZ!QF-DYYi;i@m@?z%
zI?jK0t3)@v+1h*Yla*yQ<FwmfvSrot%JpvtN6-1i_~X*bSF)~aj-~#~EBJQ7S8rzX
z=bY#r`X*EU<mH-{u`;;bd?(G2_**vDrMtdljrPsk4KqdJpG|l<!8dzZgv!&ztcx9T
z!O5x*n*R6p=RP^ZwCO-tTxFl#lqnHs{1x@meS5lenIhKx-8f&zZib}v>1xG<xZ?*p
zv^F!|NO<8rUFa(p<F&M>(^l!EU%zIi_j0mg4BLTiZgJlaPiQXX?RM9h_e0EK;lowY
zC6TkuEuT#J_kI7GrC(<VKKHBBT<WKiVjoyF<4H%TgVW4;MT@eQTRP}{KN|P_@Ntvs
z6EXKr7|rB7!Ke6n%{%j2{tZ_)+(<oQV0$j0XhwuZRm2;Yq;*ra<rLO;rwJv@`JpV#
z>2Yq-e52c4&xOw^Gw7T)__=t;le6p^Z&N;Q@ryptQ+{)wq4UWt7D=u<jTwL3+E;C(
zP&N7J$`mmZr)#ajn*(;aOqw`lmw?;bWMSPSoI2J$#dEnDe(TOFS(?MpYoH?$A#6J3
zkBq<m<0uBM?^|zlr(6+Meyqg)W!F*3HvY|d(OZ}KOmDBa%P;@AWA6XoIx{`X>gto~
zv(rPQ7xMC$OHBW(P^2+aC|@IUi(~`)+OLNi=55NUTAiD_d%bh1ZvF#dv+J)doEd(c
z54S%h=MuVO&!N1B+h?ui<>~f4a<YuGQ)KG;xnDhE{%_pQ5RvtH(Zj;McVkbd_sD+x
z@HM^s?)7D!UXPy!eKbAhYTWtl+N6m;D*XHQY>PA3n>lyR67>gv?p-mvdU3v=^zT>A
z;d9F(F1t9MaQ7}%zjecX>6BGAlO^grRm<IU*gZaN30nL`UeeV;ByRudNiR3`Ut)f-
zy?V0Gxxym3E5eNSnUkYpQajmx-I#alP=>6!>AP=X+d}RxmT0K4*0u3d{+_xq_FseD
zx!`0`hVrVr{OK!xPyH7#FE@PZcBX(0(__E3z7V&bRxr^v^t<Y9wfS4GGeu@Rxj9#`
z{lfmuiS{?F+W)Mzoy7fZ^XgN3U97Kh`cF9U_o!j=Nma9}we}40H$!G~^RPa+-*d|O
z_2enfl#Ukn6`s^tGJo3J_KV+^ru^b)s61D(<oe6XgJ+xX|Ec;`e^8{f>}S{(rcIj5
zk7}lh{@Ax>LC3v_)-O6|s(q{Fyz@4_e?3<rbk?b@li4hJZ=Gkkkr?jP(ETRH(9-Yf
z^QY<a0tDZm?&|XRJ4OCgseRD0d(rj&J^OE7bh<AddHL+VXRGvBd$!8uDr^vYkiL6W
zHDg0qS?F^e_Rh-LO4C1Yk5((V@sZv9<dH4Baso5>W_)Bn8?le6Vte8n_Pu6V&L>l>
z7w5Y!%<1NKoKVg9VNdMUzg!#CwBtTE&fX#;rdH%y?L9k_AvOE|j34JF|KI&$2J@@5
zqwik}7=1olu6FG%uZv!9?{v4=qjRcD=WkAbvnA(^cKOe(W??fsj2V9`rL3OLP?Hs$
z+jl8tPoDNK1Lop=t%5t0(uDWF;9GC~RPw5-={wuF@5-fl7uG*ovO(slsei?n@V5nx
z6DQ45W!iN3Pxh(Jx1x^UEAlNac9my+6C6G1j{8jkj=Eb_Z!f*wb#CqUnyG%~dp2i$
z6&IVE|Ef;JcG85cH_zlaq`mo{lE||1-1CF0cYN;i^3n`l|9!&Dr3ah4b5692ww)0@
zwU$j&d+C%_mtOwbE<TNU_L-Zx>I_eAi}sg`Gq~RjnOz)GAGyDz*k@UaPrt)!JLl!u
z-m7@0HEpS0*JC`TU~91K*^*hEOy?^>j@QcP-`!W-XZe5WPQmbR$<>DsWt}iNw@EL1
zf$#kXyxeQdH!tDIX?gKQD$_u0fyLu^DR%uU^-Gq|Ew9KbIOY7<y!F0b^zLK&5noqG
z{EnD<@ad7%+BR=B>!a2TJ|`dP-`D-eD(aQL`R8n2mV~)ieRReD2w&YO@3Us&5&0wQ
z3Vt7`YKYHSbyl+|?{e+ef3KfbB<Jq$-kZ$T*B!p;zng^kN|8HZ@y^C?PW_Jm_2l`|
zp9ihPtnPjGSz^raw7v3fzlnh0@`L}6N_$<qxx7k^B_*tS<<ZMl(~g$BO?<rh9P5Ka
zQ>>)AJ#1{#gLC;VzKQ<({pXf_k9(i$_LZL(Id-Z%T=b@&TAK|w)8F!pr{?n(%HK}D
zzxW*U1L5Pl=QXk{WBM@d`d^QBNe1grS^I@*gP-{CI9s+iQL<V+dhQ#Zp1rB3AMg9G
zByjP`wUu8@*g7X~zRH(to&NH5uWa}(gW!EuuO?-P-Jg`v+C1%`B**>lQ|hk%cCk0o
zOxk)&XhR^g#cTn_Jxy!Q99R;#ok!)wlNGEBZzo+&|Nr{Qk-SF<3avRQ`K?vkDxUam
zx)+(P(P1x{usW81YR^`+@(DJH{SSZjo2*{TeKs^oY?oHH{r>IYZ}%A9GN^ZT+4<O9
z=-89T%wDpay?(ELan0lO56_0$;FCFvZgCyhbt}<Lv2#XVnAgfZ?A;7u{rlF<b&hIj
zv}fefNxwdO#oZ0xzph$5#VSTAcb~bz%sKowrv8n|oV0%Rn^k8St^TgGUGTJj_oUV^
znbkK8f4(e^KG6`Hx#U{&Y^SA8ab8xJ{cD}fcj?(!tn%YjSifOXlIMgiq5rL>Rb1k2
zV_fj|_qMt(KTm%zEhxLg*U+ys-<<!!^MvD1`ixIl-3SR$kl%3c^o}Rf7|)yxQLeuF
z_ub`W$?#jbPrCdazWrXuHGki;7u-)1?mfMgyjA&UbmzmVuP#pA#~3i}Dt}0piEcr<
z+qVCUji23ncVYFiM7sl8)8!_z2mLu{##kfp$M{3*p89^@BCiA{hUhn!malp;Z}&P^
zt2^dJUNfHlQC?l0qFE%x;H{+I&Zt|f)cmwBYk$b^>WlxjzVE+b)5cpkZP(=kKDVZH
z9gk-4DgI`eQ`G&0dCtXC6JO0|e8B7esxOt#A#e_l_{o#Z4{ly)tlG50C(UT5U)~M7
zl_kb{Nj*0br)yqUTNQ7o{D|@F{xeIjJ0(alOm~;x7ytT1x24z0?k{I&^=E4>&APYM
zZq0Jx$2&M!w=vbcbNX)FbNGq*%SQ>q)iE}TJ8s>{n!PGgqWa|RYfEk4)-p(>|FkI-
z;rt$FAEfr>zM9F*EfaVDaQ;1SP1UD&^QU<#u6-Nd6J>d(z}ImTJA-!e^3&ThVk=h%
zrTTtVc(OF)@wKhD7A}f@H1o+UCW9L{=cOw&o@D4LS<~pHzIS_bLEM)6&x6*e=DmG>
zpY4F?G1kQbQ~&SV7^-@vGtl$iwbieeUOLM%N5l7CZt~R3z_*uHPGsgx<=;L1L&TYf
z=0|@%@jAQ7Dy{3<+EQC*`LNv|?HgD>o?X3{;q^WDoBd0!-Fw)Owlc_z)rvpX-DLmG
zwXPR;i7a??GW*s}Bjb5o0oM+Es(e&Z=JR9Wf$0oW<c0t97@oPYrdYr2=%X_?QY{|r
zJbQ8b@fc~>w4Mo`Kiec8uMF~v4UxLI_T|KWkE^fu{d~M{$8*h6VFt~kS*gaR;p(-9
z%Z}gU*Xfk>VEFVl`k(gFFFc71(#P&xx%hHPiKQ#U<~8#*wnr?vlT*w2CQ|tNwyGIA
zjXLgsRhG9|gq-;rcYXUaRr}WaVy@lC_ZR)Pe0%p!vQYfy-;e4m+yWz>$8Fk>{Xu7g
zG#i(<)0U~6Y&X7C7!-N`YyVfhclH0@yw=ihBrJn+cb&g^VC#Xb2BFvUY9Aet5=~h#
z(`R32^8OXuI2!EViuu0Nx_&e{_WP;jz4s*RZa$02zByyA+3)GhIsQ{B-u`&-sAl?7
z*3-5|CTZ(k61_4wFUoZC+bRF?n^_;uy)<OO{JPR-+c&RYsNZoY@%hu`jKLF40zDW~
zzliU5{v~rfI3TBPY5VcINotR_MZbF#r8H|!-g>tk6W`Tr?iSb6&u2U-^1APq+TGvU
zw<L8fqtb5d_f=_MW5H54W%?rF>l?4FdNB9X{mZgn#rWndzi%6U<LZlv3@y(aZajOV
z=DOObp>*1Hj-u!PL`Bz5Gv;g9H1Fck{^Fd3GrygylIE-IH@#&mC#i3n-(c>4ciyb{
zJBt!)g;_*pwh2DaUcFE6(UwE$GhYe4V5xm#SfZjhOD}cu|7(R0`^&yw|7!ihwpzuN
z$)4eZ`;W7k>)!?P%xBbmvihQ0mc7f`J+Hkle0-&m+GABzF-^EyN;c(5?b*gvyqR^+
z-wQIITvxuU>g$QQ^4EHwzW<Uhy<DE%C;4;iHQj<ubDq|ll^A)i*veLrp}c2x&Pv}M
z3df9!Ca(KnaC_Q87qbW3&NAKjG<(af>p!+!xw*J`jbPo@UmPqcNryJ95Z-;tsW|9~
zuJ*R2vF9?nI(JCDOBc=i8oH$D!k_3jciwOF;8%+LeX)V>;$yc3VOrO=dp*hwELtLa
z_YBuOW*M)JY3dhu6^8q-P0zl5j?cT?;Zvwh0K<osS-b~~S6!<6#<fy&DU)yCt}hSE
zm$!b~(Z3<edEPTmLxopA<`z|W{HWCtk|?y5&rt}kN?QH6OLCQa&YQJ0s}?U`-Ee1p
zXX0n^?YAf1*tqh?v2|PCSx%T+GU59|WzLIoED7l~|Bu?7e05^CnTg7w)vs0W<W1np
zVfgW|%k)Y7WVf}Ar><t3=iJ)#wNci(^zFshPmDn`Nqao{tq&>f_qiM~=b887OFy1u
ztn5>75h{A487P0>YU{zh>sb<e%U1kyv61}sb=#hMmtWqkcGimhRJi81@Y9ovb<bY(
zeir}O_J7|x0fF{?oql_y_$I9V*^+tgybeROiBIu!=7R2s-Fg>fB^#%>eqFt9gOS<H
ze4D(japmrk6Slc<7Momnb7ggj=kta=hTE-{8yEF%d9m);v4gvQhd(@?UiJRoqA5XI
z8}5g`|0i9W`gX=lo++!=>@V0f(VIb|%qd^Zy=|psXKBYi#vj^$r@5%*q+Z?4m?6HU
zig6{|tNn>t3XP#Fp9oobpNkdRYJ9=B`h-{h^of6?eqMIm?e9=@KBp|0K|6fP$y57w
z-YHwU`%6aU$qyYz!%J4gYdxt`jyG%cE^b}acjld3@uIxSms3?cw^j=;(0I$4Fm*q}
zjv$?>s-a4`pKazGnzOohX5o^Wr~Urhd{!P;5<7fkMdG)jzrBAeV?}vh{yyQE-K5rI
zbkDWB^~h<_=;CVy-D=PGeb}8RzVB=wmvpE1&W#0e-;~X|Mg1h=W_NX;H}>qZ;c>XN
zN+z7?Lwf2&#u@7uwKuu1wbyi>#HZBCy}#z)vf%IjcQ>0Yu>8Z{Yjw}}`n!mGo}rU!
z)~ud;)mJRl?~<W*<l?0_GK?bFw!X_$ic37t{Vk)?e#S}D33oGQy-2qV+|H4v=Wph7
zQenb2kA@$&VpkM#JEpW19s2y_0DsuixYe$ncVFbpFw6?r|L*K1^QEDeg_gRX7Bro+
zWNS!Cvst;N=G$$PjHMdt?{4DDGFxy|a_%hk0Im;Rwo@~I7faey+;Td1zQNfz=4O<q
z++D3#yV9544Eh_?u+wst?t+`{c5Dep7;^Vn9bRPnB8VZ)?&}Tb@AnE%^M-$YUHxz7
z@_7Yk4w@b7GP#<j;JkQE|4x3FU2!)`oYj}j^Eo72_J&(Y@MTH)%AF!Bu08(O`8477
zx3E5!M)6y!UDFrFsI7O{z4-sspjFdswBM_03-1tYkiMMbb>{eX%~G=kzMJ?WIRDRE
zaYZ#M<>5JL-MtmA>8CG>%$!^1c|Og(d$z3jKF7>zk9eK%9X|`MPuBmw%X)3(vTvHr
z^?b)z{Wq)((tTy}S$N$tXW7D~l22UjKC;=rF>#U-@76s^{7Y|6IpcWi#XB7%qifcm
zuV{H`UR}N>z^rF~cH%y_oxh6bntEhS<JuN4^7Y`ng%W>^PR}d2W+~=TUz8zqQ!e`T
zq@LBPv*vt%^j@&|kp7#M=I_NB$}HyVpYe`kc_6R8ge~esjY8yvvi!e)XD|B_5@+YJ
z>S#YhnXBYZy$h51a$cub<y7!CyuS2$x+4E8^S2*XXa~G3{44C<_EUq8El9A#yLH~D
ztw#DM!=DT8GAQZDIQ~SWGBj)V;d!@=rZ_*Tv_HIKNvR)eLeQh-+mA*6QvI#!d$oR|
zbd8hdR)z=LU!1pQoy%rtzB6TQC_})59h2PZV|OXLRX-Hj_}5D4lDMz8LQums!&P3_
zX6qa46@6PYqp{_X;<p)#e|whBPrFmTZL*9ZSIyHC(`~pK>NxG!8%FL=d%x8B{?w}>
z;Y&YxDa=dD{VM)to7s$RksWdcs&(7$)~rpo{_P&yDt5W??75aNu7Sc0$M0smQe^m~
zyT&Y5DJv-G$K?gWIbBbzT+SqU-<e)fH2L(?^kTO+yDcXKeDhnGRdwrS@AGB1C#7)2
z&tHATk>QT$@-u~w|6lO?R8+9J#2)3<yfWe2p%p7;uRXPO^1Y%%YI5ESSRRC$M@>5Y
zAYe(7Rm)C>oZr9REq?R)&HC@=46J5db*T!a<_s%2nrAKw(mb$%W&X3w#GIOm`>Ye<
z8SaJr()*J6k?U%m_x{jN?+vEBdBb*Ki;C*E7n!&B7A}0px%rB*;r>zv`CS(RoEg&6
z7F@r!df~>DDRZstETedeO4>eiwdwFqv!1%Bfc3zSAM-=SBo(*K-rlD6M4`~c-udOc
ze9mRU=`7_@;_~wQT_${QT%zRu_WFVEWxiLMZ*jYt-TbAqnd5=9xYRA<hes}Ee~RN?
zDKx!5FF$%O^U_o4z20fY?I+(Id+B%8o;AVoPJhwStCLF2_AtKcnDeXcmDludo>QhT
zemLX7T_d$j0pG()4ZWT+#`{@sBu)2no;UC4$$1O{uYFi&ymfLu%P@V-o@qDV&)x7u
zbp8zyosuq_l*xBbe|gMmIcfh(@8ePx@(T9%_9#Ek-I*|(&uhQv+2s?urv`al+OIYz
zgH@03S?lee4wEK2)y$jkcWIT&ln=9FXTMC(xS8m+$8(txU&2mq-cCVX)`@K4H@@@Q
zDq4NmDLXxBzAnR>bq@+_|1xUaIlht2<)FbiIbVl4<~Oq1YaP6uzfKDBS}Dk2J$Xvr
zC%+GIKVN@oIjwzCabnH_?!2eBOeOOcdam91;HgymM26_t43A6m?>%zzUU~7=RfChW
z)?W?_TVv*aPe4xV?`}uild1{rB_T{IbIaCzR9bNM#pkylUf4uFn-F|-j+IzK>Lua6
zS;Bk5kE!11o_6P<kN2Y0;&bl5*>!Fi@7GiPC(S<|*&eg5<LZawA`?W;ylnHa@cb;!
z?Y#J;x%=|a>3VNwH{K50rnK%%y=7`e=&sFCJ(g+<R*JmcqWmveK2mzk)o+!{8UD=s
zGv&_frkiTZRWvq5*u_oCI2X40?z9VkzpadoTKTBzq0f<RjF0MHH>s^W@!{Ts8t2Rn
z&o?LT++XK$Jn>Q1%H)vNvY_BsX+LKzx4Ln}@#Fj1jhBiN^`&R6(3{+IN$%EtZpMAa
zR;v#h*uGF|{C(_V)P=jdJak(e7N2{5&#dIloE2xbYv*!xUB2RFwp8izG&N?10;foQ
zuFl7O(;`opNZCdT?Aaw9T(*Q~j=EvfXPd}vyN*YGGO2x+BK^o)U~Xd2<syx3$s*ht
z*ZLEFO)O=Qmz;mY^UXQVsgAp{=6SQKYcCC1I_<9h&iWrqjtZ{SI;>HBV&2t*c9WhY
zcj!)ybo!*cQ^2)?fg#-be!wh~3KNa`%l2EPnAFcs`n-LoflKwtiJu<b-MPIv_el-M
zfsPZ4CrzJyY4h6*Cmo}j1?Lsd{?31PhfSqZ^UnMHwe#2SF@JjhM9B$7y9&4e*Hfxv
zeD#<g$bVmcWRcQir)e^t!Uan|^Dgy`{rf1&Z|SlrL92d?{JmG8`RA7QtqjYUxnGWQ
zdvF->yUAP)oAC6a<2TL1B{%LoXAh3J#`Yl4`1z?erzH1wwar323W;;p`bDn)TfA8}
zIoZKT>Gp=;yorY|S7hlZzK*k2nK^e^pIPZ&^QkN=W7Symh1`X1r1J4@wNP_UUhsaZ
znbKy9*j18RziwW1O1>C%OU$V1gkIyymTpsq3ZueC+hfu_D%xxsOTYbb`~R8MTFK%Z
z>mHB#4f+DcttCu><~z>(Y`e5{p2yS8dab_y`I4Q>PrB>n^i_J4Zv6Oh(&XaIk7?=I
z?H`)OGgh~j<mO+EF5my4-amV0b9H-PIol+i7{7myUQgKN#CRauQ)=a(v_FO^chC6G
z+xfDm`Sr>5(~FnCyZ2=^?>wumU5v|?$4_)EGH1vsj%)lHa9}EDz$}vsHtg3T`Y-2M
zTd6GHvZ(&3-^QuGSJs@@pTo1^mF{A<#3N$IXU^&`l3M3wZu9e9Id}6pS%IC4CZ^Ua
zt$ugap|U{tllg%ohx2|FT$I0f@t;&<`{CP~f1fX(*u2gvasLe8FM9Qvs@raDm~G9u
zV9&%t$Jv#f1scW4Eba^!j(;q>wB%yU&LyjLZu>^}aacZDFF8T6@`#M{XOY=2pZJBE
zZ+tt=^~PMkYcX8GK8u%63DQcNW}sN(GNs`m%WXmRDNJiFPTy~QNK0~7LR;BOwHq4?
z{%olJU6wtsVqH}Bl(_Ss+Za!{b^KZT`&)}L<BuyJ%Tk`cj^LQ#Ycf&g#-Hq~J5$b!
zJLhel{jS7mt-<0S^J^~epIh^N>-CtOO5gtVU7llhX_7^UoY%B=?+i9O1|iGdEz@Ic
z4_2NLe|Xhqc7nmmUH;6%+y@=(YqwXVX=}%;@vV)iTDF+;4{N}aEgabij1HMboDX;w
zbUs_X<IW?q^uNoU;+Su<r$u-<v0H?T70-TiV#=(JX;GWnI<Cxi&(_>K-|MuOu;~;L
z7nd&?hf`wyt~&NVW4Xw-NzBShT3+kJSKW15J5TrJJBD-28U^;HXOtU0&)&M|#NVxl
z*Dg8je(UI*lB4^?^15&Fw;CC}t=W`x+C_Wmlvi2@*;@VBq)jiheVu+--$ndwd!6Fm
zcC$Y}@9!!IaoOOnzwzQ9k@tJD7OM8D{rv3lWQB>v-ny$C$9U{!-?MTzSseS}OGlFZ
zfoUoqJu8I@OsqHQws>A#U-f>K*|K*%Qsu2JH@o6K94Nh6daEnh^JgXBwm|3V9DBa)
zDKd-JR>k>WUdPMoT_<7s<Qn(x?S0$6zfl%1&fcTycg}s`ZDvXLty5H|WLJAPUy}A=
zn*RFpZON5S#jgoGUh??m)+E9DS<m{mP5i8X;9Q7}*&P+F<j1c9ufNGJD1LHxhgrm)
zFTGpx8gdp+-1hXrk~)`E-^uUVKUDr|oK<}1M9KCO5;I?{x+ZYBy7Er=ujEU6B689^
z)$?=~J=pE;x2Co)t-{|tY1dz+w`sR7Sr;yR#?NPO`m%QBX1)jU-(%xd<A2QU+jdcQ
zgRbPf;uu$+Z2LX$4zyff@@cB0Vd5$G(1Piey{{&HQomd37F6WsCB46W_PkYD{gJ==
ztnF2ArE+H&_wRmOt08q$$2#E6`oB*y;*wvU`+4h(N^EGa?Y*n{D-=6Jwn+Wwt(h7k
z;l3v-C+O=Yhsj0__A<H7CE1ToeM}RXd%weXD)Vc5xeIpZb{lN>k9fH8-EW<0r*+Tz
zzR#T8r@AQT*nL55H{aBRoL^3*oW4=z*^5ILoO?L^-c|EW3zLt`&G}sSs*K@UNso-r
z?-L0@6W(15Td;py=+SV_x}?g-xjxT2io^s`x0SIM{@&*Q!epA(YzDKXdkf#Oo&B{(
z&S#a#v19)Eb{3Crh3)-y{=#x$>*}kq(>Xirg^cIi`L@qj`jB#u*xaX)vhNo>?^EkM
zvOfEXbsN9h?@l*|LjR?oT%@PD^0%)(Q9fa^$A7;U3+~r*KI+|~ka^E%j&^FlQp3#5
z@}ox68PB!#&*9rK+3K*|w>=+1Ywt>(o2H-tev$8n*LQ?BO*T+%-n{m9&$k)+#YM&c
zlQNa<oxUsk+tjC7YwW&~mVM<bAGb*Ux?cIeQ!Y)8V>nYEaDDB*kj=B6-TrX;iU{j(
z7e5o-lJ?(EJ6U(D@SXTOw;{@!@!HkGb*zFs{{E}Z<Vwx|{;4ME<ot^K?R)mNJ!$Vd
zW3{qLTduWmUd_{9zqI^U%4ugFotPrnf69?PeA3S1#p_EoR+jMVPWf)QbV^X;`@>v+
z3*)7ielqzOc}j1~V(s44nZ-#>{rQ(~>&ef_Sf#JYY|C+4+<(6dXYZx-{<#eQ)8bpa
z4j0FD>^#^In|Nu%=kvE}-Gr|C%6OM8)oq{MQg_Qq`O`w15H<;QU54eyVxGUfrKDca
zz0Ldc!ZL383G#vOwpVYh2)HJj>>b|5XkdJiS(szz?Q@<J)~sfIu)!;|#&1I1R|CD7
zQqvhW-inBH`n!4FeBo#1LMJ!vlbm65#*j~7w&Tvp7o%sHc}@w+6Xkq9_i;+o1dGb0
z{Xt%up|R0L2DUp6SiN{0yK!k^mT`2|rG+|czE)g`7R=f7VcHMnbMG0fWn%=@6ckpk
zR^_w2`%XVn$y#FinUGiC>e9+&V%OZ)TXAC-(?phE+4;%plR0@V)ZJPka-Eq`qp)Q1
zX2*b2Kj(8gw=;a05ajiCZT30+9GS4H{%$+&$x`C;wr8%G&7g9AS*1$^*R=e{X{^#L
z6`P80c^#5rvka;{J(b~1@sgtND{4;(U-mxqeop7{w{EMYmrB*Ht9}1mCdXwvi;djR
z%VksK?=75j)M{>hlx6jmX7Q3W>!zH#&1n#-S=#jOz>mt3IiYL2_j5$Q2}+oLAclD+
zTl}0gXVxb2=67ztudJoxfAfl}wueJ-r|`73$7Tt;Ej#Ttd!gHU_qs{j18=Ty-t(?!
z_m^v}EXOT&tlI6L{rKRCg-br=Gn^^CygY%)A@l8lySHk#{P|ar-Dx$wcIp0jG1-jp
z%e+etJxUQ&XRJ+OPYB7$$kRO_Y+g0hTDU>-+kN%Yy6Nj@pZKWudd023|2Q|#D-F`O
zWM28Rt?ss8X&$HC6yB~f>#2&%zHHc$ZrO5X!mqkDrJ1iaJGrjyPD;}Jkm&pS*0rlY
z-}xGST)Vtohk3)R9WT!Jvpz`sZIwE&FKOjATk{ZJUG0ZYxb$BJPJH=od);Nea=$+w
z{_{nZx8CwIYO#41ar)y6h0FeHy+22(Yu|ow>G!UiJMXRiy!hIi4JzMu96o$K{6owY
z3H>U^*qk?0D^+}U9*~Rts}Opm=g6C`^)CYpR~kj!KOXgb!L-l^mTM=z*b`+b#IWT+
z>`E)n{>wiuJY8_bCN|~mY8Br5LWa{eC=^}%%j&SueBQIGN7j6ty7t?V7~Qa}!nSOM
zpDGJ$4a(o8^Ti#T6TYPPlf?g3ms8pveAE8+_d#$}+3weF-(+h0%&ZGJ;uU;W$SnBr
z&cN6y!S;ZO_%5mb<R$Lge!R_O*%JC~|2ZzH9~K_x*8aMd{_iQDUC_>3YlFmA|F>iF
zm}PND^4H7rFOEq>w@Ak<*Iob5b4_Ag`Ocnwj^E#CDr(PrGQHwj@4REq>z-BpE;-2L
ze>yy7e>KbFaF3`O`R8t1=X=dM;gI=e^%_UR1N+x;^O;@V_dP#wkxAv&>?com83bDT
zPF{Rxj>V1D-7|dD{`;5DIlVvXdx0Qhj{4PAlY+t*U7eKrdqdkajm+D5+p41)Ib!zs
z&Ud)~@`+u{Q~oVsk5twP2Yz*z$+2Y=vi<0{#CP+>ikr-OH>d7TeS9l)KY!6V;q9B#
zHfrv&O8n3{P5R$P=K9O-f9lyzsI@<_{*q@~u&?BJ-<6MEte>~MD+v<4a@_OPYwJa4
zUT4Hum9EM-S=RMvXXZJ!16gql(iYMhk^+{@E5ES^T8JNA_U+<U_BziLZLSRaJ10Zs
zxOb)I@7TXC=v8>b|2@Uat~j;*+m!x$TffAA?>pfezHV%v9G1O3{paPrbq1^YCa0Ah
z?e3ns_vT5zZSy;l?^l^dU3otB#ln_cKDRa3{zv9N?PcNeE}h1_p)$YpO8h~+r~H{w
zYgrO{iertJ>|}|#k@U>US0?P#+%qw6A1jzPoj=<(ug@%`c9F^E$2ThGdoB8*E%UZ9
z^IWH-*MXBc$)U|zSEKX0-e+Bk^ieBb)xJ~MY2t~eR<mB+?2u;A*n055MQ3C7*r|1)
zc5ww20jBR{(`%cvGOpeIv*VN5)a#6IHe6h3!uzdH%$w<yOsxA89!@ip_33wnlKhfV
z99CWybNhNW__fnH6Na?qvj1**dZ#>EqqMa@IHb<QKV#R$mtQul&(gp5!_(Y#V*ZlD
zwFd5~CpQOv_#x~(um0uLhxyDK&OUVW=Uy9Y*OTsb^%9SfgXYxB)m1+Nf*!41Uuiwl
z=<c*MQ{Sy`nEhVa{jxY-w`&`Jyru5v>pnegvxQl1cNBZxx!V6aqwCr(_MRs<qn?(m
z4t>x6tmRH&zRdmmQlC>ESVU<qWwJfier!^tU-?-E&h@u;`d4kuU^=}1U6|uf(RS{y
zyUUN8_QfBxW61H?;IDE{RolpE;`@}JzV|NvyOK0(ziDyS^Y6!OCsj!lb_evWPhEbj
zZq3On>vFZ~<!qwvU#ir6D)v^<-(<4-(sKS<&I2#HgrxS&z8Jb+a=EqU>s5+k_goYY
z%(I++<Wh*p-f0<vMw4zd1qp9@I8|=a8pH2P-n=c(@u;kb$(gc{Mbf~Rf8WjTR}Y<;
zakg}FU+knX)uQGd1?s<U_=oCF&OiA#Z^f~*%n>tRT>UEfptIPMXJ?X<-jyYH^CsP2
zaps6w>gfmP^e*RnZAf|Z?bBt?{V7kQOO`u!$@Sl~l+u{LN5<wt$_KNGbH76yZyYjP
zCVH%NBJbmg{q8)|tcwHH&81eW8{cq|_il)_HLpr?Fur;HQqzp}6YsCE`6YJ$@tWIu
z@9t?O@!07neO~@%w|4S=-?I-7th?c{q(ExF<eKEGt$~YO`qnUi32E}u41N1y$EjYu
z;NSKP_q><)J!@F3*J#&w(X*_eZMU+u&gajsg==*_txw-^Nt8LOkIioC@(6Essd*0W
znoC1!H%6}KUmCT}a85?o{x`xaRTiv1yl284`TrjlIL?vh@BOo)FXg?ajmf{6_ZFrK
zS!vF-`o|cN5#C>OXK`1{!auJjX?>f_pmK#Rm%l>dozyW#=W7f?TUPHZInLMk{w4qJ
zbyuV69nS<XZTNh6b93LCN`IEkGCqE@lp~(T>{N_6yy!R|@BBG3Dvb^QO+5a0-|BvI
z`0pe?(NBxh?wEfzeBxMHzH6#%rPhIIEx%1Hr5V$9UzwS5V%ynVFU`_*&#HwNAHT2r
zW5xQ5X>zkZv!CwUnd77>xaP-`caO8Qum1bKA^HE&@=csU-&;52aQwHqt@~wntj2M*
zs(j_nB`eo_xHK_h^4Ao%GrqNJ3MN=c@RqFHnRS%mv5@!=kp();AwQ$0FzeWCOa5GJ
zvh~I8Mcq%%aoWD<Kc(n-@WAe^Q-XTe&6Y8CjQo@tc;vooxOB<l!~PGCUf)x-XP@3B
znH1ZLQJ!rp_TQc1#`~6`;?_2~pF5mYBPZ`(_T!%NzhFtHMXw%Lgzh+39(dT{O+j_;
zjpe&tzNV-;I9_nN{pVYx;o(jL@A8+GcOANn3LdWN5H{a`clWFyuh3tN1!fODyi7FN
zf9Ul}6`3)f*|65#?p=ZUgJq9)uaOZ_UlGjCd~Zo*=d(*E+W&u?an+^PbIIo~A`EUC
zOQ+1@4E(n|SH5TR*L^?E-Raw9^Sx&oo9xZUALmX?7q6*s^j#{I%Xsp|<VYV@4c~O_
zcibOr6b>BM`rSEsa`i%fVFs?rd%B9ZJIvZ<J^RLDg+D)Q)vg&BiZmPzwVKAfCfrN&
ztL1_EiBFki=XacNXDqhXTKX#U;iW&B659fHpI5h5%GUU^DgLiMW0~blRa4b>3{H*g
zE3YT`FH4i3enN2ls-x>(Dn83&|DhQ<QJ=xfSkdpt$qnh>kKS0g<e=?iM!%5C+l>E0
zyfnW`Ib`<yFMqJ$-}<wcii4)ut0rf@dwi?WwRiF9<3WGdlrL_Y=A9b#Buhxqcnjl$
z%O+VCLIq~Jd;8yZ9IvVjzb<9NV&GAud{XanQNV^yE#>C2OVc0c*u*+UYW9S_;$djh
zT3XV7<wvsfRXy`Pdl$^vsi^;F^VXKLpM7#0!Yp5w+D=cBxW4qm**U3<2hN#H(+DkN
z^x3rD-L7x*cAq)(%hw;B-NW8>xWR|hV*S;9zi0k^FJWVm*Phy0JTYj}Z8x?js~J5e
z1?_cv{6X?u<1DSmb8gI;S9tQRVM*$hh)>&2zJDaw&ve1MSE`QXMES|bCy(>pV||dX
z-g;=!4~_*kFZ=S}nSIc^*v*>4^mW3jIEI54(k8|m>IdHn;C?havr63N!qd*B50gEg
zS$32$JveKUHQ}Ph<2hBeLdtzN^xUSiU1K=o8TUfFK}ei^he&1^*M?P>DjhD!I;Dk*
ziKxxaFrK_pOvk0MnXOG_?f-4pvc);pFx{AOY|A4T2EFa;z3u!qb0l<i^KN5%(E6k`
zW%jLgPdL0ZpY}+ds((BsXw^;4Ne`bhTkdevTsno-cIDRN|CUY(TJ?JRGhUuE)jN`J
z@7}U^-I?1WX={SKuKFM5Qs4HnD7xzLW3K3_m)6g=?vQ(V{v`KFJ%9e?zbDx(nrc!k
ze!%D~SI|lsoi3rR5qiQs`D@t1-<3Y*Ppz5Tc(bgUF_SgamfNAkk6}Jfn$3&qnePmk
z7@D`2J!Sf!v9i^)=<pu5rs&}8gRk0N+?!=ty60=+UN1Hl=_5gv+6O*eac-?+zA-`Y
zQI*{@3Eo}(Q>}FvBho^$lpH4Z3UTn=osxRk`TswM|Hq}4>Z~oC5_GzM>eP##@{xTh
z8f8%@tyH~^X)X;}&9`!1{P%>VQ+}O{f1Dy1JvC@mU-iUgy|=YecN__P1zNc`X;(}Z
zkKf)0_jE4(-<q-S-+GZ_LR-IBNM5M!U!`z+LGsifuemc{y}Zlh^)fql{+oo=L0+L{
z?#!N=cVm(=-b~%TrMG`-aPrAn(O<%!v$OPTF1<2O?D%uny=IzAr&y)$a6G7!=rl1X
zvq#l-YS1n1qw3x_R!s?7)tCKtri{1BwYT=oL6Qd@^WQMt5WD0qa-HM!#N75A!PzH2
zZYw))?BcvBv@88Q+l?2qy*F_R&fQpOn0P>^p|tJ&o9T?Fa(g0+->sWdp1S$A_;mf(
z!d|nID}y6u6esNq@><C?>06MPrRFKgtClXBOVxfqo0N0tX{F~`=P5z2(tA#shI+01
zs_IvM+)S&z{nOm3tIB<@Gc_FQxie#<&*Gwn$dzk@U4?$A&EEawvBsmgimvFhvit}B
z^PE1*Qk^O#J5P7|l-9o!AMJ5jndv+=Nb7x$b=4Eg*UPn*UP<&{R#N1@bV|P7Nu!u~
z(>?TxlI?FV^U~aU>sZ^}n9Aig(^h<+8srt56QJcSv3N?*t7}s>-T4yYwesv|Uay}i
zB6|I*?ix$4oV(xK_0%lzRNUp&vy)FoEuE5Qx9!*=OE1k*A7kt4$CCLSteF+*ua{r@
zc2+gA<8-p8>C!2y>KXz!y6yBzeZOZ(#^#`vXT4LBgd{5dIPz|;=U)6^jnmR8r+({H
zUhAvqxbd(5+qdJ#6OUwG+PX2NDadQ3bx+sHZcFWLEsqWDpK>%TJGjSk>FWC5zt$c!
zkH1h{FK)}3`z%TK-_4?g1D6?8PQ<>Syz&iG#oe{nUcG0~F!Y*xNqU14<D|qI<_#uG
zgZHaWTN;_|Q0cbsK*8$857#ry-dvxxZT3dC2g%oG39A|{*5SF%IHAa({dy0JhR4e*
zb%n=-%tcM!F1@7klZo^5-eb$dBo#KX+C?65YRHetUYDxr(AXIKLgBzYkqPVeJ-()~
zG^BURmi6|1=5skyoYpM}(byZ1GOMl3Ttnhy;J%$I+7lnxU7r>Gu`$T&szF7dX|UJI
zN4{p;UcZV^a(g_bXT9~gnG(k*p5OaA*?9K(8w;ldO|{F+e5&(N<^<D8&iNcMa^6!o
zB=1eJnH6xyn`dvb?t`o^Yo8@dnxu1P&*W96d6#y0PFCxkZIZd@zt_^TuV+f1#eZ5E
z<YgKY<+AhJ{6G2E&wtPHED0)KI_1{C_UPI#8#%WhpJcB#XUUYT8}F~Cw9e9;di1u%
zs|*G`pWX8u&YIaWNF+Hg-}7i;g_uGEYiAPcDpAIow^{nNIS)h|gv7VY_A@?MKO-jO
zVGh%e6X(M2ZlAtn+p*4uKT9u94Z3NgANXpbi`f-schw#2yFvm_^%QUMZ`&BExm0WC
zj2&N($4?E)nqNFgWM!DY=IrOHay_amE%qH#$ljbI=Y2{)cEW?n!Sg!mV|cdi+o|%p
zAo_qyrswhZK1QOG%y-SrTmP<4)%w%api`4}8VcUDpSI$Uak%P_C*SG{`Q_J633A>1
zsP5V1gFEb|tvEkTbLo{t&!SHqw_i^zdv?4q{O5=FeO@a?9t9+=WJvCeD!ZYYTg3FM
z{?q=&QW{IIY*<=&sW9Z#swqLnT}k#IPv+c__deCOXW5jX?=|xa=DUT(r2nm|+s4+#
z$9$kl#!IJ{amVepSw`K;T#OOo>7TAiHn`t;KiPlQ9EOI~=K?~nGZr`>Vmf>J$ff<S
zwQlDediN{&e1KP`<Hby+&y(H=wi=!03GC1Q@>9-GzH{dh^Sx>E@6LONJPcSmCFs2T
z)D;I#?SAq<G+sXTwAWG7sB-J~$By5Zu}^>IV1Bv%=q7uHl_wcoF9|iw&RwB-xx(q5
z`21r%pOP89l8;Nw_gTL7pv*zeS9vT6zK>!rb8pY~<2cP{yl!3E`nq!dzXhM>|4cl`
zeSgOeV^QyOVhq+sMsHppd|KFkNB@ZzZ<p1)&729#)N4O^cDpg$d7rm<`RQB})54^c
z*EVl)T=*lcxzz9V^zvh$TYjCpd@#l4fS>f1_1~EvNL_wv9akR|bbc<+qGvWcgT!6s
z^4L?hm*30to~J(jUE<E(Nh){GR{P0|PFgir=AUQ4N98X0H+R@JopNB{^WDGb8^ag#
z=s%l+e&|Gh@%uLI<;!&^c=bC4{R8*kJ04udwC7>bV$1lG%=M9zjF#tLN>k&!>Q_|d
z?`bfB;m?zYlcIHQnd$iQnf;l0C^KB<x$FF$CHjmBr7dbtH5gu1Usa!P62beS^Y+?n
zv1;#^q^y7U%wB!&-jKang?9{>6#O*%c|7Gk+hi+-J+tdv=Q6y=URUsrN7ChT{x#Kg
zQ@FooM=VKC5OvsQ#r)=(4$F^gU(>ALFg%!_qQAhae;TvMvCS8+?XQnL!m%my-}d)*
zwb}EN`Bn%AyuE&U<NV-B0vlUd6O>qY8@e+T?Av*0d)EG=|6Xo?Ep*<y-MxKUYBlqR
zuJ+nbo-;EU<ScaJRkmMTvSitza)t`EXFu%p-*NCNyDIP6+Hr?DZ+WkAux_sA?UNh~
zQp;lf!_TabihAw#BK>mSHC-*=DRTFhPvN>^`{0J%_Bx&$g2`_mGsfTi!nXCy<|1j^
zd27!6d&*$FXx>RZ`KhgLlXUx!&)g=nBg}5jyHGxxnS19?E3?gI*m2kA;vD&=;w`H(
zx4#xEo#rup|G!k%z#BT7lTyCkcv~T#u$Y}U{GZ@s_IJz-a@?{fEZ^*tOf<i1Z+_go
z>&<>QyZH|<CS0=Hbzd_`v_br=$X>NCtG{^ej=i3-yEWq9r(NN8njeiER*L`b=nZ3J
zd%e1u;YM8ezpR3bCpffEzTp-=_U7&Os4kyk^Hu)p>Cy+vUxsgCd%!Ks`u&#Nuh=@D
z{jt|A_L-FFNIooGUK8}lkiq8WCyPBi3C@>{<}-d+5VW)1-bDG*^e3;AC-pYurYtdf
zKRZ$XKEspc@6Eq)H*oGebijfk?8LpWZxQiRcNwN>XxbflZTEA@5m|;ePhBswGr2|2
z*rd7Z=chpF#qYM8-<G~oH%UY$C%%5|2aW{ysJ?!NZBo-;Yv2ENWOif4wO40U4RjtI
z%KQI$^WwelCi!Q@ur^$5e#zm_R1o^f>2dP%0~@|_I$zx+roH6F%(Ac7q?R*;&ABhE
zsQHFxtzGER8-KQ~3g_5hSiNSwS7=pA>B&`*kK6cnJ)E=n+t*9cH`RU5F)x_St{Wc3
zyW#W$%a>Bd6GVJ>9lTMvWaBnRgJa75MK>Ef@B1e)FtAICzGgmft14>I`ZphIMK>LN
zdtY7iICI&XxF~lq#l<~cwep4&bgDmw7_VQqYrpr${5?YQ5==J)pO@^~d0M$T>AA+z
zU5qzVYrn44=;*nsDz`=F_g-}gQEN4ezBhkf9lQ2y)xG3da}2Mp)-1jp%OEqS%vF}*
z@d>%Wz6gl`FIF+84e_^hfB%SZQG0B@>wdvpr-snBXj#Uary{@H;XEl^(i#}*{n7UL
z=9Y4O#%)hB*YPfRnXB%$Mr*sq(kZ)cE|Z+t-|s5L^r7K5Z+CuZ(;l{mS87U5&B*@V
z_t|mj;rH`4<XydCck$ZfQ^~0sk#|n?)h%;6oz(D&Id?^t_JQ`3r=R39XiT}GcJ|k+
zwVURgf9D~}(6;OT1|4TUkB@J>V&BQE=Uyq=_f}f2V)Ey8GI1C0^yMu(BHf@{c*yH4
z>x_we&irK9v;MDYy#47l>+M7vzb0rtPLj3$a<%m6hWH>$)9shv#<x~hGKtjH73waX
za%%1F?~1ebAG&3>?TfMKttm`XW|_QGdG6g{dh+y%N$c9bO<$t$_h8?#+L|>6tU4|Z
zS1S5H8J3-yfAs!0tJmt+_7t0b)R^_}cvtR1dvob`i>;1VGw^I*s<&~E%HN}|B4wTX
zHm-_{zkTb{p8o#Idkh-JmNqPQOci>6!-~V1M6PbGird>b`*EMjMG={Kb@IVWV=Wy5
zoop?<JK~EjX`V|^u$l2gOkpL%vi^SM6K8Loi%Fb#Thr_Q(|zIzw*M<0tAAE*?|C#|
z{HUxKSHI`(_LZMG6O49Tm)O`UGkuB6)2$3g6%*Mu?tAy?%%?Y-cVCij*z7y??LyYl
zW&h6!GcVjK6R#V0N7OEE%AY?O>tAVI`1i2Y(Ao3k%gl0vQa;v%@JBte(=22fv?oom
zkZ#~V)VGK8NLu%YkA)J3P4|+QWf<E&+OKg}cM@oVCQ6Vc!+4QJ&W0J^etcB4-%`e}
z+ack#ZSK^x@0XmE%I0rdxlN71X3ml$Ei-1GW@O0u=(p%n`u8P8oCj{Jd4<iCs)>sC
z+k8=*!J98M*R3^k<=-3DZpsVqI@|yI_xQ&4`SmZR)uqe5&1|?ak>Sbm_2)I7h)BlF
z3wz3NTItjM&g%QQW~B#@A6M~aST<YZN79Q-zw#s_Ndv)6VoSUoSG-*>tj2$qW8c=w
z#*HGA-hJR>da$k|S;_M6{P*jhJ=Tk7$T8!)x+g;JX{?!#Pl|Z)wx7bsUNU?BR5wf6
zP$a}De=BMJ_kY_b<ecAksh&Z#SGnJ7O}vqIcYpt14}<oHbM`c!n4|wTWZJ(YE}y>L
zP5IaI(`eF^KA)@p*L0aCU3qTzJ4=Q!KxXoxXm_9I7diV>*s2S+Jz@U3QlTSl*Tg1I
z*^_-+KP%{7bg>eiJm)FHQQkB24P_Uk+_1|udBvyByy2kR=I6~0Lg$TVZgh2zW_Kw*
zc<0@m{(j$%N3D%|S$)%{?OXp&ao)KjPa+uXHWwTVKdJsp(mBB_Vg1$5MhsoY=g65~
zt^91%@YL|Kn5X@hZhfOCkJW@Ua|Eu{?dMU|*I0Vxwu98HMBn-1le?$>x%{3f$8)Re
zcMI-@t5<W^Y+9bD74<zw=I4z@&S@c2|FIqLo^Ct;ZvTO_hVzrBSq7>+SRNMWwes3h
zhNCNeeP-<s(da+crX_YxiYs8=$J75~Hom?wVTz5*T?6*L_ZP8VQxREc()a6aDTB|J
z&FXe`Za(Z0bJn=5_GMUe^<Cu58A~4hxs?@h;o+G{XAU|uMD*P&oL$Tik@!CDP4dEx
zEuSVU+gpn^Y%DytO0BL{a^LHx!3Qg(7pS}|idmr*)^O?Ft@}oXH>VWjD+;c4pTaV~
z%eT$z)5AL~5-vMZne>?p)}P%v&sf!DhEBJ{^1dmIkEc|m-{p4Mb?x^Li?g;4mn2Fj
zetTGdka^S8WYgcL8v?qved>>jv<j_>-W8E^p;X2FQ+?UbJ#3kOPjLO6&Tans+tjCz
z_7`5SE8WICCH2pb*N@d2*F7)oGSIv7uIS|1<u}q7O@FZA$isq7nP=J;iup6^{A|})
z`usDChIFctj%CM^*_Ia{MXtN-_bfI(a^6PCNyTrhtr>1e-SIpxx#aI0&S#E~%)iWf
z8~gEO9Mj^)*x>oL`%@PL&Ayyh{a5|u>MxDC&7Rf@G5?ji&P{5pON`+0nOoFgcx~3s
z@ZDd%?{Czbr04f==6dUj^fylqnq{5x3chZ%;$!Ex>T^B`NAjXr0y6q}=J~fiNP1M<
z63hE!s^cRUQ{I293Drj!K1d&6%U*mln_<eHjrm-$Qxcx-?%}TT>0^02&0>?(Ydz<U
zD%^Qy(Ytw%UG)m7vv?3G6f&Pj#X$XFMAH1=$MFn%WWN8M_PckBnB=klG6_)*o{zm7
zde;WMTKMCDNX3fX8I#<U6n5U3m?M>(@*%)$rQfcArxT7yKg~VOxJ^<`;OouU7ZVdS
zH1kuVh2y<?Crcmy>2rHx&neqNHHPcaS*d1AG{n}1I9w~Ok1p8#y(9UE@bhGK8^7q&
zZNENx%~d}bI7Ov2{GW<<TCttp$H<HyKXhw!I-iG3P!i7!UH3-j^F_%|C(8p@xqf9l
zyhS%~4QqDa=Z6{J?#pYfj+#D4XmQ*mPmeoF*R2A-8#A0)`=z1mpxIZCsF)(7btjj(
zJhkK7ly7-pnZ7xLIrEh4+s$Ung!x}sGqp~4tGyI9<!<<~jP`S^5!p|lM(>mf3NPo$
zn5h-FYYRhK<+T3uEK}<y&EK?`x%B!?jsx<yo<^mlR0-)$T`l{f(_ie94MYEm19sxP
zxh9|X74xrBGn6;Znd>rtzw>U}`TXUPr>*lj8C*9mdbg-MCDnPE<%Bl*@Tn&gi#J&Z
ztv$*+>m>938=W^VH+-1+(&eyXsL*-+(?4!7%bTy*D!ag<CfR?A(D|*~=knEOo4@$(
z=)Sto**x?3x=!8tbx+Ob<-CrYR>Uv8mc!Qd{gRk&>5k;xnm4^yhwx3lTYoS@H=H}#
z?tbIEA1SiikJwnpGXA*zuH3g)cfPqcU!d2@UDwZZ-P@9XbS9H2lT)VpSp~Vmy+Q9E
z9<*+<^$O3sme}T@zgWDdtYFnY;VHAcg3II>HrKvnl%J}7xz+g)-^pVSdbgQ}dR8;t
zxT(JU`iesre&_pbtvD*qv}RMm<a-<rRxfv*=PrAB&?Kv{QENX#K*C-1^Aj4jx$ZxD
zXThA^CU*tzEMKIsZKC|)zAbv}H{Kjc+OuBn?!GnyvA43@Kdfem_+VYl)UaiatlY)l
zBIy^W2EI{Ndu=as!|`PR--qQl6JKQ=@CZ1RzTM#)%Q+rvrG+c{Eic_#_+RMk{Bm^<
zfkMRu&$$&U4vtZq-_9xD8aFpH=34X?%`3vkRCSAOKlEmPZC#apAS_;GzK(0qfxn_@
z(ku51FF3JmNx?;vUxrBvH$R4LZ#n;OUW2Ogi*kngW!Lu~__><F!f0<+jKi|rpJiNY
zUY1A|Y-ts&RABJ8y1+kwO_B<OdAqFO+9QH~rV*7H87ebx*{@{!G@s%BjP+H9DrY|@
z_1$JTQN#N(>k;#%<FD&h*m^UV9o<^_^Nrn`NS+P0Iu)x|b=;5Oy}8}Ne&eonwWl<y
zTU`3Kn#6uAYxsWY^_(Do#s`^6cEu%(2~F4U24tBqOs~GnE1xeI{kS;M{m9fm+3M17
zKWQ(W|J`rVre%r`PcQp!o6Xe5b@kXD=70%#x_SZ;3<1wBBwb;0XZ$dGzwVys;9O>h
z$QyQEeLJ*dUuSG?wDnzSWxjpety}hKJEsW=D`-!O)+iO9z-d{_EOhkh)z@`DDo!qC
zsF5mra>b|O_>(VI>y`!03OZ=CIo;Dw=JdT?Yu(SuiOKD=VNaNKHEPPn?iFwM*jp@^
zvg?cF_vpTs>24ZJuQ0r}pXGn_p#`Wv-7YKmcC(_T`<JY+xVW$|5ZYFDhbz3g^u~&9
zS()qWr~b;6UwUO<^;)CyDC4D5f>!IAUHg4E>eU6lyQiAiXK5_GV%5F1qS->oTJTYN
zZ`N!EuRZa(KP!%}XYf9(rZ|^D<99&+WWlb!vW@<Y*<B7HF8a(1)}Iu9zbRu?sMpGv
zvzEF`&T1SywmxdrQSFo{%OkJzUVMAS^Ih~?;Uot}m$bQZzA<S#uP>L{<b76VX^1vM
zoO$IlZia}H>zBT&TU&eZr=#w(X$*Igmx`Ugk<5NTiho*o;G0;!4YzL0c^4d*$#`JF
zg~n+M=LiVql&$steO}#U+6qwyZ=ZQqYzcd(9<%x*`lrp&((7bx&Bm!&Q-Zv1>ht9L
z99-_DdG*Neh#5~GPYKF8zq#ks&ya{C2a^L|9O&gtYBt|-L2~JoAn`w|thb41ExqFJ
zrFr$*6RSNdgS`HxFWktzyxr!~yX)drx>JI@{$?+fI@rC@r8mS&^Qp_04X!Q?Sq;bc
ze)!loW1~up=h`hBmc;xopVjv=ZRM9k><2pzU5Hq;OI<_G)p+Te9@VMyBxRq~*LBRB
z=~pDN-Xykn`ICR_8;lqF?a6-9v1ID^v;_Hn3AO;aZ!TvqEdS#@-`>t&b7_$j!-qB2
ze=99>B267Nmqsyv=vq0s*lUeMc*xfGTidRAtlrgi$D85lv^9EiN^a+Q3M}`YoRoQb
z`5{Br2k$p9KcB*^djGD}scV{#4)mQ6Iex+Pj*D@a=2E8rjDIpu-Ck<Qz<k#1Thq03
zS8P9rF%|5Q`OkFV)v-<KTiA0t9KGh>Vr8&?U3HgVzW)ZthtMArmE)@3&FPRVj%VmA
zUTkhT>)fpky$hD_kz<|Vqpc%&K73Zrnt3Yu50+}}YMZoX`H@iFqkAOe6!ex~Gdm>v
zP?RC>>n>@#dkQa?PTH+*!{ShEzU#7lL+tcbx(l*-J@j~jqqLSY7jzXmE}ar|-6MIr
z=F$*T&tB!UnY{u#edpc$!|&m&f7?#w?Cbb>GZxg^xEtB2on5LT+#H*CM{%pF!%x4Z
zWsE$*UYeoB;x1K}RbAZJH(%SY>0r?Eq>MpLb7@HF0n^_Tcuh1}Bjzv`mL}C(U45PR
zqvDY1!}GyRb*wX9=h$bJ?t5~v|9Pj-!Amxx8tf8U^F5PxIQw2vl3Sy8`CX^@oPASn
zIv2UftoyR%(0}iT(J@ba<J#97rA|~nb@%b!cWwRZ9a@1w#gPfp2PD+1FFs8_WZ}Eg
zxnaSN2R|Ryt32gxP@1g&qPo$b^387s&&9X78;aM|^B!&byl2LPc*YwuT<uD=I{&0e
zumAn<G3#W8Ybv@*ovL$uQtoHO{s{O~>L4vra{jWEHN&*o5=zIIb<D44BnUcW8iXgj
zUHi$!>`r*d(_KqGxHjxe-?{&q1#5$FY`*!l>IM&8nfZ6yrZU`D*Hw~xD)wcz?&pFZ
z0YQ7_2bGpH<y^liZO@=!##_i!%vfi3eZ`xfEpHQSomf`7>|y$FJ2S6et*G@}@y@Fi
zCOS+vW?fu4qjt_hv4klhuZj*_J96k^NUZ!f4)L#{zs|WBXm8Lt+?$-p9L->7bp6$4
zhl+v?tES5vE?K%M;^Mivm6LWaKIzynk@2qTy_0j+{n*j{qE)Sbp#+b^<0Yw=9&x=D
z)S2=3U$gj?aIdEx@0KMTTa)#Z;lGsK0$HCvOE1l-yV({f#9aQ``C+4qYUtJnH-q^N
z^>XBO8+ksywh+2t{-CBzTaUTtiiADmjc0den;C@POFi4<JBP!iqG%ugj1z{1><MOT
zdsVK;N!G2ncy7bSC$5+O@+Vh*_!29=tf;Q*3hM(!@o1lpj8C=?O3iETxW^qm>C622
zVBlAwi=lIb%_401T{LvRvH8sSvX526Q2eRd<d4EieX(LvUdv{jGZyumy4tDo2;0u>
zizjoZbU63y*f+}{_h*QS9s7-0CFc~)PF>{t-gx>@Uk{rGZ}-~Mx7jwFdhl{hAd91Y
z1#{LD=QS+>{Rh|ERNn9Xd(O`8Y3$iOum4|WpKSQ<=@AVE_REry3LBUb*1rF_OL`Ma
zg4-n}rOnUg=(wIuYACHtY){!HGVhgFnjqV^_?uFu&%NuGC9nUq%6#orw#oOSEdpv|
z!kBB`gk^h9usFPZ&%3sM_CJgpbZ@Rocpud8wp8ZzAxQ=sp}H4;UYPc6<1ycm*m3`E
z;<Bi{hY#+o`1*Y7!IZVpkuKtm&;GwRT(o_5*X;TJ+di93s9|?_^l5(CI_~w1frci(
znLbq9n5Y%aa80E=FrI0{y*q!R{#<+&{cf%0I-Q9Jm%I>am+E*V{`lomYacd^Z*kL4
z9<OyN{&)XK)BdmJ3{&1bjo@ec&#<P?;3ms9rYHA>(#}>0H_SVkHR;E!?`KW5-xc=V
z{bFmD6+Brzrt`u~mJJtrr%ejpF7m*7{qBd4IqexvPKvf?IB@%1=>rCadp*~+>-g6S
zrp&fjxocL7<}4ArTA7Ab({^W1t1bEa+Axn}b3fw-rQ+8D;!=LawOV>f9Wy3ps4t(j
zW68Gib<Ee93+kR6Y`oQcg8NtY-cN1~Urz>^*Kj!q7oX*0JaEv{d2QjXaEX){v)H0A
zhCh#MoZa?tAE=8fKYU!cNQ|k|_3}E_MJd;Fo&_>Uxyt3p_?QTux%;K+Qk~XPt$gMm
zcT+YyGoI=_z0~jB<xjk)=Jelx%Q&M?wqU}YUWU^~4jxC3bGw|>X?)`H&WNGP;znJ~
zVOM9}+hG|w0*VbPhmHt6__pL^T0E=9mV2?<U$mJLRz9v%6AHb1`(+xB;Kq9kLC#QK
zwa#}_m!){aOuu~@ax4nhPH#ER#Gv-NK0JzlgW<-ni2?~Cd;*Vn8){DP-Rj1F^IW0T
z%#5wM4AOhApPerI@cQ4%lkd7R7><_ebDd#PlC{lo7wMEbR;O@lt)lPG@WvD+Sz|`7
zPeOHaC#@eiX*vDO_2s^>tYgRHB_a+f`pi#X^L=-VJ$Jk~<@)v=X><BhWcQu980~y7
z^`f9-?>kwY$||RM>9&n86dthY`~7?Lv72wzqA6Jcd>@wHOmk;m<GcKE+6oid22-_A
z<zSaJdsb$c-}I?IyY`vzX60S}tdCt8`no=M-dS?p^470h2A7}fO(GZ1^bTvcIbUS%
zI7QOpySQekQT>-%e<rb*zxIp;cE<6qWf^)3i*DUtA(G&!wnk^2=5+2)z4~ois+DdZ
zQa@6sa8UI1YRg-{bRBx$edNg1NZe7k#OwdPV1{X};?^@We2zb<<(sH^Oy*J6%juI}
z)~Uwc`^&fOL;bgN#tvDpULQ^`n|{x+ON7yN<H8%e7ipAj)c$s_`tNPg>f_-XwaZ*X
zbUM0La4?CnYz$obJx(lQo9+Ad$!Aj1Cf%HQ_e@IKj`QqypQxFu`xF(Qw%kA2rgqJ|
zllm_|X_%#$+A><0?Q@WQb9s$xp(sPN>)Y(z7xSd6UiVo|KbQ0=n?dy4yW$-uH_n{+
z<@itShLd%79Fm-FZI9mTd$m1m`hA8MQ}%H$ITSdJ?Tr1~rfo+A7<SE&vOjohpGZRN
zto;VlnFao?YGpm=CDqk&Wp9yQ!#-nc7rxb7ZMNxp)*Vf;I1vBuj+4`^73Q@!vtJ6O
zhaZ3VWQv&4fqz;D&*~_<?dM$dvgv%!?e+V@wCyWC9Fmj0r0!8@_+Ub^h+yWHQ+d++
zgeF#9ZxMA=&|>>~;l?tRRvmw3#$&%rg*z=SZd&{3Z(iog_{EHq&Q{N=E8C_bE|wm$
z?9v3$3JreobwzuYoW8tFXj#(w!1XtIAD))e=go_75#g&8>NR**d}VF^|AozqCZ0TR
z-^cRf_V(Q#N2C*P+uuL^|JK#|eJZuH1T-(FF1z>k6?4<JBNH;WF+S+JaaVTn{fDoX
zZ1ip`W-O>XoOPBpAusi0EN_0K6OUl)wL?b}+Fyv|mV4b7U+15wS)_14Yk!`SqVK=X
z2>U+?`=>|qv28k7f6p;mdtKpSL&xZ(69%_3V(!1%6TH|ik2R2UL&Ov{{mI6RH|}nH
zp2Ohg@z-s;u5w@eq2sbFDqmLlx9~kMQr>d$OYf(SzsY~j&I`_0Vz~MBnpyaEsZ+fg
zm(<*(8RFuZCNCBWm)T?VO4UywEL_;c=dR%Yw3C<Qb#v8R_5R&9^j-ViP|0s~ouOX#
z&65kbS6YYEF3`{U`RLe*y*#U@>1<_Rb#;%5@F6zM3lF6CUVUVu7caSKLfXXRHc>`f
z?mY~*v;1*BY4sb?{>#}NZGS9mo`$S^GM}l^DCgRF_cj-|2<dGr91b!yh+eJf4tf9e
zgw*W$I&bI2i0_+wGCHibX3~rOacU*JL5t6|XWiKGpt*%da>>5MpC1az%V+I9FVrCV
zvQo#7VUg0rcIJY8C!SC9wU-qW65M(8))xM&3$DC6C9-<gKULGswyI{k?QLf6J)$q!
zbZ#}{j2U*m%U=ckm~`(|vZHj;36<8qZ7EY;C+xF-@apU{W~oEsobRtruc?!@p7igy
zv(DtQ4L*CWSOpYUsO{&H@%3hqTQTwF%1ckos?{nFckT;`h)(9{+WvK^Sv}{=^T!v0
zO-$`Owq*Nl##d*jEt!<nm7&yiVom$93p-q0@|a|TrL=gY&p9ug84(t4-lemJG3nB`
z)P`TzBO2YNUjJ>#y!uf=X6c3Xc3(qNvm3oRb|~g=Om|^W+qqIf><p{My7_(G-<f2D
z#pjx|x(RQr)|t4J;dFA{ioBKWcW+<a_fDk4%XpTe+5fx0+UvGGdz~cZG1brTp47(8
z=gjNp@jAA*@d!TcdiQJMWzj3ace}E@d`u=h+fnIs<Xd&;k7d2V%xjlCloFp4^De=>
z&HB|T72f?D{w=g$zw%C0b*$n1Ia>{PUVqgaC%Hwo?aamlH>d4T`+bME;o!?1KNuNe
zvU9KMvuV6mPzqWt^1%1^0ljIBqQ~P)s`r0yThFMmu8!yPYlfwaDywyB&h465=y@up
zI>1DzVba{1O{eRfoUa}-(dw7p)HCzkwk7*-3ocyAAU%7@!$)fwBvNzVGPR_qsWl!p
ze_QtG=Yn6?_lkQ&ZM_%nWFDa<-@X6ugPqmu-(AkW-p9MjknhFnsWH#?H}1RW^;rI&
z-}<ap#qJr){g=9R@BUr)vbj3WYMmVygSN}wrJM6jBofxXwKu=GRM&Fpuj!#@-y|G4
z;de`*T3Pzp-;Z}!hrgSAXv1@X+zEDPUftyQD*9;Wg0}`KTz?O$=d;XsZl}7#mLY!m
z<5%I#6CKapXXyUI8u+qt<FC-$*OqEV1~;#4I^1C5eY0xw_n_&!8MXe^K0nqxTQ%4@
zJ62%U#J+Wl`Xm0enX8rhx5=npNqTO(hCOg<C_B@K4aXk}GoHG<ao_cALJ!oly=5PV
zHaUpK{aoO1<l5@~XM3b#wrNk;*Ku^!jjUDG$%}Z8e2xw&t!uPeIenS>&Rz9aB-d}>
zQuyKI&FB8<D-3h>Yv0_JU!Kp<Rhs%Nvf=$Ph6hi-eX&>Yy|mt{JwtQfD(N+Tf7|z6
zX5YBJ<AgoK({0*kK6%>nRTY_^*P855n>KIV!naqK9bLiF%XxV<hgDAQ&K2qP+s>|g
zc%ktsGoR_NFO_cnTPLP(`;#CzQSWm?BVTU)N2}Gw4^D(VR$q0gVs4(vdX^s%=4O{e
z;^(AhpRc?4_LcOxS6BDu_B!7z`xTP?Z^tsx(Al@b`Q>aYBbT}-7db5oc7DG8!s2}=
zUY!(rs&qV7x2Ed5%!V5iblxt0^kaISqSB>jf4ZY>Id-g=(Q?t?)3<p~ucm+YYPfjq
zT1CUtYf-u3yrK7Y?4RoSTBm;9j=K)O|7C9wc*5PPyY1%p8=v#5o?Jb+_+Rlqz0R=o
zZBlu%Ci;6<8vRlHQWm0Y`E;J1V|2;~&ePh8XDqV!>Y1=7EH1a$V<mTY2H)&DmIcju
zFLLgl3%jUjwIXuaXKvMfFM3NVS1Z;0{&(c)59i6u>#JYupEk*V*uQADZfV-7V(0B^
zUR=7rNPcI$P}wdXOXv6`i3NMll{p+zd2*}zhpwzyEN9Dd$NsXsmfa_`e*Ws@7k~XD
z%VkDJs@mh0$&2^-`Ba(-@9x{)8!uS%??KATs{3D7q`xyXzI2kg>J`J@ANTXwZ47+s
zBV?~#(PoX9k)ZUbTA`K2MDxNjp@cPgCVK2YOk#fQcr0nN_Sp2S>-$Y&Zr|D$sWM5*
zZTbmYla^QZVtE|wY!B1IbDgT~9#46>+ccw^$Mo1YuM91vOCHRYr@x5{PIPowv~R1b
z#QbSf{FE6^tu4!uIdG&P^5KII!aMY)a!l(x|L@yB&W)3_#a-qcxn@6W?q*&q!zcGn
z$x6)&o;h2Nv7;pD%ImWy*3^GH@l1M^dt;ev&ia;htCnouu(o5a!XxYVsk_Be8U8O>
zTz%{M&wn+%2AV-P4)m=_P55MbZFjZpflcY(3vTU>t+=`5$;)f=p0l0yW>}i{|CBD<
zjceg{vn3Zs?O$2`Dm`rb2Bq0*t9Y(HF#D@`c(UN}m)~aGQVLq&eCw#b{7Y5NMUpQr
zO?=|2dimC?W8wmHUu~W{S6)3+_0fgS&4=O-)aUoEvAsFjb?N!#$+oBD?O11s@3$|h
zikS5Oeywr-w0M*Kp0_{uwujWNQLMh{&wiV4ear7J4{ID<o}~Q_jQ#v?W$zt7d+vtz
zO9?a12}V>p*fY*}taC5)@7!x@(n{N!_hw|(9&MkScK0Jc!<7BkPTF6tP3PI6%Banw
zzjoTa;Ml**-#7@HZYuk}ir+LvTlX1*!S#t(Haq;5iqTNgl?{5S>a5pOK0SX6W02>~
z**4-<)i&}BIz3wNV>v(g6-_m*y*1JCP*Q=1%aU(w4f{7)TRtr*;I7$qYv0t1w|CE(
z5`1T+`KB$-7uqCNc|Q#Q6?*Uf&do1P-WI;o+}5zl_vYln-ZsDUanJUvf01;sNc*1K
zkb03lhJDR#t$#-<xb%8XpJNUC^4X5z&fE2G>o&99*`oaQ{yfugmIXT=8857>(qGS(
z+p%!hisaSC?aMk&^l4qN*gn<cZhM&f-ul9-h_JLf^?o0JS6*Wgo_63*HbZK-YkQNd
z*@LG`if+CU{@5+G`FP{{bsNp)gg3euvj5K6v;PXSPV7#NcNfj>@6VB73|jDbtLU-Q
zD(;q^@v9OyzCED1>%Xkv#9Quro}9S1TO;iL)_H%k{uR#I-`{wQDRS2OS*kNC!;koJ
zi<GU)db{-J>%_<6^I{d0zW%OR+P7qWM}()*sY{EZUQ0(a6cpe2_ifj_DsKk0pZ>bN
zMd#ifTz0TqcFTW5`+ub&53d-V-o3bBzxp9Rp6f^De%1U4m3{bn(yCV`QKwrTT0XFx
z?z&Yix_|MX((9gy-4{+Kman+vewcmRT%HXJ-piWDZ54WuZqNID{#`~3^L-A&+t$CH
zQ91ciL*0#<u60H!)0VB89{6g~la(2!2X39{yWscz&%*oPZnRDovu~B2-2Z1wUitII
zS1l)1m7H5Dn7+BMm{F}dyM0@)#a7<ZUA_DKMf!hd?)WeB^vxnm&7jzw=Z*4%q%!yq
zY<8TTxPpy!+K-<{^-`^rC1q>mgA6BUC->{x9KQBp<%i4BS-&+Nm;EvQ^vr+r?}ND|
zlV*ICJDK1l-n#jbZ}++VrS&Dzk7hAwR9nb1n5T-J4fc5F@=zto?!bD-=)@IlT2s!P
z&P$y&MgJK8#_83^U6#DqBUw>vwYs-!@tu_Xwmv!Wy07W4&iH)Zf2caHO!&pESJu0C
z{J1uwa+=-6Tu<)ln>TkvHx`^JF<H-GuzT4`gH28T3|_rgqTVI`-2U&)vnL_hk_S%B
zm~XnINcH-TIRU?`805ZQ+~?*Ha;oRT#>C@4-@3R+{e6?ct9C?}PyAlS@rTAL?@V)c
z9J)D$=kvukB?~5TuhWm@7VWH6xvaL7IoIf~*Xo=T60xO!Qv<EHA4+DZP%Yc8w^pa1
zdIk62`G;lrHyo2(BJ;|&@x$k9c6VMgB!u=bxNZNiAR|+LI_t8z`}kk8eDdF>{n3U$
z;HBKUS~-SPPu;$BORcBU=51yvmc8mPjd$$NUg_uit>dojrFjRg<}I(`3wW2lYezey
zg~2T**%@yGE1slJbGWeNgVm+Uebd+a-7m0vQohHj-nmq2d(QpT_So&`s{HkNXBOpu
zbXt{cs<c^bX=|G(!+X};HbqmeHD7tZhxGJbV?NVcf4q+&VPEudm+9*K-!HoT^*P$|
zYYy{)?1u(>Bi}wXvCjItyg)vCe*N1|JKc|m&2C<?yZ?B~6~0?p&-RG#?fAplxFo^!
zN{jUuU+D+$;+E;JIsL@_g*d~yBFl91?dJR4uEcSFsQz;9b7xYbxZumI^9S`V&a0cd
z{IC(z-(q7v`?h!Y?mBL)ZM2!Tsi-TQ@q{0zWHY<_tJ7xZlF!A6`rc__>HG3#hR8ZL
ziO0*Q&Sw;O%TQhz61*wK*8A1|%v}Ff>Pozag*AiuN>-Y(U(9@wZsQf|`T1Z^)D*cd
z$8EJTjCnLKxZ3WYR+W-}YY)={|Luz=oXgn7+uO!4<>yX|m5nbh_Dz^>88xY^Kezq-
z1y|KwuQ?|^`}WE2r*q}zJv%rOR=6i-=>B-4E+JseSP*|9O=8mWg?*f-_A=cnsl9G{
z$~o4+edm-Fvwtt#7n#|<?yl(8_gw|vM&IR@mj#xG=B~0?aCUy!&mXZhCaMW;j6Pqr
z{>naB?{jOi8dtZXuV*Un%ZIYHHy<fw=Nw}U*`@8-qQ;<8sCiSkf&GtB(2~_z%Uymi
zkz2AYysk1Q@XJNtD^qjZRP*ABvU`K`Qw5nBPIcLM-DlP~`RnQm6$wVQ5R2(I{O)fn
z-&?my%=<v~#6p$>Dbt%4ZH=>?_DWD{;oa^R<|{HZHaw`Cp0Vw%x6I-Bt=2!&+|3pQ
zKaGphy;c8uif8ks7C+_v8)j$v7O|AJ{y%JdX5T@%zaP)J|C2wkJx?{BF=tKTm%7KX
z{<|OdK79YaijhHdW1vQ<|L)Hb-}R3BPF$7}wyk>p(i1BizBg6RZ&|vtMYZklee-;|
zEt+j9H`p5L<~=>mRM1wP=%{%hJI{5Nz$&*-`(@>&WfwPm3;Coj-o`vlJ#{@-$=4gA
zABxyEdEa%CF6u3Ncz^Gs)9)OmlUK~Tkkn8(@9D3MU9SAyC!R6fc^tN6<5AO@t@)<&
zCDN8Z^0<ApsQbTd+%&V}nLGzB%Pr+)tk7F5wzM-}+5YdY+-9?50jBcIAr)F2TiG7O
zeRrChXnTL{ifdLYW*UFrywR6)W#!seO6O0gnHng1NAegPSzRJm(PLfQdoEdd|6ci%
zvAmgX*K2IU^GhX!#cwR1Gv~pbL<ZHXg|9eTU0kHxgLXvL%!o2&&1Z7n6rI1Zs)y~n
zWWL}=qmAc2YMs^O;;Yg9BeF#K^`wLG-#o5-6qtDP!Iz$_-$&Zd$KBsOyU)zz%`w}}
zYuA~{Oxa``U9)3j&By(V?Rw88Ft70{Wz#D;wb%XGQ>g>98J5N+{nuxhATFh*bm_sG
z{HwaZn-}OBhII0|?fa}F&)oN9uWru4D@T*>*FI?KXDsk9*eXAvs;c9{(d>dt|GVO%
zqipYb2d~kpzxc&)uC3R4=7i@xQB%TptzlnbVyt%ad_hC$ymK+l4AX8$n;-cmmay`7
z<<{%WHS=fb%I@o1_gh_XV)vKxH3j>H;`5v?&#zir;x8yTaa~=EhV_hpi#j}Bd|TCL
z%yQ0ON$IPt_}ypS9VXj<%jp>{mUI4mX`_<T?<JFZjY=NgH>?vp-`T+vqoA~OddRYX
z;A@i_x4G<n{dtA%#N*~&9djmzsF^xX_@knv^v=j5X{%~dDy#T(AHTTEHOek7uinkv
zqxiOcpOi9}!CPU$iCdTdQ`heMXa2M6)7)hZ+c*0@bn~#1&B|NgU8U9?f9>)L8KE^h
zGr##-$JHAaR(!SPXGv=QC?v2;VUF;J&y9!G&qVS+e!KH`Q(2{DdsOZ;rkaPLzxbcb
zY^rV#YS@(Kcsp@LS0RJ<o_p7t8D1=we#P<i-NkVGzc=Hj>EEbX|8(juRe|MkPdtCG
ze={v*pK4^_dH>Gif0A?#aIJr_&z~XedFbokLKEa087t3SZn%DG-H9*<i`g#b2g)w+
zZN2yW%<i}ym#uB*FDvxX+MoO4Pr<ucjK0A}b(3A{H!|CJg-UJrb<_1S{^e+GnPJQm
zy6~l#{s)b#AvdNSFUx1>^IR7vddy30|J!HrZPuzk7o3>IP%pOl%JZwQ(@*R_86K&w
zq_pzPV`-+uEgc;dwNFo(cXdSU<$s%U#$(;RgQ7}Go;5zRdbUmdaqrH@(@$QV3;mPn
z?Y34_@MBh4Y2c03^Jh+;($V2@Pvh}Z{qAMm75YzPLfu_bCgx>C8)@&Xn%*lQcyn>^
zRQ7q<J7aZizU`TMGIZ|dAD5?1;S(0TdGK(w?t2*@7qhO8m(!mx*>`r7e3VFt*HBW5
ze|c=0k`niI^~m=Mf}YEglfHW0yLZqy?yNxXvnxfX85EQ@={z*@*So~nAl+nkI6zg)
zq-0X|&1X*;Hm`aAQf0%Oz{v|kSr2SFzB=I8s@;qUCpVsy-gENuE}=bJ1CBc|Io^m_
z66*Ax+4<W94}MS6UY*WKO+pRZC$0NYo$Xe7>u=|#Ah}n2S`;<w*lxVom}SSXz-GQm
zUg)Ny8JE)S7pgv3*e)`QEg<vh?trDMt0%AfQFQ1}Y5Ve^MX##fO`dhuvMb)v)!D@*
zt6Ia=M^I4HC(F>z-Jp2=PNvB&E-|&|_}(Zf8J+nw`MrwLw(wdbo*2P@#mCu~_3l1&
zclWC49VcGhpS133g8KW<AGGWl8y*{F2S#zKzOa<u)R`vD_^&{_in}3r&05(8mae#u
zGFJTR&Ue)OLUz7=eC6!DDV%4SBVOD)dsD7qwsB5S)J=vDNf*K-R=G6)`n_w4NhJS<
zD{(!m_wqEzPF}z3+{X7})>4!2#`0MT8@y6kxhU?bUgB+~pyf<9TR#*{4rRz^$!%Te
zRmX7PtfJ%O95<z)_ljFjh6_&owY)~gFYNKP_t(Dc|7o)8Jj-#lSsVWGC#0nDdg*sF
z+~dE+<s7<Y{g*jaSHF}`be$pgn&DLJq-fP8A8$IJVkju=;MQfBF)yiiw#`>_h6*1e
zUe<^?k<FJ*>ogn$we+~o{;l5YeexVbPwAUVwubbe{T*H*yDiGza~$}*^7@R)Kh*fP
z|Em_9c=vAemggNETRwFupK~?qlGuM;=7EpkL@)E)xUZF^&n{K1a&mdHNK7-{<$Qss
z?Hz9ym$s!b50~|=+aCWS>YMO^RXoyD!ql8jHO+79S=?=$#~J!+9fL;SskxuS78O=8
z#j)LZv8nH~sY9h)+D1>~=m$67uHP;=XD9QghIqzfprGNBV|rjSebQyd3frvte4f*m
z&M|su+_3ZG@7L?tCFW+8vi%Ja-~BURmgT^Iqr5;VNzRk6vm}`oC5RnpJErG4Yf;+$
z7jvB%c353K-Sf3VqAG0j{K<=dXe_gLaaqzB&7>rH<;?2RIYNSuzt8&m=60aVlWx<G
zs&lKmI(+1$_kJ%F6x?}I`|@P*wJv8$I@jlRYVF<8IYUN6Dd^E$Wh?fZ8cDY%t$FSv
zC|GH}FCksFV87dyd$RJvf)jOvrryd_ReH3^CsXFdYVU_e4U!*&1GaWC)^QwI^2LxN
zA?`w$giuhm<$<nS8-F{8uWXKt)P8=?>ig8FxO7c5?Unook_&%dZLGWOY4bLD|B|E?
z9Ujjs!XL#-bv(H#aQusRQRCs+-5oqyy*KYZx}08WTEC$<X4Cf{yVrVrJOAJNt<f!|
zqy2?dT_@B`j(nUN%=p7vkM*@L!xx@IOG-9=4QhC_;H-hl6J~`;|Bfwdmz})*#6zB|
z8{(I4o&N8gWy{{1(hZv*f7{O}!T#&j#S~_S^T*!(=UJc=KWTDz$Ch9G4Uvww6FpoO
ze`P3MwELdx_uIY4^7$@KbWXdads0MyZl-_NKGqnaITGx@W-U0WophN=WDUa)ONq&s
zoSNgmy7jJ$3M=Mg=y!Sh+TvE8iCnSIVwteCw>tG2Ukg{Ck`3L`eRqGR<%QqAb3ZcZ
z^p-7o|IE;I>SmFZ(oFN0?JCPSp>deu#j`u5U30%>6^58UlFokL5*xI?tM5(hvWR?!
z2Q62!O*%SCuHNZ9ylB_daE1x?uXZk+{`I9~w0(v*PiICj<A>$R{(q;x^*ed}qU6sy
zrUg&xuTBtryR84uogX6g@r+Yu`_x`_y*$&EdrLh-z)bs{<?pXl&)F4up-n=lXzn(t
z>ek~%)_=3Nsw_1>rW0?+xnuXOaM#T*8FKCzuRCIK;rfIN$A2YT{_3(~H8r%DUGvOl
z_2fB=gqsvE-!N8w?QT=xB0TZJ)NNT8w^(d%t!=#VV9t|@u+=4=M!PyKFD!3-w(EhJ
z<)*B~Kj+WqzMvLwxsa)$w3;QiV<Fcwp@l_B|IfeOe?L#8JmX+ZgXmR>M>=c|Sf@|&
z^=!2B{c=Hd`}9NB=hz=yVetJl+1Z>apzyM)`WF8=sV4;t4i_Zn?vd}faku+$(Ebx5
z4P4tF9Q??z`jh8o_0JhI%++t*W@ae3?s3ZU+qNT3^=uJ8jy^4Xce8Cx;_;Vyz9)CA
zjqQKSc%WT3cwa}>#+^%8ujJ&+?qjZvTCwz;xc05++m{)av1U!mf3qcM{t3%(i+|3J
z6gwA}HUG~0?VnyOds5hcY=1%LH2=D{f7S-S%6s?pYRU_N=bK*L$mO`4s>@*iBKw+P
z!}V1b>gF#tdCcE2bz-}5{IR^BUWezE^G9d@kLZ3}6MT4&$WKr4`l7>ep5M)#FEg4Q
zTN@O&qEwRom(-$vZL4apypv}*$9qf7KEvKSe~rqgJB4)@+$2{m$(X*{eg;2J?&I1s
zi5LG)|7w5dzVgn0p79ECv%UnBE-@`)HdXy%$B<gxm1C=&f9v@o<MbDMLoDQXRqSVS
zHWPYvCHuL{Q&xMy)8(F}e!G|oPwlr}!?vJgf7b2n4H>I+PkeFP{bG{jeAe8+-j(G?
z&%992wPPqg6XiGW!mpoCH}-Z$tMybIV+?U~eY|D!z6H;h9KGb*^Y_c`ziZ9TpSh!y
z(VXRR`L@_`oAmuFPT#uh7@hW^x9P2Z-Dmsf`Ez0xdGhYwX}D?eMcZpEXKOQ!N`xQF
zJ<tDCetW^$m6Ew~k+Q!}O2yP`Ff0?Eou2cr>WRBw-lX-psuoigXUC`3m)$e14U5+(
z;;}z&#(!&;)W)aW=XQoYeR-%YJCT{YX3A3I6vngrdjFizSAUsq#>i0WtNB9s-OV1O
znKx<{1^)>CSL)ZT@b=5R<W;4U^t?jjk}E&!?X%AK%(E}(OYx8Ga*wA49PHiv<;PkV
zm69hvKKu+0_Wz&$;X%pk`(K)4%6RYo_jXTza$T5@A)z*Z<Kipjytf>h*Wbzbf303_
z_8W$!zpEJPxIJHVcz7Ri5O#g1ysGS{6Q6aP*`FI1C)HGYcx+*=Y46BkKk#FLuE~#6
z({AZ~xIfdgKX&%&#Rq=Pb=rH(MQ+;rN32(PO&46$Sn+1|;m`gHJ(e%|wD_)TN<BlE
ziP*&Bj5~}ngn8?PE@d1zI$c#>KW0JjhdGrilA8*g*2~nr+B`Yx`JHXG7tF4-oPL|W
z_{-IGN=kiso^OvbsQz61K4rp&{onp+&MBHd@6)#v9^OWa`)5utce#A^)dw;AR9DS+
z;xDJo;W%L3cq{$G%&=E$o-K2Ibadl2pQt102?s-W+Sq4!aBn@vxZ%~j4>fzfHM|!Q
zym;~a!Gn?MALf@c&bY7g(|Fekp|4GKW!{@U+zKgvEn&tecVW4*P~<ABI_+5<9>2L7
z{`<t6&A0HX|8TFff7SiROYXVL-}}7a@3(t<f1j&o4A{0_HF^J!s>_ok9&KF2AX9mG
zUuTJTi0!SE<0sXn&aou~EK2U`tI%E(FYwT7Ci{j@Zj+}Uc;J*A`|7v(rwWT*s;tHb
zbazftY`<7|N^AMQ`{(rQD>71C)waAZ_I@NSRH1!E<b<+oa`XO-5Vx6!#oux>yb}_%
zWNA=zyqV^~T)oogqibL6Z!u>7h~ATY{O3xtJs$M`x|aUzlfxUc6zg4ni?jT^9vd}G
z^>uN%$M)dIf*#`^{<(91{W$ngA}C*qfw{|N+m6&l)y_=X+qO)0I=alkT*76^+I4(=
zB|qNG<8g==ocJr7Q7lxMu}LxdqT~jl<r}^%4$J;{bE)#jl%tMG{QW+EdN1DTSN~E~
zEI4uN^AMMBnftyrDk-^}iwIV3*LhqfdFkl3^3IMEwS1kQ@8)g#XYtPB`9yB}AFI}^
z*suZwHmu0F+TZP(!Y(-R=xO7mm5SSUc<s0J3te+)DTA@Il9JTYWF@^%?M!bgeM(A9
zv;RK4#2xwdm15q*RBncSr)O+!yOa2vm!akb&#D{j8^StfPhs#eR}}wwcqv1OMX=#L
zx$6_A@K_y;ow!7j;s12WVBVcBxmOp=kYD=Xi$a3sy1Cp3{vMP__h8Pw%KA@}bMD`g
z`*Ni&F55!?t}f5vz0sBUyz<xKtP{_d&fIJsee(IwNdd3dZogUe`dd(BU|?k8-}Jxs
z`~U3Idl>mWGw$o>FpF|IWu;B;+yy7vDJgxblX_#ya=5tH)g|q2sKp1BiMy}$|0(-n
zzy6A#;LqPpdWUayo>>3BZpVq=Uu0cep3MJpJCmd3*75uQ55CX7^ZefF{}nHrWNrT3
z=iU{!u#fHUqOyF(0||l?r#)p5zFf!N=96g2AfxB+uI9$D;*R%{o3-ojUsV10^FMn-
zr{wwIS^r<(>v4(reAjtza*+O3>xT;;u3qzK|6*nBkh%wlPR!q)`X-DgbJ<HLhI^Av
zC(WO@eA4O%)(xyLO)m*ZybrlLMPsx5p2YoCN=m-`d;ebk+1J!-SUJ-~ucBB`aPFu1
zMO`zi&kCFTetzjJU$3X_nI4taE^)@1*>TFejvI?pi*h*~Zob#wW2;*B{OrZArW%ae
z3zOM@PdKRCyu-Np{)$^_>3O@gzA0Lm?Bt4K-kAKzck-S&)wMS+W=0tAU9w@ph7BML
zqEg@Riocc8XZRcI^ZwfeD<vgo7Z<<H-(~l|XN~`rx?a(u@6vx$=|!(iwwu`G_<vQD
zG_YCux%{_-%b6?L`-%h@o(i+umi((*n{-U+>$lyB57r#9oyz)G>R8B%yASTVtm)|&
z(?2Gce!|wT|JU31f)myD&Y$b^wB0jvV#_-HtHQpQw(e0`vXWJ<>u&9%{?l#WSL!NV
zdbWeTeYf7HHB$dBeEb;1wD4!cv#YnPUVX@{PJd9wlezR-#Bu&#^Zq`~oE1~IW7@Vo
zJ37yu^7ms%aJ~FuZ~Gsv1CQ9PUX&gD_I$s^LBqS-K0g0%y?ga<ua9~SQ)9oqd$Dc#
zlZGw#Iu)5sB&GgY9>3=M_DZw(jr$6pWuB<IPG;DlS(X1H{CDF@2^qm1nFR-Yo1X>z
z{N8Z7+*{#iwfKTZwF_IrRKMlC-C%OJMX^}KF75A(&C$zC;x00O6Zt>G@8!lb0tVs?
z2Ik*{FJHbmcSh0L&6h7NShfD5K7%Unk#`FZRI`eUGJlx9f15PZ!#6?=TdgbQF8ut!
zSNPkiZ<}1(DfY7r>h>$m#T&SjzMJ<*%~?~uv-*<ht3~$%1ShtCdGr2thYhDh;y#<i
z^*=ZK;yC~4^=ZwWdTIANwb#05CZ7LtD~+RPHp36|vX|SRu0LXsbXz6+O5ZtAB_(-A
zgT*U77EfiEdizKA9z}&$^Xnts&mZD@y1??<p)1t~>w4O@dF?K2OUT&8)F7Pn-CpkY
zlmn+!)X&&4E?C^*QO|Iz`@~m<nm4Q8w!JwbC3j!+=H|ok*Nj7|nmuzSZGWMWk~62h
zdhWwtkN<zXaHt?TsHn)u^qMByk6;&<Tjv{R-gQ|rt#8S<PuDA)!#1^l-E${7w_R^r
zkd@J0jijggxnINWH1;jocxuuIx3|IdTcjtST0MEiCUJppVJqvON%Fe5oMU_7ez)?(
z4%YRvSj2yxPW$$`DBi<m$;<X{->iF^&CX7+yW(8BB05moxAL&FlC@p_a-XUtuk=>6
zO?fZ9x45IMew%=x<u0a(%59wAPKP@^WQneIR;oU~#jNYRseR?Ypzp44^WMCPx^>iR
zYRT3P6S)jqf&B2PUREZ|36VYLmYYuA{i|uhn^mh1*W5a`m&y6u=k$t*KMn`~=lnnR
zG3}mh|IJfU$M!r9+_!t**Qw9jUAW%VTskbJx~`;};a=Cx-}b*B{wm79{e9xo<+I<1
z)P1Vlp_{nsue*Ku$8hJkf<>pwf_5#vF1Yv9mkvW)7bo+Z_opBE+ZoMZVVahIaPtm>
z6E6gwsGdLa_tNP;&Rc5EzgEbG-PnEV_X6X$$@^~lKH<?mQk-_(<!c{{Mz+-U{~s##
zdQVOg&aRPfd-HhLjr)}?GqcVoZ`*L#w)=dCo<>If2i56io44oj*z?JkO`R9E=EETt
z+sV&F8Sd|%Vj?S0xvh>beQllo%79X5zl+iJx42%LuiJ52*Sk;A-{O>?-G}lUvrVu3
zYT%ap_u~9lhScy|)$+Xi|36({_9E}+tUE7bKT0y(c@R~$=IyFa>6525zscIGmd&&C
zwBN1!w$9R%Eq}A;_AAzk*rx11nZLp<eR_3r$P4Z2==QdAojtx@^KR7|F>nfn>|t*>
zKBcxB)P`_$@!K42Y^*-L+=T6cr{!K5i8*t&bSkRftZDfwm4BgQUz7XeuW{Xn9T$Af
zi;}yyJM8?QW1C+sn#vGtd)hyWso2zK!`bCg=~<1h+hP(d52!2c-e>(IWpl*z<2k!e
zWJxZ|st$a=c*iuB8KRNNnU}U(?8=#wes?(&=VWOUi?=4$#$B&=t~EFx_0Nzm!RbPn
z#3kQ}bGg$ORGDm->DE@3jmum+@8%1gPjAXiE=x{yo@Au5MMlB$Xri;9AxA<eNc~yM
zTXIw4R?0Tz{wv-llznXP{qJwKe|aB1*S4*XSxd>i_G#$%(+p?){a!CqX6V2EB8?}q
zQ)~UqD>apV7fl$_qC8*mZ%}hSrN&qF;?Ljcb{Chd>^hxwy;g<4{ogEGaz#}nz$M4A
z`kc?XNsk#{1mBf5OcB0)=l^Ye{x>=GwI-2|^%|p6JglWQTHpMY_GRNSJ?%wXJfqIB
zELar&Wo0$rtnFX!Pn5TRwe)Owcxdc?uOhZ3`V5@1_jxQGyR}WGG6ui9uc@L`#KLe)
z&~U%zC5Fz+t}ZGiv#(zMq5rJ+-Li@ERtHsIlxIkYU9Q6apJ~C3jK@zbw)X#Da>dYV
z-kt5y9@|(S99!UPyhQZvG#@Py!IfXTzW(m-?e4bp3-4UM%;?Eo&&B0Qt#-CE`9B16
zi5sNIF5LS|UwxWqZ8>|-j{JGarQW|fI!yi@`}Nko=wtGBrfPeyeXkD1GyE`(tk0Y}
zqps}u?fkb>{<!koba`z3$jIB;&@%qBl>7E2&1;Q5?znBB{H0Iq*mJcHkD?e(-Psxt
zbHVT{Pr}V_p7BQ}xaOGMzF9OSuOrv{AMY&(XQ{#x?_KAw%kO!__1(Gr+M^|`IaaIe
zqjS^(^Yi*`O7zugCn<Knc%5N>Eauvti!bL-aoMW+x>q_$t~hK*bkUNfi^Jb2>I52a
zHGDj2$ESFf$I|rYhWm~a+uwa(;%}59`2NQJ`)Bq=zn<q-%Vs@WSlNH_ei7e|yH%%0
zo~q<7`)Uzl%c3>ePwk%j>(>+a81l*QJbH3|>Iu0Jor<s8>=x`Nd(Z#4lIN%8dn4^%
zQn@$Ro1P8zxep6ds(Yp0P0u;2C~LEK)*fBoxqA~oUwEpt%3W~(mFqvwoHujY6R=#d
ze#0)+^edYu^VHlv^7zCAt+I1jGjgte-Rh*@9wBaJeS6Zmlk?M0NL{f$87i^*WF&L_
zp3RQSc#Tqc-cIw$vprVT9RIy%wxuusi>IM-?l0umTK_!0eBQaMuaYh`dd^QfAy*=^
zC-y>`gpvQkGVgcu@=R6BE6%On7QlJbJb1;Qg4LB?|9b3FKYZ0=&j{CS)t21EI#>C&
zdWJF2O!w9W&(B`jUYFd&vB#V-;*!$TTWd9Es677V;$rrC?^4?<J5{G@OKxKMDqv-l
zVay|W{MEFG)9TtnKDilU{(jyof8BcZZI{|nhtF0Ff8w*$B{wzgWfXp~S98(bNlCms
z^ER&i-pIT4`KQXRd2Z3G?mxb%IcuxLgUKTPMk&lv2g@rjq&?BGl)e^KF}<VX%358e
zPsi^~-rK)t|KyGnx3oRpGTFZB>hSRFDmyDIm^uHEXIqX#>*bzD7uAkS_Nm@D^^TM8
zj<<7*zW2s|wQKnNSFKZ;&!l61@0z7YEQ1{PEgt7K%{gx}yxCN&iYyrHm)&5@UhcL2
zweZ%UbvArU1imGoP%>lKBeO-cjpy;3X=}V^Oe|D&@a!r|FRfpBu4Zk=iB5(&^FLL#
zJ&5G^ka!_X!pJ*h`;&Vu?dMp2C~ke_oS$))e|cV{G((){Ul->GK1>m%rEgdDn>^t^
zmv^%1$hnn=8Pk@9{XH4=`NFFwy?^<8uDIqUr8>_{`;?jM<WlOb=TY<KG=u2LrAs&b
z<Z96LU7b8T?Set4Qt<@wH||+y>Ktb$oe-&&@jZD&%Zh(H(*@O~zxJ~w9ADCZ|JmXF
zaa;Cg=`%lgF=bu)39ho9jJ<V9Y3I#(yVNXiO>$ms@k2ym>IOSO!Lz0BmbMDHpRPPG
z<!tF<=?PtOvlXjf{3`viQS1GEt&D6Q$p=C1!A46~HJ7sneND3w>NtBgRWNJw^_Au^
zVsjg68u&VIb#-_=%xVzSj6FX=SH?{7Ps-Yzi|a02dm^^e;`Ei2Uuh5bYwz-1_2|Vi
zZC96hJ1m!Kui@!Daq6bDS&qg{fq(vg`(&-l?kwu-IPvTFd<{PN+5;Yc|6jR#y{n_9
zc1K4}M$oiVth_g!4o32~d_5|D=WCklgl!U+&OPqSJNY?OexFQG--MYCp*nkZoUqz<
z?f$oYzg=9O=rMfrc-z#rX5qcHs}Jx0#GzlR>m0XXtMb}guT<E!?q~cn@s{bo^{2M6
z{Im12F5TYpJ)`-mu!o}Sbj8;<*2Mo1{H-Ex{jM$L=ar9k_h%jXD9^CQ_w7szz0Pec
zZSR$oWUsewzdC(?qUC|#EAP)x%)W7I+TSgkPD_27G_P-ZW!PO6zYDH2uY3{|`8Ovd
zIp}AYx1`L?J>f1cPTCB1{(sN$L>`Ho#nPI(cD3C#1tlfdQ29x*B6e?Y?9i2TZIDz_
z+Vu2N$hx4y6H9lSuL$2Bx3}u+tE;_FPOO|^UH$FN&CS~HtRl8Mr@#Mo<Kx85X|Jcw
z>g@3GeOlDE=J9mq{_3@@9a}0ME)hAZ#k2E}YG2;L^Paphd~8`N2c=fsUh_80`c2(|
zeX=>*cU-vm->p2r<nnbzr6ljD`7wWAOKxKR>SN@T{nKl*YM*(<{Uv@cIS$PIcPp^u
zrBb`%=@8j6Z$ZIIJ_hCXDZgJVIazdFN4#y$@ttxu8asozyccryPJZ=a#^Fia^VnBh
zVYpn#@cGZaIf|dR#Bd!**gS1=e@WpQ_UU<3pLhl{)_u7->93a3v>v@5MwjZY=rjK~
z@%*%8(*dccGelH>b|hbHQJ-Y{a<xf`h?LbO_UZ3c>Y01Q1SkGw+;Q^$Y00L8Jw>0U
zIm`H-{ItZi?l<#<GoK1S?UA^;qP2_hp0MD=*$g-CUtcZBv}mc{`PwWu%b#u!U5-oF
z_+DCmm*GHJ&{Uq1gNM1*V`s!nb+_V~c{?DAVH?+NcZO6o9Uc1(AshQRZ}Bysk9kwk
zyj*Sll5!gc_v>?St*`t$`P^5#cYGd3xzXLMeBORrk|&0~s*^jgV@a=Zia9f*gya@U
zw))N}{&#c#RIbt}THB>`_PfZE{2fx0&M4SiNIWrJaiTDTg_Fw?W`^^s`EwOl-^?*&
zsAkJ;KNvo*V9!D2Ac=!!D_AP(d*{8>++Qxp5U(DXXx^?Uy-j4|>otK>ZUp~N2Wi{A
zQ>>xUadzT|$$F_1&3BYc4>>o7X~P+-ubKVLPWzcZ1Pgt&+&bf(fMBIm1DlePKhuOa
zMOzhLXKoQ%uqgOKnMBQ#nJ2hyp6{4)uIBv5cgEL~Cv0vP^Y>V^uU2WR?>c3rPn-^w
z`hpWLGI*ceQ~&P+2gBbcv%?RR?Qgz+&#%5rVq(SO&AN&5-<#vEUs{s%Np9ViS6bH<
z_D|gPH7|Q*EYk<qtZ$N=W|pNgWUrn&<-mlw8T(W2a-TeX__mD9)oC^_t9&+pjk2;|
zDP=vc^m_LF^E&e~*8YlExig~h_UDO>{fhn<bX2#q<hC8OpViZvc|G*`=L;&UbZ5S`
zV%T|2D>hX2^0sKfQr4=l<wDNWHf^p;@v+)(qqOC5m}Z*9_L*W|m&v~f+dfxq@t&w)
zS?iv{xCNUEzn(EkQNPbrP<A0rVpC&dV6NxS<?hFxK7S>sxAv6vwYg2F!(8<Yb{%7r
z-qfkg@Z+%03iY(hKfdpLdU1yA=6K1AJ0dSHJ3GrP`tQ-@N=nTBTf3vythi@t_C7s4
zu<pc)SD}d~{G96FX($!l_^^Q2kj39$s9<Twmd+pRN>*$#)9;(bx#rKumFNCR=AGa=
z$NpgTg0luGjAw<ms$O<^^6kX4ZCCgEtZn9hzag{ai<#jo9hQXl1#b;f7>$LtsBU)Q
zN_RIa=e`x@{H>6kVLfYZn<BS_NTzle-z@RF)4qsXN-_AB6bD?`Cbg+w>@|a#l&?zj
zpYs>Xa&~O`e&N)KXS=p3IWt^HspV(MU9HGndCo?fZE1Lj|C7aOvVL!hkJNo;e4%}5
zrBK4Tc~MnK7mi77>erjfa9Wxrw_ULyD#XoHZS!~GiQEhkcRZdrGQ3-3%---Q&oMgt
zgq<B*$=UN8I*lz>=`Q@!cZltl?#`Gc-;x?Oon7i~$zW{GeJjfO+D3hb%a7;C@XnSw
zTi2E6BVjGuaB{1QAFIjjb5o<f)vjG|)-**nnbATq!<gq_@N?hY-a=QG$mlECGt4?*
z{AJU-TC<F7-pKY<9`)i|B-?ZpQr17Ucyd!hbW#&D!wexI!IinG+xIJEWb@v1d&tv}
z^tk)QQMIr7#Z6Wd0tEebhW|TIytw=8`PW}(gjxOHb;jq0bW(-j0+S5wP16@QnJFxO
zlT^KOt>QG^vul&}uDpHAWO`*n>mJsCvj@)mHe65>lfD1VeDzC>&Rp+%8~SckSu$w%
zGIc7p^)o(W%XWV8!TS8EOYWZ)nzkt%z9KJiyCWjETlLS5nM-GtWNt{4+B9K3qZ)gb
z(_R0D()I5q_67?dHru+*h3j2$w%0P*^-D|LUw;ceD3y7_&5iMo+!9va_UQAkTTahr
z$!wRd-f(iOs#5Ku<L00Dy{L9lUp-g<hr{>UB%4V*g+2^F3>}zf_4L_ndmWc6yFgX1
zW|!tR)lJ`({#t4+uPMl0A9ik1`<4gclOyg3oDXSOcrdnp^ZmtkP2HPLS?`vfof54i
zdvBK6zpbmkWsB^-?^SDOd^)Pexy(TRinW!5*?;x4gu3E{Wjj9HQ@b^-;)1trQuwT=
z3C+^06*k?QUTEdFeV4NSx^1^6<#-*svh>gvRlZ#-FMGZ`=qR0Z!pkX@;V<*9U)Nqa
zpS+WslK(f``Fev-;bT#sXrYB~WBzuY<Gdx{To%OMaHEAya?w+!TC3&dLYBV&Z7e0c
zV_pVuO-M?+H)m1ZVm4lBlbnSA=|2z1@9EFAShBaH<IeZ6wjSdr5>lZX^=5S6->|cz
z<4^Ssrir_hl#2ekAB=c(%J-*CMEr)wPv4*Iow<6^rD(&obC;z(UYqlU$tZ<cmSKnC
zjPBJ!mw!xCQku@NA@=y|{{CoNj*e-s8MT_slzFe*`n>G?wBy^98G1fiEPj_8)^ML+
zEq%?w=3K@dIy1WWb8m<%&WvB&7IJ7(_NwVAm-2rxeDJ%F_QUsXcKiC`T=xT~GYw1D
zn7W=@k|w$B+63!2d<P;A#{6+@=>7HmEJMbc-)A<jnwfYzJmhTh^&Eqv?peKWuV21>
zIj7<FxpmI=_r3l{6<s;CMI!YCJJVeKNNuH{=<2gp@r(5HmTy;2aa{4AO;9j$W_s?)
z&bz`Q`@TE<*>|k}e{IXx=bMt#mK|1ct`n$<R<g1evR!xc<!N`O`HwHxPx)23t?%-k
zkKgSVKU)(WzGvNzs|;^f))eL4c@uCjvcK)J`rgXhhrZlSKM}cUp>CwyPwPW#-~XAL
zS)3H1uk_76;9o(9U(J-ipMDhTu8EaRd$mvh@$=AfdFgpxKXc!ok;*z@dX8BkaKCwP
z3`>Jr^iAtBsSlqLa)bmY1_V#6y3cSy*}?dd<6onOjeTmH&W8MD|GzHo&BnEHyy|Bo
ziyY_me&yL$EXokuv~$O=<!`l>lor~*J-%)Js<$j#{B)Iy-f6jg{}Z?Nrm=<brNa^p
zp@L@{&i=b5Eh~DPd3EVqt>5aJ^{X<|dQF}vY-id~X&`RT)o{4<@TonAW?AJj?9i2%
z?UGXM{yxL)?twEN!u?DeHt)Szvgh85^&1bB*(wK4KfL|?hTgWACHf4EoGMxCSWf5e
z>wNn4!#Wej2lo<kgeF=m`<^^?SLOb%Z(0e}3$|W;u{zep<;i*FYc8@^Up_8iHhO*J
z@V~PYa@%6mF6<01t=Y8bdD#B-|NlpXh}v7QpZ0sWf113^ibpY48Ot7B@P8flSAOf+
zKjvN^Jzm}4elXAX`h8LJ-Xwz^AC(TYHR#pp3wZWzU}t#!%3G1apDks|iSTdLTQb@Y
z<amgmJ^pg-T`eW0()O3vzHAF*Fa525$548Qt3a4k(Zq6wX{;q5^%=U}W*)fko`KnQ
zNz8F8$HenY=WnYS2w!q7&Mr#{a~7N!HUIUsH+_NZUpH(``ElA~s>Gx;g9C3G^z7sx
zEdTIq-_s3=(t<PD18ylQtWIg&=ka(u*Qtgr7n7Rq-I}x3#ih&c%39Worz@7{Zc*=E
zcgon_);UU&P2j?nS?jL<iBCE1_gC(Ikc-Rbcy`qbA^Z*R%TC*`{Cf7^hF^-&T^%A3
zJ5Nk^@z#sW->NcIKW*xlb&9Vgc|SxOT(=Ww;C{@#YYKBt&iu;BE-t$m3W5#9{nd5X
z9=yHAPf6)g{PwUnZ)}!5@La9=GxfTHkI55*dIpt%%U<fc89#J*ch(usKfA+KNvTMH
zp|)vfg;eI(>Dz>iOUs@F+>P4Y{&|Mg`)J>jzi%%5op3^N88eS(^w-w8LTfax#W8=F
z?tSu_D1++TOKIUs=NKL|IINrN78SiO{ePskF+bCWy!z*czI7XBO;Z1KcJ;9dbz)8H
z<}PWzQ29Bcu(AB7J3~o{W~FtRmTL2gNvEbY##q<Bv51WBeEDt4x5o@J&uo^>HRV{f
zM~{J-cjq~&hU=GuzlY7b^I6gVYr|*89fy`KSzYFHYnRB<x#<ii^zZ+?pgQgI%`G2P
zrYw6<TqeCcB9hT;o>W6?Ta0?h#BJ~EFZ#Y-%lG+qoZgzXjQvX*rS6x<Tk)*!>Q}Is
zKKsjsD^Y(_vr=xX&^#e~QTXc`h5eznM)?aAzhC@%zWs7Q@xkhrpVzeSJr8dX67QU_
z_CsFUrLz$Yoe$62%&@#seMs}y@hNhj4_lvhQPB!|82I(m-2MMMd~T+mP`@PJSG+G-
z@yUfix#p>gN=l`Co%$Bx|HV6Gf~*B6RyxL5+KSwXO56H!zxCsT`HXV}A4zRFd%tlf
zhg8w*K8Be0^+$WfAExwGU)i;eYrjPNhZ*z4TC&^{B@ditjIp%cBA51`!{2@F=T-hu
z7I&6iO=9?G;Pkoe)xsdz=|AE>9{%;?o4sT4g-x5<ZwIn+Gdw%`e9Nuy^I0$VCx&ja
zWcbcf@N`STjJqrJt<82RM6qgrVP$x|{p^m$HXFy};`1N&-a99Cxp0<8x%PQ=`CX;H
zajXxn{+K#%ePcpWtLf?Eu8c93yjv=czMJw#;<amzs`=(^de;~0o!!#dw&!62L)GuN
z_X=~1c{@Fh*RNf^^V8fPJ8nPT`eND+CfUDJSRT0Dmu^rtu21~0xg%lb*ZlZG|Co}A
zdMDm5k-q(M(#Q11?*Gz7(|$94u-z1+oU0Wgy6dOM@7ob_-?y$eb@hJq`Nk^w+un82
zVW!~>+ZL4OZNBXP&Hm3G=EvUWnG(ze1y?Tqc$m9cB3SBE^P-;&sdeYKi~iwjn7d=;
zy9EWwLfhwEj{SUP-F@Y43BS1-KAl+|wK~7@^D6!`MN+nrdH*-p-#fJQPYA;|LBZSX
z)0AWQj3p*LieRw&v^&ao%0{a{Q?++oE{pEw=dyFVT&LG_`F#~Lhm+t--v-{D_ipmf
zH94Q>c`f#Fm9aWQ!2%D9Gwb8id`(gmck{~?{nxu%^&>R=bwT~v%&MP43Raq~ua|o>
zTwm}Y`>W$W<7@NR7Hc{@_4_9kZhDw;S^BS4c9$zx+@17cW%QoO9Wu-g{(_l?@(uex
zY3CdW;PqS2GUMZseVWx7+txG8c)B`0{j~Yp6a5+If0ku4*!9^fewia@ZxVLI`+NPf
z<%K5=I3FDMiN6|O7LmDK#kl{g)iQAg_pTN@#sw<!%Q|>WA594Qy)*K{{|Q%IzP@96
zpl84KrNq0a<9d9(%s(zaoucHu`sdCW>#jbtGB{Q6>g0u432kBfl3wlz`jt?7KDmT5
z|HxYQ)r&c=r(Cde4!cy#%QtOr-JLr2FE1)@2)fHx|LI&lXN&WpiT($58o2DQ$7c6#
z)cvXV?b3VZHRZ3FP5)i~n_1_g{psQ!6${pe<3`ni^Iv8xefOtsHw*h)f06j7zj!7t
zTvih0p`><y@7C`-+nGPK&VObj@-F&#?<LdK)3Xn6ZT*!N_C|c~?wzj|e*bd$z^WDI
z+zpqFDt+%)GBmiRtL4a*^;QK;+jeqFVVh3sW=+o7LJjxVeGg&`6z_XnWAfbKb+g5@
zLqGO?z1c8b`?Q?ZoS$ZC+tn`oR-HU?S2=^h`NX<+wd=Fb=ISbm&J{YYel7Cag^i_i
z*3TDles}S~?!7K9PxkuzSuLCRJg}!Czo2>Twp*)Cht16vU#}gveO*QD$6b#~RsBUe
zPc-#C-8b`cRZ_O##Fxi?i!|?4ujx3k^qpg|daa65&^;w9!PLe7qq;h3>hq2*D!c8M
ztDsaA=68Pj3xl<%rv96J-QCXOeEK0hXR+Yd-nBye*6Id5UvYg}Ag|ntbFH)Qn57-D
z-F>ufBlkYW1y^DZ?qOx<ufDQEa&z+Y?DfIY;d5eSl~*@+h4r7^yRT#N`-YUZw%K!U
z|2Lnz<Nw|2u4@}S1*&4>x87f?=Xp`_{8|5<x-aMaDviFgpR3`gzO3+9o>fY0*Q@4i
zV|ozWe`s#wkMqfQcTStSzWV#FKQ7L)H;t9Wy~Sf0XUw{DV#B+*@co}(DlgN#dF7&}
z*}rVro1q(SYpTyLxMS!pSNGx|``i8JCFi$a@80`E?dj@mb!#k&e*Mzd<2--t&C*HM
z@fEdK>KT6=Uu>{NAi?d;PTO3``7dWiNb&WuJy^>Vqt$D}>Qc=m#nX9F!DO0B#L9`!
z#Qz7(+@NczcC>rj>+N>iy6(TftE-~qo6cl#-uU)yYX;T0`QD{7`*%-gPLB@P+;9Dt
zQ`4V0A=Y4}$)82{xEh4E3&=DdoGQF^qDEhLSNFoZykS|@*Lvi?y!t)A{{LzF&C{ax
zt(>a)E3l;M;yF|4vwx=duU-G?h$wsIyc+%o^A0+>Ea7JeKl(Ob>RRt#&A021b1=N~
z`JQ^|^v<6bwi~5PVm3XnRA=UmbGdo{_E(>~vwLYVL*R{y&ue$TzkBPmi21g<yK;pL
z8yBmup6I#2eVOGNzONd0*9hI&TsL>;tzAb}n0)tnmB%t;s)BWd-Us7^<Nu|2LNEI+
zx3{!T4!`s7ZkNaDk3Z+}_EjG}>YL}%)N;>iW9829kLwv;-wE<B+g57v?)yVCp$+m3
z<x9RRy-X8lP<!^xYl>oX$%aF5k62G$Ix0D_&*SNWcS=e@8;;jLUOanJ>brkGZq3i&
zIuINu9uTP}?prl+(e9A0#YTJeHf(1K6RCUmNrz!Ns1F^!BKc|C+vyw6``-;Ms}B6w
z7rbNZ-&AKams>*HXWqH+l-qnytiMZ&rb@xh>v4_8S<c1H3d&2&YThLBlWBp;_I3-`
zZpLeAX`FW_u*a-f|L(w<%IUW!CZw)EsyWxy&3avu)pX`B;)0UQ1~*@GxvoAi^Rd<}
z+bz*we5Ky+NU%IG<4df9@QO8ovnK75`XumGNcN%G&IxLMObL%azdLQfy8FKQyxzZe
zpSgX%!?D5RNRgKA*EtS<B^cH}SSY<^=PuLK)05pkS65g*d&Z&lras~-yA+R7()!=2
zMj0-}aw<g<tDjFg6}+VNseF+8n}EG{_i9}@cdb%x=|V+@Da-R4ohIA-SbuW9XIB`L
zj^}>uKE?Qq4MGdfyq2EF_Kx+yW&X3>ht{v%7|1SYDd{mmxq_SF-gm8gKFeoMfBU@D
z!MBo|Lv8Q$`W)v9mrMhdR<8E%XYa7iXJ6q_x$Ti$by!)sVCFKt&GRHp)EIR>$AsDi
zTwmgSX{oLe^8wvMmhCU*ZOBhIIC6O<Q-bF+H6J^!^Hoa@2_~}tOLoawx+H$D*!+2H
z2W}UB%Uiwf_T^1gSNR&kF9nu93us(?#!^=D6T{Wtw&uy#r8)0)>%^7B<e96^I<shH
z-uy>}KLi<kKFGWgzZJPHe*N204_*t?!~Yj$IttI2C%HwkEoKor!(-!T@kXqVO3$x)
zw7DSo&|9S>{bN4e=Uw%bl)hex{HJ#QmsCyG)o-zvMRYxz(i=S1y^~4xXZXdE+om|3
z!<QxDzfWww>XJPLS1O+iKHT=?zl+O~zEvyZ9u_vedbIxgv=GgjORL`9&pNR#<luXT
z?xH*2Yw{JYU(Mp3`ON8nX?bYW3f=>kSI+%ncDaFnIwQ}OSgl{Xb}anOx%KMY@2^?(
zzleqfTzIrMX!BApsSpRLAc?dYwTvfb@XS@zU$I^8!CanLUv;&7@0W8X{Mu{&i#?&`
zo%WS?Q^HL){<^6CX0iO%u>PA5ia*_+#$fX@f2rhih6B2ncORV4V9KyQ?M2cqy8=hA
z=Q*4QytVAJ)^C0F=T+4D9kaw4BPMAWSCnh7*?8psu_YP22lPL(&I~!Y-Y_dC^+1?J
zQO_<VB~{5?5yGIp=Os&97ndjOkvd9A%j17OV;7v*7Pph>|8@_TC8<j8-|WBra&~cf
zRr4xa?#U;4SC_JUq40!TLeBGoBfM3Lb5FVn3Vw{J|L7p=T6bmJl9f-nl3B0ByqXx8
zclD~0Qc>e_``I05>>qdw3a<P-bA9j0awR3!k6p}`H>L?}5N*5TH2G5cDqYatg>{1F
zaV=FH9X_!uayz$dD*OL!VTZ>>ZMpR?j<53k5OkNtRQ!9LFUTd&=GiW;s?k?c`pBhe
zd3D+valwgmnYJC85dGrxHbv*~)o#(3GPwmO3MOq;eJDA}`jo57x6c>CAD>DRoVZqa
z)$GuiMW0<t|LKc1uX^x4RY_@Gl+RA*=3WN-t(6HMzFJ;olWJOGJ7MP;*4fOOY=7jL
z56o0@XY!l5M7`u!DR=+pb&Lygj<-w|-?K<~gY}Z6Kv5o+1)*2j(~R#k83<PxACFDt
zkzCBp5T5oT%a>t?{?uTT&p%&&le*CQu!+r>;m4)Nk@|l`8!mS4U(LEc{P<&4#pz6z
z@1Lih+`}+Oc#CeEOycpZHJ8HXD>2OTcsj+8;ZAlo=O6u`qKqW{NpnN*Y~?z6N$oY`
zH1%2Go)g!uHGMNDZMR2slVFyKO6#g!^Czx6oy$_8IMtZz8gos;X=|(M0A_}WS4-PI
zaWJgDEp|2c%9^R^OYTc^N-xP;u&?y;pVbB&PMei-JLk_ebC#Q&$bVdPLKf3<P6lDu
zb*u+86R*?=GUQj!iTH1S{CMeAW4UJ8uM=hGPV(%$c<p4ioVt63;wS&`htG|sE7n``
zG%PkM-MMo@)|OMh8Kk*FpKUeLVtFo7dt<LnIRD|3d*89Q{$qV$_kWqhdB&o;Lr*M@
z@4xe4L9gKxmg7vECa3<SaUBTPoLj`tF!!l`$5n0al@$ka)(ifPKDRAp?(s`qre|Nw
zEKpC~##Cf?J<QpC+O?OC(#a<{Lw2bLuauM4XO)<F$ujF<;8$%0zjX`ddQG)?T$pt_
z_1v)|$*0PV&o+7WPg&#T5U6=T+OWF#jQ`>rAC-0a&+$0(E!?zX=BH_OImUt$A5A%T
z(Z}L;nYMtSq<pMdyf9zf+lyj)w%f04EOnK>-aIYRll#5j$yF><&I<^3hB}`z_5HqH
zNpf~NTSl8=d4#f(Qm=9GM!D%-9UfUx9>JWQC$_zsC4G6?3GH+l4W)(Q<#%6Hy_;VB
zEiW`KEbdxyyx_|6*I(DM+eUv`(sAP8@BdRK#oqIIuk|t4bKOPNN#A}xT##${gk{&I
zSE_Sg>3?0$Y+!RV^W1+1x0UT#b5=YuQ|&yaZ}!Ud@z2^?iH81Q<I}V27*bZ$`bqb<
z-=5^%Y<6^la0&B+M?Ep#d+%Lex~lt!>VZr5ZPOV4y9=FGvpT%z(rUr%EkY0Wi@g2x
zM2n%QR@Jm*$=zvRxNeC!`(0r4ShD$za&^}FpSMEJS1TFS{z|OLT+4aOsnk2bS@^2$
zCm$2RC>{f?(8GHIw*S9>>vw4UvX#{zZ#&1;|LEIL?bo;al!TE>GK1WS15;o9;XNR6
zUL_(fMkLew-}9h5vF?_aXIEZdaO;Eio#$~!^8#u=zrW&|D7IABG$Cqb=|`DGKNK^%
zd3HKFsxEnPHO}`PbHd{Gsz9c1oi^9j?S1=s>l^R$q1SKiDte<kq1NU>vek?U=ePrB
zH4F2$ru%j0c}h(3czG$IV}n3~)35cLgCzrW#n&zJ$mytlarSf6i<zgk1pHlh>fC3m
z2aF86mgUW2uU^0HO|7Bq%{`YqE^^i%-=ea3?`L@_o{Kd+0W-hl`(Mmw@bU1SA9yph
z^=rcUGX3?oQQiHYS0yx*{<|wTd3`+NnvWM}uX(NVx@+;CD{D9R|N4E$s>IjF`_u7@
zZhMbRFbQWWaN4C`Y|QX<cgX7}@234<6`tU6yOm+hw^xxSf38)T$Cc)vdgf#i+h%X_
z^UkhEdtTiwOj}udBv;<2@5f{YZ!?DfbLJ(V+trqEQ?4QXa?R9SGlmZVrvC4@u`uZ0
zti0*Z9$+kQpKN`7<=tEPQSVQLuY0+(i!pBXvfOtfck=g7+biV5mCn9b{78xWKPx+t
ztSd`hFO*3Z^;}SD*nhdI^PT?+s{>22y!mqXi)g%l5n1Q@!#2YF+sU=DJ}<IG|G(Qb
zV=<TSKi2P>>Z0xTpX~RRdFRj1{@x$uFLd^bou>X)NgkyzpL(gUp4NA=&OZ+gtDjiX
z9eN-rKm5`KhU2FL-aN}L+IVV>p>dtU6`l`QR94vCU34w%@4CDCRz010p3h=tWKVQ%
zTk}we!OzS8sjvQ@g+_m7gvGzxJMG-Ms*ZEr9am(ZSIF0uSU=KOJ%59aUh9Ta4!hW2
zUum%~UZ88Kq%~#M#P-niqB{u!g3-4=?=ra(^LvM*YTxscW$s!ZRVqBPC8j@^p!>{9
z@9C}yJ7@E4i6}4eIq26AJayNyD=&AP_YAlH^Q=5De`WsG-<}tlFU}Q8JI-n&$>VvM
zts(l)`ikkAf&DMHxWv8dv^?|fc8Pz%g=gRS;`8EPS6^4Q^1pWJ)91zCSNlCZdDTq6
z>u|gNQQrEj@6*jbrqv~gHS%6vX30?gD=t4{(qqBc@82F?m24A_vHA5pT+g~}YOJs5
zY2SsqRrgoFJ;}K4sjiN@NM3hUavxhzZ^G@TM+5(UFQ|N9HSOsB`OeG3Q&OWZsa!iM
zTJz<fX-<_1i;zWc*z9)?k8ghT+IY3)o}DJo9ODDOI!!pn%U`U&=KIXM8kW<w&M_$D
zNgbUX(7&GX$Kz8s6djvqe$0RFGSTYx^1F@8rS81GH06W$g)qsY>9-sfB}{!)wCHO=
z-|ln9%hq`vJ7)JX^!dDuC9=Z&OSdkXzP9UL*%wVcW`&my3!5I-^WEN@_-DfO_j{LA
z@7Q!a=H9uwlVNi*<2rBbu={ge%lL$0$aH}R`^#HTd}XkiTctCf`S_zVE(~qqwdZ6R
zc)n`z-c7&yJYw5U(S~g&XNLT?d4A*UBjwezH+xs6+~1XH|4KgcRg}=KV@4%M+0XwI
ziOi7}*%I3(vrOcH<^9#6r5mSwnsEH%HoN=v^EOrGao4u477NPSB-F4k?(o9XS0eZ1
zy#FwdozWvp;@StR=S6`mzF}c2a_=9BKL2iK?Bofuucs`nTW_9e{$%Ff>e|;kCMNne
zZ96^Tu!u9$+yz<25($}SUtM@Um+?|%`Rn&8&r082oV-l-Szuk0UdVaA<HmOE0TW&B
z@B3zZy3l=h>2=0{U3*I_4i+^;bl%cgD9Z3Uf8Sg4bni=-dkT22s&5f{6l`#1&c_Ki
zlvOxQqOV;z?CKIVmGR8lTl;s<l>PXB-f@?+g0~j`zf+fgk0~N@t7$7=|3ua8+ikxu
zpRsMp<f_B1!Rz1i9GDy$F2mw~d~5qu`FCPl0^9Dm*$4Fhj?KM$H6Ypc*)@lXPoIPj
zSbNTIe*I>9^3>xYYenZIYX{eHY}oOtil1YDneqA+>Pnmb{+<74P4c{Umn9yzr=5Iw
zaO$l>pR1zm4s)_k9-AI>Xa-MPhy_Oj_n&p&wBl#2a1{{a3^AXe@{G;-d+X!p-%D*5
ze5htPwf2%Y<Ed5e?#kzf{(3IS7e8|u!yRR%@~q4w&%XsXbiJ9=(82j4`tyrtj?pP6
zYV~|STne3EC3U<m<Ep#b6X^!gU$ex|vTNkdJd(NlPu5;#xysYGS6Kgz;aweG*}xLK
zWZ~YbYoZgMY0ddi5VCsly1Kuv->#U>nSNNcRhzNS`_P>;m(@0L@aX)TUpUwNhr|9=
z_m*TW{QLWUmethd|D>iZ+RfH~XTq7v*6FL)zd7|HVC$jF_o`Ox?l_@%t2nSXB39<>
zw2U>jLeIAFOB<MaRTyp&N$^{-Q1w&Q&#Bw(KONfb?B+LTWmZA|(t_<XAFH{0e>$J~
zwaM)G1o;}~4JV#^N$apZI5F#5u^2;`!M$k=HS_Mw%xz=7V4Rg6-(Z-2Rdi?c{l(F)
zE`IC@_2*Z;W1SkCz2sN!#YoG03<=k-7c4*apC$8Q>FHh3X8CjHCL1{G8A<;+AHCrI
z-i@YliC01rwns<*XHc2F^0R`1T2uPwpxWkXc9(Vr%+)&eU3}s^2d0^)qHZ<4QCAXY
z+Mwhm8=fAR6yk7bin-U*GUH>G(<;BS<#s6cUnr27KRL?eN<^eSfB%z}TLlvqY&8{q
zuv*1mH;T>R`pr3WW$TV=x6fIudt{5!?t`Cv91?wZ)+s8r)-xE+ERo9jkm1JgLvQQv
zvm&KBZ~v`sGCMNC{SDgz(|=*B7|Ryd6x93@PS~<_BSTE__npQJ49m|SX+O8UW|!a0
zFI%p=+bS<@k5DfWp6JY=ar;>0Kg)Y-ZW%A#eO5v0#`L+$2F`g!%lvIQ)O)YmZfWNa
z?QQgU^D3(0`efU!<^oeEZTR+T#rHquyZ4AaSet&~T3kY%yNe5RuYIXpL1GMd(6*do
zErRp+-~GSv^k#GZ6>N%<^M#u0U)*wGkAEHF&t2}gNJNtJ!|s1;E!pOKe!KGPHRCcD
zHJvTNg40U=t!LSCezQ!1ulV<@s+-5Bmy1oz4VnKW;W*=3rN+Vot7C6pInC<+Wjdo)
zk&gHb#nnG064tKwuMh5BSA1RBYvOxGwO9A8wth~y^nBIgH*YqaxERbJQ}Te_Z||Z_
zY)Xe2W;~GNt?>DA;h)ksp<gV^wf7&MKJU?&&Vt{kzcUy&Z#y)>{|{%Kb;w<Yic^A1
zPZ%`Rf61SFz2LO}yS}{<A7?$aHxx~9o#-*Uu5bH(=ZdnguGgcsamnvoxb;tc^>bOd
z(5e4EmJ4~jP*|j~prL6INB07yrY<F|X<N<TtbX(_=k=}I@1m}4EkAllD=cSC($RYx
zlom8_DaEe(!otMqX}910+}yh5_h%Z<th7J>`0<&U#pnO3J=s@$D*BJ~*2LG_wVmB|
zpDgXMNnuo(ddM+wQmW*E2>*5&{v&7Hrksn|KkNG4#*jX_TR*<L#|a2doZGzKyIJ$m
z>nP6ycMqA?ELVA<RF!|cZ}|+%@EKis2VKvdx{+%Bsryq^!|~kH0bCsMx)n7lZ=!iW
zY&CD*%W80Y&pp|O&6D>3&^XR>C0|>qsIp_Ph0cdB{(^#;X0i=mZSS~o@}A<qV7|rO
z;F(!jVvmjX@|#E1m5gq0<5}8}5v-*&DRI`sf?fHFN=64~AIx%fnG;|&dF=|LpWXLg
z<Z3<r(bm-=qo@@0eP2gM55L88Ujf0DR*B6W9-qT!@9cRLba}$*Lz^bW)V*OAc6E7D
z-v75`Q#<Drn`<D`Z*YFNvG+($aK#jzpP>z|&$iC=k(qSrsj4`Om|1R?Vnkau|9_uD
znyHDO+}Uk%oOjw}1#K!QNSUvu_VvKci{b23mMB^OexsqJRIIZ)fUC1i>CwkMM^x;;
zXw0v4`z$o^*Tl^(E_`}|mRmwxp6EVr_SCo3pY!vwgz)|91{YydeaXweH=kI>ZPnRv
zrbBSroOT-qhdQet+PuP#FFakj`c_Iqs~qn)nFC&*Z&|c{^~-HwXMCal$%dg(cA~6L
zj^BfjEhl3dI`x!GSRVX5dTvR|*^?Jzqt^Rah@al9wb#0<<IluNv0+no%*auQJLf&?
zuji4?nV!o&3r+m4FD7W2vgwPs;7WcS(`R;7ogE$uacP(DtW$b4?N!yuTV_g^c0Iqa
zj$=(-a%su*)7wP^XIkj}np~60#*!>7a+KMpqig!Qd(8|x?kv9O#<<3OeXn({(as4@
z8F6oOCeKhR<+lE1e<Mrwz{SSCW7hZ9ntX5Bz}dt7wpV}cZ6-~Jy0_Cy-YYJ;t=cvH
zO<7aNiB(JG_+Gv&^L+Ms5^sE0$D7MuK3DtR9{c^dbdAO4xF>HD%%*4w3Q9hH#Q0}(
zhsSh_dCJ$##RY#JczuL7^2nM$n*t}qX@<qI+URZhs&yc3`{Ao46%q-XEB|sh<gR-6
zFPyPp%9L62r~04%JHN!XKH@~qL$l8ty`QY{jIB;QV_mZL<NK3O%;(De`IPth{iR((
z3wAC1@mrg>;T}WC*6&4U?kfuPPPaUE`|geYbcSooteRHp7zQor40eC7`u*uKy=6J)
z_Aj<K%#;*6*3(=q#-SE@GWwJ{^ZaRDKa4Z_wypKhRQSh!;BFk>&5QqER2{y{FvDZl
zb%r|sQkMHc4V88ib?cPwnY@`0!9U}C$|5`cW4u*YnXkMPdHi_K!5vrbC@L*2W_Xbt
zJu%2)#`-r}{>yhQQ~4<w$6IdAkQVug@j%a%b_34H>h2R|-5uLwB3VByJk9RTWN<w<
zK5Wj*AZCtS!<8C0Z~gyVGw+9xtEZ5$?#FFsuE{#=S@KRZ>C);Mi*Kzzc$Znl?l|)Y
ze!+=%eae1$mCLU^pLA2}K0m{pmv;Ls6>iz4#_n7;d84X-=Zr14j^7kpBEqMe#b8#k
zoB6xtfvod>4!&BB#ovr%FP+?QWs}sOs~+Fivn7OI?>o=Dru_D8TfT<)yRZ9a$@HFI
zvPS#*j~?BJEq56rCZyjh_Hs@Oe_!ss<RV+ccN^*RKc?hprYgJ5J~cOgiQTc?4fdsT
zW}5B%eff^uCH*-<n=e0#3;Lq)x#QjRT^nQ`zp=HB$&Bs`a(E;AoY7M}c<zneRd>|5
zzh2w-{7?S@?v?$CTEeq@C%H4cx?67N#$b5LW)9PV^Y1RNozCz>^H^C|t(V{bSAP#a
znzR1*%?G8Wrb}lS&h+8`TyjQj>w~4m+cdXae)!>l@q}Y?>FfvQKYv@=AhE9U_Ekom
zvdx@J_cJvvc*J29#&j^~dFAn!4tMX>&3<(uVUw~3Z=-NS#n)Gt9wj&Y%H1P%uEOcd
zKh+OBOE#<g=3B6AYsU$fj<<h}_&PSK{|slCSGND%dxkar(wzwx+y7+=YFY-TL}ete
z+48$<65BEDJ%?^P9`Ee<(f1|GLb&VmJ-x=Z&`h3BZ5<wu6P1)?U0uYEzewM=`v3W-
zlb0Raxn%8Wcco7kN(3i9`@XY2YxcEc9Nk-ZW=^Y^+#4Rq^X&DO&D)#v_zzge@m_D`
z_@%Z_t!o~`9u1|Xr5~StS6#NRV$1cJ=YOm?67l%QW65Ce%TtW`KHL_XDgMV)E-!j&
zP{1E<hV|bcs4<6BPfJzb@bXm8#QmGC(w3g9_>soEM*DOA+&{`;?whTJ-->6KrB<q@
z>0HQQs5^bS$T*xW=cIJw{ikdGa7BknS$$`Cuyyu9dj^Yxs~>KQdH4UfeMrsPQ^N5N
z+J1WS3*9$l_@nyltQq5)P9C3}lurtO?<hUv-4?}r<nHlp-#@(5R8r%qs#@@NVU>5%
zltW9lc6fxYJ-&EWi-WuRi>W57|M0zkzh6BhWVv}qWyiN4&-Yw+QTbNaxuz=8Wyx7j
z!Lzr^1q4@Gm(`w;USqKQLG&_p{oQ9+7pzlxz{&jD#B%W?&GigAAFD#{%QS4g=llKm
ztn|d~JSw%q`<`FYPV;|UB>ZxDd{Ub1N3$vOSrnLiBa^+Kx96z_8J(=0yZ!ieFXpGV
z4KwHQXN!s4TRP!xn&|;y$({}IJ2WGo#=Qwv5vbhk?(%s*!wkvW(r33zBqZ9234Ocn
z{7y%yHjA-BOTJW#ccw}5Q=yIe4@B;NZ98ms=!(Sgjh-L387kIA7lqDQ_nh&={f=wT
zycr6tb<JjUyx!9zy6@i4mH$;9@e6lMwRH@<^hCX(U--NC#7kS_&X<?%eRSqpXZ6t~
zuDS=h<}=>-;&*5A?PsqUuDQQcpTm9N(~L@~^{h^lk3SRax7?Ppp<{nf)*F$+u1R8(
z8K+g%9WW5_P)-m0W-wbpnem6px5%D{iVWvEGjvT|onj}glibI!qI3J=%(pVf=bP>C
z?dUjJwo>p=*Kr>a!JEfkzlloa@9H>_Eyq8bG0pvojQW55Z;?F*b@I>kW~?<1+&cYu
z!Q}kS{T(M-Dl*ruy(zSO!|oi#N842^rCV2+gxnJq6wFWl?V|TmQEAgNvHte648=Lg
zMVvkUS1Mnr2u|Ev?Pjw7|H2NB$r8eo7cTYe&29a6PU`u4C8f8FJFab0TYAA@Y4W~r
zWf%C=GQKh8yPxgoXPma4>4#}yzVK1;r@wzKuWG3J{&?l`h6u@NIhT)ZR5kDJ*uwhg
z$6qb4S$p^c?w`AC=)3Z){GH$lHy`pha522|zq7kk^uQ?%{@WKB*4(-GRA}<ND#v;A
zw&)ped*UcqUvdBJHdRg5<M$bM+&G<npzx{0i-!|tZZdV8)Va@i=Yqve3|66xANF<^
zpL)k&^Q`e&&Vwbv)qY3hD}T!0o;0QD@Eif7k1FTQzDfJCK8Rd@>~oW%V{nk@ZExKU
z!}j;?TjSG?6%;D%<ZG}`*SlI=b*J+91ofVG{VspJE^|!?nNsoRnN9Nja-TcqnrG6S
zk8YFWea^T~c0T{DNlSthf21*9aerF-RWiM9`iTRa3|Bk-X6s(qYn0+=cH;lytEC&(
zdTZLe`|yA6-bWW3CNu6hv-qOX(d~!h=l!*PlKE)S620A04VM?)iay7X5S+p_RreLs
z{oj>t5pCCB_NFQ@yuUSVsfa@K*^mDJ_TDtk+#~s5`kmkUKYq>M5nnMO&-47}_(%s9
zYc<n|@B?2rB#VDGm5*%xb7YUvf`vB1-!8{1{%5s0!@f|%G3x%7Lx1KT{le$pIhSF_
zxyc)Y4w_3PylnqIe|NdIV5ZTFS=+<hZwV%Z6)m2c*Y;wDj9`7+omCyzKs)sg&sUV@
z;rjjY`u7zq5p&aoBwRcFF9$Y+&y?~lJb6dFg`1Zp?!&wAt9oTD4;oe4XLG+h>frmc
zYgflHZiX4+GaWT$wCmQ#x24|7vs>KSabkwa<O3RBHD<GZ3D0bK$Y!|IesTfF=NT6k
z-+SBs_VM|-PA=P1WP`;!I(9@|U#g^}D#(4vP}|jISB!AEkG0*G@SRUKm#y5lP9tuE
zn~Tj>)id8x)`YxxbZ?L4pSR0WRu}4v2;Q`N^D_TVwY#9;<QBa{g86GblL|_|S0vxs
zs2Wq3o^tt%rdf-|(S}atug9jnQBg9gpRAs|)JgpNGf96QeqQchCCQTx>k0^J@~_=|
zr}EO3oAci&B~3G*=(qQLjjmGAw*Wh<eZSsyN4&`NGgXbA(ZqjmhrTZJ27yQ0Boh9)
zpKkK^IeWeQ-_E%mHnN{YV&}Xmc+RjP+~c%F!>rk}?{GO>Ip;CoilOi0qx6qb@iz_{
zlx)=X(2Ur|YQrUK8aj7UN9D&EMGSI+ncM%jD({cj_hfGN_uN-CB04{guUfLYe1^>F
zh3?DG8Ep2M`T2#7DnG-94V7*79$^}sh1Z%rw>{Np^%iD$_bF+`-iC^qJeylPS$AA|
zIyvlXWBZHtC#y?J`=fYjguY$9r}nDrTAG)L`h}x$zTLmhJKg_#eiGMGjvFDWk1p1A
zu1%h!r=(<b|LNqqb7IGqrL%wYtvi45Nej2_3C{B=lCt}@oRgTRU3Em}a#G>ySr^PJ
zr!4l;v<T}KS)*%MEmuDO(#JFFmH9g!Z^)eKu|t=$d_uYBiVufa1ScM=-1)c4>%^2-
z>bH}oIHgG)NSEW;a@?ok)E#@jH1`ti>Hh!N114`;{Cqn@u(OoZTHe^lJB}XvYV=eo
ziH$pY&h!?!-q%9zCzY~Y_RN@`^ZCk=xvnm0OAQ!5bm%E5J^I%2UQ@})G}ZlltCCWz
zb5GLS^o8=fBTv6Pw({GX2<K-frQD}mc!^~y32j{F*ZgU9z4dLIB>S{g>ZNDmUYIX;
zsoik4Ov$hB&6F9+N|%hTd_SX8bjIz}sik?>?|`}%2O?G`d`gZpN}pvb>Gkk(oJ&e&
zTC&Wi({KHL_1y}b`N~svv-9PWGqw}?H))>!TYHLmR`cb5in_<9?fL!uzUvdW>xb@%
zp6}||a_jV4<J~eMF>~)GMt29D_+iFmGxefGJ4;`jxXhc0YeF)t&+q(wT(DYAt;ziB
zoO5#-DlC>975O<w_pJZE!ut~9vK$9`HSg=Zej~p{^{?>vuqh>(tOwrC<as#z&7YNd
zKin@L*?T$l!0h{Wh9_#1%V%@e1z*!&Q!C?;Dpk2goSEghadiBry^{OA=VYH+ec<z!
ze{lv130`&EcU%hMnxEGYY^xgkt?XaO{QkhMQ`|MvuQL8AYmQc`(5yZ&al^}=3(pD}
zUSHmzx}Nch#m&U%|J$$qH;|Kfzo?usYq9LjoXzeBrm4&>aSXh4@X1^0c_#&qc~(DS
zSg*44!WYZ`p9B7X)XclTE<LZvuHHap_3g6_!BeeGeP$iodv^B4gQiY*o?g1&Si^Jb
zXRyP+x@}7}SkG=`;5nJl^39ZC_2cJEr+WPE3m=-DcWlXhr{|aTZ?WHMW6V6N%g6R0
z|Jm7HD*LbdPI<C;<$c}LZyrtGZ!>?Dm}cwo|BM@=*_7`vRES)>oVR=3-SU@Pf6rt7
zcGuP<^UZ+?90?tP&(c==&-E8)EtBw_xodgw^^1%65_&2hFR5N5H+#XZzMJ#sPX2Xw
zlaKlT^=FsLv@fbS-s^B7^UIv`_jhlpz4I^7B#tFuzw@&ow)0#Y#rMA#%#aTh&hy$4
zvg9+fKVSEbJr`}y9lvV+!(2DbDX7(c@eHvfF+0{3@)Ir2RG3W2X?i7d>E{3J+sC&F
zE!|Klvfx^zX$)_GbzOzl>#2_!E3}JM)mvxxi26DB++6H;_}1dS>eFwU;#8c?8PZ+*
z4ECIQ8C5ua<&We`)3^A=o?aoqU2V<~__b(}VWa-e{>gp~C$${+PJ11^>2x+jJ&)YR
z)g52H%SVLR*{ZzU`Ze95=&I@C;zR@chQy*^!HM7geZD7Y-TA-f^Pa`4@2bnx&w9Oo
z$Fq;uls@Gju&q;Le9ly`qoad|{lSVO;<>C2_jaz_&YX~UM`TjhB+K}p^Y?9xjXK9y
zIY~S=e%g;D!I!KD*7(?p*O&_)E#9~8_}y3f)4rx<3r^g}U~yS^(c+F<`{Z|2MMXak
zsBo5w?t8Y}$aPP3%bvdTA`PYULPNfCOkUL0zI9sbq}V!cn;L2LHv3b_lXv|yR48~d
z(I|CpxsITqrmSSH*8-&<pTv^aeB=9l=P2veFWU|*zi%@AC&T?^3s-Lu`s3Q_t;KlH
z@6oE;jel-W(<oP~(Z4OWNW?<)h)P-7e1%*yhBf{domac|E2hVNKOsGN+SSAB+dHQ0
ze|6{6N^d=hkJF9Y=6@;PG3o1ZYw>sT*ZzcW-}wFah5sMf-!fL{nC7<mGhUNmHe*ci
z6cT^BQu?p?v+IG|OCPQ4nq=my%zNVc^|K%L`y4ZT9HhXyyi3e^UHz-(`PW<Tf4aF&
z-g-S#rP%IvRi2r*Pv5UAxY7E3*Zn2$z15~0Urvgi<1$0jEno0sda>`K2UYWSUHo3!
zWz4rt*F`fU%5}!1u62)Im;WzfnCDqj*%_&%`gGo=yC?a5S9Y7kF1*r~^4~%yMg802
zgq07J59{qPytcM%mi(pc_bEqQi+T***1EWyWB4Pz@nh#(xBOz^RIl~he|L72{64dY
zW9fsHGd3^oIPqk@zj<P@_&H%U|9y|9zf%%=C=zeB<@GUMwo|80pFVZ^^y#WHVZom|
zfv@(v?PceanV}Jte%Ujh?f#zX!)u?pKILCLe?4y&$KD3<WM0$k7t<R#Z7&Poxjr@j
zm6z+1>#N;!#0+O9{oXtI$147|PLG$K_f2wdt;xK+Oj=#X<N3A719J@SrbV{}-S`sE
zD$n=v<U3)8dBseH?#zOj{M-MSJ!^SXvAyx{7P}|U`mZ0K-Dk0e_rB-Xxwf?j*|*QX
zVf&{cqvD0=M<Kp%oH~=zmVG$QaqtgY#Ub@eE4UJ3gv7t{{GVtxZ_d5Fw#UO6KXm0v
zdNl@b>%YnQVeXfMTcZC2fBf9=;my)sJ2kOxDR*9}1=oLgY@f*R)q7w4--p(Js@1)#
z)s?@!xWM@6nXJ^4@6pwoGYc1I+TM+++iEd;I``xqCw5$9UwLwR#x8jVwcB9}MU<a$
zo0+WkOwm0lkk?`9^K$Cdz`d)V*VsKfw_kSu_p)P5r84XX@?$4oy1GqlMJ0bj|KoDm
zZ8z`e-!)3Qt#5jLzQ!kx2lM7wO}Z#(|EB9n-I_JVVhOQ!X(z+E=1$tm5YHlgt}E9o
z>?qHJm%m(HuB)z(+m-%A<yiTlpdU6jKc7<8`cb*!<_F&?hu)?bD|hkS_MBBG&2VE&
z{~uP5b6dZ!I1zu&f9<8cdzar~JTR@(TC3}N5Bm*?ig&-=&+Gru>6)r=qTDalWBad_
z%Kook{W}^_mhk_{enW4oDKj`0XmYOqseNG6mtsYkOuxBdZ<5P0C(V2?WsmUB*Oj*`
z?nafhnMSVP9+Mj08Z@P*ctwZF%g0YN-+ZW=*>Pgo<8agbdwX0zKMRVDjZOZydd|yP
zUXe@wu2BA~Z(j5LYWV$i-IeQS`3DJv?LSi9+tG1n-iC@}$)(@7#FWN`ay7SqzP6OV
zt7FUWQ+wWuuU{X3cYgnkt!2qqkM&BgHj69o={WIl`)*P7v!=_LIL&5=s9Mi>^0Y6z
zM)*00`qVes$Jc%E_jvdA_1o#66d2Ofg;O`Do<9?$c2C~w@Qmq?j_TH#T%S92B1^u7
z&CAePiz<9pTQyuiJNy5v_DAQQ=<CbBt!H|E?9}afX4jcBQ@y?CUMf`FmQuJXJU>6k
z;wsOnwk=m~us2N3IUUe7NuKdlnb^nWEvYr1K5pA5{)hj;ifQw-cMCT>o7ex^?el~u
z6Fh&cay2;c#%S$}M^Ufzr@!G^BI&z8Lo%uC-+W=gO5ujcPT_7=i>sA?rpeFTk$-B&
z9T&?}vAfQO?AQFM*x4}0!_RoS-~M0X@24(xVP{ykagCFvpH=8@b+u#HmlREZvi|KG
zi@E>wC8zgH*(u%-Q+wIm@?RJCd8>~fn9ICgzj9z>=?`7n#rg2e3a&|umYhD!VDtX_
zelIog3C=4$w}w@^mCgJ9`_sdRK9eRD{!H|)xw_!wVo`4k;mLAyvlz^l864el%Eqp6
zaf#6b#s&%Yi<R!(D=QPdQzSFYRE~-*6T25Q+4K3tC+lA)7dhC^4UOH}`THsR-09C-
zb!T#ZXv`J$nt17AJQx28?|mt*!IOn^<F3s)F3+~&<h2*`Hv5O#`7GYYI3pvvHE4~E
z#1>UU<5rizG^6d;D&K_(C8#)*UTgb4$L{?8;#?t7!%e3v8t&(;4(OW7cQB@Fw|cqj
z$p`9lw8|rOjwNjhU2R|C)x#K(7~LAQMdn4zUG?o3zJ1+WJ@NiGAHQ`9Zc#Bz2ew#v
z22as&W4dyyY-VuR)G+<ump89_J9$I#_xit5F+#aM2PIWgx0(O8c==3K(=U&8L2It0
z*Thc+7cADi722PDb8pL}yH+#Q6w-sM?j=hayg6>kZ+7yluk9l*g_Tarx*pjsUAVOP
zUcbF<oynC+Ix-Vu6I0b{A64Jn>n&oP!*(n^YQY7eWh*k*ACVP3TK%iV*YsT1^-`A&
z_fJi1-t=$BS98hBK^y{~nszs^NncL-<o?wASLD(YJ2cKrTXR#b?0loC-}0~LWv5Nn
zy|}z#OIBa{q2~-&_|CkIwN2s>n8y<nSai&r;p_H0RmX)C;#fQT)clV>Gxzhdmru%?
zq3Lv4=I+^mM>;>n%ucLX>C9+xb{o%94a2XJ%e)pu+$%J+GW)6b?|I|{&xS9P^_Lwz
z_fPWHY`ck*)*be{wc2JolhL6wPm-2C3!Rd4iM8NSK^#j$WOSzai#^r%=l;A}xzK-N
z{+7xk|K>X9u4mRc^^jL}%bDxk$#pB3R?IZ{^yY5S6n9nUs9c7Ky8-?Sr?mB+d|ces
zaUx8camI81ho>&Bj%NQAn=|X)xu=ZB(-|%oRX7XoWDnPRcXCnmy!1Kz2bi~|Y8*ZJ
zxZ%EXV#O8ZE${f$&)#?t#gMkG&v?pnALbuA)5}ZVOqceLoACeLlF1CVLSZ@|jT?ev
zZhtTPq8wtIr7rj~=b4tMZPBV+!2{Wrds97KzpOvtfA4wuec6Wm+|vPFlXV#@4pv@2
z`POrleD%T1;4`Olo|N`FiyoM4xi@wDjb$yoKlgEGcg>iW9o-f*XU5^#4aR?VHnKnO
zzj=}WvVGC&wVVv)PruBwJ-p_{Y4dp{AFd{gvq{yRc`fq(>@}v4ER((@*2(R5I}XWh
zO!$1K{JmxQg=vqZe+9N^R_Y$_dwQE`C*M2m`NF@1|Cgi&3r_sm*tWVzOU?BhL&6kr
z0+c;)D?nLr)8QS*wZAUppZ49f;8F534$GC>M3<Zoahe&Ur!=4Cp4^mZ!<C6%N3xHJ
zALV-cS~0G2<-2}%Ba3w}r#Z(eDQ(hcP=E4c-9AQsJ$^$q^{)KW;mq$p-ITmmantwo
z|I2Di6)d?Mx*vVH@yzUVitg#!hEstIJSTtFF1>i+;=!2WVCQd(#h=7^f11(J+zkq{
zDH|C|dT$@!{`OoopJYa&`}-V)mwP74U4AknyyID^cGRTBZ}=O0b8}w@bWPsG)i6Kj
zbjQI|hLVk?zxQ3-_T-Yw^$4HpqBCJiO3C53gBOSx|K27d=($&_JkKD0<2AXy&_G?|
z`RDd_sbm&y_T(_Uu}xs9hheGN=J4rC#`joecTT9~c1lzEy1)M88CT15r=~EmpEEM5
zzdSemDBos=F!N2ihvzmk%*gk5_&@c4{QbQpw>uWz{baQ%e|7pFHU0H}<EJpCsWTkA
zG3}w>O&*4Kn>80c&*MGNd8PcC*M7~PhT)N`L{w!q@3g$Lji=n_<!96A+t(((e<Rb8
zvu^L|ow<fy8$TI3#MaGIDvRPj(7LVkiS_cZ-@Yf09J$&nqH4Y69*@DnZ9L_1Y!BMo
zCZ0bdSAErL+LA{~e?v8|Sui%N&OKdlR3#)`{<hU8+4?_EZ}e@Os&VwpWri<XbPw~U
zKQ7&pEBo_YLb9jWGmDKqi&_GIu^;%e=ZlBIR-Nmwj%C->2s2bHW1M5A*?Q(4gH29!
zo3!lNW7&IVIJ>&=u_dIgo9w9JWwD*1U`4KE-klV)xX)KQ_3}UXvOMs*Z8at7IeP<d
zWu*60PX@M|(<Z*3!7}^w6-VEV-s%kZHs~InD&6R^QsC31ImbAs-_cQ0+WvIMriF`K
zKs|yzxsk2b#x5=?;-|Gf&3()mF=e{3_tFjx<LtM8O1xk29(cMf^@;gXd*%t(SALwT
zbl^J+LvYUPg5{pF2kLWApUC%PO^AzgH_&!H(0c6TORL*fNe0pnv~O#D62HH0dTjzz
z;kj+Pu9`({GYtBEuFc`@JQ&Te`tzk;J^2@Z=GrgFpEhr{cG%5AQ-;^ox5b3Itr;`&
zquu6RvWPgW?l0`7anwnBbM|q=ZLLR+ELpJs_ZH{RI~96O*Ky96ByVaFvC;Eo^fP|L
z<4+rd6Z8Kc4yx|V)%<z9Px|lvx$;GE|9t|TcAovCxNp+&+k$JE@9!!7wZrAX?+Xz(
zIj_G@+}P5#sN>IBn<c@YtQN)_u>TR=w)Bbga^?X01KaqPzSw!iX3^>G+jUj+%vp0z
z&fd24iR9ZbhDxdXYehus&HXcc=cVgt|NY)nwYa3$@5x~U$u(lnUuW(MGKqOtbK9Ij
zeEFqq{LB-!vtJLBnDO4dz-wZ`(qu0ov14bs`PfaAgDjS<xn^<OXiCy^t>aTnCNy6&
z`^vEX*0hP?XINIeNr`R?dh(-oj@~w1mB>1Vh<V4;uUjrpwLNfoTdIcZxvhPgnHFDH
z%P}OR-!}Tx;mG^?w1cM4x^kbBtlL^u&KENLIlZmN=8+Hs+pTE}MNALN249*`^gJh5
z<$rLvW!*fs71yQ2x?H97jm|&)xvh0ci*U=29d6g8Po*)R*`n*LndN8Z|CHmlRnTLb
zbR$#G*LmF?C!862HiD$~<tE%-$9CUdCON1&I{0?fCx-O7zr;c5?-<L+^Enm&UOc~M
zdF{z|<{a;h=klZ(W-OigT(o=7jSGDROfr#AC4}8_6QjFhqyBOoXuF%k9oRL~Z#LsK
zlM{dc+ou2OJ-O*|t<vpzmB-AssYV_&zxGGWZ>z40X4XIE19P{fE^(h6ZT5TZ$sLO4
zuQ;6D{MSZm*Ymya?{1H0K3QBb^QWjyQgnOJ6_aSzfa^E6^_9H*sw?PYVfQ)t(IjQx
zwoOa>dGZ*ZrPv2sJ-A(T+iA+8V=`;a9w_X*<bBOOYBFp1mXjGL!s=(s%H;f9?EL9Y
zYwGQ#3~TP3+a|Dd#mB!aCI#nTpL_2nC9I`?_JI7iD_tEI|5emvB)@-B<@;ElVTF8F
zbVtw~8I}V}+TM1)vrcuLVp_R7cGu#$Vy0pnK7HKN`*i<ljXn3a@hv@3Dcx{6=k$pw
zW#<_}?$yT^cx|ls|E2AfkfnBE#N~t0C*um|BwI_*tDg`Q@P_5UB_@re+5<Dp_4Ac4
zy_$3&%>8cf%beNM{0j8qD?)!e|KF{3WJb@In9bsEa(wRJQ7YdMxTctY!u6?JgO-0e
z(f`-~|MSc>-gA8P&LsvsZk`_@8S(7N<9VIuWs-Am-Q6az^u|n<4Vl@ujcn3R1pR+p
z@3Lz8yTm`CZtT%gyp?bGjc*y~n^qm^beq-oP-9yp<A=6f(RrJ{R{uMBq;}=c7!&h-
zFN&kuwwhT9H>B^K@`6|GBE#aG*8yGg(irY!N4I^S67%wV``jr(3olGeTdumvDd1&N
z!>KemtuJle3^SHDUh2v%V|(y^TWU)4zt1wsL6$Z@yM31O<n{e}5Xa#6Az;4x7Ngbr
zyoUqV7>hJK&N+R8D>v@r`eHecYt?D5pEA^l?>)JTond|TYJ=iDwg>FCd|_*f`53Bi
zO`9lNqikk%?8yq1^*`hpq<8J^`6})3b+td=dG+=Ca(ypNYR-KfAhP^SdG&3hO-J+m
z{BERAdYv~X*W&!!%?^%VmVZ7m!-nfX`?ge#t`ivzzOB}-dEZ)Y&h}ZiU2}!axvLRh
zKHL_{`xKPm_9o|0^Y2^N7HTNTGoIPDR%!MOsol5LuYM11xFxZ9izZ|8By&dgG|z8M
zxsqK<N}Cz%Hm+5gJ!je<NB7xh8Rj4V@#RK??#j6Zm;e2opt(ev!88`+u8EU;10ING
zY-fM4F=dyO_@&iJwKa#@jh|il_15!h`}J?z=UzRM^YBi7Wb2}iALfjo(wP;cbr^oA
z&YX9iX+!oNz2^c>N0p<ilnrfbiW#%EZCdFVDC6h-^2nCNPcjUiE;3WsG0c$uKjYcA
zfaF6Jv(v4XiTunK6V>o)_|16Ywu=3{grWes**hLHFvxY?U-_idAbC<(df)Zssmr@N
zP87@auhPi8=<ky9GwHU`rc>fdN}J*z^|g0*oVfkb`fC4++ONMu8@H=3)74I%wT3Zb
zF8}NUT|v7T6%Jm$eBq-m`;19D9``dyPg+?WZuVmS{7~i%2kt37uV9edT2}AMxlo<K
z{MNLIsmGYEZ1uacR*>QGB-yPuUo*U!yN9p8zqX`v@e{%7j*b&4r?obn6+hnTankOw
zaEbO&btUh~vRhxhT<q$yu4eHbFj%wa<Cg2iJ0o(oOD2@bS$@$zdd8XINv2oI`4`Lw
zayftNviwkZnK*lmaue_MX9b@hIWhd3x?5VyOJ*ON#+$j}f|{}1A3_h+&1X2{TX!d2
zIhXTHm+;2f1rw)Ashxe@caLwC#><Nt$|6Zk$2{&auJD{8oGaoG`$_UAfB!aB1GBIv
z{{Odn^3UN>>kLg|Ua7Hjfq6iJ<%`&zQVq<LUO$_(TZJu^`)-eCPpjYR`<{-4N$VIM
zte@AnQsd<(aR$E4y2`I5)VFLGK6+s0tWeD-v+NbNL?rnBX+8J2BHLSzc}4c?movI1
z>8be_9aMAT3J7C$c>8(x(YI;eGW7itA3S4b<9~5`^X;<e?Rh~;)&6`Dlcz7T`PTkm
zqi!X0!o=myT3)wm*f(6*)+HmbV(-^y4HkQ&m}a)zo%XME>wi0Ke_s35xrXPnqd(am
z_&$$srN+ykZJb@oW^c|s2zv5);l|y%&1d#B-0tPN^Ze~wC;JM4^|>dNG}>~DmnLqo
zX1IQP+C*lr_bd6MCQnb+d$o^g#>|UzfBAp9zwFVU1fBbu6}jGC*@`FE=yXjgJ;(Y$
z;I>hbQ~$-;%*Rr$zBHWUI-hZc-|~5t6E1yb=AL{0kGs?KM>};h`48Cdl?e*GbWG%-
zpPq2m;q>3XS2JBp+4GzKFF%7-dd1@0W54n@f9!Ho3MyLuS?_S+VS{3?>n%UKCKdnV
za?rnRROGgM_Vpk0Kb_*fJE@b0J;CFcxmDiG|90`^6E{7dbA6teyA4mnVXz&~G8i7c
zaTSx%UC*K8p!P=Q@5eZXo)drUa@~LDZ~nIB``qyIN~zZLYs;g~IGyD0;SRqil5v9b
z_MTVur_5u8Lthj}Graro$d3KIx=g>f+3cq`wt*5$<|WYv?VQsm43F!5wZ9i!*8k%~
z%e}a_Cv&50B#KI0&T7u%k$Mu?u<OjWPSK;<vu5txo-4UCty}%Cf5qGSLz7mR#xWfD
zCwDjfK|W(}P~`;oWHt%*4M$!FimLi*F?1OiUU&TbhyQ0!p5obbrVn$|e@p59-M#L#
zlDfl8W5I+;&kt*PRsCUGsq$Y_X4d`Z@eMj$Y7CllIS<UY-E&^@HDlV_2M;Ik?PuQe
z^zV+YNn*kb%Wj4xwldmVA4_o*ub<2*JnvoR)6Tj3n?ByuXxl3E;HeJJ8jY6*VhKBQ
zMawkypDb*d`~1h+pFVFtK9swk{yeYq_mYGD3uaE3^5<b<L)Goj!rY6$*^_;q%?L_v
zpJmSbWcx?G1MjzmYIHRh2HiNejVF4Gk!JABtBx);!VLa0SBsiFTdz3q%n$l8<JFAX
zoYNcJX1||%dCoVb|4a#mX2K`i?S8)f{WaI{fAa*FtE#)-ZI3^H%6hWy`ON_?OO`kr
zs>~0RVoF=R<iqDxN0Z(v%6}IWeEIPtBl~>~C8hH4^#AMD{;zo)-Q6oV`|k_GT$d#m
z<)-&Wr$*&@7rnkNGF5&`=)$f^CTjnl_}n(q+4R)pGspj|O<VP{Cw{g5wQiNdlwIrJ
z%gW#SRCIYs+f99K>7!kf)aEkoIJJ#ucFxz}6U8yJ|5_YR)1Tb1ezKL*JEjAsH>a)E
zIC+t!p*r{U2Cv_e2aj9)e(A7n_M0@jLo*)>9h7l>T-7i!QhbfZ$&G9YJ-MP~H_N8|
zSKMd&`unS`I@1^#SFAVvA8%{WxlqhGZD*$FQSUUSnw;p?RI77l{U5aFRqfgJaQ4fH
zUfy`yim>&3hv&x$ZBX8N|88l@?Sp>nmWe9fe#q?B`{t$DHFJjG&1)k9Cp|H4n4i0P
z!`W}28TNVRT{afBvi#h4_|HzJ8r%Q>@<gx3|EXSa^UGU9^`f>C%?&?erf-a6i<n$`
zvTKrzKJ%I_YY$n)?rY><d@8xp|MFRe*N67LI(@6{$CjM0ybPkz7Vp=aY&-gN$qzk-
zsMNr<i<TT<W^j2bu5DFQ{pF)cbCQl7%cFGX>|cTm<}=E#|D5iy-o<y89-Bg)qLb@M
z$!Gan7w1a4HhbPFtJ|Yj%NTJp#^uTUgS9uqm2&USXS7hv4iZ&W^(p*Rw=GqK_cr5)
zygPP}8Fz#nDKCDZc)n5aZW+siXKyk?r-T^He6iKY>D&yK0MYLUPE>5s)B1k*S%lzZ
z>4#rC@>E|lPU5{EI7R2P&VoQ$%O`mZkLF4I+{f}DX7f(3zm>n&Gq32@Vf@B>Am+NF
zi0XAv9kN%B?Fmn^!lUI}7CI%F!S&NRB44{qyHz36FfDTODh<tqeX8;sbQgE*kZ<^r
z?zT_9dD)V8CW0?FNG61C{*WimXrNFXC90ZvD}?Dv*~YbtBQy$wW?VV8KImLMlm2VJ
z+BlbKfBapR<hlfGIC=T@ZSTgeNovox3kX)G?n{+CdgL)fD5urbU&<|J*6#a$GZ>iG
zSZ!uy=udH9zG#Wl&Q7+E`^vh7CNF2WruwRM$;usp#XX<zr7!CK&i#I?K!TH)i<Vc{
z9Nq)&+fqeD&pR49a;L9lU)9gEkNv^b4}R|%)|~C!zi!cy#YaLqERSsKTlC1a;glNZ
z@7(V<-uVAwzi$@F7_d7wLjH06roGpNL{&rk3Zh%IZyufV_)q+)>vy>XHfd@r6>%}R
zSE%|1UV2*0;I~<K@r)hyb8iO6MofD(b#4}8Sexa}uPhIu-apawikh+KBDblVMLWwK
zw;+GEpIQv*?PjLy*eWg>mv&8(d)EKi=(bT;SA(vnZO<{6mp+`)6aR6{I_b61Z@X2)
z)>ln)y_vQ>X`Z5AIw$e4(Lp=zfZ1nXC3H=iF_Ga;TC`iC;0D$7rFCyD8TN?WDq&q9
zsVs6jXRF`>tGG7(qs4!gJ?S>t6k;CB8gN^2$;*TVCr(RieyfydP|rQBVYFf<cfeKM
z!s{9DI;{Niwn{!Q&flWx74>KS&$>HDxAiGCPrhBp5PDqY-Aku*hB%JgUm^>(ZB@S|
zqAJU`n)!k6ZL6-{%`P>~ezy$IuC8Z_5V)1J>5BaHod&L+{q~_u0c$_L;_W)l!0~nQ
zec$j^U7=QbM%r^G=W+)IJ^Heu-t@jxgQ^tU!W#?EX!h66%~kZuDq(%_@Pe9g=*wj9
zi9t_dvV2ZX{*`;}zz1EnABJ0AYWxigcyqCcl|epJ!LRwTXv41y$+N{w7yO(c;yoj(
z!1&gUYYUg0QFU-RG?Sn4)wYh()<r4(Wugo+DbenRliIdtOT>3|ctn^k{-~s+%ARhq
zVbPL<rn;^!b{Eg|@J?`>$}qpp>?^~AOz);CNy{#)G5k`0xAKX+JkuJk+>d9OBj&yA
zaSsei6A_4=9hNE4(|qF0<$i_>*C#0~t+=^TY{9<exw1z+k8N(xQ&QS|coyh<!nsDW
zk%2)^rUeO3Og9w|Z(fq3eBg6p?q7zpw^l!yvyb6Q$;P#dJx-RyUE0{`@np}Edy^-M
zs=DTh3Qj!!>~?72mXu#dW^Yl?+vZX`W9pqv{}(DLN#|`{yEr0q%EPaD+m1}Jyk6Nk
z$@|uu^35F`clO`eG-1(E>F7_<5wp*EPq}j`=Ru?MubKMmP0ORN1?@@6^4`_mu_jjb
z+Op3=s_iCr)jt{%7VfxxJ!;CLltU&B?+@QDW4yHT?oy4+4<d>>nQ75}A16J0bMX12
zxJPHay^N(J11BX#L_9pfy(;HrfYBD!+h(Gjcl0K52@1ZPbn`^lBpzQmu6=PIKP|Yj
z+FvVf;={Vm+lGBQv71{vGSW;{*<&6qv0eY;&1C<&L+iv;h0n1i%<s77&oC`gaEXX`
ztQpgX3vn~$lr$tKKa@J2a%gpb##}9>OLeo)w1rJMa_72>OUk4BYS(UsElSDoKI3;X
zPjIc;|J8a$Q*w;oWC#lC_53jl)|s$Sccz|_(q5&gtJ5?r58kY(O`4P{+a<2U`a@;W
z#x-mYRJEI?C_Rc|2+PfkZhyoo&#<QB%k=+@32mZ|ULONCx$ITq?x<$yxRWN!8*u+l
zm(tRV8?p_ZQfnv5r~G>VU|*t9sLK)YovN!f<{A08xcplyz5ZvT`L-qTF01qQX;~)B
z=<qmud|Rr<y$f5|6h6%_=4O!Fy2wLQ?A8^gnvCeSM-yJ|NqKx-N$K}Cj{Mlo4ld7C
zy~-q`v>u%gS$9MIaqa5wt}asieHniPU6yQb<I;|N5+GQ3%0;Wv;n=n#HM%lF7k@48
z@YtL;lW(1d;YV35rA+~`{GVETa!+2dcUhEsGDPsAYu_Z_s&WBA$@Lo#{&YIFZOK1o
z!HMszTei<?o@1YCwPVqdBXc-jmwDcsuyg+T-%3KJhBM<87kw5|oy{XGcyo>VA=V?;
z7+juh{w0&p8U6pV^>c?QK_9l<dn3lR%p^mNIb>R^xgCSU?-l2I<x{$reGfHy9>K6~
zi>~v>N&gu()K@I_+)-BWpf+>9^RLp3&0G!7x0duxGF;5i(Q_|A%H%iWhxs4eg4KR$
zJ-@5BU7u-1F&BT#wBlZ`g%6`yHhAox#?^I9lwtB=>Df7K63R+SzWbHu>}u9I5yI6K
z$I!D$*O~K?<DPHN{9RmrwY~4nnWe3?X=_JE&YHeGFHgrB?_V2qWyR&}dk<aTu@`IE
znCuZ0oOt%xSL2D{TV$8-^qtZpp{5kHTKy2~F}^f+(>;ZH2WBfNJ+51))-}C!;p!BJ
z(^3uRb5932eOR>S#GU)Qx=$QbO|;CE>h8GG(edR*q|1|~=CevIN)jGC7G8em;la66
zlTtmB1!EtHDDX3FaF4iM)FAHavX3D`<5Jy`DHA$9YwNXxrZz43qs?IAvG{=nPlNQK
zTVc#L%1TCJ30Lp$Tfray)FpS3hS#JY^B5C4^`>z5rOjs8$CDk+{~=y*qWhw9Z-#pt
zltMLG)|u5imEXR$u;q~_-}_bPU0v961aFDm(f@h)uhR7dSy#_97q@qIoY?bU<;C(R
zBKfZv_oyoc3B783rY&4}uH|s<NptDB;@vhoHwV>xF?5ue>b`E<S{Kfv&e4x{@Jsqs
z9XqR}<lVe>^7{Lw^7W67-M8JjIjAJ(b6T<B#9x!^wykwJ$+Yh$L$~v`L$etDCY%#9
zefHp4x3_h7#}%vJs_eHWt}-c@Rg?X%PH(HO%Spa|#ze>2YZ-TVy14kQO8H!^EF)h%
zzyAH!-K;ac4nJr6{QUEdc@IT2+?fw<ND#cq)$sc4>}R{Ta@AZok?(EN-8qR(&2EOj
z^lh<4DV<>xJ=a;eNQv7&?bD2$X<g{Wc#*l`{;gZr7P>qPjD6mv@9M&~mB(bpqiE?x
z)xYL``zqn?$u8_vHCOK86ZyES9rgY$O9~6@uSQHg^`fsXdeLzUFDn@pC85xgu#?O-
zTU8a8A2Q7C{O=L*T-8g;#LmGbWs{%xCxP`jC$}tBQfg;2yM8upb+_)v`vD*YZ*B&;
zJW;-FBqF|Nlj<IIrAw*m|9{W;Jn8DW@UC;-Q%nqQtI9`(E!^>Ns&1i}B_q31vbWZv
z-&bcxaLt{r@v>k-$BAX@b593s@{FFG@=xXY+o=pCMK5n;C^5tqt?<<piOOTExWA1@
zb@v`#hozfO?PPBV%abj?%~3PmJJV}n0m}l`ZCvwW%@_=}uI%WjVcBr#?)l37FR#j%
zo>^+LG{E4g!dAc1g~d@GO;Y#08fHYNEZt}qFs0%T&xiK(*)?AKl2#donTSsGW4MzV
zJuxU^hQ@mF+|vOuA1@t=H}Z8^^7NciQrbfMDvKS9PHa<B`jpxf*Co4Wi>mZ`QNfAx
z7HxAm$)#p-<LG6Flgu`;Res`v6Jw8VRK2>t%5uk|DV-h*q?SxdugLNiTPx1FQT1~6
zUYVG{GkcaC+r)KL)<2hXe@Dj~txH+%f)iK9^{v(D)4f>fS@-De$6NYJN_S5!-QKYy
zXL?4It*Y{sX-|wJH>j#wAH7v&`)#@PmQTwk*=2cmu?O>fnJ&Dq?E8Xxu8J_(-YF%P
zVhy#qrvr){#GPiy{<~S*AJ2DSW7!f-)&nOQ-sDENO=9*EYrQdP`C<F$M<)9dTxSMx
z%;9sezilKEz9+Wu%75)2Rk;;guV1@urC;{_OP`lvqS2(+b)JO<H+a&2ZQN4+gT4Ca
za_z5Y-)aO)+4VDDIJb>Q)!f7?UGTshS*2U&Io8y&MO<7e!Vt{x>~`3~9iRVS3ulbw
zO3h0tE-6Y)%muOXld`xBjZG8`6hJIfa|0s_n6R+{RMf^sLEkB}q&Oh8$T>f^AU`iP
zuSCH@LEkw)C%-7TATc>rLEj~{EHgPZ$lZxc-z7CUKP5FFu_(7#0i+eItXRPqtf4eF
zuUNs*z|vAdKcFZzB{R7szevH*K*7$AOW!RsrzEvVLEkMWu_P5@ih{mJYG!&yiGrnp
zfr7qIYF>IthJvB7se*w*kb-`&Z(?z_f}yc7h|8rPT$)r;S&*ur@0pvJo~oc90_H^c
zCuOB3mni6mXQqHO8(3O`Y=Z_t#hf>HZ{K>PA;lK(cKN&i)8;bomWlRt;+V}J@j7GK
zt@zD~2c$W6+RODv*M9%K_uzV)r*8u%>gE(1w14<qVP$u;R{r@T_R80n3d|xMy)Hk9
zVz_nU#hP`Ij(6XGuYPQsFIjqT@B6gJxe?oP{{H!H+V5t&RruV$qmOco%s;YmJj%Hr
zdi9Fc!#lrP=P1ebw=>K=Vc^I7Rp?xzWx3YO89B^H3RgW}nN{^``FFOSCy^OOUFR+=
zT&L5X#Nj8bEu7zAaVh%A@y83ZswNf$?G=|&RBt_<6Tm$!v_dey!9plH<>s^7^Y2L;
zw7oByY#!Tt`|Y)VFV`=PvE0*TqCGjcA;3p`zmm(L%DD?IWY<h_`uxY|m)Yx^m)+bv
zyNh2sia+8N=$cxm$F=d&frn-xZ|h8>W4B*A&zc^%byb(hwmq*;OQ!H`;uYwf_oQ^~
z@q%^Vmp)oQeY^d(WR><bKJM8IrNz|mF<k60cWtSVKQ}eE<Br|ioZCUHS2kVzy2QSD
z#>epW`%Bqo`ajvm95JmT*sJ4t!8(shiDy6KMY{ufQbi~3c+^^%@xgBoBa=`**Q}JS
zFQ%k^y5)c3=FKHb)7W>atzNao?a9A#tK~i3U?r!1?dktlSaaK^HU2|5)4Db3>u#N`
zVqPoadG5ZtYI3OnhsQR?B%%DS-{&RHeg7z%x8k6OpO4--Gd;QI^A9_|o)Yv-?H+?+
zr@84L`-eW4`z5uX=;X}`5_iA1#B{xLTGIF5wy72ORT;LZ-wXMaf9R&=KILzY{I^$G
zSc|56uZl`Bf9&yo-OC$>8>i$HUv6ix63l<~^ZB$3zh$;mORY+2xiw>&P_@LB4Z*ME
z>bKsJ%h1f%Ep0G6GJ91}c(+_h?)@WMOQbnAN%pSYd3|Ax&hol%T4ijK6LXkZ)bCyS
zroNY5`AN#_eT;8kCbk59v#`!~S@wysNjP81;`=dwMfJm3Pc8lioZtT5!F?02!2PVd
zhvLqu%AAW@C3D(ra%91qiG`7Y3?2C^^Ah9#*ZjZy@AGjhTUOs<1Akrh2TXFaF1wqE
z`7pOB+}pCnvTd{R=IjeQvkX)1ndFYFoM86CZe8ZAA7_vFcr&{x-ZS}T+4i}vqxZ>{
zlK-o}x6LWYx^wKR^@O#?uT_NFE0}wn_GG@dPqw(<e#7IOt7NxKkKL-ziG6z`jz>t&
zHa%%}z~RVjy?^x=KD*`k&7IL_-d6vwWOGpI((4jCU+m6EFN*M*8=xeR-_ZC%^XsSg
z5`M>>?`YrK^5xd?9^J}+Cp)e;1nvtg+3%pxn#0`Vy62@v=GGS+`e)}jmtB!GdCs%z
zruW5c6}zP(5`7hyuXpmjINBMv_gN=vecG>_E1a8d>Q~7<-gLnHVB{)6i76GA@6O-Z
zU-W0;^5-A@@1M(9tkij1K6kUY`fY(Qx20>RFfHsb7gRYLv|BIgQb*XHbLZl^zjb&&
zvT?IqZf$;)GvnIUhz8b9b4L>|3;U~fXAeGKe)r$**7Iw<`mHWra{84JvZdmfxq8Q~
zb@#soc{OGnnQc*}HfPnMUa7smcjn6f{rBZ&{6am6$=8&;cWTTLd8HYltG&X(<dLt2
z`mf{n)8CyEVtrXZPyGRd-#zD_&ELFiUkXk*HT_%H{hXkH#)d5$E-q1<qpiJgYrLy&
z$R5p458m9dRDUqdU-L@o!52||leHH)q&)I<_<!YJ<B82j51o?M<E~gC-|zlt8vC6e
zCp*liTzb<~`{(L|?F^qf%nd{34;wZVKRs{ER-6>)J?+D*b=SF9&hUAgv)G4;Sup?5
ztg@wzmNoh+1v~VLw`^sf=ePIU^RF8ltc^6BQ$zw+D(t+}DA;K}@u~V8$LGGSMc+#2
zuir0a_~cGeeEzS0+eMyCDDt}bE9N6}o7z2==~qPMGP-V^d%x}H%ROgL?Di}Br}bm$
zQ`Y+4nTw8zF5T3t#D2zcPv`naUd(I-b-yCteb#H6yPvD>!+IOroXDolGJ5NF{4-d{
z%G@xs!`wOJuZ-Vp;r*ul+HbzBjovDmJ@M(=Pr*-uEm_?AMVj?;nF2a1jJu+eE$;5V
zD`~v@RF;|kir@3%rqtG#PmyhL>@;V1e`I#!6ZJWBFRyv++19gS@e<ijEPR!G(nU)-
z9=J}GIJ?wvPLF12c-^}-ea+In)%O<jKdv#zmj6{WU+BT%9jC3=YHB_d*}3-J7i*^U
zr7m+FgJY!m_#}@=H}F3?TM%@-K**hQ(bpAf(syncerMe_zxbK;?9j8ZAuGHdGFB`P
z<5_*ci&^vU={{A5hqK!zFmHX!b7-}9qv_1KCX0kQpMP-CVzic$X_;?t7<oND(#!nj
zN_Ga1l02UD^h?v<UD-F~aq`X8+EWgQbO~GES<3WdL6S_!+V2ndXfSq`To9hQdfK6d
z4|G!58ZzhjSu7Xou9&<c>weO{zV4!_#|xF4lbCf*Go0H|bgW>`^-WxQjyuk+j7*<u
zli{Gv_rdX~#g?wkSHkodU;bX_9yiDN6$b-@_V3Bx)BBGfj(&K~>h}8*p6_o(4*mZ7
z?nP~Z!;MFFst4FbAHVo?yr9kQ_(yZQeD3hwmGb{>oC;QlN-?Zia7t%uz~6I%xAQ+f
zvvPmj%zQ|5;i|%hX*>^n9t0iwS-H%4?mxlm(xdzdD~yBY99?|bQlaKT7qh|A)yWp}
zyoqzlHvabZ_{`_}jWK5D@=fwZyQZ@+B#3C2uShd`&U~}o_Lf=o-J(oJ@h4LyjPD0(
z?O?Io9F)mW6JY4K_)*ryy)2#Po%UZUCjWKTJJJ12`nh3ce{B~dgYfJu9`&VX=VjK<
zKQepz>$%%b^39qkvu%YrgWU>=bffbUey1+<8d;e?|K7}e$Umx(;hCA|p-yAtwT8B$
z-!wTH3Ow4gjEq(0q(0`o-*e@l-C7HV%fByIGwVfuJ~&(4cB<~Y&F%SI_6Pi}LOy5C
zDzM|aaI|Rij|;u44bOl6@yDi$PgeN$dIQmaowf6;mP_Az8Q{C}xx~569#2IV9DU5|
zptSYrsk(W!u1quHcDHN}T{`cqW%qfX>Z1LPE^e#E($j8jS~us{@7h)7o(K43S4Fy3
z@;%>R=euT2xW+``lE_o%!ddEy>{m?s5xa<U7H5O@B9%F}*B_j-xwK@?wWZxBcJHs(
zx~t!^DP{I1A?d{mp))I(J0IO&s}Q}oWpdoZwD7atBF6*Q9ozhTW9s<>M|7X5-4mI3
zT|#u_sW|)EZ>zb|X1~d0=uo&IaZYsAg8-{<JQeDv*Sc-fe3az3BVy{_|G!o~56R}a
ztD)<YGbQ@i6G^*=I-vsXJEVLkH0T|ft<-fTp;A%3+IF7y^0?l!v)Wz+6dtwTYyLop
zwb1BR)CuK#E|U#|zkgu%m$ctf{7SxlX^zSPji{c7Z~Uj8d~sz}_kG_olQW^s!6~zw
zPTfoKTz}T@@4Md<`Zn`R@;q3x;J?n+<Bu2i`5B)5aV&AiTB#zjdXv<-wy`azHh1?s
z?<yAa+RLH%o_}stLgZiJbGg6crri2@L8JY}^D?!z+fB<nJ2ki6OSSWwnb`il`Raz^
zknjCZ>O!{_UkqJ4aZc@zlMH_I9#*})D(qLqEBD7^qVD_7+mD_muB<qma^~4vji(-R
zZFAngUm31E)#_`PKtXEHuJv}>ye@W1F@Yac*PdlMxn}9bOP<0vs&@Rjux9D5d9SyZ
z^4tI1%k$;m_NTfG6UtwOa_byo@LP1`ntIXIz;Yh-PxJayA1!w;dsi#A$993nKJL2v
zt+UJJ`(J)|`M>97>q~8}J9BDpsNRz~l~LulciZZveCHps*l>Lb{oOd{&C9Qgv;Qv<
z7LT=wFP{GV+o!(gQ(x!37UwVS3+7MReJ_-w;`x?GI$P&Tf3Ezj7coJ-P~Rv#S42G9
zb-l^XML(WSknQEO->@~y``Gz|K|Bxsgluq@TN{6|Sa<99<c$@ax6MC_Y@J?Jd^IF1
zn(1C)WWYqVgOzI@J_@w8o)r9{QNBUssIlh?$?UDWEGpe~PdIj_EwKA_)F7;eugz1|
zpILOFYsDG0zE$DJHS*U6x*C|P{)zr}DPVC(cI~yG$5S|1m-ePr?>eVgYZR{Ap<P^Z
z);W9S&8E`_&#%;K;?y{H|6HFzy-xk4O(iMc567kQJb#q)sVUm1H!#mW=Ki^+#d?cn
zwwUpxe@(rhw#>|2xqU@<h~Sy54(<&bl|th`9Gp||J~U?Mfw$6+GUq7erp(cw*%P(T
zc6)VG_P2El-^+7V)P)M3abNjwTm1W}yJpY%+q!hdQnQA+2lu^eZg_dgeCw-hhwyb*
z&V**ae3Y|gDtA`Fck`F^rDc8Y8ml;F9Q*h8e$Oh+oZPSqp64O@W!V9bzP?ZFk5Vnx
zIUkVq;mN7*JJL5Fy$~i{9CKP*<7)Z*XLnXA&FDOLV7u3Gm4vH;dJk*r-`o=0dhK6a
z_yOmT>RC7ceP`Ko#wqZzc|hjOge-v~yA@6|n<xEQTgI+%<+F&Yu%FvvJNFYWt()XO
z|M<dXnYBg4$uG21v}v(yujdB+RUB#yB<eFRJ9d3O^N`{E!x@Y=i<Hh^dJ`|Y{MkYM
z=*4p%MeWvmI`i~Hxx*1h9`CQp_j6gr;ih<R$?964s;kmRh5X)5U)H)dg7-mAra+P1
zKCK+Z&SkHn`2H-pZ!>4=<vuMYwap1nUK_UsXKg)ey7t;TwKkd0m;DNTvLZHcMjpx9
z`p)-6V#=zdysg51kBXRHE(%?<b^G&=-dE#wR)<JeW~n@Xb6+p}^$C~Vr`#Uy&`sJ=
zWpP_+_sNuyqxY}%)YNy?oSu5UbpGGlzxV!$_S!u=zdx?b@8jqD!ryK6b^U7+BwL*<
zgy$|_t|^`LY+Fueu4KN`)d{IW=lpLTe^<EW%&nF43ab;%*G&IgFzH^9oEXnJExS{@
z)|kGZpqunG+eP$XM95KD*VWp;)-U}Q_$KcE_ftofnC;3x;PCBy+S2LmD=s$Jd^g{_
zed+R}<??RVbw07K(dO!T7*oIh{Iz!e_j0T<XE?VSE|lqea;NKDM6puFvDm|zEICV(
zgSK&cgx+zzk+u1-gx|yupVyr}$Xo5EtZkvU{oLVwEX%cKv<3e>$e5_mmA$L!?(!*z
z@2%b*X8uq_vmnv=oO$g#XHCWDzit=J;n)?-G2Q6CtvGjx5&O}t^NyIuY`-}pKU~;v
zcE-e_o+!T=d_pVOLd`bS)z5y_ljhSEadScUkL3dS65XqI?ES&d9TMri_EOwZo7#&X
zPtK|8&n?wgJ-T#FS6NxF>8A*7PQRJ^4hiNbNKKvf<HyHmWraM;YmaMu%)7~AyX|}I
zj8fbAKTbb&Y~wJs{(2@#Q9fux=Sc>?<lmwRa}wYFX}P?y%b&+`>b4En`}}V%<Fa%R
zST6M}viRH->!U}G%;pK#`+T@!^53&ZQ`P3YTYRH)|D`p8S(~p1Z(G^Ex9ew_BuDns
zIhXgQvMWhz+`H4Yeref`YS!=edu5}R3rbC&z<gw5!a2cwi9W_T(~fnSZ{O1*yh_V{
zYVo@Ncdku0u~REHSs~99CwF?*`Vz;s(xSc!<~I_0_wE=8`JJiSaMS<&pMaIybob7b
z*=~Aw)8+Xy^3xj?*Gw)>P+%));;24weyy0S@x49y4l7wZJ};@SKWK5~?+NqGSI#jl
zTw-FV&m0=2d~X)($7M@T%>6H`E_6<yx?+{!sehew-~Z3JA$8}>>mOVTy!I?)?O5q3
zeEEz({+5RP;+Tfq82d2il7IDDdoCT={ou6c_22(~&t5hA<HyBk>sB)sUv1d%XwL`5
z*%gNu9D7@^eS6WKolDi{JS^Lkf8yn*?yCO`Z@hQ@7TX-z{_xi#XX(Eg>Z)@tmT#Ig
z?f1VwYo|;w_B|K5GlTJ9?~fm+e0W*7gR1;@-YA{F;Q9Z@mUF%sT`5$*Z(fvbEM;@<
z;<L_)-(`J%9&MB>Qq@_?v5iMO-*0O$<97MB-7kI#<>zgWu6u8je<@_5^XI>3#pQ4B
z*b(aLbna$uM9M73y+KE;k6ZRX-nL+4Rn#Wl;u(w2-)*b-T#~o-1xKCSukP=&_5b}`
zd9~DQYX9MbbADcnV1ALkphEe!L2u@-JG>p{`ZGC~Uk`r&by-X7{K=mMEu}<Qjjyfn
zdU!KE=tq`Yr}-vc<C!bZ$42k1FkUog?#`kadVO2o)Ia!r`ux1Lj_arGOkXpT<4W7(
znrX`0W=&yRn$I{PcScXe<advBX9T``u*BN7P1x+7h~W$0Y~yPTN*Okj{(mm#&*YY9
zs+jDz=V#czixZ_(jjAiR?};&awUej5-mu^L=~;^_FSG6(SKOg(e(RMe&&@W?PV<*X
zX3zg;-xi!Xb@QhC^EWZ3Uk{t-cB+Z}DEmsgx^*|F8obDmE)G_^8I+vkzAZ8A^_M&A
zg!8xk*_}M`@!7BGnQ`|g*c~$d=9z0c<MNwn`!}|l$viLVyE?0@e9xy-JvoPusJ$z`
zp73#tuB!a`6@ky+$^Uw-o^~zxw%QYu*((;C-|TUodq~7I>rS%Xz8e#nP8J-Q9eiZA
zZ2hhyv!ie6EY@zX`<VXPfA6B@JC5?(Wd}W&{;6)4_th=Gjc=w%i!BeS7s&rMwQ|P7
zW6Xa$+y9-aHVfYo8nBgRd(6^XH=Ly1)Ppp7b2>l#X;^e(!Ls+o;vxA$mrdHOKKIUl
zpB3`rsQ1s~i!F-xJ3NcMx>amVknQ}XV$V-J{;^^4u^WE()*p^IGP~rFZx<7%`t9?b
zS(2~0=KPu*IX$HB%&v6d0-^7g7B$&3%ceNAsoh($`WMG9AFeM^T>F$1sxy{8xH;=h
zRF=Ty&G*AXp0ul3#|vg;maQqc-+k*;nf?^pwrz(#GqH+hE)dT=@$cnc#{cE1&u%>a
zs8N)pX1zQ5)VpV2ySoC!c5)f%T+#}-{rK$H_nKQnFU+eb_L}H-#fmqwF*2)jwb^o;
z4IBS!YerA{kz0A+eok7aQti40C;gmnSS{3^Z})SKl$Y)t=EH$2=LM<o>Xn|E{VjY`
zf6g~Iy?Y5;=H!+9J-VjS-thI#*XLrkmgkvVn(?Zyvr_5TlqTK_R?HULe{e28__}JD
z&3b*^>a?xSeQNtRE?sp<_7Sgx=A*Nkk9@Z|oPSuOU2$Q%n(g_jIN`6g55Csz*EdbD
zn#0CjeMJ2pgUG~7FRFLFiEXYh-nfHvd5~cJpYY!K98U}6cdvi7`9Y|8qwBd@70dxG
z3ukY>W#S+#|9Kgw`d<sbnj^QfWr~cJ+_`S(y0&|2|Aq?Yg4jnjyi;FUe|)y9Alagu
zXRS$DMTqjAfECpj9xXS0zN*ul;ks&?^wd|oAMswe^Y-gBrq!<EB~Q<4>GeDR&bAVd
z;jpOv_~L!;4$G-WmenxHMAaDH&N=&Ty>I;!>pgcLJxb!MjD7ynKV_HFdO596&dbdX
z>ulXOEvh;7=2CISE(2X%|D_e1)A+Sc>6pIP%2NB6Z0R2sC4H#oxyK&H9Zq{rD&L!O
z^*Qg;_wBoHW|eEtIaiXawczi$q??X%S<#6S?t2(dsNGIkZEop%NV0*iFf#YqiEG@J
zei_xp?J^(P6lPaUUR$_l=a0FIJB+;FUZ|OzxGUS(xZrvCylm+;1v7o~n@$JsVLb6T
zbl%r178%`hIt+!*ef@V?Y5C_hN2Hd2Q#L$zP9x1W_z|yzoU^%jW`mYw^0Zqk1GlB7
z%fwBTOZe26@`yF2+E^oLUtm5jj|1DsXS=F=U)A(})!cZm{qyCo6_;-uH{%JMG*5bF
z(U(tgvp0V}arU?PzJKm5pHD=x#;+7PlCqmQAYk)!f1MTg7Dhi`;xd0}*{bEY_eTFI
zHoN|Jz258+udANfzxkg$$>ogIDasPN>D$2bi1%QtpT+WJeI@hLiz>E?_gH;5zrO#i
z^Di!z^!mSVIwuq#x@D#BtWwGF>SEdQ&k3%!%x8jrhw0x-5#PFJ<FX#7KgB&OejF{x
zx^!#pg`A6P^?%-w2)AP>x$<|OkxZ9ezMX1ONUwSO{op6dN+-6?)}DLn(fYH2#(v4m
zmP^$8O?|UTm0@D$5$;u1ZJU2ET&&o9MeFG79^IS&ziz(2-~Od`s#nBPPN(H+YgP5S
z_J3A=Zq~Q%**cA>ZVe^H+c|jDzet=*Jfta+|0&F7&0Th{`MTdes+(Ski&c2Kz9Vf`
z;+&)JOBt8USaz;|f#dGYMVHO)6<e5!#jpRh=igNQ^FMA^X@5&QvUYBJdfB!9G=+1@
z2b8XS<5BsdvvtqBs_%|H{h=;$^`W;`<%fzdKUeqoxrTQdGs8<UN#O*Yg~EQ)sk`r5
zU$1<;BG~jv%KM|$R|3_~DZbfV?mshGpFzvezIWr9X$5UNF0Fe$=g5YTt@UMv`ekh;
zCEAP%d~b^ibLUNn{P`^QOH1*q6!FTvKHtLM);~Ny{{%OueDDLWT>p9Bia#(kaBTV4
zVtUVuIhrdjt#|#6?$`11dJF;iZyVpAy>VYC?Q8MgMl)9ahE-?$lU<lq<{Xy$lXCq=
z*n^w*&;C_i8}-f9RhCV4IpYBtHV+H`UTew1s^>4Q<<y_-+4lVFW!-vlh83sQ&ex9G
zw=C`E?DC8A55G*h!+7(r?whG5Hmf)5JQPc?lPY->ZTs*{`P5@Pmj3<bvgXZFbAlNZ
zI<5+zo1)Y{M?8?7p+QPzPKfpE8LTEQCn|q+SS6iLaS}CS;8>A$KK<<WM;;c1!KYlA
zTj!|XOe<MDf8VtJI;I}&1o0$=zBp;2b7$JPEg2XJCbkssR=u;#wp89cq^N*hilJet
zhsFO{7MyS1M6ED5#&T`W8*YXcrH6m+Un^D+Zkf+n#<=Q}03XBFqnX*u@*k+o@xSj~
z{q^p=plxMG{+3DwoMC84Q<>xYS@*5!&36Kmlh_!(s6J%Sl{m)O@a<Yoz3QB;6#{em
z4o%x)A-tHe;kC+~)z4nA-M#<io>*J@PdkPMi|zNCHx%&wUQpa(wW`WSE}Hda-F|H+
zhQ&8lp4W8R9MNnz=V{FTt}7)=3??x%yjPi-rXo}HVxbW)|3iig)AK?Lh5SUlwC?ac
zW;js4v-w(E%Vwo;@v|J33<WDvXYX*bzu?8(T_u(m>mzj|zEt72wSJBuLrL<-Ha3+x
zOW&3Y$JR{=+GD1_^;1uK0fSM*ztwE+TNO56x$))4>hEm__=PMO-b8O(JEfpO%q5kf
z;#QXMbY7LCo))Yxb~$!E3h$c6z;G^V;nyhz4P{QPG9V{;-%p(L(z$OcTh_-N5`U)D
z#=g-x@hpnDA$Z=}S8I4zv@rK1)?a-Y`8tCkZR^!_qB&Rit{d@QYFO5zIro+yC%Z)3
z1m*)=%XlosmmiyZ%kTU{25nI2-+jBqnpJ+PWzOAq->a{x7kky#|C;V$k@`o+>azXO
ztEd0^zRz8_)vTA1Vavs5&!W~xR~)U*?!2$|&|pUYq_x4j6%^SQs6M{EcS`ORzWB#+
zAD*we*Xj2&inD#<i~XNeo-i2nPV0?&yXRI~*V%{u9u_>#=cks3-(u!}$ROY~VM6go
z-QuI{bHCN+J>MVYy>`aorCKYFC`Fy#v_*>Ha>mUSw)@wH95;Pm9rP_@fBD|x2$eaz
zN;Z2<lsmcX1A{>e$M)0yUt`bb<+`o6(0?*x=`n^+YO))f{w^%ze#dCgE_F8YUhI!O
zs=55vEpPn4{rBz9f9{;@644VAgOb-WEZ<Qd;@R@;#q*PA_vKfp-riGx@?8Djds>|B
z$+h}sr5f!@Ti6)_Tu!^aHL#4CDG;b~dry7zuXfcrllFYyyyMH_=N9^YCm0)o*7<y{
z`x9C=IWPTI6(@Vd+!B@pn@;g<4#^F=>^!~2d0F53;#<2acpmG#3t9WCA~=6C!-F+~
zzm0isT@G$Pnst#!^H5P2%a>Jgx>xuP_^dL^x_Nh1n(y0x&ua7AS`H_aM0+lr!{EUC
zHu}cqkI&Q|PDu?}xL{B7%X7922J1G=JsJ0Rbx%d{<N~P+5A|OBO_;TUjbY6K$MjF>
z+qHg|mse#h-)F3U?~clxrf2VR&HIGI>rNZ+F&u~#-|gQycl-6@eD!+PAn98rTe*MP
z&1frRSkTzO`>wcJ?RCaqn-deie|)6-^7;RY`v;Hc+t{cH`AJ^Xt7d4>+*`hD*%?b`
zjT>KWe}`%=zx}&FYu3N2)l*)tt6zJ7lVNLVX0CePBlnwIfB(H#7%W_UUC57d@stw_
zb46dgOjcpokpF02#ELq<`#Htd#U?6qqMW9lXq>XENNwF4h6G=!?{Vu=W(UPS3cml?
za?a|Q9Nst6UpDmHGclyT-Trm)`Xy4^)F*FGlz*<2tlRik-$vzOh~XDgv)+r^)(j6c
za~M{v$~RwjjEUjBy!ZcqJ&zS0#%y}_HSGLU#(?Kc46i!xU)i-eGT`cu!jJsH6@1J0
zM6O>K_q+6IdGqz73<g`w-oE*=_GiKRgOyb_a*5_ahfbRR{d(=j(Z`bCq?j2t&3z^J
zV)j-+%iA`d7Bjc$Eqw5N_l{ekC%-;kxrw>K@vX_D%U^aJd$r=oc{6_@J_d$|Pma#s
z$aHvGgJ#l{oX;u`pBOZJe)sSCQT?6!RHKjA_nqQn*s<62`{M7rckOp5P7>lfDzZPo
zef>^`2Al9Ik&nrTJ8q_};hk3CXWXz^|M4Q-inA8n3;~{--OOt1ZWX+(^D@ueF_+8Z
z(8HE5-tVe1G^;E7OCK{bxCQQM)!nqq;Xqmak;2)9o))QVCU5Hw*E_oYTj@DghBe8n
zYvmW+&HupUd++bdy^ND1UYYJXZ>u}WC+gmrh*vU<6P_<l^vbl@ciZT!?>0?$OQCYF
zjhY^ZG}E^7m3W=IX{q+RzT%^Yom{`>Y7d50zw)d<MNPiCi)HDW58r0be|B%T-kBh4
zU(K5DKVDyn|Jo&=#LsY~MD^aEKL-SQ|3&D}l<a5;z9euxNcCm1Y3?+Ez<7p&Q>S_>
zcCFP3e806~v)K#fwAqd81Uc1@f62decCvY-<zw%45kFZN9c)dbZag${SXB5udrIAu
zmdTzcJil8hw4c8>W$%OIYwZ{$Zf)WX_?GN_bbCuTpY^Wq=Dgdrr?yPazxgZs__>&^
ztGv1A2z?G>S)lCetjT)+SM92Nfp39xIBo~rIqt`L$DMO|S3|nhrmBx_T&xPS-JUEz
zY$@LP{p)x8XAjEFzi4il^)OWLT>f&Vxb^J$(`>C7YEI;7*8O{E_162_=B-oZPW4t=
zCFO<ga*ThL%=3IzMtX@(pB#hX)1$MO&ariwD1STQ^nzGZ&gBhnqD3})?Ub0MJL$z6
zh7F5ziVZT#4WhkHSW4$?>QB7kUg&0?v~pU(tD@MyCXbdf9kAkgutdB1bP&JdvWMro
zTY}q;F1CLoGvS-~$%5&s49ZbEcYfTK=QOdPt1z<eN2P<4>{8Ri>J0k#?gw3%s<!Xu
zov$2hcQ0==i$0`zQdwT!j?d$GcJi9jLJfVNX7TWzef!6;;?LD=W{cDX3ZUtKgPjk;
z5B<$MSkmAsd0^$ko2!mhp8f6{y<a8SqIGA>p`t7Xixh_C9c!75E+{w%c0YO8@I2&D
zX39h*JEi4p365+9S=H~qip}q3`+X)z`~Am?6^x7t7P}s#UbUO|{_fiA`7hh%el6Vb
zYzLQ$jM$=U%nRDs)^C1t__*Qy`Wwd<TSV{cekXJMl+ISIJ)z|~e!L9rT_$2tb6&su
zzWZ=R?7c*przgBE)}%Jw7Gj9`vU&QlMu|fjwr?JM<A2P;9(gD;t4YXMdpTQ!?5s`>
zq4Q2pHb^Dj4%0Xz<fkj>Wngb<%3v_3`|l^wU0*eY`VYToKkdcLz;ML0D&M+eDc@ql
zIoGCX#U&SJG3<EpaoP867a~{G9X-;`^+)Al$dWSd(<>Pt+?`sMsC_jfyG!H7dAVJu
z<-*Ps={-E~f8}q6A1`-Hr>|Mo_@?Y;W##sIiRC)Sg#2RTdW5glh#NC#t}B`4>%@KN
zqyD1}D*d-prxrZ0Kel%UV}e?=?x(30i>KC~oDpJq;o|0LQS#q^-+kNuPOksB!*wkN
z;S0a=Ew3squZht9U-I$qw&t?P|2yx$_p1+87UO1kp!9dO%kp1~c7=XDQ<C$4?ozeq
z2fDKv6EuxW-?UxcclPa#Q`_}3UCX}xyZ&{3)-(I_4|%qKEtnX_%i#7gXDjcIm@UN-
z%Pf=Z!=xq@A5dj5P`z5MvE1)?-E-@x>oK0Mvx{|2E!$mPRtqyW@UK6%>&lkZuj7T{
z@8!*VCEohhMRv_nvlqWO85ms3en_4Avi{cmvaKHTJhylp|M#QTqKlQ`Kxuc0p8hAN
ztMAk-{(0vAF-hiSP?*~nJTI;G^(yrjkF+yh<vQ;=yp~ta<^PiPUWvz|%#@c*v@~VV
zzP$bAqSVK$rN0>+H#XD!CwtiQOyVi_Zi!#3*c4)W_x1h@lIzu9`X_x_l-Ie!i%bl2
zmj0IOwR?M{&ZfP1MzIJ7LxNPQwb?Gu_AdEFht-coA3M##|8T?3O9v896fzn!UKKbH
zRCV=3)HLVL_KfGryO!;Fvvz6PF)4-(O+m3zv5WVeyVq2{FRgS#)Rt&I*Bx~X36WL7
zf?F)PCq8dux!GgZcfbAdOqsN$Uzl`O#M%3AzH}_ew)B(A-jBugZyB!}8wchyt?{f+
zQ(%oZf4RqBQ}dzC%b!mRpY|O6$uuLbSMO}t=Y_vR&fiRa9kb@~`IY|pdquw0?bkM0
zZV@w4^E^X#(Et8Lr{A79EFk?;an98_5{GX-KWA<nIFIq!wPp8LmPb3Us3`uuyJ7Y`
zXN~2;ee6Ykg+5A~yVw|9GmIYH$hy-yVd;~ehdUGtCo)U4PhfUXo%LJFXx6jCIg5AB
z_um+q<=@3|Sg?p;hm*Hp*vi7$Z}cY?Ra<Vqbl~*0NzB{#w;qt(TlpYI#`@{cX9t5B
zHq~s=nKkJ(-{fQeod2&;uIG9F;oSC3M;&^eFicR~+jzk=>u}+-vchS%9^UPk%6)T_
zwVj?KJHsKb%#Li6Yu4Q^`*Ug+{5Up2qj=ga&GnNW`dBj^oVku|!;bG^3odm#nyRwC
zHNO*DU;h06u`MAtckjA%V5Rcba}&-f?Y2}^wq&qbdgbTq63O4I?*7ZVuO6JByLIlv
zo%5$CHVGFoc&I<&d6-lG)pN1^ilo)9^R>*2#i!5xIjeVjOO6vC!}cd!|35zcRbHgA
zF@5Uv+;#u;WJT-b{i-Bqef>1Abide=e@qXi-QKj^MOG-bQnojE!?Hu1&owvNoE2v)
z`*woWY|-4!X7MjsBYKxrX8c~h-ecRvYyGRe4pn+-Mt85VUBD+heFC$?N3MA8N$cKh
z+;vY?dTFrvsj{#j!-qDi&*t2keX-$qewykNh6%pr3)tMJ*6QACFZPaDTk}PA*VmHg
z*RprkGDJk4zPMRb>et2Jw_mR6f4IlTX42!2v#0h(=P|zU_&jm#<J)FmU%Oq*;CZf@
zs`C7UbXQ(rY;vyd?=r9VR^=`XClZtnw9jW>l9RkDGcM+GOY!g9FVF8gSN|{ZzR;R;
zQSEA63{kr#weGWDCK&Jjy5)1ow&g!QhUzl+|IA!{Q)}1x`jShGPMTMpH8wGXzYXNx
zH`Vr#-!+F{Ds!UG-hQ}#{n}W8qtbRJ+SLp-)^EZ+L<)Jte;&${urKwt*#4`yZdIK6
zqqCcWPOV+Rd?6yKUukjv0=0hqr;#^<YtLQu-}STN@8+Vb#R19h)uQ<tZPHJ#4Pp#9
zKh<hy>SnnQg^&6!^}9V%|Nh=izvx40@cgR2hc<Jy7Tnb|fAVnwpM$F8-L~%&=Uo5a
zap&)hppTtdzm+X3?^{j~{bm^ZzvZ)TVQmjvbkR5QukqI>nja53$H<|yQGM+(xzj7J
zRnD5c`+=T(*NlQ7lemBWdmcuA%eA*;UoeGDwqa9uVei+9za7)6wjK`R7oTgCb?E1X
zgw$<^c~^XV&GYb4^gM<WlXtxGfAo9S^jDJX6D5A8*_z(BE?s4x`6BJO{a$m0Ek_p4
zW<AY&U#?!YuI|(+sRc8?xcZi7J)5#>hhynlR}Jlde-8ityYFk&-nIX~{5?5EK5E-+
zt%rZ6MeMnzWAetk-)fdg!=t*e{nwrSl8!%^Fwa>!vA?*gVQ0j>X=ly+C!Y!Wt@(b>
ztZ8nVn*6V3)bUPGT>N>u(dCyPjN{79CNvb^{v>y2?_8aHuIFbZ&ar=Nllu04vCHau
z#wP85m)`E#YUthjDkYz}ecLJL-+gzEUi$QLdvyHPA3M%kb3T`GZO?JyJ5U<_$k)rZ
zX4};BFLvhrZP~V<?cLpNn>;JrzuWS<9<p@2$k;GL==O^T=CfygZBw66x8_p#JdJZV
z-=t1@UXUfOaI;P6Tm1GlGZ^1!e_iwc-}jU~%nNd4-)+r&Db#=U{MEy&<sSAdopW?y
zliJIWzdFK_ySEvy|M<o1Alp$M1?QW`^DnJ_<aPc<)TXbR8@a<@6~xxC`gXluzw%_X
z$KyBi&z#lS`rp8G8e51nL%L{utis>bLiZULtiEvf;hwE)!!Jy^+cu^D?R1U5Ew5E%
z7!<aceSCJ|rn$9z-R+0zOO{Q4t$*cSeX;X7v)WqEM-G!2E;qD%K54+myW%dxy4Ru8
zr@hj8@n&9;>JyoHvo@`^%rD$EdtyPIK+y{)M&=)3i}QFw@1L@K`Kd4T*UNKt#+M!*
zUo|iF>GRnw%nU47i|V2#UO$$ezC6`>rG5FIf{nXhPrlYwv+v%8vzwkSoZ=bQt(TXr
z>FNE8$wAstZhz*p^!v`olTZI!bnp7|IdA2^v0c6-6h1M`rfyOJLqox<qqBp8uiWA3
zeemI}+s*nN#d6Z?zpS-LHSo@zyu5IQS1YSPyH%y;`O9-RGFAKvHotk>O;G5Z9P5;0
zPtqH1TYSEJheucGap0UF`*N)(CGmj`B|>}*0v=Z@K7T&_xWrTX`&aQVwJpNu_br^g
z(dUzl-!~l}28F&rxBR#-4sIKR>(=Q<32ZJ{cShnIqpKLhuFEq1Ysy@F=2%XPJtlIl
zA<fU?tDZ!8w#K0xmWJ}J+6TOXuap$5U-4_t*_+Fg&du}kzuRJZQpa?L=P9p046h?r
z+0FU7)*^kf&#!-V@*BJJ7iNA~C!IC9KtaQj{ehX2X~vsc?{5=NN_e0Ay)frv_tQsd
z^Omv+d&E@9GdM|Z|7hi-|H!vSi0?~C!9=fyi<MRrqkH}o?D!yc@a*J*SE3fKk_;JX
zJC=O6y}RJ%pDo9l^5yjB9d0})B%d|sfnjjNzH|F_r@cO$^?3SsXA#ThRE^yYjJ>||
z3SO0Rm6~h52%V;uEyr+dYp~+#)%m4-PFv=MZh5PC*JksT1g78J-?M`oU-FtezFz*a
z`j}+;laI@esU5WDWLLVxz_3No*sj&L>TB4KD<1+Uv@k1oUf9F9VOdb_h4LAK`5NAb
z8W)6oXJ9ETe352<DdW9H-m0l==hjUWdN})`&gvM3;@>x)nXUU}^6Pz2-?8sEEB{Ru
zKYiiopJa=#TAEkox32ul_^9H~^>fF){@(d+Z}zTQh41d4J0aa%7cPb*TQD%>`rNNQ
zf6nZ}-9I4S9Hn~(CY<aH9j@1ZY94agI{%D=@{XHAem8b8Fzi^ApS{lc|Dynb`Ogc2
zBK>$7+RS{d|J|DCm6-h6;iOql(l$dGhK7>p(=zNE<+b$oEnD_rnuCV0+MH>^SDiwe
z7!FM9oc-o^{9bdGMKcT@GB7O8Hcm3QxuazTGpG+M(3khi+l^;;(U-b^Z&Ly%ywsgi
zaAj(b$6}^}yI<`Zrrt?VC{~jZWn|cpzk0jCX7P{U@hygDJ{D6~gfT2=oFTll$%k#F
zRB4i2rG@t)MuxO$7qjIT`R9kQZ}XX5Fl()(?2|q|hJe{_@@)pWhcb`t6=u*_@y2E4
z8=pnB?S-Be>N|>=8H9ICifenp^W^P<_JSG5&TuZj>0-*Tpd;YymUFf|S<hOS8GIJ}
z71^p6&pk!yAp?W(ty79GD?KMQI)eJQvUlEp@7e9Bww%c!bg9tMukR%_Zim=r{IcZ9
z`eY~*uExOgHYa%B{m1@4w;evSpq%lb@4SL-JSF*UM>SV7ywtlk^ZW1EwcNrHh0~;Z
zoSeDWJg%~^{B!2tjniNAGtP^c{>c1iIA`ta&ml`6oLX-CkxgOa%2?xj4AIl%4xfxJ
zVvrKZXAm;2$WcqnfA}k@&|vk?;{|!Ur|+s$VT`T!5lhgiELIJYn;ofpk72v3&^g_#
zuPo`BCl6SCWA<sTOzl6eoVIrN=J)s78MhxzUui3QF0}aR<)E8o+zBP`w?5h|_2tZ&
zX{O($_N_H)D>e@A73?r)uoen0)(cJSyJ~yE=fG(v&gah_sc-wc?90FK&2Jec{J!lm
zvSpcZGK%wgSjNW;4ZXcAT~-YCS3NW@hi_Z<$av{fp>us-qRve9kF3;v@#U@FhQ1Tp
z^X~p%eQ7-dtL`tS8DEym-nqSCoA%qKi#U8<h8&I9pk@=T_<dE2_g>E9(xo%5F3MhM
zE7w0I>dacHtl(n|`}Tg{puAt{P4(REW<t9Se;<)n+m><Y=Eo?TsOytgi5N79L}#i;
zx&Qg_RCr-V^Niab;mL)S)4!i`?@{8~rtPKd5XpR2=G;7w_h(sr@?RRxQEJ{ZVO>t;
zWj;m`^Y1o&CxZViSg=(1+}oNHg&!xUUppq0;H7z*uQ#<RwxJ}f+s<*1V)Ip3#x}8S
zeE)Ci{=9eVNScRw`^+_VZN=Vl#|oboU;FA-n7*lniSvR(lJC8xes*`v^nWEs3Y~j9
zO`s^|=bWG?ZS#ZJ4O$vL9^<JI+x{ggOJ0ZPe5qu9_igz_h7HUYPA5*4d)qrdJ=1r_
zRKq#UdUcml&#-e?@0Cs{OjIxLFfZ^p^mBjz?w9LovOF}yKk++62$%4y-C(_;{_szG
z_PiX)$&!1D#T1rp5WcQ|@8_$1e=oGPFtduxIkVs=<AdeeAKe}w3R00-k+IxWbH^!l
z2G*_e2UbQsJZ+}qaj0=M*S6O7`b7(wR;)_hqxm(faYON|1>&6SdMC5z^E_bidA9i8
zKBKn!r{(<hvSA<m-}5$DN*(|uf`k*_<^TOz_4{v}*}V+$2kOZd6ZF^Xn%FT51e879
z^R@l^@BQyX*N43AHs9cSsL|)^yThFh423bALSJ7Me`G70v6RiSOlqyy+P-5v3+6R_
zzASa)zSdh-iNlSPlD4%nywR|;*KLkqV)e8ri267ssY}Yifj8**(fJor4)_c4&AD7x
z7j-qCE#l6(KU?1a4|&x#B}#VHq=Js6SKhAp*4zG!D?u&#v~B!PKV8->iVrVDE*1Rt
z#eDtK+K25&-rLvc&lca#xTPeELH+3Yrwc<LUzpM2?0;5GVE_MsD(~bv;{!*uj?Rw0
z?xE~^(DzWHqxJS{dS;nZZMJ(YX1&mMJKA8^?mXeWXD+tH$Ou|ZT_3ZSVQEOL=w@Ew
z*@@leb%zX|ooHeB%qf)LpuYLa3+268eSdEFtXDg$Yt=9<Zfjmkj9{X)f(2(gUzyyy
zJwH@)<L1s3G~hFTcIDc=_s^y?m3+8+%4A*dQE88b^Ih1l3!l5Wb@qC5PSZH+TEqUG
z6^!dV)>J$W*(P_r#pPH*#@ezymH!W1J2Y2wZPe+qL$;O;--5zg`6fv&GL06P({i}t
z(*2MPrmYXsA6ztJSo7>Tx0U_BY{C26?-~6oYggmBH*=|5@Y1M>8=sZL&Rn$Z@~>SL
zj9x$2rDY$P-IFhuI)&3|W0c9`ld~_E?!VtYn`c{nv0y`xU6Iq?iqD_pxBUy)(`b{n
z@}ggJCWGc}1Fz~0`{yox!+Jo&$<!@v*+J1`1rdIa6({cDOj~$wFM~s2^wsJ|7kVq0
ztyN^CG%Xs6_eS-LNuN8{_hYBbx7~+svpcZfH{G^SS|e$Oq;=1_ADcf_`ac)H)8Har
zZlfycHsc@r0soi1ffLfW)f65E+)Wf&`Ri=0{N<bvd6zfq+p{j%sO0?mRk26<G^x_7
z-R8gVe~|iR|7YsA;$5rsE`I*YIQbfboBF*2nnHY{rZ1wGuW=PNcw%DqmyhYpsYOf^
z4(gb$%CIrl`S|>n{|l|JUnWZOF+4uC?(o&y6Wk9i+|%???XT+PPX3H-JeH~A;TooV
zk0-Hb=&WZ7k99W7|FdMnn~KT*`kv3fUoa!?QoYi$FH_4HBxdC>i+fs#Ox}1VHLm{e
zhtLbcxA}`SwNI?A`NHt%#;Wt77YpX@<4c_*yKASNSYe^gi!0@6EAHmWp1Z$#SC=fq
z@|@6H^8eS>wJG&H3~=~eQG9#uy0BO3O22pf{9daOwCpY8h3Ov5rXChCS5@!r*_X9C
z_r>huTYvK6cCRpHWq9_i*5XR2{=FqN3$Jr92uw~aTX9^1Z~C078;^5x|NY~=K7U>2
zwP`tjC#+#Lko0DC@Dbt*ozrXH{`TOxVAam<X4z+RlyWCk7cpGEz5Z4F|IjOqaVj#O
zRQbZDR58BzI$`p^=%bm>8QjXh$xU0qytjg{eV5nK*@yYvC2TtF?RC#hW9WJG@A}ky
zjUBcJ6q7Adyk4H2-fO<zzVl{?%k5S3Z*Sgzz=YxbqR=-EO34;if|T#Y{5h(3h^=!*
zJGTPIRFxj@LyE^AGWcC}ox_~g_T%$qh7PxmCa*I=i}!S&UKac3-?v4%{0zA<_4-T!
z%`JyBe?J!8`q+29{&|7iY6gwe)ouQBPBVl|-E~ZFPs;UMq45@%SF5<+p11r<@e($M
zA1kliw#nY#&if;cr@c7om^4Gj$rXHC)E{1OdV4#BF~51~{uYr2(F~CVlG!T@o$mcz
z9#mR&=4XOo^qLvbtPB?#TAW?Q!&~K!UbFi)cfyB#q1|&h7#e0rW-YP49j||TX`f|7
z@rw5`TOY8qGb~_Bwg|bXcJGLx%QT53Wkv?QNd+E7TFEA_JzsBPX87QEXyJxOE0a5Z
zW`1;^xvgjSQw9cmPYapPzfRQNd&XuUFKW@_eJIhRP)hD28-s!fXFD?^d%+_W_K$1{
zn%{rleG=E<f2gtbL@dMgla`<iKd*t=V!NPRpS-rm5&L-zj4N#vb@KnT9I`q#yZ>3)
zngy%|bJEwY-qf1W^KgUaGX}osednkD?q&#A*_Nla*3slx!49uInlI9&E1z=Qe_yW7
zp>TUMmoKNmv0??jz4CS4#tp%HF2@I)o?Z5P_n!T#^7Ya`Coml;S#>CUu~U57%0ka(
zFPkFkixsu4YrkE6!_ja{uHU_C?)s><eJV0_0jBM#+sqx@Us}4y^2&NzJn7z?aU<(q
zdHqLc#tZjWew0~Y%h~Q<b;j9X2J?mMiRS{no%MzI{tKozHU@sN<(uW-u&+gi<3!fQ
zf>5s$mN`%A>N=MRD(w3ry0p<uMdsgm20z<Mcc0aq23^M=f84z5TbxnGc^y-~;9&D>
z4<?2^7g-=@zG{IXXM4Tty85sC*Uy<d<$5hs!Q5+HO%n<%+`rzPce9yc@r_mOcVnBT
zsmSDQH_W~#xP9lUwVDqYTo!b-rL8eJaKo8p>--0QEG*vkH;4%)=)5y`EEnQqt~OKD
zb@q6yT6nAFe8WM}gbXLXFR9aRy=s#?@N;FtVx#!qCimqSd0bR^ay={ruGBmfPLRz?
zd*N{?@|Htw2LFMamvvbT9_C(;nVcsVSeV7gNBw4WC_lV)o&hgsJG0h{xS+n8Q|a%%
z|30rOd1*gmL(`qM=36Q<b=7~aRy+UVxb)|Z{Qux|^%HW8I;l6)M1F0GGMWEuMW3|(
z>zMO0)r<#rXG&>yoRm0s$!^v42hC<@x8>IFQ2vzQ@#Hf51~pUTE$KYzrNY<utk*F5
zXjf<bb=J<MeLM~tZG{WuINN{9e*2-Gojh;1aOE0Kh6Qq)uRO3%Oqi8WVDY?QQw+Pn
zv|nOUlM52k?w@`2X!R4uBZg;fO*@Y1n7S3cQk={aY-V<d$Dw@dZT$yxLH!83BXTPo
z4>2;VIM-oiqWti{%cIBd6frLl$>kDJe`v5@>io6r2@Dpe4fwV^%nj~Yp0n$Q{DGVG
zW>=mvAJDWu>-$)@u~YJJqwo1|Y0Iw~PGUZwIf=(a;i192rnAk{*ccLwg!r7bX864O
z{`+A-PofONs!OvRK>4KDqGxT~<PWu(6$<PPO8cZm-f~PS+JC?Ip~1FkzD>{A85A}>
zf7@)o*PMCXt@w93zpeNGzbL}QFyoB-<9B(_WO^PNG_!r3sF}rJF!TMfzyHFgzg;N8
z+3pz<o8Y^LvEk&K;}VwXF6)EU9vbu?e_UvrKc~x_;XsFwbh%}Ez`VnWX3OPH@0`)W
z^MK(%!MQfEZhroUf46v9_++R*nX`7`8Gq)6nG%yD8(R*~={myyk&Piu>E4-FkIz)`
zvDXRbGpuk_-#z`W^7_L0oh{7v9p(%MleIs(U6#M|{iLaPZ-mji9MSdVN2D1d+AECZ
zIor>z<G(gN_TiByj0_RS6U86xO;&iz@@4aLwTBlR&xjQ62z_PBFvIg6*Xm!)A3ZI$
z2piwHbIHu7l#RjoWZuoEbAGHbaZrB5%OG(4=seFGeZ1z$7Hf1i<_YC9G~}}tADUDk
z5$ASxQr&&mt*i_NVw~*`b;mj%y?<_0!pvZ>;`_qQYyIZ7IH&)1T$HoN5G1xPJU(xK
zaQae4DNVZ@MX$Kuf3N-pY6UQGUt;9Y`x~~k#W^7LvG1wlDbfrH-F}BO<oerNoL!ba
zI=gb=>?7}47}A#78|->6`9+4WcL~3aSf{z%PR0b0C?$<YrJ9n57q-s$cx;OagTm3x
zhZo!yxcU3$#DW!i3412yG9(m6+cs8dZw)$sJaTfu3T@jhTYAhj<5?NbJj~(v`9kZ3
zrOSq5q5b|7o)@gph}skA%*dd5Zr!a_{TGj3OPpS?V(FEt49)pdav2)f<oeq)Ge6E;
z>L$AU(b<)W$2aev`a_k$q5S*)s{9j~%6XrUsK}f$u3~1G^GPu06kFT;xs7k;U)b8=
ze`w(bi;u^eG8qh7=JWn4XtqqweS1emrpt0o=c#AC)AqA6xV~Viw|HZ7#3pH%q~M!5
zteoveQs>2l^BEFKI$tjJIH74BsGIigk?Wy_4FUXzL9s8{*%YiIqvttOIohTuCZ?K~
z;l;b048fwXvTtv^EuMI5=04(O2yp40plspmc}Ow%6gaqRZf9NKx8@HQi@5#kS&#me
z*BpL_9&XVyzU=f@h9Tg5;%2!r#g{Xpw<>V93kzva@v3xQ%g7*nL-N4SpZm|(`5*MX
z_3&L*iV)vQq0PR(D;9S#CUE3ky?g1=*=zfk)Zd;q_q|SO*_@{wDl&avWp{D@Sj-U6
z)t2Ml+Z=50#G*VA)RAtPR<|;I?}^LrzcXx@@}AA<vOw6qlAh=FTGj@iDr~mx`%t$(
zUf;=eUrX(8_lQG@!AZG6zopD>aUbxvm+rW3@Af)r-JLnH_rFV7rk`F}vq^Z`ixWDg
zb+3P4@jaF1lD&%|<K>3AyZ&EItNyg+!ZgvC`mGNhTE$HM_2@ghens+0iy6lXPFyK}
zk=Cll*r2<-%0^IbUBtHiw-b(UUfwcQs?M-Sc!Hr!orRA$6C1<cEAM>Gq<>zVaj#0g
zWtI2pPFvR}vTmI1#Y!Q^1-CIa=*{{n)js2iSj?91&DU?Yt<?{#t1|TN^*<=C$Gu6C
zVaxTU`&Ue!mA*hdbNjNHk>P81zwuky;yh`Uc=|7vuu_%-n}X(@m(l2T$-7u5cPv=i
zCSXtHu75hdZ$(#Fx*k$w@qfv<LAmhf%<KOzEPHa(GS79|!+rNI%5ORR;ZB<6^C{Y!
zyHsTUElythF)nWXeOsmkLHp?T2Z8Dd-P7t8@GbT`lRR(vo85&x&z9`|aiN9zY<-6q
zgUjWjQ<s}oub3KT`18YUueYUp_jygs_p4d_VCDOm3rAa$dD{Qaez}aBp*Z7@i+l6I
z`4)R`H~qFavMDon$(hB*GbXG5UEpaUQ^3k}!TUJ-HU7ot9<sU26TA3hUfP7cd1|S5
zxfRoofBmHSkbyyvHL_p(_x7Z3@n^5!_*ncy)w+vkmxfcs@^ek*b)WRb6&VUyI?X40
z=D(KzU;5Nt|KHCGe<%N~m9M(qWZZUGZY>AH+m}DD7CgOL-2Qs*ykFZy-tYgk@ye%&
zWaZz+*Up5lJ|e-lefBn%2FDkC*Ct!UOt#zbIA!k}8Lrw5{H}5dlM8MvNn%nE;SE-;
z48GWPCh@oC;>+<`>VNLc-Nc=Bxgj!(;Q&L4K(<Cv$o}UWVt?LZRWI?~lf75s@WBrn
z49pjzcppAmaqdp~&6ureDl&D&`iu>6TO3n5>;rROpFaKXNR5#e3nx2+M6+H(<i$x(
zRvulWU+3)pTQR*OcE$25@4PJ-94szc-M=EXKmC3V_hb34A1X2o2@+QIHfODRKARkg
zb5VQ9z;GdW3tw&X50xh&s-O^?xgzYsl)F#$4qK!;pQ}@x|7p!zjZf>&t8=n5G~^|H
zdpw&pM{zkDCp!bjDT8yHg#2r-CeBGqc5(766yjrG_@eUUPS?Ipk3)<MO;Jmd-4_L)
z&+IYn+59>BYh7UyNJXtk<&K&!s_bzsbAnW47#M!6{dhQGo~^dip@-Xl*MGey!_eS+
z`Aq2TpF6AeOSrFeFI174^iIsD-j$IdSSoMbt+O8IQbFb%UOkKJmV2KbzqqgSA;qcM
zTnubmPt0&wzccIpy8n01=@)_Au%JKE`lDR(xv(dJGMw$Vb$8Yku4Q7_8v8Q8MDkds
zPmPtzLk0$ehHl2iwI_D|>vlA{TA(7s&~TEs{Pg}~2Io@Rte5M0TKvhL_=<sHM%<j8
zS#5<zG51qB*%=bj^1kh#{ibowz1ad+=HHWMU~tg=XnnB%_~K)3VZUyDfB*mA@m2Z^
zz4cnFcin&g^57*2zW?G++E^F@ZWr{{9b;p!%zXCf<PvU>QGU_2uOB}0Ei?^kUmP3#
zE7I6IH#1L*;lP?LpSIuKnYBF4R?y{9q;cEk6?@8ES8^~Ul&s$R%=&k<0gKduOtq(L
zJS|Rtl#5|-TUb8BxBYkQ@x9kxp4wc0im!UJ&^f1dDYK71-k3I*!@*=%PkWoSOM7ik
z)!Yd|$Fu5}Wb7~&I{47@zU3;Rb5GvoZ`$v&jj@5#CGSFZe)Q~}S=L%>J7WJ>JD=pU
zl-oGV_vUN&j|>ae&wo4XS?2KzpD$<S*Laz~Je4n7SASDq{?VMc>4n!+=BzZ4$YgDp
zrZUGR^!GL0t9FlH&Rx1ker<_T49D`SokHhSe4LmQ!hV(g&g%Cz5mSE{^YiZC_>(`P
z!VkVZv-7jeIi5B03=FG1>(7-f*tYMWvSDuDv4=qkyxS7(UOqo3ZQnk<d?HWCO-2TN
ztK-+-?qU0Kc<T11cmKP-_rBX5ajy3vk4|-~Nw^3@PsY3LrSG3NZrY!!qQ304HiNz7
zVacmgi{Ec!WZ+3(Rw2Bw_`j9KZ|UNV*GnuW6?50j5}F$IWNpIA2?cE;3*#6VlBD(?
z{}a6T_vZKU(J$AUhB}Anr%t|oRQdm(wb!S6STHacOKhBO)AE`#Wz&So|3of-w-38}
z_WJZ{zVtx1Mur5weo%eP^Gf!ZrQe0G?J0HtDnHh(Y%!jp<R5=GZRZ(=h(@#Q<3a4p
zAOF3nB)j3Sg4CaP#Vhq*oX_|BlTtNldI1ANn@Rkh%C~{XV^_;MwQ*a1-E?-}@#)c@
z&X{wit1RuhUL&f+Al!ZP?czxfm}Qr;6_@S%|7*HP$nS>y+W$xQPA(8jny1IWv#R?1
zzQ%q%uQQ2rmakGwcac}t?R+&gi!)s!oU1W`nc;|`<Mt(S@Bf_gN_|^fZuI%mx#Q+B
zceFUui#G8x^yqoSZ`&4N`<u;nMaJZh@A8A}>OTskp7HmNue<fT;F!VX>>fsjAent`
z%igms*?;8OWAA(7Avb>gJC=Xq=Z&80>#tj|wy$T~^-uU%fm+HPwuYU$SI>l2iOhB}
z-4*)YS+#in@wjUBhi48uF)<uSX)4Ld@;SascI}yKIe)VL>&}V(Em!$zNsF<~LAHiY
z*LSX_2@L8x;<`0IZz)v-#lRM`7!T>Z=Jnb}J(r*E@U%!a@M30IZP;Mk_@mk2rS|fx
z_a<#FGdmfT#lUcw<Hp4`Ssg7G9xVA2b9v1{fBAndS94GNOG~z3V0d`s{Z0K9r;We!
zUJLV^viJA$rc+<V+wQ5%xwy7WnVlgl?|0a}?+-4;PpOoC`?8rs@s$oII|IY1-!pmd
z#ec7Sb=zv)tv~;m<|}$w9F|xS!ssA)dRy&p+hi-N8jYn7wlA%Jc53RSWieB4U3LK#
zTuWX_n3mV=di=Jb;b!z9MurCAO~*s`{oimUW^3G~?dkttF5dJTR1zPsjQ;zzXXBJY
zXTLeRKOfXuFfd$fed`qzdgJrF?TKgOlCpWy6B4;?87Ac3{3;q|cFn-=kKPJH83u-o
zhjsg}ceCG&|5stNuekK%+Z?loV&gVruI<GP5xv{`e;COfU3u%Ge#O--I~lZ}+Jfp3
zw?8ip3p5O$oC&!leSd?2w{A=S=6`_;?jB)EFuk>}-1uwB_oZhxOFhl_Gw0XWO<R{Q
z{I>4ZoL$jp=bE-%zF+>*f8{mjSO$g*2e@+QXPCD?uaq&76S=-G#M|QH%9mhE8{eq+
z&i!AtcaAuZWpsS#`=m9qE~v~|@a^<vhn2DnT^GI?u2`kmJ|8q4Do|_p?6T4P^mxa&
z?S-!<7ChQ@|Gl!9CWA)aM8-Mu-~Lnj{qNnsW#6}{ct#pm9sImw{i~Bx3w}wz*4@Uy
z@U>@B*0PXHiRFJ^Ot`ve_M~Tw3>B-ch_2ats<`G@LDeabb=}j$8D>PBN>NXGRr;>$
zJCAm$sWks%P<lG>*35g+w1QilTVGi+Fq}2<<Eyj}FIA4_d+cGM*rCU8Aa`SDmgL|0
z4|n+}`-QAt9(iJ70RscatG)g*d$i@>o}HIoU-JC(!TvwyoaqvWr|L3jIB{ES{5$#g
zpY{FwqjEzM7xO=!^7oV3^T0zdbFLMpGb~upY0dN4Z92d3{KXGFEP6w#f`u3iBzyl&
zeq3;O<-hdV?J2jOIB=?SO*drNu*|gDQTg1zRZD&x^R{TrnR|C(w+_RBh5h%=70jK#
z*;)8(nZW}CKj!+Xd<KRC^M3!ei>aT^(>>>D)$X4aHf`NXQzZ^FGH|%4mnMA-j=7pR
zXMTLp;~5}t8#FJyC$Zc45F<lJ(rRO=|M%?M-7GtWZF-d-GB7mm;N(3zHHzcmsi`+U
zX-zATl2qNw?BJu_BExLa%oS>pJ$>3H>*&mERT+i^p6|bHL&7)dd~6G7)2k5jiv{ie
zWMw$E;r`Z3ON893<kwdxXjD8rvY$<LPM47X|JTVMySW)I1bxply#MI_e!b9~vVG6r
z>@$y6|8-K@-uXu5^qH%88SKt{=ew|>_UX?WnO8@ew!Gn#`l7oCG);VN!QWMz)VvD?
zYs6Q*udkH-)}&hSBG~fL(Tr(PB8Np~8CJadSiy5wKPBK``T|w0>bD`ggkH<0a4ui;
zda2`Cz5|a;S_Oii2xvTHU^wvSlK4R_yROj3qKm9m=Ipvt$;4pv!pSFjP4G`S%Ufrz
zt^O!1<X3w0Xw{n6j0_2^pu*ild1;Z~X=SyCTQ;0CWnh>i`m?faX3pM8s!Qj8s|ZfK
z9Ck5h-K?vNq%C(}nD?5UVL@+CU3k)dzy5XH$rf)l9x+UCWInY(<Zga$TOp_&q@i}A
zX4^aIg0O=Vlpng7#B{PSe5&9`R}*aVt>NXH*uu<k;ov!;(5jQlQjgZis=YF+4*VSs
zYOE}~wI{7bq*DFR%hgM+G)^sGV7PVBvd`_onc_m3Wv>kST7=IDIL~3YaK>lv`6;y*
zg<m8sOA0&ezL6)+YcD@L!vfZi&(^$GE_?bzX5X9-b^HCx{+!>}U-<lRvaAfKaQqwD
z_WJI%GaI{&Px1AC;8M0U<;$5jfBE7QX%dG!U9Yk+tiJfG-r~*UeRdNHU(BoDWFIl{
z``IIjJnRe$thk-kwM<uM%|AG2^D(Uz#|ju2eo3spzGMA~U^m_3qfPx!Q>5Qncvv*@
zgjX>rOzG##p3_$Pj<NB}-rMJS!uu}$zQ1h#_bC%Tf95`KckuqjqrPiv1^?dJ^ZMo`
z9aDw`Hv8Y66XQ#T)Ei<8zkRq?apv#ieE-_eQ%wAwv&FY9sr9~drLcQNi}2AMsT>Tq
ze!nP@yVuz-Q+jM_xyO07Nyp<^w?F)?&S$@vgZGHeR)HhZ3@0X-H(c0pbMB_-n!@Fm
z{@c7yN%blAnsfH)!#R(#d_s)dgbz(Am1o$H+7b8Z@7d$~x8H0y=C1kixlXtEd_x(A
z1YO<y!^ih`&fL+uzWG{Of7Q~~BegyCQTLbfOyb#6=ETLheC6Cr$rpqf_MN@*y6WZC
zN7v^?g}n-#`ObFHv`D>8h1JW`Rx&bd=DeiaeZlqKtjw@G=M3#jt(xZSj=p7-?c5z;
zH@{Bqx%TXIp5<FlvN19)Sk+VZ`DS$0*O{|yh3Bs*TfWoV{Bgl@q4UWHTnx+4>;BL<
zdv4<W`#H%LvMzd_3<fR1`K5pU9sknq@0Sy7f0iw)Zr8nyH{<!O-gA4`hCbTP`u=Wc
z)x|9L-?MXh*cmw9{#E<+aPvi0>siiU{_M(sa&(1d*G~7Md2P3k&t+V3K{>d1b(AJE
zgTDRmT+RGV`ukL!SvK_do|&f^67xv!`t4N~?Mmk#etRCPx%7$X%lWg@dDJI72v%fF
zkUf~67Jq+FaI$`_^}hD#P3PEROr9><XTSYUu?53{C+F<Cf>(-1FJZ5InmGIT>>m3+
zKc?@=-Laxtf6s5W7?b<VmfPc_^LW@99{g`QKKq+})XUqO-tJ$s?4Vm+e+!GHQRksP
z7tuQgoa_t_;wQ>)dGSw#OFw#be2-GmiJSi&9_d(vWE}3ty;+byDRcc($ASa9J!+<$
z0NMQ~NbYE7Wq9<Sg>8kW&pcf0^8I)0Ax4H9!aMaNzPZlSNxd_vSfU8jhl*V<IH}Kn
z-TNEz2PC(*dkOq@)hMdFci-UrLk0%#6BWCn_DFUxPf9=a7}UY??*94XY@g=tB?Z^c
z*>Z2bvMbP*(II)c)cqOE7QgsEY$~+`mBJf&%-68&{ljA^#K*8<!V$v>ea@;A?^|&(
z*2as^JIu)N;(fs#w>>w%e+;Xh_Nnky??VQLY|A(7+uvy1|DW}(Tew)Fa#BH3VJeeD
zZu{EY+0TB2Y%sK9e0e5_nc+uB>8Z;R>z{UJW-m=BzS{NM;+(TgT(Skj0jEosT_<#k
zI+tk7y!t&<;K{BV>JJ$hwiK^w*0}fPhLweL$-$LghZq@ttgVQ*{Kzd|KlSg|pB65$
zN6t?Gxhdmd)rFqa<ww}+?|B|#WC;7X`S`b2D?)3F?pE8(F0{E_5i4~+b@y-02?Y!c
zdD|C1-MP+1<YSv=uIQV0r`K2VEuZ}(Sc0)(`QNbH+SZBgzqwrwbsp`NVR-Sv%X!b$
zUgHMl?b|Hf4>2-a3$;nEDS3QEn$7gfh9xbRkN=z8$KX)-QrlGg=i0y4*Q9E%T~V{}
zv|wQPA81|IVZM~d_S}XwY?rU9%;AgaWe~Vi#~~Q_;PzwR`??#WN<{8<GckO4_jO(W
z{M;}9qD%Ppi#6SjSNyx&Vm+g28#BWh{okB74xgX1D_M5Qe|F7JUD+*1FZVv&a_#RF
zW`?7=d++@HZEP@MbMjQ(>z{8ZK5SWVin)RF%@dhiTj$gBrrm69xqL++m5D*^vPBVx
zu}@CNipQ37{#|KiU<l|koa3f+JcfZGWAVYWwVcaYKe90_&^d4Yb?Ux3CBG*tJ-kv{
z@hG;PAz*6VhbedL`W`4hIkIz&%ABZ}3I>KVx_+xF)0Z}C9qPNu$k3CwdhycqqmvEi
zd<uHht1ZAFW#Gyymcp~#0A!{dvxSUN+vO?Q{0s`SE1bDFmoJ&iC?hV%V3KxKK4NlY
z*3k}g27&o*l`(7u9x4w*p08qN0Buq;x)Z{{kl`QSoiD`4V4(Qg<?tqzIZQkc7#JJ`
zKqAtsR~$U0GG{f<0|p0;S!oe-T9_FQFr<VCRX$GdJG?PJT!En^vF=vZyYIW}#N~S)
z&RO<~rD4XNTIn5<hb^^L@2zlVTwwb#EpmPEdza5CJnRe-^C}LXb&>uzsld;mftf*I
z=7ht(hdkBqF*x|J6<mARGU-sUMflE33=5P$vi(TlQSU5oXLN9Q#CzW-<gf%EgMrG&
zG~e};wNGw1Dsj$`*@8i!x8m^Qj|J;~dLBCYq>HH`?uc|kdkZr|kISBich67GW4irF
zWe&6bdI3=lh7!el4DF!Y%=3tMg3}>J1~!Fz1*iVjnTO{_g4!2zD-QR~HBxx8#`Dn4
z$BHrx9X^ZCC@Q8qf&xP2W1CCbnze3+Za(n>ZH+u3<5l^4dD9j?&gbUW85msB7~1nS
z72W0YS<6L_nD-kqIS54eZW5cR+bQ`hvgMxrngCztLqApSF*wMC{Z%|XwQ-iF_x10L
zGmFgQRp$7=6J>M|kV;**!$L8)DQQ{}i`tE|`9kOFB@Qq)Snxb3xcGH>9-D5yq_y3P
zdH+-%{+VCF%upzCVBwUjMSTagvseE0-owZ+<I>lCcO0}g#NNNc88&Bf0Us#J+skI!
zXzHK2Y3{Oo{{uI^jr*fj=G@Nx5X`~w`Jzei;q!AQ%hfgU=egY5cFd+dxlW3qCApVz
zm&I4Txf$Qg|JBaEygA^Et?ifP-`Psk?lCZY`10!C+w_Ltws#Z`uAFKqR9+mDw(_so
z+AB;49+{loQW9~`>1@R5dy|gGr*2=qd#P|=ss^LN0t;F9uxXbRdE&w@|K1WkpJ!il
z^fW&U28Io)sWpqM*)&Q|*DZ_w^IA=Y*@A&VrpqRIZS}sc%&$|~7#I@nKmI78?Jcq=
z_5Z%di+fmftlE+p*clp180VkRzqhd0URD3%BF^W_GnR@mGz650w{J)~B&k}<#NfYc
z>XD76GlZA4SAI;InJjU<*y4XsDHDT1*L=^#zU^lJCR?6XougQ!&Y<J%&09M+Doio$
zR;1p;KO)a-7#IZZ7pz`A_tQOdyV+$*UshkQ;!A(j#KGVYe|Fa_-QQc%g}qz;eT(9J
zzMR8Rn1Ny4h2^yq3m6z0d>QYvZpmNRBAj@FhvCM>!b**V`;XTj_Ah&1sz0TmE+~_U
zVZy@e(S^J2b5!if{I+;`gf}k(!-<Vsm&JHpS}i^yO!Dwcy9hQ0hU=}emX@#U_J_Y(
zw0=@S-K=Fb3<uVjTobr+w0ld%iJkY~d#lSZDDVmEN%*aIFKqggp~=c#Jn#NymqRcA
z*@!VPY<OICuJZ3sAyB_{mSmNSs`J5#%}VWlpzi0PSGI2Q!AU1PYv%eLTUh;n@^7xm
zTle)}<f`UnNWK_nyyEb?ijR|Qekn`5WK=6$Zny7(1RukN`$6TqBYi)9oYQ#djQ`7g
z?z7f;pw4Z`_FH?lI(J$=|FEO>|Mj23eUn%i9Bf}I3vHienSR0V{n3MS=Kr^=2ibe;
z+_O2Wq>ZQTIXGwT8c-wLL2~&#gNeoWmOh_zJJ4lH0RzK=CAa)9`Rmv|dGjMUBbkAr
z;eU16HU8a?&-3@}vx#!-Jf8bJA5;-K=q^`_|2RqTXIwpK(VRo9>onK8|4*LkN*!2v
zRQjI%&ZI+z92^W6Gv>~mcW{o4Ci~mR#@cE!3=A(GRh_u`YrXJ&wHy5H_y2<`v4*lB
zw&I>AHNPt_)csrB!py+1_G#-JR`!B>d)p7sT>x^Z<Idi*clg+gW0>q^<;+20y33Q_
zvYY?Gl4!$+9)}qijwGrqUt`}s|A*bO%FS%8-V6*sUVf~2qcU^u|0Vr@-?|^N?CE?j
zUm<(>$o?We28IW>>rN=%trzk;W@!6c{rm6O6O0TE`RUGmbzlAe*YhopOqt@#$naqK
zmkUbwa(<dWH1U&l;$!&WSk5~yXdUbI(|z@Mb3eIlmM{Iq$RN=z_eS)8iHx6T<eUdf
z&#EypIIvhNy8pXbz9H(%`NQQi%<cYZ>CdnEGgXy~fg$45`BwIlPX5@~sNba*HphpQ
zn7O3R33>mVu|Y9o)5F{6&9`oNeEw+bcH#a{E8}neUvf}}f#KT1*VWhTkIQSOyuMR&
z-p%@tR{v851_t}B-WJ<iX67v7W?(2dYQO!?Qx>jCxeN>qO0)VNij-&x&fLSn@Nwr|
zPLYdN59jbo_a9#zWEa@W<WQ3r%#_|LclcynqZETgcbcq5s`0}syHh9aJ5bWx%gAu(
z5+j2Vi|k>`-}?d?5@MuE7A&yiOt(L9Wk=#;H35bm*W0{LUYfOS4$YnW_q+BTL#Bpz
zCdVBjXLBxhEd4ASWt7yDCCI=~@$>Tc=l-s<jz3mB&v1atCy;s5-{SrEw<jIeC`_92
zmW9DC<4EJ9rgclV9hH@3m@)5}+>WFTEt^%J@=bUp#NcGuz<kBP^U%p<d8`cqcP6sv
zN$Eda@q;0ODbI*$YR~k7Z7Vbw6H4ACGhKhHI%mUHpBuc)3_&~eIj?M<S+LAU(7xPD
zm775~ck7<uZ?+BJ{_VV**MI!+V!zJ#qet#LF+7+p-R+QD9~YR|bf#ecef1mM3^T6!
z?YY>*y!6cGO9w>XsWUp{KH|M_tccTHmWzQwI9l%^1H)U%1B|mIEgnWl@PZZ;F&yQc
zQ?RMijp4$irwbdWh51-8IFvu)4d`rPW(Y}{#&Y4t4bJ6n-pYp>Fl<R=U|*5`re(74
zQ7#7F9n~CLwr3n-WT+~fFSsJ>P0QnR0t_unXR_^*uztwEkPPxWs3H4Q@&IGi&&$=!
z3=J#aq)0PcI4}$GF%(P{lvd#5WM?>0qIE;!0OPG0Z!KlEsxvUG$$8L{>>$HnWz@iY
z#H0XZzF>aC2Ag(fhAT?98Q!j)T_D%rUYW-*A#p$B)U1YmXM%q7&tzxVWGl!2k?jSj
zaPqscOIqVLgQJH9gM-#bwvPM<EsKp<85rz%<`mRzs!(MJNn&7^IF!Tr+^U<Gf#JXo
z(D2cGMi~VuP_CTO-onfv^V_ofHUpo)g&UmD(~o9tWMp87xORhcxe!>x0u>pC2MyKr
z2OK~;+h^W$@HwnL=XL)h1_p-95_S(67#Q|=SUhFF`TqNEM-_%;iE}d&bc|KzNC{v4
z^zV=DZ4OHYh70#V2L>-W@}+41{kxBt7(j#H#XV;jHi+=b8_bbRTe)@O_mbW=#)h9W
z7BaY)c^=yNL&ML@cW&%#&~XD7&ZuyzTPU(KFx;9@FexUUA?gHUg2lB?Ha8RhLn}9?
znJ_RIOsf>~OYT4Z_>HelA$LP##<m8>NL{PRRq_p;na>&uB@Z()1XXgdcjT{Xc^oLi
zu*2^%Cr|FGmdU=Md<_29xr-QO5;%nX60_<Vj;Y>b5ROP%+W7l#-0rxr_sj-XAK7Lc
z&PleIy6VB&^|gP#{t_3y$H1^)vFfpct_mBu^<N%^i7`wzY+&|rK4keYNpyWHLxP2r
zeuBm3vq8Hfjing41oImNeP@8`yHrmLh7G&s8_V)MU}%ogcsOGP8^eMBw{|DXuq7&V
zHMyPoyWXeELsLLeL}K=S<4`Rp)~YqUM^5X=^v`8rSg`EOAxV!IMur0pTe*%qnKIni
zz{$=b9Br{*@2t7Yxp(oqLm3zj@FsCTKd|BiBLhQ~x89t|GcRUZ?O*r$xx#&U1_p=x
zldYHA)`eQzF*3|(^tEu9_u&vD1B2H|eHs2m3=9kU{(!iz0xYb1Y8e<FEc6mN=eY3)
zn+5}eie{k2ZoM4onJf$plPh}d8U^m3*m#JSfq`w6_2JCgH2u??BwjKw9MDL!h<@H~
z;KjzkkQQ9k#>~LbvNFhGdVas*0Y-)f&QQ%cWqL*HxD@{~GcY)dXwCVipRk9Gm*Ea?
z<ML|e%>CNUpmV~D(GC&^9n77dl*MIaY;0-@QUKx@8k;E?D1cZtM4u$?UX)mg^C)pc
zDjp?n4mvwr0qyK?E+Wqke|ya_E7VcM^<s?YZ9|Lynl}q2TDekhFHt<iH#L0C)tZ{R
zx!0bZTR(mO-hXvJuTSUy`C&=@*E7#+pIv+`|M$%KoB9969_(MMzg(Ol{DRPe1*#5?
z-VIID7+7@~xuTdvwy<bqa0XB&(Ry>aID>h?bcV*IG%y{fLkGxOkb5@!>oep%&|_rs
zrgm6@Ovf2517vL!lStb9IEFh1VwqT`Q8ne@_3gk}yM;yLjNM*_9gVwLICQ9&PYC&T
z;H=Hy446?{#aO^x&M6RqGx^a%Vt}l@Ahf{X_ZOxIZ102=Hc+DsBqDAh<?H}iyFk?;
z@!Lz*1H5-s9TGArE%Ax=?Z8><=-qJW&1LQe=^fq;2QJa3;=>*c17vN}G=>4H5eLXx
zQ0Na(jW|Ho4qS~mK=uE?)ri>Z|BAo=o*mvUpI`s!-Rbt4ic9;eo_)6a{NiJO-Lu#7
zWobL!fx08;{S{E_AJj21va~b=$%EL&MkM!E=ymUr1+=pQz4r*ztqLOd-lMm7yjSPE
ztiAs+{pzaI>-L^s`g=vL>J3?IPL3uw$y6ba0|F-$^tJNUFY_?5IX9W|9Xr^;k+Nos
zlJ%?0&$s25MrWr!nECYNd&gM2KYxGre0?0bwe0GuzqYflZTR!ce!F(Wvg|pR!g3|{
z{SQ9&XUabA*AY)ACst3LeXW#z-Ir}I3#R_Ic~hNt>xWX@+WI+ub>F^JuT7nN_@~U@
z_tDwQHS3sTo>|V_a&4ae^pa0g_Rrxzf4t<=OM&<s$DjXLRyyZW)bB4c>*eNu^88n1
z<!34LIQX5t?b6BDZXN!sI9F!gqwQxuO6<4nZ?Bm&|5DU$o8#pPme05Ul9_+$+3K3R
zJlB7vCX`#ZOiq;ckK1=^`DF2*PoA!xU2-Yv_oLI|FJG0}FPr@Ltk&E&+dii3mb`Sb
zsz-h8)~~CUuAc4tujo_u?dRnW(rni(I{5sZ)c%#_b1#)AUblR)d2i<Y&F6o*7cXtj
z`s={B?m?9Q*S`CC+P>?`0+yb<%D3y%Y00Rypg#M*!e9#q1_xO#b_RwO&Y)45QVkgf
zh6Q}B%nS@y7J|ketVH-27y{Zss$T^RgkllHE!*;Lum87D|MB*8iS<RNtmel&JrtF#
zYro?0ExXs&1)`@#{Hxv-U-x|-p}XHh+<w<@tGRou^Dle0o6nwiHNIxolF6S%_Or+3
zJhuK&Sni>|*7kUF@V~mew>6QMP96@fnQvcXvwZUYpI3L6e0mvNbNQXU9Vq&K%G__P
z?0Ww>OXkwaG-3Oz)@p0F-hG#9HS@Xn$CO!@PiFP}KUluC>;30<%bs&?J(vIWZujhx
zPp`h_+TC0}`S$D|TkpK9-p7^y{iEaU+&^+R);&JC?D6B7{$)Q~zshd8f5d+7?LT(!
zxBt|fJ$3)!40tl)U#ZP(&F!<-A7<Pwy>esoFB^Z&w3&}iKChW?9p`uciIBflNlZj`
zu3g;Y1y|=U={A3?XP5e;x#H3x_Neuhk(W+pcD?`n_v0MDd-g~3&&AhUfudnI|3~Y$
zx3{;Ke7d_`{_@G&@%3Kn^X=@GPJa0>*D7=ER?UBn+r0l=o>^A@QE~V5mnr4tv;Cs7
zcgOybiO7GHKj-dQwYfRvAD?_Ho9*{)`_JSJTX*lSDBazkf9r1UpWAo4`%c=;yOUS-
zPq%LR`mn<n3Ino?k1a3p`Sx@9vaMyid-HFd{?okq{*lSEOaE-U*}Hi7L=_}oA6e!5
zdfRXRi_h-ve7<D+@}=owvz}SbJ#*SrFUOQ8++yk0Z--|a&fRmfMqd1r^tAk4Vf#<0
zPp>eV|H!lbr-c8sm9H24d0KL3%SW^MPxRA2m+t!Uncvp_tpD<guOACM)bHCJnfzYv
zG5fpU%YQ7d-1o(Xt^Lo&vf|Bt>iYXn+|S&(d%F3{CqG}Vd%WPW;=e|@{*Ng!NB@`Y
zym#cj?C#m~^!xAX#ogW8QE&BocdS+AU#owO@4kQZ-F^4CeB-rSx&O}odt_$!;&jcY
zqq%=Bzp+R){`QA$Yjpjx|4sX4AJ0!auKug+^5>6xPKTG@&b9jaarK|zf`5-IiYov3
z+-GE9V2~Z?f{l#)1&K7I!dURM5%2%siG605=lp&D|Ju^*sZrCOaxFjeQ*(9V54&|w
z%z1x0%3j|ldA#J))osuD_S`J#Df;aH=w#7Jf6J$nlWj8B>IT;Z)a5?5n}26n_x_4s
z<u9K+emKD|D*OHCtK0cMKDn$|ce|#huYT6~=M|p{PTV(ME8F++m8SiRiY|3o@iLpE
z_XE!RgEGtGk8}La{gmC&_xJ9$^sV=oPQG3Hr?+@>x4M4b^_Nec#{Lognk7H~QdITa
z`;Fp1Wp~^@di|T${5R$weRoHGzq2LwU-v1q`6Yj>zEp4jC|hCtZ2!_Z_l`}zcI)Y3
zQ$DNX%XOCjE-{+#{|_`aOpSmWBvqc^X(RsAn_Om>Kc6@G-~B`{_2P=e+I7XJuC8f&
z$TgYo@v7xZ_uq<peCuA$x&n`EaLoObTlaW-%2)lzCqI<#`my=@@sdvk?<$?{%0F(F
z^Iu-_sh~%``TX;WB8%hax16?FK6zhr-}D~~=AE>h7xV1TvZu?pT+<7#3HT*@H~qwZ
z4zt<wmjBX=-+OEQ<&&@f&hXoJ<M@4+{hyO&`+b`|@BQrCHCv@0TW>h4zPt3#;-BIA
zkArW0+z*PCpSvrHs%HD|^A-R6(Qw`z{+}xUf?iu^SlJz4{$%n~k^fdE^5=$6T&<ch
zJ#pqgliNJ?AO6Oi&X@c0bt>O4_q?Caq?Z54EZcFef7$uax&`)o=U+PcvFN46iwW!d
zf@^X=Z(1_>v`zfODR#2#vCnT=`9-e#8fABT_O(RoKH1g2`>HnHT{e05S+%);9-f|E
z@+s|S{>vqEA!**(ZfC#x<=|a2`sE*={5ivK+2drZ%(cGl6{faF&2y{7=NsA2zkKpj
zMTh$GdFv1LT`fAbpKHGV%O%IR{E!~t<{FhVr>o9sBc03h<DRbYwwt-H{q>4GiO(mk
z=KpcD`)M_=<mb)Dll=DG;=6x*>L1yBvv7+gTd&>v<ZCmte%|~^^)}XOvhSbUUH|!@
zWXHM5o8KqiF20cdr^qfk{I|%GXTjHBN%-r@KRWrdcGryg`+e0fe|EO91SRgJj~Dp&
zzfAe}LuURbyL}t_f}gejvAulji^P8W<=%gOA1;}9*|R;hPybDp-Sh0v=7X)lOm++$
z*`)J&+pq26mak^leCn<+l7H;kp4z3pI`_QeVJmx$f0_HNkGJo!)qVNICiYSCt~1^>
zx%IZZFH=m9Oulxk<U`tI`6AQLn)9E?pMR-o|I~8cmUY>$D=mL+{Tg#aF;?e!#igj|
zXFohG;va24YjnK7@2Qaem1(Jc>es85)oz=n`Clt%?bGd5=kCw{toiSO&wIJYCy)OS
zw%xneUw!S?m$xfQ_w?Jd9zXs=x3;QF{rU3>qw^oHSG}%Wy!ETuKllGvXZ-)Sq0j&2
zjtzE)S3NGDedE$s=C=>>2cpA5cK9RJ>)5L&k&Qa1f1S6Vv*@e=kF5IIw)$CqW{=-5
zpDcg(Ys_uYKW_?OM$BEVIbY`T$<%q5PwqLQzdZR;RP_2sOz}_OpYIEfva77_dVgTH
z@Aco6Kdk1J{Bb`1X>(1{N%fEJ3u5h#PQG^Qr}M6ezK<zZw#z5)OfIr}GWo~Oi&3-Z
zfvT2A%~fjWZ%&WO&b53p8Pt7R>-+I@ndQ^@O?M{6M;y<7X{%9JQTC_g-1(2S`(z%U
z{P=K=UsQJc?~2ljp7n1Z7f$wDruuJ^mH+LMqRsDqa=bbAWA3*iQU7CSt>&$HJlkx|
zqmxG8|6IDd@s+iPX>66=nfrsH^GTJseBFLoQ)*4y!|GjA_9yS{di}ayZhaxRdbn&-
zDr54LJ@(m8uE~Ah9q!*wGwyqtGJAjSy2X$A_E;a+-@o-++T{Fc@lPiI(Y<SYa-QGX
zt!B?BUz_%Md5Mv%{N<BRUnbjB)_JI3{{8#Ml>En@*|~M|<8SX?UQ)EPzkb2<<UfAa
z@{dlIysBKKU;HOzzTU?rkEc}bI;OdH>r0{f$0ZS;ob{gncsl3#kJryuzFzsS<leH$
zec7k)Grdjg$^W7@|4v?&UH10hKfdOCe_c@|?O$a#@8|MoMX!D?@O@rky5`aS+;x)$
zPd@@@GsVF?h(J<2hHTV%{rvP(F7~shKUL1VWVrK8vDM5^p7$MBC%&-I*cx{<(dOCY
zYqz#N4(m_0y7}b#wL<o`dGfx0qN1{M|9RS2?(bK>Tx>IQ{-cvmgKcJh3XYn6{`ikM
z!8Po9=lNeg`Lp`{qu@Hx|0eqNlkY#j)+hgHcG(X5<&!T5|KTmI>Qirb-j#9O`@Hd6
zgQN1VK8whgys=2_lMj#;zqae$fjvjAn?2oM*z;4k%Jj(bo}WwJFPQyxieFjspVr+c
z)wjR?@pxzC*FS7qPwii}ytwAVN5#5jrE`kxj@X~=Yj?<gJHh^1-nEaXZ}xsXExBEG
zf5}g9YoTM{26sq`7rcs-|CZRrKb(;oc?n$jWxks6M10!(N%~RQx##k4rO8}6nbo0g
zKHH*a`{U=gFUgiCO#Po>Wydsknz!A|M<@S?_@8_K`DA;Eq5Qq0%eR=>-d{fX^yA|t
zMgOjre|)n3-m~RL#J~OcHw9Fr`G0)%GufunV(sOVe>121^<AFfH}BlXC0oChbjF{1
zC}eMQ{`2$Sd;YrTZGQDL_rdDh$ySwnyX&{Up0TFwM|JKQ^~*x_?%S`)$vr;#P)PpD
z$4G1ckIoAoPuW*~E3GGdw&nl3%bwqqj9wc)uX(T!&Ebs@jN!zMc5!+a9~kM&9-p(U
zqIBl7l1civJ__ZZ`<Xp+`n=iKHb(It7FFAR+oI?DZNs@+)@4Vpf0VuZT&>(^?&{5+
z;%m2F>-+xk$tT5mbM8HxoPYV~moJ8MWB7ia&VT#qgWcRY|MF|t&((|i^Zi%<chP3A
zeO%(DsOpLyb@_htmrq{q@l*f4yrO8%BleKvngzROT7}u~v0XA*Ki}_V%Kxg_e$V>i
z+dswc>O24Qec4)B{g37EO6M_u7W)6s;OS&@bKCb@uJ10ks{E+6FLU?qS}V!V_Z5$y
z9Y(E-uEdCXtC&S6E2FIVW=*dswKzT*)OGBeUTkxG`I<0itCyQ4A2(a6J=e5P?aGgO
z{j0Ie$7)UZM|<9!V}^FmKB<3PvbAhyzxwm<Kc6`7n!)$6)%W=EKT|3$MeW}6TSWeg
zS-s`^N7>f)>F1wcyY<sx>Ey@7=a)Y#h<rZzM{vQ6N9S)<_Njkg{$uNbw`%_?{{1_>
zysx?LhuXiEck%a^O}?#P{xW4|b)BM*?@#^MwOdbX#+B}wqxyep^1hOoh+P?vw>{^V
zSPdGVyL*)X{N3s1FH^o&$@|B>`NKPihqXz|JK&*st+2ztUYfX1eysZYe);-ymp@g`
zGdlk<#hCBqlC9gKpZ}dHzeVcN$r<tC$2He({i<b`Y2EiSW%B$@C;fk3e5-%i)B4`=
z$=7a8S-<Rg$;LU4f~TF<oO|ZylE+i7-7@-Wb1lgE-$_aHpR+%!)fK;sUw7Fvd+pu$
zs<4HHH)0-6;q!m~!*2VvbH#J(L-$B7@4K2OTYt@Lb&b)n$+K&Uc6Zt{?XRx(P+z<C
z?LW1-Z{m)~&+)a3eEaz1hO_g{WcL@BNN)SszU%SIdmoG1eCsYho2S3EZ~dW%X|w&p
zepeXn+u7^C^X~P^TTBcLgKqkPoOo)x`s?yTA>Y2|J0CAtUQ;@6T1nBaFEP<sreAuh
z%vS&4d-EySEcs7W+3O!q_w0&XKKa_MJlXYm>x^FR*kJbGX5JUcPubDAkDblTKc-kM
zpB!3us;JXHbM4x=Bl2@Uo)-UT82qPU*Gc<%uiqNZ&B@<wH?RET+I_XB_T@!o=l8Xj
zeEK4Df6HOjx@ER=tMhJwTMU!WYSk^zJ=SOb98`mCpIxz4>e2c`h0^~W!heSU*7~ot
zr?L_>Z2tTDN9C&TSMBEJ)V)7lvZ+dR|D2D$Hj#I~-q~`sO4#4*qxiuMef1`*4gViH
z8-Lm$<|V(xVF`QA_Nx;9pW@kW{Wvs?TJ50btVUAS>#xh7dvB?<@RL=a>sM^G)5qH?
za$1E^U*Y54#}oXnCGW~uyY;Go{FdnB`p=K*?c1UMZFWh~_Pfg_U%Pd-YA&c{R&;Ik
z>XLsy-akJ1Nqzs{(?6<tWAiUuusD)G`?chw?+0EzQ=7Nv-to!$@k=J3eXKY)$KDQ<
zBHlXJT=-MqrT*OcPjB(b{Y&(InqMh-^;0Y6*$?lmbLx++{=Jjf{_$|x-LE0?<{#5@
zBcAH3|JOP*pD|Yan^j%jmUZsOXV_aEyI(oe?^^txF7@9(rWnruB73E5zqJ3h_@k4*
zivQHK?@*WBU$o`h<=;OxmhDLqyclKe`%!bbWu41>{mH{;szYg6Wn{gT&&6j&^Q`@>
zo~^!mq0n#5<0*wb=G$-2n^dz`{_@GyvrDZii+B5~|30fW_YSCapC)>L`&)_oTM|3!
z7hJycQL{sTO|Sha|IFN<nRX}TnAUFHc2a%kpJ`hYuNr2pKC3sk$GrSy%1-O0lYg#G
zw%Pe)xy<~_px)St^=~crZJYhPxaQPj#ko4my=_kFui3iI=jUSO`8>CObSK<6CO_wD
zH)zH;dhae@b=m7?Zyvwjs`x+c{e{BBwOg-R)jPcX_VbCW&CTPJub!P<a_QTDoq1cX
z<?Ztme}AjqL%sf|W?jWS`y>4ae<%OhQ2YJM>5@xP)&E88IqhX1c^=n1fBZ*y-{Z_r
z!)KTZJWSFx<9VvB?`cs#sc>hjn>mkuNge+&W%u0~esNDG%iqbp<eB|;{+?UQChyL*
zshsF<w)%(rX4%KHuSG>aXV3lATvs9Nf3M_^&Gh_7C;xo@GvnH{mFZKZ9&PuH-ru9X
zI(E+si=|ty*7TTv)|}^a{$<iky_YHT&Vi=Gw#7VZex|uE^R()`Ge29u&Y5)o`L(Fo
z&q_8vnVi@&f6igGe=hyEYppWZt}XkRWqRzoSxN2Vn1dV6&7ZS&?Xe%)={tTp)|~ma
zy5`g2icQ_>|6l*Re`NWVZy#&_gw+54lWX<!ouS>+-N%1iyl7bY|H9{ns*0}t-0$Q;
zOAGAw)qAM-_q*30W@KO(n3;GoszQtjE2M#~P@U7iuD-RJ)#H5L@wK7f%DYzc?&Lh`
z{++bnQ{8??x4M4$ZctL*d3V|5*`?nu=d6AE=_G&tv64?}`_k8Ly*3RJcT+Uy&GGxG
zIlaQ@`SLC6re7}1b^arl@%VI&kp8V_>_3-zAFs{(m~z5ja{V{I+4DX%_x;rDf0<+{
z|LCO5{pYEt-WO+|mRUbdvwr#7N9zwIcI+=`5B+oZVwCi;d7)X6&q|EeJUZ@s-uHIx
zM8Bx)+{x?B;*U<wwW&1!bG+o!^!M{GpZtB;*(!7G-(QM#4z=Ga`uunHtH1vg{7&9V
z&6a<~@#Pg?|J|*%`uWAMj^D=q=zZDt=fkLAg~aahU$6DcFDC4lwC>w^_n79@!V7tO
z{nYih-7fiLG=I;HRP&$te_uSSKQjC06#u@DPbSSTn)k>vJ9p=k$$xH5`*X`m?@d;i
zZ2q=C&UXt>Y5jW;^K#0yTNCa#D%RbK@jSnL+3UxZbC;j}GDWZLr{(;Z$A_X`@5-!Y
zk3CrQF7oWh-^K5K9Gm&9!sy8Ur8>HHsWbRrF4=lb@B7D;J-zC(@3;KXteEv^`Ps*s
z^~_toz5e~<?@v&@TK-eB-~XfggUik}rykz;9I}6Zzx=%Cf41+g?6bF6ZTPQZo%v5T
z28IWlmkxtL$S#St#J}h33&eBt%xCvae)s7rs9j?Ac!poyA1%A3bN^e+gUqxZZm-zn
z^YckjZ}78Vo6PIGw!Myc`{?A3|8nadzqfsnYIkyd?w(%t*Y;lG_SG?uf}>_Xvz#0A
z$+JDRGya?b4`>Qz*;lQ9?3?889qE5zzB~Vt=k7ly^L+fT&)9P9+4G8`pHt>fvd@2>
zY-9O+{nD*JW#mof^M_k3<^A}(@`Spr__bSEe<l2_`cCe>`B!D`nzs76e$W0G-q<B~
z@p!R~<@3p>uY4{FTD?xcY4+^5`G39sF+v8fz_r1!C=W~5{69K9-mO`F|DV_Miv8-v
z{FgniDU$cMvw6Dw$z<=k#I?H9k5?F<|ETG0lX<$RH+WrYMDNFxnB$Xkzd61(KXUzA
z*zRnfYxPs~>b^<rzs&c%*eY{v>?i(nbLzRQ)aGvnM^3z7uvO*mpMOg}E#AHUvS;+)
z?-fQz&i7u6vOZqE;JNVLlA7vc@#dd@O3c4>tE6kc!*uUI3+J70FS*o~{ipeT*3O-W
zG}msuTGM6j{qNbF$KMZ>_1Ig0+Du!n#oaw3Kj*WE{i4sV(fx--)s6@MyPT7|yVsue
z_w65c_xE<#vnJQEvw`a`t-xV0G2_Z}c*DPsKjJrCJpR6_&uag9b@|IjYb=*ePM!DY
zWXVbYPW820pBBA~s9n}JZ<^dOL;Li({-1)a;?4=gN1R`>)hy?;XAOImTDT#P^YN^y
z>z}3mwDEs=p)fJr_-wINWqIHIIr+y{*V@=$KOgl^_3Fpa8&T2AepqjRKHJuQDeuSh
zwa=xs=5M)n?5*9soP8(M<Bv|hs%NLNpLu=xN6occ?Q4YXuhkWlpHct#KJ)$jNBrm7
zm;ad3p8QWR<849D{O!ksYcBj0s=szE`OoE;wcwEw4HxuvXcq%5Y6Guq{8jV+ad=Yf
z|ASv9t+%`F8U5-1oBYoIv-iK2y<%MHC!T%2VfBkj`}$+^w`QJG_dZ^K>dyCfd(M@=
z3ssx@pIuaT^=ccAb)W0b{hx3AE6n!)f4A_NIc?5XKj+*}UtLo?_vF>QTcuxWJ^$95
zvebVDEqp~^7z<iynxB-#WoTe-W&%<G<``R&yfl`E8~H5EEEV*9QuESFG87C=44`Xc
zOOr|}3sM#IJ#!P&Q;FWlcei#<N_ymjzpIyjHgfJrl(Ij_Fw?D!*Gr9e_3rb#vem9E
zsw>&l?Z~uPkN?w}%7?DbKPSd=unCDhU8}6omC&IygKvR{%Ip^Lc9rGYSB=k#gyd^X
z>N*?HJhMc3WursC<m7jL@#p22S9_$fov)p{YW1r-q5I$4e?I?k$&8u*&ep#BZCBpQ
z!H`n*ZEJc*hsR&t{%=1gGj!Z=i4F}d{XVU(UWh^Pwx1V6N!}x~Af^S$!f#uqFub_p
z5-l9Ww7^+7_bP~c#w9uw#8-ZqRN&;rP?A&|?+Kz4lDlt}E@5$~b1&bW_wKtoqk!S*
zV?TZW$+J7m(b1Hw-T(hNqkw9#*Rp>H|1&doOw?8N@@AORVW_%=<v?ddu#-2#oCZq}
z=VRTKIYLoP4=Uu%m%HqL^nWG8k!NPbUVU#q{10JBDxPhrs`~vri-O(ui9!sq1=5;~
z7g&*)`Rb|+yB<t=<L$xOpm)Os<e4u~AkQogHeSNwu-t8VN!t{L7Z+YkdBvm2cwy#6
z&Ct1usti_>^w`c%5Mr1caX;LsIL6EG)$!$w6RM8w_pJZ>%jw(J+3IGelNT%f|1<UK
zo9_94eFOzB{=Rkd`n<BZUFL5WR$nt(fA`D1&-;{=KD~|Kq5b<9L)DTw?=D>^I<WPz
zZs^+8*N$&mFFVuc{q9}b4~_}HWq;!?KUcmWnZY*6uk)I1&?5eVFM<Nb)m~fPO%$qa
zn8F}veS4nJ-jm9zzZf(bmA*Mud%cR@yngF)7kLF$ha+(r{+*{+xO`;{Vsd%Ys;9a0
z(mbKRB4CBn13iz<n{;>f=Jl$o4vBj&JY`&-<nMW4Ma$y;hDTKkPsey3RaRa6UJWdn
zdTZ;WiIY~gOkrp(EjwWPO>|C|yO)Wgs>7LWH^rN^<uot0Okog|p1=9M_RMb{ooY*1
zI<8l&&b_~=Ebu_@S+MLysr<~_bA+Y`c4j$wHAM7o54kO;X?cF0(A`+B9fl1|Qu!;h
zZYPI)>i;$c<i*t`hCAMVY$(1lZ&J{KUPh4%zxGYqc0A@};`AwRICii(^ylUT&i*!|
z%=XR1NteQz^q4M0?{k-z{pN9UVm-$WE(d>0`Pz~j%Bo)84T}tyKI#2dtJ-cG<mBD3
zXk)L}vbWJ!@;-ZT>N0X2`_W*W>*smB-%d+5Fp5c}w{%^~Es)1em$yt~Xib_|Hn*&j
zJ$=5V>aTwd*^FO0YFX27JuTf=`)rC&F4qnThx{iIJoCybjVtC`sxD>}XMWLZ^V{oP
ziDgQHye8u#(|`4EH6#BnZIHfwUi+rIS3^eccD|dzk4nB=v<qT7lC@`PdrZ(K+v6AA
zjh8k^PZnCxa4dRNdyJcE^&3r2t6v>c7+6j21zmO4<G0|g_VQvhS5tLhT&iu+9`npg
zN>9`B|Bfj=GSw%io$oqfUjIA#rg`<t{H6Q%{m<XL-u82CdS}Op>v8+1RK7j2x-Qhk
zCCdEH%-ZAy3*x@~`f`23{Qlhfx@8?F_W!x8djI5}vL~yicXgb&_5N?{x8C!=54<dT
z(eAph=%@0`>v>iAo-Qua;_Jh|_0IovC)ma1N%Z%Z{Cl36gy#09-}gS1IqlHCxSf-d
zH)=nrwrgn83g@wxfBoA_OHbRPw{Gs+s#)${QJ?L)V;vl)ZcXy*Jg=E`>&11$i_0sQ
zxIB*y68hxWXs3~VODNdOsm^Yl(Q+5*zgC6+O!}w1*yHY{W+zl2c%eGgH~P}oDL&WE
zYF=DfS6g{>vQ5yU&wAal=BzQSUt%IJPb;xkjWS=J^8MMH?Am?o&v&%W6*gGz@;p{-
zcLryd#^0YSDwepsem140$7|hZ56_O%XEZNXPA})l;N;5qJO5UfyVsU?pZLx(*LrzY
zf?`{8`cb{8rbjm=w#Ew;to=Koao6eBHT+*RRbS5Zc8z$mNL54TH%mjN-o|&I(msH6
z-I}!Sf7srubA+Or4sBeL65Y4Bf8Ud$69<@Uy*l3&uY6Zm?Db_W<8>z66sf5-_vTHy
z8qc?5<KI1#*ndqCy8GOy;dZ{?$#=m_dTdq4zcm=A`*&Wx=nk@P*ZHTB1^bWZi(YU(
zwsVr@^eIm)f4z9Uv_ZQ3>aYB(cGEML{$0XSxY=*_xt%>;cIo~nCvr38-3gW6A3B{i
zCVT$Ed;VSmrk}aa%{k5NcNCnPcAu);m~F4=c;=10e6e1!s_677IovzcW_(Y&ZlmdV
zL~r~5VC&~bZ=*hXc)qM>ixD{$a`%6-|H)V0OnE+D0Rd0jYOmByKF#HK^l8p@ZRT}c
zDbfed-UvRlf<;h!`SMj_iRKkYpU!ykZtIaBIu?&7O)B=}>{_`d(|ecQ^dG;!)n{qz
zsh=xft9mVSspRy)letS+T0^dFQN0^KE#tQP+v~e)DqXinCCytnudwofrw3=(iZz+u
zGGP|Czi~F?$=6P)<M*2$l@$MGR^d!-PY+HmjlVxLcH~UUm>vA+%hag5nJ2T)XkL_@
zo_W1x%7Th(|5xVjc(XgJddU<0x0)BlSz~6ethq2p=x@tuE<Y!)01N5G-%c~H+nWC{
zr@F_B?{=_}Xi-`Av`um*%a3Gk)K*m0ka~XiL2f_$oWtLylsvX>K0RyOk(b*~h1_kK
zvLInkdGr6t$74=DtXt~BU$x}P-EUJ~%%3PE(w!Odsoe74%G%5Wy=O14YyUk}$o7Sy
zR^;a8Dk&SeUnt&YKDXudin|+{ig(0oUTl`*x5(DpAL_s_`P^$+Y*5lo-hKNdY9La@
zs@Y3eCT{lI?YFzf%P!fkbDKA#`8SWweQFP)K5uy~rRjL*jJCyPJ${SJ&!)&!Iv(ha
z4SKY>X|tP`fa&k^$G4o0Il0ABb!mh2{QK*tJc)P{rL5W!*?0HBWxdPmF3V|Zp8b*?
zQZ(68b(fQuz-HCoEB?Ao7oC$iy}aPt*Vl~dhRa(5IUj9Hna}XyCa>MwPgeK$$!J=B
zH2Zz}`txY}9}C}D=j{G>hJBu<61!fd#_#=QSC1+wZTeO{|J=ThJLPR+U0mMPeO10`
z{;yMBP%v`x?#=crZAWK5@9Q{mYuWGb>G9Q{K40FS``>8#-|fEV{ux&OPUHOdQ$VnN
ze*ar}i&&Q@jrr_<YI1gcdhX)#<f8fC`){P}|Ib~1>fmPAeIM3sebc=;V);~|>47KT
zeF!}1R{CC>^^Syd()CrVR+*_Y-}9DUy}Z6T>M^6a-s)GAN<$u%bj^wje-XI5vdyZn
z^1#hxKhO93jW~{OohP*Sma^)uCmRn{Y8+>ASXkbCTYR_B^qrGzpG}#<lvh)Az*K@k
zTC-4c>I%KeoM{#*{+<WUA79q+`{#*`>s1P8mfd|kanhyF%z93LbTn^f`FHA7zS(W{
zWa6ZY+u811I4b&WiiK|3+rr2<zfLx+7O=g%BIVRPp}%Vzvd>0a@bBDnZoBz|KDkr;
zw}T&Tk=S!Qbz}E59_HK3eo6kF=g%KkoNnIy`^uzEb}>_?ypWroT#$KEz~J0e6+O+9
z8>RnDIIYP1H`5bT`q`>pzY)Bs{$bG~GhNA=Ynj)Nq=tOT{B6JWev#$+CHlIW*|#RW
z>-T#0R<rQeJpL%74`;M3IzdH(UDke!2gklG?*Dah(xzp)g%t;8ZU-e)?c?8TE=+Pv
zkLU4=dFG|{Y)Z?Ynw;(OwO87wE!iK+zx&M8Gu2B{zSw@7@?ta7I@cp{Y4^h??eN(h
zW)oy&nCsW6#`yj1y07<FwZ|@t1(m{SZ#7?@`d+i(fSloSm;9p0gDZFFcwafI`SPz>
zNALYr+Dz-Vu77Z5w@%sFTfvulr>_W1(S9~%%Qn_K*Y-)o6h=N=GdnnlYe!+YrGD92
zkg7>SGTBGx2raKw6`g)o=xd|b$sg%wG%x;+5!;>S$=L^Luw1_tyhy(IW_hUmiYZ&Z
z%?#f3Yf^*sZE>i)p;qLE<wst=Sp3Ujsfum!%Gb<0KELUX-Mob5c+|&=10cyv^NQL9
zL5qIJ)UDo^<JWmFlxv5frlg*>T(K&*o@V7{Th(6|8{x%!-y05)w9)%dGs<EMB&VLa
z8GPyM-3PI$^B3NO6!4y!4~{KKxv^u-1Dzc<4?yy7?>>l~n!GW4{^`vR>ZVVr>7VjI
z!m`gUs$iz}%+DStUu^yB)p;X$(fpE`VYl8JX+^53RxH}+KO=Y%x8CJ-#d^CBYJ(L#
z+Hzy-{ilrSGp9V@JoYNI*z3zy#_PAj3!cT4HHZJ2Dzp()o@MVp9dpu1^Wfv&t6Q`D
zIxpvau$+GP!PL5?E-^txOKnwuaZb;?o*LA2Typj5Fxw!bf2_alx5k&<<c)h7?sX(J
z#3&hDDV<)za^E~G{OYRH))u_KSNuK7Xuj<|+xjoss*gT37{k@LFYP`UI{o@jsb^Cx
z-a@2}!i^qJoOIE%+Uv`D4^Fc+@3mL%+9P@AgU87udn{F}+%+E@(~DUan;s*!Td3Mg
zV(Nnxy}DWEyJd_n6hwkb_@XC&8l=DX*0QD_O9hqAC(i$TvAFFtSNiQapjP5<wc|<G
zdrl{XJ9$l*{r#dl@AR`mZ$aro{H*51-5^7Qn)di;?mRP3Xz$I``=Qkff-YHQ_;p?e
z>zJGy60~{wkxcW7>IFfI*w2D9yxJ0$pAzx~S>L8u{H@u-uBBSFK|%B4U2t1X=D1aO
zP_d`yyt@zP%dMF5!m)pfO@_bcg(Pv!gN0`<uQQz<c(SCgK8w5d%S6{-(WMuXLpG)P
zgOdQu@r~;rT#1n@SQhK{_OJD?7ZLw&X@=bX_sB<Z;^Fpx$DMC}ul(%o>XPy{w|@Fx
z`Mdwpm%r}lxKj&hjJ>ZH6rA|<{!Z=R$Lv45FYo9$F?avwX_aqRzW?=IN$FC>`RkkW
zdn#<7D%)!*De=b@)qgv>zG`j93H!e%*w>xjSN8Y0Gat*p8W|hw56>TO`RpeqIPv|x
z$$zg`JUKp3O-U&`{%_p3-rs49cg260p&eN)IrWaXoz~4w)_b?@wS91`<NA%Y*8)4U
z&ZgcfwfgWp`NI#rvb8&H9>{E1o}vVjj@X;&*BK{Pu(p;pz3N3Us5*LP6kgN-PMWt&
zz*#OcXj0~r-e*%@%sRd0HDgfIap~2o&1{2=>iYlAzh&*|Ic?&}BXflQR!<k5!@Pv0
z-#9G%>ax?;7T(_if9tc}srVovUm#TMHK)(c%E9YH?aQQs%TG)9sTO-lOihuT=@b9p
z?Z3S1_6Eyc_$LU-Y~8nh$;(e^AA~eH6X%ur#+aRZZ@ApW-oa}_VsdxXqoNZBgfux5
z;tzVp+&c)W6;7;3G1ipiJLfL1J8@EurC77@^y@#rRV+z4eca<@zz4fu8J$y7PHoIv
zSH5G9<euZos=H?|Ns*WlRMcs!YUS*;spo#S|H)UbjON?qjW!%tR(*L+HOS~e&f-Z&
z=1p4no=x87@!IycnuS*DQ~KS#ws?B6&Hu=#zHxa=py#xY)9l`Sirxz94_sc_ARQgN
z$T!I7!<u5%PH!(AcX{4<AE&)KthacQ{>|W`6nAjfN=;L;<QcfM50d;g<;7t=ev8lF
zK=oFRf2Wz}$%f7AAE@Z@TTD&#@3ebk6mIl>(j?h$Q(lOBo=iBsQDV-HGgCv_Y*l}4
zIKAcdp3^Iy=v8}J{K~j+^^E4lBdNEx8oklH7&%>ZPUUp=Igy|&$+Jte*z3!rhU~Z6
zU^6d=vz-N11-q6!sbsvqU_;m$&B7?2bv)HxPIaq6P5I}s%VN`QgEqas%P78ZLzqp_
zq;&HiCYmRWjCP)%BlLI2X|8i?+`Yoq^X}kk-TKH->t?#Y=Y_lv2a{zEyft3F<aNB{
z6g{@{RZCnlJ+Fk>$Q6ja(M$}Pl$sJ$I^R-Naq%Sn8NrJ-%V{oDEsXv+Lp!p-^W<jc
zb)DUnQJM2kTU-1-t9kKz#gdk3N8V=3U0%m6r#X}3$E~$HZltgH4yt<Z&zZE+_vZCm
z!A{<fo^5K{{9u#xpT36GNt3`u^6Z1Z&uVf?POUjNM<~kZ!<+7d+<LnYvaeOO6x*E^
z%O`o`{U^S2n=Dm-#WSySJ)&p2+(kU5teHQ``;BIy)vt{Gr(f5cem2GDUv~WUz8_Op
zKb!L6ElB?+RaXm;?CgW5m$3K;Tw7(S>bLtK`$pAPi(fD91s&);+s>miS;!_1RIk@Q
z{uBM?{}sLj?_Ks<KdY;~`eFnMl7CmKo?gPz9}H?Z*RwBAl;6sKOK1OS=5sx^pw`}V
zi(eTtr#$$5YSy+R4@>v8S*q^#=iOnUrdO<Ltfy&dfBd3*_YxLJ32oji{cH-$pPC~_
zQ*V_XOAXm{d)}mPm7t!cGib!->eC60$1W^)i3ux6i;*ipl*`lEVzTcax+(E%3d^5A
zJu$QX$*tX+Z1ww5y8k>yrT-Rj`+r?LlWo5DVY;i!lZ&h0o!j^E^S!#P*Ef}lem{wN
zwsrZwx9YAgPpb1XQt$t84PPGpF~6!kE&fgF=l%DU_-j|z|NqNWd8_i}{ge4My1#Et
zu79<~S4rvrr={+j^!L5F`f`1JS?z)LAI<WDf)oGdTg<6^`|JF1`?-?;J}U}+`rLTp
z%_@<E5TkoRSFL~lVC*_<<R!B@+xzOnJ(G-?*D=n^xSq9DL35$1(z7WUr<GM7%k%Bv
zsA!5^{qo#WrX?-YI&4*M6<OZ?YRnkEP=iS=pgQ4t)~@1}9GVyTzkW0pX|V)JtIe9`
zlJcdkuAXV)*ZsS$HZ56FS0!)nV)!S$*lWwvqDMBmoyT8<d`s%t|0VulmSd36h94F$
z{@t1*G`G<5SI0D$<PtCL3zNPwmQI}_a#a1SW@aw;j<tVZC`So(U)0of@HU%wcD;(K
z>qpOGFDEzE^=8XkrX5KF>v4KhrmE`y!LxtLl-bXwyqM1t)BVre{M`55s!NtM*u9)6
zlshZ<kV%EiwfhHO7JGYm3f5jyR?YO@_18-NSN`MDeeJ)0X?l1nf<$krs4}1YlD1*C
z(~>78|6a+x7M0VysHQ3DvgFC{xRddBlXot0nY|>1VdA9YJDc|JDvN##mbO{)<m0*r
z>(|}9asNi}qV;?`rcF7rR6_IT&!#0VAn~gawd-wFd%W2E4TF^8wLH9@aQ%BF)qAyc
zy|>r4iIY}{sHg_%Lqu=&Tn+uctH&!(N!3u(%j?oK5e3yE*7{Q4W3N{2y8e_=T~Sp~
zQq#+8N!)}fC)R%ozpfO^bMLiL_@oJwI&!q3;?L^p8&<4&uYL2i(c4)QCUy9TsDdp>
z*tpU4ZP;|tIW1FMQWj}wPPEeO?Eiexol~>(giBzMQfiQp?B!!WuiyMWRb`2alCZ0%
z=Lu_h4YAwS7TV9IybysX6MEqJ_a8$A)8p4Q+Rvt3*<SWb@S?Nu$0aFmw*UUi`Jv*P
zd2{#~&BPF)sc)Co)i(tsf6e~=SMY<yGiSCikCO@2Mf>d?R&3mLX%f@M`Qe+KyaHH~
zOP8v$PI~-ev1m{elf-ImUCjwL?(%CV2z`nFwO&D2vumUDTg{8tS!2At9%R=#_<D0C
zt(gbzWB=X$G3Vd1x_W_*juR2KwT;sk_Y2Hie7WXLj8@CWs$Wd`-`!QsCks^=t(7=%
zHzGDvcslzWEzLs17webbDV=npw|>>k>$!hl^mlcfX#W5B-<#R{UQF||7c-jk<<4c7
zCmS!izppg;{b=*NssDcU=BLG1zuLLn&P+>*|Nib<2ag{Xi2C+p*Xw54dL4#|k>7so
z%8p{<nVZ_be)lrf0~acnA1}XhNhsmPj+(osx{L*LWZu_Y5Mnqk^?S$Px%^Q~4<wSm
zuKGK--}{ceSi_E<t6N`vI>+9SXcQK{c9IaoT*=j|v!+gAc;T^2B1Tn}!D{2a^-H|G
z7)n6n#b-g|#g={+>Z%NVu3ii!jhd>{CkrvCr$|q|;=$P<Y-slYOm8>`=0BdfJT`j?
z%Yni-+7_lkOb;R~#hO8U!((|{-)pa&D8%4z5|)2!`-<3i|28rlNnNwfw`@1liwhC4
zTRpuPO48P>Tjd+Xv_SbKm*3<m3@?uSN-6-+2afHV)G~$P#QPUwTXPx3K@K=}(Vbz}
zfhm(fqsYRWdcA~#m>#(F@LO<dGQM&9^_TIJ<?BjirA<|r8h>wEf48dk)&%GEyX=2I
zI;}rBf1aw+^?Hrpw{-s(c6W5>yp2A&Pr`xmZB%IJ)te_9L}o3IoqQnhWQF$L!djgN
zNerx8<_XnKb_b2S9w@ls0UFpfRa89?V6b!vsOvRBC_&<eo9gLrx>?g%V!XW?Zb-@(
zOp7hsJxNHR?Ap#rsX<H+DxPItPwk&_#e-A8{5RLRO~+THOq{|HczUD6o;M#GHhXwA
z%&;{-zHd@x|ISISK}<*9=zg10^7qB!kJDD^O%hT_3%?x<YR-Yw#lD>+bo!$E>+XZy
zOISK?Ue#MXX;p3f$+r*=zeVV8v8`(v#hEqMtd4!=wd&av11-i!Wm`{g$(}le!TH(q
zn6QFXOIQwUEYe{M_vCCy&N;gg9Njh-Z#*x~34HuQ85BqM4|d+3I)&kI;+l2rF+rPp
zr!Y9DtXWreAT{JuWDpZi|HfUb<O(Vetehy6kg=ruAbZR+udF335@N4^d-3h?*?rA}
z(?G>++lse^kq1F)EG*<}LzKZ`_T=ifT2<2^CLZS7E0$#5U-WJJ5*7)jW9)O5)o#~z
zmuGZ7U=@Dp%MA<rO_mSZ7`V>ZyuJ0s<Kz=b#&VW`m~WzUmbrUPnFbEJJ6}K}$xMB=
zHVfxh-CwDs^l4}IwO!v6U0mwky`Ami@}$lF;+gFEMTa-Lx;!};es6y5<M6$HE-rkv
zZ+5-O-d_8~M^G^H?=R<>*ZcN74R`tX`TM4Pt_KxMm0#|^9lSVp-^Q1(kN;OYF19tC
zJtkXrs(~J3k(Qg+tIhLv$LeY>RCUl}_3S*iYsrzKFBhx4GB_t3uLKM9c;#(cp7Qlc
zgEX_nvE^Kogyxo39`Jmlc~i6?nc?`Zr3#>y-A+(?-dou1?G=~g*LiN2&u+CPEH8Sa
zW873fKb!Jmt)4b0C09Kbo6bJxFQhwuW1qyF2|^3Z^9pBb-^};(Jh9?Q>9Z*rPF@Z7
zc7U1?``x`xoqjguMK8#p>$}%Hc=O$(Q*U;#P|+7bO~ze`!PDPQ*JFGC-NW;i(DL5T
zOIS3fe63aeZ5y=cw4CNo+aM;9^T))tZm(M6GTqiqwR;JRhRpB0@XN=3ruMVXaSdV;
z=~Y#YF0NU6ZPW3XlS-P5T*pkbc3zw(R2zF>>$A-3AQjzjK@I97>8$A!r!cf8&C&Mc
znj{pfqUta)VtK6a^eK08{5s`SR2>>;gck@+5A?h`XVTSf<~*JS?r*vef(Avd&Jl7`
zb!dEYBYYC5f$YgCuyLYH^p(7#nPqDy2`MDa1~>3lczHE+<ZfDiB-3yQm|5g`GW(6@
z#s0}4B{6QQ>~Az5zED=knjIrozy~h9HTovM`9IlLuUM5mCa6eMld&r4^!l6s&1c6f
zi{;<Z14_IvT6K5dPx&w3yJO7*8A#e*z`pIxH5pyb36EbaX4WePCEFjjH$~S*8GXC{
ztyYyiW*MloE7+d8{nwV1HT#aw5vuh)u=Shh94SpkBUYd2KiPhjr$4(s`L<sFee9`y
zKVI6;{C9m{UH-SN(e@_)9?VoKdU5r8dVI~z)R*h8$Iq{Qd-M9=4ILeS9zW$zjkEr=
zTfDPFMymSx*_-BU7dDn}Q)gPYX`ket<5pUnRR=uZ{Py~0sKr?I_^h1fMO(f14@}-h
zUx||`NM?xrpv-vv#(C|Vk3U((U!F5*LZIjN{fUwX_(A@#)yroyw+%A-=*%e2_~MRt
zkxXq#_i06D-~K6E&Vy!fj+fnq41)XiPtnk2tV+E8YLBg|pS!#%cpfM2#@1Dz^&p-3
ztIDcdSY9;7u3q(7Z}FtaYOfeKn1I#$PYuS=Q>I)HIuN@{!sfkExY6rLlgw`gFIvtT
z!@Yp{^>43dpdL!Bn`)=6>Tc_rwVV!Zy}DV~cdU7EW|z$am2XpWICn@m)J?m)&a%&L
zRw;PYIly39@8|i(%U#lAm&FPPF^P1)l?COG7pdS;7oi{~k*<%W`~HHb8$eTJAT^y|
z&p!Aorztt#e7Vbe1yJhahxZ^>?-waZ4r2P!@psRpzk2IG>&^y^r)x}*ahHEvUTIu$
zQ(5)-M4<)dadRHOSiI`ABJ*jv#gnQ%I4=nAezytSqlV^=FNfA$m8=H!jHABI(2i75
zb>M#!byaful$a#{&TBTyV#Pf<ALL(O^{VIe3YCq^p?Tz8*;<eYvtQ7JDKC^X8TTyh
zK4`25?sl#-S?&VTlT#aivgh=c>_<jgD`y2Sny;kVu)bF}D}2|Q2cZ6CXt7sWJ|8Hc
zEX#IBf%?olC#|wn?eSuWKL_bbdU-V@87_Tt`rDKjs^CyswS+}O<o1e`v-5<OAAO*u
z$=G$|N5kf@DN{09r!cT4&DD-9_B<(9?G>gE8g*l=I%4y7*E1t6%LISU#X<|TcYSUx
zj-EgD-t%bgo7d-k$)B&Hq;&f8>6_y7f1deron7wCzHd{C{Voa$T5hU0{rxE2#@EH=
zi!^^~eD%BbdJh+uXLXM!zUgLsa7680N(gukTS}Ah!phEV*E~2I_<Xm7W-noJNLRbH
zDoPnL>wDdUv%wEEW;IcWLH5RtMc<}_8YMEdEDN}Gq@TObfAYVQ!R6$XNh^*2*b6jB
z+zeU-ny{7tPgr-Df+nmvXMi{|=jVZDtu3D43SMOY<UgqW@yPhw6dB8t|BD$rPPtfb
zT)yN9xLLAjEvF{qg@v8lvOx3ZX^Ymb0`Vu77+QcPqBrhauL7bsY;=8V6~v@qfBK^P
z5|#t}6Otd>XfhV)1bf-JcrnbGkQ=he!;4`~$45p`acIH#8eD7^*nHmdT1k_!K;}2s
zIS{>O^ILFTeqiIh{QKcW3!eM~&8IK^rkf@Hqh3qFOhzxl-r40{-S47jt+V64Kbh_7
zGVT7i(D&zA7;u7wLlc7}s%HQC%gE;R((~^>76vwlmnS6u{^MYH6mGR>3yZ^YFZU_a
z7+!?D?6@SvFc&-ryC68zD}%G4Z_RR-NMW`MjlENRzW#1z=(u@tO3%07lNmZBKr{JE
zSRBMB2r<MucrlbPA`28~fq3UtK(qTfK}<5)OYX}nxGn#)qod~gf^WZzaXOZ^5+5v-
z|Ndie;EDUV?927?dlPEkUbg?_BUt(R{*F2Y21BjvRWb!{E4)KP^~?VUFeH7Bs`mP#
z`ffg#L&_=cZ&R-Lm;R4ncocMvwc6_#xcNNAG#8W@8aFM|1to%jYg<&8usE<^I{JV$
zh-rcF>)&2tpmdy*6Ih*lVCxc=GW}QI*&XsD%68`|s~X(?+FMu8^ra>9@gH#y&NXFg
z<=%XEchJ9a?_lNxA&Iw9p;1OWJ?lT4dT{2Ht<}<%WV>eGEWLz9ZFktzX*|rI6`6U1
zn7U(EdwI7t{@pW)O|#K)7HEW|NT&9Rf-1-Mc|v<v-Ir(CH!sz{^PZ2FK#sENWSL3U
z5A?PyU$XD&-{8cA36mBUE(G-u1$w6N^mBW1{+TdIu}D#~Q98)TM^8odgOgX=sn#Vd
zejX<ac21abfL&A4=seeswkZeR=>#<;7k&{e`r#VXl-zUQ*(+iD<S7q2k41YgVJWlr
z<eZnVXDO5^m%nG}E*FS`!eh~^VC>(Qjy_NgV%j}-35)yM_u7$4svCY61~u_YM_)<v
zIJxnM;lT~o&v!2G>Ns(y=G)fC@9S4}bjZ|PE#ItPcdx&@qvIW~#g)&ROM_jnnVsDJ
zu1e?gt%?6F^puqPL*>rw`#4j4&0HO&PyO*%-gN7p`{$o&^KSR<-QQ)4lKtO(S9i!u
z^^NJXlbY$XKK8C?!Q;+tt6nMI-K+Zh*2R@yj=6g=n(N7W?%$c7W%3}YyZZ+3yTmnh
zZu{+-K51p&nzU~D6R%>gFB9Cowmh6TDYkr~5Id+Vxe+Ayt{*f@^J2Me&?4UcDQnJ6
znDkD1wYF|&XyoN-7B&w;&S>7;Yx(<@@3Scxhm}DimAmrRtlOdz_VW7!70@g&c$lF+
z#jn%MCTNlIk|no~z4G!-+WK#5ROjg}*+-RCgG-COzVzFIB~M?Pa$%B2ZjJSQNMWue
zr+IOgrE2hOCcSMQ{cN)pRqt+{CuF<#zC25r<-Qk}H%Y{N^ys_>8C5?wVbZ!=9-gaj
zzihYn_R?9tBKHk=-N-fWNkX;4nlG0v)|7nzUA=K;X2_=V^Cn&GX3ER)>jcTVsm8i`
zDWz3|XJ=AF7DcJ6GIvaIIb#vN>A|E)Z@*1>kpr4yQPEqXl5{QeIxA$Ai}G{!J2R#n
zX`SM7W>3@R2cJOG>)>&Cu)1$YAFxgb&#ce!_gduSrBt@kQgzn@qqkPijkI<)PdU;u
z#br&5>2jC+^2mcTiz^ST1dTkXs(#eUzB*^puWN6zi*?w}?>sX#Bqr#S_mU%rZ@gWi
z5(Qqb(EB;xaJkF#m}RlrdW$DndvrE${H3G`j**i8vUA!jReuRi7oF2}n%U3EYghi7
zb=^x;f>M2>AAPWjKRjpBgvI@!?orG$FQK4IrOBmNU4w*{ml*DN^(n0YBprBi{_NmI
zqTtEylG_onq2ivNQ?7lV8WPJVnXzL}^JTN;F6&Dp4|;ldPG1Tt+*RD9qp#@k?zmPL
z=Xv;P>Ar22pazxdk|n#ZeV?i`X%dH}eC?HjO5+{5ex3(bs65#JxAygKkmaG$(O0sT
zsMy_em%sbA=!C;<W!3-c589;7wylWu^xD;Vcb%Ydua{l2|H)VS?00U|#d+RVRNc+b
zey31&cWms0NgX%kz>_GlwO7hKI@`7%nKY?k??I1=lR6}ydu8cqTAClf=+5rVXl}Ml
zWsmB#DLr?^s;)0|_fkrmTecRot|1w+t|7<Qv%uR&bLD^M2eIvPnw>K$S(iWi)L@(o
zo>zG`rDfZZX+ld?6FoeSyy-q@I(_G)%;{4i`s}=dg>DEXdu4b^1PN{YpXb+kEoNEl
z@>n<3c!T9G`vnW)i@h>D1%iY&@3K_=wOtQBrM_i5`<)wegrbBVr9dS8+~s|DpPA}2
zJJ?9D;IZtpDHkRQ*gJbAg_$o`NeTJHSL{`CEA>|CEoIfBZc9}w*`oW2+b2&svgX~y
zNhei{y}meu%$C!fc>9cIW^QtJ&bIg;3p#2(Uw`-h`}2mY>*H0G-Y!4=WPWP=?zfM@
z%XjL&E<BU%zV7E&ceCyjx1{q<?fdvm`ka8^#9P|ajMvN7{@3s5II(#8{i(H&W#z3x
zU7nr)`6u6YTIJhk{r}hn1%KYt-Z!f@S+Me1rqZXmW#3vCr_a|?QqpD*Z_2ZIQf8#p
z8N5s4PD!P4#YrozkGH~&-Wq5%PM^C(#q0HNuUUHSJUXIJL`>(Zs0!Zn^h(;Y(e>?B
z#_PAvYe#;Pm@2brxyq9l%0WRA)}Ed%bNcO~K2;pB1Wk{FW>7SHgfu(*zh89cuRJqV
z=99<CX_`Sn63dj|25>A3Jn8#w%9?#T4~{*{yzZ<As%SiY{N8?NKOlSqJjPrTR=~G&
zkK`Q%RYA@97vK9g95)6}df&{8=dpWIbi$!|%8|uuwk+{jb9r6o=@m~lKb!KxN%O(6
zXP>>KmZ(UjE>(3+iaY2TBUhmHY|4*0i<a>Q33YF}G)ZZrKASqEu=8RxKUerAuz8Bh
zB9KAr43@hHPtUyG<?iJLGEFW>sQpX4V^oj?XdrM3c)5%0oL!cxj_&dc|6gOjvSo<@
zXtKlV*NR7<tm5y2x;G~$Gp%b}-<w|iZMw*@E=yHE&=RP8w(GV*o4V)Ttxcc#%sGEe
z#gZqv-=<i|)`oodIH{%k(mW{0L0fL|B-U!Lvix)V%#K&8mV$abFO7qOT(sr*Ex5l;
zVd?QQdus7(#k+|@QJ2z}ESV5y^UO=kCdlYl`?o1C<SUo7O#33Pskuy>X`P|}ZoM6Q
z&Y7qCdtUFi^V-keKJAOJX6N);*7So<&pxoM_S#kZ<>IgKtc#QElvF>SD*SS>>9itq
zv7F}3qP@1NQX3Al`FVKmIhJp>+~s|_<@%I!PhTwVvQ?eTc>NH&X6N;a)meTgUxDU)
z<!eoz7kvplI!|by>gxPBZ?8qB_b!3vGTi0Q?v$wwQB?h?p+9L-MDO;H)pD9MXBaMb
z*&o5RW8=>~lejcH-6F+3J(nDdUKLeZ$-X?%@8m>T(2N;K+eXk@uppuN;F1np5C$FS
z)!!fwlA8#X`&z3SI^DckT250_)?~Shy}Q>Va1%(yPCELE-NT|24u_w<SiB7!T@xq$
z^A>LwhosT09Wu37%s{hkGLSOwM+K<Nv;4K<?ZipbCr#RS`^KVgx9aKzX3PxwwENqX
z7rc7z@>^})RPU>*{ymm=z2c^uswudGl~rx?Kt@fq*3IitYR!R_;8lHrx0BaBG0=Re
zA0(vzI>z&?vg+c=-=@5nU+uG7?wcoPA=j7g^&a(m9~S@pD^t-VU-hf@rg(1k|6o^_
zCl9jaPVFgs(yK32nX!7!-shKZn&10(@3M=_lAqE2DRH|qKOL`&a7lT3_Uaqy`Tu{b
zcXyn)XTByiuKLvL%b^brzu#g1`<VUT*|S~3{H8_QFT5$v?5y(S0q<`vzq3zYEYAGA
zLgfh~yF>pIi(f0A6@9sAqRFUaHg87oqWBWaUm3HeFnpBCH$AHvSzCCZ_pQ6U?_?o`
zsK>gwvw|NPX$8(zQ*~H#EP9pi^eHum=Lr1;Wwj+N8Vf#7TV)pOrt1A{ij1ZGgJU3}
z62l!YKQ(Ml@$&>##4H*MzSgSxPTx66wSP*4Um)`ZW$EZEd8ISUVn0bt)tMl)pkNND
zFsV3T>EhL}=%d}QjFZXho(O=3b*4<xeye#g+ICqi|3smjSKz_{+)KC9wrKY_c|qEK
z@BR4<{pmFaJY#|;J$|v+c}dER-tFgJe0M+aIO4e%Xl2mWXH#A%1{pm$7VYKDb;RcF
ztR3Kn5T}(ZFLTbGrCXLbya6qPiSaxN%D<e(#Zb{A9X55n%j-n@r{w%BXEb-2b7}vs
zElV_x?N9UTy!UWZQ}9QRlkev9?oeK|<sWFgzT@MyE=$$b;;eUW>;t!SE=_XWYPg`T
zXumy&i%ZI$rP`oX5ZWt2Q;|HY7N37sW9p&Uvppo-Ca5T`Pd97(bf&x<Urt@gfN7a_
zKcw?lzUn%@;)z_f7idk%MoZN#DFzcKC3*h0flh&HvfjBdPbkW0f`{kEHUBHuRGgWr
zvtvn0yRB-K<AGX1$)F$|>3TWSesB}$r1)FSOykq`6&{`&f6NQt1Z@DFxZba<w`55K
zsNe=IH&IqqP-RW_Iyw7{=0(=&nb$3Yn1X_Iwt<Gng#J!B&2>&jQ?g2Z;v^?Sy9Xg>
zA&p5HclomuCoL=&)6^7t9RnIjn-F;N_ZiKLmO(~e&Z()gCe15byK7JLWrO7||0hi0
z*}K`(v+zcE!75Ohe@1gAm&NrAV@=7N^vRPBo!BT5Q(9@fBN05NczH?6hPl38U5}o~
zfJ)JJ9+Q}R2Q%HL2*ph^uRPY9-hE>Ge6#(p7uMB_beu50_kXgIlF+B;hM)GwYbq&a
zhu@i1`}lL7PyhB?-@Dw6*316AJXfjc!y9+~wJG<1G}+sSy13Z=p531sXI&H~wduIn
z^v(G_JJ#^85SN@Pa=2o3s@&8H+1e{Feyw0(&Ut+EPgzh9$79{xol8=xLF+nWKqC^3
z9X5Hh^0W8bbGlrz@1J&h#S_13uf7%;HU}>SrJOnXvp!B+wJiqR?wJBwIjNwuWJv~C
zWsK)pRn_N{g*qloS`_*JbH+}e-PdB=RO1y?1%iT1r0eD8mq#94xzpx>&t#zqlNN3C
zX?`BTvu@{^sbGGSVeXv$x8?|~-RZO252PSz<KE`WphED?rY2)wueN()K|vbFuK%3%
zY)Xqv?UZE0idj>5_6mWbX!b#0NHagvuhVbxq=nljPZ8<(IiV4}xZ>HA7b=>PRo0*=
zI<K9%YtOmuDSn<OF1kw;SbKUVf=Uk1I*Lh_s*H;#HB?Hu<f?0GcBwzL`1L|=x-;7}
zn?Ac=w;QCD(yTo_1OF_tRb9PbrXc=zrK-2y@)fLi1PyO{dUZWY0vDc9MIN1(COLjL
zUa~|(ugvr0PRl;KstqCq$;n<BCl6Tfyf4ontyd;F^-h|9=kXOS(;QM-IDg#RapNhY
zx~7L$2B(|a`4`{aC4|IxpP8znr+G8ck5gB&N_n!Ech%#h>6xI_Z$-N;Re$j_em}|}
zJu@WglCu5lO-+*_`9IU%{J}Aa7_joEQ{H%kvwN|sXtCF#A7yqsJpaGCG-;7U<#tQe
zSv!1ohk0=7T>CG&M3vRhXlIgNXWa8mO~Hz)1~()EE>B95n0ZAMycA{C1fdq|UpeQ>
zwmC`642d;dek3#AvvrEXjLcd5@7&ZvOOGn6UcVW<==vm~7A4iAlm1n%sp#<%d!xx|
z`Kx1!gNujfMQ~QOd7yIxGFslqp{Y5m*S_B!QrmBOs=S27$*b$w_dSzXr(gg1%!AXz
z^P+`(?Uo0h(mu#&GHPl{T%Lct?03=!aFyOXb<)JTdWLZOkN;nEbe!0i_HC>GzgAGi
zQEs<?PUYJZ>$pKnjGBL2{U|x{>Cf}dn&<E3&+f^4()-`n#pT+);^J?<+xP#Rsibsi
z&!dTFvdw+}ZRzOv^Z9-F=KPv}@0Z^0NxQ#cTIE~K{k7{(Y@e^ye!te>_pulIH@(`l
zD$DXg)aB`_C4Wu|Jdv8dxPR5Pz)m^P`c&P;LN3cdtAXcDT5a_&gQKYT^hNj3V$j<5
zeGOB1)@@p*`?AVQO>)||6Q+9Z@}agtLBEVNB_lxnslQV+bYD&k2Q@BAE7_Mjda;Gh
z5{fPJ;M9FNwPF4b8R&wuB`FSTm%GG^7p(nhot5dC_~d4I5U5~r^kTd0=4Ioix@C!l
z+r2FR&basBmL!kL{V5kFEs~g-1F6HCr|>8Rd*zueciDgOCA&*_k5AU=d6OCfPcD;j
zmpAn|$*`#xG@-R---^fm9eNToLvkyZq<rCjt9kMJ#7PH}YYwcO6@19rqSe4?<tp9j
z*MDYx1Leb(6A{n7RxMHSdO6?y^wYBsX4$GTE*9cr?dz$$wbjcjY0JOo7mF-Y7Cf6c
zNq4_wfwM?^E$ebGFQqLXpKrYXbkC$&r!TtK%M`eaxb=ZXOFPeBwC|tJ5|d*OuFnN^
zJ5PpHdwqGlM8)c!yZqIdKD$M#hL*?Yfjg+4o*QqNovXh%N9b-a*N%;*s#{dFo`WVN
zRIHAb7tDG#MdqepK{BWh6mqW6^JM6fB_3<me>Od<39V;@rWVJzshS1_DLgZ8o~@@@
zd0~!FZTf-QK#}J=Y#v<k@GQK+FPX8c$7|Xd%}jgS2gfwJiosKHOALzUgkLJDJP>KL
zJf&dYo+OPqkB#0&DXY3peEwqbvePjqg)}8|7+>$U3@gZ5vP8kH?)p5TzcWs6c`c+V
zS#=xKhYJegQJ!4=7QCXSa|+Myk4NSR-F5fkN=ym*eha*lLP%4x=<(WRma41uzx|In
zVP>>)*L7&aD}K_Xhi3P@%JnwhHnmfp3|dg|V)2oALT;+gd3&b5i&0Yj==tB~+b)^f
zDLa;cmVL!M)(y>_G)ZFZ|H?O|mcKL#C8ySOOyOBmVz|Q-5*NpxzF2(ZDdTb{FSe_{
z_DxdL1jj@-lioJ@+9{yfB9D^|w{9#d)7I?ldwKq`&F_oupz)K|DLiWDv^%HgKK^5V
z7P5qJc6fo-k`#rBlPV<dAB;3y{^Z0@M)Pg@Y~da!6^xcX>4n6?+8N+=uYI+uqCrLt
zIg2N?fQsz14@CQ?>`^!_w)H$;v=?ZmdEa|Y^Lg4zO6>KeioYM--x1~V&NBSow})@C
zx7U7>R8lIse_HO;zKYk9R!T~j>MVXo?U1f~t*WH->BjpSt>2G6+ieR?`KmJWZ@v7<
zJ!M~*|A)G`$o=f~`qryoaXwN>spxjL{OLVqpRf3LcbstEUzGo?_u-?Ss#%|}RUA0_
z^814`Wq)5Ni+J~a_5wFi&MX#^EBN&y_}P>fI+~INpe3yzXJ|(%s2c9PK1XP;&V#5R
zp^fvmFL$wjZ}@hXgI7|~deCw%(3G;qtn4?MA0rP!6f3Jf{=7sb>H3Z(D#tInb1zX*
z`(CwV$yOgPrLx}BE1pCZdzCa!Ir1c~f65CZ&CVO9di)lk<*!yjLX)dObBbWSXQqan
z)qMD3@s2-x-Mva?PH}l7H9hnCDtE7KcO1O9l%Gfooz=XU8YHxFb!=F{D$pF3ho{dQ
zh)^-}x{dm5;jwYgvnNdI08gWMfY#2fUjiD20rf-YfO1mGf!y;OUEiLAEZ;Km@H9E~
zGMs;cP|f`#b8J=J%UHmpBF$5dESgjI)!}-u(WhY9dXq1wU3RB}$1W`U?6M|I@|a?p
z>v=uc=;x_Ed+A>(i`ME+pYrBJ;g^d%nw`#|<zV)zUfxNj7sGOQ_IQ1}5q#;MTtV`e
z_+1inKrPE7S&P=L(w)veXBKE=_0fiX>s3B_aO!r3?2@=sG*f%!&LvOov&JyTg9d>(
zcU=4TRCEitpC6@nd7WwhlsCT?H*`PHI-VDP`ul?mlO%F;0)J;u7o9W9-7D<B#RIL1
zBEQamRmbNG*p`=UfBo!DcCk!t$Y)SJZfCqSrQcR{_4!v{gcm*ck$(RF$Q+@y;BM*6
z+>oLJ^Mv*VY1?fB7d0>Bt3ch==^q)NGiXXOLE0%kxu^DBn<o@?Dg4^bNz6-9K1AN<
z$(t1{WTdqdw4>&d|Fg{N%u7-p%mfuPdzv?=_;tpK6zJC62ruB9Fv&699<;>M>i#54
z)yb^C-n~mKUTLXX)i8x;2dKo3y~h)$r20_<yzJB8i!FNI;{JDftaonIfR=uCx<!7U
z5gc@XR;{jP=ZzzIh!u9;OH{-_)y~(u>%u2b%JALt{T3uEF7BV^;i+<J*0v?TrJv7U
zq7o*Yd-wIENuP^lYQOLX3AKZl(X%i2^indt7<Tuyk=D&zf6m2|JeG7Htd5C$o;_)j
zh3}To()HkBKX54mo(=W%oO0>tgT0V>H$ACsQ@%X=|9qu={j!b@nSXEW)8qeq-aqYM
z)#14}uiJg?wbxNn`X2wg;MrDX{ok&FKkrFqU%$F3zbDD^cfD<-%ae<f*Hx%|zUBM=
zU#6g7<j!a7-blayabNxP_W4>yzmIJ_lWqS0WPf+ZiNpUtufA!%@5O)b|5<g<VrSJF
zI`v+C9vZq;^wZbJ2l%%fPGwautUR!i=lY5z=Eq)H`FmYpWwieYUKhJ_5|`%7T^o13
zve9((@A)?s)?V`5-g`B)bl#K&;%>{s&S+lroGv<tOY`NXjk{KXl=AoZy#x)9xXXun
zc$P2KyjU5;RKGZQmG(36NXPRV;X#V3v0LW}t(_pWLwat|Rnh+P0=ucn-M6MLSu)!!
z=+Fw5f0sn(i1uIq30@9*DRkKsmYf*Yx(#2CJ`n9UZx)XUDylm0S3&96lqvIH|En}O
zVfJmR&QvD7ZE{8%9!#9H@ikK(hhVnXlxYi?-M6pUtMDM{bEPV`oaV~=f(7m!pxvdi
z1$MtO4uUoi9s=z-oiJZh)%uOQye=r8wHPjMnWkWVd&LvKVy`c9{ZlSXQusFIg3uGt
zIKZsnOLqDXj)6x8m){6>@}4lcbls9HaHnSaS<Qv2ih5g?yWEU#iaB$6U1<N5H@j}n
z5!!3`V4w5*r=W(y2@aX#`<jAFEq|>@^z(e3$!IQDrLV5~q8Hq}S==x6Y|4iu&yMMn
zg}%7V1C4?#?w49}<mhQn&Z@*O&EKZH*s2F=rF3?KR2+B_a(bT7a=4N|y?&Vp0oNrg
z@7$J$M9XR3{FGSj^+k8dk)xT6*Cz;-q?CAtM(eHrd=<3X_LBV)7Fo~mf+)Rww(BuL
zo2E|Lp`iNW#IK}+(@!Tf&N{u~iCfU4g?rq*E;RPms-6uxaP-+{uPo4>q$NijBd>dK
zezM->n(Kbx=(olFS$f5)mzOL7txRp1q9A@b?>hGzP;+Hj>~c@f>r+9KT8?_#dOw%X
z4qjBgYs~|n$&>Q5vu_CnHO2J2e_(P}Gc%um$HrPvm!>3g7igo?g#NFk`<8(!k4e*S
zexK?ydD6S6c%C?A)e}emq!nCNR^2UUwA|%?-;@&3-(D94e=9QkPG8&)YN+IL?=Wnd
zC{&_yyiye^mKbs=bP0>B<jKM>ftR1YSgaaUv}RtN<nPJzC;j_%xBlJJdeP>`Q;c0*
zT=;Eg)xKqwzpJC9Bwu|vdFJ)Je>dud1ShuFEuC2Vxck1j)+hbwC%>{yKHpk9{}-pA
zVC92Hzc=UeENB4rx06Dccv#;r?w{ttX~5(2{y|K-f9JmDDGbgBzFEa5fhM>UBqZ+h
z_{9Vry6EokW=%Vfir(T${S$>0@}7P65}M9Fhf9-jQJVcPjl!AQD<=pkq=ClAra(F?
z0vj()vQ({_eVWU!bqd2rE!jxJ<x6Vw4)nh5J}4T*<g&WNCH#zL;Vn=ub6Df$4jzRl
z?9<Jfucqp-#LGRT^k{NOQGMUtbuzUqE?TiXaggmWErFZ@E5FvNLbt!{w0I!JV7qOj
z>)Z99bp<v-LHm>+C^76!z5g~V@?hi#kIqY=;hlcFs1Kk8Qe4MPw07Rxw?5?{Xtjoh
z)NN+JtNUEv=7QF4I~<gF4r)?^)|!1e9h<=!pm7acKOf5jEqi5XO^Q3Xau;M6;buIO
zNJlMb5(G3fD70^{kj4a=-(IUg>q$H~1vaWby|L(9<#cB@sU<8OH!QzR0gd5buZ#0+
zp28ql-3M7h0#f*V$C4*UE&J?#F@ZKj%S;ahjgvq&-MW62fz_f7D{POau3PeK(j;$B
z&VY#Xg)_ku63alG^qp%UyEr^K1vblolJPUIW$ZSpjQdj^j`-DGuNM%U*#7@|_-6fm
zFUs9qT=toN&O5uO?Dc%RU>BEtpLhM<oL_TN+jXC@+NX>APwW$OP`vs!`bypPRMzyW
z1@5W`4y>LHZs3||GA4z6_c(c@r#Akii6-Nlb1%QMTdV@@SDjSbeQPP>b*73%oiFR^
zn-;$UEgso;Tl7U^=eN6m|8clqh17n>fBk3d?U^wNbap~<Nl|KIE{Fv_MFD(N0hncG
zVr~W#HZ~^tYz5j~JBE6+f+6&11?aV7phF<Yzjo~I-AT8PEp!V!r@8mP_V1VzOK*JQ
zVDQ|qaree+xmwrw>ZSf(^;xri|G!_a85tNpRK~~0OaFhVdHc!#d;i@T7#QA28RW}}
z@i8zM9GFr0c?0OMAb)8yh|q^X<>zM)A7W%+uuK22r!vBVf#E=V&wO)!ZgvKSA1&U`
zAd-INSD}(S_2xh%EiP{T{45c47DxKdntL`nG7Jn4L|Q99fBl*Y5`5ovW_J605G()H
znc3~2o4WQWn?fz!bPH-)b`#VL{fu)EMK;>j5Jd%xvY{?JSM(FAT$Ahbv-SJ`Z320r
z-1XVn!{<RP^HQiQ?@gQqaa%=XF4RS)2cbR|H+g>c@y8!h!E6i+AEt=I^e(s#)tePJ
z52DwjG999K!Q-<~y&d17F5&W<2~o7;PUPojA1nS;ShF!O%-c{nUG`hJ>AZ^h{{q|=
zCPp0F$qNeZ$2%^UODRb%H~*n)%D}*8m~X{9vB%#86vjOX_e!LcB;~U}vGK#=^RmkV
zCx65=w=y#vNWJrt-Q2~<?pDG>28IIO@?Qr*y39ekVh+r$D{xjxb^t5Pc=x4QT1hfl
z3KaBhMa$*y2%MC-2GV8FXZ`m<o5!&eY~1V&4UP~4*}z8hJn*yMp*YEK-^1)1ueli*
z=9itft~Gl+iOv2nBSV7V_Pv+Qjn{!)6>)Ix`!5H3xTQhHFDw6SU90=}7TCa@J1;Lc
z(#r=qea4Na-(Pw-t1P|%ws-ZR+Fcg}PHLEdlY?654u5eeCCS#d`I4aU_^f$nIXCab
z9;d_Wc|Z<3De~@eYnzAL!iNxfW4L@iSp8)UnEHBSkRzT2z|6}B^VQ&d`&3ZyToHwu
zm#7R%(F$t|=Ifcb7;*951{)XK`nzPI;-tWg8)rdI@6dvoJ`wDiMKHI^oB>InfIH?R
zSb7>v+GZ*!(F+8@+>#D<ix$`SmrkH?_~6vm%FN*4^w2Igqa#H`D(*DMv>kD9{<$B8
zr{sfw$VX;KObg6lV7T_6?rJ7T<-L;?RS#{x`rA)mAHSTDA)@(r=yH&AD?XpE`o8@N
z*ZcB?i4krKk!9{jb1(l;Coa{NDk4>8%+R2@Bfb<I;K6(L6~Htknlm%ZXo4DMak?9a
z7U8{{aA>)H8Hbk3uK$nu$M5$$oX5ss!1{f)A2<LwkG4L3eLeHWSq6q>Fu&QUY%i$!
zYsI@;lHq{Jo%NuM;B@%;7O}qd@yk)%_hZF{Lm$7sHhGiAzz|%p{}nj?=7&XE?5msG
z=EuhHfe&hpfkV>6AHPbatRxu@Si?+|xUMe~zu(VUotdGc9qMC=XOF<{d6B}v@E&I3
zZb|iBMVR{Yj_uTo#;|I`?805yV5cse%*e3k@ZVLJL23L=TFoI=?&H_jU%qgXf#Kdm
zXf&1?+ogN~`=P{$p`jcWBX@hwOYQ=P!CW4O2eR+N=YmpxqWR;+$8<5=eB<noEsofX
zW|P>6#f;>heoTMANU15q@S(H%<Bu0HgJW*be7mg}1}~ia@w7Xpze|k%z5IjCjQex;
zU^62=T@S;9FH&k=Z^34Uy=6Mw(d~C$1qFgLk(H#hUxdXo-{qhPs5!A#PZV5kES$XY
z?eW?FYr(~*h6#g#^7Jlc$=0?+NtpEO*K<Wc2|{J@1%?AXT>cZB4wr#SXt#w6Cm#%s
z`>$(?Q+9J)3^*ltxGhXHXKq+<NO;MG4RZs*xwa!^$BjMDrh+{H%DQF73>;cEj-ZkT
zYI|Gv+0*ml@Eh=WCw>EF&x^os!21{AbOtKoc1tp_h|W`JZF}3}ba+FLle5a<qt8Uz
z!LbJ_L~fjAP+0MSMbjiFT?AZQC`sy>rQeLlYr&ihNMwMD@Vh(=O~~P=IO$<h@w&Ch
zKA6$BJYqShhyu&)vWG;w%Hj(bPBJ{unU^#d7BPvo_aW&Oo1Eu;9dL5NCKtLNx4y*x
zQ83ReoXmJ2(&nfY?_nb@aD8*@AEfx1*yH4^&fKuMqN@}d2(4{T|Lz5+T5NLGKlZn;
zk6#H2z!xbD1!Ddi{UCw6_(Fkjr}!>V*$WCBKQ@NqP8+*3v%w``f&9L@si52qaz~6(
zKR+~m-Z}MMfBX4653os{HDA92ht!4l`nzyQUEUv8K7S{ufdKZ`P8T`(XTIP{W5?S6
zd%xHfgBl2}pmG!0dFl20f8mfSj_04h^C2kAK;eXB-h<QWc?F>2{lZCx1igvJ+bb`F
zE3FC}x&P+R`Zf35hh{m(14uspaJi#3xMDxJ(nmLNdcXdhL%$)Fq?IJY8P!ie48ScU
zC+7cOZsOEtE+1pj`h7RJl~H2EFvI)F$3$>js+H~E>tIMlg&8FWw%b8!H)vEEOh57X
z@Sd08+U3v5{>%S6VP=9d6N8OvQORs`a0%VWtNy=tJ~ml4ix+3^2Wi)Qfp`yG!~`q3
zZ?C+Z+3?se+M>0;4&2-T6%Y&+UQb?_<y-N7m{Kg}_i%AMxL8w?Y-MAZCuF(n>})?~
zo7XL^!9QL=8cZH;3mF@hyY%IKUUr#5zoPu1h}|!60E67m@IZ6o;@f*(njFZ!7lp%`
zP1nV-TeIi!Q5@FfSEb^x=J&if?A8=?J;&jjIZr!rSfg&WtAI=XFSxM;szw<;OgV8e
z_g;zAgP3+)hUL}caGClWojHfx_k&Xda?G*)n6MVjeqqshN#Men?Z+H@JyczDR(ufA
zHsLv~VRFE|c0Y>q-lQ=U#5{bV2a#P~yBUux!+w1fb9YNJ$b?($;s%#P2FLcJc(3g)
z4?~}}%w33^B%alCFaK~+ADkjVP2@Z_hU21r@4$um;XJlEFW#g02UI0J=5mKL2@}nk
z&wZ`$KZX<#C|2*5EZ8-df6n^*4?q>e;tLxlJ`A76xarJnzr*>G^XBz@Jih<q=fcP9
z?}tJvPLSaWpO;<UFq={S)A82FugxtMgM;`@8iPQ}y%MQ1;|In2Ky^p6F}Q#Q<?Y8H
z<MP;Qu9$Nlzn)*<22T5+Qgcq_<;)vr8~lIQKK${E_nZdUi*tDx`i%2I4MKwh`^Ea;
zP6JgHpzhFy*^J3O|Gt0s{rL5B5YIUclM*8ai*tKknv@tlc+bBGL;Z!54ad(TxfDtH
za{c)I2O%C?IQgLe{=Kqs^*_|hf5BP`er$h?G9EficD8)FKfirDL!IWFa8Nxuk(W>7
z#IJw(e_E_NY*zg|xxbFxOyt~Za0`M_V?)7?l_wU@nja&c;QVlp7Pww*;NVVYS)S<o
zB=D^NK7|bn3*tnjwi$ErI<&WbF7!J*3#7ir5lOuW_w&tj+Ds?9o7z`eKS+J%yPR>w
z#sa$&nGwR3A)hC2XO2s|S0dG*!2LWJO<BgK0=q+K%5=D&*FbIABm2P!RCG*<v`{aW
zy5=Hx_0N;H4bx|u&uyD1d4OAIj`2)$(|P`y_xLJiR$k7On8~>3*dfc_%HYR8r#wO^
zJgqaQ*n&5EkFxN`vIA_Nmt8h6Vy<X!EoNGt*jt{WbdT=_s2}T=#*n|M;NDY{H6QzY
zj@)LP-aTjLGu{Fv?&rFGho#=1aM>eUu=B*s%zF&aHx<M^H<{C2u5uKl%;xAB=?5iZ
z=ep;#6@TnoQepj|XyWo2mCQ9wt)ID;KaAO<ta*=bN6Zt=w0jKlNe^w#W?G29_vqTr
ztS4UCHPigS^9YOdBB^T??m=K1=HA=GXm{$6W$)z;$E+tkdfRZ?_1%|eydN^f&RNcB
zGrcF+P~Uau<yq+j2JYu9AeV6*um`I!Xlwnf2l5ijgZWD3RiD`;jvcD(zPusrjP<6!
zJuELez`9hppO^X_t~SbVh;#v&YcQkrv(oa1wlmES=s<LxKUCRz`NO<3(g|V{t@l<k
z#~eCTISWPL=%L2iXS@d8CqQo1OL=&J?=#yB*C&4Y_ZY5kDoE(AWIm%*wA?(u;dG?M
z2Y0wiE*+U4^WbtE-0b@vN^+i2DvFzF?r^++HS>f1f4|pAeXi-UQQp6ApG|*b?%dC-
z?id&`YZSCDdcFPl)w|Emp0MX*NRX`a?zOyAaF2oE0~2>U=L~ZO2APzH0qOS`7z*aJ
zI?t+PW;hV6BeUy_Gy}uD)Q1Jx&v+RQB<aY!JH3aIA)>$au<zIBz599C86L2T@s+3C
zV_;Zw>d?coGtvwVt&tXYx+|F(Hkfg@OB?1hFicB-SRfA4FB@TTr>T;ep+H!S@3nD0
z1H-$+hY|}xGHW9&)|}bH$go42yFGQLIRk@v%EJw6pV=55%+rw(0~vp3TI=B~knz@=
z3nIEeh7^nOy*9{aVAxO)(E@Vr;X{eM&v+Ra>?19F&hKGlcp%Q*z7u5DpUJI<kAOT<
zm;BH``!gFu!~abMGbVxbY}b)_mJA96buqrlAh+H~cxWIDQj#micNt{*jnsz*>>vT<
zx)@o9*oS`k_hdlXgki$dbc>vu`~1bFxGpccU|__|u;9$0hy9@LKe%g=!p7h*r}gl6
z6oL7zhs}`%4v6T;)P;ja5J1I)vM~cgTH?bG`k(=dMC-+1QxlZL`2GhYD|wdm@WXb{
zC<M3{GLw<PK$g4x_~OF(df>vxEscTU%!xya$b6quhj#8p(W1}YZf}%t#S5}?S=z%7
zwvbHCkWePZcOTUL0!fG^Jp5n{li(HO`=4~LL<(fS&f!B3>p|uG2_A-qsSy@`&hB|>
z(sPD^A)=@C@Z-dLQ^2a$JU<=VWeCm^3<<e)ZHGC)xq)GW4R?EgHz+SLG+1va_^}3@
z3mA5Aa<}t?GbTgB?+pb%ra*;7x!e1}Igg=X_r?N?cyKOZxHF;k@JWc-phR*`Was7C
z<_rwmQy&)0f@(D8ZZ8JsP=*6%BQ54AfHD*)y;OuljQFsjpduK={F8O#90Nndyw=07
zxypZmdrmyJ*%%%qKK!uh(A+vuOz0fm!^rUC<e`V6t=50RUB|XcW`+-^`&TpbX~rli
zbLqP-1V<S};d0Kpw%{EuZX$7A;Cdo40<3)YuR~ZAum6HgG_3rgh~7lO*6E9&-Oa>%
z3=Drf%OB<#<kx`)r9jC}XYmCFh6$$k5AD3lx~^clE;t2%Mu8X@PN_v(Y~OW2^xY;<
zB?fLkFf%yZ@!@_RCcfiP>^7*WprNN1v(p~ldBqgI<FpvKo&t537#M<QBx4cXJR<>%
zsPIbtInl8XxXN!ry$c$jO3-`RTD+P&=AmA6#*K3t;Fc2ugU|ERwksE)x;1UeKgn~x
zA}CHhutaB0H>&Fo?9rK{jV5$OXU=Ifjc;`3WTOc&>CE9q6Oz)Ia}mwGl49oqT6gC_
zBN7y}8-%#i=b#2wL{F=+2dbCW96uzv5Y<Q1QXa;<3HzQ2s(cwXXmLOH+P=$ww)tE(
zZ~-}e=hfO<dtRC_FswOyXy>uD?=FL?e1?Qdv2(0>rSm}@1O|rk4Ob4`+~?wU=an6(
zS<JwYmo&FE`Q9I)olt{*N2ENQVZPr5s{27$U5so&)4x4CuR_x-$Oi@Hm;duDx6g0u
zyt5qCy<j-Ndv<TZnc4A5P{$Sc$A6C7rZn9H-V$PCXt+J=$N%=v_h&y^KRfk_U2KNN
z9uY|Ul%c_T_V4Xi_C2+;-2qAOU`vWu>&kq8d64%ubkyZ84@1LK-K_;m(>=bw1oxFe
zV}l1|b+#59)3}q$jiPY&hJty)$Z2o4Bm=|u#D_L0VOnO)z>s(JkmV}mfCdS^J9fx&
z3A$k3i9<J0(lgl1l!tFHY`?v!U>kDM06TPUq(yxQvXkcWFf^!fKd)}}PJt&6&~V?0
zO$GY`ceo((4M?F8_w#aeg&ms<{w*!&)Pd(vD@g{1TCsEgMf4`ZGbm`lGJ#9%+<mU;
zC*T<gG}dLn&HemiMvM|7;QZJa4!G#dIik7=o{>Q#n`fTB<6e$#&E=h6K_v{T=AL)E
z3oxu%Ia_beA#@{O_hA|ty!$Suk#F8@#V~S1gS0M&k!v36VH$aQ$5Bipy{^Supa*5d
znMatqUq@Dg%1hLs^gNB}oi$l!TZ7SKtW|dhrpvd<hqKQ)Gxr~8<S)f-;llqx3=C@?
zp1#UucXkgWgGAcF`$5ejpV=4^RJhsgPJo2Y9BT9jH6xB~E_k2}YOQ!jSQOZS+A&&U
zd~?7poC&SW=|=es4C_)K9>@eKIUQ+H(06Fh&tJc8K`J3;^^P;M8SA+~?FZ)fAhlLH
zG8LdE)r6#n2VR5pNO7~rfm%f@krp4gKC>|_IC-dXIjF4@DaL1Wd=Ddo#^!<toPR5g
zmoYLZoIcdJ7}Q2#U<gQictEi=6IA4PY%WNMPmB_gVqo~CBXc8ghFB{bLxX07#fGH@
zx?H>r44XF;Jm`mLGZ5rv-xm&1u`|NrL+_z28YT=3KF1F=-WOfwx{#3}!A*?sk2l0P
zwbX|P{)<3_<HY#>tc92tyt&}P#|)otCuW8NZ**ilAS@;wnRn|T3bH{Kf;{&!!s3H1
zC|KRZ_-a7a?u;wbqeU1PHt>MvrWme)rd=3bgJx42N<q^-2dqGoLJ6{<sih5kp!v#(
zcF;8A8qnkqvC6%F{`$4cijm=gml)p~kfj?65(Gg_)5C`vO+n3L`$!7|kgFbubF)87
z169S7TbYGHt=PKchX>Yx9R7b(L4p@Z&vqS|8Rw7f`T2VNez$213|As73?%LMGBVsq
zczD2P+w)%e2Mi1m76!Z^Pfl-TE(SF;`!*CLFo85Xit$|mMdk5GiwPimY>pmk)B`1<
zNHIPakc9q*f&@E|%K0F3L1r|!G8==E-L~4D28;|0r#~3WFfdRUAPfv7h2N-h1_m+{
zqWwBP28JEo>({Th|Lb1=_v`gm-oyV&Bo3S}U|?`NaZWm-r<IxEL*X-Cp5%uN3^mg#
znUy0g7#QTQ%s2n%Z=rMS5F^76k<V<$HWx53*d5x_=ncvg&yDjRXo>ML95{JKddGxT
zW`+W_&ur^JGxBqe?P)w6X(8}bUyor%UnMiE7@x>YbB4=?`3i>)HOhQuOR##zTM}V$
zA?Y52&+$EtBHZjwXQUfm&M*&1e(2Cz$!s9|nXO4j#={_=VOjD$hsmwX*Nq{}X|2rS
zQ0B~5=5V8YhOnf24vnqM(?8ZQMRZm&3ySf@9RAFipbEC3fbqO~!_*n(pkgg!o<D=O
zVg7<+hZ+~!%m?e6(8~O{!j5sxkv)xS-0W;nBO>GXNf<Od7iQ4^@S{Qeha_Ljna`XJ
z`7_NwNO7~Td-9Xz!1goJ6*D1rK8SwCyXWws#_S3^#t*um+3ux0Jiux*pW(-}O6K>Q
z3ldDut269Ny>~!UM@Hfl#FzpxZuVmzYnVV<=bX6zgOlOT^<!Hk%G|roNb9>UUpP7N
z!y)z0$B!p9T&$C0+-~)i;od{P``|HfD@oSd`bX#g&^3)XlI_lLAQv>u;sKgs3jFZN
zJMrNGt~1gN%V$8wlR*ZZ0||aX6MO~|yn`nA4<vX5Rj}X`NN^3B;5Cro6g0s{Ai)|m
z!FM3RlsRn-{*V<3PR{C!AAFg9=uqQK3tq-~puQe>0Nw4NdK?!w`?7~7EEQeQ;eIPg
zR{1JT9hn);mjxbZLgyM@q=?kKTM8=2{G3tzc@bo&)pErH!O)qJ3nw*xeDO|v=r9Xa
zJ5PnCj?9Z9DJGkv&_VgRJxzxCt*y*~s74yRS-PQM!HG<c4<gV>l@cQ^w|ydFd{5Ba
z{s3gR7^>Y8|AQhd1RkOKXZjuyF}@Hq-Ju}6IZ^E{cnAu(ugC$XlDs={Ms_?GH@jY#
z1uvr-EbKhmDnCzdWe(r<hl628cO_)1L`m}5S$#3Sm}Lbl3_eGo{+!73`PqD4F}|3^
z=%U-%xY_jrESMNjOuf&>&F-cx!^j{Ei#(OXdwy;^c&Kq9mpj7&7id5WoHWS)cO~KB
z0gF~;h6E*OM0KRhFqh^P<KqdkU}CuTK*@RsXgUETdYe~_uLooqlBkH3l4O0>hJpu4
z&v*|M=H)j_gOUZPQFQ$&D0srV=D08f7fh7B0~*E$jlS>Z(m&eI$a-MAlDeQnd;L}i
z@Kh9N{$pF|y}tE_PBWhV{XYC+IR684xQj%j)E;fW@_@-tso_2}i+~(8qq~)Pv1KPi
zT{2{H2Q+7vXeGwS^HhcDM=v}?TiYZfEe!f5bD)}-`tX1Px`ESMnU!7mQXBZ72?ylh
z;LQaIvd?%8xRJy*Zw9vjP{g=56eO^ssmtC_kWhstc6viWLLQo!_QryQq-VSv7{qTL
z1W&A~EWWTof}1@p^&SH^O6W;m-dK>})jikcfURp@zTPJ2;QHabV?8=DGyETx-(<We
zvUBgw6MWD?^xcw^Hx(opJ>%WbaN_M**D~m!`;D_Rrh{7s4XiGx=3LQ{nbB6stfNp=
zT|7~C4rFq@%s4Im;Q^U5(g}<cZ_n<21Dhn6y^(>NT`l1r19!)rdod~O>7WGB+IF|c
zG{OQjVki?1YE8q^gn6>07~hha<_yP0K^+?p$oT(_a}jTX5+6ETuk}-E_>LlT7F53l
zf|3@foezq0P(rbiJRD&WkaCYfCVa<UQSe$8a7k)7sg>ChtoU{`cxC~jxH%GBU!g0W
z*UGGjsd)N^f(3{6Fj}lDsMZEgLV%}yA8U#6smuVmJ1-wT#r7g4=ER}K*I@6U3ZFjI
z*o{T_+@VHoOkt4-ivr2dY!7xEdb<`pfdWc&b9*?r+1Djvc=2N5!vm~mq!Y5@<Ku6e
zue$tyNALeD@JM};vZUtj=Xx`S51ZDnFZ|vPGqJ?z#HIp<h82fgw}EXaG1B-PoyFh~
z_)sYtJjrM!c_h+;!NCu~{{rHBBltcC4>2-0af#mq&&gdlnII;{#}E*><AfME{QcO3
zHx@87v><E%Wln~e^#v1k!NE9}XBnu4BCZ{i0+|X`Z<dU-U^p-p$;covK8AvsNJdO=
zWoC$3jATUG!vjIv<aromTf1|>G5jLMz?z%=TH-y1%^C=kStBeqaDWEQ5$<1e@KB@Z
z4D$mzNcKsJ@qtEz)8M}FXj6Zgq$4w9wzK36*Z)ed!OP$tdhU|rW><R_z?OD#|A}3f
z`SUtbDkkZjJk%IzIi)f3i~c6a8oPN*R)gC3e5nayf4kR!7uU6^zdWQPGov5PI5Tc`
zwcrW^2AM#M^^mDCmBV`?=e05$YuZRK^l5;mmcV%<@!p-rR_4nZ7@{q$%*B|Z?XAqh
zXrh4`2@>4wuVhXg(BXO>3Jx+*rjR&!sL`a|$e{aBWhgiSfM%K5HWw^7y^!b3BG8l+
zG|M)A)RE~Z(qP_<a8zK%10gZKGshS5lz@jPz%C8U0JSK6j-d-WiSeB|f-V>(#^-Yw
zU9d=u@616o!37VFUu8V-_+bFsGel4=zTj|V`gdu)=K*YKa8Y&Ux{uLW1%~`=31Y3E
zS3y(xgZVl#J0`I+Bm8M4`9YeSUGMQh281{L*#1m!WxoC)fdSdPeW{@4phQC?Xgbds
zywIe<eq%v`391zd&8^JNl?Dv(09rVi@wSeP#PMdv8Lpr?KX7j5xdEze<aiLV@FL}a
zpcr4z15}5|q&z%u)JCGA50METSb&<Y2N_C4^frNuo`sVc{WlgoFp}eOa7U!?4?5iJ
z>mDL0Q=GK%E<=41xVTubxPD?Oc<rY_KB)P-7&INlB_0W0H_G$5tvtfQU`i$PnMDN%
zWs_T(A4BpBT-o<X3xf_+WfrZi%*s5~1{G!u`C2h4cfre2Z4Oy<w=#EsNMN`Zz5|wH
zx(b!J*~1<jWZ1JFX3GbW$1$KR*vwcF{}7hjG>^Rm<v@1k5Bm<eUIVXXU3}p{m5$7e
z8I{a?-iL|bbb?eH37%qnXHM;5OcUIBLJYEohZ&p$!82m6+a^G2u80|}%%2TG^Kp8c
zS|L;02X5)e%;*6nixZWhCm?gpI_D2H&a5zC*xWHE9HvYb)DH(m_r%Yupr-BM<Ys>c
ziZrF7I8msj-xD7mV6l;Ch;%u(8tS$OVLCD^J|{4w30kh_f=nwn?%r6Sa2Av*p6t;|
z0auf3c`uG%W&F_F%Y3mpv4GiN`u};-+pXXlsy7v!FwCzrwfNg;e)pA9^a;=ex6RQV
zUH5|)AKhbliJ`#d;hv%r{=63{2U>MxoX*Tv=4EgfIj8OZ{Xv@_Tg>T03lE_wd#WQN
zgr-a+!XoB8sxpU`*271^%4A!OjVA?Wyhw3qZ#_H}O{lB&a4MQmZ|h-GG@%Kthgr|e
z_G3OE2nod(DGrlc4`+bJv>$Z9!v7B+Q>qxB^Gx%(Yz@jv&qEbKO9>3}J2n?c90v`B
z%fQ01t<rgZ>tO{{-DjkiB|J1}s=S=ZU;&F4p3iNO5f(8gK>-W18q|pOIdbTsksMF6
zG(#UOrVsB))Dz>o{vko)4nu(pEOwspUfx)+qk;YK0~9CCnAmza14Dn17@u>c0Z$&n
z{vIdhJ;x3u%J8=x<YjP2q>P5?krq6U4jSxWMEIVI_d}n)d~jHh#T0H-#pXXH`Ce<t
zoN7gKgNDh0-#Rj4ff$N|BP`Y|D9{j>LU?WQ1%~vE1vBCv2I!eEzyr~3A){Z)Lxb&y
z7RF?txOmR#Ly1YP&O0w4g+nWw#oX4zYq;8r7NR<tQ;aWI3&Uyc5f*2bV>n`d@<W4}
z7}nKHX+7+NX>g_(-(^fcGuW@=OYnZ8a_fYKNza)MbA~@6md4zWyv2Cz$EU_~U2|NX
z@g9g#N>2kP9}SZO26f)KULgM%7%?X>ZnxS6ZhA2Hq&$SU(JhVP%%O{S!5#Dj1MYMq
zENasqo>>C&k6Rjp&Vw-ba&R5m;2mKBc4ON_Ne1p6S1&@As6EgUJ0}D3P+|((0j9jt
z67WJTwjC2%jT=F}mzc@8p&?rKF1Q?LT$lRriYVVxr^6?B8d&eVdI4F7USP?sz82F$
zChp~{F-1G{=l_^(oX=3<2wHsvs%kDgOt;vcc8}ph(;=v%6pkL+ssEX+L0qKo9k}tv
zU@CUbcc%G%scps#KbD`kSX&9I-WVLk&dJU+cb8)L;rsu^HxcPO48CIL-p)V~i4;4x
z7gZ!x>|8I3$cEXB*Ebcs1D8Ap@_)H+Uw-33+g+X=b6ShJpPik^#!z?JewXc0HuE=W
z4vnpw?LI&AU}o6=QvU9|q-N<dV}(P9BIi^VFJWxB|D`|Af8#;k-I5m)AFeqADh7O(
z6y!kKn|FCUHWo}vy;mZ|pcZ6d29DRmd2ClAEV4l}*9^j%GPA*<oM_J6q%(&VT(WeE
z^qmEVz=qk3zGCOHz{Qda*YPxPoZdLwpu?RG8n0kXP-;!y3~NKMik-7URrw<2K(@{t
z*BPMF3U20wlc21v4VoTD*uHQw<NFN-%hFNY>8#FtFXiDG(6l%M!bg5=d(I!4IRjLP
z&G2}5L&pRZn{#<AT3d~^K@)`r6Ax{S1h>_!Bnzg=hqL>r6|rDALAdtk1G(oM3<<XO
z^Yh+)0rd{&@>op2A7p(>km10pJ1;>!G%LvhEBnKiM+6xd-gnq|f-;dGTTRpahi{5m
z7!Ft~`CoDZ4NNi0Cp~;qfFd$K`C(2Wiimvb!#@+185r&fR!#!d!gG0km~cO@?qgu6
zaDU<%1+KF|YiXn>DkoSoGi+K`F=>{0vvEw0#IZv^V;^$dILpwmMswbhR_ndfne2`n
z`Z@iO;D*_Z43WV$p4{bC`m8m5t)J~%l@rV%n#JCIiR1dA!TmfRUCabD3ns(3Tasad
z>Cwqs3YLElI=~?2_XyRBV>^By(nM2bP#$j~t)wo<kRqyg8PwlXIefJ3bfm?7?Kv+0
z$`Tn)aZP^-ZsjK43rKiav$#NLra8kDnA*h`82GuL@8?pVsLar?=>)vt@j#vXc|4}5
zIQR2<Owsu|bM}k+DY-K+q)zP4ft6qRI&+RME)=q4V$kT0Ndd(ZXwB!p(}z6gxb!hF
zoKk`}h8pr~fBxxByvJa$63GSre|XYaKC?A=y29H&4AMGt`i=7$W`sOZ0<|bWscgg9
zLqB!Ul<n4;!*7JDte~a!v*t5ihRIzBxA1|MnC)Rq2tsmoq1d^fXQUa_L=o*Wo1=#;
zXI3&FSc2r@^hgWPWEZkSJ}_}VH$k%@F8Se{!)P{~)|n$b!<<3qB(!<R@czdqLska8
z5YSQ>P*<j6GH6%XbkIr&-ie^9`1~P8hIN53X;7<`A!Y$=>knvHmq7x)6R1Fmo1H;o
z6<k&i#9a>OT7kGrVB8O!Vtfn+@SQvloONUv9y|uE;{g|{^Ff{7`LI1sY(F%(*%^K;
z0IjwGjfWjr4(b9ghi!3UWZO`{(9jRt(Zt*Xn$3Ey4c&so3?AZFhjBscJx?5BWH<-&
zblY7X3s8r7&N7(Wc1sq39BbhY+gDU({6HAwJ{Hg-BG72cjk68>pniKfd{>k?v)%DS
zj12eSTbJ(gfE`^Ci)6@UkRh%}hA@HzMBxJGB(5=t@iBbZ0`q82`V8})l!puq=V4KD
zxU8-6Z~~~qFID~vwDR&T&*!#}AY)`8#nx@fXS~xv;UT=^GXFUZ6Oa)xM?p?|>Su4U
z_`-&{iT4T=x!D;ix~=~{=y3uYxD{kTDUt!33m6*2cft)2iLhWepbaSnw;7+2R@zr1
z#@Mjz-`u(gw}pw;ho?^B1I;6L{VM+j+8+XPlL$9EgT}2LCgShDfR?_1oMj4%^2vu_
zn)WDy;$d0fj?4U~A?`GZv|zY%>znGNDM*S=A7Xs4@67B@5rjdhVtfqdsrP)A6fBpY
z7MOA4oI!ra@A@RRuWF#(tLWQXLEA;a+gnX63=BaEARHr-_qWpU?r=*30|mt0;h?Rz
zK??f8WZfP9W^Vb8D=y;g>F-;;-(PKN;t*SNgMoX+4e3Ye?{8>}v51Q9zOgaERX}hf
z6H}R{l52p22&1%b)%&N@YWLgwZJNE-vn;qwzp{4U^T%oG#+zrS7!^O8b3gFZ6t~#6
zd{x%fb-x~b)O$NyL}gy+^0T3P+s|rFOnUwFznEN9#=V%f8WxB0>#zKeIyF4Z<Ps^n
z&G%tuy6q{$SNxarr(N9r`|k9)(*oKbCLT`y{Z!L)-i@4{7os+583*yI9qQW|zpv`K
zC3{%7*UCfB((in|_CxeofA#i=6@OP(yjx+nea@!kpW|I**$!Ot(hHe8&7NVO_urrQ
zgrCg*|2B4dQP<?@ucq&t&HX*ULG|08iyut#UhZDMe(ueQbvhR#?J|$7IkHHZ>xx|c
zF`1c94oSbNW>{Ca@6i_@))`Y?U2clro)KTUZ2H_&l3M#$#DBWk{_F1axzqQGxytWl
zz5D9N?U_#5&Ynees~1km`jY)-<Ep;zA5$2fRsH=W&HN#{i~qZftZabo+t9v(1NpzM
zzkmIQm4AcB=NAE=9#@L~dFT67r)|>CO^a3<Yd(9iV8Z2Eo|9H<CSU$K%RuPC{U^4&
z%96iu?|)Oczo_BD+uK|9_kZ%)|9g|Lu%uVled{yt_h~H6I<?^2x$^qF&Bi@z<{N$3
zce#|??Q5dp{JU=|)b-gCHa%_*scK_b<MHj}x_GJm@9*9#(`L{3Gxguy{TWZn<I9p}
z{Z|)HJgVIL_gz<z*UDcEUqZZErDU%C>=Sp>>6bP=^g8MPobOk=%}X+5en+%_+x_BT
zqj2fsoWkhk){%*J49Bfv^Q-Q$X;fPza>Z8^zws}cxBc#?`J2Nt@7LVcmE(WU$oB18
z+oY9S|Gw)ywvOSBu&uzY&xgd-a?S0u*UMFeU7zlDHtyf)2khtVS9s0Zl_jTbeWY93
z>h9@iMv12-TVK9Zj<0{nx{=@K_RC-Vn==d;+N*Et?qB(>?cd+}yZ7JkdvoT^-iURF
zro>2kg#<I~Iwq@Y^=R9{|1NBkFMeHnt!&vGgJYS-0avdw$UG?6`f_K`|9|!}Lbf+D
z9G;|CF25$s5b>|{6l?q0tNZ_Np7;I|yG!Ome$}mi-g&l&G2EH*W-(iO&HB5hpZT{%
z-Ayh!bopFqzzfy`4$D{jdas@ND>(RDTaS3CzKqyS@%XB?p!du<H)lTk*=lPd?>epI
z%Wi#ZQ{8DNQh#Wcw+UV4@_4yB@S)|~V>gQ$kG|sCKT+7q`kLdydtwcf)cC?@&)b#n
zYQuHCbZtb*wFhS>T5`U>9_r=GFyn3J{69-iTKxT8A9eoyzBgC4Txpwh($Zwg3TMV0
zN>`6hf3@4%KkCcG_3CvSq`w!gYL?Px{?K%I>#U1buR?#EzxBf5(4EOsg1r8+e^`3F
z_R~b}(#4;j=~-V+(fOXSa;J>{x|fNI7p|*6v&ZgksXbRicTip3jD4+tTU~|EKitIi
zWAU!NeX}lZ5lPs5eO~Rt?tjXSXTOVRE}f#q#k}WT;q;ot@2Y?C8>Hs%|GlYrF~92M
zJu+Tb4l7viTWN7E$MaIbo-*dYJLhjzTR-)Yyw#s)Rq~tHKjOP8*IT|va?|W@7vmVd
zeAwf?PhgkF{m=T<TNd4)dvoVacWE!RDyu0OzqK;g$f`3<I9IuG#riV-T$__oi{E>E
z{IPeTj-^C{=*w?QVi&zsZ)<$A-hI)-;N!E;ygViBtNgC=bN|QP`qq{c7cOa=zSive
zwe7e2yds~3F!=dJpWS-&R>G$4rD3amm=_!geBW$!ekx<Zw8>MWo>u7oc(Ok|S~@*C
zocY4Bez{7Y*4<wm+}NH@+M1u9azC|>M>SMAuv~lAGOc1WhU3fEub6x7ulCxlyXWWB
zf7y63R9Nfo%4oa%(se=7Av-b^wSUVAi^pnwOUP!<iMw1it4?|C{u}T2y?OJ(`6P>f
z`=o#)VQia&_WJ%~KX6ek^sO1|hAgR!1xJ5bihUNd`XB$ddWz*<`;?vhr9yA)P0bi`
zbiUt`y}CtH(V&QbzxC$Lo9Bx?{<L_xbLXy;8_qm`EwXOKbcTYK$k?rn6^Fbw|IXmA
zTba33EK|JK`Q8`%_E#lLg>U4al$+mqc7^rV`u%_YB&gp=|MopyBQWXdkGI^Jf44sQ
zelV0_#;>hyrx@ZkUdXD>H4UnndH0`M`ui16H-GsW)8(ZrAh@DPuJ`hb<`d`tFFPM(
z&6ri6tDn2)u$=g^6HMjrrDkbYe5#%Ln!(`yyIA%Q^C}nXnke7h#b;JMdrnntm-6>d
zC+={mTJtt^)|DR)b&6Gzt17nXyTs?=BJWlAp-N-o#wR&TXLW2{rt|XHdtC+-^R;I}
zJR%>LzP%P*F`xP0yQ#a^_V=h<_IY!7p0bo&STpyhNz;<Q#@D;ASD0|VJnE;}6pe=C
zQ-fX=2+qDgCr7ndo#C0<*87adW|;q~d-9OKf1lBA*Vq?}eoj0k7CS9l?OZKmL`>h^
zZCzDvOVsPOyjU*rKxu8*siP9%XMb;N%vbGt7ISmS-~8)GoW3(BtUGNY_(1%#oBy!`
z(;U^)=e=5V%Y0&$*_RIoU3G1Dcf7w=Tlf92?X7c{>i>Pc{`{81KI5VWvnf4a6Ey-i
z1Wdp7LhtSm)s52j3<-9bzl7GL=D(0J{LQ@K$xI(t_g^nUr|h|;a9As5@w4P4v0Gtz
zTfMWs_8#%5-y>Xc;fdWoKGiPSiMDM4_AgId_#xhNV)~z~xSQ=0oc@^1Yx?$HqGf91
z%kq>he-~Nb`ul9Ux2Km@Y3$msYv<pOE$sI5R$A>HZ_~^C$RgnKQJKf50~YNt`}JN)
zm(_XC?MJ~4Q!mWirOjX#owM`R(RkN8vl+bX&nFZK-R!BcH=j~i%B43~{%73UKks_1
z-<XB`Z+mDbXKloyqG~kd#}tPrvXA9UU83IKy`dyJjp>cS^{p@YZ=BNFdOFrHv$(8e
zbFM|EROh$*1-sv`v{!2J>#SS<==I-sz1kvoWM+n+v$^#C9E--%D~h*VDz?P$>_~b$
zRVe*;TF%7H3_nh6(dtw?mJ}Db_vrI!l5UgbXWg=j)Vx~Y@Z^bPpZD$b6Av$nL_c&q
z`{!LRx5?X2`{v!6oNIgPqh6?8;f!ZbKiBpxF|}rEh)&|?V?VQ~Wol5Ui+k0SSn*d}
z%X#{q+1;<0n#=!Yv2xeyJ(Ib=UEgcp)z=#@pA=_z{>IZub)R__|1W<Q=gt^cFy&e5
z*VsND)mgz&YreTW4r*XsW?i?J@x~O-gz&SgkGtiaOWbz6nJZTL^4qQEDf{-m;c-1b
z)n(r)ef3{=B$uze{qyQgiOAYYfttzETW-%tcJ8d=ZirA-yQ%dqwd~cxr44rr{$FUk
z9<RRk?axK~_U<_JZ{7jDX65qlA@iN%=XHL0GN1d@)Wfd5m*>xxyUBP>A|kJR_vhYZ
z^OK@KwaRPOEOV$SyK`YaL*nL_ZmfapXXGTu30VF3xbwiQ%TLdL6P!P}?%Q_OzWzP>
zhu8m<j13E(&Ky<fJ+c38!3-^R8@rWLD*o{bg+1Xqp1u9<ic@vpRh%A%H7qnd?(+Jp
z^yc9AYzuCD`j`IVg8KhU`KR1d8CKnlw>LOn*AWr;y<^4oRjdEb7KqW0y>Vytoi~%h
za=ss!F@vY~(42kGr!78cbpGWENtyQN7gTSucf_CD!#%@&`CHZd&jh=9LtlOD|9I?=
z+idOfsFnVD^R~&WUVC!cqgGgF`QIX`iOsKOdv9X@mRaKQ`fz{F<##u}9iM;Y?dh{B
z8y?K{p3D-(^5f{rTM_>=_1><C<#14ctT=Padb7$c&i7B9KJ|*@L*kvgJ3Wd6Gk)x>
zOL^w_ZFl{v`@e23t+ffg-&erE5L}aaTk{pKD(`8w_+Yv6ou6kKZ!wuD|Lju0qIoO|
z&*CO}?w+Z&+9zX!mR()JA>F8&$vGS?yE5EV%2E{W#{E3#k=1F+Y*j5^vNn!IVg26A
zd_T+|K6<g{@0)3Vn`&prJeKj@^Zf6fk5@yyR_ZgD9l4`tlxctA$&t?tGZMeLy<U5N
z?(H_arTGi_uB_R1_DhKM(X?K*<n<FTM%Nz?H?N+}7ZMu9yW!}3%ZbKwW~cZvZ+O|g
zn_oBlchJ+;&s*4E#O~j#_$Y$s!{U!88X0^{tv60|xi%+x?aT>pZsh!Za_E)U)~i7q
zKTr6UnOL5C&g@Lt|EWQ*-pmkqBH1tZ?xAo&V@&9KsghYu?UQ<yZ@YibnH~K3c>{-d
z*6-}UML7%BvmaP}%vtDiee=te>zOtjn6=o)n!zpeU=Ocp|L6Nk^W~RRZc2Nm74-F^
ztfBv*OWV(V$+{eSB;-^0@(sVzIUjqRJaWA6{M_DS4HkM=4<*N+-?-3aF2jM+Hf7%H
zj5(&~=Y+VICCF{Ra!$M9;F0JbEjFJoGEG&vcr1KcwVe0q{Ks+~Yv;>PPYm65!<gqo
z`n_2qvodcUno;pnRXp~?{&UaglpZU5nwGyirfBIi+aF%%?iMQ@&G5PZ-H?G<cTTk`
zgLPDtMpPo}fvUsv&Z`Tot`73IX)^Xzk<9wPYMyTFVv|^=;N>q^9m@HmiduzB4o=<9
zeDm6$1>I&-_Dm>t?yQn(U|-Cxa(r6mB;BP`v}Q0IFc;ew>dx>>x{rq`B3b7%2g75d
z|GiG^_7+zyW~{k+_Rkz0%@~e=S<y~f(>U)gTf4_Q|Kwh4V+Bd~tnfE4W%eXYXAY2=
zsIp3*d-}qc=Q;}})NK5G#@j2ZD4FkbIpa0y(^sZ3yn560xNK*hOG^KY_p$MTU0rKg
zCI8KNlK8ef>h8h!^H?I3zf6wVc)YkkBhYm}vq9+n6=D}RnTo}4Nm};ze2Cn-OH~b`
z$L@Y8XD~ZDWfy<LMX~C6lUAkgUHW?QoyobeX&u)b=B*OlcCl{hOy9rnJR4k9W~=Qj
zD%1#k)nW8F_`2t>s+C74XP<PweS6IvONTpo7iTj>Cwqm)a|S$fm=kwUaMF@xKQ_F1
z?d85#mchIDbn*$U)~KY9{(l0wcsKZmP86xR^}cS2laAW$?}1(`cTJjF((*L%eGr3J
z)C>`6rXx2K;+Ss;M!$(Wuuvzo^oYRk<-5;&hBM47*~)u;M`YWic{_jhaeFlFVA4Ht
zllQmQq<>{jjX_@DQm;q$KjP}0{B*YG#!?3E<Tc{!nWh{Qn`{!wth0Sy-?yaqb+;#;
z3KE#a`siNXwue%izWe*{|1Fp>^RBAizncBOC(c^@bmeZ}mBvqfOPBUeRz36V>6cb6
zh6?*<H%uCIH$HXx%s9<5*|0WdUk~fyf@3nA2Q0*+3nnr$oH@I2!dC|2C!zn7_54-h
znG(D=-<tIM3Ac4^F5isb;W|t|?p8d}VmNkeYBg_zbMBV;v$~Q##l23dIX9aj=3N}K
zUeOkwt&Q6P|0%3r#}j+lcF`;j=Kg8sSKIEsougg1InC<JChHV~RdRav-qUv!Db?5S
zpUbyo+0GXE{!(3rRkz$4zFIEcmf6lFv^im3rh-B^hc8Q!-4|~*mfq}~xmusOH=hwo
zdS<Qs>AT?T#!Tk0Bh}gA_ZbT(wnY}S)-0@+U8UEk%~)}E?W<VVHOFS({r-%*fGbey
z)}+^yLh@bOg|y?=uvIZ8eEZAC#PeI$J(uCZ&m#_3-ZOe--+txf<+Q0bq^QOCs;Yt)
zr(VAG?!$UTth;{R?PoY063KCZx$gVno>>z^Dx`CtEw5l-aN|r=)DFgkJ>SBmcTW7N
zRH*Zk?a0bKsgAi9m44ioZB-F${$)B{H&L@vzQLX;wDHeEb%yRD_YynN<u8*vV{13O
zSByJqCmGL}vwqj@hv~8RU-Rm&J-$NaValY(uXi2cH+n2lc;t0{oDuU8!{=t<ugYeA
zD`K_!0dmb7t)@^(4gRXW6Rw~4-rfG@K0~rk_g9rhLC-d!jeFbX7T=gq;h28s{-cRg
zq<&@;uCU<lxW9z|L?#=9fu?-g!P4oBIeA&1w@mgr(3QEf_E5kipYHvyY7`W=7n+64
zU^(#1$B28DqU5voXEXffiK<ARY>WN#&b=X(Z}M_A`=CSf<CtP{-_L3Kee~>Eo3*Z2
zAMIF}5@95-S*RZ!dOlA7(j}i9<HxZTkK(82f7<ieboZIOO_BGmzOQ46Q2V0H@c!pr
z{_c`LB};teFWyq#()cjv^Csb>_DKs*uBrRoabeL}#<MJ)5{tgy>yu7+o&B@!%~FT6
zj4HcNocYt^amUh9zCm|e%>GZE&0p?B3hVwzoG&cv?ls-#-LyA$e6{LZEp@DnJo3vw
z?-y?0ckOjs@hy|m6Jqy@co|YF)hr7Z{gIi;b%V9SKlSE>niG3c>WXGgYnkA$^RjuK
zanhso_21qU-BRog(ltLKzTBj_B|3AZWk1U?i^uIXJu3dUCtZ#^`%&a9Ytg-0qXQip
zzyD01E_dyj$lg`wjouZV*b-B$$)Il$JiBpQr{=cEH$B#Kc<Ob^FCBVpru1gRzJ>Sy
za%}KPHY|vJRBnGK@%zbJ&O7()4G!JMa6m|WQkd-wi)j|7hu=Hy^R@dvVaL~KP=J^I
zV*C(n_lEuU^9tLAKU|J4V&<E6vpI4~f||&_plJrvN(z>}n$W_v|DjKAoWje3WzQe_
zee*lLa8vZHWAE#BIIh_JFK6GA8NXZ`Ssd%0pSyAULyPyjs;URq_v>}@Xz_74YAu~&
zCDtIvclDXw^?<tfr;EClnVa1JY4x?ee0y5=+|^sS6AZ8WnTeQLWiTGN?-zPQ_Qd=x
zwOdvAj>m4@$&mh%=RjEh=M?J`@8;`COuKV(-PQTG0zO@5^t3<UQ8nrF$tb=9YgPnt
z85~*ps*Q2Vlez;_gS=KIZ`pG?`_=Ee!opm)OKdhcu3Ng}OQ+W+{>*p$vsR1z;cEG<
za`WxpjBc|jJf`P`vSbad&wNj~>@8$@=WRgl!lw-O)*-WZht!0`KfKBN;LEJT{}?o4
zt^S_==YOxx@po<3RR7hBO;eujR;i!NDx+_Hcaia<zVJ7T@AjqMox5jW?vY(jTrZuA
zW-Q41zH;V_UYS*ALudV8a=Yu-lW&V7FWA~WXvz(nyk?5MlxIk79ap2)(kWG5`@7^N
zH|1Tm{5;cs%VBN*f=ycwy>u{p`To`1s_Ug<wKggWw^q(g|9Ihiv%`lAQ)h4S-hOWC
zf|n^FmcP#N|Bw8%@2tR~yY9#PRU*1BX)NEvdf<vp+y~$8n4_iFTc!l9`uKDG86J1O
ze@}7}8qSDrdpGms&d^);J|47Z=w353KaKIs*(FO;I*!M=$$p<=CI51I-W+waJxzbt
zSJg&!Zn4PMw@xpMo1LQZFlD>dtk*I+uP>F=eOE4)l34$E$722Z-{)s&-!||3;vr@-
zE#ltqH}k@8yn1zlm-|oV(dqlEBrR6lG2~6~%v&!xB}lg9?w(0<@2sc2x%BenMd{w{
zrzicLB)+Dw<j}dAt=lK}svNjfv{N<9D}(33gRn;am?@9Cm^NH}xpnrAuV**DUR`v$
zYeygNwhun?%m-v8zZy@>TFNlrDr9!Fi0#tz8vje;=X~qX>?}XC%6XEA&W>{7hl*>H
z`efJb-+XG`&VLK9xB1NyKWqGd?Q7fft|}^J(eM0gf-lQAuut|g|8IHY;jvYo6BfjB
zpIO-%yZhRoHP#HzlTxf1&gF9LJYu*1#s2fr@ABEMM9+IOFLL^f6$_@FDE#F4rA+J1
zLVqLiSA5nBXX*Cu7HqIvS8mI`Qf1+f{-1aIbvSg{X2@rKN&Mrx@!Mx<+3!mQ;$?1M
z-ci@N{f*gYiO1g=PtCbxH1UV;<{r6yLc9F#ABits$9~pUs@nC`k^GLcAM?AI|Mg9g
zT<1HjOn$Yzq>yl>X5_)5TKU_eE)4lAt#3WQw?SSZs54!s=brd!yIoHm%+H*B)P3{T
zyUhFU`8V$Wx~q1w@cFF2uUP*xoH?~&IcE>cjfZQ#o``(Kf4P3?`#m0Of|6su)J6XA
z-2Qmg)hS2hbNavP?Wo{p+n2F;ik1I-*8E*cWoxTsHx!>*Ya-zMD75aovb2ie<w`Hj
z(7#8G8Y<tHWj>tLx-o<K0MqTQ=db16sJ;~*F1U87quSLwtQO1f3P!OS++29;&Vt85
zZyE0vPFLUE_1z;|dSCscoLuc4ugr^99GMVk{b;Gk!`pomGoL+qR#>`^!@=&Pl|}1{
z2EWsf|0XQm$Dnb!=MB5<??bA2@07dl9^RL8vZ{e!xxOo<(ev8DFr~OBQ@EbIW9TVa
zVRn4wtyh+R8RyPD^XsL})ai@`yFR{KZxXUAK<ww$@{6q2*IyJx1)h@g4S4^DEumHY
z?|EImDSs2TH}7>?8~-Eq)>l2=h~HBf|2*+~%DHFiO_6O{4Ch_{=}r3EoXft<a(PDE
znbbK&SMR&NtJl9%`c^RO_X+mNykQsi$!QjK&NR_`T*Dfx8Z3Owwrr*y^Ub{%jb|sf
zPipmi*X-)~>W(DGNv(g$<<Xh9iuoAgO$(M*eax=9F?E-)MhxeMJKJtM7c;!;lFLx@
z{%V=&qvp>b@NR;m`Q*>045y2ALe_m-yZ^Y&0`0w0Z?rrlZh02AbAJ)p{9S9QQ|#BX
zv%<Tl1bv-vuxnAx1ebT~mi4sBmDnGjkP>)%_RbqFcctrk{(SS62{tt@&|t8><DogZ
z<#B`0kro$=BQN&e^Q@cvJ!qECt&?*u9#j!Id&KbXWtpNdZrQ8$c~3utCV$>M$5Dx^
z&hv+<)32!4odH|<x76qDcKW^H-Qm|;ou&1?zgf$1zUi?laD9~hc}e9-o|QHCHq1D%
zd{g_J@5z6dKIGZQpDFlOyTmoiG)?EKPSwgaidX-$CWJlp*)@~NH%cSj>3r6`FWGM#
z4t=|ABmII)MK<C25q~HC%)Kv{pP%v1RH7j3YYel2<<9kgLmO(}FaF~ml&!yA<xJlE
zrf>P{)#n-drN;}OzmU6k*PFLTeI=q;Hk{jMcY7|w76Uo0SzHIMi8NX+$_{w5Le$7a
zsNw6*i94Qr*lvFOzMSyooBcA+au}YeY<+ZB^!8f)q`l9xOXR<weyjQEs||BQdhzO*
z#PXd}Vq;d;{9i7n%A>-dJ-4@-tGEBko*&K9-%6`(GI>%&6#wWjY&<qG&FIQGzgPDv
z+iEm#2im{P)HxS%|L6Yv@bAYm+jckQZg$&O^W0MR%=zM;2@(6(`}}+P_2P+uL;N>?
z?6hMmJLHg9C_ML}+mDcg*@ny>FU7^*|6Ka-c<{+d4^qA6WdFJ}`z|lr>P^fEYyZ}^
z9b}Mx#Mi~08}xtTuT5(WFTPw~JkR9i=c;|LTIU~MQ>z~HZts=boD4cXrN(hmp1Pa9
znOI-_#+nd&`Hl4q{|wHHePxT^Mfa4SnsQr8Ybn>ei@J}5=Wd=X=A+IxeeU#jhJv|o
zKObYrxuyH=h4-cBtA)DSU6zy;?@<o<cB1cj*!HPemjfO?X`I~?p7Zzg+B5z|a-O?y
z=stZuSLLX-aZaYdirS;<8CiPO;?{l>bFT0eEPi))v32@?JE5Jqw_nM<%a)zZ^pBrm
zar@@vDEX6_+z0ZvT@Tvy^I!3u*V`u@*_i8FF=L&=VZ+l?Zgn&MIJx}Go`uT4j<j9&
z-FIsKm%Mh5&ky6{|HUtUqUv{#>%+Rcl9zddK59pPH|Q5gbPE?+)M|G<Z_3r$+fws)
zSxwC77N2`kFVOMW;hV>1U-pc>?&4(6Ecs-$;9r%tBfL)4o*d45PNwi%+FauOeBSfY
z<av4_xnA9I^+$PBq<>q<9?g|pTw3}rdb%q2<b31qrPpumV_A4GXk~g;!N1EcJnPr#
z%t_sL;CTAceu;&*w{$AUTPK-J<lVvQ%`h#isVDEp2A36gqnHfaZrN^Z`qBB(;ZEV%
zIzek|9RbgoSKqy1+r#8=a^bp=d40``=D9KW?7Vio<C1ss??Z<iufG+x&l9<F>dDmb
z*ti1e+8DR0GwKcAoEKkpT>rTHq@DE}`M0+$H=bFk;>n-K_8`^Q@fTlcru^~cXIXb|
zfB)&ogq7J}tk<8}c5?Z)CpY{G(kH0To?&vlTuuL#K<LrcCjyU)YMWfytj_e|`{93f
z*`Z0>Cbo#qzw@j`bN$qc`)AKgzM>deyy;KXx{OGV6Q@o+Svbk`Xw}JJJ`)x0cFVVn
zI~+r`nI-Pz>aIR_deOCjqgh*}-`v`A^k2Ko#dUu@m(Q>M?Y;O}PXGS5Z@RZ`ouKel
zw~$YH>Xz!Nf-kabTfgw0d1SrhsYc<7+G}fn1%Gh-ay|OqbB_D9`K#|(B*}74x%0r`
zYPeUdwP)7`uTObZ$9s1@z34adnN3Nqrp2PfDBm>||0fHqUHo-NT|)uac1Gh@U*ZKr
zQ+(aoRzK|9bb5!zxhvOWa+J?p<lRu^F~7QP{_!W~R_C^|O)8xA?{cnG#U}r@`xRV#
zyS_fINZdL}#n5cqMG?+*2KteF0<CLH^H^?&PD^~X`ilO%oecIV_b=^b@X;11{d#Mc
z&qNyy$;t<<`!<<OIIzYi?AI-~pG$VUJ@k32)%L9I^BybKa*CYv`&BbtX5QqW*lUZA
z&X0d_exI+FlkR#+i~ALs)>Z+TQ)d>r%KC`T-26sSd)MqcE2877qGv7B`zU*0&l>4f
zy1`e1uSPT+^}611`NWZnOZHAJT$1zeJAbMPN4twoTVvtjH-D?n{#~VE?(|FOVpw3D
z-=X>J347fYXPDi5e98Rz3-N;!|4yIw$Z@hB*PcBJ^8zm4G1w!gklkW^S>z>uz?`kp
z-w!kN@VACB*Q_lGcbhx=ZTL(D3F*Vn?zh>Nf7Yx{-#0fl@LT#0^>;sR{yJ2f<{cW_
zb6GFiZEN6lYt6}rQ(Mj?N?vh$-pTT_x9>_><DUazMZ8bUXFdKIs237zA=xnhGH-A{
z!-PZ5CyW#;U-X6cGE9_QCH(u%aqHq4moyY-FW!*zsCutn{&kJtzZcE>Vp-#N=i@T_
zY~5U&_#?($vG+FW{$czOuzq9HjfP{t<=LmOUF<5-VDh>>zxd#7gXJq!7TsERrXV$Y
zsmWUIOIsOa=B0Z7X8y3%PI_mQ=F&PQjp}97zopcPzTceJq+@o>=5xjR-|t^meJ%};
zEvj37+5c6+g65T?--MmBZ!#Aq=PsR|?5^ML{7dNK5}!F<dRc88tKZ$YzWABZf?uBf
zr+)nEG5#7l>H1->_2u_$m#H&k-<@zhOKE$?`;t_yD&`5fr<e@o<5ygH%OJCGO3?8&
zt@eGF)^6JHPRP2r^H3{8qWRQ?S2B&Rr<d&ccIc<uLA~S7zk~!k`NH>SPuY9K?)wDu
zwKta?+^PRZhVyChE79s@A=A%SE<cm0C4Q~5_e+J7GQ$t`xzo?hn|1Mk)3TLYeAqPB
zE#1BO#FND7pZ#@0yjJF|5og@zpVKp==<EJ7o8r}8?7OY~XsdYCxgH)>y_PSk3WE0U
z)Q<&wt(?%Y`~111729p~tBuuI4r^8(wNgsmsv^FBbFoK&PgJ+tvMm!&7bd+DTDbb_
z_xx#>f_o1utQ1pse6;O?u71{89sAQoQx{!G+gsz-a_>t1t%|p;S`(jaiHp#1oo5{P
z`iiXH<n>RzT&lw67+3_RsNb75Rg!g)mFVJAk^d}Y8$Jl;UC}k1l<Cy}y7z+q%@aDu
zjV4O(30--CtwHeP{P|m4@>lM6UF@*g;DFNh>Ef*4UtNC5^0rl5<w4~X@niL#`sEAR
zbyxmc%}{Z-dt1&$-9&}NWd8J3bq=elPtLqmH09K$sUMbUPwifnnUz1Et^URJH%oJD
zr>Tfk`Y)ZuaMC3EwOh?Lak>1J$Cfu7d0;J`A$~Egqn>@+EMA>YE)V=C$?kfTD01GK
zL8sKb!J3)tQOIiZ`rirc?MWGaf|1)e&$S$WuEo!^;n>_gNsHc1yi~vU9M9jE=c1yw
zzY1%JpZae0Tpzxlf3E(D{S+1ZS*kmXX-dUMh3m3%l0lEBUB3GM-#gy?El#QGf9v?8
zRw?zb@t)Wf8E|*O;T>5wV%x2s-@G5v<S@N@;_)l?vvQeZZhyPS+rS=N6IHyb?BTEU
z|6Q*b4=nb&-|DBe@lHj`ldzrFu55m&q)@wRftC8r$v3=wL#h*R-Qx?*oUU|W#-G!+
zDlbnM@JDSrz2Zbb(6?EW`F2iqeYEPz?FRMp6PF$onO@Vz<*o2^T~w*=^hLbc8D4%9
z)?Ph4<=wwoHS<JY3Ej+`TeZY<>Z8~RX_h5#+<u%{`7`GA{;hSnUyh_qY&pyD*EZt?
zheGL!<@2xnGO;q$th>DPZ{gXFdFQ_GmQlDp?_tj0BSA*;4`wfs554%U>3><mqw6kf
zDvO=GiVb*{Z<=8yE4?%N*HYd^nWAeAS&JFP%1`XLyzxrUjN%%julh|rB42ZhMIKC?
zdflwub;`d5TlPB_yL>$QWbvoB_VKQB^zLk4(a%0(?wiS8Q5^4T*oE4|CzY_Is%tDg
znY6|;a@&H}W`ENn%d=;RZv0_W?i=e+e1YHo*@aD3CB13CZoim#I6`JWQ_uGWiiV5k
zzIXJVS#aTa;A+pC3hFY&{L>Gdy!q5--Fk6`)w&T%#!qS+&U&&v>6*2(aHBAP-?K%E
zx6AJ{{F%C}<nswT6XRgD#Pu5(7wGh+N89e5)akd=XxpW-t!lrNo*S|~DCd`&l#_9D
zMexqk|C&!LnS1;=ye5_D)oH!E$7K4%3!3((9NBYhuh={mg~Bzf6gZDWzH2dv7hn0>
zSaQ>{#>fe`B>%hQO>5MAq&(~7apmCS_pWqY*?4bdc}{3<;@j^0pXm(VHW?m42IZd?
zEcLmWo^YgD&hE5caMHpbKb}3<Hg&Pc38TmA;?1V6k8~bpiR@9g|DdIAv@oOi#LijV
zx0o6NU;3}CsXsFHLGu$;t*n<`%a>ewy1usJOW9-H<zH%!d|h-!bfu5*J+>Rq9Gztw
zV$P>r-!tFQFTcV}@r}~`!<YL?b<HP+EPr@S&#bWO(r+~tMdLNaN|x))+VAYy|Lwcl
zh6TO5jvv3(8#L(<_cxo|MZf*mFs@6OZYEy#-ul&d-XjLT7v$`33y9rT{Osq3ZFN!%
z{9k%i`)*sWoO0&I=dZF8SO4}u<|(9gN5!<~q@bwR_6sUZvR$!We%TCpy|xmUm|mIB
z$~_&mFyPZ#*PO~n>WPl6Z(MX+w69)yp_BV+(<hImQ?#<`4qe^*tN)*RRrAqJf5p<*
zd~rYZ<`<v4*5=lV7dJvuPq28NDBks(H}&K@eRq*V#%C&H3l>hxN!TbIxxA=j^V6fd
z7xh(M>{)5U*U+BK*Op>;WLol^3@06<K*3VM4I3Zrj|@y<3a*+Uv(@YMb8lxgUBewN
z$3A?j{<Xi&`f-*LlYp?y%F|-k86Pw%z0_ow^Qg`_a`S12x3{9WcXcS2Tw8zZ<<Z<Z
z?;`UGm+UDk-!ZdmRlpW`*XbHfCsu6K&E8+RbjmB0sjkl_urr9UiuAEwvb5ULF)JfD
z@LE{xI`zY)$F45<Anvih@rlqRfwj%Qc|9jIn+u-2xpDT1dB(cUqFyT=`%m1h!d!Zx
zCP`oS;>DwS+ZJXk{}&WaS@cp!bp9(B;olwduj?;brc^WhOMjW7kjR*}<YCAq<L^mJ
zuiV?UAn9ha-w~1fj6Wv+bEw<VemCFakMiXg0Z+K9Gu}_yZ(PurWo}kAeNV`~xmR9g
zDz9@Eyn3?IqdNY0i`j|APM+H~37CGf{5L62zvI9ezUH9ZbcM4^zFg98cTG!rl>04X
zmfI><Ws{@`tDlFL=UaYuIGYpwWlh~5YxZkL&ocf{`Q4Qhv|8dp{`dF4H(!olIA`I@
znw=}^Z*5oH`cJ89{h4#I{!;EMi~{#Pf1P*FGOFo&so}A+(p$qT#AY(Rt9aL3Sf6*O
zq0m+N^uLhXTKx>SOL^x7a2{wV`_A+K^K+5g|3&W^Z43T${skj{e67=GmfSVLVK16{
zn7xnPWRTw5?<fA=QT@%smlKbMoIAeL^!gNqe;Z_%@7=GsCjFl1yVKdfyc$*b)0WJ(
z4xM{++iqPqTklEj!spVs<{Nmw$d?gJ<(&E`RLQAj|Lgeb&V`eH>=BY$xZC{jvHR{{
z-_`}*jt#bcWO6B}H~5-ycE0S*IbZM1Q?T53C;W9KuZQ4?xz1Z+bi}`y?+!lu?7i#T
zFWvbkD$Fh8C-Cyr6$S*@Hh$Z*Fic9ArDo%^Efc4{Nca<AboPaCpyQ$H$<>>;T`vlG
z@p*>iv8;Dq7h|?Q+p2r!9@o2zv8ww|n*Ch(W5)hDsk+}*ZW2sry**DrG@N<O*}~8T
z)4ZQ%o!gMfa{uqy6_anDvOZmJRwS5}zHhdYHGB5C7{it3*4gK8=SGIgnon7illA8V
zE5kK)+l^17-cAXP>bsGjtmP$qJiWE-f96-6lSRMcc1R`c`_8tTk-;KK*#EF(L$p<0
zpWv(|v1k1CZ{IzZ*&ElRwl@C$<~i)2HJ65{&um_M_xw?_S-O+uP1M$(etB!lg6gtT
z>G}UnH{a{LsJttNPu;g9?*01{nX{gpZ@3Zoa@w0;q5kGOrrw=?*UCL6jPJ}kbIAfF
zhUS<&*Da!VN?Z#XVtKb8-Tyu&(N|*SxyjK=>bZ4yeD|-7S=f8z&U+6@rPmC+|0czo
zq?xZ-Y?hWTy_4<r^B%b`CD%Xq=ZWo~a?z<+Of~v(n3Vip+pcJhrAnIK7pAL6F00mg
zu`c{eXxM8RL%%A;=@Q-#gBs4}t*e>3Y9H%^{d4?oEDw3Rqo?=t{k^MZo^;uGjQO?l
z(e3*K&dJ8M?lsN#GvAuADqBumUh4gfWRv+{mT#K7NBv^!wG5ThJ-H`0?P)QQca!vV
z{k;6cM5Al<S2sIvjow<V5WVtLvPrXS_vIg7-u*t3{W9FqwEN)UnmK_-`kt+ObW^n<
z`Q(Q?j|GJye#A|GruqJ^R{8oa5uM7r%^oc>3-*~^^xv5Kki#`<#@F&=doNd=ewr|U
z&07Zf<yFf?|7!TgOnc+3yYj%4YewZ4VwSElnRIGb)^^8juNc3YwyJwoFL{-EI`qJS
zEnM60Gqvok-|G40iuk&1irfcd?jH?Y^;qHVztohEzprogC}I}BD{@yzNBYGSu7bW`
z*Ug$=OD}E;H;B0PV`<yR7r%=xF!oQIa_r;2OGiGhx_2?Qs-&-Wn*ODGy1iGu8P0TF
zzJK}BbKR5IKFOUeyR3iIe5(1qLnUm@w;O((VAkh2%cya-Oj%2o*NgGr33mSr7vjSC
zV<x27L|Q#L_BZKQ{O5N^FZ$b;UFMnTEy6cd-{z1j`>YAm6yLv}@qLwrwb6m2rJK}N
zpY)%!D{05as_nwgr;agCS+)A@GoSZ~HT5#fE%zT?{&nm5jlZ<DS{=Q(C-K=&wvtW>
zW@t;hD|-9H6J2lVlBhhk1<Sj2Exa#l|32?+G;htHFWZ{8M(_MMInbJOG2hqiyX6+y
zJ`28Uvc7b>*|g(lzPvh7_IJ8oUt;d#rwlxekA8c934E#P^)kP<VgBySPhAW1ZsjDc
zWX|K~HQB#a<k)oOuh-I--COxnHldj7q`CM_?uMIszv?{RHU5cWeN$Mu|Akn>lv3q)
zc8i=&Z|B*5cSc!V`Bm#J5i=@pzHphjP*=?C*t(AUQ{(R+jd8v@{aF0#6$akvxtA0p
zUusDe`}^<P+!?fWOGVl?OCi-w`$MLANi6NZ_pNVt@Yzc)9tU&%`&B%0TvxTY-BdPS
z=eh3cd#T;ApRUdKJT}>vO}Fc0AIrYyoX<~+$8YZM&b_nVR&68y(i5u-r*`w+pHVQk
z^zREN-$yOtTbPeeJu+qXh1lB%)8-i)hZyQF^HB>G>9v!aeW-9@?wy1el9Q%Zwr6M8
z?X<nrlJ?wacg&YvA5BG0uTOv0%zHw!Z{phvZ~Ht1RMk~F*Kr&__UF3L?JLvs{@uDO
ztiN6-;nk~!M)TdpBHr%P@zmi}o?ECdw08cZD<?x|t?f41`Eb*c{hklK8eH$)pDU`m
z=7Ib4Gg0pOtQu#NpLe@G-*2UTa;@>ZFLN_hG~Xz`Gfxy3p4>9;Qr)c`BG>;i+<4)j
zHs{KgD|@?7{geDU=f%$W#Z!XVUoYF-={Eh@uGoEs9=)e4zgvH1Xsu(vwA!W2$mDn7
zr4}V-hWIi+{>dGh-cdo@EM3-2iQgHtv;2zv_oFY}=I;Hl+<oT!kiLv%KjW70Bo;SZ
z;Es|mlx9>veKGrPcBJM~zge3qPE~&|&kOZ@S=nPB;uX7y``mun{kcK^f4x7=V}4{+
zAK%x<3M<z;?=sStl8T$;<MSnkA+LOecbP!_R^Ggd=&e_#NEXGK-QwDMzT%g9rF3rn
z<<31iKb>D>#lC->`u$lF>#TZri@Xafc5*c2@14W?k8#7Q1x<FlMAdtJ@=7j8{QdiB
za`NP5&PxvYzGU(3UM7+5vR)<ah`{H!wVr;Zv$H-khMO&!ozbMAdCB{^{8j&|oG(+3
z-|3lf)=`S@dj9Q&?{ZIxWppk&^=PZ-y$R{3SH3BmHev6i;A5}e|C{n?@9sNRc07At
z-7(8x&7Gt1cG9wd%PUT@%$WS(i@uZgz9;FI(kAw8zw2;0<^Pg7-ON+-&s_@Le`xRB
z$!VHb9>sb+4$k(rno=R$b=o6g_rA8DhHrN#Z_j>Te#KzpZJ)I_+b^Fva?Y?%b&8F^
zaw(-MN4>m-%N-9*nSQNo+qJ06Pgd7WzU8W~aDAoRM9DeNAMyDeRlF4}xIQm3^x2u@
zJ-j??^Ljql98JDEcUIIXIkqK|yXN;x`pmdu^X#%D19$AZbgoz4Q*KH3g+)DOe_Opv
zx>e?Z+S`9u^RL&Lp7Boin)qza{>N*6_^TA&6kBgATi;=`^!A?VCHht2*}rd#crs26
za=kc(ogru6HG}SzVQe2Jvd8)!OTDD5?y9MkrF6%*oGrA!$m^o;FPr+MvpHk5`>)Kq
z?b5v1A}w|Kl4*?mFV4SkG7p}!Ole8`n)5z;<u@%q!aDWL)#_iBHA#KedtYP;IX#+a
zeBDz1pOc`&qxW;q1VqluFtt6|`^qNNWMZRkXWWss3_p$*znr~z%lp5zbK=sc&I;}3
zvb_<w%dI&6r+(>$vynlMF1srq{>%F7yvk3Dzb69LO$l1H@<sE~)87)gZ38boTIP3E
z;(;M+`HNSRXRj;#{Bfn3Tej-SH4&d`(^ea%%;(zlqTcM<vYppmD)YRz<wkAKx>+B*
zd*}Dfa~8clly9M*Dt+FwQ~I`x(($x-O|fYY8IImN{_UklKxk($r{h+IwyW0O7Ii-t
zpUn6xHuu4*t&5gDW81EHvU<xQqlVnfsr7drnk9J8sfgLjQaPLb&g%mUt2R8`{(G55
zV4)Gi?db4&<4X%&V^?d6M)4UO-MepQpkvENHS5i_)%`VFd)uvpq8pyK=v_?}?RsBY
z>b`$lnoG>=H(?VO>^qpZZGKb0^YZu}X(wmp$L&J@3O2G=|66Dp^eKl+_>EkW(ad=N
zxjU6EExpQrb!x^fJH2mbdzw=_pLqz(OR-O`W>?qZ{xENs{LAmpbjlZ7z51tgc8%Aq
zGshjyJz2O<IZ-2V?d-Q#C0Cnoe)H)Gx2*4;U$dRACRA(*p1q%4;a=eJV3kc-lbP=w
z5bww?%sj*w?@(9JWp|Lz{{6dEyBnX)*lM#f%Kfe^!~dsk%O5{1y!Gh8Hg5N&2Pd|v
zsZBQ)C>HY95Z$E|$G>6a>RRK4T{jBc(sBc=LVsV?FI^PQI4}5X=-;}SCuLk2xi>ec
z>{L5-_SfV|%vYwY`FeW(i@!1R!|%UPzc+XDom}IRqeXwcTH@DFU*h0;mj7AI(vYL4
zlNQ~a{#*L!x}DnT6Te4lF1^wim9upAu71XMg)T0PT6^#8WR_XS8>xB3>c~zN^+y`c
zk7h_;JJiVii&;*kZ^h3T7p>H@zMjw0dtGG99`Ezg3@vze<VA$howw^|e&A!!p5&zz
z;U2wfXU1c`f{C|FQ~ON+8|%+eUF2Z0KJ%0R(VZ!aUhmy-XzRqQEkS|(?Tlf5whu3#
zf1f?A@bK@Ka$gM|zc|u=`-D_NU)ns|v?*~v?)5~MwCzgbt5e?{<r4k!=Uh+C6*7hM
z>Wu4V?p?M^Q<=dlDDuUhB0Wzh?U~vB0`-$8sBBB{UiCJLIn>4L;qrAe|IJx=F3|hL
zf+Jq*ru(<O>c8#Se462q*sf=K;vUC01slpT3h*@*e412s>)oSi(zX@iB5Qni2mE0D
zQ>f>;VAY%R>qKj>PDuN-MM<>w!24eo0cO8;JrVwQAv51*p4pP^uaqZFxjOq@C%*~L
z*Y5f4Z?2Y0Cz?-Q80mc5>A(8wDUOe#A8os;cR-Zw<Xp?6!pcV(8Ej_1di;?=x+qb6
z`P4VrnTDSIr}DQb$6Z`=kF`9$rbKx0{`wcoawRn6Dl?Nl{bD=ZP`Z3+?*5w_JY<U>
zCr{Jr4qbWX!fdIxMUFySJ9oUZo9ZjOsOjyz4Ydu`8FJkH;RgDz7|f;SUvQ~ne&AjZ
z%fx$}N&n>j>MZ8Nl7*??rqo{euh%cLQe2j)WLw=8&9dpS!R?&(6YQS7c;dk$e>mz$
z-4&Nj-`8Z$dRSh}>$y3msz5AMB$xTewT*hL6>ZCY{M+fiP4DA;k8L+sP6>Jya$tW!
zxN`g6ZE_Q?hM89`@;=|IEiAR%_I2W2mkT<PUXc;@559Q3sOjCV+}^%iOd`N*<)XaV
zO0LVl_i*}J#w}`DmOi`TN+#FQlm9p8ypmwwaB_Bdbi?G1cNeSHv+NXew6gyqwe-RN
zXUl@TPHsEP>g9Ur+f>yGzZi+iEA`j&{&L>BZ+z>XiCvz}&-4?q$HRhONhCL&*s1pH
zQY^b9*ZImtr6mXUNB5=fOn+pvwu^CFYO+-=&xwgUGaF>BPT9`%%e><Gjo}hkfiG*s
z<DCy2lyVt<EIiz}`|gsnwtC(AL1zs(cLr)M4PiZN`lQv%Yo%KGe<AZZ0pET<e>j6#
z+InWm;}??09&yK6ME%Zml0P+Z4)>C&0ndI&&XHA#4hTP9CGvpx>T_l}t$p!aOTPBi
zi8VCayz-NBsuw(M%IPX+UbAb}v>-3hX^d;SB0{6>W@zQ!R=K<Md7-d#@x$KiB)^z%
zzdS{!2CbU)Mr`Md0u^IE)`SEx(<?g6KaOmaW34!Rnjt6eRcQ4hgZXX=aXJU*b+1xg
znEvK)eX&#Hvq{On;w1It0=+c1iX=_XSlC>B-2E)W>~)-_5i9@x);2!*v}*nFr#vyg
z-`xzIa%;E9pWsv<&kV%_w{p(NUOxD}p@CtyjIwdwdnfrcMjfx<1!WQsg3nt`nPr<4
zrd+NfHsQ+?`<5edHolrmub6mD5airiTWM+dXUFuQRh{!xD!i(=*95IPXc~XaRWk42
zi$hYz3}O}^eCN8(`L*d|_++V|bQj(ej;lN*&Q+X0Bm9*?xNy=-hSfz6mwst{c=PSV
zABCUi*)ycFuXampxag(1)J;`ho11_4$GP`Q5|2K5w`tAFKYe8hNsHLMn6~Qu%+WT?
z5#Kt~Ewa{K+(NEl`sNi6YYyDq@`bVQvkAlPs2S5sIyN&-K4Lz}Tz{op<MAs}f}RR@
zj87iltHBl*`bvypm*&zbRniMAetJZ_ondYNLt4#cj=qz5*5=-gotZx-1$@2ZxGQ36
z;~e3iD>krgIz4G0_k`x?5XMZ4MQ1*UR5VpAS}w{ubxKg@HBS2#<pJ&Iu79og^>ImL
zlZv`K_t|jqk6Xq6-}rU%6t`)zUH0<MV>Ri4M$2AY*<NDYeJ)vSe|Nb@RbS4xlK+f9
zE^p*x-ElsGVOhnCjdqd=xwlk9?;1Q=;Atp$Qmn4`mTZG(QNXwUVC|E~H&3tN`n2@v
zos!nK@m(L=e;+G5es`Jhgt;nvd)#&khzKN1e9LfDPEUQ+G=?6Z_zbltt)lTQ5zAIt
zGwz7xJ5?+qzjbokw9_db5_!tkvkp$&t8De<Pr~}^asj2<2l6AY6!0?0%DxV4c%8!}
z@hGubmf^*`eG_tm)x%>?YpUFRyD*sH(5(9#RBrCP<fi*OyL*~{&f7(8d~cR|#@b~*
zH^~<;UHt4BYp~*@s+*qTEET8fC#1e;@s(p)5c|t%(Xyhw=C-HUCJG9kJW_be@Z;;P
zs$L}%o^_kuco((V_51t>&faO!`8&Bzoa%m;+)yy>R}N#`C+h<e{L+8K5@vhed(ZYM
zrSkIPoD~}lv$pOCv<_o&S=6n2scP;O!vp`W)u;wv7qMRv&-Nkt*z@)<rZWW_+!^ye
zD<3F%e{1!IlRvopPs%fR7u`=-)cT)sirIz!wM;*5#M!!MHD8jh{4iJ7kWXRG#<wN)
z3~?o!+!^(Zg%akKzm;V>@Hp+L%fkzf+WVr{Rjgn9Kl_Z<-}uv0f=(?ndwk{cHjSlI
zc0F8LWHf^(+-qgPv3dG$rv`aFofl}SVETG$&?z0MBaTOW50|{#?W4Ig#O_77&7$+(
zixRKhXZVx7eG%U*|JBJm_x^R=#4+p5^`*}iABdS$zK1E`S!~V!<qWCIy#HKhI924h
z{Nj{t^3xdpi2wC_&y=&(cE5$^li1Tm2k&2JOk>E|E+93b=K@zl{M@&J4ZAyD^rSzt
z-syhkt?_(jox%-?-`!516o32i1C#0JrrwFlr>6w1>Uw+s%kFckUYel~ruOxm2D#kp
zqtRBeo7)!#9TZYOAF+PQr-F%_%bl0%=oDUA=cT#z%F}Ze9;%OZo|G{dozN@v<2<lw
z&y2pAMH_UAjEw(xs1%rGc`?pYe%CthC0{AygPO}loKgxmAAQowV{fxRa$~Y%(wy_{
z8cRbSe|os!>usi`Q>=_T1DaW_G?q@0dLI(cwCBL%%99(tG`T-d;_97JR2KJW>7(Rh
z$(=&|vp!9n5dFEKMo-xMM*#cMDZg@io9}WK$o3zfw0KHT*1e+5NxfWCg0$@4sCK5<
zP3wtUI3?)$(*^R`Y<qSDYA)rnJ9l7W-F!DM)@PGy4nN+wq$|kl?X??gX1Hv7Q}cP!
zCH|>Ft9~)7Z&@|{f1aARo}=c{S2b~mzpZ=}Yjp17JC+^2$CFQ9_tFe~S++T8x8~A0
zbEj9FYU@#E;OpOUQSATs(<|!w@0b1Cs9SW&{hrYGli`wC)e7=VOQtq(o^W(A{HVBo
zR<<NtME<vBlN2s)sq)-;Cgy~}3C%C+oqwj;1!uflq<(ipb#?1B#y{`8<}<}CW@6B<
zxHhjt_kM2BD^7-2Gp3x1JjQV5<cllplY3NiPKWb8&DwuT+~72Wh`TpKT;Xzm#&sJ7
z7wk_z+qvU-(qxN=j10Hum`GO4+NnLcL8f<mn7U=e&m}okkCmgXPF|NxIX~UpVEPkv
zIrb+$KOHrfmhHBvU3qs(P!{J)?wf~xZ(I`QR#_KbGH=F{743|{=Qcg~W3+V2s((Az
zo{;LE$INKicKu-Od5xu0Ud{V=v+Um6tCtNNbCuN>e|Rn5zw+9O!pFxx*~c<&yRvd#
z<+&Z})@v;d`J8&Rh4;VUy)Sp2ZwJjSnG@u7HuhzxJhRN9*BhU#j%3$Z`pv#JWS5hX
z{>LTuc?Fyd?&-1qE57X$XYkxy^OSpG-ANq>hQ~p=C9X5x`TFmce88Z5Aed3O)G}ew
zj!@Bt=W}ze{x<D<rZSm#&3x^Z44=#67VSta>hiz!-8WHydzwY%sj8(@J{28*a`^w0
zpjR_Wy4HUZv9i+tn5c8|%nzydHD^Cn=mc7y^WGY<*Ua_Qi^o%f91Z;BHpOW!&8qyd
zV(JOD5-ZiJ=Xc}&N_byNiQn$`uU|DQa(StyU8P~=qyFTnL0N&jdM-0so~&9rh3jT{
z@wqv5ucrjPnqy-4^U=4eIlU!@%PO*}@9x;PF6b49`YJ8<<j!9^zaI5<Uf49_zg1YU
zmuO8*$fPqhyx)SgW=wmcJWKd5+xw_HcfK<&o${)%^pud$?Xt^?;`(2fx%YimJrJgT
z%<1Csy=NL{6?Jbu%<yMwN@=a$1aVGZrbhy<6PwR+Te%<3RXaDqJ#*T>QnSCRmmj>8
za{s$zN>J#WfYynXo}J95PsNnqg?njUef0PUXL5qx$#5IKcfnpOr!r3o^4dGSXsWTR
zw_b4d4Q(;uGVP^PxUS~h{CCK@ivLgAvnT8RWlf&Ta$qgrl@b$%=avD%eS%f-_r&$p
zYd&!wIQ6H0^1YuHj19#$xtnLMP&x0Jxs>znF6Y^^eDV|HV($j;{!;VwGUxw1LkoSL
zZ=r|xg-JZ9WzTx`;PBIrZKr~tc-<8!-;*X;G26@NfMOK$w@vr08ctMxihMQw{KBed
zZ+)lFxKjFI!K9RV0rEerW}Io_xfG?cP?;e;Lht^wZ^@sZ_U=2K#NcIhM9z-&ME3hV
zbEofRc=0NC@xp(f4t)2BU2^RAuN4#W3^?b0@!izO^1#`iUAXXDi9+~|l?)MK#rvn*
zbgj4bF=ASKQ~TM9BOTknt@LM%3=nUKliMEkGo9hoC6)ti>#j}mU+b&M7V`0u<VrW8
z2g&N+r{pS4x|5zBe{m+moQ#cMIvHeU*KWR7urFqXeUjdXiiX~&&fWFu&MZDQ{&#jA
z*Q!)E^$kw@fB*8ixU73yHC{?=`Wl}r@axL{gG)pi{L|tC)fsL@YsciuO%S)dYbrO5
z+w_z{QOG^U4^!)FxlYXKWni|+|8~TPVcGKTGwXkeF=$WD)O`Q#OWO>=l&5F%@4dbI
z_0Tun?6xa~v!C7w5S}UWUE>CWf!Xh_f9wvs8km{&PhGzksQ<fc@4^SdFFzVzbUw~h
zupex)E5qSE`QPPs_OdNA742i3B>9N1X1j$|PtLpID|s7(CnTGnR6krR?X!>d#+<z;
zpD{_Vp0+LVE&ERG*J*nf-70zcajMtKreEwOd)~~;XS6u>zK=EKkWc%)1!bI>@0ZNJ
zEILW{wd%$=wS~g_jC?$%-JO1<{8L7*fn=cOM`Qm9Q=Z=3%^=5rz%{HZY}VTUD#f2u
zwcS^$oley<ef9i5&+Wq7e|P0DMt)>Iz#}iU?jt*c>dQxAPQr{k46BwLy4e3WO~Ny+
z+_UcX*4rBM`#-&0XQR9CzNFIaoXl^#7um@D4edL<EB1WG=4O|sGZsHjK4<v+H)H40
z2%Agm)<2mUvp_eoZ11nfrN^rC?nr9ZKE9ptY>J7UPM*^3<o9W@{(%w?Ou1G04fkB1
z`(e`OF6~J@s{KFiu59R$;FzGLbtg7uveMf*8eg~>!nH#;*1nHV&fBqx|FYX7xt(!c
zk>Ac1OxwxexhUc7CYA@>pNmA7F&fm09{9Fr<36pW^ZX>d%-+5$pU-6UNVQ?Z_Ko>c
zj~>ma;|@MHd;fa*U54N4Zhs0go_uTl<fiQw*W;~u7!-b|R|y@^`CRm!DWK@YW`;X6
zOLyN3v@m*hXx;qJjlzx-8SNCp4n@_O{AFZ#Y3wQb$4zM3{d}#Qx(iX7uR3}<YV#N#
zd|C5al4--ql7-g-YO>_67o9$HQvUVopwPJ3t;r9koWEc5<d|RXth6Qf<R?hq;dBU=
zk6O2tH(}+;V=r4dnNL0w44>J~zkLF4lS<)=dkWS8-&14#^A9-P+W3y)%(^A{i=X$t
zUp>L!Io`o*9oqu|`KW2GCydpWay>uBqq2FP?Zs2qd?vRB{i%%?%lBH@&!FyfC2vzn
zrBgj~%WbWtdXwJIEj`T0SSBdBn$K>F4I{(lDS3g;|J%;5%T8MRsx2z+-ov_`7v*^l
ze7n18-3y)rF(nRn0`>)Zt@K*0cz(@##-}VhdFKWjZ1&-1s58?IPc&jMp0`PlA=>@+
z$DjB5rc7E~!)GD%tb~DK`|K%FOfM#Rp0_kn=Hl3Jav?*^)7r!RjMKJ7O6@bLI}v))
z$R)&T-Sr!x-F6n{_u|59C-JCGUS)mpypM%YgKqDp^()yDW@)eZ$JZb#WVoS!h98r#
zOT%>&<^{8#zZKJA(KuJ47x(f8`|+I1*X(Aum6-9VPu)NH@cycq-_*qdLn}{puDZrl
zGi%?OScWgx{z-8^nfujrflPoU&o(2yYwO>8?A~-S@zVsA<u6{a@4N5CGuwX3!zE68
zpSAN&cCNQF&^|HY@sT~r+KS~`X*1TdI48}!7ybKl5(As%#R`W8*=Ni>o1=E!yFO*#
z!z0g5R5Q#;{eR?F|5`=K+3J7)-Cy=%e)qS61(RnAO7UB$8kou?xZY9{T5ccpfAgk@
zcv;DlOiVc+Ob-}!w`%vX@38(ImYu^Gkyt%H_4@N(p^GacFB<)}OY1suVSVAT|L;>7
zF6}DdWqNSv#QpQk1?!d1va>`yS7iv|QatvFiDC8T^PkH_8T4=1tbX~rFmY-0aXk;K
zDQiAo<hNGgdOfYF`s_~WhT2P0R_vBd2)*()EuLZ8?`@r;8#WgiCtST6Q|@&3-&}J(
zhHC#mcJHT29q-OvEN`=H5|`}HoJR$lcKTkEJu_!>N>a$#nYUabbt|96J}hIHXDlQ5
zxVUCpM+3uj!Gnq3nQGCQkJ{IqEK5?_?Y=D~nD3{BjI7SK{@NEiPIOz895Mc!+&1ZH
z9an`&M{#%XrGM@W1+lM~7DjR!i=S-y=&x`<=7H{R<_|MkCz<~5u~~bQZPu4fzxT*m
zoiYgPc_Cq6&oBG$ON(T3+qe3M3vaKt*u8fBrkF+R_T5-1>gLQK=O4R3Rv_Kx`V=X>
zf)(71jMq4F*?!z`I=JxSa?8`5o(F9jCb3QPx6oeoUh1F0^5je0&n<Qz;K*&>V!el%
zVTZ}H89nKjnd`SQ<j>?YxV$HZzjE4kO9Mke_MV5={5wu4O#Sk`u=yC*bY_F|mRDcd
zE6&YIe7lw*J9)Wd>!fc6bEm2*9H?w#$T9sYd2v&K&$|}~jy#cNIJdQ~No~@$z3=DU
zG<nS^`kz(CchxW515H!pyI=0{zZ2MbQ0{SzJ`<CUf@J?0xl3x3WV4^Xo8{zYCOkPy
znlbElMfrdB4PS4j1X}Jq`jz2KsR855+YC!retY9=+;}A8wU;-e#igBjEG#pMH%|Ro
zpjtRf!#Xa0!J3UPCQjm+D7Zm6*u?m+i+%cvKk^A*q)*RdXSng{9;at|pOCAC;=>&s
z%C*lD?3tK+GI<Z=zU1Dk*xge-B`C{ef@|K^y}!FtekGcnljQzTy-c^N{YTZGXG@qa
zKi#!5<6&~Odfl(GF4fSpUl|^j*yS-Y`UT52gkPQ}_|;U`*(FSPa_v3g-Q4?c-%OR@
z+F-GmZSRs<8qTvk#cwWR4Xo?&&j>FzKJZH=GH5=_g87qeIXMiH4G)yR^xASyFO4Dh
z$AnH#wR7v&wz<fh%Q-3Yh55!T$L4!Q><sqSyTyOcOEkE7(dwJ=#1(a_CnI~eF^i<H
ze<LQ4F!v%u_a%`P*76N!e`nX9KJvu;Hm~d-&o3)yq<gP;A$dUMkgm7{;{nlgVN$!&
zs=lPpmN534tJrwaQ#LP-Jt_7zGt-@CrVK&H`$aN-R-f;enYdPFwv`*Jzl(h5r1CYt
zS86W3Qp@lrYrW(9i5owCSMlz9WAWmr=r8^Bf;8T{s+0H3pEU3C9-f5B^-TecmL3N=
z|66OQZCez#dv*Tn2QhzR8%v^|Z_3Q6IofHpi}%04(l0gh7>?$fY`y6^^YrXjKEHd9
zn0=h~*)-hdb8z9`x$+;qw5y_jTLzzLc467J{BtemiRi9lOtX*KUCk5^-4efC?yvef
zwg-{Nr7T1}Huq}=z34Ii;q!)H#mZymhh1f_^Xrc;nze_qkn4Qy-GkvC|D)5KYfoOj
z82fwky@<EpWo90-Ddu3%mYuJ{`b7Wx#3@F{TMnyae19o2-)wrx1Mi+m?F*+S7@rAW
zsn2lZmy?>dXyLZKSN1G8A2N^ez_Dj}A$6P#(o$MWr`-B3|JF`og3+Xp*$1|(tYEbC
zxOnMFa%b^PUGCKB&lWC;6AV=qS+*qh%te33L*K4F+Rt?6tWRrbO~SO>^Dk8RdQVLK
zakMw!=>>m=J?o|fsb>eWKCBMPmnvmQ*w<{ggYoCtRL!<Yy5~}JE+{>3Q|;WynQ1*~
z`!TtFyc<?u+a+Wq(jB&H*Nc^ZC;b-w=Kb`0k%Fn8l9GPFHLsP?rlBj&rZ3lA*K0d{
z$Hl1)HYz5%Ry7j;X5Lw;;Jhn4^xs9Lhsql_eX6^2`@O<}XKl%<3ZMV%o8&ZCQ89GC
zw|o3o&oeLdZGFE_NbgAz`@1SB{%w=4kN*A(oDDM@zc@4md5KHLe|cN=psXQ?^QT5}
zfoI$e|J~--=gWQfjJ|2}L$~hmjs)Ha&t2&YG$-uj%38RrwdDTYqaRB3yk~~Z<~<-~
zel6KI)zm6@cg$p8u^!e%ON(Z4+j5?8wqt%^6}sVlXzi>o?+efEbKSJ>$B~n6PTM^?
zcpm=l(ckzgymM_@ZIZ%?f(9e&ye~$M`)w}kU7M9WV{+`2Ox?JG1sZ#N3J&{Sylr7z
zd%whE>V<Zjj!vEr4QZ(it9j+-i#}s4n6mlpmiU!-7tDW=HY4D6UDd9cDrFO`bM}8s
ziT>WwQ+*>T_KT*Ma^wu=nD=q&+3R}#aoC={uIJj#nDN@lpXpQIbKyMiO11iuT?=hX
zlF#H<Yc36WT)pUXLrT<!No_mIC;0~{$`wYkteY1j_A)T<c^zkGr1G7Mt-JCs)Hkht
z9;sQUp5T2zZ^50QWM+rXgR06Vq78n1=Ao$*%BHWgUHQmzzVs&dn#n%r_Y~M3NRj^P
z?cr-ylvD1utE5zHYlVZZV0iR9C$URhi>%H+y7nw}YS7i|OdIBZmgPKQ?!y1L_ORf_
zqyL^d?Q6Oqdy63`ZHC8T|C5LF+?b}^@L)2QNJtKom09pz^PbC`Y#Bwh*ZFg=7+$ns
zZJ58->W?kg3{EeWH#{O;#ft+?UlcRsl`P#UENuMsUsZOO$=tgP7ALEoCNn-uxw_x$
ze%9Vi%8Q?H-x7Hh_Ic8_N+yY<o9CAu3~TU>?0CRBh5sB|Qm*pv7RIohPc~nD6W+6?
z_UVNwuBz-)cz-{NPw-eUSF&}M+U0jQLm%5MoXBvdJTYle-|oA&ez{fL-s-5UuwH_@
z;o>Q^s80UfR};4KD>HlkxZQo}t!3B^3Hvik)wi%d*qdX0gPq~Ik=qW}+MA9ajT;vz
z2-X!d*KeIGvy)#;LPk_7kNL*E3tQEk@45;nJL(%J{#wsa7BNkI73+cE$TEMXm)Fyx
zyV>WkKWTA$)X%VE<8qM+?mP?+^bQM76so*@*3EzB*>C)QCiCaq=RWW;Y_;f2CgIks
z;$tcKr61cCnKDTKncg(H=F|M&cY7J)Gxsnj1h0KDQESqYW3i<ln__h<bGB{We#?rp
z;hf}mugCly-t%U!-ov$HNlH?8mp9`f-@otN8|HsuNm~3c??h|4&r##P)oZ4#+QFKz
z=IZ8kEJh!$**@8vd0w(MD2%x#WxLo@=R1F^w`(lDBKqz3D+AShn?+N&?oP>632~@=
z;IedzQJ*Snx%Sd2RqI~dcr4v^`cP`>!%dq$911+W_wCi{-K$nEUmL1A*-C5at&n?p
zZ%qVU;<Gky%>FI5^4i%&$DVh6of4GQdN!&?@r$~{O74GIW|=WO8;<?I8rD#+(_jB_
zKJ$TP=gpE*{{GX<E|}NEen>%U5&w-_D=S15<{XMtWu1C&O1{L^v^&Bll+I3Heqzff
zzWuuwUSW4Q_nV7-hi9xpSjboRNskhDxbD?odUB%I_XD*T9?d+=Fzsem&iDCS^ndt1
zxnRf;leSuF|AfN)UH9)^P~Nhf{q`YieRt*p=Pw5WPqt6u5xSakDzJNtn!CnQtz70G
z_a3bbW?XhNb4{&Ezq85lZBOj-@|R2fm*76oSXb`cs<PitKzGmQqTD}HO0V3-yr-R8
zGL7?Y)Ee`jok6$$y$S2COYZ)vcp@t~miJ-n#Lra>8>a8A(_VV#gS~0$gdne#J)+Sv
z&fLd2YvRk}RCZi`;GO8B7QJb)%9{Vb_49uP=bq3OEIwYgbjmMB&84ek@?JhUbj(Y0
z>ye`5Q1-8eE&B78s=v=%G$klv{ju<@Jm!c;P7=#}SFK^x$a_<6&-CY!cSGpK{m$KA
zuYY;Jw}0(|DM74{B&x$#Ny(_195N8Ciq?#M{>RQc{XJKN`MMRqsuC{5zjuA^=+&LG
zCB5{cpkdXmj{1`B^f!NhF+T16$?%w$J&*Z@*{fwM%75=<nDf%JT+cvnbzGp=N-gU(
z>o@SRFX+B{tnFp@?5MBi%q?5@u99R3Hh!^J-$Q7#V_muP%Cy7=)o*1NnNIOuJtXj4
zum08Q^K%7-6?L95m)}h=U6qw~eK|vHW1Wq|%%x`zY?@o!b@bS`$=eR`i@kV%<>04-
zStl&?+rEcH@b#(5pOlyxJTE`aV1bR&%cYlgtAAnE_^Of>rqp<CZW!-{t!(cYb+T68
z;fc6^xgti&I#zS3R4%hd_QEMap^Vdu&hKc_$XRyc`)gHo=EjaMey5j;-Fxzw@!!Wq
z=G9$0ejQyU$H1?#^oxmT@|rpNi=AV$dt09|=Um_Pbq|X}{n9D7*gu@Id&0t=Tr2uQ
zi?yC<g56v{hf3FZ`@VQKPiL%onP>lM+wNW8KUhxs{OI_EG?%w(^Z&90q@~s;FdQ)J
zei!s8a<P7D*=@#vOCc{aTmPs3_g-QA=i`-GoB^|#U)H$1`K-Htx8MWr`HVSUzd5e3
zJWw^SF6;`-)U8<&l+HM@<$Af~e~;7V4F98YzLXwN=+~{^x9&@g{>&wx6HaN?^{DYP
zS}HP!7YiQ<tCn2Ae2R1PK^^0JiPPkt`eg1rYB1%)w4hhn3|1$O`!?LzyDa3)rl<hT
z&@EyKxhj{_FAFuuo|S&9TlgoebaF3)u-}I|lZhdgYi;t)C+@4<X2Vm^*QJ`UEVDw8
zL4Eg)?(!bzlfT%!wlX9%zN<GCRM<1S()Be%TSRuqw;CSnh`+si7gz|ZhcO(h)SIah
zt|7kXx@-5V_;{HH=0C36TrXQUo#ffIvU+aDj=LXt@?Wj^GPl!Xopxkfx#`*!Yz*h4
zv%e-EkdRpuHAQmQ!J6IooiuZG8sFR0t?_4Gli#}gRL1pq8%9g7^aDCeuPHRh>ix>F
zUvl1~PO75*xs=z+Rj(P!Tw=V+c$s}n*1q8BPVNixx_XOm!+{@cvN<x|Mz?PE%=tUD
z+4AmLLG4ehab`2QPJaK<aQ`mH2f4ug88f$?5oxf$^V)goQ-+6|rCfP<uQM2Gua{@Y
zND8}ry5Z^;vsi|TLlqhSHzex3%-i{&ZJN7Z{PU$fpBforUMF^I3i|F_{pX!q!}mS>
z8<f{>OE_p%5W4pXmx9@j@5Tyg%1^}(G<m-FZ<u;b?6r|(zi7oSd#fotr#%$byt=#k
z3zt{^$8&7E+qcd?&VA&osqpSnhk3@l31PRCCUw4!oc{X&XPdGxgP8QZqsLMif_=1v
zmTx;aP3o>K52ujRLgRU_e_yHH9#{CT^QCOwrGUTpJi-oLx8?R($$LOK&UAX)spv_6
z)-YN#PnxAw`{X1G!@0t>{MF1KW`ESRlUQ&@LfC}OVC(-=e{Rjv|G9SE-c#9j8~mhw
zj;WoW_{OHyA<yEk_ne2xb>+$j*sn31@!x(-@a10CcYBkcuH1L7;>EfjrhR5UGj15P
zF(vrgKUNig{%EWH1-8lc--?(1b1`dt_W!-{dbOCH4RcvHN-ep~IAKRkcD1tPM^=X&
z`#w(an06<};?e?<2h+ERhTdT?I2^S)pCM=S?eOlFs;uUdZI@%R6#G=4UH0~$AfVnY
zwz}byt2)E7WoE)&(>`r|$GRo_-mDC+i9YkR*Bg|)j%N7g7d~0T?)$cDZ>$-lbH88H
znrrHRZ<Dp{#slZreq8IGc1d|%7W3bCZVmDx|5%rJOMaYooBP4!$v1ibPg5`a!#Gh{
z$$R#-mG2A>6z#g;$gn#1`!%EX7r(C8?v?OarqXwOUqSy%6Y~Xsij*g~<wgp%<dqvv
zoxDQssAbo_wYD9q{4e~I_6jw`U%qN0ny}e*=2ZTJv69E!CU1FPu(!K6Bjh%Z!NI?6
zXC&AIqHe#>WBJiE&AQ^gh`c@H0cpLm2eA!n3*)xxhG+37nUr4+cZe$7{ws096sxcw
zJPC<xf4BOiUYw9xe5-Y)atFs*?seOf-QEVBm~3-~QSSn`ho)s<vaG|7*6z3anKvl@
z%eWkPD?&(8+J!@**I*;dj!55?210kPm2;Jf+u!nBw_I}CidWb2%#*u1zTSIWZq8J*
z=-@V!)ibOaf1Ek{?LO0uNd*=q=bR2as0>>!@!<Ov(Y@RaR}<f7H&{M<y2(lS(7TsK
z#=EC5{&`q`%;u(G-3gFqS~D1IXT4e6mE=%zHTHpNL(0tKuDeZFY3dtKof6sW?9KQr
zvUb5ShBI4khTlGsAN}Z4kK>)fsvWmGM1P&U@pHxh#Ze9VTX>k)c$EFsXV%H)PCcQ`
zu=Jz*_nIGu7x{Xt=Ed?ISsnBK;{W64<$m7ZCpsmFol&VftyBKsnfRlOt4_9EdDGKW
zt@Byi!Gb;Is^1l{W$W4a)T}ih^=?al#J+H5!|l$(I2MI>5BAO8vis76CCkE+zV)v9
zyyVI^$@itx*Uta)ij!>_gU_i|&%-j5XKB=)@lNY=;e6guvL&cLYx>(}1^093PV%l4
z<6nNl`|924XNnn)Z2j0<=I?g>-qm+jRg6b+g<||=R87~KS<Bj-+^68DKj%e~@T6PM
zwZx-0oSS>A^~a`Fl{Xtc9iPe|GwVmA#f|v6KN=^0VN<xK{p7)k2MZ#lR+Yz}oUxv9
zn)K;fY5Qpr@qK5Re(3#vH#_j7IK#hU{nL35g&NkH#$+E53(wqnPo2e2&02ZW%v)*?
zcVxKfubuKlgk6w-T14}q-@k5bP+2l1$n<?Qufi>st&5JnntH5X^;)^lKbGsCOEi{F
zx#b`9FX!#!X||754y?M=#Qtag-p_r-i*7M}IQj0<=_Zkvz6YAP#9WTH?fu@xI=}1J
zo41i0%8xef?Phh=xv^2HLqjWeiMQxWh0?~<)8GGD7@t&`c~Wh+ryA$?>i6I8rM)||
zSN+VHlY5`fE1ER5;4^>l;u>j})2#9`r8OK3-uHKIKhJnJIDO`R@rDiYSIrz{KX!G9
z-21pbIQEUO)qDGit6J6-@>}yi*ql<^84;6wa@*IbSDxgCOy99M_)>Z5i>-0{-_QA0
z=bhwXeVj?}W!?7TWkGQ@wX58&r>svjex%-fxNLgc_cgrX;(cFK4l`JMSz_Jh6a3cL
z;$Px(#+tcn^aZ>3Jlyso_5G3sZ(4qx*Z1COAM@u;>eFe_o3f8Smn!1Ed(v9*Q^ENU
z<rbl$%S~<W&n#N7Fz?Zsq`yyl-^Ghte&tBb(7nS|*5TKCx7z+s&3%?n(f^qYZSPO=
zSY7XQseV)Wrt0f!i~j$8F8e0ssOdlHy?JI&%%oP=SH1T3=Q7?WF4n&H@XAxW%efi+
zw%@+ZP~rZ{q^^QFuw_%pitpY$>wiV;Vc)PVYteD<Zhx6i^|SB1vh4k`_wBSReyhD^
z&-@kJ&9~-9jI-WGbB6Px2WJ>;K6*3p>X)R}tD&v4849jkT(wc8Vcn+1kH6RaIA|SN
z-#Y2?E9t0{S5kLPjEeZ!>6v)FT$cOTLC-t-yfthG=1V@yyya59KH}DrN5#CBNAeaP
zx3Njh`1^Q$<*)9SWr}Nd2OIw?b%-b|(arccH<pL{!R>iUjXQspZwT<;s~hk$N_v*0
zQLXl`zV&&$b#w2}Qd@gFd+YJjlddIBTCtw9>Zj4+DRUIJmhiotv{rV}?9WkhQ9K65
zru|2+GPE2!JDc%<pweWWg>5f4{f>OSc&~Jk*aJa#5%yWJ_P&}Tt}aWyUY`A?{#oV8
zS&!eY<$AUI%;(7UKUdaWUHw<=$OOMzZ6%%Vx^Z(oc2{gxZT!!4?!!G{h8ZFo=EmE<
z&oh<D?W|byHFCM`?(m`;wlzO&^M6gq_55dU={DJE?rL4{#8s=jf*0)0iPoxa=DF!%
z+^)B9_if2nXTN25xrN*Rm~b`OgkkSdKT&y;%qv^!uC2ZM@|G*ZW^L=pEEbn3Z@rm$
z-&Bbo-8=b0^n+T4Q<o!^4C-dBxSKue<Ffm0885D=D&LJeXXVPk9c(oDTGSlJ!$<cq
z=&VsIyVN)#f7VmOeAn+Q+wVG0l?~Ho-W&U|({tHpnb-2W;;&Bc3A4Dw>?xovy24pc
z|A%h7V(pc(SCcmUs&u@^obW%S=N@~(o6M}A=U=<H@UcFq*{vF1|NPAhJ6#pI__qn>
zX;#0y)P3LBY*-&^I<3t7>pA(kj(J%RZI;EGyt|R>d~LG)GVhq~+IcJoHm{WUE5qQo
z)h;vhoN1}6OH`Y_Gv7v*n8Hs>%WXdYJE6<)S^NLvf3gSmtU4K|nN^!nJMsM^zO1sP
zeNrpK(;e;!@vq8ex%z6F==`h`f`^=*#GH1!62ZN}Ms$C}-G&L@cjv8Nk*c<VQD$GJ
zzL2lzDw+Lk8?N^APT2Er+L!Kqwcls%UT5?AL*81g$=WY@->RI7w`_i~M$SuF=!3gi
ziutw0YlG9it8_3kdbCdT_uiYk<=!&eIa*0J2kwW>T;G(CRmC1!aA}`(!?RG~eUoAW
z#eTYW{hRmWZg=hXb&~b+udL4tubgbexx%m~`tP*E6ZF2c`Li7onrRtmeJgvV#NR-L
z9Vbr4GatOuIjib{@!wGEJFZjDtUk2Gskx_iRZVrx#M9duz0~#>eq}67Rk~TY_})5;
z(~Lh`wq6eTG~WtT>?l_He!p{h*Wqr)fYr~ZzDpO^VUL*H6{Gg*ko}QgUpO5qodr4n
zeX-M1TKFm2Z<Ue%rH*5lSF2Soy_vmow-KYp{Hyz&u794j>gV;HKg7~Rc(=@AaD6YA
zeaY;Zg6z7wq!Z^qZ)egrEq$QQ&@9H3ll!D_;xuiKqmOJ1_!AaCZCh~D&QC~i;;YMF
z9N%awT@7Qtv9a!{_VQktPZPo$H|z+QKT~>@R&8pg@zv;=2iA-3sd#JpH1<@}_Q}T?
z4?ewf>iKtbzOR<YBo`hK=qeKye7TP;ElYQL|DJW15+1P#wH)bB%e3*ef5Ua)@~?%>
zX@@i{W1dJb#Jwo|Te_G3cJ6O2>Bj1)k4l=puVf}$ZLj_KIzBOS-kc*oz5xY`x4Lv$
zzuwn>=kbrQ&+=b%Jd;j1>8xkzw&ZnnxfNFz*Sx(!Lb!j=e#Wk#jqk3;OnCpg{Qy^k
zW>~QQ+3F2t>8mG&m3-Rnb@6ZZ@89<G=J09zI!>O;Z}Ia{^e_HDZ>H~``~B$-iR&es
zn+kp^Z(V9M$@yTx^Y2NY{u`C^-<}{bE!=6s`Za&8N^@i1*=`RzzIbzx!X!6_+gV;~
zOSc_#(0*#P{b^K#s^`s^H@_lZy#Ae1UApw*L-YOSrzd60pWmEio0R`Bf6XN+{oE_N
zGOKO~hueJ;*zanj(rVuEpw4#PzSo9b6W((kP+vLWWun54Z~O23RJ3pn`~1P!QzB=2
zfEM$#c~KvKW-goOrnvQUmi-s~=pRRIFKdKN<tV8>GqH<p$FclQ9?t`}q$0mRH(!7E
z_wIjd_0Huo&Ulk6%YBAT!_RdkQ>oTZ2m1`Rmgh}}`O0jXL+h)p__X-HZToc0hsQeD
z-HiXF)IPZ>|BjYCE%f60*}iAju|nnZpQGiRr*7OMbSzX{FmoSE!&j@&f1(|h&#$+9
z6kq1B>VQmx>$Uc!42PR~O^>t8Kj7NAWAd9%w{DpC_e2P@=5g=*vF_z`MbT8H3gLw2
z?BEAyQn!6E-lYFKv3IilmdjazQm5roPOxQV2KwLDPOQIsab{$^%M&Mtd*9~Gc*ApG
z`^pK~3qJpy$(9(pVb;0r^AE7p*huqeutxmJxN)p8_PyA(`?FVWU9gX7#_MaBUKL0G
zTKiq~fx>J@k+>gwx4Q1J{9Uq8u}A!i8(Xj7to9E7PcBQgUF(bZ@kKFCdfjA3ugTNn
z4UQNyq)wBX&GL|OPwX2Wr+aKCIX>y}S>Ea2Z#CudKi=077nS4kO#T@&KDhqkab@_r
z?fWm~N5<$Z+9`EBLb_g4*_o}V?cT8o;Z6sl>h9|$?Y+RTnr+^LUz^Ld8N!!17?dvF
ze&^tErazBz?1IA83fWoTTl1-_&cD^V!leAfG{%`T+Rvm3?hs{MExD$A*TYwD_@-7n
z>_4{YN{F2ClGbm(e!u(TwZc-Y;Zw59lJ3V}Z~sVqpK&?PT4Ca(y&sFs1=ei;%I(s|
z`tr}qi9f8e|EUFLY-@SO&~xgAzz+w*1FHj%zrB&vwzY7l)@+VFOX5@F!X*27{jz*R
zOa-4!y$~hNoNd*0qCIi_{bjQkR|R~2bMoZ(mVJ^O$KLd@>~0F1aJ(V4aIN>M`&;D1
z%LF$*PZd`U|E3bmvEymqmHO(iIdlKkz4&=;T}>C4v_z0!!i0MVKOg3oU-Y_Nv(!au
z&j!smf2}n)aj!Od_ugIgcjYxE;cH92TQ`(GZ;#GBSMhr0j#HQAY_&E1UEeKZYw_Z7
z_12EPU9Up|<@a6UY{*{Rx1a66sWV$Yt2pq+uJ>K}!^hbzNwdjZsXx0`D%RnO-P7E5
z@dH;*=-zl%Hs{(4=SkYLrybd-(=}`VoXF>HvshQX-w@0CcgrsmjX!f9Gb;sEeDweI
zF;j42C&Ou@-|ey5>*vXq?pgiswz~4uE&s2~<p>D7o^Q!B^-;pydY^8t6`UE5LQd~?
zUM2hQPtxz&9<CGod0w9igXS8W_%Gh-E4+pA{2SS2zTf5@eRe!~>FX1_b$0C0+@(81
z*6}fO`n}ul+g6`eaQl*!wm@@Z?4);m3<;6T@>12?rg2yw$v5PgdT>+sn$npM^27NI
zluH!WA6MSY_`|p;>5`s^hP}h26DQBPudcqZxbtOt`xejZrVRVHe|@v$a{s~C_eziT
z_p0^0c<Ss{IJ3Cx*^+syemq|ky-A?=M#r`jl1B2?`;VQy`=RH8l7h$9N(TdehmKd%
zZ#Rmro;*|YtA|2}%X<cQof|*Wt{psgdTpVt*IUs$GFy6mtQ6Kf?JbDilrHqtkFlKb
z!LuX9yY3yDag$?H>#S(TwqLq!iiJ7$ldSJbnP!<C;`h;&2wo)Wb~anr{@vY48uuF;
z4tq?fKX>NAYWpbut(>k;>>oUfyO`T_ch9R$9pC=9uAKB$^4*+|G7dXuPhj+&VqkZ8
zze7zA^N-{CnmnD0H*T+aWi~xyi|C@)_d{p%w|MzltXw=V^`wr-Zef8iBjx`w)%MHw
zG<KZ$wpsSogLaMZ&9nH~9_QTay7e+6_{|m7_3D9dLOw7a;JUs{w&Yo9=qyz)&RNU!
z7u(kI<b5eQcGqQ5m0H&N|3VD^3NG96o>JUtc4m(#!{)i|T<5koy^ikmIDRs*xLZ~5
zY6U-sU$U5-?nN0JwUox6s*_{mTy;KwOZvXenla+J|GPg=iuOJCpQ<=Hb75uI_1(+Q
z1zt`$e&X;|afX7f+p3cp!qkfMLygb1t2^mcur{P!J-@-Y`0uBEU)^7x<&zD6Zy6mp
z#s2Zu-BZFhZ^(SzxBJ~yv(4r$u1_i%?g%ftdg0`)1t#57xJ)*?WNC#+2f3AMXWZW_
zve@d_f3dq4#2ZfL2@Bty_hyod<k$39`yaCBvp?ARbla*KR}>1S&RzZObKAGb<1D(G
z#z8@gP0q&f?|ApP<3`~*Rm%q(#D0j^XdcX3!4<Z5_wT#WzZutMe|W`hYdRtCp_=iD
z{AvZQMQ`;E&A1uj@@-?5ih=v}TVL;Qo9+GX{5gw19DV%@zrR&FwfB-%VAc<|gk--P
z6SvD=`EbzS`)#oqd~%&EdRI?2oL;p+P~c4SG#NFf9FFfUyUl&3>g23Vj?UZoXNJ0x
zulmiikBe2>V$WVMuiWyD;lZaZUQ?vLJbU+UyF?qyi-o%-ilug$XIC9b%=5i=L`6%>
z-Q^!c#5|wdhn*c#X8mNBowei#ul4MbIQ!F+|3^(U`<8e9+3cXeS2y^xrZDe$bMY2~
z$ENuU{AIW^o+>*}+pzc7wA?SJ=6z;)Ao_Hn-i-G<x2%|5ZFG4-_KREfhx%+quBdFz
z&v|2U&)YV}?EQ_KW>b55jAYaGxf$v{WX1A*2(^0ZDcIX6B0AM{Ny`C`+M9b`?S87y
zc;iLf*JZzi8anlKm#bB;T6-?*jcD10Rp}eQ{&iMPb2$5)+2H1;Q|n&O_K}a-|5Gku
zVfbtR2NMq(-k!nyVfp<aiATq@UcBA;ecR=z5BE~$a2woNx^Uz3o~1=sE-bQ*Z++df
z>v3b{_FWY%GLItu8tjg}^yCCf9E-;HP0IVZ0;Y9sI`=Zoz~QH|^>5vFMZYVe|E&Fs
zD<3lEKaO<JUM~?dNu;C0hczN7wfSV3?YX_b=RV9Y*(Keus7&zeSG`?t3%+X}4^|8{
zvb?<aywDT31E=mjIrKkiTbl6osPFH;YipfSNj$-EMe$&ExWf}JhHnM=Icx{^=J~#o
zyS7tn(c3?F-V0tW5ndr2XFcOnMo)X7WwxbYgK+Y;T~z{UlE2yBSAYDi_BC59V7W+=
z=xu9G4%QcL8~7Q-cbjJB6o#((Fn4i~rk_WOc3OP4@$=mwA{O7K#wNYGD$BUTbgj_R
zwi<VnAD?7qM?X_bR-Cr`_dSM~NB1hE7~FT5uFSt_9V(zRh4Jj7ob_G$MGI!z$Ukp-
zsxW8P(+6ur1^l)KH8f^U)o?8-)tJ0o+wSfIbAKkoviwrX#}kiy|0QwVkNwATBeuy7
z4lYY#B?WC}MwpxKV`O{Q72Y{{zv7x}5f+;j7d>*n7F6&>!1_f|@#Zdn^B-qcZd8*~
zs#IlI&thL*_pEvOI?Fn7Ufs(Zq`$kiSUpqUckb@f*^}0KFYo(R!6T^SWAZcIaeg)b
ziXUrqp0GFkj9VMeu*Pe-&B`SQQ?E6Dm~nrSgw_&GhWx5+|9SbgUtb`YeDZw${o;cw
zB>Lapba?bskt>h$v}(|&8%x`_ZT@rCr!jK&bj4%a-alq|;!rZ*x4)>Nw^!Tl@&n_|
z49_ae{&V#unfSY%6HA!%yEJOstG7o|ZvOoKVc&h>jm*aP{MRgxaob+IciK{^eRH`5
zFPcT^s_#;opm_Pho1S?ui|v>qGV7&8*Lp8n9jLXLK};>l;N<>FZ<qVFt}an)*{?lu
zs*|6%<j4J0kG^+tU1$jmz14f(Ku$n#;_Bkue0%nvkuEMay4>BaE>gFJU-4a3|MRx+
zp@!f@v$v1LQ<lfe_0HJ--^R`5$^6gLPT05W_U>QIqo%p*iN2uV$5k9=-Yza>KF1s+
z4^27m;_@o?@phTEt_ycgZ!GQHa)IA8_EUb}=N%v11qCft;tW6iH{aR*?`XSx@0?9b
zBAzV&EFd`X{OxTykHx-hUK=FcAZ`=I{F=eeZ?%hNnm$9=%ow$qehHEXSk|ZY&fgr;
zYvsgi@$y%C``HcGl#R2iV{QmF_&=VKv^@T8>De`ZL)KWm%jDoy`p@9=HA|M;KzHt^
zC3Ds{+~MFkQE11c@!6|oRbWw=!#Tr-xfjgWKW(giSNkyS{imAC4BK`rTimDeU+s2K
z(7zplilU25AMHJ*&d;QAZl(Ok&kQdfZkK55x=?k{y=qGtOOxE~aHb2o`|3*nKb>Q7
z?u|%^+RVGg`}S>~`s9h-k02M9J!U7<yE{U@>&4G#73u8oc(>Ewxy(jhHECCuBV6qP
zmsc;J9bzHh)zJ~2B*LD1?8PQGi3_^sGG?}(eR@Bo1oLAjRUZq#sidT2IdPr&_MeMA
zjzmw-n0h|-*TUwG6R%1?ezne>)^Wm6boc7G)SZfFEnl?xek|R)_OrCZ#^d{Q!Wq_i
zuXkDbG=RbHLo|<bYYqQ~m9wfJyC}Sn_{x6ZM#b;F_cOCP8?PDb%RfjxYU)zN{$O54
z_?uk0^*8pfNvS_z{e8Y-@eb*ZRpL1dS1w*V)jdJ^z=Vq5SLIK*eh-@<>1|%~OkQI9
zo=BfbMXsw3KB@SA%(vU6=yarSm+O%=g_{^nXYAO2de)pHt2W+V(${ffPsQ)KpQd+s
ztlqusf8p%z{%C=-ksl7csMu}l@j$*oRc_YH>Ju9`-HUCIU|iAGqv&S0Br2Q1EJFKp
zt?-_ueY1r3$KOBoT1S`vs+!}%&68EmdjAM=S+di8*X~FqC0$|O)#p-r-kL^hL}>_>
z<nlhh!ltC;Tw?5gtFz-Rr!+tFcDDa_o}YBJpZi>D&gAlzjuSrm;eYNZMgIJdtXEW`
ztUg`La@R4#>O(XAm-8tpY2Tf7Xqv^QFc%japE|uWdlPyeUv6xUxw~(-nV{fLy?1`R
zN<r1e4emb<O)Rwjmcku%?Lpc8qXr=-Y#Cx+UE0LVaQV$om&r*Dx|~aPtSY{yey&9&
zFZ>?Uj5jKsMrS_Xzr0TE{X}kk?Un2mVtdR|_!{>!Y}+NuSHaNmx_N#)>w|?YyY%0D
z4qds{`&&uof5wDty|wQyAFO9w9}-+Sn~`mK<f4!u-iCj5-H9tW&Z@l^YYE>Vk&vyi
zIP`f@!`8y1H!L!0UUn2Q+;ZK1Rgdk5;X%3WmA4q?T|5x1;I<`AOh|*d;#j^RkLbrO
z%atz_GSs}VFcN9_uWHvZO|{IEx7vi^uh9EK>F4|nz3-l#&}W>sG;+a|O`LmPZ<ID_
zZF<V^`tG4(d$tD|#|7se*73Zv=%3mFx9MzWf9)tgB%Am8McwXdmuE~J6DKQ3{}g|q
zyML)c$brCyYQ^(!y&3-Tb;rpwR!q6xbu#=xoKdybfmd_7CiFXg%35;#hG^d9Fc+2O
zi&VN@d+I%(6|d{)*z@{QQC(xl3F*{x$x%oC)N}3^zTMriro-;uqVA3pA2z)ZbN2ZZ
z&UB`@_~ykgq0g7bE)g-he|ky!35BeDhKNT-h8$;DH1fsk3WNeWtG0F@Fg;r`-|JlQ
zrYTR(dY{@SB$)YL>~+b6j*dT5wk$Mi&{ax{oAhx`M7T>z$LS*p|7BfW>LLWnCLDKl
zdGd_Kozq0LaPIUMP4_o*%sn{S*!JuLV+OG$(etJl-OTxx${5e^AZXS11+ENpWb3v(
z=lLq4>60_Xi9xQzYTkCH1h=HQk}fV%Qy6->@-Do}Y`&x)$n}%=LHPcq21k|@avnId
zBDMVB-l+5Cr8kajy0`h2`k}D*ChOOguqo`)YFuV=qfCZ<()ME$w=Q;dsd8)g$qHLN
zC+d;J?QF9Gx5kbWyIo}Rj6dnszPW$vkww*)E30*uety+<q%BiRDKA^*ta(CHq1Itu
zhCc#J=gnhMSYBlEZud!_c;or=8(#=LTE6z;OLk+~&;4%s(d?Q#?JwHixy<-Nw6w-T
zg8i4*qR73SMzOvu5%W9_9`RXz*^9xaZFY~_;R8xyi?+sXntH6f@4?2)VK>~5zn}NQ
zV5>Uw1=UwO3Ky(rY7W`x{^O_UG{%}I{T`YNU&_?J)B6xD;H>kDu^{xu#@OYzF7q#!
zK3Ta<?Pg7|<D$hZCU-CXTG6uZSmQn|lL(Fj@eeQWO1AL{j`W_p@z;aBGrWV>-cdG?
zU9e^4=L_}b(O$`U5o|XyuU(Yio0W9@L6wcqnpY0@Z9mHKDk-tAsI5u3aj?B{N47*N
zBkQiqC(>_s<(EubbXz0dvM=ZRM%(`t<~C9lj0~^!)*kV5(LZZxplY@0z5k6inHQ7$
zrx`!?dA>28;o7q^`!gS;{_Wd8Q;T)x*~hC)cd^d5IlYp_>|5uIz&eHl52s2j>5V#f
z%|)uhHHzUwo$4=>jt-ATF`Jmz8kfSewGSBlPw_I^{`&KeaN+%|hDXvCF15T?U!A_*
zN{RLRlt^|pw^Z&>^V7ez3{R*tOpzD9dx;(7f?$W=r3^iMzRp|zeb%)*H6_I4xv=)4
z`VJmR*EmZ>uj70_PX7Dd`C<uEsX4Qcf6W9btB&YR=W;cfYr9^oHGgyNLE~<Q8|U38
zPCB{s*N2>4uQolN6;`wDp#7(1kB)UE-}Srp@~9pszmNt~#M`9wlhJ$z#t-Fq`L4WN
zUQ+-2b3ude)xRQ|m2(zM+qS8bp`PDXKYfjZ<%ve`n2?j-&&Hm=>iaNVTE(X0S<-94
zyBBzGOp|#L?DTgh!<p?&OIC?8_IwCmmQr{^tX4_<cK<T(1v?dkS5&{_4xYm;tFiNF
z^73T|!x&C2-*aJiu9NlO<&`UVPQN~~_(Zp&U)78J@7BLosxy55p%u94#Xd**lV2Au
zHx9p+x6`XRSxzSP_Y{Nkss9oTbxOR&_m+ol-|>95>2*e({!ay$r|vCWuwLt$-|<Q%
zCF|FAcNW&2p2D+h%{BdPS3i1(&#ZNEu3EY8eee7=EcZGmdOxs#=)Lgk{d<zjC*O2n
z=<Bk`vb?lwnw+VM!#|C^^41-1HhVpvrf0cpbMLI_`pUDW)pe(KbUQp>oWwT$+8oi+
zZ1&?@Z&>m)Y(LB|x5RYEwWlFAtL?X3^Eh*VmF%{_{L{sC-XW=6`MnoZvTmGSDYNai
z$y@f^ju5rw$BSeC1vT&{_H|poX4!VdcH%BYMH8;s`fG$bCrka(4G_Kg?_sIn`J30x
z84H^4Pm-MEc2F*y_vi7-{`Xz4H!(8I5w*JT!}ImV_p_B8w;RS4-<v#N=uGAG%q{hG
z#)5ld3}hR&iN@!iP-1$!pX2V6A3ZhI%zeCjt+wB`x9(r&b1JucSKrg;;(1g1Hnrcq
zr>Qz=HgoQ&#L3~hWzO3!WjVc2yDxtKS;0N82HmQnt*58onqEKU$duOGX4S0b*7w#u
z+pZJ3@cDE;QKLBXrQ7DDzWu3dxcSDNMepW3*!%C++ABMxw=)LBdAoc%H%oTUzw2-Q
zv7XiVm;QG)--)EJG8Sc9oG0_x|H)wp`z~@anjzrTJD1E8VQe?P|C-+XXzvq`UWq>u
zD(}x^9!y{QW~t1Loo6IIwJ{gCi#_MgGSXV&ajLy+dd=2}F$zlV498xZUcYg?OXc6=
zA3NsXD%+L1c~R-Tm-TJ)rY*Ey8gwSN|5?4$$@;(37IB5h%h#BBvAxq#N@x5K-q^vz
z_`qeqtBK0wtYC&2_pSe}EYaP%eu`|>D|tm<qpbTPTsw1vo==Lt^;6e5wBkaYSr^+D
zF~O7b#pX;i(PE33Rgf3pthV@P;&zn>31St_^CzUMx0;-slDxS>E6;;7Y@g@9z1ug+
z75I3sV||bq|I}Dz<~gYyFQ;`M=|25c@aH~@6`s%L<U1Yb6}&Q^|G*~cHy_s6%$@c{
zaAJdBoApo4`HCl>{9SRmi)B;to7J<YUcR@{^yHrZGghur>@sJ(vCI8K!?TaGgB6tS
zmPWprU(ojCvUtO%+NAlR6-QR8%T-@VWdHtVWBB!VuT*!}xo7`R`*$?*?Y{&M!7vdA
zjjc<Pqm*XZ{;Ij(VyrS>ESph6;PsqY%lYm)iKvI`Ge+DocmGr?Imz4m?kj20s6STA
zR7<ZhuQ9HCQOxN(VcUV31y3GazhA0ibJD&hAtgYJf!|A<A<uXBiMAYt_tp&8EDz;g
z394V%F*os#>--esB~8I0h8CYs&JS@is4%`zd*G6X>Y|$2`G3#MdC+~Q&F8sPt=~Cr
z*_R@-rgccY{PxM)!ueC?0!@{Bg)&)-R+h_gb-bx~AOEh4Ma*PVw^Qi{-wJ28%dX)^
zon`u%t}}*-RGuzsIC-pFq5VSB)75iK`|oYta&)zM&+*BwySq=gGq^^|Xiri(BNt|3
zdT*to(xxB#Tl!@6m4g0l>^L!#QE;Mp=e`RQmdcdO?C6NuZ&dQ)$GvOv(_7|R)_>p^
z5fKr2A`T+f|0rDBQ6eZfGjJZCBX8uf#lL13&v+b=$a%nDNy$iT!Jbz8O_D(kQx|-U
zJ|439pVIWm6Q9z*mCo$FromdFUHeFCQ(N;^zC)AGC8skKZ0_)IXK?$aJX=xp4!=WS
z_3?$`i$qSgZSO0Zf8@Pbl^GA4I`0;~xARTsvfpP~vn#Khp<t!`A<3Wvd8!O|6j;M;
zN{`pEDk-r?ZkyygP3h*Zmow+-G0f_GwByUk*(;xHVl`av`rL1>mFe;|d)Dmn`5(RS
zWB+}1(c^nw%`J9y*;Y3Hk;SzAYc_VAxz8v#^OmcN*X*@^GjFtgnPi_PFF5hz@6i9x
z90ViHi++6X{`W#f$>`CCzx#6(4y`C}U-xm}zkk*)F1PeO_AX(wUs3z*u)Oca`VgfX
zR^M(GTUWif@aOKkE0gnhtoO(#gr;AXe7j*vJ+t$!3l3*5t*ex0lNbEjc=w9qlAp=z
z@88h+_Enxa$K<w!rPuC+iGKQFwWZ%L-foQ*&Zxik*gn$KLPGFgM#is3WmgwDrb9OV
zJU4x#_de&33=?KA6qB66YGAh2N$QW1f!3#u1?k@wtlkwaE|^*L#x{O!iOHHw*?SM=
z8Kkp2JQC);k_!H%;?7aSdLVx5x$YXPW5=f3E=ZF+Agw8O`GN59W6Ql5ZhU&Z`ThBR
zn~JiE`do$|5iU#GYfoi={qrNOEoJddvzJ#lTRf7~xT(93?;F#DWmmjriauGiK5Cw^
z=fzi*sy}~L{siO7pRBjtrM$A<NY4#?|5owg{Ht#Nmv)@6{I;>Xdak{i<s+#-Pa*^b
zHSaxK_)1A>Y4~>g8va@rxqrs%Uh@a<|DCyV!r2GbR?&Bj9`5~p?)Ao4m*~H7+v_%|
zeDg{DS35CNqmA)`&zr7(uba(kCv1NIjK8sWe}s$F{GYFwyyAMYTZ7*^mbxwS?K*1m
z!>KfOlgqNTdOyy;*WPEL81KTg*1!IZ`gPxVq49T%V=k}Yd!560de=4WH(xldmp^<h
z5#&{yej~2_b;5$c<{f%@=Ersw1ifN0`ElYZ!yi$*og8x(v1*Fl$vT=ZTCzLm!In=K
zl0&{+ew@Cw{Jy3g<AznI_X(}5zV>F)t@TMBwz_rv_s;nXpSfD~E9&(j)n}F`JYTJ4
zIMn6Z-Ek!%!QS9#vy-D}Yx~#VIg(3-<M&l;muOS=UA%31N62>Tjox$ke9o2|ESWef
zKia&w=x&#PS-@-6-<cBEmOR?b8+qdHu0I`LWM4g=;pemG#zO(w72(Qd?Ttqnx|xN}
z-0}GTC)zak!}XKX?oFs;GM~z<ll!*vn4Y`a`kLK7Tjko;UVpyn^N(#lmw6kWhCf>p
z`Qy=(lRqY(c+Yr1TS@7f{*CHNrT5HghVgv`Z=@o&ZBPH4ykTAWkA(+PXRmdCsXtjn
zJG_#sL0+j|>(+U-CV%aMUcMsngsU$uFa6qY>Jl}bLB!N+-3PY$83jL=-g`Zzmf_U@
z$2M0CUgZDZ_R;uM=&hBf1HYem{N8ny(2w-%KX%D*Z&=#bapF0HiNHj4h6<~do1~2<
zb2Dn}*C<K(-+Ik>%SWdFM~s$8#J1K*l<q0mbnlP+{21X7wQT;r<?gXEwW>-=vEc`&
zTvNJK!0eED`^I#sqNd=r&ySwlFzx>OD^^AuH?MD!3_AJlDZ^4d)x_E7uivh(f7`8g
z<J6KLJr=w6a5QLtaXxI99wIEblb2(el-=L+uKuPzm&6TH<f?C+?^auz`LX$Lr2}hN
zwX>LT0RPqSJGZQ&4_1eJEI58U?1Sr1Q_=4~4H*QD1?E1jxfyXp>&LbuPY#`olwwKW
zG`;i0#xj8yryl<mJ2SzGYiq)#XVccLwe1S2pQESb>mJ4L^1tho-<2C22C9!%JZ;<m
zMrGpSHJtAc97?HSb!HQa68pdXm+-gw%09>L%cS*NR!x`xm|^c${83b1UCFd9qW_4s
zD9cqD&I8VZ?(;X#U$LD(F8}||6HgRR1gf!?a&9|b`|>U4uM<+6Iu4|Ut-WqKZ(BF_
z8uo{?ZCyXj+hWJFUViiKbcP%Dk1~3{7d}+oY(HaijZEos@o!(E)tq0g_}y1J`?UX8
zyO(LdBYz~gPn2G>U){X_;@W3+QKDa!MJ%4ji>Dgx4;R|ksd%|U>60D5>9TJ!Y13a`
z%Z-!Vc<Drb`4Q3SC0p!R*lzeczsz3yH0Nt`x?7J$Pb@>l?WIe9iZ4vhe!}*9{qnO{
z%)js8YH<8!d#`9`;jHtC=kzzd`+VMUclLtN_1^NobE*svs8xS9e?RxZ@BL3ZkF`g&
zzSjTpE+XA1eU~ZguN#Srlvi!%eJ5=9rfiksYD>O`$$6KoZEVlAWVhukxwiV->^t$s
zyd||S7Tf2%Wpda!*GBjKuB!)|U%!91^0(pNy}SQ$E;yn*+jVt5!;EVVD(|_n_lTbS
zo7KkSpuYV2$*&CSE5uG2rr6KbnICp-j)szw={<$6)Po8a4*fP~>t83se&F@I*!*xd
zgF~w=FO)N%$xv5Pk~K;E8fN_etmUg0pF)>hXP2LGc2~@@<$JZQ{kkp8WF*&mB_z##
zz<S$$v+16<!RPl~wX5Fy{Q>Ve`@8?<p874l$TpD2@<36;`M=W+O~`tszun}}=2sW*
z)V0mlYUG!V%Y1uJr`W9Wob{SpnjfF4uZZURkT!K+kD~HVUWI)zm)dlmm0e|*UgMJW
zTc<p$v%X%s<ho@PW9#m@;cp*(k*v77ID2*3sUtsFUUDAT8u~-4jpwOtLvPyGS&y%T
z+xKgR9eH*#%<qNn<NLec|EV?I>+v_U>dlu8+|?}G<E~Yz%3HYK=I`_ux@&2(p(y_F
zgg};Eww9SC`ybSVbeo!e3s!P|^^*O-`Dqs)S!qjuxu5tdk^S!On_Jv}EN!pfnDg_>
zMEQHS1Mg&RQF^vUby6dP#P#cMmLK&E{$e<*WVW4jE#veh7HxAD{mVL@qwqg7dzqo4
z(z{jD-5&k9tFv(5eU^mCJ$8MQ8Pe2EniM~;D1NuyFZtGy+g7)Z{*Bq&!(-X(=Upct
zIMHf;<oExlHQcYA-um$REY6bJmfNRJ%$8DRaMrTBIAP}#*<a7tlx9|}W~;dOXnRRp
zNRa<>Rrbyf6Y2E3zn{mx3XW*p>wolqY3^F5f028{%-3pHpSJrRv%U6DvxHISGXB4^
zOFd-vJlS5;7E%<Q5q0V4s)pdY=G(X9eRbDHKR(~`Rf6I5<Ff|3(-{oJBNB|FQ&i`M
zS(_eTHpwIQ)7tw?Qb8TbQAI06Wj6mb`5tV#Y?02pBCqOKi+*<PNUc=-a^bGvch@$a
zN4*zhb>!<D@4nUhr4}<+B054(c-FL-gq@q#-MRkv%&e%)_nRxK^=5D!&=*}A%l$F?
z#lr4t5oa~SQ~T;K=WR?|+^hF*n@LIZb_w>$cT_EOIqxLjeHUq6G3VEUbJ5mEZh!q>
z;we%;_ePET#?PFE@u?>it{4{{4X(B<b$jgH^eSa#{v^quK0j|akJ8;rZ!*^33Xd(_
zR+YTR_WC7}`QMM|pVsR;`Qg(Ked83qX2xqF-B$N@yf0tM!2e5OvZC#kXx0M<dEF!4
ze@Ixbd%x);Lr-^LgUy_Cw-!zppUur~6@G2mHAk~gOb(r|otB+kD*wMCcgr-xCtTZK
zZCNsRZqQps|Ho}<8#Qm*zFU{Q^7QK$JErz;(PPyJE&sb?dQcmWlkL;T+s;WBv1dmW
zHH)4Juj+h0(|U#O<3<*%|NUiE@qfba1n|8tw>rM*fy5^MtrL&FWl1<8TM}h-S*v!-
zJ!?;2hg$D6wMSp1E-)Q=%Bj+vSDNHqz4Eek<3ygBO>TFOM5f-F;C$t3W@pv%O&Z63
zxvs8IlQ<Y{A>Po+sW<61b3t*ExTH~&F@wc{d_$hh=VA=kvJyV1d=IKsQo0oLJtfX#
z!~fb4X4QzLi`W>>t5{4^6u!Wq6MVCH_TgF6R+PW`5Haze{L3S%Wu9v@-i5_JdieX<
z$)bjS;XNlNaK7O^@UyNv(ZhVZKvJ+y^-ax?SI?iN?0vJ{rB?QMv*)i_b4yqrWbHp{
zutYLDYSA6}$43tMFx>Or@Lx}=YTu^ZMNNCz1E#%DIWd9JgzbSJNZriYva3=ub*4A$
zVpx+mE8_d@%$c7jH4BTqkz(lc_+i!jK7{!JCrIJ+UD~p{j@;hp;__)b6OY%L-%ang
zJl7VU?jwG;JiKO+;^P|(8=n06@z|2rvY|N2NVSafek8+U;n)AF-u}Gm#nKk0&GbX>
zBRB89%^vx`mmK~pc4UIxp=GL~Awj>T5(<<4{^vX}!>jdb4@*S8*OYX{gIS;BkIUyK
zo+$eFJU}%*ykK2g`kJW$|AQILO#6TT*}H$vo%`#!e=sn_3QL`zASfeqMmo^WpzZJ^
z#r6U}?^C-%3N}sq*kdo)+0pULpyPJj?M&SdtGAXH>rC*lGjo2np<H9()n)8w<L+!b
z@V771vz4>fpXotM3)_VgJ;8TpeTx42ruMQc@0@m~`^+D*7j|@*usoRCa?Ch|qw(@{
zmicR@hR;-C=A77@`TUmEqAzA;YcxJy$P0FHSyyc}QLt>5qSB_MkI&A|-k!tv&;ReX
z+}qo7V|`sx&erPZ@Xo8<_H>WYvj;(f6Ek;roM`&i*^_=kVpV)uxxvC~@!M;A=5LY+
zIwx>^%aZuk^y`d5y%RXsEKqtjFLCw5LrcGH+^3}UiHku^ymnjAj|<Np#QwXGvh`GE
zmDRl$`yX#usmJ`oXrtkrsi*h;*t&e)Z=Vkx=W2g3e4PHmC`E4VeI5S&OWW?K<j;9r
zYiHiaUB@_M;thrHBMZF~GSoT6_A^))2dOj2dH?8^G-_XW|JL^_OSYa$)GOF?=JBJ#
zKpB<|s)p&utcp9@C#Ao7*3VnJC&DFX{om)>AFuMvJUp@fh3(wv<&TPam6U|)oi6h%
ze0R8y-+apP!lO2V6Q#}y7lmuTDt!5FYxdPOp{v8zMwvQKyEkdSxL(YT0>`(%zh61e
z8eT4a%eLgIlc3<uXcrfs#AR=u?Up}Ry>eMcNyQJT{jP>fIG)#ixUgg0js>fVukMMu
zz4gtG?C;IraufaYKAnq}uyee);*p<H((}GIfj>X;%xo0(oLEt_Tv0nideg?uru!xd
zvojPV7Cl{2dfKX8>*woGh7zXFnhqOpGMuRTRByI=PRujg<I*+?`@Cl{Z!De@5;;lP
zo_+Va=mg0F>rcv^n^0%<n*aLdy3>gstiP?}9@KB|en0DgT0{9{os*J$p7*BPGt>zS
zT346MsX8~|V#Mk>&VQyIo>22iX0}?4`1{acXZ@;68T+hMPW%$v6c*am(GhmSQhVoN
z$(n;vPtO>C-Co51yzWE%)yI2Z6*q`_imDi#Q9QZz5<|m3C8bX$44lu)Oj4BQn#~OL
z%L^*s_?Wk>cTaID1H;!PO2rvx#l!t94fpB&wqltXq7chyZT6$QVd+hY=P4b}to9zS
z{-N8hc=FEkist&R|G9gm8rJ!W-49;=VbA2f=c@%Zy0t%gwD&4Ho~rJc!*QTcNy&6O
zQ;pE}g0`MxQBQfkMe{iqWj?;azpVP`^V=D26EB-+UWzz>IchrN9clOWpNnOi_NZ*z
zb}Q5+#hxLrGv3PCZSm?km&`!nq;;-gx67yI61E3NgZ6Hkdp+|z(}ye>S-HmoDM!nc
zKJD1rC3O2s{-4=JY<st>S=ahKyu%+i|HONje{Ky=uPrsNniHDKDG;wHyZn8wyx>HB
z#($!M6TdTh^;QR;yReHTp?2Z@B8f>I$x%ki8?7FnQ|)~I?8C}ie=24ETGn{GvAVb%
zV_Nf4QE8JvLXy)XNuyci$^Td+H%(-{_B#6C(TSX429>8)dViR4DPxgqUB}}62cpa3
zU1#N%&ExtOQ=7@C632db!ofG32b3mnFl@h2d2)Y$smG5~pAVOu{JQRW$*P1~Lg)O%
z@BO~!U%y^{dw-owUhJM9Y<~rJD<lf?&OGhGQ1x54O|f#z9L~x5D`PvgcelKpWVr6R
zP2N_&wLKZ^IegNM=cc|qGGU<%`vI26MpK-hyuG-s=)3WLjW@pc4?dkTYn%U{KVH2X
z?wdSk_&@8o-t-f*8E34JY3_)~lxh~)U!8E}v|J2Z=%wrXs`l$HWNZrwjdONe7<Z0y
z8PC0MH_YlB=kK(7bf9PYar2A|8ypX_@rKn{IJu;psS7*(?3B(T7Z<C2B{S~2nokbV
zUA|)HhLs&B^f=Xc&7LTUKk~h)sTAhG%P@6ak-SAd>xQBq%x5QQ>{Jxq!QBx4N9^zf
z#y4Wl(+!+VM2;`w`uKEfpUs||+YB$>K9;dbGU4>My3>gt<~RAqb+P=2Tyn4Ng8SzK
z5{oK0JM_a&Pk7yu<+u6K-_VD<o|sKM&3NIi-1b<x!)E9Do-$}ZUhyXFMCrWp7k#FC
ztNV*;Vxq#CCNo}ecy#*jw5t;uYuFB?)^#U-nBRRUO-cXitBPll?y{@6XYVVU*KpsD
zEg{=~f2(PV96O`I>Pu~v&gTRYYv$f^b$Q2@P}SJcc0J}sg)PJB=-;|)6(4hCEPH5i
z`JH6Zi~~OkQaAnF<Y0WZw``BcVqJ#+*CuV=TIiG->%+72bR<L1r)Zw$|6Arst@Dvs
zxHH+E%_WcFfu~?)#BH|Oy|K<LtWwM7Iat{{uM7IG?cF)0b>)=3uAkDFH!SXWQoqvO
zx69R8WtPEv-~C4oQW#j7b-r%Ay3mWQTja%?(9hFEvLwQP8rpGZpRjnfmUYI<?GiIj
zn}vS;wrP?_>ZX@{;m0BkE0@2voO_MIK>L1tAn(lM1`U;U-V=AmyxPu?`7|I@WJ>#U
z1%`;M<!5(A+t2pOZR2ob^7$Cu)w48V-F=}Y)6Z?zy&5R9()-P&r?w`mFUA<_8@d>X
z)vULiU+%Ww*yzg7Z#I9XDV)tQSITl@I`Hb*t$T^BeldO@!hM|CjCd1vtXDFT;r;VF
zL_EH=Kt2D~wq@Q+ZfWPOO4$^8e%ZoVaXSyjEAq}f!PId6&y)oxRbE&A{n^wrd(NCg
zX3M=*3SxgO`|zj#z0JO*PyK_Em&jG0`!QW&Q3UIUb^T0R=Ezm$T(^n5@9w#Xv*$ir
zY3GT;S6coruQ-~2$$F8&v1cuByx0%5*^0$CdG<YX&N4TD<6e;F_V%FMQL~laDa-wz
z{rh(*^|y<!@cWCiO)kE9D6!}ydqPA0<M%r>k`n9s@)zy+aM^5?x6O;i+h4pFtK&{O
z;qr>{Lqq)G_jy-0{C(|P&A+KXe$kEs1-I!IFP7@%ye|J7E#T~SiKpRqjnv-X`&T(E
zGn;<z*Y#CCUJO6BUR32Pi(KtCMH$p=nOVZ3uxWwgtQRRae;hLx+8OxY=7_v!%uVhF
z88c(HS69|XFZa7^_3gh-Wp>l|lehUVJAIp8KV9u5Po$fyprGcb^bfmVb#|Q4KfYFY
zrKXZn``;J+D(k*{j&2B<wEuaj^K|zct2FN2|NKW*{e>p~(m*%ou#NT%=|7Ekq$T~@
z*Vl34FT<6)KaV}m`lak6V!gWbK)zv+!&&D1|7o>L<QN~+_G`cTzWvbOd&ZVOc;sXl
z4}AQ`^H2DI(^c8Oj4!x#-b|KUC}+<6VZ;3-mD#_x_xE*e<@~hrwQ8lf&emJ?=R{od
zPuTc<yzFJjlhF6?FAu}4H9yV^8y#F5WW3q@YjlrFaQ(vNN{oI*yHnm9mVJJ6?4{WC
z3AS_Ce@qL{<v39E_xIBc>A#-yc$EILU|_X0Te*LWZ_lyg_WgF(zFgf{ruvZe_&Tpv
zkG4Ap!f(H>5)|CJ-|NSdozKtP<?32qsGnkGxvl?kL8t!wKc^=x>UDLMw%)&D^{MCi
zeYY6bmmS^PdToB{`Fp#~WQC+QiNu$lWD}ei#ky2!T3q3WD-W(_PFI)lp8i9}b<<7<
z^}6V~st+30-!j8j``mwhF?hpaC(fnq?<d7M^4>f)m*K}2o@*ca*p!rts-9fBt6sgK
zqvMHqSI%-*Ijdh9Zdw`a2afk;COl95#cyYE>dD=Aiyz#bQSYTTV*}63Gm9C1q|6Qf
zZ=!oA#P-FT4-bSG&V6xL6Xd)T6Y}lt!Kkm3V!CZP|L_{<mMqvSD)_Z<Ylm_6{mnP`
zsm^|PW=D=dThC+52BZ0P#d@p<W?4s14WA)=L%QMf--(_seI;l5jy=0`{^M>2la2P<
zW-X5|iTL{AGSl)_vl_dM*?Ee*ktd`d%(uU0$?)X@zwD{62Wwr*SRW+KZxO20T;e76
zR>5*xzw-W$juVX6mZ#Zo5f_{&xICZNI{W%V`J2*q!Th$xiL+9SQ;bVpYK-?<eHU?g
z7Fj6gyfnh)kB-_!y&u<`nv3*GOIGh^*b!)N`Y*Wj+4+Z(o>F$PS=pCO!=K)8o2D4b
z!~Em)@`Lg02ksSzY~R_+n8|&h)Q(g2)AGM^XV2}Gy0iBAi}2UFN=m$I6lNE;CaTMd
zY>Az^|H_fI;?0V)0vRUPO4S6-P+GlB;sK{M{~={NPSqq;r-Z8F`z{`$xw@}Uv@i)y
ztlIx-x&1b7>z7{^^#9eb{-v~3QCpJ#L$`hMbsa_tp+7ZJ8#Z-%oK0%D`t{F5udHbO
zOC2%A^TjjG<M-d1vP?;7YyA~}<3syjm`;1xrTYBYoQF3jIHfWCm@?7ndv+e5?2Dgw
zn9sVbk#X6ln(>O|z=ONR?_IO@ADGo{A}F}><J!7e!rR`?y?+0aO0@hp@0rq@Chupo
z`<VWwn9)LO*Fy(}u%A;F{t!5@-Gpc5lIE?at#@wh@VK}9*UR@Cc<;Y@AGPYqY`=dT
znJ1#cn0Y>>znRRq<J3~u?BjPQm36ut2`gj|sY#l)@$mgss%mCJf)lydw))IS&j0&x
znpUOJ^=*fEHJ3{~SURONes6B+`(tlUGwv(Pw3KL=`p?J5B;V6I{+OSltnUA7oYNM5
z)%|PE*S#q-(en4KO*L&TnhXy*L%!A>))L#j>_|Wz`;A9pw%?PNXsY(w@H+6w&Y1co
zW=&Mmp0`&%%Q+N=Kex1w?q0Aq{kOsb#nYNB5B6OtxmPOVu(SLd1Fw$F#idKd8MJFS
zFUfLkIMhEe*!|zzX`gT2VEeXkJL93Gjc->myslar@8EpxvQp{(|EBVrYSn*Nuig8d
z<xV#n+m}=ORtl_9s$-t<<oF5A#Yg$Ct^J|<WXd<I7I%M>YcssW-p{LJ<h|*i&alqM
z@x1BV<Khx;9`ega@NBq|`ngno?}w)%9AS#x4Ew$$KM5&3<MrC@&#MplwVVmwFNz-s
z+ongYIg-uREMCn}kjPcFPnum>YRCL9S`5`L<~&zk|M6HiEuL$oiTm=ouljFqe^{OV
z^m{tPDX01R7mMp|>8)aJR^;Pjc+m5t{7%;7;OQUIwXbjXV|vi{qU~VSOnJ5o&lv8!
zJbYqhVte5=TaCBk)84$`WN2!)5?{H?u=5%3)W;eOeZF<an;A5A?(Yu`e=2|7wc>74
z!^ex=bBq}yo*r+$E8EarBVnmJCt3VZq{PI&-+~HLSXb{#n;1ROQ#FD&^5{winJHiD
zs$YDrUf{95^jG@H)p?wy`xqa*Tk*Ium|=(A%cjttstY?S9;Yd<ZNFuFxL?}M<Su)|
zTlN1F<~>bM@^LO(JhSDySJ`$(UWZy|mz3@GYnE5O=GI;8x5sPtx!x=b!G@`JEiEye
z2iComxA+;dJ9F{Z{QXb&2Nv7kov?k4GJCeo{m(C_U6^3KhtuJbv%X2<EjM1NY}qrZ
zaUxH>f>v1b91WCv-FW|xQS=M_E$tgER$C~{=tyll&Gk8qp~Uxcz}?r&ulsFoX}h!V
zpjyM#lk0Xyddr`^{Wj3;*7+~9R<wUDD0Pb5>YQ?TA;TK)|LYD#Gq~QASGkk2;P3i#
zuk-Bc%^AWTy*nT<*P_gOb4Q!ZBQAz{US-?M88#Tq*uCdigV5`heP+&IuC~pbc)IeU
z#^x{SF25KP%5Js$8dcVY-=6j4esRqC9a0T^N=naPcbYE?b#hiK`Z0a}_uDIt#Mw-y
ztoANCdh?&!-MA9Bx7+JupUdkx9_)YFY@<~4Km6?W*_Y<s&QUvXqNIOTN*Vt&hO`Cl
z(~h2Iyb<VP^&;$ifw0t`vx_HR&HP^OT@knL_Wa~YTE4sc*IJ&?fB5JP&w<Mq#h*m~
zo3`G)YyD5tdETo^3O6u5m|N06D~69NY}?Pv#^r}x8Q!P`EvQN_-I97|L+?fFAKWJI
zKmHZ^omt7+@Lwf(mhGFAm4RQ+O=qlmTI4BPn%m(OzA4)Bz_o8DMb;<1`n_d~ms(@z
zHQO5%!6}Su1$J%t`RUg@{ueu!FAH>Vb}RZ3CZkjNZ^k@!*`ga0-Q~*<om@V*(CZD;
zv{G}1HQs3kd3*Qgc;4&Fk>Zt;d><V#)6}ou;vXMFzFOcOiyd+wj#t`OM%=UI>7DBS
zKj%<|Ztf*Xqbas#0^ObFJFVAucgQw=OcGkkxhI+5#`4rOD}e=9zLsxVUDtV5u==vB
zH^Zq*QNp`VMlpQze?G(0z5LhnV`b@fhHo5yo?hNEqpfG*;Y~AEv1rJbMk@Dr*Rw0k
zOy&L+kz7~rx8>Xp-Va5omg{&L8U@?8HrzY@^3MEP!3NL1tx4bB^5t*ev8-cF?q0)Z
zk!SxG)||Zb_xRE<HRolQzlg^kwK09TW%1tRaIgKcHft{OS--hZ*j`pC-Tmgjh^UQ*
zl96Gj-+F7mHM&Zle&6Jdk@Ei^;PS-6yu0&+segCJnw&7XvMo>VNGU1F$NkIyl+ttd
z-6~f;$*JoYgB$fOvxSu03RPVgKd0{HgwqoaUXfkxe`tZtM62bzasH}1_82ke|9^1f
zef~|=PvX0m<r%Ked|u@n&am$5i^2`BWlnZY`>!6`xsPd9$<xIqywjzaHZ$CP+v~e}
z-}-+Gg%9OVdb>8`gwd)@S;>7{V~n$8zW-X~66zWF_eS!Li=Q&@7R~v6<zb?q;`yxU
z%Xh|yvVXYu$X2dHuk-SaO>9%Y`}==m?0tQE(zCUTRTj$~R(@o?^IW6(zW*QJE=&1f
z=I3DCX?#zRA$-Gq$>np49(_D6Q(3XTneWE?M-Nj)UrxF%EVu2h_tAx?uh$mTCGU2O
zcZvJ3tAO*scDdeJwF+68f_Fa5+fjU|NzIQ}ciZm(sWvY~d4_^z_md<xacKM0_^p{D
ze0Kd`+htms{#QQTdf7XvL+@1GzNOv{E>Ww~Pfm%7o8HGX<N4KJ%nqJcbY7-ZFWahV
zb;<PQ9gYK+-mDA1zK10ta^2I5=1T;6mnT$)gv7AOzMqk}x9@+S^rv4F^xgYr?<@E!
zX1mGsAd6xw+iw4oXSTH!Z!a>4RGycQW7hawb!@AaZwX_M*!^40HM2fxgw356Gvifa
z(CN1fHZQhIw7q%AbJk*`VPEbHhwZoL@BO=G?_nD|F0Sa3dyCzZ0(VsN@MiXZI`Oh|
z>xa&X{cpq=_As@VvB%7f{j_fL^^o_=E7C4;H5A^Ioi=H|z=AuvAEz9Aa7^)6(^Q$6
z+XTP=JhX9LW%_is^u3?;19|#B?#kxdE^HIU?9K3OXYBsna~YmqN~z(`KgYDdKa1Vd
zH0#K@l_tO1rfk|h_2-8@TY4*;D+3az>{%z5&dUC6zN18OY<VlwF5eB(0*iO0^lb6j
zx@C&o?DEyWzIQafb1wCGDWU1EtlIxMn#XzDg%esYDuQph<%pR~5!rv?T;ZO_rS>gh
z)~XXf)+i}emamQa@6*_E<y+KI4Jr9Yf*i$L&NVJuzGcFFl?K(D&!4|qvOyxD@uRrm
zk&}CWz2oz^U!3pWlq)45I_utpHIA#3S8QWHSR@n4VsIzB#qH@vwdd+DI6CtakNf{M
zYTysDaFW^~&`|wX?C=EBJ=_O=XKoRS<37;lK5N%DF_|0nR<7T7tu%|>-!CpG$++P{
zamPjmS2@*xDGgea?{#v?*}F3p_`YKEV4rovUiO?t+Z~7Rf8~51cknX_D8Gn!wZm#!
zNd$Am(tYu48u<^eHi|`BoLRiJEzR=ggfBMN1s|&$Uore^qQyGn4JdLKrg9$GpXnq0
zPwK$5mg^x~*Q~L5%9?b1&d#Yy;(`<BF?{)+b<go|uh<eD)`J`kyf@$at^4<RJ7@=1
zcLl%4Pq~$o&oln>`?2YI&gL9r!IvR?0neT$25k^~z<++9&g8RE>t}k4uH44?VE2`h
zd3t^QmfMXb7Tx4;Sow1E-hXTp3i`Ucb3&cW1t)H2{Bh&;n|_85-yUD}dNyUrGP~z?
z4bhwj*Ek8w$UfRG(WaxcfOR>)@9l=q3~j0v7v&C$9E&=$Xs*?bN>$y<pTy!TwNBic
zyyl#oPwT~>Z81MQum3pp<a&we6NBfBA2M$p(`H(|Ed39Q8cQgrct^*H$qYT;E{N%F
zeRnkS-CCtfKhjrkSJc#qvJ+WgaynRaRsP2Gca_bGv!qTloVxsU$;y-NLTAq1+xc7G
zF}7%PM~6vJd91#D)!FX-Hd>)M6J|B9eOLEU<5y56(`oIkU8fDsby$8hmbkNny<lzZ
zRH0kUhJWtgm5j9Gu3&6X|1v?XcJ8x{k(UBCU*GrYZt4R&@0n-TTI5C~y<s>q@rJ?S
zixU>f)paMH(25F8TNaSH#mgz_qP^+WsGwX~mhSMYVbAOJU%#BWN`tTOVz&J1w&VNr
z{{0F~;AdFZop)l@hD6bAdzv=$u&GPCxTJW`a=TpPeOh=|+Wc8cO65~^_)8ULm&|`+
z$A5kXzv<>Lrwz|2=F4skb8(TX+h6W<DWv6H`R)j*O<vP8Wcn_uwz*umt{b~+Nq~#X
zHI<UHib_gGL8bx5uOG}dc6EuWYWYxjR84TAtn%l5R+2mK*NDFSt&(;@JkmDOWl8v!
zXD75`lb)%z9SQ9JTJmyIlAxfc&infZm6W27oiv*GV2_K}RrSwi{YNHozrXM-;@n!}
z>OWdaO1y3Ap)-2~1aIbjU-39{h4+U@F6Xj|_bNRnc66vb*&Lr-FF4WgsFi+Z&g^J=
zd1a-bA3euI&-)1ouKeb;#=PQbVthx3NAtszXXL&$cXYV?o}MyQ@1}~9(nYR|2_M`_
zPd+p0UA9YQ;Ty#)y`L91ZDM&-^7Y!g4>Q$w#fRS7?&Go~{eDDjzMXThu!%=n$>SGB
zf)l?~{$JWs#;|Am;mPuGQ|?wq@MNa!=lZj2Qn%F%b&(JCJNK#<YbID;?Cv-rz#t}G
z74uz!A$#`mH+zmvXUOqgHv6PR1MfQ4{>|*ZCEGbB+ujl|-^;Ll&)by?xfu-AxhG~k
z{XDO%=S1MawzsD4x4h-9U!BPxGGp?JW8n;UW^}lSerVV|KRj%0;gf7Z!Aw=9zg54q
zI~B7}{4hPIBPe(?GG%H<M@yQ(>8nrQ8uhQ3xafaZ#|g=}a~r)jzGM07`^YDbS1oei
z3Ckvh?9JA-O^Uf0Ph58`+A)i%pjv6V3FCvpiNy>BH{6--Ga8&e-R-jZ*x%Uo3&Qrk
zomJ(>z2(dM#?B6r*|VY*-rbrx)2nyU1S8K2zBf0lU3As(yXWN$ss70~gla?&Oy9=1
zq<8Vsy>=hswwleh>P}trB`9ImxhH>HT)NKkGeq0G=1XJmJEbfg{ad$3QTxIbg_pPf
zo@RcqvSr;*$%J)ZyVh|<_hhtfy_6>x{*PT<eE0kiXW_8;NfUewU#3S_Y?`Sp^S>xg
z`aN5-aBW)9^uH!eN*$6V&ktoYJT+y`RxpZ>{1?HXR<Y&<v+~?sDV@iC4xUn*YxDWF
zqC?5rwQn}<jXD;7^v6tzM~Zvv)~{XNsghAWRZ>Z*(eJHPM~4qjw$|<?AucKY(*vvo
z1@*McYO?BP{*IiM_WJ$Q&xVO<-5nmsI~GSS^L}=o>+jxM_J%x>EpCNNPexmP2r?C%
z*vlDf671qqcIn8whr3*sWi))QmE)95kAL|mY5T6<xBcp4TwFf=QdJ4%nU*Ic=y^Lt
z-<5~s><hW?(PGYF3)UrQdY_W(ODpW2$*nMpkKxYJs|HH-Z?n&_JYZjMdv_kcjroI(
z?eAtwWlK)}zhYMG9^)fwC*%{Rema@N$MtfO_TOnoCy2iAdtH|)nO$vKyl>`>(4Wx^
zZ1v0=^s<%~G}yhne(c?24F<Pr)BVAmlM8s-nAV&vd;VF`F*a!xm-M5D5e$8Prz74o
zZ^+rrqCcC-Ad~e#|HZZEUoTPG*4`5}<NueeyjUg!EytZU7c2cPUAA8~^G|VZ?4)Ip
zs})b*lyBI4*>H-Q`SU9->#OZeZr2&@+WJq4VcPLktT)n{*G=AYD|<TAp6M$R;#S=L
zzy0CQw9O}~x7>66eKl_5o+H~r^XI-_ZPJ#LIJe`5Wmk~*VR2WNC(7q{nZ=#q`D>}T
ztMspGJiE)1m+tK1?&eW8q2Vqm|Agb-#(s8nnUwZ$hO&~9d!Kb?)TSyQ^{shPt`g0E
zrk$7|o3ZculDCOR5)>Hzo2~wFhT|NM?X`7BH@&}Pc7D-<OIy}32|v2(ut@Ep#FePk
zLb(=}k+#eFUxn*%URT*O^{L#RwvxcbJP$r!;ZJexj-BvhD)03h{iT8XqO0$v-+Cok
zcgN?px!mj0L$ev4eiar!+x&QY1k?S=sd1{NdUNC#dhWY*IDaNj<l%^ht?TqNjaKev
zXjrekd3Rw;?DqHK-@hG-WDu#on!r)Be){yP%-Jg$jBTZ~58M5Z5UQVM!#XwVm3+;0
z{)J4Pr(UQWvym#A=g#1fXH+IW?_y;A?5^`A4+FHbzDD+ci@mb#SHJtW@XW06f4lF8
zPJKGvaYKw-QO37!(??%QrW&s1D)rlw{o;;+>ZUak64gH2-e*f+>e>}|XU?O*s%gw0
z?t8`6U2tRg_xNhvtbL5Z@;0^X*N^Xicm106r)kmmUbQjYiT1pCXXVGPzfs>#d|B!F
zKq%e8^uUZbA&oav_?q`9PG1qt^r7^qdf2=J|MXX!Ob%Ikmfg0yVe38r?}rb5Pq@2+
zJ<4r+c=g$=fA^lAz4m6=Nx#d5m7ThmCdtR|Q!M_w_thTRg`R4%>C2ScygnKqICkZ!
z`rDfMwzc<Seo9QuJ9<DSU%vNG{#@ab=`GTY)@zTQ)LnF|jNPVKC}bY<;ktK|?^bWR
zQ5m&EZDyg{w42?$GY|iDIJHU9bnmb47m|PN_bLw#U%T4yldjpU_Z9N@O06F|WzXB7
zu&U)lBg34)%$GJA5i?nLJ-MT_d;*W%g$yC*rItbsmxC`9zb$T?YBlfj#;N6hw=8=&
z|Cq(n+p{isq^=V^-XFrPyISdcbszJC6JFlpo@@Eo=Tyf2FF)3@cd6%V+nHBtENg-e
z9g(W*PC1dZi<$G<%#MEN!+Ynch1p$=mtWm|DWWe=R!(;7Il0%l*Nt~YGUav|#AVDo
zRjaKVCz1YNCiCQ(nAl5(Q9hI74+K>1Vk$_y^n2~rTOT{tRqhO${QQ;q|6iv+i_hPC
z_1&{+H<mwtTkxwnn&FgEv9Lz&vS=&K8fTBsdOLnysS>pKur{!N_t8Cb#s5}`)$U$k
zqg?8_dg{ePmrm!e<hgnJ97D{kFLnMLcJq!p`>%X*<>$W+_S&$c);#AK4KD00w7&gz
z@%+t;qZtZr{{5)*p5^WH>2?!ePMx(@u`5w&YnlHpQ#H;#V!GNqU!%30zb)F?w$7_+
z|Me*T=l;{xW~C?`S#&~uZ<76)u%ir1-`<VRj{Nt{=8?sU%xSNVX@_k6yqxW6r2V_i
z;_vrZq|B>4|Mcx1&3k>9&t7*FJl)+~?*}pSV(m%&rcWvi<y%&J$)9%4e<JS?Q#mD$
zWsmY-t{i!z<1P;^8#Y<Y)yj(BYY-J{lO0>L=JAbRGnK#e?|t;z;_j1Z!-+c8ua_1o
zZj8NTCBgG?;n($fzE%638CT6H`{7=@Z~w3N(@wUoX6(``Q_78I3MiTzUi7PaO}K4J
zP^EN&Zwymz`SRJl2lc|zSY><nt^BSy_jTuq_Y?XemY@14!jS#`_U9}2W#XU2Zl0LD
z!i1M$hxN<9ee5$LK2~n5h?4*Cduew1>zn<D*L_|UXL9j$>a!wWM+41>_wS7xSPMIX
z-*@(|n{{N~HQR;jm+!qDvR~wqP;;zg8FRw7v*qVFYP&xze5ti7?Sv;6V}-)Yzw20j
zEXk_PP~E^^)p3LW|9jE+D+i0RH0#eDetvJ&!LN({R;nDB(q+BQ-15sU-95XGicVH4
zIeBl@lBSC%UTrU`Ju3VA;0uk~9bdmLnflcrXZ9P;1Ewe6g-!PhJ#&1IxPVDqR^r-N
z?R~Ebf4_~WYWdAMYntYanMFKDrkeko^B~*&?Vl_qp&PsZr$3&?SkT&WCGh#3`AxI$
zYqf`mI@Z4wTIp$KGw*=gw1W@YmT`Qmc&&AQ@yUQd)6)twR6ZCnu!Yow{_{RKKkB=c
z=+^&Nt}owQ_eV&fZ^^Ro=)HZG2OnxLzPz;C#iiDx+qq8bF=JTzvfy9r4`-zum7RJ&
z$5=u~jzQt(*X7%<TlB9wH*2|b!Oy@QoC&2i#|}E@C?7cd?ydF8yN~&O?SHU2tYJ#{
z*)9{{>r!^fZavTKkAdO)qh0+jT?=S>#g@vzxqQ1X_wLrrNk7APO;<FQ5PGECz<ZL<
zINUg8YW$M#3|?!NDCaX4q}f~#eZO4uP+E)px{Ke}?zZl}G1)Nt`3`%Ad+UQAn#{PQ
zpmAWuhWgc2stn0Xc1|t)`Dk_i`~R1!57*7x6kz*nec$ih%O)>(?pjh4^IqrF#QYN}
z%NTpSi<Y1L8oI71^mR1ji&gSlrrhEF7<)6Z>GY8dg#+d4;vErrYR|hm?yxvSpI;Zp
z?z{V1mastN)MN{XO5^lP%<8+3{!hK!F?H*tduO-z-*!Kr(BXS9>;qTZYMWoXzdKI-
zZOO)=HivHwtAx<=rB+`#x*u%h?dyJ*5$0Wc-|U@A*^7ko^?g!V9scZsf%m6aCZ5*W
zy6DEapA*-d@hLv}c3Q>sAG#fi?KcEHssg*iq8U!@4%xX_jNwLWt{LMVspm_1y&39C
z<z9)`9QAICSs}?$ClsAnnYMDf&pQ1skGV%3ToNB`lZ$exG;Y+N?e?mE#iP{3tGv#~
z7O5Q$o^*Sq*fW`!uYFAat(GbMbYSwkXVsto&O&HfV9K_C@#z!yGQRhCc|gRr(A#+9
za)a!{ud4le7J5x%*_&;gUAO6<&tLPouQ$uI#W-y@NDnCpOWN{MTPdh6{%ZB5x1y)b
zR%ri@kk(7gc(!D+6Z@=|r5Z0yJY8I>I@gE@3a(fARvjhQFLk~1!~#wwrPjo_L-So@
zgEnQoJ0fo{{pC*c^pd&4>$kjo7Rm7Hhi;o<dj<Cbm7Oo+u3lEsG@DT=aAx^6ArFPi
zi`jJh_$1Bs7!+Qxtv~70)^UX`VWYd@$L_bEuZwo&{?{#CruS0JOt^AG@a0+WWK+fB
z8FfBJb2;l7iY?max7y>kP{XBD>0M<8(ht1<M*p>bw7z>`-=^SZL$xgB7bS1RpZ1m4
z?~I7ksd>DQXQxfYtF=mDCzKA$sI!P!?24YFD{7q1-17}&-bS`bZv#vjKKQs#QMk;w
z@8bTe>k8xUT#s6IZIioc(Dq+d4KI~0)lGQ(mcJurY5m=Iw@x2a+#2ki<E(q`NbY%y
zs?Rzuvl5@=xAtu1k=``vl|xM5OHKpP1uB-Tum7<~tgHXdBy_WCL-U`C5EmCd?!U3>
zQ@YAZ9aP>+hgz-s$tm3~a<o@BI&P(&n#CD|YrEJRB5ywWw$!xo-Ir({XTFOv9-pQa
z{4Mfm%kS*y@L~E9`2X6P{`RBwAD2!ux*6eo#P7z!nK$)#_x+vU*<o_=*M9HVx9hz-
zms#itygU4$@O?<n%&q;(QY)rxoR;V;wutTc)RS*ERXez-czS;fnt1Bn<BmO-YBzOs
zTzRRf)F|xYa&5)olLr!1KV4K((mt;zESPC_LpOh-_q9WlxW%pQzr8blpf4ym^TAwQ
z)59g5>n@&|wn4GdL`-mE=*c%h<#F}ie(8R(LH;f-W-0|=m;B#eelIa7EM5NJS-lM*
zno3$`0wRvCBD;^>>y=8rE)i{#rE~F#u~c=ZsZ?^el($KiiI~X7rUVgJ#@#m<TpdHI
z;>&K{{r&s#nKS3koO`pS{MngvHs4Dt4U3=cdH(n8uJ@al+oVQMpPm};*=#mt$#khZ
z8!p-uoqN_>ZoJuc($sGmncjBy-`N+w54WwEd%C_PFxX2|HO>3Zo+CM(f-<Z#rst@8
zmddjlM>MOnrgKN0_g)ejt~+s#?$4bnFMobuS3bVGKD@<v|KF=~&#2rsoH^-6!R-(H
zLbLT=sd*+JPg#6c+n-ry)1iZI1%LQX*qb`&EVN|EXE(WJ(ePn$wIze?X6Xl#4A&<8
zW4|D<w~BrHLBZNz;qfddwXJga58R#T6t{V@$dBmzPYd&P4<~l!p5mLZ<mJ+ct;aJ~
zv)Jpu+}@^=I>Fme`O_`^iA%!yrY@<KE4#cjb*{4IBK01Nkgl88X8unu_dNN>!G5xe
zVZr@<4EDCuT@HxKs=S=pdDHW=M~3DB;eDwRsV*;a8;&W6f7YA)Fp#nLn~+QF%Xe%M
zGoLcN`|vriHAbwZf01Q^d0xYfCSkobYB$%^vu$~I&2)+2f{j;C)i2!|zsWoN<Tmdf
zg`4T@p0g%Zoi?bBdHTL#TU_)x?@e>2WgH8iw8dYv+-p)>U&oIt^`+C6RNw0^i_!D+
zdX{PII>{{is6<S#s^@>MYt=gz?3fy_$aP6t)a%4lH_j~=u30nKvu$1dUB{((qn-F?
ztKvD~uL?@J(&OrFvP9bE?2Go<?|$dFXOZ~MD_h&Q{82bl#;_*FK05Vi+J)NxyYI|=
zTGz`^e9Ps*go|bcd=Kr}X1?9LjBnA!il3iF4)}ckW!m7sN%mmqv>%(V6nAYFGgp5v
z{w>aS?^E^t3<*VApCzQO-`cR$dA;O;WJS$MivP3jclCTy{G!LOpTEfGyZf(23)-q>
z9<YC}QhHM0aAhf9!k#5x=agr!%Dl02rQ8O-b+4ZP)6Cnz&){8^uD#}l4A%~s(pYiE
zHLqSrPYkr%@oBp~i`1<uJ_b+a=%R;$4Id0Ir!%ZivppiwaLiOCci#!g$xmj^cVe)a
z@no_wV}<q6BTq~h=(cQ|^I~7k@)O@HuWVOX+*9EA^EsQ<vt$O}yG>H>;sw@z{Vn@M
z=+d8R2ER#5?#_`vapp-_qSS#GD)J>I3mZ-<H?E4=5<h=UspxFkxw<=pLgN`W%*}Un
z`?*1pVRQ4@9fq<-S}SHMerMDvTrbXKGv%wm-^LSs=O*fvdVb=1zTUYjMDLu;-gz}O
z<um?F2bq$0ZrX;+`xsbCFQrLLY^__cTQ!RLgw6iqs&{M=ilw&y8@(A0x$lnrXn25Y
z`@ugF4#}GY>|O>oh@QN2)#^WsOHz+;VRrkkOZvy8XK&{0`>1<dLzyrCDdWkhYnitB
zmor>heK&ie`-5L^j_;6aXjb)9X58n0@4Xg-pXaxWtPZR8&RX@6p(pdN#GS?KqkeBz
z@44j^6w`6#&2pQShNlFdGwrgtU?}d<)xyQ@cq9C+d9{nwrmvyFDmyoS=6|W}shQK+
z{oC4jrtgpAOrE!_Uy3<jp4mHTOM1Y%eT~I}8#cu+xs^TRiRTj@W%YB+3*r|fx9wwz
znB;l!eow(Xf!F6c?U*g!h_t6Mo>@8VP-kyY#r_sGW=*9p|CpA1IkAJa;pWNm#6v%3
zPY?M&f61)mr8i>N?5eIkX?RNT`|kZJ7Yy$f-^%ST`D=94*ICW%dB^<ue<gaR91_*N
zwO(`SoarC<J%ctqxw2Yb-SgGdKZmr_yf57fPt#v3!Nd08_6crxgPRq+habLbXP4o5
zpY-!RXV#9n9qM+LNo_ltyQM`}7EjbtO`Yz_uvJ&r?d$4y?^a&Rb7#7+!Ike8*ZGeO
zCSGsD%>K)G2d}yqwv#`h@<4OgUycvS0l~jkZM+!&pOgR0!}j=P`<JMidNb?`Iimgj
zNQi8#<dbQ28}q`=N>3h`uv*Y!pGq<JPW`V_leBsEy^Ed_823kf(Z81mA9Cfs6}VEs
zJgvR{@9ef!tK9oc56)vqn6N75YuDc3uf?Jj`@BqA?#{Ko^*`u-ZSr##bCazs^}kiu
zz4*oDd3K{u{r4qDHG;z?H{H_<T=FF?!FBy|cRrbS|08_6!=9RTRCkp9dHsF6x7W^i
zrCLM3NoHOp1$P%sR?)RG`g(VN(Qp3M&(+p1*s{9!&GZ*bPHcHH`w5>}+eBqy2B!0@
zVVgxBtUj>p_tkZaer(!WB){mcIm4PR8!y|SZ#GOBFPGonE7);%_LWKD3{u_~r}32D
zuiUugoM8Ue#kJi=r+PF6CVwz7xYM-gs!DRC;SRn}-E*y{S=jmKKEL&!;lhSIr_Z$v
zJ>Ipk&!-B+OuFr0Y58aEYEfOQAME#M^%NziZQ6hE=i^BxY|}~|tTqZBdnRZq@=KuM
z=fn0@8@FmL%A5YRtL56hyvxs?Yw8z!26-8U{g8jS{;qeIO3khF+tn7|iQw6J<kZr|
z>W=5jx9$6|qUMq*FUx~&`MXgsSB5=KzMjqUL$A>Op_lnW&&s;G^joeI%-vdZPcmo*
zxqVFlyMXV&lLPIg8}n36?w1$3mot2b*tMtSJky4Jr|j_bj!7!9lT}*xvHe)Nb+c6d
za|`Z6|G!O8*<L;8apsJ~C68h~rRE)<mljmD!|TDp^>d5Tj6EkstJqG|>;GFjX~}(+
zEqcYLr)vj4NxivazslY_QCxZX+n${Mu-|rRLB-^oLdqF&Q&d>@R_t5UuTop<e&F!4
zgU=>~SbIzg>-D|<^Xbh=B`2gf&+_|CTw*7#vi}8x=fwHxD+?nkdW(0c@Uk!1%By_%
z1Y@|>v;7D8c2zPnu(Mic#nrHW2xUHy{jz$u#y+uq>-FZR<`&)m9L^{e?DD!IZSw|Q
z%g`<vf%#9OCkK}KFh+>H=rR9d&k(1fnE%Pom%*FiNAj<C%nUztK61AlV=%Cd<h=Ck
z%N11*_vbQ)|9f5%VDS6A_N0b&9#c?i&^f_!g_!Mu6Ox~uESPoEr1_uT+n{cRhD5!+
zk3V~w+3_)XnJb?t`F?f%RHcQJ(tk}$nIikHWx{nnj-2ETx4)m=zkTVU&a=y&?Dkpa
zeQxvHe`0Uzi<4t6ed^lHa6_wpWux(*ZL7CeUwl~?&}A`O=0)_hz_OAEp}J#nzHdY4
z$>wcNOxrYP<vb4F%AGf-rA*;k_?W37Rd=5=`}FROE03m?zL0K^_gbB_K_#<2^z8k;
zdC4muD>WQ-ycTB6<M}Y>q(H>QofC==TNur__({#=M~`}4SLDM9kw+fBWq5OK(cbmH
z%ec)vGUV_4Dc^sjLhsw@e!iD4&gia6OgZW{QT^@egk#a{4I7W%uULEQ=?dB1$G2{|
z{pro~I+c09&Yb%8hsUGp#>Q^z#lOm(KL2EpnYj3i)2FCA*X>WaDzHuGKV&c~^7XW(
z4c$t-4Ymy7X`6Oj*~9VSuDAKz4W;RxvETQ+xw>?V%G%=2<lF_RK7Ar9Cr{3(kY`Dl
z{%4<)qlMPH*XQqT;e607WR+}us`H(4;{qeod5k|aILc!_Gha5zeX^uYrHtj!@kK9J
zu4;agJ?+Bm2SJTTigX#?PkT`3`Jz?DzSaI`Sn3q*=}ZDXsc)kjuU%>u>1q#_=w~rI
zU9cl_!lAWqJsTo9d;i94TNoTId%1h*!v)hczt0w$p3x>Kp!ZE%V*XjjNhaxm3dyO?
z`=6ZUth|usd$M3hzN%(j`_{){uRVemtEjRGo-c5JaD97L|KBrFv-s*&HlAeVlyLjN
zlIOk8=el;qFV)<qhi~(D+itGt<Z1sMHtAY-?XUK_fA`j;U-M4%F1c*t`6@Ih&Q$Q$
zU-iVIuuZB5d(8T^e-t<fIG5%$DRgtDd;NB6IRD>#|If}y!*{R#?(&ur{w$LE=0UY3
zLv3=@J(h^7ysw8DxT9h=$TRpJy{~bq;hX=_nUij<+s7)IdfLpvVc}xE9-ZbH(;Hs$
zA86%TyY>3}|CWjG&ZM8azpeTAlB~kd!6s{+mp!)hzj<Tv<qs<_Joz}`%Z1mH4EMB8
zPB|l+^j1^3=Ct7{aq-h-ege)rKYV-C&ape9A%%0Id1hTl+<6<fjDE51#`Q_^$5m8&
zua}4FPn!CN`|<lJ%kA`DY-ss(O5*7;Cr`$=(|IO6N#4I?zDlOsB>!!k|95|pKU_9@
z*2ju>7tG5(o4yNBKl$ddb$I5FTXveqzf>f}$bYW7`uSdpMC$pZB?`Hohs_;%ri%Vm
zQQfY(?%a>1?O$y_FV;CWyHh0J`_ZQBYSAa}e448Ab%$N|Zjs*q-7|ytK8fxLJg3tz
zt?uE@4bO8L^qC|yz2%rz_&z)LQ_tblr6|pxatR?m&g+-Wc)ro_rfT)>^FeIf)pMpF
zk?XxJbX-G$d#S=RRc5!I$mmbyDlzxhKV_F~^9=g-^vJ%+OL&u|#P-O4R-1ArtG6y_
zQc2P(MepR^%U3RypEY1wyjW!avU9C@*Xzaj4*fMaKe1>*yUJR#ovAY)ER<amlXJ4f
zQ%a<|>Xn$~xyN50FR9adu0MUrl%-wX$#I{K#nc=1Y+AmmU*+$V`wGWvzApdJ`TA4)
zXVEFPd0JOqKjjuu=gE6r8gz}>Z`zVoYm=kq=<a;p@-yghsOS2bU+1XgZmPRxu5Dp>
za>2Q8YmaKAhp|66wda_H<*(CLsk6WAWnNx?#Pe+@i~Ab(#+XOVWeks+A6Q*w><K<E
ztnay1wTOvfc}nf(CSl>9Ga~L>F<?5fRQO-4o%5Fec7Imydhmv6THMY2FVWlcX4=Hn
zJy1_%oX^vfJ)dX7VK%?xRUNwhyZ*HXGpxwgRgR2LKeuUr^g>IeEU$YXb&qOfmoXo@
z8eF9M=k%?D<F6b$vpm1@GSrmB1&Q~q^KY3yt+ntV!+XcP%6V!>=lx%E^-b%&Rr_zN
zGko?w|NX0Y;7>`lSc9H91wV`Grkxj9*LQS=kMpnMh0nbwK3|ylq|sANec^xZ>3JEu
zRMMtjURzjnV)+BEwsnu&^1eC7-+UFYo#8?9#Oqe<ZeRI7fZTG9G2yX|TLJ5weOgaE
zk4~^q|5mT^dQ*AI<&+~?7q?w*m~&~JJpTcGRnOI?_ji0Xand{V{`}4RYY)7Uo%sG?
z$JrGsF|U5SduhGwi5$Z@UI*_L=d1pjOWBmH&Mm)_y7|V|LkGP(lrv|}{wLpJ|F>qc
z$K_`XF_ZUB=w&RJI&pVfd+fJ@SuQK*zGjF!|1Xa<ZTpG-w?X&4dOkg~Ynb{l)%mLY
zJ*mp5O_xg6UMRLau!&*QN?EC!hgpB<>@p85)#Q{><K6ju{%!S`dp{?BIPQIp>;1$q
z{l*@ydNrXafn>2|j5<F<e>uq}D?Dbo>YB3rL;uoy(=6N^E9GVd&$!1J@coLSWczb(
zEB&v#l&#NonoC?hWVZJ9<%exIcmJ<iQ(fB8m)&rzR)~#buJp+-R^N@b^V+Z_c=AQX
zu|+(4=H}0^W|e3CMOKDCHtn}Xr{o@5rZOR-;IPL@mxlgtf6umc-TXMe{yN{xH0|}X
z*iz<so2o9%7D|`b5BI**;D0z@{Y&VR6B+;Sn=$re8lK22Rub3Wzi{!AddIFGGfiSR
z4+MB#n$I9H@86<ChC9;^zvb$h{56QP>Z0V+quU?0uYWne_S!sgYuz8QX|q@UW;W1^
zm%RF2ZI;lEZCMvCn(J}w-?`sy5+B=x$m?6SEIss9&2_!pb<H;klTI)E!04bNyXE%o
zGYb}!UzPbFbmxZE>|OJZPgR|vabH8-Y3s%I{EO}%`#;?`k~%Qe*Fxv`?eaJG^;JA&
z=c{p^b<LAHSM+(w;m3CGr>7iXUo^ij=YF2*fytIHUhy8NouoAHV0n7M)YZ*1BCek|
z|9i;3zoE-m%B?8L&qjFVd6kNa1mOc`-n@F<vMYbr`IFP{8NX`Yd7%2X_ub>JZ?4}=
zpHp?|<8hh4wR@)Q+}*m~MsJ<v&CL843(A${?cba$)H~-DJtLE0{*LR$3`U&-HjEAT
zpA_w95}Nh0PR5(-#grV0TN)ReZ0gVUT$8)%l6UT1;oHgsQ~CFPJGyCywb@-Og_=3H
z3u>0!|5m!u*6xLProH96Q=cc@Q{Lje<j9rdlJ&h}He45;)Lfp&7%}tU<cLLiU#j)X
z?fV*E?v`>p$Kz?By18oQtMu=BOh!d#UThLrpjVoAD9wr4f5-FSsASh3=0EvKx8(Er
znk|*zHBB*Y$W02m)P6U7^ATCC-nR;#;>;Ud*}|8WE#_Zlkd)VRug1&WQ_AA(Vvfac
zW^UUuTV=1E{hr5#hnP(F{(QF6zI5`I<eKa2s@LvL`uXYU>FK)haaR{ETjuQR+deC{
z+T&9F^CdgI&xTpQ-4Sfny!pcc&a?UNr0c47lzy^3Z=%lAX}u<HqS4A<Oa2~ryX*Mu
zX-Lc~U(ZYLzRzoUBBaQBUg7NH)w4Zcm0mEPYgPL0%F4@=uGgP=dW|)~Tj4x|-(ipA
zj;AxKs-iQm_cJJQdb>00^#4x2_5Sk|;Vzf;8!f8jYYxxWj-K0Zk#@9tb6BiF>ai88
z`R^+H%lXxGLpv|`>AGq+anHrZ|09nG^&Q$7a%mRBorwose;=)1+FJdr?EQhl-AUVj
zOiP?%8CzDeo9V4z_2a$vF7slZ#|zG0wK)5bra#Z*=#Q>9D{D@jmP+%hc=dj}+nF=d
zC1va9h!+1{6=ti($IJe^Fj(#Jwv@S%?>;?NIm=XG-P~<;Jooc~Ns2q~+7vuvvUwie
z8rZobtIlxpqkx*9+b#TjEPc-M`s!A#|B>}(|9b1!7jl2?%58PbXD}%2?J419j4<MB
zXpeed74)NS=QP3Fhvs@*f2-8X5;5`QwBs{c^sQ}YEP7x0na^R_*D1Wp4pk<MHn;8+
zcxDBE@?9RXn8$a{=`$5y&gcr2tF5lv&Eb|Jb+jl*_Whejf38n*`*HNaoZrRYPux9U
z`9xnrM2~CMySku1dpH}eZ{~E@km+~o3i;a>m|(}4p;ub$krixIn$e}W>VJs*<+X{I
z*19jT2z<Hc{Dw2FTVG56vSm=dT((#0!R0%5ZT-2=>$c71Kk)J8`heq}Dh2DS8*1l0
z_L!yVDQms<!|FpTJk)a3R^Gp5zoUG%os#FQ`iR=;da=7pUS0|b508KTFWSU3Gpa1}
zaC>>zo*0vdYqzWE`d6+OU7x17Cb6vD-ec0G>sxoN`L=1+%>B8il0H<tlPzde$^Fq-
zZEe%6<fL8x@92SDw?wyY-Krh-uh!kus`S+TVle?3ai)(?ukkMS*zx44p7eyOoj>-r
z-8J5CSCVx^aqYWJXPbIiETtOEjb84$w(O-b>lUZ0^~vcH`DvA<^5U<q?1;A$VtTY)
za{VP9<%AeB1@X^OUpH0H*tDW!!>!K~)juo_@m?_JC;NoO=Gogys;rMq+cW#^Rp+^u
zu{JvdE^RuT`sj{kt@~k)Sr=>?mhN48LSN~7`o7X|TfIMjOyj0I-s{(?<VkQW{3dvP
z#=RWxcPD?na=xQ^ZOhf#X}2b+yk(w}kR`fUslagkbuX^H{0CZe)*Nbmcs##K@t=?#
z--OA=*?c^|)RMg7&MPKH{djKh?v!LB_vyae#ykDTd6nh2DH$0S{<Kb8KlkX?hs<-T
zcP)EA+xCBJ3|HTCkN)I;6~{Q+<u_#e&17-nch?ELuxZng)`EFYBU=L(?r3qo-un0D
z;mSs%MVHeV{)8;h?Nw(?6H9xu;HAYvlbn-M4XXWSHV+>ioc6U$c#6DLTHVv!ywxek
zzt|Q(%FH+y5dCV+&sfhJlfE^iIvdqIR8xzu=Qz+hGyeIX_r;p36D5@uuJx`vBDrmk
zNKWT8Mw<uGt$_=3Zq~FMoOH%JY>l0CgD30hM_+XgTyK@KEvUQ5u;$a+B(Wo59%em@
zj27LTc4x*%*SYf<6OJxuIw{3@q3zPIH@~iIex4?_Gs3~Hk-?}&+AS|fu6Oy$^9JUT
zznSGYckiATX%V@YA?vsJJGQ4MW;4kD2ulpnad#0qcz?d<`&Dz_cZnUX*x0Zx#hmFw
z7wg`%!yXNi`$8qAo{C!U;&XV)m(2|eue)o#WhlO`wP4NKyS8UOYDvqnMLdaa4P0q+
zJ4YsMnWoX5uZl^QOBU>kaX7bU(R)Xk-$$>Up8T{mkNb~o!?soTG9Isy%a)Cbe;U%;
z^Y-`AhpnR5?uMTKnV$ImQj@H4+}o)NdN0$ar9S6Xmf-7}o%QBw)b-V~e%JoLzLsm>
z<U$RG(_MR#KUGA>MeS56mi{#@F+|P$$jwRlQJrglrY^bMR9&up%H&sQLz~j=N$cmb
zYTrpLS1kOQvCZrLMT4g2x(!Fe|2}mqpEY?`(~-1yGCRK6vx{o)d|A)%OzdS^VpZ$g
zr|z1UZ%;E?_uygPzElZO&*fDOfs@X$EXZsZkv$xFJ?w3aP40Szn#euBJuk&gJb68K
z(yiQ@3lk4-`uOJSocE!}JtlRD#pX&F=G={&bj*9#?-%nux$f>y{X46fJ>RIJIr6*R
z)eCpl|FUOR@l5a6pSLY;(v}4k-zP75I8i)3<h#_KKz2`U`xzFQm$uybd{S&8@7-lP
zem;?~+riN=S2Z&^Tp;_^p%e3;y-YXr|8n@Y*3ER;)6Fj#^hG}RJ=~(HJF~j;{hZ91
z1-uOPUvv+z@QGtsQM{7v-<3y#vx*CU)O?iq{%`GrV#95RoEms89b!NEMa;h0z<f?j
zjH2a*chwEQe7sIbyIly;W#U*LeQWRaPl8cZpLb2#7Q=Ypdt^%N>G`kJ8XjHidNK3V
zlnL&Z>ysY#eV-4u$Bcbe_SF21S|^o5{y%uRe-@*|-7?p!&-y~vX}q#6&ptY>CT7DQ
zF2;v3oZr8K+;xs2$!L1KU~NHK{q0YQRx5YhVq+@s3w*yb|IPQ<KQC0<WeZ-OkYCIz
z%&)y_hEC*i!34MH8#fG32~2O_7ycyo#iaM)wO{Y>s^?vIzPi80{NR*3VJW$Gn^t{~
z68PP#KJT7i(2AW8XDsSEIjNg*$C>Rsi;XyI`9EaF1b<$AH?FI8L!ACMk$QUuK8<(2
z<-e`Y)$J3RWMcYj+myYDtM{>G#GK#Gx7bLM?ZDlY_VsHFKS|U^|7nP2*rxv}cJ=o?
z`GGx#Hysz6s=MFQ(SG{%@H~f${TFzZ&!{@Q-pTyy{=+-I%f$A3y^UnZiTUz-)w2o5
z!(Dn$PI-E^ZD~hc)y>CELj0g02)M@>akFaenpdUl`Ma-gixk<-(dEtfBKD88_p7Qq
z8c{)SWEbbWh-LqfymG#&WUAMEwT9`nr#%kdXZRrYsK~`TdXiak_i@t;ow6z~<L?DO
zl%9I>pQ5MK(`YxYD$h%k+Dh(nxt@+XCOq%6g0k_h`wzL6<Ufh-2wZ5x>CpMCYJHV_
zP1x;Kk%Gp`nLpCr{8caiwoH|G;o%rQEA8~eibaQ$8Z`H%E;;b@Yvtwn4b0&T_Iv)m
zFkSxU;{9@?#;{2HS=OH;?g#a7rSdc6eb805w0*|#fxTbID%WraZ;DG+`M*sanv%JZ
zi+SzuFdaBwbK2wFTZWq8O|QFx5?_B;p0?!M`J-MH=@OhZoEsLHEPsD^&g7WH(`i!}
zpS#cHjF){8-5t0whvz`@zEqW^SvCPT4mG46JSgaG^gQBspyWM^^)1_9`!Osy_wUL!
zzpv?u!Jp2@y|k8gTPVSNA!5@07TY?e2U+*6yynJRdVh-Sd{-$cdMInP&HSC)4&^eO
z+0c9aTIPGD8Tp%R!w+k>GZ!q(mpm!)%1osGVYK_oVlIaGY0uv6479Z2n35rM`FHMP
zQ{k+bce^L~T}TOG2rXtvoATuItFHQ}98am3(k=epmMgmgIdj+#%-xr&^0cnOjX#s`
zmdM-~0YA^@3rw{dS2NzYzrAP4AHjx&`%<S^>}P*aJA0Z$U1YA+flrtI+^$z(aQ`_i
z@K#CT^Jn({_b(f8d2IETHoLUF@5zo`JHmfV3%s>MtNZ<wCvDRM9b?|lnN#;R+P!F1
zHsibxx{FIzO4WUo=4E*EHo7bDq0DoilTU)a`uq@hkbGauYnraoy3czOFAE*kzP*O!
z!SP9Jmwu9On3}6E?OrId{@b;N6Q|?rqo-I)xfT8Dd#&jC_4o8FFVoyzyO)%GeZAIl
z`@QW`gr4-BSkoe2>usnt+fVqee$vF#%<0Z1>@{m;pKVF_z3c_o^8S2XH&@}RBY&0d
zJ&N|w&Jp{2diR#)`MOKpe)}`5kpA0#HfQsZ51udFzE9W}v+DP{Ng<n!vV8i!tzCL$
z#|hsXI$OIR&b$zRSNT^e|9!8hr~g*y?mWGHicoTbZos0CcimJ4cipsI*v<Ac?2?u2
z`yYxq-gaMgmu}(cWqgpl`fKJ7)hDmAE(Odgv?$#2`Y+Fe)e8z%7Kt$U-u`_pF~nkF
z^x<VsJnnlLJt{e1q;&MN6hrxsX&~|2hn79zxbJ0@>~V6wx#-+gsSKOLKCeBzBFAZa
zyYI<|`=+LNWau48xo_mv>BtcCIJzzHX3M*hWhtSzJ?DKkaajCUFz=ZJ10N_GXRLb1
zHG7iTm+lHZ2KC?50-f%#9AE?08)xSqTDC+tH#Lvb;ql6SrBnFUGoCT84?nDIJDoY;
z{xYsFVfqDZABw6gWbTSH_I%Slydoop>*}xOn%5`#Rv+TaPG(#3KAN#*9_s_P`&K<(
z%jRk?E!vPT8yO^f?@8j(|5J;81Z>=K;IDzs^jQxl9=<cb{Jzm9wUR;=z2|?|)?|M?
z_io*shZWHuCFLrG8_c#Hny51Ol7N{SuX$KS<-^jLM?WoJ{}4+GF*?jR<C>cH$~U&!
zMy50OEno6)xm@r}P2XGlpZab6_Cfc^iVQin2Qv4KijuclD<5lN|5mq*bK3o_o(|6W
z)z`hR=ihak#`AE4kGEOEkCeAn4M*?Rygo5??xM=;%6qot{}WsA*YG{VhqJ!7w=xzN
zE&2WE{MM5@mj;@}aBg|2uydC7E8(>#)0dZ@%syeN_itb2hWz}S3y;jdc<}Tcqpe$l
zBP5^t9k*ogmHu^YBL8eZ4->UBzeC?0Zao)0)8N*b=yJWp;!AIf8M3y6+?nIYlF*Vb
z`7^Ng+9k1TPvT>XW#1kWOJ>}hA7|@vlu@Yaj;77Q?E;H8an^Di$lF)?<aE_yhG+5B
z`MF<S{x6EibLNeodS=>z9-+HIMUH)U-bS|vK77M=pglLC-jH{p^SruWU(N-+w|C!e
z74}bW`ueLsyFWaQpR@DW!v3S@%Kypic%g9P<jj4ZvbEfXT66w06)eh^biDNNM(4!k
z^)Bn*=<~}P?cb3<Ri)JC$wbwO7rl&vOONL>%(#DkyTIa0KRFZpX8!f%mfdOb=SThS
z;BD9CUg+&vwR7pS1?^%xkDYB6krb$BSdeKCN(sw_8Onc66SVkypI3Tvn|*q?(4PL!
zuJz{obX<CG_w6<F=sbAga%$X;JKOmdKe{Q=@VWLh$2>lBw=lKjYo{J<y5PYuEq}^|
zduzoW%)WFxY!_ogr)o`7ZU{#;<AtzKuIWeXiVq!ovb@%K{|l3H&(kTndGVR;3}0Cf
zRh<(~3%_s0^EicJ+gIJi3SVk<jZA+AFPon8M(B*~?V^7lxf$~KLlPKl7!GjnOO<F_
z$DlAf)IoaDuSdr=7)s8&$*L&c{Q0qzuKlV=mJKgXR@cd`Iritq8o>oCMZUN6dOc=r
z__ZlE_x+!_n^o&iuKE3LUHK)c6&IUcEDfno6Jg;0H7!x%l0?JHeW4<Kamox8#+&cy
z71>wvp53doP32@-mwp-Rf->9tRy@wXgc9cDi?XVGk#dMl<1-0n6jM2WA?&a7k!dDx
zM3)?};m|*+6TKynsU?e1?vw7~2{9}O^k$ZnvOnox_T$T)7e|)leQ~`#)oELnxo%{@
z%$ZMmgckENg#Vrv=uyV>V3N<SdHe?qHSKuke*5)2-u>;#NrBJ#Kkq&JWLv?%7m=-r
z9+&Ph{5iJ0$0;b7`$Lvm>~SWOZBmDdSq;zZHhaE>&GAAd=Ycy$-Sq~yH1Ze&?y)My
zu}4fhIBUsotp@X`x58B_*JgY;-(d3W$VG-b&w`s0T`Hs&tZUAfWIa0d`)#$_<H`&>
z7JT(HJ%3D6c)qGi+=(yUl5P)YG8&xR-gW2^U-AD5`yTISxMAYE{=&BDeXF}~O)6%d
zI72wwjG-p5O3}$pbrT!I{|~y0H<U!Oeu%kM7h0@v_`_bm>VK(Ct3Q1$`}eEp>34>h
zH~tNYCY$9Mmj9R*m~f9VV#2ozskI8-9kZ|AV@vpZrj(_or)H0e=2gyZi6Wxn%RbFZ
z7j1pk`&Q-aoiCG3?%rAa&w1Hmy~+}H&s`-ozM#>OS+i!XI;s5Z`5MFOHii#Xg6}gV
zR!TB%*i`$gFLzcmgN1SI_OjIs@6K1;*s9dn94IztUhKW4dv>f-dN#!^I#KO_^}bM%
zS@V1u`j@{o7kyAav)|h6;<N+Rx0k+~r}D#se^naOl`{U4fWs#ynl^?k%z1jmoniCk
zyjA;nKGZ%t{BPS*-NyQFeiwf?Or6<3hq0RBgUf<sDYtbp3{xWcel5Afci=$D-FFNM
zl_~K?Vexa$%vcifV$JRu4zcg}C#w9lKB35~oW5;Z$iL|IlZsRKs>B{!o;hjBneK(>
z>{Bbx?Edv(zwLiR!;?<xCFipw`)3R4Gw5i1U#quxt$|R2tES5yv1wcH^dvrw{Tu!E
z*|&`PiAN9Emfb7;t=rBMQQmts%jwqh(=YBkIVUFiuaAAx)Vo^m!;gebzZf=y_rtV&
zQCEdeQ_O8HMVTEw=-|e;Npr={jLIW3YNk(^mHU>}@%AM7g=fPX%}%xLWB7A-dyi5<
z;pehrpI3fPDbH#8v!~&Dy;jxy_GImu?QQ}abThBBJdL=1B4hRr%fIVuPirvEmFv4H
zvse4+xufL_i$CuQ{_OO8x$-RjzL?y-d)WLA{FObSq1~M*A~U@^xg%fFHSzWGS&NRP
zJY&?f>Sg_5wO{&b%oe4h`GVQIm#r$ex&9AZUwSr!A77Ej;S)1=GtBCGvFhbiU%3d;
zt!n)$<xD%p7Z~2>;bC56m&5JP<@xGE{`b7Rd5@1hd^W{X_?fiZ#h=^^wl$|Uq+Z{Z
zx+^`my2R-GR(r+`h5Np9&Xp>)k=)w0Yp+mUt;@d0#~%H8vW)|5&1S|MN4EDUUHZN1
z1yjnCUAp#mIxFnIz3%C`llCof^5OO8PS@X%xbtg^KP19AL!vZqF<#uYpxZzDVf!v!
zhIH0~*%vMrcP_RIb$cbVQ#@hn`zKf19^PPWSX^^jLvLZQnCravg`II<uQM0qD13kU
zH)D-vq*RIL+~<sGY&I(rpPW!&IQLO^@r^INX*p~ECeJyae_qvrt<YNX)8~vry*eHn
z>+dNIosRuk5<4%-He}bH*05TrT-Rmu<o%IjFJhPuTyDI({Ji(W-9Be+j;RNyG22N0
z*w8jncwI*Pvy=6w+ONuYNlex}dwY89Ge!fO9k)aN7K$D?@?g8iYUzb<guhDVc1SYl
z{|I~7`gb3%^yL1<>(unbKc8;Amv-C#!A2&LC$BgToIS{&BVqZG&*A5C84s`Rw+|nC
z(p)fi->mnIJly>0ei@f_CV8hHRNCO<;r8-_%mJPIS~VL#o22`wS?BK!W|X+^cIs>m
zkHNw1T!%S|{Zp+q*U0uAuHL?T$+vTxmT+CwG<9<f`>Ddac)^ZWGgdEuAF*tW@VuFO
z?)onLeWz);$K^>Es@h`;?{;ovb-B%JpMPX|a{1{J266Ay%&R>@4}BDBFP=6^`<p+<
zuyXTi?xUP$X=<#se7nCrwR{-7WdGayu0ic{^{P((+-8y*75v4C;g@K@vc!~w`iwUY
zZ|CX%!Y%*2MyhTbx4g;Sf5)aC2{QloY~xnL_xY!N4sC3`p<&h&bCZ+fRQjG?qlB<C
z#d~s2H{D-<J$uQ+pFMpO%Gn--w@%BJm}$rWswF?1a@)Mvzwq&S?z-)YmoLo}s@R{;
z#+=J=U_Q6r4FjV^+6?ADraheQTi0WA#F2$#`?+=AQN~KV59{|!&#7DTt(T!(JZ58J
z$}yvc_L|in&P@2=_ToNQ-EzOrhpr`k+%dcVZc6iH`T62ol}qzuHv4Zsd{|mN*xEFH
z^L^&}*VA*>%nVp*ciK(UNVe&lRDN@g9sh%!hu-gg_rT}q8ChjL+t9=MGSTNhU7Y^z
z)tckq5;uR_eL{5M?1rc8s*<mD8~nNSZW<Up)@|UgUH##lSnz{Rz1IEy_6+-a*UR51
z{3@Y8@!$O2dJmUfSj%9ddXoF2e8W*zk!*>ZA50GL?+g90{O-4-g`0lLBt#w$tNQXs
zpg~y0Gql`on#1<(8tW>U13XVw^$I=LYdGe0(&fGU^c`;xT-&vS<#T+9_o`jXE91Yd
z@BBMw{zE?2$ypMSg^~=}zorEm=I|fbyS8-YFNuc3OJ4m>=C5Q^{c>Bh;WC%THG@qL
zbPi}Ki}bIOXIQrF*73?M`@~oAU6<ks|GHCmVYEKOJB>MEhflDDi>{iVFFEzFFvI7l
zx0mvEMRT+k`(KwWiLgB|DUb7S8q=OYi<NB?Sr0SL2;Jz(-gW-5WKP+9vE5rDckch9
zaN*MAcdiYtxhi+N0^iy29r*uqTA-s1?}ymewOO<F{#tq0{Zd$-wb{WZyKC=!<x;z9
zV3dB?twHr}?dugHtCo~ax^kgv`>tokvv1Acul4fpc9qNv_dedWo2J6c8!$id$*IcF
zNhRAYZAAOU8Ta{IUitdZhczjYJC;2PWa#O7ztxgKT-0S*V#?81rx{;e_q>0Zqw6BW
z{AI77a`kU6dH&(|xBJW{ydAHvER=g--x`o9akEg9;r}Py#fvIrA2e^dtG9w(%-nj>
zPOXIPN6LR`DDO^@U|l}BTlw~x?R{NIHV3|ZY1g0qr}`JS^Q`;dRx(G(%vXJRpMlrZ
z(c7da$5M8~imytaO&D%Ik149lPCv3Wmf^sL1xqB|`a=9!6U^^hX?3<w+toXvGqSoh
zhxtHy;q|xd2R<G=Y1}iXpmMSL%=N*7ox6J9O#ix6nBj)@ww3w}=B&%k85Ai!sk7|=
zvUc&Jj$4!79L|WDa;|uz@4`xk^(-LSLr)F=?{baeS=``~dy+Xa{?<eGhGqXY<~}~K
z>Ab`}NzNlrm`u7HuS|P0bzi>H^zAVh|Hy9W5o}9mV>Vd7IbU|F>yar>9wlrGvpsO=
z#{cBy45D%OPJHmY%E7Si%i6_<5>DncSne&}dE==<hp)1&K!ZDzP`bp<58@12*FUUX
zd}zh(+Px<Y{-;~UzL|96xTx_gE`#eqIa2>DZu)M0|7q>wOBMlKZ;K=P7z0AN8Si!F
z7D=n!W>q|EP?V@Y{agM**RNYO-59SNRohs8FDv|qP)dl+Y(2IGb>;V+de(r(-jbuN
z)-ud^;X5(#;g=Z?!z|Q)h$W>QKhLnkU|XgLLv4+wk=C63R>4J6^JU$pm8@Z|u-o>s
zyrK1p#Jq^|rPiKX9OjrEzs<m%ba`LijLo~d5}%yi%h0oZi+FCoG-Jo=uwRx3n5;$3
zY&H}!I|LV=dM;J?B-%P<k4on98_TAvtXw{qOImKns;Ei-Y>#f|Q?9OJ{!ox}IgTOb
zt@p&hgE=qznt%VimiXk*a|Zci+pg#^SDc@&u(+v`Gb3{LwG3&WyhQIWbLMhM$K7CU
zNEKW5uC?a7x0AHzr7b(QO;`1lermZXF~#$RmFK0k_LbKH7e2}Mu3E3AdTY|nNr#>?
z@Gh>9*|Atf_fPh&Iyc7?*QfDJnUdi>i%IgP!KTHpqC78s?Y4QnB7`f^n<FLV@QJ=;
zv*}CZH~GipusH407Tm6FWV-I`S?@EQH#O9<-~1EzyfjtYhI?hir>&~Ysw>UxBDb9N
z?s>H7mR|K6%PV{5OsnN9QI=rZsCs$!qg!)yH&%8AidfAr{9$%hP<r~>PZ~=%oxD74
zhw{T8s(o+wO1UnnI$~$|-mdD<><L}!=hgRx^J^BqHnq{;_`q(l#2le)uUF?Yyl!69
zFsQsWDdo6Dl#=JG>Gw~xP2^l1fBny|-}SlH2j@@fQa^9nw^@}ld(L?k&%>XjZyFdq
zycPHE{?Fv&`^<RvNA=X~;A!|O6t$em=bO@r6*}88i*}yczTxf8ZRbK6RK)lzgc4G#
z^}Bk!7F7u`DA&9;nDV`@Gx~1MybHf3s$Atcm7j6g<Fsb9chK9)eWenoZcnRGTDerW
zP?KZZ36PX~#pAEHB<oTo90M+2P+B`{Nh#xwlif;-n|5$FWXfLtZsIlnJcFG_2G3b$
ziMOs30xe5QziNN`zV<Lji#kJ?+B}_p#u?dhU)&rmB^uIePaDYmlv`S><Z0SzdBtwZ
zl6$qEWo{cp9rg8C;}qX1(4l+rLrd89pIP^^+!Q(A>U-L&t=qus|0LUc&ea>%nX7LK
zEuN6GsZnKb&bf6@50x~?3;P89wrcqQD=;O5<2hr&lzd6IfE~#@k7%B#W{9s8ObOvy
z&t&rLlkQ=T$>kEw+6f!;onE(3GT9KluUXp7Yu6hs&-XeX)*j}Vyj@rFy28>8staA}
zBMx))-L>|3`0A>g=7jCKk-w&?yuD+(@2XjRuhZuFDw|bRUH&b+wcaD>_ua?R_R~_f
z9nnyD=Tgx(mt#85&)buhNUL@4pEk+;d+WJ3Gr#NdI!otjc&?A|J7%=#m3l*qNpF?Z
zf^DhSw(0qQ*p%92`ssNLL*GZ;!yJ?9nGF>7eGFn?bH87HBkg`-cAk-Z!|QIH3mWcm
zOc^nExAQ1_^f5m;^W#`^^8c)sZTo8F9GGWRPZZ>so5iRTT2gtDz2W&I>Fewd*gP-Y
z3hqd6UFvD{DW#r4@4N0{j%nW+rj>PMbL+BK1WXDswLLiPL$9xI@1Gym47YzxOEeL7
z`SmVbW##L>!dwN<b#lqUN%u^@Rx91Vwb-q7^L~}Ho0Hg6kLjH(3wh1>ZpxK^_4C#J
zyc=fk)i6EP%E(~zD7sD1;O%sWq(#RB80sf4NoBZGe`MwKdXZ$Gx~HzI0@dcQ9w^+G
zD&c6%)UY*q_ATau#VWPDA9ii|w=@3ejY+ru#VwIab?nz?oOSKP+QS`+6N=J3W8z~M
zuC4N%rR<p<Z}IYWbaJp|nT=|PwX~?`ZgsP1OHLNoavLUbT$uJo{Pq*S(lF0U{*$(R
zER9x=xuOhGb@KkVi7K|QBHIMr6}COOeO@(le#HGBM=CwN)7T5s7YkW_*73Yl{k`H^
z;t@d~&*#%sSEj#7tUt3y<=(WO&OI|kPt5H-mAwA8isxqj$d{2Fg6<95RPrW1ex|xw
z<z;(@^5gTb>vNv;-V{<+XS0pe_1xNC^FF#WkilvlLxuUW)MSQp6PEbiIe2zec-`)4
zOSUSpTXve3@+b>e`IhdtcmE-lB+@3%FssVkJcsK*zKZAbbxX>Qe0;b?^|f1$XF9)8
z@3!-{@2)=&x^LCPRA|O<+{`?O^T7JMv*$I>=5^n{L33t!N~>Gtg_BnW>dtVTnI?1a
z&GapI3_5S>PZX=$r}WG5$%f<GynAA9>~x!S&-SQR&Qux3o0C>vR?WQs>|%`G%cr{4
zZcV?^*ou=EAG+Z^sU&V~x}=*o(<artq)X|iUsQ)nrDvY*6O2y!ETk;{ZQ7EflWR^J
zL<z0X?Tmb~WQ*#yV}_p=e4iGyL}PMb6icf2v8&!2x22eRdggjQY1?+puqeUb^HRon
zt)3K?RPSl~6+Nw8nsb8AdGF(WfBe>-BPSTQ#~P{m>K|rzyeYK(#L9oMPjbDYH+|6i
zzW%It&l}FSx}Nuazpg#3p>oc0ZQ=C~(bM~kXD)s9$@IV~zoR1QQ#hGp<8<#E^)v|;
zd0tLi|MH$4;|7(?^R`lr%eytsYDk}Bc#v`5sOQioZ)Jw$JC0|?buXK_{d{^w^nAoO
zA!YV?YzzAHCEXf#p0GUrKW@@46Goc}t5%0HniegrO4P1j)bnZKD_4en)0Vttv^c(9
zW$_*fwgbNVQYAb&-^jRU{ralo`Rac3B?He(?FV`DB!c2SFU_78DshtY!nBNgrjwQ^
zcHNlN&m?ol;E>?rliR=W-e<}5{?fTbBKp(WM+)rbJu}YCcRMM#LieZ7Bomiaa#}Zq
zj&sbK(enf>7-<qcsm(*WbW%=dGK+6an9SlM99O38=sY=LO7!|^+^0`)Z&qFE!<cjO
zmTmCONt@MUcSbJwZmh+<S#|2+e8!6J;_*y6IflHFyuRi?E~HLjf6j2>{C1wj9B*WT
zYvvSwoNrsRytwDC+0UhI6Q|iTZRpFFbPKw*^!+4O`L!J@Lk#WSEuNKpxbO4+IT9~)
zd$|r>vsmi0;kT-Ha+rZ}e*f<b2NkyT)ei47LWJ~`cix<I>cNiu!`gH7%{%@-m_Bjo
z`55c7hDA?U8$=KO`)lkqt?&7H_6mJNy+7wK)=v4l=Y`QNyM>kvk1v;-)O`3azT$oh
zS885LaY<2XVlIf4pOnRAXkx5jpa5c-npv7y!i0@YprST53i?i&CB*@$Mb7!T1^IcY
zc_j)K3i{6ZIr&Aw1&PV23i>XoWtqvTLGDgm`Yx%-`6;OZiAA}^3LvduWyK1{U=5|Y
zdBqBb29}lz`T<3$DVfP7`9%tb1`2j|T>5UAIVGt@3i@t2i6yBJQxx<)QZv&tN)#*&
z3>5TzQuESFG87C=KrRbX&=2-aEY4OiG%->zPzd7E4=znAsVqoU(D%$uOixwN4*_!`
z{FAa$lS>rz!!uJrnhh*1LAF7IpkmIOyLWdj){tVmuw?$e|Iz1UmS|7*>QVainK4`T
zY)HC#7uTMqih3Kl?Z4iAuWpX7Jav1qQuK{w2JIUn=bc)<<9(4{+==~qyzY}lmzeOb
zV_nd=XWpw>qF4Ub?Ki*od0OD}yT9{}^+yX|(9K(1cIf8L2pO+s>h~BN=e*s$YSzEp
zKh^!m7ki)3{JJ=O`~RO0S<i2dW1kfyV;81&o1t({*2GX>|Nkcc_AcD*dw#Oo<13O?
z>rV%XI2X)_m|4MmWa2#~dpZ8l%igaI=M?UpZz9Po@>ZS2iS1_F)RSfo8d^(p)*dfl
z`&#?WVm{wrEv4EQ8)T%ymZ>wg6h&xCZn-I##Phtg;!(+lpmQ^N(u?MFT$%R$Mfe<V
z{#^q34FTV@Rj*!LD8TtV^>f43ch#|$-skc@WGNo6V%|IFlx3fw_T=1#j3cvOC#lZy
zm1j5lS5<jF{?FFAt6S&zaxLsVTr@2=Von9Ki}F1YLx)2@3(P)zdF3O$uOf)AHka?&
zoTwR3uRKo_*~BX_p(5C;!@Mr;e%qAxje7rF*z&z=K7BjC>ebQyx$IA5tlQM?F)((T
zv-)nDcI#o5(D&ba|JJ^k>l^iI*^cZ@tE9YFM$BvN>@;_9c;p*d-}}&HM{sl|Px}Ag
z+JD28lr7B<Tlh}tI;$CcOUA-Y<u-$1r}<G|qqfgQ6+#jxUmiMo^T5|eacA>0T7?q#
zfAVipzjx)s|CY^>`;^NL9_O;`mj1}Xt*5{Agqe?y;q4tP4d0H;_WI{-@q2wi=2pX_
zOKhfH&Po1u^yZ{hVmHrPT-u#&RpxW%0<XZ#is1A1+qbYzpPl2AxbR$0fb`{{>85fO
zw=7@F)o-~YmvIuJ=<5E?z2_a{FG@U5)p0aiyp*-vazVfNtvP$UWL?~*RNU*kv4XK!
zAV14`<D~-&YUgsKpIqQt-YVy&k?Ni!W2zMVli^^eIq#q9SC^ano_yJQt8$Lq^Jlle
zpVXOgMsijT^O5aQ+c!)v=1dQeeZES!RPMBycEKACk8O-?8$z~kSl=6&^?P&Vool)o
zvkv*h`yD9W>k#>f*MQ~YvZdz@=Y;=!*Hb-Xby&bR<p+*)xH6mHJ)X6!^S+PIHbyta
zdnVhqUuu{*XWF~^FZU)0`}ukof8~2}ePXFVr}G|={Fd+6CC-%#N}t@R@mO%d^XJPo
zZ)cXJ2qvfITvNHtz$}=*>qq^elNygUE2e*z@UPGKe9cm#_S>!8C%W;MA4a}v5ORD}
zZ6lq-c|h^wvg!YY&i&hc-hKbt+qJ*rkIt4Yb=$+%^Qm{yZ&oHvp1Tamg85dzzE2A{
z;_B2Fcjc|q6-krlJiBhb-f+O&c|vZ(!w&P>xi1>x<|JRs?uz=5zU;i)T!q<x7d<!B
z``GqC=PCz}*PfT}?(g)r{CD8u=0BIW8{b;t@#vfT?KekHnzc*~%(V7y3^+2I!|r~2
zu;-Q~f^WZASy$`cQr7GIEb(;CyA)}rU6&jz0zqmNq*UklZsq?R@%i$+=&5q0Ol@<b
zqx@BGP5XS7anZKd+xN~{>R|H7S4REUto!Y6PchrPte=<uT;+9j+uU0l9Iv~6E%5Vc
zp6BPY_)5aQ%_1BgdpK21AI3zgFE}m5e37kSQ#w2EEp1b2ErqH2Z$;-XdgH>%bm@@W
z<>F~kwhJHm9y@g5{q31XzqKEH)>T`}>+*B*!l##~`UNT&eN<cUigWp2Ddvk|rYAn!
zed%90#Xccq!=)&hz0<PO?Q&m5sH+>Wd{kRjzw1xd^vAYG7|#8c&(m`ac=>#l*Zi|T
z_Fi|;*t-70arw}C)&(3N)z(<1uk=;UKNfXB`_+}~`Z#&+9m>s<q%{{^>U`qG?xu3j
zW!n6LP3<DrET6RRZQQ*6cg^3c3uLeDxjuW}e_dA1pi7Yk3=ig32*(5+l3Z>7SDWF8
z<ed{0$I?Da*ZmEhV|#bX^b0(19Q4B~*(%iU9SJX-b}M4%ikW9W+pWL6|6Ia3>(fGW
zOka3935cJUpRQ#f`7w>d)BN{mwb@_iF1l8G@Wme96BTQ-zT577<n=tWL$)X3<H<!a
z6D_WaB?vw`tC6*Kso1w|h4*<^7ry%c>)eL+2Y08IPHww#@ZA)l${;bbE7O?01@qY^
z%`Yh9D{cv7eSR}SF8|VhukW_~tDC!ZUhu4O+aq~;so|Ule^2){OZR%GZF+r*+i-zC
zucd?4)+7f{&gCa^OWXI?a<cR<Xb)O+?#1tjsfQGsE0{kdE-zjk)}vX<qh4sE64jse
zB0a=!=5MCk>m8q2&k8+TyDDJnWcCI{k%&x%rS&UgpID_|)NGQMytAC;M?%@94nLJS
zj?;DdjLg@BEBahJ8=D@mPUxy3gTdb7WDD!R-mzz<zwujQ{yO#{PfK^wy`@YqJdRqd
zh<bmxvXIS2_S^o_3&NEO>aB|&=&ZFkz%KfDhoAbKVD_t$6Flm_h&&IKd&<VJMj@TY
z-G1eoxfR9RR+!uG52=aDN?$1QU6avng+zN;;j~%C3axULa>ZB6G#D8YQvW~ud-L%}
ziC=3AwwmW}t~vM3x_NqHdAqve`#FAp9@(jata<V2c!A90RiC=bx6185y7-~eS__8H
zD~-H$LoQn+rEkyK!&z!EOY-B6@TCq63axxsS@cxroK=>6{(=A3w0Rb+7A*Wv9Lyjt
zmRZ;Lutw&+Mf?8h_h#!gy7uduoD*D`ZvUjjUieXf2*UxccfsEp_^XR@zwNqtiHY_4
zY`N=G-~Fyx`ee$33#YcbGMKHDSRPoo^+jCMk=aM&tM<Iy#CRu7=9OV(e{EDDgPPe@
z2|usvxy%06UJ9<<d9Qr_nhQNoK6F<xKWOeMRQufXa0$;{3-{;Ge$)jh<Xq}vHrVbd
z<Tqz#X79_D3=A<#oK0sw6!tqMEV6mtT)7oL(w4kyzVx6uOa`Re?*F%Y4c^nvn*F|Z
z=XH7I`J3A2&z?PDPZ0DKKIi_sYNKzg&AlD>Cp?d|Yug{uTU-};zdg>F@qNjPWmohb
z*35S}Uw_iNQLNv5LdIvW!craA+?|`wE`C3SVcGTnmUA|ji-p&Hcy{zJn?mct*{QLW
zXQy9oD}51gR_jQyg=Vv5r|3Jb^d~Ig$v1y?9oTMqpZ}WMAFl`(Mlo@vhc>m(=WH%5
znRBg`|9AVRy7&K|-Fzp_z}jh^s%qvYxN6hv3g(lK?ypsdUi@l@W9#k{FD*`8ol$sX
z_S-{2{mXQ=Zno((cTF*mzJB`K*URbqS5*YRwn<D{T(aVXa0ZY1>|(=Nd&104ygfg&
z!+iC`+^!ungx7_n%G=jw*~&SaGw2^ypR+XTwc<PTjMRnPAD49~nMTB&`1$p6yQTW?
z3#->fUK5bjT9+}g;MLWIen)P{v?fTf8=Wv?oV)fcAOEBEbBdq7h_C!0s<0_9*<yW{
z=_h9CE#cNrX6!hca%6VXsc)YyXK(&;|L+OQKD!iyhRsd?HeZqJZ@02KYGQta?{=E9
zrR#|z?SRT{<yj(6H<+ES%QAeL%xAk{%|FiP-<FGg>zl&kJmu0kmd;}vb7xIC@u;LA
z`-bM#zmx8)KUL=BcU9`;uZ!jX3{;sdB;EF;N7+7HBJTBJl9KC6w%x}J`YMWz?aY?#
z3BKN_r?gSR*r`uFWTEZHXKS>Ruhjm%T+QrZl>PqCqgM`Fw<l)A=1B)%`&)OuI;im4
z=3Vn%Uw8eLvt`QRUq2SVN&B-Xis9bf{}z8DX1_fdP|l<NX`X*VpWm5td(Ss*XTP(p
zQvA<8?(i%>_ic+0Pn>f^|L4E`&r}bURx!03Ma>Uh|2AvoVF|wjK?~O3T7G1c=k2X#
zbM`pS7I(MtKUjDEsPl%;R~|jw?9gX7LA~%u+J9-TJbyva;|1U1<H{~esB>4`GYKx;
zlK9m4f`OljxPGy_abNIaz5DeuKA!EflQC-8yfT5`IBNf*YuD!JZVG4>I_uya5p(m(
zo7SFB`^?f9uLZ13&|LKGvAoQxaMw9jJ8JtMJFMk-a#8Y!!QUix#jx&utn-eEhizH&
z$NQJtwFsN4rw`Xp|F*iQSmSpGPvO<iCckdqbIVM9FrlJ2_E&dXbBJuHnbYIgI~wLU
z*5#)k%sO%7sP)%smRH9bvaYZD&2D>QVraCH;o1A!zZ}!3j=lEoX!h0@jlD(5`%aXJ
z-MRTLJXT}z99QSvp9GexpICjXGVaT-#oPU@+x5>)?A@&Dkoz**IBw;>t}FAyr}$e;
z);;PVc>TTDoL`eR%f~g!`G|`*_bwJY_;ri%7w>gfm-3utI2ZYHt^cWXt1yMYd505^
zXYro-`rPfzjvHTACp7!aoZG{h8T`v)P33vXV>U-}<9yk^gqnRy)t9~L@G$H3m9@X(
zH_vZ2Xa1UU|F!Nu)$l1^;^F&_+s=+p*>9G$M#P7AsnoMfzWG{BGhgu3tPW9QT-{f|
z`TTeC^=&J*eseTS5EQk%xLN*u=;F7*cDy`Wd<>k<v4^r07pT>*j#9hGwI}7!$&4${
zIV@}2pC?W8Uq3<kgPxPa#Z?PWF0nrnS?z6cba!W5h@j7b%s&f#*<bz+uM+*ikiGKg
zoO|DeYCczKZb~@tFZ7{VWuf1**Fj<zwzN3-^qcS9uBs8rvREMh(%C4rqeACaPJWq_
zxhk|?^2;6_iK2V^y?Up4G;Ue`+Gg7E`&IdV*-Ni&VQG4C!|_#UW{CV@&8^8<SEmQw
zx*Ifm`i^xC#!sfiFI^?Ee!|9dQ?Iqr6DAzq5pq=i+Mcx2YsB^z8;R;%dmi3u<(NI+
zWMP?^^UA00{QfHa_b=R?<$Iz@X?<T**iA8+TOg;zs)^ojpBz*mDf(gx_viE5-SvMf
zKA*PdeP!<3BdpbT*DKBaB=p)N@tjNle@|V;#Tk-6ovuz0y#J%JqFv`iLf>ze&Tof3
ztGsufTYEX}&SG8HT!W2M*9(TSBnOJtXH@=mTdn<T{nBrRxAy+ae{@;=qE5Bw+t-`4
zW+gjH8@^Urw`2dyy}Gu#`+gg&-XyzZMrdlI;heL3Z)xs+|NqPD!<zo_FOHsD_@l>E
zo$anAXS?u*iSJH)?(I3s;J4_}$7K(;i-wf*EI-J7rHb|V26vM+Q?y@Q(Yo|XN9n>c
zzsE^y_ni}rPxqJXShb^jO4jD<iZATF-v->AR~V|dq*im|k`q0q>`WG}dwvQm31vOx
zRdcv>cJI%!(rLGDYGzdi$r<MF{L`@Nf7g+v^EaojIeY!8f=)SaxY@@*GyC3+E4prX
z|KH$nWb2hW&&pqm9vfvJt^cxh^WF249trV3U1@qvfkXXC$0c#z+5diYnIG8q_m+`|
zYhmWJsNV~Fjs(q4=y_Tzo}?F482C{#`w3@|@Ij4bYbFG*(C#?NaIWv0{@%{uH$OR-
zhl|d)SiL?@`AYWj<vGEvG725R!N=0iS_Z!p5f;vul2*NUXOpnsH;uBDbN%JdWCq7?
zkF3f+WfppZ@lk~3^BMEmv`?(t%GPDR{ZaPHt#|f*DO-`iEwa$CdjoH(tlX)eWs)5^
z2j?i?Gmv4n(Crn?&#UBA4+*_jd+FBe->+*czt7KBe(;oWP0n19nmL8~+XZ>W^YbJ*
z)zfSx78ZEN=5*dSF3J9N+OIxo-(1$V4Swf-iY?4-4W6^*Xs<+mUV3<UpJe_$^9LVX
zwZ*p=*SlW)@?Kw}eb@9FWAC>)@m*4OOH2&)nPVM|pBi3Etcx;kJ~sRI%9diYdnGH)
z{Y{;2+E0`#k`i$`9?lRt>0c68!!#)q!?Q=~6XkPeJ!Z;zoD|tBouB6#CdIL%eXIG)
z4;z0>Up4#V$HiysRyQ`NiypYVvND@-sfoYydj;Wco0%H3Zfys7OK>G;`VPL5`x7od
z6>qn8lMK7z-ryyazxU|--5b<Cs@?ti@6wB<bEg!z-9PCirQbXEQ@640lU<)yva*;z
zdeWO2#eQvxew5cEp(Ek{Y?^wX7hKXl*k}E7-^AMM1*`9-)x3#4rO)?ef_9>1_k-yV
zADtCAYxQQrdH<a={M9<lx8K(N-*a-dN$8S{efxi&3Sz%*zVbwCd6}`;OxM`=I*;ZS
zom+fI%p`1&<y9Nk+Z7d3uNS@c+f!+^J*tFdw(I`N{g#CdOTP(Sx-Y-)Q}j!FtNT*f
z47I#hE>FshXbk?|T=99*%z`T0uW|3Q*SF7!{=Bm|ZB5|R$?5YWg;z_e-aBD-CS{pj
zdG4dLyXS~m?Vh107I19O8dt4fo#|^TSBD#`#mrrLWSY?tp_Fcu$~DQG?8-wQoo&CI
zY$4vQ89h5Zov%tnecr}rZ|5J-u+nQ(zHKo7=dU|ouT*b-zQc9ylmfrEamOo)Z5R2-
z6y+(um)&cTUMINc=J&$3E4%wrq?ehb&fh($TR0;<_uRkRtAmz%_Zoll`Z~A#M%%s$
zsq+!p1?MltEJzb6wMyN(An0!c8*koT`Bt_gvr9rBpS`d&*63k~mGXHrEo=YBOP<f)
z$e*?P=cBV$l~t2-HJ+E8%JMy$U-oRS@g`p3**nh1-ub#|)>ieJYPC7HzE3t&4^aL0
zqV8gRJx}d5=i6#eOrqHw@;C9mwo(ZS=w5BIa`BJkb$%Xg%J-HC=YRWqJ7I^-UtY79
z_jmr^zMn1k+Q+?BrQVPAayD4Jwu*V!67N3o<%Rp-)c>9`(>WJ8*Kg0xyLqW{%IiMv
z@J_m@{;$L>+wdggx=Oa~I?jhJawX<^Jj{7A{oQwtIqf~!zwF8#ub<BP^~~;b@BH^t
z`t!;PuN6IdaLj~#$E(<%o#89vrX|jCe#C2Sly~6jk4%ZaiphR^JOdRTPAM&mdU%uX
zra*pf_JXH&QH2#ud`fe!8ok|NBRQ*L@`@A1Ufp+&|5^Sxzh1ns<>*}X-P4*(R)7Cp
zd*S<mPm8wXb2Y~Fo15<2`KH{-`1f7r=iheUI&I(+c8m4h>A1{K{&yc`eYmvfW?$a*
zt>?P_Z@KAsc8x*ZT*r+8F=d;du1RJJ^Yad0wdPvp39d6ix96*W)7mtJ-RxVvYO1%;
ze%<%Kf2!85TX53P`A4ZkxLu7~{)&Ys4p|z=n7-27`uOaWQ#S3BCG0;fTbg?1S^DC0
zS-fud>sCEwm+12pF)5f)HYexILE($bO(b5<+O%c%w-Rf<wQFuVX4?F#{`O<uT?XH}
z<kvl^?~VJJ7KnU&Hl>O8LRN0oi<aQz+u!0>n$17<Iw_oYqmW<q>d=n+N2D8+Qf6<K
zIx>6ned7u9vRA%c9rEa_*p|+f2S4#FuUq$qO{YlUrRyF>4W~Vpt9_YG3TJMwlRK<=
z&-L`gIbPn(k_TR<-b|GF$o9ZWc0bQi=>@FTfe()rJkxs@7uEM9MgHK@X+LHhxO3cl
z591EMJtr@y-Sb(0CMs)bOr^?U(M|6o?X1%)53*jnB;Nn;UfXPENuO^QWu{j!7fd{w
z^VuZ3VVV9<hs{@nwyUh)Z2Gs+=X%buTSxOg9#7M;I3RT@sQ9W_jgs&J1!wchtRu6R
z&U#<IHhpETSjMm7|EuqMuUq)>7W2(_-+yO&ADO+OX^t*yr#ZvTd$-@ouDYDByPSVb
zz`wuq4}a9U_ASWi+}BI@{!jhl^LmH-2B+K#;d}-?k27YgF6XDYi(mhI_gi{o*p4-3
z#VOx+_w>DtcqaEoET3VM<gSxp`uEP<&3gaZzHRb}-an6So#D|jn&ey{95e3`ufx14
zH^tiWK3&n+;>veKf-}A8U$9T@@~*vMe$h{oW*=DN?zM;UMDmMgO1uH8%x8kEOW%ac
z_3u`)JuoHq)Z@q8+4*d)XUeCZ-R{o7yQOCSk2SAM9lF<F5_w%~v3$w#*~je6k~=29
z{E%y@U%CG5&B`aw{&L6vS3a?jg~6=T{Hw;U*Ne^vdB1<@_Ch%S+_PQ(FQ!iRTWOV<
z`~0-|{rj&z@x8vjQ1X$A|8pLeAFg{elRhR+TjkXMaLIZ9?hU8zJ-qtwm&47gC$n@W
z&a;>i{O7u``LUz&VfO^&87^Po5^#Lc^7-`2?&nw9KOg#XGx~b?qI1tA0zckba%sud
zBRjKxOD}%a^Wc%!eTJUXhd&+>|J#;*>hJHM@Thy=MP5D^joh*G(n6how`5Eon=Gqz
zxNpPQ;3D<0Y1KBnZu8uQ^ACH@*WS7^WY5i?>zC#w%iFD<{ON`F(&|^s<<9Ngk+md|
zan}tS^|`$aFR#6{3STPW%{jM#Z|k0k7nbcV{(t-C{B`0*e!LfDmdT2LkP(Y4VrW>N
z+4fF(#oaKyy3cugo)_r#38mCOzqwy)(}%)i_peo7vHtsT&iCHR|F@6W2L|#TVYX!G
z4!CVRVdL=vv#YP=m)lSLw2!ynUMu(N_Ep`%>H9x^PF{UPf?-Aj+uQ~x^*MXYz32U%
z{KjCz&uDAu3wF;#em&E+{v=m=rBhh?UD*9ci+?iwKI5P5kSHc%^>B{qk(q%h9_k;x
zSA9FL_s;cdqgs^Iqg~7jv%l@yVdlE))7jlGIG<nH9cHv||6|+EH!D6HvgZ9i%sVex
z+s<t3iLLAm&c*HB8;(V1CIsKie)H(Uk(>7afBd<rdV){>Yu@KKbrYwG&ggViW>8D0
zlTwyacqpUy(DbJ1Hpz-_-#>2Xi27#gI+ykA#znVesu>x0CKSw*IzGcfzsc6rU*F?I
zW$yXc%cKA4iKM7-J(%6~v1{7gGiT2|<noRF^1Q$z^?%LVsV2A9Pv>O_S>&j`@2c>*
zn$<o>cr5)FojdYu_Y{T($F=hcF7aN`@0Tf>CzoH9&&|LPJh9-Ji2aj2H7>Fn+v6VD
z)UqE~b8EY4w%?`+1$uKsCsx}tx6V<&nO2g0Z6Sk$iICqU$Lf2BTV)s+c6c1xdAE(%
zKvV6WDZ>KWa*s~`LqGiwstCM2b^qqpjM=AN9Gko1nW79sR`=y=KKBoJTKxb1+HwM?
zUlV5;BLhQ_hsFGT)4#piZM*c(t%-{7)*D+bmt?rm)AIRpjd!*0HfsikH_@Nf7Pl}@
zF?p1cIH&U>gN|!-aA%A2i*@S8h07QZSnDRM3Z088d$)eS$vu^4$v^EF7A&r>&Oh)$
zuK#$-+--mF8qV?Rn)~`u-G1wCh6kRTBbp6m&KaINoMO|$>>w>QJxyiKQ<0s!T4eZU
zu4Xe}ocoE*r2D9+g@djWAH$yR2@=XV&bdN<q6e$<wddSqQGCL1KruHdGE6Gs%I5no
zixxHh4Q1c7|MMZSuYZad7MO9SXa2Ue{Mo+2Ypu;=74`)ir=9+wcl*rDrN{jH?W^)R
z4zDg0(~Zt%Hc)*V<tW5=p=kw=0dMWc?k$~LJuMuRk7|FB@?8_g-Vk@o<+v!*sut!g
z!dg$(1RP}+2)-|!b$NS3n3P7s=gy5m{!WKeHm&cT%X%{=o8ipD$i-&muQeYsB;SZH
zt$LIt)u8z|>pGWN*6-KbZ2t#;XEP~uczLDF%YuPHz~i)axvqP!-oMIUWmSCa636_m
zmTkLt=TFV|-w_NtOA~f)`z+kPHu~-HqIch`C(ifyFT}Z=M|SbFcc8Sg)-;2MA;Bot
z$*=cb)T8a57NRfnuPz7?EMl19w%KiM>WP(A(pFDrtID`-+L;zRU3a0rB6~yT79Pv3
z%VoFDOe+2%EW~&CLh;kPQ@<T>wqSS}($BkPPjUFm?Oo}!{|e{--@az)u@7rRco=%t
zJ@poxcRx&P!joG6Q*yHF%KpCgR+*Eu=lf<YW{Vo{9G*Eg3==f=zMpk*PuiER&rW@j
zSv(5)mjtzM$Y*VTAjiNg`AGBfo@ZZADLY7BzN#XVkmK6s*}IiV!146A7uWN1)7swr
zZgZVxZXsQCCP;agg}E+Ac0GqQ1DnwDz}=f9k1oEoGRd$l_|lr~jn?nNf31{RqPJjr
z<a)b?878}nZ%7_HX?Nu7wIzQ4qd1pag)*?H%Q7A)-Fkm}GEe&}t9|EQUfB|Ot#DOX
z?Vgp}JsAqZ9{=-Mc|1~jk9W!Q>-PVS7F+OWo)Zams*G2RDq&2JGL+t$7G1jSy81(b
zD>oTsDxQPN+U0pN+w&8@Z_h2RR+%%YN9#&iMc~e2eukdx&Bl@o^Dk#h8$CMfdni-k
zkf)`p@Kpwet{ZQ{Qp=P4ZH*^?xBVTj`cP!?_Sg$k51I5ZGxV&;PydwkU9<3UyuA0!
z8Jj=HfBzqIXl3@Sb!9D#liwfe*$~R$P<@{7fQjr{*@@pjKGJ>p{C~y$gGcmjbc8vV
z^Zb3&B%;R9BJ^t7qu<lkOfFueSz$Nl@2V+>-_}~NMtoh}*tFS<vBA;z&XN92+24Qf
zeY{Mqj6+rClj{zVqaF+|l$^{TXr7xUBED+=W%Jv2&P{1+DW1wWXOmZ~rEqu|!v?k9
zYW?s{zAN=Uu6+MdhL8D%{c>ktJ~oD|8~Lx@<2_B^WEXte6(Jw}@7MmbNt0TNI~nI}
zI>k2iqP8`|gOh8|e9O{dm>^ziw5wQ%@1mzB!-h>?#MkoNO6Qny|B|`p`ZL+`n&%%r
zF>Vk(zTSvGB9-AlM@ha^cl?9?<H~Q`yeyWisul89W-yq>miv9>{0q}Fl#8}iPAV{x
zJdmlp*Ji2>gHM|JMxV>?`lp_Hls;RXv)%iV{yUqnql^qTPmj*Fy!E$1GigfBXO)Lf
z3>rSa`{({K-!6Jy_B4A2ou^mt^xu0|Uf=lah>A=XXZ6BkceEHDOxMmW|5Ik4Gd)vE
z=v*dS!MD_yEv))Q?u-mtnb%G%JMS;O?ymn!HQw#PjGh*ACe)pb<=0Ks&oB34NZ{DK
zPS4=ij<XTc`VXfVeo+ng{Plb1sekK|85zz_$vtlT=<Kuo?XUXgpEBEJ==$e&HM5%G
zyX=zlRd1ht-L?3m@2t{3L57=lx0X$5Q-17kk=+^;n<zhfV!??od-%Q=pYvO>qN@1m
z$BLF+mCOeO_TBFLUhkO`b0^^Rww&8<TQtw<Y`wgz<mTb3KZUQ>S53V->o`Y)(j{rZ
zv%YPS^80U^U-M35Q+haMOHuDMxj(mb6c_DdcrazE^vCXX_RjT&_m0$yJipy>Q>|j+
zzR3keKL6G3R_$6p;ROSu!#1hd1+4D*$L_8V{1qtVx2(|rY!zR7;kWf&g869-2JM^v
zZcClLIdIp0UEV0Q_P}rdmOU(6I;r4OrNZ;uelul`&7LM5{AW8u!|k7LWd|AOaMs9d
zZLrnmT;A2-Ze<iI!NB;`)c>-1R=f3#iun5f$?4sNN8AgWq<{Hri~6E!&F!wYJL1XB
zsk2s3o0Phk(PGN=^Km<CcYZq7F{LPaGrQ=89e*{FEy8zltbY+&)f~5u!6cdCdBCZJ
zbI1RS=C>KYcsQXzD{7nc+#MT|XJ@Bf&=zhm`y}-`b@mVbPUCBb?E3w>1a}7s`7yR_
zINw#U(!zw{kI=%oQm!{Q?fR6v*rx08n=FSzn$9PFZU|O*tDh6f$uL_-DAr|VrQ~U`
zgqp*$Qk=_YJnXB@oy{t=YRWa9`3!HYe^+q&-}L?SxPQ}a=g4GP1<vKIsjClt?_QYy
z)bv^^=YawflkIC%=RMckezK~8SyrEO`I5lCD({2&XMDoGGE6up#caA{z1fvFsrUIJ
za~XG63i%~6_8a>1@iMgQ2-V*8tLm(|Jb9*vMemM!28Ke311sNFFWZ&lYz&&K;OzbV
z@4D&Vs+UF#s|_21!`@D+e4l5@b<?hDZSj;PEr*?2{24a=&2seHs#9Ddulz&f+x5Sv
z&ThMR_e}h`Z{2P$-DfVnc248@ktP`_hFf16wpv`j`@Z~W#ohHua~9{Q&e6J~&T)Dn
zV?v+Zomp=7WsbiT7mGhu<Ydp=&Z<|+u<nA7%L5IO!iXN>DVtk@yG3s@GIUv(8vDw>
znO>^)!_z`X{RD#{!-S*@ewAC!+HJMHX!cKsbNSYb=Vx?UnlPNcwf|>n)|Ugj<4;|(
z5)WK2kv#8}ke{m|zomIQTZ8ep=-&91ZqbJ?w4IwK#P{d^1#x2r%}=X-z2A|vW?AE#
zvYU%7-hV5vId%Dlw7vC*TPr#C{1t8p-g4LH*@r3rUTosKQfSl`JpGmcL&ZfykMFDP
z*Yfy#>Kr@ibyb4z&ruF(hArVWH3`L=+QR;6?iFCu-B^DuQewBbvEyN>k6o+@BDa3I
zT)$sx-1R_OzUH&v&wQTel}Tr}Bu~h_a9fn&N#OJH5-oPCpmfpBo62cl_s=_QIPY-Q
zm8lHg7thZ;aFkL0`2oM@>9guC9`j=6v)RGLuwYvgv&F?-&$>%g7K#2o{VghstvJH{
zMz=6SMV09_s}(Q3_WsIrsm@+mX~E90K%{n6dHec>KL1z!%?u9<sos8~PkukYdl(yo
zh3j|C^N;)QNpIT1dCLA}tp!^#LxbkadjWUS_T|<ryLzwff%v)o=ihqoyu9I4hn#SC
z059W(hQg^9QF7eESB-k&EdHMj@|F<@F=b$A&e~SC;a||ai`7?;e7s(4p=o*Cb@o9~
zZiep5k`XR9b}9;PTR5|KDqD-pwTCHe3v!|tq*{j9Fw5+Fc4W1E_~yOSZaqxs6Mtr~
zacN!=!-a-vOQ+18bj9>(YW~)YW=n<xK3VF#v5WWJX?p(hL9IoerO3l1=7tliwq2<T
z7Thv(h1fU6Iag)&fBamqD{5zN<FXKE2JThi=U<DYT9*cFxgulbXJM|$&M+f(>A#+L
z6}(<kYdtxiPy2I7W}jyRgMe4BUhlJg8++DezU|C9*J$z2_Up^D(+}O-BmT|isOYuN
zJmn1xVj+9%7n`nJ;yvxh*TuixZ(3e(eI;>DapTmP7V{aOg>AdP@@j_W<E!SO^<VzE
z_uf}M|FT87bKaxKZzpUL*cb#&GKyO#EPc}R@Xsr8t9*&R3Cs?vc^TIxTr?>^V|K1F
zuIp@2^(Ez+<tA+kPZ$bXrzx#Dl2iOcvc1CMd6-ni&#g}moNd14KE=nu`uXRxPErgh
zKQkgtRIkgb^@b~+R_Q)1f7o)*=eKu~6x@m!PE5Gxkl}T!<1*{iOlvJ0@3+o#Ca>9>
zT3!?5#K#bt>9tP7=>D23@9qAD{c+!^Q9SL|<$rhPiGRKpC*oAFY&E0KyS<_T&yP>P
zA)dQIa<6&g{utTAp7x8pd!Mh_y!^A_B<2IbUUTcWWv`Y!x%key=v6%2XM(IvZMHj|
zn_0)cT>S~dgmZs?$6fONw_)?H{S9H?-e2<G_`KlUvpGTgtp%<hc4(1d$U7<e@A2uc
z@1H#N>f9^OXS=afBra3I_W7Br%JaM8xr6wbCY&{XaaZ&I)X+$8-H%gd>GQmKGch~I
z#o9f0-)8X!U#&kgzEy|0{)*-MyF+W8*xX6QX;!62W@~a<GKj4IuvOvZscBcg>do}K
zEAVO`|MO|zGOpjbzEeA~q)&n2riqei%Jf%vYR{E-&##z%uYK~nf~}t}-Z$BFj&<|0
zc=Zo2p6fEWT-#K?RNs8^t7Hp(;qwv3_PME#=WS=`etp|5+ip{-O~K;tudi9Ymg;?I
zv$W^QoBx$BbysEY;7vPz?q;?MdxLEIU->+7smo^{-Th<co+#@peD1CPa{Ko@zrThX
zzCZZl(>Zrx)(vX8Rgt;3g1^g$U$c5>Gu3vp{k~OCZ?4&Y`toO=fXPfPmo~Ofa1#F$
z@au=q?B2}(i=VulT##q_`1kAV?D-vX`y(&>tGxZ@4)cTCiTf8NFEZd(aQ(>q<zK7#
z>G;!j)5^4YYhKTASXH+(J0Y(#fAicr$&!Wuq1AVKW<_p}bG{j*`|s1P<I}mLuQ&R6
zY&V><TrfY=XPXR@<fZe`o3ArSSzMi7v48#jz4A$mqBJYHna+m)IQ(_Bc4tMbsEygt
z@9zq3Gfh)BO}Q_uwNI6yTRT+IJi;pDv--4LsY~28d+(f^$73v7_h{ewEvK!m`XA<a
z&0)Qg;C=4jBPDg-?RRe1wUsa&TXbyQ@?#9QR=%I}?1A2n)9qDu?ZvK-PfmQqdw<h;
zTjdiBOH;0|_&V?Q$}OrN-d_1^=KVE9x$j|0#s;I?581B#D1CG~ddblv*$uCS!vA{K
z*epJ1Y<XAycjQ5b)<1jazN~Ey{=Fk%dh!*+IU?fx=}9_rg{{0<7S@X_y#8_v1pivJ
zOkDg{Q0(=|H!|kE%~)Eq@AvOV=I2*G%3h#*+jp+z!<fVuZ8<Lk-B)u4+)4XdZTn=(
zt17WdySluur!1SM2(LWxb6d`~%2_GXq8vBzE?wf2U>wV<;Jmc-JfFHn<>t>0On%|k
zyKO7EMJz4zj}_Q;m|xjYFRvQ)ms=p_<JVuGuO0gmbo9rgJ#5cU-Td^o-I_CA{%hu>
zmdk6p3SR{@n+Yid{(5Y_+-`!c#pJ-o|Fc#s(_OK!di&ZF6SuB-A30fNj@cZmn1_ED
zcf9c0WBDiIZR>L3{a)uhr^JQ5)b<y7p7HIG<s6k?%R~eV{0t7T_?cdA5B>Q0w$(o7
z1In{r3e69>8DqOAOEG=VGB^H(3Y_e-eqG&^b)Mmy>AU}-Z_Cy6G8e>pOo@wme>868
zgw62>ch;X;dZZ}sOwjMs>pwfMTBdMS;6UW{=gU+7dp@#eC=uOdJ!kv0i84mp6rU#l
zPM=bDs8ooLK_Kd8#pJhdX3yo{|Mr7%(B;!##k1b;->H~Bd*8kzvmZU4P+%u{jIqI@
z>B#IU_ib;7Ubt!d)GJbTU&`it-|a2$ob|9!=dhfzsE_%DMo6>X^CjLotNS0%uG_Ks
zeox7djjP;m{`{PKtEKp9f_2~vrI2oJ0msvfb2jro&-qtf=DY6w#CIW47S%52)-5dm
zF>_DO<C+~Aw_1uP?#yDi5PsliX6WB4;f&w9nVQw>zfV5=x4*~N>*wJw3upK6R{YKN
zvYPcNYDeC!tBcm|<z{%iN<80ezvX+q-B<tbUj2R1&bf~xtZ!fWy{c5=@XwP5d<-s&
zw;wOPsoh{Mv1=g*XL`Tzl&WiUdKo4xic5|7Hv2A*?xMoxAODJ%JNbPVW%W>h$iUFJ
zrT&ka-}EbI*WcRbZSnDi^e)NMTh2dZU^pz9SK3&0zA@n1xu2i^_)D(m^8Hz~Yeovs
zaiPZy2D@&3bQ9@Z`K{1%j^(u4zL(l;CZ2~H1y>3)28FEEU0=WR)Ss?Z=Woxc)q3`3
z;g>7E5yt0(R&S44+^VqhdE|BLgA8tgHD8;~s_t>i7e6;G=-0ox={JsUzo3%$>V<ns
zp0T=&#P!uxp^Z%4!MuIi*1uDGmOl9#V75H9AZ?{%#?AF9Yz=+Ka`*6E?yeA?-@?o+
zv3)LsNBY{7Ji||iA0EnPQGe**ujR#H$20xQzU9&;v*%xn_;B`d>b&O#uXH`~S5~j`
zvN@<$aYiITXTMhZ){m#F1%0nY{>qpu`(@*q$pr~9>#K@4J!4du61-if+^+J6s`i(*
zY?FwKr*v<9n~?V@GVANF?y5ysHtet1znO2wJiDg?Mz<CppB*p1V^8dd`6q?>c)VQs
zKWuvNckYJ%M-dMvD|%QM2)*TUh<tUmWa+6_*86v^caId}V_CY3{e|nBp9O_4((Er~
zyw^DA#cUway^8Tdkk_`K88hPQA00I+F^mp>`CCb6YxCEAl4UvDw9nZl<b7SW??}Gi
z&xq!&OLm(xc0M+XQe8B&o@e<z-u&&C7!x8de`hpm%TwS0MdSzZk8KM*Ef^TsAANbI
zyryZx=P2opgl#RtWq&Ie6eeE#qnXy#u`~2T-oNJs3=DbKr%7@=-P!tel3TN@$bwZj
zj}^Qs3}t30yz@WfbFq~ZPs-F5;s13!3<2jC*fvgyxoGjqp+;D3PQ&XX%nZx7WS&)*
zo~|KOx@&(6`?}c%4;dI17xRB~-PN#JMTQ}v==$fN`$tO6o}6gc$vfAQJk^syB7C;m
z@9>-s%d}5F7JqL$!0^n+g5f~QChPA@KLt&QUK+Z%uf1SKb4ziPwhY6w4fmJvUwkBe
zwK0B~uZ7wwLv~;B4YN-4mOja?Uj8<r@Uof=LxR-X<tsQj4fHslw*<bs!@yv@Zprjc
zYi7AaiBhLk=X7eTF-XMTOp98~pFPX+;f~h~48j_>7c8&8Eg;LO$+z$9oB}C{Memp!
zSg%%}em-U4AraHGPx<e8C5}zGD#>s}@cB_wsalC!Pm(RJ^{_Q8oGa^gBmZgezPB6Z
zC!{bp&9-^?N9l<H*K;k0UEQV6{?>)RKE!e+sCkFUmIGFLcI=aa65rL|{+ge${?(p+
z8P?n{pUEHoSz0@9l}OCbE$a6eRD|*y%Dwv^-g*B$W2>l5=JtlADdAPQlTJqLZQZy{
zENezR&+}(N=_c3ZC$r8tkXX9CXiuRsPnpidg1pves~njh@gBJRulPUjqqC1cc0|5@
z_on(7+w89MHPhxT{Z?WTes-$Az&Wb~$M<VLY?hMwICG}iwL95Aww;nVm-~H_`6Oq7
z)cn(oJc@fo{bJ5mzT^5F&Ut3<^@3AQoX?*<Qs4GB?RK;j17GTS?dWf!57kx~EZr(}
z?kuyV%hU?Cd-t#0Q)w{s`no*(%W3AYZI9SxKFOT>pKCYa@jW(PmK;aMs45#d@$5rY
zzMqe`oxQ?-;g`W`QQ>o6vqZRdeG==KDHWAa_+IqZ%C3zM1OiUIuUlUu(Bj4zcWtjk
zkldBe2J%~5_oj0SxSTfqvibFsZ(BcpwN$gR^vOADIHz`fw8F8<6{k4aCOo=6_jrKp
z$LDRWx0cl2Qh2uQoy0la@1Np!9?@77ving8i^e-I(Yu?X_8BofKFi{hzjN!AdpmnF
z&q!r3986tremCNt+dFe-=QkEhB5J4Ix*5tI^XG|R4g=eyy>A>N+N&3~ANC3Jw^+X8
z$H{<|nI&dSAKq5GZnYGWnxph^3E$%v0Y%rox*c64&QPm*?SP>*=gYJ1XWq8w2%UR7
zO`s^|=MwGR6B;U*1tQnW9s1|Roc3U|1?Te_+Ve}&rKj#WS}<oa18+-hS!(*>6zLtF
z7W%VmeZ%dR&){b;=-n{cx~u1HcH4~EEuZV<6^|eF=hb}ud5>Lkmz0A^?QZr*yh|n&
z{ChM@J$my=o^wGBx7O|PH{Nt{yS$L6MS#Px6gFlH2E*31b?b9x<QxuCky){#qI*#%
z(~G5XyfLQ1nHCWfTA0IAebQ!>{$oDyBI?@tt?b=fG<CcWHF|4p^-p~6!LUKIcH^QZ
z(?9FC^PMo$@jKL5W4$)S?RC))^(dW&Rh!rg?EZbI+h6~`Gdlc2PYd%?)7{nV4w_3J
zo&9ZZ_kUZ^*7w`Q|0q3lShh(w>{N9TgM|0qUom?cW&eM<#~=}O^Jk`}NgBh~DY6Gv
z=GL#?BA&p*?sY1gd#f9RZ0hnUo3h!y++~>2*}}X$G}b$Wg^6R4<K5L&?NTZ-7RPyw
z8)m+_v*p)6|E2S0isUTN;%txbdfNW2*Zq{fmpjA4HzB93wU?v{=PcmmY(IBvkKyO4
z#hdoe4d3_wL*D{1!32@nr=3?HTWHAHK5tfU=92wcRiFJCW}IL7GgC9}t@m*cW#5Co
zhZZi56HI!3?bcDXw~ONU@B5jT!?4c6+Fo}-;5Ok~lM5nZH+x<UPg}5ezqE8iL&!ye
zcJsPR$7RarNo`Lr7LhtobL+UYF4G%>Hs_4xw|W+?{(Yp^d<OG{d#kVYUbx_LgN?)Q
z(86Y={4;mve+k{nc!EPBRowG)3ZH}V`>$`ywS}_`;x9A!3-LX+tg-p>v7+Y6r|ZoA
zThg3QFz!&QKDg!jeDOOoT-@>%Cbl?dyRsDs)jzs^Xs%|j%js+0i&-zkd7a=a($|dI
z%zDt%qDTGjvD@pHhna<Uth;W;VZdPc)?6bre{braw|pPj?s;06Tuoqje!c(Sug<u&
zPLJN_?UR#k2&xO+Z2IWz+b1%~H`zW#=+651r1bmy@4pKy9rrM1JXTf@=`!E{PxT}J
z{!a4^CnfmamPj7>d9N+-R`cJtGO79uZi1@}rJgb>cAS*po9p|3+Lk?~i=6jXGd4V`
z3w^I?%y&fkhWf(`9tY?B`Z~)tD#yaw`q6LZ@B2mX*)eFHn0-L)-T_6<cCoJW{=4m(
zwWD|{_E`S;aQs-h|0lKu>-$|fzS+;Y;l^;-X7Yg@uXK;h{B*YV_^;2)R>;;J{{6jT
zzo|ok>pQEJ=N0D~%Dh_jYhL5re2@Ci2X-8m)fB#T?5;IK+!1LD*Fy`Znen&0X`l1g
z{NbMZO&`)+ADxtGD4aQyO;SZ>RfeVcn}UO9pD&ste*Nhgfvl*e3CspEH`zW_@U?&9
zIyU>rbRYGy`||znr<aGVvu`Q>kt-SViJ|vt=z~?+C!Y1r7nvrTf9d|mKYw}KFFw8E
ze`Lyzeuf^uZH?V3GF>Mlj@qw3U8nkl=WW5qEmN*uW$1VizFGC&fzq^<fyZtxoc((5
zhwfy@<@=1Cua;>)J-vEe61&5$xn95j+OM3mP=vFc>DKYtXV>rjC%jl?&inZu^)@F}
z`7gvhN?z(9n6|PobbUqfZ^PKPf8DFkUeEfxJIbA*AwR5p*`oKRv!vbo^wtah*xJv;
z$)G=PW=mDi!-A75+im@>KI^=gkuLH4@#-zA3?eCN1}&-&1CHLTm^>+HUCW&4PfjV~
zk_Q-P-17_m^vi!$?F)}Xit$PL`>t?1tZ$$5<^HUzk9PAH99_ASVG&=6%EN$&r4^rl
zefT;d*nb71%;rxFT{|M?uIgQA%h~Ru8CrI;;`6V`GuFDES^Mk3QErBpZ7Xgx=3fh1
zyyUxIac{+D{j^{aGmj%WdJPI8lMM7Y+hy9n{(HEKDg4)8Mq}p{KQkE^w2i%clj8RN
z>^{9rwo6R?&U5C7%SXQ}xl}ZXEK_+{5Oqpx=6;>fspWSf7jiFH6>nPe=<L3~`iy#$
z3N(~c85=a?ErfHc8CIz8&9fIRZP;Yfe%R8w+w}ea#H$s~a!)w}Zi5D<n79qwoVmAV
ze{0Zfzj>8m&t(k<<6{LDijSw&ACwL^eBOLCXJb;HD1!sD5TB^%oAiE*`K#WW?HAw2
zDa3HVN<}7U?%Va-Uk16q*zrEc`TGRr+YAh=Cl;(&l(XLI*`F=th1*yd5(<U*JpFoI
zU%Wg1WCsI-_JjhBH5KMo{}|4#{hnjOz!0Y*)3>zz{?Xa|3%3<d&S7KlaXZxL-PUK$
z!0>rufyISFhULHcWrgw?(zZtS-hW^2d|zOGi*rU16T?LgOMy8phvzjgTR3w>OYP6|
z+;(56VWH%i#uNYE?qxi)ps@X4-TwAof$i%)K3lxAH^z%WxZ>I_t>}(p5`6YMtxc!B
zfBck#DQ2QXY|nEClVb%tPVHUYWOn<+6rq1tcd*I7XX1GGu|j2;_+v|f_LjqD+ZS&V
z)!)^<_L=($&-}HFJN~Y$dnzN*5t$XUNGLxoUF^u$BTAnc-c;Mjz4V>uCHiYp!3}{`
zS$#5#ZskX>aAw{xE7+3#h3lb*lSLOb|CTs2v64Z``=q5-`U{Uki5^jXzvcIuvm^wz
zTe^$#?)9+vbCls+<SE94)F?)d6H!@D0v7Jyy=m6xf75sTXBW7CE-8E3n|3`FnScKE
zyXNf?dv`@>DFchj6Nl=wm4&lr?b_Jw{k`T-?l*5&#v2QjS}jy${v|I^*mPv^;#$@h
zFTz#Vw6-2ok;&WsftyF?Ug32UrXD|EK3z`>fm<s-tYl?<k^M2cNT8*~`3vKm_<6Hq
zcl+1>kG^`JDS_$PD#!9`LCFcT6_;o6WbaY&`}iSqCL=>a)v<yw^A`+$(zWlmTbeL5
z8}%^PdRnMRuHaw$mtn!~##_EK`dc=eBqki!Xx)6jBP)r~Npfjn<3djhneGeTeH(a{
zt#Z6XbsSW+B0ynuphNVFRr!gazH`~4J4(A)6^ynTUP;q6-PS9S!_{@+j}8C9bJONn
zxe0#bNHDz@!WQdcQ4?iz+vRZq!<pqDce5v$rmfU{ySS>>M(%RRj_`Lgd#m^7&N|G_
zFyX8&i`%5>w&&(O`MqE0|D=yfvJC-yawVmVy?cMI-8S#WLuMO>lJrGVSCXem{Sjs3
zYd)xP^5KSuS2i(iS-7wDSkJ=)Tg=#tO|~#NN*rtSQjz(wKk!((-^CiHlJuJy87Fm2
z-4<=;JK%FfZiVBa#{U^<3@eWNT4lH$YCLq>li9&4mrF$bp~3#+@~r!Vn^_nHCbt~^
z^R7PU-}S%SkH2}Mq{!Y7>=V*#rXs_3c~fP@ziAVg9YUjoHM|cc+ORsG`^Uh?FeO!j
zU1~ysM9@SrrP{h#i82fgig(_ZbG8S@#@i%3e>mst{M$e0Y0qXn5XAG?Ay<emIs1PE
z9|MD-?R)G0x2ugGtUCTUutp@+_>9DA#)gwMChy**ojWMOXPglr|MrOVRz-%M7rP7X
zO`GRt#2xoLlqhsmJfd3t9>al@GO6!>&0h-6Z#itkrMKamA1gb<WY3&CPv<o50ZkJc
zOx^r`yCsk7@Ay;(c80cMvn_Ytm+StEP?1sFviY0C)ss041t(@W#Gk5X72+$_60*0c
zV`eZG%uoATm}1+`eEWzr!;H?E&tFd{NNBELW-#6<lyCC)V6A-2<|`a3`EPbq>{Y(U
zaKP%w?4KSMC1tg4IX6Z9jz}{^9A6n4`jv(0)|;K479|3oE%(oeW@QK|GTUggo2$sL
zMu_iiORs>Y^fD{vhM6hb-xT@Pgh?$B{K&>I!|g^NuQ_M?)VuG?Ke92LP=3;)`p{rc
z56h$(xu5pQFm$Z<uoEmw`Xs~Gm~*W2(fj9<av2!dzW$TBvfgiQi*x#K$3;1NJojHz
zy2rrK^6B2h+wZS<T70>pbMJ&1!-0LrA17YBDPz;_tel>{U}~57a=D#?`3xEUuZ>yS
zGe!E3J0DV9)bvs9Y4Rpsh63T_W8ZC>(pFyd__ZN_VnuS46vKg_xVcuG?P5vCq;Ik@
zOe<X_z2LmS{ojU0-o3Awj!9p>#E>An{2Kp??Lpe%b6%->SzMV~XSJ=zTr-}PVa?0M
zt3UkOze~WdR$hGbl@%*e_e{)XXb3vDZ;F%r;_mpPc|7e=PDeq8G`ucRZ&P>};JWhZ
zJny5kkIZLgu-f(iVzslMbm44uwTA(5b1ITwur&mHX|DgtVV27M>P_}><9)pWDl%N$
zqWMDg+zc-=Hap7e@$zjyxcK(VmywwbNnGc|g!35^Sbwkm`FVfVWy{kNe5odN5^j4K
z8!oEyRb7#mHhg8I&DqX$M4Dm2yw`y)-xD&@{TVphy@SMTG9#C-*w2u_k^Xzlv1kwV
zhZEM{^ENBrSNYt&)11Lzqm-h1!K_Iw&dc=lZ;IqIBrxrl`f~W(;i=o7zR+6ZeCXkp
z4CBkU{>v~-$W^~r^QV7qzJ|rONgqS^Z@bVDARxr2t`ep(_0zG$Rt|<U4}VoF`%Uyw
zQ+_x>%kZ{IpE-j8SMJTXXa1g&QcQnt?Oi){u}ovj;f?#8&CUDoGZ^Ue-t3cVy{z!$
z!hyPn|8M75O9Vbzdhaz?_+|#3cZ=tC-O<~zb$<E&Pe13Mns)E;#~)u?zyJRGD>CGX
z_YS8+50@)^beqg@VA*@NM}OnnUL^5toOpd|Rebtvy@M-jHVIFAaYDy*+t=DxYN^Iz
znW79gN^bbw{hzVf_D@j3->Xf&`+sj{KB?i8Y?1Tg_Z8n$W*z1X+SXSeTYgP^{d9`x
z+pj|M_OU7JW+l#P=y_NW)x2=_Vcr)%UNd|N-D-Zb=t=soXKQXQ+4N?=?v7Uuz4;HO
zMfV8tsh6BLW6)U_x&ETcb~dFFt*)Hrsf!mIdiVMtj9(*}V$6`S-n)L|rGCHrb9ld~
zyj`D}b}jU^-tJ(nhZB~(Iy%#?F;tdu!<s42jqe)iCvBGSH$BLFboTPs=PzA}Ypik%
zf49@y;?L6X+YdBt8Ol`j>_7jKzct0i`sue{{^3@yPnUg}zjXVXciYv2KTUtVJvZ$Z
z4};Q<O}o<0tPtMddRk+}X8!q8ZoPj0UjNfs*I#lIulGrxKDzmY1fSr}e~cc5H{wLz
zFFdDSJ>C5NdaFFfJU?|y>w|9!{JIX#F;kKGmwzXUvmw&7ZqZ^#e_Oxz+aB0`likhn
zb%FP(BfkTrZ6<tinp|M<fQx0p^gjMI@AYFRe0n`GJ;r?Ba><nSvjvOvcGcB+S^PQ9
zz{jxAC89rj-||<c-_xJE3U>b%Eq|p^@mRe&>DoC4AAP4iGySXDe}CMrZC~~Dy!8H(
ztv^<pJ~EOhHfUpJIHGj#O2N~s#qa-DtcsskyXRhg>Wk%{zq1#g30-|ef^Ylm-5d-X
z_8fUQ>r3NYuiEc|$_G1c-|?QvenUm3uE>;0psQ`=q&+J$T%T>oeO2+ew79%0=lsp<
z?1in7Squjlj?9+on)2$q%(m|H_n!Q{x+DF>1!?)ohB8k2>6{Gyd8PahAFVidE^yuh
zmK&NgIlt+NaI!OW9F5&(rl$Q|(Wz;|=Ji){%Q@K@B%1Xe-0{;*i_JHFW!ts+^WUTO
zsf9v(3=DHcU)~A#<;Z>H{y3cBtk)q%hC?%Rm_&aY{rcjp?^{+;#lKN}qNfGJ0fR4p
zK51+ZmO7%Y_&oaH*7Yhf3<^qzE#631Njz73az*7K1H%R1Gj%nyf0XRlQFi7~r~e^F
z28C%y1o!A2wm7;!=7gr-Ax4G<f8FPvT$bAxy)N;#U|{H3^~%8Sw4svXas^Iyh6X!7
z-T9)crt3d(QG3Y1V6Z{&u*K8}rwtsO?YZCgf4wKe&@g}5%+=dI7k{lY><j9D<YBQR
znt?%}W8Y0zAwJJ#`_ma1cygB|&e7X%F}c1vpW*P1`|sarFfbg}ywqN4BRBiyqbo_A
zu5}Zgj}<U5yjc9^>}8AXNve}`T;+~VEZA{(QZ~zUZ3cnJIi*)$eVz5?I3H;2adNlu
zj){-1TdfoSzNpq<$G`4*$4)9gWMJ^gTgg{=)k0idTd&mT{G@^({&Td&7&I~tuKVCq
zeD%u(BM%D(hBb?7PpnM8_NHoY#ac0527|Tna~~+weyPgR-x`y0a((cA)9iVkC0Qr)
zlP&(-|1wpULBKcZyYk}cj|~5&f-EnNDr0ya&^tld;_9@xLuo5@&o1R)*esNvx4ZbN
z-`Ogqjw6fHc+vy+ht0abT#13<*rjFPmHf>nUuvFOFm3YmT!x0m7X`~RE+}7md1`b0
zBDrsAs&iUnPMY-}cb?1PkgPj>^{kTxt|d2)@3_Hv^XKP<&gbsbZa%#Cwq^updeL|D
z%KHkp84k!OnZMY&eQnu^ofgjuGIm^vaw$9UvEypasW=8deuiJSa;}^BTer=dA6ET1
zc$a5*-Rlp(H}9``%B}c#g{Q^m9g}kH!lVkr7zB=-lHDEr>g!tR)wM@1|Msr5k9z5_
zL%^@J<ZRIFBS$NWe;Z4monyk_^ikv7!YPsgQr~$hm*1Sa-2F!3E17S0b0lLbk1cyM
zje#Neid^@LMUL<5pYvL>)<4>|TR-k-@az`jJznM#3=IuE3^CK?iq^SI{2MP=^exur
z{MjJsh;O@O)@d+ET)dP2`rdiw)cV!F8)fu1TuYEXR#eFPKs?!EaZxD4fuOW5bHQDP
z>kr+$Kcl-@_j3P}n)k6czdripVd1=M-;!T1rVBHCI6Y-;&E9*be_y}W5!bHx-0Yd+
z@1J_J?ElwgE!Ug&=lEuSAwGr!JZ^7P`5#v8$l9>S(fg&pVeKF9&EI!b@v$=`B*c9S
z2-ur6=kd%r-TWv2{QCT8cRo+L!QvPO28Z0$OK0_6e$#zMRr|M(-{VCquCx07d3NOa
zvUxoZ85jf(trov+xaaMkFJI&S{mY0xBYo3V%>49+AGfoU&Fp`E)IV0>7WCvx)Z03K
z27?I?WT&z<TQ0nE?_B)-`i(8U4|R^H#4<=+(U5(lZC9l^d+s!|rv*3SwTxy2zns1M
zM76}4d*`GMOCFm#*<k}CgT{(`&W_1@uO{11|5jzb*Kp2B$?c2{7kR7V>yJ-8=eap?
zPMWuL{p+G5@AHG~>Nj>6JzK77*HUcUX52M1E}4fR#ysBnzirvYzm-#iq(6LAeb23x
zQeS^_;k^E{6}6R1oeO?&UFq(5=yPHRFGF$ks+qI%8PavE@2=8*_{22C=q9tJe3h+_
z>ccaKx%V^7I4|>e&m)uXy`i(hw%e<&xp{K`f3b6d#xo+b4hJ7+Jg`QoT<P`;yTINP
zb*0U{4;dJGQdZ8MUHHg%I%ha<nSH9j%Toq^(=Ue}k~|z#D#=jLeP!qR#EJXP-eKRk
zes1syovn!yOIaDjIN6wA{`fVE&AxWWim1K0J3ehaR&Z?DEan8$?k%->*=$!n&iu{M
z|9kt+FI_rwRYBGyPAoBBbT;&2-QI<tLiqPpU$ec_aF~C|`<#`=F^44GzJHcxkh=WM
zaAVNkpJuBC-{|Ma_O>uH2%KJD{r~Ou7XIJv4|CW&ESIf6|EA`L*S8F_?`xh;1C<&R
zv^FZoB_CNFbYiDQ!nbJ!3=9ui-q`*9E<f+@s*J)%SB%Z9<@I*QgNpAt!n&Cyg4+aC
zWEdJ8Y+8)F&NfdnjDGXxgj>sG#eB!-@vXr%{VH=BT`l%AGVI7$vokBTe($k;f1>|L
zuS{I<^e4jtj$HZKZ95MCe*I?e{r6wD+5bK*-+%l&oA~{6)55nH$}l8IIDg5DJifj&
zOR{@jY<$atHD--VF4=imFgRGS70ih6I&t##ulBtKQu#9?vlMG&zV;Vey*bInFeP<n
zV`h%uU$395rKBe>zcOc68aK}#iNi17|6Z{?hJT?R1B1qj+Io(x6~CJNrXS|xRJUTb
zU|>jmyIwNZ^ohuqZ0py#DOX$69<pq$xAT0<u*U87@ddA1=P2rR={fox;?xb<!QQ~O
zrB=S}#nDaq9nBG$%Ddm}ZV{dyd4l1?7LVKNcWv+9|8j4d%5UMTWp=^NADvd0h^&%}
z;atAoH7l2)!FlnLSxSpanWXdm_a^H;G%5Wb{r)T?LxS1Gw!&NNmYmC%UkvwTXUK|v
zHSI-;we_QSCUsKFg9JS--u6^XV`ezJqu+Af;pFg@@)3XL%v`)*>tT<}QFev{3->Gt
zGQGD&=GepnhK37w9?X8ctxC|ZEuZ()l5hSZ_J>vH2n3yzo^Hb6lfUxWznuT-6%XI6
zk-V$Ac;4TOY|=O1aDbK}f7y8dY3;x3$K}_Wt=e#Lvhz*-{9+l^Ic`1r%nUb6R2~)g
zJep8&%-~%uH^YM|SEc^O|K1&Cd8I(BWNRd6!spvv^4XlrH(yV@XSrov0YgHPa7pQ|
z{Z9&-jC4E>aUNO83F<nCo765}ag&ct=2+%~`}d?77#Kb;pS8Sd_s<HOCijVHv(tIl
z88~z+mapA$^;@~-$KaUXiF2e<l^!xM9M~du=8O;@gM-L^tHmGR|1Dl|&{5};u&_-p
zs9J1%vqz$?s{75enn&_Gf}$&)R^M79{1?<ZXh~yeF9~fg%u_zHb9T$+o?V;_>vn)T
zAz6m@y#Z}@AJ>S*UOysg$WT(a|9<<sYQxE2=EZ%VyzN2j<d31fyN?_z(DJgGw!Xj9
znW2FDf_Tn(hI0;}W!I;-1uge|yEE&nUw*QM;v1L5P-zASP5Ic*NBY8U7z9WE+1`;i
zseqxOfbDJg)Tessh4<C3e&4^RYwrU|i!TdhJ|>xX>vlc#lVw=(>SKk^hd91A;TpDE
zKCeVKwFuw3&?(Qb?y`te+a~dI1=AO{1YayjXJ!y+iDTJ&MdE0djhyzwE2T@Tg0?a;
z^yvBZ>#6$fsZYCevr5RXw9qe`L1BTT^~A%Pq38PTyK16qmKOP)PL$zX-dehjk)fec
zrR<Vi{=EN6)6+7<iq?qTJ#n-3TZ<Ay1KX;yU0+`8GHAQp7c9e&An1KI#rt}i#Bm8e
z1_lx38zt#H>Pq5l413Pp)yccJYhLyAbkSVaCX47#3lAFfwJ<YWIJm?6qtVAk@AIzV
zTno#7O)6kum^CT)QN&vZkvsP{B)gb%sxLUPoSR{bd8B;Frn@s64%|GN*1!Eq<AeeR
z1}V>%2X<b+**anK`^Q^&>ZV0`^D-=8{rGInd!gMycJ2D=d+xu#dEfqc<896P+O3!8
z8P17dvnpk1XmZj$eD&`7naSemQ)H)oNKv+2K8-hH|NF0Mt3XW|+mmMUe7|>mw>R2n
zqxvMJ=Ci}a7uCV+w|=;Q(o*SutBIS=wzKVhJH^8?e)<1J8~sAgKV&hwwvw44#>DsX
z{2A<B&%3()&t0k3NjEw?wYi0v;mm?J!7o$K+A2)gS8hG?VUpn9|CPTA{W&d{?<)wf
zei~4H-@N`;)ix7vUIq!Dr1#HHU6$fKb20y%MCs0ds=w>&UfmArJM=x$<if_?pG^Kc
z?EZOB!cXM!JZFXrH&)kw%d!oAcjUg+)@_N(*IaM@{#w}n??d&s{!d>Y)z;OY`ov}~
zyUo$VLUBhFgM#xt2B(%Z^FwAafn`@x-QyfneTuE-Y@GJ@?3VOtQ5>7^-DPa(Hkl}U
z_kPWv>e;**b5#A#)~(rV_<F_1Fqvcvh67Pi_uBaHiJps4S#VbFtCYH@%t=Y_Q+~eN
z9t-)2u-P&u2=0ygb1V3?*V@U~w!2?3I#D|1(r20N<yq6Bf}7{5G8jx#;LZCU_vvqb
zXnpqbGybxD3di4lbbrsga>ehTKZ9x(%`%*GO--7Gr6FV9-la!UuknfIZ_O^BwY$Wa
zuUu>6e_?~bGk1%*?YuSzfBHQ;muGqNiF6@`mQ6P^-rb4$|L?o@_ICG|x6Gth+$`Cf
z99(l?Nlv`>)7wqo-!<jOwfzmgE5XMgaO=14m+yU1Z)d-DJ~I2A^vrvua=Rwme)Kq(
zEs?&X_Ksu&m#vZM_V>jnHZn9wnf=cFeKv3Dy10Ye_Qj=tNmkyR&Luj1$LX)zwEO~}
zSl;>9qrG&&p5UtD&!C16&$FsMmZsk>ZGT+7L-lpe0axqW@_!oV$j*+odv(r7!6TKC
zLEFN#ROu6g-?weC|G%Ey+4T19bcg0#>Al?IWgp*ZU%z|YP3kZsL)e$s%f9-2T=tjw
zJ1<L3yzhibo+4!`s~)t066k-<-wRx;&gZYWR~DK3?XPmu+L#ANm+oo#a((~)|7%;A
z847mu%H@CAEG@n3z+t|}GF~-PPW&!lXmI7dcv3ijMdF>}XCF9s{r;=>kb&Xz>3M%A
zecCQNwKnkCg(-(4A5XiHcmh--l*;x^aG5vXERTPx!Z-hgg`YP+FJNd;O|hvKFuTWd
z>%GbX$MZ}7p1vu;$FO0`@4t3Om@W02%RCpZnak~Xh>;<zP)quV%mKmt2T!j*Rd`sk
zxQ&Uytk-lIi)`+<6{<1}35uQN64v)RzWm^w^QksAB9nn(!TtxUcOCuyF|2ypr@|MY
z=25og8}{vQH17Y;_|`2P++zdk-9_>JKA3BDYI#%dMNW_OX;KUamaht)cdSa+-)DbZ
zd(yh7LiwjQE+3^1cOHGA#Sn6J?@G~p36JluRr_0*88#?7-S^vb^W*9QC7B(ayn%Z_
zP2g>h=I%VAU-KvM+x6#*J9c%*7umEkGhAr;y5M#|&(b$@HXfW`4l0&IbH3e(lij+?
ze_eII`sQDD+jq~u1kyk6b+Y~=-p@DXA6EX~|JJ|g{KFFAdM;%K9o60P)Bc|F``9MB
zrGEL^7UAw$d<<5*E(!d9b!_Ky&h6X8n_4cnpW<VXx?Rt){K5J?|0n#+41F1JHF$B(
zY*~FybpcaZhLZ5C*v7vzEv0I&T~T`iYID`El(j!19d_-(Mj6iK%*v}647O+sy6#B~
zE4&wyz4e8L(i~m}gVme)AMV+&lKwgQe0|CFNs+d4{hOD6f1Pyl$L&ojbFPK7G8jzw
z8$IE7KDX`fTmi4RfX)lorxrK`+-E#+A*ijy<U7yvoHl-;uc|T(4Mt@}eHDi<oO7GI
zPi4-sHVbuz1fyQ%c7wx5+B&SR1-<sS<zNVC$rCkCwm9q3x08Y4@Wq`{A<ZIM4?~_W
zbY^&QBG@p%`IlGrTYYoR<$C4f3=CbDk9Iv!esW}Ip~Ax}j}9?2B;*waowe5H4G}Cm
z!^e<NvfnDID$GXmu%^E1y&X)93mEwyo;hwJ$tQVO(`OGOLx%tVF7adwRoP?G*X0--
z%syZCP<&|e=n!+mF`vL@)0s=d&YWZDJ0-&KK#AExWm3Va;;W1d4#q-$l6hJT4jN&1
zqFVNe-3P6f5v@ABfr)cD1E@hK&;lx|kBOK@%mnRfkzwF)z0A`+xqyM8p|av}df(xV
z`Q@Dq3%EaDR{K_ABNHDaaoF<gQdS1T%HQ9bO3wU9<9R-3%4!c;E{3<A=BKM<tJr6$
zCtI}c+`_QH_G8=Zk23!z6!;a~WN>hJ#H(MGeMe<Z$+P8*4h~gY4zQnp7^8ZX!9oA`
zM>lC(`O_;W9+L1Ade6t)ka0vh;qu+D^(WrMF?6`?apdof?|Jy7_#=aZ_#@u!x8HuO
zu(*~pslaIGB8COrAK7lGKa}}kBF%6_@g76F${ZQ30EP_zJr8d`D=crX0u7@WFnnb5
z05x)wh4X);Nu;NO*6z(MZ9G}9|NhfCrk)nnX6w03H5phI20kk*k>arAo>Wj*WXs^d
zvOg;2W19<GaTuua^jI*zVtSDshvn-D1>1JAF)*-ws<7cJ?mIZg_0C<UpU(>27&s1z
zn4a@GX|VqD^S_7vR%Lov%s(Q{&~bQ`eaa4_0OO}Ozs4#AzkAl*^7-UmB?b<s#b-pt
z)tC4d%$h58ZdPZ@XK`i=27z`)8NFTquAE))Jo;E4|E}e;Rp$H`&Sy~IW44&G=}N-6
zO$*=6-FoGp@;wHJ8mUyH7@OR%=*HZpzf%kH%s;X*G)eAlb~Vw=_Ixk>XpYW~iOz4{
z>kFNe`^d(SAT>L7_m>aCH3iC_wwZp*f6x2k{7nW1=Yr=GU)RlbJzwwtQtaM)XS?J7
z_MN@_y{_HHiFM|DHU`E>*WNz2m=w$W)V{;Ez1wDY_B_my{!+knfaQqvFE7dSmH)0Q
zEKmJ5<4pE%b?K{-zbs`=2QV>g&|K;)p(r6TbK;lRlLgBR4qxJAXJDxFjBHWJVY8?{
zUAHXy&ucXqP%4z^k|{d$Z1uitz815ONHZ|l9pSOe4Lh^zf8Z-_=?IgDJ*5*E7+$>o
zW$irs<h^s<-0P2S%s6z@<WwX#!|ID}!Y+S;H@*_<6DkVxu~;l4&A_l|X3ouxo7--j
zeR}UlW+Nj*$C=Xw5>DTRx87r$bIQPQy>I>>76yi*J;xVXWV#>Pc~?o6pMl}Ui^a)v
z?3R4~lhRW6HR}9B9>YQbhK2`bzdxScHS6y46Rg|A4&8i`!@$tso4)&$pqq$_41<En
zccq2vAFeytI`43&fCgiOtW>tem8V9P{FWcrU%q<0psjle1B1(j?}2mpb$@T^H=iy4
zLatE^RNFCdRoTeRu2fTfa>YA!b<e|yLM8@=M?3DnpXyc}1}gMB?)0_rU)1aBz8!4y
z<j(u=szQF>cQ!B_P<(58nDeW~xgA`5&usRmceZTSjQYdM&|o8cWYufS=U<<{R+C|1
zSdrMYr_k%*#O61Ps{cEKLY`~&cZph`PDS;n$*gR}VKdfzjdjz0W6IFuT77l_-|ojp
z&p){s&gsWv@Ur^L$JS#73=RLL?Yez7D@^*l<(ALeE|hmZ{q}d}PvO4LoD2=`xSq{v
zY|Ad2a@O+wGk*&Ph5-L0|Gy{Ce&_FW-5!~@{}8C=VF+LPe2&-TYsb#|RW@5%|JHuU
zz~CTxxA@!+Ki+3=#OJm!Gcc&mJ!QGoJWb(cv*qu2PzT1L^6R`M^KVZr6`5BL)}YH)
zY&0io&%?j#=lxGU+G2eCR}}*T&%z%G=adRxgq*AV|D+4#J*m~UGmKyR{+aUk*N+~M
z$+{wylj<fi&ME)h`t5JLy1xbYJVpkCMUnaThqq6eQ@l;s`mgAh)fdeE7k&aMXMEZ^
z=V<=@{o=R$0_NB}^pQ_zWRSS>FyY*z%CyUm`{$nbnODHjQ26rR#-=Y5KELiN@c$2L
z<}%nWZINlTzq|kU|H{o8pVN4caZdmK+xFZs28IKVKi)WLVEx~7`?uR}hb(zI-pf}^
z%{&!v$-uy{A=CcJgm>#(CI>EC{_n}pL`!xChJAB+Eq`5|{qMhw-{un<vzZtUEc<dn
z>E54D@rN?!ShdJ7Fx;3T6nkX0?EgDfPk9yD87h_^XVd>Zy}3K}zP;>Zw^NT;^l$Ee
z#KXXlU}3fKCSO?hJ)N6}_k8>q?kZ-mK}4E?!TV-Rg~Rk87p^Yd8s9qapV_s;@>=^I
zY&T|RXj^cyEx+?`Zrr>5*Oq9<HSI6*KGtylW-j+XwjhQFo|AcFzMuc-&h<0YcJKAn
zY4QvV4C^wc7w|1TF73#{z;NS=$-_51k2!Q17!H*FzjJKPy(%ri-W|;h8>F^dH!4M)
z53-gvlk0b1TC+%swc*E|Wi02ozQ~;0{zh~KW5dRbYmGrxDszs^HheE%{GW|MYzZ?%
z3WrtOVmIc7Qi%hMT(2e<d}H>h+7qbAbYRV$cPyVuq!0fL&7J%Ad$&D1!<VOZssY!|
zw_IMZ>!+Wrq~()SWvhZ171Xw?HRk;P_V;J-*XxfzPVi(%P>U*Cu%rIn_uuPJrB3lm
zpYoQ4fgy`~*R)&u$JQ_=NbP?YnDwqvo6XyTfq}tV&C^0t`05=2riLF|t{-rHtU70t
z==}5wh6UWd1_3AI4oSXN>*^9>aC^upvtZuGV+DDu>=_syw9n^EKP9qpXE0km!va-i
z3y0AEck;F$fBZ3U`HCcl2B|v{ELpqzrPIt-pE!K?<Zo?;2fOB0EY@Z7lKf;T!;oO{
zi1)&=BF^KBEf@s4DwwBijXA`~aI4r@FeB|jOR@<YgIhWSyGGuFmdU;*Obyd?_<6T%
zNjk*HuuC|<!AnJkVS&<Sm4;)-{4DbRGaTsH^1#71S$$59+)>5`wk>NNs*}}azN#^_
zq&6}x=-w#I$G~vFnv<PD<2(c3g>Fz5IP(}h*5H%+Tr-l{0<_|Up<wFP`UZ<MZ;L!W
zMhD~NO}%DP8OaZx7u?ZfYUndL;^4!qF2j%@!dB3brXs`ez~uAgh7D=eeC!Mz&f6Go
zMVmjgk>eNcU{p9<$E<agp?2-;0<*jC%fA{iy!j!TZ?eEaVBTRy28L&f4;dI%@;qSp
z2x{sduwnDF$P;ID@MbG$P~@3YU=|xc?><vD!vw!QjEiRKK4f5E(4Jht(2)Ghf?@H5
z0)_^kWh)pNd*>F|crY_C?2)#981wv@FayJxl&>wDPihD-?75vIc~_Ms3DnhYsN|Vn
zVABOs$TPoyp<&e>bCzRD4@Ks=)%;)lpq$CUMD7sdp-BbXp1Mx?zF(+_fnmYk`s#cK
z#{T1vt^Mx2|6a9y`Vw&lhK|g(mdj^uCIp+NGCD9{>tt(7o))$0_2+903=Ox`JS`?(
z@8R1d$-uCo$y4Z@tLEaj;cibr#|~s1F19%SM3~{)6GfQ>mtzHa+ZXc$FVPa8%)qdq
zu~NwIv3sFh|M8nol%Fsd2%Hr&(Aa#%Xytdt88_Caof9!t*jEXf9bs7J1+svxAuz+L
zaiQ<j0)~d}vPZp|SqDI4jSuV}@ft8{^G^A=>U-}SW&@3nY%>n$BwI|CJNh$pv;Dsv
zKmIZZOiSaF=r)`a(trH%)G41{Rq3)YB+hJR@Nqt5>FC0kV0z0g!D92-pxu$iQVd*z
z`3-`;GeE7vR8I?r4ZF_H<YOynaD>FxGan1Nql^p<re|jsSQ#zjKM-+;@k#yLJG=Rs
z97J3%Dt`Q5FUh@lYJXs(<h#h#n=S@8nz=V5ZQ?raDZ@~;BawYhc-X@&?@s)De&*ko
z-Fl)73<V9FT0bw-;EO2w!o$G86S%D)syywDh|TL=_xK)sWMoKtY<tncb}Dx|o1PE@
zL&1_qt)I0F_7pKNFnDRjS)A=+VqoxmC4P?IMUa7EPDs_mAG@U(7(#>sEzBet7&rt2
zEvk)K7#R+z6mh5D)`@&)_Q#ij;X(Ay*2~{+#<}n@Fz}Q})-qgvS)cJd^o-8wM<?YO
z7$lUc4*zUl%f`T<HYLcyO_YJbV?vO{TK%GJT#DTM3=BMiAr^0g58S9^==k)dZq91O
zg0k?V440Ha=Z+Vn9ZU{7=sQ0ti_6H^#Ml(10K_pgF(vtAa`&RdN}NZN8zPP-H#NaH
zm|Q_0%faMa`dAMpH&ZZB03A$D%t_>?CJJ_TTu>iZ%z1m&bJ8IL0hR;P{{K%un`lsR
zF;9Lncf_ikPysWSka)}M--BYemTmua<l1U0ee><vuXpbKpLg;O=aleb{f}uU@AOW&
zwyxY=@pIhC-)k%Q?}mGsf6)CJcJkBZqTbl`+2?Ple)l{1i+Qe8c<=ni;!nMk)*e20
z@$vI*R;lx+zmYBD`EU32s^Z@*PfjH6|MAam*}k9Ys_y)^9cP8ee_Zn9OyYkP-_;#o
zmOOcrD5!a<smo)vYB*o?KQ9BG!vl@FJ3OMJiUlhf*G};fj6ULZR>Uyc_~<F~nMvuN
zP3@ERJhPvn`_nSbI`-_Vi?gb0);;+?;q5k~=k8hm4jHTRyXPFeI+Jtntm7{#PF`k=
zE={j-Tm8(^BI=V-UG}>^zm-?_96RQ9ukHSgh_g<w;y%ksX+}!KCMcVB&%D$7#aoPB
zJaT`U>O||txRa-DaJ{~|=H2sWWxG>KGp4TnyWHI+?~l@7M#-xNUqDG08q=wHDUd`A
zN-H3iiMb_68pJe)iGj||ccSKz`xK^Yb7;DT9=H$6e}s}b7xch=^khEQvFNs&fGc~z
zZ=RESx1Y4_bS#p%uO4dWD7I3@LF}YX$kQDXoeGBibAFzx*4`b%B=>u9HJgH_{_@K!
z3;+B(-M@Bg{Qn=qHqW@^USECx+g@QpS2<I#&1#tl54VrLil;vP7yQzirP%r=^v;wQ
z+yA_9jE`J+&gotFo|i{#r^%bYkPW>Vd&0JBxBs^H?Dk0)=Dywe_;`M>OIUX_|EG;j
zY~RDpWnV?PmMPa>X0-RZP{EmR^=8|nxqsH#SJYi7*L^s3`Hm$&81`rTO_BL>*lS1S
zuI-}oZ_0lznd!){`LH#3zBb>NYJUaY7Y|iyp86!$zL!7tX|Ipph2W_lrsjKP&%X42
zYWT*61=H`>{Y%_(n2j+sWTJy>)2}UZ?$$X10Y@2*Rz;oozWBYPgDA5|b}a9%*&q=&
z?Hs`XS5eNa($bge4i|G-92*wN`U)(_a2H<T@nA2vW5Xinb_J+}zcL4t$lDAiQO-MV
z0xTL<B^*p5uTNSZsKXF_o6*E@G^+N^75|1s=4>olLOXgDI08zf9l<8EXk3fh9DVNH
z^^lYmsZ}RmvMP&Y&;6%ox}b}(YpX<wJ!2P}ufT$c({C)*Ljqly+W8zC7C8#DXjCOT
z2rPK9)~>OOWt|=iL{-KGDC0%lL<d)<{2)#yk=R%cCK29Q3Jw>`*K>rZ6ub~%(U3B6
z1UrSX%MR?665$md0jIz057YzMdUamf_BnUgyJ}oZy6~4pBdoaOyD&5i%$gJ&E-rM2
zI=pJN{{p2(M36wkibW$VIvr%f$`cP>ISDLy0U|Qog;_LiU1ZS``Z3KCB_N@?R(L#!
ze#XMs#V6au;JRIqg|Vy5q_K-->l)KriOmgKY#P^${;qH0T#?j}wDslwHTJvXy93r7
z<v;iZ>b8LH>q+)d?e$Oj!BMwBsqr>P6NBsim9Vhh1@iBf#hf83E1vmg!PFzHgM<et
zjKV%A=l%sdnXzjf$lVs87+(F;w4;tmWVP;mH)ul2I(<2#otJ6V3Z=&DN{$UlTaV_t
zn1dV-jVCFPFY-W%Mb-)yJ1^7%CLRC<W5im?5}0DJORZ-)xH7GGZDMe3RzprBU{m6{
zSs1&(My=Mh?=8Eb0E(^CFH5A}Zg6xE4OI!4sNk^i-#@FU#BOka#h+iNcb7%u+QSMN
zunK08*DvZe%8PRD5#wYMIXye1fx*=plrk1@hNygqQsD?N$$;7nVjP|I_hpicXsF7E
zOi)f(4NCu@l!tH&C}qOaT*d`Z<lg9nr4UG3T%hE*S7xu+Zq9%;&5qxN7eut*EcOFM
zqU_rjbxb06^@Ub=1hl`juM!V9%HRr5-B!Cep=lMIu|Qb}5+b0a`rv{hM?eWEl5SmO
zVeH!H>$yOwaXu(!OG-g9V4?(;-oWt&4*Po&0xTNWzVOZkW%5@he~(JQ?Sv*m7L6))
zj|EDN`)`B1akW*!;Ub9GxNQC%&QP8JaKb47W!x7aCw$?Xpy05vukQX*c~MRoQ0#&e
zul-vWfdwyKfZ`AAT2S(jP;d9Mho%ZyUudq`$fv*Ae=azx9u`QzqR8Oy;|{P`;jjEd
z>>+`!O;%PVzc>TdJpQtu#{?ARr3K*f=_1G+aIF0QYzR*80t;STSKxq#DkSgKO;m8W
z*avcpwBrJ$#`jBvSTug!1Z4_vqPHtk;z0IRFQa3_B5={RdT)&^*h!%(E6S=Q!Axe6
z)v|xzg_<*Vl^TI!4-_p&v+hZJS*+x^b+YsF*$l4X;_wv21Wjmn^+9%m6UIeQX$ndw
z6}m#m#n8TL*9A(AV84JZ2N~@89hBU`g@9Js=RZ$B|N8Uvb4D-kwQIMwOk1DyneFe|
zg4Z|it3SD~<(K+%@0lLQ`J&l-Kjcp?h&%dl+JDg*+AqwxzqCF2;56@JnP_{&zVb_v
zP5T0-l#4#^{2e4JpH}(P<#F>pog;0Jcnb5wKdzg0U8W}GLioNPt3{3<tIZWHJpG#A
zLhZ%uxDUKtiy!S<+tu-OEqi6j1?#vcXS@3QtNlgGqu>2Lc${_b@7A{=H7R#~udbM!
zdfvOr<-%Om_dzv2clL(f+481d@;k4TrtyM`_d8~4?aTCBd0#tY!<HG3{ytJ${p0MU
ztAE*zB;>b(S|;cX7f@pW)LJpLG=sNX3{5NsYn$8>+IAUjlhduOK4jbEptJ%?+Q@Bk
zSaKg^ZE{lsXu5{B$wB#Vv`s$RCLe8+kG9FXSVr6A0VUv8E~r5~+9n@ulMnAUIk+(Z
zYPg`Z$xRIhX`9>>d}F5qaW{6N4<KIk3}ZIrad5o(egEc20Vn=x%S*rZMWp_H;@IIa
z|JtX`vsTNvPFd*X|2g+?ucWlvGRfQ`yFQ=o-)^cHc4l1ej7-_I^Z2sPyDigSojIet
z`}X}D#f`!jLf5aHdg5HH|F$VVqUNtUekbb5>wQ*MXXfAj^!0t?)f30(np#WPPrqti
zpYnR*_Ui2SM}K~f-Sb^~k8tJA-FER2)u)zeea~I(zkAc!Bj+#uJzr=3Y4hTDdcW7%
zR3`tPD5$$=o{HNP<I-b&_oUkrB?cPJUw)<NnbIvrt4<w3(?=?sUEZWkv-qjv{b%Ff
zGyM_g|FG_!IN$W^x6A9|&i;|U-~C5#<@)e%f4rXk|KRr|)%ESZUB!oWK3naQtBek~
zJo&4&+sy9=ubw#mwX|YamG`utGSS^NvHy~?XU<(&{;WDfbyIO^``VPU^jjq<ayR$x
zIQ?wqNtf9?XOt#q3!9zxIe+^@h0M&jS(`The<^s8?Y@WoHyhjMSh}6yGy_WFCKl!(
zX%N#G)aV5<23y<Q7^Q6v&WGf-&F}i=NxO@<K74iUv(%)>WheReHm4Zg>}Onmpjm-?
zgR4<9pN#9Y8!E3Sgo<0Fi%CqgznUCc9&8`!w><dqugBZxM`z31*D~5a<EmS8w!K|2
z{#S(d&MtlCsXQP3l<zThy#J~3eJ|VIR*mY;a@mhz;va?L|35Fd@0eezm9K7>a3tDX
zX#Ll(HFo_HU#^`!72Uxv{qfq>BXak1>%SK^-`nL_Df{uD^1WS69zWOpwdj}oaxL_f
zcc-)4o>IY&a{Er(Kbzs0AG_j?I-ktPYkVK??en(#cfv9Mt=4(L_Wp|3v5%B%pZ{O`
zvH70W;+okOCp)&^Q|SA&_xt;EMlaTyPhH;`+*|Rw{)l9az0@<QFW0o6{<<fB=JNg{
zH*555jrpox?=H&ytov~FwEOjcGq*g9k+-j%Irm0doo=1K(nOa<zc$FZOP6s)9A!wd
z)qQe(@%z97T5JN@v9cxQj7O@X+=RbzMYwjlY^^GNso(G-mnD$lqO7loLy5bvr^=_B
ztr`t47CMVKd@*a%Xn3(((1p>Z++?DQQoeErQ-_?D3*(WhPn;X}Gc2;6<)JijJ4l{i
zb`glH(GamZ-}<Y#!<T~%Fe$LEcNvQqlGd8;E-H(kd?MuZmlH1=1&>56ulM2wxlxyI
z*M5dY&1zf<*NlG85e^Gfn%K@4$Z*k7m{p+GK!Ho)*9w1?i6>TbL&aoGpp3ooDw8~(
zIBNwmT!c&heI+{4MG5R6kcqz%97G(x+~ruru*ltfqRXPFW&eAN7*|U;toddFa!$9x
zwMPqnb1Q^>e(_Gf;YFX?B#$TH0C8^D0C8cKgSlV{Xh^XNtX{iWJN>(9r%zmL2U7=_
z0QnOVEb&I_Tnbe$1Xu<3_9}2G>{{H()bTDusnezI<Q$an1=$#KI%+YmHS3xrhK<u+
z){FXpVr#YU|HHpF|BhnWD7K$-88oy5b@z$==7yO2cd9)~%=}xz28~BZ#DNVy+kWLA
zB+^`<5uw!SvQOGk#No>YMJ|P~&$n;=;)b{`ZgHoIP$kI4tA8d7{ACqbtt;;aO+{Ou
zW^PGb-Vi#)<4N{JjfRNak7kQ@Lt^~Jf=;FmKGc)|3izrLP+|gGlFhdZrWhK6Dicp!
zSAs<%Jbb{Wtan|+un3f>j%1zIhlWa_<y=27bCHWurwikeU%zi>9Et<S;{JVAr7!gw
zBHAApf?dd?aP8vnqyJQdenzQqDNN&E=>ST-V5>Y;K5g|7aVWXq!sx;dO70h27>~^Q
zd-rGu$Y0=ezFrR@C)8P^E5s@QPi#<zr^=^X^+gPe;3-trWTMNWD!X4%Z}b`>*xB#K
zGi>DBeBLrql)0m{#QnRt!<V{=9!i0-%l=>6-4MzHi9E1ji)VX4Q#v?x^{H_wSY<#H
zDkKGiEdeFCFQ=!t2zCCs2TI4`;)@s-feCkWaEz-=JOMTUoM{g>Xf#Az&VSJoI>jSo
z`OEkoP%wcb8=3|eF)Z?L02y}I&xO$i>|+pdWY)hYei27OkqXPY;7sJ-;KF#s>epwz
zzn&_eK+y?K)PM6pVF0!t><f@{lIGf!z!DQUse{W3E1UCmuUJ4yo3H(F#$i8@bJiUG
zlJ5={>%074rRIQ^m&&Te?SA!)N38t*pLSplGi-=pU$6I<Rls%^C{dOwaw+_(w^M`W
zqkj^h66?3CQl|?z*WJ?>VimZ1(S;F|##MxVP7PVau;@NGk%Nn{+aQl3iZD9~0ak%p
z^Cpdkh_^p)gPo)?amB5dmCytfX8mh(_+3_k*H1tN131*K))>6-R|?!Zx!tcE8fMTG
z1WhG-<5jp6er*#DWVpC^wnoE?1)b0o2#!#GHWx;h{Z+28LaZEAl7h>M@7=IG+<CY5
z@1N(tzJ8v+Skij!+O3&WrE~5%*2nModbQsFM*V7wsh?ESjydj+TJ!bHeBVp2LuJ<e
z5j42I;C{>k^Nz#fpF;E3KN5Ia{r`ndv)yKm_d?GlzwZpKnepk5y-D4L-P{|U=Olv0
z!^5Ad%GW$up#SHIzEYp;_ob^lwDtctB(v3CRj*+!ys~3`w5v<yTlUH?3-W)ctXH$E
zyR&`GqqC=O|9kY9t@g8enexYpkN4Gzt`GWF<JB)w@_bUcpuF+Bd!ctiztu~9mo?dR
zhT-GA$7x|7eN|oeUte%=>Cukw(&jt6?oZYEE-$%3@dc;_gEp>i3TiZf8Z$-)28eNW
zQ`iz1;+r`1S?gj-%pw2<9E$+1cus0n5MXs!^}as6>SBEW%ap{c6Z2#$GWQx>nKCQ-
z+}o`gtM9$?|J}EDZRP$uv3arQ|9;)8`q_6uo#}nmvT0|wPrSAD)7up(-=^-_*LD5E
zSFg9M`<9eVT~n`{y2d8IHrX}L|KvAz*}0p~<v*BnCvcPb8yQ=<?^iW<$9>AXVfe>(
zS9trEtdr`8_kH~SZ|1Kj*S+jyzp)vvh)Y`f<irMhp~G5BBQ!0obe4J;E)43rIm!6&
zGI`E{ZnaCa{WTZUJip>)rto7WSE=%iA3WNQADzv+(<5{3lM_2EHXVOAHD3E?NsP$v
z^mmivbbqGAg!H|;s|fOQj7i_`cT+$Cp=Xtz8~)_ml$>7eWbv@l=~vcG+FE!$pfxr|
zb@TcZ%XMNaH%(rxRyNJ1Z#BEro5xbGtG)Lf-#Tr!&eMCZQcj+mW?ermJ}J@mEVcv;
zN)ez0Y+`B*k_Iu2VI%6qC*L4<C!8y_jH$I!%M`TI2Gk^njGlvY8HkH-k_hLD7GKbc
z7B`$LS^}O1X$m<e$#wo*@ja|;C5ugc?>or``+1-i`j5|`7W)4GU(GAdNZMR`^!*n<
z$C5|A2So0xu(O@i*r)9hS=Z+@-;<kjQ+Q$MqWhmNa@Qt0&2`KR-}CB-?X>>r7rZNT
z_=>t8J)4~S`>4B4NqTkOkFT#qCSHAXtJx-O;laOGL)&+SOuXw6UwXh@(?srJXnSn<
zo{9ILvY*%g;;X#pgUEA{_YcZXc2451-Ods2|9#)1xqr{iH`#n)w@bydEBT`3Uw(Ti
zti7<?ea8p4<bN;Ne}9TnTYkaWb;k$i%sl5`x;jaWt@Hl<__}<rY#4_}pevIo=d05-
zcWx)PHi$5byv|gL@88GDsL7^r%_jOq9+SxH%v;fky$vFvDl2YYT{<7Wr~)=q+{@V5
z#li<)Z2?~Sum!X-0x`k8Mm<01Hz#O*m`NlSEcF7m)Fu1d#$bEKF7TB4E;rEn82H+d
zh~nNn%Uz)58JQI)AF_s~tf>64`wGaB*_%KMN}@pPVP?6lFLvr;ge>v^52AvN`eg!I
zVFDgS1Ffc5)T+i2um!Y|;GH-plgM6Xm4Jx{Kr`|eorGC5e!UU}du9P->BXY&pmi`{
zf0Te`|F4<+xxSTk$qFUMt;;X!x_{3W>@tmf0b0GWa~EvY$OE{m!3$I%*7t#yXMk7#
zfY-KwX3y7{^@IErJn<mdb}#`F-?EsKNu<^mv}yyqb^*GG13c#*F!8|jGn`B!;I#+f
zWgDPr?W41v-2%s1sLG1WAM2YqJq#T--ufVaO&+}D=E>}YU*HfAQCV>^d*giQnuz$H
zuthhJz*aZqz%V%L9^<#g=<9JHD}+GNd^Bs{+O_kcD?Y%!11&^wG__xO(I2#?=JY*2
zZI&ex3nFr>AP!^}(FLttxvI8Z@Gf+LlP+lC5GYPcdO=|XTEddC5Vpt&yclYg>H4F2
z=uUIx1}#+pM<^nIoIr_YtB1gX7oa%Uc<T$y0Ty%pkkUAl$m{#>tF_k%PDpA<`uq9K
zt4qEONwR&%!MVWDVPoGr@!x?H4`hSZzU=X21+Qjc5`j8203rcSE#PD)1zOV5r6u$O
zoX)_}2uevHIV4Add<af;VxWkXw-!YA{+j8FTi?04Hd$5Zegmy(x%hex$a(NJEi4+>
z5`TOLCqBsfD3B$)b_syj6KM${mZXS*mfwI^MS$0s!3WWQ8L2upEXuc0fTee^Q^5o@
z*+G}bfR}+q95ycjWu{W8eU}(DS9zc<kh#YQT7YrX6SVXU<OZ-qu6^kC2I&DWumGn{
za5}vQS|D=m;`!b190GFFm%Dx}j9uV$W_@`~qMR|HMP;v_TmUVTgSrR0?CsSDqhD9R
zX_~M7Ff2v2Ka_U|C#~ZT?bpapSk%Q*TJqwH@Pdfr5BKw!C>&)tYPAEDC6N}*{IBs5
zSO8gNlPti(*!4~vv>*t)vS+^sbp084G1r$=FD6mWntT?=hDG4S1&%K8!XWUnt%~=c
zC1{s9ni!5|>EHie7NH2TFKhX9Z~_W+ZOU@DufFQrkTh2ZwAil9#IYgCG@l2w;HGTT
z;@yEr<qaa0L`O9-xPmPLhb2M+oW{-BK&z6fT*0e=0wx|<4qD9y%7REsS~$DT-{1G{
zZ9(7j{CMG@oVC2tPn68||2rM<CxA=y%b@_rebZ*z|2o*W=VFJ}mqYIy|HVI;D^k9t
z=KGb#*0>w0C;I(<C3cl>vnk$n!%6>+?upOpQJx?9rmbGiq5tKOZ}Xlf55$*ND4*u$
z|1HoOcc6LCpN8-y98qzlE7-NZFbO@`%D&U;sNZSc{r?JD<8H`2*%p6i#-p~$x&PX2
zGZu=k^IE$6<gTDSACAm*ez1^x?}k|c|F^IQ*(f)zaht#30{8o6u5Wubh}`FBwBGI?
z{GwI<<i_YP{~5$Ov94nQHv#gKvbYQ_O_AE$q)+$Lsl5#v>m<}f!PVZr>YcR206J#A
z*`wVg;pcX}GG?upsbZckzqU-P*WM{ryH<Isy{7bSoyEQT)vq7x+<fB7cja3-i>h;{
zS@ipqeG!`1Ja^`~t(A|wQp(R;FDQRw`gPZ~Njt=D-u!AaU$**;?Ygz9>)iHzn|kqh
z&8M<l(?Z)%8#kxOTb;lD=K9vJN9LZmeeY8BOuOq}N^{i<^*?2oSMHl(^Rz5iztH^C
zt@v&IQ(xc8dsO%2xtpa$n9?iHN1iDz-5T!4y=(&opZ3iClQZC><`QkS^MX##?9O0+
zp|Z*4O2_0gLK|mCK6+BW>4^O8^M5+No{8Te{nIiy|NpJ4t7q0fuAX>(;;*XB&%=%W
zx0fsJ_q+1$_FUf0XWn1@dg6BDth&hihNt%MuXD4zcKzY?tGbcTigR>7ZT)lfnvr$z
z`!nA!c%`Hxjhn~bN&S2#Wsxsi+QgH$TFx3>exLiJQf8)}@6DU{zjS0Y;~6&xr5jK(
zH?cH?waQIEYezt0gRNB#>MelMIJ8v`%8MW_d9Cuk+in7Gv*&!0oD{q5ByVx^6N7#J
z4D%Jb71%fEYH~A8J{Y0w^-8_8{y??%?dFMcuaiT~SIR@yng6_fe(l!#|9?r>oDr>A
zbN2mPc>x30u-CdNqW77kjJwiXHM|`@77FIuXuaS)vM;<ae9`?)-XAXt=G&OP=sl;r
zGydZ;^>-Wh1b?&?%(qc~(Yw3<mE6(Y^WW@?-xK+9reMB}{)=Agz7J-uOIo(uo#5>{
z-(T_grepq{k}cP@9;xp6$GAR7M)c#c84JwU*?g)!+CJ^WEcW|>GSVN9omgOAwz|Oc
zW2Wk!KQ8iG=L9|;`?0`WFXYLdM-znVzAQ->dEQx(JZ*vbxv=MZAAJz|r?DaK-$$M^
zqF;{f_F60dH$f*q^_u+uOtUnes>fTivS;sTnSH}*?S1Xj^85dp+)8Y(JbyGiL?vM2
z0=u=xFY;Nlgcv$(j1&9x^@TflfqGPU^E)+%jd9a1a#gc{R)I#v#{S|AKr9;vS8;I?
z0xO`^J$PB_UC_!-@FHUH@=j2tbF}KC(pFfz&lJ?40k>2^P1}uO`PN^B7rbZ%t@_Lc
zHTDn<fvwlxOxyf>E635OWz*-x1-Q0FE#L3O3tG9W%XZhl0lWtNno;#R_`28+F)ADZ
zUk)`WI9%Kfs_?)K1shPa9lZK{0VjA}DvL%HtH%Q9T2Ihw;$MhH{BtG8hDFywjre=u
z#k}A~ywTt5TUkN=&(a4klUEYSHpJhEuQCVqA+R;#x1Gzg+#OGiMtsyYska-PL5r?e
zr2c|0OSgwDOE*Vami`>REPekc(Cz_HdkNBf_RoU#rtX5a5P&1}>K>*y?$Bla;N}c?
zfwp%o6Lf{~)tcyN*g|5cyn|~~R$b8I`3y(1PA`Y0q+6eiZY8#Z))9l3YhM*ZG~(gW
zf#}kKHw1u}--7!DTc7Q`;fuW40lYjKylz)dh(!b3?gICGctOeOJZQN(IJsS&7Vl>L
z2Aq7KmRR+c-B4W6r6sh&LtsI~|2pZl8{9$LEnd%GkF+e^87u@@mJUuVr@N7srGs`Z
zIJh!_Z2&EZhb~Kh2U(V$2Ws<yT@6Y|U_Us5Iu$!X4Mb3<5xPEIOQ-_8o*Ud<fr&@l
z?`ON)+r?7)A?A&`!$!W%&*y;lg;?FX_?JavSG)>Gz?#Ef-e+^KSOo1QgX{;dFNbuJ
z;XPq+a8lHSPjnDi5OLYO#7UG{<h4odCD3ja@b&<3`xhM0dznC)t9vqN2M4$j3?kON
z6rbLr#Rl0{0ohana#httFM$OS?)L95`GfYaKo^@|EC+RCz|B=F@Zx%~36q_d!-@t_
zx&(V|#o_Nam-~U^rNE*G9Eprwr8EAOxq!ti{<eQ*UbRBWQC8OKFN?;t!e9E#;BrAW
z23$aaaxK_~5A}ASb>|=_{W1iVOW(WUJrGd%f;|RK`M-=*8@pKcf%7f6XS#hZcymn?
zgX?wB4x2q?iW~u7K+&DF_5FQV63bftez9yB2PlHB_SJn`HJjn6l_a7KuaD7&2Ngl!
z*aGc$DDd_cSnwiOy$OBIIye>XHBjIP_;OXdiNV#~ys?V~QXql60!|v>a0=Ksdwsm!
z`uP1da%(ppz7;k5T9NQ<^B30-t$qK`PVs+uq1Nf`M#gM^*G0T;o$q_-w-(>_KY<DB
z7MvG*(evno)4s<wqU{lNUzTiUsa>ccuXRrN`%*2tv!6Z*_wrY57qIR!KC(CdXnR!L
z=LgEo`#wEbA0#9FeQW3u-Szbc3?1*695C1D>-xP-OKIA6yAzw6_dQm~538xW^F8Ea
z-s#_UA1fX2*Cv!}*%`lsEK66kReo`9Qn{v``n!8t@1nlRA4_g_JH?}6XO*|CD_vLf
zt2-<2G_l~Cm^&$=@w$<B|1)HpD%61*GU&tSpteIkXs@V&p&3XX#5Ob|y`@8+=DZnb
zZ4RNf4X)<=dGAGw4R}}_x_{rlx%uRW0}=n$p6*sjn7S+2t19d4d!_Kjx3iagn!IV_
z*{mxcYbTklv(TRTtFF^(_KRg_wa$5~SyzePI(W`UJvXj!X-fI|?GE~HjK6wDuiO!~
zY4hsd^M_{bRLfoaDC^|;eG;+HCa>Rewd=L&?70(TOU@;Ko475maQTz${4a6Kp3mEN
zxlHTb)S5Sa-;O>xqMf_`QQpbw`keNobGJno?th}M%y($fl-Elhd7cc)(kv7ayWXj#
zdhW)_db%w{$8FJ@awRX@fTvo8Lghh5UY$W@*~j$XE_haVa)*6c)-mPW-Out)R@AP&
z_Q$@?^n7>v`jncwHCO&f@3VR@cFynQi+^*j*7U`l{CzS~U-ISQ70;?aNZsK*mvvIY
zF3t4zMzh?F&!SGA-}L^Q-`V#U%yU;h^E!EM(Y<$8@-LU_UYRrfjo!=rb(<UOZf$wC
zCS{Yt?dapzBX2Evwj-tM^V-sqnag>z|1qyqwRr_f#%ReLoNho#8@V|TN=qQILDrl%
zgDvxdH0Qy2kx-JyJ;)Aj&U^a(MA|lbyup8h>jdT-%9`9v%?Eo_yk4o7ftvHxY}264
z`SZ&!XFmGzyFY$;=C9AU?H?rTJxE?#_x^uFgXX5F_lm23$X%EbXrt{C$<%eeyW(l2
z<9dZ}YrAF(y`ARUb-u6S=}yP>CUPeqca_@~c0X<I`t7o3lluj2e)+4)UHtYplmCCn
zJ8G*OcT@kxRQA3PcCJfWzT2IU?fUJ$XH)qF?Q+?-Yr85q^Xm`H7O8gKb4mThRO$Yj
z=#MK^_dGplF7n%L&n4p*Q_pI}1m9WPa((`bMUOZH*MH%!dg|qRPP<I=;Zk+m#TI@?
zv=_7NE!t)!FS>jBhs_6y{$5u$2)m#yueCMimuvjJ(>n9(O{A3B_I?W6nku!UW%UiC
zHTR`I$M64t>2_js;rXNH;MV*;o#XfTq#>>Ov`=4Oq=TD7QDV(`pw|4edtA{hpw?_u
zOzbVPTk~_Fqqu0Td9i%!t+-nAS6)n8{M%Qs%amW=a?gS;o~=CfQ>8!+o>{!R=0bKG
zuBrSoM|hP4bgL(*5e4ZOl!G@f-eu7essOeApzSPZBk2p*1P50p_^vNVl?m>EfE#V=
zK?8+*!Ce#3hPXAAKh{H<RHl1-@+^1V7g-pw*>St@f{4khy{)0M0f;^bXfSRO*n05T
zGGe1GWFUPSXjFf8NJ;^yDFbVofyN=57+mA~VFT3Q;brg^IB>1~LAAIEI;ak9KPxzF
ze73X-w4D>Q_gC)U>I9}$5(^?OgU96ay8_nSG(WgS7!oW2o1Z6HLwA`H)0{W0WWCV`
zZ9syX$Y3u`|HT3w1kV1HoBI|#Dh%D(3HE5#r^!-pSv0Ph)W3x8yUU&x4|d^EP*ep>
zT(InBu8T3$9iWCOs9_9gD}nbRf*QWCZMQ2t0xmz<dBcZ{_PpuY{a>NmOh3OYc?EV0
zY@6xto6*p1ru*$<VrOv%tU3Jg#%<_U-HU&dtf9$en)pfvP{bl{hn)x7*#~kXc=M>~
zue(P(v{rdM0C!&DNeS$wW>72^gZ40@G~PaJ6Nc>}hKX;C>u0;$18&dffZFqm;qCdi
z(4@NN@CQ1!=RrgA;P!kC@$LDC1lsd{#I)yOg#%K1{`HGsb@0Yf3mIrCI%>sJZ><Ct
zllgb}7pTXvppS2E8I#Csi$BvF*+7F4eCzbyvS?WC0!?9oa{mu|d12^8$X^Li*XuWE
z4iY>S0N&yW?!SUFZ|%%U4z5i1!Py=(xpVP0X!-!0^uePHak~XrG{D{Tjmxgj-z#gz
z0UB5EU49*0at69K%>uROXM)@F;8MY{A;~vRVvF#Ch|4GY^4yRL97HP7)pcxG1nxK>
zw!DKH`bgsv;p;)OW+1;*fcqMt4&e*v4%vW-4oB1KYX0x~^W)#v?Z;fhwm*IAf7mGR
zLVjzs-Je>4d%tzk>#anT+5Rq!I6d`#>BG&3k8AZM{A}FVWEZ`_xN9$0<;%+R;e{)9
zxO4vU3e?kj7kT3K`O>vr%}4Iqzc}lZqhYsu!giZ~Wum)}-!*<A&HqpBXu8O!Z^!p+
z?UH@`PWVeKdriAi=!t6i=litEI;-C=kheIoTQr*M=Z*cfOS-I&?~T8}FMp%C>$_dN
z_e1&hkMauN3zj@SXrg)V)19|R^VUA%E3`Myc*4MN)LSm3ai*4?>AQ4RUa#b?_j7M7
zniN_Sbmu>_><6q(dT{#z)UGiyFfstOg+OdW*eU~XW5+4KLLpi~*9e4+6pR#Nv7XkV
zpzo8KmtK;gU~Go8=-e&8D3?n=q_QAYK|jJjDJwO(L;?9k7UPf;kBkC7Ji25W!mubt
z&zaS^RYrjS&_&jdJLc?Q=n-VQ267Wx`wZ3#8I-Owf-Nx`oUSuR-mWm%V%8X?kv-^K
zH>h(3s2>2zyP#y}oL`z(qF|_?@12=atPrhW2<o8+fif;6Ck7;@rxt_qA?%<WGvq|;
zT$Gwvl9`|9l30?epy6U=WME`yU}j`sXklz_Y^H5sq;6oKuF0hjR+nF-pplzcQjn8h
zl9QRFV611TXQ-o)QBqQ1rLT{W(917M*W}U<D9TSMO-@DCQ;?FTkd&C5otl>d(XWZ*
zw2GqCG%f=LLo*XD12|AHGc`3fRY+5Siy4|JfMpf(AYvBAmIk0w3?v8>Gcd9+0WCs8
z7qdXqYhYwyYGI0Mo`I2tnE|FcGb3{}bp{3oX6Ski3``7+Fw_|tSfGg+ni^W5iy0dk
z8KH}rnVNxSmyrEoXl!g`Xo6~<g|UT!8JhbH%?u1o(Zq}ljZ94}QS};Gn3-Cl`PahO
z!pI2CZ^nkkCg|a8Y-VDPZm)^4xjASj39_3lj6o39UK2ADGfOo8npl_^TcCxXsi~16
zdbn5^TbP;{qMB!FZea;pABSwO87PVjP}P~4S(;)o&&(1nT+A%ZObpQUnj4uIqWjm}
z(#*sJGd?WP!`{Nkz``8O4hth=3ln2h_gNU3S)hlrg^{JXCAvCeBXd)9^NdZ+(ZkQc
z$jrhVEu0OE%*?Qe8KS2(10!=wP)Us(rUr(lMxas#P0ZLFEvyU-P0h^F(vX3nsf7_*
zS~D;-wKPYIa|1&&19bly7@8TGprvO6Lo;Ixe;AsX8e^(6vp|a@14A=QGqmtCFf=zZ
zz|d=Mibc%Q5Isx{Eez1(*TB%i1hg;$HLNVm%`n2i(g4#fmd04b%q-B|X9S87)HGyZ
zWMFKH?mi;}EOBmNff?rpmS*T-Wn^e*fGK8Vgq8;lj0`c#7Xu?hb3^oSHZn3aM2~YL
zBV+VDXkcVy3fk_45`IRY0vg@F#s(JX>Ced67^5sUGByFV+EC3iHUljdM-?+MzzjbV
zL-g{>z{tcDqZ~IfF*C=ABNGb?jIc5_vcw1jQ!_)fd~RT5icyvr7+D%%q(5UL%(QD_
zWQGx!CPro$^`M!l8HRc0rj{7)GdD9puX_xQjSbP&8Je0|7^C?OB!*rmgX$<_v@*ib
z+`!NTU9Y);A-X?6bs2hDVq|1#Y=CASNDRHa2i1AzXyI&ZXkciLmc~J1mS}NlY-ntZ
zUN#vU85@CC@FS-okQjP80M(c1b%n8ofeCuqWNcx8QRaZ^RrGqn#LUnHbjl&Jy&y64
zdI40|nxmCDCg!GQ#%TTpiJ{k9pgI{e){J6@rHKW4-DqNIVu7BwKy^2Ie3+V>nxTiE
zskx~+db<u(pBtiuy{UzzF?v2XwXifXK#NN=0|Siqnwg=Ikr7%M0TM&6e?jd7bT^w>
z8XFp;>$NmCL@zhYEHUdNa|3e|L$tgP5<?GrP}>4MZI~Nd8llHINDRGw1!{w!m&F!F
z28QVQ10;st{sXm3(91dtBVz+gG&frq85^RPO`!IR5n5igFfubh&kG<i^t@nUWM*!O
zmi{b^EHT=#ATbNH`UBJ+LT@uz7#mtzqUC)HV<Q9fG-P3Hgr$9Iicy|g7@HcP*Nqm&
zrskk2BjmgQYI}o@&_xxqG(c|qloTaq=A;&JfqHD7d1?6yhTv{kkb-_tem<!C207<8
hvnmzT{Q>ofic1oUO29oL3u8+oV*@T#RabvEE&#0=wG03N

literal 0
HcmV?d00001

diff --git a/pythonscripts/figure2_jetresponse.ipynb b/pythonscripts/figure2_jetresponse.ipynb
new file mode 100644
index 0000000..edd4ac9
--- /dev/null
+++ b/pythonscripts/figure2_jetresponse.ipynb
@@ -0,0 +1,738 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Jet response\n",
+    "\n",
+    "This script generates figure 2: jet shift vs. jet strengthening over the North Atlantic and over Europe for\n",
+    "- coupled CMIP5 models (RCP8.5)\n",
+    "- atmosphere CMIP5 models (amipFuture and amip4K)\n",
+    "- ICON, MPI-ESM and IPSL-CM5A.\n",
+    "\n",
+    "Note: for ICON, we investigate simulations with locked clouds and interactive water vapor. For MPI-ESM and IPSL-CM5A, we investigate simulations with both locked clouds and locked water vapor."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "# inset small plot in large plot\n",
+    "from mpl_toolkits.axes_grid1.inset_locator import inset_axes\n",
+    "import cartopy.mpl.geoaxes\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify CMIP5 models and simulations that are analyzed"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# models\n",
+    "models_amip = ['bcc-csm1-1', 'CanAM4', 'CCSM4', 'CNRM-CM5', 'HadGEM2-A',\n",
+    "               'IPSL-CM5A-LR', 'IPSL-CM5B-LR', 'MIROC5', 'MPI-ESM-LR',\n",
+    "               'MPI-ESM-MR', 'MRI-CGCM3']\n",
+    "models_cmip = ['ACCESS1-0', 'ACCESS1-3', 'bcc-csm1-1-m', 'bcc-csm1-1',\n",
+    "               'BNU-ESM', 'CanESM2', 'CCSM4', 'CESM1-BGC',\n",
+    "               'CESM1-CAM5', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS',\n",
+    "               'CNRM-CM5', 'CSIRO-Mk3-6-0', 'EC-EARTH', 'FGOALS-g2',\n",
+    "               'FIO-ESM', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M',\n",
+    "               'GISS-E2-H', 'GISS-E2-R', 'HadGEM2-AO', 'HadGEM2-CC',\n",
+    "               'HadGEM2-ES', 'inmcm4', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR',\n",
+    "               'IPSL-CM5B-LR', 'MIROC5', 'MIROC-ESM-CHEM', 'MIROC-ESM',\n",
+    "               'MPI-ESM-LR', 'MPI-ESM-MR', 'MRI-CGCM3', 'NorESM1-ME',\n",
+    "               'NorESM1-M']\n",
+    "\n",
+    "# simulations\n",
+    "sims_cmip = ['historical', 'rcp85']\n",
+    "sims_amip = ['amip', 'amip4K', 'amipFuture']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (ICON, MPI-ESM, IPSL-CM5A)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T1C1W1\n",
+      "reading T2C2W2\n"
+     ]
+    }
+   ],
+   "source": [
+    "# ICON simulations with locked clouds and interactive water vapor\n",
+    "runs_cld = ['T1C1', 'T2C2']\n",
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "u850_icon = {}\n",
+    "for run in runs_cld:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats = np.array(ncfile.variables['lat'][:].data)\n",
+    "    lons = np.array(ncfile.variables['lon'][:].data)\n",
+    "    levs = np.array(ncfile.variables['lev'][:].data)\n",
+    "    uwind = np.array(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()    \n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # find index of 850 hPa level\n",
+    "    u850_icon[run] = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "del run, ipath\n",
+    "\n",
+    "##############################################################################\n",
+    "# MPI-ESM and IPSL-CM5A simulations with locked clouds and locked water vapor\n",
+    "runs_cldvap = ['T1C1W1', 'T2C2W2']\n",
+    "u850_mpi = {}; u850_ipsl = {}\n",
+    "for run in runs_cldvap:\n",
+    "    print('reading ' + run)\n",
+    "    # MPI-ESM\n",
+    "    #print('   MPI-ESM')\n",
+    "    ifile = 'MPI-ESM_' + run + '_3d_mm.uwind.nc'\n",
+    "    u850_mpi[run], lats_mpi, lons_mpi = fct.read_var_onelevel('../../MPI-ESM/' + ifile,\n",
+    "                                                              'u', 'plev', 850)\n",
+    "    del ifile\n",
+    "    \n",
+    "    # IPSL-CM5A\n",
+    "    #print('   IPSL-CM5A')\n",
+    "    ifile = 'IPSL-CM5A_' + run + '_3d_mm.remapcon.uwind.nc'\n",
+    "    u850_ipsl[run], lats_ipsl, lons_ipsl = fct.read_var_onelevel('../../IPSL-CM5A/' + ifile,\n",
+    "                                                                 'vitu', 'presnivs', 850)\n",
+    "    del ifile\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (CMIP5 models)¶\n",
+    "\n",
+    "Note: All simulations were interpolated to the same grid and stored in numpy arrays with the jupyter notebook \"interpolate_cmip5_data_to_common_grid.ipynb\"."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ipath = '../../cmip5/'\n",
+    "ntime = 360 # length of cmip/amip simulations in months (30 years)\n",
+    "\n",
+    "# coupled models: historical and RCP8.5 simulations\n",
+    "# create arrays with dimensions (ntime, number of models, lats, lons)\n",
+    "u850_hist = np.full((ntime, len(models_cmip), len(lats), len(lons)),\n",
+    "                    np.nan, dtype=float)\n",
+    "u850_rcp85 = np.full((ntime, len(models_cmip), len(lats), len(lons)),\n",
+    "                     np.nan, dtype=float)\n",
+    "for m, model in enumerate(models_cmip):\n",
+    "    u850_hist[:, m, :, :] = np.load(ipath + model + '_u850_historical.npy')\n",
+    "    u850_rcp85[:, m, :, :] = np.load(ipath + model + '_u850_rcp85.npy')\n",
+    "del m, model\n",
+    "\n",
+    "# atmosphere models: amip, amip4K and amipFuture simulations\n",
+    "# create arrays with dimensions (ntime, number of models, lats, lons)\n",
+    "u850_amip = np.full((ntime, len(models_amip), len(lats), len(lons)),\n",
+    "                    np.nan, dtype=float)\n",
+    "u850_amip4k = np.full((ntime, len(models_amip), len(lats), len(lons)),\n",
+    "                      np.nan, dtype=float)\n",
+    "u850_amipfut = np.full((ntime, len(models_amip), len(lats), len(lons)),\n",
+    "                       np.nan, dtype=float)\n",
+    "for m, model in enumerate(models_amip):\n",
+    "    u850_amip[:, m, :, :] = np.load(ipath + model + '_u850_amip.npy')\n",
+    "    u850_amip4k[:, m, :, :] = np.load(ipath + model + '_u850_amip4k.npy')\n",
+    "    u850_amipfut[:, m, :, :] = np.load(ipath + model + '_u850_amipfut.npy')\n",
+    "del m, model\n",
+    "del ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean for all simulations"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/mnt/lustre02/work/bb1018/b380490/outputdata/ERL2021_data/pythonscripts/helper_functions.py:64: RuntimeWarning: Mean of empty slice\n",
+      "  monthly_mean[month] = np.nanmean(monthly_data[month], axis=0)\n",
+      "/mnt/lustre02/work/bb1018/b380490/outputdata/ERL2021_data/pythonscripts/helper_functions.py:71: RuntimeWarning: Mean of empty slice\n",
+      "  seasons_dict[season] ], axis=0)\n"
+     ]
+    }
+   ],
+   "source": [
+    "# ICON\n",
+    "u850_icon_djf = {}\n",
+    "for run in runs_cld:\n",
+    "    u850_icon_djf[run] = fct.calcMonthlyandSeasonMean(u850_icon[run],\n",
+    "                                                      months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "# MPI-ESM and IPSL-CM5A\n",
+    "u850_mpi_djf = {}; u850_ipsl_djf = {}\n",
+    "for run in runs_cldvap:\n",
+    "    u850_mpi_djf[run] = fct.calcMonthlyandSeasonMean(u850_mpi[run],\n",
+    "                                                     months, seasons)[1]['DJF']\n",
+    "    u850_ipsl_djf[run] = fct.calcMonthlyandSeasonMean(u850_ipsl[run],\n",
+    "                                                      months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "# coupled CMIP5 models\n",
+    "u850_cmip_djf = np.full((len(sims_cmip), len(models_cmip), len(lats),\n",
+    "                         len(lons)), np.nan, dtype=float)\n",
+    "u850_cmip_djf[0, :, :, :] = fct.calcMonthlyandSeasonMean(u850_hist, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "u850_cmip_djf[1, :, :, :] = fct.calcMonthlyandSeasonMean(u850_rcp85, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "\n",
+    "# atmosphere CMIP5 models\n",
+    "u850_amip_djf = np.full((len(sims_amip), len(models_amip), len(lats),\n",
+    "                         len(lons)), np.nan, dtype=float)\n",
+    "u850_amip_djf[0, :, :, :] = fct.calcMonthlyandSeasonMean(u850_amip, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "u850_amip_djf[1, :, :, :] = fct.calcMonthlyandSeasonMean(u850_amip4k, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "u850_amip_djf[2, :, :, :] = fct.calcMonthlyandSeasonMean(u850_amipfut, months,\n",
+    "                                                         seasons)[1]['DJF']\n",
+    "\n",
+    "# model mean for historical and amip simulations\n",
+    "u850_cmip_djf_mm = np.nanmean(u850_cmip_djf, axis=1)\n",
+    "u850_amip_djf_mm = np.nanmean(u850_amip_djf, axis=1)\n",
+    "\n",
+    "# delete variables with time information\n",
+    "del u850_icon, u850_mpi, u850_ipsl\n",
+    "del u850_hist, u850_rcp85, u850_amip, u850_amip4k, u850_amipfut"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate zonal-mean u850 over the North Atlantic (60W-0E) and over Europe (0E-25E)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/mnt/lustre02/work/bb1018/b380490/outputdata/ERL2021_data/pythonscripts/helper_functions.py:354: RuntimeWarning: Mean of empty slice\n",
+      "  var_zm = np.nanmean(var[:, lonind_west:lonind_east+1], axis=1)\n",
+      "/mnt/lustre02/work/bb1018/b380490/outputdata/ERL2021_data/pythonscripts/helper_functions.py:362: RuntimeWarning: Mean of empty slice\n",
+      "  var_zm = np.nanmean(var1[:, lonind_west:lonind_east+1], axis=1)\n"
+     ]
+    }
+   ],
+   "source": [
+    "# boundaries of regions\n",
+    "box_west = [0, -60]\n",
+    "box_east = [25, 0]\n",
+    "\n",
+    "# coupled models\n",
+    "u850_cmip_box = np.full((len(box_west), len(sims_cmip), len(models_cmip),\n",
+    "                         len(lats)), np.nan, dtype=float)\n",
+    "u850_cmip_mm_box = np.full((len(box_west), len(sims_cmip), len(lats)),\n",
+    "                           np.nan, dtype=float)\n",
+    "for b in range(len(box_west)):\n",
+    "    for s in range(len(sims_cmip)):\n",
+    "        for m in range(len(models_cmip)):\n",
+    "            u850_cmip_box[b, s, m, :] = fct.calcBoxZonalmean(u850_cmip_djf[s, m, :, :],\n",
+    "                                                             lats, lons, box_west[b], box_east[b])\n",
+    "        del m\n",
+    "        u850_cmip_mm_box[b, s, :] = fct.calcBoxZonalmean(u850_cmip_djf_mm[s, :, :],\n",
+    "                                                         lats, lons, box_west[b], box_east[b])\n",
+    "    del s\n",
+    "del b\n",
+    "\n",
+    "# amip models\n",
+    "u850_amip_box = np.full((len(box_west), len(sims_amip), len(models_amip),\n",
+    "                         len(lats)), np.nan, dtype=float)\n",
+    "u850_amip_mm_box = np.full((len(box_west), len(sims_amip), len(lats)),\n",
+    "                           np.nan, dtype=float)\n",
+    "for b in range(len(box_west)):\n",
+    "    for s in range(len(sims_amip)):\n",
+    "        for m in range(len(models_amip)):\n",
+    "            u850_amip_box[b, s, m, :] = fct.calcBoxZonalmean(u850_amip_djf[s, m, :, :],\n",
+    "                                                             lats, lons,\n",
+    "                                                             box_west[b], box_east[b])\n",
+    "        del m\n",
+    "        u850_amip_mm_box[b, s, :] = fct.calcBoxZonalmean(u850_amip_djf_mm[s, :, :],\n",
+    "                                                         lats, lons,\n",
+    "                                                         box_west[b], box_east[b])\n",
+    "    del s\n",
+    "del b\n",
+    "\n",
+    "# ICON\n",
+    "u850_icon_box = {}\n",
+    "for run in runs_cld:\n",
+    "    u850icon = np.full((len(box_west), len(lats)), np.nan, dtype=float)\n",
+    "    for b in range(len(box_west)):\n",
+    "        u850icon[b, :] = fct.calcBoxZonalmean(u850_icon_djf[run],\n",
+    "                                              lats, lons,\n",
+    "                                              box_west[b], box_east[b])\n",
+    "    u850_icon_box[run] = u850icon.copy()\n",
+    "    del u850icon, b\n",
+    "del run\n",
+    "\n",
+    "# MPI-ESM, IPSL-CM5A\n",
+    "u850_mpi_box = {}; u850_ipsl_box = {}\n",
+    "for run in runs_cldvap:\n",
+    "    u850mpi = np.full((len(box_west), len(lats)), np.nan, dtype=float)\n",
+    "    u850ipsl = np.full((len(box_west), len(lats)), np.nan, dtype=float)\n",
+    "    for b in range(len(box_west)):\n",
+    "        u850mpi[b, :] = fct.calcBoxZonalmean(u850_mpi_djf[run],\n",
+    "                                             lats_mpi, lons_mpi,\n",
+    "                                             box_west[b], box_east[b])\n",
+    "        u850ipsl[b, :] = fct.calcBoxZonalmean(u850_ipsl_djf[run],\n",
+    "                                              lats, lons,\n",
+    "                                              box_west[b], box_east[b])\n",
+    "    u850_mpi_box[run] = u850mpi.copy()\n",
+    "    u850_ipsl_box[run] = u850ipsl.copy()\n",
+    "    del u850mpi, u850ipsl, b\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate jet latitude and jet strength based on the zonal-mean u850 profiles for the two regions"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Northern Hemisphere\n",
+    "latind0 = (np.abs(lats-0)).argmin() + 1\n",
+    "lats_NH = lats[latind0:]\n",
+    "\n",
+    "# coupled models\n",
+    "jetlat_cmip_box = np.full((len(box_west), len(sims_cmip),\n",
+    "                           len(models_cmip)), np.nan, dtype=float)\n",
+    "jetint_cmip_box = np.full((len(box_west), len(sims_cmip),\n",
+    "                           len(models_cmip)), np.nan, dtype=float)\n",
+    "jetlat_cmip_mm_box = np.full((len(box_west), len(sims_cmip)), np.nan,\n",
+    "                             dtype=float)\n",
+    "jetint_cmip_mm_box = np.full((len(box_west), len(sims_cmip)), np.nan,\n",
+    "                             dtype=float)\n",
+    "for b in range(len(box_west)):\n",
+    "    for s in range(len(sims_cmip)):\n",
+    "        for m in range(len(models_cmip)):\n",
+    "            jetlat_cmip_box[b, s, m], jetint_cmip_box[b, s, m] = \\\n",
+    "               fct.get_eddyjetlatint_NH_nan(u850_cmip_box[b, s, m, latind0:],\n",
+    "                                            lats_NH, -999)\n",
+    "        del m\n",
+    "        jetlat_cmip_mm_box[b, s], jetint_cmip_mm_box[b, s] = \\\n",
+    "           fct.get_eddyjetlatint_NH_nan(u850_cmip_mm_box[b, s, latind0:],\n",
+    "                                        lats_NH, -999)\n",
+    "    del s\n",
+    "del b\n",
+    "\n",
+    "# amip models\n",
+    "jetlat_amip_box = np.full((len(box_west), len(sims_amip),\n",
+    "                           len(models_amip)), np.nan, dtype=float)\n",
+    "jetint_amip_box = np.full((len(box_west), len(sims_amip),\n",
+    "                           len(models_amip)), np.nan, dtype=float)\n",
+    "jetlat_amip_mm_box = np.full((len(box_west), len(sims_amip)),\n",
+    "                             np.nan, dtype=float)\n",
+    "jetint_amip_mm_box = np.full((len(box_west), len(sims_amip)),\n",
+    "                             np.nan, dtype=float)\n",
+    "for b in range(len(box_west)):\n",
+    "    for s in range(len(sims_amip)):\n",
+    "        for m in range(len(models_amip)):\n",
+    "            jetlat_amip_box[b, s, m], jetint_amip_box[b, s, m] = \\\n",
+    "               fct.get_eddyjetlatint_NH_nan(u850_amip_box[b, s, m, latind0:],\n",
+    "                                            lats_NH, -999)\n",
+    "        del m\n",
+    "        jetlat_amip_mm_box[b, s], jetint_amip_mm_box[b, s] = \\\n",
+    "           fct.get_eddyjetlatint_NH_nan(u850_amip_mm_box[b, s, latind0:],\n",
+    "                                        lats_NH, -999)\n",
+    "    del s\n",
+    "del b\n",
+    "\n",
+    "# ICON\n",
+    "jetlat_icon_box = {}; jetint_icon_box = {}\n",
+    "for run in runs_cld:\n",
+    "    jlat = np.full(len(box_west), np.nan, dtype=float)\n",
+    "    jint = np.full(len(box_west), np.nan, dtype=float)\n",
+    "    for b in range(len(box_west)):\n",
+    "        jlat[b], jint[b] = \\\n",
+    "           fct.get_eddyjetlatint_NH(u850_icon_box[run][b, latind0:], lats_NH)\n",
+    "    jetlat_icon_box[run] = jlat.copy()\n",
+    "    jetint_icon_box[run] = jint.copy()\n",
+    "    del jlat, jint, b\n",
+    "del run\n",
+    "\n",
+    "# MPI-ESM, IPSL-CM5A\n",
+    "jetlat_mpi_box = {}; jetint_mpi_box = {}\n",
+    "jetlat_ipsl_box = {}; jetint_ipsl_box = {}\n",
+    "for run in runs_cldvap:\n",
+    "    jlatmpi = np.full(len(box_west), np.nan, dtype=float)\n",
+    "    jintmpi = np.full(len(box_west), np.nan, dtype=float)\n",
+    "    jlatipsl = np.full(len(box_west), np.nan, dtype=float)\n",
+    "    jintipsl = np.full(len(box_west), np.nan, dtype=float)\n",
+    "    for b in range(len(box_west)):\n",
+    "        jlatmpi[b], jintmpi[b] = \\\n",
+    "           fct.get_eddyjetlatint_NH(u850_mpi_box[run][b, latind0:], lats_NH)\n",
+    "        jlatipsl[b], jintipsl[b] = \\\n",
+    "           fct.get_eddyjetlatint_NH_nan(u850_ipsl_box[run][b, latind0:],\n",
+    "                                        lats_NH, -999)\n",
+    "    jetlat_mpi_box[run] = jlatmpi.copy()\n",
+    "    jetint_mpi_box[run] = jintmpi.copy()\n",
+    "    jetlat_ipsl_box[run] = jlatipsl.copy()\n",
+    "    jetint_ipsl_box[run] = jintipsl.copy()\n",
+    "    del jlatmpi, jintmpi, jlatipsl, jintipsl, b\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate jet responses"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# coupled models\n",
+    "djetlat_cmip_box = jetlat_cmip_box[:, 1, :] - jetlat_cmip_box[:, 0, :]\n",
+    "djetint_cmip_box = jetint_cmip_box[:, 1, :] - jetint_cmip_box[:, 0, :]\n",
+    "djetlat_cmip_mm_box = jetlat_cmip_mm_box[:, 1] - jetlat_cmip_mm_box[:, 0]\n",
+    "djetint_cmip_mm_box = jetint_cmip_mm_box[:, 1] - jetint_cmip_mm_box[:, 0]\n",
+    "\n",
+    "# amip models\n",
+    "djetlat_amip4k_box = jetlat_amip_box[:, 1, :] - jetlat_amip_box[:, 0, :]\n",
+    "djetint_amip4k_box = jetint_amip_box[:, 1, :] - jetint_amip_box[:, 0, :]\n",
+    "djetlat_amip4k_mm_box = jetlat_amip_mm_box[:, 1] - jetlat_amip_mm_box[:, 0]\n",
+    "djetint_amip4k_mm_box = jetint_amip_mm_box[:, 1] - jetint_amip_mm_box[:, 0]\n",
+    "\n",
+    "djetlat_amipfut_box = jetlat_amip_box[:, 2, :] - jetlat_amip_box[:, 0, :]\n",
+    "djetint_amipfut_box = jetint_amip_box[:, 2, :] - jetint_amip_box[:, 0, :]\n",
+    "djetlat_amipfut_mm_box = jetlat_amip_mm_box[:, 2] - jetlat_amip_mm_box[:, 0]\n",
+    "djetint_amipfut_mm_box = jetint_amip_mm_box[:, 2] - jetint_amip_mm_box[:, 0]\n",
+    "\n",
+    "# ICON\n",
+    "djetlat_icon_box = jetlat_icon_box['T2C2'] - jetlat_icon_box['T1C1']\n",
+    "djetint_icon_box = jetint_icon_box['T2C2'] - jetint_icon_box['T1C1']\n",
+    "\n",
+    "# MPI-ESM\n",
+    "djetlat_mpi_box = jetlat_mpi_box['T2C2W2'] - jetlat_mpi_box['T1C1W1']\n",
+    "djetint_mpi_box = jetint_mpi_box['T2C2W2'] - jetint_mpi_box['T1C1W1']\n",
+    "\n",
+    "# IPSL-CM5A\n",
+    "djetlat_ipsl_box = jetlat_ipsl_box['T2C2W2'] - jetlat_ipsl_box['T1C1W1']\n",
+    "djetint_ipsl_box = jetint_ipsl_box['T2C2W2'] - jetint_ipsl_box['T1C1W1']\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot jet shift vs. jet strengthening over the North Atlantic and over Europe\n",
+    "\n",
+    "Add maps in which the region is highlighted."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv0AAAG1CAYAAABqJUuIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hUxfrA8e+kQSCBUEOHYKgBpCMoHX4iXTByKQKXKypFEBvYuV5EQa9eFINgo4uCiAJKiYSONIEgTUooARIgAUIC6fP742zCZrMpm7bJ5v08zz7JnjJnziazZ86cd2aU1hohhBBCCCGE43KydwaEEEIIIYQQ+Usq/UIIIYQQQjg4qfQLIYQQQgjh4KTSL4QQQgghhIOTSr8QQgghhBAOTir9QgghhBBCODip9AshhBBCCOHgim2lXxmOKKVG2bDP50qpr/MzXwVBKTVaKaXNXvFKqbNKqZlKqZJWtm+slPpWKXVBKRWnlLqtlNqhlJqUsr1Sqo6VNP9WSn2ilCpnkV5fpdROpVSkUuqmUmqXUmpANvOuM3g1z5tPR9ibZdlUSp1XSn2UxT6tlVIRSqmyBZPLDPPxlen/8eN8SPu8UmphDvfNqNwszUFao5VSY3KSD1F02XrNdJTrJRTecm2RzlBTHkMzOMZSi2VOSqlFSqlkpdTY3B5fFA0u9s6AHT0JlAOW27DPh8BJpdT7Wusz+ZOtAuUPhAKewOPAa6bfn0/ZQCnlDywB/gL+A5wGSgOdgX8DCphjlub7wC9ACeBh4E2ghVKqq9ZaK6V6mdavBt4z7TMW+Ekp1U9rvT4b+V4IzLdY9nf2TlkUATaXTa31AaXUYWAKMD2f8pUppZQ7RpkCGK6UelVrnZiHh3gciMrF/gtJX26u5yCd0RjXjm9ykRdR9NhaLh3ielkEyjVKKS/gEyAsm9u7YFzX/YHRWuvFuTm+KDqKc6V/ErBEa52Q3R201ueVUjuBccBL+ZazgnPY7Mt4s1KqHvAvpdRkrXWy6f1i4DfA3+KL7ldT62t9izTPaa3/MP2+TSnlilEJawH8CYwELgNDtNZJAEqpTcAFYASQnUr/ZbNjCMdjc9k0+Rb4SCk1I48vytn1OFAG+BXoDfQC1uVV4lrrQ7lMotCWG9P3RKKWKeILM5vKpQNdLwt7uQaYDRwBrgI9MtvQVNZWAP2BYVrrH/Lg+KKIKJbhPUopX6ADsMps2UiLkJMgpVRrK7v/iHG374if3Z+AO1DR9H4Kxo3heGuVKK31da31rizS3G/66Wv66QbEpFT4TekkAdEU0/9HcZ+1smm27i2lVJhSKloptcxKKM8vQHng0QLIqjWjgJsYLeH3MG5wUymlppsevzdUSm1USsUopS4qpf5pWv+UUuqk6fyClFIPWOyfJgxA3Q/T66SUWmPaL8IUVuFua+ZNaU23WJYStjfa9H4rxlO+h81ChLaan5+VdBcqpc5bSXO8Umq2UuoKEAd4mdb7mP6+15URTnhYKfW4recj8k5G5VIpNVYpdVQpFauUCldKrbIol45wvSzU5Vop9TBGg9mErE5EKVUC4yl7X4yGPKnwFzNFuSDmRncgBuPOOEUdjFZtf2AYRtjLdqVUXYt9dwPeQNP8z2aBqwPcBiJM73sA+7XWV3ORpo/p5y3TzwWAr1LqDaVURaVUJaXU26Zjz81mmuNMlYG7SqktSqmOucifKFyslU2AoRj/j2OBF4E+wFfmG2ito4BjZNHSlR+UUtVMx/1ea30dWAP0Vxb9WUxWYjzRGggcBL5RSs3EaBGdBvwTaED2wyiWAmeAQRiP+McC86xnU7mYv7J9gveNBw4BwUB702t8DtIBeAPjSeEzGK2psUqpmsBe4EGMRof+GI0RPyql+ufwOCL30pVLpdSbGOFi2zD+l8dhXD88zPYr0tfLwl6uTa32C4APsxFC5Y7RMNIDGKi1XpPNfAhHorUudi+MQrI/k/VOGC3cJ4G3Lda5AInAWHufRy7OfzSgMb6AXDDiNMeYzmui2Xb3gO+ymWYdU5rPmNIsBfTEeNx4BXA327Y3RsuJNr2igN7ZPM4SYAjQEaN14wiQAHSx9+cqr9y/rJVN4DwQCXiYLRsOJAONLLZdCOyyQ76nmv6X25veP2p6/5zZNtNNy0aaLStnKncRQBmz5ZNM29a2+BwWmr1PKcdfWOTlDSAJqG+2TGfw8rXYZrpFWinlerTZsq3ATiufwXTjkpJu+ULgvJU0/wSUxbZfY/QzqGCxfDNGOKLd/0eL48uyXGI8lbkLfJzFfkX6elkEyvWbGDcGJU3vFwKhVs7jvFmZH2Pvz1Ve9nsV15b+KsAN8wVKqUZKqZ+UUuEYBSsBo1KcJmZdG2Eut0xpFHUnMc4zEuNiO19rnd3W9ozMN6UZA2zC+ELqpbW+B6CUegijBeNX4DGM+Mj1wEqlVNesEtdaP6W1/l5rvUNrvRR4BOOmYkYu8y0Kh3Rl02Sz1jra7P1qjE7kbSy2u4F9yuZI4LTWeo/pfSDG/+VIK9v+lvKL1vomcA34QxtPKlKcNP2smY1jWz6iX4HRcNHWYvk3GJ+X+etSNtLPL2u01pbhQL0wvhtuWzyR2Ag8qJQqU+C5FJC+XLbHaDn+NrOdHOB6WWjLtSnk6g2MhrrYbKS3D+Nv+I5SqnY2thcOqLh25C2J0UoBgFLKE6OCGo4ROnABiMUIH0g3hCVG/Km15UXN4xhhTJUwznu8Umqvvt+T/xJg65fDDOBnjM/ootb6tsX6z4BjWuvhZss2KqPD18cYHX6zTWt9Rym1HviXjfkUhVOasmnmmvkbrfU9pVQ0UNViuwIvm0qpNkBjYJYyRtFIsRqYqJSqr7U2H13qpkUS8Rksg+ydS3gG76tbLL+qtT6QjfQKirWwwcoYFSprlSqACuRypBORI5blsoLpZ3ZCP4vk9bIIlOtPgS3AH2b5czOyrryAuJTGNpPTGE/ig4DflVKdtdaXs5EP4UCKa0t/JKZOYybtgRrACK31Mq31TtPFMaMxv71MaRR1f2mtD2itf8Po2PM38KFSqrRpfSDQWillSyvNBVOaR61U+MGI7dxvZfl+oJEtmTejMB5biqLPsmymqGz+xtShzYP0lQ57lM2UccunYlzkU14TTcszqsDmFe8M3tt6QY/DqDSYq2BtwwzEAiilspuGtTIbgdFZ1PKJRMrrig35EXnHslym9PuyvOm2pqheLwt7uW7M/VDZlNdQoJrp9/ctE9RaHwH+D6Oh73ellOUxhIMrrpX+U9zvYArGY0owLnoAKKU6YMSepqGUqoQRr+5Q48JrreOAVzAqVykd8z7BCHUKUEo5W+5j6oj7sI2HCiN9SAYYjyxtbnUwPe7vg9H5TxR9lmUzRU+llHkHwUEYlUbLlus6FGDZNFVw/4Hx/9fVyusw8JRSSuVjNp60eP8PjP4O+2xM5wLQxGJZHyvbxXH/O9Nyf8zTMLU4drAhDxuAZhhPAw9YecVllYDIF5blcg9Gn69MJ+oqqtfLIlKu/2ElXxsxQni6ksHAGKYGzccwnhgEKqUqWttOOKbiGt6zC3hbKVVJGz3y/8AYMvJLpdRsjFb/6VivhLbGqGzsLqC8Fhit9S9Kqf3Ay0qpuVrr00qpkRgx+H8opb7g/uRcHYFngXcxPs/s+gxjLPXlpnTBaDHpAExO2cgUc3gWeFdr/a5p2csY/SyCMFr8agMvY8SLmocLiaLLsmymuAesV0p9iNG6+CHwk9b6uMX+rYFZBZNVwHhCVgF4SWu91XKlUmo+xogbXfIxD71Nn8smjJvnd4DFFqEH2bECeFMp9QbGd2JHjJZDS8cxQgGHYJTRO1rrUxgxzbcxvkffwZig71WM79bsehujUrNdKTUXowNiOYwbibpaa5kJ2D7SlEut9S2l1H+A90wV5F8x/t59gH+bhY0U1etloS/X2sqcG8oYWjfOWp7Naa13K6X6YvzdNimlupv6IQgHV1xb+rdiPG7sBaC1DscYqrMKRjz6C8BzGJ1QLfUCtmmtI6yscwRvYrT2PwegtV4JtMQYCvEdjJCfFRgVgreAL2xJXGv9X4xRdx4AlplePhiThHxqtqkCnEn7P3oK45HmpxijeXwMhACPaK132JIPUWhtxaxsmlmBcbP3NfA/jApmmn4cSqkWGI+tV+d7Lu8bBdzBGK7Pmu/IRotoLo3AGHDgJ4xJkL4kZ8Novo/ROjgRY2jCRsBTVrabBfyO0edpP6ZZfrXWtzAqS8kYnRDfx7jJD8puBrTWFzEqikeAmRjlfB7G3ABbcnBOIm9sxaJcaq3fxxiOsgfGdXM+RijPHbP9iur10pHKtVVa65ShVhsBG6STfPGg0g+eUDwopeZgDFdn7fF1Rvs4YzzCnmYaOUYIkcdyUjZN+70PtNFaF/g4/fZgatX7Fqinsx6jW4hcsbVcyvUyZ6Rci/xUXFv6wQgP6KKUqp/llvf5Y9zdr7D1YOr+rH3mrzBb0xGiGLC5bJo6n49Fhm4VIr/YWi5zfL0UQuSPYlvp11qHYoQHZGf0gRQK+Jdp7OGcOGU6XsqrSM5SKER+ymHZrIXR/2NrvmRKiGIuB+Uyt9dLIUQeK7bhPQVNKTUdeEJrbTk6hhBCCCGEEPmq2Lb020ldpdRlpVSIUmqFUqquvTMkhBBCCCEcX3Fq6bfrif7222/cuXOHhg0bcu3aNWbMmMHJkyc5duwYFSqkn7tmwYIFLFiwAIB79+5x7Nixgs6yKNryc/zovFSkvoCkXIo8IGUzH0jZFLlUVMplrkil306io6OpW7cu06ZN48UXX8x029atW3PggOUcREJkqqh8gRWqcmkLKZcih6Rs5jMpmyIHikq5zBUJ77ETDw8P/Pz8OH36tL2zIoQQQgghHJxU+u0kNjaWkydPUrWqLQOUCCGEEEIIYTup9BeQl19+mW3bthESEsLevXt54okniImJYdSo/JzQTwghhBBCCHCxdwaKi9DQUIYOHcqNGzeoVKkSDz30EH/88Qe1a9e2d9aEEEIIIYSDk0p/AVmxQiYlzA81a9YkNDTU3tkojPK7E94FrXWdfD6GEEIIIfKIVPpFkRYaGsrJkyfp2bMnsbGxuLm5MXPmTEaOHAnAsWPH6N+/PwkJCUyZMoXOnTvTsmXLTNNMSEigY8eO3Lp1iy+++IIuXbrkKG93795l3rx5nD17lrNnz3L06FGcnZ2ZMGECY8eOtTpUa26caNgoT9Mz1+jkiTTvlVLyiEoIIYQoQqTSL4q8xYsXU7FiRQ4dOsSSJUuYMmUK7du3p169eqkjJG3YsIG1a9fy4YcfMnXqVCZNmoRS1kfo+uKLLyhbtix79uzJcJusREdH06VLF+rUqUPnzp3p06cPTZs2pWbNmjlOM7ssK+gZ2b59O0888QQLFixg4MCBVrfJzxsJIYQQQhQc6cgriryePXvi7e3NJ598gqenJ66urnh4eKSuj4yMBODdd99lz549LFiwAFdXV+bOnWs1vdu3b5OcnJzjyvmff/5J7969ad68OStXruT555+nT58+1KpVK02aV69e5ZdffuH48eOA8dQiPj6ejRs38u9//5stW7bk6PjZERISwpAhQ1i2bFmGFX4hhBBCOA5p6RdFXpcuXejSpQtRUVGpLfTmQ6EOGzaMsLAwYmJi2LhxI7/99hudOnWiUSPrrdi+vr6sWrWK2NhYSpYsmeXxo6Ki2LJlC7///ju7du3i2rVrvPLKK4wfPz7DG4fw8HCaNm1KxYoViYiI4MEHH2T//v0kJCTg4+NDly5d6N69O3Fxcbi5ueXsg8nA7du36devH6+//jo9e/a0us3WrVuZP38+b+fpkYUQQghhL9LSL4o8Ly8vXF1dKVu2LAAPPPBAmvWPPPIIsbGxNGnShHbt2tG+fXteeOEFunfvbjW9J554gvr16zNx4sQsjx0ZGUnbtm35/PPPqVGjBnPnzuXMmTNMnjwZV1fXDPeLiooiIiKCU6dOMX78eIYOHcrly5e5cOECR48e5dNPP6Vjx44899xzNnwSWYuPj2fw4MF07tw5w/M7dOgQTz75JF27dk1ddunSpTzNhxBCCCEKlrT0iyKvRo0a1KtXjzVr1gCwbNkynnvuudRW+rfffpsHH3yQqVOn4u/vj7+/f4YVfgAXFxfeeOMNhgwZkuWxAwMDqVOnDhs2bLApz76+vjRr1ozg4GDWrVvHwYMHAWOm5qNHj7J06VJOnDjB66+/blO6mYmKiuKpp56iVKlSfPrpp1afQmitWblyJV26dCExMTF1ebVq1fIsH0IIIe4LCQkhKCiI8PBwvL296dq1Kz4+PvbOlnBA0tIvirxXXnmFIUOGEBgYyI4dO1i8eDHu7u4kJyezfft2lFJcvnyZn3/+mVWrVtGhQ4cs02zcuDGJiYn8+OOPGW4TGxvLkiVL6Ny5s815Vkpx+PBhvL29+fPPP6levTr/93//R5MmTejTpw9KKXbv3k2vXr1sTtuS1prNmzfTpk0bqlevzsqVK3F2dk63XWRkJMOHD+eXX37hxo0bfP3116nrrG0vhBAid9atW8ecOXM4ePAgly5d4uDBg8yZM4d169bZO2vCAUlLvyjyypYtS5kyZWjbti2hoaGsWLGCwYMH07x5c8aNG0flypWZMGECSik8PDzQOush7F1dXVmxYgW9e/emfPnyaUJdwAiTad++Pb6+vkyePDlH+VZKERYWhtaaixcvcuzYMcqWLUv79u1xcsqb+/E9e/YwadIk7t69y3vvvccTTzxhdbtTp07RrVs3nnjiCaZNm8asWbPYvXs3oW3a5kk+hBBCpBUSEkJgYCDx8fGpy7TWxMfHExgYiJ+fn7T4izwllX5R5I0fPx4fHx/+/PNPypQpg1KKzz77jDJlyjB//nxiYmIA48t01apVlCpVKlvptm7dmuXLlzNixAhCQkLSdKhNSEjgzJkz/P7779lOLyNKKWrXrp3nszOHhIQwYMAA5syZw5AhQzK9kfjyyy8ZNWoUM2fO5Ouvv6ZBgwZ4enrmaX6EEELcFxQUREJCgtV1CQkJBAUFSaVf5Cmp9Isir1KlSuzatYvk5GS01hw4cIDBgwfTqVMnevbsyffff09wcDCxsbE8/PDDNqXdo0cPmjZtygsvvMCTTz5J5cqVady4MdHR0Tg7O1OiRIl8OqvcCwsLw8fHh6FDh2a57caNG/n4448BaNmyJf/73//yO3vCziSOWAj7Cg8Pz/DJs9aaa9euFXCOhKOTSn8x5wgX/nPnzhETE0Pp0qUBaNeuHZs3b2b16tW89dZbjBs3jlatWqG1Zt68eQwaNAhvb+9sp//dd9/x/PPPM336dE6ePMnEiROJjo6mX79+qccsjLy9vQkPD8/Wts8++yxTpkxh48aNgDFazw8//EBT0/oBAwYQERFBp06dmD59ev5kWBSYdevWERgYSEJCAlprQkNDCQ4OpkePHvTt29fe2ROiWPD29iY0NNRqxV8pReXKle2QK+HIpCNvMeYoHYjKly9PcHBwmmWNGjXixRdfJCYmJvXx6RdffMH48eN5+eWXbUq/XLlyLF26lK1bt3Lw4EH27t3L3r17mTJlSp6dQ36oUqUKYWFhJCcnpy7bsGEDV69eTbfthAkTKFmyJOvXr6dFixZs3ryZESNGpK4/cOAAJUqU4MMPP+Svv/4qkPyL/GEeR5xS2TCPIw4JCbFzDoUoHrp27Zrh0M6urq7p+pIJkVtS6S+mHOnCX69ePdq1a5duubu7O3Xr1uW5555j//79vPPOO+zevZsdO3bw22+/5ehY1atXZ+3atQQFBdGyZcvcZj1Xtm/fzqJFi/j999+tri9VqhTVq1cnODgYrTX/+c9/8Pf3Z/jw4Wm2i4uLY+LEiVy/fp2RI0cC0KZNGyZNmpS6zeTJk2nZsiW7d++2+3mL3MlOHLEQIv/5+PjQo0cP3NzcUodQVkrh5uZGjx49itxTd1H4SXhPMeVIHYiCg4M5cuQILVq0SLduw4YNPP/88zz22GP897//pX379nzzzTeMHDkydbScoujPP/9k8ODB3LhxAyDDMJ7nn3+eHj16ULFiRTw8PNi9ezcdOnTgxIkTqTMS79u3j61bt7Jr167UuQ2io6Px9fVNTefVV1/N5zMSBUXiiIUoPPr27Yufnx9BQUFcu3aNypUrF8kwW1E0SKW/mHKkC//MmTN5+eWXrbZ416xZk1WrVhEXF5caf9+tWzcee+wx3nzzTT777LOCzm6emD9/Pq+++mpqZXz06NH818p2L7zwAv379+fChQts2bKFZs2aAfDtt98ye/ZswBius23bttSoUQOAy5cv07ZtWxITE9larnyBnI8oOBJHLETh4uPjI5V8USAkvKeY8vb2tjojKxS9C/+gQYPYs2dPhutdXFzSdbgdNmxYaqfVoujcuXN4e3ujtWbo0KE89NBDGW5bt25dNm/ezI4dOwDo2LEjX3/9NZGRkQQHB/Pzzz+nCY9auHAhAwcO5L333sv38xAFT+KIhRCieJJKfzHlSBf+GTNm8Oijj9q0T5UqVUhKSmL06NEZhjkVZoMGDWLUqFHs2bOH7777jtOnT2e6fVhYGP379wfg8OHDREZGMnHiRDp27Mj169fTDOt57949vL29efrpp/P1HIR9SByxEEIUTxLeU0ylXPjNh+1TSuHq6lrkLvzbtm1jw4YNNu3TqFEjjh49ytChQ6lTpw69e/fmww8/xMvLK59ymTd2797N8OHDU59cLF++nKtXr9KyZUteL5Nx/4TGjRuzbNkyKlWqxJ07dyhZsiSnTp3iyy+/pG/fvqxcuZKbN2/i6+vL6tWr6dmzZ0GdkrADiSMWQojiRyr9xZijXPh3796do0mySpUqxZo1azh37hzTpk3j/fffZ9asWfmQw7zx008/8cwzz/DNN98QEBBAo0aNOHjwIFOnTuWjjz6Cd/9jdT+tNQ0bNuTmzZt4eHhw/fp1PD09qVatGrt27WLixIm0adOGqKgodu7cybfffptmuE7hmCSOWAghihep9BdzjnDhd3Nzy/G+SikeeOABpk+fTrdu3XB3dy+0k0998cUXzJw5k379+vHBBx/Qpk0bzp49y86dO1m0aBEnLCr9V69eZcaMGaxevZqwsDA6derE+vXr+fzzz+nRowc//PADV65cYefOndSvX99OZ1V8OMJEeEIIIYouqfSLIu/MmTPUq1cvV2n4+fmxZs0aJk+eXGgr/c2aNePMmTNERERw+vRp6tWrR926dXnrrbfSbNe/f39++eUXJkyYQLly5Vi7di3169endOnSODs7M3XqVABatWplj9MolmQGXCGEEPYmlX5R5FWoUCHXady7d4/PPvuM2NjY1P4NhUlSUhILFy6kQ4cO+Pn5MXbsWGbOnEm9evXStdKHhYVx6dIlgoKCuHjxIp6ennbKtYC0E+GlMJ8Iz8/PT1r8hRBC5Dup9Isir3z5nI8lHxcXx+TJk1m2bBnR0dF5mKu85eTkREBAACdPnuS9996jSZMmbNq0iQMHDjBnzhwGDx6cuu2tW7d48MEHef3116XCXwg40kR4QhQHEoonHJVU+kWxcOTIEWbNmsWNGzdQStG8eXM8PT3ZuHEjlSpVws/Pj7179zJw4MBC18oPRt8Df3//1Pd79uzhwIEDeHp68tprrzF37lw2exgV/NKlS7N161aqVatmr+wKM440EZ4Qjk5C8YQjk3H6hcP7/fff6dKlCxERESQnJ7Np0yZmz55NSEgITz/9NNOmTUsd537NmjUMHTo008m+CgNPT0/8/f356quvOHjwIJcvX05d99///lcq/IWII02EJ4QjMw/FS7lRNw/FCwkJsXMOhcgdqfQLh7Z06VJ69OjBrVu3uHfvHocPH2bEiBEopWjdujX+/v489dRTTJ8+ncTERL755hsuXbpEhw4dSExMtHf2M9SkSRMmTZrEnDlzePLJJ9Os69atm51yJaxxpInwhHBk2QnFE6Iok0q/cFhnzpzhqaeeAmD//v0sXLgQrTWvvfYaycnJjBs3jqNHj/L3339Tr149tm/fTu/evWnfvj0Af/31lz2zn6Xg4GDCw8N5/fXX+eGHH+ydHZEBmQFXiKJBQvGEo5OYfuGQoqKiUofxvHbtGpUqVeLatWskJiZSrlw5wPiCDw0NpX379rzzzjuEh4dz4cIFAMqWLcvx48dp3ry53c4hKyNHjiQyMpLXXnuNBQsW2Ds7IhOOMhGeEI7M29ub0NBQqxV/CcUTjkAq/cIhXblyhapVq7J582YqVaoEkPqFnRLv7unpyZ07d0hOTkYpRXBwMM8++ywuLi7s3LmTHj162C3/2eHh4cGbb75Jz5496d+/P1vL5XwUI1ts27atQI7jaBxhIjwhHFnXrl0JDg5OM7xuCgnFE45AwnuEQ2rYsCFXrlzBz88PgIiICHbt2kX//v1T46vv3LkD3A/jadasGXv27GHHjh0kJycXmVaddu3a2RzHP2vWLJydndm6datN+8XFxTFp0iSb9hFCiKJAQvGEo5OWfuHwIiMjqVixYur7V155hdWrVxMfH8/nn39O06ZN0+1TGIftzEx28puQkICrqyvJycm8/vrrJCcn07VrV44fP06jRo2ydZyePXvi4iJfG0IIxySheMKRSUu/cFg3b95kxowZNGrUiMGDB1OiRAlat27N5s2b+d///kdISAj9+vWzdzZtcvPmTfbs2cP169eJiYlJXZ5ZB7OkpCQ++OAD3NzcGDlyJDExMZQvX565c+fyyCOPMGHChGwdOzY2lh07drB27dpcn4cQQhRWPj4+jBkzhmnTpjFmzBjbK/yX9sOqMTC/s/Hz0v78yagQNpImO+GQtNYMGTKEcuXKERQURI0aNWjevDm1a9dm6dKllCxZ0t5ZtNnhw4fp378/ZcuW5fLly8TGxuLl5UVSUpLR+u5ZJnXb5cuXM3/+/NRQpoiICNavX89LL73E9u3b+fHHHxk4cCCbNm1i0KBBjBkzhrlz51KqVKkMj79gwQK6dOkicwAIIURGgmbC7s8g4R6gISwYTv0GHZ6Hrq/bO3eimJNKv3BIV69eZfPmzdy8eRMvLy8Azp07Z+dc5c6uXbvw8vIiODgYgE2yL18AACAASURBVPj4eMLDw3Fzc6N06dJcat0mdduxY8eybNkyXF1dOX/+PAMGDKBmzZp06NCBDz74gMDAQEaNGsXs2bM5fPgwL730Ek2bNmXp0qWpQ5ZaWrRoER999FGBnKsQQhQ5l/abKvx37y/Tycb73Z+Cb0+o2Sbj/YXIZ1LpFw4nJiaGEydOAFCzZs3UDrtFXcOGDdP0TXBzc6NmzZrptjt16hSJiYn07t0bNzc3gNTPo1WrVly9epUnn3ySr776imHDhlGhQgX27dtHnz596NWrFxcvXqRs2bLp0vXz8+Pnn3/mkUceyaczFEKIImzvPFMLvxWJccZ6qfQLO5KYfuFQunXrhoeHBz169KBv37789ttv9s5SnnnggQc4fvx4lts1b96c+fPnp1b44X6lv0SJEixdupRy5cpRt25dxowZw7PPPkv37t1xd3fn7t27qftFRUWl7j9v3jyCgoKYM2dOmnSFEEKYRJwFrE/uhU42rRfCfgq8pV8pldOpQ1/VWp/Py7wIx6K1Tp0mff369fTu3dvOOcpbMTExeHp6ZrldWFhYupb60NBQAAIDA/nwww9ZuHAhzz77LIMGDWL06NHcuXOHvn37AkYYlJeXFzVq1OB4g4YAjB8/PjWt8+fPU6dOnTw6KyGEcBAVHjBi+HVy+nXKCSr4FnyeBN9//z1XrlxhypQp2d5n/PjxGvAPCAhYlX85K3j2CO95AjgERGW1oYkCOgIfAOfzKU+iiFu7di39+/cHjLHkHbE1evXq1dkKrbEWmlOhQgWANDNNtm/fnuXLl9OtWzfc3NwYOHAgtWrV4pVXXmHVqvTfc/v27aNNG3k0LYQQVrUbZ3TaNY/pT+FSAto9V+BZioqKYsOGDfz111/cunWL0qVLU716dbp06UKTJk0AePPNN4mMjGTUqFG0a9cuzf6zZs3iwoULPP744/Ts2ROATz75hGrVqjFkyBAAFi9ezB9//AGAk5MT5cqVo3nz5vTt25cSJUoU4NmKrNgrpn+c1npfdjZUSrkA6afHE8Lk3r17qRX+p59+2iEr/ABHjx6lQ4cOOdq3bdu2+Pj4MHXqVMAYftPZ2Zm6desCRqfghQsXkpCQQKNGjfjrr79o0KBB6v716tXj9u3buT8JIYTIA2HnbhO85RK3rt3Dq7I7zbrVpErd9A0emQkJCSEoKIjw8HC8vb1zPx5/zTbGKD27PzVi+HWy0cLvUgI6TCrweP6IiAg++ugjSpYsyYABA6hRowbJycmcOnWK7777jvfeey9123LlyrF79+40lf4rV65w9epVSpcuneWxGjZsyKhRo0hKSuLs2bMsXbqU+Ph4hg4dmi/nJnLGHpX+fwOhNmyfZNrnSv5kRxR1hw8fTv19+vTp9stIPhs1ahTDhw/nhRdeSLfu1KlTme5br149zpw5Q0JCAgBNmzblzJkzqevXr1+Pu7s77u7uTJ48mUWLFlG1alW4GgYYN1bm8wKItPK88iCEyNDetec4vPkiiQnJoOHGpTuEBN+gec9atOtXN1tprFu3jsDAQBISEtBaExoaSnBwcGp/sBzr+roxSs/eeUYMf4UHjCcAdujAu2LFCgCmTp2aZpjqqlWr0rZt2zTbtmnThi1btnDjxo3UASN2795NixYtOH36dJbHcnFxSX3KXL58ef7++2+OHDmSYaX/k08+oUqVKri5ubFnzx6cnJzo1asXHTt25Mcff2T//v2ULFmS/v37p7kRuXz5MqtWreLcuXO4urrSrFkz/P39cXd3ByA5OZmffvqJ3bt3A/DQQw+RnJw23EprzebNm9m5cye3b9+mUqVKXLlyZURAQMDSjM5v/PjxbwP/AqoAN4FNAQEBI7P8YAqZAq/0a63/beP2GqPSL4RV5kNMVq9e3Y45yV8tW7bk9u3b9O7dm27dujFp0iQOHTpEfHw8/v7+BHmVA+DQoUOcOnWK8PBwIiMj2bRpE97e3pw5c4Zjx47Ru3dvhgwZwrx584iMjGTChAlp+j907tyZ4cOHc/bsWTDF9C9YsIBXX30VHx8f/Pz87HL+hVW+VR6EEOmEnbttVPjj71fktIbE+GQOb75Ibb8KWaYREhJCYGAg8fH3gwi01sTHxxMYGIifn1/uW/ztPEpPTEwMx48fp1+/flbnpbGck6V06dI0bdqUPXv20K9fPxITE9m3bx9jx47NVqXfkqurK0lJSZlus3//frp168arr75KcHAwq1at4vjx4zRu3JipU6eyd+9eli1bRoMGDfDy8iI+Pp65c+dSu3ZtXn31VWJiYli+fDlLlizhmWeeAYx+a7t27WL48OFUr16dbdu2sX///jQj3f3yyy8cOnSIIUOG4O3tTUhICN9+++388ePH3wwICFhvmc/x48cPBl4GhgJHgcrAQzZ/KIWAjN4jHMIbb7zBxIkT7Z2NfFW+fHnee+89unXrxowZM2jQoAGjR4/mpZdeStNBaejQoaxatYrTp09z/vx53nnnHbp3786HH35I5cqV2bFjBzNmzGDv3r306dOHxx9/PM1x2rRpk65i/+ijj9K4cWMee+wxmjVrViDnWxSYVx5S+kuYVx5CQkLsnEMhHEvwlktGC78VSQnJBG+5lGUaQUFBqU89LSUkJKQOCFGUXb9+Ha01VapUyfY+HTp04I8//iA5OZng4GDc3d2pV6+ezcc+f/48+/fvTxMiak3VqlXp27cvlStXpnv37nh4eODs7Ey3bt2oXLkyvXv3RmudOsfOvn37iIuLY/To0VSvXp369eszbNgwDh8+nDorfVBQED179qRVq1ZUqVIFf39/ypS5P3FlXFwcW7ZsYcSIEfj5+VGxYsWUvmpfAhlNT18buIrRun8xICDgQEBAwFybP5hCoFCM06+UWqC1fsbe+chPn3/+OfPnz+f8+fOAMeb5m2++SZ8+feybMQdRp04dfv/9d3tnI1+VKFGC1183ZnScMWMG58+fZ9y4cTRq1Ijvv/+e/qbtTpw4gVIqzb69evUC4IMPPmDpUuMJpq+vL+vWrUt3HCcnJ9asWcPq1avhjTcBY/SD77//ntu3b/Pjjz/yr3/9K5/OsmjJTuXBWovhoZsRfHvuNCExd/Ap7ck/69ajRbmsWyiFKO5uXbuX8aiY2rQ+C+Hh4WkGNUibhk6tQBZlGZ1fZho1aoTWmpMnT7J79+4MJ2q05vjx40yZMoWkpCSSkpJo1qxZakffjJg/mVdK4enpmWbGd2dnZ0qVKpU6105YWBjVq1dP8+Sibt26KKUICwvD09OT27dvp/ZVA+N6VqdOHW7evAkYE3cmJCQwd+5cy+vkODIeLGYlMBkIGT9+/EZgA/BLQEBAXFafS2FTKCr9QC97ZyC/1ahRg1mzZlGvXj2Sk5NZtGgRAwcO5ODBg/naclocYo1/+ukn3n33XT799FN7Z6VAXL9+HaUUgYGBHDx4kAMHDhg3j4sWA6Sr8JuLiYnJVqcspRT169dPfT9s2DCGDh1K2bJlGTNmjFT6TXJSefjk5DG+PHeK2KQkNHD89i0Cw68wtm4DpjSU0CkhMuNV2Z0bl+5grdgpZazPire3N6GhoVbLrlKKypUr50VW7apy5cqpleHscnJy4qGHHmLDhg2cP3+eESNGZHtfX19fhg0bhrOzM15eXjg7O2e5j7VtLJcppdL8nTK7vmVHSlrjxo2jXLlyqcunT5/uB1htwQkICLg0fvz4BkB3oAfwX+Cd8ePHtwsICChSnd0KrNKvlMoouEuR4X274xgwYECa9++99x7z5s1jz549+VbpLy6xxs899xxLlizh//7v/+ydlXwXExPDhAkTeOKJJ+jevTvdu3dPXXfCVOnPzNdff5060lFWmjZtygnT7zlpNSoObK08HLoZwZfnTnHPLNY1GbiXlMSX507RxbuKtPgLkYlm3WoSEnwjTUx/CmdXJ5p1qwlfZJ5G165dCQ4OThPTn8LV1ZWuXbvmVXbtpnTp0jRq1Iht27bRpUuXdHH9d+/eTRfXD0aIz8aNG/Hz88PLyyvbx3Nzc8v3m6UqVaqwe/duYmNjU8/n3LlzqWFM7u7ulC1blpCQkNTQIq0158+fT+1kXLVqVVxcXIiMjEwTfhQQEHAm/RExXx8LrAfWjx8//gMgDHgY2JQPp5pvCrKl/yrQQmt93XKFUirrIDwHkpSUxMqVK4mOjs7xEIxZyfeOSoVIUFAQjRs3tnc28t2dO3do164dbdq0Yc6cOTlK47XXXmPMmDF4eXnRrFkzOnXqhKura5ptIiIiOHLkCA8++GBeZNuhZVZ5cHZ2Jjo6mvfffz/1Kdu3keHEZtC5LS4piW/PnaZFK6n0C5GRKnXL0rxnLQ5vvkhSQjJaGy38zq5ONO9ZK1vDdvr4+NCjR480jWJKKVxdXenRo4fDXBv/8Y9/8NFHHzFr1iz69etH9erV0Vrz999/s3HjxjRDdqaoWLEis2fPTnddKAzatm3L+vXrWbRoEX379uXu3bssX76c5s2bp95wdO3alY0bN1K5cuXUjrxRUVGplf6SJUvSo0cPVq9ejdYaX19f4uLieP/9958DkgMCAhZYHnf8+PGjMerLe4FoYAjGUwHbezjbWUFW+n8BGgDpKv0Y8VEO7+jRo7Rv357Y2Fg8PDz46aefaNq0qdVtFyxYwIIFxv/e9evWPrLM5TTWuCgqDhV+gLlz59KqVSsWLVqU4zSefPJJateuzaeffsrSpUu5ffs2ixcvTr35PHfuHB07dqR27docO3aMP6pWyyLF4sWyXFqrPIDRyp+UlMSpU6fSPGU73P2RDB9rJgPnY6IL5kSEKMLa9atLbb8KacbpP3fnIBP+/TL8O3vXzL59++Ln50dQUBDXrl2jcuXKDhf+WrFiRV577TU2bNjATz/9xO3bt1Mn5xo2bFiG+2UnBNQe3NzcmDhxIqtWrWL27Nm4uLjw4IMP4u/vn7pN9+7diYqKYtmyZYBxo9CmTZs0YU79+vXD09OTwMBAVqxYkfLUYDAwO4ND3wKmAh8BrsBxYFBAQECRG6lBFaPH9nY/0fj4eC5evMitW7f48ccf+fLLL9m6dWvqrHgZad26NQcOHLDpWO+//z6XLmX8AKVWrVpMmzbNpjQLI8t4P0f26KOP8txzz6UbbSfFiYaNAGh08oTV9dbMmzePZcuWsWrVKqpUqcK0adNITEzko48+Yv369dR96WUA3vRrTP/+/RkyZAjz58/nhRdeQGudu+BKQ5H945mXyyVLlvDHH39k+b8Y3KIJV6pUsnrSTkCfajX5tFWRHAlOZF9elJuC4BBlU4hsKirlMlcKS0feYsHNzQ1fX1/A+FLav38/n3zyCV9//XWeH6s4dFQqbo4cOULr1q2z3C6l8p8dXUyvm126chMYlZLGuvWYT3EzaNAglixZwj//+c90k7oUdyEhIRw8eDBbN5+1Qi5xzbsiCVY6o5VwduafdW0fHk8IIYTIDrtV+pVSX2qtx9rr+IVBcnIycXH5M+JTbjoqFYcRf4qiqlWrcuXKlTSTjBSU4cOHM3z4cC5dukS1atVwcZH2ghSZhdJZ8rp1m6bXb3KiaiXikpJIxmjhL+HszNi6DaQTrxBCiHxjzyt396w3cRzTpk2jT58+1KxZkzt37rB8+XK2bt3K+vXpJn/LEzntqFQUR/zJ7RBeRclDD9kp9CP9Z3zBHtkojDIbttOSUoo+ypU323fm23OnOR8TTZ3SHjJOvxD5LLPGLJk3QxQX0lxXQMLCwhgxYgRhYWGULVuWZs2a8dtvv/Hoo4/m2zFt7ahUFEf8KS7x/NllFsuaZ3dCSqkDWuus44qKqcxC6SylPGXzKVcBr/JRBB05Tnh4OIe8j+MlT9SEyBeZNWad9vWReTNEsSGV/gKycOFCuxzXx8cn2xWJ4jTijxB5JbNQuhSWT9mK4hM1IQqLe4cPE7F4CQkXzuNauw4VRj6Fe/PmVrfNrDHrh31/sI844vT9Mf9l3gzhyKTS74ByGpNfHKYmFyKvZRRK5+zsTKVKlXB1dU3zlK0oPlETorC4/ulnRHzzDTouDrQm9sRJordsocKYMVSa9Hy67TNrzDpTvQpxyUnWwhdl3gwH8vbRP/n7ThQrOnTJ9j4+a1dqwD+kn/+qfMuYHUil38FYtiBeunSJgwcP4unpSf369TO9AZARf4q+Z555Jj+STTdZiUjLllA6eaImRM7cO3zYqPDHxt5fmJyMjo0l4ptv8OjUMV2Lf2aNWTGl3a1W+MFx5s24HhdLwOkTbAm/SljsPcq5udHQ04tRPr509a4KwCOB67l87y4ft2jL4zVqp9l/wI5Agm/d5LXGzXjmAWMG23/s3kp9zzK827QlAC8f2sePoUY3LxelqOpeikerVGdKAz9KyaAPhYo9/xqX7Xhsh2StBRGMVsSoqCgOHjyYaQhBcZia3NHlR6Vfay2V/mzIbiidPFETImciFi8xWvit0PHxRCxeQg2LSn9iYmKG6ZWOucedMp5oKxV/J6BOaY9c5dfeQu/G8MSuLZR2duWVRk1pVMYLrTW7blzjzeCD7Op5vx5QraQ7P1wMSVPpPxV1m9N3oijn6pblsR6uWJlPWrQjQSezP+IG044c4F5SIjOatcqXcxM5Y7dKv9a6o72O7aiyGjowqxCC4jI1uRD2JE/UhMiZhAvnIaMO88nJJFxIO6hYSEhIprPzPhB6lcjqVdPE9KdwhHkz3jr6J1rDL516UNqsxd3XswwDq9dKs23/GrX45txpLsZEU8t0s/PDxRAeq1qDvRFZz3BcwsmZSsbMtgyoUYs9EdfYFHYlw0r/P3ZvxdfDk5LOLqy6FIKzUkys15hhtesy4/gRfg69iKeLCy81bMqgmvdvRE5G3WbGscMciLxBSWdnenhX4+0mLSjj6gpAktZ8cDyYHy4Zk+UOrlGHZIv/Ga0188+e4rsL5wiPvUed0h6cuhM1IqSf/9IsT9TEZ+3KhUBFYAcwBXAH5gGvA28D4zEeGH0S0s9/ltl+ZYEPgYGmff4EXgrp53/AtL4CMBfoCFQAzgEfhfTz/9Ysja0YswLfAp4xHWcx8GpIP//0/8xmnLJ7guaUUo8ppd5SSi1QStUyLeuklKqWk/SspO+VF+kUN9kdOjAlhMCavn37MnnyZFq1akWtWrVo1aoVkydPls6FQuSRrl274mq6QFmSJ2pCZMy1dh1wyqDa4uSEW520oSlBQUEkJSVlmF59t5I869sQd2fn1MqQE+DuAPNm3IqPZ9u1MEb6+Kap8Kco65a29b6cWwm6e1dj5aXzAMQnJ7Pm8gWerJWzxr6Szs4kJmda/+TnyxfxcHHhp0e685xvQ949dphn9++mbmlPfunUg0E16/Ba8AHCY+8BcC8xkdF7t1PK2YU1HXvwReuHOXgzgqmH96em+eXZU3x/8RzvNWvF6oe7kaQ1P1++mOa4H538ix8uhvBu05Zs7tqLcb6NAOb7rF3Zx8bT7AT4YMxx+RzwKvArUAJ4BJgOfOCzdmUrAJ+1KxWwHqgO9AVaANuBLT5rV1ZN+egwbgT6An7AHFPeLIe5Hw4kAh2AicALwJCsMmxTS79Syhv4BWgFnDed7BfAReCfQCwwzob0xgGeWuvZpvfNgXVAVaXUYWCA1jrUljwWZ9kdOjCrEAJbRvwRhUNkZCT/+te/2LRpExUrVuTixYvDtNbLM9tHKVUCCAB6AOWBM8DrWuvflFJ1gBAgxmyXWVrr/5j23Qo8hPGlkyJIa90vr87JUckTNSFypsLIp4jesiVtTL+JcnOj/FNPpVmWVUOYq6srUxr60cW7isPNm3E+JhoN+HqUyfY+T9aswxvBB5nSwI/AsCuUcXWjXYVKNh/78M1Ifgm9SIdKmT+1rOdZhhcaGMOiPl26Pl+cOYmLk0p9wjKpfmPmnznJwcgIelerwZrLF7mbmMjHLdvi4WI0nLzfrBVD92xL/dt9e+40zzzQkL7VjEks32nSnO3Xw1KPeTcxka/P/c3ihzrR1nRuNUuV5oVDe78EJmBUyrPrNjAhpJ9/EnDSZ+3Kl4BqIf38e5nW/+2zduU0oCtw0PSzOVAppJ//PdM2b/msXdkPeAqYHdLP/zLGk4AUC3zWruwGDAV+N1t+PKSf/9tmxxmLMf/Vd5ll2Nbwns8AD6AhRqXfPPg7EHjHxvSeBz41e/8pcAV4GZgKfACMsDHNYis7QweChBA4ogkTJuDm5kZ4eDiHDx+mY8eO85RSR7TWxzLZzQW4BHTGuHHvDfyglGpqto2X1jqjoNiJWuuv8uYMihdb59AQQoB78+ZUGDPG6MwbHw/JyeDkhHJzo8KYMek68WY3lK5FuQoON0qPxvY5bDpVroIGdlwP54eLIfjXrJPtfbddD8Pv19Ukak1icjI9q1RnepMWme7T0PN+UIdSigpuJWngWTZ1mauTE2Vc3YiIN27yzkZH0aCMV2qFH6Bl+Yo4AafvRFHerQTX4mJpWf7+39JJKZp7leeq6WnB6ego4pKTGb13h+VkNuMw6rW2OG6q8KcIxwi5wWJZSoWrFVAKuO6zdqX5NiWBBwB81q50BqZhtNpXx3hq4AZstUg32OL9FbPjZMjWSn8vYJTW+oxSytliXagpg7aoBZwCUEpVAh4Gumuttyql4jHimkQ2mbcgZlbxlxACxxITE8OPP/7IX3/9hYeHB4888ggYT+SewvjysEprHYPx+DHFOqVUCMYX08F8zLJAnqgJkROVJj2PR6eOpnH6L+Bau3aG4/QX58EpfEp7ooAz0VE8ms2qmZNSDKpZh4DTJzh8K5JZzbM/J2Pb8hWZ+WBrXJTCu6Q7rhmFYZlxcUpb7VaKdPspBcmm+xetM551MruzUabE93/V9hGquZdKXd51y29+QMadIq2z3F5nsMw8eiwcI17fUpTp58vAS8Bk4CgQDcwkfYU+s+NkKCcdeTMKkKsI3MtgXUbiMO5gwHjscRejUwRAJCCx/TZKaUFcunQpV69eTbfeyclJQggczN9//42zszP169c3X3wEowU/20zhe/UB86cDF5RSGtgMvKK1vpHb/AohRG64N2+ebpQea4pzKJ2XmxudKlVhccgZRvvUSxfXH5UQTxkro/I8aar0d61cFe+S7tk+nruzS76PduTrWYaVl0KITkxIbe3/M/IGyaZ1ZVxdqVyiJIduRtCholFH1lpz5FYklU3nUs+zDG5OTly+G5O6DUBIP/8z+Zp5w5+AN5Ac0s//XAbbPAKsDennvwRS+wHUJ/0ThByxtdK/A3heKWUe85TyDGkMsMXG9PYBE5RSocAkYIPWOuWmoi7G4wqRAxEREVaXOzk54ecnU4s7kujoaMqWLWu5+Dbgmd00lFKuwDJgkdb6pFLKA2gDHMYYQeBz0/pHzXb7VCn1kdn7z7TWb+XgFIQQIl8U51C6/zRryeCdW+i/PZAXG/rRsIwXaM2eiOvMO30izZCdKWqV9uDPRwdQ0tkymMP+Blavxf9OHeOlQ/uY0qAJtxPieT34IL2qVE+94fhn3XoEnD6JT2lPGpQpy9LzZ7geF5ta6fdwcWXsAw2YeTwYDbStUIm7iYn02b75OYzKeH4OUR0I7AJ+9lm78lXgJFAFI4omMKSf/w7gb2CIz9qVjwA3MMLgfYBDeZEBWyv9U4GdwF/ATxgV/rFKqSZAE4yOfbZ4CSMM4ShGbPEYs3VDMD4cYaPMhu5MSkqSyX8cjIeHB1FRUZaLywB3srO/UsoJWILRR2cigNY6Gjhg2iRcKTURuKqUKqO1TjnYJInpN+R0FmwhRO5Zlr84i7H8zUPpUrZdsWKFw5fVmqVKs65TDz4/fZJZJ44SHnsPL1c3GpXx4r1Mxs/3cst6XH57cHdxYdFDnfjPscMM3BFICWdnepqG7EzxdN36XI+NZdoR4/L1eI3aDKheizPR9y+HLzXwo2KJEnx59hRvHf0TD+MpyGBgdn7mP6Sfv/ZZu7I3MAP4EiNkJxyjrrvYtNkMjEr+bxjRMwsxGtwa50UeVHaGeEyzg1IPYMQBd8cI6YnE6FE8XWt9OkeZUKoCEKnNMmPqTBimtc56gNjssb1XSyHRunVrDhw4kPWGJu+//z6XLl3KcH2tWrWYNi3DUG9RxMTExFCuXDmOHTtGvXrGqAdKqSXAFa11pn9opZQCvgHqAL211lZD9EyhP2EYHXtvm0bvWZoHlf4iXy4tZ8E2Dx+QoW6FFdkNP7a3IlE2rZW/VatW8fXXX6crf1JWRSaKSrnMFZvH6ddan9VaP6W1rqa1dtNaV9FaD89phd+UZoS2uPvQWh/Nwwp/seLt7Y3KYGpxGbnH8ZQuXZpBgwbx9ttvExMTw65duwAGYLTeZ2Ue0AjoZ17hV0q1U0o1UEo5mW7KPwW2aq1v58c5FFXms2CnfIWZT4IXEhJi5xwK4bgyKn9a63TlT8qqEDmcnAtAKVVDKdVGKWXriD0in8nkP8VPQEAA9+7do3LlygwdOhRgXBbDdaKUqg08izFucJhSKtr0Go7Rp2YDRojQXxid7odaJDHXbJ9opVSxG/Ens1C6zCbBE0Lkni3lT8qqEDkYvcc0odbrQDWMxyFaKXUVmKm1Dsjj/IkcKM4jFhRX5cuXZ82aNeaLMp2YC0BrfYHMH2lmOMmH1rpLtjPnwDKb/CerSfCEELljS/mTsiqE7TPyvo0xAdfXwGrgGkZHhMEYI3lU1Fq/m+e5FDYrziMWCFFQsjv5jxAi79lS/qSsCmF7S/8EjBZ9y2H5Niilwk3rpdKfj2wZJcR8xIJdu3bx1VdfER0djYeHB7179+bhhx8uyKwL4XCK8+Q/QtibLeVPyqoQtlf63YHtGazbhjGeqM2UUg0wZvMtablOa/1rTtJ0RJYjD4SGhhIcHJzlyAMff/wxZ87cn3fi5s2bLFu2jL179/Liiy8WRNaFcEgSSieE/WRU/pRS6cqflFUhbK/0rwEGYczOaWkwsM6WuYa53gAAIABJREFUxEzDcn6HMXqItdhiDRS+GSLswHzkgRTmIw/4+flZ/dLatWtXmgq/uTNnzrBr1y5p8RciFySUTgj7sVb+tm/fbrUhrFiW1Z/Gwd0IGP6D8T7uDuyaA8d/gVsXoIQnVGwArf8JfoPAyTS+y/W/YdsHELIdYm+DZxVo1B86vQzu5e6n/20fuLATHl8ADw65v/zQMvj1FXhD5lgtTGyt9P8GzFZK1cG4AUiJ6X8c8ANeVUr1Ttk4G6303wAJQF/gDMbkQMKK7Iw8YO2L69dfM/8T/Prrr1LpFyKXzEPp8pJM+iVE1izLX0BAxmOK5FdZLRLu3YJvekHsLej2JlRvBc5ucHEPbJsNNdpAudoQehAWD4DaHeAfy8GzKoQfg81vw+lN8K/N4O51P12XkrBlBvgNBJcS9js/kSVbK/3LTD+rA49msh6y10rfCBistd5oYz6KnZyOPBAdHZ1pujExMbnOmxAi7+U0nE8IkZ7cQAO/v2u07k88AGXNRluv8AA0ecL4XWv4eQJUqAtDV9xv+feqCVUfhM9awpb/QJ//3t/fbxCcCYR9X0KHiQV3PsJmtlb687qE7ANq5XGaDimnIw94eHhw8+bNDNP18PDIszwKIfJGTsP5hBDpyQ00kJwMf/0ITf3TVvhTuJq6VF49AtdPwKCv7lf4U5SpCk2fgKOroPdHkDIJqFtp6PwqBL0HLUakfQogChWbJufSWl+w5ZWNJJ8BnlFKDVdKVVNKlbJ85ey0HE9OJ9zq3bu31eUpHnvssVznTQiRt2QiISHyhszEa3I3wgjrqdQg8+0iTH0AK9W3vr5SQyOdmBtpl7f6J7iXh52f5D6vIt/YPCOvUspFKTVEKfWZUmqZ6eeTSimbJ/oCbgDngcXAJYzZPy1fgvsjD7i5uaFMd9dKKdzc3DIdeeDhhx/G19fX6jpfX1+J5xeiEJKJhITIG3IDncL690nGMpi3MeV7SVmsd3aB7m/B3vlw+7LNuRMFw9bJuSoDm4BmGJX1cKA9xvj8R5RS/6e1vm5DkktN+3+EdOTNUk5HHnjxxRfZtWsXv/76KzExMZQuXVrG6ReiEJOJhITIG3IDbVKqIpT0guunMt+ugqmR8PpJqNos/fobp4x0SlVIv87vcdj9GWydCbU65D7PIs/Z2jr/MVABaKe13p+yUCnVBvjRtP4pG9LrCozVWi+3MR/FVk5HHnj44Yelki9EESETCQmRN+QG2sTJCZoMgiMroPPU9HH9CbHGzyrNjCE898w1Oveax/VHXYXgldBiePqW/hQ934VF/dMO6ykKDVvDe3oDU80r/ACm968BfWxM7zxw18Z9hBDCoeU0nE8IkVZO+8M5pO5vQ9ka8FV3OLQUrp2AiLPGjcCCzhAdblTmB3wON87AiqFwaR/cDoW/NxrDeHrVNIb7zEidR8C3hzGSjyh0bG3pL0HGcfZ3ADcb03sF+LdS6rDW+ryN+wohhMMqlhMJCZHHZCZeM+7l4OlAY3Kunf+DWxeNybkqNYROr0DZmsZ2NdvA2C2wbRZ8N9Q0OVdVaNQPOr/y/+zdd3RU1drH8e9OhSQQWhotJtIjoBKUIkg0WFGaFxG8ImLhVbHgvYKKiopS7IqK4PWKDUWpUhSRCIiC0kQQRCT0kiChE9L2+8ckuSSkTOpkkt9nrSwy5+x9znOiO3lmzy6F9+LHjoZJncGrelk/kRSRyW+sW56FjfkOR+J/tbX25FnH/XGM9T9trY0twvV+wbFkZ20cvf5Hcpex1l7idIAFK+oslgojOjqa1atXuzoMcS/5fPZa4ahdSlWjtlnG8mqbWev06w205MNd2mWJFLWn/xEgDthtjFmEYyJvMI6NugzQrYjX25j5JSIiIlImqvROvCKZipT0W2vXG2OaAv8C2uNYxWc/MAl4xVp7qKD6eVxvcFHKV1Vnzpzh/fffr9o7CYqIiIhIsTmd9BtjvIFLgHhr7ciyC0nONm/ePBISElizZk3V3UlQREREREqkKD396cASHCv47CvuDY0xDwCfWWudXhw3s86nRf0kwd1l7SRorc1zJ8GoqCj27dvHggULOHHiBAEBAVp/X0RERETO4XTSb63NMMb8CYSU8J6vAj8BTiX9xhjPzDo/4NjBt8oobCfBt99+m5Mns+dTk5SUxCeffMKqVasYPnx4eYUpIiIiIhVcUSfyPgGMN8b8Zq39rZj3NMBYY8zhIpSvkgrbSfDshP9s27ZtY8WKFerxFxERERGg6En/KBw78q43xuzFsXpPjqzUiSU2lwGeQFAR7ruM/PcHqLSydhIsjgULFhQ76c9a2kwTh0VERNzXvpGPcXT2bAJv6kv9MWNynDv44osc/s/7BFx+OY3enUTimxM59NZbjpMeHngFB+N/WWeChw/Hq04dADa3aEmD116j5jVX53vPzS1a5nk8dPTT1O7fH4CkL74g6dNppOzcifHwwLt+fQKuiCH4oYcAODJzFvsffxzv8MY0+eabHNc5sXQpu+8ZivHzo8XaNcX6uVRVRU36S7zEprW2W0nqVyUxMTFs2LChWHWPHy/ee6R58+bl2MREE4dFRETcl1dYGMcXLCTj8cfx8PMDwKalcXTuXLzqh+Uo6xMRQfiHU7EZGST//jv7Rz1J2sEEGk+ZXKR7hj73LDW6dctxzKNGDQCOzJjBwedfIGTkSPw7dsCmpnJm2zZOr1ufo7zx9SXj2HFO/vwz/pf8rz/5yIyZeNUPI/3I0SLFJEVfslNLbJajrJ0Ep02bhjEmx06CHh4eJCcn51s3LS2NefPmFSlRz5o4nJKSkn0s98Rh9fiLiIi4j2rNmpGamMCxhV9Tq28fwNFb7uHji190NOlH/rcvqvHyxCvIMRDDOySEM/+8lcQ33iQjORmPatWcvqdnjZrZ18nt+JI4anTvTu3+N2cf823ShJrXXJPrIp4E3ngjR2fMzE7605KSOPH999QZcgeHp37odDzi4OHqAKRgPXr0IDg4mHbt2tG4cWPatWvHgw8+SN++fQutu3jxYuLj452+V2ETh+Pi4py+loiIiFQMtfr25cjMmdmvj8yYSWCf3mAKnjZpfKtBRgY2Lb3UYvGqV4/kDRtI2b270LK1burLsUWLSD/hmMN4dM4cql90ET6NGpdaPFVJkXr6jTHTCytjre1X/HAkL76+vtxxxx05jkVERLBq1Sq2bduWb72sRN3Z3vnCJg4nJDi9yqqIiIhUEIE9epAw4UVSduzAw9+fk8uXEzrqCRLfeDPfOme2byfps2lUa9MGzwD/It1v34gR7Hv88RzHzps2jWrNm1HvvnvZu2ULf3W/Cu/wxlRv0xb/zp0IvP56jLd3jjq+TZvi27QpxxbMp3a/fhydMZO6d91Zqm9CqpKijunP67OaOkBz4G/gjxJHJHlal/Q3/93+J/EnjxPhX4PBkU0ZPnw4TzzxBElJSXnWKWqinjVxOK/E3xhDcHBwseMXERER1/AMDKRGbCxHZszEo2YN/C65BO/69c8pd+av7Wy5uB2kp2NTUvC75BLCnn0mz2vuf3o0R7/6Kvv12ZNqg//9bwK6XJajvHeYY/6Ad3Aw533+Gclbt3Lql184vW49B54ezeGpH3Lep5/gUb16jnq1+vbl6IyZVGvenNQDB6hx1VUcW7Cw2D+LqqyoY/pj8jpujGkEzMKxnn6JGWOutdbqv2img8mnGfjTUpLT07HA70ePsPjgPu6KbM7555+fvVtvbkVN1LMmDp89pj+Lt7c3MTF5/ucXERGRCq5W3z7sG/kYHn5+BD0wLM8yPo0a0Wjyu+DpiVdwMB4+PvleL+iBYdS9I++pnl716uETHl5gPNWaNaNas2YwcCCn1qxh58BbHfMO+vTOUa7m9ddxcNw4El5+hZrXX1ekuQWSU6mM6bfW7gbGAhNK43rA87kPGGNuLaVru8yyZcu48cYbadCgAcYYPvjgg0LrrEv6m8QzyZzOTPgBMoDT6em8s3UTa/5OxOQzJq+oiXrWxGEfH5/saxpj8PHxITY2VpN4RURE3JRfx44Yb2/Sk5IIiI3Ns4zx8cYnPByfhg0LTPgBvOrWdZTN/CoJ3/PPByDj1KlzznkGBFDzqqs49fPP1Op7U4nuU9UVdXhPQdKBhiW5gDHmbuByoK4x5hpgvbX2QObpkcDHJQvRtU6cOMEFF1zAbbfdxm233eZUnTE/LCWfYfakWsu6mv5cmJGR43jWCj/FSdR79OhBVFQUcXFxJCQkEBwcrHX6RURE3Jwxhog5cwBbaEJfUunHj5GWmJjjmIefHx7+/uwfPdqxB0CHDniHhJCWmMihdyZhqlfHv3OnPK8X+uwzBI8cgVft2mUad2VX1Im8rfI47AO0BJ4DfilhPJ8Du4FYYDBwoTGmBrAPyHvguhu57rrruO666wC4/fbbCywbHx/PV199xbY6/vnvSezhwUm//419yxrO06hRoxIl6hEREUryRUREKpmiTsgtrgNPPsWBXMfqDr2H4Icewr9TJ47OmMmRzz4nPSkJj1qBVG8VReP//AfffHIPD19fPHx9yz7wSs7kt1pLnoWNySDXDrxZp3Ak/AOstX+VOChj2llr12R+7w+cB/xlrc1/YfrCOf+g5SAgIICJEyfmmfzPmzePhQsXkpGRwa8XRrHmxVep/+q4cy+SkUHYgUQu/PV3wJH0t2vX7pyVfqRKKngdtoqjQrXLwkyePJnJkx2b1CQmJrJz504XRyRuSG2zDKhtSgm5S7sskaIO78lrgHgysMdau7cU4gEgK+HP/P4ksKm0rl3RZW2QlbURV/jOPazN53evR4YlfOee7NdaVlOkbN19993cfffdAERHR7s4GhHJorYpUrhCJ/IaYwYYY+oAWGuXWmuXAvHAiszXq6y1e40x9Y0xjxd8NecYY/oYY3YbYzZnvg42xuS9tVslk3uDrNpHjuFzJgWPtHTIGrufkYFHWjoR8buofeRYdlktqykiIiIieXFm9Z6PgCZZL4wxnjiS/ja5yjXCMa6/NDwLXIzjUwRwxPlpKV27Qstrg6xqZ1K45Jf1hB1IpOaRY4QdSOSSX9bTbNuOHOW0rKaIiIiI5MWZ4T15jXMq67FPx6y1iVnLRlprDxhj6pbxPSuE/DbIqn3kGLWP/J5vPS8vLy2rKSIiIiJ5Ks0lO0tTvDGmLZkTiYwx3kCAa0MquRMnTrBt2zYAMjIy2LVrF+vXr6dOnTo0btwYKHiDrLwYYwgNDeXWW29Vwi8iIiIieaqoSf9wHGvyNzDGPAJcA/zo2pBKbvXq1TmG3zz99NM8/fTTDBo0KHujrqwNsr7++msycq2/fzY/Pz9atWqlNfRFREREpFDOJv15LR9TZst5WWsPGmOuBq7DMXfgE9x8Yy6Abt26nTNsJy89evSgdu3afPrpp3mW9/Hx4b777lOyLyIiIiJOcTbp/8YYk5br2He5jpX4UwNjzFRr7SBjzK3AOmCBtXZeSa9bEcXHxxMXF8fBgwcJCQk5p8e+c+fOJCUlsXjx4uxjJdlpV0RERKqW7z74ndMnU+lxX1t+/mo7v8zfAYAx4F/Ll0at6tCx1/lUr+HYoXfv1iR+mb+Dv/ecIC0lHb9AH0IiAuk2oDk+1b04dug0H436iX88Fk1weE2n40hJTmPdol38tTaBY38n41PNk9qh/kR1rU/TdiEYD8Osl9ey788jXHpjBNHX5cxxvp68kb/WJtD68gZ0vaU5QI7nyVK9pg93TLjsnPv/tS6BbyZvpEl0CFcNiSrCT7BycSZRf6bMo/ifJzP/jQbuApoZY3bieAOwFvjJWruxHOMpE/PmzWPx4sWkpqZirWXPnj1s2LCB2NhYevTokV2uR48eREVFMXv2bBo3bkxwcLCG84iIiEix1Arxo9fwi7AZcGj3cZZ8tJmTR85ww7ALObzvJF+9+SsXdGlAl35N8fLx5GjiKeLXHyI9Lf/hxoU5cyqVmS+t5czJVC7tGUnweTXx9PRg/19HWD1/B6ERgdSsVx2AgNq+bP5xP+2uPY+sxVyST6SyY8MhAmqfuyNv1vNk8fDIe52Z33/Yz0VXhbMhbjfJJ1Op5u9d7OdxZ4Um/dbackv6rbW7Mv99KOuYMaYJjuU7LwLuMsYst9Y+Ul4xlbaszbfOnqhrrSUlJYVFixaxfft2Tp48maP3v169eowcOdKFUYuIiIi78/A0+Ac6kueA2r60iWnEz19tJy0lnd2bD1PN35vL+jXNLh8YVJ3GrUq2eOLK2ds5dug0A5/pQEDtatnHa4X40bR9SI6yjS+oS/z6RPZuPULD5rUB+GPVAUIi8v5U4eznyc+JpGT2bk2i++BWHNxxjK0/H6RNTMMSPZO7culEXmNMq8LKWGt/B7YB0zPrrC3ruMpS7s23zpaWlsaWLVsAcvT+ZylsSJCIiIiIs7x8PLAWMjIsfjV9OH0ihT1/JGUn3CVlMyx/rj5Is0tCcyT82ff39szx2tPD0LxDGJt/3Jcdw+Yf93Nh90ZsXrH/nPrHEk/zwYgf8PDyICSiJh16nk9gUPUcZTb/uJ9GLetQLcCb5peG8uuS3Ur6XWQjhU8I9sz1+uoyiqVc5LX5Vl6yev8XL17MmTNnnB4SJCIiIlKYpAMn2bh0L8Hn1cSnmhfntwtm1+9/M+fVdVSv4U3IeTVp0Lw2zS8NzR7zX1SnT6Ry5lQatUP9nK7TslMYX4z9hZT+aRxJOMXxv09z/sXB5yT9IRGBXDGoJbVD/Tl9PIXVC3Yw48U1DHjqUqoFOIbvWGvZ8tN+OvZ27DF7/sVBLPvsDxJ2HivSnITKwtVJf17bx9YBrsr8ejD3SWttYlkHVZby23wrP6mpqRw9erTAIUFRUVHq8RcREZECJe0/ybsPLsVmWNLTMmjQrBbdBrYAHOPhrxzUiktvPJ+9fxzmQPwx1i3axeqFO+j9yMXUrV/wdknHDyfz6TOrsl+3uyacVp3rFznGOmH+1GsYwNZfDnJozwmatA/B2yd3/y+EX5Bz2FFIRE0+fvIntqzcz4Wxjr2P9mxJ4sypNCLa1APAp5oXEW2D+H3FfiX95c1auzSfU7OMMWOAfkClWr2nqJtvZSX3BQ0J+vjjj3nyySfzPC8iIiICUDOoOj3ub4uHh2MsvKe3xzllAmr70rxDGM07hHHpjZF88vRK1i/axZW3Fzwi2z/Qh5ufaJ/9upq/N77VvfD18yLpwKkixdmyU31+W7qHY4eSueGBtk7V8anmRZ0wf44knM4+9vuKfZw5lca7D56VblqLdzUvOt/UJM83E5WZq3v6CxIHzHR1EKUta/Ots4fqFCYjI6PAcgcOHCA+Pl69/SIiIpIvTy8PagU7P9Smmr83/oE+pJ5JL7Ssh2fe124SHcIfK/fT/vrzzhnXn5bquG7usf1NooNZ/sWf1KxbjdCIQKdiTUtNJ+nAKRpkzgVIPplK/PpDXHl7S4Ia1chRds5r6/hrbQItOoQ5de3KoiIn/dcDR1wdRFnIWoozLi6OhIQE/Pz8+PPPP0lPL7xR5cVaS1xcnJJ+ERERKZaNy/ZyaM8JIi+sR2BQddJSM/hj5QH+3nuSi64Kz1H2yMFTmFzLY9YO9TsneQfo0DOSfVuT+HLc6v8t2enlwcHtR1nzzS563Ncme8nOLD7VvLh9XGdM3itwArDiyz85r009atSpxqnMMf2pKek07xAKwB8rD+BdzZNml4Ses5Rn5EXB/P7DPiX95ckYMz2Pwz5AC6Ap8Hj5RlR+IiIiciTpzz33HPv3nzsz3VkJCQla3UdERESKJeS8mhzYfpSln/7ByaMpePk4eu5jb29J80tDc5T99v3fz6nf/8lLqNvg3HH/1fy96TsimnXf7GTtN7s4/ncyPtUdm3O1v+48atQ5d1UfAN/qBaeoJ46cYdF/NpF8IpXqAd6ERAZy06PR1KzreAOx+cd9RF4YlOfa/U0uDmLOsr0cOXiKWiHOf/Lh7oyzE0rL5ObGxOVxOBnYA8yy1i4oxdu57kGdMHbsWHbv3p3nuS+//JKbbrop37rGGEJDQ/n777+zhwydvXuvu6zuozctpaqA/pEKpUK3y4JER0ezevVqV4ch7kdts4ypbUoxuEu7LBFXT+TNa/WebMYYb2tt3jNYK5mQkJB8k/7CeHp6kpiYSFpaWvaxs5f8dIfVfbQkqYiIiEjZOXfatosZhyuMMVOA4o93cTN16xZ9xztjDD4+PgQFBeU7HyA1NZW4uLw+UKk4zt6lOOuTp7PftMTHx7s4QhERERH3VmGSfmPMpcaY14C9wLfArUDpbAlXwc2bN49vv/3W6fLGGEJCQmjXrh0PPvggXl5e+a7uY60lISGhtEItEwXtUuwOb1pEREREKjpXT+S9ALgF6A+cByQBs4DPgFpAXhN9K5WsXu6MjIxCy+Y3Tr+gDb+MMQQHB5dqzKWtoF2K3eFNi4iIiEhFV+5JvzEmEkeSfwsQBRwD5gD3A99aa9Myy/Us79hcoaBe7rP5+fnRqlWrPCe3FrThl7e3NzExBU6dcDl3f9MiIiIiUtG5oqd/G5ABfAk8CSyw1jq3PW0lVFAvdxZjDPfdd1++k3Hz2vDr7E8FKvokXnd/0yIiIiJS0bki6d8JhAOdgX2ZXz+7II4KoaBebnAk/DVr1sxO3PNb1jL3hl/BwcFus+Slu79pEREREanoyj3pt9ZGGGM64hjecwvwoDFmF/A5MN1au7a8Y3Klgnq5PTw8uOWWW1i1ahVQ+LKWuTf8cifu/KZFREREpKJz9eZcHsCVOJL/XkAgsB3HRN5TwBhr7bl7OhdDVFSUrV69euEFXeDo0aMcO3YsR29/Vg9/YGAgmzdvJjIykoSEhALHvfv6+pZn2E5JTEwkKCjI1WEUizvHvmbNmk3W2gtcHUdhKnK7LMzmzZtp2bKlq8MoNnf+/9udY1fbLHvu3Dbd+f9td47dXdplSbl6c64MHMtzfmuMGQpch+MNwMOAH6W4I2D16tUr9A59WcN28urljo6O5t5772XNmjX5Jv3t2rXjjjvuKO+wC+XOOyO6c+zGmGRXx+CMit4uC+LO/3+Ae8fvzrGrbZY9d/7/Q7G7hru0y5JyadJ/tszJvLOB2cYYfxw9//1dG1X5KWxojpa1FBEREZHiqjBJ/9mstSeBTzK/qqys3v8DBw5w4sSJfMtpWUsRERERKUiFTPrLwt133+3qEIrk7Em7KSkpHDlyJN+yFXlZS3f7uZ/NnWMHJrs6AGe4+c/Yrbnzz96dY0dtUwrgzj93d44dN2mXJeXSibzlzG0eND4+ntdffz17RZ8vv/ySm2666Zxy+e3QKwIYVwfgJLdpl7m58/hVcSm1zTKmtinF4C7tskSqTE+/Oylol15jDLVq1aJGjRpa1lJEREREnKKkvwIqbNJujRo1GDlyZDlHJSIiIiLuysPVAci5QkJCMCbvT5o0aVdEREREikpJfwUUExODt7d3nucq8qRdEREREamYlPRXQBEREcTGxuLj45Pd42+MwcfHh9jYWI3hFxEREZEi0Zj+CqpHjx5ERUURFxfHnDlzaNeunSbtioiIiEixKOnPlLUR1sGDBwkJCakQCXbWLr1vv/02d9xxR4muVRGfT0RERETKh5J+cm6EZa1lz549bNiwodKsf1/Zn09EREREClblx/THx8ezePFiUlJSspfJtNaSkpLC4sWLiY+Pd3GEJVPZn09EREREClflk/6CNsJKTU0lLi6unCMqXZX9+URERESkcFU+6S9sI6yEhIRyjqh0VfbnExEREZHCVfmkv7JvhFXZn09EREREClflk/7KvhFWZX8+ERERESlclU/6K/tGWJX9+URERESkcFqyk5wbYSUkJBAcHFyp1rGv7M8nIiIiIgVT0p8payOsyqqyP5+IiIiI5K/KD+8pLzNnzuTqq68mKCgIYwzff/+9q0MSERERkSpCSX85OXnyJJ06deKVV15xdSgiIiIiUsVoeE85+ec//wnAoUOHXByJiIiIiFQ16ukXEREREank1NNfQU2ePJnJkycDkJiY6OJoRATULkUqKrVNkcIZa62rYygv5fagn3zyCffcc0/264ULF9KlSxfAMbwnKCiIuLg4unXr5tT1oqOjWb16dVmEKpVX3tswVzxu+wtI7VKKSW2zjKltSjG4S7ssEfX0l4Ebb7yRSy+9NPt1gwYNXBiNiIiIiFR1SvrLQI0aNahRo4arwxARERERAZT0l6n4+Hji4uI4ePAgtWrVIjIyEl9fXwC2bdtGrVq1CA0NJTQ01MWRioiIiEhlpqS/jMybN4/FixeTmpqKtZbdu3ezdu1a1q9fD8Bdd90FwNNPP83o0aNdGKmIiIiIVHZK+stAfHw8ixcvJiUlJcdxb29vOnfuzPTp04mIiHBRdCIiIiJS1Wid/jIQFxdHampqnudSU1OJi4sr54hEREREpCpT0l8GDh48SH5LoVprSUhIKOeIRERERKQqU9JfBkJCQjAm7yVfjTEEBweXc0QiIiIiUpUp6S8DMTExeHt753nO29ubmJiYco5IRERERKoyJf1lICIigtjYWHx8fLJ7/I0x+Pj4EBsbq0m8IiIiIlKutHpPGenRowdRUVHExcWRkJBAcHAwMTExSvhFREREpNwp6S9DERERSvJFRERExOU0vEdEREREpJJT0i8iIiIiUsmZ/NaTl4rDGPO1tfYaV8chIv+jdilSMaltiuRNSb+IiIiISCWn4T0iIiIiIpWckn4RERERkUpOSb+IiIiISCWnpF9EREREpJJT0i8iIiIiUskp6RcRERERqeSU9IuIiIiIVHJK+kVEREREKrkqm/Qbh1+NMYMKKHO/Mcae9TraGPO3MSawfKIUqXqcaZt51HnLGPOfsoxLpCrL3S6NMf7GmM8y/yZaY8ztxph/G2O+c3WsIpK3Kpv0A/2A2sCnzlaw1q4G1gMPl1VQIlL0tgm8CAw0xjS7Eyf9AAAgAElEQVQpm5BEqrzc7fL/gBuAu4GOwHxgEnCxMaabKwIUkYJV5aT/AeAja21qEev9FxhqjPEqg5hEpBht01q7A/gBRyIiIqUvd7tsAfxhrZ1hrV1prU201h4HZgDDXBaliOSrSib9mb2BnYAvzzrma4yZaIw5Yow5bIx5FfDOo/pcoA5wdflEK1J15NU2M4/faYzZZIw5Y4zZaYx5NI/qM3D09lfJ32siZSV3uzTG7ACGABdlDu2xZxWfAfQwxtQp90BFpEBV9Y/jlcBJ4Nezjo0D7gSeAwYC4cAjuStaa48Bm4DYsg9TpMo5p20aY/4NvAPMBnpkfv+cMeb+XHV/BEKA1uUTqkiVkbtd9gYWAFtwDO3peFbZH3F0mHUpzwBFpHBVdYhKO2CztTYDwBhTFxgKPG2tfTnz2DfA7/nU/xW4pDwCFalicrfNmsDTwBhr7TOZZb41xvgBo4wx71hr0zOPbwLScbTNXxGR0pKjXVpr1xljEoEQa+3Kswtaa48aY3bhaIdzyj9UEclPVe3pDwUOnfW6NVCNs35BZf5yy+8X1qHMa4hI6crdNjsC/sAXxhivrC9gCY5e/YZZBa21acAR1DZFSlvudlkY/Y0UqYCqak9/NeDUWa+zfjkl5CqX+3WWM5nXEJHSlbtt1sv8d1M+5RsBO896rbYpUvpyt8vCqB2KVEBVNek/TM5eiAOZ/wZnnuOs13mplauciJSO3G0zq531AA7mUf6PXK/VNkVKX+52WRi1Q5EKqKom/X+Qc+LRb0Ay0BPHxCQyVwDpmU/984CtZRifSFWVu23+BJwG6ltr5xdU0RgTBPihtilS2nK3y3xl/u1sjNqhSIVTVcf0rwAaZyYJWGv/BiYDzxhjHjHGXAN8AQTkUz868xoiUrpyt80jwGjgdWPMGGPMVcaYa4wxDxhjZuWqGw1YHKuHiEjpydEuC9Ecx99O/Y0UqWCqatL/PY6PHq8569ijwPvAU8A0YB/wSu6KxpiLgCBgZplHKVL1fE+utmmtnYBj189rcUyun4ZjWd3luepeAyzNfBMvIqXne879m5mfa4B4YF1ZBiQiRWestYWXqoSMMa8DTay11xex3ligvbVW6/SLlIHitE1jjCeOCb0jrbUfl1lwIlWUs+3SGPMTMN9aO6Z8IhMRZ1XlpL8hjnGKF1lrnRp7aIzxx5FY3GSt/b4MwxOpsorZNvvj2FivZebSnSJSipxpl8aYS4GvgYjMoXkiUoFU1eE9WGv34NhGPKwI1RoDzxYn4TfGjM7arvysrwOF1xSpWorZNg0wRAm/SNlwsl3WAQYp4RepmKpsT395M8aMBvoD3c46nG6tTXRJQCIiIiJSZVTVJTtdJc1aq959ERERESlXVXZ4j4tEGmP2GmPijTGfGWMiXR2QiIiIiFR+VWl4j0sfdOHChRw/fpwWLVqQkJDAmDFj2LJlC5s2baJu3brnlJ88eTKTJ08G4PTp02zatKm8Qxb3ZlwdgJPc6heQ2qWUArXNMqC2KSXkLu2yRJT0u8iJEyeIjIxk5MiRDB8+vMCy0dHRrF69upwik0rCXX6BVah2WRRql1JMaptlTG1TisFd2mWJaEy/iwQEBBAVFcWff/7p6lDcWkhICAkJCa4OoyIq6z/YO62155XxPURERKSUKOl3keTkZLZs2UJMTIyrQ3FrCQkJxMfHExERQVBQEI888gjDhg3Dz88PgBUrVnDZZZfRvn17li1bRrVq1XLU39yipSvCLlMtt2x2uqy1lpdffpmXXnqJDz/8kKuuusqpesaY8OLGJyIiIuVPSX85+de//sUNN9xA48aNSUhI4LnnnuPkyZMMGjTI1aG5vdWrVxMSEsKpU6dYsmQJ06ZN45dffsHb25uOHTsyd+5cxo4dS+PGjenevTvvvPMONWvWzHGNsxPlbdu20bFjRz799FOuvPJKPDyKN9993rx53HnnnaSlpdGkSROio6OJiYmhV69eeHp6luiZ81LUNzDp6encfPPN7N69m1WrVhEerjxeRESkstLqPeVkz5493HLLLTRv3pw+ffrg6+vLypUrlWiVgnXr1hEWFoanpyeTJ0/m77//zh7P6eHhwQ033MCPP/7ImjVr8PPzo2fPnnzzzTccPnw4z+u9+uqr9OvXj+7duxc74d+wYQODBw9m5syZHDp0iJUrVzJx4kT69u1bJgl/cYwZM4akpCSWL1+u/w9FREQqOfX0l5PPPvvM1SFUWvfeey8RERF06dKFTz75hPDwcNq1a5d9fsOGDcydO5cbbriBSZMmMWrUKIYMGcJ9991Hrzyu17FjR95+++1ixZKens7UqVN54okneP311+nUqVO+ZVesWMGiRYto06YNvXv35ttvvyUyMpIvvviCpUuXEh0dzZgxYzCm9OcXLV26lEmTJrFmzRp8fHxK/foiIiJSsainX9xegwYNGDJkCLVq1eKJJ57gk08+yZHI/t///R+rV6/mqquuYuPGjQwaNIi0tDSuueaaPK/n5+fH0aNHOXHihFP3//vvv3n//ffp06cPQUFB/Pe//2X27NkMGDAg3zq7du2ie/furF+/nhEjRtC0aVMeeeQRLr30UtatW0f//v154YUXSE5OLtoPwwmJiYnceuutvP/++9SvXz/PMrNmzeKyyy4jNDSUiRMnlnoMIiIiUr7U0y9uz9/fn1OnTlGzZk28vb2zJ/Fm6d27N++++y79+/fnyiuvxMfHh3HjxnHRRReR15TX3r17M2/ePB544AHef//9Au999OhROnXqxAUXXMCNN97IxIkTCQsLK7R3PiMjg9OnTzN37lzGjRvHhRdemGM4UUZGBjNmzOD//u//+OCDD4ry4yhQeno6AwYM4NZbb+Xaa6/Ns8z69eu55557eP/990lLS6Nv37706tWLhg0bllocIiIiUr6U9Ivb69ChA506deLdd9/l2LFj/Pbbb1xxxRXZ5//1r3/RuHFjhg8fzr333svFF19Mr155DexxMMZw//33M3jw4ELvvWjRIsLDw5kxY0aRYg4PD6dBgwbs3buX+Ph4RowYkX3u9OnTfPHFF6xevbrYw4zykpGRwUMPPUR6ejrPPfdcvuV++OEHunbtip+fHwMGDOCZZ56hQYMGpRaHiIiIlD8l/eL2oqOj8fLy4tlnnyUtLY0BAwbQqVMnZs6cmT2hduHChcyYMYMBAwYwevToQq/ZvHlz9u3bx5YtW2jRokW+5dauXcsFF1xQ5JiNMezevRsPDw/effddTpw4wUUXXcTu3bv5+OOPad++PdOmTSu1JV1PnjzJkCFD2LdvH3PmzMHLK++mP3XqVJ599ll69+7NgAED+PTTT3O8gRIRERH3pKRf3N748eNzvG7fvj0dOnTg9ddfp0+fPqxdu5aQkBBGjRrFgQMHOHz4MPXq1Svwmv7+/jz77LPcdNNN/PTTT9SoUSPHeWtt9tr2K1asKFbcxhjOnDnD77//zrp161i3bh21a9fml19+ISIioljXzC0tLY3333+fZ555htjYWBYtWnTOXgUAZ86cYdiwYSxdupTJkydz1113ERcXV6w3NCIiIlLxKOkXt9e8eXNq1apF165d2bFjB+3atWPDhg2MGjWKF154IbvHesyYMfTr16/QhD/L0KFDs8e3f/rppznOHT58mMcee4zt27fTuHHjYsfu4+PDhRdeyIUXXujUcKKiSE9P56abbuLw4cPMnj2b9u3b51v2448/ZvPmzaxevZq33nqL3r17K+EXERGpRJT0i9sLCgpizJgxrFixgq5duzJr1iyWLFnCnDlz2LFjBzNnzqRp06bUq1ePzz//3OnrGmN49dVXadSoETt37syxln2dOnWoWbNmmSynWVp+/PFHtmzZwoYNGwpdlnPu3LkMHTqUGjVq0KlTJ7744otyilJERETKg5J+cXsHDx6kW7dudOvWDXAs0dm7d2+aNGlC+/btmT17Nk888USxru3n58dDDz1Ez549ufHGG6lfvz533303GzduJDAwsEKvaBMQEEC1atWcWod/37592cN+vLy8KswGYiIiIlI6lPSL2zt48CCHDx+mTp06gCNpnTlzJr/++muOZSnT0tIYPnw4w4YNo2nTpk5ff9SoUTRu3JgdO3YwdepUli9fjoeHB7169arQPf316tUjMTHRqbLjx49n4MCBtGrVitDQUPbs2cOYMWO45JJLmDVrFgsXLiQxMZHY2Fg++uijMo5cRERESps25xK3V7duXf74448cx7y9vWndujXHjx8nJSUFgNdff50333yTxx57rEjXN8YwaNAgnn76ab777jvq1KmDl5cXw4YNK7VnKAtBQUEcOnSIjIyM7GMLFixg//7955S94ooraNq0KWvWrCEyMpKff/6ZKVOmcPXVVzNp0iTCw8MZPHgw3333HTt37izPxxAREZFSoKRf3F6zZs3o0KHDOcd9fX0JDw/nqaeeYu/evUyYMIGVK1eyatUqli1bVqx7+fn58eabb/Lf//6XyMjIkoZeItu3b2fVqlVs3pzXFmNQrVo16tevz59//gnAu+++S9++fbnrrrtylEtPT+eZZ55h+/bt/OMf/wCgYcOG9O/fn7Zt2/L666/Tu3dvatasyY8//kjr1q3L9sFERESk1Gl4j7i9rVu3sn//furXr3/OudmzZ3PHHXcwceJEnnjiCS699FJeeeUV7r//ftauXeuCaEvH3r17iY6OJikpiQYNGrBnz548y/Xt25fevXvTpk0bfvzxR9auXUvnzp3Zt29f9s9r9erVTJ06lcWLF+Pr65tdt3Xr1kyYMIH27dvTsWPHcnkuERERKRvq6Re316dPn3x3mG3ZsiVz587ll19+yR7Wc9NNN1G7dm2mTp1anmGWqrfffptBgwYBjjcAuXvvs7z44ouMGzeOK664gunTpxMbG0tSUhKzZs3KLrN9+3bat2+fvQlZSkoKt912G1OmTMHf3z97eJSIiIi4LyX94vYefvhhpk+fnu/5oKAgWrZsmf3aGMPo0aN58cUXyyO8MvHzzz9zxRVXsHr1ah5//PEc4/bPZozhxhtvpG7dulx++eXs27ePmJgYpkyZgrUWgI0bN+aY2Pz5558THx+Pp6cnycnJOX52IiIi4p6U9IvbO3z4cI5hKc5ISkri1KlTZRRR2WvdujWLFi2iRYsWvPDCC8TExBRYfv78+bzxxhtUr16dQ4cOkZCQwNKlS7n55pt577336NmzZ3bZTZs2ce211/LNN99w+PBhgoODy/pxREREpIxpTL+4vdtuu42RI0cWqU7Pnj0dK/5M/RAAa22FXn7zbH/88QfBwcE89thjXHHFFVx//fU899xzzDb5v4f39PRk06ZNnDlzht9++w2AwYMHExYWxptvvkl0dHR22YCAAI4ePYq3tzfe3t5l/jwiIiJS9tTTL27vuuuuK/LymZ6enjmW7mzZsiV//fVXaYdW6iZPnsxll13GSy+9BMDHH3/Me++9R40aNQqsFxMTQ1xcHN7e3lx++eUEBAQwZMgQPvroI9q1a8f9999P//79efjhh3nppZdy7D4sIiIi7k9Jv7i9F154ocS99D179uSVV17JHudeEf3nP//h+eef56effqJ79+4MHz6cGjVqcNddd/HGG2/kWy89PZ0aNWpw+vRpunfvztKlS0lNTWX69On861//4tJLL6V27doEBQXx1Vdf8e2333LvvfeW45OJiIhIWdPwHnF7pTE0Z8iQIcTGxlKvXj2eeeaZUoqsdH3++eeMHTuWJk2asGPHDlq2bMny5cs5fPgwnTp1Ivdq/YcPH+b555/no48+IjExkSuvvJIvv/ySzz//nKuuuooPP/yQ3bt38+eff1K7dm2XPJOIiIiUD/X0i9vbsWNHia/RrFkzpk2bxtdff13ygMrIJZdcwrp160hOTmb37t1s3ryZli1bnrNyUVYv/cMPP8y+ffuYP38+x48f55tvvsHX15fbbruN0NBQHn30Ud58800l/CIiIlWAevrF7ZXWZNO//vqLtLS0UrlWacvIyGDGjBn079+fG264gfbt27Nt2zaCgoK4+OKLc5RduXIlp0+fZu7cuWzevJnQ0FAXRS0iIiIVhXr6xe01bNiwxNe4/fbbufPOO1m7dm2+a967krWWSy65hK+++ooePXrw2WefsX37dhYuXMj8+fNzlA0LC2PQoEF06dJFCb+IiIgA6umXKuTAgQMcPXoUPz8/GjRogIfH/97z7tq1i9TUVG655ZYcxysKT0/PHDsIp6SkcN555+Hj48M777zDRx99xNOZ55YtW8aIESN48MEHXROsiIiIVDgVL7sRKQPjxo2jRYsWxMbG0qxZMwICAnL0gq9fvx6AH374oUKv4JNl2rRprF27FoC0tLQcS2z279+fUaNGFbqMp4iIiFQdSvqlUktNTWXkyJE89thj9OzZk65du5KcnMzp06cZNWpUdrnmzZszYMAAdu/ejYeHB2+99ZYLoy7cwIEDWb58OTt27GD8+PFMmDAh+9yrr77qwshERESkIlLSL5XaCy+8wPjx4wE477zzWLVqFY8++igPPPAAzZo1yy43evRoPvnkE/bs2cMDDzzA/fffT3JysqvCLpSXlxeJiYmEhITQqVOnHOcCAgJcFJWIiIhUVEr6pdLaunUro0ePpkmTJhw8eJCBAwdy5MgRHn74YV5//XWuuuqq7LIeHh4sXboUX19fQkJCANi4caOrQndKYmIiTZs2ZcmSJWzatMnV4YiIiEgFpom8UimdOXOG5s2bA7Bq1Srq1KmDtZaMjAzq1KkDwLFjx7LLP/bYY5w+fZrff/8dgKCgIDZv3kx0dHT5B++kW2+9laSkJG644QamT59OiKsDEhERkQpLPf1SKWX1fK9YsSI7yQ8ODubMmTP4+vpy11130blz5+zyq1evZsqUKVSrVo3w8HASExPp2rWrS2J3lp+fHyNGjOCDDz5gyJAh5XbfP/74o9zuJSIiIqXDqaTfGPOAMWZcPufGGmPuL92wRErm4osvxlqbY7y7MYbbbrsNgPfee++c4TudOnXi9OnTbNmyhZ07d+ZYEaciu+6662jSpEmR6mzatIkJEyZw8uTJIt/vueeeK3IdERERcS1ne/rvBbblc25r5nmRCuuuu+4iLCyMSZMmMWHCBGJjY/Hx8cmzbLVq1WjcuHE5R1gyYWFhTpe11tKlSxdGjBhBo0aNOHHihNN1P/74YxYtWlScEEVERMSFnE36w8k/6Y8HziuVaERKWXp6OhMnTuS9997jwIEDXHDBBXz44YccO3aMTz/91NXhlZqjR48WeP7IkSO88cYbJCYmkpaWRlJSEkOHDiUpKYkvv/zSqXtYa/nnP//JE088URohi4iISDlyNulPAprnc645cCyfcyIu88MPP9C6dWumT5/OokWLCAwMJCkpifvuu4+VK1fSt29fV4dYZEuWLOHf//4377//Pl9++SW//fYb69evZ+vWreeUPXHiBCkpKezfv59rr72WKVOmEBkZyf79+7NXLnrttdd46qmnSElJKfTeBw8eJDAwkAceeKDUn0tERETKlrNJ/1fAaGNM67MPGmMuAJ4G5pR2YCIlkZ6ezpAhQ3j88cdZunQpl19+Obfffjvjx49n6NChGGNcHWKRzZ49mwEDBuDr68vSpUuZOnUq/fr1Y9CgQbRq1SpH2eHDh1O/fn3q1KlD27Ztueyyy3jllVdo3749y5cv58svv2ThwoV07tyZDh060LZtW3bt2lXg/ceNG8fAgQPd8mcnIiJS1Tm7ZOdjQCdgnTFmHbAfCAMuAjYCI8smPJHi2bt3L1u3buX666/HGIOPjw+vvfaaq8MqkePHj3PxxRczZsyYPM9vbtEy+/u3336bHTt24OfnR3x8PEFBQTRo0IAuXbowduxYevXqxdChQ3n00UdZsGABU6ZMITo6mg8//JBrrrkmz+svWbKESZMmlcmziYiISNlyKum31h42xrQHBgExQF3gL2Ay8KG19oyzNzTGTC9OoMCj1todxawrVYi1NnuMe7169UhPT3dxRKUjLCzMqV2C4+PjAahTpw4+Pj60bduWLVu2ANC2bVtOnDjBP//5T6ZNm8aqVauoXr06mzdvpnXr1vTq1YsdO3ZQq1atc64bHR3NokWLztkBWERERCo+p9fpt9YmW2vftdb2t9Z2z/x3SlES/kw3AecDQU5+BQN9gTpFvI9UQWPHjsXDw4M2bdrQpUuXSrXSTEREhFNr5EdHR/PSSy/lWJ0oISEBcGw6NmnSJFJTUwkPD2fUqFH069ePa6+9lqCgIE6fPo23tzfgePM0Z84cxowZw/Lly9m9ezfPPPOMhveIiIi4IVftyPt/1tqfnSlojPECCp9lKFWetZbHH38cgJdeeolHHnnExRGVLi8vL6y1hZZbtmwZUVFROY799NNPAMyfP5+nnnqKuXPn8vnnn9O9e3e++OILpk+fzgUXXAA4fo5JSUmEhoaSkpJC+/btefLJJ7Ov9d1333HllVeW4pOJiIhIWcs36TfGJABXW2vXGWMSgQKzDWttsJP3fAbY43yIpGfW2VeEOlLFpKamMmPGDLy8vEhISKB27dquDqnUrVy5MjsxL0juhB+gfv36REREkJGRATg2Kuvfvz+7du0iNjaW4OBgEhISaN++PaNGjeKxxx4jJSWFwMBAPvjgA6KiopgwYQI333yz2+1hICIiIgX39L8FHDzr+8K7GJ1grX2miOUtjqRfJF9ZQ1kaNGhQKRN+gDlz5tCvX79i1a1duzbx8fFERETkOP7QQw8xYsQIEhIS2LdvHwcOHKBHjx6MHTuWOnXq8MILLxAZGUloaCjdunVTwi8iIuKm8k36z07OrbWjyyUakWLYtGlT9veVeXWZwMBAlixZwp133lnkutdddx1ff/119vr8CxYsIDExkd9++w2Avn37EhoaSlhYGO3bt+eDDz5g4MCBfPLJJ9x9990A+Pn5ld7DiIiISLlyaiKvMWaJMaZFPueaGWOWlCQIY8zkktR3B2+99RZt2rShZs2a1KxZk44dOzJ//nxXh1Up1KnzvzneV199tQsjKVtPPPEEM2fOzPNcYbsLZ01u/vnnn7HW8tBDD/Hss8/y8ssvExAQwIQJE7In6Pbs2ZMVK1bw5ptvsnz5cqy1XHTRRcyaNavUn0lERETKh7MTebsBNfM5VxPoWsI48l4YvBJp2LAh48ePp2nTpmRkZDB16lR69erFmjVraNOmjavDc2thYWEANG/ePHvlmcrIWsuZM2eoW7cuvXr14tVXX+Xrr78mOTmZhx9+mB+CHNNq5syZw8aNG7OH63z11VeEhISQnJzMoUOHAJg7dy733nsvAA888ACRkZHZ9+ncuTMjRowA4KOPPsLDw4Px48dz/fXXc+GFF2rJThERETdUlNV7zhnTb4zxAa4ADhRW2RiT32LpJq9rVzY9e/bM8fr555/nnXfe4aefflLSXwpeeOEF9u7d6+owylT9+vWZOXMmfn5+DBw4kLlz59K6dWvq1q3Lm2++Cc8+B8Abb7xBu3btaN68OaGhoUycOJEtW7YQHh7OP/7xD6y13HDDDXTv3p3Ro0fTq1evHPdp2rQp/fr146233uLiiy8GoHXr1txyyy089thjHDlypNyfXUREREqmoNV7ngaeynxpgZUFrM/9ohP32g9cZK1NzONeu52oX2mkp6fzxRdfcOLECfWalpL69evz66+/ujqMMuXp6Unv3r0Bx3CdxMREYmJiaNOmDVOmTOGizHLffffdOXWzPg0ZNmwYH3/8MQDVqlVj3Lhx55Q1xjBx4kRuuukmoqKiGDlyJD169GD8+PE89dRTzJs3j/79+5fNQ4qIiEiZKKinfwFwCEdP/BvAy8COXGVSgC3W2uVO3Gsu0Bw4J+kHvnaivtv77bff6NixI8nJyQQEBDBr1ixat26dZ9nJkyczebJjqkNiYl4/Msny119/MXHiRIYOHerqUMrFqVOnSEtL46OPPuKXX37h5ZdfdizTue2vQuvWqFEDT09Pp+6TtSLSuHHjGDduHNZa/P39ufnmm6ts0q92KVIxqW2KFM44s9mPMWYQMN9ae6jsQyozLh9ClJKSwq5duzhy5AgzZsxgypQpfP/994WuvR4dHc3q1avLKUr3YowhLCyMoUOH8vjjj+PlVbT95ja3aAlAyy2byyK8MjFp0iRmz57N11/nfK/szLO0b9+eO++8k3vuucepeyUnJ7N9+3bCw8Px9/fPPm6MwVpbGlvzurxdFpfapRSTu2xprbYpVYm7tMsScSpDstZOLetAqgIfHx+aNGkCOH4p/fLLL7z66qv85z//cXFk7u3RRx/loYcecnUY5eK1115j/Pjx5yT8zmrdujWvvPIKgwcPzu7JL0i1atVo1apVse4lIiIiFYezS3Z6G2P+ZYz50RizyxiTkPurqDc2xkwperiVS0ZGBmfOnHF1GG6vqiT8P/74Iy+//DIrV66kbdu2xbrG5MmTadWqFY0aNeLqq69m/vz55P6075133uGaa65h7Nix2Tv4ioiIiHtzdizEq8A9wDwgDsdY/pK6shSu4TZGjhzJ9ddfT6NGjTh+/Diffvop33//vdbqF6d9/vnn3H///YSHhxf7Gl5eXsyaNYvffvuNDRs28PDDD/PHH38wfPhwAObNm8fLL7/MhAkTePLJJ1m2bBkjRoygW7dupfQUIiIi4grOJv3/AEZaa18uy2AqswMHDnDrrbdy4MABAgMDadOmDQsXLqzUm0lJ6crq6S8NrVu3pnXr1jRs2JA77riD9u3b06VLF+Li4hg8eDB9+vQhJiaGd999l5iYGOrWrcvNN9/MsGHDGD16dKnEICIiIuXH2aTfABvKMpDK7oMPPnB1CFKArEmwFdmHAHffQ2lOOe7SpQuPPPIIgwcPJjIykoCAAHx9fQGoXbs2I0eOZO8RUWUAACAASURBVNiwYfz999+8/fbbtGzZkiFDhpRiBCIiIlIenBrTD0wBbinLQESk/Hl4eHDvvfeyZcsWOnXqxPr163nwwQdzlPH396dx48aMGzeOtLQ03nvvPRdFKyIiIsXlbE//QWCgMSYO+BbIvSWntda+U6qRiTipgE3jqqYS/jxCQ0OdKbazRDcRERGRcuVs0v9a5r+NgcvzOG+Boib9e4tYXuQczuwzUZjKtKbzWc+id0IiIiKSzdl1+p0dBuQ0a22X0r6miIiIuI8D24+yYclujiScplZwddpc0YjQyEBXhyVSKRVt+9JyYoypZa3NPYRIREREKolVX21n/be7SEvNAAuHdh8nfsMhLuzemEtviHR1eCKVTpGSfmNMQ6AZUC33OWvtgqLe3Bjzf0ANa+2EzNcX4tgLIMwYsx7oaa3dU9TrihTF3Xff7eoQSk1lehYRqbwObD/qSPhT/rcBoLWQlpLB+m93ER5VVz3+IqXM2R15axhjFuKYvPctjsR8HvDVWV/FMQw4dtbrN4B9wMDM2MYV87oiTqtMiXJlehYRqbw2LNnt6OHPQ3pqBhuW7C7niEQqP2d7+sfimMTbBfgB6A0kAbcCV1D85TwbA38AGGOCgM7Aldba740xKcDEYl5XREREKqgjCacdS4DkwdrM8yJSqpydoHsd8DywKvP1PmvtMmvt3cAc4N/FvP8ZwCfz+xjgFLA88/VhoFYxrysiIiIVVK3g6vmuLmyM47yIlC5nk/4QYLe1Nh04CdQ569wC4Kpi3v9n4D5jTBTwAPB15j0AInEM9REpss8++4yWLVvi7+/P+eefz/LljveS3333HS1atMDPz4+YmBh27nQsNz9t2jRatWqV4xrdu3fP89i4cRVv1Nnhw4fp3bs3/v7+hIeHY4wZ4OqYRETy0+aKRnh6552CeHp70OaKRuUckUjl52zSvxuol/n9n0CPs85dCiQX8/6PAK2A34BGwBNnnbsZWFHM60oV9u233zJixAj++9//cvz4cZYtW0ZkZCSHDh2iT58+PPfccxw+fJjo6GhuvvlmAC6//HI2b95MYmIiAGlpafz666+cOnUqx7GffvqJrl27uuzZ8nPffffh4+PDwYMH+eSTTwDeyXwzLSJS4YRGBnJh98Z4+Xhk9/gbA14+HlzYvbEm8YqUAWfH9H8LxAKzgFeBqcaYdjiG53QFXi7Oza21vwNNjDF1gcM2505L/wIOFOe6UrU9/fTTPPXUU3To0AGABg0aADB58mSioqL4xz/+AcDo0aOpV68eW7ZsoUWLFkRGRrJs2TL69u3L2rVriYqKonHjxjmOZWRkEB0d7bJny8vJkyeZMWMGGzduJCAggMsuuwxgLvBPYKRroxMRydulN0QSHlVX6/SLlBNne/pHAE8DWGs/AvoC8Tgm895PCRMLa+3fuRJ+rLW/WWsTS3JdqXrS09NZvXo1iYmJNGnShIYNG3L//fdz+vRpNm3aRNu2bbPLZg392bRpEwBdu3Zl2bJlACxbtowuXbpw2WWX5TjWoUMHfHx8zr2xC23duhVPT0+aNWt29uFfAfX0i0iFFhoZyFV3XkC/x9tz1Z0XKOEXKUNOJf3W2lPW2kNnvZ5lrR1ore1jrX3HWpv3ulsi5ezgwYOkpqby5Zdfsnz5ctavX8+6desYM2YMJ06cIDAw5x+UwMBAjh8/DjiG+GQl+MuXL6dLly506dIlx7HLL7+8fB/ICXk9F3AUqOGCcERERKQCcranX8QtVK/uWPFh2LBhhIWFUa9ePYYPH86CBQsICAjg2LFjOcofO3aMGjUcuXHXrl3ZsGEDSUlJrFy5ko4dO9KiRQv2799PUlISP/zwQ4Ucz5/XcwE1geMuCEdEREQqoHzH9BtjEsl3Fd1zWWuDSyUicVvx8fHExcVx8OBBQkJCiImJISIiolxjqF27Ng0bNsTksRZcVFQUU6dOzX598uRJ/vrrL6KiHKNgIiMjqV+/PpMnT6Zx48YEBAQA0LFjRyZPnsyJEyey5wlUJM2aNSMtLY0///yTpk2bZh1uC2xyYVgiIiJSgRQ0kfctipD0S9U2b948Fi9eTGpqKtZa9uzZw4YNG4iNjaVHjx6FX6AUDR48mDfffJNrrrkGb29vXnvtNXr06EHv3r3597//zYwZM7j++ut59tlnadOmDS1atMiu26VLF1555RUGDhyYfeyyyy5jwoQJREdHZ3+SUJH4+/vTp08fnnrqKd577z3Wr18P0BPo5OLQROT/27v7+KjKM//jnyuQ8AwiD5FVgaEKauwWDPxSH7Y1S1ZdBNt1q8UtPpRVarUrP61tqa4t3W2XX3etLa7aLtZoxQdq1UVlxSo1VKyiEEtZUajI8KTyqAQEMSG5f3/MTJwkM5OZyZmZcybf9+uVV5g5c865E3LNueY+933dIiI+kTTpd87NzVcjzGwccCzQO0E7ns5XOyQ74XCYZcuW0djY2Pqcc47GxkaWLVtGRUVFXnv8b7nlFvbs2cPYsWPp3bs3F198MTfffDO9e/fmscce4xvf+AYzZsygqqqKRYsWtdn385//PA8//HCsAg4Q+SBw4403MnPmzLz9DJm66667mDlzJsOHD2fIkCEAX3fOqadfREREALB2RXMSv8jseeAa59z6BNvGAr9wzv11xic3+zTwMHAykGhtPuec65HpcZMI7F2LiRMnsnr16kI3I6na2lrq6+tJ9LdkZlRWVvo6YS5SSda69B3FpXQ3is0cU2xKFoISl12Sbp3+s4lMDExkIJFa/dmoBZqILPa1EWhM/XLxo507dyZM+CHS479r1648t0ik+PlhDo2IiARHukk/JPjUb2ZlwF+T/SJaJwN/75z7bZb7iw+Ul5ezffv2pD39w4drjreIl/w0h0ZERIIhaclOM/u+mTWbWTORhH9l7HHc8x8B84AHsjz/q8DILPcVn6iurqa0tDThttLSUqqrq/PcIpHiFT+HJvZBO34OTTgcLnALRUTEj1L19D8N7CEyzul24CfA5navaQTWO+dWZHn+WcDDZnYIqAP2tX+Bc+5QlseWPAmFQtTU1LTpeTQzSktLqamp0ZADEQ/V1dXR1NSUcFtTUxN1dXWKOZE80lA7CYpU1XtWAasAzOwAsMQ5tzfRa82s1DmX+CqU2h4iHyTuT/EarybySg5NnTqViooK6urq2LVrF8OHD9cbn0gOaA6NiH9oqJ0ESVpj+p1zv2r/nEVWP6oGLgEuBIZkcf4HgNOBW9FE3sALhUJK8kVyTHNoRPzBb+WqRTqTyUReAMysikiifzFQDrwPLEq5U3LVwFXOuYey3F9EpFuprq5m7dq1bRKNGM2hEckfDbWToEk6kTeemZ1qZj8ys7eBl4CvEUn4bwBGOOeuzfL8mwGN2RcRSVNsDk1ZWRmRG66RHv6ysjLNoRHJIw21k6BJ2tNvZmOA6UR69U8BjgDPAd8Dfg9sBf7onDvShfN/C/iBma1xzm3uwnFERLoNzaERKTwNtZOgSTW8ZyORUp2vEOnZf8w59wGAmQ3y6Pw/IFKy889mtpnE1Xv+j0fnEhHxRDgcZs+ePcybN69g1To0h0aksDTUToImVdK/BRgFnEpkRd73zOy3XezZb+/16JeISCDEqnUcOnSIbdu2qVqHSEB1tdSmylVL0KQq2Rkys9OBfwC+FP3+gZk9DiwlwQq9mXLOfbWrxxARyRdV6xApDl6V2tRQOwmSlNV7nHMvAy+b2WxgMpHx/X8P/CORpP8qMzvknFud85Z2Q7FeiB07dlBbW6s3EpECU7UOkeDz+sO7htpJUKRbp7+FyCTe58zsamAKkUm+fwf8g5n92Tl3cjrHMrPrgEXOubSntUf3ecg5tyfdfYIuvheisbGR+vp6DSEQKTBV6xAJvmw/vGvlXQm6jOv0O+cagcXAYjPrB3yRyAeAdP0UeBlI6+poZj2i+7xIZAXfohekIQR6E5TuRNU6RIIvmw/vWnlXikHGSX8859xB4MHoV7oMmGdm72fw+m4lKEMI9CYo3Y2qdYgEX6Yf3oPUESeSSpeS/iy9APQAhmW4z4HcNMd/gjCEQG+C0h3FV+uI8bJah+6cieReph/eg9IRJ9KZvCf9zrmz833OoCkvL2fbtm0Jt/llCIHeBKW7ilXrWLx4MSNHjvSsWofunInkR6alNoPQESeSjkL09EsnSktLU27zwxACvQlKdxYKhRg6dChz5szx5Hi6cyaSX5mU2tRcHikWSvp9JhwOU19fn3R7ZWWlLy7+ehMU8Y7unInkX7qlNjWXR4pFSaEbIG2luvibWdJt+VZdXZ30joTeBEUyoztnIv4VGw5UVlaGWaS2iJlRVlamlXclUNLq6TezUmA2cCFwHNC7/Wucc+ra9UBQLv5aflzEO7pzJuItryfFa+VdKQbpDu/5KfA1YAlQB3S8x+UhM/tb59zSXJ7Dr/xw8U/3zVJvgiLe0PABEe80NDQwf/58zyfFa+VdCbp0k/6LgDnOuZ/ksjFxfgS0SfrNbIZz7oE8nT8nXnjhBW699Vbq6+t59913uffee7niiivavKbQF/9MK4joTVCk63TnTCR78R1V/fr1Y//+/ZoU7yfbVsErP4e9b8OQT0HV1+H4SV0+rEocZy7dpN+AtblsCICZzQI+Dwwxs/OANc65HdHNc4BAJ/0ffvghp556KpdddhmXXXZZwtckuvgDeRk72JUKIgo+ka7RnTORzLXvqAKSDpHVpPgCqPs3eOk/oekjwMGOtbBhKZzxT1B9U9aHVYnj7KSb9N8NXAI8l8O2APwa2AbUAF8FxpvZAOBd4IMcnzvnpkyZwpQpUwA69PDHa3/x79u3L7Nnz875G1W2FUQUfCLe0J0zkfQl6qhKpZDz4rplx9i2VdGE/9Anz7mWyOOXbocT/iarHn+VOM5e0qTfzK6Je7gD+IqZ1RFJ/Pe1e7lzzv28q41xzjUAS81sinOuPtqOfsBo4O2uHj9I4i/+jz76aF7+gLOZRKzgk2LRLS/KIgGWqqMqES/nxWXyftFtO8Ze+Xm0hz+BIx9HtmeR9KvEcfZS9fTfkeC5kUSG37TngC4n/a0Hiyb80X8fBNZ5deygWLBgAQsWLKBfv3688847zJs3L+eJSDaTiBV8UgzSvSjH4hJg9+7dhWquiJC6oyoRr+bFZZLEd+uOsb1vE0kPE3At0e2ZC0qVQz9KWqffOVeSwVcPLxtlZhea2TYzezP6eLiZDfPyHJkIh8PU1tYyb948amtrCYfDXT7W+eefz8aNG5Mea9asWcydO5cJEybQ3NzMtm3bqK+vZ/78+SxZsiTr86eSTe19BZ8EXfxFOX5McOyiHB+js2bNYvXq1axevZphwwr2liQiRDqqYnXzU/Gypn4m7xeQXsdY0RryKbAkaaaVwJATsjpsqv93lThOLd06/Z8DXnPOfZhgWz+g0jn3goft+hfgNODZ6OMSYCHwNx6eIy1e3paLP9aQIUN4//33mT9/fpd7B7walpBNBRE/lBgV6Qov71Z5OURIw41EUktV7a5nz56ccMIJHDp0yNNJ8QtX/J5XTz6Bg/360O/gR4zasp3B+/YDid8vunXHWNXXI5N248f0x/TsBVVXZ3XYQlc5DLJ0J/LWAacDrybYdlJ0u5e9/fudc7tjn+ScczvMbIiHx0+Ll7flkk04SnasdBMRr8cKZlpBRMEnQefVRTlXHQTdagywSAaSdVSZGeecc47nsfLT9etYOKgPRwb1gZIS9g/oz67hQxkd3srYjZsTvl90646x4ydFqvS8dHtkDL9rifTw9+wFZ1yXddlOlTjOXiYlO5PpDyT4GNclYTP7DNHBYNEVgft7fI5OedkDmOmx0klEcjVWMJMKIgo+CTovLsrZxOIfP9jLvZveInzwAKF+A/jqmBOZMHhI9x4DLJKhRB1VL7zwgucJ/x8/2MvdmzZwpCRuuEpJCc0lEA6NZNie9zm64UCH94tu3zFWfVOkSo/HdfpV4jg7qar3fA44O+6pK6O18+P1Bs4H/tfjdt1ApCb/sWb2TeA84CWPz9EpL2/LZXqsdBIRv0yiVfBJkHlxUc40Fn+6fh13b9rA4eZmHPBGwz6W7XyXq8aMY9BLr/girkWCItZRFRsS98EHH1BbW+vpdejeTW9xuLk54baWEmPLqOMof3Njh/cLdYwRSfA9WIyrPZU4zlyqnv4q4J/iHl8EHGn3mkZgPfAtLxvlnNtpZucCU4C/BB6kAAtzeXlbLtNjpZOILFq0yDdjBRV8ElReXJQz+VAf6zH8KC6BaAE+am7m7k0bOGf/Pt/EtUhQxA+Ja2xspL6+3tMhceGDB5LVoYGSEg7175v0/UIdY+IXSZN+59x/AP8BYGZh4IvOuT/lsjFm9ivn3OVmNgP4I/C0cy43pWrS4OVtuUyPFZ+IxLRPRLryoSTTSYKaVCjFLNuLciwu9u7dm/Q17WMxVY/hx83NbDz2GEa99Xb3HAMskoV8DIkL9RvAGw37aEmwzZyj8vhRTP3c5OT7q2NMfKDTMf1m1hvYCAzOfXO4Jfp9InAVMNbMthD5APAa8LJz7vU8tAPw9rZcNseKJSKLFy9m5MiRHRKRbD+UZDpJMPb62Hm2bdvGa6+9RlVVFZdeemnavwORfMj2A2qmF+WGhgbmz5/fGkfJtI/FVD2GLUDTUYMoLS3tvmOARTLk1VDXj9asYe/9C2naspnSUaMZctml9Bk/HoCvjjmRZTvfbXOHLqZ3z55849Pju/ZDiORBp0m/c+6wmU3E2+o8yc61Nfr9/8aeM7MTiJTvnABcZWYrnHPfzHVbYry8LZfNsUKhEEOHDmXOnDkJt2X6QSLTHpFkVYdaWlp4+eWXAZT4i2/kq+pNOBxm//79CRPzmGSxmKrHsAQYd/QQjQEOAN399A8v5t/tvv0/2Vtbi/v4Y3COw2+u58Pnn2fIzJkMu+6fmDB4CFeNGcfdmzbwcXMzLUTitVePHlw1ZhwTBue9wKBIxtKt3vMk8EXgd16e3MxO6ew1zrk3iNxpeCS6z2tetiEdXt6W8/oWX6YfJFL1iDQ2NvLII4/wne98p83rUyU2K1eu5KyzztLFTgoun1Vv6urqUvbu9+3bl1NOOSVhLKbqMezVo0ekik/lZzUG2MdUUtVfujr/7qM1ayIJ/+HDnzzZ0oI7fJi9tbX0/9xf0Wf8eK4/qYKzy4/h3k1vsfngh4zu17+16pZIEKSb9P8W+A8zGwE8Deyk3drKzrmnszj/6+2Pk0D7OwznZnGeopbJB4nOli3fsmUL3/rWt7jmmmsIhULs3Lkz5fGcc6omIr6Qz2pWncXF0KFDmTlzZsJt6fYYagywP6mkqv90df7d3vsXRnr4E3CNjey9fyHHRYf5TBg8hAmVSvIlmNJN+mOVcy6MfrXnyG74T6JIPBo4J/o1u8OJnNudxXkKwo+3f1P1iMQcPHiQ2267jXPPPZfy8nK2bduW8piqJiJ+kM+VL8vLy5NuS6dnUT2GweWXUsnyifZDXSH58LpEmrZshmTXxJYWmrZs8bjFIoWRbtKfk3cw59zvk2z6bzP7IXAxULDqPV2Rj9u/yRb3SSVVj0i85uZmli1bxkUXXcRrr71GS0uiEcgRqiYifpDPlS+rq6uJrRjeXmc9i/GdAePLy7neB50Bkr58friU9MUPdX3iiSeorKxMu6Ntd2kZ/YjcceugpISy0aO8bq5IQaSV9DvnCvExtw54vADn7bJc3v4Nh8M89dRTLLVm3jp+BM0lJWDWZnGf60+qSLp/rEfk6ac7H43V1NTEhg0bqKqqap20215ZWZmqiYgv5HPly1AoxMCBAykrK8tosq3GggdfPj9cSmZiQ+LuuuuupMPr2guHwyzr3YupJSWUJOrcKi3laBWrkCKRbk8/ZtYT+HvgLCJDcN4HVgCPO+faL9rlhfOBfTk4bs7l6vbvkiVLeOaZZ9g7sD9vTRpPc49PRlTFL+4ztrmFna+sSjqsaOrUqaxYsYIDBw6kPF+s1ypWOWjlypVtLnRlZWWqJiK+ke+VLwcNGsTs2bPTnmyrseDFIZ8fLiX36urqeKdfP14bOZLTtm6lR0sLJUSuqc0lJeyoPI2Tx6scpxSHtJJ+MxsOPEtkddzNRCbyng5cC/zJzM7JZqy9mT2S4Oky4CTgROCmTI/pB7m4/RsOh3n22WdpaWlhy6jjaC5JPLTgcHMz815awWfWrEvZk3jBBRfw4IMPpjxnfK/VpZdeyllnnaVqIuJr+V75MpPJthoLXhzy/eFScit2vX51TIgtQ47mM9u2c9RHh9jXpy9/Ov44eo0dyzmFbqSIR9Lt6b8NGAJUOedWxZ40s0nAY9Ht2dz/GpbgucNE7iDckGVFoILLxe3fp556iiNHIjdUDvbrAyUJRx/igAO9e7WeO1lP4plnnskrr7zCxo0bk56zfa+VqolIEPj171RjwYtHvj9cSu7EX693DhrEs4MGtW4zMyo1XEuKSLpJ/xTgG/EJP4BzbpWZfRf4z2xO7pxLeR/UzEqdc4m7xnzM69u/DQ0NbNiwofVxv4MfsX9A/8SJf0sL/Q591OHp9j2J4XCYo446isGDB9PQ0NBmoq56rUS8p7HgxcWvHy4lMxquJd1Jukl/LyDZAPADRIbkeMIiJTGqgUuAvwOGenXsfPHq9m9s0m5DQ0ObRGHUlu3sGj6U5gQ5f0mLY9SW7R2ej+9JbD+Z0Mzo2bMnw4YNo7S0VL1WIjmg5ELEfzRcS7qTdJP+lcB3zOx559zB2JNm1g/4TnR7l5hZFZFE/2KgHGjEww8T+dbV27+xxDxRgjB4335Gh7cSDo2kpcQiPf4tLfQERm/eyuB9+zvsE+tJTDaZ8MiRI+zYsYNx48Yp4RfJASUXIv6k4VrSXaSb9H+TSAnNbWb2LJGJvMOJrI5rwNnZnNzMTiWS6E8HRgMfAP8NLAKOAhJN9A2MbG//JkrM2xu7cTPD9rzPllHHcahfXz416ChmjjmR5+peJtFesZ7EVJMJnXOsX7+eTZs2qYSgSA4ouRDxJw3Xku4g3Tr9a8zsROBGYBKRKj7vAb8AbnPO7Un3hGY2hkiSfwlQAewHngC+ATwXK/9pZl/I4OcoKqkS83iD9+1nZPM2rr766tY3K9dJT+KiRYtSrsYLqISgSA4puRARkUJIu05/NLGf48E5NxIpgfsocAvwtHMu9fKw3UyqKh/xysrKWhP++FU+x4wZA8ChQ4daexIBamtr2bt3b1ptUAlBERERkeKRdtLvoS3AKOBM4N3o16sFaIdv9evXr9PXxC+MlWhibqx3f+rUqR22pyNZCcH4DxeJFv4SEREREf9JmvSb2fMZHMc55yan+cKQmZ1OZHjPJcBsM9sK/Bp4xDn3WgbnLTpLlixJWTvfzBg3bhzTpk0jFArxhz/8gaVLl7ZJ5mO1+Z999lnWrVvH1q1b007248/TvoRg+w8PyRb+EhERERF/sWTJoJn9Jo39RwBnEEn6e2R8crMSYDKR5P+LwCBgE5GJvIeAH2Zz3EQqKipcnz59vDhUznz88cfs2rWrQ4L+wQcfMHjwYMyMgQMHMii6eEhDQwMNDQ05aUss6e/Vq1fKtiV6bbzdu3czbFiiNdj8L8htr6+vX+ecO7XQ7ehMEOIymTfffJOTTz650M3IWpD/voPcdsVm7gU5NoP8tx3ktgclLrsqaU+/c+6iZNvMbCSRUp1TgT3AT7M5uXOuBXgOeM7MriayCNglwPVAXyILzHqiT58+rF692qvD5cTtt9/O+vXrOzz/6KOP8qUvfYmTTjqJ6667DogMs5k/f37KCj/ZaD80KKa2tpb6+vqkSX9lZSUzZ87ssG3ixIm+/70nE+S2m9nhQrchHUGIy2SC/PcBwW5/kNuu2My9IP99qO2FEZS47KqMxvSb2QnAd4EZwK7ov//LOddxCdgMRSfzLgYWR+v/f5FIlZ9A6OpY9yVLlrRZdTeRQ4cOtf473Qo/6Yr11h9//PEJ255qcnGy8f8iIiIi4g9pJf1mVgHcDFwEbANmA7W5qroTXQDswehX3mSbuHd1rHusLn+qcfftx9inW+EnE8cff3zC3nqA8vJytm/fnnJ4j4iIiIj4U8qk38wqiST7XwD+DFwJPOCca85D2zw1a9aslNuzTdyTrXCbSa37dHrtY4trxaRKwrPRWW99dXU1a9euTTicqH3b4nX2e/ezILcdWFDoBqQj4L/jQAvy7z7IbUexKSkE+fce5LYTkLjsqpJkG8xsKZFSmiFgunPuZOfcr4KY8EPqP8b4xD2WRMcn7uFwOOm+qRL2WK37zqTTax8rzxlTXV1NaWlpwteaGT16ZDb/ubPe+lAoRE1NDWVlZZhZ6z7xpUMTCfKbQJDb7pwLxBtYkH/HQRfk332Q267YlFSC/HsPctuDEpddlaqn/9zo9+OBO83szlQHcs4FdnxHOol7sqQ207HuiYYQddZr37t37w53G2JJeLL6/ECHbT169KClpYWWlpYO50jVWx8zdepUKioqqKurY9euXa0Lf6lOv4iIiIi/pUr6f5C3VhRYVyapZjLWPdkQosrKSkpLSxMOnSkrK2st0dleZ0l4om3r1q1L+kEhneQ9FAopyRcREREJmFQlO7tN0t+VSarpjnVPNfa/vr6eyspK6uvrEybjL774YtLzp0rCE20LhULqrRcRERHpZpKO6Q8SMys1sx+b2VozO2hm75nZQ9H1BJJavnw5ZsZNN92UtN59Z8Ne0h3r3tkQoqamJmbPnk1lZSUjR46ksrKS2bNn52Sl21AoxMyZM5kzZw4zZ87MKuGfN28ekyZNYuDAgQwbNoxp06bx+uuvp9xn8+bNmFmHr2eeeSbbH8Vzc+fO7dC+Y445ptDNajV69OiEv8Pzzz8/6T5m5hJ8XZ3rtnY1Ltt/JVrDQtpSXBaOYlNSKcbYVFwGT0Z1+n2sL3Aa8CNgdvXUWgAADf1JREFUDZGVfX8CPGNmf+mcO5Jq5+eff561a9fy8ssvc+TIkYyHvaQz1j2dIURBGjqzfPlyrrnmGiZNmoRzju9973vU1NTwxhtvcPTRR6fc95lnnuEzn/lM6+POXp9v48aNY/ny5a2PM50UnUurVq2iufmTufTvvfcelZWVXHzxxZ3tehWwJO5xbpZybqtLcblu3bo2fxtBXekxnxSXhaPYlFSKNTYVl8FSFEm/c64B+Jv458zsa8A64GTgf1PtP3z4cKZPn05VVVXWw146S9iLrc79b3/72zaPFy5cyKBBg/jDH/7AtGnTUu47ZMgQ3/UGxOvZs6dv29f+4nrPPfcwcOBALroo6QLaMfucczty1rAEvIjLoUOH5q6BRSg+LsPhMOeddx49e/bkzjvvZMaMGSnfoxSXXaPYlFSK9ZqpuAyWohjek8TA6PcPOnvhxIkTGTFiBFdeeSWhUKhLw16SSVViM53KOX534MABWlpaGDx4cKevvfDCCxk+fDhnnnkmjz76aB5al5lNmzZx7LHHEgqFmD59Ops2bSp0kxJyznHPPfcwY8YM+vbt29nL55vZHjNbZWZXm1mhYj/juJw8eXJapW/lE0uWLGH+/Pn86U9/YtiwYbz33nvMnz+fJUuWJN1HcekdxaZ0pliumYrLYCmKH6I9MysjcqvyKefc9mSvGzFiBD//+c957LHHePzxxxk3bhyTJ0/mhRde8LxN2da5D4rZs2czfvx4Tj/99KSv6d+/P7feeiuPPPIITz/9NJMnT+bLX/4yDzzwQB5bmlpVVRX33XcfS5cu5e6772bHjh2cccYZ7N27t9BN6+C5554jHA5z5ZVXdvbS7wFfBmqARURi46YcN68DP8ZlMUpUNABIuu6I4tJ7ik3pTDFcMxWXwWNereiaT2b2FeC/4p76W+fciui2nsBDQAXwOedc7K8vrR90ypQp9OzZkyeffNLLJreK1enPZAjRxIkTWb16dUbHj18HINcfKG644QYWLVrEiy++yJgxYzLa95prruHFF19k7dq1OWpd13z44YeMGTOGOXPmcMMNNxS6OW1cdNFFbNmyhVdffTXRZku2n5l9G7jZOZe4FmyWghyX2cgkLvOptraW+vr6pEMJKysrmTlzZspjKC67RrFZWH6NzZhivWYqLv0vqGP6nwReiXv8DrS+eT0MfBo4O+7NK21VVVUsWrTIk0YmksvJusnWAaipqclJFSCA66+/nkWLFlFXV5fxmxdEft/33ntvDlrmjf79+1NRUcFbb71V6Ka0sWvXLp544gnuvDPlmnnJvAIMNLNy59xOD5sV2LgsJl1ZdyRGcZk9xaakUszXTMWl/wVyeI9z7oBzbmPc10dmVgr8GvhLoDrbCRhr1qxhxIgRnrY3H+Jv6ccu+LF1ABLd0vfC7Nmzeeihh3j++ec56aSTsjqG33/fhw8fZv369b5r43333UevXr2YPn16NruPBw4D+7xsk+LSH7Zv355w1W1Iv2iA33/ffo1LUGxKcsV+zVRc+l9Qe/rbiPZW/AaYBEwDnJnFppM3OOc+ArjssssAuP/++wH42c9+xujRo6moqKCxsZEHHniAxYsX89hjj+X9Z+iqztYBqKur8/QOw7XXXsvChQtZvHgxgwcPZseOyPWif//+9O/fH4Dvfve7vPrqq/zud78D4Fe/+hWlpaVMmDCBkpISnnrqKe68805+/OMfe9aurrrxxhuZNm0aI0eOZNeuXfzrv/4rBw8e5PLLLy9001o55/jlL3/J9OnTGTBgQJttd9xxB3fccUdr3WwzmwYcA7wMfARUA/8CLHDOfZzLdiou8+/aa69l6dKlnH/++W3K1MWUlpby5ptvMnnyZMVlDig2JZlivGYqLoOnKJJ+4DjgC9F/17fb9lXgPoCtW7e22dDY2MiNN97IO++8Q58+faioqOB//ud/mDJlSq7b6zkvbuln4q677gJg8uTJbZ7//ve/z9y5c4FIPdy33367zfYf/vCHbNmyhR49ejB27Fhqa2uZMWOGp23riu3bt3PJJZewZ88ehg0bxmc/+1lWrlzJqFGjCt20VsuXL+ett95KOJlrz549bNiwIf6pJuAa4DYid/Y2EZmklNU9zgx1+7jMt1hcrly5kvHjx9OjRw9KSiI3dGNFAx599FHFZY4oNiWZYrxmKi6DJ5ATebMU2B80nUlJqSbvQaTqwi233JKL5ok/JZ2U5DNFHZeFlE3RAMkLxWaO+T02xZeCEpddUiw9/d1edXU1a9as4ciRxAsp7t69m3A4rIu+SDcRpBW+RUQk9wI5kVc6CoVCKZdCb25u1iIqIiIiIt2Ukv4i0rNn8hs3uRjXLyIiIiLBoKQ/Tx5//HHOPfdchg0bhpmxfPlyz89RXl7eutpve+mW6hMRERGR4qOkP08OHjzIGWecwW233Zazc1RXV1NaWppwW2lpKdXV1Tk7t4iIiIj4lyby5smll14KRMpD5UooFKKmpqbNqrxmRmlpKTU1NZrUJyIiItJNKekvMlOnTqWiokKl+kRERAIoVm53586dlJeX6xounlHS71MLFixgwYIFQKTcZiZUqk8kN7oSlyKSO8USm0uWLGlzt3779u2sXbuWmpoapk6dWujmScBpTH8OPPjgg61La/fv358VK1ZkfIxZs2axevVqVq9enbIUp4jkj+JSxJ+KITbD4TDLli2jsbGxdaFN5xyNjY0sW7aMcDhc4BZK0KmnPwcuuOACqqqqWh8fe+yxBWyNiIiI+F1dXR1NTU0JtzU1NVFXV6e7+NIlSvpzYMCAAQwYMKDQzRAREZGA2LlzZ2sPf3taa0e8oKQ/T95//322bt3Kvn37ANi4cSNHHXUUxxxzDMccc0yBWyciIiKFVF5ezvbt2xMm/lprR7ygMf158uSTTzJhwoTWWvlXXXUVEyZM4Be/+EWBWyYiIiKFprV2JNeU9OfJFVdcgXOuw9fcuXML3TQREREpsNhaO2VlZZgZEOnhLysr01o74gkN7xERERHxAa21I7mkpF9ERETEJ7TWjuSKhveIiIiIiBQ5Jf0iIiIiIkVOSb+IiIiISJFT0i8iIiIiUuSU9IuIiIiIFDkl/SIiIiIiRU5Jv4iIiIhIkTPnXKHbIJ0ws2ecc+cVuh0i8gnFpYg/KTZFElPSLyIiIiJS5DS8R0RERESkyCnpFxEREREpckr6RURERESKnJJ+EREREZEip6RfRERERKTIKekXERERESlySvpFRERERIqckn4RERERkSKnpL+bMrNfmpkzs9sK3ZZ4ZnZftF3OzJbHPV9qZo+Y2Sozu8fMStrt989x+23Pe8NFPKC4FPEnxaYUAyX93ZCZ9QEuAhzwFTPrWeAmtbcDOB24Ju65TwObnHOTgCZgdLt97o3u83Q+GijiNcWliD8pNqVYKOnvnv4OGAj8OzAcOK+wzengY+fcSufcG3HPvQ6MNbNVQF9gc/wOzrl3nHMrgd35a6aIpxSXIv6k2JSioKS/e7ocCAO3EAn4yxK9yMymmdnLZjbGzB42sw+jtwpPyGdjAZxzjc65C51zk5xzlznnWvLdBpEcU1yK+JNiU4qCkv5uxsz+AqgBHnDONQGLgAvMbHC7130beBJ4CfgC8LfAPwInAgvz2miRIqe4FPEnxaYUEyX93c+lRP7fH4g+vh/oBXw59gIzOwn4EfAz59w3gQuA55xzvybyhvdZM+uf11aLFDfFpYg/KTalaCjp734uA15xzv0ZwDm3GlhP29uVs4AjwC1mZsBpQH102zvR7yUAZtbXzFaYWY9UJzWzkmi1APPuRxEpGopLEX9SbErRUNLfjZjZJOAUOt5qXAicbmZjo4/PBlY45z4ETiAygemP0W1/Aexyzu0HcM4dcs79lXOuuZPTfxr4snPOdf0nESkeiksRf1JsSrFR0t+9XE6kdNev2z3/AJFSZLGei5HAe9F/nxb9vib6vZrIuEUAzOxmM/tR9N8DzOwOM3vJzN40s19EeytOIVIWrNzM1pjZ//P8JxMJLsWliD8pNqWoKOnvJsysDJgOLHXO7Ynf5pzbCvweuDR6K7EBCEU3nwa855zbaWbTgU8BC+J2nwisjv774ejxzyDSOzIKmBItI/Y48G/OufHOuTk5+SFFAkZxKeJPik0pRn5bYEJyZyowBNhmZl9MsH0TkVuUZwO/Ab5tZv8M/BXwnpn9CzAHuMk5typuv4nAdWb2eeAs4LhYLwaRW5yx8YiVdOwtEenuFJci/qTYlKKjpL/7uDz6/droV6rXfQ04Gvg2MIDIBKWewBXOuYdiLzSz4UCZc26bmV0M1Drnbmh/wOiEpVP5ZIyjiEQoLkX8SbEpRUdJfzfhnPtChrvMMrMfAxuBC51zTyV4zSQ+uU25HbjczPo75z40s17Aic6514ERwGHn3MF0T26RZc5dGpOdYq83oAef9JKI+J7iUsSfFJtSjDSmX1KZGP2+OsX22LbfAMuBNWa2BlhBpIoBRCY4rTazDWb2kzTOO4rI5KnfZdDWm6P7JFwpUaSIKC5F/EmxKb5mqgYlyZjZvwNfcc4dm2T7S8AtzrlM3mg6O+doYGj04QHn3IY09xsBxNrZ6Jxb61WbRPxEcSniT4pN8Tsl/ZIxMzsReAR4Ffi6c66lwE0S6fYUlyL+pNgUv1DSLyIiIiJS5DSmX0RERESkyCnpFxEREREpckr6RURERESKnJJ+EREREZEip6RfRERERKTIKekXERERESlySvpFRERERIqckn4RERERkSKnpF9EREREpMj9f1OZlDY7niFvAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 720x432 with 8 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "color_cmip = 'dimgrey'\n",
+    "color_mean = 'lightseagreen'\n",
+    "color_icon = 'tab:orange'\n",
+    "color_mpi = 'tab:red'\n",
+    "color_ipsl = 'tab:purple'\n",
+    "ms = 7.5  # markersize\n",
+    "ylab = ['Europe', 'North Atlantic']\n",
+    "\n",
+    "fig, ax = plt.subplots(len(box_west), 3, figsize=(10, 6))\n",
+    "for b in range(len(box_west)):\n",
+    "    # coupled models\n",
+    "    ax[b, 0].plot(djetlat_cmip_box[b, :], djetint_cmip_box[b, :],\n",
+    "                  linestyle='none', marker='o', color=color_cmip, \n",
+    "                  markersize=ms)\n",
+    "    ax[b, 0].plot(djetlat_cmip_mm_box[b], djetint_cmip_mm_box[b],\n",
+    "                  linestyle='none', marker='o', color=color_mean,\n",
+    "                  markersize=ms)\n",
+    "    # amip models\n",
+    "    # amipFuture\n",
+    "    ax[b, 1].plot(djetlat_amipfut_box[b, :], djetint_amipfut_box[b, :],\n",
+    "                  linestyle='none', marker='o', color=color_cmip, \n",
+    "                  markersize=ms)\n",
+    "    ax[b, 1].plot(djetlat_amipfut_mm_box[b], djetint_amipfut_mm_box[b],\n",
+    "                  linestyle='none', marker='o', color=color_mean,\n",
+    "                  markersize=ms)\n",
+    "    # amip4K\n",
+    "    ax[b, 2].plot(djetlat_amip4k_box[b, :], djetint_amip4k_box[b, :],\n",
+    "                  linestyle='none', marker='o', color=color_cmip, \n",
+    "                  markersize=ms)\n",
+    "    ax[b, 2].plot(djetlat_amip4k_mm_box[b], djetint_amip4k_mm_box[b],\n",
+    "                  linestyle='none', marker='o', color=color_mean,\n",
+    "                  markersize=ms)\n",
+    "    # ICON, MPI-ESM, IPSL-CM5A\n",
+    "    ax[b, 2].plot(djetlat_icon_box[b], djetint_icon_box[b],\n",
+    "                  linestyle='none', marker='o', color=color_icon,\n",
+    "                  markersize=ms)\n",
+    "    ax[b, 2].plot(djetlat_mpi_box[b], djetint_mpi_box[b],\n",
+    "                  linestyle='none', marker='o', color=color_mpi,\n",
+    "                  markersize=ms)\n",
+    "    ax[b, 2].plot(djetlat_ipsl_box[b], djetint_ipsl_box[b],\n",
+    "                  linestyle='none', marker='o', color=color_ipsl,\n",
+    "                  markersize=ms)\n",
+    "    \n",
+    "    # ylabel\n",
+    "    ax[b, 0].set_ylabel(ylab[b] + '\\n$\\Delta$u$_{jet}$ [m s$^{-1}$]', fontsize=15)\n",
+    "    ax[b, 0].yaxis.set_label_coords(-0.05, 0.5)\n",
+    "del b\n",
+    "ax[0, 0].set_title('RCP8.5', fontsize=16)\n",
+    "ax[0, 1].set_title('AmipFuture', fontsize=16)\n",
+    "ax[0, 2].set_title('Amip4K', fontsize=16)\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# plot maps for Europe and North Atlantic as small inserted plot\n",
+    "# Europe\n",
+    "inset_ax = inset_axes(ax[0, 0], \n",
+    "                      width=\"50%\",\n",
+    "                      height=\"50%\",\n",
+    "                      #loc=\"upper right\",\n",
+    "                      bbox_to_anchor=(0.15, 0.1, 1, 1),\n",
+    "                      bbox_transform=ax[0, 0].transAxes,\n",
+    "                      axes_class=cartopy.mpl.geoaxes.GeoAxes,\n",
+    "                      axes_kwargs=dict(map_projection=ccrs.PlateCarree(central_longitude=-90.)))\n",
+    "inset_ax.coastlines()\n",
+    "inset_ax.set_aspect(1.5)\n",
+    "inset_ax.tick_params(labelsize=12)\n",
+    "# extended North Atlantic region\n",
+    "inset_ax.set_extent([-80, 30, 30, 70], ccrs.PlateCarree())\n",
+    "# set xticks and yticks for latitudes and longitudes\n",
+    "# xaxis: longitudes\n",
+    "inset_ax.set_xticks([0, 25], crs=ccrs.PlateCarree())\n",
+    "lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                   degree_symbol='',\n",
+    "                                   dateline_direction_label=True)\n",
+    "inset_ax.xaxis.set_major_formatter(lon_formatter)\n",
+    "del lon_formatter\n",
+    "\n",
+    "# mark west and east boundaries of Europe\n",
+    "lonwest = 0; loneast = 25; latsout=30.8; latnort=69.2\n",
+    "# left vertical line\n",
+    "inset_ax.plot([lonwest, lonwest], [latsout, latnort],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "# right vertical line\n",
+    "inset_ax.plot([loneast, loneast], [latsout, latnort],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "# upper horizontal line\n",
+    "inset_ax.plot([loneast, lonwest], [latnort, latnort],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "# lower horizontal line\n",
+    "inset_ax.plot([lonwest, loneast], [latsout, latsout],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "del inset_ax\n",
+    "\n",
+    "# North Atlantic\n",
+    "inset_ax = inset_axes(ax[1, 0], \n",
+    "                      width=\"50%\",\n",
+    "                      height=\"50%\",\n",
+    "                      #loc=\"upper right\",\n",
+    "                      bbox_to_anchor=(0.15, 0.1, 1, 1),\n",
+    "                      bbox_transform=ax[1, 0].transAxes,\n",
+    "                      axes_class=cartopy.mpl.geoaxes.GeoAxes, \n",
+    "                      axes_kwargs=dict(map_projection=ccrs.PlateCarree(central_longitude=-90.)))\n",
+    "inset_ax.coastlines()\n",
+    "inset_ax.set_aspect(1.7)\n",
+    "inset_ax.tick_params(labelsize=12)\n",
+    "# extended North Atlantic region\n",
+    "inset_ax.set_extent([-80, 30, 30, 70], ccrs.PlateCarree())\n",
+    "# set xticks and yticks for latitudes and longitudes\n",
+    "# xaxis: longitudes\n",
+    "inset_ax.set_xticks([-60, 0], crs=ccrs.PlateCarree())\n",
+    "lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                   degree_symbol='',\n",
+    "                                   dateline_direction_label=True)\n",
+    "inset_ax.xaxis.set_major_formatter(lon_formatter)\n",
+    "del lon_formatter\n",
+    "\n",
+    "# mark west and east boundaries of Europe\n",
+    "lonwest = -60; loneast = 0; latsout=30.8; latnort=69.2\n",
+    "# left vertical line\n",
+    "inset_ax.plot([lonwest, lonwest], [latsout, latnort],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "# right vertical line\n",
+    "inset_ax.plot([loneast, loneast], [latsout, latnort],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "# upper horizontal line\n",
+    "inset_ax.plot([loneast, lonwest], [latnort, latnort],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "# lower horizontal line\n",
+    "inset_ax.plot([lonwest, loneast], [latsout, latsout],\n",
+    "              linewidth=2, color='tab:red', transform=ccrs.PlateCarree())\n",
+    "del inset_ax\n",
+    "\n",
+    "ax = ax.reshape(-1)\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].tick_params(labelsize=14)\n",
+    "    ax[i].spines['right'].set_color('none')\n",
+    "    ax[i].spines['top'].set_color('none')\n",
+    "    ax[i].spines['left'].set_position('zero')\n",
+    "    ax[i].spines['bottom'].set_position('zero')\n",
+    "    # x-ticks\n",
+    "    ax[i].xaxis.set_ticks([-5, -2.5, 2.5, 5, 7.5, 10])#, 15])\n",
+    "    ax[i].xaxis.set_ticklabels([-5, -2.5, 2.5, 5, 7.5, 10])#, 15])\n",
+    "    ax[i].set_xlim(-2.5, 7.5)#7)\n",
+    "    # y-ticks\n",
+    "    ax[i].yaxis.set_ticks([-1, 1, 3, 5])\n",
+    "    ax[i].yaxis.set_ticklabels([-1, 1, 3, 5])\n",
+    "    ax[i].set_ylim(-1.6, 5)\n",
+    "    # labels\n",
+    "    ax[i].set_xlabel(r'$\\Delta \\varphi_{jet}$ [$^{\\circ}$]', fontsize=16)\n",
+    "    ax[i].xaxis.set_label_coords(0.5, -0.05)\n",
+    "    # hide x labels and tick labels for top plots and y ticks for right plots.\n",
+    "    ax[i].label_outer()\n",
+    "del i\n",
+    "\n",
+    "# text for colors\n",
+    "fig.text(0.88, 0.82, 'CMIP models', color=color_cmip, ha='left',\n",
+    "         va='center', fontsize=14)\n",
+    "fig.text(0.88, 0.78, 'CMIP model mean', color=color_mean, ha='left',\n",
+    "         va='center', fontsize=14)\n",
+    "fig.text(0.88, 0.74, 'ICON', color=color_icon, ha='left',\n",
+    "         va='center', fontsize=14)\n",
+    "fig.text(0.88, 0.70, 'MPI-ESM', color=color_mpi, ha='left',\n",
+    "         va='center', fontsize=14)\n",
+    "fig.text(0.88, 0.66, 'IPSL-CM5A', color=color_ipsl, ha='left',\n",
+    "         va='center', fontsize=14)\n",
+    "\n",
+    "# a), b) etc for subplots\n",
+    "labs = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)']\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].text(0.01, 1.02, labs[i], va='bottom', ha='left',\n",
+    "               rotation_mode='anchor', fontsize=15,\n",
+    "               transform=ax[i].transAxes)\n",
+    "del i\n",
+    "\n",
+    "fig.savefig('figure2a_2f.pdf', bbox_inches='tight')\n",
+    "\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax\n",
+    "\n",
+    "del color_cmip, color_mean, color_icon\n",
+    "del color_mpi, color_ipsl, ms\n",
+    "del ylab"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/pythonscripts/figure2a_2f.pdf b/pythonscripts/figure2a_2f.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..104f639ef9ae78cff24bf8c3e0b9e075e5c0c495
GIT binary patch
literal 61185
zcmY!laB<T$)HC5yU2{ia^)4<$1p|frq%1BQ8wLG<#Prl+1tSFmg&+m}kjjEo1%2nl
zlEj?+bOk#*uGG8~kU|S24Xza>?!hIAC8-J~5KV6Rc_j+Q5OzRfNl9u^o`NZe%cUPs
zl%E`&TA~oGpdaAkrl22^T2Z2)@0pvJp6UdpouRa+Lac&*a7JQEW?s628AN-8e^ORz
za*2XDh>PSLLjxrDIOgT$mlP{RgY-M+=ar=9l@u#jf^=}{yBFn`7ASzc=^U(}?~+=U
znVcHr?xdg}te_uKl$cjskXV$Oms|<+IYhmk9hbguYD#9JQ+|a)v;xR7b5lz_b0Z@&
z6B9E7a|;C%V-r0y6Eh=Ikfi}2GfH4V7?fI^Us{x$TC4yHv>+~Mn1X^C$p;|!fdUrf
zG`Gy0lGGvveYc#%l2n(}<ouLW1%02?y!4U`1w&9&1%WgcmlUNY=5kfcd9&C1@)FO&
z=eyVYPxQ_V)Gyqxb97?MO&M!(!(3zTUa?tX3LElN8YTAq`*{Dpt<n4%?e153J&tMa
z840WQC_V06-5&pcUjF`H6Y}@(SbBT?oBjLu|NZ+`{>}gY%cJ-GJ@W5&H~-0h-`=+0
z{C-;}bxU6T-)FzBhuyxNvA9He`SSgLKezMS|NpRf|0ch>Z2Mm)+xhqIc^gzc)BN}S
z?c3Jgzw{|OYG;38#{HN~-M8DB-hRAnt+`A8-e3Kk4Q7qoOJ_FKPO0BnSAK4L;HtmJ
z_tmOy-~Q%FzFp0akL`D!MSCsXUcSF#(f;2j^YT|ty>fi_{Fs;L?RTF0`)jiLuh0J9
z>TWMymUaLA%+w#>4$I}g?R;{0=ih&a`}gnq`y&6d?)KZ^_WupG_tw0h^E~0p+GzLc
zH8=C)|6Xq2|6|7gPv5St&#V7@m3{4lr`F%>^KZ8qJ-fVJ@5%N1(PnS$o=N@NyZ4@(
z?AGmP{C_-ozW>JYWL>@ZnhE<)i?7yg`>Qu~%MZ@@HS>Qb$*g>R{oV36r{lA9j;8AV
z{(0u7?{o8$=bj(WIc~Uq`#xdwC2#(1i#q%5`1*ZUZ680c|GfMDpVRyQz4`Jnzh6G=
z_d;2&I*Z@Ycek(Kztz9y#LKlj*2*h;x4vQOdD6RP{qgJnAC;H<NZj8$Z&m%@<c&L*
z#ipC+n!i3N{okwiZP}B^oXe+98Jh9FZq^ODZ(aBL|A+U#+P|eu*L*qu*4x<c-zVN#
z^ioE<_hOFD#pCy1%jbCRx;xDz-0uH}wf_{QlTTJYeeG{|`+ELg^~bs20&mM~Q`-K|
zEc)bYqXowCvPb#LwwAvtelqj>+sDh-?tN>&Lf1MuJJ-85`To25UF-L~J=_29SNi^6
z$NzuZ{r^}0{(o<e-~an-`nGp(zg_?T>EZiF(_elJ{{8q&e(|<xv%jV7xq9r>-q%lW
z$N&3PzW=M;i>Dv-t*bL-zs<Z}b-MQEb+31yr=@Q_{BQRByZ?T_z5Z?Ov+wp_dDHj*
z`>Ou_|JVC=DZCR(H!YP<)|XB^U-s2leEIpfT;rUc?ec%)I|Ju_lfOK>SBWjL{pzvJ
z%Vob@{J#2{!K9eC;%3a&Q*WnTd}ijhF~0QQy3*>^OK;5bm%iV9ZR!4}doC|4HJ$fi
zn)^x3tGlkBUU+4DQm=Wp`I_&iYCVg;-#ga*t*qgb$KI^Fd1beX))`OT_4;(`#%G%&
z>g{Iq@7&WH`sTl+cI8#O^XArdCwJ-Wy}#@2LA}jk)(h5KZQm$nZ8WoW+x}ZOUzAm8
z*Vk?}DBH7oZQ`lwA15~X8eY8^*Sn<W<F-qe&dw{lbSgUU+qdoaKEK|`v-{6!iAnR9
z_TRiW&$c{PcWwCVbJ;0>mp<YCd9lyu{7JuUvK!9VDcoKr)~EgW`P41jH<c^z`_cIE
zbZYMPXC8+<yyNedW!<*hW5pJ8DrS=Ip1Ug&*(+{KZkjtwpTD5`cJ__VD}~$7P2c-7
zTm1L$)4>UQcAI6t_0D(RES$oe|1D{6hJD4+uD{vWxbxYIZWrD3+9$)6ej)GPwS_xt
zw=6tA=k}?xmU!Jgy4{7}W!D_CV-@x-D~K!2J5v%C?R<O5(IvjCR(^Aecs*TtW&YK+
ztnLi;3GVtgts`?^yfyYo;Jclh|99gObL;2dm?ZLRuKwPlx@GzSKMsE1%FX9{lDucd
z-3_|^c4yA=(%v_3H#u)$XMb?j;?0t<$1!)`xg}RFo0}Yc?&GH$w-#=)o}O`L<`&Ic
zNmIVgI)77gtM7|uW4pCGc~9F-{XFCEQ;&I7@yA}}R&Cv|Q9mksZ_?j9OX=NtWxsDr
ztd}Zg>5e^mBzJT0rPZ<rulBCr_N!{^=EAip*3(r~B;<{jS!dO5y(RxvZ+6;+N%?#|
zC$8;!7aKqKT^{?b9e+!X8TlOA=w5#NaiaH^q-o#k`B&LCZI}PTk+yE@y8G;E#re}J
zp8m1_{B3r;&DK4&`=0vOe|l)W?ax_#yBRyu=G-)s6WsN|;_ReAVV{ni+vjR_UaG8o
z>vQv3N0#&!pT|a(jAeVhrb*-lc^Rqw_{#pGtSFfK<DMs*azAC>;QPTYt>5*l_QD%;
zXZgj=>^Cj`ZQzc}_uqSKa>}2ha)*~2-q?2Z;GYjBNx}=?9=aX;+r(Pf>HHfx??UxU
zu4bF^E(Rx0zUK3BQ+~XanPlC~>!&^|^kiut{kXg5hRKAVb$Q~qQYH1SY)-f?_g=gD
z=a0*JF>F;gH=kaj_xtxFgPPv7-^sG?ihk>_n{K~ytD4Zi_3?FoH_!j~<oNdW_0^%A
z{Xu^_(~`5!)YoP_+CSaw-^yoy-+G_@eR%zQuWfDz^X(T0><`O`ul*xj`mg)`HLo3$
z=Etx2;lFFzNv~sDi)VdU5N%wxy=+?C2m61I<o_R!-*^2y+y0I2XZK~wT-mbN^o#Ou
z-Tgmb{{Q&@)=ew>uFgH1W-Qq-qef%(zL`D0wro*bzUO9e_M=CKFBC4kyS(P-TmB6t
zG5h~)F%JK=*>ho(_2kaqRo}r?#jMV|9GiaM^`H0ReO=Maf0zB&eJN))Hat_ZF-7R%
z-5Y^#r^@<o`R+Uajp+1e?|H?p&yV5dyFP!<W{a4*BKxh=pM_6u)O%lh_UoB{FTZTQ
zH(_hkI^RW+vNw<H$`fZedr1DwADt+P@H@wZSO06ikR1G!cka&p8ToHE<hq1~=uJMm
zc4Nt$&;RUA*X1vhSQfHGt8UFvmJ3Z8*}}C~t(2|TSIGA==d>lp*zA4vJNfXni@v#u
zU)Oxki#ek5FZOtiY2X*J;2FzKrY^g>@bc_8IlJQbpDuoX?dTQD$=bCqWFOved)$9>
z^)<D1XHu=E-}@VF+-cDpmGjHJvnntDeA7#x%cU~AHJ5SE{1yJ=cK5>D5tBT-^&~d-
zskPoRoV_)M{d2kfk0pO2TNm7F3o*FNmfLziD)O$2_io=@FNU2#Zy(HDV&ls%c9rj;
zhVzxV7q|9irJpln{(7>?A!)-u-+vp@7lZ`gH)NaTHvLhx+75+&J7M4aS-<9#7A~Fr
z#yb1dw|DW@+geQ<KmRrG`Mh~qY;6qt-ut^^jc*@2{pC%o-R0dnN9TI+uM^JxGX2`y
zwX<{#Zx!$Vn!6;C>)Y?Z8^+m54tnR4-Cq1CsS|%yYP#;r?@O`Pb!$GAO88e7Nq$LX
z*B9RN=G*GYA8lP1y*^!d@4o-c@7g<`Tn_(rd;0n>+6!M4=f8iw{QXjoZzpg6Kf1nN
ze&dO2pU(O%G5lBOGN(P}i@m+F_{O}wdSQH5|0s$7y}Et>pX>Yo-rfKIow@yQyG?<|
z4Fcwe-+0$~rMYZkuiln+;TIoo%Rge>RrB*CZ^=^oZiQntZ!gB?74QG^r1Rf9by?Po
zr@#KGhyVKQzwYw>e@{C9{h4fc;m2Fo7yLI@+};`sPGKpFy+427bn&Zt_{|r;CYNuz
z_*DJ-;_A$Qab{I(cG?O)_1Bc1$#Eg*)aDZ<xpP)X2CrhBy<z|2rzbsv@2xr_dRJhw
z->)s)36IbGc75G%xj$5RD_hlbgNceCy_UD_-LXF--h53_`S#s2eoXMax8dN{dvRam
zdgrc7nI8X%)u_SKPU7<^!{~j|zSYJzSD2W))al%PHc7?z>-1vL<V=s!ZKi7TLagT$
zEBEhxC2M`o#4RN|=hc4R-1GMgmCt&=-v9gH?%(NC-FL<6OTUkbJ|ASXH@(bngG}zu
zr8P^xch(=f_fakDwDRr5S7oKS<yDuZ({}C2bpBT0cuc4NPD07;`HuYCM0EG1|L<#F
zWf$zbZO$*L*q9f;&q^(x5^KG!+5BzuH=}sBM4JUun`CF`$vJOJzbbaj@8Mf3TN$?W
zs{W%D0WTNd3e_@|dsCfVz4Ug`&KH-8&6Y0Q9rMMcPbYuJlSQW&2s<**_xa#d8`a1C
zcT+|GJpI>yB#wPvX2Vu{_uz4s^}GMR%85~#^uGR<W#8L6nYRm;SuD>iJTm|P&u?GO
z+y6Z&|LZxw)tTLU6Rpg@uHlo8GIJGpxa)DA-#5Os+I!z8a?hJ}S8&C)6UQ`rtv<H!
z@4iziao*%$__4M7a>J5y!YUs`Z?-=#9deoTZ};P~PvTy`?aXK|dQp7u=-hodA8voS
za69<8v?1&C+m{XAB&1yayr=*80`)!h`QP3fIWAsjeDHXY&5AFH){~ZNR-9kkd-|66
z#GLiEi=~#Gn*G6s&-!-RiDRD^yj9sZ<3a1MEi&T2lHbbxjSKr})Un*QlIQ2H=Khzl
z<-f1q{IQsCv+mpz-x9(q^wR3<AN=SJyepz`?Qcfq?;7uo@7`YtT7LJ5mUQNN*C@`1
zT-y>k<mdiqy>e^nJEczBgTYsBh9`&m@NUYUXXrnhFZp=a4!-D{eeW}FNvoecxFY+O
zpH%6YA4<D7tKE6!HC27a`%3xpU768pZp&+{U)?;{q51Cp@kE(?lj?a_kEdR_eXPCr
z(KnOBX9Yh<#$9{tx0L_QHSMX-k1acXlijq(`}ntO=eO9&ww-ilF8gis;?J~rMAS{6
zr_Wt0dHnLW7`NJ+M~<`T|Ni@`<j=(CfBzi5(XsI5oRHtsE0<h&`26q1Pv3q{vwDAj
z<<j}((hFtVo_zD%&9PH9areO^*QTE9G%DP7@>zn=ZYPeCUz<J(o||lHz&J7d#`#y9
z9&cauhV|RIk6GXQZb-$O=!N&pU#q_A<iBIZKjdm-UL3pS<K46{w#w|)wz|>_a*rjB
zuJin^{7J&tCM!=kDgXM<gHO->kz4(7L7ncp3)_5G+izd@VpHwZ=kvI~T{`t}ci*8M
zy8o^{XPj;GF{w!W)#V_Y7uQ>Nm)FETJ}xn@{E6YC*Z*wO%J04oSASeR%WqxR)4=og
zSKr1->f41r+F!f!$o?<twQi>MYbE!WXw)W2{djbJ|8#fG&F+SISKo(CXn*<S_4yfo
z0=sT+`~2lz)}?>v-=`Yx{C&ztG3I?ts$W&t%%i*P=Ow4TUm`DLoW0p&e%l#8lLmW%
z-p+N|@9&lD-!u2it_M%QvLw&4yE*@{q5i?G*Zt#8#{XD$GXB$}YijcMmdpSBGQ0o9
zo#pv)C*prSyLD{O^>uPZpI@5aul=|w@VY)oagyfmvvN;vYU@Ai)<1V#=dQq~i&y_X
zeEs6u{+#@5mkDCkHTm+r;cH{$4lcO)@2?<F)Z3Nkf<I0;zi`3n#h&vIJA`v?+IZPp
z<JAt9hFNM`f2lTIS#1ASZ2dQdecan*whJ4sw0FI%-yRiLKYg-pT=<2z=~h4L|2;R~
z|7ZLCzi%Gz|Myvc{ag(h)4BF$kGMouzHHn-pYPC(qgESd&1aFxU-vk8&&O}vzn)&m
z?Rj}$vuO5%reB#)zP0{|T{PR5+55g>f%W%)78j=T+nu=ov{{n-KsnDHzJ1?BSn4D0
zmUDQetJZluFzegDa&d9z?SK3KKQ;gV@BH@tzrN@H`*{8TztijgC;ZvgIr+2w;qCwb
z%kKM|`DT{=)B3I-Z?l+Z-3)V^cF(h<N7wh@+UMJD|4MmzG&}E69#^~lx_xGy8MX`C
z{m&Mfo|)CA{W@aq?zuZm-rBzneeZvf<;I$g0k>zzKI^{bf01S8hg{*q-d2jszs_y7
z`uIbb;qIE}sgM0Se#jj4pM9Iz!aOl5snw<Ke2j5nm%jD(+qa)>V$18<ZoXOKvBAuW
zxdt7}zxm#BeBGt6PVJ($)z!AR_|kcuD&EOTE;poZEj9|jx$M)E@a{+Q=8;#@Pfg#H
z`R+%1-1*BcGw0Z{9qOx?r?!?S<dMJh{^&y=ulYXr`ey(2>LQWb^Y$!fZ>w9w^3*hG
za{N54BRh6UvKZcwfBV;jv+Cyi>#M&SvmU!~-D}g=J4Qxf&2zVYDk}HMGhp0!u6Wg?
zH(QSGINMoQFIQnEn0jT^-HqRu&A1jNy!_kKYqvLF_Wj=(n%QM_a#_aJ>EGL@+dO^6
zeze6{I!t}bhpQ&`x8BZ5uKG|F=GU-x+upiui`M_z)_L=)WTNH|4bRgd`?mSd`LjE<
za`*E@k$=aEH+)j=`+GM+s<C^qi&b-P&a#P@l&(EH8n9}w^42#u{3nZ>i>-|fufJNe
z@8&~~)BX?ZvbRO&KL7hl;Fjdu(<bq*#ZuwM^USu*{WiVX%y)Bi@qWux!5XXSALoVl
z_Nty~(!Oy1b<OEzZMV<AKJENT#ykJaalTy}O@-6rVmCWJ^C<LQ>M3?)&h10fue+<<
z7Tma4W}f-&kk+c(kN^EDF`q1c>p^W|vReG6;#}_^MXp*a1?7TG-{v>B%uEq~Z~SM+
zt;<{A@)TZ-;We0=mQ&3Z|CTqb-|qCMjH=z!StmE&?Fp~F|9I=`=a07TKRx?<I^T7(
zdwZ?T({AQw9X+?_(AJB)wi&i^-wcc7ug^O2dUEe!(<bqoKi76WRDTthc<BjKX-n_z
zRr!bW+TQNTjL1K>?5pnXuGuOp)EC*VjgDW`%zksnmW?eJ^RCDFavm|aUe6qH=ir<#
zzfVWJUAX0ThWbY<?SGbOUn3f=FD4(Iy?1@G?bfZYGn&@O_GYhFd$`r=P5*gihvRD6
zPpobn$=WmjT5CmY6Zg-JG1KGZxvM1)mI~`Fu6=VoHE#Oc+Cr|nf;ry|AJ;58UZd#q
zyY=VukB99gmj1Q$KD<LCtzN<H_qw#&ho|jr+;%Il-{Z~t|HWWM?fHV&n_Z@_SedN2
zyDf3<#(3v#`}TLf`Sf}@>%Iy5Q%*^K6VmE8+Hdx>CQEg9OKQA*m1_M-BX#q~DpN$F
zpOtTz6#Hn``ulq(?f-B#P5<bYaMepQ_hqQ=&bfA3T>puFZQ+Sfi|t$W*YEpr%WK&W
z=W7>v_x{gR{e3@AbvIj9+srpoDgQT2j+L^Txl3>D{oA|N+3%EEz0STeeeJGeljO`Q
z&N}UwF*~j$>Ho=+Us*-5h7-@4u$Rop-Sp~)q_1Vlp>L5>St>7^%(pr5{j7fUY#zsH
zPrPjQrG)2QF6!^Nevk8{npvNumfP0$8!o+fze{{|E!K7MJe!&&e7*PU+T8z@mIA@A
zeGJWPEq3l}R!Od(d0XW7*G0CK0%{khc-W}#SUJOL^Xb#q<nL<+t350)nUs3IzVfQv
z%6k^yKE)n6;9wAU+eKn;PJhVc?39(WI5u5=v+dpSgbVkw<F}p2b_r6O`TE#9pOa7Q
z>~8Jv`SG7$-%VIDq1!Y^>vq`Pl9?-4-`cRMC&%bm^BRwqS#RD*=4yrPxxL&cdb{}4
z0}@6KZY-~EPrCW<o`}?D;hhyX7O$#bIZ1S%=*({lW{)ra;*+&GaYSiCW!3I)Rvnjb
za`jjDG+bDGc7p9~g|@8Ev-yk)W=`I?-+1})KktvMpUQr*V{M*)u4RYmY>Se&Q@<w}
z&wS1(Aa0X(_xiy_`gKNYxj*h=5&x9DQ*W=G*f*o5*J?3t)!SYhtv<bOp9Q16&AR^_
zRr5DJ*Khf{e}cgO1p<F172hvy_|!V%-|ycaTl4=58vZ?B^yU1%`7*U17tRmewc|p+
zOzqc`_ifLL|NqNhU}|6Y_eu7?3Hw#v%+xYHaqW}Fy!T4(@lHS1%kQ1E|3hGtK<-b~
z2Q}=9za}w!_;Qf@C%3$emygqfX(!)yJAFxAzAk>xr2Su9W3O)0a$LWD&yV%38LW0c
zl>RMe_`5&0VPD(p7KYlhM=CfjOmFjN`m*$EHRG>elUFm;{yk~U_)99VMB;&I=+n6j
zfAtjJ`>Q#8cm46_L}oIN*}p_1%}%+^tvc7|r@9*b^u5_z<0G9iuX^Sdi}bpSa+&L=
z?sUpqo4<S3f_uJC>#pvWotC!tIdlKwGd5h4LhCQq2>r=Eb0GKSwmX{=%A<dLt$HEp
zEOAfRM|bA)s+oT_`1_syd_w(!uNp(<WzVkd^Lb~VIC;PJ-5*JJj`Ot}H!lBIC0fY0
z?rzx=*~bUBMo(gk+Y<iz(6gsc&A#@Z*0WTa<f;8QH2Kggw|k0tkNYHw&sKex{&HSz
z#h-TZ`MdXi;$6E^al+QLKPd&h*9=6{c`xX`OW`xiJRN)J_NL}Ul|vVP$H*$4|E4y{
zP|QKxtf9w)V*%St>1^gV3;jzQ`q%tcUz9m3S{_t3^`D)!J$wC=wNt)+seR<&uJ!Np
zaSz|;CY`%Km)SpanG<~GrQv_;iF|L=7@h^szx8OwD`WdouNeiItM^JX?7Qe&btQR4
zS)|?EOU*w_{<8nv6w+^}-~H>yzsqcQ+N<ubJl>;c{VVCaz5L-nPcQ#je%4;H`Q(F1
zV*5_LQ29K2fpHFtg3uf8N}l8?#ou+se9D>&R~T}n=xST<J8iJB@9L)83DQO#<>JS>
zV*94%2jnXMm}L;QCVcll|B#67`<~U_dAUtE^Sn*IzpZ)doGY(2Sjvo#y}Ea__C(XM
znGCz`>TMS8IyduPt)^bcFNQ^l0`LD_xg}RHd3{vvJ4xQ-eiv)Z`}*EiD7=kl^PTf?
z`RCn1>sJ>pwZHc6*2mPj?+;hpoAP_cdg+S!_exjC%XHg66ZyYW*x%>G++5w?=8uz)
z*=##`=6=<_c;;pAoz$B91sG-v?pwF3;MbR(_gl7IyQ`ljRW2I5!T;v|?QiV1Toc>0
z@7)}`HqV@`A?sWwU%q~A`JQHHHHHH$6YF+=;aYE)=A`i}nI*}4ZNJ#hHp8fm26J9c
z&&(C5OOE=kS|PAM?Antzyqk}1)#a04cVp>!HoXNe*SxpOXHN|85xc%{+V;OEm*^dN
z&17?8`q8Q{Rgu?@bIjZJ!0y`Xyu0e9cdv`5Kj^o<Tz~J$BsaF_PZpjl&2qJ!x$2~u
zip56uz08$KJxvh;(R)*8d5K*#6EBchQ9XItu~}vtg9To0cqO&?Wr~r>k2&=lCSKbq
z)p$ER>l){$CkwUjme^fh<zc$(OU~mr+t_a~=snJmaJ}_GW!dosZ~d!hcihOk{?l}3
zZ*5)w)rx?ZN~a|<>}#@g**ZP{-YOO~cHLVq=cd{=#pKI!$M8q3b~7JLt%~i_{=2aP
z+C}-i&Bm?v?vdj>>%m==4=j_DQ+|aw|8c52$^H6@d|AtWGlRWb`fC(-K3R9D?&0lv
zm!gxKdEY<3f4*({@;M@|(>^S6x!wAubYXLN?skr_uV>qnF8TP*y>RaQMg6}upJ)Et
zfAHFI&Wb;qABg#JD@lHJ6X>5A+s-!s_6>!P*~T~Sw?AL}>0sFt-XpR`2MreM3Clf6
zG`HduU^pePGjUT3|E^bi6>4_Q%JJLvU2ai&f~=WEHFtN|w$}=~Wb1a<Ilez&wq?P3
zlTOBk^S2&cP`K%@+2mbE3%+gpufJ<Mr$6uIZ+bIX<|kXs6u79k%P>*FIC)0d#i+tv
zx)bZKUbDZsd5eo*bH|Yd^}D#NmdhL6JiOw9nM(B;$CX!Kp7|yx6t+4fWAf=qE06gw
zRw*6mUh@3sHuZou$L;SEkFNjr>$Wq8-7E7~_n$FeQTpOD;a1nT+j1TU+C9$Pn)G|m
z-p)fuE;wzUetU_-Mb4Z#2C7@%@65=%uwBTqGv451q&DMKkpn&Yj1QP}n*7!u;rHEY
z?zpdSU)hDXiN{KU8-KlB7BTl*1j~sDqUZFSUcO{6h`RmV^V*Abe{0HpH=K3ZuKQ?i
zL6vD_#ilH#q?y&Md*7a0@bZ4#r(Jw=YaEx(Vg7F2@VfV^%-r0i@=5=mMgH~t^Qvsu
z+kDN7`^w%ed9foT>1xYK=O5el?Vj@OS8vh8oPCuc%a>2A{pxGsm>6jPL$o@#{apU$
z{`(<?J)IZcCT{e$+Ed?PT|4(>`a{F7wVL0mzGUPp9g(}`c41p_-@`9+Pjp^a%&{;@
z{;^ZQL}Qn4_7>Ta$s5Yo*7?45^!lt5eZTmZDQlwcw4YZW_IEdSw@T0HUC(PdarTV`
za}S#?+uOnGy`MAf;I%grI!r&V&e_7O`$8mXN36@lx2)T@a#%UO?|pV-%bQ=X8GIMG
zZhr7!$-%Eecaw9re4gvNy}2Wm|CgGl{MmaVHOUS?3bz!!h&^^?(+kgt>Iue;e<WAz
zX)#M(o-{u%K&<`6(QkQIGW<`yY1^58Mk_VbF;Q7fX@&fcB{R6cs4?&uc^Iw;S@hUd
zeQwgXw<WW4b5&oQ{UP!FT!~dMU*g7l|F<b~erphrd6QhXjze?yBfD$!mMoi_Jg4Qu
zp@{Ec9SPAJc~a_q{_EAT+y75`blO7j?iIHJr;_Ay_S3@iWl#Efb)KJfhUJ^Zmnp0t
zAC?5?YM<O1EhxKpy2L)+wX%|nldE>}@87pHEZ4m!PusNI;4rI#UApup&BF(Sx9;4{
z9LH$X+UfuJj9Fv0+0}br+F#!3&D*iJX4|BP^Q!t25ABK)+dDl`%lk{djxyu+W0$i&
z-*~=3GSu?$m;G6{p4M3`uh}{4+99rIZ$Agz;x37oy0PM|@O$>1p{{x&FMPM9oIN>h
zQ}p4&7q#mmPV_o`?9H1!S98IZtK1t`*2NVna660t+E&V6rC2>{clc9&|MX?Yj<1%j
zzJDN9*w@spGl`YM@Ofv%x!+rT8#p@d$qF2QsjHbA)vzzu%KnkAp=HC7dnxLtr?hQp
zid(ifE%;0B@rwCJZ(1Cfy{`Z7^?4^YbL{bqy?#OOQpZCM-SZ|)7f<f%I=Y4{e7euE
zz%BJBFV3_0^Kh%{fs#+fZqqL66&Sr}7WgSxGFfi&zHX=JpdNPTqE8>0d6Ht{AIp2N
zMB51Lz5Qd}E_vCtOGVz-g&sQQnlItRShc7+$g}M-cc)9H_1=xAOkZS5F21wqcJ`gW
zF?<eZ0xgcR%r;E8|8*i~hQhBqFSq@-e37dk(O6MroEEi6-r6uFPbE|FaCmNrgeuoQ
z*<2eH<uvYFm8x6ie!YqLIb+&O=hfBr3_9;F*UXHGcQLa}-L125#mT9xkvw6(rUwH{
zc-Si%UBgX+dtJAQK0k1o|KRcON7Z*-xUcFZGi7u8{5|3Srbu3AFj!#HE@;5Hh4DG_
zO$!+-ZU?3V3;aA6Pf2SkwHAA_=G<h($^8>#Ern*r81=~N3Yakb4SIidM=rOOr`~Nr
z9bYl8sw*#-H_dtS#f@R=FUFq-<~@4$cZQ0gt>N7lhpY5&-@b10bxW6Bj-H*|<%PG3
zes$kG=45iaNmoZEDZ)2GzES3^lbJ}=i?Ukhb77|@+Qyt+Sn3m3Xt_^w=ZV|qzCZo8
z8(*skXW3xvc4aXW|K)Z2nS*X{K3;x7HQO&g?(Itd-xE%<%yfFcadXIXj$N^@x_EL9
zOBOwL|32UEwPC7tkx=0YtF8C98>c3>t1@)@6ma*tT?iL7)_a>P@WA896`xh&%h=x7
z{hk~CU-nM+Md=lhs>ibK$j45o>srM;=iB_A=RKkkWtS9ueUv3MErs~M%oFmE6m2}n
z7y7lbIBQ};K)Kee=UkgMZkV^H(obl1jrrRa<=@hkA&(eb>%Lx<2z+}bC1a+)#QDP_
zFMcgnTClZ>JE3Ez%5gE#j>eT?DzT4q&VIG#^B0~XG*746=i9>fGh3sWYxU~o7u?Pi
zyY=@Ghm^YP#l4v^lhZRl?z=Vn)}p^sFJk=Md5dd>&#vO~ycc$2N?3ghcbinS?vY9r
zUH{DmyL^`@J1Be#$T_rsccEt}!=ed>%QWZz%JY829GSA4{~y=oJ2&+5ERW=Vc=&AL
z?T0b1<XDgVdg&NHW!6i@bCVZHmdsoF$|~cb?HWVfA|AsIr|sNzVVC6&b0!;xUOw`|
z%=?0|rl;Q1+pi}(#hM+wEh4GuxFk%v`RmO|0Xgb-U)mhkWuIHDugbxeCtY&oo#(uT
zm!mTcS0C$M@9K8JXzPbMw`I0xH(G65x7MZjw#pZqmm1&dzWfef>mQ!EY{`oktuLZC
zIZhLpxaxi|>xEfWLets<AG6$=lclw9V_ALL%jXG`?!PJ%m~8U<?}4;;Z!R&e+<K*I
zU)N_rVJY@g^KO^gWi{oNZ8BUq>%5oH9S)oRi*HR|zr2u}nj#&wXPVlFySH!iPrB^;
zvNtd+z;c({$t|x7zH#0S`S{j+`x%kr=iPiBE>`+vmYcv*xuT?7Z}!J_%V$4dXiWNA
zGTm}rdaM1;-v`CJYWt?&XFV9TQRJX_$YIsuJF$5_>)uJ$Z!De1<I>f-w{hRgrLUK^
zB`SPRO1LWG#kw=%zS|<X(_iZ+hum-25p3UOmUk|fvv-rYXo<?L+c9&WK0SN*F&A(2
zuETbrHv3Im_vD^xcage$Z{^mj%U;J$opVU?FVCi`Si?gJ7ybS>cVtd~w*6yu{cKHJ
z)<2$Ctt6hm4QhBH@3Lo8pWU>-3sMpvrM_eNHGAc>^r#(&CU-w9lX0^@9pL!mlwSMn
zKXZQ9-t?LM`DyxreP3JLPG_z7);mExzAgNA#h3q0Zc_xZxxN{<O4htKDhYq6{^IhI
z^#Qy$m=+}W^cmcC-ZPsk!rO1#>)kP3!JpftVnlb`U9SBu!))8UJ^f`CZx;NRB6zg-
z{iI;d+8I2rzgf7H?5<kf*%$k4!dp8vk=afhx3&D_qq%I`RNXSC@BDUq<Eb#0!n3Q+
z%dTxKdAwsIn@oe?mnaYSaDB6#l0qgiRf_X3-b*<o_*bVX^Vo;F9__YUeJmGb56-@L
z!-`kDurrD|<G#3Vy1m_nO68m7x1`rcEZ=+bY>J1o{L!sOi^cB!)6)8&u6tseWffn?
z#O-?vgU<%cTy!isCgAg{H|4tuXFe?{`gXU>-Pbt4Y5R-YOWd}1@-m$0?AtZ*nPT=Q
zjw-d<y`AUcc1`47n|aEFWBQ4`Q!m?oYkzf@Cx~tF*1bDA&9?;1S+Kr#3!k-St?TEx
z+p{mYZO@&2BH;_`g9zKGuD5(L4d-utp7MKc-lFA~x6AIRy*2y9@!<H5qnddV3(Kuv
zE$zx#v-^0I)Oy+Cg347qC*41<68c%uZZL7SpK1TAR#_&-=5I0Es$Sg4T=n9z+@hNI
z_m61*aNT;HKl|uH;Yr8iB=5GIeZzKu@z?y1)7R8(v)!Dxo@rff!q){m|LQDX+>rFS
zK|kTA`P9o_D_d1(RGGS(vzh-DlDcd1{^?>#ou~lcCqa{p4yGtE&flQ=(RuRo11DQ!
ztoFGl?vnh@=9`o8>08F<eVN@CPE9&op(LXs^r<;d%0Jb(VgmQYPm6B9-7qtCqUf2b
z6Ek1s#+KY(qqA4Hys_`<%e&K`@+{J}c6i>@KkL|H@dJIUWrGj2_VC4(NG#cX;bX_|
zhC6}hT=ZO?l-}T1Vv8{GyS{0o=7r@OmG`f9_&>{{`(60*2?2Nea=uJ4@agKyUzDME
za?^(7-oG0s3CH}gXyP!5<y$$$aKqQDLNk_a=<(0~;Js=_yqb|g!Lv($mx<k4wY=7G
zo0{vPZ8^(JmP<buc%8x06SVWem&p?sD*6kUHCb)S$r3fsT$g?Sq(Vi<9nJpA7u&oi
zAMW@+W%=HD2fwUIsE*nDP3iYW=d+1NLN%q2wePxLk>#G!=Ah)ZeRt%XoR}rMXLzX{
zi?DXPxpL{G)yqvLMTis|u}w7kmUvKQc17v(+tw!GAuA0|1~^HTB=4!Txbev?@$$ig
zd*h~GDNjr4e!DDb&YflT>dW)JioPzm?Wmj(`eX5oIj+x+2{$QiI?0v(W7o|UJx^Y&
zm~u?9`Ps`2mzZ^Tv(1&;emGh>_-tLDw9yt%>$}=PXYR<Cn4MVNa>F|!IrxLgj?|kk
zHstRQ>3x2?W%09;*LTk@k(sW#j;;0~OQhrWr)QaNnEc%GQfuxvt9?Dkm-O23-Cd{R
zAl-AH?{|;$)R0v=ySHyOIdj<XoTXXf#uT-im69***0;)fmNcyY`^$WZqV4BJv-#es
z*(?^Hy;rDb!ov-dS@&vg_bCxR{@vpBnVV<&cy_;?c1-cOzNc98{I;pn_BS=<-c`0V
zTVwlu?cCh^N8+sinT1v+?Gw2eS?9IuP)pKW={L8cm8T!ex;4{u@8!b3jE*m#zqmbn
z+v;$YNRjt8?ia3PZsB>c<lkNE_lHiciSx+ZS?nC@{p(nji`^7og}FP=^*uZsyy(r%
zvS%D3xk`$`i$gx1vfgX8KYz!xOFHRq-#!t3werr2Ylm0(cC^QKoKQJ^r%z$F&fJIJ
zlVme{e@~pdm^C7wJ@C1Vro-$BZy!#M7PK!kncSj~TRB%()++epAM3|67oYuoQa+_g
zi+$bB)3ev#ay$Fx$;t=cE?bMfwGli&Z=q&%zmR2aV(OYL(=W@Vm(Qr&8KUCNb?4Te
z=Zeyo*PK3Gcl*@w=Ah*pVj>^&O`nzL*yy*WC*i%}wr2tnJ#h{P1aDs3`%5gTz%z2g
zqYH0W?C9P8sZ47B*DSk?Np(FJe+o}zTGX8VvO8F`a?4fz$ojSGoYfb!Cf^Ty_~u(S
zf93UD;mR=IG=VQuE*oyYeY1om>dcgLeM>C6uRFXybcS<Ru5OcN$zvbAu2oJg>$KQB
zA6&dUx9>+{eoc9^N{-sxZ>+qPoqnrotlz%1ob;DVb7%KNR@ozI=1Q9a9&dRrs>4^|
z_bcD>?As^CzfN9^yt}m3>tXWrPX`{F=S}ykuC7##eUN%wtGsRI(j_Ne&*5ybTb*p~
zzS_AUZjsE<NYgb+_xx{H-K_l@d`;}+?6||#L89Llec-CxyCm+YlE3|I;nhVP+#JiM
zoG3LGJ-Y8to!Et+J`$zXfr`(TvdZqCc)K;>={dt*pP9?vvMDUe_+zzN@68mEj=*)3
zJtRvS%F|{vylMTc-0{W#Nbm6_XC~cwpl$VyfBW4JLA!NA+urb<Ob+d7&-tD?ldnaz
zWLKr=^KWY$!+*+4Ccn~CH2121JnQ6<o2TX(M$1g!#vd6r>*9(wC98GX)v4QGY;OLp
zw9ByH_r;#*OdqL2E7ippbA1n~xYX_5!l0z^Gv<fz#B=Ex=1cOLPhN6;zQV#kc%FEq
z^&)BWRgTXW&1h+JWE5BBpYx)Fm3g=FTl0=A)m!Q@KmE4fp83~Bv$6GoUvKf5H+_r;
zN)6r>8TG~;2)?}L(xKJ6Hr-yef%nI%hts8k&s|gL(3-9!^itII7<*fD_x~ERo3AyC
zyH{En=S=vuCRTx0-uv>5&-ZGlYF_-kQQM}eZ%y>vyxBAV%u_#;=Q&TcE#IqY^YIoR
zyE`oI8SEdGF2>!+K5c%tqIZ7>r|_!7A(L}m&wh|AnPIw4^-x;+>wUc;ovw{#%?a#t
zSF_9h*!5D5(d+w>JsK{3@_{8Wu9x>~|J*Ite%K?j&BICD>{n~wzKwCu-J``z`aA9|
zVzb(tpOrpcNW43trZwk8om#({Vbn2c(XOVg6ADE8Ur2dN?c23XU~yJo@-amdH|8Tw
zF+~zy>a)X=AC!GA{>It3{MoPkMLnFylNs-Ere*rvmor(ppF7%9Zr!;}F{-;Qr?Y$#
z%}cF0u#BloRPy(_pE>fkswc&FUC6l7Aa+~j1JnI?jW^TXs|$p>?nfqzTJ{CI%B(Kj
z<=E7H@pj~v|D4>pTE<&yYo4finZHk$_}!VzV>O@2<>fuA_;kUlPYW0i?aFPQ`%!Ib
z^TByx)0?AqmdprHE4~=!n7>-K>JU$S$*z@~BHquQ)NxX1Zj}3?$x(MKr`CP<O}OxC
z!{cT7Uv_LRTOB?}sw-Susj*}BBd^61yS<#dY&K4Ou5f#oLXwbISlj$&+m!ApKc_yI
zUErjC+pbci<yFla!CL0JtG0I*2R=E!^7gr7Wx^(Q+MG!|)!&ySF1{If!1f)(F;)J=
zjrw`EOQSDF2B~kGu)WOE`yR)Wk8vCyPHc3(<KC|vdBkWQ>-`-wm8Kn$voaT+6q9uM
z=JBqz*L8PoOkY_k;&JcR<Qo~U6hfB=|4=tOv95EGrn%JG-Zbl-TNN#5-Sgdd{r6r`
z*|{bjQSHLru3OwijtbSZ)`=w~ct&02eV*y^;_xwREyg=<U*^dv{zzXVcCWdMby0;p
z=k#9ol{%*m9`U@XHC1u;Hz_&x4V;Q6KKblZo^7#loAi@#Ybk+;TEZ(*mftqkoY-k>
zJvBdks$~BA?EZ7yh0R^*3y&;be`V6$poQ$7zk)hd4?c*rEz6m)OS0V{@u8H`?VxYP
zX1Bxs>~xBm#eT2q{NgGHA7u%XZEac^XCDXUyf1o_ESMf%aQa>1g9{$M&%bL3@BaMv
zoT`tpl-%b_Ru&fRH$?=rZ7#k0IPKH68GZ|&EfZ}IoxYqS_6YOO6{hbtMtCwl^gXB&
ztJNFLFga(Z$lWFLGxh)d%`~~!c;0{hS?dySr9he7sQbAo=jE&9w*LC?QKq-zpzrnw
z^(D(rDAlm=W(By+dBF3uzpAu4abI&?`S;nYnoQHz3)|0leAHx@thh`V*GEa)pHmml
zbDaEQ#kXS%7u%-B8E{vu2(W76=~JGWu27tCY~rT_+-swM=UPkb(zv-J;o~nugOwMW
zy9?VHJMX&Ox0qJOG4a^v*PjA!3HF^m#Cu_CJ;U4ua`sB^*rRTVr2IFG%`=d!2(fv+
z&x%$4_r#64A8!A4f2rG^x7IeOLxh>Z+&S#|jnsHq>*t5BI=R%%?hRwtS2?lDJY29N
zLBr5bXPLYIrt7k|XM|OzmTz}l&)cFF?{|5IQ+4X6$>FiDCxjoF8Or%<<F8}y`Y-iF
zxa#b=+_}g4mY&(XxW~KR8hi>`)EHoXf11~mhlX)8S8Q^-6LmT3@C@cCzt0L`^Iim$
zW%6BUbU)0fQ@h>uW|}B#kf2+`&e)O|?^;oQJKr+SV;i?i)UWm17GBtTcd_=9K%V1y
zjFCclc8(&4Sf9@q-EaLi{O#G7!uS3AzNz`G<JflEfnTm#TXFZJVpqRSMQ=8D9se3(
zCty%x5pB2d&0S^rol9qTge1MSQMu6aze?x9w|&na>4<xtF%>BK^R{-6z7yyFg%=#W
zvgJ0;e#QCpaMz91PEQJwmLyn*JlWcM%~rgmfct#2uHVy`)q7=2>xJjud-b8iEjjeC
ze}(vyFE{LDYObGSds@vf--4+ly6aoU;;pR7+tn@4*juRjtXyB0^!CLWgE#z<9INCH
z_R2o1x!&jMf3B`@@AuEK7j9n;Gl|KyTyyS+hr#R$i!xckgI)}h-^|i~g`6$h>(%L6
zx?GlLfm=(Cy5GH&{<nwkTvZk=_!;me`S;<JTk#qqiyp_MiTW(d{=H+qfOh%^eHH!u
zI7W+AM<3fhy>Iu$r}4;B_i48btX~{6F8|0L(a3zyKCElgk*UTtDlE$tFFdxax!$Ya
z!x4BSG<fdoGeX-`bxf~ye>UMediQ#Ejh4B*^|wi-HOC}tkCa~v>5A!Ff4yXXjo%5Y
ze{PR5zVCdZ*6Jq5@$^GO;#|e7C$FSFAF#T<+$6K4J?yZuN5@@_qc1%_PPbdU>2ue!
z-V@!AOMI`UtbJJ2zj0T=E1~&ORUaK5dh!+7Yuj{PN>s6ma}G*psZn@!_Jg{>q^@KZ
zt@Bm3A;MuE(_If7)rdO3apPw7@8U)Y&4Nch9)2EZ6IY|tm3&<Dp3O$rCL8~b`l->b
z>&{NP6VIX`zuj@!PlM_=A`idsnrp1NgG15c>W-}zaj)#UZUlL{*ngX>#OceW@KDIQ
zZKoq&>88C36PFoIxvTVBHZe!7bL-<?(?*YV8dtsqJ(~H&HLOfz>PrFB_tl|GpXek`
zT~hjOTFo7)M8~HcZe8XfYi8(#xXfp{nNq{QE!g05$vKM-oybeBBG2VdhFdjW^Z$Ng
zweN);?s*CSxAmSAye=9(pMlpp=611<hPS!@nNnlJv`Vi?|Ht##+UIg}RtGLx-8Q%T
z-g2G)^SHJ>G7M1+Vp3ER&H2u8M?>qzjzdBdY&NDo^2=0JTHJHGRaUAhPmb9$&XsGw
zCgbC8BBAC7W`ykj{xj>gm(PK?<o>?dk{Nt1o3eKu>3l1^oX=k(FZ|H-i~c#ECfz(J
z%-eN}v7*}G?$RVdhU`mUJlPx^LL&slc64ldFV&N--LUD!nSO=pqq3eWw=!S%3u1a0
zX!Tjtv)<K)uTxg{C7)66&SNK+oJ<m3=Oz5Fev*OF#In<(MK*WTE16cump*Rp<UF|G
z#-EL%=NFoK7qWNWGZwS#`@3m}dgGm*Cgm&ZZ_SX~&U?4+#%5_rF-wViyjdQ3d2$&l
zFDlJB?tYFCUgfE{?vq}erQ*wzL22C&-ie<(wXSQ;A)V?=Jss1PvkNL1;%@fa=m*~y
zsXg*?v;Er1`f5K<uZ>jmJ^G+hj{8*S@wsLED_irjX4mXqa_ENjOQE}Ap`EJ^=YGC-
z`{vWIb1knf78*02vyUuLxvjO^=;Vz8fAP(#$BbW2oNBpdeahm8i$7Kb3O{^hwRsgs
zn%oZ0!pC)D?5_omS1)Q`?Wt4rae~3E+ZuQ6To<S&uD$4QH_@3T%`8a&MAqWU6k)*^
zaVhyqx6kG^XY+p(pHwo%X2pW@8?r7vKTx7jb@Z3rBbKQ7vg_4e9xrXzYrA=0&h6^9
zuT``3k~TfbTy|oU_KFP47dF%HOyS&YaB#sf!8<Mt`sMvw=J^**E;M|4gF|THRSWKp
z`&IuxoC=6NBX8KWYW41ACzBO#|CRAASafK1Q?p{9(Y{G5xvtE+FZ40eMpyIXHc$KP
z9V?r@slDqmK2-mP@5s6b+K104mYiC%xcB%EL)SMN&#kj|-naOZf7P4S_+0h5NTs9`
zx0NlfU!M2JLw9yjtMcoXuZ+GMe^zKroxIpqZTZXBlUFV-^taLu-sl;8>}#x_nfSEI
zbt{@!i&LZ?u}aB(Kd9^!bk9;P`BmhE?LB|?$bDI25V_var}s(Gi{Pg|g}VY>jqmXt
z>UiMv<HfSA^2;r2QY>oEJkEHy`Dky~ze8?9{E9c0?RBjVy8KzP?`7MjlF0@e`hBuW
zlGb%^*Y7^1@H{Ny{~V_j`)YyTiNB965BeeG>%*13?o+M!L;h1w4H9eSPg&PE;gOx^
ztL8b+UI*Gn?ks=4dBxpT|1Cpomfa2B-r@N@FJ)(h<NAubVHb{{QNJi`vP#D&^uoKB
zg->|(zOTre@Zg-rTiJkw+1=)k|3wDtoGS2NExS@#&t#2?wahltRzB{V+hT4?Nr;`8
z!m~>-dW(7H3!6JvOuf0XWV?cR(-%$Z3Ef$<;?vEdP>J;`_BzSb9u!;qt}rK9ajBPp
z%Q0iy!ud8^H;USLT@Bu5EMJ(iK)<s0ifQqQlc(l}84BOIES&vd;r3^h@0q{8npdyx
zzHUM~tM!CKuT%|JJYoqFyzZv;CG$LQ?z?~6$_r!?vu^fppWd<cxw6g9E$Y3ie^nHi
z-#Z@c)}*R=U1!a0AMWZ+{?}bP@0~ADV?DHO&-dsbIp1HZJ+&`+IN_N^^N~AzEN+XK
z)szl+zE{5LbkNtEZ&8ucgxvMZemy)G`BH9HPknO5mZr|aV%du#@BIs_4t=WYH}%`>
zdh&jb)Oo=U&SNSri?rWwos;l@?anO$TjnVhpRRc9m@9YdN{5;KC$os=meVCA&!4&}
zCv|xW6>oUzw=II(Dl+%9@+3DQiNXuZb)H=C-Q4k<?VkB^7Tw5%vToOAbuB;V&}F_p
zIm_$kgkOGqN2>CvJL6VnBa!W9B0+)g4bQpiDQ#t+vf$qG-BYezY}r<65)iXFq~OyI
zi=@Q8wj0m*T1fa_-Tlh;PQ~|HrL}6U*WSJLwwjo&_NQ&B+ru+P+l3xp^|9ex+GF8$
zW5SDOhv~usJ(mkBs^8UE?Xvf4dsniFp>Gk-p*FkdDSs^b7Wp{s+I3v*hHb2?;64#O
zsVsk^qnu}a4`}{ccDt41nDLXkcY^cN4(Be+7w6ahnpa_ZJ5bYjrL5m}ZLwK8B@;~l
ze0gIMBvG(oL%@u)hdX<kpVhrTzWA$Xa+I<|g2uh|T*s^@e=g9`pDD0jD&WDg$hFDx
zO16sMQW~Dfr3g<r-L=&wr)$fxF3v;jJN<Gd8>#xX%#>T=Ui2jJv+e0lzipG4_Hi!V
z%MkCXzaa5f5L4%_m`wF0=Urx&KB^RcU>sYr<Ve7?i%XaHaCi0FF5sR!y(h-~BIiz<
zC)1+V%jKG#*pvT$_s)6wi)VMtWIh*d^pUUX(+#nsk8U!4{Oq;xtDC5M>*iaU-7%S4
z<N3VLsTn^sK6CGgzJZ9j!jbb8F$Yy%OgmL<IPam^*M&3U9xb^XInOEL&IgHvKdHwr
zS+cMxSnYWBvc<RglmGuv(-)`i9&?I{Dc+T!nat1rb^GQM%hcKgcPl5Is&V_ScC000
z@rHG4mzdb?R^A;hrWAeR(PEXYZ<p8wPw0t0z2?}?Ge!-IUxzYUFWu1kS>`6Ij$GB8
z24CBmH#E&Z>Ipc1+H+f-GyA^WB%7RTe{U%IdQO-ec(857+Jhn=euyrAe0!C8@UD}|
zygMJdS*Kjk5IN$>xw-0+x7JOmh*t~LFVykXs<rw(s9Yd(##6|lLRM~V?jx5Y*Cz1<
ztU7+uyS&3k)@8EEoUE$Symse_GoqU3UF&@7E>MsobV<{@XukRvB^|Ei&&}jY9yfG7
zeQx(<$F?uY-3;l09o7eBme+oBiBvU^Ti<cb?%YzDdO=&eBdzJ*9BNh-wOr+{zo{ko
z_rA|N-R~;ZN{?*+?7wkUV!6ENrmTB*{mF;cwcPjOTfUclNu98!i1zXF-sOG2<0jgK
z&+$pPZOK)3MkD-XB#ZSHwR^meADrFH_o49qeAUP6PE7QQ%V5{znrzZpn;w;Wesce&
zoe}r=?LO9Q%1^s4`^|<`)Z}COq!Y>!MMocJynp4XdC0P1MP%zHgYT7X)}iNZRGH_y
z+uw9v_O<`vO2yl5#r~0-<UW7tnVxI@I&ZyRf%W-{g?bTI_s_a!7<^k&J@u%B-J<48
zMH+dVm_Iq6^o+>2(LH|7$@<vOS?w)rj8Y}LHutOE5Ki|H&N^2T7c}+43Z*q%!q1ng
zo#D8kf5PR#=U=buCKwd`cKhO}<}}?QXR&8{PEzvJhSPuZV;8sN{aU?9A>{vh%iEf<
zP0va!BP}{jPvll@x${6!?(Ais*?F~j|3W7z+0327Q9S9@=I+lGb=6;jeOnR=cd(ZA
zT<UsQV{~)!jg?OMb3%XU2>5uu{Iq21)+PSo-$hS0t^9WMY>A7;?U&zUo-FFQA+}!N
zSCvZ5BDa+jVhkS4V9G41;9s@Bh+Sd1hNu6%!WReTKlxq$cJ1}m++zM&-@h%hXE?(w
zd+yBw?uvcOUz*+CY~R55!RORFsoCzwlDT%OFFW@vaq6n`ft%8mC%-hC79zSNNok#*
zJ%e?x%%%L;IC<XlR%}-1|IJu3{mTOVJ54v6FETz2TBO;2W8TYWFJ-=6;PW@pogv`k
zzE1Hi`;_*R5mUD4ojtuSWrNC}-6<NAs+AQrc?Hy)`V@?^JTBgy8>6sU@wNNEmRKI~
z;)T=WK7ZQ7tMp#kS$<EhD4W|$#tRw(_fA-8p9*;6Jk_9fj!VGp!>4~KYuu2R{jzA4
z!$*z_+=(0R+o(&H?zh^;+RC7Gb<X2yC)|X@+?)>Xa*ZqdD#G&O$j3X4EIs0?%cad<
zPE<YD9V*JnYIc0x#xrw%?pmV1Sg$wGuc?lS?ZnG6S=$1i&VO2*OS63+EKaufXv+v%
z&l)k!_V;v`wi7PWE-b8NF%Ma0zp&X;yKK)cWn+`n<=v+x<Uf4c>39Fw&t>0}F9m6`
z%P*dAQt0pdcNJ<X!4KL$y_;S5=Fto3l*DCo_gZ#Lvs>+^$8a+vZz_Y>I@w)!``_L<
zyJN5WRnGjRydy!p?RUDxzMSFSeTe76CE4~SuZvEc2Q?cm|Gf~nyL<gVJ<R|Qhh0ut
zpU*CObFb^0n)qRX6gh)sM*jc5Nodrzs<7xxU_ZMg_XArA+rfle&v(yOdY{K;@NDDt
z9sT!R8Xu-he%T>Y5`ARV6PBwt-fXl}Xz{Z>d3WQvtO=<ht{2z}SFmKOSvXZqD|#mT
z--rLSREvAzdMP&F<=kbyoO~`u6An&q&U?-Ns`vi+r?>J0gTx#&=WS1&b6}&w1*5bu
zk(%qp`ycJTad%n*d*_-J$_i{7N*b!3Rjsxa`54(GnVK9Rc}n)>hYd`>14@HA_^!Wb
zt#S*^{Cerwtq;OYS5t-7zg|6AX%qhonWuLzalhMMvZA7Q%f3x!yHvPp8+~L-TDCMl
zo?Lj$vj5O&JAQ`qYU0;;jZdAptkG^09=EpZj%mU^*Yh1V2bm^rshQAmQ6jeHB*WyH
z>_37N)NgM;BC$T7Q)uDbsUE%A8+`ufTsO5`Sy;=OrOL+HACYoA_sCKfN$JX7o*jNB
zyIweKP!I2x_EE`W4vW3ar<9y`R&I_g<9e+-zF$IY*|whe7nJ(?b=OZWKi$XMo|{j~
zOj$HxepSx%<m!j|2RCf1deQ8$?d^6J`TH-ASGam5F4_FHzpyFy%I!~A6c>G)yE0My
zHQ&0nzYHd`#Y%opZi?X)HhA{tQ16ABpyFqT7Ja>3#pdkiFzNk*NvCwRP4x2KRHXaO
zNS(7-bitbHHN335R?jN;&;6=;tVQ`>?+Mep{mW$EIOP6L55K>0%Bqm|jUhcD0f+tM
zT2{M$pJaTlQR(`*^jjRK-WD=+3vAdsU2;dTio@ES=dvfsG))NhVS870vvBE)W*vb|
zXJW+eJP>D%)ez@9JLQe!cXiMAbM|^BYWP>oYu;yBboA}FBMZ+NyH$HdUAQ>E>_V>C
zBj<NZPZ(C5$&FQrNZuj*XU@A>l@IU!E^_+Z_2j>b+**sdZ>m_VEjC7qRi+y3-F1Zb
zT=QLCUFLm`o3^;P>$|_;%h2Sn(k;3mT&VWk<CWZx@C~bzYf59*Y}|ZXi964`rRe)x
zhSKQfp8V2Z5}s@FmzN4@%~-I2FM|Er=Ow39`+Q8jzceYywU=_M9G=hC^KHtN6N`lB
zXt2)GWOUSDuOs(mkIeC$rm0b)nl14KE;e>0EHyi`yEoK7J>P71V(slk;VxID{tA0d
zJIrfkYrpEm@*PJmA7nYYR%kH`*E-9h)h}oBS*h>pTyBuONUq}Cd5yOXXC9qPNLGIR
zh3`*B@4fKZh38I4NS}JqIPdwxX<g3*40z6UNiAo4zm=uM(=PAU<B~}m=I(Caw9AcG
z^mBA^masFwRsM9h8Jy|!3rlZ!e;58C#<J{!z=z)EZE8RBk0)xaczI7oB&Ggs+l6{h
z=C*xPb{5X)y}SGdAA{YgM5n!{XT0@nba0+umnOW4Q$5w6-}!nv=ZjK~_%Ew!<|&Ix
zm3=qk{Pr<!MbN~cyoiUBML5che#Urg_d1mGJ$!;frvt}1m7ty-KbGVkRov`6lTZJ!
zpwYX{cc0p9n){(FelFj&=ato)osKK=yWX_E`GiyTuy*372UU#4j*3G2l^)OdyFj_!
zY=0y3ox7K1T$0OoZc_f*Gxx~;f{V-c-MONzcKmJWe2sUz%61(;Jfq2XLT0V|i`$+7
z;WNtL+_@&l#G&Q5VX9BS3yYH3o@F)G$)^-8Jtn;5`Y3o=it)|T52imFUR*g<xJ)DB
zpwW}ptiQFx?+YK4)GHTe%6PQ-P|@tv3xa|_o++d!S<X>c+ij2-BCw;;#Hp{V>Am0Y
z*3NnChgG_5Z}0uCY0lpiXg?vhqfYJfvx*9}b-$I*G|D}8>#n(De{>;#Yxmmnw|Wb;
z>>bJ_yA?0*t1o}^q;r4gtoG%WVlN){YhHexZt*}_ygah$%bOhUYk9WQ&Rg|3xK7%1
zKv3FOtf;TKIOzn_8I9v*g8o`XLIHE+K1Us&c+7X#RF0F27|W}kWKY=Boj)aZ{S?3I
zfPKrVFRR{vzaahS^OHa0d|s_uZn-XvU)G?_z+b=Y!qlxEM-H(WdX#9ruX12-60B2>
zmv()Bjzi+%oa@PNrCd9<R8_P*7AUC>lU*}Mc&?4bjuQe8J)hYeHlCaO=4bq)mp`^-
z-8!D-)>FwXH%ZCZ+v@5jQ@L~68W(Ju^;%cXXAnN#Cstc^W$L}3-8XqSc0T#5EPHjg
zQo4**#q~FuS5p1b!WJ3uNVY%9>{DL*Ym38fS@wKE&t<;~xHesSxtud7{B-k;T63XW
zbI$!fw>k7&3Hzc4o>J=*QxDvDVHvZr_o(By-8&{O&{AnTpwZm7m%YDxo<@5`_~!!$
zU8Y1bp6p*0Jb4c99*fEy;&Ysn(zgoSZEl~s<Llyrq&1UX__A~fM9t-!<xu!-((O+i
zHow#jR<KKFwj{F4eopxIZ+qc~Qjz3CYEB<mwwyN<Vtl}8e(7iT-8A>9x|j02yC!t_
zE;<}Lk?rLb*2Fn2g%uooX79FWI^cDg(S6ATVW|giSXH*~p66#dLo7$@YuvllJ3p80
z$_!jAXZ7>y>4_niI~Ek1UEHxJAWdXV-1}+K4hxd6wlSGCuhYop-+c1Hp>@S>%U1pG
zWEMy-w*Td_X7?9g1E)S^i#NY|7ffDW%yY)z*F*Ou{wF=|pD1ctyU4O*)ygaE6GUe!
zFMqkn&)BS#J<BxG@m&8&)!T}-$zHiF%+~1#e7+xOm(~1P?U!=HqC_d^>mTkNx$UXP
zEFzf9F5dsY=)mIq6a(dLUhXm%cdGAyIb+J(W0_M^B}$VyDy>4cmK<}d^4)cLa>A7z
zg$vAoL}oYLnxyD;B6oG`LoNZU)EgO=J1^x;z2n3?d!emJKU*8mo2Q?qUtQ92i9bqn
zXH4d?&AwaQE=bS1dEus_x~aU?)w#14zZGhJHmh7zXkonTru3kg*gxx;Tb5SLal5f)
zb&PZ6kHw`n+nJ(GO|`c~O>WDwvzRp7r=dOU_WK``b}WfGDK|Oe&4Srcw~z4@$MgO6
z6m9q9``9Qk`Ms-6!HQqrIZ_T0PqL>@5jdPE&BVG{;U~vrudtIlnXU;<KR4^@%dKp7
zEG28oudbbXqwd(k<eRY{7x}lATiSAOI1ql;MY4XktcP!rwM;^TyoS|59p8@(lf-{Z
z+OIqy*Rtg9Db)=QU%7b289Cl+9RINIVnd18gJpk10u1kMuX6eORAj*_mZ$#w`!CPk
z)1NwB#YTZo=i%Mo7kUjjJ!Tdhm-LssR@ZX$nU?0VIh&`Q)}R0G_PxHYCBJlxx9-T7
z{_u+VoR^LNifz`DLQ0BqKCC=$I)_iKHMD-lv1jqI4$(3{ZZFAE&EFUDO!3_7f{hN>
zt|n~!6vdy|=I7bBSN=`-<;bVC!FS~HOD`BlehQRUnfqPxgT?OT+u6+xHiajSNNV<o
zX9%P;O4u|u9)79zttB+l@1xp@$W=DCcSrHJ8RqY1*PVail~Q=kw9^d@|3aOF)@1xT
zGQFbX8&~XB&VcX_)21vl{%I_+(x@-RNj*y{{_nzQeN}<Z({YStz6U}kesa6=PD*ZS
z%VMUJ*_95zT-dDth+ZwW>RGqeHQ~G2&g?yN1P)%wmTz}i?WG<rVe?~qd)}<p$7;gg
zZainUmAO;Q{&?=h`Fb6>sWUm^7v&!p5u90|=3oEv!8Y5f=_Sey)AsUxS8GV$^5~|;
zj`Uv(XDbD@yz|j>{l=5F)3@Ljn-xoh!}E*GRjaM6jvNW7xFe`gp_$pi<)9pL@7YOr
zWe2r)3+@%fwl~Ez{V7&4dm(Fh!B|YBzT|t{4Z)WaeNue3%f07V^Z7v4=~rJf?OA$%
z{><j<yCC!VFkf8684j^Ep?jPJ-#z_!EWN4Q=IFsIJs(mhZj58$+o*DCY2AiX!9jLA
z%r5@8dv_=EgxsQCcRyV0|I#yg!;fX}<)-SZ>=fAZ;%~F(!`*rUy5<5!%U&5elu5o%
zFBTC}c<Icq!kVRhv3HT~+NA+OGF$a3-P|<=UHRr}9FzEePFJA$=~B(FXUg5X3`-hP
z7L|lb9}Tu$!Xb1`Zl;PF=e<~!6Q7QLo)IFvQs!5Y|B3^1z8cj%?ozY7IxpI7i-SGa
zioFfa$Jr;mGkpK6;Qq;lmzRH9_3oU&<=(Q-mwDp+ZA<<<y85})Omo@aE&88$^&V{y
z*tod5OK&T~M6-p@;#d+@A{{j5Og;8^^|F@j?{3<P@}zEGqS6$r`i)63X;I()s-ogq
z0Tq|3(=;xy{AD;V^!LoZ*M{nhLe?@xDUCVeXWhd+8Xoj`Jhj<Y`1tdt3wc}A4=g{Y
z#853;+04Q}cM`v=N9(+QqH5l$lFvkUdLH@oW%1M7mz8YlE;K*8SW-|I+O>T0g4CYO
zXU9Dw`Z}+K6cx{tRe#&U&HJh2(5mLV`!RvFY1<bke01`7E;40n;gq^*5?l3HMYcOJ
zH~CpOm#%sF=0y3u{*`rcUyccHf25Su7XGgFfR)CcVjbDbF8fy~E)lsa`X%@M<i(w5
z=DfeoUeWz#G84P)l(^OdC!cKHIZ=6u>J{@j`}*D_v2VY=_!^_DkxXYMqe|KK*clJz
zyEDXXE$&&pp#E3inez`F7X}&6RyUv2H?3{@qyp2;mcNx2X&#adcpdWQ$jmiotxDeN
zG=}9L3^?-6>JImcsc$uB@08zDoao*s+u)sf{O4hn3%d?Uod`NDSj2aE4#VtU89wtq
zol*aOM1LpWiM`A(e^u<W?t3qIop;B!ibpw_d-x6oopPL^B=tevd*>VnrEMEHO`cX&
z-?d#MZJbl@w0@4N-jNf^=bV(={CDtZ?Q!Ax##y0|wEX8gvpMD8)vufJS+7kf46^bU
zurN6q_$XW`>6^KFpXSvQU!Sj5=9_A}eMRY^!VSi<r+x}#1Q-9{VDjm6y}XXyj#YJM
z^y>>ZI~&gP*)I6>L~*6&Oxv?hQY$p-ckq=ns;;qW;nWYXx6@_1+;Z$-@PwovURQ6d
z(mlp)6=twfFW1PyO6zOmo}CPDvK<(FHoTGRyVG{q)$>b;xlLbyUs~}Vwn?{Qo)s%r
zZ1?EWx0Ts^>Rd)?h1#xI3w<{BT20Lco==^x-&&M3tk1Dt@Mf{r1e?suk1ZdHzdfOR
zW7@9|d+&BVI(gi_QT34a^ipf(-xhg3m(DQ$Vm3N)ckP|kUqqiPs~!<gRSkdYb%=HP
zg)4LV)~>B&WvK2h+q?c;+^NDltDXnNNG+*lmb`N_dA4F*BIlWvEdLJ$-#P#4#_T&x
zCtqCZpEpbNvHDMC+2!{$ynF<o)E&21u`=4oWiaVlKJ(|<ent7cJ!OYvqK-5Nm`jGR
z>#G<DX8TohNvE*?&XD-(U+th-)zG})-TEIot4@A%J~X%Fn44MDs>Wl9T~qc8uF9Uf
zeFJaEjU{cH^L}Z+kDpuH;$b5yv1gn7N*A7d+r9eRS(w*9`OQCfzl$l;@9!JzSM$Uq
zWDAsSvlZOnvFrZsUpG$1e5}^~cvaCbL|xJ8okQWBO4fCpi6{RB3cOnpE^$Kk6jQs-
zfqW;IR*6Mg#fy};t&fvEay0H(#|uX<r3<znW*=B7a`TF=(-hf?BkQI-e<G%8dit&U
zlKC>L1kZ}Py=RbGY{8^?cDC&ACmgmF;-(T8&boPBtn&ANs`I4X+{jCIc2h}ezMbrs
zboLWoT^xpu>%MN`zvK2JY1^67-Bvuuk8In=x0mBue1(PD++FpY7dH8(Z94qH$AM!}
zt=f8nQ!CaAPF<yOb>eLqzEdfiGE4b)Y*4%wbudBmr}4QDzFxQD9<6?~&ax!rt#s)j
z4WXAjU0ssPcBrkFH~VN>I7dreB-m4UZ)IfC^87Qq19jJ0D49Ija<b)8!j@0gFSf0D
zwC+G{)8Uf$u75lyxGkSFe_vLT_qWf9zpZKwyiP@`Dl{g9D8DdUY$@|CEqKL&a<1>H
zivM;g-(0wD@9#eD^GnU6C7xfB;@i1o`KRM$1=hdR=jd>S&bsraQcP5>f#;dI%)`x7
z7X<${WxwN>HIFk=_T%y+KN3Bq)W1ZgGwdi)+H~!wPT6w74d%%jB1~3|p^dR_>s+kv
zHcXoS_o$rqnt!1UuHB}IU)2?imhas=$M{3;ud>e;DZ#4C+$=*^ZI~08yFl@e#)9`I
z@7)&02LA|FIhxn**~-^<v#hhh^|tkk*_V!g{4}}Rpvmt=^>^jg{dvDW6uxRSdF#&m
zyKDV32LEJJdAmmD%P&(b)8gfpG(3v<IMs3S72RHYZ4;Xl%Vd1?Z(P@$wri2}9>=CK
z=gQf7?`FPexOyV6j$?@rA6s%y@8+1&;AvccIwc+58%5qbIp31|7gzlCbk^llHj5da
zboxd3TrzUlu37e;y@U11v^7oh<UakK<yBynwN9W||Np1A?5E!8n0T&`Ft!ml@pL|Y
zZwCuoYk)ZGmZ_Cjce(SY&kapHkm}C!tw-mPt6HSNgxeDAKF8v7qr@AHs{8b90$&Iz
zO_%&Sb0TNK3g@GpWh-tow)&bKJRz{GC?v&m>4fz4ih7?*4;q?W4V)j>yYNIivs%ot
z4mUlEkbrlpiDv9Czbc0pd<vX(ti9do`8QXu`wvUodKO!+5n;00`qPQc<>FSgQ)g6G
znQm6f-r?f>Xa2gdV>bI_53LnYy};s@wz@CSI<C%-&n)VMXpG<V50%Ga67IjL;|iW_
zaJxjdA<A1f#HXhru4zWgKaol5Cz?ttD?O8RW9*#&+&;OIW&e(!DOE1L_XPyL)OdDU
zFYVZK;sD34S8Ho_-uhd|bK#ri3RlObCcedmpStch6l~wuv^?Qznctbcp`}SD4&O`J
zDXt*w`aJy7jl}8hJzV)}$vrQ2PpsvREZDL6m&2P2>K_}`>N%Dlir=-O*QJp6a;ul%
z^&5XyR%BmIC``M=Ar*UXR#c^NSGStKL`K0LQ|7dZf9}1z;%arGWM3F_z;@3MpN!Vd
z*e@_&fxq=~&hw_u7UNn0jZJggJ{KgIA33bqZJ^1dwMjSl`p&ZSzj1zUC$CO)DU|zQ
zHGlEh*jEgSOfJfP>2I!XP8Th{By);eIj^W(Dbz@_{LzE--EJ`!aSC$l9Ok__-5R^l
zaI4@U&VLTJADjiw=`IlZ-nB&PQG381{!`D&G7{z(ip(#Xu{}=d&+HFeIUn>QQe)=p
za2{M;wu$-Pg|aiN4@}r+=P<FjNMG;i!pbxAn9pnsnB3tf(z2t|b9$8LO`+05N#FL$
zuIni=&sEjq_S>jEb%&Cw3Zp##zAuc<+Vegt9B0q`F>C4C?5mskdaN%Be}3_>&PU_^
zohg<tEV57Po;?&AC~L)D7!&!dzUSPLjNcv}bA`A=dyOJvM89i^_wnT2=la=F)Afc!
zYuT$`ZyWb*a>!pjLA*%hJHspW)vE-byi*dovS;$5bdjo=-uu5ls=RoiwWVf4=d(+T
zmmIJRc;|M(IwHfnxg~J@<$se8+CRIxV%Osat7EG!GVSACGHcP5l+c7Xny0#pP21T`
zl6XzxO4ZW1c29Y_a?f6&)=hueSe^Pf_h!%iw&0;qBLCjGm-a>+YXAMe_nyE4zA0yx
zKkl)7@Zj~~?vl-?Z7$xgT4<`b-Z?H%W{unpri9-1W`o0*-fv*NGM`6f%^s$AeEjlT
zV^+P8-1^nQJmpkqYv9)VhTII#r(9%sUv&RvU+sswp5=dJucxkKID6-aN5+p^jf>;O
z9eDrlc2)e6w90d3*K38E(w#4sO01Wv=5OF%sj#qnS<&&2Gg@x#GU;8MAuBP7?Tb%B
z+N0a~?Rl4Z&sHRDvi_hxpU3W5tKm{*ezPUKlf*pUCkseKD9rlw(#ykh)gslL_)|O+
zHY|G{;IRM7F+;1bbxiA5eP{}GZFfAb`O+)*n0wRHv$sFX`#%cyVSkk27-P-1xhJ!b
z+b*<JFu3B{MEwKP^cQ{KblA1&!ZyY;0(V2?*dsRm{_gfPpVK`0(TdeiDo<IcM{;yl
zg!elwOmPa|=<#*);R|zFi`?(*nst4}0|#AqzvRNIV^?2q?mDG+@2`a6^>vR{o@7rx
z6!l^k>&k79wZh+9wr}-M)scB(s$c1G&2x<lbC~_EuDIXKyG|BHURw41)UMc-FDhP6
zbZ}XF){rAqtLWrS=2*FCe;Jp1+E0wPpGmejyie?_dWD@)T;U&P$9UH&fg}x9;ZrY<
zFG-a3eR5&f;U{M*9Hy3koN4^j?;g{nn&YfYvORBS<cB$_zZd>Jr=?Kve(aGL?@1#6
z-n?X=YTeGaX)zP)W5xFL-RGPboX>b$+*96Z(3uqK|377FnE07zd(N9DKK6)H-h0bv
zT6N<E){;HkQ<hpOZQ`nXSClnR+evAbaJa=Dx2l)wJH)Ikf9PpFv?_dQt9>WLy!%_E
z(~iq;?RGp_-g9Y||J*<>eN*wj4Ua!bl-yMhm6|MK>Q$VbI<a(}n0W9CE+aqlZB~uv
zb<PC6k9%4l#P!wsy5Q5Ww-*mI%3o44P*lEE?6-Knjh`9Y<+Y}j#YY&*MN^-eFS9yy
zB+dMEdNhmUy+a}FB~`p^4wFK8H;cU!kmqxo`0l_dnQmdR(~J%8cfXwFV8pNO9AYvv
z+x2J2p|e{$J*M3#zjHP9{jzR_NBz~iw0ocHyI+|*;UJ^xRNox|*H+6~9g}0fwSJG_
za$D8;yTjLS%}bh*a6rSvKThbePo2jkrH-lGdsd%Xxbv>CnxDXG@hF9qL+2IR=BOpG
z%vpFPrR>5%U5#x0xf2ZkSXWln6qQv?x8=8b?!g+eV0Mv^fmXzATf@NjKR;}#XWO$Z
z$!uGey({O&wSV$kQ!gjZt()+6VZ-$$PrchtYrJqxtUSH9zx(LDi}zCE^#%4!{cq%7
zo%)|m=tGF0T7Lg(tG*Lo8Vu#nYcv$?{&73R>g-Et?J~a0%jM$d>%L04k?y&@<WAa=
zE?cGv_vfXQR~g8pdhV9ZkzdIm{&Whv<0cEKXzP;QI)(LJxs^ThdL>j7W>k7In+x%D
zzg05U^6J_Zawe<TGR4&UbmdC1_D7<5n`0KUY_Z>0Fyk?oa60ElL21)>&jq`pSM@(M
zH$Ttic}m$yq1p4ool|UWH4F-Q2ir1qLl+smny8cLr^MA2di#FtG$AJK#QPI`bMKb#
zaY+u>F#adh6UhHg>7e7~m)>F`7aM2BX!h7nxmha7J=yX7ro94ds$ZEi1zLvMhVWmz
zVfi4G(^j~zKgaZ#%cn;5H>ZwF4qUd>A>ZX+Sl(p&c3rPc470Cu-Z9>_WpeW!x7=>W
z2(}Wh<yLW5J~fm)Ir-*i$?pS8{g$r(m~}l^CUQc@Dut!T_nfzGQra<LQjEx9*$4hF
z++{4M>xN|2w*0uS($?8mH@`2+Aw)Orn9f_9gohpeQB1Xy4@`M~Vsf-Zq2lWs+>c6M
zTh_buyxh%Ekm&p1lgL-ii!0t7ICD$x&92ycizD)EWmdg^v#4W|^K|E~1Dnm2cD^`f
zsmvfCd1Kz38Sk7F=U$xWbJ+A;0aMh|){Z}xt2(dLm;c^A`|jl1??pYbbrxtHo_>Te
zaYxN>7xhV1EZa`E%h#XywpqTu^!LU4&t|_gjsJURF%S3FsLjd88_exlB~q)uU$w9O
z(fwum_Vsn8zh|$vJL29taW6~kk1rRw|8~pgo@!q_>3dM`4S&0+U-##nH;UJvZp&qQ
z_|xOv_vFOvS-TTfmni@13fbanb1lEF?DzZa@%K-?-G8IL{yfi=2ad;n^RDgmC|x<z
zb6syEr_ueoUz2ZxPPqO5dV2i-H_PpReti4-zMX!_(T@i^E2A=g?tODothqb(S8@NZ
zUBTA_?O*)g=w2&%xBkc0e|I=5ce3|a*ZjWv_I>{Ug#Z8T_rCscIN9m^_cu=AXNB+d
zs55S=n)?B^z29_`{NK=he;;i(|1B?l<Ne$H_7BhdJ1^p3Pbm0W>2m4H_gkNT9-gmg
zZ}sz8>3y?V^Y`DlTh09M{oiLvvD?!_|BLVb{qXK3tu6DX-`y3(kr;Yy-6EyA4TtZ1
znH0GHmhy@~-HkGLSs3TGIX4UU@-1jwIic!_v}=Q_KT|D#)xn9yFS;G>l@=F#GT7v-
zUV2-kf;T;cJ!;v1zdF6cM?7aTbFpi<ikgTxm?d(*<tgS|6Uv|0U8U)I)l_<#)Gp1p
z8lmgM9!li0L^W8b8ssc;a7Y!(t6*jRs}}Kn57Ygr5#AfhfB6<1P{_Dbcx>hU*{<;^
z-f}0`t|(}FA-m#=?AwW@%P-F?_~NYM?0Q{f%?7S7N0|BLR-9ZZRMB8*{pq#ZEoLpQ
z38(9)MC7bGuj+hlMc@jC!UYf43jLLPq%65l+l|dxQnBafiEoGhEjPWWnLW|JnrR~U
z?|GsIrsv8}-no1ArDoR!<+%&m%O^hdvM{O%wpq7J{dw}dlR*|M_%5DI*t`Dei-d}V
zr{31A6Es}k1)SgZqD*GdJdGgZ9ee!ZmsW1ld+W#&eb?SPJtS0Y+a8_yv(|Q5wi%=?
zU$jF0%+<YCZ4ZMATu#~5Y`HffexsIVdhCni*Y<k{eraZjt_k<KcbDCzj*Bfo;%si^
zg0wK%(=6Lo^)2xHT>hqNLCS3Tn{J7X#Y@C?{PJ7gx3St~J5T41`7ZjubFQskT%WV$
z$bZd+0#oHOI-lu8CRk>$TnIh(c}Dp5lZ|HeK2w8QvN@iM+}`lhSwGoz>gAWEG16~O
zmN37zZ7I`|yBXzRKGXJ<-C0ea8xvi(H(Q(vv<#c3$Q#V`@R44S9!qfQ`U4XgWA-rL
zn7k^PTS1ul*q*9ihP-<|++Fp0cHbQT70=r?cfUMSWW%#y!D{(=Q<NhX8%nPC{^IPp
z>V(YHXom8(%b)lD;I3kv`s!u;hKNFDj+S`N7SSb--PZhZtP(d;`J($~Qr#<-k_n2d
zemU+hyvqGGHRy_4$%jqHG$jK?A2^wp#THqgR!+FI<~&o4WEStvDbl8_qKs2MMLbj5
zk`}ylsnv~A{<WUxN*3KT$WvKkdpvQnl+;~bQI?daHK!yOJW8MVR$^!JrSj`j9<0ps
z`10YBg|{P@$)dfsuNL3g{gCN%q+UdKkkx~i<y;DPQg|i#COCd~>Ab%5*)hi?;gdpM
zTeHJlW<RStUeEr1QhW5~TY+a89KI{c$j&VCa}`|lc-DG}0Oj8gX7{r>Ok1zQ{^!AL
zet~OS``#uLG9P0qKT?$PXT=@u<vgO&t$wz@>uls#dKjNJda<UmT}6IsOYOx@Rh{Q~
zL7fXy?7dZH%D2uEQk7cd&bzF7;uM#oF*EmO&1kK-dZKlu)y<aV-HELqyrSp7GH>}5
z^R=(&zQ@gP(ySskYZJ9D{@m3l@&B3TpQPE13!9{8YcvNZh4tDrC|T*h*?Whl<4Lgi
z{z*^5k}vk$4ytC@bz%GYB&OtL=Z!YmTw1wv@vO{y{VRKF?{<4F)%~X)aCk+&`jWq%
zcluNuf~;h8CjXETh(9|2jqi=$4y%%$-Ssnfn{-_BS4x%r&bkY}ZC>RZVFB+xi~Qd#
zZnK^FQg&}*o}c{k8zM74UfEkv$1{J$#r}^rzjej#D4j8zSb0Z!<Aw`wEql0}xn``J
zGXJ1ZkFvc$v}gFLCoZexul%mNrT<j!lu%CiyFS}2A?0IMk$u)LEf!5Szs(uGtX|0Z
zx1)#oGQYS<^Jcoey|m!A-I+C!yg|(Vf(!iPS2x^MVO%Qq=hdNJHpZP^v5oB|^Flr>
zJh^NY`^IFgDGZxT`KqlxR6N*XEqmbKiLwZ$MNXGQzcHV?zhL$bA2Zf3p}%)2FK3jv
zIrrQzmQ_M(rki%Sh<BVnDa&ZEDJQ@G;xC0&4^!QYl-1^+nxnLTR_+>?=5*es+ScGb
zBB6iQzEG<P7V@k(UV47=)3oqu(eIW|eNu7JvuW<VIS~`Y`uIwnQ<`5$$G=<nSp1<c
zV{*2zg1(jHi=@gD<HZ+doS1QKnO(NgSKF@>LV};fA7p**pk8IU@_5U^*A53B)-Ch7
zvDaV1$1<2{^M|8uN94_!gjmlkX!coCZf~3|*&ZjBbe$uF|CjkzOa6=6E11;3Czl_6
zY5lDr@8_C3%O6`NtNzSxTHNN7z|WVUeZPxu&zBQHrD|7=Yu0po)a>5N)#UKl=D-Ap
ziR$_HdX8S3yez3)WM}->Ga)7qW}mMybqlFn5E>b>b;d5EE&D>v)^=`*+Ur{RN$dc-
zXyE!y5=RP?AAULV<l&6k*pe0<eg|dE@=rNkcAlqgEe}op-IsTKcK#e~_wOtYpR@$M
z9nU;IsJOIe)vxr+rw;1Q<=XW~O`(@T=E?n7r(bjT72TY<^D^fWmofvxLuzr#8>I}h
zg{2!Wr0lVAm>tqN<(2dV_Jyz1t8e_!>)h5M{`i1O<AQq!HkY{W)LeAr<qz+rlDbzF
zb|0SqNhdVie)-0g5h-t#>+~)<ZnV)n_f3N7)9b4z)1DY<J+6BDu%x<A*^VJ3TxZL=
zV^Y!n<x3b3B^2$ioH<MKB^yH=f8xfM2h~HLX55*)tJp7o?~Xg`_Y^DiZF|Q0Y3uJr
z+CN;A%a#joy6;#0!D#YjPU(XB_|UCdE3M*G^_FSd$TFQsS<WEwwS;+}5ASZ~e-CSx
zEp?i;Dq-p;Wq(<b8*kDCCO^7vl`gzP_@>|!iMy|Bwwbf$zw&9^Q@U%rc>L;Pxl5Yf
z9K5yGb5R3JmGzUCYd$fQ9(XIhY%{Bu=v!^p8;@tb6WrZ&ee$X+S@E-1zWsVZbN`d;
z<y=n;UzB#nuWq^eYU25bP@Q(8*oEC}-OqMAe@xtUN%_&bxXlgB>1z)ivpsUq@1Xs{
zNbaJkyF~SDzRmG7aPyiRQ9tvy{|n|!-UpmJ?s#wNZ|4YkdgVi+%BwAh6kI}|`EF#o
zxKco7q1+p}4~G`rZhGDk-{_coJ^jzkqVGm^ZBEZ7)Nh~vXR{8AUXN<erVn-V7clKU
zwYoL#%0U~ek}g|6@wLzUS}K~jr1~t^HZiqTec}I78o97<t8@4w!9L5C`JY*gMOyo(
zKUq|9d2dH4L+s+T_w3U@+J0HW!8G^VH@hhucO4EL%vtfRdHYFc^SGQx8yNy3BSc@W
zICIxw*8EKjDF<VWO&2vp`7d1kl1cE_MA5W;;Vr$KGQz$3$<Lz#D}&EUE7o4vJYi<D
zpA2t)ikwq)lw#lHX0H3nLP}H1_;WXRZ{PEME=NA^u2^@6gA0P+n9e_Cx8k$Jv`y)A
zdfHoeDD`CrrF@;^<gD_y=-w8N%)75e1OHY0NC|CHIAP+*d^%?CqxI`w35iZkX{s|g
z60(1}_G6(>i~ZO&op~+9PE?;OSwGEMlY3_Ehhu%;5B`>Sc~bR$$toEm#i*O%m-4DK
z{0?0|T_qIp@X1c=I5vfepZI64c~H8~i_vOcb=bXchiw-uC}X<3&6WMkKfmM4yA@5m
z`}?A<X~kYkjZ%BH>VXc=)I{x*Vn&G@|C*TB>2?={*`#GJ|EctU&+6(UW$Vu}r3Ht3
zR^4izy4%0nT24q><c;VJ1ECLWJM9<oGt@ns%UAIBEceOhMty0MXZw7*6Z$FhT>3$2
zql>267naZcv`dtQ%j@*YNj7fV6|`ISbnnr;Rj%(pyT#|>+3UNm%P-Uut6A%jEVKN~
zi4BL(X-Az%zPoweyWGPc^E&*>&c2kh2y}~|(t7u}=7WQ`k|(s}UC)-)o%kl_{jwF)
zyeHgD>+v^`;`%J7dd0+cQO&}~#&XL;e3qZ+K9N1&Y75h`sXAVnO=fOWc6L1Yx#0Y!
z#df^q#e#Zldl~iKhn9rw?VftDectK4`#vbmYTCH^%(<0oo#*u@2^jecF4!Gc&2d_5
zqwIv+bF5z}Gnz%5tZ9CidU*dwsi!KzmG89=P22rRvNY{S+7p(A>Z>k@)N*T>pX2$F
z>9NUA-Qn)k+=mNO3ltYjUL}#*yD7kL2iFqsH4JShR_Up}33|bCIk2`<!?S1F_88F>
zg3q#6Nr)U=<nVsVv$i!{zIsa-N?Uv$d})0>Q9|>wM&+Krx{ZDw_WCxdzFyrOsa?7g
z?s-(}_@(|j+`w+bc}ZlKru1UDU59PbTlQ>SY!NiM#393Jnu&YKk-2(57WG6h9jfQE
zT4*Ta#W`Jd)lH*0df9!l5=RWeb3d%ejn?>5ccE{UR;I;X2G-ORhZp4{7qVO??^K9x
z&6hfw#?pGZGwIZoCau7^%)4SGg7l3%m9Evz`F7H9-$L^VJ?R%T75Jrdx$KJdxc2Zz
zF7r)s_%J7sBd@pXoSS<5Lf4I(mu+@y5v|YRYxWTql6~SarSY=;%G<qeou6Wy<i&Tc
zaI-4e@WE|D?`h9tM<hKjZCgM6)J)Tq#BFI`HCD0LuG*!le)`_a6;?cxW<L*cTK;W|
z@vmd2{a!45A^c>QRLP=@n*w}!^AiKJTkh~~*qP~HYf!)ZO5LPwt0r4-d#;dOzAWoV
z+QV-<o^j7Ks=7IMgTjv=##d7U4sSeiZN?>muP0|-6S~y1Z3kP1#OcWz0x#dbJ#y8;
zFQtY@K{2w5%T>;3PQ={@8LJb!(mu{s`ml9<s;k7_2l6S_LBjW1WxucmYgqX;%-*%c
zarv=xTYfe8vCmt3&OL}l?)Z)X`G<4VpM)&G<ud1NVT9-BOQH)~++|n~$aBroF43H<
zY^C@xl!yJE7i;f=@=(6Uobp536Mj@BJP@sYKjmHVTn9b#SjXyHi#s;xHDtLOdMSAQ
zvfQv>#lcsWF53d1&bh%T*B5{ACSUT&Aom(oajPqe=3QG#;}hRxryuq`rEX)S9jt9|
z=Es#17V#HqHtkdA7IXgVxPKsOs?yUh7xz|9mQU#Uy;0s<eCNxPT_@c-sxMa>t&`lU
z_;R1Ry@HL?I`eEtsYp$w^|G11`x;o3i#@lU%-4GoI(^TCwiWwL{2!jt3enXy%$TdG
zrR1>w7)O<`tic**J*TNxqtlFg?}_fVxl-MF{OD@W3zy$jm@Z_tdGE7Yt48!k{@$r4
zFPbXc-jrYJydsUSK0~!NZE}Os<mI^?#Vn#<mBhY0d;giQFPL>!FWdCR`&##_Tw10+
z^^S_}7s=EPQIU<?bCyT{(|&%`MLIxe-Kn6?msN7R48<0Oq_(kN_;|rn`JoEKq7Y}V
zRZM%PCwhw}2g__(l`emjNn7cI)aNbR|2lC@dQ-E0np^du`ky*V+*RHeju$=jXZ7^o
z>bObGw_~bt?1@#jf9ucA^**0>vvlh3uiE?6Oq{O$y`-WR;V9vhq{-{Td{j+Ii+!TU
zllPnF89uA=pBkIGR5E&+|JhsV@BgmbtM}RHnZ(aKzaAMa&B$<)GQAhvwOvYXR@%Mr
zFBg>yT$|sw|GrQfQ2e9&rPhYUM{De^PoB8yn8<{!UcYb5o4tzfe#EmE(hEO63lUw|
z9lP=Q?SPow-%mH4wO-~NoU?y!hV$Grd90s&I3DILZJ2jkh;RQcyKOQKLS?zFUeUqj
zqM{;C+wv5yJym5oVi>}jSbo@L>IsQ0@m}v{vjywEV0$LDZu5a9cM8^L{IC`B-_}!U
z?#%qH+<)J%zzb;yxp(e}U3=qD!#R;pIXn+tJXm%x{1KYRySBS3^QPXF31&Alv;tqb
zDZPKTL*1(~`-Rq4)dQIwp_dn4{;+ZVxr;BFl!RPjnuSuPeppeyUQ6}N%GV#C_3!?X
zE!wSkM1U=3xAXE{u~nOc8ftnZg(f$2-Iw#0<B>6o``GvT{(I-8zT5K;1_iE^-Mhm1
zC9mnTS!plkmM8eD2Y(B?rggkDKI-H7*4<P8i2ilGS8=6lf9P!1xg|_J-fuZdr!2gl
z`62yGMNXsCqf`INx&@v++ju2^_Nh}(E%%tdzb7ueC4aNivGBJS66V>=nBe)Vs<3W_
z(9zq@H{M*odFn)r`Yp{hRr|GHwX?oow{nA9#fb-3=DU~8&0L=F@a^<%lef1AcUif7
zJ8q&A%DaBcoKtag?6&=#Ypc3U?P8mq*dNsiH*&(21j4^(JDu289ink>cl7W6Kf+hU
zC;nb?ts=MX_1AR{RbP{zd~AKN)^x2|+otGm9Z&9rvC7z7zx6IdiS_$7x25KVi?&IB
zbp7@CrlQlVm#bGB<*s!Lo64vE+vU~w*IV6OAI_E1`yYJFZQjx@-3`Z_7N1-o&U&={
z!umG0yonVHi}x?_s@f9R;jxOdro?A*mOsB!cTmU)rti#2MaRRdobP_hR{lQcd*$<`
z<}Kbk-t;-V$+v!OxLtMa)b~H1Wd-Yf_s~~am+l+t`)l!$HJ;i(x1RXyx4goC!;Y7$
z#hQ8emY&yG8Mc)FDr^7TKmFUoFKEvRP=0f~cVg%h7ilR+$LD!(*40dIy0P`l>0f7m
zwWMUY>HOIqyu#e2;M3|$iyZtEx2WXJ-OHM=;#K@LC+7T%H}m#z2F|{hSa*2S-d)>;
zN@q;}G|lVkuG<cpFS5^_%gymP`)LWoC;b~aM#T}@6S<}=4&W0=Vp%6<FZ99u%|)aA
z8@E0X&Sto!dN@{$VPk~BZmmNLT36ngAglXoYw#0}+vj(mKBa%8%H&1L*UY2VdhL(b
zv3+=QFYNQ-y&ZkqM3(NEe&yvOv%mKeuXLm&`q#ZMzda?WJvG~EL*u1o8hg*>CPYt<
z_9?5<sk|N_9OT%+zx}1t{K~DhLVF#8S5&IreRSiZz4R~X#N;ybWb533{O{4WlinXM
zd?Q_-z!;cWk(_-(_{1FDi={!gmb%FWo4d^1)VbtD$mb9xzok=tR)?hsub=$={6T5k
z<rcbkj-LEo?jSk);2hUIcPzhH&oy{*jd#Mr1jGC%yYH~fx_R%9SkS^w;gTah>w=;L
z)t<3FtP^B*p6;0GaPpFk%8FE%GklMX?$2W4N;A7GwL58HNy;Cdw_&Pw5y9L`9vG~=
zw<2}V?Kj7kUf7rJ?r_FM#NCivv#4lu<@_x->MpjO@$D-+lq_=Eb|P~b^AnFN@~kg~
z)up2CK1_BpKifB>%kAv;ciY}G3t2qdQDgk0`R|Rg<nV_UM;307<y-fKxkG7Jd~uWb
z8D^OWE(;1KWNxlkuz$>Zm@j1Erb*wtU6dX^pT@!wAidz|CzV?UiTa^daZ|Rpa4{)V
z9;!`Ry!ZNo#orgd^$LISs9e@fe5>#iE-x4JMEQ29X@?lYR(LouScg>h1xR<vg*@Py
z5p{c^Qs+}n`EGTm#!X5#CtBC7jo)-`!t?{ePdRMo`6qFCyNiG1t(~$`?0i9YU>fg%
zr@tR*&wcm((e>|j@<y)=o|s=3SmzPD?zXn<bJ=HivwmE*?mzBf9Xnr2;#HkVeXV8M
zgilp_9>3U~e&(}Z*`*Y@2Li7S+-r|8-udsXTjRQST*;lxJNNBL|JoCJ@7vZtix=$v
z-D2}ww@vJukoE+J>2uD%k$W_IUSzmZ&%5wip(EYKoDCh%yHun7em_ykm~*9g_ZPXe
zXL25lKFQA~yy%WmUsAouRP5Ti#fI9|%O}sS(^?q9y`^ar|HiF1_9%9qz4P?;-cv>%
zQ{`_Pv0H_#`JBA8YRdJ)tIfX5>b+U}sOnQ}(=)-Bi{f;Di|q)%Jtt%DqZ3NbHkz9f
z>y9UuNP2B;E&sMIqB!YLxN^?CH`jS?-Pe9!tMJqQUi3r3@~U}K$9|Y`9si|#^_Qly
z8}EsnJLw!e_Q@aOQy!Z9Q8~5dxO{5sip4>E=gn{a+xR}1-N^sjMOGJ;<u{yz<d$90
zJ>|OBR_keG;R2x`;mkYAyat{A7dfuWRBk?WD{WQ44!wnYnO2<d_&wR|#XaY^1T*hj
z(h_>__a2$?FJkhZ?>DU^Th;n|6j_C{jM?%Ie|~*^yGyC*1A(xX$)QqW@twN8i&Dcf
zPgv;Oo_~LasJ`oO?S#3CKJ&`T)VAgw-Z5*c){Gb1%=K?6EwbW#`19SbZA$q)x71I}
zV{33W7AvTIBy;iXl|!yxnNwHfC`#Y#GfNTN#nutZWSD*2Nu|4Nlaz(Gd78+|qw`d+
zY&SR0&+2ecnfCE*aOsb$$8Sq|Uz?`=aPf0V7Ue?ms*>=toJEV4PC9-3tSR5Ng!HpJ
z10H;{kv=&|?`K)VeYa`+2A+}gmpX5~>E~p`a!2vqdi8bf2X?1BPT9xrsMm0-NBZdA
zgDwqEWA84U!=c??VQPBrME;wlHLFe83|v&7X1oe`m2*>DSNHY1ulF?zlb?$nTXX(s
z{;QQDYymQ!U4onYKe-#Pi#d3_$5ZF~{dd2rC7&xt1Up|@f69GLsNGQqzx(e>-2GR4
z+%kuO(RN|5IH%to*_R7B4*G2nT5S}$ZqqWQY4RK6nYwEZHtbp#k~?dis_xc<8jIV{
z9r)d3e0op8?C`@CaW#n^Q9K)GtyrRI?)ATB<vNDv1rlwK_p97$Sk!+g$>g%|lnV{k
zW$J5A^)z)}$(Y?(sd6fOit%)lLXq|hu7#WWj<e)wwQ>d6fB&&%=U1hD`OXKf`6hgw
zyI@D^GUJ@ufVXRzwgeS3ebK%@K|XkD1dD;2tnvHHs;%O>$&TuJdpJ|Ch}kBqfBN%8
zt+QL1`$N+67cL7AEozc%{<Ce{!#CXDtaxVLnUp_QzM)cl^4ecDx5|uX-uu6*m9gxz
zn2ysNbEkc)AHJ3~|H}OKeQ2nCkjs06yv`tZH=l2f9R)IKLV?1P@u4?1_xF3u+Hqoe
z{>?zMm7H&%r^@WvXRIpt-{EZb_pAkTtJC%$z8$lC*<K6bTgxBTiLNwXu~B;_+tmE4
zaSuIqZPDONVxLyNrRLr=;i(VLKDx2p{Z-<Z8~Xhr3tRstoVjP!p(d{SbPA^>Q@X1@
z-(Oy*g3O(Yi;E8ZW9z-((7ea^pl)E7)f`y|o6A3+FP^r>NA1Am=cR|PzZW_ZHj78o
zAih5<U7W4kCzt;xhwfW*Tb7EsOU@@XO?c~AsxeFWyp-`ysW_1v(<etBU-|w0;@4{g
z=SZyBwJ5;%SkbBWr{eogCPnf*^<K5*>y`JHE(t!|zMji>`|dgSSUjF_ceve1ik!bA
z<Y!FKeC-7@(pi|Eajfrr6D=w%<z@GA_pjRys~64-pYug-p0Vq~$fI*)nR=w2rTv+~
zalVSvT55^X3yvo%Ip1#FA8K&-q{r*n-)^QCr{v#idd9QcehSmC6&Eur^2OY?PrB=E
zTgk#`eIu};v+Ppysxl7|ed#^-I4w>by})mr|K?<h;(T=}-%5tXUS$TF;wE<-EALm%
zn*7;LKGJ@>`iV2w{Xb`}xSG<Yur8Z1`heog9lXU?G8ezs3-8{ZyDi}tLtg2oQ<tv%
zp0K$<VbaRq<|&+cHEScgCe6OXt~*8W`r!p<-z+@2sJ=?9mEYpZM)9-GNB20dD%`VU
zUSS7wa+>>%*%Bu*xHGQ3oN&_B>(1ts_ANiuULX6d72t8|pyNJO>AOFctl_%HuJ>Wj
zyqFvBwmI{CQoNV3>g5W_C$jzXGmlP5pIW3)_~LooC%bhC3e$quJ9d>nXb56WJ}Jv*
zXLsUT%gWHJYoF#g|6OQ4^~;gWc{>~fTrI*vC*4)fIwIYr9Pu=z{c_E-+_2)HLeFmt
zYU7?Ms6Btpe@WEz?RysG;=L;QAKv~;*fM*4zQM(3ZgmQJw%ZOrlfV71@$j})pDLm`
zxK=j)^qul}Uf1_Yy0dgWz5J%eJM?`$pt$ny+KXz7nVv~6o9usd>cV#mPTyXBo|~mQ
zSoBM7hhY1LQyPcoZn(@pudI{nRHgc>bGI+VSKQ(IB=h-qrMp&9j&e|E&f8+!l&?}u
zJ2Jo7oxJ^AYiibxzb^k(pLHErK07RHwJHC#beTfi%6qe7vrgnaexnd+ZXeTC)3$h`
ziK^Gh<@;9b$h!8J?=FYu(k``~)`xF+u_Q+`<XSL2UHt92RnHb-z0%u^M(Nq}SG?<g
z7wos;_bSW09gg!D)~uhqopCi&MNwz3f!CT(jR#ho=+nzFIV%`@cBz{3r`Gwu8w52D
z9rylWk=(tOPbPF<g=|T|<$pF_Q9N(F<4<e8N}uQ*x9Konm3>NYx6-;dJIdD9)#U|l
zXHg0`v+K*%dm-vC9Y5Gv3SK@d<q*62&DI&6v2oV~v*#5tYp7l;dFa3+wLc*7>)F?u
ze=bZiaW#<t_fu@GE#I*t^ItPoZ`7M_ApGE^lVfy5(vH*97<`#mlziJFdc|ng1}W~e
zS1#<qwM=%*2e_VH=l>?r+OBzm-Jn3+disY6pH2yUT$2AS`M%N)<ACLEdOQ;jM9W?e
zSn}!4#93Pw1bjA1KX~j+v0a^A>uTAK?b{E2t@*#S&g<q&>m4^WJsY1N`KrzR;@4hx
zU4^i}JbxrJUMxMP@^tgBEYpV<LL!&lm)CqY&myg4HB;r$ZN+xiw@<P#yR&%i#h<e$
ze#xHHp)|8VIFm;vQCeYJLeAM8FAp?7dd=<G@4^=xKO?bz^7CeawhY(vu9hoQH&m@C
zjs3p-z@@Moik7ogyjnfqG}IlAi{ZcgRnMvRy$Ht?9p5sCU}fg)gFfL5cYg6l*?vsQ
zWzQ=3Wan`?^!$9^m#?F{mcGr>5bV-XW4~O>^Co?tW9xjwUki^E*4WO=O)Gd-96J3y
z|MT)1cg^IydNB@Px3+f=xcqpY-{w=|E;nU=#+wq%`OCsIj8DM5DQBCgDA%XZSKUnK
zzMp&R5x()RK*R6j^9u9R-kvLb!FOhT&85&C@v+t_8QUknYdx}Mn-I@}-RI6+X~?ME
z{f_@|PVC2NUfk#Nwn%FEy#DvEw$9?@^DX?TI?^+>ttA-dF8C(t_G077A3L3OWH;$c
zW!<%X{+gdNZ{g|%4nOv&yBN8h+*cZ~=f$!H8IR4AUhmUo*>B3Ha&5Z9z9YvcmZ~)6
z+)80!-9Py(=XT9CUoRF<{BgJV*$-!(g};mUU9)gk{Zto{`hJr5EaSvm+$*PR{r<c^
z+3?j5&64Wmc7bi`8FS>qH!&An+4FhjQ<W!A3lamCsxr^uToShQ>7x6g=kCqlqU>Z6
zyW;Wpy|awJd<ooNuvN16&!RIN(h(*3Z80<b{jb>1s4FQpIW=|9ljYJ0+QC}CXK%5+
zy+ZT1>FvOi-P<LFUai<=?c1}lm~Ub@$19(M>M6&bUfKJ#rgzV~miL^$+rMAj|J6B7
zGrnJF7vmiVUAH_BeL2B-LQiADlGK8&T^W1-NL-xQJl*Y?@tgOddG}l;IBtiZOkp~;
zXVE&2>caIC-{i|5`ToL{V}r~lF7;=IFKXADeKwycqPUOwWowE1Z=SvCY1}i4-o-IA
zpYSyCyutE^D@E?F_C<aM1`~Tl8U7tSxhuC;*Vw(Ca7m=>M|obK?I!uN-|pJK)r+0$
zeASlG=ke#CYI6?UKCf$Dxg|09`Z~AdgP}6=^S5cLUCO<;XQicZl(NZ{r?Muc^Grqa
z6mFMms-9PqGGFJuux`$~rFYtD8kRjStj#`^D7)+LLM7XYCzHP{n`u>I^+sUDx@jij
zitdyBFZs{A_{QY+H!cR7xB1Z*-X45&UgNf4=h{Uw3LkbXR!P6HdYaicH<`%KX04yr
zL^(f5*8KW8;;P8%6SF5C;kDkXVVd>e)10rKcP`&wmdGqtef#*-6)TqO-@I?+AJ#rq
zl)Lor8p*wRr@vfKp4EQfOI_Q;y~go^bM9IjdM*1ku_*2O!kL;Ulj?4*S?B%wQ|Rxn
zv1?dMVws-RCaX?ka6B6G`RKlT^A0!^*eNyE9o}~_Z*z04;8EMe<=dwhbo{#XE5rHJ
z<-6Z5&+ndaYI%<Ev6mYcUS9D`?%!&;*AI_>a&?Z8TX5;)+sHj~b)4tz{-^#9?=&tu
zdi&48{<H5cJN{~%r1IPP=`5{nU)lD0U7Xyy+PBr-m;X73we%IEz4m3Zf*<{H-f6mH
zh3hhJFUxO#b0S=iZs5?pa<%X^Yv<p&Y*7*>{NJrlKi_%&Y=+%(eqXE1_UdX$Fa9&v
zWe<zo-F`&!YFkh`$JVVc8!meMz1KXM^|xGG@ueib|7qOTdsp19WjG&eb<ojntN6;F
z%!+5HXe?dvzh=*CGZ98NzZ(yig@14P<s9_+*;)^)e|I94X6}~##w>9=m;e3lBRv^k
zZYVk??yznUzW<!7Y$H#3eRXbU;f_~Ev9@!57%iGO`*U5Y`Ed#5TaUU~IQwRMc+{{o
z%1m9eY@e0d<z42tt{sdw+ZwdU*vh$<*QI>^p=XYX5#Kr9F_x$uV9|WHr<ASMY5SE_
zbI#+s>aMp`&(&6KD7f?LZP?$(cVz{GpIB?I-*-i<CT~LJ6@_^X+z-8M{mL}t{{9My
z+r1%jLiZVtoQDPrx{O&{mftX(<g?%nv!q4Yr>`G>xs)^*Z@Dpl`zuS+DK{j#e*HX?
z+!A5&Q~dj>hu2KGS9>h{lBc>`?f1J`2Y)N>6bh8fDBfXgq3+^%j!(&2DSDr+_3wzv
z-{ni{9&<{rN;*ATo^kr*h#!Joy}r-R?vZ@&e4goVQGB4azGpg9$iu4BuL~;bh0FGq
z-{4zbnK3Jvjd||F>y`WF?0<WK?Zq>8v36^X6gBY+HsA6mYoEOQu_?`B;@6e4GXL$E
z<0f{8*+}g58;Re(o}Rj9TfFu>wYjXfX`Z6>MAwtY@7-%DIM%oB;Ez3j8?9S8|M9hD
z)GU9=r+&0oZbja#IJq^f5%X8JI=y@Pq)#`#m6^Hf_?`6!vmeY}$zC{R?r+naMKbGG
zu#^^_s?pbs_Xys#J5Vj4Rk+M*!&Jo`Tvcbz`5AMpH<<HtMo`m+zqt#VUVYwu`=zmK
z=F4-51~1uaUaL&${+Q?2?eXjE#VIG|CHWL8wf%YZyy%zHuD1;~rc)R!`#40tX3rPT
z?c(nAX_o&sLGjG1?I}iG-`l5rd8c04^upmH1GDL!+GVmgUint{GG|=69B@>0MesCE
z>2JGRnuYn6ZQ-xIusfn~{;t=vPK$nEEd6mjmu=xn*+kD)|1U}=rw@Lg$FoW)d*?r;
z?6o^=4d2hYxTjsFvZKXccT&c^YUaqltRJ;|7sxyc;juNo<2C8^#l_{iEvi572Fomo
z-*nh`O^fF3&1@yPD>Cy_f8^C%-S~F1+0*7D>Wg+a9Qn9=v&f>)LLF~q;<EJEIan5O
z+P*vU`g-8XxvD|Gddk~_3a1EpI<xfUwA=fin))hi*I}8`8=P6Qi>FR_JzJ(@73&Gz
zd=Z0H)sxj?%}#&V*2HrC`72rL!qr}HZ*#4GQ)st!&Q#{gC9}oyWOeiAD^_0)4het2
zeaxhK`-%Qlr}%t6O*{3lX0P~<Hx+M+mxrC>lUg;a{LA-kidTJm7kBgczqfPx6R<f`
z=67kylt;IZzsdHMopYznWzN}Ni9bgiFL_KkJLB+@`|Ia=&giV3(YSk6Z};8oT{D_w
zy)GsuX^I+MI>$ZV<L-2!80FPoqPe>RHeTp_`E#02%x%g23vM`_$jTBAy6WO<CTH4V
z@g-*0|J4_F^?aJ$v)Ij0<6x7oqvJ&}-wL<WmwNku#Dwnnm*Vc@vs*((H1wp&#(=#q
z&RaF7tYy#Jaa#YqS(#aj<cgzLXSu$-;MAOCBYLl~VSZiO-<Va4Dn6_;{hGDHXY##?
zvkp(sIG>b#*K2uqM62sxwx^3rdb4}ucON+(x!-nc^)bC5SM&AxK{EpWw*ED#ivJOq
z)w@IQ_Qc7r4LN3)_!Q493cLI%>G*5$pEF#ZJ9h_M3SajukiqWQvVv-^x29d2ly@8t
zI1=R^y(_MP?`*|su9NMZ>6ucTfvJ5LmM%M^o8$FS{mI7SJkfIL&ee%w>i2@YjCTF!
zWY{_FU$IJv(E6_Iq}2?Z%k0vwmU&OurW1IoJiP3_^|bSC&iv;KkACSBy`(+qvEHjq
zPk!#5?Yn2?np+ox!c;{?zs~*qen;KLB}U;%l3XkGZ$)Z$T)*HXp6^i{E3UFWU4HZL
z+Q-lMoz&F7iCx^d<%iM+mG?HxQ;y2Ki_^LM_v)_xD%I5G5{1QIHx#?p&VFEi<gDfA
z>0!pnWlh^7zddIby?x)jPf@L3>(YANoezSFmPe;7t^IC(w&|Gn3GJ(ULqY{(jL*3H
zYW~}Jk+Z9I-_;v7Q#xAD+=+US_15r6F57?MmGzUVOrxwP&+e&xId_MJmzAjh2d9af
z>SsUtpw)6wPvpkz6vg(}2TW9_-P!e{{n^(4Y3Jtr{MVbcfO}sP+xj~br$=4f8vf;?
z%+*a_?Xn9$PURH3*S4?a`?P5W*Ef`3bym8Y-Y9Kt9DG1IH`Y3)j`8)od-pEgTQp01
zr{v0$E1Ax&-YcMTQj+z{toU_pKF?!khiFcHH*x3e_MM%Uf4}WG>t~x~WA&%;m27>D
zOVUm`Lq1uV4DNPmO*byl1ubv9pIOQr*nT`*-a+{7s#$unJQnBD8=ii-qVhb@=j~Zt
z$CYn)oL@2NU5RPw*Z$_8P7fYQeY`!#`Cs?;oM27Xe>)Z(jNLwSUAy3hH_|b0ybf;P
z_N<>-(r~_r>6*vR0<m)nn(v#Qy(s4T@B~kwt@fkci!a@ANlH$iWg9nt$tu&FW&MBO
z-Mef2*Udu4Gv@1ay^oWoy#1~BIhlRl^V@qW3v3U&=6UK~n4k5ejM1aI`-N}ii`q-S
z{`AVR^yQ1cu(thoX}XpEO^&3PhOaD2sjJRgrnM`auoloi)mgVlF38(%)xDmc&sD2t
zN8EWMlbC<+NKVtkQ+GfAn3A#d*;k>I59c^;C`-7xp2*t&$ZLOQ-6DgM$J5Ql?<uZ#
z&yM(a@+xCe{b8f^hk6V7-t4UvE1JLcET=z{oP==MoYW@){t8pF&Ub8BRF$#dtf-mo
z8xiK+@t<WU6rL%lm5-YpQjy=E!_={V;T40Q=hBvC-dm;^^F;T9Wr7|<VtfYEPU(FM
z&U`r;F=_6;pPY{)X5HF#WWVC^rB`n_IsDQW`QwumeI{f5>*imR?^K!gtn!`k&vmQN
z!ougBQ=SHxg??D#w)sMj>xy|z#(S8*Et5F?&F%M!M9t+atv27?D~pd!Tg)$8wyEdp
z_xk50PkyUuTwCe0>CU5h-`N=%1AE`(XHJ><?OHTv%JBpCXA><7cF#KUmDSqRDQD8M
z4W?O^mw979|Js!GU8~-@ey99v>t#LsjP8P~=N#PgRqER(zsnQTW*zRAx0)O<Z6EK>
z$MMV5_0*Z(Yl+Qz_I5Y(aX;&`@w1c`yvy^O(;A)45LjKjv38nsBLC#=dAX(j`?nr_
zn)zw1ncd|bA}1FZ2wtelnc1MY+0f>Hh{k`FoQAF6^_fMzer~vDcid^J1XJ*dO_SD7
z>pGP4(3Q1x&dmbxHFIydR-M+F#gWo_Pwm6p+Y-fZKAh*2O1m53?;yys^0}eRTiG{z
zJ|yuU&9Jz2#U*EXRJHf!WIoYkooLHBrPbm~SP!jZ`lk4`+}!tyB&UkR_bbXzekGMR
zvst>`xhZ?`7|&bJuA3psGIRHIB(gg%jp7WuS$JsrTjkx{HFc%6qW{+j^TyaG-2UJr
z{gA=&lhrrQ2SSh7RXyXl@6;7u@vFL=65hCSomA<h7h6Pj=BzbVerPyp&or4d!Ix8%
zA3n1cRyw<Ov&YP9awQXD8$U!?Pin5VxT`czr}i_a%A+ZBx6I3b+RZRww@v(hmD==;
zd*&G}tX=0}e);W{BO8t`Ja_V8-~z3ZvhB4Qvp3F+i7!tpZj|?`e)+66yiR=Imkr8i
z7wVX=J6@t2d)@hpw1$C#;6DD=--<fSdW?)`IDhYG3w#;f8~mxNDyQa)Gf$B5)&5n{
z8&+?y`@B+L%-YzYJO5!@32!ayZH7aNg73a<yxeX4_>H{a<;3_{-gi#FrfjoUZQg$I
z<q!4G;m#j732!J(y)mUxOK=IJGQ-c8t$b`r&qXvvowRP3f4Q0Q%4EyyWW_`ETEAI-
z7VJGY-~DRSuh63}#rk!Fr#v!Do<5f;XrZ~%rMy**i9$2Bv(Dl?yyjG_sEtxY%i~Rl
z0$zUFF2bez(Q|jV)2FRMr-IsjZXERDY_&P^N803Amt6t}YeVFjRS&K=KG`CryVpfh
zqF=RXYXsj}C)4|KA3Ku_%x0YkoZdKDwx%bt?euQ{e&6L6Hm0>sG2b53mo`~x;sxHs
z_6Nro8}v+%Pm8XLPPX8lvhCiJ)HJz?+e+tGIhUw8xp1i8^KCky=DlXuS?M!E9cy;K
zvU{|HWtM+t^6@lZ&Rx5gE?e`!?Wmn#>E3<zB}dKqI9~~8Sr*g>{T1kbzxnQ`Lk_(*
z+$R*uC#Ua8wfp|#&cEKRPbZ6=*-$B6@inS@+Vq<0i_^>lqngj${~W!r_0f7sy;BX3
z)cfo#j_#7w+hV@WM(cgiZ(-4?3sR=v{nD&-YQ=poiN&*i3mwYWnh}{Xv!dx;SJmsH
zs&bXD^<C06S6b$(t3ELQdebvB)%3g6{}*-*Ztv&H%T@OUe4e&vw)pS2502jnUUe~M
z^SgdoH>>TLQ+yhOA1J=d`V}Uwkus}0>XxoW<r(P?*?aerez&El{S_=}y~P*xY4@U_
zc$TL!`~J!(MqCcjDF~aWS$gY_nCpdmNw<_1oHCU?xV`A=I`$>?>~kgiG<8-Vjn#bb
zV%8^Rop46Dm{+fjXU_%xopNkK9OiGmSJd6V-@|<0I)~+e$X$c%qYoVy&G@q8_Qqe9
zipP8Y?pRV4Q}Of2vzD2QVx3ZIdO!Sc)W5Ryrt-R76RMZpd-Qerwa!gtKUr?SUnAIR
zzMd^M;>ODL<>s=ox4s)?<og~y!dy}RZua)&Tt-cX)mwNDh6nCyc_tgdvnlQKp>2kD
z7qHB#UAm1~q~P=s`_FDglNcmYvQ0D&u6!^hs+mW9We5ZRkCw^FstwbQ9P{etnR(;Q
zlHCeYB38d2f7@!Zv_!vZZ~ly^z5`cHOl<?LXa31}6Op%$$)Y6r&i(AUFV;C-+f{do
z#r<NJ)$LQK4s^W9dmbnx`ud>y<H`b`mnw7bp1+#yS<YiO_4F0q-_=hzm&z)fP<O8g
z_TBaDt=+<hz8TFXlRb|==Ps&xw(^$dEujYo3sN56o)WG5!TFlW4a*9h*a>HQ6uw+?
z`_o(=mUcpQVc*?ifpxo#T(@pwUbJeL^4V|7yQ04TVQCDJUG=m_EB0b$JIAM4v)Cf{
z_5Ym^V|*~g()b*sk@$x7M|~J#=Nweo_<YaB{Z&;*ZarcOYkwvv+fiC6o5J@#_R^l-
zFBXY&pTzDt?6z7Yns3i~EB1n<w2FwFK-UJT%)kk+=We`e8~&Ru@yd$gS|O%nE}4bX
zb_b|POmSX!N!2Q~i*tVLcKcN(7i=_kMCE-KITfz6O?U<;lg^W^P30?>D6{&sKFj{B
zs;DFO+luG-U8&|Trt9urR$t+MHviR;;N5ON1h#iYIeFbl@Dh^yc;~R7?yQ0h^$EN`
z4lQR}>+frGXxSrQ@tr#gFYNcy2p3*=SBEVjz-V#UGA8T7z%O!DU(Oti^F7C)dvx#o
zIT`OAW&1M%xsM3UzOo|CpFwGc;54aEr}e_*lmzXJ)Ok-wZdbZptd@3#dD$*KS9K-T
zZyXV-ZI$a^a-F#F{A$Z&#r+{KOiwO~bUk%$e^#B*UN*j<g@XJH(FJ1mGiDsl3MdJ#
zIpxPw@#X91<mwydQ&!6PF#VhPboJ#kmjkcXCGVf8C8~YsjpG-8*RNe3rxHTGbzj~T
zcE&vB_l)Kj`xGrA&nSo{PBc3qQXRJFKG*8oPBFXRS8o>LShMfm4R;})Mdx0v^Ybq|
zxbx2Mj=3(kS2!M;((1Eq(_%hfizYrE%gUb(EO#gIWGvnCW9x$d$-fuvzp0&6&bYCu
z{U!VNi;l&QzP`M5Khi2DA)xIj>$fj0i_9Z~CO=Z$@i119{Y%D4cc-Q9AH!{zE`BHM
ze6w%4@S>SPFAT#^rW@b#J|$?p!*>a<xWBFGv-z`DuKTMU^|I^v%o!q!m6Qr6Rk@yX
zxVPPfW8Jh2%PlwJWu*6QFmakH`=GRA{i2#vnM+hQ*!{GA{>W5!&9c>wl@^wodw27j
zbL?`n^Z(%AIJLTL`o6o{ulDU?>pE!^;P|m!=y$B`!P7zW{-@4=x1zL=HJ?k$Z<f6K
zm#4|I>!0@C`#9m^37*AmC-oPc-6&ZrRx#(So#+k`nR(AIw%0`OE!^UGy(~md<nURW
zyyKUjW-)x&RUfw}pZWKb*`J=WJof7}(KlMYnq|Jfqru&@sLF>Yuf1Iu_Tj*R8aA`f
zY$v_gN|JhJD`_rN+sD*fId#qMyD2KnZ<o#cW**!&b6ddX&rZ!}dX2g&>n5BmEt}T+
zXXh7lm&Y?ETd%vXB6mie)vxkd?X`nndu_|7{j2;d{x|OR9N!}*)%)r$3oxJNT6R$F
zdh(0#t4cfNbBki9q&?60yYlMwV(H(XdtP(p?$~~I%btA}bq{kVtiBR-cpr=Ekw5<y
zOntCBqgY5)IEmeQe$*4*uBlo6{gL{s*3T20<CY$=jH%kXNb<;`;N6za(p$35i*nlu
zb=W<!Tg7xePjm9E_T;p^=Who@d(81EE-$KHkgj+lvg+#eS8;K+VG3I;K7QlvIK3*a
zF~7Rx<c99Bms=`+w*}9<zW?v8%12wo4iwr>opYJ%lH77$L;oktHodIMZwtja{;fLy
zDpc9{-d4*wi<q0Qc>LdU#@eX7;Bx@Wjh~AHk~60rtiIPL$*^nMfxP3wjdCj<ZWrOo
zG56Of2}wHhV0T;k85#Qp3YY&WU9_xuGWms#?VBsi%hj(~pIUS6dZhI9s+H<eYx(NV
zv#$Mc(S>=I)EfQw*LN;Fth7nz!PCSWeNX$=$satf{+XL|`%zAA)pJtY9h2CDtX#PB
zTjuQb@^Ke&y<yFBc$0VHBrVCZXOnGA-kkl~6gKhEn{RAYq7Ovn_kKJsXOeq9d`Z!&
z#1%|8Ew;S5YISat(wtZFzbA)nc)LZvi{Z!T{0Xs(+X^@oQ(F(6*i*xGE+VJk!d(Te
zB|CJc8MtK6%YMgpBJKL3Q#`H9qt9pDy!VK6mB`9<u?xKp-#8|oclB4(MV=#Ci~YUQ
zHs$15)Co`3VARg(c$cgctZeu!Z0a-Pa3)>h2luv}dCn#szxa2Ui_i?l&TBh<`6k?W
zbAdm~^p)X>3UQ6%ibs`=sSj>A`Z~P1sj?;bPHc16$((@v1i2I^*%uv)N_}Rh2S_`n
zx{F<Z-2Se?dxHBMWjVVnWxravhwWdkEznL&cy!>bY@I|JgOJ~O3#JDg*WTPRFG?_Z
z^!St!vpG*&-<k#TlW!D>uFw_ANqCdcbit(U^`Ut^EvLH9o=@d|xq0r70?qtOe{<y-
zZ*U$6IJ4dL*aQ&<hJ_OzmmJ;I9ppD>YD_dQ<Lgsyb9Xo|p0wVV_4r<=*$q1tj?R3>
z8@}!RpMMY5Hb@#h<eT<x#qH4fkv{uOSWo(tPLMP@@{?!HJ@&h0$NJpb+%|99)?PJD
z(%${W$qMs>)zi*5@EovyS+22iUwpQ4^}U;pf<O6YFLU)}o6$CD?d%e+<GZ%Y=yzZ0
zGCp<XB!~CCyjzBa%k)%T8C3hDr)~eJdd_Axqg<Tv`l-+NX?`o5`%jBw;jGJN_M03L
zHh6mD5@*!<I@K2q#kEYas_t7>a?Un7<H~laY<AjAJ1MgrFWtXAC=gn+^jgASmCNgR
z<6DA~Ywt{cY>?JjU)7Uvf6ny~^(l&-yPK6u@`R<kSyTGNY)Z>_m~wisgv_#2oOt4@
zmq60O`Hx<R>@v+|DtWN@<MZavZ&`w)ttK9~ZrxVP>mpUTNTK_~^qY|`lN$@~3T!-I
z-JJiH?Jy53>$8o@UaLeu8Jpdj=j=U6eCOdl=11*4ef4KQx6ZkJkLlFg0PeJ)m-k+T
z@PD<LrLitzqxT$xNw>MhytemGT3nyM^{<-fqkEF+O-2{XwZA(3U8eQ&i}l5A0b=Wy
z)idS_lxR=cb>%~*>(-3Lp-eGOzD~Vz&o}yX$Fj^8yt9^7*rL4hW4tNLlib(kDw=1a
zeT4FvJ%3Ki4d7}lmp);^kuu#x&Hm@7`*jk>4;jh|c)U`YY5DPuiD{Vev;3cZ=lQK)
zv)vUqB(|(UA@$3h%8kMott|GgNwv>b-OrzN#`evGpH0WxjaX_=?Xl<mb-HYdhkcDh
z{f~Jcr4JmmiC<)K)LH3$jOWvdX*KmH*Tiz$U4PQcFlXnP!(VNjR!djCVa;rr_u9+s
z*0au4J1;kUFsR;g(37w5qUO?Hdrr=3;mKGKzC7e~^t{i`4?eK3pP5yESgW<DJ^stt
zurIq69%V?Tp1=9r$IfU)?3V3bty;g_JY`pSt$#72?%ETd!#}eHCrtAF^`VC0Jn#Bl
za};Eo<XC^rN%*H?zx&d^x}qb;zb<b18k{e0|7KNVi)^HBt@xAc@Aq9^zwpF@HtP#P
zRwA8>w*~ACyE<3TEWBc~eKL<aZ;9>ikgiQ?3BI$h%A9G{Oi$|E7d?Id$``NaYZtFN
zG3lk3?!t3zKa!h&u~{FzCO7k>m-Fuczttx_yYmcVTFUD-xo^vxrZThrmt8@TK>cfL
zq4udooqIdJb>{uKVJ_#eV`tolOILQ?N!hV(-E!|EbrH5%uBywHd5WF<-tVT`WxCIP
z?WA)Xw`!ie@#wpzY4(0z_VS>vD}OKMZg}mcb}VJ9Z%uk1*A*wu%>NgPy|*=H@mRAg
ziRXDES0ww_PB`_w;_n@oC-Am?V7R-@@~i!qb04@LE{PL7ZPhQsBsE7Vv@5-E=ZjB)
z$`e0FDX8_|w%HyLygBMd)stMc7w*3=Dn!PHWinYF{@o+n`E}~|<%S`BLcNK`6I5-c
zv%OYr7t+#t{ztl}Jk?bpaPizZ*B8EhZnbP@vc<KF$@iT!%QX3S&G;$!TI}oIIj01F
zil)6e`t#7kCY_w;J+bb)yo$86FNqkscGx&Qoy&Eu_jKl!h_VYA+jK0M)p?l8rk|6$
zSQy&sb9I-}z1s&b^~~+q<9?@N(W?HuC)UhU7g((8suK>qTW&eOaLuKs@~ljIZw5Y8
zO^%(IbyMAA*+aA9DGT1mcyIjut>>}wr>GV8e%m!XOG><0t=Srsdhemn>A>pQ<%O$$
z&&l22cY9Ajn)zgB=G$NYta~+C$M#Z@%%**NH>vEiRd{`;gk%1?n+H6nt)0;I)ceBK
z7kf)YUY{{&`0JJA-gz?ivAbZ%c~`C&&D>oEUqftcUmT8QVwQR`MK$`F^q-`v8=nr<
zs#|o+JfFIW>A;@oTb|63_78I7?A+&8>g@Z^bYJ|z0wtU6AsqUwP1bY%>k6F?Ui`6D
zSuwac=MD2(#o!%>I@X_DAT#NOoJMb8^o7Fn*6*cf30#@xvy`L!o$c1PO6k*Dx=B%z
z)8x9Wp9_CqwaD>p#Pb@5o*(QkRizIe8E+9N+nJ>&zG1fd!p?QcljJX5wON|{nq@Pu
z%<KtUEQH;3a*Co&(mNy<MLCv7#r^*y@;vwD|Mk~ngbJ!B#TS0ttj@nAZsxq-`t@_F
zn#_YXX1z6?wCKW{<Nd1VdamfsTCE<Repl3rxu$yl&6K>C2e#EZetjU%9sT_y%agvV
zk>0P_u8OYaQgAu_dr$t&uFt*CW!L+~7yK`L>!bY9#;JY6{L+WvB2Vi#up60Z6j@B?
z%=hu^J9D(IQt2z_@2)p*>bGojbuhP^GVA@V&C2qnw~zOTJS{MZZrF0`^}eM1WEJhe
z&wOFkH+-!xh`hhMb?S#pFMm&zC=vZ%BTyszS#VP6vy29o!q(GVVHvmi?63WGo9h{|
z^mL|<uh})H%dNt8`S0@m-}!cWa;>yFcyC|+DWxu<T&re=Po=$+TIL#<pYyo><w?fv
zq6^t``nUEzd0nk;Xn%q4q{YDr?J>u1ol5JtkbSgY_4lr++)pCrS*J-ZkTgA*$TnZ@
z-JXhuZ(YvvO&i7ZId3kVBYDdG;Ikr?mrOOz>ZzP{0$eI<vUVGly2ZNvS+~ToKUQNC
zFCSONzC8z2o_1a|ta;SD|L)(m*UnB?es0jdnU`63VsW%0Z~4>ujhD?0>+Vn1&OPUJ
zm}7dek>#?99KKVto1U{>yS@4A2E*+oJhyje9KFY`n)v6IYgg9suV1u3`Tns|pZ3Q8
z#~J(Vy0~xkzkltI&tF*cce7_w;xZFXsh;52i+A|XI5U0xwYvUWY;FC^^L2l}F8?pM
zZ|?f||LZv{=k4DzD}<MEbrIL6`|IQXKigfu`PBVCx7Wx2|9gG@|6kVj!U6AZm+hK0
zdB5#v_h<J1d=AP=OYH~^J#Sx;c2fP5x31W}SzE5{vkem8yg9#6YtP*$-nDM|o-g;u
z|Nn7&{r;c7+Sh;kI{)7Pe>10t?`D_%9M3VQDK`AUN&5>=wZ3)k|Mm3x{D1BD|Ly<(
zcl-XotK<LOyng@R<^JQJI5J;ne4ZWKUNm2Q@tb<q{J)FWe{A0VukmmE_vrr*-u~O#
z|MmRY3G@H4-4FY4{eJ!5@9Y16{P*8{fBE6}`~EJF*MFU#)_UURPn8wNbAG3vy`T5#
zumAmMeb!lw57+vpzqwy~ResO?{(o2X>;LrEe~-M=eDv?THGkAEy~#iFJ0#kuddIYH
z`gLE$>wkXT{r~gq`*r{Q?{5=T3H#FfN}R<gA?E6OzI*EbHt+xU@%_HKZ>QeZl{}6A
z`|0`mKYy$LeVqROQqPah>HmM-&Hw-0{t5pB&d2Tk8XsSjKl!K3{PXkwUwgCuzU%+{
z*8X4JB)MPT>gqps|Nj+Vw;}SsciLvRuj%Xly!-zA@BSb2>i?`2Evv159sl=f{GXHa
z|9@S-Z|{$ugBAY-_PN@9TJ4eP@Hy}2(fVf~`<KT3iLW?s|Lc*0NnF6^+#UZvt^fad
z{+~zTpYPZAt$zQ{{`QVF)m*80Da9p4sfoEDR(?_zm!YA8fdYtOY-ws?3==gnf{NPM
zDCoOo=9HusDd@Z9B$lMQq$cO5q$=q9q~@iUWGEOLnJd`YaY4<jm}5K1yYGkrhs$?M
zR`HCJfBsndyKR28^Zz#avMRB_g$%BNJF>kdzxWh1T}JEX>_0C=gO8ql^1id}h)JRO
zg@c;kw=U-R$FhSj?H$iWuTICkrJbifP2BkT`t{4x+25bOowy;eYTAtO`I9!Xaepc)
z`N;U}&aHR#Q{QV(?$g=p<?s65dvC<F75s+3lfG)+IrdEYc9p?ApO4vQfvaZ*U%REW
zi|2}~m-)u4+yQR`8z0BG=Zoet3p83gvQOpQnw4|V!()r<HT^T0PT!CGf6KTl{??Jw
zH_bP;^rqLiN;zM+yTd*5@EOBbHCe@nZ(Y8r_Ik=AAHD0FEW$WVyiP}Cd4E__6)Te5
zESa%X;Oxb$oYai67q3$*>`(CITX$_-vDEAQJoDubVrt)97peMS(=B^&_M98KFP=|W
z<HV+GmiS61cKrv-=e2+97_@9_-9WJb4bjxR6j0<C850>FhNecS@!@}3&{>gVPxMi<
z13d~&*FGCr&iuEY(bs0<rXBJh8@ZCiCWN%_IK1}J(blbtS3eG3BD;mFyZIU0wEaRG
zoAxxmzV=eWHf?rA*Yjf%R>^G}3eHUAiM(~x_}w;r*FN5+-HBlfUusUXds3As%^p;>
zc}wiVWd(Z6l#<&DZ)eVrR=w1BS>NmLtaVCz4_}$Iwforo+Iq%4-_6poc+dpNgHBHQ
z6$;S`x`qaZW(vB-riKcJW@ZKoh6ZL93bFXpqmhLnmws?*Qb}b&s)D{-eo?N1eh8Qy
z;h&V1np}b!Iuk96Tnsr_i|00R@9<hP>6~$B-?8uhcVG0&W-`j1O?GKL!u3;9uq;2(
zTWNVqUgyhCQuFk-KDDj6@9kbTDP&QVM~AWNV~<tczEfQeg-u^3|M9_b?>`ojst-S3
zQ<&nO^!oBQW~Y>eQ@Dbn?nR3&|5)vC+ttr9)NpCk{=O+UmnZwKSa6zka#7ZVtDBZG
z#rsUw4=s%UUc+nczAs0Q&1CNX>o?5*$?clYRhrK@_p>02SLJr@A56cP3wV_N_59qE
zd}CL&UbErH(+b`;g{!S)*)E%fecyDpWkvLE!5t@h9A&Q>AGvt(?wc*^K4-2FFxf07
zoPLid)zxK2kI-Vl?Ci6z@{gaor^CI}b(6vI8*V>0|1;fJ&sg1`5`ZOoOp&4oUwL3?
zZh;!Y6TF3(6**kK&s)^5V1Mzm%G9e*{@pe?H>35Nutv^?r7tAToxVCD_T#iLiFrTF
z-gD3ET)pyZyNamM?`3?F-RYl1)Kx^*t0g<!*?9HZ;zFZCJiB$&(h}Bnt#{E|5y12+
z@KaXW;s;sFn)cNm37h#<Oq|1&NlhnR``>)#%df>`dBkSCH9x)C<{Q`L5}h;EZI%44
z%5`i{qw*3`*EY{@lb!W_TZYE}C+gK=6<g2q-&^gp5R2Chki71cSe)vXpI4%w?~<C8
z7*-mbm{+XppOlkXSemM!@0^iX6i}3(T&!RODpiBH^j-6k^HVbO(iK4Es7q#AT53^h
zUUF)&LbQURfuVwaDkxDa=w~Sy8k#BSmw-|?B(=gd+SzgGyJZ#?mw*gcFaV|Lyb?kg
zBtNgjCAB!YD6^m>zevH*Qo%qWh)W;jaNop|qD)ZcGSD+H06Ee?0l|t@(DzA%+GJ#E
zs-W+en45~tt4LW4<XmG|9s}8+pdX%@Qj$@uU}yod7L*#Gg&5c!pwbK!7>>ossd*&|
zmPVEe`p$_39;un>86_b9fgBE!(KRwQ1J^m}#R`^Y5Z4poZ`@AyEJ@7COm@sm&q)Q@
z<C|CkcBq1(v8jQAesD=@ZWu@$<RM5XgIod)Lj4H11MTcUX$0gAum?emXazF^18QI{
za?LR|v`{cHFjO!xGf=QFwoouLHsi81HBd0OFi<cuH&rmUGyr2$1Bg6Gy|J000+=>7
z2dT%0xy+2s!1Bh%<_aJTvIB-qjSUqH4L|{4VWMDWVWwbaX`x_lZlGXhY@}dnZmM7o
z!lp(FMwX^rMwX@uW~OEerl#f!7G}l@<|Y;j<`(7(W(LL(8YFLQs$gbls9<hvq+n)Y
zqF`xZsbFRS5d+a+&lsC?foPB;K%N3&GectqGh<T)Q&W)LAoZpS#->JKF*9Qm1tW6{
zFg7)}1k;x0CJG>NGeaXTkUkJLF*H;#H8NB%wgl-jQ82YMQm`<z0Mj70sgWr>AV7fv
zvL762pa3#300k%)$WBv33rL`V90tSSlm@oN092cSf(RUJrtq`_jt`J^5X@z2X`leo
z4Gv!f!^lv<1Z;$n1z0QCRfdr01SJEI%aF0Lu{jq=Hwc4`GBGz)Ff%j<rxj2-01JX-
zK^WvGkSQPx;=@b=InLC;fD0rJGr-c!QUQiR2>}#e*f2P(EkOwr6s~X#P7k0o0mI<5
z0!<U3bb*XP?gI0TjlgLGls-Thlvd0PEV#^!4HUp>0F(~Uu%#t5T^K^rg&CBFr3n~q
zW(abd2^W|Kv5_#yez3SPG~GaHP`UucDu|AS6%ODU08}`D3cFMVaDzGsRMLZ+azUWN
z-Uw8w1|b!Y#>iC-zFO7-wURaM+0A>vfWxJF*$%-U77gD!gC_pHEfB4@qxzEYbISuK
z?D*YZ9MMg2ez>f{({iC*ph;A|)i#gf{d-c3#YO)b->GeV`>Y|w#Pf;b#ivD2BQ>k+
zrr(mT1No#FrLSNNsxV-F!sk9CW7JltX`poxt0BkhTCP|H<7fHv(~Z}Ay}R$WVRBj`
zBPZu`+Z!E6rb}FsecF{DIX6wRPQ822k4Viqd&C19LtG;i-#&;um(_N#SULDXk(%A<
zGwPR<jx(+5v^du{C(VGvu=jO_rEJ<Pc3Z{k?8<p>OiqXLWbTb#b^UwPzhKv&Cw9$#
zdQEe7)XL~DJ+_^v&%Iu$`<8og-=k#;mmVg!e^-b<GUuqP`lYjV#!oj)GGSTH`a#)n
z%B!0XO%EM8-^1d6^YY8uDQ(y7GIs4N*MD*1Y>UrRu~QyLCr>>#!!TsO;8~Tgf9)@9
zwyU3I5aNy{z=-WenOlOA0W`EL=J=l7&3izBhvmXNO&g{M|Lp=-ZK#))R&q+Vf9Yp+
zkWci^qYV-n<vXH2E)ASf`)a1pq<~^umk483tCl74zfKz*o^j*Ew)fk^-ihCnmXXBb
zEMj{T<|Zi4GB!02H3-<Sg+XXp+cU0bZqv9l+hQE-I;Ngx6+X?l`Hat*1|4VblxdwC
z6(^)7CAJ+gGTYd2N-2WPK`O_W@5~pObtVkVg%XpoxCpuVk1u7JpazujCKITO+NNP~
z5l@3jL?)k)D_^)2!%`QXCs-^7<w0VSv;|s<?mZ~VV93Jyex(zqqQ{rb`Tm#wmwLWw
zHRO+XUD&)<!%E%9sA9v>Ia{P}mDY7|Hn;4U!zFgnNaFR5AD4=|^Uv>AjF|GQ<>&l|
zZ~rpPahKeM#bstl?M{3_Vu}_drl#T0NLuEG5=p5UnS5za8zRMyIk0(1&Pilga&T60
zLRHa@OAIR?3PfRXf;o{+us|CG=-VxLz<|TKdRYR?XU?|TqLp+0-fpnZyx?r*w}aD+
z=lsRDht4&cJHB((-=LS@z@^x&BKh;%xuc81W*%L?%=J}^iRT>iz!!eqUeB2yf8ndJ
z+f^!Cg~fTG1|~6aXKsp;j7@ttf}F<;a^7i1;cq9G9{RnV^GC)KahVfOo*kUGsbqui
zbM`OKm-v2m3Y@UY;6h1SZDGa}zA!%VxD2oLT`$f%zGt8LN_-X;CxM#U#5l>w5G_3g
zSn@F&a=iK5_0vJ6IoII*O^w)p_uCkkMi@ptJ5(nteEh>C)_A7-UE6y^rPI3JN33eS
z!j~hvLT}FMinf@87r8ff&J~+;+RVK3ifD?5OJ+)R-V32FGuP!$-uo7Nn?L=w#Pf1)
zl;n&m$)YkALFbbRoLRfXd?U8livACtXVvw+_Bfw*$(@InC(D1eJ)CaW?!EWuw-q-#
zU3Tf8m~eTPH>a=3&5P?#h@7)ATQcFCf@4rjQ+Dcvw=btJW)?Cq+^*wL7QSeXYUc4v
z|BdH;{K?38J9s5#;Fu6wy&0OJMwn~AwGgu+k8`!(Lgj|~1C?fzyY|*gpSJdt(&<sP
zU!-mI?bPAq<WtA8w`^2DB=#=Iig)?Sp7mYJ(_<H$PBaS6k2xEYuxi7JJim><Bx)9Z
zdh@Jheds)iL(_dYc@3so?`;42D{#)V8kODLO|Pc(o;qaUe(Ae|kMHc|t&M;B^((U+
z17<$!&7L;ZJzF%`Bz=ZfG<Vb2#syYOe=%SF@3VZb{hcqi4Oo0jbY+P)gyuTIyN_8>
z!1?=}L+%Uy70m0~^y*H%wVu_*oDHfP*Nt~F3s-+U;WH&~Ps$GKGote!N*WaZ@S2fx
z#OH-yjPjIqA`e66bM&3Qx98=8&T5x)i|4UMUOmT~#h5<nS<~Alz2`lm=I2hXb$fdD
z%i`+-`!dVruUEEz^LTvkaLB%MmRHa1?&8Sgj=Z{M--H~IlYH6sTE4f>ofg>mAV(_f
zh0HyU-Qnfx-V$~DKN+YB+w<T36<8B%zWB9Bx_Y=;_W8;eo-gCSo?6U*v{3Vf_{O(q
zRKCYA51zC#xH|oP=HKNzj{oMLkQZi&C9H_8CykBKT0TMElcF6tZto9%!L%;x-`UDJ
zvq0ku9B<YvXcQBgAZBsmh&NAQZ_!ct%BGK2jr(6e&HQ6`uk}jPa;3iqwq{DdKR(Me
zaDz#b<{7(he>D`32S2_q@M5Qja9WB{k%DB$@2z(A*Jk@z{$X2^S^P`Gvr0hs#$Bnh
zn#c)`mnKV1d-J5dRCmKJ4&NEl*-Da@Ta8T5AD{QoXr6?!<5e96&-pw2MSDDq<*d_n
zD<?dxSS7Asx3~AYQUA*6p{z#RIG-h0&*WULp(L<>fy&O#-5IYm`qGZgy4~6~N$LAt
z+c|T-?Akxag*A@zq0Tj-KFO+6M(WnQUJJ6Gvdl=_`>nNbmYLU%;LC4gH?F^*u9kS`
z*@n$QM!e?=3-o875mc$ZYnUi3*FNL>JHehKdw#~|2*&I@vs3MI|6h$;9`YjBpU3#l
zT&wX=e$|ss(d$3{|G9Vmy!{08+KpJEhS;`(1!^^9+l#0JlIyP7?F>2hFE>a2Ih!qu
zdSZk0>UE6#=lJScuI+oNtU2q7`-ToZBiG7zYc*zHD-AiN5_9U#&&h`ht~`+0wg2j^
z!d*u$Mt}czxl?u~76%gBbTBqRZOzzDvYvF<fXBIdZj<<lo*$E+d`?lH`u*QqJEN0f
z4W6A08v3O(H!ZVK$W-I}fAQhNB<rW;H|Cu^b6~5BzVK<y^9!|)+;RQ6X=d-PO;$%&
z9X6O7{bj|R?l#}avz}{tOK#_$cX(^(^J%q5_{~jLu$T6FAL6}xH6xPiY(eRN>%Hzb
z%S~;>XNSDHBHk|^DEjQDqW_}ymtK!*Y%~;Ostw%4gq{Rnbm-e0v-VS*(>K2DQkxDr
zW_do}tZs9ow8~#EPyDO^f6C5~AAW&v-d-@?_r{CUR%qM9h<CNtvo^kznr-o>?!DW!
zQ$6c46zfietG`xFxD%}ADwN{4Eh4Y`>b!RgHI@~(6-z3-y4lqh^eicSbv=)DzK;G)
zofA{ea2vTT_nl`^aiXqw)|bku&nx~i=6o);#uD(vHl2)&QJV*@fu2Pyiafi&Ykz56
zc}V-iJioImKmX6xG4}KmOUO3NY;4r6=v2IR;7p_b&KlnrCN<_pw?A0jlq>Mxp?7Ec
z>8A8U(+-4(OfTQ7AA8fIw!D2+U0O=@W{<NIrcSl`>SUsJLs8IH+2~}LPI2=R&9y;K
z_i02o=)Ib{&Cj}b(gJ0Xhxt>KAHEdzD)Y^eT7AW8!9tGH+w?lDW~wYIODxR#I89M$
zerdAl@gLoON@d3%|6615I#6ZOrF8bYg=&j^r^PZ`?yOw3Axz7%!!GXPv6fdQs~VH{
zT;KLZIP<~IZ}AV=?P~w`OZ?h-&;HoE7$q#BMr^ar+z_SFV!X{Hz#w3QLGT4r6SEM5
zO(tOm=EeaYhEJHd8Y6bb7;Ka=IDJOwh>?l8bJELMl1`};BNQGN?MPsIe&EdMhhEGK
zAGe4pV{s0#O*}KyID|UKBpl)#GlM{=bD9i`59(~l;S=|fZAoQIl8~IGu<=a8u}0O0
zJQE}>3oe6No9CKEFJo~EvCTOnV*`|+F%9(0J8ZzS=e6kPMutav`;R;Nzx}^n_7Z18
zLWcL8vx3snf)$+y&pSRj7JaQ}){ogIV?XY;5tZZI-lQJL64zFJlT$BWV)|c;Gc_OL
zqAVv%`5P&S-~95y<wU}ChZhIlNL@*sovHq-t>t{5hpBX=U%dAP@6`et{x|EEb9-%B
z`|AAL&3aqjX8T**e7jP8s=va#=uJ%1d&7Oik|n>mJk>k;#c|c<)_E<T7S-@=`nf_;
zD0b1DMs+s!#SYdRo^PAq8Q!{}v~>Qq-i1<{vi|?gOiVqMo(QYXxp`?v^pAh@s{j6B
zUKSEOA4_l%-PA;DUzqw^Z(>&Dd2QLMH$k!|H{tx|nIZb$^XI2*;uZSm@#%|;yIS0{
z6C7)9e%vM|*&+EuEcoMk+qZ{XUfJ$w=Xm<aX-1;T9Mji3W-otybbstq<7)?Z^X^NU
zCeE_WVDi_gM`xZcI~XCQUg)<;I{CUwPIBz)mm=2$eKeRA=e{*iJs~5iS-WX*kENC0
zlg{T!tB&gJf1g-;aGBwvLo(s4{ufdLrrEw%TOcd`<^I*)`<^D<aZE-N6B6gDJUbWZ
z_v31|`|-eTB}4Tkl242TFU?t(#I=y~sFgLBmMH7=SH-99+WpUnjrPS1D^p@yo<=5U
zEzf}6z0QU_uWebyITHTrRL?8-n0kA^t(RLtt74S>q$r^o9S6L5HcrWZ<nHEZ%e`N`
z^^x(B^Wv?J=USFH%=s!QFteiVmRsJ7vVwDa4jcDaGKn9JDp+=T=C_y|Pv)?z3!KZH
z^0CKhmuHA*VaWVKpO33Ho$tNgxO8jI=F1b`DE78^d#b8UuM5`tzeO`z>%}cs;SC;7
z8YlajJk+swo|JTE!IZ%723z~S6mFX6UV7o=%{i93GjG0I{?@04KSFJ0;8V@H&yDQV
zSALH1t9`dw_TrO8OGAIp`Fn5Tv`<P~Z!f(1GF&xqX7API6L#4A@0tJcA9LS=Nbu-3
zbRZ%XGWlpqY)ck2Xo@l!9ORwHYRGZ>yygyvr5}8Y=B>Q<?rweb>@y*&xb&H~8BUqb
zvr^Um)uaw%pSrI_v5x{j?aj$bf2R0O&urO`h@$viZ8wT8&Pv+oFLP4=#FmhVg<*FW
zJAZ7|5awslebC7IaG%WokK!v1Uf<AKbhtW&DZ%SXp2IQci;^CZj)IB5CyKsU60kn!
z;d>2*@GEOt7nUS-@J?gU+_##ybH<9B3))+zPFf{<>0{55577r>I}-z<qi?fRq+JlW
zd2eE`pz+&_l7*3i+4i<C7Y7<`4V2{fO|SWQ*C^=oMbQ^aE}gi0$~pbKlX`;6GtU{%
z3zQ$uyY0wr_@!|DH2<9MGc>~{eqgme#mKz(@4ZRA=c^y+^u*kL<D>rJV&-xg;kEnZ
zlKwW^=XlSKIj-IADzaja21ng>N8!Snh@;<A7Q2*hVZ5d+d^JN=fJf-ixwi(NDvnj&
zyeGQl*%z0L#V&GJ`UGt?HXVIBM|8vTKWolzl$pn`R-M14f6AFND_TUalvS<Rc0O75
zO8LCszy2`lF)YL~{$omPbKB6^7^S53?ROM9Y{0?%zOHp%!$!u>^Gd3`{?+SFFnh=P
zwx?lYn*oPS63=S`)jd_eABHaRE->r+sVeDe!;!^(M?8epJ-KV{j~jOvzFGR{rHF6$
zYr*2nTb7iV2WsW+oqOWPf!g`^<U_Zq%x#j3e$}FPQRR~>Q}K-ugY&PBd3*OSe|z(u
ze43r{bu5{i*cPgh32GhY8@M~y#gOOqeUX?446m~*=Wz$ce#>`0$uZ%O!a{w`<*H)e
zj(PJuWRK?G_he$IbG@9s;TvNe+mlbO*gxBOGDKvb=&IQ>0>qOZ{>@<7BUYlXq<xD0
zet#-Y@wx9077I*IP%}wblkce}eszy=%AwAMeTN-qhe(wBis-BpJ!^d8ZJ7BctIY~I
z6{^CIjxo5f+!UX1Heqqk#;FsI7RjyPn#3BFaQ&rpV0V-Dlxv(Ni>@8nb>_k9=ikcA
zo%KIGSh1_3mglwihC?rwR_oNPbCN&v#mBnbQ+e-)Wx|4K{H#GU=T4kzWt&vH-QoZI
zRP7(XPoDq$ms?aLMhi>$5!-;aM6GsxdmV)iC~z>p-=pLo;Bw)AN!6wQ@vE=!?LFYf
z)G6lL^u;vG+u+>}Bhl;t%^6ds9|$#w;lA~5(W!q%o<4KiE>~}7Zr=2<u=$eb?{9@w
z46FZEvEAjrB%>68#f8MSG!4yA)2r)*ouw>>JkG_TjY1U-R<9)O-8cVT&YijEp2M$-
zmWmEr&cj8qM_VuQ+TYuD#$->Q(VgC}smFe-*y!MQfn7pLIDE0^*SB59Auk_ZO<K2j
zQH;KolF*q+k5@Y=*H~>j?i_u4W}Vgg`ZtR2h5u`5J<m&I)LZq=;b)Ni$1D9e17FQr
z*srCXEthp`KgVvRDcfpe{8H!as%GDEC|x`JcP;aZ=T=yT4NQq`AEGVvFg7y|F$gf&
z7-C>#7HD8*!jvT3D&nlSfCDx<>#(Y5$AVME39CRYu$P>?2e5=Q(TzdWUbwN*c2L{Y
zgi)wXOpWVV8XI_Ac;Cv-olbh<9y~`*F>dB**rGb8sUzCS#BoYfguv1?wKM@w3udM1
zYz!y2h(5*Q7Ghh2Xf-xgw@ecV(-Zg6VL!ukaasYF(mXbX`L#S-u~<rUo5~ceoiNdR
z60-tmnM0Fu!=EQMGiQYs{eNpR!^f;_`ij3TUdqdabe@Y;8vH%+>1@ijms@34&+TRE
zQW81yMC(gL<JGyEkIrm$+4^;(QPG{3vdxcppRbz}vS~-)F{@Qpq87`ZpZc}x-Jcyg
zr}ing8?okGv*a@?c)BgIM|knsu=4ibE)$kdUb*;D*@T=Q&6AJqJ9Slbho9N+SE>^1
zO?3-7eLndvC~b3i{7kc|i1XXW!rh-8Hf-O+xg>|<$q9iTKF8gD>*@<%|GD?y>hRp>
zw|K()%0F8BWbb~gZ+Nn6XM^iIkt?5V#n-;(k$r!1W^&QxTIc668&2PKTz3AC{Oj-h
z0bOYwnBi!K+}=V=+8Y@v=$e=rD;SzvnkX0=85@JvJK!7IHa16EX+UT(&toGKgJ1(Q
z)6f%7jm*uMHWwYxQ7%?i;8y8Qa7?+(z!=ZPg~g@Bwrvc}Q2S%96TF2EEATjfpX22I
z!JVyUUdb-6_xsl>`fhGmzR`iLT%Bd*R#xGQtopg$ySVM5InN!dcwv@jD)fY<v>|NC
z<BTamwL6byPA&PEVOFfoy;fK@jjw9TV#x&pR-*UbE_zb5?A^Ja?gd}tzq)UHH|Ok;
z11V4WTGGC1zN?un8yI^xrT$WK-nHy{(Qm6ZY+1APY0K?%vBnEn-mR2*`<HcPu~iEe
zpAuW?8yTXFlLYJ*bT;I8ZOh92<Xp{L^Yf>dp8l7sGG~dCnUm0zSw1JHv|F8;v_{ik
z*3LVreNX$-yc9E4Em!@?8&tnv;QCnG`Ap>d-K*0!JDW_;u&m=Y)><Vkd)eD;R)LoA
zt_61v8~@_XEnyC8m)jVvaA8Tp^=%48$N43A4$c(rR^svUW&6Lj=zGwe_qH<mi#n#1
zd|3DM>6g>zb@%w$_POlZ`?D*%aG4dCOMzR~r>>I3qnl1RFS*KMYRjCxm0{hzs-NZ=
z?j@29Z-hG^n=F-a{(o)9@z>1lT|r;41P`&T2n*C&&=o%Sn!r-0mNs8w>gIZB1+O~=
z{=2GoSP2;g-%D(3XPL*N(-!=ZZRX+x(;aR>y>s6z-jEkx+W4$0c=gxs>{|Y1Wren9
zPfKER7qPW7Xt@k><J&jDJI_Ut=XP;d%mYsqMaFZ^S3{rwyS?#n$Xl&8iFyzImzzT6
zUI!<YcE0(v)OY$Rqe{^gPyKKI59DFW`+wnt<Cg6`bCaG4T|0V6#pbDrvb6ej9r=E1
zf9bT=V@G-)&()Jmm@md?8a?%Fqh+p@xx=mrQrlN;zLyffqx8z@Ec;}=Im<6j@35S=
zBEhR%ZR-T-7`v+rnG2)#a_vm+o}7O~CUW6{#0x%!*WwwktvI<U@`QqCo8r0J#nn@|
zdRLsP)D}I&KY5|x*S4z**rx7mU9|G)q(8E^m<(9A^_0Hk@oHSfaPYp?^4k53D!sA6
zSR#|?1_N4?(AIw^FEgaSXK|oPC;D^DgjbvDrBAs9aVR-_oS5o<oGT`YX>y;Xkbb89
zk4&k?2sTsqFD+e(5fAbvG4VI+c!kf?jpLbk%PH35$2Ea_Ykg7{*{m0|E>IU=%x)JV
z9Vu7kVC^Crxz6)&#MQ9athpPQWHy~URBC%>70c6$>e-s|0U=I%Oa9NVzV(}%Az%MB
z7QYeOKrlp`D>d!+<^#>5e79`XHwdb0DUe&WZrS(yW{FXpoZPqd4~jKU?D6(VcrzpU
zp=yZ#T00fx{#~Ay0xJW|S^P76c#Lx{seU+Ba^GlP^qx6kubTWkp1fRRCbg(1E$;Be
z;B#EF|DC?0l9lQ<liBEX$adjPn-W-`v2L~bZv1XV%!`)xxu-U~@H1R=C(TW&?*HvC
z|Cp+c43e?<j@Tv$n&*towgeai7?>EaPjYK>m^QJ~sY_AZgW<@Tr%jyC8Y0;oq!wAQ
zuTyK+=4Ckcf>#ZT#l*HZ3{6pc5v~(<f{I6%;!sCUp$#0bHXgrN{(q(TPp>Wc47%;>
zRfAW_t1B(Lb3NmWK_%aOU)3<38*1AoOBG3rIeHn+sPHpfy?Fb=neA6z?^v;FM`_yB
z%bBN79j*VI5pF!$_K@i-^$)%;e$2Povhqdrg7w@}Y8|#(%=HW~tX-efxOh%kz0w?s
z2X>O~Gc}b9lk&LUe3xWM+ZVp$*kjhajOLYCd`WBr#~5t|hi;H%pNb*R>Azfc2@J14
zeVixfbLIE{63<Xp)>S#DZJrbzc2TX<nQ%KW`_Xl`v;~JgtY3Ym^}WaK6ILDBCtPDr
zPCJzDqVvS?h|Q6v_qTsY%Kcn(=HzDfWBND0ONPB!$$8r8Shw+(!&-fZwN7kIc&)Um
zx*~YV;gu>k9(Vt@J6bH>B(_gE<ADCp=c|<~_APO}Wt(<;OEmwqO!uiG)0*FAo;&@-
z`?XH^@y9<EZr&5McFGEGSY%LstWvMfC^yw5J2Aa^$+4r~p55qQ$`bqHSn3iBrk^vl
z4l#SpI+L?V;opguipz}zmaTi~rM^8-wEWe{n9V!)%=I*i{_fg!R^;64Lo>gY&oEkj
z*1B?<@KQh5AClGESa|0?eswc@W~<wF%Y)jgHD+a1MW6Q0isV1J(!)da@-8mF#V16(
zZ%q3!t83P!E2lr)pZ;C4{y(GfqZ&rcNHIrlE#YepnV~hijm?5VL&8i#%a*mF%=AN+
zW9Xb|)KTW1Fil3!nLF7aHz{XHLRu1AN~D6J!mdjUML&clVsQ(x?IB}B)NEiH<Xz-!
z2%3p2XgoJ#f9<@IO<C{uuWeD+-k|H?q^BQw$-C}~>g}b6pM=YQSKa7j*Z+3bnV_TJ
z#Wsta*In;^UU0iE7fYb9?GGb$QKc*Aue`9TNStoRyk5XhQ>=o0G6UQChw&9t{F)C~
zOB>x2oIFuVK;_^p?`~g@DYl+}w4Z)mGS#G{PEEV`XLZp^k*vihIYbpAcHUrLqOB>X
zB5d2~v8iaUd05B23E`8Dr>m+-3fxuO=)2{><2zHgw9K60#QH3v;cCg|UB6^}A|7vO
z`KXmBcD31ep6SY#v@LzfDTgb*AM)vJZ96O!FuQgt=c?)bm+x>YFLU=TdwXb8wAp(_
zm&HGgb*3CVuA#!%?w72>b!kI`V58;U4PASmaa)QV=t!MAONS>nLv?pmU+aMjb2cwc
zJa&EF_0Rv<U8AcPV~GV~+iGZ$04@a^4vRSJF-T2edV|GaVp}<e#%Rsm{?oiHiagHm
zLmmo!lC)ddes$iBf9qcx%yM-4;izQ&(ST#k=TBxAj()hf=&<=ev#YC<r|QV>stO9@
ze>tIj&nMA<OoPB9t&u*m&WYz{oH{YhXuI^oZNANGa;Ao?Z7#E6<KMPCbu~xb%G|_P
zIv;rsg~shT&TBuxdu{pN(0%nz!3NW@_=VV(5$2?^<+{5LJmA%64P|HNJZD{5_wIh%
zlz1-ZEn!`=`oyMY{!CR2)t#)j|E*_kr}U@qC%HO>CxxrtTFNsq;HOP%$o}-xd-h$M
zBdFj#m22|kNyk;W|M5(}rzi6~IorNpx!krYA+)DOi1D<D@Z#)9tKElZ_5QJ0#%TXY
zuxMSxc9~>R58hpcw?yANf37?srI0pbS{GMrSf^N><HrT=YiqwpghVJ@d@JKw(9;_*
zv7xN-mIsgJX0hEX^nXQ8nZa4|wp;1lq60#nXXYfuTK(d;E74i8-|X?}^?hEyJhZcY
zZj~?g%sitsdEIo^eDnNT+Z_&{^-k5tomFrQzNV2`b79roWQ|#psjcNQvv^F7%e0>n
zwrMvOn)0Pqqb}ZCZI{MGdp_QU_3?6xd*-m^GZtT*zpaZ|{Nv5U^)d;qmyXVQQtO~4
zT$S+a|Mef0|Nbz`Y-<R?5;erOzl=;!i!|Lp%Sp_R9H*a)Ryh@4e!ubb#P9!Ka-Cvq
zZgW<!(k%=)<}WZ!``)J$p<5olpDA&${NTd-r%I*8ECob8E=h#=u87?ux0k(4CXMOy
z5>uUK$=A&G$z0}Dg%v)>ZoVy*G-av2p6#C&V5BWxc=8BqaOsT`GY|VO>*0PIbDsCa
zPQh!b5=&-JJ=W8r?5h~$vGA4JN@K?fEQ?nMF7A~%TKDp_^4!Ew<t(1xG2XYY7Ym=0
zGO-q0ZDYCAJ$%mTlSjF=+5hf2d%!hBYPF4kP{ID&&VT2;d18L=($39Czx;?R-n7R+
zG~(m4t<n>GxBf8KfAqul@#~*|m{%-~7Q+&NL^tx#rU`u~`0_a^3N(M8vq;=v;b-Rl
z&lxc<|86h)@bgjA7jH%9<%gMN-5<HRx1D=YvEig4-yUuwwYc8T^Lt*a^l`ot%{{nl
zi}ky+I)>^x!paHRQ|`=m7y0pU2Df9=n@@+uC0v$d&&W5OUpl$2ZujNbD@#kiUsmRt
zbD}SRN4kLZ#${W+J3{B)&r;hTqA5AsVhVqV_{2>&Ia^mOO`0AYn$hzp%=UeE+}odw
z2ftbW#^Pt>rXK}^24<w}0D5d>W*B5(Y!-ClsS(R2ogR^*9X^RXGh+Crw>B{bv`%cD
z*|c+_s>iWQOs9;D&6!U*hCC@)%E*wM#9xHP2gq$m3VdK>Vn)KahiQO!-cbkWEXzZC
znZ@ZHS7OEY{$JL1GFap$XM*%KdBa>ApM_skPk#BM_tAHvYeLfD6mEfB_WOEYbovf-
z2v!Ge;Q7_L&V>8RqQhU$^qh8E8Y+{&I!bb@zp|F(cmKIB1NzF{9$wVSvRc*r`0|>$
zyBAOXa^~zct-0Gm)&K53Z#;XcXa2P5o{Z7+rH==81ue*S?A*_FeMO;<g{+#bpJ0KG
z%7%3}jxnm9G}HS1$k&p`u8M0m>q_y+W3Q8EOcOG46<U38-(>#B7MBnHn)&dqmS3ss
z>&Hw&6Oxbc&YAmGcxJV4Bj=j*yWbhk|BAf-TE4F_z5+|w6Wg*iGDPjbn+BZbbvESK
zoz5k;LWHR?WnS3c(*N1H7pxNn|2svTn8H!H^5i+qm)>?(KK$GC_HR_;UR$dA=F}{O
zdD`z6&fK)|;*CcM1yX8p4PxdAFEV?jOiLa%Ez_Io)Ob|&!_1n}>KFU`B`dPfmfhLR
zpWw&%=zrbece+m&PWpUmp7c-YId4B$Z_azDo>iuFu}IYD%4U<}5*)&=ayFH&%L*QC
zzE*zKMCeKyx8F3zb$<3ed<+Rnaghyg*11@EU+P;rKY!2h@B9u7!CNqc#t0=@V%fo@
zfV^`F6ppAnm$>v%cP<$lDd-m$BqpaSm>4MN7bF&?=H;ZOl|Y$A;Eg;crV9EQl?558
zc?$XksYRLjDGDYQ3i?&4MfnQ)`FW{a`X%N03i>4(MX9L@`f2&4MGE?9nPsU8`o)<Q
z3i`#VWgwl9O+jX+3i^%;X66d|&I)Fh3i_@J`fdv5#tQnL3g)H?`rcgnJ_`E23i^Hu
z`u+;~0SXpI3i?3``oRho<_h}Z3YLZn`bkBJ$=RtTU}sty!}$=mTAC~9Co1SCDd;D2
z>8F4;W$C9W7#f%;=w~SCXDS#PSSaY{DCp-Z=;tZu=PT$JC>R==DCid{=of>Q@#~i=
z#BxD584|l~3;ReY>b5N-P<cp|ZCgl%321i{_U&3mpehG>Hv-sx*jiSSwrd$1p>Nm1
z>0k8iS_=9o+qAg!k+x}>7?HJ23+yqFKSsA{fw%cUw&#p))55b&%LKFu$P~KAiW=Lr
zj49csWkl&VEhG3AEznl2f!(HMihrAyg%M=?9&~#a?YC)xsyk5O0NSSIr~ux96$Gki
zz<Zs7K$VR#s52e}s&kA%z2_iMy<-gOdj=`!dn*`&x;jA$`aTNA-~yCO-&esHTyldd
zBx6w38w9GCj6oI!fvP9)GWZ}+6=eb%YysC)CQv)V6->Z(aOo#1m_Y4FQZRwqfn1B3
zfNevo$xNUYCxa?m1JIt|6a^Eg#i<J5RZu|+`jA=`ys9TiK|f6ayc`6?0@c5!VEds}
zvMJaJT>2Rbrcft9>vZrebr7g_G=*B3qhJd4Yp#MR)XF>sGpG;q70kds<O0?G3T99{
z3KY!17C>7L;M&;?Y7w|u0jZzOpk9TxBh0`ya_JW-m_cnU1~m%|6oO#w2JnCyh?iNR
zU=DQwq`_hib_J-`HV3<b3)%uPhq?pQC^3h+pj5#eYB9LgVh-^XV*4-109eX#GgJV#
zvOvkiNWlm+pod(Qf=q`gbu<KT26uK;Fo12FcC9FJ4=zb8NmbBKPE-I7yy!a`!IT-|
zRt8#}16!np*s6nYBFOzvdl7=5;DZWc*~P9~kddii1afc?%FgfH%)HWK1@Odf5Ert(
z(!5LqV@neSbC9{HdP?&$jf@N}6wIOV<ZGZ{2#o+=Lj^-n00wdC`x+@2LhbW4RxpHy
zzORXbA;|eb3i`gL3WgBF5uN~>1M>x}t7W2RWU8PGCJ_XI10xKLO_7>MgyxuYCm8ZI
zDDb#`pV!1)!{i|t=Dz-6lFy$1tAup8bS_N$=U%_o>conv@0cggi=3NM;x%urHtXui
z{r5gj_IvYKX3FKp+#TBa8z$~?{Iyxi>GaBzYyAUGyK3wbk9sJdl9{*i=dBe#dG`v~
z%Kqi}ah_wQY_BFyP4Wggo^2g{{YlB{Q7@P#ee=DK*}?}0<!ER?vjR9ZjfMs+G(Z_@
zG&EqL0V-2QLjx8Xpkj42G@zjYs+wSd;hbNZSE693pzocT0y(V(e3(frtS$~nOiwLF
zs(vj%RX$vEQEFmIW`3Rvs7lvxu`)6+GBhwVGBC6-wlp!&HZW2*Fi_Xz(su@_%P&&U
z$W1IM$jL9s$xKo()-%*I)KSPNDJihh*GEX`<rk%Ea_I*Y<)@S;r=sd9NJ&#j0u6BF
zr9kv+BDt)hC^e1CK*7S0%K#1(%uG#<O%>7<;9{V<79_2Z2Ng55Gy*l9P{quRKus$&
zF=J5egC=GIs-MxtK+R`#F;EK=Ma;m!0MrCT6EiU|QUD1Vz};tHU}Ru{CT3z_0BWFs
z6vEY+nwx=Ix@cmSpyL@(#Viah4bjXqwJ-rSVA0f>gSrN&VwT{ubWp@h3@t%NtD%XR
z8yKV6VPa?uYKo$&GqMCVj8Vl53@p&Yz{J1=i<r5AIffmEpz|kC%riAL19c(L#7r>7
zOe{bxUsQEwW|o%db{K;W>jEi5#F2@yA*cxr5`@QxiLr?VdN`XHgN}*;DMQw44r(@n
z1d;SwVA^Y90P3=!sxvXPFhO^pi7}{ag{IEL(f~sp=m-*!G9<T{8epVx6I0A|Z(?c=
zYB_^6Biw9iVPT4HhnW$mJA|sv%oNl)K@&3vHHXo}EHLtni8*Ld3P>4}o6Su?T{Dm%
z!Y$@l{AOVU>X4$Uv%pLTCKl$Pei)iMOHi)|Rm{>5GwoU$SzzQ<OA{=5O+j5<H1jMl
z@`tH`0Y+S!8W@3kASilG4NNiIVrpQHS=JdEfX-q;)oTda3j`8EgsG{a38?c45`>4T
zsi7%`-%JfbM+SkEA?Y<T0-gK<5=7`VG6r>p(ZtL#(zB_N1!#Z(Rh_W`W?nVMjB`_C
z%zR{OVt`p5m>6M(i;1bF8Cu#kwKPU9|4NDyGjmdlxIn`vo_T5c3gC(mG`f+W52`=G
jz4GA9s#FCFaKE;=B(bOjTqT)Wnpl`}sj9mAyKw;krPBJU

literal 0
HcmV?d00001

diff --git a/pythonscripts/figure3_du850_icon_mpi_ipsl_total_vs_cloud.ipynb b/pythonscripts/figure3_du850_icon_mpi_ipsl_total_vs_cloud.ipynb
new file mode 100644
index 0000000..f9cad0b
--- /dev/null
+++ b/pythonscripts/figure3_du850_icon_mpi_ipsl_total_vs_cloud.ipynb
@@ -0,0 +1,635 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Zonal wind response: total response vs. cloud impact\n",
+    "\n",
+    "This script generates figure 3: maps of total zonal wind response vs. cloud impact in ICON, MPI-ESM and IPSL-CM5A.\n",
+    "\n",
+    "Note: for ICON, we investigate simulations with locked clouds and interactive water vapor. For MPI-ESM and IPSL-CM5A, we investigate simulations with both locked clouds and locked water vapor."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load own colorbar"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mymap, mymap2 = fct.generate_mymap()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated\n",
+    "\n",
+    "* xx_cld: locked clouds, interactive water vapor\n",
+    "* xx_cldvap: locked clouds, locked water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "runs_cld = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "runs_cldvap = ['T1C1W1', 'T2C2W2', 'T1C2W1', 'T1C1W2',\n",
+    "               'T1C2W2', 'T2C1W1', 'T2C2W1', 'T2C1W2']\n",
+    "\n",
+    "response_cld = ['total', 'SST', 'cloud']\n",
+    "response_cldvap = ['total', 'SST', 'cloud', 'water vapor']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (MPI-ESM, IPSL-CM5A with locked clouds and locked water vapor)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1W1\n",
+      "reading T2C2W2\n",
+      "reading T1C2W1\n",
+      "reading T1C1W2\n",
+      "reading T1C2W2\n",
+      "reading T2C1W1\n",
+      "reading T2C2W1\n",
+      "reading T2C1W2\n"
+     ]
+    }
+   ],
+   "source": [
+    "u850_mpi = {}; u850_ipsl = {}\n",
+    "for run in runs_cldvap:\n",
+    "    print('reading ' + run)\n",
+    "    # MPI-ESM\n",
+    "    #print('   MPI-ESM')\n",
+    "    ifile = 'MPI-ESM_' + run + '_3d_mm.uwind.nc'\n",
+    "    u850_mpi[run], lats_mpi, lons_mpi = fct.read_var_onelevel('../../MPI-ESM/' + ifile,\n",
+    "                                                              'u', 'plev', 850)\n",
+    "    del ifile\n",
+    "    \n",
+    "    # IPSL-CM5A\n",
+    "    #print('   IPSL-CM5A')\n",
+    "    ifile = 'IPSL-CM5A_' + run + '_3d_mm.remapcon.uwind.nc'\n",
+    "    u850_ipsl[run], lats_ipsl, lons_ipsl = fct.read_var_onelevel('../../IPSL-CM5A/' + ifile,\n",
+    "                                                                 'vitu', 'presnivs', 850)\n",
+    "    del ifile\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (ICON with locked clouds and interactive water vapor)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T2C1\n",
+      "reading T1C2\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "u850_icon = {}\n",
+    "for run in runs_cld:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats_icon = np.array(ncfile.variables['lat'][:].data)\n",
+    "    lons_icon = np.array(ncfile.variables['lon'][:].data)\n",
+    "    levs = np.array(ncfile.variables['lev'][:].data)\n",
+    "    uwind = np.array(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()    \n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "    u850_icon[run] = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "del run, ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "u850_mpi_djf = {}; u850_ipsl_djf = {}\n",
+    "for run in runs_cldvap:\n",
+    "    u850_mpi_djf[run] = fct.calcMonthlyandSeasonMean(u850_mpi[run],\n",
+    "                                                     months, seasons)[1]['DJF']\n",
+    "    u850_ipsl_djf[run] = fct.calcMonthlyandSeasonMean(u850_ipsl[run],\n",
+    "                                                      months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "u850_icon_djf = {}\n",
+    "for run in runs_cld:\n",
+    "    u850_icon_djf[run] = fct.calcMonthlyandSeasonMean(u850_icon[run],\n",
+    "                                                      months,\n",
+    "                                                      seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "del u850_mpi, u850_ipsl, u850_icon"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF responses and decompose the total response into contributions from changes in SST, clouds and water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "du850_mpi = np.full((len(response_cldvap), len(lats_mpi),\n",
+    "                     len(lons_mpi)), np.nan, dtype=float)\n",
+    "du850_ipsl = np.full((len(response_cldvap), len(lats_ipsl),\n",
+    "                     len(lons_ipsl)), np.nan, dtype=float)\n",
+    "\n",
+    "du850_mpi[0, :, :], du850_mpi[1, :, :], du850_mpi[2, :, :], \\\n",
+    "du850_mpi[3, :, :] = \\\n",
+    "  fct.calc_3impacts_timmean(u850_mpi_djf['T1C1W1'], u850_mpi_djf['T2C2W2'],\n",
+    "                            u850_mpi_djf['T1C2W2'], u850_mpi_djf['T2C1W1'],\n",
+    "                            u850_mpi_djf['T1C2W1'], u850_mpi_djf['T1C1W2'],\n",
+    "                            u850_mpi_djf['T2C2W1'], u850_mpi_djf['T2C1W2'])\n",
+    "du850_ipsl[0, :, :], du850_ipsl[1, :, :], du850_ipsl[2, :, :], \\\n",
+    "du850_ipsl[3, :, :] = \\\n",
+    "  fct.calc_3impacts_timmean(u850_ipsl_djf['T1C1W1'], u850_ipsl_djf['T2C2W2'],\n",
+    "                            u850_ipsl_djf['T1C2W2'], u850_ipsl_djf['T2C1W1'],\n",
+    "                            u850_ipsl_djf['T1C2W1'], u850_ipsl_djf['T1C1W2'],\n",
+    "                            u850_ipsl_djf['T2C2W1'], u850_ipsl_djf['T2C1W2'])\n",
+    "\n",
+    "du850_icon = np.full((len(response_cld), len(lats_icon),\n",
+    "                      len(lons_icon)), np.nan, dtype=float)\n",
+    "du850_icon[0, :, :], du850_icon[1, :, :], du850_icon[2, :, :] = \\\n",
+    "  fct.calc_impacts_timmean(u850_icon_djf['T1C1'], u850_icon_djf['T2C2'],\n",
+    "                           u850_icon_djf['T1C2'], u850_icon_djf['T2C1'])\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read masks for significant responses\n",
+    "\n",
+    "These masks are generated with the script \"calculate_significance_bootstrapping.ipynb\" based on time series of the seasonal-mean zonal wind.\n",
+    "\n",
+    "The seasonal-mean zonal wind is calculated with cdo (Climate Data Operators):\n",
+    "\n",
+    "* select zonal wind: cdo selvar,u ICON-NWP_AMIP_run_3d_mm.nc ICON-NWP_AMIP_run_3d_mm.uwind.nc\n",
+    "* calculate the seasonal mean: cdo seasmean ICON-NWP_AMIP_run_3d_mm.uwind.nc ICON-NWP_AMIP_run_3d_mm.uwind.seasmean.nc\n",
+    "\n",
+    "\"run\" can be any of the simulations"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# ICON\n",
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "mask_read = np.load(ipath + 'du850_mask_sm_bs.npy',\n",
+    "                    allow_pickle='TRUE').item()\n",
+    "du850_mask_icon = np.array([mask_read[r][seasons.index('DJF'), :, :] \\\n",
+    "                            for r in response_cld])\n",
+    "del mask_read, ipath\n",
+    "\n",
+    "##############################################################################\n",
+    "# MPI-ESM\n",
+    "mask_read = np.load('../../MPI-ESM/MPI-ESM_du850_mask_sm_bs.npy',\n",
+    "                    allow_pickle='TRUE').item()\n",
+    "du850_mask_mpi = np.array([mask_read[r][seasons.index('DJF'), :, :] \\\n",
+    "                           for r in response_cldvap])\n",
+    "# shift latitudes to go from South to North and not from North to South\n",
+    "du850_mask_mpi = du850_mask_mpi[:, ::-1, :]\n",
+    "del mask_read\n",
+    "\n",
+    "##############################################################################\n",
+    "# IPSL-CM5A\n",
+    "mask_read = np.load('../../IPSL-CM5A/IPSL-CM5A_du850_mask_sm_bs.npy',\n",
+    "                    allow_pickle='TRUE').item()\n",
+    "du850_mask_ipsl = np.array([mask_read[r][seasons.index('DJF'), :, :] \\\n",
+    "                            for r in response_cldvap])\n",
+    "del mask_read"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate jet latitude in the control simulations for the Northern Hemisphere"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# latitudes in Northern Hemisphere\n",
+    "latind0 = (np.abs(lats_icon-0)).argmin() + 1\n",
+    "lats_NH = lats_icon[latind0:]\n",
+    "\n",
+    "# shift longitudes from 0deg...360deg to -270deg...90deg for visualization reasons\n",
+    "# and look at NH\n",
+    "u850_icon_shift, lons_shift = fct.shiftgrid_copy(90.,\n",
+    "                                                 u850_icon_djf['T1C1'][latind0:, :],\n",
+    "                                                 lons_icon, start=False)\n",
+    "u850_mpi_shift, _ = fct.shiftgrid_copy(90.,\n",
+    "                                       u850_mpi_djf['T1C1W1'][latind0:, :],\n",
+    "                                       lons_mpi, start=False)\n",
+    "u850_ipsl_shift, _ = fct.shiftgrid_copy(90.,\n",
+    "                                        u850_ipsl_djf['T1C1W1'][latind0:, :],\n",
+    "                                        lons_ipsl, start=False)\n",
+    "\n",
+    "jetlat_icon_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "jetlat_mpi_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "jetlat_ipsl_nh = np.full(lons_shift.size, np.nan, dtype=float)\n",
+    "for lo in range(lons_shift.size):\n",
+    "    # ICON\n",
+    "    jetlat_icon_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH(u850_icon_shift[:, lo], lats_NH)\n",
+    "    # MPI-ESM\n",
+    "    jetlat_mpi_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH(u850_mpi_shift[:, lo], lats_NH)\n",
+    "    # IPSL-CM5A\n",
+    "    jetlat_ipsl_nh[lo], _ = \\\n",
+    "       fct.get_eddyjetlatint_NH_nan(u850_ipsl_shift[:, lo],\n",
+    "                                    lats_NH, lons_shift[lo])\n",
+    "del lo\n",
+    "\n",
+    "del u850_icon_shift, u850_mpi_shift, u850_ipsl_shift, lons_shift"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Prepare plot of total response and cloud impact\n",
+    "\n",
+    "Shift the longitudes from 0deg...360deg to -90deg...270deg for visualization reasons and select the North Atlantic region (otherwise it is very slow to add the dots for the regions, in which the response is significant)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# shift longitudes\n",
+    "lons_plot = fct.shiftgrid_copy(90., du850_icon, lons_icon, start=False)[1]\n",
+    "\n",
+    "# North Atlantic region\n",
+    "lonind_west = (np.abs(lons_plot--90)).argmin() # find index of 90°W\n",
+    "lonind_east = (np.abs(lons_plot-35)).argmin() # find index of 35°E\n",
+    "latind_sout = (np.abs(lats_icon-20)).argmin() # find index of 20°N\n",
+    "latind_nort = (np.abs(lats_icon-80)).argmin() # find index of 80°N\n",
+    "\n",
+    "lons_plot = lons_plot[lonind_west:lonind_east+1]\n",
+    "lats_plot = lats_icon[latind_sout:latind_nort+1]\n",
+    "\n",
+    "# MPI-ESM uses slightly different latitudes\n",
+    "latind_sout_mpi = (np.abs(lats_mpi-20)).argmin() # find index of 20°N\n",
+    "latind_nort_mpi = (np.abs(lats_mpi-80)).argmin() # find index of 80°N\n",
+    "lats_mpi_plot = lats_mpi[latind_sout_mpi:latind_nort_mpi+1]\n",
+    "\n",
+    "# shift zonal wind fields and masks\n",
+    "du850_icon_plot = fct.shiftgrid_copy(90., du850_icon, lons_icon,\n",
+    "                                     start=False)[0][:,\n",
+    "                                                     latind_sout:latind_nort+1,\n",
+    "                                                     lonind_west:lonind_east+1]\n",
+    "mask_icon_plot = fct.shiftgrid_copy(90., du850_mask_icon, lons_icon,\n",
+    "                                    start=False)[0][:,\n",
+    "                                                    latind_sout:latind_nort+1,\n",
+    "                                                    lonind_west:lonind_east+1]\n",
+    "\n",
+    "du850_mpi_plot = fct.shiftgrid_copy(90., du850_mpi, lons_mpi,\n",
+    "                                    start=False)[0][:,\n",
+    "                                                    latind_sout_mpi:latind_nort_mpi+1,\n",
+    "                                                    lonind_west:lonind_east+1]\n",
+    "mask_mpi_plot = fct.shiftgrid_copy(90., du850_mask_mpi, lons_mpi,\n",
+    "                                   start=False)[0][:,\n",
+    "                                                   latind_sout_mpi:latind_nort_mpi+1,\n",
+    "                                                   lonind_west:lonind_east+1]\n",
+    "\n",
+    "du850_ipsl_plot = fct.shiftgrid_copy(90., du850_ipsl, lons_ipsl,\n",
+    "                                     start=False)[0][:,\n",
+    "                                                     latind_sout:latind_nort+1,\n",
+    "                                                     lonind_west:lonind_east+1]\n",
+    "mask_ipsl_plot = fct.shiftgrid_copy(90., du850_mask_ipsl, lons_ipsl,\n",
+    "                                    start=False)[0][:,\n",
+    "                                                    latind_sout:latind_nort+1,\n",
+    "                                                    lonind_west:lonind_east+1]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot the total response and cloud impact on u850"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAIqCAYAAAANXn3jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3gUVdfAfzfZ9N6BkITeO4Tee2/SpEgTFAuIiCCgIqiIgqAoWFBQQHoVISR0QyCQQCDUJJAekk1PdtOz8/0xC4RkA+QVePH95vc8efLs3TNn7szOnDlz7rnnCkmSUFBQUFBQUFBQUFB4Moz+2x1QUFBQUFBQUFBQ+DehONAKCgoKCgoKCgoKFUBxoBUUFBQUFBQUFBQqgOJAKygoKCgoKCgoKFQAxYFWUFBQUFBQUFBQqACKA62goKCgoKCgoKBQARQHWkHhCRFCDBVCvPu8t9VvP0kIIQkhqv2nOhQUFBSeJ0KIk0KIk/+F/S4WQig1ehWeKYoD/QQImctCiIkV2OZ7IcQvz7JfCs+docB/6gT/k20VFF5YSttHIUSUEGLFY7ZpJYRIFULYPZ9eKigoKDxdFAf6yRgFOAB/VGCbr4BxQohaz6ZLCgoKCi8EFbaPkiQFASHA7GfVKQUFBYVnieJAPxkzgU2SJBU+6QaSJEUB/sCMZ9UpheeHEGIjMBFw16dSSEKIKP13dYUQe4UQGUKIXCHEOSFE3yfc1lwIsUoIcVUIoRFCJAoh/hRC1Hvex6ig8B9SYfuoZwPwuhBC9Qz6pPCcEEI01du/VL39uyWE+OAR8o+0l3qZjfdsZKn2MikhQojmQoi/hRB5Qoh4IcSHgHhKh6egUC6KA/0Y9BHk9sCuEm2vCCH8hRBpQoh0IcQJIUQrA5vvRo5CK+f5389S4BCQDLTT/w0TQlRBflFqCryFHI3LAP4SQvR71Lb678wAG+BTYADyC5c5cE4IUenZH5aCwn+OIftY4rsP9S+EGiHEFgPpGgcAR6DPc+iqwjNACNEaOAvURB5NGAB8DVQtR/5J7GVF9u8MHAeckYMUbwJ9gSkV1aWgUFGUN//H0wPQApdLtFUDfgduA6bAWOC0EKKRJEl3SsgFAG5A41LbK/zLkCTpthAiGSiQJOncvXZ9rqcD0E6SpAh92yHgOvAZcLi8bfV6M4FXS+gzBo4AScDLwKpne2QKCv8IQ/YR5Gs3ApgGVAa+BNYDI+8JSJKUJYS4BvQE/nouvVV42qwAUoG2kiTl6NuOP0L+XR5jLyu4/9mAFdBHkqQYvT4/ILqCehQUKowSGX08LYEbkiTp7jVIkrREkqSfJEk6huzsTAZigPGltr0GFAOtn1dnFZ47nYFz9x4GAJIkFQNbgWZCCNvHKRBCjBJCBAohMoAiZIfEGqj7jPqsoPC0KGMf9VgAAyRJ+lOSpJ+QI4MvCSHql5K7jGIf/5UIISyBDsCWEs7z4/jH9rIU7fT6Ykro0wJ/VlCPgkKFURzox1MJSCnZIISor8/hSkJ2kAuRnZ06JeUkSSpCHp5ShuL/d3EE7hpoT0TOw3N41MZCiEHAduAG8khGG8AbOd3D/Kn2VEHh6VPGPurxkyRJU+LzHuT7wbuUXAqKffy34oDsQ8RVYJt/ZC8NUBl5tK40htoUFJ4qSgrH4zEH7r9dCyFsAF/kG/Rd5KGiPOThSUMOT3457Qr/G6Rh2AGoBEj67x/FGCBCkqRJ9xqEECbIDxoFhRedh+xjCdQlP0iSlCuE0CA7PCVR7OO/l3RAB7hXYJsntZd5yOmRpXFCThm5x13kNMnSGGpTUHiqKBHox5MG2Jf43A55gsR4SZK2SJLkry/JVF49U3se70Qp/DvIRx6aLskpoG3JBU70ecyjgUuSJGU/YlsAS+S0jZJMAIyfQn8VFJ41pe3jPVxLfhBCWCCnJZWOPir28V+KPm3DHxiv/32fhCe1l9GAm36S4D25mpRNazur1+dRQs4KGFSxo1FQqDiKA/14bgHVS3y+Zyjy7zUIIdojTyx8CCGEC7KDFPYM+6fw/LgOOAohZgghvIUQjZEn+WUAfkKIsUKIgcj5d3WAhY/ZFsAHqKcvZddDCPE+sESvU0HhRae0fbxHLyGEdYnPw5EjjEGl5Kqh2Md/M+8hR4XPCiEmCCG6CSGmCiHWlCP/pPZyJ/L1skUI0UcIMQ7YT9l0oVXIc0Z8hRCjhRBDkUeIc5/WASoolIfiQD+eM4Cn3hkGOAdogJ+FEL2FEFOAbUC8gW1bIRuBgOfSU4VnzXrk3/pz4DzwpyRJCUBH5Amj65DLeTkiT6DyedS2+vafkWefj9a3DUCOnmQ+64NRUHgKlLaP98hFLk02UAgxDfge2CtJ0vVScq30OhT+hUiSdAF5ImEssAa5XOdcysmLflJ7qZ9kOAI5PWQf8D5yymRYKX0pyJVgUoDfkK8zH+DXp3WMCgrlISRJWS7+UQghTJGHHd+RJGmTvq0vcvmemkA4MB/5Bk+RJGlEiW2/AZpIktTtuXdcQUFB4RlTjn2MQq6Bn41c19wauebzDEmSMkps2xwIBmroF55SUFBQ+NegONBPgN4RriVJ0oAKbGOMnMc1X5Kkzc+scwoKCgr/Rf4T+6jfbhngLUlSz2fTMwUFBYVnxwuTwiGEiCqxzHHJv79KyLwhhIjUL9kZLIToVI6O0u2LhRBX/0H3vgK6CiHqPFbyASORhzG3/YP9KigoKLzoVNg+6id6TUNegVNBQUHhX8cL40Aj1wetXOKvBXL+8A4AIcRo4BvkHNLmyHnFh4UQnqX05AHLn2bHJEmKA6ZStgTToxDAVH0taAUFBYX/Sf5D++gJLJEk6eQz6ZSCgoLCM+aFTeEQQixEnoxQRZKkHCFEIHBFkqRpJWTCgV2SJH2g/xyFPFN3OjBOkqQ9+vbFwAhJkho936NQUFBQUFBQUFD4X+NFikDfRwghkCMam/XOsynykrG+pUR9gfal2u7NBl4mhFAWilFQUFBQUFBQUHiqvKgOZi/k2qLr9Z+dkReWKL08ZxJgaALKMuBV/d8Pj9uZEGI6ctQaB0enlulpqY/ZQkFBQeGFJFqSpGrPSnk1LzcpOkb9eEEFBQWFF4+nah9fVAd6GnBBkqSQUu2l802EgTYkSUrXz/D+WAix6XE7kyTpJ+AnACGElFpgOK1ly45dzH99Mr8fOk7jFq0eqdPZVBhsdzQprxOxj+vmA3S3yzSdPBnCrxsOsmPXaSwtzCgoKKKgsBBrKwvMzExYtGA8336/l5VfvsawEYt5bfoABg1ox+z31nHCbyWjxy6lbx9vbKxU7Nx9hu2b59KtzyJWf/UqW3ecxsrShEH9WzF73kZOHF7M6Fe+ZvCAVhTkF+Jz9DLbf5tFt/5LWL18IhkaHaNGdC7bb5OyGTRpRR5l5YAYTb7B9ltXr7BlnVyjv/fwkXy98H1+3O/Dh69PwbtzVwDOHvdj2fpNLJ35OuNmvM3hXdsB6PvSKL5a8B47T53HwtKyjO76NgYW/9P5A6BWp3Po0FkO/HmGY8eD6dixDaNGDmDIkN7Y25e3CKUeKbqc9nLS43UF5cgXl20rNrSKcjmyAIWl1yF4hI7y2g30TyrSGu5GUaHB9i/WPlhP48ipWLau6UXPsQdYtagdW/+MAGDUwFq891kAvr/3Zdw7J+ndSV4x2PfveLas7sqsxf5MHl6DHYdjABjZ15P3vwrh8Lo2vPLBRXq2l0sTHw1IZvPKTvSZepyv5jVnxyFZflQ/T37ddZtVC1swYe5ZenWQVxj2O5PIjh8H0330HlYt7sy2/XLp2dGje/Duwl347ZtFzyGrycjIRRgJalV3Ytv6CfQc9gOrPx/K1t0XARg/ujVvz9vFiQNvM3rKRvr2qA+A/9lwfvl2FN2G/MDqzwezdXcI1Tzs+fh9A7GA8n5HYeBaFaYIp3e9DG/wdIiOUSPlHTD43abNvkyc9j07N7/Lmh8O07dXcwAuhtxhzcqpdOu3mNVfTmLrjjPY21uy6svJT7zf1d8don69qsx+/1dO+Cxl9IQV9/X7+F1i+6b36Nb3Q1Z/NRW/Y5dISclmzMgO9+1Vv6Gf4uxky7UbcSSpM6hbuwo3bsXj4myDtY0llSs58vYbg1m8dDPJKVm08a5Lp47yWkc+vkFs37KAbr3e57uvJ7Ppj9MAD+mfOecHmjeRp+P4HL3K9o2vMXjMtyxdMIitu+RrfcxLLZm9YDcnDs5l9OQf6duz0UPyr72zjTem92HrjjMP6b9+ycCaJGYtDZ6nsJyqBtvzCsveh5mZmUzs3Zkf9/vwwasTaNe9FwAOjk6MmPRqGfmqVoZW1pbJSE/nqM9hfA4e4JivD/WataD3kJfoNnAIjs4PSoRrDPQDoLC47HVuJAw/QyuCsZHhQfbyUletTMo+oFXl6DA3IAtQx6qcfhcdK9tWnq2viE0uzi7bBpBfOt6o32Ve2YU/jVSGf1up2PAzSlhWMbxPcw90Oh37DwazbOUBsrPzmDerO2NHemNqWsrdLDLc70VL9hKfqGHMkLrMXnySEztHMm3OYdq2kO3zkdOxbP22Jz3H/cmqRW3444DsD40aUIP3Pg/Eb1M/YuM1tGrs/LBiITCtu+Gp2scXLgdaCOGKXIT9TUmSfta3mQI5wMuSJO0sIfs90EiSpC76z1HAd5IkrRBCmCOvkrUeOXr9RDnQJR3onJwcAs/4c+r4MU4fP0pERDgt2nbg7QUf09S7zSP1PG8HGkAqzketzqCoqJiw8DiaN6uFlZU52Zp8HB1tuXs3lQ8WriczK4dNG+dhZWWBWp2Bm5sDaWlZ2NhYQrGW7Ow8HB1tSEpKx9XVHq02D3QFWFmZo1Zn4uZmT1paNjbW8k0ny1uTlJSBq6sdhZIFpqYGDvQpONDFOh25WtlZs7CyIi1ZjZOrG5npaVha2wCQo8nGzsGRrNQUHF1cy8i7VTI816mkAy1JElevXuXPA2v482AAN25E07NHSwYN7MCgQR1wdGpsUIdBFAe6DBptPqYm8oMpW1uIo705Sck5uDqaoc2Rz4uVpQp1ai4uDirSMvKxsTIpIW9GQlwqrk5maHP18hYq1Gn5uNhIpGUWYGOl0ssX4eLqQFJKXhn5pNRc3JzMScvMx8ZSrz+nkMpeXnJ/nC3Q5sjHoHJowJofT/Djhr+p5GrLB3P60rt7AzSZ6Tg6WpGkzsbVxRqtVj4/VtaWqJOzcXO1JS1di421uaw/KxNHh4fljYQOS0sDD7GKO9BIkvTPPY9yEEJI9xzovLwCzp67ybETVzh28jKhV6No0awGHy8YSfOm1bGxkRdtzcrKxcnJ5r590GrzEEJgZWX+xPvNyy/GzMzkYfuj15+dnau3V3r9GvlaLGOv9PJ3IpPIzs7Fwd6aGjXc0ObJ16GlpRlvvP09t8Lj2b39Q9keAtnZOTg62sr20NFYtoel9avjsLHR/7737GGiGlcXW7TafL28mXw9VHIhLU1TVj4NXF3syuqv5FT2hDwFB7pIpyNVnVTGflJcbDDAUNKBliSJiLAwjvz1J0f++pMrIZfo2LkrfQYOot+gIeRaGg4qKA50Kf6HHOjCwmL+OBDD8q//xNranA/mDGbIwJYY6bIM968cBzonIx6dTsLK0gR1Sg5uLlYkJ6aWsv/mJKXk4GxvXOp5kYebswWF+cWYmJT63WQH+qnaxxcxB3oS8jLZ98u/SZJUgFxwv1cp2V6Us8qfJEl5wEfIExFLr5L1WCRJolW9mowY0Ic9O7by2tvvcC46mfV7Dz3Wef5v8fXq3ahUxoybuBwLCzM+/2Ibs979gTVr91HZYxTtO83k4KFAenZvwd79Zxg9dikqlRFde7xLWFgcCz/8lZWr9xMWHk/XXgswMVExevyXbNvxN7v2nmP0hK9RqYzp2ucjwiLu8unyPSxcvI2wiAS69v1Eln9lNSGX7zyzY9z643cc2buTI3t3Mn/qeIxVKqYP7k10RDhrP/uYtZ99TExEONMH90alMmHu5LEc3rODw3t2MHfyWIxVKg7v3lFGr06nIyEhAR8fH9566y2qV6/O4MGDSUxMY8niqSTd3c+unZ8ycWI/HB1tn9nx/X8hMTmHRSvOs2jFecIiM+g+Zj8mJkZMfu8E2w9GsP1gBC/PPIrK2Ihx75wgPCqTD1cF8+GqYMKjMuk5/jAmKsH4uWfZeTiWnYdjGT/3LCpjwfh5QUTEaFn8/U0Wf3+TiBgtw986jYmJYPx7Aew4HMOOwzGMfy8AlZGg95QThEdp+HhNKB+vCSU8SsOEWUcwMTFizBuH+XX7dSa964djtTkcP30LW1tzVn4+gtNnwlm0dD8Rkal0HfQ9JiZGjJ7yO9v2XGLbnku8u3CPfL8M/JawCDULlx5k4dKDhN9OoevgdZiYGDN66ma27Q3B92T4f/snqTAt282me99FrN/oy8Tx3Vn3zXT2bnufpV/sIiziLgsXb2Xh4q1E3Emka5+P5OOd8DXbdp5h/8ELFdrXaf/rjB6/QrZXvRcRFp7Awo+3sPDjLYSFJ9C19yJZ//gV7D1wnm07z5SxVyu/OcDCxVtJz9Dy3oLfcXCwYuio5cxb8CuDhi3G3nUk/gHXKCgoIjwigYUfbmThhxtle9hzLiYmxsyZ/xvbdp4poz/ijpqFS/aycMlewiKS6Nr/S1QqY0ZP/oVte4LZtieY0ZN/QaUyYvKMXwmLSCojb6J6cH5K6i8qKucl6h9yNy7mvv2MKWE/M1LLvmRLkkRSYiKnjh9j0dx3ad2wDsP69iDydgRvz3mfm3FJbNl7gFemTsPF1fWZ9FfhxUSrLWDNz2eo5f0Vm7b6s2bFRAJPLmHYYG+Mynn5eBSHj0eybf8tRr/+FypjI7qO2EF4VCaLVl5g0coLhEVm0n3sAUxURrz3+Xl2/BXJjr8iGfvOSVTGgp7jD6PNNfyi9rR5oSLQ+smDt4BTJatt6L8bDWwC3kBe+vV15ImGDSVJDvGVjEDrPxsBIUBt4HZFI9DpaWmc8PPFz+cQx319sHN0pnPvvnTu3Y9W7TthamZWrp5nGYEuzL/F8eMX6dmzJefOXcfLSx7aSEtJpVGjaoRcvo2Liz2Dhn5EZFQi7ds1xMrKnAXzX+bq1WiaNa2BubkpRUU66tXzICTkNvXre6JWZ4AuF1cXO27cjKNZ0+rcvBWHq4s96PJRJ2dRr647IZejqF/PHbU6HaCEfDVu3krAq0Z1w9GlpxCBvuB/Ghs7OboRceMqvYaOZM9vvzB47CtkpCYD4ODsSmTYTeo2bExoUCB2Do5IkkRy4l1MTE25c/M6WenpJMTGkBAbTXx0NEkJcdjb2VG3bl369evHoEGDaNiwIUIqZ5VhUYGRoKcUgQ4MvEarlrU5eiyE9u3qEx2jxkjKx6OqMwHnbtGze2POnQ/Hy8MFKCY6Jpm2retw9PgV2retS3RMMqI4A8+qjgScv0PPrvU4dyESrypyZC46Lp22rbw4eiqc9t5exMQmIukkvDzsCTgfS88uNTgXFIeXu6VePpO2Ld05ejqSds0diY6TIw1eVW0JCEqgZydPzgfFU7WKtSwfn03b5m4c9Y+jZWNHgkPlB3WzBs7s/Os208c2YPufYTSpK0fcQm+lMWpATdZvu8qw3tUIuSlHTprVc2SXTxRThlRh55F4GtWWr4er4ZmM7FOVX3eGMaR7Za7ckldDb1LXjv2nUpj6Uk12HomhUW17vXwGI3q788uuSIb39uDKTXmRvCb17DkUkEW/7tV4c+FJ/C8k0MG7Mh07NuO9mb34ccPfjBrakpDQWH3/HdmxP5TXJrVl+97LNGkgj3BcC1MzYnAzftwYwKihzQkJlVc3btbQWZaf2Ibt+y7TpH5ljI0gIyuXtq08OXoqgvbeXkTHpePqZIGri3XZi8FgBNoE4TTnuUWgMzO1HD1+mcNHgjl0JBgzUxUD+ragTq3KjBvTCY0+8urqYsuNm/F6+xCPq4sdRkYCR0ebJ95vVnY+cfGpevsTSf16VVGr5d/X1bWkvYrH1Vk+X+rkzIftVXLW/f4EBd/mo6XbCbp4m7Zt6tGxQ0MaNvBiyKA2hF6Npn59rxL67blxM4ZmTWty6/otXJxty+j3qqIiOER/PTT2YMfeIF6b1Ibtey7SpKEcrbtyLYHRw1vw65YLDBvY4sH1o5ef8foQboUl4Opi95B+YaRClI7GlhOBvqmpwpnjfjRv056EGNnuVPH0okiSMLeweEg2W6MhOzODiOtX8ahek1R1IslJiRTk5qFOiCchNpqE2GjuxsaQGBeLtbU1NWrVpnuvPvQZOIgmzZqX7Zee8uy3EoEuxb84Ap2SquW79QGs3XCOTm2rMX9mV7zbl67pABRllG2DciPQGeoYiool1Ck51KvlSMg1NXU8zFCnyiMzrk4W3IhIp1kDZ25GqHF2kK9rdVoe9WrYcflGKk3qOGBsXDoCDaZ1Nz5V+/iiOdDdgONAG0mSzhv4/g3kJbMrA1eB2ZIknS7xfRQlHGh9Wz/gEHDtSR1oQ+dEp9NxPDCYYz6H8fM5xM3r16hZqzY1atWmQZ1a1K5dm6ZNm9K8uZyXl1bOC1BKOfnVxTpd2X2W89vcDruJu1d1fv9uNUPHT+T6pWAAuvTsg6mZGYWFhUwZ1JtGLVvx3pIv2LvlN4a8PIEN367kpQlTuHopiGqVXGjp3bqMbkdVOY68obSR8oaXjQ2vp2BoeLG8F42kPMO6U9PSuBQoDzo0bNaCfVt+Y8Kb7+BpbYaJ3qCF37rFlo2/snPL7+h0OoyMjBBCYGpqioeHB3ZVPKji4UUVD0+qeFajiqcnlat6Ymlg2LI86lsnGP4iP7hsW2E5k1J1hh8y5RnPZHU6v2wJYs4bHflt20W8m1dFFGVwPiSJiSMbsPLHYKaMaUTQ5USMhI5mDZzZsOMG705rxm+7buLd1A2puIALl5N5ZXgdVv1yhUkj63LhYhwg0aKhE7/tuc07k+qzaf8dWtazRpIg+Fo64wd68s3mcF4ZUo3LN1MpKpJo0cCe3w/EMGt8TTYfiKJlfdkxDb6RybgB7ny7JZJxfVy5dEt2XFrUs2XTXwm8PcaTPUcTqV9ddnQu3sxibN9KrNkey/huzlwK1wDQvI41m33VzOjhwLbTaTSvKf8+l27nMKazE78dimdQC1tComXD2szLnD/OZDK9sRE7LufRzF2+HkLiC3llcj2+23uX8b1cH+ivbc2hm4JXR9Zm0/7btGok58z9dTKW6KRitu2/xbjh9ejQqgquzpY0r2vLhl03eXdqE37fE0arJnKk7cq1BEb2rcbqjdeZOLwWwVfl37tlI0f9+WzwkP6QcC3jh9Xh6/WXmTyyHkGhyZiaW9K8sRu/bg1lzuve/LbjKt7NKuPm5kgl1yd0oE1dEPZvPHsHuuBImXZJkrhy5Q6HfC5w+MgFLl6KoGaNytSu5U7tWu7UqlWFRg2r0dq7brlOFwBG5efZPjHGXQ2364MUOp2Ol0a8hqODPT/88DkmpjWeXHfxSYPN+3cdoJqXPNB5IfgOE8d14ps1e3hlTGuCLsk5962ae/Lr5nPMeWcwv205g3fL6nr5SCaO60BkjIY6tQ3klho6JyrDLx/f7NHSsmNnDm3fQv1mspN9IySYz9554/55j4yMZOPGjWzY8AN5eQUYG8v2UaUypqq7C45VG+Pu5SXbSE8v3PX/zUo54AD5RYYdrLxy2iuCucrwFC1LU8PXSB3zU2Uby3NQK0KBgbQ3AF2u4fZyU9/KsfeGKDTsdBpKldPlG+5HcYHh9qKczDJtJlYOBmVN7MqOJkTHZrJy/TU27wjmpUFNeO+tbtSt7Vpuv3W5hp9/usI8g+2Isi8swkDbo5Cksv6UMDZBVX3tU7WPL9QkQkmSTiBPDCzv+7XA2kd8X81A2+FH6XxSjIyMaNHKmxatvJm76COyMjOJCA/jTng4iVERHDt2jI8++ohu3bqxatUqsHH8p7ssl+TEuzg4ORNwzBfvjp0J8pffIbzbdcTUzIzP5s7C0tqa95Z8gbGxMWdPHKPnwKH87XeE1p26Evj3SbR16xh0oF90UpPVBOuP187egYBjvrw0cSrFFipytFrenjaFoMCzjBr3CidOnKBevXpldFzL+neubRMVm47P8XCmv+KN70l5op2pUS6+p6IZ3q8WPiej6NquKifPxuFgq8LW2pQjp6KZNrYhfn/LzoNK6DjqH8ewPtU4cjqOzm0qc+5yMgX5OhzszPA9c5epI2txLCARc2MXcvN1HDunZkj3KvgFqOnc0oWgqxlka4twtDPlaEAyU4Z5cTwwlXu32bHAFAZ3dcPvXAqdmtrif0k2qg62JhwNTGPSYHeCb2aTmy8bueNB6Qzq7MKx82l0bGCDf6jscDvYmHA0KJ3x7e04ceVBHt2JK1kMbG3Pleh8mngWEnBLfmA5WBlz/JqGsXVtOBXx4GF1KiKf4TnFHAvOoGNj2xL6VVy8lkN2/2ocPXMXgDPBanYcimb2tBY0b+TC1DGN2HM4guvhadhZVuXI6VimjamPn3/cff0h11Lo28kdX/8EOrd24/QFOfLj7GiGr38CU0fWvq8fICAknSG9q3PkVCxd2lbh1LkEbG2tsLM1x+dEJNPHN8X3VBQALZqaGHagXzCEEDRtWpOmTWvywbwxZGfnEB4RT3h4POERCfztf5VlX26jSaMarF3zFpUqPTv7+DgWL15FcnIq27Z+d/+l+59y7kIEySlyRM33WCjDB3tz/O9wOratwUl/+V51dLDE59gNpk/tje/xa/e39T1+jeGDW5KkzjTsQFeAqPCb1GvWnMCTD6KdgSePIc2aQU5ODm+88QaHDh1i7Nix/LnvM5o2rVVGR1heF4O6DQV5FP5/sevgLWbM82XK+LZcC5hH5Ur/v9MZX6gI9ItAeRFoKD+qfC8tQ6PRsGDBAnbv3s3yb9fSf/CQMrJPIwJdXGLyR0ZaKlY28kVsplKxZ9MGfvv+G3acOHs/1UGSJFLVapzd3EhPTcXa1hYXMyNUBt7wX/QIdFp6OqbmcnrIvcmCqeokTDUZTBw9nF79BvDJF19hampabrpMeQ50RYYM/xsR6PS0TBzsLUhSa3B1sZInqxWkYmVlen+yRcSIz64AACAASURBVGpaLrY2puiKCh6enKefDKcrLLg/Oc/N2ZLU9DysTAoAcX9yXlJKLq5O5mRnZAMCKwtj1Gn5uDmZk5qRj40FIMR9JzopNR8XOyO0ufJvJssX4OZkRnJyNrb3JvPlFONoa4I6rQBnW+OH5JPTC3F1NCU1SYuNpSyvyS3GwcaEu9FZuNip0OodbiszI5Izi3A2KiRNU4yNuRyd0OTrcLAy5m54Gs7WRuTo7zVLU0F2DXdcHUxJyyrExtL4vn73pvVISsnF0c6U974Ixu9MAnvXdsO1apWHzidARmrG/ckrrk4W9yevmBvn35+8kpqRj63Vg8mIjnYPzuc9eVsnB9Qpubi5yOff1toEY3MbsjUFODpYkJSsxdXZEm1OIaZmVpiaGkrXeLEi0E9Cfn4BSz7dwvoNPqxcPp1xY7uXjUY/4wj0zp0HeW/uZ5wPPICbm35qjDCcRmaQciLQUm78w5MF1Vm4ORaRmqbF9t5kQU2ePHk0VYera+nJhVnlTm6uSAT6XHpb0tRJOJSaPO2YHs/IkSNp3rw569atk0fbyjmWijjQSgTaAP+DEWhJkli6KoD1W66wf+NwmrdqalBeiUAr/MdYW1vz7bffMmLECCZPncq+ndsZ/NJIrKyssLSywsrKGmHnhFsV93+0n6SEeF4f3p/1B3x5f8p42vfoDYB3uw7s37YZO0dH4mOiqNdYvsgDThzls7nv8Puh48yeOIZOvfpQr0Z1ho8e84+P+Xmzed23mOgNaMAxX5b/spmXu7ZFV1TIZytWM3LsuP9yD58d42fs4NdvXqLbsPWs/nQAW/dcwcEG+nStdr/cz+gZf9G3azWsLY3Y9VcEW7/rS48xe/n6405sOxCGtbkx/bt58N5n5/DbMoCxM4/Tv0slCgt1+J65y+YVHegz+RhfzW/JyYA4klLzGdmnKvNWhnL4p468Mv8Cg7u6kZNfzNGAZH5b1pL+rwfwxax67PKTo6wjeldm3qobHFrbhkVrIqhbTU69OBqYxsZPGjFg5kW+nFmbHX5ypHZ4d1cWfB/BwVXNmPFVOB0ayy9+R4PS2fBBXd5cG8UbA9zYHSDn7g1v78jC3+PYO7sq036Kp3tDOUJ7/JqGn6e78+buDN7oaM2+UPkBMqSRBau33mLTwrpMWR5Oj5Zyqsmx4Ay2rvWkxytHsbVWkZCUS2dvV6ITtCz8xo+fv+p1/3wCHD52m61r5PJJKxe1Z7u+3N6Y/h7M/iwI3409GT/nb3p3lKOIYVFZfDq7Ob0nHWXFBy3Z8VcUAC8Pa8C7S89w9I/BvPy2H326eGBlbcXew+Fs/3Ew3V7axuol3dm67wZD+jZgaP+yoyj/RszMTPls6WSGD+vI5FdXsn3nKSZP7I2VlTnW1hZYWZrj4ORwf07Hs2DLH/twdLTnzp2YBw70U+B80G1++EWO+o4Z0Y7Z8zZx4sAMRk/57X75Qp9jN9j+6yTenLuX6VO6snVnoF6+NbPnb+PS2S8xM/tnEXGtJps3h/fnnaVf4rdXLlhV2cOLvb/+wJIlS5gxY8ajU2gUFEqRk1PI5NmHiI7LIvDQBCq7vfgjYs8LJQJdin8SgS5JXGYOq5cv4/rVUHJytORotaSlphITHcWlpOwyQ4cViUAXFBYSeOo47br1JDToPO7V5Fw6K3MLLK2t2fDtSr5btoTghAxMzczIz8vjwpnTdOjei8sXAvGoVoNK1mbY2duXPZYXPAIddusmNra2SJLEmaO+hAQG4O/nw+6DPjRs0uQh2X97BDo7Ow9jYyMsLEwQQnAh+A6tmrnjdzKCLu2rExWbjijMwNPdltOBcfTq7EXgxbvU8LJHV1TAnZgs2jR3w+/vWLq0cScqLgtdYQFeVa35+3wiPTu6ExiixstNfo+OjNPQuokTRwMS6eztSlRUGpIk4VnZEv+LKfRo68qF0HSqVTFDAqLic/BuZM+xwGQ6NrUj+q7ssHpWsuDMpTS6t3HmwuUUvCrLEbjIhFy8G9hy/EIaHRrbEZMoRyA83Mw4cyWT7q0cuBCSTrVK8uTcqLv5tKpnzYkzatrWsyYmWY4meTibcvaGhs7VjAmOzMPLWf6ho1MKaVndnJMBalp7mRGbIV9DVe2MuWTqQNdmdgTd0lCtktyfqMQ83BvUoM+Uo/Tv6s7rY+ugMjbCq4o1F8IK6d7B4/75BAgPT6RNM1f8/OPo0roKUfHykH1VJ8HfwWp6tq/M+SspVK8qRwejEzS0auTE0YC7dPZ2Iypezr2uUaMSp8/fpVenqgSGJFHDwxZjM2vuxGTSpkVl/E5F0aWdB1GxmTg5OeDsZCA3/18YgS5JQUEhK77exYWgMLQ5eWi1eWRkaLh+I4aUpH04OT2mtvqjeEQEuri4mPXrt/L6jAUkq0NwdnZ8KhHogqwYIqPkBWa8PJ05feYmvTpVITAoihrV5Nz3O1EptGlVjRMB8XRoW4uo6JQS8rfo3auclLoKRKDPprXh/MnjNG/fkfMnj3H8z70E/X2KHX9soWvXrk90LP+WCLRWo0EIgYWlJUIIJQJduhtPIQKtzrFg6OS91K3pyPqVfTE31/8mZuW85CoRaIXSJCUlcebMGSLi7pKYkECyOolBw16iZ99+5W5jaWnJgk+WPtS27ptVHPbxQVdczJ7tW6jTUK4lHHYtlL7DR7Fjw8/0HjKcm6GXAajTqAl+B/YwctI0Du/eTu0G8hzI61dC6DNsJKs+/oDhE6Zw+sghAAaNGIOpqSnCyIjeQ166XyUkNvIObbt058aVEGo3aERaSjJ5Kol/8Ih6JHfuRHPz5m2aNm3A7t2HmD59LNu2/Yldna5Iko6wa6EMGDGG7b/+xMujRlK5ypPl/UmSRFZ6GlvWfYu/nw9CGOHdqQvbTp+nvuc/yx38T7l9O4pLl66RkJAk/8XdoLhYx9RJPejWpbHBaI9OpyPoYhTWlgK/Ezd5bXIntu0OonFDd5JTsvlj5znCb6dw8XI8RsaCgvxizMyMMTc3AUki+tJ7rPjeH+8W7lCYxc6D4cya2px5n53m1Zcbc/DobYyNdLRpVon5ywL4cKY3K366eH8S4W6fSGZOasj85eeZOqouh05FI4B2LVxZsDKEhTMaserXG7Sqb4VOEuw9Gs+bL9dk0TfXmDjMC98ANUXFEu2bObDo2+t88GodVm+OoFUD2dHcdyyRN0Z7sei7W7zSz5XDAfIDqF1jez5cF8H8SdX5cU8sDWvKTsC+k2pmjKjKRz/eYUIPJ44EypHmNg1t+ejXKOb0d+K7P5NoXtMKgAPn0nmtnyvLd8Uyso0dvldkx7RtLQs+2a1mVksV685oaOYuP2gPXsvl7dc9+HhDNBN6u3LkvKzf2Fgw7MNDfDKrKZqcIu4myQ+cPUdimPNmx4fOJ0C7Jo7M/+IcH85sycqfL9OqqRzB3H/4Lq+9XIcPVlxiyshaHDop50e3b+7CBysuseiNxnz963W8G8vVRQ6cCOGtSU2Yv+wsU8fU5+DxaEzNzGnXqirzlp7io3fbs2LdebybVSY5vZgIvzTGDG3ET5uCeWlgfS5fS8JYpaJRPVd2H7zO9Akt2bbvKo2a1H2KV/aTk56ezanTodxNTCUhIY3EpDR692zJiJc6lRvtNDU1YcH8lx9q+32TH1u2nfxnzvNjMDY2RqVS0bt3Z9l5fkr8/sdpPD3k62HXvkBmvdGXjz7fwbxZvUhOla/PRvWrEBIaR5eOdbkZloizkxzJux2ppnuX+mzfHUDHdvW4fEWuntG0iRe79wUy/dV+bNvpT+OGcuWf0GvRjHm5Lz/9fIiXhnfi8pXbevmaHNi9EXVCPF/Ne4f83Fw69R3A4rXryzrPz4nEuFhuhlwkOekuKYmJpCYlkpebQ79RY2nXo7fBMmeSJBEWehl7Wzs8a9Z66BpKS1az//BBDu3eQWiwXGcgPy8PcwsLrK1M5XKksbswMVFcm39KUGgKo2ad4s1JzZn3Vpv/6siFRlvIrTuyc371VhqjB9Xk5603GN6vOpevy/a8aX0n9vjcYdrL9dl75A61q+urM91KZ/TAGqzffuOp90u5yp6AyZMno9VqadiwIVWqVKFalSZ88M5b7G3dmtWrV5Pm6FZmm7u5D7+BB546waqvljPujVmkazRcvxqKhZ3scFy/Gkq7vgMJDQmmReduREbKBtGhSlVCL12k10gtN65dxcJefktMS1ZjJAQZqakgoCBffrPV6XQU63Rs/uE75i1beT9i0L9VQwAatG8hd8btEeWjyhuQMKpZtq2cyE1m6ndE3b5BTc8CLl30pyi3MdevBtDDJYfiYh1pYVeoLuyIv3oQ00FOOBqVjUzbE0dkVDLRMSlkZOZw6XIUO/YGUlBQyKhhbZj/x6s0b+qlv6lPQKGBiHU5L/wNK/Iym1dOpDmviJNnIhn56g46t/WiSiUbKrvZUK+DO1ptPm/OWouFuQlz3uzGqJfaYmJiTMRtNZu2B/L71nOYm5uQkZFDZnYuJ/3DUSdnk5mdR3RMGrWr27FoVhv2+VixcGYb/E5HU1BYTEGOls/XXaEoPZI09V3y0iSkvCxSElLQ3rXmbmwS2iRrMpNSMDcqQhubzd3ou2iir5MSl4DGOQdRWExqbCba2yoSoxPJiTYmJzaNYp1Erk0OiZFqcm5GkBqdRJ6JGYXFEql3csi5IpF4W03udR054VnkFUIO6SSGpaMNgvTINLQqOfKSdieX3MsSSbdTyfHPJCtSjgJpM9UkXstBeywXTaiW7ES57GBKXBHZlpncDdWSpEkiMUm+bpNuGxF7rZj4wiTib0hUjpMNeHyKRHx+MjmJxmjDC8mOle81raQlKTYfqZ4lmVlFFOj9sMysIoo1+aSk5qPLKSRXU8i5mxpOXMmiT0tbRjWW+GpnEhobuf+pMdnkJsdxNz6F3NQEslLkfuZnFpGUlE5+RiJpKWnkZsj9ydNqKNSkkazOpFCTjjZLnqRYnG9Fcko2RXkaMjK05OXIVQw02TkUarO5E5WG34nbnLucTNN6juTXMSMpMZWCzCTSktPJzTSlSJNK6OVEBre3IDgonG7NTYm4mYiZqQnuNhqCg8LJ7etI6OUIHM00Fbiwnx6z3l1HWHg8zZrVpkplJ5o2rcPiTzfz+5bjfL9mFp6eZe0j4uFHT2DgNT5aspl1a5cbtjXllYI06li2Tb96aHl8u+ZHXp8+5IFOQ7oN6X0Eubl5FOkjapmZWpAKydQaYe3oiXUJP725oycYmdKw8YPFUdz07/7qlFw0uRJRcbKjULO2J5euxFJUkMf161G4OskvkNevR1GYcoHTJ05hZ6rmzPko7iZmE3Y7hbR0LeNfasDONe1p06IKRkYCOIku+q+yh2hr4DwDdUzKGYU0NlC21aycZ4nKhuDgW7w2cC7t2jbE3d2F2pWd6NKoMsXFOtZ+NZ9fPp3Du++MZPy4XpibmxIbq2bTZl9+3+xLUVExhYVF5Obm06FdQ5o1rYl/wFUuBIXRr3czPnizA317T8fcXHaac3Ly8fe/zOhJ36MqTIAivbNXwRJqhkqLSgXpBkV1hYYfMFLRk0e9i3IN96M83YWpZUvQ6TSGI7kmVQwswAMYmZRffvceOw5FMvvTQNYtbc/gHp4UZSU/rMOsvH6X7Ut5EXLKKQ9oZGyKTicRk6DhekQGicm5tG7qTGKSbJ+vhaVQkOvOpatqerRzITJajnBXq2LKpatJ5Od4cTsyDf3UA67fSqageyUuhsY/9rgripLCUYrSKRySJOHk5MSFCxeoWfOBwcnJyWHJkiX8+uuvLPp0GeMmTXnoDe2eA52bk8OqxQs49uc+PlnzIy27dOfscT9atO/E3Vi5vFFlD08uBwbg3bkbV4Mv4O5VDYCYqDs0bOFN4IljNG/fkcQ4Wb5GjVoEnzlN++69uBJ0nqr6FA4zE1PsHR05sHUzyxe8x+SZ7zJ55hwa2VdgYk5FVkQsx4HOydiLRpPHnchE2rSui6/fRbp0bkxMjBpJAi8vV06dDqV3rxYEXYqhbl0Prl+P5tr1SK6E3uHSpQguXwnHztaSmtVdcbC3olZNN0YOa0Or5l7lvAk/m8UGynOgT/qHM2zSNnb8PIpeXUs8iEzklxydTsdhvxus+O4YEZGpeFZ1IOJOMi+P8Gbiy21p1sSD1NRMsrLzWPeLP0VFxdSp5UrHtjWpXSmbU+fi6d3F66EUgjfn+ZCbX8TUkXXo2aEK0fFairRpeFSywP9iGj3aOnPhagbV3C3R5eYQlZBLqwa2HLuQTsemdsQm5aPLK8TTzZwzoZl0b2FP0E0Nnrby+YxKyqdVbSuOX86iQwMbYqIykQAPJxMCbuXQraEVwXdy8bAGBESnFNGymhknbuTQoZ4VcanyNV/VSUVAeC7d6lty4UIyHvaysxSdXkwLdxWn7hTg7SyIz5bvM3dbI87FFdLFywT/axqq2siGNU4j0cRJ8Hd0IS1cjLirHxmtbAnByRL9WlhzKbEYTztZPiZTR/NKxpxN1NHaXUV8lu6+/hBLR7o2tiXgpoY/TqQSeEvLoperMLSTE8dDsujQ0IbYZPmh5eFixsV0C7q1ceVCaBrVqsqOS2RMJt6N7Dl6LplOLZyI0aeseLia4H8pjR5tHpx/gNjkIlo2sOfo2WQ6tXTiz5N32e0bT2xSPjfvZOHiaIa7myXOjuacPp9Eneq2TB9TF1trE/p1qUp0ggYh6fCsYs3pC0n06vAgRUQYGRMZm03rpi746at/RMVn06T//ueewlGnwRQ2bXyfNm0fpFAVFBTy5VfbWP3tLj5cOIG33hyGsXGJtBO9A11QUMiSpRtZ/8tBvvv2HUaMnGR4x0/Rgd637zSvv7GSqVMG8PFHkw2vmlqeA11eCkdmBJFRspPh5enMKf+b9O7V2rCtKmeipIQRgedvUaO6PDx+z34eOHAaJ0db/g64ya2wBCKj1Vy8dBtbG3PcXKyp5GqDh7sdLZq4M+3lWnqn+WF0+WWH/stzoDFxNtxuZMDxKieVJPhyAn36zWHd93MYObJbiYOUbYQkSRw/fpGVq3Zy8VIY9ep6Eno1klEju/LK+N60bdsAIRUSG6vmTMB1Ll6KoLV3Xfr388bS1HAu5afLtuJ3/CoHd757f9VJxYEuiyEH+l4KR3Gxjo9WX2LHX3fYtbYHTesZHqUxMitb0lDu93/uQF+5mc73W25xPSKLGxEZ2NmY0qCWPY72Zvj5J1Ddw5r+XT2YMrI218Iy6NWxCuevqKnmLo/kRMZqaN3UGb8zCXRu5UJ0gnzNe+ntZ8/2blg02vq/Wwf6RcBQDvS0adM4fPgwy5YtY9y4cQ8NO4WEhDD51WlYWlry2tvv0Ktff8zMzLibW8TlC+dY+PpUGjZvwYKvvsXOwYG0jAwm9urEu599yZE98op4vYeN5I8fvmPxdz+x4NVXaNdDXnAxOOBvPvzmhzKTQgaPGcfyebP55U8/5k4eR4ee8iTCFm3a4d1Rzl+Lj4lm4YwpFBUWsmPz7w85/4/kKTjQ5/5excnTV/DxDWb75vl06z2f1Stew8c3iPQMDWNGduGtd9bRoL4HvkcvYWRkRP36njRsUI3GjWrQvFktmtWzxsnJgHEuL+/6OTvQHyw9zO87LpOcmoOrsxWe7nZ4uNvi4eHGqKHNad3ywUIrF68kkqjOpFe3BpiYPHAijp+8TsP6lek26BtWLxvB1l1BAIwb7M7MD088NCkQ4JBfOLbWJvieSeDjt5sRFpmFrXkxPdu6MG/1dQ6tbcvEhRfp1c4FK1Ux+04ms+HjhgycHcKyt2qx+5gaK1Po09qRBT9G8ufyRkxedou+zWwpLJY4FpLJL7NrMnjxLT6f7MHp4DSSs4oY1tqORdsS2Te3Gq/+GMeARpbkFkocv67lpymVGP5tPEtHurA3SI6ADmtlw4c7k9k7uyofb46ntrPsLJ28XcAPw+0YsTmdJV0s2XNTfkgMrmvKkpM5bB9py8wDWbRyk++vMwnFrOhoynz/fCbUMcYnVnaI+1Y1YsWVYraPtuWtw1q6eMkO0KnoQr7rZ8Vs3xxmtLZg/w29/nqmfBuq48vJngxaEkYVJ1OGtLXnzDUNv8ytxeCPbvL5FE92/62fpNjRkQ2nsvj+o5a8Mi+QXu1lh8bvTAK/LWtF/9cDWD6nITuPyNfGmD5uzFkhT5qcuCiEXm1lByQiNpdP3m5Av+n+tG7ixE6fOBrXsWXMwJr8sC2cY7/3uj/p0MhYsGnvHTyrWOF35i6/fdURP/8EXJ3M6dLajblfBD80SdHC3IT9R2PYsqorvSb6sPKD1uzzi+bn7WHP3YF+f/56ftvsx+KPJjHt1YGoVA+u8Vu3Ynhtxtdoc/KYM3sUgwe1x9LSHISK0NDbvDLpM6q6u/DzT+9TqZJT+QsUPUUHGiAxMZVp078kLj6ZTb8tolGjUrWgK+hAB54+xg+/yN/dmxR46sgnuLgYKPNVjgOdkZnL0JGf07d3C7Q5efz8iy+mpiri4lOpXs0FJLC3t2L4kNacPnWR39eOYvSrf9C3h5y643PsFoc2DcXSsuwLwfN2oJd/fYDvvt9DUlIazs52eHi44unhhkdVZwYP6kDXrs3uy167FknE7Xj69G6NuXmJc1Ne/nI5zm+qOon3Fm7j2KlrrPlqAkMGtlQcaAOU50CnpOcxYc4pJAk2reyCi6OBxdDu6XiKDrQkSfy8PYIl311hztQGtGtRifo17XGwe9DPjKx8Rr19gqg4Dclpebg5m3Nq6wAWfR1M7WryNej7dwKbv+5M70m+rF7ozR8H5BWRR/avxtwvgjmyoTteXfYqDvSzpLxJhGfPnuWdd95BkiRmzpzJkCFDsLGRf7jkvGK2b9nE9k2/cS30CoOHjwBzKw7u+IOFX31D76Ev3deTW1hIqjoJx1JlhtKS1Ti5upGZnoaVtaw3MysTOwfHMmWJnB0cHpK31Msb6xcLuYdOp2PzujX8vOJzLly4QPXq1R9/Ap6CA63L+4viYh3Z2bk4OtqQlJSOq6s9Wm0uIPAPuMbEKV/z5oyBDBrUmaZNa5bNhSsvdeIFcaDvGVqNJp8LIQkEXIjhzPlYzgbF0bdHfbb+MumBbDkPzIL8fExNVSSps3B1sXlQ1oq4+2Xp0tJzsbGWt09LTMLR3pwt+2/z7ueBTBlRm7njq2Jl+aBsXFpmATZWKoq1WrJzH5SNc3EwQZtbjJRbKJeNyyjE1cGU9OxCLPWrTWlydTjYqFBnFOJipyI7WQMIrMwEyVnFuNqpSNcUYykVghBo8uSyceqsIlztTdDmy/eNlZkgObsYV1sV6ohUrE31ZeYKJBwsjEjW6HAQxeToA0mWJpCSI+FiZURMjAYrE9m+aQvB3kyQmFGIo5lAX/UOC2NIy4eaNa3JyNOVkJewNzcivVDC2dLoIf3HJXve3xDH+G5OzBlaCSMjgSavGEdHs/vHq83Tl8kzNyLbzhVXJwv5fOrL6mVl59wv2+fqaHq/DJ+lqVTm/ANo8gUmKiNGv3uegkId33/YDHc3C+wc7e+XvUvLyMfGygSEIEtTSFS8hnGzT/P5ey3o3dEdpGKsLE3KyAsjY7mMYImygxptAU6tnm6EpTTlTSIMCbnN7Lk/kZKayTszX2L4sM44OMh2SZIkduw8wYaNPgSev8GQwR2oWtWNH3/az/JlM5g8uf+DSO1zcqDv9WvDhkPM+2Advj5f07x5icnPFXSgpZzIf1aWDkAYk5aWTejVKCZMWcWQgW14+82BWJlJVKni+LD+mFDcXG1IS8/Bxlp2NLI1+ThaG3amnrcDfa89NzefoKCbBJy9SkDAVQLOhtKsaS38jqwwvN1Dna6YA31v8t7Jv28wdso6hgxowboVQyum4/+pAx0aWczomScY0b86S99pgUr16DzHp+VAFxQUM3n+WcKjstjydUdqV7PFyNjw/ZGtKeB6RAYzl5xjVP/qzHm1ManpubL9hIfLsDqa3i8bKpdtzcPVyQzzhn88VftY8YXK/5/Srl07zp49y/vvv8/27dupWrUqY8aMYf/+/UiSxNhXJrHf7wQnz1/Cq3oNcjTZ7PYPesh5Bji04w9UJiYseHUCvnt34rt3JwtenYCxSsVrg/sQczuCtZ8tZu1ni4m9E8EbQ/tibGLCommvcHTfLo7u28WXH8zBWKViyoCeREWEs2bph6xZ+iE5modzII2MjHjlzVl06dKFCxcuPLdzdfrvqyz86DfCwuPp2mseJiYqRo9bxt79Z5k7fz3DR33K+h9ncfzkZYqKig1OJPk3sPjLE9jU+Jzuwzfy4RcnyMktZPrE9kyfZGA5UwNka/LoOmA1JibGjJ78C9v2BLNtTzCzPz6JytiIriN2EHYnnYXLz7Bw+RnCIrPoOOogOw9FUlCoQyfBgZOJvLLgEipjQd/XzxIRo+WTtbdYsyOW27E5DJh1CZVKMOmT6+w+rubAmVQmL7uFylgw4P1QIuLy+GrXXT7dGk/E3TwGfXwTE2PBlFV38LmUzd7zmbz6QzwqYxj8ZRS3k/JZ45fB53+mcltdyNDVcZgYC6b9cpe9QdnsDcrm1fV3URkJhnwdS1RaMV+c1PLFSS13Uot56fd0VMaw+GQOB27lc+BWPm/8pUVlBCN3ZBGdJfFNSBHfhBQRnS0xyS8fYwHvBxbjEyvhEyvxfmCx3HY0hzvpOlaczWPF2TzupOsYvTsblZFgxp9a9t/MZ9+NPPr8nsWc9bE4WRvTq7kdy3Ym8Nn2eCLu5vPWd5Hy8a68zR7/NPb4pzFl5W2MjIzo8+opIqKzWfz9/7F33mFR3dve/0xjBpihFxERBAWxo9h7NzGxpBmTaIwnMZ70anoxyUliqundxBK7SfTYFVFABZWioqIgvZeB6W3P7PePTVAD3HPOe5Nzz/verOfh0WdY/Oa39157rfVb5bvO8epn5ygqtzBjyTFUShkLn8tm6/4qtu6vDT3ANQAAIABJREFU4qn3z6NUypjx1yzp/n9xieVfXKK40sr0+zIoqbIQHqzmeJ6erfuquPf5YyiVcqbevZ/CMiMvfpjLXU+mM/LWXUy+ax8zJ0axbnsxm3eX8vfUSu58Iv0a/pc/ymPF12cpLDUwZcEeVEo5dzx+hK17O3Ey/w00aFAchw5+wFtv3MfuPVnExM1n7s0vsXlLKk6ni3m3TWLv7ne4kL+aQQN7Ul3dyMmsb1i8eOb/WHOSTCZj8eKZ3DR3PMczz/3jP/gv6PlXt7JxaxYbt2Yx7+4vUCoUzJn37r+0xouvrOPHjYe5fs5rDE3uxZ3zx7Pkgc/w9lYzb+FKNm49ysatR5m3cCVKpZwJs77i0uVGXvjbPl742z4uXW7k592X/lvX8XvSJ59uxVc3lXETHuLZ576kvqGZuxdM57FHbv7Hf/x/SXX1BlatTUOhkDNzeidYxX/SNbR6exk33HeAFc8M5a2nkv+h8/x7UnmNhUPHa0nbMJ1eMR0PZfF4RFb/VMigG7cze2kKZqvAlNFdmbJgD0XlRl5emcvLK3MpLDUydeE+VEo5j//tJJv3lLJ5T2mb/px2z8Hfff+KV1999Xdf9P9lWr58+aud3ROZTEafPn244447WLJkCTabjU8++YTVq75l1NjxBAUH4+fvz4jRYxgy5Xp8tO3xEsOjotH6+ZE8Zjy9ByTRs08/RkycjH9QMCMnTyUqNo7+ycNIGjmasG7dGTV5OgHBIQwZM46EAYOIS+zLkOGjCAgOZsyU6XSP7cmA5OEMGTUW/4CADo1Rxbk8TCYT48aN+yfugPEfs7TdkI675d3OSwT4+9AnsTuC4GbM6L44HS6SBsaSeeIikV1DeHbZbZhNNsaMHUReXhEVFfVotd5s2pxKv3492L1LiiI16c2kH7tIz7hw1qxPp3u3IHLySqmobELrq2bTtiz69enG33fnIJfJWvkv0TMujI1bTxAZEUBOXhkVlfpW/hP069OVHbvykMuv5V+/OZNuXQOv4d/6cyZ9E8LYsbdA4m+2kp5ZSs8eAVwu1fPXRUPRadWovZTkF9Rx5lwNBqONE6fKiI4KoklvIf14MT1jQ1mzIVPa/+lyKir1BAd643K5GTMyDqfTzeBBUURGBKCWmUnqH4bZ7GLc8Ei8vZUE+KnJyKrk76mV3DQtmluvi2H62EjC/DzofFUMTvTDbBMYnRSEt1pBF38Z8TFaBEFkZH8/nC4PA+N1hPsp0fkoSOqlxWRzM7q/H0qPm+hwNQmR3ggekRG9tThdIoldlEQEKPHzljMoxhuLzcPIeF+UokBUsIr4Ll64PSLDYzU4BJFB3TVEBCjRaeQMilZjdngYGiqiUcnpHqCgV6gCwSMyLEqFweymb5iSLlo5Wi8ZA8IVmF0ig/w9aBQyumllxPrLEDwwKFDE6ZHRJ1BGmDf4KqFPIJjkSpK7KtAoZUT5y+kVJEfwwPBuCpxuGeG+ctafdVJnEdmxPB5fjZJRiVq8veREh6lJiNRgtHsYmiBd78A4XyKCvfDzVjB0aFdMVoHRg0Pw1iiIifQlIcYHl1tk1MBAHIKHQb0DiAjVoFKIJCX4YbYKjE4KxFutIKarD/ExOlyCyJ70Ou6f14PkfoFEhGnQ+XozuG8QLUYXtQ02vtlciM3uZvmjSST3D+a5pf1xe0SS+gQTGqzGz9eLIX2DMFkExgwJw1ujoHtXHb1jAxDcHkYPCcPhcjOgdwDfbirk1VdfXf7Pv8T/Gi1fvvzVV19a0LE6kCuJj49i3m0TeWDpLEQRvvl2Fys/3sqokf3o0iUIrdabESP6MHv2eAICOoheytpDa0rUHnpL4u/e/jOx/J+7mFa6eLGc0tIaZkwf/l+vC9isFzlx4kI7faWvr2JgvygiIwLx13mTPDgGk9lN8uD2UV6PKGP730+06h8T6Ucv0DMugpLSehqbjHh7q1l67wz6JEZJ+nNkL5wOgcGDehAZEYS/nw/J/QMxW5yMG9kDb28lsdFB9IkP59z5Cvr1DmXHvqJWfWUjPauS+BhtO9sgU3eCQqLoADYR2jV+Ah1HpVs/H5wUz8zrR5CYGI3W14fTZ4oouFhOc4sZm83BwAH/oKyws2xjB5HpxkYj3/5wkNsXfc7YkfFsWfMQ/fpGgacTqLRO4e06mLbo7ngN0dPZ/v75bKink2h1Z2t7bO2juWajA7lMxsbDTXQL8eJ0sYXKRie6YB+2HayhT6yWXen1yOUy9AYXJ88Z6BHpw+cbi/l8QzEbd1eyYtlQpoyOZMvuEvr2CuTvh8qRy2ToDQ4yTtXRs7sf634pIipCS+75Jqrqbfj6qNi8s4h+8UH8/WBpm/3NOFVHz+ir+PMbqKi14OujZMvecvr29GdnqoQw5RI8fL2xkLtmx7AjpYqoCB9OXzRQUWNG46XgmXdO8uIHOaRm1vLwwkReeGAA8T38mDgiArPFxaikULy9lfSI0pIY6y/pw8FhGE1OBiYG0TXMBz+tpD9bjA4OHqv9XfXjnyUcvyGZTCaKQmqHvztjah9ZFEWRDV9+wk9rf+Cno9ltJRSd4WNGdlCfBp1jFndEneFRdzbl8NT2DXz66aekpaVdmT7YWamG+78fwaivqaamtpmTpwq5e8Ek3l/5C4vvnkJudj5frTpEYkJXdDpvnnzketZ8u47kgVKN6cnTtdx9ax/e/yqbhbO6k50vwZ8N6R/CD1sv8fji/mzccZH+8VLDw6n8RhbMjmPlD+dZcGM3cs5LqbbBfQJZ/Uspj94Zy7qdFQzpK/Fnn2vmrhu6s2rbZeZM6UrO+ZZW/gDW7CjnoVsjWL+nlsGJ0kk454KReSP8+PTnGu6aGkZuoRThT+ql5Ze0BhZND2PDoUaSeklNZodyDKSfNpB6xsiCScFclyw5AwNCYf1RIw9MDWLjcQNJMVJt2fliM7MHafnisIH5w3ScrpDSdgOjvPjqiJFe4SrWZ5mobBYw2Dz0DFXxyR2h7Mm3tvHLbQ76RajYkGtj6UhfNp+2MairCpngJqda4Lb+ar48YWP+AA2nawRkHg/9wpRszHdwf7KGLeccDAxTggxO1wrc0kfN19l25vVTc7baieCB/mEKtlxwcu8gNdsKXAwMUyACZ+rd3JSg4ts8B3Pj5OQ3SvLXP1TO1osCiweoSDVr6NNVeidyKxzMS9byxREjt/WScaZGMhIDI5RsOGNn6TBvfmn2YVAPyYDnFlu5fWwQ36c1c/O4EHKLpDR0Uk9f1h1s4KlHh7Lu72XXPt8bo/lgTRFVtVY27irluvFdeePxJLbuLubB+T3b8c8bp+WTzRUsuD6C3ItSOjUpQcfWXVUsvu7a53sqp5H5owP5fH8Td4wJIK9UMmaDh4bx44EGHpobwYaUBpJ6aRHcImtSm0g5oUfjJeenD5IoKJX23y/Gm2UfF3Km0IxaJeeR+VEMivImp9DE/ClhfPpTNXdNCyP3khmlDPrF+rLuQP0164NIbqGF+ZND2+TzdJGZW18t+ONLOMw/dvzLDtL5oiiyevVeXvnbFvJPvneluasz6iCFLn1xJ4BRHZVDdOYAdlI6sX//SR5/6jOyT3x9pQbX3XHaOfdEZluT3smcEu6+YxTvf7KfxQtGcypHygAkD45h1doMnnz8tg7h1E6fvkREeACncksk/qQerFp7hCfv68Nt925E56vmyQfGcDK3krtvH8z7H+1h0W2JnDoj4UwnDwhjw7YzLJkXz9rtl0nuJ5VcnMpvZOHNCXy46hyLbulF9tkr+tNX54+/37XOrsynE+jPjjDGOyHR1jGyQUe4vfWNVh55KYUtO4tYcHMC3707uc2p79Bh7GR0uEyhpLbeQtqJatKypJ+KGjMTR3Xj9aeG0zf+SumCKHRiLDuhjkonOsIUlvbcsax2VsLh6WAvSu+OS2Dc9vYlNwAKjW97Xg98sOocjy3qy9pfLpPcivBSUOHithvjef+rHBbf3pdTp6XBVb0Toljy1E7y8utIHhjBy0+Nw9dL4NSZujb7u/j2fpw6XYtMsDGwT3Cb/V3zcyHJ/UMQnXZO5jexYFYPVq4u4O65seSc0yMKdgYlSvb00bvi+HFnBcn9QxHFK/r5o7WF3DWrO19tKWHtL6VERfgwaXg4zy/tx9odJQzq7c+BY3V8vr6Q7hE+JMT68fqDvcktkA7Rg/sEsmZ7KY/e1Yut+yvo07PVXp9r4c4bovhoXRF3z4oi+zf2/ZE7ehA4as+fOND/Ljp2LJ/ExOi2Wr6OSCaTcc/DT3Ai/QjffLCCB5996d+4w3+O5s2bx6pVq3jttdd47bXX/vDvq62TnOf9KbncNGcke/fnMGFcP3YfyGPvwTPcNCuZb1cfYck9kzh0tKINOW//kTJuuq4new+XMj45iCNZ0mS7QH81+9IquXdeb7Lzm3A4JWV78GgNc6Z0Z39GNWOSAkk71dDK78WBY7UsntudlMz6tn2lZNYze1JXcgsMDEoMID1bgr8J8vfi4LEG7p4ZzqETV0DfD51o4vqBvqRktzCmvx8ZZ6XofKBOyenLFsw2D6l50kstiiJvb6zE7hRRq2SU1DlZsbUGnbecCfEadmSbuHGIjtRzV8pszpU7mNzbh0MXrMSGKPkxy0x1i0CLzUOjyc3E3t6Y7SLzhuro4q8g87KdEK2C1AIbo+I0HLtsx1eURlmnFjm4a4gPRy5LyluNh7QSJ9cneHG42Mmo7iqOlbvQyEV0ajmHS1zcOUBNWqmAQiYp4bQygRk9vThc6mJkNxVn690YHCIBGhlHygTm9/UivULASw5OD6SXC0yPVZJWLjA0TMWJVoc4QC0jvVJgXm8VeZVOHG7pCR+5ZGdmfx9SL9oYHabhWLlkUAK8ZRwudnLXIA1HL5j59UyfetbEDUP9OXHRzJAELRn5v95/BSm5LdxvETh4vK7tfu7NqKGixsr731/kuvFdueOGHvj6KKlpsJGR3cDC2TGkZF7hT8ms4/pkb1JO6Bk7KID0vJa255tTZOY2W0jb8wU4fN7CjUP8Sck3MzrBh6MXpZrL0O4OUrJbWDQjjEM5LeQVmdmd2YxcKefjZxL56MdS6vRO0nP0FJRYyCsw4hREvn25Dz/urkUUZZwtMXMop4UbRwdz8FQzY/r7k3HWSICvHK2Pom391FxpP15KGam5Bm4cFdQmn5nnO6nr/IPoxKnL9IgO7bhRrpVkMhmLFkzgSMZ5Xly+iY/eW/Tv2+A/SVOnJtO3TwxPPPUZn3/6+H/JW1zaQHOL5NzsP3Sem24czN6D+Uwa15vDGRcBCAr0Ze/BfO6/bxaBge2zkJVVemw2J4fTz1/hP3CGGyeFsTelkIfvHcHJ3Er2Hy7iphv6si+tnHEjIjmSKTmrQQEaTp5pZP4NPTh4tKZt3YNHa5g7I5b96VWMH96FIydqW/nVxMX6tnOg/9005fatnL3QSGQXX8wWF0+/cZTukTqiumqJivCle1ctIUGajrOo1WbST9ZIDvPJWhqabIwZGsG44V1ZdGsig/qEoFT9847//0/kEkT2p1fzl1vjOXjsSs/OxXI7103swb7DpUwY2Y2UjHJOn28k7/x+VEo5h7Yt4G8fZXDhUiN47Ow/Ut5mfyeM7Mbh45XovEV0Wq82+3swQ5JBL5lAyrFa5kzpxv6jNYwbGkbaqXrkCAT4SfZ08dxoUjIb8FKrcDpFUjLrmDWpK5v2lLNmeyk2h5sRg0J4ZEE8L310BpPVxZqfi3m10oyfr4pe0Vo2fjiK+U8cp6zGRvop6UAY5OfFgWP1LL6pBznnW7A7pANOSmY9syZFcPB4PeOTg9vZ93tm/wsDk/5J+jMC/Ru6OgJ94+zn2bf/JFMmD+HWW8bTc9Lj+Ae2T3tpVCqqK8qZO3oI6w+kE5fQ+z8qAh3vK6Ouro4hQ4bw8MMP8/TTTyOXdYKJ+DtEoJ02A06ngK+vhvr6FsLDA8nNu8yiez/k3rsncOe80QQFaamrMxCmLsTS2u3l66Nqa56rq6rDr7V57urmgBA/WbvmgPAQbxoaDPj92kxgFQjy96K23kJYkLqt2cvXW0G93kFYoJKmFid+WmXr+hJ/dXUzYcHX8tcWtxAW6IXe6ELnIylos81NoI+iXfOZWiUj/5IBuxMKKmw0mdxUNTkpq7ZSb3RT3ujC7RGJCFQREaAkyl9OrdFNfpXk9I6MVTMiVsOAbmqSY9Q0mD2EauVYW5+rj5eMBrOHMJ0CvUVynD0GK2Ynrc15bkJ85VhdIh6ngK9K1tacp7d60KlleFzuK/wWDyE+stbmP9k1zXzNNg8a3ICsrTmvweohxFuGxXkVv00k1EdOg1Gg9XFhcUKARkaj1UPswJAO999QaUKnlgxlW3OhxUPksCgsrQrRVy2t2yVS+5v7LzU7GrShhAWrKa+xsj2lio/WFDKodwArnhlCUID6ijxYXAT4QF2TvZ08VJXWEB6kRm9wofNVtMqPmwBRaPd8NWZLWzOl3iyg00j8Vp0vOh8Fa/bV88PeOmQyWDa/Gzde143GFhdhQWqKKy288sVlLpVaePOhnkweFnxNc6fH7LimufPX6/W4PFgcbgJ1KuqbnYQGqFr3I+Kr+S2/krA5mf+2CPSi+79k3cajTBibyC1zhnHTTRMJC+ugBMNto6nJRL+hT/HLpqcYPrRX51/wPxCBBjAYzAwd8VdunjuO119bjFLWSYrfUY25tWmrrVkwzJ8mvRm/VuBZk8lOUJCWhmYZoaEdlLl5HDQ1mfDz827jtztc3Hz728yYHM+Tfx3Tur4X9Q0WQrUmmppt1+hDP5W9rXn0an3YYHATHuJNU7P9Gv6wLu0bA//dEWi320NNbQvlVWbKq01UVJkoqzJRXm1u+7/d4aZbF1+iIrV0j9BiNDvJyqvH6XRLDvOwCMaPjKJ/7+D2cH0dON7/WyLQCoW8nTwEhIdR32hFo1ayZut5Vn6bS0JcIM8/NoGxI6KpqzcTFuor2V/BfI39bdLb8NN5IVgN7ZqVLVYBt93San8dhIdoaGpx4Oerwu20tNnTX5utrQ4Fbo/I4RN1vPPdRewON48viuf2mT2QyeSYrC7UKgUPLD/JybNNvLdsEGOHhuLrraRe7yA8WENjo7mdfa9rsrfpT7hi38ODNTS12K7S/63+QIONuOsO/onC8UfS1Q60KIqsXrOPJ5/+Ar3eiFKlYti4CUyddRMTZ84iMFhSSprWsdx/nTeHsVOmc8d9f/2Pc6ABKioqmD9/PlqtljWr3yIsrINu69/Bgd69K40t245y+21jeeixrxg1ojfrN6UxdVI/xo5KYN/Bs2xa/TATr3+Dj14ZwfpfpMjN7bMTePzVw6RuuZVly1NIiJOM8b60StZ/NImpd+3mwxeS28HT7P9hCouWpTNhWBgAB47VsvadESx9+SQPzI9j815pMtyt07vxzPtn2fPVCBY+m8OUUdLksIPHGlj91hAWPnuSJxfGsPWAFLm5eUoX3ltVxPfPxLN4RSGTh0j7ScluYdVTccx68QJv3hvNtjTppHvT2GC+2lHDx/dHc+9HJUwaJEXmjuS18MVfujL3/XKenx3KpkwDVoeH3qEKdpy2snpxOK9sb2JSomT4L9e7eOGGIG7+vIbX5wTxc46kTOck+fLydj3bHojg/jX1TOztjdotsOeCna9uCeDm1Xpem+HHL/l2QjUwKlrFKwctbL3Tn6W/GJkQ64UXIvuKXHxxo5bbNhl5dZIv+y45sbnFa+DkHthlZkasAqsLjpQJfDLDhzt+tvDSWA1p5QItdpEbe6l4I8POj3N8eWSvhTHdJCcnvVJg5SQNC3bZWHFbKFt/3f8gX17e0cy2peG8/nMDccGSoT5c7OTLOX7c8qOBt+6LYdsxqRTnppEBvLC2ir+/2ZfF7xUyOan1/ue28O79MTz4eQWiCOeKDESEevPwXb34blsx+76fwl1PHWXaaAkFYf/RGta8OZTrlqTxztMD2by3ok0eVm26yHuPxXPP8nNMHiYdjlNO6PnuiVhmvXDt8509wJuXNtW1wflN7qfFKXjYf95GfbMLvUng8VsjKamxIZPJuH1WN57+4BLvP5nAzU/kMijBjykjgjl1zsBnzyYy85Ec3n6kF1sP1qFTy5iaHHgNvOCU5EC0ahm/ZOhZ9UwvZj1/njfvi2FbWiP+PgomDwnkhW9L2fFmHxavKGT6sEBeXlX2b3OgRVFk2y8neOTpNdTUtqBQyBk7ui+33jyam2aPpEuX1vHAreUQf/nrl8REh/LSs/9FE9n/kAMNUF/fzN33vI3JZGXDmqeJap0seDUVF5zm9Xf+DsDtNw/j8ec2kbrrKR5ZtoGkAVLd9N6D+Wz64X5uXvANGSlvtFvDZjFx3dx3mDF1ACaTjdXrM7BY7IQEafj4rRvY/Eu+tP7cATz+0i5S1t/I/If2Mn28hFCy70gZa98ZybRFB3nvuSFs3lUKSPrw+58u89HLI7nzscNMGxsJwP70KlI23YJCca1T++92oOEf1/xarC4qasyUV5mpqDLirVEyIimcHlG6tsi0TNGJLPwvdaCr6u0oFTKmLdrPe88NZfOuEhxON1FRwXy55gwyOXipFMyd0ZPYaH/OFRp4/9VpTLx5DStfn86Gn/ORI3DbjVfs76/wqT4qgW17S9vs7/svDGfjzmJC/BVMHB7O0+/ksu+7Sdz1tKRv5aKLvRn1rH5rCNcvPcbrjyTy2YZSss810yVEg8UmkLZ2Evc8f4KbpnfHbBHYfqgSfYuTxmYH3/xtGEey6jBZBG6d0Z1l7+ax97sJPPjKCYYPlPTzgWP1rHl7KNctyeC9Zf3ZuFvS57dM68azH5xl91ejef7DfBJbJ93+at9n/vUYF4rNfzrQfyR1VAPd0NDCE099zq69uYyeMh2H3cbxQweJ7zeAgcNGkDxiFOGR3bh3zgwOnCnCLyDgP9KBBhAEgVdeeYXVq1exbu1HTJgw8lrm38GB1jfUkX+ujPWb01i/8QgPLp3JhLF9SeofDiIUl9YzfGhPDhw6y/j+NkorpNR8dDc/0rIqmToumsysy0S3AqQXl5sYPiiUgxlVjEkKorRaKoOI7qol/VQdU0ZFkJldTY9fB15UWRjWP4jUzFpGDQqmrFpKtXeP8CEjp5FJw4KuGXhRWmWVBmQcrWL0oMArAzK6aMjIqGXCIH9OXTQT00WKMJXW2knu6UNqnoHR/fwor2sdwBGmJvN0M2P76jhVZCUmTDLYJSUGhvTw5vB5K6Pivalokh5gV7WHzGI74+O9yS5zEB0sCUGF3kVSdzVHLtkYGedNResDjwxQkFXiuIbfY7RR3uJmcKSKI8VORkZ7UdHiBpdApL+CzHIX43uoyKkWiA5Q4HG5KTOIDI5QkFYmMKKbUuJHRqSfnKxKgXHRSnJr3HT1keSpwuhhULiC9AqB4ZFKKg2tA0p0ck5UC4yJUpJd6STKT97KLzIwTM7RKjdTxoZS0SwZx26Bytbr1ZBzzkA3f8lQl7W4GdxVyZESFxOui6a8QbreqBAvjheYmTQyhFOXzPioFRzIbuGXo02U1DhI6hvE4lt6EB+jw0ejlJ5vdgNTxkZx4kwTPbq1AuxXmknurSUls56xQ0KukYejx4oZmxTIqfNGYrpKEcHSahuDI1Xtnm9XhZPjF61M6OtLar6ZQ+csbDpmoH+cLy/d3R2jRWrK/JU/JiGQPUcbefnzQm6fHsGSm6UUYmmlheQ+fhw6qWfMoEDKa214LE6iwjUcO2tgYuuAm5gINaLbQ2mtg+QELam5hmvWjwpTcyzfyMSkVvkM1xC/4NS/vQbaYLDy3Cub2Lgtk2lTklAq5Ozae4reCd0YNaI3I4fGkpgQydhpr3Am6126RXYMrwX8jzrQIEF/vvf+Jj5YuYVvPn+EG28Yfs3v3dZKioqlsrDoqGDSjl5i6qQ+nMwuISZaCkgUlzQwfGgsR45XMWFcvw6+xMGe/Xns3JPL+s3HmDa5Px+uuIuCM7mMHh5NaYV0gIzuFkDa8VImD/MlK7eO2O7Sgby43MiQeDUHj9Uwbmg4pVVX9OHxM3omjojgxOkGekRJDkRJhYnRI9o37P0nOtDXMndeA93Jl7Zf93+BA213iqi95GzbV0Zzi4P1O0s4c0HP5LHd6d0ziGcfTOZCYTOx0VI2pLRaYNjgSA4cKWb8yGhKK1pAsF5jf38d4CXYjNfY33HDIiitMiE6bURF+JKeXc+UkV3a9K3gsFBWbaN3Dy1Pv5/PgWMNxMfoWDQ3hjmTIzma28TkEdKAqtjoAKw2geuXHGbp7T1J7OnPuOQwSqtMIEL3rr5kZDcweWQ4J/LqiYmUrr200sLQ/oGkZNYzJimIspqr7XsTk0eEcipfT3TXa+17yvE6Zj9y8nfVj3+icPyGli9f/mp2ziWiuoWSmppL3ukiuoQHcja/hLn3v8CaTz5EqVSy+PGnMZtM+AUE8MMnH7Dx269IGjEKuUKOr1bHqo8/oH/yMFatfBdBEKgsK2HX5vUMGzqUV59bRmzPXuzZuYOzp/PQanV8+fFKhg0bxooVKxAEgZKSEjZu3MjgwYNZtmwZvXr1YseOHeTl5eGl9ePdN5YzYsxYPn53BS5BoKykhD07thPftz/vvLiMmLhepOzawYUzeYweMqjt9C6Xy5k8eTL9+kawYOFjmM0Wxo4d1gYldyLrKHa7k9feWMvYMf1Y8e4mBEGgrKyWdT+mkDykF8ue/YZePSPZvSeTnNwidDqfa/hVSphzy9+w2Zyk7n+TlNTTzJg2hJRDeZwrqCQxvisvvb6Vvywcz1vvbUfr60WzwcG6bRe4Y25vHnsplbHJYexLq6Tgcgu94wJ4ZWUO99waz6erz+HlpaDF6GTDzmLmXd+DJ986xbjkIA4creNiiYnesTqWf3aOhTd2551VF9H5KGkxutiwp4LbZnTjja8vMKx/IAeON3Cp1ExCD19e+6KABTO78N7qUonfJLDzVSLdAAAgAElEQVRpXy03jQzguW9KGTvAn5TsZgorbcRH+fDZz9XcMj6YD7ZUo/OWY7AIbD7SxJzh/jy/upIxfXSk5BkprLITF6zg7R2N3DnGn5W7m9BqFBisHnbnmLhhgC8v/qJnTC8NqQU2iupd9AxV8vbeFu4YpuWjgy1o1XIMNg8/5ZqZM0h7DX9pvYPYYCUrUs3ckaRhZboFnVqGySaw9ayTuX3UvHTAwqhoFanFTor1LuKCFLybYWN+PzUfZ9nRqkQMDvjpgpM5vb14JdXKyO5KjpY5KdR7iAuU836Wg3mJXnx6yoHWS8Rgh18uOZnVS8XyDDvDu8hJr3RT3OIhLkDOymwnt8QrWXPehVolw2DzsC3HwtwkH17c3szISBmpxS6Kmtz0DFbwzhErdwzU8OlxG74aBQaLmy1H9dw0MoBnvq9ga1oT726qptkkcMekUAJ1Sr59eyQ7UqoI8veS5GFXGbdd152XPjrLqMGh7E+v4WKxkYRYP978Mp8Fs6J559sCdD4qSR52lzN3XCDPflLEmKRAUk40cancSq9oXz7eWMZtE0Kueb6bDtVz84gAXthQy85cM2UNTm4f5c+jd0Tx/Z467poWxgebqtB5KzCYBXZn6Tl+2kCz0cWLS+JIyWriUpmFXlHevPFtCQtnduW9NaXofBQ0tzjYfKiRWyaG8OyXJYwd4M/B7GbKax3EdvXmb+vKr1m/xexiS2ojN48P5rmvJfk8mNPEvpOGPxyFw0ulILJrEIGBkkHTaFTMnJHEuHGDWfPjIVwuNz/+8CRjRibSpDexc88pXl/xEzfPHs6dt4/9B9/QsbNCJw5Zh86evJNoRCeOYUbGWQoLK/lx/UGGJiewfcdRliyexpIHPyHlUB7Jg3vxt7c3MnZMPz77YjtKpYLmFivrNh3njluH89gzG5kwNoG9B89RcKmWxPguvPTGLyxaMIUV7/+CILgpKa3jx41pJA+O440V23jrvR20GKzcd89EHrh3Cu98uJPFt/fjjQ8Po9NqaDbYWbc1jztuGshjL+xhwqhu7D1STsHlZhJ7BrJm6wXuuLEHVrtASKCGAD8vnC43CXGBGM0uYiJ1KBRyvFQKoiJ8kSvV7VE4VJ309nR2rzuiTvCUO4Mm7BS5oqNAXifBPVlnsKcdfWcnTnhn1PH+OgkyduJYd4bCIXawl87Ganfm+MuV7Q+BDXoHC5/O4IsfC3CLInfNjmPlS8O4bXZ/rp/cA7vDTUyUPwqFDC8vBVFRoZjMTvokhGK1CYQE+aDzEXnjo6w2+ztxVHf2ppZSXKqnV4xfm/196/PT6LQqmlusrN9ZyrzronlqRQ7jhoWxP6OGwhID8T20zFh6DLVKzpC+/iyaG4uPRsnG3eXcdl0UT797mnFDQzlysoF3vrtAeLAGl+DhnrlxrPjmHDqtkhaDiw27Srntuu48tSKXcYODOXCsnkslJhJ6aHnt8wvcPSeaTzdcRuOloMXkYuPuCm6bEcnT751l3JAgDhxvvMa+L5wVxXs/XP5d9eOfTYQdUGFBAbNmL0OpkNMl1Ie0/eFcLGpmcp8mbp0ciM3ZwAfPP8z4YeG8/cQoFDUaHrp7GqnHa6D2OyJq96Cuzye+vhJ1fR7hdUcBUNfXEljfhKMuFW29AXmdBLekrT+CqeEyYpMaU0MKjsZSACyNZYh6OYb6YwhN3lgbCwHQGS/iaDxGoOkTBH0qaoO0jq+5ip4OB/Lm40TZfLhkkvgxWNspl2mjfchOe47bF32Jvv4sH71zJwBOcwWCRodBX4toLcPUXIPD6Idc0GNqKEHUH8fQUIygP4m15iwuwYOzqoqWmvO4q3ZgrDmN0Khn5OBQWowWgj0nsbWU4mk6iqMmH4fTg624BHN9EdZL2zCXlGL0kpoDTMVm9Ok2DOVV2IplWKukyLS1yIy5rhFzwQWslTVYFVKzl7nCgik3H3N1I9YTNiyXpMixxdOAuawFc9Y5LGXNWL0kJW8ps2HOEnCWNGLNtGEtkmoZra5GLGUGrEecWIvN2ESJ31riwHbKjKXKjP20gK1EiizYPQbspRZMaTbMxTbMTmmf5koXxmMmTJV2zNkOzJVShMLYIsNU46L5VDXGSifGVsB/a4NAc74DU70TQ4ELY2sTXrNNhrHWTVOOE0OlQItL4jc1eGjKc2CsE2g+58BQ68FLDgYcmJrd6IuNmJoEjEonuEWMeg+NJQKGFjfN5R4MdR4UiDSLAsYWN41lZox6D80eDyIyDE0idUUOWppFGktdmPUido+MZsDYItJULmBqFjGK4BbB0AwNl50Ym6Gy1EN9S2vE2uGhUe+m7LKT2iob2taMQU2zSIHLQl2pB0esL3aru1XmZFjtHuwmAY+vFnmw5JgJ3i52FbrYkt7MA3cmcutcH1RKORNHRHD2m7N4Rw7Go2lBGSRNkfNoFGi6DgZVGV66YGRq6b556YJxuTyIHjdOlxt3q4FzutwIdWZsRgfuRjPOFkke3I1mXHorrqJ67PVmnDrpObqsAp5mK1V1doprXTw80Q+l3IOn1oCtxY5Q2Yyj2YqrQboPrlonPTRwtMWBq7AWe6W0H7vQgqXSiC3zMtYyIzaFBZnDhbXchS3TjqXSjC3Xha3EiYiIzdiIpdyGNd2FpcSGVTCgVMiwlrmwHbVhqbBgO+nEVf0HDRP6DeWcOs0nX+xG7aWgT3wICXGBJMQF0bO7Nz9/Pobt+0uYPvM53lw2gmcWJiL/yzhEUXKcxebj0r/ujqN3cnXH0JioOoG36wjqrFP4s46HUzgbL+OwC5jqyxAbUzHUFTKwu45nlg5kzdbzLHtqBSFB3oiNh3BYGhBtkgPnsurBVobd0gy2KtzW1oZluy92SzNi01GM9YXYGyS9ZKyvxNOYgcNSz7Tx3TlX0ICflxns5dgtTbgMZTjMzQhmKdPlMDcjGMuxmow49NU4DFIpkUMvQ5TJkMkV+OmuHArUahUKlYagQOnvva7yzWR42vl7oqWyw/vRkZMGnUdi/xXezhxDj7uDqK2nE8e1swEmHX1nJ/voNBLubi87nUaaO5Fhj9Dx/jyG9sguLho75PUKD+v488Brswa7Uy7zlycPcN/C0WxZ/yQ+Plc9O29pcFpg61Jtx0pHNb8iSPq1JmuE5jM4XW5E0YPd6UbEg+B2g2DHbbdgs9oR7GYcdjuCw4bcbcdhsyPYjNgsdtw2My67DYVcynhU1trZ+/lwPttYihw3glvE6RQQ3S7sDgHRLeDxCIQGqCgsNxPkp8DtsuNwuHDbbXhEsFsdCDYTNqsDl8WIwypF5QWzFzaLHZexBY/VissovY92kw2XvgWbyY7QbMRpkOyOoFdgM9oRTB1H9f879GcJx29IJpOJ7opHOXayGo8IxWUGTuTVYrMLZGVXUtdkx+XyoPZSEBasYcXTSUyf1JOsvPprUmzDBgRxIKOaccPCKatqncke6cuJ8zYmjY5qS5EAFJe1MHzUYPanXmL8qFjKfk3hdQ/hyNHLTJuUQNapMmJjpNRnaYWeoUnd2X/oIuNHx13hjwrskD8kNKj9sJLWNKdeb6b/iJfY+P1fGTs6HpPRwrkLVQwfGsv+lHOMH5NAWUUTOOqI7ubPkWNlTJsYR1Z2JTFh7rbrHZ4Uzv60CsYP70p5jYXKGhPzHtjLV29PZO6MOLJy64j0NSJyVclEZgNDtTYqGiVlFhXixbECMxP768irFegeKlmA0jo7yfFaDuUaGBGloqKplT/Yi2MFFib213Iyt4noEElFlDW5GBKtJq3IwfA4DZV6SdF1C1JyrNDGhBgV2eVOooOVrfwCQ7p7ceSCheHRaipbWvkDlBy/aGFcrBc5VQLRga0lB81u+vuLpJUJDO+mpMrYWtLgJ+dEuZNR3ZTk1bnbShpKGl0MDFWQUeVmWBcFVWbpneui8XCqTmR0VzmnGz1EaVtLIFrc9AuScazWQ3KYnGqLxN9VC6fqRUZHyDnTJNJNKwNRpNICA4JlHK3xMDRc4ve4PHTxkXGqQWRUuIyzepFIXxket4cqK/QPlHG8XmRIiIyKFgFkMiK8IacJRoRCfgtE+kjNglVW6BcAmQ0wOBiqDSKiDLpoILcZhgdDVoOcCG9p/zV2kd46GdnNIoMDReoc0uGtixpOt4gkB8kwhmiI1P1a8nGlROS6h4ZQ0VqisCujgS9/quKnL6chCJ5rUtLDBoaSfl7F6OHRlFW0tMp/AEeOlTB1pI6snNq2lGVxmYEBkTYOHm9g7JBgyq9K+R3ZXcC435TclNY7GaS2cfiSnZGxGiqbW+UhUMnxYjtfpxvpE+HF0vHS+15lk5EUoyH1gpVRvbypbGrlD/Mi9ZyZZevreX5OCFP6tZaUFBsZHOXF4UI7I3toqGwREC1OIgMUZJY5GX+VvHnsAmUGD4MjFBwpdTEiSkWV0YNMDpF+CjIrXIyPUZFTIxAd6sXADxv/8BKOM4fuoW9CCEUlzVy8rJd+ivQUFDZwqbgFm0PAT+uF2y1SkbUQhVf7kcD/SQ705ZJGBMEj6bfjZUybEMuJU8X06B6A1eZi7NxNfPLGJLw1SsaP7kVZpYSEcjX/ydxqYqJa9Xl5C8MHd2V/yjnGDYukrEo6kEdH6jiSVcX0aUnsO1TEHUu3cviXe7DaXAwf0o39e7MYndyFsl9LMiK1pGXVML6/sl3J2cjhPTqM8iq8OoYJ7LDsoZMo8e/hQHdGnU2l+5cc6E7o/0UHujPqzIH2jrjSgLt6cz4vv5PB2q8XM250B4253p1MHna0n67rMZzF4XBzJLOSaeOj2/Sno7mGkkorwwYEcfBYHWOTQymvtuBxWIjq4k1Grp7Jw0OuyKcIS147w6iBgQzu48+YpCAqG5yIoozuEd6k5zQxZURoK78vgkdk0qJ0PntxIB5RxtghwZRVGBAR6X7V+idy64mJuFJil9zHj5STzYxO1FJR31rSFq7h6BkDk4YEkH3eSHSXVv+hxkFyby2HThu4+blzf5Zw/JG0fPnyV5cuGMCDzx/Cy0uB2eIiM7uGL9+eTNapSl57bBBWu5ugADU3TIjk/VUXuPm6WB586Shmi4u88018vaGAGeMiWfDEEXrHBfD1hgKOZdeh9fXiu00XGT+iG0ufTcFkdpKbX8+X685w/dS+zL/vRxITwvjy+0wyskrx02l4/IXt3Dp7IEuf3IrJ7CD3bBV7UwoYOTSG+fetIzE+nC+/P0ZGZgmBAd48+twv7fhHDI1r10Dya5rT29uLuJgwHnpqLfcuHEfmiSJefnM710/rz/zF35CYEMGX3x0m90wFai8lj7+8l1tv7MvSp3ficDjJPtPA1z+e47oJ0dz5yH569wzk533F7E4to7TCyIncOm6d2YsHXkjF5XSRfb6F77aVMW10OPe8kEN8FxXfpzSRdcmC1lvOC2urmDU8gJXb66hqdHKm2Mr3++qZOiSQ+94rIjFSzfcperIuWdFqFLy4vppZw/x57scajDaR/Eonq48ZmZzow9926gnzU7I63UDWZTu+ajkv/9TIDf19WLZNj9khkl/lZE2miUm9fXhhRzPdAhSsPmHlRJkTrVrGR2lmJvdU88xuE2anSH6twNocGxOiVTy810KvIAU/nnVwqlpCvfg+z8GoKCUvHrZhcYmcb3SzpcDFmG5KnjxsJy5AzsYCFzl1bvxUMt466WR6jJJXjzuxCnBB7yG9ys3AEAXLjrmI9ZOxuchDboOIViVjRbbAtO4KXjvhwiJAqVFk/UWBsV0VPH3URay/jE2FHspMkvP7Xp7A1CgFb+S4sQhQbBTZVCwypouc5066idXJ2Fkukt0EPkoZH54XmdxVxltnJOOV3yLjpzLJCX8xV6SHTsbBGjjRBD5KWHkRJoXD+wUiVjdcNovsqhYZGizn7Qtu4rQytleJ5BtEfBTweZGHcWFy1pd5qDF7ON/oZv05J+OjVTy230Zigj+rtleTedZASbWd8lo7Ty8ZyIOvHMdkcZF3Qc83Gy8yY1w33vw8j+AgH778IYuMrFJ0WjWPv7iTW2bG8ddnUzCZXeTmN/DVujNMHR7MPS+cIqGHjm+3lXI8T4/WR8WqX8oZnajjqW/LMds9nC21sfpAI5N6qfnrj43Eh6lYnWniRKkDXy8Zy37SU2/yYHV6sLTKz8ECG0PjvLn/u1riu3jxQ7qBrMs2AnwUvLK1gZuH+/HpPj1eSjlnKxxsPWFiXE8NSzc2SetnmblQ50Ilh1cOmLkhUdMmb2V6ge9yHEyK9eKhnWZ6BStZm2enoNGDSgGvHrJyQ4KaZ/dbsAmQVuL8w0s43G6RWdN7EhzkTUJcEKOGRjJrek/unhvLk0sGsfSuvkwa1Y2p47rRq0dAx85bJ46NTNne2QZA0cnnHabXO0u5d+xYv/5BGgfTStBpvXj85YPcemNvXlyRRl2DlfyLTRSXG9i0/SKHjpYzsG8XPv8+m4wTFdfwv/xOGrUNFnLz6/hydQ7XT45jydN7iY3256t1Zzl6shqt1osnlqdx6+x+LH16J1W1Jvx0alZtyOX6yb14+Z3DhAV789WGCxzNrkPno+Kpv2UyZ1IXHn3zDCarwOmLBr7bVsasKdF4a9rfV7mi4/KVDsseOnGgZfLOaqD/+8G2zpxOscOD0L+8+j/52b9aStLJwaHT2uhOSjgcndT3d0AKbftaZwCV7kr/wJ6UYnr2CODeRZM6XkQV2PHn7vZlN05zLYePV/LE8jRumdmrTX8WFjfx+fpCpo+N4O5nMukd68c3Wy5TWGZCLpfxzIcXmDMpgkdXnMNsFTh8soktB2r48Jm+3P/aGXrHaNm6v4bUk41ofZQ8+8E55kzuyqNvngEZZJ9r4fxlIxdLzfx0oIqEHjo27a3gyCk9Wh8Fz64sYO6kLrz02SWaDC7OFJr5fkc1U4cH85fXz9Mnxpdv/15D5jkjWm8Fz395mdnjQnn3x3JqmlycuWxh1e5apg4NZMmKizQahD8HqfyRJJPJRE/lY+ib7ei0rTAoZhdBgRrKi8oID9G0g1HrGhmCvsWOzvdX2CAngX7KDmGGmm1qwkN90Tfb0P0KM2R2EhQRS129ibBQLRaLdDr21XpT32AmPEyHvtmCTns1TJJve35frw75VeoOmmp+02hz171fUVbexMfvzCc6KkiCmas3EBbqh8XiAHt1G6xSeJgWfbMVX7mh9XpdBAVoqGuwEhbijcUqcMfD+5gwqht3zkkgPNQHfYsdlbUaZLJrYG78GurawZaF+atoEeXovK+FLatvcRGEq0P+psoWtK2wYma7h0BfBfUWD6E6RSvsGvh6yWgwuQlViTRb3WjVklExOzwE+iioa7QTqlNcA7tW1+ggTKug2eZB63UFdk3rdrfBwLWi8OGjgjqjm1AfOS12D74qib/FJBCgkdNo8xCskdEqDmjw0GSHEG8ZLQ6RVtQdTGY3/ho5jTaRYA3YWvl9vGjPL4pYBBkBalkbv1UAt8uNt0KG3gHBGhkGp4iPEjyCB6tbhr+XjCa7SJAaTDYBkOGtAL0TgtW/8ovIkGERkPgdIkFeYLZJ9+cKP1SYlbSizGF1g59KRrNTJFQtYm+1JxoFNLsgyEuGf6w32tb7czVMXsLCwW2wROv31pJz0cTqj65D3+JAdxUsXVCAGr0nskP5D/OztHt/vZ01HcLYVZwqISxARbNZuEp+3OiaDdSb3O1gBJesa6RnmIolY3Vt8mNRqAjSKqg3CpK8OVrlzUdBg8nN1ynNuD0iz8+WUB0MNSYCfaXfhbSu77Y4JNhBi0ioVt4mb26bC4vrWthBq0sqU/W5Cqaw2eZBp1UR/Vb9Hx6BNlx6FD9d+9pNt73jetiO6jz/kyLQFrMNkV9hNC2Eh2rRN+qv0c+vfZhJ6rEKvnx3Jv0TpejgNfy/1eeB3tRW1RIW4vMbmE4bXaKiWPDANrp20fHGc5MxmR0EBfpQdflSm/6U+JXUN9kIVBrRG5zofK/AboZ1De/wWv6MQP/2w/9/I9Cbtl9g685LbFn3SMeL/AsRaNGYjyiKbTB2v+pPh766FTZOfZX+FHBbTZJ86p2EB6vb5POFjwswWQS+eGnAVTB2MpD9CjN3Nb8kZ++vLqS+ycEz98YTFqTGZJQyhL7eChr0TsKC1TTWGa/Iv9VNkJ+Ker2TEF95G8yor0beBuvZ3OxAezXsrE5FvdlN/K2/L8znnxHo39Dy5ctf3XmwmOFJXfh89WkOHa0gLNiHBY/uY971Udz3fCY2u1uCgvnuAjMnduOuJ9JI7BnIF+vOk3q8mtBgb558I5NZU6K599l0rHaBc4XNvPfNWWbNiGfmgp9J6hfGZz+0rh/iw1PLDzHrur7c8+AmrDYn+RdqWfllOtdPTWTmbd+Q1D+Sz749yqG0Qrp00XHXkh+Zf0sS9zy4oZW/htUbTjJpXK92/JMn9EYURWQyGW0HJpnkXMhkMjweD7NnDsbpdLNgybecu1DNW+/tomdsGA88vo6LhXVkHC/kzZXpTJ0Qxy2LN5HUP4JV67PZn15JWLA3Cx8/wPzZ8Sx+KoWiMgNbdl1GpZAxa1oPbli0k0F9Q1mz9QIHjjcQGqTmLy/nctv0SB5acQ6L3cOFCjsf76xnxmB/5r17mUHxOr7ZVUfaGSMhAUqWfniZW8aFsHxtOY1GNxcq7Xyyq4EZSX7c/n4J/bt6sSrdSMYlGyE6BQ+sreemZB0Pr63D5hQpqHbyyYFmpvfX8uyWBqKCVHx/zEhGkZ0QrZIHNzQyd6A3j25rxuYSKahz8Vmamak9vbhro4F+4Sp+yLZytNRJiI+Cd9PMTOyh4sn9VuyCyMUmN1+ccjA5WsninRb6hipYm+/keJVAkBqePmznhjgVz6XZsQsihc0efi4SGN5Fwf0HHSQGy9lQIJBVIznZzx53MjNawQuZLuxuKDSIrL4oMD5SwdJUJ4lBcjZcdHOmyYOfWs6zR51cH6PgheMu7AKUG0W+LXAzvqucBzMEegfI2FTk4XSTiJ9axgsn3VwXJeflbDcuNxQaYc1lGBsu49EskQR/GXur4Gg9BKllvJwrMj1SxvLTIm4PFJpgbSmMDYUnciDWF/5e7SGvRSTAS8Y7F9xMCJPz7WU3LS4osYhsKhcZGSLjuTNukiJVrDkr3Z9gbzlPHLAyK17FsztbMNvcXCixsOVgHWarh/0ZNfSK8eOL9QWkZtYQFqxh0bJ07rhlKPc8vAWrzUX+hTre+eQIN85IZOGDP5EQF3jN+/vwy+nMnhzJ/a/mYrO7OX/ZyAeri5jWz4fbV1ymf4wP3+2vJ/2ciRB/Fa9vrmFqH28e2dQkyU+ti09SW7hliJYXftETGahk11kLGUV2wgNVLP2+lpuH+vHw6lpsLg8F1Q42ZxoZk+DL/2HvvcOrqtL+78/e+/Rz0nsPgdBD70gHx4aFsXcd2+Coj2MZdXQsMzqOFUdkVBSxY++KIiVACCGFFEpCIKT3nJOT08ve+/1jh2AIvO8z7zM+v98frOva1wUn3+s+66y1973Wvtf9/d4r17Vy5gQbG8vd7Kj2Em+GP2ywc9EkC3d9YscXUjnSEeTlAh/LRhq5ekPvwP1W1R7GZhS563s3F4w2cPcPHvwhlTqHzMu7/SwbYeCaT/sYn6TjvXIve5r+sxGWk/lHZ1+AsxfnDPYngBzy9/uTwb5GlHRDPjtGqBqCFw0ntYFoGuSvBv6mKif97Fj75d8UOXTS7/z02wOUVbXzzCuFLD8zl3Ov2sCU8Qms/oV/fu/zg1x/6TiuueM7fsqv41Cdnadf3kV6SiSX3/YFJqPEqrXFbCtsID01kmv+8BVXnD+SG+7ZhNcXZl9ND8+8WsryZcO45s7v2bj1MONGJbJ9dwOJ8VauWfk5l52bze/+lI/PH2b/ITvPvl7BeYuzuOj3W5gwKorXP6knv7ibhFgjaz6sY+ncoSoapyPQ/z0j/6ci0CcGLE92rwuCAGYzoigMwf8yAu3zh3n30/3ceuOCk3+fLnroswEIsnvIZyFPO1fe/gPLz8zh3Gu/YvK4BNa8XUFphVaP4XcPFXHpOZnc8vAevH6ZI419PPtWHefMT+S3d5cwcWQkr3/aiMMV5Lv8LjZsbOG689O57YkqZAWqDmn+9pz5yay4q4iJo6L4eGMzPxZ0srvSzr7aPm64KJtbH9tLKCSz77CLVe8e5ex5iVz8xxIm5NpY+0Ur28t6SYjWc8tTB7l4SRKPv1FHlyPEwXoPL33czNmz47jkz/uZmGtj7TdtbK9wkhBl4NZnD3Hx4gRe+qj5P+ofT2+gT2iPP/74Y2OG2bj2vBT0gkxmooFRGQZcLj+L5+Xg9spMn5xCWmokZpOeWVPS6HSEWDg7A4NRR3ZGFONHJdDnE1gwbyRun8LMadlkpMdhthiZNjaSzh4vC2cmo9cJZKVZGTs8Eoe9l9nj9PS5PEwdbSYlVsWoV5k2Wk9nt4uF0yLQi0GyUvSMyZToc3mZP9mMq8/DtLFWUuNAUjxMzFHp7OpjwWQTevxkJonY1HZWv7aZqcP8rHtnG4K3lZaDJXz9ZT4jY1p5dtW3DItsxdXTytLxRlqbu6ips7Ov7ABtbXZaGps5XN1CZ2cfq9/cQ5o1zHkZvXh21xLb201S/RGcXW5yjx6kt7WXr7e3cHa2yBidh2H11XS0u8iz1xNodhDvdpHW0Y7T7mdsZwu+oEyeNUyiGsQYDpOn89HdG2aW2YfkDZAmhhiheulzhZih8+BwhhgXKZMkhjAoMhPNQbqcIWbHKuhkhTSzSq5Zwe1TmGzw43LLjLPKxBPGICuM0wfocIaZHKWgCyukGlVyjDIun8LUSBm3T2V8FCToVAyojLXKdHsUZsSBpKikmCDHotDjkhkfqeL2q4yNEojXaySNkcYwPT6VyVEqkqyQbFDJNMh4QjApQsEdgDEREKdTERSFXLOC3Q9TolQkRSXZqJJllHGHYFKUgiekMiYC4vUqYlbIbBUAACAASURBVEhlhF7G7ocJZhlRVomXVNIkzX6eScYdUBllVrAAkgo5BhW7H8ZbQVAgVhJI1gm4QzDaBO4gpBh02EQdIgJpej32gMAIsx5ZFojSiyTqdLjDMNykwxUSSDHosUh6BESSDQbsQYFsswGQiNbriDfo8YS1z+r6TFgEK4psJqTo0MmR2IMCo8QQQZ+KTYYIv0qfTyU5oHK0Poi5wY2/1oXHEWRvo5cLJuiZanUhelyk6nzk0Euf08ecCTLO3j4mZYdJtLrR42diWh9Ne+qYLHUi9DpIUV1kBdrpqOlhXFcLzk4Po/y9RPfYkfq8pLd10uUIMc7Ti+rwEe/3kWzvpbsnSI7XjbMvxHAlQITXD74Qc3Q+OnzwXpmP0VKQ0VKIFK8blzvMKE8fTmeI4bKfSLcPxR0gw+lk7X6ZSI+PDDVANkFS/F5cXpkxYS99LpkRQpCIYAgxrJCjBuh2K+TpQ6gBmahQiCQ5iNOrkKP46XIrxKkhosIhDIrCMCVAt0dhvD6EGlL5oUn51TfQI7MjqT3cxYy8GNZtqEJSw7S3O9lW5mbs2GyeX1vB6NFZ7Cjt4UhzkOjoaF55u5JZ00ew/uNqdAYrnX06vtvayoSJI3n+9XJGjc5hR0kPDfWtRFhEVq8rZuakeN7aUIFOUOhoaeHr78sZnyPx3Opt5KZB/o4D1B5qItLkZ/UbBcwYZ2bd+0VIQQetza1880Ml4zIFnntlO8NTFHYWVHPwQCM2nYfVb+5maq6ede+XMj4TkqJkjJLM5Bzo6HIza6SCpAZIj4PcxDB9Lj+/Oy+WeNmHz+WjpLyV7m4X5SV1dHV7ObS/icZGOzuLWxE6GsmJVpjYtA9ney+jAx3EdLehc/aR23aIV/O7WD7FxpwUPymik2y5lT6Hi+mxHvocXvJiQyQIXgzhAOMtfVx//TjSk80snpnA4pkJpCWZOXNBNtrmcPClhAMo4eCQSw0HUUKBwdfJPgsFkAPek15qKIAS9A+65IAXJegbcsleJ7LfPfQKeE6KV/v7OOiST34N9P3EK+g7+W882RUKoIZDQy4lHECVQ4Mu2etBCQaGXh4/ij8w5JLtHhR3YMgVcPh4/8cOxECYjnYfG3f1kIublz9pIUsKsLOom8PVDixeLx9u7WBsnMw7nx9Fdbtpa7Tz/eYmRlp6CLQ14m9rRHB28PQ7ddx7XQqKt33IdaByLzH6Zp59/hNGJtvJ37yd2v2lmHzVvPyvn5iS0cu69ZtRXUdprKrGQJAJSV46u9zMyZGRwj4Sgy5yDD5cfQFmRPvp6/UxIVYmLuBBHw4xweijqyfArNgQOn+AkREq5+ZZeCffQWbIRapJJi9OJUEIYJDDTLD46erxMzs+DIEAKUaFz3f2YNOrTIkMYlJCTEwQSNSFMSgyk6JkuuwB5mbq0Sky6ZEiI6NF3K4ws9N0OO0+xidKJBkVJEUhx6LQ0hVgZpoOi6iQESkyMkbA7QkzO8PA8193nk7h+DWbIAjqn28bR1qyhWnjNeHukn12rjl/GOu+aubic3IordJKRk/NS2D9JzXcc+tU3v6shgirnuKKDkYNj+HGq6by/KvF3HhFHiUVWmGOaROT+ejzSm6+YgzvfFbDtAnaMU1JZSfXXDCMF9ft4/qLR1JapTFzp01K4a1PqvnjTRMH4atq7Fx23nBeeKOCGy4ZTUl/f6aMiWT9p7XcfeN43v3iMFPzNF3Skop2rrlgOKvWH+C6FSMo3deDIPuZMCqKd75q4K6rR/D+t01MGReN4uiltMbFFUsTWf15K1efmcjeQ25Ul48J2RZe/raTw+0Byo54uXmMxMwUkX09Khfm6nirKsTIGIGHdgZ5coGJKSk6PjkY5KZJRj6vCTEuRnPzVV0KF43Usa4yxLUzLFS0a2/sE5N1bKgKcOt0E18fCjImQTuyKW8Lc2mekVf3+Lh8spnKNi2KMTFFz4flPm6bZeHjMi8TUzR8RVuYS8YbWVfkYflIA1Wdmv28RIlPDga5eYqRzw6GmJCk4Ss7wvx2jIH15X4uOAH/xcEA14438PmhEBMStchMZafM8kyB9QdkVozQsa9Hi0SMjxP5pjbIpSMkvj6qMD5Wi/BUdcsszxJ5t1bhwiyR/Q7tmRsVqfJNI1w9QstDHhej4Wt7FZalCbx3ROWCTIEDGkeOXJPCt61wZRZ81wpj+0+7Dzjh3FT4oAHOS4XqPpBVgdwIge9bVS7LFNjYpjI6UkBRoNoFv0kW+LhJ5ewUgQqHAAiMsIn83CFzYZrElk6ZURECKlDrVlmSKPJFi8yyJIkap4AMjLCJbO4Mc36Kjk0dMjk2bXzq3Arz4nV83x5ihDGS5v7cv3STnhKnj3mxFuyqnSyLFhWrdSssTpT4skVmarSReo82nulmkfuqPDS8NJxP9riZnK1FIffW+7l8diQf1uu4aHEyZdWaCsqU0ZG8820LNw8P8lGxm0mZWupAeWOAcyL9vFkR4uLReqq6+uc3QeLLSh+/zRH5pl5hXP987bernJ2s8F4dg8Z/dKTK101wdQ68Uq2yqRXSrbAwVeDyEdKQ+R0XJ/BlvcqsRIF/VsnUOFXijLA8U+DK3MF4UVAZHSXycZ3MhDiBT+tU+kJQ71JxhyCsas+OVQeSAGEFLsjU0mJuHiXybZPK+HiJyzeHf/UUjiVnpPPdW+fxwtpybrh0DCVVmvrEjBljWffhXu75/Rze/qic6ZO0Qh7l+9q48rcT+NNfN2Ey6pgzPQOdzsCUiems+6CEe1bO4+0NpUyfnI4YclBU3s51l4zl+ddKufHy8ZRUtCMKCpPGxvPWxwf5482TePvTaqZP1NIYiis6uO7i0QP9KatoQZZVpubFs/7TQ9x9Yx7vfFHLtHHRqCqUVPVwzYXDWbV+P9etGEFZRRuKqjJlbAxvf1nPf107kg++qmXCSI20WnrAyVXnpvHPD+q5fLye8qPaUfykYWbez7dz+zmJfLajm3EZJjp6Qzz9ZRcdvSGmJwk8tthKVcdx/7a6yMfnNSHuPS+e2aO0PNe9R31cPieat3f1ceHM6CH2H7hv2pB50FlOnupyqjSLk+oy/ztydaewcWq1jVPpPf/384BP1dRTpHb8O7ZPGQk/SfRY8ftPjg2ePNKsuE+Of+WzFi6ZGzNofj/9uY0bzojioz2uQf7q6ouHsfqrdq5emsDew5oIweQRViS9SGykdsqgqipZlxZzZOdVxEQNTZMKqAb++WY599w6hbc/Ocj0SdrzUlpcy6VnZbLqnRquu3AYZQcchHrtTBkVwbsb27njknQ++LGDKaMjUNqdlNb5uHxuDGt+7ObKeVr/pVCIcekGPix08fsl0XxU1MekTBOCorC3McDoFAPXv9HB8EQ9l8yJIjlaz6QsEx8UOFm5LJYNhU6m5tpQVZWNe/vwBFTeybeTGKXn92fGkRKjZ9IwMx/scLDyN/F8UuRkQrYZX1DhuxInMVYdn+xy4PbJODwy/pCKKIAkCsTaJJxemXOnRHLJ7Ciae0JcPieaNT/b+esnHf9R/3haxu4krcvhp7qub+D/x2q+l+3vZsr4ePKL2gCIiTLy4/Zmbr4qj1ferqSusQ+rWUdivJlLLshj49ajLJyTybZdWqWc2Ggze/d14fKMYNOO4xJCm3Y0c+HSdH7c3sz8GSkD9mPjrPyY38TNV4wdhN9XY+ecRZn8mN/Eglmp5O/WcpriIkR+2tHCTZeNYlPBcYH7LYXtXLg0k5/6VUG2F3dgMypE2nT8XNjJjSuy2bxbWwR1AQ9bynpZPjeOn0scnJEXxc6qPgyhEFEWifJ6H2/fmcW1L9Wzbp+Pdw6AX4aPa0LUOhQkAeZm6CjrkEmwimxvDHPFOAM7GsNIikhQgYJmmTOzdexoDrNgpEJhk3a0Gm0W2HY0yFUTjZS3hjnGudh+NMg5owxsqwtyxjAjuxr68SaRbUeCXD3FTEHjcXmk/PoQZ480UN4hMylZYXdLf2lTk0B+Q5grxhvZ0Xjcge5oDHPWCD0lbTJTkhWKWo/jS9pkfjsKdjYfd5Y7m2UWp+rY0SIzPVlkT/8LQJQRKntUzsuCwg4F6NfW7lJYkiZS0K4yLV6lpFtbAKJ0sKtDYUW2xO7O44vCYSfMTYLCTpVpcQKl/XhLLBR2wwXpGokPQCdo/16YpP1tSgyUOsAqaZutPT0qy9MEiu0AWk5ziV1lXoJAsV1hUrREdZ9KSFWx6QTKHDK/SZbY26tglLT52utQmBMnUupQyIsSqfUo+GSI0EF5r8yyRB37nFoxFoCqPpnpsToqnWFiY2WOerXF1CIJHHIHmBFtptatEOxfe/f2KsyOkyhzyGSZVapd/TnKOgFRgMMdQbYdPC5BtO2gh/Mm26io6WPS6Ch2lNq15zFSz8+FXVyRHsm26uP5htuqfSyYLLC9KczMVImifrm3aKPAAYfK2WEo7Dg+/oUdKvMTho5/hE777KJMgXYfXD8CCrtg1T6VvDh1yPzGmDQllYtzdEQaBP4wTqCwQ+W1gyqjYlR+aFRwB1WKu1W8IfDLCm1eGBuj0heEaQkC8xM1ZZQH8+ChMvjDGIGtbSohFZo8sLMDIvQq+3pBkv53giGNzS5cnhA/5jeyYFbagP9JTEll45bD3HLNVH7admQAv2dvM84+Py+/UURmWhSbd9SxbEEu0dEWNm6u4ZZrZ/DTNk1y06zz8VN+AyvOHsHGbfUsnJ3OtsJmIiwSkTYDP+Y3cPOV49i0o2nA/qYdTaw4ezg/5jewYFYapVXdOF3BAf9802Wj+XlnC0adij+g8POuVi5clslPO1qZPz2ZXXu7CYYVYqIMbNrVzu8uzmF3pYNQWLtBt+zp4fyFSfxc2MXc5HgKDmgqGdFWiS2VfVy3OI49h70Ew9r4Z8breeDCBG56pZHKjj7CCoRkFbNeoMmpcPd58eyu9WEyaP5h234P502JZO8RL5OGWYbYf+BXns/T7X+nbatyMT3XOmh+y+oDXDJNGeKvLvDLbN7byxl5Eezcp+1FYiIkkuNNxGriPwiCQFaykbqmPqZGDa2a6ewL8uO2em65Ko9N2xsGPi+p7OHs+SlsKmhn/rREthd3ovg8xEbq2Vzs4PpzU9hSqil76Vx+tu13c97USDZXuZg72kpBjYdInYLNJLLlgIdr5kay7aDWf1FV2Vbt49wJVoYn6shLN3D/+x1cMC2CGKvElv1urp0fzbYDHixmCV9Q5WBLgOeuTaXkiIcZI6z85aN2zpwYQVNPkA92Ouh2hfm+rI+QDF3OMFaTyPLpUcgKPHZpErtrveglgQumRfLEZ528vTKDhz9qp80R4sqXGhmRbOS8KZFs3ef+j8/p6Qj0CU0QBHV8bhTFn52Fp5+9ZTVrNd9TMxLocfiJtB0nC8ZGm7jvqSLyi1p56/klGPQiy676mr/9aT7XX543UFMeNHJJlDk8iGwHGlmko72PpATzIPvuAEPIecfwnd0+khIs/XjtjdTZ69LwJ5AXLQaVzh4/SfHmgZr1YV+flozfX1P+GLkq1NWN1SQNJOPb+0JEWCTCXS6NnGfT0ekMkRCp4+imwxS1KZgkCCmQYhVRVBifqgOEQeSweLNAn0eTS7PooMenEm8RCRh1RBwj8wXVAbJUQoQ4iJx3jCzV41eJNJ2AdyvE6ZUh+ChBGUT+O9afHp9K3Ankv26fSpxRwOFXBpHbInXQ7VWIMx8n/1l00NGr5e46/Cr904UnBFZVGSDnHSP/GVEGyHy/JAu6AwpRBvE4/hjZTlCP44Mq/dwJnG6FKAP0BCDWoOFVwPILMp8zqG2c/bKATxaI1AvYAyox/XhZAbMkDJD5nCEVVZEAQdsU95P/ovUQVBQQBEwi9IYgxiDQF1KRVHEQvjeoYhRF+rmdGEXoC6tE6UUO2k2Y+hVgAoqKRRJxhWVmJrno534Mst/g0mGWtPH3K/DyYS/3X5HI8sm24+Q8o0YGzVwwkh5nkMhfkKtioww0bDowhDx6tKyTBKt0wvyCzh0YMv5mCTr7wsSZxEHj7w6qg8iUPhnePaJS1APPzpRItoiD5tcnQ5Rx6Px+VSez/pBCmlUgwQRZEQJpFpUks0herEBdn4pPhp6ASopBYUQEuMICcUZtrM2SytZ2eOMQRBngppECcxIFAoLE3K9Dv3oEOjPVRuGXF5OcaB3kfzxKFLExFjo63SQmWAfInWvfK2XNW8V8+fYVGPQSZ1/xLg/ctZAV5+X1439Bhg50amTQfjLTMf8ph4K4vSeSlQeT8zR/6MNm0F7mjpFNj/lDV5+vH6877g8dfmyGkIb3hgf8Yaw5NIhseozM1FbeTKT5ONn0mD+MN3ECuVkmoqWTHw4FMUga4VMQINkmETcmnoQo/eD7uU8mKcmC3RU+Tp7ut28alTFkHk5HoP9ntv9PRKBVX2jI/Eb6vcfJx7/wV47oaJJ+sf5CP5k+ejDB85ona7jy8klccu7QSpMhjJhMOjq6PIPIrDp/F532AElxpoH9QLC7fRA5LyFGj8evEGqyD9zPiVE67O4wESYJxePDHVA1sv4v+x+WNbxLJjFSx7+29vJ+kZvv7stCFRiE9yra/XSi/Z/KXfzjy04So3QMTzaSEKljbKaJ1Fg9o9JMBEIK+xr9qCpEmyAvw4RJL/bvTyQ6ekOUHfXx9FddqCo8dXkSI1NNJMaZiL+u8jSJ8Ndsjz/++GN2Z5CxIyJZ/V4tP+5ow2ySuPZPhaw4K4cr7thMl93H7r0d/H1NOV5fiKde2cuzD8/lvc8PUVDSzm/PHsGdj2xlyoQk7npkM109XgpLWnnypd2cNT+dpVd+zYjsaJ57fS8btzViMup46Jkils5N4/I7t9Bl97N7byer1lWxdO5QvM2i58o7f+a3Z+dw2e0/0WX3UVjWwQdf1jJrciLLrvmB3Owonn+jio3bmzEbJa65t4AVZ2Zy5d3b6bL7qaix89TrNSybk8g5txYwPNPGi+/UUlHjRFbgpqcPccEZcVz3lCb9Un7IzbNfdbJkQgQX/r2O4clG3t3u4JBDZWSsxDPFQa4ep+eRnQECskBRa5g1pQEWZOm46ksPw6JFNhwIsak+jEkS+ONWP2cN03HPZh+dHpXS1jAv7/axKMfAJRv6yI2XWF3oY8uRIGa9wMqvXJw32sjftnqps8uUNIf4504vi4cbufg9BzkxEmv2+NlSF8KkF7j9Gzdn5+i4faMXu1+lrF3mlRKtP49u9xFpFHmtLMC2hjAmncCdG738JkfHHT/66PFp+DWlAeani1z9rZ/sKJG15UHyG8MYdQJr9oaYliRxd34Ahx/KuxReqwxxRpLA77aFyYoQeataZmebglFUeXCPzNI0kfuKZBxBqLSrfN+oMiFW4JYCmUybwNu1KgUdmlrGg6UqS1IEHihRNLwD3j8KM+Lg9hLItMB79ZpesyDAX6pgURI8VKltRo+4BN6qU5kZJ/BfZQoZFoEPG1WqekEU4MkDCvMTBZ7YL+MKwcE+lU+awkyJkXi4KkiqWWBzp0xBt4JBEni2OszceJGnq0P4ZYEDLoXPW0JMjpZ49ICfJKPAt+0hKpwyBlFg9RE/M2N1bGgO0BOSafSF2NrtYaTNwBuNDrKt8FmzTKlDwSDB8zUh5sRLvHw4SG9I5bBH5pu2AKlmka8OeshNNrJ6k4PN+z2YDCK3vtnORWemcO1D5XT1hiiq6uW59Uc4c3YCtzxTg9Uocuv6Tl7f5iQzTscjP/SxOEvHHT/5sPtU9nbIrCkLMCcRbtoWJjNC5K0ahZ3tKkZJYM0Bhenxg8d/Xa3KnET4faFKpk3g+f0qP7XCneNFnihThszvD40qE+IEbtoWGmR/WjwUd6m8MFtiwxEFb1iLbH94RGVdjcIXDSr77Cr5bSrfNMHaQ/BBHXzbrLL2kEb23NerbfRXzRB4uEzrz4Y6lQO96q+eAy1JAhu+ruXS83K5bOVGunp8FJa189HXh5g1NZ1FK9YzMieOZ14pYO27pXz01X7MJj1/+N1Mrr3jCxbOHcaTq/L56vv9rDhvPIsuXMvI4fE8s3o7ZZWtKIrKFbd/z8Xn5nLJbd/S1eOj8mAXj7+4h7MWZrHk8i/IHRbNs6+V8cO2BswmHVfd8RO/PWcEl63ciMcbYkdxO3//VzlnLchg2dXfk5sdybtf1PL5jw2YTBLX3ruDFWdmceXd23H0Bdi1t4dn3jjImWckc9ZN+eRmWXjx3aP8VNiN2Shyw18quHBRMo+9dpjDbQGKaz28+FUHSyZGcsHfDjMy2cg/f+hmc5Ubk17klteaOW+Ejr9t8xJhFGl3q3xYGWDFOCMPfu8i2iKxemM/3iByy+vNnD8jmhtfrqe7LzzIvjUpClEcvOaL+n9H1u8UlQFPQSI8VTt5dcFTBOBOSdL7nyt5nJJc+O/YPiUxcKhxNXyKjbl8io188OT4rp4AN/5z8PwuHmlixeo2chL1vLK5l80HvJj0Ii/+0MOccZFc/0wt3c4we6rdPP9pC5cuShh0L9S3BzjYHOScRZlDvu+rnxuJjzGx+NLPyB0Ww7P/KuWHrfWYDSpX31tIbYOLlY+W4AvIlB2w8/z7TSybHst591QyPN3MPz9qZu8hF6oKt7zWzPJpUdy4ppEel8yBJj/PfGdn8VgLK/7ZQk6igVc2Odh+yIdeErjtnU4yY3XcvaGbq+ZGcbA1yIvfd7NkvI2Lnm8kJ9HIx7udfF3cN/C8HLOfHmcgL8tMQ1eAm5fE88zXnbTaQ6zZ2M0/v+3i44JePi/spaM3xJofe3j+227Wbraz+sce1m9z8Nw33ZTW+UiO0pGbbGBkqolbXm9m+fQoXvmh+3QO9K/ZBEFQp4yL4erzszljSiImo0RmqoWCsm6WLRrBnopOstO03LhvtzTwyPMl/O2+WVyzYhT1zccF81etP8CqtaU8/dB8zl2mVUqrb+xj2rgIft7ZxLzpKYPwBUWNLJqTxp6KLrLTtYIL9W0+Zk5KZnNB8wl4GztL2lkyN12rEX8M32Bn2oR4tuxq5YxpSQOC/BlJRgpKu1g8O5niym6y0qzIfjcNrT6mjY9ha1EXc6fE0dDqJdxtJyPZROF+FwsnRVFa4yIz0YRsd9PQHWRqjoX8/W5mj7JQ8f1hBETSbAIl7Qpz0iQqumSGxUmoCDS7VCYlSRQ0hZmeKtHYE0IVhEH4Gp9IZpT2ht3UpzA5RceOhhCzsnQ0ObV7Mz1SZE9zmHnZeso7wqRHaSHBJqfM5FQ9O44GmZEs0nysoEmEyJ6WMDMTBMo7ZNIjNIdzrD+FrWGmpehodh3HF7fKzEmVhuAnxAnsapaZliIOFEBJtQkUNQaZnaKjskshzabhW9wqYyJUdncoTI3XCpAAJBsU9vbAzESBfQ6VlH4FwVaXzLgYiaIuVStQ0o9PMiqU2wVmJgjs61VJ7VemauxVGRcFxT0wKQbafJq/T7FAhQOmx8F+J6SYIRSGtoDAmEgtZWNiNLT7QZa1SOe+XpgSK3CwTyVSp81Xp19lZIRIRa/C2EiBroCMIIgkGmF/n8qkaJHlO08eWTrd/rOt6AKJVq8mRxhrgC3tMCEGGtyQZtVOINoDAuOjhYH7p80PKzarv3oE+pJzh2O16Fn16DwO1NrJTtf8YXOPnmmT09i8/QjzZmWxKf8I1/3hSz5ddymyrLBk/nD2lDWTnRFDcUUH16z8mI/fvAoBmDc7m/omBwR6yEqPZOeeVpbMy2TP3nayMyJRwkHqm13MmJTE5p1NzJuROsh/7ixuZckZGewp7yAzSTsBq292M2NiApt3tTBvWjJHGxwgCGSmWiko7WTx7BSKK7vJTJRQVWho8zB9fCxbdncya6yRxjYtkpiRbGZXhYNF0+Mo2lRHerwWBWzsCjB1uJX8fS5mDTPSdKyATpyO3bVeZgku9raFBwoqHfNvxYqNGbkWmrpDx/GHfSycHEPpEc9AAalj9slOxWSUkPs3bJIkIEs2TCYdwaCM1H9iI8sqer2APyBjNIiD8IIgDt0An45An8TGvxeBDoYUpP4NrayoJJ5b8N/uw+n2/799ev8wFoyzUVbjIjlGR0tPiGZHiCnZZvbW+/lNnpXWXm0ujz1f8/MiSbx+33/UP57eQJ/QBEFQ33p4NPe9fASnRys1OWmkjbUPjeHZ9xq4+qxkfiyyU3HIzZZSB+NzrLz36Bieea+JMyZqx2o7K5zcf3kaV/21mqojHq45K4mMRCMLJkXx/o8d3HNZOs982MwZeVoy086qPh7543T++Ew5994wiq17tHzkpfOG8ezaKlY9PJO/ralgwYxkAPbua+P2K3P549/3cu/vRrO1SMMvmBzJ828f4bl7x/H0G7XMm6pJ3mzf3cb912Rx/8uHufuKDLaV9WIIhpg5OoJVX7bxjxszefbTVs4YF4EUCLLtgId7lyfw4Adt3HlOPDsOeMDhZlaWgdUFXp48y8YLO7zMThZRVShsDvNfs8w8stXD7dPNFDcF8IVhTrqOV0sDPDbfzD+L/czN1KGoArubw9w5w8Sj+T7+MNPEzv585DMy9bxS7OOvi6y8WeZjbD+JcHdziLtmmnl0m5eV003s7M93npuh518lfh5faOHlPT5mpOkH4Z/f5eXKPCO7mjT7czJ0/KskwJ9n6nilLMSMFG3jvqdN5vYpBl4sDXFtnoGC/hLcc9N1rK8IcN9MI6tLA8xM1fpT1Brm9xP1/K0wyM0TDBT259TOTpX46GCQP0zSs6YixIxkzX5xa4hb8/Q8VRLmpnESu9u1RWdGgsCbB2QenKLj1QMy0xO057raoXBlrsTf98r8brREUYeGnxqtsP4w3J8nsLZGqyIoibCnS+WW0SL/qFS4IVdkT5eKSVTJixVYX6sOwouCSnEX3DxK4JkqletzBYo7FRRVYHocvH1E5d5xAm8cVpkUKRBWYGunysUZAh81qvzc8R971E63/5e2PEXP2EgJg6hQpca8BgAAIABJREFU6VS4JF3Pm0eDXJSmp8opY5RUxkaKfNYsc8twHRsaw0yMFnls/6+fwnHNhcOpOGhn/+FeUhMtzJuexKxJiSyalcSza/fx93unctNDBZRU9XDVBTnYzCL/dd0o7n6qjPt+N4atRR2IKFjMEiufKOOD52axs7SbeVPj0YkyW4q6efDmkdzz7D7uuW4E24q7sUZYmTU5gefW7ufFP0/nyX9VMX96EqLeRH5RK4/cMZW7Ht/J/bdNZmdRI/6AzKLZKTy3dh8v/nkGT66pZNHMOMJhle3FnTx021jNf944mvzCJsKyysLpcbzwdh3P3TuWF9+sYepo7cVgZ4WT+6/O5P5XjnD3ihS2VWj69wsmRrHq0xb+ceswVn9Qz6Qc7c244KCHey9M5C/vtfD7pTFsr9bejOePtvDSRjtPX53Kc990MbefRFhQ4+He8xN44Wcn15yVRH55v/1JUbz4cQvP/Wks/3jrKGdM1gpj7Nzr4IEbc7n3hYP88dph5GsEBxZMj+X979q4/8YRg/z/jtIe/nrn2CFR7FNuoE+VBiIOpUz9J7ShT/Wdx6QO/0c2/gP7GzV08peBouJuoiMkNmzuQhLh7FmxLLqz8n/8fafb/3c78pcUHvrWyR1nxrKzVkvNmpdr4uXNTp5aEcfaAhd5GdqLaEGtj3vOjuWhT7rYsNt1mkT4a7czZ8ay95CbWeMjOdTo47kPGnnpoyY67UH+/nYD3+/qYViqicdvHsauSucp7aQlGFk+N47H1jVw0/Lk/8VfcLqdbv+ZtrUT8rugyqnS/os6AJIACUbIixK4PVdi/RGVsf0nA/v75IEN37nJBvb1nwyMi5T4pi3IdVlGNraHyOzP7TvoCnNRqpF3Gv1clKofwI+PlPiqNYigGChweMm1GhlhNdAbklkcb2Vrt4cpkSYqXAEafEFa/WESDBLXpUeTb/cyzKJFCus8AQ64g8TqRZYnRXK4n9Q4wmKg1OljUbyVLd2eAfxRb5DFcVa+6XSxINY6gN/T60MnwGWpURT3+gbwXYEA8+MsfN7uZkm8mUMe7QVvaozAd+0Brsow83Wbn9ER2vgc9YU4P8XAU9U+ugMqeVESRhFmxep4subk0a7/m1p2uo2XHpnFnU/s5pyF6dz11yLau3ykJ5spruxmwrlfYbPouPmyXGZMTKCksvOkdqaOi2XetARu+UsJi2aevHDE6Xa6/d/cPtvWzatftWIxSqz+7HiBEp0kYDWJ/OvOYRQedHPfJak89NpRbj8rnh0HtZPheWNsvPNzF/edG8vzP9iZm6sdNRbU+rhneQIPfdTJXWfFDnoBe3OHi0cuT+G5zzuYO1Y7eX71y2bKm0PEWyUeWBZBp0tGEATmxKu8XOTj1qlmHvjZQ02PzLm5BlKscPMUM4/m+/j9NCMFjSFeKw1w5Rgdhx0qD88ysKY8xIxkEQnY1SazcqKeJ4uC3Jynp7BNRq8oTIwXWXfweACopFNhWKyEzSDw4BwTj+/wc9tkA6UdCkFFHRJQWzjCSFiBwqYQd8+x8PDPHm6faaa4SyWkqHiDKs9scfHnpREUN4eYm2Pkga9Pvd/6P9FOR6BPaIIgqF8+m8fs8VE0dWiLmV4n8NsH9uEPKiydHsPvzk8hJc5IfZufaWMi2FLsYE7ecXxGkonCCgcLJ0dTUu2mttnLI2/U8/dbc7h4fixbypzMzYs8XsM90Uhpp55FMxIprrKTna5FJpq6VGZMTGBTv3pGQ4umRJAeBztKu1g6J4k9VXaGpWn4ow12po6NZvPubs6YEktj/44nzSazs6KXJdNiKDnoIjvFhNzrpb4jyLRcK1sq+pg7NoKmriB4fKTF6dlV42XROCuldT6yEgyEGnpo6FWYkqYjvy7IrCwDje0BQCAtUmR3c4gFWXr2tsmkWrR7qqlPYVKSxPbGMLPSdLR6VFS0lImiljDzM3VUdClkRWsbqcZehckpEvkNWnS4xaXZSYsUKWoOMz9LR0VHmPTIfrxTYXKyxPaGMDPTdbQcS+Hox8/LkNjbLpMZJQ7C5x8JMDVJGkjJSLMJ7GmTWZijKXf88sh1QpzAjmaZmSkn4FvCzE6VqOhSyOhP+WhyqeTFQEGrwvRkkdZ+fLJJpbhDYW6KSGWPSnp/ykeTU2Z8rMiudpVpiQKtnn68WaW0C+YkCVTZVdKsGr7BESYvRqCwC6bGaSkcggApFk0pYnaiQJVDk1ZTZIVWr8D4GAbhUVUN3wOzE2CfQ0sZEdBSTsZHw+5umBILb9aofN8GL00RaPYJTI+FhVu0MY4zwMoRInPjRUodKjkWA139pKgEo8D+PoVJUSIHnBBv0vrfGVAZYRWpcsqMtEn09Ad24owC1S6ZvEiJBm+YxH6SaKdfZYRNZFObDpsksdvhY7/bT7ROwiKJ+BWFtkAYqySSYzEwIdLIKKuRw54g2RZtow0QrZfY0uOm1hNkeaKNOIN2UmEPhckw6an1BBl2Ar7eG2SE1UCTP0SsXkdYVXm+rpuHRyTQ4AsNwicZVep8YUZZ9TT4wsQZtPszSIBhFon9rjCjbDq6+2VHUs0K1S6FvCiJLV0htneFafQpnJus54tWbfP9znQr3QEVnaCQYDo+nrVuhSSTiE6UaffDqAiBvb0K46NEuoMqt5UEf/UIdF/51Wwv7mDZGansqegiOtLAbY/sorrOye8uySU3O5JLzxlGQ6u2UchM1LOjpIulc5LZU9nDsHQbSjhEfYuH6XmxvLC+hlXv1PLCnyYxcaSVjGQzO8p6WDorgeJ9vWSnWdCZIzja7GbGhHg2FbQxf3oSDa1uJIOFrDQb+UVtnDkvnaLyTjKT9AgCHG1yM2NiPJsKNLWNhsYeVBUyU639/UliT6WdrHjNL9W3eJk+PprNRd3MyjEc989JJgoqnSyeGk3p/l4yE7X84/p2P9NG2dhS5mRWmkhTjzZ3GXEGdlV7WJhroPSon6x47X5r6A4xdZiJHbUBZo48nsKREa9nV7WHZUvTKKl2k52iRc7q2wJMG21ja7WXMybH0NR+LKXExO59LhZOi6N4v5Nh/TleR1t9zMiLHeL/M5PNIIiYTScUSDkdgf7vmT1FBPrT75q5b00dHz0xhqwkE/VtAZb9UYtAJ0TpeGllNsNTTWQkGCnY72LhMP3AegrQ0BVkcpLA1oNe5uSaabb3pwDF6tjTGGT+aOuQ+2f6+Gi2VrmYM9pGU7fWr2SPk6/3+Wiyy7xT7CHKLJKXqudAc4CmPo3DMj9Lz5V5RhKtIskWlaIWmfmZuoH1cdcRP08VhfjpYhNF7QozkiRaPFqtghSbSHG7wtxUkYpuhQybSCgQptmNluLYrjI1AZZ8HeL1s81MTNJR1CozL0NLicyKOZ6i+cv9QEdYAFUgPUpkd1OIBdl6ytrCZKeaEIAGh4xBgnu+clLXI3PdTCtrdmg+5cPr41g4wsjeLpXM2P7x6QkxNcvIthofc0ZbaXYcH89dtT4WjbORdHvtaRLhr9kef/zxx3rdYRJj9Kz7po3d+/pIijOwpdjBxpcmsP47TdO58rCbt75tY9mMWO556TBZSSbWfdc+UJN91SfNLJ0aw90vHyEp1oDZKLHq02Z+Mz2Gu1fXMTLDzFs/dLD7gAubSeKVz1tYPCuJO5/ci9sjU1Ht5L1v6lk6J5Vr7s1ndE40r2+oYVdZJ1E2ifuereCiZenc8bcyXJ4wFdW9bNzZzswJsdzwyF5GZ9t48/NGCisc2Izw0Jo6LpyfwN2ranH5ZGobvKz9oZOlk6O5eVUdI9NNvPVTF3VtWjWxhze0c/60KO55tw2PX6G6ycf6Eh+LRxhZ+WUfuXESn+0LUNAUwmoQeGKbl3NHGnlwswdUKO+QeX9fkIXZeu76ycfwWJFva0PsbJKxGgT+ut3HObkGnsj34Qyo7O+Uea8ywKJhBu743s2oeB3vVgYoaQ1j1Qs8sd3LObkG1pQEaHOp7O+Seb8ywMJsPXds9JAbK/J+VXAQ/twReh7a6sMTQsPv0/Av7/ETYxL48GCI0g4Zq17gqd0Bzhqu55F8P56QyoFumQ/2B5mfLnH35gDDY0Q+PBCktF3GYhD46KC2yX+0IIAnBAd7FDZUh5iXKnHvjiDDo0Q21IQp61Sw6lT+USpzZqbEE3tCeMJw0KGyo0VhUoLIn3aHyYkU+eSwzN5ulQi9wLPlYZZlSPytTMYThupela8bFGYlCPy5VGFYhMBn9Sp1Li0a/Pw+haWpIk+Vy3jDAs1u2HBUZW7iYPyhPhW9KPDCPoWlqQJPVSoEZKjuE/i8UWVOosAj5ZoKxPv1MDEaUswiqw8pLEzU0jgAZsUJ5HeqmHXw6hEFWYEie5gal4JJElhfH2R2nI7PW4LYg9DgVdjSGWJStI7VR/ykmyU2dwU55JYxSQLvNwaYEavj/cYgHhnqvQqbOkNMitGxoSlAsklPeyBMnF4iy2zgoCfA2YkROIIyk6LMWHUiZU4/o2xGvut0EaWX2O3wUunyYxQEKvp8BBU46A6iAq2BMEUOH6OsRj5qc5Jg1LGn10eDL4RRFCjs9TLcauDLdhcBVaXaHaAjEGZmjIWPWgfjrTqBL9o9TIoy8kmrm4Ci0uIPU+0OMdym47V6Hykmka2dAYodIZxhlW/bQ8yM0/FZS5DJ0ToavArOkEJvvzLM6AiJnztDdAQ0JZRj4/na0SA+GVp9Kt+1hZkaK/F8TYgMi0b6POz+9UmE86Yncc/f9/Db32Rz+6OFhGWV3OxI4mOMPHDrBFY+upvRw6NYu+EQu8o6ibTpufcfe1mxLJM//LUYtyfMvtpe1n5Sx5lnJPOn5yq5YcUwHnyxErc3jMWs44EX9nPhklTueqoSlzfM4SY/a96v5jfz0rj23gJGD49k7YZadpV1YrMauPfJXfz27BxWPrIDRVYoqepm7UeH+M38NK69dwejh0fx5U+NbNrVjs2i5/5ny7nozAzu+GspPn+Y8uo+3vyiiTNnJ3DDI+WMybLw5rfH/flDrx7hgvkJvPRxM01dQSrrPLz1QwfLpkVz87O1jEkz8tZmO0WHvNhMEg9/0MryKTbufb8dt1+lqinA29sdLMmz8ew33cRFSKzfZqeo1ovNKPLwhnYunJfA3auP4PYpVB7xsO77dpZNj+Hmv9cwMsvKm180U1jZi82i47VPm1g4LY67/rEfl0+m4pCLdZ838pu5SVx/ov+36Iiw6YiwnlCl8JQkwlMREU+24f5PBeBOVgHw37X9KwUDT5IXXXKgj1v+Xk1GohGzURqYr2MvXTeelcD3e5z8VOqkzR7kHx+3sHxqBPf3r6dVjX7Wb7WzZIyF29Z3kJts5O0dToqO+LEaRd4rcDF7lIV73xt8/yydFMXNqxsYlWbirc09FB3yECEqPL3JxVPnR7PjiJ/xKQYcXhWLqPLaeTY214VYOd3M59UBilvDRBoEntjuY1mOnjs2eukNqHgDKrvbZUySyOuVIXKiRTZUh6lzKoiCwNPFQX6TreOxwiDeMDQ4FT6olZmXKvGn3WFsBoHtrQqIAiadwJO7/Jw9XM8j2/2EFa12won7gU11YbYdDWEzCDy2xcs5Iw2s/NpFTXeYFqfCOyVerphi4YMyHzEWEW9QpcGuzUVlS4jleWZe2e6mpTfMvpYg7xS6WDzGwu/f62J0qpG3fjGef/m8m+VTIljzs+M0ifDXbIIgqDWfzCQpxjC4xrojRGLsYFmZY7IvHV2BAdmXAXxPQKvJ7gph65etef6jZr7a0c07D45keJp5EN5piiMp3qTViLdob/o+xXhSWTqT5B+Qofklvtfh6pdh0mrQH5NhMoW9Q/ov272aLE6Ejs7eEAlROjx+BaXPq/W/X1bG4ZaxmUSC9V24gwzIxsVbBVxOTf7plzJzDp+CCU1G6kQZO607woBsXIJFpC+kYjMMlbGLNXFSGbuTydJ1eRTiT5Sl86rEmwV6/QpW/WB8qz1InGmwLF2PTyU5Wj8Ef0oZO5dCwgmyZZ4QREqqJolnYgBvQqHHj9afX+BdPmWwzNkxvHhcxs4Z1FQ5APrc4aGyaKKmr3wiXlUUvGFBk137JV5VMesG44395ZA9YQZk2p6qUpkeA8uSRcwSOIKaescFO7R7Nsuiyc4ZRAgoUNGrsmqikXijiEkEZwiiDQLdfjD9QpbOphNwhhRs0sll7/yyPEjGzqYTqOwxYZNEgv2+yiAIuGWFCJ2EV1Yw9ud2HpPJaw+E2GX3UuUKEFZVLk2JJNtsoDkQ5odOF3/IjkUShEGyekPshxUi9Mft77J76QiGuTglagg+UqfgllUidCKesDLwew1SEJtepNMvk98dZJc9NCAFeGayjuUpRtxhlbCick+ll1WTLNxWph3XfjjDSkABnaC9YBwbT1dIxSyBXpLxycJg2UEVLtkV+NUj0IGD1w3IwNl7AwMbsz63/xQymgqdPYF+/xYgwqJHCQeHyGiu/aSOF9bXsHXdXARRJCnOqPk3qw7JFInbGx4kS+fxhpGM1n5ZOh9J8RbsvX4s+jAnlbFzukHolyUd8J8BLIJ2lHNMBrGjJ0CsFBzsz/tlPXu6fb+QFZOJidDT6QgSqwRPkLELk2BUcXhkbMdkOgMKMVZJ802RuiGyd6mj4gatF8fsd8siCTGGwbJ6vcqg8QFNxjEuxjzE/1vNEiriANnw+GSejkD/t8yeJAJ9+9MHGZVq5KpliQPzZXeFGHVlCQC5aSZSYvXoJE3LfltlHxsfHk5WvB6b6biMXZQQPqmMXZdfIClKN+T+iUu0DsjIHrt/DG09dHsUEmwSDq+CzajNc2+bl2jz0PUxGJJ5cqefTUdCeMMqfz7DzIVZAkVtMo8UBHn3bBNpNm29UxUFi04Ysn6FfGFtfTFq60tBm8zWFpUXz7Jg0QsDMrW9fpUIE5xsPxDSSwgI6ESVZ3b4+LZGU9wKKHDZJDM3zLQSYxFpdYaZ/3I3O/8rkcnPaCScqgeTSbBJ9CoStmOytn7t+ep0ySTG6gePp0smMdpA4spDpyPQv2Z7/PHHH7vnigz+/OpRPL4whxq9rPu2nUVTY/jzmiOkJ5n44McOCqv6iInQ8edXj3DWrDgefr0Oj0/mUKOXt75rY8HEKG5/8TAj0sx8sKmLwv0ulkyJZuMeO5tLeympduMLKBxq8vHWDx0sOSONWx8rZWR2BO9908Cu8h5iY8zc/49izlucwf3/KMHtDVFd52TDt3XMnZzArY+WMDI7gne/rmfX3m5ibRIPrjrIOfMTeXDVQTxemZp6N29+2cSiqTGsfKaG3AwLH/zYQenBPiItEo+80/T/sPee8XEV1///++7d3rTqvduS5SJZsty7KaFjAqEGCAkEkkAIJZAAoQQSQgkQauih2aYbTMddLrIty1VyUbN6l3al7XvL/8FdSwibX+D1he/3wZ/z8Oqj2blzZ+acOXM+53BquYs7Xm3DF5RpaA/w8vpBFhbZuO7lDsalmFix2U1VvZ8Ys8A9q72cXGDk7i+9+EMKdQMKb+wNMS/bwE2f+8iPE1l1MEJlu0SMSeBvmwKckGvgb5uDBCJQN6idROdl6vnjaj+5Lh3v1IbZ0S7hMuu4d4Ofk/IN/HNrAHdQpX5A5o19IeZlGbj5Sx/jYnW8XRtmR4eEy6Tj3go/J+YZ+FtFAF94LP6u9X4ynSLvHIiwo0PGZRa4ryLAogyBf2yL4I+oNLoVVhyUmJMucndFkCynyLuHIlR1ysSYBB7eFmBRlp77K8P4IyoNboXlByRmpwrcVhEmN0bH+3WaJzvGKPDkrhDz0kQeqIoQiECjR2VFXYTZKTruqIyQ6xRY2ahQ3avi1Ks8vFtmYZrAw7tl/BI0Dql83CxTlihwV5VMjkPgwyMKu/pU7KLKozUqC5Lh0RoVvwwtPpV3mmBmIty9SyHHDqtaVGoHtY3ukRplDL7Zq/LOEVXD79bwH7fCrkFwGuCxAyplcfDIAZgdD+0B+LBde/bYIZUj0XomZ6fpOC1NR71X5ZwMgS19Kjk2kfaAyhfdEiUxOp5sCJNiFtjYJ3HIK2PTC7zREqYsVuTdtjBeWaUjqLC2V2KSU+T5I0FSTWj4YRm7XuC15jD5ZhOf9PoIKyq9YZnt7gDjrEY+7vbiMujY6Q5QOein3h/mk55hqj1BAorCnFgrnSEJn6ww0W5gfb8PWYW9QyGGJAWLKLC2z8s4m5FPer1j2s+3Gnina4gEo0i1J8juoSCZFgPb3AGK7KYx+GpPkHybnuXtXpJMItvdQRr9EWIMKstbA9R4ZWqHJZYkGJnkNAAK2wZlKnolYgwCH3SEiagwJUbP2l7N6PREVIKySndI4bOvjGeaRWBdr0TdsILVAC81ScyM0/Fik0QgolA58MN7oIe8YRbOSOGq2zZRkBvDq+/Xs3lnN/ExRm55oIozFmdwywM78QYkDjZ6eO39BhZMT+TXd26jIMfBqx80sXW3Fvrxp3/u5fQFqfzpkb3kZtrx+iL85YmDXHZWBr//+z7GZ9t5fVUr1Qc8OG0Gbn2wWmv/wZ14/RKHmoZ5bvkBTpibwa9uXU9hrosVH9WxcUc3cU4jtz442p9AKMKB+mFeeLuRJTOTufrOHRTkOHhjVTNbdg/gchq57V8HOG1+Evf8u44hrzSyny8qi+W3Dx9mfJqJZWt6qawdxmXXc8eLzZw6M5b7XmvF41eo6wjxn3X9LJzk4MaX28hNMrJii4dt9QFcVpG73u7h5BIHd77ZhS+kUNcZ4j/rBlg40c7tb7STmWQe0Rcuu57bnz/CaQuSuO2JOnwBhcPNfl5c2cbi6XH89r79jM+28cbH7WzdM0is08DTbx5h0fQE/vFiHRFJpbkjwLJP2lg0I/E4WTh+9EB/K/maBzocUbjuwYNcdnISoijw4aYBdtf5SHQZeDF6Q3327Fh+Uu5iYraVzv4InYMRet1h8lNMrNg8yLY6Hy6byIMf9LJkoo073+vT5kNXmFc2DbGwyML1r3SRnzx2/ty/socTS5zc8UYH/qBMXUeQNza6mZtn4vr33IxLEHmz2s+25jAOncK9GwKclG/gyg+9fFof4e3aEA9sCZDl1OEyCxhEzVHVNCAxLlbksyMy3X6FinYFv6TS7FFYfkhidqqO2zeHyXEKrKyX2N+vYNMzor/u3iGRZBFQBFheG2Fuhp5b1wXIden4qE5iW4d8jD0QkqGuX+aGT3y4QyqJNoF7llgxGHW8UuWndVDmlR0+RJ1AZXOYvAQ9n9ZqYUzXLbBz/XtuxicbWLHDy7amIC6rjrs+HOAnk6w88Okgbv9XxrPQwvWvd3GwM/K97o8/kgiPI6b2PiY7FQr12nWM36lgau8j3xgmuX+ASQbteXL/AEU2GUNNM5P0QcYHtBOhTx/GUNtCkTFEcmcXk9COfildQS6aIPJqVQDJLDPeL0fxEXR7aykyB0hoa6IIrf2EfoEJzhAcOsBEu598RSvZHY6RMPR0MDERksMDTI7V2k8OepgYD8aOXqbEqRSatMnmS9RhHvQyKVFPGmGmJAiIko50o8SkZD2WYIApySJFsSBIIn6fAZsgMznVQIZdpThNj5AeQ06mieJ+EVeWi9IJOkqyzagqqHFBEiY4KWkXyS92EIwLIykqBVkmpoaHSZ7iYpp/iJLUqOs1NkxigZ2SDg/jJtrxObQTfl6mieKhYeLyYigeFJmYqsWKqc4QCbl2SloE8grtDNs0fH6mkZIhkYRcJ6X9IlOjrNuj+MldOsYV2fDZo6SxTCMlw17SJzkoD/oojeLF1hDpk+xM6R5kfK4Zv0kzYsan6Sn26kjKsVHmDjA1muVDcEZIzRApyQ4yIddMyKzhJ6TqKQnqSMs2Uz4UYmq0tLhoC5OeZWJqT5CiPBNhm4YvjBeZGgyTlmlimjdMSbLmmbB1R0hLN1LSG6Iw20jYos2TSUk6SuUImXkmysMRipNFVEVFZ5dJyzRQMhCmMNdA2C6jU1UK4nUUByVSMgyU+iWmJOpQIwqqWSUxSWRKikR+qh6/qN0kjIvXMTkgsz8E+TEyM7O19F4Gi0p6ko4pboV10TLnpYkqhTEqk/2wbVCh2AXlCdo42wyQFyNTHAsl8QrmqEe/0CnTHlIZFxOkxA85dm292A0qec4gk2NUMm0i4WhFw3SLSr4dcmJCTJRUcm3ab9uNKjnOEClDInEGPR4pQFtQoizGQkSB2bEWBiIy7UGJWIPIBJsRsyiSbjGyxGbkuZZBCu0m4gx6Ukx6zKKOdLOeVJP2vWRVxSzqSDMbiDPoiTXIuCWFSXYzh/3hY/BaIXQDySYjNtFIctQDpCp6ArJMX1hiTqyNdJM2n9NNIvPjDDzb7OHtNglFheIYEyhmQItbTTCYsOv02I0R0s0KkmIgzaxiEw2kmXXoBbAIOtLMEcKSkXSzQL5TAb4nj+D/QybnW7GKIaaMs5ORAFPHa9kn0uIUJudbsQgBpo63MjFbWy8RnwmLzs/kPAvpLpmSfBNEwqTbQ0zONmCWhyjOMVCUCkXnJLG3dpCVHzUyOcNAuilEcZqIwa6SavMxKVvEGOqlOFtkQkoEnUHENyhiDPcwOUdPim2Y4nE2JFklM0lkyngHNoNE6QQHE7MtKKpKKGjDbpKYMt5GZqJI6QQnqgrZqRaKC5w4bHpKJsYwZZxG0ooIOmLizZRMcJKTH0OZpBmSuXkOiif4cCZamTo1nsn5Gl62m4kbF0dJWZBxM1MYdmnp9sYVOijp15EwNZ1pnTqmFmlZmJSEIeKnpjKpWSCvMB63qo1bXqGTkslBYmJslBXFUVzo0voj63DFWCme4CIn00lZNB1nTqaTn51iIibGwj3XTR75XmcsTj+u9/i7iiofJxb4O3qxf0gR9MZjn31Tmr1v8G4LuuO8j2FsmewNm7opyHFwxmm5ABSXpX7lr7sBKJ3kYkqBNh8+2O7hJ7PiKEwzkzshHreotZc73s7kdhlXbhz7GFAnAAAgAElEQVSlU1RKxmlcJtnuw5XiZMr4IDm5TkpV7dvl5FopqvNjjYQoTtFTFK/1NZJlwuk0MiXDRFaymalh7Xm2KcykZJnPG8Ls65ZZWmTEaRIoSRC4YYaZ330eQBTg9DwRQRJItwqcky+yskFmcaZIoUuHTgdBVcBh1lEUryPTKTI5DAZRT268jskeCYNNT3cgwvXlBnJjdYRlrZhXUbyODLvAcKKIrGjcp6IEEZteYHKinsI4kU0tEXp8CsvPdfJmTZgMh8isNCiMtfHa7iAN/TK9QzIL801MTBqdw3YDTE7WkxlnoCRDOzhlxhmYnG7EbtYxOdPMxAyNqxBRBJx2A8WFMazcOVrR9vuQH0M4viaCIKh/Pz+RpdMc7G7RDNCpWWaWbR3imjk23qzyUZqpLdRdrWEumG7nhbUDnDvVyp52zZAtSTfw7i4fv5xp463do4bX7vYIGQ6BX7/j4ctfx1PXpxkEJWl6PmhSuWJBzEhNeYB9/XDBvDie+qSHSxbGsbtJU65Ti5wsW9vH785KZvm6fsqiC6+mfphzZsUegy/JMrFs4yC/PTWRFZsGKM2zQjhCdVOQC2fH8PSXA1w8N4bdzUH0isykDNOxNe6BXS1BLpjp5Jk1bi6a7WBfawhF1dr/Kr4s24yiwu6v4fc2BjR8ponl24f5zaIY3toxPGL4Hh3PZ9Z7uHiajd1t2oZdkmlk+XYvv1no5IPdPopSj45/iAvK7TyzYYiLptvY0xYZi1/g4M2do4byUfxrlcOcWWJjT+vY9q+eZuStPUGmpkW/V0eE80st/HuLn4vKLOyJErxK0gx8uNvHz6eaeWvfqKG8u1Pi/ClG/r09yEXFZvZ0aobylASBFfvDXF1u5u2aEFNTotkquiXOLDDyfHWI8ycZ2dutzYcp8QJvHQhz5VQT7x7UDGWA/T0S5xQaeWF3iJ8VGdnXIyOoKhMTRN45GOFXJUbeOxShOElElRX29CqcU6Dnpb0RzivUs69XAVlhYpzIe/USv5ikZ2W9zKRYFRDY369wdp7IvdsjrGtT+N1kkWSLwMRYgZVHFC4r0FH+rjYGr88TqPXAQFDlzWZ4vAyiHFomxMBH7XBxNnzWKZAfJU0eHFI5JVWLoz45SeBQtLJqgUPgs06Vn2UKrGrXkW/XFEC9V2Fxosj7bSqz4g00+bTxybWJbOyLUGJzsnnQz/p+PxelOfFICmUxFrYO+pnqtLCh38dOT4BipxmbKLAkwU61J0BYUdnQ72dhvJWZLgubBgOUx1hoC0bz8poN7BkKMCvWSrUnQO1wCJuoI8uiZ5rLSsWAfyzepKdqKMj8OA2fYdbmT2dIYs9QEJuo47Qkxwg+x6JjhyfEwngLVW7Ns63XKbQEJFZEicL3FcXS4pdwGiWyrNr7npJsZHN/hFybiA6VJr/MvHgDn3aHWZBgoD8S4q4a6QcP4WhafTqvfdDM9ZeO5/VVzUybpKVXq6kf5NwT0/nX6/VcdnY21bVuAErHW3j1o3Z+f3EOb3zczrSJMaihEDsPDnPxKSk88WYrl56Wyq5DwzS3ern/tVauOD2FWy/OZPnqHkoLHIg2Aztrh7n41BSeWNHCpaenUX1wCJ3BRGlRDK+tauX3l+TxxkdtzCxNRlFhZ80gPz8zm8dePczlS3PYU9tLRFIpm+ji1Q9buP7n+bzxUStlExygws4DHi45PZ3H32jiklOS2HVQK6FcNsHJax93cN2FWby3upuiXG2/rT44NNr/nySz67A2oUsL7Lz2WRfXXZjFss+6KJvgHIN/+ZNufrokmeqvtv9Rh9b/T7TxAdhZq/XnyeXN/PzMTHYd0DIQlBbF8O7qTq46L0fr/0TNsK6udXPZ2TnHpqvj+OEX31X+tw3o7xrCIYjHecfvw4D+2jvuPujm7N9tZcVDZcwqjh3zN/vMTwGoe3Mmu+q8rN4xwMdb+jlvcRK3X5zO8jW9lI7XDOtddV4unB/LUx92c8mSBHY3aGt/ar6NlRX9XH5CAis29lOarx1QdzX4OX+KkafXuLl4tnPEPimOF1i+w8dvFjp5s8o7ou/2HxpiYY6BWc+5ef1cB96IZutNcMA7ByOMj9Vxw5oAi7P1nJmto9sPS8eJ/G1bmNUtMreUG4m3ChTFibxbF+GKyQZW1ktMSdCh0wns7VVYOl7P5Z8ESLMLnJlvQKeDKUkibx+M8KtiI+8djkT1o8DeHpmfFhpG9FfdkMpT24KcmG8gLMOvp5l5pzZEWZYRVT2qT038e3uAi2bY2dsR4eevayXGbzvRwTVzbXxULzEhZaw99sx6D5csiD3Gfrv2/CxSLq7+MY3dDy3VR4KUZpvZclgzQGOtImtrfPy83MqGQ6O5vDYcCnD6FCtbmsJMzzKxpUnzHMdadOxoCXP+VCsb6kOj+PoQegHCksr7+4O4A1qAvssiUNUU4mczHCM15QG2NkucXh7D2r1DzC2ys7lW26ATEkys2eXh8pMSWbdnNK1LTYOfk6Y6j8HHmAXW7BvmssVxrI/WgzeqCutrfZxR5mBtjZe5hVa2HPITYwa7WTymxr1eJ7D+QIDTS+ysrfUxZ7yFHY1BgpKKyzoWbzYIBCPqMfhdLSF8YRWXVce6gwEuneVgU10QNepxPDqe6w4GmJ9nZEuDtgBcVh3rDgW4dJadXa0hgpK2EWw4HNTwhwLMyTcdi59pZ8Ph0bRgR/F728MUZxyLv2SygQ0No0piQ0OY0yaZWVcfYk6ukS1N2t9cFh37uiS8YZWNTaP4jU1hTiswsr4xzJwsA1ui+aqdBj3rmyJcUmxi45HRBP613RJLcg1sOBJhVoaeyugBINaoZ0OzxEWTjFS0juIr22VOzlPZ0KyxmCvbJax6cBgFNrZKXDjRyKZoDmuDoLK5TebkHD0VbRIzU0W2d8qYBBWHUaCiXeZnBXq2dMjoFAEZlS2dCidmirQMq1xSKPLIHpnz8gRijCJbuhTOyxtVJLUeePuIik+CdKsWX71L29twGmBbPyzNgENDKpGortoxAAuSYHu/SnGMwB639h0deoEdAwqnp4nUDCkjF7G73Qqz4kTqfTJ5dpGDw9GYTr3APo9EkQXqfGHMOgGPpFDnCzPJYaY5ECHLYiCoKNhEHTvcAbItekKKymFviBSznliDjq2DAUqdFg57Q+RZDTT5wwRlhZ2eAL0hibCism84yGBE4aQEG3W+MJO/hgew6QQOe0PMcFmo843Oh+6QRFBWGYpEGIhII3in3shBb5hZsWYORVPeGXUqB72Rkf/tD8vU+yLERVTMova+ixKN7B8a/b77PDLlsQb2emSKHHoOeP93nCHNHT6+3NLFL8/NZU3laGLwAw1uTp6TzOqtPSwoT6BiZx8AcfYEVm/t5YqzM1i7vR8AnSyxtmqQMxcksmb7APOnuqjY7WbHfjd6UeCDij6uPCOFtdWaEW52mFi7Y4AzFyayetsA80pj2bTLjSDqiXUa+HJrL1cszWLNtj4sVhOhiMrqrd2cfUI6X27pYsH0RHYd8DA4FCEuxsjqLb388pxs1lT2IqCgKLBmWx9nLUrmy8o+5pc42LRL++1Yp4HV2wb4xVnp7Do8TCCkzcOv9n9BSQwVu6N4h541Owa5/Mw01lYNjozPUfzug0OUTnCyKbpgtPb7uOKcrJHxAVi7vZ+zFiWzurKPeWXxVOzsH8FX1bi58FSJNZW9I/g1lb1ceFoWZtPXsm38KN+rTJ3g4oV7p3HBH6uoeX8RduuxZtSRriDPf9DB1v1DPHXzeJ77oBNvQGbdrlF9vW6Xh9PLY1izy8PcSQ421Wg3FS67nr1NPrzBWNbtHRrF7x3itII41tb4mDveMmqfFJpG9ONX9d2BLonx8TpkVUurt7VR21/sGTo2tkoszDLjNAl82iCRbBJp98KJWTpq+xWmJ+t4bl+EM/P12A2avji/0MC6FomPG8Gi17JGDYVV9vQoXF1iZlunjEGEGLOOja0yFxbBpjYZs0FHWIGKFomf5OlHsnDs61Lo8CqEJNjQHOHiKSY2NksYjToiSlSfFmr6dG6BPKJ/AdbVh/h5uZVdLWEC0W1zjP0wyX6M/faL4DdUx/wfyI8e6K+JIAhq7zMFDHhlHJaxwemd3QGSHCL+aHC61SjQ61VI1MsM+GUcI8H+Ki4T9HplEmy6Mfgut0R1u8TTm310D8v8YrqVpVPMZI9zHUMmcCY76B2SSIoxMDAs4ThKLkEgzmEYQ/4DsKrycfHDvgixdv0Y8oEaDI+pWT/glXGYdajhyPFr3KvqcfACCMJo8P5RfEjVyDpHg/ejeLtOGYsflkm0644ZzySHqJEdzV8h31j/C94n4ThKzjiKj/bn+Hj5mPa7uvwk2nT4oyd1q0GgN6BqeL+CI3o17w2puAT5G8iLCom2sfghn0SsRTwGbxLU45IjhwIysV8hW4xpP0q+PIpXZAVfRMBlFsaQHeWIPIbMMRhUsRtBDsn4JAGXSRghO3qDGunTqmcMWeTklSE+OEVPqxfKEjXy4pJVWmdemQOXb9FyQadbNVLhDYUa0dAvg9MgMBBSset1UfIoI2TEOJNAX1DFFiU1HcUPhlVE1UB0Oo+QEQWMeCUFs24sufCwW3u+osPDb3PixpALWwJhXm/3kGsxYBN1xBhEGnxh2oIRDDqBIUnBLgpclx2H06jHJysYBXip1U2sQSTeKOKOyIQVlWKnmXE245j2ffJX+6NgE8XjkhGfbh7gJ4l2Us2GEbysStj0IsPRPoRV0OtkTDqBP+zXimL8vSgWsyjgNIYJKsII+dKp10g2OjSy4lHy5bCksqrTz6ddyg/ugW5bd4ZGzouS/46S1awmdYSc1+8O44yS29xuL/EuEz39IRKj5DYlGNTIcEfJzZ4IDpuI7A3zceUAr33eQ02TjyvPSOHik5OJS7Zgs+hH8P2eCE6biM5kGUP+S4ozEpQNIAjYLOJX+hPCblRA4Bi81xsEjuLDJMeb6O314rSNJYv3DIRJcIpjyXxH+z8YOoZc3uOJHEv+G4yQnGKl3zM6PkfxvYPyyPiM4AfCJCdatfG0f5UsaD4uWTAQUrFajjXofvRAf7u2v40H+qhMOvMLVv5rOr6AREmhdmtw1ANd+XwZc6+uJsFlIDPJTFGOlVsuSCM9wTSGnNrTGyDJZYzq66g+Cii4TMKofv8K2bS72UNSjH6MfeLpCxB3HH1qGPRS2ytz6bvDrPlFzIh+6R+MEJThgvd9TE0WiTEJJJlU9vcr7OxWMOsFOn0aGX3jBWYkVYfLJNDrV7hnaxhRB/kuHd6wSqdP5cx8AzNSRexGreqlL8IYfRRUtSC3MforqBBrF7nmIx8n5hm4aIp5RD+GdF/BH9WPqg6HSUfWPVqMeedfU+n1yiQlW4+r392yMGovRe2N61b0s2JD/48kwh9S7rnnnrsvnx/DlS900ueV2dEY5NFPBzhhko0/v9VLjFXHU2s9rIl6Wn/zei9nTDRx1YpB+n0KVS1hHtswzOLxJs57eYC8eD1Pb/axti6EWa/j8Qovl02z8unBIDOzjXx5OMw/13vJTzZw/es9IzXl19T4sVj1XPVkM2fNdPHLx4/QNySxo87He1vclBfYOevOg+SnmXl8ZRerqz3YTQJXPnEs/vGPelk8xc7S+xvJTzHx5Ce97GzU2P5Xv9DBmdMc/OrZdvqGZQ62h45b435rQxBRB9f8p5szptq58sUuhoIK2xqCPPb5WPzb24f4sNqL2SCMwXuDKpWNQf612sOSIivnPt1JXqLh2PEssXHPqn4a+ySqmkP8a42HJRMsnPvvbsYnGXhi3RBrDgYwG3T85o0+zii28ptl/fQMy2PwN7zdT7xN5Kn1X8dbuOq1Pvq8yhj81cv7SXGKPL3Fz9r6MGa9wF8+HeaEAhO/ftOtfd/WCP/a6GVJrp7zlg2RGyfydGWAtQ0ag/iBDX7m5Ri5euUQfX6VqnaJZ7YFWZhj4Pw3h8iN0/PM9gDrmiJYDXDtpz5OG2fktx/76A+oVHfKfHgoTGmKyMXv+8hx6XiuOsT6ZgmzQeD6zwOcOs7A7z7zMxBUqe1TeLwqxMIsPZd86CfHJfLcrjA1fQqKCjeuC3JKrp7r1wQZCEBtn8LTeyLMTxf5xedBcpw6lh2UWNeuYhLhj5sjnJwlcmNFmIEgfNissKxewaBTeXiPzGBUh0oKXJyrlRC/ajy83Ah73dAXgleaNALitTshywbLmjWPtEkU+Ot+hYVJAs/Wq7QFoHYIljUrzIgXuGm3TKpZYGW7TPWgglEn8EhdmGmxBp5qCDAsqdT7ZFZ1hiiO0bOiLYBBJ7BvOIQ7ImMQBN7s8JBp1vNsyyD5ViPpFgPVniDuiMyAJHNGsgMBUFHxSirNwQh5VgPL2t3UeMMMRmRUVeWURAfr+n0sTLBRMxzisC+MHnizc4jJDhPL2j34ZJWWQITdniBZFgMvtAwSb9JTMeDnsC+MSSew3R3ALOrYNOAfwW8eDDDeZuSZI24STXrW9fk5EoggCAJVbm2AmwMSw5JKd0ji/Q7tfR845CfFLPJJV5iaYQm9TuDphiAz4vQ8Whdg+6CmaH9oEuGRDh9zyxI49aqNjMt28Mgrh/l8cxcOq57L/1zF0hPSuPRPO+gdDLFt7wCvrGxl7tRYTvvddsZl2Xjs9SY2Vg+i1+v41b21nL0wkcvvrqHXHeHAET/LV/fwwq0FrFjdgzcoc9dLzeyv9+FyGPjlPTUsXZTE5Xfup88dZnvNEA+9XM9Js5M47beVjMu08eqqNlZ+2YbFJHL5n7ZxzkkZXPLHSgJBmYrqfh56qZ6T5iRx2jVbyM+y8cybR/i0ogeLWeSKv+xm6ZIUbnyolpauINv3e3j41WZOmhXP6b+vpjDbymPLWvly2wBmkzjS/5sfr6e5K8j22iH+uayVk6bHcdEdNWSkmHl8xdfwS5K4/I599A1G2L7Pw8OvNHHS7Hiuf/AAcTFGHnu9iS+29mEx6bjizj0sXZLKpbdV0zcYZtu+QR56uZ6T5yRx2jVbyc+y8eirDXyxpQezSWT3QQ+Tx8cc892OTwD8jqIex4P3HYmI3+33vlsbxzV+v6kf39D2MURL7eFxsa+vaubjih7+8WIDqqoyvyyev79QD8CBZj/nLkpkXLqVxs4gEUnloeVtTM618fh7Haze6cZsFPnrq60sLHFyxcMNmr4+5OORdztZUuxg6X315KeYeWJVN6t3D2Exitz+RgdLJtn41fOj9snLG93MHafpx7wEw4i+s+lUbvzUizukUtkaoT+gsrND4o19IZ7dFSYgwQ0zzLx7MMLGNpm5aSJtXoUVp1lY3Szji0CvX+WNgxFKEkUu+iiAOwSZDi1V3dwMPasaJH5XauQPa4MMBGFvr8xT1WEWZopcsipAToyONw+G+bxRwqwX+MMXAU7JN3DtZ/4REuFHh8OcM8HEBW8PkRur5/W9IT49rOnT334wzBkTTNz00TAdHoWKRm1/vHy6lXNfHqAgxcATa461H255u5fWAWnEfpuabeamVzuB73d//NED/TU56oGuPhIgM0470bYOSJRmm9m4b4gZOeaRBN3psXp2HAkxN13HrrYImUcThg/KTE0V2dwUYnqmkTaPtvGkx4hUHQkxN9fE7o4IGTEa/v39AZ7bHqQgxcAFMxzEWEQy4vTkj49lW52P+RPt7Gr0k5mgxfq0DcuUjrNTsW+YmRNsIwnV0yywoyFwDL65K0BZvo2KWi8zx9to7Q+jhiJkxBvY3hBgfqGVXUeCZMbrUcMSrQMypdkmKg4HmJlnpm1AQlFUMhMMbG8MMr/Awq7mEBmxIoIgRMdnFN/aLyEIkB6nH4NPt2mbXOtAhNIsE5vqg8zMMdH6tfGcN85MdVOArHhDdPwjlGZq+OlZBto90YImseIoviVIVrxxLL4uwIxcM22D8hj8/PEWqluCZMZ9rf19Q5RnGWlzj36vHR0R5uWatPj1aMGXNrfM1HiBTUfCTM/Q0+YZLeCysz3CnGwjuzslMqIFXJr7wpSmGtncIjE9XaRtSOt/skWhulNlTma0QIxDa7/ZHWFqkp4tbRLlXy0o4xCo6pSZk6Fnb49MukOHJMl0egWKk3RsbZeYlqLhFVkm1a5jV7fCrDSRvb0KGQ4BKSjR4ReYkqBjW5dCaZJARUuE3oCAUVQZCsFlRXr29SvcVRkhzynQG4A8p8DJGTqu2qh9q7cXQIoF9g5CebzAhnaVvx+AOyaDywBFTtg5AIUO6A1pCijJDPvdUBYnsH9QITnqQemOFgTZ7VbJthjojUY9xRvh0LBKlsVEo08hIerR7wup5Nl0bOoWSTPrefzIAAvirEx3WWgORAjICp/3+rg604UgCOz3BlnT56csxsySeCt9YZnX2z1kWvTsGw6jF0AvCNhFHRekOlEFyLQYqfeFyLYYxhRYaQ5EyLcaaQtGiNVH01dFJDItRhr84TF4iwCf9fvxRGROTrSP4IfkMFkWI/X+CDkWPYMRBb1OJs4ocnONdq1/Y56TOKMOuzFMf1ggz6bjwLDEOLvIi0eCbBuQWJSgZ1a8nokOPY0+hYo+P2t6+cE90BtfXcS0yXGs39HLnJJ4Wrq0w3hGooHKvQMsnJ7Izho32dECH43NbsonudhYNcCsEhctnUGUUJDMZDPb9g+xoMzFzoPDZKeYUQJhWntClBU42LjHw6yJDlZu6ue+V1soLXRSmGPlnMVJDAckxqXb0JlMNHcGmDbRxYaqfmaXxNLWpyAIkJliY+vefhZNT6SqZpDMBBFBgOaOANMmudiwo5/ZU2NpbhsCBDJTLFTuHWRheTzb9/SSk6L1v7k7wLQJTjZWDzJrop3m7qMFsEb7X13rIStZ4640dwWZNsHBxt0eZhXH0HK0wFYUv2h2IlW1HrKPtt8VYFqRk92HfEwpcNIXPaUmxBo52ORlSoGL+hYfSfFabGtPf4iCXCd7D3soynOMwXu8MgmxY0lv8KMH+tu2fTwj/NARH42tPob9ErFOIyfO1jKanPXbzdgsIg6bHn9Q5rW/l454oKtemkZibLRS6WCYWIee2b+u5vHr8iiOkk0TYvQcbBhmUo6Vhs4QSdFKrj0eifwEA/ub/RSmW+gb0m79EpwGDhzoZ1K6icaeCInRgmLdXX7yEgzUdkYoSDbQ79X2H4fXS2WbzH0bAizJ03NlmTbfVu338/SuCP9YZGJ6qp6KVpmb1wS4dqqe/Bgd5ck6froqRG6MwJpWBYNOu/00iQJPnWDEbhBQBUi369jVozArVWRfn0K6XUDQqXRE9VFlu0RZqkinTwVBR5pdYGe3zJx0TX+lxuj48LDE8n0hNlwRw5ZWifI0kY6AiiBoBdqq2iXmZhvY06+SEaun+EGtqmnHPSlsbgoxc4KdNndU/0bth1V7fLyyZZgLZzm485yEEfvt0he6+bx66HvdH/+rAS0IQhPf/jipqqqa/z/u1f+hCIKgXjPbyiVlVjZFY27m5Rp5crOPO+cYeXxbkFkZmuFV2Rbh+pkW/rbRxxXFJjZH40/nZuh5bX+Ym2eaeaIqyMw0bWFs65C4eqLIfdsiXFVsoLJDm+iz0kSWHdbSuK2q02J6BoMqDpPAwmwDvojCbfNtbIrG1C4sNPHE5gB/O8XOIxV+5kTZ7jU9MlfOtHL7p8NcO9c20v+F02J4/As3fz8/caRkqN4osvGAn5vOSODPK7pHSoZaTSLl4yw8/kkf91+cysOreplbaEU0Gaio8XLzT5P50yvtXH9mElsPeonIsGCSnX+t6uEfl6fz8HvdLJ4RS0SCTfuHuOWCdG597gh/ODeNykNeQhGVhSUxPPZOOw9cncsjb7cze5JGstm0b4hbLs7klmcaufHCTNZHYxAXlrp49M02HvxdPs9+0EFxlB1fsdvNrZdlc8sT9dzwFfyiMhePLm/lwevH88Crzcyf6hqDf/i1Zi45NZX11YNRfCyPLmvhwd/l8cBrLWPxl2Zxy5MN3HBRJuurR9t//dMubr44iwdfb2Feiebx2bTHwy2XZHLL043ccEEGG6L9WTDJzmPvdvDA1bk8uLyNeVO0993X4OXqM1JGxmdDNN5t4WQHj77XyQNXZvHQ2x3Mm+QAYMv+IW48J4U/vdzK9WensHH/MCZBYUaBjcc/6uX+S9N4eGUPc4ts6FHZUOvj5rMS+fMbnfz+tEQqDnjRKzKzx1n51xcD3Hp6PBc/3U6XWyI7Xo8vpBKWVSRZ5bELE6hvD9I1JPNkhZeTC808cZ6LcfdqV2iv/NTO1laJG2Zb+MsaH1eXGnlhV5jPGiL852wbr+0Nc89CCy/tDjIpQdvoK9slfj/dzN0bA1xTNna9PFMd4u75Fp7aEaA8dXS9XDvNxMObA1xQIFLZpW2Us1J0vFAj8/scmRcbNUP75UY4NQ2uGQePHhDYMagyI05HukVHiUvghUaFwbBKb0ghyaTDLArkWAUWxNl5tzPAyYkWDkVjkAvtWrq6M1PMfNQVpDB6dX5gOMLpyRZeavExwW6IhnMITHCY+Lw7wPnpNlZ2+vFKCp1BmZ6wQrpZRAdcnmUfiXGe7NTxaXeYizIsI+2bRJlqt8SaaBq7ByfbqBmWsIow3q6VNL8ix8SylhBf9IzGxb80Xc/yFoXzM0UO+SQePqD+4Ab07ncX8fB/GvjnHydz//OHmT8tHoD99UNcc34uNz20n5suH8f6HVoM9KLp8fzzlbF4NRRg467o+n28nhsuzmJ99SDmcJjpBQ4eW9nJA7/M4qF3tPkvCwJPftBFjE1k8/5hgmEFl11PepKJGy7I4LNtgzz4u3wefL2FRdNjkZWv7A/R9ncc8uIPyiwqj+OR147w0I2FPPByEwunJ6GqULGznz9dOZ6bH67hpsvzWTfS/wQeeaWBh2+exLNvNTF5nLYeK6oH+NOvxnHzw7Xc/MsC1m0fxf/zlXoeubWE+587xPzyBA1f1Wyr2jUAACAASURBVMeffz2BB148zGVLc1m3TTMGFs9M4uGXDvLMX2eh1x9rwOnEY7NLcByioPZ9jm/Qfqd8zcrx1b2qSMc+k499BsBxvcHfTb7pXb7pMCCI3z72+9scKIa9Ye58ZAdvfdxA2eREHDYDNYcHSE608q+75pKWZGHIGyZvwXI2vnUWM0qSMBW8AEDowGXHtLdhawuX3VLJljdPIjVRM2ZVKXIMDr7b95JDx88sUbG2jSm5Vq75VyOba4a5fmkqDqvIvBwDZz7QxD3np3CgPcTcQhtNbV6eXuvBpBcISyrZ8QZOn2rDKEWYmW3iiY1e/n5GDP9cN8ycXBN6vcDG+hA3neDktg8HuW6Rk4r6IIKikO7S88wmL7ed5GRVTYDF401IisCWphC/nm3jklf7MeoFajojJNh1nDHJgieojrQ/f4INRYUtDUFuOtnFbe/1c/1p8Xyyx8e9K7U1duFsJ/efn8RLW4aZmBUtgX7Axy+WxFF+86GRMbjrskxOnxnLY+928NAtRaSfUvG/TiLczH83oDOAhd8C96N8gxhFgWvKTIRllVnpesKyyrpmiYwYkSe3h3EYA5Sm/sj5/FH+56KqKk29YX7yYAvJMXoePi8es1Er53rtkhjO/3cXV77Sy/w8I3PzTFw23crynX6K/zFKGOvzH7vBT0wUaRiUuWNdAKMInd7/nVRWOTYtvvpo4RpBEMi1ad5rg6Aiq+AyCPwuz8QTDSG8ksqceJH2KIn3v0lQVmkOyOwfktg2OERIUQkp0BGU8UsqE50yJkHD1XkjWEWB8lgjsgInJll4q/2/p076sifCbs+xV+R+eeyWahIFSl0iu9wyeTatuMr/H8Rk1DGtwD5yIP/tWSm8u2mAxu4QNz3RoBUL+fE29Uf5HkRVVT744gg33reFxbPT2PvZ+cTHarcLkqTwzOs1LL7oQ375s0Luu3k6D/55Fhdcu5pBz2jCgAMNboryXWPanV+exC/PzeO86zZxxbl5nDA7mZyUY28Lvm+JsenJTjLR69GKqAmCQIJDz6qqIWxmHZKskpNg4KxSG2U5Fu56r49rT3RR1xPB/C32x4issv5wkA/2+jncE8GkF9DrBP7wnpumAYntzWGumWsnLKk8sdHLgF/hxsUOZEUzGOfnawb6/0se+rif96qOj/H4ZWKi/IMEp55xqSbqO0PMnugYKXLzQ8n/KIRDEIQE4DbgN0AIeERV1b9+T337PxFBENSOO5Opbo+M1HBvHpQpSzewbp+P8nQ97UOjV/bb2iTmpunY3S2T6dROzEdrvle0SsxM09MezdOZ7tBReSTErFSRPb0KmY4oflhhRo5xhJ3aFsVnx2mZFspS9Mx/2cPTp9spTBDpCMHUNAMbGsPMyh4NEcmM1bO1OcKifOOY/rcqRqblmll3wM+c8RbaBiQEg0hGvIEth/0snmhjZ1OQ7AQD6ARa+iJMy7OwrsbHnEIrrf0RdEYDGQlGthz0sniKg6p6PzlJmmfkSE+Y8nFW1u0bZs4EOx0BLcQsM8nE5v1DLCmNoeqwl5w0CyBwpCtIeaGdtdUe5k110dozesW5eZ+HJWUuqut9I1eiR7qClE9wsHanm3lTY0bKpWYmm9m0x80J5bHsqB0mNy2K7wxSXuRg/R4PsyfH0Hr0yjXZxKY9Hk6YHktV7VC0P3CkI0D5RCfrtg8wpziG1qNXrslmtuxxs7g8lqoDw+SkjrY/rcDO2p1u5n4NX7nfw8JSF1UHh8lJ0fBNLV6t/9Ue5k5xjvY/Ts/mmuHR8Ym+b0tXgNJxNtbuHmLuJAet0ZiGdKfI1oM+FhePjr8akWjuCTMt38q6fV7mTNBCdARZiX4vH4sn29nZGCA70Uht4zB/eacXgyjws5lOLp8fQ0uHxlbOiNWztSHIokIL17zWS48nwrMXxtEyIFOWaeCT2gC/WqZ57ZNtAm+c56DLq7Awx8COljBZMSJhWeXVvWE6hhXWHYnwxUV2fFHDNsOhXestyNKzp1sLQfn6eilPEuiI7pPpdq061gyXwt5+lYxoOrw2r0pxvMC6QyGKXdAVhHv3w3mZ4DJCvtXImm6FfR6FQ8MqvSGVa/JM6AWtauPn3RH2eGSMOsi1Gjgp0YKqqiSatQNqX0gm3qjyWU+IrpBMs18mxypS4jRiFgXmxBlp8sskGHUEZZXHG71aRUFVq0Z4ZbYdiygQZxSo80oUOQwcieIBBiWJPKtIzbBEoV1Ps1/igbqxRvZdRVbW9oSp6JeYEStyw3izlm3DKdIXUlGFEOMcOva5VcpiBQ4Oq+Q5FZZu/OFJhOv+M4/pk1ysruxlflk8LZ3a/MlKMVOxa4ATZyWyY7+bnHQt/VZzh5/yr+Elv4+s46xHud/Hke4Q5eNtrN0zxNyJDlp7wwhGHZmJX9tPks0IZgOHWvzc9EQ9F52UzDXnpNM6EEZAOGa95+bYQRVo6ggwfZKTNdsGmFfqor1XRhUEslIsbKoe4IRZCVTVuMlO0/p/pN3P9Mku1lT2MW/qaEhGVoqFTbsGOGFmAjsPeo/Br90+wLyyBFo6tRCXrFQrFTv7OGl+Otv3DpCboaXDa2rzMaM4jl63RHKC5Zgx/9ED/bXnP6AH+lCjmz/8dTPtXT4eu3MuS+akHxd3/9PVvP95E5XvLx2Jm/b6IsSW/AeAlAQLHzy7hKkT40f+R4kEkSSF5R83s2F7D59s6KRy+WIyU63HtP99eKCD7W427B1iyVQnS+8+xAlTY7hocQJHGoewm3Xc9243rX0RGrpDXHeiiysXxvDW9mEaeyO8uW0YvU7gpEIT07OM/LzcysbGMLNzTLS5JXr9Kvs7I7xd7aOxT6IgycCJE8zMzTYg6gSmZRlZXx+iNN3Iz17qo6lfQgUMIqy5NomuIYWsOB0gjOiX9fUhZueYaA9q43lUH01KMzLl7tYx79bz9HjWHfDz8b4Ar64f4KezYnj8ykxN302xs74hREk0VOZId5DyAjvr6oKc+8e9//ckQkEQHPfcc88dwDJgBvAk8DNVVT/7vjr2fyX33HPP3ZdNs3Lrx0N4wyr7uyRerfJzwngTj2z0EWfR8ca+EFUdEjaDwF83+jk1T88dG4L4Iiq1fTLLasIszNbzhy8CjIvV8UZNmKpOGZtR4M3aCNNT9Ny1NYQvonJgQGHFIYnFX6kRv2y/hneYdfx1vZ9ziky8WxtmW5tERIH1RyKUZxj57cohxseLvLozyPbWCC6Ljr98NsSZE83c8tFo/9+o8rN4opVr/tPN+BQTr1R4ONwdRtQJ/OWtHs6c5uTm1zWS35G+CM+tGeDEKQ5+/VwbBakm/rN+kL0tIUwGgdtfa+esmS5ufqmVsKSyuynAK2v7OHGqk6uebKYw3czHOz2sqfZgt4jc/mIzZ8+N58ZnmpBkleo6Hy9/2s1J5S6ueqiOwkwLL33STWXNMHaLyG3PNnH2/AQeebON9t4wext8vPRxFyfNiOPK+w8yMc/GCx90Url/CJtF5LanG1m6IJFbnqrH45PYW+/l5Y86OWlGHPc830RyvImXPuygcp8Hm1XPbU/Vs3RhIjc8cphhv8zeOi8vf9jBSTPjufXJejKSTLy0arT9fy5r4eQZ8dzwWB3DAXm0/emxXHn/QQozrbz0cReVNUPYLSLPvt/OwrJYbvhXPd6AzN4GH69/0c2SMu19CzItvPxpN5W1w8TYRG57YXR8vAGFvY1+Vle7mV7o4KpHGyjIsPDy571UHvDiMIvc/mobZ82M5eYXWvAGFerag7ywup8TSxz8+pkWCtLM/GftAE3dWjmSO1Z0cVZ5DH94uY13Kz08v3YQs0HHW9elc/tbvRSkGHmrcojN9UHsJh13fjBAgkPPY6vdXDzNSk2nxCs7fJxQaOa6d9wMRD3PRYkiz1aFqGyNcOYEE7ev8eMNw8F+hcp2iQdOtPLqnhAtwwq7u2SqOrWsIPdtCnLqOAPP7AzR6VW+sl4M2npx6VhWG2Fnl4zVKPC3LSFOztTx1+0RfBIcGFR5q05ifprIv2tkXAZ4r03L7rG5T0uVNydBx2vNMhOcOvLsAs0+la39Mpv6ZQ4NywRllUKHyElJBna6ZardYTYPhgjKsNMd5pMeP1sGIrQFZWbEGnHoddj0Osbb9HzUFWSay8gbrX5CCnSGFERB4De5DvYOhbkgw8bWgRANPgmrqOPtDj9lLhPL23wEFZXWgMyW/hCTnQaeb/aTahbZOhBBRWVIGjVc2gPyiEe6PagyM07Pc40h0i06VvdE6Amr6AWBZxsl5ieKPFEnE1GhauCHJxEOeyPMLUvgiturKcy188K7zWzdM0BsjIFbHq5h6QlpXP/3vQz7JfYc8vDB2k7mfQ2/64AHs0mMrsekkfXY2OrnuU+6ObHUxVWPNVKQYeblL3qpaw8i6oQx+4k3oLCvyc+rn3Vz3uJEHnithekTnHxY0cfaqsGvrHetfYCqmiFeWtnGybMT+OVd+ynMsfH6J51sqh7AbtVz62O1LF2Syr3/PkTPQIi9h4d48b0WTp6TxBV/2cXkcQ6ef6eFrXsGsdv03ProAZYuSeVvzx2mqz/EnkMeXny3mZPnJnPt33aTm2Hj+Xea2LK7X2v/n/s45+RMrrt3pzY+B9288HYDP5mfSk39MHmZ9mPGXNAdxzD8Bs/gcUlwwHe6HP4m6PGMum8y9L6F5/K/yTe9yzcb1t/eaP96G5GIzB3/3MHv797ML84r5IV/LGRczrFkTICd+3q5/p7NfPzSqcS5zCPPjUaRex+vBuCF++dy6U0V/PSUbFzOaEEwRUKnEyiZEMtZJ2Qw5I3w2aZOzliYepxf+fbfS5WPHwbSemSIax5v5Ow5cTz/SQ9fVnuwmnR8ttPDaWUxPPNFP3+9MIWa1iAf7vLy9Bo3FYcCTMkwoShwRqmdzgGJV7b7eXdPgM9qtdS7t33kYXmVn2BEpXVQ4uPfJrPmUJBxiQY6PfKIvrjmzUEmphiQFJWsOD23nOhke3OYi8tt/PEDLbxxV2tkDL4gSc8b231UNoZG9NEFMxx8tM/HUGB0rv1igYtfPdfJ+lrt8HCgLURRupn73unirBkxPP1pHx39EfY2+nn58x5OmhbLrx88TJ/7+61E+J080IIgmIHfA7cADuBF4F5VVTu/rw79X4sgCGrnXSlj0op5wyqxFh3tHYHjpC1TiTOCO6hgi1Zc+3rN96/iOwciJFh0IzXlNTwkxxmOwTtt4kgal2a3xNIVwziMAuMT9fxmtpW8OD0JNmEk7ZrNLNL3/7H33vFRVVv//3taZlImPZNeSAiQhEBCRwIWQGyo115AsSFgwd7uVUFFQayooCgiSBGwNxQIEGoS0khIgCSk10nPzGT6nO8fZ5gQklz1Ptfnuff3c71eeSWzsmbPOnv2Xmedtdf6LIODIC9ZH/2Nao9+sHQShawPLF2HwY6XUopEJkFvEvDzkqHtshHkLcLSSZQKPFVSF0xeh97m7EEvQW+y94HJM8rkIoyUSkpLlw2Nr4IOnQ0vZy6p3mjHT61A22FBE9AX1qel04rGz02EmXMey+h77Ph5n5V36yvvhJHq6La48DjPwkI1d4ljDQg71W3tBzvV3GJC46cYcPzz5f085Wg7LAT5Dizf0W3F66x8l9l1vX3kFfSdH2dRnU5vFeXPhymUCr3yehteKpkIO2hy9IMpxO4Qv99uOxofOTnlBmYvryJzSTRqd1mf9aDrNCORSFwwQGszuugyOlh2mRetBgcqhRQ3OTR125nytpi3efNIN3aWWfnmVjXDA+W0dtswWQUCPKSu9X+ixcacrw18c6MnQR7SPjBG7UYHXgPsF3+F4ErF8JBDm1FA7RDby+qsAkqphDNdAhtO2dHqHZjsMNpXRPl4JhGSfUFwKNFZBc6e3jWZBLoscrzk4K+Q4kSFQimFSp0CtVzKvlYTPzX3MMRDwQX+Sib6y9DbBNRO2DgAhUSCzibgrZBisIkwcgB6K3gppHRbHX3klVL6yW+r7+FQm5mLAt2YHaJyyStlIu70g8fFaOWaVC+215nY12LjoiA5C2JVdFod+Djl1W5m3GUSOq3g5yZBZxUI9HBwSbr9T49A1+651Alj1x9G7SwMXHuXBbUTpq1bbyXgPHmbXjfgfrRr9eJ6Vsv7rH+Jm6y/PXGXInF3Q99jx10lY9zdOShkEobHeDD3ilCuTAvsM763j1KEsXPB0pkJ8nPDaJVxPozdufr3gb3zkw94vR16O2qnQT8rr+2w9YH5OwurFxKspr3LjNrDKd9jxd9HicUuQenW31n+KwJ9Hv9PiEA3tfQwZOpmcn+4gcR4v0HeJdK76ws5dryFz9++GG2bEU2AO0aTDZPZjmbsRgDm3zKMXzLq+eGTGYyIFR3xpqZONAG9DndHt4VRV/3Mnk+nMSxG3ecz/mgE2mJ1UNNkQuUmRdtuYemH5Wi1Rjr0NqYle7Mrt4uld0Rw04UBdDcbnPcL8f7e0G6lut5ASqSSbpOj1x9QSXF09qAzC2SUm3nq+06SQhTcOcGTi4e74+MhpVXvIEgto6NH9B+wO0QYXA+pC8bXYBE7PXi4SXr9kx4HXm6IsLbnyL+R3s2G7B5un+jFmzcFumDpuuwSTDaBUc9WAtCyZhjabhtv/NrJ+r3tzLnQj7fvjnD5J91SuSt9Q28U7UmrICf+2sP/+xFoiUQiX7p06ULgK+Bq4GvgBkEQNi9ZsuSfJ6/8l9HSpUuXtOptRPjK+KrQRE6tFR+VhNf36ZkaIWHlETN6i8CZDjvbiy1MipTz0n4DEWoZ35ZZyWuy4+0m4b1jJqZGynkj04zeKlDR6eDLk1bGB8HLmRYi1RJ+OGMnX+vA2w1W51uYGilnZebZ8R18dcrMpEgFz+81MCxQhp8SQrykhPnKeHannrGRcj7PM6EzC5S32fm22MiEKCXP/dxNtN85+nvLWf5TO9MTPVj2fTs6s4OKFhubD3eRNtyDp7c0ExOk4MvsLgqqTHi5y3jtGy3TR3nxytda9EYH5VoLWzLaSUtQ89SGOmI0bnx1uIOsMgM+njJe/bKJGaO8eWV7Iz12KK01sjm9lakj1Tz5URUxIUq+OdzG0WIdPl5yXv28lunjfHl5Yw26HjtldUY279aSNsqHJ1dXEBOiZMe+FrJLuvHxVLBsQzUzxvnx+qYaOnQ2ymp72PRLM2mpvjy5qpzoUBU70lvILu7Gx0vOsvVVTB/vz0vrKtEZ7JTV9LDplybSUnx58aMzRGiUbN+tJftENz5eMpZ9WsX0sT689Gk1up5zxh/tzZPvnWFImIrte7Su8d/aUsOFqX68vL7KJb/512ZR/w/OEBPqzva9WrJLulGrJLy6qU683g016I3i9X6V0crkxN752Z7RRvYpPd7uMl7bWsf0VF9e2VyHzihGmrfsbSUtyYun1tcSo1Gy41A7+eV61O4yXvuqmenJal7Z0YTe6KCyyczmg52kJXjy9OcNpMZ6cPS0gaPlPYwMV/LaD21MT/LglW/bMJjs5NWY+TrPwJShSt7b24XVLrAhU8+LO7uparPxws/dfHpUj81p14u1dlRyeHCSO/9IN/BTqYVn9po4WGMjJUTOm0eNXDnUjX2VVg7V2lDKJew4ZWVyuJwXDxiJVkv77Je3skxcFCXnzSwTOou4X7aWWNFZ4JH9ZtaV2PmuwsEXpXb214t75uE4aLFAgxGui4RyPYzxh1WlDoJVUvZpHZzsFghQSvi5wUaKr5wv6iwYbQINRgf7W20McVewo6GHFG83vBUSApQyolRyftUaSfRW8HWDCaMdmkwODrWZCHOX8XWDkUA3GVntFjHSLIUfmowkeSv4rsmIyeGg2WzncKuZ4WoF2+oMBLpJOdhqYl+rmI5T1WNnaoCCn5rMGO3QYrGT1W7njEGc4PF+Mgw2SFBLmBIgZ3udhdE+Mpf+WrOdXc0Co3wlrC63E6KSsK/JTm7nnx+BvuaSEF7+8DSXXqBhyQen6DbYKK3Ss2NXAxek+PHY6ycYEu7Btp31ZBV24Out4KXz5Msqu9m0U9yPT75bJu6v3VryTnWjdpfz6rZ6pqf48MrWenRGBxVNJjbt6WtPtme0kX1aj4+nghWbalj/9xGU1fQQ4KdkxYZqsku6mD010DX+t/tbOHK8E18vOa+srWDGpACWfngGg9FBaZWeTT/UMXWsP4+vLCYm3INtvzSI+qvlvPxRKTMnB7FiXTkdOiul1QY2/VjP1DF+PL6yhCGRXq7r9fFyXu8UDTt+qcfhEPGx92ZqSUnwZdOPNYRrPDiU10p5jR4/bzc2fV/FxJSgQboI/hWB7sv/90egvTwVVNfpOFnewaXTIvvJa1uNeDofeBqaDWQVaDmc08Rti/eibTXy8daTPPbKEazOU6TcE20olTKWPTYGiUTCQ0szmfvkEVraTFw+LQwAd6UMm9XGtp21XD8z4rxP/O3vy2C08fOBJlZ+Ws7i10/y7d5mPvuuni9+aeKO2WHMTPbi1osD2ZTeylsLYpDLJJxpNOOtgG2HOxg/1IMdR7pQyKVgt3O4zERypJLPDnYRFaAgs9xIjdaCt7uUogYrH9zoi1wqYUiAnE6zwP4yE8nhbmw4qifST05WlZnjdRY0ahnb83sYG+nGlwViepdW7yCj3ExymIINWQYi/WR8WWAgs8qCj0rCij06RofJWfy12GimqN5Cc7eNC4erePbrNmKCFfxcYOCgs5FdXbuV6UkeFNZZuG6yL/GhKrYcaCctwYunN9Yzapia7FN6zjSY8PWSs3VfKxNS/Hjz8+p/q338zao0iUQyD3gRiAK+BZ4XBKHk36XAfyINj/EkOsaLTql4s4uOUjK0CULGh5Bs6SRliLOCttJIyDg/Eg2dJEz1x+zEVk6I9WCEsZqgGC9GtssYHeE8wvGyEBouYXiDmeHRSkxK8el9eIicYT1m/HwVJIY4GOksFnRIrajdJAzxkxHhLSM5WNzAKeFySrU2vj5uYlqMguF+ojGQ+qjxjVAzNMpOdJyaToVT/0g1QyPsePt7khBjIWmIOzJPJSaFAd9Qb+JjjMTE+dKJAoW3iiGxnsQ3CPgODSJppMDIYV7IPNywenfjn6hhWIKJ2DGh6L19cQgQl+DD8GYpAaMiGVkjYdSoABwC2Dw7CYgPZ1iCkbiUKAyeehwOgfhEP4ZXQVB8FKNSpaSOFPPE7F5taIbHMiLRzLDUOPRuYuet+KQARlQIBA2NITlFSvIwMUJgd29FEzuEEQlGhqXEo5M75UcGMOKMhOD4oYxOkZCaLFbBOzxaCR46lJGjBIanDkEvFyt6hycHknBGRmhSMinjlIwdpRG/L7WW0KRhJCQLjBg3Ar1S7Po1IjmIkVpPQkcmkDLejXFOeXy0hI0aRuIogYSJIzB4iPJJozUkak8RNnY0qVWeLnnVqVbCxseRWCgncdoIevxE+cRkfxJbSwmbMIqUOi/GjQoSv99gLeFT4kk6rSRxxjCMwa3IpJCY6E+ivoywi0aS2lHO2ORAJIIde2EbYRfGkVhZTMKsoQT+pGN/XgthsVISJ8QQeskIUvSVpB9p5KtddUwdF0T45eMJ2ZtJg9ZIbq2Y7/xTiQmlQkLd/ssJShNhmi6dHMBF4/wJvzGSSH0F2zZUAVDQbCf0qkSS/FqJuiWKeR51vLahmtYIDTFDJEReH06ipJ6kS4OxOFsfj4z3IunXZiJvCGeMdzMp8V5s36vlq8ONaD29mJDiyZM3h1OjFVFlUod6smlPC39L88R8pItU537MrzQy+gJfLvipiUtTPQk+p1V7R0Y7M8eq6DwhYbRzfx1vtHHtUIHaLAk3p0CRVnRUkjWgKpEyK9GBoVTC2a936QEbS07pGBUg4YpREqLbROchzs1Mi1Rg6hAbXXKBJF8J68ocZLSDn7uF0QEwLdyCxgu6HXC0DRK9IS3UgA5I8LYilwj4dsOvYoCfCRoj3ipQyCHe206jHZI0RiqtkOhjR6GUouqA2BAYoYNR4aD0c4PKAaDG/s0UFerB0ChP1J5yEuPUJDlRKaQyOT7ensRH+xAd6UOys1YkOkxNfLQaby8ViUN9GTnMD8HmiVlQ4BfkQ3ysDzFDAugwyZFaTMTEeTK0wohvuBeJw30YOUKNYLHRYwW1WkFchAdRoR6M1DvAZifCC+KCFPhIbEwa5sm4RG+iAxRs2q3FS7ATq3EjQi1j5DBfbDaB6HA18dFe+Hi7kzTUh6R4PwTAbJXg4+3O0Gg1QyL96BAbwxEd5Ud8TDc+Pl6MTAgkcahYHGZxuOEX6E98nD+xcaF0GEU7Hzs0gOFDDfiHhHHvHb2O0dSp4u8Fd0cDEJ/YO6ePJQ4ZGIaNQRzGwVAkBogSD0qDjDEgXN0gegwWKR0Ud3owvaWq/jxZ/9xgUXaAiPxg8pJBPk/oP08W8nnn02y6LWrWfdCLorHosc2sWXeQhfdMZfWbtyDxslFZX8jP+2oA+GjLSTw83Gg4+RK+MX8HYM6Nqbz+4uUoNd5oW/Ss/UKMTK/dfoaXX7wOTZCYqvPEYzGkzPiEtT/pufrSYURH+ogPUcIg6BzO7+az7cUsfiGDiakhXHtZAm8uiyM8tG/6j8Mq3v9n3c55fBPJ14p/L7zkLFPgUuefT10p/h7llNW2mXjyTvH7WXRj79gXO+Ufv0r8/fFrBXz8VSX3Xh/FOy+MAWD+FWDXG2jpsDDNCev38DR47N0y1v2s49Lxvtx14RCGm7UMnxFG2l4zh4q6uTYtgHGpPgQkBxFfLiF2TChdaj18J97jhyX445cYSnKXioRYsZbA5qMjIFHDsEQT8amRJE3oXYMPj4lEohhgjf0P6ffA2DkQH4d2Acd+YzxBEIQX/026/Z+QRCIR6t+MYdsxPSlRYoVsQY2Zmyeo+TzXxDUTfCioFJ+CUoa4s+VgBw9cG8oXB9r79Ky/PtzKh4cN3DLWg+P14mYYHa7gu2PdzBmtQlNfCwAAIABJREFUYscJc58b+Y0j3fjomJlbkpUcbxI3d3KQlG0nLK4e8aNDRPnTbXbUSgkv7+/hm9t8XPJjxwawNVPHwum+bMvqJiVKXDDHm+zcMsWP1b+2cttUPwoqjSg8FSQP8WTz3lYemB3M1ow2xsR5IlOryD2t49aZGt7/sp45s4LJL9Mj81CQMsybz39s4KHbotjycyPjkgNBgNySTm6/KoJVmyuYOzuSE2cMWG0CYxJ92fhdNYvnDGXzj7WMHxWIAOQWdzBndjTvbCxl3g3x5BWL3dfGJAWw4eszPDIvgR07qxk5TLxR5ZxoY+41sbzz2UnmXR9P7glxE40dGcCGr8t5ZF4im76vZKzTEc8pamPutXF8tK2Um6+KJbdIdJTHJgfy2ZdlPHZPMhu/KRf1B3KKWrnjb/Gs3nyK266OJ6dIdGTHJQex+dtSHrxzJBu/LnU5vjmFWu64bhhvrSvkrhtG9JHf9lM5C25L7COfe6KFudcN561PjnPXjb3yY5P8+ezLUh67Z1Qf+ROnWrnxyjjeXlfIvBuHk3tWfqQ/n31ZxqN3J7PxmzKn/gI5ha3M/dtQ3v70BPNuiCe3qBWZBEYn+DnnJ4kPNp3i6ddzXOu8Ys/VbP6hiisvCmfM33a6+HdcE81PGY3cf0scp8s7+WpPI6OHe6NtNzNndiQrPxUbBex4I4UxI3rXwzWL8ziU38nfLg7ikvEB3HZ5CO99UcPtMzWs/baBnUfa0HZY6NTbGBnryczxflw1RZz//FK9a71dPt6XvFI9T31YyffLk8go6OKBqzSs/bGZaaNF+L/8MgO3XhLI+q9ruXqcNwVVzv0Y486WQ53cP07JtlwDqZHi/s2vNXN9tNBvf40OkXPvN90ca7AzKVzGC9PE/VvYbCMtVMK3ZTZuHKGgqMVBt1ngsb29bXKfHCNjUojocC/PtnCsFUb6wtsTpWS1CPwjr9eufjcVjrZCgjOlMqcNrouU8EUNXBkGp7rBTSIwzBuuyBBlnk2ERB+QyKCkS8JV4bC5EmZHwMkucFNKSfCV8G21g7nxUn6oFhgVLOeGneY/PYVj7ZLR3HRZBO9uOsMdV0eRVyLmM45NDmLjt9UsnhvPph+qGZskPugWnu7g5ssieXdTGXdcE0NeSQc4bKSM8OHzH2p5+PZYNv9Yx9hEXwSjgZyTOm6bFcx7O+qYe1kI+aV6pDY7ybGebNqt5cG/hbI1vYXUeC+w2skrN3DrxQF88H0zt18SyIk6M6dqetia3sJ10wJd8hMnhSI4IPdkF7dfGc6qzZXMnR3B8bIeHAJ97NX2XQ2Mctqfs/bq3c/LuPO6WFF/YEyiHxu+reSRO4azY3cjo4aL13vW/qzdcYaH7hzZbw6lioGRF/5yoM+j/0UHWtvSTfDQp1yvm8tfRxPk3Y9/+NfH+ductXz9+X1s3p7Jmk+PcOv1qezcc4r8jMcZkvKKOHzr8j7jL3ryW9asz2ThvPGsfv2q3n84LKQfqOT11ZmUlLbQ3mFiRHwAK/4+lRnThvRTu7m5E5lMQuJFG9m99TpGJYrBFW1rD5rAvtd/1oE+nxxW0wDMgf3AB188xNpt5cy/eSir/jHOxW9q7kbj37uOte1mYmb87HpdsfMS1/8XLytg3feN3HN1KG8tjqelw8LQGzJdssvui2b+1WG8/3UDcy7VkJHbgdpTTmq8l2u/bz/Qzuh4L6YuzAeg5ecpvP9lPXOvDSf/lPikO2aEN5//1MBDt0TR1iMnPLhvQa5EocJj9I5/q338vWceEmAW8I/f8fNfT3qzwP5TRgpqzBTUmNl/yoje5KCw2kh1i4XDpw0cPm2gusVCepFO7HFf2E3+mR7yz/Swr1As4NtbZqKm3c6RSjNHKs3UtNs50WxDbxHIqLJyvNHG8UYbGVVW9BbYX2mhusvO0VorR2ut1HQ62F9lRW8ROFBt43jT2R87cpkErcHRR7623cbeEgN6k4P9J40U1JgoqDFxoMSA3mQnvUjn0j/vTA9VzWbSC7rQGx3sO95N3hkDJyr07M3tQN9jZ09OB1VNJg4d7yKrqIvKBiN7slrR9djZm93G8dNd5JZ0kp7Vis5gY/fRFqrqe8gv6eRgbitV9Qb2HNWi67GRnqmlsLSL3OIO9hxtRtdjY/eRJirrDBzI1nIgW0tlnZ5dhxvRGazkFreRc0L8ST/ShM5gZdfhRqob9Bw41syBY81U1unYdagBncHKvsxGcorayClqY88RkXfseAuVtToyspvIyG6islbHroP16AxW9hyqJ6eolZyiVvYcEnmHjjVSUdtNRlYDGVkNVNR2cyhX1Gf3oTpyCrXkFGrZfagOncHCrwdq+8ln5Wv7ye89LI7/a4ZTPrOBjMwGqusM/Hqgtp98TlGLc/w6Kmq6ychqJCOrkYoaHb8eqOuj//GTbex2jr/rYL3reg/lNlFZq2fXQXEuso5rXQ0WYiM8UalkrrlOTRQdhZlTgvni51pWPDGaUxU6rrgwhOWPJhIX6cn1M8P5YEula48cyu/osx6CfBW8+sBQLhkfwN5j7eh67OzJaufxd8tYuakGiQS2vJTEmGFqTlb1sGJTLc+uqSC/tHe9ffRdA5MWFvDs2koSYzyw22FPTgePrq7kH+trePaTavLLDOxzrtnsMoNzPfdw+HSPuB9P6NGbBTJKTeTXmsmvNZNRakJvEdhdbu6zX443WznmxGLPrLdzpNZKYbON1Tlm0jb3sPGElZpugawGGyfb7MyIFM3l32KlFLaKrW8zm+w44YI50SkWOZZ2wTDR1ydQCUoZZLeLju/JLijTi+3Ls1oFGoyQ3yFwoktMRTlL2W1Q0gUVOshqETDY4GiLQH0P5LYLnGgXqDMIHG4Sc8aPNjsoaf/fgQ3MKuxEZ7Cx54i43w/mtnEwt43qBgO7jzQ593szucUd5BZ3kFXY7tzvWqrqDBzMaeVoQTtV9T3sPtqCzmAjPauV3JJOiisM7M3tQNdjJ/1YB1WNJg4WdJJXpqeqyUR6bqdob/O7yC/Tk1duYN9xcT2k53dR1Wwmv0zPyWoj7TpbH/kTZTpyT3b12qvMVqrqezha0N7PXmUWtLv0T8/stVfVjQYOHNNy4JiWyjoDuw83oeuxcjRP28/+7D/a8L/yffxF/xppW7pdf2uCvEkcIRbzLbhnGpogbxd/4T3i0cG82yZx1wOf8+rzVzNlUhyr37iB5tNL2fLxXF548lIuvnr1oJ+1euW1NBc/2dd5BhY9vZMZN20hLtqX2ryHaSxcTGVNJzNv3sGiZ3b1lX1mFyEpa7nohi+54ap4l/O86Lm9hKSsZdFze/tfY2vP75+PNmO/12u3iQGTtdvK0baJjvfDr+QQM+NnFr9W4JLV+Cu570bR4b/3+iiX86xtN7Pue7FEbt33jbR0WAjyc+Oeq8W5Tkv25tgpPXqj099oNFNab+JQUXef/X70RBf5pb3Zwmf9k5pGE4fyOzmU3+m8H4n3nrauP/8kDv7qRNiPJBKJcOLlKFexHYCnm4QWnZ2QCG/a9TbUqrM91sXiuRazpF/P+obCBjRectp77KiVzh73ZgFvq8XV871PMaIzub7d6EDtLP7r7rHj5y7rJy+VwbIDPRQ02th0o7dL3qzx6VcsCKD2c3cVk53VX+qldCXXn1usI/VR4amS9RbzOYt7pJ5u6IyO84pvxKf7c4tp2jot+HiL0QRdz9niGxMafyVGixQkvcU0wQEq2nUOvL3EiILOYBWLk1qNaAJUGJzVZJ4ecrRtJoID3cXxB5IP9OgnHxLsRVuHqd/42jbzgOOHaNROecU58iqaW3vQBLj3lW81Ehzk8fvkvdwGlteZB5T3cJeibTMSHOjRV3+9ySnfOz+CYMfTQ9E7Px0mXngrj4+3nebO6+JYu2wKza1Gvvqlis++KmfjikkMG+KNts1McKCKM7U69h1pYOtPtRSVdfLc/YnccqVoAHXdBvZmtbLtl3rSM1tIilOTWShG39oOXNK3GMtb3q9YUyKBuKsPufbWsfXjKKkycOfSky5ewYZxRIeoOFXdw+T5eS5+ziepBHgrsNkF4m/tPfjK/2g00cFKHlhVwda9rdw2xYc37whz7kcHfl4yGqu6CFLL6HGufw83CQ9taGJHsYWbk5WsuFQ88tNbBJbvN7CpyMKcZDeeneJOm9HBtA061+f9epMHUU54yvZOK3ZBhGgMUPXiTr+eZebLarghRsLCERKctWdUtjuI9pTQbhbwcwPn9OAmldBhAX+lhC6LgKcc5BKBHgfM2ifKHJ0pykvl4C6T0G6BAKWETouAlxwUKik9dgk+bhLaTAL+SrDI5UzcbvrTI9D6Y1f12e/eruJgKf6+vfvdtR5UEtd+b+s04+2pwGEzi+vnbHGes7jQrjuvuLDLitpThr3HisFk71eMK1hsfYoL23U23NzlfPhdIxt3aSlaP9Ylb/ESU0362KsuCz7eIrzmufYqONCzX/FfcICK9m5b7/51Fv81t5kICfbpZ09CQ30ZiP6KQA/E/9+NQC96dCNr1h1g4T3TWP3WbWz98hgvvvoDO798kLhYjUtOpzPx3U/5bNiaRXZeFYvvv5iX/u50gh1mDhw5w0efHWXnnpPEDQkkJ1+EWzs/An1W/lzStugJTlrpet1c9Ag5hY1cefu2c3gPoAn0RNtqIDj5Axe/ZP8djBjqj7a1h5CUtS5+U8F8VyR60TO7+XBTMQvmJPH+y9N61RggAv3Qi0f4aOtp7r91OO+9ONnFPz8CrW0zEXXRt67/V+25ok8kuqm5q89r6B+BPkt19T34eMn7ggd0W/FydpztAzagccdgchBxzREASrdNROPnRodFBFuAc4uDLYSG9y8E/TMi0P8SjN3/l2np0qVLyrUW/L1kfJDeSXpJDyqFlAUbtVw1zod7VtfSprNz7EwPb/3YwvRkNfNWVRMe4NanZ/0L25q5eJiK+7a202ZwkFNj4Z0MHRfHKLjxi25i/WSszjaxt8KKSiHh1Qwj02IULPhOR1uP2LP+41wTU6MUrh7x72f38HGeiTcOGylstvFEmgfL9htoN0Jug42vikyMG6LiulX1xGrc+GB3B+nFPbirZMz/qI7Z43y4e3UNbTo7J+rMrNjRwIxUH65ecpq4MBWrvmuiqLIHuwPufe0U10wN5M5XTtHaaSW/3MDr6yuYOTmAKx/MIy7Sg3Xf1PJjRjPuShl3PZ/PtZeEMve5PExmBwdyW1n5aSkzL9Bwxf2HiYvyYv031XyXXo+7Usadz2Txt5kR3P1cFk0tRjILWlnxcTGz0kKZdVc6CbE+rFx3kl8PNuKulHHHk0f426WRPPdmAeXV3WQWtLBi7QlmTQ3j0nl7iI9R8+a6Yn49WI9KJeOOJ0QIoVsX76el3URmvpblHxYya1oEj7x0FF+1G298XMQvGXW4q+TMfXQ/182K5ZaHd9PSbuJofjOvrc7nsmkRzJjzI0NjfHhjbQG/ZNSgUsl5dXU+0yaEcvND58tHMmPOD33l3RXMWbyH6y+P5eYHdtHSbuRoXjNbvitl8phgZtzeV97LQ87ti/dy3eVDuOWhdFrajWTmN7N8TQGzLoxk5pyfiY/x5o2Pi8gq0NKps3Dfs4e47rIYrl+Uzvd7xNy84yc7uG5WFLPvT2f7z1WYzHZ2Hmgk+3gbz75VQPrRZp5eWUBVg4GhUV6olDJefHAkl92bwdAoLzb9UM37Wyrp7LbirpTy3fuTeXfTGQA8lDLe2FDpWg+x4e68u7WG3ZltqJQy7l5azG2Xh/LzoRbau22MS1Cz8ecmfjzUhgSw2gTiI9ypajLjrpTx0FulzBzvz4kKA0NCVbgrZbzxRR3XpAXy9f4WdEYH8eEqqprMmK0Olm2uB6Co1owgwPFqE2/91Mr0kV4sWt+ERi3jg/3dpJ8yYrbBinTRKS7W2nEIUNhs571MI0unubO7wsK9qSo+yjOTVW8nxEtCZaeD64bJ+a7MRrtJIL/ZzofHrVwaJeOuPRaivSV8WmLnYIODGaFQ1A5LU6U8k+OgwyK2OD/QDCN94MFciPSEzdVi/rNSBktOwEUaeKFIoNMqoUwH6ypETGuAUb6wqQpOd4MDCc8XCFwSAs/lC3RYJJTq4MOTDtJCJNx3wEaUWsLWMgfF7cKfXkQ4abQf8/6ex7XTw5j7TC4tHWayCjv4clcD45P9ufy+AwyNVvPWhlJ+PdyEl7ucO589xrUzwpjz9DFaOszkFHew4tNyZk7WcMWiTIZGevLO5xUcP92F3QH3LDvFNdMCufPlk7R0WimuMLB8cx0zxvpy9XMlxIW5s+rrBnbndqFyk3Lf22e4fLwfs58/yZvb6ymrN+GulHHJGB9uePEUcWHubE3X8m16E+4qGXc9X8C1l4Qw97kCOrqtHD3e3sdeDY9R8+Znov7uShnzns3m2hnhvLCqiNJqHZnH23j945NcmhbKZffsZ3isL298cqKP/bnxilhX4dm5NKijPEgR3IDFdP+OFtqDjtG/oc+gegxS7DZoMeNgnzmQoyvtP3ei7MBoG9o2I56e5z2cSKRoW7r78LUt3dw8T3Q6c/Kruf+uqVx2/Sp8fdypqGolr6CGEycbWPnuLh588gv0ejNzbh7PR2/fxmUzzklcF+y89UEGWbk17P56Ac88Mp2lK34FYMlTM/oreN68enq6odV2k3O8kYV3jsFosrHgqZ2kTYikorqThXemcNPVCaKshxvNrQZyjjcxZXwYTy0a5+QraG7tIed4MwvuGMVNs4eJ19jawy2LRFThnMIWFsxJcq3F89FUtG1Gbn9EzB3LPdHG/bcOd8lelqZh/s1DueGyKOfnydG2m8gtbue+G4dww6V9ix89Bng2vHSMmnuvDuW6izR9+HuPtfPhd424K6Xcu7yUa9ICuPPV0+h67Bwt1vHmtnrXfh8a6cG72+soOiPC1u3KbueaqYEsWVdJeU0P2Se6eGNjNTMnBXDlw3ncMCsCD1XfdSKRyVn2Ycn/KYxdCGLHwbNlqrVAhiAITf8uhf6vSSKRCF8uCmFirIraDnGhRfjKyakyM21cAHkVPUQGiourttVK6hB3DlWYmTjci1pnhX1EgJIj+2pIi1NRUG8h0lc0DrWdNkapBQ5VWxh/TkOWMG8px+qtpEW5cbzJRoSzx311u5VYPzmbC83oLA6+OGHBVyVBLoVmg4DJJnBpnBsvTRcjao3u7qRGu3O41Mj4WBW17aL+URFeHCvvIS3Bk/xKo6i/u5L6VgupQz05WKwT9deakaqVRAS7k13SzdTRPuSV6ogKViHxUFDbZGZMgjcH8jqYNNKH2lYHEsQGIllFneL8lHQRFeEFSKhpMDA2yY+MnFYmj/KntsWMBCmRIe5kHm/jwgkackp0xDgbClTXGxiXHEBGdjNTxgShc3bg8PZSUNvUw5AIL5paTPioxQhEp85CmMaDyjo9UWFedOms58gbiI32paG5x4XD2dltISzYg+p6A5Ghnn3lGw3ERvvR0Gw4T96Tytpu5/gWp7wbdY16YiK9f5+8t4raRj1DzpPv6DASHuLVT95ktmIy28+RV/LYK0dZt+0U9982gsfvHUVUmKj/U8sz2fBVObdeHcuGNy6kobmHl9/LZ932UuZcE8u65WlU1ukwGm0Ul3fR0NhNW6eFyjo9s6aGMm5kABGas/NpJUzjTlWdgchQD9rbdbR1Wpj7TC6nq/SoPeW0d4lz9uicaBbcGEVokJKqBiORgW50nf2+PGTUac3EhLlTX6/HZhcI9HXjaFEX9712mvXPj2BYuAqlQlznDgG+2t/CZz814uclY/tLiUgkEroMNkIDlFTV6FEqpCidjUjUHjIWvXuGHRlt3DzZh5VzxePArh47oX4KcgraGBUhQjIBqJVSHtjQyLcnrVwxTMFrM8Vim7puO0l+Uo7UWhkbKqO+W3DuRwl7Ss3MilVQpLUT5oxAVzZbSQ6QkN3sICVQgrM/Br52C0UdEsYFSijuFHD206CqXSDRB/LaxfxoZ/8NApVwoguxAUq3QLAKFBLReb47W5TJmC7KS2WgUUFRJ4wLkFDSJRDqDgqVhMYeKUl+Eo5pBUYHgtYKs3/682Hs2g5dTmZRBxeOCyS3pJMoZyOI2maruN+PaZk8ureBSGSwsle+uIOoMA8cNjO1jWbGJPpwIKeNSaP8qGkyYjfoiQx2J7u4m6kpPuSdFu2P3WilVmtmzDAvDhZ2MTHBm9oWMwadGW2nje+OdHCouBsJEjzdpTS1WzFZHFw5yZ/bZwYxMcGbBqsbEqnYsKmPvYpUA9K+9mp0ELVN4pF2ZIg7mYVtXDheQ2mNgahQ0V717hc9UZF+dOvPtVcG4oYEDjiHf0WgB+L//gi0ts2MJqgv7NuiJ75kzadHXBFlF/+xL1izbj8L77mI1W/P6eWfF4E+U9FCeYWWuoZOauvbaWzqZvyYaK6bnYq/3yDFZw4z3d0mZt3wEflF9Xi4K+joFNfMfXMnsPbt6/rJ9x/DgrbFgCbIk/LKdiZfuYFfv7iFiFB3NIHiOtPpzew7XMMr7xxFKoUDX92IQtHXORwoB3qwCHRTUweagL75wYNFoAfMl6Z/DvQ/k7frB270Yui2YLY6UHvIqWsxExOiorHNjFopRSKBLoOd0AA3qptMRIZ70m2wMcSZO12wYTwxoSqaDQ58nCdgXXoboYHi/Sg2NqDfQ9yfEYH+XQ60RCLxAt4F5tIfucMGbAIeEQSh+/z3/reRRCIRGvZcxIr1laSliscAh/I7ePquIbz+STlzLgthf55YNHPRGF/e3lrL8rsieH1bA2kjxbypQye6efrOGJ5aXcGjN0eQkS/KX5jqy5bdzTwxJ5oVG6uZmiIe8R0s6OSpm8N56sNKHr0pnHU/NpFfpqelzUxNi4UxcR5YrAI6kx2FTMLISBVXjFHzwCf1bHsshlP14qK9aFIQ73zVwIr5Mby+rd6lz9EzRp66M4Yn3ynlsTnR7M/tQOWhYvJoP97acIY3nkhi+SdlTB0bgJtKyd5MLc/OT+CxFQU8cddw9mVrcVO6MXWchpWflPD2c2N5dc0JLkmLwG4XyMhu4h8PpPDIy5k8OX8U2YVt9BjtXHJBOK9/mM+7L6bx8nu5TE+LxO4QyMhs4PmHx/Hwiwd5etFY9h6uA+CSKRGsWJPLqqXT+DG9mluvGd7/+xmsklbmOQBvkCNAuXpgvnSgG9sg2KKDREEGlh3kpjHAGIsWf8yaj39l4X0zWf3OvQBotV0ED5nvkmmuXItG49OfX7EajcbH9Z6zf/chYYCb40CGHcDRK7tr70muumUtVqsYRdmy9jZuvT61V9Y+SK6dVYQlEgSBH3ZXcN+Tu3lq4TjiYjUczKwl42g1p8+0M2lsOA/ePZarZw3rZ/gE28AGuLG+td+N4MEXDvHRlpPMvzmeVS+M770Um5U7ns7k+YVJ7MsSoS4unqhh4zcVPH1fAq+tPcnUsaLDczC3lWfuiefxlYU8Pi+e/dlikvP0KRGsXHeSt58bw6sfFjNtnBhRKSw38vBdySxeeoinFqSy94gYHb9guJ23Nlax8rHhfezJkYMNPHJ1MM9sqGfxbA0HivXIDCYmxSmZslx87wMX+3BBnAq5YCejzMzj07157vsOHrrIm4PlJhSCg4kxSt4/qGfZFd68tV9PWqKa2z5u+tMd6OcfHsNj94xi8UtHeOr+0ew9Iub6XjwhkJUfn+Dtv09g2epCpk0IBuBYQQOL58Tz2IrjPHHXMPZltyCXSZk6Log31p/mradTXPOvkEvZm9Xf/qgUApNG+fPmhnJuvSKcZ98uQWew0dBiwt9bwZXTNHy/v5lAXzcmjvLFQylj88/1TB0bwNoXklm+7gwzLgjFahc4mNPKs/NHuPQ5dLwbu93BxZNCXPbt3c/PMH60mGOakdXIPx4cw+KXjrDy72kE+g/QLXAgp9gtoD8PBk9BGMymDGSXBokSDzrGQPxB7dIf0G9Am/lP9BhMfqA5GUB20QNvsubDb1m4YC6rVy8DQKttJThkjEumuSkPjSZwUD4AQjVabQcazXlH/QOgcww61+fwj2aWcPnsf9DVJdqqD1Y9yKIFs/vKD2RnrZ2uP9P3F3P3ok+Yc8sFTJ6YwMHDpzhw+CRFxTWMGxPH/Lumc8vNFyH9vXB9Ct9+17jowbdZ8+H3LFy4kNWrz8nZFmrRalt758el85mBxz5H7z5kG4A/2Pz1VA7IFiy6/jyHOIYsRkxjsVc9IPL/wImLRO6GLPLdf6t9/D0wdiogHRgNfAx8D1QhFhZGA9cAdwMjJRLJNEEQBn5k+e3PWYIIl3cuNQuCEOL8v8T5//mAH5AFPCAIQvE5YwiAFRghCELFOfzPgEBBEPpm8P+HkdXm4LXPa9ib18VFqT4smO7HL3ndPH9zCDNfLCc+TMn8SwM5dELPkxsbuWC4J0Heck7V/19r/hf9Fg3m0J7L12q7WPOxeAS45uPdLHnuRjQaHzQaHxbeN5M1H+9m4X0zXfIajQ8L753Bmk/2sPDeGX3GH9B5/hfIZrOzZPlO1m/JYueOBcy4VjRgt16fSmFxA9GRfvh4i62wG5p0lJxuofi0ltr6LiQSCRLBjFQq4XhJC9V1Oj5fdTnzn9rN8KGBTJsUydsvzWRCahhK5W+aon50vvOsbTPy0RYxv3rttjL+8UByn8YF7so/8NDzF/3HkdliJ7ekk12HtQyP8eLWKyKICVNyKK+DkxU63BRS1r00ir1Zrby+voIli+LJKf6vj+n8/4IGdGbP42u1Haz5UMy/XfPh5yxZ8igaTSAaTSALF8xlzYefs3DBXJcTOBj/LA30eX+UHA4Hb7z1JW++8xUb1j3BtTeI2QGLFsympKQajcaXwEAfBEFA29xBcUkNxSdrqa7RIggCUsGCVCqltLyJ/MJq3l1xO0uXf8vhzDNcPC2RZS/ewuSJw3B3dz5g/METXTDhAAAgAElEQVQGNedeozh/3wOwZs0alixZgkajOUd24BOTv2hw+j0wds8CzwKXCIKQM4jMeGAPsFwQhNf+JUVEB/oW4KJz2HZBEFqc/38aEeVjHnAaeAFIA4YLgqBzygiACfhWEIRbzxn7M36nAy2RSITv3k1l8ihfap0JiZEhKg7ld3LJKC9yTuqICRVvylWNJsYlqNm5r4kx8V7Ut1qQSiBSoyS3ysTMCf7knNIRE+KUbzIxPsmb9JwO0kb7Uus8040MVvHRl3V88mMjidEevHp/DGoPOWdK2hk71IO571SjcpPw5LUaLHaBhWtqSRvhyWu3h5JbYSQ6SNxc9RYZY+I92ZvfxZSR3tRqxSfemOF+HCroZPoEf46VdDMkzB2Jm4qq+h7Gj/QlPbOVtDH+1DQZkSmURIZ4cDC3hRmTgzlW1E5MhCdShRuVdQYmjApgz+FGpo4PplYrHudHh3tyILuZmWlhZB9vIS5ajLxU1HYzMUXDroN1XDgxlNomI4IA0eFqMrIauHRaJFkFWmKjxEh5RU03E1OD2XWghulTovodU8F/ZwR60aOfuZzfs1FlgEWPfOqMNs9i9bv3ibwBItBnaUAnXLANHm0eiP5ABLq2ppnb7tuAu7uCt5ddh5enkpjRSwBYfH8aW77Kx2ZzMHxoEKfKtCgUMhKHBZE0PIiYSF8kEgmC3YjDIRDg584dNyRyMKuep5YdIHf3fb9PXwaPQNtN/fmDRaCNPWaUblKyC9sZ4kwZqqwzMD7Jhz1Hm5k6NsiVchAV6sHhvGYunhDEsRMdxISL8jXNNnH9H2li6jgNNQ3i58fGhZKR3cilUyPE9RwprufTRScZk+BNelY7aam99iTEpOfIKQMXJ6vJKe8hRuOGTdtNdbuNK1eJFevVK6Kp67AhWG1E+Co4WmniongVebUWovzlCBYbNR12xkQo2F9uYXKMGw1WOVOW1/3pEWjdibs4kN3IzLPXe3b/VrUxPjmQ3YcbmDY+hOoGsWo+yNPGvuwWLp4QRH5JJzERnshkUhpbTIxP9u8z/xIJA9qfguIWHn6tiLFJvlx7SShXXRhCTaMRh93KFzsbSM9qZffaieSWdPPcqlNcONafK6YFMz7Jh/SsVtJS/WloFxAE8fs9mNvKjMkajhV1EBsb4FwPepd9u2jKEJf+0eFeHMgSr7ehxUJkWH/78VcE+nfqMVBU+aEPWLP2JxbeP5vV7y8+h/++M9p8Las/eFzkDRCBPksDRlAH4wvVA+v3ByLQLdo27rh7JV1dBta89xBqtQdxI+YB8Pxzt7Fm7U/YbHYSRkRSWlaPw+EgKSGKpMQoYocEI5VKEWw9OBwC3t7u3HlbGmVnmrnmlneoKH5v4EjzYGtnIFL0L2L9ZxHoAemvCPQ/H/N3ONCFwA5BEF7+DbkXELsTjvqXFBEd6BsEQegHnOmMPjcA7wuCsMzJcwe0wBOCIHzk5AnASuBxYIIgCLlO/mf8AQf68imBzL8hki93i6nd188I4dlVpfywciR3v3KKKaO8+fZAK5X1JiQSsNgEVAopVrsACEglEqx2AbWHDKtNIDTADbWHjNYuG3fPDuWjb+pJG+1Dfqkeo9mBQi5B225h1SND2fhLMzPGOVNHctu4d2Ygc96u4uNFUew+riO7zMCZJgtB3jK+eDSG579oZHqyaNDL2uwsnRfF1X8v4dV7o/nqgIiXfOMV4TzzXhk/rRrDvBdPMGOiP55eKr7b18SGZWO4YlEmrz+ayI5dDQQHeTBtXBBPv1HIzo+nccfTWcy8IASlSsGP++vZ9MYUZt2VzspnxrLzYBN6g5WbrozliVez2P355dz+yH6uvyIOvcHKrwdq2bpqBjNu/4E3/3EBuw7W09Fl5ubZ8Tz+8iHSt17LnY/v4eLJYiHCrxnVbH3/Mqbf8g1frL6c5BH9jeF/ugN9vjOr1XYRHLvI9XrQ9Iuqdb2R6Ob2P+AQ/4GcR/jdDnTxyQamXf4GV80aSVSEH6vXHcTD3Y26hkEM51/0b6Vt9wfzTZ6BIA8JF8QpeeHHTr6+T8P8LW1cMlyFUuJg50kzH93ky/Xr23npcm92llnZeFT3pzvQP392OY+/fJTdm6/ktof3MmuauH/LKjt46ZFUZtzxK6FB7hwrbMVsFeskHA4Bd5UMo9mOTCrB4bzvxUR40Kg1MWGUv4h04a8kPlrNV7vquHiShvSjzbgppBiMNiI07vz80QVcseAIKx5PYsevDXR2m8nIaSPIz43dH03ioruPUttsYsakQDq6LWxfOZYrHshmxaMJHMjvQttm5sZZETz9ZhE716ZxxzPHuOLiSGw2B7sON7rs2zsvprHlexHC6+YrY3liWSa7N1/JzxkN3HNzYr95+cuB/n16aFuNaDS9jp1W20lwZG/OcnP9DjQaP7TaDoLDb+zlN37fG4lu8fyfR0v/hw50dXUzk6c+xKQJCYwdM5S3V32Dp6eKmhrt/0yvv+h30X+TA20ArhAEIeM35C4CfhIEYQBP5ncoIjrQTwEdgAUxReM5QRAqJBJJLHAG0Sk+ds57fgJaBUG40/laAG4EbgICBEGY7uR/xj9xoCUSyXzE1BCAsaXfTyU4wO08WC4LQe4Sis7ouXfZKaal+jDvylCGhLnTpTWg8XPDYHJw27LTHCzSkRDjQXKcJ0G+CiI0SjyUUmqbLXQabJjMDoaEq/BTKwj2dyM6VIVaIRAd4kGHzurq4d5S1cGNr1dx5yX+3HVJAFsOdrD4kzrGxbkTEeDGd8e6eGdeGDddIBoWo0qJn7eiDywdgHeYuhcW6iwsnZtqQBgpqVzprLR1wjZ1WVB7yJG6uaEz2PrAzBmtop7nwsy1d5rx8RYd1/Nh3XrMTlhAD4UL1q29y4Ta062vfEsPwUGeA1Zy/yc70IseWe9Kp1j9zl29/D8QgQYGvzkORH+SA93Wruel5T+w7Zs8pk8bxmsvzCYq0h+J38N/7PP+on+Jmt6Mocci4DDb8FRKaNU7CFLL6Oix46WUIphF7Hg/DyktejuBnlKMCiVxz1X/6Q60pexeF8xie2fv/u3q1GGzC8y+L52kYb48dd9IfL3dCPCw0tJhIThAxbznjrH9lzoS48TuhPHRajzcZYRpVNQ1GWlqFYMSak8FQ6O88PKUMyTck+hgBRKppI+90vfYuPahTP42PYQbZoRyukrPFQ8cIy7Cg6lj/fn8h3refCKB2RcGE+TvhsmmAImkLyxdlwUfP7Ho+VxYzNCwgPNg6cTrNdukuKv6O55/OdC/Lbto8UesWfsLC+dfyer3Hujl/4EItDh29MCf+Ufof+hA6/VGXnp5I5u/2Mv4scN4/bV7GTYsAonbrP+5bn/Rb9J/kwPdAdwmCMLO35C7HNgqCMLA4Je/pYj4fjVwCtAgpmuMAJKA4cBhIFoQhJpz3vMpEC4Iwizn67MOdAFQAlwtCMIvfzQCXfXzVJavr2Rsong0mVvSzYO3RPPgsmKKKwykDPNi8kgfLhzryyffN/LK3FBe/6KRMfFeHCjsZntGK0qFFH9vOSOiPcg5pUMmlXDbTA1dPTZeuDeW1zdWM2aE6MjlndLx5E1h/GNdNfdeFeoqOqyv1/NTTjf7XxnKW9+1OHGc7cil4Osh5eUvtTxyVSA2h0BBpRFvbzf0JgerF8ey6mtRHxA7sT19Zwx/X13OvdeGk5HbgdxNztSxgXz8ZTWvLk5k+bpSxib6IXdTkF3YzrPzE3j2rSLm3xTLviwtUoWciycE8+EXZax4MpVXPzzB1AlhjEoIoFHbw4TRQRzIbiI1MYB6rQgtFhXmRV5xKxdOCCPreDPhoeJ8NjT3MDElmIysesYkB1FTLx6VRoWryTvRwoUTw6mq0zFiqH//7+c/yIE+P3+5T6T5nII+JPKB0yzOG8NF/wEOtMgfBIx+APn7H/mCjzflcd2VCSyeP4nSM61s/foEuYX1zJ4Ryy3XDGfmtOjetBxZ/0KsQVX+AykcAHZzf77DZiX9aDMpCX7UnkWHCPWg6FQ7k1MCOFbUTmiQqFNji5FxSd4czG0jZYSPC40hJsqf/JPtTBunIbuwjTCNKN+qlzEuWUNGdgNjkgKpcR79B8pbOF6qJy3Vj5ziLkKCxPW1fmMZD16l4YXNDdwzI5CMYh0Sg4kpQ91Zf1jHkmv8eXNXB6lRSqR2Ozk1Vh6f7s3SnzqZN8mLg2fMSB12Lhii5LNsAy/O8uatDD2pQ9x5cGvbn+5AP3ZPMk8tSOGp1zJZcHsi6UcasFodyKV2Vv4/9s46vKmz/eOfpKmmrpS2FChW3F2Hbww2YLCxMdxdhm2MwZANG8PdXTZ8eHFqUKgApWgLlUg9tTQ5vz9SQtskG/29bIP35XtdXLTPufPk6ZH7fM/33LIhkkGfVSQvX0uDghb0tyMSmTygEtOXRuJXRsqizQ/IU2tpXteVuMQszMzEJCly6NyyFC3quxAVk2HgfyQiLc3ru7DhwFPmj6/Kgg0xZOfmczFYQcembkwfXIGxCyKpW9UBsRjuPMjg0NlE6vnbs+rbGoz/OQpzCwm1qziQm6dh5oiqTF8aydBe5dCILbCyNMPH04awuym0bODOzfsqPN10/kPn39y5HJxA80Y+RkvTvSfQhrYyWapebZbJUvHwfSUqJMXtLqpEK1SGMcliS+Ox0W8Bgf7TcSP4duYW5v+8lw871WfSuG7EJySzZ/8Vrl6PolO7GnzeozGdO9TEyuplrHMJki1NwUgIB8DvR1No3749v/76K7179yY0NBQEBfXr12LfvmOMGzeQLVv2U6NGFdxcVFSrZtgR8d8K4TAYf9uTCIE7QHfgTwk00AMdcf1/oThBF4lEgcBjoB/wsu9jcbYvMjKGIAgPRSLRBuAnkUh0pvj2v4KjswM1KrtSrbIDQeEp3Lynomm/ILzcrVg4qSo5uRrC7qdzMiidp4l5fLdLRtSjLOxcpAzrW4EG9dzQCiJ+2hTDjcgMKvjqyN2GY4lk5WiYMao2Nap7ULOg1a1akoJr+dL4+2fhV92bNLGUeFk2K35P4OuPvfGo40vNeAn1CnoBRz5Mp30TV24rRIQlqbkelkKT2k7UquXKjqNxNB0XRfe2panZUFdtUOuUjVuZMlStkknFquVI19pjbmlBRX8Xqvrn4ebtTa2a2dSu4YqZuTm52ODqVRp/fzkVqpQhVW2NRCKhQmV3qlbJxNXTk1o1UqldpxyVK7jgX7DfPuxcCgBPv1eEsHNZXSWNNu3K6UlTpYJtnbpUAjMb3Mu/2vedCn729zTlmE04EHMjCSEmiXJzo8MPVIYPk2qN8Qt3zsTR7N+0jl6DhvHdkhXgDL0G3dGNDRxKotMgEtWFPuAIicb4qAMkmuCvxaE18rBrbAwgX/v6jkVsomarqXFzM8MbaYXWnjR4upEKzT+m3+QN+FX256PB81nQoTNW1rrjfr+QvakHd2Nz+1tfNGprynlJJG0Nxh6oBCr5QRbwktZkAZ2bnAWgfaGCItUBsh5SUIKVMi83iC3xqq37sd2rfgB6YtG5oLinR5WC8fwMyjXV/dip1ivzhikhlP20LrXiL1Dzi8bkhcViJsqjTg0vwuxD8Rvcgka2N2lQxxtN5nNEd+SU7V6Jmtnh1PysMuoIOSKtmhr+ztSUPsS3T1XqSx9Rt5oz7PkrN/2fo3plFxzsLKns50SCLJtLQQkE3kqiTjVnurQtw+j+1Zn1yy1CwpWkZebxLC6dkXPDUedr+aFHFWpW8+BqaBJnryYQl5hNs3ruWFqY8cflRPaejGP2+Do4uzpTpaIL5cu7k5JlhsRcjF8lZ6pUzsbF0xNf32QWrotg+cwGZGSpcfUsRcO6yfTrXoE79xRUrpRP84berN8bwweDA6lc3p5mdTy5FJRA5IMUqvp74l/FHb9KXji7uWJVoCp7lSsLQBufV8lVLw9n548rmfYpZkbGTZEgUw+PJajWU6IqQKbWUgI/CMZ9oTrPuH+cO2kMh7ZsoMeAIUxb9CtIoceA6/qxp1bdeFoov1NrLvA4pegcErEYzCG22Lgpv2QMEpO1tUsZHTc2d0m+D8DDyvDY1GstpubpaNp1HcLoySvw8fWl++fj+XHLx9ja6c6d2EL26nzj+9WYvzf1N6I2PhyvPk50tghZHsQJVijF1iB4E0c5ZGoHonN8UOKOXFKeXJEj2kzDB5bUHOO1IqTmhg+XtpbGr4NKHsb3q8hIPLYozwS1zCtJyEzJEjBfB6+jQH8O7ALGCYKw0oTNGOAX4CtBEPa+scWJRAHo7ruLKEEIhyAIB0UikXvBZ0YCbSmBAr34mxp82q40I+fcJvJhGkN6liMzK58GVe34cV0MsYnZtKjjjFqjpXkdZ8Lup9OmvjPrD8WRlqlm3pjKJCjUDOtdjrX7nqAVBG7dTSP8QTpe7tbUr+7IqD4VuXVX5xnqVnVi/6k4hn1Wnp3HY1Fl57Ngw30+bO7Gyhk1WL7rCX0/9ibsnq4kWG1/e3Yce8HYPmXZdeIFdf3tEYlE3HuaQ4/2XlT9+Cxzx1XDwU53Mjes68W23x4xvn9Vdhx5RP3qrojNzQkJV/D1pxX5ZXME/XtW4maEAnNLC2r5u7DlwH0mDq7F9kPR1K/pjpmZhOA7SfTr6c+S9WEM7F2V6KcqWjbxMdyJEhPxu8ZuHCa7Tf3zBPrGkyRc3IsWe1drNCjlMlzcXo0r5TJaVfDS/x4Q81y/XSFLKmL7JvFvEmitVkt87DMe3YviSfQ9nsY8wNnNnfKVqlC+chWcXV3p3boxVx4nYl7IiZpa35sg0CZhgkAbQyWLs8bnyHpoOFbShKl8QyUFQKHMZOP2G0wa/QHb9gTRoI4vaLMJCXtOv8/rsWT1FQb2qU/o7eeIcpOo5e/C1gPRTBhUk+2/PaB+TTcEdQ6hkUr6dvNj2da79OtegVtRSroND/jbFegXgX3ZcvA+GZlqNu67x1efVqJTyzIE3Igl5kk6py4/p3Nrb0SIsJVKqOZnz81IJemZakIjlUwdWp1WDT0IjVTyUWtvpi++hZWlGSHhSkQiEStnN+ZSUCITBlRnx+GH1KvhithMRMgdBX0/rcCYH25wIiCOTq28+LSdD/Wqu7Dtt4eF/JszgkDB/inPL1vu0r9HBSIfqcjPF1i6KQJXJ0u2L2nD9t9jGPhlPcOEZUsT1/D/MIFOTEww8G1qjYZkuQznQuPJchltK+sfOzl976l+u0KWVMT2JUpCDN8MgX590eB1vk8QBBKexxETFUFCzD0e3L+Hk7Mzlar4U7FyFcqULUeTmv5EPI7DwfGVMqzIe/2HFSghgTYBZbKSA5s38PXo8Rzbs4NqdeojCAJ3b9/k4y/6sn3lMj75qh93w27iVsoT/1p1DOZ4IwRaamK/GktofEMEWmQ/8I36x7/c8wWEeCOwXCQShYtEonkikWhIwb95BUmGy4Ctb5g8W6F7+E8AngCJQPti21sA102sWwYsBn4ETHgy4wgKT2b47DAiY9Jo38SdF0nZrNj1iHkbYjA3F/HDiEp0buGO1FpC/24+5OZqqFbRntYNXBAEmPrLfa7fTiZDlU9wRAoOtua0aehK9Qp27Pi5IYF3Unj6XMWVUAVXQhU8fa4iODyZjKx8lu+MYcGG+wz8tCwajUCGKp+zgQqevsjiyq1krtxKJjY+m3M35GSo8rkQrOTWvXRu3k0jNDKF67eVxMtzmL36HpMXhnPlpoLHcZmcuRpPhkrNuWsJhEYqiLifzLmrL8hQqTl9+TmPYzO4FJTArUg5j+PSOX0pjgyVmrNXnhMaLuNWlJyzl2N19pee8Tg2jeDbCf+/g/sWYuTIkTQtX4ofxo8sMv7jxNG0quDFjxNH68dc3NzpNWgYAL0GDStyU/m7yPO/jYlffcbADz/g0NaNZKSlUq9pCxycnAi5eomfp02kV6tGZKan8zj63l9P9j+OZ3HJnDp/j4zMHM4E3Cck7Bl3ohI4czGGjMxcTp2P5vGzZC5ee0xYpILHsemcvvycDFUe564+JzRcTnh0CueuJZChUnPmajxPnmdw/dY/k8D0OC6d1TuiOBEQS/0absQnqeg/+QKb9j2gYW036lRzYcLA6vh62+LiZEXTuu4kyLPZOL8p5hIxs5bfIThcwblrCZhLxMQlqOjX3Y92zTzp2dkXBDhzReebzl6L52aEgvD7yZy99oKF68PZefghU4bVwMXJisshSTx5nlHEv4VHpxAaqeT89UTdHNcTefI8k1uRSo6ee8aloAROBsTRovcxzl19QZ66BN37/kfxw/iRBn4QYP7ksbStXIb5k1/lRji7udNjgC6no8eAIUUIszHy/N+Ab0cO5rOWDdmxZgUKuYxGTZvh7lGK4BvX+WH6FJrXqY4qM5M7Ybf+7aUiT0jg+vkzZGVmcCPgHFFhoUTdvsmNgHNkZWZw/fwZXjx9QujVyzy6f/ffXu5bjdfuRCgSifqjS/KrUmxTNLBIEITN/9FCRKLFwDF0bzLcgZlAS6CGIAjPCsrYfYuujN0DdDHSLTEsY/eZIAgHC363BR4CDsD511Wgu33giSI1j8q+thw6F0+n5h6M7lOe0i4SfbIdUJCMkoe7swW3o9OYuOguDrbm/DyhClX8nIok5720l6dq8HCxQpmai71U97SWkZVfkByTw6LN0Rw884JDy5pQu6IVsuQ8PFwsUablYS/VKRTpmWqcHSyQKXNxKzS/nb0NYfdSuXJTiZ+PlIHf3eTx6Y5oJdIiyX+qrHzE5ha6ZL6C5D9lSg72thaIJOZFkvncXa119maSIsl/ypRsHJ0dkEiMPIO9Ywq0TCbDw8ND//v1x4m4uLujlMloWv7Vq75LD1/oCbJWEAyUaTCtrL4J/JsK9NSBX/JBl2507N7LqEosAlKUCpxcXIuoO+8VaEOkpmXh6GBDkiwddzc7VKo80KiQSi2RyTPxcLdDmazC3s4KdcpDMrPyiyTjqrLy0eZlF0neVabmYmcjwa72nr9dge7TtQIPY9OpWcWZgycf0765NwN7VaFNYzfkyblF/AlAWqoKdb7Al5OuoNUKrJ3dGK9SNgbrt5eaIxKbGSQrq7LyQSxCaiPh28U32bQ/mp1LW9G6cWmEfHWR5D93FysyVbpYqeLzOznZIVPmsOXAA1o39uTjwaeJCeiFh5eHoSL5XoHWw5QfLP4m7nx0rJ4g52u1Bso0mPYH77oCPWfCaPyq+PPlsFFGQzgEQUCpUODiWtQ//hsKdGpqKlI7O5QFbwOyVbqcEWuplGS5DBd3D1KTlUjt7DEzM8PMiE9+r0C/nPE1IQjCVkEQqgJeQGOgCeAtCIL/f0qeC+AN7EFHyH8DcoHGgqCP9l8ILAVWAaGAJ9DhJXk2seZMYDZgIvPMOOTJuUTGpHH5poLhvcoSL8vGy8OaSYuiuBCkYPLiu0xefJfzQQo+HBmETJnLx6NDsDAX07SOE+N+iiJJmcOHw69zPkjOpEWRTFoUyblAOZN+vkOSMoc+3wTz684Yft0ZwxeTg0hS5NC63yUOnXmBpbmY5TtjOB+smz9JmcuX08JYvusJy3c9YcaKaGTKXD4cFcyFYCWTl9xj8pJ7BATLGPL9LT7/0JuVux/h5mTJqLm36TPxCkmKbDr0P8e56wlMmBfCnOVhnL36gvZfnSRJkU2v0ef5ZXMEG/bcpefw0yTJs2jX5yhnrzxn3A9XmP7TNc5cjuWD3odIkmfRc9hJtuyNKPFBfhsgkxW96Nzd3RkxYgQAXwwerg/jcHF3p3eB0ty7mNIM/71qszH4lPPj8I6tnD/6O2kpyQbbRSIRzq5uJm9M7/EKA0fvJkmWTpuuKzgbcJ8xUw/y3YKznAmIoc0nG0iSZdCj/06WrL7Cpv3RfDbyHEmKLNp/eYJzV18wbs51flhxh7PXEujQ/xxJimw+H3eJlTvv//WXvwGcvhKHrY05uw7HsHJOc2ysJew99pCLQYm07/sHSYpseo8J4JfNkfyyOZIxc4IZPTuIiOgUpg6txuJNUUxbfMtg/cu23mXj/gf0GnOBJEU27fud4ty1eMbPDdK3p1++NYoalZ2Zs+I2v2yOZNnWu/Qed6mIf5u3JoIJ829y7loCHQec180//grr99xj5+EYAgLjqVjOAZFIxOxfb5Ga9ppJCP9DUBbykS7u7nwxeDhQ1A+6uLnz2UBd8arPBg41IMv/rWqzMZTx8+P4/t2cPLgPucyQ1IlEIlzd3g7/uPqnOShlSQzu2oEbAedYMHUCC6dP5PqFswzu2gGlLIlJX3/O9pXLuPTH8X97uW81XreVtx2gNtVlsCCcwvzPyOy7ApFIJFT0taV6RTsWTq6BxEzMs3gV9as5EXAjnqa1dQ1HAHw8rAkMT6FlPWcGfn8Hn1LWjP6iLLEJ2TSo6cqlEAVNajsTG19g72lNUEQqrRq4ExqVgm9pnfr6LD6L+tWcWLDhPpsOPqV1QzckZiIcbcUkKXMp72NDvCwHMzMxGap8lKm5tKrvgr2thC8/9OKFPIfQqFRmroyhlKsVAVtbEP4gjacvsliwPpqNC5rSoKYbF4MSaVrHnWfxmVjbWOFT2o7U9DycHS1Jz8jDytIMkcScnFwt9nYWJKfm4GhvSU5uPmIzc6wsJaSm5+LsaEV6Ri42drZGm528zQq0vhB/8ULyvH4MNJRcWX0T+DcV6NRkJUd3byf0yiVuB13Hp5wfjVt/QL/RE3Bx9zA5x5tSoO/efUbp0rr0v/h4Jf7+ZUhIUFK6tJF6sG+5Ap2RkYOdnRXJKSocHazJycknLzsdKysJ14Ji+aClHyFhcZT1cUaS8wwQF7seNWjzsrGyNHt1/WbmYWkuwr7Ovr9dgfav4Ejtqq706VqRD5qW5llBFR1vDwnXbylo08STkAiFvgHNk6dpnL+RwO27yWxf1FzfoKSMp5Qbt+W0blSK0AgFvl62WFlaIBKLsLe1IDk1F0d7C3JyNSCGW1FKevPk1jEAACAASURBVAw/zxdd/dAKAlYWZkjEAojA0twMeXIOuXla0jJz8fdzoH0zT/zK2OHhas3lkCSGzQzGzdmKfSs+wNvTlvPXXjBk+hVirg0y7IT5P6xA9xkygj0b1/LF4OH8sOyVj3zdGGgw7X/+WxVoVUYGv+3cSuClC9y8dhkvbx9aftCWEWMn4ONrumrIv6FAp6WnYyOVkpaSjJ2DI7kFarKllRUZaak4ODmTmZ6OpZUVYjMzJBLD8/K9Aq3D6yQRtkbXZbCTIAjnTNi0A04BLQVBMBqT/K5AJBIJrZuUZtWcFly4ruuR/UFTLxauDeOXGQ2Yu/oOrRrqXmddCk7ku5G1mL4ohDrVnPh5XRTjB/jTpnEp1u19yI8T6zF31e0i9jNH1WHcj4FMGVaTCzfidfM3Kc2GvQ+YNa4+X004j5eHFI1W4PGzNJrV9+D4hVia1vMgQZaFlaUZtat5sPXgfeITMzEzE9O1fTmOnHlC6ybeXAp6Ttf25Zk2ugG7fr/PsvVhBP3Rn0Wrg1gxvyNzllyhdVNfXN2caFjXSAKgKedujOiK30CZOJPf19rosCkilJtvWH4oNz+/iHNPlsvo6F9Wv/1E1OMijl9txOm/iRuBKVtTKIm9KVuNiXWn5himZmu1ppy48XGRRs3jiNuEnjlJ8Klj9J/9M3U/aG/U1syEq/J2MH6O2FkYPiC9ePoYTb6G4MsBADRs2YYtyxaxbsNGLIzYO0tMdNUyguR8I9cAkJBteD6ZupH62xknM8kmsuCdRecNxtKUicz7+SDfz+jFmIkbmTa5O+cDwmlQvzIN6lc0MosR5Gcisu3ztxPo7yc259nzNFYu6KT3JwB3op4zun8txs68yNRR9Tl/VXcc2jbxYsr8q9x7mMInHf1o3cQbM3MLLlyL5fuJTRnz7TmmjW7E+auxVK3kQetmRghHgf85eDSS+MR08jVa8vO15KtzUas1um5udpbY21liY+vArfAXbN93EzMzEd9OaMucxedY+GNvRk3aieLpcmxsLElITMW//gziYjZhZ1fMD1mYaNRRgsQ7U9fgm/AHpu7bpvyVsfE8rZYUuRwnNzf9WIpcTtfqr8oiHQqPwcnVzeQcJfWPpmCMBFoZIW4AZiYIo4WRcQsjD+Rg+louybpzjNxzAPLz84kOv83lP45zbNdWxs9dSIfuvUo0t6l1mxovCUztv5LAmNBhCqnZ2UbHTe0PByvDgAF/2/jX/j7T8EYkFv/jZeyGAcdMkWcAQRDOiUSiw8AoTCT1vUuoU63kXY7qVXchXpZFuiqPdXse8ODpX4vx+flajl+IpWFBvVSxWIR/BSdaNSoNwPXQeCYPqUlcgopRfavqCXe7FmXZtPcu6ZlqrK0k3LiVyJLvm/FHQBwtGnrpn67PX4mjVRMvzMzefPmWtw3GVOKfvhlXpJTSy+SWQ1s20L3/4P+pV4xvEhILCyrVa0ileg2p36Ez66eNJy76Lt1GjPvrD7/HO4/pY5sxYmrJyuU5O1qRnplHcmo2v/3xEKmtFVbFVd9i0Gi0fL/wEmMGNaCUp45A9+xarFGtJsvwg+aOhEcloFCqcHezZf32IK6dHMXjF/k0qFsOGxvdg/yyVWf4+otmhuT5vxDGVOIlUydweOtGPuk/mEk//wKAk5sbXfsN4ui2TXTtN0hPnt/j9SGRSKhWtz7V6tbng48/YdaIgdwNu8mY2QveihCO93hzeB0FOg6YIgjCnr+w+xxYKAhCmT+ze9shEokE9cOhBN2WUd5H1/jjcVw6jWq7c+7yU5rVc+fZC13Qva+XlMvBSbRr6k5wuIJlW+6hTM3lVpSSrBwN342uzai+/iQpcvT2N8LktGlcmsAwGcu3RXHw5BPWzmvOoN5VOXPlOa0aeepfiZYpZcXlkETaN/ci6Lac8mV0qt2T+ByOnXtK6B0Z9Wq40adbJSwszDhy9inzVoTQraMfglbg5IWnXD/am9RMEY3reXHm4mNaNfHl2fM0bGzt8PEyUmj9HVSgfxg/kj0b176qyYyOULep6K23KVxKSZaUaJQ8v1egi8KUAm1eTFZOU8j5qV9P2vT+ik79hxbZ9iYUaLFIRHhIEN5ldQX9nz99Qo36DdHKXlDOz8/A/l1UoHMylQBcuhJFh3a1CQp+QPlyHkhtpUilr5nC8Q8p0BmPvkFqY17EnwCUKSXhUuBzOrTyJehWIuV9daFcT5+l0qC2Bz2GniBTlUdQWBKZWWq2/vohDnaWdO1YgaBbCZT3dcDa2ho7W52fmDjrLL+sC+b4jl58VLiQdmEYIdCCxIG5S87x6IkSVxcps6d2RCq1YOv++4ybupvO7Wvg6+PCxm2XuXnlB8r6VTCc979IgV4weRwHt6ynx4AhTFm4DNAR6s5VXzXIOBr5WK9EqzUaUhRyA/L8XoEuClMKdHFkpKUypkcXGrVpx7AZs17rM+8V6KJ4WxXo1yHQecAHgiBc/Qu75ugqXZSoZNzbBpFIJDwP7Eufcefo2FJ3cz19OY49y9sxZuZlBvWqxL4Tug46vT4sx+SfgjmzpS1fTbqKv58Du48/ITtHQ5XyDkQ+SMXSQoy5RIxWKyCRiClfxo7jmzrRrOdR8vO1WFqaYSERc373x7T76jhLvmvKvmO6+MveH5Vj0rwgzu78kD7jLtCxpY4QxjzNZP7UJrT94jBLv2/O3qMxAHzVsyojpp1ncJ/qrNsRQdsWZShfxoHz116wa3U32nTfxbIf27Pn9yiqVinNN6NbGO6At5xAF49TLp4hXrgm8+wJo4oW8y+AKaf/nkAXxesSaICUpATm9+1Bl6GjaNPrK/34myDQmvx8RnT/kKZtOwBw/fwZft60k9vnTjJg6HAD+3eRQD999IjoBy+YMGUzAad+pHffxXRqX4fmzarTvFlVE6svhn+IQN+7MgwnR6si/gTgq08rMGbmRS7s78HnI07SsXVZAMIiklg+pzXNP92PLDmbvDwtjvaWyJVZCICXpx1yRRYSMzE9Pq7CtuVdWbU5lBWbQ6lSwYUPmpdl7LBWxhdkQoE2CgtXEhJT+eNMOEmydOrW9qVjuxogMWL/jhLo4uJAslxG+yqvQmL+uPtEv33BN+MMFGgwHX/7nkAXxesSaIBUpYIRn3SiY4/efD1u8l/avyfQRfEuE2gFMFAQhKN/YdcV2CIIgon+pe8GRCKRkP9oGMmpOdi9LDNXUNYtPj4Fj4KybvCqTJK7sznJqbnY2kgY/n0gR8/FUdbHjvikLFycLPGv4MjdmFTKlJYye0I9wu+nsGD1bS7t7ULgbRljZl3ny08rMbZ/dXy97PTz21ihL8OUnJqrX48qT1yszJzuTm1rb4NMkYWHm5TklBzsbHX2mTnmODtZkyTPxN1ViipLjZm5FGtrw4D/t4lAy2Qy3AuR5ZEjR7JmzRqD5BZjCjQYxkC/xHsCXWyON0CgxWIRSc+esKDfZ/SbtYA6bXQx0W9KgU5LScbGVveZrMwMHJyccRHlI5UatnB/Fwm0Ni8NkUikawnv4UhycgZ2dtaIzSRGy0gZxT9EoNXPpyORiIv4EwAbizyj/ic9LQcXZ2uS5Fn8vDqUjXuj8PW2JzklBwsLM+rXKsW9GCV2Ugs2L+tCxD0F478/w7Vj/Xj8LJWvRh3h447+LJnTGXu7YjfXEhJoo3hHCXTxsLV5k8awf/N6eg4YyvTFrwQDYwo0GI+BhvcE+nVREgINkJQQz6hunRgwaSqde/X5U9v3BLoo3mUCfQ54LAjC0L+w2wCUFwTBMAX+HYJIJBL6f1aJwb2rcuqSrrlmp1ZlWLz+NmtnN2La4ps0r69TPK+GJrJgcj3G/xjIqK+qcOqKLumwblUXFqyPJEmejVgkIjtXQ06ehqwsNY72lni4WbNlYUt8PG2Ji8/k+2W3uBmp4NK+rthJLZDa6BxHRkYOpdysiZdl4epkRaZKd6NycLRFnpxDaQ8pSYpspNY6e1UulHK3IT5JhauTNZlZunqo9g5OyJVZlC5lS5JchdTGHImFLVKpkYoWbwmBHjlmP2vWrNFXyzBVq/kl4hPiDWKgjSUWwnsCXRzZmSrCr1zgwa0QPh01kZ3zv6dTv6FEh4WSm5VF1SYtOLN9PV9M/5Gjq5ZQrVFTNJr8IvadBwwj6vplIq5exKNseXJVKvrOnMvZ7RvxqqBr3h59M5geYyaxfe5MBo6dSMilCwDUa9mG/WtXMm7+IvYtX0q1evUBuB14neHTZrJz5TIGTZpGlkoX2mQjtSVVqaBBZT+jMYWvQ6AFQeDixRus3ngMF1dXyviWpfdXX+Pk7Az88wRak5tKUlIaHh4OxMen4OpqR2ZmDjZSm9cO4di37xyf91v+txNoTfwMXiRkFPEnAJnpaXi4GfofWysJipRsnb+SZ6HKUrPn+GN9GcysbDV5ag0qlRpbW0u8Pe3YsOQjGtfzIiEpg4mzznH64hPOHRxA3VpeRRf0P0qg504czf7N6+k1cCjfLlmBUi7jg0qvHgbP3n9WRDgwFraWZ8oPvifQr4WSEmitILBv3Srinz1lwvxFf2prat15KhXzvxnH16PHExigS0tr2fFDylf2f+11vC6BvhMSyP7N67GR2lK6TFk+7t0HVw8d93kXCfSp01F07tz5H08i3AJsEYlEJwVBOGzMQCQSdQf6oWty8s6jbj1/KlavRVq+7mZasboPjRrl4ly+Hs1aCNSr401GZi5xKTZEK1xwKuVFQrY75vYCgiDQoFUjRlCG/l82IfjmUywtJJTysMfN1Q7zgj3+Ij6VJasvsGVXIGOHteLgng7Y2hY9cZwLyhqV0+UUUpiW+haMeRcSD14WcitT8IOe3oqt8Sm4H5R+WWHOVMkksYkyccYItMT4RVsSVc9UK9g1a9YAsGbNGrqM/gZnN3e69x/MbwWvHDVSKbKCAvAAGpuiv4Np555n4gZh7IZnOqvd+MWfZ0K1LQlMKcIlgVhs4gZhZO50NVh7lMHZN5UsLHAuUwHsXLB098Y8Px+t1BlHnwpkaiU4+lYEJ0/EgoCtdzJKtRl2XuXR2jhh5+2HhivYenhjk68hUyNB6+iJ2kF3slp6+vFcJcLKszxqqS32PmUB0Nja41K2PCn5WtzKlsfBW5dG4VlBQZZITNmKlZBKpUXUZqlUilINYPj3vMgqZTBWWChIfB7H+K8+Iyc7ix4DhhITFcG6FRMwdytFo1ZtsbG1NXqDNXXTiEgzfo542Rh5wwNGy+ylCWDlA2mAtCxkA2a2EJujgTzDKYqTnFO/HWDhjP3Gv+8NQ2xXBZ8CZ1Ta/tW4Q2nd/injAunpWchTkklNU6HWWqJW5xORkI9G48AHrWsyq5kLM+dpuXnzAWKxGA8PJ9zdHbGw1PlAmSyFWSsPs3L1YQYN6MyjTXtxcjJCdEWGvuZehgkCqDF+nLKNvZUx+YCcaXTcqK2JcVOilanvLB6PnKKQs3/zegD2b15Pj7GTcHJ1o8vXAzm+fTMf9R2A2kZKUiF/qLa2ITGz6NpN+bZstfH99yZgbazsKYARsmxqfaYIYElK0JWEAGarjT8JmzpeuSbuLwByWRIObm56m/h04+eTnaVx3yEB3Mv7IdjZ41RWVy3Fxd1IIyBMl7czJiwV/lvSUpKZ8GVP5AnxfDZ4OClyOUtmTsXK1o62n3RHamtncm5j43YmytiZErhUeYYO77rcSJnaP4Gm2LEJDjjH3NF/qgH/v/CXBFoQhF0ikegT4JBIJDqOrlvgy+YmvsDHQBfgoCAIu9/4Cv8FDO/fmG17b9Kgjs45Hz0VxaRRrVi3NZADR24zdtrvIAKf0o5s2R2Mr48T23aHkJ2jxsfLEVsbSyaM6YyZmZgmDXUneU6OmktXH3DqXCSnL9wjPiGN3t3rEhX4LaU8HEpe1/Mth1wmw61YTWVjlTLmTx7Lgc3r+WzgUGYsXg5QhCwXrpbxzcJl9J88w+CV43v8Z9BqNKTJk6jWsh0Xd26k9VeDCTl+iFJVaoIgcO/qeVr0GcSV3Zuo36UnLx7cRavR4N+8HVd3b6J5n0FEnjmMj39N1Lk5JL94zieTZnJx50b8O3QnPlqnNFZu3pbrezfT9POBRFw7h09FXVPTm+fP8NHAYZzYvI5P+/Yn5o6u5mfjDp05uG4VoydPe6N/7+MH9zG3sGD3hevkCwLBlwOIvBnCmd8OMGPw11SuUYvJ8xdRs0HjN/q9fwcy09MRiUSsWziX75auZMKXPf/V9fTqu5zT58PRaLT4eLng6GiDhYUld+/HoVCk4+PtypkTc6ji4IJYLKZBA905kJen5kbgXU6fucnpsyE8ehTPp5+04FbIOnx9S4HYhKr8jsJY6ISxxL1fpk3kyLZNdOs3iAk/LQUoQpa7fD1Q/5mx8xfTZ/w3OL6vnPHWIlmWhFfZcn9taAKn9+2ix9BRnD24l8q16gAQdOkCHT/97E0tkfjYZ6Qo5PweEgliMQ8iwzn9234ibwbz0zdjqeBfjTGz5tKkTbs39p1/F1QZ6Ugk5mxZ8hNDvv2BRcVa0f+neN1gmN7ALKAFsB5dzedTBT+3AL4HvnijK/sXkZGRy5mAB4SExRESFseZgAdkZOYScOUhj54oaVDXh9GDm7N11ec42FuTm6tBIhEz6KtGfDuxHSFhcahUecjk6Sxfe4EPe67AvcI3fD//GHa2lmxc3gfZw59YveRzHXl+hyGTKQzGJo8ZSRVvDyaPGVlkrFUFL34sdAIr5TIOFCgpBzavJ1n+qij6NwuXcSLqMd8UitkD3pPnvwHq3Fwe3QxE+SKO+zcukaNSER10hcRH0Ty/F05M0FVyVSoeBF4mOT6O53fDeRIWRHJ8LDFBl8nNUvEg8Cpxd8NJTYwn6dkjclQq7t+4RGric56GBfE0LIiU+FgeFtg/Cr/Dowjdv/Brl8hRZXLnykUSY59x58ZV7ty4SuKzp4RePE9OlpHX9P8BxLo4OMQFakndJs1xcffg0f17nLn/jOr1GnDq0D+j5v4neBx9j2a+brSrWpYKVatTv7mJRLt/CLFxCmIeJTJ0wAdkJG7i3q1F/Dznc8zNJdhKrVi/ahQP766jSmVdMnRycjpr1x2jW/eZuJfuyeQp6xCLxSxbMhp54mG2bJqqI8/vMFLkcoOxpVMn0K2GH0unTigy9mmNCvwybeKrzyrkHNm2CYAj2zaRong119j5i9l3O5qx8xcXmfs9eX67kaKQ4+zu8deGJhAZfIPszExuXQ4g+k4Y0XfCuHX92htcoc4/arVafQOVClWrU71eQwIDznEi4iHNO37IsT073uh3/h1QJCXSpYovXauVx8HZhSbtO73x73itToR6Y5HIHKgPvHxvFgeECoJgItrv3YNIJBIS7s7Ew90OlSoPQRCIik5i/i8XuBHyjP5fNOCbMW1wdLCm7SdrSE7JYuzQFgzq24icHN0rich7CSxdc5WzAffp9lFNunSsQdtWVXBykoJg4vWO0W5TrxNh8xoQG4kzLmEIh0yZh7t7URVo5NidrFm7gxHD+7J69TydnUyBR6m6epv7z5MAqOL9ymlceviiSKWM4go0/EmRelOvzYzYvw/heL25k1VqtJp8clQqpA6OZCjl2Dq7kpGRAYiwsLYhM0WJnbMrqrQUzK2liESQm6XCxt6RzGQFru7u5GVn8dNn7Ri94QAWlpbYubiRmCTHUmoLFLWvW8WH3AJibGljQ5pSgaOrG5KcbKR2L5MFM7F3csJanYeDk7PBui0LvfZNlssJvBxAjXoNcPc2fK1f2M/tWreS4EsB/Lr7kP5cyM3JISc7CwcnZ549jGFIl3YMmTyd3kNG6D9Xkte+YDqEw9nIsKl46aQc4+eqWqPh4NaN3Lx2hW8WLMbZ1Y18rZZ6LtZ/ewy0kLFd/7sgCNyJiOWXlac4fvoOg75uxaQxH+Hh4UDPL5cRFv6Mb6f2pu+XbTAviF+7E/6ElWtPcfC3K3Tq2ICuXZrQrm1d3NwcTb+JExuWK9QtqAQhHCZDFkoSwmEizMKIorzISJ3l4o1KjkQ8AqBbjVd/3+8RD/WqsjEFGkz7MJP5HUbs36YQDksjIRymYqCN2QJYGbk+TcUSv4kQDlP3qD8L4RjaoSWTFy+nUs3aQMlDOCwlElLkMhxd3cjJ0oXolPco9ZchHOmpqQReukAF/6p4lTcs21j4vP7j4F4ObFrHppMX9KEQ+Wo1GWmpOLm6IUuIZ+hHbfn4i74Mm/qdye98CVP7uiQ5SqbOd1PQCAIXjx/hxK5tTF++Fmc3d/K1Wj4o7fhG/eNfKtAikaj8y3/oiHMSEFrwLwnwKWbzzmPw+ANs2B5Isw9X4VV9Lj36bSfoZiyBp8cSEhbH5l3BLFl1kauBT/jjwFB27A/lwuWHDBm/jxrNF9Htq83cjU7k8Z0f2bqmPz0/qacjz+8oRo5bh4d3b0aOeVXhQiZLZc1a3VPomrU79Eq0u7srA4bpSMeAYSNwc3fHzd1dP9Z70LAiYRwzFi/nfHRsEfL8Hv8scjIzuLhzI1unDCdDKWf1iD48CLrCha2rObZ0NjFBV9g46ksykhXsmj6K4N93c3X3JnZPH0lmsoKNo78kOvAyhxbOIl0hI+HhPVaP6EOGUs6pFQu4vncz1/duZt+3o8hMVrB17FdE3bjK1h+/Y+uP3xF+9RJz+35GqkLOwnHDObhuFQfXrWLOkK9JkcuYN2mMybULgsD6pT/ToXYlDu3YQs+WDRnd+xPOHf2d1GSl0c98+tUAHkRGcHTPDj2xtrSy0pN03woVqdWwMQunTURTQsf9T+JOcCB1mjTD+V9QHR/EJDB34RGqNZhOt8+XUamiJw/vLGXh3D54FLxVu3I9msunZzKwf3vMzSWkp2cxZMRKPvxkNmXLluJ+5Bb27PyWLz7/QEee31EsnjqBLtXLs7iQopwil3N460YADm/dqFeindzc+KTfIAA+6TcIJze3ImPdijUvmfDTUn6PeFiEPL/Hu4sUuew/ak6TnpLM1N7duHX5IqtnTmP1zGncuvHnCvT+LRtoX8OP/ZvX0+/Dtgz7tDOnDu1HKUsyat+uWw8yMzLYs24l2gIyKzE316/b3bM0rTp3Yf3CeaiNxCu/LYgKDaZGoyZ/a8O016nCocVYpo4JCILwTgfzikQiwdfHEUGAHh/X4PPutWlQxwetVsBMYo5Go9Wrew6+M4iN+B5bqQVHTkYyespv9OlZl7nfdsbC2t54B8C3XIGWKbKKKM0yWSoevgP0vyc936ffbkyBBl0SobEY6MhYw0oZpjK+3yYFOuL6FarUa4giQVdlxcWzNPfDbuHfoDGPwm/j7qNLepPFxeJTrRZ3A69RqV4DlPEF9qW9eHAzhKqNm/E44jZuBUlyyvjnlK1W08De0d2Th7dD8W/UjCcRt3EtsFe8iKNc9VrcC7pGxboNUCbEgyDg4lmamLCi9mKxCPnzWMrXqF1kfkELzp6exISFUtqvIme2bcSxTAVcvH3RChr8ajckOugqFeo2JCEuDhECjqW8eXI7mIoNmxMbGYZjaR9EgDI+ljLV6vAw5BpVGzTmjzVLuH/jMuO3HeFRWDCVGzXn7q2bOHkWvLKPj8WnWh0ehVyjQ4dWyF7oqmW4eXlzPySIGs1aIr9/l1K+urq1CU+f4F+vAbE3Q6jTpBkJz3VVcUp5+RB0OQB1VhanDh/i+bMnrNl3GI/SXmRnZXF47y7OHD7InZBANh8/h3+tOgaJW5G3QvlhzDCk9vaMmz2f6vUaFtmuykhnUt9eODq78OOazVhaWWFuZoYgCARdDqBu40Lr8S5DWOA1GrVsQ+StULx8ywLgaW2Oq5GQozehQOfl59O1QXWWbN1Lpeo1AP4xBbqinweZqly6d63PFz0b06RRBV04TDEfVr76eM4cmUaFyhU5czaMISNX0qlDXRYtGIC9k4kqF++AAl1YbU6Ry+lSSFE+XqghiTEFGnQPfcYUa2UJyNV7BdoQb1qBTlUqOXX4IHZOzvhWrIRPOT8sCiXElVSB/mPPDvasWsaWi0GYFfwN/x8FWqPRYGZmpie33g6GYaBqtZqrp08ScPIY4aHBrNp3GF+/CuTl5nLit/2cOrSfW9evsnTnfhq2bGNwvj+6f5fZY4aRn5/PuDkLqNesZZHt+bm5zBjyNbk5OSzcslv/1jDh2RPcPb24HXSdhgX+sEKlKtg7Gj4g/90K9IiP2jJk+izqNm+pn/dNK9CvQ6D7lWRCQRC2/Ucr+pchEomEqFvL8a/ibfhapFh5tvqNRhIZ9QRXV0ekUiu2bJpO06Y1CibyxSiMOHyTEF6/nq3O/pnRYZksBXd3wyzW4uMjRy1hzdrD+tJx+nET9Zczc3ON1lnOMuVYjIybujBKUkrJFPJMZN2bCrPIVRvayxMTsbSR8sf65VSsr0sqiwkNpOOQ0RxcOJt2/YfzIFjXvb5Sw6ZcPbSXjkPHcXbjCvzqNQLg0a0g2g4czZHFs2ndbzgPQ3T25es15dKOtXw8cRYXNq+gXF2dfULMPZp+1o9jS2fTqu9wHoa+tG/C5R3r6DLxewK2rKRcnUaYm5vxMOQ67QaNKTK/lY0NZavX4fy2tXT/5gfObFyOX73GWFtIiLhyAYm5ORf3bMO/aUvSE5+TIpeTlZGBWCzG2lZKjioLibk5FpaWWNnY0KxDZ+6F3aRW46Y8jr6HOi8Pr7LluXszhGadPiI44Bwvnjxm+Ky5PI2+R98JU1j53VSGTZpK0KUAABq2bMPWXxcz5ael7Fi3Er+qurbMt69fpd+kqfw64xv6jJ7A+d8PIk+Mp06zllw7fZLRPy1lz/Il1GzSDIDzh/bz4E4YNra2tOn6Kd0HDcfK5lWVmJc3x7VzZyEWixk6Y5bRElcajYY/9u1izfzZjJu9gE49e+u3aQWBvNxcZo0YRNKLOD4bPJzmHT/kl2+nMHH+YjYv+Ym6zXSNiB5E3KHXkJEsnTGZZLVMZgAAIABJREFUvmMnEnr5IgA9+nyNnZGbm6e1IQEwRqoBItIMyV1OdjbTRw4i/ukTVh47q68TbS4W0czD/m8n0GFhYdSqVcvAPxZf6/AeXQi5chEnVzfEYjHfLVtNo9a6CiSmrmNT5MOUnzBGdE3ZmqockKqQG8QOS8Rio0l9y6dP4viOLXTpO4DRBfHHK2dM5viOLXzUdwCj5r0qT6bWaIzOXVLiasxdGfNVfwZjWo4J92jUtqSwlBifpCQE2tTxKkl5O2PXPZgm1mZiMVmZmexcs5yda1bQqFUbcrKzefrwAQlxsdg56IigVqsFQcDS2ppyFSvjV8UfX78K5ObkkpaajDovD4m5OebmFkjMzclXq9m3aR0bjp2lbMVK+u+zNVGhwlTpN41WS0LsM6LDb+Pg7Ix3OT8snV30+RwAD+6EsXTyWKT29tRp3orug4dja//KD0nNdc5m9+rlxD6KYdqSFUb3hyAIBBz9nV9+mEG/0eP5ctir/CVVXh75+fksnDKeqFsh9B48klYffUxE2E1CLwXo/fmXYyby9ME9Wn3UzWB+JyPl6kzB1AOPsf2Ur1Yzd8p4IgOvs/TYGSytdfcGc7GYzmVc/9kydu86If7/oKr/65Hc0KDVZGXlkChT4eXliqWliRJw/yL0pHj4J6xeNcnkuEyWwpq1uiqFa9as4YcfftA3MVm9ejV9v5lVpO7yS/ydr0fe480iX60mNOAPQk8do16Hj6jZuj1dR09CfvcW2nwNVRs0Zv/KpfT95lsOb1xL4xatUGVmcOPcaRycnElPTSFVqUAiMcfMTILE3AJBEMjKzESj0fD1pKk4OJe8j1Jebi4H1q/m5tVLXDt9EkEQcCvtxYPw2zyLiebGuVNYWttwNzQIkUjM47uRjF+0DKmNlKYdOheZS6vVkp2Tg7VUSotOH7Fw0hiGmmifa2ZmRtcv+1G+ij/ffP05zTt2xtbuVV02C0tL5m7YxtnfD3Du8CEWTZ2Io4trkWSufwNzJ44mX61m2aETr99k5Q2idu3ar2W39tBxcnNyePFC1x208EPO24JV337DCSPkd/mMyfoqFy8T9VIUco7v2ALA8R1b+GriVBxd3Rg9fzF9JkwxmsD3Pqnv3UF+fj77tmxg49Kfqd+8JTvOXsbXr6J+u1qtJkUhRywWIxKJEIvFZKtUPH5wn0f37/EgKhJrGxts7R2Q2tqRr1ajzssjKzcHdZ6aJTv2FSHPr4uc7GwOb9/MnaAbhAffQBAEqtSuS2ZaKs+fPCYzPR1P37KULlseKxsbwq5eYujMH2nX/TODh9yX/trG1pYWnT5kZLdOuocBI35EJBLRuUcvqtSsRd8Orej4SU99HWgAiUTC9CUruHjiKKcP7WfZ99Pwq1qdcpWrlPhvfJNYNfd7Ep89ZeFvJ/Xk+e9CiZII/xcgEokEIft34xtL0iDkLVCgZbIUPDy76n9PSjiKu7uTyXFTCjQYbxSQmZtrdBn/TQp0br6We9cvUaFeI5ILQjicPb14GBZKpYZNeRZ5Gxcv3TFVvoijtH8tHgReoXzdRqQk6uwdPErzOCyISo1aEFvIXhH/HG//WsQEXaFcnUakFtg7lirNk7BgKjZqQVzUbZxLF9g/j8Wnem0eBl2hbIG9xEyMUynD+c3EYpQv4vCtXpvowMv41W1M+IU/2DVrImNXb0MQoGrTljyJCKNm1coAJMY+o3Kdety6HECNRk3JUyjQoqWUdxlu37hKw9ZtiboZgruPL4gg/tlTqtatT8jF81Rv1JSk57rz1cPbhzuB16jf6gPi70ZRuowuBOXF0ydUr9+QGwHnqNKgsd4+4OjvXDj6G33HTcLS2kYfThEf+4SqdRtw/vhhHF3duR8WSkZqKl37D+ZRVCRN27YvcqweRoazbPokLCwtWfH7H2i1WnrUqcLYuQvp2K270WP+sk7snLHDsLVzYOK8hYBxZTMtNYWtvyzk6K5t9B0zkbrNWmDn4KgL4bh+lUZtdPundEEIh62lpUHIEvxnCvSzRzF83aEVO2+EIS1E9uGfU6BN3TOMqeVQsvCqf1KBTlXI6VP3VS373bfu4ejqZjC+73a0Xok2pkCbWkdJfdh7Bboo/mkF+tG9u/RqUZ9FW3bT3oS/KIySNmMxdj68jgJ9ZMdWDm3dwOfDRlGjQWNK+5YtQoyTkpUkPHvKiyePUSYl0uaTHji6uBqsL+5hDMtnTCYtWcGuS8EAfNmqIT0GDOXzQcOMruPlcVn83VSU8iTmr92CSCQyWqs5KzOTVfNmcfa3AzRp24Gh380m6XksvhUqYedo+Ab871CglUmJfN68PsvPXDaodvJ3KNBv4FJ5j7cV7u5OjBj+CQAjhn+iD9cwNb561SSSkpIMyPP/MrQaDb8t+ZGHt4I5u2UNZ7es4eHNIK7/tpuMZAXHVvxM4JEDBB45wLEVP5ORrODIsrk8DgvmwrY1XNi2hsdhwRz7ZR6ZyUr+WL2IkGMHCTl2kBuHdpGZouTEr/N4cjuYSzvWcmnHWp7ducmJX+eRmaLk1OpFhB4/SOjxg5zftBxVipITy+fx9HYwl3esI+j33TwOCzKY/875Pzix8mcykxUc+WUuj8OCeBB8jbLVa/Pbsp84sHgOGckKfv/1ZwJ+O8DZ/bvZ+vOPpCrkbJwzk8jgGxzbs52dK5Zy+8ZVln8/jRS5nLXzZnHhyEFO7tnB+nk/kKKQs2rWDO4EXmPvqmXsXbWMO4HXWPPDt6Qq5OzftJYju7ZxZNc2Vvw4k2S5jKXfTiEyJJBdK5aya8VSbl4JID0lmbrNW3F0+yZO7N3Bib07WDdXN/+JHdvIVql4cu8uioR4HkVFsn7Ot2RnvWoUERkcyIQeXWjd9VOi79xGo9EgFov5acd+ln83hT1rV/7pcR713RxuXDjLnLHDTJbNk9rZ8+XIcdg5OBJyKYARXTsyqU8PTuzdya/fTyVFLmP13O85vmcHx/fsIOJmyJs8FQHYt3EdXft8bUCe36PkcHR146O+uvyOj/oO0KvFjgV1loEidZYBRs9fzN6w+0XI83v8d8DPvyrTFi5j/aL5//ZSiuBBZDidP/ucD3v1watsOQNV2cbWDr9qNWjZpRufDhqGo4thfsGjqAhGf9yORm07EP/sKVkFTXXmb9rJrpXLWPvTjyYb/AAMn/Itj+7dZULf3qSnphq1sbG1RaPRMGzGLK6ePknf5vWZ/vXn7Fu36j/460uGo7u207Jzl/+oVGBJ8F6BLoZ3RYGWyRS4uxe9UGRJt18r1vlPx0vQqvavFGhBEBCJRPr/cwqSdQqP5ebn6x1CYft8rVZ/QRe2V2s0Ru1f/l/YXq0V9NsK2+eoNfpawIXt8/IN7fM0AulKOXbOruRmF5Rds7YhVSHDwdUdVVoqVja6Cis5WSosbB30ZeDyCuwlVtZkJiuxc3HV2Rd01FNlvCwbp8DW2UVvb2Fto7fPSkvFssA+KzNTZ5+swNZJZy8RgaVUajC/mUhMbpZu/sLrlz+8y6ElPzJq5RYcXNzITEulQmkdQchWZWLn6KQvk2RdcAyspVJS5HKc3d1JS0nGQmoLBa8C7Z2cSJbLsHN20RNaaxuprt6pmzsilQqpvX3B+jNwcHJGKUvC0tFJb//D0P588EkPOn32BWkpyUht7fT29k7OPH/xAie3V2WbrGykpCrkeJTy1B+vb3p/Qvuevenw2Rf0aVSLJXt/w6fg9WvS8zimfNkD/1p1mfzTUn3CiyAImBWcByKRCFVGBj9PGUd0RDjzNmyjfJWqRc4HjVaLSCRCKZPh7OZG4vM4Th3Yw+/bNtGgZRu+W76W9NQU/fqlBTHkxeFpLTE4d53NjZ/PkelFr6Xzxw+zev4c1p65rH+V/HKbGdDC0+FfU6DDU/OMXo95Go3B3/by+i5u/7K9dPFtxuYQBAGtkTG1VkuqQo6Di2uRbZnJSoMxQRD0JRQLj5mbmemvgyLrLngwK75GgVelEov7sOL+Jy8/36j/yck3bp+vNfRvOXmaIusqbG8M7xXoYuMmFM2E2GcM/rgDpyJijG4vjDelQBu7f6VkZemP5exRQ6jXvCVdvuhrdO4ME5UwCq9v3shBVK5dj55DRzLmo7aMn7uQmg11OT3JsiSmfN0bt1KefL98bZGSoYWPS15uLou/m8LlM6eYu2Eb/rVflat9idT0dKxsbEhVKDC3tODo9s0c2b4Z/zr1mbl6IxLJK99XUgXaGB8ovJ8EQeB24HV+GDWYlWevYl7ge1/aW5iZ/fMx0P+LuJVlvOB2SWqDagXBaIIdqAxsAaO2YpHxeNKFU8ZzaMsGegwYwpSCRiPGxvSQwNNkI2s2g8fFKn3lm2hVa+w1rKks5LBrl7l58TyNO37EjoVzmbpmM2u/m0KNlm3JV+cRce0yA2Yt4NexQ+gxYRq3zp4CoF77zhz4ZQGjl63n91W/4FXQqe7ujct8+d181k4cxqcTpnPr7EkA6rTtxO+//szwpevYu2AmlRs2LbC/Qp9v57Hvp1m06dOfsPOnitgPWrSGffO/o0pjXRLY/cAr9J4+l51zptLqq6FE/h97bx1d1bU17D/xHI+duBE3QjwhkASCW10vt71toZRSgxYrVlyLQ9Hi7u4WJxBiEBI07u6e/P44IRCSvO/td2/v/cb36xxjD8rh6dxrrzXnPCs7c8516zIALv2GcH3PFt6avoQDkydg46P44eLpnXCGTZrL72M+ZMC4ySSHXgHAMXAwt4/vYfD3szk89Rt6eCv45/ciCf5mFjunf0TfMT/yNPwqALaBQwjb9iuj5qzj2PRvsfBUjL8w9Qk+o79m91cf0eeLH3kWoeAt/QYQtWsNw2at4ejSbzH38EdVXZ206BD6fz+HHdNf8mItbSzcfLi1dSXvzF/PoSkT6OHdl8rsNEpyc6hsgM2ffcDQCVO4snsbTY0N9Aoeytn1y/hixWZWTv+MgGHDaayrJSE8lC/nL2HaqMGMnjKDmNAQ6qqqOqzX7smf4tg7oMN6zRo7jHcnzeDe1fMAeAwYxom1S/l69VbOLpyPiY09ra0tPIyPw8LLn7EjB/POxOnEXrvYgf98+SZWTP9Hp/VaP38cfd75iLjrl8nJzSU6+g5Hd/5OZXkZK2ZOxXPAEADuR4Qybftepr8znA/6euLi1weZrh5+Q4Zz48h+xs6az/qfJ+MR2A8bTx+ePErhy5GDaGyoR6aji1AixSOgHwPefIeti+ay4Pe9zBj7CV5BwUj15PQeOJQHMdEMc7Rk1satxIaFAjD2h5+6rBH4Ysw4vpk1j+mfj2bC7PncOn+aZlU13AP7sWfZIqZv3sGmmVNxCwiiUVmNuBtX+HTOYjZMHMd7E6dTWFjIL+M/540vxnXgh456q0t//HfL9Zyu30BlZqSzctIEZm7ZxcYZk3EP6AdAcnwsf/tpOr9+8yWjp8wg+soFWpRUsXX34sKOTXy7Zit75s/A2T8QJTUNEm5d4W8zF7Hlp/G8/cM04q5fohVlXPsN4sz6ZYz9dQuHF8/EwS+A1tZWUm6H8cHPC9kx9WtGfTeN4yvmkZGUgGvwEGrKyxT2/OmbFGdlYOPpi1hbtwOfHH6DpsZG3AcM4dTaZYxbtYXT65Zh6dILeBlPtvw0nne6iT8n1y7DwtlV8bxRYXw0cyG7ZkxiyLjvSbihiD8v/OuTpZs4vnQW9r4Ke34UHca70xZwatVC/N4dTVJb/HHuN4RLv63g70t+49Ty2dj6KuLJk+hw3pw6j/0/f8vQCVM68DUlhfTsP6TT2qipdHU0fXf7iK43nV1trFW72W2rdNOHvrtNZ1cdkLpju/ve6Urq/8CR0wAFRYWIZLIOKQrdjaPb8f2BtMSIO7eRG5t08Je4sFtMWf0bGgIBra2t1DY2kJOfR2ldXZf37CqdAjqmCkn0DcgvyKeospL8vFxqlFXIqaxU/KNAyMJDp9i1bAEfBvkyZe1mnLwVBe2v/6Dx2ZyFWHl488OHbyHT1aWlpRVrZxd+WrkeTYEQDaGQVkCmp3i599E3Ewkc/gYT3xvJt28MphVYsf8Yv06dyLifpmPn4tp5/rpY3ycZ6dy5prDz+LBbfLVgGcsnjGHkt9OIva74vnjhjzpmlvzyj48IeONtgPbvr99+/KbLefpX5K8N9J8kK6ZObD+K+vXT9F7fLP8RtqSwgOM7twFwfOc2xk6Z0f7fr3723yzu0zM2xcXXHwMzc9wDgxGIxLgF9MPEwZkXHREFYjGuAf2Qm1pg79MbALmpOT379ENTJMbCuRemdi+LETRFYpz7BKFrZIpdWzcMPRNznP2D0BSKsPfpg6XzS2cUiMT06OmGnol5J15DKMbBLwDzV3hNkRjLXt7omphh1dYNQ9fEDIueXmgIRdj49MXE4SWvIRRj7ROAtrEZlu6KnF1tYzNMHHuhLhTRw7svRvYv2ou1oi4UY+kVgJahGaa9FLxU3xhLrwDUhSIsPP0xtFPwymoaqAvFWHgFIDMyw8S1jTcyw9yzD2oCEeYe/ujbuSjaGTU1duIFGmpoGZlh5RPQYTxigQZJmgI0RWLs/ALRMTajpZcnra2t6JqY4dBbMZ8OfgFY2Du0/9QvEEtwC+yHgbkFVj3daG5u7rBejr0D2jccHdbL2BR7b8X66pma49wnCA2hiB7OvZDK9TmzcSXqAgFuwUNpqKtFz8S8E68p6nq9zBxd0DNVrK+mUET0uePI9A2w8/DGY8BgrHq+LHbTlhsw4rMvEYol7FuxGPfAfmjpybHp6YZAJMYjsB92bUfjKikp4d1vICe2bcTI3JLf5kxnwLsfYmxhiU//AQjFEryCgnFoewOjoanJ2OmzmTBqIPER4bj5KzY6QnHXv7Hy8O+LSCLFL3ggJhaWePgHUNHQiIGZBe5B/dv8JQhbV3cq6hppqKtDUySmZ59+6JtZ4D5gCMmRoWQ9e0qvvoHtvF3Pzl9G/0mRaGnhGaTwd/eAfti2zWeLknIH+3H29ef8np2c27oeK1d3ha34B9LDpReNrVBZUohAJMbZPwg9E3Nynz3mQdhNKosLcfR/aZ/mzq5UlZXi4BegsJHeCtvKSEoAIPHGZQZ98Q2NdXUUt7UcfHovmrcmzWzndU3MsHb3orWlFT1Tc5z6KPRbu3lhZu/U/mwvxtNd/LFy88TUzrEDb+PdG10TM2w8FfwL/9IQirD3DcDM6RV7FosxdXJFx9isvRuPjrEZdn6BaIhE2Pr2xdTx1fgjafffV3kN9W6S6f+Sf0oEIhHVFRX/sfuJZVqd/AVATUODqvJy1k6fRObTJ/xj8ox/6T7+w99gxddfoK6hgb6JKeavFfqpaWjw5ZyFuPoHsPjrzwkY+RajJ01DR6fzAVaBI9+kl39fyooKyXz2lIXjPyf4rffo/VpB9wvR0tXl+wXLuHTkIGUlRQjFEryDgjsUJP5voq6hiY3ry3guFEtwDwxG19Sskz/qGBlzYtUiKsvLcPZVvJQSiCX49R9ITFjIP33Pf0b+yoH+E6SksIATbU30T+za3uGI6hVTJzLC2YoVUyf+r+zyqRMZ5tSD5W0sKLpevPv5lwC8+/mX6Mj1u/zsvymaQiE6hkbcvX6FN8eO5/T2zXgPGEx5YR6l+bl4BA/mws4tDP/8K+JvXkVb3xBtfUPibl5lyGfjuLxrK87+gZQV5FFWkEevfoO4umcrgz4dR3JUaDufGHKVQZ9+ydU923ANGkhpQR6lBXm4Bg3i6p5tBH7wCYkhVzvxkScP0jNoIOUF+ZQX5NMzaCDX923D//1PSAq7jkxuiExuSFLYdXzf+5SIg79j33cgFUX5VBTlY993IPfOHqb3h1/wKOI6Ej0DJHoGPIq4jvubH3PnyE5s/YOpLMqnsigfK9/+3Du2C8/3PuPZ7RtIdA2Q6BqQfi8Sz/c+496xXVj7BVNZnE9lcT7mnn2IPb4Lj3c/43nUDcS6Boh1DUiLvoXbO58Rf2IXln79qSouoKakAKvewZ15HTlPIm/g88HnHcajIRbTWF/H+bWLCfjbGJLDryOTG6Clb8CDkGsE/30sN/ZtxyVoIGVFhZTk5+E1cAhnf9/MqDHjibl2GZlcv9N6uQYN7HK9kqJC0NI3REvfkPibV/AcPJJ986eTl/aMrZO/RtvAkCk7j3LnwkkGfTqOxNBr7XzCrasM+nQcYUf3drlefd75mMRb19DSN6BnYDAm9k7kPnuCVE8Pj+DBlObnttvb+V3beWPMeFTV1JiyYRu11VVMeWsImU8fM/fzv6FnaERxXi7Febn4DRpKxKVzjJkxl4qyUhw8vDiycQ1LfhhPv1Fvc3jzevoMGU5RXi5Febn49Avm3IHdqKqqoayijNzIGLmRMbmZGV36h1//gez/bS2jJ/xA2KULyI2M0ZLrc+faZd4a+zWntm/CZ+AQivNzKS8pwr3/IC7v2sqQz8YRd/MqAW9/SP933+foxrWc27WdWX97l6Lc7P/68bpZz57y9pcTOLntN3wHDW2fT/eg4A72o66hQWLoDQCeJ8Zx+rfVuPcfRGlBHqfXLefYrwv59fP3GfTpl9y5cJIHYYo2iNFnj+Ez/B2u79tGz6CBnN2wgo3jR/M8IYYb+7YT/PexpCXG4j5oBAA2nr4MG/cDdy+cxGfUuwA49emP1/C32vkHIdeQ6emjpW9A4q1rDPzkS67t3YZzn36d4smgT78k+XZ4l/HH2T+IsoJ8ygryce03kGt7t9Hv4895EKKwz1f96/bJgzgFDqC8MI/ywjycAgcQsn87Pm993OaPiviTHH6dgL+NIezg7zj2fck79h3AnZP7X/Hfl7yxvfN/Z/H/HxFjix6oqKpyp6315p8tcmOTdn8pys0hLeUhQomUrfNnMWFoENp6ctadvYqheTcpof+kWLm48vaEH7i8fzf93/uoW8534BA2Xgmjoa6Orwf4s3HWNPav/ZWEyPAOnExHFws7B6yde+ITPIiVP33H5nkzyUp91kmnqpo6Jj2sSH/6iNHf/sihTevoO2QE1VVd/7a7K1EXCCjJy6UkLxfvAYM5vX0zb44dT3JUWCd/LM7J5r3vfiTi7Cnmf/ohjxPiWPbVZ0iknVuK/qvy1xvoP0F05Pq889nY9rfKLza0r2+Wx7S9Ke6O7e6t8tTlazq9Ze7qs/+WlBUW8jQxnviwW/gNGU5c6A1c/Px5lhhPXU01YpkWiWG3CP5gNMnRke3/X1JkKJ4Dh3I/4ha23v48uhsFgEiqRVJECIHvjSbtQQKNDYrc64dRYbgPGEZSZAh2Xn48jrmt4GVaJEWGEPDexzyMCmvX/4LPfHgfMwcXnrTxQqmM5MgQPEd9yJPol4HiSXQ4tn0G8zQ6lB7uvqTGRQMgkMjIe5JEQ001z+++PAXq+d0IrPsO4vmdMMzdfMiIV/AqAglpMWH0HP4+6fdePm/h80f08AkkLSYM017eZCUoKqM1pDqkx4TRc9j7ZLzCZydGY+U/gIx7EZi4+pCTeAd1kRh1kaQTLxQKSL0bjn1Ax/GIxSKsPPxIibzJwLE/8CQ6HE0NNVqamki5HYZr8FBSokKw9fIj/34CVRXliGVaxIfeYuBHfychPJRmZTUaGxo6rJe1p18365VIU30DualPuXlgJ0KpFs2NjTj1CcTJPxBtAyNK83Lb+cd3b9Padtz4w6hQPAYOIy0xFksXt07rFfDu30iOCiPm0hlamptJS0pAJNMm/tZ1gt75gOQ7ivGIZVo8vBNF8PsfER8eglvfIPyGjKCxoQEdfX1uX7nI8u+/wsXXH2NLKyRa2jxOiKX27fdJf5zCkI/+TmlBPtePH2b80H4oq6iga2BI2qNkALR19Ii+fpXczHTSHj8iJT4WACsra3rY2Xfyj9ysTG7fuMZbn35B9K3rNDY0kJqZxt3rV7l/O4KUezE0NzWS+jAJfSs7BCIx9yNu4dQ7gBPrltPS0kJzQwP1tbW0tDRTVV6GnpEx+V18ef0nJSftOQZm5twLuUFPvz7cv62wRQ2JrIP99OobiINPb1LuRNH37Q94EncXt34DSQy5wf3Q6wCk3o+jMDuD54lx7b6tZ2qOmqYmyZEhmNg68DBcscm5c/Y4lq4e+L/zMSm3w3AOGICFixtp9+Ooq6kmJSqEUd9NQyY3pLmpkeLsTFKiQtp5VVUVWltaSI4Kw23AUB5GhODg06eLePI3Mh4m0livqPx/Nf7Yevd+hZfxMCIEnzc/IuX2y/jzwr+yUh5g5tiTZ/cU8UEo1SIlKhSPLuKPc9AQntwOw8rdl9TYl3xmUgJuQ97qxHsPfxvlbjo7/CX/u6iqqjL8o9FE37yGT1D/P/1+Lc3N3Au5gbZcn99mTQXAzMYOmY4u3y9ZhVe/4H/5HgdWLqW6vJyE8BBU1dS4ceQgQW++254j/LrIdHT5bukqnt5P4FHMHUqLClny3Ti+mDaLQe9/3CHP3sjcgvk7D5CXmcH5vTv5dtRgHNw8GP39T/Rsy7Gura4mOe4eBTnZ6JsYc3jLetz9A6CxEbMe//vh1Q319aTE3OHU9k1UlBRj5+ZJSswd5CYmPI29Q2N9HQDxN68Se/UiT+7dRl1TQF11Fc1NTdw6fhhtuT6xUeH/y53+uPxVRPiaKCkptd4r7rqJ+b8jB7q7dI2u2F+nTeo+r/lflO6e5Y+c9NddLlpNbS1NjY1oCoWUFxWhJZdTUVpCq7riRMS66irEWtqUFxUi0NKlvq3rgYZQSEVxETI9OSXFJQhEYsW9XymGE2nrdijmqywpQqorp6qstJ2va+PLi4uQ6nTmBVp6VJeVovkan5+bi0RX3qGYryi/EImunJryUjReGY+6SEpVSREibV0a23g1gZDy4kJEOh35yvJKBFItqkuLEGrp0ljXxmsKqSkrRqStR21FKepCBV9bXd0lr6SmSW1ZMUJtPeoqylATilBVUaaxphrN13ihmjJqAiE1pcWIdPTaxyPRUOXsyrkWkvz6AAAgAElEQVTomJjjMeJdxNq6qDTVoaSkeN4X81ldVoqlsS5KvCwufFGYVVxa2Wm9SotL2ufz9eLFmspytkyeQM++/fEd8RZSXTmVZSUIRJIu+dfXS0Om2+V6VZcq+KUfj0TPzILADz5B39yS/b9MxsTajtHT57Tbm1yu1z7+F102NIVC6svL0ZbLiQsPYe2UH1BWUaHPsFGMnTm3/RCMF8WLMomU7NTn3A25we5VSxn49vt89tN0xVqqqfGGsxVXUvOpaxu/gXbnX38C5ObmIBCKqK2p5tTenexctQwzW3scvXyQGxlTVlRETnoqd65eYvTP8/Ed8SYJt65xaMUCho+ZgK2HN9piTUQSGSu+G8c7X32DW0A/bI2M8fsPFBFeyy7t8t9qGxspKypEW65PRWlJewpLSWkJEm2dDvNfXd/cvs4yPYX/aorE7Fk4i7BjBwj84O+MHD+x3R5KC4vQNTHrYJ9nN64g4vgBfN94n7/9svyl/dTUdGnPGiIxSry0nxd8S4Mi3r8aT2rKShG0jf91vqv4U1Fa0in+FBcUIHmlmFj99fgjbvOX6mqEMi1KCgo6FB+rC4RUlRYj0dGjuvyl/b/gXy0mfsHTVI+6ZueTZ/9IDnR3+cF/JAdavRvdmqpdF+91ldvbXeuy7nKPu5LunqW7zzVUVNixcinVlZV8N3fR/3i/f0cOdHl1NSqqqiz5+gtMeljz95+mU1tdhXY3/fT/T3KgF30xGjV1dQZ9/CmufQNZ88N4hGIJ37xyOmZ3pzu+yIHOePKIuWM/pb62hsCRbzJ25rwue9A31dZw88xJdv66BN/+Axk/ez4SmRb1dbWMdLBgX9g9jC0tKS8pxqDtgKXXpaqujvraGkQSKcd3bGXD3BmYWNlg6+aBhb0juemplBbkE3nxHCO/nsSAv48h/sZlTqxahPfwt/Ab+Q4arQ2IpTJ2LZ6Li18f3h7/LeL6OoY5W/1b46PK3Llz/126/p+QefPmzR3z03TysjJpamqirraG0iJFTl52eiqqauqUFRdRU1WJkpIS+dlZCCVS8rIyaW7jS4oK0RQpOhGoqqlRVlJMTVUVSihh4+TCJ9//iIunTztfWlSIjr4BOelpHfiAwcMIGjaSUaP/0UH/i/G8zoMSBdlZCCWSDnxxYQFCcUe+uqoCJV6MX0J+G19T81J/boaCLy8pprK8HCVlJQpzshGKJRRkZ9HQ2EBdbS3lRUUIRCLyM9NRVVMj5uZ1rh89gLKKKjsWzMYjMJjNs6ZSUVbK0/h7XN2/G0ef3mz46Ru09Q25eXgPydERKKuocnDZXHr27cfJdSsoysog7UE8Nw/txs7Lj+3TvkXL0JjQw3t4FB2BsqoKR5bPx8k/iEOLZ1FeVEDagwRuHdqNracfh5fOQSiVEXpkbwfe3i+QI0tmUVFcSHpSAmFH9mDj4cuRxTMQaekQdWI/T2MiUVFR4erWNfTw8OPsr3OoLC4k62Eid07sw7ynFycW/IhUz4CY0wdIjY1CWVmF8L2bMHf15tLqX6guKSI3JZG4MwcxdfXmwuKfEOvpk3DuEBnxt1FRU+PWb4ux9A7g2tp51JQWkffoPo9CLmBg35NLS35CpKfP/XOHyIy/jZKyMuFbl2Hu2ZdbG+ZRU1JE0fMU4k/vw8TVuwOf/+Q+LS3NXNuwGGufgPbx5D1OIuLQDgL//iVnV81HKjfg7tnDPIoOR1lFlZMr5+PgH8SRJbNoqK7kUexdLu/bhZNPb9ZM/BodAyNCTx3lfvitDuu1d8GMtvnvuF4SbV02fj+GmvIyfEe8w7GVC3Hu04/TG37ten31DQk5soeUNns4snwe9v5BHF48s9N6nVqzCE2RmLT78RRlZeLoH8CJXxfxyfRf2D5nCkKJhOf347m6fzcufv6s+WE8OgZGXN6/m/uRbc+7ZQNO3r7sX72CPiPeQM/IhEsH96CsosLhDWvQMzLi/J6dxEeEcnTLBjbNn01Jfh6NDQ0U5GSzf/0qctJS6dUngCOb16NnZMy1E0eJDQvB0sZW0ZVDIiUvK6M9nozu58fZg3uIuHIJj75B3Au7hVimxZDR/+DGscOMmTWP2JAb2PXy5Nbxg9w4tJfb50/SWF9Hyp1IIk4f5cbxI9w8cZTaykr+MX02m2dPo66qkvCrl5g7d+68PzM+Dnr/Y4QiMXkZ6e3xoaaqivzsLNZO/QHPoGB+mzGZksICHifEcvPEEezcvNrt58qB3Ty8cxtNkbjdfvbM+5nyokKkckNaaeX9yXP4ffp3aOkbEnpkL1lPU6ClheO/LsCxt8IeTB2c6eHqQUleDjaevuyZ8T1acgPunj9BclRIJ3uurawgNeEeYUf3duAjTx4m5XY4yioqHFu+ACf/IE6sXkxJXk6HePL79O/QMTIi5NDeTvHn5JrFlORmk/YggZDDe7D19GXfL1OQ6ugRfmwfj+9Gto/H1jeQE8sU8ScjKYHIY3ux8vDlzOqFaIolRJ/Yz7OYSJRUVDi/ZiF2foGcWj6byuJCMh8mcPv4PizdfDg8ZyJSuUEHPj3hLkY2jpTl5dDS3ERjXS1VJcUIRCJKsjNRUVOjuqyU+ppqVFVUUFHrnDPd/Yaxi8+6KRbsroiwu41rV91Duuqq0R3bnfzRza+qsjJr50znvS/GYWxu+T/er7vPu3sJlZWWiqqaaru/KCkpERcVwZ7lC3l4NxrP4IFkPH7E5YN78AoagGoXa1OYk42mUEhBdhbNzU3U19ZSkJ+HQCQmPzMDVTU1KktLqK2uoqW1leLcHCTa2jyOu8eIz8bSWF+HXS8Ptv7yMz4Dhyp+CCwtob6mGiUlJYpyFd/vhW36m+prKSsqwtDMAp/gQfQZOoKze3aQl5mOvZsHRbk57fuB7YvnsnDCl2SnPsPe1Z2ivBx2rVyKSQ9rzh/YQ0F2NpHXLtJ36Ch+nToRPbkBQrH4lf1VGmpqasz+6jO2LJ6Hd78BiKUykuNj0TY0ooeTooYq41EK4+YuISEilKTIUKLOHCfy5GHqa2tIvR9H9NkT3DpxhFsnjtDU0EBzUxPOvv6snDiB7PS0f2t8/GsD/ZrMmzdv7tvf/cjjlGSUBEKqGxrIyEhHKNcnKvQmOuaW5OTlUl5Tg7JQxIOEOFo1NMjMzEBZKKSmsZHMNv5+bAxSIxNy83KpqKlBRSQiJek+Bja2PHmU3M5nZKQj6oJXFop4+jgFqYlph/FkZmci0JWTGHsXiZExObm5lFdXg0BIUkIcUmMTnjx6CJoCqhoaSEtPQ1NPwYsMjMjOzaG0sgqEQh4kxCE2MuFxSjKtmgJKa2vJyEhDXUePxHsxCPQNyc7JpqiimhYNIUkJ8WgamPAkJYVmDSE19Y1kZWaioaPPw7g4hAbG1LUoY+zYE90etkj1jdCytEVmYIyJsydyK3vkljZIjC2R6Mox7umFlqklRg6u6PawR6pvhLalHZpaupi7eiG3skPPwgapiSViXX1MXT3RNrXE2NEVvR72yPSN0O1hh1TfEIte3u28zNQSTakMs55d8fbIDIwx7+WN3MoePUsbZKY9UJNoYdrTC+328Tigoa2LjqUdUgNjTF290ethh66FNUJDS4Ta+hg4eyE1tkBu1xNtSztUJFqITW0QyY3Rd/JEZm6L1KQHYmNLhDpyDJy9kBhZoGfrgsTYGpGeIRJTW0R6Ru28WN8UkYE5Qm05+o5eSAzN0bNxQWZqi1jPCJmZLSK5EYZOnmiZWSMztUJsaNGB17GyR2Zmp9BvZts+HiUVNZ7dvknvL39GoK2PnqMnArkp2tYuCE1sEOgYomFkjUDPkGZDR9DtgZq+BWUahiiLdcG0J1rGpmhbOyMwtUGga4iakTV2tj1w9PbD3N4RExs7TKys0dY3IPTSRVBWYcTUpch6OCHUM0TTxIZGDS2ktm5oGFsjMrKiScsEdZkeKuauqOqaIjR3ArkV6tr6KOlboa5jiNTOHQ1ja4TGPWjWNqVJTYSGhSv1Dc2U5GRgOWIM6tr6INEl+cZ5/MfPRmBsg9ikBzITS4Q6+hg4eyAxtkDfvidSc1skOtpITK2QGhhh3ssbMxd39C16cH7HFsqLixjyxVeYOjhRXV3NvVvXGL9gOb2HjaS0sIC8rAxU1NQIGPUWjr69KSnI58T2zfTqG0j/dz9Ax8iYpIR4dM3MefIoBVWRmLqmJs7s2YGtqxupj1MQSCS0osSjuHsEvfMeDp4+mNk7Ijc2xX/4KPKysqiuKKO5sZE3xn3LlG176D3ibUZ/OZ4vps7Ewc0dp17uGJlZ4OXnz96Na/70DbRN0BBapDokxMSgrGNAZnYORRVVlDWpoGNmhYaxFSK5EQbOnkjNbWjRkKJmbIOmthxtew9EhhZILZ0Qmtgg1DNE3cgaoZ4Rek6eCIwt0bG0Q01ujqa2HF0HT0SG5kgs7BGa2iLUNUDD2AaBnhF6jp7ILJ2QmPZAVc8cDS05WvYeqOoYoW3lgqaJDZq6hqgZWqOpa4iObS8kpradeKFBmz2b2CLQNUDNyAY1mR46Dh6ITG2QmlihrGeGppYeYms3BAbmaFk5o2Fsg6aOIaqGVihL9dC290BgYoPYuAetOmZoynTRaRu/jo0LIlNbhLqGij/1jNB38kJqbovM1AoNAws0xFIMHD2QGpsjt3NB28IOsdwQLUs7JPrGGPf0RsfSDh1za2QmPRDp6mPs4o2WiQUG9j3RtbSnobYGiaEZeanPUBFKaWxWbKK0DI1IT0pEZmRKWXER9fUNiLW0UFJWpbWVDpdqt5tfJZSUOl4aqsqoKCt1ujRVVVBVVu50qSgro6yk1Ol6XW97a7Iurpa29oWvX3+Ep5vPS4oK2b16Gd8t/pUWoLnt8+Yuror6emqbmjpdjc3NXV6PEuPRMzGjuLCA+vp6hFIZx7dupKywkOUnL+Dk5Yu1iyt+g4dT09JKXVNTpyshPhEVbX2eJKfQqCagvLaBtLQslGVyHsbFoq5nRHZOHqWVNZS2CHiYmEirSJd7F09hFvQGxdWNZKWlEn/1PCaeAajqGpGdk09tbR2tmiKSExMRGJjy7NEjWtSF1DY1kZmRjrquPknxsRg6uKBnZsnprRs5tXMrMmNTDGwduHX2JJf272bx4VPoGhnTqqTE3RuKblB6ZuYEjHoHuYkpoWdOoSGV0mfEm5hY2VDf3ERWZgYyA0Pux8agY2rGgQ2rMTK34Nj2zeRmZiDV1ibqykX6vvkOPkOGY2Jti2EPKwzMzBFKtSjJzaauppox85YwePRnfLV4JcFDhvL5jz8zavQ/sHF0wsHRGSNjYy4cOfhvjY9/FRF2IdsX/UJLSzPhF84SfuEsYpmMr4J7s2T8F/z41lBy01PJTU9l36plhJ8/wydezpzZuY2IC2eJuHAWsUyLbfNm4eDpzb5VS8nLSCMvI439q5dh28uddVN+QCzTIvLiWSIvKvjfF8zuxB9atxIHT+9OvEgiZd2UHzrxZ37frOCnTkQk1SLy4jkiL55DoqXFhqkTsffw5sDqZeSlp1GYk8Wh1Suw9/Bm47RJiGQyoi6dIyH0JiKpjC0//4iduxdH1qwgPyOdwqxMTq5fiY2bFztm/YRQKiPh5lVirl5AJJWxc/ZkbNw9ObX+V0pysyjMzODsb6uxcvNk7y9TEEplPAi7Qfy1iwgkUg7Mm0qPXp5c3raO4qx0irPSubxlNZauHhxeMBWBRErijUsk3riEQCrj6IJpWLh6ELb/93b+ytbVWLh6cHTBNARSrU68uZMbl7es7sRf2rQCgUTG/ZuXuH/zEgKJjOOLpmHq7M6N7Wsoyc6gJDuDm7+vwcTRjfPLZ6AplpIScomUkEtoiqWE71iNsbMbkbvXUpabQVluBpG712Fg58qN1bPQEEt5Fn6FZ+FX0BDLuLlmFoaObtzZu46K3EwqcjO5f2YPBg7uhKybjYZYyvPIqzyPvIq6SELIutkYOLhzd996KvIyqcjLJO7IZgwc3Ahdr+BTI6+SfvcWGmJpJ74yP4c7e9dj6OjWPp6nYZe5fWAzcit7rq6a9cr4M9vHb+zsxpWVM9EUy8iMCSM18ioaYimh62dj4OBGzP4NlOdlUZqTSeiOtZi6uHN++QxEUhkxV84Tc+U8QqmMHbN+wsDCisSLJ3AZ9AYVBTmE7FyLqbM755b9jLpIwtPwKzwNv4KGRMr11TMxdHIj9tBv7c8bs38DBg7uRGxbppif8Cs8D7+ChljKzTWzkNv05O6+9dRVltFQXdnO39q2ApGOHo9CL/Mo9DKaEiknls3B0tWDS5tXd7Q3l17smaOwz9hrF4i9dgHLnm54DRqK18AhLB/3D/Iz0gk9eZTG+nqMzC25fuwQH0+aipO3LwKRGNc+gaye/D1jZs7Fq/9A9qxYTGJUBMe2/oaLtw/LJ32DWKZF6LnThJ47jf/g4aSmPOTLn+eQmpKMjXNPfli1gYSw0E7+CIo+xbYe3gz7fBzH1q6gIDONvMx0dq5YhLO3L8smfYNEpsWtC2f/I/FRIJWyY/p3WLl5cnbjKgozMzj260IWvxlAwvULCv+Vyki8cZE9079h7+QxrB89BDMXD663+VdZbkYHe9CUSEkOucSz2yFoiqWcXz4DUxd3QnesoTQnk/K8bCJ2rcPY2Z1Lv85AUyLlcehlHoddRlMs48rKme32XFmQQ1luBrf3rMPIyY2rbfaceie0S748N4uynMyO+sUShf42+7n06wyMnd2JPbG7g7+/8BcNsZQnYZd50qb/6sqZGDu5EbFrLWU5mR30h25f+XL8r+p3dCVs50s+bOc6TJzdu4w/1zctw9TZnZAdayjNyaA0p20+nXpxasl0BFIZD29e5OHNiwikMk6t+AULV48O8TDsyH+36PT/Rrl89CC2Lq5dpif8q+Lo4cWeX5eQm55GbnoaO5Yu4PaVi4ybtwSNLtJuuhIzBxd2z5msiFdXLxB79QICsaT9+/T8plUUZWVQlJVB1NFdmLl4ELZ3My0tLe320NTYiLKyMj16ebbHw4LMdE5vXIm1m2cH/Qkh1xDJtNg+8yds3bw4sXYFzY0NfDF3MXrGpty+eI4tP//I/YhQVFRUiDh/Bmef3pTk5zH2l4XU1lRjZGlFbnoqOWmpLD9+ju0LZlOcl0v0jSuEnjuNWKbF8knf4OLtw87li3Dx8qGutgb7Xm44enhSlJfHL/uOUV9Tw+2L5xDJZPw2fRJ2Ht4U5+VQmJ3Jm+O+Jef5M+zcvdjy849IpFrcOneKW+dOIZFps3TiBFy9fP/ta/rXBroLiQ8PYfI7Iwg5ozhQpaK0hKxnTwFIffiA6opyAOpqa7hyaB8AoWdOtJ/u85f8Jf83Sm5SLEWpj/H5ePx/5H5hJw6hZ2mLQPLvr35+VZRVVWlpUhzSU5rxjKqiAoRaXecf/7OipKTEW+O/pyArk8zHKYwc+zVGlj2Y88n7lOTnAeDg4c3wTz7vkMenLden95ARRFzsfjM7+L0PKS0qJPVRMnaubnj1C+7yqNvKslJCTxzhjXHfIu0mJ/K/IRc2r+Xe5XMcWzEfgJrKCpJeFPSdPtxe1FNfXUVqvOI0xqKM51SXFnet8C/5S/4vkNBzpzm9aztTVq7/j9wv/XEK9u6emFhZ/6n3UVJWprlRkSddVVJERlI8av/khv1/EitXN/LSnlOUk80730zCztObc7u3E3PzGgC+g4YS+MbbqL6SX21gZo5Nz16c37uzW70+/QZQVlxEbkY6b302FnMb2y5PFqyprCTy/Gn8R7yFpZPLv/w8/yfyVxHha6KkpNRhQjZdC6e2qoprxw5zYd9Ohnz8CW9/OQEAfRNTlnz9BXdvXKX30BF8s2gFAHkZ6di6eRAXehMXX38KsrPa+eR7d3H178ujuHvtrWnyMtKxd/fskn8QHYl7YP8OfEF2Jrau7p14PWMTkqKjcA/sx+P4exiYKfic9DTs3T2JD7uFs29vCrOzaGlpRW5qSlJ0FG4B/XgSH4uBmQX1zc0UZmVg08uDxPAQHH38KMrOor6pFT1jE1Lu3salTxDPE+PQMTFDCSjMysDK1Z2kyFDsvXzJzcwCWtExMuHJvWgceweSdj8OmaEZKEFxdiYWLm6kRIVi4eZLaV42ANqGJjyPjcbOL4D0pAR0jEwABW/u4sbj6DCs3H0ozct5ycdFY+cbQMaDOHRNzDvwT+9GYtnLq6P+uGisvQPITIpHx1hxKmRJTiZmzm4k3w7D3NWb8nwFLzMw4VlsNJZefchJTkDLSMGX5Waia9OT9HsRmLp6U5GvGI/UwJi0hBhM3fzIf5SI1NBUwedkYuDQi8zYCIx7elNZoOCFOobkJt3D1N2fglf4yoIc5LYuZMVFYuTiRdULXteQvIf3MHXzp+BxIlIDU5SUlajIy0Lf3rUDr6qmhERuTM79u5h59CH/USJxx3Zg6eGHvq0zRg69uhx/VuJdLDz7kJuSgIqWEUqtUJGfhb6dK1nxkRg5e6FWVwStrcgMTciIv0MP776o5D1C31Qx/y/sYd/CWTx+8IARkxeipKyMzMCE9IQ7WHn35WlCPBIDYwAqcrMwcHAlIzYCPQfP9ucV6xuT+yAGC68+HeazIi8LA3tXMmOjMHDyIO9hLNeWTsIqYCjPwy8jlRtg1suHPp98075evXy8eXw7DCuPjvaWlxyLg08fUu/HoddmP0XZGbj5eJMYHkJNZQUHVixiyqad6Orq8PP7bzJl41ZobW33r5LcbOx6eRAbepOevv48uR/PkgljGTt9DroGBngFBZMcG4ORhSWgOO0s9PxpTu3Yxv6oOKqrqqior0Nu0tkfI65c5ODyhYxZsByBSIyDjx9F2dkYSkQYmJqREBWOd78BPIyNwdbahsGOln96EeGrf194MULRFnHzWmIuncGxTzBfrNpGxoN4dEzMOL9hGTHnjuP91t9wCBiIpZsv5fnZNDS1IjMwbreHnIcJaBmb0dzaQnluFsaOvUi9G465mw/ledk0tSr6pmcm3MHSqy+5yQnIjMxobWmlLC+zgz2X5uWgBEgMjMlOvIu5Zx/yUhLQNlLEq9f5qsIX9m/yUn9KIrI2eyvPzcTIsRdpMeGY9PSiIj+3jX/pL9mv8YYOvciOj8TM1ZuKtnjSQX/b+F/VnxUXhWlPzw7xJyPhDtY+AZ3ij6mTG8/vhmPRy6cDn5cch5Vnb7KS4tFus+fS7Axs3Nzb4udL+zc2N0dNvXMnhu5OEeyq6FBTrbvTArt+g9tdXnNX8keKBbvj/6dc59dl45zpGJtb8v64Cf+Ujpq2k3X/WYkNu4WLtx/52YoThh/Hx7J39XI2XAlDTV39Nd1dF+jHRkZh4+5NamIcem3xNjs9HQuXXqREhWLj6UdJrmI/oCIzJC3hDsYOPVn9fj+c+w/jUfh1BBIprsFDsfHs3R4Pxeoq6Bqb8DgmGif/wHb96mrKFGamY93LgwcRIdh7+1Gck42aihJ6xiZc3ruTi7u28fXyNegamrB52g/0HfkWb40d374/KcrNhlbFfuZ+dCT2bp58P6w/oz75nOF/+4Tc9DQcPbyICblBL78+FOVkc27/bo7/voXJK9Yw9IO/ERERin5bvM1v218lhIVQV1fHlhk/MewfYxk5djzJd27j2jeI8mePMDazBCAnIxUnD2/uh4fw7ftv/FVE+GfKvHnz5g5470NSHyZh7+6JkpIyF/bvYsKCZWQ+fcLADz7m4v5dPIyJRlMkJvTMSRYfOknkxXPUVlfxPOk+F/fvxrPfAFZ+Px4zG1su7d9Nckw0ApGIKwf34ezbm00zp1BbXc3zpAdc6o4Xi/l9wRz8h4/qwMeG3MTew7MTL5bJ2D5/Nn2GjWTTzKmK8Tx8wNXDB/AI7M+qieMxs7Hj8v7dZD59jLKKCrsW/ULvYaPYMlvB56ancWnPDtyCgtnw4zeYWNty7eBe0h4+QFVdnUPL5uM1eAS75/9MU0MD6UmJhBzZT8+A/myd+i1GVrbEXr/Ew8gQNEUijv26AI9Bwzm4cCbNzc1kJCUSeXw/jn36sWfmD+hb2hB1Yj+pCTFoCkWcXrOQXsHDuLF7E+X5eeQ8fsjtkwdx6N2PA7MnYmRjT9SxfaQlxKAhEnF29SJcg4dxeuU86qoqO/AXf1uBVFfO7RMHOvAuwcM4tWw29TXV5Dx+SPTJg9j79+Pc6vnIDIyIOXWQjMR7aAhFhO3bjI1vEJdW/UJDbTX5T5OJO3MIS+9ALiyZjI6ZNYnnD5GTFIu6QETcqX2Yuflxa8N8GmurKXqWTMqVk5h59OHa8ilom1mRdOEweQ9j0RBLiNy+FCv/wYRvmk9jbQ3Fz1PIvBeOgUMvbqyciraZFQ8vHSEvOQ51gYjbvy+nR59BRGxaQGNdNWXZaSSdP4CZZ0AHviI3AyUgfOsybPoO5taG+ZRmpaIuEPE45CI9fF6OP+naKbIS7qAuEHFr81LsAodwfe1cWltaKXhyn5RLRzHz7MvNldPQNrUiNfIyqfciURcIufbbEhyDhnJ+5S/UVlWRkZzEzSP7cA3oz6mNq6goLiDrQSxF6c9QF4q4tnExDkFDidy/haqiPAqfJfPgwmEsvQO4vHQy2mbW7c+rJhAR9fsyrPsOJnTjfBprFPP58OIRzL0CiDm0GYFUi6ehF9CUaVNTXEhrSzOj1+wj7swBGmurKXiaTPy5Qzj36ce+2RMxeM3eok4ews7Ll/0LZ1JfXU1mShKhx/bj0U9h/xpCIY/v3eXZ/Xj2r1xGQ30d73/9PVvm/NzuXzE3r+Hk6cOyb8dhbmvH9eNHkGhpc27fLu6F3iT47fdYPW0SNVVVPH2QyNXjh6mpqiI77Tl2rh5cOryPtEfJqKiqdvJHlFVIvhOJnrEpF3dvx8TKluuH9pL1JAVVVVU2/jKDoFFvsWrqJBrq6oi+df1Pz4HWMzWnpqIcgVSKnVdvwo7uR1lFheDPv+H+rcv0Ch7GsaWzaPaI70oAACAASURBVKipRqSljbK6JkO/m8GxeRORW1pz99RBclLuo6qh0W4PF1fNoaGmmpKcdO4d34u1byCnF/6Errk1cWcPUZz+HCVlZW5uWop90BCurvmlfX0Tzx/uYM9Pwi6Rfi8SdYGI0C1LsQkYwo11c1ECclMSO/FJV0+SmXAHdYGwXX/EzrXUlBZR8DSZhHOHsPIN5NyiyehZ2pFw9mC7v7/wl6jd66kuLaLwWTL3zx/G0juQG6t/QcvYjPhzh8h+EPtSf2DH8b/QH75rHSJtHeLOHiKrjb/x21Icg4Z2ij/WvkGcXvAjehbWxJ45SOb9e6gLRcSdPUwPd1/OrlDEt9zHD4k5fRBH/yAOzJ6EgaV1ezzUkuujbWjcaY27y4HuqjBQ9Q928vgjm+I/UizYHd+djq7GcfHAXuxc3bB+7W1mdzoauzg98X+SxV9/gbGlFef37iTpbjR2bp7cPHUMdU0NHDy8/indO+bOwMmvL/sWzKCuporMlCTuXjqDrXdv9sz8AcMe1kQcP8Dz+BjUxVIurluA29C3eRodRkV+Lo6BgxBJZQz+8vsO8TDt/j00BCKOrJiH5+AR7foLM9K4tm8HroHBbJr8LcbWttw4tJf8VIU/Hl69DICkqAhOb1mPiooKxbm5eAUPat+fhJ09SUJECJoiMdvnz6b/2+9x5/ploi5foCAnm9Dzp/EJHsSiCWMxt7Xn+smj3Ll5DXVNDe7fiSb4zXfYvHAOlSUlpD58wNWDe3HvF8yaiRPwGjiU+xGh5KU9w6iHNXsXz8V36EhObFxLYV4OTx4kcmb3DvwGDGbehLGUFhX+W+PjX2+gXxMlJaXWCxlFZD59ipGF4ieemqoqpNraFOXnoS3Xp7atrZVAKGpv21RZWoqgrS1RbVUVIi0tSgsL0NKTd+BLigrR7YKXaGt3yXelv7qqEpm2Tpd8aWFBZ76yspP+1lbaz6zXlsvb+bqmZuprqpFoaVNeWIhUT9EWqq6xpUPbsqqyUtSFIuCVtnTFhUh19Cgrr0BZSRkNYcc2UsqaCr6+ugqRljYVxYVoynRpaGsrpi58tS1UMZptbc4aaqoQyrSpLFa0lKtve151gZCqkiIkunKqy0vRaGsD94KvKC5AotOxLV1VSRFCbTk1FaWoC9r42iqEUm2K8vM7tZEqLshHoqtPTUUZGm3PW19TjYpASnVJEcLX2tiVFOYj1tGntqKsfX5qqxTjqSktQqD1klfRULSZE2rrUldZhppAwTdUVyKQ6VBTWoxAS6edV9UQUFtW0pFXUqKprhpNiVYHXlVFcfrhi7Z3tRVlJF85QWrkNdzeHI1j/xHUtOlqqK1BqW38L9re1VaUUdeijpKyEo21HfXL1JtppRV1gZCa0iJEOnKM1etftpmrrkJDKGTz5G/JycjkzdkrkegZdODz8grb2/w11Lxs26ci0u4wn7VlJUj09DrM5wu+vLAAkbZeJ97E1KATb26i396G7FV7a6ksQSbXb29z9sI+jQz1yH3+jHU/TuCNLyewd8k8pm/agaG5RSf/aqyrRarV2X+fxsaw9Iev2XzxJppCEcIX/l5dhUgqY/2sqURdvcSXM+Zi3zcQoUjcyR8jrlzm8MpFLDt7g+qKcqS6Cn80lIgQtVWw67S1jZPr6NLbUPqnv4FedjMWWltobW1tbxsH0KImoKK4UNEGrvxlW8aSknLE2jpUlhQi1lb4V31TSwd7eOFfzS2tNNRWI5RqUV1SiLCNb2xqRV3Y0T7VhSJaWlpf2k+bP9ZWK9rYqQlebRNZhqZAiJKyUie+qa2vs3qHto8laLTHn5e8QEuXhrb1fdVfKl+xnxd8XWkBYl39DvHk9fG/yteWFiLS1uvES/TkneKPWKbdYX5e8A1lxUjlinil/iKe1Fajo6uIn6/GN5lU0uXm8P+vb6CvHD3E8a0b+XTSVPoMGd7eBeP/5A10U2MjKm2pC81NTaiqqVFaVIiWrh61NdU0Nzezc8l84sJCmLPzAPqmZh34BpRoamhAVV2dlrb2d8oqKuTkFCDR0W1v+whQUlaOpO379FV/rFfWpLKkEEmbf72wB6WGaiTaOh3ioURTtcP39Qv9Guoq1FZVKvYDRYXt8UdVuZXmpiZWfv0FAz4czbH1q/jk51/oM3gota/tN+prakCp834m99kT5o37B4t2HcLJ04uSwgK023gl4MSOLRzbtolv5i7C0rs3IqkUeNlWtbSwkJy0VNb+8BWLTlxES65PRVERMrkcUVMDIkkbX1WJVFuH2pIShjj9e39D99cb6Ndk3rx5c589eYyOpQ1ndm3nbugtlMUyVk+aQM/BI1g35XvKKqp4kpTE0U3rsOvTn5Xfj0Nm1oOzu7cTExaCikSL7Qtm4xAwgPVTvqe8opqnDx9ybPM67P2DWTxmNHo2Dpzb/Tv3wkJQlWixY9FcbP2DWT/le8oqqnmS9JBT2zdj5RvE4jGj0bVy4Ozu34kJC0FNpsvaSRNwGTiyA3/5yEFM3XxZMvbv6FjZc27PDmLCQlESydgw+VucBozkt6kTKauo5tmTpxz/bS1Wfv1ZPu7vaPVw4MKenTy+f58WNQGbp36PQ/BItv48ifLKatKfPOXctg3Y9A5m3YR/oGvtROiJwySEhaAm0eH3GRNxCh7Jzlk/0dgCaclJXNm5GRv/YDZ/9zlya0dunz3Ow4hbaMh02Tf7R5wHjOLIounUVFeT/fQRN3ZvxqZ3MDsmfYGBXU8iju7lyd0oNKW6HJ77I04DRnFhw3LKiovJfvqYm3u2YN07mJ0/jkHPypHIY3t5fDcSdZkOh+f+hGPwSI4umEptTV0H/szKuYjlJkQd28uTu5FoSHU4Ov8n7PuN4PTiadTX1ZH3/DHh+7Zg6RfM0elfIrd25N6p/aTF3kZTpkPYrvWYefbl8q8/01BfT2HaE+4e3oaFb3/O//I1utaOPDh3gKyEaAQyXa7/Og2bwBHcWDWT5vo6StKf8Pj6aUx7+XBh3nj0rR1JunCQnMRohDr63Fg5DZugEYSsmUlzYx2lGU9JOrcHa79+XJj3NYZ2TiRfOEjJsyREEhk3Vk7HacAIbq6ZCc0N1BZmE3NoCw59B3B69leY2DtT8PgBjZVlpNw8R/LVk/i++SEXl/8MLc2UpCvG7xAwgBMzvsLEwZnnYRfIiQtHW1/O9ZXTcRv6BjfXzKS6vpGcRw+JOrANQ/cgjs8YRxbGXNq7k/BrN0mvUGf35DFUVDegY+1IVVU9mY9SiDywFS2XvpyY+RVyOxcSz+wnM/42GjJdrq6Yxv/H3luGyVllC9t3VUu5dLW7u3u04yQEkiDBGRiBOZyRdxh8YGAIITghBE8gBOJEOu7W6bS7e3fa3V3r/VGV6i46nOvwvcP5fhz2deVHHu5rZT17rb325qm11vZctJrCnW9hYTbOVMcN8o/sYMXa1Vz+6BViIvwpPbOf/vIsgrwdOfn2C0SuWsvlza8gEowz1FxN/uEdhC9dzol3XsLSxZ3so3uoy0lFrrHi+Puv4RO3kh/eeJ7h4WESD+zkyHuvUVNcxOHNb1JfXcmpLz/mwnfbuHZwD3vfe5Nzu3fQ19VJc2MzYoWKsqJirMMX8v4fH8XM0YsT3+0gNSEBrUzFx8/8CY+42/nk+b/S1t1HcUEh+RlpWDm7svO9N7EOiuDwjm0kX73MkJmMD59+ipV//Qel6Umc3b+LvpFJTn3/LU7Ri3j/P36D3MWXU99/S9KRvWhs7EiMP8jCtXfz5T/+zsToKB11tezZ+gHzblvNi4+sxzs4lJO7viUnNekX/wJtE7mEg2+9gv3cVex9/Xk6egepLCkh6fhhFN4R7HruCcwcvLn+w/cUpVxnQqTm2JvPYRO9kuNvv0h37yD15eUk7/nK4A/mdl5kHNlNTWEBI1oRp995AU34bZx9/x909wzSWF1D6p4vUfjN58S/nsLE2ovs+D1UZaQwbqbkwgcvoglfwaXNLzM0rPPPjANfowmYz+nXn0Jk60XJ5ZOUJ19lSqTi/PsvYhN1Gxc3v8zAwDBNFWWk7d+OJngBx199CpmjL9lH91CdmYJWrOLsuy9iH30bSTu30N3WTnNlORkHvsY6dCHHX3sKpbMfucf2cCMrBaFUzYX3X8R1/u2c/+BlhoeGaK0qJ33/19hHLOLKp28gtXYg5+gebmSnYKbUcOadF/BcuJoz7/+DkeERWqsrSN2/HafoJRx55Sks3HzJOrqHmqwUzBQarm7/ENeYRZx85yVGR0ZorS4nee82vOYvZc/zT2Dt6U/akd1UZaUgVmo48eHr+C/S+f/oyAjNVeVknz2Gd2wcU1qM/pj/1AHaVHjLLhy36qrxc9vH3aoTh+lPdOy42c3jx39u9fyn2Ft1A/EKDGJsZIT9X25FJBbjFxqOQCBgYmrqlh07Ricnb/n82w/fYcrUlKM7tpGRcAWhRMoHT/8Jz0Wr+Pi5v9Le08fF+EMkHY/nlX3xfPHSM1i6eXJy59dkXbuKUCLj4Mcf4BkZy5cv/Z3+vn6qiwo5vu0zblu7hg//41HCIyNJOPA9NVmpeLs58c0//sa9Dz3MzlefQW6ipb+hmuTjhwiImcd3z/4e94BgMuJ3U5eTikxjxb5/PUPYbWs48MbzjI2O0FxVxtkdXxCwYBmf/Plxutvb+O6157h2+AClWRkceP9N6ior2L3xFS7s2Un8Z1s49uUndLU2U5adhcrOkeGxSTKuJzJmLueT5/6C+8Lb+eyFv9E9NEpxbh4HP9+Kc/Qi3n7iEeSuPmQnJ9Hf201hXg5Hvv0alwUr+ejZP9PUM0hWVhY5qUmseuo5Pnn2P9HKNSSdOUNWYiJTEjWfv/B/8Fq0mu3PPYWZuTkSuYKT33xB5NIVvPvkbwgICyd+xzayrydgYW3Nm39+kjX3P8jOrR/+W+PjrzcR3mJ4BIdj7eSCb/RcAKydXAhasAixVE7g3Djcg0INrFgmxzdqzizeOywKsVQ2i5fI5QQtWDSL9wiNQCSVETA3Djc9LxAKEcvkBM5fhNUM3tLeicD5i2bxpubmSGRyAuctwsrRZfqOeCcXAuYvQiyV4T93Ia6BIUxphUyOjSGWyfGfp5PvHTUHgYkJlo7O+M3V8X5zFuISGMKkVsDU5ARiuRy/uYuwdHTGNSgCrXYSjaMzfnPjEMlk+MYuxN7L13CbnFgmx3dOHJaOzjj7hzKlnUTj4IzPHB3vHjkXR99gw/yIZHK8YuNQ2zviHq6rmrVwdMErNg6RVIaDfzC2nr6zeAtHF9xu8g463lwixzN6AY7+xvLtfQKxcHDGLTxGzzvjGbMQc5kM9+gF2P9IH/fohajsnXEO1fEqe2dsPP0xk8hwiZiPjc/0T37mUjnOEfNR2jnhEKzjlXZOuEQswEwixTl8LtZ63sRcjJlUhkvEAj0fDehyf50jFmAukeIUPhdrbz1vItTxkXr5ITGYmJigtHfCJWqBkT7mZiZMjI1iPkN/1/A5+MbMpyI1gc66asylMjyi52PjE6Dr96R/X4+YhajtnbHxHUA7MYHK3hn36IWYS2W4Rc1H6eYH6H5ivKm/1MoBS99InQy1NWi1uMbdjUIhQuPqPT0/EhmO4fP0bbmm58c5Yj5mEhk+UbG4BoRMrxeZHJ/wKGycXQmI0fm/jbMroQsXI5Lo9HfwM7aXY1AEantnXMJ0/qC2d8Y1LBaRVIZXzAIc/UJI3L0N79iF+MyJA7SobByQKNTI1Brcw2MoSjhP/vnjCExMMBOLWfL4n2mvr0Ekk+MdG4fGwcXgn5b2TrPWC4BEIkamsqA4+ZrRetQ4OiNRqHjzrsVYO7shkkhQaqxQWdnq11ccGkdnPCNjCZsTxcW9u+hsbmJ0ZISQ+YvwDA7FSiZlYnwMmUJBzJJlOLi6MTFnHv8TQ2nnZOQPdvr1MmViPss/ARQ2jjhFzNf78zysvYKYmJxCOzU17Q+2jtgFRjGFCXIbJxzC5mMmlmIfMhdLz0AmJ2FyfBQziQz7kHnIbZywDtD5m9zGCfuQeZiJpdgGz0Ht6gtavX9KZNiH6vjJ0SGmJidmy/cIMLybuUSGQ9g85DYO2AXqflZX2DriGD4PM4kUS48ALFy8jHjH8Jt8tJ53wjFsPuZSudH6BTCXyrD2DjSaH6WdEy6R838inshwjZyPyt4Zx5Dp+GPvGzJr/gFEUjmeMQtROzjjGqbj1Q7OuIfHGPzfyV/nnyqL2YWr/5uHQCDggaf+wtTUFLUVZf+f5bj4Bd4yXt3cf518/cm5eIaA+XFY2NgTvHAxNs6u+M3gXQODdXv/POPzg0yuIHLRMuxcXAmZOx8AO2dXohYvRSKXExG3BN/QcAA6RrRG+7VnpD7+ODjhq99/vWMX4OwfgshEAAgM54HChIv4zVmI0tIGkUzK6PAQHqFRyFQWeEZEM6UVsve1v2Pp5MLU5CR3Pau7J0ELs84Djj7+uv6I6M4DN/UZGRzATCwh8cB3xK673xA/HX0DKE29RnHCJUb6+xFJZZiZi/CM1MXbmfJX//ZJ0s6e5NyuHSy6534kcgWhCxfj4OxG2LwFADi4uBOzdLnhYqd/5/g1heNHQyAQaL/KqSL52CGD49YU5jFv3XoSDu4heuWd3CjKB8AtMITr8Qe47fE/3pI//902Ftz9gBGfee4Ucfc9PIuPXbOeC99vY/5dD1BbrONdAkJIPnqAFY/9kZTjhwwH5YaKUqJXrpnFOwcEkxz/Aysee5KUE4dwC5yWP2fNvVzctZ15d91PbVEBWqEJzr4BpBz7gWWPPknaycO4BIagRUBdYS4xd97L5d1fM2fdfdQVF6AVCHHyDST9+EEWP/oEGScP4xQQClot9cX5RN15Dwl7viZ6zX00lpcwOTGOs38wGScOEffIH8g8dQRHfx3fUJJPxOp7SNz7DaG330tTWSEADn7BZJ88yPyH/kDBpVPYeegOyo2l+YTdfg9J+74hbPV6msoKDHzOqUPMe/D35J2NNxykGksKCLv9bjLi9xC0fA1Npcb8nPt+R965ab6ptIDQVXeTengXgcvX0qzXx943iPzzRwm/6zcUnT9q2KhaygrwWryWnPidBNx2D23lOt7GJ4jSq6cJXP0AZZeOYaPfOFvLC/Fdupb8+O/wW3E3bZVFAFh5BlB+8Sghdz9O+aVjhoN1Z00lngtXkn/0O3yX3027nrf3C6Lk/BHC7vktZRePYeMThEAopK2sAL/l68g5Mq2PSGSGtac/hWcPE3Xf7wz6S0yFXNmxBSsXT8QKJeGr11NfWoBWq3/fM4eJuf93FJw7irVPMGi1tJQVEHjbXWQe/JagVfdSW1yIdmoSG69ASi/EE3L346TGH0Ks1FB59nt6a0tQuwVg6RdFxLqH6awuBsDSM4CKy0cJWvMYjZmX0LjqDiJtFYX4LltH3pGd3Pv4bwz+7BoQQvLRH7j3P/6Ta/EH8QzW+XNVQR5xd9/H3u3fErB41bQ/+AaTeXwfVh5+NJcW4DV3CabmIprLCoi+416S939DxJ330ViSz8kP/4WZSIyNmyd3/P1VKtISDQeLhpJ8GksK6Gqs48ENH9FQOi0/6+RBFjz8B7JPHzHwPbUVRNx2p9F6AfAKDuXawT1c2buDFb/9I0HzdVcDl2SmYS4Ss2/jSyx59Amaq8oJXbEGv3mLyDhxkEWPPEHmySM4B4RgozSnMjeb2rISStKS+eeug1QX5GEll+EdHMrpfbt44Km/cvaHvYRHxfDI4jm/eArHqhfexn/pnQZ/aNX7v8rdf5Z/ArSUl+AVt5r8Y9/hu0znz5NasPTwN/hD5dUTWHkFMjEpoLOqAI+4NZSc2oXn4rvorC5iChMsXH2pSTiK7+rfUJN4Ao1HIABd1UW4L1xD2elduC+6i566UpicROMRSHXCUfz0vJVXMKCls6rISH5PbQlarRZLzwAqLx8lcM1j3Eg6g8ZNF386KovwWryGwhPf473krlv6c03S2Rl8IV6L11J6di8+S9Ya1q+1VyBlF+OJuPe3uvign5+28kJ8l6+j+MxBvONWGcWT4vNHiFz/O0ouHMXWRxd/WssLCFl196z5t/UJovr6OcLXPED+WeP4FrvmXpL2fUPknffRqPdn77BIZCr1LBvLRbdOvxDdIl1D+hMpHD99m+F/Pzf65+ZR/5wUjv/qefy326ksKuD5D7YC0zf6/Xj8VApH79AwVw8fmBWv9mz5gLriAiqz0lHb2PHHzV9QnZXKsoce5/rRg3gEhwFQXZDLvLXrObdzGwvveYAa/fnBPTCEggsnWPvbJ7l4aD8++oNyTVEhS+5ez+Ftn7HygUcoz88FQGvnabRfOweEMDkxTvb5UwQtXkFFehJz73mY+pICzE2EuAaGGM4Dm+5bwcTYGEGLlqO2sWfJI38wim8Zp49iLpZg5eRqJF+rZdZ5oLWyhKnJSVwCgkk9dpCljz5B+snDuAaFMTk5zmdPPcqfPvuesvRk5qy7j8qcTOqLC7i6exuuQeHYuHuhsrEjcOFywFj+2kcepaogl+STR2mrryNi6Qru/MNTlFw+h5c+l700N5tV9z/M0e2fs/WNV/+t8fHXL9C3GCNDAxSlXDP8vSjlGhErbqe2uBC3wBDKMlIAkKnUFF5PIG79w7P55asovJ6Ab/RcI762pJCRocFZfOjSVRQlJeAbZcwXJSUQt/4RimfwjZVlhCxcOptXW1CUnMDC9Q9TnJJo4EvTrhO2bBXFSQn4RM2hPDMVkUyORCanJDmB+fc8TGmqjjcxN6c0NZGQpasoTUnAO2oOlVmpmJiJkMiVlKYkMOfuhyhLS0RgYsLUxCRlaYkEL1lJaco1PCPm0FBSwHB/L1KlmrLUa8Te9SAVadcRmpozOT5GRdp1AhetpDz1Gi5hMdTkpAEgUaioTLtG1LoHaSopYHJsFIDK9Ov4L1pJZdo13CLmcOMmr9TxkWsfoDor5eb/5FKVcR3/RbfRUJyHY0DoLD7ijvupzkgyzE91RhL+cbdRX5CFY2A4dbnTfENBNoG33cONzGn+RmYSLrHLqMu8jlNwDI0FulZdYoWa1tJ8fJbcSUN28rS98lLxmLucuuzrOARH03STV1pQl30d/1X3UZ+TYuA7aytxjlpIffZ17IOmeZlKRV1WEoG330edXr6JmRl12Ul4zl9upI9MpcZcKqcmI5GQO+436C82N6O5rAi38DkUXTmNW1gs+WeOMNDVjtfcJZQlXiD0jvuoybiOwMycidFRbmQm4b1gBTUZiTiHxtBeXsDY8CBiucqgf2teIj3VBWi8w7AOmEPo714l8/MXGWhfTEtRJgDmchWNOcn4Ll9PW3kBE2O6dmcN2cl4zFtOfXYSHcsXUZ6ZOu3/yQmsfvQ3pF84Q8aFswwP9NPV2kxRahL1tfXYeflTnZXKUE8nOScPUZ58CXvfYDpqK0ndt535j/2JG5nJSMRiKtOu4R4ey43cdAKXrkbj4EzygR1sfXQ15mIJ7hGxWLt60lpdjpWzK6XXL9PVVE9Ndprevioq0q4RfdeDVKZfn7ZXTRkBC5YYrRcAC0tLyjKSiV59F8nxB5HrW+ulHTtIX0cbalt7vKLmIBAK6W5ppKuxntKUa8y5S7e+AEY1cgpSEnn85Q1cPbiP1DPH6WhqwkqtRqZUkX7lEmse/S2ZCZeR3OLmsl9iNBXl4jlnicEf6vPSARBKlbP8E6C1tACX6MU0ZCdhHxRNc2EmCE0wlykN/tCUp/d/ExHN+Sk4xyyjKTcJ24AoWoszMRHJMJPIaM5PxmPpvbQWpE7LL0jFKXoZzfnJWPtH0V1VzNjwAOZyFc15yXguvZfm/FRMzcVMjo/Okt9WmsPUxAQiuYqm3GR8lq+nrTSXqQldJ4SmvBRcY5fRmJOMQ1Dsrf25NNfQSrExNwXX2OU05qdj5x9hWL8iuYr67OsE32E8P3XZyXjMX05reQG23kFG8aQu8zohq++nLmsGn5WMX9xts+ZfrFDRXFFE4NAgNTPiVU1mEmHLVlGRdg33iFhDvLVxcLjlAfp/+6gsLsTRzYPWxgZsHZ3ITkygKDMNVx9f3HwDcPb0+i8LHMdGRshPSjD8PT8pgeB5C7my51vClq5kzrr7MBdLGB0aojo/h/lr76UweXp/L0y+RsSyVRQkXcUvZi5l6bq1IVepKcpIY8V9D5F97aqBL83KwCc0nFO7d1KSlUFLfR1arRb36AXUFeUSvfY+ci+eIvfCSWoLdS3sytOu0VpVjtLKhqqsVMZHhpCp1IbzgKNPANYubtwoyCX5yD5KkhPoaW1CbWNLU2UZY8ND9HW00VF/w3AeAEAgmHUeqC3MYXRIJ780JYF59zxEaWoiZmIx4yMjqG3tubxrO/1dHXhHzSH9+CEqMq4Tsmw1nQ213PHnFzj+8Sbq9R9WZsqfu3gRJRmpqK1tqMrP5frxIyx/8FFKcrKY0F9xnnH1MnGr15By5cK/y0UM49cv0D8aAoFA++GVTFRW1ozqiy1EEuPiOUOx1NAgcpV6Orn+/4Hvbr8VP4BcNaM4YAb/42R/gOHBfmS34M3EEiNeIpMzMaUrRpGp1NPFBMNDTE1pjYr5BvXyZ/I3i1GGhwYR8KNivp5uzKQyBAIYHRxEqlLT39mBXKMr7uEm392JQmNFT1eXQf/RIV3x0EBXBzJ9cdtNfrC7E7nGiv7uTsT6n2L+O/xQ74ziMD3f19GO7EfFf4PdnYjUlkb82NAgpjIVg90dSNWWjI/cnE+dvWQWlkbFQOPDOv5mseCEnjcxlxiK+Ub6ejAz8EOIFTN5XTGTUGTM35Q/NTaERKmeLkYcGUKIQF88N10saC6VITIVMjY8XZx3U3+pqZAdf3mQrvobmIklmJqLMBWJ8Zq3hPbqctqqSole/1vmPvxHBgcGdcVYYimDXe30t7cw0t/HlJkUgVDI+PAQZmIJw71dJH//GVZ+UXjf8XtMRBLG+rsQKS2RvftiQAAAIABJREFUmw4bilfGh4cQKVT0tdRjZjJJb1MdQ51tDPd209fWiHZyEvOxfsbHRhkZGEBgIiRw/mIaivOoys9l/p13YefmjrlYzFB/PwknT9JaXcbk2BhqO0f8F68iat1DaE3MkFpYsv23qxkbHqK/vQWpWsNLJ9Nn+YNCraarsY7agmyqMpKpSLuGS3AEk+PjOPoFMe/+x2esr4Fb+ptGrZi1Xm7aS66yoK60kC1PPswDL20gZPEKuju7eP/hO9hwJoWJUV3x5dikrhhOOmN9jQ0P4aAyRySV0dvZQVlWOgc/fp+n3vkIC5E5Q/39eAeHotVqsbCyxmRsjDg3m1/8C/SzF0qmi/N6uzHXv29fTx/iH/kngFYoZri3E6l62p/HJqaY0PvDcE8nYpWGiZFhxie0mIoljPR2IVFbMqovlh2fmGJidBiRXMVIbycipcZQ/GcqkjDa14VYpePNpTIEwPjIECK5iuHeTsRKDVNjwyAQYCoyli+Sy3X8DH2kao1hPc7UZ6R/uvh4Jj9z/d7kldbWRut3TL/ex/s7jebHTKxbv3KN9ax4Ilao9XNnzI/3demKEWfM/9jQIGqNxuCfM+Pb1EAXCn1x503/N5kcQyJXzrLx//Yv0E+vX0NBegoyhRJzsRiAJWvvob6qgrK8HO589Lc8/uxLRl+gtVotVYX5TIyP0zc4iFShZGRoiKnJSUzNzdj7/ias3by580/PGFIJRoYGsbGxMirOuzluFBcyMT5Gc3UlA7099Ha0M9jTjSlT9HV3MTY6inZqipC5C+hsaSLjyiWW3r0ee1c3RBIpAKcP/kB9SQETY6OobewJXb6aiFV3YePpw0BXJ7tf/gudjXX0tbcC8M6V3FnngckpLQKhkMwz8TSWFlOYeAl7D29kFpaYmJnz4KvvGsWrKa121nlArlQg0L/vTPmjw4MIEDAxMcHGtXHc89xr+M9bzMTkFO+sX8bTO49i4+pBf2e7odgdjM8bSu2QoZg779pldr75Gk+++T6udrYMDQxg4+CIs4cX3R3tuDk6EaYR/1pE+EuODRs2vN7f1YlEoSAp/gfKM9MQCAUc/3wL3pExHProbXrbW6ktLiDp2EE8QyLY987ryNRqI/7MN5/jFR7Nwc1vGfEeQeHs2fQqco3GiD+740s8w6I4PINPOXkY9+Bw9m76JwoLDUlHf6AiKw2EAk58vgWfqDlGfNb5k7j4B7P/rX8it7Ak+ZieR8DpLz/GKzKWo1veprejjYayYlKP/YBrcDgH33kVhcaS1OMHuVGYB9opzmz7GM+IWI5vfYfe9lYaygrJOHEI16BwDr/3GnILDZmnj1CdrdPnwvaP8QyP5eSn7zDQ0019UR5Zpw7jEhhG/Af/QqbWkHPuGNVZqQgEQi598zHuYTGc+/w9+jvaaCorJOf0YZwCwzi5+XWkag05pw9Rm5eBQCDkyo6tuIXFcOXbT+htaaKprJDcM0dwCgjj9ObXkao05J4+TG1eBggFJOzYimtYNBe+eN8g/yZ/6asPEMnk5J45TG1+BkKBgISdn+AcGsuVbe8x0NlOS3kRBeeOYOcXzqWtG5CqLSg8G09DfiYCAWQf+g5bvxCSv/mQwa522iqKKL1wFGvfUBK/2IhEpaH0QjxNhVkAZO37AofAKFJ2bmaoq532ymKqrp/D2jOAxC/fRKzSUHYxnuaiTARCIdn7Psc+MIq0nZsZ1PPll49j6xvMtc/fRKLSUHIhnpbSPLRA2u5PcQyOMujTWVNO4dnD2PuHcmnrGwb9G4uyCV6+hrGRYR585ytaKorxW7wSidKC8ZEhFjz2Z8599Dp2vkGUXjlNfW46XXWVHH/jaarTEii9fIrqlItUJpymMuE0zYUZlF06hsLZDzOpnK6KXAQCIeXHt6PxCafs2HYGO5qpz7xK9r5PKT61h7yDX1KTdoX6zOt03ChDIDShs6YU1+g4BhprsHP3wsrZhZGBfkzNRXTU1/LYPzfQ3dbG8OAg7kEhZFw4y+3PvUVPSyPhq9fjFBhGV8MNPGIWcOGzdxArlLRVlWImljI21I+dtx9eMXGc//xdBjrbDf7mHBjKqY834Rk1j8HuDmzcvTExNaMs5Qor/+M5ruz8jL6ONhpLC8k8eQiXoHCOf/A6MrWG7FOHuJGbgYmpCWe/Ml4v9SUF5F46jYt/MEe3vEPM6rs4/tlmrv2wi+H+PuqKCxBLZWSeOapfX8VknDyIa2A4R95/DZlaQ8bJQ9QV5zE1NcXhTzaz/MFHufLDPpKOx3P99EmuHD/C4W++4trp49i7uHHh8A/kpiX/4kWEjkFRpHz/KU4h0Vzb/gEDnW20lhdRnngea09/I/9sKsxCi5Ds/Xp//l7n/x3VpVRcOYq1dwipX7+FRGlBxZVjtFcWop2aouDwF1j7R5K7dwtD3R103yin5tpRLL2Cydr5NmKlBTUJx2gvzUYgEFB45Eus/SLJ27+F4b4uuquKqbl2HEuvYDK/fRuR0oLa5LO0FKUjEAiN5I/0dNBZVUzV1WNYeYeQ/s1biBUWVF49RmtJFgKBkNwfvsA2IJLcQ9sYbG+is7qYiivHDPqLlBoqr8TTWpyFQCAg98AX2AdHkz5z/V46ho1PCGnfb0EklRvmRygUkr7nMxyCokjZYRxPbP1CuPrZRiRqDcXn42ksyEQgEJB58BscAsKM5r/oXDxOAWGc3bIBmVpD3pnD1OVnIBAIuL77K1xDIjn32bv0dbTTWFpIefJVfGIXzLLxTxUR3qpl3a06c8DPP7je6ovuz2F/6vnPYW8+n3/b7Tz+zEs88tdniF28nAf/8jRzV6xi6V3rmb/qDj58/m/c+ZvfMiUUknPtCtVFhXz0zF84s+c7ijPSuHRwLxnnz5J4/DBp506Rn3iVgd5efvPG+xzb+i69HW3UlRSQevwQ3mERfL/xFcZHR9j//pvEf/IBxz7/iPSzJ2iqLKcoJZGRwUGmJifpbW9j8dq7qSrMZ/G6exkZHqampBA7Z1fkKhVP/HMDV44exsLKGu3UFANjk9z38tv0trWw+k/P0dlYT0tVGQjgwtdb8YlZQGdjHaNDg8SuWU9x0tVZ54HaglxMTIRknzvJ2r/9g476GwhNTKnMSkWqVOMVOcdwHkg/cYjqnIxZ54HBrk7qivL1aRvhHHpXx2edO05FRgoisZjW2hqqctI5//WntNVW09fRSnlqIoFxKzj83mtIVRZknjxEdU66kfzzX2+lo7GBmsJ8ClOTsHfz4NAnH5CVcJXLR49w8KvPqCktIeHkceYsXsr3n370axHhLz38VqxD6RmCr1R3+5fCzpGQO0aZlFgQfucDWDrqGtpbeAQwLlYRuvo+LH1CCVRY6Z7bORJ2+yRaqQVRax8y8FZeQSDXEL3uQWz9wjFTWut4eydCVk0wJVURsXZavqV3AFNSFZFrH8DKL5RglU6+0saBsDVjjItVhK15wHAhiI1vMEK5BVHrHsIuIAxzC2uDPtF3TWKq0BC97iE0js6AAFsvf0QqDTF3PYRjYDgSjQ2TU6CydSBy7QSmCg2Rax9E4+CMUAj2PoFILDTE3vUgzsE6HkBt50jU+CQitSXR6x5Cbe8ECLDzDUKktiRq7YM4BUWgsLIz8FNTk8gtrYi9+yEs9fq7BARjYW3NnLsfwj0sEkvbaV7IlO6/rb0XjZ3+gpWgEGzsbJh/78O4hkVhZW9v4E3RYmFtw5y7H0Lj4GIkP2zVXbiGRGJhq+NVto4I0KLQWBK55iHUen0cfYNRajSEr3kA56BIlNa2Bl4oFGBla0PkugenLzgICMbSxprwOx/EKWRaf5mNA2YmAtS2NoStecBwgcJQexPWDrZErnsQp5BobBx1+lg5OKEUCXFxtcf03ocN+gy0huPs6sjU+kdwC4vB1c0Jc1MhFnYOWEuFeHs6InnwUSwdnTE3EdIZHoyrhyOCBx/FKzIWLw9nJia1WNg7oVIpcHRyYOXv/6TzHwF0hYbhEhRGRmAohSf3E/PAEzQU5ZKy9ysi1tzPsiefpam0AAsHnX27m+pxDAilOjMJ19AYelp0DfzVto7UOkjwiPLES3Q71w58T0NZEV4RsSy8/zFGBwewC46hR3+hg9rOkRu56XjFLKA5Jsrg/zcvxKnJSsE6MBoTC53dVfZORKwZxcnFkWWP/mGaDwvHydEep/l3YuoQSPjjL5Fz4HMC1y3AOTCEYTMl3ivuQ2mvu/BC6uxHr1CJx/J7MXUJwkGkK6pS2DjgOGcFAntvPJevN/AyVz9GzVX4rbwPuUcIHjJdfBBY2+OxfD0dWjluy+412Ffs2kTblAzPFetxColhfeAcqlKuMtBch3vkXNQeAVj5hWHh4AJo0Xj4gdyC0DsfwNovDDO1NRIzITI7R0LvuJ9+UyXrX/sAS0dnTARCOpvqkVto2L/hed559m/Ye04Xa/6SY0Tpg1X0Opr6xGii1mJurbOLRuVF14gM29i7mNT4YRGu+7o5obDBKmYtHSMSLKPWILJy1HU+sPSkf1KO7Zx1YB2AJtyCySktQo0dNjHrGJyUYx2zFomVIxPjUwgs3OmfkGEVtRYs/VCFqjAzFWKqscMudh0jKLCNXYfE0kH3pdnGmyGt7pmpTQB2civQapFa2eO8cBytuQrnhXejsHUCAcic/NCKVLjE3Y3CIxRnhS5+yqzscV88ARILnOfegcxK1ztZ7uwPEgvcF9+LlW8oEn28lVvb4z05iUihwfe29Tr5gKVHAOZKDd6L12DjFzbN2zjgPz6BTGNF0OoHDP5m6x2E1MKKyLUP4BwSiaXtdPyRmAnRWNvo4q0+PvT4h2BtZ8Pcex7CPTwK6xnxUCU2wc7elkX3P2pYL2O9Xbf82nyrL81w66/NP/WV2OwnrsL+Kf5Wz3/uV+xbjZ8if+pwPjo5aUhr0QIuPr6GLhwA9q5uLF57N6/9/lH+8v7H3Cgv5dBnH3PPU3/BPzIav8gY8pOvExAVQ2uD7sIUGycnitJS8fN0Rfj477B11u1HrdFR2KmVTI0McWjz24QtiGPNI48xb9WdFGdnEDx3gdGFaK31tXiFRqC2tSUwZi5B8xcCYOfkQlF6CjKNJSse+o3hwjW34FC8QoKRjv6ewJi5BProng+ILRFqtfjELqSlqgyPsCiW/f4vdDXWzzoPDI5OorJxIHj1GOMiFSF3PoSFgzNxU1p6musZESkJuP0+5J4heMk0CAQC1LaOBK0eZ1yiJuj2B5DY6OKDyNmPXqECn9vWY+YSjKO5BQjAzNaR8PuewCViHun7t9PXUI1nTBzWbt5MSlSE3HE/Vr5hmKp060Vt60jIHeNMSdV4LlmDRr9eJC5+OAeG4TpvBYGxc+hqaqC/q4OU+P0UpyXz3F+NL8j5d4xfr/K+xXAOCOXi9i10NdbR1VjHpa+34BIcwZnP30eiVJF/+Sz5l88iUao4uPFFXIPDOPeV7k75zoZazm/7CNfgcPa/8QJShZL8S2fIv3QGqULJqc/ewy0kkjNfbqajsY6OxjrOfrUZl6AwDm580Vi+XKmTHxJhJP/6/h24BkdweNOLSBQqCq6cpeDKWcRyBQc2voBbSIThjvvOhlrObfsIt5AIDmx8QS//DMXXLyFRqmbx3S2NXNz+0Sz5xQkXp99Xr093UwOdjbWz+PKUBAqvnEGiUHFk00u4BEdwcfuWW/JShdKgv0Sh4vCmF3ENjuD6vm/obKydxYtlitnzHxLBxa8/nsWf+eRtJAoVhVfOGOnjFBDKpa+n7Xv5my04B0VwfutGxAolJQlnKUk4i1ih5MInb+IYGE7itx/T01RPT1M9id9uxd43hNPvv4xYoaTs2jnKrp1DrFBybdt7OASGkfzdx/Q019HTXEfq959iHxDGhQ9fQSxXUZF4jorEc4hkCs5+8DIOgeEk7ZyWn3ZwJ06B4Zx89x9G+kgUKo6+/RLOQREG/bub63X+FhJh5D/FyVeRKJTs3fAC7qGRnPpiMx0NdXQ1N3DuK2N/KEq4QP7lMwZ/ePy9L7mRn83OvzzExS/exTUslkWP/ZkT772CWKGkPOUqxVd183P8nX/gHBjO1R1b6G6qo7WqlMMbn6GhKIdPH17BrlefYXJ8nGWPPcWqP/6NlKMH8AiPJunAt7PW15FNL91yfbkEhs9aL24hkZz+7P1Z62v/Gy9g7R1Mzv7P6G+tZ3J8lMorx7D08OXSR68gUiipvH6eyuvnESmUpO38CDv/MNJ3baWvuZ6+5noydn+CrU/wLF4sV3H+w1dm2Tf78M7/ln37WpqwdvdBrrHi3tc2k3fmCAKhkKLLpym7fhmJQsUxvX0v37RvS+Mt7VuUeBGpQsmFbz7lyY+/xSMsCjtPn/+R+Fh+5js0XiHkfPsGZjIFTZmXaMq8hJlUQc63b6DxCqH06BcMtTUw1NZAzfldqD1CKPx+I6ZSJa3Zl2nNvYqZVEn+dxux8Aih4viXDLU3MNLVQuWJbTp+10bM9HxHcTKmUgUlezeh8gim+vQ2hjsaGWpvmMW3FyTRmn0ZM6mSwl0bUXuEUHHiK4Y6mhlsa6Ak/kssvULI3vEGZlIFTdlXaUy/iLlMQebXG7DyDqXk+A4G2uoZaKun8NAXWPqEkr7tdcylcurTL1KffhFzmZL0ba9j6RNK0dFv6W+tp7+1ntwDn2PtE0bSlxsxlyupSblATcoFzOVKEj99FVufINJ3f0JvSz29LfVk7PkUO/9wkr75cJZ/XvrolVvGHwf/0FnxQaxQcv7LDwzxdub6cg0OY++GF5AolORePEPuxTOGVKNfx88bf974LlPaKZ6YH8G3m15nzsrViKUyFBaWbH3haXzCwtmz+V1a6m7QUneDvZvfwy8yms9ffhYzczMObP2QL//5AvHbPuPxOaHYOrmwaO3dLLlrPUoLDXu3vI9XSBhbX3gamVJN8pmTJJ85iUyp5usNr+AbEc3ej96lpfYGLbU3OPj5Fvwio9n6/N+Qq9QknzlB8pkTSBUKPn3h6Vn81d3bcQuJZP8bLyBRKChLu07Wmfhbngd6mhu5suNjnAPDOf6Ozt+Kr56lKvUqYrmSU++9jFNQONd2bKG7qZ6e5noSvv3YaP+qSrlMuX5/NIqH7c30NNWTtHMrDoHhnPvwFXwWrsAlNBp7nyC85y4mfuNzOPgGkbjrC7qb6uhuqjPWR37r88Pl77fR0VDH6NAQSisbnti8nZ62ln+7L/x6gP51/Dp+HUZjoKuDseEhXMNicPALpiLlKtWZSUyOj9Hb2kRPSyMT+gLPm0M7NUVFagInP3iVlopihnt7kGmsePSNDwlefJvhkoD/6eEZdyfjI4NUJ/37C0j+X4dWq+Xgq38lZf83dDXU0lpdTl97Kw1FOYwM9DH1M246U9nY4RP9P9PG7tfx6/jfPAb7+qgpKSZ0fhzBcxeQePIoVYX5DA8MMDwwQE1xIWOjxvFxamqK5hs1vPHbh8lPusZgXy8eAUHMW7maJ1/biKmZ+U/8a7/siF1zPwKBgBt5Wf+//Pv/1dBqtVRlXmfnXx+hp7mBroZamsuL6WtrobupDu3PiI9OvrqiyH/3+LWI8EdDIBBof/fx97iGRBr/xJyThv+8OOoKc2f9xFyRnoR7WDTdet7CzpG6/Cx8YuZT+yPeNSiMslRddWq3/s56C3snKnPS8YqeZyy/qR6XwDDK0xLxCI81yFfaOFCTk4537ELqi3INKRz9bU04B4RQnppouOP+pj7V2Wn4zFlIXWGuIYWjq7EOl6AwI/5mCkdNTpqRfKEQuvTve1Ofzqbp+ZnJ30zh6GqqwzkwjMq0RNzCY+lrbZrF1xXlGlI4uprqcQ4MoyItEffwGHpaZvNNZfnTKRwz9HENjTWyV01OGp4xC/T6u+jl6/SpyEjBJTiS3lYdr7J15EZuGs4R82kqzpv+SbSpHhvfYGoyr+MSGmPENxRm4xo+h6aSvOkUjuZ6rH1CqM1Kwikk2vC+MhsHGvMzcImcT0tpnlEKh51vMDcyr+McGkOfXr6VgxN1eRl4RC8w0megtUE3n+mJuIXF0tvaaEjhqM5Jwyd2ocF/zE10P/G7BoVRmnINr8g5dDU3GFI4jPzhZgqHfj53PPMk1q7uBK++H61WS29LE/GbntP1lZbIEMvk9LQ2obCyxS08lvGRYdprKjAxNWPBY/+JV/RCbuSl4xm9gMHaYjQOTkb+X5pyDbugKCP73shJwyt2Ic0lebPWV3VmCh5h0UbrpSo7Fd85cbdcX+dOXMDGP5zB9mYAUrZtxD1qPpEP/JHW0nzDT+R9zQ1Y+gRTn52EQ3A0/W06fRQ2DrQXZ+MUPteIH2xrwN4vdLZ9re1pLMj8b9vX3tmF2tx0RDI5O/70ADNjsHNwBMN9vXTUVgEgksr456lUbuRnGtn3ZgrHzHjS19rApnuX/+JFhHd+kURneTbWgXPori5Epk/hGOpoQu0eSHtRKpa+EQx16ubfRGFDV0UOVgGx9NYUItGncAx1NKJ2D6KjOBWNTwTDnS1MTmmRaOzorsjB0j+W3huFhhSO4c4mlG6BdJWmofYKZ6SrBTNTIeIf8/oUjuGORlRuQXSWpGHhHQ5D7YYUjo7SbGyCdPrfTOEYbGtE4xlEa0EKtoHRDHXo9JdZ2dNWmoVd8Fy6qosMKRwDbQ1YegXTUpCCU0i0wd/k1va0FGfiGrmA9vJ8QwpHf2sD1j4htBWlYRcQwYDe3+Q2DjQXZuIevWCWf9r6hdCan4JLaLRR/GkuzsEtYu6seOUVFm6ItzPjYWtxFr6xC4zWy1hvF04+/rNs/L89hePH48dt7Ha+/xYdLc3859sfUpaTyVB/P1+++hJdba2oLC0RCoX0dHZgYW2Du38QDu7upF84h0gq5baHfkP0stsAaK2vIzgqhuxrVwiOnUdboz7lw9GZ/PQUQuYtvGUKR27iVQJj59LeqIuHdk4uFKYlEx63hLKcLEMKR0t9HV4hYbP4AbEl1dlphvh5aefn+MyJw8k3cNZ54GYKx8143lich4WDM+P6FA4H/1BqMq7jEhZDb0ujIYWjNi/dsH/dTOHoba7H3j90Oh62NIIAlLaO1Oel4xa1gOaSPOydXUAgoDY3g0Ov/x+jubfx8MFcLKWhWNeqT2hiwvOHrmBqLjI6PwTEzqG7Wef/GnsnKrNS8Zsbx9NRHr8WEf6SY8OGDa8P9/ei0FiRHr+P2vwsRFIpp7ZuInjp7cS/+yqjQ4M0lReTGr8Pv7mLiX/vNTT2TqQe2cuNvExEMhlXd32F39w4Dr39CqNDgzSWFZNyZA/+8xaz+59/w9bdk+TDe6nJy0QklZKw9xt8YhZwZIb8zNPx+MQsYO+rT2Pr5mmQL5YrObnlTYKW3s7RGXxZ8lXcQiKM7rjXyZdxfMubhC69nUPv/JOxoUHa66q5/sP3+M9bZMR31NciEMCpjzcZyW+rqSDl8G785i426JN97hjVWSmIpDIjHqC+KJeMo/vwnbuYA/96Ghs3T/IvnaIqI8mIP/nRRob7+2gqLyYtfh++8xZz4LWnsfP0I/XIbmrzM434q999QW9ri9H8731VJz8tfq8xv+R2jr2v07+5vNigz5VvP0WqUpNxdB91+VmYS6Wc/WQTfnErObP5X4wNDdJaUUz28f24x8RxYtNzWLp6kHNiPw2F2ZhLpOSd+gGXkGjObfkX48ODtFWWkHtyP25RcZx++zk0zp7kn9pPU1E2ZhIZ1756B6+FK7m89XXGhodoryqhNv0aDoHhnNz0HJYuHuSe3E9jYTZSuZILn27Cb9Eqzmx+zaBP3tkjeMUs4NCGp7F28yTj6D7aayoQmppw4qNNhCy93eA/XY11XNv/Lf7zF/P9K3/Dzt2TpMN7aawowdTMnGMz/GFibJTG0kJSjuzFwtaec9s/ZuEDv6U0+SpV6YlYe3hTl5/Jk9vjuZGTSsjKdTj6h9DTVI9zUDiFF44TtHwNJmbmdNbVYC6Vcf7TtwhYvIrEXV/S09pCQ1kxyYf3GPSx8fAh/cieWevr1MebGO7rNbLvqU/eQWVtY7Rejn30JiHLbr/l+jr9yVvILG0pu/ADrcVZtJXmMNDZhue8ZVz5ZANjw4O0V5VQePoALlELufje81g4e1B0+gAtxdmYSaQUnNyHc1isEV9w6gDuMbPtay5Xcu3Lt2fbNzMRh4CwWfaVyOWc/WQTc9Y/TnVWCs7BEcg1VvS0NNLf0cboYD/aKd1GbmouwiUobJZ922qrSfrhO6N4kn7iEPUlBb94EaGlTwQF+zfjELWMvF1vMTEyRG9dGe1FqVh4BJO57RUU9u7cuHqYroo8TCQySn/4CLvIpRTteZfJ0SH6m6qoSziMTdA8cr95Fbm9G3UJRxhsq0cgEFB66CPsIpZSvO9dJkeGGGyrp+HaQawC5lH03WvIbN1oTIqnpyoPU7HMiEerpfdGEfWJ8VgHziV/x6vI7dxoy7tKW2EqpiIpBfs34xi1jNzv3mJyfJSemhKqrxzGPnQ+aV+8gsrZk8qLB+koz8VUIiV31wc4x66g9MROhjqb6aktperyIRzCFpD66T+wcPGi7PwB2kpzMJVIydz5Ae7zVpD05UbGhwfprCml9NxBnCMXkH3gCyRKC4rP/EBLcQ7mEhnJX7+L94KVXPnU2D/dohdy9t0XsHRxN4o/WUd34xYx1yg+ZB/fr4uf+ng7c/+6/O2nBCxYwg9vvcLI4CANZcUUJV4mbOnKWTa+VbEg3Lpg8KcOoj+n28ZPPf+5hYi3Gj9F/lQR4eQtPihOzXjWVHuDj154mn98ug2BmSlbn/sbIqkUz6AQxkdG2PDdfioL83ns+Vdob2ygu6MNExNT6qsqeGPPYfZveY/hwUFqigs5t/c7opcs592//BEXbx9O7d5JUUYaErmcc/t2ERQzly9eeYHhwQGqiws5t+d7IhYtY/PTT+Hs5cO5Pd9RkpmOVKnimzdeZd5C7ZrDAAAgAElEQVTqNXzxyvMMDw5SXVRITuIVfMOiZvFCiZxjmzcSuux2Dr71Mk0VJcgtLMk5d3zWeaDtRjUCodAQz09tfk23vzTUknlkF56xcRx781ksXTzJObGf5tJ8TEViLn72lmH/mpyYoLWsgLyT+/GIjTPEw4qki9RkXsdcIuXKF+/gu2glF7b8i6nJCZrKCii4eII7n99ETVYyXrGL6Ky/wUBXOyZmZoz09900JFK1huaKEqPzg6OXL9cP7qY6V7dfxG9+k7Dlt3Nl1/Z/a3z89Qv0j4ZAINC+eDwZhaU1o8ODAIgkMga7O7Gwtmaod0ZbIn3bqZltWab5LtRW1gz29iDS8z9uGzeT725vRWllYyR/ZHAAudrC0AbuJm8mltPf1YFCY2XET44MIldb0NfZgWIGL5LI6O/qRGk5zU9ptUwMD+n1n+bHJrSIpTJDm7mbvImJgLHBAaO2dEOD0/Jn8qZSGWi1jA3PbjMnEBjzM9vwGdp46d9tZGhglvzhvlvwnbq2WTPfd6C7E5mFJUN9PYY2ajf16WlvQ66xZkzPm+vta6bUMNTXg0jPjw4PYi5T3rIt1EB3BwqN9SzeTKZisKsD6QxeKJYat7HT81Mjg0jVFrPkK5QKBro6dG34ZsifGh1CPoMfGx7E3FSgs1dXJ4oZ9hWZmTA6ODDL38YntbP9QSYHrZaR/j6+efYJQpffwaKH/0BHZy8CgcDQ5u+mPuZiKQKBgNEf2ffHbQHlGitEE/2IZdNtB2/qI5RrjOx7kx/t75ll30G9rsb+rG8bd4v1lZpbjURtSX9rI9c/exUzkYQVz25CYWVjNP/jw4OYyqfbCM7Uf7SnA7mlMa/VtxH8sX1NJDKGujtm23d0EKlqtn01Fkoj+970z/baSl2bwMkJLOydEZqYoFYpkSiVs+xrIhQyNqsNZT//WBT6i3+BXvdNJiO9nYhVlowN9GIq1rXNGhsZRCxXG9rMTerbzE2aiBjp60SsnOaFAiETI4OYy1WM9HUiUuj4iYlJTMUyRvu7jPjRsUmmxocxl6kY6+vCTGHB5OgwZqZCTEQSI15oLkEoFDAxMmQk31wwgkCg5/Vt78YGevVt3bTTfG8nMo21oW2cqUjCaG8XYrWlURvKiZFBRHI1Iz2dqGysDW22dK0dO1FZ2TDS34OZWO9vI7q2dIY2dsPDen/Tta1UWc/2T7FSzdRA16z1NdLThcJqdvyxsppuYzdzvZhMDCOVKxgbGcFU3y/cXDCFmUg8y8a/foE2Hje/QGu1Wl7+zX2Ezl3Ag39+msGxMfpntp0dHEChtqC7rQ21tTXD+v1RIpPpWtVZWc/irays6W5vQ21lzLe1NKOxsZ3Fy1RqejraUFlaM6Ln5UolPe1tqK1t6NO3qQUY6O1FqdHM4ltGTejrbMdMJGLXy/+H4f4+ntj6HdrJiVnngYGhCcykMqP4L5LIGJucYmxkaFb8FwoFuranM3itqRiBQGBoq2rwz8FBHT9jvxju68FCpUSr1RrtL3KNFV0NN+isv4FMY8XU5CQaRxfMhFNIlbri75nnB1s7G6P95eaZ4tcv0L/w2LBhw+tLH/9PDr/5IpNjo7TXVHBt1zb8Fy7j6Puvo7Z3IuXQLiozU5BaWLL/X88SsmItB994gfHRUVqqKrj6/VcExS1j+9O/w9EngKSDu6jISEZuYcm5rz7Cd+4i9m14jvGRUVqqyrn03ZcELFzOjr//AQefAFIO7aIqMwWFpRX7//Us4bet4Qe9/NbqCnLOHMEnai47nvk9Ln6BpB7eTU1WCkorG/a89nciVq5l/4bnmRgdpbWqgoQ92whdpNPHxT+I5EO7aCotQKZUsve1vxN9+zr2b3iOqbFRepvruLLzM8KXrGDH33+Pe2AQqYd3UZOXhVSpZv/r0/qYaKdoqyojYfdXhC7S8S7+QRRcOE5lylXUVtb88PozRN9+F4fefB6RENqry7i2+ysil6zgm7//Dt+QENKO7KY2JxVrW2v2/esZ4tbezdnP32NyoIfu2kqu7f6KOStW8vXTv8M79P+y997hbZXZov4ryZatYknuRe5x7zW9h9BCCSEwM5RhCjNzp5wzMAxtGCCmBggQQkiAdNJ7792Oe++9yb1Xyd36/SFFtuNw7vD8hnPPcy/f8+x/tl8vrf19a6+99WmVcJKP7KYmKwU7B3v2vvU35j/8GEfefw3h6BBdtRXc3PMNM++5l8PvvYbay8uw05mdgq29PQfX/I25Dz3G0fdeRjQ2TFdtBbf2fkP00uUcfeclPHz9yDq5l4bcVOwdHbi04V1m3fsAp9a+hlg/Sm99JakHthC99F72v/o7fEJCyTm1j8Y8A39jyzoil9zDuY9fw0w/Qm99JbnHdhK77B4Ov/57/MNCKTizj9aCNNSuzpx67+8sfGQVZz56FUtG6W+opPTqSaLmz2f3S78lKCKMrJMG+Z7uThxc8zfuXf04h959GYlglLH2Bq7v3MS9D69g019+RXRsFKnH9jBQV4mnkz1bX/8rv3j2GXb882+ozAQMNddxbddmHl21kg1//iVzZ88k6/QhGrKTaS3JIffWDeI2fsPut/+Os9KSwYZykvdv4dHHH+XbF37N/LmxFFw5QUP2LXw8XDi45iVWPvUk+9e8jIVglL76SpL2f8v8+x9g50u/xdo7mPiD31GcmoS53Jq9b72I/5KHOPjJBzTUt1BZWMzN3d8g9ZvLwdd/R5fYnYSD35F1M57mAQknP3gZZizkxIevUtPQQ2F2IVd2bmZUHcvJT+NoHVVy88AuMm7cpElnyfH3/45NxD0kb3qL/ONbMLeyRWAuQRk4nwvv/AkzOx9yTu2jKiOZEZGCrANfYR88hxvr32BAO0BrVRnZh7fiFL6Qs2v+iNzNj7zT+6jNTsHcyoaLH7+C+7wHubzuHwwMDNBSVUbRpeM4h87i1Jt/wNorgLzTe9HkpGBuZcu5tS/jOe8BLn7yOgM6HS2VZSQf3oVd2DwOvfY7JK5+pB3bjaYwF4mtEze3rSf0kWe5vPEDhsfGadJouLrjK5yiFrL7788jdfMj8fBuSnOyGDKTcjDub7jMvp/D775CS4eW2rQbP/oOtLazDZVvLKkb/orUxZeqq4dpLUoHSxXZ297EJmwZuTviGNQN0KWpoObGEWQeUWRv+htie29qrx+hqyIXkURJ7o63cIhcTt6udxgZHETX1kDVhR3YhSwg66sXsFL7o7l5GG1DKWKZFUXfrcFl5r0U73kP/dgQ2uYqai59h2P4QjI3vojSw4/WzIu0FyUhVdmQu+Nt3OfcR/6udwABPZoyys7twil8IUmf/ycKtwA0CcdpK0zDUmVL2tf/xHPeg+Ts+YQxXR99DZWUnN6Be+xibn70F1z8Q6i4fJD24nTkNnYkf/UGfosfJH3nJ4xoe+mpq6DwhIG/se4l7L18Kb5wgOaCNOTWtlz//DWClj3Etc/fQD86THddBTlHtzFj7jISvorDztWd/DP7acxLRWlnx8WPXyHmgZWcWfsagrFhujQVpB7Ywqzl97Ln5efxCQmb4q9ubv+CmMVLOfTuy5iPj9CtqSB+z7csW7UaidgMmcQCiYUZEgszbOSWSMWi6Ye5GZZmoumHuTlikWjKYWlmNu2cWCTCwswMc5Fo2vF958UiEeZC4bTD7HsOkUDwLx1mQiGiuxyW36OHxMxs2mFhPJ9w9iSJly7w/uZtyCwsKEhKQDA8zIU9OyhJTcLVRc26v/6RB574GZ+/9B8IRkdpqizn2NdfsuTBR3j3d78kICSMC3t2UJSSiIOjE9++9zYxy5bz2Ut/YWhwgJrSYg5v3oDX7CV8+PzT2HoHcOa7bWQmxCOSW7P57X/gGLOYr197gabOPgrzCzm5cxvWIbP45PfPYO7iw+ld20i5cYN+cyWbXv4LDjPv5ZvXXqS+vZf8vAKSThzEKXQWn65egpWTK3beAVTkpCOSWXNgzd/wWfQgh999hf7+Adrra0nYvRnvOUs48OrvsPcJJP34HhpKChFJZJz54GV8Fz3IuY9eZ2hwgOaqCpL3fYvHzEUceu132HgFUHj5BNXpCUhUNpxb+wr+i1dw4ZPXGdXraSkvJu3AFtxnLuH4G7/HxiuQnPNHKE9NwMzKmpPvv4z3wge5+MU7jI6OMajVknvxBEHLHuHI2/+BnW8ISYe/oyw9CTOFNUfiXsJn0YOcWv8hbS3t1JSUcHnn1zhHLWTLi8/T19LwUxm7H3uIpXJ8Z803teoFQw93l4BgbFzc8Ioy9mR3ccNv9kIspLJpvIVMTsCchdio3ab0cFcHhJh6xLsFTeX9Zy/EVu2Gt1G+rYvbtJ71AGILS2OP+zvkO6un9KC/LV8knNqD3id6NiKRCFu1GwFzFpl60LsHh4FAaGruMJkf1YOteqo+ar9g9Bh73Msn+CFdP2OjoxPyjfqo/YNM8Z6WMjmBcxdhp3bHL2Y2AHZqd4LnGvTxCA7H1S9gyvwHz1uErbPrXXn/mfPwDJ6YT4lMjmdoJHau7vje5l3dCZy7CIvJ1ztJvldELLZqN2ZEG3hbtRteETH/+nqp3XALisBCKsNn5oQ9mIkEWN6Ft3ZWT5mf2/IlUkskMjlB8xZh5zoxP/ZuHoQuWIylTE7I3IV4h0YgF5sxOjKCVG5F5MKlOLq5EzJrLkqpFBcPT2YuWYZUbkXMoqUEREQxrtczNjaKzMqK2MXLcPbwxMs/iMvHDlKcmc79P3sauUJBzKIleAYGmRI1pHIrohctxcndA5+wSMbHxnB09yBi4WIkMjmBcxaYWs1PXi+VkytekcbrVbvjM8twv9jNCEHlNsPEm0tkuITPQ2qnxsYv2vCZdmrsg+dgZinDIXg2Kq8gE29mKUfpHnBXXmQhxT54FkO9Hag8AhBbWWMmkeEYOgepgxr7ACPvoMbWKwhzSynOYXOwmxFski+WyVFHzsXKUY1TcAwACidX3KLmI5ZIcY2cg72xVbuZhSXmUhluUfNQOLniEjoTMMS2ukfNx1wixS1yjqlVu0AkmsZbiM1QObnhGbMAsVSGR/RcnPxCQQCjw4OIpXI8YxagcnLDNXwmeoEIpbMbHjELMJfKcI+ei8pzejzrjzFUXqGYSWTYBc1GYqfGxi8KAImtMzaBsxFZyrAJmIWVh0GfMT2ILGVY+8/E0tYF5YwIxGIxEjsX7ALnILKUYRswE4V7EAgEjI8MYWYpwy5wDhI7F6x9oxGaCZHauWAbZOBtAmei9AhCaNzoNJPIsA826DM+rEM/PobUXo1DyBzMLGTYB89C4ebL7XalZpZyHELmIrNXI/CLRM84cgdXnMPmYm4pxcEvEmvPiaom5hIZLhHzkNk7m+zBylGNOnIu5hIpDv7hplbeYPhVSx0207i+sYDBftyj5mNuKcM9ap6plTeAWCrD2T8UlbMb7hEG+1E5u+Edu8DkT9QBk/2PlcnfTvZXboEhWEplBM1ZgGfwxP34X3XO+2n816O/t5ftn33Eib27+GLfUcyNO/h2Ts6obGyJmmsoJ6f28GT20nuQTPK3t4fMyoqoBYtx9vAkfI6h9razhyd+kVFIZHIiFyzGNyzCxN/2n3au7vjHzjF8nqs7HmHR054vIpEZFjI5vrMWYuPibvK3KkcXZsw0+BPv2Hmm1u5CczEWMjkqZzfsPH1w8PLDQq5A5eJm4r1iDLweAaMjw1jI5HjPXGC0z1mMIbyrv9ID6Men+KvhgDDGx8en8Xaefqb3AbFUhnvMfBTOrjgHRqDXT+XdQqNx8pvqn71jF6BwUuMeYbxeZze8jfo7BYThOMN/Cu8WNY/GvLR/m13ATyEc04ZAINA//OJbhN2zgvqSfABcA0LJOHOE+b/4Ldnnj5kMt744j6gHV5F0aBeR96+cwuddPsX8J39JxpljphejuqI8olesIn6foUd8fbGRDwwl6+Ip5q5+hoyzx0wvyvUlBUQ/uJL4vduIfXg1dUbePSiM9NOHWfT081PkN1WWErF8hakH/W35XiFhU3rQG14chWgKc5j50ONTetyLzMxQ+wVO44fH9IYe9CtWmfRpKitGrx/HLTCUtFOHWfzM86SfOYp7SAT68XHqivKIfehxbuzZysxHnqC5vAj9+DjuQaEknzzEsmd+R8a5Y6YX35rCXOY8vJrL321h/mM/o9bYutMjKIzEEwdZ/svfk37hFGrfgGn83JVPTuGTThxi0dOTrxc0hXnMeuhxbh3bR8Q9D6Ipuj2foaScPMzCp54n4+zRKesV9eDd1yvnyllmP/aLKetVV5xH2H2Pkbh/G9EPPUGD0R48gkPJOH2EhU//dgrfVl1OxPIVpvm5vb6+oWEknTzEPc/+jpTTR/Ew6t9SXsTcRx7nws5vWLjq51QX5CK3tMArKJirhw/w6PP/i+vHDuETFoFSIqE4K4P7n3yKg19/yYO/eJbS3Gz0AvAJCefCgT3c9+RTfP7KC+SnJROzaCmBUbE8+qvnOfzNRu7/+TOU5OUyOjqCb1gElw/t47Hf/YmrRw7gERJmyJDOy2HRqic5ve1rIh9cjcao/+T1unL8OE5GR9ZQkkfEA6tI3L8NVfQDdFQVAWDrHUzF9RMEPfQs+RdPoHQ3vHj11BahnvMQ9fFHcJ11P901Bl7lGUTtrVN4LP0FDSlnUXoETeE1Nw6jnnUftfHHqbl+mLFBHa6z7iPyudepTTyDtZfBEXdVFxJwz6MUn9mNz5KVdFQVmvTRpFwk4N4nqLhxGjufCd5/2UryTuzC/57HaKsw8I7+IZRcOkb4ql9RevUkDsYX647qMmYsuJ+847sIWP4YrUbewTeEkstTeUszAc1lBQQtX0nmkZ2E3LeK5vIChCIzHLwDKLh4jOjVv6Lo8gmc/EIZ00NLWT6By1eSdXQnwfetoq4wjwvv/OlHD+FYtPYcjcln8LznaRpTzqIwvij31FXiELUMzbV9uMx+iF5NCQCWjjNoST+HetHPac24gNwtALHYnD5NEc6zVqC5ug+XOQZeIBRh5epLY/IZ3Jc9RVPqWRTuQQiEAnpqC3GZvYLaq/tQz3mIntoSREJQeATSkHQaz+VP05B8FlvvYEBPd00RrnMeouryXtzmPUx/QwX6sVGT/fjc+wx1SWdw9A9BD3RWFeK14GFKz+3GZ+lKOifZZ+WNEwSueJb6tMtYu/sA0F5RiM/ihyk4/R2+S1ZO2POMIMqvnSB69a8pu3rS9MWprawAv2WPUnrpCL4L76e1rMBgD34hFF06xryf/YaCSydwNr7oNJXkE3LfSnKOf0fUitU0Gv2JS0AoZTfOMW/106SfmeqvFj72BFfu4g+t5BKkVlO7DsrFPyzM4m5hGT8kJOO/Oi/6kWKgv48Vf0+IyeTR39vL4R3fsnvzl8xZcg9/+Wcc9s4upr8Pj45yeu93BEYaXpSLs7NY8fOnObRjC4sfeYzS3GwA/MMjObd/N4///s9cOrwf//BIAEpzs5m/cjUntmzmnid/QUV+LgA+oeGcP3aMBY8/RfKpI6aNiZqCXHyWPjLt+aIOCCHzzBHmP/Vbss5NvJ80lJcStOQBkg9uJ/LB1TSWGnhHvxByzx3FNTSao2/9hZEBHXOf+V/IrO0Iu/8xUg9uJ/zB1TSV5oNQhKNPIHnnjzLzyV+Tf/EEzv6hjIzpaS7Nm+avQICTb/AUf+XoH4ZAr6e5LH8K31RRzPjoqMn+I1f9ipIrJ1EHhsEdfMQDq2guN/hPJ78Q8i8cJfaJX1N68wL2XoYvuk2l+YTet5K0QzsIue8xmsum8v4P/5JvH434t/rHn8rY3WXUFeXS2VhHdVYq1VmpdDbWUZYSz7Cun/LUW9QX51FfnEd56i2GtFqqstOm8TV5mQxptZSmJlBXlEddUR6lqQkM67SUJMfT2VBHZWYqlZmpdDbUocnPZkirpTz1FnXFedQV51GZmWyQkRJPR0MdVVmpVGWl0tXUQEly/DT5msJchrTT5bfXayhJvsmgTktJSgKawjway4spSUkwnEu+SUdDHRWZKdQVF9DRUDeNbygtNF3vbX1q87OozEyZ4I36NFaUmK53UDshv7Ygl/KMFNrrNRQnGeSXpiVRU5hLTWEuRckGfQqTbtLRWE9pejKl6cm012soTLzJkE5LTUHuXfn2eg1lGSmUZaTQ3qChMOkmQ7p+k/6awjzT9d6+xorMFCom6T+km75eQ7r+u65XY0nhtPUqT73F8ICW8tR4Ohs1VGenUp1t4EtT4qfxmsKcKfNTmZlimM+meooSDfNTnJxAbWEetYV5FKUkMqjtJz/hBq11tZSkJVOek0VLnYbs+GsMaPvJSbhBRV4OlUUFZNy8hq6/j7TrV2msrSEnKYHizAxqy0o4uXMrv1k0i6qSIp78438StWAxhRlp6Pr7Sb9xlabaGsrzc8hPSaJZU0vmTYP87IQb1BQXUZmXQ+6teMNnxt+gvaHuruvVUJxHQ4nhqEi7xZBOS0VqPP1tjbQUZtBSmEFfSz2NuYmMDOroLM2ip7aIntoi2opSGR3U0lmZj7atgfbSTNpLM9G2NdBakMTooI62otRpfFdlHrq2BkYHtbjOeRDfFb+lPu0S7aXZtOQn01VdSFd1Ia0FKYwO6GjMTaSvpX6KPu0VBYwM6GjMTaa9opD2ikLqc5IZHtBRl3WL3uZ6GvPTacxPp6+lkbqsREYGtNRnJdFaXkBreQFtFUWMDOjQ3MH3ttRP56tKqc1MYlinpSYjge7mOupz02gtL6S7uY6aDIPvqM1Morksn/aqEjSZSYzotNRmJNDTVEdLcfZ/i38c7GiivSiF0UEt7cWp9NYW01tbTJ+mmLFBLZ3FKQy0N9JdkUV3RRaDXc10laYxNqSjuyyd/roS+utK6ChJY2xQS3txMgPtjXSVZ9JbV8xAeyPtxcmMDWrpKEmjV1NEX2M5ncUGvqMoGZ2R7yzLYqC9gbZCgz4dRan01JXRXVNEW2Eqo0NaWguS0bU10F1TfIf9aGktTKGzuoTOqkJa8lMYGdTRlJdksM+iDFqKMuhvracxx2CfHVVFJntozE1mZEBHQ3YS/a2NNBdm0FyYQV9LAw3ZSYzo+qnLTqatrIC2sgLqsg18a0URvU31NOSn05CfTm9TPZoMg++ozkykqSSfppJ8qjMTGdZpqUxLoKthwp90NWhMvuNu/qow6SbtDVP94fDg4H+LbfzfMEZGRvjqgzhWRAZQmp/HxkMniftqy5SXZ4Cx0VFSb1ylODuL4uwsUm9cRdvfR0lulsnf5iQl0FhbQ9r1q+j6+8m4eZ3S3GxKc7PJuHmdgf5+sm5eo1lTS35KIvkpiTRraqktKmBIp6UoOd7wzCvIpSg5nmHdXZ4vjfWUp8YbfGvaxPtJY2nBhP001lGTnUZNdhrdTQ2G5HBPHzwiZhG98mnSDu+k8OoZhrT9VKYl0N1YR21OGk2l+XQ31VGVZvA/1em3aCrNp6367v6qoSBjmr9qqyyhuSx/Gt9aUTTF/kcGtGiyEmmtKJrG9zQ3oMlJQ5OTZtAn3SC/uTSfJuNRnX6LYZ2WqrS78yPGnIB/5/hpB/qOIRAI9B8mV6LtmQjeH9JOTRac0pPdmNx2J6+0sZ7SI97ET+oRbymf4C0VSlNy3lTekDw0Wf6wTodMqfqX5Y8N6qb1uNfrwUIqnUjGMiYr6Jme7Dg8oGNwdByLO/SRyRUIBDCo1U7R53aP+zv1kSusEACDk+Tb2NszZNTfQiKdkhx2Oxlisj6G5JjpfP+k5Inb8jta27C6Yz77jAkJ2snJGUa+q7UVK1v7KXxvR9sPWq+u9jZDcmFPlzE5aWL+7+SlMvld14thLTKl9aTkP2PymUpBb0c7Sjt7+rsMvMLCjAFj8kp3WxtKOzsGdTpUlpZIZDK62tuwsXegp7MTmZUVg0NDvPWbp5BZKXn6ry8xIziUAZ0WAWApldHd3oa1kRdKJAjAJP92sktXTzcgwFIqpaejHZWdPXWNbRP2P2m9tGaKKfNzO1kkr6TelDw3MqjDQq5koLsDnV5uSj4TWUgY7us0JHz2d2NmaZB/O/msr7PNlHw2mZeobKfwI4P9NKWcpfLyAYRm5jiGzsUpbB5W6hnoGktx8I9AKBJNJG8Z12uguwNLpQ2jgwb5UoV8SjKoKXl3SIelQmVKRhw1Jp+JxIbkMJHYgt6mOlRu3ghFIkYHp/OWZkLMJVJ03R3IrA3JsmKpHP24npFBY/JiVztSlS0jgzrGxpnGjwst2fp41I++A73k40uI5UqGejsQT5r/cZEFI31diBU2jGh7EBmT5wZ6ujCXqRju68Rcbs348AAWFmLTelkobBnW9mBmaUg+HhvSYS6bJH94AAR6zCykE3x/D2YSQ3Lz6KAW8SSe0QEECKbK7+/GQmoFCCaSF43JjmYMg8CYLGhMLhzVdSOW3LafCfu0srU12YOZpYTBHoO9DfZ1TfADOiyslIzruozrO8HfThYcmGQ/IwOG5EJTsuDg7WREKbquDhycnab4kyGdFgd727v6/7G+ThR20/2hnb3ttLX8aQd6+hgfH+eNP/yars523li3ATevGdPK2N0eWp0OsYXFlOS/zrZWpDa2Jn8LoOvvQ2FtQ2tLM9Z29gzqDLylVEZTcyMqOwd6uzqRyg38gLYfrVAyzf9bSKRUaxqxsp36fBns70c2JbncwOvNLCeS+SbxOu305O+cs4fJPLWP4YEB/Offg3v4TFwCQ+moq0Fua4+9l99E8vSgjqGRcYN93uGvwJDMN9lf3S4ecCcvEMtAALquNsZHRhGJxchsHWF4wNChcBI/2m9Mdp8sv7Mdua3dtPtFZmNHf1en6Xpv881NLex6ZtFPSYQ/5oiLi1sTu/IXXNz0Cb3trTSUFJB17hhuwRFc2PwJErmcjDNHqc5JRyAUcm3bBjzCY6fx7qERHP9kDTKVNenGHu4CoZCb+7bjHhLBua8+ore9jSjEJacAACAASURBVPqSAjLOHsU1OIKT69YYe74fpTo7HYFAwJXtX+IVOZPzGz+mzyg/79o51AEhd5V/aeuXeEfOnCbfIzSCIx+9jdzahtRTh6kpyEavh4tbNjAjaianv/zIoH9ZMWmnj0zjq3MzAQFXtm0w6dPf2UZdcT7pZ47iERLBsY/fRq6yIevSaSoykhAKRVzcsgHvqJmc2fgR/Z3taIryST19BM/QSA6vfQsrG1u6W5robm1GJDKjLCMFe1cPKrPTGB4cpK+znfqyYmyc1RQkXEeqUNBQVjyNL01LZHRk2MCXFmPrrCbt/AmGdTpSTh6mIisNgUDIhW+/mHK9dSUFpJ0xzM+Jz99HqlCSduYwVdlpCIUiruzahGd4zLT5dA8J58Sd6yUUEr93Kx4hkVzYZFivxtv2EzJ9fYVCEZe2TsxPb3sr9SUF5Fw+i3tQKAc/fAuZtY1Jf6FQyKlN6/GfOZtD6z6gu70FTUkR144cwD8imm/XvI7C2oZrRw5QkZeDfnycXZ9+RPiceXz7/tu0Nzeyac0btNTX8dY3O9nx0fsobW25fPgAucmJCIRC9nz+CWGz57LlgzV0drRRkZfD1SMH8I+MYfObr6G0seXGiSMUpiQhFAo58uVnBMXOYe8n79Pb3oqmOJ+kk0fwDo9k3wdvYqGwJvvsEWpz0xEKhFzf8SWeEbHc3PEl2o5mOquLqbx5GjvfMNK2f4hIoqQ++Qyd5dkIBELKz27F1i+C4qMbGezuoLu2hLrk01h7h1J0dCPmEhn1SVN5G98ISo59xVBPOz2aEuqTz+F779N015XhPu8hWgtSqL11mqqrB2nMSaTk/D6KzuymMTuBrtoy6jPjsfcLIXXbWiwU1lRcP0FLcSZCoYCsg1/jHBxL6q7P0XW10V5ZRGXCBex9Q0jY/B6WCmtKrpygIT+dqsTLxG9cQ+7xXZReOUH2oW8pvniEkkvHGB8fo+jCIRPfXGKoa5qyexOuYTNJ2LaO/o522mtKKbx0DOfACK59+S4SlTWFl47TWJSDAD2pezahDptJ4rZ1BvvMSvjRkwhHBrQoPQIpPrgOsUxJY8oZuiqy0SOk+sI2VD4RVJ4yzH9fXQnNmZeRuwZSdWI95jIlrenn6anJQyAQUH1hOyqfCCpOfsVwbzt9DRU0ppxB6RlM6eFPEctVNKacobemENBTdX471j4RlJ/4iuGednrrSmhMOYvKK4Si/esQy5U0pF+iszQTBELKzmzF1i+S4qNfMdzXSXd1scl+8vZ+jIWVCk3SadqKMxEIBBQe/wb7gGjyD29ioLOFzupiquJPY+cTRvqOD5EorCk32oNAKCT38Nc4BcWQfWAT2o4WOqqKqbhxCnu/MFK2r0VipaTkynGaCjMQCIVk7t+MS2gMyds/Q9fZRltFEcWXT+AYEEHi9k+xkFmRf+E4dXkZCAQCEndvwjtqFpc2f0xfRyuNpQXknD/GjPAYytISkVgpaCwvoae1GZGZCE1BNnYurpTc4Q9dfXynxUGLRT+s1Nzdql/80JfcH3L+++K2f0g89/ex31fJ4+PXX6KmopyNB09ga+8ATC1jN3mk3bxGc0MdZ/bvJjs5EaFQwLZ1HxIyay7fvr+GjpYmyvJyuHhoP0HRsXz5xssobGy5cGAveSlJCIRCDm3aQED0THatfZeu1mYqC3K5euQgbiHh7P/gLaxUNiSePER5ZioCoYDLOzbjERo95fmSe/kUboFhnPosDpnKhsyzR6jJSQeBiPidX+IRHsuVb9bR39FGU1khhdfO4uwfwsUv3kGqtCb3/FGGBnTErHqWrvoaVC5uJO7eTPqRXdTmpJJ2aAeZx/eQe+4II4MDVKXforEkH71+fJq/aikvpOjKiSn+qvjKaerz0kAgMPHxWz+hIvEK8V9/SMaBLVQkXiJ9/9cUXzpG4cVjVKfdRGbnSOoeA39r+3r6O1poKS80hDkFhnP5y3eRqqzJO3/McL8Ihdza9RVu4THc2rmRvramKfyVL9+lu67qpyTCH3s4OTuy8ImnJho0hIbh4OTA3IdW4R0RjYOzM2Ao0C0WjN+Vt7W3Z/6qn+MTFYOtk5OJNxcJsHNwYMHjT2Hnamjw4RUciqOjIwsefwqf6Jk4uhh+KnJwdUViJkDt4sTSnz2NndrAdzU3GM49+TR+MbNQuxoKldur1UjNwN3VieU/fwZ7o/z2iHDULk7c87On8Y818Hq9gZeI9KhdJniBANrCQnFzdWb5L54hIHY2bu6Gwv62LmqUlkJ8PNU88PSzRl5Aa2QEnu7O3PuUgff2dkM/rsdOrUYhhhkezqx4+hncvLwQIKClLgpfLzUPP/tLwmfPw9zCwjT3wf6GxDKPFSsmrYghacf95z8DIMjPexrvtvLRafzDTz6BpUSKv4+7cX5csZWKCJ7hhvlzv8LRzXC+pS4GvxlujDz1NEGxswj0ncTLRIT4uGLxy+dwNBaob9FE4evjjv7ZXxI0cw7Bfh4m3kkhJjTAHfmvfmXimzUx+Pm6wR28o9oNe5nQIP+550wF8zub6vHxcuPRZ39FyKw5+Hsbzru4uaO0MGOGmyuPPfdrnNw9kJmb0xgVjbe7O48/91si5sxnhqc3ZiIhTmo3hHo9To5OrPrlb9Bp++nr6GDtt7sI8vHlqd/+nph5C3FWq0EvwNHVwDs4OrHyl7/G3NYBBOAWEIyFUsnSJ3+BV3gk7UI5ej0IndQE3LealnEpsqgVDDoY7ERm4U5GowBF9EMk18oZkRiS9trqrNA5zOPUrQ76VNEMCuwBGLFXkpnfzbDTXOr7rRmzNsQUDvWrGHOeS03jCLgvRKc03Ee421HdMITMbxEjck8kfhKDHLkjiuDl9AyKsQq5FzNrw31qZeXOsEiB06xHsfaJROJmiBG0tHFC11CArV80zZnX6G+ppTn7BgPtTZhZSHAKX4DKOwxzKzsArF3U+CwdRSRV4rNsFVaOhvvOzicYc5kK/3tWY+8XwejwCGnfrUcskzPruRcJvH817RVFSK3t6G2uo6k4h4Iz+/Cedy9KF09kNg4IRUKsHJwJGBlFJFcRcN8TKJxcGR4eR+biw5hYgc+yx1F4heEps0UgFCK3d8Zv+QgCiRLfe1YjtXMhecsH/NjDc8FDyGxs8Vy0Ehu/COT2jgCYKR0wE40jt7XDY9FjSOwm5keldoalq7DxjcJGbbATia0TIpEeua0dnosfQ2qnRiQSoPP2R+lgj9eSx7D1i0Tp6IhIJERq64SluQAbRwf87nkcmb0akUiIti0EGydH/JY/jn1ANA5Gfyizc0YiFmDr5EjgvasNDUcE0N8Sgp2rI8EPrMYxKAZnTwMvt3fBQizAztmB0PsfN61vb2Aots4OhD74BF5RsTi6Gc5bObogtRDi6OrErEdXo3QyXFd3Uzguns6YPfpzPMJjcfMwnFc5Gvynp7sLZo8/hfVtfx4WjqubE+KVq/EOj8HLyFs7u6KyFOLn6YzZU8+a/HlbfSQBXk4Eej9pWJBAL9PaxIYa4kE9Vz02Zc0s79IJ9AeXoPsBu8TfJ/vfsav8fS+0P0Tu3V6gGzW1XDp6kPLyclQqpel8fs/IXWV4BgajUFlj42jwS06u7gyPjqKys2fF08/h7OEJgG9oBEpbO2atfBK7gBCi5SoA7NRqvJc8Qt2wGJ/lq0wNv3ycfGgcluK5ZBWjzkE4zzPoMubogtuCR+jUy/FYvAqF0d6Ezv60j8vxWPwYApdgnOca5Js7OOO1dBV9QgWeSyZ4C7U/OpEC76WrsPQIxc3SBqFIgNzBheBHn8M1ci6OkQtROLkiNhPS3ahBam1HzrFdVKQl0FFTjlf0PAIWLCPy4SdR2toS+dDPDA3F9HrUASGGcw8/iVtoNAp7J0CPwlGNQD+OfmyEztpKxkZHuefFdxFLZbgER1OdehOZjT3NhZnknN5He1UpvgvuQ6qyIeSB1SiNDYbsfYKxVNkS9uAT2PtFYKE0fNFROLoQfP8oZnIb/Jc/isrYwMh2RhBihQ0hDzxBddK/tyPtTzHQdxkn13+AxEpBzpXz5Fw5j8RKwb64V/AIDufs5s9or9fQXq/h3Nef4RUezZG1b03jj30Sh1d49DTeIyScvWteRqpQkn3lPNlXziNVKDn26bt4h0dzdtMk/psNeEdE891bBj7ryjmyrpxDIlew662/MyMimpMb19FWX0tbfS2Xv9uKT2Q0O978OzKFkozL58i4fA6ZUsX2f76ET0QMxzeso7Wuls7Geo5/+Sk+ETFs/+dLSBVKMi6dJS/hOjKliq1vvIRvRAzHvviEVk0NbfV1HN+wDt+IGLa+8RIypYrs65dJv3h2Gt/eUE9rXQ1HN6zDNzKGb//xElKFisxrV0i+cAaZUslXr76If1Qsh75a/6Oto9RKwb7PP6K5tobm2hr2f/4x/lGx7P7kfeRKJcnnz5B8/gxypZKNr7yAX2Q0+z//mObaWppraznw+Sf4RUSx6bUXkSmVpJw/Q8p5g/771n2AX1QsB9Z/TIumlhZNLQfXf4JveOQ0Xq5Usum1F6fxp7d/g39ULF+9auCTL5wh+cIZpFZKNrzyAgHRsez97COaNTU0a2rYt2EdgdGxfP73/0SuVHLr3GmSLl/ASmnN2hf+REjsLLZ99B4NNVU0azRs+eg9QmNn8f5f/4iVSsWxHVtwdnfHztGRt/78OyJmzmHj+2/TWFNDQ00V2z9+n5DYWax94U9YKa3JunHVdL2T9e9qaqCzQcPVretxD43i2PuvIZYpqEu7Ql3aFcQyBanfrMHOL5yOtGOMdDcx0t1EW8IepOpAms6tRySWoq1IRluRjNBCTvvVjVg6+dObeZjRnhZGe1roST+I2MmP1utbEVnK6StLpK8sEZGlnOYLXyBV+9F4bRdDnY0MdTbSeH0XMrdgNGc3IbK0oqswnq7CeESWVpQc+hildyiVZ79hoL2BgfYGqs5+i8ozmLxd76Fw80UsU+I+/1Gi/vA+7RX5lF8+SO6hr+hvqaO/pY7sA1/h4B9B4qa3sJApqE2+Qm3yFcRSK+K/fBPHgAjSvvuC+I1vY+sdgGvEXPyXPUr8xjgs5ApqMxLoqq/BZ/59WLv5UJN8lX2/f4CbG9eQfWQbFz/8GxZyBdc+/ycWcgWVty5Rn3ULC7nCJD9j70Z6m+roa6knY+9GHAMiubnhTYP81Gs/2r00eZhJrcjd+S7WM8IoPfk12rZ6tG311F47iMo7jILv3sVMqqAl6xotWdcwl8jJ2/Uu1t5hlJ/6Gl1bPbr2BspPfYO1dxh5u97FXKqgOesaLXmJmMusyN3xDjYzwig98TXa1gZ07U0UH/8aW58wsra/g7nUioaMq9SnG+wtY8sa7HzDKTyyif72Rvpb6sg7shk7v3BSv1mDWKagIfsWtSkGPmnTW9j7RZBz4Cv6Whroa64ja/9XOPpHkLDxTcQyK6qSLlOVdBkLuYKbG97EMSCS7GO76G7S0N2kIeW7DTgHRXD50zewlCsojb9IafxFLK0UnPvkH7gGR3B923q6GjV0NWq4vv0L3IIjubz5EyQKJUXXz1N0/TwShZITH76Ge1AE57/+jPYGDe0NGi588xmeYdHsePPlqf5coeTMtm/+W9b6/6WRGn+dJUuWoFKp/iVeZWvHlo/epaGmmoaaarZ+bPC3377/NnKlivgzJ4k/cxK5UsXHL/4Z38gYjnzxCa11Nabno2twOMfefw2JlZKC6+cpuH4eiZWSW9s/wyU4gqRdX5jsLWnXBhz8w7jxheF+r0y8TGXiZcQyuck+0/d8SW9zHb3NdRSc2jPFP9y2Z7HcajrfqCF9z5c4BUZwfb3B/1TdukR16k0kVirS9m5m7m9exCUogkV/fB2RuTkHX/4NzgGhnPvkH1haGey/LPGKyf7VwZEk7PiC3pZ6uhvrSNy5AefAcHb/cRUOMwIIe+QpelsakCptufzpG7iGx1Iefw5rNy+iV/+atAPfcmXD22x9ZhmlNy8Qv/VTMo/uwtJKwYV1/8AlOJKsSfdj0q4NuARHcOnTN5DIFJQlXKQs4SKWciWXPn0Dp6CI//2i/sDx0wv0T+On8f/A0Ov15GekERwZ/X9alf/xQ2LjhENgDKNDA2hbG37Q/3bWliJR2eI5+57/8qdmidKa1V8cIej+J7D28GGor4euumpOv/kHelsa6NRU0tfSSG+T4WH4U67KT+On8eOO43t28sQTT/yfVuN//JAobQhe/ijmFpaU3Ljwg/63/JZhBzj68ecQCr+/EoqVvRMh963i1zsuILd3ZEjbS1tlCdkn91CWcImB3m5aygrpbW2ip7nBVG71v3v8lER4xxAIBPr1GVXUFuRMhGQ01OEREkFZWiLeEbF0Nhl6yk/usX43viQ5Hp/o2VP4mrxM/GLnUpOfbQrhaK/X4BkaaeRn0Wns4e7g6kp5RipBcxdSnZ89JYTDMzicoqR4/GJm0dFo4O3VasoyUwmeu5CqvOyJEI56DTPCoyhIvElA7GzaGxtMIRwl6SmEzFtk4gUCaJvE+8fONsm3dVFTauQrc7MmQjjqaqfw3c2NphCOkrQUQucb+IkQjlp8I6LISbhB+Jx5iO/SDeuHjrv9rNfX3YWFREJbQ71xflwpTE0mYsFiynKyJoVwaPCLiCLnVjyBsTPv4FMIm7+Q8pysSSEcBv1zE24SNGv2FL4kI43QuQum8M2aWvzuwjuq3ShMM+hTnpM1NYQjLJLs+BuEzJ5Da72Bd3FzpyAtmaiFSyjNzpwI4dDUEBQVS/qNq4TPmU9LfZ0phCM76Razlizj8NavObZzCzvOXqWhtoawmJkkXbtMzLyFlFaWmUI4cpNvEbt4GUVZ6aYQjjuvNyO/Ar0eVE5qarJT8Zm1gBtXkrAyhnD0t9Zj6xNKc14yTSPOjPS2AWCudECnyUfmFUVPTSHmVsYQjt4WLBz9GNDkIHIIYKzfwJvJ7RlqKsImYBaDTaWYG0M4RnqasXT2R99WjNw9hOGeFgDESkf6anNR+c1EW1+MhTGEY6irCZfgGDpLUlH5RDLY2QwYQzjq87ELiKW7qgCpveGneV1bA26hkeQf3kRd2hW8Fz+GtYc/LiGRtBZn4hI+l7byfNNP/IOdzdj7hFCfk4Sus42Km2eY94c3UDq60FSYiWvkXFpL80w/ofa01OPoF0Z9dhLOITH0tzaaQjhyju2kIuECo0NDmFlYgkCIrqsNgVCIjbsvvksfReXigblUhtzemaaCDFwj59JclE1N6jXyT+z80ZMI572+HZVXMG2FKdj6RzHQYZhPM6UDXeU52AXNoqe6wBTCMdjZhMozmPaiFGz8JniJrROdZVnYBc2mu7pgIoSjrQGVd8gk+U2mEI72kiwcQmbTVVUwKYSjHpsZobTkJ2MfEM1Ql0G+zM6Z1uJMnMLm0FGRPymEowE731Aac5NwCoph0MjL7V1oLsxAHTGXzsqCiRCO5noc/A3r5R09k76WJsAQwtGQl4579Dy6KvInhXDU4RIYTn12Mp7hsXS3GPynylFNTW4a/rMXUl+YMxHC0aDBNTiCptwUvCJi6TI+L6ydXanMSmHmkiVT/HlbvYaImbF3/YJmcZdQDfgphOPOcWcIR0leDn/++WPUVVeZ6jzfHt8XwlGtqcVKqaK5XgMYQjhykm8RvmAxxVkZphCOptoaAqNiuHjuLAEzZ9PeYLAHO7Wa+Ou38ImdR11hjimEo7NRg9QjmNrMRFzDYultaQQMIQqVWWm4RsyZ4k+6mxtw8Aud4k8A5A7ONBVM9z99LQ3Y38ELRQKsHFxozE/HLWoeLUZebCakp6kOp4BwNJmJqMNi6WtpxMJMSE9LA2c+fIXFv/87ZhaWuIXFIgC6m+txCQynOuMW7uEz6Wpu5HYIR/rh7VSnJbD4D68gc3AFAdPka1snrrc+Lx2P6Hm0lOajdHalubSAG19/iJnY0pjcq0DX3cnI4ACeMfOwsncm9mfP01lfbQrh6G6uw8kvlEsb4ig6f/j/ziRCgUDw57i4uG1xcXEfxcXFvR4XF/dIXFxc85o1a8qNfxfExcWtiYuL2xcXF/deXFzc8ri4uPQ1a9a0TZKhj4uLeyMuLm7vmjVruiad3xkXF/f8mjVr9v3v9IiLi1sz7/GnOfThGwxqtdSXFpF0dC+B8xZzccuXyFXWJB7dN63H+qEPpvPfvfFXnLxmTOGTjh/AJ3oWBz94g0GdlvrSQhKP7iVo7mJ2/eM/cfTy4daRvVTlZCCRyTm87h2ilz/I3vfeYEirpa6kkKLEm8wIj2Lrq3/ByduX+MN7qMhOR6ZQsn/tGmLuXcHud/7BoK4fTUkh8UcPEDp/Md+8/B84e/tw4+BumqoqEIpEHPjoHWLuXcGud15nUKultb6Wy7u3E7ZwKZv//hdcZvhy7cBuaosLMReL2bc2jtj7VrBrzWuMDo9QXZjL9YN7pvCZly+Qd+sGEqmMPWvjmHXfCra//Rr6sTEq8nO4tP87ohYvY/0Lf8TTP9D04vj/Z9zNpdaWFNNYXcnFvbsozkhDIpOz/b23mPvgQ3z9z1cY0GqpLirg4r5dRC9axrZ33sDORc2lfd9RkpGGpUzG0c0biFq8jG/ffJUBbT/VRQVc3r+byEVLWf/in3Cd4cul/d9RkpmGRCrn3HfbCJ27YAp/7ch+IhYsZv0LU3m5UsWOd99kzgMP882br5j47PgbBERGs+6vf8Rthh8X9hn0l1sp+Dbun8xf8Qgb//ESA/1aGqsqObbtW2Yvu5e4//UbPPz8OblrG43VVYCAL956laUPr2TNn36Ll38gQwM6DmzZzILl9/Pq88/i7R/Aqf17yE5MQCqX8+Vbr7P44ZV8+vILjOrHKM/JMlzv4qUm/ZPOnqYiPRELqZSzG94ndOkDXFi/xlBCrraEiqtHcI6YT9LG1zGzcacr6ywD9UUIxRJarm1BETCfjuTDjPZ3MNxWTV/BJaSeUbRd/Bxza1e0RZcYbi5BKJbQnbQThd98Wi5vYnxkgKHWKrpzLyD3jqY9+SDmUgVt6Wfo1xQgtJBQf+FrbIIXUXtyPeNDA+iaKmhLO4N9yFwKdr2FzNGL+lvH6K7KxcxSSv2tE9j5R5G3Zy1jQzp668qovXkMdeR8cvavxzF4JjW3zlJ14zglFw9Sk3QZKwcX8o5tZXRQR2d1CfWZCTgGRnD901dxjZxHwanvGOrrwVKpImnLWrzn3Uv8pncYGdDRXlVC+fUzuIbP5uq6V7B29abo/CE6a8sRmZmRfXQHj36wDU1WIt5zlmLvG85AVzvz//gmhaf30llbTs6RLdSkXkfb0ULBqd2MDQ+RsPFtdB2tDPX3/OhJhKODWmz9Isne8iZWzp7U3jxGZ0Uu5lIFxYc+wyl6KYV7P2JsSEdfXRkt2dex9YskZ9ubyJ090dw8Rk9tMSJzC4oPr8c5eikFew3zr2uro/rqQRxD55K15Z/Inb2ovXGU/uYaBAIR+Qc+Qx2zjJxdHzAyqKNXU0rVtaM4h88jZdM/UKi9qEu7QnN+CuaWUrL2rMNt1nIytr0PAmgvz6fs8hHUkfNJWP8aSlcvKq+forkwHXOJjNTtH+M1dzkZezcy0N1BR1UJxRcO4Ra9gGufvoK9pz+5p/fTWJiFWCIj/pu1+Cy4j5TvvkTb2UZrRTE5Zw4wY+ZCzn/2JtZqdzJP7qcuPxOxVMaljR8QvOR+Tn/yJkM6LU1lRWSc3I/fnMVc3bIeKxtbko7uozrX8Lw4+fl7xN7hz28e2suse+9HbDl94+GHVL/4IfHB38d/368s3yf735EY+EO2/P5V/XZv/hL/kDBWPnDfNLZ16O67m6nxN2htauTErm3kpSUjlcvZ8NZrLFrxKJ+/9iK6/n4qCvI4vXs7M5cu57OX/gNnDy+uHthNWVY6EqmMy3u24RM7j5MfT9hD+on9uEfN59zal7Fxm0He2QMme8s4uAX36PlT/ElFwnlcQmdy7dNXsHbzpujCIZqLs7GQK0jauhbvufdya7OB76gqoTb9Bk6BkVP4luIczC0lJG35iBnz7yX+q3cY0Wnpbaol5+QePGMXcmHt37Fxn0HemQN0N9SgdFJTkXSNYW0/aYe2k31yHzVZyZTdusSMmYs4u/ZVbD28Kb52jtrsZMQSKWkHt9LToKGlsgSBUEhzSR75Zw9OkV9y/TR1OSmIJTJufL0Wv4X3kbB1HQM9Xei6O9B2tfPYu5sounKKRX94lZEBLXIbeyRKa/LPHSbr6E4qE6/QWlFEd4OG9INbKLhwhPrcNPRjY/9W//g/ZgdaIBA8CgwD5RhCS54DXgGi9Xp9nkAgeBX4J/AroBR4C5gP+Ov1+j6jDD0wCJzQ6/W/mCR7J2Cn1+sf+hf00H+RWY22pxsLY5khU1mudkOZsyGdsayMVEpfZwcKW7u787d7yk/mO9pQ2Tui7enCQnq7LFH/1LJlxjI3cis5fR3thrJEPV1Y3ua1fVhZ29Lb3oaV7QQvs5LT095mKHM2iR/WaZGrrOlpb0Nh5AUCIRZSKSPDQ5iLLRgdHkZoZoZQKGB8dBQzsdj0t7HRUQBEZmZTeJG5OXq9fhqvHxtFcBdeLrVEr9czNjqKuVjMyNAQEonkh5jJ94677UqMj48jFAqn6j80hLmFBSPDw4iMuzK39RkcHERsMfV6b5+7G39b1mR+eGhoGj8+NoaZufk03nzSucm8YHz8rvItxGJTmbnerk4kcivkYjG6/j6U1jZ0trVgbefAgFaLSChEZiyrZOvgyMa4fyIQCHjx7ffQ9fWhtLGhvaUFWwcHGjs6EICx7F0rNvaO9HR10ofhITN4u0xeextKWzvyatoQCARTyhpmFtRjZikFYHRS2a/S2iFDGTJAaG7JqLYbc7k1fe2tiCwMvH54EJHEilFdN+NmcvQjhpq1AnNLxgd6UDg4MTbQh0BsOYUXozOWRTPwQrElI/3dflm/wAAAIABJREFUWKpsGdH1IhIbbGtseAA7Z2dTmbPRIcP9aGYhhaEuJCo7Q1m0SfrbOtpNKmOnQ6/XM9rbStWt8zQXpNFdV4U6ch6BDz6FrZsnEqUNuq52alKvkXNkCyvXHcDK1g5dV7uh7F1fD+ZG+cMDhrJKt8vYjQzqEAoM3bhul8kb6O1GLJExNDTG6NAAllZKE6/taKE+N5n6jATqshJwjZyL79KVOIXNY/fPo3/0Hejln13Cwko1bT4F5lKGejsmyswZr3dsaACLSWXvDLwAsyll5gy8QChgfEhnKJPX04FYYeDNhALMLKUM9nYiUU7wZmZCRgcN/O310o8MIAADbywzN9Tfg6VcjgBDWTpLKyUD3e1YKm1hbAj0eswtpQz0dCBV2TGi7ZlS1vD2/Ns6OTJsrCdrbik1rddYf/dEmVHj+g71GEqcjhjLipkbyziq7B0YHRlGKLrtH0YxMxdjIRid5m9Hh4ewVUqn8TZW0ruuz0870P+a3Du/JOz79ivKCvI5vHPrNDa/ZwRdfz8WxmfV0MAAUrmcusZGlDY2U8vYtbcit7Ez+WeAAWMZu6KqapS2dlPK2BWW12Fl54CuZ6Ks4bBOy4BINqVsJRjsra2lFfkd/mRQ249EaT3Fn4ChG+a/6n9EIsEUex7s7cZcIsPcTMjIXXgLkaFMrba7A7nRX2n/P/bOOy6Kq/vDz9DZpUrvIAgqIB2kgyXGRNN7T6wxGmPvXWPvxsRoEk1ijLH3XimKiIK9K4ioKAoqHXZ+f8yClCWa96d5Td558skH9853zt65u3Pm7plzz9zN4+LBvZxL3MntzPM4+gQR9nYnLN2lByHpGig4tukPkn+ex1vTlqCwckAQhHr9qSguQkurbtm7+udX4d3bki+ocT4W5eeha2DIuf3buHI4kSuH9mPj5UvQG59g5uLF4g/jn6h/fGaqcIiiuK5O0zBBED4HwgVBOA58BUwSRXEVgCAIHwO5wHtAzRUVc4F+giBME0Ux7T/py/JRfWn9/ick7tgCQFDb9vw86HO+mP09Pw/7Eu+IGABOJu/no5Ff80P/rnTs2rOWfs2k4XQaO4kfh3+Jb6SkP560n09HTWR2t3d4p98QEtT6kLbtWT9tFJ3HTGTh8C/xi1LbP3SAT4ePZVqXd3h/wFD2b98MQET7jswe2IMB839gwZCe+EfFApB59jRvf9mPKZ3e5sOBw9mzbZOkf74DC/p2Z8iCn5g/qCcB0XFY2dkTEt8GqJrASn9rO5yHk9uHDlFZ/be+czKqo61NvVqfRkZ/yXE+EYyMJAesVNbbpFVVh7km6lqedVGJouZtGtoaGo+GbJRWVkr/qBNhmvBld7qNHMfgt16m05CRJG7ZiL5SSWB0HD9NGsvw75cwrPNHBMbEIejqkbpzK93GTWZQx7YExbdh69Il3K0Q8Y6MZc3syXSfsYClvbrjFBSNqrKSi6mJdOg3huUfvk+b7v1J3r6P8qJ72AW24tSquYT2mErGL/0wcA1BrCyn4Hwqrq/04fzSbni92pNbGXsBsPaL5/z6b/DrPIk7+39AYStVTXmoH4p9m87kZ0jff7NmkVzbMB33t0dxfs0cDBykJwuWZKVjHteNaxsm0yjoZe6fPyANcZNwbq1bgnenr7m86mtMPaWqKwXnDuP2ah8uLh+LffRb5J5MAKCRdzSH10zB460hnFo4pJbe54MhJE3phsfLX5Cbvkfqv388p5bPwPfd/hyaORBrb+lRyXlnUgj5bCg3Tx8l/IsJnNn8KzvGf465szsVJSVYeXhzMXErAW92JfPQXvKzLxL4VjfWDfmE0I/6cPnATgDco9qyY1If2g2bxc4p/XEMjEBXV5crh/YR13MUawd9QsSnfbmYvAMDY1Mc/ULZPbUPHUbMYfeMgTgHRWCor4uOjjaf/bqbTeN6Y25txfn132v8nj1pdIpvkrpoKHH9Z3Bw4Qjs/aRHDedlnsfnlS4kzuqB3ztfkrVXWtTo2rINh38YTGy/GaQsHI5di3B0dLS5djSJll2HsWdqD4I+6E3W/l3oKU2w8w0hdeFgWg2YSfKC4Tj4h6Orr0/mob1EdR/BzsndCfnoKy7v2oWgBY3D25D4zQDaDZ3N/m+G4tYyDlV5GVlHkonrOZItE7oS/mkfMg+mUnq/AI+otuye1Y+OI+ewa85gmrSMQVSpuHw4ief7jGbVyE680HMQJ7dI+Z3NY59j+7Q+vDdxPgmLp2HbWHoS4dmUBN4YNJ7Fgz7hjb5DObJhMQABrZ9n9YSv6D3ne5aM7YeP+npxInk/n4ycyMG1i3ml2xf1xtWwTuqAhDEKDe2GDUyU/8qk+K9OZjVFpi31NGsbaTqUp8y5wvoT61L1j5G6lFf5WDVNfPxY+9svHLxV/2Ebufl3uXL6FIlbNgIQ1b4DP0wcS685CxjbryctIqXr77GkfXQaPZFFgzsR+cb7ZOyWvj9+rZ5nw9zJfDjpW77v2Q2vMOnR32dTEoj9YiRLP3+X2M79OJcg5Qd7RrclbcNyIjr1Z/24PjgHRgCQdSSZoE+HsmbQJwS+35uslF0AOIe15sjSPsT1n0HCpH7V52NB9kX83ujK+iGfEPRBbzIPSnqXsNYc/nU2rQbMYIdar6UF19IPENFtBGsGfkzIh19x5eAuDIyNcWwRxsElM2k3dDa7xvXBKSAcXQMDLh/cQ1zPkaz56kPCP+3DpaQd6OjqENNtIPsWTMHRL4yVQ7tjbGmNa1Akl9OSKX1wD2NrW8oL73E8aScl9wvwjG7LlvFf8urouWyb2Be3sFhUFRVcOZxE296j+KP/R8R36U9awvbq8Vk/Zjqvjp5LwoKJWKqfRHg5NZF2fUazZmQP4rr1pyD7EuYvvYNXzHPs/X46b42b+1jfo7/CMzOBrokgCNrAm0gzsmTADbAFtldpRFEsFgRhPxBB7Qn0IWAVMAVo/Z+8v5tfANZOLjQNlb6I1k4u+EbHYaAwwjsiBjf1ozVBemZ905CW9fSegcEYKI3wjYyhse/D1Z+GRka0iI7DysmFZmq9lZMLnv5BGCqN8IuKwb2FpBe0tDA0MsY/Jg4bZxe8w6QTycrBCf+YeAyVRvhHxeKh1usbGKAwMiYgphU2Ts74qPW2zi4ExrbCUGlEQHQcTVr4Y1Tnsa4yzz7+kdEojIwJjmuNrYsrfuFRiFoCts4uBMW2xlBpRGBMHJ5+AZSrVJSXllR/H/wiY1j5zWzcfAOwdHDGOyIWA4WS5uHRGLk2r34PfaURHmExmNs7Y+raDCorUFo5YO0TgY6BEmvvllSaulYvatPWV2LmGYqhhT3mTaQFioaW9lg2C0fbQInS0at6Al1Tr29mi7GrVE5O39wOU48QtPUVGDh4o2ftXq3X0jXE0L4Zuqa2KJykRxzrmtqidAtEW88QU89gjBybPrRvoMTE1QcDC3tMGkvnhYGFPaZufmjrK+rpdQwUWDQPR2H5sP8KS3vM3byrj9fMTRofXV3QNVRi5xeBhbsPzV78EFVlBaV3cji+bgk6hgqC3++FnW+YpDfQR0+hxCkwChNbR+x9QwAwsXHEKTASXUMljoERWDfxQVuQ7vzoKZQ4B0dhYueIg28I2nq6mNo54RIcja5CiXNQBDae0jhUVpSjpzDCJTgaUzsnHH3/ngWiRlYO2PtHoGuowN4vHAt36VHnorZe9fgYWTti00zqj9LaHnu/SHQNFNi1CMfS3RttbQFRpULPUIlDQATGNg7YegejpaODsY0jDv6R6BoqcPAPx9LDB21tLSrLy9BTKHEMjMTExhE7n2C0tAVMbB1xDoxC11CBU0A4lo29QP39lMYsEhNbR8TSIlSVFZjZOuEaHI2eQolLUAR2Xt7VeQH6SiPcQ6Mxt3fALUD6HBvZO9MkLAZ9hRKnZj7YuntWj4WBkRFNw2OxtHfEM1j6oVV1fhkaGeMTUdv/GxgZ4eT58Psn82zg5dOCS2dOUVFejk6dHyza2jrV/hbA1sWV4LjWGCiNaBEZi7vvw/mAoZExzs1bYOHghEeQ9H2wcHCiaXgsBkolXmHR1Y9eB9BXKmkcEo2ZnRPO/qEAmNk5Yenuja6hEufACKzVj4IH6fts7x+BkY0DNt5SIEBpo/l81NXXl84v/0iMbRyx9Zb8j5G1Iw4BD/WWHt5oCQCCdH4FSHo7n2B0dXXrnV9Wnurzsay01vll3yIUXW0tzGydcG8ZT8ArH6BraEh54X1O7dyA0qwRb09ZxOndmzCzc6KsuBBVRQVmdk40DpHOR7egSKw9mlefv3pKI9xCojG1dag1PlV6Wy/f6kd5S+NpROPQaMxsHXD2D3uoD42ujvA/SZ6ZFA4AQRB8gQOAAfAAeF8UxU2CIEQASYCLKIpZNfQ/Ag6iKLZTvxaRJt7pwCngJVEUtz4qhUMQhK5AV/VLuUyBjIzMP5VMURRdn5ZxtY+VkZGR+SfyRP3jsxaBPgv4A2bA68ASQRDiamyv67wFDW2IonhBEISFwCRBELbX3a5B/z3w99z/lJGRkfmH8jTzq2VkZGT+STxTdaBFUSwTRfGCKIqHRVEcghRJ7gPcUEts6+xiDdxswNwYwB14/6l0VkZGRkZGRkZG5n+SZ2oCrQEtQB+4jDSJblu1QRAEAyAaKUe6HqIo5gLTgHFqGzIyMjIyMjIyMjL/b56ZCbQgCJMEQYgWBMFVEARfQRAmAnHAUlFK1J4FDBYE4TVBEHyAxUh50n9W23k6Uj71K0+39zIyMjIyMjIyMv8rPEs50LbAr+q/BcAxoL0oitvU26cg1VX7BjAHUoDnqmpAa0IUxQeCIIwB5j/NjsvIyMjIyMjIyPzv8ExV4ZCRkZGRkZGRkZF51nlmUjhkZGRkZGRkZGRk/gnIE+jHQJDIUD/98HH03wiC8MPT7peMjIzMf5vH8Y+CIPSsWUNaEIRgQRDyBEEw/Xt6KSMjI/NkkSfQj8dbSHnXf7ZgsSZTgfcFQfB4el2SkZGReSb4q/4RURQP87BMqYyMjMw/DnkC/Xh8CfwiimL544hFUbwCJAKfP81OycjIyDwD/CX/WIOfgO6CIDxLi9llZGRkHgt5Av0I1FHkCGBlnfYugiAcFwShRBCEm4IgrKxzO3IVUhRaHmMZGZl/JZr8oyAI+oIgzBMEIV8QhDuCIMwEdDXsvh5oBLT7e3orIyMj8+SQJ3ePpjVQCGRUNQiCMBxYAOxDqjH9OVLpPaMa+yUDNoDv39ZTGRkZmb+Xev4RmAR0RnqI1fuAC9Cv7o6iKN4DTgJtnn43ZWRkZJ4s8q2zRxMEnBZFUQUgCIIZMBSYJYpi3xq61XX2OwlUAqHUvrjIyMjI/Fuo6x8tgO7AKFEUp6vbtgGnGtg/A8lHysjIyPyjkCPQj8YWuF3jdTjSA11++rOdRFGsAPLV+8vIyMj8G6nrH32Rnv66rqpBPbleh2ZuI/tIGRmZfyDyBPrRGAClNV5bqP9ef4x9S9X7y8jIyPwbqesfqybDuXV0dV9XIftIGRmZfyTyBPrR3AHMarzOU/+1e4x9zdT7y8jIyPwbqesfb6j/WtfR1X1dhewjZWRk/pHIE+hHcxZwq/H6AFAM/OlDVQRBsAIUwLmn1zUZGRmZ/yp1/eNxoAR4uapBXYnoZTTjiuwjZWRk/oHIE+hHkwQ4qyfEiKKYj7S6vK8gCHMEQXheEISXBUH4XhAEhxr7BQMiUjUOGRkZmX8jdf1jHvA9MEYQhH6CIDwPrKB2haKaBKttyMjIyPyjkCfQj2Yv0i3G56saRFGciFS6rg3S4pgFSLci79fY73lgn/qCIiMjI/NvZC91/CMwEPgRGAksA3KAGXV3FAQhALCifgUjGRkZmWceQRTF/3YfABAE4QpSvdC6bBZF8UW1pgcwACn/+CTwlSiKCRpsxNRpHw28IYqiz3/Yt9mAR1U/HkOvDWQCg0VR/PU/eU8ZGRmZfwJ/1T/W2G8iECKKolwHWkZG5h/HsxSBDkGaGFf9H4iUAvEHgCAIbwOzga+BAKTUiC2CIDjXsVMCTH7CfZsKxAmC4PmY+jeR8qR/f8L9kJGRkXnW+Kv+EUEQlEAXYPxT65WMjIzMU+SZmUCLonhLFMUbVf8DLwD3kPLnAPoCi0VRXCiK4mlRFHshlZL7vI6p74EAQRBee4J9ywY68XiVNwAEoJO6FrSMjIzMv5b/wD8COANjRVHc+1Q6JSMjI/OUeWZSOGoiCIIAXERK3+gpCIIeUAS8K4riihq6bwAfURRj1a+vAPOQSia9DHiLoljx/03hkJGRkZGRkZGRkaniWX2Ud1uk0kiL1K8tAW3gZh3dTaSFfHWZCHRW///do95MEISuQFcAE/NGQffuymVJZWRk/pFkiqLo+rSM2zu7iNevZj0t8zIyMjJPkyfqH5/VCXQXIFUUxfQ67XXD5YKGNkRRvKteoDJKEIRfHvVmoih+j5T6gSAI4oHcB/U0ZaWlDP70PQwUSkbMX4SOzsOhU2mI4ldWVtL3zZfoOmw0CZvXAxD9wktsXLqYz0eMY8agPgTHtgLg8L7d9J86m+GfvU/3YWPYp9bHvfgS340fxdc/LmXqwK8IUesvnznFZ/2HMOTT9+gxfCw71qxkz8a1PCgoQE9fnw979WH/1k1YWNty+8Z1zp88jqm5OaIo0qnfYOaMGc7HX/Sm59BR9frdzChH4xidK3Ks1+Zp2ED1qfK7Gps3rt/DjZsFbN99gu9mfcJr789h0qiXWL3hKACvvRTA4NFrWP1Ld8ZMWo+vt1QVcPvu03w3811e+2AhU8a9xcp1hyV9x0AGj17F6l970HPAclrFekv6Xcf5bvZnDJ16iq+nz9LcRw000q3fdrygvPrfoihy+dwZtq9dxdY1K3hw7x6tX3qV1i+/jk9QCIIgUFpZWc9GSYXmTJ4yDVqA0gb0xeX19bdv3GTpxFF8NPJr5n3VlTf7DCFtxxb0jU3xDGnJmtmT6T5jAUvHD6V5eDQVojank/fwxuAJLB7YnRd7DuL4/p1UlJfTPPY5tn87lfcmzmfdlBG4hbeiorSUy6mJPN93DKtH9iKuaz/OpSRRXvwA98i2JP04gw4j5rBzzmgc/cIBuHr0ADFfjGTb170J/agvl5N3AOAa3prUn2fRZvAs0pZ9i7mLBwDX0g8Q0W0Eu6f2IeiDr8g8uBMAl5atSft1Nq0HzST5u3E4+Eeo9clEdh9JypIZNG37GlcO7pLst2xN6i+zaD1wJskLautbdh3Onql9CfqgN5lqvUvL1pzdvorQj/up9eE1+jOc3XX0buFtSP1lFm0GzSLx2zEYmlmQfSSR0vsFBL77BVeStxP6SV+uHJD0jaOeI2XxdNoOmU3i/LE4Bkj2b5w6QmTXQWyb8BVhn/ThcvIO9A0VOAdGkfzTDF4YMZs9c8fgHBiJvoEBFw/spvWXo9gw9kuiOvXlQuIO9BVK3IIj2bdoOq+Onsu2WaPxCIth05ShmhZiPzGuX83i6J2Seu2VlZWM7NGJu7dvM3PpSvQN/vzhglqCoLFdaKC9IX1D7TWpqKjg8zc6kp56kMCWkUS1bouLexMunz/L+dMnyUhOoKioiFdeeYXXXnuNgQMHMmPqR8TF+T/S9p+/8X3N7ZXFmtsbyPi7c7eE7r0X8lzrFgBs33WMH777EmNjw/piLX3NtnWMNWijNGsLf9PcLmiYLuia1Xp58WIOK1Yl8Meqo+Tk5PDGG2/w1ltvERkZiba2NqfvP77Pa8hvlqtUGts16RvyseUNtJdU1G8vKtOsfVCquf1u/n1WTRhMkzBpfM+nJPLKwHEsHfEl8Z16c3rfdgCaxT7HwRU/0673SLbMGIVbcCQAlw8n0bb3KNaM7kVs536cS5D8p2d0Ww4tX8Tz/cazbdZo3IIkffbJo8R2G8i60b2I6dyP84mSvkn0c+xfOI2OI+ewa84YXIIkf3jzwmnCP/qSjeO+JPKzvlxM2oGIgHt4m3r+R9DV48rBPcT1GsmW8V8R/mkfLiXtQE9pgr1fGCmLZ9Ju2Cz2zxuLY2AEgqDF1bREor8Ywfohn6Glo8O9nCysmngT+HY30pZ9W613C29FZWkJWUeSa9nPOpxIZVkJ7hFtq/uTvGgq9t4BAGSmJVf7w5guAzifsE063qi27F80nZdHzyVpyVys3ZsCcOVwEm2/Gs36sb25mp7yRP3jM5fCIQiCNZANfCGK4kJ1219K4RBFcZogCAZIRf4XIUWvHyuFQ9MEuriwkIyUAyTu2MKqHxYwcMY8Orz3UfV2TRPoiooKdHR0KLhzB6Wx5LyKHtzHxLwRd27lYm5pRXFRIQCGCiX38vJoZG1NwZ08lMYm0vs+uI+peSPu5OZibvVQr1QacfdWLo2sbWrpb1zN4syxo+zbvIEH9+7h5OaOi0cTWsa2wtTcHEsbW5J3bWdEj87sOZOJrm79GePTnEAX38ulslKFUqlP7q172FibkncrFxMT6UJw/34JjRopuZl7D2tLBYWFperj1Sf31n1srE24fbcM01p6I27mFmBtY1Nbn3sPXae66fF/jqYJ9JHbRRw9kMS+rZvYt3UTJSXFtH3pNeI6voJPcChaWrWXEfzdE+jSsgoELS3u5d3G1NKKB/l3MVAaUVqhorSoEKWpGffybmHcyJLS4iKKylToGyp4cOc2xhZWFObfRaVniCBAaVEhChMzHty5jdLcgjv59xEE0DVQUHQ3D2UjS4oK7lKpqwCgvKgQAxMzCu/eRlthRkWJNDHQMTCkOD8PhbklD/Lvom+olI63uAgDY1OK8m+ja9Solr6k4A6GZhaU3MtHTyHpy4uL0Dc2pbTgDgZmdfV5GJpZatQX5d/G0NSilr7w7m0UZpaU3M9Hz7C2vjg/DwPTBvpTQ19ZWoyuoYIz21dweusfaGnr4Pvyx7hHt6f0Qb5kv2Z/Soul4717G0Ozh/3RVyqqx6fkXj66CiU6WgLlxYUYGJtV68tLitDVEtA1VFCUn4fS3JLie3fRUxihqy1QVlSIoYkZhXduozC3QFVWwrQXAhBF8dGzyv8QQRDEuhPo0pISMg4d4MDunfw8byY9R4zl0979/9TO3zmBrqLw3j0O7ttN4s5tXMvKpLFXUzyaNuelmJa0aNECQRA4c+YMoaGh3LqxEn19vce2rZEnNIG+mfsAa2vTWv4t/1455uYaSmv/zRPoSi1jDhw8zcZNKWzYdJDbefd47ZVI3nqnHzExMWhra9fS/y9MoO/cKUBfaURZcREAeoYKHtzNQ8+kEUUFd9FXSp9baVEhukrTan9brtbrGioouJWLkYUVxQV30VPr657v5SWSXku/hn+ooS958EDS372NwqwBvdqfqFSiRv+jEkV0Der7K5UKyktq6ytKilCpVGQfPUDa79+hqqzA58V38WrzMlo6uvXsV5YUgfr6UtN+1fjU1JtYWFb3X9fgYf9L7j/UV49PneOt0hs3smRK66ZP1D8+ixHoT4BSalSwEEWxTBCENKTUjhU1tG2BVZqMiKJYIgjCSGAu8MgotIb9WTpvFkk7t3I2Ix2vFn4ERMUyb902mgeFPHL/nCuXMTI1ZUy3TwmNbw3AoT27GLXgJ/q83oGeYyeya63U9VYvv8bKhd8ybM4CRnX7mLB4KSsl/UAiw2cvoNfrL/DluMnsXCMdervX32bmsAF8s3ozw7t+TMtWbQHIPHeWnqPG88O0SfQZP5ntq1dwOuMobk086fvBm3zQ40umDOlHu9feZMe61bzwxtt/dVj+X8yct5XzF2/yzhth9Bn8G3s2D+GjLj8SHy0t3t+66yTLf+pCfIcZzJvyFr8sPwTAO68H0WfoKvZs6M2g0Rto6mkr6XeeYPnibsS/OI1ZUz5m2QrpmTXvvBFOn0G/sHH/O5iZm//lfubl5bFlyxY2btzI5q3bcG7sTuzzLzL1p6U0beGPIAgUl5c/2tDfQG52FreuZvL75LEM/Gk53/bvgW9kHDoKJWnbN9FlyjxmdH6HtwaMInXLerQNFDSPimfdzPH0+PY3fh7aC8+IeCorKjifsp93xs1hUc/3ebH3cM4cSqbwbh7N419g5/yJvD/jZ9aO7YNrRBsqSkvIPJxA+6EzWD3wE1p+NoCLCVsB8IhpT/KiyXSc8CMpP03HzLExANlHkmg1YCqbhncirNNgLu7fBEDjyOdJWTyV9mN+IGHecGybBwNwLT2JuL5T2T93GL4vf8ylhM2SPqo9KT9Oof24H9gzbQCOAepIzNEkWvWfyr6ZQ/B99dNa+iO/f0frQTPZO2MADv6R1fZj+05l66hOhH06kEuJW6r7c3rr70R+Prpar6qo4MK+Dagqyii9n4/fm90ouHaZnOMpKBtZkbxwIi+O/4HdUwfgGCjZL8jJJPSjr9g4/DMiOg/iwn7JvmfciyR9P5GXJv7Ejsn9cQqMRM/AgEvJu3h+yHRWD/qEmG5DOLdvE0aNLHHyC2Pvd5N4c+piNk3oi2twNHoG+pxP2snLw2eyrN/HtP5iCOcTdz3171tN/vhhAbs2ruVEWiruXs0Ji4vnuzWb8QsN/1v78biYmJnx3Muv8dzLtdeXeyoF8vLy2LdvH3369GHu3Ln//8nzE6RNh/FMn/ghy1ZIAYt33ohg1frDfP9Nj/9KfwoKiti2M4ONW9LYsuMY9naN6PhiS35c2I+QYE8pqKAb/1/p27PA7p/m4REaxbEdGwBo0aYDm2ZP4KPZv7BiVG88wmIAuJCyn1dGzmJpnw9p23MYJ3dtBKB5qxc5unEFbXsNZ934PjQOiQbgUmoCL494eL6f2i35z6atOrD7m695e/oSNozrg5tafyf7ClGf9WHFgE+I6z6Es3slfZP4F9n/7URem7KYLV/3xSU4GkTIPJxQz//om5jj5N+SxO8n88qkn9g2qT/OQZHoGCi5lLSdtoOmsX7Ip4R/1p8jKxZyJ/MCCnNpsvv6jN/ZOXUglZUVVJaWcPXGJUErAAAgAElEQVRIUrU+sutgco4doujubZrEtq9lv3HLVlRWlJF1OLG6P/FfDOPsbml8vOJeqPaHST/NwtxBCipfTk2g44iZLO/3Ma17DufULulOftO4F9jz7STenb7kiX/Wz1QEWr148CzSA0i61Nn2NtJEuAfSk6u6I6389hZFMVOtuYI6Aq1+rQWkA02Ai38lAi2KInNHDWXf5g2UlhQT+Vx7Qlu1JSg6tjriW4WmCHTRg/sYKo04deQw9i6uAORkXqF5YDCH9+3GLzyKG+pcQhtHJ04eTiE4Oo5TaanYu0hPxr2edRnvwBAO7dtNQHgU169mAmDv5EL6gSRC41pxMi212v7N7Ks0DwgiZe8uAiOi2bryd9IS93Hu+DGuX80iJCaOgJaRvPTuBygNFZiYmdXr99OMQGddukBxcTkuzhbsTzpL21Y+pKScpLGbJQCXrtwmLNiNHbtPExvZmCtZUi66i1Mj9idfoG18U1KPXsfVxULSX75FWEhjduw+RWyMH1cyb0l6Z0v2J50h6PmJDUa0RFEk9+ZNrmZlcvXKFa5mZXIrO5Njx46RkZFBfHw8HTt2pHH0c1jZ1i8u0NAE+u+OQBcWFiEIAmcPp+AdEcOlY0excnSmrELFrWtZuPkGcPpAAk2Cw8jLyaakTIW5nSOXjqbgGRZN5ol0lNb2gMCdnCycvP25cCgRt4BQrmVdBVHE1NaBrIxU3IIjyTmdgb6FPQgCBdevYtvUj6wjyVg1DeT+zWsAGFnbc/3EYRwDIrhx5jjG1vYA3LuZjbVnC66lH8CyaSCFt6TvmtLKnpun0rD3C+fW+eMY20ipO/dvZmPVpAU3ThzCtnkg93PV9q3suXEqDQe/cG6dO4axjeNDvWcLco6l1NNfP5GGvV9Lbp2vo2/SgpyMA9h6B/NArVda2ZN7Jh0731Byjh3g+vFUzu9ajaljY0I+/IrykiLsvIOr7ZtU9cc/nNxzxzBR239w+zpWTXy4lp6MnU9I9fiY2jlUj8/Ns8cwsXVERwvuXb+GTdMWXD2SjINvCPdyr6GjJWBiY0/2scO4BEVw/UwGZrZO6GgL5F+/in0zP66kJeHUIpTCW9f57qN2f1sE+rtJ49i2ZgX5eXlEt2tPZOt2hLdqg4nZo3+0/jci0Np17hYdTkpgx4Y1pCfu5eLFi0RGRvLhhx/y3nvvQeXex7bbIE8oAr1j9ylioprV8m8nz9wkKNC9vvgJRaBFUeTWrXtkXr1NZtZtMq/e5kpWHidPZZN65CJR4U3p+EIgHTrG4+xsXd+G7nMaTf8vRKAvnjqFlbMbd69L57uZrQOX0w/hHBhB9ql0zO2lyrt3c7Kw8fLj8uEknP1CKbiRDYCpjQOZx9Nw9g8j53QGZnZOAPXO94Kbkl5p5cC146m4BEVy/XQGpmp9wY1sbDx9yUxLxrFFCPduVvk3O66dSMM5MIIbZyS9qlLk3o3sev5HFMHI2o6cE4dxquGvVCLcu5GNuZM7B3+aRmZqAkZWdjR//k3co9tx42RatX8ztXFEFCS9jVcLso8mY+8bUu1vja3ta9mvOt571x/2x8U/hHs3petFTX9489wJTG2l60XB9avYNfMjMy2p1vGa2DiQfUy6fk1t0+yJ+sdnbQIdD+wGwkRRPKRhew+kp1zZASeAPqIo7q+x/Qo1JtDqtvbAZuDkf5LCIYoiWRfPc2DXDpJ2buXk4VSa+gUQGt8G9+beODZ2x9rBCZ066RAqlYopfXvyXs8+HEncC0BgVBxbly/lg6/68/OMyfhHSL8U05MT+LTfEGYN688HvfqSlrAPgJDoWH6ZO4M+X0/jp+mTCFDrL548zpudP2fG0P58+GVfDu+X7IfGtWLJrGn0nzidEd0+4URaKlHPtUdUqRg4cTrThw3g068GcGj/HhycnGn1Qsd6x/80J9AHElO5m1/E3oTTjBz8Cr36/8LgPq3YtfcsAK3jmjJp5jbmTnmbuQt24+cjnRh7E88zcmB7eg1cwZB+Hdi597Ra34xJMzYzd+p7TJi+jegIKedpb8Ipevd4nm4DdmPn4IBKpUIURcpKS7mWfZWrmZlcu5qF0sgIJxdXnJxdcHJxwcvNBS8vL2JiYjA0lNJEauZA1+RZmUDn37nLpoXf8NLnX7H06xG80PkLTh9MRNAzoLFfINt++Ja3h4xh04LZeAa3pFwlcD41mec6f8nqqaNp/XF3TqceQFVZiXtwBPt/WUCHviPZ89M8HPzDqayoICs9haiPv2D7nPGEv9uFS+lpVJSX4uwfTuryhcR9MYwDv3yDnY90ZybneCrB73xO4oKvafFaJ3IyDgJg7xdGxqofiOgylOMblmLu6gXAjZOp+L/ZnYM/TMT31c+4fjxF0vuGcWzNj4R3GUL6Hwuw85Ei09dPHCbgre6kr/yeJq1eJueYWt8ijGOrfyC88xCO1tG3eKMrKT9MosWrn5FTw/75Pevwe70r6Su+w9Y7pLo/Hq1eYe+0fhTl5WLq6IZdizCaxHVU2x/K0T++q7Z/59JpfDp+SPLCr/F7vRM5GZJ9h4Bw0lcuIrLrUNJ+/xZ7X8l+7tl0At/sTMJ3XxPwZmeupR9ER08XB59g0v5YSMznw0j97VscfEPQ1dMl60gyLT/owZ5vJhDydheyjh5AT08PxxZBHFy2kLa9hpP083zcglqyfFCXvz2FI/vKJZJ2bidp5zaOJCfi0dybyDbt8PL1w7mxBw4urujq1Y7o/rcn0Ak7tzG46yd80L0nb7ZrRUhISO2UtmdoAv2gsIKxE1cSFy2t8dibcJIxI9/H0FDDZPkxJ9CFhcWsXJ3D4cOHq/1jeXk5V69eJfPycbKy8zAw0MXFyRIXJ0tcXSxxcbamiYcdsVHNMTJS57jr1g/CSO3/uxPogvvF7Fw4E7fAMAAuH0mh1We9WDdzHJHvduZS2gEAGgeFk7r2d2I+/ZKEn7/BxT8UgMz0Q7R8rzs7v5lAy3e7kHlE8p8ugS05snYpsZ37kvTzfJzV+uxTGYS+3Yld88YT9s5DvbN/Sw4tX0j8F8M4+Ot8HP0k/c1zp/B/7SP2VvmT9AOIIjj5t6znf9DWIftoMsHvfU7Ct18T+FZnstMPUlFRQf7Vy5zduQbnkBh0DQzxiHkBBMg5dojgdz+v9m83TqZRWV6Og39Ljq5YRHT3oRxe9i1OgRGoKiokfQ37N06mUVlRUas/GSt/xLa5n3S8GYeq/WFYnfFJ+X0hrXsOJ231z9h4NAfgasYhwj/swe55EzixbfW/N4VDFMU9SAsDG9o+H5j/J9tdNbRt+TObj0IQBFw8PHHx8OT1Lp9TXFjIkaT9HN6/h7TEvWRfukRe7g2s7R3w8Paly5BRODZ2R0tLiz4Tp6Orr4+ds3SLQVtHh4/7DkLPwIBPBwxDW70QMSAyBi1AW1un1opIUZTaEEFLSxuqLxbS36r8sqqLjqgS0dHR4ezxDFL376Xn6PE4uLgREhGN0siIIdPmoKevj4OLK/oa8p8Bzpy5wNKlaxk8uAf9+4+nb98u7N17gKCO3TEyMdG4z+MSGuyOKIq0im2Gvr4u82d+jK52Cbv3na06YnS0pYuci5M5z7VqBkCrGC/09XWYP/1t9AwUuLpIEWsdHS3mz/gAAwNdRg5+FV1dHdKPZXIt5y7eIYOIjH2Oxu4eaGlrIwgCenp6vPz6mzg6u+Do7IxSqazVP0050E+C8rIyKirKWThuJK936UHGgUQAmodFsGbRt3QaNpoV8+fgHdoSgAsnT9Du/Y9ZMnEMHT/rxskUKTXFPSiMrYsX8u7AEWxY+A1Ng0KpUIGgnhhoaWurvz8CItL3R0tHW/r+CFoICKhEEUHQQkS9Ta2v+mpVtwlaIEoXKkFbS7Kl/mxUiOrVu2J1m4hQvZxX0NJCRJT2U4kPv7ciCNraiOr/qs7Kar2WttqG+vssUt0maAmIajuCliDtr7ZZbUitFzXopb/Stpr2RVFUv7cWCFBRWsK19GTO7VyNwsKaVoNmkZ99qbZ9xFr2RfVYCNrq/le1i2KNY3s4eRPVn89DvdQXRPUYUPWZCuo2LfXYaak7oT5sUf2Zq7epGphYPG0cXRvzdufuvN25O6UlJaQlJXBgz06WL/qOq5cucONaNtZ29rg386bH0FF4+bT4r/SzisvnzzGoy8fM+XUFwZHReCqf2u+NJ4JSqc/YEW+hoz43W8V5o2+gOcVk+Yp9dHghjElT/yA6UooXJSSdYOy4Huoc70xmzFzOylV7iYiIoU2bNujo6CAIAjo6Orzyyiu4WJ3Axdmy/iJFTYsIZeqhq69Pmy590FJfn92DItDR06N97xHo6OljZicFo7S0dWjx/KuSC6g639X/FrS0pP3F6mb1v7Wqz/eaiFVzhBruVoVaJ6rtq+eNVV5CS1vtm1Bv0uB/RFFV7bsEbW0qy8q4mLSdm2eO4xoWh0vLeOJ7j+PI8gXqjghqn/fQv6lEsbrcg6C+RglaWqASa7xXTf3Dg6rqj6q6k9Tyh2KNa1fVPEnypQ/HRtCqGrMnf54/UxHoZwFBEMSUW4Uat1U0cIEqLinhelYmB3dt59c503i/Vz9e7/J5vQUUf8apI4dpFhBUK+XjRtYVmgeGkLp3F37hUdzMvgqArZMz6QcSCY1rXSvlIzc7CxsHRz6Ma0mfCVPxaiH9YvNq2vyxj+XmjRsojI2r7Z9MS8XBxQ1ra+t6x2PYwCS8oSg25SfqNVWWF5GXJ0VqLl2+SVioJ9t3ptPq+eEaFzlS9IdG06KWAQt/2MbwMUsZ1O81Pnq/FVaOH2jUHssv09h+r6x+e0OR5obai8rrR0GKyio5kbSvVooFwI2rV3H18eNU8n48g8PIU9/yM7G250JaCk3DY7hy/CiWan3u1UxcfQM4c2A/HkEtuXM9G5UoYG7rwMUjB/FqGUPmiXQsHJxQiSJ3rl3F2cefcwcTaBwYxt0b16ioVGFm68jloyk0CYvm6sl0KaVBELh7LQtHb38uHErA1T+MWznZUgqHjQOZGYdoHBJFzqkMDNUpH1W3zK4cTsS6eTD3c6XP3djanmvHU3EOjCTnbI0UDvUtvKtHkrDzCebBrevV+pzjqTgFRpJ79hjGto619NczDmLvE1TPvmtwVPUtSKA6peTq0QOSXn3Lz9jGnuyMVJwCI7h55hgm6gvYvevZWHj6cvVIEva+IVw/dZSE+eOwbeaPS2gcbi1bk6u+ZVnVH2v1LUg7n2Ae5D60n3PiME6BkdW3OAGKbl3HxtOHrCNJOPiGVPffwt6R7GOHcA2Oqr7lqq8jkJ+TjX1zPy6lJuLiF0rBzWvoamthZuvAlfQUPEKjyT6ZjrmDMzpacDfnKk7e/pxPScAtIIwHt3KY8mabvz0C/SjKy8vJycrk0P49fDtxLG991pVOfQfVi0rDX49Ma6IhG7ra2twvKODNuJZ89mVf3vpUyhJ8IhNo8Wr9tspzDWg1Ry4bbtcQiS3P1ywtPM/2vReJDXclM1vSuDiaIQp6rN96mp5DNtC7SwSfvR+EvaOD5vfTaSiqrKFdV3O6zrniSI3tRRp8LGiOHv+VSDNojjY3dDevrLIB2+X128srNc+RSis02/gr7ZUqOJ+yH1f/MAqqUrxsHMg6fpjGQRHV5ztQzz8/1NtzJf1QLf8AkH/jGg5NfevpjSxtuZKRintIFNdOZWBu70S5SqxOEbmcmoizfygFN65RoZJSJq5mHMKqsRcrBnXC1NaRyM/6UF5ciF3TmikTNVMs1CklZzKqU1ZqXi+c/EJ5cPMaCOrjzTiEW3AUOaczaOTgBAi1+tM44GH/zWwcuJJxCPeQKK6fPV79g+RuThaOzf25eCgR14DQ6v6Y2kj+0zMsmhFRTZ6of9QePXr0k7L1r2DMmDGjuwwcpnGbplxnkKJAZhYW+ASHEvviSyz/di4bfl2MT3AYZhaWj/W+344dTouwCGYM7EPRg/ucP3GMrSuWERLbijHdP8PF04t1S37g+KEDGJuYMmfEIOI7vMq0gb3V+gwO7trG+l+XcPvmdV54633WLPmBYykHiGvfod4FqKFj2bt5A/l5t5gzcjDxHV5lqtq+l49vvdJUug38QLDSa+DWpSq3XlNxURELFm3jaMZlvlu0jRfaBfHuxzOIj2+HjY1NfRvlJ+vbKC6jW68FrFp7gO0bx9DxxVCUSgPQ8dLYjZslDdxG1OCAG/qh0VC7JqdfWlbB3F6dCH7uRX4ZO5SSogdknTnJ8YQ9uPsH8cPgXti5NWH/H0u5ePQwhsYmrJo2Fv82L7D862GUFBWSffYkh9avxKtlND8P642tmztJq37jxqXzaGlrs27mePxat2flxGGUFhVyOzuThOWLaRYRy68jvsLG1YMDq5eSc+4MOrq6bJo9AZ9W7Vk7eQQVZaXknDnB4XXL8AyPY+WYr7BydefUvu1cSk1AT6Fk5zdf0zT2ebbMGImqUsWNs8fI2Pg7jcNi2DihP+aObpzYvJzrJ4+ga6gkYcEkmkS34/DvCyi8fYPbF09zassfOAdHs3PKABq5enJy0+/cOHUEXUMFyQsn4x71HEkLJ1N6v6CW/sCP0zGysObE5t9r2feMacfuOaMpKy7i1sXTHN+0HNeQGBK+n4yRpS3HNv5Ozskj6BkqSVn6DW5hceyZO4ay4kJuXTzNic3Lq/sjqirZO2ckxtb2+HR4j9PbVuLQIoz988dSXlzE7UtnOLn1D5yDotk1bSDmjo05teUPbpw6ip6xKcnfT8Q96jn2fzOW8qJCbl88Lf1QaObHtkn9aeTkXt1/faUxe76diFdsO3bMGkV5cSF3si5zeM2vuIfFsm5cXyxd3Dmyfhn5OZkgwNa5E/COb8+GqSMoLSokL+sSB1b+gldEHMtHSp/XkU0ryD59gtGjR4/R+OV8AowZM2Z090HD/9I+2tramDVqhHdAEO1ff5vVP//Iknkz8QkKqbe+oKGJ8l+ZQDek1dbSYkj3zzAyNWXQhKnV7RZ6T+J6eq9+k5jXgLahoFVD7Rp8jUrzj5gH+Td4o/NKmnla8t2SNBIPXcXQQIdZ3x9k0dI0Ni79kLdeaYGxkX7D6R5aDZQg1NbQrq2hlB6QV+Gssb2h1AlN/rSha1RDvrdSUznZv6CVbNdv19Cktq15w19pLy8r4/ehn2Pl6k7q2mVkHUtDT6EgbcMfuPqHVp/v18+d4vC6ZTRpGcvKMX1q6fWNjNk6Z3wt/3D93CkuHkrAyTug2p9X21cas33uBJrHPc+mGSMpLSrkxoUzHF3/O+5hMawb3w8LZ3eObvidvKzLCFoCO2aPIWPj76gqKmgS2YaivFscXfsrbqExbJ4o+bdjm37nxtnj6OobsPc7yT/vmj0aVWUFN88er3W9sHBuzIXknVxKTUTPUMHu+ZNoGtOObbNGoaqo4MbZE7X6Y+XqQdq6ZVw9noaeQsn2eV/TPO55kpd9T8HN69w4X3t8bBt7cWjN0urx3Dp3Aj7x7UlctuiJ+kc5Al2H/yQCXfdkVKlUrF2yiB+nfI2tkzOGCiUGCgWGSiVmFpb0Gj+lXjT33t07mJg34t7dOyiMpHy1ksIHGsveKZRG3L11i0bW1rX0pYUPSN6xjXljhhEUFcuAyTPR1tGhkYbFgg0dy4OiInT19OrZVxoY1LswPYkItFhZQoU67+z+/WIaNTLm5s18rJ0/1nwhrBOBvpKZy+vvzaBJE0cWfdsTI6MaDl2/fo43/Hci0AW3b0ll5gryMVCXObt//z5Gpua1yswBaOkZcv/ObUwsrCisoS8qfFCrLF1ZcREVlaCvqFGWriAfA6WSSpVIWVEhClMz7ufdwkitL6sUpTJ2d6WyPkUF+Qj6Co1l7O7ff4CAVFap8G4eRo0sKb6Xj6gnjXHNskHaSvNaZYNqlrHTrS4zV7/sEYBOzTJG9/PRNaytLyvIqy6rVNO+kYVVdVklqF1Wr24ZI+mY6tvXUZpybN0vpC3/nrheo3D0D0dHXbZPYWZByf0CdA3VZfuqyvDVKUunq9Dcf7GkGAMT01ploQCMjI1qlJGSyt7pa2tRViyNZ82yVno6AnqGyurxL7qXj7667F3153vnNkbmFqjKihke5/vMRaDrIooim1csY/rwQdg6OGKgUKBQGmGoUGJqbk7/CVNR1EmvelIR6J0b1vL14L54evsyc/EyDBWKf1UEmqILUtk7KyWFReXcvPWAz3qvR6HQZ+l3b9HIXPFQq2lhIcgR6Lr9eMoR6KrzvVbZO7U/rzrfob5/rqmv6x/+TK+lZ1DLn+splJSrrxd1y+SVV4pcSU1k+8xRtOk9CpfAcPQUSlSVYrW/aqhsXJV/MzDSXGZOVaOMXVWZVI36O7cxtbCsVeavqv8lDwo0Hm/V9bHm+JhYWDI80kOOQD9NHhWBrqioIP/2bfQNDR/mHtfRCYKAl38g7d/+AN+wlviEtsTDpwXFDx6QtG0zr3fuXu+CUF5exoB3X6eJrx9rf/qeI4n7MLeyYvwXXWjz6htM/PJzykpKuHzmNFtXLCMwMpoB772Op48fq3/6nrTEfVha2/LrvJl0HzqKJbOmYe3gwOWzp/H09q03YW/o1/2JtFTmjR5KVLv29H/vdZr4+LHqp+/xDgjCwLB2tOFJRKBVlWUMHbmU3XuPY21lygefzeK9t6NZtHgfYWFh9W2Un+TBgxLWrD/EqPF/MHD4Ur78vD3TJndGX7/OhP5vjkBXlJeTez2HwoIClCam1e1FxSWoKiuZ1f1jnJt5s2fZEs6kJGFsYc2PQ3sT2v5lFo/oR3lpCTkXznJg3Up0dPX4pseH5GZeYu+yH0nbup47N66xfvZEwjq+ydJR/SkvLSE38zI7F3+Dd3QbFvb+FAcvb5JW/My1c6cwUBjx26i+BLZ7id/HDKCitFSyt+RbmkW3ZnHfTth7Nefw+uVcSE3CyMyCVWP74du2I2smDEREKrp/YNlCmkS04vdBXbBt0pzj29dy+VACCjMLNk0cQLNWHdg2bSiVpaXcybxA2opFuLVsxYYR3bBs4s2JDUu5lpGCoZkFu6YNpkncC6QsnkVxwR3uZF4gfcUPuIbFs2lUd6zcm3Fi42+19F5xL7JzxlAqy2rb3zd/AiY29hzb8BvZ6QcxNLNg25SBeMW9yI5pQ6koKyHvynnSli/CLSyODSO7Y+XenOMbfyM7IwVDY3M2jurG9VNHsHDxwNjGobo/LiGxbB7zOVaNm3Fi0zKuHUtBYdqIXdMH0yT2RfbMHEZlWQl3Ms9zdudaHP1asmlUdyzdm3FS3X9lIyu2TxmIZ/yL7Jz+sP/pa3+hcUgMq4Z2xcajOenrfuPG2WMYGJmwbkJ/fNp0YMOkwZSXllBw/Sr7lnxD06jW/NK/E3ZNmpOy+leuncrA0NiE5aP74d+2IyvHDURVXsbJ/Tv/qxHoyspK8vNuo2dgUK9GehWCIODp7curH36KX1g4AS0j8Grhj6AlsH7pz3zU86taD6qq2udx+bMIdGOvprSMbcW3k8fxSc8+6Orq/qsi0LO/2UIzTyvav7uUn5alM2baPvT1tNm/oQtKZZ2I898cga6oqOD6tWzybt3C1LxR7W1/IQJdVlHB6SOpbPx1MUcT9nHmaBoXjmdw+cwpykpKsHJ4uOD9WY9AXz93GgMTU9ZMGEhFWQm5l8+R8OuCeuf7pbQDGJlZsHnWOJrFtK2lT1n9K03CouvpjS2sWTmmT7U/r9If2bQCt6BwflP789Q1S7ly9CBKcws2TBhA89Yd2Kj2P4f++InU5Yt4ecxcDq/4sdpf3Tx/Cj2lEVsmD6Rp/Itsq/K3mRdJXb4Q9/B41gzrhrVHM07tWMuV1NrXiy1ThiBoCeSeP83B3xfSJDyeFWp/eGzrKi4fSqzVn22zx1Ba+IDcy+dJ/m0hnpGt+G1QF+y9fDi06hcupx1AaW7B6nH98W3bkR3zJ1NccLf2eA7oQv717CfqH+VVAY/B2l9+YvXiRdy+eYOCO3noGxji4e3DwKmzcfVs2uB+ZpaWmFlKKRwqlYoty37h1U+7arywGCiURLfvgINr4+onFNq7uBHeph0KI2NCW7XBs4X0ZCx9A0OUxiaEt2mHnYsbgZFSXUk7JxdiX+jIhqVLiO/4Ci3Ui9I0vV/VgqOykhIMFApKS0rQ1tHByt6BsPi21fbt1fYFQVqkVFpSgqFar6u+UFVWVKBvYEBxURH6BgZUVlZqzP+urKxEFKGiohIDAz2KikrQ14Xn2kjH5eFux6svhWFsbEhgoFutfYuKiti8eTPLf5vB9l3HCA/15O3Xw1k4rxuNGhnVWGD5ZFGpVGhpaVGmHp+q40Vbm8J7BSydPpmTqQe5m3uTBwX5GJs3QlVZiWMTT178tBstouOoLC/HQGmEb0wrTCytADiXdoi8mzcwbmTBvdu38A6PRtDW5lTyfk4m7uNSeirWzm6YWFlTXlpMeVkZmScyyD5zEn1DBc0i4nBq5oNKlPpoYGREs6hWWDg44REcjigINHJwollkPPpKJU3DY3Fo6kOFCkSVCgOlEV4RcZjbO+HkGwSImNk74RkRj75CiUdYLFZunoCIlpYW+kojPMLjMLN3wsbLV8qNtnOicVgcegolzkFRWKtXPQtaWugplLiExGBkZYd9C2n1t4mNI87BMegaKrHy9MHCtYmkF7TQVShxDo7B2Nqhvl6hxCU4Gqs69q08mmNq64Sjn/RDy9TWCdfQWPV7R2PdpEqvjZ7SCJeQGExsHXFoEUp5STEpS+dRWVHBq9OWkpW6H6sqvaCFntJY6o+tIw6+Un+Mbav6r8ApKAorD2mRq5aeXnX/TWwcq/tvbG2PS4h0vDX7r6urg57SiMZhcZjaOeHkHyblOts74REujad7aDS2nt7oamtTUVaOvtIIz4h4zOydcAsMQ09PDwtHF7xj26KvVNIsujVOTR9ZZOipsH3NSpbMm8ntGze4czsXA0MFTr5I9O0AACAASURBVG6NGTFrPs38Ahrcz8TMHO+AIECKSu/dtJ43Pun8yKcY/n9ZMn8WH3bvhaFC8WjxP4TS0nK27TzOxh3nGD1tH3Y2RrzRoRnTRrcl61rBX1qP86RQqVTMGjucxJ3byb2ew92825hZWCKKIg4ubnzU8yviXuhYq29lpaUkbt/MjtUr0FcoaREWjm9oOM4eTTiTfoQ969ewe/1qDJVKIp/vgKFSSXFhIXdv5ZKXe5O5g/uy9kJOvapYzyoKM3P0FUqaRrX+P/bOOjqqq2vjv4m7koS4ESSeEEOCuzsUKQXaUihQCtQolCJFirsXd3cIQSIQJSFBQoC4EOLumfn+mBAImaHQlsr78azFIuvMnnPPPffOufs+Z+9nY1i7/sgpKKKgokaLdt3QMTGnibtYblDHxBxr9zYN7OWVVVBUbWivbWhCi3bdGvavpIqiqhrNvbuiY2yGtXsbqoQitI3NaNq2Cwoqqlh5eBPr70P+83TajP8KE0e3euuVQCCDVmNTLGvXWwt3bwxsbMXJegIBCipqWHq0R6uxKZXNHIH6zwtLD2/0zG1AIE4GVFBVw9qzA1qGphjbuoBIiJahKdZeteu5kyeGNmJfS0Ygfh7ZeHVA08AIC1ev2vM1xaZVBxRVVDFzbEljq2Z186moqkYL764k1Cp2/FX4EMLxGiSFcIxq78HY6d/g6NkaHT19BAIBp3bvYOeKxQwe9zmjp81EQbH+2/yr773P01JZOn0ypcVFrDxyuoGONEh+Ay8vL0dGRoZjWzfQY8RoHkeJS143d3bh0qEDDPtiCleOHqK5s/ghpaGphZG5BWPbe2Jta8/XS1eirqmFnATn8nluDn5nT9F16Ecc37qR7iNG8STqLrLycljZ2nPl8AGGTPySq8cO0dTZFTkZGR5FRtB92Ecc3bKBnh+NJuHBPYRCIc2dXLlwaC8jJk3j0pEDeHfrSSODxg2OGRkaRFF+vtj+8D5GfDGVa6eO0Wv4qDqbkqJCnjy4R1LMA2LvRfMsJYmiggJSE+Kxa+lG536D6NC7H1o6uvX6LpEQUlEsZbtQeviFhO276hou7dxE24HDSXwQDYCFnSNBF87w5E4Iz5MT6DlhCuo6OmSmJOHeZyi+e7agoq7B9f07ENbU4P3ReDITnlJTVcXdaxcwaWZP89btyUxKoKaqkkdBflRVVKDRSB9LZzfcB44iMTIU75ETiLh4EpMWYtWC63u2iF9yLJrg2mco6Y/ugUCGxk1tibxwnNYjxnP30imMWzggEglIi4nCqcdAgo78hkuvIaTH3kMgkMGwqR2RF4/Tavh4oi6fwqi5AwDpj+7Vt3/yCGFNFYbNHIi6eBzP4eOJvnwKg2b2IIJnj+5h330AYcd20aLbIDKfiOPTDZrac//yCdyGjiP2xkUa1S5kGbH3sOs2gPBju3DqOZiMx+KQnsZN7bl3+QTuQ8cR43sOw2Z2deNx7DGQyLMHcejSV3y+gFFzByIvHKfdyAlEXno5P6kx0bj2GkTIif04d+tHaq29SXMH7lw6RethY4m4eBJ1HT0urF2Ehn5jPl6xg+Bje2nZZyhptfbGzR24d+0CXoNG1pv/lIdRtOw9mICDO3HrM6Sufws7R8LOHaP9qE8JP38SU1uxfWb8Y1y79eb6/h149R9K0oNoSgvyUVJSIOTcSdS0dXlyJ5iammqau7eikZEJ/SZNx2fPdrwHDSfhQTTKSvKYN7fj5vHD9B4/Ef9Tx7B2cMLM2hpF5foOoJyMDP0tDd57CMednPoybBP796BL/0G06dYTXT19cYz9kQOsnz+HnkM/YuJ3c1B+LSTj1TCL3KxMfpkxhZSEeDafvICuvoTcByl4Fxm7Fztm4/p0QUVVjQUbtqGrpy9xJ01arO7v9f0qGklhtt9Z7adoZ92fJSUVRN1P4e7dOCLvpZKQlEN+QRlxCdk42hkxbJAng/u3pLGBZv0+ZCWEa0hhj6Uy07ISXjikaEk/KKji568mEf/4Ed8tXoGBkTE6evrUIGaib1w4y74Na8jPzWbkF1OxtnPgyokj+J45SRNbO3oO/YjyykruhQRxLyyY7OcZGBib0KnfINr26Y+lhMT4K8cPc/PMSebvPlTXJi2EQ9rOoqQwC2khHNLapTHnktqlRJJIhazkTR2JkNa3pHG8ei4FmRns/m4SusamdP9iJorKKoSdO067URMIv3AS0xaOiBCQ8jAK116D6q2HAoEA42b2hJ8/Xvf8MrNzBBGkxETj1nsQ/gd24t53COlPYsRydS0c6voPPLIHFVU1slOTSLwXibC6msykeBzad6GxlQ0Glk0wt3ci+MwxOo3+lLu+FzFsIi7ElvwgGs8+g7m2fzvdx36GnPxr0pnA507m/7sydv9GiEQiMlJTyXn+HB09/bqtxSETJtKuZx9WfD+DTzq35tvla3Fu1bbBd68cO8TGn39k6OeTGTnl63diAqqrKqmuqq5T4Xghf6al24iwm770Gf0J4f7X6+xtbO0wMrdgy8XrbF44l3GdWvP96k14tW9YFaq0qIg7/jdo07Mv4Tev4dSqDVFBgahraaOiqkb4zWv0GjWWO/43AJCXlyfc/zrevfoSdtMX59ZtuR8eSkV5GRpa2oTc8KXfmHGE+V2nqZ2DRAf6yb1oMlKS0dDWJvS6L65tvDm7fzdJj2NJiI0hIfYRuVmZWLWwxc7JBYeW7vQaMhwNLW2MzMzR0tGVquv5viASCrkf6Ecz91bEhon1O1U1tfA/doCslET0zCyICfZHRVOLZ3FPsG3TmdiQQPpN/Q6nTj3Jy0gj6uoFnsXF0nHMRGzcW2PfTlw5signm26ffcXu7ybRZdyXPA4RX19ZWVkeB/vj0X8ET2rbAPLSksh/nk5aTDQWzh4kRIaI2Qc1NZ6G+NOy33Diwmr7kFcgPuwWLdp1I642CzsxMhR5JSWU1DSICw2gZd/hxIfdQkZWFmFNTQP7Z7H3KC8uRFldi7jQAFz6Dich/BYCWXlqqipJuHOLpt5diQ8LwNjRg5QosXS7kromCWEBOPYexrPYe1RXiV9kEsNvYdO2KwlhAVi6epF896V9fFgATr2HkRQVgqhWPi8h/BbN23Uj9V4kJrZOJEaK9ZWVNTR5GuKP18ARPA19OT9PQwOx69CdpOgIzOxdSIgQ26toaJEYGULLPkOIvHiSjKePaNa2E8LqamoqK3kS4o+lqycJr/Sf+jCKiu79683/k9BA7Dv04HGwP1aunnX9a+ro8ijIH68BHxEbElBnn5n4GNu2HXgU5IdpcztOrVxIQeYzjKybkp+dRdePPyP3eRo2rh6kP47h6v6dhFw8g0gkoqmbB7GhQWjqaqOsqkZUwE06Dx9F9C2xRryBkVEDB/qfwrPUZHIyn6PTSK9OWaPPiNG06dKd1XO/Z4S3G9/+uobWnbs1CK+4fv4MS7+dTp/ho1iyY18DIuJ9YOuJC2xcsoDBbVry0+qNdO838L0f848gPj6ekJAQ7kec5EFMOg9i0kl7lo9tc0NcHIxwcTBh2AAXtLVUMDXWwkBfQ7KT+w9g09KFnNj7G+OmzeDpo4cUFxVSWlKCtkFjlJSV6dp/EF36DSQqJIh9m9ZybNc2ug0cxh7fQAxNxeEfFTU19BszDoCignzUNDQRCARSnwEysrLE3o3g/N7f6Dlq7D/Cuv/XERcRyoG5X9FmyGg6fTKZtMcxFOfmEBvsj+eAl88jWXkFnoQEYte+e731UCAri7K6Zr3nl7yCAtVVlTwJCcShQ3dia+1THz2grDAfFQ0tYm7dIO3xQx7cvIKusRnqjfSpLC+lx+df47N9LfKKSlzbs5Xq6iqcOnYnJy2Z1oM+IvlhNFUV4nCmR8EBOHXqQcxtPzoOG93AgX4f+MBAvwZJDPSTB/dYM/c7cjKfM23+Ujw7dn4Z/ywScePCGdbN/R6tRnp0HzycLgOHgECG5d9MIy0hnjkbt2NTq30qbb6lxYDlZWWiradPQW4uquqSkwvLa5MLNTTqsw4hN3z5dcYUOvTux9T5S+rFFeaXlSEjI0N+dhbaei+TBUVAWXExGtra5GVlolXbv6yMDMoqquRlZ6FTOx5NLS0EiKsuamjrkJuZibaeHlRXS5SoKqusBJGIooJ8Tu3azqld23Hzbo9lc1ssmzXHslkLjC2skJOTQ03C90G6MP77YqArK6uQkZWlOD8PJVVxckN5aQlZaWncv3WTsqJCslOTycvMoCDzOflZz+n6ySQ6fDSuzr6oSJz892oyH4CckvLL5L/8vLrkiaLCIlQ1teuSw17YCxSUeRoaiO/WFSgoK9P3m4VoGZlTWdYwWUQkFNVLtigtyENRVQ1ESExWAxrYyymrgeBlMscL+9LiYgSvJX8U5+ehoCo5WURScklFYT6Ktazkq8kiGo30GoxHW0/v5fh5mSxSUZAjMZlGnHz58npVlJSgoKbOlU2/En31HIN+XIaZvYs4WScvG3Wdhv2rSZh/hVeSL1/tv6a8VOL1VVVTpSg3m5y0FHZ/PwXHjt3p8+UsZEQ1qL2SDFpRVoqCrAyKyso8uOXPvkU/8vG8JTR3b4WSnIDy0hLUtLTJz85CU7cRFaWlqKmpNgjN+qcY6KSnT1g7bzZPHz3gq/mL6dCrXz1HOfiGL79++zUKSkr0HDqC7oOHo66uzvIfZhEVGsT8jdtx9mz9h8bzRxjoF4gIvsWPX0zAvY0381ZvrJfj8U8y0CKRiDVr1rB48WLat2+PvU0ldi2MsWthhI21PvLyclBTKvnL0hzov5mBvnDnAaEBfmSkpZCRmsqz1GQyUlN5/iyNAaM/4Yfla+vZS0wAlHINpD0DKmtqSIp9xIbZs6iurmLa0lUY2UjOg/nAQNdHZbWQwCO7ubZ7Ex/NW0mzVuKw0OqaGsqLCmuT0bNR09Gtn7wuYT2sKKmf3FxTmywoTo7MQV1XbK+oooZAAEn37nJiyWyMmtoyZPZiZGVkEFA/mbKsMA8lFVWePY1l/7yZ9PvqB0xb2KOpq1dvfX6RfC8jrEb2tTCe98FAf0gifA2Skgh19Q3oNWwkeoZGrJv3Ayd2baMwP49GjQ3R1NHB3KYZQz6dhImFFaF+11gz+xtO7tqGR4fOzNuyC30jKXqbr0DitkpVFVP7dqNd734s+OIT8nOyeXgnlOunTmDb0p2ZQ/pibGnN4U1rCbl+FXs3z3pbpSaWVvQaMYrtSxdi2ax5nb40wJNHD4m7H82SKZ/h3bsfiyaOIz8nm6TYGPauXIp7xy58M6wfxpbWHNu8jnshQcjKyvLL5E9p16c/CyaOpaSokOiQ2+xduwKvTt2YNrgXplZNePogGisJW2w+J45w88IZfpkykbLSEmpqhEyYNZteI0Zh0bQ5Wjq6dU6BghT2QFryh6SMbWkLrXQJuoZ9Z6WlUlVZyZYZkyjKyyEu6g4Xtm2gVf+hHFz0I8rqmiQ9jKY4V1x2vKy4CE09fYJOH6EoL4eE6Aiu7d1Gcy9vNk0aiZ6ZBdf3biPm9k0UVVTZN2cajp16sHf2FErycki6F0GkzznM7F3Y8eUodE0tCDiwjcdBfsgqKHF5/SJ6TJlNwP6tpDy4S01VFTd3rcfGqz27p41G19SC2we38+zJQ4RCIScXzKBF+x4c//krSvJzyXj8AP89G2ni2Y6908ega2pB2Kn9xN66jpyiUj37qsoKku+Gcmv/Fqw923Hg6zHomFgQdfE4sQE+yCkqcu6XWTRr152zi2ZQmpdD+sO7BB/cgqVHO47MHIuuuTWhh7eTEOqPnIIi53+ZRdN23fHbvpy81ETSH94l6OAWrNzbcWjmWHTNLAg6tIO4EH/kFJU4s3AGLTr04NhP0yjJzyXlfiQBezdj49Wei2sWoKSmTsCB7TwO8kNeUZEj86Zj37EHB3+cSkleLsn3IvHduY57vud5cPMKfWfOJ8b/ap39jV2bsHTx4NCcl/Z+ezbR1Ks9O6aMrjf/cgqKHJn3NfadetbrP/LSaSwcXdk8eRR6ppbc2LeVR7dvoqyqxvaZnxN8+gjq2rpYOrUk6UEUNw/uorlnG1Z9OgIDM0t8dm0l7m44cXfvcGT5QipKS0m4H0VFSQnpTx9zbN1KnNp1ZNGYoRhaWHFuxyas7BzqJaqC2Jk8vHbFe08inPhaEqGWji7dBw/DomkzNi3+mf0b15CXnYWuvgHajfQwsbRi6Kdf0MTWnojbAaycPYtDWzfS3NGZ5bsPYWoloST1W+JdkgtfL+VtaGLGoNGfsG/zOjS0tLGxtav7TJoT9LZ9A6hIKdyg/AZitKCggOHDhxMUFISPjw8TJ06kg2cpdi2M0GukjuwLD0okmQRARop3LskplmYrrWCKJHuBZLm6GnVdFBQVSYp7SllpKeWlpZSXl1FaXIymjg49Bg+rby/JuZRyDd7UrtWoEbbuHpzbtZ3U+Dja9hkg0Vba9ZWU6CctiVBa+7ukiL4rfynzDq6ftL5fb64oK+XQ/G94HHqLz9fvqwtBA8hMiufw/Fk0a9WerZNHoWdqgd++baQ9uo9IJOTIT9PrrYcpD6K5sXsjTVu1r3t+hZ45zIObPsgrKXFw7nQcOvVk/+ypVFdU8MDvKieXzaHL+KnEBN6gsZUNQScPcv+mD/KKiuyf8xVOnXpyeOG3PA4LIvD4fp4nPMXSyZXjS3+isUUTru7ezMNbN1FQVGLP7Gk4d+lJVnICWvr1d8EFwLktaz7I2L1PvEnGTigSIRKJeHAnDJ+TR/E9fYLGpmZM+GY2rTq/LF1aXlpKdlZmPYf1Bd6Fga4RCrnjf4OW7ToSExGOYW1/makpNHd2JdzvBk6t2pCRkgyARRMbidtWy2dOpZmjM4M++bSuLTM/D1kZWaJDbtOyXUceRYTT2NwCkUjE8+Qkmru6ccf/Bo5ebXiemoycjAwGxqZEBd/Grb14PGaWVoCA9KQEbFu6E+Z3HedWbakoLkK7NlnuVeTm5nBg/Woe34vi14MniAj0o2Vrb4nbtv8WBrqkuAQFJaV6BVCyUpMxtXPm/ObVxIYFkXj/LtVVVTRxccekuR0dRk6gMDuzrgBKRnIS5vYuPA4JwNrVk9z0VAA0GxsRHxlGU8+2JN+/WysgL3baTVo48iQ0ECsXD/JqC6zIqmhwfuVckqPCce41mFbDxoGMzEsB+bBALJw9yM9IQyQCTX0jkqLDsHJrUyeYj0hE3rNUjG2diA+/hbmTB/kZ4vFoGRjXs1c3NEGAgPz0FIxsnUgIv4WZkwc56SmAuMBKSnQYFi3bkPqwfkETwxavCuzXFogxMK4T2M96fA8NA/GL5QvB/MQ7t7B08aQg45WCAtHi+Ul9eLdOkP/F+abcDcHc0bVufsQFR0JpWlsgRsfIlOcJTzg6fxZ2Hbph4+mNtVvrevbJ9yOwcvWqtRf3n5uejLm9S4P512psTMLdUGw82tb1D1CUmY6prSOPQwKxdvUgt9Ze39iYSJ8LnF2/lAkrttbdD0UZaVg4OBMTFIC1ixv+x/YTcOwAKuoaNHf3otdnU8hMSkDPxAxFeRkyU5Jo4uTKvVv+tPDwIis1BSMzMxQU6yfb/VMM9Au8WB9jo+9y5eQxfE4eRVNHl/EzvqNL/0F1dpUVFWSlp/0px/kF/gwD/QLrFsxBWUWVya+8GPxTDPTmzZs5c+YMZ8+eReHFGvhKDHQd/uUMdExRDbevX2XHmuVEhYVQVlKCk7sn3QYNw7tbD0wsrOq9/PwVDHRRSTFHN67hwt5dDJ08jf7jJ1Ij5f74wECLkZWSyM5ZX2DU1I4h3y9C/rUE3sqKctJiH2Jm78yTkECsatc3oUj8vHh9PRTVPl9M7Zzr1s+C5+mACO3GxiREhmJT97wzo6K4kNWj+/CzbwQJEaFYudYWQBGJkyDjIoKpqqjgwsZfEQBeA4bR2MqGFq07EBscgE1tQTEAHUNjnkaE0tzLm+rSIlReJxj46xnod7gcHwBixsPezYMZi1dwNvoJ477+lpXfzWDPmpfC/EoqKhKd53dFVUUFDh6tOLBmBboGBuKEipAgtHQbsenn2di5eXB44xqepybzPDWZxNhHEvsxtbQm6UlsvbaKsjKOblmPrZsHW+b/iJqmFiFXL3PH7zpqmlpsmf8jtm4eHN28jucpKWSkJnN401rs3DzY9PNs1DQ1uX31Mrd8LqGuqcX6n77H3s2Tg7XZ+EUF+WSkplBTU0NqQjzlZWVE3AogPvYhls2as3nBHOzdPDm8ZT1FBfn17RPF9jmZz8nJfE55WRkpCXHU1NTwLCW5oX1CPBXl5eRmZZKblUlFWRlpifHU1NSQmZZKcUEBxQUFZKalUlNTw/PkRCrKy8jPziI/O4uK8jIykhIRCoXkpKdRUlhASWEBOelpyCkocH7rOjT19HkcEcrjiFA09fS5fnA33cdPpmW33kzbvJdRcxejpqVNSsx9fu7TljNrlxIXGUZcZBgajQw4s3oRFg4tub53K7nP0sh9lkbgkT1YOLhydvUilNU1eBhwjYcB11BUUePC2l8wd3Dl6vY1RF46xaWNy1g7ohPySsq0aNcN1z5DeRJ8kye3b6KsrsmV9YsxtXcl8OB28p6lkZ+Rzu3D2zGxc8FnwxKU1DWIvX2dJ8F+KKlr4LNhCSZ2LmIh+ow0CjLSGtjHh/rz+PZ1FNU18N24BGM7F4IObaPweToFGemEHN6Bka0L1zcvQVFdk7jgG8QF30BRXYObm5dgaOvCnZN7KXieTsHzdEKP7MDQ1oWbm5cgr6rO06AbPA26gZKaBtc3L8HI1oWgwzvIz0gjPyONoMPbMbZzwXfbCnFc3a3rPL51ve58jW0d8N+/jbxnaeQ9SyPgwDbMHFy5svlXRDVCDs+bzt5vPqf10LHIyitg4ezRwN64hQM3dm9EXVefxKgwEqPCUNfVJ/DwLiyd3Ak9c4TSgjxKC/IIPXMYSyd3ru/aUGsfTmJUOOq6jfD9bQNWzu4En37F/uIpKivKKc7NQVZO7pX7QY/zW9aQm5HOnF5tCTpznE4fjaV1vyEMnDqLG4f2iO+3O6E8jYpAS8+AU5vW0NzNg+tHDlKcn0dNdUMn4t9AhggEApo7ufDV/MWci3rMVwuWsHXpQlbP/b7ORkFR8S9xnv8qmFvbEP849vcN/waUlZXRokWLl87zfxitO3Xlt7M+hKTkcNw/lF5DRnDL9wr9WtoxqlPrv+R+LczL49aVi2z++UcmdmpNytOnbLh8k8ETp/xnlDj+CZQWFXJ23TJWjR1Im8EjGTFveQPnGaA4LxeNRvpc+20Dls7uhNSuh2WFBYSdPdJgPUy6F4G6rj7Xd214Zf3MF6+HZ49g6ezOtd82oNFIn6R7EQSdPAjAhXVLXvZfWEBxXi4nfp3L2bVLOLFsLh1GjqfnF1+jY2RKYysbfHasx8rFg/DLpykpyKekIJ/bp45g7eLBlR3rkVNo+BL4PlbHD0mEElAp5e20wQ9eRgavbj3Z4OjMhM5t8OzSHWtbsZSUtDdcqdqWEt6qhbWsxqAp0wFw6yau2lVcUEBeXh7FlZUUFBZSXC4OoleuKCevrCE7ZN+hM98N7UuHYaMwayqOCcsrqyA3P5+80nJyc3PJLy8nr7iYGllFVAtKyMjMITG3mGfZuajnF9FITUl8rMpK8vLyKKmsoqi8nJrqKgoqKmr7KCO3IJ+7T+OoeRRLbFgQfSdN5+CShfSaMJn7CanEP41Dy9qW3PRUop/lkpiRxTkfXwAehwfTe+JXHFmyiD6fT+Zh8C0AbD3bcHHnJkbOXoDP3t8wqQ0PeWk/n06ffMHj0NsANPNozdVdm+k/82eu7tyMdUuxzE3cnWC6fTqNq3v24tFnCE/CxPY27q25tmcLH/0wn4t7f6Opm1dd/0OmzqT/JPH869cyxAB9xonZ/F5jJwAgatWG3NREHgb509jCir6fTcbWqw3yikqUVVZTVVKEsqIMNRWlyMuI7w2RsAYZGQHlxUXICAQIq6ooKyrkUdANYoNuEhvkR96zVBpbN8PAuil2HXvSY9ocLq1ZgEgkoqqyElk5eYRCEWVFhYiEIipKShDWVCMjI0dFaSkCoLxYrFFbU1kJtXHw5cWFCICK0tJaSUNRA3sZoKamCnlZAZUlhcjLCqguL0VFQQZhTQ2C6nI0lOUQlpWgqypHnoz4HtZVlUdQUYK+ujxq8qCtJH5PzxVWYKSpiExlKUYaihTKi38LjTUVka0sxURbiUeCanRVxPY5ogpMtBVREdRgqKFAnrx43gw1FJCtKsFESwlFYUWdfZawAl2FGtLvhRN2+jCWtnYMnTId9649uLhnB031VYkSVGGsIX6w5guqcDLRwW32D+KL6vpSkrKLh/h37PH1tLo2hb7iXaa2838WN3iJtzplBAK6uov/bjXza4RCIf4XznD28C609fTZcOYyjrUxvlWVlVw9fpi7l89iYGzM4u17aNm2fb0QAOd5CwBo5+yIXG17G0dx//bTZwLUtb+K96Tk2AClUpQNJDlEjm3aseH8VT7p4IVn1x44tRIX2HgX5hikh2pIYoCk9S2NuXRp256V82YTFOiPg7sE7fm36ENVgsP7rEbyONJKJT8DHDQyCAvzw96uWf3CLEqmDY1lpDjYUsMvJDPF7wst1F9l5GVx8Hbn4c3L3AsLxsTMjG+++wF9ORHKymKnTZI2v4KE+yw3K5PQQH/uBt0iIiiA9KQk7N3ccW3lzaId+2hRK4v4AkpykudD2nVUlpe8EywJ0p7x0vCuYUFvC0na1SA5HKWyohyfA3u4sGMTrp268cuZq+gYGEr4thh66hYANG82CwCTCZ8BICsAvMXPSauZ4s8cba3qvudoK26z+vwz6oj6tuI1cOT0mUT5Xefmb+uQlZNnxsadOLRtD4DpuPEEXzrHmS3rUFJRYdSsH3Du0Bm516j35jPE/VuMGfOy0bsVAJ/MnCVxDZB9DwvkhxCOuu3lDQAAIABJREFU1yAQCEQBz8WFQOZ+OgYTS2s69htYlwQoCUKRiPP7d3Ph4F42nLuKrKzsX+NAS7HNz85CQ0eXSP+b2Hu1IjNVvIVhZGklMYRDRiDA58gBTm/fzLLj51DX0iYrLx8ZWRliQoNxbNuep1ER6JuaU1haRXZ6CpYOLjy87U9TN09ynqWhp6qIvokJ94ODcGnXgcd379DYzAIQhyg0c2lJpP8N7D1bE/s0HkQidI2MiQ0Pwa51O+KjI4nwu8F9/2sMmjUXK2d3HgX5Y+fZipzaLW9dQ2Meh4dg27odqTHRNDISC+JnpSZj5ejCg9v+WDl7kJPR0P7J3Yi6LfLs1GQsHFx4GBSIpbM7ebVbPC+2hJp5tSPp/l10ax3inLQUzO2dSYy4RRMX97oteB1DYzJi79O0ZcOHqsxrwWgikYjz2zeSHveEnGdp5D5LJ+95Bioammg3NkTH0BiRUIiVkytyiopoNtLHwMaeR8EByMjIcN/fl4y4x5QVFWJg3ZQW3l2QlZPHtfcQCrMyAFBtZEhSVBjWHi9DGoRCEfnpKRjbOolDOJw8yH+ehkAgQFPfiMSoUKzd20oM4XjVHsRbcq/a65iYAoKXISKhgZg7e1CanY5IVBsyERlCE09vnsVE1ZtPM3tnHocE0LSlV10IxKvznx4bja6hSb3r9SjIn+YeXnXz/+L6Onm3bxBCY+XoQmzYbZq6upOTnkZNdTUPgwM5vXE1Lu064tm9Fy1qnaHntffn3YCb2Hm2IitNfD/oGZuQnZqCmYREI0UJD15pcfkvFmuhUEjwNR92/foLAhkZJv74M+7tO9U5f3EPH7Bg0nh09PQZP+t7XF5R7ZHm9ElylKW1CwTgqKX43kM4XqyPS6dPRl1Liw59B2Lr6ib1O0KRiICL59i2eD47fANRVFL6RxzoN83xzYvnWP7DTHZf8WtQXvxVvIsDLe140tb1iFPrWfbrZsJCz6Oq+kq4RHVMQ+N/uQMtCevWrSP4TiSpKcmkpSSTlpKCuoYGxqZm6BmbYmhihqGpKY2NTTE0MUXX0IiSoiKiw0OIDgsh4nYgWRnPcPTwwrV1W1xae9Pc0bmOaZZEfEkLxXmX/Jj/BQdaWFPDrXOnOL5uOeYt7Bn69fcYWdv84WNKCe+XPI7aYYhEImJCbnNi3XLKiooY8tUs3Lr0qPttZyQlsPmbqcjIyDLwy69xaNu+7jNZKcHfclLapTnQA6waf5Cx+7vQ/+MJLJ81jf3rVmJsYUX7Pv3p2HcATR2dGyzovUZ+zOWjB/E9cZTuwz56r+OKux+Nla09Oxf9xKdzF+J/7hQAY7+bg7aevsTvdB02kvSEOL7q3Zlv1m1FpKhEbsYz9i3+mTn7jnFoxRKcvDuAggp3rl7gs183cGzFAoZ9M4+wS2fR1lTDvXN3di76iV8OnmDvsl/w6Nqd6soqIvyu882Gbexc+BOf/rSQYL+bFOZk49GzH4eXzeezpevYNH0iZSXFtBkymoubVzF2yXpOrVqEwrfi/gHcevTl2IoFzNhxmBuH92JoKd7mvR/ox8QVGzm8bD7Dv19AyPlTDewvbF5FUw/xG27MbT/GLd2A38HfEImERFw5B4BLtz6cWb2IyVsOcWHDMpq3Er/1Pgry4+PF67m8YyPdx08m/PLL8fgd3MWMrW9mpUD8gO/7+RSEry1aBTlZpMbH8zwpnrMbViASCkl+9IDKslJqamqoKi/HzrszmQlPsfPujLquHhmJcTh378+OKaNoZGZJ9NXzANh26s3l9b/wybr9+G5ZQRPPdsgpKPIo4CqD563BZ8Niuk/9kfu+51HTbYS5syc+Gxbz8Zp9XNu2AmsPb+TkFYi9da2efWygr3gcnXvXs7fr2IOK0lKehvgzdP5aLq//hR7TfiQx7Balhfk4dunNhXW/8OmGA1zevIKmnt4AxAb7M2rROs6t/oVB3/7MnYun68//5oMEHt2PvoVVvet1cuVChn83j9CL9e8HS7sjnFi9FPtaluLF/XDj8H7S455w8+gBstNSaGxhhbK6OmNn/8zqr77gWWI8AHf9bzJz3RZ2/zKPcXMWEHhOPJ42ffoTFxWJ2VeSM/XfFlWVlVw7fZzDm9YhJy/Hx9O/xbtXX+RqHW6RSMSJHVvYvXoZX877hT7DR71T8tu/FX1Hf8KyGVM4vHk9+sYmdOjTn/Z9BmDX0r2BQoh3r75cPLyfM7t3MOyLKf/QiKWjQ6++JD19zOhOrZm/cQdeHTv/bcfOycpk97pVnD+4i5s3jtZ3nv+HMG3aNEa/kn4iFArJyswkNSWZB3GJpKck8Swlhcjg2zxLSSE9NRlFJSUc3DxxdPNg0MfjaebgxN8rZPrfhUgkIjk2htArFwi5eBZ1HV2+XLEBaxf3v3UcNdXVhF+9xMWdm6koK6XvxKm06j0AebmX62PA6eMc+nUhAydPp+vocf+Z9fEDA/0aXmVYQJwQuHvVMg5vXoe6phaq6uoIhSI69OlP6249ae7kgnxt9b2x7dyZtXwdzq3bvlcGurK8HHlFRfKzMtFspEd5qTihRKVWBu11vPo2FnL1Muu/n0GPsZ/S59NJFOXlotVIr06mraCsmorSElRfk9lqrK6IkooqBdlZaOnpU5Sfh4qaODGlrKQYda2XsnepWTmAgLLiIs5sXMWdq5fw6jOQ9mO+QF1bh/JX+m+kr09FrQyN4isyNBXF+SipvJSNU9PUoiA7C2UtXYn2+blimZsX9qqaWuRkZqGu85oM2QvZuIJ8lGoVS8pLxPYVBVniY7/Sf01JIeqvlZ2Fhgx03TWTwAaUV9UgEAjqzSdAjaySxPHk5RegqqldT5YOxDJ2dTJzhfkoqqgirBG9lSxdWWE+Ciqqby1jV1aYL5YlEryUjXthL6osq5vPF/ZVxQV1snR1MkY52Wg10pM4/xXF+Si/cn1f3A86enoNrq+uvj7FBfkoqagiFAqJDQ/m4W1/wi6fQ1FZBZdO3WjZuQdNXFpSmJONoaEBRfl5KNfKKpWVFKOprVMnA/fi96KkokJVaSkq6g0TrN6GgS4pKuTCgT2c2LEF8yZNGfHlV7T07vAKayJ2IrcsmkeY33Xmb9uNiaW1xMJG/0UGGsQvD4c2rWXPqmUoKCmjo6dHWUkJ7Xr3o22P3rRwaYmSiioikYjJfbowYtI02vfp/69joF8gLMCPnyaNp8+I0Uz8fm6DkuJ/JQOdl5PNnvWrOL57J72GjmDFT+MwNm6on/+/wkAD5EoRD5EUwiGtCIpUGbsPDDQikYiEB/cIuXyBkCvnEdYI8ejeC4/uvbFyEBN/UnIf3wlvw0BXlJXhf+ooF3dtQ1vfgF4TJuHUvnPdy/WLPi7+tpWbxw8xdfVmTJu1kHy8fykD/SGJUAJefalQUlHhiznz2eETgJG5BVq6jRj79bfIKcizcd4P9LW15IueHZn/+VjUtbTrYvzeJ0qLi/hxxEBk5eVZPuVzAs6dIuDcKR5FhP/udz279mDVWR9Cr1zgS++WlBYWsGD0EJ4lxnNk9TJ8927neVI8KycMR1ZOnu3ffkn45bPcvnSe5VM+R0ZOjh9HDCQ9IY6j61exb8Vi0uLjmD18AHLy8vw65TMirvmw+etJfNe9DbJychhaWuPVewDBZ45wftMKspITWP/5CGTl5Pnth68Iv3yW8Mtn2f7tl8jIyrFywnAyk5M4te5XTq37leeJ8fz6yTBk5eU5uuxnyfZJ8ZzbuIJzG1eQmRTP2s+GIysny97ZU4j0OUekzzn2zp6CjKwchxd8S1ZyAhc3reBi7Xg2ThyBnJwCO7+dwp3L57hz+Rw7v53yl4jxi0SiBvMZfvksp1fOR0ZWjo0TR9QbT25aMju+HImMnByH504j2vc80b7nOblwFjKysuyaOoqclASubVtF4IFt5KQksuer0cjKyXHi5+ncv36BR4G+nPh5OjKysuz5ajQ5KYlc376agP2bG9g/9LvM/esXGtjfPryTa9tWkZOSwK6po5CRk+PYvK946O9DtO95Ds+dhoysLDu+HElWcgKXN6/k8uaVZCUnsGXSSGTl5Di9cn6D+d84cQTZqUkSrpc8u+fMaHB9t8ycTOS1Kywe2Z/p3s7sXzCbOz4XmbxyEybNWtDYwoq0uMdsnDEJWVk5Vk75nGcJ8RxatZRDq5byLCGeJZ99jKycHCunTeTW+dPcOn+aldMmIvMuae2v4Nqp44zycuZxdBSLdx9ixZHTuLXr2MDRu3n+DNdOH2fl4VOYWP57Euf+DF5dH+UVFPh4+jfsvhlMUwcn5BUUGTfrB7R0dNmxdCED7Jvwade2LPryU4ry82jbs88/OPLfh7t3ew7cCCImKpKJ/buTkZby+1/6A9ixahn93OwpKijgWEAYs5evlew8f8AHvAWSY2M48OsipnduzfqvJwEwZdVmVl29xUffzMHa0eVvZXUjb17j6y6tuH/bn4nL1vLj/pO4dOzaYGfqQfAtLuzayrc7Dkh1nv/N+BDCIQHD3R3w6NQFl9bemNs0w9TKmiZ29mw678vFQ/vY+ss82vfpz6pjZ5GXVyAmKpKHd0Jxbt32b7lJVTU06TdhIirqGvQYPRbD2lhkBQlZtJKgb2zCj3uPsnPe9ywaO5ze4yZi3KQpbRQUKakUoWtsQpcxn6Kspk77oaPRMzVHVVSJrKwcymrqtO7ZBwMzc1q4eYIAGpuZ07pXH5RU1fDo0h1NMxtOJ6yg3ZCPGPHtPPyO7UfPxAxzB2cECNA1NsOpc08UVVSxa9sBk2bipEA5BUWUVNVw7dITXUNjWrQShwTomZjRsltPlFRUsXR0wcimeUN7Y1Oae4lZlkYmZjh37oWiqjqtB4+ui43WNTFHWV0Dpy69aGzZBHmF/uJ2Y1Paj5yAkpoa3sNGoWdiLu7H1KxOHP7PQCAQNJhPAE0jS5TVNWg/ckK98agYGNFmxHiUVNXxHDgSHeNae0MzlNQ0aDV8PHoWTZBTUEQkAm1DU7yGjUNRVZ2W/T9Cx9gMEKDeyAAlNQ28ho2rtVcABGgb1bfXNjJBIJBB28isnr04K1uEtpEprYaLx+M+YCR6puYIAF1jsX2bEeMxsGyCfK0coY6RKd4fjUdJTR3HTj3RqY1lfzH/7UdOwMDMGree/Wrn34xOo8Xz03rAsLpYZz0TcxSUlKipruL0+hU4d+pG78+nYNvKm9iwIKycXOlSXYW+qQUABmbmqGho0H7wUEyaNK0bj4GpOV0/GoOKugbdR46lsbl5rb0FCkpSpLzegLLSEjb9PJtlB0/QzMnljWzqzXOn6f/xeLR0G73zcd4Zf9Nm4mCX5nh06Ixr2/ZYNGuOqVUTTK2asPrYWa6fOcGm+XNwbdueJbsPo6KuTuy9KB6Gh9Jn9Cf/iepwOnr6rDtymj3rVvJxF2+W7NhHyzbef+kxAnwu8eXseYz4bNJf2u8H/P9CTU0NJzet5cr+3XQaNpIZG3dg1txWzDRLE6p+z6iuqmLfLz/xxdI1OHp3eCPjHe5zkTZ9BtLoLWpl/BvxIYTjNQgEAtGum8GE3vDlXkgwKXFPSE9OREfPADPrJpg2sUFLpxGXjx3E0bM136/Z9E79S9vGkbQd9K5hIO+y1VRcKd7CCrpwmlPrV7LwlA+Kysrkl0reY7t76xZ6ljZEnD9Gm48mcPfSSXSbiJUKnsXew6H7AEKP7sKx52DSH8eQeCeQ1Ht3aNK6M+7DxvPA5zTGzR3E9o/uYd99AGHHdtGyz1Cexd4DwKiZA5EXj9Nq+Hge+13CwFocm5oaE41rr0EEHtyJZ/9hpMZEA2DawoGwc8dpN2oCkZdOY9pC3H/Kw2jc+wzm/vVLuPXs3+BcVBQks44qCg0f7kpyb04cextIu45lVZK3Ed9Vd1QSpBGrksYtL63gg7zkc5cU3iAt211a4t3bZESnJsbz02dj0TcyZs6aTQ2c0HcLb5B8PEnnAtBU+VbDxlrt3RWrjhEaFsvRQ7W6wSIpUZmiakLDHjNoxBKe3N+CsvIbylRL6+Md7QUqQ957CMeB2xGEXvclKuQ2yU+fkJYYj6a2DibWTTCztkFHvzHXz5zA0MycJXuPvNPW9buGdkiy/ytJjJAbviydPpm9fiGoa2lLH8dbjg3E9+ftaz6snTebQ/6hdazcu4SeSLN9l3OX1oc0veymqhLshYEN2wBEksMvpEJS6ImUsJPHJZLvJ0khH9Keie8SwiEtUEOa7/RXhBtJ1ZJ+5e+sZ+nMnzQeWVlZfli3FT1Do3q27+I/SDveu/4eAa4cOYDviaMsP3rmjXZCkYjU+KfMHNiLHX6hqGtpvfOx3nV83Ux0PoRwvG9YNmvB8C+msmjXAfb4h3LpaTqrjp1h8GeTMDQ1JysjHX0jE7Jq1QL+y2jVewAWtg6cXL/ijXYpD+6Sl5bM0xB/KkpLeBoayPOnD3kWe4+EsEAqS0uIDw0g/1kKGY/vI6oRkvk0hrig61SWlpAYfovM+Ec8e3SPhDu3xPZhAeSlJ5MYGUpiZCh56SnEhQZQWVpCasw9UmOiSY2J5mloIBWlJTwJ8ScvI5X4iBDiI0LISUshNtifipISnoTdJuVhNCkPo4kNCaC8pISk+3f/pln8gPeBQ5vWYe/myfK9R/4eBvctUFJSzorVJ/jpx9FvZe/h3hQ31yZs2X75PY/s74OZtQ1DPpvEwh372HMzGJ/4DDacucKISdMwtbYhNzMDHX19cjOf/yu0qf8MPDt2oV2vvqz76fvfN34HeHXsQm5WJvGPHv6l/X7A/x+c2bMTfUNjlh8+3cB5/qdQXVXFwXUrGfP1t29lb2LVBK9uPTmxbeN7Htn7wQcG+jUIBALRzWcF763/fxsDDVCYm8Oc/l35dPFKzFpKfuvPLaqgorS4XjJZYWERCEBeSYXSvBxUdRpRWpCHjKIqUReO8DTQl2ErdlOSl42Kli415aUIXrOvKSlAsTZMorL0ZXKbjn795LMXyWqVRXko1SYv/l6ymo6+ZEWSDwx0ffxbGehdq5ZRUVbGlLkLJH7+TzDQDdhneCMDDbBh83nuRiWwY8tUyXZv6uMd7f8OBvrVJMJXIW39+S8z0AClJcV80qEVn//wE10GDZU8jrccG4jvT98zJ9m7biV7fAPrxvuBgX4NHxjoN47l1O4dPLkXxczlayXa/hMM9Nuyz68e8+aZk/idPcm8nfvf6Vh/ZHwfGOi/Aanxcf/0EP5WaOjo8sXy9ez66Vv2zP6K/OfPGthEnD/K4dmTKc7NZte0UcSFBeK3YzU+6xaREBbIgRkfU5Kbzal504g8s5/A31ZTXlxISV42R2aOJenOLQJ3r+Pq+kUkhAdyaOZYSnKzOblwJkFHfiPoyG8cnTuF4txs9k4fQ3xEMOdXLeD8qgU8DQlgx5RRFOdmc37dEvwP7MT/wE72fj+Zopxstk4exeOQQE4u/5mTy38mNtifTZNGUlr4/l6EPuD9w8jMgvSkxH96GPWQnJJFZWU11RIqAUpDWPgTPN2bvsdR/b2Ij/n/xZqqqKrx89Zd7Fi2iB8+Hk5arTziH0V1dTVblixg8pz5/xm5rg/498HI/N+3PmampSISCqmQUNBNGh5HRdLstQI4/xV8YKBfg0AgEA2fNJVJPy16L/3/GxnoF6goLeX4prXcOn5QnKgnENQt8JWVVVRVlGPj1R7DprbYeLYjIzUZRKDZ2JjkqDAs3dqQHhPFkxB/MmLv02rUJAxbOJF05xYmjh4UZ6YBIjQNjEmJDsOiZRuyHkejYyROGsurLQgSH34LGzdP8mtDZLQaG5N4N5QmHm3JeHwPncbihIMXBTuehATS1M2L3PSXBVPiI8UFXCQ9oD4w0PXxb2Wg74eFsGbOd+y+6i/x83+Cga6oqGTAkPloaaqxf8+34qS432GgmzlM4sDuGbi1fEPhgv8QA91zxChmr93S4LP/VQb6BSorKji6dQOHN6/DqrkdAhmZumMJatdKG3sHxkybiYaWttRzuXz0IGcP7GXr2Sv1xvqBgX4NHxjoN44lJf4pM4cP5FBIlETbf4KBrqmpYdm0iRQXFPDzzv0oKErP+3hxzBkDezJy2izc/oD2+j/NQH9Q4ZAABcW3U7N4HS/KK7/ppvk3Q1FFhd6TZ9F60EgykxNAJKpbJFLiE1DW0CL05H7unDuKY9e+NO/cl+LcbGIDfXEbMIqb21fSomMv7pzYg/vQ8SipaxKwcxVeI7/gzondNG5mByIRTwJ9ce0/Cr8dq2jZewhPgv0AMLF34fq2lXiPmUTU5TNYOIsF3xPvhmLp6slD/6vYuLqTUyst1cjUnAd+PjRv05Gnd0Lq1B7iI0OwbulF/N3wv100/gP+OhiZW5KenPBPD6MeFBUVOHn0JwYMmU/7zt+wce2XODlavPE7DvbmdOn1E316uvHJmM506ez8u8epqakh5lEqd6MTKCgopbi4nOKSckpKxP83szHks3Fd0NB4pejG30SG/NH1EcS60fISNJP/C1BQVGT0tJn0HDGahEcx4vXxhfSJSAQiEX4XzjKyTUsmfDOb/mPGNdCRrq6qYseKJcxdu+UD+/wBfwqNTczIzkinuqqqrhrjPw1ZWVm+W7uFpVM/Z3r/7kz9ZTktWr75GWxm04zFX07AtV1HugwejmeX7r/72xAKhaQlxBF//x5FBfmUl5RQVlJMeVkpZSUl6Bub0GfMODQk1HD4K/HBgZYAFSUlVN/hhpQRCCgqLGDprGmEB/qzx8cP41qpsj+Dd2Gr39ReIeFtW1FOstqGrAB0rc1pYl1//DleYvu2ffqREB3BqRULiI8IwrZdN/KSE3geE0nmkweUZGega2qFmpY2CrICyvNzUJSToaqkEFlEiERCKooLkZOVoSw/BwU5AaKqcgAUZAXiNnkZ1NVVsbBpAlD3v2e3nijLy2JsaFA3LmNDsa6scddX3l7txOodRm1aSTxHRbm3Zy5lpbCc71L4QlmKrabSHy/4UDc+KbbSmF9J7UpS7vWmKqkS26mKbNhWLTkuFmGp5HZpjKvg5fhE5iKqK0poVrEPTU0J1dkEUiTRJPUtqpRsW1koub1UwvnU9qsMXNzTkx0HIunaYxYjBtiybE4nlJUlz+PxzR15nuXOsbMxfPbFSiZ/0pJvvnx5b1ZV1ZCUWsCD2CxCItIJiUgn7G46BnqqtHQ0QFdbGTVVeVRV5DHRUUDVRB7/kDtYLT/GxDEuTP/MA71GqtLn4y+GmrIy2hIkM9+0A1ZWWsrqud/hc+o4uy7dwLyp5OqP76vYxJv6ltRe84a1V0O3EU6vydq9WHvt27anx5hxbJk3m2O/bWX89z+ha9CY8pISyktLuRcahL6JGU3cPCioqKjXh7QdFUlrkLTYS2l9vAuLLe06Pihs2Le8rOS6B40UJPet8xf4eRKZcPFoGrRIK9wiDdmVDa/7O5+LNFZeWCGhTcq6JO23/FoBHcPG2lhWFWBlatXANKZI2g7n2xdt+yMqHABr9xzm4rHDLPpiHK07dWXmL7+irqEp8Zi/bNhGwcKlXDt3mt1LFpBwN4KpPy2sc6Krq6t5npZKfGwM9++Ecf9OGA8iwlHT0MDW2RXtRvqoqKmipqKKnq4uyiqqPIgMZ7y3O72Hj2LUl9MwqCXX/mp8COF4DQKBQNS530CW/nbgrb+TGh/HlKF98erYlcbGJvicPs6ui9dRlVDh7F3wPh3o0irJK0t+mYQfOZBTUt9eKBTif+o4gQe3I6egSE11FZr6hgirq2k3fjqahibkp6dgZOtEfFgg5k4eFGSmg0gcwpEUFYqVe1tynrwM4chNT8bUzpmnIQE4tm6LrATHTmpYgbwk51Ki6d/uQL9rZbR/vwN9v2Hbe3CgARy95rJ320ScHSW8kP4VDnS1FAda0vlI6Dc0Io22/XYRff0zmtv8vlJI2rNCOg05QAubRhQVVxKflEf682KMDNRo1kQXTxcjPF2N8XAxopGuCogk/06FIjlWbg7m24XX+fbLViyb2wkEsggMFrz3EA537/bsOu/b4DNpjld6agpThvajiZ09Tu5eHNiynt1X/CQqq/wXHOi3aReJRNy+cpHDG1ZTU1ODkooKyiqqKKuqMnr6N1i1sGvQx7/FgX6XcUgL93ifDvS74H/dge7Y+Wt+nLOcLl26NDD9Jx3oF0h8+pjBrV3Zed4XR3fP3z1mfm4Okwf3QVdPn5qaGtKSEnieloqOnj7m1jbYt3Sv+6erb9Dg+y9QIxRyet8ulsycSt+RY5hbG3Lm3kjl7w3hEAgEklPgJUMkEonm/Ynx/CsQHuiPUChsUDVHEgrz85j+0SDGTPmaoeM/RyQSkZacyOzPx7Jq/7H/ROGAPwIZGRmsPdqSeDcU+869ubz+FwbOXsbRn6aRHnuPxMhg4kIDGDhvDb4bF9N1yo/EhfpTXlSIbafe+G5czKjV+7i2Yx1WruIf1pMQf0YsXMeFdb9gYLShrmDKB/z/hY21AQ9i0iQ70L+DtPRcnmcW4ups8dcPDCgtreKzmedZPb/rWznPAMaGGvifHsM5nyeYGWtiZa6FmbEmiSn5hEamk5hSwKlLsazdEUZBYTlNLLRo3kSHptY6yMoIKK+oJr+wgm37o1GQl+X8vmH06tLkvZyfNNyPCKe8rAwl5d8vQlNWWsrXo4fSbeBQJsz8DoFAQOazdL4d+xEbTpz/z4a7/R4EAgFtevSmTY/eDT77s07JB3zAC9jYGPPgwQOJDvTvITc7i5T4OJw8vN7DyKCqqor50ybx6YzvGjjP0qClo8uWUxe5du40+oZGGJtbYmRmTuazdB5EhJGWmMgt3ysc37WdgrxcTCwssbBphnkTG+Tk5KmsrKC0uJizB/dSWlLC4h376NR3wHs5P3gLBlogEAgR17h6m1+9SCQS/ac9RoFAIDK1tGbZ7oPY2Dm80ba6qoppwwfQ1M6eGYt+rWuvqqzkqxEDadS4MfO9tp3HAAAgAElEQVQ3bP/DTvS/mYEGyCupoqq8rJ7MXGlhPsgrg6C+LJ2qti6VZaUIAPlX7CkrRFFVVTzO0pI6mTyDxvoS46A+MNCvje9/nIHevssP35sPObJnyu/a1g2vsoK1m3xYuuo8ANvWjWNQPyfJx/uDDLRIJGL05FPIysqwZ12fPxTPuu/YPY6diyEoPA1VFXk8XY2wttDG3EQTM2MNNNQVeZqQzaMnOTxJyEMkAiVFWZSU5BjYswW9uzapf9y/iYF2cvdk2tyFeLbvWO+z1xlooVDIN+NGoqiswvyN2+vGKhQK+eHTMVSUl7Ns18F6MdH/Kwz0m/BXML8fGOi3w/86A33qdAAbNt3k2rVrDUylMdDllZWc3PsbGxfPRyQUMn3+YvqPGiv5cH/iZe/XH2aSHB/HmoMnJJKRv/dbv37uNJeOHyYqLOT/2Dvv6Kiqro3/7kympPfe6SRAaCG0QOhVaYINULFgQ8SCFEUFBBQpYgFUlCq9iXQIoQUIEAihQ3ohvdfJzNzvjxsSQmZ8ySugvl+etViLObNnz869d8557r7P2RsBaBUYhGeDRrh4eOLq6YWVjQ0p8fHE37pB/O2b6HU6lGo1KpWaoB696T1keK3vfdgZ6Ach0IVImz+3AKtFUTz6sL78nwhBEMQRL77CrauX6dCtB439W9K174BamRK9Xs9Xk98lPSWZheu21CLJ5aWlvPPMUNw8vfn02+UPlM2+H/90Ap2WkcvVsL3cjjjBEx/MZMP0t+jz+ofcOn+KssICmgX3JfTHr3lq1nfsXfgpjTr1QFehIe7cSfpP+oytMyYw4K0PuXr0AAB+3ftyYOl8npv7A9cO/U73Z1+q9Z31BPq++B4zgRZkXgZt6/FwIaZNr/yPEQYgGDhnj4lAv/bBVI4f2Etw3wE09mtB934DMbOwqEGgRVHku9mfcu7kcZZu31Nr/iwvL2fqy6MRBIG5K9ZWbYKqJ9C1UU+g/3s8bgJdvzH08eB89p+XyTP2W/87CLQZMAIYC4QAycAaJDJ9+2EF8k+BIAjikbg0Th0+yO2r0USGn0Cv1zN/1QbsHJ3Izkjnjw1r2bHmV2wdHFmyaSdW94njQZqcSouLefvpIXg1aMQni3+oM4n+pxPo3CINZcWFlOTlYufhTWbcLew8fMjLzgbAzNqWnJR4HH0ak5OSgJmVLQhQkp+Lnbs3mfG3cPPxpbQgt9LejuzkeJx8G0NxHlYOjrW+s55A3xffIybQiYkpvPf+TMzNzXCwt2Phop8M2tbj4SJs22gaeNsiihXEJeTRNciDfUfiCA7yID4pHzDBx8uG46cT6d+zISfOJOHjZYtP+28fOYE+eyefEwf3cfPqZS6cDicnK4PvN+zAyd2D/Nwc/ti4ji2rViCXyVm+Yy/WRrTOFRoNH730HCYKBXN+Wo2JQlFPoA2gnkD/93jUBDozM5MJEyagUChwdHRk0aJF/02Y9agj/jUEuoaxIHgAoyv/+QFngNXABlEUcx9WUH8nBEEQRe2Rqtd6vZ7PPl/JmnUHadumKaFHzjNieHdefeUJOnTw+493nEVFJQwY9CF+zX1Y+sP7yAQjE21d6sDKjOgGjdTNNPQop9QIgS42Ml6kqf2oqdjAGEBJhZH6k/ra15raAPEF4/WXjU3YhhYDYwuBMRiyN7qYGDnvhuohG4vZaA1iY7vMdWG1x4xJJ4yN6wyMG7HNvJNC8NA1PDW4GY18bMnMLmHyrFBAkhK8P74tsz6QqknoKwzfeBkbF/WG68Su3RlDyyY2AJy7nM2YIQ34dMlFbsYVEnoqjXYt7Bj/bBOir+fSrYMzl2/mEX0zj33HUhk7tAHT3mjBlv2JDOzuTuQV6Uaurb89oyYcJTjQiVkTa0o5dDodC369zgtDfYm8Kk1hbf1s2bI/iVdHNmTt7/G0ayGVQur38hHCVvdm15EUXhjWgMgrOZJ9S3tWbYvl3Rebs2ZnLO1b2ANw5VYeT/X3ZvHKa7wwvGGNeFZti+GJnh48PfE4mgo9crlA9w5OrNgsNXFKPDacyCvZKEwEWja1Y9W2mFr+7x6fu/4vXCtgyPhDj5xAi2W/V70WRZFFS3ay4JsddOvair37zzJ4YBCvvjyAbsEtpflRZqBsnTwEkDLRw4cPx8zMjPXr1xNbbkSWY6Rur6GF0tiaVpeEhLE6wXUh1nXdmGVsrjG0xpjU8eb7r9oas69LzH9m76yufd7rLJEwVHva2LpqTDpRB5lFQV4ePQfPpXNQY9q38SUzq5APpq8HwNralGdHBLJ00XPVH9AZkLMZi8MYDEg7bsUXMeurvfy+N5qe3ZowbnQngtr7cOVmLpcuJxEVncSeA5cY/mQ7Zn8yHFs721o+pny6mZycIn78/vW6xXMP2nT8gKVLXqdj0H0VdozKUYzwmEr75ORM3npnCVeuJmBjY8Er4wbxxlvSDcq9HM2w74YGBj0QZLK/rw60KIrJwDxgniAI7YBXgCVAb6Qs9f8cZDIZMz8fR7t2TUhPL+DXX6ZiZWX+wJ+3sDBjzx/z6dv/PaZ//CNzv3jlEUZbj3o8HBQUlNH/uQ08NbgZs6eEVI3fJdDjR7dk5vsPf/PJsbPplFc2+TkcnsbQ3p4kppbw4av+eLqYcT22gM+/vURcUhHHz2cS0MyWzm0dmTq+BQ29pao3py5k0ryhNcciMgCwtVZhY6lkxeYY3n6+Kc4O1SXYKrR6Dp5Mo1t7J46drbS3UnIuOodnBnlx6FQaALkFGkpKdTjaqzhw8g7dAp04dk6yd7BXc+DkHV4e2YjD4WlVvq/ezqdfsJtk38G5Kh47a1WVvX9ja9ycTdm8J5FrMdV67LjkIo5FZGBro8TCXFnLv1Ihqzo+d/2HR6Y/9PPxnyAIAu9NHEpLf29u3E7n+yVvYWdn9cCfV6lUbN26lSFDhvDGG2/wwaLl9Y/B6/GPR1mZhqHPLqZ9G1+++Wp01TV7l0APGRjA9wueeSyxNG7oxOrlL1BQUMrG7ZHMWbifK9fv0KK5BwEtPQls58v77/TDr5m7UR+TJw2hScA7TH5vCI0autY5huLiMm7evkOb1rXL6f238PBwZOe2WRw9FsWkD5ZhZvbP23D8X5WxEwShAzAGeAYwB+aIovhoWvc9Ztyfga755n9fNjs7O58uwW/y9ptDefutYbUN6jPQNcfrM9C18Rgz0J/M2UdsXBprvx9yTzdKHSqveQCMHNSIlLRi9KKITBBQmAisXdwTV6eaN5d1zUDr9TqKS6T3zM1MyMguw9nBlOy8cqzMpZRUYXEFdjYqiku0mJsZPoZXbuWx92gq2w8k8vFbLRkQ7Mr78yIRBPj6o7ZVdiWlGkzVJjX9l1RgZ60iPbsMJzsVxaVadoWmsGVfMks/74Czg7qmfakOOxsV6VmlONmrDcYfn1LEoZN3WPd7HKII277vToVWj5O9msKiCpr2/Z3I3wfiG7IDgJSTI7AyVyCKeopK/rP/7LxyrCzNsGy15rFmoGvA6LxkPAN9F0VFRYSEhNCp7yAmTP+slnl9Bvo+2/oMdG08xgz0N9/vYf+hC+za9B7yyravoigis5I2440c2pbUtHx0Oj0ymYCJiZyfFz9F44b3yRIfQgYauYEa+X82LijJzCxg49bTrN8SzpT3nuSJwZ2YNXczN26lsvaXiXWLCQg7dpmpM37j1NEvHyxmqDFflJSUsW37SVatPUhubjG/b5+Jm1u19Ktx8xfYvmUWLVuPA/6FGWhBELyRpBtjgCbASWAasEkUxfyHFdD/Kuztrdm352u6BL+Jq6sdI4Z3/7tDqkc9DEIURTZsj+K375+osRCWllXfXA3t3xBPV0tkMoHc/DJGvbEXK4u/3mHuaEQG636Xug+OGuDFh19Gsv/XXoz+4CR9u0iZkQMn77D26y78fjiZV5+ubo+t0ejIydfw69YYvvghmlZNbUhKK+HjRRcJbGHH5Ff8aDtsD+NGNMSvkbRvYdeRVLp3cGLMh6fo08UFgIMn01gzvyP9Xz7K/Mmt2bQ3kfNXcmjrZ0e/l0PZv6Inoz+sjudaXCFz329Nv5cOM39KOzbtSQDg2Sd8eO+Lc8yY0IqxH5yksY8VbfxsOXUhk94vHEJToWPR9ECWr7+FXhS5fCOv6m955t3j9O3iiqW5gq0HEln7dZca/q0tFfTr6lrj+AwM8fzLx//vgoWFBbt37yawU2ec3dwZ9dKrf3dI9aiHUWzYEs6nU4ZUkWeQGiLdxZMDA/DysMPEREZ5uZb+I77F0uLvzaBWVGjJzSth197LfPjxbwzoE0BFhY7cvGIA3n17ME1aTSD89HU6d6xbCdnTEbfo2KHxfzY0gHPnb9J/8HQ6BDbl1XEDuBVzh+693if0wHw8PZ24cyebnJxC/Pz+enO6h40HqQP9ChJp7gLEAuuQNhD+s3rs/gvg4+PKHzvn0G/gZBr4utGmzX93wdWjHo8SFy6loNfrad+65qM8a6tq6cOzQ6p1br/tuEGvLu6Ym/31HUKd2zjg5iTVF/ZyM2f+lHY42auZPak1vh4WAHTr4IyTvZpenaX4ktNKGPhKKDGJhdhZK2nawIq1C7pgqjbhpY/C+eTtVtjbKBEEgdmTAhg7OZwT6/uiVsnp1MYBJzsVsya2wtdDyp53a++Ek52a+ZNbE9zeEU8XU557/xQj+3vx9CBvnOxVzH43oCqexLQSnOzVzJ/Sjm6BTni7SX68XM2Y8noL3ptznq8+astT/aUFIC6pkL3HUlm9PZaVW2OITymiR0cXggOrGwPc+/e28bcz7P/+4+Nlw9T55//yOfi74OzszM/b9zK6X3e8GjSi431l8upRj38CEhIzuRWTRq8QvxrjSmU1nRr9dHXd4wOHr9KutRcuzg8ubXqYyMoqpN+wBURFJ2FrY0YDX2eO75+BTCYQMmA2AS2lykqWlqYsW/Iao8ct4eLpr7GyMpLBNoAjxy4zbmzPOseWm1vIqOe+YNl37/DUiMrunoIcM1MVXUPepXMnf1JSsujSucV/VcnsUeNBIvoRCEDaLDgPSAJ6CIIwztC/Rxns/wIaN/ZArVZSUlL2d4dSj3oYxPHTcTT0sf9Tm1Pn7/DD6kvExOfxzowwBnT3ZMf+OHbsjyMxtZC5P0RSWqZl1dZbnL6QwekLGSz77TqlZVrmLbtEUmoxOw8lsvNQIompxXy5/DKlZVoWr7xGfEoR8SlFLFxxlU6t7flkcRS2Vkr2hKWwJywFWyslk7+6gIu9iqXrbjDo1VC6d3BiwZS23Dw4hK7tnPBrZMN3a27QwMsSL1czZiyOorRMS3m5JId4efpplm+4hb2Vgo/mX8TWWsGeo6nsOZqKrbWCz76NpmOAPQt+uc6GPYkUl2qJuJRJpwAHJs+/gK21ssre0lzB5K8u0Km1PQt+vloV/w/rbrA3LAVPFzN6d3a9J34FxaU6Fk5ri6gXGdzDnaG9PFi44mrV8b379x44Xv333us/IbX6+Ez+6gK2Vkr2Hkl81JfGI4eblzdWNrYUFxmRINWjHn8zToRfx8fL8YG0+tk5RXw4YysvPtfpMURWG6Io8vwry+nV3Q9Nzk9kxn/LmbCZ+Pt5sGtvJG1b++DpXj3XD3miA317BfDWpJ8f+DvCjl3m+o0UnhjYvs7xzZ77G/36tKsmz5WY9O5T/PrzhzwxqCMTJwzjm0UG+gD8A/CgEg4r4MXKf38GEfjlL8Tzz0BhdN3sDWn8jOgB58zaQtNGDnRuYwGl8dVv1EUDLRh5VG6SZXC4uZlN7cH7NIh3kVOhNjieXlY7PmO6xIdR6skY6lL6rS7lmABcTWv/HOxMkgwHortpZNzATmudkZI7xpqM5BsZN6RrNqJ11pcbVlUZ0iTfPza6rznrN+YycfIWvvqwtUE/aQkJRF1MZ9Hys3i7qglqrOXoOUm64GtbyPVryRTeMSfhRhLWWqlaxe2rBRS2hutXkslpqCEhWordW8jh2qU0Cq7JyIlLo0RZBEBufBHF0VCYmE7xFS0Ft6XxYlUuWXGZFJwTCA9LpSC3hB4uGsIjE8j3KCEnLoPiKxW0c9KxLbaI7s8eoE+AJfkX5Ny+mMGYQDVT1qSiySlgaCMtWUnZlN5WUJgoxZOpKKQoI5fS2AQyE7PYejyb1wc7k5eeS2l8AtkpOZQlJlOYKm3607hVkH0nh7LkZPLScyhLk7SYZfmlpKTkYakS0GSlUZQlSTQ0uXpyMvIIbuJA+Glo5yvDxKSE/Jzqc1aRn0lxXi5majkV+ZCTmYcmN4P8nHzK8wXkCjn5eQVoCrLIycqnojCbssLHpKQzpq/HyLihvSPyXQZN9/+0C2uzCsYPUSGTHax+w9AcC4a1joJhKcvNYsOa5DIj+z4MwdgcZmxPhCE8jLKWD0O/bAx1Kd1pbH+H0X0copH5VB9Te6yiDjplMDzPGptjDc3Txsbv0yk/1c+R1WtkvDx+ESuXDDFMpEtiycsvo+/IjfTv7s2ro9wQSwzc4Bq5nkTxwddKQTCSB5XJiE/K58LFWHb93BOhMFrqiFdp/8IT1pw4VoRb4zfZtmIoA3tJv6WF01rQrt8q1q9cybPD/Gq5LSgsx8xUgYmJDK1WzzuTVrFgRhfMKqIg38BTSGO/XbkZyfExDBvUAgov3WMvcaeegSqg8imorACK72l6VXyjhm3tg5JqYOyvSwxruXyAOtB1Ep6IopjwlyL6myEIgijmLqnbh+pAoHfsimTqZ1tQqUx4982+PDsyCJVK8ZAItKXhcUVdCLRhF/UE+j48SgJtbHJ/TAQaIK9Ag2fXTWScGoZKWb1ImrbaBMCxVV159dOLKJUyvv7An9y8YgL9pOssLrWUQH8rDp/JoXMDFUmZkn9PJzUno/Pp2daG89G5eDpKv5H49HLaNzEn9GKBZJ8lXYSeDkrCrxcR4mfO+ZgSvJ0k+4SMcto1NOPY5QLMVTImrEhl9QQvPB0UhF8vpkeAFeduF7M5PJ8NJ3KxNZcTPq8xm0/mo9HqCY0uoqhMh1wm8P5TrnTzt+Tc7RJ8nJRsOp7DrA2p6PUiZmo5FmoZft6mzBnnhZeLKScvF9CzjTXnbhbh4yzdbCblVtC2iSWhkXl0aWlNUob0dMnL3Yzg1yP59v0myGUCPq6SfXxGOe2bW3H4bC5dA6xJSi9HkAt4Oqtx6i31qTq0rB2+bqYgQtydUgL9rDgckUPX1jYkpZeBTIani5oTF/LoFWTH2SsF+LqZ0nDwsUe/ibBoXR0/ZIhAG24DfujIFT6c8jNlZRomThjKmOd7Y26ufuwE2tgmQmNzWF3qV9cTaAMwRKDrstEPHhuBBigp0eDZ+isuHRmPu2u1NENwnglAadx7hIxYj04n8vWMEHy9bPB0NZCcesQEOjGlgK5DN5F49pVa9vO+i+CLJWewslRyJexl7qQXc/JsMsfPJJOWUUxaZjFRh2s2M9u2+ybPvbULrVaPtZUKS3MlDbxtOLz5aelGwlCDpz8h0IOf/YXXxgbx5AD/e+wNcKdKH4K1VGZPzF9m3BYMcyRBiWA+8vFuIvy3E+J/GoY+0ZYnB7XmwOErLP7hAFM+3czM6cN49cWu9eWb6vGPgY2VEmsLBX+EpbLzUDILp7bFwbZ6slq8NhY3JzUR0blM++YaUdfzeWOUJ/bWSg6dyWLlrJZMXXKTr8b7sDE0E4AR3R2YtjyOXV+2YMW+DBq7SyTq8IV8VrzfkOm/JjJntDtbw6V6zMM72TB9TQo7pjZg5qY0erWUbhAPRxfy81terArLJcTfnPS8CpbsyWRYB2s+3pDGDl8zXv0hiQqtyNgQO/44l0/Lidcp1Yh0bW5OUZmeK4mlaPWwbE8GzT1MmfVbCq0bmvHLgSxaeJmyZmojnpxxg7eHuHD6WhGLt6UxPNiOj39J5Pcv/Ph8dRK92kg3DDdTypj5ipppy+OYO96XLUelJ0FP93UmNVNDdEwxO45m0itQqr96+nIB301uxrTvbzP37UZsPZyBlaUJfYKqH6V+tiyG3kF2WJqZsP1IBis/b8HUb28x753GbDmUjrWVgt5BDkxdcpPd37Xls6W36Ne5duOhfxt692pLZMT3HDsezeIl2/nks9VMnfw0EyeOqtXttR71+LtgZqbEycGc0BPx7Nx3g8Wz+uHhVk2kS8u0+DVxIDO7hI+/PMGVm1kcXD+cti2dHmucKqWcsvLaN4OLf4pkxfrLhO98hn1H4mnU6SesLJV07eBBl0B3vv3lPAnJBcTE59LQR5q30jKKeHPqQcK2PktgaxdycsvIzC7B29Pqv+Yu7q5WxCXm/KW/8e/Ef1XGrurDguCH1FDljiiKJx9aVH8jHnUG+n5ERSfy6oSVWFqo+PnbF/D1eYBFsD4D/UDj9RloA+MPmIEG8Ou3jazccgKa2WBuasK274KrMtDpxwZgbionI0eDs72K+SuuseNIOnu/b0d5hYidlYKMnHLsZTqKy6Tzbq6WkZlXgZOtkuyMYixMJUJUVKrH1tKEjLwKHJQixeWV9ioZmQVaHC3k5BZpsagsdVVUpsPWwoSMHA1anZ7gT25zbGYj3OwUZBboOBdXyrS1qez9pBEOViYs2Z3BxbhSvhzrhqutguJyPZ9vvMOhqEICfM1o7K4mt0jHqetFPB9iz3Mh9tjZqcjIq8DR2qQqfgtzEzLztTjZKMgt1GJhKl1HRVpB+ntzNTjaKKrtrRTMX5tIcmY5n73ii6VZZfzlIrZWCjJyNDjaSnpoQS7D3FSOdTepPFP87mAszeSIeunvtbvPnkr7zFwNTnYqcgoqsDQzwb7b4X91Bvr+efPGjSTGv7WEsrIKfvl5Mn5+PvfZ12eg/8p3GkJ9BvrB4ujY7weir2XQpYMnBYXlnN77clUGWrwzuYbt+u1X+ezrk5zb+ywW5ves3484A11cUoFzwHJuHn8RNxdpU/LJs3d46rVdROx+Di93K1ZvvsqKDZc5sGEUKpX0W529KJwVv12idQtn/Js6UFyi4URECv1CfJk9Jdjw90GdM9DrNkeydVc021a/cI/9/1AGWhCE54ABoiiOuW98OVIjlbuvw4H+oigWP6zg/j8goKUX4Yems+i7fbQJnomvtwP+zdzwb+6Of3M32gZ44eFu93eHWY//UcQkFDBjwRnik4soLK7AzdmMeR+2o1UzO15+qgF+Da0ZP+Msq76s2TRly4EUDp/OZPGUVvR/LZwZ431YvSuFQW9H8tWkpny29BZr5wbw0Q+3aeEr7eYOjcxj4dsNGTQ5ms9Hu7PzlJRpHhxky8y1yaye3Ig3lyXQuZk00R+JLuTrlzx45fsEXu/nwB/nJA3c4PZWzNyUwMq3PJm6Lo2WXqa8+H0SnvYmfP2COytDsyko0bF4VwamKhnBfuYs35/F8C/jcLCU066hGVvD82jhpcbNXsnWk7n0b2+Nt6OSjDwNt++Us2J1CvNe9mLcghh6BEgl78Ki8lnwhi+Dp1/l07Ge7KqMf2h3B8bMvs7aT5rx0twbBLeyIiG9nNNXC9FUiMSklDKmvwu/H5cy00+GOPLZ8ljWzGrBi59fpWd7W5RKOftPZVcd39tJJew6momtlYKubWz4bFkMa79oyYufXqFnoB1KpYx94Vks/LAZA986x2dvNGbfScN7IP7NaNrUk9ADX7L85/107f4O7u4O+Pv5SP/8fWjTVoGvr9ffHWY9/keRkprPtFm7uRmbRWFROXY2Znw5ox+dAr148ZkAPN2seHPKXhbN7Punfp4d5seBo7FM+PgIvy7q95iiB3MzBR+83o6X3jvA3rXDkMkEGvvaUFGhr+rLMHxgI7bsuYVf91+YN70bjXxs+ebn82xY9gSHjyeiVsmxs7HirZeceM6AJrqu0Gi0nLuYyrEzqewLvUFqWsF//tA/FA+yiXAMkHnvgCAII4FXgcNInQibAzOBKcAnDznGx46fV4UzdHAroi6nABDQwp0NWyMZ/1JnNu+4SOuWUkefi9EpjBzahhVrj/LU0HZERSdL9i092LornHFjgtm8/SytW0kT/MVLiYwaHsiyFWE8MyKIqMtJlf49sbU2I+7SXL77MQyZXOBWTDobt50lOSWHBj6OfL/weQoKyir9N2DD1tOMH9eDzdsjaN1KkqlbWNnj5fXvf4xbjwdHXn4ZWq2eDTuuMH5sWzbvukZrf2f0FUVcvJLJyEGN+HHdFZ5+sjFRV7MQ9BW0aGrPbztvUVauY+7Si4x7qhGDeniQnFaMhZmCHqP3MXKAD090d6akVItMBp9+G83Q3h5V39vOzwaZTMDSXM6AYCd83U2Z+Jw3M5fHEJdcTP8ujliYymjX1Ax/H+nJiEwmYGEqo3+QHZ6OCrr6S+M+zkr6tbfGXC0Q7GdGKx+JcMsFsFDL6NDIFG9HJV2bS+Pejkr6tbbESi2jV0sLmrmpGLkwgaGBVlioZPQOsEAmCJiqoGtzM1p5mzJpsD2ejmomr04lMraU2c+5olYIjOrhiLu9gqeD7bkYJ937+zgqadfEDHO1QO821gQ0lMrGFZRq2RmeTV6RlonfxWFnaYKnk5L8Qi39g+wwV8twtFHw8U8J+Liq8XRRMXaAC9fii/FxVRPcWiLiPi5q+neyx8JURp8gO1o3tkCUC+hEke1HpG6Fvq5qgtvYYCIX8HVV07+zAxamMnp3tKNNY0v0cgGtHizN5PTv4oivm5qOLY08gfqXQyaT8cbrQ3jxhf5cu5bAlavxXLkSz68r9/H6m0sIDu7AzM/fw9+/6X92Vo96PAD0ej0/rjrDJ3P388aLHRj/QiCWFiqirqTx1Ljf6BvSmC8/7oGpqQkqpZxtu68Tl5j3pz5nvBvEgNE7WL3lKmOf+utE9C50Oj1L10Qz/vkWbN59m9Z+UgOSazF5PNm3AbbWKm7G5vHTumga+drQ2s+JZo1s2bbnFi5O5rT2d2Lu1O78tv0qX3xziivXs/j2i96AQN8QH1o0dRfyisgAACAASURBVGDDzus8P9yPzbtu0NrfCQS4eDmDkU80ZfmaKJ4Z0oyw8CTOX8rgVlwup8+n0LG9OwIwbJA/rVu4cPFyGo72Zjw5Zj2NG9jRvo0X77zalW6dH173wseNB9lEmARME0VxzT1j24FegIcoigWVY3OAJ0VRbPEI433kEARB1CRNYdWmSwS2dgPg7MVUXhjViuWrzzLqyWaci5La6bYPcOGX9dG8/0bn2vZPt2HB0lOMe7YN56JSK+3d2Pz7ZV4b08ag/wXLzjDumQDORd2R7Ft78MPKs4gifPPjGfZveh61yoTo63k8PSyABT8cZ9xz7Tl3USLuvXq2ljYk3g+5gYXVaJeiOugMjdka69hYF6mLka6KdYKxjlV1kUgYs63Lo0FjEg4jvkWNYVmGTlPbT0FuPhv3xDNmSAMWr7zGC8MbEnklG5m+glZNbVi9M56Joxuz9o9E2vnbImrLWb8nhQOnsqio0LNiZgCZmUUgQpumlqzZc4fn+7swcko0hUVaVk5twsFzuZgqZWw/kc3Z61IljKe72vLZs678diyXtwY6MfyLm4TfLKVLU1Oi4stxsJLjZmvCj887EpUkPXIN8FSxPqKQN0Ks2RmRRzNn6Xq4mKxhVFszlp0o4ml/BVF3pCoWAa4K1l8sZXxbJZsvawhwla6rqDtaRrZQse5iKYOaqIhK1zLjcAlzepsRnaHjtbYqXv29iIgUHS2c5NiZCszobsr26xUMb67kt+gybmTpCXAxQSaD1wJN2Xy5vIb/UW1NWXqqBH9nBRsvlXEhtYJijYibtZxxHS1IzNGiVgjEZGnZd62M0UEWXErRkJijZWyQJS3clbRuZMb604W80cuGjWcKaO0lbSK6lFrBqI7W/HAwh+e6WHMxoQwThZyW3qY0n3gdgEUvutHG1xRBIedCbCnPBNvx/Z4Mnu9ux8W4UuQmMlr6mLIuLJu3Bjmz4Vg2bRqY033KtUcv4Sje+Kjc123+AUrKRJb+uIc5X23h1uVl2NlZGp/bTHoZHDbUqdWYPM2YtKMuEo6HgbpKOAzJ2YxJNerUIVV72PAX1lV+YWgTvTFbfR3mU6OdWg1L3MSKMiIupjHhk6MoTGQsn9cTv8Y1JZAFhRomzTzO/qOJJJ4eS2p6Mb8fjOdWXB5LfpUqeE0c15Kvp3Wq0ga/PeM4y9Zd5akBvoRHpmMilzGopxeLP+mITFb7uBqVcBjo5ptfWIapyoTFK6/wwvBGnL8sPclq52/Lqm0xvPuiH+2H/cGbzzejUxtHom/mkpldxqdLLtK5jRPuLmZ0be/MwO7u/Lr1Fi0a2/Ljxps0a2BN/2BX4lKKGTOkIYtXXq3yr1DIadnUhrnLorG2ULLu91hy88sJbOWAq5MZrz3dlO/WXsPJXs2vW27Rr5sH7s7mbN4Ty/ypQZSW63iyb0OcHGr/VmXy2hxGUEhzp+D6lXR87kpkTKwNHydDEjFBiWD79mPvROgA3L+RsAcQdpc8V+IoUPcekP9AFBaVcyCsuk/MgbA4hg9sRmR0Bu0DXAkLlzLHdjam7DsSx2tj2te2H+THviMxhHT2ISw8vso+MjqNwiKNQf/7QmMI6exNWLh0uO3szAkLT2DbL6P4aW0k3684S7dO3kTfyGVgn2bsO3yDkC4NCDsZC0DHjn6GCXQ9/mdRWFzB4fA0hvb25MDJO3Tr4MyxiAxsLASszBUcDM9g3HBfDp/OILdAw46DyVyJLWTxZH9W70pGrxeJuJxPeYWIraUJhyNyGNXHmdiUUoZ2sePCrSKiY0tY+JYvu0/nVn3vwYsFiCIkZ5czuL014TelRe3kjVL6tjRj4gAHRixKYtfFYpLzJEJsYybjyPVSxnS05EJyBXcbG4bdLmegvymht8ro6C4jPEF6w0YtIyxGw/MtFByNr9apHo2vYEATJdHpOlo46zmVpMVSJfBbtIbsEj3PtVBhqpDxTpAJcXl69tyqYMaRUi5naDkYU8HlDC1NHeQUayo4lazlVJKWkgppYdKLIluvaDidouX3q+W4WcmwN5fRwVPBS50smXuogEH+pkzemUdIIxXOlnKyS/VYqWWk5GoZ0dac/FId4TFl2NsrCL1azJguVoRdq170z8SWM7CNJaFXiujS1IzwGyWYm5lgZVZNHsOuSDcqpmYmHIkuZHCgNaGXCujS3IKTV4swM5VjaSYn9GIBL/Ry4MilAgysw//zMDNT8f67w7h8JZFlP+1l2kej/u6Q6vEvRWZWCVO+CGVvaAJzp3RmzIhmCIKAqK9J7k3Vcm7E5PH2iy0RBAF3FwveGCPlDe8S6PDz6bwx/RjfzwomO7ecZeukGu9b9saRfPp58gs1jJl0hC174xg16K9lYEtKdWi1IgeOp9It0IVjEekAONgoOXAilZdHNkYQYPWOGBQKgYvXcvlsQgDbDyYS0tGZnzbe4uT5DE5dyGDX4SR0OhF7WxX5hRp+3HATS3MFKoWc/cdTCA50Yu3vsSSkFBOfXEhRsZYXRzTC19OCj15rgVJpwv7jKTRraENGVikTX/AjO6+cOxmlODuYYmWhoE9Xd975/BSBrV0NEuh/Ex4kA50CvCWK4o7K1y2BKOATURS/uMeuG7BHFEWLRxjvI4cgCOKdS+/g7GhBcYm0aJubKcjIKsbZQUV2TilWllLmrLBIg52tKelZ5Tg5mN9nX4azkwXZOSVYWaqq7W2UpGcW1bbPLK5tX6zFztaM9Iwirt3KYty7vzNzcgiB7RtgbanGxdmK7JxirCyluzNRblGjG1IV6jPQNfE/lIHWlBQikwlkZJfh7GBKdl45VuYK9OWlFJZosbNWkp5dRm6+hpAXj/LyME+mvNyIohIdzvYqsvM1mAsaEAQKS6TNanN/jeNEVB6/TWuMIMhqbP6zHXwKgCvf+dPxw2uEzm6KhamMLzemsPJoHqO7WrNwjAuZhTpOXi/hu71Z7J7oiiAIFJXpsTWXk1Gow0GupUQjzT1mSoGsYj2OFnKyssuwVFVuztOI2JrKSM/R4Gguo/LngkouEhavRa8XSSvU09XbhNlHS8ku0bPjOWvJv1m1/d5b5Wy7pqGtqwneNjK6eyuwNZVRpBFRKgU2Rpez4nwZfk5yrmfqsFIJ9GuqYlgLNVZqGZYqiZmWyEywNZORWaTDwVxWFb+5hYLMIj1OlnJyinVYqqX4i5FjayEno0CLo6Wc4kp7CwsFmYU6nKxMyCmS7AWFnKIyPY0nSBnozF/8KS7XIyjlmKvkZBZocbJWkFOoxdJUDvLK42lhUmOzo/dLUf+vMtB355TLVxLoM2gGi+e/QstWzWja1KN21Y76DHQN1Gegq3EnvQj/kF8YO6IZn00Kwtqqel26n0Cv2XaD+csiubB3VK3ssYnvUgByo16iRb9NbPyuDx3bOFdloMc/15zvZkpr26ETyUz8PJyoPcMxMal5LuqSgRZFPelZEkHNzi3D0lxB5JVsElOK0OlFGvtYsmz9Tc5eyuLEhv5YmCtqrBfHz6bz86ZbNGtoTafWjjTxtaJFExuKS7SUlGk5cjqNmd9domkDK2ITpRv7557wpXuQK0GtHUnPKsXJXk1xiRZBECQ+c9d/bhnW1mpAoLC4AjsbVZW9VjRBqaz9e/9fy0BfQtJB76h8PQqpYcq+++yaAnceVmB/J179YA8TxgWyfvsVAJ4Z6sekGYcI3TyKZ97YRf8evgDsOxLHxuVPMuLlncx4P7iG/Vffn+G3pcN4evxW+vdoWGkfw8blQ+kxfB2LZ/WpYb/oxwhWLXmCp1/bTv+ekv3RU4ms/GYIPUasZtHMvtjbmTJtbihlZQcpK9dy5cQkxry5kf69JO1fp6BmdO9a3x78/xPikouISyriwy8j2f9rL0Z/cJK+XVyxUMG2QymsnhfIgNdOMOsdPzQVepLTyzgVlctHi66x54cgXvj4Iv2DbKjQihyOyOHXT/35cXsKPQPtWLAxlcz8CoYHO/D24tsM7FS9mXXKqmRKyvWolQJDZt9m1khH8op1aPVw5Goxn2zKYOskTz5cp+W9TVk0cVZy5Hopy8c6MeKHO3wx0IotUdJCOLSVKTN257PtFQfe2VlIRy9pAg2L0bBsuDWv7SykkZ2cU0laZAJYqASuZejo6GFCVLqOwkMibVzlmMggs1jPO3uLeb29KTtvSAvwk02VlFSIvNBazZu7i8iorMYQFl/BsiEWrI0qZ0YPM745VYqvrZyX26lYFaVhdFsZr27JJ6ShRNLC4jT8+Kw9w3/OYtYga7ZfkuJ/qr0F03fksvV1Z8avzaRHU2nyjsnR8fEQe4YvSWHWCEe2n5MW8+Edrfl4Uwbb3/fi1R9T6Olvgalazu7I6gd6YVeK2HYmHydbBV39LJm+JoWdHzfilW/j6dnKCrVKzp6zefw80Zchs24xZ6wHf5z9cw3m/zJa+Hvz6fRn2LjlOFM+WUOjhm7s2Po55uZGqn3Uox73wNHeDHtbNUP6NqhBng0hO6eU4A5uNcjz5j9uExGVUfV658F48grK8W8slYD7bmYwn7zTFif76uuxVxd3XJ3MWLP9Ni+NbPJfx349Jp8+L+ynW6AzJ89nYGutJDWjFHNTExp5W3I0Ip3uHZxp09yO9+ac45nBvrw35xwHVvZm9PvH6dvVje5BLhw4nsKHr/jT98VDfD21HZt2x+Ngp6JHR1dkgkBAM1sSU4oZNdAbSwslHy+MZO3CbvR98QBfTw1k0+44lAo5Q/t488G8CA6u6s/zk8IY0teHsnId+48l89s3Pekzeg8LpgdRIcoZ1LNObUb+cXiQDHR3IBSIBDKAfsAJURRD7rM7BGSJovjMown18UAQBPHwlufoEuhJfJK0IHl72HDsdCJ9unlwJvIODbylu57YhHyC2rpy6Hgy3Tp61bA/HpFM724NOBOZQgMvSUMVm5hHUBsXDh6No3unmvYnIhLpFezLmchUGnhV+k8qJKitOwePxtK9k3eVvYuLI31H/kL3Lr4MH+RPA2+J2MhVVtjbGXgAUJ+Brol/aQa6oqwEmUxArxeRyQREUaQoPx+ZTMaJcxn06uxCxKVsfD3METVlxCWXENjSltDTGXRt58Cspde4dCOXDV+15eSFHHoGOXD2ch6etgKCDOJTy2jvZ8WXq+I5EZXPgte8QBBws1fRbOx5Jgx3Ze46SW8/qL01jlYmfD3Og7DoQjp6mZCULaV8PewVnLpZQoifOUv/yOCX8EI2v+5MVqGett4qjt4opaObjKQ8KbPjYWPC6fhyujdScT6mBC9rOWmFOlacLeXiHS3phXoGNFHiaSWjQidipZbhZS2jb0MF51IqKNdCM0c5ifl62riacDxeQwd3JckFkn93KzkRyRqCvZVcSNPiZSVlexIL9LTzUHAsvoKOngqS8yvtreWcS9PS1VdFZEoF3jbSdZ5UKtDWU8nR2+V08lWRlCtJU7ycVJyKLad7EzWRieV42UnXf1KxSFsfU45eL6FTIzOScqSsnKezmlO3SqUGMbGleDsqEExMSMjU0P8LSdqV8qMfSVkaMJHh6ajm1PUiQlpacv52Cd5OSpALJKRraNfYnLBLBXT2syQhvYxOH1z/f5mBvhc6VLw4bj5KpQkrfvqg+o36DHQN1Gega2LlxmhWbbxE6MYRNUO7LwMdfv4OEz45xrndI6vGmnRfx8jBDfnyhwsAPDekEe4uFsydHFTtR5QqX9w9daIIZy6m8eyEUCL/GI6tdWWpNkFAp9Mik8lq2csAvV4kO6+cnzZcZ8fBRJLTimnjZ8ewft7cji/A2lLJ0D5eFBaX087fnuUbbvLSiEYkpkqbpL3czCvXC1ciLmXh62GBKIrEpxTToZUDh8PvEBzoTEJKESIi3m6WnDiXXtMeGfHJRXQIqGkvIODlbsHxs+n07uJGRFQmDXwkPhOXVESHAEcOnUyhW6ArReUi9ramCEL1mqbXi8hNFNV/790xlSmiKCJzmy+d6pQPpTVQbqQG9WPKQD9QHWhBEIYCkwA7IAKYIopi5j3vewB7gFmiKG5+WMH9HRAEQdSmz2HqrH2EdJG0SWEnY5nxQS9mLzjIS8+24fAxSXPcq1sD5i05zrdzBjJzwVFCuvhU2scz471gJkzfy5QJXTh8XFoUewX7snL9BaZP6srMBccJ6SzdfYWFJzDjva5MmH6AKRM632Pvw7xvT/HtnH417C9ezcLbw5ppcw5zYNPYqnjGPN0BS0vjNRRrjhmrn1gXAm2EKBurU/0n9R0fyBbqvsAawuOuI2pkEhcrDJfv0ZUZrgR54+YdvvzxKoumtWPO0st06+CEoCvnSEQWU19tyvtfXeL9FxsTFpGF2qSCDi1sWLgmnvnvNeXLX+No72fFm19cZVg3B+a85svkpbFMGuXO8bM56PQi3VpYsXBbKqk5FRSX6Zj2pAMVOpFtZ/I5H1dGUCNT1p+UFp6ODVQsGOXAt4fzmTPcnq93ZdLZRzpn4fEa3utuzvS9hbzZVsnEPUWkFekJdFeQlK9jYkdTrqRp8HeSJsrTyVre6aDm06OljA9QcDJZy4ooDf6Ocsq0Il93U7I0SkuQq3Tuz9zR8VYbJUvPlzO0oZzTadLjzo4uMn66omVqGznLLusIdJYIwtl0PW+0kjPnnI5X/Gva74jT83orBT9EVdDBRfIfkaZjYgcVM0+WM76NivAUiSgH+ypZeq6cz7ubsiSijI4e0vV/LVvP0OZKFp8q5a0gU05Uarhbupmw9mI5X/S1YOGJEjpXZtbPpmqZ0MWM6fuKeLuLGSfiNCiVMoJ8VAQvkabVN7uY09lXiUIl5+itct7vZcW033OZEGLF8dtlKFUmdGygqjr+Cw7k0bWJKc8uT3v0BFqz/687qkvn1T+Dkbnt2LGLfDzjZ46FfXfPuOGbckP1oY0RaF0datzXtR6+zshabIicGyPQxhpamBgYVxshysZqO/tbGbDXhRm0NUpc61IT39g8bZQU1x43NseK2tq1v7VaPY27rWHDd33oEFDd8OReOYUoijw/MRRLCwXLZncGICaxgOCRf5By+llUTVcC8NozTfj205qlP9/6NJx3xjbjyGmpCEGPji78vOkm5Rodm/cm0dbfFg8XM/ILKvhmWgDTFl/mg5eaciRCymz36ODE0vU3mfl2czo+exQ3JzV9OztRVKzhvbEN+GDBNd4b68vRs1JjkpC2VixYE8/8d5vw5cp4ulY2foq6WcibIz35cPFN3hvtTdh5aW9LSDtbFq5NqGGvUCk5EpHNlJcb1vBvamZCUEtbFq6K4esP/Jn38y2C29kjk8k5er7menTqUj7ZeeU82dOdr1dcZ+HUNsxZfpV2LeyxMFVw7FwG0173Z9KcSD58uTnhUXloKvT06OjK/J+iWfxxEAt+uUpQGyeefEWae3KjXmTizHDmTe2Ks6OBjYhKAwlCmRmC82ePXcJBpf55x5+8nwy0elhB1eM/w8ZKjUbzkBahevy/wNXYYpQmAmqlkcL7wMXYEpxtFHRqVv0kw9JUTrlGz7Xk6gXtdGw5ucUPdv0Na64kIU+PlUrgaoaWt3cXMaSJAn8jTbmiM/XoRJgUqOTHixV1zrY9SpRpa5OZAzEavjpZSkPb6uO687qG6YdLaGhn/FjX49HBxsaCvDwjRKse9TCAiKh0Ssu0uDkZ39g2b+lF4lMKCf1tcNWYg60aOxs1MxZFVo39uOEmn7wdUEOyYQyfT2hJTp4GOxsVyXdKCD2dTugZV6P2RyIyyS2oYO4kPxQmMiIuZRu1fdzIK6x9Y7J+dyLHz2USfTMflUKaDw+fSmfRypv0D3bFr5ERHfO/AH+pE2ENR1I7HBtRFP+9fRmRMiyZNz7BwlxJwl2JhacNR8Pj6NvdizPnk2ngLemaYhNyCWrnwaGjMQR39CYhWcrOeXtYc/x0PL27+XLmfEpN+7YuHAiTJBn32p+ISKJXsE+lhOOu5COXoLbute29HFi+6hwrN15k6VeDq/ybKE2xszV051Wfga6Bf2kG+sy5RNq1sOPQSemRWWJqMfryEjxdzTh+PpvenRw5ezkXH3dz9Jpi4lLKCPS34vCZHHzd1fR+7RxzXvNhSFcHTkbn07OtDeeuF+FpCdFxpaw6lMm1pFI+ftadfu1sSIzPRwQqtCKzt2VwIKqoKpanAy0Y28mSdt4qwm6UEuQIyVWSDDmn4jWENFQSGVOCh5V0zhLy9bRxkdF0SR6hYywo0UrE2N1SxpkULd28TDiZoOG9Q2XM7q7GTi3Q2lnOsfgK2jvLSSmS5ip3C4GINB2dHOFSloiHheQnuUiklYNAeLKOtk4yUiszi27mAucz9TS1FUgppoZ9a2c5J1P1BLrISK3072YhcCxNz4AGCi5m6PGykuxnnCxnf4yWnj4m/DDQnJRCPbmlep7aUn2+Vg23wNNSRs9V1ed26RAL+jVRVUlE1EoZt7N1dG+gJDJFi7etHBQyEnN1DP5JWgzjPnEhOV+HoJDhYaPgVFwZIY3VRCZp8LIzQVDIScjWVh3/Tg3VJBfo6fJFUn0GWqYiJiaFkJ7vkJSw9Z7x+gz0vajPQFcjO7eM9oM38s2MLjzR26dmGHodl67n8NvO22z6I4aTW4fg5myOqJeeTMUnF/LThhvM/zG66jOGMtB6XUWlxE5KTsQlFxHob82h8HSC2ztWSSyefOMY015rxugnfTgbnYOPh3nl9xQT0MSMlsNCmfeuP/6NpNbhHo4mnLiQQ68gB85eycfXTSLtCckFtG1mxeGIHLq2tiEpXeoj4ems5sTFPHp1sOPs1QLJXhSJvFFI3472NewFEwWeLqa1/GcX6Cgs1hLYwobDp7Po2taON2ZdYvOBVF4a5s2Qnm707uTIgfB0hr9zpuoYxIcO4tjZTMZ+FFE1duvAE1yPLaB3pQTR2sYcB1s1cUmFdAhw5OCJVLp38iAhtYgWfSWBw+5f+tMn2IPENA2+XtUt1O/iH5OBFgQhB+gtimJk5WsB2Am8K4pi7D2mgUA48BAYzt+LazczKC2rYP22KACeGRbApI//IHTrWKbMPkT/no0A2Bd6m40/juTzr8OY8X4I67dLP6Bnhrbkq+9O0qq5E1O+OFxrE+GkGYcMbiJs2dyRKbND79lEmMDKb56oYa/T6bG0NGX56nO88WJgjXg6BTage5d/b1Hyevw5Zv8QzfJZQXz4ZSTzp7Rj054EbMwFenV0YsrCaPYs78KMb6/Su5MT5io9O0LTWTmrJVO+uYFMELC2MOF4VB52liZM/zGOBW835I0Ft6RW0oLUOnvt5Ma8+k0slmZyjp3PY8fZAvKKpfeXvuLGGz9LNc0bOSn4Yncuy8c6MWNnDp/1NmfnFWnBG+Kv5tP9BWx9wY6VF8pxtZRhrhTYe1ODykRABGLzRLZfl3SSTzRRMOtYKetHWDA9rAw7U4FbOXqOJWlZ0seUXy5VILaE3bHSgjWwgQlzz5Tzay8lCy9U0NVNymqcSNWzIFjJsisVvIaCvQkSURngLWPa6Qqyy8DRFJ5vKk17J1N1LOwuY/aZcj4JUrE7TvKfWy4SlqxneBMdyYUi3TzlFFeI7I+R3g+N13IotoKwBOl1nwYmHIzVMtJfydKIMkJ8FbRxlXPhjo5RLVUsPFGKtVrGjqvlnE+pICZHj7Va4Njr9swJLSKkoRJTtYy91+7J8Cdo2BFdipOVCZ0bqpjxRx7bXnVi9t58ejZVo1bJ2Xu5pOr4zxpqx57LRsjJ/yNotTpWrfmDz2b+Sv9+Hf7ucOrxL8FLHxwmoLkD7Vs5otPpkctl3IjNY+MfEmkuLdMyalBDDv82GDdn86rPvTvzNOt3xfBELy82f9+TkW+FAtQizwCZOeV8vOgifbtI2eUDJ++w5quOvDcvkkVT2/LrtlgiLmUjEwT2Hk+jb1dXPllymT6dXQA4GJ5GzyB7cvIqsDCXs2DVbQCe6uPElMXX2fN9Bz79/ga9O0nN1G7HF+I53pSp395i3juN2XJIKm/Xp6M9c3+JY/eStny2LIbeQXbsPp7F2asFPDfAhfNXC6rsHexMad3MknkrYqr8l2n0nLuSj4uDipNrgvlo8VWmvdKYzQekteHX7QkcP5/JgZ+DWbTqNp1a23PqYjaujlI1jjnLrzGgmwt7j6XRxMeS67EFfPjVBfav6Mkzk05wJ7OMDgEOqJVy1i0K4YN5ESyeYcJvv1e3e//gi9McXDeIXYcSeWdcwEO+Gh4cD7KJUA90FEUxovK1HKgA2t8l1ZXjQUC4KIr/agItCIJYljIbpVJOcbG0wJubK8nILMLZQUlObgmWFnfL0pVXlZlzcjSvaZ9RgLOTBTm5pVha3FP27j+UsatpX+k/swgbKzXLV0fy9dLTuLlYYWmpwsZKzaA+TXh+hKSeEQWl4TJ29RnomviXZqCzMnKxtVbWKBukKyvB3ExORk45zvZqcvI1WJqZoCsvprBUKksXn1rCx9/dIja5lNSMMopKdFiayTFVyRjYyY5RHW1o4WNKcZlUC/puWbTCzCK2RxSwZG8W/QMsaeSq4v3VUqGd67Ok7pp3y9LZ68qraimbKarL0r27NYeNlzWMbqXC3kzg9xsaNo60xFFFVZk5MwVkluiJTNPx0aESto8wx81CRnEF2KgF0vK12KsFSrSV9iaQXSai1+iRy8C8supRcQUsuVjBhps6nm4k4/3W0hslWpGQHdWbmkKHKbFTCxRXwLfROjbc0PJMEzkftFeSUybSd1tZle2BUWZ4Vm46nBFezuarFYxoruDr3mZV8VuZy7iZpaOpowm5pXoslFKCI6lIpJGDCZnFehzMBJLy9XRcWl1L+9IkB+QysFAKCAoZRRrwmyctcqmfu0hl8hQmmKsEsor0OFrKyS3RYaGqLHtXLlYdf0cLGSVaaPBR/P/LDLRWq2P9hlBmfbEWC0sz3N0cUSoVPPlEF154YUClbX0G+l7UZ6ArQ9LpGft/7J137JjvDwAAIABJREFUeFRV1/Z/U9Nn0nslhEAgCQkJvRdRRESlKCKggAoiAqIgKio2QAERpAhIB0GkSy+BEGpCIJRQU0mbJJNepp7vjxMDMYmPPA++r8/7sa4rV65ZZ80+e++zZ+9732fttSYf4XZqMfdyytGW6HBUWyCRSBjcrwlD+jehXWvXen0rmI0cOHGP8R/HMfy5pni72zDhEzHMZ965F7FXKevZa4t12NVMWGUVBj5deIkft95l7JBAWjSxY/aKZK7t7Ud5uQ43Z6va+Rxg74ls3vkqkfWz29Al0omKKnGMWinM5Gv1uDpZiPY2on1pSRUmk4AggIuDgooqEx8sus3avTkMe8qdZTNC0JYaqNaZaP786dp6nlvbluYBNqL9D3dZuzuLl/t5smxmGLfSy2kz9P7h/JQDvREEcHVUMuGrK6zdlcmYQf7MeD24dj1SqyzJ1+qwtJTXhlV1dbQgPacaF0dLbKzkaAp1SCTg2/2+p/CVfc8R3EQthuhzs6Oi0ohD+BoA7p19GTdna6qNUqyt6oe9+8cw0P8/ikwm4d2Pf6NjW/HQ3unz6cx8rxfTZh1m2POhHDkp7oR6dw1kysyDLPzySd6deZCObX1q7DOZ+W5nRk3cxeQ32nHkZGqNfQBzFiUx451OvPvpETpGiamRT8ffY+aULoyauIfJb7TlyMlUyir02NtZsmrzJVR2FlxIzMbHS0W1zkRKRjHjR0Xz1cKTtGruxvcrzgIwZkTHhgH0Y/mvksKiauxVSjJzKnBztqK0XAR/aRmlfLsqmSWfRjP+k/N0jHBBYq7m1MUiZr0dwsvvnWfSiCAOnc7DUm6ic4QDEzem8/20FjjYKRg/1AWpzkDspRLeHOjB3E2ZDOnhwtGzBRxKLKF3azWLlufy3Rv+TFqeTqcABTIJeDsqkEph6rr7USq7zs1izauu/PBLAfMGO/PerhKifcQF43yGgQ972/LKJi1Hbot135Ck46dnrVkeb+a3W3qyS0z4q6WklZiJzTRiNkN2uZmpbZXsvCUubt185aw4oefT9nI+PmUk0k1c2C/mmTAJsP22kT4+UoJqfI/DnST8fEtcVLbcMROgMmKrkJCYLzCwiZSdKWZ6e0vZdke0CXOU8PNNEZX/fMtEE7URW6WEJmoJKSUCPnYSSvUCSxLFNrzcyoKCCjMfd7Zi+rEqomsONd4sMvN2O0te31XGm9GWHE8V69+rmZKx20uZ+5QN7+2vINpbQSdfOXEZRoaGW/DB/jLGdbDm2B0dSqWUUI/7C8HU3SW09VWiUEo5naLnwyfVjN5QwPiudhy/WY1SKaVzkFVt/7+7tYD2gZaPeij+Y0WrLePsuRucPneTM2eTuRB/k8AmHgiCQElJBYMH9WDh99to3/7RpUx+LP83RSaTsvH7JwAQTEZ0OhN5hZV4udkgk0kRBDOZ2eXY1gDf8goDnm7WZGSV0a2dO7OmtOHarSJmfBNfW2ZAt19IiRkk2lca8XS1YtT7cUx4JZiDsSJT2zbMiR+3ilhixda7zH0vHLlMSt8xMexa3JEhk+Po1d6dbYcySb1XgVQiIaSJLa2aqpjwRRLtW4uumwlXtXw4NojhHyTyzssBHD4jHkS+dqeE3ScKGN7PA5kUQgJtWLtXnMM37c+lsNjAtFH+HDpbSERzOxJvlOHvaYmbkwUT594Q7XdnAbBxXzaFJQbefzWQiOYqEm+UMqCHG5PnXGXRjFAmfHWFDuEOtApSc+1OGXKZtHY9OpGQgd5gpm8nD95ae5MfPm7D+FkJdG/rgcFg5vSlfL54J4y3ZsUzsLc3O4/co00rJ0rK9AydeJylszrwzmdxNAu4nxFSLpMw5K3DzJnRGVsbcd1R2SnJy6/Ex9MWfbURS8u6WOjviJPzj0FbEonkU+CTP6jzBEFwr7kuqbn+OuAAnENM8HLtgTIERHa8+YPuJRKJZA3gLAhCf/6CyB0imL8wovbzoJfF/3O+aQ1AeIf7tms6PAGmSubPC71vPxQQTKxZKerCo+8zH+HR4pfnf3s/4/mgmsB/a1a1Ii29gP0nTpNwKY12bQIY9FwHOrQNpEBbxqRpW1i9dAxPPdGKYa+tYOjzbZn50bD7O2PB2HCDGmJ7HpYBaoj5bYwNbjQ0XQNsc2NlNNqWRvQNSaMMeSP6hkLfPKw01K/ShkM6iccG6svVW8V0auPG1t9SeHVQcy5eFY8VRATbEdXKCZWtJW3DnWkd4oRJX4FODyobOREh9vh5WdOmpQNSczV+HlZENldhZyMjqqWa8GZ2mEur0OlMBHtbEhFki6+LBa19LRGQ4Osgo7W/FTYygTYBVrRwl2AWJGhDrDl6rQIvRzn3tGL/zxuoxsdGoLW7HBvBSGs3GS2dxPYY9DLkJhMRHjJUMgXbbxiI8pQx/4wORysJuWVmfrutR1sNgQ5SPG2ljApVclljpK+/nCv5IkPnaQ0tnaRYSyFAJaG5vTjOi6okzI0XQerhTDO9/WSolBJCHKWEORtJKhCIdpPSzktc8MxSMy+0kOOhMjCilaK2/FAXKdEeAhdyTLTzlNEpUBy3Y5UyejVVsD3ZQKC7BRWIbQ5wUdDez4y9Sk6Ut4KwmtTfSisTals54V4K/J0VRBrEevqo5YR5yLFVSonwVNDKTU4rN1tOpegYFWHJ8vhqvC0Fwl2krLtUzeyj933MWztJCLETkMoFKp0l2Oh0hDlL8JEbCXcEmaUEH0sT4a4yrI16ItxlhHj8efzaRyVanviPyygwNLycNcbw/s7C5ufm8PmUCZyPjaFVRBRh0e14YdxQnjUY+fSdN/lg7gKeGDiI2dMm0yy8HU+MXcCVMnFcSiV/fe5oLCxdY/qGWGV9I23RGRuuR2PM9MMw0MpG2GMa0D9sSL4rJfX1XtbdG7R1VDQSQrSxdachBvph3vIBGMvrqQRTw33dmN5s0qOQg7ebBWDEbALBZOJgTBpRoU4AxF8p5JWBgfx2JJUXnvRDKTURF5+Lj4c1126L55S+eT+c9AzxPEPCtSKGP+NHWFMbfJylRAbbYjCaCfZR0i7UnnNXiolsoWbLb2lYW0pxdVDQ/40TXE+pICunAn8vK3pEeTG8nwe/7s/CUldOZBMLWrqL49pUpKAiW0u4txJvhZ7WnnJKKox8faIAgA37cvh8pDcdvJUM7ODAzjNFjOrtjK+rBV4yIxHucloP9cTP1ZL954uwNuqJDLAiItCa57q7sCMmn1ef8cDX3RJfJykzRvlRaZTSJdKRdXuzsLWSEBWiIizIFolEhpVSgp0VRLRQ4euuJCJYhdEMvh6WRLZQY2spIbqlAyGBNggCGIxG7KylRIbYM3KgP8/18UZtq8TXTUFkCzU2SjPXb2lZuiG59jnZWoipym0sBOIviSC/TagLP++8yeTRYeSXVOLtUTekr+RvIBf/MS4cNQD6RaD7A2rT7+HyJBLJNOAjYBRwE5gJdAaCBUEoq7ERgGpgpyAILz1Q9hr+IoCWSCSCoNvX8MVGX/038INuFKA2rBcEgR9Xx/DRrO28P6kfU97ui0wqPpsTp24yZOQy9m6dSHSbAOZ+t59tOxM4sf99rKweAKWPAkA3Gtu5AX2jQLmRU8wPA6AfhTQGlBuThvrvYV45QsOvFxt75ahv+PR0UX4RSzdeY8roMNZtv0VUmBiuIj7xHi8PaMJ3a64z8vmmJFwtRGKqIizYnnW70nlneFM27s0ksqU9GKqIv17KsH4eLNqUwSv9Pbl4oxQqqgkPtGXDYQ0TnvNg89F8Wtcwn4kplbzYxZEf9ml4uZsjV24UczGtmpXHiwn2ULLpLS983xH97jaNdGLOkVL6BFuSU2LC11bg/D0jWaVm8srMlOgE5FIwmcXkWWpLCb0CFExpb0GXNWWYBejqI2NkmAWhrjJ+SdYzprUFaxOraOclPrcr+WaeayZn+O4qEvPNdPWSMqy5glZOUt46puNygZloNykfRIn1v1po5tlAGSuvGhkarOBqoQhIWjlJ2ZNmZESokh23jIS6SGvLH9JKycILOkaFWXBFI/4mQl1l7Esx8kq4Jduu6wh3F+tzOc/IkFBLll+o5sVQCy7niuOltaeczVd0vNnWiq1XdLSuAdbJ+UaebWHBsvNVvBRmyeUc0T7UWcLPV/W8EWXJL9d0+KmlDP2l7uJ/aZw9l/OMKJVSWrrK2ZxUXad8iYWcS9kGhrS2YllcBS9FWnGlSMqwFX9/GLtC/X/O5RQ0UkZjANpkNrP/1y3Mnv4uQ14dyxvvzUChVGIWBG4kXeKN5/ox96eNtOvWgx3r17Bm0Tw2HD6Fnfr+Cf+HiebSGIhsrH4NgdF/EoBuyC1D2Ugc6IZiRjdWhpd1/dfnAI6yRgC0vqBhvbGBJECGovo6aHw+NdSP7Ww2NkxeNBTGDkQA/UeprtJTUqYn4ao4X7dp5cTa7Xd4Z0QzZi2+woZdqXSNdqVjGxfe+VxkoeO39WHq3Es42VswqK83m/Zm4OFsQcyFfAqKdJSWi2NAIgGjUUBlK+eFPp50j3Ji9CeXMBgFXunvSdtWaiJbiIfkLiaX0ivMli1H8hne143E2+KcsfNYHpuOFTCqrwsRTW2JCBJ9tD9elc6JK2VEBdmwcVpTLt0VXQN9nJUcSCjhrWfc2HyikMhAGwSljEt3KniplwuLd+QwvI8ribfLUdgq8XJWsu90IW8P9WHTgVwim6uQWVoQf62Yl5/24vtNaYzo78XFG6VIpVJaN1ezfk8mE19uwsa994gOc0GgZiPR35eFG24z4ll/rt4pxWAUiAxxYO3ONCaNaMaGPelEh7ogIBB/VcsrAwL4YulV5qy4XueZfDElgkmjWvLrkazaZDXxSfmMeL4ZC1YlMeWNqHpZDiVKFVKPr/5XXDi8JBLJ76fTZA/oHhz13o+gPkZBEHL/qKxhnycBswVB+LVGNxIxscswYPkD5ouAdyUSybeCICQ8gjo1KJcup3IpKRWttgxtYRF6g5jGUiqVIJFIUMiluLmq8HR3wNPDHk8PB9xcVSgU4rMzGIzkaUrJyS0mO6eYJSuPoS2q4MSB6YQ09xJvIpiorjYw9u11rFg0kug2AZw5d5dvFh7kQsxHdcHzY/k/I5rCKg6ezGTsiy04fOperT7mXC4Devlw6FQ2Xdu6cfJCHjZKMypbBUfOaHjteX+OnhVjhiqlBo6dL+SZ7q4cOVdA50gHTiUWYWk2obaRczShmFFPunI8sQSZzlrMIHiljP7Rao4lldK+mQ3fHdByKb2aSX0dWRNbwtRNebV1ef1nLZ4qGWlaIweTq+noI6faCE2dZEzvZs2yc5WsekHNN8craO4iThmx6QY2XdHXZqM9mWnCT23A3lLCyQwjacVmfrlhoK2HiQFNFcTdMxHlJiOxhjE+mWXGy9aI2kKOUgZ7n1GyKMlUC5Tjcsz09pVxq1ggs9zM+VwR1KgtxNjOLwRD3L37QCfunomngyE+20QvfzNna+I921tKuJxr4rkWAifT74Odk+kG+gVbEJOqp4OvnDOZ4iLsZCshJkXP8NaWnEy9vwDfLDDSK1BJTIqejr4KTmeI9mqFnJhUAy+HWXAyzUhXfzmdfOTEZd6/V3qJmTOZRpQKCbbK+uUrLQVO3NHRr4Ulx+/o6Big5HxqI8kr/hfkxvXrJMZfoLhIS3FREbrqapBIauZIKXqJDCcXV1w9PGv/nN3ckdX45RqNRrT5GvJzc9DkZrNz43pSbt1gydZdtIqMqr2PyWTis3fGMenTr2jXrQd3b1xn/szp/PTbkTrg+bE8ln9XjEYzqZnlnDwvzn+OagsOnsyiutrA9+tu8NIz/hRodSz46T5D+uTYE/h52VBUqueLpdcpKNYxdpA/zvZKRjzji71KwbFz+Xw3LYRh0y4y663m7D6ey+qdGRhqQmWu35tNYfH93/T89Wm8nVWFu5OSzuFqTl0uobLaxKZj4qZkzcF88rT3NwYhvlbMHe3LlB/TScvTceqauPEY0M6Bo5dKGNnbheOXRR9xiULG8cQSnunoyNGEYjqHqjh1pRR7ByWqSAeOntcy6hlPjsWLmxorGwuOnS9kQHc3jpzJp0ukI7EJWuQKKfZ2Cg6fyefVgb4cPVeAhaUCvUHg6FkNz/b05PBpDV3buJB4vRhtqR4HtZLDp3MZPagJR87koVDIMRjNHD2dy8De3pxOzGdgHx92Hs6sbduh2GxGD25GfJKGvPxKVLZKjpy6x3N9/Tl48h5vjmjdYJrwRy1/lYH+o5GkMd1/yEC/DxQBekQXjRmCIKTUgPe7QFtBEC488J3fELMfjqz5LACDEdONOwmC0KtGv4ZHyECvWX+MaR+t48k+ETg62OGgVmJhoUAQBO5laUnPKEBlZ4FcIae4uILsGpCsyS/FyVF8bVFUXIGzkx2eHvZ4uKnp2imYyROeQC5/oPsEE598uYsr1++xfeNbaLXlOPlPAsDVxY7nB0QybdJT+Ps519g/ZqDrlv3fyUCXFBZja6Mgr6ASVycrKmpOz1nKdGgKq3FztqKwWIfKRoGxqpSySlOdwxkVVSZMugpsrGTkF+lxdbSgsESPykaOSVtBeZUJBzsFmiI9LvYKyvIqoCYKR36pEVe1giOXSnnp2xQ6B1tzNbOafq1tCXBR8vnORhikx/JI5cpb9syJrWJDko6hYRYseNqu9jBipQG0Rik+jrLaw5raSjNqJ2u830v9X2eg9+7cwZTxr9PziSdxcHTEwcERC0tLBEFAk5tLWmoKcisbFEoFZSWl5OfloMnJplCTh53aHqlMRrG2ELWDI64enri4uRMa1ZbX3pmKhWVdP+/1SxdxZPcOfvrtCNVVVbTzFP0k1Q6O9Hx6ACPfnkyT4BbAYwa6nu1jBrq+fQMMtGAyUVhUjer3w/0VBvIKq4geuIf2rV24nV5KxwgXerR35+1ZF+p9/7E8etEljyCvoIovl15l+aZkXhsSzLIvu6AprMLN2ZqcQj1e7nUzMP9vMdCvPqqb/Qs5h+iecQNwRXTXOC2RSFoC7jU2eX/4Th7g1UBZM4DrEonkSUEQDvyrG0skktcRfav/VARB4IvZv/DT2qOcOPQFzYNrSPcHXDicfd+gUFuOSmWFTCbFylJJ2zZN+HDqAJ56IoxCbQkSiQRXFxUy2Z8nWUi+mc2Slce5FCe6hq/eGAdA7MFpaIsqeGH4UoY+H42/nzOlpVVUV1fh6lI/JuJj+e+S79dcYfTQ5vR+eQ/zPurIlj2i28Tgvt5MnZ3AoTW9Gf5uLE909kQpM7LneA5rv46i3xtxzHk3lF8O3sPVXkbnCAc++P4Wvy2OZNTHV+jdzhmF0cC+s0X8NC2IATOu89VYf/ad1FCpF3i+gz0frs9i10dN+X5vHtOfcSQhVYePk4IPBjjz3IJ7/6Lmj+VRyajtZSTk1ByITNLxRlsr3thRxme9bfj4cDl3tWZ6N7MgvcjEr6868sbWYvqENgwK/idlxZLFLJjzFVv3HqB1ZJt613t3bEti/AWUFhbY2Nohk8loFRnFqLcm0bP/s5SWFGMyGnFydUP+QJSIhkBkbtY9ls/9krUHjiORSDj22y4Alv66F0sra8YOeIKuffvRJLgFlRUVVJWX4eLeeIKKx/JYGhJBEHjxnRM80cUTENnPDfO70qujO/7edthYy7GxVuDvZfMvSnosj0ryCqroOfwAd9LFzdRPW2/Sq6MnXyxKJDrchXXbb/Pm8Fb88GX3v7UejyyRyqMWiURiC6QAs4GzQBzgKwhC5gM2qwEPQRCerPksAIMFQdgmkUh+ADoBkcBP/AcMdGpqLpu2xLBh01HsbK3YvW0G7u6i3011tR5tQT7FxRUENnFDKpWwev1JZs3eTssWXjRv5olMKiHu3G1y80qY8Hov3p3YF2kju/zfxWw20/2p2Qx5LpoJb/Ssd33HnouMn7IRZydbunQIYtuuBPQGI61aePL8MxG88mI7XJxrdmCPGei/Jv8QBvrWzWya+Ko4fiaLTm08SM8Sv+/tLOV0oobu7dyJv1KIn5cNhsoykm6V0LuDGzEXCujY2pGMnCpMugp83K04d6WErm0cSLheip+HFUZtOZkFeiKDbDmZVEr7Frak3ilBKpXg7aTg/O1KuoTYkphSiYfSiFQCmYVGIvwtib1ZSbtAK9JSSpEAXmoZFzL1dG5iwfvbCjmWYqDKIODvIDKjBjO80FxOtKcCX7UMT5WEhGwTHX3kJGTp8bETn31WqZkwNxlnsox4Wwvoah6Dh62ExDwz0c4SrhSY8apJgJJVLhDqLOVcjpHWLlKya9yHPW0gMV+gvaesnn1rTzlns01EukvJLhNqy0/SQkdvOUl5JrxqwtVllZpp42tBXIaeKE85WaWivbejlPgsI518FVzKNeJdY59dLhDuIScu3UC0t5x7JSKT6KWC+CwznfwUXMo24m0v2qcXGIjwUBCXYSDaSyxfEMx4qWV1yl93Sccv1/T0a6ZkxfN2xKUbCHCQEr3kPlu3Yqiap0OsuJRlwNvdkrBZWf/jDHR2Vhbbt2zml00bMBgMbN65F7+AAAB0Oh3FRUUUFxXh4+eHhYUFv/68mS8/m4mnty/BrUKRKxRcSYgnPeUOg0eNEf2bFXWZzYYA9MSXB9GsZSjjP5hZ79q5E8f5+K0xWFhY0K57L47/tpvqqkr8AoPo/cxzPPPiy7h5NsS9NH4/eMxA/1H+GxhoTUElrs5116SqiiokiH1YWW3EQW1BfmEV9nYSqqrFZ2ltJaewWIezWsGFpHz8vMRDaelZ5USFOnP8TBYdI+4nQPHxtOZMYgHdoxy5cFWLn6d4z/TsShKvFzHrh2so5RJ8PKzJ1+owmQXahdozZUQg1Xoz/r8nQMmpJjLYihPxWtqHqcnIvZ8AZf+xHAZ0dubizTJ83cS3MWnppbRpZlc7n2fkiyy6j1rKuZsVdGmlIvFOBT6u4nqdkVdNZJAtsVdLaRdsR2a+Dizl+LhYcO5GOV3DVFy8XY6vqwVSawXpeTraNFdxMrGI9q3E+kiVSnw8rDmbVEy3KEcSrpfg52GFRColPaeaNiFqTsQX0CHckcw8IxIp+Lhbc+ZyId2jXYi/VoS/ly1IJaRnVxLV0oGY8/l0bO1ERm41EonYT2cSC+jezo2LyaX4/qH/Y87lsu1ABiu33GRo/0BWzu7KvpgMhk44Wvuc086MxNZGgYPakoJSGW6hCx/p/PgfAWiJRNIVSBAEoeHAtf+hSCSS44iM9Dc8hAtHDYB2rfnOeKAXDwGgEwpF0JR66yZfTnmL1Fs36fPsCwx48WUsrazYunoFJw/uo0RbiMlkwt7BESsbGwRB4P0v5tJnwHP4Su+yc+dBYmLOEHPiLAUFWnQ6PRUVlSQlriI09A8JTx4AtEajiekzVhJ7KonTJxcg++PEVeNKYjabOXvuJsdiknh+YAcC/ew5evwqk6evZczInrw3eUAd+78kDxNZo7EYzrJGALSs2V+vh5DesP5h2vKw0tCm4qFPgje0EDSgg0YB9KVLGXz3UxILP+nM54sS6NZOZD4OxKTy+aQIJn95nqljW3H8TA7b9qcQG19AM39bTm3sxdc/JtOljTOlpRUkJpcyfXQgU+clM2VEACcuaJHpdXQMVbFgaxZzxzVh7qZMOvopEIC45AqmDnTlg/XZTOzvwvmkYqoMAl2Drfj+UBFfDXFh3n4tHX1kFJSbuZZtYNoTambsLqJnEwUzD5QxvpMNehOcz9Cz5AU1K89U1oZnO52mZ0o3Gz7cX8aEthbEpomMaWd/BYvPVPHlE7Z8f7qStt419hkGpnS2Zk5cFSPb2nAqRXz2nZtYsDi2nK9f9mDeAS2dgsSFJ+52Fe8+5cicQ6W82tuZk9dEZN21pS3LDxbw6XAvvv01h04h4sYy7noZ7/Z34YMNYntja+y7tLRl/YE8pj7lwLwDRXRqKpZ/6noZ7/ZUMWNvCW93tSX2rlifrs0s+T6mjK8GODDvaCkdm4i/lWuZ1Yxub8OH+0qZ0MW2tv6dPKW17Z1/qpKOvmKYwFNpYns/PFTOhA5WnEozYJJL6d7UksWx5XzZT8X8mHJu5hs5ektHKy8lu9/xZMa2Aib2tudMtpl312T/7QD6jEbsp9x7mXw9+S2SLyfS/ekBPDloKI4uruxcv5oT+/ZQXFiA0WDAzt4eG1sVuuoqxn/0GU8OehHBZCL24D7iT50gIS4WTXYWMpmMkiIty3YeoE3nrnXu+yCINJvNrP3uW/b/splNJ86htGh4Iy8IAjcuJ3Lm2GE69OxDs1ZhXIyLZeFnH9K+W08mfvplo+1sDMw+DChuLMpFo3GgG9E3BJZljYDcxgB0Q6C4sXjPDcWMbqyMxu5nqWgYWDezPNGgHp2mvs7QMNjWZKXh6mJbX5+TUw8oj5t2iGUbrops5BfdavUF+SWs3HIDO1sFPTt4Mnd5EgtndmDBqktEhojk2MnzGmaMa8XUr88zaUQwx8+LdezR1pVvV9/k28nBzF51hy5txOgcsQmFTB8TxNcrbvJkZxcuJZdhoZTSLdqRz5bd5uzlIgY/4YFCLsXFUUlegY7pr/nz3vybTHnFn5h4MdpS9yhHNuzN4r0R/sxZk0bnCNEt6VRiMe+/4sv7399h8jBfYi6KG4zu0Y4s2JDON5Oa1bG/llrNG4N968z/AD07uPLtmrvMe68VX6+4RZc2TggSCacSCvlgbDDvzk3i3VFBxJwvwNJCSvtwR+atuc2898P4esVNurRxRi4xc/x8AdPHBDH122tMGRlIzIUCZDIZXaOc69j37OiByQQnL2iY8WYIU75OZOprzTmfpKWy2kSPdm58syqZBTMi+WrZNbq1dUUww8l4DTPebMnkry7y3hthHD8jhuDr0cGDb1dcZcGHbVn68x18PW2wV1lw4lwOH02IpN1zO7iVUkKXtp4MfSaInp28mbM0gUVf90fV9Nt/RhzommgcxxHPVMkBAAAgAElEQVQzEF78F+b/TvmWQPOae6QCuUAf4MID17sA7zX0fUEQNBKJ5Fvgc+DMw97/5pXLvD10IGPenc7TQ4ZxYv9e5n08jezMDAaNHM2qPYdwdvPAytq6drI4c/won0+dyJaffuTkoRW89NKzvPTSswDk5OSRnHwHW+siWrb0b/S+mZkaXhr+Jba2VuzZMas+eH5ApFIpHTu0oGMH0ccPUxVdO7cgN68YGxsLDh6+RN8+rR+26Y/lf1D+yI6M/+AoS9ddJrhJ3QNQSzdcY39MBlXV9xfqsgoDsfHiInMrrZz8IhGgLd96l4On8ggNsmP66MA65ZRV/vVQXg/KPa2BaVvyOXGjklUxZizkUK4XOHC9CoNZwGwyoykzU20U6BdixZ0CY6NJHR7LXxc7i/qg5dW21gztoOJy5v/eocHMlDtMHDyAgSNe46vVGzl3/Ag/zZ9D6o1k+g8bwYKfd+Dq4YWVjU0t2Lty4RzfTJ/Cr6tXsHzXQXo+M5CezwwEQJuvIeVGMhZWVrRoHdnofbX5Gj57ayyV5eV8/8vuRsEziElFWrSOrC1PKpEQ2akLhXm52Ds7c/y33fR4esAj7JXH8qhFk1+Gq8t9X9bx7/7M0lWxjBsVzZK59/mw8e/vZemaC4wbEc6Sr3uJ3y2oZNmGqwAs23CVTyZF186102afZ82vt+gc5UbPDp615VT8m/Pj5ZslHDmbz6lELUm3Sli3J4uySiN21nJ+OWxDUamB0gojxaVGnusteqRqCv85h37/m8VeVXcOaB/hxk/f9ubStb//vM6/zUA3Fs7u366ICHb3ABmIPtAfA12BUEEQ0mvC2H2I6Cd9C9FHuiv1w9gNFgRhW81nW+AOoAaO/lUGes2BGKa8MoRXJ00lPzeHPZs3EBwazouj36Drk0/X8c0DsKj5HHvkIB+8+RovjXmThbMacR03321YX8N+Rka/iVIpJzbmOxTyRgDIn2TSO3IsiQFDviGydQBZ2VpSry9+zED/5Xv+fQy0Jr+8Hmsy/t2tLF13uXbS1xRU4ha+rPb6xoW9eLaPPxevFtB1yK5afUbsINLuVRDgY8sHc8+xYXcGYwcH0L+7J80DVAT3219ru/rzMF7o7cGFayX8tCODjb9l80xHJ9Z9FMyxi8V0ClWTdqMQAfBxUnL6RgU9Qm1JuFuJr5UJAUgvMPL1nkJsLCSM6W6PjdmInaUUNzsZu69U4GgtI+ZGJeU6gbc621BpgEhvBTF39HTwue/S4G0v40yanu6BSi6lV+OtFsdaerGJSE85J1INtPeRc6+0xl4t42yGge4h1ly8Z8DPoca+yESkt4K4fCntAi1rY1N7O8o5fbuK3h1dib9Tib+rOD7TNHqigm05nlRGxxa2ZBbUvOJ0VnLuWgldQsT2+tW84kzX6IhwNHP8RhUdm94v31Np5kyaju5NLbiYacDXUaxPZqmZCG8lMber6RBgyb1i0d7LWuBMmoHuTZV165+rI+L39voquFdiqnWJOZthoFuAgovZRvzsZUgs5bXtjbmjp4O/knslJmS2FmJ771TTo7kVCek6AgLUtJiY/Lcz0BtOnGPS0IG88OpY9DodezauxbtJIM+PGkP3p59Foaw7L/zOoF4+d4aZb75K96cHMOWLuQ+1wfqdgX578DNosrJYe+QUltbWD3UwUCqRkHw5kdH9ehIS0Ybb165y7E5WgyTFYwb6r5XxqBhoTeZtXF3rkgbjJy4WwfLoLiyZ9yKa/DLcgqbXXs+79h6uLrZiluCW39zXX36zFig3xEBrCirxiFpda797xRM82c2bgW8cZt/xTIb08+Oj8aH4etoQeyGPntGOXLiixd9b9HFOu1dBdKgjx09n0T7cgYzcKqYvuI6jSkGrIBUvP+1Byr0qfN0sycyr4vTlYgSzwMkELZ+/3QyFXOxHX3cr4hIL6BHtyIVrpQTUuHCkZlcR3dyWo+e1dG5tT2befReOuMQiekQ5EH+99L7Lh0ZHVAtVPXtfLztOXSqiVztnLlwrqS0/Q2MgqqU9R87m0yXSiYycKpBI8PWwJjahkN4dXLhwtUj06RYE0rIriW7lIEbbaONERk4lmE34uFtx6qKWXu2duXC1GH8va5DKSP+D/b0CIwiI/RmfT++ObpxP0tLER9wYpd4rp22YE0dO59IlypWMnIoH7DX07uhO/PUS/L1r7DPLaRvuzOG4bLp38CW9xofPz8uWk+dy6NPFm/hrxQT4iOfBUjJKaRfhxpEzhTz50s+PdH78c0fcfy2P0oHaG9iMGON5O6BDjD/9O5KaC8wHfgDiAQ/gid/Bc4OVE4Ry4DPgoVJ0TR4+mAHDRrBm4TxMJhOr9x/nh2176Nn/2Xrg+XdZ+d03fDh+DPN+2shb0z9+mNvVitlspt9TbTl/4SYXLtz8t8ro3TOMsry1xB7+jPKKalJS/3ju8rH8naLJrz8cx7+/C7eQrxn//q4H7MpZuu4yAEvXXa5loseNCAdgxAvN+GJRAifP57BqS3ItIy2mh5Xw0fyLrN1+h/BgB9qFOTLjjRCmfZvEzbQymvmLQP3JTi7MXnWXfK2eD75LZuNvYgasPacLuZFeyYzlqZy+UsKPBwuYuz2P0zcq+GhTNvmlRmZtzWXXxXI2nynji10FuKllJKRVYzLDrqRKFsWUEp+hY1lsOVG+FtwpMBLsquDILT1fHi6joMLMJwdKic80sDiugsVxFZxJ0/PJwVIKKsysuVjN5iTx76uYCgoqBT45UsG5TCOLz1Sx+EwVZzMMfHKkgvxyM18eLmPzxSo2X6yqLX99XAln7lTz/aEivj9UxOnbVczcXkB+iZHPt2Sz8YSWjSe0fL4lm/wSIx+uu8eZ5HIW7spl4a5cTieXs/qYtra9m05o2XRCy6ytueSXm5i5o5Azd6v5/kgx3x8p5nRqNTN/K6GgwswXh0r4OaGSnxMqWX26jIJyMzP3FnM2VceimFIWxZRyIcPAJwfE9j5Y/wVxlbXtPZthYPGZKtZerK5tb0GlwFcxFWxOqmbPteo6/Xk2Xc/i2HLWxJVy+k41M3cUkl9m4os9WrbENeIz+ohl4qBn6PvCUHasXUVxYQELf9nN0l0H6fPc4Hrg+XfZtX4N0159iamz5zP5IcHz7yIIAh17PUHa7ZtciI35t+reIjyC2IwCVu49gpOLK8mXHvnL08fyJ6LR1B+j4ycswC3gdcZPWvmAXQlLV8UCsHRVbC0TPW50FwDGjYquJSRcXWwZNypa1I8Ir/NG74cvupET/2od9w1XZ2t6dRJZ57bhLny7Ionrt4vZd1w8XrV1XzqzfrhC7IU83ptzEY22mmnzkli3M511O9P5+PuraLQ6lm9LIy5Ry/y1d8nSVCMA6/few2wS+OSHm2zcn83Ji0UcOKVhWD8v8rQ6cgv0zF+Xyvx1qZxK1PLDlgzyi/R8uvQ26/dms35vNp8uvY1Gq+eDRbeJu1zM/A3pzN+QzqlLxczbmEF+kYFPf0xh/b4c1u/LYf76dPKLDPXsz14pZvp3N8jX6vnkh5us25vFur1ZLP05FY1Wz/T51ziVWMi8tXdYsO6O6IIy/woarY6Zi66zblc6249kM3PRdTRaHdPnX+HUxULmrbnNut2ZnLqoZdp319Fo9cz84Qbr92Sy+bfMevYrt97l259uEBufz/vfXEKj1fHxwiR+PZTB2h0pfPTdZTSFOt6bm0hsgoZlm2/zzapkYuM1vDc3EU2hjjnLr7J2+x3Wbr/DR/Mvoims5r3Z8Zy+mMfc5ZeZu/wyJ8/lMPXLs2gKq/hhbRKrtyazemsyM+acRlNQxdTP7vtGPyr5xzDQ/xSRSCTCgGEjiD20ny+WraZ9j1611xrbsVvI5bw5eABPvTCEZ18cDkAz60YiFvwJA71s+R4+/2oDG9Z+QIf2IchlYppRiUSCIAhUVekoKamgsrwMf3/XOsyJ2Wxm7doDNA/2okM7kemd/vEmyiuqWfztyw/RAY8Z6DryEAz0+EmrWbrySC1jAtRnTa5/UDvx/5GB/l3u3MohwFdVL4xdaUkpIMHN2QptsQ47GwWm6vIGw9jl5Rbh52lFvlaPq5MF2hI9ny29xU877zH8CVcWTw6qDWP39pxkNpwo4tWejrz3nBuuagVF5Uas9WLs3vJqM6duVTFxQx5NXBS081XSoYkF3ZpaUGUAFzsZ2mI9thYiKCrXCThYS8kvN+FsKaGyJuuctUJyP+zag/Z6AQcraZ0wbaI9FFQKuDpbUFRprld+odwCFzsZFTWH2myUEvLLTHj42VNUbsTWUhzL5dUmHNRKNMUGXNRyKnQi02djISW/oBqXmvY+aK82VKMpNdYp30qvr61/nfoYwMFGRn6ZCWdbKZW/22Nq0L6sRIeDlaxOewUEbBQSCioFXGykFFWZsVVKwFJOhZ77/Wkjli9VWYr1LzPhqpJTVGFC5abCY/SVv52B7j9sBKcO/sb7cxfSo8YF489EKpEwa8LrBLUK46U3J9TqHkbMgsDR3TuYPXUinyz+kagu3ZHL5SgUitr5UVddTXlpCVUVFXj4+CJ/gAUVBIHDO37B0dmVtt16ALBu0XySLyfy9cr19e73mIH+a2U8DAP96aTxbF65jHFvDmDJ4smACKjdPJ+vtclL/bGWif4jA/27PIwPtNnQ8HpRWV5OYZEOVycryioMONpbMHraSdZtv82rLwTyzbRIbKzlaAqr+WLxZVb8ksLoFwKYP601ZZVGHNVKcvKKcXUQ59vYhELGfHIJN2cLerV1pk2Iit7tnVHZKiirEO01hdW41MzPADZWMvIKKnFzskBbasDOWuzLskoTjjYyNFo9Lg6KOvaa/GpxPn/QvsqMk72ynr2tqu78b2cjkn8VOknNeqHD1VEp2kukYvlaHW5OlqK9tbymPsZ664tgNIj9o9WL9a8pXyKV17OvMsjEMKlW8gfK16GyEcmgskoDjmoL8grEtlVUGu/bF+pwc7akqFzAriaV+u/PK6+gCnd3de36KD4vMYxdcbkZuwfCDjraW6IpkeIR9v0/5xDh/0WRSCSCl38ACzdtJyC4eZ1rfwagNy7/gauJCXy97Cfg3wPQWVkFdOr2DoWFpRiNJgwGIyaTuTbcnUIhR6WyxkIpp7yimm5dWvFs/3YM6N+W4a/OJyenkKSr6VQWrMfCQsG9rEKCwt6hLOfHuvGl/7QDHgPoOmKqRKMpxtXVvgF9Se1kr9GU4NZkfO3lvNuza333xk9ey9LV5xn3aluWzH32fhn6wgZPiN+6mc3XSxKZ+0F7vlx8kTahLgDEX85h+pthfPBNPGOHNuP42VwkZgNdo1xYuS2FryaHMnvFDfEQjKmahOulvDcqkI8X32T08z7ExBdSUVTJk+2cWL0vl1lj/Jm1Jo01++4f4DkzuxmL9uUzqqcTpy8VYTQLdGlmzdpTJXzwjCMfbSvAZDBxI89IutbIuC525JYaGRlpSVyaOJF1bqJk3YVKZvZV8cPJMkLcajL5ZRt5p6stnx8u45UwBXEZon0nPwXrE6v5uKcNC+MqCKs5dHg5x8g7Ha35Jq6KoZHWnErR1yn/06FuLDhYRLivODYvZ+iY3NeB2YdKebm7U51DhOuOF/LJMG++3ZFD6ybiq9hLKRVM7ufMZ1tzGdXTqc4hws2H85j+tAPzD5UQ7i2O84t3KpjSU8WsA6WMbGtDbIr4qrRzUyvWnSvnk372LDheSnhNCvHkbD3jOtrw+aEyRkTfr39HDwkbLuv4uKcN38VVEu4hBwEu54rt/eJ4Ba9EWBKXbkBuIaW9n0Vtf353ooxwTwUSawWXMw1M7qNm1m4tIzupiM008cUveX87gHbx8GTO2p//1Ff5QZFKJBza8QsHt21h3sZttbqHEbMgUFZSzGt9u1OQm4PJZMRoNGIyGkUiQSJBJpNhY6fC0sqK0uJiWrfrQMc+fek3ZBhfTZ5A6q0bpNy4zv6rd3F2c6e8tJQ+zX05cC0FtYNjnfs9BtB/rQylTEZhvgYnF9c6ekuFgkKNBidXUV+o0dCxiXvt9bzs7bi6iof1xk9YwNJluxk3tg9LvhtzvxBDQT0faKDxSB4NReFoBEBnZRWyfrsYHrRHR09+3HyDOdOi+WTBOdqHi/NtwjUtY4Y0Jbz/b7Xfe390MP27e7JyWwqfvxXEN6vv0LqFuDZcvFZE306ufPnjLUxmuHK7lKiW9nw2Poh1u7P4fEIzvlmTQkRzcc1IvFHC1BG+fLzkDqMHenOi5hBhtyhHft6XxQevNWHuujQig2syEd4sZeowH2YuT+W1AZ6cqDlE2K2NAz/tyeGLcYF17K+nVzFxWECd+R+gZztXVv6awZfvhDBn1S0iWtgjCHDpRgnvj27GRwuvM/oFf2Iu5KOQSegU6cyqX9P4clJL5qy8SUQLeyQSMxevFfPeq035aNENxjzvS8yFQiQyCd2iXOvYtwl1BiRcvKZl2ushzJh/mbFDAom7WIDBINC9nRsrt97h66mt+Xr5NSJbOiIRIOG6lumvt2TGvEuMeTGYmHPi2/Qe7d1ZseUWs9+LYsHaG7RsJo6ji1cK+GB8a6bPOc8bw8M4fkZM8d2zozfLNl7l20+fxDlkwT/jEOH/ZVm4+xD2Ts4UVVfX0Tca3kcqpWXnrvww5ws0ZWUYDQZKq5waDFWnkLnX+VxaXIzK3l70o3aGQ9eG1F5rZiMyKyaTCUEQ7od2Mp/i1Kkknn7mfU6fvclnX23luYFdmPb+MCZNWYKFnXiPo7EJdOrYCrmNJ/XkYYAygMSvAZ1Pg6a3KhrelBkaWVAaEoWs4cSWzWweYuybGwml1AgI1+Tm1QPK4ycuY+mKg4wb25clC8fe109axdKVxxg3pidLFowSXyOO6SnqRnepM+kv+eZ5Pn3/ifqsiVSOq2v9uN2uLnY0a+KASmVFSLAzrZqLE3p1lQ61ypKgAHv8fdWElRiQmg34+6gJ8lejVlkTEuRAq2BHMBmoMshxcLAjKECNv68jYeUSMFbh31RF0yaVqN1taRPmRHGpkZ2ntHQKVRHY3IGmydX4N7WntMqM0Qx+AVYEZppw8banRxszEf6WCIiZC48mlZGuMfLmQCdC1SKICAiwJqhIi0MzF1qWWNDSR/S9M6RU4tTKkaAMGYHtHSlzE6PdBAZYEVStxSnClZZVRYQ2ETcUxruVOEc70VxfQlB3F8p9RYAbFGRLsDEPl7b+tNJaEt5C7GtTchku7dwJzswkINSFYqXouRUQbEdQSjUqRwtaBNgS0lQE0DpBgspCQqCrEh8HOSFe4tj3cZDT1EWBjUJKM1cFzd3E311llQUqlZJANyU+bha01Itj0c/TiqYeRlQOFjT3tqRFDaBHJkPtbE2gpwFfLxtamsXp1t9HSaC2HLWXiuYBUkJ8lEgUUvR2OhyaqGiaKsG/uR0l1joU1koCfK0I0hbhEOhMi1wZLQOskKqtMKgqcGzuTNMbAgHhLpS5G+GXv99la8GuA7h6elOmr3sIqjFQLJdKCe/cja+nvE1xeTkSiQSlUtng/PhH146ykmJsVWpkEglWdio2n677slOCmI1QMJvruI/cupLEpKEDSLpwjp+XLyG8fUc+Wvwj7w8fjI2jE9VGI+fjTuIXFIzE2qZeWxoDv9WNhKBraG5rLBSe0fxwpJXyX+QLeFAeybG0RoB1sSYPxz8A5S/efZtffvqRwa+9zoxvv6/Vf/LOeH5etYwXR7/JzAWLsXd25sXRb/LzqmWMe/MVXN3vZ5NcsmQxn84YVJ+kMFvj6t4AGdMYQWOu33qJqeHnpVZZEdpCjJ7h560iyF+Nna0l0aEutAwSN1NVOjOBPmrahjpw/koRfTu70T7cCV9Pa5r62qG2s6BFoIqWTcU5XKc3062tK7czKnm+twcxFwpYuiWNSXOS6dXeGbXKkhZNVLRsKgLoar0gzs/+avx9HdCWi2Pf39ee5kFV2DuradnMkZY1AF0nyHHydKNZ0zKaNPOg2CDOb01D3Am+YcLJ25tWLfWEtRLbJbcrwdnDneAgLYFB3hTrxHnY319FUEAZ9g5qQpo5E9rCEbPJiN4kxV5tTVN/Ff4+KsLKTMikEvy87Wjqp0Jla0mLQHtaBjkglUKVToq9vR1B/vb4+ToQWgZSmQx/X3uaBqhRq20ICXKkVbATggBVegG1yoogfzV+3mpKyo0YDQJ+njY09bPDzlpBi0A1LQNVCIjhBe2sZQT62eLvZUtoM3Hd9vO0IcjPDjtrGS2bqggJFPuzqlJk5Zv62eHvbUdoc/E5+nnZ0sxfjd3DYIe/KH8lE+G6hyhP+D2k3H+rSCQS4UhWw76EfwagAV7uEsWL4yYye/JbePj4suP8lXo+gQ/u+i9fOMeYZ/qwLS6BZjXZsh6UxsCiUR+Dh9dACgpKcHJSs2zJuwwa1IOvvlrNseOJrPpxKh4ejkS2Hcf8b97kid4RDTT0nw6gG67fowDQmtzcWvbjdxk/YSFLl+9h3OtPseT7caKdphg33xG1Nnlpq3B1VYtss//o+/qUxbUJbDS52fUZk0bjlmobVB+LuUWnKHfmr7jEq0NaEH9FZIgjmtuxZtttJr/WivU77og7e2M1F65oeWVAAN+tvcHI55pw8ZoWKUbCgu1ZtyuNd4YHsWFvBm1aOmDWVZCQXMqwfh4s2pTBK/09uRivoajcSPfW9mw4rGHCcx5sPppPhKccbZmJNI2eF7s48sM+DS93c+RKaiVGs0DrAGs2xhSiN8FPRwtYPs4XJzs5iSmVvNjZkSX783m5hxOXUkWg3DrAio0ntLzVz5WdZ4toUQOsE1Mq75ffw5lLqaJ7TOsmYvkTXwlg82ENEc3EDUjirXJe6uPKusP5DOzhysUbYjrayOYq1v+WzYTB3mw6kEtk8xrm5kYpL3ZQs3hnLsN7u5B4R4y6GdHUhh2HcxjRzZGf44qICKipT2oVg0MULD1Ryktt7bicKU7c4V4KNp8vZ1w3FVviy4nwEX8ryflGBkbasvRYCS+1t+Nyhmgf9rt9dzVbLpQT4SPOBZfv6RgcZcfSmJLa8mVKKaE+Fmw+U8a4XvZsOVdKa19LpNZKElOqeLGTA0sOFjCsiwOXUqtQqC0Ja2LDhiP5TBjozuZjBbSJcKLzmPi/nYE+dK/hcftnABpg4sCn6Pns8yyZ9REIAnuup2FlUzf5xIMAOvVGMuP69+bbzdsJi273l+8pCAJD2rfmXupdbFVq3v7sKwa8PJIda1exZ+M6Pl3+E+5ePkwc1J/nRo6h+8AX6pXxTwfQja1FD8NM/1m856L8fBxcXGp186ZNZuealbzw6ljen/sdIEZEeSokoNbm6M0MHF1c0eZr6BXsW6uPvZtdy1A7VSbh6upc/6b6S/V1hobDfDbOQNc/wC3oG557E5Pu8fvjiU/KZ8TzzViwKokRz/qRcFW8b5tWTqzdfoe3Xwpg6c936N5WbEPCtSKGP+PHql9u0yWq5hAeEBliz7rdGUx8KYCNv92jTYg9giCwYH0KcZe0DH3Sk7eHNSExWWTKI1qo2XY4h9cH+7NxbyaRITVM9vViXn7ah4Ub7zJigC8XrxfXlr/lQA7jXmzKhj3ptGkprmFJd8t56ekAvluTzMjnA7l47ff6O7N2+10mjQph/a67RLUS+z3pRiFDnvSts16YBRNtQhxYuzONSSOa1ZYvEQQuXBXbu3D9bUYM9OPitSLkcilhwWrW7UznnVeC7tvLpCRcLWL4AH++W3eTkQMDSLpdiskkENnSqaY+LVi/K4XoVo4IgkD81brrV+L1QswCRIY4sHZnKpNGBPPz/ntEhIgbg/irBbzybCDfrbnOqMHNSbgqjoc2oc616+MvB+8R1lxs74UkDSNfCOa7NdeZ/uXJ//FDhF0Rw8X91b//b2XA8FfZtmIpIZFRePs34a1B/fnxm6/Yv+1n9mzewK9rVpJyMxmAe2kpTB4+GFuVmtx7D5fhTS6XczN5EzeTN3L96noGDRJ9+p7qG42XpzNR7cdjo+6Pl6cTfXrXzwb2/7OMf2sebl6DGT9hYa1Ooyli6fI9ACz9cT8ajThhubraM25sXwDGje1b667h6qpm3Bgxuc24MT3rZH+sB57/Dbl6s5CyCgMHT2SQklHKibPZnDibTUpGGYdisyirMHA4LouEKwVcvlHM0dO5lFX+P/bOOzzKclv7v0mdZNLLpBEIvYXQO9KLCChVpAoiRWxIESlbAQtNio2iVAuCFEVUpKeSnpAeCOl9StqUlMnMfH+8IRAyOUe+rfvsc7brunLpPLN4st6ZN2ut937WupeOq2HFZBeoCY6RcSe9gpwCDdduy1Bp67kRISM2pZw791TcjFKi0uq5Hqkgu6iayDQVSVlackpquBFbgbpaz634SjZ/W8TUjzLZ/3Mp6ho9NxOryJHVEZupJSxNQ66slpvJapaOc8XNwYJXD+cTmqoiMFmNukbPjSQVeYo6wlLVhKWqyZHVcTOxCnWNnrgsLfENP7eSVI3758rrCEtVEZaqEvTvCKPKb8aWE39PTfw9NTdjy1Fr9dy5pyK7qJrQ+ApC4yvILqrmemQZao2emzHlxKVXEZdexc0YQf9GfAU5pTWEJlcRmlxFTmkNd3KqUdfoCUxRE59dTXx2NYEpatS1Rm6lV5Or1HE7s4bbmTXkKuu5dbcada2BoHs1xOfXEp9fS1xuLeoaAzfTteQqdYTdrybsfjX5ZXpupVejrjEQdLea+Pw64vPrCM+sQV1jaLJ/XE4NuYp6bqZqUNcYCEyr5k5eDWkFtYI9DZ9nrryOsLsaYu6pySmt4UZ8BepqA7fuVHInQ/1P33t/pUyev4gfj3+JZ6vWDBwznrdmTeHozg+4ev4Mv/9wip+/Oc7dRCGRUspKeXv+TGwkEmRFhU/0e0QiEceuBvFDxB1Ohcbw7DwB0+k1ZBgduvuzcsp4RvtJ0dXVMerZaX/6daHx2JkAACAASURBVP5vlz3r3+JZ/3bsWS/UKZfL5fx0QmjwO3/8K8rkwgO9i7uUWS8JA3xnvbSsEZ12cZfywpIVALywZEWT8g6TyfP/gOQWqIlJlBOTKOd6aAEqTR1XggvILVQRHF1KcHQp2QUqroYWodLqiEoqIzalnNiUcm5ElKLS1nPwh2z6zw5i64F0QmKV5BRquX5bLvjbSAWxqRXEpVVSrzfy6gt+HDyTQ3RSOSGxykb96ORyVJp6bkTIiUutIC61ghsRwh7Xb8vJKdQ20b8dr2zw56WN9oTFyFFpHvH/UTKCo2TkFmoE+zU6rocVE5OsICZZQVSColm8CI2Vk12o4drtEuF3hwv7J96rbLzea7dLyCnQEBKrIC61vCG+lDSxJz61nOvhQjy6FlZCdoGGqAQlwVEysgvUXA0rRqXRceN2CSkZFcQklzWLX5GJSoKjZWQXaLgWJrwXGitrtP96wx5XQ4vIKVQTFFVCUFQJ2fkP42PUHRnRicLPtZA8QT8o50+/j/6ugX5M/hkEWlVZwcx+/ki9fcjJuIu5uTl+HTvj27YdmelpFGRnsvebH+g7ZBgLxg9nzrJXSY2PRVVZwdZPDuLu0bS8o0W09b8pTTA01NI1HpGaqu39D0GgZbLyRrRZJivHw+sh72tp4dlH6vCaI9DCHnVNap0bRa9FJq9qPjpd/wSTCFtAoPU1amSKajzcbVGW1+BgJ5QQVJRX4uIkplRRjdRVjEZbj6G2uqF5Qmi2UFbU4iCxxKCrNdn8UV+jQmJjjry8DqmLNcrKOiS1wn2jrtbjbG+JrFw4Cu28ILbRptCdnenayoYyVT1Cb4ZIaM6zs0BWqcPN3px3T5cQlqbmp3faUVtvROpoSZlWj4ONULrwqL67w2PNfFX1jfr2j+krscDd2QpNTYO+2Ax5hQ5PbwnKSh0OkkeabxwsKZVV4/6gOYaGZp28KqROVk2ab9TVBhx0tcgq63F3MG9iT0l+FVJ7C8o0euzFwt+RWluPs605MpUe90eaBSV2Fo3NfI/qq7R6k/q2ViLkagNSe/NGfZGlmdAcKTFv0rxoZmvd8PnokTpaUKaux15sjrmLLepqA872Fo3NkdXWYnwm/rkIy+PyzyDQdbW1PN+vO24enuRm3EVfX0+bjp1p1a49hTnZZKWlsPHTQ4yaMo3Xp01kyPiJVGvUZCQlsmHv53j6tm6295PUUj9AhI1GI0ajsdE/6kzUHv+nINDlCjnObg+R5nKFnBkBHRtf/5ychbO7u0kE+sG+ZXJZs9IOawsLk7XRXe2KTNr3r0ag9XXVqDVCt/KjzWfy0opGf/ugWa2oqAypi7iJP0nNrKL/rOuN+2X8Nhaxtbngb+XaZs2CsrI6Tl8u4NiFPC4fGoS7izUqTT2uzuKmzXyN+kKznbKiDge7hmY+TT2uLnZN/DmAvaMtMmUNHm42jf4fQK3VNzbbPYgXALbWNIsXRkO96WZBvaGhWfCBPQ/3N6UvMjNrpu/oIAZETZr/pK5iNJq6huttGr/sbc1o0lyorMFTav9Ys6BwvWUqPQ5NmgWF/b28XNBoH3y/lsgU1Xj6uGHmvftP9Y/mW7Zs+bP2+j8hW7du3bJwzTsm32vJWZs3rFuLxQwcNQZFcRH5WZm0ad+Rep2OhKgIDHo946bOQFFawqEd7zNk9HiWrdtA/6dGEnL1Mh+ue5NxU6bh4vbwCd3VqoXv2ZjXwrrwByUSiR6rJTThsEUtHD60NP5a5GRizbH5GqDUmd6ipYBiSloKBC19JjKZDMljx8ErV77J7DnvIZOVM2nSECQSG2SycmJi0nll+RSenzWyUXfSM4NYuXQsz8987BDFqEciMcGCaNQhkZh42DCaqEI0UZsnrJseE56YXMxzS35lxsT2zF75O3JlNeFxJew9ksjYoT6MW3CZjn6O7DmSRGSCHBEiFq4PZ9o4X+auCUNeVktKRiUfHEpj/FAPJi4LpUNrO/aezOD2HSVmZma89F4yU0dJeXFzEhUqHRGpavacKWRsXyee3ZhKj3YS0rLUyCrrGd/bgZM3lDw70ImXPs1BU2skPF3D3ksyxgTYM3V7Fu08rYnP0nK/uJa7hbXs/0XOlP6OvHe6mKySWqIzNOy7WMqYng4898F9Onpb8+klOdcTVNhYmbH081yeHejEykN5lJTrBP0fSxjTy4GVn2UjdbLik7MFXIsux8banJe3pzN1lAcvvpuMoqKOqORKPv46l3GDXFn6QRpSFys+PZ3PtcgyxNbmrPn0PhP6O7NoVwaKynqi0tXsOVdIVy8r5n2SSwdPaz6/rOBGkhqxpRk7LsoZ1tGGpSdlKNR6YnJq2X+9gtFdbJlxqJR2bpZ8EVjFjfRq7MRmLDspY3JPCS+fkKFUGYjJruVCrJq+fmJmHCimnbslX9ys5EZaNTZWIlZ8I2dyT0nj/slFdXz8Wxmju9ky/dNC2kmt+OJaOUn5tegNsOxwAVP6OfLSgTyUKj1J+TXsfPB9bUqlvbeYz38sIjFDzZYtW7aavuH+edm6deuWBavXm3yvJWq6B37T3MKCwWMnUCYrJS/jLq3aCkN+kmMiqa2uZsSkZ6nWavh63y7adOzE69t20HPgEFLjYti59nX6Dx+F9LHx209Ch/fA+zzuH035JX2Lye8fH7fdkrd7wvwZc7Pm19hSLGppvapMiY1tU//46ca1vL9iMeUKOYPGCidtNrYSKpUK0u/EMXXRy4x+TmDIGDLuaZ5/aRljHyt3MTcza1aGA0Jybmti3d2qBTBBX9J8rQX/2CIzkqGm+ZretO/Nzi1nw+4ofg/Kx8banAWrbjF9YltWfxhBdr6KiDtydn6ZzISnvHnulWD8fCTsPXmPK2El2Fibs3JrHBOGSUm6V0V/fydqdQZ2H7vPuCFS3tyRhLODFfu/yeLqbTk21uYs/kc8O1Z15fDZXG5GKSir1LH7+H3GD5HyzIpw2reWsO/rTK7eliG2NmfX0QyG9nFlwTuxyMtriUwsZ/ex+w3+PIQObewb7ZHYWrJwbRjTxvsyd3Uo8rIaIu4o+OFyLgMC3Bi/6Dod/OzZezSVKyFFSGwsWPD27SbxIjJJwc6v0hg/zJOnXw4S4sXxuwRGy6itM7Ds3RimjvVh/tuRyMvrSMms5IODqYwf6snEpcGN9gRGybCyNOfF9RFMG9eKeWvDUWnrCY2RsfOrFCYM82LC4ht0aOPAqZ+zOX8lHxuxeZP4VaXWERavYNdXaYwf5sXTSwLp1NaRPUdTuBJShFhswcK1YUwf35rNe+O4l11FRLyMHYcSmTC8FeMWXKZrB1d2HozjcmAeNmIL5r1xlSnjO7D/q9g/1T/+IQRaJBItAlYBHYAK4AywwWg0lS387xaRSGQ8FhiJT9t2VJULSIu9kzOFOVm079yV4rwcHF2EWpzKMiWevm0wMxiaUCYB6LQafj93husXL2BhYYGbpxeuUg+kHp54tGrFmMlTqShT8uWuj7h8/gxL3lzD4jfWPGwU5P8fgW4m/8cR6JUrV3Lw4EFeeeUVDhw4AAgJtYeHR6NOafHPD5FoEzXQgGnH3FLy2yK93T+PQNdXqykoVtPax54SmQbHhklLZcoKPN1tyStS4+NhS5VaR61ag4OdJeEJCkYO8CA6SYmfjx0GXQ25xdX06+5MYJScIb1cyS3Woq9R4+tlQ2RSJcP7OhObWoWPWI9IZEZeaQ19OtkRnFjJoK4O5GZWoFTr6elnS+Q9DcO72xGXqcXH2RwzkYg8hY4+7WwISVUzsJOEPEUd+y/J6OwtpldbG57qZkd8TjWt3QX78+R19GlvS3CKmoEdbchvGFDi62r1cP/salpLH+jX0qe9hLA8HYO6O5L3YKCA1JrIVBWjhrgTk1pJay/hASevuIa+XR0IjlEysLsjeaXC34OvhzXhkXKGBzgQl6HG192akKQqvrhYQm5JDZVaPXoD7F7oxbAudvi6WhIZr2RoRxvi8mpp4yI8VOYpdPT2tSL0fg0D/KzJKxfu5zZSCyKz63iq02P6ch29WlsTer+aAX7iRv3WzuZE5dQwrMNDfaOFiPwyA338rAm5V83AdmLyynRY2Frj42JF1H0NT3Vt+HxcLRE52lCgqKNPRzuCE6vw97Nl1of3iL+r/rdFoB+VWq2WWz//yPWfzoLRiKuHFy7uUlykUtw8vRkx6VlqqrV89+leLn13gmmLlrLwjTWIbZs2kP3/INCPiykEura+ngqFHBD8f1FOFr4dOpGXk419A2NHVbkSj1atKcjMwM23DeoK4eTSztGJktxsvNp1QFaQj0OjfhnSVr7k3b+PZxs/VI/ol+bm4NOhI7L8vMb9VeVluLfyxaqByvRReRIE+sCmt/nt2+NMXvgSb3z0MSAgzbN7dW7UOZ+Y0YhEm6qBBrB6Aho76xbmJfy7IND1tVoqqgTf7mBnSWGpltbedhQVKnG0FxDNSpUOT3cbsnMU+EhtqWpArB0klhTJqmkltSD5fhXtGwasVKp1eLqJiU0uo3t7e3IbaqNbe9kQkVjGiH5urNqRjJWVGesWdyCvSEv/AFduRckZ0tOlqX5CGSP6uxGTUkEbb+Gezy3SMqCnB7ciSxnSy43cYiEGtfF1ICKhjJEDH/p/gPxiDX393bgVUcLQPu7kFAm9H62lVoQnKJvEC6OxntwCLf16OBMYJcNggF1H00hIq0RXb0Bbo+foB/3o0MZesMcAuSXahvgia7RHZGZGay9JQzySEpNUhp+vPYjMyClU07+HK4GRpQzp7UZOgRoR0NrLtkn8au1lg0gkIrdQQ78eLgRGyRja1/Ph9XpJuB0vZ9QgT2JTK2jjI5RN5hSq6R/gxq3wYkYNa4vqwfdlZ0VWXhVrPgzn1+tZ/1oaO5FINAf4DmGiXzzQFugL7DMajWv/LEP+XUQkEhlPJ2dy5tO9+A8aAkByxG1mv7GGc1/so3XHzkTduIq6sgILSyuy01Jo3bET9XU69PU6DAYDG744gk8bP5P712k1xIeFEB14g5sXLzBu+vMsWLUOd6m0mW5Lzqml9SdCY1r43lsKMk+CHj+J/FfUgKbESSNH+shn9V8lyitX7uTg4V94ZflkDnz2+sNNWkpoTT2AtPSMaOqhBMBo4oi3pSS8JTtaSM6N9Zpma2VKFTsOxPGPN/rxxnshrH+lDzdvF2Bjbcag3h7sOhTPJ+8N4/3PYhkx0Bsz6rkZUczmV3ux6v0I1i0LIOh2Lno9jBrowe6jaezb2IePDqUwqr8LunojITEKNizrwuqdCaxd3InweDk1dQZG9ndjz8n77Fnnz44jGQzr68a+kxnY2Vpwcns/1uxKZO1LnbkVKSQiowa48/Hxe+xd35OD32fg31EofwmJVbJhaSfW7E5m9QI/AqOFwDmyvyt7T2ax64327DyRw7DewilIaHwF6xf5sftYFnPHexAULwTOEb2d2HemgJ0vtWLXmSKG+Qv7hyZXsfZZd945UcCbz3ly7Kqc74OUrJ7miVJZw8COEhZ8ns/qSa5ky3UYDEZ2z/Pg3bNy3nzaheB04fsY3t2OT39TsH2uFx9fkjO0sxDYkgrqWDbBjQ3fFPHGZPdGOryRfZzZ91MJO19qze5zRQzrLjj6yMxq3prlw/rD2aya6UNQQiXWYnMG+zuy70wBu15tz65v8xjW0xErGwtuxZSzfpEf6/bfY/X8NgTGlmNta8vQ3i7sOZHBnrcDGDY/iDY+Eq7f/utp7H7PN53YmIlEpMREcj8pEXlRIfKiQtRVldTX69Dr6qnX1aHX61m1az/tu/mb3KNaqyUp4jaxQTe5+dM5Bo17mgWr1+PmZYJJqAV5Uh9m6sG+qKCA3PRUAFKjwpnx6luceH8zE5e+RuptYcBHt8HD+OWrL1iw6X0uH/8SP/8AAO5GhfPsK6s4vXsb4xcuJTUyTNAfOJTfjh5g3sZtXDr4CZ0HDG6i//Oh/YyYOYfU8NAm+7+5e//j5rUYA1RlSpweKcmoUMiZ37db4+szd+42JspfbFrHxZNHee7FJby1Y2+jjmULybnYhE9+Uv/dIihUb2LIhYmEWNBtab3KxFpLPra5LwUwmkCsjfWmj1QN9ab9enV1DVs+iWfEAKEkMyiqhM2v9mLNhxHU1umprtEzcqAnowZ7cfTMXd59rScfHkxieH8hjgVHl7JheTdWb49j3cvduBUhoPOjBnly8Pt7fLCqdxP96EQlq5d0560Po1i71J9b4cUAjBniw64vk9i/eSAfHEhotCc+VckbC7ux6oNI1i3twa2IYjDCqMFe7P4qiaWzOzF24e8smdWJsUM9+fFKPt9czGTkQE86+NljbiYioLMTT/X34OOvUti3qX+jPSKMBEWVsvEVf976KJZ1L3cjLKaUOp2hWXwZPdiDep2R4BgZG1d0562P4li3pCuh8Qp0OgOjBnmy+0gq+zb2Ze/xdAY00AsGR5WyaWUAb30Yxduv9ObmbeF6Rw/xZtfhBD55dwillUY6tXsIkr266Sal8lou/Hb3X95EuAr4EehqNBpnG43GAcA24NWGYSr/UXJq/25y0tMQ20roOXgYvh060rlnH7LSkoWu5DkL8Gj1EJk1GAxkJCfy/ef7WDNzCjN6deH8kYN4tPLl0OWbvP7BTpzc/j0aK/7dRCmTNXm9ZdVKPDw8WLnyId+yVCrllVeEmuVXVkxtgiwf+Ox1SgvONE2e/5a/VCpUOmxt/r3dgoW5CCeJBRP7OWFuJsLHxRKxpYijt8rR1BoITNVwIqiFIP1vJNU1euLTKth7IoPcIi2TR/r89//oL5YjH24h8OcLSBwd6T9qLFNeXELAoKHk3kuntKCAMdOfp03Hh8in0Wgk524a5w5/zjtzp/NC786c/nwf9s7OfHzuEm/t/uSJkuf/JHmAkD+QQ/9Yz/y+3Tiw6e3GNSc3d56ZvxiAyQtfalLv/NaOvfyYdL9J8vy3/LWiKKttrLH+dxVrK3PE1uZMGN4KaytzbGzMcXO2JjJBTmWVjp+v53Pp5pMRH/xPiE6nZ9POMLZ/HsXZSxm8+tKfT6jwRxDocmCO0Wj8/ZE1d6AUaG80GrP/dKv+B0UkEhm3fnuWbv0GIGtgx5C2akXgj+e5Fx9D6G8/s/y9DxkwZjyhv/5M0KUfKSstZd6qtYyeOrOxlKM0P49LXx/l2rkzSOwd6DdyNP1GjKbvsOHNatHA9FP/fwoCbarZZPvaN/j+yCHmvLyCLfsPNCfiLy1tikSXXGpeltFSmcX/IQRaq65GBARFFjF+uC+R8aW0a+2A0VBPVp6Kgb2kXA0pYMRAL3IL1Rj0dbTxsSM4qpRxw7yJSpDTRircs9kFagYEuHL9dglP9ZOSm1+B0WiktZctIbEKxg6WEp1Ujp+3NUYgp1BLf38nrkfIeaqvO3nFWqa/GcE32/uhqNAxdrA7camVtPYW7vecAg39ezhzPVzGsN5OjfRPrb1sCIlTMnaQO9EJCtr4CMjug/1v3C5mSIAT+Q9KODzEhN6pYFQPe2LSVfh5CiUcOSU19Otiz60IBYO72ZMvayjhkFoTFl/GyB4OxNzXEpGu4naamtXTvOjrZcatFA1V1XqS82uYPcSJ0HQNB68oubKhDfdLdbRxEz6fvLJ6+raz4VaKhiGdbclvKPb39RBzO13LqB52xGZqadNQglKoMtC7vYSbCVUM7WZPvly4D1q3tiUsScXoPo7E3FXj5ylGZGneaP/N2AqGBjiSX1qDmbUFvp7C9Y4Z4EJ0ahVtvW0wE0v44fcCDp7Jpktbe955uRNOzhJ6Pff7/wgCXZKfx4XDX3Drp3Ms/cc2nn5hPmlxMXy9Zzt5Gfd44bW3mPD8XKzEwnelKC7i129PcOWHU1hYWgq+ccRoAoYMQ2LfnBv9SeTPQKC1dTpKcrIAcPNpRVpUBAHDRpB+5w7uPgJHvSw/l/Y9+5AcFkTHvgNRNrCFuHn7kB4dQbchw8lKjMe9ldD8KC/Io11Ab9Ijw+jUpz+Kx/QDnhpJZkIcUt82TfbXVZU1QZUBjm3ZyOVvTzBx/iJWvL+TCoWcF/s/RPW/jU1t8m805WVNkmdoOY78jUA/tvaECHRCqoxObR3ILRR+RxsfCcFRpYwd7MGA6b+weWUAg/tIyc5XMyDAhWthxQzv70FukXBy1cbbjrDYUkYN8iAqUUnbVkJJRnaBmoE93Zvr+9gTHF3KuKHeRCUoaOsr6OcVaenXw41roUUMH+Dx0B5viaDf4P/b+gonY9n5Kgb0dGfLJ/GExJRwcNtQEBlo7WXHZ1+noqs3MGawN/dyKtl+MIk9G/ry9HCfpvYYDbT2tiMkupSxQ70E+xtKUB6PL3kPSkq8JYTEyBg7xFPQb20PiB7qhxUzfKA3uUWaxs8nOLqEcUO9iU2rxK+V4C+y8qoY2EvKtZACJoztTGxiKdOWXOKZMW15aXZ3Bg1oj5nXR//yQSqOwONFbw9eOwP/pxJogF+OfYVRb+DWj2dRFBehq63lftIdpr28Ar/OXalQKLhy+ju+3v0hy7duZ9iEZ5A2ONWcu2kc2/E+qTFRTJg9l30XfqNVu/aNe7dUu/a/VUx1YLe0bmrtgzWv88PRwzy/ZDmb93wGgFIu4/sjhwD4/sghXt+4BVeplDkvrxBGwb7ySpPkGTBd0/wfIAXFaqG+6/1Qbnw/lY07w5kwojV2tuacu5zF95+OZe2Ht9mzeQhnLt1HYmvOMyN9WftRJNe+mcimj2N5ZrgHOp2Rq2HFfLt7KOt2xbN7fW8Cw4soVdYya0Ir1u9J4vKXw/jHZyk8O9IDba2e67flnNzel3f2prBjtT/nrhZSWFpDVoGWj75M57fDQzn0QxZd2goO+tptGV/v6M/6PUnsWded7y8LCcTM8d68szeF3w4N4aOj9xnWW6gBvRah4OQHvfj0+zyMRjh3XRgSMmOMBxs+y+DSzh5sOZrDEH8HQhMrSbivZspQN+7na9g4txXng4VEb/pTruw6V0z31ra8f6qQDt7WRKSree+bAk6s8Gbz6RI+fMGT0op6Pv1NwXP9HSitrKfXO5n0bCNmdHchIN1MUXNkhW+j/oUogc915lAXNp8q4qcN7dj2QwljegjXm6nQ8e5cazadyOejxb6cDxXc5swxUjYdyeHnj7qx9UQeY/o6Iba14NcwJcc3dWHjoUy2r2jPuUA5Hu7WPNXbmQ2fZfDrp33YciiTsQNdsLGz5fPvs5gy0oubETIq1fV8++u9f9FdJ0hdTQ3Rt65z6+J5EsJCeGbei3x1KxwXqXC0vHXpQmavfJNtx79v5MMvzs3h2I5txAUHMmrqTD785gf8OndtfPj/qx7Un1RqtVp+/vILAAZPeo5vPtrC5m/OcuvMN3j6CdzHSSGBrNx7kFM7tjJ3wzYifrkAwICJz3J65zbWHjvNmV3v02vUWACSQ4NY/vEX3Dr9DZqKcpJCA5vou3p5c3bvdno8NbJxfzcfX0J/Osv4uS+ydNt2ACqVCi5/ewKAy9+e4IU31+Lk5s7E+Yu4/O0Jnpm/uFnC/Xjy/Lf8dXLqYiZjhnpz5hfhAez5Se1Y+1EkV0+MIyOnirA4GfdyqrgaUsS3e4axbkcsH2/oyw+/5gAw6xk/jp/PoHtHRzbvu8P4oV4AXA0r5rs9TzXTnz25Het2xHD1xHg2741j/FPCic39HBWtve1466NI+nRz5VpoEU4OVryxsCuHTt/l2smn2bQnlvFP+SASibgSXMB3+0by/S9ZlFfWsu3zeHw9bRk12ItvL2Zx9cR45q8OZtwwLywsREx9JZC84BlN7LG0NGPq2Fas2xnHleNj2LzvDs+O9qamxtAsvgRHyShR1PD8xNas2xXPlaOj2bw/gSmjW1Fb16D/8VDW7Yxj7yYLTv+S3fj5PLjer75Pp6OfQGZwJbiAU5+OZu2HEQzo34bw2GImjW3L4Z1j/7Lv+o8g0AZgCBD1yLIFUAMMAJqMhjIajabblP+XiEgkMi7btp20qEhig27QoUcvRkydQY+Bg2nVtj2qinJsJEJAndG1DWeS7mMjtgGjkR8Ofcb5w18wb9U6Js1biNim+cSk/44K71H5d0KgFSamUG1f+ybnjn/JzMXL2PDxJ//luqm1MrmMcV0eNifeyihoRKIfR6AfyOM10A8NN9FY+R+AQNfX1mJmJmqkvSurqMFeYolRX99A6yOmVKFF6moj0N7p65rSAFXUIrHQ0YQ2SFGD1NUaVZUGEDWhVSqrrMNObASRCJXmAY1RLVJXMenZKobOC0IeOglFRR0ermLKq+qxt22gYXqE9sjdybwZzZOHqzXKMi32koe0TS6OVhSXVCF1bkrzJC/X4WYjIiK5kuW77jKmnzMTBriQcF/D0UtFeDpbMqS7A2/N9MLN0ZLSkmqkTpaUq+uxE5uz9mge8Zlatr8gpYOndQONXQMtnbWIrwPLWPNtKefe8mVIR+HvWKMDZzvzR2jvHtDYWTbS8D3YH0CLmUAL2EAz94CGz87ZGnmFDqmzFeUqHXY25oisLFBr9Tg7CDSC7k6WaGoMmIktGq9X6vKQhs/cxo4pr4bz5vwO9OnuhNTFGm2dOdIhP/7lCPTGg8eIunGFiGtXaNu1OyOfm86IKdNwcGrK1DO3X3f2X7yC1KcVBoOBX74+xtd7djBj+as8++ISk0jzn5FA/xkIdE29nhqN8PdmbWtLpVKBk5s7ZcoyxA3+v0ajxs7JmUqFHIPBiHWDv7e2taVKqeCnA/sIPPMNI2bNY+7GbdRoNdg5OnFs0xrCLp5l+Iw5zFn/Hta2thxtWHtq+mwWbdkBgDw/l3cmjWy06UhkIo6uQrnf4wj0A3m8BvqBmIoZfyPQzeXPQKArKrU42Fk2o10TGQ10GnuBjOvTcbS3Evyzo2UzmjmJrQUlci2e7oJ/tpc8pNVzdbZpri+xauLP7R+hsatQ1fHssmsMCHBn9qS2xKUoOX4+A2srUI9HegAAIABJREFUc8YP8+bV+d3w9ZI07v+ABu6zr1P56Vou76/qzbNjfZGX1TbZ/0ZYAc+9EsiV42Pp2t6x0R6j0dAsvtjbPEZL1xBfNNUN9j9CY1dWWYu9nRWP0955uNuZpLGr0BixlzygsatrjHferdyZs/I3nh7lx4uzGnoAzG3/dAT6jybQppREJtaNRqPxf/V4cJFIZOw7cgx1NdUMfnoKtvb2ZCTE8cKbazn9yW7GzpxDfEggAOcPfY60lS+TFy7m+0/34uTqyrSXX0FRUszUxUs59cnHTJg9j5QY4dmje78BhF+5zLTFL/PjsS/p2KMnABlJCcxcspyv9+9m0gvzSYqOBKD3wCH88v03vLR6PT8cPUSXgF6CkXo9I56eZMr2P3ydRqPRZOmEqUT5o7VvcPbYf538XkvPbZxC9fg6YFIXYOfbq5oh0NDAIyqT4fpYsvxEzCT/AQl0jaaG1IwyundyIS5ZTpf2zpTItRgN9Xi625KeWUFffzeS75Xj5izGoNehqKjB292Gd3bFcON2Ea5OVvj5SPDvKEzO8vWSUFiqxdYabMXmuDpZM2GYB/ey1XRqa8e5K3mUKmoZN8SNQ2dy2b3Wn3c/T+PabTmDe7ng4mjFxmWdWb83mZUvtOdGhFDLPmaQlAOnM/l4XQB7jt+lWwcBqY1JrmDj0k6s35vCilm+3IwUkOPRA9049EMOO15rz0fHsunXTUi4olMq6ewn4cMj2dTWGRg3wBn/9naM7uPE4YtFvL/Ah9WHckjLrWZ4gAMWFiLWPStl8zeFLH1aSlBilcAFjIjPLpUwqKMtHo4WDO0iBJK4rGrWPOPCy18WkZxfy/gAO9p7WDK6hz1f3Sjjwzme7Loop087YXJhamEtr0+Wsvm7YpaOcyUwWThaHd3XicOX5Wxf3JodPxTSt6Ow/53cata+0IqNX+ayfIont+IrsbAyY3gvwf4dr7Rj+9d59Otij7nYgqjkSt5Z3JYNn2WwYkYrbsaUoVTByYt5jB8q5dONPfng0F36B7jx8ubovzyB9u3QifGz51Kal8tzLy0jNSYaAP8BA7ly+jvmvrmGiyeOcOnkUbr17Y+5uQXy4kKKc3NYtWs/5XIZIjMzuvbpx9Uzpxr1O/oHgJk59xLimPLiEk5/tpfxz88lNSYaSysrOgb05OoPp5jzxhp+PnGEDv6C/7yfnNBE/27CHep1dXTtO4BrP5zihTdWc+nEUTr27IVeryczOZHJC5dw5vN9jJ01h9TYKAwGA1369ufm2dPMeu0tfv76GGKJBFs7e+4nxDHj9dV88+EWRs1bTNz13xHbSug+5CmufXsMC0srQi6coevAoQybOouspDuMnrOQTVNGN35uE5espM+Yp/n9+CFir/3WuD5/0/vkpiUTcuFM49qkpa827n/47Tcozc1ugkCDkPxWKOTNkuUn4YH+O4FuLg8SaJW6jn1fxXHkVDJSVxs6tXOiczsnfLyEhyeDwYhBX4+NtQWd2zvRtb0Tdg2Ja11tLXfSyvBwEyMSiVCU19KhtT2j5vzGyEGeLHm+EwCebjZkZJfTq6srKRkVuDoLpV/K8lq6trcjPq2Czm0dKFUIpW4ebjZs+yyJf7wewLbPEugfIDxMpWVW8u5rvYhPLaNzO0dKFNXcuF3EifP3yciu4sM1fRnazwM3Z6F8SqaoRltTzzu7Y5gy2pep49tgNICX1Ia7WZX06e5G0r0yEtLK2Xk4ATcXMcd3DEVZUde4f2ySDLWmnnU7Y9m3qT+J6WVCk5/RQHSSkk0rA1i3I5aV8zoRFFlCvd7ImEGeHDh1jz0b+vD+F8kMCnBFbzQSnVTGplf8WbczjpVzO3ErWobBYGTMYE8OfHePPRv78tHBZPr4P5gsqGDzqwGs3R7Dptf78sDdebrbNMQ7d9Jzq5kw70fCfppNh7YND/Z/QQL9R5Ldv4xT9N9Vlu37ktsXz+Hd4KDdVBq0ZtZ4tG2PvYcnPg1jt19Y8w6hl34kLjQE/0FDeW7JCkQiEdrqavRm5ljbOWAhsUPSQHtnIbHDzFpMDSKsHZ2wdhLKDqwdnagVmWEpsQdbCeIGGiOjrS0WEju0gLWDI5YN+tqqKuTa5knWk3CD7n9nNT+dPMrUF5eweuc+APauf0tYW/QyaxrWyuVyzh77EoBzx79k4Zp3cHZ3R+zswrRFL/PjiSNMW/Qyts4u1NTXY+vswozFSzl//CtmLF6KQwNi8mBt1kvLcJM+ZM14/5ODrNq0tXmibBMGbQAymhqua4kD1ETyq2+BR7Qluj/+OM0eZjZ/XLelnjqLFqYWtpCci0zYbSPR07fhoxsiDKTEpTWNifzQhueWfg06GnU1pw+HsO/QDaZN8ufmxWmUlym5e1/J3fsK5Aotivv1iETWiNQ6VOo6UjOKeeX9eFycxGir66lS1YHRyIdf3sPcTMSlIBk6nZ7JY9uxYdUAYhJkeLbvSECAio7d21OpF66zY3cpAT3qcPNtQ6+eWrp3Eu5zvbkcV+9WSD2KCE+pIeROJdkFGoLiKqmp1XPqehnmllY4ONtjJoLQhALCk9XMmeTD63P8SM0UEta2HR3p3rkat9aOPD3ck56KGsITK5k+2gNXPye6dVHTroszlWZCoOvdyQ57VzF3c7UkZ2lYMU+4L+vt1bj38mLsCANvtJXw2q673M6qRWNnj1d7F9z6+tGzxJJe3YSjQ8v7Ktx7etE9RU+HgT5UOQqBvH03Z/wLwbWLF7366OnVMKoXZxXu7bzx99fSPqAVlRZ2WJib0b6LE/4ZOlx9PenVs46e3Z0xs7SmzlyJu28r/LupaN+1DcEpOr79Po2d7wygoqoOFw8PegeoCAiQAtEt3Gx/nkxf8RojnpvBT18dxNreAfuGJmgLWwnW9vbozcyxdXRiyuJl5KSlUJidyZCJU6irq6NV1+7U1tdjALCxxUIiodoI1vYOWDo6oTMYMbdzQKUHkY2EOisbzB0cMZpbUGNpAzYSynVGRBIHjHaOGAxGsHWgrM6I0VqC1lyM0dYe9HpqLMQgllBeJ+jXWTtgNBow2jigqDVisLZFYybGIHHCaDCiNbfBIJagrDUSF3SLe9Hh9B43iS6DnqIaG5zbdODKtyeIunSebkNH0XvyLOzcvbl2TCj1SIsMY/Tilbi364yNeyv8AvqQkxhHt2GjaNOzPxKpN95d/LF1dCLk3Cn6jp+EX89+YGEJZuaEnDvF0Kmz6NhnAACuXq14atpsnp4ztxF5fiAikQhnE6VzLSXFpk4+W0q2WzolNRVHWoo5+hb4su9pTO/tZjWm2ZqLON+kLvoWSpVMJcstgSgt+NjamjoOHb3Jjr2/MmZkN3698A7VWhV3M0q5m1HC7cRKzBp4xEXUo9Fq+OTrDO7el+HkaENNjY7KqhpEIhF6vQFLS3MsLc0QIWLCqLbs2z4Ns0d4vaWthBg1wO1hf097wGg08JS7UIoh9RUAr4zsClS1sGFvEjfCiohLq8TXyx6x2Jzr0RV0aOOMpt6CrZ9Hk3xXyb73nmL4QG9sbZo2Lfq1E/67qc6c/V/dYdNbQ3kw13yIVPDJ/fva079vGxY+35339kXz5oexXP56MiKRCFepM/VGS7zcbbmXV83+E+mUVdRSrTNj8kgfena3wMXFAf8ubrRr60aVFur1Btq2c6V7FzccnR3o2V1Kjx5SDAYjdUZLXNyc8O/qTrv27lTWmGEwQrt27vh3KcfJ2YlePbzo2V14WNQZLHBxc8a/q5TWbTwbEGtBhnm4ERlXzHMv/czWt0fRsdMjw5daAr3+Cfl7EuFjIhKJjHM3bKX/01PISUkEwK97AKE/nmHm8pUEXfiB9g1IcGbiHUZMf56r3xxn5LSZ3E9KAKBDj54E/XyByQuXcPP8GTo26Gck3mHUjNlc/OogY5+f00Q/9NJPTF74EtfPnaZTz94AZCUnMnbGbM4d/oIJL8wjI0HgyuwxcJDJ48+WnFmlUtFs2tS0Hh0aX19MygTguR4Pa7UfTKACGqdQPZpYg0DhYoov1MLMzGS9s7pM2WzN1soKU9LJJszkessk+v/iBFpk2u4nkidFt00i5H8cCU9ILuTpWV8yYkg7tr0zgU4dGr63llCa+oejoevrDRSVqrGztURRVk11jZ7I+GLmTu3MnsOxzH6uE/ezKxCJRPTr6cGx0ymsWd6H0z+l0aNLA3KQUMqLM7uw96s7vDi9HbFJAp9rda2eRWtu4elui9TFilEDPejc1p6opDL8vCVcvJ6HhYUZ93JUVKnreXVuO2yszXlrXhu++62Qvl2FRDY2rRIfqZhTv+Sx441O3Iop4/Vd6UR/M5CfrpeyYro3p66U0qeLkNDHpauYM0bK3tP5nPithBXTvOnqJ6F3RzsuhCpZ8pw3p34voVcne1KzNZy+JiMxQ0XPzg4c3ORPckPi3ruLA9/8Usgbc/347tdC+jYk1qlZGmaM8+bT77JYMMWX+DShZrqPvwtfX8zjzfkd+O6XfPp0d0IkEhGbUsH8ya355NsMFj7nR1xqOdY21vTo7MLJC5msWtSVExcy2fllCuuX98TS0owF0zqw71gyi2Z2ZOmGUC4HFvzlCPTJ6GRunD3N1KWvNPFvuffSGfrMs/x05CBjZz30b+38A7hx9jTPvbyCWxd+oENAL/QGI5mJ8YyY/jyXjh5i9Kw5ZCYlYBCZ0bpLd4LOn+aZxcsJ+eks7Xr0woiIzMR4hk2dxe8nDjN8+gtkJydgMELb7gGEXDjDhEXLCLt4TtA3GslOTmDoczO5cuJLnpo+m6y0FAz19bTpFkDYT2cYt3AZ4T+fw8XHF4mjE7kpiQyaMoNfD+/n9yNfNF7zxrNXSQq+zoBnpvOPiYMa16e+tYnhs1/kk5efJzf5Dt2GjmLY8wto3a0HERfPMnbBUoLOnKTTAIEONS8lkYGTZxD+4yk69x+CslhoUm/TLYDbP/3AU1NnkBQSSNsG4OaB/Q62Vg+nyjZISwivKZQYTCfFLaHHpviewXRy3tIeLQ4da2FvNxMDslws/rUJdFa2jFGTthPQ3ZcP35tJgH9D8mVoifP/4bpeb6CouBJbWyscbXVYWJhjMBjQ6QzodHrqdHqcHcybnxK3EKMerYSNTSzlmQU/Iba2YHAfD6pr6lk+35+YRBnFpRoMBiMFJRoycyspKtXw+qIANr/RH7G4+b1wO6aYhDQFryzogbZah3e/Y2QEL8TdxcSwsAY7dDo9fSed5f21A3luvFD/n1dQybWQAhZO78SeIwn0D5Dy5fdp3AgtYO5z7XF3FbN+eS++/jGDfj1cMRohNknRxF8lpldQX2+gbw83Tpy7x1sv9eDrHzPo31OK0QgxiXIWTu/EvqOJLJ7djZgkgXWmXw93jp9NZ/XLPYlLrWJIf+9H7DXS/5lTvLV8CPNm9mhyLSvf/oWDJ+P+tTR2IpFo9JP8/FmG/U9KVlI88oI87kaHczc6HHlBHsmhQVSr1SSEBpOZeIfMxDskhAZTrVGTHHmb0vxckiNukxwh/H9aTBTVGjXxIYFkJN4hI/EO8SGBVGvUxAXdpCQvl6SIMJIiwijJyyU9Llp4LziQewnx3EuIJ+F2CFq1mpjAG5Tk5pAQHkpCeCiVyhYI5k3I/g1rmNajA/veWd245uzmztQXlwAw9cUlOLu74+z+yNqil5skxWt27uPn5KwmyXPjXu6mm1NMNRaaWvtb/nXi7emIxNaKUcPaP0ye/6BYWJjR2scBF2cbMnMriU4o4XpIHnU6A7fCCyivqCEoopDA8AKyciu5EpiDSq0jJkFGdEIp0QmlXAvJR6XRcSUol9wCNUGRxQRFFnPutyw83GyJ+HEq7Vvb09pbQnWtAZmihgVT2+LlLmbra1154Rlflj3flmeGe3IrSo5KW8+NSAWxaZVEJJWz+3gmy7Ym8luoguyiapIy1LT1suGFDUncjClDpdVzM7acuHQVcekqbsaWo6rWE5xQyZIpXuw7XcClUAU5JTXEpVcJ+jHl3Lmnok5nwNnBkl8+709CehVDFt5m59H7/BpUSl5xNdfD5ag09dyMUhKbWklsaiVxaZWoNPVcC5eTU6glJFZJSKyS3EIt18Nlgv0RMuJSKki8W8mNCGHt2m0ZOQUaQmIUxKWWk12g5mpYMSqNjpMXMrERm2Nra8G1sEJUGh1XQwqJS1ZwOfBfQy0lK8gjLuhmM/+WkXhHWAu61cQfygryiQ8W9O+EBHI/8Q5ZyQmN/vNOcCClebmkRN4mKzkReX4uiSGB1GjUJIUFk5V0h/y7qSTfDhbWQgKR5eeSHhXO3SjBPyeFCfopt4PJu5tCdnICKQ/0wwKRF+SRl5LE3ehwFAV5pIQFUavV8PvRL/hk2VzO7t5GWngINVoNmfEx9Bz9NAA+nbpRo1GTdjsIS7EY745dAOjQdyA5SfHUaDVYWluz4rPjeLbvyP3YCJSF+aSHB1GtUZOTFE9eSiJ5KYmkRwj756UlU6NVcy8mgnsxESgK80i5HYSVtZiU28FkJyc0sd/YApr7t/y54u5mj7OThMEDOjxMnv+gmJub4dvKGVcXCRYWwkOFmZkZ1tYW2NlZ4+Js+0Qllo/K74G5zJ/RldyoJRzaPooqdR3OjmLUGh32dlasWNCDX05MIe3WfCpTl/PB24ObJc86nZ51H4Qya8VlNu+KwGg0YmtjyfJ5/jw9/yJFpaZLWgAsLc3Z994w3twSwp1UAfTIylNxLbSgwf8UILG1xK+VPfOnduBedhUffXGH1R9E8OOVHBLTlcQmKZr4q+x8FfEpCoIii8nKU3ElWNjremghd1KVxCTKuR5agEpTx5XgArILqgiKKCIooois/CquBAmxJO1+01zotxvZ1On0zJnelGdeJtdw8GSTdr0/RZ60BrqlO8DY8J7RaDT+e5PA/jciEomMR5PzUFeUP2wWaWj+0KuUOLlJqWkonxA3NJdIPTypKi/D1k5Atqo1ahycXSiXy3Byc6dGq2nQl1ChkOPsLm2m7+zi2kzfzs7epL6+XmeSCu/xp/5yhZwZAR0bX/+YdL8RiTYTiUyixxUKRYtJcbPf18J6S0eAphCMvxFoU+t/DQINEBp+nxVrzpMc9sgMpD+AQD8q1dU69AYjEltLZAotHu4SFGUaHBqO0lRqHS7OYkrlGtydrdBohSYcQV9odpSXVuLQMPFr8pLLvP6iP/17uuNqW9+sucTNwYiyog4HyWPNiKVVuLtYo6nWs/3IfeLSKvl8oz+D54cSfnIgraTWGAxGNh/I5Eakks/XdmKQv0NjM59EbIZMUYvUxRplZR0XAuXs+CaPd1/yY9HUVsjK6nB3tmxsXrR3liAvq0Pqak1kUjnnrhXzw5ViBvZwYturnXFxsMTd5WGzo53E6mFzZEUdDnaC/eoaGpsppQ32ixAJzTENzZrKilocJJaIrKxRa/WNzTT7T6ShUteza+OgJs00yvIa3t0Xz1en0/9yBPq7+LvYOzs381fWNrZUKuQ4Peav1KoqHJxdqJDLcXRzo0arpd5gaPSfTm7uqMrLsLGzp7be0KQ5z8HVjVqtFr3RiLWthCqlAkc3d9Tl5Yjt7DAYjCb0hebXB818jm7uqCvKMRcLPrNWq0Hi6ETh/btsnT6u8dp23BDKXxxc3alUllFfV4e9iys1DfpVSjkSZ1fKivKxc3bFysYWVZkCB1dhf5tH4oXE0Ul4z8WNumrBZz3Qd5VKTerXVCpxcBGuFx42I/r4PDzefyB/I9Am5E8o4UhLL2TUpB2UZD7sx/kjCPR/aweY7oX5Awj0wjd+Z/QwXxY93x2FQoWrsw3K8upGf6vR1uPk2MIE4QbZf+QO3164y43TU/Efe4rgczNo29oBo9HIzgOxHP4umfOHn6GPf9PY/6gdp3/OYNXWULauHsDCaR0QW1sgU1bj4WaLsrwGBztLjAY9Ko2OiqpaPj2RwtnfsujZ1YWNK3sypK9HE3/laG/N482CUlcxmuoG/2z7cP+yqvpG/uzG5ni5Fi9vlyYPJrsORHMnRcapw7ObfQZ/BQJtvmXLlv9SYevWre8BKuB74B/AV8DJln62bNmS+2cZ9z8hW7du3TJi1jwOrVmJqlxJZkIsv375Of7DRvLth/9A4uDAxa8OEB90EytrG/avWsmQiZPZ/epSKssUpMfFcO6LT+gzcjSb50zHu207Lhz+gtjAG1iJxZz9fD/dBwxi18qXqVQqSY+L4ezn++nYsxdbFs3Fp117zh36nJhbNxDb2PDB8kWMmDKVD5YvpkKpIDU2mrt3YmnVrkOzJLpCqWiyZmMroVwh525CPM+9uIRRz05vfE8kEmEjaZ6Em1prSVq6C5/EebbkgF0tW3CeRtMd0SYdYgtJZMu1UE9QzvSnzBB6QjtM2t2SzaZRq9x8JWGRObw0b8Ajqi0k8i2sf3I0npNnU7ERWzDn1d+YOakjL7zyK6WKasJji/nosygmjvJj9PPn6drBhZ0HY7kcmIuN2IJ5r19lxjMdWL8jnIzsSiLiS7l4NZd+AW68/m4YHdvYs+dYOldCirERm7NwfThTx3ix4J1o5OW1RCaWsfvYPcYNkbJmdzKOdhbs/yabi7dKmDbak22H7iG2MuP3MAVVmnqiU6qITKpk5ih3lm5PR6XV83OwnOtR5Yitzdj9bR5DAxxZ9EE6raRiWntY8/H3BdzL1bDtSBYVKj0nfikmOL4Csdicl95NZOooT1btTCGgsyO9uzoSn1bF4bO5fH+5iM5t7dj/bTZXwxXY21rw4uZ4po72YsHGOBTldUQmlXPgdDYjB7jxzPIw2re2Y9/XGUQkliESiVi0MYapY72Zv1643tRMNdu+SGLCMC8mLL7BrIlt+OBAEoWlGsTWFixYHcj0p/2Y82YgA3tJuR5WyJYtW/6yvpWtW7duKS3Io/uAQc38m43Ejt2vL2foxMnsesQfXjv9Hd0HDOYf8wT9nw5/QXJ4GOYWluxftZJBEyez9/XlVJUpyL2XzvnP9tBz+Cg+fPF5vNq05ZejB0mNCsfCwoKDa1+j//hJfPHWclTlSpLDgvn9xGF6DBvFrsWz8WjTlpAffyD8lwuIJXYcXvc6/cY/w4HVK1ApFWQlxvHbV4I///y1RbTt0RtZbjYefu3w7dKdYxveoPfYiZzZ/i7qCiXZiXFcPfo53YaO5LNlc/Bo14Hg0ydJDQvE0tqarze9Sc8xEzm/6z2URQVkJ8Zx7dgXdB0ygiOrl+Hi5cP1k4dJDQvEylrMyY1v0HvcM3y1biWqMiVZCXFcPtIQX7ZtwM7RicvHDpIUcgtLazGH173OxAWLm30PLYEUT1K/3FIya/4E/rulPVpCW1uKDbbmzddtzEw0BQIYWziBNeWvWooXLfhNhULFxV/jeG35uEdUW4o5Lay35E+fJEY9Yt/V4FycHcUM6OXJrOW/MWaoL7NX/o5cWUN4XAnHf0hlxjMdWthHkI8PxzF3WmcG9/Xiwm+Z9OjqSvs2johEIoYN8MZbasu8N64itjJnQC+PR76/h3b4d3bl2XFt2bgzgm8uZFBQouH/sXfeUVVdzd//XHrvvVhQEaWDNKkqthh7jLEkj0ajxpLEHnvvLRp7L7HHGnsHpCpIEws2qihFqnTu+8chCHJvIokmz+95/a7FWrrvMGeffQ6z586e+c6Y2UE42egxZvZNMnNKuBX7ksUbohnQoznz10axdrY7oVEvWLo5Dg01BX6YH1Zjr4pLKwiMyGDJpmi6+JrTcfA5WjTRYOvB+5y6koSyoixf/nCdPl2bMvLHAFIyigiNesGSDVF08W2E/8DTdPBqhL6uSq056jFhXgBd2jXDUF+tzhp082/GvJVB79U+vksE2hf4CuiLEHQ8AewRi8XX3tck/psgEonE2+OSJBLgJ90Jw8rZlcw04ahU38SUe7fDaePTjgfRURiZC/IZKclYOToTczOA1q4evEwTnEEDEzPu3Y6gUUsrXqQkY9RIqPDaNGMKoRfP4tqhM9M37+RlqiB/Ytsmzh/Yw6dfDqVjvwE18utnTCbo7Gk8u3Rj5qadZGU8Z/eKRVw9fhTPLt2Yv+MXHt+NQ99E4KZ+khCPk5cPcRFhtHJ0JisjHSVlFXRrFfPVuv93XquPEei/iX8hAn3pWgLL193gyomRbwYbGIGuqKiiqkqMvLwMr4srUFWR5/XrMhQUhOdeVlaFsrIcRa/LUVaA8nLBma8jX1CEvLwM4dEvGfjdVdbP96Kdhwmi8kKepQnPuLGJCjejsvBz0uBW/Cua/N6QJb0IFxttboSl42GvQ/LzYvacTiU7rwzn1pos3/mY3XOtsTATDGvS82Kcm6uw+8xzNh5Lo5mZMhMHmmPbTI2wuFx8HLTrNGS5+6yIc2GviHlYgJa6HDdj8tgztxW+7saERL+inasut+/m0tjkd/2viU8sYMbPD9k4wxrrZkLk1dxIhZDYXNq76nH77isaV9NFJWWU4mKrzbXwTLycdElKfw0iEY2NVQi+k017NwMi4nNoaqKKjIIiT1Nf42qvy9XQDLyd9RkxKxxdHWWWTnHh5q0XdPA0ITw6EwtzdczaHvrgEegVJ85j6eBUz77pGpty/1Y49l4+dezh89QkLO2ciLkZSGtXdzLTUiivrMTA1Jx7t8Ox8/QhMToKQ/NGlFSIeXY3FnufdsSHBGHVxo2t0ycQevYUfv0G4tL5U6zbevM45g7XD+/j5smjOPt3ZcxPW7gbGkRLZze2z5xAxLnT+PYbSJtO3bD28GbDDyOJvHIejx798P18EE1tHUkIC8LS2Y3HcTGoaeugY2zC4zu3sHLz4nFMNHqmQkfZrPRkmtg48iD8Jk3s25CbkQ6AdrV8SzcvkuJi0K3uBZCVnkITGwcehgfT3NmVnOqGKdrGJjy5cwubtt48jbuDnqmwPllpyTS1deRJZBgtHNuQlS7sL7ompjyMjMC9Xbt6z+FjBFoC3kPqpl5mAAAgAElEQVQEOvLOU4aN2UF0yMI3g/9iBDo2IZN+I88ybZwLQz635nVRCcpKchSXVKAgL6xlRYUYRcU/DujsOpLAmSvPWDPHG+dPDvEsdAiqKrWKC8ViHiflMXDcJYwMVNi0yA8TQ1UksRIXl1Qwd1U4j5Lyqays4kb4c37b3pW2zoaIqyooK69CWUmw/yrKcpSVVXDswjMmL4lg7veODP/Cqnr+cohE1JMvr966au8XJeViFOSFe6wtr66pXs9nmbMyhJy8StYt7lL3M3ElIqNF/yyNXY2gSKQE9AG+BPyB58B+YK9YLL73vib0b0MkEol9Bw7HrfcXJN4SnLgWLp5c27OJwdPnc3brOizbCIUkD2+H0W3k95xeu5ROXw0jIVSgUmvt4cW1g3v4/IepnNi4hlauHgDciwjldX4e148epO2nPWnp7EpxUSGHVr6hJ+o8+D84+flTlJ/Huglja8YXHTnNs3t3KS4s5JcVi2rGu345BCsnF9aMH1Mz5v1pLwaMn0JsSCAATl5+HNm4lm/nL+HATyux8/BEV08fK8f6rS2lOb+SDJ+cFCMprRJcktG31pBCBFN5Q8q4FKe4IfRxDYGMFEdZRsqR2fuITEt1iv9+lD0xMRWfjrN4em8jSkrV9yb1C0UDUCnNCZc8XlVRwrJ1Qfy0NZjNK3rSu5s1AHOXnsXVUWgccCMkhdkT2jJzyQ1GDbblarCwoXbwNGfZxtusnePFgp9v4+tuQmZ2MWNmBqKvo4SxgTI7lvtxLURwdNq3NeHnnbEsmdyGOWvv8DS1gKBbGUIxyjIvZq6OYvI3tlwPew5AO3djdh17xKxxjgz8/hrnA4TCGB0tRRZMcOX7+SFMGWn/Rr+7Acu3xpGVU0JZRRXjvhJ4R2MSXjJ6YEvGL45k8vDWXA/LEOQ9jFmx7S5rZriwaFMcPi6GyCkpcj0knZljneroV1NXwt3RiGWbIlk3z4cFa29hZqzGwnW3kZUVMXV0G+7EZzL9OxduhKTy7bRrH9yBXnougDPbNvDljAWc2rgGq2r7lnQ/gfYDh3Bg8Ww+GTaahPBq+9nGg4s7N9N/2jzOblmLZRt3KsUiEm+F0nXEdxxdNoeOQ7/lQUQId66c49HtUAwaWzDpl9OcXreMm0f31Vx/xskALm3/Gfde/fl5eL+acYeOn9J/5lLO/LyM4F/fyE87cYNzG1cQc/lszdioLUe4dfow3SfM4drOn7Fw9kAsruJpVDjtvx7Hb6vn4fvVKB7dCgGgeZu2BOzbTPcJcwg9uhej6jzo2vLt/lNL3qUtN/Zsps+UeVzevo5mzsJ+8TgyjE7Dv+ParvW07dWP++GCvJVbWy7u3MR/Zi7k9KafaFm9ng8iQunx7Q/oaqkh+5ZNfR8OtFQWDil2/Z9uAibNCW/IHiXNwZdGp5eVGUPzFj48exqMlpZQDCzVYZcazJGy70iTlwAxMmzcepm5i4+zaskgvhzgJTiDkoIu0vTWGn+V+xo779XIy8vSvVNL1i7+9K05C3tAWVkl81cFsHlvJNO+8+KbQfaoqylIDaxduPaYrgMPMXGUG9O/90RHWwI7VfWePXzSJZo11mLaOOH0U1wpZe+S8BxFclJOxiXsz4+eZNO5/z5UVeQZ+oUDI750QlVV4YM40O/8FyEWi0vEYvEBsVjcFWgErAU+AeJFItH69zWh/2WUFhdz/ehBAELOnKK4qBBlVTXaftoTgPafD6wh41fV0KSptVBFamLRDHVtgcJOWU0N7x69AfDvPwhFZRVUNTRx9hNogDr2H1TTLvcjPuJttGhujLOjBQcOB/2j1y0sLGX9tmBGTTyGd7eN6Fou4uL1RG5fHl3jPP9V5OWXoqoiR3tPM4pLK2ty5SRBXl6Gb/q3ZN73Tjx8mkdL/2McOP2YCYvDKa+oH21p1VyLRZPa8Cy1kO2HHjBpcRi5+ZK/cETFv2m7+1cgFosFDu8/CGo8f1FE6vNCvuhpibKSHBPmBbLv2D1cux1k1oqQv3zt/waUFBXy6HYoAC+TnlD4KhsFZWVaewoRWBPL1qhpC5SgqpraWDi4AODYqTvyioLNU1BWppVX+zry8opKOHTqDkATexdUNP//7Fr6EX8OPT0devXqxLZtB//R65aWlrNl5zXGTtyLX9fF6Dcexa5fAgm+MoevBnr/5QJEgOycIkQiEVtW9aWsrIKmjaW//woKsiyc1p6QM19z/eYzTOzXotJ0OV0HHCS/oL7d69zOgrBzQ3iZ9Zpm7hsZNv4M0fEZEnVHRGfQpV2Tv3wfYrGY5y8KqKyUXlQbHfec2zHpTB3bFovG2kyYcwk1i6VoNl+GhesGqb/3V/GXaOxEIpEC0B0htaMbcFgsFg96z3P7VyASicQrwh+THB+NTvURXk5aCo1sHEiNDqO5YxuynwtHcrrGpjy8HY6zXzsex0RhYC6kWLxMScLSwYmwc6dx9u9MVpogr2dqyvrx3xJ17TIunboybN7SGnnjRo15lnCX1m7uNSkihqbmRFy5gGe3ntVHnIL+zPRU9E3MeHYvHms3jxp5JWUVUh89xNGnHQ/uRNakfGSmJGPl1IaowOvYurXlZVoKaqpqNe3Ha+NjBPot/I9FoBFXMnPuQRQU5Jg9vTqC9w9EoJf+dI3TFxIY2NcRaytDrC11MNCv72yWFmXzLEWge2tspklAaAodPY0Iv5OBRSMhIvQkOQ83RyOu3kzC09kYc/fd5OWX0ayxJv7e5hw9k8jKGe74e1WnMCXn42qjzeWb6fi4GpKUJhS9NTZVJTjyBW1s9ej/3Q0KisoZ0rcFTU3V8Pcx5/LNNHxcjUhKE1JZ5OVlmbMmkuuh6Vi30GblTHcM9VR4mpyLnZU2Og6/kBk5kNQM4R0115cj6PZL/D2NiYh941wnpb3GxU6Xy8HPMdRVYvfxx8Q+yOPuwxwqq8RUicFARwklJTkWTfXAQFcFh9Z6DPruIrdjM7G10kVNRR5DfVV+PZeIv3cjBve2QkNNgba9jnzwCPSsQ6dpZudIfHAALV3cya5OUdA0MOZhZDjWbX3qpMBlJKfQxNaehJBALNu4kf08jYpKMfKKSrx4+ggrDx+exd1Bz6wRJ9cuIeK3Y3h+Nghb3440d3Yn53kqBbm5mLW04XFUGC3dfUiKj0bX1JzC3BxKi4pobOPAg7BAmjm5k52eQlG+IP8kKhxLd2+S46ORVVJFVUubnPQUzK0dSAwPoqmjG68y0hABWkamPL0TTgs3b1LvxqJtYgpQR76Jgyt5L4STh9ry6fdj0DEW3rfs6v3i8a0Qmjm68qqark7b2IzHUWHYe/vW3C9AVmoyTWwdeXo7FEtnF7Kq11PPxJT7t8Lw9K/fivhjBLo+3kcEGnEKP/20nadPU1i7tjpV9h+IQG/ffYP1W68wZJAXNq3NsLFujKGBZn3H+S9EoFt7rODR02wM9dWYMaEDs5de5NTewXi41GIakbYHiCspLCpjyvyrhEWl8cM3rnRt3wx9vfoR4cysIrbtj2bTnkjsWhmwfnEXmjbWqtmzNa3W8zR0WE2U+l0i0E+S8jh0+gFhUS8Ji0ynSiympKSCpo20kJUVsXhGR7p1tKSiopIFqwLY9ksU3u6NUFdVQE1VgSuBT2hsrsn+jX3IzimkufvGf7yRSg1EIpEnQgpHP0AROIXgQF9+XxP6b0BBdhZnNyzHysMHgPuhgXy5aB1BR39BXFXFrfOnAWjTpTtHV86nha0tR1cvwdbbD4C4oBvom5oTdPIojn7+qFU3RvH4pAfyCoosO3ON3fNncOPXQwDEBN1gwtrN7F40h6Ez53HzzEkAvD/tzdGfV2Pj7skvKxbh4CNEYp4/fcKXk2ewc+Fshs1aQNDpEwD49e7HjgWzWXjwOHuXLcTJV4jExAQHMmXdZrbOm8nIuYu4ceo4TVta0f/b7/6ZBf2I/ypExz5lYH/vf+x6gSFPWL0pkFO/DMHDpYkwKGWTCbmdxt6jdwH4omcrxs+5xrVDvZm2NITOvsIXwosBSRza0JWt++9SWSlGV1uJJmYaLJjkxqSFwcwY68io6UHMGOuISCTiYmAq+1d7M2lpBKumuXL47FMAPv+kKTuOPsTGUofy8kpMDFRYt+cuT5ILCTveg0mLwlk1w41DZ54AYGelw7XgNJZPd2Pa8lt4fXaajl6mqCrLMn+CM5VVYgLCX3D84jNh/t0aMXlZFBd3dWDmmmg6eQqpKaeupjKwe1O2HkrEzUGXPcef4O1ixLp5nixef4ejm/z5asIN8gvKWLsjhryCUgqLKkh8mkv3jk15mpyHnJwMr0sqycwq5ruvHZi8IIhu7Zt+oCdYFxd2b+XLGQs4sHQeA6fNJezsKQDcuvXi0LJ5TN55mGNrlmLj5QvA07vxfDFtHkdXzufzyXO4df40T+OjyXiSiLK6BjOPX+X0z8to1daXRq3teJn0lC4jvmf9yIH0mTiLyIu/oaKpTWlRIafWLGT0pgOcXb8MKw9B//3QAL5a/DOn1iyk14RZ3A+/SVFuDmUdu3Pqp4V8u3E/Zzcsx8avC6XFr3kYFsiAhes4u3YR3X6YSULAJSrKSrHz/5SzaxcxfMN+Ag9sw9RKoMKqLd994hyiLwj2ua78DkwthZOUB2GBDFq4jgubV9N11HiiLv4GgGOnTzm1ZiEW1tacXLuM1p7C/BOCAxi2fD1XD+5GLK4i/Jywnq5de3Bo2XyJDvRHfDhExyTg5Gjz54LvCXdinjFr4TF2bhxO104CB/j7KVIX0LOrNeUVlayYJzRCaWSiRt+hB3gaOQlFxT93AdVUFdiwtAu//BrPyQsPGD/nCmFnh9DCQqeO3POXhcjKiNi0tCvXg5Nw6bqTqWM8mDjCHhkZEbKyIomnfG/jZkQaMQlZjBliz7XgFGYuC2HeZB82L++KqbEG+QWlPEvJZeGaYA6diKOJuRZDvjvB7eh0RnzpjLaWMqWl5ZSWVfIyq4iDm/ugpamElob0k8m/incpImyO4DQPBpoAgcBe4KhYLJZcZfR/GCKRSLwy4gmv83JRrGakKC0qQkVTi8qCHIEmqZqWSLGalsjQ2KgO7V1mShI/dvOr0bn6cggaOrooqqhQ9Cq7hlaphiavqBAtHR1yszLR1NWroclTUVV9Q/NUi/ao9HUh6lp1aaEAVNXUamjvasuXF79GXasu7ZSSvAKKyvXzlT5GoN/C/1gEOi83H3PLUaQ92oq6evXz/4AR6Bs3ovl82D4ObBmIv5/lmw+kPBtxee5btHevMdCSJSe3BHXVujRGGS8KMNBT5tDph+w/8ZDfdn3Ky6xiZKigZfvDPI/4slq+DG012Tc0Sa+rafJq0yTlltbon7k6kpuRLxn2eUuG9mvB6+JK8vLLaNvvNL5uxqQ8LyI6IZvPu1lwKSiVTQs86OxjjnOPk7RzN2bKCDtUlOVQlq+soW2qrb+x33FEiPhhSCtGD2rJrDV3OHw+iRuHuqOtqVg9nxJeF1fi1usEZeVV5BeWYd9Kl+4dmyISiVBUlENdVQETI1V6d21BzqsS1FXkUGy2/oNHoDeExtWjmQOQVVR6QxuXl4tSNSNQQV4Batra5Gdnoq6jR1ZaCrO6vfkCt/jKbWRk5VBSUaVSLK6hmftdvqz4NRWVAq1bYU4W6rr6FOXlolRtn0uKqmnjsjNR09GjuKgIkUigjftd/nVeLiJFFUSiN/a8ICcLNW3dOjRzha+yUdfRk2j//0i+pODNfH6Xf139WR35nCz0jQyE+Vevz+80dmX5ORJp7MzNjOs9h48R6Pp4HxHo8rInGBo5ERd7+Q194AeMQEdFP6NL7xVs+mkIfXu6vPlA2j7yFyLQQaFPmDrvHCEXhJqqyvISlMzm8Dp5LvLVhXl/FIF+G2u3RbDjQAyTR7szqK8NMjIiiovLsWu/DU8Xc5LT8oiMzaBnZ0siotNZPsOLHp2a0WXQMUyN1Fg9xw9NDUWpEehW7faRmV3M98MdmTjSiZ+232H5xkiuHh1IG4c3TVMKCkux8dtGQWEZhUVlWDbT5bNPW6OoKIuiggyKCnI0a6JNl/bNa+7lfedAv0sE+iGQDxwHhgO/09QZiESiep0xxGLxk/c1uX8L+2ePx7FzT55EhQFg49eZcxtW8NXcxRxZNpdW7p4A3AsLZsCMhSwfNpA+4yYSeeUCAM7+XdA3a0RmajIGjRpzN1TIN40PvcmwuUuY/+VnDJg4jVuXBHmXTl3YOXc638xfwprvR2HXVthcEm6FM2zWfGYP7MugydMJv3QeAI8u3di3fDhTN+5g1XcjsW8rRMqTHt5nwA+TmP5Fb76aMoOwi+cAaNulG3uWL2Tmlt0sHTMcRy9fDE1McevQ6R9a0Y/4b0FU9FNsrRu9cZ4/IMRiMRNm/cbmlX3rOs9/gKoqcU3r2aoqMYb6qpQXF6Gtqfh7t1m0NRWprKzCUF+FysoqdLSUKK9mBjHUVyEqJg0TQxVkq6mxtDUVqSgtxVBPmcrKKlSU5d7o1xN0aGsq1OhfMN6JX04/YdnmGHS1Fejh34TpK2/h7WLE3tXtqaysIjm9kB7DL5KTW0qr5tpUVlZxdkcnxi8Ip9fIKwQd6UZVeUXNNWvrd7PXw9lal70nH7N4cxwaqvL09G+CqrJcrfkooqUBR7d0YezMQJqYa3BwfWcU5GWENsKycojFYmRlZQR5LUWqKt5/q1pJyHj2lIPLhzJ+4y42ThiNtYcXAI/jYuj7w1SWD+1P3x+mEnVVsG/NnNy5vHszI1dvYfuUsbRy96R5G3ce3Q7DvUc/dk4dS49xU4i5fhFFNXUs23hwZv0Kvl6xid3TxtHSzRMZOUUSbl7js6kL2DBqAN3GTCbu+iUAbNt1YveGFQxZtom908dh5dmOyvJSEiNC6DNlPhtHDeSTMZN5EBFCaVEBrX07cXH6CgYv3sjBWd9h6eZNVVUVj24F03PyfLaOGUiXUVO4G3gRoI78mZ8WYmghcOvXlv9kzGTibwjzsfHtxPmNKxi6fDN7p4/D0k3YLx6GB/PZ1AXsmTUR736DiLkm6Ldv35lT65YzZdt+xFVVKFQHNsRVVWjq6SMWi/9WDuxHvDvu33+Mvr6uRO7tD4Ef5xxh4azP6jrP7xmqKgqUlL5xVl9mFqKjrfzGeW4gxg1zQV9XhcVrQygvr+TrgQ4sWx+KRWNtdq8Tag0yXhbS/csjPEl6VZN6d2D9J0xdHIRTl194FPy1VP1ujkYYGahy4vwjlq6/hYqyHD07W6KtVXfPUldT5PTegXwz8TRqqgqc2P0FmhrV9V8foG23JLxrCocGMAT4zzvI/p9upAKQnZbKzvFfY+nhh2ufwagYmFFWUszcHu2xcHJDr4VQ3NekQszRn5ZxNyQQVV19HPy7AaCoZ4J3///g6N+NhJAb6FkK8hblYirklLFy90FF34wmjkI1qoq+GU3sHKmUU6almzcmrYRjnCqRDCiqYO3pg6axGS2cBXldEzPsvXyRV1bBtq03Te0EeUUVJZRV1XD08cPQvBHWbkI1t0njJjj7tBc+8/bD0t4RdXUNqiScPkgaA8kPtaFcpNKiARIhkvJqyqlLHpfKp9kA3aLGEsbM313vfzmePXvG8DHfM2niSFCqzQP9WPIvSDNCkqIjEmSvXYuipFyWXgMGS6yslgRZCdEbeQnRERmAytfIAKqG9yitSkTeUHDksitvYWZugoLRm7bL8tXRmHqHeFWl9cYUgZFjXLBobc/I8Yf5pNcnuHqUMmXOKYbNjGXlwt60cFQn5Gob7sSk0MxeiHCYG8Evu1yxcl3E7nPFjBoieVMc+Y0yE2ae4vrpH2hkVl3QU+tE4/e3My+vmO/nrcWzrTXrV36BrGytNaz1Dv/+L5n3Qa34Drh4YA+P7tzmwMolNHPxxKClLZd2bODO5bOUV0FzV28U9Uwxs3Ml+Og+LuzcTCMbByrklLBo44mBpR3dLe14dCsEr/5fEbB/O+pGZjRxcEVGTg5NY3Ms3b2RVVKhhYsXplZ2iIGyslLkVFSwdPNGy9iMJo4uVIlB3dCM5q7eiBSVaebiiX4zKxCLqagCkZIKzV29UDc0w9TKlqrKCrSNzWnh6o28igrNXDwxtRLss0gkQklVDUs3H/TMzWjmJPyNGJiZCzZbXZWmNvYYNRO+DMrLyqCpqUFrD19MGzWh0kWwt6ZNmmDt6YuutgZ2nj40qW7NrSQni66OJpb2DjS2sKDqtdDiu7GFBQ4+fmioKtZr2S1c593tZoWUroWS7LqMFNnyBjjr0vaLDwlpkemGyL4sqr/OOS9fMuGL8bTvPZCwrDfpCQqynhJ1SNvnpH3ZeVv+Xmw0sfdfseLIBu6J6/7tGkqhpdORvVl/UBptXvkrAJTUqygpFYOiEL1Nz8nD1EQXFGvR2DbgFFIGGDjYgpbWtnz6+c/07tsJO0cbth2Io9+oC6xe3B/zJk25ccGSoJBEbJyFL5w6qrB1gzV2notZtCmRmRMlN64ePsSPL4bv5+qJkVhZVsdoJew5paUVjJ1+gGZN9dm9vn/ddBRJUXnZv17gLQ3vsqsNrfXz9Tv8/J9HclwkAA9DbyCnoEjsxZOkJsQA8CQqnIwnD8nLzKCJrSPhJ4Rq3YjfjiGvqIiWgSHxAVfw/vwrIs4dx9bXn7yXL8h7+QJbX38Cjx2g41cjiLlxGS0DI7QMjIi5cZn2X/yHi7u34tiuI69eZvDqZQYOfv6c27WFT4aOJOraJbQNjdE2NCbmZgDdh43itx2baePfmZwXGeS8yMDBy4+T2zfRa/i3RFy5iK6hMbqGxoRdvkCfEaM5vnUj7h27kJ3xnLycd28H/hH/G1i5ciV9+3Tl22+//Eeud/JUMN26ukl0Ct4nlJQUyMwq4MWLPAYP28iMBScwNtL823o7trPCvU0T5iw5x5CBbiRGziUqNoWgEOELh7aWCu19W741F3nWL/+MnzbfIDdPcrpRz09s+Kp/G3y6rSc/v0Tq9avEYsSIKSgsoaREWkOIfx4Rvx0DIPjYAZraOZHxOJE71TRxoccP0OaT3twNvIK8giL3gq8DkBwfzaVta2nt04G8zAzys17g1LUnAfu34ztoOAmBV9HUN0JdR5+EwKv4DhpOwP7tNfIF2ZlYe3cgcP8OfAYN426QIK+pb8S9m1fxHjiMoAM7aOXVgYLsTPIzX9DKy5+bB3bgNXAY925eQV1XDw19Q+7dvILXwGHcPLCDVl7+5Ge9JC8zg1ZeHQg6sAPvgcN4EBpQo/9u0FV8Bg0jcP8OLN28yMt8QV7mC6x9/Lnxy3b8Bg8nITQATQNDNA0MiQu4QofB33B1/w7s/TqS+zKD3JcZ2Pt15PLerfh9PriOPY+6dokuQ0aSkfT0X3umHwEn92ynlaMzQydM/Ueud+3saTza+aMgpRfC+4KSkgKvcl+TmZnPN2O3MXbSAYwN/759dHZsQr9ezkyYfpg+PZxJvLOIjBf5XLgSD4CqqiJdOtbNJReJRGz9aQBb9wST8UJyoxxvDwumj2+Pb49NUmUAqqqqqKqqorColOJ/yT7+6c4mFov3NOTnn5j0h4Zjt74ANHF05VV6Mil3o3Hs9hkgpHM8T7zHk6hwSoqK0NATviHpmjUiOzWZ5Lux3A8LorSokHshAWSlJpN4O4zE22FkpSaTkhBP6esiEkIDeRYfw7P4GBJCAykpKiQu+AaZqck8iAjlQUQoL1OSiQ26Uf1ZIE/iomt+iosKiQ68wYvkJO6Gh3A3PISXaSncCbgufBYUQGLsHRJj7xB9M5DiokIiA66SkZxEbGgwTxLi/7X1/Yh/B8+ePcPL68MdFb6NMd/2ZNeeizx9+vyDXsfOxpzmzQwxtxqHnq46E8d2YtJ3nd+L7mnjO7J643UeJL5g7tKzJKXk4NamyR/+zqddbOjcvhV9vtpDWZnkk5Fjv8Vi0UQXFRXphS3aWiqEXJpC2vNcps45/ndu473CqDqFQUPfgJKiQlIfJGBqKXBfa+gZIKeoxIPwILLTkmnm5AaAS/d+PI2JJCcthceR4TyLFv59PzSQ0qIiHoQHkZIQS8aj+zwID6K0qIj7oYE18ikJsWSnpfAgTJBPDL9Jyr1YUu/Fkhh+k9KiIh6GBZKTnkLavTie3gknJz2ZxPBASl8X8SjiJs8f3Sf1XiyPIm5S+rqIxPBActKTSYqN5GlUODnpKTys1v8sNpKUe7Gk1NL/ICyQnOdpPI4M43FkGNlpKdwPDaCkqIinMZEk342tsf8lr4u4HxFKVmoyD26F8uCW8O+7wYJ8fMgbex4fItj/vKysf+2ZfgQ8T0nC3s3jH0uX+ew/wwi8eI4H8bEf9DqNG+nR3rc1ppZjqawUM35MR+ZO6/FedE/+vgt7D4ZyJyaZuUtOc//hc1yd/7iY2cPVgm++8uTTAdspKpIc+T72WxxmJppoqEun5FVWVuD6qVHIycowauKxv3UffxV/icbufxkikUg8+VQoiEQoKAk5NwrKQvGfkrwIkaxsTfHf78Ui2c8SMW5mWadYpOhVNhq6+hTVLhZ8XYSOrk5NcUztYsTi3PrFhZUlRRKLdTQ01N4UF77KQVlNSGuoKC5GQ1ub3MyXaOrp1xQXqqur1xQX5r/KQUVNHXlZWWQlFJw0JP1CSVonKynjSvL1nQWpdEJVEo6q/ggfUzj+FD179qSjfxvGjh1S94MPlMIRF/eEzt2msWLpCAYN7PBuk5RUgCPteLHWMZ1YLCb+bgq2No2gSkLktyEdLKEmpeLrsfvR01EjPSOPKjGMGuqFj2eLurIS7r2ysoo+g7diaKDOltV9627KIlmCQp/Qb+gepv3QgXEjvJCRk5yTnvOqhFauczn/6zicHGrRTkl6h0UKiNS/+uBFhOsin/L88UNMmresY9+eJydj2MSippjvd3tY8lqgDVT/3R6qqSEWQ9nr6uK8OvJiFJRV3xQLVstXVFZRXvy6WgGl2dYAACAASURBVD4LNR2hmK+yqm4xX1HeK+SVVYViwddFqGhoUZiThepbxX9Fr7JR09Hjdd4rlFTV6xUXauq+VSyYk426rh6lBXm1ir/fFC9q6+vXkS/IyULf0LCOPf+9OLIkL7uOPf+9WNDYuH5nWJBsT6UWADaglbe09IaGpEj8X03hkLR+S38YjZGpGcOnzKgzLm0/+7spHEmPHzGiTzcGjxrLl9+Oq/OZodL7S+EAwT7G3U3B1tockVjCqVdDC8mr7ePkmUfJzilEXU2Jp0lZjB3Rnk4d3uL1l6BbLBYzdPQeCgtLObLrq7qnlOJK7sSm0WPQLr75yo1pP7RHXkqU/nVRMa3brmTH2n508K1llyXZexllRHpT3qt9lJ07d+770vU/gXnz5s3NzUhD08CIiGP7eHI7GFk5Oc6smoutfzeOLZpOQXYmyXdjCD68h2bO7hxfPht1XT2CDu/lQXgwMnJynNu0CkuXthxcMJX8rEyexUcTcGgXLV092DJxFDqGplw/uJt7YTeRlZPnt42rsHJty67Zk8nPyuRJ7B2uHd5HKxd31n43Al1jYy7/spv4kCAUFBXZNudHHP382Tx9ErlZmSTG3CH80lks7Z1Y+f0oDM0acfHAXuLDQlBQUmLLnGm4tO/IxplTKMh9RV5WJubNWtS7/4YYnIZUQwPISTBEuhJauAIgTpY8LhV/To9TA5GUgxeRloSxv3/U9d8CW1tbBn85nJOnLtK+fVu0tavvV/xKym9I2Rwlrl9d2YSEJNp1nMTqFaPe3XkGKUwj0lhJ3hzbiUQiDA2qn5WkL1Piukd86c/ziEtIp7i4FBkZEfJyMmS8KODew5eE3U7i4rWHHDwWycFfoxg5xJPte0O5eHwsLZrVq5tG0jrJyIj4tGML5i67hJG+Oq1b1nKORDI0Ntem1yc2LFp1hW17wvispxPKSvW/YE6Zc4IWzQwZMfQt2kEJz0CMLPOWnGDu3LnzJEzyvWDevHlzmzq04dRPi7H2alfHvt0NukYjazt2Tx2NpqExwUf28jAiGCUNDY4vn00rz3YcXTyN/OxMUhLiuHl4F82d3dnz42i0DUwIPrqXlIRYxFVVHF9RV/75o/sEHdhJM2d39v04Bi1DE0J+3cejW8HIyMpxeuUcWrb14/iS6RQX5JEce4fQo3to6uTOwRlj0TQ05s6FkzwIvo6snBy/rZqLpYcfJ5dOpyj3FSnxdwg5ugcLJ3f2Tx+DtpEpwUf3kngrGFlZOU6umIOVpx8XNq0mKzWJpPhogg7vpkUbD3ZPHY2OsSmBh/bwIPwmsnJyHF06GxuvdhxaOpui3FyS78Vz4/AeLF08OL52Gaoamlw/sp/7t0KRV1Bg/+LZeH3aq17HQZBsTxvq/Epy6qQ5eg2JwP4b4beGzE+arKR1amFjx9IJY7hy8hjWTi7oGgh/s9L2s4as9dvyz1NTGNDBk28mTGXgiNH1fkdNTvI1lWUk7IvSWD+q3jjKv9tHoZuhJPtY18ZmZhVwJyaF4pJyZGREKCjI8TIzn/uJLwi//YzL1+9z5MQt9h4MYdzIDixfe5FLp8Zja12/t4Qk+y0SiejaoQXrt92ksqqKNg61A1VijA016N/LnnVbb7JqYyA9u1pLjEYvWn0FWVkRP/7wVj61WEJKh0ieecsvv1f7+DEC/RZEIpH4y9V7MLd1JjdDIMDXMjQlKfYWrTy8SbkbjY6JEAnKSU/G3NqB5KhQLBxdyKlusKJtZEpqXCQt3TzrEea3dHQmITRIaChQ3QBF18SUZ7GRWHt41WnIkp+RSgt7R2JvBtDa1YOXaUIrYyOzRty7FYa9ly8Po6MwNBf0Kykqoq5Vv8uQJEe3IZEKAEVJEWgplEnSil4aQqWkJ82xloKssnd/j8sr/36FbkO+aFRKKdZpKBpS9CkNJa9fM2v0cNx82/H51yMA6fciTXdpRX0DXPbWmm5cOAeAb6bPkahD2iajIuGdkkbZ1ZDiqrffp8F9e5H44D7iygoyMzMpKCjAwMAAc3NzzMzMMDAwYOvWrSgqKqKlpcWGDRvo27evRN05UtLvXpRUcnjnVqLDQ1myZVfNeEVVFTERYYQHXMOrY1cWjB/NhPlLcfH2rafj113b2LBkPku27KZt+zd8wJKeWZVYjI2m/IePQEc84FFkBK08vHkadwc9U8H+ZKen0sTGnnuhQbRo40Z2umDfdIxNJcpnpSXT1NaxjrwY0DEyIbFa/nf7WVEF2dUNR+6HBdHc2Y2c9FSqxGJ0jM14HBVOS3dvkuKj0TM1RyQS1TQo+V0+LyMNEKNjbFpHv75Z43rzae3mXsc+P7gdgXVbb5IT4tCvbkD1MiWJZvZOxIcE4uTRtsY+65uacS8iDCefdhLf87/jeL1PSPv7luYTNMTW/BuR6YZcU6rNKy9j+7yZ6JmY8vnY8UDDHeh3Ka4/vOlnUh4nMm2N5O54kuwgQBMJTqSO6KpEWamOtTRq1loYPmIVAUGxgJisrHzy8orQ09PAzFQfM1M9zMz02Lr9HGKxGFNTPWb8OICR33STMg/pFHm/Hg9h175rnD0xs85HsXHPOH4qjK6dnJi94CAjvu5E394e9VQcPnKDcRN3sXndcPr0dHvzQYXkoJBIc9S/08r7/yeYtLLj+o6feJWezKv0ZK7vXIu5tSMXN61EWV2T+Ovnib9+HmV1TY4v+pHGto5c2LyG7NQkslOTuLhlDU1sHdk/dzIqGprcuXKeO1fOo6KhyfG1y2jm4Myp9SvJTE0iMzWJUxtW0dzeie0zJqKqqcWti2e5dfEsquoabPxxPJZOLhz6aTkvkpN4kZzEbzu30NLJhfVTfkBNU5PQ82cIPX8GWbn3TxT+Ef9bUFFVpaWtPSlPPwzb5IO4GPauW8XZg/toV92i/r8NYrGYkKAAxk2czL1798jLy6OiooKMjAxu3brFiRMncHV1pUuXLuzatYvz589LdZ7/DG4+7Qi9cZXKt75glBQXs37RXH4Y/Bl370RKdVo+/3oEK3buZ/qooZw/duQvzeF949LOzVg4OLN3tmDfoq6cI+rKOVTUNdg7ezIWDs6c3rCKzJQkMlOSuLSrvnz09YuoaGjWk89JT+O3jWuwcHBm35xq+cvnuRt0DRUNTfbPnYyFvTNnN64mKzWZrNRkzm1eTVN7Zw7Mm4KyugZ3g67X2Nva8jnP08hMSa6nP+baJWH+teZzbvsGXqYk8TIliZPrV9Hc0ZldsyahoqHxxj5rarF9xkRaOLTh5NYNNfb58E8rsHRyYcf8mX++mB/xXwUFRSWa2diRkfzsg+h/9vA+Rzb/zImdW/Dp9n7ykD8EbgTGMGrEp8RFbeHVy2NUFJ/jZdoRoiI2cPrEPDp3dMbRoRkH9k3j6MGZjBj+yV+6jp+PDTdD7lFcXNfJrqoSM3/xET4fvJJLV6Kl2sf+n7Xl3IkfGT91L5u2XfpLc/g7+OhAf8RH/H+GzIx09I3e8JyKxWKq3kOUfPdPK5g8uB9ZGc+ZvX4brRyc/rbO2igpLiYnK5Osly/IzHhOxVuR8OyXL9m5bhVf+HsxdkBf1i+eR1Fh/V5PIpGIJavXcXDvbszMzJgwYQLx8fF1jHRAQAD+/v4MGDAAR0fHvzznxs2aY2xmztUzp2rGrp89zU9zpwvz2LqHC7GJOLX1kqrD1duXnw8eZ/n0SRTmS69K/4iP+Ii/j5yXL9DWr5uP/j7s42/7djHxs+6kPXvKuAXLcPFrQGrbO6CkpIzMzFxevHjF8+fZlJXVPRp79aqADZt+w6fdeHr2mcWsObvIzs6TqGv5km84fyECs6aDGPPdeiKjEuvax6A4/Ns70b+fL26uVn+58FJPTwMfr9bsOxBQM3Y9II5R4zYjIyNi7cphpCRuo8en0ovf2zg14/JvM5i14AgvXuT+pXn8VXxM4XgLIpFIPHjVbhrZOpP7QkjJ0DI05VlMBK3b+khM4UiKDMHC0ZVXGe+YwhESKKRwpAvyf5bCERMUQGs3dzKrjxSNzBqREBGKg7ffxxSOanxM4Xg3yIhEfNnZF21dPQyMTbBzcePQtk0kJsTT3Ko1zVvbMGrydMybWjQohePE/j3sWLmELWeuoG/0pnNauZR7r21wxWIxRQX5FBUUIC4upqiwgKKCAuQVFLBzcSMj6Sn7N6/n/PEjyMsrIJKRAbEYDW1tBgwfRWF+Pvdioom4eYMO3XryyWf9KczLY/GPExg8cgwXTx5DVVmJC4Eh9eaR/SyRPXv2sHfvXsrLy/H392fatGlcvXqVsLAw9u/f/6dr+kcpHACXTh1n59qVHLhyExkZGc6f+JWNS+ax92Ig6pp/nGNf+z2b8e3X6BkYMX7e4n89hSPxdjit2/pITOGosW/VKW06xqYS5X9Pmagt/yaFI5xWHj6SUzhCA4UUjudpNSkcjyLDsPLwkZzCUS2f9yKdNykcb/S/ncKREBJIazd3cmrZ5we3w7Fu6yM5hSM4AEePtmRWp6zom5qREB6Gs+/HFI5/Eu8jhUNORobFI/5DWWmpwP/t5ML1Y4e5H3Ub8+YtaNSyFX1HjaVJy1YNSuEIvXSetT9OYO2J85g2tagZl7ZX1k7hEOxjAUUF+WiJyyksLKAgPx+RSISrR1tKnv/KzxtOsveXy8jKyiAjI8xLSUme70b3pLiklLj4Z1y8HEXXzm0YPKgjJSVl/DhjB/37+XIzOJ6U1EweP9hXbx5Jz9LZ+8sV9vxymby817TztWPq5P48fJjK7n2XuXh2sfRF/h1/0uUwICieEWM2cTdqHXJystwIjGfQkDXE3f4JHR0pfR9qdL9JU5k0bR+5eUVs3zjqH0vh+OhAvwWRSCS29GiHS98vib9yBgDrDt24tH4xw9f/wuHZ39PCTej8lxgeyBcL1nFw+hg6Dv+OO5dOA+DYsTsB+7fyn0Vr2fXjWFq1FXIb74UEMHLlRlYP68/nU+Zy67wQlXLp0oNr+3fwzZI1bJzwLbbefoL+2+GMWf4Tcwd9xtCZ87h55iQAfj0/Y/v8GSzYf5yV343A0UdIoLdu44Kte33S948OdF38/+5Ab1gyHwBVNXUiQ4Lw7tiFrn0+58nDe5w+tJ+8Vzms3n2wju6bVy5yeMcWxGIxMrKyyMjKUlVZSWVlJVVVVdyNus2Gk+dp0qIuL3JtB7q0uJiIgGvcvR1B5vN0Mp+nkZmeTmZGOnJy8qiqq6Oqpo6qmhoqauq8Lirk6YP7qKip0X/YSPoN/QY9gzeRoZuXznP93G/o6BvQuFlzOnbvjZqGRs3n3d3sEYlEPIiPpUefz9h16Gi99dCpznoSi8UkJSVx+PBhVq1aRWVlJdu3b6d3795/uqZ/5kBXVlbydfeOvC4qYtKCpdi5taWrvSUbj57G0tr2D3XXfs8yM57T28MRFy9fKisrqKyooKWtHcN/mIKahsY/5kB/v3kfh5fPY8L2Q2ybMhbravv2Mvkpvb6bwurhX/D55DncOi/YQ9duPTm8bG4deRlZWeKCrvHN8vV15NV1dbF08eDXlQv4YdtBdkwZS2tPX+SVVIi+ep6hS9fz84gB9Jk0m8gLpxEDTp0+5cTqhYzdcoA908bh0L4LpSXF3AsJqCOfeDuEguws2nTpXke/nW8HKisquRsSUDOfgdPmE372hDD/rj04tGwek3ce5sS65Rg1EWi64oJuMHr1JpYO+ZxhcxYSdEqg0vLs1ovdi+aw6NAJNHX1/vCZvrW2Esc/OtDv/5p/5Pye2LqRovw8NHR0iA8PxbqNG52+GEzak0cEnz/Do7gYFh88XkfH3YgwTmzfREV5OQoKCsjKyQm2sbKKqqpK7kXeYskvR7F661Su9l5ZXlZGZNANYsJCeJXxnBfpabx8nsaL9DRkZWRRVVdHU0MDNXV11NTVKSstJSE+DiVFGYZ/3ZXRo3pgbv6myPn6tVscOhKInp4GTZsY0qeXp+CQVudAt+84iYwXOTx8mEpbD2sCr6+pvyC1CgBTUzM5fjKYZSuPUFZWweIFQ/hm2DukbvyJAy0Wi+nTfxkPH6WzbOGXdOvaBhvn79nw0wj8fGwk/26N7jcOdF7ea6wcx9PW3ZLKilIqKqpo2cKQ6RO7oKsjMOF8dKA/MEQikXjC8RBUdd6mPcpC19CQ1/m5KCirAlBWLNAkleYJFEpl1bRECioqlOXloKEn0DAp1tDeFaKjp/uGxq4WjVFJXjZa+gYU5L5CuVpepqwYNS0tCvNyUdXQpKxUqKpVVVGlMC8XNU0tigsLUVASCgsaQk330YH+e/i/7ED/0VhRYSGd7Vqwdv9RHN09KczPZ/qooSQm3GXUlOmoa2pRXFpCVWWl4EjLyCIrK0sjSytMm9Tn/yyvquLR3Th+WbeKiOtXaWFjh5O3L0bmjdA3MkHfxAR9IxOUVYW/qbeLZ3JzstHR0pZIY/RnRYRFhYXs+nk1d8JCOHziFEpKSpSXlyNXfY2KigoMVeQpKytDQUGhJk+5qKiIEydOMGjQoBrZP8KfOdAgbBIXjh9lzbwZlJWWkpuTzYjJ0xn6/aQ685GXl6e8rAz56vmIADk5uZqxuMhbpKckIS8njxi4cf4MQZfOM27mPBw9vOjhYvPBHehN0c8oyMmqoen83b4VFxWirqUt0b69LS8SiSgpLED1LfnKqiqUVFXryVdWCfbzbfkqsbie/t9pPd+WLy8pQoSonryqhiZisZjy0hKUVNUoys9DU0uT8lJh45dXVOR1fh6qmlqUFReiqKQCQFlpCcqqahTl5aKnq11jnxUUlSjKz0NLW+ft5QM+OtAfCu/LgX4btW16RXk5I/zcGDl3MR6dulJWUsK6HycQFxbMgO8moqmnh7iikqqqSmRkhECDrKwsphbNsLC0qqdbXlaW5MeJ7PtpBcGXLtC4hSWufh0wb9QEQxNTDExMMTA2QVVdeKffLiLMy83FSCkEZWXFerr/rIiwsLCYPXsvsW//ZS5fWI66ukp9WQkMGsXFpRw7fpO+fbwkX7fePP7YgQbhnTt7/jZTZuzlVW4ReXlFjBzWmTUr/qQ331v3mHAvlbv3UpCXKUFOToaLVxM4dOw20yd2occn9jR3mPXRgf6QEIlE4h/P3eK3FbNp7irkJT6KuEn3SfO5umkZ7r0HEHf9IgC27TpzdsNyRq3ZwqGFM2jlIVBN3QsN4j+zF7Fx/Cj6jv+RqCvnAXDy70rI8UMMmjqT7XN+xM5TiNzEBgcwdtEKln07jK+mziD0wjkAfLv3wtK+fv6lNOdXGl+lJGMhlauyAYaloU64JLwv0npJ77E0g/o+DG1DmSsaokMaGuJAS3s2kvB2+9+Qa5eZNepr2vfsw4OYO1i0sub7RStQUBSM5evy+h7j2zrEYjFZz9O5fPQgZ3Zv5/Ox4/Hp0RstPf0/nIukd1jaey3t3mszgqyd8gMW1rZ0HTyE6QN6M2TqLEIuCF3z2nbpxsWDexk+cz4/T5uEk48fAFGBN5i6bnM9p72hz0tSW+WK8nJW/DCaz8f+wOZZP/KfH2cSeuEciioqOHj7sW/5QqZu2snmmVNw8PZDXlGRiCsXGTl/KSvGDGfw5BmEXTyHUrX8LysW0W/cBFZ/N0roypX76oM70H79B9Pv+6n8/P039JswjcjLgn3z6NqNAysWM2H9tjr27UlcDP0nTGXNuBEMmDSNiEvnkZOXx6mdPwdXLqkjL6eoSOTVSwyds4S1333DFxOncevyeZTV1LHx8OLQqiX88PM2ds6dhq2nDzIiEbHBAQybu6RG/72wEF4X5OPe+RN+WbGIyRt3sGXWVFz9O1NeWkp00A1GLljG8tHD+HLKTBo1t0S11slF9X1KvP+GMi80BA2xVw11UBtiH6W1Ay+tqD9eKWUaVVWSPyiX8gsSW42/B/soDYpSaOLkZetfU1am7tjDO7dZNXoYbp26kpH0FDVNbUYvW4OSiuCAKkvodwCgUmtcLBaT/SKDwN9Osm/tCr749js69xuAvrHQbluhAXu8tECCtMBNSa0UvA0LZqOopMTwydMlyjakL4Q0eamc1hKWqbKykrS0NOTl5dHV1a3p0viwqGHve+0A3P2EBOb8OIm7cbE8T0t7r/bxz8Mr/x9CQVmN5q5emFrZ1YwpqqphamWDjqk5zZwFuhQdU3OsPHxQUlGllYc3ja3fyCupqWPj5Yu+WSNaugj0K/pmjWhibYOSqhp2nr40s7WvkVdRU8fRtx2G5o2xcW8LUJPb/BEf8U/C3a8Dmto6HN+5Vfi/f2eJJxtvo6ykhFM7txB26TzJiQ9QUlahlYsba85cQd/E9ENPWyJc2ndk3Y8TaG5rj7Nve4waNca2+u/LqFFjmts6oKyqhpOPX50vq3JSNsG/Czl5edq098ekaTOc/NoTG3ITZTU1mts5YGjeCEef9iirquHg7UdzOwfECOuqrKaOg49gH6zd2iIjK4OheWMcfNrRqo0bgyZNo7G1HT/27PRB5l0bze2dUVJTw9bbDwPzxli5vrFv9t5+9eybrJw8ymrq2FfLt3YVur0ZmDeuJ19Vc79q2Hn7oW/emFauHsjIyqFv3hi7anlbTx8sbB343d+prb+8qIjKysqa9VFWVcPBy5cmVq1rHEkVNXUcfdpjaN4IecUP20r5I/63YOnYBpOmzbh8UMgZ7j5s5DvZx4ryck7v3cn1U8dJSryPnJw8rZ3asOnsVcwtmn/oaUuEq287Zo4Ygq2LG27vuajxr0BWVpZGjd74Pbt27UJLSwvrTr3+sk6r1q05fFoISkrtO/EX8TEC/RZEIpH4k+9nYeP/Ken34wAwsbIl6sxR/L/6hsizxzFvLTjKKQmxtPm0D+G/7sXt094k3RXkG1vbEnX+NO0H/oeQU7/S1EbYSJ7Gx+Dfrz9nd27B77MveBIXA4CFrT23zp3mky+Hcu3YYVrYCRt5ysP7dOj7eb05foxA18fHCHRd/J0I9JXTx9mzdhWT12ygtLiYLQvnUFVVRStHZ/Jf5ZCfn4d5c0usnNpg5eiMhrYOIZcvsH3+TBpbtabXsJE0btkKdS3tBkfK3ncEGmDxqK9x8m1H+779ufrrIVpUO8qJMXfw7zeAE1s30qn/QBJjowFoYedASVERJm+lpLyPCDRAduZLLh3ej2+PPoz0c0NcVYWlozOlxcUoqaqSl5WFhbUNOoZGGDZqikeXblz99SA9ho3ixvEjNLdzAOBRbDR+fT7n9I7NdPhsAA9io1n2zZcfvogwKIqgE0foMmQkN08excJWmE/G44e4d/20vn2zsefGsUN0+3okgSeOCo61SMTj2Gh8everIy+SlaWRlTUBxw7xydCRBFXrF4lEPI69g3evfpzbtQXfvl/wND4GGZEIC1t7bvz6Rr+VoxOIxfXWJ+n+XSorKmhma8/Vo4foOXwU148foUPf/vW+MH2MQNfHxwi0gITwELbNnMykjTuoKC/n6LpV5Ga+xNq9LQWvXlFaWIBJUwusnFxo6eiMtr4BMcFBbJs3A10DQwaMHY9Fa2u0dPWkRnL/qQg0wLLJ39OkRUv6jxhdT/afjkDXRkFBAaamppSWluLo7omGphZ5r3JQUFJCz8AQZw9PWtk7YuvUpt7vSksB1VUQfYxAf2ik3ovFtJUdT++EA6Csrsmj8EB8PhvAg/CgGrkH4UH8P/bOOzyKav3jn9lkU3Y32fRKGj2kF0iD0JuABQWxd73Wq14VLCggiiBdQUGRIh3EgvSahAAhCWn0lt5IIZBe5/fHLiFlV8i9oOhvPs8zD+Tsd86+MzvnnTPvnPMen4HDOZ8YRxf/IM4lHAVAqVZzPjmB8Psf4uSR6Gb9ySPR9L1nFCkxB+kVEsapY0cAUFlYcDYpgYFjx5EccyOdy7mkRJ0daAmJO0V9fT1LvpjO659Mp4unZknWuZt+Y9vaVZSXleHarTsyI2Myz53hl2XfcjYpkZqqKpw8uvDy9FkERg78i4+gPXmZ6QxzepzqygqSYg42lyfFHKTvPaNJjNqHb1gEqUdiATCzsEQQaNeBvl1czs0hKeoA/n37o1JbUFVezpnEeAACBwymIDODQy3S3rn39CQ5+gBDJzxO8iGNfzCUy0k+FEXI8HtIjj6Ad0g4ZxOP3RF721KUm0NazEEGjHuME4dv+LeCS+fwjxzQ3r9ZWpESc5DBDz9GaqzGfplMRmpsFH2GjWylNzUzx1SpIjXmIIPGP0ZarKZ+uZExabHR9B46ktSYg/TqE8bpY0cQBAGVhUWr+k1MjGmoq2t3fi6eSNXMHbGwJCl6P8MeeZzkmIP0v/eBO/bGQeKfRVNTExvnzeL+l9/ArYcnABOXrCD6l82UFhbg6NYZtYWa3EsX2bF6BfPfeYOq8mvYOnXilamf0XfE6NsWNLpd5KRfJHKEnkVQ/kKqqqqIiIggISGBuOgDAIT2H4Rb5y6sWbqYX9auAiD5cgWmCh3jt/8EpAh0GwRBEKcdukDV1RaT/6o0kwUbyrWTBVtMLqwoLcbe0Z6KFpP/aqoqsbK24mpxEebWNtRq9camChrKr6C2saX8SmnzZJeaygrsbG0pK7qM2saWGu3kGzMzM52NTYpAt0eKQLfmv41Ar1gwm8TYGBZu+IUqHenqoP0Y6MaGBpoEQedv+VdHoFMOxzDt+SdYcSSFutoaLGxsqamqBMBEoeRaSQmWtrZcu1KKQtseqysrUOuYAHa7ItBXrpSiMle3au/XykrZ8u3XpB6KxsHNHbmJCeaWVniFhOMfOQAzC0vKiotQW9s0+wcThYKrJcVYaP2JoamSx73c73gEetGRNFQWljf8W7O/Uray57p/q64ox8zSqtn+2qoqRB32m6rMaGwSqamsaFe/iKj9vYq1/vMKpioVBjKhWX+9/qbaakBoV7/CzByBG5Mdy4qKUNvYINNx7UoR6PZIEWg4sGkd+zeuYer6XzGS644/th0D3djQgCCToTJuP+Hur45An0pKdycEMAAAIABJREFU5I1x97L64FEcOrm00/6VEeiWJOaVsWTODPb9/hvObu6YmasxU6vx7xPK2Mefbqf/syLQBlOmTLlddf0jmDp16pTg+yaw55vZlBdfJu/sCZJ3/IyLlz+7v/0SE6WK+N9/4lJSPIIgsPv7hXQPDuGXBV9wraiQrNNpHNn6E519/Vn7+WTMLK2I/WUT5xKPIQgydq38ju7+gaz98nPKigpJP5lK1JZNeIeG8/vy77CwsSX5UBTZ2jGkaivrdjZ2JAME6L4ZdPQGcbPsDbdS9/+q7Sj63GlHbj367NNXfjvq1oeuuvV9X0duPtdvPDkZ6Ux5/SXm/LgRtaWl3hzObctlMpleO2pqqjmTmMDl3BxkBgYkxRzE3sWV1NgYaqoqKSu6zIW0FGwcnYjbvROVuTmXTqZxOScbmYGM49EHcXJ1JyFqP7XV1Vwpusy51GRsHZ05um83CqWSCydTKczJRiYzIDHqALadXDgefYDdG9ew/ItPGfviq/QM6s1Xk95GbW3N3k3rOHnsCDKZjC3ff4NnUDDLZ0yl9HIhF9JS2Lt5HX7h/YjbuwulmRkXtfYYGGjqd3BxIzH6ALU1GnsunkjDxsGRw7u2ozQz58LJNApzshFkMo5HH8De1ZXjUTf0m79ZSFdfP5Z8/D5qKyv2b17PxRMnCBowmOL8XF6eMZszCcfo7OVNQ309BzZvoFtAIN9/8gHmltbs/2k9Z48nIogiG7+aQ6+QUFbP+oySywUkR+1nypQpU2/5x+8gU6dOnVJdUY6Hty+rPv0IlaUVh37eyNmEOAwMDfjpqzn06hPayr8d3vYrXXz8WD71Q8wsrYjaspGzifEIAvz09dxW+sLsLM4kHKVT957sXPk9amsb0mKjKczKRCaTEbVlAx7evhzcvJbaqkqKcrJIORSFS/ee7FjxHWobW87EHyXr7GkM5Ubs37SOLt5+7N2wlobaGvIzM0iKPoBbd0+2Ll+KhY0NpgoFhvLW46A72u5vR6aMjvir2xH20leHvo5oo45OsV6b9XWs9ZTrKq6tqiQ//QKZp1KxtHcief8uTFXm5Jw7TUluDjKZAacOR2Pj7MrJw1HU1lZTXlx0Q39gF6ZmZuScOUVpfi4yAwNOHdHozx2LpbaqiqvFRWScTMXKwZHj+3ajMFORdfokxXk5CAYyThyKwt7FFQNDOVdLipn32gv8e8G3WNrZ6/3N23YuZTIZgiDo7HTqu2cbdOAer68OfcHR6w9IOzevZ8qrL/DB3K/xCe6jU9vRvoYuvUrPw4rpHydRakWFzJjwgUN4/KVXuXfCY4x44CEGjhyNp3Y4W1sUOh6ERFFk1vSpt9U/SkM4dODu6siQCY/eWAAlwA83F3sGPjCOboHBuLlpEunbODmjMhJwc3HknseeaF4A5XJgAJ1dOzH68afw6hOGu5vmyc7WuROWCiOcnZwZ88TTOLhq9F4BQTjY2vLi+x8D4OmtGWNtrGdiQkeeTqFjEej/puPVlo681ejoG5A7GeG9U3XcrpROtyONlL7juZyXyyevPs8Tr/6bTtqhC3I915lCx+vutuPqrlNrKMfcWvMQqLSwwESpxEBuRKOxElSaRX9Ek3LKGwQaDI2pNDShzkTzJqfSwIQqQU5eVR0VBsaYGmlS3VUYGJNbVceVRhlFopxrhprXd3JRTlmTAZnl9VwVTDiw9VfGvjcNK0dnMsob8Ro5DgMXTzoP0mRckDk403XAKPLqjek5/CGsnDXt1NCpK9lVTZQ2yChslHNFZgqACUZcEw3JqaynXGaMsaHWHpkxeVUNlCPnimBMlVxTfhVjKpBTUNVIlaEpVUaaiKzX0Pu5JlMRMGY8yi4+eJpa0tAkYurQCd9R47mCCu97xmPt7EJjUxNyxy6UiEq8R47DyN2LrsYW1DZAo70T3Yc9RG6dgi5DHkRl9+dM1Bz58KO4Ojsx+rGn8A4Jw81Fc94cXVwxFmjn3wpzsnB2cmb040/jExKOi4srIGLn7IKxTNZKb2Jq2vwm4KX3JwPg6+fXfN36+2tumE+/8TZw3eeNAeD1jzT3xdCgG2MigwI0eXdfeOvdGz5Pu4TyG5M1+dBvx3K8uh41O5oOTl/kV5den1Zf+Z1CX6S5o2//dJYbGqKytqGmugpBLkeuUGKiVqOoqgBRxEStRq5QIsjlmJqrUVtrciDX1dYgNzbGVGmGpbU1TTXVAFhaW6EyM0ehMEFtYYGNgyanvFhfg0Jhipm5GQ729hg0aFKj2drbUWppgY1azbXSEpZ9+B+GjpuAr/aa0uUHQXfKV33U6kmpeqVOTwo6HXT0bej1a2TDsiU8//F0vAcNpaS6WqdWXwRaXwpbXR3/yjrd5yPrf5inc522812uU1jxv7+1uRWkpbx18PO8z1GYqzm+ZwfH9+xAYa7mx0/excPHj58XzuZydiaXszP5+as5dPUPZvnUD1Caq4nb+TtxO39Haa5m2bTJ9Ajszdp5MynIzKAgM4N182bR3S+QBe++gUptQez2rcRu34pKbUFu+qW/+rAl/h9SVVHBsjkzmRDZh4DQCB5/9c3bWn/2ubOtrv8egb35+r03MTUzI2H3NhJ2b0NhruaHj/5DV/9gfls8v7l9/fL1HLoGBLFh1jSU5moS9mwnYc92lOZqlk9+B3dvX35bNIei7EyKsjP5bfFcOvsHsWX2NEzNzLFy7MTvX88idvMaNnw6EXffQHZ+O4+SnExKcjLZtWQerl6+bPj0PUzN1aTu30Hq/h2Ymqv5dcEMPPyC2PbNXIpzsijOyeK3RZr6V338rsY/7N3O8b3bMTUzZ+XH79DFP4hfv55NUU4mRTmZ7F29TLfe3Jw1U96ls18Q2xZr6i/Ny2Hnkrm4+waxftp7KMzMSd23gzOHozA1V7Pp04m4+Qaya4nG/rL8HPYvm4+LdyC/zJiEqbmaM4f23tbfTh8qczUL33uTnkG9WTN3JgVZGRRkZfDrD0vwDOrdzr8pVeYsePcNPIN68+OcL8jPTKcgK4vVc2e201/QTjyUkCgvLWl1/+3sH8TWRXMpycuhKDuLrYvn0dk/iB8/0bSv1IO7Ob53OwpzNas+1ui3Lf26nT9ZPvkdFGo1x3Zt49iubSjMLVj6wX/oFhDML0sXt/JXHl6+vDP2Hl4aHIGjqwePvT3xrz4tt40+Q0fw83eLWTLlA0oK8v9qc/6WSBFoCYn/h1wpKWbd0sVsXLaE3pEDWLX3UHPk+Z9Cz7BIcs+e4kpBHhVXy/5qcyQkJP4m1FRVcS75OG+O6I+RsQmzNv6Ga/ceN9/xb8ToJ59FbWVNckwUK7/8nLfnfPVXm/S3Q5pE2AZBEMRFSelkpCXdGMKRk4W7TwDpiUfpHhhMcV4uoBnCcSb+KMEDBnIh5fiNIRzZmXgH9SY55iBeIWEU5eYAmiEc55MS8Qvvx9mkxOZXnAVZmfj3CW1ny/+HIRwd5XYM4bhbJvrdyUkyfzSW/fD+PUx87gmG3PsAT7/xNs4eXXRq9b0e0zU2Wt8QjmvV1RRkpgOa6/9k3BH8+w0gKT4BGyfNUKiinCw6+wZwIjaKbsEhlGrbl7WTM2cT4vAKj+RSahK22vbYrD98iC4BwZTka/WOzpxLiKNLn75knkjGWjskI/NEMuumTcK6kxvhDz6GnXsXjJUqLB2cSU9JoFvvcLJOJDcP4SjNzaaLXwBnjkTTNSiU0nxN+3V0ceFcQhy9wiNJT0vCxlljz5X8XNy9/Th1OJruwSGUaO23dHDiXGJ7fWFWFm4+/tr6QyjNz6WhScTSoRMXjx+lR2hks/2NTU2U5Gbj6u3PubgYOgeEcKUgl9oGsLB3IiM5jq59+pFzMhmVnTPzxobf8UmEs7Zsp7t/IEnRB/EODeNyzvXz40pa3GECIwe28m+FOVl09wvkePQBfELCuZybw/UhHG31LYdwtETf9azL5+l77azX593Kgd+Eu30Ix52aRNiRSYEd1TfU11Fdfq35/nv6SDTdgkIoLcgDUcTK0ZnziXF4hkWSkZaEbSfN9Vacm4WHTwCnDkfTKyRUpz/JPZWKjXbSXFF2Jl38Akk7FEVgRF/i9+5kyeRJ+EcOwKtPGPc++azOa+dODuHQ50918d8O4bhOxdWrvD6iP249POl/71h6DxqCuXYS9e0YwqGvX/K/pFq9jr57VKOe632Ao1qaRHgnmTp16pTIcY+zbvqH1FRVkn3mJDGb1uDVdwDblyxAZWnFwQ0/cv54PMYKJetnTiN05Gi+/3gSNZUVZJw6wd71qwkaMIi5b76MS9fu7FqzktMJxzBVqtizfjXeIWEs+vAdqisruHQyjR1rVjJk7HhkbS40fRdYRyYYQMcmEXZkYttf8eh1Oybp3S0T/W5H3frQV3daYjzvPPUI89ds5pEXXsbCylr/pKEOdAD0Objiy5fZsGB28/X/w/SPCR85hp++XUhpfh5Zp09yYONqfPsNZMm7r+PUpRsHN67mfFI8JkoV62dOJXj4KH6c+gE1VRVknTlJ1MY1+PQbyNYlC1FZWBK9cQ0XkxIwVijZNHsafoNHsvHzD6mprCTn7CkStv/M018uIXrtMi5nXmLv8kWk7NvGpaRjxG5cRVHmJQ5tXEl1xTUuZ1zgyJa1eEUMYOWH/8bBowuxP63lUnICJgolm+d8StDQe1gz/UNqKzX+4UTMAboGBPH9xNdw6NyN6E2ruZAUj6GREWumvU9JbjZbv5lLemoSF5MTSNq3kx6hfVn14ZvYe3Tl0OY15F88i4GhIb/Om47f4JFsnvEhtVWVFOdkEbtxJT3DBrB28pvYu3fh6Ja1FFzS6Hd+9RleA0ey9cvJ1NfWkJ4Qe8cnEVZVlOPdJ5TZ/34Zly7d2blW49/MLCxYOuVDIu4Z08q/Hd7xO94hYXz5+ku4dOvOjjUrOJ+WgpGJCd9Pm9xK39jQgJN753bfq+961uXzOjq5+XbcTTvSNjs6eU9X6e3IMHQ7JhF2ZFJgR/VXCvKI2/Zz8/33h/ffwMGjK8n7d3LqcDQmSiWbZ39K4NB7WDf9Qxrq68g6lUb05jV49x3Askmv49y1u+Z+3dKfDBvFjuXfUJKXS+bpE+xbvxr/yEEseuc1FCoV33zwLt38Ahj5xDNs/GoOkaPvw0ShbGdfRzJR6EOfj+3IWPaO3ufa/r5GJiaMeuJpZIKMw7u2sXTqh8Qf2Mv5lCR+XvYtp48nUFZchNJcjZnaAuhYBi59/ZK6mhpi9uxk+8a1bN+4jotnT1NWUowogsrcHIMW57ej9yh99+EVc764rf5RikC3QRAEcXFyBhVXrmCi0qalq6hAZWlJY1U5KrUFDdoB/oZGRtRWVaFWq6irqcbQSJOmpqGuFnOVipqqSkwUSuq1ermREQ01NZgqldTWVCPX6uvralHriLpIEehb/05dSBHo1lwru8LYUH+mLPyWyOH3NJfrjzg10NTURH1tLSYKBVUVFZgqlVTV1CAIAoZyOdVVlSiUKq6Wl2OoXXa1vq4WE1MF1ZUVNMmNqK6oAMBEqaSsuBhLW1ty8gsxUV5Pc1aBmaUmbZmZtQ01VRq9samSa6XFqK1vpC1rqS++XIi5lS211ZWt9CZqayrLWqShrKzAyMyC8pIiVFY2lJcWcSHhKBWlxSgsLKkoKSY9OZ705ATsPLri3X8oYfc+hNjUiMrKprl+czOzZnta+ofaynLMLK25WlKEuVZ/Ju4w67/4BBsXN3oEh2JkouBKYR6FGZfIv3QBA0NDXlr4A3auHtRWV1LfKGJsqqSitBgza1sqr17BWKGiQRSprSxHqbZstr+2upKa+vZ6mbGSGUN63fEI9MZTGRibmrbzbyYmJs1lrfxbba1OvdzIqJ3eQJuxoC1SBPrWtP+kCLQoioiiSENdHUYmJtRWV2lSwdbXAyKGcqPmsrqaGk0ub1Fsvl9fLSnCxs5Opz+pvVaGwqy1/ynOy2X6Y2MZ/8bb9B11X7O/cnB01GnzXxGBrqmuwsRUQU11VXP7aqqvx9jUlOrKCkwUSu35AQO5nOrKCkyVqlb66upqTBSKVnqZICDX+u+6mhpSDseQc+kCrl26kZt+kbNJxzl+KApHVzcG3vcgQx94CBt7h3b23WoEOuXYUaa9/iL2Ts4EhEZg5+hETkY6l86dIeP8WWqqqlm97xC2Dppz/0cR6Ov+pOX9qKKyEiPjG/7HRKGgoqKce7o631b/KHWg2yAIgjjogXHc9/TzHNrxOwB9R45m2YxpzF7/c/OP0hJdT1j68inr6+TqeprV14HurtTz+zcd0l0u6miMou6Gi6Cn8cvav+YvbWifNxKgsEZP3R3gdsyY7WgKno6gL8dmRzrQHb3BduRGqouD237jl1U/MH/DL63KK9vkdb5O4uFDHN2zk4iRo1n+xTQ+WrqSr95/B/8Bg2moqyXlUDQvTJvB7Fdf4IE3J3F8zw4AgoaOZNO8Gbw2fykbF87BuVtPAM4cjWH8+9P54b2XGfTSe5w8uBOAXpHD2PPtl0z4fDHb5n+Km19vAC7Fx3LP21PYPm8qoeOe5nT0bgA8I4exb+lsxk77mp1zP8EjOAKA9IRYRrw1hR1zP6HP+Gc4q9X3iBzG4dXfMHrSTI2+d1+NPv4QI9+eyk8fv86gF9/h1MEdlOXnUFddSVbKMSKeeIWiS+ea9RkJhxj19lQ2ffw6g198p9ken0Ej2b14JhM+X8zWLyfT1NhARtIx3Pz7cP+kz1n/4asM/de7nNLqu/UdyubJr6GytqOuqgLfEWNRWNlxMe4gw//9CT9PfYP+z/+HczF7MDZT4+LXh+jv53DflK/YM38K7sERyAwMuRQXxeA3PmbrtH/T97m3uXjkIPHrl9zxDvTB/Ks6P9Pb3jqQy76jeZY7EoG+kxl1dPkDfa+XO9JRBt1Rto6+0tal78ix6NPXNerW6opWg/680beD7d8voqLsCr2HjmT9nBm8+dV3bJzzOd39NVkzWvqrp96fzBHt/T10+Ch+nDWd+55/mUWT3ubpiR8BcDz6AK9/Pps5b77Cl2t/umU79HV+q3X42ap6PR3let3nteJqGV+/8QIPvjWJ43s1/rb38NFsmvMZry/8jhVT38c7PBKAy+nnefCVfzP71Rd47N0PiNutWc6678gxrJo5nUnf/sA3H76Hf7/+yOVyho1/tN33tWx3DfX1JB2K4sCvWzi6ZwdjnnyOZ7Tn6jq62ljbtvvrymWsnDuTNz+fzYDR97XTC4LA8tkziN6+Fb/QCO576jncunXX+QB8eN9uivLyAEiI3s+bM+Yy5YUneP6DqcRs/7X5eL+fMZWPl67iIZ8u0kqEd5qeAUE4uLnjF6a5cTq4uRM8YLC0WpXE35qYXdsJjhxwy3obRyd8wyJwcHUjqP9gTJUqAiMH4OrZq7nzb6oywz9yALbOLvToEwaAbSdXfCIGYKJU4ebli5O2Aw1golTRM6w/Fg6d8AgIAcDS2ZWuIZEYK5S4+4fg2MOrWW+sVNHJKwBLJxfcAzS5Si2dXOjSpx/Gpko8giNw6unTSu/sHYiFowuu/pr6LRxdcPUNwUihxKN3Xxx7tNArVHTp0w8LJxc8gjT2O/bwIf7n1cRvXknEE68062WIGCs1+pb2WDh0arbf1r0rcZtX8fCnX3Gt5DLGShVdQyKxdHZtPl4LRxeC7nsElY09Z6J2cnjtEhBFjJVm7F08A/eAMK39fUBmiNrRBY/e/TBSKHEPjsChhw9NTSKNDfUYKVS4B/fDwsEFJ+/AW/5tJST+aXTxDaCuphpbFzd8+2n8T8+gPnh4eTdrrvsrO2dXvEPCAbB3cSUgchBpR2Lp4R9ID7+AZr1CZUbwXbS6qrFCiXff/th2cqVHb42/snN2wUd7vN7hkXT20aR6NFMqmo/X3tUNr5bH238gpkoV/v360803ALnhzaPmhnI5vQcOoffAIZSVFPNc/xBGPvokDi6ut2x/fnYmy2ZOZ/G2vbh27qpX9+Rb79HJows56Rd544GR1NXWYt/JBffuPXl39gJU5mrtsXfC2s6+eT+lmRm9BwzBwdW1uf/m6OZO7wGDUWjfGN5OpAh0GwRBELenF7Jn07rmJ9dzyccZOu4Rcs6dobuOxN1SBLo1UgT65mXw50agy0qKeSjEj01Hk7G0sW31mb4IdOHlQkoK8jmXksSQhyawZelihj38KCdTkmhqbKSLjx/7N61jzHP/YtfG9Xh4a9pG+okUIu57iF0rluJ/z4NknU4DwLWXD0d/3cSgx58ndttW7Dt3ByD3TCr+I8cSu24ZfiMfJO+sRu/Uw4ek7ZsJG/8sKbt+bu4o551Jw2/EAyRs3Yhn/xHka/WOPXxI2b6Z3uOfIW3XL80d3/yzafgMv59jG5fjO/JB8s+e0Oq9ORu1k4AxD5O6s3X93sPvZ/Ubj+HYw5vOIf019ntq7Xn4WVJa6IszzuMzeBSx65ZRV11J/rlThDz4BE49fTj++yYiHnmO5B1bcO6pye+eeToNn2H3EbfhB/zueYi8M6nUVFVjYmbOvkWfYaxQ0dhQj7FCRZPYRGNdHT6jxnM1P5vAB56k8NwJEGTYdfHkxK4tBD30NKf2/IK5oys/vfe0FIGWItC3pP+nRaALLp2nob6eS2nJ9Lt/HNuXL2HY+Ee4eCIVoJW/itvxO649NA/2F1KTCR85hufC/Jm54ReuXSkFoLuvP7s2rOGJV9/sUPDsTkagD2xcTcT94zn862Y8vP0AyDl3irDRD7BzxRIix04g/YQmFaSnfwAHNmuON2rLRrpo+y6558/Sb/T9/PL9NwwZ9wgX0lKQGxoSPGBwu+/7o/HcK778jNLCQt6evbC57GYR6N9XryA+aj9Tv1vVobkK18quUJiTzcYli7h05hSOLm40NjZQV1dHdWUlXb28GTnhcY4d2Mf4f73Gvp8307mXJhBzNiWJYeMeYc3COfw4d6YUgb7TVFWUk6hdex0gMfoAESPHUJibo7MDLSFxt/PbmpVEjhzdrvP8R5QVFXEuJYnj0QeJGDmaxKh9+IZFcCE1ieqKClRqC5KjDzJkwuOcOhzD9elYJw9HEzRkBGmxB3ENCOFC4lEAlGoLzhyJInzsI+SeSaWhrgaAC8cO4dl/OBfionH160NG0jEATM0suHgshqAxD3MpPrbZrkvxsXhGDqPg3Ekcu3mRmdxa7zdqPOnxNx4m0+MP0aPfUC4di8HVvw9ZyXEavbma/HMn8KoaTXrCjfrTE2Lp1m8oIHBi72+c2r8NlbUdPfsNJf344Xb2XL50lu5hA7gQF43f8PuJ/3UddkndUVhYcSEumuD7JnDh2A17slLi6dF3CBePxeDmH0JWSjwGxiZ4BPfFxEyNz4ixpG7fjLVrF2TGxmSnxHMxdh+X4qM5H7MHE3MLbNy7I1coyUiIwWv4WE7s3EJptpRLXuL/L9nnzlBdUU5abDS9h44kNeYg/uF9ORl3GKCVv7qYlkJdrcb/JMccpLa6Crl2eGbqEU3bNrOwIOHgfh56+nnMLCz/moNqw7nEYwQNG8XJI9HNZZdSEwkYOJS0mIP07B3GmWNHALC1s20+3pRDN/SZp08SPHAISVEH8AkN58TRw8jlcp0d6D/iwRde5aWhfXk2sg+eQb3x7hNK2JDhWLWICLcloG8kP3z5OU1NTe2SJvwRZmoLzNQW/GfWfI7s3YWo3b+i/BoHft1CYvRBdm9aT2NjA1dLiinMy6GutgZBJiP+4H5MlSo2LFrQoeO7Fe6aCLQgCK8CLwHu2qKTwHRRFLdpPxeAT4AXAUsgDnhVFMWTLeoQgXqgpyiKl1qUrwBsRFEcfQt2iOuPn8bS1o6aKs3kIROFkrLiIuwddE8mkCLQrZEi0Dcvgz83Av3FO2/g0b0nD7/4SrvP9EWgK6qrNRMCtde/pa0d166UIl6fjFJZgZmFJWXFRRioLKmtqgLAWKHgWkkxahtb8gqKMNVO5qupqkSptuBaSRFNppbUVWv0RqYKKq+UoLKy4VppSfPkv7qqSkzNLagoLUZpaU29Vi/X6k0tbai6eqWdvrykCIWlNfU1Wr2JgsorxaisbNvplWpLnfWXlxZrJhyWFHGtMJe8UylkJMaSnZaIjVtXeg0YQeegcCydXDBVqZrtL85K5+snRvLOzzHIDAxRtKj/+vGKcpNm/XV7Ghqbmu2vLC1utr+xSWNPVVkJJmZq0uOiyUw+wsUjBxCbRDz69ONSXBRmNvYET3iRrZ+8KkWgpQj0Len/aRHohppqxKamVv6nrrwMU+0E/Zb+ytrWjhqtvzJRKPhh+seYqlSMe/6VdpMLa8vKsLS99cDDnYxAN4kiV4uLMLe2oVbrT5QqVfPxtpzcLNRVNR+v2tqm+XjNzcy4WlyEhdafK1RmyA0MdEbZb5ZRpLGxkcyzZzh1PJ6U2GgSow/g0qU74cNHEjFiFK5du7eqo6qygnGBvViy4wCuXXQP4dAVgdZ3r6yqqmruiJdfvUpu+kX2/byZ4zEHqaoop/fAIZw4dhQDQ0OemfgRU557/B8bgc4BJgLn0UyMfgr4RRCEIFEUU4H3gP8ATwNngY+BPYIg9BBFsbxFPY3AZ8Aj/60hl06fpDNo85VqxtlcOJGKja1dq9QqEhJ/F7r7+HEyMV7nZzVVVSRE7efiqRM8+MLLrJo7k+HjHyU+OorSy/kERg5k68plvPb5HH74fAoefgE0NdRzMS2VxyZ+xHeTJ9L/4ac4eTgKAK/w/uxbt4KnPp7B9m/m4uChcZRZp9O49/WJbJzxEUEPPM75uBgAuvXpx9EtP3LvO5+y55tZOHbTvHrLO5vGkH+9x65FMwgc9RAXj2n0nXv3JX7Laka8PZX9S77Esbt2qMa5NAa99B57F32O36hxXNJGoT2C+5K0dT3D3pjMgaVt9C++y855nxA89gkuxWvrD+5L8s4tDP7XRA5+NxvH7j4IMgNMzC14cdlWtkx7k/QWik55AAAgAElEQVTjRziwbD7mtvaEjn+GSwmxDHzmdVa88QTu/n1I27ed4qxLDHzmdX6bPZnQsU9y/pgmCuQSGMbxX9Yy8u1p7F8yC8fuPoiCZujIwBfeYdf8Twi8/wkyEg4hkxvTyTeYpF9XM/TfUzl/aA/2PbwJevBZMuJjMFGpUTu6EPbYK6QnHL7t142ExN+Fgsx0GupqsXZ0JvP0CTxDwsk8cxoLW80S31eKCukRGEz6yTQqnToR9fMmAPz6DeBMYgIqtZrlsz7DvYdmwZTzqSk898EUvpv6IVOWLL9lO/b+tJHOnl6cTNC86eoV3Ic9m9bx4Ktv8fuK73D37AVAxulTDH7sGbYsmkfk2PGcO67xz90Dgjm2by+DH32K3T8uw7WHJwBZZ0/Tf/zj/PjpBwx65GlOxmr8rW/fSPauXcXTU2awYc5neHhphooVZV7iwdfe4rvJExn55LMkRx8EILj/QLat+oGXp3/JypnT6Orjh6HMgGtXSrn/uX+xZv4sho57hFMJcZiYmNLVx489m9bxxFsT2fL9N3Tu5Y2hXM65lCTGPv8yuzetZdi4RxGbmvDpE46BgYytq1ew5ftvMVUqGfXoU7h27cbJhGOkHTuCnaMT1VWVbN+whrrqarx7h7Bz41qe/s8kNi1dTA8/fxobGrl46gTjXnyF5bNnMGL8Y5yI17zJbKlf983XWFhpclafTU3ixY+mUlyQxxuff8neLZvIzbjEmCefIeVILJ6Bwf/dhfUH3DUdaFEUf21T9KEgCC8DYYIgpAFvAl+IovgTgCAITwGXgUeBJS32+wr4jyAIs0VRTPxvbHn/0Qc1/wm4Mfmp1f/b0rCvfVljlW5tk5417ptq25fpixJXdDTCq6PTrzfS3D7LiKaK6nZFVoaZOqVWZn1v1bC7CzH71rWC7ui7Lkp1B3j1oi+CX68nuqSLtpGobt6+bFnxPVdr219n+VV1qLt54WJqRnGDgFtwOKK1A45BYTiKIkpHZ4Lum0CZzITA+x7Gyd0dRHDo4YNMaUHfhx6na2Awltq0RtZOzjQ2NqKysibi/oew1i6Y0tnHFys7W/qPfxy7XsFY2Wve6Fg4OCPQhIWNDQGjJ2DhpDm3Dj18MLGwxnv4WOx6BmBsqYkCqe2d8RvTgKGZFT6jJqB21OhtunlhaGaJ14gHsfcMxNRKc+M0t3fGu74BQ5Ul3vc8jIWDRm/dtRdycyt8R0/ArmcAJtr6ze2d8WoCI3MrfFvUb9/dC1MbByKeeh0X3z6UZF3gTPQuYlZ9g7HKjBX/fhLPASPp98wbCIKAQ0EuhmaWBIx5BPteAZhYaeo3tnbEt6EJQzPLZvsbGpuw7NwLmZkVXqMewaZnAMaWdsgEMLd3orGhERO1FT6jNfYbyQVcennj5OlHekIsrn7BWDs4krjpu1u+Rv5b1DoyEYH+CK+ut2ueZnr8j7422HRRj15Hm9Dn2/QhdOA2KNPt23S18fxq3dFFfRHejqSm07cWgL7fQFdkWt/3dSRSb6zn1HX0DeLtSJ9q6X9jeKWri8bn2PTrf0PQU9MRDR08jMbGRoY+/BigCZCNevIZVs/5gsfenoiddoEVD29fTC0siHxoAkWVle2+r6JOtz9WdPIAGwccfIIAEKwdcAuOoNrAGI/eEc0LQgkqSzBR0iOsPxad3OmivQ4tnJxx9fZHZqKkR2i/5gWYTC1tMDa3JOLBx3D1DURlo/Fv1k6d6PtQI3IzzWfX9ZVF+RiZW9H/4Sdw9Q1CYa0ZWuHq5sqwhgZUVlYMe+RJ7F3cMDSQUZCViZFSSUDkQBzcOyMYypHJZNg5OeMfORBDhQK/fgNwcHVDJggo1RYYKZUE9h+Eo0dnZHJDBEHA3tkFO1d3vEPCWDN/Fr+tWoaZpRX5Genc8/hT+IX3w7FzVwyMjBEA+04uBPYfhFyh+W5HN3cAzKxtMDRVENh/EA4enRG0b+Rb6kOHDMVBu4BdD/9ALG3suPfJ5/ALCcdee9+x7+RC5x6e2OtIu/e/cjtSYN52BEEwEARhAqACDgMegAOw+7pGFMVqIBoIb7P7MeAnYNZ/+/21+rK968VcxyYHwaL9hiEIVu035CCzbr1hCDKb9htyPeX69AZ6yqx1fKdMt32iAIK69SYCmLXfxPbO5u+BkY5N0F0u6nkQ0oGBoHvT95lcABNZ+00mgMJAaLUZ6Ci7Xq4ylDVvPl5eZJw7g1hfh1pu0GoT6ms5fWAXznY2rPnkPULCwtn5zTyuFeRSfzmP/d8tICQsjM2fTqSTnQ1pUfs4e3AXnexsWDflPULDwvjt67nUFuZSW5jLrm/nExoWxrop72FuruZ81G7OR+2mk50Nmz+dSEhYGEc3/gAleVCSx9GVCwkNC2P7zA8wt7Cg4Og+Co7uw83BlgNzP8LNy5+UtYuQlxUiLyskZe1iQkLDOLx8Hh6OthTH76c4fj8ejrYcWjAZNy9/0lro09YuxtU7gNiFH2v0CfspTtDoD/8wj5DQsPb6Xr4cWjC5Vf1m5mqi5k8mJDSMlLWLMK2+SkDvUALHjGfUs6/i2TuCMU+/RGHcfgqO7kNlZs6BuR/RJzSM46u/wuBKAQZXCkhY+y0hoWGt6s86dpDOjrYc+epjQkJDObV+EUbXCqguzufE+sWEhIW2sv/SkQN42NtycJ7GnqTVX1NdlHtbW4M+ZOi+5gS95WK7a7lG77t8XW3QCDBBp6/R5XtFmR6tnnJR6IBWt2/T1Y6NZGBq0H7T1Y5v1paVhrJWW9v2fX0zEMBMbtBuMxSEdu3eUBBQGxm22wwEAQsjw3abgcAtlVl0sI47Wbe+Os4mxFGel015XjY/LfiS4WPupazoMmJTI8m7t5O8eztO1tYsmfQWngGBWBrL221GMgEbE3m7rVPnzuz6Zl47f7hqisZ/nj24q9l/bv5yOqFhYe30XX392DhtIi52NpyP3s356N242NmwedYUQsLC2L90PvWX86i/nMfuZYsJCQtrp1eambP643cJDQ1jx6K51BTkUFOQw9bvvyE0LIzvPvgPjrbWpOzdwZHtW3GysebbiW9qfP38WZTnZVOcm8XmBbMIDQvjm4lv4mRjzfHd20g8sAcHG2sWvfdvQsLC2DBvJldzsynMymTD/JmEhoeydPK7jH30cR557S28/QP4/LsVVF0pJSIigvVzZ1Ccm0NZbiZr535BaGgYC955HUcba47u3kH8jq042liz4J3XCQ0NY93C2ZTlZrbTm5mrObZjK8d2bMXBxor5/3mNsLAwNn6zkCs5mVzJyWTNnBmEhoUz661X/wtv98fcNWOgAQRB8AGOoPGWFcBjoihuEwQhHIgF3ERRzGqh/wFwFkVxuPZvERgHJAOngHtFUdx5szHQgiC8iGZsNUDQHTk4CQkJiTtPpiiK7neqcq2PlZCQkPg7clv9410zhEPLWcAfsAAeBFYKgjCgxedtnbegowxRFC8IgvAd8IUgCLvbfq5DvxRY+t8aLSEhIfH/gTs5QVFCQkLi78RdNYRDFMU6URQviKKYIIri+2giyW8BBVpJ20EsdkChnuqmAl2Ax+6IsRISEhISEhISEv8vuas60DqQAcZAOppO9NDrHwiCYAL0QzNGuh2iKF4GZgOfauuQkJCQkJCQkJCQ+J+5azrQgiB8IQhCP0EQ3AVB8BEEYQYwAFgjagZqzwcmCYIwVhAEb2AFmnHSa/+g2jloxlPff2etl5CQkJCQkJCQ+P/C3TQG2gFYrf33KpAKjBRFcZf281mAKbCIGwupDGuTA7oVoihWCIIwFVh8Jw2XkJCQkJCQkJD4/8NdlYVDQkJCQkJCQkJC4m7nrhnCcTcjaEjRLt5yq/ssEgRh2Z20S0JCQuKvpq1/FARBKQjCekEQSgRBEAVBeFoQhHcFQdCx4pSEhITE3xMpAn0LCILwMPAl0EUUxVtaV04QBHfgDOAtiuKFO2edhISExF9HW/8oCMI7aLIgPQnkAheBGiALeEAUxYN/la0SEhIStwspAn1rvAH8eKudZwBRFDOAQ8DLd8ooCQkJibuAtv6xJ3BWFMWfRFE8KopikXauyk/A63+ZlRISEhK3EakDfRMEQeiKZrnwzW3KnxcE4aQgCLWCIGQKgvCejt1/Ah4TBEE6zxISEv842vpHQRAygOeAAO3wjZavOH8CRguCYPWnGyohISFxm5E6djdnMFAJpFwvEAThXeAb4BdgtPb/nwqC8FqbfQ8D9oDPn2OqhISExJ9KW//4ALAdzfC1MO12ncOAHE3+fgkJCYm/NXdTGru7lSDgtCiKTQCCIJgDnwDTRVGcqtXsEQRBAXwkCMI3oig2astPAo1AH1p0wCUkJCT+IbTyj6IoJgmCUATYi6J4tKVQFMWrgiBkofGHv/75pkpISEjcPqQI9M1xAIpb/B0GKIFNgiAYXt+A/WiizZ2uC0VRbADKaL8EuYSEhMQ/gbb+8WYUI/lDCQmJfwBSBPrmmABVLf620f57Uo/eBchs8Xettg4JCQmJfxpt/ePNkPyhhITEPwKpA31zSmkdMSnV/jsaKNShP9vmb4sW+0hISEj8k2jrH2+G5A8lJCT+EUgd6JtzltYTYY4A1YCTKIrb/mhHQRBsAQVw7s6ZJyEhIfGX0dY/6kWbjcgVyR9KSEj8A5DGQN+cWMBV2xlGFMUyYAqwQBCE6YIgDBMEYYQgCG8IgvBzm32DARHN7HMJCQmJfxqt/ONN6AGotPtISEhI/K2ROtA35yCaV44jrheIojgLeBEYiWY2+TrgMSCmzb4jgChRFEv+FEslJCQk/lwO0sY//gEjgHQg6U4aJCEhIfFnIC3lfQsIgrAA6CqK4qgO7GOAZjLhJFEUV98x4yQkJCT+Qm7VPwqCcATYJori9D/HMgkJCYk7x10TgRYEIeP6ylVttm0tNK8IgpAuCEKNIAiJgiD001NH2/IpgiCc+B/M+xIYIAhC9w7sMw7NWOn1/8P3SkhISNzt3NQ/CoIQgmaJ76//NKskJCQk7iB3TQca6A04ttgC0Ywf3gggCMLDwALgcyAAzbjiHYIguLappwaYeTsNE0UxB83ytI4d2E0AntPmgpaQkJD4R3KL/tEKeEo7h0RCQkLib89dO4RDEIQPgXfRZLuoEgQhDkgVRfGFFprzwGZRFN/X/p2BZkzyi8Bjoihu0ZZPAR4SRdH7zz0KCQkJCQkJCQmJfxp3UwS6GUEQBDQRjdXazrMRmiVjd7eR7gbC25RlA18BM7QrBEpISEhISEhISEjcNu7WDuZQwAP4Xvu3DWBA+4VLCoEhOvafATyv3b692ZcJgvAimqg1xkaGQbV10qgLCQmJvyWZoii636nK7SzkYtFVyT9KSEj8Lbmt/vFu7UC/AMSLopjcprzteBNBRxmiKF4RBGEG8IkgCD/e7MtEUVwKLAUQBEHc+8vrRIR2ITNbs2CWm4sVUbHnuVZRx7OvrOK39S/j5enEpYxiQoI92Lv/JP3Cu7bSxxy5yJABPYhLyKCzu2b1b43end37T9M/olsr/aGj6Qwe0JO4hPQb+sxrhPTuzO59J+jftyeZWcUAdO7ihlze+qfbsSuJrTvT2LUnkeqaOlw62XDmbA4mJkZERIQyYnh/7r13KJaWamxs/TlwJhtzC4t256Kmvl7nOaprbGxX1tDUpFNb3aD7Blulo+6y6lqd2rLKWoqyMwCwcnTmfGIcnmGRnDyehKWDMwCledm4ePlzPi4Gm15BXC3IBUDt4ExW8jGsvUMpPJuKuUMnAK4V5GDfw5cLxw5j18OfyqJ8AJS2jhSeSkDdPYTSi2kobTX6yqIcjB09KT51FDOX7uQf203J2QRKzydhYuWAU/j9mFg6Yu7WU3PcxXkIVh5cu5CAmbsftWWa5716QzVVWWkoPQKpyTuL3EKzcFvF5WyM7bpRnZWMibMXDeVFADQaWVCXfwrjTn7UXz6Pgbm9pv6iXAxtu1Kfl4bcoSdNFcXU1jUiU1rTePkMBg7eNJVcQlDZ0lBdC1VFCJYeNBWdRmbdDbG6BLGuBkFhiVh6EcGmB2JZFsiVCAKI1aUI5i6IpRcQLNwRq0tBBMFEjViWgWDVFfFaDphYavVXEMw7afRWXRBrNMNbBROLZn3TtTxkCisAxKpSBLULYsl5BEdvqNZc/4KpFU0lF5DZ9oTKQmRKTUrhpsoiZFadMa68iLF9TxorNNe/gcqGuoLTWPcKpSb/xvmsLyvAxLEHQslpVK4+1F3VnH8jtT2UXsCqZx+uZZzE1Map+fdy7OVH0cmjWPcIpKpEcz0orB2pyEzFwTuEkgtpqOw010NdWR623XzJTTpEXXUVqT8tpb66isCHnkdpbYdr70gut7jeqkoKsO/uTdbxWJx9elN+OQ8ASwdnctPicQuKIP9MChYOLpgYySjLy8Gplx+X4g/h5teHq4W5yA1kWDg4k5EcR9c+/cg5mYylsyumcoHS3Gxcvf05dzSGzoEhVBfnMe2BwW46G9RtouhqA/kbg4k9Wc6gADUJ5ypwt9eszP1zbDHTVuUwcYIzL4xyIPuypm27OJgQe6KcQYFqEs5W4O5ggiA3IKOghuCeZuxPLCPCV012YQ0yIwM62RlzKOUqg3tbknDqGu5OpsiMjUnPq6a3l5p9ccX0DbAiq6AamYEcV0dTYo6XMCTUlvgTZXi4qhEEgfTcSvr4WLH3cCGCAOt35BF7/DIVlfVYWxpzubiGpiaR3n52DAxzpmdXC8YMdsMuaCWxm+8HQQDAzVlFVFw+w/p1Ij6lELdOZgBcyrpGiL8de2Jy6BtgQWZepUbvpCI6vpBBwRbEp5Xi3kkJQEZOJb19rDhw7DLh/jZk5WtWQHd1VBCTWKSxP+1KG70l+4+XE9nbgcy8iub6j564xqBwZ+KSC+nsYq6xJ/sa4RF+7D5wkf7hbmTmXNXoO6kRjZ0wNTVq/WMa2en+kY3H6CxOvtLeV1dofXp1ZSXxUfuJ3bWd2N3bcenSjQFjHiBy1L3YOTk363XdRwCaOjCUVKb9XdpiKGv/Ql2f1kCHFnS/ktdVL4CRgYHOcrmeckfT9t0tK8NsnVoaTusub6zSoS3Xo9VTXq9jGkLDVZ1Ssb5GZ3lZaTmnLlwhxN+O3TE59A9xJDO3ArGxDhcnJfOXn2JfbC7n06/x6uPdGX+PO/lF1fTxtWZvbD79etuTmX0FEDTXf0IRQ8LtOZZWipu9EQgCGbmV9Pa2ZO+RIiJ8VWQVVAPg6mDKoaRSBofYEJ9YiJuDxv9k5NcQ7GnGvoQrhHc2IbuoDgAXO2NiT1xjQDcTbB5Pua3+8a7rQAuCYAfcB7zaorgYaKT9krF26F5OGzTDOF4D3u6oDfO/PUBjk8iajccoKq7A2lrJT78lIwgCckMDNmxJxN01g537TrJh+QtMnbmdjyfew7rNCQBMeDCIWQv24OvlxKQpvzJiSC8Adu49xYblz/DWBz8xf8ZDrfTzFh/Ax8uZSVN+ZsRgLwCiYi+yYslzvDVpPfNnPsK6TXEAvP3Gffh4t547OXJ4ACNHRQJw4UIeBYVX8OzpgrW1Ocg1Q79FUeTllz9g0KBwnZ3nu4ny0hJ2/fANAMEjxrB59qe8+d06jv60Glu3LgCcOxrNI9MXsm3BZwx85X1O7dckbOk18B72Lp7BmM9/4MjyebgGRQCQlRjL8EmzObt7E2JjI+mxOwDwiBjBsRWz6TfxW9I2fIWDr2ZUUG7CAay9I7i0cyUiInKFOSaW9ng/OpHcxAPY+Q3kxIqPsPIMBaD09FHcHvyArO2Lcb3nVUpT9wNg2jWCwv3f4fbIDC5HrUDZORCAqsJMrCPsKI1ZjlXks1Se06QRN/II59qRVViP/phrx9Zh7OIHQE3OCVQR/6IqYTWK3k9Ql36YJgNTDBy8qU1ej+nA96hN3YShow9NTQY05h/HKOh5Gk5swtB7HE25CYgyAwxsPWk4/RvykJdpOLcNmXV3EBtpKj6P3GcCDee2Ydh9FI0lF6CuEgN7bxrO70Qe+AwNF/cgs+0FjXU0lV5A7j2ehvM7Meg+iqbCVAAMHHxpOLcNeeDzNGUfQVRpHgCaSs4i93mUhnO/Y2isoCk3HgCZUxANJ7dgFP469ad/xcCmBwCNBScwDv0XVam/I/iI1FzSrEdk0jmca3GrsHD3pOTQKhTu2vOZcRyHUe9SfGgDDhEipWkHALD0GUDRoXWonLty/rdF2HhqFs4rPn0Eq05fkLZ+Lj4T/kPOsV0AdOozjMyoTVi4diNl/UIc/TTXQ35KLB7hw4hfOQeVrSMKK3usPDwxd3Qhdunn2Hbz4ujKebgG9gXgWn4m5nZvEbPkCyJfep9zUZrr03PgaA5++wXjvlzBoWVzcQ/uh4mpKecO7eGBT+azd9HnDH3tQ07u+x21jS3uASHs/Ooznlm4hj3ffknXkEgUClNORO3mic8W8uv86dz31mROR+/6n9rcrXLkVDkfLstkyzRP3vk2A2tzOekFNeQU1eHjoWDp7wV4uSv4KVqT/v6hQbZ8+H0Gv33ei6krshgcZIGhkQG74kpZ/mFPPvj2IjP+1YXNB4uwtzaib4AlHyy6wO/z/Jmy9BKD+1ihMjPm1wOFrJzuz6T5Z5j5liebducjyGQ8NMyJSXNPsv3bcD7+6jT3DXWhqrqBPYcL+HFWKO/NTuHLd/1wtDMlsrc9/UPsmbowhf2rR/DvT+MY2q8TDY0iC5anERWXR21dIzkFFaz99QIA40d35Z3PDrN3zRiWrjtNN3c1ALuic1i7cBDvfHaUuR8EsW5rOgDj7nHn3S8S2bGkL5MXnmBouOa2tedwAatmhvDdpks0NcHGnZrO07jhnZg4O5WdS/sy+auTDA230+ovs+qL3kycmcisScFs3Haj/iXrL+Dd3YoPZsYxvL+Lxp6obDYu68JbH+9k/qcjWPdzGgAT7vfB21+Nc9sO9P9IQU42e3b8zuHdO0iNO4JnQBARw0by7LsfYNOi0yzxzyM6Pp+536ewbuEQ3vnsMHM+Cmfdb+fJLaggM7eC7LxKvny/D5u2p2NsbMCGbRnsjs1n9ewI3p15nC8nBRF1NI/C4hrGjXDhvdkp7Py+P5MXpDEq0p7auib2HrnMyhn/x957h1dVpW//n316S07OOem9kgKhhl4EBFQUxd57naKO4zh2B2fGsY4F2+jYK2JDBEWR3gKEBNJJQnov5+Tk9LrfP3YMIOH7jr+fM6/zvXyuy+sya9+ss/Zq+1n3eu61irjn6QoevyOP1d9IBMcFi+O559lavnpxGm+u6yIrWQvApv023nwgn/teauTxG1JZvVUiXM6ba+H+11tYc1/WT14PPzsRoSAIfwQeRBIPOo5J3wscEkXxpmPS6oBPfyAifEEUxaeG/74ayZF+FzjlXxERCoIgdh1+lNgYA8n599PVM0RKkom7blvEdVfOwecLEhEhrXgcDi9ms56eHhuxMRG4XNIKXa9X09s3RFysEavNRYRhGO/0Yjbp6ekdOhHf7yYuNhKr1XU0f1cYs9lAT6+d2JjIo/gIE8JoK2tFxAlJNpuD7XscbN68i81bdqNWq9i8aRXdivxR3//nwkAPeYN43RKjo9bqcFj7ibTE0Nndj0ZvAMDncqEzRuGw9hPWGgl4pdW5UqPDbRsgpI3C6xhEqZUYnYDHhSYiiv7ObjRGC0GvtKJVaLR47VZ8ITn9hw/SW1NC16Ed+J12YgrnYs6eSNzkhXxf43K1lqH+PtSRFgIuO3KNlH/I68IbUhJwWlHoTYT90urd7YOQexCF3kTI40Cmkga8e3AQuTaCkHsQmdY4str3h+WEPXbkuijCXieCSuoPniEHco2BsMeOoImEoA+vL4CgUCP6hpBpjIg+Jyg1BDxehKAPQaVH9A6BOgJCPsIBN4JcDX4ngjoC0e9GDIel/hTyISh1Uh4qPWLAI72zXAUBF4LKgBhwI8pUx+P9TlBHQsg/XEEq8LsQ1AbCAS+CQir/0fwdCJFxP8A7ENSRgIigHMYHvQgqA3qVX3q3oNRXBIWasNdOVHzicfUZ9nuQayPQyrwoDFEj9S9TadArA6O2V1SMBa99AHWkmZDPM9K+Mr8dbZQFn9OOIMho3PYFh79+D2NiGrlLLiJtxiJCPil/faQez+AAOlM0XocdpVYnld/vRRNpxG3rRxtlGemfOr0e9+AAelM0nqFBVDo9WqUcv8eFNjIKp7UfvclCwONGpRBQafW4bAMYzNG4hwZR6/RolTL87uH+P9CHwRyNPOjl97PHIori6LTbT2CCIIjWNdPoswc596Eaqls8xEQpuOuiJJYUmUiLU9M7GCDGqMDlleYHvV5B32CAWJMKmyOAQStHUClwukOYIpX02vzERClxecMIShl6rZw+W4BYswrrUIAInRxBpcbpCWE2qugd8BFjVuHyhJAplOi1cnqtfuIsaqx2P0ajDhBwuIOYjSp6BrzEmtV4gpIDqdcp6B3wEhetpbXDSeURF1uLO9mypwOfP8zHLy0mP9uEyx08Bu8hLlrHgM1NhF7Kx+HyY47S0NPvJjqCH+C9REeA1e4nQifxVD8sj8sjzalS+X3EmVWj4vtdCmItmuPyH3DJiIvWYR30EqFXDpcnQExSOj29TmJj9Lhc/uH6VxFWJSKX/4BJ/ZEM9K7Wfo7UVrPj26/Z/s1X9HZ2MP3UJcxecgZT5y/EEGkcwYZO8m34hYE+3v5bGeiA14PdIfX/1k4HG3e08+QrB4mKVHHPr8YzdXwMCbE6rIM+9KoQIOBwBTBHqenp9xBr0eB0SPPtSP+3aLDa/ehVYX44fqMjOG689Fn9xFrU9HfZidBJ9e1whzBHKum1+rEow0fnH42MPnuQaEUYy+UHf9L58WflQA+LBw8j3d534w+eXYzkCP8a6SrYW5CEhmNFUWwZxjRzvAMtAw4COcCRf9WB9nQ/w8Yth9Fpleza28g3m2qoPtyFxafqmT4AACAASURBVKxn2enjyc6MJT83nvzcBLbvquecpWPZuOUw6anSVnVzq5VF88ew9utK5s3Kpq6hF4Ax2bEU72/ijMVj2bil9nj8gnzWflXBvNk51DVIpHpOTjI7dtdxzpmT2bi5ivQ0CwDBkIpJEzNOLPwxDrTN5uDci/7KgdIGZs4sYuGCWSxYMIspUwpRKBTUuZNHff+fiwPd0tKGe0ga1AOd7eRNn0P5to1EJGVRs1NidrOLZrHviw85/bf3sOGfK0kYUwhAd10Fs674FRtfeYbseafRWb4PRIjLn0jVV6tInDKfI1vWIlOq8DkGcfV3Ew4GCPp9GGKT0URFE5GYQdrsM2nYvIbc835Dw/o3MKZJiw57Sw1JC6+i8cuXSJx9DrbD0k6CKbeI1h1fkLToOrq2vIcuSToW19ZUTcysi+nd9iamCUtxtUiRSYrYfBzVGzHPugpbyceoY7Ol+utpxDDhbIb2vo8ufxH+DolJEqNzCdRvRTflUjzla5BbMggEQoRtzagKzsJ/6GOUWfMJ9VQTCorIo3MINu9AUXAeofqvEaJSCQf9MNSGPGsRodp1yFNnEOqtRQBk5kxCHfuRZ59OqHkLgj4RQRAJD3UiT59H6MhG5IlFhAabEcQwMlMmoc4S5NlLCDZtQ26U+lTY0YE8fT6hhm8QkmeAVWLyZOZsQu17keecQahjD7IIKZRCHGxFnnM6wZo1yLNPhV7p4yGLLSDYtA3TrCtxH1qDIlrq88H+JgwTz8VbtYbIggW4WyXmW5c6Hnv5BtKX3kLPjg/QJUr17+6sY8yym2hc+yJJc5ZjHW4vc24RfaXfkHfOzdSte52odKl9B5trmHDBDZS+/SQKtYbm3RvQRydQeM7V9NYeZOpVd3Dwk1eJzpJ2iobaG5hw7jXsfftpCk6/iPZDxQCkTZ5B1VefMOv6OylZ9Q9isyV8f2MN0y+5iR2v/Z3xZ11Ea+kelCoF6RNnUPrlKk695Y/sfPclEsaMQ6lU0FF9iHlX/5qNLz1B0fJLaSzZhUqpIHvKDIo/+4Azb7uXTW+8QNaESbx5z63/dgf61nPjuf38RO55tYWsRA3riq00dvqINyvRqmXcf3ky28rtFOVI81FFi4vbz09mxVstXHNGPNsO2pErBeZOjOLNdd38+cYMnvqglYk5BuQqGQdqHfzhijQeeqWR65Ylsu2ADZVWyeyJZt5Y08ZffpvLE28eYVKeEZlcTmnNIH+8PocHVtZw/Xlp7DpoJxgMM39GLK9/0sTfflfIY/+sZerEOMJhKK0c4LZr8pl/2QYGbD4SYnWkp0Ry0ZmZ7C7t4an7ZvDYPw4yMV+abw9U9HPfbyZxz+N7ufGSXDbvlkJxFs5O4tUPa3j87uk8/lIJ43Ol+by0aoB7bh7HfU/u57rzM9iyTwrNWjAthte+L89rtUwuMEn4aht335DHX1+u4vKz0tiyr3cYH8trnzby+D0zefTlciaPk8pTWjnA/bdP457H93LTpQVs2t0OwKmzknl/XTsP37WAvz6znSkTpPF14FAnTz1+LbIfOIKiMgaHw0M4HEYUIRAI0tbeT0tXGi0tLSP/NTc309LSgsfnIzUzm1kLFzPv9KWMnzoDz0m+Ab840Cfaz8WB3rixhNnTUnn7ozKWLhpDRU0PYsjF+LwYvtrcyNUXjuPT9XWMyTIhhP3UNtg4f2k2b39Sw9IF6VTUDtDZPUhWipF7nyimvduFWiXnsnOyGZNhoKzKyr2/msC9T5Zw4yW5bNvdTigsMn9GPK+vrudvd07i0VcqKco3EhJFyqoHufuGPO5/roLrL8hgW3E34TDMnx7D658288htBTzxWg0TcqUFWlmtnbuuzeKhFw5z9enRbC+V/IRTJkfxxrou/nJTJs+808S4dIkoKTvi5M6Lknjo1UY+2D74k86PP7cQjvlIzu4VP3wgiuJHgiBYgAeQzhutBJZ+7zyPZqIohgVBuBv46scUQhORyLKzpcnn1MVzeOgBaXLZvbeBr78t45W3d9PeYaUgL5mcrAQaWlzkZCeg1MWRl5tE4SQpn4svkcIsElKP3i9w7vD/LzvnqANbOAkQQ1x8sbTVl5CcLj0Q5Fx8kZTHsmXH3A0jjD5Av08PBkNccuUTFI7L4Jv1f0OtOzZcowNEGKNPGTULa+Bf3+YzK0dPrxoa3YEOjDJ5GlSj/17EmMxj/pIqNOOii2jo6CVgkxyRtMxUOjIyiDNHEp+RQ0JWDgCu/i5KP3+XIzu+pm7zWqQweQH5+lXIlSr8ARFRpiAiOYeYqBgCriGyTr2Q2s3rSZx2OkOttQCENLEEVNF0dXvwq2JwIn0g/aoYWtrsuImk2yrDL0rpPqsMZziK5uZB/OEo3B5pAPtkZjq7XQQwEhiSERalDydeNSFZFH1WHyF5NIGw1E6iJg6nRySktuARDYQ1Ur9Q6WKQGeIQ5WpkkUnIjEmoEQgRQqWLQDQmoIqKIxRyI8jlKEyp+JzJaGKi8Q2lo7BkEhYh1K9BFZeCbyAdVdIYAiolICI3Z+D3D6BOyCTg7UQRkw2IhPqjUKXm4XM2ocoYT9hmAjGEwpKBLzyIJi2PEDZUsVKb+ftM6MaMxeltInLsZPy90sSnis3GKRskMn8cwQgPmhgpHM3TFUXUuHwGfDUkz5iCu1PaYdAn5dKn6iFnej5dNGFMk0Kh7C2RJE7Pp496EovGMxgjTWNR6QW0+JrJH5eK1jYWc6bUT6yNSrJzYvFmZ5IzNot+jcSqRGdloXblkJpuwZOfS2yOlH9rwMqR9a/RUbKZrNmLOeXmuzHExJOUV0ilz05cvInkMbnE50oOt00vJy7ORHx6JskZacj9juH+mYE1I4OE2ChScnJJypfwemWYhDgTiRkZpGWko/A50KgUJGWm0ZuRSUJMFOljckkpyEerkqERvaTGmUjNyiQ7Kw2lz45WrSQtJ4OunCyS40xk5ecxfvx/5pTOvEQNEXIoSNZw+cJoJmdoCYdFEEVeXN/L4x+2U9fuZWf5EMnRKlQKGRv39KNXCqREyhiXpEKmlJESKSczVoVBCJGboCYvQYVco8TlDBGhFMiK15BiVjI2XYdSqyAlRkFmohqDKkxeqpb8NDUyhQq3J0CERiArSUtKrIpx2REEQyKpcVqyknUYNDLyMgzkpesQRXA5PfzxsX2YjUo2vbWAwy1uwmGYMs5Cf78DnSJIXrKCMYnSd9ZhU6AJ2cmIlxOnsJIbJzG7cYoB0s1BFI42sjRuMoblOIMaN7KmI6QG7JgbGsgeZoLNDXZS/E6E0koyQ07S7RIDNxjyISurIh0n0V2t5IjD/bPLS6rgRt7TTJbRR6ZmCAC70Yc6MEB6rEC8wU1+suTgxRvc5CQJaELd5KbIyE2S5mGnVYbgrBmJ6e7qcfLOJ9W8sfow7Z12FHIZggAKhZzkRCNpaYmkp8aQlhrN3GmZpKVOIz01BktC+jE7nyKwhzrfwlH7yMkc6JORLqM5qSdzcsfo2kdNH9XpPKlzOYojChAeJT3s/3F5BE6S7nSekCSGRv9WhkOjE1li8MSyhAOjk1DhUbAAzq42gt1W+tsawBokMGAjHAoQtg7R19aGv0fBUHc7onkICOPosxPol9Hf0Ylol9Hb2s+3O7rZvM9KSpyGjx4fR3mdk8n5agj5cMaGUbm7SLeEiFcNkhcbJBSGBIWdNHMYlbOHnOgw2aYAYRGcMaB2W0k3QYLCTV4MiCIkKj1kmAU0bjtjLAJjIiT/wWkS0NrtpBsFEsN+8obdmwTRT4ZBQGNzMsYQJlstvb/TEEY7YCdDM/ri7f+P/awY6J+DCYIgiq6PTvLwqOPa3W2jtq6DhiPd1B/pouFIN7uLD7N82TSeeORKIiK0P+6HxVEa9//iKJ9gcmnr+M4/vkJ5RRNff/kICoV8JP04k80ZNQvr6ON2VPspHGi7b/TBb/eOvnW0eeMm9EZpxLRUlTNj2fl89+4/yVp4Lq3l+9n/+fv0NNRgScmk6No/YmupIyZHciz66isZs/AcStasInnaImxN1QCYMgpo3vYFMbMupnvfV0SmSo7UUGs1QspMBvZ9hmn8Ejxd9QBoE3LoKduMYexiXIe3ohpmjv29DYTip+Gv+RpV9jxCA1LMYjgihWDzTpS5pxFs2oXMLDGpIVs78pSpBOu+QZE+l7CtGQB5dAbBph0n4IWhNlSZs/FVH5O/IENuTsPfsB11wRn4j+xEHp2BTJARHDiCOmsu3qqvUGefQnCgCVEUkFuOxwumdAQgZG1EmTEHX+0GVJnzEO1tIIaQWzKOwytjs0AUCQ40juRvGHsqwX7pfZUxmbgPb8Ew/iz8TcUoo9NH6kefO5+hg2uJKVqKr1uqT018DoMV32KZeh6+xp3oh5l7V/thoiefhv3QVyQULcbeIi1sjGl5dOxZR/7SK2nbvZ6oDKm9BpuqSZl1Fu07PyF91hlYG6sAMGeOpb34K8addTn1W9YSnS31h/6GSgqWLOfQ52+Rt+Q8+uqr6CjfR+23nxGTnc+i3/+VttLdxA3vbPTVVzDutHMp+fhNxp1+Pj110uWmSfmFVHz9KdMuupaKb9aQkCvhbS31jDt1KbtXvcGkMy+gs1baSUgtKKR03SfMuex6Sr/6jOT88agVMtqqy5l61vlsfe81pp19IW01Feg0KpLH5LN7zWoWX3Uje778hPSxE1Ar5TRWHGTO8gvZ8NYrzDvvEvoaD/Pnqy7+tzPQta9O4IOt/fxmWRwfbhtgcpa0UKxucbN8hokX1/ewtMjIhgN2emwBREFgR6WDQWeQBIuKFZcnERWlorTexaULo3lhTTdXLIqhrMGFUqekMFPPe9/08NsLkvhwYy+TxhiQaxUcqHZw2RnxPL+qlSvPTKS0dgiZQsmkfCPvftnObZdn8P76DqZNiCUswoEqG1eclcpz79Vz1TnpVBxxEgyK7Cnr5/0vmyn97HQ+/baNqROkGP2Syn6uPCeLZ9+q5oozEyitlra6JxeYeOeLZm6/IofV6+spyJDet7TmaHkumaznYKPkOE3M1PH+1gFunqDgoxInk1LUAJS1+bi4yMC7+12cPcnAoVZp7puQqubDYge/Ps3MqmIHk9KlEKayZi+XzIzklf0+Ll8cS1m95IBNyjHwxSEfN56fzvvr2pg8VpoPS6sGuebS8TzzRhXXXJDDgQopBnRKYTSGKAtqlZw7Vmxl1drDXHBmDtddtZAZU9NODAdUnyR+WWU5IekXB/pHpAd/Hg60zebitU+auP2KHN5b18qUsSbCAT+lNXYuPyuZle83cuWyFMpq7CjkIoU5kSPj655na/hoQyeLplsYl23g1svSeP6DVq48SxqPghhmUm4k767v5NZLUvng624m50gL19JaB5edFsfzH7dz5enxVNQ7CYREJuUYjhvvk7P1iEBZnYNLF8XywmedXDbPxMEGKaRzYpae9zf385uz4/h8cy95ycPjpdHNJXPMvPR1H5dM0nCo7ZjxtcfBzUVqUh7q/F/NQP/XWHy8ifh4E/PnHWV97HYXd97zDoVTf8+rL9zMkkUT/+PleufdjaxdV8zenc9JzvP/Muuoq0Gtkz5gNXt2MPHU06netQ15VAJfP/swEdGxXPSXF9n21vMYE9KoWPP2yL9tL9tD+szFDDbXYErPp6/mAAAqvZHuij1YpixjoHbfCH6gdh/m2Ak4Gg+gTx2PazhUQK6NwN/fSDjgwdt69KAYb+tBlNGFBDrLUcTlE+iRJnRBpiXYVYEy8xRCPVUj+JCtHXlCIaHuSmQxeYT6JAdRpo0YFR/uP4wyZcrx+Su0CEodgc5yVDkLCHRJTlpYoSTQWYEqdSr+znIU8QUSXqZCUB2PlyMgiCGCXZUokosIdlWgiM0jZG1C9Euxz8fiBYUSwoHj8g+lFuLrlMoqU+vxtR1Cn7cIX+8RxHBwpH60mdPxth4kMKYIV6tUVrkmAldjKaYJZ+BoPCjRD4C9fj/msXOxN5ZjTB+LrV5qL6U+koHqPQQXnk9vVfFI/fRWFZMweQH9dQeJzi6k5/v2NRjprioh99Rz6Ti4+2hfOribnHmLaSvdRcK4Ig58+DK2tkbm/PoBOkp3odbqaT1wFN9Wupsxc5fQtH8HKROm0XZI6isRJhON+3Yw8ayLaNq/cwRva2kgZ+YpNOzdTvqkaTSXSSLgSJOJ+r3bmbr8Ehr2SXitRsPhvTsoXHA6tXu2kTVlBkcOFGM0mdDo9VTt3sbcCy6jes+OEXzl7u0ULT6Dih1byZs6k7rSklFGzE9vrX0+Nh20c/WiGLYcGhpJr21xs2hiJJsPDjG7IAKrI4hSIbBsppnKZjer783h7D8f5vInjnDhKRYGhoIsm2lmU9kgcwoj2Fk5RFSUmgidnO9KbFyzNJ7NB2wAaPRKNu+3suyUGL7ba2XOJBM7ywYR5HJMkUo2Fvdz7fIUNu3tR6NR4wuE2VTcyzkLE9m4u5d5U2Ioq7JRUmVld2k/mSl6guEw3+3pRqFUEAqLfLeri+WLUvl2ZydzJxrZUSI5oOZIFRt393LdeRkcrHXgHY6tPLY8s1IU7KqWnLUog4LNB4e4bIyRbXVHiYBtdV7OLNRxqN3HhFQ1uxokBjpKL2NzrZur5pvYWuMawW+tcXHWJAObywaZXRjJzgqprk0RCkoqB7nkjGQ2FfeO4DcV93L+2QG+3dHBKdPj2bavWyp/lBqNTcav7t1ERoqRlr03EBmhBu3oYXy/2P9u6+rzjvTn7/uPGA6yaW8/Zy+IZ+OePuZOtrDjwABGg5wInYJv9/ThD4R5e207v7kkndw0LV/v7MPhDvHd3n7mTDaxs8yGXICoCCXf7bVyzdlJbN5vRSmI+ANhNh+wsWxuNJv225g7IYqD9U5sjiCmCMVx410pQCAUZnPpIMtmW/iuxMbsXC07q46Or01ldq5eHENZkwePXxqPWyudnFVkZFOFg1mpcnbVD48vnZzN1S4uL/xpRbTwCwN9gv2rDPT/ZN9sPMhNv/0HixdO4MLzZqLXq9Hr1BgMWswmAxbLiWK/n4qBnjHndjQaFf944Vby8lJH0k+w/1IGun3Qjc8jrfC/Fxc2HjrAuyvuYcENv2PSmRfid0tirMaWTrQ/EAt6BgfwChH4jhEXBr1uyclq7UIdaSHkHxaTqbS01zeiNJgIuoeQq6V6DPk9uAOKE8R/glKDvacbudZI2OdAUEq7EH63E5naQNhrl4Ryw2K4sKAC35B0TNyw+A9ACPtGxSu1kiBQdkz+oggEvRL+GHGhIAgISvVRvNeBoNISCokn4EM+NwICKI7B+5zI1DrpuLrA8Xgh5Jd2g4/BK/EiDIv5RL8XmcZAyD2IKtJyXP18L45Uy/wj9fm9+C/osmFKSDxO/Bd02rAkJ+F32lFoj4r/lHojMp/9BPGfb8iKOT72uPYNeN2YYix4BvtPEI+G3DaUGi3fPv4H/C4Hi+/5OwqVmkiTGZetH93JxH92G6phMavoc6ONjMJl7UdnOoo3GAxHxX92G+phfMjrRm88Khb0e9xolHLUWh1Oaz8RlhhcgzY0BgNahYDPI+GHBvqIMEfjG8ZrdDqGBvoxRsfgtNmwmCK5JD/t385AN7wxEXOE4gSxoE4pHXMXG6XE6ggSoZXmKadfPA6/tXyIu15vZXymnjNnmEi0qAiFRGKilBjNGrRq+QniQplGjl6rGBEXDtgDROrlyFRqHK7vxUY+Ys0qPAEFCMJx4qSBQR9Go44Lb99Jd7+XV/48lfgYrSQu9EtM57Hiwt4uK5GGYXHeMWIms9p7vJhpuDw9tf1H39cbwmRQ0FndQ4xBjtsvfWN1KoE+Z5g4iwqrK0SERjaMD2PSy+nziMREKnD5JLxeLdDnCJE4Nm5ETAng9ISIG5M0qhjR5tcRF61lwOYl0iA5DOu3tHHrw8XcdUsRv795ylHG+WQO9C8M9A/S/ncx0EN2NxF65XH9Jxz0HyfGHRj0E2lQQDhM/6Cfh1+uo7TGzidPT8FsVEl4nYI+m59Ys5oBu59IvQJC4ePEfDEmJU67TxqPGtlRcbA9gEEtA4ETxcTOwFH8sPi4v8d1TP8PYxqeTyzyEC7fsFhQLaNvKEisUUl/l+OE8dXT4aTw0e6fdH6Ur1ix4qfK63+FPfzwwytW3H/h6A+Ff+3ixuyseK6/eiHF++tZs24fX31TxurP9vDK6xv5y2OfcPedy09URJ94nPXJf+9k6TIll1+6kI6Ofq689knu+v0FEgstG8XTFVJPTAM8o89vo5r2JH58n2/0TEYTivhOIirxnUSIWFNRwbqXnqZq51Zcg1ZeueMmaot3ERmbQFRCCu1VZex87x9kT5/HV0/eh9Zo4tBnb9J2YAcKlYbNf/8jCUWnUvzCPfiGbAw0lFPz5RvEj5/FgVfuR22MoeW79xio3oNcpaZx7UoisopoXfMoIbcdd0cNfbs/QpUykd41f0IZlYCj7Au8rWUIChWO/atQxo/Ftf15RK+DUF8DvpqvkMePw7PlCWQRcQRqvybUVYGgUOPb+w8UyUX4il8Gn4PwwBFCrXuRRWfh3vz4MH6DhFeqce16EVXqtJH8g7ZWfOWfo0ycgOO7vyGPiMdbvZ6QrQXEMM4dL6JKm4Zj+0pE7xAhawveH+B9hzcS7JDK79n9MsqUqbh3vQhhP6GeWryVa4/D+49sxd+6H0GuGsnfvu15wh47/p46nGWfo06ZyMC6P6M0p+Ao/Xykfvq/fRZd1kxsu97Bb+vA01nDwJ7VGDKn0PLhvWhjUunavorBur3IlCoaPvor8ZMXUvH6ffidg9ibKmj65i0sBTOpXf0USm0E9RveoadiNwqVmpJX7yd1+qnsWvlHfA4b/fXlVK95nZQpc/j6weuJTEyjYs0btJdK/WH/u89x8LO3GepuI+eUpVib6yld/U/Si+by2d3XEJWUzoHVr9O8fwcKlYr1f/sDY+adxto//w7PoJXO6oNUb1xL8thJvP/7qzAnp1O86nWO7N2OWqfnkz/dTsH801n90G24Bq20VZax9+O3yCqaxWu/vZzolHR2vP9PWitLEQSB9x64nQkLz+Dte3+D02alp7GeL19+mnFz5vP0DZcQl5rBt2++QuOhAwiCwMt/+C1Tl5zJi3fcjN/roWzbFlasWPHwvzaCf7w9/PDDK1p7vczMj+DsFYfJStSw8otuviuzE6GRcf3KZs6eHsV1zzbR7wiyv97Fu5v7mXUM/tOdVjLiNQTDIs9/3k1Fk5tX1vXw4eZ+nl7Vzu5KO6dNN7PsrnKyknQ893E7pYcdiCJc93AVy+fHcvVDlfQP+tlXOcSTbzWyeGYMS3+9l+wUPe9+2c7nmzrRquVcc18JyxclcsXd+/H4QsSYNeyvGODvb9by5ZYOxqRH8tIH9azf0o5Go+CqP+zivCWp3P5ICS1dbvaWW3ni9TqWzI7jjJt2kpum5Zn3W9hYPIBGLR8pz13P19PS52d/vYtnPu/m1ImRXLmylWSTghe3DrGp1oNGKeNX7/ezbJKeG97sZcARpqTJx7MbB1mYr+Wuj/ox6eW8sNHGpioXGpWMm1/v5py50VzzWD399iD7ap38/aMOlsxLYOnNu8hKNfDMO/V8u6sHjVrB46/VMHdqPJfevpXDjXaefLWClW9V8ek/l3HF+QXHh2soI0dvZMVJ0kchYgZCo4jZkY5MHc1OJhYcTex3MgGgRSkx8YFAQCIKvseF+0f5wZM4v+JJmKLR0kcjt35sHicrizj6t1I8STrhE8sijpL2P6U/+Fw543ONnHHTTrJTDTz9dj0bi3vRqORc+2AZyxcmcOV9pfTb/Owpt3Htg4cwG1UMDPopKoji2XebKKsdIhyG6/5UyfIFsVz9QAX9tgAHqu08+XYzi2dYOPO2UrJSdLz1ZRfrdvajUcu4/pFazpkXzdV/qcHrC7Oz3M5TH7axeKppZLy/sb6b9XusaNUybnisjnPmWLj1uSN0DgTYf9jF0592sWiykbMfqmVMgpqV6/vYVO5Ao5Rx08utLJtq5MEPu2juC1LS5OXZb6wsLNBxwctdDLjEn3R+/IWB/oGNxkBbrU72lTTQ1WOns8tGT+8g550z/bjwjX/FXnj5a7bvqmb1e3ee+PAnjIF++tlPKd5bw+oPHzgu/Tj7L2Wg9x84xM7PPqR611Z8bhcZ4ydzyX1/pe5wE6ZEiVGxdbeTlDee0h07ic+fOHKBhSEmgZ7ag2jTJjFwpBJ9TAIArr4uzJljady/h6jMCXit0nmTGnM8jft2YkifiKfz+As7ghFpeNrKkUfE4GuvIOSxQyiIu7sBmcaIPDoHVbIkfvQOdqKwZBHqrUEWnU3Y2Y/o7CFsSETm6kcWm0/Y2oSgj0b0uwi17iZsayLce1iaYOUKkKsQFGoEuYqIZY8TGmhCboghLIYRXQMoojMJdFejiM1BdPYjyGTI9BaCffUo4wsI9jciM0QTComIrv7j8IGhPmQiCHoLof56FHEFhKyNyCJikSEQcvYdn79rAJkAgj56JH/sLSgjpWOxQs5elDHZ+DurUCflEXZK5wErDDH4umvRJBcic7SiNEqxp0G7dAGKq6Wc+IIifINS/aui4nC2VJE8eRb2liq0ZokZ81g7MKaNxdV0EEv2BNwDUvvqLAkMNJSTNnk61oZK9LGSENjV20ly4UQ8gwNojeYRhtjaXMemJ37HpAtuID5/EpEJUv9xdHeQMm4irWXFJI6dxFCPlL85IZGu6oOkTJxOd+0xF6b0dZCQN56WsmKSx00eudAnOjGZ9qoyMibPoKO6nKjhs3FliBijY3EM9A0z0C40imEG2mYlMjoG56AVtVaPVing97gxmMzY+3slBtrtQquUo9bpGLIOEBUTi8NmxWKM4NKxGf92BnrjI3lMztGzo9LB9Fw9NW0eKpo9hEMhDjS40anlpEQruXCuxFi2DgSYkn0U39rnB6WM2HQb4AAAIABJREFU1Bg1ew87mVcYSWm9i0NHnKzeYeWRmzOZkhvB9oN2ZoyNoLXHh6CWkxqvZW+lnXmTpQtW0hK1yJRKWjq9FI01sr1kgBkTTLT2ScdmpcXrKC4f4JSpMZRU2UhLjkQQBF5Z1cCu0j7uvqlAutCkR2LI0hL07DnYx/zp8ewtaSMtUdrBaOlyUzTWxLb9fUzLkdPSPXxBTJxmpDzF2zpIi5VinVt7fUzO1rN5Sxsz0rW02aT5MNmkYH+zj3ljDZQ2e0m1KIbrJ8ikNDU7m/1Mz9TSNjCMtyjYd8TLgkXJlNY5SYmT8m/r8TFzfhZb9/cyc7yFlu8vZInXsX6PnfYeD+98Vk+f1cvS+SksX5LKeWePEk74H2Cg+3q6qS0/SG93F31dnfR0d+HzeFh2yRUUzZk34vz+kIFurKslIiKS+KTjy+iw26na+CarP17Hpk278Pn8aLUa9Hoder0CuVxGbcXrR8MX/4sZ6PKaAfKzo+izSt/CGLOGmsN9jMs10dAyRJxF2vHr6rGTnRpBZd0geZlG+mwS3hIhUNvkYFyOkSOtTmIt0g5nY7ON8blRbNvfx8wJFpq73IhBH6kJevaW25hXZKGkahC3N8jND5ezYJqFF+4dx85SKzMmmGjp8iCG/aTE6dhbMci8Kebh8aiBYIiWLh9FBZFsL7Uxo9BIc6sTgeHxUjXEvElRHKh1kBytRhCgtcd73Hhv6/IgitIFKHtrHMybYGR/hY3UmOH+3+uT5p+KIaYmK2gdHi8pFhX76l3MLTBQWmElZdhBabUGmJSmYfsBGxe+Zf3fe4zdz8EEQRDFwHfHpZ197oP09trIy00lMdFCZKSOF19ey2mLi3jisRsxm0dZsf/AId69p4oLL32Ej967hzmzx46C/xHX455sRTzsWKdmX8czT97A+efOGk4fJdRddpJ4IJn6JHmPcoGPMPpJHidzoEdjlQc8nlGxPQ4Xg329DHS243IM0VJdxd4NX9LT1krahKmkT5yKyzbAwutuZd3Tf2bMsmtoPyTFmCZPmE7ZJ6+Tf/HvqV7zGjH5UwDoqzlAwfIbObDqFeKnLR2JqTXlTKF103uY511H384P0aeOB8DVWo4s9ywce95CP/4c/J2SaEyVOI7Bio3I4sfi37USISJBOiM56EGIKUDsOojoGwKZApk5GyFlBmLLTuTp8wjWrEH02CAchJAPVAZAQBaThzjQgOi1IZgyIRxEMeFyQk3bEKJSIRwg3F2JONSOPLYAec4Swn2HUWp1yGPG4Kteh3bKlXgrv0ARl4dKoybQWYl+0vk49rw5Un6ZUoE6sQBH2Rqi5lzHUMknGNInACLe9kpM0y+mf+s/iSo6n2BfPeGgD33aRAaKPyZ+8S307foQS24RYjiEo7mchFOuoO2rF0hbfBX2Bqk+jdlTaN/yPlnLb6dv7xoiUyRRoLWulKyl11Oz+ikKzr6Ovhophjgmfyp1X73NhMvvovGbt4nNkz72PVUlFF5wM9WfvszYMy46oX1Pu/1B9rz3EikTpgHQdmgfM6/8NcVvPUfR8stoOrAHgIwpMzm07iOW3n7/SP8q+/pzvn7+Uc6771Gqt33LKVfeQkOJFO+cXTSL/Ws/4tTrb2PzG8+TMXk6AM1le1lyw218/tQKFl79K+r37wIgf8YcvnvzZS744wo2/HMl2VOki3V6j9Sy8LJrWfXoQ5x+3a+p3SvhT7vsCmRyOYN9vbTXH8Y5aGPWqYswGE+83EirHH2VqlGcOKY1cjnTYvT/dge6+G/ZPPdVP49ensBTa/uoaPHQ3OcnUitjdq6ePXVu+h1BLAYF5xRFsLTIyMpj8LNz9QgKgZ3VLv6wPJZ73+3kjMmR3PFGO+fNMnH9abE890U3j12bwlOfdjG7IAKFSs62iiHuujCRu19r5XfnxbO93IGgknPKRCPPrO7giV9l8sQHbcyfZiYUhh0HB7n7qjT+uLKBOy5LZX/tEG5vmFc/a8eoV7Dm6Yk8/lYz84rMhEXYWWbj7mszuOvpw9y+xMy2Ssn5mjcukmfXdPH4dam8srqZsYnSHLmrwcOdp5u475N+fjNFxY4mydGak6HihV1uHpqhZOV+HzOSpLYq7ghy21QNL5UHuGS8mp3NElsxJ13JC3s8PHppHE9vtDMrS3J0dh/xcueSKB74xsFtZ8ezfaQ8Eby/z8GN5ybxyGtNZKfqaOv28k3xAMEgmIxK/nBtDk53CLlMYP60aGLioog2aY5rS7laP2oby1WjC+AF9SiXb41y94CUiY6Kqg6WnPcChQWJJCVEkRAfSWJiDKFQmJdf24Jer+bOW0/jwnOnolQq6O0b4oPVxbz9wS76+h34fEH0ejWzZ+QwsTCVnXvq2LKjhgVzcrjo3MksO70Qg0GN2+3H5fazp7iWC697F3/3Y0dZ6dHOPAbCvtHPPR4tHOKkIRInOSNZDI7OQo0WUhEOjp73Jxs6OW2GmcffaWHuRKnedxwc5I+XJPPHlxq54+JktpVJ7zZvnIFnP+nk8ZszeOLDduYUSv5IVb2DG06P5e43Wvnd8gS2V0rM/bw8Hc+u7eWxq5N46rMeZhcYEANBdh1284ezY7j3/S4mpmv588c9XDAjkluWWKTxe1kCT33Zx+xcHQpEttW4ufOsaO5d1cPtp5vZXutGJsCcXB3PbbDy6CVx/H1dP3NztYTCIrvrPNy51MK9q3u5fYmZ/UdcuP0wL1fLym9t/O2iGP7+tZU5GWrCInxX4+bUfC0vbLZz/wI9lT2S/zAnU80LO5w8sjSS13c4yI+R/J49bQHumKXjge9c3DJJxa42CT8rRcHLJT7un65k0luuX0SE/0kTRZHde6rYv+dFMjISRtJ/fcvZ3P/gG4ydcAPPPPUrLr5o/qiXm/h8fv708Lu8/d53vLTyt6M7zz+xPXDPRdxy60t0dln5zS1Lkf3MtYR+n4/2Iw201NXSWFPFkcpy6irLCYdCxKWmoYs0Ep+azhX3ruBwfTM6o3QMXNOg9f9ZmUWPDX/xy8jiClFmSEcMhvpqEZKnE3J0Iy+8iHDzDsID9TBQB+EQ4b5qBE0U8pSZoI9BtLcjM2UROrIBfA6EyCRkCZOQJUwg1LgFQS5dWCLIlSBXgt+BLCr15Nt7v9j/1ULBIN+89AQ12zdy/QvvEZuWSfW2b/8jv23t7uTIwRJKvllLR8NhZDI5yTm5aHR63lxxD4UzZjPv7POYeupi1NpRdo1+plbf5ePXp0XjC4S4fqGFez/o4qbFCfz5416eXj9AQDz5ln4wJFLV6mFD6RBLJkZQmPYjTy/6/2BXn5XIw682svLDVun4vZ+5hcMijd1eDjW66bIFWLPHxqFmD++s60KjklHb4iLGpGJmoZEXHprCPc9UMX28ma37Rglp+A9ZRVUHi5Y/z7OPXsClFxQdfTC8G3rrLYtYv6Gcvz+/gXv+9AnjCpLYvbeBc5ZO4qlHLmbBvDwEQUFdfTe7iusoPdTC+edM5e1XbiIq4vj5z2DQYDBoqKzpZu6MDLzeIFrtSbZHf7H/0cJhkcpWL9+VO7l2oYkx8T+98O5k1tDjZ3utmy1VLtptQXxBqOjw0zUY5NJ3bSQaZUxIUjI5+efTtr8w0D+wHzLQoihyxVWPsmdvNU8+dhPnnTv3OEe5uLiaG295mqSkaO64/XxOXThZ2j4SQxw8eISrrnuS7KxE/vHibcTGRv0P8VQ/HQMNUN/QyVXXP4NBr+GNV39PSkrM8dj/xwy0ta+XlQ8/QNm+YnraW4lPSSVtTB6Z+WPJGjeeqIxszHEJJyxKGnsdWDukw+ej4pNoLttL9vS5lOzaizFBKs9QdzuxueOp3rmD6DETcQ9IIQE6SwJ9tQeQJUzC0VKFxiJtVXoHOohIG0vrvm3oUscSsEvKZKUxlq7yvaiSxhPoa0AeMRyi4OjFXrOdUNN2IIygNiJojQj6OMIBL/K0uQhiEEFrQRRFwt2HEJQ6kEuMtOgdZkUUOrC3IJiyEIc6ELTSwkAM+RCMyYgDdQimTESvdBIBSj3Bsrcg5EeeMR95wkRUOh1hZy9ySxbB7koUsbmEXQNotGrkegv+7prjyq9QyAk6elDF5uBrP4Q6oQBZYBBEUETG4G2vQps2EV93HdqYJAQEAoPdaBJzcTWVokstRO63IQAqYxyOlkNEZhUR7D+CxpI4XJ+dRKQWMFi3n4TCaXit0mkAGnM8tvoyLPnT8XUfRh/9fQhNB6bMcfRWFpM6aRqufqm9DNEJ9FQfIGfmXHoPHw2Z+L59rbUlJI2bzFCPFDIRGZdE26F9FMycR0f1IUyJUn+wdbaROWESLtsAqx68DYVaw0UrnkYXGcVQbxfG2ATaqg5iHsZbO9tIGTuR+r07yJg0ncHhkIyYpGQaS/cyZsZcWisPYk4a7m89HaSNnUDtnu1kT5mBtUsSOSWlpFJ3YC/5M+fyyd//yp4vP2X+RVcydtp00vLHYrREj/Rrmc9D8bdfsf2Lz2iqqeT5b7ZjtET/LBnoDfdnMiVLy5ZKJ7Py9PzujQ62Vbu4/9wY4k0KTh1n4ECjh7QYFYc7fdz9fjdRejmnFOi55bRoegaDIBMIBEWuf7GVRLOSGxZZKMrRIyjlNPf6KcrWsaXcwax8A239fmRKGckxanZVOVg4MZKSOhfpcWpkWiXNXT6K8gxsLh1kdqGRNnsQAYGUODU7D9k5daoU8pGRIt1Q2NTpIcGi4tL7KlAqBB64MZPUBB0p8Rp2lg1y6nQz+7Z2kDocMtHc46MoR8/mQ0NMjwrQ/n1IhlnB7gYvC/K0lByykRIltUmLLcTkJAWbKlxMS1TQ7pAcvuQIGcUdQRaP1VLaGSQtSpqvWwZDTE5UsGtQyfQMNe22IE5vmHeLHWw97KHfGcYSqSA/RcuYJA2WSAUXLk+lvtXN3Ekm2nokJjQlTsP+ej+nTI1hf6WN9CSJYW7ucDFz6olz9b+Tgf7L37fx7MtbcHv8JCdGkZJkIjXZREpKLEuXjGfm9OwRbElpE/VHelh2xkQMhmNZ8pMwPye5IKSnq4fb7v2CA4faeenJc1myIPe/loEO+wJs2m9jzgQjbT3fhwyp2V1qY/7kKEpqHaTHS3XV3O5iyhgDm0vtzC6MpK1XwidHyNhV7WDhhEhK6qXxAtDS4WZylo4tFQ5m5UnjSwwEidTJuWplK3KZwO1nRjM5UwehEC39AaZkatlS5WJWro62gQBCKEySRcnuOjcLCvQcaPKSFq1EFEVaB4JMydCwpdrFrDE62vt8IAokWxTsrvewIF/HgSYvqebh/t8fpKHHx/2fDHDjfCMpRhkZ0UompqgobvQxP1fLzsohjvQF+arGy4H2ABtvsdBkDTM9WqR9SPJhk40yitsCnJKuZH+Lj5RIKf9We5hJ8XI213u5foPvFxHhv9MefvjhFSseumrkb0EQOP+8uRSOy+De+1/no9VbMUbqyMhIkA6eT47hxuuX4nJ6eHblZ6z48zt0dPSxe3cVt9/5MisevIJH/nItBsP3k9LJFiw/hlU8SR7HiAst5giuufJUOjsHuO7m57jo/LlERRmOwZ4svvokmxLCKJOnYDwxjZOLCL+Pizuwawe/vWAZ44umc8Wd93LjA3/mvBtu4ZRl5zJ+5mxSsrIRVZpRGf26qhp2fvAaLeUHUOt0rF/5CIULz2DDc3/B73LQ31hL1YbVpE6Zy/53n0UTFU3j5k/przuIQqPj0AdPYxm/gPpPniTkc+PsqKNzzxdY8mfSuPY5lJGxWMvW426vQqbSMrD3Y9QpExna9RpiwEtwoBl37UYUhZcQ6ixFNfEKRHc/YsADfidi/2HwOwj31UDIh+joJNRfiyJ1DsGqj5HpYwm170McbEFQqAk1bEAeW0Cwbh2E/IjObsLWemRRaQTLP0BmiCPUVoxoa0amjybUdQhF5qkEK1YhDrYhiCH89ZtQJozHs/tlZJGJ+Bs2Izp7QRAY2vsOmozpI+UPDXbgrNyANnUS1k3PojQl4zq8DW97BTKllv7tr2PImU3fppcRBBmerloGD36NIauIji+fQG1JwVG7E8eRA8jUWto3/APT2Hk0f7mSkNeFq6Oe7uK1mPNmcPj9h4lIyqZt+yfYjhxCodFT+8kzxE9eSNM3b+O29jDYepjmLZ8SN342Ja/cjyk5k7qNH9NXW4ZSo+fAO0+RNec0tr/0MAGP+7j2PbDqFbSRURxct4qOylJUWh1bXn6MsaeczvqnH8LndtFdX82BtauIjI7h3btuIn/eYpbf/VdUwwxv3Z5t6E0W1jz+ID63i866avZ+/iG5M0/hoz/dQUx6Fvs+/4CW8hLUWh1rn3uECQvP4JPHHsA/jK/dtYWMCVN45/7bic/IYtenH9B4sASDMYoPH3uQql1bKdv0DXPOuwRtRARFCxcTaT4+ntSg15FZMI6swvHs++5bEjOySMnOOemtZqOdWqCQyfjnk3/7t4sIHd4QM3MN3PRKO2MS1NR1+YjUythY4eTtbYOYDXJe+nYAt0+kyxYkEBZZWBjBU2v7eHXjAN8ecrCp3MHzX/URCsPqP6Tzp1XduDxhmnv9vPp1H4smGrnx+WZykzS8+V0f9Z0+ZDKB+99s5ZxZZu58pQWnN0xFs4c3vupm8VQTNzxWR26KlrU7B9hcYkOvU3Dfiw0sPyWWO56uAwRKqu288UUnFyyK5+0vO5hRaOShlxtp7vQQbVJz78o6li+M5S+vNdE3GKCiyc1bG/tYNCmKG59tJD9eyZs7h9jb6EWvlvHQ5wMsm6jniQ2D9DjDVHYHebfUw8JsNXdvcJBilPFBpZ+SrhA6pcBfd3pZlq/m7m+cOP0ilT1B3i3zsjBLzZPbXMREyHlm4yBPfTuIWS/H6grz3aP57K5xMq8wAp1axuaDQ1x4egLXP1xNbrqe19d0sKfcjkGn4M21HcyZEs3tfzuEwxXk0GE7r3/azOVnZyKTHT+fyhSjkygy+eiLNkGhOTHxJITLKXMLuPt3i7njVwuYNiUdtVpB/ZFePl9XRk1dF1ddOnsEm5hgonBsMirVD789JxHLi6PHJBt0Mi48Zzw5mdFce+tqOjrtnD5/FOIHiaQYNf1HifROQnqd5KSRH5O3wxng6j9VMSZNzxtrOymusKPXKXj6w1YWTzVzx3MNOD0hyo+4+HRbL3PHG7nxyXrGpGh58+seiqsdGHUy7n2zjXNmmrnz1RacnjAVTW42HBhkeq6BG19okcbXpgG+PTjE45/30jcU4tO7MlixuhuXN0xjj49XN9lYVBjBTa9K4/2trTYaevzIBHhwdS/LpkTyh/e6cXpFajp8/4e984yvo7rW/n9mTm/qvViWLMm9925sWuglIQQCKTcJhCRA6EkoJgRSCJDQQ4upphkMmI675S7J3bLVe5dOL9PeD3Ms25F0E+4Fwn1/WZ+kPUujPXv23rPmmfU8i+c29LF0goufPN1KSaaVt3b62FAVwmUTuf31Ls6Z6ubGlztBh521Ee5Y1UV5QwybWeD7CxPZdjRCeWMUl03kjtW9nD3JxX3v95HilHBZRfa0yqS5JR7eFGR0qsSKiig7WxRcFoG71oY4u9TKX7aGaQ/qHOhSeWl/lMUFZq7/OExvhP+QCL9MGyoH+pipqspLL3/Gihc+oaKymvPPncul3z6FpadMGSiTeuRIMy+98hm1ta3c+9vvkZeXfvJJviIE+kS74Fv3cdmlS7j4whOIg/8mBHr9++9y742/4K5H/sbcU04dNge6MzA0EaO+J0wsLmNnsTsGZMKO1rcfly0Lh7C5E2iubx1S5swvO5GDPiRbXJYuEsLs9NBeV4fJmTSALIhmG50NTUiORLRoACEuM6fLEQIRkdi+11GOfmLkMyMgpo4CayJSxkSEhDwwGWOpRwOIFochVWdxghp/AOiAbOgs63IYJOOe6JKEaHGiR/1GjnTcX3CkoPtaUao/Rus5gnnid7AVTBtSxs5mtyKYrWgRL5L9eP8lkwRyGNHmHpDhM0sqAobMnBryYnImokb8WF1uBISTZOYkRyI2k0HSEi02lGA/ZlcSJqLHZf6iIcwODzF/L4kZmSeNf8zfi9WTgqQGMNuOyQgGsbgSiHh7SM5MR4n7m6x2It5e0rIziPi9mONB77H7S7gf5wmycWabg1B/D2np6YR9/VgcTnRdZ+eqFyl7+W9ccNu9jFmw7KT5pEajmG02Qt5+rM545chgEEdCIv7eblxxmTkAp8s5IDN3ov8xWbpjMnPH/BM8bvZt/IxX7ruTW194C2ei8YXBZTefVFZZ0zQObviU1x99iP6ebuac/g0u/MnPSMnM+loi0EcfHk2Sy0SnVyHNIw3ISNklnRc3e3m/3MeOmjDLJri4YIaH6aOcpCea6fQqhGMqKzf3c6g1ym++mYnHIZGeYKYvoOCySQgWyZCdcp0gkxfVEMySIWsVl8nr8yu47CKi3UIgrJLkPi6DFYoHXifKzPX6ZEOWTmCQzNbV9x1mYomLq7+VPyDL1XW4C5d9sGxWUtBHMC5L57QYMnPpHhNdjV5clrhsVkwnyS7S3Boi1S4SigOSDjN0h3VyM6z0hTVcFuEk/x6bnaMdMj9a0cny85K5eJqLroBGdmnqwPiAIZOXXpo60P8TZex6IxbSU2z0emO4HcYc8YcU0jKSBt3LLzsH+rGnN/LLX79JNGo8D2ZNL2Dq5JEsXTyWi86bPvTfnXySoZuHQaBRQ/T2hbjtt+/zzocHeeT353PRmUOrTX3dEWg9pgx5fzs7I6QnWejzybjism6+/qgxn0+QfQRw6Oqg9QLg98aM+eyVSfOYeGVjL3e+3Mo9l2ayeJyb9ATT8fmmqQQiOkku6YT1rqOrqiEbF5//fUHVkKUDAlFDNq7Tp5DmlgiGjOfjMVnGY/5Ok05Nl8w5D7RQcU8BoahGmlsi4DfUVY7JPqa5RFZv7+OprSEaelWWFFu5frELp0UgWVdOXl8hnTSnSGefPLC+grJOok2ktSfG3JdC/0Ggv0z7RwT6RBNFkUmTirjyu6dx+XeW0d3t5Y/3v8bKV9exZPFkEhNdpKR4WLJ4MheeP5eEhKE2qK8GgT7RKirrCAYjLJh/gmrIvwmBfv/1lYyfNoPzL/8eAOFh5OqCsaE3ocamFjRVRVVkvJ1teNIy6Kg5QldnN1WfvU37wXKsTg9bn7uftAnz2LfyIeRICF9rHXXrV5E+bib7Vj6ILSmDjh0f4Kvdi8nhpvadR7GNnEbH2mfQYmGiPU30VnwAaWPwb34S0ZNJ5OgG5I7DYHES3PM2puIz0P1tCO5sEAR0bzO6EkXrOoQuiug9Neh99WgmK9rRDxFSR6Me/QBdjaEHu1DbKxETRqBUvQOOZLT2PejeRnSLG/XIGoS0MahH1qArETRfM8qht1FrPkVXIpgmXY7eX2cg2WYb4cpXMedMJlKxEpQoerCDcNWnWLLH49t0Qv87qxGsTrxbX8BWMI3+rc+jq1Hk3mb8+z/GkTeRrk8fwZyYReDoFkKNe5GsLjrWP4Nr1Cw61z4Nqky4q4HuXWvwFE6hfvUDODLy6dz1Ab66vZjsburWPEbymHk0fPwMcshHsKOe5s1vk1I6g/0v/g539ggaN79Hz9FKLE43+177C5mTFxDqaMBksaApMqGeDhzJ6fhba7G5Ewj3dSOHApjtDvqaa0nNzqWvuR5RFNEUGX9XO67UDPoaq3F4EumoOcxHj9xL7a4tnHfz3YyeN1gxQJQk2qsP40hIJNDTRTQYwOJw0NVQS2JmDt1NdYiihKrI+DrbSMzIpL36iBFg93QRCQawO1101leTnJVLZ2PcX5bxdbWTWVjMu48/wNLLfkDQ108k6CchMRFBENBUle0fvsejN1xDVcVuLvn5L7n6nj8yfckyHC4jMPl8CLTwlSDQZ01zc9dr7Zw+2c0drxpI1dG2KKu2efnuoiQ2Hw7xq/PT2FYd4uXNXt7c7uXTfT7OnZ7An9/tYmyejZJsK+/s8rFonJtrn26iKMPKK5v7qKwN4bZL3PlSC6dPTeDOF1sIhg0k7LmPu1g4IYFrH62lMNvGynXdbDsUINFl5van6zljVjK3P11PWNaoagjy3LttLJqWyM//WMWoXAdvrutgc3kfiR4ztz9azRnzUvn1o0cJRFQO1gbZvt/L4unJ/OzegxSlmXllfQ/bDgdIcEnc+UITp09L5I+vt9IXVDnaEeP5Mj8LSx1c90oXBR6B1/dF2NEkk2ATufuzAKfkSdy7JUIwBjV9Gq8ciDE3z8Q9m0LkeCTDvznuvzbI6ROd/PK1HnKSTIzNsvDCVj8LS+xc91I7RZlWXtnQy7bDARKdEn96rZlTZqbw60ePEgyrHGkI8ew7LSyZlclP766gKN/FS+81UlbZQ6LbzCMv1TBrUip/+NsBgiGFo/V+3vqkkYmjU7jlD9vJy3Ky6sM6du3rYkRuIi7n4Be3z4NAI5qZMDabRfOKGVWYhtVqonJvM51dfiIRGUXVGDs6+5/Mtn8dgfb7I7ywchsXfe95JozJYtWKK5k6KRe0YYLcLxGBfnF1HSaTyFuftbD7YB92m8Tvnz7M7AmJ/OnvNQRDCtWNQV79qJWJxU5uf6SavAwbq9d1Un7Ih90q8uCL9cyfnMhvHq8hGFY40hgy5vOkBH7+wFGKcuy88kkH2/b7SLQL3PFcI6fPSuKOZ4wvM0eaw7yxvpvZY9xc+3idsV6OzWe7wJ2vtDKz2Mk5v63m/d1efrw0mSNtURaNc3Hts83GetzSR0V9GLdN5K7XOzh9kos7XusgGNWo7Yzx9w19LBzj5NoVbRSlW1i5tZ8d1SESHBJ3vdHJ6RNd3PlGJ6GoZqyXTV4WjnZw7QsdFKWbeXuXj/0tMbbVRDjQHOWsSS7ufLubSFSjqkPm+TIfqqZzwWPt7KiXKUqVWFpi5YKJNv66IcippVbuXxegL6JxtEflxT1R5o9yu0UAAAAgAElEQVQwccMHQUYmCLxxKMbOVoUEm8h9m0MszpN4aq/8he6P/yERDmWmpUO3600DP+bkl3D9DXP5xXW3cO+993DBN5ezY9vfMJvjQzocojycJM6QvkMv8mER6GHOPX50Kk89t45br1t2HPkaStoOQBrm3ObBaPPe/mGE2mNDt3sjEfr8flyJibQFDEmfrsDQG1xPcJi3eGfqwKuG2Z6ELwa2nGLsegfJ8ZLO9tRskvJLsDjcJBWMISm/FDAkgyx2Fwl5xSRk5yHIRh882XkERpSQlJ6GUjgGV+5oAKxWAVtuJj35JSSNLCJsiyNtWUWI/kYSRhXgl+djzTDy+UKNewjWVRJtrsSqB7AXzzH67M4jpvZhyy8mKrdjSikEINyVhDmnBDlQhylvIpozHjSlFhINNiLFutFiXvSGOrRQL5InE9fpv0Ju2YM1txjFbsJstWBOzUP0jsSVnIiYPQpLWhEWi5mopOJMSETJKMSdnkOUCDaHFXtGAWJfMcnpqQgjRpNYOA4BCDokUnIyUPJLSR1ZBCl20BQ8+aMxeWvIK8zF1DWJ9NIJ6LpOv9tMbmEO0ZKxFIweRZ/NuO/JI4uhayz5I9Ox9IwjuaAYgG4H5I9IxVc6huKxRSSYDKQ5vWQUsZZxFBSkkWjNwGQ9+aGcWDI1/lPG8cbCDJIcJsibOGiOyKnFrHnmCT57eQULL7yEmx56lISEYZAyoCTj2PlP+FpUEP85a8JAkyUezI7OOoaeGbKGkihCgfFzSaahIKJpGrs+ep8Hb7iK8dNnMm5ENvZ4IRWrIPDp22/w3AN/xJWQwA1338eyM88eMmVpnGeYLVoegvg4hEzWl2G5Dp2xGWYcmsyELBNjUo09RQiKOMIRxqSIjEvU+d50J/o0B4daojy6yY/e0c/4BJ3RNhldVgk5FGytPYx2qmSHfEywKZhEnSyvwmi7jLWhg7G2GCWajhABn1nGWt1KqVUmq7ubcaKxx2a0RSk1RzEdbGSMKUyh1/hCEhBimPfUU2qKkN7USrE/iqpB+tEgJYQRtx5hjBomKig8cyTCssQo4roDFCthPFVBigLGXphQ5aNQkVG21ZAXCZMVlwkbqWhE9rUzQlPxeGVGxoENd7/KSJOK7tMpsunkS0Y/fTYdvFEKbJCiyRQ7DP8UTWaUCyzdAVJNGnZJoMQUI+xUsXb7GW2JkdnVzTjBOE9mV5RCRUbccZQxepiiPmPd+XUZsfwQJeYwaQ0NjImjm2kNYVICIZSdlaT6fCS1xiu6+VRiFVGSwz1Yaw+R6jO+nMiHw/Q3DH5xE+2Dv1oKw5D1RJsRbM9IhxnnwHXn5NPjzeTGPx/muRc3422v4fTiuoE5P1Q6iTDMyyNAvy9GWUU3m3Z3s2lXF4drfcyelMKqv8xi6tgk8O8l4gd9mDoDwxUZGQoR1sPD+IaHfkY5gz7cXpUsjKqSbi+kiVHEpg4yiZAeNdZLJhFMdR2k61E8Xb1kycZ+6OnSyDPL2Np6GZ+oU2o1/k8oUcfe1ceYJMiWg4xPMJ5H2XKIMYlg6+xjXKJGqcW4Bj1Bw+H1MiZJIEcLMyHR8E8KBejrCXPGHUcYnWHmvkuTcQkqezQVW0cfo10a2RE/ExwKoqyQ6VUotSmYG7sZa5UpVoOg6vgsCuaGHkqtChn9XsaKCrquk9arUGJREOu6KTXLjIyq6Aj4TQpifQ/FFpmUnn58rTHePBxjpFug0Kyg13ZTIspkBWNsb9P4+IDMtqoQC7JEfjlB4FCfBnoMV5dCgaQSrfOSo8pkho05NAKdUKNCvqhj642Rrxrt9p4YeQJEWoeRF/xf2H9SOP7BBEHQj41JZWUlxcXFOOOfak8MoE80Xavn9DNuYNmyadx802Xxxs8ZQA8VFH/eAHqYdkWOsuTM33HGqRP59c3nG43DBtDDtJtPG9T0eQPoqiNV3HD+GSxfsZJREyYBnz+AbvcNfe7tq18nZeQYALqr91O85FwqVr9M3uwz6Ks7CEDSyLHUb1xN5vxLaN3+Pp4Rhr+v4RDZs8/iyEcvkTblVALNVQC4cktp3rKGlOnn0rfvU+xZhhxbuO0I1lEL8Ja/g3vcUqId1ei6Tvenj6KG+pE8GUZqRHIeoj0RORzENmoRscad2EqWovTUAaC6clHqN2MuPR35yCcG4bCvHq27Gl0OI9gTMOfNRLA4Ed0ZWDNLiFVvwDbuG0RrNmFKKcRiNRPrqsZRsojA3vdwlC5B7qrFbLVgTS3Af3AtCVPOJXB4HZb0UdidNsKtVSRNWEb3jlUkTTwNtb8edHDmlNC9+0My5n+TnoqPyBg9FXQdX+NBsmadReNnL5M95+x4eW6VxIIxNG5+h6LTLqdj1wckFxovML21Bxi54Byq3n+BsaddSHeNMf6po8Zy9LO3GX/uFbTu+pSUeGDdeWQ/o5edR8Wqv7Psip8g/AO6mugY+iGd5Dg5uJRjUda/9hJrnnqEifMXc9HPbyA1riNrNf1rRZD+O7MM80A/sWKaruvsWvcpL/zpXsxmMz+45XamL1oyEChsXLOap++9m9SMTH54463MWGgcc1qGTqn6vAG04LjoS0/h+Ovl6Vw0w83yt7r54aIEajqNtToxXeSVHUGuXuTh1V0BpuQZL0L7GsOsPRKlw6/y1KXJ7GmREVSViVlmXqkIc9UcJ6/tCTM524wgQEWLzLcm2Xlia5BLp9jZ02oE1uMyB/sjCVS2yHxrsp0ntgS5dKqdAx0qig6Tcsys3B3iqvkuXisPMTlTQtehsvXk81c2RHhgc5jxGRK5iRJXzbTz6s4gY1ON+723U+XCUjPP7IlxTq7OgR7j+TAuRWRVjcr3xkisqVUpTTLmwf5ejfNGSrxwWOacAhMHe43AZWyyyNt1Kj+ebuWtoyoT0gz/fV0aF5SYeP6wxnOVEb432cq4NBMTM028uj/K1XMdvLYvyuQsYy5UtilcMsPJE2UhLp1qZ0+rMf6Tss28W61wxRwPr+4MMCXPmFMVTTEuXZDIY5/18505HiobjT13yugEXt7Yx0/PTGPl5l6mFBp7v2I2MbX4BL5M3P4nAfSJNuuyzRysCZCbYWPhtBRyM+3kZdrJy7CTn+MmL8uB0358vp8YQHf3RdlS3s2m3V1s3tVNTVOAGROSmT81lQXT05gxIRmbdfD6/HcE0Eogxkvru5laZMQN5TVBLl2UwmPvtHHpgmQq64xAefJIO29u6uYHi5NZWdbPlJFG6kxFXZhvz03gsY97+c78RCrr4/4Fdl4v6+e/liSxcquXKQXGGO+rC3LRDA+Pf9bPpXPc7Gk0rmFSjplXtgW4+pQEXt3hZ0KuhY/2h3h6g4/5RVZykySuWeRhT3MMPaowOWeI9RWVqWhT+eZ4K0/ujPDtCVb2tCuIOoxLl3h1f5QfT7PxxsEokzJNaJrOng6Vi8dYeKo8yrfGWdjfoaDpMCFd4rWDMSamS/xqbRgBncvHW3CY4KLRFp7ZEyPHLfCnbVFMIvx0spmOoM4PJlpYdTDK2H9YXysOq5ydpXEwzhMdmySwukHn8lEC79erFHuMbfCgF87OgReqdR6v5j8ydl+V3XTTTZSVlfGNb3yDiy++mLO+MQmXa3BahiAIPPH4jcyc/WMuunAxRUXDCNH/m8xkkli54mdMX3A7Hredn111Gl/aE3YY625v4w8/+xEXX/2LgeD5i7TWvdsHNsuWyjIKZi+jp2YfyUXj6Tq0CwCLy0P73jJSZ5xD96Htx/t2aDvpkxfjr9uHO38cvtpKAEx2N8HmAyROPJVAXfmAf6CuHHP+DEL15dhzxxNpNvSh08+8gZ6dq3CWLMFf+TZqsA+5twnF247ctBst0E3k4IcgmRDMdoSEPNSuKuTqdejhfkRPFoI7Eym1GNu0ywmXPYY5ZzJy027UiA/NmUisdS/WklOQW/cBIFitRJv3Yi+YRbTJUNWIth5AdyYgWuyEGytwjz+VcOMew99uI1BXjqd0Hv7a3TjzJxJuPIiuxDA53HiP7iRtxll4q3fj9HjQ5Cg9h3eQPmkx3Ye2klQ8FV/dfqP8udND1/6tjFh4AR37t3Istahj3zZyZyylbW8Z+VNm035gJwBWt4eWyi2UnnoxnUf2o8aMjb6xfAtF85bRuGsz+uU/GhRA/zMLBwPs/vh93nniL2QVjuLWZ14mr3TM5zrH/9Y0TWP7Jx/yxuMPEw74ufzG21h69nkDgXMo4Ofh39zMgV07ue2Bh5k+f9FX2r8v0nbVhTl9gpNVu/w8u8lLbpKJURkWfjLPybqqMN+d7WLDkeMvxpWNMW5a6mbJXztZdyTC4U4FMzoJNpF11VEun+ZgQ40RpNhMAhtqYnxjjI111VHmFlgoq4/htgq4rIP9EQU2VEeP+4+0UNkSwxc18orXHo1w+Qwn66ujWAQLUUUfdP5dLQqTs02sqYpilQQunWhld7uKEv/UtblZ4fRCMxubFKYlSuzoMA4kWAW2tKp8c5REZbeGHMeitrZpnJorsaNTZ0qqzs4u44DHorOlTeMyGbY0Hw/stjSrzMyUeLYiwqICM74obG1WSLSJrK+X+e50nY11x4O4jXUxzprkGLjesvixRLvIvuYYgYjGhqrj3JINVWHOmeFh7YEg84rtlB0xjqWk2Plsn58rliSzfv/xrxdOj3XIAPp/axuenUNLl0xTe5jmjjBN7WF27utj1adtNHdEaGoP4bBJ5GQ4jMA6y4k/KLNjby8dPRFmT0phwfQ0HvzVZKaNS8Zi/t+/FH8ZFo5prNvjG/h93R4f58xMYsO+AHNKXWw5aIx1olOivCbMt2ZrrD8QHPBffyDI2dPcfLY/wLxSB1uqDOQ0ySmx/WiIb89NYP3B4/47qyOcPsHF2oNB5hbb2XLUuL/JdoG1h0NcPN3JS1v9NPcpuKwC84os/OnCJH7wQg+NvQpltVFQVJIcg9eXWdPYUC9zZomF9XUx5uSb2Nok4zYLuC0C6+tlvjPBysaGOGCow6YGmTNHmdlQLzM710Rlu0IwplPbp/LE7ggei0CKQ+S748zEVIHNzQpLRug8vz+GqsGsTJEMp0BBgsSbR6JcMgbKOzW0f1hfm9tUpiYI7Oo+tr4Eyjo0LiyQOOhlYD1u79JZkiGwveeLv9f/QaD/wU5EoFVV5cknn+TWW2/F7/djs1k588wlfPPiszj77KW43fFNRm8A4PwLbuO002by06sv+Foh0Mf6UlPbwSVXPkxeTgrP/u1akpKG2CS/YAS6t7OTFx9+gA9fe5nTv/Ndrrz5Nyd9qv6iEOheXwwlEief2exEvD3IpgSi/v4BcqESCWFxJdDV0oHFnTSI3BYVHMhBL1Kc3KZGQ0RipgHy3InkwkBPl0G2C/sQLcaYaXKYmGYZIOfpcTQjpojoER+CzY3qbUOPBdFCvUR7WxHtiQjuDMSUIgTVuGbJYkeP+BDtCSeRF0VdRrKdTBa0WM0GWTDsNfoY8SNY7FgsJnQ5gnQCWVCXIzhcVkSzHTXUj8mZhBLy4UxKAgG0aAiTw4Mc6MXkTMJlE0Ew+nOM/BcLenElGuTCY+S/qLeHxIyTyX9RXy+2hBRE2Y/lBHKn1Z1AuL+H1Kz0k8h/4f4eHEmpJNqlQakMQyHQ4YCP+u3r2fXxGg7v2Erx1Bmc+f2rGD1zDmZp8Ovhl4VAx6IRNr79Jm899Rh2l5uLfnINc844G0mScMQJgI1Hj/CrKy9h8twFXHP3faQOUTDl/xIC3fFwEV1+lTS3xHMbvfzh/V76ghpmCRaV2FlUbOObU51YTPFPqKh0BzXu+9hHslPklmUe9JhCIAZJdpGugEqqUyQk6+i6Qc7rDmqkuSR6Qxpuq4COTnAIf0SDbHSiv8cugiAQiOokOY77BwIKggAO88n+LsEgOdX2qvzq4wCaDg8tseKMkwIdJugJ66Q6RNo6IyeQkyDRKtAd1km2QDi+5dtN0BOBZCv0R3WOpROHZCPoDpgkUuwCIQW8UZ2VB2VePiRzwRgr1862kWg7mYzYq0CqQziZLKVJpJ8wPgCBqE5KuoNOv0qaSyQUJzs6LAI9iki6x0RvQMUdJ5MFRXOcDGqQyY6RQd0p9iHTif63CDSAMExRAtFkMb7i9cdobg/T1B6iuSOC3SYxc2IKYwo9SEOs639m/w4E2tsdxu2QBsh8x8ivaQ6BXr+C236cDJpo0k4i5wE4rQKdPoWMBDO9AQX3AHlUI9EuHCfnxf0dgjpAzjt2f4NRjTXlPtYdjrDucIgp+VaunOdh8Wg7Dk2lO2AQ9nqDKm6biB6WB+bbietLDcs4zcIAOa83rOG2CGiKdnz9BrWB+alpmrG+jpH5Aiob6mWeroiiaHD1dBtzciWyXCK+kIogCPSHNX7wfpiSZJEbZ1lJt+ggCCesLw2Ppg5aX6l2gc7+GE5zHKRQIMEi0BPR8Qgace4ldgl6Y5AgwtxP9P+QCL9MW758+V3HxkQURWbMmMEVV1xBfX097e1tjB1bzI4dlVx77V1s2LiN2tpGolF/vGDKs/ztyZux260MSwocLsgdihj4eXz/23ajL8lJLq68bAG7Kmq57ua/M3tmCbm5qSe7isOIlEtFg5o6IkP3L6qq9HV38dz99/H766+haMw47nziWaYtPX3QxhyKDf2iEZaHHr9AdOj/WburjL1vPUNz+SZMFhvrH7iFnBlL2fbwLUT9ffRU7+XQO8+QOWkee178A2a7i7pPXqD7QBmSxcbeZ28nadwCjr58F0qgn0DDAVrWvYijYBr1L9+KJTmH7m1vEKjZhWi20l32KraccXSs+SNq2EekrYq+Ha9jyZ1Mz3t3Y0rMIrDnHaJNFeiimeCmR7GOmEWg7EkEUTJKdntbMRefQqTsMSRPJvLhD1Db9iGYbAb6nDeD0JZH0aN+1O5qYoc/wJw1Ad/Hv0PyZBE58B5KdzUA/Wv/im3kLPo+fQgt4kPpa6Z/+0ocI6bStuoOzEnZeMvfJtJyCEEUaV79BxJGz6fx7fvQo0ECDftp2/AyCSUzOPzMDdhScumu+JjOirVIFiv7V9xB+uQl7Hv2V2ixCD1Hyqle8xzp4+dSdv/VuLPyOfzeCtr2bEGyWNn2yG3kzVpGxYsP4GtrpLNqD3tXPUXulPl8cOcPSckrovz1p2nYtQmT1cZHv7+RUfNPwyKCyXJyDrTNbDxAgt5+Kj95jw+e+DNvP/BbYpEwM047iyvuuJeFF32b1LgusyQO3h9NQ7R9XjsxVSPk97P62Sf587VXE/T5uOLm33DFTb9iRMnoAZ6BWZIIePu54VvncsnVv+B7N96G2WwZMhAfLj0k3TpM4K/VDNEWY/nvXvvSSYQzC2385O8dnDPFxf0f9HLOZBeBqE5PQGVUmpmXdwZ4fKOfF7b7eXtPiP6Qxq/f87K3VSYY1fGGdSqbYzy4McApo6xctKKXwhQTj5WF2NemoOpw9Zv9nD3Wxo9f76cnpHGoU+H+9YP911ZHsZlErn6jn7PH2fjxq/2EZNhWH+OhDX6Wlti48OluClNNvF4R4t2DUWwm4aTz94d1drQoPLMrzCPnunloS5gX98fY2aayq03FZhK47tMwZxaauH97lDo/VHbrPLVfYX62xPc/jVHoEXjmkMqmNg2bCW4uk1mWK3BjmUJfFPb06Dx1UGV+lsg9O2XMItyyPsJfd8tYTAJRReehM138dE2QnrDO7jaFh3dEWFJg5tuv+ShIknhsW5i1NTHsZoE/bggwv9DKj1/tpyeosatJ5i8bA5wy1sFFj7VTmGbm0bVePjsUxmYWuO2NbpaNd/LDp9roDqjsrI3w/IY+5o52cv59tRRlWnnk/S4+2+undISTZPfgFzfBPHiODtUGIAyhEgMgDEN0F0TjxdlpN5GVZqN0pJuZk1KZMjaJ9BTbIAm+f9mGAQiHJwYO0a4M46sM/Yz63QtNIMBfV7fzaYUXm0XkRw/Vcu4MDz94uJ5un8LOo0EeXN3B0nEuzv9TPUUZVh75sJvP9gWwWUQeXNPNnBInP3iimR6/ys6aMA+s6WbpOCcXPNBIYbqVRz7u5bP9QZxm+MnfO1g82sE3H2nlhS0+7n23l/KGKOdOcVLdIXPb2cms2RNk7aEwDjP85JUezhnv4Ecv9dAT1ChviPLQpsHrq7JVRgeueTfAWaUWrlrtpyekc7hb4YGtxvy85HUfI5NMPL4rzJYmBbMocM0HAXxRnZ+sCXKw29Bhjqk6P51h4/K3goxMlHjrsMy7R2UeK4/hjcLfzrRz49oIgSjs7tB4ojLGwjyJK94PU+ASePYf1tepeRIP7VVpCMDeXnimSmNehsCPt6iMcMLzNVDWBVZJ4PZKnSXp8HLD11DGThCEkcAVwBW6rg+OtP4PmSAI+ksvvcSpp55KWtrJxUdWv/0M1153F7NmTeaO26/l6NF6tm0rZ+u2MnbuPMxPr76A+/90jeH8NUSgT7TV7+/jxz97nBuvPY8brjvvn5MLPwcC7Y1GOXdcIbOXncaPbr2D9GwjpcUbGYw2f5EItK4a1ylIJtRYhJBsQo1FEeObuaYoSBYrvT1+JLN1YLMURAlNjhKIaAQaD2FNNghh0d52dM8IAvUVOPLGo/R3AGBKyKCvdg+OvIlE249g8hjkNsXXgeYZQbR5L5assaiBLqPdlIDSWYU5azxKVzWiyyCohfvaMKUUonYcREwtQQ8ZlcMkZxpa9xFMmeNQu2sQ4gVcCHVjSR+F3LYfU/potGA3ZouEyZ1GrO0Q1tyJyJ1HkdwZmCwSmr8Ta0YJkcY9WHPGovi7sNnNWBIyCTXvx1UwhVBLFZ7sXARBINLbjitvDL6a3bhGTMRhVrG4EgfGR7LYUOUoDqcVQQBNVZDMVpRoBHeCc9D4m6x2LKI8oCurqQomixUlGiYh0YUW9xclE0o0gtlmHxKBJtDDW3+6iyM7t1AyYx6Tln2DsfOWkJU+WJoL+EoQ6Ht/fCWCKHLpdTdRNHb8kP4Os5k/33Qtoihy/R8eHGh3DiFN90Ug0LriR3Rc/KUj0H++NBW3VeS8aW7K66Pkpxh9fGd7P8+UBXDbRO47P4l9LTH2t8oc7YhR3hTj3Al2rpzpJD9ZQo+pNPZpTM01s7E2xuwRZpr7VXR0chNMbG+UWVhoobxZJj9JAjQa+/RB/ogCOYkS2xtkFhYZ/iNSJUCgsVdlap6FjTVRZo+w0NgVRUAgJ0E66fx5Lg10gcZ+jak5JjbVy4R8MW5aF+X0QhO3zLZQ2a4xL8/EztowOW5jLjX7dSamimxt15iaAsc4StkOgd1dOrPSBfb2aOS6jNvRHNCZmCJS6RdYXhYjyyXww4lmZmRK7GzXWDbaTkW7Qr7HOH+jT2NKpomyVoVZ+Waa+42ALSdBZFenxvwi2wnjA419KtNHu9l4JMLsQitNxwq+JJnY0SyzaIyT3fURRqTEv4wEYVqRk/UHAkaBjG5jz83Pd1FRE2L2GBf76kLkphkvtK1+jQmFTrYe8DG91E1rdwysEtlpNnYf9jFnQgJ7qwPkpdsQrFaaOyJMLHFTtqePGeMSaemMkJFqPynP+Zh9XhLhv2rDIdByNEpju/HFLDvNyq4DXuZOTmLPoW5yMgz0vLnd6P/WHd1MG+Ompct4HmenWtl92M+sUXb21YbITTP63twVY0Khg827eplR4qQxPp55qWa2HgqwaLSD3dVBRqTHC5p0Rpmaa2b9wQBzS5w09Rj+uckmdtaEmT/aye7aECPi52/oijF1hI0Nh4LMKXYM+NtR+fmLnVQ0RhmbbeXcKU6WjHHgDypMGWFjY1WY2UU2mnqN+ZBt09heL7Ow2Ep5Y8xYjxF5yPWoRmRyPRI7mhUWFJipaFPISxDRZI0mv86UTBObGmRm5Zpo9mnouka2S+LH7wXRdDinxMySERICwsB83tyoMDNHoqFH4dm9Mj0RjcvGmJmfb6ayQyXTohkgj19jUrpEWavKJLc6aH3NyRQpb42S7TTWS0sAJiQLbOvUmejWaI+HFpk2qOyDqQkw79MvNgf6fxxAC4LgBr4FXAnMAwSgTNf1+f/tH37NTRAEfenZ57F94zqy80ZQVDqGkcUljCwpZcrY0eTk5vHM44/y7JOP8cjTf+f0s84m2QyKoiCK4kn6rkOatnno9qEC7uGC7S9CnUOy09jYxbcu/wOLFoznD7/7Xrx96AD6QGhwzuZQATFAXyTCQzf+nLScPC67/uaB9qGCZV9k6BcNb3joawnLQ7cHhkDDI8Og1aFhkPNdLz5EwYJz6DywA4D0cTM5/OFKxlx4DUfee5qU0mkA9FTtZsRpP6Dq9T9TcNoV9FYZOb7JpTOoX7+KEad9n8ZPVpBQZCgy9B4tJ3vxd2l872EyF16Kv9bIp7bnT6Zz80pyzryGjg0v4iowcsND7TWkzTqflg8eJX3eJQTqKgBwjZxC55ZXT/K32q14a3aTu/QK6lb/lZwl38FbXY7N4cIzcjwNn75AycW/pP7DZ0kcNRWbzUT34Z2UnP1f7H/lfkadeSW+2gp0VTWu972/M+W7N3Pw7acYe+r5JOYNfh92DyFx5RnioQiQYB/6IegagvAD4LSefJ7ytR+z4s5bOOPy73HuD6/C7jzOQfg8GsnWYR7GwyG/Q8nH5cRTSfZUlHPZheey61A1NpuNZGmYNR3r5t4/vsG+/Q288vwNx9uVIaqjxYYpuzxMJTU9NlgLV5NlTEWPf+kBdGm2lbY+4+E9rdCBIOikeUycOtrGe5UBSrOs/OXjPn6w0MP8EgcVVQF+NNfJr9d4uXaRm001UYSozJw8C49uD3PPMicPloWYk2dGUDU2Nyr8YqaNOzeEuXq6lbImBbOuMTXTxJMVUe6Yb+OR3VFmZZtQYho72lV+OsnM77bH+NEEMztbZKKqwKwMA7W6baqJJw6qTHGoqDrs7oMfFsKfD8MVI2Fzp4Smw+REkdeaVK4eJbGiViDDKvJBRwxdh1TDnIgAACAASURBVN+McfJiY4R5iS6OxF/ui51m1naHuCDLzcaeELk2Y97VhGROTXPyXoefxSn2Af8Sp5nPusN8f6SZP1aF8JgFTkmzcNivcl62lY87g5yWKbGn33gmT0oUeKNZ5YbRsKJOZ0qScVsr+nSuGqtz/364cpTAzvjUmZEK77fBj0ZLPHlIY3qq4b+rW+enk03ct0vlv8ZJbGs3AvF5+Wae2ivzmzlWHq2IMSvLmPNHvRrfnWBl+aYIV02xUNZi7JcLCy08tjPC8sUO/rI9zOxcMyYzlDUqXD/XwW8+DXLNLDubG2WcdolpeRYe2RLkd2e6eWBDkLkFFibkWcnwDIFkDyqiAoJlmABaGgbFHuIcw9mWqhChmDEOZVUhbjg7ldtWdvDzpQlsiuePLyy189eP+/jdeUk88ImXuUVGYF1WE+GG0xK5/4NevjPDyaZq47m2YJSNh9f7uOc0Fw/GrxegrD7GLxc5uf19L1fPsrO53pgP8wvMvLA7zI3zHDy4NcycPKP/W5sUrp1t4861IWM8G+L+I8w8VxHhtgXH/Q91KTyyPcI3x1rpjWhcP9vB5kbDf16eadD9AtjTEuP7Ey3cvTnCT6ZYKWtRUGMqszMlnjqg8OsZZh7fqzAjUwRZZXunzk/GStxXofLD0RLbOzRMmsqEJIEV1To3jRd4+ojOtBQBXdFZ1wnrO2F2CvywCMp7QdYEpiXDi/U615UK/L1OZ4JHYluPxrYenb/NMPHoUZVL8iXKewQUHSYmiqxqVvivQjOvNqqMchnjc8ivcEG2lecbIyxJcVAVMGKI0S4zH3WG+VaOk0+7IgPrsTooc0a6g9dbguz0frGVCD8XLCMYdrogCC8D7cBTGMHzCmDM//Xg+Zg9tvItttZ3cu/jz7D07HMRBIF177/H9Vf9iGmlhbzw3NNYbTbuvfM3A39jMpn+efD8NbP8/DTeffN2Vry4lu07qr7Qc3/rZ9ezZsUzhAJfjbTWf+z/P/vkped46d47ueXxZ7nkFzecFDz/O+2Pv13OtTfdim2YPM8T7Rc/PYt1G/ezZ2/dV9Czr8bOm5FA+Z9KmFvq4JQJLiRJoKo1yv0f9PFeZZCnN3gxS7Bym59jAI0kCohD5NV+nc1pEjg3y0JPTGO/93MUuvoXbKRTosqvElT+w0H6j/3PbGuTzBM7oywbaeaW+Q4s/4Mc8S/D9nvh/Bz4VzieU5MEggrs6/88dTC+PvYvIdCCIIzDQJovwxA/jQKrgbeBV4DFuq5v/BL7+ZWZIAh6VWDom5lqEdA0jbaWFo4eqSIaiQwg0P+yfY0Q6GP22hubueueVyjf9iA25xAFU/j8CHRT9VFu+eY5PL1pFw6XQVb8uiPQkahCb81+nOlGykmwswVH7hi6DmwjpXQq4Z52AOwpmXQcqiC5dAbe+gM4Uo2CAKHuVizpxfQf2UlC4SQifUbKh+BIwV+/B8+o6QSbD2FNyjLO39WGI7sEf81uXAUTicVTRCwJ6QQa9uEumkao5TCWJCOlJNbXhiNnzEn+NrsFa1I6vto9JJTMINB4EFtKNjablXB3C56CcfQe3k7iqClEetuxWUUcqVn0VJWTNm42/bX7ScrJM0gbnS0kF42nY99W0kZPwyJEsCecXHIavjoE+uXfLycxLZ1v//TnQ/r+OxDof0Sfgf8WgQa4709vUlPbztOPx9O7/o8j0M1PjqGsKsSS8S5214aPf2JuCjA538Kq3QGSnRI1nTJLxjjIFmW2NsRYPMpKeZNMfrKE5ovQ4NWYmmUy2Pp5Zpq9GmpMJdstsr1FYWG+iYp2lfwEESWm0uTTmZwusqlZZVaWREtAR4mqZLsEdrZrzMsW2dOtkWHSEAQhnjIhUNauMz1doK4tho7xSbeiD2alwAEvOEQTAgJtEZ3RboHyPp10s42eOI2/M6LxdH2E3493UuU1kRTP++2NqeTbTRwJyox0mOiP8zaSzBK1IZkxLhMNYYWUOJLaE1MZYTfRpoRIs4jceSjI9aPsFDhNVPlVFmcoVPl1Mm3G7WuP6JS6BQ77ZSYlCXTEt88MGxwNa8xIFdjfDznxj4YtIZiSIbG1Q2damkBb/JN3lgP2egXmZIns7dEHUkraYwIT0yQ2txgqIC0B43rzk0V2tGosyJOo7FDJi6eUtEcFJmVIbGxQmJVrosWnIZkFchMktjXJLCowU96mMCJBQrSbaOhTmZpjZn1NjDkFFpr7VbJSzAMV606aV18xAq2oOvVdxnMxN8VM2ZEQS8Y6KT8aJC+ektTQrTCtwMq6fQHmFNloPiElZmtNhEUjzZQ3xchPNvwbexWm5lnYdDDIjHzjegFyEyW21sdYlCdS3qowItG4roZ+lclp4sD8b/HFU3Q8IjubZeaPMFPepjIiwbheY71IA/6/3xQiGNO5e7GDbS0Ki0aYqWhTyU+MpwD1K0zKMJ10vwDSzSo72jQW5EpUdmrkewRiIYXmAExMFdjSpjEjQ6Q1oKPEVLIcAru6dOZmCOzr1clxCshhmZawwPhE2NYFU1OgLQytPp079sEtY2BJhrG+0q2AINAahrEe2NELkxOhPiACApV9Gp91ajw42cRhv06CZAIEOqI6JS6Byn6NEXYzPfEwJsUqcNivMsEjsa9fIDU+T7pjGgUOiUN+mRF2M33xl9Nks0h1UKbIbuWmQ91fLYlQEIRdwN3AXGAv8Dvg+7quv7x8+fJm4Fbg73fddVfDF9Wpf6ctX778rp//6s4hjzkkAUEQ8CQkUFBYyKgSQxd4mBhhaNMbhzkwRND+eXOdhyMRDuV/Allw7Jg8Nmzax3MrPmXWzLGkpg6uMNglFwxqiw5TRTCiKDz+m5uZe+bZTJ63cKB9KMJgdBgiRnQYZEbRhm6PDeGvqEP7ysOcO+TtZfdzv0MJB+lvqKJ23Zukj5tDxdO3484qoGHDKnqr92CyOmjctJqk4ikcXvkHlGgYf/MRWjavIrF0FlUvLceRPoL2bavx1e9DMNto+uAxkscvpGH1Q2jRMKG2arxHtuPMG0fDqvuwpebRs3sNwaYDSDYXLR89TuLYhTSt+QtaNEy4vYbePR/jLpx2kn+4qwFRlKh/71FSJiyi7q0HUKMhor1tNG98jdSxczmw4g6cGQW0bHmLYGs1omTm4GsPkT39FPa++Hs0NUZ/3SFq171J1qR5bH/817izRxJoqSF5RMmgcbIO8WCzDgM32IZptwyTk3xie3tDHR31dcxaeuqQvp+vSt/Q/0/6HO0es8Rvf3Mb8xcuZsmy432yi8OsadWIYD76pAKPx86SRfGiLENVR1OHEfkfppLaQDn4E0zXNO7+664vnUQ4t9TFr1e2c+70BG5Y0UIworGvMcK6/QGmj7Rz/cudnDLWyYbDIbbXRPBY4PY1Xs6ZYOem1f0EozqH2mM8XxHllEIL17wboDhF4oXKKLV9KoIAv90Y5hvFFn69LkRQhro+jef3yyzON3HdZxGKkkReORhjd7uK0yzw+50xTi8wcddWI+Vif6/O6zUqC7IlbtmmUOgR+bRJY1uPoarxUBWckgF/OAQRFaoD8H6bxoxkkd8fVsi2SaztkjkaUMlzSOzok9njVWgOKwRVndaIwta+CGPcVl5s9pFplSjri1AXkrFJIqvbA0zyWHi9LUBU02mJKJT1RRjrtvJhZ5g9XhVdB58CNknglaYIC9MEHqlWCKtQG9T5oF1lerLEHw+rjHAKrG7R2ecFh0ngzSadGWkC9+3VCakCVT5Y1aAzP1Pgtp0qIz0Cr9dqVPToOE0CfzuksjBH4u4dMkEFDvXpfNyoMjNL4ob1EYoSRVYelinvUEmwCdyzJcqZRWZu3xghKMPBbo2P62Rm5pj5+YdBipMlXtoXpbJdwW4WuGttiLNLrdz6cZBADOr7NZ7eHmJpsZWr3+ynOM3E87vD5CebyBoqhWOIoHioNgCGIRQO6z+ENffKPPB+L9urw7hsIre/1sk50zzc/243HV6V/c0xVmz2snSck2tf6qQwzcyKMj876qK4rCJ3rO7lnPEObnqrj2BMZ3+rzIptQZaW2vnTpz5SnCLP7w6zo0nGaRG48yMfZ5dauOWjAIGYzv4OhRcqIiwZaeZn7wUpTjHxQmWEnS0KTovAy/uizM4zc+snQQKyzv5Oo9LeKYXH/d+rirK/U2NsmsTy9SHOKrFy22dBgjGdA50qG+sVpmSZTrpfu1oVXGaBe8qinFlo4vZNUYKyzqFulVePqizIkbhxc4yiBJGVR1XqvTqCIHB/pcKpeRL3lKsEFWj067xaB3MzBH5ToTPSLfBmg86aFih0GSkcx9aXosNhn8DqZp3ZqQLL9+sUOAU2dcKuXg2fAvu8cFqmyF+PGHKQ1QGNjzpUpiVJPHA0Ro5d5LMumSMBFZsk8FJjlJnJJta0xeiVNZrCKpt6oozzWHi2MUC2zcTm3ii1IQWrKPBWW4iJHhsbesJfLYlQEAQNIzJ7H7hL1/XdJxxLAPr4/wyBvuuhx7j0v64adCzVMvTC/b+OQAPEYjIPP/Yev79/Fd+74jQuPH8BgsAAoasuNhUQKBhVgjvBCLCHQ6B37drB8u9/h79t2I7Ncfyz+9cdgY7GVGIBLyZbvKBAJIRmdhH19WBxJ58ke+fv6cbqSTlZ9i4SRBEMyTezKwktZvjLuiGFZ3Ylo4R8iFbj/JGAH7Pdgxzow+Q8WSZPCfZjdiWhhH1IcZk8JRrC7DjZ3+YwI1nsyIE+LO5k5JAPyerAbrOgRkOYnQnEfL2Y3UmosTAOmzQg23dMls7pcSNwXOYv4u3B6knGYdGRzIPJPV8VAr1nw2d88uKz3P38q0P6/jsQ6HWffsJVV17Gy2+/x7QZM4F/jkAv+8ad/PIX5/KNM4wc+v/rCPSvL0rnsgXJpCeY6AsouOIyW76eoCGLdkxmKy6jZg9HBmTj+kIaLquA6g0PKYMVCxsBRHdYJ80h0h/RcJoF5KhCSBZItAl0h7QBGTg5ohoyc3FZq/6ojkVRQBAGZON6IjrJVujpNvbBY7JWKVbwyhCTDcQrrILbLNAX04nKNuKqblhF6Jc1Kr0qbzRHmeC2MiXBiqLr2ESRkKrhkIy8zWSLRKJJJKDqJJoFgoqGLf5pPaLqOE0ifWqIPx8NsXysE5dJxCqCT9Ep8sj4ZX0AkDnWH1mXSbJwkixXRNRIsYl4YzrO+HQPKpDqNg1c74n+PkRS7eJJsnpRUSLRJtId1kixGeMJ4HGIA7J9/ZHj/hFBHHS/TOa4jGBctqwvrOGyCIh205AyhTa7CdMQqQZfNQINhiwcGLJxAzJwfVFDvjN+PMkp0dEdJc0tnSQL2BXQSLPq9IXUAUQ9ENVIckh0dEVIOyazyHHZxFSLPjA+YMgUJpg4aTwNf+gK6qS7xEH+J47/1iaF5etDfHCZZ9D4A/gj2v9j76zD7CivP/55R67flbuu2Y276yYhJARJsBYoLdLibqVoA4WW4tCgxd2lOIQIxImHuHvW3a7fkd8fc7OS3W2hDW1/fXKeZ59nd+53z33nnXdmzpz5nu8h6bDjBaBqWofjGw1p7WQZUxzEzy8NlyKoi0CKQ9AYNXEpEA3FCGrCko2LxGUcddhUbfKHjXBTP5iaaZ1fKlYcEdQhQRXURUySbVAblhBC8NgOnQGJgtNzZJpiJhhWEfCh9d8QNZFR2p2PTZpJoipREZQ7nF9NMQOHJBGnuGOToFkzcUoKN2+t/rc3UvlN/GcaMF0IsQ14A3gLCPy9f/z/amXF/xPJ9B9lNpvKTb/9OeedN427/vgaN978DKZJC4cxqHswDYOKslKuuu0OfnHR5V36evuxhznr6uvbBc//H8zQYqguL6ZpnXmqy0swEMHm9WHqOnJcXs3UdewJKRhaDMXZilecXiLNQVRPMqahI6kW3ghFUNzJGJql43xIWkm2ezD0GIo7CQy9pRLdNDQrQNbb4xVnR7ykqJiGbgXsWgzF4YE24zG0GKrXGo+s2pFUCVPXsXl91mfOeItrIVBdFt6e4MPUNSS5vZzcv9vS8rpRVdzVG5v/jE2eejxPvvAK5/38VF54812OmTzlH/7P+o37WLpsG/375VHQLf0f4tvauk0VPPrsCp6670TOvvxj7vrdBD7+agdJXsG0yQXc+fBy3ntmGtfftYipRVn/5F79OPvguwYumJTMzx/eyx1nZjBrrdU0Ynp/O5e8UsFLF2dyxasVTOpjPfh9v8vP709I5KyXq7n9+ARmbwshRTWm9rTx0GchnjvNwzVf+JlYoCIZBgv2a9wzycm5Hzdz8zgHc/fGcAqDolyVmfMiPDnVyY3fhijKUdBjBsvLde4cY+PCOWF+O0xl6UGNoC6YkiPx1DKNR8ep3LZcY3SClQ1bVQs394NrVsOVveDbMg0dwbgUidf368zop/DaviDd41JuW5o0fp3vZFVtlHOyPHxdHWRLcwSXLNGg6aSqMg2agU2yAuYUVebS/ASe39/EiWluNjVbgfsgr43Xi4Ok2CFRFWxp0tr5/8u2CNNzFFbUWufv2BSJN7dp3DdYcM9mkxE+a/7X1sGMoXDVcoOr+8BCi/nFsRnw1PYYNw6WuX2Vzph0K7BbWWXwhzEqF38T4fohCvPjTVxO6A6PzQ/z+BQHv1sYpijbClh3NxpcO8LB+Z/7uWm0g3n7rMjrpD52rp7l55npbq77OsiEfAVZFiw5EOPeqW7Ofq+R245xMntXjASXxITudh6c7+f5s5K46uMGjim0YbfLzN8V4b5TkrjivbqW9SBkiZMGuHhgdgMvnJ/KjE/rOH6gm6gGi3aGeODMFC57rYoZpyTz3Z4wTSGTaYPd3P9FLS9enMnvP6xmyiAPugGLtwV54JwMLnuhlBk/S2XWeitMmT7Uw/2fVvPi5TnM/KqaPlnW9W3xtiAPnpvBGTMPMONkH7M2WPhpQ+L+z0/lyreqOKaXlXRavCvEAz9P4Yb3a/j1OA+zN1uJkpMGOnlwTg0vntm6v2A1vrl/WgLnvFfPzRPdzN5prYeTett4eWWQe45zc81XASbmW08qSw7GuO84N7/8oJFbJ7iYs9vCn9jTxvNzmnnwBA/XfBVgWKbC3jqdW+Y2M2Oim1992Mgt413MiTdBObFQ5uFZkXbHC2BjWZTfjnTw6y8C/G60nXn7NPSYxnH5Kk+sizHzGBs3L4kxLktCaDrfVcLvh8lctjDGtYNkFpQaOEwYlWryzA6TB4bDHd/D6DQrD9jdA49sg1f3wO0DYHk1hA2TiWnw4h6TewbBnzbDiESDKIJVdSYOCW5YG+OKnhLLqw1ipmC0T+adHTFu7m3jxb1Benut+dncpHFBNwf3bw9wSrqT9fHzaEiCymflQc7NdfN5lZ88lzX/u/wxzsx289zeI99J5R8G0KZpvgW8JYTIwQqkfw08iEXlONR+7P9X9dw/MNVmRzc6Ugtqol3tpvVAs33rVpYvXcyFl13RqRA9gE/9EXWWoovMltS55NWPMqlztcHM3DxeeOkXHbavr7ey3ru2bubRO27h3Ref45p7HmD0sce1w21f/z17Nm9kxjMvdyga6irr2Jl1JkUGEI517iPZ1fF4hWOdv13pmjbSsSgsEuv8IaArKokW83bc1gWV5Mcq4HS2ptQuKBJdUSo6yxR3lSVO6qJJQpqn4/rrKhvs6mL7D8kI90n0cHdFGT2Tk5E7wffzdrGeIl903Bbr4uLZVeY3VN1hk9Fg3Vh/OQySHhnDlRefTtGILB66dQTZGR3XiRGzzplPni7izU83MmrclwzsncSr948iM7X9Wjv0diMS1dmwo4nVWxpYs7mBtVvrqamP8fns7QRCOktXHsSmCGRZEKgqZ0R3AeVbGdvdoKez82z1kbbsDAdJ+UlMHh2ie98UxscftAoyZCYPM0nKSuTY4XpLa2hZFiRmuBlSGGZJic64/l5oDlOYqTKpl0likp2JvQyGZqsY4RgaEkkehWMKbXRPVRmnC4RuUpgqM7HAJMmrMKGbjcEZCrGQhpAlElwyE3JVuiUrNAVNdCA/QaIoC7wOibFZMgVCw8TKFNslGJli8YkLPTZME7yKzICEGLqhkmmXSI7LL3ZzxAhGHRS6TDIcDqamWesu16GypjHERJ+L9Y1hsh0KDTGdeTUBnj7QSIHThlu2kRdvXOJRVDIcGt83hpiS4sYrrPMo1x6jMezEI0NDwIkHK2BtCKhk2ULsqreRrkYQmnXupqsapXUmPZwa4ZBChmxdz8IhiSwlQkO9TG+nIDWeaOvtlAjXagzxgDuk0zt+SiYGI4xIEBi1IYa6oSBOIxR2gdEQZmQSJEeiDHDFuaTRKKN9ArMhwogkkx6KjmyXCKUIaI4yJk2QoukM8ZrY7QZpsShj0wRSfYjRPuht15EVk2YfyHUBxqZDWjTMUK+BkEzSIyHGpQuUGj+jU6CHFAEVIikGtuomijIgMxSkn01HUyArFGB8hsBe1ci4FJPeRggERJN1bCW1FKVBRlMTI1zWA0NmUxNFaWArqaWfLUY/Ye1vzKdjK65lfBqkNzUz3G1tz2j2Mz5NIJU1MSbJpI+wzudIkolU1khvu46vIcBgR7zPQkOAMckQOdjAcLdBgW7h/W6DWEkTw9wm7togfaV4w5RajR6qRvBgM4PtJrnxN6aD7SYNOxoYYge1tJmehzLHpRG6C6jd3kRfAd2CMUwDMqMaldv89FNN9OIgefEGK6GDOn1kKN4Sortp4KmzHCVFZHZtNymUZRqKBb6wRCDmpLxEIUeS2LjLTpohodUr+KMyXk1jxS4HqSLEnhIHUihG2JTYU6WSIoVYedCF1wzR3BQ/X+wxhntk3i5r5OHNKkMS7LgVmZIGlTQlxPpKF4kiRDhq4cclhWmKmuwNhnlkm8S4ZCcJiow/rJJtD1Hc7CLdFsYtFHTTxCVFmFUmaIxKvHYwjF830EyTb6ojCODh3X50EzTTYEiCgwKXjGna6OFxsjt8ZHO+/5SMnRBiDFZR4dmADysT/T7wimmay47oCP/NJoQwL7zuRm6975EOn3XFl0xR4fWXXuD+u+/E7fFw1Q2/4/JrOi98+snoHj/WugigEXmdbj4UQIMV+C2a/RV/ufM2UrOy8CYmEQ4GCQX8lB08wK+uv4lTfnNxBx+BaEcqSVeNUbqianQVFGudPPD8+AC64/ZIFw1dug6gO+KPBtCdjO8HUipOHNCDd75ZQnZefgfsTxpARzsJoCPtL76BYIz7n17DX1/fxHd/O41+PdsX4B4KoFuGEDN46IXNvPflXt6bOQ5/UGNfaYB9xQH2Hmxk214/W/c00zPfzcgBSYwelESyC/Iy7Hy+uJobz8vng7lVDO/nZc9+P09+UMKOA0Emj0hi5g29WLelkV/cve0np3D8fIKPQT08XPvzLN79tpph8bbPW7c38LMxyfx1VhXnTfKxfp/1UDAo2eCOv9WweEcQWRJMG+zmNwNV1pfFOHuIk+eWBzhnmJMNZRoiEmNAusJ7myNcMdLBh1siDM1U0GMmGyo1zuxn48V1Ec7ub2NTlU4srDMwVeKjnRoXDVL5dJdGP4+BiWBzncHphTKvb9f5eXeZtfsjaKagbwJ8VQa/yoevyyFVsR4A9gQMJqUqfFkeo5fTS0m89VmuU2V1Q5hJKU6+b4iSEacZlYRjDE90sqQuyMhEByVxOlquQ2VOdTPFoRgx0yRZlYkaJgHdQDMhy65wVlYiJeFYC35NY4gJyU7WNYXJdajt/K9oaGasz8HBOMci36WwIxBgarrKkhqN7h7rXN/rNzg5x+DTUoPjM2R2xYvhe3kkltXFODNXMLvcpG+CtTwOhAxOyhG8vQ9OzYVtjdYxHpwu8ekBk1/3kvjigMmAuHzengBML2idzy11BrIqMTBV5qNdMS4aqPLpbo1BqRKqKrG+SueM3iovb4zyi74qm6oNVEXQP03mw21RLh1q56PtMQZnyAhJsLFK56x+Nl78PsLZA2xsq9PRDRiS0X49DMtWMYEN5Rq/GGjn+dVhfjXIzqZKDcOEIZkK722KcMUoBx9vjTAwwzpebfG/HGBjQ2U8c9nG/8dbIvSPPyBtqLTG88KaEGf1tdYbwKB0a/wX9JX5dLfOoFRr/jfVGPysl8I7myKc1E1mS/xNwoAUiY/36JxXSLv53FJvMj3L4K29cHq+YGv8+bd/Esw5YPCzXGud9o+XJG1thOMz4P1iwcnZsL0JHttucmMfwc5mwdl5gjkVrcd3ZxMckybxcYnBCZkSO+NFotk2lQXVGqdkqSyq0ejhlvBHFfYHdcal2JhXGWF8io0DQZ1QTCa7zfpf0xAmz6miG4LiduvfSUk4hgBy4ut5XJKTD8sb2RmI8vPMBDTTbIcvD8fQ26z/8clO/lbexN5gjFPSPVRENTJsCt83hXHLgtKwRn1MJ1mVsUmCkYlOgrpBnkNFlaAyojEyycWSuiCFTpVvawPsC0Y51udGlgQTfS7u3FH1b6dwdDDTNFcCK4UQvwVOBS7Eyk5fBPzr6uf/YVuzdMmPwj/20AN89N47fDl/CXa7nWmTiujRsxfHnXjSTzTC/6wJITh22ikMOWYyy+Z9jRACh8uNw+XC400ktbD7f3qIR+1/xHIKCijet6fTAPo/bW6XSqrPSa/CRArzPP8Qr6oSd14zGIfNZNpli8nNclGY46Yw182YQcmcf0oeQ/smEAjplFSEaPRrlFc0k5ygsHRdA1eelcf81XWYpsm2PX52FQfJTbezryzM/vIwK7Z05EX/FLZsazNVDRoXnpTOgnWNLdu37Q0xdUgC8zc2Mb6fh++2WhKW30WjfL0xwLtXZ/Hc/Aa+WO/HCNlpDJtM7+dgwe4IRQU2lu2P4pUMPHaJhftinDfYzuL9VpCjAEsOapzUU2XRgRhjcxRWlGhoMYNEu2BJicbZfVWWlurIGRAxTJaXGxyfK7O0XGdUusSOJos7maAKVtaYnJYjcnxMwgAAIABJREFUWF1r0sdjWAFZg84Yn8L6Bp1U2WBPnDTqkiW2+6OMTXZQGtaIxR98dwWiDPA62OmP0N2lsi8YjeMFtVGdS/OSeKuskVSbjCIE5WGN49I8rKkPUhfT2uF3+iOMSnKwK9CaZDjkf4c/Ri+Pyu64nrRbEez164RTVTY1tSYaNjXpHJcpWFtvMChRYlOjNU6vYrK+3mRalmB1HRwqNt8ZgIkZsLzaZLhPsLbO2p7igWWVJmcWwooqg0MvmHc0mxyb0zqfqysNFJtpzX+pztl9VL6La0Y7bSZLS3ROLFRZXKwzJlthZZlGgkPCaxcsOqBxzgAbS4oPNVOCJQc0pvVULZWJXIX15Va79yRH+/XgVAVhDRbtjzGtt42F+6KMy1dYU6YR0UySnIKF+6KcN8TOqhINPZ7TaIsvypVZHv/utv7XVWgcyoEsORBjWk+VZcVay/gtvGDxQY2zelgKJodsaanO8QUKW2oNBqZIrKq0HCXaBd+V6fw8V2J5Zet8Lq80mJQGy6tMRqYI1tZY85+oWkWhAd2iGx2yVbUwPg1W1lia4OvqTWQBO5pgTb3BKdkya+pakzJ7mmGUz/psUJJokYpTEk3WN+hMzVDZEFcKCcU0tjTrDE9S2dwco7dXYYdfQ5gmjjbrf0d8DQqkTte/AJzx9Tw6yUmjZmCXJEK6wf5QrB2+NKwRMoyW9T86yYkJ9HHb+KSyGQEUuFSqIhpDExwYdujlttHHbWNOdQCPIlEciuGJizvsCcYYlGCyozmMTVgBtSoEdlmwtdnyf6TtiHQiBBBCpAPnmqb5+BFx+B8yIYTp8nhYsO1AS7HcIessAz3n04948PYbmbt0JVnZlpzZymXf8euzfsYHX85m6PAR7fD/CxnoQ+aPdd4tsDnSeZHj0Qx0ezuage5oh2egH51xC8k+H1ff/ocO2L+Xgfb7Q/z5gfcpLq7h5eevw6l0oUf+L2SgFy4v5dzr5vDd306lW05H6s7hGejW7VaxqK6bbNvbxIr1tSz/vpI1WxsoLg/hdMjkZTrxuhX2HgxQ3xyjR64LwzTRdZNGv4YvQWHGhd0Y1TeBzFQ7dY0x3DKkn778J89ApyYqfDtzEA6bRFqSSiBejOWMRKhu0khPVKlr1vA6ZZZubebKv+7ny5ty8dgl0rwyaw9EOO+vpbz0iyR6pSmkeWTqggZeu0APRDotLtSiulWMFS8uPFQsFQm2LX6yiuEam2IIBM7DigujDVYnwsOLmfY1OhBCYJesoqckm2BrnR1nvFgtYpi4ZIlmzcAuZKLx89YmBH7dwKvIBDQdx+H4mI5HkTrH6waOuJrEP8JnOM0OxYjdvDEaYwYJimhXXGVKUZJtEk0xE1ebYsRst96yv4eKC30uM15MaRVqxftUEJElkuxSh2LEBJfcbj7dKigOudPiM0UVuFTRUqxWHzbxqCCrwsI7JKqDBqlO6/hKioRLpV0xXKJLAKJD8VxQs66FbfF1IQOvjc7xbYrzWvABvdPivGQbHfA+G9SHDTyqhQ/ETJIcEuX1sXbFl1Yxq0mSMNoVax6an4r6GD6HaFfcWe3XSXFINLQpBg1q4DIMaiO0FOcdwleGIcXeWjz65j6TyjDc1FehLmqSrFqqMtZMSDTEINkm2q2HqpCCXRZ8UByjLGxwaYGNmG7DHi+2S1Al/PH11hhWiJq0rH+PLIiaENUFdunvr+ddgQjvlTVyYU4S6Q6lw/q3x0UKWs8vHY8sETFMhLCKDw+EY9RGDfYEIpRHNOpjBpKwpCJVSdAU0/HrBj7VekiNmiYxw0QRgimpbgZ57cRaxq9z/+4jK2N3xALo/xUTQpjjJh/HKWefy6m/PA+lTUX/4QH05nVrufRn0/ho1hyGDBve7rMvP/2Em6+9kg+/nMOgoUNbth8NoA/zcTSA/sH23xBAXz74vy8T/L9oZfNPQFUkVq2r4NE3DnDDefnc/uQurjk7j4Vr6slMljludAp/fmU/H9w7gKse2cnkQV7uePngTx5A56bZOG9qOrNX13H3Bfl8trQOgNOHe/jz++W8c1N3rn3hIP1yHbz6TS3Du9l49oJMzn++nBmnpfDFOj/VNWG+2x8j3SPxyYU+fvtZI0UFNuyGzvx9GjNPcnHhx35um+jkq50xPIrJ+DyVR5eHefk0F7fMCzEu1+pEuLJc54GJdq6cF+bGkTaW7I/ij8HUPJknN2r89RiVO1dqjPQaRAz4vh5m9Ifb1sPlPWFOmYxuCsb4ZN4rjnFbHzvP7NLJia//PYEoZ2d7ebW4iRNS3Wxstq5vA70O5tb4uSAnia+qmsmKUy/2BqOclZnAu2UNTE71sKkp3B6fncDfKv10jxc5HcJ/VtnEmGRXB/yVBR7eKQnQy2P53+WPcW13mb/siXJ2jo1VcX3iUckKy+oiXN5D4fGdGoPj+sEbGw1mDDCZsQEu6yFYVGVdd47Phmd3wcwRcM9GGBGXfC+NwDX9ZW5YpnPNAIlvSi38tAKZxzfqLfM5Ol2gqoJl5SYPTLRx5bwIN45QmbNfJ9kJY3MUZq6O8uJJTm5dGGZctozTLliwX+eRqQ4u/TLEzWPtfL07hiQJTuqp8sjyMK+c5ubmuUGm9FAIa5baRNv18F2xRkPY5OTeNh5aEuT1M73cOCvApAKFmCFYdjDGY9PdXPBRM7dPdPLlTus+1Rb/0KIghT7rutfO/3hHC35afDwvTnNw6/wI43Li+FKdh49zcPeCIGf3tTF7nzX/JxYoXDKnC9nJo3ZEbUaPVF4vbeCkVDfrmsJEDJPuLhsrG0KcmZnA8voAmY7259cbJfWURPR/bwAthEgAms02QCFEH+AOYBTW+6AVwAOmae46UgP7T5kQwvzwg2f5/YyHKC2toG/fntz755uZPn1KS3AZiUT45JNPuOWWW3jiiSc444wzOvX10Ucfcc011zB37lwGDx585AZpFv/rProIlLuybc0dA9q/pwPdmUX0jj6MLtZfZwHx38P/GOyR8NHVedMZ/kiMoyv7MTJsAB5bx+yxu4sscYHXKnTbtWMHLreb9IwMMt1HoID1qP1D++raTLqlKJihqNWQIldlUbwhRXGDDqbVoGHFgSiTetj4viRGfqLM4EePLMfvcBNCmA/d2JuXPirhQHmInnkuzj85mxOLUslxwbJNjUwYnMAzn5Tz6tcVXH5qFqPybQzv6WbhxmaK+ns4WB3FaA6xrzrKlS+X8861OSiyRLdUq5X3/poYIwodLNwWpKiXk+JaDdM0rAYWu8Mc29fJ2v0RuqUqGIFoSwOLRbsijOtu50BJEARWg48DUSZ1t/F9qUaGGcMEipsMhmbILC3RGZ0ts6vYCnqy3YK11SbjMgQr9kXJclrTeKgBxOo6yFQdVMfzA6l2wbYmncGJMpvqBalxObPqqEF3l8zqOpMeLht18WRAsiqzJxhjYILC/qBGaryouiaiU+BS2BOI0tOjUBvX30qxSezya4zwWfzsNLs1nuqIyZAkgw2NBgMSJKriRWNpdsHegMaQJMH2ZpOseEOW8rDJcJ/BmjoYkgwVFjWdXJfB+gYY7bMaXmTHG7JUx6B/omBlDQz3WQ0yAHK88H2tYGwabK6HHDcIRVAWgEE+YVERUgVlQZBkQVab+TzUwEWWoSRAvMGNwah0idKAiSQLsj0SayoMiuINcbolyiCguNlkSJrEd6WWbnWp38Q0IccjWF2hMz5HZkO1QV6CQAgobjIZkm7hR2VKlMZfPrXDV+rkeq3j1db/8BSTsjg+2yNYU2kwKtlsaSACUBowGeQTLD0YY2iy4Ps6E0VA30SYMu9InWlH7e/Z/X3S2RWMUuhUWxoYJaky+0JRerlsFIdj+FQrWVQX08hzqOwKRHi1pPHfHkDrwDjTNFfF/x4IfBf/eCmWBMV4QAPG/n8PooUQpmlY0lmBQJDFi1dyyaW3cMvNVzJt+jm8+OKLvPnmmwwePJjf/va3nHLKKX/X3wcffMANN9zAvHnzGDhw4JEZ5NEA+gfZ0QC6o/3YAPrZJx5j5oP3odps1FRVocePoaoq5OelsXvbyxa4KypEZ5rHAFoXfN1OGorcfs/XvP3JTi44qy8X/KIfPbpZ1CojFsE0Tcoqg7z43jaee3srt14xlKt/VdguMx+LGQw55QuevnMIk0alHfZ1nY/jqVd385sT0nn4/VImDEwA4Ian93L+5BS2l4S445fZLNli3Wkn9bDx+KwaHjg3i0e/qGZ8XL5t8/4glx6bzO8/qOKGE3ws3mHt28TuNp78poHCNJW/ftvARRMSsQmDiiaDN1fGecO3ZLNkdxgHOiPybDy9xM990xOYudBPUaENScDSvVF+d6yHO2Y1ce1ED8v3RLn1qyN7gzjchBDm2nfHMfPN/dxzTU9ufWwni9fWMWmkj+xEGdOEl76ooHe+k0Hd3Qzt5WFCdztPfF7Jgxfl8ehH5Yzv74VQhKXbg4zs4eSKF8t46sJM6oMGThlGdXfyxNw6Hjg7nb/MqqWotxMZk8U7Qtw0zceMD6q5/oRkFu8IYUZiTOzp4KmFTdx/WjJ/+baJiTkSmgnLDsT43UQXd8z2c+14F8u3BwlrUJQj89y6KHdPdPDUmgjDEgxME1ZXm1zZX+aB7zXOzjJYW2dN4wgfvLXf5Ld9BK/tUejmstbW1iaDs3JVXtkf5YQ0B1ubreteP6/CrIoIp6R7mVsdomf8Xf7uQIwT01x8UxtgXLLFbQbo41GZWx3i3FwHX1WG6R3PNO/0xzg5w8lH5X5OybSzJe5/gFfhu9owv8xX+aBYY2A807y50eA3BfDsHoOz82TWxzmvQ5Mkviq3JMJe32fxZwF2NBuc2w1m7oBfF8Aa60UCY9Ph9T1w8wDBS7tNRvgO4eG8HoKHN5lc2EuwqtpEkQWj0iVe2aFz+1CZ57cZjEwVqIpgRVXrfF7cT2ZlpYnLBkPTJF7aojNjpMKzmzRGZ0gISbCq0uDqISr3rYxy2SCV72tMojqMy5Z5cWOUO8fZ+eu6KEXZMroJK8t1rhlm497lES4bbGNNlY5mWPgXNkT5Q5GdlzZEGZJuXQtXletcM9zGn5dFuHyQjWVl1rWsrf9XN0Ton2LN5+oKg6sGKzywIsIFfRVWxjnNYzIkXt6uc2MvgzvWw/o6q211c6y1HZoqQBZwcaFguE/m/YM6F3Wz8UGJ3u54nZxp542DEU497Ph+U6lxUoaLWZUhese5NTv9GuOTvHxZ1cwkn5vdcQ59Q0xjWX2I0UlOIobJwHjioyKsMc7n5OPyJhIVmZUNIQpcKiemeljWEOTUDC/zawIUOFW+qvKTbpf5ZXYiX1S2+lcFdHPaWFQXaMEXumxIwJ5glCmp7hb826UNeBWJCcluNjaHOC0zgfk1AXq4VAwE+w7DHwzFiJomPV3t/Xd3qZgIltcHKY9opKgywxPsNGgm82stGt2IRAenZnhZXhckM/7m53D/h+anrf8/7vz360Af/mX3AbXAMaZplgAIIfKBxcBdWDJ3/xPmdruYNm0yy5d9yqmnXcxDDz/PRRddxPLly+nRowsKxGF29tlnYxgGJ5xwAgsXLqR3746d3Y7aUftvtHfeeI3nnnqchavWkZOXh67rpMcpIGlpicz67CdreNfO7r+tiF+e2pvXPtxG0c8+ZEBvH4P6prJ5ezUbt9ehyBJTJ+Sw5vMzyM3yoB/GVVZViRlX9OFPz2zj21dSu5SY/Hum6SY1TTEuOj6Ve98r+6d8HG6XTUpkS2mUz9f7KanXmNCjo4zif7M57TK5GQ7uv743j7y2j68qwpx3fDpTRiTxx4u7sWh94z/0MamfmzG9nNz2biXnT0yiV9qP4bgdtaP2n7OlVfB9Hfy2L2Q4BWtqTd7eZ33mkGFapugg5fpT2MhEJ7VRHQFsaopwMBQj1SZTFdFZWh8gbJh0d9qY6HPhViTUwzo5CiEYmmBnWX3on07qmKZJfcySjfPZ5CNyfcy0K0z0uXivrJHPq2L0+i98+/lDOxGObZOBbgBuMk3z5cNwVwJ3maaZ/VMN9t9hbTPQbc0wDAwzpx0n+sfYyy+/zH333ceyZcvIzMz81wZ5NAP9g+xoBrqj/dAM9Ooli7j7ygv5dO4Cevft27I9JV548/EHd5Kc5MEwDCRJwiYCjBnVA/nwLmFHIANtRFoDsWhU54tv9rG/uImBvRIZ1NdHZpqrvYt4AB2LGSxeU8WIAT5ccpQx5yzg3uv6c9LE1vOvqwy0Vutn/rpGxg9MoLgqwpb9QR5+r4R7zs9l8mAva3YHKUi35vJAcTPDC5ws2BKgqI+L4tq4PJlXsGxXiMn9XKzdFyY/RWHtvjDldVEuHJ/Agu0hino6KKnTOP+FCp78ZSqn/LUC6JzCsXC3ReEoaWylcCzfH+XYnv9eCse3L45iZP8Evl1Zx4RhSRRXhDFNkwy7yaptzUwZnsSa7X4K4o0q9u1uZHhPNws2NlPUz0NxjUXhyEtVWbYzyOT+bp6cXcfz39bx9pXZ6CaMKHSwIE7hKGlD4WiZz04oHAt3hRlX6OBg6Q+jcCwp1hmTLbOrpJXCsabKpCizcwrHqjiFo6YNhWNrk86QLigcq+IUjvp/gcKx068xsgsKx/oGgwGJEtU/kMKxug6GJFmFaGBRONbVw5iUzikcK+IUjoo2FI61tYJxXVE4Kk1GpAnK21A4Ds1nZxSO78oNRmVIlLWhcKyuMBjfBYVjaanO6EyZskArhWNVhc6ELigcS0t0Rme1p3CsKteZkNs5hWNpqc4In0lZ/Pk72yNYXWkwuhMKhyLgskUaj420ik4BMp0wcY51LM7vJujhljCwCjUL3YL6iGBwktLueK2tEwxMkDsc33TVzrZmS32lLr4efDaJDQ1WxrYdRSGqkedU2RWIku9U2dAUpjaqk+9UiJkwxGunJKK14OujGrlOlR3+CJIQ2CSBU4JPKv3kOVSmp3ta/ZsmdZoep0BEKXTZaIjpgEmSqrAvGKWX28aW5jCfVfq5rlsyDXFpufb4OMUiji8Ox0hWZQSihWKx0x/BJknURDUKXLZ2+Kf31zEpxc27Zda94P4+6XH/h1E42vg/nMKxMxDhtSNM4fhnokE3sL2T7duB1H9tOP+9JkkSkvjngmeASy65hNLSUk4++WQWLlyI19uxav+oHbX/Fnv/xWeY8ad72wXPtTWtNI2bbn2JvLxUJEnCMAwWL9nM3k1/obAgrTN3R8xsNpkzp/cEula5aGiKct8zm3h/1gEamqK88ch4Tp3o464r+/KnZ7dzfFEGcheNeg5ZU0DnjpcPcP+l3fhocS07ikPkpNi4440SPvtDL/78TilThlrUjh37A+T9wsad71Vw368y+XiVdZE/a6SHP3xYzbvXZnP5y+U0hw1UWdAY0tF0k9e/a+bPZ6Tw/spmius1GoKtD5j3zapnch8nbsngiy1hnj87ibtnN3HPtAQ+3RQiwS6Y3MvB3bOb+OgiH/fNa2Zqr39P58in3z3AI7/rw++f3MmDN/Tmb/OsoP/sCcnMeH4fXzw0kD++up+pI5MBWL+1kQcvyuOON0q4/ze5fLSsDrupM22Ylz98UMUnN+Uzf4uf4QVOzn2mjMJ0ldeuyOYPH1Zz7y/S+HhNMz6XxDF9nNz1cQ0fX5/DvZ/VMKW/GzOqMX9HmBfOTeGuLxv48ynJLNoaojZo8rMBdu6e5+dv5ydz/3w/J+RLBGOwuFjjyeOd3LcszJ3jHczaqRPR4aR8mUfWa7w8WeXdA9DHOrysrDH50yDBUztNLsg3WFxjHaeiFJnXD0S5u5+TOVUR8uMyB5ubNK4sdPF1VZBp6YJ1jdY6HZZo59OKAN1cXj6rCNLfko1ga3OUi/O9LKiJYAKrGqxXz6OSbHxYGqR3gpP3SyIMTrT8b2zUKXArvLI/xiWFKkuqrfFMSJWZX63Tza3w6j6dkclWgLim3qDQA0/vNLmut8Q3lVYAd1IWPLkTnh4Bz+62AmmA0jBk9oHHt5nc2E8wt8zCT88XzNxs8HyRxFPbDKvpiWyypAIeHiPz6Eadm4fIzC428DkkxmRILfP5xEaN8VkSbptg3kGdRyfYeGitxu0jFWbtN5AlOKlA4cHVUV470cHMtTFOKDAJ67CkROOxKQ4eWBlhxhg7K8p0asMm07srPLAywhvTnfxldYQp3RRihoV/fIqD+1dEuHOcnS/2WAmdk7sr3L8iwpsnO3l/h0ZBgjU/7fyPVPlinzWf0wtkHlwT48WJMk9s0inKtPDLKgwynJDugJAu+GyPNT+T2+TF3j9o4rPpCGFRO0I6ZDrgsu5Su+M1u1In3+XocHwvyLXxt7IgZ+W4WRMv4B+ZZGNhTYTMHIXZVX56e6zzvTgU42eZXr6qaubkDC/FcX1xhyQxr6qZnm5bO3xZOIq3WWZFvfVklOtUSFMV+nvszKn2U+RztuBtAjY3RzgnJ7HF/8amMG5ZoofLxldVzVyan8zc6gBuWbCuOcIOf3v8Tn+EsGEy2Otowc+u8jMwwU7UgB3NYbq7bSyqDeJWJMK6Sbpd5vhUD19VNXNRXhIVEY2KSGtizq8bfFXVzKkZXtbHi27b+l9eH2rRa98ZH8+sqi6UmP4F+6EZ6PuA+MsJHgCuME3z08NwvwCeM00z5YiP8t9oXWWgrQ9/XNb2cDNNkyuuuIIDBw7w5ZdfonbBPf3Hjo5moH+IHc1Ad7QfkoH2NzUxfXAvNu7eT1JycrvPDmWgzcislm3r1u/h7HPvZee6hzu+utMaMOLHUpIkNE1HUWT0SANSXNXGMExkOf6ZiGDEFU4kSaBpBpLejK4bSPFXj4fw0VAIRZEwDJNP5uxjy856quvCzFtykEmjM7j+N305/6alPHzbcCYNSyAW0zntmhUcOyaVWy7qjSQJIk2NKIqErpscEtkxDKAxSFVDlLRElUBY59on9zJ1sJepQxNJT1Kp92t4HNY/NNUE8HlVqhpjpCUoLbJuLsmguknnvs9rKK6NMeO0FAbn2dm4N8glr1Vx8YQETh3qZsH2EJ+t9fPJVRlk3mpde7b/MRePXWCGojRHTZJdMtXNOqkeiWDExMTEbZeo8RukeWXqgzpuBbrd+9NnoPd9NZGUZDtVtRHSfDYCcZ0tVyxGVX2U9GQb9U0xPPGAsqGiGZ/XRlVDjLREa36MpgBuh0x1k056okJ9QMNjl7j/4yqW7Azx+U15+EMGaQkygYiBoel4HNYcpCe04g1/xJIhc8lUN2ukemSaaoNIkmTJ3gUM0jzW/Mj+MCAIRCHJ2SqjVl0VAgQuRVAbNkl1Shwoi7TKihmQqErURgyiMTehuFqPQxY0xkySbBLlfnAq1noIG+BRJA76BQmKTCS+nu2SoFkzSHFIBDQdexvZL7ciE4xFSbC1xzdpBlkuE3/MwBE/pcM6ZLoMGqIGiaogHFf5cciCkBHFZ1doihktsmVBHTJdJrURA59NEIrjE9RWGbvGmEmc2k1YQLJdojZs4LO34j12ibqISYpDojFq+ZdViYAOSTapRUYwqJlIMrhUuWU+GyIGbgVkGQKaIMlxGF6R2s1/Q9jA6xAgWmXvaoIGKU5BMKqDFMfHZfIawgZum4noDK9Z42+Lrw9ouG3WDrfFJ8lGe3zYJFGYNEQN3PH5bIyZnDlH57ER0D+pdX6csmDM19bvHxbJLfN/IGDy+00Gjw5WSbHJ7Y5XWVCQaFM6HF/TtNMU0/EqUrv1UOIXJNhUgpqOLb5+ooaBS1HaycBZ/i3pNq8is6ExRGVUI6Sb7AlGyXaojEp08G1NgJGJTvp77dglwRslDaTYFKakuCz/pmnJ2ClyO/+maeCQ5RZZuo/LG/GpMhN8LqKG2Q4f1nSEJLWTvWs7/llVfsojGhN9Lvq6bVRFNN4oa2RUopMebhvNmsHcaj/XFfj4w05LXvSBvhkt+xaOC3239e+PaS2ykm3Hc6Rl7H5oSvWOw/4+Afj0sG3jgN3/8oj+R2xnoPPg6N4nnmHi8MG89t7fOPNX5/xdH11K3nUV/HYVWBt7OsHu7MJH5/Jx/bqQOuvURBfYH5PB70qqr4vxdbq9S+yP8N2VjyNhXc3TjzGjozSgtb3z7GynlIpYfbs/3/56I5PGZFAQvgvKO3cT2/dBy++v/nUlJ49PILKvYwfA5atL2LLHoknMX1XLY7f25/zb1/Gni/L5bInVJeDUCSn88eX9vHVXP257cidF/a23Mws2NPGXy7px8zN7uGKqj6++t/ycPNzLnz+u4pXzfNz6UT2KDIt2hklxS5w53E0qEc5IrOfya+fS0KgT/W49p9/fzGPTPKh1AWa+VEPd2n3srze5d7KTK78McNsEJ7N3W3N5Uk8br68Lc9dEBzcuDDMsU+ab1WEaS5ooitUz/esgt45zMGevlek5qVDhoRURnjnRxQWLQ0zIjWc+6nQKkyQ+XhXhxWlOPp5XxcfAiYUKaTaTD5c18pfZ9bhVwbF5Mhc9V9Yyb5vW1zF3X4xEu2BMtsIjKyM8c4KTSz4KMyFXRpVgwUGdeyY6OP2tELeMsTP/4BGQt/wBVlxv5zd3b+D9xydw8Z/WcFyRlXrburOe2y7ry6k3r+DP1w/ks1nW/pw+OZ2LH97GO4+M5PIHNnLc2DQkHMxdXsPjtw3g57ev456re/P5wkpSeqSi7atg8iOlLHh5HFc8vJUpo1Nw2CRmza7msVv7c8bt6/jTNX34fEElpi5x2sRULnthL2/+eSBXzdzJSSNTiEYM5i9vYOa1PfjFvdv540UFLFpWSUNA55QRCVz3YQWvX5vPTW+UcWxhAoYBi7aHeegMH5e8Uc3tY718sCsuZ9bLxi2Lg7x4egIzFwfoGc/sLi2x5v+auSFuHCwx96B1Iz8+X+axdTEeHiVx/3qDsekWfn6VwYyhMjM3aJxZIDG/3LpHTMkSPLXN4MFh8OBmGJNm3d9XVprcNlDw+7UmV/WCb6qs+Z+JBuwtAAAgAElEQVScDs/thd/1g4e3wuh4ympVLdzUF2ZsjHJVT/g8vpwmpcNTG+HOAXDPFpPRPmv75ka4sqfg6tUmV/Zqlbc7Nh1u22Vw3xDB7WtNRqXEO9s1G1zRAy5drXNVT1hUBbLQmZAGz+7WeWAI3LTWUvWwy7C0WufWfnDBErimFyyoAq8NRqUI/rrD5KHhghuWmYxJEwhMVtbAbYME531jcm0/q+lLIAZTsiWe2qLz6BiZ6xYZHJstEdatJi8zhsqcO0/n+oES31WYRAw4LlvwxGaDmeNkbvtOZ7CvtXHJHcNkzpmjc+NgmW9KreN1XI7EE5t0ZhYp/HGDRt8ka39XVJn8fqjE5at0Lu8lWFB5iHoBUR0ShcQta8w2mf7We/7uJoUVdda9I6BZhWShqIP794QZmGBdHzY3aZyR5ebx3X5OzXSxodG6/gxJtLG4Jsj0dC9vFze1cH93BaKcnuHlhQN1nJTuYUtcTnGAx87s0jrOz03i3bLGFnxlRGNyqoeZe2oIGgYpqowiCUYlONjqj1AWz+pGTIONTWF2B6NMz/DyxL5aklWJJs3Sdu7htjG7tLGdf0UItvn9nJ6ZwHP7a6mJ6fRx2/mmJkB/r70dvq/bjo5pjT8zoWX8ewMxSsIxDoSi+FSZApeN98qb6Ou2MzbJyaLaICsbQgR1g5GJTubVtNa2vHDA2t8vKpvJjFOhDve/JZ5hH9BmPEfafkhEU9jJts7uzgbw3L82nP99W7NyBc3NTRw/bfp/eihH7ah1aumpbtZtqmD77nr69kz+u9gnX9/CrIUlzH35mE4/T/PZGGFvbUiU4FaYOi6N/EwHE4ZY2wsyHUwdmYzHJTOhv5ehPdwteK9TYmQPJ91SVYri6hbdUlWmDPDgsUkMzbPx+LeNPHNOKpXNOr8c6cFp6nRLlhmSpbKvVmfWtgiDMxU8NsGJvVTG5Su88n2YK0c58NhgUoFKfqLE2FzriTU/UWJwhoRbFUzMV1h4IMbUQpUx2TIeVXBMvkJegsSYbOvymeuVOCZPwa3ChFyFwfGqf7sMn++KcWKhQm+fzCHJ87wEwQmFKpcMsfHxjhiD02VMw2Rjtc7Xe+PtmhOswFmRrN+PyZPj/mXLvwkxAzwqHJMnk58gGJmhAF08UB1B65br5oTxWXhdKscVZTJyoBWROVRIcKscX5RJQa6biSMsRl+3LCdTi9LwuhWOG5vG8P5JoFsd4hLcCsePTaUgx8XE4T5KK8OUV0e46Iw8vG6FKaNTGNE/ESEE4ajRsn4Ks51MHOHDjEYpyHZy3GgfXpfMlJHJDOzu4tDLHa9LZurIZAqy7DR2cxDToVuajeMGefE4ZI4d4GFIcmvg43VITO7jJC/RZFyedXy7JUocW6jisQkGpcn08rXy/A/Nf44HRmdY23M9gvHZ1vEamy61tG4GCbcK/ZIEOW4YkWptz3HDuHSBS7GCyf4tp4vAo8CYVMh2woj4qZjttNo7u2UreO7fpt+XW7GoGNkuGHYI74JhSeCSreC2X+Ih73F8qiDbSYs6R6bDZEyqwCVbwW6/OJXFLnX0L4T1+5iU9v5lIGpY+HFtxq8okOOCcWnC8nVofwUgrP0dly7IcUHIEOgm5LqhKEPCpcDYdEGPRMAULfNZlCHIdQmGpJgYpiDXLRifKXApMCxFtATEh/DjM635H5kmxedfUJRp+R/oE/RJbE1QuhUY6bPGfEiNRBKmxaUPmYxMFvRJaMUvrrbWUoZDYkACbGrUWVuvc0yqgkMRDExQKHC1Jk7skqCvx0aKTW5Ra0mxyeQ4VOySoJfb1tLa/RC+t8eOT1UodFnflWyT6e2xd8ArwsogN2oGv8lNaumgmeNQ0IUgWZUxgdKQxmCvnV5uGz5VZliCg4W1QU5O9+CWJXyq0sG/ADTTxCFZhZLdXTYGJTgQ0AGf5WgNMx1txh9xmOwKRjjG50aP71srXsEpSy2tv0ckWl1AF9dZNTKH/Oc6FDLtHf0nqzKFcZ31tuM50tZ5t4U2ZprmgU5+KjrB3Wya5qtHfIT/Y/bmKy+RmJjEiu+WtrzaPmpH7b/Jjj+2Bw/cMZVpv/m8hU7RmT3/7naefmMbc147kez0ztukZqU6KKuOUFYd4eSJ6Tz5zn6uP7eABWvryUqxkZVi4+sVdVx7Vg5P/62UE0ckUV4XpbwuyrSRSfz1i0ounpTE7A1+spIUspIUZm/wc/XxPt5a5adflo0Ut1X1feIAF88uauLCUS7m7IgwsdBG33SFl1YGmdpd5fk1YY7vrpLkEHRLktlTZ/DOpiiXDbczb2+MTI9AlUx+NydAU9jkujlBGsMGK0o1phYoTC1UeWl9hEuH2vl2v0amRyLTI7GkWOOSITZe3hDluAKFioBBRcBgYp7CngaDM/uoFt4tkemWWHBA74CvCRlMLWi9EXyzXyPDLUh1Wr9fMtjGyxujTC1QqAyY1ARNphYovLwxyiWDbXyzXyPN/dNX/APMW1rBby/oy+Ovb+eUY3MoqwxRVhliyth0nnhzFzf8uhdfLSwnO91JdrqTucuruOH8Hjzx1h6mH5NJWVWY8too0yem8+Tb+7j+vEJmLakiO83B8o31SBIM7OHhsbf2cfLEdMqqI1TWhNutn6+WVJGdZicr1c6s72q47pd5PPV+MdPHp1JVF6W8JsK0sT6e/riMa8/I5usVdaQnKmQlK8xe18TVJ6byzJwaThqWQEWTTnmj3rJ+rpqUwML9GlkeiSyPxNw9Ua4Y6eD5NWGKcmQqAyaVgfbzv7TMIN0lSHcJFpToXNhP5p3dOsdmCarCJlVhk2OzBG/uMjijABZVmKQ7LB7togqT83sIPjkIx6RDddj6OSYd3t4H53aDJdWQ5rB+llTDGbnwzgGYmNaKn5gGn5VY+KVVrfilVXBWnoWf0Mb/uDR47yD8Kh+WVluZ1TS7JWf3q3zrswlpUB2xfsamWD7a+k+1W7+f2629/9qoNZ5D+EPjT7HD4io4r9Dat3b7mwFv7YXzu8PiSkhxQLpTsKjc5Pyegrd2m0zKEtSFaTefv+4lsbDcJNUhSHcKFpab/LqXxJu7DCZkCqpCJlWh9vhllSbpTkh3wqIyg9/0lnhjp0FROi34SVnWd57XXbC4zXxWhgV3D4bbN5oMS4aaiElNxGRcauv5t7pO52DQYFG1xokZKuflq8yrjDA0UaEhZtAQMxiaqPBdbYQpaQ42N0VJUiWSVInNTVFGJTpYUhekn8dBo2bQqBn08zhY3hBios/FNn+YREUiUZHY6Y8y0efqgO/ptrGoLohLtgr1DuF3xfEloRg9XDbWNYUpjWj081jfOSXFTbpdZlNzGI8isc0fbvFf4LQxvzbA4rogQd3kvbJGKqMauQ6FREUi4TB8P4+DZk1vGf+SumDL+D2KhABqY1o7fFMn+B3+KIlKa7h6CN/LZWs3P4fwu+L4xLbjqQ10vJj9i/bPV8UdtX/KHnv2BT754H0e+OMfuPPmG7n8uhs478KLcTqPfJ/2o3bU/lm74FdDuW7GlzQ0RaipC9G7e/tM9LY9DVz3pxV0z/Ny9V3LGNzbyz3XD+zAgQ6ENJastQRmkxNUvllezUWn5/L9Dj/hqBWcz19bz6njU/hmTT3jezhYusWiaiR5FL5d38j5I50s3Np68Vu4NcApw71sLInisUs0hg2W7QmT5JJYsCPEeQNVvt4WZm1JjJxEmW7JMksOxHhxTYQX14QJxEzCGmyv1jmuUOH0vjaWHIhhmCavrIsQjJkUJkqsq9SpD5uMzVHYVK2T7ZVYfFDjnAE2lrShS2yt1jm2m8riYo0x2TIr4/qyPofV8jiowdKSVvzqcp3jC9vjXTJ4bK03iKUllg+HLFhaonNiocriYp0x2QoryzRcisBjFywu/j/23ju8ruJa///svU9v6pIly0Uucu/dxjaY6tBbILnUEHITQi4lCaEkYAMOkBAIJYQQIEBCB4MB01ww7paLXCTLlixbktXLUTm97D2/P+ZIR8JSLnwvKff+WM+jBzPnPevMnj0ze83a71pL5/JxEv/PSJkFsH1fK986OY9PtzSwaFY2G3dJbkGaR2XN1ka+d3EB67Y39eB3l3bwrYWDWLu1hUUzMtm0uw2zJkh1mVizvZVrLxjCuh0yQHXxzAwqjwf5w2vVHKjw0dwmMwVkpllwu5LzZ32RpP+IWIz1u9o5d1EW64q8LJyayp5yP11BnTS3mbW72rlmaQ7r93RgHmsjHBNsKPVzzgwP6w74WDDWSdGxMDGdnvlz5VwXO+tixBJc1Y1VcZaOtrDhWIxZmWZ21Mt7mWI194x/cYtBdxHSrQ0Gpw3R2NkimJYp2J3wSqZYYGuT4MJ82N4CsgaZ/PeSXJkJY1wK7PZ2c5QVtrUIzsuT9IxuKWqTNIttrTA9DXYnGFgeM5T7JOe5yNsL75U0jh1tEl+cwLtMMkDyvMEKO9sE3RlrqwIwN1N+Ni1Nobi929MpdVyQn9SvJPSfnNNXv9ssvbfbWuH8/GT/bWbY0SI4JUde2/R0hd1egarI8dnWLLhwqMKOFoHNJL3Y25sFS/IUtjYZzMjUKOsQdEWT43lxgaRzmFTpsd7WZHDqYI0tjYJZmQq7WpPjv6VR4g+2yxzTANuaBKfmy+DAmWlJvMcif/O8PNjRQs/47GgR3D5RQQhBuQ92eg08ZgW3Kbn+itrj7GmXvOmPmmK0Rg3qgoJCt4lDiXzPTpNCVSjOTF1wyJ+s6nvIH2OUXQa/jXCYOZbIZ+zQFKqDMWakSDpEt1QHY4xzW0/AOzWVqmCUuKAPvj4ss3BsbQ+SZzOTYzVxNBjlWCjGsWCUjW0BQkaiOIwrSkUgxgS3jXJ/hMpAhPaYgcekEjYMqoMxzshyURmMYtekQVwRiPbgRzjMHA/HJQ9ZUyj3R5idaqciEMWsKAR1QUM4TsQQSXwolii/ncRXBaMIks6cHrzd0md8uvG14Rh6At/dn95j8HXJlwkivPcr6BNCiHv+Z13618rXFUQ4EAc6szsISwi2b9nMEw//hsojFTz+zHPMmb+gD/Yrlf2Gr8iB/gpcYvhqfN1vONBfTv5NOdDdMmTKbykY4mF7cSN/uP9krrt8PNqwJwGIlF1N+bEu2jsjdPiiLH9sN5d9ayg/uWJ0Hx3Bri667TpfIE56ioXmtgjpplhPsJ3TptLSESM7zUJrbRfuBN/eHzJIc5toqO4gy60RSKR/cloVGVAnYuyuDnPDq21s/nke/ohBmkNjf4WP697o5NrZdq6c4eD+tT52VkW5fqaNwgyVsZkaD20O8cr+CH+90E2eW8FlUXhpX4QPj8RY+W0XbX6DLIdKe9jAZZYXEIgJUm3J4LNg4pln10QyOKkX3h8T/GF3FJsJfjrbSjAx7RwmTsALwyAQU5j5oowUr/iBi2Bc7hNOc6/gp7BA1tkQBGIKqTalV7CUwpTnff/wIMLQ/stobouQk2mjrSOCJ/HqubMzRHqqhaa2MNnp1mRwoUWn2RslJ8NKW0cUj8uEiMfwBXXSUyw0tUXITgQjCiFw2jVavFGON4X57QuV7C/v4tGfjWfWpNSe+dMdvGiEwxLfHiM73YK3M4ZLNRLzRxrRze1RslLNdFa1gwJOq9oTvOj1x3H4A6AoPfOn2aeTGgj03F+HGVqDgiynSkNzBJelez7QM/4uPd73/obBg0FHRJAYHoJxSLEotPjjieC87vkD3gikmqAjKkjUzSDQjQ8YpFvoi49Kb25nlJ5gx4AObpOCNyJI6xev0BkVPfiuuAyO7A/fHoX0L+DDuiDF0r/+L+IVRRryKWZoi9DTf0WTwXnd/em+XkVNXm9bRJBugYiioKD0jE+GLYG3ACg949kWFqRbIaTLIMLe+PZIcj32xmfYTxz/DJtCqz9+Ar6pq5/7FYUbtwssGhzugmsLFM7OU7loiwS9NddOddDAF4eYIVhZF2ek08wZ2RZsiQxAYV0ghIWumIHbpJDIVodFheawitukEdAlDxmk0ehIBAa6NJVownazKMngud74sC5AgYcrW/nVqEy6TfS4IXi6pp2pHhtz0xxs8QYo9UnDs9BpxapCcWeYz71BLhzkZoLLSkfcoCoUY31rgBuHp2NSkMGFX+yPAIvatz9WReaa/mL/I0KwqS1A1BAsynD+t/ioECxLBBHeOSpT4uNGz3h+mfG541DTPz2I8JfIo/KX+VEB/K82oP9ZoigK805ayLyTFvLeyre59juXcvb5F3LG0rMZO34C+UOH8uWG/Bv5Rk4Ur9fPkaNNTJ08jKJdlYwtzKOhqQNF9zEox8Oh8iZmzxjG3gN1+NpbqG/y0djsZ/6sIQgBY0dn4nKacTpMnLFwKKs+PcqVF43p0X+s1k+XP8r0CRnsPNDKY3dN5ZwfbiY3y8bJs7M5fMzHrEnprPqskdZEWq7dpZ38+qax3PhACT86L4dPi6ThftrMNJ5+t57Hbx7N3S8eZ8oIyYHecyTAfVfm88vXm/iPBSmsL5Ve6CUTnPx5fTsPn5/KnzZ10R40uONdL8GIwbJz07n9Q2m0N3bpPLzBz+AUjVe9OlFd8MyuMBOyNVYejOKyKFz8hg9dgEWTf0tHmdlRp/PGgTB3nmTn11vCPZXM9jXFuPMkB3d+FuKayRY+T3ihF+drvHAgyoqT7TywNcLkRNDYEW+cTIfGy6VR5uVpbDwuH66Lh2q8sL8vXkOwpylJ6dpaF2fjcR2nGWYM0nixJMaKRTYe2BZhSraGpkj8HfOs3LUxzNUTzWw+/s8JItxb5uXPb1Sy4papPPxcGdMnSA700ZpOvn/JCO59qpTrLh7Bpl3yYbdoRirPvl3NfT8Zx+9ePML0cSmoGOwq7eRn14zkvj9VcN2FQ9i0x4vDpjJ9fArPv3Oce388hpFDHIwrcHH9vQdIcZm44/ujeHl1HbdeVcC6HW2IeJzTZ6fz9Mo6Hv9ZIXc9VcmcMS7iumD3YR/3X1/Afz12hB+en8embS2EooJTJ7l5Zm0bj16Tx92vNzI9W8UAimsiLDs3nZ++1cb3xqusr5LjuWS4mef2RPjNmQ4e3RVhZGpiPjTrPeP/3ZEKmxPp3k7KU/nbYZ1fThY8UgITE9ziknbBrZNUHjsoODsftsrhYX4WvHZMcMcEeOwQTEjEOpV2wE3jBA+UwmXDpDcXJKf4/VpZwOOxcpiQ4CiXdsENowS/LYNLh8L2BH5uJrxbCz8dK3iinB5Oc4UffjDS4DdlkuKxPeElnpcBbx6H28YJnqyQObABjgXgByMFDx5M6leB2ZnwZg3cPj6p36zC/k64qRAeOAiXDZX9t2owI1PwehXcOUnwWFnf6715gmDFfri8AHa3CaKGwoIchVePCn41VeGREsG0TIgbSs943rvH4LujVHY0GegozM9ReLXS4O7pKk+U6BR2V/5rF/x0ssT/x2iFzQki6oJBKq9U6NwzU+PJgwajPN33C26dqLBsP8zOFOzzSh74+UPh9Sp5UKoPQaEb1jcLqgLJ9Xug06C4Q673aakaFlWwsTVKpT/O1NRE5byAztJslTfqgyzOsFGW8EKPc5nZ7o1xVraLD5v9DElwiI+H45yV6eDdJj8L0hyUB6STpNBpYUt7iItyPX3wzRGdUzIdGAI+aQn0eHDdmkpHTGdWio0Pmny4NYWOmM7+rgiT3FZWNnThjRs4NIVX67t6jD+nppJnM7GnM4QqoDoS51vZLlY2dH2hP1a2tAd7+jPMZsJI9L83/mgwQm04TnvMoDWq9+CH2kySY94Lf1KancO9PMgrG7q4KNfD+pYAWYkgwj74dDuH/dET+vN1y5fxQPuQAYJvAS8JIT7/2nvxbySKoojD/v65ybF+0rANJAOlKBvoNWuX18vzT/yOg8V7OHLoIH5fF2PHjWfqjJnccNOtFPSqfDigZ/qreKD10ADYATyX/RS4wPiKOvpr/6r9MML9NovYie3C6P9+GfH+vbbCONEAEfFYP0gQov85IvR/jhGT/L3+r9EfiHLwSBezJqWxbnszC2dkUl0fxIiFGZrrYEuxl5kTU7nh/gNs3uNl9FAHigK1TWGG5dp56vZxNFZ30twR45rfHOHxG4dz+SlZpF9QBEDZk+Opbo4wY6SDDSV+5mQJ/rK5k2c3dfHxLXmU1EVZXGhn9752hiQMjuoOnel5Jj4/FmN6mqDWJ9dIvltlR32chUNMFFVFGOJObIg+gylZKpuqokzPVKlLvNXJcyrsbhHM9OiUtENbRLBiv+CB6QozMuVr19+WwvdHyzRTuXZ47ajgk3p5ws+1yzK7/zEcxmaq7PUKZmWq1CemeK4D9nfA7CyFA15BfncBhbDCpHRYVSVItYDdBFl2GJamsbtZMD9XZWu9QVGTwd5Wg5JWgyFuhcmZKr+cbabOnwjicSvsahLMTxSMGOJSEQhq/YLvfCjn/b4r7NT5BcIQ5LkUdjUZzM9V2d8qC1KAoNYPkzMVtiYKUtQF4OxV4X+4B1o0fjEpU0IGWMv9rYmB1uZA66emtp17nyimvilIcWkbgVCcYYNdjBvp4bbrJ9LaHua0+bkU7W9laI4FRVE4Vhtg9uR01m1rYuHMLKpqOhBCMDTXweY9bZw6N4udJe0My5YGx7H6ELMmpLC+qI15w03UNMt7MSTbxtYDnZwyPZVdu1oYkimDk6qao8wc5WDDAR9zB6scb5N9z88wsa0ixMIcwZ7jMYamy/lc49WZPsTMplI/s/LNHO+UY5CforG9Jsa8bIXiRp2hCYOvptNg2iCNz49GmT3YRF2X3HMGu1W2V8tD2b4WgyE9BUEMJrgFWxsNZmX3XS9F9XHmZCkcaBfkO+T0qO3SmZCmsL0FZmRIYxAgy2Swt11hTiaUdMgAOqlf9BSUmZYGDSEwBOTYFPZ1wKx0ONglAwYNAfUhhfEeyamekiYLsigIsm0K+ztkcF43HiGoD/fFN4cNQCHHRl/9NgGK0lPgZqcXpqZJXjTIfMt7O2RA46Euud5BXt+EFEknmZ4FjaFkAZRirwzWLPEKchMFQasC0uhfWQujXaAqUkeBE5YMgikejdIuwb2lBg9M1rCqglv2ynv0xlwbzb0KphzsMgjGVJ4+FuHOsXbcJoWWiCDTZJOUDWffgimlHYIRTnO/BUEqglFG2JMFelJNKsfCMUZ/ocBKe0wn32Zie0eQta0BrhqcikNT8ZgUnqxu58xMFx6zDBKsDUX5uNWPioJDk57/c7JkcF+GxUT1F/QLIWjvLrDSpz8CgcIBX5gpbisB3SDDYoJEwZQci4kPmn10xQ2qQzGcmsokt5URTkuP/i8WWKkIRimwy4IpjxyTp7xrh6RKfChOukU7YXy68ZAosBKKMtph4c7DX2+az/82iBDIAW4EhgJrFUU5pijKvYqijPq6OvGNQGpGBrcu+zXPrvqYDYdrWFd6jPt/+wgZGZmccdIclt95+7+6i9/I/yIpregk1WPmP5ftYe6UDO59qoyjtQGqG8Lc96dyWtqjjD77MxQFfnrlUC49PYcnfzGW+VNSmTHOzeyrdvD6hlZMmsKkAge3PVNN7qU7e/T/bUMbKU6N/3q2llmjHTz0kZdR2RZGZJk589EGGjt1fvjXZjw2hQ8ORfjgUIQUm8Itq6Xx8NzeKDWdBjWdBo/sCDNjkInb1oXwWBQ+qYrzSVUcj1Xhzs1RJqUrPFmiU+uXRuYfSnSmZij8oUzgtkBz4uwUNmD5XsGUdLAo8HEd7GoVPH1IcMlQ6Sk6Ixdqg7JIhscCz5ULpmWoPFVmUBsQ1AYEfywzmJgO9+zW8VgUVtfo/OGgzsvlOvPfifHEgTgPFse5bVuc76yJc9WnUcanK9y5NcrblXE21OkUeBReON3C+AyVX8w08/jeODV+QY1f8Mf9caZmq9y1JUqKReGT6jifHddJsST39ceKY9T4BPUBgyf2xpmapXLXthgeC3xao/NZrYHHAndtizE1S+XxvXGO+//necX/XeXAYS8//f4kBmXZObzuEq69dDTXXjIah83Ekis+4c0Pq7j+zq2keix8vKmBd9bUkuYx859372Tu1AyWP1lCTX2Qo7VB7nv6EHOnpPPD5cWkus28/3kT765vItVt4kf3lzBnUiqPvFHHsfowx+rD/PqvNcwe7+HHjx7B49B4r6iT94o6SXVq/OSZ48wqdPLEp16OtUY51hrloffbmDXCzm2rOkixK3xQEuKDkhApdoWbV3YwNdfEbzYGqW43qG43+O3GILPyzTywJUSKTeGjIzE+OhIjxabw87UhpueaeLQoQnWXQXWXwaM7I0zJUrlzcxSPte96+f2+ONMyVZ7YL+fDcb/gyf1xJqXBst06HrPC2jqDtXUGbktyvfzxkKA2IKsEvl4Fk9Pgvv0CjxnWN8o/twlWHIRJKfDnI1AXlAblc0cFE1PggYMCtwk2NEnvtNsED5YJJqTAc5WC+hA0hOH5o7LtwbIEvlmwoflEfEMY6vrRv61N/obbJNsmpsCzlYKGkOzTs5WyjysOSp73+ib55zbD/aUwKRVerZL7QG0Q/lQheq63G/9cJdxbAmsb4S+zpeH93WFwc6GkojxRDstLdfLtCnPSFe4p0bnrQNKp8uejMRrDgsaw4NWaOGPcKkXtcWakmnikIsRrxyPEDcE7DUFGOMysbgrSGtVpjeqsbgoy2G7i7cYu7KrKAV+YA74wdlXl/SYfw+xm1rT6aYvptMV0NniDDLObT8DbVIW3G7uYnmLHpChUhWK0xXS2tIcodFr4sMWHL2awvytEe0znu7kp2DUFAaSaVdriBgFdsL4tcIL+8kAUu6rydmMXeVYTr9d38lGLj2ePd/BkVRuVwShPVHl57ngHL9R2sLcrhFVReLrGS1tUR1Pgohw35+a4EdBHf5k/0nO9bzd2McxuZkNbkLZY8tDdjbdp9Bmfbvwmb7BnfNa2+iW+oZOvW75MFo6gEOKvQojTkSnt/hwZBucAACAASURBVARcBJQrirJNUZQfKYry93NdfSNfWVLS0pgzfwG337OcHSWHef1vL1JWUvKv7tY38r9captCvLO+kd++UMn8qWnc/cNCHLYkF9ukKfzimgLGj3Cyo8yHoiicNMnDween8a3ZyWX+9CetNHhP9M5fPd/D8AwTH+wP8FFJCF/kn5NpxmmSD89uGe2BuAHPVsCb1bCpWXqfC1wyGOr5SrhhhzSwj3adaHi2hgXVPsH9e3SeKBXsahEMcsCcbIX3l5o5c6jGijkmls3UOO4TLH47wqqjBtsbDc4r0BiTpuK2fEPB+keJ1aIxZkQKl5w1jO9dOorNu5tpbuv/7dQ38o18WWkOS7rLuia4ukCWMk/vVeDTpEpj+tIhUJvw2M9MV/h+gcKKScl9dFOr3lOyu7ecmWNmhFPjeMjgkSMhIvo/59BrURQ6exmgkz02NBRWt/j4qMVPTUiWubepCrlWE8VdYd5s6GJ7RxBf3DihcFjEMCj1hakMRHn4aBs14Rg2VWVRuoO5qXauzk9lksfGD4am4Y8bfNjs57EqLy0RnfMGucmyyDR1/9vlv6VwDPhFRZkBfD/x954Q4uKvs2P/KvlXUTj6a8/pZdj87oEVVB2t5Ik/P/8NhaMf+YbC0Vd6UzjWbmtm1sQ07vh9CavW1fGzq0cydoSTM+dns7Okg6FZJhQl8Qp7vIfHX63h8ddq+MvPRpKdamFItpUtJV0smZbSQ+G465JBPPNpK1sfLKT4aIg5WQa17YlX2GkmtlWGebc4AOEYd54iOc29KRzTUkUPpSHfrbK9Ls6iof1TOD4/GmVGtkp9r1fSu5oFs1IkhWOwE96pFqw+Lnh7icr2ZoOp6QoNian1ZpXgw1qZNzndKjmnlwyVGQuOBhRW1QgK3HBdocoxn2BNneBIFyzMVRjphrOGqLjMCnVhhckZClsbBTOzlZ7+DElV2dUsWJCr9nmlXu83mJipsiVBsajvReHY2SRY8HcoHHuvsFPfi8Kxs8lgwQAUjh79/4cpHO0dfg5VdjB7ShZrNtezaHYO1XUBhB5jWJ6LOx7eQ019gNt+MOEECsfarZLCUX08SeHYtLuN0+b1T+FYt6OVecPNHG9JUji2HOhkyQAUjs8O+Jibp1LrTVI4tlaEWDQAhWNjgsJR+yUpHBuORpmTZ6LO9+UpHDO/sF521MWZm90/hWNbgsLR0IvCUdyuMHcACseONknhaAwnKRzdlIn+KBw7vTAlFZrCSQrHFykfvSkc3fiWSJLC0Uf/FygcRV6YmkqPwTrIJjOBzMnon8Kxow2mZ8p0dCApHLvaBAc74JUqmSLw4iHQGpH47a2SItKYeMT4Y3BzMfx+qkZAh1yb1NMQFtxcLO/pjSPNvFgd47YxFgrdKqWdMq1cZcAgyyrxr9REUNGYnGJh9BcoHCUdBiOdlv4pHIEoBQ4LHb0pHKEYo539UzgqAlF8cYNPWvx8f0gqqRaNqmASf9AXoagjREwIUkwaWRaNs7PdeGM6Zf4whwNRNBS+OziFikCEMn+UhkicwTYT0z02zIrCOLct0R9BqtnEsWC0V380uikc+VYTR4IxChyS8qGQoFj0wp9A4QgkKBnxXhSO/FSJ74/CEYgy3GGmszeFI6H/66ZwaMuWLfvKX1IUZTZwNfBtZM70N5ctW7bx6+rUv1KWL1++7Cd39h8H+VVKLw+EPKHU8d9pd/XKezh2/ATuuOW/WPn6a2zftpX8/HwGDx78hW90DdCZfrIsfOUsF/0Ykl9LpoyvqmMAfD/GLwPcr4Ee3vRnFA+Yq3uAOzyAYf0PkwGucfu+VpY/VcYZC3K45s5duF0mHvrzYS46LZdTZmdwx2OHuGBJLjc9VEokEqf4sI/nV9VzxtxMrlteytzJqXR0xlhf3InLrnHns1UsnZvOH9+TkTeLxjtZs8/HxfNSufn5WkZnmXhpq4+iYxFcVpW7V3m58+x07v6gA1WFw606fy0Os2SklRtW+ShMV/nbgSi7GnQcZoX7N4dZOsrM/VsidEYFZV6D1w7HWZRv4uFdUTLsCn89rLOnxcAbgft2x1nXIPjbUcHOFsG6BpnG67Q8hUcOCnLsCm9Xy8CfaelwpAuemQd7vDAuRaEmqLC2AX46SWVNnWBCmsKjJYJDnXB6noJFg7umm3ihXBAXcKhT8NZRnYV5Gr/YHmeER+XNIzrFrYIUm8oDu2KcOczE8qIYgbigrN1gc4PBlCyNn22OMjJF5bUK2X+XWeHBnTHOHG5i2bYowTgc6xS8fCjeY/TMzNZ47XCcap9AUeDBbv07pP6jXYJXDussHJzU/05lnNI2wbJly5b/o6bb8uXLly37Wf9FcwZey/2siYH20gHWzwfrqnjo6f2ctTifK2/dwNiRqTzz6iG27m7G5TTz9CvlVNf7ee7NCtZua+LQsS7e/uQ4Zy7M5epfbGfsCA+r1taydlszLoeZ2x85wAWn5XHTr/cRiugUH+7i+ZU1nDEvi2vv3se4oXaeW93E9lKfnP9/Osb5CzN57M06attiHKgO8eL6Vk6b6uH6J6sZl2fh+Y2d7KgM4bKp/OrNFs6ZYOW2VR0EIoKShhgv7gxw6hgbD6/3kW5Xeak4TFFtHJdF4Z61AZaONHPXZ0ECMSht0Xm5JMLJw83csibEiDSNV0pj7GrUcZoV/loaY26eiXu2RQjEkuvlpEEqt22NM8Kj8MYRg+IWmQXkTwd1Fg5SWVFsEIjL+bymXjAjQ+Gu3QYFboW3qwR7vZIa8WiZrJD4YIkgqCuUd0naxNQ0uKcEhrvgnVoo6wSrSeGJcsEp2QoPl0l8bRBWHhfMyVC4t8RguFNhVZ2gJiidRU+WG5ycrfDIIYOgDkf88F5dX/z6ZsEur8za0Vu/AA52KayqFczNVFheIhjuVPikUab0c2jweDksyYE/HoGOmDwsr6yVAZh3H4BRHnirGva1S/2/OygrK85Ig2EuqPQn8feXwhCnvN79HfKzo364dKjK4+UGIR0qfAYf1BskaPMszTWxsUWnKybwmBWer4oxK83EX6ojhA1BddCgMqBz2K9T4Y+RZ9PY5I1QGYxj1RS2tkcocFh4t9FHRAjqI3F2tIcY47Lyen0nWVYTRR0hqkPS8/tBUxfDHWbeb/LRHjNY0+pnZ2eInR1hirukEZxp0WiN6dg0ldXNPiZ6bLzb6CPNYiLNrKIC1w5NY0t7kCEOM/t9YWyayrxUOwd8YXZ0hDkWjJFnMzE1xUZLROfkTCdvN3b19Kc2FMesKn3060BtONF/d7L/B30RKoJRrF/EC6j7wvVmW03s6AzREJF7TH04xkSPjY3eAB1x44TxGWQ1sSMxPr31b/IGv9b98Ut7oBVFGQZcAVwJFAJbgJeAN4QQXz+55F8k/64eaIBAIMChg6Uc3LmNFStW8M4777BgQa/Ud/9LPdDdBWViMQOr1UQoFMNuNYglTthmsybb7GYiIT9ms5bA6z14m0nviw/HsVkUIhEds1ntpV8j4Atit5uIJU6oZrOawEMkqmNOHFxicQOLahAKx7Hb+uKDwSh2u+lEvCb6xXe39cEn+vOl8XEDq6UvXujxxPXq2G1aD97Q43QF4qSnWHvSip334y2cPiedH3+ngBZvlOwMK97OCE6T/F2ZVszMoy9XUVET5IErB8u0XzaNU39Wyv6jAfTE0ijItqCqsOM3Y2nujJEeDRFI5HV2WmSauWyPiVterMOiKSw/zYk/AmkOlWa/ToowCCQ8Lo5eadoaW8M9+ZDbQoLSNsF7FVF2NMlcsTFDHl2uGaMyPRVaQgbv1sBNEyDbqpBiVWkK6GTaFEJx2R+7SaE1KMi0q3RGDBzdacVikOE20RY2SLcqdEQMLJqCw6TQHjPItJv64MNCJcWq0hoyyLApBBP6U5wmWkNGUn8it5E/apBmN52Ad1pU2sKyPx0RI5EmTBCIK8x7Tbq5Dl5lJxgXGLqO06z14JP6BcG40qc/gajO7Ddi/yc90PFYhFA4jtNhpssfxe00E40ZiHgMi1nFF4hhNqnsKfVy4FAr9z1VypO/msH5p+XT5Y/hdpoIB0KgkMDH8bjMBEJxTAnngC+YTLOYoUbxhxL5em0aLR1RstOstFR3JNMshg3SXCaaO2NkKjH8YXlNTqtKi08nIx6hPaj3pL3zRwVpDo2GhgDZLq3vegkYpCqC9pCRSNMG/iik2VWaOuMyTWFM4h1mhXpvlGyniY6w0ZMmLxADF+KE+eYwKTR2Rk+Yz76QTqpV65n/3XibotAWMciw9l0vnUFItfZNYxc3pP72qCDdqtIZM3BoYOgQFEoiTZ5BmkUhpAuEEDhM6gl46E57l8RHdAMUsGtf0C+LEJ6IjwsUtW9aPV9UJNd7r7R6WU6VYFzuP3ZNwRsVPH4Issxw/ai++JYgpNuSafu2tcL7dXDfJDNdMQO7BveW6uz0Jt0qg20Kvrjgj9Ms2E0qHVGBWbXgjxl0P9bDOrzfYFAbinP9MDfRRNEqi6pQH1TwmE0E4wbd6eGjBjhMKr6Yjssk+38sFKU8EOWgP4KCQlwIDAGLMhzkWTVsmsbaFj9Ls11kWeTGZNWkDrdZ+7v6o4bAEAY2TcMfN7BrKhHdwKrJtJsx1BPwQgismoo/bvToNysyveAX9Yd0HU1RZdq7L4GPGoJlFYk0diMzcZs1/PE4NlU9of9usybnT2I8u/X/09PYKYryfaTRvAA4CryMzMZx7OvqxL+bdIT6fxAMZBSb1BO5PAMZyv1h5RdObG+NfuH3zA6GTZnF6fNnYzKZ+MMf/tDXgB4oT3V/PynK+8d+FY9wfACPd6yfXMOAiJzYHg0FuOthGZx2wRnDueu3O3nzqdP4+e+LmFgo8xut3dLAE/fM4aybPuf+myfwzpo6AM4/dTC/euwArz0yn5tX7OLkWbJ08LrtLfz+9snc+mAxP7xkCO9/LhfduYuzWPZ0JS/dWcitT1SyZLrUv35PB4/cOJL/+l05Pzl/EB/skB77c+ak8djKeh67Lp+fvVDHyRNdAGwo8fPQ5Vl87+k6fnVRNqv3yMIfZ0938+e1bTxwaRY/f62Fk8fJd4ebDgV54JJMvvd8E788N53V+2Q6tnMn2Ll3dTvPX53FbW97WVwow78PNca49bQUrnuphbu+lcaHB+ThZel4Gys+7uT5KzO47Z12Th5tw6wI1hyO8ND5KVz3ipdfnpHC6oMhUq0wv8DKijU+nrs8jcvf72R8usaDz7Sy8ZMqfntuCqe/0c5dp7lZWxYiosO3xlj49YYASwutfLglyEy9i7AOayujVNTFmTFIoyhRJGR6msHpw02cfXspT53p4Jr1AebnyifDlgaDe+aY+d7nUa4eIfh5keBoXYRvj1D5S7nBw3M0VhzQGSmHkyIv/Hws/GA/XDVMY0uroNIvKOsSaApckq8yygnzMqX+4naD+S4Tz5XrnJ5jJces81o5zM3Q+Gt1jLsnmHhgn8H0NDnx97QLbh2jcH2xwfUjNDa1yI11YZbKJ+Vxbhqn8IsigzlZkhqxo8Xgl7NMfH9jnJsmaayrk/gzhivcujXK7xdZuG17jPm5Un95Z5QfT7Fw9acRbp1hZk21HKMzh6jcvCnCY4st3LopxoIEfndznF/MNHPVx2FunWZmTY2OXRMsyEsemG/ZEGF+ropNg/W1Ue6ebebqT8LcksDbVJg/SOWx/VEeXWDmls9jzM/5J3EKM0/rv32At0ZKP4dvZaADvO7rt1mLtdNNRc3IkP+1QM/B3pol207Jh1OWdJIzOJfnXivhssvmYkvgralJ6pY9gbcB9z9WRJc/yoVnFXDl3Tt46+kz+emDW5g1SYLWbKnjyWXzOO8nn7Hi1sn88RPpqDj/9CFc++heXv/9Qm5/ZDfTx8sYgXXbm3nsjilcdVcRv7huFO99JovKnHdKDtf/4TAv3VHIj5+oZMl0iV+/pYNHbhzNL548wrVn5PB8Ir3j2bPTuPGVOp6/Jotbe+0nG/aEeOCMFK59vYO7Tnfz0kF56PrWeBuPbvVx1yIHd6wLsmiYfLxvrI5zzzwH//lpmJ/PsfLpMXlgOC3PxO07Yjx+io1fbosyP1Gavrwtzg/GW7hhS4ybJptZVyXn/5JB8Ktig9/NNbGsWGdutgq6zrYWwS8mKdy0y+DGcQqfHZfBeDMzYFmJzkPTFe4rkevLJGBzi8HPx8LNe3R+NEp6fhVkVcJ7Dug8MAXuLRXMy4SYIYu8/HSswk92GfxwtMIer8AXh8XZCr+sMFgxReGeAxIfF0n8DTsFPy6EDVXyXi/Olh7pB6bAIyUGBd37T5vgtnFQ5YNNQRmMbFbhlGy4vQJ+MwPuLiGxP8AHxwWdMXj0cIwLhiisOy7Y0w6/mwa3FkuduXbB0jSFPV1xdnkFN49RWV4S5YphJtYk0lXOz1BpixrUhw0erexgQaYJmwoHugwuzXPyp2OdXJhnZ0ciDei0FAvv1EX4dp6bP9Z4aQzH8ZhUbKrK1flpfNTs46xsF6W+CFFD4DKZ+KjZxxX5qbzb2MVopzyZ1YfjnJbl4plqbw8eBBPcNj6u83NFfiqv1ncy2mlBU+CQP8r5gzw8f7xd4tsj2FSFkU7LCXgFKA9IfLf+ikCUqCGY4Lb2wY93WYkJWRSmN77cHyEm6IN/u6GLYY4kd1VVFYnPclPql8/T3vj3Grt6Soh36/9zda/qQl+TfJk80M8guQEvAZsTbacoinJKf2AhxPNfU9++kb8jBQUFrF69+l/djf+xqKrC4jm5AIwY6uHMRfm4nRZmTMxgUmEyaM3jNHPGSXkMy3WyaKZ8sBUMdnL6/EG4HSZOnpXJ9PGpSbzLxKzxHgry7Jw0TbYX5Nk5bU46bpvGkumpTCt09+DdDo25Y10Mz7Fy0gTZPjzHytxCJy6bxskTXUwb4Ujqt6ksmeBiWKaZ+WNk+7BMMzOG23DZVE4eZ2fqUGkQK4bAbVNZMtbBsAwzC0bJB2F+qolTxthxWVUWF9qYNkSaCDazgtumcsoYO8MyTMwfKfUMS9dYMsaGy6py8mgbU/MtKEIQ08FtVVky2sbQdI35BVY0DIalaZwyyorLqrB4lJUx2SZeKAoyJtuE26pwyigrw9I0ZuabEEKWtx6XbeL3W4JcMc3GuCwNQ0BVh0ZJi87cfHOPAb10pJlJWRqVHfIV8bxclYkZSQPOaZb5cMekGHyvUD50bttpIAT8dIfOSemy6loP3iQ5izk2hWFOWN1gsGKSiZJOwfmDVTzNgtGu7kOpikODkU6FHKvCxARnNMeqMC1VfjY9TaHQnTzEOjXBrHSVXDtMSeTlzbXDWE/it7MUktNHwWWSBupgp8LMLKk/36WwIE/DaYb5va7XZoaILlg4WGOIS2X2IKnFbhKclKfiNMOCXvhAXPSMT75LYdYgFdXo5jZL6a0/rMvxXJCnke9SmJ2jQgK/IFfFYYZ5OSrj0r4JWuyWgqEeOrq+XFDhvBk5hCM6I4Z4OHPxENxOM/On5TB5XHoPxuOycMbCwQzLc7Fodrb8jXwXZyzIxe00M3dKBpMKkxPa4zSzaEY6BXl2Fs6Qegry7Jw2L2vA/WfaSAfDsy0sGJ/Yf7ItLJnqOWE/Afqs3/kF0jAalqYxMceEy6KwaJiJKYOSj3eXGRYN0RjqUZiTMJTz3HLOOs0wP09jUqacb2YjOWfzXQqzEoZjnkMwP0fBYYK52SoT0hT0GBiJ9TIvW2GwA2ZkKKgIBjtgXpaSXF8poMcgqifXe55D8qmlftnm0CTfebSr26Ob0JGpkGeHgAd0If89J1PBocGsDIVRbpGonJDE59pEv/rHeGBUcvhxmmBRFrxbJ9PEFnokN3tepqwYOCcLxqfIVHmVfnhgGhxN8LeHOaXBnWZJ6lucrTLW03v/gampKoNsCpNSEtxrm8JYt8bSQWb+eDTCW3VRFMBjUmiN6EzwmMm0qBTKyklkWlQK7GYMIWiO6Fya62aQzURNUCfPZqLQZSXdbKLAIUct1axS6LJiVRVGOy3k26QeDQWbqvTBCyFIN5v6xeuCE/AqDIjvDkbsxg+xyWweX8S7TSqORCBhb3ymJY5N0/rghzssDLYl53MSr1LgkAPfG59vM/cY0N340U4LR0P9xzT9v8qXyQP9VUidQgjxNZRX+9eJoihiR0v/NdP/kR5orZ92s9b/UBY6FbZs2cLPf/5ztm7d2i+mj/RH7dAH8ED3R9WA/r3KsdYvj6V/D3TI76esUrbv2t/CVRcV8uhz+7nq/KHsLpEnxhkTM3hx5RFuvmY8r39QwcTR8kG1u7SdK84dxu9fKufKc3LZc1AyiaaPT+Wl92q48aIcXvm4ienj5E65p8zHd5cO4i9v1nD+wgyKy2XVt2mFLv72aTM3nJHBq5+3MX1kopBHZYDLZrt56qNWvrs4nb3H5NhMLXCwaksrVy1M47VtnUwbLh9sxVVhLpvh4I/rO/nOPDf7aiRlZcpgM69u9/OjJSm8XuRj6lBpKJcdD3P+FCd//LyL78x2se+49DRMybfw6k4/P1rs4fVd/h7Dem9NmEunO3l6k4/LZzrZVxvFhMGEXAuv7Q7yw5NcvLEnKA1rQ2dPXZxvT7Xz9JYAl0+z8cM3O7Fo8MSFKbxaHOKH85y8sS/E1CwFgcLGqih/2R1mep6J+0+X/YkbMClb5YbVQQIxQWmLNKA/uNTJ/madi8aYeW5flHPzoTRR8ndiusrKyjjXjDfxXlmE0d2FDLwGc3MULltv8JspyVeiY1PggzqZJmrlcY1trQYpZhjnUTktR+W9eoPFWRoVCWrVaJfKmiadsweZ2NBiMMqVKFziNzglS2NNc4xTslXKE0F7hS6FDc1xLh6i8kmj6HmwHeoSXDzS4OWjCucNgbLE9ByXCutbVC4dqfJ+lcGEdIk/2ClYNFjjvWMGF43UKG2T/fnkuMG7lTrfLtSYmCENkT/tj/Fxtc63R2sMdilcNNJEidfg1cNxNtYZTM5U+OuZVlZV6kzMUBGGQYlXcM8O+QZo48VWStsMTAqMSVdZWalzzTiNVUcl3ogLSryC8wpUXjqsc0GBxkGvwY83xf/xFI74Z/1/OFDcQn97ylf0QA9ULbNf3bFODh/xcu4171K++Xs9zQMFD5cebiEWM9i1v5mrLh7DI8/u4+oLCthdIve3GZMyeeGtCm753kTe+KCCCaPk/rOrpI0rzx/B718o48qz89iTmEDTx6fx0qoqbrwsn5dX1zFjfGK/OtjJf5w9mGdfruDCRZkn7D8/OjWN1zZ6mTZSHsiLK4NcviiDJ9+o5jvzPMn9ZKiVlRvbuHq2kzf2hpg6WBoue+tiXDRc4ZndES6baGV/o5xLkweZeGNviKsmmllZHmNyojDQgYYY54ww8UJpnItGmShJzOexToN3qgyuGiPn+sTE/C9r0zlriMpfKwwuGCZzFYuYzthUhfeOwxUj4INaGJ8qnQYlnQrnDIaXj8G5+ZIvjS4Y7Umu9w/r5UFaCBnw9608eKUazhks/98QCmM9sLoeLh8KHzXAOI8s7VHWBUtz4bUaODsPyrsEBn3xa5sE3eeUss6k/vMS+kEeoj+olxk4DnTAXRNkJcWDnVLvqzVw7hCFPW2S5nHRUBmzdPFgwccNCuM8sLpesK5JUkcA3l6gcTiR536MW+GjBsE5uSbWNRs9joAKv2BOqoXVjXFOzjJR6dcJ6vB2XZTxLjMXD3awzRtlWILjUh3UmeC083R1J+kWjWke+VzIsVrY3RlmYbqDPZ2hHkO2MRJncoL3OzNFlrcGGGwznYAXQlAXiTM9xd4HrwG5NjO7OkN98ApwPBw7AR/WDUY5rX3wFYEoB3wRCuxmrhuaxiZvkJZInD1dYcY4LVySm9KDf66mnWOhGJPcVkY7LT36Z6TYqAvHebFWrrEzs1wsTHewvyvMIKs0lGt79acbD5Dfq/+//JqDCL+MB7rg6/qxb+TrkXA4zCeffEIkMgDX+H+RxHXBrv2SYrF2cy0XnjmcTzbWsnhmBht3ylef6akWPt1cz3WXjmZ3iZdIgju7dlsT5586mDVbGzlpagqbdssI3fQUC2u3tnD10kzW70y+tlm/08u5i7PYe8TPlFEuNh+QO2ia28zaXe1ctTCNz/YlaSmf7evi7MlO1h3wsWCcky1l8mCV5tTYXxPBHzHYcDB52NpwMMDZE+2sPxhg/mg7WyqkkZBqg/WHglw5382GQ0nDofR4lFPH2vnscIj5I21srZQes3SnymeHQ1w518Xn5Ukv2pbKCEsn2Fl/OMz8EVa2Ho3gMoPbqrG+IswVs5xsOCLnhFUTfH4kwrfG2fjsSISuiMGh5hhXTLdT3a7z2ZEIV8xwsK4iwr7jsLs+Tnmrzg1z7eysjVHdoXOgKU5Zq85L+wR7GuOMTEse8vY362yujXPmCDMbj8eZlqqxszER9WxR2FxvcOloKG2nh9u3owVyHBCKy3RQxYnzl8csI+MvyIdNLTqHuuCq4Sp72gULMqGsy2CMW+VAZ6KSlkmwu93g1CzY25E83+/tMJibrnGwy2CsR+FA4jO3SWVfp2BpHuzyJg/Bu7yCpcNgY6MMptrdJj/zWBR2t+icPUxlW1MS//whnWVFOll2mJ2jUtRkEIoL3q1MFE8o12nJF/hjGh8naBxvVOhMzVKYnaOxsVZnY4IOsr9VcNwn2NIg/9+kCD6rTRqgtX5BUZNBqlVyZLfU61w6SmNrAq8J2NZkcFq+zPIxM0uluOX/bh7oryKxmM6H648RiX65mJV9B1sJhuKs2VTLhWeN4JPPj7N4ViafF8mA2fRUK59uquP7l42huLSNUOLBvG5rIxecNoRPtzSwaHoqm3bJCZ3usbBmazNXnT2I9UVtPb+zvqiN807OYd8RP9NGu0/Yf65c4OGz/b32n/1dnDM7lQ1lIeaPdiT3E4dGcV2MiyNyjXfL50cinJFnY0NVjHn5xTHLhAAAIABJREFUZrbVyn6m2lSKGuJcPMbM5l5zrLjZ4JQhsKlOZ9YglaJG+Zl7kMzscskIjW1NBt0cwFKvYFEubG0SzMwS7G4RKAa4LbCtWXDhUIUdLdK4tSiwo0VwSo7CthbB9HSF3V6BU5He3u71XtTrrXqRF07OSWTJSINDnRDQZRDejlbBeYMlPcOqQsSAnW2Cxdnys2lpCiWdspxzb/y+dnriNnrrn5UuAw5B7j8f1UvO86x0KEvcgqI2mJ8JnzbAjjYZkDzKI1PbPVUuWJoD6xoFHzdApa9vWHlDCPYlHAoek8JOr8Gp2YLi9uR4FrcbTHbD3o44490aZT6DzpigLSrwxQVhXXDQl/SYHvTFSNXM1ITinJrpoDJRa96iaJT7ZSnuil7V+poicca4rJT7I4xwmDkWlJ85VeUEvBBwJBhlgtvWB29TFXTECfi4ITgWivXBf9ripyESZ4LLSlA3mJ1qp8wXoSzxnWOhGN6oTpkvTE1iDR0ORKkNRyn3R5jgsnIs4SE+4JN5srv1j3SYOexPzvXu/tSG48QTjs2KwIn9B3Boyev9uuX/OY3d/1X5d/ZAx2Ix3n3lJZ556D4KCwu55ZZbOPXUU7FarSd8t4/8G3ug9WgIf0AuGqfDRHNbiJxMBy1N7XgS0TS+QIz0VCtNrSEyPRBIuC6ddo1mb4ScDBstLV14Eq+6fAEZDFRf5yU7zdIH39IeI9Mi8HbFcCdO9v6QTprbTMNxP9mpJgJhueM6bSpNTUGyU8x4ffFewUM6qSaD5q44WW6NQCJ9ktOq0NwWIdtjwuvXcdvlPfUHYqQ5TUl8gtvuwKDFb5Dt1vAGdNy2BD5skObUaPbpZLlUggm8XRO0+g2yeuPjugw2cqi0+HUynRJv6AZOi0JrwMBmUpj0mybG5ZiZmmciw6GS59FYUx5hS1WUqbkmzh1r5dyxZqKGQpZTxRs0sBk6//VRkHqfwRPfcmI3Kcz8s/Tyf3ucmV8vtvUE/zW1RfsEM6VaFVpDAmcs1uNpfq/a4JnDgrumqExwGLgSx/egDh6zQmtYcNtehdNyVJbkqNhUGUHvMat0xURPsFFIB7dZoSUEKWaFxO3CpkJnDAY5jBPwmTbBMb+M7k/EemHT4NEjOh/USg/ZnZPlmv31fsH7tXDeMJV7Z2mEdPBGBGd/mIwP+OAcC/kJisi9RXFWVupcMFLj1wssBOPw4M4ob1XoXDBCtnVEJG1jRVGMNyp0Li/UuGGymQwbPfi3K5OHgS2XWHGaQRgyq0H3eHbj9biBw6TgjUCGTaEjInCYFGa+Ffn/rQda1w3eWFXKPQ+tJSfLwc3fn87Zp47AlniVO5AH2u8PI0Ri/2kNkZPloKW5Y4D9RyEQTAQXOkw0t4XJybTT0tSBJ7EAuoMR6xs6yE7/wv7jjZKhRvvff6o7yUoxE0jkTndaVVo642TEQ333k7CBJxLus94BHBaFxvowWU41EYyYDF50GDqtQUMGIyamsTmu0xaGTLtCe1j0BC+2++KkWWWga7pVHngBLMLoM9+cZtCjOoE4pFgU2iKC9ERwoaHL+eiNQoZVoSMqedGxmCCUWO+9gxGhb/BfZ1Qayoqi9OwPSbw00r+Id2jiBHymVfSr3xcTieBd6IrDZZsh05rI+2yBVDOUdMLGFukhPykbzsyV19l9vQ0+g78clVUS75oAhW6FRevkvThrkMKtY+T96u5PXUAh1dJ3v6oLmEi1qPhiguKOOC9VR7gk38K8NCddMQO3SaE7lb5FETxyJMgYl4VZqTZsmry/vhg4TRq+uI5LU4km7BSLouDXDdwmjYBuYFMlPmIYOLQT8VFdgEIf/HuNXRR1hpmTaufUTCcuTWVlYxe7erW5TRrNkTiPHkseFu8alYVADIh/q6GT3Z1hZqfaOTPLhUNT8cV11rUG2NERYmaKjYsGeXr6/1Z9J7t7UbIeGJvz9683LrONyOsVPfp/faT1n5vGTlEU6/Lly29Yvny5tmzZstoBMPOXL19+wfLly4uXLVv2T87j9fXK8uXLl11/W/9R5gMdNfozlgdKV/dVsnBoqko4FGLvzh188Oar3PnD73FwXzHpqSkcOnSIl19+mfb2ds4666wBetYt/QT7ibYT26D/dHXQf/5lo39ju+JIHZu3H8dsVnntnRLGF2bx6jslBPxBaup8fLa1ltEFqTz7aikpTo0nXyxl885GFEVhxZPFLJw9iPuf3MPxhiDFB738bdVRZk/O5JYVO0lPNfO3VdVs2dOKosADfzrESdMzufuJEhpbwuwt6+Tl1bXMmpjKrx4rw+0y8cpHDWzd14GiKjz04jHmj3ey7C81NHlj7DsS4NW1zcwc6+aXzx4j1anxyoZWtpX5UBX4/buNzCl0ct8bjTR2xNhXFeL1ze1MG2blzteaSXNqvLatk+0VQRRF4alPvcwcYeO+VW00dcbZXxPhjaIupg+zccfbrRJf5GN7ZRhVCB5Z28XcEVbu/7CD5i6d/bVR3tsXZHK+hTvfbSfdofLazgDbj0ZAGDz6mY+5BRZWfNxFk0+npCHG63sCTB9i5q73O0mzq7xeHKS4NoqBwqMb/CweZaGiWWdYmkZ7yGBHdYyusMHxTp17TnejCIOOsIHdrPLoliBzh5j59YYArUEdRVHYUB3j+eIIL+yNkAjUp7TVoDBd4/9j772j66iu9v/Pmbm9qXfJkrst995tDNgUU4zBtBB6KCFAQqgBDDiUUBNCD70k9I5twA3bcrfcbbnKsnrvV7pt5vz+OFeShW1C8kLe37u+OWtp2Zr76My5M2ees2efvZ/98tYQY9N1Hl/fTlGzZH+j5PODBkMTBA9tDOOzmHxRDJvrJB4rrKyEi3vDu4VQFYS9LWrbN2DAbVvBZQGvDrualNbru8UGuV7Jm4dNGkIquXBptUl/r+DlwjBui8ayGoPdzSYC+LAkTA+nwbvFJvUhONAqWVJlsLrG5Kl9kv0tSkpre5OkNSJ5OSpQs69ZGdTbG+CdQnVsb5Okj0/wTYlJQYMkxq4Sjc7uqbG1TlLbJtldL2mOwMMTbaypMIi1Cz47aOC0CC7tr1HQIBmdrPHUlgg17ZIEp8Bnlfx2uJWHNoaJtQve3Rvh/f3dabMhCLVtkr2Nks8OmQxNEDy8KUKsTfB5ocG2GhOE4MVdBqOSBX/ZblDTZpBXyc8vYzfv8uN8ejxpun9FAvPYRu7x9N+DgXY2bS3jwy92cfXvPmfF2iLifDb2Hmzgk0UH2FfYwJzT+6quj6P8sSSvmP2HGrFadL5YXERu33i+XHwIf1uYsko/a7dU0yfbx7tfHCQ+xsr6bbUcKm3FatH4cnkpA3vHsGB5Kf62CGXV7azbVkefHh7+/mURbQGTvy8sY83WBoQQPPraQSYMdPPA64eP4p/7Xz+M16nz7sp61u5pRQOe+LSS8Tm2bnzy/voWRqZq3L2whTiXxvtb2ll3OITQBH9b28rINCuPrGqj2m+yozrCR7tDDE2E+atDxNoFn+wLs7HCQEiT57eFGZ2s8efNYWraJbvrTL4pMhgYL3gkX83nzw8Z5NeYCGny8h7JyET46y6TugDsapQsLIHBsZLHdynD86tSpR8tgVcPwIg4yXN7oTagnrOF5Upf+ck9SuViQQVsbVClsl8rVDHRLxyA+hDsaYGvyyE3RvKXvQq/tBI2Nyg/7puHYFis5KUofu8x8AsqlI60Rlf/rx1Uus57mhX++j5Koi7RpjSktzdCDzd4dLhvqPJCt4SVV3xBGQyOkTy7F4bGwqoa+KhE/XQYuwdalYFc5IdvKyUDY+DP+wzirBpLqgx2NZloCD4pi9DPo/NuSQhDQocCWF+Xznvl7XgsGnl1AdY3hFhYFaA6aDI7zcOimjaaIyalgQhbmgJkOq18UdWCS9fY3BSgqC2MQPJtjV8l+9W00hI2KAuE2dzYTparO/7bmlYW1fjZ1RJgqM/B1zWt1AbDrGxQL7plgQg1wQi6gG9q/d2O9XbbWFbnx65BY8QkyaYzMsbR2X9bxCTNbmGQ186yOj89XVYOtoUY7rUTY9HY3BwgKzr+kTEOnJrAoWsIAcvq/CTbdD6t6v5iPS7WqfrXjvi+UXxPl5WlNa00dnzfjv4rmqgOmz8pP/6YEI5rgPtR0nXHa3uBL4AQqlLh/+nWEjo2iR/P+D1WrLLteGobP6Jt27COrz/5gB0b13Ngz256989l8KjRJKakEA6F+dWNvyM+IYFfX3kpV954Cx0F4Y5fYOXwMY79C1rNcOyFzTz2dYr3GPTvaSc9AXpnOXBa2+mX7SA7WVfp1oYDuxakV7qd9NgIvzhdZV31SLMTOiuDeEeA809KIDuqgD84RyfW2sovT09mVHKYpAkqRjArOcIl03zEBOu5cJiNnGRFPgMdNryVlZzbR2OE0URitjqeGWnkogE6nj2lXJgVIdulHsoBWQaePcWckxJhcGMtsbHRggWNIc5OCmMvKGNOkkGWrhb9PkkmloJKzk406NdQj8sdLZBRH+SUmDBidyVnxUoyo4ZDVowBBVWcGW/Su64Bh1Phk+vbmBUH5p4aTvd14TOdJsbuIKfHSLJrGzg5mjuUXOvnNB9EdtdwqkeSGQ4iTZMUtyC8u5ZTfZKs2jDTrWAaBqlVbcz0QGBXkAsSVUEEKSXlcYLBsQbra2FgazMxVuXRSa0PMtMLgQMNzHDDx7slCytgWpIqLPDbzV33eKAP+oWCBHzQXtJGZSN8ctDg5BSN09M0WqtNpvg0YiI2+tokXqugImBiFyG+PaSjIyholOxrNSn2mxxs1ZiepDM7zUJdWD1niXbBxAQDly4YG2fQ26Oesx5Ok3eKIuTVSdyWCGdnKBpLdggWVMCvt0imJMHMdHWds5vhjm1q3Gvr4Kr+khibIM0JK+oF31VITsoQnNtX9bOnJcLSMskJmRoz+tjIjcZSp7lgWYnBqdn6EQVNoKzFoJcXzu2tMyJBkBzdSUiymtjR8AmTc7IFGW6F7+MQuCMRzsqEXKdBbCbU+QVfl3YZoLOzINMFQkj6uMGHydk9BEN8kgRLNAnSJQnnCOJ0yZxsQbpb55GtP22SzLHa0qrh/xLedgx+tB6HH13WY5OYw951vGD7Vr547x22bFjH3u1b6Nu3J+PGDSe9R38qKqq55rpZ9Oubwey5f+SueTdDYg8AtOPsrp1x3tjO//cfrf694toRncc6suV/e+sEMNrI7YKTO079e9WvupbHDo2Sm3+TiZTQe5ByYGRneLHEppEzMo5r9WR6Zqng3HElLWQPS+LSSxxMHJFIr7FqnD3SXFgya8gaaueqxCR6pis+HF3eTkasyWX2Zibleskerng4K8mG5q0ko5+TyzweshPVfB5ZG6GHI8gvIyEmZNvI6aE4PkUzsLgNstItXKJZOwu4FFYFyUjSuWiIwdg0nawkNS9TbCa6U5KeqHHhIFUAKBIyGO6HjATB+f1NxiRrZCVKzIhJmlug2SVp8YLz+0k1/02TIX7IiBfM7ScZnSjokah2WtLcAotTkp4gmKtJMqIFU4b5ITMOzuujQq2y4yUSQZoLrE5JZrxgbl9Id5oIFD4jFs7tBaOTILMjadgFukOSFic4qw9kRAvKDGmTDIkT4JCMSoKKti58fq0kPUHjfCE7n9+hfvWd2ojwcIHk1EzB9HSN+Zu71s7eXrhggLqepX7Be8UmG+oh3R3mF706CrhEcFghxd3O+TmC5rAkrw7iHQYttBJnh2V1YfZGi8GcmyVIsGmMjGslziVJdah1qqJdkmxvZq5dMjimnaqAul+flwXY4zfZ0lrPBdkWUh1h3igKk99ikuwOM7eHzuCYdg60mKzYocZeHzYZGN9EvBtSHSaGLlhSJZmVpjEhwWRIbDvlYY3vakxmpQmmJEUYFddAqleNsSpgIWAI+nubcTgkQ2LaohViBUn2AJleybCYVnxOSZxFgpBUBwR9PO1IXZDrC9PHp4GABJtBnENnkC/MyAYLm5siR1zfEDPR6e8x6BVS1znRZhJj1+ntDRHGSmK0wEptSCPDZTA50c5O/0/Ljz/GypsL/E3K47ksIfrZ34CL/92BCCHuF0LI7/1UHvG5iGLKhRDtQojvhBCDvteHFEKEhBC9vnf8DSHEV//u2P5TLdDezuN338bvL7uQxJQ0bnvoMfIKK3lz0TKKDuwjJSOTdxavZMz4Cdxw1WW89NY/yOzR43972Ee1xuYgB4uamPfEWiaOTuOq3y8mLtbOguXFfPz1IeJibFx95yomjEzhoRd2U1jSSmFJK/Of38X44YlcO28TMV4Lny2r4rNlVcR6LVz/4E7GDYnlmU/KOVQe4FB5gIffLmZsro8b/nyAOJfOlxsa+XJDIzFunZteKWVkto0/LainqDZCUW2ERxc2MKang4eXthLj0Phqd5CvdgeJcWj87otmRqXpPLGmncONBocbDZ5c086IVJ3bl7UTYxcsOhhm0cEwMXbBk5tCjEjR+Ut+iJIWk5IWk6c3hxiaILh7bRifDb4tNvi22CDGBvesizA8UeOv2yKUtKj413f2mAxPEMzbEMFng8UlJotLTLw2mLfJYHii4LldBiWtkpJWyd/2mAxLENyfb+CzCpaUmayslPiscP8Wk2HxgucLTEr9koo2eGmvZGgczN8m8VphaQWsrAKvVR0bGgcv7pWUtUFpG7y0Xx3743aVlb2wQt3PFTXw+y1w/5Cue3x5T42/7DXp7ZE8sNNkTTR+eEmVyZpakxs2h9nWaHLDlgB37wpy784AT+8P8aueVt4tifBBaZj19Qa93DoP5DpJc2jMybDxfmmY6qBJddDko9IQ/Tw6t2wP8NCeEI/vDbK2LoIp4ZsqRfjfVJkcbDWpDEheKwyzsUEtKqtqYGG5yXfVknSnoFdUsqqfD1rDgjK/uj6PjNM5JUtw0xALS0pNlpSa3DTEwkX9dJ6YaufpLWGKWyTFLZJntoaZmqEfdX+9NnHs+7vPZHiiYN4mA59NdPZ/rPt1Zrbg/J5dL+gd93dRiYnPJrgv32B4guC53SYlrZIyPzy/W82f+/JV/8vL/09v/v3TFgqF+OuD93HlWafg9ni5+Z75VFbks3HDl9TWNmCxWNi44StmnTaGX1z+GC88cwO5A//3+NFq1Zj35DoOHm7i4OEm7ntqPRNHpXL3k/nE+ux88s1hPvnmMLE+O7/6w2rGDI7nged2HcWHNzy8mzivhc+WV/HZ8irivBbmvV3K2H4eHn6vjKKqAEVVAR55v4yROQ5ufqeaWJfGl1v8fLnFT6xL4w9ftzImy8pjK/wcbjA43GDwQn6QUWkWblvcRoxdsHB/iIX7Q/hsGnetDCp+2xSiuNmkuNnktV0Rhidr3L06RIxN8M3hCEtLDXw2uHd9hBGJGs9sj1DSKqlokzy/yzhq/q+qlMeczyVtkhd2d+e3lZWSJWVH81t5G5T6JS8UqGP3b1HP1IoKWFIu8drgga2SYfHw6j5JqV8ehfdaYUmZyZIyE59VnXNYguDNfbKTbzuer/mbIt2fX5vgjvURVlYqzvu6VPJAvsHIhK7n9/GxOh8VmiwoNjGl5KMihf2sBN4plLy8X3L9esmL+yXn5Eke2GHy4C7JqHhV+XD+bklhq8RrgdsGCK7upVEZgAyn4On9ETwWWF1rsrrW5Ityg8s2hsirNXjncITKgORgq8k3Ubm8RZWqFPfSqgjLqruOpTkF7xyO4DdgdPQlY2aKxpuHjc7+h/g0nhxmIWRCbozg7SKD6Ska9+YqpZNBPsETe9X1XFmjpEc9Fnh6f4SBPsHbhw2qg5LKgOTd4gj9vRrPHgjjscDWJoP19QZui+DFwiD9vToflIaoCZlUB0w+LQvSx6PzalGAczMcnJfeFar62uF2+rgtfFsd4rDfoCZo8ml5gD5uC68dbo961kNsbgrh0gVvl/jp5T5CJuUnaj/GAz0UePhH4FYC1//PhsNe4IQjfj/SHXo78Hvg8ihuHrBYCNFfStnyvb95CLjofziWH91M08Q0DBACTdOOG77xQ237xvXc8+urGDh0BB+tzic2PqHTs/3oH27FFxPL46++g2EYXHHRXG6+7U6mnXjST/1V/tv+H20t4e7b7zE2wZAYyY4mtS07JFaVze1oiypM1tRCXq3EKsCmKSF7pwbl7RKBIGzKzt2RpgjMSNYw6Xqo60KSBJvAHo3le+twkGU1EaqCkhkpyuPYHJYUt6mxFbSYjIrT8FoF6Q5BeUDS0y1wRz2ydl0wI0VjcZXJSSmqwENHGxEPT42Bj4+xGdNx/iOb0/KvP8P/06bO2XUfvi412VIHO+oNbP+HtY2klBiRCAiBiHLkv9r27NzOnddcTnJaOp+t3UJKWjoAXlcpDz/8LE1NzSz46g2sVitnXfY4l/7iJOaeO+Wn/ir/bf+PtsZgd36064JZWZIFJSop8oZBGkXNXZiPi0w+jhrN/WKUnr0hwa5BWTsk2FS58/1KiIWqIFyWA35DxWQDFPphcAydsc759ZIPSiJkOkEVgIa2iGRVrTKKF1eZnJ6qni23RdDPI9jXKslwCrxWgdMiyPUJdjerYzHWLo6blaaT7DC5oqeFlw52D6/yWY/mQs/3uOo/0RzH4OktjWEK20yG+iykO/5DOvhHtB8jYxcAZkgpV/0T3BRgsZTS8UO4H/j7+4HzpJSDj/GZAMqBZ6WUD0WPOYFq4FYp5UvRYxJ4HGVoj5VS5kePvwEkSinP+BHjkEvKjp2w0hHC0dbawlO3/45927fQ3NCAv7kJKWXnD4Cu68QnJZOYmkZiahpJ0X9T0tKRUlJbVUlNRQW1VRXUVlZQWVbKnY/+mZmzz+08n1XX2b11M9eeewafr99GfGISD9/+O9558RmefO5Fzpg9h8SkpE78cUM4zLyjjx0vWfC4SYTH2IAIHTuJsK6iiJr6NrIzfKxYV8rMadms31zZGcJRWNzCuOFJLM4rY+JgF8UVXVuWqzbVcPLEFNbnl3WGcBwqb2fMoBiWrq9lQo6VkhqVjZuV7GD1jiZOHBnLunVV5CSrN9TD1UFG9Xbx3boaxvV2UFoflbOJt7DmQICpyZLNZWGy46LyQA0GIzOsLN/VxtgMC2XN0RAOn8bqQ0GmZFnYWmWQ5VMPaEmzyaAYyCszGJuqUxbd4s/wCDaUhZmQqnXb4i9uNhiWqNQSxqRoneWak+2S/GqYmCrYXndkSICSjlLZ7oLo5cEiDYpaBROSBTsaJJkuVRFqdyNMShGsrZaMSlR40zBIdQo218H4JBWTmOGChqBKShscC+tqYGQCzN8q+bZChQ1MTxWMT4TFFZIndsHgWEX231UrA7n9OBE+/20/bXtmosaNa7o8yktP19nbBKOi86ExaDIwTiO/RjIhRbCjXpLu1jh5wc9fifB4/NjRQoEAz9xzOzvWr6WlsYHWpsaj+FHTNOISkzr5MTEllaTUNNIzMtF0ndrKSmoqy6mpqqSmsoLSQ4Xc9uCjzLnk8m4OCq08j/ETzmbTxq/IycnioYee4Z57H+fpJ6/lvDmTSU9P6BrYv8J5x0tm/BeSrAMt9Zim5HCZ6is7w8uK9WWcNCaeDdtqOkM4DpW0MHZYEotXFjJpROJRfDhtmJ2Nu5o7QzgOlbczItZk2TYVwlFS0xXCsWZdJVP6OckvCnaGcByujTDMEWRFYYjx2TZKm7pCONaXGUzNtrCl0ugWwjE0SSevVIVwdPBbis1kU5VkUrrGttquEI4yPwxNEKypNBmdrPitI4RjU43Sjt5R3xXCUeqHIfGCtVWycz53hHDk18pOfusI4Sj1w5A4Ovmtsq0rhKMLD07NIN6uUeaHwXGwtgZGJyr5ulhbd/yupq4QjtJoCMfaakkvnyRoqOuQ5oL8GsnyCsmHhSZnZWv8dqhOmV+S7ICLlkboHwP9YzQ+Paye1abjhPD/t/207dURPjY2hHmxqCsZ+fFBHiqCJoO8FvIbjM7CK7UhkxyXzo6mMC8ebv2Py9hVAn2BHzSgo5jKf4L5Z62XEKIMFUu9HviDlLIQJaWXCnzbAZRStgshVgIT6R53vQH4GHgM+FEuWiHENahY73/a6qoqueuX59Nv6HAeevN9vLGxxMXFY4nG7t112YXkfb2A3BGjye7bj+T0DOISEhGaRl1VJVvXrUEIQVJqGn0G5jJ++kkkpaTSZ0Au3piYbucyDIP7br6eW+Y/QnxiEt989jHvvPgMA3IHsWr5Mm6/6QZe/ccHnHnOnB8z9P9YW7e5go8W7OeCs/pxywMrWfbBudz1SB5nn5xJe8Dgm5Wl/OPpE7n1ofU8fusQ3l9UDMDcU7O4/YltfP3KNF75uJi+OWrffcnaGt58cDh3/mUPj12bw/vLlOzdudMS+cNLh/jy0cH86eMqpuYq/NIdLbxyQw9eWtGECXyar17zZ4/0MO/TOj68JJaHlrQwvY8yuJcfCPLSebE8s76d34x18vleZaCf1d/GC/lBBibqPLY2wNQe0cpexRGenGbnkfVB/jDOzoJCZaCf3svC2wUR+sXaeGpLmMnpiojXVRj8aaKNR/Mj3DnawsJoZa/TswSPbzV4dbqVp7dHOivV7WkwuWO4hSe2RrhtuIVFJSbb60yKWlT4xaczLPx1p8nEFMHKCpNt9UqndGej5NYhGl+XSlwCJqXAn3dLXpggeLZAEjKVIZ1ol7wzVfDn3ZJf9VMJMqC2FzfXSV6aIHi/SMXgrq9ViX2PDYNHClRSzH/bz9/e2CcZEgc7GiDJAQjBE9sj3DpM57GtBkWtMCVVUuaXvDzVwtM7Taak/m+PGpobGrjvql8Ql5TCA6+9gy8unvi4eKw2tX361B2/47M3X6X/sBHk9O1PSkYmsQkJWKw26qoq2ZG/ESMSISk1jZx+/Rk7dTqJKakMyB1MbHx8t3NJKbn+13/gzjt+TU5OFqtXb+Seex8nNTWOTZv3c+udr/L8X3+HXS80AAAgAElEQVTN1Vf+syTrn6e1toXZtL2a975QikcXnNmX38/P49s3ZnD3k/nMnJIBwLeryvj7n0/gxXcPIE3JB4uUalIHH3711+Hc/8J+Th6nKq0uWV/LK7/uwd1vlPDwFVl8nKe04OZMiuetVU0MSLPx4Oe1nJir9OyX7fbzwhlu7lvcygMzPHy2S/Hbmb0tzF/Zxnvnenk0r51pOWoNO1ATIcOj8fC6IHdPsPNV1CM5K1vnTxtDvHGKg6fyw0zJ0BGGyYoKkycm2nh0c4Q7RlpYdNgk1iYZm6zxxNYIr5xg5ekdBhNTNVyaZHGZ5LFxOk9sN7h1mM7XJSYaMCNT44ntBi9PUfx2YppKLl5TZfKnMTpP7jS5dYjGygqTNkNwSobgyZ0mf5ukc9t6g5ogDI41sevwyCiNp3aaZLlV2Fq2B24bonXiPz5kkuhQu1RrqiSPjtW5c4NBSxhyPCpp99RMjUe3GhyOct4Xh02SXbC1VjJvlI5Th611cKDZZHg8nN9b54bV//Uw/Cdac0TyeWWQYT4L25ojpNo1KoIm75YG6OXSWV0fJsepMyzGxu6WMFdle/is4jgvv/+D9mM80K8Dg4DxUspjBtkJITRgHbBTSnnlsTD/dCBCnAZ4gT1AMnAPMCB67v7AaiBbSll8xN+8BmRIKU+J/i5RMdtbgd3AWVLKr/8dD3R7mx+bXTnTQ8EAuqaz5tuFvPLwA5x20S+55OZbOz0hRyYRvv/iszx73124vT4mnjwTgO0b1hGflMzcq67l1DnnY3cc7aQ/lrzdey89x9IFn/P6V0sQQrB762YO7t3DVZdewhsvv8QdN/+GZ195gxmnnc7br71CU3UF55xzDpMmTUI/MnHnZ/JAy2ANpikJBCK43TaaWwJ4PXbaG0sxDBO320Z1bRspSW7qGwO4NJVJr2ShHFTVtBHvCuGP6iS5nZZOWbqq8rouWbqoLFRVfZBEEaK1Q0YqKkuXHG+jurC+U2auJWAS77FQUdRAss/SKRvntglqWw3iwyEa2gw89qjMU1AS59KpqGgj0a13w1fUh0jyWGgMmN1k2tzII2ShojJSFkFVU4gk1/fwIUmMXaO23STB0YV3CMGBJoM+MTqNQRO3BR7ZbPBRocn5vTWuy9WItwvK/CazFnUR89LTLehCEjAlpy7qeiQ/mC7o7dP44xaDz4rh3B7wq36Q4NAoajGZu6Lr3n0zQ6jqU3bBg9skX5Qq/NV9FL4pZGIzQApoN5VcXIeMVHMIEAKnLmgISeLtGg/sMFlRI5maJDglRaMhDIsrTfa0SAb5NCbE64xL0AkYEGvTqAuanVWolCydRmPI7NzmBLVl1xSRpDqgJWziiE7pQBTfEg4RZ9cJGLILH5Zkew2awmanjF2bAWk+QV3AJN4uaI9ef6dF0CwESU6Luv5H3N/kONtR99ep0Snb1+3+Bg1iHJaj7q9dQl3AJMGhdeu/qTVCnNPSbTxSSNxWnfqgVNc/aOKyQn3AwGnRibFr1AVMkHDSwq658NHJGn1idJqCJk4LjP3M+Nk90F/uK8XpduNvacbl8RIOhYiEw2xft5oX59/DuBNncumtd+JwRit3hsOd+BULvuCxW36DxWpj0sxT0TSNPVu3YHPYOffKa5l9wS/QLRZcbjetzc24vap/u9WKzWbD39KCx+ejze/n2y8+4R/PPsrGDV9itVopKNjPmjX5XPnLQXz86WrmXvQwz//1Bi48fyrv/GM5+/Yd5qxZozlh6iCs1iN8Rz+TB9oINCKEIBxW98tq1WkPRLDJAMGQgdWiJno4YmK36dRU1RMXYz2KD+MdAeqbumTvWtoMfK1+qhvDJMV0l90s319LSoxVyVxG+a0lKPG1+Dtl7zr4zR42qPGbJLm7z+fahiDxTstR898hobbN7Db/jZCJPwKxdo3agEmCXeHDkQgeS9d87pj/MmLQZmid87lz/kv1PB45/x3CoCGsquZ14F/ao+KJZ/eAe0eo/oUQnHwEP358AuT4dA40GVxwBOctPlVd7wSHxv2bI3xRDOf2FNyYq2FIwUlHylSeopHh1qgPSl7aI/ngoMl5vQR3jtCjMp0a1f4w8TatUxazY/zxNtH5/AK0heGtA5I39ktOTIU5WVAXVLt662pgWJzSmz4hSfXRZoBL06kPmsTZRFS2D5y6YE+zpKfH2o0P/SGJz26hMWQqWc8OvEVxqpLJ68K3RUxibN3xmpCKP0OSWHsXXpcGAanhtWrdxqOLCG6L3sn/zWETpw4BQ+/k58agSYxN0BSUaELr5OeO8QhTIDStG//HWJVEIpqGQxM0RyQxVo3mgIHD0lWZ1WPVaAqbxFg1agIRvFYNuyYoCxjMK+jy8jw00IdNaLij479nT+NPyo8/xoAeCGwGFgC/llJWf+/zZOB5YBYwUkpZ8JMMTAgPUAj8CWWcrwZ6SNklahw17tOklKdGf5fAXCnlR0KI54BJwEjgNf4FA3ra7HOZdemVrFm0gLrKCoKBNvKXL2Xg6LGcdcU1DBw5mi15K2iur6e1qZG2piZamhoZNW06J597AZFQiIVvv86nr/+Ndr+foeMmEAoG2bZuDe3+Vr7aWUjcEaEXcLQBXV58mCtmTOHNb76jZ9/+3T7LcFlpqK/nw3f/zoLPP2Vd3ipOP2s2o4b6+PSzVZSV1fD8s7dw3nnR/PFjaageT4f1ONJ0x+qjqqyUJ19cy5zTB3LnQ0v55LXzue72BZw5PY32gCpM8NyDU5l7/Tc8fMc4vll2AL8/wtkzsrjnz1t5/y9TuHn+aqaOVNusyzbU8efbc7nkzi3cf2Eqn69V5zxjXBzz3ynlrdv78MhrheRmKG/WdwXtPHZBEle+UsGdkx0s2qv2z07vb+fhZa08N9PBPd8FmJKlFstVJREenObgwRVtzO1nYXG02MWMbJ2n8sM8MV7joXyTCSnq+VpbJbkt1+SOTfCbgYLlFepZmZ4m+KhQckM/wRMFkjHR5JGNdZLf9NF4YJfJ1b108qKxaWPidV4tjHDfIBvPHYgwIlqQ5PNSg+J2SZwV7hhgZ0V1hEVVXQvBU0NdfFAaYmiMTl5tmN0tJlMSLdQEJRdk2tnYEKag2eBQm0msRTA/18OrRe1sa+5aCOb19/FuaRuz01y8W+qnNGAwzGfFb0h+le3lvTI/Az1W2gxJUXuE89PdvFbcwpmpLg62hmkzJcN8Nj6vbOvED/VZiUhJQUuECzNdvFzUygCPTl59iASbRlVQGcJnpzooa4+QExVc3dUS4ZIsJy8c8nNxlo0NDWqcY+KsvF8a5OY+Tt4taWegTzH9tkaDX/W08/rhAGelW1hbp67NhASdt4rCzB8s+Mt+2ZkAs6lBcnM/jWf3G1yUDSuiTDUtGd4+DA+M1Hh4u2R89NFbVwN/GCa4bYPJjYN0lkWT8E5M1/jwkMntw3Ue3GwwIUXdrzUVBncN07h9o8mNAzWWRefDtETJs/vgT8Phsd0wNho1sL9FcGlPwbztJtf00VhZrfDj4zVeO2Ry7yCdv+43GBWn4bSYrK2FWwZ0x8fZJaPi4Ln9Xf3Xh5TUVqYLXp8suGOT5DcDBXnV8Np++bMb0De9/gkLnnmUyx97kbfuugEpJSW7t2N3uTnl6hvZtOhTBoyfyoHN6wkHg8SnpLE/fz0zL7+Wwu2bGTh+Moe257Nl6TdougVN00jr1YeiXTsIBwP8/tmXWfTWa9z6/Cu8fO+dDJs8FafTxYal33D9g4/xp+uuZM51N/LoDVfx5AdfMGDEqG5jdFos+FtbWPzJh6xc+CX5eSsYPXU6o8ZP4rtFX1J6qJCb7n+I2ZdcrvDHUP4Y6D1O0Hlk6XGOH8PgjhxbD59g1TEPt9QVc9XvFzNjajYAi1ce5vlHTmTu1Z/zx9+N5NPFynd0zowePPvmNp64dTA3P7Kdk6ITeum6Gh6/LptL5xdw/1U5fJmnnB5nTk7gydcLeeaqDG59q5wTBqmduk0FzdxzRjxXvVHN3bPiWLhDcf/pvXUeXNzCqxfEccdXzUzrrfh2W3GQ26e6uOazFu6a5mLRvhAYJjN62Xh0TTsvzXJz97J2pvSwYNNgSZHi2+sXtXHHRAdfHwzjtcKEDAuPrw/y/Cku7l3ZzuRMCy1Bk63VJvOnOLjh23ZuG2dn/uoAO2pMZuboNAYl8yc5OPWjrvXpxB46j0xzcOOSdmLtgm+LDAbEazwwyc6TG4M8c7KTi75qo7BRMjZNU4bzZDvXfdPGluouu+flUxy8vD1Ellfj430RxqZpnN1XFZ2ZP8XB75a0cflQO+vLFV/N7Gnl8fVBnj3Zzn15ISZlqrmyutTg/sl2/rQuyEUDrXxbFMXnWLg3L4A0lVRfVbsk1q5Koj8xycK8dRF+N8LK4uLoetRD58P9EW4daWX+hjAT0zr4x2TeOCu/XRnmlm54JZP59DQbD6wPd+5kHmg0uW6olZtXhLrhZ+boPJkf5q/T7TywNsTEdB00yZoyk/sm2LlpeYDfj7Kx+LCBxyIZn67WxyPxNk2yvNTkvnHf698wOCFN4+mdJk9NUPw5KUkSNlWRnTuGdPHV+kolATotWfDifslDw6LraZxGRHbx+QM7Da7rK1gZ5fOpyYK/HTD541CNt4tMeqmNFjbUw20D4JfroDYIfTwwOl504u8frDM776d1MPzTEA4pZYEQ4lLgTaBECLER6EjFyQZGAybwy5/KeI6et1UIsQsVGvJZ9HAqcGRVkGTg2GwEDwAHgV/8q+fuN2wkyZk9qDx8iL1b8plx4SVk9u7HqGnT+frvb/L0bTczYso04lNS8cbGkdm7Dw6XiwVvv84Xb7zC9Q88zPnX/Ybzr/sNVaUlbFu7mq1rV9FzwEAEEIn8sJTK+u+WMv831/Dru+YdZTx3tLj4eK654UauueFGQqEQNpuNeD2PefdewZhxv8JmO15A9E/X3G4bJ0zMoVd2HKdO743XY2PmtF4MGeDEjDpGfR4rp0zLoleWjzFDEjBNSc9MDzMnpeF1W5k2KoGRA7tCV3xuCydPSCIzyc7kQSpGMCfFzkkjYvA4NUZk2xl4RDau16lxYq6bnFiYmK2+c3aczgm9bXisMCXLwtCUrsXQYxMMitfI8miMjW55Z3k0pmTouHUVT9pRuhnArcOEZEGGC0ZFDeUMl1JzcOkwJkGVclVNJc6NiddIc8KwWIX/usJkTwu8WaSM574eJeRf3K5IvCGsvJuj4nWqg5L8RpM+bo1ku2BojE5vt0Zvt53tTQYnJ9tYVBUiyS4Y6LXQ320l3ibY2hTBoQtGxFqxarCpMUJft4Uku06u10qiTeOsNCdtEUl/r4219UEcumCgx0qmUwcEDl39DPDYSLDphFwSU0KiXWegx0rIlMRZNMoDEWpDJhFTVcrKcOgM9lr5pibIRckOerosrKkPMSXRzqYGyHR20YxDFwz2Wkm0awz0quNJ0e/p0CDXp9PL3fUy6dRhgFcj1SEYEo3RTHUIRsbpOC0mo+ME/X3d79eQWEh3Kb1XUP8flahCUcYnwaDYDrwqBjExRSPTDaMT1fFMNwyKVwvchBSNQVED3YiohKEJyYIMN4yK4tMckgmJ6txjEyBauRmNjmOCdCeMiOuQr1LE7tJhVJxGP6/ArkPEPBrv0CXpTo7qv0VCWZvAY+man8MTBOz/+RN74tMyGTBhGqs/fIvSPTsZMfNMpl18FWV7d3Joez4lBbtwenzYnC68CUlk9umHlJIdq5ZRVVTIwPGTOfWya+k/ajyDJkzhw6cewWK10trYgEASl5zM8Kkn4HR7GDZ5Kr2HDsdusRIOBXF5vGT16cfzf/g9E045/SjjuaO5PV5mX3olsy+9knAohNVmw2GxcOUtt3Pj+Wf/W4neP3dzOizMmJrNmOEpncd8HhszJmfQM8vLtChh9czyMnpQLF63hZPGJzEyN7YL79Q5eXQcOakOJg9TEzEn1cHE/m48Dp0TBnkY0VPFUmuBEF6HxvQBTrITrEzsrXZGe8SaTO9jx2MTTOttY3i64lWLoRRnTuhpIztGZ0KWFSOsYqenZVtxWwVTelgYmmIBKQkaim+nZVvI8mmMz7DQGjDJ8mlMzbLgtsLkTAt5pREWHlSGq8cKU7N0PFbYUaMWkW+LDK4fbiUrRjA2TWNDhclpPXUmZVrw2GBKpoXz+ls4JUeNL8srmJKp+v/VUBvpHkGsQ7CjxsRjgxOzreTEmny6L8K0LJ3BSRpTMi1cOdTK4ESN0eldfOWxwoRMC0OSNDrMpR4+wdQsHbcVJmXq0c/AH5bsqjVoj0je2xMmEJGkuTX8YcmJPSy8uTPM70ZZGZMaLaVea5LmgknpOpkewdjoi3qmR61RbitMTNMYnKB1G8/kdI1Mj2BMahd+crrCTzoC79BR1/h7+AyPUOudFSam6wxJVLJxAqGuZ4ZOlldjbKpE54j18Ui8KQkZR/dvBE0y3YJJqV382c9jRNMNu/NVfx9EpOK6cYmicz3t4wIZfT7dOtH1VHbyZ7pTcaRLV3KqHQpLoPj5vCwYHw9VQe0o/E/dfnQlQiFEH+AWVFxxVvRwCbAE+LOU8sBPOjAhHMAh4AXgj6gkwmeklA8f8Xk1cNv3kgjnSik/iv5+H3AFsBbw/lgP9AcFh7n/sgtobWzksjvuZfmnH1JUsItwKMjsq67jxHMvwO3rkiTo0Dk1IhHuvGgOFcVFvL9x5zFJ+nj6px0e6NeefJRP3niZ+59/hSknzjgmNsN1bOM4Xs9j27YDDB95BaNG9adnThoffvDHn80DHWipZe/BWjZuKeeyC4bx5AtrufKiEWzevJdwxGT0kCRe/3APt1w9jLc+3svI/i6khE076/jl2b34yxsFXDwzni17lE7qyAE+3vqqjJsuzuGDD/aTm622gDcf8HPR9ASe+6KKCwZZ2FasYviG9bDz7toWrj8plne/rWZYlPi2lkc4f6iDV1c1c2Y/Gzuq1Zv3kGSdDwtCXNJb8NlBUxEBishm99F5a3uI03to7I6WYM2NE3xxIMwFPQVflULHOrW7EU5KlLxfLJiVrsT4AZZXSRZVwBlpgn5eZdg1hyW3besKs3hupJXqaEb3ymqT5TUmM1N0+ng0+nii42mUnJRsZUFlmBOSLBT61d9nOXRW1oU5LcVGXl2Ynm4dwxAcajOZmGDlm6ogUxJsFLUZNIehv8fGmvogJyc7WFcfJNtlQUrB4bYI4+LtLK0JMCHeTpE/ggR6uCysqw9yYpKDDQ1Berp0JILitgg7W0IUtITJdFrw6CqD26YJCqKlZquDJgZwTY6LdgMmxNtYXB1kcoKVw23q+me7dFbXhZiRYmdbc5DMaGW1Q36DyQlWFlWFODlZ7/y+vT06y6vDnJclWFZt0jd6ffa3mpyYrLO8JszUJMG+lmi2u1fwdYXk0p4miypUBTFQSUSzewneKYSzewh2Rx2DubGwpEIyJ0fjq2LZaSjvapCclSN4+4BkdrbGruh8GOCVfF4suaS34KsS2WmI76kzmZEK/zgMZxwxH3q5BQsr4IIealwDoob+zkY4OUXj41KTU1I19rVIHBaTvl7BwnLZDW/TTXY3waz07v1brNA/RvBFCVzSSxWvGBSncfGKnz+E48J5j1N1aD8bv/qYK5/8G5u//pyC1d9hmgapPftw0bxH2Z23nB6DhgJQdWAPY087m2/f/BsHNm/gwOYNXPPYM/QZNpJVn7zPKZdfw+rPP6Ln4GG47ToHtm1h2pzz+fLVFzlx7kUc3LENu81Gr9zBPHvn79m7ZROTZ53FzAsvYdCwEUeN0Wk5tl/IYbFQUVrMmcMH0H/ocHwxsbzw6cL/33igP/4kj8lj09m0TX0+elgKr723i5t/0Zu3PzvAqCEqBjp/Ry0XnhzL038v5NKzerA5OqFH5sby0ecHuHxWGu8urmZEP2VZbNnXytxcK89/U8fFU+LYekhx/5BYk3c3tnL9CTG8v7GVEVnK01xQ6OfMQQ5eXOvnohFOtkU9r0PiJO/tCHHtGAcf7gwyLM1CJGiwvcrg3IE2Xt4S5PxcxbcaktxExbdXD7fz8Z4wq0rCLDwQYVy6zptnuHh1W4gTs3VO+6Brzbl+hJWbRtn5ZF+YvJIIiw4ZjE3TeP10J69tD3NefwvrygzcNsGQJI2P9ka4cqiVT/dFGJJwBJ/3tfD6jjDn9rewM7oTeCR+0cEISa4uw/qcfhZe2x5m7gBrN/yHe8JcNdTGJ/vCDE1Wc2J7tcGcflbe3R3itF4WdtSYvL0rzOYqgxi7YHKGTmtYyfWVtEgONpo0BiQBA/463Y49OrUGJ+p8uT/Ehf10Pi80Og3fnXUmZ/fUeGOPyZzeOrvq1HgGJWh8VWTwiwEWPj/YhS+oNzijl4U3dkeY09vCznqFHxwv+OSgweW53fH7m0xO62nhjV0R5vSxsLPORAjJ4EQLH+8Pc8VgK58diHQayttrJbP76N3wOpIBcRqfHIx06z8ciLCrAc7MFry932R2tsbO2gimKRgYSze+6utUyaAFzXBaGrxXrHhuZ4NA0sXnc7MEy6sN+kWT+Pc0S05NE7xfLDkrQ3by7YAY+KoMLs6GrysEvaNJ+R3494okLx/6aXfofkwSIQBRA/nXP9WJv9+EEE8AXwLFKM/yvYAbeFNKKYUQfwHuFkLsAfahYqRbgX/8QLdPoqT1ZgPHYb6j259vuYHSA/vJGZDLYzdcjTcujmvn/wlpmkw8ddYx/6ausoI/3XQdUkr+8tnX/7aHo6ayHE3XSYrKNP2rzet1Mf+Bqxg1sj/nX3gfoVAY28+0nAaCETZuKefbFYXMmTWQr5cf5ISJOeTvqKGhKUh8rJ1vVpTwq4tyWbyqFItMIhg2WbqmktknZ/Ht6gomDnayKl8lwcT5rCxZW8MVZ2ey+aCfQFRabfm2Js4cH8fSLU1MTI1h9X61AMS6dJbt9vPLST7yikKdojorC0OcPsDO1iqD4akm68rUAhDrEKw4HOGcbCtryrtCJdaUG8zI1tlSq3RIN0U9HzE2jS31cEYWrK9RxUZA/X9iLORVq7fiLQ2KHBdFk/G+qpCMD0k6ZNbTHVAeoLPM7Y6mjnKvFsrbw1zSw8qLhV27EhUBCJiwtTFCrldnd7Maq10TbG8ymJ4EO6KZ9JgaO5sjjIy1sLM5wgCvhT0tEeyaTm3IZHdLmMkJdgpa1DUQCApaw9HkihB93RYOtUWISInbItjTGmJivJ09rWFsmvKKFrSGMSXE2zTmpLnY6w8TMCQjYmyUtBtck+PhvZIWerittEUkBa0RRsRY2dUcZoBXZ2+rOrfLItjZEmZqoo3CVoOwqa7DjiaD0XFWtjcZDI0R7I6qoHgsgq2NBrPSLWxp7HoJ2dJoMiFBZ3+LpK9HsK1R9eO1CDbWm5yXrbbzOtqGepiZrbL4RyeoTH9Qcd0Fjao09rojtnTXVUtOyhSsrpSMTpRsiuK9mupjTrZgXQ10yDjtaYKJSbC2FkbGQX70XdOlw4Y6yZkZgo31XfgdTSrmcVO9ZGisZHujxGNV1//7eLcVNtTBCSnd+3fblDdqbbXknB5qe1TT/jOyUsvfeRld17HYbLx042V44xLIGDCIky65mi+ffQyLzc6edV0552UFO+g9fDRL3noZb3wCo087i0M7thKTkMiO1d8xbe7F7FqzUl1jj5NteSsZe8rpbF35HYPGTWTX+jV4fTG4PF4O7d6JlJLSwgPs3771mAb0DzWLxco1d9zD4FFjuPOKX9Dc2IAzKfknvT7/btu8s5r0FDffrVUFf+NjHXzzXRFXzu7B4tXlnbjFq8uZNdHLkjU1TB2VyKp8FaoRH2Nj2wE/rW0Gy/K7HB7L8hs4rVciS3e0MGmAm9V7VYxoTD8ry/e088vxXlbs7XKo7CkPM72vneUHgkzMsbGmSIXGxWo63x0K8YthdlYUKb6SEZNVxRFO7WNlxeEw4zMsrCuN4LWBYcKKwxEuGmRjyaEwS6MhDevLDUqaTVaWKGN6YIJGQZ3JzJ4W8itN/GHIKzWY3sPCsGSdbdUm/hCsKo0wLk2npEXSHDKJtQtWlUa4YICV1aUGOkoqLq/MYEaOReEzNDZUKK48Er+j1qBvnOprdanBzCh+QqalM1Qjxm5lZYnBhQMleaVd60VeqcEpPa3sqDEZnCjZUGFQ0ya5YICVnbUGt461cV9eiMFJOoOTVGjHvIk2bljcTqITlhZH1xe7YEetyZk9ddZUdPHbmgqTk7M0VpcbjE3R2FDVhd9cbTK7N6w+Ar+lxmR6FuSVm4xNkWysVJ/F2TXyyk3m9u2OL2iQTM2EVWUGY1I1NlQaaBrE2E1WlRmc39/K6rJo3L7oWh+PxPus4LGKo/o3Q5K1VZKTMvRO/tzZAO0R9ULRja/iVeXGjXWSacmC9bVqPS1olgTNLj6fla6zvRHMKH9urIepyYpbxySocDYAnxXW18HsTChopnN96cBvrP/p+fFHe6CP+ccqtONLKeUP6xr9uL7eA6YCiUANKu75Xinl7ujnArgPuBaIQ6l03CCl3HlEH9080NFj16NitBf8WA90/5GjcXm8BNrauOnxp0nLzqGptoaElGOnudt0nTsvnkOPPv249r6H0HX9mNW34Ic90Hu3b2XedVeSmpnFvGf/RmZG5jGxP+SBPrJNnvprfnvTXM47+xiVw34CD7QZbKCtPYzbZaW6xk9Ksoe6+jbcunolPDJZMDnRSVNtLSBwuyxU1wVISXRSWVLRlSzoV8mC1XVBYgMt3ZJjapoiJMdaqdpbi8+lrmFrwCTOrVPdHCHO76ctanC7rIJav8QXCdPQbuKJvkH4w5JYh0ZpdTCa7KW+h8sCdQHwSYPGoOxMpmmLgNMwONhi0ssjOiXcnDrct1l5m09Pg9sGqv4f3yNZWA4zUwS3DehKLgGdw22SHLdGc1h2biU1h0Q0eUISY1VGM4CQOk0RSaxVo/lNO+0AACAASURBVCUsieZG0hLuSp7wWQRBE8KGwH5EskVrxMShCwIRjaAJbotK8PBG8aZUhnhLROKL4q1ClZ4PGLIbPiKVnrNNgw/L/dSGTMbF2sn16jgsWjd8rLWrjK1do7P/toiBI6qpHDwCn+Qwu+E7xh8yIzijep8BUxnR7UaYWJvovD4ODRrDkOEyaApL3EckC/qsgnYz0vmy0nG/WjVBokNd62hINm0RiHVo1AUk8fbu+MYwJDi1bvOhpV0lxXwfbwmrsuEJdiVj1dF/fUgQY9U6ky878EJqNIYhziY654NdN2g3Bb4jkjXbDbDrKjnn+/1rVmgzhBpPUBJvg6DUmLLw5/dAZ+UOxR0bR2t9Hef/4RHSomFm4XY/7phYmutq8MYnEmpXXOL1enjplmuxu9yc89u78MbGYbNoBPyteGLjaKqtwZeQSLCtDbdNw+F201RXS2xiEi0N9Tg9Xmy6zqGCnTz/h9uwWK3c+sxLxMQnkBAbd9QYf8gDfWS75ZK5TDxpJr+85mi/0P+GB1oGKqlraMfnUZ7gltYw8XEOyooqSE5w4O9InnZZKCsuJyXBQV1jCJ9Hfa8WfwSv0UZ1Q4ikWGs3/qwoqCE5xkp9awRvNJusqbJF8WeLQZJHoy2aXOhoD1DrN0ny6NS3mZ3JiM1NIeKcGjV+k0SXoC0M4UBE8a4QJLm0Tr6977s2/rErzCWDbdw01k6iU3DX8nbe3x3m4lwrN4+xk+jSaAiYeKyCWr9KEot1iM7kxdagKlfvsnQl7zYE1MsmQuAP0Q2vkiOj+IAk0akS2TqSxb+P78b/0f6bgvKI9aIDb5Dg1I7CxzuEGo8NXt8RZklRhGuH2+gdI8iOOQbe1oXv6N8rTGrbJQkOuuFrA5Kk7/GPPwxxTu2Y+LoAJDrF9/AqIfD7eLdNdOI7xiM0EU2OFN3w0jRxWY7GS8PEHxFH4cNt4WgyJSQ41HhsRgQhBP4I3fiqwa/ul1OHhhDE21USowUBiE4+bwhJkv4/9s47OoojXfu/7p6eHJRzJEogQAgEiGCiwQGcbWyc1xFnr9frvAbvOqxzzhFjG4MDNmCDiSZnkZNQRBLKcfJMd39/9CAsg+/de6/3u3fvuXVOH45qHmqq3q6urnnreZ/XrHVbn0/gvWHl5HoewbcENOwG8RS8SxaZsDr8/zeI8Df/oyBI6HJzhZqm7fz38P8qRRAEzepwklMwhLSefRAliYKx41n08fvc++wrfPPeG/QaMAiAo3t3c8nMu5n/2gu0NDTgdXdSMGYsA4aPZMfqlVxz7/2ntP9vbaBXLVrIiw//ibMvvQJJljEbjUgGA4bIwu/u7MDd0YEY9DMgfzBnjJ9I39xcBEFg25bN3H7dJfTLzeLrr/6GLBtYtGgDf5n1ATs3PX+qR/w/uIH+4YcNrN1YxoP3TOShJ5Zw87UjWLtuH9XHOzlrfE9eeX8r770wlT89vpyRg6MIhjS27m7guUeKuPWhNdx5/UBWri0lGFQ5c1QKb3x2iDdnDeehpzczOMKN2H6gjSfvzOGup/dxy6QolhfrG/GJ+S7e+aGel2dm8cwHZfRO1jnQxZV+Zl0Yx32fN3DDIAOrS3WvyNgeRj7c5uOvo2We3hBkUIQDvbte4ZHRZp5c4+G8njLrIl7o0SkScw+GuC1X4+PDkBcTOUprUUHRWFIDYxJ0KSTQtZEf/MWMv6mHvogd7IBLU+GDCrgoVez6xTvQJbCoVuPOPgY+LFPo49DvRYVH4/J0mTdLQ0xNNrAz4mXNc0j8WB/i5mwzc6sC9IrsEEvcCpenm/mwws+URCN72sOgQT+nTpe4LsPClzV+etgkVEWkzBfmohQLn1V7mRBrYr87jIBGjt3I6iY/M9JsfHvcS7pZAkGgyhfm/CQrX9Z4GBtn5qgnRFiFfg6Z5Q0+Ui0GtrYG8Kn6ZtckwI1ZNr497mdCjMwBj27P/g4Dq5oCXJ1mZVG9j5TIC7vcq3BZipk5x3yclWTo8qIPdBlYVh/kD1lmvor0H+CoR+HqDCOfVvqZnGxgR+RockiMyPc1CvfnqLxTShc14lCHxq09Rd4uVTkvTfdGAAyPhe+Ow4MDBF7a352qcU9/eHI3zOgpsqFev18jEwUWH1O5d4DES3vVLk78nkaVP+bpqiVX9BDYGPFaF7pgfhU81B9eO3ySA13WCdf2EHjukMYl6bp3GSDfJbCwBu7pK/JuqUpfp4BJUNnfCbf16o63GiA/GuZXdm9fMuhUkLv7wVN74PIsPYPZnFL+6RvouIxsAh43d33wNUvfeZH0fvp62FRVxpSb7uLLvz3E2Cuu5+DGNfr9HTOBL558hD6FRQR9XjLzBiEbRMp272L6/Y/y8aw/c+ZVN7B3/RrsVgu5w0bww5wPufXJ55jz9BP0GpiPyWRi89IllOzdhSMqmr75Q6g7VokrKpqUrGwOFe9gwLAiijeuw+VyEZ+ciiRJ3D7rSd59+gkKRp3Ba395ELPVyl9efZulX81n/LnTePCGq1h5oALHLyh58N+zgQ521rB9Tz3xMTp1rbHFS0FeAuvWl9C/dzS1DfranJJgZclPh5hUlMDDL+9naP/I+rm/jdnXpHLPKyXcemEqK7bpTo+JQ6P58Ksqnrkqmce/rGNwD50Dva/EzcPnRnPf/CZuGuNk1SH9nTA+Q+K9zR6en+Zi9k+dDE7Vd2TFVX4eG2fj/mUebhxqZnVZiLXlQQ40qaQ5BL6dbufJdX56RYs8vznQNa4z0iVuKTCzpjJEWFEZn2Xkkz0Bnhpn4alNfgYlSGiKxp4mlYdGmHhkrZ9rBxjZWB0mpGiMSTcwZ1+Qv40x88yWAEMSJEIa7GlUeHC4iUfX+bk2z8j66jCKqnOi5+wP8rfRZl7aESAnNkK9+AX+mv4y6yJe5V+2/+rOIL0jQd57GvX+PLrWxzUDTKytCnfDPzFK5u9bQwyMl/CHNZaUhbHLAjvrVTKdAg4j9IsVmdJD1vFFRp7dFmJA3AkOtMIfBwnM3qpyVV+J9REv7qhkkUVlYf5YIPPczl9QU5pV7h8iMWuLwlU5BtZHgp5HJ8PcwyqzR8g8tyNMXoSaWN6mcNsgmcc3h7rhx6QKfHpQ4YmRRp7dHmJAnIiAxt4mjT8XGnlsY4Br+smsq1EwChqFSQbmHgx1wxs0leImuH+IoVv7ajjMyASJz4+qPFYg8tJelTynRliDA+3d16st9RDQYHgMfHUM/pyrB0v3sYOG0LWev3BE5bL0k6eKw2IEvqrWuD9H4NNyreu9fKAd7ugDfz8AF6fBll/h7+sjcPHG/yYKx2+U/3mRGL9DGX72VK577K801ehHaXGpaUyacS1Gp5MhE6eQmK5HSbsSkjBYrQweO4Gg388Xr7xA/hkTSEhNY0DAT1A5VRNS/A1qh6hpnHHONNpbW2hvbUEJh1FVlZDXSzgcBk3D5nQSE59AosNG8fZtPPmXR0jPyOSaG2/mhaf+yuOPXsFjj3+IKCigQU7fVCor61DCIQyGX70Q/gOeZoDhA6OIsWfhsvi58Kxs+vUwY1bjgXgyU+2Ersohzh5g5lV9yYjTf1kW5NiItYa5ZXpPRvS3E2+M17m2SUZCF6YRYw5w7VgXWYn6hnhgfBTR/k7+MCGawZYAcbn69EyzBri+wExUazuXZEGaU1/I8owiruZ2rsmRyJUVHKmRID85zPQeIqbOIBenaaTa9PvQS9aQO/wMs6v00gLYIpzmJDVM0A+XLofRcQJDI45/Z1jgkX36pmddA5yTYMQhC8QbBYZEhdjRpjAsWmJolN7/OIOGqMqMjA7jEg3kO/UFyyoYKYwK0eaVKXCGiYuQ4EyqSpNHJt8RwqTK9LVEqBqagUGOEC1eIwPsJmIikltme5hOv0y+U8aGkRyrjneKEgUuGV/IyGCngRjZgIZGtFFBVWSGugTiZCMD7ZGjTFmiMEoC1chQl0C0LCEgkGgMI2kyhVGQJBsxRVKfRskSRTESva1G+thC2CWRan+YXR0+Xin1MCLaQrLZgknS24+WJYZHGUCTGRcfJi6iS9crIBJjhjMTjRTGhcmMcNQSzCoWWSTDHmZ6pkqKVbd5rQ/6OANcpGkMjA7TQ48pJdGsS0Sl2mB6Jl34QdGQYlOZmgp5UQJxphN4nYpiDAtMS9aDVgB6mAU0v8hZCRqpksDYiMxwogRFUSK+DpHxMXoAI0BMrIC7U2B8rEqsJjLcqX9vlCQyNk7F7ZcYHauSGMmIlWgMoykiZyaopJlEjLE6PsWick4K2CSBc5L19i2GML0cAk4DnJ+q0c8pEGMEi6SQZAFN0ylAl2ToQTGiDLlROubSLBgUA8lOA3NK/+0A5d+jpA45g7T8IpoNMWRMugxnkv7AGDP60aja6HXW5ZCWR9pY3Tssp6Uy4LwZFH//Bef++SmiktMxSgLm9BxaBTt5U2dgyhpAL3MMNqOENSmVgvOvpE2wk3/eDGJS07EYRezpPRlYWU7Jji3YklJIMtsQ0fCpYE9IImw00WNwISlpqVQeOsiWHxez5edVjDxnGs89cC/TrrmBBW+9giMtk8GTJhOV3ZNQKEyDuxPfr04M2/2n30Bb5dNnN0w7TZrgGHnN6Q0oOU5bbTQ4GDk2p+vv3pF/z5ysb6hTsk9ip50tERtt4vbrTfTI0NsbPqyT9L5mbrvOzJih8WTl6FSNjBQbotVMWmEst9qjuxKylB1tJbWvnVtkF6MGusgs1GVGU80aHbGtpA6P4eYYD1mJJmbNrebrA504k0RuviiNkTk27BVe3v5rGQDVnRrWvgncEhcmM06mWq1j3lY3141ycPZAGyN7WchuDkFIJTXagCnRT2YfMzc7gmTGGtDCCiNaFTLTjdwkByjqYaJHQwANSHNJmOKCZPU0crM1REa0hACMaFXISpO5STJTlGWkR3YIEEiLkjDHBcnuYeR6q5mMSMKsEa0KWakyNwkmRqRJ9MjS1+c0l4TRFSQzy8jVBpl0l44f1qaQnmLghhEiIzKMZKUoXXjZLpOVIXOTIUxmlI4fm6tQkGJgZUkAgyjwzYEAy8pCjO1j4MbhMtm9zNxkCXcl8BrRqtAnw8jNtiBFmUb6tEXaj5JwZYXp08PEzPgQGTE6vqpFoW8fG7fG+SjqaSEnkuY1zSlizw7Qp4+ZW5N0ewIcawrSO83ILU7dnn0jqkepZhVLYoiePYzc4tATimnBMCPaVLJTDNyETFGGTM9MBcWvkuIUMdpl0pMN/KFQJsMlogQUBnaopMRJXJsvMSxFIiNOJRySSbWLGGwKaUkS10gqKSYVEBjq1kiPE7g6T08olpkYWQ/tAvYYlV7JItfbNNLsAALVbo1+cQI3WFUKk0Qi05kUu4AzTqVvisjl0ZAWcUgd69ToHS9yvUVhaKJA30iWx1SbgDNBoV+KBBt/Xy3o//+5D/8FyjUPPc6CV56nvqqS+qpKFrzyPH0GD2Xuc09hc7nYtHQxm5YuxuZy8cYD95JTMJQ9mzZQVXKI0v17mHX9DJrqjv+73xMOhfjw2SfxunXvhSiKnH/19Vxz131c/8cHuO2hv3DnY09w7+ynuPeJp7n5Tw9x5S13cO2NN2O12fC43TQ21PPZRx+wdO0mYmIcjBub36UB/cJL87l95gWnbp7/E+XHVUeJjjLzh3u+Z2RhOo/9fTUV1R2UVrbz+ItbGDkkiRvuX0m0y8TSdbV881MlUU4jNz+yiaL8eGa9upuKWi/l1V7+9s4Rhg+MZuZf9xBlM/D9pla+39RKlF3ijtcrGNbXzts/t1PRFKaiKcyzS9sozDJzz7wmHCaRJUeCLDkSJMoscN9SD0NTDLy6M8ixTpVjnSqv7AwyOFHihd0KqgYrqlVWVKs4jQIXLAvx8B64YQvUePXr1SOwIZJUcX2TxtLjKmsbNVKsAhkW/eHMtgp4FKjza3xRFeaOniaKYiQuTzexpUVhS4uCzSAwv8ZPL5uBb2v9NAZUGgMqS+q99LDKzK32YJVEituCFLcFMUsiX9Z2kmWVWdrooTmo0BxUWN/iJdMi83VdBxZRZG+nn72dfiySwNd1HWRaZJY3uWkOKbSGwqxocp+CP+IOYBHFU/Atp8Ef6Azo7f8K3xpSaA4pp+DLvEE8isrZ8Q4SjBIbW3y8V9nW1f9ljR6yrDJf1nZikQS2tYbZ1hrGZhD4oMJPL7vEdzUKdX6NOr/GZ5Vhcpwir5aEcciwpkFjTYOGwwDPHNTo54L3SzVqfHoa3A/KNPJc8PZRPbHM6nr9csjw5AFOi+/n0ttyGLq3/2G5Sj+XwJxyleM+jeM+jTnlKn3sAq+UhLEbYEOTyoYmFbsBXj8aoq9D5POqcFf/Fx8P0dch8VZZELtBYHNzmM3NYWyScFr8vGMquc7u7W9s0rDL8OwhlTynwEdlKrU+jTo/vFuqK4v8bb8+xlX1+g86hwxP7NYYGA1vH9ao9v7/4UDLVjvJ/QtY/fKjmOxOytb/RNn6nzDbHSx/4RGS++Wzec4rtB2vou14FZvnvc/AKRfQdryaoM/LijeeYuW7L2BxuPju6QdJzytg1fsv01JTRUtdDcveeYmsgQXMe+J+ipcvYtvir9i/dhU2VxRHtm/m0gdmEfT76T96PIPHT0ISRW568kUaq48x4fKrsTldtLc04/N6aG9pZuuKZQydeCay2URyVjYL3nqV3CGFPHr1ZYw4c0pXEqx/pRLtMnLjg+uIdhn5emk5Xy8tJ9pl5C+v7GVEfiyzX99HWbWHsmoPT7yxj6H9Xcz82z6iHAYWrqpn4ap6XDaJG546zLD+Tp78pJLy437Kj/uZNuswN7xUzvB79hFlM/D56ia+WKMf53y0qoXsRCNPf11Ph1dl0gBdQ+yq0S7++m0TUVaRRTs7KeppYfHdyfhDGoXZZp5Z0kJFU5iq1hDPLmujMMvEPfObibKILN7jZck+Hy6LyD1ftVCYaeTvP7VzrDVMZUuY51Z1Upguc+/CdlwWkZUlARYf8OOyiNy7sJ3CdJlnV3ZS1aZS2arw3Gq3jv++A5dZYPGBAIsPBHCZRe79voPCdJn3tviobFV0/M8eHb+oE4dJYPGhAIsPBXCZBe5d4mZoqsyza71UtqpUtqo8t9ZLYZrMk6s9evu/wg9Pl1lXGeK8HBO3D7dw/zIPaytC3Le4A5dFYPFBP4sP+nFZBGb/pI/t2dXuk/1Z7SY/1cg937Tp+H0+Fu/z4bIIPPJtM4VZZv7+Y2vX+/GVVe2n2HPxHi8Oc3d7VjSHqWgO89ZG7y/sI+r2+UX/C9NOjre6U+HFTT6GJBu4f7kXl0ngh5IgqyvDuEwCD6z2U5Ak8dLWAJUdKsc6ta7378PrAjiNAqurVX6qUnAa4ZFNIfLjRV7dFabWo1Ll1nhtV5j8eJFHNoVwGmHVafDv7A1T1alR1anxanGI/ASRRzYEcZhgabnC0nIFp1Hg4XUBBidKfLg3zLEOlWMdKq8WhxicIPHI+sC/9Uj9p8p/xQOtocvZ/f69+hcsksFAn0GDWfj+25Tt38eejeuImh9H3rARSKfh5GmaxksP/4lFn37EiElTGDR02D/8XYqiIAgC0y68mNT0dB554kksFgsrvm1kw8Z93DLzBZISY/hy/moOH5jzew7zf2w5kRzjl2VLg8qnJSoFcQJnpet8sorISWtJp84pdsi63M95qfB9DYxPELAaTp4S9HeJPJRrYFndqacJRvF/5QHMf6g4ZYmpiQ7eqmzloDtIrv1UT9z/lf8rgigSlZTKhk/fomZ/MWo4RErfPLQTepenKTWH91N39DBFF19JbFzcP/xdmqahhsPkjx5LQ3UVs+d+zeKP36W9qYmG6mq2r1mJQTZQU1rCjY88/nsM7398aWo9Ncf0M59W8c3PjditIlGROJR2d5gdJbqr72htgJbOMHaLRFGunU0H3fRKNhHnPPk+u2FcNBkxMo9dnMBD87pTU2Js/3XHzb966R0rcUk/I6vKQpjk/3tf/G8r/6Ugwm4NCUIKerbCb36XBv+biiAI2sMfz6PvkMJuFI6DWzczdOx4Snbt7KJw1B+rpHd+AQc3raf/sCI2Ll3CB0/+hXAoRFRsHMcrKzDIRhLT0giHwgQDfq774wNMu+o6Pn/9ZVZ8uwCbw8mF19/ElAsvOaUv1t/wjJzuuBAgRlzDkSPHWLxkE+3tHkYW9WfKlGGnzZL1m/y836BwNNfXUlLWwvAhqfy0ppSxRVmUl+py4JmpDn7eUsPkMzLYUlzfReEor+5k2MA4lm84zhmFiZQdrY1QOCys39nCxBFxbFxVRlairj9aUR9gaB8bq3Z1MMweoDpy5JQWbWBTqZ9xfS2s2NhIXoJul8p2lYJkieu+7WRlWZhzexi4Y7CRVLvAisowf1xz8rfd15MNeMPwfYXKgjKV81NhRpb+WZJZj+RNMYnU+QWSI0f8x32QZpbZ1abS3yXSGJGfizcJ7GmDPKfEUbdKQuSIv8GvkWKS2d8Zpq/dQFMwQuEQjZR4QuTaZSq8Jykcx70q6RaZI54QPawyrZGMZXbJQLk3RG+bkWP+UBeFozkYJsMiU+IJkm010hY6Scko9wa74TU0WkMK6eZ/H3+CwtESCv+n8XFGgbcr2xgTa2FMjJUyb4g+NplOzdtF4WgIqPS0SezrUBgRF6YxcnsSzAL72lUGR4nU+IOkWHV71vqgnxN2tqoMjBKo10+YSTTDrjYoitXY367rPAPUeqG/S+c+n4Jv1bWXD3TQReGo9UEPq8iOVu0U/O5WGBQlcrhT66JwVHsF+tiFU+ZDlEHkQKfKIJdEifskhaMlGKa3XTwFn2JR2dsBBVFCV/sWQ5jjPl1TfHuLxqAogbrASQpHcavO5d7ffpLCUesTyIvSE8IUxEJj2MCFy0P/dA70Td/soHbfdtILRlF/eE8XhcPXdJykvgOo2rGB1IGFdNbryhGJaalU7d6GIyGZOXdMRxQlYtOzqD24B8lowuaKRjKaCPm8FJx1Hmfdeh8/vvkc+9etwBETT78xEznj4storq4ia8BgDm5aS+8hw2k5XoPFaCA2JZXD2zaTN2ospbt30qNnDwDqj1XRJ7+AXevW0H94Ee119TQdr6b84AGO7ClmzLnnE5OQSH7hcMRfxaaYfiMI/D+yJseIa05vxOCpWV31+t9IaeCrPKWqrqqG2GgTW3Y1dlE4yqo6SY+DPYfbGTM0nqpafSP8ypwjfPh1GTdclM6Mc1LJTrHQ1BZk2IwNXe3tnVuIPxLV+/oXlXyyoonrJ8dz+djYLordrkNtTBjgZPVeNyNzbBxrDqIFQqTHymw84mV8Pxs7yv1kxsngD1LRHGZIponVh3yM7GWmuiXcReHYVOZnXB8zO6pOUjiqWhUK0o2sKfFTlG2muvEkhWNTRZBxvYzsrD5J4ahsVShIk1lzNEhRlpHqlpMUjk0VQcb1NFJcE+qicFS2KhSkyqwpDTIiXaK6/SSFY3NlkLE9jOyqDnZROCrbdErGz+VBRmQYqW4/SeHYXBVibLbMztqTFI4T+HVlQQrT5F+0L7K0JMBz6/1M6mXkrtG2rv4MyTCypjTS/19QOLbVhhnT08TOY90pHEP62Fhz2EdRT/PJ96NTZFNZoJs9Qadw5Kf9wp5tJykcmypCjOtpZGfNSQpHZZsaGW+IERky1e0nKRxbqsOckWmguE7ponBUdajkJ0qsO6YwPEWiplMlHFJJtetKHaNTJXY3nqRwVLs1BsYJbDiuUzhq3ScpHNvqVUYli+xp6k7hOIEfliRS+wsKx7Y6lVEpIvtau1M4BsWLrK9RGJogdOFTbQJb6xVGp0jkfuz9XddHadasWb9LQ7Nnz54MLJg1a9YTv0uD/01l9uzZszzt7UTFxbPii085vGMbZpudT5+aRdHZ5/LuYw/g87gpP7CPn76YQ8G4ibzz2IMkpmew+acfaDp+HJ+7E7/Hi2wyEZ+aSmafHNqam4hLTubK2+9h408/8umrL/DyV4uIiY/n5Yfvw93RzsBhRd281fJvLOJO4+nrLUIFsbEuior6M37cYHr1StU/UP2ngk9X92/Uz5m3hZff28I5E3pxxcxvyO0Tx2df72HVxmrsNpn7nljPJef04rZHVqNpGtv2NPHelyVMGZPKNX/aQE5PJwt+qGD11mbsVgMPvHyACyYk88DLh2j3Kuwt9/LxT41MKojippdKyU2QeXtNOzsrg9hNIn/5roVdx4L8dYWHLTUh/GGYuztAfpKBWWv04JeSVpVWv4rTJPDijiBjEgUOt8OAGAFBEPiqTOXhAgOlrSpTU+CbatjdpgcAvnwYzkwUePmIik8ROOqGxbUqg6MkXiwJkW4VWVancLBDxSIJLG8Ik+uUeL88gF+FCq/K8oYQeQ6Zdyp8JJtF1jQGKXEryILAN8d9DHaZmFfjIaBCtU9hf2eILKuRudUdJJoMbGr1Ue4NYRZFFjd0kuc0s7Cuk4CmURsIs7PDT2+bkS9r24k3Gdja5qM+oCAJsORX+JZQmI0tPvraTd3wx/1hDILQDa9oUBMIs6W1O35/Z4ASbxCT2B2vIVDtD3XDZ1kMdIRVtrUFEAVY0+xjkMvMykYvLSGNSq/K6sYQA6MMvF3mI9sm8GOdysEOXWXkg7IwI+Mk3isP0xnSTwi+r9EYHivw1lGNeLPAwmqNPW26HN5rRzQmJMKzh/To7yOdsLBGTzjy2hFOwX9UpjEyTuDFQype5WT7Q6IFnjmkkGEVWFyrsr9dwyIJfF+rMShK5I2jYXwKlHk0lh4PMyTawIslwW7zwWoQ+LgyyIgYmffKA/gVjQqPyu42lb4O6RS8TYb3ShVGxUtd7Vf7NBbWqAyLFXnygEqGTWBRjUatDwRBn58TEuHvB3V1jkovzK/QAx4fLdbIdggsOqZxoE1j1qxZs0//cP/Xy+zZs2el5BWy8b1n6Dl6MmvfeIKQ10NT6UGqizeRlDuIpc/8iZiMlTqh1gAAIABJREFUnuxZPI/a/TuxOJyseOMphpx3BXt+/JqAx40SDhEOBHAlJOHtaMNgNBHye4lNy+T40UOs/vQ9rn/+XfauXsb+n5dTumsHBzeuJe+MCXz40F0kZfdi3YLPOFq8HYvNxufPzKZwyrl8MutBQKNk9y6Wff4JQ8ZO5MV7biW9Vx82L1vCwZ3bGTRyNCsWzOOKu+7j9YfvY/y0C5CNpm7j/HVm2BPlP7ImW4SK0xvxtwK4Fc/p68Ptp1RtLz6G2xPm/qe34PaE2HWgmfuf3sLf3tzPj+tqGZoXw3sLSlm5uZ7PFukb8OKDHRwq68QbUCmp8lJxzE2bWyHKLjFmYBQfLqlj8/4OLh4RzbYjbt66I5v73q3E7VPZW+5l1a4ORvS1cfNbVfRJMfPxqhZ2lnmxGEUem9/AtCFO/jS3Drdfo6w+yPtrO5iYa+XWOQ30TjLyyYYOShqCSKLAX75vZepAG3/+uhl3QGN/bYhPNnuY2NfCrfOa6ZMg891uD2vLgtiMIo8v7WBafzN/XtSBgMbO6jBztnuZ2MfEzK/a6B1v4KvdPjZUhLAZBR5f1sG0fmaeWummyaOyry6C721i5tdt5MYb+Hi7n63HQrpqyHI3U3PNvLDOQ51bZV99mE+L/UzoaeLexW6yYyTmFPvZWh3W8Ss8TM0x8sAyN+6g1g3//DovcVaRT3cF2Faj459Z6+PNCxw8tNTNsTaFerfKpzt9TOht4rav9f7P2eFj6zG9/3N3eBnZw8T937XhCWjsOx7ik20eJuZamTm3kT6JMp9s7GRreQCnSeSxX9lzX02Q1Ud8DM0wddnzky1utlYEcMgCf4nY58+LO3AHNfbXhZgT6f9t33XSO1Yfb2mLgigIPLHWyzm9jTyy0osnBOWtCnP2hRiXYeCeFT56Rkt8vj/EngZddenpLQHOyjbw+IYAiqoHQH5ZojAmVeJP64P0dImsPKay7riKTRZ4ZnuIKZkGZm8JEVL1AP5f4ntFicw7HGZnQwS/LciULAMf7Atx3KNxsFll3qEQZ6QbuG+Nnz7REl8cCrOzXsVqhGe2BJmSLfPhvtDvuj7+nh7oi4H5mqb9S5/bCIKgvbVhF664OPxenXButlppb2okISmJzrZWLDY97NPnceOIisbT0kx0fAI+r74AtjbU88PHH/Dz4oXY7A58Xg/hUIiAzwcCJKSkMuudj+mdN5CmuuO89NB97Nq0gfd/XEVGz95dffnPeKBPW07jgdZCrXR0+HC5rDQ3u4mJseHzBSHUisVipKXVS2yMjfYOHzarETXQitsTJCbaSn2Dm4R4G53N9SCgy9g1eUmMt9HS6sMi6HbrkrFr8pEQa6bkcDXxMWZsFomGlgCJsWbqDtbgD6rEu2TcPoVoh0xDW4in3y/lk42dXDnczguXxXHoeJBxz5/UQt12ixOzQSDaInHvj24W7A9yaR8DD40wYjXo0jqOcJjyToW0iEfTo0CUUaS6PniKbFlrAIyigfaQyolEeB4VRM1Ea1AlStZl3kDPplfvg2iTAXdIJSIygV8BEZn2kILTIOKP6FCqqkxHWMUlS3jCCqYI9aMtAHbZQEdIwWEQCUTwIhJuRcVhkPCGlS6qSEBRsckGOsMKdknHa6qK2XAqXtM0QhpYDVJ3vKZhlsRu+BMydkFV64b3KwqCIGIShe7tC8Cv8NEyBFSN5Y1ejKJAUbQZpyxhMniwGMQu++gyfApZ9nA3e7aFNKKNIoLg75Kx86q69FBrQCHGJOCL4C3SCWkjXfbohCygV9Flkup9GrG/wjf5NWLNEu0hlYgKIsVtGqvqdZm+njaBgmiwGQQd79OIMhvoDKldMoIdQRGHLJ4yHyRBoj2kEWUUu82HkBrGaTScgncYta7xnmjfIoXxqhHZu6BKtKz33yqpWGR9fsaYdRk7qwSS8cR4RZr9KjEmgVUNGg9u++ercNy6eB++tmas0XH4OtswWiK5dAM+LK4oPK2NWKPiCEVk7FwuO57WJuwx8Xjb2wh4Oti/7FuKlyzAaLES9HpQFYVQMIAWDuNMSGLa3Q8zYNxkGo+Vs/y919i/djm3vPgOOSNGd5O9s5oMmK1WOpqacMXH425rJT4mCgHwud04oqNpbWwgKi4eNRAAASxWG21NjUTHJ9DR2kpcjB496vd6sDtdtLe0EB8Xd1ot/3+mB7qh5igJ8acGGDYcO0BCnK1b3a33fc87nx/i5ityeH32SBqafaQVfdH1eeXq84iL1n8U3PvUTt6dX8qNF6Xz2C29cUQemNbjHaiazsWMj5LxRBZEayhEQ1uIhCiZ1s4Q9sgD0N7qI8aur8/xLgMev4rmD2AzSzR2KCS4DLS6w9jNIqo3gCdIl8xovEPCE1BRA2HsZonGToUEp4FWj4LdJKApKu6gRrRVoqEzTLxdorMzgCCI2IwCjR6VBLtEq1fBLgOCcBLvVoi3iXj9ChoCNvmX+BD2yImfO/ALvEXAHTkh/CW+pUPPztgdHybeJuGJyKR2b1/pksk7ga9rC5Fgl7rJqjZ6VRKjjby8zk29W+WJyXbcAY0Yh9zV/1+23xTUSHDIevsRWT13UCMm1tLNnqDLWv7angAd3jAxNkOXPU/grapySv+1YLi7fWwiO2pDfLbDR5RZJM4qcGk/fT7ZjSfkCwWiLCKNXoU4i4g3pBEOKlhlXTov3irS5lcxq2FddjCky4Y2+VRizQKekP5+0WXyIrKDfhWbQTsFH2cV8UZomife7/FWff20Gk9kgtTxjV6VWBOn4Ms7NK750f8/1gPdD7j0f4MHesJ1t/LOQ/fi9ngpP3SQ7959g5zRE/nkiUdwJaXy46cfsXPtGvzBEK//6S4ycnJ57YF7qS4tZc/GdWz4cTE3P/ZXitf/zOTpM5AkA9m5/bnugUfIGzKMB19+C8kg89lrL/LMvbcxZMw4/v7hZySmpCEIQtdlMhgQBeGUK9MqRl663S9Ce0ENnnqFW3XP8i+uo4cOUVV5nKtu/oDLz+/Ldbd+hNfdzvYdB3n+tdVMHZ/EOZd/TH6OjdffW8dPK/YT74Kr7/ye6WelcN09iwl43azbXMUrH+zi7NFxTP3DjwzoZeXzbw7y1Y/lJLk0rn9oMxePi2boJT/x1PtH2bStgaVrapmca+LiPxezelMT975fzdINzQyOVpn5RiWjEzXumqdH9e2tCbKrxM156fDtoSCeEOREC9S3Kjg0lXuWenliuExpU5iCKI2D9WHe3ROiyKXw6JYw6bLAFyUqG2s1rCo8tj3MkCgjTx7QaAtIHGwXmVMBeU4jTx5QiTGYWFgL21pEjBh5qzRErt3C66VBOoISR90CX9co9LTaeL7ES6xsYll9mF1tGhIyX1QHyDDb+bjKS3tQotwDKxr99LRaeaeinTijibXNAQ52KtgMBj6v6WCg08qXtZ0EVTgeUNjZ4aeHzcTHx1pJschsbvNR5g1hM0jMr20n32Xhq+MdhDWN5pDKmhYPuQ5zN/zxgIJJEvjyV/im4Kn47e0BjnqD2A1iN7wgCNQFwvzc4u2G39kRoMTTHf9tXTsIKgfdQeoDCmPijbxb2cHQOIVVjUGOekKk2BTeLPVzborG/OogAU2hLqDwTY3ClBSFR/eGGZwq8V0t7HELpERJPLFXZVpPiSf3aagGiaqAyOeVGpMyDbxwQE8L/E01FLcLJNhEZu3VmJwMTx2AkAoVHvisEgqjRR7YrdLDJvF5lcrLh2FdI3jDApIg8OUxFa8i0BIUWFCtkesw89cDQZLMRhbVquxsBYtk4JWjQYZGm3j9aBCPIlLugVUNCr0dMs8c8pNiMbC0TmFPu0aiReClI0HGJUi8ejREWINjPo1l9SHGJmg8ujfMgGiNJccVyoMCCU6Rv+1TubC3xNP7VQRZpFky8FG5wFk5Ju7aopKfbuTrGoHDAYn4aBOPble4aKCVW9eFWVihEVT5p3ug2xsbiOs3nKWzZ+JM68u+RV9wrHgzRmcMy5/9M5kjz2b5cw/Q3nCcql1b2fHNXCRnHN8/cTdBTaB0yzoEyUDhFbdQuWMDY299GHdTPQOnTidv4jkEvB76jJ/GG9efz/p5nxAKhRg0eRrRWX349NF76TthKnMf/xOdHi/VRw6x+L036D1yAq/MvIb4nrms/+5rtq5ajuyM5rX77mDQlGm88ee7CSkKR/buYf5br5B3xgRmXz+DlL45/PD5HLasWYHZGcXTd97C8HOm8ckLTzNw9FhCqtrtUjSNuro6RLOZgKJ0XceO1xEwmGgLhruuFiWLQ7Vm3HIujaGMrivB5qKhxYTN1RsMqWBI5ba73mT6tS/S0CJw7nmTQY4GOZrb/vg502/8jIY2mXOnjQdjLA3tMpff9BkAO/Y1ccfMs0hOT6Ohyc32XTXces1AZlxWgGx1IludTJ3Sl8vOSmPOwgqGDsnivW+qWbfbTVp2Ane/cJArpw/i1mcOEDbZOVKvMX9DK+Mn9eTSv+xjSFEmHyxvZv3RIKm94rj51TKuuCKH29+oIGy3UdKh8eqyVqael8X0v5cxuCiZD9d2sK9FICojipkfHOfyS3pwx8d1hJx2qvwiL6/qYOqUNC5/o4bBQxP4cIuXjTUKiZlR3D63gelTM7jzi0bEKBuHOiRe3+Dl3AnJzHi/nvz8eL49GGJlpUpiupPb5zVz2ZQU7l7Qgmq3cKhD5I2NXs4Zm8iMDxsYPCCGj3b42VCrkZhm5/YFLVw2KYmnV3bSIhg54hZ5Y5OPc8bEc+UnTQzuF8VHxQE2HNdISLFzxzdtXDwqmnu+7yQgGznSIfDGZj9nFUbx0NJOsjLtfFwcYEOtRkKylTu+befSiQnc830nQauJIx6RN7YGOGdkLNfPbydslCltVakIGUnKcvHkGg9Tp2Zx1/xmwtEOSgJG3tjkZeoF2VzxZi0FI1P5aIefjQ0CyX3jefibJi64MJs7P6kjHGWnxGvgw41uJk9O4/LXaxg8LJEPt3jZUKuRmuVi5qcn7RmyWznilvhip5fxw2OZ8VEj+XnRun2qwsQnWLlzYQeTh0Qx5rVGFuwLkhylJ8b5/nCInyrCDOtt4bN9IQ42qbjsBu5d7uXigRbuX+knJApU+kTe3RPi3AEWbljiZXCWiUWVGpuaIDXRxP0/B5heaOfBdUGsCXZKgwbeP6Bw/qgobljiZViei+8aZLZ2ymTkRPOnFV6uuiCV2Rv8hGMdVIpm3j+gcOE5qfxhYQfDx6TweYnKdo9MRr9Y/ri0k6suzuDZLQF80Q4qRQvv7w+TkhPDH+a1oGq/7/r4X5Wx+19ZTFY7/YrGkNV/UFedxWYnq/9Avn39Rcr2FOP3eti2bDGKojD3uac4VnKYfZs3EhUXz7QbbsHmcDBswiTGTruQ5MxsFEUh6Pezd8smfvh8DpUlRxhz9lTeXbaWpPSM3xT//2eV6CgrwZDKWRP64rCbmDy+Dz+tPsKC7/Ywrigdp8PIWeOz6ZHpYv/hJn5YWUZLe4ApZ6TjsMmcOTqNpT9X8PWyKsYUJuC0yUwelUx2mp1n9rby4/pGPD6FM0fE4Q8qlNfox5Yb9nfy12vTcVhERuTaeeErXa1kX61O1RifYyEzTmZUuoENx8Kc21tmTKaM3ShwXb6Z0bEqNZGTznS7yJhUCZsMoxOFrtTKoCfLyHXqfNHBEd3fFAsMixUwSzA4SuxKDQ26Vy/HIZFgFujn1D0WCWaB3jYDJkmgv8NAlvXkPTKL0M9hJM4k0TuiXB9nkkg3GzGJAr1tRtLM8onuYBYF+kQk6bIjsmvRBok+dtMpeIMgnBYfI58er6CdgheBGNlwWrz6K3ymWUMTTsUnmX453pP4dLOG+qv2c+wymVYDW1uDZNtELJJAP4dMojnEgCjdzslmgaHR+o+/XCf0/IWzzWbQ6RepNoGh8RE5QpvAyCQRmwFGJIhd+s0gYpMhxyWQaoMhcSfwUJQgYBU1hsWcTOUNYJOgMEYk2QKxRgGTpPFCvsjqel1G7mCHSnMAVtYrJJgF6vwKA10GEkwn50O8SWCgS8IswgCXRHYkSEpEv18DXAYSTCI5jhPzR6EgWsLyq/lml/XxDo8TuuanzSaQZhUYmagngjgxXqNVT8hjk2F0ikiaXaAwSUSWRdIdAkUpEpKgUevW6B0jUVx/arDr713i+wzCaLGRkj8Se2Iqif2HAuBISCXoc/PVnRfg72ih/tAujFYbqhJm5QsPEehsY8cXb1N41R3EpaQTk5JJ33HnkjV0FJ6WemSTlZoDe6grOcD7N0zDlZTGeY88T8DdgcVkJCYlg97Dz8BktdFr2GjScgd2eZ/MNjs5RWOJTU1HCHhQFIX4tAzyRo/FbLXRv+gMMvrmcuLE1WJ3MGjMOBLSM+k3dBiappGUkUnB2AlYbHb6DRlGa1Mj0XHx3cb+wgP3svDj97nguhu57+8vdau75Pqbeej5V7qwf/3jHXz5wTtMv+EWHnvx9a762257hLfe/pSZt17Nm28+SUNDE2+9/SkAb727hFmPXUlCQhQNDW289e4Svf6DNcx6+DwS4p0kxDuZef0w3vpoKzOvH0ZCvH4i+uaz5/P43fkkxFlPuWc90h1MOSONHhkOxg5PBiAzxcbk0Sk4bDKTRiUzNE8P1DRJKk6bzJkjk8hKszFmSFwEb+HMongcNgMTh8cxpF8UasiPpgk4bRKThseQnWJh9OAoJEUhK8nMpKHR2K0SE4ZE66nFAyH8QQ2HVWLi4CiyEs2MznOihRSyEk1MzHdht4iMH+QkL8PMiQNyh0ViwkAnWQlGOj0WwqpGZoKJiQMc2M0S4/LsDMgwd43XYZaYOMBBRpzMqL66PTLjjUzMs2M3iwzKNJObavoFXmRCfzvpsQZG9daDJDLjDEzoZ8Nulhjb19KV6vwEPj/dRGaszKheEXyszIQcK3aTwLhcC/m/7I9FZGx/O3sr/QzItDAq10Zmgokhve36ePNdDO598pTBaTEwaWg0WckmRg/QNcqzkk0U5blwROxZkKMvoJKq6PYcEkVWkrkLnx7X3Z4FPfX25VBIt0+encx4I6P6WlHdATJjZcbnWGh0K2jAglsSMQSDLD4QYH6xlxiryGWftJAdY+DSXJlMl8i4bP3dfEaWgfwkA4KgJ+tyGAXGZRvJdEkMTtZQNMh0SYzLNmI3CozNkslNMnDCGewwiUzobSYjRmKobETVNDLjZCb0t2E3ixT1sjIg85f3V79fGbEyo/raTt7fyHwo6GGhf7qZYFhDUTVe/7GZlGiZqqbfV+bz/ygcvyqCIGiXPTCboVOmUnlgDwCZ/QayceF8Rp47jb/NuIChZ57D2EuuoOLAXhLSM5kz+yGCAT/DzzyLgSPH0LdgKJuWfMeECy7hvb89Tkt9HYd37cTqcDDxgksYPmESeYUjMJpOPsCn20DbjKenavR3/sZmO7Do9PWhU48Mb5z5Fh/M3cot144gKyOaaWf1J2/U812fP3L3CB6/bxSvfbCD+2av6aqv3HAlcxeWMG1CJgPPXtBV/8DN/Xj0toG8+dlhHniuuKv+yOJxfPFDLUcqPXy2pIYzC1y8fkc2n61q4vbzErnwoX1sLA1w3iArY/tamV5o56017VyUorL+WAinSWRgosT8/UFuKjDxdbGHPtEnhOhVLugl8fH+MGfHhTnQrj+M/aLguyqNCxJhWV33RBtnJQvMrxQZFacHAAL0sousqFeYnGBkbZNCzwiHo9SjMthpYnlDkFGxRiq9+uYk0yqxuUVhdKyJLS0BMiIb6ypvmFyblfWtPoa6LFT79Yc11WRgR4efMTFWdrb7ujaydYEwA51m1rV4/yF8tT9EgcvSDS+ikWI2sr3d9w/hBTRS/0F8rT+Eih5I+e/hx8dJVPkVvqr1ckmylRq/wqQEM5WBDrJtuv2PdGpMShT5plrl0kyFQ3qeHHKcsLgWZmTCijaJficSnbRoTMsSmXdE4ex0kf2RlN39owQWVqpcma2x+BhdP5z2t2lMTRf4/IjK5GQ9xTZAjgsWHRO4ME3kpzoNDfi2WuWiNJFRcQa+qVbY3qrSGNC4LstAcatKnR8e7GthXVOYHpGN79FOhTFxRn6sD3JGnEy5R58/GRaJdc0hzko0sqE51LWxbgsHGB0nsbBGYVLiyfk2JDbED8cFLs/Q07/nOsFq0wNipmUKfFqickGmPl6LRSQnWuKb0jDX9TPwXalCXqyIJIusPhbmtZ0hZBHy4gS2RxLB/LMpHJe+u4qjaxbSf9o1lP68iNie/QFoLtnNkRVfYzCamfjnF2guO0R7bSXVu9ZTf3A3Q2fMRDKaSO5XgNkgUr1vO7LZws5vPsXdVI9sNpOSM4DccWfTUl3ByCtvYc/Sb0nJGYDZKFF9YDcF51zE+s8/YMjUS6k5tBezLJLRbwCbv1vAhKtuZOvir8kZXACaRvm+3Yw8/xJ++uRdRl84nYbSwyjhED0GDGLNV/M49w+3sPbbBeQVDAU0SvbsYsLF01n43lvUV5az7MvPmHbNH7j76RcAaG1q5NJBfbps8f0+XQP5vLweXXXLD1USE59AS2MDZ+ZkdtX/fLSG2PgEmhsbGHsiNgWor9tJQkLcyU31zefy5mu3d31+251v8Na7S5h5wzjefOmqkzciUE9Do7tr83yiaIHG0963N97fyg2X9WXOtyUMHaBviHftrefyqdm8/PEBrr2oFzv26e+J/D5W5iys5O6rezN3USVD+ut63rsPNnHZlBRe/ayMq6elU3ywHS0cZHBfB58uqeXOyzP4/Mc6CnIdaMEwOw+5ueLMBF7/qoarpiRSXOJGDIUZ2MPG3BWN3HFBEl+samJwbxtaUKG4zMsVY2N5Y1E9V06IY09JJ4oK+dkWPvu5hdvPSWDeuhYGZ5nRgOIyL5ePjuHNHxuZMTaGPaUeVE3Hf76uldumxPHVxtaujVdxuY/LR0bx5k/NXFHkZFelHu+Tn2nm8w3t3HZmDN9saqVfZGO9q8rP9OFO3v6phenDHOw+pkc9D0o38cXWTm6b4OLLbW7yM07gA0wf5mDOpk7OK7CzuyqCzzDxxaZObr8ghQl/OcLV42IYmWOnuMzLleem8PrCOq6aFE/xUd0zNLiXje+3tHHt2Yl8saKBwX30jXLxkU5mnJPMawuqufqsJIqPuLvan7u8kTsuTOaLlY0M7q3PiYNHO7mgKLrLnrtK9fYHJoh8vr6N2ybHMm9jG4OzLYQ7/ew+FmR6oZ1Z3zezdJ+Xv18chxgMkZsgcenHrbT7VW4eaaOkMUxTe5gpvWQu7W/ine1+Ls8zsbs+jCgIDEwyMG9vgFsKzSzYFyA/2YAG7D4e5tI8E+9s83P5ABOHPCIhFQalyszb4eXW0Xbm7/QypL8TDYHiCj+XFzl5c0UrM0ZHnfZ+fV/sISfNdPL+jormzWVNzBgTxZp9Hu78sBqbScRpkTjWHEk//zuuj/+uDrQgCHP+kQu48/fq1H93qdhXTFNNFUe2b+bI9s0c3LyOlZ99wKxLzsHqcJKYmUX5/j1889rzfPDofZgsFv748lsYzWYO7dzGrnU/892H73LDGcPYvXEd8ampzLj3fnKHFPKH+x+mYPTYbpvnf3ZpaOw45e8P5m4F4J1PNvP90gN0dvrJH5ACwEXn9GH91ho63UE27zzOuKJ0AHpkOLGYDSxbe4wOT4iC/jp38PxJaWwsbqLTE2LrnmbGFcYCkJ1qwWyUWL65iRsuTOeuCxLJybBQUR9gZXE7bp9KktPArPNiGNvXys+Hfbj9KqsP+ajuVDjQqLC5OkRVu8rPFSE8IY29TWrXtbFWwROCdTUK1V7Y0aSxo0mjxgObGvTUn9ta9I3zoQ6NbS06b7T0/7H33uFRVWvf/2fv6S2Z9B5C751QRZrY2zke21E5dgV7L1hAxQIqCgr23guIICC9hgAJCYSakN7bTDK97v37Yw+BQHyO53f0vM/zvs99XXNBVr5Zs/Zea9a6597f+3u7JBp8MkXtEkXtyv/32cP4wnCgPUypW6LULXGgPYxPgoPOIM0BiWOuEMdcIZoDEtVehcN7xBWkyhOiyhPiiCtIQJYpdvmxBUOUewKUewLYg2GKXX78kkyJO0CNL0iNL0i1L4hfOhPfFpS6xJd5zsRX+0LYgqEz8A3+ECXuwJl4b/AMfJ0vRI0veAa+zhek3BM4A1/fBb4lIFHsCuEISkrVKWcQX1im2Hnytc+uzEmeXaLeB/l25VXnhV0tCkc9r0nikE3mkE1mV6OMJwQHbIrGcX6z8qrxyOREfpfbrDjO+1olVlbLVLlkitoURY4Cu/Kq88D+dhlPGPLsMgV2GbWo/N8Xhv1tEtdnqhkTK1LulhkRozi7G5uCFDnClLkkylwSByPr4UB7mGa/zBFniCPOEK1BiaL2kLJWHCHK3WHK3WGOuyS8YdhnD3dab/Ve2N2ijGdvq8wRBxxrl8ltkvCEIKfx5PUebpWpccnsqJNwB2FnvcTBVokjNon1lWEmZ6joGyvwyGg9A+P/M7L+ruZa6gpzCHo91O3fRU3+NvZ+/Ap7Pl5AfI8ByJKEq7me3Z++Tv5XbxHXrQ/xPfrRb/pfqC/Ko2LPFra8N5+t786neOuvhAN+pj/0An0nX0hK38FYk9Op2JdLwOOmPG8ndUeLaDh+lON7duD3uCnZvQ1bXRXlBbs5np9La201R3dtxedxczR3O9XFhyk/uJ9Du7bh87g5uGMrzTVVlB/az+E9u2iqrmT/9i343C4O7NxKUe4OSg4UUrB9C163iz0b1vLrtwpFYuVnH2FvUZzSmPgELr/xVgAuv/FWYhISiEk42fa3m24nNiERgNiERK6+5Q4Arr7lDuIi7XEJicy88wYAZt55A4mJijO7ZMk8Gqu/6uQ8AyxZfBeNpa93dp4jdrrz/F/Ztj31ON1BNuyoJa+ohbyiFnbua8bpDrJuRx3lNU627W1k295Gqmo9rM9pwOlNxhAYAAAgAElEQVQJsTG3kfxDdvIP2dlTZMfpDrF+VzMVtR6257eSs99OeZ2XDbttOD1hNu21se+Ik0Olbjbl23F5wmzIs1PR4GPH/nYKSt1UNPrYWNCGyyuxubCdghI3hWUeNu934PJKbCxsp6LRz74yDzsPu6hoCrDpgAOXL8zmIidHanwUlHnYctCFyxdmY5GTyiY/e0s97DzmprI5wMYiJy5fmN0lHgrKvRSUe9lyyI3LJ7HxoIvq1iA5xzzkHPNQ2RJk0yEXLr9EXrmPwirlteWIch5tL/FS2Rokp9RHTqmPytYgm496cfplthz1Uljlp7DKz5ajCr6wyk9lS4idJV52lnipbAmx6bAbly9MnS1IsyPUMX6nN8zGgjYqGn3sOOhgx0EHFY0+Co+7cHnDbNrXRkGxk4JiJ5v2teHyhNm4105FvY/thW1sL2yjstHPxvw2XN4wmwvaKShxUVDiorDU3XE/j1Z7+WJTC6v3tlHVHGDjQRcun8SWQ24Kyr3sr/Z3nL9bj/mINqjYedxLYW2AmnaJWKPAt/+IZX9tkJ7xavLrQny8z48rILOlPEhlu8Su6hC7a4JUtofZUh7AFZDZWhHkUFOI/fUhtlYEI/gAle1h9tcFySn3U2ULs6nEh8svs+W4n6JqPwUVPrYcUeZr0yE3lS1dz1dBxanze3I9VLUE+TmvnRSrhkU3p5ERr+HvZ1l/9+fl99o/jUALglCBkmfwu0yW5e7/HPXf1wRBkN/ZX0nl4SIO7dhM3q+rcLfbmXTVDYy78BJSuvfE7/EgyzIzxwzg1XU59OiRhcNuQ5YkPn3pOQq2bebSG29l3HkXktW3P75IcqHeaEIO+DGaztz4/ogIdFP15yQmdl4ks+5dytL31jDz1iksWTijo33mPe/yzie5/OOaUXzy9tW02txEWfQ01VVi0KuJjTHQ2OwmMd6I2xOkobqRrAwLTa1ekuKNtNp9GNU+mm1+9DoVsVZdR7Jge3MLzfYAWakGmmwBkuJ0tLYH0LcpyYwur0SMRU1TWxCrvQ1PIEL21wo0uyQSLSrqj9k6kifcQVlJDnBLGP0BPIoaD0Y1tPog3iBQ1+DFFNHZ9ISUZLIqm0SMVuicLBgAFVocwZPJZ94wWDQCdW6RaI1AJNcCnQi1HpFojQpXSEKvOpHMJ6MWNDiCEha1QCQXBa0I9V4Ri1qFOyyhPyX579TkvEDkM6cVTibnnYr3SRIm1e/Dy7JMQAajSuyElwHd78T7JRlBOLN/XSS50C/JnfuXZDgNr1L50Yvw4ME2nusXjVWrwhGUGBLnxhe5P3oR2oIQoxUQxADmyDJ2hyFaA61+SEvQdJovmx9iNNDml4kwZTrmt9kVIkYLX5TB+8UyfaOgxKHIvU1OhOxYZY14wqBGjT0gY9WAzS9z1z6JO3uJ9DGrsWrFM9bDq8dCFLSF+WyUkWAkYKERBBwhpYy5MyRjOJFsGjqRHCkRpT65flKMgY7rPbV/rdpPtFbE5peJ0SrvZ7IoyTQ2P8TphY7r1RpUeMICVp2SCBOnV65fpRWZtytAVrTA7UN12H0y0SY1/d9r/9Mj0Fd9tJVwwM/xjcupzt+Kp7WBHmdfwvC/3ggCGK3x+BxtfH/PZVw+/0v0URYMUTG011dzYMXnHN+6moHnXs7wy65HpdViionH67CjNZoxaFQEvG4MUVZcthZMMXEEvR70GhGd0Yjb3oo5Nh5Pux2dyYxZq8LncWOKtuJobcYSG48m7ANBQGcw4mhtITpeSS5USUGi4+LxuV2YrTG0tTTz4+LX2fD1Z0y/+jrufvn1juTCJY8/yNpvvugUgQbQqdXYm5uJSehM7fDZbR3O86nY1uamDuf5hA201NPU1NLhPHdY8GDXN91f10Vb15J3vxWBDnudHfuzO7KBGjRhmlp9JMUbaG3zExX5gNltDuKsOhpbfSTG6jqSCw3q4Mn9vC1AlFmN5Pfi9ISJjdLQZAuQEKMkI0q+ECa9SHNbkMQYLTZHEItRhewJ4PKd3P87khEDYQXfHiLRqlH0p1WK/JnLFybGrKapPUhClBqXO6Qkr+tEmh0hEqMVvEXLafgQCWYBd0Q+0qQTOpIdW9sCWAwnkguljmTHeJ2MO3IembQCzc4wCXoBmzt8MrnQp+Bb3GHiLaoz8IkxWmyuMBbDaXhZw9SnS1j2eA9SYzWYdCI21CRaT94fUM7H2Dg9TfaAktwZ2UBNepEWj6T03x7EEnnS1d7qU+7/aXijHKa5PcTm/Q4e/bCS/pkGSmp9DM/Sc9OUWPoka+mRpMXtl5Ec3o7zN9ogMnl+DbefHc21A1W4gwIxRpFmV5h4k4gnIPPMz3a+Kgqw945oUiwq7F4Js1ZAECPJnQblvI43CrgDMoIgYNRAi0cmwSRi80pY4/VKMqhf7tS/z2QABGW+IsmRNo/U5XwlxupOJlPqxI75tTlDvPFLMya9yO3nxHWshwH3H/1D98c/jMLxf4sJgiAnZnantb6GzP6DyOg7kJa6Gv7x3Kv8uGAuk668lrxfFV7azp9/JLVnH57+8HNevG0G9RXlZPTqg95k4rE332Hurdcz45En2PGLQq0468KLaSwv56+RyMSp9u860LNmzWLp0qXMvP0CliyaCUBTUxtJmSed5uyR3Zn//FUs+zkfiyHM0IGpvLZ0Gz9/cRM33fMdU8/qiV7jY/XGMj5eeCGX3riMFx47ix9/KUarCnHB5G48uzCPn949j1se28LUcfGEQ7BldyPvvTCGK+7expx7h7B5RyV2R5BLJyfxwrslfPvqCGY+X8SU/gYCYZkdRQ4W39Wd614+ziNTTPxyQOFHXzTEyPy1dj69OYnnvqund6xynbuqQyw418itK13cO0jF2krlA3NuNxWLCoO8PVXHk1t8jIicR3tbYM4wgbn5Mn/JENjapKzxsxMEPiqTeayvmsXHwwyJcHMPtEnc20fDa0eDXJyqZU+rcmCMjlXxU22Qm7uZ+KTaQ7/IAXPUHeTvKWberXJxcbKRwjalSMEwq5bNTT4uT47mxwYHPYzK/JW5fVyRYuWz2jbOjTdT5FIeRQ0x6/i1xc2MNGsnfJM/yHkJljPwA01aNrR6OuFVyJR4glyRHNUJbxIFuht1rG9xdcKLyByP4D+usdPLqKU1EEKtEhlh0bOh9eR4+po0BGWBMk+gU//Fbj9+WWaQWd/R/4pGGypBRaU3RJpBxQ0ZJt4td3FbT4kdkSqPE+JFPq8M88wANV9Xh8iKUP7ybfDUIHikAO4ZIrAx4i9MSxN5+2CYhWNF5uyTyI5wo/c2y8weLvLkbgmtSqFqjEuASzIF3joiMzEOvqkCnwRXpCuJhA/0EXjmoMxNWQLbW2RsAUXKLiTDw33VLK/pvB6uStXyzFE/vcwiCVoleXekVcWyuiD399Lzfrm/gxtd7Q1zZZqeRaVe/pqqIy+izzolUeLL6jCz+2tZVBzs6L/MFeaB/vBEIdzWE7Y0g0UPE5JFlhyWWDhOxZz8MNkJAha9yJY6iXnjtdy9OcC9w9Ssqwxj0MGvFTIWrcwn5xt5YruPCekqXsr983WgNUYLggCCqGLAJTNwNtQgiCK9J57P3i/f5NwnFrF18dM0FxfR99y/4W6tp/fE81n/ysMkDxiBOS4JvcVMzzFTyPl0EZfNfZtfX5tNxtAx6I16ynZv5eLHXub7J+9k0i0PcHTbWsxR0fQcNY4N77/BDa+8w4/zHqfHyHFo1QLH9+7i2jnzef+B27lo1kOU5e3A53IycvqFLF/8Kvcs/pAXrr0EW30dvYePxGSJ5o6XX+eVW6+n4vBJp/Xht97j5w/eYfb7n/HZi8+R2bsPRrOZgp3beHDBmzx7y/U88/YHpHbLOuO+GLvYv3W/kdcy0PIbVWr/RAc66HbQ5ghgNqrx+ZX9TSuGcHlCWKO0tDsD6CJSfB6nm2iLhjZn8DR8AJcnjNWiod0VQqcVCfs8BELKl7c2l1J0xReQCHsCGHQq3N4w0WY1DncIrUZk/c4mvtjQzFv39ODvLxYz++8Z/JzTCpLExWNjeembOr58tCf3LK1g6iAz/pDMjsMuFt+eyfWvl/PElcnsOOTE7gpx0Sgrr/zYwOf3Z3HvBzVMGmAkLAnsOOJi0c1p3LC4iicvj+fnfIXqcNFIC68sb+LzezJ4cVkjPSP61juPenjzxmRueLuWxy+ysqpQUY+ZMsDAnGWtPH6+lc9znUztZ0AUBHaW+njj6nieWN7CjPHRrNqvBMguGmrilV9sfHZHCvd92cxZfRRu9I5iL29el8ili2px+WTOG2ZGFAUuGmXlo8023ry7B3cvLmNihLu8vcjBWw/04rrnj/HkjEx+3qFQay6ZEMuSFXW882g/7lpQzMRhSrAs/1Abr9zZg7+/cIzZ1yn3U5JlMmPVvPtLM3qtSHq8hvOzrQSCEr/utqNSCewt9TLnykRKG4PI/gAXDjF3nL+3fNpEZUsIvVomwSzy4bUx3PilncemWfjlkA+9HGJ3rURlW5g1N0Tx1EYP4zI1CIJMTmWI1y80c9MyJ4+cZWRruR93UODC3loW7PTw8V8tPLjaxfRBRrxB2FnmZ+EVVm783Maj50SxpSqEJwAXDzfz8soWPr8zlSe+a2J4d+MZ8zX7b0n8nOeIzG9UZH4zmft9AznFHiYPNFNvC0bWQwX5Zf7/daD/TBMEQX748xWEg0ESMrMAaIkI+FcV5NJrxChaIwVW3r7/dlrraolNSsLndnPznHn0HzWGxqpKhmSPoWD7FgaPGU9jTTUAiWnpeFqaSe/R84z3tXThLJt/g+bRR7eJpiY7iYkKN62pyU5S2pUdv28sW0JiopJBNev+j1n6wQbuvGk8f7loMJMm9KSiygbBNrqlR7Mtt4rpk7qze18dPTKthHw2yqudjBmWxPrtNUwak0pFjQPJ7yEz1cT2vEbOGZ/CngMtZMQDCFTUuskeFMPG3GYmjoyj7GAdMjIZiXpyitqZMsJK3lEXaZKyMVW2BBnZXc+Wwx6yDT6qTxWojwja5x52dwikVzlkhiWK7KgJM8gYOimobhLIb5YZlySQWx4g7bSCGtubRAZGi50KZBS1yfQ06joVvGj0SfQ2i+TZZPpYThZAidOKFNll+lk0VHjCxEcSlloCEjEqPSWeAD0M2o4CKFaNikpvgJ7GzgVQbIEQGQZNF3iRcm+Q3qfh7YEw6Qb1GfhotUiF73S8jO1EwZQuxlPuDXTCy8g0+UNUeINst3noYdTiDIWxB8MEJBmdKKIRISTREZW2aESyDBqCsoxVrcIZDiEBZpVAW1AiWafCI/vItUk8M0BLWIa+FqXgyLk9wtR7lHlMMcK+VpmxCQLHQ2rSIlzzapfE0HiRnDqJs/vpKagPU2oP0zdeRYtH5tzuJwX8ATaUBfl4vx9ZhmndNVzQS4NJK5BmEdlTG2J8ikhhY5ifioNoVXBhTw2DYgR21oYZnaKixqnseYlGWLg3wJqKEDMGaPhbH+ULUrVTYkicwObqMN8Wh7D5ZC7rqeaiTIGDNpnxySIHWmXSzcp11TolBsWK5DRIZCeK1LqV/tOtIvmNMuNTRfa3SGREuNS1XpmhCapO49EaVKRFKeOfmHnyenXROqVAQ5qGrWUBxnXTUtYa4vUcL2UtQZ66KIap/YzkV/rp3s3CgIeK/3QHeuTNT9N90iU0H84jof9I3M2KgxednELTkX2kDBlHS0kR+Z+/RltVCTpzFLIUps85f2PIX2/B1VSLWi1iTkyl4VAeacPG0xQpyKJWCTgaa0jqO4TqghzSBmfjaKxFqxaJSkyl5kAe3UaOp/7ofqzJGZh0Kux11aQNGEpZ3k66DR2Nr7UOT3sbqX0HUV64h5Re/Xnx4jEd13Dnoo8YMGEKR3O3U7hxDTnLvmbMhZdxywuvcixvNwPHn01jcRFJaZnAyYJZ+3dsZdTEyV1WltV30ab9Dc3o3yrS0lUfAEOsXQRSAmu6xBJo+Y32LhzurgpsAZL/TN1pAClwpn61FOy6ELEU7LqegN3u4ViFs9N5UVnnQZZCZCYb2VlgY+qYePYebCMzSSnYVF7nJXtgFJv22DhreIxSIEaGjCQ9O/e3MTU7lr2HHWQl6kCAijovowZEsSnPzlmDLFQ1KmPMSNKz80AbU0fGkHfYQbcTBbwafIzqZ2Fzfhvj+xkpqfXxw9YWvlzfRLckPWa9yKFKDy5vmPhoDaGwjEYl4AvKRJtUpCXo6J6iZ2gvM0cr3STF66mo9xFv1aBRCzg9YVLitLz6VTW/vJ2N0aDMc2aygd1HPEzOTmRvkY2sdCWiUFHjZszwJDbsauDsUYlURrLmM1NN5Oy3M7C3lW9/qaBfz2iy0s20tXnJHhLHhpwGzs5OZP3OeuYsOoBahJ6ZZhY+OYKyajfdI/2XV7WTPSiGWc8XoBIF7r2+l3L/U4zsKGhl2pgE9h5sIyPZwI/ra1nw8XGeubMP3VKMnDUilsp6L4IskRSn4++P7cPpCXP+hASuuSAVk15NRZ2H7EFWNu1uUfB1no4CajsL7UwdHcfeQ+30yIwG4Uz/obopAAjKePKbmTYuifwjLrLSFS74iQJtG3LqmTQ2jYrI/emWZmL73kamjE3mlid2kbuvgfVfXkJDi5cxw5LYkFPPBdev+M9yoH/LBEHQCYIwSxCEtwRBmB2pRPh/he1btwqTNYaCDWso2LAGY1Q0X855hKzBQ/lp8as0VVfSVF3J4IlTeG7FBrIGDObxDz6nvbmZ3DWrMEVH896c2fQfmc3nr71MfWU59ZXlfPH6KySlZ/xLY2ltajqjbdbdb5KUdiWz7lYyvhMTY5h5xyUAzLz1nA7nGWDJGzeRs/YefL4g40dn8fSLayitaKGyuo1n5m9lfHY6N9+/iphoPT+sOsLaLdXEROm49dHNjB+ZzDOv76G0ykFFjZO5i/czblgCt8/ehTVKyy9bG/hpQx1Wi4Y75xYwdmgszy09SnWTj/I6Hy9+XsXoAVHctfA4VouKdQdcrNznxGoUuffTBrJ7Gnhtm4tKe5hKe5gFW91kZ2h4YKWTKA2sKQuxpixEtE7g8S0+RiSr+OyYRI1L4YW+fTDMsDiBZ/aEiNLA5kblZdHAvMOKE/dZuUS9V6beK/NZucSAaIGvqgOY1QK5rSFyW0OY1QJLywL0MKtYVuunySfR5JNYXuunu0nN59VujCqBfe0B9rUHMKoE1ja76GbQsL7FRWswTGswzIYWFxl6DT82ODCIIkVOH0VORdf4xwbHGfgdNg/dDGfi9Sq6xG9qdZ+BP+LyYxDFM/D2yHhOxe93eFnV6OTrunby273cnhlDglbFOXFm/pYSTbbVwM0ZVtL0aq5KiWK81cAgi44BJh1HXX4cQYn8dh+OkIQ7JHHYGUAjCOTY/XjCMC1RqcRnVsOikhD9okS+OC5T41ZeS49IDI0VmFMgYdEI/FoZ4tfKEFoRrl3t4/uSECPea+eWlS6+KApw+0o39691039JO09t8XDLSje3rXQzf5cPq07gxytNSDK0emWq2iUW5iprZM52L9E6Aa1KYHWpsn7m7vQzPEnFG/kBqp0S1U6JJYVBHhilYUCcis+PhFhZGuTXihBROoFX84KMSVHRI1pgaIKKH0pCTF4WYG1lmEd3BonSwrqqMOuqwlg0Ak/vDjE8XmTxgRDVLplql8ynh0MMSxSZvTNAtPbk9UZpBZ7c3nk8NU5l/CNT1DyywUu0XmDN8SAbjweI1os88LOD7AwN8ze7eH69k7q2EBN6Ghjbw8D937RgNYqsLnScsVf8GZbYfwR5H75AXJ+hHPx+Ca6malxN1Rxd/RUJfYexa+mzaM1RZE24gMFX3M7Y22aTNDCbQZf+g31fv4WjoQZHQy15X75FUr/hbF30NDpzFGU566nM24bOHMWmhU+R3H8Yuz9bRHt9NY6GOnI+XUTqwGGse202enM0xdt/pWD1j+gtUfz88hNkDBzO5g/fYPXil3jnjqtYetsVdBs8gl+XzmfodGV/7Dl8NPHp3fhyziP0GDoSgzmKO+e/xbhL/sryxa/Ra9goPnrqIUyWaHatXcWutcp+/vZjD9B3RDaFO7f9R+7x/622p8h+xnlRVuOhvNrLC+8WM2ZIDDOfP4A1SsPanc38tLmRGIuaWfMOM2ZwNC+8X0pVvY+yWi/zPixnzKBoZr10hBiLml92tvDT1masFg13vXKMMQOjePWrasrrlPNo3scVjBkYzV0LirGa1azY3sKK7S1YzWrueq2Ekf0s3Dy/hMtnH2ZnkYPpo2L4ad4AMpN0rH5xAE9dn8F10xJYel8PJdHv5YGMGRDFyD5mPL4w766ow+WV+CWnFZ1WoLDERe5BBzZHkM/WNPDR80P4YX0D5TUeyms8vPBeCdkD47hjTj7WKC3LN9SyfEMt1igtT7+xn3HD4pn7VhHHyhy8800J46/+lbuezaX3tGX8sLaCWc/sIvvylVxyx2bSJy7jkx9LOevqX7n58V2cnZ3I5eem885z2cxeeICYKA3L19ewbF01Jr2KO+bs4/Yru/Pd2hpKq12U1nh4/p1jjB0Sy53P7cdq0bBySwNRRjVLnhrCI68dplemieffKaa8xkNVg4/5H5fy1Ssj0GlEtuS1kn3NDq5+NJ+wJDPz+SLGDInh+XdLqKz3Ul7r5YX3jjNmsJWZLxzEalHza05Tl/5DRY2bsmoXzy05xNhh8dzxTB7RUVqWratk2bpKrFFabp+9i3HDEnjzk8OUVTkoq3Iw580Cxg1PZPTlKzle0c4d1w1kzan+zKg/3kX9p9ppgiA8B1why/LAU9p0wG5gMHDCm79XEISxsiyX/+Gj/G9qgiBgtsZgscagMxj+8P7n3D+Lrz94h2tvvZM5bywBFId66bsKJWTpuyuZ88wMEhNjWPLWfcx57IJOzvMJi4s1ndH2v/b/ntmCYQ44/VyRbKHCGyTutOppakEgVqtCJyq877ZQGK0MvYxaGgIhLkmysKnFzYAoFZIMx91Bzk804qt3c22mxIH2/39Ps1aVh6lyylzaUyTOInJODy2CIJBbE+Te0Xqe3+ZhTJqarZUh3EGZp8828tXB4BmFLuw+iZtWuqlpl/jHYMiIUvh4ubWh//L94w0Cg+NFtteGmZbZeUsUBYGJaSompqnYUhUgLMOmGomsqDAmDehUf1qwt0tz+CT21gR545p4CqoC/9H3/ldNEATUOgNRKZmo1F0XIPl37NiW1dQezKex9ChqjRKlDfq8HN25GYD6kiO47Mrj72m33EuvoSMQu4jyGqOikP73Sez/81Zc7WF1rp37rkhl/KAodhR1/kKq04jookXS4nWYDSoyEvXERWsYO1ChXiTH6Xj07xks+LaGGy5IZss+JcI/eYSVhV9XM2FYLNvz7f/yuLbubWL11jp6ZZqZc98I3v3mGI/cPpjNu+qRZZkhfa288t4hpoxJorHFyxuzRxJr1XHgqK1TP61tfpatq+adbySyB8XSu5sFrUZgy55mJkUS/7uyXpkmslKNzHuvmISYzk9DRFGgR7qRB//Rg1+2NbFlbwtXPbyP7mkG7I4/VjLu91iLzUdxeTtrP7+EQ8W2f/4H/6b9niTCHGCnLMuPnNL2IPAqMB+YB/QHlgG/yrJ8y5833D/fBEGQF+WXU1FUQHy68gjvBIWjsmAXvYePorWuFoC41DSO5e1m3NSplBTuIylTkS06QeHYt20zg8eMpylC+fivKBzB9rZOSSinyyDllDUQl6j8/o2HLmPpuyuZecclLHnrvpOd/AYvbnfOHkaPzGTdpmNMmtCTymp7B4Vj665Kzp3co0sKx7pt1Uwam0pljbODwrFtbyPTJ3RN4diwS3kEU37oJIVjZ1E7U3+DwrH5sJtsg5+a30nh2F4TZpAhRL3SDakmgbwmmfHJXVM4tjWKDLJ2pnAcaJPp9V9QOHpb1LT+XgqHO0B3o5a230vhOAMvUu4J0tv0GxSO0/DRapEK7+n4UygcXYyn3BPohN/c6qLaG2Rmt9hT8CFAOBOvVoEgYAuGOvXvQ3HcYjUix91B+pk1BEQnyZH72eCT6WsRKIhQOBpOoXDkt8iMS+xM4Xh0u5+Le6hIMIic3VdPbYRikRYlsrsmxMQMVScKR1W7xPBkFTnVIUamqql1ShxtCfPIBg8X9tKw5niQjy8y0C1aRVFTmIc3eXlgpJY0i8joZBW1rkj/ZoH8hhBjU1Rsrg7zQm6AcakqLu+pYmSiyM46iexkkboIPlkvs7dRwqyBNwpDHLHLTE0XOTtF5LxMFTkNEqMSRepOoXDkNcpM+A0Kx47acMd4TlA4dteGOPs3KBxbSgNsOu7H6ZO494I40mPU7Cr1Mbmv4T9K4Zg25zPieg2ioWgXif1G4m5ROL3RySk0Hd5HylCFwmFJSgfA21pHQu/B1BXmkDRwFO7mug4KR/3BPNKH/waFY99OUgdn42yqI+xxkNRrADUH9tJt5ATK927jp6fu7BjXg8tzaDh+hKyho/llwRPsX7+K7MuuYdDk8+g9ZiLVhwpJz8pCEE7u50d3baPXyDH4WhsAiE9N4+jeXAZNmNQlhaNw+xayz57yvxSOU9v+DQrHifOiqv4khWPHPhvTxnZN4di428ZZw61U13s6KBw7CtuYNrprCsfGvQqFo7rpJIVjx/42po3qmsKxKb+NomIH32xq5rMn+5KRqGNnkYOpQy3kFbvIOoFv9DGqj5ltR9yMHRBFdZNyrSfOu2lj48g74iQrJYKv9zGqv4UtB72cNSKWqgblPmYmG9h1yMPUMb9B4chpYOKoRGbN2UNKgoGn7xpMTqGdqeNT2LO/he4ZihhBeVW7QuHYWc/E7CSF4gJkJGrZnt/COeOT+HZ1FffN28dtV/XkrS+Kqdl0ITmFNuKitfztgV1cdV4az8zsy44CG+eMVSgcWWlGZEmiotZDr0wTZ92wg7FDY7j3ul9ywNIAACAASURBVB6Y9AIZyQZ2FNiYFqHcZKUZQYaNu5vZkNvCym1NXDopiUsnJ9K3u5nMU/FdUDhOrIea5pMUju15zZwzvmsKx/qdCoWjsu4khePuZ3cpAg8zhnbgy6odCiV1Zz0X3vDHUjj+aSXCuXPnvgi8P2fOnMOntL0CaICLZFn2z5kzp3bu3Llh4O9z5sx5448a3P8Jmzt37pyzrrqB716cjc/louboIXKWfcWACZNZ894izNZYtnz/JSUFeeiNJr5b8AJjz7+ID555HK/LSfnhg2z45gtGTZnGa/fNJL1Xb9Z89SmH83ajN5k4ti+PgSOzO73nwscfZPZtM7A1NzPx3AsAMJhMOG2tHNyXx7W33smFV1zVgZ9xaRKz7ryEq66c3HnwYXeX13TLrA85d0pfrr/zS/r3SeLdT3ZxpKQBlSjw8NyNXHFxP2Y+uhanK8Dx8lbe/vQg50/KZMYDG+nXw8p7Xx+h4GAzOq2Kx+fn85dzM7nnuT34AyH2HW7jox8rmT4hkVuezqdvlpkVm+rYlN+G2aDiqfcruPSsOB58q5SQP0xBhZfPtrczbZCZmR/W0csq8Pk+H3urg5i1AnM3uLion57FOS7qXTKHWyS+ORxkUqaahzb56GGB70slCltkjGp4rTDM9AwV8wvDOENQ7IQVtUpRjndKZWK18EudxKF2RTXhvTKJ0bFqPqgI4AnLlLslNjaFGGZV82mlnzityObmICWuMHoV/NLgZ2CUlm9q3PgkmWpvmB2tfnoZdXxX306CVs2edi+V3iA6EXbYvfQyaVnR6MQflqjzBclr89LbrOO7us54vSiwusnFoCh9J/wxt59uRu0ZeF0X+KZAmNw2L31O67/FH0IQOAMfiEjRjbIaOvD72r2UR8Z/Kl6WodoXZE975/6LHF6KXcp4VjR4GBqt45tqN54wlLkl1jaGGRmj4vXiIL2jZH6ogEKbMl8LD0pMSxX5uDhMvUfmiE1iXWWYs9PVvFUYpHecii+LAuTVhTBp4IXtXi7opeGpzV5cQTjUHOarg34mZ2lYtMdHjF7gq4MBPjsQ4Ip+WvbWKV8e9jWG8YVlWrwyrV6ZHTVhVpaG6Bsr8n1xiH2NYYwa+PZokNEpal7ZG2BqpopddWG+OhpibIrIC7uD9IgS+LY4xL4mCb0o82pBmBv6qVlXFeacTJFyh8wXxySavPDD8RDdo0S+Px6moFnCooVX8oKc203N3F0BXCHleleWhhiXpuaRLT56WEW+ORqkuE1CI8K87T4u6K3lqc0eXEGFj/3hHg9Te+m4a1k7/RNVLD/oIxCS0KhF5vxs46KhZh77oRVfSGLLYc+fXokw6HWR2H8kuUtmY0ntTtnGH2kpLkRrspD/+atkjjmHPR/MI+h1Y6s4SvXujSQPHMXWN5/AmtadY+t+oKX0EGqtntyPFtB9/HR2LH2egNdNe30VRSu/pNuoiaxf8BgxGd3Z+NqT5H/3IU2lRynetpbeE89l67uvYIyJw9XSiDkukZGXXsPyFx4mvlsPvO12rCmpDJt+CasXv8SgKeezYv4zCIJMRVFhx37+2VP3k5TVk9yVP3AsLxed0cy3C15g1PQLWbZoAW3NzZQfPsi6bz5nxKSpvPngXYyYNBVzdHRHQRZJkhBFESTlS7csyyfbZFn59zRTd9H2X7Un6btwuMPHu56gsOc32rs4G6SunVw53LVTLIfPfJIjS10X7pGlrp/6rNtRz4KPSpg+PnJedLfw0bJK9hywYzKoeXLRES6bksIDrxwkLEnsO+LgkxW1TB8Xx21zD9Iny8Sqrc1s2mvDbFTx1JLjXDYpkQdfP4Y/KFFwzMXHq+qZPjqO2+cdoV+WgY9W1pN70IHZqOLpd8u4dGICi7+roabZT1Gpm09+aeCc7FjueOUY00dZ+W5zCw63khD59EcVXDouloeWVuD0hjlQ5uaTX5s4Z2QML39ZQ3y0ho9XN5J7yNlx3l02KYEH3yjB6Qlz4LiLT1bVM310LHcvOErPdCMfLa8md78ds1HN0m/KmTImifteLMTpDrL/aBsf/ljB+RNTufHxXPp2t/D+96W0OQJkpppY8MFhzpuYxj1zc3G4ghQesfHD2gomjU7ipsd30bdHFB98f5xdBQqV5bEF+7l8ejpX37eT7MGx9OluIa/IxrB+Vp5adIizRsZjaw+wYlM9W/a08NOmev4yLZX7Xz6Ayx2mtNrNu99VcsnkZL5fV4dGLbDg4+PYHCEsRhVPLjrKZVOSeWD+IVyeEIdKnSzb2MDiJwazcmsjWalGXvmolDU7munX3czsxce4bHIyDyw4jCAK7D3YxkfLKjuth+/X1rJ1TzNmo5onXj/A5eek8/SbRbTa/ew/aufD70s496xUbnosh0F9Y3jv62Ps2teE2aRhyReHqahxUdfkpb7ZQ+HhVt7/+jDnT8rkpoc20Nji/UP3x98TgfYB58qyvC3ysxZwAD/Isnz9KbjJKBHo/5zA8Z9ggiDISworcLe3oTcq3whPyCT522xEx8fj9yiblM6oyCR1y0jF2WbHEJGn87pdJCcmYW9uwhqf0EnGTgwGOsnY2ZubufgUIf7NJTUdskeDoxq6ljvy53c9+K6iDACBMwuphFz1iKJAU4uXpAQjtjYfFpOGsN+N0x3qJEvn9oQIeZ2YjGqabH6S4vTY2v0YBS8IgoKP1tLY6icxVktbVSsIQicZI7sziN7uAIROMjQxDieeYETGTiPQ4pZIMKtoqHFjOl3GziNhDoW6lLFrbPFjPE3GrqYlSGxEJgxOythpBE0nWTFPGKI0AtUuFVaN0El2rdYjEq1V4QrJRAKs+CQQ5ZMydqfK3jX6BKLUKjxhCV1Els4V5J/K2J2K/z0ydifwOjGEXwKTWsQZkjCrFFk9rUop5e0MyURpRNwRGb4Sl5+1jX4e6WPpGH+YsFI6XqRDps0VkrFqwoByP8xqJWEwWi0giAp94lRZOp3GR0RVqZMsXWaKDm9kvgynzJffqMGsUWT1bl3t4eJeWqZkqUlP1Z+2HmSSEnTYPRJmXeR+npA98kOCWYUnIPPwD62MyNRx7kAD5y9q4Ps7k+mbrETuXD4JlShw91fNVNmCvHlNAr0SNRi1Aq1+SIhSY3eHMetFZFnm3c3tvL3BTopVjSgKjMzSM/uyeKIt6g5ZJbs7jFmnLIh6l8R1b1bRJ0XHwhtTUUVoHSYNHbJKdpfSP4DTHVRklRwhEiwq3H4ZQadRPi8RWS67K4RZr0LQK7JUJ2S/4qNUTH38KA9cn8lfJiXQbA+SGKvIYEUnRBF71q9/egT60qWb0Jmt+Npb0UXFEvYrETWNwYjfYUMfHYff1Y5GrzwSkgIe9BYr3rZW9NGxhPxeRBE0eiO+dhsGaxx+ZzsagxG1SiTk86CzRONta0GW4eubp3S8/98WLye2W298zna0BiMhtx2NTo/eYsVjb8FgjUMTcQw1eiMeeyum2Hi8jjYsFgsIEPB0lslTRRxGrcGIy96KJTYe2dOOPrJPnyqTF5+YiN8b2f8NRpy2FqLiEgi6TsFHZPICTjtRsWc+Gjdpu6az/FYE2qQ5E2/+DYWmLqPV0HXEOvgbdIJQ15FpQs7f1wbIga7bpXDXj/Xl0Jl0JDn8rznnXTv4v4GVuvZ7Cg7buHPuPnZ/M7VTu609gCVSMMvpOXHeBUiMOynzZzKoaLL5SU40YWv3YzFqIvggsdE6mtvCnWQETUY1ze0hkuKN2Nr8WCIqT053kPg4C40tHhLjDMx4cBP9e8bwxF3DaW4LdTqvATx+GWu0ntNNUJ+kbj707AZMRg3PPjyRHmOW8PNnVzN0YHLH7z3eMA88vZaN28v55r2/MWpY2olOzuj3s28LeOjZ1XRLtyLLMHRgMksXXIZO1/X69XqDTLviI5ITzSydfxlJiRH/R/gXau6pzqyuCYB45no//6+LuPrKydw0o/McoolF0Ez9jycR1gJZp/w8BtACOafhNEDXIdD/Yfbxk/fTVFnGirdeZcVbr9JUWcbCW65GrVWz9KFZ7F7zM7vX/MzSh2ahUqt58bYZ1JWX8eVrL/Hlay9RV17G83f8A5Vaw7yZN7NlxTK2rFjGvJk3Iwoi9uaTUkMxCQn8JSLEf9Upgvsn7Azn+Q+yhmYP18xag1otMOWqHykuszN7/i5e//AgxeXtTLvuFzRqkb/ft5lvfylj+YYarn9kF2qVwLk3b6akwsX8j0uZu7SY41Vuzp+5G41aYMbsQtbstrNsWws3v1KCWiVw8eOHOF7r4821rbz4UzOljQEue7USjUrgruVt/HTQx08HfdzxQzsqUeCvn7RS2S7xaq6PV3N9lLdJXLPMhUaEF/cEWF0eZnV5mAe3BlAJMGOtjwoXvH1I4u1DEpUumVu3hVAL8HQRbGhQXk8XgUqA146GqPXKfFIu8Um5RK1X5pFCBf9aSYCdLWF2toR5rSSAKAi8dNRNgy/Mj7V+fqz10+AL83mVC5UAH1a6yW/zk9/m58NKNypgSUUbzf4wa5rcrGly0xII816lDZUg8HVdOwccPg44fKxsciIKAu9V2mgJhFjX7GJdswubX+oS/1294wz8xhYvzYEwb5W3IQKf1jgpcPg54AjyYaUbUYCFxx00+SVW1HvJawviCsssKHGiEuDdCg95bSF224IsKfOiEui43lX1Ib6tCVDvlZh72INaEHjzuJ/drRLbm8PMPxZEJcCTB/xUuWDpceVV7YaZe0Etwsv5IVZXhVldFebhnUHUIty40U9Vu8S8nV7O/8ZFrUPmm8N+NCLc97ODnw75+emQnzuXOVCJcPs3NspaQry03sFL6x2UtYT4ywfNaFRw+xctLC90E2MUeWVdG5/mOFGL4AvKvLTazkur7ZQ2B7nryybeuDoOrUrg8rfrmfVlM7d80oRKhMvfqKG0KciLK1t5aZWNcb0MjO1lYO4VCYgCfLK9nUXrbNz6Xi1qUeCyVyspbQzw4k/NvPhTMy1ORfO1xRHiopfKWb67neW723nqmwbUKrh0fgWljX7mLW9i3vImypqCHev/1vfqWL7XwS/57dz6dhVqUeDSF0spbfAz74cGlqxq4Hi9j0uePYpGJXDLG+X0StUx54MKLnxgPwJw0YP7Ka3x8tIHJX/KXnG6uRqq2TLvNkSVmty3Hqcq91eqcn+l8ItXEUQVm164FWd9JUXfvU3Rd2/jaqhm/dxbENVqdrz5KJU5a6nctZ5tCx9FUKn49dlbcNRXUvD1WxT9/AlNxfv55ambEFUacj94ieRIqfCo5AyMMQmsfPJG2msr2PP5Ig6s+IK2mkqWPfoPRLWatS89SPGO9RzZtJoVzz+AqFLx1YM3YKupYNe3H7Hp/YW0Vlfw6X3Xo1Kr+XHO/RRtWs2BDav4+ql7EVUq3pv1d5qrK1m15FVWLXmV5qpyFt9+DSq1hh9efZ68tT+Tt/Zn3n/0LkSVmtduuZrGqgqWvTmfZW/Op7GynJdvvBLxN6ga/2v/fc2oV3U4uCfM7Q1xvNLFnLcPM+ftwxyvdHHebdvRaERueGw336+t5vu11dzw2G7UKoHbntpDSYWLZxcX8eziIkoqXJx782Y0aoHrHtzOd2sq+G5NBdc9uB21SuSc69dQUtHO0wvzeXphPiUV7dz22Bb8gTC9Jn3FppxaEODaezegVgtMvXoZxWVtPLUgl6cW5FJR88+Th6+8tD+f/1DEwnf3kJJo7uQ8AxiNWt597VJenD2NC679gideWI/b3XWOxYyrh7N/yz0sXXAZj949kc++K2Tdlt/eewwGDWu//QcCAi+9ufV3zMK/ZzOuHctri1ay8pc8QqGuv4T9UfZPkwiB7cD9giD8DLQD9wIS8MtpuOFAzR87vP8zljVoGPHpmfQZNRaA+PRMBkyYhN5oZuD4s+k+aGgHVm8yM3DMeJIyMhk0ZjwASRmZDBg1BqPZzMizp9Bn2IgO/OI5T/LTpx/ylxtv5eFXFgLw8CsLuXf2nDOc5z/Tosxapp+dSZRZy3mTutEjM5rJ49IRZT89Mi2cd3Y6FpOGc85KY9TgeKSAm1BIJsqkYfqEZLqnmxg9OAZJkslKMzJ9bDwWk5ppY+IZkCqeeKKJxahi2kgrWcl6RnQ3EJaI1Lg3Y9aJnJWlY2jqyQiLRScwpZeOtCiBsWnK8syIEpnUTY1JoyR79Yk5+b3PrIWJaSoyTBIjIzrB6UaB8UkCRpXM6Fjof0pepUkNvS0CKXqBIZGaMyl6gVGxAgYVDItW0ct8sn+DCgZHq0nUifSzKAdiok4kw6BGrxLob1HTzXjyY6QTBfqZtcRqVfSMRCBiNCr6mHXoRIHeJm1HKWy1IKAXBfqYdcRq1HQ3KlERq0bsEg+cgdeLEnFaFf3MWvQq5b0zDGp0okRQljGoBAZYNMRrlaIhsixyoD1Ef7ManUpgoEVNN4OgaNZF+j9xvZIsEgYS9QLDrGr0IgyJVpFlOhm9MapgRIyKVEOIkYqqIqkGhUJjUsHAOIE+1pP3MyjJZFlEcqpDrDoeYmSyimcn6llRHMSkERjXTcuQlJP306ITyM7UkhmrYnx35eFWZqyKqb31mLUik/roGZ6hY0ialuq2EJ/lurh4iIlucRrG91SiMt3iNIzrqcdiUDFjfBTJUSJLNjs41hjgrfVtmHQinkCYCb2VROBu8Wom9DUyvo+RcwaaCEnwzS4HI3vo8QUkpg400y1ew/i+SlQkM07D+cOi+GFXG+cNtTC8u9KPXg0WvYppg8x0S9Ay4QQ+Xt2x/icPMDE8S4+g1RAIyVgMKqYNttAtUceE/ia0Bg1ZSTqmDYvGbBCZMjSKQd0MrC5y892GJibNKqBXusLtDIf/MwmNpoRUkoeMR603kjR4LLHdlfxyjU6PxmAiZch4zInpJAwYqeATU0kdNgGN3kjKkHHE9RyIKAogS2gNJlKHjceclEbSwFGUrP+e/C8WkdBnMBqDkbRh44nvNYig14Gzvgqt0UTGiLOISk4ndXA2GpVAVEo6maPOQmMwkTliAok9+nOi9pfWZKZH9kSsKRnIfg9SOERMagY9R09EazTRI3sCaX0HdVyb3mSmz9iziU1Lp9dIZf+PS8ug37hJ6I0mMgcMIa3XyXLeBpOZgeMnEZ+WQd/R4wBISM9k8ITJHU8w/9f+51iPdBOSLLM9v4WJI5XglVolkJVuYuIo5eesdBPTxydiMaqZNjapo9Q5QJRJw8iBMXRPN3F2tnKed083MX1CMhaTlnMmpDBq0MmgWJRZw7kT0+ieYWHS6GRcniAtNh8eX4hzr19FerKJlx8fh9GgJinecMp5HcWksUqUOCPV8k+va8yIVO6+eRQvvrmTl5865zdxV102iIlju/HInHX0P+strv3rEJISzIzPzmTsqMwOXGpyFKnJUVij9Eye0J3bHviJW6+v4c4bR5OeeqaQQZRFj73dy43XDv+nY/137eq/jsIb0PHya8u5/e53uHnGVFJTYohNSP7nf/wv2u+hcHQH8gET4AMswDuyLM86DXcY2HJ6+/80EwRBXrS3hN0rf6TbwCEAVB46wNhLriD3p28Yfd7FlB86AED3gUPYvuxbrp55F5uXfUevIcMAOH6gkIuvuZ4f3n2b8665jpL9hQAkZmRw+9TxHe+16mBZR0UrSxeaz4OjGroe5B9A4WiurUCSZD769jAP3T6cT384QvbQJOSgjz0Hmpnxl94s/KiIG//Wh/yiFuSgl2H9Y/j0p3Lun9GXL36uYHhvHciQf6Sd6y5KY9GX5dxwSTqFe+sJhmWG9zbzxfom7v5LCl9vbGZojIQsE6lxH82S9Tau6gEH6pVv/ENT1Xxd4OXOcSZ+yHXQN15xWA80hrmin4YPCv1cmiFwsFVZs4PiRJYdD3HjQDU/HPQzIOJYH7LLXNJN4KvDIc5JUQptAPSLhlW1cHGKig2N0CeSpFjslJmeJPB9lfD/sXfe0VEcWdv/9SSNpFHOERFFkJAQOZtgwBGMs9fGONu7zhmvE8bgyOKAwQGTweQcTAYJSQRlJISEcs4jjWY0efr7o4UAS9rwru3d9/18z+lzpJp7qqurq6pv3Xruc5ngp6BAL1n/fTQyDtc4mOqvIrHRSs92jEKxwc4QdzXH6s2M8XaitB2j0MNZQVKjlTHezqQ0mwhzlgzfEoONOE9nEpraGObhTIVJOsYMdVKQojMx3tuFtBZjh6FcY7Yx2F3dST/ESUHqL/RVMgflJhvDPZ040WBkpJeacqMNJ7mDMGcFSU1mpvqrOdNkpoeLAqXgYEulkUg3JTJgrI+KSpMVEejpKie+wcqMAOl5B7gLiCIUGhxM8FWwv8bKDX4KasxW7KLUP0dr7cwKkZPSbO7YqFxsgVuCYWMp3DtIRY5WpKDZwepLdvRW6O8l4KKWcUsfJXGBCrLq7MyOlN7vQ6M1ZF4ZD0FKfsow8ucb3NmSbiQ2VDquy6iwcE+cCxvSjdw62JV5O5qwOURya6zUt9oZ11fN1IEuDA2X5lR6uYV7h7my/JSO+0e4kVkuHdkbrSJbUvWEeCnYcq6Vd2f6MLyXMxll7ePzWDMPjHYno8xESb2VtFIz+9JauWWIG70DVNwUKx1FXqqxMXO4Oz2euUjSor4UVLcn1umhYuPpFv48zYdNSc0dhnVGURv3jJLG/wNjPUgtNlKpc6A3ifycpuO24R6UNZiJCndmUG83LpYbuX+iD4s2VZJdaiS/0oTJKmKzi2hbbWhc5MT00eCkVnD8XONvDuEY/sR8wsfMIP/geiImzERbLIXH+PQeRPGpXUTe/BDFCXvx7iUZ1rryfHqOvYnc/evofcMsGotykMll+PQaQMHxXQy6bQ6Fp/aiCQjlyPwnOu4Vc9cTDLrlTxJeWqHAp1d/8o7uZPCsh8k/vhu/vlEoFTLq8rPpP3Um6TtWM3DabHRleYh2O4H9orjw83aG3/0I2Yd20SMqBlEUqbp0gZgZd5C8eSVDbr6LxqJcRNFBaP9oUvZtY/wDj3Hx2D5CIwcAUJaTxYhb7+T4+hVMmH0vpRel9b/HwMEk7drCjXOeIP3wXsIiBwJQnJ3J2Jl3cXrbembM6RxT/weEowv9/xIIB6KDT1bkodNbWfji1Y3Vqp0lHYZyao6WB28N58cdJcyeFkpajtSPcYO8WLurlBfn9mf9nhKGRnlL+tlNPHh7BEs3FvLQrN6kZkvf46FRPmz5uYynHxjAR8sy+WFzHjq9hQBfZyaODMZqc/D5W2NIuSCdWA+L9mPj3kKenTuYNdsuMTwmAID8Eh333HZ1U3dFrkA4PlxymuYWE4dPFVPXYKB/X1+ObHkQpfKaE5Iu4BRJ58o4lVxObb2en3Zm8tXCW7n3jsFddltufh3LVp5lw/ZMpozvzZsvTGBoTMh1Oj2GfMaJnY/RK8K723t2JXa7g5z8Fs6klHDhYjUR4d706eWLm0bN0CG98fCQ1tW6eh3Pv76FnEtV6A029AYTDQ2Sd/7PT06nsdnC5i0nfl8IRzstXSzwCbAWeLgL4zkYOAas+rUa9p8Uc5ue3OQESnOyKM3JIjc5AVObgdKLF6ivKCPvXDJ555KpryjjQuJJjAY9GQknKcjKoCArg4yEk7Tp9Zw5cpCa0hIyk0+TmXwaY2srQ8aMA+COuY93Sgf7e4q2xUxRWQuHTpXSarByJL6M85m1ZOU1cvR0Ja0GK4fiKygqa+XU2WrOZDZQXGHgSGINrW1WjibXkJnXQmpuC8fONtBqsHHkTAMllW2kF+o5fUFHSY2JY6nN6I12TqS3kH0lx/1FA3qzg+M5esq0dpJKLCSVWCjV2jlRYEZvEcmss5NVK10J5RJ92alSG5V6kXM1ds7V2CnXO0iotGOwwrl6kRytdJ2pc9BmgxydxMiRrpWuqjY42yhholO1DvJbRfJbRVK1DtrskNtqp9bkIEdnJ0cn/Z3fasfkgGydjWKDnWKDnWydhDu+2GqlweIgX28jX2+jweKgzGjD7BDJM1gpN0pXQZsFs0MkX2+myWqjuM1CcZsFrc1Ovt6MuT2wr8Jk7bi60m+ydtavNFu5pLdgsotc0ltotNgpMFgpN9ppsDi42GrFZBfJbbVR2maj1Gin0SpidYhkt1qptzgoMNi51GqnzuzgQout43nLDA4KDQ6yWqQ+yGi2UWcSyW91cKHFQY1JJE1rx2iX+vVii3Sda5Rw0MkNUGUQOVtjZ2uBnalhcqJ9YPlEFf195ChkAll1dhLKpPcbX2ajtNlOUqmVpFIrpVo7Jwst6C0iJwvMZFRYyKiwcLLAjN4sklVhobTRRnKxifxaKw+P1hAdrKS+1cEP8TrSyy2kl1s4lWdEb3Zw4pKR0kYrSYUmkgpNBHnI8XGV8+atPsSGq/lwTyMPLK/ih5MttJocHM8xUNpgJSnfSJXWxmOTvIgOd6KXv5IvDjaycGc95wqNpBS1Udtixe6ABp2NxDwDiXkGyhusHMvWozc5OJljIL3YSHqxkcQ8A00GG8dz9Hy+r4FHv63ks111nLtsoKHVRl6liX3ndby0spI1x+o5kalj86lGlu2rI9zfibEDNcyc4MuSF/vi5iLn/cci8PNScufUoN9l7WgsyMJmaqMmKwlDfQX1uSnU56ZgqK+iOisJq6mN2gtnaCrKoakoh4b8TKymNqoyEtHXVVB7MYX6S+k0Fl6kKiMJq7GNqsxk9LUVBA+WEp70mzyL2tx0WmsrqM5Ooe5yNrqaCsrTTmMxtlGRnkz95Wzq8rMpS0vEajRQlnIaXXUFNXkXKMs4R3N1OUXnE7C0GShOTaS2MI+qSxcoOp+Ipc1A4bkEtFXllGalUpx2lqaqcvLPxGM2GCjOTKEsJ4uynCwunZHW/0vJp2isriA/5Qz5KWdoqCwjJ+kUpjYDBekpFGdnUpydSU5SPCaDnpzkxN/lffwhv77YrzGwRVHk2Jk6UnO0pOZoOXamjtY2G6kXO3Hl9wAAIABJREFUtZRUGEhIbSAhtYGSCgNHkq5+H1Ozm0jNbuJoslR2LLmG4opW4s/XEn++luKKVs5n1qPTW1i76zLRkV4sfmskQ6N9+eyt0VTUGCgq13HqbBWnzlZRVK7j9Plq6XudUM75zFrOZ9aScLby7z7LqeQyci838N4r4ylLfQ6Ni4oX3j70D/tgzIhw5r04kS8W3sLhLY/w+geHiBy1hHc+OoLjyhFzuwzo58/XH99GSdqrTBgdwS33r+XFv+6nVX81ILWmrpUAP80vb9NJHA4HbW3Shur7NWfx6j2fu+auJPFsMRHh3pSWN7FibTJTZi7lmx9OAnDg8AXiJiyiV4Qva7+dy77t80g89iEzboxl8ccP880XT7Bpwzv/8N7/qvyRifAXIgiCuOjIeWQyKagE2oNFGhsICAqkVavFWXN9sIio17YHC0rBJWoXF5a/+TJHtv7E9Hv/xIvtUA2jwUCAry/a+vpOxvPv7YF2tNXQorPg6eFEQ5MRHy81bUYbNqMeV1cldY1GAnxdaNSacNcosbbp0LfZrwsu1DVqQQBXZwX1TVJARWOzBRejHhHQt9nxcldSp7Xg56mkpbgBKce9jPpWG/7uSuouN+DWHoylt4h4Ocup19vRmMzXB5O1OfBzlVNdZ0TTTidnsIGnk4yGNgeuNhtGm6TvrBBoMou4WB00W8SO4LY2uxRcWKoDLyc5Jrukr5YLaK0iKpzQWR0dwYVSbIiKFqsdd4UMc7u+k1ygpk3AQ6VAb7Wjll8J/hORiSparXY0ChmW9kVYQI7e5sBNKcdgs3cEC5rtDlyVik76KpnwT+s7yWw4yaUAQnelHL3Njlom4KRwYHKIaBRydFY7bgoZZoeIHBsL8tt4KEzNQHcVrVYHbkopiNBkB41S1vG8omhFEGSo5QItVhFPlQyd1YGv2tbRn+5KGVqLg34eluuCNZss4OMEBrWcRWkO9Fb4cKSCIFc5DUYHYb8MFmx/v0YneUdwXsd4sIC/u4K2dnpBF5WMBr0UkNOkt7MlVU9OtYUPbvPGy1VOZoWZ27+pJXt+KIJw/Xhr0ttwaw/m05sdeHs5dQTz6Yx2ssrNzNvawCMTPHh8kvd1+i+sr+PwBT2RQSp6+KmoarJS1Wzj8Du9sdgcjHu7kK2v9GBQmAQd0bdZ8dIoqWux4ueuwNAebfr095UU1VnY82o4hTUWnllZzcxRHjw7ww8fj6v6m05r+fpAA/3D1Ow5I3kFZYIETnBSylAqBGL7afjhzf4E+qowylQETT72m3ug71qbiq6yEI/QPphbm1E4S54uu7k9WLClEbW7NzaTFFyodnXB1NKIs6cvZl0zChdXUld/wuWj2+g37R4G3/UUzp4+WE1GFHKhIyjRxcsXk64ZpYsrcrkMa5setfvVYEGrqU3qh2uDBVu0eHp5AGKnYEGhnVpN5eyCQduIxtuXthYtHp7S0Ym5PViwtbEe/8CugwUtrS1X1/82AxoPT3QN9fgG+HcKLg8ICuiyD//wQHeh/1/kgZ4w5yTv/XkgU0ZJEIwrNlKbSWqPi1pOY7MFX29ntLqrwYV6ow1PNxWNOis+nk60tS+ILs6Svr+fG9qWq8GC+jYb7h7OPPp6AoVlOjZ9NQkvDydcnBVodQ6p/uv0rXh5a677XgO4atSdOPHhqgd6445sftqZw9519wKg09vwHfAZ2rzXcXVtHy/deYOvCSJ0OBxkXKjmmdf3cP8dg3nhqTHX3XfegkN8s/IssVFB9Az3oq5Bz8X8ehL3P0losAeRo5awbtldjIgL+7v3fOyFbZxMLOLUnqew2ezc+sAaJo7tyxcf3Xmd1/zoyTwef+EnJo2PZPWGZADkchkOh4iTkxInJwX9+gQTf+QD1GoVotIb2a8cRPhPGdCCIEwCXgD6AM3AZlEUv/61GvHfJIIgiD7BITRWVRLYsze9Y+IYcdPtbPpkPgs2bmPJC88QO0GKCs+IP8HLX33HJ08+zJzX3uLk7h0ADJ04mU+evXoUuftCYYfB3NViCF2n7e6n7gZw3w1/J9bOhrJU3sVCaanvXAas35yKt6eaVz9M4ujG27n/uSNMnxiGUrCz73g56/82gWlzD/P5vOHsP1pEq8HG3dNDeWPxBQ5+P445b57n9nGe6NvsHDvXxKr3BnHrSxl89GwfjpysodlgZ/ZYb/66upw970fyzJLLjO0nbVSO5xj44fEg7lhSwcIZGrZlSh/SmVHOvPezju2PeLNgXzO9vaVJdLLEyrJbNNy7VcdfRzuxt0BaUG7to2RhkomVk5W8ctrKuGDJADpd5WDxeBUfJJuZ3VPGz+WSQTMjVMbnWXa+GQl/TYPR/tL8Sq4TeXugwEtpIs/1k3G0VporUwIE9lSI/KWvnEUX7QzzlvRTmkRe7Kvi3RwLj/VUklAvLaBjfOSsLrUyf6Cav102E+sptb+izcGfwp2Yn2tkbg8ViY2S/g1+MlYUW1kwyInP8y0MaccQ5+jsvByp5K0sK0/0VhBfb8dDKTLMW2B5gYPFsXIW5NgZ7i3DU+XgeB0siIZnU+GFSDhSI7FtnW0CdwUsGw5vZ8GEQLCJAsl1IouGCjyTLPLyIIGURpEms8C0EIG/ZTv4boyMeakOJofIMNkhqVbkkxFynkiwMW+kioPFUvtv7qng4/MWVk9X88gRyQNxe6SSxHIbS29y5f7tehbd7sn2rM7v96UDBsZESgv/sWw9K54K5dk11fz5tkC2n5aI8a+Mn/1fxPLIh7mEBTiRkttKgLeKVW8P4KEFuRSUGZk+Vppzd90YyCcri9j42XAenpfK1DFS+dGketZ9PpoZj5/is9di2HKwHIDYAZ68teQCvcPdcNcoueWGEApKW9m0v4QTG27mnuePM6ivF2fS6rA7RN56No512/OZOT2Cxd9nMXtGBIP7+5BfomPRayOY+qe9LH57DJv3StRjB0+W0Wa0ERqkwWC0onFRkVugJWaADwfX3s6U+3fxt3fH8dPufNJzGjBb7BQUN7Ns0SQ27spjxg0RuLiq2XnwMpu/u51Jd27iiw8mc+BEBV9+n/ybG9DBQ8ZTlZ5AxPjbMDRUETRYgqUZasuJue85ji54gmFzXqUk6WcAQoeOJ3Pzcqa9v4L4Ja/j1z+W7B0rOup0C+rB6MfnUXT6IC6ePgRFj+Dsyk+5ecGPHP/8NUKHjEXl7Epx8mGmvPY5+95+lDGPv0FB/EEEAfpMuImkHz7h9o9WceSTV+k9dio2s4mylNPMmLeYHW/MZcJT86jMOouxuZHIG27m5Lcfc/dnq9m/8GX6jL4B0W6n6HwCM99ewk+vPMxNL7zDhSN7ABg05RYOL13EnC/WcWLF3/AJjQCg4Gw893zwFaue/xN3vPY+aQd3ATDkxtvY/cWHvLhiM25enVk4XFRdH/y6q7s2oJ26Sv7SzXfEuRsjvCuDW91NHf1cugllsuV2Uda1oYy9u/JuaPa6qqc73e7o97rgnhZFRxea3dPvNTQZ6XfDRurSHkGh+PsH9ILQze9dGLMAMkXnd7BoaTqHTxWxb/39aFyv+V3p2XXdCvcuyrrRba/j7Nlcnn/pG84mLQVAbxqJv78/BoOhwwDObe26P2yOzv1XfDmPZ+68FZWTE8u27yMoNJyc9FReuH823+89Qk1lOYmHf+bE/t2oXVx59JU3mHbH3exYvYJvP/qAp996j9kPd58uZM7kMfgGBlF6OZ+ps+6kuryUQ9u3sOjH9Uy6bdZ1ul+++yaZZ5IpuZzHs+8v5Nb7H0KuUGDqYvNlstm4tYff72tAC4IwHTiARF2XD4QBAcA7oigu+rUa8t8igiBc1yHz1u2gx8Ao8lLOERU7mLryMgLC2hOmlJdycsdWDm1cw00PzOGOJ54BwD8kjMUvPEPCwb3MevgxXm73QMN/vwFdXVGLu5uK+LPV3Dg+lLMZtfQKc8dubqO4XM+IGCkH/YThARQVSh7v8CAXTqc1MGWUP+cvaAl1t0gE6e2E9sdTtIyL8aTkYhMiEOanIim3lUmD3Tl3vo4evlKfXEmwcjK3jRFeNsqbpcnbkWClt4rUSwZCPSQDtKzZwZAgOfGlNuJ8oVIn6Ye4yThXbWe4p4OsBpFQjTRfKvQig30FTpdYGeIrUNW+Pl9J8DHMw0F2Mx0JWSrboJeTQEoTxHhBO/89AWpIbxKI8RS41CoSpJbqrzaJhKuVZLY4GOQuo84sDSUflYyLOgcxHrLrErjUGEV6a2RktdgZ6C6n3nwlYYeD3FaRGA8Z+XqRgHb6tkarjUg3GenNItEeArUmESe5nQAngawWkaFeArk6CHIGF4WdSqOUUOZcEwzxgmojbCuHehPcGQYjfCCnBUI9QECgsg2iPOFsA8R5Q60ZRASCnCGtEUb5QbZWyvAHAhVtItFeAmfqRMb2VHUkKAnWCKTUOBjoIzBtp4mtd2rwc5V1JEBJKLMxYbCG8pbO7zfLrKaHn/QhKa23MLSXM6fLbIzq70ZZneSlujJ+pt4QSEpuK1X1ZpbtqOTDp3oxbIAb3++vZ/Ohar5/L1oan4HOnMluZdKIawj/gZLKNkYOCeBYci3jh/lR2j4gwoNcSMrUsvtoBTUNJpa+N4LH5iVT12Rm05c3UFTWyoQRgXy0PIvDpys5uv4WktLqmDouhBWbL/H8e4mc3Hw7cpmMYYP9OHK6gokjgimplIyEHzflkl/SwuwZPUlOqyU8WMO0CT2w2UVGDgngSEI5E0eGUFKh48CJMj5dnsqrT8fxypNxnE2voVe4B4LCiaKyFkbGBXHkVAkTR4dRUSvSZ+SS39yAvvb/8a9+jXcvCfvbUpZLcMxYarKS8R8oJUzJ2vYtpUk/Ezp0ApPe+IqGyxfQBISQvv4LCk7uIXL6PfQYMZnAQcPQ11Uik8tw9Q2i5mIqITGjqc/Pwi0gFLlcQFdTgX/kYCozkgiKGk5rbSUyuYDbNQlZavOy8A4KBUFAV11BQP/BlKclERI9nLbGKhDBPSCYiqwUegwdQ/WlTHzbE6Y0V5cTPCCGktRE+sSNpLlGOhr3DAihNOs8vYaNpTY/G88gKUGMtrKM0EGxFJ4/zYARo9BWS/pegSEUpZ8jeuyELj2DfxjQXdX932FAf7PmAtsOFHJi86wuf79W/l0D2mi00nP0Sk7smMOAfr+Ac/6KBnRmZiEPzf2YrPQfALhcHM5NN91EQcFVLvF/xYAGsNntLFs0n9KCy3y6agPvP/cU+dlZzF/+Iz379Qfg4NZN/PTdUr7bewQndXtSmct53DsmjvUnz9B3UHSXda9buoS8rAwm3TKTssIC1C7OjJoyjR59OuO8Tx8+yMIXnmbekmWMm35zR7nR1vnk4bcwoP8ZGru3gNNAuCiKI5EM6BXAG0JXq8P/ARl/530ARI+fTFurjl1LF5NyeB+PjRzM/jUrSP55H8k/78PhcHBo4xoADm5cy+ULmVSXlrBu8ce8880P7L5QeJ3x/L9BGrQm3vvbecYMDeTx10/g5e7E9oNF7D1WjqeHiif/msToWD/e/zKD0so2iioMLFiey6gYH556Pw1PdyVHzjWx65RE5P6XT/IYOcidD1cWU1pnpqTWxEebKxnRT8Ozy0rwcJGxN13P3nQ9ni5ynl9Xy/BeznyXaKC0yUZpk43PjrcyPEzJS7tacHeSsT/fwv58Cx5qgVcOGxgWrODL82ZKdQ5KdQ6WnDcTFyjn01Qr7io4XGbncJkddxX8NdlKlDd8c9FBuV6kXC+y7KKDWB+Bz3NE3JRwrFq63JTwZb6DQR7wY6FIlRGqjLCySKSfGyzOs6NRCCTUO0iod6BRCKwusRLpJmNjmY0ak0iNSWRzuYVINxnfFFpwVQgkN9pIbrThooDlRRYi3eRsLrdSY3JQY3Kwt8pOpJuMpQVWNApIbrST3Cjd68vLNga4C6wrtVNtEqk1wuoSB4PcBT7Pc+CmhPh6kaQGqf0LL0K0B/xQADvLIb4OvJ0g2hM+zJF0TtVcfd4PMkUGe8G3eSLVbVBhgG8vicR4w/wMETcVxNeIHK104K4UeD/VToyPwFfpFspaRcpaRb5KtxLrL+PxI2bGhilIqbZzsMCKh1rgtaNGhgYp+C656/fr6Spnb4qOvSk6PFzlPL+qiqF9NCzaVElJrem68fPBihI83RScy9VR3WDB003BnPcvYrI4aG61UlxppLjSyIffFzAi2pOnP8jE003JrmPV7DpWjaebkne/ymZUrC/zv8mhqFxPUbmeD5blMDLGl+ZWK0lp9SxZeZGpYwIZG+dPzC27sFodvPdlOiNj/Xjn2Vi+XJ3D6LgAHn8zngkjghg7LJDXF53Bw13J42+cZExcIO8uOU9hqY7CUh1Wm4OLl7UsXZPNi48OxtPdiYzcBrw8nHjsteOMGRrIu387S3JaNa9+eJoRsQE8/WA0j716FC8PNdsOFLDncAFeHk48+tJBxgwP4Z1PT1NS3s3G+lcWr56SwewWFIEmIJTyc0dJ/PJVTn78LPteuQPfyFgyt3xDY9FFStu90BWp8cR/8QYqV3dKzxzFLzKGmxeuwW4x4x8ZS9pPS9HVVNBaV0XaT98QEBlLwtJ3UGncKU4+QllKPE4ad0599Q4B/Ydwfv3X6GrK0VWXc3791wQOiOXEF2/jpHGn+Fw8BacP4+TmzrElfyVwYCxn1n2FrraK5uoyktZ8RfCgWA4v/itqjQf5iUfJiz+E2s2dA5+9RcigIZze8D3aqjK0VWWcWPklYYOGsOfjeag1blw8cZCLJw7i7O7Bro/eJCwqjpNrv6OxopTGilIOfbeEiMFxbP/sN8tn84f8BrLncDGff5/B8kUTf5f7rd+Ry/DY4M7G868szs5OmMyS86GkpIakpCSCg4P/rToFQeCxl98gNzON00cO8eanXzBj9j08ceuNHN8rncTcdPd9rD16usN4BojoG8mTb77Dis8+6rbumQ/OpSQ/j4sZqcx96TXuf/q5Lo1nva6FN+fez6OvvnWd8fx7yj9jQA8AFoui2AogiqIdWIDExhH2G7btPyb3vf4ek+6bw+T75wBgNhpJ2L4JgNN7d2HU6wFw8/IiuD0td6+BUWjcr6dv+U8GCf4hf8gvpUAPNwZIVH6/h8gFqDeI/NZxFhpnBXVaC19uKufQ2SZW7CjHz6sbLOi/IE4qOW88OYiN+0pQKATm3NEHV2cF6q4yw10jU8aGkHNZy5GErj15Glcld0yLIPNiI826rrO+Afj7uvDqU3EcS6zg4ImSf+dRflUJHjKem5fsw6evFJFvNRpoyEsHQFdVgkknQW1Urm4ED5GCpvtMno1Cdf0pm9qtG8/ZH/KH/Afk5JlKnn9kMP17e/1j5V9BnNUKqmr1WK2/LVexj48bdXXNvDHvB4aP/gsffvghQ4cO/bfrVTs78/aSb1j4yrPYbTbufvRJevcfiLIbfP4VuevRJynIucCe9Wu6/N3d04tb7vsTP327lKrSkm7r0bh7sOCHNaz8fBE/b/3p33mU/7H8MxAOBzBKFMVz15TJASswVBTF9N+2ib+vCIIgvvLDBvrGDaexSjqS8wkOYdnLz5B16hgjp9/MUx98AkgQjr6xcaQcOsCoG2dQVylhKP1DwqjMyyV6+MhO9f9vgXCcOlPFtAlhXUI4jiRWMWF4IMVFVyEcCakNTB3dNYTj2Hkt42I8KM3VdkA4Ei+2MjmmawjHidw2RnjaqLjmiD+5xMINfbqGcJwqtTLUR6Cy9SqE42yVnRFe3UM4Yn0Fqq+FcNSLDPPsGsJxvgliPKG2/YQwQA2pTQJDuoFwZDQ7GOQh64Bk+Khk5OgcxHYD4chsh3A0XAPhuKgTifXsGsKR1g7hqLsGwpHZIjKsGwjH2UYJwvHnFJgVCjOCJFaSkd1AOM7UQ5wP1F0D4UhthNHdQDiS2yEcVddAOM7XOBgZKHDjTjPPDVczo4+yA8IR3w7h6Or9dgXhiC+xMXqAG+X1VyEciRdbuXGSBOGICFJz/qKOr7ZUsPTVflToYEyMF2XtmJvwQGeSL+iYPNKvSwjH0SQJwlFWfQ2EI6uZyaMCWfRtNqu3FfLyYwOZ93k6w6J8eOWxaKaMDaK0UsobFRHuSfy5K5CnOnqFu3PhUiP3PXeM/atupllnYeLIIEorpY13j2AN0+bsQxAE3nluKIP7+yDI5RSV6Rg5JIDD8eVMHBlMaWUrgkzOS/PjCfBzYeXnU7uEcBw+KUE4Kut+HwjHnavOUH8plcDo0TQWXEDjH0rmT19SkrCHvlPvJnT4JAIGDMXQUA2AUq2mpbKI4JgxHRAOuSDQWleBX9/BVGUkETBIgnx0QDhyUgiJHdMlhKMiPYmgqGHo66o6IBxVF84TFje2SwhHWVoiIdHDMTZWXwPhOE+PoWO7hHAUp5ymb9xImmurAAnCUZJ5jt7Dx3UJ4Sg4l8CAEaNorpH0vQJDKEo7S/S4iX9AODqV//dCOO555hCzpvfkgVmdvZ1dyb8L4RBFkWE3b+Lhewbz/BO/sBV+RQgHQFraZd77YA0fzn+EmKFPdlL9VyEc9vbypGNHeO+5J3n1w0+Z/8LTRPSNZOm2vbh7Xt2EOLqwMcsKL/PUbdOYv/xHRkyc3On3j155jpzU83y9bS9evn5d1nGl7g+ffwp3Ty+e/+DjjvLfC8Lxz/qi/r+i6kjYsRkEgaz44wAMHj8Jh83G4gPH2fHNlyTs2wlAfloqj76zgJO7d+Du5c2544cBGD7pRpL27+7SgP5vl4yLjXi4qVi3I4/hMf5s2JHPyCEBCA4LSWn19I1wZ/2uQrzcnTh+uor6JjPTxwWwdGMBg/t5sHRjAWMHuWC2ipzLaeGT5/qwfFs5CjmcTGjAZHVwY5wH3+6vJTrCmR9OahkaIR3xnC8ysfAef747pkU2wokjeZJ3bkpfNT8kG4gKUrAp20xfH2nYplZbme/hwo9pJsRBCk62BwXeEK5gVZaZ3iNkrM21E+snGdwZ9XbmDVeyp8yBiIzTNdKwHhcosL7AQc8okZ+KYHD73M/SwtO9RLaWgQyBM+37k1E+cLTGQU8XOTsrHAxwbw/E0Ik8HG5nb7UduaAgRSstSrEeMvbV2OnpomJftY1+7Ylayo0OfJ1UHKi2IgfSmiX94V4Ce6vtRLgq2VdlJbI9gUuhwU5AT4HdlTbkyDnfJOIidzDES8b2cpE+rrCjQmSgh5TmPF0LL0XC5jLJG6wUYGUh6CyQ0gT93GBTKcT6gIhIlhZeGQQ/FUv66U0SE8nYANhYJNLPXWBjkchQXwEbAlmNIq/GyNhQ4EDtbCO+SurPCSFyVuVY2FUow2QTqTPY2ZsvklZtJ2yCmpXpZly8nDiSZ+r0flfENxHXzpd8vsDIwvsDWXesAZkMDqdKhN5Xxk/MYC+W7ahkxAApkUCQnxPurnJWrSlBEOBQorRJnD7GjxU7KhgywJOfDlQwPEr6sJzPbqZfLy/W7y3F013F8TPShnDSSH8OnKxkQC8Plm/I556be/DB0iymjQvm+4XjeGHBGfx91RxNkgymGyeEs27nZYYN9mPDrgJGxkrR+zeOD+PuPx9m+GB/vDycOHpaMkymjAkhNFCDq4uCe589whP3DWDIYH9On6umXy9P1m6/1K5fTmWNgQuXGnDXBKFtMbNuxyVGDQlEpVaTcLaCfr28WLM1Gy9PNYmp3Wygf2VpyEsn/+AGvML7kf/zRnz6DsYzIpKewm1E3/UUycvfRSaTUZl+GpCCCHP3r8c7IpLc/evx6xeDIJNRn5fByEdDyNm3HuRyKlMTUKidCYoaRvbedfhERJK9bz3+kTEoVCpqss8zOuBNLuxZiyCTU54SjyCD8GETyNq9Dp9e/cnavY7QqGE47DZqcjMY//Q8MnauRSaTU5V9HpvJSM8RE0jbsQa/3v1J37GW0Og4cIhU5mYw5c9vkbJ9LU4qJQXJJwHoM+oGzm5dTWCf/qQd2I5fj14AlGenc3Pw2yRvWY2zk4JLiZJ+/7GTiN+0kp6DomltasCl/WSyTddCQI9eNDY24BMU0qlf/5D/rEyfGMaXK7Pw9lJz47hQ5PJ/5oD+fyYOh8hrC+LRNhuZMr7nb3afKxIX15e9uz781erTNWupKC5m3bIvuGvu4yz/+ANeeH8RwydMQhAE8rIy6D1gECUF+bi6uyMIMlqbtfTo04/C3ByCe0Tw4oKPefuJh/lq6x4EQaD3gEGUFuTj5uHJIy+/warFHzNn8ljuferP3PrAHFqapJMtTx8fqspK6d1/IEf37uTMsSN8veMARbkXCe/Tl6JLF/EMCkanlRyHHt4+VJeXEtS776/2/Ffkn/VA1wG/5JkJBWqRPNFXRBRFscev2sLfWQRBEFecyexES9fS2EBIcMh1NHZGvR43Ly/atE14+fphbJM8Us4urlhbdXh4d47A7o6qqCtvQD/XbjZKtmPdlHez6++KlsjS0LVuN95tu7Gps2qbnjajDVcXBXWNJgJ8nWlqNuMil4ZKa5sNbw8VtY0m/L2d0DVLpOauzvIO2ruGCi2aKzRA19DeeTssHbRfrk4y6lts+Hsqaao1oLlCQ2Zy4KWRU9diw1u00GZpp0VTCdTrHfgKVrRtDjTtHly9WcTLRUZtrQlfF4G29pHrooSGNhFPuUizyYGrUtI3WEU0gkhDmwMfZ4ErGV5dFFCrs+PrLKPZLNLOMoTBCm6CgwajiI+aDn1nGTSawNdZoMUs0p6gEL3ZgYeTjEaTiLcTtLMSoVELHfrX1m9Chqdadl39CqWAi1Kg0Sji6yKj2STpy5UCBit4qmXUtzmke5tElqWZ2XfZyiuj1dw1wIlmkwN3ZxkgtNPGyag3OKT+sYkIgtDRP36uMrRGB25qoZN+QJDzdf2/6qyB7RltfPdEMEEeiqvvy1VOnc5GYLjH9e9XZ8PfQ4nOSY2mnUfwynhotKvw93bC0E4L5eosp67JQkioL00tZtxj3olQAAAgAElEQVTaO7S1zYq3hxMNejn+vs4dKXldXRS0mJT4ejt3jN0fNmSx+1Ahvn5e+PlocNOoqK3XU1HVQnllC2WVOhqb9Dg7K3novtG0tVlYt+rVLucGqs7zHAD5DfzlL3/Bz8+P999/v6M4t9WOKIrYbDYSjx7irWce49tdB4mM6pyk4IU/3YXa2Zn3l/2I/JrU0JYuPENWu53JwZ6/uQf60R1ZV2npWltQttN9ipa262jmrtDYKV1cMDY3SrR0rc0onV2RCRL0Q+12PS2dDAGlc2d9RBGrqa2TPoBSfb2+k6u0PlvbDKjdPTFoG3Dx9MFubkNo129rbsTVyxejrhl1+3p+hfbOoG3Aw8f3uvqv0ORZ9S04tWcYvJYmz9vfD0s77d0Vmjwff3/aWppxcpX0zQYDLh6e2I161JrO2eOcumF9cFZ1hgy5KLvW7cpbDaDqIq14d98ip25SkHel3939Brh1A3Pq7tvVlbe5u++Z2HWK6S7rELuBR4idPZQOh4OFi4+yZtN53nppKo8++A8cYEI3/sfuKOHkLh1/Hjycxat/3Uz84Q/w8ekik2B3HmjltE5FF1q6pgY0WLruJ4O1s/4vdU/v283x7Ztx8fTCzcsbFzd3dE2NNNVU01hTRUNlJa3aRmRyOWPvuJem6kqe/Hw5JpvjOtpHQ0szqJwRhKvjv7WxAY23D3q9nlNrlmM2GJj86LMSraSuGZnKBRERo66FhrIidsx/mVvmfULIQCkD9LXzcdeHr2LUabn93a+wWy0d81dw8ey0PihcvflhVvTvHkS4FjiIlCjl2msN8PMvyo7/Wg37T4pCoWTx80+RuG8Xift2sfj5p5DL5fztleeoKC5g9acLWf3pQiqKC3jt7ttRKJTMf2oux3dt5/iu7cx/ai6ybhah/0ui01vZcqCEP70cj0IucOOcQ1wu0fHFunze/yaHgtJWpj9+CqVCxkNvnGXvqVq2Hanm4bczkSsEbnrmLAWVJhasKmXBqlIKKo3c8moWSrnAvDUV7EzSsjNJy2NfFqOQC9w+P5/iOjMLd9axcGcdhbVmbv+0BKVc4Jn19exMN7Az3cCTa+tRyOCZrVqKGm18fLSVj4+2UtRoY/bKRhQyeHqPnt25Znbnmnl6jx65DJ7ab6BI6+DzZBOfJ5so0jp45uc2FDKB54+a2FdgZV+BleePmpAL8NBBIyUtDr5ItfJFqpWSFgevJ1pQyOCV01YOlto5WGrn9WSpbO4xMyWtIl9l2vgq00aZXuTR4xYUAryWbONgmYODZQ4+TrVJ+kfMlLaKfJlh48sMG8U6Bw8dNKKQwUsnzRwotnGo2C61RybwwJ42ilsc/O28mRXpFoqbHdy3Q49SBs8eMvJzkY1IHznOCoGSZgf3bm+lSOvgizMmPk00Uqx1cPcWHQoZ/Hm/gSOFFnZfMvPMXgMKGdy1SUeR1sE3Z018ktBGkdbOXT+1oJDBU5ub2JVlZFeWkcd/auJwrolmo4MGnY1FextZtLeRwjors76oQCkXeGtdJTuTm9mZ3MxjX5eikAnc/uFlCiqNnceDQmDOW+lsO1zFtsNVzHkrHYVc4On3znK5pJX3vs7iva+zuFzSyo2PHEOplPHA88fYvK+QzfsKeeD5Y8hl16+ZS1dlMHV8DyaO6YWfjysWq53+ff145IFhfP+32Wxf/wx+vhoC/Nwpr2jisw/v/h/Nkdtuu40TJ050Kt/843eMifBn10/rcHVzo7mx6w3tvMVf01hXy4v3zaJF23kT+5+QxG8XIMgU7H/7EVqqSkjZ8DUpG76mpbqM3fPmIlMoOfLJqxTEH6Ag/gDxS+cjkyvY/eZcmitLObf2S85vWEZzZSk735iLTKHg0EevUHDqIEVnjvPzRy8jyBXseP1hmitKObPmS9K2raS5opQdrz+MTKHg549e5vKpg1w+dbCTfuqWH0le/QXayhK2vTYHuVzBwYUvU5h0jLyTB9i/8GVkcjlbXp2DtrKE5LXfcHrlF2grStj08kPI5AoOLn6Xi8cPcPH4AXbNfxFBLmfDiw+hrSzj+A9LOP7DEhrLS1jzwoPIFQp2f/YOWUf3kXV0H5veeR6ZXM6KFx6lvqyYg8sWc3DZYurLiln29P0I/x98G/43ikwm453XpvHUw6PJudRNDoZfQRwOB5u2neXRh8Z3bTz/F8ihn9bSP24Yg0aNxcs/AJvVQmCPCMbNnM2j7y1iykOPo3J2Qa5QUFNciCDISPl5LxlH9rP6zWeRyxV8/eR91JcVc2LNcn5eLo3/b595ALlCwYa/Ps+lhGMIMhkZh3ZJ8+UvD9BQVkz82mVseec5vrxnElvefhaVqyuJ65Z3OR8HTb+T5soyfpw7ncqctI75m7B8IQWnDlJw6iCHPnoFmVzBvre7p877n8o/hHCIojj3V7/rf7k4azTEjpvYkZpbKnOjT3QMQeERDB49FoCg8AiG3TAZF42GYRMn0z827qq+6z/OuPO/XdROcoZFS943d42KaeOD6RmmoWWAJ1abSESoKzeOCcTNRcGUUQFE91Vz5cDD3VXB1NF+RAQ6MS5GOuKMCFQzdZgXGhc5cb1dGBh+1WPo5ixncqw7Yb5KxkZKO/kefiqmRGnQqGWM76smNuwqxsxNLSMuVEUPLzljekrlPbzkTOrjhEYFEyOUxARdHf5uKoHhwXLCPWSMCpXKwz1kDAuS46qEcaFyBvtf/fBplDA+RE6Ym4wRgdJDhbnJGOwjw1UJY4JkRPm0709FySs8LkhOqEZgeIBUHuQCY4NkuChhdICMqHY+aWcVuCphbLCkP6JdP9xNxvgQqT1jQ+RE+8qQK2VYHXI0SpgQJifcXWBksAKlUiDMXcbEHgpclQLjwxQMDpAjCNDbS4bVDhN7KNufUYEIhHvKuCFCiUYlMKGHgv6+ig7slkYlcENPJT08ZBiCFNgc0MNDzg09VZJ+byeCPOR8e1rP+TILff0UzIx2IcxHydi+0nvs4atg8kBXNGoZcb1cGBD2i/c72J2IQHWn8eDmomDKSF+GDrzqlXHXKIgd4E3PUA0ThkmQiZ6hGqaMCiQjp4GoSG9iB/mgaD+GddNcHRuiKKJvs7JhZy6P/mk0T8wZjpfnVe8QwHNvHebpR2/gg7f/MZ3V35Px48fzwAMPUFFRQWiohJ016PV4eHljaG0lvFdvVCongsO7Prjz9vPnq617+eyNl/j09ZdY+EPXgTe/p/j3j0Hl4krokLG4BYQSFDUMALeAEMLjxqF0diFsyGj8+kmpkGVKJUoXV8LixuIeGEpw9AhkgoB7YCjhQ8eidHYlPG4M/v2ikAky7BYzKhdXwoeNwz0olJDo4QhyBe5BoYQPG9euPxb/fldTLV+rH2CKxmG34REURo9h41G6uBI+dAx+vSLhSrIiFw0Rw8bjGRhGSFQcoijiERRGz+HjpWeLjiOg94CO+p1cNfQaMR6PwBAihowAwCs4jN4jJP0eUXEE9r1ev/fw0XiHhNF7qOTJ9A4Jo//oCShVneNd/pD/HtFonNAVdh0j9O9Ifb2OF9/8icPHsgnw92DR+3f96vf4R2K327lwLhmNuwdhvfui6AYHbzQYOL1/DxNm38OEO+7G/Ren6Ue2bmLYtFsIiOjFjXOeJHnPNiKiYjDbHIgOB2pXDf1HT8QnJIzwqFgcdjs+IWFEjpqAk6srfUeOI7B3f/wienNm2zqaa6voO3IC3sHhBEUOAiSedZ/wXngHh+EeFEZQ5FXauyvz0b9nHyY9M4+cI7s4v2Vlx/z1j4zGt2dkh77SxZXQIWOozj7Hryn/DISj179SoSiKRf9Wi/7DIgiC+Oi7HzLulpkUXMgEoE90DMe2/cR9zzzP0W2biIwZAkBeZjo33nUf+9esYNpd95GXKcVTRsYMIeXoYW5/8OFO9f9fgnC0NDaTkFLL0Cgf1uwo4MW5g1i3q5C4SBdEEVJztDx4Ww++XHeZObN6kJZVg0OEuP7urN1XyfMPRLB+ezFD+kmbjfR8Pfff6M/SbZXcP9KNjCLpCCa2lwsbTjbyl1sC2HGyloGhEmY6vdjIfWM8WXa4kXsHO5FZLh1DxYQ58dO5Vp4aqmJLponYEKlvMyqt3BPrzLpEHbdGOpFZIx3jxQQq2HTBzKPRCrbnWhkcIL2jrFobM3vJ+DHLyt39lVyol47No/1k7Muzck9/BbsKbET7SkbahQYHt4XB6ksOZveWk9Mo6Q/0FNhZ7ODh/nJ2F9uJ8pb087UOpofLWJtnZ1ZPOReb2uv3l7Gj0MHcAXJ2F9k7DPHcFpjZR8GqbCt39lWS3WBHqZQxyE/G1ktWHhusYke+lcH+chQKgYxaB3f2V7Iiw8zdA1RcqLMjlwmsvWBGJYMPbnDmWLENBIHiZjt2ER6PU7PrkoV7o5zIrbdjFUViAiTs+VPD1GzNMRMXrMQBZFbbuDvKie/Om7h5iCv3rm5iRA8Vz0/UcCzPzNPjNOwusDEwWDIYMspM3DvSneXHmnlwRiAZxdIRf2xPZzacauIvN/uzNbON2L7Xj4dVR7WMH+rD1xuKaNHb8PVUkVvcyjMPRNJmsjMsypviCgMrthaSldeMSik9f029kSXvjCbI34XDSbV8s3DK1Slhc3A0oZRVWws5dCKfGZP7MX1yP24Y24uePbx5//NE6upbWbbkwasDvrtgnb8D4QB46aWXUCqVfPrppwC8PH8Ra5d9xfRZd/H4S68RGBKKuYugFwBLe0IAU1sb94wZwvzlKxkyeux/FMLxwMqT5B/fSfTMh7l8Yg++fSRDtrWygF7jppO1cw39b7yDuoIcAPz7RXHp8A5iZs8l79hu/PtGIZNBXV42kVNnkrFjNQOmzabucg4KhRLfXpFcPLyDIbPncunobvz7RSEgUJt/gf5TZ5K+YzUDp82mLj+7o/5r9QMHDAaHSG3+BQbcOIu07asZNH02jUWXcNhtBPaNIvvQDobeNZeLR3YR1F+CztTkXWDQtFmkbF3FkFvupDpPan9QZBRZB7cz4p5HyD/1M/49JSxl1aULxMy4g+TNKxk5824qc6X2hPSPJnXfVqbMeYKUfTsIGyjVX34xi2G3zqbwfCKDxk3q1Ld/QDh+qfv7QjiuyDOvbKNPT18evn8Yvj4aks4Wk3y+lEH9A4gaEERIsIcUHPovQDgMBjOTZy5l1PBevPr8DMJC29cMmUsnXeBfhnBoGxvYvXEttZWViA4HDtFB76jB3HTPA8hkMiqKiziwZQMHNm3AzdMLi9lMXWUFi7ftRa5QUFZazKhpV6ngHA4H2WeTOLx5I6nHjzBw5BhiJ0xi4MjRBPXszcYvFpN18ghvrNvFkbXfM3bWvZRezMJiEwkbGMWZ3VuZ/ODjnNu3ncD+0SBCeW4Ww26ZTfyGHxl+212U5eXisNkoyUyh4Nxpnv5hK2kHdtBUUy3FHPQdyC2vvE/e6eMMnHYHNfmd52P28QP4RvTDYbez852nmfLs22grSukzedbV9afvIHIP72DQrXP48a643z2IsIB/LYjwf/351OXMdPoOjiXnbBIAbp6eZMSfYOZDj5IWf/U4Ni3+BONm3EpmciJRw0eRkZTQru9F5rnkLg3o/0tiMNqIP1eLt4cThxOqeOzufhxNqsJJ7o/RZOfYmVpmTgnhSFINE4b5knqxpQPXejS5nkdmhhKfcdVgP56q5baxPhxN0TKul8S0AOCpUXA8Q8fDU3xJLzZibk8BfTLHwK1x7hzL1jMqRE5SoRSU5uki48QlI3+KVnKq4CpN2KkCMzcPUJNVayc60E5yuYQF83QWOFls4d5IBQllVxfWhDIbU0NVxJfbGRms4GyV9JuHk5KcJjsGq4LEyqsLdGKlnclBchKr7IwIkHGuVjJy3JUyTlfbubu3nOTqq4ZPvtbB+CAZidUOhvnJOF/fztrhAolVdu7uIyfpGv2UepGpPRQkVNoZESjnXI0DjVrEzUkgvtzOfQPgdIXUHmcnGQnlNmb0VnCq1MaoEAVnKm04KwUKmhyUtTg4VdaKAKjkAv195eQ32tmcbcbPVcboUCVZdTaaTSKeahkniiyMCFGwL89Cs0nE5oBzFTb6+sjZn2dmd74FP42MYA85Rgscv2ziweGuZJSasLSnWD+Za+SWGA1Hc/T072NgZ3IzepODcD8VB1JaKKg2kZjXhrurApPFQYveRmW9mY1H61jwbT4RIc54uavoGeJCvdbC5ysvUVDSit0honFREOCrZvvX4/hibSEvPhbNrCcOMe/TczTrLDip5NcZ0AqFjBmTejJjxkiatG1s3X2Bo6cKeH3+QW6a0g+7qCKiRzeG8b8oL774InFxcUyaNIkZM2YwfdZdrP56Ca8u+Bi1s/M/rgApDuMv7y5gyduvs+C7VZgsVux2GwGhYbh5/L50cK31FVSkJ9J/2t1UZiR1lLdUFv4/9t47rMora///nN45VOmgiEoRLCD2Ek3VTHommSQzb2ZSZ5I4yZtquunNxBhjiqkaUzQao9i7CAgCAtKRduidw+FUTvn9cRALh3kn7y9l3m+4r8vrSjY3m/3svZ79rGc/91qL8KS56PKOEZIwjaZTJwBQaH2oz0sn7oobachz80UCIbq8DKJmX4wuN53QxBSaCrORabRIFSp0OceYeMWN6PLS3XyJFF1eOmNnX4wu5xhhCSk0DvQv13ifxxdLpTj6behyM4iefQl1OWmEJU6jtbIYq0GPXKOlNieNhMU3UpebgVAowuVyUpuTzrg5l1BzIo0xSTPQ5We5x++lpTo7jclX/pGW8iLsVvc+U30indh5l1KVncb4aTOpOXmWX5l1lFnX/YnyrLTB+SnPSiPhostoqSr36ECP4D8D5afbWLvuOMvf2ENIsJZeg4VrlySw60ApJwsbefSBi3jiwUXn/Y7L5aKsopX+fgdSmRSxWIjD4cLhcOJwOFn2wjbiJoSw8vVbPGZmORd2u4PmljYaGjtoaOigobGDlpYueg0mDMZ1GAwGDAYDAoGARYsWkVN2mv3bfmDRlVczLj4BodD9crXtqy9ZvfwpzCYTKrWGy66/iRVfbyZ4nPtk9qHrFvPK/XfRVFsDwI81rYNjEAqFJM6cQ3TyDEx9BrL37KQkK4NNq95iwtRpWKxWjL16rCYjxelHmJA8k/ITmTgFQpRaLWWZR5h13Z8oO56GSyTB3m+jMusYCQsuo/z4UaKmTqeprAizQU9U0kyOfb2W/D0/UpmVRkTiNBx2OzK1BrVvAKezjhKamPIv7kf3M947JJLDH76BQuuD3C8IXW46UoUSuUaLLjedcYt+/hP/f+cE+id5gS6X67f/xvj/AwKBwLW5qpne7i4UA4EeloFgQbuxDy9vH/oHFkwik2EyGPDz9cXUZ0A2EExjtZjxG+ah9v/SCbTd3IfT6cJscaBWSdAbbHipJZj0vSAQIJMK6e2zo9VIMBj7kWJBIBBgtjpQK8Xo+/pROayDDrFMIqDX5ECrEtPT0ItyIFjQbHOilovoNTnQuPrpswwEk8mEtBvsjPKS0N5oQHMmuNDqwkclornZwCi1GONAcJtqMLjQQZfZiWbgq36fDXwUQpo6rfgrRZgGxqOUCGjpthGgEtNtdnJGBdDXDxoh5wQXDvDFAtr0NvyVYrotTtRnggUtLrwVIjrMTvzkZ/kKkYBOixM/uXAgeNHNN7tc+MjFQ/gapXgwWPBM/2KJgD67AB+58Ox4+l0IJaCSiOg0ufBXCQevVyCA6h4XEVoRPRYnzX1OwrVCNHIRSomAgzX9PH3QxNabNfgpXSAQktNo560MC3U9DrxkAmwO95fwMwdmUpGAqZEyXr3SC6FQMDj/bQYHQWFq+iwOajv6OVhiYmteH+XNNvy9JIT4Sgj2leDvJSIiQAYuCInUIBELUStE2B1OdmR0MjHWj+suDibY3/3l4Yz99FqlGEz9eKmkKOSiAXvrx3eUH4Y+Gx98VYK+z8Yn35axYfViLr/IQ7S7bNR5/6vvtfDuR8f4ZEMeR3Y+ypjR5+Ry/1+cQFssFuRyOVu3buWJJ54gLCyMedf8kbUrXuOu/36cG2+/E7vdjtVuRywWY7VYkMnl9NtsiMRibA4HDrsdiVSKxWzmxQfuobyoAKFIjEgkorO1hdv++TBX3fZXhFIpl4T7/fIn0F8eQeHli6mnE4XWdzBYR6VRY+ruQDkQnCdVuIPn+q1GFF4+5wcLCi4I5tN3I1WqEQgE2M3nB//1W0y4nCBVDuXDQDDiOXy7xYxAOLR/uUqNALCZzwYLKr39sFvNCC4YT39fD7KB/s/le/sFYBsIFpcMBAuqff2xG3uQqdzPC6upD5XWB6u+E42vP9aBYHSZUklfVye+owKw99sQitzPAqfDjlgiRSJk0Pk5FyMn0BfgFz6BbmntRaWUolRKOVnYSNRoX3x93LZcXtnGnMXvUXPyadSaM22tPLhsC4UlTfholfTbHTgcTkQi4eC/qYnhfLLmTiSSC+Zr4ARaV9/Blh+z+H5rFtk5pwkI8CYs1N/9LyyA4CBfvLyUaLxT0Gg0aDQarFYre/bswaX15/r/ugNf//PrTvRZrbQ2NqD18UUxEMgK0Gs2IxKL2bz2Aww93Wxf9xl3PPsi86++HpvVglR2dv8x9dtx2u2IpVJsVgsup4s96z9j91df8I+Va/EJDMLLL4C+ni7kKg3mfseg/fd2dqDx9UPfa0CAYND+NX7+GPXdIFUiFAiwmvpoq65g24rlyJQqJl5yNTlbNzD58utIvOwaNH7+dHW0I1e5U/idez9KvfywmQfuR7mSXW88QXNJPi4EiCRSjJ1txF1+A8l/uhdjbx8bbl/w65by/r1BIBC4vs4t4dX77iJ5gTs/Yc7hgzy55hNKszK4+NqhwUQSD5vecJuTyAMXQOyhfdhNyFXvud1Tnk7wvBF5cqrBc85o8OhYO616j1Rnv+fiEJ7aXXbPm+FwfRSWdrD6G/cb8w2XhPD4yhJ2rpnBnc/kMj/JnX9uf1YXXyyfyN9fKubvVwfz/RH3y8L18/158qMaflw+njtWVLNoiltre+Cknk8fHssdb1by0FWBbM50X+t1M715e0szn9wTyl0fN7Iw3v1APVjcx9rbA7l2VSMvXh/ADznu+b0mSc0nh3p450Y/7vmqnYsmuE8X0yrNvH+TH9etbePFK334ocB9w9+QqODJVD1b7vTn7m+7WDjO7SBWdTl4arEP13/YyotX+fBDvpt/bbKGZ37oZMv9wdz9ZRsLY5QoNBJ25Bn45J4wrnmzlpdvDmJLtp7AAAWz4zU89UU9256fwB3vVLFoshaZQsTOrG4+e3QcVz1Vwit3RrIrV4/J6uL6BQE8+WEVYaPkFFT2sfSmUIqqjfxwuINn/jaar3a18Nr9YzmY0013r53rLgrgyTXVpK5I5I5Xy1mY4jcw/x188WICS+7PY/l9MSxbWUpzu4UF0/wpqupl/9pZvPxJFeMi3Q7HvowW1r8xg8vvPMLbT83k21S3CuyPi8fwyGvZpG25EV/vs9WszkAo9/VoIygiBv/z3gfXMzrCjyeevMcjtYuhn0QBqnvNQ9oMw0S1G6yebfVU4SnWPPR3Hvv8Oz545B/Ez5hLTXEhVafyiZo8jdpTedz01Kvk7dmOUKFm3PR57H7vZW5f9RWbnvsn0dPn4RArqEzbzRVPvs2Wx25n3r3LKD+0A5FcTXjSHI59+CKawDBaS0/iHT6WzqqSX9yBjl1wBZcufYYND/2ZS+5/iuIDqQAkXno1u999gb+sXM/m5Q8yNmUuAC0VJSx+6Fm+WHobly99iqL9qYilMmLmXjLkeqUKJSWHd3P9cytZ9+CfuewBN1+p9WZM8mz2rn7lvP5dLqjKTuPa51YOjqcmJx2Tvpu4hUvY//4r3PrOen5Y/iBxCy7HZjZSlZ12Xv9lafuwW63EL1oy2P+ud18gZIJbmnI66yg3Ln+XL5bexpX//RwFe34EYOKiJex+72X+umoDO999gZBx7gqNlVlHufnFVax/7B4uufshCvdtd8/PxVey492XuWfNV2x4+p9MmDEPgPLjR7n1pVW0VpczPmXOkDmXiIYu53ByD0/c4fgKiefnyy/phCuG0dx6+pvD5qN2Vg3TPoxj7QnDOdaeMmhc0HbHXW/R1NzJV+ufo6DgNDf96TmWPXEb9993PVKpBIRD1xA851ru7ulh5fNPsveH71lwxZUsuvo6ps+7CPswfoKn/MbDZdswWD1n5/jspee49K/3svKuPxE2Po7GyjJC4hJJXLiEHe++zJ3vb+Cbp5cyfsY8nBI55Uf2cM2z77Dhv//Cxfc9ScnBHYjV3oRNms6xj1/nmtc+Z89rjxCRNBuHU0h97lEWPvImO5+5g+l3PE5t9lFsRgORMy8j76u3WPj0WjJWPU7glEXYrSbaijJIvudVjr1xD8GT5tF08jAul5Pg5EtpPXmQaQ+uoXDdS2gi3fdjd3k2Mbc9z6kP/0nIpf+g+5T7pcw7fgGNez8k+i9votv1ATL/CBwWA71FBxCIxDhsVlw244gD/UtCIBC4duk6KDuZQ3DEaACadbXETEmmr72NwNCwIb8z4kBf0P4LOtBWi4WaxoGCF0EK0k92sXC6P1l5rYwJdTusNU1mpsV5cfhYKzPiteja3J9cw0fJyTilZ36skpwKI6MD3drc2lYryeNVHDrRxawYNbozBTv8pWQUdDE/VkVujeW8gi9TQ8UcLjMzK1pBfZd7owrzFZNV2sfcaDm5OhuRA/mqa9utJIXLOFJpZWaUjPpu9yYYphFwvNbG/GgZefX9RPi617uhD6aESzlSYWHmWDn1XQP8URKOV1tZMEFBbp2VSD8JQpVssODI4WIjsyYo0XX2I1IpCAuQklFq4KJEL3Iq3dcrkIiobbWQPF7NoXw9syd6Ua93AALCA+VkFOqZmeDF9Dtz0bW61+CN+8dy9zUhHMztZk6iN7qBirINpkwAACAASURBVDLhgXLSC3tYmORDTrWZMSFKjGYHezI7cDldHMjuorDSwIJkf+6/dQwTItWD63Wy0kJkiPv0pabRSEqCLwcyW1kwazS1AwVKIkNVpJ1o5bKLx3v87PnvONBLH/2a9o4+vvjiGWSyocUkfkkHuk1vpCw7g/hZ86guPElAmHtc1VU1RMRPpiIrjfDYBAxdnRj7nWgDQ6kbKNjRUJKPT0gEerMdfXM9QTGT0OVlEJowDUNrI5Z+J+qAswVHirZvoN9qI2f927+4A337mo0DBUfSiZiUgr7F7ej4BoVQV5hDVPJsGksK8AlxF6rVtzYSGptI1YljjJ6cQk+Lu0CVp+t1Op30NDUQGjeJ6px0Iiel0NPSgAAB2sAQ6gpPnNe/wwU9TfWExJ0dj5vv7l9XeIIxybNpKinANzQcAdDdVD+kf3AXTDnTf3P5qbMFU5p0hMVNpurEMcZMno6+dej4m8sK8Al2X29Xk47w+MlU52QwZvI0upvdfO+gUGrys4mZMQddUT5+oW5+Z2M9ERMnY+rpQuPrP2TORxzoC/AbO9B2u4OFlzxC2rFTAGz89gVuvPEcSc6/cKCtFguFOVmcLi2hqqyUw3t2kDx7Ho+88uZ5UiyTh1Rz8PM40OXFpQRFRVOamcbpkyc4nZvFZUufJnB0NDX52YxLmUN9cT6+IeH0Wh3oBwsMnb3fjTb3/tNUlEP4lFm0lhfiFRSGxeKgr62RgPGJNBZkEhyfTLtOB4DKP5i2sjyCEmbQefoUQk0wAgEY2xvxiZpIe3EWfhOm0tPUAAKQ+wbRWZKF/0R3/3I/d/lxS2cTmog4eipOIBoVg63HLT2RegfSV1eIJiqJ7qpTSLSBAPTrW3A5HHSVHMF4atevnsbud4e1Lz2HWutN2o5tpO3YhlrrzdsPP4DfqMDfemi/e2zZ30xNg4maBhMvfVTB9EQf/v5iIT5eYrYebmPr4TZ8NGL+8WopSRM0vLxeR02ThZomC6+s15ES58ULXzXgrRaxLbObbZndeKtF3L+6lmnRKl7d1EJtm43aNhuvfd9C8hgFS79swVspZHuege15BryVQl7a1sm0KDmv7eiktqOf2o5+Xt/RxdQIKQ9u7MRbISS10ERqoQlvhZAHv+9iWqSU1/fqqe20U9tp56P0PqZFSHlwSw9ahYDUIjOpRWa0CiEPbuxk2mgZr+/uGeSv2NPDtDFy/vl1O94KIdvz+9hbYECrErH08yamRSt5dWs7tW02dO1WXv2ukZTxau5fU4u3Ssy2493szOrGWyXm/lXVpMRoeHlDA7XNVmqaLbzyZR0p8V78/c0Kegx2JkapGBMiZ8XXOm5YVsSU8RqWranieJGeCp2Jlz+vZXq8lvverMBLJeLp1RXMuf04G3Y0sXZLA3OnenPl/EBuuDSElnbreevlrZHww/5GftjfiI+XlHuezWHGZH9eer+A6noD1fUGnl+Vz8wpo3h5Vc7/2l6WP3k1p6vb+Oa7wz+fEf6bOHlwL9GTk/ns6YdRemnJ2buDnL07kKu9+PaFx4iYOIVXrruIL5fdT3VOBjvefg4Q8M0T9+J0OCg+tJOa7KPI1Vr2rXiK4LjJHF/3Lj3NOgytDeRsWE1gzBSOrHqG8KmzESuGCUj6mSFXa0l9fRlh8VM48tlKupt0dDfpOP79l4THT2Hba8uQa7woObybksO7kak0/PjqE4RPnMrBT1bS1aiju6meQ5+uJHziVH589QkUGi0lh3dzOvMIco0X215bRnj8FA596u6/p7WRQ5+9O6T/0iO7kWu8zhuPvqWJ7iYdRz5/l7D4KaS+7uafPn6EksO7h/Tf09RAd5PuvP5las3g+BUa7eD4Mzd+Rlejjq5GHQcHxr/11SeQq7UUHdpF0aFdKDRatrz8BBETp7Dv43fobKyjs7GO/WvfITJhKrvefwOFl5bCg7spPLgbhZeWTS8+jtJrpLT5/wUYjWZKy3RcuWQW8+dP5oF/riQ1NZ3+fjstLZ2UlZVhNp//Au5yudj74xaWJMez4tlllJ0qIHJsNK+uXcfy99f+qnEMMpWK9c89StTkJKxGI+Y+A8e/Xz9on5tffhyFRsupQ7upyjyEXO3FjjeeJGziFI5+tpLupnp6W5vIXv8eQbGTOfjO08jUXlQd20td9kGkai/SVj9D4ITJ5H69GmN7E32t9RR+/wH+4yeR9dHzSFVetBVl0JRzAIlKw8nPX8A3OpGyrR9g6mzE1N7A6e0fU73nCw4/sRhrdyvNxzbTcGgDNn0HZV89jyYijrbjW7B1N2Prbqbl0JeowuOp37YCoUyNoSIdQ0U6IrkafdE+fGbc+rPP5b9biXAEIxjB7wQltUaunOPHnEnemKxOpGIBj62uYtwNx5FKBKSmd9BjsOPjJcFkdVBcbeTO54vpNtj569Wh/OUPoby9vpa/XRPGh983/abX4uOjwttbQVCgz/9M/pXRUHoKk6EXU6+ene8sB6DldCk9zY1U3OdOqS/38uGGt9b9lsMcwQhGcA5Wrd7K4stT+PLLZwFITy/k1j+/SENDO76+Gry8/GhubiY+Pp4ZM2YQEhLC/v370TW38soHn5Iyd8FgX8Nl3/m1IJJIUKi9UGg8lAj/jdFvMqCvdWfSKN/wPABSbQDdZVmY2+roLDyEUCIn8tonEIh+G1d2RMJxAf6lhKOtlcCw8CG/MyLhuKD9V5RwHMvrYtEMzxKOQ2mtzJiopf4cCUf6KT0L/oWEY+YENfUdZyUc6fldLIjzLOE4VGpi1jgFDWckFv+DhONwpYWZY+Q09JyVcGTW2lgwjITjcIWFmVFyGrrPSjgyq6xcFONZwnFoQMJRf46EI73EwMJJniUcB0+6JRwNvWclHN/sa+WlL2pZ88h4psZqECCgttnClPFqDuV1M3eyD/WtFkwWBx36frYcasdPK0GulHDntWEIhQL3/Md7cSCri3nTAtG1mIeslycJx/6MVhbMHk3dORKOo9mtXH7J/17C4XQ6iYx/nCMH3iEqKngI9ZeWcJRmpTNx9nyPEo7SjMMIBEJqC3Jo1tVStD8VkURK8Ph4GordKTFlKg1XvfQRwbGTB7JVTMPQ2jQo4WguyiFsyizayguR+wbz3Z0LfzUJR/WJY0ROShmUNPgGhVBbcIKx0+Z4lnBkHyNycsr5Eoj8bMameJZwVJ04xuhJKfS0Ng5KOGoHJBOeJBxnxuPmn5VYRE2b41HCcW7/4JZwnOnfo4Qj+xhjJqegb2saHH9tfhbRKXM9SjiqTqQz5hzJindQKDUns4iZOdezhKO7E43f+YFgMCLhGILfUMJRX9/GlGn3cvzYe0SPP5vh1+FwIBAI3EGgwjmYTCby8vLIysqira2NsWPHMvPG/0J8wXUO50D/OhKOo0RPTeHVm5ew8M6HiJ2ziJqTWYybPtezhOPEMSImp6BvaTwr4Th1gvCpsz1LOPIzCIpPpqPe7a+o/INpK80lKHHmMBKO4wMSjkYQgMwnkIajmxFKZLSVnKCrNAOXw44yaAzm1lpcTvcaTrh3LQKh0C3hqC1EM3aohEMePIGu8mw6Ul/61dPY/e5g7uujsjAfs9H9IG+oqiRyfAw9XZ0eHegR/Hro6LaRX+p23F0uyC/XMz3Rh/yKXowD2Tkq6kzEjlFRWmciJEBGwWnjIL/gtJHk0TLyq4yD/MpGCzERCkrrLYT6SSkcyE/sAsoarUwbqyC/1oLR4k4pV9liY7yfilP1VsJ9JRTWWwf7Ty00ERMkYUOWgYmhbs3tqXoLET5iNmQbEQsFHKl0O/TzosRsyDETHyTmqxwjCSHuh0tlp4MwHy0bsvoQC+FIxQA/VsGGzD4mhkr5KqOXhDAZYoWV/FoLEf4SvkrrRiyEwyVG5CoTs+LUrD/QTsJoBev2t5MYpUIsFnCyykhkoIz1+9oQiwQcLenD6YT5U7S8+Hkt918fyvZjnRitDny9pFTWm4gZraTwtJHIIAUlNX3022HSODVRoQruviaEbw52UFLTd978F1T0MjrMi/yyoetVfFqPweje4MtrDMSN9SK/rIcxo/vIK+4amH8XJ0s6mT/XjlLh+cH7r9DdbeS2uz4hOmoUkZGj/udfOAc2q5V9W79n6qy51J2uAMAvcjSFmenMW3I1WQf3De4FDfU6Js+dT/rOVCZOn0ljtfsBb5cqOLr5WyJi4jmy6Wsi4gaC0oqL8Q0JJ3v7JmZdfysOhx2fkHCueep1crd9x+xb7yZ/52aCx8XjVGgo3r0ZbVA4Rbu/RyASocvLxIGQ0IRplO3djH/UBMr2fo82coLni/mZUbB7C9qgMPJ3bEIkElOd6041NzZpNidTNxEUHUte6kaCBoLq2msr0QaFkpe6EaFYRNWJdAQCIVHJM8lL3UjguFjytm8keFwcCEU0lbmd15OpmxCKxFTnpCOSSIiclDKkfxfuIEVt8Nnx1BZk47T3E5U0m/wdmwiMjuVk6kbCYhNwOBy0VJac139NXiYup5Oo5LPjP7njewKjxgPQXFmCd3A4eakbEUslnB5ITRedMoe87ZsIGhdH7o4tBEUN5IeuKMYnJJyc7ZsQCkVUnjgGwLhpczixbSMh42PJ/vE7QgYKRjSVF+MbGk7+7h9JWHgF7XXuINqAyCiq87JIumQxJemH8AkOBaC7uZHJ8xdycv8uxiVNp7XWzQ8cHYWr30pwVPSvYAW/Tzzw4GqW3n8t0dGh57WLLnhhUCqVzJkzhzlzzuqhPQUR/hwwG40IhYIh+482LIKyE1mkXLaEgiMH8BuI3zq+M5VFt97J0U0b2Pv5h5gMveiK8lF6eXNi20aCx8cN2qfNKaC5rBDvoDAKdn7vvl9y07ELJIRMTKJkz2b8omIo3r2JgLFx2O0uOqtL0QSGUr5vCwKRiPqTWTgdDoISplN16Ae8I8dTdWgLmvA4nA4Hel0ZSv9QatO2IhCKaC7OBocDv9jp9NQUEXvTo3TVlBG+8DasvR3YetqJuuoBGg5/i3fSH+gu3AeAJiqJzpO7UARFoS8+iMzPvT9b26qRaAPpK9n/s8/9yAn0BRAIBK7Mtj6PP/P0Bg6eT48lw3AD5Z7bfT35B8OdNA/3Bu4YemrmbveQ3sdTG4BzuHYPb7nD9uH5RM5zH57H7HJ4fjN3Ojy/VXviu+yeuU6H5zd2T6fhzmH6GO7kvLPbhI+XhK7efjRK91obDDZ8vaS0ddkI8JFgNLs3UqVUQHt3P6N8pefx+6xOj3y1l4L2Lhuj/GR06W1oVGJEEjkGkwNfrZTWTgujfGUYzQ6EUhkqpYS2TguB/gq6eqxoVBKEIgkGox1fbxmtHWZG+ckxWd17wHepVXz4dRnHt1yF3tCPViNBJPr3wiQE4qEBegBCkWfHVyAfJvWbdGgQFdJhYg9knttPGdyV325ZNJuJU5N59JW3MHkoPALQbfZsf51GK/qOdrz8zqYh63NJ6OvqQOMXgEnfg2wgNVRze487rVJXB0ofv8G0bn12CeaeTpQ+/lgMeiQDGuWezl5kGi3mnk7kWl/sVjMGgx2xXIG1twu51g9bnx6xXIXBaMVhNSNRabH1diHR+OCwment7kMoVWA39iBR+2A39WKziyhdcc0vfgL99tEC1N4+9Ha2u9O0mQfStCmUGLo68PILwKjvQaZ0z4/JYEDtcwHf5U7rdi5frlThcLmwmoyotN7n8R0Oz3yny4XlAr6pz4RAAFKFcnC9jPoeJAolAgFYjUaUWm8Mne2off2xDKSlc/PdabYM3WfXd5Df1YHS2xfbwPVKz0ljZ9T3ID/DNxlRenmjb29H5evvkW/qPTs/Z/h9Xe2ofIbytf5D+WqtD4auDtQ+fufxsVuRyofmFvd0Aj3cKbZsmBR5ag/p9IY7rR72ZHq40+2f8BV3uDzKnp7Dzp/o3/Q7hjq59oG94/DObax+4Vm+PpKFVCbzeBoMYBmm3ezhVNnUP0wf/Z73q37H0OsxWmwIRaJB+z9jDy6JfNCez92vWjr0KL28+ebh21H5+rPovmWYHGLEcuU5+1UPEoUKs8mO3WI6f7+ymOkz9yOWKS/Yr5T0mR3YLUakKi3W3k6kGl+62rsQAEKpgv6+bqQaX/pNveh77QgQ4LSZESk02I3diJTe9LR3AgIEYhlOix6RwpuetjYEkoFMTHYLAqkal0WPw2KBM89zkRRsfQhkGpyGNgTigYqfDhsCiQJnbzP9+Z+OBBGOYAT/qRCJBCy+L4fTOhMvfFTFCx9VcVpnZvEDeYjFAm5/rpjNB9rYfKCNx987jVgkYMk/T1JVb+KFT2p44ZMaaho88+98vhCRWMAVf8/idL2J5R9U8tbnlZyu6+Oyu9KQiIX8+YkTbNrTwPaDjdz2cDpisZBLbt9PZZ2B594t4NUPC6ms1XPxn3chEQu55aEjfLW1kj8+cIClyzNZ8eR0Lv3LLipq9Ow4NMwL3P8RaH18iU2cMpi3/adg44pXEInFfPDwP8jatY2sXdtY/+QDCEVi1tz7J9p1Nexas4Jda1bQ3VjHhgf/jFAsZuvyByk5uJOSgzvJ+OQNhCIxPy67HX1jLdnrV5G9fhWGljr2Lr8DoVhM2srHqE3fTXPeIXI+XIZQJOLYG3fT16qj9If3qT/0Laa2evJW/QOBSETx50/TlrufntJ0aja9hEAoovzzh7F0NtCW/vUvMItD0VZXy1t/+yMisYSPH/0HJ3Zt48SubWx88wWEIjFv/e2PtNZWs/W9N9j63hu019ex4o6bEIklrH3sPnJ2byN3XyprH7sPoUjMijtuorWumq2r32T/uo9pq6vmnQH+p4/dT+7u7RQe3sPnT9yPSCTm3btuoq2umu3vv0Xqmrdo19Xw3t03IxJL+OKJ+yk6vIeTe7ez7sn7EYrEvH/PzbTrajiy4RN2rVlBu66GNff+CZFYwvonH6DwwE7y96Wy4amlCMUiPvz7LXTW17H3wxXs/XAFHfU1fPyPWxCJxOxc9QqF+1Mp3J/Kt88sRSgS8cl9t9DVUMu+j95m30dv06Gr4ZP7bkEoErPx2aUUHUil6EAqG59187e88jiduhr2f/w2+z9+m05dDZ/dfwtCsWf+J/ffRoeu5rz+v3vuIUQiMd88vXRwPN88vRSBYOSR/nPDYjKx9s1XeOmf/+DJt1cjlf1nlWJ32O3n2X/enu3k7dnO9pUvD9pzu66G3R+sYPcHK+hucO9Xci8tbdUVlBzcSeXRXex77WH3fvXE7fQ01pG97l2Ktn2BvrmOXc/egVAk5sjbj1GTvpum3CNkvf8EAqGIw6/cjaFFR9H3azi9/WNMrTqyVvwdgUhMwdqn6CpKo6PgIJUbliMQiij+6J9Y2uvpztlK+7H12Lob0X27DIFQTPP217HUZmOpzkB/6F0EAhGdO5bj6mulv2gL/UVbcBpasRx+HYQi7BWpOFsKcLYUYD/1NQiE2HI+Aks3jtrDOGoP4zJ3YitYB7/AvTEi4RjBCH5GKGVCLp7uz5gQBXOmuAPXxoTIuXi6LxqliIXTfJka685/LJOARiViUYovo0MUzJ3sjsSOCPLMF0rEeKnEXDwzgDEhCuYm+SKVShkdpuKSWaPQKMUsmjGKpHgfRFIZZqsDL5WES2cHMyZMzbyUUYjFEsaEa7h0rvsTpMvl4vl385g1NZAX/zuZmVMDuWxeGFERGrzUP1028Z+Em+64h+eX3surj/2TV778lmnzF/7bvzs6PgG5Sk38rHmMmTgJgD6LHblaTczMefiGhjM2yX3SrQwKIyplLlKlijHT5hA8IQEAq1OERKkiYuocvILCCEmY5uYHhBIyaTYSuZLgxJn4j43HaHLgcvQjlqsZNXEWqoBQ/CckYe4XoPAPwTd2BiK5Ct+Y6WgiYxHoTbgc/YhkSrTR05D5BKMMi6PzZ55DT/APCyN+9nxkShVxM+cxemB+pHK5e85mz8c/LIIJ02YC4BcaRvys+ciVKuJmzmV0/CRcgMvpRKFSEz9rPv6hEYxPnoFQJMY/LIK42W5+7My5RMYn4nQJsNtsyFVqYme5+x+XPAOny4VfaDgxM938mBlzCRkfh8vlPsFzr9d8/ELDMRsNOO12fEPDiZk5D5lKxYTpcwmNmThYa1euUjNhxjx8QkIZM9W9vr4h4Yyf4eaHxiQQOCDVAJCp3Pm7fULCGDPlDD+CcdPnIVOriU6ZQ+hAqfAz/NAJE/EJjRjk+4RGDOTA9swfN30uviER5/UfHj8JmUrFuOlzCIs9yxcNozEewU+HxWzmxw1f8vm7b5GQnMK6A+mERET+1sMaApFYfJ79R8QP2INENmjPfqHhRA3YsyY4lKiUuQTHJrLlmfs59OEbTLv1fsKmzkKiVBE+dfbAfpVCvx00gaGETpmFRKEkZNJM/KPjMVmdOPutSBQqghJmohoVSkBsEharE4V/KAHxMxDLVfjFTUfoF8WZI1+RXIX3+BTkfiHIAqPB6UCiDUI1ZipCqQLl6CnYlWdlsgKpAlnYZOyqAEQBMQAIVQGIgiaCWI7QKwyB2v0lUgjuNr8JIPdG4O1eK4HcB6HPWBD+/PfGiITjAoxIOEYkHOdxf6KE47td9VyzcBRf72xmaqw7svlkiZ4/XR7Ee9/q+POSEPLKegGYFK1mw65mHrgpnK93tzA1xs0vrTNy3cLAIfykiX6sS21k6S2j2bCjkaQ4LSKJnJzibm67MoJ3v6rkL1ePJq+kG4lcxqQYX77cUsWDt8ey/sdqkif6IRKLychtp6HFyHvrSrhkTiiLZocyOkxDUoI/X3xfwUN/S2DdD5VcPi+M0CCVx+u8EP+JEo4z2PPDJj5881We+/BzxkyIOe9nw0k42vRGdn/+EXOvu4ma4kIAtGNiObF9E/NvvZOc1C2Ex7kfVJUlxcRetJjsjZ+TeMX1NJcXAaAIm0D5vh9IvPa/qDjwIwHj3RrohpIiouYuoSR1PdEXXUNndTFmiwvvyBjqjm0j+tLbqM9IxXtMHEazA0NdCUHTF6M7+DUhM66kV1eGyWRDGTSWzpN7CJx1A535exH6jqHmi6W/fBDhS2+TcsXV7Fv3MbOvuYm6Evf8RMYlkr71Oy75y91kbvt+0LHWlRUP8Ncy65o/UldSiEAgICI2gYytG7nkL3eRuf17t2MtEFB7Kp8Zf7ie/esH+MWnQCgibEIcmT9uZNFtd5GVupmI+ERcLhe64kJSrryeg199woyrb6S+rASHw0F4bALZ2zax4LY7OZG6mbC4SeByUV9SSPKV13FkwydM+8ON1JcW4XI5CY9N4MT275l36x3k7dpG8Hi3hruhtJCpi68j7etPmbrkehrL3OsbGpNAbuom5txyB4V7txM0LvY8fvq3XzLpimtpKnPnCw6JSSAvdROzbr6Dgt1bBh3lxrJCJl9xHSe2fsPERUuG8Ofdegd5O7cMOsoNpYUkLb6eY998SvKVN9AwwA+LScDY0UJYbMKQdRuRcPx76Hc4sNvtrFv9Dl9/uJqE5BT+svRhEpJThnD/UyQc3d09SGTyQfvXlbjtIXB8PDkD9pyzYwvhA/ZzuqSYuIVLBvergp3fc2LzOhY+8hrtFUVMuu52yg/8yKhxE7HanHRUFhG94A8UbV/HuIXX0FlVgrVfgDZyPLVHfmT8FbdRdywVn6h4TBY7+tpSQmcuoXbfBkJn/YGWsiJcLgfqsAm0ndhJ8LybaM/djUMVCbiwtFSgjV9EV84PaCdeQmdVMQJciP2jMFccRpWwhK5TBxANOMTO7lpEkbOwV+wB31hcve5gU6E2DEdjDqLIuTgbshCo3M8Hl6EJYWAi9prDOBszR4IIRzCC/1TklupZNMOPg9lnzwKP5HZx5bwA9md1MWeKD8dOujOa+GlEHMju4vY/hHAw52z2k9JaE5fM8B/C9/VRsD+znb9eHTbYv0xu4cDxNq5eGMK+jDbmJQWQltOBr68SL7WUvenN3HFjNAcyWgAQCcW8+lEhcdHexI/z5pE7J7LraBN1jX34aGXsOdrAnTfFsP9YI3HjvP9tB/o/GZdcfT2lpSU8eMOVePv5M+eyxcy+bDFhY6KoKCslNCoaldf5aZxsVgun0g8TkzKT8uxMAKKlasoyjzLjmj9RPhBIBtBUUsTY6fOpzk4jYnIKuvwsAEKlGnR5xxi38Cpqsg7jcrkQCAS0luQSPu0imgrSCYxLprU4B4dQjkSpoa0og9HzrqWt+Lh7HC4xXWVZBEyaT1fpcXyip9JzOo9+hwiRTIn+9An8kxbTW5WL3PbLBCldiOqCXCbNv5ji9CNMSJ5J+Qn3/Ki1vhSnH2HeDbdSknl0kF9bVEDi/IspzjjC+GkzqMg5jlgsQemlpTjjCHNvuIWSTPd8imVySjPTmLzockrSjzA+2c2XqdTIVWpKM44w+7pbKDvu5rtcLsqOp5G48HLKMo8wLnkGuuJCLEYDSi9vyjKPMONa93qJpDLsVivlWWkkXHQZZZlHGTt1BrWFuTj6bSi9vCk/fpTp19xM7alcHAMv5ZVZx4iffxkVx48yJmkGNSfd66vw0lKZdZRp19xMXVEe9oGX7dPZx4hfcBnVeZlEJCad5Wu0nM46SvJVN3M6+9jg/JzOPkbs/MtoLCskNCZhCH/6tUP5CQvc44maOp2aPDdf6eWNqavdowM9gn8PLpeLlx66j4baaj76YRdjY+MGNdD/qbBZLDgcjkH7P53r3jtkmrP2XJl11n6aSoqInrFgcL+yGPR4h0dx4M3H6TcbMXa10VV7mn6LGWN3D1015UROX0TjyQyC4qfRUpyDS6JCrFDRciqTqIuuo7XI/Tet/S46S7IInLKA9uLj+I6fiqG+BKfNjFihoacim1HT/4C+IgdJuAuX3YqxJhdFSCx91bkowxPob6t065ZlaqwN+ShjFuHsqEAw8DLkaC1CFDoVR0sRImUgrm53EK1LosTZWY4oLAVnbxPCgSwdzu5qhP4xOPW6XdoMiAAAIABJREFUn33uR06gL8DICfTICfR53J94Au109GM0O1ApRNgGThGkQgbbzFbH4AmPxWxHIRcN4cvkYo98m0uEQi7GaLajUoix9TsRS+VIJKLBNrPFgUwqRCiTY+t3IZeJMJrsqJRirFY7/3wpj4YWE1+9PQ9fbzlmix25wn16bOt3IJeJMZr6USklOBzO/9NBhOeix2LB6XSSn3GM7MMHyNi7i5YGHUERo2muq8U/OISEGbOYveQqJs6Yja6xFS8/Pwzd3SjU7hLuTe097mC1jjY0fgFYTe59woicvq521L4BmPTdyJRqXE4nR7/5gqq0XXQ3VCORKXDY+9GGjsYrZAx+0QlMuOwmLIZuJAo1BoMdu9WETK3F3NOBXOuH3WKiz2RDJFNhM3Qi8/LHZtQjlinp6e7DZTMjVnphM3QhUfug7+iiavXNv/gJ9MeFOqwmEzKlEpvFgljqXnu7zYZULh/8mb3ffY8IxRKPfEe/DYnsfL7TBWKJBKvZhExxlm93uHDa+938gZ/Z+23YrBZkSjWGzna8/Edh7OlGKFchFAjOBiMOrJeprw+BwHU+X9+NRKmGc4MXO9pQ+Y7CYnSn/5Qp1fR1tqPxH0WfvhOpwi2pspndwX+GjnY0/gEX8DtQ+gZgHLCH8/gDwYu2AfuRKtXnBDsO5Zt7OlD5+A3am0ypxtjVMTj+M3yr2Yi3jw8WYx8ypQrHwPyLJFJcNjMKlRqb2Tw4/0JnPzKFcpB/Zr3UqqFBiPD7OIF+69ll5KQd4aOtu1AO3PfDOdA/1wm0ua8Puers/IslUnp6elGoNVjNZiQD69VvsyGUyoesl10gprejbdD+ZSr3uHv0PWi8/YbsV2aBYsh+1WOyYzUa6GtvovLwDhoLs+lpqEETGE5fexNyjTfBidMJnTqH0MlzMFpcOKxGZGrv8/Yro8WJSCrH1tuJTOuPrU+PwQxCoWAgGNq9X4lV3tQc+B594R5sXQ0IxFJcDjtS7yDQBCMNjEExdiZCmQaHsQejXYqz3+0rCMRyXBY9QoU31rZqhIPBhVaEUhVOqwEhApx2tx8iEElx2foQOJ3YTrw3Usr7l4RAIHB12jzPiUcnFzw7usM5ucPln/TkXLqGSbI+XL7L4foerp9fGx7HN9yYf+K1/BwOvsM49M/1WzwPw+l5fB4deafnMbs8RHwDIPR8f3sKEBIIh3nIeEgsX1DSwbV37aRw782oVWcd3jN60aF9e37Z8zgO2TCVtCTDtXtwlMGjA90luMIj1VOuZoBuy9A1q6ipRSAQ8N5DfydxoJBBwdFD/PmV91h195+Yf/PtZG79ls7GekRiMRKFmmueW8mBNa8xNmUuAGWZR7j0iRVsW/ZXZt/9BJVHdgIQNuMKcj5/nYufXUvau4/hH52A7vh+bKY+Jt/+NMXfv0finx6lLn07dnMfcv8I6o9sJOamx2nKSiUgfg6Wfhc9ZelE3fg0FV88Qvjlf6fr1CGcEg2K8AQ6Dn9K6I0v0bLjTZSjp2J3CjHXZON3yUO0b38e71l/pa8yE0vFgV/cgT7Y5DmH/HDOiqf24bjDOSuOYdpXPrKU2VdezRcvP8fyDZt5e+k9JF9yBVazmYK0wyxd+QEv/flG/vLUcgrSj9Hb2U7KFVfx7esv8Njn3/HBI/9g4tyFOOwOijOOcNcbq3n7zpu54ZHnObFrKwBJl/2BLSte5IGPv2HrqjcIGKgPUJZ5lD+/vIoP/nErVz74LPl7fgQg8eIl7Fj1Mv+1cj2bnn+Q6OnzADiddZQbl79L6ornSLrqZor2pwIQv2gJe1e/wq3vrOeH5Q8O2ltVdhrXPreSrx/+Ly69b9l5/JwfvuLKR19m8wX8P76wii+W3soVS5/m1AB/4qIlHP1yDbe++j7fPL2U8TPc42kqO8UNj7/Amr/fwjX//Qx5e7YDsPiufxAYeTbH8RmoZEP3FE9ONfx0x9rjIdRPqJkAIPTgWP8UB7q1sYHbLprBhvQ8tL5nX/Btw+zTw+VqHi63c591aD8Gk5lXblrMDY88S87ubQAkX/4H0jZ/x3WPPs+6Jx8gZuZ8wL3/3PTCu3xy/20sefBpCve512v8RUvY997LQ+ynta6GWX97iC2P3c68e5dRfmgHAJGzruD4p6+x+MVPOfjWo4RNmY3NDs0Fx5j1wOsceukupvz5UWozdiFWeuM3IYlTX79J+MzFVO39ChCgCZ+Aw2Zh8j1vkffefYy/7iFacvfSb3fhHTeHht0fMv72t6je9BKyyGRc9n5MtXkELn6Uxk3LEMk12LqbEftGIptwMeaTG1EveIi+tNW45H44O8pBokSaci/9J9YiGncFzpYCAERBidgrdiCZeif28lQECneskbO7BsmEq+gv+hZRxFycneUACH3HYdelIRl7Bf3FX4840L8kRhzoXxAjDvQF3F/XgV75ST5lVd18+OpF54/jd+BAN3R2IZHKqCrIIyDcraVrr6/DOzqB8uNpRCdNp7PJraWzmoz8uOYdLH0GFt3zGD6h7gIoddU1BE5IpOFkBiEJ0+gdKMCBMoC20lyCE2fSVnaS7LUvETp1Ln4TF+AzdiLtxVn4TZiKqdNdgMMlD6Dh2GZ0h76l36gnIHE+Iu8wBCIR3rFzsHU1oR6diK2nlT6DFbFXAOaGYpSRk7E0lyPxDsJismE3tCIdNQ5rQyGykDhM7Y10b330d+VA152uICA0jJLs40yaM5/K/Dy8Q8IQCAS01dcRPWkqp9KPEpsyg8Y6HS4X+IeEUp6TRfyseVQXnsQryJ0ft6NRx5iEKZRmpjF6SgpdA/bgGxzK6bxsYmbM5fSpfHyC3AG4XQMFUCqyjhGamExP89mCKbX52UQmzR4sEAPnFGTJzSRiYhI9Le7+vQNDqSs8QWTSbJpKCvAeKEBzpkBMXW66u0DMOXzdqVzGJM08r2BNd1M9kQlT3AVizingog0MpbEol+hpswYLZAD0tTUSET+Ziqw0xk6dPni9oWNGI/Lg6P6/7kDv3Pg1h3em8uKn689r/yUdaHO/g5KMo4xLnn6evZXl5hKdPJO6CwruBMUkUpl9jKgpKXQP2JvYJ4j6whOMST7ffprrdQSOT0CXl0FowjQMA/uVQD2KltJcQifNpL2iEE1gGH1mO8a2RvyiE2g9dZyA2CSM7U1YrA4UfkF0VpwkIG46PdVFuFwuatN30lmSyaxnNtJdkYtP9BTMXc3o9UZk2kD66twFTYwNpVgEWhCAXd+KNDCaxg0PIQ+bCOFzEIrECNX+9LeWIwmeiL2jCotdgquvhf68L90p67wjEfhGIxCKESh8EfqMwdVTi8A3Gld7GQKZFgCXVY9AHYyrpxaX3B+BbaCAnEyDy9CEQOFPf8FIGrsRjGAEPxEul4svvi/j+sW/zyILEqmMj598GKWXN9l7dpC9ZwdKL2+2r36DMZOS2PHB23Q06Oho0HFy3w6uevIt2qvL6dBVUXpkN6VHdiNTe3Fo5dMExU4me/0qepvr6W2upzR1HQETJpP5wXO0FGXjcjlR+gcjVXtx8vMX8I1OpGzrB5jaGjC1NVCz53NCZ1+D74RpTH1gNc5+K72nT6Avy6Rk9R04bBZ0qe9hqMnHVF9I+6G1KEJiaN27CpFcTV9FBua6HIQyFd2H1yANGo8++1ucfW2/9TT/6mipq+Pbd95kwtRpvP/4Q6i0Wk4e2k/W7lRUXlo+WvbfjJ+SzMaVb9LR2EhbfR0/vLeC6MnJfPb0wyi9tBQc3Eve/p0ovbSse/ZRoiYnse+zNYP2sOODd4ialMSG5x9FodZQeHAXhQd3ofDS8t2LjzE6cSppX31MV6OOrkYdBz5ZSUTCVFLfegaFRkvJ4d2UHN6NQqPlx1efIDQmkUOfrqS7SUd3k45Dn71LePwUDn74BnKN16C9yTVepL6+jPD4KUP4oXGT2PbaMuQar8H+5Rov9n30FuETp3Lgk5WD4zn46UrC4yex+eXHUWi0nDq0m1OH3OP59oXHGJ2YxK4P36ajUUdHo25QX/57Q+o365l/5VW/6t9sra0ianIS299/m/Z6He31OraveYfwuES+feExlBovCg/sovDALpQaL7a/vZzIhKns+/gdOhvr6GysI2PDh4TFTyH19WXn2Y9MpWHfiqcIjpvM8XXv0tOso6dZR9G2LwicMJm01c8gVXtRk7mPhuwDSFVeZH/8PH7jJ1G0aQ19bfWYOpsp3/oRvmMTKfj8BSQqDb315XiFxyCWq8h77360UQlU7fgIc0cjtq5mmg59iSo8nrqtbyFWaDDWnMBYmYFQpqZ5y3MgFCEQSdx5nA1tmPI3IwkYhzHjY4RSJc7WIlx9LUhnLUUYlIBwVBzOlkKczXnYT31D/6lvQaKkv2ADLpsRR0s+jo5yEMmwn96FwCsUV2seLqsel1WPozELgToIu+7o/7wgPxEjQYQjGMHvAEezmujvd3LxnLDfeij/JyAUiQiMjuX4N2sJn5QyWNb5f4JIKkMokQ6r07wQEqUXvhOmYbE6UEcmoEtdRcPej3GYDfRW5eJCgMOkx6wrBJEIc2PJwNeP80/+XC4X1rrsn3qZIxjBCIDTJUXUVVYwf8nVv/VQ/k9AIBAQPv+PVGx+h7aCI9gtw3ztHfJ7QoQS2b+9PwqEYsSj5+Iy9yL0DsfV14KjNs3tRNuM2PtaoN8EAgEuQwOufpPHL74ulwuXVf+TrvHfGt+IhON8jEg4fkGMSDgu4P56Eo57lh1i3Ggtj9wzdeg4fucSjrLMo0QnzaCr+cwn1DByM44zesp09r73Eh11p2mpKEGiVDN27mUofQKIu+KPGDtb3Z0rA2grySV40kya8tNJW/k4f1ixmc6mVrzHxNFefHxAwtEMuCUcPVUn8Y2ZTm9tMQr/EHq6+7B2N6MKi6W3KgdN5CRsereEQ6Txw1B8AIfVRF/5Uey97UiD45AERKGKv4y+/K1YG07hdLlwdNX9LiUcxVmZTJ67wKOEo/DYEWJTZtCkqx+UcJSdOM7E2fM9SjhKMo4y+pxP5L7BoZzOzSJm5jzPEo7jaYQkJqNvcUt0vINCqT2ZRWTyHM8SjhMZRCQk0TPwSd07MJTagmxGJ8/xKOGozTnG6Ekp5/H/lYTjdHYaoydPR996joTjVA7RKbM9SjjKj7uzkXQ3/34lHGteeg6n08FdTy0f8rNfXsJxhHFJ0+k6x95Kc3IYN22WZwlHVhpjpkwflOiIfYLQFWQTNW2OZwlHbjqhidMwtLrtU6AeRUtJDqGTZ3mUcLScymRUTBLGjuazEo7yvP+vvTsPk6uq8z/+/t6q7k53Op0dEsISEFkD4g6OMOCIOuo4ziguozMyjwuKjOL+iI7C6IzM/BgUF0BgRlBHokBYwxK2oLInbAkhkIWsZO+k9+ql6vv7495auypJke6+1enP63nqqapzz7117qnb33P63FvnMv34k9m1eilN02fRk0rTs20j7etfYPOT99CzfQNBXQPjDzuRKXPegZNm4mvfOugSjrpph7H2l//EIWdfSdvW7ZgRXsKxeTl1B52Qu4TDzPDu7dik2WS2LYemAyAVxh0bN6noEg7qW/BUK5kdL+Fd2/DOTdiEgwmaZ2ITZoWj0JsWhxWeat0/p7Ezsy8C5wCzo6TngR+6+/xouQHfBz4HTAYeB77o7s8XbMOBfuAYd19dkH4tMM3d3z/8eyJSe2ZOb6Kto8I/XmNAV1sbQRBw39zfcsQJ4Xyoq5c8x7u+8HUemfc7gmSS5dFUaseccipL7pnHAUccRV9PN8ec9m6OPvVdvPDIQ3gmw+Lrr2Dx3Ctpnj6T6Ucez6y3voeX7r+RyYcfxZKbr8ECY82jC9i5cT2NU2ewZuE8CBJsfT6c7q3lNW9mw8M30zzrKNY/PI+Jhx5LV3cfPRuW0zB5JtufnA+WpGPVk/SlEzTNOo7utc8y/Z1foH/nRpqPPpWeLWvoWnYfHU/dRNAwnvFz3ktvZwfp1rWx1XEcutraaGqeQHpggP6+Xnq6u0juCqeETHV10d/XS3qgn662Nrra28GdruZm0gMDDPT1kuruItjZCga93d0M9PWSHhigbds2Hr31DwAce/JpPHzT75h11HEsmj+PAw97DQDrX3iOybMO5tGbf8ebLcGKx8NTxEe99VSeuHUuU444hkW3XM9Bx4TTyr2yfAmTZx7Cc/fcAgaroqnpXvOWt/PUbXOZdvjRLL6tOP/EmQez+La5BIlEUf5n7w6Pz0W3FuefMusQFt06lyCRZNUTf4ryn8pTt/+ema89hsdu/l1umrttq19i8kEHh8d/IsmL0aUbb3znu3nm/rv568+ex4PXX8vBR4XzW+/auI6/POvj3HblZbztAx9i5dOLaW4axzs+/LFh/IZHxtQDDuTll5aP+OdmMhnSAwN0t7fT3R6OkI4bP4FMOs1AXx993V10RcdzX3cXXTtbefyW6wmSSVZE39esk07m6dvncuCRxxYfP6tXMuGAg1gy//dYIsHaxQ8DcMDxp7D8nhuYOvtoXrjnD0w78nh6Uxl2rlnG+AMOYtX9NxEECTY99ygZkkw9+g2sfWgeLYcczZqFNzHp8GPpHwhoW7uU137gPHauWMwR7z+HLU/eQ/vmtay/+3L6dm5m4jGn4P29JA8+CXMntWUl4w6eg2cypF5ZRmr9KizdR92sE0i9dD+JKYeReuk+0o0zwlt871pH8tippNc+DDPfgLWuAMCmHEVmwxMkmmcysGUpQVP0g890H8mjP8DAirtg3CTS25fBxsegcQoESRKz/4r0suuH9PurmRFoM/tboA9YQXht9qeAbwJvdPfnzOxbwHeBs4EXge8BbweOdveOaBsOpIBb3P3jBdu+lr3sQJuZe/eN5RdWMyrqMYwSB5VuMVpmlKBS3qD8dGRl81fKa+VHJbAh+H+tUj2Vq9dKI/UVR6DLjFhnKkwNWNU2KpSj0gh5Nbz8KAglo9633rOSq367hNt/9b7Bm6gwVV+5HyKGCwb/Ax/UN5XPm6gwj3SFKejKjUy3Jj9UNuvyneWnm9zaNfhMwqqtnQSJBF1tuxg3PixTqquL7kQTXa3baZo8lf7oNGTduCY2bNhC06SppDraqG8M921Xa3s0zdwOBvpSrH7oNlbeewMTjziBQ972PlpXPsvGx+/h5K/8jOYZs+lqa6eueSK97TuonzCFdG94LHWlYKBzJ3UTpjDQ3U7Q0ERPd29urtT+zp0kx08i05+iu7MHq2sk3d1Gcvwk0qkOgrpG+vrTeH9PeM1gqoOgcSJ9XZ1sue7sYR+BrtRmvNRVPr3c6HG1I82VRgH7yuSvNAJYzfRinb1pUtFx1NDURPuO7UycNp1t23bQmD1+stPe7dhG3YSp9PWEx099YxOdrdtJtkyhu30XDU1h/t7ucFq6Xdu30Tx5WlH+rp07GDdxCj3tu6iP8vd1d9HYMonO1nAau/4of12Uv3nKtEH5x0+anMtfuP3unTvCqfwKyhP0dzN+4uT8tHpR/gkTmulo3U7L1Onh30uUPzHQQ/OkybRt30bL1Gn0dnfTPC7JuKbBf/uVpnytOI1dmfyVpoKt9MOtSiPT5ZSOTD/72CP89MIL+OVdDw7KW+mYrHQ8VTpW+8ukd1aYu72nQnp3X2bQ99XtdWWPhy3b22hsmUT3zu00TsrHt+6BOlJtrTROmkpvRxt1jU20tQ8wkOqivnkiqbYdNLSE8aor1U+yoYm+jlYaWqbS39VGYtx4drV2hvGqqYX+zlaS4yeT6UvR2ZEiqB9H79bVdK17jtYn5pGYdDDNJ/4NvRuX0P3SQ0w+4zzGHfI6utvaw6Yk2YCn2gkaJ5Lp7aSnLwjTB1JYfTOeaiNDArLTzybqoa8Da2gh3bkdS+ansbP6Jry3I+xrpPtwz4TL+7uwoJ7eP/5w//wRobvf6u53uftKd3/J3b8DdACnRKPP5wMXu/tN7r6UsIM9AfiHkk39DPiImb1xRHdApIa9Yc6BPLV07P3ILMeMX5zzMbate5k7L7+EOy+/hG3rXmb+f36bIJnklovOZ9kDd7LsgTu55aLzMQu4/YKzadu4hid+81Oe+M1P6di0lnsv+jRBMskzv/sJ46ceyJwPn0N/ZxvLbriMjY/fzev+6QI2PHony2++nO7tG1j0ky8QJJIs+Z/vsnnxvWxefC+rb7wYEgmWXX0+Pds3sGHBNWx7eC69Ozaw6tffwBJJ1s37D3Y9v5Cu1U+y5c7/hwUBG2/4Dv07X6H1kd/S/tQ8BnZtYuutF0GQYMc9/03q5UfjruX9xrYN63j8rtt4/K7buOJr55JIJrn47LPYvmEtt/78Em79+SVsXbuaH3/6oySSddx48Xd5esHtPL3gdn59wXkEiSTXffXTbF/3Mvf+8lLu/eWlbF/3Mtd88R9IJOr4w/e+xNL772Dp/Xfwh+99iSCR4OZ//wY71q/hgat/zANX/5gd69dw3Zc/SSKZ5KYLz2fpA/NZ+sB8brrwfIJEguu+/MlB+W+9ODyeb/j+l1l6/3yW3j+fG77/ZYJkkv897x/Yse5l7rvqUu676lK2r1/D5Z//OIlkHb+54F94ZsEdPLPgDub99w9IJJJc9tmPsnXtam7/xSXc/otL2LJuDReffRaJZJIrvnZuWD/33Bn3VzUkjpxzAquXL2OgwmUZteL/vvcVgmQdv77gvNzxdvt/XlD2eGjbtI553/wUQTLJ3T/6KiseuosVD93FE9f8CEskuOf7n6Z901qevv7nvHDzFXRuWcef/+tzBIkki678NhufWMC2Z//Ikv/5LhYkWfSTL9C1dT0rb7uCzX/+A6kdG1h+zVexIMmq3/+A1iUP0P7in9h468UkW6bTueJxZv3NtyBRx877f0r/jrUkmqfTcMBraL33x/RtWEzvmkfp/OPPwALa7vkh6fbNDCy/g/6l88h0bCG18D8hSND/7P+R3riY9MbF9C/+FViC3kcug+4dpFfcTXrF3Xj3NvqeuBIswcBL88lsXYpvW8bA838AC+h99jd7ruAq1cwIdCEzSwBnAb8G3gh0AauAt7j7kwX55gPb3f1T0XuP1vsIMNXd/ypKv5bdjECb2ecILw0h+jwRkdFoh7tXuMB830UxVkRkNBrS+Fgz10ADmNkJwKPAOKAT+Dt3X2Jmb4uybClZZQswq8ymLgCWmdl73P3uPX2uu18FXPXqS77vzGyRu78pzjKMFarrkaX6Hjlmtmg4tz+cl4fsjo6hkaX6Hjmq65Ez1PGxZi7hiLwInAScDFwBXGdmcwqWl45+WJk03H0lcDVwsZWbMkBERERE5FWqqc6lu/dF10AvcvdvA88AXwE2R1lmlKxyAINHpbMuAl4DfGJYCisiIiIiY1JNdaDLCIAG4GXCTvSZ2QVmNg44FXik3IruvhW4BPhBtI1aF+slJGOM6npkqb5Hzv5a1/vrftUq1ffIUV2PnCGt65r5EaGZXQzMB9aTn13jW8D73P2uaBq77xBOY/cS4ZR2pzF4Gruz3P3G6H0zsBKYCNyveaBFREREZF/V0o8IZwC/jZ7bgOeAv3b3e6Ll/wU0Ar8gfyOVd2U7z+W4e6eZXQRcPpwFFxEREZGxo2ZGoEVERERERoNavwZaRERERKSmqAM9xMxsppldZ2bbzCxlZsvM7C8LlpuZXWhmr5hZj5ktNLPjC5Y/ZmZXl2zzH83MzexrJen/bmbrhn+vapOZfdHMnjOz9ujxqJm9r2C56jpGZnaumb0c/R0sNrNT4y7TaLOvx3iUxys8Pj/ye6QYOVIUH2ub4uO+izs+qgM9hMxsEvAw4fzU7wOOBf4FKLyH8jeBr0Xpb46W3WtmE6LlDwBnlGz6dGBdhfQHh2wHRp8NhD80fQPwJsK6u8XMToyWq65jYmYfBS4D/gN4PeFsOXeZ2aGxFmz02ddjPOuzwMySx3XDXvoSipEjSvGxRik+Dpl446O76zFED8I/hod3s9yATcB3CtIagQ7gnOj9mYQ3hzmkIM9q4POEP65MRGnjgT7gU3Hvdy09gFbgHNV17N/D48DVJWkrgB/FXbbR/qjmGI/SHPhw3OWOyqIYOUqOHdXzsH4Pio/DV7cjFh81Aj20Pgg8bma/N7OtZvaMmZ1nZtnb3x5OOMvIguwK7t4D/BHI3q78YcJgdAaAmR1GeLvyXxPe3vyNUb63A3Xov34AzCxhZh8Dmgn/m1ddx8TM6gnrbkHJogXk616q9CqP8VqjGBkDxcfaofg4POKIj+pAD60jgHMJ/0t/N+EpmouBL0bLs3dSLL174pbsMnfvBp4gf4rsDOCJKP2hkvRV7j6mrzszsxPMrBPoBa4E/s7dl6C6jtM0IMFu6l723r4c4wV+Y2adJY8ThrfkZSlGjiDFx5qk+DiE4oyP6kAPrQB4yt2/7e5Pu/uvgJ+SbxyySucOtJK0BykOTguj1wtL0h8YmmKPai8CJwEnA1cA15nZnILlquv47KnuZe/s6zEO8I1oG4WPF4eltLunGDmyFB9rl+Lj0IgtPqoDPbQ2ActK0l4Asj8M2Bw9l/73cwDF/yU9ABxmZrMJf5yxMEp/CPgLM5tCeNH8mD9l5u597r7S3Re5+7eBZ4CvoLqO03YgzZ7rXvbCEBzjAJujbRQ++oa56OUoRo4gxceapPg4hOKMj+pAD62HgaNL0o4C1kavXyb8Us/MLjSzccCphNfsZD0KpIDPEH75jwC4+4uEF8B/lfAukgpagwVAA6rr2ESBZzEFdR85k+K6l1en2mO8lihGxkvxMWaKj8Nu5OJj3L+Y3J8ehNOk9APfAY4EziL8tfIXC/J8C2gH/h6YA8wFXgEmlGzrgSjfn0rS50bpy+Le37gfhNdOngrMBk4AfgRkCG8Br7qO97v5KOEPkD5DOFXZZYQ/PDos7rKNpsdQHOOEpyuzHaDCR3MM+6MYOYqOHdXzsH03io9DU4+xxsfYK2B/exDObfp0vDgjAAAVwUlEQVQs4X/tLwFfIrplerTcgAsJT2WmCE+FzSmznX+NvtgflKR/Pkr/edz7GvcDuJZw5KqXcH7H+4B3q65r40H4Y7E10fezGDgt7jKNtsdQHOPRMVzu8cOY9kkxcpQcO6rnYf1+FB/3vQ5jjY8WbUBERERERPaCroEWEREREamCOtAiIiIiIlVQB1pEREREpArqQIuIiIiIVEEdaBERERGRKqgDLSIiIiJSBXWgRURERESqoA60iIiIiEgV1IEWEREREamCOtAiIiIiIlVQB1pEREREpArqQIuIiIiIVEEdaBERERGRKqgDLSIiIiJSBXWgRURERESqoA60iIiIiEgV1IEWEREREamCOtAiIiIiIlVIxl0AERHZf5nZFOBkwOIui4jsN1a6+4txFsDcPc7PFxGR/ZCZvcFaZi+mdxfWdCAECcDAArDC5+h1uFL02jArlzeIthH1xYuWBxAEmIXrBmZYYNFHWLZMRWm5PERpgeXWz64TBOTfB9E6ZgRBtozhfwa5IpkNep1bXvTe8rucWz9btmhd8rsbvStaHlCcN79f+f9WCpcHVlqmfN58mYn2kXy9lHvOf8+5bVm0AYOitNyyMmlmRlPCaExEGbwd2AWeySZEr7PPGXAvfp97TcHyTMl6peunc+uE3SDPbdfdCz7DcRw8l7F8noLXxcujNTwDmSgtEy3PvSf/Plsgdzy7vCCvF6yT3b5nKucJyxEWP5c/V1TPPZdLo6g4xdspSsvkixQuNrKrZ9yiqrP8ewfHspvPvQ+Lnc+fofB9uG7GwyNpQ6qfjMPJkxv57ca2OncfYISpA72PotGVjwAfAibEXBwR2X/0ALcB17v75rgLszfMrCFx4JtTmbbVkGggmPQarHF61PlMgCUgSGBB+Bz2TqPXEKUV5LFEUVp+G0Euf25bloRkHUEQECSMRBAQJAKCwAgSYf5EtCyIliWiZUGQz1eYBpBIFOSJtptIJEgkg6gDTu4ZwtfZTnfR69xz2GkNgnyHOJtWuNxKnoNch95IWPFzYCWvg3z+7OvC9HJp2fIkDBKBkYy2lX2YFb/PlcfK5CuTXpi/cFuJIGBavTGlLjqIfD34Wsj2hzxd8Bgo/57oPZTkqZDf0+D9kAk/I+zcZsJn95L3mVzn17Od9FxaQZ6M59M9g2eyHfiog5oZgHQGT2eiZy95n4F01MEtSos+pyQtu/7g/F6UxzNOWNSoY03Y4XaPnjMeLcu/zz/C3c0UppVZLzOQIeNGOurcZtxIZ8IOcTrq9OaeM8XvIdztXFrGBq/j5NL7M/krj7f3DfDYzh5Wdfdx4oQGFmzvOtDdt1YRsvaJLuF4FcysPjHz5N5M+zqsYTI24WCCCYdAXVNxAwEFjURQ1ICUbSBy+QsaiUENRDIXyIFBjUSugbDBDQRQtpFIJAwr00AAZRuJwAqCfa5hiIpfppGo1EAA+dGggkZidw1Ebh8qNQZWnBZ9X0WNxO4aCCgf+Cs1EIX5rTRPpQYCokZi3R4CfEmDQLok7x7yFzQSlRoIyI4ilDQSlRoIyC8j30hUbCCgbCNR2njkGohMaYNQvpEp/YzSRmJQoPd8A5HPP7hxKV0vnx8yA17cIFRoIMJdLtMAeHHD4KUNTkkj0ZN2lnSkTn+uPXXpMc0NnDRxHL9/pX28u3dXEa5GhJkdGkw+ei31LXh/B4kZb8HqmuIulojsx6bVJ3n/gRPoyzjPtvdwyLi6LSdNbGRpV//b0un0Yz7MI8TqQO8lC3tXJwcTj3iE+ha8ZweJqcdhDRMLMgW5h+VOSWbTBo+mVN+BTkCQxIIAy45eBEHu/aDXieh1IkwP89ugdCsZYQmfE1FxKnSgy4ywwKvrQJeOsuxTBzoY3IEuHWUZrg50pdGaRBBQV2fUFXWg68CT4Tkut4JHyXvIp1GYJ/vw4veUpmU7xQaZsNMWdqDD92H2DLkzj5nCU3mUnC31XHmKzqBmTwFmglwRw+covxUXH3PcMmCGW3Q+OhO9Tkdlik4Ce7SB/Ptyy/PVlSmsSi9Iz5RUUckjU6FKC04ikwmcjBsWdYItOuWYe1/QgQ6XFeSNOtAWjbAYRiZ3orvw9HyYljGjOWmcMrmJUyY3sa1vgGfaUsxsSHa9aVIjr29p5Jr1OxOeGxIbeWZmiVmnZjK7VmGN07CGiSSnHpePfSIiI6A+MN48qYk3TWxkXU8/wCOtfQEfmjmReZuHb9BBHeg9MLMjginHraJhIlY/ERt/EMnpJ+U6WyIiw216fZIzpzfzzmnjWdvTz1NtKWY0JNOnTx3PQ63dx7v7spEqi5m1BNNf10bDJDId60lMPRZrmDRSHy8iUpaZcVhTPYc11dMxkObJXT3MaEh2nTZ1PH9q7T7S3VcN5eepA12GmU1OHPD61kzHeqzpAKyuieTBp2OBqktE4mNmzG6qZ3ZTPf0ZZ3lnL8c2Nzx/WFM9J04Yxx1bO4b1GsDE1OOc+hZwJznrVCxRP1wfJSLyqk1IJnjHtGb+cup4Xujs5fDGupVHNzfwUldfs7t3DcVnqEdYwszeiwXzPbUrvI4v2Rh3kUREBqkLjBNaxnFCyzg6BzL8ubWLBGwxs39292uH4zOtfgJmCbx3J943BcZN0dk4EalZHQMZNqYG6Mk4s5vqeamrb8hm61AHerCFiQPeSKZjHelNT+R+IKiRFhGpNb3pDEs7enmmPUUG529ntDBvc/vNw/V5A5seNzOzxPQTM5ldq2DgOYKWw7EJB+sMnYjUBHdnVXcfj+3soSud4a2TGlnYOzBuU6q/dyg/RxGvRHSxeTSdpc205pmvpF95GBLjCFoOxZpm5GfYEBEZYWl3Vnb18XR7im29A8yZMI6V3X2z3X3tSHx+9Mv2bIyc4U0zNqXXP0jQdCDBxCOw+uaRKIaISJFUOsNTbSkWt/Vw0Lgkz3f2vsHdnwaYOwyfpw70brj7JvINxRyvb16S3vECQeMUbMJhmE5fisgIcHc29Q7wVFuKVd19HN5Ux7PtqbcAizamOmKbzD+an9rMrM6mHNeX3voUWIJg0hHhYIPio4gMsy29Azy6s5t1Pf28vmUcr/QOTN2Y6m8d7s9VB3ovuftSopmbbPqJA5m2l/FtTxOMP4hgwqEadRGRIdfWn+aZ9hRLOlJMqUvw+omNPLyzu35Tqr8/7rIVcvd+8oMNx3td09L0jucJJhxK0DJbl8CJyJBKu7Oso5fHdnVTb8bJk5t4fFdP4pWtHSM2tafuRLgPzGx84sA3d2Y61kGmHxIN5O+7mrtxabZZidLyy3M3PC3KT3G+ouUF62bnUY5urZq/RaxF2aLn3K1hrWDzBetQkDe33fycyIVFy227aLfyt2jNFR2K1i96Ll2ndHu5W8Xm03LbGvQZBftPNm9JOQvSC7dtJeW3wg1T6XOtaJvsZnnhezOj3qCuaHrcHvAecjMOe8nMxF4ya3HF5XuRv+iWtNksBfnDe7MW3eo1v14+zUvyF26n6Fa40WTK+U15fp2C5cW3iy1YRpnlhc9k0wvzFxancD+jvNnXlGy/ML3k1rX5/YrSMrnN5G41W7iaY0VVWpQnl89yn1d4K9vCOwU74a1uUxknMDipZRzzNndMdvddjCLhdHcntXn7mjA2Ft6GOxfPyKdB0fKy8bEoNlJme/n4WBobw9y7j4+lsTGbVi4+louNUYnKxsdKsbFoWeE6ZWJjNm+l+FgaG0u3XRofS2Njcb58WUrjXVF7UlBPpfGxUmwsTBscHwtjI+wx/hUtqzJ/SbwbFB/LxkaK1y2Mj2ViYz5Lmfi4t/Fvt7GT4mWUxMeS2FhQwvLxsSQ25p52Ex8LY2P2uVJ8LI2N+fwV4mOZ2AiwayDDUePr+WNr92vcfTUxUAd6iJjZJOCzwP/FXZYa8wlUJ6VUJ4OpTgb7iLv/JO5C7KvoJlRfR99vKR3z5aleBlOdDPZBd788zgKoAz2EzGyRu78p7nLUEtXJYKqTwVQng+1PdbI/7ctQUZ2Up3oZTHUyWC3Uie65KiIiIiJSBXWgRURERESqoA700Loq7gLUINXJYKqTwVQng+1PdbI/7ctQUZ2Up3oZTHUyWOx1omugRURERESqoBFoEREREZEqqAMtIiIiIlIFdaCHkYXuNjM3sw/HXZ64mNkUM/uZmS03sx4zW29mV5jZ1LjLNtLM7Fwze9nMUma22MxOjbtMcTGzb5vZk2bWbmbbzOx2M5sTd7lqiZldEMWPn8ddln2lOFCZmX3OzB40s13R9z077jKNNMXGYmZ2mpndZmYbo2Pi7LjLFLdaazPUgR5eXwPScReiBhwEzAK+CZwAfBI4Dbg+zkKNNDP7KHAZ8B/A64FHgLvM7NBYCxaf04HLgbcB7wAGgPvMbEqchaoVZnYy4c2Znou7LENEcaCyJmABcGHM5YiFYmNZzcBS4MtAT8xlqRWnU0Nthn5EOEzM7E3AzcAbgS3AWe5+Y7ylqh1m9l7gDmCSu7fHXZ6RYGaPA8+5+2cL0lYAN7r7t+MrWW0ws2agjfAOU7fHXZ44mdlE4CnCDvT3gKXufl68pRp6YzEO7E7UbjwJHO7ua2IuzohRbNw9M+sEznP3a+MuSy2Ju83QCPQwMLMJhKMq57j71rjLU6NagF6gO+6CjAQzqyf8Z2pByaIFhP9NC0wgjEk74y5IDbiKsPPwQNwFGWZjKg7IYIqNsg9ibTPUgR4eVwJ3u/udcRekFpnZJOAHwNXuPhB3eUbINCBBeDai0BZgxsgXpyZdBjwDPBp3QeJkZp8FjgT+Ne6yDKcxGgdkMMVGebVibTPUgd5LZvbD6EL+3T1ON7N/BF4HfCPuMg+3va2TknXGA7cDGwmvhRxrSq+ZsjJpY46ZXQq8HfiQu4/Z3w2Y2dGE14F+wt374i7P3lAcKO/V1MsYp9goe60W2oxkHB86Sv0E+O0e8qwDzgaOAzrNrHDZ783sUXd/+/AULxZ7WydA7nql7Kj8+909NVwFq0HbCX9QWjqicgCDR17GFDP7MfAx4Ax3Xx13eWJ2CuGI3NKC+JEATjOzzwPj3b03rsJVoDhQXlX1MoYpNkpVaqXNUAd6L7n7dsI/9N0ys+8Al5QkLwG+Dtw6DEWLzd7WCeSuC7+LcFThPe7eOZxlqzXu3mdmi4EzgRsKFp0J3BRPqeJnZpcRBsLT3X153OWpAbcAi0rSfgWsIByZrrlRacWB8qqpl7FMsVGqUUtthjrQQ8zdNxKelsyJRpLWj9XRtajRXED4g6EPAuOjU7gAraPlVPUQuBT4jZk9ATwMfJ5waq8rYy1VTMzsF8A/Eh4TO80sOwLVuT93rHbH3XcBuwrTzKyL8O9kaTylGhqKA5VFx/4M4Kgo6bjoGvF17t4aX8lGjGJjiehMzZHR2wA41MxOIvxbGZNnLmqtzdA0diPAzJwxPI1ddJ3fgxUWn+HuC0euNPEys3MJr/mcSTjH51fc/Y/xlioe0d9FORe5+4UjWZZaZmYL2Q+msVMcqMzMLgS+X2bRP4+VqcsUG4vt5u/lOnc/e2RLUxtqrc1QB1pEREREpAqahUNEREREpArqQIuIiIiIVEEdaBERERGRKqgDLSIiIiJSBXWgRURERESqoA60iIiIiEgV1IEWEREREamCOtAiIiIiIlVQB1pEREREpArqQItIjpldYWYbd3PLVBGRMUexUUrpVt4ikmNmpwEvApvd3eIuj4hILVBslFIagZZRy0Ivm5mb2ZFxl2d3zGxhVE43s/PjLk8l7v5Hd99SbpmZXViwDzeOdNlEZO8oNg49xUYppQ60jGanALMBBz4Wb1H2yoOEZZ4bd0FepWsIy/903AURkd1SbBxZio1jUDLuAojsg48DrwAPR69/GG9x9qjV3R+L68PN7M/AwWUW3e/un97T+u6+AdhgZu1DXjgRGUqKjVVQbJRXQyPQMiqZWQI4C7gBuB44zsxOLMmzsPR0mpmdHp1mmzNypa3MzK41s0Vm9j4zW2Zm3WY238ymmNmRZvagmXVFeU7cw7aON7O7zaw1WucFM/tidrm7v93dZ5d57LGBEJHRQbGx7LYUG2XIqQMto9U7gAOB3wN3Au2EIy2j0aHAvwHfBT4HvA24ivB05lzgw4Rni+aa2e5+vHIbkAY+CXwA+BkwYfiKLSI1SLFxMMVGGXK6hENGq48D64DH3N3N7FbgY2Z2gY++qWWmAKe4+yqAaDTlG8Cn3P3XUZoB84FjgBdKN2Bm04AjgA+6+5Io+f5qC2Jm1wDviV5vAO52989UvUciEhfFxgKKjTJcNAIto46ZNQB/B/yhoEGYS/ijmZPjKtc+WJNtICIro+cHyqTNqrCNVmA9cKWZfdTMDng1BXH3z7j7we5u0bMaCJFRQrGxLMVGGRbqQMto9NfAJMJTlFn3EgbKqk5VRtfXPWtmz5jZI2Z2bMGyNdG1d89Ej+MKls0xs6fMbIWZ3WZm+3I6cFfJ+74y6dm0ceU24O4Z4F3AZuB/gc1m9icze/0+lEtERhfFxhKKjTJc1IGW0ejjwGp3X5RNcPd+4GbgI9GPaABSQH3JulNK3l8NfMzdTwJ+S3i9XaH3uvtJ0WNZQfqVwHfd/bXAcuCb+7RHQ8Ddl7v7hwgb0HcSNijzzUx/5yJjg2JjGYqNMhx08MioYmbNwPspHmHJmkv445kzovcbCK+LK3RmyfsM0BK9nghs2osyHAgc7u53Rkn/A3xoj4UfIe7e7+4PAJcCMwkbDRHZjyk27pliowwl/YhQRpu/BZqATjP7YMmyBNBLOApzH+Goy6fN7MeEPzI5A3h3yTqfBO4wsxTQDfxFyfJboh+p3AFcGI3mHEzYAGWtAw7Z1x3bF9GPay4hbDxXA5OBbwHPuntrnGUTkRGh2FiGYqMMF3WgZbTJXsf377vJ8/dmdq67zzezC4Bzgc8AtwLnR8+YWZIwkL7D3ZeY2WeBawlHcQDe7u4bopGd3wBfB34EGOEdvmrJZmAL8B3gIMJrBB8k3D8R2f8pNpan2CjDwkbfrDYiQ8PM3gT8wt3fGr1vAra5+/gyed8PnOPuf2NmM4DF7j4rWnY0cIu7H1u6XsH6C4EdwEeB9CicToroesGAcAqobe7+4ZiLJCLDQLGxOoqNY5OugZaxbAPwWjPLnmJ8D7AMwMzGm1lL9DpJeB3fcwDuvhlYY2bvjdb7NDBvLz7v74F+4MtDtgcj63uE5T8t7oKIyLBSbKyOYuMYpBFoGdPM7J8JTz8OAF3A5939OTM7gjDwB4TXDz4KfMndu6P1TgSuA5qBF4FPuHvbbj7naPJ3vlrn7luHaZeGjZkdRHgKFKDV3VfHWR4RGT6KjXtPsXFsUgdaRERERKQKuoRDRERERKQK6kCLiIiIiFRBHWgRERERkSqoAy0iIiIiUgV1oEVEREREqqAOtIiIiIhIFdSBFhERERGpgjrQIiIiIiJV+P91hpD8frZfKgAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 720x504 with 8 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "mods = ['ICON', 'MPI-ESM', 'IPSL-CM5A']\n",
+    "vlim_tot = 4\n",
+    "vlim_cld = 2\n",
+    "# boundaries of region with robust response\n",
+    "lonwest = -4; loneast = 25; latsout = 50; latnort = 59\n",
+    "\n",
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(3, 2, figsize=(10,7),\n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "for i in range(ax.shape[0]):\n",
+    "    for k in range(ax.shape[1]):\n",
+    "        ax[i, k].coastlines(rasterized=True)\n",
+    "        ax[i, k].set_aspect('auto')\n",
+    "        ax[i, k].tick_params(labelsize=14)\n",
+    "        # extended North Atlantic region\n",
+    "        ax[i, k].set_extent([-70, 30, 30, 70], ccrs.PlateCarree())\n",
+    "        # set xticks and yticks for latitudes and longitudes\n",
+    "        # xaxis: longitudes\n",
+    "        if i == 2: # last row\n",
+    "            ax[i, k].set_xticks([-60, -30, 0, 30], crs=ccrs.PlateCarree())\n",
+    "            lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                                degree_symbol='',\n",
+    "                                                dateline_direction_label=True)\n",
+    "            ax[i, k].xaxis.set_major_formatter(lon_formatter)\n",
+    "            del lon_formatter\n",
+    "        # yaxis: latitudes\n",
+    "        if k == 0: # first column\n",
+    "            ax[i, k].set_yticks([30, 50, 70], crs=ccrs.PlateCarree())\n",
+    "            lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "            ax[i, k].yaxis.set_major_formatter(lat_formatter)\n",
+    "            del lat_formatter\n",
+    "        # draw box around region, for which we determine the area-mean response\n",
+    "        # left vertical line\n",
+    "        ax[i, k].plot([lonwest, lonwest], [latsout, latnort],\n",
+    "                      linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "        # right vertical line\n",
+    "        ax[i, k].plot([loneast, loneast], [latsout, latnort],\n",
+    "                      linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "        # upper horizontal line\n",
+    "        ax[i, k].plot([loneast, lonwest], [latnort, latnort],\n",
+    "                      linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "        # lower horizontal line\n",
+    "        ax[i, k].plot([lonwest, loneast], [latsout, latsout],\n",
+    "                      linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    del k\n",
+    "del i\n",
+    "del lonwest, loneast, latsout, latnort\n",
+    "# total response\n",
+    "# ICON\n",
+    "k = response_cldvap.index('total') # 0\n",
+    "cf = ax[0, 0].pcolormesh(lons_plot, lats_plot,\n",
+    "                         du850_icon_plot[k, :, :],\n",
+    "                         vmin=-vlim_tot, vmax=vlim_tot, cmap=mymap2,\n",
+    "                         rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# stippling for significant response\n",
+    "ax[0, 0].pcolor(lons_plot, lats_plot,\n",
+    "                np.ma.masked_values(1*mask_icon_plot[k, :, :], 0),\n",
+    "                hatch='.....', alpha=0., rasterized=True,\n",
+    "                transform=ccrs.PlateCarree())\n",
+    "# MPI-ESM\n",
+    "ax[1, 0].pcolormesh(lons_plot, lats_mpi_plot,\n",
+    "                    du850_mpi_plot[k, :, :],\n",
+    "                    vmin=-vlim_tot, vmax=vlim_tot, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# stippling for significant response\n",
+    "ax[1, 0].pcolor(lons_plot, lats_mpi_plot,\n",
+    "                np.ma.masked_values(1*mask_mpi_plot[k, :, :], 0),\n",
+    "                hatch='.....', alpha=0., rasterized=True,\n",
+    "                transform=ccrs.PlateCarree())\n",
+    "# IPSL-CM5A\n",
+    "ax[2, 0].pcolormesh(lons_plot, lats_plot,\n",
+    "                    du850_ipsl_plot[k, :, :],\n",
+    "                    vmin=-vlim_tot, vmax=vlim_tot, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# stippling for significant response\n",
+    "ax[2, 0].pcolor(lons_plot, lats_plot,\n",
+    "                np.ma.masked_values(1*mask_ipsl_plot[k, :, :], 0),\n",
+    "                hatch='.....', alpha=0., rasterized=True,\n",
+    "                transform=ccrs.PlateCarree())\n",
+    "del k\n",
+    "##################################################\n",
+    "# cloud impact\n",
+    "k = response_cldvap.index('cloud') # 2\n",
+    "# ICON\n",
+    "cf1 = ax[0, 1].pcolormesh(lons_plot, lats_plot,\n",
+    "                          du850_icon_plot[k, :, :],\n",
+    "                          vmin=-vlim_cld, vmax=vlim_cld, cmap=mymap2,\n",
+    "                          rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# stippling for significant response\n",
+    "ax[0, 1].pcolor(lons_plot, lats_plot,\n",
+    "                np.ma.masked_values(1*mask_icon_plot[k, :, :], 0),\n",
+    "                hatch='.....', alpha=0., rasterized=True,\n",
+    "                transform=ccrs.PlateCarree())\n",
+    "# MPI-ESM\n",
+    "ax[1, 1].pcolormesh(lons_plot, lats_mpi_plot,\n",
+    "                    du850_mpi_plot[k, :, :],\n",
+    "                    vmin=-vlim_cld, vmax=vlim_cld, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# stippling for significant response\n",
+    "ax[1, 1].pcolor(lons_plot, lats_mpi_plot,\n",
+    "                np.ma.masked_values(1*mask_mpi_plot[k, :, :], 0),\n",
+    "                hatch='.....', alpha=0., rasterized=True,\n",
+    "                transform=ccrs.PlateCarree())\n",
+    "# IPSL-CM5A\n",
+    "ax[2, 1].pcolormesh(lons_plot, lats_plot,\n",
+    "                    du850_ipsl_plot[k, :, :],\n",
+    "                    vmin=-vlim_cld, vmax=vlim_cld, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# stippling for significant response\n",
+    "ax[2, 1].pcolor(lons_plot, lats_plot,\n",
+    "                np.ma.masked_values(1*mask_ipsl_plot[k, :, :], 0),\n",
+    "                hatch='.....', alpha=0., rasterized=True,\n",
+    "                transform=ccrs.PlateCarree())\n",
+    "del k\n",
+    "##################################################\n",
+    "# jet latitude in control simulation\n",
+    "for k in range(ax.shape[1]):\n",
+    "    ax[0, k].plot(lons_plot, jetlat_icon_nh[lonind_west:lonind_east+1],\n",
+    "                  marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "                  markersize=2, transform=ccrs.PlateCarree())\n",
+    "    ax[1, k].plot(lons_plot, jetlat_mpi_nh[lonind_west:lonind_east+1],\n",
+    "                  marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "                  markersize=2, transform=ccrs.PlateCarree())\n",
+    "    ax[2, k].plot(lons_plot, jetlat_ipsl_nh[lonind_west:lonind_east+1],\n",
+    "                  marker='x', color='k', linestyle='none', markeredgewidth=2,\n",
+    "                  markersize=2, transform=ccrs.PlateCarree())\n",
+    "\n",
+    "# titles\n",
+    "ax[0, 0].set_title('total', fontsize=16)\n",
+    "ax[0, 1].set_title('cloud', fontsize=16)\n",
+    "\n",
+    "# labels for models\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i, 0].text(-0.15, 0.51, mods[i], va='bottom', ha='center',\n",
+    "                  rotation='vertical', rotation_mode='anchor',\n",
+    "                  fontsize=16, transform=ax[i, 0].transAxes)\n",
+    "del i\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# a), b) etc for subplots\n",
+    "labs = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)']\n",
+    "ax = ax.reshape(-1)\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].text(0.01, 1.02, labs[i], va='bottom', ha='left',\n",
+    "               rotation_mode='anchor', fontsize=15,\n",
+    "               transform=ax[i].transAxes)\n",
+    "del i\n",
+    "\n",
+    "# colorbar for response\n",
+    "fig.subplots_adjust(bottom=0.1)\n",
+    "cbar_ax = fig.add_axes([0.09, 0.0, 0.423, 0.02]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf, cax=cbar_ax, orientation='horizontal', extend='both')\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf\n",
+    "\n",
+    "cbar_ax = fig.add_axes([0.545, 0.0, 0.423, 0.023]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf1, cax=cbar_ax, orientation='horizontal', extend='both')\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf1\n",
+    "\n",
+    "fig.savefig('figure3a_3f.pdf', bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj\n",
+    "\n",
+    "del mods, vlim_tot, vlim_cld"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/figure3a_3f.pdf b/pythonscripts/figure3a_3f.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..7d599bd5b5ef31e681360aa4602ebc6a7a8f2b9d
GIT binary patch
literal 163206
zcmY!laB<T$)HC5yU2{ia^)4<$1p|frq%1BQ8wLG<#Prl+1tSFmg&+m}kjjEo1%2nl
zlEj?+bOk#*uGG8~kU|S24Xza>?!hIAC8-J~5KV6Rc_j+Q5OzRfNl9u^o`NZe%cUPs
zl%E`&TA~oGpdaAkrl22^T2Z2)@0pvJp6UdpouRa+Lac&*a7JQEW?s628AN-8e^ORz
za*2XDh>PSLLjxrDIOgT$mlP{RgY-M+=ar=9l@u#jf^=}{yBFn`7ASzc=^U(}?~+=U
znVcHr?xdg}te_uKl$cjskXV$Oms|<+IYhmk9hbguYD#9JQ+|a)v;xR7b0Y&iOG{$|
zLqlUTV>1O)Qv*F?17kxYQ;@9zAVW%EVHlKJoL^d$oLZ~^3bi0EXrO|^8OaME2ZBNt
z<Tkg=oRZWc1%0=i#FA8()a3k>R0VyX)V%bP3<X0_Tm^wN7MB#ICgyTg%y}E@-7m9U
zaNqg$FBaEIbiF@*ag*#p$0;`^3drZki`dF=?-mk?ym<fo@p<CAPw17s-)3Tvz|oez
z)AVT4#(DQc&aZm-)sJ^SUr|Nxe>*;V-u(~$>$92K9ID^{?#YJfhu`XDXa*Stt^D)Z
z_vhx~Ac@Q=Wf9Xa%m3eed+#mVA6z~6nqM!zd(M4fa7P%gn(D$u-}RdQrryldp7ho5
z$@bX`T00MFTknqBursrGzvYPqn|ZjFhaA;Zy!_$8?CJl1zx{c--mc2Rrhb35xkTnh
zJ@%!4A3Q$svSQxz?T4G+U-@wM_QQ6&xp5xpd?oITsr$GD6_w)7W}WW3VD-%T&XePJ
z4=+F5ynhAbuF79o={*xp?N<4yKUtbFD>>H7i{C%~%|3%q@8kLW<N5E~-R=D?Rvopz
z^^4sPgPWTp;x;WWjbnMecC(cJaof9p<{dSiUhS8+fB*7e&x*Hm+b4Z)d${T0?uT1$
zdaA1P-dZCRGi`!l>w=HxADo-R5tp@Lnjzo+TFXBcdnCVnxbFDgPU!T-ggHSH=VP+g
z#rS{VUB6hW|6|Jc!y6`ASlb2^_HaKixpmWJPSIblM={&>&MJGRw|ebX-=jZwRI~q<
zRX!xp!mH_){~>>aRu{wlkf=!M<1ao$C|S)}d63^tuGj1$znjLJ2XhO5EOgFpHM;g=
zK?sL!l<t;`w`OIWW!h%3n@4NKmZcnC7TU3832Upj{GP)(X=|9~<<vdy4ikfpYXr~V
zD9)$9Af;L0vf?x*!MjnKvQ44iA0;TA`kmoCJ*?}2faz4XJ?}0{&4`<FPwo2R(nD?)
zQeU3^>Y8v!{m+t+NwKS24qWtJ*<<W2k-dD*v}+~4zK(4Id;FrxeR*p{YfgDB{+*Z7
z8hS9pVpZ%RiL1TSjBZ}Al~oA~n9a8$_}3OTP4B}WoxZ;cD1TbAs)i%BQIs!zaf|ux
zb@^)y6C+#-PHI2>ZMVEg;EUOGo7jC`9xqeRh+kTI^-+rTrfTsW=2zIFoQh+;FEd>{
zQz;@HyDds%j?OHZmD|3gv|f3#)^*PtcMjD>n@>tl^$BO2At@qex+yrESK~}hPhjNz
z{yMLezNmEJIEUALk%gB#*laVJ8`k=~I<>mh_vEpQYTKtUrcG=5$R(N9crNUT#g9El
zuPV-(k>}v-#Iqu53vXQ@$F%1SckSnKaU2j54Y0qwE^$w|2A{~Qniwzhuy?&1G<GcU
zUbp(m9TAr;vRXe?KUy8Ko*)t%e>|YonOmoH0(aBzqVDtNZ<D05kFj2qWnFRPXG%;^
z(A+1n59CfN{Ih6zq^c=sbl_R@n_cXAhtn5dSJauHcwly*(#g6Vch;|-^yK99cTrdW
z8f;^dG_X9#arxdOFNNciW7+sa6vNsC{9-qqk1eu$XeTfFccbL)<P=E_l_x)zrAW-X
z_imG1(fL1jum86&KdY{$XUw_5`b28cb*72Di{f~UmKX{?FaP)F=;rzRm*mTScYo91
zwe(tYx5>Wm6?gvZyMO=Rzc<gm>{HIT(zNV};H+B*y#(jZot5=sTg?0nk*)h3UWybm
z+HAH9%$)td_Jc~n8U}^iOkGhed72CD1=6%_<q!63-x|x@>(kDWZ+zL4Id+}-ub=*E
z{r!F!`o3K(+qJH(SM~2KkMXuI{(kk^?QNf?bhI1t`Gy3ruUOYvxk7ZtahqITi!+zQ
zX0V^0mLPY#Bj9@T=PkTvniba>@V9L{X7jA`^_vs1GDmGJ_L<Bs-m=AN{_?ek{BDA#
z&kl0=81PRsJZNJvdBF_!)6<jW=EMe_X-@Sq<PS?~sw~(d^7(;@k0F1b{!yE4h7YAa
zKS)_HgWcWRkYCR)@J#dM=}B@j@lBNlOGG~3I5s)^O!MNUGuX4!SUx{^vUCRf@##r&
zI=U|zws&TjK0A0<`l!vei3^X}n4Ky#eRfdIrK@to98Hshvi(VN(uR2nay*5tl?5xO
zCCTONQJcX&Kau0v#@?gm2K?9Nay~maOZuRV#rFj>*!4e%d``%3PLRtHQJcZ8eR!5u
zXOi6N;3V<SJEHW@9hOs0ns~qAk)zzM8D=RT-%Fl2^wMUZKykkBgRbZ1`SyDvn8RZl
zq;n^Kn9ld6=Q+!j6}OgWaQrde3@L7{!ybNG)3xu+r=9~&D+D{#Vq-j}x2bN{56+#N
z?zHUqn{zE0*{w6rEi~AyKSA*1s#(sO)5Oo-KA})z*nWs-pGdjQ%?*2gu}ZVed~MAC
zxa``co71bB9<Fhg-xRb>a>a}n>teR=Jm6%uwU}A-c4zRJLZ2g=*Vn6@OTE21GyUDB
zTT!<|=G=TKZqlo?h`aD#%+>65Rg3l-I>&sy^LfjQPevh&0+LEv9c0+%ng)1I&%bL{
zXe1Hzc4PYKr4yz(&bt-Vc7sEGVS@fyPNqc5%T@XFB)-lIHOwkqb#>?En+-8K#@jZz
zv=uAfOxN)*-~Pa=U<1e0qc=pEww7-YP(B)LeEy`v!Uefc&Z^Z++M)fyN?PrNx;s~J
z$Hkr#`Qa@qnzo)gwc*H9jw{=y)=j_tewTpbL5*|zdmMFF8!x-C+|{5_ZV`X%_VvHD
z`=*uMU9;y>#O#F!*S%cOcy`7Dw)d)j{lB!Mo8P!;z6jU6vfYCv_Eu??!~E_vb7!;Y
zdmpW$&3`5o{Mnbij%SMBLQMxIvsl+R*YDh^b8T^`^AxjtelfCivF9=MP!GPdk>9P>
zblmb@;xGAospCH#5!Ui;U8<6Siyhp9w$%Er;k?0-C7@96@K{{J(Dm$gqer1^Tb>nU
zXIyvjewqA<YwP(*Jsyo**B)t#9J$qU>aOsr`>yW<*PfQ&wS;xq&R1?*n6{q$x*>kj
zXU!vrFRnXL`e}-bx9a*C4L|1u9G|O}P~xGXHO1uQbCn>U12+Hu?f$#nUrt}5$<T0i
zo&$^9-FN*Rmp*eZ+EO$lb<t*_A6ip`nNp2k3%}j+^FF)6sm1Cd7Xvr3{x#8*<_|g>
zASb^x>x^>Fbs_Q3f|IB1h{-Q`G2dril3sF`tLW?Nla{*}tXn#N=kKi7xzUv~DyOk^
zC0<(~!BZ%@?Rn;FzJht%+zc(Ex{?Zv0z{f^rCkjr9!VWdu)M5SFmH#G;f~7}ea@YB
z2;k{6T)TG1>jfIeY;t>(3XCr3RZCY&Ya9zR^QjW)o3cn^4#$?w$wyT+j)nb-&D;Ol
ziDm6+%l!*9*xbDXd9K~}_<rtUkVx~?=?f%ebl<i{E?3uJTOHq&l(Urm7DHa~@z*(X
z7fH-!_3BF6aI*O4*{d3Cv*S6s4!TU1IyysrT_BHJht$yoRW%K^)sLSt?shYbSgx#b
zEX-}ssfKGZdAx6DWq1bi#3eK(Z4mPh<hiD%(RFYayQ|@kq}-pqCILL(yg0fJf+9iW
zs6lr?&+4sDUZ+RR;yBV>%5j7>EKndK)@qgUt)@DSg>LPa{SMBY`L*e+@9f{U`)8{b
z&r)Drc1+|}%h~q4sFvgHd9#$YG!LCBT5BA7BUSSI>z$bsIrckicH~T7`El~(<$;3w
z^>g~VR?KiQGMN4{ZTi!DX&&!0?z^4I-ZXik^}=()8`jwH*xXzd@&0Y=CGRJaBGa!f
zSpNIu%e>s`ox0bncS}xZ`Q;<cpCMy;cYCq2d9b#9{~e#Ro2`o`AKUUy@Auih9~%AU
z*Ocv!ewy@G;N+&tsmgX|A_5=IntXHRrDX9leow8`pFL4G7Pus<trfE44|l1;p*K@b
zxs*PwI`#Q(L4>XO(oMY@M-$GtOey-ywJ2uWp02QGdMnnhJ?k=4RxwCz!E2}fHlO-c
zdv(GUXZEBn{JLqKcg*)GI)=K8l8>Y;XQ;2^eqI^X(!?Pguwqip{P!;(F5J){R-4pR
zc{2FqDY-topo0S0Q|gT>T0UR7UTCX(HqIkpN6y?FFYYgCJxzOdypzl2?I_xEB2Cdg
zc;RlVYf6^sd}a4luWtC8@xVNG@(KpOzA1KYM=!NCY&!5&blE2xom16IcTEqoS2%V{
zQupId?qvza?%viyebWx@Su;^^N9*FHi~r5JB;dc+CG<vr=GV#Tb9laF%Jf~+X5M#c
zC#%tg<q6vsE$y$(b?&bAmTNqJbD!{f!w04Zt9Wyn1rs~3M;N#=Zrf<0YxAjfTU@(d
zd`rBE|2>xE-C;K!{I{Ko{^~BOWB50w=W9)`5!bB^+?S@c-mflUP3&yf)3dxLlc)Mt
zeNtlOmMP!WPK32Gx%A7g(OqF-`)X>=t-pKrt(QCXbV<P@oula%rJfs-#9kC1@+zOj
z+O)c}=fd&{3x1v4{;=l%ll<T7<#(?a^I<-i+Pc|MUEJ5osZjsD4UY+{E7y??SNu8+
z&aLska`{>P{rqh!4;bHfx;bk~ulngU4Q1vNH~(yi%hTyxEBe}2=j5tC7OT9Kzb&+y
zF(+8Cbor!PKHs&kRsXi^R1y2S@U^LI%DK}jTR125|G1R8cf0%<>(xwa1r{wyp15<{
z$2-$r-@Th8@bj>8y~E1q6Lua;IcLV<YN%@BsB!8mTf`^N6iv0s%RCY`*6~Jq3A~i5
znz?)Nwtd?sx6XW&#ps#GJK>1Hbq67DpGK9o9qU#+>&#ZjoVV?rxy3#ak4G7r6OPFB
zi9O*d<W<>tM8qRWzlF(j%{`6@CjQaPo-(?ulPsc`R0@}fcqE-o=YlXYmpce)9~AL;
z<dG?V?v^C$q#fML9E9Ax8&&$IZF{(8qM$<O;-zZ^mz!{@6mHqF_j$?!h-_FK6JM^Y
z_rZm^8QBV%(#&zfYp!1~Yfzb1(aRdFkSXoGx>3dKkB~y=Sw<0$TUz;7E!aVhzV?}O
z!jXIIjFTexV`GZeSl;ov<*#!1Q-<by-wO<rZgfp%@~mkzW}RfAnWgYDc-}6R2;;u5
zm5vj?K911kcyX1LNy?tp{q(&3IiG)Qj}Q8%?795i(bSU{4$ql2)i|u>QOYm#U1jYj
z*9xyc`1IYs71L+zzjZTR;L)MKX)@D1AHP1CWuT$L(f#wOG5?;9UpuO9u8+w*Y4$I1
zL;GT>J_|oy-JQ*QJv6cw@V6A+m%d{4)kR!x>uZrs7GD~F=geh1*K}a{r}B{52YXU~
z?$DjN)JeXfTk56^gVXHyWz+v3xT1Ie6629wdzhGIK7QR?Ut96%&Dr07-{$Ar?Xj2o
zo4N1wQ}x0%)AE!mcAoKCm-COyHRQd9V}RaTf!O=uB_$IN$;#{!*&DOYb^f{Tl|76q
zwMRP79WoEloLiJ2*S=4Ew&>}-XBVBHv2knr#@#2=X7MaHo%3{C%-fvQIj7@q&fMw0
zZR2x$_pq1*htlM8f{cs@=B&$amtP=ldoTJ-q|d6$M{cUJ)qYIeb3*09yO}2MT5sg<
z^-+uQSZX0~eBzD89!{dOCbb32o;i5-Z_=KQ*b{qAvvz;vo{;^G{n=p;u6lOi_qr*T
zpMGTiX%)VBa8as5j^)2cWq(>XY5XkIej1%txz~Qr(Z~1pZd5$~;OU#BtzEsJS4I7*
z^{rj-_vstK_L~nkyZ5X=cT0WV$A@S0jp~J;zmRS(KXp3#qmj$R)w#`j2UjqjJT@z!
zaOSV;5?_)9Kfi3(u0L|3p7DdybVfnj3G1yj3&LxXg!*?Me7?p`>A%+W_NiJ%dT+Ht
z7Z^ASsoSJY*SGoe<Ky|ntv5Er<aKRV;gz%JJz4)o@q*0?)$frWub%|BZuoiR8Gqcn
zDO~U8`sa8k|M3b++<B&(?{smwSL>^Ni>x`;yb6iXD-UYh+|hVCXkj>qMyZz0bnDrP
z!h-2R3l|w5-Fo`YwAFjpCjI;N&r0-_o7NUhuK(#;e~d-fdA8Qy;Atq?@!P&q<)$iV
z;0QWk0UbgD4`hHwJWPztj6l*5Hqt;2zF`mx3zQ)c)1KYD2Mjn|s+a8${9)1Xy)$Uy
z-`fJwdONBw2|u?yaKet?{lyX86z7M_Dm*P0+69_K<y&p@DBiy(#aLYQukoGQ*0;|Z
zQcOIbC|-P8^fXel%5M5C={k_BP#tXo8rA|il+ZAZk+Bh~0|Tv#SPeN|*K)-w7(dIO
zpKiR~>)m~~4U^Ln896zh+urCnGF{@5?9;CN$hm2fb?V)Fene`{*&`m<7~&eC`1V2M
zxvaK>#md1Ciqz~*pHaV@bew5br^UIxIcWwQhP|&dEM?PXvD+$MXIIX9V{$r_Cv$J~
zs_WmQ{sp`KJh5x`(`%ZuqgF<L>9OrReeU&2-M8F}`yMS*xb!f&{kuZ^kvT_Q)i0f`
zGk&^Zk_pRl)(^^tQ(oPCXnN?#`5qSko0nhKPHDStm$7SKx&Dh2XIp%pik<Q}I(h1`
z8HOSI1<$H{{cC?=vt9ixgAjKt0R|cqBqqSjEm6YD_v~)o0}4DW7v^c&Fg^Hh7r1Ie
zy|lEFQ?mU_KdXa$qIVu`kjN<C5%qCt;EdW=GleDv6x+H)7^_;fEQ$Yh+Tiev8z;8C
z-yZf({GPOoBo=3Z#v_SwmI<n}j5nEt8U$?E!XVT(?HSiIw`p9OZ7~jZ9aB%U3ZG`&
z%+p{Jk;&)d$`>xhu+)X;2^Nb%BbmflY>H;FscAUG;$_R+P%KW($mC0V+7Kyr%z@2A
za!w+{l7q8~6RL`KTw+-HP#_A66F{S<#5lpi93@I@`*sT+FyL^mUY5Y}nX|37Xyu&0
zw;Sv;FF0HI?cg-yIe+o(p>vJqj_+LcH|XUza4B}HNdEkG?&zYhnMc<zbA8of;yK4W
z@P%Ku*K_8_U-&BQc9qIjVR0U4l$03fnVX_G&$M?V$a%~l=bdI0{&sTdq2Jp%e`G8X
zmpSp|*}-|6N;ddDXaDkiiSK8pzzM4iE|jFz7G^x*3*!@y%kWy?_2Rtad-j>H#Ajh~
z60w7`Muup)KERTX*^uMS->#nyD$ThD?{8|v{=47CxHQ5r>e-<>S>fX!Cb7md-S67o
zBPyNN^*&-%>lMBn*%f+oR#&ve9K6WAv2(82oYQ9JomWItJX|tUqVrw|b(y&?fAZe9
z*xUT+w<VsJbE70@R7n<<u?RY!OyJDgCFUEk#a8rx@I0%o@3qJIv`g+hygXU{tL@=*
zyLRurN58GO+3B)N|HOpLv%EQdO>SOXe?sJ(joFe3=M)@+Vw$p3C%k<*eKE6;f#G%?
zhqCZRb5t{rU;1x6@8eHK#@oRwF$2dGG#pM$d>NXdMwn~AwGgu+k8`!(Lgj|~1C?fz
zyY|*gpSJdt(&<sPU!-mI?bPAq<WtA8w`^2DB=#=Iig)?Sp7mYJ(_<H$PBaS6k2xEY
zuxi7JJim><Bx)9Zdh@Jheds)iL(_dYc@3so?`;42D{#)V8kODLO|Pc(o;qaUe(Ae|
zkMHc|t&M;B^((U+17<$!&7L;ZJzF%`Bz=ZfG<Vb2#syYOe=%SF@3VZb{hcqi4Oo0@
zNMr?NY>ZYz1$j@3cI3FdKllaHx~zX^E9cC*`sCkjjyG!-G>QpL5VJUO#G5Cux9F&R
zWz$Ei#{I9KX8y6e*LtOCxzgVQTQjBKAD?9!xWObz^NiiMzZ#0igCE})c(Kz%I4#Af
zNI|mW_g1_5YqNbU|FA8|EdHh8StX!*<E~U$P2>c}OOvIhy?N4Js=HwqhwlvOY$Zv{
ztwyHjkI#E(G*3d=@v4r3=lmW1qCFnQa@Og(l@lITtP<C++uM8HsDI`3P*$UDoX--h
zXL2srP!ia`KxJp=?u=I&eQC#L-EM80r1br+?VLGZcI}_z!Wzf<Q0JOZpJdf3BXw(D
zuLW68S!N{e{nlDI%gk#>@a4C$8`s}YS4+I}Y{TXtBi?g`1^Tnk2&z=yHB1ziYoGD`
zonX(AJwIb}1Y>rd*{OE9|F6a^4|$R6&trUNuGM%bzv@Y+==C4}|J*x&-hP64?M5t7
z1DdlUCLvm&7Ol3uh;l8t?wZ}skaPcXbL5}1*|Ml7Hb}2t$H;$<ude0VzL(0Hv#z*r
z=+HBAt$epuWA?SukW(r#r|$fme5l~c1DRd>uih%$b>w37_kWi=WoKe>AhC@HV*?YE
zqRn=a^`yfFJkHf~o5WA_{FwaYbBg-Z@BiM~8J!Gk@a$yJ&@Y|2X_<{erW)t}iw_?r
zSwAhmG4Je|16y76g->gqU#NZLj_c1&GkbS!vO2ozu)*BuFDvGBxA{(<^<2waay$3D
z!&^I_Ppdt`Z*H=Jy|mZ+5bxcq8IfFP3rhc6?{&XfZfYYwJLJ_B@qY0@(Puvu{TH>r
z^m<fdqoEj6ZQv#*^d$JAL*M3@wV&dgzVU6B+H}Y<%k%kWb(<TdRsMQ;;%5c;Q+9^@
z@C$tN_JZ-gH(s2!LfaljysNdIweh9YY>PK_@7=DQ>RFeeSa%{^{k3YsonSRrp%lMu
z5qaHL=e=8~v8=eQSW@BD&91hfXG!6!>v^p6b@XrQoS1Tk+sJLX?>vi&6Lr0_zEn<q
zUh$VP=X0?&mVhU=5n^PFTIIP0dKR%L^6dVu{iSi`A?*+I{LZfY{6AaA*wareA=@ys
zu~E08Q}Nn?GmZK?YkXgr)R-IH{$O=euE2kX-ks^Eo6-+WI}jc+y?n2J>`jl_^7d7A
zX(`p4J<d*;I@Ri{lZo05ML}C-qmyAe#m!4J*9JY^rxD$t_iE}kKkME}3zS73=1)<6
z_)^rX%r{4B^%biH3pq}2)9bLBsj{dnu`ui7G)1NPrOBqpe{}mPl^uWlZ;iq0K$S_C
z(%J78sx9`N7Rzk8vvSpjFfGdtySR(TT3(f`YE0g9ecKn|%m+Ka#Xn@XtNq_E@oVQj
z`(y87l(2*vv27%CLzL8Nyv-!QAYg+*@C8#7vk-$#CSeBV#sMCNPnftGBX-6ZY?LuL
zeMabrk%_r;(#u(rPN@?k6do7tNML(@;LPcVUd#+1w}>fYaSpL9Co|MIggVD09O4`^
zgFvWrnhc8%>TJm26ZesANo7ltkesEk@l3<9M%9Nr6C^DQE`wT7=bA+?V{r<xEhr;n
z1C*dK4fM=AY{0YUwdm(YhDUn)k30Im{l8xJ5@$j}hWDJag3{806`cpqJ3cuUeXVEK
zkJ%?<Kkl{>mE+vrq#no;*H(R#Q!ig)`d^DPH6P-lEGJ9(8!3q2{PMx&M8b537YE)*
zT}hmsss5|2<$RxqsdS`Yy!Qp~)dCv+H|v&jdu>_!>ipZydRyLR`&-<6yHb6szrwue
zO-$2!!+pe(CBL{l)jRsdan<J5c`ct7)$nclxk6DWcF~+hbvE|J4%Qo<Z=2s4-nyW)
zbpE#9g;JWb{{PKPOg)vJ2&>Myd1*)VkAL&3|NdcK77{!kOK=g}qBAl=jXG0*>rKpx
zJg+TV^(IL6<R+ZoJTpZ9d;a{CO}s+?JU)GKaaW6bc7kKg&5zr}Bs(O3hy{OKZ~OLe
z%PZR*?Ho@ZIn78^nPd8T$L!^gkM56sYJBbBZr*)K)5KY}8BG2<_2|sgWd|dq)C>JK
zNhe=-$w`iV{ZizbppOQ#;@r0eswZSbHETC5?y<D;d(!zlY1L7^{qGZN4=yuYbVw$g
z)&D|Dz%<+UY71n=zudptd*9QfJC4a{VnX6vm1pN7{eE1{c0V52tz@XaMDmG|;H5e1
zlDHOf9<{RO(h_Bz{;K%YUAzAovC+O*!iwmorU_bWDqwf7vmwuGTUK$7gugn~^U6J@
z-rjHP<yO$D7-c^xN@zyM0dJm-Q}Q3VyE)o&?-y@<WPIejc&p>NmL(2zzDf$rtZ2LC
zmiMBp;M|_W#yyry;zy$jmR+9tE#}6PIqd2J=W?ff>~Y%V86sL3GQZI0<El;Pd#^Vx
z-I}xc^29fay)E9Js%q2gg0=o{(Tvu5am!VBgU6G`$-X8Jb?ludC7oF?CGfk!*1j)=
zn<l!KUO0Jkj-~F*o9~vt^{L^HP@5U}RCDfgBRln#pJV)L-))w?_+-)2(BE_Z-kUh>
zlhW4P3$MNmR}Gxmdv*DQ9X9`a=70Rh+_xao4m0%3h;54+TcS49ZG*h?SPeODpV!>s
zu=Im((Y%%S-rcQ_o_!`{6_-BqHp3~?c~+|0znaux>{Iu(DE3j{r@c8@>CY73>6tD2
z5m6MstL;Y7#aT%k{bf$-pV$%-u`ulJV&{*o8p8Yxx(^yzAMTU+|51F!!Rs4Ziw;+(
zFeP|h$#Xd7d{NRP(orz+_e9YbO9IyCJbbUA5PoG%>%x+x4&G@Dn)_DscFtIFb3uE{
z)JdykFMaG;@*(<QY-eIXbo6bOinI#?H}6gC6*PW(QL->nFx%et<>El2t$~vKzUeg|
z?-~Vtz9{-)$)yu_PdTTbcT!JKdFDCed4cl7dAA+84ZjqwpXQ(QeTHV(#1E|2rx=;{
z{=GM;_k8sOot~K6Z+z50T+Cc9BfNH>T+-iW`yB7tF~_yrT}4*x(cq}N?kHSX6LIu=
z%3_!DEsWQcg|B9)3h)RWI``J#Q^m2$oA*SwJp1C3vDiiKN}r&u#-^iB=ZJ1t{%6hE
zjWYB2)vEKi^iMf+W<`tWm9nZ8+s-G;UMZjV`_~^vJ%)u?`srrGHn$CpjZsQk-+o7-
z!v-A8@9SFUHEd-3Jg=n6>tDU@1haRnZ+jXhwi$5PB=Nj9P~B7Y`(fx3?*g;FpQ@6s
zHXK>pcf><j-IKfK{<v{>;hUw8UW)j3zZNXMyk$v=d7xJA-nl1!9H^atPd;>;%G@To
z=vOUz7gavFG8NwlF*yI~n74QT^0znd$*0*FU&oR>iEW`8nV=SgzJa@QT?~0%-xrB_
z!0<Y|avpb3?6-X9lN=KcDJ<02T&^ni?U*;uL-uI?eNQHaI@inD8@@5tu|4_Ziv6>l
zCqqQ`iLRPGBS1Xq;ol6FJz^#LO4_H`@As$j6rcP4V6njT1T~X{HTj-u;#c<=ryS~B
z*mu}*c8El|uZYe%(X+-U-iDcPvf8YWQ=uyS=oo_w%T4hKXA>6pY@9mbXp!6su1Ty>
z3D;jr2X;4UPr1ffvgq28U1uJwe*Ue@+*$wAgB80fYI$CJZ#eW~X|+zxIw$!vUwo{~
zJ(c%<SSBo(#?KlwbMC~cR<=pC+a3PTPu2eM`{eo0f4N09VzjV?AF&N+OVn!Dx7ShV
zfC2~e`#nnj0WKH*msDN)AHVtv-`)d$Or2t`O<zp2yba#%FcQrU(3~-4`hie`817r|
z7M=QM<mofF?Q->Y=H^Ww3!5)_{{B{2#jyHs7293@OEO9kSX@YKOVbp!{4q8&4lxKY
z*cf79WEN;(X2O&t+$!R%w}1mSvgEL;Xvcz6#R;oGt&*3Vya%w@O>BD&t>!Q`+74>3
znJ@~qiK%ftOJf6#X-yLd(-Zg6VL!ukaasYF(mXbX`L#S-u~<rMtIWt0t-hM*J&9R?
z!{z(DCgp}dPi$t+3N8Bo)?|i{S=saze_OnimkH@S7pXM(d*ajClx;7!%B-H-%haVL
za^{KFmx#uzb2T5G+3K?O>qeuZJ1=FMAMrk4Hz#D%j=*D9tE@yVmOVf9Yt_3yJ9JL%
zQ*Jk6&ADdDXIAiZTVjv!;<I7p?Y~_nET6n`@uRW{IX{{wAKQ28s^|_sv)`{&CD@zl
z7ION0@?B8c=J5ELW>pdAw~vLpKRayLzK3&34#$%d0zG_=yZzSH7ry>;@4waIxzBI$
zg!h$ywD!r~{aD}dWY^9H*LNaUKHG|~ea$2L{^ZQ$qRX|;&to>6zU#Q`{2%$(-}wW&
z(mJq&BXX0{39`;m*U-SoP(jzk%vizD+|oqB(8$;rw7d}CxVW)7mws?*QVDq7rdxhd
zE^H+uZ0V$(9T#*+yJF5`BNKyQ12fam6HkrI&6qY99neuOR#xCv=}vG=xy-;A&&7qs
zr9`*p4AFYA0lNjA4LM%hvT{E;SM%2V{OP5q|K+O8S>j~oBs67~&&et6R;MPd(e#(K
z^G<5t)BZFs#Y|PpRe$mZ)$bR$KGt?V6ZwAk>a@+yCet%4>$r`zR!PfV_BNYUpe4L(
z!JWg#zj$*?n8VuTHbyI4Sdwskn?liXehHp~GljdAc)Wbs{;w_i9(3outxW!+jwvM{
z*8P0?<@9;oJ$|-*F1z;r?8+`&X2s=F;Fk5Nt0eL0rW4LfuCkcgGG}jPSa+}Lr+J2Z
ziDbhY;m*e<OJ$t@U)yo~HFJAc&=)MhLu>=i0=0~Ch0kClu+*ug&DWT^xn5eq>rR3H
zuIe3DLPo*&65HBY=JDvX1%G6lxj4aehg(qZ+&7Ci<i(dZKC22|{q;M$mVa4Uq3zkz
zl33hjPHfZ25UuX9_20?M3~5+e9H`QX{v0#m)uwvsQ*J>VN)8_<rn(>Jib-Oc+-E7I
zpK1RiQ>rn7&D8x%OIKpVgS<&h{LMOE;q!FkcqZO*iuL$$P2k>IpOi&5>jkX~)WsLG
z+l5F+%2hd7yNE`v^E@1JH7qu3?gl2AP3I1k+MZd(^7Nv5wx)bQh|}JZ|MRPF{pM!K
z*ME%}=H^7V63~Y8P5Zt1Ktqt<EnD>sg6did<W{X)_WizDViYGQ_ig=yV$BnKynPbh
z%t(Hy8sfj!PDQzYm#3w`$^df~{|p}<<D5&XA5N9rH<}l{XHM9wCO?lSFV~n!E$T^&
zJA5(t9M|lBr|+m_rMk^zHhLYhU3k-`1lDJ)TW!7@zgrRWqNRQAsSPju3>V!=bCat3
zfBVZnrfMUDWGucTw$)&aHs_=pWZ9=;$aDHHS6u?b>rWr&$@yIQ{lCOBl$CW=&S{$`
zMTcEf>vSgE4$OXZ-7Rgwp%3d<pJ{#Xar=Z-NA?NVn3K~ErMu`nF+5^(r0M<bAChuE
z*PJ=Inf;jl&F_+7Z&q@ib~@H=yydV~-(js28xvkDt*WjFUUGP)%8kd}|Lu+zi#Lhw
zQ_eV`|MU53<%)evTyNQ?-QE(-KP}UJs>rnFx0&ZoKk<I86Mp>hPlcQJM6I2&!W$MD
zlpm|q>odwtb;(XlZ(efj=(lG#`j@iAzBrb;#DeMPOszxAUbD{REK>M);-%tpBY|b>
zUV5o-4-_qbbuwo2&OLKIjiSH1cAXVD_xjMxujMn0R-d)5oF=@~&-I67^)?pXxsPAn
z%%0imw%ziewrY)8Syj=ey|W_uPp<Uv5WT#M%Wv@s5$_w*e$48cb?M6K5BH~km#qKK
zX#A*#5lf^H+Y~WF9R@ZwHVXy~jxY%=Th@j$j{}}SI-_%@QAe43!ZaB@XYOQ!+@zc(
z328}eDUk|>3cD^b6#WpIh{Y|$Had(AQJa;fLEc5qhM+O&g2r<*_SeoU*_8Ee|JoLH
z?G3sPPI~&0m%Qt)sNP<B_({0@ch!wfcKvT>oe4VnU2L<+dENEy=LNUxa<K#o+x{?8
z7gf4){>lrhip1%5%<BdGG{q{|Co{0Ee;8je#jp8*wY1Sa!O0V)1XK>r^6vKam}2Ys
zNBim5B~wjG>eRH0e^wW*6v<kAl0#G>V&@I^CEA*DD#Es%9-E5xnum4Vn-D(fc)F^Z
zq`+OZjlNqBJiaq^OUuj|POQ%&8m^XX-t|kyC*tvjmXBJAVpp4e=b5f-N!!wwoN~D0
z`yrps*0#e!0kdnTa;}=*fB6ol@-lbdvbTpeMVq}>bXok<SZB(?;~FZA?S9EBT$eU9
z2sT>o-O#o78Mmd_fsWL<vvhcJGgNn1^|c<jFlY19#ADazUH|-#-8H&;F_u^$w)uq?
z3C3ny0t^}si#Y2sNKIjSgT-KCn^=a%r~`4X{ik_Z6nUKAhddPeBx$#@{p!3M|JJ`Y
znC0m7!%@llqXEa7&!5aL9Q|-{(P8s{W>;4yPt}p%RTUJ*|8he6o=>6ynFfJJS|fdA
zofFT^ICWy0(RS&F+kBhX<V+1&+gxVD#=mWO>S~U<mAQ$pbUyMN3XR)woY#JW_uBHk
zq5JBcf(@o)@e6V@2X8wDWBSB$-CYMB@cem0+1WYISy$G*yWch?p38YlSl6sRv8kCq
zQx!vXC+qEh>zUgr{ptHju1?`e;i|Wm@=Of)Y110AKmGKceb?p)DtJ%jnml>ZaaHbr
zJk#&#$vjWaw(nOix2;MD?P(EWJS`%;I6Km6_u*N+e{7a9+CLI3S{JchCRx;jcUR#p
z(f7`uD^Ex%q|KPt#T6UYDOTtBae@2V+V2q|5egUI%6Jy^^af09C~Lgs!DG2uZ1)QN
zUy)O0aF)F7R(iMSfRN{zIZ3frzxeG+bXM#)dwhC*pVu!B?QEZ0<%>Nt&nQh^H{CVg
zJipd<hr?&RQ}uCY6&!=FX=K)1ST#3UW0quUYq`uU9+TrT?Pr8-+Kq*#e5uu_i}zOB
zr7_W-k9T2xyxiiRIc)ii#TVyq>tYuFcr$UmOhW6WqqCmWI%o-3CH(q-{YT}$Kg=@Q
z8bYu{4bkm76VxJ2H_&ntvm?jp=b}|k#h2f2JU#LI|Cd~+7@OOi6|8g%1CIF%Ow+#i
z=|t$3hwo=f94tS$@cyY%X)#LyQIAU!A-*eO_sH#KFOx}Q`n<$cr&;nfvwbp`c~xPB
z&#{|tOC?QNs;_7Jrv(^kix-|e!Wvw9<HXFv{>yr}-^QHhJ+V{pTB^j7*;9}8v?%*3
z26-%erMA-8aRSTY)q#t9WscUpJgq!8F;qE==XZ?v?d!$D=cG)m#a7!`E_Dx|bNb{_
zZf*9zd(Iwk4Ut-HBOp|;|F-krId7hr-@CMP^U*Iq;)*xzF%XUT_-w261mCSc%=I7r
zuzmdc=O5-3OQXfG1R$|3KSQ(ubKeQRd`^l2&EMxN5;s`*nYsUSM$F5<+si)ueAM*C
zThV#>VP;wPM{e$I=U!B7IBCeYhucUkuJ`l&p4TdUoUcT45ANDx{qC%ep}LN+azgf$
zJG0$IemtDP?b!6@(_wK5mnGRV@=fQLPOhuleL42Z($epjmAU4e=nLSHE?~WJ*_Q8)
z(7E@s)b@vHO3t>J!XF|&annuC))h;WrU!>+^gIf)ecv7T_9x@PZ`Qvt{cM5Us-&RX
zVrEEEx5dmb$iUbv=)_YamQ6Z6B1JoV5_x9C@J(-RVhm`V*gCUm=R{SHW0#mt85x^1
zpK=U&Qm~YfAvuY^2#XJhZ95tnqBht~15Wcg8*=PU=Mq~X!qk{DFKln=|Loig)`^1u
zogz+5;iz1B@|@;NZ#yd={%v~uH!5+jEmeJUYL>!0?e`03ZrXV9#-oG+DYdu;G4q5M
znY~h`B@dgH=}mQNJgWL(W=(1Ji+%o*6<KH#`!@3@_%S~EUw8PO?vsU+KA)N={Zo3*
z+Yi>8^B$^al_^~;5;eNA+2ptchp?-hO{MFyf=8RLm0vXxx{}82H;r+fpM4J>LxNIV
zWW$?vE|%Vx`j*bm-*fyszXL<?7R;bAL5bYN;#Ba)K7E(eti-U=;KaOQ1%2m?#3In1
zzG4LvP&fv0>AU77=YzNG+1PODyJV)NrGhrprGob385=3+7Z)TZrz)5jDCmQC+U2CC
zl|Y$AnduoN3MQrs`Wcl48L4>+CKd|%RjEb!3i|nZsS5ff<@pNwB^gDjsa*PL`K3h)
z`e~VEsS5hVnH389#i?bfc?$ZeU^C2274#hy%*++^ofXV174%&d%#9WFJr&H&6!d)*
z^nDfd{S@^574!oXER4DIgB2{y74*XuEDaU(lZq0Pvr|jJuCg?S^C3>NG*{41RM1aS
z&`(y-Pf^fMRnSjUFf_1G(9coO&*d^SG*r;fS1>d*RnRY1&@WNYFI9-;f^PPMhYDyb
zp<8BAaS15o6buyfL19WL<K*X+xTF>*7iAWd<QFLzgUXp8F0fAD#FC;+@Sa3H0|QVD
z7$_LPS+NTGK8aA9j7&`x^!*ZZQ$f2PVeyBQ=Rg}hjbUR2AU7%Khi9ggWE3kHgX#tF
zhC}GWJ+S?-d3ML*<kY+p1xq7K&^FNm4@e9cfNX)t=o%TDfp;>d7b_SWL0nCQf6<+)
zpzm3dn3I|8n3tZDs$jsS@0(ZwcA$cxv5Ap_esD=@ZWt&$K^}pGDpHW?N5CCs2c9+n
zIUnpX5F=W_%)o#en2TI<j14UmObiSaOw0@vEQ~D_%#6*rEKLm*%q<KQjLc0Hj4cho
z*wg?b4^nSzW~czBjm<&o@nJ5|7F7^7Ha1rPVUQg#Y-((%U}yje01FcZGYc~XGfN8v
zb8`a)Gh-tKQ*%=Va}YK)QZTYK<ubA~RWLI(Q!q6(SFkWMRxmfQP%yVJS1>a$hR`5+
zV^ak)Lqi2~V<QDK3ljxP3rhtv3y2tq27AWXoC`#Q90Bqa2%8xiE0`IZg7(saX){Ap
z1!Geq2;101!N}YKj7`lg!L+5hiGrE2iGrD-5f?}w2%8uhDwrA>DuCv9Kys#*MhX^&
z778F5jEzje0R;*KP=J8!2S=K*88`tL8(MII>@+pBfCLK2VK59%X<%Cn3=|9vKtTi!
zHdC-xkTKx+09gmYT&9)=3LxF!@I^3;3>8ekMi?1`wVHxlWeAB*P%;3y3>h06n{$D5
zgD}`A6LUk5x4~%zln%gxAXyLw`3YnS2!r@AlR%C$H89`;iNg%AG_zEIVNgN<#TPaV
z4r@zL!UV+!9D~yXC{4gHIITd_1Snk~W01SRd}AYU+5n{w5C)|cGXqmDGh+h<a2f!m
z12k-DVFXDRhM;tWz_2s{qs<IKZZqKm(;zky2H6i52c;P#3`!TESOw9spjr@ACV;Cm
z5CgQ(*HOU)GzJp{s!+fyfP+AliV3LO9R#XaOh8?~AW-FE0_v*;f$A6&P){caRMnV(
z3s5e7e+3h8$qlM_z>DUBK-<nuL8W#Or~)#D+L5SW3L0Dp0#!ApU^}=_Dkf8?ZP3aJ
zQaPDIElyT2g<71VU<$SvR8g6NE#`vNkDz)z2vmE4r`JF%P)%wEwI5u$nn9fat&7dT
z?f}(vW?<X7^m7%=pjPH9m_aQ9)zfBRtDto{xFQ9QJO)8UAg%=u*adOv7b}=UErnFz
z=1^Nfb-Fp!N=S>r9BeJ9S~Z7S3vLQ1n1g-G1#TUfL!D8oU=DQzxcOiK31OsyA9)EM
zC@X@_1^~?-ra}%k09g!=dPB%*0gi~e#T9<ufqrtL0=Ubq?`Q;5W(cc9F_j@%0rCyh
z3WU2r9>Wj>`41|H)bi5J&CDw;2DNd($21_CWV)q!nFhv|CJNw|IVg1+Dj0&pm`mT&
z&_KZm<T<dgp@I>}6=1fJf)U7aFxyzc2pW!_h9(L|(2(>56~^Fn12V@<!5D0&g1)CA
zs73(?puVS}g@Q5Md`ksmn3+ZjhR}%hG%`>y26-unOW)I2!4Rg}M8OcI*i^v~tUy8E
z(@en-<`i=UBe3lX`kodFM&KCb()YAfFoL?n*FeD#>K$K01w*K-eT@{1pf>v&D;Pn|
z^)*p2hMM3Ds$#&dM?`}K$Vga_J7ty>2c#A`=jRsW=Yd)}77F^#`8oMT!Qh50^au&}
zqQpureaJ}-0f|Mq#gNnhQdg{C2-Z=Wn^&v=TG*!_P?VaInG9;lL3$MWSjR!24HiQq
zP@@%c^n(S|EAaUp@VObVCMIlx2hwf>TZKH=^Y*G@-ysGO*NgE@Yv<~2m?EendRot|
z*QM8ObK^~hXGycno^!BxPJX7gKYwTK`t>s-<3GRq-fYkJ??KUizJr;s#cxO-T=ewk
z*00)cPQOflZGJ;iU6NA_1S3zL@N)Ar64C*|O_L^0?U|FJ5&?oKs><4umM1+nfZz!)
zw=kokNfQ&maB9z*lqV|62bDljTQc(G2~W2sR}c&{+B9k6<Q|r85L}azqN<F=qE8q5
zYrbHU5YnNY3x2+ExBG?ew7LK5^!sP-w0U;-J$t>(pM&*3?@o~h)gsVYHfWgwjyq7I
zGBz^@$%2^Rd<kNJ>KNh@T9CUF&U9u>wR8r}mBGG=#n}qr>=1<1RRE_tSSd#+)y?%T
zmUWkGtFC$$qx#dO>v4-knam0yi=%3qVItij2m5sYFim^&Q}7Ra9aDDKq7`0d0g(ls
z9Igh1dB--U#=cROoqIYa@_^I*-+b>rcIte6R9p6W=kn@h>2{T0UcFsE`S6~?BZ>F6
zxaeBjKA-#~C&jv0?ZThiI|IzWE??$5H<&x$T6LA>SI@a7qHdRbFXxusR(*N1-d=0H
z_4D&?@6Lv$=P%<sKjHKq|8qT))I5{kr<Pw{UQqs3es1&Xy$^-n&vW{$dagM5mYuZ^
zhmW$k24A7byvmLXJA5m>CLWS8GyN8sykwov_Nzj_*L-Gmsj25N=4bw@eqCtB6Ycwc
zZ?ql1&weyJa{Y%#iBgqeFTdv1UwT-6Hqp%Lc<1G%vjb)?Pk(&NVY|WCb05!??39#J
zsXVo?m~Zn%%TsRRC)}Q2+qK1X$Be*v+%})DFsMsz-uQOT`eM)j>nA@rEans=<K>~K
zbSVA&^T`1m8`(TBtNF=@O5A+edRr!<cEzLk<C!`c#&0ef9J#vhr{Jc^cMpqwjqTae
zVYNHG|J|AR>R%e?cJ5vJG9`4{g$K``F(?^i*4rNo{_(xw*|%rm&nmvE=LE_mv0Q1@
z+ZCQ?wbDB$Kzv0+h;~qLn452A)}H&z4tdO7pTk^}K8tl<`qe8vLGq99PUT-NAi1xW
zTj_Cr-Rn1r^+mkyifcRGi+i|7OGw`8kbh+PW%eq&$kq-H)g=Og3tL2#l%`B@a%m~&
zy~*7oFx}<Sm3XV?F-4DGzKsa3-QaLECon+S+jG}zxBd0s3_ky`|Mqt6gv3RPQ>Q-M
zeY#%QLRB^~CG+YzF=-L^d9o5mC-Se`-pgAfuUwG3T*F#i-Cf{h|M&B9Va1<zOuQ9&
z{)4+E$GophOK+(heI9+MKI!<;>8~pIU9TKEbyq*;egj*iyt`!Wd$Bmr`+LF<o98(-
zFH^cde`?2Mp5?a6Q$=ILQh0o7*aT}gaR~~7!rh5e)5S$Yv9*Kaz0{{rPDQ=WB`51&
z%V?F#&#RHYwej?nvvaN=U&eboUQ!^RKV$2ccWgUt9mCeXYiUnBa4&LRLbGO++v%N!
z9-Fpr)|)1fskNAW)Ar4amTtK!D5<t~@8-0vlh4dqQ_r??t>c!HCrhFxoSt$`X!_2*
z@kO4_%+K$nd_TImz2<lG`$cDOM4$igLCovLn);^XYnI_YYs<^M_#ZLEcYb-=X?e%7
z^!h|WaXA+2Qb}x1?^1sl=G4Khm?`(?(8OZ>`F2fZFBwc#ukln%UrV$6!`3Tiw9H6u
z`orBNIqREcmYn`Au;O`zb->%~o&Q<Cee~aQqG?C?M7?nPc^8+?;uqM~yscyAm1Q$#
zdbnn(S6I(2F3r3ZVi~RR(W`Ni-%9N(K9NSO6?a~8P5nO4{O-Lf;rPws^}obi+}7VQ
zvW@x6XOc0EUvblo-#kjE>t{ZXzPET4H_IM|zM7png3YI*^gkA=$Avy`>5xE8Jn7ss
z1RiZV(KWgDd4ad^I)j%d<zKMxDA^k&^*i49zl79=lL8qVo2RX?n#OJH_3;IR^qa-p
zA3yB%SG*)GwRbw};ojVk^2t}Yl2kUCUh&MkzJK$QW0zDpmh`z?S+MNXT{F|ZLvtBc
zbAA1=>R9)D(Jx*qX$wL-=jv$B*`nXyyT(d;!;)7Qf7iF2=&w)f(&D+V<omUDi~0PT
z9{rPV4(!Q%+Lbm{ZLPV%_QU>@pG)4^^JiA&$~8_$dW3>HIs%-aN$Jpa*8C`)mK`#a
zUhaNxaedPb$qWzvC&3AhUmpBgeW8InJZ$w$+a;~H)iq{@xo`WSzIOU~duPwy)wNCc
zj&?=PdbpkWbe^L_+3A&&a<93|PEx(RDreq3g$l0K^*UOIcs^+I^gNmqy=IN`jw6<H
zp1w$By}LE<gJZ+ZtCrtyPMP*9p5yQppIa#nzy2#6j$}>T_xz*h*PxyklS7eQ2u|!3
z_XJ%z3L{n6_g7uMc&RjQ`@MjB+eBt=@yhviN$pSduHK0$DJk2hnSNdKRPXH64~u@A
zCP-&-%XVeiY3s6v1Q&T+nv<X&;;f)?W?M<p{Me(Xbgv66FbhaeDD`?&=D6<Gt(wK6
zqWAuBa&8Wmt~6L&drGf!LC2{>IkO(LU~$b4J?RDxMZLB)kxzIfT|R5Bs*mBD(#ZO$
z+1X@STJ4=%cCxc=uT}C_P0O0R&+=%0!QCn&o-3*avROHwraDOLC|uwwXDa!TdE=2%
z8`~P=+j-GbvVx{=oIGL2TPu%`Pm^mHcihpQkyd$F=UP#?vGJ*s{|rqmA`-T;f4kr`
z+tEvu`9x@RAWOp3(u})n-<+PyQxNv`q!zS5fTzzri?{A{>Nu_B&1U;NW>@ke>Fw*B
zcDEck^XQ$N3tRA-Ra{rL9Fuvn@69vOj0fgz5;si*?H#q1wN{+_+0(ryYNeU8s9uDV
z*+bbS8k3f6o1||3Vdn2&6}yC@Q@3Y&oL<VYB~xosqPLOp<!|W$CA&`rrsfLfuibTf
zr9rFhQmX^Agz_)wg*>&(^I@BsxwGX^R-4qPPe)wBxHtXYHpSW?*JkR%7yTPjTCkMI
z{>Ks*&lGr+<k9#4gK}R{EkoSxbGx)}Sl=`_`8%kwZQ8qplfHdF8YhO<_NUyiTe-%z
zYss@mjwPk%cCv^XU+@r?y1q0--$ZuyVV={Mtop^D$(+j5TgYMdpnLmr6WLdaCJPU7
z^G>Z=x$=(VTz09D2$$;z%fd4&e%1#|32u#Av@B|^!KILjas}nhNprq^^xE|C$(x5Y
z@AXVHRwxwgOn=uGdtBzC`fB6~#J}c6xQOBr*NHlIKRS!oZL@CQ{$okT%Z%>3Iw>sK
zH#goXJN=6L{dwlx8;_p_?=lceF#610)jf@&sz;eoO|f)Wd-a~hU61P-{?|R9a!P4Z
z`r5n%&iBUee;&Sah12Df)t;hTli#sUjPu%OV5M47e&^)di@O`OPuFoU&U=3M-}^Hk
z{|LWn`D!-dlvj|3q;}F&{{Z$?Cu3Lmhbbz7a}Kzg0HunD!jl|Y1g5(N)&47Xzo!(D
z`RdjlSI*UI67-ZWPPJxy9PK?n@<jhNPlcr%ujZ?)+*<Pc+)ZV%cVVjcWL+Y5>1Z6v
zb!g||TH>>Tar?>_M)PzE59+=D7<c38QQK8hURJ)YkgmvWTJ$Syen^S-)q6|6zOcS&
zEB<K3p2BY*7~h(mZ~E|7ckw2<i*g>;C*K>gc;#GRUFjdDxCqUSbFVX{Dkdp@ems4y
z^I!G13hY}uW^NFeX8myK7Dt<vb1!iIcX-HsI?q`_W7EdvC7IWcPE(29bc$<IreE!*
z87H-}GmoCJ+47z5a8ZW9H0Pa@j~9ncJ$rQXF6&nhwF~!{%w1xVXLn5e!BpSP|1UZA
zExt2<Ka=3L6VIj^PTaKYl-#ZTzGv^o%3r?EebTu)rTuR7Bklw1XJSdC`PwyVEjwh4
z%qy;1UeekvqT>^{`~+_ggYSuy8#RI%2TCH^?5!QM-|aEky?%qksV)tUq}Xd$o{O$n
zqjKhw+ehtN2c@^1YO+c+G~N+tHJ@qU<sP#SlHUzCRr8k5zAq=0UL?L;Z%$Fv1m`I~
zULBEe`K{8v$>G-W+l-M@^?TwO9x!rlKKD>wuxyP$b$#Dro46!iUM%&ieSX=YwJieT
zPM<DrDNr#ki=1{ZRo3c2-$By@T#ICFmU?$Jq*QrT&)YDAbE0Y9{NFJmPiE+D@Xa*6
z++?#<=PJ{iI$h89vq7KN9+~xOs-joNoo81&Cq7Ew;%{;OfK-FP+)M6q@mkdx?zYMe
zpJrR0*&v*8cqvcBj9Lrhq<<G>PRqW(aIg4RiYT<11+R4GsR}3_NuBt1?xTO_^VWLJ
zd(O1}4d1HWmYi+gL9#oA170=F%F0$h&lT-+bLTCgjoUA$l`U;_N=iGd8oKxDx|dPS
zQR|A|Ev|M8*<<C%S@>N_toTRD{WW*&mtEqu$;-;!UbFeOw8n&eTUx_6SsFAwPjQhd
z;#W?X_%<o6%`9d`nbDEjn_n<X%bGYgu_P`<y`DD(eXC!d?|!hWbXj+@*siym;_Pnd
z&KD|)U8lHfTaLKsEr%}UH7hrza2@siImPZ~z`+%kF9MG;bbUDb+c#OD*5>fj|NH+v
zVRTuSC;j_%$CY#2<BvZQUC{CGG2_3P4f;9r*stWQGdz91yf`7`nq!;rAtno(-LLgq
zPCvy~%_Q-@b>;Y2<5BnXU+ne7@`^U^a;DfbbssJ-IK6}6^rSs4HY;|o3p|z38@Q_?
z@}>*dhrgTTcrKr)QgCnEdq6W*?DuA2(-YlcGoC6j|M6mp-^0J(qV2>rws#?{)m^Du
zUW@f}3m@QhXiMF3jOl(imUJGUygys<NU_ps?dPl5R2J*ibA3E%nNk!G7Q2|yd-@tl
zHtUBR8XIHxtT`C8F0^-7%!RVkS?K}oEUZ^8w;MW~ejzG-Q?7S`qxe~wSNHWYw6(YO
z*x8tAe}8{xzGL%Z^@!73(&wi+_RkKz@mR9YT5jgd^BH`<YimpbRwhh++-#xRS&_nf
z;5he>?_#Yn^Vc}Jv>+0Z4wqAhx3cuNJ<+E(A7kOoa9rB*H{+n)_1~RL;)iB$WceF;
z#>#uz`DAWoHnraOt>%C4ZHYeq<;4`)NtN?1l-=nUciXz-a|R!;-LF3^O7(vqtlr%2
z9i<n4q0U8m_Og;k&%{E5mR!#;y4m27w>vdomN_ZNOW%0C2z#yJ^3qG3d-q~X*x^l_
zihA8|_Pc&{Se??W-96JW)+{5UcnSNaWwR#TVV|Wq|I(%x##hvqvOVAQ+v)&U*7U%p
zUE25c=WJTEc3b7=w~=`=S$ouP-Q#>U|3OvpxxY`(T`{@g>|2`6z4Vs0@aDhgW^DU$
zufAn<Z{t4$oeA^K1q%4>xtJC#zs_$?)W>Oa7q8iU=(B9_L~l1xSRMH<H0gUI^A5)k
z{AscOmayI3)+^MprtnnNTpRv#sZ$cvv;V}OU%uo|r;Gg=_SzrbvfEZ<Ty^?z{=^;5
znth?!Q}3-`8$QpTvw321<=Gkk85EB(y$6jNpp7Yj`stwY17k}=_@IIXXcP=2Nc^Az
zokp+Bz~gL))yd#-1Y$?8=2S-nhwuA-{g$=$cixs6vNO99JeY#rK8m?qkqU7-kvPY%
zl`r|~w(~DEu7$nfaLcupRS11!aPC5x+ZN$_=N2~0INkre?b?mtsS+M8JF65!0-3_r
zgk56byzXLA&$6j}XT-;Ar%%8C`0%IQ>&WcdYxy&CKAr8~$}l5Bq0pd9;n`t}v<wYp
zJ~zQ84T<ACQw=<MkIQg4JI^dEuyb@dXyKNjVVw6SkKb?xiy-Uc84DMlvCvTN&{*-|
zg+^0H(`gN>K1r!lF>YCIGCfKhl0C_7ZA$#Rxb7&KthoA~Tes`apQmCA9rxZ<*rM_2
z`?1Itwy$E%7Z#mZ-fKBw_I&wt!F}t)q+6z?{`^@e_Q-Mir`V6ilT>vAR`VVz?)vk`
zf;%x_HLsKGO3rR2d;4`BFRpGBTj;p<-|`EKPMn|r>A-0Lrh1;ojEYZ+77F}Go?$QG
zq{q(HXz%u!-RXpEy25ns)&}z{^SN93_e^@v)pF=j;tYF*eS4qfXD7Y+c5$;`f#|`!
z=8(mlhC8|@P5%GR%)_*Pid2m2$^BYI(o1HUtUMSx#pc_T#*-&q^PD@}ludWs^Y+s#
zlHb{HJ0swNsnp7YQzy@fd1BT9V#ZFH6Z7PseNeAk)(d?vkg};+CYPMT1B;3#-d4Dp
zvE=BwMNgj82Nlh+EeiW`PuxLz0b@tmuj$_+b?*e<StV_|_21IkvtrvO#+Gj0eQE!e
z_owx5xRqU9Yv{f>*1YPRpXS@m*EaW7<YtGfzJKGg$(=2;S;J^c8{;hnF2>vjHiq1U
z9kl|E>>14hUtd{odDeX=c+W0r+w|oUF=xeXv+b<6&bh+Wy!xk7-K^-+#n0bNnY`{<
z_dd0}tG)MLX{yJb{R(!({gO*;fhh$_-m2z4zAHlhF)%PZOUQCsdPvPAYN^td8E^KT
zU|`rL6)i8gku6wwRfSXU+Wr|k<${G*MSz$c5&bJUTe||1U)Kw6lnWLv)N<<GD*$40
zhiEzVuI=rJ=zpsaqUGcZGC{7oGhk)gu}fE4yj+(|h+1&$n!C%IV|%K^QWb?Oyo;tP
z?W~bvU|<kjCvx&>PiKnH^wX|hF;){5uY3r7#5FTVah=G?`9hk7tvS<}!n>Y)cJYc)
zoW1<O)J3dC6NSRhOwue^nz1lu$r16>DO@p<I@7zS{9u~t(|Ek=2}u4#3RlfM4?S_s
zom?}08ns=Ec4o-EyJ|dThm+duer?yH$_+x{C*FPDAIb1T;@RtqP6v)}*jO*yC%odh
zVO4zw!;HiI$#ze#^VGk%&cn{dIKS;Dv*MEiPuo|5=a<|3^7O5EE_2DotNz{z_x~*O
z66eclt1Swz=V4$_od2?`^Tq94;S&}W&R_CsU;eK#ZdAMyaW(ALjCDmKFS|Nf*T43b
zzWjV)>#n4vw6=X)3~jgV4+uXKxhp#U){j4%ZCiIG&0k*j+FSo^z*mu1-`ZT?Uz=XH
zFzl;{*z1lLcYp24zZ42mqg1v1pNIFZRqDSh3<dZ8Ua`<H_Uh;9=es&z=q_E_`*PK}
z|CdCCFP@+6Eq!^a{Qc{*rXSL1`mkqiCYOY(z~kBm3F8|qf~=y#Re?du3|bNk7xJ_|
zf4s3tP%E|X0+SM#mc*ohWrscshB)%`rfRj>ZK^5}adbH-!L~Bo;6(o#F1HMgV#^+-
z4v$H$Cl)jbN_j<|_;KE#<$T&_MaS=7mkM*tKl?2F*{$$(Zx|RD1S0o+e|;n3`VHpx
z-^wg=KTRn<eyncq_L_?=Wu5jm{p<7V*JXwm6s*#`zOQJh?e#6%76r>SukQ=WJa77z
zi|<zEsjbJ?Z+Ske%$NUO=Bcf#!)_J(W*$6f?Yr~-nwZS<rn%gF_cCwg$M3u}FM6Z4
zMa6Q>!yt3Me_8k7!QAD=Z?(g3{ZCOU1=;c8^s<=Wr>5S2GOLW0{i9&hyVuU@0(RAZ
zc$42xI9*<_Dc$D#ou1q`vPD1nPOz5jdajuA?%u^O58G>#`TxA_$@$iI^potHH<DA*
zYyP*(o4tKuXS$HrJN^BH)A4EP=PTY>*6XD#)L`4$(8s8kvXFzjh*6d`=7dwA*b^ox
z*#brGNwXRk>6~zVQF5Sl#&Z6-d^<R}T_Y#3y(l@rsw0xB7~`;<Ij2I-O14Om+ck3n
z_luGi?nsSY&2w!Z?@Uii*<60&c>G(B_M<(j_a~L}Dsde%R9$$+LgMJG3;%k!x;9Hc
zjazy~Fv{U!kj(0yMT<F<xb&9qI1%ye!|e&PlAma}dnWe&zwm#FV(P}vPbXLYnB(it
zZ@xsQY~ROBIXm~SchB#i9`vP^_q^7e-=&pX<83dr`D$i)MBe#m9xG?(Ubt+7Vrt><
z`z4hXN78B&ox4g3_UrLa&$%jYw#23M{q?5{xy@d3OV10m`u_Tp!A-T=g{hyDp4Y`z
zU6|wh>(H;W-E)6;fBs-O`-|lEU@`0OuRnp<@8f+V-_(39Hah<0{HG6=`*n45JR)<>
zUw!(pxGqyG$D{Mzt@Wo5FJ1qFTRP}i{M#FRr@!yMtWv-CxBZIi>O0Fz*UM<I{F~A*
z`frP%-XyDO5-U3=_DwQ3yM9>8UbXA+ujQ*XEO(wrosebXcz<qc+m#1eRcbp=<WA75
z+3@$*h0rN;Y9>5-bFWl-$t)gFP4K4#RF3CN2Uif9Mbb;GO@o?OzX(6+n%DfrwD-yb
zE0<j!*R4;Ubba?2R117~vUF)ibI9U}`~0&y4~9;eGv~3HhpCj|P4(EU0#Vie|I<oJ
zLru5Gy;;BGZo$dgd#k07S6&Kc%3Lt@^6LGsRy>kA*iapnen6r5zUkiE{ZHpzvlPAX
zGxqZCKN0UT=Q1{&d(ZVoa^d^}7KUE|^?!8sF59}hE&EMo)`F>*v!klB_Wnvs7rlPt
z^HcFHMOA0Np3_>lasN#x?d8{NuLd49{bm}S@$}8DYkgYpR^C(NUOOlH`mMmDy00@g
zT{tCax>h!nsn~yVYucjgTgpNn9-F7u?a#V0^XZpa*Xkyf?%mv#{buJq2kqt8ZEkoc
zoS9*I>856Ai&V7vrJK3?XK%i3vu(5Tl^ef0B1Obs7EbYU>Rmfu5>y*#hqOpV+jpm|
zT~?r}!*AXju(Bgu<IdU}zdAaedx~4$+H3d0ylZjtKBn-l6i^ZEazbQBkch9<ZiSto
zV*FGJSItgPiCrsVG?Qui-Nl=^gC23+tYKXza`Jhw%+p|%?0qpyj)-n<e;)Ygvu59<
zL!VwqOpMWs^4R3kUD)cgZOS7h@dsWLYcyNGe)!H^AU}7r^ljIq#SwE1_iL!^vpv7v
z)X?v@$2*oiPxc<W|C_7yXpZH}H-Dz_?B1!Eetp5WT|4V<T;8kqe)F=D(EevCFW(e>
zJ?c_&O7qgqy$M>mKH*<PUv+gx)?b=#w(Pt+SNq+kZQz19?Mz;6=Hq9}tGP<smrY)?
zziV;%Yy16Po9<<Q&*IN6pE><@X+*e>i~9VJyRN^u`|HxN63L(y+I1rFYx;}Im@b_?
zEC2G%w7@xYAKjZHd)3v;!#B}z$wD927=ufJ$Bd4ZO#zj)#%)(Z#7`>xu87d^y(W32
z{QN#s?t{*^o>?yce0Oucn?i-h>@$XQ-_QH{RfmOtr|ioa=gQsh%xZn01QNbqdVII7
zhTZRLIxX6HlP#Bhes^Y{DYxMIOQ|#FbM2lJHsRHSwU<(7JY6{bGFRNYkFiTn8?2oW
z<ELG*@_PBycV{o3R+)a;?#{KRyS=u*eq(g<>6WG|diO(j`Fu7y`E+{Mo?k&#j#<<5
z5B)#;;Z^7^p3j>k!!L6M?f&2r+g3Sqhv8a<t1q{EO;3yyDyxi`J<VHhx#*HFKi6GK
zoiW{8Z+YzuuTB5<uFbCCjpp{u%Sz0e{{FJ6<g?UCr$yd@Ey|mucX$s^VjfpVFYk>b
z5w_LevYxGKxN)Pw_srGJ>Fd93vG=}s-Z=dHyuT*J!45e(e*5OVV4OW;b$a{yv^=hk
zSfLG_JFCp*vbRn+*XDG>*-%czNlltdk^OK*K*xrg0US3ajy2buNOM+vk|@Ey$)lG;
zaW?PFd1Z<zn*~8aa~D;D)QC9AwN?F^pwq+KI>B8zvgcvtv4qNN2No98D)1lPG3B35
z(B+B%j++X6ZdI{YCGxVTEbeIzWD)eplQ3GPXL;%-r-!+D{gTa#ud$0N&%N7aI9K+n
zYtRl6v0$lFJ)ife%5TvFNA3&tU1u6BXMbT|qZzk->d&p$b1P-89Sa7P)xVt9Z{}X{
zHBUl&eo2|!_N^<j_v`U5w6K2mC((TQZ9$Xt$@@M$@{TkAzT9lmZ^z_QNzb*_J>KQj
z%Go`SWPbUkE;R1OgiRY}r?m3DlP{Zoa^tzbyKDruddA<_khZgUf1bV}$bduM-E)7J
z=Gz#iPyT1GKY5M0=eqW-2VY#BTMsIdA8GA*cXe|0jRSSDa(u^D-0WR-zqe@0m3&1v
zOY3)wi_4OCd*q088&4{|UwSey=1A^@o|1^XONoEGA8oTM6IE50FOXg$#k*AQjAZEa
zKfV)hE8JZ;Q7XpOUtN4B?<I4Spl0p-l-MAB*+^}fr*ZC<y9M6=an|Wy{Aco&2U@>M
zL5=LY>p&V-w>__Xuq$QVZH22TK@lsuBd=Y)!f<BGtJmM8{=Iy+j4feNX#Do;2B&w=
zma-7d_*z;mx_Zy<m5kQCVe#+RrA{k1kDdGXsy>_LqHP}43U$IWF1}iSD|^P%yVv(K
zq;2_CRn5EkPHHYg+LxHsd)p%KW#=-arM)e!=H0w!`AWtaH@9AYYZ?<=9?Yz<yug3)
z)$4DsuKDzC8QVL__1hebqiXkV?~A;5_sWC0`+wh3O>kSCUwQ2(tHI*Zwcn)DcCOyZ
zIOF22u<Ek`ad)gHb@!c_nEWa)D`Ae~>h-s^Z$7>2%iF`X<=3vwZ7-jGyJ~cL_xd`<
zGZ|mcev?Y8G?yqUTOTBIZCZ6n8PlbkYZvU$6@B?8N&U&2OPo`?DrO$K`)%&IcZOG0
zHFaD%^*`-erPwa&c~N=p+~u`$FSk9@ELiHHC;jq`O<vwSP#Ic$tfWltxyAfLU7{zS
zF4Ex2=3F=7q}XJ=Prp}ry9E`oJhs}sQTE!3S$Au#cmIBF_ivX<Yb%#+UiOs3pyF?J
zm65k+`uBUwkGgz$-@9b<@7T)B<X=VM3)ju~;mY>%jo7|r`ni8%m0rHt_Gi`dfN}+k
zs_px(Yzn>_yy7%(=e@Q6x6DkD-Oyi9wq9~?O!`HR^zXJ;RI5F|a~)fIv$v>hqd}K~
z*qyUCJx^{FE-qUv^Hd|<{D1XY@1Tf|V_%9A9)tzA>Dt{}w$g)_=T27DT`~Fm%QJ$Q
znYV{!<b3?N?Yi&E#>Qx0spy)T*~g|xNz6#PbmP(Ew^I4lYkZTvcx#eYdnR{>-`ewb
z<43bz&C;p|VUw4Ej5FLTBC+G@lAp({_rElauG!;TY-MUtuv+u9n0)?k<<{AWUc5Ya
zz-HYxU3TTbf$2W89&YtrT)@12mdUmqKLo3?6F^4U+TAmok~|G$qNVf6i*uwTc6>Ea
zb>Ce6@4#8*;*c9A%dR*?F+91zDE~>2&w)w6PWFSM_(KL2hEFdW`dJiY8a61*=lfy6
z@Q}d-B*e+w_M7KJBEzAVZcGaE-#t3a&|=)d;$YW%teuhLm?M+I{I(B?45t`97*cr7
z8=Kfa3E07Mh>>IZp|8y~RtFLp4lx>ljNxS#ILFX>)puRvITt1c`Gubo84fK_W)xV?
zY{$bO)4<{&Ci`LGghQ#lbCsQ*olw}>EFvax{bq0M^q2zkbamC^eUINre1H9>&Z5+F
z;qjZ5GS}pDm)zEp*{rwol!w*s`01i%OI*Iax&HLwqqR#m&-T5hYI`p4uF><lxo#d-
zyUpv((kI7NtERfFo$%;Qoxjy?`Iy)un{@MShowR{@6Jyz|9|KGcD>Akzsi<7PyFRP
zdiHO2PWp4BirfEvuDzKj`}B>`$z4m1-&E}bC1AbzhknJZy69oQq`>}{;x$#vw6ff6
zchkIAd07olzr4EEm-YYhU0>b{J)zsnDrCgI^Mu{K6?j(becmefGZCfP@v^J$++IE_
z^xog6;um^C>#s(h)q2107pqBf=~~&VYl^mSWt_EfmbC0uon-%DW|PNY(M@viZ)h&}
z)LXu1_sYgt$0Et)8()Q`>w?P_!{n=L?{1BIceXDptn&L;{XN+)Hk&yZm#y2ncvk4W
z?A(U5wA|IxPp_1oSKndUdS+u+?7h2J8s;mSsuXWgP%dJ*UsN_*Gtb+1MaU7cuG>|j
zpq_Kzqc_(ovzr9>FW9kmenqTM_&JG}Z)!Z+MLi44ieeNe>q@<RBNja8Zq22}e<iOc
zC0}_Xcj4yWBd;e--Ss`q<^8q)-={CxZ0)g2xBqa}U5l96(r@1=X`Vaxc-xe{_AhrW
zITXwiS=euC{p`j$zasPW?~_+~D=nLoFC>&>`RvPr1tyoJx3#cD`?*#H1kBPrK5arm
z_2nsYB2&uLK<wMeUi@5DN2ervdt{vdm^D@R_!K#j8EL0Bs%qp~E?c;<kaL?%a8&|G
z=Q6JiPiJgnWnDV6=$5chj^(noj*gkj_JRyQ_Y!Q;>}@SA3pXw=&f(<TW<TpvbJL|W
zDz8<!%+F3q_U>3*Ae>{l?8{5X%w;mOn-+mh&;^+wV?Fcn>?tzeZwU$I%oJI7Y>J%7
zmfl0R9?iASr~*0Iq1mQ|Q$X%WCPTXph|zSJ;az6BbI@af<&0ua6nz*f<7(L-I?gd`
zaF#nHBQdYNJ;A4iy>LpKvz*g$0lAcm41ARnI0fWVE-~=^)zDGf$=1?t!04oI`oM7x
z+lvdU*)?^#zHP{m)9d1Y?z$Y**uBo5$kf7GD0LuE?hp$H`y-PBYLN||@A}(I>q}4W
zo;Q8Y8t=Y!-a&Kjt~ooo^dx&p+2qob7r`=rR$f=F_5T{B+hY_Kx_a{@gYQwgJj%OQ
zU5$KMz3O__N6WLHvivMpuiCo%*!Ph2Tjxa{Tb1>8?MK_Ix04d5Y+RLB7W!-6tG}PP
z-6U79+PeDE_bIz?9@0p@dbc3#*SuHx+YC<a*t+(dSG@E5tA{iWXGhPS`p<2Wwn^pJ
z$o;{4!@B)jr@v18dVSKa)tA19y#LBJ31aI0qOf1{ind2cq^_AI4br_Hr2G8DI}_J<
z&D(fA>)=_H>B(uKTg$>Huh}Q{{$I`2*q7C-$~Wm*MuNQRcTH9O^`!suS5+IQ{dTLV
zG5c<t>D3i-`ea}K`DgE@E?eTU_0F3gKXSH(&6=ciwP5q($D1vqGQGN7PM_`T4=>(p
zr8j%^)MYmMSBo}3PTssTD)W@u%4xIrD%s6mJ$0S$#H^h+b2^wrlsH@%x!f~SQml=3
z@pB2XEMRCAkSw29XzC!)!IYBnyUHlO4`jhvrQ$D7_Dwz$IP>gPui&@|SvzljG~r-i
z5pdu*c)`A5f>fgbQ%A+ElXeYPobB6=I~6H3I3GUvK(>ILhpB-5&c{CrUk{x4cJN}Y
zhpojso5!yi4gNIW;?wx)#KGv|$*a&Hz!UUk`?u#8udAw;#2!xWk}rwfwD<S#d-E<n
z{C!@&Aoi2sob;*>JMQmN`L!}{etpHOi}kU$H1e$@<{anrxBZp(*{$-n<6TC-idV~3
z#m!IM{`bQ^?(bK{yNrH6UIp*!mVRn}|GMmhmc3OW<%N%9j)Rnb*p}RW{(oNJZF{>a
z_Mb<!kMqs<@7epezyF@)#s9VM&%L<u>c`zlxBp+*dzz=(wf@JS_tWm&t9&#!vG(-=
z_xA>e>!O$K-Vs>$dcr#fb(^m%-aR^2+1I>_Ste@c<2RKJR({dG2cn+otY%!X_*xdz
zH6!;(UWd7<VZs}(S)R&bc%`v<mP7H(#cSBUSe{y=R<QO=V3@H-`IJcCzaXW)pX(c!
zJDM{1H-BXi3HZXV|Ie&w?p5XMf0ishlf|T)+P7(z<CVZP)15ZepA2443f})dw_?V@
zDxT7l?EB}wVHdIMU#R!9xn|e>{GQ_5=bhJj*X91+x4EX{qxbI{r6->j>~q+_aO!1{
zX0c_2L)H!lg$Rb}mzM@T3kpg;{gA0KVV%2v%jQ3on;$q;6$m6N&Uxzpf8S&o^BE>m
z><{kW?H8)qF+onoC!SB7gJp^gqj~(U%Hj;W^!Z*}`*)j9x$<-2Z1eVgXYVc#di(fE
zd)_^nUvlO1y}r8V)xCIjc2dndyQx{flux}Abb0XX?82YIyJ9jmt`&cFHV@AK{=?I@
zOwQZJA@-B|mYeqK9U2nV^2{#_4Z40@bIkAF;IY<><Lne`zyHw_=gX%nzBldF7L&S?
z1sW<pAMd#H_*c1gQ-3Zz5`QJDdBZz9wsV^~cwfn0nZ~}t+ippUocjZbXZ-J;yD|9h
zo5D6_V)@UXuHW{$-+R`UYq9bD>C)~u)&K9WzVSsR*e%)Vh`F@S`lQQ~&q(%i3f|vS
z^C~pwm;U(_6E&9`m;Cm1`Mxi-SyS`Q`iK4YlXHxh?MS~rtM^w|u2H(c!+EvYW@p25
zCR@5NeSZ_Z*&u$Sui1x^Bj&f?AHV$X*rbay47z{ak~u8(w_~2~<@X=`&Ey}k&og{A
zX;QoS@5OyLzeh~3d9+aQ_$qI^PuW}L<No}Sdp+qN|3pi-v+s@zzp%ZgDz8-ZV^djk
zRIY%S_NUK}b%b{@{`lQHm2IKx#Cn5sN+x^Om~rTK+5RjPTc{YCD-abHptt0?y^TtZ
z&|E9gYN4)z7?yg!*;b;}pC0<wtv~4g_s@mQhJ=kA2Dv`E43`7!?Ng)_B7B&9od4Eb
z%xp;bc`|_~R_ahkqtQMGw&WLzL2f)#esZT6uub-oG%T3spwMjCF<;*5?Yrz5ZNGjl
z^k--~y6g4!kP{1@o;y2R?{vcC!xv3%JlI!xIkj>|bYcF*t?E`){=XIPb?blncW0lv
zRaL+3{O^yt_mtoI?&7}x-n{eGA6@tV`DT0Z;_h3YEA{ssIGulASa#=fkgCgbZ=KTF
zsIoce_RrNz{Bl#T@f4;l-S&Cr62IK1uaiJ*W6hPp(L1$4RxI4DtGKb&zvRojZ#DP2
z^?%)2d%ypM@{yDYf*&i+dEd+BoU-f5oZVlmS;W`fbzc$N|8!5v_1I|#bU$8Gom|qd
z`|&sL{o}=PpVm1R{e5@st>B(RVPDqo`oi<=h|ud<+kQ^k7dn03Li>$Jc0K!cXu`hG
z>HnI4Z&tl#nj5HCyIRlo@SmGPuUCCrF=1cm*Xo)>aRyJ!)^=`tZ?o<rXZ6D))#2A&
zZpZ(Qc`W>G&d0f{vlqRcdECS<aldZ$^H;N0eCtV;nm^&b<h`A{($*<Io^j0m*P@4W
zSD)A0m@ad9!~B|qAI@EUa`anIa{i}7aRz%XZ&AB7ukcOj{|(|i^{aciUPgaCYJ6tC
z?nbq3)nBh}1vzN;`K+2laT>MXU(I@PdpiSz!=2sBbhVb4f4pRTrUC5e%XdMJ-t+$V
zt>gS_;$M8*Y5d}`(6_}~>K5L9ey*Y4`-VUBUnle9yfrb0?4(|Z@2b6X;P}z^%Ny$w
z`=2T$SW2y*%YI$YT34KL_3KkxKR<|Ce7Q*Qf=u|jx$M{1S?G#0mc;BVtNU<EbotXq
z4gHT#ZT+n0Z+*P*=`Gh=TebbVSyL_7#q4f~+x;kK2S-Gow(j$T8}{AuFZ%mCb3uH?
z@#DNTcMjD_y?9>`rN=Z4r2Byt0|Uda53_3TG~4MV+UH&{{`T;A|GzycMhppmc0D<K
ze}nvA+jaho49C`c+x_|RasG4`hMxH8H9w@kE#80p>OH0dKT1y)STG-V{or})%E|}}
z1=&;!k%v1tS}uDmm-L%$HC2qy)xxg%N{k@Sa$nJ;C1R7$`RODcakwec$a5?~h*O#E
zoG3?%L7Un{gQNvM3KI@4E$M6#WKLmf<T>?Hh%;Gp3MY$^fb(<@i6RYQj%SA@cDXbi
zb(ra3z<=z5YLXkz6wYNQ+%ovP56$&YJp1{a{gJA!cd^awPahtV*yZBH->xLXzqG*i
zZI6V8u!3$>&f6%T+n=u8**R<4-W#{J&iHmKy7+mP&D;F#6Mo&Dw*A?;yLT5Iy|!*?
zX7s&T*5%>dV$r{4mgQDvzw`0!7K@(U0TS0fyXH#Sx-S;io}esq-E;1(Q+I_t)0SSF
zIOWR9wRbcpri978@bP+eB`nobW#-hIOV(W~Q&TP77dlgQV#VBqX)d4GyUwk-Ql_R_
zlBK;_#n?!D>s-%HP==fc%8)ZBTv@sH442~ZJoV=bH?7*dC;P-om7Vo#&rI@&%f6VD
zeVs2ud$Y=<l1b8YB3Hikne}CoaPP^_lO{h`RX^|jZ^Ak6MLo^a=f$U-xBFyf7c*Vv
z61((u-A((y{j{^mIsDPN_qEtf<FCIzY}mS-&um?E%I)%$2=}e&@;BSN&F5L%*patS
z`S%Gso07ww&AlhR-`;fpW_Z|qj>U~1cZ90HP2`EY(I(8UZ@>S<yxJ%Jdp7W@-`l+_
zZ=&t*$=g3};8p)ubN2Mt4P|oo+uL(33Re`~U6jA6|IOjUlTPowbK(AE9scsf>TeTk
z->8F4Tyw{6jqRH2KjYpl|Lt+@c>d!=X}>>zU+r@JX8!N^=}r58-n6sHxx2Et_qEv8
zx7M5Z`J-dYHWbEgnVWJ^=Iiw=NAKF}JGmQPW@M~n)%|*|Se)T<;Qb)(C><~}@_nwm
z%vas552RMIN4=W+T<^|7*{`}=*G;Q>zLUFI$G!G+Wt8{c&oQ>AO0I05;~e#BuK1o}
zzD#fKlS?!BS2u2I1F1_m05Wmkn(}$O4Nj;<GVdto6&GB#c;C_K_k!Nrg!AuB*1uMt
zJ<o8*w23-XQWzhs$X_YDWP{pyZ@+od=h*05R>plgUK>}$sy5Xq?0`q3f{@<Q$yKbe
zTB%3Cya`oyF^<!{Hi{YqDa?5Oax;?~*D{wwq9rS5$Y@Uk>9AY*oSS9h;Wa;*993f6
z_H&nOu6!vXR;$u2&l!GU=_Em&{%;$e1@4&0<fziKaKp5VOM}|xOj<1C#>KKJFvhE|
zV_VYlh&hoT<J^OS+P7(W>zrG2;+==rs|#T%okwR*z16p5NuRA~WK!X?$XxfJpyk_?
zymkILw{BC`Jh^b~388Ky?JcsNoU*sNbUyZ+;mUOnN^0Mx<gIdU&4n@*p7X&A-}->e
z`s1hr7EvwDI1e&cv|8g%v#h75Y<@V18w$4OPM6Ncig4DGzTeN;ANiFEGDl`o<ifW<
zLWA13DQQQ{0kKPi+P6I_<tlHFm=jsJLRoXAbF~@B(G}e>%%<-B*Fer*Kk1HuSKs8g
zqD6+4{jd4o?|JgXcAc<|{?Ey~j*Hqx{V~(8nf-jvlZF4SPVn6?`(pdrt@8H5M>b_Y
zw)xxd+7Ni}+p+Yxzh8eJt$g$0>T)l=oGJIK_FMGJersQ>DsFbJR7UGua`)xFX)!l;
zY<U|{D3^O}+hSGmy45+>A#;w;*!ec&<WJvE+nkR|y8PI-SoL|(o;7#GCPjzr54^X`
z(yQqIpF%n7n!knm+J9OntBRZHZJfBKvd{Tw<(v8YtF}BjB;^Wni%Qb%i<7wZ*JN0S
z{1M;(A=lmeRnU{%_O9<A+MmlO{q22HSKjyVwuji+7dDS=^)pMPvKd~jSeUW+D$APZ
z9(Qv}q_Q36AI>ms6kB{b!q}r+V(qfJ)fY3@NG4SOlAe2vo8y&1RIS14i<vg;f$bY_
zvaE4S&$V@sJtii+L27r8DMRU%z=)?|!W+VZccjlfCS~BTso`|umRW3?I@8m2o*6`~
z&J0_8xkAuY*6nrVm8_C^D_K_@t~d)a=4)kxm5<0ZOYNO(Ajg!JpB7xYN$q{%+&#xj
zKgnG`9y5K<Yuk0pz3=hHt*~3RdtdC$=zyXb5i9Jbr7M5^sC|3t-rc=%cmF1yOiW7r
zH1l!zHtpSZI+i{s%4DtUQh(PhS@6Wb@N;kS@%1_3Uqq+KJhNMBSN7-Btx((lKLZ!u
zSNfVhKmOLbH$Tt!n_SWWalAgC`=4ih^4FDJu{URzHa+<lT0bLV$IB}qtLC<<ws*Fk
zpWPRKQ|`9^CYw8~*8Q^kH~o8guW8cZH%niEY>5K7FX5Nd*Nu;PU!J<xG--c}PKf+v
z^W5-nVlViFxvw6-x4C-fFOWm4%X`m!G*9n~zqzjD-|gM}6E`e)@<Dmu@u}wD+Ed>g
zujyYMd3)ZBjO+8x@o=6rc)w9y?bg<GV`nF$Gf~w^i)!av8mp*0UUO~UjEws0b0mc}
z9bU6lU9Bu*?=Q*S*XBqHO-a0VOZflcb*AZU9mZ#(s+|_aW}lOJ{^QzvkP+-}Iy=kW
z&O9?=0?+5T>LidH59djX#aq?YZkawiGhspx*IHY{jj`G1csOsSshPHl&H<Shesk-y
zGm?suX=`Jrdb~Q~visVfEDw)k+l%gapZwThYk2Wrx>sMlX?k1Bn`Ile@t-$71FlTm
zqo&I|*Y%vg#=9?gI!}gF@!@B=zXh+Waz1ch{IP+d$YKJ6jZ`oDvH%lCOBsvSMVto~
zU#w}r{WrtJ-hg#eWC7QQ#S7~axKcJh6nW5o>CXWXi*xtQ`Mxf^_=ll>$+PO`GMDT?
zvW$!sCbQ&Id2JjV_-0?p;ZtGYSKTV#dyJXoLB-eDVwt72?%OsiFjkmMS-HNl^5@&8
zL;N?4ug>3deN*bsw@ruTH>9t!zj!@2vhMfV#Y_JEc9-9fo@cXe{q0SEp6%zhPdHx^
z!@if9dG7-09d{N;f8pc#)|B_4s4?$?wZ#SQT?Y?XoM-f(-`E&;!8qtUX!%6#0_hzw
z`}aJ1+V=jBOZ@iKb&D5#VBYp)tN)kM=xMjOxa=LCt+2m%-FAAx?gby1Z{>Vd|8;Bn
z^!s`mSA6EK{O1z?x66Eey-EJZXVF3XQ-8kQ-d}TI-pYRw@!L~>zWpm-e_-Cur^dB+
zr#;>NFZKsx^|S7!zjo;w=CZcRZ%|!dyJ-FGrd^$r*FCHHBNA7+_<K&n%Kba#^p9%i
zf0?K1_s#tJ@0lM@N$*YXnEdzbSG&}Tr@jBO9;MW8K6<<%{9eZH+w%+UpCoJ%QvW?$
zy5R7KTkGl@r9YgSU7OxH`R`e=I}PFWSF5L4R6ajlb*CZx{tMgJCr=+(z58PIG>uZz
z>-@c6pS-vj%=`E3*E%&L_juvB%Ejxu&Rh&Nw)rpc+VRz-{?AIL-}sm6{oF7AVC^O>
zYv(|#(Ll@OEX^&ALDC>Lc$X@OVPm79KbSV;K{u`jLpJ1rR``*<A@A<RqE!YWtO14Z
z{{J`nesHFryY4ZT6MT`cS6b~(Zjn)F51U>Zn{PNR)$;9Dsrwao0~T*9TVSkyz;fT+
z$KRWeF@~JbI&u8rla~uVeUrF6Bhx-Omw!QuO^$Wa{`qrO-gxYNMW^tjmF4s`|M{fc
z7p6vDE8Tl9kK_CGwEC(|)z75n-Fwzva6kFm?Y~=OE6$b(T5k{vpZn{l-MI;COjUf=
z)jQ_N8{gYjd8vi}{n`&@C$<_($7~Agl8xY;zGm-^l-7xFZl=n<*b!}XCD5;YJ=-n8
z%|CZ!TiyTmLt~p(68o_WF`JwOSUDa0bWeQP|G`K4eB7?>UsG2ZSKs?~W9jq)KiiB~
z6Eyd(ygV`U?9XpHCkp*F1)PG}o6f{dQ1q^poOzr-^8bPwsn^a%XY1NpG??dTY&-w(
zTxm?Fu?kDz1OXRErwPAxcd*7JJvO#Gbbor!nb(t<OI%D!85kIXp6H~frlc@{K*puL
zd$pC7KhI)hU}#{<JRK=H^Q19Ig5e5xKI7>VXQsg=BqbRd-0te9-7@ZPw|u-(?#Wj@
zj@q4%#E;$D`bXl0w@d9(OOVY^=It!vIBzg*%g@adC7<20YJ4Pf#UcAdBHJww-NG%g
zr|wA!HEDQo6zxB%liq*sz{Ok7SDC83d3?om38!zz)9JSZWUmN0?~`<IpSd?I;Z4m7
ziB-$^K<0vc^f9mch@OPSeSygjS373C3ea4>SJGNuYnGMoZId$Rf~G#!%7>llyqu0A
zDl9kO%1@aY{JnqgE{SXptw?9Ng>|#zDi)V~*{1*f_sQk$ca87Ln)7>aJO59A)w)G4
zXTJu@1WB-3KkB%C^-7}x7ub=D6fQsgBl=Nb=H4&6u9{~CyT5NK^WXY7S>a)p2soHi
zzBTdW2cBq2-&Vi$(N>ev1(yVU=bpN5_ac15+}k(X7#J9Ql-EwxQ8un*V_;z5TA~XI
z_=cYrLIzyLq6`cT6?bp%HZn3=FUi2bpfO?FoT(FM+AzC(s61GoWuNiWB5j}P?{H2B
z5mvB|0w)MOsq4;XEI<E7^?9wW+_RqLRTE|==bhxa$yRcC*~D-8I@8yHWB&h+P4lpv
z*KYyJnxG=X!We#uodsyqI!KK8VuVghaG~4c$=X1Eb#A$X@JaFG`)9Ybtm^1kps`{_
zN7BJ>!f*B_I=<OE_o={Fzm46juC9AGSC_fi2xxajFfh7`9BJ~HsI*sgA(xECv+wRg
z9tx?#OfBc_Z@$@6X?*j{xpR9e^Tik#d``$R7};!kTDK}PK6Uw|Q;N*1g70)Qhiwnp
z5+#|j?Pv78%gmQ=O%j+pC)v^M@vTGU?8nX)f70dJa=&nO-&Wx^!=F`k529*YUrm`9
z=C@|H7>ni2Z{CY1d2n88m*v>C_4qPY4ZGE^1GY=O(A^s?k(0i_qO~ZY#OQsEdeNe1
z&mR}thDn`VH22c$q>f!SS6A^~EOyUmysi{`G-I;3arn2ypn3^jht==g{;g*U^3cw=
ztbVeg#{P9srFM8|S+sKUV!p*%^6&UotysNomtn@~1(Vf&E^*npJ*WGk@Nsc_zCM4I
zV!<nMYW5Wq<Jw<+owLwUV3*r5ww)(6H8s~SvMjx@l%b<D`j+fouW#?yzj~~(SB=l)
z<pIBf{VGfUwOFS+%GND9_37y^^GF%LxFWAA<?Y&f$$jB+-+pPPr>(l!QedBa(kS}g
z%9AT)8KT&K_AkGtxPOu2wRB&#p9vz&x!SMGyIQ_1Tq^r|!Cj-=^(s$!`Tjmie{7}w
zQcOzv!-dD63NEgETRW-k#Oj$pY|A(8seH|P*CAh5a`S~%eG*fQ-Z`Fmu<xvi$(&}_
zbdR|rmwqmd+4|Zh+w8cJ<E$yO>fCzQt$k{;c+#Xv@4wfd2wkPJtGfE_iYeO5&;9iX
zW6hp=;BL~q#aeFHl;$eBbI#qi@4S_%%c-|N_Ad{teEL!{I-0>jeEIF!?1oV~Uv<9}
z*%Td{Y8>1bq-v~LzHm=uZgbV^z^XlUsmFf%>7?n2s_#}vZqZrQSr#m_muXS)Iljra
zu17!9d%e<o!Sw8VEAOq2OP7x?c=h-Dq1~HJ868?Pb-Y)mXl>Ihp3ssax_M^xdzb3-
z7X@bSvb-X}kjh&;UyI?z-TpVKaaUWu>_1_vE_wLcJkFG-Hih%7SMmGqs%T%-Ao_S$
zCR4`aIqys(SsAvNRCel4y8FdL)Jx2_zvG+Gq_xHS@7=ave%<MQlk{CzmDSdp=9(~W
z**m$qN+5CaTb+;VvR_K-KCB8$l=}JZ(65VZOXP38I{iKFW4HEMp}V}<yPm9Dar<+8
z$GO08)jzMlJl34H$9Zq^ch@e7dnfjrO=By$BRN|%Uo*(1f%o5~)h7KvXZP4o*mvot
zTfn7$zD2>A;@Yo_76=}*D&M-~RHe<Ohq5o<cU7snok;k5d(Pom3>Tfh<Z5>m&I%FC
zVx1YL;bMGV$M2h`_Qmq|4^BLfO%2uHd$n)Ne@~Gg<&xhwzwO+!xmoqgUbS@}pPVVb
zVzlzG_*SE!SuKiIy1N3t)E1n*EK<Ci{pDuSQfHyZc5GXwX(T===VItN_e^$b+5+ps
zsWA)XmM`^;NSkyygt>ddeDx9*|A5~)JC1kl-{WzOaaqK#pT}={?D_Uf{ife7hvnWm
z&%+j}s@<D$?mffSAh(HHq1J`_QX0kXFPj(?B7EBWe3JKPyQ=wRGm>wvySYJ^|8w%W
z^Qy^4YMq_#&$K%IbM7|3+5d&%72mbGjpfnZ*>m2@ZHuXXa7Chs^}C<-5+%E-GlYJc
zTiPlWzmD?RY+v@;*Ddo!ys_$in@tN%zw>1;KO(p5@ykElZyC36S6%d*bZ5nnQ!AX-
z-(1_ss_!9o@72fb!p9OxNk5LS<dR|1XnV#jFY;3-SJ89HdiK`~7#Sqeazt-m?O(v$
zFiZG!=2ZW>N!5QUHi<6CIX6?wXyNzSD<r*ACowG8_ayLQbL%akRFiqj{vLd*DVe{$
zL!4Xt%fH$Qd<nn)d=}`s`6<?DOONA8cUMpS&X8@VTkSU5eV*kh{OdF0-13xp`U`hA
zzPqFS(Dh9CblE$ncv9E6cdyu~bnepRwJBGE&kIP;_`JkBGv(_FE4~Ot-=zmXgdVSb
zv^I6E*Z-Wr+D(@uBfnnJ&)q+HrqUnH4d<*hLgl)7B>C>H&t(nroocl;E8@k|N$(8g
zns|9!_We-ZKGn!v+c6|x-EZ~H{@jWP@!qeFMxCrtkDK;gjkofg@hkRM==N*oR#tb8
zKfmbwes*nzy2+;0c`nz?8IwIYd_`A$uem73#js#)lv<A9vQrtGzrHq|!`S4&9zS39
zCc}nrPt|XlT(S2|`L%)FWdGjhm8WxCr!6#JFa9am<hN92Mpl+Uo;;(&+L#y9q$ckS
zJr`wKo|yYK%P=L$kN@Q+-ZS40FFCSn|Bn;j6N4n*i>_pMSp0kw_k1s>yXSVkxw%FC
zaJdA7(%Q`qa>u{y%rt(ocKXS=Klt_MpQt|gdZK0AlP4X^udnX^er#83%5>NJ5!dJ2
z+hog!Ut=;k*Dd%lG-&m+s3*s4eJj=D_X<7Pcjc?ko|zZI4{7;)ne|&{@~cAC<Az?3
zor3ncnk)Y<`?=9@C(l(z?|hk4>>I8u_R0wHOJ@k)JmvkeRnk{v4*IQm{kiG5(%H+;
zd>$U3dT`@~Ngqz{7VqD5_vybc2X)2gT|Bbl!H=MK$=kEf6)+r_;}cl+f7u!P*{k@j
z@^3O*wUhnYr>mEwHmj#Lepsow@v!SGvo?zzhUv``Rf`+;Z!xpqJo}N>ZGkm~<u{9;
zT-rPF(WT?H54XxDWqsP8%W$fBmTm6yMbpnM&YtsnTBeR);(C$mH(u~wW!u~;$+daD
zIZL*XSpLoJPb=GIJQZ$uHbW|L`R&SM`wm2`YrHZg@^I0{PgQSYj`)3JE?jN<%P-7n
zare@bTw98+nHOKSX4-JpWU7L*Z1HBDp9lX*{!zbo_3xpV)30}&y813e<EB^6&nt7*
zWF%i+vp~J!qx~QGeILGW7S=y*ZWY)Tw}UBp+lIaWyyX)UKQG>B%$Tz#)m<R{zFks9
zzLVukD|4;jI9Dcv9aCmRxU8A}K<hU*gM<0LbwAf>Ps*43;j7@g`)|5q;H$a&@@DH@
zxNF$*goBUatJz7`C2r3Xw|a9<yx`uX(BSJTdh@o1TzbPZ&!*KT*BqUas^cy&Z0?c1
z-ko9~xUSkQZkwTE*Y8l-{9igZ6KpJR&R~cN`NEJe^X{@&HeV0RI2ullsbw&T+nJ&C
zv+9NDq;B5KnrX{E**?3j>Xj+5@6N<O?_&HJ`p$DQEV$Tk)zL}3Dk9+RnxKn2kJ{;d
zGh7=p=g#rJF=6`_?0zEl%$SqGM~HiRcHg~X^{w^{y)Wj!nZfi>@!yi;k3u_Q*Poc3
z`qB8#;=*QQk4ZOP<x4YU{Hr+|EZ#ZkDG!5N-SM>br*1Aj6*immfNE2sRdT}ySFPw}
z3jB;FbBn|^@BT{4o%ZL;>KA8ib7q=3PI|Icm%%QFZSe(}jNn-tOYh$d5zNlt;$&#Y
z#GtZ^HH_tl>^+-J%k8G#Jh72INnx7x`oD7pKgI_hTmSfuqw~$`?X&M6P4C$IWkT!2
zp9iNNU8k#*SGDK5*7>`^r=`}~7lyt+kpJmg=dH8XE*hJqZM&pv%JkxsQqHQY0ssA-
zABb$cyG^}ZVE=XhNw1HbD|XnQ!H~ONtet}^i2WU3O+`T;*9ynVd$ZZDeB7sWtWMCf
zI3vV_Z-ZF?qrhgbHJaRf_q#id7#MCX{^OpOWPEl9`xY%uOB0zF8;|VNf4?i^{LYho
zC6e~F-^JJOo$f3mRGv6>fzLx}hK`vl-|Z>9^2g#G)BkN1dGU9v=Kl~(VV`EV!0=VV
z%TJdB-}kGy=3j1^w>SRc;i-34Za(REytd2mion9^-&a+W+#besNS(3{TKndtb<xga
ze?vS4UOr!IUU90S@XbYr1yUuoj}w?$uAXgK{d3*rCA(w7oDc1mWUwfc)|2+(o9tL<
zJ9*JD{yht(A7}a{-Nnu2Q*m#Fy$pW@r~T3w%Ewmz*=}H1pRm(cfZ>lh55oaY&Y73i
za&O-E%A!;C=I^DBnaAE7vj1bla6_Wz!<+s6KTca-@lY(c&;GvW!rRv}#~7A9YUlpy
z*z@DumWPFVj#x{~OXjfIDC+g*^uCR?QuP;X&2oLEO}G|%Ju!CVezvoq^n@Jm0ZpG9
zHR;=)e29*JxA4?-P2T9OS@TXBl&{a{vsuc}@NADnHN%&Uk#eT0W*_IcUAN6&a<c2?
z+%I~UmP&OL9u+fLar2H=jY&JhFR_-q)em_c)}$7xd+HWTr(e8qWa`%k@8Y>`c`SIR
z!+&~>$NBH^Cu6r??6BWk*3}xIGbv24{H)LSz7Y1xR_B-d9u=AV_TASW9#gw>=E>%+
zz^|gOc0JZ?KWr%Iv#oo%&@u0r$n+(<va}?UShWx4zFnaHJ?eYfx4Z|NP8v_I%(1cm
z(x|}jOYB?W_bW2zuO8!#6?VSgF^}QlYq#u~HmetMt9So8y1ten>E_nJYteU=ye#LO
z@{*ryJl*QLd%pgH;8Gv&xoHmy>O|AiQqra}ulkj%Q#QZsAEVAT`G`vUkNs5|@q#n%
z{`&EL%9<x1)7}}+ycoaFrCwcQ3fI)0#-iC7DuJ~JOZKcR{OKw)b={TsuX1m_5Z_$7
zb(8UBzB+~lzf%wWKFl}u{CcgjdL>uE3!h8RUq0Kj`CG{G=B;x!E(lt7An~SQU*STA
z2Eq2pfg*dH_lIr|3pF#i{#e0cJMaBp%ugP>O7s0HvEG-sAoqZb)E2QHB2|9k;+xkA
zWF)VDzMg%-EjRwXwUf@v@0?k`xaxwbk*hF6#=)HM_mi#&dzsu@-&*za_>tYM{Li&@
zzWJ)OIET%s{mt4anff&Hr+SG&Li~sC7UyE?ioWO9xMv?OE#uiN?CN#n1Vh6@-UIcg
z9;jLcxxQw5n$nWFTzTjD9G<J3Tda=DFgn!Uh=_Y3x^d4jHs;;(`q$R1T{7|F%~I`U
zZ>q~4>^u<sHBRhn)`^<<XMyuFT^@VQ*|7YwiC?c|N<`GG6%8|wrB>XsDP~Kwxb^PL
z`>(Mgf5R3$pYHm{@3O+TsNQGEb6#rKG&%mM+_+C$)!6MN?=}A)EbaH!?{jNT%2p9R
zV;sfcuwv^qrUt+6s~6P#H%5DCFl42)-4^OpT*&qK>UL$O*V0?|%-Xi?vFMz5(WS1U
z|DTGqTWy^^P5M2@4l5Int0|2JKhG+ES3POV^V+4aV9D&~K_Tu&fjh2oaydKCW?XT1
zRfmV<i*(*Br?orkmo{vgw{yim@0AZdc3*g&&sV>7?xRXqgG}Y+Z)WQ4&0#9NmaQrq
zao|sM^ZNO#Hh1%-%14_d@8e}{FKUTNl3XSh67aolm4@{73tN?Zmz(S~&zUrRvHWMt
zmyC8(A09ci{(o|}k=JU??B7fcd6B%beT#mk$9P2qRv!8H`R3fjzkB(1Ynt%Yo;tC+
z(cp{dr~AT(@7(_xW0jEa*7IBBlK-wfMGKwttiu>|%Tt~f2Bq#vx%zO6?(r?z*Jn9~
zFSNHlV0$t1&Ka}l_u9+nPi8su&a3FU_><6M|MWfmgM$7RpU8gyb<e5LgiABK@5ilP
zv+2t&W{2z}I|`-F|J%9vM=ty8xz}!{sA}uEDVDe-K06tf5`8q~v1iTu@LPNQ6EEC4
zSz^w-BDkjeuWXfO@pZk%om<5;jyj~wW;}bBXQFr2^aTd@zuxhjc=Ftm10Pw+SW8(~
zl%32M*PL(JWFqbF;WhVxsKIo3Tj5PzzcY_2W<Cto4rF%ta!YJpZ59K=8ykiaUd}A7
zch45>R8mx$vFZQqpy>T?UdQ-r7Jn-%Ww`JlM)iAwtPmT+%T9Io&sLjy8@sn{zNWdj
zcv(gpo7-K>9VPevuyVJBus%BbTkV>`g<n~>ylolOq8IN}_t~@K;Vs>!{7D<rgZ2LN
zHW>7;diBYt&UnEazbTu)@%9}(xUO$v?Cu#CEca_1yL;LzIwSPok3dIhJrNU@uZ&?~
zuQ)k5KXz_wUmxf3kCkD{m&83Qa#yoAKVn=FJMY7V%ipIz`IND}G$-QgM`x*y%aLVY
zUgftWs>_PDP3x=cEq%9Jb)oz6{y%R|>^;9!@Q#6sF1zfX%`@k}`_S<_GvT{kgjdIl
zN7GAAGI^al$FEYuP|~&PkB{b^<@-{j?&*9vJ@=focmMCn=28o8ZG7K5`GV}lNA0I0
zgH;<j#P(Lt6qsf@*C$%cx2S~eSK5d5!OJ_WYxaAcy>E9!U)*{|R_LK_9UHCc*s0A2
z9$reVs$Ex@lp`T_k2OK&U&Hq~33Gh5%r%&FdrQZ{`QN&}irN1b|33M0ic)^IfL*{U
zj=$??Sr@Dj-Lh{x7sHF=K|gONpR0H@`^a{~Eu7p!*N^dh-qC-_eN%X-<qp-arjBY4
z?`>r&@vlGoxc8L0O10EyJ-&}`CtK?8^<Q<P?o98`?Vl<{P91zu;klA|`_6i;Evs)v
zWmw(1m;Y0(;%hDI|JtYfd=~a5yG_vLWw;izVxnuWxy$8Q7Oxp5Prjex7P~cYvdAPq
z{i4V#+qdmsV%uJPE<9mnc&*Xph0=@+TASn4{8<Y!+8ZoVzpX4+O*KqRZ`{Y}xP9G@
zA|0O#DKF*K?R<~Mep!~UwlnKO-&R43<U+e*YlanTW^a7+I+oeu{j=pO-d)T*%C|iz
zdB*t%Tkf8&+<yAx(f50jR^79ZDHNLR^07`u?VS2C84K+_q0ZLN%4!ch+*^LE`n>yw
z-pB1XZ;S7_Y?vy?(y(}`&bi3tv3##p-Z8CyvqxliA<wcs;@e*)R@6WESMsp9_HLZ;
z+b-+o8}Wr=M>fUGi(CC-@%}nj9cG5B!9J>=c1)kF+xf`-mwtM;uOwH?Rhj;PL*m;x
zyJoWZTwzU^eolId>+R31VrigFm<(I=1omI|ea*G;UE=xlTX*!=Jq@~`@7^EryYatn
z*Y=?FIY;9kZ}SgNn{QFX!!v!t3r(|-IyURli(R*r*Rs3k{Q38={^i8ey``JiuDSK@
z<TH2W{c|?F<M9!aH+Hc67n&2r9{6k%-<pqSu3qI_yxE$m;n&-QI_-O!b=S|T9e%sS
z_t7Lh*2%Ym=WTeg%6XwQ|IGbg-(}WU9~809`@Hl`T9NI;TTi7=$NDdAw2HZ7T{T;L
zBKN-+!7}k57Tc&E`Fwf%4u7Y{Z6ebY8FDtqy<lfB=-9Ww$Izh2X|2FdWs|kG9`8c_
zxNop~5z;ViPfA+vbmKd5TnveCJ~6y2Uwd0o#d-SF8P_Toz2Rc>{Kuzs*wb`Y=4xhz
zHF~!8=jJ+;?VR*KgN^ycsa2_$X8!79c$@ajIQJj()DP1)7)A;w=G@BMeU{ZQ&Png|
zS-UqvLW@ky-(0J2v8(-e`+pZ#SL`*b<43K0c8TqH?rzU;Ax0!XW{ZdF{%dZBrmR<X
zIHD^o@o(1iPg04(vFlhboVVMw`&-$ppPZ}LJ8agCt^dQ&oAoQrG~f4l#wO2bXXn44
z9zA+=Y2KXg>NQ%48>UYDt23qf=DPT^x)q1@-X7$WjjYYmtvzp5{^-W3e@zn~r|VA2
zu=i^*eaL+*z5nN$Q<~3f=dV~%pr!3C|DT27)~r@pxw?}c{^zyW8FuZv!0fd2>v2~9
zRr>^$z3*MQcI)GT8$q$WjjbwYGv~~&ie~<H<+y)FgbC9;>*pN3M_w}D`_((?il=ny
zgbejIwXN+rQGQEmo2Se;DdU$_s-N=i-_kd)qfUyum_9PnJnLqimCtzTOTOo+<-zjp
zIXh2W(5?Nf7FT`$jq|_4|DLBWpKiX=X1H8j%<g(>%5s}(<@?osQz!3y&#~bA!Lz5$
zs+LWeK3CoJ<>rrSOMf}ov<E*bnSNN%dSymaMmoor_^c<3euTcan0#fO*{r{}u0IZ$
zJim&&;G6tQBhw4~yRWwV-T8{m&^)+o^T$KeefK|~CfqGPUv;lU1kYNo|MQmo*rj2A
z#Nd99Y0=qEb&CzJtT{qC7vArVSKNN_>67bci`FHX-`qX3$oX(soqB%Khnm;#{lC_=
z?5|Wm)PF9=!#^zN&2^!PmQVFIPrPYbwZ|s^;o7z&L#ys<^&Qim@0V|Res5NL?!3Ay
zhNh-J_pZ!|_v<?US9J06<Bdl=6xr39S;F5nZ<qc&C3kYJ|JD}=!e($z*|9PD!)o`d
z(TjD=_i6XmMm;u7_5CWeOQ37^x*2<3#^kmvn7U2$hHKE}73)tMYfb&};`hYz`&u`@
ztw{;ozi*R6;;B!!=5Nl4KeO9se_J|7#m*1|`_`vNU60SoyPemyW&Q>6pXaWrIs7hg
z-8Xk;M!sdmCH?&O59TxY{rM9-rKj`j6}x>?h3|?+<TyKR5Zzm7d$IWW?)=pfM^5o<
zyjZYn^_$u2exLjNt6=%YsyT8}o@P}WItxqE_paDFLvwBLfBPfVJwc#JO|<huK*Rr_
zc?mNEGc%Ahh;0ZvM8sxr&3RfHK#vQ7%z1*QRLGw5oO^rP5(OUDt>J(F>tDCIaeCv<
z7Uu?m4{w&w3}b8+IMHgg|Ni@r(?8p+uRk)qt>~)umgk3dgkI*1`~N6cKGEuAoCRCS
zk(oM$T|Uq5Sw2uro>=svWruRxw?piijlB2YhtFtF+j>gk)I#}XI%ofJFKHK?AADWz
zmKopXrvi*KcX)ecoX~vRaWgbrM14B%y~5aK(mIE1ml(vTy;BdDS-dr>_GtMXw#U7T
zu1tzK`l&+d)}8dLr+I^2_@-B{+*@e+JDt^N&-ntbnNQ0zkB45Lq{R1|TlB<#exAB^
z+a-lNkL?$j|2I^3!v20<W1e4se2lcW{d~IPt<lL-v$*G4x>>QUe--wz_{RFm5^avE
zuz5SC9#a-OvEzAB($7EM@jpN6_a4)mnNnJ~|HuD4xq^M_lT4mW{;b1tQ#S7YhKVop
z4ll8M`%hV~Mda?n<gL^98@z7c^IvbxsbhN|x>%Nr25GNOy7@)-jm5V4Zpmq$$+=5g
z4=^lzFFG~UF!e&k?d;y}%LN%9<&V3Z4czU-H+@Z`ud2qmOVXM7cMDgTw@ICk+f=ai
z<+Vp%EGm23ds-jv{8zY7_u9s%-kcV5YIh}n>pQ9vCv$@TWukj}vUQ=g$?hAa<-OPY
zH%3lSXHQSQI$>(*qWllG+S-z(;ua^xHXLz~Vs#Hm-utq~W8s=P|C3FeU&n?#6Fqw`
zltcfGtD$A!wkyBurzpRk8Topb?qBWR7d8{3lajMtWCUcL+z-~Ac<y81?abEuG9ux4
zQm15Ebdq;?O=Y;$<Aa*+`ggK7n)sf4oYHdiqj2~evpv6WZiw48Ytas|&1pfKyX-bf
zUfx+ar|f!p(*E1}S_cH3KR(y`zAXP`GXwLl2|_1|B)-S4UA%8%$%{Gl?@oF?=UdpP
zYP8wy#QDm3tNZ=FYOgW+J>hV9dTGw>RdG9{U8PRlJ`}e7;EmU9J(J)0t`a*DInjz~
zYn{~d#MLV8wZ|Xc3_WCf(z@9HD(91^T}SQOC-bD9@>w<Q<gMH*>%;xm@vOXId2X)-
zOM2ClWqyqJM4tZq{a5YJgrjC#XPCc@Tr_cs^|95KDs$K(H~m$Z%KHA=J2n*;->Lr?
z-n(}>u|%u?IWN#)d~HI)fqPNEJvXr*4P8A)HZXePqmRcr78y^!&}!0Q<jGWZ(s|>b
z9S)Yk8&@&vKAYsWu;J4B37nlqo;-f)0XO_aoVOgUx{~pm=lg_%pN}$xzf(VXwD=DD
z;bo6gdihTXZdEop*7AMhlpz0ob1E2m;&$KLs<5x+*2l=zij#l4&7IY{W{t&_$@$0X
zto+`oNS|+7A$7R0v{$L&-?sKM9Y+i{nRMhX(qCZBB69B5$)}mlS(P{Qq$YJ=z5Xas
zk58=kkl&`G<@0y{)Uz==_+V*liLeL%UZ-UNGOyFr+Lmh^TYGBjW<zGfO!m;(WxsSH
z=Nn9a)XGskO(El0PC~;$tM976m7OMiiP>ZqpWM7BebE8W{pD9Gj`7UgD0Y@xQCGye
z_QfI7i0OC#^J=|)-6Q$YP59jN<u&X4s#gVmH=H116UmWpBDnl;$hjM)dmVK|4c*>d
zUc_Ip#pf7P<(1R@3%uQyU!V2N#OkKGu<WZVKMw4eu=`5K0?}6cW2y~2QU`=5^+={~
zmwEMfVd^`%9kDzNQ|HZ$Oj+g-7ohW3`80n~>4e_p8r~;Ww>+PFWs7`u&A;+r;R;5Z
z@+AX(_vYBt>YDJ0Xa8kp7HE3gzI6YL6(>t4`>Jft*>b&gv4u?OXVu1uw%!UQlOGf@
zbk{a533k+tn|$tNc#8Lg3&yck>`JlcwZ2U|mV9l})SQM1Q=?r^Z~ko<tZ<XjyFvZI
zD(jGijpeC*4##92cApapnR#6F8sp{-a@!?38?Am#{J|*5Uz#%0#_681SsQoC@w2v(
zOfKDz4&Kj~mMA;;bZcDlCYgkC<vnE{BHt$bV4s?sdgy!Y+vWFp?tBv#R@d7n=ILCv
zu}O`Y`|*vw>E(ynRxrEVfBeP$MAnHr=~?FIMb5`3u3y6^l<T}aeA1!(>Lc8Nr5kFB
zd>>i9oA;%)wzuF^^?sSHD=#Pf<BO1rY&~}7ulS^Ymb+9M1=RL$n$x<L!y;|I?(q)e
zoO_3#XM_dR<|{urTO;yv$xdmG%0rHe6t-*<vtOjA9Q|YW8}Y=R*SjukU9rF_Y)3`(
zyOml|mkyjPk?3E#%<otp=S0!)pa~Nu|C|?Yx&IwwxmD<ul?pa_5<1f&74#b~YoA#D
zUa>}ZscP-)H~VcD1Trl7_4>*&{*Z0Y{dM2$JiB0?j**MPPG%KL8y+71+!G69>@_ZJ
z;;>9xUpr@Z{rS%=n{1N~ObD@G@8!X#{(JFi$+hh<hI(^!+%G*fyLjtMj;E8t(>+@k
z{omj(&H0k|(U*DW<QrY4t&Ev2G+$)ylbt0?(>cF2TW&B|c<|{)lOVoM;YrC6HzZF@
zU&iz1|H+=6+~((agOALZ_F&b!e{4@0xF1fu^H4PHuytPg*NfXlj$Xf%y?80#)iqjT
zHcOoB0@7Y&_%Ht*e1L;#okNvu%^K?@>vIn#Uo9>4wD5DdG?|HYl7fW$c9GTEX(FPB
zkA7I3{$$#V6I*-t^LzeLI&t9p@2Q`E_wA4NiaanW{P8E=J<9fVHU>wGSFc&pRQ4$P
z$mfHf+ZNp@&wPH?|F{*$OQ+KfIoDeZ58Bo~RppVex;FFAiI|)uyXZUop|_pxC=1;;
zIF$SO^{eG3LK6y^ZoYfXmTPeIwgBtu42c)_?4SKxVyW1^_Pc(c49Ao>nTg9f?sneS
zSm7G+B}n0<&n|tYgPWbYnm)3G^mt?*vJL-PQavHFWJ{mTQr78jmv3eJo^|CI|6PUe
z!OoL@o-s|aaprh(=kV-r5?}5-7V%&*JZJvw;F=jz_C~*&WbNRnCTQ>VPH6g?C1*Nz
z>~s`b*SGxO;-;>m8=ta7Jen?rPpu5-VSIZnWJAqEM=ljdNvVaG&e`5s-J`KfP1MzU
z?x#Zs7?=$8JdPHzXt}J5m^G(x(w-x>Dj$!EWXiNST`fN874<S{qs2d|ST(QY4g1c<
zvU0Cn`z7Ip%twdgwaLH!a9eQcUl+P7Q@GP%!glR@$81#`HQQ<%`<tEDt-s2CW`2-#
z)c&Q$YQ_Go(={fruxybLW92+^SYuMRyYIi)>3<p*Xsg`L;Zn&|S*|)s<nr7ub8V3|
zQSpr$DMqjL7dlLG`?ad0Pa?WMYSr%fO9R`tFx@iNyHz~#u8{t%)t~(8=HGoBJ)v{O
zT79<U^UrQfOj&CA<XC|7q`Zd6{Z|;7L_99J?6DDkGjpBERf|=9${Y(ECh=`aVc<*p
z^>Ep)@MR7{s+ZkuPDE*^9NQ$stGj%;)aFx13LUkzS04Cu;#is3EYm!V2`sFfZp9~}
zl1|#HG)81cJbxiQ%|Piyqtqma3Xi0mC5xN49Q_)vQF-^hx6aH*9wrVO`P}(l9`NRV
zFlp+P$kPFlt+zVoi)>R^6TWfHf;N@Zve15ihldAKeP)X9`W~+KHfKXM3*%g?t(S#0
zW?s*Y*(B8QcB!G~^ph(pA`Z^4-~ZWJc+U5X6Y6P}+7HkF-t$UZST_HLGgrhhb;D^>
zComnnxz<^IS^b-*$G3wT&!}x{aB~&Zo;ETwF#$<~*p{GMCO{10+t%(yiIq4{_&221
z3ICR$D=t9S&y+%M3Mc6-zN;HMnHWV}FTPL6k~K?Ioqc24!lO4D7OvF2alkC0$W?;<
z94C)U;*Jl`-|E%3Uq2%g_xauDX8nDCcgz2N{H{u_DfKP;4XJ~Ro^JUjoO7lq`ZuT9
zF_JESpz<9Ld%h^^|0V7E3Cdj%_iN(xI`j)Len0>FW5&$K$@gmOJ{;X%|2?_>4||Ap
z^FmO1LQ8I-2n3}pV{`bjGw=;6ATi=o8(prGu!LP(0`AFy^91=lxzl~J;i7HV*PY&3
zdi(7SPZ^m-8eCouJ`zS9E^@8kAL>r1U_8dtbf`g5sH0)A2B&9_e&+7m%YWZ_wMkN?
zDeiy#r*(E4?@GV?pSHCsesxyq{D0@8vfFq3+-vwZ??6Q+7q{X?m9mwF&rCYxx5Xw+
z|Hh*GS4=nY5u0Ye(B>I8pNNZ{`X5)jYnSla9X~$%UVh;8OHL=1<KdwV<zl51ce%#T
z&3)W@+IZH|mmlQVHc!~|dEO!YGiQ?aSgh4u#U(Z6O6sfIe^L^6?Ea=~yg#bq@-ESJ
zIR~8lYkpsNQ@{GHdH=)b3)d8u$G(m_bD!g&t?%r8nF)>GyW;n}UEF=zU~^tEpYN}8
z@3;3~Sg=9-xa$4Rjm>*H5|5uLIw*Zs=UwUR2U|U=79SM8mp$$IrB-PbUFY52fB)T`
ze8g93qjlA+oSz3zOC0Vl@lZUXI?<VHqG0RI&p%i+S}Np1?*Gqz^51b&(ysFfN1t4Z
zJ;i@F^$(YH%l4qjbuD7k3L+#L{%+dF!h2@T?&^=PKE6`>^Jn^c*#PmF+jq~d*Nd~e
z@nFyGZLFt{MQi;kU$IJS!<jv)h6kU2y7#7k#}(U@J$JX8oVXP`??Uc#cV-if6Gx|&
zOnfV)bN5{2t*e?QEBNCaPhWifZdUx=&-IV?yiP8^nX`fW@9mTSXNfJHts$oI`=#<~
z0ZGMn5hdj(6P!|7WP&<+CY;i8acjBp=U`9DF~h1%hr;uRZof0C>*Vd?zi{clrtQVe
z?24+Fuf+#UXN~;B#%>Zi<x|ezox5`k>{j1jBo`4=FV4O){;RIX*>&qwbp%syFgh4L
zRnVU{*Ych~)x|x9-&vOD&gqc4y`|{(y1P0CO*2i8m&`vOaBt1~JG&|(uT+Fbrm}Xu
zlu1_<6uo*^Y2gAsp~cff7l(u?8oBXly11QCY(2qYxkNxRFv4BX!Kp)A>B!UkvmR+F
zYx_gp*;*{7B}VSi74Kx@S(8$&e|PDwMlp_6Dv8_T|4Qq;-FaEjIrOoL@t(}YLiXpW
zme+-^-%sF|=f63*M6#Oe$k)z`3sY=m_P_4ZeP;W3!jk$$2^nJ5-<dX?x^-FS>YckL
z=U(WhizxaqF8XRJ9xn6h^^K*r&dvShPb;l2ooN;i<gQ|5%j0+(uC-d=zdzia;K1d2
z{b7E%;*rq6o6oY1H@|qYAg}pizl?lG>z6ZKFDLF^=Xv|dk(vz!ZkFYYQ@0+`a8Y|#
zV4e7Ek^JrD@y^Y6Pu6Y-v6Gv`EFSr`=eb2r;Lnyqp_>vJhY!hyiJ55WSvV=A?&N=R
z$K$A)W3XwJ>Myb9Z~X&T=bxD>JL68Btdvij;?k;rW|8*_r>pEazPz59`^bf|Y_9LV
z7cYK`?09GXV{X!&pSN##riv;hBT@k<5xc$-G7NU=nC>Pz`?H5$q}-l~ZzL^l*Z%(S
zD0KhPPcwYpYiAX$N#1|>&bP9+kA%wSFO-og*Qn36KX~BE%ir7e<Ju&>mTmsNQf|$4
z#b}{L-!0^ucJmx{uG%{J$X=C+ekGE|93IQoD5|Tv_`U7VuGx2YyZ>K~FK^yG{A~M2
zGfYb(ef}=J{=n3`wuc;N)$ep-`D?i}V!}VkXYW)wO<g&RRrfOZK05arGX-l{sCaP{
zhPK?buRD8f$+dLnu8c2^Q?EYakeU*F=3iTJ_YMg)cFAqa{Zdn7*H!mC{8ZT7&EC1D
zig|jJOkzilhE{#&&i{>ErF<*a{5y7NhMC^3uQ!utMJ`!<<#Oz!rT+hWdG`vX>&@64
zAI#j9%35jc^Px?I-FSmZyp7Z8jndn)3(IG#?p+;MnfF3sQ}gT}s!oBsjJPMW>V6g2
z`pZE}+iR<EP4}0Hp&dOFK!IH3p=jg;O4=gKt}Lwr;Vxfeqs(i59^BZsc+<k#B}wHT
z%N;LDIxpS+LC43i{HuZT>yTod87CE67d+c|Yo=J>Plrk=70)Lr|EC!Ij^Pk}*{Hd)
z%)xn?lF-p3kq-RZ9R;thzBwZx|C+rgKhyU$*%kUL6x$DZF1zfkwdoY&fqmZhFU=5H
znf*n}$u?$M;#VxrdTF4oc;xh=P5ZiQr~4>A-&|L<*!f1ShO+z2Z^d2`^DR`%99ma<
zoMK)%?TMq^n@k6nueTrSF+V?AJu%m3(|?Az-QLs8Or<SO+i|YRP57PqNMPN;IL`-s
zSFU@`Tpp3CVQl?O?$geYueIT`lcsgeFzs9Q^h(_-i3u!^LUKJm@Y|VeUos)HHboS<
zhysP%QMs8bojSx_QpIknGiUdx)KBHM`tx^L_T}IVdGS{)kz4C}KYa<Fq{-dp+H3i&
zrbIk~E$!iqpa9w9SKOaAG1yg<_JnljM*Pt!*dL}>!(27%!hthPywbtaPnu6Y_^@eS
z|I<YgsTt0uP3(tiJO8=w3u4UNSs^2_Rg&ZCvqz%oes`a4xP4-2%+F}%^}DAPmndOz
zqN|4H+;EOU*O0FVCrYZtZhmp(YasiPGqcYf`Xw>F$hY4zAmspOFsthR&C9YTN1IH3
zFRHO^^7(H}ffIN0L`3ZIJ!4(4Ok&GJHl0OIvp<-bNjU$x6hG<3DJ|`2hOo%l!sVX3
zx%XHvT9d!y^e5-28{u0fou9Xr$2j{W)9&cnKKuI%`wMF4q-<Dcw~1?_AR?Ka46bVx
z(C>X^&B^k~#ZqqVoWKP#jhbs&uk1M-+4JwXuDZs<51qDVwRgAgXyf(Tv_T-~SEofm
zPEXq8IZJ;q@RXnbE2&@dCBm68a;^T$3&C@gqqXK=j$x@0@Nvz&ptvLXZRLa~8@8wG
zOkMc!_Je#6?^K20-NweB*M}Ml<d#dXODtCpx%_3pv3z;H<?nv(E0^9b?_tHYd;bHc
zGXBh5zQ2_yl@TbWTc=L(Rd3m$<Ye=&SF(-osF?O!$*K9gBG1weatF_0y}kCrqvm-z
zpR~+Y<Sk&mwPcEq@#~C_YwoH_J4ls#CvQr17n=}zoM%#u*6O~^r#g?Rn$FnJ`gzaZ
zj#)8nGjngb_!Sok#IZ$B`cOCdigKD|<nB`w_e@_bS#{(*-}~4y)n6yHkg6R>an3FB
zK^5$v-*azvyt&;tAy7}1W963jLCxC_d^l;e&}yCZD%F=)*BZW(f8KKJH2)@V&LuK4
zthUSz;mYr-?CnpBN>tEWv4)w~tz)L=!-?{|E7nBsQarPF`MV>ZvV(gRo*uowvu(Z7
zi!;$e)jxk8TAa9amTrM_#Wcp5wx#S=Q8Q3u6jaxABt1ysP&^_knDl+4q+83suOh5l
z3}*?g$kH*~c!M>UZPG!`3}dxsyOs5ue%ze+W>>Bd>z`wDy3XcK^3lGY-gAm;dxjhD
zw~jnnVTD;d^-tLuGk*x^TUneaYG-9ki1YiF&MTRB%d+>RP~nHodz>b&=Fz^o;UN2S
z36pjGYhVorP+WnM*`kU~i)UDX9Aj6v!9*y~^6PA7@$=g>oO7d>Ynd$x>Eo1Sef8<m
zQ-}5=ds|wi-)!7qD0aa<vSjTElaI}3R=H&DpSWXtd~DbTpI}wi8=D@k+ME*k^Ly9y
zgPS)fam}(UPgJyu>}Zf~IJakk;mvHhNgcluUiL}vDs5=mfF)oa)l9dz8o}}L(u#eS
zw#Gsp;nqEeQn*VDCz-Q{T$`u0tcrQ%q_7KuQPX8Fw_Wi|IJ0NLUB`}<GtXwdYx0sU
zNwO_)@@9-I_3_Evw1VmU>4_&jD<+6~e)L?B@~)_x>s3+nAsu$P`RnGU8Xk-;scq|e
zv862c$2NH%kN;nO=V~NPQ%%~p+P!%Dq}%Q77TuhRn;bz!Jt)Q?t(Y}0cyd7vgS*yu
zB{dgif4U^Qat-gwHNLOUw@V2sa7C$Q&wlEllbv+tz{a_zbpk82ucs;KOkU>cy_Nal
zf(rI!ac>_-u6pu~BhKbT?a2j~4W}6%%9%aMXa1UiHro&7EvBF4?;rTIf6t`-_v?SX
zY5i!<q;Rz;x7{x9;G`PHHnxLr_f#qePLGj~gtn@{$s5!NaM?KVl$MKGNWWiM+BO^S
zIehz<GB}Ctw(>Zvp1FG25B~(i<tDk4ww(&ey{y@4B(~)HqFvF2ESjFv>*Dxk*vxtK
zh&^jX)!uT)Px+rNEH!*?5*XVgs2Y0n(R}^unyH+EOu^!&b9a^62Fg$M<|=SZxOdKa
z`!jKUd;4RL)~(rO7rQ%AI;i~T*Jq9lb+dSC=6)>jG)<fA%%K=31xjGx>Jk)&9ZgHc
zL7_KyeUx$btQLn|x06I3<(O4|yPz|nt<h-7zdb6yo*F0`3h%n2(r$Ez?MvJ=AH`#r
zJY1gYedhG)Xis7MJK5je%WK)41$$~Fw2VV`A9z1q=!s>@ms>~n3cVIoU*<TGQ6oAl
zt^Zs=d&+}^O@^*zj!J%VxyO1mI}Scvukd`{8jrhs-&nN>=<|VErSR}O^8J$QTW<-r
zAilKAUl`9Vcob4|g{Sr0LMP)1o<34-?~Rr>nD$jYp42PAempSWUE~P+QkI{8#Oy3>
zWZBJ?0xSA+k`vBIy4!HLtoZxK>RsRYz3rFND(?OEwyAk``uObb>BrM8o^_ooQF^Ju
z`?_2Bzt;!r!wntIC!fF6OS`t@it^u9jAE44Ti>Z;^&%^q6}_(nH;Emw60J76690tF
z`R1`s;T#J&-lS_5oE7~Gwpku+EnITrPWK8=)~jwBi{@nie#Nr;&XHCd_IL9Z|2bZH
zV1o9a=k5|$wk=tFv_D+Wc*f>@%R4+mt(Ke>uI+CPmeyA*uiQQ7id?lu<gBn~ihS!-
z5~rDl{!2c7Uzq`1n%2CZ@W-3=0h{M(x!51GS1(EJ*E^p&!M5zUSl)%A*q+n%Z>P2V
z<B9(CUo7vy{?p!ne$S8N-12aJ$Z?Ure-HEZ%^!#>Sf0MH=jBv}|BQ=|GHYPzz=Jx)
zpw7Cnxw!#I8pO6FeJ++x<3->trwU}=-B4Q_BOJc(pXFp9A&<80GbA@^%?giRBVxi4
zk`pj1VVYj3CwJ`Hx4N-M_pKE*jLwS=kBhkzbnE`VvfUZ^kM3Pf63cjfSF3FO36ohK
zt^r=0p;tP@B6YhO8JvW6*0UHXKUy{8!Rh7a<Ig`o<8!X^9J|`*GsWl38F(C7lM7<_
zLS<(5FxosQ2r*z2KjI+juJ&|ALJvcKqgJ1bTj9)}#Z5&r{f%1Ne2xVk+-V`lEWYdZ
z!4(}Xh8A+hzc&76lki;}axC!Rhu3_{Vog`F{(D7CsrsuNvN<4C(IZ#QGh)iG{t&UI
znrLq!v8QT#PdQCkpY3^Q(UsSsVvqK3jheJU<;7Pm?vGQ$yoLUUy!xueo&ROypH79X
zQJ2c2_BQRTn%b%me|b`i>rU78n*{3j{Ig(m3NVonnBX3MvVn!eai(HJgN>ew1BWm#
zBg>Od8s{E6GPNua;di?z(6IaG3yz}s_4Umsr5Bomc9$B}-0<}J{Q2mT!xN@WbBH}^
zZsD2vFG};J!4h3l3(uF;KZ7nMdUzUJc)t8q0}@>-IcJH6eY}^IosYM%g=glz<$s@E
zJpM>&>Cc}*DPNkub050I;}^6`FW$?F=loL1IZs3w7#QaLo~pcL*Zr)I=D*}Kch}r3
zzN)a>Y{{<wcliIg{a1coo$b6zHhtEg-hW@;+HO_6+PB#kB%W)#Rq?*XxtjC8)iyk=
zx&M&!w`}^p=e3XPm#kert+-E$p?E?g!!ZR0h8;hy{=K&B-p5IHW<0m5vz%AW&Fg($
zo#ni5=c}Xs{M{WV9JVrTmAbx2-`yo;fqt(|b9b7HONxQp&Tj{srvKAtDcULIJ!@G2
z$K(ympA@NznSbIjTQ=qNRGIfB-vu7DMgQkjQ0Ql8K31RdU7e+B?<uDjTR?I2>Z{gi
z-usOmt}CyvE_#3T!8>;aBT4s{bv2=zQjGdO9di#;jaGZy(qHtpnN|O8t2{4vRbu)@
zyVe&wzU8led*jll>#r*3IM(UQFJk=5#NKagvGk{|^tO`ir>+0?O5b?XP}kUeTJp*F
zRtJ*>@eh`suk~4b@62WPK;FwKtHV!!xpOw_Yg*jKoUd6okH@{rob$1z%Gh5&dTZ3O
z=X+O&<v)A5_sh->pJRcJbFK+BKQ=6Ayd8M#LB$#0oTq>L0!{^P`rm84FL_7)uk!)C
z8Y{0(YH?h7eYK9o%Bz#^{fd@L{}Z)-lfV-zUC#(HkT=iXxhLCvyqP88vXoOs-zUa`
zK6B>uCyyshmy3D6WU1tw6osn_OD(;cP3+@;wU%2+<sVrhIcLe2@}EJMJ}%#4(mZ+3
z@BEVj_RpWJoA5bzo3hPjVFreR6OX>P%zJH}n<$rZef!P6mKneNq9xp&8N2TnU%%VS
zTacAMVgBcd?*a~Ry_|VV`pNS-cS>#3{XTqfG~1t^mA_zraZz}NfBRdG^EcAB8t@nO
zZ@t;~;oU#|oKsUo-@exOnfIskn)+o128Ni~_V>5`YoEd`9%L8!^Xrq7@#(d*iXJ+h
z+V*wb&(E=*<#+Gi_;C80Xz;Q%Kdx6@|MPR**SFfsd@gRO{-LaW>-z3z$1nb<x&G^$
z=;Y;VGUDG0`Tw(eJ$XvEc#z%6RkLh<zFy=1uIiA&Syw+c1_l98Dl%9av+l^E7P)iY
zLRun+W|r&L=5#DLW}wR%eClcO29<?QhPIr+rxs6%m=s{>KBGnRsi2pRr$xM?&!H)s
zpMaR|V5VkoxxLt|?h^A0@d}@8Wy(KSvmP>Td+_k~cZ26nOdm4!J%4I^y)?nUy75Kc
z{@>LRox9d=`Qz*v<Cpq%ogM?j4;>x7<wd_+b4uegBQ52o2mjp8ee>16N$XF2*fHn)
z@Atd*8!CQq@ZPrT{rdQ64-55YuZrGuHMU+~|M26m$yar6evV!GH1)@s-l<o0Zx$zJ
zR!aUqIp@@?Y12(>mp)Cc>jJU2PyX$7+FtDF(~z+He<L#VF4_LxTxi3lmvA~oX6f&V
zrHs*Pk8NuG<>MD#GG?<3*_3LuP3YKz3X_mcsX=|0WWQ+KG~#rBS?3eFN!6&!TeG)A
zMd8J@zr8HwmxRykWK{Az5c5npc=<ZR+*cv1_4AEZs`*wmS$^LXRa<#^;r8WzvB_0n
z&g9IM^Y05iKDAj;Fn#`~e=&E&gnGUI{+T8dQE8_1==juQOY7=R`_8_TTwVR@iRm)m
z=~qvkp6!$GKX=oy%XX=+q%JQz?Z5l{LKCC;>zvl#Dg6IuW>@d(I{DY}TVM5xdkFAw
zzTj72OlMqhV@K9x`vw-Fo~DEojsF;g`pz?0u>E5?$6RoaeR84ok9ddPhx!kU8PuGa
zelfQ+9Mllv;e2tQnNy-?*H#CQ0|{!z5<&uB+gW(r7P>1-1lviJ?B1Ee(|7#N^nBi#
zTHp6SDY$1fWv`dp`M9N1+!m-tmfwp#l>2NFC{rHUTQ%)R`GiQ0pw)lpY|!{x9}>wC
zw0o9{j@Msyx#uf%WM+ETExS6Yg|+A9YPr34V~ki_of%%0?kwl`c)H=v#GBex&fiXb
zeW5g=X62uAyM^zk>HS=3Vju6tR~7$0HhJgdDbJpJd$cR+UVWgl^k*cf$dAq`m~^QZ
zRQgwxrRZs%J3oCAA6v$}TUNyrv|n|+n<G?HTK4;l<GKmQTxBoL4Q66r)b{hqgnui(
z&HOgs>a``i?6tInv@3saM4q?2QNBxZ#>U0=W!H-NzRb;IOG~@kKlkg2g_n=}&9kxX
z6K0f`f6`@@7C%$yj{Hr#;tATnI?Dt)-^~%aBY)Mdc*1GhbCx%%cS+8WEPcNIN-^KJ
ze?OQFj9=XXvm<6V&MaKhdnw}nvx^)`Ml+&f)*joM;pTE=eSq$|FzziN=IIq;;o60|
zvjh!|4<Al<O<53S6WE)5vFEt5(S?QC(|gaT-am9TE5`btVG7T>u*XqpZbv@c$aw$a
zK$MBHQj(<aW3G_y)uAT6{=rgHO?taEdOKn~cWV8N=_!iljF=Q4=xnLuy2gMr*zKas
zwKWT~TRkJb@a|j^uuwp)_u=m+dWteH<I*qk+4X8Z{Uo8|xgwxNHPLHljodVqkRumO
z+_)zjJeAog<Sle=S!Pc-$K(wbJ7YRk8T(I5Kip7ZZlUwcquq7q(ZIaFH6px>=8=0J
zdj~w0Ji7PZJhyu<^e){!r}6Ui?fACinfsT?T;n#qs(bU*ytz+PE1tBSdNu8hM_Oj3
zq}<oK)Y8+^nxKq3rv;R8|9iaE*401!xJYZY?*7p4Q>W!m17%|Q`1geq_gmTA`+W3n
z>+z={uj)^QeScXt^<kl9{DnK(e%n%3@8*4)S`l+=yIk+)`|H=_o$O1RGHv=p{~U?3
zK4-m8s=oI(?Ed4p`kl5eyU{r&iRQ<}nS9;Pwq@|0KD%_&#Juilu9u2WO33s#F8Vlc
z{lX8aiqUG1Rqj2A%anS4XQCV9(r&?>KR(}|Delpi{<dPX`iGhNW;4V+{8B(1gQuT)
zpRr!{Uw8Lo8vnK}hYmA~hvyg^Kkc{X?#E@e8HGpLJ~N%{+-hyKo=tDvjf6N2%Z+8n
zrS~>=YZvW{Rj}OnO+KqlVOwe8apB<Kll@moHr=><y~fb<&x)0Q_uDK?<4B5*&y7+5
zX^OUO?AESJk5jPR_-Dl|#g46Z^&dM|{=F5{e{9+s+5B%T|2}o|K4U#JZL9UYH=Geh
zPLFG59b*C69Tv|U6SJ}L<fFp@E!-0VPNXxM@wo0_XmhgTW;qzpa=X99$u7I${X-u%
z`8Fk;dKHmRGkwl)t<yQszK}=H!6{LJ`$M9_Ayy9!<9n=+R?pArVUX>*`%zEezyET5
zH5~({5{>`rAerS#F%2zBHDVG{w_Qx`u|E2){aV@KxXX!jM*CU!7$mw1WKDW&Jv5$d
zR*-K~T4685^^<1`zq4RH3ukML*n`6X3XgS4{(G;oFp`|T?b1}+Ly0?ghL~N-y%?i%
zH}KvB?^PCd(OLqXj}1R$M#XbmUg1_1bvIjL*tV?joNVTjr;~d4-{im1Kd4l{cl#F0
z;<)Gkwe=4wP0sR~ZT!5nHYBde_Lo~~X7Mr!k?GSD`uD~~-rA#dFfJyJDJd*;nwkCb
zE#lLsCrn(e<t-gQJ6&Jzx?gWhXk=ET?fJNvuqM}at7^U%Ju|q!d9!8lyx6y`;sxf5
zDuSM@I@N!!^4BVzobz+i^>4U-o$XomV`~3t?+qSLx6AcDTpvEoEZxhYu#(g4aqp>1
z&%&SI?mq3EaAwu1OV5^ietYyu=-r#psY`uVKfl?1nvws}bz8oc3;T-Jmq(nr9evj;
z|G4|S$Fs%79T$IVz29;_NI8E=_a43JGDY=5ml8d^f6v%<>FavGpjrR>rj$rrnrCX^
znOO&7nq;!6Yo1-Sw&d*j>67~UFKcXH`aNahmzYo5?TWf*A55;cn_+ipFQ0_Xy0GU4
zOO{IBS)KL&rNNS=e=mYs-L9Zk_qL;+UZ3wT&5U_p2+Bh@rHee<*IxUd@II5<WN~S3
zc>gciH@0_q&Su0$hwr_A@LuuR3q9AimS6oT`zH4<<E)Fn%%bPscRW5bEyJyU?)Iy^
zbNgj;H(&iJ`@;Gz&)GMNbGPkMD1QGkEhFh_<&TBRrDB&|=lk4v+9tJnWpC{DwAI2g
zi++8zzEQnv=6Btw>(8#;IAgH5G`BXdw?lGm_GWpI)H8Ok$2;X0NZJ<N3wvIEA#th6
zx4C(3Y5$XRw^`XQI2P}2tfUmT&~lBq#=i=-RY$LO?r2|qWrx_=8J@+_CgMMtj^547
zGd+9rXUeLK84j;s`^Kz2w)sL&N8<87Qm+c9Z@;#q<C)U@u<AQYqm>s4oI5(D=;vh<
zaY@@Z0#iSEs7_M}IkW7?WRrH)?@#)j^@8-4-+6i>X431|oR2U5>J`)yIdo*<Mov+#
zhcfS<PBJf^Xnyj|3%=KC+y6}nEcU#={@%m>H`Cu~?49nN_WX@v^rowM;XD2aJk_`!
z61qL*c+;g%Mm9FvH|<jWee&R?Pn#C}02Pm-=f6&!HvOk|k=E+F*LM|rZeM)Ita3}t
zC;xj<U1i1w<&O(3r~bchwkFl%`tSPzceHn^$UQ#y#%-6!_T5X;%Pw6s-Yp&T<W69*
zXKVlS><Ui#weg^yfXam(;YBB(cuV`<Oiax7b)7zGvURu5&BVm@v%B<E)#LSyQrmqa
z)3tU@S+nQK!&gtdU6;MlOnmL*I(^E?>0Ka&uYFwSo&>S;TUyr|i^h8S?F&ia+gnkX
zG<8Me!3=@P3&r*QY#zM+nG{&N^S5YdYup}-kJ5$A%@-BcaP6%qTr~624=LaGR>2pS
zrd(C+Qjga%O7-WBPS@JCL~7;4la3Yw$xJ+K$}$Zs&OMv~5<LYBJm0qL7T`}eo|w>~
z=)=RNta1D@pCtolo5okm6Os&82R$#aJ8)YtJ1k%SoSWyuFDuSp3>Gh+=`P@J2!6oB
zFxSRQ+;?&JvWtxe6Iz%jCUh9ikl=BX$m_kZSTNw`qpy0G-s&w)zN;_!`ZK2#vygk1
zOtfAne`@!<zmvFiSXN$rr>5iew>|l;eq`Nx^>mXf!b`$-H!myf+4*Dz-)ps*ci+C7
zzDNK1mPgx{e+=9C<i1SXmMuZEx^<RqItnuN<>c>i<=nH5E!y~O(wSAk&(_&~J&<_2
zbQRZ}dsnwEm%E|)&M9ZNU#O-3+gG=O>v=c6wJK$>+`2m3U%BK~+1y8lejsuFIoo2F
zuRgFcHg?zJ0}1{c>)F|YcD?`lq^IqiNHy~d|Cd!u<u_E>)O;we?%JDpVdAB)UjHBH
zRd?+zytgtowz|*IEhDE=o@Yr(rRnr9yRRERl2uszeA3Bx&G*iz?%lxfrH;X<N>B2w
z-K(=PpA>J}aph0)W@2b4FFyHG{oTfp_YHra2Ns{aWyZkpAxp3Gev%45$ApW;Cl{Jm
zb#v{s%1m1pa$GxR%M00gezRt3Ui`=<u6yd~%Ox}Qy-W8Ta^>c(w90&@9VELxVCRYn
z%O~%fp?UQqm$10#r;;F+MxF+T6CbYKJ6+9xf`O+)VFIJXgh%gmd3`t-TLc(56j+)~
z_!wIR3gye@I~TGzakTNpF&|)E$M}GW|JJjMvy(2c#v~MYOls$UDp)?(`(AYJWB$Fb
z>N$c|uU%xRBbylb>Z^Y=N6>FE&|nAC)K-P9`xQC6Kly{kF2X^B9e<kRQWZ~B>n7|e
zyuS0vUNM7n4kou{cB@L8b(C9g%QSKAyE}<j+GV%wZIf9-$Ma6MeVuf-FLze@w#pwu
zXU&f1ot*vN=YLVc>qY6?`D!fx#%b>eHkg<&<#;lia${Xx@{d_b*Nk`ZNBBNC)A)}0
zYr=xx4OdyB_)Fwhu!ERSw#dD(3wZyivVu9KM1I4!8vc2#k_<WQ=d0o;_A9=KSUH<H
zD_--`l_ukD*8A&xc0NgY|60O)Lx$Ax58`IqVvNqbHaf;H6QyT4t)$Xtr^@eZ^Q-SO
zEzOiU9Dn0R(a9NX@3|%QU3h||&X?T%`BicA1E*;rr=mEXbFplG=rk>)ORuGvwdr`G
zPIi=pwb(f>&UsHC9#q_%pws=nR`xNQTu-X+>|<T6o1L7FeVe~&+V;q`|7`vBqxVLw
zdY&7$daKReoUgCik4aXEf3H+L^jpaMr0V<Qwi(|UB^X%#@3kzRSH1O>{+TOY*Wd4n
zRQ~wz(2Jc<n4|hmUQb~7aBAcBiz~g)N=Hvp)?0h~znN8NX-cwp(UJ1+kIjx-vm0Hv
zi+%9q?sL<C_sR;OrnLOt>xU}}1o}YZB^B=zA1th2GowZGX_4yZIR3|sOpKK_FZLe!
zvao*MbD6A@Vc$EW-hH)@ld(BA$3l>I&(qADV<`>4ZNHRjyifd<HZN}5uZhv~zJH$b
zuV<s;jKxicKYmPitVmcG6v+|vTVa2-eENb342s(m7qrW3KRA7SdV$(m+uduF-LCBa
z@<Zs{k{#DlWepSimL8v8(D4(*zAWS2ub*fulplM|(ESof(U*x8uP^*OdB^kPwN(3~
zUB9Nw)nCgG+VgeixrgT^AH8~CtNp`j!}KDxqx1JIF5M=4rT6r?lZU~k{O!(~r`NSz
z?{$aRcYWJ`Jmo=qN@qS7oKe7L!Fb(~$H3A4Ax}XQ1H0h?7UmY?11}ftcpcTyEa5N%
z#4~-7`TXL!<8u@a7$!DwvT?XKwD)IcriM2Nv)sA4>q&QNg7lBVcMK2rymOjve87=s
zK|w=7(OiWC4>i~J*nIe{`ZA(z_0=D<3}ZA-Ic(k0b?w6u-ruV2d<y)3>O8HUafxyz
zK9bOzv+&5Imd}~I{r9%?y>8wgKdEoywVtodEDtXKmy}Qr-^C~IuxC$cTim7h*-PWr
zfBKncX659ucACs-rb}P7xE<FmHMJ=|d`;4a<IqfD^+lWkdID$KICVOYoPB<PWtz(o
zzlI{lcs}6>Awz4%Q|cT~3>sCZ1;i*Nsvo$?)F`92K#0?t@th#XlL9+$r9^dxoem1^
zT+>_*&Es#qQ4ntzGtaKkvQSBiufTr)!k=7=zW$aFNtz+hW~}a)(&nt#=G*@8Oec%f
zyUh9L{2D%Sf@C^7Gb}{fz!ohsQ96Cmev6ok>(gtmcA3n|i_M+qvT0k`^`#d}US@q(
zS#&2VcDmY5@9^2`g3qqK+BGd>SIO4O%PKp!?pl}f-Ez{Mho7$p?a}jBI=NO?;-8FX
z-dw)eeKL2iL<xvaz5jeS=WDHwu2cC_<KDcM)=EgYzVP()#jR^u0|S4im%jM)lqWXZ
zG33gvFxg!-maDRLJF1lShqmj*H@%ADUUX#V)?IpMi$bnP2?$QTzsh+&*g;FC9Gk!Q
z$=pNkzg5Ni*0d~M5_;(4!%tsc%FOI>uGgF4@;dxw>)%N|=54Dk-<jaOZ^!yAmc`39
z@7Tj4{CC-=EtbX87Vp^8Vw@hDn)!K>N_Al+r%`!m>dN1@{?G9VeW3ZsecdXZti@Un
zYYOa&=lw1Jzd-Au&xT()hk}}op5N@=9>l#%G<-!J_kN9oO2K?VQuEclXB#WCcb)b&
z_!vEP>Dih6JKMD1nk-+ng3CtI|7Q1TbDyr5(8yP-|4#aG!ky=rSCss^X^;B;EHplM
zg3G3SXZ)m(x6l3mbN}p(p73w^nUx<;de7c}tLLnT{f4DakE-j7*KL)Yyk^a<OP`Xa
z+&x?`dOz~V)il2!t3#us=GCv-{9!dn<LYfP@gGytABMmGWcx?H{y^HEsI5QmbRVv{
ze{Guh{5Lh}_tSEYt*)*OY-*n|N$BeI+6T-z$5w~F-?H50>)MrPA9c-N{d>x*?OChc
zAAe@Ity;QYZeiigJrkvN_V0_@`t(Sbx;6LyB)QzJH>9N)ckf>LRm0+TN`3~*^<A^0
z`kSt)RXaa6jVlj+eUY(CK6#7TP3c(@bKWhx=9ZQ{dGA8Of?c!E$+52W{q}yg&7S38
zezfhL<tx8x6nsDW@gyI|^`~V8Ka1j>l^>M+FWD&@^KMVoM%kD*xmmVcQM2Fj_BJHT
zul$%ZdGErHQsqnBZrn=A-=F|8|NVt)YSo9oPcXJo-?#ShtFnpt53@}7O$+06f7H#{
zY`!Br>Z)w{{@3q*Tdm7;msAhYXyM%AWnuSonv2_i(MdPA)V=?2wa$EX%VTbX{K(Sh
zWv2HITdk|#QmOS}NBE_E-+d+JrU$?3o_*tsWyn_fDB1Ax{n8%%`)^yV3);ry#?4YR
z<HRJdi!Ktn0%zJfbyiN9%CVUBPX<WvhMeBSO~Q#^SR74!QaYEu0jY60>=L4ts($FE
ziJY#0%i-k_BK|3!OW!O{*y14Y_U+DDf<i{z$2KhqDpTqZ<5;w?Np<Qb@e98~1Lm0S
zax=6RbmLaznLD3j@lU2Me*u@nF3Unr`L%RdY!6GnoRPC@md!?s)o$sRGj^4jRwjL{
zHnp1lEOPcbHGi3DuOB)U=JlSNwr1fDx8%!L*9dnPXP4ZS>h%r(yf0!-bZ`zxzj9?#
zVcywxv)*Iho`cN#-f?c(#T!a{Z4#L?Gym>-|LMr1JF}Q(gA91qd35LfS2<F>xxv2k
zDk2_Fn`N`HBDVM3vWq3JvpyYpG)HQ#@8%=RR-Y91KfU(iO_TFCN=z%2Ku-A9b8Ok_
zlib43uf51wDK&fDv+YTRdA;w_^(&W4+_zfCoxo$aEMD>F_KJ?zJJ$VL#?l@0^zH0_
z&N0VDzn{$a?Ms&pKeqnbn}2%>mp)p)HdXcCL;bLDlXW36f3~bSVsG<#zG$!Z;@s%d
zUVmC|R%=OxpWB+NtDR`SFU{XIxhm-RwM|0D)|i4Mw5+yGd+N^-zj^s0#o&t@x4wDY
z@WHft+nlJCFK%Srcw~RZ{@<n}_BCh4>&nCyPk)%IZ~55N_4u{@`5*b?H$PvzS-bt`
zyYtfFT2^LnbU%Ku51;a*egBsIiwc)MivJ%P_DKHUt9@O^rW%HCn>O`F_qDexGh#H~
z---%5G}ALP<y_R}<%<lH9gknzbZEi{(`v05UwiTvUu8Kb@%C7ify3hkw=+yF*ShWA
zc<<=v4{Rr1m_->*yP9Ecrt~g*ty^`iazcr8wC{neE%K|_d)_IB32%_9?vblIk++7u
zXSLpgW+S)fJ_oY4NWW%Wy!+s*hh?C%vyb0->$aLRg8x?U*8>-Gx6C>ax%h4b|GHA?
zwQAF&mA8W|T;sO;qee=J^x8%rug8iRrnmUbncTJ){&}?{t8lAS{FA>onHX&31t&JH
zt32^)$FEP{RUbbsQvLSCIqdk=>HGC7rQcnxE{)l|W$JIgG}YL<aT|sEW6Lt`pIozK
z-KDO%6>p+LfBU5!<;`1vqw{=C{ri2BBR{XpU4KK;#D91B{gdL;<L<_7y!>DD?Y)KB
z_5#PVzQ5bN#(&qYy^k)R+<0s6|5`=um#@Bknp?4^?EN<G?8(3W?b#h7u=wuN$@izv
zSuQKJzwG^SGyna0vG40P3-`-PEq`}<Zp9mKHLql~o$ph^{+N0t^W2ErI9Y!A-QDk>
zczdtQTYux__bFxX_f5|K`{>oTuKt#dxAy)%wzzNg`T8?`ri;?n_`lw<tSry$d6$dy
znO*0ugv>rSM_XvE;cKhlVC&LnF&DS=rp2bOn)Rp~#Jyv1(QWg(&*JZjU8K+M(q6f8
zuGQz;N*9kU%-(-iw9{<XXKRqIvUvX+x0NoseRkhcXaB;-_wAo<%W#!j6%p5G&bsxp
zx_F((mX8zG8Jm9X0@?NV*qeu!-Lp!v=j+|dxK_H#J?qa+?|YiZ6sLdrx&O)j;`Jut
zKMy>aG`Z&UW@eE`_db02dT(i>?%{V+zZB`6<YBXTQl!Y&H1mvt6hDi_lV6T9EXI-t
z8QNp&%c~6zER+|2q%gxVR{F@23Wdp%EI%&Xm-l0E^hp!=@X$@3Ly<{ho*{cPr%9i)
zp19wFLdK<n0aAb6ufM4O`<y4+g)61LSnASc@7N`47C1Or@xFX{R4*tjz@WKA>XIp&
zxTf}rNfZ5?t5zL!J#|le!bHErk4l=mr(|-cEV(>kUS7e(Nli?WFaH?W-hH4{J@=gU
zgG&kd?-ST}JSvI%*eWUI7Lk}}BKae;YS+O~J#CE%6ZM>{b{+gWbIk&WZPznB{LN#O
zQ(0M!{$8-Km9j6HxQXfekGoRWPkJm@tnEDLda5W>>bmF&kL3?7y_A`Axr~yxK3^|)
z>^uLQjVu!)-c}wDtoeUn<}wDM)w%EOd)~|c_{g3!!}^?AqDt8Hx~~TN{@=Q()>9H6
z{np}g%S6ZH=i+U9<YkV}UAgX{v9E+=K>fd04+9<_nECKyi=2eT<rc|}w?2pOKl+`2
zP9~R~iPPfAmn!!CH`rJI;10h;=hc6!{~PSPfALn!#E8Aok9Vr|9O(;?s-58dtN(sY
z<BjND;rY)e{bzsu=U_KzB|&jXQEFl?hy`9#0Ghf7F)R#B%wU3suv2So2HB=>(5c*@
zeJPNw0-)s(WN#I?d$H(|f&^Q@-J9R*Q@<z8y_T8j!>J-)a4y#RhSo!FdzDvzKUUoF
zdiTBh<M;J-Rd4?7pOEwW>f4Wd+57(cCSB$Iq3`_2|FAu;ObFkT|5xfxzWdfM{msT;
zkFRO)qgktt-`M--cCGP}Nu|*n*<DJ)e7&yi@11w1OGhwsosBc!+LN8D-t9kgede4s
zd)ip^3=<W!zb(>AGn=evs}VVW${Lj!1#LF%Z!R{+UR!=q|B}Fpq=2<TC*-F4_)aoe
zp0f9@OSc45<?fZ?ogkg>cIK9{>-<T1E)o57Q@g3k^XQV`<&RR$R|eiaUDdhsy14MP
zH3sV*GFyKCIq52o{0ZCgb$Q{FV(-83DbCD~%fFr0<~z5m|Nl#q^?ny-{(QEsvu(a&
zqS}1**=IKYj#z&9jNP0w5zddcr|o!CC{^hlP$<H7>ci#~(<=%GjVCbAbxKH5K09H0
zzNhh)EgysTz1jG8#%WjIyE9{tL<cU;xNYEX(&!*}<)zxc#!ug-#a@%|lz(2F%)s)K
z=gHI4H$RxkTz?r6V`nC{ZRYYHd44*xH@DSzpFCAL=kdK+&#z2M_{eB}*{4+0ScOH<
zgF|V8z>(DcX}LcNer}Z5(i>Xg-M#$EvU7!AVH}U9gynzy`9W7Wjn!C%<z`iL(Su3m
zt9Wl;>bowGD<b-JNy+R<Tbm|LjhnMUi$i7a3`Ol1o79(oE<8J>24eQ3P3=jgY?+Ub
zr}i&CQWSG-f`j<yIZ@kYGGwm4y5&!5$}C026Giy}ZO^3gRJ9@(woMX!W*)83-P-ta
z;xjw8(A!6^@TjidW7vB$%|l|AgVThSdesMBtWlhK_8hm+%)@C7>rKwTv3PM%N~noL
zg+=lu@2L%!cSJWZ=e**%*#AVLD%kxbm*czh{-0hHzqb0Iod))-i-MxZ<I{2n1kFl2
z!enL&^KX8>ca89VCy5SIXn43p=NhU`aGCwGyX2e11Kv|>-h8ZxnRK$h{?{)SzZvUT
zCzV_eTdO{wZ^{}07X`%*2Pc8X7G3rA3Gbig|B1+1zw=zy^b=J->@GP~mHM;Xv%A_Q
zb2GKI>3yPg`m~@;AjJw#9mMuO|MKa4s&Dq;LgjD8M<?I0KbG_AigePKmhQV(ey)48
zGVIBUg2Qs#SMh1usgza3F1lgAe*c}#Q;ohy%>CBdDsUoPbpCO}!f#zUuN(v#pLl6?
z=(9}HUK=)XpXsIR7kh8C<yKqizMWB)`}oh5>!&nLe}@J@tY+eLv}3OPSyVRBOxxR9
ztT9(-_wOjn$!4WmFE;gsc|X3*a;{c7OSo$J`lUviImd5aX;fgkc`@j+vM)!9yO%}X
z>D2zsw{;$Us*~H&8(b0Zof_m?Fz0+~Zsy7#7n>m=_=xw^wt^~8Ycc078@ci`Kl<Fd
zVtH=aIendZ=6(shoQ^Eu=o0kcc(keATWab%{XFY^GOrFj{`&v;oadV_rroX0lC(bI
z+9wAI;1l*cc6DC>m7-{cEU4T96|#nghUOq?5ZjXULY7Xexxj~Mkhz-c?%Z^TU{CS3
z`?I~Ks;wyDZrZzMmv#qtHgkAvHDlmL-F2yNWx4BieGA=SzCme?HpjOvQIQP`I5avu
zcsUtaST;WSJ&|S7gd$<4mfC+$?#(nVR^NVRj%9Hg8v}#I#^236j&^_Ik1c3kW7HHP
z^y$J~rf&IvH)GE3)M`FAXUd}JXt&!Fex%plw4Z#k(CJ}!Zu9ZA{Th97Hs8x~yVcoh
z9|-z=Vbb3EY^6%u>WGJZB1M~Y)$BBvOcY%5HLm>mecs1Dj&ovSXCLZJep9*a!$+s=
zuc<4T&Tbcx$@ll$()&OA-Orn4r=Iw2xjivqh1bR<DNi>%d3T)qa`Xyy^U%z#^Q9A<
z-6pUd*x~%Toj-5+q;q>tT7+Nky4~CrqB}=m)z04DwQIY}o?N^AbnDsGWhJp@4;q~9
zGz06tF1vsJ?%&%}SD3F{sxs-q`Z~LE^}S+8H_K-`2plsr6JwQ>d~cjI?{n6~=~4<Y
z(@XD^eo&5lxvH7(U0-gL`0{_!AAB8!>US%4xjb>0X|dV2fUiG%%167;n_t~r(SPsX
zuW0|(Q9@mz|5v;y`;@wD>6K-ljCM)<mEJ4%^6I%Ke?F>6yGaK8d!RG@dR&>_`>5_a
z*2~{rT5;R;?kulOsZ*R!&(18@Ym@mKTD2xK<66Sh&EHb|11xi67syv0cR8tY)k=5n
zKTnBkcLT!9zh0bcG%2QHN9fc;2h+|(EDq%CS~5d7LdbX7!42C|Q<tVrKNYfTl}(hJ
z&8+B^L0)qwJpVb>wcFLsb+%KaX{dK!BUku_D2c;%SK=G<?z{|QT5i<6^&SsHPR;rC
zZ&t5;FBn&o_;#AD<DOQnm{7ZOJBvf#-rZ^Q{@$Ehzm8p&JJc|-(&)7L3|pU-d!l*b
zO24HsJwM^lIyL<Hot?2~H8$7>RQzbyEVuY=Q*NiJz0cyL07J)?cV4kmSuTHKKh?SP
zW`B(Er&qV0s0Af2-?xR`q2lS^wd@RS>i4WpojdjOZs5zE9!}-I?*13+E>3=Zgwa-_
z>!|NdL*u*FCX5NY)RdD%gc(X&^Np1?WA^^_d3I2R-SVPd<a;Hv$}(x`xIg~>niqSH
z&e`9~U}76raHG}e!Qr^r%IlZxr|3Pe3riH9TaYtxw&=_4^9(cJPR#aPD#N{U<C(2<
zeuiv{)I9d-W2L44++AkwKfX!+w40!nRJK8*LW6lj%qJ!N;CrjN7-sx%DxBE1VVcIu
z2La1+YzlwBy)K_}B=4u1vKwnm(X^A*6RO{F?cR3G`|;#d4%4qYk8>I@Jy@_K=(>Jz
zjlP8*m#a#G%=ssxGQV7ZUB7MnEHGEZ!LXyX^3&ORM(>~dm(`2PyjEYnbkn`bo|_h(
z2+isGsq%gEv{0u0y>mV-oV2jz@cV_8!P(0vbU%>!>#{F#QDuYygUS7KcbA`NdMNF=
z?$piVu!%9hg{Fp7wa>oa-*q!ab8cGuv%U6qXCtQGS#nYF(O;LH-|zic-!ykw!&3Y5
z?O$Gr)H)q|&B-U(nd})G`unHNPbMq<<r7bNOj_5zZl9jE*Nz?eJC|?n-FJDBf#0i(
zo=bQ_pKP$1wco*eUc<qxbBfvxGom**FYENve^6aHgMI(Sf-}n3MYek0Re!$A<^OT@
z(Ct5jkHxm1y;=4xF|9JEp}nVljgXb{d6Aq+(azC1+7_wo2i^p&iD`c2&$;JFzxW;<
zhV3kq>aQp~Y2CZVVtTcv@Rb!zE7<pLTzJ&H-h8t9CB+H5PqQ)jTrxWyBEz1=$WSYp
z{`-r;x%LSyohjT7XHu#?do!x7uXbPg;b41cPQky&S6?nGO3nEHZ0)1#Q?6v+PU*J&
zQIT3FAI!8Zab;f1T@`!PRj<x@x-Y#t&)LZIR1-79H~;rOfj6>zb}rYo*tBB8_q$Sk
zRwBVCdikOXUlhBmo?iI7VBM5}M>~t=p51kP_S?lf7A;&F#&6Q57p~wl!_xo0*hHhq
zo0GOY-7-nY%HHK>%`36B>r?KvXevEk!<Q4PW0Vphvou_}=hvpTXEzTNJPnUyI1+F0
zAXj~6ld;=Xx8`MXr$0@pxvg#&w4L8ExAS-4#vad&*<U*YJKu!8E~tEKB71zt^XYoA
zJv}^cl{pqH{TH;F=XFDXQCs2kn&+z?J6_TiVQ`pjxXMYV;aBX=#6#}(|JE=!HT<0E
ze%grPfOha+Kk=*wbGOV2o21dd;jJ|*+iU-|^X6He6FZhsp1*YU^5x$4(##ARm&JXr
zS;zKqDT&`LWtEoM^|i42`I?Ar^JZ2~nG*5(M2h%9#jB<oXW1Ic+C8fupHA|Zzp=0G
z<f<<k=1d1R-&4wbwsB8T+KMQ>)st7Amyfx<BJ0zx#s6g|HKpr?%Ac>6FR|aP^z;pr
z`@*WUZ(qE<1#X<Y8KP>E=02al?7OYWyV<K$w;Adlc{Ovske%mLX^|VoyMN_$+}v$a
zcAd}c+O?%8Pg?q<iO=8A`;wvU?i!(&2j8(BQ2oDrmqsbGlgf7?%gvnHyYxfPW}SSc
zU6%Lf`rk|Gjjxw|li&F1$kvVvcbjHi*l?wu?Y{K^qihR?1G@Xg|3&BAiYYx2aq#0+
zz7F$AA{PrI|335osBnDEzo57OY{l6&rZv4NT@qli<(u~Eb`!_5M~y3v?>gK5Usg~1
zUwcm+)7=g6MJd`19C!2-6OZ-YvvYB(H_@GDxh`e8&>yAT%B@R_HN0yd^L{<BL+8C}
zo%W%fM%4~S9$h)&dN!IbzSwl`{qv^!6E4`f$4r})qxalt50C1d6YJ;CIAm`VuGxO1
z?P%{+PKW<Bnamwd9M2D2I^$j6dtGo&{%w7^{YS&2v^M+ZpA<`Si!$D{h?m#)KBvR`
zP3;fM^X|r|M*ID66WGgiZt=>Nn-A_W6h7Q09e<wXfvDEZ?lpFo6T46AsV+HvXTcZm
zYK{YsO0uE^AL<?t{btS3kXLu)TbX(R)3$!0K+_j@=XZ1oxwFrYtC+Bn{oHp?@n#E|
zl_49Y`wslPdfbpX<uv1gFN^el&R$vV%&=B`(PERn&ZMN`d0EWc-aGYgo+`opwL@M1
z_JSq5LuISdPket^a4OfGVGCC}(~ARn(V~8L=ILssoyz59cxJ4|uby9V@pSOr{B?Db
z6V*$UzMPq6sdxDK6B&jBf8NYyNIQOsvB8VoO}!)3S5`P%Ewtm@$3uTV-HA5o*!ug&
zer2s%tCR9;tPCX?&cuuAUjA7bTCvEQq3Vozp4Y<e88`g>mn;!gxLoxkvuO99-GbYe
zc-=X$L^6L46NB1y8|A0BRqc!!XWX?iuHmTe4y@`fWT@HMvu(enYiH-vNi%a)c-KCi
zb2IC6#tQ4Uy1n6Q22rons!vV6vyb;c@7V<@yO`QqTTfqmpX8YxZk$qot0?~AdVZyv
z>t9|c`8}=)k9gJAAhG{#|IT9@Rj2$&d%d5DVV{kK@Uf|LAAH?cee;Fu-czUT(<FDl
z|L8jTRFiMMO6x4XUwe-Shh`ZvFf4uB5t<&itUCMF2_1%r_!`q){f}GC^CCXnDvvSW
z_xjKsi)C|EHvePH`OG-uoo3ZiT_MMp`yO4Jx;8FK;ZXPbH3h5Q?x>v~vC_7kt##+5
z$EO(@4&Ko`GQ;<I+`epHh9fKcucv&U81s(#%p-N{JB?=ZqGee_r`|iE5ccU^eEZs-
z-7mx^teBSgqD&|EsMFW3-?zD&&h=KS)r*`}pS(V9hE9#v=0~Paw=iz`z3!J?Zup<q
zXHRCn?oE7B{PXeFo7)%|x<j-7UP&qI`19L6ROZR69^XtS(}__^GA<Ey6aRZ3>76$1
z$dSyB&B6C17!G_j_O4sl^rFz>vw(TZ8l%PAQf~XVKb;%ZyK`m4x_uvho{cSV(cbjz
zP(fs5;Kc)PME@*s+-+4WI(gYw$u+@tdb4lOHF~?K!tQUi{AoAYhi5V`a2|VPU?0MJ
z?w%x%PuJ}o-@mvn)V3E?O|yPm-Xpue?A@jN4Pmdom<6BtyRR$tRj=j4rsljH_6J+~
zBbLaj-zcB*;p4ZIzboCu-BLTQD6E%Jax$p9rIT#Z@N@mqv*o#a%<lGzdf3g0+V8sh
z*_kD6yNZ0p?9vz-zOAURXV@}7IQz=_d&__97k(tYVslcpQ*)bJoz81-_Q%&Jx0>(K
zbdWxGdF!OMrp}#z{3e}iw=<o5ojL3`x6=9dfwSM2=Ss@X4V@YMA;IjwbIK9+bF%lG
z&qU8X_2~L<w&UlnRX^nTt;sIjwV3;GbJ43)XMIF7racQieogyurOmt<P4<f6;$rjM
zBN}~Q?@oAJWOVM_Z_O{$LSNeibuTyJ*#GRUtk#?do&pS|X4UlpQ3rqS{A%|jRch83
z;fCOeQM)?rxRy$D9Q(#!%g|%_)U2ZL!DJ!1_qVsN=zHya`?_nc{-T$c*=I;eHynRF
z^;ydEC)1dFo;{N_pYu(Zz3tE4oqsfZGsSOIEqWSx?VjM9FZb55yH8b7Q`@JfrZL6q
z(c2$8cI}Ax%6s|uah-|LXBOWw_L}+ZnXcW&Ufxf|o62n%7EHJJdTr0$9mPf~8m~W@
z;J4y;sCs?c>HgKL#a|mpyi2^dGmrbW&N~iShA)+S=3Hu**73b%y1Hs{`5cCd@44&j
z)Gx#^>u$Jmkh{gN@mKkBqXov_Y6^e+u-YmbP-k~0)|=tXGu;IFS;ZOA0^eh%ue$M0
zXWw6yO&S(UOv?8k+qt33;i1j>Kg(bI3Nh7PqQX6&Uw_(-zJ2pT!%k}1T;hqX$)CFH
z!=l!WYlZf*x}QzcyR`N8ho#Gw?{qt0z$Reywf$x3+b0fdykBO$oL-#YG*yoA@LSgX
zj0xW)uS5yhs@3nC!TX}0UHEnE*1(Q;T@R)|Rh{#@U61|x&#fJ@`ZkAlRI{veIuk4T
z=(ViHXO(3Mu_vq5a}W6(zBKXmRp0K6cUGtCU1Q_Bsx-_Da+iJ3Htyh`{NkTUwY0X}
z0R^@8tECI4xV;bFYwDJs^#0DeeeSuIlhkf3307la$e1a~&~VhG*5u)qmFq7}RO>1&
zb6Z_Cvr%Yvk;{?BW{>G}QZ{dzbbR%nFCRZY|1)XF+T34H)z}%VL!xVz`)&MaH}iAI
z&6gFcCTxy)v-3?fQ`J|coSJ%DF6Zk3+zB$jgy!FVzs9^HV&=Ieyj%~@hE*EMe)9NJ
z{{47%#i5I3j~rSuriicqGm$l7-k11ErUBKg3|l;>JZ_9I4=}d4eRKC-_o|-7iJaa!
zj3T@K@|PrJzIlHB@$20oOEN!x^FQkJDz!3+QU873ljkDOUaZNJKkiX^bgOA@*?bK%
z$yK`l7g(LK<c#d^w%`9No?*9i442=v&rh>^@2Y<a^V_xa)A=|ru0_|+ta~F9c5iR`
zx!W^7zt@_Zde~|0g`ZA-n@)cDx$D^cuby7q1#5RD{(2V{c6RFvo?pTToouf)yKRdv
zbu<1u=Sjl1Svkjb=WNr{Q+uuWJxuK9o!rN(?#!6u|Nd-^kI&2ck30->_cgQ4yvM<}
zcEaQ^=gevDVVgeX$jsx(nf)f;udLMdx?gQP7oVoG-2Q8q;-*MnlU=~Wp}%wguJ&cC
z__!n-ZZSRyjdyrG!#2)eefFbMYoGq{jJ@VPd0x+wq_7(Ch7W#zGZuO-cJ_Ky8Ws2E
z{POp{qE>ma0xxo8E1XZH`fBFzHDqjm!T3BNo~hxy<AGmQG4Z}((juEei{{PZIC4m4
zexmrz^dEhH&EE9-GBku0&78v@``d)U<Nt>L;g0E-wDV3eee?1yIXA`c{A$mK(aS0;
z{Js>K3frZ8kBN?a<W_xoekAjTf6YhN=jk+mTE@`u?&#@Xn}j+Ya%?#peth)28qs)E
zrZ{(hxYo3N_cH(Qmp8Y`x_!;B`}^Dt?>_9kvEt<SQ~L2Un&rDZGrtxTnfUqE&YoqZ
z@L*59*8Yq2rgQh(G3<(!lVWd>Gx(R4aU}ditHrg{8A5MY9^2TsH)Q#*o{YrnQ_fv6
z&eKagV;>~7JG<xfmi^~!^?i$&7&6XoKX6R<(2tcD|4d)|vZwvy-6!z{C%k)$4u;H%
z%=cKs@BBX`^_B7u`P}E*@7O1t|1ZKAFfT{M!bdnbBD`*Lu&m(5puY~%f)7=!dUG$U
zFqM2#J8#EhvFEnJ4*zH6>$$HdT%Pyk#bKM7+kIAFnN}}wCF1sxdQY3eZkf)8ckdt6
z@jGl@ahoYz>{go&|M$kG-&Z~dHk@I*{GR3iboaEGqP|bMdcMAPU9hfFU(o4fnZ=$-
z@>8|v+%o_0X==*C-h(f`6-SnzS<te6i(TFlDcf(FchpW8z4GH#e^4sf+LU;D-^uB3
zTI0iGR$T}^wanpJOUvCmf9FosU-s<6I){6U-);KhQgc%4q@;m}@ZQUvhmK9%I3@UF
z-~U-=vETl6iVHIwn={?xkVr@N?%v4BXCGfn`#hs<nNQy~&lGl_x1q-OnvYwH3dO``
zXYby0txS=j!RkxZITxmgKif0(4*&1d{5?geSS(}uhZpk?9JaZBZBnF}T-4Lk^Bi3{
zJEq;5Hd9Q}(YkDzhe!4Qp1BMTf9%c~KdkcB`6PbqLe1H&n<vGTynOrnbCm8g)%Eu_
zn0}hGi|f9Cj;(^V-iLWSpAXiCAIP5@F`@7qn{>jf*PkUl9WNG~ED>s{7EzrYU2DO?
zaN54G!u{X#-EYpjZ8m8&Ih3N$^!A6JyW1Jj@&_G9s^Vq8sbA{dxz|Bw1qZ94n)`xv
z7EgZE{r&gKpJ74nwGC(ELlV=by;0RVly<sDk~3!7759#8?q0q9(%gTNI1e;yXQ<2n
z;Ix0e@aL>Ik6iiEcIK3`J`0~2+|`uM%aMNlg~_eLsKh($4<n}}$o8aVG9}xpZDd;+
z<=4CLtF`6CYUb3VJSWc2eij^TYFm{PaAg0X$<r+VXgaOiv#S5z*Y0PPlQlf0r@hg&
z?Fjv8w7W%YS`d?O7hA!zQ1>q><%|r+E-pV5H{tx>W49XDJac&VKgBh-Q{B9J?dE3A
z*1WeCb(tOo9rH7e{4n8S5cq7lnStRLYj4!i=gu#6vg3u=rr%lP@!DVWj{ek0!{>78
zdpyPS!|s<bHvC-NX2Z-NajY$4#q3o<PiA{_UoEqi($(FgHhF$@vmbLu`erqcHz_p*
zoD4B~TH+SdGh{0@y#q6CGHNGnOKo|0x_x!Dm+<w>q!ru^KN8=sz57RX!J6-)cRpNU
zoE3KEMZWdYz{bOpAFDzmTi1jJZ<OwP$NG=^S;4(I^OdDmh;EHuQ?<-wW5J7uS+3HO
zp&vJ{$XS2BP5fo{9p-tut0fp1q8_iCV)rF+$<+wu$sKaMF8V@|jE9#wY&h@tc<tY}
zweedv#>8GMJU-)i!?{CwQ{x?$ZmqJ9+pv4p&k5V6O`G;?s;a7Ls%(eK|IhIWo6Z=#
ze>eC2i~6Ub;ny|x&8U0NI(OgJRU4IGA9!$hcDtX*)qQ{3)GqFm@5nl0?sH<!#Js8N
z91Wjm@YMYM_S1`%Az;tm+wpZ1=T4m(%*bGJ`uify6>a+BU1t`Rq<BSo+(`O+LP&e@
zqgM=T1*fcUJ3asE?!)tbCAQe!n4rI`^YX4ceR4Yaj*@qagu;T0ch9QTUn|ObO3a_R
z@X1HJvK3a@!ZQNqZS(ne%kql#!=lHnGuExm{F3o!zRDs!_tN_U9y4lcW#+EgoOSHn
z>XVnkXNetrWZ7wGm2kJ|yr7!Znl~NdT*WyqJRVCKze!K`n_aE7cGIINAy0iK?d$hQ
z-D@)Q_~V~*pMLx!dfH5C%e}52_cA6*&sipG>tj@&)_>^5YQ^8C8J;tu9xvZ>^TvyB
zp{d{F{=I*2F09T{_Pa~(ZT7YMGQ@v|{W~`+=%VH=-@N|A|D|ltKi8kQJn!U@RL90g
zysrO?1DNd31m9%LJp22qZ0O|`QfuYhSW1et!*$fU=S^<=q$eHlXr9aU7w$}D=k9h*
zo*cYHFYaDO{tbEKm@ZN8lZ`K4ocnq0^2(p~2Mr&+HZ{2JyZc|r{euhNMp?ew)Z4F7
ze$*&sL-gb?VQVgDOb|FGzkX}d+xcJaXZp<+n|%B1JeDJQhOTwz1s{fAe|!G-)BL=i
z2@}Gur@o%~lrQ+owD8SK&MDp7_w$_QRrOuh-txyR4btokf5cK6t6ckh#d5Kyt8_OT
zy-hy1?dc&+b6Y$6^?kn%dF~3I^U3OD+QnUdQ_gtJ_~Cih@$*IP@Yf|w-4}P?OL;4O
zgn{Ay;~>{H>GA(1#3Cwu=1yPhA9Te|{$AqC#cO`<lF+Vx=;ZwV=#n)~Ql15|Ite%b
z%DjGe+imM&;mT?6S53~jU480)2+I$9hCOAsK(h{LlM<j|e$YgOnSlx7kT{s&V4L~1
zL_Y2tJat0$%<tU0)0Qakw3Pbq|F8W$&f>MzpB5%3j-dOY^E0IbG?^3=&%OU%{pXp@
z`Pa^Wt_G~DYW;Rc!aPUs<6HUJwv7BL_Ybwc+ifxVsPDxk1?T<EUUpwuDBSbb(P@Gs
zw@t>U-+#|-x_vC5y>5n5%m1d5+oEcG0%jbCClq?0IC@0yyW#4UV%wQr)Q`^m$^EV{
zc3J<whf}WReAF`jyYmaPUT1#Tp5xaa950+v_DW{yKa*WMU$2u8l+`N_et+!hi}|7{
z6>}d7e3CNNyZ(>2a-R|Zdv4Ju|K)k!6~7O7T-1ACVE+5nQ4{R#rJqTB`8lI&jdkCf
z&f9rvm662@jgP<Yb&Os2icNG~-(Q)nzCZ6oRz3>rb=NuZ<LuLvpMSd7)%{t0vBFy|
zGWJj0AA58Dim=Cx@15tR-;{s-;af<-qk_6?75@dr6_-}`yjdOfyY*)6i5M3DcYC$k
zZ=91p7Snp=)Ut@OT5fH==V3`K&iRpr>sJd%D6n6<8WwhRir?ehwWfN0$*W~&bxvD+
zO|3on+JWUlBI!G&GvD7W%rI}WI&U^}$E`ir9{I4S>}~5gDsZO0<>dvA7ST0UeoHK*
z+86g*rG4*E`Pk$jTl?;`vGD$n8o}QGzdTv{@s}r$Rc?{ht({^Gd)D|jXJ)RM*R$^W
z|37PUC%sgOJ|NWmbmIoWtC8>P9p4$WpWOK3oNu$;^<4*}-YlK*rR2+%=;;e=zVDbT
z7`py-PR{Md8dbA>ZYj)8iX|dv+IifXBDFp5-nt&DY{@hI$h7E>PeU_%+I=nG9m?%q
zn(g&YUHQ#r_3(|(>h2GstxV)tmhKSS>;^jU+w<*D%Zm!fo+mi+7<{u9<9*Pv?#FYj
z?{3?_I5sfWdT^$Q&ik~Xrgp3J*STkIhJ-9kXWRe6?)b9^x4Z|oF55%ri<kI57c_fv
zbcKK9bbhuB59i8*5?j>230}F*zR>Nf+T8DlM9yCSl-`&1JyYf$ljDZ^!iut~1-_q7
z-C6&NW#_cqnX_N|Uzuq%$t-)5?uLzz;yGDvM*OqhG9mEg{*OmEkM6nS(75&DpMzgl
zwAS1@w)KrlCGS>Q|I>@ERmI%i!S(<0g$4g|9h};V=B3xXaxD(L&hBy}_fh@3HS_Lk
z++yIlv3Rb^H<8|XpmV<i51+R_+<7j>N&J#R)+CmUmyDYBddB~@t?mBS(pT2S<h9?4
zO(koR#2mkdGxooi7tQTHKab-_0k7nr9TMgzzN+lxNb;S3*R62FG3zHCw;Ze9#ioC6
zDk~~}#Ai_TuIhTw9q)`A;w!dJIN4b;duHpNHLe-zCk=0l#oGK`{V~<!|C(2a3rpt;
zt>EBMU~&JpqsL+UpIZl?zI1+-+1b}>V-cyUG%btg+RTGj0`olAR_@8>u`^kmrf3<d
zdQ|l8i$LoS%bu8hZYnGL6_RY95p5~{D>&>~P>#o)-}z~+4(wmW^o{N0Rob6TF_kFI
zFg8DOvig0$=GK+kfwwviE=W(FqT}^(DgWFZYT{iV+uDDnoteOrx^~l{MZRT=I&66#
z8Xe@n`r9F>;^>)`&yMvNTVDRx%$vGX<CC?nTVvm~6rB@`<LsMsCFjOv&rLrwV_vD?
zuB|z(E!w8Li|%Q0)%SQaNM31FSNRt_S(|BDWW%?D7H{DgJ+=n7^JjF8-p;qZH(%5H
z|A}OcPj40E{bx_JS-<32`?<(>z7yqEDQ%v3Y0~X4b6b^f%6+_b$)A6Y@`(qX0h7Ha
zRQql^8@R^y=l3Pz>_-yU&tA{s_D!ep!>krv_6;}GJ*-5pJTeXJzM`nl#%Vh_JkL^~
zly&8KkBzU5>UllITu+=@+jMe^e;U^${RGYrEO+LKNA>vD@6FvaWB=R2%_oK9`D!LF
z___63Uh+N(Wk)l2dm(#;PXQNIUc9VS6>C}|wVjDG>tOT#^4Ah&2cI6gRlB|YU)YvA
zHph>}E>iILlX*&CK~nml><ROWGllm&EHdm=@etL|FuGL#x%7~BCZ9m6)$hq~wz=z>
zEvk2nkYO^bSJh|e+_rGJt>@4BY8LJH&k}y#n!vYj_VkCA#}Dy$e*Pek<!)h6&#u$E
z#wq>TzqTd+Wn(8fw47YNMo4mxzsg5#$-=g?b~Sx@%&dAhe@by^ema;w&m?9ESJ@;s
zt#5L-a$+w=N8b^DSRKpvF4Hu4<B50TDt`V_79SZ*Z@P8wUMi6?`Hz_8%=bTab)Q%-
zNZ;CZKJb4}%Hr#fm8#@wLawSj61&su-}m^(3%NtrgQMOtEPck*DSzwSjN21lEf2Q7
zvemYBom@QUbVb)TnWC%zca&S4%W$3}Gr#y>a*}jW$o!STF+wK}u50m8skECgf8l={
ze~sJ9ZXGfSe;724_9ok$Z4-`+JNv@6w6E}Cie=HWl(6NsT^foWN6doSpP255O8G04
zQY5Wh8BkMjcEdBlrXcA?fp~+X9&Eq7*r&?}7EjJvBGSn|sWu`)@>IO<%d7wYp5LjT
zS8;`@lIh&LCoPI=|4rU3(3CD{Is4d}>f`)Ne!YnHDvaJD7F8j>YL#KS_lJcCD=eq^
zeP4cngDKBp3!hz{@zEcaiytWZKW3REC!*oelpympY|XkEfgwH;liFuoyk>OW>|ebH
zli~HN6aRQ^%Q^mDb*avVC)*2uvh7x`zr*%b@RCDO`GZ9(PFfuM`kQ~Dz|^vP7o3F3
zzm!zDlpfrkuxy>z=cJ}f8Xk|jpS|llpI^Lb%H+T+>Tgd<n$ERiNu3kFJf2|z|FR0n
zO;>U<BzEkr516o|OR!T=>))9uPxBuYd_TTDed6-7>0S>1CVu5P^{+k}CM>B4lwkDm
zkPV6oTpi;)$%@T)rB!$BKN)?k2=k_2YkK9oVz)AFnUErN>>!)vzQ9dIf4(>TlPJln
zo}hOuH>~<Y630yW#<!w28$V9n87-VQvq>e@ZN?@?u6(`{LAAXbb!N{FZ)sA|*d=?h
zIgw|=cg5tasr^&@9fhVi3TnMNm=WqXC1vu5T`jI@xo_?5ODqBe+j~yyn!RhZ<-E3Y
zQBn1bohz8vDRxR}v7Oy1<v2_Fyr%ZcrMW^9pG$W6%$dvj`SzXd&04mfW<9Y}aeQg6
z-^He7X?$eyha%m~$&dExM(%NJJ11CsYmtBU;wP&f-Rg>uH9b}(vE?_@y#%EfbNpnP
zl)lH-oM!+X0lwMn<o@ld^$K73{m;h-PFOO1x#+4;WsOhIk0$i5H99djQipd|$}dsL
z)^(i$M{ZPK3BLO`dYz)De!{WKt-eP8L>_rohu%B+wXsR%mqy;c?*XPkJqr@QEL8B+
zZ*<Hkel>xcYf_1z|9O`BXO{{sEgl@0($b{DB{DTFU-Y?OSpT)?v==g&=~c_!BeL6k
z94Cp*X<4GAW0-ZPKz`DdMwbH?j(<I@nKe9`Hcb$jzvgNV*CdBE8M%3@n7&wbzpb$l
zQE7}wJ*u%_hohCpLv~hAhh;e`QWp#sy7Ij|;LW{Y`qU|rrvoEh&wFwlUCef_{z2*`
zr%6Wnrv3gOEG>VSNPTv?|96U~y?%skQ-fsU*2BS9cgpe1ResWLVeOJ?pd}af;q~X&
z?Y5WB^95g<vE-mkx!qg;pSx{SFCCcIw8zlm&V#nNFefgSc{dg^UyfgL^2;17ZEaBV
z71Y)?GBbl8=VWMLpkSZ?5+%N|P0JNPrV9E#sd?!o84895pp(f#3oXez0Nj!HfPx6?
z!KRK`tM2YvArupGcn-(OKBi44pZ9*>$@J_U`<!J7D-u>DWUQ(FE_}{t|6P3xAN5YI
zHV};RyyCUUPe_yp1h-CFG1X<Rik1WjW~l~hcUpOd7=YjvuSH=(rISFWtnior`f@R8
zS`t=Fby=(ON+s}M00?S#MtNTGT-3A>1jB^3PFgY9h1HqWx%Srze|e}aL~3DmUaOL&
z8c33Nt}O5W^(9cfv#yX;y$mz;K%xVbP>hWXLDC?m5$TDChR1m$rybDQ<Dj(Tn^>H!
z07>NJ_tm`nRoq2e^WEI`?z(NfELDX~GLj=xMgPX8PlxImI!)~bJ58l0MBLDB(UB7}
zIKiFLuiCxP_V0@Hu(S;`U5{Hj-d&Tl%v$XE?NpzXl(4Y7^IombzjOP~!>gyxd^?=*
z{lzC|W9gtx%9+j$f;MK{zQqqNoLQF3t-M*{y?kBGM_!+bjlTrk=IPrV=Ptkhw0(Wy
zp$&&7UP*6HY!g1j#I|nP{v(!_(}iVzo-Soqeyt~c^P8>DjW^#7Hl2Q+lX+;@Vb@)D
z)%Dw}|1hj6vpCd!CwH@;UFz<`!N30O`hD;JjMfHuq3MYhzb>B+Z)|K++oIcdq~=_U
z+6Ru~9RiOo1~_m93UYZUYB@1#y0~g6w65rQ*1fuS;`G~-Q{SH4H19!d<RY`59!oes
z-&y%-@7ohrpESEUZ~2sLz8n8Bu3fk9O#MXJb#<-6QCrrS{r>rPvHkvg2lwB9Q@}Du
ztACAE$TIDq=?i?UgQowv_qEx$QT(A`!R9qt+hzOS^nahfK<~Im__j3#cTFCdIjnZu
z^)9FB|K77n76lob);NXqF$HyW!JVhH<ni4efk(0z|9rI1RxUj`X{~`%wqwrbRZm?H
z?Do?rp1Sw7?o3ac)}oBNsg~v2m%fhkS^k~><~u#l3HP3EKgCvh^xDSbg5fiF34Lt|
z_Vf5>VjM9wzI*mcuS*w`Ue7q$v|`EkbAP)T<{#Q|J++fdx%kqC;HuJJr?enp!oj*k
zKy+b)$RZ`C=SMgd<+@K;U+Aq_In`#WcHm9tPf7&~+fu||ufLtUOmF@58MlAFIVs~-
zakKt@?mPKIVdc^j%PibtKXDk$f6%L|rqLpP*+zcSpXIxE*L&=HXXm?`=|ji4Wivv~
zqzO&=F~jz&!6B({Jt=DST@Q8{pQ?WrB)Wk^{K$j-90xSt{I7J0k8E9maE{0Xr;wJS
z$kr7d7E4mpkE(DhnI~Tm-E8Zdz`5tMR>!}WPj!2Cq<UDkZkjONqOc}Gvt4YB^3MaB
ztM*iuJdr!>FB+GBeX&!?SN)l%59NLkW^g_8YErjl!<i={No?~zOO&3RCHrn|z|QU8
zxjw61`OO;i&|jim{e|{wXlQ_~2gMUd^0qWCMY*;e3LisT9)D}`C=*VKl-QIy_h`<2
zTkcDSEp6O#Pr?`0oal~x#%%d=ihpBua`9=q4Ht~goNkY~ApNoA-4_w<81wmuXU?%P
zTAsE2{P}(7`gZFlG`$UMNS<zZZ4z(X^);nxACx**`Mk;7bXfFmM53Vo%v~xvl8L-_
z&b6tci<A(qdH%N7-kam2g2~F?YbF1t-RUv1<xmms{i!M;)!gp?;Qs%z?rsM|*X=(R
z&D70gd8Pm9Tg<u}?4G$XQAIu0h3Y$YwQfHD!_Pqf&733Q|Epyf?;iTLbh+TX$>nYS
z)^iL>ZXDupyVUSAqq8i0KGR93@|(*ZzB$<b!)oRFHBKQdpzuJX+lc)&Z>j~H_9)(Z
z<-J)j%G4(_C2UrCzu~m4C#UzWe{kR4u3Fwd(|&J#$<@S*$Meni$V$53nPNNLaA(T`
zA4}bLH<{#rr~ctue`Ws({>;ZY`;Q5paNoTwIAX#x<-^~krhj2sIg>XwET;Iz!``nZ
zMltEihox#Oq87XQUpU+z^-E-1xUg^BqD>3uKH}AVH1E*$r>=K`zf289%30uy-?Dwf
zX>X2?(>n6k+?{ZHt)R80doE9@f9Cm3hyU5mIbgTp@7KSJy`w%)dUqwFqcK$O@dVBD
z*V2FJSf@CiTA$}#>@c%$<C>o`=QLAq-^|~<zm7Nh(!!mNrkm@0i{BZ&=VH5hrcG6k
zX}QX#HO$f1V!s)BPiePN`)zu}r*pFrFZUmbg{fcFW<(lywyU4m#1&|YS|A0idZpS@
zA+zYHdfJnBY(Bv{1&8i?{}9<B@Lm6*^~>V_me1I^(qB38<sMwQsr>KRi`Q9yY!#We
zFue9cZChIAe9hqND`!RSkCdAi5U{L#%IT`fwOv(qt!}?kmxX?}Hd#{Ju57UU{zGQT
zZ!coGcmMx9Y0hNJeX|SO_L)E1JBjJ)6pbgFo_*T3ATbk5-gDWop#mDcH~Y_OOyByz
zY%kyWG*;&q^O=M_HqX28x#h2Ve}Zj9(W+LTyMGrR{xtW9b9>q~x&N0Z#Me2<bC|mB
zJd&~S#fth!t=wIUrB?mqP+#^*vo_C#{ngfc!KZ&Ux;0FTI{x{DO8#6C%ju>`f7_3}
zer=NTLV03;3+J<^MNVt>ZNezQ3$`z}J?PZouJo_=XYk@#i}IXRjjQYanfBcHkXmNp
zHlgX9?i7iyo3dh?vs62|rgGhSelGNk&fnKNq@|suF85iNm*=M%GgMy};FpP7c_icD
z?n4~U%O-`)d3JKnn#8ji$#wfYsw??~Z@rIwAXW4EXKUO0cL_}CuMR2ItUkEnoEzW%
zKi@R7%24wpI7d8eu`_n+D0kU&_ic}kcKNRP7f#&$_S<6l--CY-Pnxkb$6-Yb*Qd)~
z*91+Jt*<^)mij5kvnL|Wa`GLy?wMQU@7e3@5o3#!?Y?Pf%Hnt8E^F$oO-4_zoQ+{n
z+fx5h)9dIo9qk!6KD6BPebn+VU_t242Cdikot8G)oHq;P%grpW|8_x0JaX>=x10hm
zi{qSYI=-T01f?&NteireV@l^vJo@m8<u#kvw*RK}cVEynmyRjB_3zEUMCaIpGpBsg
zUCUW7`&`iY&BsTF{132;^j%z+m$x=}g4K?d;!FE(Z|LyjyrQwPQ^jf7O{JB~&A&5M
zpXPsG=sa&v@i~Xef_q_^cCGJIZamek-64IxqtABQe|r(V0A8`2;Cq(pItKEWbN3(q
zx6<~oPZ5>?OniRzgOHPr#K)_fj5lxI<9Bbe<uX>^lUBRjrX1DjcQ_Td!1V4!!=!2Z
z*$&M8uv+`cUtPQNeb(=6&uulnevV~(!Lph07Sn4B&fJw%y>D8g&b#f)LKn+(50W$Y
z9M9e7uqf}bLg2y6vm*B|t9xTuy(-bmue7n7WnIL~=W9fxW}P=Y%bUUE%CcPJ8K32u
z4C_xUZ`WZ-eHSi1GgLg1ESPV$H*){o^iwMq|DDyXc}#b^Tqg6IBD<)W+mw&!NCeJ1
z(EXwG?wz}b{v~^?lDT|Q_LHCG%PE>$g6#LTS{tNYHr^&=wXfwl$1J(2nUh!FG6+!q
z_&IyeM7`5Ke$3lVmaExUuXj*ht`~eu_sPvo0?)+U5@%(GmaWoBLyc8P@fLF9oOVlv
zOp@2Mps2S-ou_8M+difF+^Zrn$Jj?Ka*e?izG)w{*hGS?Z7Z!;*)f=?^j|SOlUsC7
z_pE!!nl-IoMEe}_Riy*(B=pQWwmRVOw>$65Y}G{D8>7rF%7h$gO<HvC?B<lR-*z8a
zetBT49w)7Fy5cNzMrY<z&1bQSvLejoVzSCo8q-DRteW^%W^&uBSrPyI=leHWF~{is
zIw~~%XTq<O4`1)QWodu=*p@Gbi`{O<?Rw9-blq{$&8@d9+?4HY_MDie_5Ixo&XS*J
zi~qJ8Yu#lyD#O(_$Bt3{OyN!MH4|PHPkny4Zui0KkIW`<yU9O0)FH4)3SL8kbK@yc
zrI}>pt$8+S*{X<kr-#@68>&Y?$!V%Ple_BZ*T7gusl8bYM_nHr7x?XOmZrbgC-mRN
zXUpyytqV;nwM?6M*!-CCAD(Kz{AKQ2-WUn)d{r>t&OY?}Or4j?jPgQpjj`|SGtY6d
zHZs=f{?W90%KYG*fRl{`YT16^s8p*!ziZ8|4mY7vL&vSA^B??Q`njXnVbQt0Ixfbu
z|J|SVwMB_J%xKYZKMUWP`?`aV-8s2&`G*!mbF-88&u->a>&f#F)Gv>8Y`C5+viaTG
zBHqMxc?XLbwohxlDEvVB@#+H{-8X&R&;R_;%cUqM1aHWJg2E+Y!dgKm8?ldzPZuli
zJ-Kc3h3Q>eq~{!+xjH9u<H;)@B=0GRTbFj%x6MCr;Hq5r+)ris;v2G(s{(e;{(GE(
zmGM~4H~-_y19t7cJ5zP(swNlK=B%{x=$bd?v)@d4ZK^6-{Z=S)!90ZnKc{g1wKUjv
z?)LFA@w|NntDALJ3y3ZTH7CKYcu*sycqIAapT~I{lGyVT{#(mvni!m{?|h!8(i*3|
zF6QAsm7g5jJs+NXct=9r!c<nC<6XkxinrzK=9JxKZGM_};+gHf?I{^?ar%iVcT>{~
zzezGHwJhbUR=7UJfVKS5(t=>UyP84lLC-7BO8)J22DKnN{xh}yj^YFL@=&Mi3=Kg2
zDp1eQ*x1MzBoAU68W<1SF$D1TOft6-y{)Z{5e~og&GP3QhQsa#!co~5TUcTPuk~|u
zhbgx<Hs!`j-_W`G?d7z0Ty@*@H{3j4w))7Hyqjy+-Y(1D%~u*OzvRfR@Yl<>in@ur
z`7kV<)^hb~l4w+hFB1!sr_Vh5rjsJd3%0V=eEaqKm+bi`cHeu8pT!i<|IH&D(?9*!
zwdLR6S?;h-TK8&mfAsa`-}6>}{Wxzgd%63W+C7ffciH`IQ9f|gd53;@X~^|mpC;b3
zWiM|(5#nCDjQ8c<YQC&xXF_GKzLkG?NO0rN;@H=}uI#e~>8*IUVqNK9o9pwMcPrQZ
z+P!$!wdK>kzO&phd+rjeRoQ3Hzq(ue;rxx5tAVknkA1mk%YORZ+|^c9FW&t6a?kev
z|9rvXQ1|<9z7($SpZ(Xa?7i&{>!f#H&Fe~QcYUqrd)GH(wbiQZSp8y<!<8QFSadVT
zPT<f6gN}<k1Y9=X3^X|>b<i|TLZm4}Y&L(3fe8;6<NR;d%CQzod&+(~a2$48DB!X=
zvd(X_>5;>2w|mnz|74IpxAEaWH`Z_0v%4h|A||qLnBu!@R<UYiS*fq+v`sJNpX{8Z
z^Luvt>J3xk<=0z=PrCYf-!?AqpWk*%?=}n0U4J1=(cAoG*15H{SK=1dR%e}3i|zeb
z9{G(cH|M%8o6om}+qk@|9K(y(rO0h|if%otb@l2TZO`(MjMYxlb1q$-Q*CrTZsA(4
z_&uKCpV!|{yQ#h9_Oj(Um#%JEwdsv$Xp~Os<h<oORZhn(Tze?U?4{kVh)Jpc52x43
z$Nycz<sBLQ`1?oCRnKBPpE<N{<C?wKHN1G8%7gocl7}ZLp6l&*56ZNWRZET#I<oWQ
z#~2y4<cJ#_>spT~Tlk12oD_KO^;l3wEiuCAh~>wR9DEm}d&D0+Fpv~hah@Zs@7h+l
zUf0v6iNE(|wzu2klM>T-rWgIS$=%V<e<+0~+TnBHv)u2ulUO9KRdqWhDr#(vh*_ns
z!`1p!)k{}wdQi*yzmZ)VG(^@3#&8Qx4{A~M2B|qw|F$@(P}8-i<YC7TQP&8O{zwil
z-9Fu=9NkK{odU8pu9%{v!>_Hwvb0ZhdQi(#!PeFV^TfNoH4m){h~QY|qNBI;-c}6}
zF{kxn-QFvw>u|NUS}YXn_V&M2vj$}O)MtyYe*f*fjmcL%zC_ybd*SkbLKm#9?$#d2
z{XRqXz?+vP-x<r7AAiGe-=e=<`d}ynL&CXyFH75-w+!EyznT8!+~d1q58i#5VQo|O
zyzqVgwiu?W=O0%uc5B=D;!DZ}yWMqp>^q)^oO*e3!QbUq?(jYMR<i52%{#yTn-9&Z
zt?t(9y{|Yk&+q$#P>>yEGi>L+V_d%b@?~%7&375k%+o8EFDT!2mM`HO&yO0(SH=$v
zts8E>{a!fX+4`H8U%o4@`gua2;{Wb6g@4gT%$@zqTW5Br97xfz`S4U@8jrESw-q0E
z@?HL0wo}qT^6<0YI~63;6g~!}NQft#G+>^1L|M}LdeP&@6M5e2S{|8fs3U3D@uSkJ
z=&jk3-#Z%8!a<S6W%BZ}!shob&)57rZWnw|>Gpg6_b$(E%Jv)z+3=$0=5^&ajc;$w
z)%YHB;PmvA_18jYtods$yWvl<-R`^Vv&$D1f0!(~tjYD-^{v(yk2uA)u5@^HbKTue
zFS8d~KCCDI-rj0G({pvH=rYln+uq)qn{zWOwsm8{#N6H6RLag}#kzVwRJ#3b)!Y|z
zuI{>&&n<Ry8_3A8*Z->aB}{y~)BmsCw3<!Ab3dP+#T9%|=``P4zmju@OGTG8P1*PM
z*4z~(d)FNbF*tQ#=lyD(&$a!L_52*I4d?ec-kAw1031F)(QwF5xW3<qqt)raa$W5o
zUsQQ=BL$DjZ98(Ht+*$RTRN}%*xqe!g~yz|Or>7xr7sPNe5tZjs&`6BnAX&tTPB3<
z@>uz7<ALe+YbH)Qck04y{u#5UWSLyzpEK3#skL6vs*4?-=}UutwslX*@>;rNbI{H`
zmt4I}U4t$~uKeS=w0p`wKV{XqQ~R~FW0!oX?444wZ*@r6t`io$ZeCXZ*Mx-avisb-
z|B~wk3(cz;OX|NCbG}>?qV@lY(o!kkIs5%PL9TG$se0G&YTveLD}+}pOn#se_BJD%
zQ$5hR{cCo;cu0S!wO$F^o;jJhj-FdGzj*$$+I=X?J=)tvH|s@#Ny61Wvt)}-DJvP@
zh^>zo391GjHgB$4bE|NtsA}Nh>&#Vae!U9U)#x;<vt4j}Rc!p$1t}@X#~b8U7jE0S
zAmz%+KE}Npj$ORgG-<`cWQY3vxr^7b+CKZPy{T?S|GHqi-EWyeW~~I7rNP{vq>>b&
zv^ZeGG_@bR+WLwQpZ7cw*m%Rb_kW8ffA@Snjg+UVM^4W8w4ow%#vIMv>`V*}88tKJ
zXbLBF_B@$zQT^}C#E%~ni<Z5aSDnIB8BtR+qiO2&2@{U%h%8y^tCjLpRprTsnwm7Z
z)d3TxX-S+D{uI&Lv^2BHDeT^v7MrldlBih=CVcH~X|V}=xMa(g?Am#POO|qSNmg=l
zR<5~fxBpYZLIqvl57}XHPKWd(Tbs6QdEpcm=j5cfI>4Z0t;)oSGC~EBj?Jtl%ojvw
z-ELuyF1z|kK%jns+#LB|$EVicSrhf}herARPZRz<U2VQPEF#Nny@s7r1p~w6`Tr6=
zcRkY8ja^W8rGRn5=Z{<;4nCVNF3<QQ-)wbQ1Has=I60<**gRprs-o|@{EYUNvu?LE
zzq?a=+WF2*`R8U2r~L!5-}Kkbx!tn+SMhh<bcG+sclvtPM8DhjREO_hVV*Ky&d%SH
z0vhV)WFKhMEx-RsprL-x2Ohqhoua3m8UB4#US60mIs9kN%}ZNPJ3E|Gw~JQzxcQFS
zo!rxRx7$2<wEV#P-zPYhuhfnD%sXZ7_xm?$6k3ww0(t^(vW883^E%{7>8q*sF|J(g
zpI?W3E|p<qU@$l(^Q?8%)>pH3z1j67-_LHr+CyR&rpyh`l`UgtSZ2G~GrU;u+o2ne
zL<<?bZ!Y=$#L077Z1CIgGV7Ai2(N>N`#1ew52`GGEVzHI#_gzS>CZFCbzh@)+=*LQ
z`~BY(-(6CZwNA$^tku;^o&4_dXH`4bpUbWu-@DE1@8$IE`SZ7Nc?Zs01FBP_SMGiG
z`^n_wzn_~W>$V<UYI=Ff+?HkA6c`u^Hl%bEFFuy>fbEs(hE0oCd(4VG>G3MGE%Btm
zT<M6wM|XZyq-dUXpVjr`*KZ#-1_py=rk7X`EeeRZx8O=rq2k(~<|2uKYj*hEbYx)Y
z2#nzHlKt`a;#Z9itHalCy4<ti%@LF6VDH*jMN+<d{iN5$t+jjVk-J#))OKC2)~Ed@
zSN}*Y73(&?m?QdAw1kI&q37+@DWCOa-5t`WAAiMS7FE1|`RUyKuikx%n47nH`RUy9
zUAt|<p1)yvyWY-c!|vTSVTo6K-mbU%!}<A4(W8r-6PA4oXHRQ3KHcelu5soqb^fzV
z>C@hy%49U&x>nZR;dwmUx3b1>jr&Vv80Y@~7BTn0t9M1W4_?*lzskvG6PsuKp`>z+
zAOG2Fp{w(G^!l$}ep+_3_VLav_IG;yhdI~G)9aVrvD+q0eM8loJp2213t39SF1-0y
zn~*QQ<IU6hkA?o%K^E}#d|dy&IXv;Alto>us-)*l&Ocds{|Zv4cO5ydEZLZ=n8`R*
zHrDmhn@c&0mnu{aS9|kmI==UoO9|P%U6e^VE^eMvwuc#)XQ-g2$)l&Yje4AdwoVg~
z`uHhU(oJz^m@8NBkJC>j-4uV$=@OBW*U>+3!1aGs&_t)?tjfx^K#x@+OA74c;^rl~
zwB2^<t*ESI(^Lsv_16hxaF)m<t*dbh1@-Hvr@iKvbW>cZrPk{9#~)-|<O-!$w;K1#
zw!n&pwCsK_SFYI~KYij+c3Ty)B%pix^mK`Q$1Qhxm~^z6G<R=^4k&BPja~kRX|>0<
z(rr%dx4Wd)DYcq!u-3{`Iu->g%DL7$K2};fOB__1|IAq0JteE_@2Pj&r8HlziCMR%
zWa6d!*-MrbFAs`*sdN-nPwZP661J-(sMpPFm)6u%Ue_-@+;)vEtSssNd;XiBv`*;;
zU5fl!oVv7oidg27C7VBO%;uU{^6%t&jlJ9MP0lh2x)cb~pZ6gwOQk1M_F3x#maG>q
zjDJcW+Q+ft%`NsX5nE@kd!x5)L5j=d_?xctUP)X?Ub1*C>sm)%S>~#5AKoxj=`Gk~
z%&X}*Uw8dov&HAHUG)YP=w&=FHfF8wvU$6`Tgr;<%l9ikMOAk^E#IHa*puk$a$)|e
zH4+w`$7i!7M+g=+@vaHooVG40SKz@*5Sw#z*hVvspu&S}*H+C0v3(AK*!pQ_qmJG>
z(AlvdR{CJq&c?MM6S~_B*K}|!o8P`U>4A!zQRlUEp`OH6_YFx8R9cSx-Os-`vqoii
zInSn)N&oBqJ%0cB<dg7is+0eG4}ZG<y!zzO^(vG9e4l@&e!joj-cMdeC+kh^|JT}8
zp7xxuo4sdtP}%l5)Av*x%>Fjvzpkdqqtq?!f25yEx-AS_s?>UH>C>l@Zi!AC+NEn0
zw!|o!t=csE#P%n-QM-H>Yo2;N<?h?l-hIq>mc4wkCcXEs>-C)J$6pp!+xYdr*1G((
zu<A};|K-Q4WY<VW7#9dyT)z>&n=6a$+MO+0yQ2+nP8a?&Z`1D9Jx~4%uHm(L$=zhT
zu8>=0!=~R8Ro~4$np>I{2uc@Mf-XhwY+CjvPf_2pu249tsALD5^x>2LxZV78mv7v=
z+;C3G7D>ykbDqsU?|skCf$wtj4vPr~_nrD|H+Lt9F8XbG{%l&6!1Vszm5i3m3VM1n
zC$Ggewj4Q9v(0P5)Yg@I_~*Zj2oqcO>0YGt#x*)Qw$}EBhVz#m+O%l{@0&kIj;P<%
z($V%_kn~(#ZC%Rh4QtvBM6K-$!|bA4Q}2d;_EtD@D#c=!WvHHbYSs1AhDtkQro7~h
zTjilA{+H)ys*%iDk&{msxoYT5)^#*?E&6%IM`ZfRNf&%3)^utJA5Gm{XcDZ#KTo}!
zYs>Vh_u4YdX7g8=*d5!mBwX|UHOm|urEj9~ai31yW?*QL0d+y1tYu(O*fDd@lAgeY
zYY#QOJ}b*`dH!^t&)ZazBaHTlGkn-v^WsINXFlJTcQX%1Obni(<kFz1^lVDU2~8hC
z@xuaw#<{PqB)tm#yeair_)5)*6N6{Ge3p9p%=$WORih%V;N-Y%XZB3hnrXFl$3Kvw
zG~Q67(pSY-RzFKUt+PHzHF){D{bji)ul(*_8GiQkyLk<*%hx>KD=>R$M{VPFJ<C+t
z_pK4FO5a%T$*2jlPUK-}oY+&UsrkAhQ@}AnB|X;blvSLGi$Dj%l#?!!69pU-G#qC7
z$aS=EFex*hN-6p?r?JVSBDOC3QByg0rRS}8*RDL=ot0|hce?SO?c{wCskhhN<(w4$
zTFXaUeoOB4yu;7dTnn8Ox%tGl*x$cT7Kgq5SGVoJ_RFQ8%kAFXz5DA-q5S(w-`&D<
zCkMX29crDv71WBoyEk@svC{ri(rnMxK2dFdo5veb@cD1ei@V0{oOz1+KlxX>DX(4d
zwq$KlnAX(Y8N0K}e_Z((z&GXOjC<NHbA>jaX!d#6w>@!1aFOd9N40YQ?TIUl&*^+p
zn7r0F=SIMMPuqh$T<%$7l{>zd`fpE6T({8Be|zFWz0OFJjICy$vSM@HJU053Mo3rw
z-x6=&#ASOoFZapSTlx};N3*iFo4L*35N~iOsw{Z-R>L*t>JFZ;JqZ$SyK+lkV&~U2
z%gUmK*I%n!*y^}()~&b8E4F_7tmd(Cmenrl%B^J!lGc0qoJqHDPfbnK3ad*>va8me
zHnnwS2G{Bf=YJmT5kDcf?#-q4V<*EBE5w#1Jy%zGwmCGyO>9}xe{o;ebs)X}r#*W-
z>!F?4kDcMJ&wh$N&6%a^rnW0U?eN8=;Dj9-%AH{otTMg(+0UP~j=VE?&WfBAzdYrx
zO`uxW>1Pi!mT7qEopSkj6O`=#`skf<5x*FcGRdcH@k^8a&pMwJ1*Szf$S+S_w8O{j
z{(24Z2N}ye^n_Cv?clkyVVc2)LsGBBcFMCqUKkhj;x22|-E-%quXsO`<w-km%z5t<
z-fT|h>)z-1()Jv4-mCI?qw@YT*EJXR1<cp7jNbD6=D!ZnTlZfEtEP8<%X`ruu~2tu
zkZSt%kY7Lc?`js-y62o*q*j0Qp>9alotumHO8+`6a!WVl)s}kkw|6hd|C>?9z18Ah
z&c%DYdjqw%M6Xc2wAr=#I*-em3waBJKt_u3xvjaduR<xbXj{hnWB)otqo&?F-~PK|
zTgCgfe;sT1x5qqwk$g)xB<syjkm-@X87K4pFqkFCC1L1eC;cH&Ls`TiNnt+kk24Z(
z8VMgjEQ2;duBNYD)3z^CYi41RILuMX-^+W<!0ET7;e_*LpA&hSyFpq`K07SIb|~@4
z0S>bVhb1JqBn%B&cz*<(;9%{MV4KhTW5V<A6CFQaJe{mCpI2c0e!~gpzkNvLQ5LDX
z&G?|lH<9)Gv_0uESG`Y}{Svv>9sVb4^`VdrC$_DtirAYHHbL$0oBZScd!O)TaWZSK
zNzm1vP#B`W(|6^X64^yp`Tyls=qj#_GcxmF?3Qx>I_dc=-><UqTjp3+I{ptWUc7SO
z<24`8oaFws-p_p2tJ|}q&du5LVg2dl(!O71dv(+O>Pn9n_b9$=w|d+fE+Mk{<EI0f
zOSZlD7G5x;_kP6e3Ags~ftYWnsV%uyc#uUSZS(Z`=8Rp}OKx6jx$<?cIiuE>E2-YW
z9=Z1`g;yk-#%(iko&Ul*pGkd2?{r<>J-7CKR{Nr|`QxUgoGag2=QDvUc#yed+xtD7
zLDz5TZ)fVdS+V@?{z`+)Q+(3v-t6fz5)R(@Ib9W$=A%H#|NOVrCv0XdTC&n({UV)x
z(w`^E%-Ym_)}`=f4XDh1ep%#cQlMIw`l$kwV3T-Is-7Pg+%fY-&8$U7QjKJ$UKDwH
zX}6*NNg4gGlY~|EEm<Yi!HkpA5P{0AYt~tqmF33Hw6wk*6BaI0T^|@b(^7i*$JA$=
zc0IarW6>@n<9WGytF`9|MTdl!se)8(H#6I|V%?cpb940;cO@rxzcQP>dGp!SuSYj-
zbS=Go=H|_`(%8bBoWR<d{r1t}Y3I&un{rk3__1~0Z};l1(l$=_Z_xdG(O?ei4Fjo9
z49Ze%n{6H%NPV)oaQ?1=RGV?cLj$Qz6$Vmmn`b;Un01iZK&mK0LB@?)t^uUykRnqh
zgPZZ8NCg=;C%Fb2iE~U3dooTi3$#Ae5nx*UaO*!A`|`HK87H{QOx)PtyRVtPNBi@n
z?@D#4-!pPsS3XGpTbC;S{$`zTtk&iKlc%#VT$m<m@3!~J-5JxL{OR~QY5Sz<JY_a+
zt?l)5u3va(AzFIo-_nWYbFN>wm)>EOw*O9-%yZM4%OG~XvEuQ{-uT-*fyZOSeNPm|
z1-G9S2sQq&l+#kKaM#_mj#ZL>F15%!H{EiZ$LZ9&$ASO1)Ms)nuHb!ZX8V7}U+-Xz
zquCkn^Lwn){(tJ8@OV$#w}Z=8Bs>4zyRAvK@1mgPq)psTaYi>jN{BA36V?2Ev*Ltz
zUv*4*-J2cO$4hGzx8%*(#Qn{39S?(I0t1I4Pn2JV%7Ky@Es38Kt-`gQJ~H4GR&ku8
z-Rt}(rs;t}rqDE&!gVfP4-7mTR2}CiPgSy*)Bm$ls7=+;^7{G9JAyPfT{&I2E~IP8
zA(i!AGMh|~WNwpqs<^-Y#lmo>dy~XOJWg94?DJ!&u=_ga&8w^rHC7eh-UN#zhT5d5
zYLwpD64bRpYtvemrG3KFgIc}{woYAeWn<w|k;K}NMAa3~A3yTaTok=<gHVWPOpNB&
zb)gG42(gudn3F(E^(%#iORGTRckzorOm)uHP8WRxUhUYCu6gK{ZR7FZzn!-o`@h8g
z-iN(&?w(2LPZKF<nm?VzdHLlE|0Oqt-gNXZ&3wOP?!wD;*CseA$Nlqb3-nmGc<#5&
zfv#M=nOiQ`$$j}<!SH?lpT);dpEfRW3R<dU2<l6GoH-$6rQMRb-#(Y$&vbHL{<q=1
zZC(DujH%XLg%hTyytDrhbfw4C{a@9)mq)|P-W;FdQS$#UU)_r8O>g7WgzmaO-g}Tw
zoFUtP@8wC`A9&qdIDO~$^>)AfyyKkwL7c+#GPTQHCl;n2Z@hkU^EH{9$x&Osoa$q)
z@0hXi*@=16{u~W2lL`2ozQ*#?z5VmzYEqB0TRVYxufqNH_icK7pznfYw%xt#s;ZAu
zpZD*Pvr0azUhV6z|L@&-_Bj5zAAfwbwcGdXgxuxJpR3DcDr~2uZZNIov)J34TXi9=
zz$S%Z(_Q}k_VOlwKKb)YHoVyzFZ9{b`P*)O$%dTi>Nh?z<u|B17&G`cq%&H$JpO%9
z_(4$7?1Rhl6N{>Nb9>L2HLqPMSy06*{&m6GgzSGZ1y!?eeOYk!!t#8!IrsGc+)2y0
z+`R34?ys~1FHN_+Jm}i&d!Hw!?%l&LQn$XGGXwGVP2a4&WTmd?w5hFYm#$n}_)kmY
z3*S@Ki)S+HLQUgUrgs}1{>zoksGDwnZnfJ5>nYQDCT!k)(eL`lUcvoNMbe)qvAvyr
z88o83=gIk-dmo2K$F+Vv^ifME_455@`}SUzm)_-S`ZKwnbFvs|Joiw!6QUr@ky60v
zuJmx3(@Y12=9My?ExTDxu`o#r7&tjgG6|e~=)%OPY*JFA>Hn^F&d!3WiYFx&(`(<?
z&e<6tC21*pF4a@zj-veZzIVz#Pd!xTglGtJJp1`mMbhV~$D<u91Jn{;bl#gYNAA#u
zP^G}v+rK_}@<o6*T2*N4ycZ`=zN~cJAF32+E?{eEX`6p*yKdyCroAyU=Id*0&yU`e
z;<X|9i!D!FnMq|-^_sQw)Y6Zqx=((-=IX6inZIV9pROqX-{JGexAW%AnP-2grp9-F
zs8VI!iv4w~U4quAR}~dibNmfEX#%q7XaBT4ktqjQ?LtKza$~n&p8Bn|k5e$`+S_y9
za+g-UpSd~e`?u-;=FHu7dOP=(*_(f#HN3wr{Fk^@7F)AyuVKQe&)Y5aB^A=mfBA*4
zKg3n0bFA(5oare=_bv7t9bNVBxOc{%;3wNo_b-pQ+8*!rc)rs89Um&XzLw9=yzpar
z-@ej^A4Ohw&(FB<<M{ud$6AjE>qM7Ine4kS^d_N)(fGaivbkD2el#5U<?`2SnZesD
zli%`ttnr@{aZ+U2+^T1**;TIHX`AYkcxz?THg=V3@e*N1t)HHO*wfTsha0u>&(X|~
z-W4{XZq<Ufjk71Xo!|IbSa|+|lWm+E!e6-`@V(}JskrRFI)Bjan^m6qzimu{Ri+oa
z|NXjK$UI!%^4fdvds}zhtU9@|F8<Ry)|gY1Ja%|5<T;#DVCb&&P><D!M>;6ZdjZek
zlmtz8rH7{$@*EaA`1i~Tjc0!q)KYlvYwzMdsKE1Icj5}({BIf}wl0suI$d%rmbx#L
z2#V`<>36#Lc~jzQmqlg*wp^~}KVGdmTJ%->gKzzQ;~UNVY-%lgB*QsAwDx_B(6`Jx
zAQD!yF^%bpcc1bdjdb&UuT+oo&ZxJJkuv=|b8-E@qN`4?Pq&}C@bbKj?(QvF3%@=+
zyneyu`If)V?GM-8k~Zhh%69SV)4tsO`)6L~hqff16MKJsnA5oE*K?=GMYEXf_dL7l
zrEhPueE*Lp#S0(Jd3NbE|M>#ZxixxIQn%FBu_^35w(atQvp25Suqo_ao4ed`_Qh*&
zvdgWc8GmriVGwrA?dSdb%r9XZU)^`!AMe=ib8h30I6L=1lI)Ln(&x*W!-|(*&XN7`
zZnk0P``sS`Pkni=8qWIe;BUstle-IAyMBD0bh5F!<$uGTCoCEpc1F5fsNvyx!u~|H
z{?}32(r11N#)qH3KX{<}z5F(obKc7iRx%xA(s=H%^p4362ZacR>6a=bo)jGWr+DdO
z)9+=4;)ib5)G5WBnD^|l=A6vSJGc{-=FjI4zgQD<Vy0Q|>?gVLAlmqfdav@-qPAa4
z3YQdu3_7qvy{foq7w6$?J1k27p1x~odAFr5J7&(Vc`weLe0eY9vxUq&PIW0)<11&6
zGz3{XnEc-_X?*2uOYBM+1-tuJ$!)tTZ-d0=+>#PszOH_^wfgek{b!@o&ji#v@@PzD
zUT>N|*YNSrv?Pa>Z`5CHKXz2K`mw{6{NCBi)~WCMKY99|%$`ZpdA@zf<GoyWr0V3v
z&y(c+&hQ_ZV)NzkRqwt@)91|K`1$db>dX@hgR_J7*RFrG>hjSyskaq3Y_7U#cdmr}
z_V<kmoB!@TyjvjBu<}FBy~EqS^Sw_}7ppIM@nzPP{QIk~Byb*;m(7Zr{p)S@?~VyA
zkNWTBXn*<my|;Dc{XA=*78Q~Dk`+4*zTUQ%RdEvH>X*sV^ZENLf2xbep~<H0v$&t$
z-y81P(((WIV&}81KH)ySuamrw7%o5lm@TjW_S-^c^Im_Jf+*#a9n11%e$9~b-)%Ul
zC*xODfPC=VT{nar-Av1QUbWZo<iC)(azFa{9*~ep3D2wdigU%I7ri<pZN=t)EW}!W
zo6EIU^AZcGq*Zgpdncw;IJd9XTz0GSqJ(3cd5P5*!>i}AD^G4cSoW(uA<W=hA@8=!
z_AJHCg?+DGj>)c_E)w!@cfrd8((P&vhQ$mY7O`zy{bJhceA#=V`wEi3{`2m)e^l}M
z!@3nydawT8e`mtGiq{{m?O4)#^|yYGNBN$wf{H%3BK9t>j@|Wmt#gY(X7bnnHGB2$
zZfw1y>T~PI%SP|lmt<$XiaoR>J?ndX)bxAXKY!3my!2T8dwkUQ1)tX*-rcgfd-eDD
zDDj;BdWA#pe^{;)j*(K0<nYoJn;O*eG_kdH!Ih1Vg1R=?EZQJ&<#SU0+{K5S0#uU<
zHNUQNUARG@YHLJ{*WQ#s4V@#LTO(qsCT-9VnKm6X&l%+(vBz{$(#OqH`n$a}4=p;e
zO<+pYpZ#-AYWafJE1<7u0Id%Itzob*M4UWr1lo825+r_01f5p3gU-oDTGb9(c0u;4
z_PZC$78!`J1{9wC|KI5I1;6RZfrdgwlivI_DUEgSl9?RSqW5}NT$j%2pl?Uci{^h;
z{#rNvu=&<WZSU2#uRD5vkM$L^{yko%p<j2Lb<g}UZ`IFD5{mk69?B^_p9F<0<~TS_
zuwQHbAb581+BmhYc7xk8o|Ovma$nqKHPn~9{_cIk(s#xtrwO|nZC3fle28*?nH0j4
zd2{v8J<I-VIqv=3CsO;YuJx=<QO<owrieCuxt@C0SmDjepZW6yj88nt;q(pRd2;UB
z)6?l&Cv8^cdGpS|y82Yq%GS^CF8#dt+KfNZBir%pNmF|*vr@CTHywhT+}3L>Z%saB
zHT#&d%7+#QrwRXdt#Plkv^1%HQnQ?G)0+2IQ=3{>*G4R;{Qgcb_?ph8(!Lvi?^sM&
z>sS3HXtVn*v+og;A78mFC$0bgb@Qt&m*qCzt95U?uQ)X&?a~y{CXSS8XZqiMJo4`O
zvEXY`i<T8UejB$+s;uRT*#dXB6T6Px-Wy{2hJ({q2z;h;$^p|S`LcHvr=65kR6G&W
zX!ECyyFe%Sn)#Ux>oc<NaZh=9=x+PVUF){@*ZlqQ$LjW9({k3?>qB>^bqP+Y6TKsm
zdtUeSqJ6eS+3QSIT7*3o*}mVnv^M$YXQ|+@MKd=!-QOjb+%w^dkTsX8v6GWPV~YY4
zrz6WG<0JFZJXT-4vQW%-E>q#|Gwd$HhlCG-9IwK%^O;V1rrx%zhW@^HPC44m-q6OA
zc#6yMj$wk^vBMG9OJmOpDYj^8gATynB<r!<wr%>IU-Nf9`@MUO<?5QBHjd|RpOuZh
z_OUbGeIIjXOcTp2D*+dU<rD543n>1*fP2dEbl#hS%Fy$o1z@K@&vEjLj_<uJx4HP%
zVr4gQ$bhB#-mmr*xP2^Ob77+q^W`fqPkjCKo;P~h)93Q`_V;W#LcY44=~>GBxl#HM
z<RoiB500RJ&tFLRd%UiHHtU#oWg!2;mBNeu-d32rSm+bewFw{_Pka^HJSR0F^LRv#
z@9)TcK7FU8HXXQUzison?B2h-f8M`m`(w9TTjiol8>{;Cwnr;GznH(}R0im@XmIce
z`B&Sl-`Ft6>)^o)rM}a((`L>&p5r@LuRgjlB?MxF$4}N%yx9pL-jbSAQ4_js{SBRr
zHt!G&`Zi<cGCok)DNPVidAEiAj8Aa;$G1P7-aKc&rx?HcZZ&uR;uF#~iIBsd=hQYD
zsjMhj^R2vb)0CopeY32XJiRyH6?m|8S8UkF=Isba&H1L_`lC1b()-i9p6BzNd=j$7
z$NqZ(|0$vOLMP5gI)kHrw_ZTo_9NSTK4q^_)J!=VaajIfv&^*#0#EdRdGy`ERwRN7
z8BpnGXkd&ulEDCWdNlE6BE7bWfsU{S6^i6+6T2H*?hqU<{(o<az&8=eQw1S`0c$J{
z>@5hD*}?wm`L=6O;aj&Y(&frKdM#J<b<3{YqrHnXEF4%}%s5(RI5<q}aN1`-$wBDT
zr0EkJUc8^br~LiS=lAY>zqj}KyyAB|85j;I{PCC4c;NFQptj*+X>5q&6>croDGiTL
zWxQK>&?@WMDjuKf&sx{MN%!fzrtyqlD~0d1{8Sf}5EZsc!#~@ut}dLUV6~?1knN+Z
zGxoB+Zuk>Ccf~}r*(DlZ|0;IX__ptS$y{*m^~$W%OAbnGu{N##Z_u{u$4ZvvwXMIS
z1DC{}SkL#)N8{j}jQtu@%%fYwP9~&UD=#sqsufRNb)6x`UyLOxc##T&0ehcBVu|vb
zGC|jO#>}hVwcbA+wzG7>YXKKycXfAnclGv7?$`gNu0H1_tMF@0;r-qJnO&0}=HC`n
z{-w5j$+9K;Rs@7BsejQCvG3K{#r*TEXPtZg*=X~oO-7sVO<i@)({@4S`pkWQTMpIh
zGXJt&o^K;M`HDB=%;0+gp|?~IJvbwNf7bQ(##xDV+G$FA?ReClyfvCIJ^#zA_NoH)
zYtMLBx)*+3T>I(WFTb;A&n@Zs{^HKDwk5ZZhn-oZvhifg$)g$7Q@OL5;^tIlJurG!
zR#M}3G-}cvJI(BnC#S#ERZm#yWa$(ftnpEH_x>)|*uCO;F-z5_Etvh>$!XPjwbK*1
z?@m0pr$h5oX2!c@vETBs3-oswXZbTbl-!*Z7dmJ9ssCP6qn<VuD(u^Osg*^3!|%H%
zY^FVLYJIpU<=M9umPtaFi|=VfvhUrx^zDj`oeS-sYc1e@_qFY4*T--68|FK|w$Jw2
z_;Iqk+vE&IyN_*cZu(YBG$Pk3Mf{7sw>m<u(eF0j%EC>X_x%@UaNBR4r@7<3Q29nn
z$=P8S&7%YIrbNDPWnb)NylB0CxJ}tb|GR=d=I7cg7S3EBcH=<WpLc8DHNC&M>eSSt
zrB^OkmhPT&Gw}KD%lh`q{(jbbr>-7(vw5eZ7(>tZ4g0q<mDD}^aZ1vx<XZ8vAgRz}
z_fP3|+I_2y7uGuBQ2lLrPe*X$e`SW%M`M>5bw2%Bx2mUp$&6!j)zq*5dpP&zT^`1$
z`^+&jn|EHVJLmt6Vb}bh1-X7#a#`0qZ$IMO6}@D;eeRsaMZ&A*eO}}Iv1U@?(TBgH
zrI+qF$*iogb@QAziEp+pnr0ksKi&88OOJ!iuG1Pmp3(Le`FA#NBiC#fm-bm&DwA4L
z(?sXX?(*GM)haQ)^jLsr+ma2PKf>32kkJz|o0b36^^D5mq&~ajbDh^ZT@Gr!za($z
zr$Y|U-=BNBL0@P3#fvSk_jfi=dFIY^$U43GPkGXFH-?6{diU(yceczmatm5*ynDM6
z*JPutIZGVQXr=A+RxORG(bKQ)UFY>D<$$r$J#W3nv+r5=F}$gN{&w4B&xE+!-OihO
zG(xTPoG(@tJa_f#S+a4)|EKR8T$N*6g<02rzVvy{m&co<SNfLa)+_$5FS_0**2ubh
z7PA<8<?Rz9cK1W<;xD^Z$nI&6+FLDm>RpXu$IM8vD-xcK_g3wHf4=>YkXQGkf3_RG
zh6R3_DETVJ$5Q^$zZLrZ2dawyB~~*qZ~ktkyu7IM$>-$jTbUWkyLM^rioa)Y$tNkI
zq{cj}#v?LfM`iu*&l;<L6;4cfxy#V5y!+1c8}9-h{xf6PFwrzdPyg1UrW21V*MIjb
zy(RCk^&g{U<EE*njyyPV<m4*-3#QD6&f0&xyDqM1_SMHs&%+N2M@?|h+Wz>QRyb3`
z+nZ}R_txz>qPJY{bwsPH)d{coL$kv4StqkO{8*Nf^Lk-|%$rlOT2rE<#J4D`OK-Nf
zeSWKt^=~elTFlbM1!m8<9iq=pGSw-25?~x+D&ym~|K-w(YdbcDl%!6)A10@GG40K)
z<cUA!lU8e-64`p=*Y-76Hrs2RcHeB^WvvmeuH|t3PE>C1eNC<$-RiT`ezu-$zIU6`
zD9C?Z@U;H4i#?M{mw#hr?&;1ky&~rS?v2&sjOE{>zIh7CYe)#*n$oqmwJr4t_urls
zRWG+xySP^G+*$hW$*YjbC6%eQ5?M?e-*shvk&{_h`{nPV6P(fE*Uxh}%>Mc1>gwx-
zg>wSb9h<7x#hlz=Sdgg1s`U88VN>4!51%T$?3|atwLIYNd7+nEDnEtKUSbdtzu~3?
z!#dqims<~R_?_fR6q@x;ch8m>(ZfQTnrqyC-uF7C`Rmh4n=7&mC8v+33+%Sm{3!CZ
zw)Da${cG{!c`j+MHPvzxbe6p^e>7Dnr1<XByGiYg#pdlxMDKo*e|qOq598veJI#9+
z21{Q4UB)~0>to@=-{(pHbzPeF^vs)QQBh&j)^rI*ZuXG(?|sMm*YoVx(~XJymn>Z#
zdv``wcKnPuPKWh7<Dys@{@*$};ojqT#$#)ld*4VdD!U=#<x^#QI7RyUi^Sb3!aZzj
z`A@Gp)9bg+qw2>O)AtPyZ=`<sEIFa#*M5OvhTHp}>%ZPuEV%XhH1~))nMkEwc@Jt&
z9{u>>(}}l_Zy7KeSbux{QY|X(m92*V-R1lXt{zNpdU)o|&2wtklHL4#UPP6v$l8X>
zh{j%gwx8dqmEAq+!iBp9`%S#E7GD2u$Z0M6+&J)?aNe``f?pT@?9TOFb$rdeXCZZe
zVh*WqWw!j_)P9-Kpvv9$9TP)$zDFQWzkHaxao)eW_1v9#(>|=;Wgq+IXT*_T+V|hM
zHJ|MET_7pt&Nk6L_485x;xhK*Q})kQp5Rw{`M0M~4$qXpQ?DF6*(BXHn|(Gf$=BSz
zeWT+YI|qhe<>z-*R((;qp1kvy?hDO7)3?2w@ikymd4A6{CG*dQECwHqu7+(nC+j|S
z%f^S(JlQvN$A47QnpNs!`1itWQNsoMB^BqnX-|>aUo}s+N-~k>&7yVgFHQw!NL&(P
z$zf*bo@T-j{&ePM#v3|+zq*{eGV^=G#F=SHFVDRcN;!Auy-o)Ee2ZJhwJvgQe!TLs
znOet{TaxFu-SFX4O_*0v^*AUxd7XGeZTeBWQ@-s-Pkwp)j8UPiU{mtS-Rc77TYY#v
z*d9fmWx4w2tpBIXW<Ev+W%UY$1@i;4FXhd>A2jETaTu%OLfQN0gMJ3}GOjki%ql)@
zeSNS)Rj~zw!0Ji=*-F}<&t^REBwp-Si)Y!E>$#GttqP`#RqF3*eVt%DmCf92$HBZZ
z9|nsDcOGx~vsPyQ42B2h`rlX8Tj=*Z=Uwn#uD1OCqPs#VC8A3MUh~e0znZq-x`LRU
zZdD4`f}PJ##7}yfRqd?K_`~qxt!eTWht52E%q#Hh<)u$74bNOx&D#5B-7(+Ni;wJ*
zck#<4HgF#G_IBZ$TR(4t`~FXSydH9_Huv*8CG)+#SK0m5Yd&MMeDx|_CAD~;Uq7C`
z@4S^ZU39_w+dqEu8y|ahEAD6P7ePt2a}$Ca{(Xo}sFO(8+P{0^>$D`LWx3bh-i;Jz
zVEg-T)st;8#<P`PlzyxIwkb}=g!#1dPCEv+{hZkkzpXR*c1MMwLAreAoL=vJ%Nw@6
zXMe#gtEVFr&AlzI=<DI`BmISX1v)=ArvKgEDLDK8Dsz6*=6xN)DgwK5PO~vAyIX6_
zYOTj6doIo~>eOpZ#$(e~Y|1u}{{7~0>qZ}jE%RnSzHwYVnyISpkAA$_ilvold!}`D
zN(tRfR%)@EzGcJOChqo>hrhNfw}+fQ_k@p`VfLyolh_}heSYuxx!j$q`id8vO`Zr?
zy$afpe|p~*r`c?qPP4n-pQ}2bvGMnxtc!9tAH=`DAU*TNuU6Oi9p&e_7&;cdW&OM$
z`%Sy;ThmJpQSF}m{uvV|t%;wNv0&lHoW_NJimpkoJHc~*l|xYG!!L)MFFiWn?_MQ$
zQ$tt(ML>a4fGAteD(f(5riYtb#m{W1J0PFU6TPGA8qc-p^&LO+XWKsfXX&-RY<cow
z#jw<uF3b_-jvu^b{?BH+Gu@=k$hpXSUT53Cxd(f<PPK{2tvmCzU3<GSLqo*JO9Bnq
z^R|TdylfLV=(@Wmt9tTP{^==8?=Cc9TYO|D!-c%RvqRhuWE}m=KYOXhm-F1E_1DA9
z3vRb$l+F=eVf(84z$Rw<^HG15^iND?JFvHE+7|ovz*nk`-=A&}+4^qBLXO#m^`GRP
z>|1|j*52c0i>I^9vx<0ZxM``8`Lww@@4or$-YLltm8T&QxP437!u>yd*xvto_~&nI
z-kXdUyEG4f$hWiijJcgvGvoHH?;c)t8+N6awHD`|e=x<{e^UGW85Q-}-xKGH2AT`q
zYD>|5;&k7Ly`}azAKRa-V~4EI*X{oPp{}Nsd3%fGhdQAKu^9iJ(--C``fvsBxF31(
zg66^>aUq5G=I))%ygl!IGkda0(DWG{MwiZCI>b^_SIVh9{b-V?$>z;liz{CqV-qO(
z(0TZ1fP0+nq0kJ0+yA#G{Sup-vpIC(;hp&vO(sbbR&Obcwq5adL*+m2dtzdrb#G)E
zM&2n}oj2|0n&)fYgx4_Ko13n{EgF6=bNN%<iMy*GYsj_>iRl^ca{b77DEHNqPpR`w
zqE<d$XVQ3SljQXOKPpQ8m2EtDNh4dJ!?(<8jY0Kx`<kt3%hs?4e!emH$NJ^vHzv#w
zToIz9xHQr1zvDm0*Y`Gu|9F2pvHRY3Z}~Yr53k><X>Q57|L{2Xjs0<2|J=K;J-DQ>
zY1;ksyq_*4aF;S{+5I=?`ee<A700xFa%8s`Z=YVco^frE>*wx+_x2sq|9Fg-?XB>!
z74C<ZrCo?FFEaJ=s;S;x)o|?ft2x%oUtc^_{Fk*qm8E{0%evr0o}SKUo=!<I@7?Yh
zS)zS*ht!65E??UH6{Xg%KK`56f77*2u@(F79G&#O*nHi5mA{)@)1@*?)!5_ri~SKQ
zdv)8xzv<r`+xO3}uekba!&0-`!i+yl7hUeDT35PwhUd;tzw1Jn5AHNi2y!{QHrJ`x
zQ#?ya)9UBx>F49W`1*Few_TTzBm4EP?yc8T&83%>UNO9x9&mB5F~3Q?pzc2J`M3T#
z#Z7BZv8&HowXSn(F#Bu&l{X@{nC!WGn{P$kUB}P7!9t3Y*B;+*D|&@tcECHYQ=yEE
zYwK1@KCx9f^CEAhYwGI^&AAT_Ty~1&VbF1kKXr4(S~U+z-Md8=e-aj^Cs*GS{kSGy
zuZ6eq-|-Dw6Rl0}X^A?r><KX2)p04*L*2&cNkwSd)R$AMBHZr2d>5DgHN)&m^Y;16
zABL^uQ94n(B8$;D<d{KRlGO8aOZzwL&d)Kb`{?o8MepYV+1)oU1n)Sw#{K=|PoK2B
z`UH;b*i_3KQ@wZL|CyWi-c0!T{`3B@X?uV47Di8BU;U+!CFWSw79)m>+Ddgxu6f3E
zCCqo8S|s@Vlb2n*rN6=7-KNu(A9bC&EHvq7P2=$uPoE@PW)^SJox{XhqTU%7Dt_Lb
zIWXH!B_Lk<a!01A;OWfOb`e5u_M6U^GhX<*{l%mDY1^`k^2He{{(DdTbTJ@-sXlPK
z)~S0;%Ol^{vWENI|1qOb;*jNYE`xNJ)I8ZM65BMlCfu7}wE1>rR~+-AE0PZGOzLuh
zJl7mIv`H{9B)=%Um#fe8Ls#Iygfq7n&wemHqB(wv?yg50YG=$A`M=iS*Tr4YOq_SS
z?7OA1-OU&i$}$qa6gi5VFuk2v^kMEF4cn;Jxa2uYWed(uJ~nBR_1SZA?#gU)AImW^
zyqI?)dId8>cf^%vr&fwH3WV$5Jt3_2L#{5psFwBUiu=9%-y7Bo-QIrYr;EUes>uO)
zc`;vq7C-$Gk@?+ut{>Y<8M_02GEd%}{GZ8Tvq|<rv+VD(R?Mpydh9poewlmdS5-`m
zB$GhP44wQecjfMTt4cHWul&Aj@zew>!yi{o)WyZq5;=XRFFgHiwb1fcW~<8k@9^h-
z4GO;Gw!CgOH^Y`Jmz<q?C)AYwSuruZ>prHsez*SqL)ZMD$6P(|Kf}P~-XZ~~NpV6J
zr<fWdw`;zx<zQH#ulcHPs<~_5%-9=F$=b<D-wb~WPUyc@nw=ArG2LBp$?W1;Axwh5
zzWn-rfxB1WXzXWy!QS{~`!^~rn@~N;R9jT+;wB5rD}rtZf3DhI;xQv`Wl!sI##?<M
zf#v>B^@KR3dOr3~@{Bc<IC&_U<;N}Y>CIA$Y(+1ZOs_jUr#LgapW#5tJN`p;S>KJm
zU5vdbwp2dI!#{k6!X2aY`Ky#(F(3UmVeyU9M{0ZH<|tNdk8-~+`l|QquWyxlQE~#8
zPo2E>j_00{H$z6&uh~*L6ZT(kdS>z}A#J|Z$-VQq-+Et&JZ8J8Xb~TSKsDF-uY!9D
zgiqKS*_;!R{a@xaIYys}Va=r{tejSlW2Xr0UK^lwHMwc2`5u?Tg=^DqemylOkdq;8
z^Ry{%Ekjw?Y@M<}an{!_4~~D_blLID%;c1u)Gz)!rT#lIA9jkny<7BziM7v@b$_yw
zrp=hV;a=rC&4XrIw>G#3&TU+9tA7UP>g%fCx3k35MsuAmE_B{)@q3xcyTs71hkYys
zg?<&K9Ct~0ww=MxizkPV@q8&`$%$@Du|spaMNMb#uby&t!T*Uj*cgm6t!MvVx#(B%
z#<ZAoQXC66dv4D8bh2+-=U=HG-bHJDTRuE%7TdV#`J_A9{1?pLuDQ^&>4R$a^J9Ok
z87@2z{dQRF*R3tZ9;`PuoM8RTaH;v{yb7lBrH2pic(VOPpy|wp;5GaS1@0@R=7(Lm
ze*gY)1_qzQ`X-?dSF@dY@^wjN+s`HGi(B}UcBx!{`O^0}=X&u)tx30o5^bLM7A`ud
z_ak+&oc9W`Ez^sabQ#Y6l5l8qy7K+2yiBX6KXLZq6~6nHL;OXL%*{m=Hs1oLZ>f+s
zH|43+P%maY8EM$?F)`Ae-{4VQMNok7(WW}j4Y}*<Z<;S!BFDPwnB^5IlgDS&dRy)(
z{}x|bA-Gt+zTV$Q!L&p0%;LSDw{e&#Z8`CC>k+Sw*OYjo6P-5APzk!$8uT!sYE94S
z)NNa~muu{^S-Jm5qOae2U3=yQruXA5Ss8ZOznY_RDtlA$)3cs)J><4o`=+(Lv68s+
zNba`N^PBfp@=x0HN0o2;DWA7|3~Nq{HYNW5xvBl0k%Wn%f!)av=`;O$)8sv_t=k>&
zdB=u??a~Z4KE2`zVBF2PWvArk=#<T0PD~dz*w?urc#&q}o+HcWF6qp!o8`l;XsD9#
zx@>>i1=;`l?^A!qEuPuNaO>Cp?#RpSd2tcyUbAh_^YnDxF3t|F+oSeq$-epv2WC{P
z+qB`=O26g(bN4eCZ2tF0((22*-M_A$kY>}3+Ln`;my?q-WrE@UUp20!vpwZ!+uD^a
zta;^EYdqhZ!9m($+x&Ou-ujjD*sJf?(YE_uk)O+CocOl**z+^X?j-)=(_DLYKI8ZP
zc}?%i?M00wR{RRG)0bj6AYpLuwvxKJ`t<OiprCtuV+$<g8)WBx=4`ml)8BPbzBPwq
z{rx2I>xuVjZhw%yc2D*QkIP}c&--V%tqc3!S=HN6m&4!u;r67$6>a;wqpr67iOmRH
zaKrk5uEmoDChU7ne~LJ<W!b8I{<$%UIdb(z`}mVGI@?=(IZd}}2BuqViCh|Udy7!@
z<M<6_hBM2=7!u06KA*o9+4bZT>&Yn={+e^rAK%*QdO6<1>p)*Rb9eXDsg*}P)x+}7
z@h^B3c}ahg(CcXVAAc6z`2L5<@cO4^_p77(Hy!+JsPp`?b(K|k^^zdX%Z<0Bw=LOz
zx*=~(|5@EFIv)b|I(#*;EbMt!vv`IF!>=FtzjkE3a+!LpA?}pM($hU>R73y&d4BQt
z&&;RXU#nAZq)fl?)%p78o0mf;?0M;L9~WMqyhZ+Qewu#xM}dgBQ&@d(CM=V(+4(u-
zx^%TmfxnMI=3|F%b+b%sUph+Zz4_JZR}@pUS*iW+zb+od>kmW1ULODP`QMX;&t@yF
zyYl~simbr5%X;-Y6jsWpJS+ISZ;|8<U%SfdOJ1&0d*#r+eBItt&x(sx4;A|Oi2ky>
zxPI!<bsq}<_t(s^yCP;j#o+t88@zKvZ`U5#vEcMcMZUGS>aKoS-tjy5%JJ@ryLLJE
zCb&KEaJzej|NJ>0Z+#p4@DFa;!4e*+3GoZgrN67Rnp>VX%V5?u#mL0s+_Y8^x4&1m
zeLYuW8g_evfll~l&0Bf@wmz~pE@il!AvAURy6gMC|GYitN_6gF#f9CsBBg${EZ3L#
zlcoRj%8JV^vTT0mF0x#|cYX45O##(^{HDoSlGvskKtuSTDF-tH15=PZh;0PhYHl+a
z?*BDKI+xA@`50(J@XQF=v#@h-Pg|qK<GNPv_y78vpA+O~KN1q+@VsC;zbYiM>6DTp
z=eOrJ=O52L|GfBrY~Aj@O?STtPuJVoY%RcedijU-w}Q5^Puo#`VB)o{&h6h)&L4Up
zSi^ZKobCJ7FyAkaRk>u_4#jote=DSXuU3QQ%_O}eI-fUa-{sKPj0=gmHhXn?obqGF
ztSM1n-|BtvWRc9DpSAjnhtZ1_;R&9s6Zy99-t}D2rAxfj@n7xRjT?4K-!0tm%gV;V
zYs>Sif+<hgyK}Ga%er%G)&9v1{XRM;k_$DI9@swGkh%T7&zY6;xn6Bi*!1nQ%ZaA0
zj%S~@eBiy<s`Tkiq@YT1@9erA(_2C|^ssyg|MYat{J&+>Una{=yjn4(X^q|Q^X;E<
zl4sSG?kQ?>*}eUuc7NqVk&_1<dMEo{iM@8|*H)Q%OZn%`;|ROF*W~_}^M6A#zwEm9
zdu~ze@?+Qj%4`Vz+3|eJ+R*D0yw_h?ea!Z7UD=DWv@^Dq3m@+~*PrcMpKQJ}sVPc*
z(|J!R>%$9$j%aq5NwdWJW^Vjqv|D|8-@{*d{fnOoN=h8tq@H#z^v1=VFZlKx$=+JI
zhWTlpZpu`vKD*nmmMOO{E2$O!o}SfwHZ?3++t|1K(}bD(v*c3^{k)IK%>7(_;oi3G
zr!8jP`c<HH%1ga3Ke58qu2y-S;llR0zxf!&d3YXQl1MMMS9vIAf2NRkca_e}Lb0a!
zTQ+e)HX-d7rr&(&_W2I$%G<w^!-Dfad*q89oxhtmG<5MLy{YXvf{CX;y|EE7J<Mnk
z;pgyW&DwXnPX_hv%H?0M^knaykO@g?LZ_cuOg;R$Aik)Sy|ku1U#cXO^Rq**^uw)3
zHpr;hKd&^p{aAjd$kaTS9RdnU#$m@=kA#MOc_?4_>c>%;6RmrAe;+@a8CWP2)XF&V
zc-1U%+b6NT_SYM<(t<Z!=eTLT%}}PMYl9qHkj{K5<2TFiEtOv@yz_$Yk*8P883Qhz
zJ->X5Thw>;r|VM+Z=VpoA$iv)?~gZw<Tw7l{kyyBeWvd3QLfd?ynT^l>um|2M{ye0
zzQ(#vkybzV`Om~#$7agixZKt6-0L9zufyv9@?US;Cx2A`rjeY&Z0w?~w)W}O1C__t
zJpFn+K45vN*seFl+}51)81K*aZhv}4K=w!O>K*+B*Y>f5T5V#_kLP@&qT%`WWS5{*
zb@9_lIcNONy|JAU^CIZK{HEKA8A3}WS}s^v3-!+uHrF|Ea+dJR^Z#SQmU+(2<gt;M
zJtgAhvZ*(1)>>WI*md)!YWC{y%-#_%K5w0(b~NF1Qh59J+$nq)B^S?<%zgRw+x?h(
zPruaN<?CpE%5dQ<7vFy~>$)IT<^O+IvCLv|cUC;3aMWhb-93LkTF#ljy!w*s+G(Oz
zHM(;g_Ai!t|8K>2mD1qjVslij#6CGV32ia#HVQF*lFT^qCtuIP{kNG<)ktso$SLtz
zJG?e>OPG{%;G5e*(@PV~xo*q~ne1|M`t=nHs#EVsN|{dos`2RVji+CtIP@>7y*WN{
zW>{qRJJC$8Pm8opGoPvv`%@)y`qXnD>6-yI`{N@c-Y&HM)wD;$JLT{_CWX`@{dwVe
zK2ZyANp19AF1kIO&2h4IknG|`S}#rpozJ^}%4*>?^)HpHrlh&mN<^Oz{g7bZD%Wu{
zIaMyEZt11Nt8$`FUfSgSlyTa#BL^!R)V4QI6Zq(GeBZ1$Pxe%MPG7DsyM6Vw2`taQ
zYlre{6wCi$O}#!*_p(d<QOo}a)~n4;pB?y0;e=4g0lUteZBJ$FgDqxFoZH3spY6<<
zpB$Ig91&b$kbKr+`CG2VTf1h@Ipys6@z6~ty{bzGc&ucM3bcN;*D&wUtlqy<=Ei}Q
z){Db4bS-|X#EE7XY@1-v|M8)Ve)LO5*Lw?&9S)o@;Za$~p5Tdf9S1*bD|{3t5%6h}
zW`VVf)soNe@2W+){jg0|_ImlZ`rVJmk}I+WMep0reyX>6g^|D;zpWi#{QNxRzpq|W
zu`ysmiQ*^AUtyU7VoBm2;a!H8zkDl+2@~ZG)8pY;^{mnGj}80Z+td45PC4lXDOZTj
zES_@hT0(G~=jXFezu*7UqHn+VbYa2^W(S9i`NI5j52qh!x~Tf+>@+EV?#>C*7eu6d
zPxu!T7FhXDv2$Wk)2+2{?<KfTI41Edd_s+}YHYo6e}3h;ii+EfKTF!`+n4N0dKTv#
zwccrq8KZfV)AGhG4}C18BTxA{@+G&e-*WuY?d!4O4;<~9H-GyTY!jfS%<Z(+sjkWB
z67x3Z%wvox!V;VJwCSsylb-NFq?~;p|NQyMkK{t1n(QfCpXT!Mj~v6Qtv@<Gb1jm#
z`ja$urg6iJ1Aavj+9#N|%c(d_jy-aF{f16K9^u3fE@cPp=KIG_aJlJFnfq?LbWY=R
zo>kUn%^9CwMF&q<^gS;mK1}wB72}B$XF99PbVdDQC!BedaOHjTae*Tt&zhF(4M;L~
zYw2dxZ$CF}>#=V$|F|>%PMq_y`_|iuW$RK!7di_x=0t?;y%1Ef(Cz*Dt=YAO!FT^k
zyz*)=Jgl7Py0<;!y=tQ0o~*!4I~Uid2TtV3yAr?I<buZKNM)95vjX1u`rY&ltKn?T
zSzz@my^PNz`pJBQYF?ea^PbEOC|y;{AsET@(Qw|BnPDFld}WM}UB2tR_r;{upItlt
zFW_;Q8pL^b`--jmR?S-_8naeS>*ckjTdICH-;z3z=<dI2_h}W=J)yU~t+#0Z*qF)2
zARZLBHKhFi-=Fh8@!U<C(byMif4n|`?O{N_=*4A4U)z?yyLn0Yk*s9H=}WWxr@ooB
zB51kIrrYdatpha6+NBsLmo~*DZf*Pg>ImZ^>jU@IrZ#D47o-I`Ee)L!wT{hr=G0ja
zukVO+zhtNT@onY22xlh$D_0}h+-AC`ah>6NwnjR7w!loog|8(zgmx@kaqOY-lv!`G
z)=RAwHJwsBPfM(cMd#YnV|Nxyw6Lxg<IymS(iAG%FRNhZ?H#)1T&9@hqbqkj>noVK
zId>$y+c!gBNTH6ykx72qsoC<kX1Xl#^qc-*Q<I&x8JFAb%j#b%ETwlu#S5mp$q9XV
z`Rv+~A9?4WUwA9AF*1d1$C`%Ls?ySwA2ZKv{Jc1b-R0l|Q%RrC(QCP8yb-dEUTW%~
zySvL&<-w)3MuKx4ukR_Do3*S}{@j!~leQlSd@t6hz$pALKu+#U*KXdIBK4~mp43%4
z^Qu^>fn~ZVPtaD&SXaT5Up8LrS8U&Wt5UaqtMoI?=iSjKH%v&F_Rh}vV!pCCbKxzi
zjE~uF%?bx?7Cqb%(sH#eW|DUD=|B!4jRQU3&)m3VIBnn4hP*8;mwDGH9@JUuk^C+9
zl=WGL^fHG;h6@j+(lZ4!OP|aPoteiK6K3GLWzrRq@B4VyOjGnQ==<HF-f_pAX~&v`
z39)W};*M_Tc*S5?&HHh0!)Y#-GfVcz8mvgY&f3HhvrYPr_-E6Pb3U(rd;8vtb4>1K
zk%rqY+<oFWzu=je<AjD*?~|vwI;MB?U%wwFxjS4y<;CXRl}je>dNk*{L)wS;(kz_6
zY>wFod2Ba2_vY0R?{y3b3m<Wpynfkfe(j)B6W{r7;lVSwPkYukZkxYh0>dAt{mhEB
zu2ZYD>(AQO-D3W{Cy_TYwUo~|_o<bljtYZs)HR>-Jg@WL<bA^Ti-6kM=&K<?E!+I0
zEG{E63wS%+(7<xAp6+A_I)0ekr9W@4267%S5MVuMw(Hf>Yg)?=ElS+qcc7<fLqX;D
z?{O^IzZjPb>Imrw=|r9X!p*n&-%D|sW1enJt{@m@v}w}B$vrIHAh;$aMO9f{l2Z%>
zBTt_2a`Q6+=@Zh~G-=}0o;fKh5h@W+F89~`B29}*M2f1iwxs1rj}0Jr!pkkpsA$r}
z1TdW1vnJ(<it<6FgG%%3o?PyS*g~w9gG$<xkta`(<eg71-R=IK@N|>@q$u_iOX2}X
z1}O0u8(M;-K};jq^4h`Hhcg5%@dc$E-$d~F(4Ztvejn~^cFal9qxn}?zq{5xm;d1d
zS35ICXR)8$X$ee?f2Q9|nP{)@yOD({vh_`pk_5-&11V~Kw#lA(EANMkeRC@Hdl>!q
z&LpjZx{A;1R=)~;{dH=T`|@|Z^?%=AJCnq*P2EQIiJ;trdrP|omCpNRp89co7w^5K
z9SdBy-F#~Epkac6(Dk2B+1QsHH+dS|6Z7}p&eN~hMSh-ryZX7f@}K`_8)ol6r~KEX
zwxVI?Tep~P=asKB^HuCVeB$ZZ8T<!+-{X;ZdHm<Mrv{H0)aECqnfZQ>V?L8J>-nEc
zdv%3g_MXgtAL_1o;Bvx&d(whVcO<<$6s4RvHC>!F6k9VmRF??wP855w`aQ$kQyM!X
z^|gIYzQ1?%&W_(xjT7n|gU=Z<Nxkf8N^~rLyZ@}-{eNd8FP{<W_1xKU>QGKOQ{(5=
zZ@Qmlt#aFx)w}G}>32m3KkqvJ{A81cjqf#y<u?WInZIPPSBzNo*3*@>bb4w88%t1C
zAuDUCtDr>i5AT-U{EA2RE^HB5q&Q`QlSzwEP)A#bF{iFmN4wJ5v^kS?+KqGsc5bfV
z>YRPzr>NF?Tg{dOtA2C3%v)2>HF5LQ^2goxlTvDC$IAWZVK32{DVNMLCE`-Z&3{&Y
z=U$hVev%3{bPp;~x%_CYoz2sf-uWkD-e-k>l;jh8_&w48TbM*};=-@xlTLJ=4USQa
zl8=Oj1>89<YcA%u2z+<`aoT)(n%R@g$i=&NJ&IfL;ic>P6Aaqn47ZK^uV;7cX!@YP
z|9gH+d4*r~+3C7dL>ByFC_k`TPB}i_`dG+6p|>mA7_zS$WG~QEcCFwknDG7|^G`qb
z^+^rhy)8Vaulc+@aeCI1RMAKO!4Uzs92^!JtJml(&@JA+i#ek6Z$*smb&ox<55BFr
zS-CPGJ?*S+$lSUAdIZ<SGE`LQUy<1mRLfBJXx*t(U0NNVxl_vOW`B&0Dc!!|#J_sw
zg2-hOzb!Xq7&~=XJEFwAU~K*@fk*c^>g$ao9x`mr4_<R|)3>E*XAS#59E)*ZI`KxR
z)$3lt9nUmNkAK)4StC9n@$8$ER?$b+mu}$Lc7jR2{D(q9^0DgVqZPXrp3vLP6Ee$u
zk?~CK&ra?J-=503q%LiXWdHDV*U{cq0sc-<{02C2T@?6e^5^-&?+Psy{xjD958x=i
zKcnmZ+JlQiKkxqf=I^32T)Yvxj&*6id;ew4g$-}DE7MobWQ}twSGRfaQjkk=-;P6N
zHhJbOMcu29f0*%7mrp|TP&b3l=YqFB9V}JrKmESh`kq@b?(*D2N9HFlNXmBVs76ig
zg1Mh;q?|f_E1ePFZ@hX!^AC|Vw>{fhBQH(SNy#nvq4Bn~|Gxg8=FPw7FO9p_mv*1g
zEza^g%jS=YX?Zv7Y8?gr6=b)Y91V8KW(f+3T>tR@^NGt-`t#@2-cIJYb4aa<`NiGW
z_uFi`KGf-%c&++zo25t5F#=2S3i0E*$aiv=^5#iXFD_khrE=eqipGiW{(QT-`EvZ>
z|MvSoJc)nQ=hwGuL&~Y={pOmJe{-cOw4XQJ^jYO{6R+qMzp5aenS5U|+TL%P{Y7PF
z(E8FV9-a*P9V<33-xQQBTRu^Bg2Cya+!L%HCU_{k4Vb~ZT6s_4uevhN`c)VD-O)<`
zLGF1Libt3y>ew1ZFWICw<5ARa4lymq|4T$yb2&S;oaWo%%EqP2`a;j0bN|giQPy91
zCzd5y+>I}ou<5i(cqBKMmfN#`ym!rt1<xysNhWM9p0~-+cxq1r<DQ&EuAA}88Q-2Q
zet+_}OGIk^9D$Fg<*aH<3{#b|6zX$Sd`(rZY=5j(9Z}fZ7Ezlbic}at5=)j<^$S}L
z#e2g43N0g77Itx$$4h>HufuyqW>@)drnep|Z(o#n@pA8iDX(YsefymF-_-L+K<L!v
ze}1t1osb?I7h3vVi0#G)UAJG?e=-C`{(i4uz^f6`bjoVtt(RRZjMqjAcoa`9mAbIf
zIyNcg-X*`Xz6bJsA6HAsr+%ulQEHr0a(%|^aAsTUYq8vQ*RMWfp1!Pqjgv_$JTZfc
zQ>7wr8O0;c6ZP`)&b$%5so2O`>LvbV;<~^{N5N9j5bc-iUZgH{z4Q1#cU4lfYxJA?
zz|>pQSNrG1+gbk-*7fo`$I(AIB&<z(^3zE#uT1{8bFoKUXoEMGNFMjQYl8AF5tDCK
z)^sHoC2P&_JIlq&SRno6N~(S~gZ}F6&y2oI4DDzGhZM*q;H2(S*2}3V*R@5}_mY>8
z()Ml74GTKv)&I~FNUJ`-s>=8GbNeSBHZh0(X1O-^^UcKf#;@L=;GMAX(7SFfgK~k_
z9xih~6~DN%ytCz|gORevWYa}S3(Pyc9R*uWtv5BVyZE28T3f{Yffwsf=>-YSsjIbK
ztP>4QZw?PRm{z)9Xi*}fEdQ)%mB^vU=QQhVR?(!p>1UeQOxI2A5uNo~vHOkNC0CCP
zg}yb0n>tDx-UqYpSG>n+zp&t@ch3{w2WK}VPL#|v)2=ED$uSCOJ-21ou3Ag^g^9Ws
zGm|Zz#%TTWu>Lsft;i9T^@e=fCOr2#u1<HlE&u$z;G1pQIi~lc6@0z1<Tx9T{fUZ4
z96c`E?EhVEeQH<s$=YM;%?q1(@AZ83U$ES=M%?01)Mwt-tLH+eyPB;$B>rq_<C=*+
zlgm%dR8E*{z5kHu{52c-|J=OTUBfvkai@Wbx#juUnj2pl227sM(fuLzhtAg-TNi7Z
zd`R@a&-CNR*4wpnRUg%OP5tA&D|`F7>KXg9OG~-2q;RVRIxfyja_uE7o!D0$JN`@E
zeFbk{ef5k(*?JBAV$;9)rwfMvj|mXJ{Nn4ilKAq<;@*k%ZSr^b`FzymN%%Sa_CK5I
zDf{RAWaZK5*uG$sm`UjJI~fU+-^Oh0sJ_ps9oEzq!^&|;=l`W}Qxy{i>58^Y>0c+b
zkg9)ht@EgWL)Mj}P~g(G`D@&zSFK)fEnro~i+)Bg-~3J9VF3r1XQ{4!l{VGYFRbt7
zl$EcV{E~nD<xZ@#G5w_9|5MHU?6Lwj=4*G=1se6ER%obk+1y=ls!R6n+8YaP^B>yf
z7BZ|}<8b8CB-T%^PQ69miwye|k76kl!PQ<x{UXUJo?=?r1$)=z)rM@Fv8(;B@Y$6U
zeG((DF~_EEI#zOOefhUn7q01i`lzF^IUtz-;M|}|M~r2QZU<*xK0e>+flggta+v*@
z?~V8FGI8%&qp(^p;^2vN>pgA%ulr*(ejH=dS_Jsry<!bE&o~|b+EwfIi>a}1HU2Iv
zt~hI0lQU=E{=`X%S2wCL>1d>JizThrNQ+K3j=NwrkCEAc`~4r2U^&aU#O&p)d=K^Y
zFB<&{{VwUUphUNPXL^Eqj6vh}Utct&i=TZ-GB>u~U$pO>f8X4H8BQJTE~wS;<dQJO
zS&Fu|RJ1F+rvG_TqCI_=>|(BYm;P=)C>I?5e~slo{^WNn4w#s8%(nUcn#u7-DM#^>
zl3u;bzK2eD>aEUuQD|(Q{EVY^@8U_TSn}`H&RQo@@3MaBV$JZ~Z=TjfPE_7AIrd-G
z{(UN~cVa_03iIJjKS<m&EuJaxsLx~h>#d<2OLVMu9{(Ud$8h~h1+FQp_FG+=Hu2Ba
zMZLZAPQ6-}nRYPLIy^@}wLE*>ZngNGUlLavO<&h~{P?je!d(pFDl_wb%PHmmK2u(G
z_jl3uXyvA(e_p)Yn^XUEd(wRS`0J^;s+IEhR9NLdwVP|T?C^&d6%$q{yErd7{@T>t
z`<m9Dtv|&3cTV)U_qFO*6I)1$@<GNBae<BqwGX0P?BA}6)u+na%FDQ0`PZ+SSQ&FQ
z%UQp?kw5RgXx0wJn~%FpW}lAzCMuCN>(=utGW*MZ-@AT7cSFwElNIG&yz4%!l<#*k
zIr5)Dtlk^j(a7K~1*p?wY+#1iH)BZpEEb*i%@~4r4=U&fmnM}|7NjcZd*&vlr*i3s
zfH@KVNm;4MB?|iCnJFb13dRN|3U+o}(D8zbIdA9IMhJ)RJO2EM?F2^86GyhjUTis&
zP%7={7PQ4o!ROM#+f}!3oDHgu-d?!=$n>)6*0k&C<=TeX(z~u-+x1)L-P@GA$8)7l
z=9TB({PHVgW>jZbP44s~Vy-pQx2bU*yufhsud+v4pyOJ_sLwy!-%oyiW==8NxtX8O
zzMmtXqcM@={y80k{Mi+D3#alNDoYcav3>8)r=LE(^Zoy$IIZ#LVSYY+{rBtsRy>}t
zOv*e>>`%(}-yc4GI&eGMEKMxLbT_~L{JXm|Paiv@x&O{HyFE2&_m}BPKa_ly`|hy6
z{jI&3r`_TvR?hyt!SnXs%+vY%!xQd3^UG1c)ab#I(z*7r(VU1_A-!;(lMNm$6S6ZT
zRUQ^?el$zDEyZEVxeH1P%_=hMBqlX}so%exCrN#au)S=!bDNB`66e~K2`5`kQ%+ob
z;M5hq>uvni35u`ec|AU!s=t(Ln(`vG%A?#mme*tB!^z9GNo{&A8_sO>`1-qL+h#Fs
zJAAdlr~c;ME8iX|E4Ht8ToL&)FRQw&?!?2a31^~S=2_*aIrD`lSucE$Jfp!QM|Qg4
zM?)V62Ggb$2V?BoI8P<bdXPM0fy%m{ECI?Mi80<+8y+Nk9h~51$jEpl$c2|<pV7KX
z2{i=<?S*qKG6OZTY$ppv9Z%JZ6zPiUH(hX@eZ^g|)<tFFq8DB>XWM|7{2->ZjaX|^
zYdhDAud!2(FADf`$eH!aXQnB~7oAx7HGuK2GUKUakXa!Moa7hSO!MrD;uoy|G4(Y?
zw#s!)zToHbZBEO#FRY3jO%)fLj4!n8W#(M1z3aKkmgVm+cgMYW)VIQ(=jXz69{eJl
zu749x$iMCR;xKXjqJIWgq%Y46te1GzSLRlwH1XUDdzr89*2=cbASTbBi|0Jz{g)WO
z>Tmgb@!SbjftNksS`_QI7$?5n&$O1|FiY_9W$R`#@d!^j-nKBTA+c#^;o0lQ+MZ09
zwyH6#L6g;4>L|;t8wOXnrWBq%ZqO*EQg$i*z^zBCXUVF}KDK02xPHi4zJJf;zZU#^
zRKM@>>RGaD7PWtAHIMmPVE3`}aJcF2*QMdMHl-_XKU^K;lpXuE;GWU;!`n0b3f8Wc
zTOqz%cAt95!L93leUa?G+ZT5E&4XJk{=a-u98{PjlY^&QY?~rrJWVv|*d>QE5n&yY
zr@0K1BNfwhv}asbE4!5bZQ=P$1B>G+jf{?e{hANn^j{pN?e*1?m+d)2Z`9fs*X))b
z{E%kf8?}~e*ZE9?oEOUjU+V|%I-fb?`J3f|ue~+yKCij-;LY-jS=wITEuTxy`D?Q4
zRM(~2{l*e={(iZ^ds5&|(X#ETR%%mu59p>>eOI`BSaxmX?g!J1_s$2iKk)5%>T|y?
zrFzHV*^Y;G(+^coeEU$?Zbn=5xw_5lH|6XqC6=+T@12*?npyGx<~`dJ-}XITYcRL+
zfzNxn6rWrCjsh$zFN<`U9KCVH)YNyONATtljzvizp)E6c)~2l#NRjfMyDY%NXU?h2
zU~Nma%*d5jj;x$xwsunTq;tC6uP+&`><qRnjZ!_X5~gwKO0t<!zW=hzkIo)TH|x&a
zdUnmSqqBRt&AKzcO3j`nmS1;jN2Jf{`n=%FkIr)U&OZ7@V(-KJY@_zwC%)_`_K|<5
zVLbWnt=kR0M*4~M!LO%YOcU1qEcEUAmN?1S+-0e8k3x4}(_TD%M&``vHxjN_rRJ;c
z-nyOfGULJH0S67-D_gsJcAma5Vb5;$jonj@FPahadLdJlkwc|Um*-YFtp(TFHTqLG
zExP8+>hX8N?l)};99|!;TW`0nJ?=lxx@z6uH!qXt9=Epkn`eFNX5F_h8_z9%Zsj-6
zx(qB6zkU8|37yLqr@wi&%wwXGYnO;-&=TB?JMZqO&JKL{a-uuy_n0%>N(B;MPcLqI
zU;30)@Q3u3`k%#t`!DJDe|o=nhWHdV_Z^pGH{E?1<6B->_`O~}Qeo;j`=HCQF*0i`
zH#uni{Wx*fyGM)O%~IxGGKtkaYgc!A*>#!73AUH!zMI6ZcIBk0RHdcQgB?=WPMXe=
zk@b1-BPT-ry2$BLgT~by5$e~^OnIG<<hCigT6#jI^K(`AU6*5x+W$Vgz&mGp&BMPb
z=H@@|)GI$%ovM8I<?e6d)41Qw7SPMqPwf8eA3A4$zEj0HPu}P`^%ov#hSq(2bo+e#
zsWm@-Yx%GI)ctC|O}*yli~HApnsVxP*q^6Ay_NR9-o&@*v;XAhpWks#FU@FB`EOEb
zCu4u$Q|#<77vC&e^yc`_D3Pn5<j(79ozi=l85nX}?!1?Ox}w9Gr^^~YuK7~(twP~h
zQKG@Tsd_2B>`8jjJjXU)+PUVV!x{Ijdya1ob-mgDc?(y_>1rG6jmy0zd%xlMtZS#w
z`RM!qb-X7_tmo{%@%Pou=<2vnbN{7$*Dj3t+w)|*jsD3U|I2gvR=cbXo5FYh(dS8r
zDp<>ZOgQ6veoo!1hsBkfF5LOXt~~Rye<FKT->(H}=k^6R{%x9T>t4Ia|Hf}W)^A+p
z-(<dSw0%>%+=-pVy1GxU&E`$*@+v-#vTr3aAa=U`8}T=9EI(R4NqlcDdqe-m&Fk-)
zZQh*sWBtZm_UwdH@$L8WhnYWdGOKwWIaBMl)TpSwZGuYDGl@_w<#J1>Nhi401uiuz
zI>X_q<h{df>Zuc^$|{<s#l2dgsWJZ#oG?{Rku+K&uO?`G{Ri{ZiP>(aJdd0)y|><|
z=xn3_%iWL8L5nV)DE%NKqy8YWsMl>>GpCGt!q%9@6Q>{D;<xVN3GPIu<D3)y)?M_u
zbdaS_{E*d7H{(cl;R;5^*H300+Oc@f;)$;l9@WihDE;Kr8^bPaT)=eA*P|>wpY`Sc
zcLGNRjI!9~t$En@>DW2%dk>2vt~wu`zWLFSP4Cw1k8p02SyypwZhXDSb?N{28btJS
z^0HPd?l#*kH6cm(?v*g(^aBsG9F|?(HTzap*MX-#*16ozj~jp3^TXrB!z#;zGv^*_
z@$|6K?vrx7vS7-@#`KD7b8iHRrCXeuS$@3or2BJU6Ylw;tHrs`uIb{ckNw<jX{kMH
z?Y}Or`n&61&6y*5cI&?`uK%;1f!MoW{}C1a7kc)prKPq_>A$WnhuGp$zjK$KS=GC?
z?q9dlD*aK{GpqX6X$!Ugl%BnM|9s@dnCI7zo_ew-W8Ley=J|^vE7W%_;na~ow(q&O
z$GKxSoH#rhCNQTqlqj?`v`jtNXyhOz;H1EvQm}w$8ViTw0d`3l4Q7u90Vbgd2OBLM
zm|6t9nT#x$B^{Vr1Qi%1=VY)=U{GWbnsD%83Ik^XXCq5Wfdkuw4QdW{Z~EpOl9*Xg
zpt3I6IY{98;n<X%6_0q_Erl~!CA1`-X{<l7OSpLY#$E4@sBcR-mbCqGymuP=^<8nN
zPVS#0x_qJBx%fB#uKrwg^WfHXJGx_J$|oKSzrVKqv;6IsA41Rattq~G_^16M*?p`2
ze25CSo%4Io?T4#(<v%D|CObb)x_rv9_NMGueg6~jZ^~45e>P`M)|~kDJzrr)q+!$I
zGg9v~F0U_`!Xth%BJ9YkUBc>rqqM!g@69x@`28|wwdm5{|E?z#eA^uWV$NY}-uyrJ
zN|vkri*9SL>X_%3YW<oYZvShNwN>k--EznGpel}Q%DZBze}`}SFW$-{E?GRq|JdtY
z!tE-*XZUYmwyUtZF=^}H*~xYX`7Zvud~n*ExeJr+4!UPn`?E)HvR#;L_we|ky~~?*
zBjsEBej1hWX09)2FL?j*L!)Btw&kj?7hhO;p4Gag`g}~*$zLnJ&+y;iT=BqXgX-(W
zjePSH+6(T_Oz;-FTYX0T#>6-0?(=+K-4nBUii)7|_8`+G$$FQLfcz<0JmqT4Vy~?Y
z4>jgLoFy34J!7ZaRTJgwJrkZfpA%G+==+o?WLPY|BE)UoPd}MStrm>0)iO<rWMeuW
zv#gmdQ$CTk&|UM=NmHqxJZ+2joZFG2=y$*h#I6ZYzJBnih2Mc)Ddqpt1bF?M%I4~Q
z;ydwpmPFlmQ1Z9kUa@rd$=}6BPYV7PCVlk!Zk?Y0+h!eugAPZ-LHY2@314R4VetwH
z;Nucp!ZGD@Ku7>z0gEQn(i#y_fdw3nT@7vhi<&mgQ2U{wb>WEVd<NHzJDw~!r^m!1
ze-@-*BHuK1hd{F+7Eog{xwLk6+v6p^DaU=(&glJO^}OX$b|vM|n?+YuGKKf{&GeZu
zw|w=yi=_uPO<dypMfyz2p*JthCT&@I+i)^xwX4YWdXbwRMN3cg&GcCjo1%O&RLMFm
zs^zAu*`_mUo06Bc&WKH^p0TC#&5g}!XY@8rooqHyHah3f8>Qeivkc!{iao!#@Ol|<
z`gH5IwStB*PuBK%dkLCeIM#N0`^+!%tCKEl-6=a?ccyI2Ya{<N@o&m19-n)+(RTZ@
z#2Ehj=hsWE`W|*%^>VsSnRVIxf7^UT`0Dq@KYZhM$D*YBVb3e2{kd}C98C%xwtkn4
z4R!qb?+DL1Am*XhyWsMo!*<6%sz#gtoHx6;?(S}}k5g2m&9_QDpA-N6UAAQKw4A@O
zzl)2{tuO9PJR<RD+Wg%aw@<5UU5&rKcY7O%BOk4OHGcN?{S)m{PqIr#X<v<BpBZ!b
zeC?)6=j^4wPG7$lefWHB*73G$rw+|4eZOzwyxldg)$SKpT;ElG-(z?F$!orLhwprT
zeXq9JKKJA`-+e#%Yhu6OTXdsfXO8rln8jXSMGl+kJeegpDd7g2Ql9iFiEWKNx7%jK
zMy?2w+<9JErE^ApbLhPgP~Fh?CC^*_u2iAqQO^|3>nnn6%jX(e>vqoAc`UOhdX-y2
z8Nb@E!XCcUJrh)nQd@-nTzovKC*H<eS-*)>M!)^B;qIA+&zClH+RSe#Ejrt?W8Tq%
zh#wQ0rAx|wOvsl0Q=@Z#()EVLle0}ez3&ZhGN_7~WEr&X>4tTJn;*vrZr*+9rs4h*
z-gZqhgk>17y(sj2_UoRHa@?W3>s6^+Zte+uruybv(E1*;+0v<ThyK||t?w}lzX)o=
z#lD_;QGZtE%;^!y*Q-*$1R3i}@A-B<%~<#Iv>R`u*1xIUJabyE>YK8)<sb(<Xg9i*
zvy4@FiiCZY+;tPTLQOueN-x#@A`gNx88x12PQ4S<;Jvi<<9SsJji;KTe}Wp)y$b_Q
z1#3KxTKQyplhaBO_N8-n)O9Qm`Q$D9*JK^D;R$JTz5FFYGI5M2q^Hkh=i2f8-eGNq
z%9)QpIWT^oSN(X_&vOQerApGC`wkUEJlmm`qhy^{#U_2p-ZZgn;@X~v+dM9*ZPNBt
zJELcGTsC!AuS)KsO3pedPlczd`BP5kd0X40g`3!<wa3|}mA7{5NEH>|I#RQDa?HNh
zlmF>HkK%hRWoUg))Nr@<G||ZIS2sNhJG^e^htK?L4Zi8@-S>CpqXSvnMUU}VU*B#Y
zT66HxwnL}pUwD0cz7_}HOZoG=5(=X)FVk6aef#<P4^2mNTQ|0T`K8R=r5|xe`>6A-
zjgxe>tqmTBZ2Db(`e9AgpU(@niwc!(m;Endby4igHm88{+aLWGKF)Q_&t`d-XZ<g8
z#=@J&Z#Tv1Td&>ywnFTAMf8Q+TuV#0&y~=zU!s3gF++Td_07B944g*y&#Uc@?`$%C
z@lWk_0@LwsiM~xN*G`&dxt)2(xRXzfOM>t9za7PMP8Lkze`vuduD&~&^D$d;S@;f*
zlLg|Mzt{PFH@xw6;nmyH6OumvKU!WF_D-(r=F|Oe^0HQ+d~OlL>v3@XUEkc(a@>|N
zyiJp)zFW3!{tNc<$#H%Bw>CVQ`fl0zcqL~(ca592-XdQAoEh9FI0YOE*0NM(aG$^g
zVpXa#xNj;9I28QslQ%=3M?t`$V2z)u4AT`XG#)<H`l-s`E+8|dV2W2AXTXxBz3pn7
zHgCEiJo)b0mV-f2--2SRYQ?W^idwlQZ{e;lzw%b4ZVmdmT5Of~{|Jz<<;hD<r7xeC
z2I{UZo;poz)$8_OdaF{m#$;wn?%C$Ha?6&0=lZc$>~keJSlIkjcE@ungHpo58L@(g
zT_2f?Y);;B!tl@WRL|zWQ3W@@RayLBE`OxF?o}E8(KpL<imhuxcV37Jx2?G!wEggR
zA5T#KGf2P8y2fAV@S{nt@hZEmlMnD7d*fCz@lQ&58c%}#&Wzh_%Kqm+?Z1@K{8`I>
zo&BdTYYu4lnpxy02LGM7{Np>*UbBdw@wZ>~+r(bky6oaKyVQ%@ekmWVJ@{wwW#!DB
z$J6U<17*(G|6=x-QC;)w=8?bbcW$$tOK-}{KkoRV#k}H$vBs^pZ!I`vzq9ezvK8*$
zE6e`dde1@U`Me!%U-maFxP80uB>UT@Z;lr@GsHz27Q|jSIAfpmj+Hx}>^+%R`f10`
z9VvdBX3urW)6%OnKlAQ-L#*)*?kf+o9J=P;6D^-&fBV{%u+I!n3QQG(bwL9sk%8^2
z6Yn%@-}TLX<$N-){L_SUEU7jkPp3D|40_2EaLhR{PI89k)Gh_V2Ok?ago<uBd9YN(
zC^WU?^a%(x8d@<=U&yq%VzS!jbjGO>Ha^Ab{?E=cDKGow#j)n6c<%1-=g-#N@{OHi
zzkl|vy;kPmkKVm<^yg>i00SvL_vU~V^$IMkiy!XG5a8nd(!L;}q^Hbq>i3}bu;;!T
zWfoP*n|=vu57S;A!56sK-snqEd)6|ajWUal)yYo&G|Bvw>ElUvF0S`AiBx`L(Yy2d
z$K?AfvX7}A@2!n)`#gWk8Sg&_*L^*eA)MUo(K~ZmrT5#iwc+26+%SJNtMKG)g{<1v
zYG3(xaqhRKPL{Z_MqqpQ?d#{?J!@kSxx7ZfoMpj@8QY(7Ip{wxx}B!;^Oe6Jm(TjT
z|9hRgpVxg=f3AHg^XmKk*KZi#vi%`nvvG^gj;!a=Gk;$7joud#RaTh%IC|z!;aho2
z6uG%pztr8AntIUQbd&N$Mh&4}w*?+1LXAp1b8C`(JKYv|h<w?Wc1iO0`MS;Nf4=P#
zUOTho+Ck&{ZzT68U-@2I;uQR!bA3hlvwNE#+CHBB%fI6I#hKOT<9>W{lM=EtFL~=*
zp4KDCf4)VyyU|bf>!Fq5_WCo;UbXskSij$sVx}y2s-v+_E@x)J*Uyt?nuq*;WBq=Q
z%J)~hv(`U8wR-;aJsY<lm92=|R1o?8SN%W76>;~T*le4_@qgb%vz;$m-`4;A@F;+j
zk6+Abl6R1q{b%VE1~I3b3v<lujW1OcMOIckJ)VEEEAGdKeD&#5<9|6nj^4CrPFM<q
znA_&+%{TWP{50v_n}yl!FVnl?Z~VLd?fL1$`}2Js8Slsp@Nqb@?StX>=5C3|@@Jn6
zeFDn9^4KhXUg)}Ub=rf@)E_&8pBbnXxvp*Bwc<Lv#(CzC{`#~WXnXaaG3um%AZS4j
zbnrGcF9kG8Z3rI!1+h#`O-(@ZAhr?g@TWnyU<b642(e%XJgiRkf}Oh;^A;Njum(gt
z{a-(`He-qx3zuSFt?c~I8~7(~U3B1VMcbB{(^F?w7@hz8x%=EzZ?p4?^}nzGV%VkF
z`#yT^;j_V3KW5#m-R9X^GoP!nk*ji=Nl>H1yr+NXapkS$Ul9InOHGs9r(Mr|tY)s?
z^gd!^>fRG`kEnAzaqW88&SKZKV&}1GUzKcA1kI$hwNzLHPjrho+Z~)XRq$!f)NsZS
zMahsu9M6BcicS(-IpKgI<n*>L69imZ!3UAC2sLq_AEZXU#GNR4hCOQER?Bt=C@OY1
zI0-Z^v0uIS(X(qCpUrBju~(UU(V1!LiV0UH2j7wUWnBnzuE(p5veqgSt|XtX@=#c*
z{<hHduW5TVi?i&jK*i;YeYjM_J;Mc8Gu+w)K7NeJlTlH5^1ADPE;tuWl-tB%tMVjB
z@#ZoHvxQC&dC<vp%$fb{`>J~v^4;bsodt79ivrWhjn5YM6<(8gwc%{Q^3H!+Pi)TH
ze?Rs3e*4w#_v;%^{aQWY>Y__`XL>&Neao}|E#po|*u1o!Ft_gMjSWol#x84TF7v#-
z*IVa)%8KG+ugr>1m2svtoedG+Z(@4iy5_fNiL-*@3EK&0Z{Pf2Y7$cX<XVl-iuOCI
zlR3Xk@R@AF_WPapVyAb%-f{b@iNeDD(Z=@Uax8{dZmLecqCTPgkvo$uI6gi}pZKt`
zOOQ|bg7dwTDx7V%H?5kWBE8h9OD0xgos*LhBqH0Y-!Pu!DOK=bZ=9lfY+*Y%>Z*RR
zrv9j^^57`a{(WEf^rt`O>EZfuafdzkecc=1x_*xK6bFUhsVkTrAs*EHbE8?tPVvs-
z>uj^@*B4H7vRQX=dHYq-brmZg^Y66eub*T2#9`&i#k=<`cD8-|;rK<!NpMV-yG|$1
zvzmP%U)K7q>}I(lmr^NX`MNy|KBPy!JT$XBu`uh<G|{F%>`jmN>3|9Z^a2Bv1wn;`
zg@GAJ8pJd-B)!0(*Zdaf#5z!kLC*ZvQ`ot1DlG;~O-;-KA~8POHTc#9m9Oo(7P_`8
z>ideY!oV$Sw}z~Z7MT-rR99<-g`-G_%aRoe3bP%Az6k_=`a6-u;{><9V&a$Ie-A&t
zSA5>~{j<Hr=WV~=`OLu3aO~=7sRa#t8<R^J+wRVq@aKX^lNa}^jO{uq-;ZQ0%bKah
zGWY39{%gG1j-6qj4_az{zhCwD@1o=DPYdz&rs`UT*}qgt-1#W*-buq*t5Q~K@R+5?
zzjB^fa_HaoKgK*+M|SD$En%3kv?nCWMALxnUB%&#KbHl%bHCm5<M{5tC3F9{7Hs5?
z6?`ZA>}O%Pwqj_mz_DPz&x^KwUAnSm_N5mkD&_vwUQ<{YdL0+LN#Ez&b9nKI+COq<
zfAhan*VL7L!P8`5V!qwL+}vEBe}A2_Z)KR4<NMNc?caj-RBwD_ByW1k($el>ty79;
ztnV&%e=boCeObebcPh&qCd{8SXVRoebAp!Gs9$X;h`gRT-G8Hyu4%RZ-5M>WpRcV>
z^h{o^p*&rpukimmqgDLOqR!7R&5oSH!(!Cq@$usH@bf%3!}#AFSu}@JYn$6E_RTAV
zzs}A1vL|@?_wCzroQ*R1e(j0)Dev;y#YcUq^lIil$?T91zj=3y%1sXWCGMGfK0{yi
zr%_DYysLrB7T%h7a;9bS)SR2CXa49)-!$dQC~Wrhc=`Th){`c~GuG-g^ZrDu@9K|!
zQCZUJ!53z3#c(61Hazl(=Z{BAeAX8^-kz7Tx<L71_w|pJ5n;<*-%NTPdNkV0*)ytV
zal5A0jMj-CS9q>`{#)(za^-I|(vxROKHYP(JfH31kLK)&jujGyuJ8Y>nSRS^S9y-e
z+iiL;eo20rn(ckT`o@y|Q*!xz_Omg>@7;eP>_`3d4++LbX1VX%BZI`e&R@)}j|hCV
z`Sxq;Yo6Y3x&`zeTfI5CSLFY>yF6}>|KBln$hed>P5W!i>Bi8W{yC-Ex%XC{xb);e
z%a8b7Csw^X{V|u>;dS`CUE3IPE%Q5NPS4&pY5RmpVUmI~qJ%25z6LOB9dWq5#b2}k
z{F{gq3_N0ACcjIJ>zf|*tDh&iSnT9Z&czFsf0p^mu;~2#NTbkg`^3**7HW9AagTN0
z_jy+gr$+9#h}rJa^Y&%1u4wc}gSBZg9ltJxmo5FcGex^~$4Tb1#%uS_dBvD{`{=TU
zV|!9=nuM_z9SYyVxMf*PRQU5<mzoYGsePEX=-bM)JL!!7FX>H6(<@|b<1$idJ$TkV
z_sP}x2z|9L58CwA7AN&soQ(F&Wm`Ty^SWoS%JqL!JJ)gh*FRwWlM}PM?M2DI!xpVS
zCq7(#<nE_j&+mU38m8_4)PJ)6=9+(VUDuvok^gGZf~nbo$*QfLHunNf3N4y^`(?<v
zZM*7~x(aqowQ$sHd?^1Xm7%Bn!(QtXDhc7|tM+bMx!3(%<l9#ZZU`)zveVKvpz>}1
z(d4($9MQse>uhGvd}h9X^QoNh?#pwQ7VX{j#@8l4xM8nxx&6$g4?=!bb#Hy~OW!{0
zZ(i4=eD$8kGlG&;SZDoQAo;F6@0f_#Q8wA1$`k%SJTj+G%jApoyGPZVo(f9jJ^2yI
z_+oZJ%sJ)6N_T~huUk|ZX4EfvR-qd9WXGiId{q++T7;yFwrr68`*>OY?Q4^}S*&)t
zr@f!J`pwz@=WO$s8MHU4pH6i>bE59u<WKJ&d=HE64|uz;{E_3dH?tTIdKPQ^+AYm@
z*UUZrZTU3o|F?gC{BOd@;NzuMzTd9sy(9C5PZ`hN*sVUlJhWt)PSd{s+B3sGg#7zc
zWjW(Y<HwCJtJ$t5>P9~Mr!(tD^wV!j>e74F^{hX<ca5L<rTX6l))!g|tQ!s7rzshq
z%w5Ycxvk;a!X*z&XJ0sOv-*W`)#;@s^4p(fc$5WRQSUNyHNAFky6W+LvR$77^-UI?
z57@w|TY1%c$5BU-8{1x(cmH~=!DRc$U2^H}a?MljdoTQONiE;;i;;Q8%xh0tzBZZW
zd+L6@H&4G@EsI4Zu;BByUlGZTj;Gbl-6zLu?Q2=dc)NQ2aVv`(w{M2(_tb8?-oDVP
zpxouINlyd!Rr|fAOqL5>ZRfKmUAp|@#dSl&$i~=K)@e3V*G>#=Rqoah$YlHZx^sQH
zTF)xei^fMkCoVi9>~>~Krq&hSXIby$oEa?sbr<nm>G(ROOfh1g<Ykv`u5X`~Tb_0~
z+NNyFbbsm7(2yyy;#DUrO{X*Hu2)exSs)hBbaCOF%i_&WJFhH?ml6ur3tTMyVOLe+
z4b{BGCm+afo7bsbv*B-awlT9>gnb={DI0Tt`<%6lF7b2D+x79(hJLTkqp>9m{0luj
zllBFzz1peLW%o71X6>%NV!o(ZQ)ZN8|F(Yo?Wm_bV}{ggwP{QdfqNyA?%d+P@aMdy
z$c#%o3xYKss&40=@HR^MpQY-~bJwNz{HqGGe17wGKj*^pi;DfZ)T4hN(Td&voR7I7
z?8D0cw>n~f@B0;%Uw%&PT!^Ggk7?i}yX|tSg1gnrlNc|&Fj^8{zVX!})@ds8*O?O@
zef3*Wx8=Qj{*xEVt_!aQa`QZ1x8(J%$nc}#N4D_9E8j@tnY?JhdTza*X+`2?-Rg<%
z?@KI>73Da*OZ+Gl`+Q;kW+}tH;xnHvozKmB`XmQW(Yo5zj1Bi*-&@VdVDNM2l*wz$
zKi!DBHX&`*`nMT3c{-npKKz{Z$8MKm`>c=?9W@)?$t!WhhAoiasdjO$@T9%xpI3T5
zDq2|T)jjD`kiM<f;;H+>>lANVc)b0&F+OjZUP1EXH<nfhc8I*VaDSux&e>ZoA9M9n
z%DsC^FgZ!p{d)d7k)7{Ym>HbqgGCqlPBLj%<2K%>*1+5Jsr;efO2*R5{5%@Itb*V6
zx+E@ol6CuEMO;dVb^>#$y^}cK$=A1^Y`7)P@a61FhQ7(G3>A5%SI9g(^ZS|UgA*%X
z{xdr_J>XW_ocYnh`;V6x?X{n`OXjh~l}u?-!K>cc%<Fc>1iek4ZW|tP;qr2Z4|`&h
zd%|MZdAjjO^Ecd>GFfi*fn7i5t36{=aSgc2vQ&Iyu-(gN-7E}B*Xnr=RBT$c>dp*p
z!NPl%p`6MGSA1H(?AbM?#(SGZ4{_f;&i;DF?ek|?7<7JoXFMQr#F)9EFj{QqFK@n*
z^BP5BOPo(`y;fI!sj=%oZ?986d$KIUkK%@_k?uQ}Je|d`;mX|VOOO5XIIfE}{570*
z*ra!@P)dnvuGZoCo6A<_G{^N8^q#A`D%G&?@rkJ~i^|{e>#{wVmbCC|<@+7eez8te
zC|Q&m!5nq8>kaEw7w!Emk$ft<`+XUE=AB#o)nH3b<-&^D>Bo61{g3lc^m%YH=fSl2
z=pMhP;&poe-P!iW`NVGg{zRhs;o0LmPH&!lXP*wkg6F5p`{h#3ESULop5SV+-j1n7
zQUZ+84V>p2#Ogn7PvuQ~ef7g?Bbn+=3=96R6F<sdeZ^g8+1V@Zg?C>ccC@{4d#Y_W
zgN(AX&f0s^_wBP_XSgu&cX9qF%e)eS3yZF}if{N(yk0OaW!HnCd#h(`D(}lUdEaEi
zzvD+buA09->wHupE$s(a?cra4IvI99-?IHS2Sb6)gdf(KtLMFcsbJ&O?fmjhpyE^W
zWm(J$RTVCu{_M+VHki(37yc%+vto^o^wbZ5k~z-tUxecX>-HVue!N2W5O=U$CJ(o6
zq7}miJM}3xf8*+(z1<VK);37Ej8AN}Ow+-jiPs;d`yDv8OvLbEaonDYG_Ddwp84~u
z{X({UcF?WLt$nuY!1BiM`JBo7+HP^QpU_%!<aV5HpX8#;N20IKn(%7->2;sh@7c~;
z6+SI>?^&Vz!_psB=l*yr#x5=%cBDskL-q16au%^m7v7wda4gW~!EJ>dJKRbf`{yuJ
zRAp}8{4PF~VQuY|jZq&rzkBw}_e$VnMwuWM?fkhb<hbQK_4d3oYVe*XH1$jJN>%-O
z!M~5?E<~`u*T3?5!IG@RiMmlNXZ<ob7dW4)(PaAesrpcNS<Nf<a195>ttpu|OLFR#
z{qHMacy`~{Sn6Q=vfCBRnZchI$8P!X==<VMUR_y+1$XQI-Ph{1SSwz)%3@dLxi0lP
zhtHKT$ZAjX*8lfn{d<n*hwWw-H8)&s2}|aG(z>KTOIK=P{>%)^vWxlZwX2ofuGKwq
zNlo!^>74(Ot-&mN$7QJ~v)-M{?}^{BoKw8!{7hlqyXL6|{ah@Orhm($;*Q2HldG9r
zzHW6_^{U|ZoAb_CzyG@If9m#zt#d<bnfy}?Y=iTr@hz+5>eyy>ZC8`mtmr3`I@lNP
zTffg_g9=aiI%!6Ul)fVqbe{HUnJ^qHFq62L_;ZhjiH`pBgN^sMz5h^jaA{@M%hheB
z<}dh_oohK*njW3$IdjHmUE=O-Z+9&_=gasYcIS%FYqsY*ytbYQh~Ke$y~OveZoBS<
zy%%)d7?UV@@%Or&QHMHK#h*OMKF#g97>9}1rTO&_#J0c5n=<>Smcipx)rQ98+ykuV
z*Ds2;6{=am&*@oRH$U*^J{!^NoXhX%Gwkx6?NuJ0e<Sqv+Lun#r{_(2(3&6dZlBbt
zNs`u*H!@mps85Uiwo6kwf4Q4LXddI<Qx)6Ky<Tiw_BHUelSlcrxqF14)uye#vn#)!
zwTeZ=-tw!@hUKfOKKmxVciyx4=l-A1?+3q&i9f7RlpOHwp<))#^&|#^y|Z5!Cm#yk
zyJ63r@3~6+e?Rt?)u(@MF%o3`%zxeSkom`pi;tc$viSSiv-Xh&@2u9fa~=QOE<d;?
zFzfy4Plu&u|J@nx&T;+wU+ua{D{}w7nf2t|djC(+>03`P(OAP3#9Y3{{+r7BKl5(=
z-sJcHZ{4%7jZ<yxs`oB&-;;gp{-iITr_1J5RX<9bd1${&ws2|rRpadVXa1pHo1+`Q
zB>pb_V;ZFTV)~61n@*<-r^F)6diHmp*lGW!{go`Ate^GDmN<Wl^;&lI>k?kRoNmjb
zyD)d&-fu!qd;Vt%JQO*w<9*xI`@21!`h?m#%HK;)>0Pj~YkkFg70!8EE?r2H-gZsv
zblQ%$n)h$~?0v@k<-+dubtgrf|2&P|zSXAsUikkO5k<+OPnRc}&0eLWTirReZuyKu
zlk6q^+Yc#BH#zU~*y*}@+}}x_to~b`FXv)%nb?~)Q|M<STl^kV#s_vc3O=^nS{fv_
z`tg<89b2a@+mjXaq-6`!wdw!99QSuGTeJ1nby>R=A3UbbS{fuLH+fF6^fve7b9Pkx
zJIuXw^_M)^G`kv2eP`cbmWQGjF9h#+R$gA2zj>2a_jzN3Iq&Zu*n3^th4bm*#976B
ze{T3YeiNE~(`uU8-QQM`jA6oT5wDtFNKP@>DcSm(d*R=St4>@t&R;LaA;N8QafO|@
zxq{Vp9nEiR9SQ^(7T6!Ow#<!8PP-H)Bs*zk(7jpQcWz7){xANtA*|`gF0H%zhRYB2
zB<T8bm#`#k*4*;qTh{Ef?<I^5|2bAo317~9*gn5RW5FBGd#4}ji^gT{u<M`e`Q<dn
z3+9X+c4uzbZnA92I(20G^(SHF5;0$Gmh!M%nA$gY{mNt0j_-KI$WVJCG4Dl%)P_GA
z49B-G44xG<qi@lVi_v~d69c~Oe;-~hu+NJ7a4Yjt%^MEATkAHmHN33b6aHG4f#GwX
z^XYD7dvE{APU}0(E?GreU+SH5C*@bQzSYJ5Dc3|97;@v!Y56kDm}T1$RIaDU(D9(V
z@zI}}#p{-3*+w1;4S92{>FoO2MOL%ZrwOu5l>5ExfW!Jv!LCQmD>pCwCYy1sjWd#|
zVdJ5{4_WIOE<B3hx;!!Jy}|q6f(JerSD!!Wxkurh{)6?-434We3LnWk-W7K9?+Qt=
zd5izq1hDaP`#P##ym!pae0{^RgDKDQr&w&rGrxCo;_0nde0@BAtjefUVz|K4bUNI>
z^VNE{9Cn7;uInV_%%7BJi2S~sX?n-K`C$~xR2J3D>V2kc2i_T09`<2k=!mpbHnfhB
z$-g*J-73UeesaOS<uPH_S?#7~+B25yxZ-<7%m0?iE$Q-u!aa)v9~Dns9mL+XZp+=^
zd4C=9Dzd~n&()glG*JtA=&mRpDxP`vifVNFrP78QGt|y4FmK!Jmy>bf_#Mx!%E_)S
z9W}8{&#aQnHJ50<4NwTZU=@G*tr0`dsZRoLkIroU`}@bl8^;ZddrcUZ7w`FyDY_*j
z;>xl{@6zMWR?Git#g^1R_I~*BRN41Ku2$ZMGau|NDExauKjmSH%co`67#t>@*zq#i
zbHSagLpfL0ow*e`S4K{?`<}xsn{z8oFSnH4(f_kr@6hw(KUp>1+mkE*buTkN{Z)yf
zA##!O@y7auw3qwW?_I(#di!i*|8jqkc46r=hHqod7K$*GEZ4t!<8?6O4$HGEZ#LY$
z9{AZ*-&k(Oo;hdDlI}lU{Ygwp>`ahl`WGwllRWyeQJap{RfP4{$no6Y^Z6SCL(+-4
zFX|3Fd-WuJ)`hybKR?#zhR@^V*t?iBxvE5V`pRP~>b53tnZv_**EsdL%Yxbs%w^sx
zE!n&E;@BH9U%eJi-+V3MTIxsZ>su2fH@<C_Wq9=Sp2)%Hn@*iSx;a$2>hXhwwY<-?
zHds#f$ZCphh@G@iz+%dNwjH0M*R#qqC0$he)|PSkjOn|>jQv}}84|?jid=PEJyTu9
zs6+j{>z-dSk!QaaHta8%vB7eCw);UQt6MEQ8P9P4JCyEYeg0<gZ4)zwjCkH_lb>C=
z<FMz3?<<YeC6k`5-D}XAC>)o)B>bNG9H*nvUCUwuH(gBi6kD`t|D;((E#jtI)@*&T
zl1+K$m%}Z;^X_;(zy4{%C1o)Iz4J%@uk9B(r*@3<(U~l_^7m$L8}@r${M$R{l;_Hn
z=-f4Tty4n;`?uda6Ce0>em;XN!!Gf&BI1!J=atMBE(w}G>6z*#-y17uRK653w_SD2
zBFjeL++x0!zg?rtuHRj)HGA#DS6i;N>CDYN(&-#xVc;KHP+1au`P*B2ww*q8L5r7N
zW#3%GutjXQPdl?i`;ofyM@!FYZH)45@ikJtx#DHUOXp7K`rQwBY}bajr?Vd6`?k(9
z?m;U*TSNVOt`@ap?UIeguavVdGaQ^e^Ho|_#znE6Z+m`siu`!;r@5As;mw{XuB@+_
z3~&EFF7L1pNS}Un3g30D_H8k?QrQom<V}i>nQY{Cy6OYR^7~~KxyFpiXP*9<uKIt&
zGHIra{hEqplQ*+z@4mMCuF`dp6MV6Ou}0rJJt|G3W!u)jtJBe|{d{rS)wL`PyJKBh
zU-abdQ(h&+yV1wT*N69Jj@j?pH!^!St4>wBKV8cG=P&VHb5@$f6^Jl!EbnZN%DbO9
zU+-*9`ES-g%r^b6m~I)rPv||R;%F>quq<`Y%9Fwm9zEXgIDh-vhJ#0@>pwl+%*gPi
zaoznbCw=_SKM)rcooaDoKJO})3sJ_;l^IT_#`5f6SES2#>(uJKn^*k*UA|k=e%AGZ
zc8hrnYp?Z2$}WC)JIG$9C}u|ZAr<~7d^Pf0H%kAkIrb~0yv2X|;^(zX<MVo#T8h}8
zy1e9}l0eFp8+#0-x1X~Qu2ZvHyNU5i#C5K>h9PH<?~)deeiXmt=L>_|+n5@{+AAHc
zpI>`gHs3?n>*CUi)a=)BX=g2qoY=nXoV%d<(PeeNx=Z%<)lc3m{Z#1o+QMtic@Ykl
zrTUjy??}mqWf!@Nh#b>rd>{Dd@FOF}wchp8w+y_ZW}0MfQZZwR{4O^yGV9W+lX7cA
znQS*lYu-uAxOQe&XN$r<S?d$;_M60g5%1dF`}?`a@^}CKJN8eA?uwpd_Hx(RGR|20
zi209n0*+m-+imjaf8mjw^+jeHKRXp4-Q4wS`P=Ng4QJz4)+ns|J9p3K%e-f-C+t06
z_22L|cZ2J%FI8Lf&Hq<vs?U|*vS8c9+qcv=K6!jw`}RrunKxt#&uq?{WpzN|!nLdW
z9~>*6bbh9Gy1Tj5>1$sLmOQNYxGX3i@^z=>w=*uC`YQEP6;JuN&C#pdURE^!f5#^2
zPkyC+D?hH!vh&<{mAgFY$-2`U%Wsu$cy;HG``brBS3fGn<!oKQ&2N#atz=KbmM2G!
zG&Q&$TD<yf>F(axRj1~LwhMn`ou1x3En@#kui3YYZe`x{=Fh%-zbNEJu5(k^ibn@L
zA4g8-auUm6x>f#vg6~0zP1d&c>nF|sm0e>K^tWh&>9e$7ry3vDJ>ipyG7d}KeSKAP
z_ImG=pI=90|K-1Ll41**P$(`bN=?iKu^>|mpaFak%gn&Q7$#~26C89Cl;$X>!hz>S
z$ey5_dwbdv1s>PZu>b${t@%xpFUC0O2{g_7du4Tq%hL%COto>>OaDBxIsg0prx!M-
zelOd<q~cnZ?p5;-^N#a3JrB27{Z#K_ig%r4en#JgM1f8G4?l3$b=<Ztw$I&a9T9EL
z{(!ILP<+?_civlmaQG%(t^U~fB316&66uZGPW}}*Zf6>O)hMY<Kxs)>?QZrO3BjuW
z|0FgYS-5Dm+O#%>OApKZzuP#K{w;N^<6kdv<Bs{=jT_xwq%zLWxW8KY#3|OvpmX7R
zzGXU2Z|Iv5G2!@=l^qT5I}R_qT4!u%e^dUb>GjgH)eRQw+fG)_Gqle=`PkXLCdggq
ziu&p^n~aX{c-gQ2=hC{H(r+f#Tz%-T-ySc!=ldDf$iLs7dsc4K4}838hGOA;YrW8U
zpC|Pz9d+zIrl%hsC0V^>e&R7<wwH%@<yPhXXg8Q0E1!OUrZM;DTUQS(3ldKW^9ubE
zJa>NUywDYIX6B_{>DBRA|GaIvlrGcCAB)yD{Yjp5PPTFdL*c0<A76Q!SbjC!-Rgb2
zAT>z+a(URI<!@J2#q+gf&6VJd`tY(u<Yk`jk(pNKdaqvgSa<fWs>JKrd(szO&E;yB
zyVsrPt2$ktr@quI&&_C);wJYQ_qJ_2U2nGa*J8ETYLjKu_k8qF-g)%MVvU#eKe-xJ
zEpGf@Sv=?L*9k4rdkQucmgS4@nJIO);=^*|O<rBc1Db1!?kxOtY<16*57G8%%Ptxh
zYlzrgmT9?lysN3pd0WKSna8`H+ZIdrA6d)1==RA1VO4I+zP;O<0%z6qB-SX-GyZ?Z
zWNV}7gS?{B{+R1#_e(C7dZaEm)*JEk$_}-zquaYe-^>lZu|j#pqxV+|Zr%70_GRmY
zyE0Y`N)PU|7v-5>C|)AOtQ6gUyZmZt;EU{Shb{YyLb-q5RAmXD)T_Q)y~JB0UiX8J
z#kKqd=Sw*c1>5tK^wjrrHV6goN?N^CbDdSb_2Dm5?dy+h*S+hJ_s5+<@}K-V>-DG4
z=P&+wZtW-5oyjV;SF(~5REnN0JLEKN@uSzfcIagv-S+OmkJ#&>wVeUV65RV;WB;#|
zOO5nM>NScoD{wYRk}};Bw54qB)<1tfZk_Na=*{WR3;_qOJKxgL^(~nq#kqRM-+x;t
z-1NN5b<nSA(iOe48H!uX!}(5@lwF#nmo4*RR?zbWo)aD!v>uC`SYa~9V&#e@;icJ!
zcJ0~yXO;Bp;QP`xoZDkwtmDp#S4`bn#O7=E-+sv=>qdq9JcggA8~M*%tFZ7;VJOF@
zJ*|FMzs7_GYGy`hn*8*eR&pwNaZ}c&YRS+GH%t3CO*s47oMucGDSIKPv%j|Mm8Fe&
zafF_B2}jVT&VQ|0dtNKA>NL6HdE}RC&&CN1GP%DWzq~N*&}H8aiTCT$X0$E|cWS);
z=%!qd?FaW6=}zCHel06owqwn%s~QRMLAzaQeuWn6x~yGfdS#+sw%PsOP`~x9AB1X`
z{k1TX7Il*U?eh5egwRO2fM=T@9N%|($;`@GXS~kMdUW-6k`mKqwbD~B42r7c4lm38
z=$5+Bw>Dz=hJ~up;zt%{Nw|6z9}793cQ;C#<>$8s;qxhCOAlE0@$;7jzi7L0c6N5;
z49S@#S6O{RcOCRR_qZq3F^Sh?r|g!N4*pfvDQlM8-5axGTc%^ufv?rxSD8=UVXrIt
z_T1-C#K*T0TWg-pbV=KJ<=xLMmjq^7ooKi_%O@%_|90#Dua>FPT(@%VSNW~GYoptQ
zJk7oYjxDCa^+&q*{;fGZOLF(8fS^AcZa78#5fhMfjedS(^_vU_SIL{z&x;-~AGaxU
z&j_`6trBN?eZvi>LpI0SjjK;`dPr3^OZB%lwTNtQ=DSu{H)WcSe3i;+A!e_*ORRbA
z9_?2r|Lm@n{lwlRtorqzZT_E+8lR$EPL`if+jUy&6c5YpU|*%Z&BB+?|JBm0o1x)R
zb;o~6K!dMhSYydj31gr4{>M{glMbG0Y;?Y6Q{Xo1{M}vOp6WJsIr{}Y-c#M!kTUVu
z8|U=d*?VGo-A_9Sz4x&7jf!1(S<3Cv;Wr#_i;MPL`&fFbcXH;zpcf+lp3QxtDf`2T
zpLuTn^!H2pG;IG*I5Y8*ooAYXt0|+QqlEKWd&f^_r(AiQKJWggIUhf6WB$9cb-wc>
zkBEDwOTKD#=rS=h9$0?8mG|mFHy2HFRz_X!rt)+Vm9wG0`EPWH<aa$^7r_5my8X?*
zO)KAv{5vyQW4cA!N4E=3X<ugC<G8=6u*|{f`7UdYzn^~=OWX?#^_wOecB+Q2W<R?_
z%Bu#R!WhRdPFJN@M|d$LI@;e(U8lgmr)mPj{jJ><leN!PAKA?os$|mh*?jft&)uJG
ze!o`i+|qbyug~_IEDBOrMQ01{>U>;(cUF_g+ueaz6DK@pVT`<OW>mbXCS^9)ay^f<
zq76xB*%=xX#8uq8B3zi0ls1*VT&B3ad;6V|;MKOPerA90c62z^%VAf4VReVnmV0Yf
z+5g$%d?vD)|J5{u<Zb@pX=!QGq))Cts9k@`VUfWO$)y_IJu}ZqC8|WrcI`i@seRJR
zD%Osdby{%lU#r?zLd$=$rYSoI9^3l7V~y5o4Mzz9ng4z}v({(S>+W7+Jt;@_>%`Qp
z?i?TGr!bz#Sn0aF_tl9B66RJcTG8MB^KZ&xXx|zvEA!*nW}Ahx+`?n8o?PG0$HT`c
zex6rG<h#-zpQ>$bmbsR9{KB}8fR25WunTvY?X~Q{Gu@Xy+((v~Hk=OOwp7`rwzcJH
z=A3|2S0<{YMKVsW6kc0q`s!2ks&pas4wjp;Td%EeQed3y*(4LRMrr@7nc)-U-g131
zPF(#hbN%Z>5<(|9RvepBlr^RD+4{zq+?y(eCV%&a7;W~NU##G<p{Fq`Wcq|vt@$@a
z%r=A`_Sq<)l3=LMBA$5R3YUjaCg(BnOPl7LxWZWbXw9V=;W^oF!m}ntOh3Qn=aIk&
z4+VuL)95~11<x1`M<%`Gs}}m_>O7W}^>k>RUnvw5b|5t;qGktQyY>XXznMR`zl_l~
zoOoGFvWcZuXXDnqlg3@S3*(X_Z5?-=WO)9rAd<0rqg>htQ@2ZR!ZJ4=d3@N3DO_gT
z$p`J`-mMa=ue{CJRVKQ!xPklPEfKrfyB=O_-Y(|Dz5d)n-{RN1o(9Yob(qk=xnFa&
z^xp%%TU=JInzL)G$JL{AzAG`!D~N2IwCe1`A2~Pmzg_L;YQJ1jIkn_;e_oP<Y3#RM
zdJ!H8t{X2k?I=5z<=pO;cT@azct4vXll7u!7NIRyrGJ_i)#<40ebS(CP+-PqTe0X>
zhl}MGyjiAt;tHeOl+99C7i+#ZVV-l3v6C@@XMWi<wTWTT^P;D{Ty`LpRZXn#@-ChA
zvy-;)I5OFuj<#`pvP<wlDyvu1^Tqex1fA#KFu|cm_1Uvd=X-Ao6g(6X#5M2bEcfIP
zD!93>uzthyBgLoWx8+qYHs==G^it;J*&D8MC5_X<Ssa<fyo2J>3hYnZ5Q!-btUSqI
zaWuhf_iT5mmD+x5(@fUCYEp2VpU(Y>`M;#)|A)<bjI(1J8EqnZHOrpwneBgH=>N(H
z6{dT~q|ZENf41V%iilfvhn$!`@K^D-<XoS#vHa(~cOUP{ZTLJxGfZ=H@{E_U8<z7i
z$VOeu$+<se+Bfl5zH47VjcoKrxH<IjHzP9(q+RV6P*LJr;j~=!V}>}K+0YW&3@2yR
z&)cgTJDCzi+%B3Yac|yuG$(ELv;^_!Luzi^Ny4`qPMS)lS*RNbu<ZQsFMnt4`t>s-
z<3GRq+^o;{@9@()*`~|a>J#!o2f|Hze*Ic~V!WSy^#A6$g_FSNwYl4Wdf|@cTsWGZ
z*!IF*4s>E0=)}4vSJKa{qugyazb3ld7frhO^ZoZvGiIJnzE@lK;poBoAN=npPEo>^
z+CZ@f>hc+zS%9QLOe50MT9CUFm%dACa(+r`Kw?pDu>vTWI_Kx)7ZocQE9g7t=alB=
z6@w2o&<`j|P036y$uCkcGyolOpzoHMQ<7SwpzoHGSdt1cL_yypH8VY<M8VJqDXAG5
zK$9Be3^_xPJIU|ydH1V?3$`lXpBnmi*0&qVENm(&+((*Zb0R8QkMKX4zQMui6PL<2
zg$*eu_wXFsQN3&V>zScHlM+vt%$Ynd+T`)e?3XpWd-|&L!_tn0oLkwk<K&M=;%1In
zo{xBv?Vo-t%9yl7#rv(!%|nx}SU$PGU1fj%kAmO5_crPC&ED1;%5OU_%bX|SX6fC(
zhjo36w%_i*w<&Aa?`coh)$eScxwh=wrkiE|-fz44aOEcd&E<Blua<o|opX&hV%FP#
z{~p%$&(FI*;pp#@-E1<)%DBa{FCK5Z;5_MqG9$mIssA45phZugZ1KDNKT7Q1g)@GB
z=?RwmBbKbJUiYlDto~Njv_o2<ozpgXyo>&%!`N<Py5S6$xu>V|D<<84FaI;`$>MKP
z=Zq4vl9%sIE3=o{Z*^>f>I;L+pZ_H@gSH*<e!=K*qES~Mr{IUGSj{?vH~kUczw-Q?
z)F9$y!^Y*IsN}?`>Eg2FThu>qwHAxEJD-A$FZoRh7hI}y=F^sh#P*N*2^Hxdzx_Qt
zdmGQZ6RC~U?Dgi(xH-w7I_S}sa?y@1>w+7y1(U9wUY8vd5PxUkt)C~4n<qr--E~@R
z9b$c3Y`N?nhB;{~WJFlKQWI9L3Z7GJu`o1Xx1aI%Lq{KZnI5*D_`6hG-MGNQdj904
z`|2&`KTMx_{fEfe>@S+$<*QQr)_1YSo8+(TlL!)j=krXJZ>6_Q=-y3Sf`SOA|2e%|
z;L*ktYj+q_Pv|;4i#NheMEcNVp5G14Gnc-<YrpG^R*A<x=hJ(9#rEr@?k@Ou_mukd
zyOW$gzx>27ZMOKk$1$<V>u!EtZM`9;eizH>ORFvZzLJtz<DPoLs$8vh>w*1~(}H#9
zlm&%Wgnnk4FA$b->Qv;jVv%F7Ed6#zSa82K?6#~+oKta{lhf=o)BWFCo0cq$*|K0o
z@MYG-v(K)?PuO)p+wAnmCtpu#xwvR3w03Z?E)fu1*dU^$6y&WZ_gkh#VE*Lje~&po
z{}7BcXw7wUkqt;wX`j$>%J_rU%=1f6d9>*U1pocZJ*TX)VA^iBujf~rYA%}HaOzf4
zt<lugL6fe(WPR3Z*d09GciZhnDN<|9&aIF#(3lw}`l@lxl`#DPBU}6O=V9^_51Gxk
zoG*MSWd4MwNpXAbG_nTy6>|rrReUOte6BK6@5UoxgZc_Ld&6z}*_z`bk=-dW!O6vC
zm#U@{$H#~#^*6tzg;n^z%<Ob}s_HpiSY>}{yUv87V>&O^&Dq)Iy5ZrhGz~km&0iTq
z!zP4A2FIFNoc#8{uXU-70MA(-t`hH4D{O2XZ?4_xa<}yT^}D$rHy2DlKFw=s^A+yp
z?AJ`SR?JDYT77{@>g7wO(BsBIk>~$zQ8#(M=#XOiy&|8c4A)7T9V=KZYl{0W$EE%I
zXcrJv_?=1j!RP!E34ZMjFQ$febObmcrw&kvcl_CW>E*qA_u|?I4!rNb6-NFsdBAA2
zX6Dj|YJDb8s_Xow)ZdmfPK#XG+Egg^U1CD$Y_WEmnUAe}U)KfQDt}>+n0fIMZ{DOn
z*@Elx($2SQKTH#94R6?a#7<+vtedWHr<^qRUy;n9xoCo*)D-8lYd$Hx;`e)b?`?hO
zv~QMC4*&1O9=zW!F1?|ou6W_XrN?{9<X?SX*ZO?J@oNhoGajv}b;fY-7C-0EqfQ;y
zU5)ta=NrjS-1*Dv!8H~~r{~}PaT!~FmwhYzPPh8ip;L3C65~tC5)M3Pbna0JF0(i$
zq%!07$=&>gjep8(i<?h>4Bz2n@PG5+JASVVix(!opLKK7t()%y72Zm3%DL<Gm)DBN
z`iy{_xt~jFW67yU^HwK{|NC@Vdo?t9f}*{JDX62vBlk#+yyB7Mi9LVw&tx25p&W9J
z-%R7FtuFJ=b$hm299s1HgW}IG`qo<>mwh_4joJOpNp@a=rrGryTcb5(j88IG9EeN1
zAUNInMUiDqb$9WPo(px`+1l&+r=9!##XHFQy}|#@`(yXtNsO5MZkJ=_=I?W}t4;}|
z9eY@RZJoS<%lb7=E?{TCBUUNb{m$JeP-0yD&^@iJwxB5B_GCGaf<sUCS1sS<m;1Qy
zReVJG+z5*$>_Oia^J*M<xT4du$@#<cMH9J>9Y46-sBFd8UglK$vMElMR*VHUkFMD?
z2yUu$50Tv|Q)e+@#!F+TYB7)XhM`;c7ft)yRrcxDgXgwCYLDNNwc=TldujQ`Jtgnk
zG)r&#W**j&IHZ#KAiOQvB^<R>0;jtzFXLR-O%r$&I-!1#?G3@LZ!O;jpI6fQbwS`l
z(b+efK1?p))2(mqm;Z5CS;%F#YE;zpnU?Pi12@|Tv@O~0v!X9%*S_La%FiSGB37)Z
z$(hr7`qEl=-a?+Yb*7gDW~7{IT;gptx$OD1x8JVpO6*n2dYpPSt=akAH;p6T7gwj<
zl8cr+Q#5DEsSl6mEIT(zbjF!EPk&T2cbuB^(ok%{^0NxqN~9Ng8Z8wrpRPVkP?@=@
z=~S<kw@_g7hb`uH{3|=JT>F@x!dc2AvGVs*hfAriOTynhxtaU^0@K#F+h<I>8M`p`
z!`8QddDU)~Y1?d^Hs$2D!fEqFLZ*Fk*qz+os2cqK^5tzYJn9`~b=%jM9Z*m4j&941
zUOw@YfK~A9%9C3ZSWDv`sLr}>;r-J5v)1z!oBU!->V0=HuREQ~?l5Dn$2+wzC?)8`
zZ$hOl9c?wYx4A{;OLCg29?kVP@_*=FxJ~x`l3vx*%x^3G_Ofj(saQ~y;y2|nZ*<Kp
zY4ua3R}O9Xdn32|Zf%eHwc4iF@8WlaO0C-08WnA99k4U^aqyRKvT;|J9hbiN?OghK
zKIVHI5{HWUl=%{OvaYJR%wlV_so}g~Wd4FjXNvbExpp}RRf#w@Je*?}mf;Zlc=fFd
zYiB;qo1}Hve|q4>%~%T2TYul*=I2n{r}XLVLi5d$5BF)EexrDQ&Ww8TTXU<Ml2`RQ
zhNVhwJDT-);Z8>H{l%GiciDuWIs}_;{<i-5J;wH&JVX9<kyfYQ@yT9eKXW5WR%=7U
zEc1!A*B+`Ud@r=Sm3;8m^UFJh7oFD*vA)T4NJo3SE$5-^Gd)|DeGWZW(s@g6z1EKp
z=?_)*G3|TXcY|4TTC{450qYWhKyY;=0xITj6|zkccr@`u`0smXp4ly5rx(c2WnR1F
z*+iR`;FOI@mHnpsgsn5>*ZqAc`e*O+TaVhhI<Nc9w*B*2N(SW4XYb$nY}<b0;6z=8
zcX!{WTP#VPDyq9+)274MIrL=f%*t2p@=w!nx&HjdQ^8fM*;g&S_x^-a<g$aSt)}jN
ztux*DkB$z<{5d;ASGn@?NwUx4R9xf;YMp>G6S&%(*mn75i@^HsJ@W3-$FIG2i@Ok~
zeP^HPjSEv#Bi^ZI-mU&OA>>-Xsw{slt?wmoq+fliczoO8Q`l{D3zlu?+I|(z7WytV
zKlN5gNb<d4E>+dgy4uvMm5nn`-nTk>jrY9XUDws;pIe+1_IbzqKEe6uzdM@*)g)gg
zrhOE<73U}N`+3EutB3CHe#Lp}%}dKy>#9;km6Sk%hE_WL*Lf^r#Ue9#XH?s-O`Dee
zI`>C@hn>p$Z%a0PyJ1*rV=;f@;Wx({b>0|nOx>=&a31H({8a&GK3u-KT%~>83Pz?g
zGe5j@V%(8@Ks%Ge;Ippt>N#Ea`!y!C=N3ey)@JwpJ}`Z&u-t0lJqoOmmu^K)nxywz
z@UNcGe3w((XRCWA+%6VM`?=67O;6B#t)ag8ZkNQc`x7t<P}`*7aK$6pO6NBpIkW0c
zZRotS0XtU}Z8_s4CYN-$z45YVhDX<-kRXd#y_YNV(;Fq5lilsq^_-2Wi<(|fN;3Og
zZT(dB8~cOYjjLOu%l)cjW8Vdq-g);S-XmkvDPOjxt#6NWF7Zo!dg)*1+BFt4FaQ5M
z@7W6jYu7+QDW(vA!|j`YJQI$2ddAmCF+}ggq{$)CJJ=OYel+wpuKMst#j~ho+U%XP
zr!HABLH)~`SD01$l1Y)R9ql!7X=!B-KQoJ~diktb88&6rsh{gSzUf6B`>uB9-DH+B
zo+<~c6*Ff}KXK`%;L<yBow{aIrd76QZvVXXv*fiIL8o)sciBePY^|<$U|+XDevj(u
zm5zE(>!1DWbAGgLrs@~{ayKQd7k$Fc=a{e0eEROq*<hQi-Nxk+i=ExXzHNM^TOMKO
z+Wv=0_o;N<%<_lt->+ZM>GHhft8+geyI03mEOlt{$u&+c&UI$mXV&P=3A5B+QSiH?
zkFoQ;@dbaAJk^sX)yHM~-Y-7facD~5tkjI&P8lbU)H7+^F=dXu9P@TP34P~n@Fp--
z_FCNuzV<U^Gg7Q4R9MT+2{OMlq4OR4y+fv7IrDdwJo@5)LVT{wq=3KGlUV;1K3B|q
zm+#{G+c|W}?rY~Jozp9v`RjJZ%)PvA(!X#1J#4T4@!nbwq4>9V@9w#o^t(IyRA`*p
z-P5vVDyv>&3HFCI=88vNE7{LK+v5@v7SMn5)T^2Kp;ae6mpyjRXq01Gv(l(D{8f=x
zuutLsB~xlH9lZXVUt^{3m*%%~UCaWOGZh%T3NiTdux%r=sX2pu-1OPf4ew6*x=(JB
zYMJJD&&TuaoD~b6?>*z>Bl_&O(Vv^r4-6)zM%fj&Up4;mTRzO5@$_BYZRI=e#@@BB
z+2`2)Tzb#Bgq^XA56^PBa`jeZn91|IZ>4m8Rf(YI$)L#Aj*ch(r_aT8I%F-GxT(bQ
zQeMD=!&=(>Kec8Al>hYEqxvKA%$oaE>{C9ix&J^(_vt3Syt|yb<qF&(%Yy$hd>8Qz
zy6<SRm~H0~i%V(#cIg#KQ@c)m;Lg{K2zEW~`|0!V_Bm};w;!1PDcQ@)?XhhBx`6+C
z6kSW6riKOtoXv68di}Qd_R3sOTh+4Y8kH|!HITXi6R(|on>@c+;8F3X_hS2vjhkiG
zed8!hO*yNkQq8h(&Gyc!<PQt)R;Z~Z%D>P%Ir|UG%pD3P7ag9>6etbI@nHK?U(d8S
z!z04Ss_kO7go;R^quKH|j`AlidVG}($lG`>KWTnq;+G@oAHR21Yv=J*tXgw3=I5`+
z&z~INI(w<xiubD6`ml=kQS$E0=Cw=Kxa|e?t0uBO>9DOodxFW%<_Y7p&eC}PJD-(q
zJbE!h&ZGabdL~b7=)a{$4j6shEpEC~;%>ex>)#cV)iNF)3ru)$EXagCO6{FY??FWy
z&5!c$6|$FsMkvsR%fMp-piv7G10(pHwV@H{w0V#yXdJ>Rv!pm6wa7U?w;(?+HLpa$
z0z4v-Uld%Bn4GGh?~+=UnVd?e;WF?gYvgW{gB=2S-XZRS0oPQYfb6S#dcQ?!@-lmA
zvK^UlcI)>1fXVwfG_)de=6~BZW8KzJr=X+aT92YKq@#AnmbH|<EnDxXW3a`ng(GNf
z!!%LnyGO5GRTI+5=iFJ(bJB;|bs^W)Prna8|9xiiocEUP6*K(zJ?GiyDw@@o;d?gv
ze@tWPn?Et9Mb@r7`7e+4+Q!XFvo)iFgA3AFuYD}aH4EPItk~dG*UoZZU&qf}Ym(EC
zdI!5?XK~G%BDa1G_mubh^1~Bk*Gp}lxyba`A!F?geY){!#;*R?Mdw5|-Yg4EF?QAV
z6PXjKxbgj(6KUr>S8G~qezbpASy+lOYj!r*Ih##8lG9zcW#5}MtI4=u_tlNakGE9%
z!(Er{&+t7v|6EX9^#7+9mxx=sB|n@gdgJO`(VIROh2yJhTC+9v8IEoayrM4`)uPb7
zAj013`0s@);&ps~_m&;{u_E3^q*0;!PMk!OPE$&q`Lok~?P7`^5=(b>FQ~8&dGmbf
z&J#)+_xxS9I)7f&U#NLDd!~HXFWsd-^_s;LJuJ?OE3XfZ+qdV@<@2tk&!&kSSeV&n
zzHUi%NnvqS$n&;SOco|@Kg7?zyx1!Dx|?NU{gl#Y)3PcTX0|=bpV$5BjP6|{Ws|cD
z{;NNo`c=MPZSS?ZhZn=YPZ2w?aMP_v&%S8fo_C4KB4zKw9hR|gPU-44xav!E&Au%D
zcS>~B1L=ur8hLdw_hv>%9XN7{=cw=N#a6}M#_8?LB)g=qS65CI139Mr{8IPQeI-*q
zowW&KXkWFeYxd>EYbuwr7Q8qdFKWKrJ?^xwZo|>@(p|GJGd^(q_fLTT&e4>6tOB#1
zfjCZ=_bvY0;`^<=LgB*YbLYQ)t*v~Zr)K;ief@LCe=;5H?~;r(&L-Srtq?dq|I+pE
zPJ8wW<m=B;+gsDI@2{8YyB|Jlu6A|W#jHFc%bqbyAbabh@4pI`3YGVk9g-{C?)>F#
zkX9kP;+3qUF8b?29`z~Bx*oVOO#5HQv)`Wb>q5k=I5vi9EBq>0YINVRV{2s6BK~l@
zE^CgB-%<@Pwrht!;B)%3D$M80!+woIcEvhhZM9$b7Vi1=O>63o$HlXz->dF<9~9;C
z<)PP8J$A)wS*=&HjgGp=uS@Z8lwx?_)ZWO+pjjc*P=3&B)-)zz2DPC6Z3Q3nCKxSi
zyk=A#tIQyqD#o;BTIn=-_63XAO=Vb{`t8$Wh7y@vRfpA`S5nuqWc<ApS10qObjntt
z1#8d5)yb5UPuVK8?wV2c&yW8+WmDI>$p4I+-?!;nlw0=9y?>_YztG5D`!QE{vwZf4
ziksQ~J8#Q>Se3u@SHLx|hHF))zSqp$`^VzP%EfD@GE6h7{#hu#pt3iVwXJ1|(bbq%
zra<HQyqun?`+77)I%Z9j5}I_XhA&V<z|`1OMP=$jHxaHB+oe0R(y}~G1p93LZOR=y
zGs|ToPoQzI^E>a<Rf4TDfyTk_xjj=?O|)QLl(tN7$)0(OeqP$+aX(z3m8o*xv)@c0
zlR7<r+8qv2?y|qIr{-AJp+AN`Y^T$`m)2PBkvN?4A!uL7sp<X`6KC)o`w^rW|4#p~
zfuzoJ@1-@IZ!Q);-N1ABP=aN=)?D58)QA~8(>^avtg+NNEOsivGG6NJ^uwD3eArI^
zObps5GwtsCJa@kK#2Gx(&QJ9ESv2FB>nn+UA*bSfDnBkxkZjX!d|I=zq)%pAVg!rM
zbMNUF_8iOF$M7NQT4jP%F6TVA=%(ctr#;Brl3Fg6yK}x<^gH%-#eWp#X1K-ws!!ZG
z|JhykdE4J#Sg*L(?eFURBcHd1Ukr`el^gd&%{g>))Wy)4s3w;@qc_{rw03oQdrdsy
z+orsBW|v-WDyPuSmj)Lnt$cCHc#6Wrmsdk|XLj{9FIDwO`4k?iJ9E>#N0)?B9)>xG
zdZ*3sFU;f=+ITbI>ZWI%>mFSa+CRg$ZPm1|{bi!l_Z9O${W{H{X!64smZ!4kpIz*^
z-Z#FgX8qr-TUa_nu7zz)(RyQX^Zcr5K4+Hi*uo;Y`X|$bh%<f7hj!fI(CE_?+x&O|
zhn_jpq)i%or>Kf;o<6~<PgQJl@&XP$@#aSnNru{dT@Q*5pLksuz)~K?B63`a`(|MP
zi@63<S2E|(Hx?R6Qszuu$(={uSa5vaV*FtDlxJTBycK@T6!)DR$M4`B!Ni!&slv%M
z$-z6KY3Cc&2`U+9t{Kb=SYh~by_(vsFKSx@Rv7Nh_4e8FvOk@>RqC=?bkZW<_}RK5
zS+BlqJK{3?+7w-ptTR>7NsmJJYDR0+oP2VTsn;{#yXM9+^HlEVSw2<KNlm`_r=D?}
zs_o6KT;x7EPCszpR+II!?iD|;TJ`;wkZ`WG@09n^%W@WeFr9pF+KeCh;id0)7Vo{f
z?$_z*uVb(7eSYqH$nIDA{Wn{DuW)cX1@5oVI5Ydr3lYuFYP)wRp6v6RsN^+S#8YVL
zj78!57rrcIySXy)Md`Z>k0o}y#*1H_8NI8pEMr#VlJH5-w#6;$_|!b@%ZhW)wKX=~
zPSI#^p0A>@srpGoVezj=^EEa($L`GA6{7e0jIJ(2_a&aAXV2@rJ)?WKE#S+qUuQ0u
z9B#iK6xV%@fq`NBg~wal7G3Y#?#2BeU}5H(WzVLky-}NR_kzet8JCH36kkq#XWIGZ
zioustl2sDP-#EGZo~a90pI_z{Szf=2bI$y_FL$Rs(RlrC|J#RW{Ox!B-VNqFFM76I
z{^x_7qA6ed-EDt)y<5I>&d*i)_sd^bzV6>wZ)SOB-|x#YeF~3X{7#>&oV(lp?A((4
zUl+fhx06i1`!{pl{raWywfikqPwo1Bxp(r<lSl3?Q{Sk4vwi!fA19BzzOR}TzUlu(
zeg=l!=T(!!|7|bQ?w%jBb-ShD?n#jwrydQj-MQUTFncS%CEu|K-y7fC4=8RZE3(~S
zQZmnm^~N_gZ`%zfe?rQ+HoRS~`}M%33z6kq8?2>uz8<*b@p4<+xn02rGV?cFX?`zd
z_1bUepEtbIe%X0Dr{7&!cjI2d%J<t%O0LyDKD^C5V%Y{A-npf{0=Ms72;<k`otvsw
zz_Et4mthTS76V_S?*nOuYm??yan>*&aQpNt>H{x>{^c+Ei=5h&cl)?3bTGSc;@#2L
zlkOUoTW7f}bGUNm3ajEuA5)?A4p+`RnJ^(_*{%O-{Rut!+RuVg+$SYV^uC$)acR&$
zC8?XXET;{0x)yolY;2cdKjC+1`e7p<rRJx9I5gw=PKzZOMVyP*d3ySx2G8V!pB8MC
zec-$PweZsmDdn|`Qh1cS>gzk$>k{9}mG<6T<bUnX+pcwwF4;IfQ9JxUQe#u~?N_d4
z>uVn>?)JOW{YJ@5dR3H>>b|2(RZrALwym0WCUx)8rK)pOXY+*Wdis}%PM_w}c`s#!
z)$YKHp)tR<ROYx>Og^3d%qL7kWtNp_>$~)Gb53%xN=)x|yr?s=LzX)+Mvv|2CKsh|
zLSCDb6njojb=asgu|twO@s0vdS88X=n+T4_euo!COv_Ny7I9kc=ejW9nU9xo+PRcg
zr)2lj$-xs}{Q8<9sP4Y-#K(H}*!^;MU(R0~@T8#Y!q?Xq_x`iwIx6;GspM}};Kceq
zr;oGh1$Wu;>V7&OsB`+GzSDK}#jgJ>y9|Ga@*k_YIDbWathw@ZnbY%sN$CG-KK1_Z
z><Qj-g*~4&j%~_w)8p(-tUvx+*lfO_?zW{@RDQCZ_FI$REp|KX%Gxiy)2^mREIPVv
z`C0AS=Hz|nHn?=x$AoUaWNz^*q)j!d!gOic()<a3T-sEt*4cvC)&JMNRT26B{^_+=
zW7*T^j&ICgds#L}fcNmR-TK>I9Uo8hzITqb*ITdB`g+BaN!yEm%E-0Hd@_$watjb}
zW;pw(AZ=n4%h^W-@7i2?7AV9EnsguLEWVsAQJ%!he5iZZhl0D`f1UL7oculJN^AT6
zx<GqN&CE&v7U|i<)PmS2*O{kxKg&8(RsHBli|>_=?2M|T8MCG}`sw^?sLVJKV|4Gy
z!tkQw@Av$>bBU>9PxbHU6$@XMPEdRK_1vG9#6?ff>c>veeGzy4L&$+SPtWRaJuOzU
zK0Cs?^4zCqrQs>uyROfLaK!5-=)Q={t`nZOebpoX=kq$Z<m%N6&-<S9bzkv$mwziv
z_i&yMmb+d4ZsyT#IfrL&FxZ-Pe`or!Pp409)UM9==YO$*+4{xX&5iTq61Ia_8yn}%
ztDD7EX1$@jbe<irT4~+wGNCPVU)t148N9i_Z7$3G+S`@COd3G!lC2<iiG9xhZEv4c
z@V~tlVlvhHQrXo!nY{4aUl(>~?Yy@;>-`!32#ZgP_ZW0Brp!N~z2t#=Wg?683A@NJ
zT~_;3+$jtv>?U5R{&Kv?iK}kP1G(DBI1T0p_lztRS^rNIKgBSiR!Mz{+3r07X7`kL
zyB?LO`YCsGUDPbK{cH9Zi~qgqZM#!t=jv}gw<b4={h9IdX5#PuZ9cBoznxzhyLET}
z6orYBp;y-3Qb`W=UbbiUtx)TG&eE=qpA|Wauie$*G_g<6TDqL=OuNdNnVTboGU^1x
zo0DcH8Cr`?D%dF@a$2DK?#^@*Z=JN`O^tVgb<&PINKEf$^zvR1F)iXuN2`IJIVb~V
zO0M`}=A!Jj|KFN#`+nX`|N7V8_S$;;)qC?DzeU#m7xw@9`h3>&`_pT~?*Gq7YQMK9
zQsc^uud<z;vQ?X-G_K6J|I)+f&4ufr8uIgOknodr;h#+NXW8CbXP(a8sy`c~HvH?e
zoP{3A*UDAw?kqG<=gvROIeUemn9089s>iE;DC=Kie_S2+>D%f;Tm8yx`$X^gJEjG1
z&ArrQx|Q{Lm|NWGl~ps#*GGrvHNTGyo?ZGfvj5)oZ#hr4_Abl)us7SM_4)kXJ>PzX
z-+oX%-!8D=-^~+!vZ1#hR15oy&8aU7d_K>)QsyDIyIoG)--g=r3vJH*=~0$9TRkoA
zX0b;9PKC!O+RyqQkGol%@%ze8Nq4&(uikx|o(Fu3{cPN~r@pN8%T(L>Z=RkxZ?Wn3
z?yDEWzx~P8Pp@;kIe&Jzd;HB3lYV3S$0xv?lh#v?&s_iO)8S`VFHZk_=k5AwH@?f9
zdVJ@W_22ii_00ZXxxvL6ll^ZWXH3q&mo?l4uh$(D6DU~wHc5ELjX%N3+#EZ~z9k9o
zsF-)<toZB$N9+Gxxxr*{eU`piqx`J;tQ^KV5PPRi>D;aAzyH216)T><blv7}Dhan=
z>%<#_gqPPwezWp!UcYqR=Odm6HeKI3vvKLV&#!|UQtcBBnZ56By*0TZ)!z5zIje5T
zh<z{D*m6dEv+9<dkZbj(RLnSI_3JgZFOx3r$;&*;<C(fja3@osak$@{>3bSy^`1<y
zw4ZdV(5f)5=tolZdyBai`j#~-=e^d_)8(u<;ae>HT(w<mVZ2TYYoVdWG+lw;M;!$n
znbTGN-g&MXnY8i#ft^Ps%$7dBk+gCClx5TT=1fnye9n8*Q6>BDlAhZlJTe8Jx@Pq}
zbDcLm<^Bx)*`K67EUmoTWa={|^;)^joEr<xvws}YnSAeC#3JAPTPh-HJI@>BiEwRZ
zJLf&i)G6`W0ZF&XZW?E-><Z$7ltHo{SsBk&?_QsN`-@s{LEg0AdzPfFGdR6u``_|K
zzWGYEw$D}X?wa<@_18Y%dDEBF+&9W>Ipk}yKHR6O{JzI}&S^6LrCiElx}Mb;KUZD9
ze|6cLqLXj07kP8nWTZS7f3|Gr{d1Kkb*JwwyLzuckCTyO!v8xhO$;mwd@T(Q@o5SU
z3Vrr14GwI^7iv!n99UAKFj<mg$GutJSx2Ik6(*eIVc>XjzEMEnL<$QN%cuEo>fWE<
zYhnJZwPL&diSD|&U%u|_K2TJo)Unb$d0&{DKqGs&cA<LXs;wFi56Fi;@?)xv?H1}|
zS}Ig7<g`{yRp$2;uRECzTcf5FJn~X~S0jHlEAUXG_S7Ad9kxb&vGwZaU|$#VZqXO6
zJDv+}g$EpJ)RsRymu1!6E+M`@hN|yWE=&g*JilPOvqf3pzUIAri=%X--YCpp*POLA
zqmwyY>;B@O&n!7ZRy%UCud5L$7g}-cdSl49NU4XfW^Y`7Z9A{pgUA2hnJG{Gd*AdB
zOHBR7+dUyxx1<u2UUh!UGY-0%p4rmb(Dp6Q*y&4@)I+Tw71i4-e}(Uz=C(u1?%uuF
z?vQU$Qq0*Jwyh2Q+pVQ0oQm@{_Bn9;_U^MDsqgonJHS%&=eL}3(9P`3PZgH>CWlyJ
z?%&H*JMPL-=L_n#$@+YWl49PsXwR}bR{8w*E1k8fb$x?5epFQ7=Pdut9GB4W#whPl
zO{3*Xxkt(;^KN#WcsFg%^gTCsF6o!46F8hwaOUg`14Y*|m9w5pYAkiQWhcEk_F|8U
z=S0DI-`Mx4n0u@*ezJjwd-}nmeIk!fCrUo6d~oZm#{P*D?n=y^zUSpmm7)!~&N1=#
z?3Wp;vBvIRo<D1U_Oq)K{Y9&fZN0ho^1OMo%6Aw@+zu%H;52EG{`-Q5Q`pTzWcN(a
zdVkt_&+B;~cthFG+sj{{US9Eg4v3?dcI4~RzmMlW_`n-ly+*RIw(@_tgv`E$pB}XK
z?AUi^z0EG`{{@K!KPDgNk2}%v`jmZ)gihtYR}Wfy4DRna+<K5ZevMUyqVuaW)-e(i
zI~Trs(7Js3_ouRYd$K>aX%)q^n>K-L(UrdQHhgdD>5kW@f4`ZVP%eK@fvfqjdB~KQ
z6CJNluhQb-i?4kHvN8KNpEz5)eQ5OuC$}}q?+X$OPIQN|>!&by9CHe^m#nN7JM0#?
z|KgE{b=?Y*(xSU>Pu%FbVt&t_-YFZ8f@zr#hXhgtxAge_Ja%bIPw%2S!zpQ}PaKYv
zJG-><qRI4Uuiu(h^epL14&J`TXxr~?mUEtUPrR<FFTXcXS0F|5d!(??nySri3MY)(
z`f3h6i~8!;n@~0_FyFW0&?@t+XIz_ls#Yr<TxFj1qe*A+y;&0yu1d!Xact_Tigs!W
z&A-CI5_!ygEhlGK?OKo-Vo}0EYpi>u8Wm2j*{-G%@wrE;@j)m^UjbP0`ififAAaSp
zzPCc~!{(l<*M~X7_68b9Pe{EI{a^jyD)W7ApHGQ!Z0dP`;n<4JYAO+5O{E$YR)^*L
zdTe+FHg(B%HI*A*+<F~8EV{V(rwOPa$>en`TbyyUf0}4ju*%#w@6J5mvG29a$CkUh
zyOnnTzRY{{tp6#EP0^Co?zYE88!cow7#n%q6gZSjg_~xW8+h{^VA{8@fpvy}2!}w2
z@yWY<OukB;lLR>gGK|=r4ur5N3n(-^zIf;0KIZpN3l#Kxl@%r&obhXOUDckN71w|8
zeR^7;z{2up&)oUHixm0TxfWHjHaf5=GbjkOGw-RbWoBe5tl>CbH<hcruI*Kc#=|3_
zT6ZcPHr4KK+3~OCtnwfJWov9WgeSetno{s!)$v00##fsH4>hW<C{S<Qx5$~3ecp;g
zbC1}}<x`c}9jbN5v!m2%O2Gpy(RVtFe#*I)T76OeWYzep<b^t4%u=lqp%s4WN-{gV
zroLARnA`SjYNrri%vPpyp%?O{prS4Kp&!%THO`#Jt+hnoskm6ldRcs16|&=V@sv+j
zgLln$D7E?$>($N4zAor(S&&q@(26`|FN=by`38nt7w)~?6B68F`Zr?zQbD`2yPU7N
zKTNpGDs^*fpvX;oo|~ckO4dtOUB4ueuw>$0!ygsZ`n_+e{1v9|%{AGi+&O89ht=M?
z>m0(2UqxKm%(j%zt_+=WohQGF*MQe^y>IZH5*q`z55}9K{THu&U4KaKV@i`EcgB{j
z7iPbCw<bnt+WD_))<)WU{+Xu;ZkVIryJ%wUjM-P7)cAO%ww8zKS-PaP-%*JD$8@tY
z_=)T^Z#jic?<T5Tf3tIw)~&5ei;nYn7WtmL8hUY^E_?e-t-9;-Z@!=1747}xOohVE
zwEs&(AMT6pm?NpUI_q0})Yl2w+!GJ;`meiL@455J*47gb6Hl7{-XAaf_LkEgJNHM|
zLM@F|PMY4f3ak9G@Bf;vvb{NHW-5A`z1zP<>(<v-8|O$)T7KrY{@Sjx6hTX47426b
zGX-uqJvkGxW7a2L-<3D(U%reu_5G&Abup#tX~(;7RQ2!vdvM?Jd;35JEIRr4^&PJ#
zXC|mzsjhjM%wnW*$2rv8XNvLOlYS;LHw!gqaer3Z?I==NyJ>N-%GvUiFH(=+T6e@5
z&RSOaljlMhZ|@tATT*$vudhj)G97eVd~eo=9}1g<(<HxMdkW5K?x3tD@4MkuZ#^iV
z{aVe*8Me1@vBQMan%Qm>Z?BQtrE=2Gn&&2GMqF{*vg<pYFJ<$d?Us3b`&tXjYd@*I
z`%<rPu*}Yg)8Bo&u-bRS6A$fqfAn{rIX`<_TlHn1{7u5V?q%g+dOssqrd4IkdieIU
z$jwZ>rS7HA-btq&lKXwnxr{qA#r@K?=JGN<ONVI3=976dl9=i{jxvcP{=Arxow148
zWD~Qw2dHV_v1vAwK!@?nXQmx-ieCPbeQ`VQeewFNy7z^P=kn`}n~E=Std<X7S@67|
zyH5T^$=7eM=CG`~ZPoGSL`+b-5Z|9d(RV5r%u6&LYJ{vTP*=S2GT_ih^{HItQW+vY
z_nF_^>#po2bu;iSf5pUoks1#V%ntx%508tlYx1jPpFFkcc~z2Ocy{}d#?>KJQhVQh
zz3{PNy884b6J=+L#{IXJ`+wPa(%tvU(`!22A|yMU8dt2hj#rqVwA(@|_pe`(r&MC=
z=cPgW{`?X)yF8hbFQtsT-hby4g-yHbe1C?fl;3_f>F4w?*WG5}PkpAV%)Ix;qq8j6
z?8r~n`}fQK9)Du{<8aaKzr|_!>+adrKGX{S_f({3<IbwzU)U%4{+vF)t1x%ny>mw=
z`TU$df9fu?@bt5jRAzpvj}U!(D`s!$G?kNEo_lpo&;R=E<s_BI`%Y_KTqo`;_qJkj
z)$bC|L!Ez4YhJ9)56Pb|H!J7V{y9SLc7sg*9X9im{&JVbvsZ5m>YSWXUwJfWdh~yF
z)mvM4R(;O#oYX0k{I%><_m{iHs;alXc1`?r_s7+5FDETO`%~_|`s>g7%WYUz82)<|
zbLskQCH10{uYDwX->4Ox?39YxZ#MnQ*JUR<V~T!!s@K@Qg+XlJhu!B?-NSMYd}@qn
z;FYMmm-5{C<;16x9PjN+Ign9&a^=09Pa4EeA8%*9(QuF<XI2{Hw0{1{WpkIEG~}D=
zZD+BG^EKn%zw6>IFv|qq+nKVAPgUl}Waaa!zxNh<KFlcg+*q#XS#`4d_wQ;){sIdJ
z{skraFW$a?zc_YzW>Jsx(@AIK-G4|Hhwp#A?WF3>>28+C78ach{Qs=x!MBsD?zUjw
z{7bO~zn@Gp-&CIRLP}|~^w-bRYV+sE6kS?z{72!>+20c~<KO7I|M~rXpV95<!YQ+_
z7@s=E)SO$qTcGdtJNfq?pR(M1R#y1;_g$$yVvp|x?km-s_U&k6{nDcr<uWJvk6qe#
zqp~!%r`Y}Gz671O+<(8nPMY&7`RBn1sgH@jcS$^#cBwPicBy1RZLH7vb)Wtu_@vrh
z*r#`E>tY-Gio|2$?6<DB8kS9Y&hC9_zr}@pLC@|4&XeC@@wS`!t>)=D)~AZoD)*dH
zwz6<Es}nbM^SiFk-~2c5>AOtD{`p$FHe`8Te|PHcWv5G7U3zP{TFb)T&3krEb$U-x
zU*3)dg=baWOD?ePni#X`U6}8b-4%~#d4KC&vYJtN=aaK*8e@X0R@WZ;{@%Oq&Hg6^
zJ5@3sJ<KvaxO!ix@Ke42ix&M*ySF>b^k8<Eu2xt6Bf%`wgTEufLPYMj2!KQ<h>9Mq
zKc;*oiz#!GsOV8)8>hAZW?Wa%*6PZAB$)NpeUDn?MeC2gHcoRLKg>#Tz5RH0MawVI
zrt2!VLq+Z%QNFgCGj6iZdX0UZ-_2)DPf>}Td*z7ol~>;@d^asxw3PX8&Lq*NN6bHR
zn0{cj6L@0GR=<wDsX@O%;RO4SNmU1?U)sme#E`v1b~$5+p69-{D_hJO!+$eZ-8h@)
zxFnpRS<qqet@vA^uUY=;h1>5qS|7^H@SuoMy<lg|-vgen7~{RH8&9*wY>6ql&=)K?
z)q7u)5MRt!iFYaiva_><E4JD%h&^1A<7ofV)PMQx@Js!xL*8F3+y0FAlxqG@m);FA
z2bIsOM%P{KpPeZisP{8^_07d6RO|2h%SuJ+RZc!uc{%HrM$yT5bB_Ch&nE5PD&?y8
z^R?d(<NVLhca-gxsa<gU>gD_QAHOQI{N*rx_457ur!ULA9&5WU?|R0+3pYfZ3#Kev
zv*_(s_g(i^9hi8u-XvsO%D;u#;g)?mb$u%`PX1~ByI%hBiAPh9bxk|-<K6z69%b(B
zQ$p`dJ72h0)AUzN(Vl8MzpYhD)90*+j#_+P_4w}Rk3$OXO_{Ld{QX@MHm!KQ^HglG
z)1*_}(ZOP+w*P;w(^Txd%DPsw+sdT=zNxB9VDN=mLihH5eZPBIN07aKhOgxNzW(UH
zX7eBay1h31t)#d9-=F&OK2Zz)?Ov#u{Bo(TyUnlm{x16&TOQ2Ja&|s;>HYtpKL?kv
zzB<ptD><ppUcBDm<#($@#^vsnai9J(<}qJm#5N@lyMfW%!U%COJ#3=^@iX#t+EieS
zvZ(;Pa)9hj1$QqN%{CBVz3|}V|Nlm{CwyifY|!+0;Wg*8TiWD<eR-<7UDmZ*&CVCU
zj<!gdwd~sV13%){<}>_oS5Q2WU3zrKkEE-!<nI3bx1ut{_jhfezUJ2UCv3s`l^)9T
zuO#quf=?rU;`zJ!`;%>rvz|y*pP2kcapgfCPRD)G_ZjXaZWLOx<-pE;_e`M24|6)Q
zd{XJRy^>S=k*nX<@6(ON`g=`ESvE-su6+{dd}Weo69?!t?4&J~S=VhEZBq=tO_*wv
z)iFyky6Q^6V-DjK@5jEY+Ah1Md2lFA(4FZYA#h^avFJ@j6CJjR{G0Kxgm-!7t1Tw?
zcrq>CT6}u_t&>q#a-UAbCMN;#$;;+HZ!Y{16V|a{C9`|2&uN?U<|RkZP7wI==cF9?
zWM^9eF^>%?ttw~z|5v?nY?-rCvqcgtAqcY0<wWM{Eo(1cS*Yqemo+^y(lEl$PsVxg
z^Cz#Yja9VSxKrHUK+n$x9b4U{EN`~4YUQ!yeytMIj6*z-paOaBywkSdS@QxGuiWex
z+^!~9H7)esiIkIE;Gl$@BK<2f|4(j_j$Zr6-=%-+N;kgEH$A`RCeJ;Oe&=JqzqbZP
z!aU>{=e}*>;f}kfRtJ859JF28czcw^m)CzLnHu+A*!sEAM9{HtmX*MfNuo^=o17*%
z_uFpES{9#m_rdI=E3aHVJ-7Pa&OH&E|M#9;TW0E-)yLD^Z@)Zc!n?>Lvt~-pSjNX9
z=)n<WG(l`~!Nu3BZ%y02YR=j{Ql_lgmu6d~#mXI(6KcBQ>?B~U!lEhZu{`>r5{UKl
z#^Om*>TK(;$Jk%H@q6Xz>a1OL{Qi5+x861|X9<1X(RkC@NuU}OoB~fS$!pZFS*f!5
z?*g~8U!{CyIg08E+P4%unLP2w1Z|E*E14Z@^t4$vrnD*?m8;%jbpG?X&V$zePRHi$
z3fcVsx0O*{-fGDY`xjTI8!ex{an(xL(bz8^@K5nRnWMWRGf3DwxZPdDE=-$u)miyl
z-Z!EIKeY+5r7vZKC0%fM7k$~t&Yh{QxIHib`KN!A7e(to`I4=lQMLKUqu)=j+3NoZ
zKdVw#%lZCYnbn-4d!gQ897+=eToe>L9Lkpc)VvTF-JtmX;rGVq)_t-sZ|Y=)?SI-P
z6&rSJ`em2DC!i@B>|qxL$@mk>y~?J$*7W#K7qxiIFLuVz8e4G%DgZ!hg)EH``|XTO
z2J3!1@Pz^7E+BduTka5i{dQfR(6kd`E{u*YM;p1txkO*LgcSs?4((p7d#y2Q`!?6t
zhxP`DY|V3IUD?ppwPMAB4%aEF3Y!jbRZmg<2|i`pH_xfzL+yF{otDpS-&<Pl{66RV
zp4Uta4U(44j;xM-bNpL5<<69N>8da!e|p;0vGv!cG;PL^X~(Cv%g(z#TWwxR**6C*
znegehcaz@k_!)NbweRixttAyT2{mtLey^I_=~L;&aaPyz-!-1BExU@7f;0rnHd+5s
zE4W`%EAVgswuBs}3p0vazot3+-!z=U^sAa%k9UDvR^5x(kFwYIO)5~YlJ9+^b9O_^
zfgE3t%n98Kdv<toUJh<O?z=+Bzw_6l{X48npGlpYZe*nY!qZTvPGHyJ^#5f_cDGME
zZaumus_o$Qh}|0h<d_&1*k8>H`gJ$mGqY4=mPV`C-O4#<rqxyKO<yJCBAz^1?&|!@
zmoCk7zv_M7OH3ihJW9qg)@$ml@`Dn&_LqF@ZC~CpH4Ju~bGabvp#PHp8@9aX6`LLV
z!%}yxPnFrG=Ch7p|AwzxnzQCk{<Yr>hWyK4@1CX;XLV3NU2EHdy=OiKzbhAM;SdbC
zGw-=i$BON%46+%&C$9Xh`R;Zu^RbIZ>~zzNRDR_)od5Yax%K)iyH06U)7P#){ergV
z@@CwtU!a;e`Pl#23yQ=4ybw&j8X8*v|9k5Nw)w~G<^OoCx+rON_M(iqdSBPIr4P94
zJ8x}2CMqiW^k9gY%E<(=4+U#WVocY&E(v|EoAF6w*7Ma9E<~khdtY?^9(tbpoPVHz
zugR77p>Dnxmxs<}Jdp8u>C@(ytBPy9neO`kshw;a+!g2g`1PImCAn6gkItBPYFfVh
zw@0F9&J`*yE<LwlQpfglEv4d2O5J+5x?^9rKV2tr*I6)Zdqj1$enrTGpPzTOOq%q&
zdkaIu#M|C6#hi{hrzQ0l%}V=p_SotCJ+dwRRn8IS3_Yc5dbt=Dl$r(}u`<<87vEaj
zXLzXc|J^T>(%q+9MQC@bzYqM8F>mWeCWgz&t&aCKnH$!bZ4a9LQuAe&vXs_y`;J?C
z)zVT~<zsTbp5EMKytg%E_0G-PG?-sh>L0$#6l~mADs**v-GTjoHF#D&e|<xHwro}4
zy)9S6-hHo|88}%fChMZj$vN6t-=_&23%sYaMETgcHJo=&%gNO_c~<>=I)BSTM&|EJ
z)R+4TcwOR1`po>%dDg`3QHSJL806o6xtlZIW1j7;m-@>leH3o=w9IzpeRpZ`x;xr$
z@86q{TevLRZpr_ZJQv)uI^Lc)@zvqnTeT!YiZO#lWOH#}B<FwCY3t(xf^P;gZ0yX`
zo^;^&%+D)#FMsezMDTV0(X|o2UbdH3ACa3Lx=N$)5&PLgPrWk#NgPaCbp6q5%kC((
z3FeKy6+1HScKrJ*%&?$-!G|duCE}LbuKfD4+(G7OhfLNSmV}QR-mQqb%(UqJ`EcWz
z*JHPwjPmGeWL#<AF{k?N-q!X~#^%MX$332vo|?(V=&5|UEoi+}X3`O*uS?!*8VViR
zk$wJhwozP6dHg#Am*~PHUi0T{@%BEGvi+9y-1D)zMaQq*IA)d1av@Ay=8c=%;_Bwu
zih0^<XS)_&``Gd3{>vv@j~qF1`N|It=Edz__xLVnO76<KKlk57mnyrn3*J=hOqhN`
z^j1Rr!Ke2azPxYmzLU7m_y44bio#iJ2G1>zp4;8tHsK%hw(~;IJ7@Tvn()$c@8vVu
zM;D&n-KF%he&2@<Lxva2-z(To=~=?;@Z5Rl?eO+#^&h(CyOlD0v7b4)HH@cX&K`$#
zAwmpO=G1h_@9dbPyW-Bdo6DFP0(gE;p7VzJ^{&qfq6sHHUq39`w*HRt!8jAU;@uk_
zsTzJVi+%C`-N~TXLYLL=KK7k&?sAc>;+<Y`Jann8#lBBPtt?fw3=MIMHY|<TbWY-2
zGxcNfzo3t|+q|v?+*1|&wpb#mZRTI8^B2~<oYa@X6YTEsQjg#B=N7$P(`N@Sh$`Lv
z@z?4r*Di6%@4NWtS?HfHq1s>7R7F;6t`YRjGicCIs=x89)7qlTWqEbsWR}x)d+!VN
zt!*^nQcJol)O}3fcJm4OhuL36O!S{9$OO&1v*Y38+PmG$4+NZ)x+m1OwlP4<{HRRY
z|F+jVw|kzH_`HApLu~~WV~b7iZDy=uX>vH9eto+*!vXz?`6`btu>DApQkr+dU9sdd
z>$<-m>~BxVwtKoq>gd5^tL9p-777<)bXYp;{kzS6vAR!J?5cRO*2rl4ma}q7s?FC9
zU$dQZLPz;fC70mTNXPswj2bg)>s9tB9eaQ2WNrPM)1PG-8xqW}+OItyImtD$MD)mk
z>d4Og!!4)M-gfV_yYeD~f1O#3@b6?l`#&LnZ{{!7^}n1kBVsKpn{`Re;``_N^`=E`
zWE8&dX}*rX?9$fkQWb8Ej`pJ*+eIzE{ayHQ*4~HBtL`uN`TXx#vAKxqk>{G4y;0BX
zw{jeqbS!e~x!3#&e#>0?Y-AaFY9_1Q_xYn;+nQJMtWx>MzSnO#G<(06{lEI~xb61C
za;#Ma{g0QmT0bxNVrRQ~IRk@OD#zvD<tcMwFBh!bGIeX{S@Rt;R|aIhX`7<@$F)!X
zZEM!UWjWu^mNV%1i|aj}rsJ94Y3*Qr;AZx3w(ZH`o~&uV%Wc{lJUh#)n0l)Ba|X;1
zbC(s3*~6YPp=-VJX1~3@cW*`fEuQt}4R3CPYv$=~@^|DWx&KPgcyqRLU&Pr1d6(~o
zoLj?lBJ}a{h@z#H+PCtqZB-EJb8A=oyi&8yS8OfUL~Wn*@3<e_jtO)VVm)5J>a)CT
z%!$qNaX;tozn9&*AuKIjquO=H$ur8EuU_1FLg>Kt(1Z6H8O!U`mIpuMnselXvU=jN
zNAdISMSl|heoN4lw;|hDntkT4?CLMRhJ6A>&6$FM3{}7Pa9F%OYM``ybrLf};*T54
zUmK|WewPuo{N7}LQ~%vk>)zFsi6scTRZ8?65X*RaTjbxl-s_x6=Qf@$&hq}hDE<S}
zmP@m}ddvO@Z+_V-WT5i9C%usW)#He7Gpur}n>4a*y8q5nhzhi@T)batLF{ez0~TqI
zjeM)mE;lqeYtGVOw@z>K%6{kN0r$QvONsb*vY~pbNo<dtdWIcCLjFZnhTY8^3<?|x
zg%<ZOnY`1q<PH+G`)Kq)-!t^uTju`X_Jw-S=0=<st8Eu_Wk~qr8@uDujIY0%+ZX~W
zqi4#MCaBJzy*Z23lKT>8a_#S_Wp6AKr80IpCr!Uw#&F^B(`6@Ql{8mRVUTEv`BUk4
zkW)F-Rh?nC{i_>0dY)hRc<L>ky0FwDx~YA~-3KwkVP~fv+?7_V+x6*DK7-PB$E9bO
zF0A&7-}=&F*@Vmdi(CG<31;T6<>Iq{lyupD`M!WZD{eC%xg%@;*Qa~k>h5r>1C`6P
z?#1tk@w}&S^z?d;V57JzSLcLw?fT`v$8PT(-Ovdh#g866Ja6Y|t>${V^<AUn|2l2w
zc(a)Yf8?FH;~5;kPpa>)e)#RLkN$kGZgz<byKB=haU+9IZI{yQs5Xx7((>AEmKPj%
zhktv)e_O1IOVD`Iw2tLj$r|~oxq%E0#d_P*{}kC+=z57Wh&UDJPtuM~`^i}K-}X<k
zNP=a)^!Z=cPCm>D+jRWQ&v)|rxi<g2)Wo(Gb{c&?H%V}x=QrbrF_yKLSQwJhW!(1|
zSUQv?v7Px;%J??3{q*y9-96R^drCqZpIx$Es<=+(tIvPi-+X+NPJZY(;rsXLDaHps
zj%(i0UYa$pr2a{M-pTarL|>D3UkQ_S1zZdo?)Pq4&E)%~@;{>g(Cp7Dh33n4nf2aF
zxOh`9is{%|p6znoJHw@RW^KI?8x|H~W1c0y{6ytPi@Mw5ceA>ZuKMqEZO#(^DDB&6
z`S)DP)@u^!&sS|1%RagAXx4_iH4=Plxa^A_&Og4#v{Uf7I&W>Q+Vi{Tdh_@WJlH0B
z^zllI+1o|`J<^Oj_C%7oeE;LsTTa<;t}^nUwkdVp<kA2Z*A{Ovrc0|9*gwf)=$-M6
z;amI1)$iN>Rw@0GoBk<wH){*)>4}nW`va^PH2mwgGcw#&`@Krx=&j^A=i}#Xo6M70
zWEoy3ck<&>W)2OXy#XS-W-zopIr>NS#l<hleas9F#_1WKpXD+v4rVQ1_g1O9AiG$n
zIzHy7q5Ykyn>$u7e^)#&<J|XvRpB};3>h(>vpydbR4eY^ui2-u=ka&XSqJuCYl_-`
zY(aD5Zl@bLX7h6kLS=ZX?$15-H+q|4>?6lBrxSjy+q}1U{c#4y!y9Z48h*dBW|`lb
z9??qmy+U2g*MdIUPSN~Qlk6_2kas`micj2)YjcBJFI~KHkzt>GrfK5Umj+>}m6??<
z8j`2CpE&e2R=~GRz*Sl{w{*kJuS<Q@CWrE0*i|CE?f0T+QG@c$sdM?g+jb_Wa2d}x
z@!$RCeDLuq>!-($9y>PmV#XGss%tl%Tzj#m@Q_JO>7*{Nn>@n5>ZR`TUMc3<Ric}k
z_J)UjfvmN1((7}lev30jC3EN=yUf_X?^B5R$(vUmFtM8+XI<sQKV?(%L2G_1h8Y`f
zvQ~b-UShh@B(I>*@-bu6-v#Ga8#n~>i6(1(Hvdp|BCnCpWW||1kwPDwS4%C*yf%+@
zHb=v<m5i$|90~rNCpI_F<iL%TECv&Udr#(kTIYG=vRx6c>56MA$Ko`(etM>D%y)8J
z<I#KfO7^q6OPY2~dUQ9d<?X>0n<BR9uisTJ^j_n3_2ag4hiy+k`Jl$ku*;}H{l3q?
zsU~b*ZVGqq^P3i&uCm+jFV4oJXS9|v<CgF9mAcQL=|7*nP`A-fN%_!iR;m559jjLS
z5-Is`abno}?lPlGC%1o4x$YhN^N0GsHOYKA)pfr-!p!z(Imj8<Wxv!gb(25dE6yUj
zKZWnuQgQLgF%|cMsxF$dG|k|h$yCUdwdJeG;j-HTYDWGiJh<*p_ivU?);q4or4!)N
zr=HH1ndQZh@MH<cVyB&(-y2Pu<X5k57U!$h@#Dosm&o-2Dl?vZx-xy$r$>L@Jko#q
zR5AL?@+V9F@x{blS96}svc)l*$*alL!ull7P3@oi?nT`=vdvqAiN$&6=4pB5x@=eS
zue7E2a+k5_9^A&ure-O!?a9{0bpZ*U<^R&nXN%8tj(HN?yJM5~p<S9`ed=j@rUf5l
zQZ_omYIRCxF1Pl#)W4>;^Nxiu)r;9=MJ=^D6UEr`_vF&6LC3qcSe==fyRP5v*S0Bh
zzrMLRUE<cED}_3@pRu&`+59fzJNI{4Z}pWQ%E~W&BcJYG+y3d-;gxsx_U_I%bPEsI
ze$n`d`q_m{yY|-q+5FnwjJNgd>g_6>f1ij)9SzaEdVN{wrexKazU5{YR`(klT?!8h
z38>jKKlnoKrppJ`UcYU5eASZ|&;3n<US)nfr;%0=^6RqFt2^v=c@qw%&D$~Q<D3FH
zX$c;OlU1ig77OgZc}YbkE4^gtoX^YuMW`HV<2m(t$(;DwNfVjR-=1amH<ZU}ZR$Na
zHUZ%p@56W3JUR8f#cJPj329EH(@Yn>89N>fS+z&mX?uZ>R$KOCrSyv%zdlW9*k<wX
zum0NAep#VA<b*@5|0OL@_BW{C+wnQ`^s*W0p*x*K8LD>M>Dr`wGu+t5ZNOP+>KAu3
z$jf5y%sqWK=IpF_c)G;@91E{*#99u9tQ`NW{S|Md89b8al|Fd2=(^3Uy|cD%d~DNo
zxH&HVo>}^@o|(qF(x3L9^-&L%&#JEJF=0s9_}F%Nf<wS3bA|=KU&)AGoMchT!(jNT
zv{`%V&r^9v!Zyy#e9HQ_tnZ)pvix{s)-v0(OZ@$oPP;XI)-9>Co%ugkh_v;|-qy6V
zw6rWeHZeNxV=03}dQ@R;oq8p|KkJ2`rzGs>t0!I3ys&<TmDh9^Kf3~j{956o`iuKp
z7q*3kI|nn0o}ap@T)lqAwqwc`ORc6ou3oaqN%*-GQ_1$i;EZo~1jKWcb{(!1EPAY=
zC|b5}(T8hHYd5h)#!W0{keC?sie+`pJo!mQr;OhHTDoE5i&a}Yw)V)~*J1TJ&h+t6
zpv}b4B@T^Y8z<k+OYq^#pLfPS=Go21Tf)?jOjzD^b@dag%s+l^itjl@r%KH1R&3(r
zTE6E{jXlHO`_;wo_xe2-dUL$@*%@I&(>mpsJ(Y$1S95O4INX+-_-Lv6F*!%`XMU=&
zc{=P2Q-d}4yjjjY&(`<;>Amj+oo8j9Y&m+<Yi0YKQ<62)yB5C?{I+3c&qLARBc-|X
zrhYZoPnhKKclvWJQ;Y79n-6F2Jnix*@RZ;&^^R4tZ(fPU?Q#5Y{PGm*`*jB=f4RyZ
zBI;J$<W#-u`Q6RS85>SVHmdRHRjS|4FMqaq^S$jQH{P;~2I|`dYJ4l$nEB3YdsA%v
z#O1w=4wvUn-rn?h+VVFtQw=x|yvy}H(V6+q|FqUUn|u5`9ksGA-k#kyF|z9Uw&MnZ
z_k2q9AKpCr``Ic-^`$G@YR{-%i(*)yzb*dHPcQKu<~}nXv6b$fbiz|AYjIu5>%0{A
zb$8#0Rm7P&=gYrQJYVSg!$#%fUC#{+Hb35`*ha3iYIxo5-ulq|ui<m%^Pej#Z+dV2
z_j5n<fsK=#zO_16-!Utjc=E(;PX80Ep1UPBt*M@<+;E#|rQ`8?RbCPzvzyBv*y~>i
z->~E4(&KyWBcp})%P@r4Mr^7-=oXzEYE_x^?fB=DS%-2O!WXl0y}Wo|+V$UWQ-j^w
z4O{11E|SpATxn!(exiKm+Bb8qvt7_u^uMz%-uac!_ky;+TPLOM)L65rw8NBFDVpi}
z^=0MfnDS2kGVwmBCd;SnsuHF0r+iZAS?z>fJItnU`B%7|J8Ob^+tcE{m&UK8l;WR-
zmA<&j&2UU*;_3|@woe3aKRYDE_C;gHsi@l$FTU|^W@lKzYWv`&o!OnY7ra6l6qp{j
zJWFP35MIA>X`q355S#D$qF-A1=YQ9{GktCG{y@^3vyaz&y~}-DQ^s#vz=r=mL5st@
z-rCAGYi-UtwJPEwqx>biBcJZB|8nRZ!vm|tgU$>MiKhZ9w|xs{*&DUu%>tW;hitQW
z!rHThrRFkJoia*qG=Bb;mEps-C00{D$7*XVF>O-0CARD6p=(q1I3MPz9XgT8<I2Xs
zWBF|V<l=@m?_-M&_c6}cJnJpf<~XJ=n_u?t`gHEemUJbd$)y55UiY_WSQ@`ly1&~!
zM7iv9u;G>}9*L!%^97^g!-MzTt-O8P#C&<S;_FCf28YwCi$2`TsS4aI+BMHeY>UWr
zHLDK`En`e0j>rCWU)wLaU}tOM#&Q>}3z@$6Z$%lrV16`r=eC}8-}dtG^74k9I(<s(
zcgQliuWMURhAo}L-v9dJ-=|CJly~lm_*?jT>%YwzY5!-`pZI&kt9#kGw79gBTw9MP
zTYYHxxMB74Kfg|<$KMGLI52&e*M2F61(y0ULNc>w&YT%~ifuvGj2l~8gT8mf|B>D&
zcz>Er_PMS1?@fH#w#wJW+vM4X*I%yv+P(Euen#*L`~9D*<>IZ1Zyi{!FXPf$CY2tv
z!@r6@t8Ur_t1FCqeP<o)JNxg7M#a~UT{`Du)T{i1J8d01Hy@mpCT+O(vHc{MD@!wG
zKRrIR<X?Bki8p(4UrwB`L#Qy9?f#N4X?G5H7t56dp7E{wv+v{5RkFto8+eQ}-EaEK
zozv~P9#P@dSa(}#w$to+osTjZu1x>_GPtVdfYBP;JDUto312bFkzU6sn<XgDb^Uwb
zlXXuc#Q&PSh+#j)q$Ae;f7*`Dya<J@hcEwkwRq;Wt|Ib>)4ihVt&+c3Yqw0@GqvvH
zyG|o{FZTll_xIdi;-zkWS@-|{hsGy&%zEc_u+iP(+!3AWMiW*aK9zXHl9@elS<J-+
zzVp)O%dH6)mlV`K(tobx%z~zt7XPhIzo+gxUv})6r10sZ!JQ0;vx3Z$TYTSsea&RY
ze#&~ze3$Imv!!)*UR%WXgy&+@F{76bJvL{09vB<FJa+HNicjoMci%3*@q49YkIO!$
zAf*fWA1veItq#pzx_<jnQJ0^bdoq?R_IoHNntA`jRhegrX}!z+kJaD(EWJ-)*Rg5!
z|D4kWE`GNwy1t8V)vB<aPn33-oL{q#y{%mPiJQz-e-H1hHLDW#{S27<)3WwPytYra
z@#}?qS2y2FJhongog<Lp?447$);*YSz5X?$%qnrQi+&M4#U`Ks8_oW+wc!)*B9Cj&
z6K}n+{aE-}@`vK>rk*1SXVq*azuzk3SSS<dDtqLJx@N!qq;uiNj~&!qd+6FP_rlrl
z|1)g+Q74RTrUG{Lr<sA7AxIuHYhesJ6b-}}bQ7zfgTp}+6_C@~z%wdjPpr;8Iqk6m
zkLz2jpa0|i^ka^@8h0F5VcE0$m7gV>bjsOtfB)94|G)G7@1O2JmM^q<%=Ni4VBXb|
zJ*Vp}-m3Yi@8aUGz5b|gUS5|E*Y!6=C*qdKNGZm2EL{D;F>S%&@4tO{b^l}<YqXcm
zNSgJRb4jc0{GjV%&&)(lE!0%2@)YE?OqEmI{qEwM!>P^LG1Ff%a^G(cDUM5>!uwrt
zO4iq>dIjol-fXW3cz){b@`aa6+vD<PD;4dy<NEe&$=Vl_L_Gdm9CbgjW{<b^vT4&4
zBC3BaX8QTP^<Z@#e`ZYHC-$V`y<M!IzGuJu<8r&E=iV}%*LLpbj=V9OylBnJOEa@m
zk_y&NS-h_|O8w_!xdqxuVN&Y@6b?`I?p*r&q?6JW)~8c^N_G^)`bD=|_1rd^)K;?d
zeT~hvXQJDT4IjwJ-ZfP!P+anYFSKXxr`D4;Pk!%AnA*GhP^Vk#%1Kd?qNf+;AAGza
zXESfoG?Qt3vov`Gjud@a<ag8LTFu(RQYrV;47IGjpx=g<-#+AB7IR@i4$ti?(mWaF
zixx{)M=BM{8;RIo{}(t}_-x1PZ}T=B=e)F{toNo`oQwv4=E236JLk^0J1h3luHDyO
zy9eIba`EiV7u*hk*QV@Ubs#G9WMPPY<HS5hUy(b>ih@@y^7hCFSxlesU*gn-Lh-3T
zcV)iUYQN4C*kh*=eeCb;ryaJ&r`O#!+JDI-maWLUB&pYfX_501-Z$+f^I0~VEHR(C
z@A;dGTQARSN}3W_+-Vy8v2wl15vQQO$Q{WSd3;a)PH{Q%QJBxhutoW?-<s({3pCap
zU8BD8mcx95o=h8ye||p%4)^TQu>KPqbUD>-iR`WXX&;X$f4m^hpVD43f9m}9nAB#o
zSDwvmmWD^y$bKrm|NYhO%~k(a+ti*YJ(IL{R%`VNZjSk3+jjAuieua4zsrARgaU6{
zkk`>k_Z}~Lp)YeUR#isW*68b6qsAET?I)Uc9Z?mSuIYa%Yo^ZEC3TytJ|&zuaLjPt
zQALZ(+UBoC9&leWmOSa4_Iyj2R6(cbB*6?W110y4li!+op4lp{nrfu@w&B-f+ckyL
zALZTp{(G%(-S_TtjhhJv??wGnx!Jtt((BNhL2nnBP7}WC<ShQ~T#(wy!!Nw_D^GK(
z-gFht;GAy4#TsJOZZkn+vdhD_ETS7Hcj?}GRAY9`u2%li@49O`%j`Yn?$o}|o!!Tu
zUE|y*A-nL_<eC@4noH-|%qd`gQKGpdWM=yAY46Sl@k*Aydv!%eB=zXRc{Y-Nj~A}!
zTeS72E?>&GgeBF2?0<9lB@JeJo^!kwrOa?yaY4Z}yO=u?L8qsdU7lbP*1vSc2A4#>
zKz%-*vMH<F-#<y@V6(sNY~Hw}&1Tx0xNvU69g8H+X_=ls#&;w`W{cI9%g0kn6ZMZa
za@ckM-kG*@sd?VF4aZvQ^s8pAd6$}V;k%EP!KQbzrt^%P=S8^5nYm2PajIGI@YT)K
z_w{=nf2$?C#awLp{yEqseEHt1D}Kv$aLv<c(Ki)cemF|-_^mHoTSHtVD}6Ux9=K>E
z$@L^u&%Q}d@^0MfTbDh8%QAy*@A6>fy`r1BR-#TryP(BUy25F);p;bHF89t}G!@-v
zbmaG;JFffzFMF%|D$a<UVDDO5dtjOR!}ZNcHj$BCvo1`tU72bB?Zv<HU$F{CMR}5e
zzI&5wWR*?KWLNxaW#pLmd*MudwW~{}c`lz6$#*M!%HkV$iax70PPO$`(3w1;h{6B$
zB;M_B_J&$*kDsXP=ym>yh6k6+t~-j~rX9<kcGAnt;l(N4MNfDCHVjtS$>7~!{$QKV
zi!XkH$}>7P*~t_gpU&(r6r!Jf?VW9Uz6NJX=~v~A%t~^xDMCG8a!wXBzIkzHvg(Ua
z3$D6a<72-jJiK)w;_i&N#CfkD=uQ;$_>*^vTj9?A<ov&B4>rorJp8>mWm8#alN&d;
zb7<ucqa26Q#ut{J^({-<eC{s$_QB`dU+tKwR~=X7&iK+b>3=T&`lKDZBJ6ZF7{!(Q
z|2nkQZHM&SeEtoJ3SYxN<fMp7S%2qO`Bz*LXwxdT_jIgQ^UDyOvmNC(<{W;W6&A4I
z^tn_8mD9@?%{3`yP}IMpSo$L{?1^33%lFgnANn-w_?y@`5xae_H3~Mp?m0iri8swr
zto3We)jwt$%4_FWn0?y!{#%La=aAQ*N-ON2G$~D4si2Y*yTs!rYY|7!+s2xxyny>=
zGY|jH`_|^jIN{Om;FO9hcdP7t%UiW)r*=5hHOI>;Jvn&j*ajILop<eL!oF?Dn~^e8
zmFL~LEgv#I?07Hz>KljPAxj^JiCYa88O+bzvd^%g^kItShhMp}cV@b<1ig!%tlw7T
zaYiZUmU?ks;`e{*6FO#|I>WNj)68>TR(R3*1^Z{(hMV1d`|zxeR<DR_QsWCYF&pQf
z{=sEm<BgMF@$0YgR?*Wv8hV#`wkEG4Ps^U!Zn@R%pLOcK>bic6sB(4ORl=R>&%JMn
z)4FZ4yKX;z`%lE6sX==}oW9+<>Z4^h4yvzyy~fkR&*2e2E0>C6fZyWu_U^7=EysY1
z1@=+V%bp#(->y<7n4*v)A>yKOi+_e`*x}FGOZ4jBEOGBl4coY6(apy8H9q@xu%{f|
zciJYt&Z^JRLp;hXWw#oSW8cbSvnO?G*==I6GM%sclKqbEnh#p*8T(2sl$xzrQs+2q
zd%o+SgwHnvmxEzGJU;K^i|a4Vnc!{yTU=~TC6lo2g1zZCg4Z_r`ZcN;zszG%de6nl
zU6rzuSycJauT#B8#4pRGD9JAFT({-Hrnhd{AJ({K{=L9mWMir_^ZXr$wrD4X?{fRL
zTwmaw$?vqO=X7r*hc?$-`FZbn&)&UsnQMN$h)0vbqP)BbE#cQMKL~Z~m=U^MPjdpx
z(IzcvuWA!foBbbLxl|kt<1Rj3ruRxjq^>dY;;Mb&Iy?%MZYJ-ww)eXnKdYuVA^4=M
z`pSjD&zH2RRPH)`rX+LEFU>z)pD(1St`%_=XT7taoAtF$)}1C{?YaA7p8Y#uqjGWa
zV)0p<c%*;-jh-i%pyXoLW2fTy@=;+Ud%C+0>qWnC=LKJ9S07J#75#6%#sn4@G5$Nt
zSbrOATEew;@%-zi^$J(!s#xZ7sbsSBMDIK9vcFp<{>tAguJMf_CsK^!of=hozk~|P
z2KLEq<@sJW-BI=u*CL7dTh$ZK3Q4_ntyMoSzEaUs`|3s4*1gL=-<tShf##Ew0nU^1
zINp9x&Z^zk!sI!N<LqV+jr$I<eQJlAHMv<Ql{ie>qN!C_rD=0}eTUg)bK65vVn(c!
zt|Y8g2~Fr+evEtZnk7BQk^+6hdQ<`xI8Qk(da-F*gwYCTg=@F2Y5tm~+M`jlpiM<!
zbwv-8?$2L^%Rimp^X{+eEFaBEN#APGburrUg}XC0O|r>m)hd*VZx*P%>hMKZkyUrW
zY}?N#IJSlK%PsgYMNUm1|KgqBdXvk{KFB#bG;jX$k>y*BUHiopRe{^y$sX$uYznv|
z{cpO|q!bHx=Uq#Jr0%|N`~TU_{cdW|aZbAwuBUxjv(~hDY}v!UpsD_y+Rc5SmU3|k
z%1t-$OKptIkWUSQ9lcF_Q<`3<27!+{R?rV7`;cu$5!Z|F6S$v=CCN)iO_q)5iJdW{
z%QuHvExe`h!JGpQB5mCD_uhRfuQ+?=q3L@&`yY>P@Bh8g{@uFgiV@f98rBNx2<b%m
zW!oP-rn7zP{DkB=DJl^v5l@!NSH5(o_bJ<#`uBWMR+r=y1Hs6XC%oJS$OUibe}9~u
z*4JP8{pUgP`~U9t|NSVh@xOTmwiE}7K~Oi%*xU#t4Q9d?$`YU6=(Hvlv{)CZ>jugf
z<agapcgtQEJhs~3{#~-%q^|{UY_>58bKFZ6R-e%D|Hhk5Ml3vy4r2FMgqj^EJb2K)
z#$(n@>*Dyo=ME{|`L(Zam+3SU^>5#Am-^1V{JgCE<+r~f%e5^3AJ)(1QrxIgIL*fQ
zf)JnX$s9I5&shsqweL)*VdPVs|2Wd7_I~5i)ny5p-dir{Sa{BmSM@BIcJot#YGS3m
zXOMZ?x4uTz{poc=+ICw~zTIE!uYYP;dHww>Tg@YG@7x-i%kBNPN}^FEt$_Ek%0X#I
zyMw<~(h8(2CfV#@SNPnX_U)UE@7||nzd}9u>=Hg-I8%S1tb6|Q$k{*p?^Jp3b!vYm
zq*J@s-sa6KA-_voMWgok-=E+dyuYGjX6fv;_Bx46{}om;iipanSM<l9pJ2}HqP(7E
z@kJgmdSf7UcFn>7sm`_8g}u@T#rE-D-!WS=GR9<9q6yz&@s;(S?HLP7efc~TkGyt=
z9cS5bq2H6qsl(hYE%ttN{@UvcqC#XRPub^v^7xv9$xAexzkZp$kN@Vw#OGV}H#7d-
zd^ewufA(1}nOE!e4qU4F$fM&q@z-G<nN9QWvU-1fce}maQrFb}(9|1`gmmA&=kLE~
ze{i#nPJOrXo>R9<DjYX8Y*+g_js3KKq2$^0l%0!~R#k3R-n#kl?{4QTsZDXs3-hJT
zQ@fp>Hq1DAY3cWuk#CoHKG^x_^QXsm!}C_wdf!hmS#ta0qw9Ge@2bWr?FF3@#|1k$
zoaNt6jg}pnMyqe#i~4aeYl+O4B{C8xZBCy1YxIumObjRYAIo_<F+sN*N?fKL%QicE
zJ^jT8mZ{C3n9f^UpS<h&ZhiyvpC4wM%e*(S^C)gqy!&v%mLGpU7|guO*3N!2zVKej
z&qaqFtLmTXA7_y^ULDB!+G}|ruZJeHn0kq?VEC?M&levo&bSsnW4G~x$MSm?dR}1i
z|FLBK(y|l|{jJf9KV4sYS9Ha93oM5SJ87*J5S$o!_lxPX9}PLFm!GUJ47%m`-1Um)
zq+9O}>6X@ea#nrO_qm=pEjV_Uu&$Tah3ckLDPKQae3)o4uh}``NrGqJiRU-ow)1o|
z$q3C-IdfOVQ{k=EV$YykGcDcD|DLy3iK}SE%&&9A*|MHbS)SqVnY&}dL=iLNEB4lQ
z`jH2gFP^*d&zUdxE?wKPVVRTn-lI#ytkWMVVmVZ_vG{U}fVr#KzEGyxRa*c3IlQCS
zq&g<W1urT%KC?RE=DfvI%J;c*e*AcCWuO1{8EvPQaB8LH>(1Fxp1+Z?eKM2%`=W<x
zC(~D?JS*OkQhe)s%#PP{E~-38P`RfzMe)q;)fd}0_hp{YxPHQD?xIa)OG5kBr}((8
zFJF>7=@ut{oU3!xG#~47$?c~1I&yo%OJf(O)rIa1d9rJ<QH@$l2OIn}a}m(-u?Z6$
zI0}PPUd~lE&JI_2+Pk_yXH)8wf9zYP7)mr<-sEt?X!B~W(pAf&r}Le1meBf`-hZuI
zTxQlyBlnwc=joRhWVdaeCz26)#vo95O2o7*<7rvk=AN@A^UMyEJaOjx4UX$C`<qtI
zE_rV;Q#ke8-;Ql3C-c1cP*VR|On2$_55}9d(o+iUg6AzVch-3=;536NsAEL{>^N{G
ziQEcNr#m8%R`IhEcRil+YXviJ)}Lc<o4!?@UwK1wihb;zV^-6)pDQ@A`+UrE88MIR
zqIx_krpBj(=g*KTSh;4Cp0PSZQJv1^gzBPZzJsxccb{7suv|RQ(J{5%k^8{hxso1|
zxtWP;I;KgNUp!|XyvcTMs)vH>>F?60IR<o?ZO4R`>GxJ^wN&_~y!><G%%ww_Q|~r?
ztGd7Z({kNh#rN(l$MgD?v~slc_Z?jK;JE)ryH|6MpZoMqRBx+_?)F=Wo7E?nTLw=4
z>R<BWxUfs~r_8^hK9&3b^l_C|Sxy%XndTGx{_xH<SEA||Butm`ynK3XZn>?a(cVv5
z+NU?zo1mVf3_kkTX;Sj5nF5cNo%nQFe)i1LxPRH@56l;=EDM=-`FDvf=jLSJ=byK~
zU&w5_DgXT3Q@bn<Pg-?XHEWgb?+Vpzw*n&1eSG_2%5BfmjL222mebcAZ!qYdeN+95
z4EM<nmouF^8g=7VJw1QO%2;RK^E1J7RF?XM*%x4OMbp#ryeeL&j^`@1ztfF3-&-AP
zn^~#rHGR#IsMnwUUVr}RnKgY6*P_+DnLA_mes2$HU2vpzt7zn&klX7{JbbAdwI}3u
z%!A6)XFaS9w(+QTOe%XD+qOzTLFa0pk!!gt`>9pBfA2nKT6LQ(o5Nw>YlltRSL-{L
zx4nA(;P;=KEkE`<!^&n3P?{E;H`U#IFPq|#;z{;(m1${-IsBCq7uii?|5FzG%ui|d
z^A$5}BkDRoUz@+{Fr)5t-Ed{TudEWggt!H_?A~gvbNxX;e!-+?+Uc2clMkC~oVk|0
zD(%74h`bd0gpZy}Y`020w&Hzb{K_C8^g#3v#)pcrua`aDTrjaQ_NCg&=sCsrA2pjV
z4P!pgWw_#0%#7*hxfd0B@>K^--JO@RvPKLwLA9K={Vp!%bcg4r{rt6Obv|?Pe!n#{
zaGpqXUv2Zd$Tm;^_$TTKkty;ra_2HnG)-CfJ@4oJgJ+NLxW=aK-p0l{Bf!qi=FGSI
z4bE29Y~F9RQ`@2=G8JXc7EUU@BN6*UW^bPPyj=E6931Lz64LJOSkXM~;y3F=r}!@y
zKbM8%eeMWiZOs0XEHApEM^7sLaF+Mq8{XxcS1egMl{e1i#mkf>a)nY0upEVbBWSIO
z;t}78wY7mWBWGDju2Ntvjoh>4)G6n_G>t{`s<^o~dj~~^SJzMb!(8y=Wgz1;>!0%v
zB(1z$J(=g}eVf1H5km8AB)CE%F9)CD%F|!@M`hKT9g4eeTo%iHfB7?CT9)kn@Z_VS
zo~u#|qO4B0NNPB)Kj5?R2=^~$KJGoU_XtH~`QI{)pHTI@yXw;QATMprKU3#VVmkLq
z@6D^U((v_|ht6NQb0nOj&^hIGZgN`p&dXC~$?Uh(K6N>Ig8$o4Q@^*XJ<GE9*lp7Z
zc#~!I=Q~r$^|o)%>-?PMQui~RKJPEL^YNG9f(-`D&eL{&xnA;-MOIAXYT5EDnlJW+
zM`rtUJdv6<;r*@22G$F9R|QT?y}@{Lik_6$bd``#mBQ<<7JHRg#5SpZ)ja6gXk`6*
z-5ds<O|Klbt7?6ox#sRvfBlbsXZ_uZGA>6?*;Ug%C43i?r`@H^u~_`@C1#5c$PcmU
zX|*q3fBtyw{T!A{({z^VN9<U=LX!Kh_~~o&zgM_j{c$4b{M;SKU#?e;+|l+_{p#Jr
zhbzBX7yLMy>$PxBZArzH5dVkoZ$2`NaN`atyTY2Wpj^O2e399UJGuL^|EMINod5su
z@%JmA|A~-dlG5Z}^3w3tgoOpWvQHS4TAuvi_C@yP-hW(QYC0=8R-B4)Zfsb;Zo*=|
z^WFTGS{pmRC$gg^Z%}y&&XFHu#F!(us=2OJmt3W)y6x*(w=AtgCwHz<Ig?cNWS7g*
zcSY~T%$Fv-nR6+xpX<JON6XFqAv27sVk}h49NN~}IdPko@)s}P&8DSz+BNm}smNW^
zR9xOM-`{oGLd%=)_kq827dShWUT-<_)?t$7s=k*U%`;UspYBd`f8fZSeA>hBrG<_9
z<fM1&SpPGAuKw};{U#N~Bdc9e$_#K>I&b^lrh9IYUALD8Z`)H7y{N4v@<gia)WqJP
z6ysY{Y?rpYxi($RV(#K++wucS?^K>%!IRzWd)L1<`1>>Cf`qB2A9e2p=RG_Zr2C^J
zV)}yRUaV^teZT7+e!*`+yVzF8^r=^k?x*VP_vKrjq9`xnI`icG*xryu87mW*rmuRD
zAbqUGS2EVO_v9ay-KKVFzuGX4Lw+cAt4H9G>BQRTiKbtpQs?!SXFhk}Te7Ox=+@48
zw@t2UTwNp;*0;6JNN9J&-B=NuwX@5;U#<^dvb(73&CPFp<v(~W3K(0y`_-IF`D|#h
zU|H6Z-QRX>XlYZi&0O`j<#osAA4iL~J$J}kzJ0@~S@j%k`_~)HF5g@xU*Oy-Wmb~C
z%`WzLR=<3G_+nO;`nt4bf8-f|6nxr-rGU`L_`D8OCB2&`=EkI{x~}i^LbH&wq7rX&
z&Oc90Pz_!ZJ8i#P=(R?fsQCi3muol`9ebnXK2y*oL{H-Mp*QOL(he#8|JwcBWHY<>
ze8by+nPt{EUoB*~5W76*aQn1G#@T&^ewi;#KfaX`y%KAzH#2T(p2(Fc2Ai+)o#(cj
zZY{G(e`VW-?>8^a`7NY7n>XxcZ2V50M|Z_!Q4eqi$2e2Dnz+*)k(<`bZyZS%xT9x#
zFnvM4tuK?^n}S}&GXb|0B`!3+5=ba)o+I+GaTkkZTvOybzZ##v3s;GSv+c@uwZ7Rc
zHTC5FtM*nlK9kB1Jgl7C!R)4=?92Vw_G>^$;{AlkTe7;MMPA>p$oIa#n=$R>PchZY
z+?(F)N!g{wzHLp|y3m_9g>|lMu)5#yw5Zkc@Y`4S-|dKLZr&%?+5yfvU{`|MXAi#U
zfePKfPsFy>ZqLk8k6st}def&_n%y~ztJmFZ)Mf7ep1FNaiuJ6}=*fK6soa+Fjqm-u
zCuz=UH4XJ+kPD6U4vLHvxK|~(b;+%5*{8m-oGkHg_4%3iNhM*X(oCnMSA9ak=g$YY
z?ERqh>Zl~wlG()}Q-9x8jmX(v#CMhN-@5QH=!HX|T;1^@?Bm?%lU#~%f;WGcv%Ab~
zm-dU04$nByUjL=|R(R*huqlsRPKJHpo>zRQZJW+xuc!|XP4*i`urBP;I~}~Q=iQz?
zORF_PFRbm=|J~s9n7@+av<=T1m4%x>sO-5f^<e3xvd<s+>|?A1^^$$9F3ekHb13c6
zRj$qVwng7zi+%SokmV4MbLae3cBOx(3%#mZ0&-iDg~Cd|Ptr~P)>%7`O$c}Lk5A2c
zxZe81%un+@4N^{37IrAwJegY1`?{ugw`It}+x&{{f!yIM9-1?4@Uc8?I`95}hC>$`
zcZ0?Y&<C(UJ#_FGf~5g`kF6mYbHQ{Pz%m9M$PF4%AZq|CwmL#M{GQ!p>lQ}=qk!$}
zyz(xD1}ZjOadqICvTJW{Q1ezT@%>KSZ}YY%ty&v8so_zpS7Pj)y9=+ad&yBZf3M_L
zC%4;Ag$mc6ay|Kq?e5apXmiERMJkH-<(-W#cQAP^&HMfP`1hIVY4<+=lQW(<{reo@
zs%NK;#XcAFuG)TW^-QOm)2}`k^VYfj>Z;GfBImC=j~cJfUmI?`{E2y`f$yG8D}UWt
zFSIuL_0<U#sli`&9u<0h?br2$ho_dkItONdm3eq-*`|7(X%XAyt{Svz&o-Ma=Dp@s
za@Mkfr-kA_4u)P333~ix-`cNPZ5>xQl)}wI=TAN!x&7LDPJwkftJspxF=;S5K3Z7P
z7jed~T}Z&iDJhO=$~i%9%QzjO;!6uz<R&pJEpAEjvzpSNz!_i_t@CV&vk;e`!vq$M
zsm_l;+I}9bC{OQL#J_%``>RFyTi0i;XiNWpUNJZQpiQxBtf`Il;>g>P2Iqg3#hS`&
z^;-T`N1)-;uB;yuo#t*UuI$>oXPuPFlh<43p7(nDwDjtSH#Kv=z48A1=4t7v`RC7F
z&$N!4ldivhZCm>D*Z2PTH?qtBS+F@_o^7!Gy|+8JHvM05xlD}1u`<?FW~bNkw=pwQ
z^w+O$6Z%wo>s);Ljnl7J?KJ#pmHWFJWS#<p(*YN?VkM4dCZ+`j1`|*6s2L`Mcso>{
zu{k6rC_T1*UR`K#`MJfTYQF~{KQ+~uvIUqF)tX)snISBmY2tLJQB%Zv&JK^of)Dt7
z7T$P!#C6tIr8|w9^A63~;j!7T#oAyeQ}Lrk*G-h}G}>BLtmP<w6QE(Bu6H5BWyfN-
zg$L$H6v}*l<S#SBsgbv*yu58iK-V!-klNJ;=IqGW>egbtVL8aE+$$Xg?o*u_Eem(O
zcH_QuA^%lF;SZPo$N3)4`&TLpwEKU#W7BBzCH_@Q;g2KX=Dc!uZWSMHFxjEE{jkNK
z?d$U-CbZQBTlcWff3-8w;R|1|b&tQr&EmrX|0?&dls)!PSWf1LWzC}J$2h-NY-hJA
z*}Niq--S;_-hJ9Oix;oRuCs7`{Is|^*-h%sbdTP?cV!au3syaEV`QA^p=hjcWi@@J
zi;;1qS6W=j7a^hZCz7=$o-sMnec4!0)i}SZL@v0~1H{y~vg%*?BsERR>zR;{@ux+L
zKhMxtQVCO<IrBvF<GXqc5r?yCbc6$qKBu`nH=KInkdMpBGqXLjmZ-WPIULlPqBuuz
z;v5@O=4oCkg#~UdMMW-bI#bU~J0vN1(om(&#8QcQ+PNtn4|_N`3;SHS(tUjW`c5>c
z3UyA|6Q<Pqe1e67vXZ4`(yxl`+zftfI#WH89`<xRd6Fr)A;id?E8RuqxLeABAkQr#
z=Q=zVW%T&=ooHBUxWvuD?wpfGe>MLzr$mL8PcQfv+Hg7NeSWdr?w#`<3B?aT#ET<(
z&qSLP?TtG0!u2)ZqhpKC*yYCRPWn+Z`Ci17%)8;?-75dK#pUbF;@(oa^@M(i)!vOS
z0=I8lXZB+H>yoO+pVEJCDc$<-<m-~EN4MS{I#Oy?d;Imx+FQHI<^5uoSO357I<xlH
zEi0A6xq0XJcN_g)Wxvu@==$IHXFt9Z?<kur6@TRGu|+D=x2+SK8Mo%LboV30+}PX`
zi(i*iC2!l~A07UB`X0aK=KFT7@Q>c!Jb#DZa`rtH8ojDQ8!s=Ykkg;mq#7XQt&+0b
z@#CHeVDSx?7yJl_vzc;CsKY}Cq$)zLQ`IKUX38O<&KsEu_qu}@R><kg?V7(f(V2(s
z2$PRguV;c;!ljIZAcK-7R<Vlo)&z;iAMtB`<XrJFK+4-AYspF7)U#QQ3CYG;6Hl+r
z*c_$sBNxQ1zL>T(Vb&_ittZ4IFQjc%aJt$PHE&|{g|x3BjjJTL>P(8hkhaxfL6%$f
z(<1I$f3!Mzvl<<)#w2}wBz8q<dUV*G<8?m`&Ape-o@pxh^QYi!PZ_U^8LqRhGVNRM
zw)0Mt+3KIp*-P%av;LQTT3ESHZ&JZ@rAvu|Kg8OP?mX&xOxc5JOT!~2@q!~seNzs6
z500{Ow|Oyz{kZ1Ws}j#w2U=`#6I?lQU)F`EQ?G{}-YlQ5BKvgH;#=pMUY`53D{IDo
z>ABlBCoEgMXWcB}+3PQt*-cK=U%z_U(dVzX9NC(0<70IyS8?;_(%b)@mQLKY)|U12
z8)^G>ZRyYNpKrJO5}1C_rrOTW>gL)1;k@VTK5+*<PKvo5X|Q|$o^?`Udlp?T6SH~r
z$>O+Qq}5A}&(Ch3er@J6Ywr5XO}BS?eA51I-8bpghIdai1n-CUI3BOE*X}vw{pg{o
zQU1jfs&kEM=l(pa{PfNW@xFc4bw~H)-~YE^j`Y?iKXyM4KeIdPU!rCBk4x$A=fw+V
z-+p)S{8{t-{~P9*?tQSi{Jg%OA&4U#`r+no*_)rw+_taLZaI=)yqL@Gc2#97yZp`C
zx}!Fqi*+x*_{SgVYJP|*_T0u?{@KD}FS<6kT=*-$i8HT-b=RUZPvh>H_X#}y@}euK
z=G{@HE;q-AARGUAfBwdQ`sRL(A8+n{KEG_n_WFo-|2+<-zb{KWZ=C;sLgA$=Y5BIy
z5!-^7O@44mv--8<gH3ad=Ca&f{$_1D+YXTMUp0L@SM#}>wr{(9b6fB-g|?Sd_I~9_
zxa}8f#p$#BP5Ld*J5_8Oa^I@yZ<}v4mqpEbN)eOCy;`ZcoKfrha}Oun^11Nq%e5)O
z4x6kWH_u!Ux~o}Y_DdB7lTDtn_b<NizbKJloodB7)9+^V?aZ9pnwMFYfh^EDvTg1w
zJCFqmR{aZIjM!rz7K^ygJR71kGsxxSneKV>o*y+{{CS3#O7Ej>M#h4w#hOP0)7;&k
z8^$l(aUy)e8J{QRXZB?9hl5MY{G8vc3l`pe?JaWe>X|(+UMv;qJw4M)#dz+bLdBJV
zUKf8ztej}};@`5=13{fC^B!pgKj`Ur!g485^?dJ%hNZ<CeA#L*Wgctv7436TY8BS(
zGcr`Nv{XvHQ0k_l?(UJW(nU%3aofeVvh{`{_gXiED0wy*D@~fbJmo-8XNnxC5cRky
zAwH4OJ6SczLRqP8(Z}g01tkj>xhS<7H(Y<p`%+^iU$^0sZk~^&6BGC8O{(IXn%yIP
zY=`jm6((#vZ<RV9e|cqB>a06yg^iEZ8r8E^$$`(d^1sTOcvHHhD*0kg8>lS$Jk2jZ
z=4;CQZR@5@-sHF3{MiW(_E)77Qy(2Ewfg(hG*0}d-}>u;LVcxwH%953^}fA-Y}wIC
z@3uahz37bH7w1XY%<qnxtyw4L8M39q^w^%Im!-R(UD#T>^~4%px#t!yl)_K^wt4qy
zj?rfSX!e#jKPR*t?`{o>bW+s5%I-hKVWp1Z{JC776^cR{Q;&*o3Rd*w@Ml`OiN&c*
zOXcB5l>jYgjg;k1hBot9yi&RL9-kbc;+M+FzEeeEs;bB)L4h-A?944<0t|`@GtTlc
zap)eX|8b3l<$}$1Cq_mS7M6`S4?ako7I4CkRY=aCNp*9JQyEulww)#0vh~LVIH#Nv
z;_~QiS=VVJzqdtiR>0M+sHa8RSpnRw`;8Zb?c5`7x}x>aSGFr!^|!jDt{lqLV$Pas
zpX$n+)fkZKuy+5X=)h(xrxiv#anULwt9VxU>TO@tw!Ot^>cTr()1xm=&RQ6ddLwV@
z>9zaKSG3BlJIl5;V8yPu<|ohEuEpG+G9{#BFWbqpysLNa)6`7+(RSARR>|JB>9f19
z#KcdYvgKtJ@1)t?S7uywT6iiTY3k{<FF3beFy7`Xaxa!`Yd}Pb!q;`i3&MUHhh149
z<`*g%u=)?@qaCLjqUL|Nx<Z62l<kYUzU8f5`*)_inmZ@fX39B1f7!YdO7ZI~SUelV
ze(k#6Dx%l5SY=0&`_jTcMJN9xtK8eSUuxdp)%&xoxt~RrT?swBdAdo4HTRFh>eFXW
zdh@jOb-mlCX&=*`zrMH6XV>+!@uFuoPp|PP5}nXD>A|FJ6{i0dePEyCeXq0ofO6G~
z-vxIc#kH4BRK8kqJZ6&K`MedocBHIxU8>F56H*gcS$HyLb5yvH#LhPnPmih!&Grfx
z(l~K7JT68kJ@};;)1pmZr;4ZUe-rxB>yP}&YvFM*M%%-eRx7I*MaO5xSZxnqs?FDR
z=34&VEh%~HUnOKNU|(+^BqZTk@Kx)zH<NN_Hs`vd@gY^mK77{vAC)rC^5o7B@|kZY
z%&6BjIzQu0#E*UxHKXV8-DfV>zl-?MzvYF7zWBl4-=FV^nf=f6Q&?<_(e`p*+mpLL
z26!f<TzjtazWBK9E~cNAc2e`_USEA_>JQsVYuE3YG4;mkOKay#%v`%ZWy{Z-y?4_O
zsxIEUmzP1hGtw;idu00di}&t5YudX*_S0s`-Rc{5^?v)tH*5ac8?|C3(r@SH9yp)2
zrv}87%{_4b+EtL~`mK|1+`GrdvF@E-b+z<|%|AbtNxyxY`_3XfC3(YP*`F_;tiL-s
zc4DuiN%@oIlmENUf76x2ld?<Mer`^~o|w09K}Nb1&6S_k-K5B+e>m-p-D@Qiwp%@S
z(`A<&OK<}@$TOpb?R}>4z2`BXT)Q?$KYkq-KH*&717G=Dd+naRj++iD2kX5bR!N>b
z;}W;HVDFJHeTfyl_Df<Wy?S%0_U`K%3uPrsJ0<36UTHt9tT|iD>xx|1<~Tg`o#e6P
z!(x$pEgesubeM33>sYp}<PX!ctV%DRUGpLDj<%5z*pvra*M#}5yneGOs^*UN!#8R9
z7hd-6|0()1u5*pSmy4xVwaY=}#P-NJFA6JJ!c*6~pH{dYE%JTWZwK8;GyYz$KBJn<
zxqT|v(N7hIa@(ICtSQqHInCYsb;sHpoqHnsZ+G!ZmZZE1$>8f3=U#fr_IqdRGvRZ3
z(~ftm&WSY=IsLgnRq*+Qm|~lAdeg+6iUenza(xgGx90d>q3?;4Vmwv!r*<DWsd8Oc
ziZgEC_kZ^vKION18lf>&ZF{caiq=EDY**B#-?r(y)cjM6Icu_go-=P&V#}$9TPa1-
zSpoi{t9Vwt4R3zF+UEKCZx$BPx4bN@XUF6z&$-J9(&xpSwJ@MmXzR(R+w7&UI6chb
zdN0j(MXmnUv%>XeKZDKst7V_eaw}RZ$Q8=AC0uX&!Z!03r>TkUzIxkvcU{jl+j%F<
z_u(y@7aDtG)=%2QG?j7dN%4tNosR{brZR5Topd{(IqJ#P)E_6k`?kF+)_eI{<NdL{
zpWGhD$$yBM^g!zhIMgrI-qn8iW>MJ7EpshTE~!@Cbg04dr&aE4aE~o}*_m%UY?`wF
zhW3l~SJxgWK6%l4cl4)&yUW)nPx4;3agA*hm;1T{tMznz_pG`&_0YsF{Z)E8z9y?n
zmu^t-k1tJpDYH8&oQwPOmr(Id&mynv3fk{p^d(e$p6{j=rArG^`u4qge_lQ6$}V$t
zw`VU_>)FiD2&~^E*>~n*{;%gj{OkVzZC%<amRh?~Je#j-=fA}uD^B-?#zsh`hraeo
z{O47BwRNe`?5OZly{9gQ$4)rAeMRZgfBjEDMtxu5x;EP0(8xVLHD+2y;OnktrQ$D7
zmo4oS`?`GggA+1;r+Iq|>mF_QdU#?^+x_^6Ss9VR?~k%v-(3IoQ&-W~Q1NNUZtSg^
zZsS!XD8;<UW>-ni<-5<{<mNUczkX%Mt5<&W_N|87*RIw|m4KLR3DM!-U)C|P-`KV5
z{Ds}S-{i`c*hhz#8!X;^`kvbk*GGTK^!MF!v#{3R2ht-DQ&%R$93B2WvtZ@vd)L@z
zY+Lv4vR;$+g>GvF`{?lREMeu-_pWVzmJYJ3@=nI}rw0qGcCMTF*z)_`jg=MpfhKXU
zHf`U^Tc9bG7#;pyvf~L?QW?k{itlTW8BSkP5Ll5u>8C=YvBtZvV(I34s{iVrQca9c
z2elhiH*35zy)~QDYq91Yk#!NBpw5=`LU8N~?h1ePbNkO(k_)?QE)<{K|7N|b&~)=j
zeMM96J&s_XdpBmm+SPL{^5^>H$LOiwef?hU{pD+WbrmZA|M+~QbQk}=UG_Uwrke@+
zBy3b`5RjVA-P*vZ6Q;niuyE%V0fWY)6CGCSOq?+3X6K1H6aABxc|19*+9|oV`R9U;
zqJ17m{1!b3@o?H<IkCer$;(dT(dJ-9PmPJ{T^f}dCyy#ra_TvJsw(!J*fH1V)1;fP
z75F}0^?1Rhx|74F;Nm*oKkQ$=egEFHn)&*=o$H(K{j1a7VO8+<)`8Fqx9tyhNnL5u
zOwl_jzJh1P*FwuqP>mj;D^O8<@+(uL`gEIxVjL%8f)oPgeo1L%`V_U*!QsimvMUS3
zK7_Je(TaDG36~6bZ47D!_zO;`TruHERqqqk9bOuHMAiw<iwRPQ@O`LSeA2PkKO(R>
zN+m!t;I-0DQPUO6IYZd4Xibg|Jp7vJp#RP%GsHjddp>D#aoOVu-uHGUKD2&cu4j4K
z(P}riNAh37NM7a6>;FC3dX>+2rRqNXKF|B!v74+vKJ`WGS)Oq(dhl?)y5-A-;mabL
z{;ae8^HoJ$_sc1f(|ew;e`gVJ@Sp3$hqiNfdWM(FXz+Dv+3Z<vtN-#<A9JekA};>$
z*fYMnc0K-o?_t%4XZ~6{0$bbfy$1>XD_}Lx`f#g@S@g~d)#H03zI*~1Qk-MW7gErw
zFMsdyPMe>v`j|!6ylid%UZN!ybGLB8q5l&P9j><eG-=&Ciw|KLQ^dmy7IX3E@Adh#
z@BYl$C11}fi^lDFyO=BQicyV!dfp}T_cALUxIHy_^YTpZ`@4k;nzSpPewcUePQ>dz
zX3@HS5xIMpcUrs!*>VPKOWOJUyB;@GC51eEXxn3Le&(S;V?9#>quK@b2J!!Mle4yN
zpR;sh&RR8QgRQsx=d<cWzg7h?|CdQ^$XVX`SU0Zb)V(694R1gy=BoB>uR32i@y6Ty
zY*R@YmS?x3eAk);uipDqXKre?sc*upsJFVy6{oG;dYi##?Kk7M2byzrmouKe=J)B|
zsnSdLillgMMESB6th{=!NXlVb*yMw$Ap6T$D=N=B=tQs9>`2Vox_!&#h;3n)IZs^4
zvM&|ekhAu1jY@v7qWz<oPwS-G{&W<d+^zMj-(vcn)oo|%{~n+1eJ|9}<N!kn$0BC7
z1s55ZFDP{IN$^bUn9O$cW5ve+t!R};71z8sxhkDwO4^$u6|M4U$%Grb^CsHv@G~}%
z^GfdiA)_zWWiijRCx@{!Qc19Vli%dYZg-09W*^xXb3{T#B#vovjMBpiF-IiWu6y4L
zJ$#4x0B20zc5aJ<2N(*P7`NYMo#W5Na<ut1Z*&Ng<Hq#8OHNhqSrVx#AR-;m9h3L7
zc(a#6#o5hf!KwmlvfXq)E!WA|>?II*rzh%(f7FFE(fEKjk=s|ydbYRzb5`Sm8=Kn-
z=Q;%3`LoScZ~KC^T8#^KRIYZ_+y1BV(AJe8L$~w9tzNW-Gn8|gsQF^CpO3}1M5@ks
zwRgXkQ^1{`C^>nX{Xdp}on+sV^iQJb<i?zcC$r=o^*9w67&({(8rlvVu~*i8wAy;c
zNgg&EF1G~@3?1dtJq-zJ#vMm`5*i#BV}y#C6<An|XQ(WTk^XY`cTbD?3+w0g)3XJP
z+n=cJ$VmNI-SqwGvpNI8etqrkqs`x+KHFytW*=_;{#5U_xnRG3w85daoo~y&izbv=
zoH@{=DKg`=e^RfT&zl2}4;_{2{c+w;$lSuPHL0CjJln+SPN$~G3U2Z2Yh8uv%PNG5
zA10lBoph&DH!MLfW>1vzvAH*bxz4n9he{c~t8rg=AZACvV!_Af>@`JZtoB=Tv7_+O
zzv`n>y*~t6SGOHuxo#$O+CW_I+8(uIb7wrtJk#3Utr^4eezS`B+?#S&EOy-PNxv?8
zTyx37`&Z;%+@1LBQN7#WmnHrd7mE)Yyj=f;&jvJtXuE^c?xORXZ<qPxKi_@3Tr~5=
z{yUtHKXlgLH&NjI`~S_CxZiW{*6q5TXw$Ljw*Q0sRe2I}R(?gcUqHi$c78>IdqjHu
zf|B`Dug_hdUsZNX@`==rJMV55c07;@)RQ!ORoD1IzEsaL^9wKcpTOsn)?74yv)_FB
zoo5w~f2{kkL%jd(?wA>6dtW_R_hCo6{~Hiz@uvstK1A-n_<ncHiG5#;Zy)B_e<3^g
zm-?Z1^KZ(PS+>0vUu>09_U~iw-bzpN?XovT<+iU%y#Mr&$?;kGWv$28u3Eo0X2!FM
z=<V7zd7j)SXa7FB?{sVDf=3V5eUM!L>U*r-9PUt=JEF5Tc<q1x>5^+-SMzQ)n_VDI
zH@B=PySLJ#u$SNeK7MNAe)QmW_2X+Vz5lh$;B4T>m+L<42>rEcb!%o{ZoB8Y>-OLK
z7OubK{&-IKm*0Bg#|*S=sy;7O5kGj^J7Vem>wC4%1{MnN>~lNj9JDRsj9ksu&q;Ai
zDyiMAGWuejmO&bcCG}4f;$)ZRY@9LK=^%IQjt;{P3%flwDvXmhwI&I5ACb}gD5aU&
zc~nMIuxZK0lh+@!f|Qz>=pPidUUMwEf>Tdw{|;8u(<y0N0*^l5f2(6wsuB0C6^}mO
z&v7}sN&QU5;x7B8H@cU9?3NDvJSWgJXK$pM@&A2+N1uyJ2W<99yLV;9qtD&5J=Wcy
zu;+4@bl_&4%ROeReh41zUGXz>reto2??Z9(MbD12ACJ7#@$FPf+Ln)@cKde-ZatBb
zw#D=4b8+*mGe$EdbHClYALI4#?$s5KKF4RfoHd#$nj7-*XSQ_U<~N#M$6W9I<}dPn
z3Nk7F^qGvuQg-`yd|Vz=bfq->wd(t4%0KT<^1gSq>f}4_#hEvb*#9$sIw_`uy-Bhq
z`>_)TN1B1!gc))?0v)gYlj`+a8WN<Au&kLl+h@kX21kP@&)I!tW^pSh%s9yL>EWYa
zjvO4zjGGvleinM3dFsS5<3IunGfTlv0j4I2o&<qcd!H*Td&MOiwpgB3SW0uxl<dsN
z8QkL2r*sskPn){6xv6}2LE%X&!*@qE%{vyeW5*L-!*@sKojnw@V@F0YkKBg$4=0+P
zc~)|(;pW}z&-b-;dwU((JvZW7dBy429Xpn|^jL4yk$iUOsOoCZm>8vFb8i^4<abJx
zCw1wZY3=s%I<lj<dYbs|4Qq7Hd{sB>EG+cwlqgM#jGQ42azVev#x-loV?gF~SZ`dj
zCRQ&dW>Z{`^~N>n2I6{pfn9~_+bp<?A3ib_x%WuO@ZFkIrw+w@-`4;7#rJJR?WSL5
z-)gSCyZUo}T>AH~yv&y_{P#a}v+{dDtAEg(yPTJ9vew@OO$k`+(ff4n-Paxc$Nq)M
z_uhYRx9-G>->i$||HOQfyXM{2voDd~{>RQIwri&EnSHld?oZ67gro8Q3slulZWYv@
zEuw6{^Rt)Vq|Flgvqd(qseC?lPQ@>_Jvo=o+*vj^yy)2_vj?e(lSF;3*K3IFFn^Hx
zzcKx*P1@%EW$|mw_nn*bFknulpqP%;=4Y?ZNSbr==pSlY@;Q6oxj7f-=T``d?Z30-
zvsYisMn?VFB6BZq`F!eA%6GOsIx2Opm(OW?2i=wau<64MQD5u*=X{Iu4_x=}jl8(!
z^L<Otcf4Pt)sC*oxRr9&vnW5~hLL8P>*I6UmY(nKn@+9#7=8Sd+EER^H+v>cexh;g
zwAxV}LlB!|qLgrk^oLFDN#Q1M_e|P)U@xQo<D+XcZdIlpt@+MY^Z0ynn8{lfx$RG1
zE9IA#Em}DDZtNfP-NA-#Pv5NQo5bO$(N|RQUCO-byVvBIr=>z`{<XPX(V6^pQLmQW
z|LwhT<(5+)y;;Wh_RX;!iH;)oKzUK?kyyI=<e3+bU0u?h6Lb8zxcR=^X(!KQba$QC
z&%2W~?c|yI9o*lou2%ndygtWsS9sHF@Q};%ualB(<c{&%PT%wV>!ih-rXCK@_{wiH
z{ZHRvu1}?9G8~Ktd0zOP>pRL6b70{`iw0{k-sV4!3`dfj7!S<%`^?TL(9O!qP%m{?
zp2fjOOoZXj%aVElh6o)Eh65t*l4lZFnB|TJDv7wi+{r)p93x1zh6ESGzmgO4i}+5u
ze%KTd!0_P0%YO<D`(Dnz)V%v|x=8J!-<t{!Ua#J|`)|6=;nH|9y&a##-{$>4Q7Zp>
zpU#}*`uok{%j!SxD>FB7|GDwq>C}D@r`%!7rw#AEXlFkA{@uQ+kjLs7!`}m@48Ix=
zzb$L1dr&m7;=t45nn^_m&EIEhH>YXX-@6>T<H79jAX_x-|9x&f#CreF%ChbMd7d8M
zrOz#1qipqlZ~x>Xe=fGeMV5E-*k8y8>Umo1UY{p5f$g|z*XG?%9>0;e-{*MPEmZIO
zi6YPIH+pk)u6zILy}80Is@Q#oci-L92WG6BzUMUOg6{znmCvZQ&(yJ-C3X7iq~yO{
zhBducT>I{xcp-gvfA+0E0cSqzPQ9O|Zh6mY+s}m(KTn>@-#j_yb$@PMMw(yo)9p8f
zj?F%9W^basd*`Rysh{uW%iTURStozppKm)wzJp{$Ht*T_36xyT`&D~BY9IR`Dr0|h
z=BMu>|35_DmAn=?d9LQM);S*{?*`pobMo91Zf?tmn|-=<Hmg}Do}LkSFI3O7G+M;G
zT)bYP`oXJrMJJDI=6S0bFYaCc@#oRrjQ<s@ck+LoJY6QY_o>}F`?mfkGu}Oxx^H@~
z=$&)nLV-(_fiX{VjjZ=CG`2o;mi59*Mum($qP^P|FbJ>|S_E8p@Ppm3SB{}cVcYw{
zTM23IPnt!ioavk7ZRh-KQn%*M2gdW>@Rx_Bq$cXwtlCmy<;N}ep08(<)AGkAIWN~6
zTG{Olv6Nk&=shi|q~_PGOD`>WC+i-4@uMX4WyzedttFan|LyAHFWJ6%vQa+F@%pi!
z-&N(e=*NAlc>maHS+?ps=fY#v^4Hnl)=T7;>`Y0t+qe9AtH|+d%2OW-9qs&H73Z;Y
z=Ub1|9V*K|?wuztlo8z*(so|M=3m@-?#>I-l&3EI`1APv*O8MR-YQyBl;rg9BS=eO
zuH~Y6S|{!Q-Fw<3a($Yzl#12<%-X*d-yfE#7F~}yH?zLB`tY|2FP=wd>pfT5<k`!)
zMb}+x;*LL$-+$HdEzh+Kk~A^@|D)PgTYSehnTtLXpUBt0zgK)R`qRM*7S9GD&=rAe
z4}3hQsyS2E@bML$$uln+KfXKt_O#E-V?O=6_I*qL>pLH>mEPvsvpq&gqi~6HRPf|`
zf^FJUcOSM|VrsflHgQML&&-JSEos$N?h@;C4uFL7mzTFZT(9+U17BvQZ<V`5+=?TI
z+1A(kuRL<tDkv-KlJz0GK&_7(9)4RPxqp`L#UJ|<WiQPtzhr%=;AwXS$gJ!tcZq#b
zo$aL_=GT{$w>;F>{J4Sd<+@p4`ZnzKQkA>Lm}mZZa>0}<Gw1(HxmP}0a`}YwJ(mLn
zjwG-&3Ur)qJ@!+4^~sNS3d3|=7u#QFXE&5M$gpr~$9Id3YjoaTF!p;2sx9}powJCI
z2i0$vLA9rLXK_vXoJpH~?$&qdXm%c9->^m}C#OC<XUo<)hSR4Gv3>C9KlXM>oMmd*
zTjLqr;;S{J!lzfrZrQLTWyxz*_gUU-cN34j>}>p)6A|#cHdfzK?Dvj!Qs?U!e>HFK
z&wjPT?96+{JI707vJc%@JH4by`rT}1X7jt|cl_926yKMTc%i=W_p;w@w|8cIy7yPY
zDE;rks^o{lwbkE~>rQ6#UzIMdySu&IzU@qG^@@GLKO^qn`#bwc@pZXX@3pGd<mcbD
zOL=$8S#)pQnry>;A5-FAe(XQ|d?km?vHkj<YrntAx4HTKpu5WSR}yV!VpnGyh}ouH
ze|LPs&TihX#}*x5m-#)}<IL>#SG}&AUsiulKCxyy-&N`O+CBO2>(12wyXE}#nCPZ`
zdw*}7;C@|hmHqZ-8~5$~?S4ew>QKz5X_Ct|%V!n-vi;{#b?5tzxFVH5!tOJ?g|a2C
zfBt#2_i5V9Gd)rvHFbrLzb(A(UDvNKm0lmE|1%-<#rIA9ufPACD6_pbrqheF{`KRt
zF%P?bX)U(-cq>{yzwCVFzI~^Dyq>bJS3Z}!C$4VGub4Qe`^Wm@sx7L1Ud&3)bGm<w
ze>=OIzWuLVmbaVjSMQrK_rmngKh5;FePz8I@!_mMIKy$vWAf*>UQ3;n?R7Wp-IwS6
z?{<L{mESpid-cDJ=!7p$&R>tdVVV7Eac*OvrTc3AwC)4P`nR!m74?V3$4tAi{o~@?
zGdG^PuhzGldI`k&u;!`z>hsT4zvTXT5!d$AJni?6zR<;Os|@cQ{~9+h(Ua>;XSa!z
z;JX_O0}}jV7F_HoaPM_$v^0EV@$Be)0SWO;lSOw`#6XKIJmfcjyA#CCUj9!o(`1n{
zpU=XI;~>3u?+%D`#rnl8sSIwhHaHp#TA*>Qqk#R}8qf-it5SmR4$KQm@Qc|JsC-B^
zl#BJ*k@u>PBzIV)=vh8YInV3-<N1@G%OB4F_I=wpKe+7B$I|uB@{g@?-1qeR)f?-k
z|EaHS&h5goHp&>Z)(EsV%F@Wh3?vU?8^ccd9&CH9j6s{gKr5pl$7C2AfUYCpLfh%5
zpdV6MkgA{`;h&V1np~owAD)>~lA&O1V4`4W#|2#*Rx#)8or^__3?$eB?!NrJ->5oq
zwb)7}r%$Su&y&*M{<+Nbuvx|BoccFo-{7~t3EiK6##9UM`@4EC<AGiWrwP#t>37#2
zy*GW<b5oPGzkV9~276uK$scrU#T>&Y;cs~x=007L&72HATK$Rj1kS@Z^|Dtis@k2u
zE_26rSr0W~6WcbEm78;BEn9YbYixge?KQD(-^;$$UpMeu-chu_;=aNzF^Ij1L&dSg
zkY$p>t~GMi6>kKWR8@zrm;Bola?fIC>F(PO(?y#&QUV{}k-O=ppxB|WF@2q6WK=ZE
zHHot6W`172uW}M}UpM}XO8EKi)S2V`)%h=*o=a~?n=N1eyiIiZU7euV%muM;-F`X*
z^?1s1C_&DRKQ6cS+LS5V-Zx)iU|=}Fm3cVQH0uh3<dWjF!;FPI>DOc?@RoBPmt<gI
zco#DNUg%=Cv&p;+3=C@~n9T`Yoc2LVp>0aBiFQl8mHhU@ac?-^f4XJ~HTuNEMxWVU
zVT;vv9$Ui4Vrej8_k^srB*^6hTSQJAP~0J9`um!Mv(p5#cN3<sKK4lT>951;rnCPm
ziA<|&ztehKXKlt~KF($VNT}X_nch+QxBT13pzRBveQZ};<)6Dc@N>BD%Q-3M6kTKW
zC1&brgKh~>njr8*?8KzQH%+d#f6BTNQ+MM)id&<{>??{c%<4%eY{N1%4@e+xQV>{j
zF1deu*1ssL=!luM@&8R<zcS4(Q^}qEIeXR|OP-nKa}9Y<KQD<?>~H|z+;G3qN8;SR
z=*entf2_#dxU9XhW5R-2R~{DI&T&?3)Ny|EI}PGP(A^Op9Gm`bbU(N1^zozX!k7D{
zI~s+rJGL(GtYvuowUUZWdQw?x+j_dfclAXFgQ6CE0l=jL;#0n_eW;*%drPuf>5UUh
z&Iz&zHAx`utPpCtqgJ{sbJu+H=s!R9q@8`Q8L+v?-S5NWqBfT~=cCIPRvMiQJ!dX}
za5C@y=~rKcm4*L}@s&IsroQy<iJ1#;f)f+iMtDN7zkGK8+-djT|B7%H?anRyU;jQ;
zcA~m!=$Bf}E2*stOyFxHc)rJlz2|=G5ViY##O80kjK8n-_)L0lX`a@#@64f#_MA`h
z{W>L+Pb^w8@i~hSD7jW;*nAJIW^VgzG<nxn<?Q#oOZD&Xv|63NdfCor8VWo2ep{dU
zj_1X`>(^ttWmf%uHqWrFMd3fA%Y@%@pu!27c~kRJK*f|HxHtf@ED>dwAsK}iz1DS_
zfQl<JHzwbmo9-ZdQ|$Qv$t)crt^xs$2fCEL^>IZo3RX9^=jv*2+nOlu8tYn8>Uy1T
z5x?ufILD3M4WgP{8m>#!8I@d*vVOKxVH7etDZte7{r9AqJD-cS&5S;0`JIP>LE@ks
zm)4w_$Nw+o|NFa`(@~SV^o7~J)<EeV(U>gXfVtA4LX{a|;=6J#2Ci`o@tPAW@h;J}
z>}{prm$2=}x8}^%*rLe3d69W(P{vGCm*Ui4dnamLNtx~6bs{-HFs1LtXQPz=`MC|j
z(OH)*0!`HCo$9@tvup>`Q-^fz*GckOi_~_<i?^+L8MgS5Z<)%L35!D~8N><2Nc?iQ
zW}T|0-uC-bt>*v3I?AV<V|-VLuY31s@}%m0-)eam-mZS+^*-a<OikbH*s!-R-pt;A
zzhjoh{>OQSx9;_c{`ryoYQM;)3;9OtZF-)cyl*pE^DKwc@gqmJ=;*#Jj!H?{`NvhW
zrSY{6zx=ty8Zm~KF8=P3ymHV$`DNF6eaXl@zitNYT%RK9_iyj{r8;u`v!_ivHg&(m
z(Tl(HAJ;D5cXDRr)ts0o%949e_N2sGdb2aE?G8M5ChAGJ#pN5tn!RO9F5I;^oe^~D
ztasJ*MPJUz`)OQ#yQp%>*EOYzY3GykS?5`qcok)>zI{^piC&dZ_PjflubI9s=$K}D
zCg`Vy&=;eBj*F%)-PU&O)t7)y$xX8B_$w5`U-PK>8_Rx<nkM2qUHh8zs@vsSnwol*
z8u|9leGk9>NVI=)>f{%0|Gx)gW1fcQggRUcmV9nHeKFhKR(`H?eUm?0&0=+3GF2>P
z&1E)*=Fs%;FR2FVECtSc`Q~yxT03EJ*vl`cBlO?DI;WNAQC<3Z!-sW;xVOEOKACcS
zqx-cLIk~e%_gz=s@m$?(qH5-}jpr^+>74iP=e@bh?`c`=eGm~7cu+aKmO(-2_w^NF
zTo#*;d3&nfy0P=;-aS^KMXR6hHD+~)K5_3L3&YvPnL)oaZ+~fiH6_aBwQ2G9vsWH{
zILv)KI`G88$+CurcdgZ8P}V>9ccv7>g2nnCA>Nkh4l9FJt$5@APEWNm!0R0Id)DUX
zEn;&fs$4r_o4;JF;hK2y-rs`Glm5=~T)q0|&LjIoW?gypa5?w8$!9dy{P}4RyO(L+
z(!YN$c_pnnCU=b~b8$JZVTI5d=XqYyr)Mcx<UIWuvZ!NX{l51eRu?WRYpO=yTFk`|
z@gb~ivRhj2(wg-@E-cHlsnTAzXa19rLzCT~-goJ3e0h7RX<q%3f~70An&`}QIg#;o
zc8<Pp!wco=(7RhA%JNTco2;qS_R5t{|NV~MC(lp(xp=$LRCfYTlHlpURR<Ey|E=F<
zt$iWzlt=2b>6d0jO|{%Kebs%Fm7<}di$2%v-^27f>w0hcyfpo_4?lbP-DfwHUCQ->
zEtY{{?%O%Wn@l9E^#fObK9U(JB<rQI>d}!+cQw8XzKrQ8+duc;nO!@45@YMyxo7V8
zj^)YRS==YhR5h>C?yagf&!^Qh6byw^zr`~!^nT}F!fkM0Z(+y;i`w&ce`97z3hwyc
z&$;(&NR_VD?0Kd4wst?7^6=OH0<%mH;R_K{tG6*boOvpvc(uax^Hb4zvk%NKh)55p
z{<M3^-=$irH$R<p{rTTx*TkilZyh#Y^y$>S-{;=1a5&w#YOeo1M%zrGs@oCayBIU-
z4417ov7GG^r}X_#ifqCW_O9gZ?|Q{^PhMhcshOvLom<oG?G=us6_#_(amTA}eV<!z
z@xMZyA!Ay>ge|M(4>2%2GwZv4soIsZF28Q^Erul4>`g~n%C_&@;Z^-his@Lz|EA^j
z9`Y++{F^iP&r*xG&lHO`u4p>VU6sj{R{nU6q;1U7eHlq#ye(B;)=JJ_7a}FYkRkms
zsq@Uo`>Iaf1t}p~zUlXhuHC%xUXs60$NuBqV&2;q-&}n!wC>WQRp+^-#MG~8-IV3E
z-B@H<Q94y8G5EGU-+lk}8#k@ej-I5MlA7RqdS&#C|3MckciF72iPb6Ey2RsJoA38k
z`|Gx>@GK3Py=TIzRjUHNGBVpu)ISsZCfhh~HOn#|k@NO%r!K1H$T}@O>1k$Ylt^UQ
zybSTl{1=|r1;p@9G*HsB(a`vCh}HgKvcLa^wV{or2adiJX~~J4Dz!cEyvI=qy|SfB
z;vG^_GV))xTxM`w@b#_r?9Ge^W)`ncQ@vulGUUvw^5^&N6}l`~s{dL@OdueUC8Z>L
z`NEYe7Ya%6GH3|CykB)ZfBNRov)>BLBxZlz_RAvX9Mdbl>yxJ(IV11FZCey_oK1BL
zn?t^J>if-)_{0D9zq`B3_;a5q!x5eplhPTp6F>P>-oE;<=-TlW8}>gv8&}@5EMu#p
z-kr5Jk^f(wxa)6!DL+R_^UAVq6~9;Oa#W<hUnd|{e#PqKpN~rnj&2Rr%n(o0xOB1P
zzsAk5l;T8(sHZng{!V%F<(rt=v13O$IU`q{d8hp@-=D!?;iq+F>EGE6thSpii%M<r
zSoP}ol}|Y*Ydd#YEzSx2>}UL4;N9^Bdru!b|KoGejlZ|m&;Fb~Tl{U=L;c0PcGipx
zYEQ1*lUfr~@pg?xicWg9*;n56+r9<9+^>~4_r=nKGasw0GFx-E`GzqgcmBDwgHumh
zUgFX6I+1c;HhX);Z|ez5zx!_#kcr$^eSviWYekpmi;au>eS~M*OBMK@<a#sfk@Uo!
zi;XI?%Ff<-Ej8ogP48|0wmwc%%nWzRIa#rF#m<8n+qGx<u`p~oDO@ZlA+Mx(+v?oU
zbd|{kd-uz@KHKIubD3#&v2)VlSIh|-*&QO1yK*0FZ#sUjxOM#_#{7#V{`{Uhd%jJc
z*|Tb+&O$Rk->+QC)fNr=TK$>x?(W$*E5^_F$A*&6R_x6-fm;tMZ+z-GyLWv$Q^Cr#
z#|pvKGP}wq&#K)0P;%No0f*z#{LTII|J-YgSvQ59q2*q$wJy8D_Z#z8W%lgTUp-Ig
z|DNp4r;FtbrquMR@SUB%h;ik?kA<sk>humvyqffN^N$6m_Gvf#YL^UM_q|_SaJKwv
z&XQk6zcT!I(;_Y>tvGF_v2yBW_2oXMD;NDO`n`g&=h8ohs!iItLPuf+dlS3=oMTAX
zRCBR@MYZ~h^qz$}w>Ma%bDiBZxmah3*P}B<3<s*d=`yT7B+1|)a9{_&l9_b(_b09s
z?m0%a{EuI@DS9=_9Q&jDc_oVTK9|4rXF15qu-9{sxYpmWZx`g)8a}>ocboFQNKoCb
zSLl<HhqlJNTkQGguKR_D`K!FjnZ?Jj?7VoZ>@=;&RcsE=|Lwi${HfM@+G~II4eNZ4
z7wy}-V!P^T4?ocr*UGNRq+Xuqb>QRkZXxM^iI-JQF0*I+ZOh2=-}l0%9EP<`e^OtU
zZM+pCu6*fat^Sf*JL~PZ?ruGGDyBa?pgWhRv~%%urtr1q_9pXY<UHRWyi|};d}+mh
zbvfR%2QR!|XtS>W+-m2I3y*2tw|#u1bxYgdYxcWtg|0HF+Vy7FJRy7E#(g<li&Gyg
zk6i5Db}TCS?(VC})*q*9<vqNV^X@cLW7$py9{;E6VP7{YSn2PtyqUa7tE1tOy0zQY
zOL_h`j;&c6%URlRifdcCFvF24O_E3EFdx+9JjUR#`_N9WbvYX=nGCw+-)~^kS(f`&
zamT8(a+SBIPp<T{PS#t0d#=W1@#$P*k(bmhzV`d(tT^z_MydP#lbxT8>u2R}`N^7j
zJo|tl>#Un^|2*BJt@AV?>P(bw#<^WbYPYq$S4i2FecsONw_B?4o14BX|EO+T<|}qb
zv})dk1uyC*|M%{m_G0tWtJxLv?QWi9XxNY)eSB3zTB+VshUd>@R`S^<1<11O-dTQG
ze!a`8*Qtw-arQ~LuHA7VDlq7PY_P%$3z_n-B6k(tzmx|2w_9y+e@;YE;1(J8(~~tz
zuO6G2b9k55u4e|u+FQ=`=Q2)zvH$NnI}s_d&VuW!Hce~4^my;JN(;uhp0-<FwWMD$
zyL6pjyJZ(6cUbs=`i&loERUCO-FxBWX7%di=~cN=tmaF1%U#!Ync%>@Vzv$QfnVi|
z;=YS<?~UIh<Y8Cl%3SD|*S+*nq|8wk2GQRgwhS46C%x<PKEwCmzh7VA3T5TeDA~t6
z6LdrUzvxN1G}yhdP_N;X&6qy(!BuCUq)*c=85q*C4o5uV{r2>}-G2Aoj<2RQ6qo$_
zzGTk!Y+pu(tc~r@d(Ff*&beq=!#n-gMeVQmEF^sI$_GlE+*v+N_588@yPOsWFBPx-
zZJ+<K!bWhp+Vqmr7d|#K1S2lXF4=m_aAs}t--7=e`qXZ!%r2SQ@Nj0`<<)tw7M(q5
zSE{njASHIMbi`JFb$(@r`PEXsi^8szKMhIDIWNVT@P<=+_R)6v&HF^f#rD3~{j_TT
zt`~1tpZW6A`D@9n#^aAgQ&Uqno@R8~KDG7w+O0<$-WqmKQnothwd#o>&ySa;ZF8+M
z4y`=t`u_g@{|A;{%!n7XSKp+kwR%sY@41;rpVvRV*n4$f=2o*SX&XzUrlq95+sp4@
zTbB7D=KiML|Gb{P)qe2l#p<%-S8j=|JG*|zl6Mc1(&D!NkH7nzF^gfr(Z_|KoXjPp
zzGp^1eE(XK<3rM}JAWM(%oNH>2wk2d*5@|spdZhQKHJlK&A0oxmn@oZe!81Yz<2A#
z&tbPV?oH?Z7rk@Ni(`457aD%c#P641`CDXL?nb@^&(+oDK5WqqeN*;4>x|!@Cy8dy
zZn>951}@yr$M&vIr|)qqcX01L&g)`o+IP0@ey=+@SvjTFA)D#Jr8kQ8R}|h&s#)W^
z@k;#sUsdyF?&FG*N$h1@U|O~4KrIiSrL^mp%lqwTFEROiooklP_u9yqSz<*Ge%-WM
z-~Ge5?v&*_&4X+DHyQ_*Fq+Iz-`2$Qa9Q^%wkeHytlaG8i?^2-e7+lYJ@n$9`?9|`
zIo-(2vgN-h?wkM7Q)fme+h6mipLbmds&H@%s#*N5E&QIc@wOe68t-i48@)5k7#V8Q
zOHIxjuU&sF@LB3DP4SZ-rA5x({{DPbj=0jLGe<9#|IyNYR<w!xl$Y1M${7*M)GL|U
z%bag2?9$meNnWk?{q7`>`%0e-<fB8cZd=VIz_V=GwzzCr(Tq77{U=H-%=ul8OsUF<
zIJ;2)=@sV>8tE5<k3Y}bv+~g7zu~LZc7E`>x6SpN$gK<hT-_ZD5_Z+C`TkW;d2xdL
z>Ec~?S=_CrJ=?o_){<-48p1ceEqw8O&96Ms)LTouZheYczT<e!)2D5BwS80j&dLR7
zoSYc#elurR=*tNYgU*|-TJP;u8yYd^#k-?&47+XSSFPK3tweXB+~X<BW=LA({%HM?
zF22W{&uM=9$Hk&SDYj0(J+C^g-}mCNd0ZavT|XV|Hjl4~xwp0?ty-~aPvP_U3(}@1
zFFg*4JbNm;;)}-b)A4!R{zis;+xq8t&a0);`&R~d_3d~xT`umO&8vsH3|h>&xz=`k
zGlOF`AJbxHvkXzKpIg(#aa#1GI?qbCaG6UtpEW<2u%UL&nUL5iW#t?WJbVxK-ArBD
zaY2pufX698-Q+e#DRG?%7S7vr=HEVF{z2T8&3kcDY{&+KDg_6h{$D#{;@$jIkEuFD
zy=s`O=y%9YuY&jgcJ=;8YNb(e*$f7eCH>Xc`q&P9wYc!AYRz1uD(RrK=XRQ%>nvB#
zkxTo1gMr~zvDr%I2Cnx~TRSVBhcHx}w=xdh;F*^8WJ~MLdacho-Xh(n^O?3;`OmP(
z{M67@`}%OPhxz%8x3&KlGBX%&*ZHS>(N3e*ios-W{micGiW?uxFeKfW+?8<mSl-&1
zaz@IRwYYP)->hmaH+sF|*l$;f@^im$?aBPP-~NBD-N%U?B8z_~c+Xw3WQqSu<vu%$
zFaOjT6zZlO2t4}f)r$;<EOps+>~|*%ZkhArcv?=D>>t^$M~~U`YZ-@B{gyj+cGhd@
zt-_m&<+W<+i~0`Bv%jy=@_qPzLtx~MO{dsmuP^^oIrZYF?dMZ}xZFHuUUKFCt&NYG
zr)*f{BynG>Bt`2FXUOy&PT?h~mYnM@EjHs$TeRh9<#czimwP)4)IS|@JLt=`YEIvy
zcQej>IeNN}`R-+Nj(5E$yQL3FuYW2v*P{Q+G{gOzW)W4|3l~lln!fDRG{aLOyDz9q
zmiaSExZV@1U|Rj|zs<!ej`|rYYwlM}<eM>X-=Fw6=K8%Zc}<?%kAyo!Pu44Iop<@+
z2{DF%n{yRo)ch;{s6?(vzR=yHQhXvK?udMs@YGOAjqb;<Q#~bE+(U|)zWs?%xKUtc
z^)>0J-m~!eEs9FF3p~>$)Qi5GzG-jC@+_aWg|qDW(&O_A%e(a7cc`5)zUU<ECfq-%
z$zoss{)gMv9G@(~VDNNSgxIbJoxxj+Zp=A)dcvm3K`%8Y3c2?Ec(nV<vZ{^@b-DMS
zO!s%i&0hBUK-6LLIV*hlf7=KiSj8Or)cya@1s|fX)XFcoySjWk^WRFoUM-tejb%AS
z-}Mi@?me>cOv7sS-tti9&Tn5%-sEIB;&c4JN{sQ5SzXd@(QB8_lg?ki_+q)t`m;%K
zhhFi@IbIjN`lBsj>lBG__qYifM-R0z-gfDI{LAunG^4Ry>xTP3+Y?<@6-4g|4(yrt
zaym1^hNsz#`U(4=Z{zjavU%~dm?AabSJU0TZDYI5tbX*3%HH!X##<tr9ddq^i5__q
zb8wzacTcRncd!{l!z;OOF|H;%9cRw;{r8?v>2KYMtDOhlZcGyIboVZqf5e)JZyCe0
z0+z*xy1!=m{Ois=ou|Xdd?N6#+rBTs+RArV)zuxm(D3TwzB4zE9a+<*89n2`^<xI1
z8-B`t-n{l{?($0)-ff=ZGCw&*lP~AmrqHXR5&QO;If{Pn^t1evp?K}-f5Es-zdeOC
z_I*s4<}CMQZh`Xuu(W8;`pV*Uy4AH$yV4C-b2At)E43V4{oKtgYpE8)gOW>Xo0jCh
zUun6t#2}Apk*ojlrT_Q7(0>$XY~9GlaKw$To^8?DU-lh0-Q_*L#R`e?ZS{|rs`dXL
z_{rA(*}2*Jh4C(T119fgJmB<uV;}>=+#8p<ZgSi^utDWl^U8?7pSz;|&CLJGsq5QN
zv9)O5jOaDzy%=_ce{mM5_fUSY^^$ABdc#%sRsLSz8n^$hYGJ2O@`_aq4%7FV+pJ|^
zc<WcZ-amvjYD(B{$!nb^4;+G~tTXs$U0B-OH0y4`ms7X*7QCBYp6>dkV^z6-$G#OM
zZ_S?ljlS^a-IVEn|LiNj_Upr%yOaI*#LcqiVc1ev{mHaMOnK$4ZElaQRy?@crgiy#
znashEr5jiAGk&&TY%P)dFLC4PkGc!CEqT8Gf77`a2j*%N<XzbMJ|!h3V@YI8NXVs)
zEl+Fzu}AGPKV2yl(-v5MKe|WE<#wiFN@=#~<t#oyzI48Kv(1*SI(GK5n%~pwohRIC
z4!5k4c^i>dsrFFFS@h}CrQ!P+84PRR9bmsGDJeNKMvfuvcFU^U84|xHM*r11*CEKm
z$*6q$olM|`l|Qea;(m2*i&5@&_a)B7j~gXx>Ya~Hzrw)aay&XPcu8%y`(x|Y=SyPy
zU+u~`D;va=YAVI{q2kV|&gmZ?o;Z}l|FTc<O9%H9uWOOPZ?|2R`mf!2VT1Z!a~ZXg
z|Fx16mp$9|DB?tWO=KibvgVB!4Zhhsub0l=a4B!{k#%`<BI?6fcgf$_mUDONoAs^J
zeOEq_6mndd@m=5M-ukzVHuo5BZt7*b%0D$;L9ryIeun_V3wOUjoxLl+u79z-{M?m%
zhpD?#FZW7)*YbUDv-0uVMz0>;<<DmSJyw&k<XqF%<+%y7a*FdzP4-pwP1gNd-_crs
zFKp){``h`a@<kpxi*kSTKUcN#zTLEA>yAt<+T~$#ukwc6>Oj|`bhS0<Rt4`eF30Wf
znIurX;Ov8Wt(=^m_NvdO>^{eqc28^do+wd=*Xidq-<wCgJ@ixJV)e33c}FjAkD6;e
zd&l44)m&40*dHA;`l(R$=AVr6Ba?Msjat^9%0GR}eCb6y|En4QLf`%KmU(m|KGgsF
zZ|?V(7WC$G-HR1A_B6W|y<?a7)3+Q(nX=gvV=Iqs@>*e`R^oH^d;GG?FW)ymW_h2h
z{FQI<@AabPdQ;{r%~k%(%iU`GsA1BJQ%m08G}J$3eCg7z9lK{vT|RyB%VTc8S~81F
zPNjMWw!TQPyz%dM@9T$88O+LNDSI9{Q@H17?z-X?EnD0Us((EDXKU+=w;%O>mYepZ
zMo#K{p?_29@8%<?d=@;~wZV(+{z(qM;DC(O)a1ketTeZsXNnZN{hzVEwB|6jc?r-!
zKWJXU%)rDLBoAU6!vqK2q^c=&S^_$$3Yz>S{{YL|Rj;*pTHbzr`ZwP4_o2IbPZiu`
zSkKg7RWnPN?Wn-{{9oPv>+$b?*Zt$z|LRom`U~@>ALO0wUGejJV)+54i_1S;_!fER
z;-h65K|9i>JO5HD&1gCJO+m?HJ*$|>&n=3nPUTHjTMmmT)&yPc&vDsib)jNick68b
zIJH|#`aj&g!?!V8{w$xKbj;&jK2sj~Gw;!A*NsaxD|nKz_E(Yk4#~?)e_Za_6q)q?
z*||?&t~I|X*x7wcS~;l3gX@xg-hz|2+<H%M{qJzcJ?&xT!lpmA3ybI9cJ4iG`p+T9
zPJgRHy`S)7VbdFXd?T;Px}Q6eV?KG$8mBw&fB!Axa^0cm{<~-X;%S=u?=$RDO1oOo
z+Qc(I#%tO;_1v$?@x9H?Mi*ZldY<%uU*v&JQu;TYcHJqzC!hV{)2xIe58qt-QP<Hu
z;nLo!Z&$-U9!in<^fzY4)UVPxYJADdg0fPBb$0J-6>TrnzSz8O`W=I7Q$2YE=G8i;
zYAq{~%FbR}S1IN0nxPiOx7PRD@-_4Pk80<om=x_PKfd7Zi&r+*DUYn4ZA?p7Qut_^
zqQO@F&$#ZQ#+roL$u3=c4K03|q~9=AnqA?zpwI66L*Cn^sg>2?+WX(Jc^*<=w#vO?
z6uOR8LH~8s#)C#Z@v$G34K_t5s4!1E?xe74)4d;c9t+n@+<ZLotDe+OO=*{FyWB({
zFO`th$bR+r?b8!WGTyx|vkKk&BFk&(vDS5~8w@`es4!eqC>6QGZ+Uv|=S$9JyLbId
zKbyp6tP`J=qG7jRi+7{Ilw^^25pK_PPyJoeUi+&>bav^(9lY631(%9kPrBw|wPumO
zgo4~0%e7DEbeMgV*mLW=)B(BJkN1P$dEdTd&8YT8QFTIS!PCUIA5Et`J+%7&EXhBM
z3i}RA&fMAfeZsc2zj7{^>ZaeAus72#HP(pbdC&&l)MmpMK5YGaJnS>?E$Ik$KNi*F
zooC;xuKDb3)XlgSZ}ZTL?-TRauG0Cey6eZCx&M|}2DgRR9A8}CQ)c#C`08QSof!sq
zD@58KoSF5$p=^cD;$y;l9?i9SZ@FGJeo?gkMUSTD@;wKc&aL}5LG!l#61Du675vOX
zm!|&ScX)f8i1^n(jU2mu{^X^6<xAyNd$V@yJeBH(-{Ce}_HL<Y44dg!!Y#e)!&4no
zPr0a<iqUqP<W9@YUwc%0?Y`EZmnXgrpUM|s#KC;ekKvsC;@#7?EYiv=?)`22dGfR0
zN1Z&>59M80pPVsuy=cT<^A$gC-LCLjdGfH}l@}McwR4=}e9TnwHkIkyDve;%C#h$h
z_G|A<<2nBDT>tO-J%>LSZSBlH@y=DogwL~st5Wj{^O72yww1CmG4erYr*7LgL0o;c
zOUe?d#nNgAJ?C7rscOBxdcjNu%ShFgb_QpTKJW_spxZk6%&dE_W3PPIzjf)Bf8@@C
zj~rUo7=Hge@#VC*y*CeQG5=bdVVU~1$$raB_M|5}&9_v<zUIozQQZ55BkHtqq3%NS
zz&Tsh6>k~u&DS+}^!JZknch5+;GI`j#II`5-jflP;o*5K)7<vE>^in5K@$(2IBznW
z^;Y!cg$nw6>sX=}oz=Z+RPrw&<*v^ukJ9X^oUbyXFNFo}j$~RG%s$UxVfwtgT_^TN
z?si{){DREft!aXP4ksTI?9be<`~9D9<gMjCz3;Z)+RP<2Eh}+_>S^tjKUWrSzLV$D
ztz|5&x%R;Os0RxjH<i8la=^05<Pn#;R#3m^HcQ^@{yMp@j~XQ2lzyIiAmXV|gY?`d
z%B{umo8C>^yW4BCkL)Hxk5@DI6nQtUIK4J0-!x9_+JuzAme`$IS?BKd&un_a9Klq>
zoOhOa?!Mq79G?%%>9^nc`1C+C%hCQ&>0@_hSl&)tG^hBoIO{}rVc({C^K>N@JyO()
z&&l4O7uLD>!OPhf%Xw$|YL?imufBZhY_aSeRimaO@0a~yShQ2H<kcINcfTiEhIR2z
zQV9JXGIinWl@n)LRV&-a^qto8bX-=X{7SrKWk}EZXUmg2Qzzs|SKV6tr2h8d=pUl$
zr`tKhKAB0{%|5$f&+$Wi+pqny&2YC!Y3GZRiflbK_cwdd>2ng|{w)`UXQ!~upX|9u
zmB-@xhn=f<MRue-PgYPl%|5^KQh}i88x>ZKq%W!4{H89GD3$%VQ;+?6*U>+m)g^li
zZ<f^Yr}5=5FOIa>FFj@RckieDYx%>2dLefaFuPvhjeQWpA}=`6ys0qdE`y$fgI#X?
zp>X5#K6@Qjt}#jK+Eji<w&T~k6<@+?UhjN$L+I8?o!Gdd(Ern>2*;(DD7eMVFTTJ1
zChOWN`z3Q4sxDf4@jQNOSoLp%@t6DGdEb8H5Hw<+VehbM#w!W8YwrHWS@$Il>?znJ
zb20LsOaA2BlR6XxZ+pm2$~D+};+L|AWzRwLM*^oaK7T#LyiCH=KmO!hxwzAdvX+Q+
z3Ldi4S;O;m{jx8w;{O-F>K5OZ)wtt|imO?9&N7{r2azuKe2v#sx0}2CeHHEXF(OKL
zOINVz)}v{?Po`c=S#_rE$oAjC2`r4}3TxwPcvc18xTb#Gc#|~q;`?SQb{YW_SP}~)
zY@=gCa#o7p7R}l5K36w5_wjpYp^lyF`d)-@O5OcWPcyaAbwBTEc>&p<>6YvJ1#~aI
zIN%&MS^phl<W2L;=iIs~hVH)0*Kco8j4h9<UK%*zh*<9T%lqO}m#@EPxa!mC4zo@_
z*``b9*9Yq}TwtGU%VW5Km6!SOZ*f-7kS{kRE*_b`a?+NtY4e`C%u-jc=HA?}Z$H0h
z*`oH(>nrPcCTYs~`9AHj3}`>`ccQsae2lY@?%ZV|Q;+Ui{@6A3`n13;Kb`L}g|>-J
z@;Q8BUhVZ2%YwLVUKL-E{H754g*z<zLlTFzz0GayiloC%LDSV@jC55_UOqgfG^oP&
z3d^0c^-;^R7PhKr<oeEJJ^W%}?xe6kMRPtkHmPXLH42%fzIf#vjf-jzOF6rJa^Kpk
zOUbP0aQyXFSMCn;;lGiAAqS6zB*kj&(G>CH_AD_m%(#5DV(X3xkB$|e^2*Yj&C<5x
zp&j?;%`ZxMJGL$}@zmFLTxqV!8@_Pm%*3a4|BW>FC3+tDttEfhRK+oK>m#QA>DgD9
z-p$u4+fvmu<+LE*Vg=4F9sVQB-^+H2>rI)=bwPRArr@~h$ZtRWH*0zXalY7I)89F-
zTV{P!%_Fv*b-vLHJoEM|?ajzmk}|qc9TI%ET5qn^60su&`+9En*tZs3T6e4b(;N?O
zPpN=swUQUUSG`%mrtPa}-X=Eb%A`*w%NFnoEKu+iefUM^(JAu@(~X4+61tomC%yAA
z?A(0iM^M>SpSj9UXLvPvC+^Hu6j9MU80EF<KuPe*rns<0i;W^nRL;g{nlo@sTA-ui
zI(=)3=W@Ql<o(ghGiFb_pnS4XY?8y8O-Ujd5(;ZM|E7Dzeg8LUqK{|gOW#_tb#t`i
z3wB$is#abr3VHM(`q-1pcl{UTa|YhHclMagrDol;i`n($p5!TT^+Rqbs4|PNZE7%%
zc>956UF`hB7OAQ#o|6xHc)a8NzqD1Q(r?D5swGZRfA9JK4*nNdK66Up0)<$%J$D|o
z?p)K7^5NdyTcruV_$2}^-vza&(boZiTCkutwvid)t}jDl(4AT!QQ{li#4iLgRnQM8
zN=?a3F3B%aFf;(IEYx?)%qdANQqXtHNi0cqNlngANmbDINX<;oC;=(a_esr5FUe3a
zG&YAexJ#2tz$+C!a}(23xo|C8GzA$B^|43i+bf1#2NVQYFWTSxf6i0c%SkC)l<9L<
zskdZ+k?ck8d12MMh0$k156pO`rF<}E_O0vUKV)mBM8DWS^P-o8vYGaSA{DpjS#$l)
z+~DNK7L*{jfdb9k0wfD!kr9qWpS({|Fj_!^5!!D7MK|&N7UWRPXnZ@%H}8srK<oah
zw@(;4Sk)aK*~zpi7f8Hoo+6ucSn@=Pt=Qd-)rV4!H1%v+;lK9MYWdrHD>ogVx8ZE)
zJNr62A=5<*#j;i?_Lk_)Si99C`0O>ClgG-`J#}X-QPaF~MP)04%F30RS5)5Kow?1>
zI7)Zcm8k65B7#Z%4K6MkNnMi8jUs{!%6DIHbaC}y+~UwBDB3Nc%+$5{)U3Yb#$`7|
z7BB7SaPHqaKfP>v$y)vCmw*4RC}(e|e<c5-#rhq?JNI4LVSf+xSl6lemocT>>dbvU
z+0WXOpLfpIOT`CX${c2!qh7U3-S+O@7fWv2HtzLUcQ^IljF0zb-9D+vQ;~P@blrDT
z^~Ai~xo3ixEw;XN(YV3HxK>N<))M9yeP=ABjTe8K5ykuU>F@Qg`)>cc+Upwlhksw)
zuLGg!aUW75H)_Pqe(0k&^D~&8cmDpfJEyu_KZ@NryYh9hYv7$3Z@(Wle|2!H#yy6|
zA4~tulR3BKOr(hU^PAc8p1+TMy)9D2{P834iKp+YgV^hjf8EdfhjHf*->abH2Tk?x
z^?slj2PH`p15=PRh-qjHJKd2M+1!NGY;LFk&*mlu(DX@MHb-8a?9uu5sv%zkESpDl
zx+!m%syH*8L3Jj}G?VHtt=~_^FyArHKKmf%jA=JZ_SKyF_yp4*3fX@SYZZ8fZPA>0
zBu&}o+l)2OPn9tAtm49!)4|RIg`frEdPG>}Cq5{N&gm3|BxsR3(z0(*j1!;JkpmW#
z(;fSS4Fz2P|G#R??y&g*i^rYz!v!pShifO?=)F<Ernc_<p}g|tQ(bgsqy+m<3;nwK
zR-ssYq5HDjnCCw)PuC4>U}R;`TF_uJrL^Gs=9fGki&rs->-bM%(2$tqBqYk^>FCMT
zx<Y^<Gi>FAB^`oajx)Nr=m>cxo)hx;#=x*#scVAAqT{hF3Qe&uZI>KTc%~zCpvQT}
zXFJw&Q~p(Sbl>>8k8kJFcE_L_*DR+UdsJ1a*1+%2!0^8*{-N-lYa5RpnD%H-$;RWn
zb<XqNxGbBy;VsLCWtr-ic2~S$m?O97@=fVCHVc<VFIqaA@y#Wd&w73-yPj6|>wjY|
z_?*XGcI)xyyXIH7Z;=+adTxF?c-hS}CecQ{g0mUI3UdwI<~TEMm^$ffjrUvIuV0V9
zm+p)Hce2Yh@Q?bw+J85iyU*E3ZK{b7`M%KlbHeGf6H<>Z+F{Qgt@rfsq6&-8GOKUb
zx(416{`>Ri-;326T}c}lUd&swIXlp%>#b~&SL*3SJM6>%r@lQSoMX9J<6eLEb>?+(
zJS*hSEUMtoyMN^;_XDYba8Q;;%kd_lm<J_N6GQkwnjx&V2d7e}{0fC=1zjT$GEy*7
zh*iK|4?`<oV>6`nw{H1Gx#-m{@)iN(kQ0xL0zN#tWE#S-C`Qkj)wxwhfd9}%){i^p
z>|p2-WV?pN$)Lmua`B*aoe^koZ}7SfrTiIeF$>=+Gbm%$cu?mGBLxEmSh91@FU>1a
zFjUa@&P*v*hz2!{4HSYv85go|Cm=CBwHVaqg;o0|D7uSM6H7Al^IQ^3QWZ2@tc(nd
z3=PbT3=Azyj7=@H4UE(c4AeEb^qoQK@{1HSauZ7ma`H=ZGLsaH^$hh4brdp6N(!v>
z^$`+!`9<lPT>1e;`6;Ezsi=AiQqmNX5|gu2^HL!CHIbZFQIwj-WuRbaV$5X#2MT7U
zrpBfUX$o*LLo)@itU?|{%+Sohz{DI?%)rph%-8}`%-jG&%-qZpQ_K=morR$xnmPjm
z12a<$F%tu03^5}Ebhj9on1h-OAdkTOVPI%(Zi%kW*vJ4>%Alw-wlo2yPh>GeQ%eI&
zbbpu_Sz@@))YQllE&L43j4aW^#n9B!$P_(H&CE>9(A{TlVPc9dW?^Q45l5z$CZL)I
z+06zPmZlhCU}<4yj%Kf+fti5;nwt$xElthQ!r9Qk($pMXosprX30k-q8d;i{8KK6J
zp{b=gs6;|`pP{jlC5Br}%*;&D?KL$q#A2R>1-iYa<|c+1ViqPw=;_MP)X)G;oq?f=
zB^EJba}!j57#NyixCN9u%+T#HFtNn2*TB>WbUPt(7#J9s8l#7Sfq|(BMmjYxH8VnY
zvw^9(1$x>rFttQay9NekMn>rQ&A<#ZT^X2JVB}Q;a|6)6MN~JNn;4*_Ap-+*b3;rq
z3o{IR%`GwVk%5J=0a|)7Ft9MgB4&x{4@+YUj55N~)Dj~;EG;q07efOB^fYc@XkciG
z?hiu)V?&H|U|<F+=uyJO(7?hF-5-XAnB|6{p^+)N`wR_D%rV8xEYb3UfuWHBM%pkm
zGQup2jm(VD(}tlDW*iwBVWv|<V`I=>HB`SDW8_N%Lt_ifure{g2zx_wLkkSQnVXxV
zyU)nb5~Hj$GPE>DPxr<~1{i6>*cdZhjExNq(d{s{G{J~V6C-0I^msEdGB!aEdlMr|
z6ZEuZVrGfq4-+%YG;V5YWR9-a)XdBjtvod_HNz;MLG=fE8Ear>YJrh<%}gyU(bK7!
znF&VSZEj!y8YM%CUvmQkjIcMiFu_!3X^v68m|L1-)MXZ?mKbiau&^{i_pgP8B}ScR
zVQGq9jvH7SSz!3X(g?G>va~QWMGt37OLL68U}<TN9;Su{rj{0H;b&-IVF}uzi5ylS
zF?2gXbt8tDp|OPtx_O4i7G`K+U}$7$X@pkh7#bNHqSqB5G4wD1)wSq#yrHp?F?yK|
z5;H|h<DmK%J^dLPn;T-*)8>X4b+U<>8HPF&b4>r5m|LK?kqk{u3^CknYHom@4h&7r
z4ba<(hNkAm==F!8sRb6j76zE@0}B%av~md4u0zkihGqta$n{%EQDSCJY7rNxBjuTw
zmakw4D)|+H6!e4g^Fdt$P=7!_II}7h)U*b*w~I>>i%P()Z9_8yBQql|RaIAiH!c8)
CGXb*z

literal 0
HcmV?d00001

diff --git a/pythonscripts/figure4_cloudheating_change.ipynb b/pythonscripts/figure4_cloudheating_change.ipynb
new file mode 100644
index 0000000..745548b
--- /dev/null
+++ b/pythonscripts/figure4_cloudheating_change.ipynb
@@ -0,0 +1,506 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Changes in atmospheric cloud radiative heating.\n",
+    "\n",
+    "This script generates figure 4: \n",
+    "zonal-mean changes and maps of upper-tropospheric changes in atmospheric cloud-radiative heating during DJF for ICON, MPI-ESM and IPSL-CM5A."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify the months of the year (needed for DJF mean)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read data (ICON, MPI-ESM, IPSL-CM5A)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:50: RuntimeWarning: Mean of empty slice\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "LMD: change order of levels to go from TOA to surface\n",
+      "False -5.538915423676372 5.984612123575062\n",
+      "True -8.794642752036452 10.795256146229804\n",
+      "False -14.69999528490007 12.625148193910718\n"
+     ]
+    }
+   ],
+   "source": [
+    "# ICON\n",
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "ifile = 'ICON-NWP_prp_T1C1_vs_T1C2_3d_40PL_mm.ymonmean.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "lats_icon = np.array(ncfile.variables['lat'][:].data)\n",
+    "lons_icon = np.array(ncfile.variables['lon'][:].data)\n",
+    "levs_icon = np.array(ncfile.variables['lev'][:].data)\n",
+    "dQsw = np.array(ncfile.variables['dQ_c_srad'][:].data) # shortwave\n",
+    "dQlw = np.array(ncfile.variables['dQ_c_trad'][:].data) # longwave\n",
+    "ncfile.close()\n",
+    "# add shortwave and longwave components\n",
+    "dQ_icon = (dQsw + dQlw) * 86400 # K/s -> K/day\n",
+    "del ipath, ifile, ncfile, dQsw, dQlw\n",
+    "\n",
+    "# get DJF data\n",
+    "dQ_icon_djf = np.nanmean(np.array([dQ_icon[months.index('Jan'), :, :, :],\n",
+    "                                   dQ_icon[months.index('Feb'), :, :, :],\n",
+    "                                   dQ_icon[months.index('Dec'), :, :, :]]),\n",
+    "                         axis=0)\n",
+    "del dQ_icon\n",
+    "\n",
+    "# levels must go from TOA to surface\n",
+    "if levs_icon[0] > levs_icon[1]:\n",
+    "    print('ICON: change order of levels to go from TOA to surface')\n",
+    "    levs_icon = levs_icon[::-1]\n",
+    "    dQ_icon_djf = dQ_icon_djf[::-1, :, :]\n",
+    "\n",
+    "##############################################################################\n",
+    "# MPI-ESM\n",
+    "ipath = '../../MPI-ESM/'\n",
+    "ifile = 'MPI-ESM_prp_T1C1W1_vs_T1C2W1_3d_mm.ymonmean.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "lats_mpi = np.array(ncfile.variables['lat'][:].data)\n",
+    "lons_mpi = np.array(ncfile.variables['lon'][:].data)\n",
+    "levs_mpi = np.array(ncfile.variables['plev_2'][:].data)\n",
+    "dQsw = np.array(ncfile.variables['dQ_cld_srad'][:].data) # shortwave\n",
+    "dQlw = np.array(ncfile.variables['dQ_cld_trad'][:].data) # longwave\n",
+    "ncfile.close()\n",
+    "# add shortwave and longwave components\n",
+    "dQ_mpi = (dQsw + dQlw) * 86400 # K/s -> K/day\n",
+    "del ipath, ifile, ncfile, dQsw, dQlw\n",
+    "\n",
+    "# set missing values (-9e33) to NaN\n",
+    "dQ_mpi[dQ_mpi <= -8e33] = np.nan\n",
+    "\n",
+    "# get DJF data\n",
+    "dQ_mpi_djf = np.nanmean(np.array([dQ_mpi[months.index('Jan'), :, :, :],\n",
+    "                                  dQ_mpi[months.index('Feb'), :, :, :],\n",
+    "                                  dQ_mpi[months.index('Dec'), :, :, :]]),\n",
+    "                          axis=0)\n",
+    "del dQ_mpi\n",
+    "\n",
+    "# levels must go from TOA to surface\n",
+    "if levs_mpi[0] > levs_mpi[1]:\n",
+    "    print('ECHAM: change order of levels to go from TOA to surface')\n",
+    "    levs_mpi = levs_mpi[::-1]\n",
+    "    dQ_mpi_djf = dQ_mpi_djf[::-1, :, :]\n",
+    "\n",
+    "##############################################################################\n",
+    "# IPSL-CM5A\n",
+    "ipath = '../../IPSL-CM5A/'\n",
+    "ifile = 'IPSL-CM5A_prp_T1C1W1_vs_T1C2W1_3d_mm.remapcon.ymonmean.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "lats_ipsl = np.array(ncfile.variables['lat'][:].data)\n",
+    "lons_ipsl = np.array(ncfile.variables['lon'][:].data)\n",
+    "levs_ipsl = np.array(ncfile.variables['presnivs'][:].data)\n",
+    "dtswr = np.array(ncfile.variables['dtswr'][:].data)\n",
+    "dtlwr = np.array(ncfile.variables['dtlwr'][:].data)\n",
+    "dtswr_prpc = np.array(ncfile.variables['dtswr_prpc'][:].data)\n",
+    "dtlwr_prpc = np.array(ncfile.variables['dtlwr_prpc'][:].data)\n",
+    "ncfile.close()\n",
+    "# get change in cloud-radiative heating in K/day\n",
+    "# multiply with 86400 to get K/s -> K/day\n",
+    "dQ_ipsl = 86400 * ((dtswr_prpc + dtlwr_prpc) - (dtswr + dtlwr))\n",
+    "del ifile, ncfile, dtswr, dtlwr, dtswr_prpc, dtlwr_prpc\n",
+    "\n",
+    "# set missing values (9.9e36) to NaN\n",
+    "dQ_ipsl[dQ_ipsl >= 9e36] = np.nan\n",
+    "\n",
+    "# get DJF data\n",
+    "dQ_ipsl_djf = np.nanmean(np.array([dQ_ipsl[months.index('Jan'), :, :, :],\n",
+    "                                   dQ_ipsl[months.index('Feb'), :, :, :],\n",
+    "                                   dQ_ipsl[months.index('Dec'), :, :, :]]),\n",
+    "                        axis=0)\n",
+    "del dQ_ipsl\n",
+    "\n",
+    "# levels must go from TOA to surface\n",
+    "if levs_ipsl[0] > levs_ipsl[1]:\n",
+    "    print('LMD: change order of levels to go from TOA to surface')\n",
+    "    levs_ipsl = levs_ipsl[::-1]\n",
+    "    dQ_ipsl_djf = dQ_ipsl_djf[::-1, :, :]\n",
+    "\n",
+    "##############################################################################\n",
+    "# check that all missing values are replaced by NaN's\n",
+    "print(np.isnan(dQ_icon_djf).any(), np.nanmin(dQ_icon_djf), np.nanmax(dQ_icon_djf))\n",
+    "print(np.isnan(dQ_mpi_djf).any(), np.nanmin(dQ_mpi_djf), np.nanmax(dQ_mpi_djf))\n",
+    "print(np.isnan(dQ_ipsl_djf).any(), np.nanmin(dQ_ipsl_djf), np.nanmax(dQ_ipsl_djf))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read tropopause height (with interpolated missing values) and calculate vertical mean dQ for a 200hPa thick layer below tropopause.\n",
+    "\n",
+    "NOTE: pressure value that is closer to the ground must be the second plev value that is given to the function get_verticalmean_overp_tropo (due to order of levels in levs array)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ipath = '../../tropopause_T1C1_T1C1W1/'\n",
+    "\n",
+    "# ICON\n",
+    "ifile = 'ICON-NWP_AMIP_T1C1_tropopause_DJF_timemean.fillmiss.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "tropo = ncfile.variables['ptrop'][:]\n",
+    "ncfile.close()\n",
+    "del ifile, ncfile\n",
+    "\n",
+    "# find index of tropopause height for each grid point\n",
+    "tropoind1 = np.full((lats_icon.size, lons_icon.size), np.nan, dtype=int)\n",
+    "# index 300 hPa below tropopause\n",
+    "tropoind2 = np.full((lats_icon.size, lons_icon.size), np.nan, dtype=int)\n",
+    "for la in range(lats_icon.size):\n",
+    "    for lo in range(lons_icon.size):\n",
+    "        tropoind1[la, lo] = np.argmin(np.abs(levs_icon-tropo[la,lo]))\n",
+    "        tropoind2[la, lo] = np.argmin(np.abs(levs_icon-(tropo[la, lo]+20000)))\n",
+    "    del lo\n",
+    "del la\n",
+    "\n",
+    "# calculate vertical-mean dQ\n",
+    "dQ_icon_vmean = fct.get_verticalmean_overp_tropo(dQ_icon_djf, levs_icon,\n",
+    "                                                 tropoind1, tropoind2)\n",
+    "\n",
+    "# get zonal-mean tropopause\n",
+    "tropo_icon = np.nanmean(tropo, axis=1)\n",
+    "\n",
+    "# delete temporary variables\n",
+    "del tropo, tropoind1, tropoind2\n",
+    "\n",
+    "##############################################################################\n",
+    "# MPI-ESM\n",
+    "ifile = 'MPI-ESM_T1C1W1_tropopause_DJF_timemean.fillmiss.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "tropo = ncfile.variables['ptrop'][:]\n",
+    "ncfile.close()\n",
+    "del ifile, ncfile\n",
+    "\n",
+    "# find index of tropopause height for each grid point\n",
+    "tropoind1 = np.full((lats_mpi.size, lons_mpi.size), np.nan, dtype=int)\n",
+    "# index 300 hPa below tropopause\n",
+    "tropoind2 = np.full((lats_mpi.size, lons_mpi.size), np.nan, dtype=int)\n",
+    "for la in range(lats_mpi.size):\n",
+    "    for lo in range(lons_mpi.size):\n",
+    "        tropoind1[la, lo] = np.argmin(np.abs(levs_mpi-tropo[la,lo]))\n",
+    "        tropoind2[la, lo] = np.argmin(np.abs(levs_mpi-(tropo[la, lo]+20000)))\n",
+    "    del lo\n",
+    "del la\n",
+    "\n",
+    "# calculate vertical-mean dQ\n",
+    "dQ_mpi_vmean = fct.get_verticalmean_overp_tropo(dQ_mpi_djf, levs_mpi,\n",
+    "                                                tropoind1, tropoind2)\n",
+    "\n",
+    "# get zonal-mean tropopause\n",
+    "tropo_mpi = np.nanmean(tropo, axis=1)\n",
+    "\n",
+    "# delete temporary variables\n",
+    "del tropo, tropoind1, tropoind2\n",
+    "\n",
+    "##############################################################################\n",
+    "# IPSL-CM5A\n",
+    "ifile = 'IPSL-CM5A_T1C1W1_tropopause_DJF_remapcon_timemean.fillmiss.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "tropo = ncfile.variables['ptrop'][:]\n",
+    "ncfile.close()\n",
+    "del ifile, ncfile\n",
+    "\n",
+    "# find index of tropopause height for each grid point\n",
+    "tropoind1 = np.full((lats_ipsl.size, lons_ipsl.size), np.nan, dtype=int)\n",
+    "# index 300 hPa below tropopause\n",
+    "tropoind2 = np.full((lats_ipsl.size, lons_ipsl.size), np.nan, dtype=int)\n",
+    "for la in range(lats_ipsl.size):\n",
+    "    for lo in range(lons_ipsl.size):\n",
+    "        tropoind1[la, lo] = np.argmin(np.abs(levs_ipsl-tropo[la,lo]))\n",
+    "        tropoind2[la, lo] = np.argmin(np.abs(levs_ipsl-(tropo[la, lo]+20000)))\n",
+    "    del lo\n",
+    "del la\n",
+    "\n",
+    "# calculate vertical-mean dQ\n",
+    "dQ_ipsl_vmean = fct.get_verticalmean_overp_tropo(dQ_ipsl_djf, levs_ipsl,\n",
+    "                                            tropoind1, tropoind2)\n",
+    "\n",
+    "# get zonal-mean tropopause\n",
+    "tropo_ipsl = np.nanmean(tropo, axis=1)\n",
+    "\n",
+    "# delete temporary variables\n",
+    "del tropo, tropoind1, tropoind2\n",
+    "\n",
+    "del ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Get zonal-mean changes in atmospheric cloud-radiative heating."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/sw/rhel6-x64/conda/anaconda3-bleeding_edge/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: Mean of empty slice\n",
+      "  \n"
+     ]
+    }
+   ],
+   "source": [
+    "dQ_icon_djf_zm = np.nanmean(dQ_icon_djf, axis=2)\n",
+    "dQ_mpi_djf_zm = np.nanmean(dQ_mpi_djf, axis=2)\n",
+    "dQ_ipsl_djf_zm = np.nanmean(dQ_ipsl_djf, axis=2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot zonal-mean and maps of upper-tropospheric changes in atmospheric cloud-radiative heating in ICON, MPI-ESM and IPSL-CM5A."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAAImCAYAAACsOWf9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd5QVRdrGf9V902QYYMg5CQgmkjmLOaEYwYh5zVnXtOpn3DXvqruGNWfdRcWMCIKBJFlyZoBJTLqpu74/+nZ39Z17YUCQYe3nnDnTt7tSV1dXP/XWU28JKSU+fPjw4cOHDx8+fPjYPLQdXQAfPnz48OHDhw8fPnYW+OTZhw8fPnz48OHDh49GwifPPnz48OHDhw8fPnw0Ej559uHDhw8fPnz48OGjkfDJsw8fPnz48OHDhw8fjYRPnn348OHDhw8fPnz4aCR88uzDhw8fPnz48OHDRyPhk+cmBmFhhhDinC2I87QQ4l/bs1w+fPjwsTOgMX2oEOIKIYRUfg8UQpQJIYp+n1L68OFjZ4ZPnpseRgDNgde3IM7DwFlCiB7bp0g+fPjwsdNgi/tQKeXPwHTgmu1VKB8+fPzvwCfPTQ9XAq9IKRONjSClXApMAC7dXoXy4cOHj50EW9yHpvAicIkQIrAdyuTDh4//IfjkuQkhZTneB3hXOTdKCDFBCFEuhKgQQnwjhBiYIfp7WNZn/5n68OHjD4ksfWhYCPGUEKIy1Y/+DQhmiP4foBgY9vuU1ocPHzsrfKLVtHAoUAvMUM51Af4NnAqcCawExgshuqXF/R5oDfTf/sX04cOHjyaJTH3oA8CFwF+As4DOwHXpEaWUG4HZwGHbv5g+fPjYmeFPTzUt7AXMlVKa9gkp5T32ccqq/AUwCDgbuEeJOxswgMF4Pxw+fPjw8UeBpw8VQrQALgHulFI+mjr3GTAnS/wZWH2oDx8+fGSFb3luWmgDbFBPCCH6CCE+EEKUYpHjBNAb6KWGk1ImgcpUGj58+PDxR0R6H9ofiAAf2SdSxPojMmMDfh/qw4ePzcC3PDctRIA6+4cQogD4HCgFrgWWAVHgn6mw6YhlOe/Dhw8ffwR4+lBcIrwuLVz6bxt+H+rDh4/NwifPTQvleK0eewMdgMOllPPsk5vwRdoslYYPHz58/BGR3oeuTf0vwds3lmSJ7/ehPnz42Cx82UbTwnygq/I7J/U/Zp8QQuyDtYjQAyFEKyAX+HU7ls+HDx8+mjLS+9CZWLN1J9gnUmtHTiAzuuD3oT58+NgMfPLctDAR6JQiwgCTgRrgeSHEEUKI84E3gVUZ4g4EJJbXDR8+fPj4I8LTh0opy4DngLuFENcJIY4E3gHys8QfmErDhw8fPrLCJ89NC+OwpgyPBJBSlmK5qGuDtcDlaqyV4wszxD0S+Db1sfDhw4ePPyLGofShKdwIvADcAbwBrAb+mh5RCLEH0Ap4f7uX0ocPHzs1hJRyR5fBhwIhxONADynlMVsQR8daTHizlPLV7VY4Hz58+Gji2Jo+NBXv/4BBUkrfz7MPHz42CZ88NzEIITpg6fb2kFI2SnsnhDgdawOAPimXdT58+PDxh8RW9qF5WAaIU6SU47Zj8Xz48PE/AF+20cQgpVwJXAC03YJoArjAJ84+fPj4o2Mr+9BOwD0+cfbhw0dj4Fueffjw4cOHDx8+fPhoJHw/zzsQLVu2lJ07dXJ+SyG2eR5iiwZHSlhPvCxpZEtaZP2RIax6PXNYubk0GpHNFqNR1bb5QNlCqOe3tuiNqv4tzidDqG3fLLewXW57bI93bXtCra/GlF0TgilTpmyQUrbabOCdGJ06d5Yrli/f0cXw4cPH/yaWSSm7ZLrQpMizEOKyrYz61s7oZaJLly5M+O475/f2/KBnIyvCVJQe0nSPTUOJa2YO06iMLWWQFFqDc9axe89SC2QMo9ZLNs61tVWXLT2zEeRODWF6xh0y43kjQ5JalnJnu50tpZxqOrqSmZpvpry0LBW6rZrojiDPOxth/i3IiUQQQizb0eXY3lixfDkV1bXOb5HlGUspN3ltS2BuInhjUtpU/K3B9p493pIe/7cUZVvXy/ZGtr77tyK9HvRGims3FSxb21dhZHh4mdJsTFrZENK9cY1t9NAbk8qmSp3pWTbLz0UI0TlbnCZFnoGntiKOxPKHvNOR598TKnHwWLFUwqoQY7UtSfkbpPGZXjSx+fSyEZ1tzX/U9NR6UV+mbGVRX3w1vEqS1Zc6G2G1Sa3ar6jkdZsR1mwDIhX2+SzPKOsgyBMmy7Pbxh/5PxIZ9tE4bIpI2teyfa9/a+vcJKnOUq5NEdPtyYntsmpi2/Uv6eXdHC/KVCfZ6uO3LM4SQmTMSyWBdt+crS7s/DPF2RIYpncQ5zG0pP7rwjovpV32TacHENCFp+40pazZvjvqeVNCUFO/OZlvLv2e1Wdsf7+Sm3jwm3w/M6Qb1Bo3qEovbWNfnd8yAGpq5BlgqJTyx8YEFEIEgPh2Lo8PH9sN+vYyX2wNtnRWwYePnQTZZoA29fplnU1qZJ6NJZONsRw3lsxkjquET/3XHbKYmcil59eYfBpzf966ExhmZsuqWiXpzyEbScxWXuuyIJFIUFVVRayujrKyDfw6fx7SNAmFw/w0eTLl5WXU1dVhGAamYZCTm0c0Wk99fT26phEMhQiFQgSDIYLBAJFIDnrAolAXXnwJHTt2oq6+jvq6ekzTAATFxcWgaSz4dT7JZJIOHTtRV1fL22+8xpqVq1i9ehVSSnRdp2zDBpYuXUIiHieRSFj3oWmYZuYWV9yiBXl5+YQjYV5+4x26duuu3K+3/uz6kLhEUz3vra/GDRDSibP9U9fEJmdis83YZkI8bbrWBPStHMDYKalRfovhu6mR52+BjVsQ3kzFqd4+xfnfRDYrtAceC6MaeetkG978s9gRGmGR3hbw3LNqbc8iTxEeCYl7rGu6c6xaodXOR88yBrZJc0Ad7auWYUOR0yjnvfeR+VmoZcwqudncc1TvWZmdEMo9k6VexHZ04rOzWZu3tczIR0OsWLGS6dOnsXTJYtavW0fr1m0YOGgwew4ahKZZbdEz06POKinnzTRS7bHMKSloaQTOSWsLLa9WnOxykoYEMDPUty2TtTEd2cqlWmillNtsYO/tD11owrIsZiqXRO1P1Xv0WlildON5ZQeCObNmcubw4znokMOIRCK8+vKLztX8ggK69+iJJgQVFRUce8KJHDZoMHl5eQSDQYSAuto6cvNyiURyQJps3LiRn36YzNNPPtHgHl956QVycnLIzc0jkhNB1wMIIdiwYT2mYdC9R0+CoRArVyxn/bp1Trw3P/gPuqZhSklRYSE9e/YiFA6nyiCora2lW/vWGeu1vKyM8jJrwv3oQw6kfYcOVFVVsmrlSk+4pWvWk5ub66l3q4YatnmrTrO3SYE7K6phUlVVRWVlJZqmoes6lZWVFBe3oFWrVgQCAQwpMfFa/u2UJQ2t3wDvv/s25Rs20LVrN2prq1lXWsrhRwyjR8+enrJkkkFuCoLGvReNbfa+t40diIEDB8rfS/PcGGQjlds+o62XbfymbDPcn8im8zYze/1TiaTUg25UoRDpLJpn9aVUSbOWjFl5Ggk3gOFOqGQl0mrZs+jIacRAIaMUQyHJUlfG2HpIOe/efzYiva0HRNv7HdkWZLcxXer2ftVTmucpUsqB2zenHQshhFPbLVu1YsjQfYjFosyYPo3169bx57vuobCoGS1atqRX7950696DULDxNqNMRFO1fqrkLVM4sCw86W9BOgG07sU9lz7trhLITVmFMzUrmeE+ttSSnqmMmdCYt70xmtl0UiWlZN26UgoLiwhFIs61t197lfz8fEratKFdu/a079CBDRvW89H773PbTdc74UaddwETxn9LaelaamtqMua5prIGDTAMg4vOO4eFC+Zz8ikjWLZ0CWVlZXw/YQKtSkpYtHCBE+f6m29FmibnjL6ENiWtnHLbZTYMAymEY4Cxn8P6daVsWFfKgAEDGtSJkZJsqPdvQ0pJ0jSpKC+jurqGu265gWHHHM/NV1/uhMnPL6B3nz4Ut2hJz169ueG2O4iErb66QbtS6jvTeYD6ujqOPfYYNE1DCEFBQQGrVq5iwcIFxGOxjHUJ0KNnT6ZOn+E5l/49tK3IapPIzclpkNbpp5/OCy++mHrf3ERsiYiuCRIKm7aP7OdA2n1nQvo70qow1x5QZozR1CzPPnxsfzQheYJNnJsEfifL/84G30rctLF0zXreefN1xn3zNSuWL6dswwaSSWvA+Ze77vCEPfTwI/j3W+86FmnITvjStbKZCK8p3cGyRmYiKiWkzx3ZBEDiEghL4+rmpaXCGCntq52GJqQTzsrTJQXZrHENCEMqAVO6+aj32KBO1HKl38sm7tPOylAqRhOywXU7z7KyDUyfOoVYLE5tbQ1HHnUM8+bN5bhhhznP4rW33uXwI49iwa/zuerySzLer41AMEgykWD8uG9o07YtzZo3Z+rPPznXb7rtDs4651xatGyFkJJp06Yy5qMPGfOfDwFYumQJr7/6byf8xo1VzvFDjz3B2eecD1gL4UwJCdPbFoSuE9ZUYmyRuXZtWtOmTWtHlmAindnL9EfY0AAjKCpuSVFxS5577R0AJowfx+QJ4/nXWx/Qp++u6JpLgAOacOpfCpzGqw7IdE24xiVNeKzTkUiEDevXs3jxYqcck3/4gR9++IGrrryyQZ0fdthhHHzwwRx08MHoQnjIrrpgUEiJSkvt/OtraygvL6esrIzOnTsTjFhk2ibOKjF2Zh0M6bFoqxDO++W+T9mubQmatOVZWHe2L9ALiKRfl1I+87sXahuiqVmeVfwvekNw7km1wCoW5myW36xQrdBZPIV48lfTTMYb5CmSUeVYsTyrBFsJL5NKedV8AopFOBDOUkZF6xiwrMlSsSp7LM8B5XxjLM/a9huTb6s2srXNuzHZb2na26PZ/5Eszx998hnLly2jdF0p8XicoqIiFi1YwKTvJ7K+dC0S6NKlG1N+dpfS9OjVCyklgUCALl260X/AAM4bfREtW7ZS095i8ly6bh0ff/QBtTXVSCnJyc2lbbsOtGnXjt59+hGtr6OgsMjRyqrk2crTzSOTHAO8i/zSLYnZrOCbsrZlusdsA4rNkedMaEieG17/94v/4qZrrmoQd/8DDyYUDvHV55855wKBABdfdgVdu3Vnlz59CEci3HX7rSxetAiQSCmpr6+nqrLSiRMOh0kkEg30w6FwmD323Iu8/HwqysqYNnUKAE/8/VkOPOgQCgoKeOGfz3Fv2iAM4LqbbsEwDDRdJz8vl67detBn113p3KWrZyAVykCe7XpLGu5x48mzi4qKCgb26uz8/vDrifTt199DnoOayLx4MJ08K8cqedaEQAhYs2YN54waxYQJE2jWrBmGYfCnP13J6IsuomuXzjRv3pyamhoefuQRLrroIute0izFqhTIIs8ZJKRpxi2Z+hap5LmyspK5c+cx/9f5LF60iNK1a1nw66/M/GUGMcUaPnvhElq1KknFb9hAN0We84OCvLy8rJbnJkuehRCtga+Avnh17k6BpZR6hqg7DZoyeVaxrYj0tr6/LZ0eV+/DIc0qeVWlEgp5bYycwwOVkKvhFbKrnpcJ62WX9a7LLTPqHstadxmAjEczHqsQkTznWCtq4RzryrGI5Lt5hdxpMhm0tHEeYqyQZw8xVgl2IwYPW+uFY0cT5mzIViyfPP9+EELIQUP3pri4BV27d0fXA1SUl9G9Zy/ate9ATl4eBx16OLpwCcSvc2Yhpcmdt97MpO8nYhjW+/3ia29ywEEHE8nJQQjNIS1SSuLxOKGQ9R6kW5ddIi257LyRjB3zUcayHnbk0Xw59hPndyQnhznLSx1CkW3xm12GbMhk7U5PKxNhzZxPKs00wmaHt63j6hu+Of13trQASlev5sV/PsvqVav4fOyn9Onbj7bt2vHF559RU735pUxPP/8Cxxx/Il1aF3vODx46lB8nTwYgNy+PWDTqPOdNYfiIM7j6xpvp0aO7W2Yglkjw848/8OPkSVRVVhEMBtADAQK6jmma1NXWsnDBAr747FMOO2IYd9xzLz136QNYBFkdYOgZ6t7E245UqU3SlI5FO5pwazsS1NCAXds1A2DkhZdw230PYpgQCYg0zxrWL11YnjmsY+GURZVt6CK7tyeZIv9r164lGApZCyLxhk+3DmeDVzbitVA7+Slp1NTWMXHCd5w2/KTsiQJ77DWQ/gMG0HuXPpw/+mJnlinTIM8wJRs3VlFbXYOm6yxftoThxwyjdZu2VFVWUF9fv1OS51eBrsAIYAUwBCgFzgZGAcdIKRftuBL+dvyRyPP2uLetJc8eQruDybNNnA1pUltbTr0Zp96MU1dfRVwmiUuDeH01JiYmEjMRRwACgUgmCAiNANZfWOiE0AlF8gmhExQ64aJWaAh0NAJFLTAwLS1eOIekNEiYSWKBAFEjTkzTiZkxYkacKAYxM0HMiBHHJGbErWumQcKMkzCTxGUSwzQwpIGBxExbZKkJQViP0KOoB32L+9CtqAdBlZSnPZds8MnzluOPRJ6XlVkka1PkUyWPcUOyYf16Bvbp5gkTCFiEKB6LkZubx/4HH0Jubh7Tp/7M4oULiOTkENADtOvYkeNOOoXLrrE0tSpBiEWjTJ/6M/99723eeuUl5/yIs0dx8GHDqCgvp6qygmQyyWFHHUOfPn09VuRNwSOPsK2XMrNVWT1vWw9h8142smmxbet4Juv25hZYpZdRdUP2t4cf5IH7/sJhhx9B9549Wb9uHR+8965TJtvbRH5BAYMGDyYvL5/Kykpm/jLDsSx/OPZL3nz1Fd589WVPvnl5+QRDQSorKpxzPXr2YsXy5cRiluGhWfNiqjdWEQgGiUW9xoh3Pvwv+x94EJqmeazF6eRLxZo1axjz0fs8+ehDjDhzJDff+Re0LBWkpiOE+ztuSAzpEmYV9nOoKCtjxFEHsXqFu0HQ0y+/wSHDjrZIsZa2rsaOrwlHOhHQXPLskW1I0zGAmFik1uN+NUsH5ww21eO0xYfpOmsVmdqkNbMDP0yexHHDDgMsLyM5Obm079iB4088mSF770uffv3QUsYcezZl6k8/8s6brxEKR2jdti3DTzuLV154njNHnUdtbQ11dXXcf9ftfD9+HK3btMU0TdavKwXgg8++5uiD9iUcDu+U5HkFcBXwIZBEcWEnhLgd2F9KOWwHFvE3wyfPvzHNLSTPmCZxM04sUUttopbqRDXV0UpiRgxTmhhGDIFAExoB0yRuJqg3otQn64gZceJmgrgRtXxwAiYmcSNBzLSuJaVB0kySMBPUGzGiRoyYGSNpGiRUoilNz/+YmaDObELa581AFzohLURA0wlqQTShoQkdTWipjlEgU2S6NmnVNUBYD7Nri13Zs9Ve7NN2H/q16GeF9snzNscfkTyDl8wE06bLbQQ0V46RMK13ecP69bRq2dIha7NnzWThgl+Jx2LE43GG7Ls/LUraYBhJ3nntZR6++89cf/vdrF65nCk//kDHzl0o27CeZs2LiUbrmTR+HF179KB3n12pq6slNzeX+ro6aqqrqa7eyNrVq9lj4CAGDd2Hbt17EItGiUbrMQyTgsJCBg0dSvsOHZ0yey25Mm1BVOoYSXVlBddfNprZv8ygrraWF958j0F779Ow3lL/0zdDqq+vZ9nSJSxZtJCysg3MnfULJa3b0KNnbzRNo1///kQiuRQUFpCbl+cZsKhEKZunENs1XX19PZVlZey56y6Ew2GuueEmkskkjzxwv6c8gwYPZvq0aVxx1dWsWL6cktZteObJxwE45bQz+GTMf7j7gUd48pEHWb5sKZ26dKV9h45MmjCe/PwCamqqKSxqxpHHHEu//gO485YbOXH4KVxz4808/8zTnH3eBfTs1Ztf58/jqIP3p7hFC1qVtKZ640ZisShCCPbcaxBdu3fnwEMOo1PnznTu2t2R9HgXjroP6cKzRvD152MJhUKceuZILr/metq17+C5N/U5Gqbrlk3XvGRaJdEagmh9NQO7u2nte+DBPPvq2+RGwqn4gqAmHPJsWZLtPFWf1q48QyXa6YMzqZBnVaYkpfu+2fWwZNFCJn47DiEE1Rur0AMB+u3an779+lHSunVWa7fKQ420dGf98guHH2C14Ztvv5MH7r2bnr16M+bLb4nkubOsNpYvW8ZjD97PV59/yqVXXcfsmTP4z3vveMJ07NyFvPx85s2eBcCi0gr01MJ4u712Ks7f5ILBpkyeq4GjpZTfCSEqgbOllGNS1w4BPpJSFuzQQv5G7Cjy3BS8AWwtGttcy6JlTFrzPbPKZ7G8ejnLq5dRFi3zWEd/KwSCsBYkpAUIiyABoRMQOkE0IlqQiBYiLIV1TujopkRHQxcammlax1ISEjr5IkROEnJFkBwChBIGYTSC6MiNdeiWrRmj3rKIm0gS0RiGkCSRJIUkIUziQmLmBkgIkyQSrbjAslgjEQXN0ISGjiCQ35ygCBDUdIKRQsJakGC4kJAWIqyHCIcKrP96mHAgh7AeJqSFCAZz0G3PItlkGwpMYHXtKuaUz2VW2SymrZ/K/Ir5SCQHtj+IK3e7ko4FLkmwifSOGmztCPjkeeshhJAryy3vCermDPYH2t14Qnish/bHOaQ4GY4rwlwjRRKchVaqtVGaTJv0HV98MgbTMDhm+GmsW7ua5i1LKCsrRwhBOBRg6NC9KSxqRiCVRVLpeurrqhn/1ZdM//lHVq5YTiQnh5yUXKR07Rq+/nwsf7ruRirKyzEMg7y8PHLz84nH4uw5eAjXX34xObm5dOnanZzcXJLJBEXNm9O8eTHvvv4K7Tp2omz9Ol5460P6774nZoqm6WmNLVZfR+naNaxbu5bHHryfqT//QPsOHenWoxcFRUXsOmB3Vq1YxtLFi5g5fSoV5eW0aNmSjVVVhMMR8vLzKCwqor6unvYdOtC+fQfatG1L95692HXAbixetIAZ06YBgqVLFrHw1/lomsa8uXPp0LEj/QfsxoTx39K6dRuEgF69exMKhfjg/fcbPOspM+fSoqSElStXsfDX+dTW1TFn1kzefOUlyjZsAOCE4SP46L23CYZCJBMJRl1wEX12HcDNV19Ox06dWbF8GQA5ubmEgiEkkpycHJoXt6BDhw6sXbuW4uIWFBYV8cDfnmDi+G8RQjB9ys/8Mn0ac+fMomzDBr6c9DPdevTK2i5L165h7/69PefmrlhHOBLJSJgDigA1aUB1PEkwJTfQNXeQIwTs0bGFR4JyyLCjeOG1tx2LckgXHmlIOmHeEqTzQ8sqbh3PnzePD959h8kTv2PRogXEojHC4RAHH34kwWCQwsJC4rEYLz7/DwCOP/Ek9tv/AFq3aUOLFi3ot2t/CgoLnTLa769K0A1TYpomX479hEnfjeOX6dOZllq78M/X30XTdf50/kiGHXcCLVu1onuPXqxZvZLHHryfR55+lpNOPZ2K8nIG7tIVgD0HDWaf/Q/k+lv/7LwLlRXlNC9u4bz/dl13brHzkudfgHullG8LISYCy6WUZ6Su/Q04WUrZeZOJNHH45HnLka3sUkoWVS3i21XjmLDmO+aUzwGgMFRI54LOdCroROucEiKBHHK1IDmBHAqDBRToOUT0MLrQ0aSRsiaYmPF6QlqQHD1MrhSE9RAhLUjEBC01paXKPGz5BWxCuxzLoFdW5CGmJ16dcxwtc1d4J2rdNJK1mTXPoULXp2dB53bOcaBdV+dYb9XejZBnaebMsDsWlUFlfW62hZGNIM+Z2vTG+EbeX/geL819ibgZ58J+ozm/r7Vq3SfP2wZ/JPK8aL21JkAXgnBAsTYrZNWQ0vk4W5Zn63zUMB0LtcC1UNth1TTs56RrFsEBaxAbSRHw+qTpWB81ITxkRiUEdlmtcHi0qRKrL3v/rTdYsXQxxS1aEgyGqK2ppq6uFl3X+XLsp/wyfSpXXn8zQ/bZl7q6OnRdp7yiglXLlzF31ky+/foL4rEYRx57PEcddyL7HnQwBYVFCCEca7WUkt5tipy8b7nzL5x/yWWOttseVqgbU+iadSyQVJSXU19XR1VVJZFIDstWLGflylWsW7uW2bNnMW/ObNq2a8/gvffBlNCxc2f69+tHbW0NJa1bU1W1kSmTJrJ48SK6detG2/YdmDt7NosWLmDJksXMnTOH+vp6K19dx5SWRwV70Z+maQQCQSSSRDzOoL33pbammjkzf/G0kX++9ja/TJvKE488gK7rGIbBldfdyFN/e4SLr7iSRDzBP//xNMOOPpYLL72cZUuWcP2VlwHQo1dvThh+KldceyNCCPbdvS+rVq4gGAxy/iWXc9yJw9l1t90z6nXHfTGW888cYbWBUIg5K9ZhonmsuursiGp51oUgnkzw0Ttv8v2331BfW8uG9etYt3YNGzdW0WuXPuw5aAj77HcAhw47iqCuOe0tqHkXAMYNSVBh06pLt81JbmyybZetpj7GS/96nvfefJ3160o59qThHHT4MLr37EUkJ5dITi6hUMhJVxeCZYsWMHnid4TCYX6cPInysjI2rF/H3Dmz6dq1G0P33Y+LLruC8ePGccNVlsu9gUP25uY772Hi+G+ZO3sWc2f9wrIllrePjp27WBveVFRQX299J2++6z5isSgL589j3JefU53yivL4cy9y7EnDGbbvIBb+Oh+AJes3IkTaAANve4ed2/L8f0ArKeWFQoijgI+AdUAC6ATcJKV8ZEeW8bdiZyfP26Lp/Nap75gR4/1F7/HOgrdZVbsKgaBfi13Zr+1+7NN2X3Zp1tPpAGyy6/FeoZBXLVHvlivmElnq3FXbRpW7C7yZ5biudINzXL/OjRuvVshxvKF22kgkleuuZaFuQ50Sxv2ax2syewQJF7keNtrs4Y4vW+7ZxzkOdnKtJlpJJyvPPHfRjUqes3rh+A2LBAE21G/goSkPMm7VON4Y9gbdm/XIGnZr0US7Nw988rz1EELIBevcBbU2MckJaA0WtaVLH2zYR3FDOiTRRDoE2f5ti5Jyg8JjRbafX9KUHj2wTYxCuiBhSg9RsfNRta3BdI8HyjF4p7LVe7O5kF0OwzB44cZ1tpMAACAASURBVLlnWb9uLaFQmDdefoEN692NOfruOoBnX36N1atW8u6br/PO66841046ZQRPP/+CRw+r6pzV6X8bkZRpPWG6A5RoUnq8kNhl1EWaxwWlToKaICdg+0O2JA2333or338/0bJSFhRQUFDA88/+g2uvv5HzL76UqVOnMn/ePErXrmHlihXkFxZiJJOcdvYoRo88nVvvupfDjzoGIQTRaJRQKMwD99zB2DH/IRaNcvDhR7B2zWq++eJznvznyxx9wknMmPozJw87hGbNi2nfvj2zZ81k2q9LaV7cgo0bK7nsvFEsmD+PfQ84iPHffMmG9eu596G/cu6FFzmWWl0TLFy4kAMG7c4Lb7zL/oce4Txvux2pbQok69euZsXSpaxauZw5s2byzedjadO2HSPOPIuioiJatmpFm9ZtaN/J6q//9vCDzJs9m1369qV7t27Mnz+PvLw8ZkyfzvJlSxnz8Sc0a9YMXRksCpE+QyOc+rafSzbZxuRJ33PdVVfSrkNHLrniKobssy+6bn0PkqZkyk8/sHzpEjp17sKgwUOswY3utuPPx37KyNNPJb+ggONPGk7bdu2YM2smn475LwA9e/dmwfz5Ttk0TWP05X+iX//d6NOvP0IT/PzDDwzYcy/y8/Np2botG0rX0Kx5MTl5+Z57XLViOUsWLWTfAw7khisu5qN33wZg/4MP5eW33rc2dUkjz+qCTYCuLQt2TvKcDiHEQOAkIAf4Qkr56Q4u0m+GT563njyb0uTjpWN4fvZzlNaVskerPRjW6UgOaHcALXJaOuE0dacqnzw7x02BPANUxao4fsxxHNj+QO4Z+pdNht0a7Azd2/8CeRZCHAbcC+wKRIG3pZSXpa6NAu4E2gIzgcuklFNS1w4CvgG+kVIeoqR3NtbMY5fN5Ct/LbXIs2rZFcIiwzYZ04UrmwhoXsIcUEiDTWRtNYcq26hLWO9kOKCRm9oaTyUiVtq29U84zzWoCYeEgNeSq0pFwDs9r1p7M+lLrfK5pGf1qlVccNZptG3Xnq8+s7x65Oblk19QQH5+Pp27deebz8cC8MaHH3PGiccA1uYyG9avd9K84557ueKqa5zfuoBcPZW30NFwXYwZpvTUpUqy7WZteYugAaxNMlzfv0II5x414UpqEqb0kFJ1MVr6ds820jcWMSTEYjHmzJzBgvnzufO2W6iqsvrm/Px8Tjn9TE45cyQ5ObkcuvdenrQef/ZfHHPCSQSDQebNmc2w/Yc61woLi+jQqRP/fOUNunTp4vFKkjRMLh99HhO+/YaJ0+aQm5fntEsb9r1fNPIMfpg0ke49etK5c2f69OnDAQcexOAhQwjpGppUFq1Lk/XrN9Cxq7vg9ehjjqH/gAGUrl1LTiTC3//+dwCqN6wlFNCx3b/JYA5k2hhMaE7fLoXmbPoVN0xmz57NY399lO8nTuC+/3uAk08+2XlWccNyCzj8+GOZ8tMPTrJPP/8iJww/1bOD5MaqKq64ZDSffep6nLFx/uiL2W3PvSgvK2PUOeeyatVK2rfvQG5BQQMPMPZ7njS9vp0zefbQBXzynw+ZN3smJw0fQe8+fRpsZANeKZfdT/Qs+R8hz/+LGDhwoPxuwoTfJa8tfcyZpqEgc0dlhd+y9G1szQ6wMSPGPT/eyTcrv6ZP875c2v8yBrUe7FxXLRtaQvGdnHBJqJYixx6SXOMS4OSGtc5xfLm7o1TVolXOcdlcdxvUNVPc8NPXujtYLa3L7Iv598JxHQqd435n7uEclwzu7xyHegxwI7S09Mcy5C7E2FIinY0wZ2uDj09/jDcXvMG7R71Hh4IOmQNtJo1s2NJ2vDlsK56bvlDLSX8bZfB7kucUAf4QuBD4L1Y19ZVSThVC7Ad8hmX4+BZrEfh1QE8p5cZU3K+AKmCUsq6l0eR52krXm4L67kd0zWMVVjdo2Fx/lTSlxz+xIaXHWmxbDFWvBlK6z68wpHlcf0m85DfTYjCggbW5rq6OieO/pU+/XWmXWkCY7h0jaUqSySRTJn3PmScfC8BH4ybTt29fTNPk+3FfMeXHyaxasYJPx3xENCWFeP29/2CaJk8//iiTJrhGnGFHHsm773k1x7YaxjZAmIr/eBuG6ZXGOPckhOc5RJNSqUc3bEgXznthKjIblVR76kp45QlWmm5ZbNTU1vLW669x31/upnXrNnTp0oXPP7MGEbl5edTVut+Ahx97kg/eewcBNGvWnNLSNfz8o6WxvfO+B7j7tps9ZXjsmWcZccZZjvs+py0oZbjsogtYsmgRf3ngIQYOGkxtwtXWzp89k0cfuI9Zv8zgx2kziEQihHVBUCYdI4+6Y6uQpuPN6T+ffsGpZ42y6jsQoLAgn/polD49e7D7rn0ZOXIk+wy1vovSfl5CcwizMJPufgZawOnDpdD4ZuIPfPLJx4wb9y1lZRs497wLuOTyKygqLHBmVJYsWcwDDzzAx2PGUJHyaHLqaaczfMRpHHjQwdYW43g374nW13Pn7bfxr+efZdQ557LbHtY36bzzLyAp7ffI66FD3dwknfCqu26qg+f098gKYy/sJJWe9Ax+7UN7cNO3TeEmyXOT2mEwtSnKpam/LsBa4H3gbill3Sai+viDoDpezc3f38C09VO5YsCVnNHrrC1eBKGphNmHi5YdNx9mO+DM3mfxzsK3eWXeK9wy6JYdUgYfvwn/B/xDSvmucm5q6v9o4H0p5ecAQoiHgSuwyPTLqTASy2r9kBDiUynl5h3y/o8hHo/z1qv/ZtyXn1G6tpRBQ4bQe5c+3H7T9SQSCe667wEuvPQKpJSUl22geXELZv0ygw/ff4cJ48axdPEi2nXowN77HcCypUsoKrK0zJqmceChh3PwYZZs4PpbbmPB/Hn89MNk+u++O5O+G8+kCd/xwF8fp03bduw9aA/atGmbsYxVVVVce+3VnHT88ex70CH89NNPdOvWjW7dum1xH/x7YeYvMxh55unsvsee3PbnOznvggsJBnSqq6v5ZcYM5s6fz/VX/YkDDz4ECdxw9Z8Ay1fw6lWrCIWCFBQW0rFTZ8Z8+D5du3VnyWLLQ+7wEWcw7OhjNluGp/7xPO+98xbnnHkaf7rqWtp27krrtm0ZsNse/PuF5/ll+jTGTfqJSKTBPnCbxPHHHEWs0poxSERrqSwro7h5M4IYSKEhI1vnT+G/Yz7m6utvZPToi7j/4UcZOGgw4Qxb2o8cOZLBgwbx408/cfLJJ3Pk0cdy0623WTstxmOUl5VRUFBAJOwaXHJycnjo0b/y0KN/bWg428nsuE2KPAOXAE9hWSI+xvLzfC3QErhge2QohHgQOBboCNSk8r1JSlmuhMk67Zi6PhB4BmvKcg1wp5Ty1e1R3j8qpJRMWfcTj894jGUbl3LXkHs4otORO7pYPrYBWuW04tguxzFm6X8ZvetoWiqyGx9NG0KIPGAw8JkQYirWepRZwPVSyp+B3YCX7PBSSimEmJY6r+Ip4HIssv2PLSmD68PYa2Wy/eUChAOigW7XjZ+Kg/v91oUgbrjbYBumdPz1qpIMj+stxT1YOKChCVixYgULFiygsqKSmtoaciI5BENBpk2bRjKZ5OjjTmDtmjWcd/YZHHDwIYw67wLatG3LsYc7ChYAvv7yC959601K166hJrV7YUnrNhx34snc8/Bf6dF7F/LyC52yqLvKWb+t/717dGOXHt0YceKxvPTSS1x26aXous5zTz1OYVERpWeexSGHHEKHTp2RRpJQKEReUOOWm2/isaetx/Lxx59QtdFyD9iudSuisTgd27ZG6AF69uhO/759OOWMs+jWtauVqbKrXyAQpiDl6t22qArHkui1VtszBYaUaPZxmgXaMF3Zja4JNEVbDXDxhefzpyuv4tJLL3XiSKCosIB999uPIfvsy7nnWYuVy8sriNbVcsA+Qxl17nmMPOdcwLL+v/bqKzz79FMMGbo343+cytIlS7j0/FHcfM1VPPb03ynMz/O4XtMEGHa7CgQ45+yz2HNAf5588kkmTPiOX+fNRQAVFeWM/ewzurQsADMlK4zHvXsF6CGnrqTQIJja1EpKZ7+AYDBISSur3zT1iLXI25ZqBCKKtTnm7m5rJt0pEC0JKVdt+QWFdOrchT9ddwOGKZk/Zyarli/j+OOP97SpwQP34tlnn+WySy/lhOOO49777uPhNFeDANOmT6d3b9fziFQsv/bzVHdeVK3Fhum6A0zfDTOoeWckPLslCu85sCzV6a72nGvK+cbOhjc18nwp8ISU8mr7RIq4viCEuExKuT2c4RpYG6/MApoB/wZeBE5I5b8f8He8046fCCHsacci4FPgEWB/4ADgAyHEIinlpO1Q3s1i83rhhotlrPNqGg2nM8DrL1WdJlGle9mc7tvIthlAJuvFurq1fL/2Wz5e+j4rapZRFGrGX4Y+yl4lQ5zpL/B+OCNKqw6paaY6cTOYgxZPyTaUTsrMsgOVpoy6w83cnfkKO7kkL6Hoj3dTKiNU5uqoNyqrjIJKudpELPlDcciVQdhuigD0kHscyHHLIpQwiVo3/0TMvY/CDq71IRBxLQBCVyQXtueP1QvQSiyNtAy6uw56oE6nKVIN9cNnmptvX+kfwRE9z+ajxR/y8txXuKy/tU1vYzZf2BJsqWFjc31oYzrZbLu8efS5appbKQzZgYa/5liv9GjgKGAecD1WH9kLKMCSZKioBArVE1LKuBDiVuBxIcRrm8pQCHERcJH92373hXAX6dkLo0RqxjVpgCG8emaw3YVZ72VRWHclBClfu/ZzytN05zhXEXLqiq9cXSFPU6dM4fG//ZUJ331Hv1370bx5MXl5eUSj9dTX19O/f3/++9EYnnzsb5SUWNsH33b7HYwZ81/+8dQE+vTtx8kjTuO+u+7gwEMO5axR55Kbm0fP3r1p274jc+bMpmfvXUDTlU1HXPJeFNYcEiKkdHWuQqSm6w3OPu1U2pSU0LJlCxKJBJ+M/YybbrjeU9fnjhpJUWEhjz/9Dzp36siufXZh8O792b1vT/bea3eKC/MoXbOWVaXrMBMx5i9ZwY8zZnPAgQfSvm1b2rZuRSgnnyuuuIID9t8PLRlzPlBC0z0bUOn2g7MuYqY2VFK3VRKaIH03O/u3lMoal9S5Nm3acPedd9C6VUsGDxlCh3bt0ANWigHNJdkSaNOqmB9/WEBlZQXlG9Y71wrycrlg9MUcfMihnD78JAYP6EN1dTXX33gL8+bO5shDDuSNt96ma7dunkVokRSTF2YCkUywV5/uvPTkQ8hQHqZpMn/ObIrzw7Rt3RrqKpTBhGlJ5dLlGmCRalM5n5IlSqE5z1iLVnv6b5GIunVuJnniX69w3Z+t9SVXXXQe999+oyOxABi6x64sXbyI0048lvLyCqZNnw7Ag/ffy1VXXA7S5Meff+bV117n3FEj6d65A5dceD411Rt57IknAbj91luoq6uje9cu9O5QghZPCQc03f1uCF1xcSERiuTFKbsQOF8qTWKYwpVaKHp/Vf6Uvu20KuVJmN4NX1Q4fW8j+9ImpXkWQtRh+XYep5zLBzYC/aSUc3+HMhwDvC6lLEr9fhnQpJQjU78FsAz4s5TyZSHEecDdQGeZqkwhxCtAUkp53qby2l6a552ZPMeNOLPLZ/Dzusn8tO57llcvAaB3s74c1/UUDmp/KCE9nArvxvWSZ/c4ZCq7BkZTO5HFXdmGFnU3WDCrnckGjAp3AU1yzRLnuG6tq4uuWeUuDCybs9o5Xj/HPT93M+TZJs6wfchz8y6uK6quR/R1jlvs4R4H2ltb0drEGcDMcePJkOv6TipaR1X/7CHPjWhfmTSM9/18F+NWfsWLh71Gp4JODa6nY2cmz9nyyaaF3nw+3t+/l+Y5ZTyoBO6TUt6eOieAcuAs4H7gJSnlY0qcj4BFUsprU5rnL6WUgdS1ScCXwHwaqXmeV2pxc8P0eoMIplW46uvYbqIBzV2YFjdMchRinN6nqR4j7GPVp66UksnfT+CxRx7m11/nc9kVV3L2OedSkJ/vXYchGrqnKy8vZ+jgQeyx10BGnH4mRx59DKtXLGfQHgO4+OKLeeiRRz3h7fcnYboEUNUM66ay1sI0GjYQhUzZpKtiwzq+GD+Jl197nS+/HgdAXm4uA/r2ZtLP0wCYNfFLenV3F6qJZNQ1QJimk24sGmX63AVsqKhk1dpSbnvoSa449wzuuPEahxQaeS08C9UwDdf9ZzIOdv8mNMt6Cq5w1b4NPYi6G54K+5Z/mDyZ0884g4CuU15ezl577cWZZ53F3nvvTc+evZx31PY4MWHCBI44/HB+XbSEktatvWkimTF9Ol27daOoqIiEIbn5hut5/tm/M/2XmezSLdWHStNdmC5Nx92nGcpz79E0lLpLurvaCs0iw4GQUxfqN8shn5quWI51z265CM2tAKW+ovEEhZ16c/7IM3nhldcBWL9gBs3ycjzkvXxjLeMn/cCp513ixI2Ew/zzmceprKrm3Q8+5KAD9ufmm24CYOj+B5Kfn8+Eid/zl7vu5IZrr3bv3S6fXfa03QvBu6g0nT+o6w5UbpPuucV+J1TLs7o1uh3GTkKAx8OIqssH6LYZbxtNzfIcAdK1zTb7yGIK2+Y4FFAdRW5u2nE3YKr0jkKmAiO3czkbBbtx/haSrIrq1RFetvObI+9qP64hqIpV8PP6ifxYOp6ZZVOIGvUEtCD9infnsA7HslervelY0CUVV3hcO9lQrUlBJX3Vs4bjTUNozkJBGXfJrWf7bMUyq+W4i+dySpQtqJVM1ePcli7ZLF7jLh7M5h3DDq8SYxV6UCXPrh3Ga0nOPCQJFbhlL+ru+nbWClu4cUPWh0lWliKKU3pH1XtGlmN1YWA2a7PhaSPuebXt2GHO6X0ZE1aP56GpD/B/Q5/MOBORbYubzW1tnI7GaDSz7ZKWKc9sJFndPVGKzYfPtsDRW66GhdlRNhApZZUQYimZxyYSmAHsaZ9IEevdsdayZML1wOfAPY0vg/U/L6g1qD+1rryyDluC4YbVNa0BYXbcXAqBnrpF9ThhSoQuqKysoE8Xa83Alddcy8hzzmXg4CGsWb2KOZVV7DN0iEce4uZp/Rr31Zf069ePV15/E4Dlixaw95DBmKbJyNNOIRRXBvnhAsdvrxAQtjmmEXf7OzOJMCxiJoWGsImVTWJ0t6/5btJPHHbsiZ56a9e6hP+75WpOGHYI+UGNlesraN+mxCITSWURdjLuPgBdd/rQSCjAkD5drLxqN9KlKMSFdz/BmLFf8N6/nqJT+7bo0rQG47YkIRBK8wSROg6GXJKpbB1t/1atrPbzN5TB0+AhQ1m82DKAVNfU8NVXX/Leu+9y3333UVFeTl1dHVdfex2jzjmXww45CGmajL74YkpKWjkDHbsdacDAvazmrBkJQsLkzzddi0xEOfyQg2nZsgVDBu7FXx+4l7zcVLmEhhG2ZiyFabjlF0pbFZprpJAmGElEylorEvWeGVLn1jXdGjxgDYJsw4Ywk+7zTmHl6rU89a9/88EnnxMJh3nhldfp0a0rCxcv4dJrbuSRP19He3sHRKFRXJjHCUccTF5uLpFImLLyCqKxGGdfcAmRSJjmRUWUtGrF6Esvp7a2lukzfmHmtCn06NEjRepTkhERtCzpQhkIKZ5a3MV73ntTrcWqK0aVMKs7hVoPRJkVtZuk5lquhbC2qtaV2Sm7Jam7GjYWTY08AwxPaYhtaFid8KlCiKHKeSml/Pu2zFgIMRxr+vFA5fTmph0bNS2p5OFMOXbqtHnr2m9BYz7EOwq1iWomrf2GCau/YE75dExMWkZac1D7o9iz1VAGtNyTnIDVmWzrGWnRhBYMqkR7R8MhzjsIxZGWnNfnMp6e+TBfrxzLoR2P2qHlsdGU1kJtrWV6O+MZ4CohxBvAr1jrVKLA90A1MDY1g/cdcCWWkeSDTAlJKScKIcZikehGvai2VMFUrMO2izob6VZ/uxrTfSZ7wqXXtTpYTPVKWspjRG4khxtuuY3Fixby+quvMGvmTK67+ioqKy0vBGvLKgkGg04ejv46RSB2HziE666/HpmM8+gjD/P6q69w9ojhXD76PPr37gqxWoco6Yn1DvnNTcQ8mzXZxEzE6ywyCmiqFddMSQLMkHNPIaOeoXvtzlknH8uJhx1A25JWHiIsjDgd2ljSEsdibW8Kpcq4hIZISSKkaSKCKQKl6Zx584NU1tRx0K7d6X/YSfzrxgs4+aTjESVdnFkukYxjpkimDOY4JKs+YbrSGE24s4m2hVZ5PPbUuyZw3bspYQoL8jn++BM4/vgTMKVkY3UN77/7Ls8/9w8uvOhiysvKePSxx7ngwtFOnpoQriXfNBp8j0patuSpx//Gw/f/hYWLFvPw3x6n0y79+erLrxgwYABI0/H6JMykh0g6AwdFAifidYhkzCXMQnM2sJLhfNdDhh5yj6XmDJxEMmrJPGxjUCDI2Zdexdp1G/jrPbdz4jkXA7Bw8RJeffoRxk/+iWPPuZxrLjqXUaeewPOvvs1zr77Nr4uWUFdfzwXnnMXkn6aQiCdo3rwZi5cu54D992XQwIFUVlYSjcaYOeVWevboDkgwk879CGlaVnhHNqQ5VniBonMWyq6gUn1BXPJrE2c3HB4ibp9Xtx3XvUmREC7hNiREUxdV39ZGNgtNGpoieb4hy/mb0n5LLC3yNoEQ4lTgWeB4KeVU5VI1UJQWvBmwSLneJcP1jWSAlPI54DmwZBu/rdQ7F6riFUxd9z0/r5/AtPWTSZhx2uV14uTuoxjS+kC6F7lTaFvjws7Hzo+jO5/IVys/5bk5TzCo9T4UhtJfPR9NEI9gGRG+xiLG04CjpJRVwAQhxGXA87gLro+WUmbsH1O4CZhDI8lzxFlY5kq24ob0SCoCmquVTCfMTp8jpWekLkSaZcsTx/ofS/GbSCTCzbfcqmy9LDlm2GH8Mn0aoVCI+QsX0bOXtWhKdZknhCCkQfeunenVsyd7Dx5EOBzm8Qfv5eiD97fKlpred0iyNNFMxaqsWmvtdRvS9EjSnCl9W3aVii+kyd579ue7D1/1pCP1kEs6A0HHCiz1QEpGkSLJgTQPETbh00x3kVo4wsSXHqXfKZfSq0NrHrt0BKff8wyPrK/gwjOHE9ntUKsuw0Uet381KflZSBee6fm4psjFJMjUc80RLjGVmo6pqF9tQ1IA6bjdQwiKiwo579xz+PLzsYwYfhJ9+vYlJxx2rPkAwoi5llzVAqzIMTCTJGqr+P6Hn6isqqKmppb/fPg+u/XtbZFgxXIu7HpVCXMy6sg2RDJmzRyknocZKXIGQp6FhPE657mmW3dVC70hYeJPluzm7Muu4ZwRJ/Ly2x8CsGefnnRs3YLnXnmLC669jSm/zObDsV/y6t8fp0e3LrRq2RI9qLgnBbcsdl6kyL8iIbGJvzASVpntcHrIua+AFiCQmjEVCuEGMHE3y1ENBoZ0rdVSOVZJtQpdHanidZunbuqjzkqpaxo2hSaled5RSOmWHwWOk1JOTLv2MlY9jUr9FsBS4A5F83yXulW4EOLfgLGjNc/bStu8tbKNaLKe+ZUzmV0+lVllU1lYNReJSYtICUNaH8gB7YfRs7CPMjXq5umZ+lbKrnaiqmwjrLw5uYrmWYu5HxCt3pog8FielQ+MrHW/52ade94oW+Me17rn1W2zVf1z3RpXO129GdmGanne3rKNZr1cV3ShDq5uUW/RxkpDsTybkc1rnu0FPeCd8tpa2YaNJRsX8qfx59K3eADn97mcXZr3c/MkM7anbCNb0EbJNjKk19jwmcvUuFFlbs4fZ4fBjbXW9LY6DaynVuLbdWtIPJYpG+n9n6qHVOPYaYDXciyl9Ewj2225qrqG3l060LffrsyYPo1Onbvw04xZ2NsC27ILXQjHQjp9ys989dWXjD7vXJrnBt3FdLblziYkivXSOu/u5CJSkgoZrfVoZu1jEQwjQzleomVbAhU5hgxE3LSUtQ2ejZHsulKJobLplIhZfZ+MR5HN21l1F62mtLSUdvse74Tbd8hA7r7xGvY/6CDXv7yUmCn/8nHDfY5BTKQtPZHed1Pd5EZKSY6w6k8KzYljmC55VqUQ0kjy+RdfUl5RwWmnnoKmuQvwhBF3jtetXsVr73zAzff8nxM3GAjQtm1bKior2X1Af76b+D0ArVq25NGHHmDEicc65LuB/MK25Btxd7BjJi1rvOJ32alTpSwimXDSk3rQmY0QyYRX3qLrrFpbyvqyCvr06MaJ51/BF99NBqCoIJ/cnAi1dfUIIbj+0vM57dgj6NYxJfFTLcZgtZ3UN8DTFvS0dmFfM+JW+1T06xnDqVWiWOQ9EAIzEM74rVF7Ran81hSZJ3jXLiRMqWyC5Iax3+e2zfL8TVI2BSHElVhu6I6UUv6U4fp+wFgs7xv2tOMNuE7+mwELgIeAx7E8bnwEHL45bxsDBw6U47/bMvKc3llkQiads9rgspFktS1kIzrq7kheIm2yIbqWhVVzWFA5i18rZ7K0egGmNNCFTveiPvRvMYiBJfvTq6i38wFTZ1dDCgFUB3+qw/2IEiEQd4mpiDYkyYBnd0AzRY4d7xKATGTZxERZBS6jymINxe2SSrbr17uEuW6te1yzyl14WLfB1VfL1Fur7gYYaeaSVF0hxjklzZUwrveMcImyk2KeqxKyNcwAQrEaqOe1gmYNzpuKX1AZVo6zbZKSzfOGcC0+ahuJKQsmo4badlQibf0fu/xDXpv/d2qT1fRpvjv7tj2Cjvnd6JDXjUigodQlO8EVmw/jIbUN46rjEi8ZVvW0ahrKeVVTm4Uwe7eJNYklo0SN1F/qOG5EiRkxYkaMuBkjYSZJGHGSZoKkTJI0kxjSwJQSUxrs23EfBrcd/Icgz/V1qWUyyvSwvUua0Yjvm0qE1XOq6zHVygXevtX9UKe0k4bB3X++jfnz5vHVl184rjMTGgAAIABJREFU4eYvWUHz4mKCmptnTlBzp/SNuONGTEvUu+TVJhMqkXGIneJuTJqudVoLeK2kdrn1EDLo9jlqfKOwxONWzh40y2AOgfKlbpxk3Okfk626u1P0RsLZiEoYSccqqiXqHIu4SEaR0VpmL1zKW59+w/3PuY5VPnj1BY457CArz3CeI1WIGu4AJShcAipT7tjUZ66SZHXDFft56YoEQyru3Jx6dW7e9Fr0E1GeeOZZbrztz576LMjPp7qmhrtvvo5gTh633nkPI4afxJRp01mU0ln/7d47uOKcEVYW0kSo62xsUhoMuzILxbJvx/EMkIyGshVbHuEUPxB2de0q+TaTrFtbypATR7JitbWxV6d2bbj32ks44uADaFncHGHEkbHUcwznpmQjqUGNFnDkQ1blpr6T6oZZimXakfcouxfaSJomlRWVtGxRbJFvdT2NppTdI/nQM+qn02G/EkKoOwd6d6RUXVGGNOEMaG0U5ObsVAsGG0AIEQbaY00HeiClnLMNsngcS0f+TZpFIj/1f5PTjlLKSiHE0cDTWItc1gCX7Cg3db8H6hK1rK1byfKaZSyrXsiy6oUs3jifjXFL3xfSwnQv6sNxXc5kl+a70bvZAPKCrgW0qTrU99F0cHjHE9iv7WF8tfK//HfJW/xzzkPOteJwCa1z21GS056WkTYUR1pRHGlFs3AxRaFiCoJF6BksGtsCUkoSZtwitGaUWDJKvVFHwrD+1yfriRlRokY90WQ9MbOe+mQ9USN1Phl1rru/Y6m/KHEz86LSLUU4FNp8IB/bHNFolCsuuZgN69fx3Asv0ren5cnm4y++pnlx8Q4uXdNBvx5duOdP53HdqOG02O9kIuEwa0vX7ehiZcW9DzzMvQ8+zKEHHcCrzz1FcfPmDD54GDNmzSEQ0Pn48y9ZV1ZBl86dicXiDnEGmL9w0SZS/v1R0rKYp+65mXfGfMYn4ybyxB3Xctyh+zeU4KQhkUgwe8Gv7LLLLoTDDXeYzIYPPh7LX595ng7t23HuWafz3kdj+GnadGbPnQ9A6cJZNCtu4YkjpeSnKVN49p8v8t3EidTV1tG5Uye+/earBjKSHYUma3kWQrTD0gZnWjWU0prLdJd+OxW2xvKcCVJKapN1VMerqY5vpDpRQ22yltpEnfUBN+LEjDiGmcTExJQSgeVEX6AhEGhCA7SU9cokYSaIpohBTaKWylg5FbEyyqLr2Rh3rbkBEaB9fhe6FPSgZ7N+9CjqS5fCHgRS5MW2tqk6P/U4ohyHFauyZ1vtmGth9sgwahXXclWuCzlTPVbkF/YoWSr+nD2WWWW0j6rrUqzQnhG2YpFOVipSjeWlzvHGpa7ko2a1W5Z4rWVlUKUaBW1dH9J5bdzOJK+9a2HOaeu6Tgq0cRecarmK5VnxDpINItTQeY1qkTKDinVXsTTI9Ok5pwDK9tzqNK8SN6EIHewtesE7m2H73FWM1ESTBuvr17CiZjFLNi5kbd0K1tWvorR+NRvjbr2ryNHzyAnkkRvIJ6RHCGlhQnoYXQRSf7prVcTElAaGaWDIJEmZIGHGSZpx4kaMuBm3iK1hEV8zq3gkQ7UInRw9h0ggQkTPIRLIIayHiej27wgRPZw6bx3npI5zAhEiesQKH7D+h/UIIS1ESA8R1EIEtQABLUBQC6BrOprQ0NAozMv9w8g2ovb7rumuJS+lBValRTa8myO4Vsl0OVtj5B3qrNjPP/3I5ZdcQu9dduH5559HSkmb1iXsuddALrzoIvr22YW99hrodVuXVPS0iaiz6EuLVrsWt0DQu6As3aKs9meKLtpxCRbOQ9rvs+0JIdWnaYk615KnbqwRzLEWp5GyAtr9npFIefWw8pGKxVAkok7/7NFiq/KCWJ23Pw2EGDb6Bq664GyOPvRAzJDbB8pUHxUPF7naVGU7bl3RsYM7WwCkechww3gkL0bCK91Q5ALC8G5UEqutIRqLsXTZcu64/yHGfj2eTChbMo/8/DzqN1YiE/XMnPcre/TtRW7qOyejNZDrzvqp7uREup5atcTaXjWMhNunalrGxYcIzWNVt/XyUkpEvB6Rqg+ph/j3Ox/w9idfMeaZ+92ZSaE5lucff11OeU2U/YcOZPR1t/P2fz4F4P1/Pclxww51+31puv2+Yh0eefEVjP3ia26//ipuvPPeBvU1+pyzeeKh+9ACATctoXHaqPOZMPF7zjrjdJ5/4UXqUrNL1RVlBELKVuP2PaqWd/v+gYSEhKFYnrGszGC1lVzDSlcKrcF7FWpWstNanv+J5eLoWqzFI9vGJNOEYEqTZ355usF5qzuXJE0DQxokzaRjnYoaUeqSddQmaqlJ1FCTqKY6Xo2xHXa01YRObiCXiJ5Ls3BzWkZK6FnUlza57WmT256S3A60z+9MUAt6Pki+YdnH/7N33lFSVOn7/9yqjtOThzBkyUGyuipmxQAGEFEEA2YMmHP6mnXFLGZdzGExIAbMGUwICIIgShKQMAyTp3Pd3x+3wu1hBoZdXd399XPOnNNTXfHW7arnvvd5n/f3hCEMWue0o3VOOwa02MNdnrYgaSWojJdTHttIdWIz1ckKahKV1KdqqU/VEE3VkbBiJNIJqhMVpGWKtC1xcKB0qIpQ+wwfPsOP3wiQ44sQMIIEzSAB0yayvpBNcsOEzLBNjHMI+0KEfTmEzDA5fm95SCNvOmnSZwj15c3RSDfeRtvRoP9r0EhDBlmWhrIGg8wpeI2YGIbPnfptWHHMEJ4PbRpPz+ys9svPP/P8M08Rj8eorKjk008+5q4772D0UUfxww8LOflUVRS3oKCAsyecQSgUomLzZkWQHa1rvNbTw6ZimdP4GhnQE6oyNLDScge9qviJfYlmg+icq5P1fJ0BJRXwe0mEbvRRSk9jnU54bZxOKTJm+w4bKd1bWHjXop2nOi/PrULGbTmKlSYuo8xftITepYWKZAvHni2OtCUgwVSCgD1ot8JFJO0b4E7DO8mAWgEVA0//jbQydNluYEYj8U5SX0Y/0ZIk161YwdCxpxMOBtl/j78RCPhJJJKMHTGMI4buyy6D+9O5tAVYNVBdQx6AX7BHv55YgTDSli8Inx8cz2bNo1rZ02ltqdu9mQFXCiH9oQzNsS5ZQfP9x/KuWQLvfPgxR4w/m1AwSF5uhPzcCH6/n6rqGs44/mgwTKxwAbfc+zDvfzaLcDBAWflmNlVUYVmSXj26Mnzofkx94x18Ph+jTj2XMYcdzLijDufgfYZgRIoyBq6YPp567kVeef1NfpzzFZ07dWT//ffjwUf/wdD99qJThw7cPfkhnn7xn3w+60uuufRCjhlzrHtdyWSSwYMGcvXll3DfAw9SUlzMG6+8REBYSM1+tjGnGWkGXCLuF7gPW78pCMgUwrGstVLuPTb0pEZf8yLbf2XyvAdwupRy6p99In8ULGnx/FKvineGrygCn6Fe6KYw7Re4ilhF/BGKQ8V0yO1AfiCPvEA+EX8u+X7vc8QfIWTmuJEuExWhEnjm6ZZMk0ynlZ4PScqyVORKGCAN/EYgw1cZmi6SkkUWfwb8RoCW4TaUhErdZdtr56brkhvzBc7QPDeiiW64jpkdPf5n4URFpZXhq91UJK+xpDegYf0NEskkc2Z/S58ddyQ3v8D16bYkvDL1n0w8awInnXIqrVq0oFePntz995tpUVwEqTj/fOlFFi1aRDgc5rvZ33LdtVczbP+9MWJ20rKjc055VnMZiVINNcuWhWF7PeuFJgCE5rDhLktqutp4HYZfI1zphDdr5gt4vViPvFopcHJHhPCS0RwSqOuOnXOx0t45W+kMqzQnV0QEQh55jtWTTEmqa+sokAmsjb9iFNgzbqE8DFsbbBk+kEH3ukxtViyQjmX4GztkyHV5cNraGaw0KOritJNVU4lMJcCOvhrhCDKV5JX3PuXYi25wjzftgVs4YthB3HP1hdT7csjPCbntIJP1GYRbOFZ/1V7ei7TS7syn8Ac8LXA86lkDFrdRgyJHS26lwG53K1zg9V9/SLUNmTN8IhVXThya+8Wv6zbRrk1rFn7+LrXxNJXV1aRsc5me3bry/cIfeOPDt7nxzsm89eo/EckYPp/J/Y89ydvvf8Tuuwzm/see5MB99uCDz5SnwhsffsZbH3/BkF0GMePFJ0kFIqxeu5Yf5i+gXfv2XH/L7ViWxRNTnsYwDV5/6x2Wr1zFCy+/yt5DduOAPXZl/z1356Vpb3DChHMZNvww8vJykaafyZMf4JDhw/i/G29i+YJvOXDEMeyx/0HsNKAfn771KsFgMGMQiS+Q8bt2fmdICxFSOUN+mVLONYmGpUTs+2fPtOizy1vDX5k8b8QrkPI/CZ/h4/PRv4/bRmPOGk1VdPM++fGJJojx9pZvyyKLLLL4M6BF7ITUEpS0Cm4qMmevo22q5AVawh2wbt16PvzwA267/XZWrFgJwJFHHknnLl057/zzGX3UKH5asoTHHnuMsUcflTldbL/Qc3Lz6NCxI5vKyvh15QpyrKgidE6ymBMx1MmnRvB15wssW2ahT1HrETdHjmZZSOdzMuEVejJMZNQm3vEYhCMuQRD+oEsyrWDES/BqIBsQleu94/kCnsuBH29Qkog2WcXT9X/WkrVFIEQoXkkimWLZyl8ZKOOu849Ei7BbKYyoTbgDOfjidqK2MJC+oFd9T5+6T6fc5SKd0IpixZBR9TldU+kmaPrad8PwF7tEfMPmCl56fQYX3XgHAL267sD5pxzH8EMOJp1TiJkD+amYO/ARtuTGbedoXYb0z9Ikfr7WndzzTa5YZH/0Bj5GIoapJXSTU+DOLshA2HPh0CLX0jC3mGWRTpKflSK3oJA2paXkFLYgxxegVTtvEDl7zhyGjzyWMUcfzazPPmGngf3dQx88+ngAzjztZC6J5PDya68zZ8EiNldUEo2pe/L517P54adfuOvhf/D81FdpiHXr19OudQuenjyJHfvsSDwe44NPZzLrm9nULFtJr149Oe+cc8gtKlH9RxiUtmvHZ59/QZvSUl6a+iqPPHAfx55wEnPm/0BlNEGr3ALvntvbuLMG6QRm9Qa7vXIwc1SugbAlnFZISRwzBtd6X3cj217SfGP4K5Pn/wMuF0J8tg1P0CyyyCKLLP4/RcaUfL1KWraWz8foMgArR0WdBLhCeqlFLkXDinVWmsOPOJxFPy7mtFNO4okVT9GhQ3v69OrBLbfdTk7Qz3ezZ3P44YdzzNFHg/RewJbpp7KyijVr1vDmW28TDATo1KkTfiHtyJijp00hkk6J5pQqdmGfvzsNremYEQIZjCAtW15hR4/Blje4JMmLpIpQrkuKk616aFPSQVISonbOQVpKWm1SBE6kku7Uiu6ogS+IzGthn3sSKxD2CJpWkpuIRvjs8wHc6wbADCAi9j2p2UQgkscNZ4xlwj1P88btl1G6RiXX+Tr19i4/lfSkKbEazf84DywfaAVIvG3imZF7N6JvImxnIl84gnTuQyqBDEYQ6SQVVdW0Hay8pwf36cHsaVNccitryyGU456Xcx+SKxapQYpDkrXopVFQkhGFT678cYt1AIyIImtmUauM/Btp+j05jeHzZBsaYTTSyYxqujKQ47WH4WPGBx9TVFSkCLemLa6pq+fUCeew+267M3nyZLU8nYR0kng8zhUXTuSdDz+hY6cdWPrLMuYsWES3Ll34do4qhfHJjNeZN/8HDht7Mn/baRAAH7w+lQNHHsPeQ3blw2kvgZRePo1lEcyJcNSRIxg1Zqw3SBQGMu25jSBMflyk+uUH775N7169ADj3rAm0bN1G2dFl+Jsn3IqaIhmFGts6Np3GZ7eXUbcZhCCdb+cNpb1KjNL0I2xXqYyI9lbwlyLPQoiGEo2OwCohxGxU1T4dUko55j9zZn8cdElEU7rF5kwCb8uWrilLuoZlMR34mkjw0xNk9OV+7SUi9KQ+x0Iuifdi0xL69EQ/PQEvXePd7mStt9xKeMdJxbyHhQ7D73XrQL6XPGdGvGQU054eNPI8Gzh3yhAg6G0n9c8NtYQ2fNoPOUezymu1WfOIrvCyyTMiMCG1fyfqAmR6LutJNHryXtBbriveM3Rguu9qxjS23iG06V7npaxHvvRyvPpxdL2jvo+G+lIbAe1zRE8w1D9riYxO2V1Lu2+W5jkd1fwUo1oCYlPWipk2i40n/TVWlbMBj9Gg/XbTuoRD8wwVjS/Xf0emdipNyz+2PK//r3XOGoxlymE0XVWO0V65W9BlAKmijm6fN6t+86Kqpkk6on7r0p+DSKvlKgosePHZZ7j48it4YspTAKxevYaTzr6Ab+f9wM233sbLb77DdVdexkuvv8WwQw8jWl/H2rVrWLlsGSeOPYYWLVsy8YKLee3lf3Lx5VdiBsPUpIVrhWtJMLR8Xd0n2o0eNkhmo+FvSn/B65FrV6esE8lYxoDBEAJp7y9twZqiPuo8hHD7X8AQGf2rLumRbd0GLmlJOtcvV4c3M6fO3eeAfl4+v0dOitoirBRXXXEpa2pu4eRJ/+CtxyYRCiq9dzrXJuyJusyou6vfTpAOF5I2g+51uccWnjVmIi3dFN94SmbIDR1rTJ+hbFDDPoFo4bX1p1/MhM3LwH5ey0QMo0pFNdMVGxFOFceCEjV4KVKVGIVf88CvqUTYhFumkq6tqFVT4a5jFpS46wjdhxulwXWei9L0u7p+IxX3CtFYmpa9EWvDc848g30OGk6ouJQd+/SmsCAfiWDZsuUkU0n2GLI7ww89lLKyMurq6olGo5Rt2kQ4HKK2to7eg3flmssv5YsvlT/0wAEDeP+N1yjIDTFk111Y+ONipjz7AgCFLVry5ssvcOLpZ3Pw6OPo1rkTS35ezu5/25nKmjqefv5FDjpgf15+8Tl3UCB0a8BUHAEM6NWNUSMO56Bhh9KurXofhkPBzKRYB5aVWZo+rAYiAkg7pDxWg8xvhVn5m9q8ciNGfrHdxkG3uqVbSIitu+P8pdw2hBCfbM/6Usr9/qhz+U9g5513lh999oX7/+9Nnpvj59wUec7Udnr4V8mzQ5yheeTZ+gPJs6mR5N+LPOs/ZN1nWm6DPDvEGf498qzjXyXPGdvJxsllxnG2kzxnfN4GeXaIM+A91PjjybOOxrTTzfGTbooA68szyHMzfKEbP7+mvyvJ+8+5bQghbgHGASWostyfAxdJKX+1vz8R5aXvWH2eLaWcY3+3L/AJ8ImUcn9tn8cDN0spd9jGsWV9VEVbjXSSpFB9yUkmc55REu95aAg0b+bMRnQGTw9MnsyVV1zO5Acf4tDDDqegqJhkKkVpcQFjxo7jvXfe4Za/3867M97mzTemu9uPPmYMRUXFbC7fxFtvvsHin5dTXFyUcUyJd2+FwJWNbEGWtWn4LQpHNPL7dMo6q3+83BYZzHWjlWnDTzRlUZuw3OM7e21Yyc9B0pLu+cZTFglLuteSssgg3E7OTsD0qjM2LAikF6sxBfiwSKVSjB8/nt/WruWyi87ngH33JpiT616/E12WgRxvUI0gLWVGVUK3LQTuQMQSphukSlnSfT86x3fOK2AaiGSUz2fO5L77JxPwB5j63FMZLigNPZMbSnbcQlzJKDLlJUk6ZM6qrXTlNDKddt8DZkEJVsSWFzjl1O1RuwxG3MEehplZ7VAvRuKemJE5wLL182WbNjHrq28YM/40dAzo34+99xjCgUMPoHWrVuTm5SOtFF06d6aivIzq2jp6D9yFnxYtoFPHjixfsZKS4iIK8vPdPptIJHhzxjuMO8nb9w/zv+enJUv4bs4cOnXpyllnnglA+/btSaVSGXZ+etBCT9QFqK6qYtWqVeTn59GpUydM0/Pydp71aek9330N+rBzj53CSVV25cp2i98mtfNIr9k84xPALTT13+G28d9OhrPIIoss/j/Es8AkKWWVECIHuBl4CRhiF5l6GDgS+Aw4H5ghhOiuyfEsYKAQ4jAp5Vvbe3C3oqrpxwnuB0yxRXEMxwlTZAwcM12KhD2VfthhhzH99WmsWf0rpa1aICXk+PxcfdVV+P1+OnXswDlnnrHFufy0ZDFHjT6agQP6c+vfb6NFSVEGaXbOxT2elW58sCkMl5Vm6H8bQGguDUJarq2kNH2uHEQaPnf7ZINBRcOSxm6FRtH4+TpWX9441CPSPlNkVH11y56LLQk02O4YtlVfAHj60Qe46bbbufG22zn9nPN49fmn2X3XXVSbOJIXLYptGD6EIby8OKRLcpUjiEoMM6WFG3IQhpv8KH0hMPxuGy2Y/SXnXXwZG8rKOOv00zjp6COUG0qiztMZ6w4X9kyF+keCtFRlQFT0WE9MdAcSxW28IilmwCXSli/k6eADOUqS4bP/92nRVt3DUxiejWuDcosqIOHpv5ev+Y2zzr+YRT8uZvrUFxi63z5EU5Lq6mratmnj3LAt9lVS2p6Fn6sA3x133UvXbt3o27cvbdp3tKsa+qmurua1adNJpVLMmjmTDRs2kBMO0a1bN7p168ahhx+BZVn8tmYNPXr14uabbuKSSy+lOUhLyC8ooF///u5A17nfeuBP4JHmgOnNmljS6+M+AZbhGRemdxmJkfEscHbWvCm9vxR5ziKLLLLI4r8LUsol2r8C9dbuaf9/OvCalPJ9ACHEHcBEFJl+2tkFinBPEkK8I+Uf4Lu5nejSpQvPv/ACfXfckT69ezP6aFUh7pprrgHgy6++YtLttwNw0smnMHLkSAYOHkxuXj4+ny8rqfkXEAgEuOnaK7np2it58ZVpnHPRZYw5aiSffD6Tqy65gL332P0PO/bUl1/msksv4dILzuWcM07F8AUy6gv8t+P8S65k15134o2pL7gFTnJDQXIj264JsM/ee7Fowfe8Pv0NVq9ezSuvvophGJxy8knss/fenHTKqQSDQdq1a8eVV11Ffn4+/fv1Y/qbbzJowEC+mzOH1atX06NnT95+6y2EEIwbN+6PvuQ/HM2SbQgh9t7eHUspG3cR3/pxzgNeklI2u9SQvc0LUspN23u8PxtZ2UZWtpGVbWRlG//tsg0AIcQ4VIQ5H1Wx9SIp5WQhxPfAU1LKe7V1pwPLpJQX2bKND4EcYDFwh5Tyke2RbfR9qu8fck1ZZJHF/99YeNLCf1u28SmNZaw0Dbkd+9ZxD/AVyqZumxBCmPY2M4H/OvKcRRZZZPG/ACnlC8ALQohS4FSUthmU31NVg9UrUSRb3z4hhLgKuE8I8fzWjiWEOAPYUjORRRZZZPEfQnMJ7gnNWCcMnAUM+tdPBwHcJoRovOZu4+tnkUUWWWTxF4CUcr0Q4nFguRCiI1ADFDRYrRBY1si2/xRCXABcBvy0lWM8BjwGKvL83egv1fKMwiHKdk1qtlw6Mop8ZOxczUgk4zGGvLEvAJ8e/hmRUDDTPcJZ3fBpVnmy0amJhkVNMmZgtLLAWyQF6ucqNUu4jBkcze5MSq/oRhPXlVEEBZRe2q3Q2MTrVNNlS8PHzq/tBcDso7/GEqZXhVFC0NmVVlVQpBMZM01o7egUi9ni/O2y39fedCuT7pnsrhIOhZg86RZOPHa0Oq90wtUQW6E8hLSIRmMUdh/IvPdeYcee3VTina0tFtFqd1ZL+oNg+Lj6trtYuGgxNfUx2rct5cVpb/G3Qf2Z9cYLGc0w6CNVAW/eAS+pfUnL0y/bJaHde+lYszmXpuvPnaIuqbjb9hnrO23lzBoaRoa9XIb+XbPg0zHzq6855dTTGHPMMRw1ahQDBnjezU3OQLorCG+/VgMFlXacjP6ql4NvQMuc/vHaq68y/sQT6Na9O+3btef16dPZc9oQAL45ZnZGkqBpCObPn8/II46gc+fOpFJJlq9YyaCBA/no448BmPvdbLp164bf71fXpJ9zI4VOGv6+MhI+G0EwtwBxUtMUs1nkWUrZZCRACBEAJgBXoLKpv0BlVv8r+BwwgZbbuU3NNtfKIossssjiPwEfEAHaAvOBwc4XQmWODQRea2LbS4D3gRubfTTdxkxHg5e7dAqDSOmSy6T05DGWlJiGSVlZGWeffTaMVpvOePttjhk1cgsCCooA6V61W9iFAZgyo9yySCe95DBf0CO0epGPhnZ0UnqVCPWkNUuTWxk+9xrRrb/0fTmV63SplkN6AhGvjfRERiEzS3U7126lMAywbGGf3xBeAqbuWS0tr6qbTsbsc3SkaMJKuRZ6jqPEzZedz4kjhzHhoiuYNWcBpiE444JLKVu9nIvGj8aIFLrXYtZXIA0flWUbsSyLrqVFiHidItW2dZ8M5iJtP1/neq6/4EwOP+kcvvjmO66+cCKRnBwO2GdPz3+bTLmcS2QTUZcUZ1SJhEzbPmFkkDnXucP0u5K0jIqC6YTtpNFItUnLQjjLheHJCKU3UNy8eTMnn3IqV195BSedqOKebi6cTpyhweCrscRVkUnYhbEFOQa7D2huNo1Zfo466ii+/eYbFi5cSDwRZ+LEc+AA73vH6UVYaUQyyaA+PXnlpRfYa/+hALzw7NNccfW17vqHjxjJpk2baNOmlFAwRG1dHclEgorKSsafcDz333OXSlRt7PfVENo1bvEcaQL/csKgEMIPnAZcBbRDyS3GSyk//Ff3KaXc91/d9veAEMJASUB2BzpIKdfYy5u0WrK/3xl4COgLrAOuk1I+RzOQaEJ0rGdB6/ZBTekct1UQMCOrWoswBLTlQZ/3sDa1ZAkR0zTMmp6Xek+XrOt50+VeNaqErV3Wtco6fDmettUxrwfwte3snWOuZ77v+DKCqojlQAa9akB6bXrXXB5I259jernxJkqP67rZmJbhrCc7W5qSSW9+EfHGfv687t41ddayoe0NotoO9b5gZtwjzWdbO46RyPQ19bb1HvR+v9dGukZd71NN2XY1tu+M5XopZM2gX/eI1vuLofUjq2KD+zlVttb97Ppf6y9Z7X4aIU/znKv1l/wc7/4bYa1fhL11LL2P5Gg6cp8X9Ukk7QOdAAAgAElEQVQbXtslbBNYTVqdcY/0PpJZwl7zWdd7htW4b7OuqMuQojdisPBXK/xpPzPPBqZKKTcKIdoDk4GVwBLgceBdIcTTqMDKeUAImNbY/qSUs4QQ76JIdF1j6zTERx9+wND99lXbay9AqUfJDNNrW+E5NPgM1Y+XLl3K3HnzmDt3Ls8//zzHHnssq1gJoEpuQwYZcouRJOo96zAhvGp/gbBGbCyMukoMOxfE8ue4fc7QSgVboXyt1LgES4vc6tUHtYiZAEjrkUSbiKaTmcRI+z0JrVqhEzF12gwL0uk0VjJO0LEukZZ7jIxCJLEahOkjoJU99xwmUl7RCqdcdIPzkP6gcpxw2lKLHopU0n2O9GoR5tGrz2WfUy6mvLKai04ew9sff8F7n81i2qN3kZ+vfuOqAIjB198v5PCh+xIsao1l79d9J+ie09LiqwU/cfkNf+fbefM59sjDaN++LXX19fTfsbdHGE1/A99lrdS5E2nGvt+NzApIf0jZz2FH1J1z0Ui1lMaWxFaP6jp9ybBodICmfT5sxEiGHXwQ448f5/UTp931qLIOfWZDX+wLIrXfi3KwsZ1DtPUMIRq8g2wiLCVS++LW225lh06dOOCAA1iyeLFLnk0rSWPEdpedd+LJxx/h4suu5IGHHmafvfbk/Ilnc8bZE1ny01LOn3g248YcjZVKkZubi9/vJxgMMPKY49hxwGDuu/tOhh50cGab6vk5znU2KJTUHGw3ebZ1xqeiSHNHYDZwupTy3e3d118QFwIZhc+3ZbUkhCgA3gHuBPYC9gamCSGWSSm/+o+efRZZZJHFfx7Dgf8TQkRQeuZPgaFSyhQwUwhxNopEO8GH4duoGns58CPNJM8jjh7Ll59+RP/+/d2RnsRECiPjxW3INKlUipde+if/nKrqcXXs2IEffviBufO+Z5+992anXXbh66+/pkP79uwy9W8A7Lfn7hmRXJGKe36+qZhH2NMaSUt4g0URr0OkE+5A3kyUu5IGK6fQXW7UV3gRTF/II1bC8KKQ2CTeiRBrsgsVUXbCf2ajMg/HM1qPVmdE0qXFgw8+yLKlS9hUVsbeu+/KmSeNw0QjbM666SRo0gPDSnlR5HTSI8zg2sMJtOCGMNy2ATXgcJOQYzVYdhltEY7Qq3dP1n/5Jvc/PZWD9tiF2y48neMuuZGLb5vMY5Ou945hBkhKgw2bKzLs5aThY8Wq1Tz3yjRW/roan2ly/OgRHDDqOPccX5r2Fi9Ne8v+/CZ1tXWMGXEowXAmUXQHG2iky51ZcCLPfjehW1gppN/YcvsM+Y7A0pKkM75vgthimG7BlERaYkqYMuUfrF69mlmffKjO2dmusQhIw/3afcoy/W5QyUBgaSP2hj7gXgBFuhUl9T4ihcgIsgR8Pl55eSrjxh3HjTdcz2QeavxctLYZe8zRjD3m6Iz9fvnZJ8x49z1GHXMsp55yMp06dvQ2NXx89tmnnDB+PIcfeRRvvvEG8+bNY8KECe5ACzIHa/q+X3j5NZ586klmzfpyyzbT0GzybEcYTgKuAXYA5gLnSCnfbu4+/soQQvRARVCOAuZpX23LamkUEEX5nErgAyHENFRCS5Y8Z5FFFv+zkGqeffg21nkGeKaJ7z6lwXtISvkL0IStzZa49aYbOHLMOJ564lH22nNPtY8tSKFESsnYccdRtmkTewzZnbvvuZeCggL++eKL7LbbrgRDYS9Sp82kGFYSklEMJ0Iaq0FWqpm2dKzOK71sGBjOLFki5lZJlbE6RCiCsGdEhGG6ZNiwLIjbRV7yij3tayrmkT9/WH12zy3mXZtNDO0da6QjM8LmEmx7HTcS6s+MuIlkPRNPOY71q1dx4VXXc8VNt3HzXfex5JPpFObnZZAwI2HPTqa1KndOu/mCruex1GULqbh3XnYE3Y3Qp5JuFBrDgKBdfc5Q2wvgglPGuhXgWrQu5ZFnp3LvDZeTE1Ylwy1hMOrw4dx49wPc+/gznH/mqepQlsU5l11NcXExPp+PZ/85lb9fPpHF775A9x06QE4BG8rKmfb+J0y88kamz3if6TPe5/SLriQUCtJ/xz7qre+0U0My6gxidA9vZwZOWt69NAPeAE+fWmqoY9YkBk1p5nXyHTAFRjpJq6JCEvGY+k7rF5YrjUl7MyXavnT5EGRKKIwmorJbyBsa5AKodbZcb49dd+GE44/jq6++Arss0ry5cxk0cAAN4RYIcheoyPlr015n3Akn8sSjDyvi3EBaIoVgypNP0a9vP2697Ta++uorevfuxWGHHqrJkYyM3ICamhruvvtuHnzoIc6dOJEHH3xIDcibQLPIsy1buBboAiwAjpRSTt/6Vv89sAcGU4BL2bIM+ADgKecfKaUUQsyzlzvfz5WZnn9zaSLJUs8U76iNlrLIIosssth+nDfxHNasWcspZ5zFwu/nuj62wkp507KGj3g8zltvv81br7/GjbfcCsDfdt6JffbYTZGhVNybOtcS2a648iruvPRMrMoyANL1NUSXLgQgFY1j2MloRsCHP1cR5GRtHYlqFTk1/D7CbVpjoko3Ewwh42r/Vl2NJ/WI1WNE7LLCkSKXSJupmNLQulP3phfJTdRnEis7qqtImpYIqEcgDb9XzCPVwO7TsvAZBh1LW/DaE/cyecrz3PPY08SlQPqDLul21hXxWk9qFc7zLCZ9frfqnaHpeaUZ8MhLOqFsQJ2iJ/E6N9rs7hPbTtQeoIhACGkn6d1ywWms37iJHnsfxtgRwxh16MHstuuu+AzBG1OfZ79hI3h4yjMUFhbw87IV9OnVk+eeuZfSTl0Yd/QoiouLKfGlIZ1CRKtpZSY4YshAlyNfd/G53HDXZKLRGN98N5e+KEvE8Wedz0uvTef+W6/jrBOOttu1QbKn38DSNNN6FFnYEVo1kHHWSGM4RNb0Z0RhneRX9aXM0JIbjubaSiGSMY4cuicP9etLeWUNJS1busc27P4s0gmPMBom0pcZ7Vbry0yCrmuFt5L42lTJeCmMLZIUDxt2CEeNGUub/dsCcOqZZ/Pum6/TqmVmulvD4kDRulruuOsebr3jLm696QaOH3usaquMqQELw7IICLj8kou4/OILOPvc81m5YnkGkdf3/e233zLhzDMZPHgwH33wAf369SWUs3UP7MbLFm2Jp1DEeR7wCrCjEOKqrfxd2cz9/lVwPrBeStlYEsu2rJaaZcXkQEr5mJRyZynlzi1bbk9eZBZZZJFFFo3h9ttuYe3atTzw0MPste9+fPDBlqk3oVCI996ZwcmnncHRo0fzzZczmTb1xS2jiKhIpYN7Hn3yDz33vzLOPeU4ls96h1YtSra98n8Yhfl5vPLo3bz++L3k5uRw/LmX02/vQzj78v9j4Y+Lefrh+xg0oB8njxvD0vnf8vn7b1Fbp6Llhx18IG9/+Cmffzc/4163KCzggpOOYeheu3HMiOHcd8u1XDpxAseOGuGuc8pxYzjluDHsttO/Yyz2x2BT+WZmz5lHOBza9sp/Inbb9W88+cRj7v9777kHo489rsn1P/jwYw4dMYqi0vZ88PEnfPLuW1x0/nnNPt6BQ/fn/UaeCT/++CMTJ07k8COO4NLLLuOJf/yDfv2a5xu/PZpngcqaHrytFVHjqdu2Y99/GoQQ3YCLgaaKCWzLaqkGJWNp+P3WNH1ZZJFFFln8HpASaVkMP+Rg3p7xDqWlpTz++GMcNHR/L7pka5b32WtPpr/6MuNPPZ12bUoZ2KsrIqpNNjplrKvK3EV7D9qRtXO+pESqiOfGuUuoWqFkG6loiuKeXnEjJ9oM4I8oAuMLBZGWRShml4suKMGqUUWjrGQKYVfG8bfZwTuNZBKr3n6FGCZGKIJZ0EJtEwgjHJ11IupJPcwAllbG2ktYRIsESpBpT5ssoxgx7VWlJ/Q525u4lnKZicFxJceI2IWmklEv0p82IGBHwRtMjzuRZhmIgJXGtAtopcrWusWxZCKGrFPnpRePMotaefsJhhDAzgP6svOAvlx7/gTm/riUT778hgcffoyK6hoGD+jHrXdP5udVa7jovHNYvPQXAO568FHyImF+++03qqprWfPxS6TWrUQYJreNPQgjHEGEEnQ/cGeELwCGwaDvLwZg/8G92X9wb/uatci9YXpOHlba03ybnuxCpBNuIiXCaDQS6iYh6pFrPeLvHs+X4X6SDhdy1MmjGTxoEJFQwJXQ6NKHLZxaZNw99wzo0oaGFm+NRaHZMkrsXmNDazx7sHrQgUO56tXrAejbpzePPP4PEskUAbvfrFu/nhf/OZX33/+AL778igfvuYPHH7iHtqWt1IBX09hnHLKha4iV5oB99uaSy69k+uvTGHHEEQAkrTS77rYbp55yCl99+SVdd+io5DeurGXrkefmkufO217lj4EQog+wE9ABmGL7iHYDNkgpfw+Luj1R1ngL7QiE0wMWCCGuYdtWS/NR+mcdg+zlWWSRRRZZ/IEQ6QQm8MpLL4AQbCwro+/AnXj4iSlcc/XVPDT5fo4+8gjXqWin/n247JzTee2Vlzn6gN3c6qcylUT41Ms4tNlzDPp83iI6jrmQBw/fi0O6d2TNzOVYtutKuCjE6i9UHMVKS0xbQ5zfIZ/yn1TdrlQsRV6bXHLbqMlII+DDb7sMpZMpUnW2zpcFhEpUnKagazukHRFN1kUx/X5CbVqr7XMLXf00luU6EIlgGNNxl5HSq9ZpBjJIRga5sHXOznLHkUaaAZf0ZFQe1fWy6aTSH0dt8h3KdYm85c/RSKDf09lqriFGtArqKkjZTk3p8vXE16t2j1fWkKhW5xUq2UhOqYp8W7F616pNWhZmSSlmntKZG5EidhrYj50G9uOSc892XTE2Vddy6dXXMWi3vcjPy6Nrl84MHtifB+68jVkzZzL+7AvBsrDqqkmUqxIT/rwcr/qsP8iqDV4NNlmhzlGEIwj7epXThnSTRHWdt/RpEho9edPwZRJOx/XHcddoxEPZ3tA9hjOIkv4wwkoTCARo06ZNhgWgJNML3BWEGGbjMowGfuVb6I41eKTcdBMDpRCuu4ewUmpApkuInP1qA7E7770fgIsvu5y6+ig/Ll7MsuUrOOiA/bjo3LN4+dkpFOQE1TnafUkKTZZl+jHs/WXIRKwUmAEK8nJ54J67uP3Ouxlx+GEA+A2DSCTCVZdfRusWRZ7evqHrSRNors/zqmbt7XeEECIXpUM+ClXu1Qe8C6wHbgV+RdkZ/buYiioP66A9KtHvIJTV0gK2brU0DZgkhLgUuA/luDEKOPB3OLcsssgiiyy2ArfQhh3hbNWiBf379+PCCy4A4P9uuJFPP/+cybdeh9/vJ7FhJQtmf4UvWY9c+xPJqnK1edDTfy6ZN9edb/SbBkjJOW9+wW3de9G5UpCfo4hJIOInr41yVYhVx5E2qbYSaeLV6mVevylK/aYoNeuUZMAf8ROriLnfOdsECwJEWilSXLlsnXsuqWgKX9hHuEQdJ6e0BF9IRefMUAB/JOx+NgtseYVhIgK2u0dJKYbf1sYGc5DRGk8bHa3z9MWBkCcdtdKIoOaHHNhSBiCDuchADjKijin9WtKZ4QPb7tSor8wk0g5pEgbpumrSFSrKnyzfRNIeSETLq4lXKCJav7GCqmXKzjJUUkBuOyV3DLZtp84zpNpMapFcS0sga5Gfy5QH7kFKycIlP/HkM8/z4BNPIZMJundqx4DePdR5hiOEu3jylDnfzeWD75fy6pfz+WH1Bpwy8PN/XkFpi2JKcwtY8dtGKqqqicWTDO7bm5CpWQgm7Sh+XdJrP50wCwMaFFMB3EGP2/Z6MQ8tgq97QyuCKrj5husZfsRI/vHcS5x04gkYjkuLZlUnzS2P2dD5I/OEtIRHIRAJz6e68aI+afce67alANKf02ghn88/ep+O3Xrx+JSnOPH44zjqiEOJxeKsWfsbY8afysN3/Z3jRg4H7ZoFuIRXmn73GnWNvbBSSKHWOWDXQVywfj2vvfoyR404nF9W/Eo4FKQoEsCsK9d0+VtGsxvDv+TzLIQIAt1Qut4a4GcpZXzrW2037gaGAEOBWYB+F2agiPO/TZ6llPVo9nRCCKdN1kspa9mG1ZKUslIIMRx4EGXsvw44s7k2dbonbEY31LOatb7s0/159RxFbR3P0xG3Q2VED3SvTm06yB15AUKbjsqcdtF+ZNoD1dfaS370tenira51RGdKywro/sye366lmdfHNXsc3Vu3qc8Z3rra6aaTmi+v1gaO/26Gz7N2aUlNBxfXvJir4t7Ok9oG9boZsIYcLZtd91HWLX+c/dQm0o2umxvwIgd5Qe8nGzT17GjvmPq2Ic27O2Dqn7Vz0fpOU17P7rlq7ZXR/YR3jiHTu6eBiOetHCzwjh9q3dM7ZicvZSDDR9Z5yWrLjITXR9EiFzLlRcT0ZCMZ9abRDdPzIm8Kfq1PBzP6qfqs20npfVf3ita6HEmtj+oZxbpfs/77bqr1G9tWz1Funq3//yaMmOo/aWG4SVc1VWrZqp8XEwqGOOLIUeS378Z1553GI89OZXCPHZh09jiSK5cg7Wdg3doycjuUMm/FWva88kGXLOm/8582VtLOV8imWrVNqDpOKqb6Z7w6Tq1NigtaRfBH1LOvNp6CeIq1FarvpqX3m9uc8Pa9aVMdVUsUkd8hx8+Alp6nuZWWJGwyVtgml/z2KsJcv6ke034+CFNQ2Ekx/nQiTahI9dmiXp0I5KvPZjCICEdcKYTwBdzrt+qqXb9+K1aPtK/bX9oBs8hOPtN+H3LTGoyCEs9LP2Fi+XPse1KDrFL7kqkk0o7oC3+AlFMHwKcIj7NvUDIWAJm23Mh71aoqN6KfUx0lXqlIdW5lDXmdql2HEyPXQNomLcJMIZxnspUCfxgB9Ovdi3tvvIpzThpHnz0Pco/76ZcHkO83ePadT9mrXw86FITZ9+qHOGpAd/q1bcEPqz1f+p3HnE0kHCQUCFBe5U1+v3jvTRw1RLkzCMPEsCPiIpjjkkxLI8YinXLfv1Yw15NOWBYiVZuZA+fY+2lFbTB8isCCes9Lya677MwrL7/MhRddxOzv5nD/fffiF17lxoziOfb/3gnZ52j6M7iFhefhbOjPXJ3IW2nXx1wkY95Mg0P8bQmKBVhhFdF31gdo3aKEe++8nSuvvZ4PP/qIXzq0Y5dBA9i1fy9enW4QIY5RV676ki15komY6+Vu5OS5SaVWfQ3CqQdgmK7vf05eCc9OnsS4sy7i8AP2Yczx47HSadav/JnO7dt41pIOD2rRnq1hu8izXQzkOlRUVafnSSHE+8CNUsrvtmefW8Eo4Hwp5SdCfzMrrAI6/U7HyYCUciUN3mFbs1qyv58N/O2POJ9/C800+/5PQK/q9Gcjo3DFnwz9xfxnY1vE+T+JLVwA/kTI4Na1b/9J/NWKpPwVkF6zFABf605YITVYm/+DcsO445abuPfGK/js7+cy8sq7uO7ex3j94uM4cNf+gKRuzTpq13pT8uXVtex505SM/ecFfNTYRZ6eqlrPsJZF1NuDoi+WlBO2B6VhUxC1l5emaiiLq+fv0toExQGT1vbA1xRQaw/IY5Z0B/5h03D3VZe2mL5KDQByfUZGcKBHLE3tz4pAbIinCNijr2jaokNYvZbbhX1u0afi/J8p6KTIdmGnAvI6tibccrW7P4ewCtNwCXN0Y6WbSBdeX05uh9Z2G3tBktSGX6F8PZYduccwPE1yJN8dxFrROpfAiFCOIs0ogmnFY8h6T3Pt6L9lOu1qxvPapEnbAwehjfSTdTHS8Thpu8iSjNW7shsjr9CVQViBsBeVTMUR8Tp6tC3hhZsvYuLtj7K5po4Dz74Wn2mSSqeZMuNzDMvizD5dObVbZ2rzgyzeWIEzPK994SaSqTSLN1TSu3MHvlmygutffI9Tr7iZzReexumjDkGEIy75FyaeLl2zE9Qt40Qq5hJMkYyqiGljpeVFZnluYfdLvRjYfnsN4YMZb3HMuON45KGHOPfsCZmj68Ye88IgaccNDekVDDMNoSK8jiOM4XOj0BbCrSQYiFVhVm/0rsWRcyTj6p7oRNspnpPQAht15ZwzdgRnH3sEQghEXH337ezZ5OeEGNavM4nli7CqyklU2Lr4tEUqFtc+q4GILxRw5U/+khZunzSidezeqZjeXXeg86Dd2bRZ7efgY8Yz+4GryJGO5aSim+EeezTSUB62x+f5FOARVIB0FvA9KikuH6UBHg4cIoQ4U0o5pckdNR9hoLyJ7/KAvw4zzCKLLLLI4k+B0KeBE1GEEFx19inc+tAUHnjqBSoqK7hx+E48deIwxPhhEEu4L+BgYR65XVVKT6JqM9e8+D79O5Xy6AnDOZ1vAVzi7CDUMkSxrSNtD9RvVpGqsniKDfbMVEVNms3aTNLmROb/BXYkNWIarI9v+SrL9Rn0zbet6oSgNmWxsl6Rg8U1cZcwtwiYVNjE0hSCTfYxWgZNcu1Zp1Q0ReVydb2BSABhlrkkOViY65I8koqQOnCJdHk1wULbQs/nacE3z12APxJy1wvkR8DWDAMusRGGQbi1ii77SjuStsm2jNYhUwlXkiHTlkueI21KSEXV9ebv0MbdZ7yyNqNabay8CsOvtjdqKzHybW10IoZhyzlEOOKSv+SaZS7ZH9YyyNI7z2PG90t5fe4SXvtmEdcdugczFi7j9N37M2KnXgDktCnh1cI8juB7AFa98w0AHTqXErBS7NWjAx8+cguzFy1l9BWT+HzuQsYeuAcyEKJ/z650at8W4rau3DARjhY9VutFhANhL8EwWq3kKI5+3afJI6Tl6ZwtvxuUEknNslAYtCou4J5bb2Dk2BP5+JOPuOP2SXTr1jWzCqRzn6Xk56U/8eU3s9mwcQOBYIhxJ55EQUEBJmAkYyRtqYdehTecrHXzBYz6Cqxqde+tVCJzJjBa59kxJmL42qjfmyj0kj9FvM6TYAQiyOpNxOIJzrzyZq4btQ9y1WKq1pZRsXS1K4cKRPwUdG0HgBnwuYMtgGhZhds/HG8H05Y6PX/KUF75qjU7dO3Kefc/y4o1v7F0/gJ2cBJ37f1saeKXieb6PO8EPIaqJniilPLnRtbphorOPiqEmCelnNdwne3EbOBElM65IUYDWy//kkUWWWSRxX8N7BnGv6OKcYWA94EJUspNW9vOkR2s/XUFnfYZBcAZp4zn4Uk3MemBx2jdrgNDr3+cOfddSijgB8PE36G72rZND0SijkU//cJJVz5Efl4urTt2Zvebp7iyje9OPJQPVv7G7V8v5IjO7ejQvQW1G1RkLFwUou1OSgLRI2DS/vNfAZj5a5UrzUg3MltQZUsKqpqQewEstEmCKWC34jClIfU6DxiChD0FsUP3YpJ1iqisX1fLeltCUhTwkdNCrR8qClHcXSUVOiTY0RYL0yCvo4oqy7RFIC/iLjf8ih4kaupIJ9QxEhWVYAdR8zq2xozkupXl0tF60jFPGmf6/e6+HPJk1VS40g9hGOALUOQk5qUSXulqK41Mqn2JYNhNEswzTI+YOdHkHDvJMRHzvovHsJzP9dVudDpdV4PPlonklHYEn58x/XbimNF1pCs2El23gd9q6/n6518Ze5iKPFYsXsW3z8yBOxTRnfbKEgD26LOJjra7Sl7Hdezerz+zn76DSc9MY9Izr5Gbl8f3S36hS6cOPPR/F9K/Z1fSZWtdpxWZSrrnbhSUuIMYI5KHTCYx7Cg6ySj4bZ9r3Z3D9IMtfZCGL9MH3PAxaNAglsz7lgcfn8K+Qw9izOhR9OzZk48/+YQVK1cRyc1jhx06Mm/efKqrq9h7r71o17YNS5ev5M0332TCmWeyZNEPjBo5gr79BwLgx3JnBY26ckTlOrtdq71+UL7O9evGsohuKKN+vSLWqViCoh5q1iOn307utaR/+wWZTLr9ILZuFRMemUbHSJA9Y0lWf/gdsYoYibqkO/uQrE0gTHV8K5Emt51yozFDAVfaU7O2ws0vSEWdGRbBAEAsq2A3M8jeHdtTuLYMo7MapDn9dltobuT5UmANquRqoyVTpZS/CCEOAhYClwFjm7nvpnAN8KEQ4kPgZZTsb7gQ4kIUed7739x/FllkkUUWfx1cAYwAdkXNOk4BngWGbW0jR/Pa1jC44NTjuf/JF3j3vQ/4fOYsKqur2blvb1586WWW1UP/du2UXKBdHwAWLFvNtBee5vHnX+bG8Udw3JAd6T3hFvbs08WtltX3hKPouvxnjt2tHwDJ6joMW2ccKgzjCyvSsuH73yi3X9Stgz5XQrGsLrFVktwYarU8i7SEWeWe1j/XZ7gSEH7e7EahAVf2kbQskjaRTq6rpW6jem236tcK02+Q00pNa4dbFuIvVO0X7L2zazsn0kkVGQVy4jGsmPbaX/qmuvbeg5UG1S74kqGttNIIJ0kxEMKwExmFllQoTX9G2XFSSTcqatVWulIPfJkJbm5iV9VGRH4LL3prGC6BE+mkZ4kXjCC6K1Wl2UA+6JZZj9fhK61m7ZynmT7nJ3bv08WNqL983xe0DHpXtzqqSN6ni8rY0yZk+R3W0xnISaa4/m/dCA3biVDnHliWxQOfLWToSeez6os3iX73jSuTCZUUYIZULzMqytwETSMnDxEMu21uhCKIoK3nTSbcdgVcmQr+sFuTUwrHLi9FOOjnknPP4rjRI3no8SnM/uZrjjh4KDv26k5lVTXLVqzitLGjGbLHHghbzphKW1xx3U1MfeE5NmwsY/KDDzPnq5l06thBtZcrO0l4ZeINk5Sd+ClTSaLrlEY8XllLtKyC9XPU4KW4exG1a+3r9M93E72Svy4lWaMi7+WbKpn47Azq4kkeOmR3gvYgrqBrO6pXriNm5w5s/rnCTcI1Aybrv1fHjFbEWF+nBl6bExZhm2wHDEFZPO3+36dVhNNLla65fk0VHfdWAwQ36XYbaC553ht4tCni7EBKWSuEeAq7gt6/A3MdBDMAACAASURBVCnlTCHEAahIxAMopc4NwNcoEj/73z1GFllkkUUWfxmcgcqbWQ4ghLgM+EUIsYOdi7JVCCG485qL2WPngUy48iYG9u/HipW/cuLES0il00x65jWeu+kiAL6b9z1nnH8Jy1asYvzRI5j+1IMMDkVJ11QQCQVYW15FBJV09N63CyhfuZKpn83lloN2Y6dHXuWKQb05ttsfknaTxZ+EiqoaDnzkNeKpNPee3tB99l+DYRhcdMZ43v/kC8694Q4mDen2u+x3e9GmtDU3XXul5zFtY7+9VHRdalUofT4fd956EwBpDEo7daWm5vdwBd46kuk0T342j7tmzOKgHh15YNT+UFu/7Q3/JDSXPJegkvSag1VA8b92OpmQUs4C9hJChIEioNJ2x/ifgdlEkpbuxmBmeC5qc4C6Z2RjGbRNZNVmlljV9HZaIoJul6MnKGT4PWrG6npCoJ684Dho6I4VuktGMsMZY9v+irojie4SoTtJZC73/nGcSvS21bOHRcx7QGQUA/BpjiSG5vYQ98aSVqzC/Zwu93SBbjINeNOIgM/OdtcLABgtvWScdGFb7zABz7FCTxjz630k6f0sMuyBNNcQ/Pp98e5vym7VlO48ojtGaMt9lnfMeBPJjtGUt36ddt8DWvQtormQ+ILe48LZsrH7Bg3ul+4Oo7lw6M4yQiuzrCfoZDh1aG2kf3b3o9dB0PSCUv/s86JBAa3/B/TiA039jrZW8tZdX7WB/vPXk8jS/+WZhEKIAqAjMMdZJqVcJoSoBvoDK5vaVtrFR6xUArlpPYf3KqX4jqs48fr7+fqN51n00y8cf/6VdMj1k1qzjOAuBzH9yXsYMqAPT145gW61G2D19yQiITZ8+yNrN26mLpmiL2oad8TV9wLQsjCf0JDd4IGpTFm+mrPOOZpvFv/CT0tWsdsObYmYghW2hMKJTv4RqE1Z1NrP8GVNhLPmVwG2tKQ05KNHru128P0GwkUh4tW2JMI0XT2yVVOJsKUS0rLcSKjw+zEs2ylJc7IxbamBE/3Uda6AkmFgO3TY0WNp+FznDbeksxPJNCzXjULmtiTtaNk1CzrdM1kWd/TKR6N+6+57SCvMIjVLNam/S62062stUnGOP/0SjJwcvnjyHtq1bcHLw68AVMLnbzEDhy51jQTstk9QuUn1vXBRiE0LlpG2Nef5HVu5UhMjr5CWkQBPvfIWsYU7sH/bVgwoKaRNj/aESpSuOdK2Vca72KqrRjrR/tYdEU67a5F6I5LvSjVkIOyWRnfbqLHCNGaDxD2n7RJR79lj+t311qxeQ3V1NX3aFmLWlqlEPifanIpjxdVzN7F8EemoagtfcUtyOnZQuwqsJ1FTz7wfVDLhYFMQyFeD0mRdocpeA9ZurOCYSc9SEApw98C+7L5TV6iP4c+LECxUrkbCNMht1xJhqHdquCJG2WL1eUVdkipb+5+U0p25SUsotmeJNifSdAj76ZGn+mJem1wirdW55LUvcmcE/Hohnq2gueR5E80vlNKJphP9mgUhRAhV8nqMlPJ1KWUUiG5jsyyyyCKLLP47YWdHUdVgeaX2HQBCiDPQZjdTtp41tbnMrfA3pEsXrpp4KkeeeSlfff01x779NndP/4xjdtuRnbqs5YBe7Rlz7b0c1zqIb7CyTaxcuprJXy+kIOhnwl4DeV9zRz3j0H2495yxCCHYpWdnzjj6UM544k3e+9pL7XmkpDvzRCUrUzEMTDoQpogAviYMCGtIEcHEaNKg8PfB+ljK1ULnVsboURagS60iuvHqOGk7sa9F/0pCHXdQG2lWa2ZBiSe7aGAJKeMxiKjbIwLhTI9cZ3CXTngFO3TZhO53DEi/VsnOMD2iZ/iwjC2pSobPMbZdpFZJz10uhHsqljbINIRJwg4AfPvdD7z30Sd8//VMevbqiTX7TeZXefdfl9EssyUBYVOQV6CIWPeRg0knU6z8QLm8VCyvdJMfjYCPa4/Yg0Fti7jsqTdZHk+waNY8+rUu4ZKhf6NX62La50cw4uo+BEvagC/gtX9eoasTl4mYK62xdAmML7NdpVZkRVipTCLtDERUg3htqfs/29t++smn9O3VHTOdQJBGpBPIaMzb3ukPhoG/RWv3HF37QP8mAnk57LGfmqX55KOVnDBSaZ1T9TGXPB9221MMbV3COf17EC2Psm72arvtDPwhde7BgiCm3yRht3+8OuES5nZhH8UBb2DhON2UhnwU2NunUxbBvABFXdS5lfRshRlS1xwuyXc1/lbFti1Nofnk+QvgJCHEpK1JN+zCJicDnzdzv41CShkTQmxEFUfJIossssjifxvOtE9Bg+WFKFcnF1LKx1AJ7AghZOUPPwJg+n0Ei+zksVSSk3sVsnjXvhxxwF68cf9NdGlRwJ7XPMLijl3Yp39PRu+7KyOemE6HknwKI2EGtCrmwTmLmX7J8Vz+2uf4NM5+7d96seiHhexy+QP0aF3M6Tc/AMAOJQWsLFd8/8zynzmsR0fGd+3BB18uZVb1ZiplijYEaUOInuQStGd50kheQJH+YbSi4zZz+38f1KYs5lbGXA12u411bgKWMA38K1QCVnHfzvjtKKfl8yNsXbND6EDZyWGYXsRUWu7sjh5hlrpbhG61JgzQ5AIZsy7O9w2X67MxDUtKa/uWDWZ03X9l457pkYiKQD788EM8cNv1zL3z2W3q1KNpyZL1ig6VfLyQDvv2odvhqhjx5sWrbKcHiFfUEPh5NaPyczj6shMJ5OVQG0/Q7+9Pc+2MWayuqCaWStO5TSsuOGYYp/YcqAqNOBFeLXIvfMHM9ttae7kuNKY2G+1dvRAGGHZRGcOn3SPhfh47bhz/fG06o864kGfuu438RHVG2XinnLqvtKOb8Cdy8jH6KDlIpOfORF98jJ7HDQUgGXuX5TOUa0kwPwCqUjanDe7FsMICpCWpWFFJvEoRZDNgEG6h7k3lqmoCuX43ul+3od69R2XxtKv9/y2Wosjv9Q3D7t+JpKS+Ok5urTcAtOxE2I3zlrF5sRJXODZ3nYefxdbQXPI8CfgWeF8IcYKjSdMhhOiMSu5oC9zZzP1uDY8C5wkh3pNS/nFzYFlkkUUWWfypsItN/QoMRtmgIoTogoo6L9jatpVL7SiV30e0XJGZQCRAsCjC7WOHcv1zcfodeSpXHHUAhhCsnvUNVjrNxW2LGH/8MFZJSdqyePOHXxi9ez/26t+Vo9dVMk1Tiry0dBXHDenPBYfsTp+2LYit38zXqzdw/M69eXT2jyzZUM5PZZX8VFZJn+J87j5xfwzTpLw+xsxla3njy5+YGv2N/SihjjR1ZtI1W51FOUsIsg/FBDEbXt4fAid6CpBeoCJt0U1RctuqKfJoeRXFvZUULae0xLMX06oOkkpixeownEJcgZBXLMgwMp0hHAmF4duygptbBa8BWXW212Ub9v/qH5sI6kTZibbKxmVMumRPWGlX7jftlan8bdAALmkfYsNjd/LcBysa3b4hFteoaHHneRso/6WC/PZq8NZ6QDti5Wo8WLd2E9FN6nN+xzDpWIIwsOK60zEDPixLEmxTzIJ6H1c8+Bz/eHcmuw7qx40XnEFxYYGqSqhVzHPPP5VABnLcNnBJtV510Gkfpz10qaX2v2wwKHHkcf5wLtNffJqLL7uC4cdP4NMHr3cHUvU//UjMdrVoMfRg1wM8Nn8m5upF7r6EYfDheapMhj9oUmAX8vlt3gaXPB8YiJCqtxMpC0NEK9XxY9EUy35WTh21KYuAIVhZbzu/aLMIpsiUGjq2kMvqEko3AQwoCFGVTFO2SCU2bvxlMwGbZBd2KsCyZyHqNqrnSedtsNjmlueeK4Q4E3gY+EkIMZMtfZ73tFefKKWc0/ietguFQF9gpRDiI2ADmYNGKaW8/Hc4ThZZZJFFFn8+HgMuF0J8gpL+3Q68t61kwWXvKaJjBgz8th41VhHDDBhU/FzGMcABI/bh+i8XkEil2f+hlwmYBvt2bsemqlp6tGnB8YN6cOueg8jJy6F++TqG9engkufRQwawW5sWFLQs4ZZTRpKoqKTm1w2MHNSTnNJidhnYnZbn3821w4bQE8EFn35H924dGNatA20L8zhtj/4cf9X5PH7Xg1w940vCGETtF3U/8hjmL2ZSchUrqKc7OfQklzaE/nA5B0BFMu1Od9eW1bPZ1kkXrq5xByJ57Yso7K6iqOHWa91trZjSv0rHwzdWh6xTUUkjHHErcGZINQzTI8JmA/phegU4dJ2zDiG1EldO5Ho74Xg+C2nhtxQRa1FYwLfz5vPTPr3ZrWv7DGLWFIoDpkvSVtQlqaiMsd4meh2+/o1DDtgBgGBRlILOKrclnUxR0ltJGH557Us3qmr9uIpdjzmED285l89/3cx9U2fwxMtvcdmE8UhheFF8UyvYJC0v0m74vEGItGwnDE/z7QxYGmtT9YWBk6piSDzbO2nhD4Z44Jrz2HH48Tz87FQmDN0FgEBhLkZAHWPR3x90d9VqUBfCGxVjDXfuwtqZi5lbqQj3+liKgt8U4S7JEWAn5a7+5je3SFcsbbntWpuy3IFeY5aPDrb2nQNHhuOQb8B1UWlRFXclIAU2oT5kG/trdpEUKeUTQogFqAqDQ4F9tK+TwAeoTOmvm7vPbeAovFSdvRo7JeC/njxH9YQqLUlKz8XKKN+b8Y83irSkNk3hPF5Mb/rKSGtlsjV9lJ5clTEy0TVS+mhVW57S0vfiTZXQ1gztncSzpspB64lhYZ/3WW8Xv9SUPFqChZ4k5yS9qOVatldjZcmj3oyw478JXhKSOox3nHT5OvdzQisIEC33pJrJai15T0tkdDRVAKEKe5b6l58Jt1QJc0aZ92ISIe8hGdKmSjOiM1ryiFXnJTtKvV00WyMj30vM8+V5n/1+T+vm9I3GyqoDoGdray8/qZWyrrO8/pJqRpl1PcGwMej9wq/1v2DAm+EPhrzPGcmeTSQPolf30tfRkwC1c2h0qlSfAtXbRegJuY0nA4pGNJwNkVH+tpHvTe13afma5036F8ffUYnhs1Fuwh8Ax29ro7fWbekEEDYFO+QEqJitfq89d2vHMyccwqR3v2bmD8tYUlXD+7+oCNPcsgpeWqBKF1w+fAi3z1AlBByf51e+nM8JO/XgtBsf48WFy7ikRzcmHDgIUEVG8np0Zd0Lf6eg1wDWLP2JTe/M4vTn3mFcny6M7N6B+6ZMZ9avGyjItUtXB0xG/D/2zjvMrqps+7+19z5tztRMJj2ThCRACqEkBAiggB0wIIKKdEVERLFhQbGLUmyvvFioiooCAgJSLCAQugGBJEAIoSQhPdPn1L3X98fa5dlnzkkGiSbv57mvK1fOnLPL2mu3ez3rfu6n2EEHKRpti4XzJzC/0MHNz73KbbktvOCaSPBedgNnNk7gyZ5/X7VNWbxlRlOKRv+527O2j+dWm2djZ8Maxs8zaUxt0zpMqAwovLiM/OaesMiMM3ZyqM31BvpQwbOqe31oO+c1tIbPCuWWTXKbiEpLMqx1pH+uJjsIEUo1ouRDI+GQ71Ptr67x/O3aygo9fc/51KeY1DmRD51zDvf97Ft8YO5Yfrd4LdvC4WPMAMFSivX5ElP9kuxjRzfS41eIbN2lPZRw2OkkyXGGPPev/wubnjf9OuUtU9EDvVjA2+bvyVPr+nlpzVrcxpFDqvMGxFYJ8hzrDq9MpQQmJM3ai/pLPOM9FMETz9NaFCS0SAKWbfOD8z7JJ796Ie8YMO+3Tc9vDvmIk3FCv3En/SqNE4zn8nM3PMzDj68NNfcjknY4MFndF+3l8a4ce7aY48y5Xrj8a/lyjC9sbwTa6I2iUNFr+eGphV9XeW6t9WPAEX5C33RM1LkXWOEn9W03aK2Hm6BYRw1U6r52JEo7kRtAzG1kByMgzjsDYkkndYSo9oKqY/tDa+0Cn/P/vSEE+seAGK75x1osW3FWewdnv30Mhd4Cedfl+S29bMkXGXDLLMsPkF5jNJyNdjQw2XNEC0f95Ibw710yDaz1fWtbd+skMWUmHUrhjp/FmPYp/PbyS8m88Ch/uOMhzn/gSXKFEne9+xDsWZ2ceNkfWN87wB9Zz4JdxnP5gXNomTqOycDh55/ElieX8lp3P/N/9Fv+6Q7yTEeJA50Mj2zJDSu69kawvL/AjKaoqmFQpGVVrsTsh1cDMGF1b0ieu559BWVbJJv9BCvLDskz5SJ2u3ErUU4iLNVtWX1oNygpnTT3lkhskw4ZYYRaRTF4bVnRALeyVHUFmQykG1opgliMhwrJWMnTFH3NrKUsjj7u/by07CnOuex6fn3SAbD4pqr9FBDmRMoOI8ebVvWSsaMZhXxXPkxM27RsfViwZuqx+zP4wvNmme486VbTX6Pnz8TuMNXy/rT4WX7486u48dqrTH9oL17eWhDhKIofBUmqlvUWg4poQ9EAw/N0GCyQrMFRmCCJk2LMmLFs7OnjhYdeJW3ZbO7KM2as6Yvmic2sXGYKBLVMaiHZZPpl/H67cGhzivV3rAAMMQ6uMYB7/f/XF8qs6I/ey+Mz0fHmfe7QlrBjcqMxaSck2TsCr4s8B9Ba54FntnNbdiiUUm8Fvo2RiuSB67XWZ/m/nYyJuI/FHPdZUpqilJoHXOavuxb4mtb61//ZI6ijjjrq+O9FS8Ki2YlI7/iMEysgsvkFM7OUHd3AiGnttAAjxzab4go2LCg14G52uX3CHrzYl+dyf70TSiM5YGILxx46m8mtTZQG8qx6cBUbS0Xe9MnvA9/nfZMmsPsBs8hO34tPfuQUnMPfytsP+gtTTj4P11KMKCnG2A53fWgh9/fn+d2jS5k+cRyTj3pzWJRBpTK0H5ClHfjnLhM4/4qbuW7FKs4+/h0kb13Os32GOFgQluTObUdG7WrC8t4SPSUvLNKyv4aANqx6YAWJxkRoMTqqtTU6lmR75BBRLqL9mTHlumHBDyuRQpUKoS2qtpMRSZYFVJx0NPspLOiU9gyRriDQENdGS/2zpd3we1tFyWSup1Fa88nPn8f1hxzGTVs0l/z6QwBcc9ZvwoEEwBq/MMp4oLXZkNaRE5tJZhO86OtpPa1ZvdxElcdOaQ3JszNqAuVeE9EfuVt7SL6d5hbwXG598Ak+9dPfc9OvrmD+/vv5neFFs2aeG86U6UQmlL7EwmTa8902/G+1jkf0pb65yuWjiWb7VHHQ7Ft77D1zOpMyaX66ci27qixFT/N+X+M9/qCZJP2oe8fe08OIfsP+8+nYr5uP7WaSBBMNaXpfNhH91Y+sAcyxeI4byiUmt6bwXE1JezxZ7uPt2TYspRg/fywzF69ji28D2ZKwaRgRJdq+4s9ArcmVhx09fiMYbnnuMcDfgT9orb+8leUuAN4DvElrvfGNNEwpdda2ltFaX/ZG9iH2dQhwI3A6cBvmWpzp/3YQRuv9HuA+4BzgDqXUdK11r+9PeicmSfJgTEGZm5VSL2qtH94e7aujjjrqqOM/h7QgGBllc/zYUYzIZrjzhVW02zblYoGTVy5lVqKBOePbaUsmuOyORWzqvZsPvnchYzraeWndJjZ09zGxvYXb1qzl9H0m057NcPqCvTjz1A8AUF73atX9Tx/XwZWnHgHA5qXDS16r440jkUhwzZWXc+DBb2bO+R9ij0ljtr3SdsItDyzmo9+/ijt/eSnz5u3NzjNXa/DrW+5kU77AvjRte+HXiVyFzERrzY+2rOa+XA85PN7TOHK77/ONYriR508CIzEJHFvDhcBHgLMxkdo3gku38ltwXW0X8gx8F/iZ1vpG8d0T/v8fAW7SWv8ZQCl1Meb43gP8EjgG40F9kdZaA39RSt2M8SGtk+c66qijjn8jDu0w0btxU9sYO9dMfTvZDG6+wOAGE+Vziy6O7/c6YkYntp/oNLihm1knTgage8Ua+lYbbWpucVToaElvgQ3L1vK9xx9Ba2hvSLF+MM9cp4lD9EiO6TQlfv/Y1cO73rIvI9pH4raMpad5LNMnTeCM97ydc390FYPTxvGtk48kMWkG3qQ5pp2zk1gDJkLpNo+hbJlIZsIt0NZv4k/tfRuYcOjfuPbrl1P2NF+bNDXUl254uSeUCqzJlXl5sIRG46Jx2LbcaEzaodkxy70m/KBr4ZEtOQJz3r8/sY4DprXROMrkfqxb9ATBa3PM/nuQ2GUWYFw4gtwLr687yiexLKxMFtXoR6vtIl7SL4ihvUhp4BahHBRSiZwnwmh0rNCXHzElnrMQRaGjhEOHyO7OVoqy1jiWw+4zZ3P6sUdw9m/+xmXf+BzHf2chLe89g73/fAwQJZ51NjVz36OvAbDfriMY3JRj6ixTcMZO2hR9GYJb8ti41CTQjXtqMX2rNvjHq0JbNCybe55ZwRdOPZb5c/fB89yo8JPQKUMk0ZCSFy2t5oZY/kXWc5USNGnhVw3aSaGTDbhWgm/+5Ep+svDNcI/JFdjruFmMO9SUPU9Om0PTHGPTl5g4ncKzpgC0yjaTaB/L6GB/Dc3kNt4NwIT9xwNmYDilPUWH7zQzMCLBH7as575cD0dPHMcNr63nxKmdjJw9kYZRjWTHmuvFTicpD5hzkRnVymTfdWfjsvXc/bCRVVW7nsf4z4HRKSfUX28qlkNZ1HCSRWH45PlwjIyhd2sLaa17lFK/xxiQvCHyrMNsgQhKqVbgHZhEwePfyPbFNrPAfOBupdQTmCpXS4DPaa3/AewJXCPapZVST/rf4///hE+cAzwBnLQ92ldHHXXUUUdtzH3f7PBzkJRrJxwSDWkaxxsy4xbLtE43Vlr26M6w+l2rk8T2E3JbZr9KfrV5AbfPXIXvmMei7GaW9vfzNmcEb3LamDuznRWDA+zS0ECzk2DPM98OwKWb386FV9/A3m9+O2d+9KNsXPIYe02dwDknHcu+u03m+K/+mPO/8kWsafvS5Zlp7cGSx/hmE90sWckweXZdwSaTNlVGR2sP7XrsOWE0F/x9Md965wImjjSka+RL64zsBFCv9fFIqYc/ljYyRaU5OWUGEvuObKDHJxGPd+VoSdikhZwlIAuNjkXGlzHYSoXuA7WkIb1ll8de7GI/f53WSQUaRhnyO7h+E40t0QAkSIBWdqSLtrLNhvj2+zXVLBvLD2pqJx3X8waWaoikXkmkA1i+K0UFSQwrdIokOaV15LyhLCxFmOT4ve9ewC+u+RXHfvJ8OhuTfCwxEXw5dzBYs5M2e/n656axjTSOa6LsSwrckkeTrwdONmfYssKQ543/fAHPl8Z0rexm5Gy/qqzn0tvTTdvkMdC/GQtwm6NKd0FCctUiM1RxIan4varmWUBa+Gkt5ByWjXZS/POVjSjH4ajPnk35/Sa5VrsupW6TI5BqHglT5gFQLg6SmmEcObSTQm9ZS3JXk2Dbt+jPjJq7O1prHu+DgDy/95i5ZLXmjDsf4tGnN3D4tIk8csqRnHbLffS5LmP2Go2TTYeDXoBMewvlrC8Ncj3GHmgGpK27dtHgy2EKvQUGN+X8Q1F0v9pL22Rz7yQbk8ZrGt9D2peduFWkS9UwXPI8jeFHeZ8GTh3msq8LWutu4Pe+VOLnwCHbYbNtGBnZR4B3Ac9hElbuUErtihlmb63q1bZ+j0FWx+rs7OTp9VHNmentkX4n64hpwxoRBDlAktw90CvpmCF6dKodp4aThrixPOHkURTWH7KCdqEcXWSlGqWdw93UKKUtXTUyomSznY/GaSonKrLXKk/u1YiYSK/RICFOPnBFWWXVJKaGRAKGJbZhiYdvQkQ8GoVjQ7WyqEO+D5aXEYVYlSjRYVKzV+wX24j2b3WIxZPbLrjgyraIql7VIBMsY+VdZelrUR67qUbZ9kI6mu7LiQIEMReO0JFFZMrLcy7KgyOcasriAnOsKCElIfrUEo4gslR37NqRzhvu1qNw8VL1Ncpt11x56wUYKhG2UV7PiGt0yBr/Pcmfrbv6pYATCTKTjJMBlm3ImO/yYLePQaXMC1XbSVHAIx2eR2fsNLLtzwKQnjARNhryvHSgn/2SzXykZTRKKTLa4t1HmippY97yJuw9DwPg3bkejjx4Pn99eDE/+N2fWPXSSn77lY+hB3rYb7cpTJk4nmtuuYuPnzGOEb47TGtDWyzqVw5dIaA55RcpUW00HLyQ8xIORx9+ACM39tC9wkQ8E9kURT8K/Ux5wBDnVIYf778Xo9MBsdBM9b11Z2waRNmKXJe5d72iFxKI/g2DDPjvozX9RQ7axVSye2hlV1UNaca2mN2SJu9vK9ecIt1m9unmi5Q3G/JspRvAt7BzB/qxs4ZUOqMmYDU0hWW9VTKNsgwZU5nm8Nmh3GLoWqPKhdBL2pQGp+Ke8OGkIvJtObHkwVADXe394X/nJJKcfczbOOPIQ7j1L3/nC9+8gKYLzEN24RVnArD+wcWMnDMVgN6X1pId2045Z7TR3S+s4pV7TTmMxnGNITHreaUn9BMevccoel8yfZTzNH9+7Gm+eOSB5J95mNTM+Vip6HkVDhICPXNlu2EoWdZDDQOkRlwDSjw5YqXL5evHTtLQMZ7NW7p5zWph3AFHhwsl/G25ysL2Z1AQlR/77v49qXHjwwFTw4w5vEYD53zz+zy3YiXJr5uB69T5M+nLtvLA5Tez+daf0vfwY7iexxbtce/5H2b8lHEU+wbY8Mw6klmzn5YNXfSvjWaWxuy7CwCZjlZG7GoGnm6pTMF3tup5tZvOCU3hgCXd3kwia96VdjpJl18kJb+5ks5Vx3DJ85BZkK1AU91ZaXviJWDedtpW4HN0tdb6aQCl1HeBc4EF/u/Vql69KNafXOX3qlF6WR1r3rx5O5usqY466qjj/xQadzXltWVJaauhCdU8MkpGsxzchD+oTKRjRSe0GDy+olez+Kkl3POXP8O7zde3nnwErcu7sPxB/7j9J9M+y5hB2S3tqJIZ3HvpJsi08Jb3TOewY0+KLBNXLcX2PM77+Gl87Cvf47rbatYJxAAAIABJREFU/8LlF32dmdOnYhUHQjKYaGjD9oMcLSmLVN4kOP72pz9i8dLlfP0Db2ePPcdSWPUSSf+lr2yLOaeZSfHpPf1Mf/g5dmtpwu4v0zF7fNhHCT9Clx3j0b7HNMqDZrBb6O4jM8qQ5BduWET/a2Zw7mp4YY15Ne7RkgqTuVblokFnf9mjt+TS3miIYaYtTXaMmVJv2WsvHN89QhZWcbs2oHN+wMiyKK9/NSzAEvwOYJeLKL8MtU5m4g4S/sBXAQiHDhxRknqYg9PAbtVR8XV0MoM7aho2cMxJu3DEMcdxwCIzmZyY+zYAxu+/EOUXA7FbXsbpGI81xhxL4p4/sOEZkxjXOCpLwU84HFg/wKg9DAkf/+Y9WfuwKed91W0P0plM4d33DBumjWZMUxvJlH+OkxnwryWdzOJljUOTl26uLtXwXTjCr2RQROs4O5MDiLDmjBVje1opdtllKh/+8Ol8/GsXcdPVPzXH3LeB8kum/cw/KrS3Uy89gedLc1JjxmA1tmK3mWN+rk9xwDuP5lOnfYDrLvwi+z3zecAQ1lF7zGdkawtPP7+CmaNauf2pF5jY3sJ026bv1fU0Tuhg0mEzWPcPMyjpemkLjaPMAMNK2jEr2ABNE0eFA5wJloWbL1IaMNe+nUyg/KCH0z6GkfNMcKfU1TVkO9UwXPL8KqFBzTaxF7BqmMu+biilxgKfJYj3v0H4UpOXqT440MBTmKpXwf4V5hgDH5unMPpnib397+uoo4466vg3IqhshmVFvuaZZn/KOfItDyORbjFOrpwUv7z213znOxcwONjPvDmzWLD3bB7BJPNNKWsSe4xmhF/cIpHN0PeqkUokRm0gMcrsX6eaQjKi3FIYFdSde2APbOadb5vKC4e+mTPOu4B93vV+7rnpN+y/79xoZslzSfkzYYWyF/ohD5Y1l173Ry697o/89eJzOXDmFJIdZkq/sG4djk+MW50Ex+9jBhKlvsGQJDjpVPgZoGflajzff7+pc3QYmWudNpp+P/L84tJNTGsxpL5hZAbbL0Mt3UveMr6JgVw5jKr2rx+gY09DKUrrVoXRxsTE6WG/WOksqs20XZeKWI2toY1def0q7Ha/mEhfd+hjbpVy6IyZyPWSjdG588omIh0EZcs+8YNY9TzllfH8GUPLLYVt0XYymuGqLG7opFFWOdxWqikioKpkiGz/n64l3TnZ9PF+78Ya2BJGy1MTpzDt3aZfs+NGsfYhQwdSzSkaxhrym2xvp/Nt+/HEi6u59Fd/4uKWyax69DWWP7Sag5oa6PAJp9XYGurE7XYbK28io1pZ0cxplaIy4fUn+mLI7OJWyLdcRimLL5/3Jebtuy9XXf9HTjvlZFT36nBgpJbeGy5eXvsSVrMZRCV33dtIc/yBkNO3lv6BQd533LGkfWcWgJZ95vKdy66mKZNir9mzYM1KfvHAP/nE4QvCZfpXbyTV1sjY/aaZfh3bTpevc9ZidryhcyJNe5qZIS83gPbLiZe6unCam3Ea/EG0k4jcYbLNeP5McqJjNMPBcMnz3cBpSqkLtNZrai2klBqPMbW/epjbrQml1EaGEtokRiaRxyTqbS9cBpyjlLoOWA58xt/HQ5jI8l1KqV8CD2CSJ9PAzf66NwMXKaXOBX6Mcdw4BnjbdmxfHXXUUUcdVaBG+hFWzwujvdpJ4CUaIo2r7YT+wngeeMXwe/K9fPRjZzFrt+k8ccNPaW1uRBfyXP/0gwCM2W93lGXhZPwIcXMzCd/H1hk7OYp2FgdiBSy8jD9h6ZbNZ6+MnXS44pJvUS6XedPC9/PcYw8webeZflsS+EoNkikbyqa9HznrEyxYsD/Hn/lZ1tmNsUit9FZWloXyo5XuimW0zD/AHG7PZlK+VVxh0xZSSYeBtWbqW5JqO+Ew8U2GmDgZhzV+klsD0NppyGtHNgGYBMHMyAbc1/pp9SUh045ZEA4qCt192CnfSaRcxA4Ic7kUBj6VbYOTDMmz3T4Gy9dGu10b8ALynG2K1rGcmPxOlfORBMtzIxJoO+hEQ9hHVrCMW6rQCgfhVsuQ8VAvLGQMdoJy76ZwnfJKUy2+YcYc7Im7m+8yLWxOtjNywPhh222jaJpltPj9zy2j6wWT/Dluwa4Usmn+tnQlt377Fzz96npe3dTNj08+nLdkzHE9csNSVi9aHlbva521W+gBXXp1eThAtDtnmOgzoIXEIziemB48qALpVMj1alRxDKGj8inpVJKrrrySk045lfeeeBr26Dm0+JIbd/NaCi8uM+1KpaL95QZQmSyqYGY0pk8az9gxY/jb40uZuu/Z0T5TaTZ09fLeN88nnW1gWc5l5aYeDkin6VtlrqmWqeMZXLuFRLM5r+VcgVHz9zD90t1NarwZxKpkGl3wo8st7Wh/NsoZPxWdH4y8yP2EVfPZxhll5F+6NLyiRMMlzxcDpwH3KKU+rLVeVLmAUupA4Er/z21UBR8W/peh5DkPrAbu0lpv3g77CHAJhpTfgyHGTwLv0lr3AIt827zLiXyeDw+SJ7XW3Uqpw/32fhPj83xm3aaujjrq+G+BUuo7wAeBdsxz+n7gM1rrV/3ft+WV/zHg45iEbRcji7tYa/37be07LFGcaoBU5NYgo3HaLVfVh2rtkcubl+XvrvwpLYm8kRWIio3a9UhkM6QmGtKqnATOKJ+wN7ZHOQYyf0FZUU6AsmKRb6Usfvk/FzFvzmwOeudCrr7sR7zjsEMisg1YIp9AJxuYNWcfnln0F/PbYFe4L6eYDyuKen3d4JOG1KRpYTVSu2M8Km20xOlMFj3QS1OnEx6b9pdrnjKWQrch2VMP34uOmUZ2sHHZ+lCyUs5FfThmr9GUdxvBtBOONNvyvNDEzM40hHkAXn83KmtIntXQFBIr1dAC2jOJg4A30IvyyUwiOzXUQutCPoywytwKk0gocjBkZT3PDfNWtGXHHTmC6GvgE+2fo5hm2HNjwt9lK6PJ9KC9a2/5I+NPMdeB3beBtmx7KMHJzzgM556rACgN5GkcZ3rmlqUrOf+2+9l38jiO2Gd3vnn82+lozqLWd5HbaOQCe79jFzYu20S/PxBx0kmyftVcu20U2s91UaUctj8o0MX+yIXDb0NYuTHZEEXhK4hxLG9DaqFlgqFPoAH2mLk7mzdvoqe3l0SmkewE3zUm20rKv450IRcWyClvXIMu5rFb2rnj4Sf46Z8WsXbdOvbfdy62F0mA7JZ2jjlgD0656GpaW5q45d5HOOWdBzN61hQS7SYXqf/Fl0J3DdN8LyS/SdtG5wfCcxcMyLz8oLnmAK9cwmkfE97bViZbvXpyJsqZ2RqGRZ611muUUu8FbgDu82UOT2N0vU3AHGAK0A8cp7VePay9b32fX3+j23gd+9LAV/1/1X7/FfCrraz/OMaxo4466qjjvxHXYuw6e5RSDZiCU78DFgzDK/94DLE+CngME8CYB2w783U7IJc3L9rPnv9N/nTx5/8TuwTgE6efzMQJ4/n2xYY817HzYumzzyHyc/8ldBeKfObGv/HnTx/PjLEjSWQzoeRmqzZmOxEaGhpYcODB3HHbrRz1vg++rnXf84WL+fTpJ/Lb635HY2PjkN8PnDWN7374GP6+9CVOP/IQ3nfofrD+DVPJfxuGXWFQa/1XpdQcjE3cUf6/AGuAn2Eenq9sj4YpYw9ha60L4ru3Y4qX3K+1fqLmynXUUUcddfzHoLV+TvypMCpSP5Nvm175CzDP9Ef95XMYidywELiiKLcfLd1zMJFlAJIZtO1P12ov1K0qoL2lmYP2n8+YUR1YvgayvDFSJzbvMQeVyoQRLJVthqyZCtZOOtLQOtF0NUpFbQlkHb6kRJXzYVR43pxZLHt+Od0bXqNltIUS7fd8zbO2Eyg7gdVvpAM6mQE/KmuPHBdNM3suXlDJz7IjBxjPC6f6lWWZCnLNJsptNbaG0Te3a0MoRzHdFETtPZQfeTZJWSaK3dDRRnb8yHCficm7h0mCulwMvwdwg/7sGB+23UlnjdtJqTtsZ5hMmEhE0dJMNrQW1LkBVJvRRVuFAdxsexghtgp9USIo4txLqYadGGJjFy5jJ2LnL9SiK8U99z8AbzV/dj90HwDFvoEwwdFJpMyMgI9MKUdui5Fq5DZ0oV2PFzf30pRKsPdsk8Bmp1JhpB3Whjr0dFuW5glFel4x20s0R5KM9EB/eO70mE5UYN0m5TBu5JdtvrCi47Ko7QYkEyZl4mXFjMpZHzuTj535UWbtMQd7ppGmjGoei93pz6wUIkcovWqAwVdXsWm0JpNKcv5JC2lSBRgo4CWisbF2XezWkXxg4Tt4/7tK4flmym5YWXPfNQLZcQOU+s01YqeTuD1GgOB0jA+vVzwXL7iOGAjvW6d9jJml8a3odCIJ+MmnqQZUKed3w/CSTZWuVp9xOCsq1YSxY+vVWvdta/l/Yft/AHq01h/y//4k8COgACYJVmt9+/be738S8+bN01+/9k/h3zWt6oSFW9KOppK2aVUn9jWkXn3wvZjKHJZVnbiuCmX5/fCt6lKv16quuH2t6mLL1lgvZgcktyGs6uRUoNrBVnWxtg/Dqk6/Dqu62HrSqk5Y2MXOSy2ruuS/ZlUnu0J+Ly6XmE+pY8llos+Wlufr32hVV+k9G64QT8LZFqpaUsWuRREKqzh3qWwTSqnFWuvt5Uq0TSilPoiJMDcDZYxs4ydKqX8C12itfySW/SPwotb6M0qp4zCR60uAe4HFvi3pcPapZ18ze9sL1lFHHXW8Tiw5dQlaV/H8Y/jluRds4/ch32mtHxpW62pjf8z0XoBzge9rrc9VSl0GfBn4P02eAQ6aGBGKnkL0YnTs6mRA9rQkBpJIW1U8ciWfLYk/8m700pVkOFeOyIVbY4CVsquTlKxdnRAHx2EJ4oL8LLhYnPQKkiAIQ2zkKshDWXRGSRAz+X3e/15SGEnAJGTfSsImBzLyHpD7satvMjbAcP3l5XhXtislBlJykFRtG5VtqUUwaw28gnWrDcYAHNHK0IoLP5oWtL0wUHWZlDinSXHuELzPcyK9WbXLzpMDCaWqfh8j4+Kz9BdHeEFrFV1TdiKK8kiibr2OYrkxv1QxwLJKUq8pNLW1yLYk2G6VwZTYT9Vo2n8YWuvfAr9VSo0BPozRNsM2vPC11jcopXLAhzBR6pFKqfuBT2itl1TuR3rl11FHHXXsCAxXtrGI6lZu1RAkZ247jLV1tAPrAJRSewDjMNIQMNrrE97g9v+/Ry3SuyPg1CCmOwL5GhWzdgTcYZYC/U+g2iB4R2EnunRfF3H+t2Nn6pga0FqvU0pdDqxUSnWyba98/FnE2wGUUrtjHJBuV0pNqajeGvPKV0rpfx7ya/N9Ih0V0HCSKLdcfXbAq5ix8jf/+a99h+eXP89tV1+KLua457GnWL9hA9lMhl/dfAd/XfQI8/aczdQpk9lv7t5M7pzIxi3dPPL4Yi694hp++oOL2LB5C9f+7nqWPv5gFAAIErf8/618L3gud/z1Xk47+7Nc/4Ovcuj8vUwCXTDYtBPxWSnLCQu7yJkNnchEA1TtobrX+sfookv+lHQma7yCAa9nEyqREI4DUaKVdt0wGS5MvsJ3L/ATsIIZDq/PTAzocjHcj7txTeizrZxE6Pzh9XXF9hdWCxzsNUlfgRwmkQyt6lSqAV0YDPePSIr0Bs1Et9XQhEqlURmzvk5mcBv9alHCSUKVi/HKfKJPZSGVGERJ64GBASZNnc4Lzz9He8Kl/OAfAMivXU//GiPN6F+zkYH1A6zs7mdkKkl7RyNN49v4/ZIX+Z9Hl/Lrjx/L3CnjSLY0YfnOI3hu5JSSSpvESKC4eiXlgTzrFxslVNuuE8My3k5DOnIuKeZRIrE1TKpMpkl07oZO+AEC140ltYYDd2WFganYrKdlR/dNtUG532d33nUXx7z3WAYHBuju7eXBhx9h06ZNJLwyK55bwj33P8jgQD9XX/gV9t7NFDChXDTXOSaAoJN+4SLpgCJn/8rF2PWty6XQSSO0pQza7BfiGTKDGtz35ZL5LbiWivnwOrayTaHTS7C+s/c7UafWficOlzyfNszltifWY4qPLALeCbyitQ4ethmGODPWUUcdddSxk8ABspigx7a88mPQWj+nlPohcCumAuyWre0ofLlK6YzWoFS8HkQwn2NZQiddConT8hUruPPeRRz/iS9y74OPMm5UB7tNm8JgLsfkzomsffLvNGQy5kUvXvbvO/pIjn/vURz4rsju/9pf/5aTTvQTqpQFwltapxrp2ryBMz/3ZW664se8aS9jd0alG0hgu+d54LlYaaNj9ZIZdKIBrTWpUZOYN2cmt175E0a3NYbOGzjJSNZVLuKFhCOBLpXCctlAROAAr6HN7yInIv/KQgf6ZcsQ7ECHWt6wJiQbicm7hwMTXcyH58PuGB86Z3h93dhtvl48aEvCr/ZYyIcaYquhOTqflh0Ws8BJhGQ7OE6v369K2JLE7jUOFW62PfI5TjZEfet5saqyIQJtbxBA0Bp8N4if/fznvPWww2hraUaXcqT2ONA0q/UF3JJJvSr2mcHG5xY9wqq+QcY1NjByRBM9gwVuOfcE5uxhzrFqaI68hZ1EvLpi8H0qjdO1kc6RI/w2u6HO1yuVUT7hU6l0dCxCQuf1d+N1rQ/1+9LFBbcY3hNaekO7ZfAHGFp7oV92jEjjSxj9dd68YH8AJk2aRC6fZ6895zBu7FgKhQJjRnXwpc9/jnccchAJrwj+zKQqDKB9xxTllCPnFcuOJIF2Ml4Uxx/cquIAKpmJBgyeG+nycwOho4tZzXcO8e8d8KO/nhfeI1ZDRJi9/ACu36+2PwDcFobrtvHLYW1t++IG4EKl1J4Y8n6p+G1v4IUd0KY66qijjjoElHnTngVcr7XeoJSaAPwEeBl4DmPzWdMrXyn1IUx0+l6t9SZ//TOBZVrrrRJniLTfMY24WzSkT0TQAgmNTmYiKZgoJfzHay9n8dPLeP7FlXzxnLOYM31SlLTmltG2Y17Ayor2ZdmgNfvuvScrHr+f62+9k5/84kpO/+RnGdHRwRHveJuJ9CkrjKip4iDfvfASDn/LIRx04IHoIKdjoCvaH4RFUrD9SG1AhkX08JJvfoXPffXbjNv3LSy6/gpm7jqVxoYMti6H66lkGuUvr+0kOAm8gJx45SGRcbNclDynSrkwogx+lDJrjj8xIS2Ss6JooC4JDZ7nYTUZUm63tOP5EUKVTEcRaUAJz2cvPxAjydqXeVkQEk4815Ck5pHRcn4kU5ahxitH+QvaixJ3kg3xHBa/b/2VQMPzy5dz0SU/4P6/3mVKg1uOqSQJ2G0dYXXLVGsTvS+t5aFvfpSJn/4hB++9G6cf8072mzGNzMjRke2eILnac1Fpv722HUZkbSdpEjlFApzlJ1zqYp7SZpM4mh43uWqeinISsRkFy3PRvoWjtqNBkSTCaB3OrynTCH/5pCHSVWYls42N5Ls2sHTZs0ybugvpdJSQG5B5pT28ZBOqnPLb4qGC601ZUS5HKQf+Oa4sUR1FzZXJVQnWT2VRgUSwdVTVvBASmTARkAa/+mg4kIqufSXW17nhpfAN221jB+CLGAeXfTFJKBeI3+YC2/T/rKOOOuqo4z+Cw4GvKqWyGD3z34G3aq3LbMMrH+jCEOrLfJu7YP0jh7Pj6AUcRTu1smL5ESgVkcFiLvaiVUS6/Ll77M7cPXY3L2DtRaTLc7HCEsmZSDpRjryFJ40dyblnnMC5Z5zA7fc+xOkfP4eD9p/PrJkzueCSH3LYwQfSOXE8N9xyO4O5HA/cfoOZuvajvSrZECZHa8+NSLPlGNKbjiJuQZW5T518LI89/g+uv+0uDnrf6QBc/NXP8+lT348KJCx2IoreuUXTFzKnxO8Lyy1GBNqKIn460xwj1qpchCCh3EmhUn70b6A3IrZEJFc5iXCq3co2Y/kkRrlF4xQSDGpKxZCkewO9EXksF8EvAqKTWXSD79NbzKHz/SHpQntR7oVXjhWsiSrpRRFlle+LpGrKMsQyOE7toZ00v7/xZmbOnMluu88IyWUYne+wSCSSPPr0Ml5+uYe+coolDy9nRHMjZ59xGgsO2C/aliD8EoFUA9uOzTwo247EYp4bRZH7uklPGzVkfZWKpC06X4KkFw5ELCcZLyQTXO9S8qEsVFlINVR0H2mRh4IlZl0sB7TL7Bm7xmQyKCscxAQJ2MFgVc4ImB9E/ka1BHyxXXN+rGhGxXXDQRVax6U3Aaku5sWgICgL799XiUxMBhceZ+PwPAl3WvLsP3S/WeO37VldsI466qijjn8R2niCHb6NZWp65Wutbyaq2PovQ7klNIYQKK9k7LsCAiqItLacyIqrslR3QNikBIS4I4sqFUKrO1Mi2Schwv3m3Yfsz2O3X8ejTzzNk8++wCc/cirr1q8nm3JYdOt1zJ4+GaWUKQmsdLitYLpZlXKhxjmIosbaXC5RLpe586/3cv1td3HA3D1Jp1L84+mlLHzLwYZ8BFE1mZStPUNkBNGRrjmqnIv2H0Qr5bR9qRBFACFO+FJRFFmXSign+j7QJSPLYyczZoATlu6OZgHsVEOsjVGE1AvPsZdpgXRTSOZUvi88f1ZpAG37xM12ooIpghjKoirGZtDDmMQE/ZJnsL+X6ZMnGp06xAje5q4eUolGTvj8BaxZt54Tjz6cXXaZxn23fozdp+0S05WGfey5MZ21lQos+OLRTl0qRWRYDEhi2lzAs3zyXS5F16yTMHpoP6qvB3pDC0Ar2wQBSSzmIsKZSEWRV2WF145VzkNpMLp/KnT4YRTbK0fkU/axjG4Hxx8McOTgtqJ4S+xz5f3p39OyoihuKR6F96PVMWkKQLkQ9aedjB2PkoPjYWCnJc9KqVFAVmv9kv+3wmRizwT+prW+bUe2r4466qijjjpqYdKEcUyaMI7j3rOQdx3/Yf56/4M0NzXyv1f/lr7lj5FJD01iGy48z+OkT32ZG/70ZwAeXvwUc2bsyksP3klrS7OZBq/jDeOGm/7IqR98H1rrIQnVMw9+B1u6jE728dt+wz4zd8WrLJNdx/+32GnJM3ANsAIznQfwDeA8/7uzlVKna62v2TFNq6OOOuqoY2eA50eKVLkUTcMGRUL8SKQikiRUlunWMhIZFpOI1g2Xi0kX/OiZkw6LfuAk4sUlgjLKXp5vfuZM/rlkGePHjmbp8ytI+klyVqE/muJGRHmddBTdthNgm/YNDua462/38uPLf8nqtesAmLXrVC75ymdYsP98k9AIKNcxkgaIuVXgpCqmzb0wUctECSOpRtj+UiGaxndMmXEdWD26jukDMBHpIBLoFEKphi6V0K7vapDJQs7XPKcahrpciKhsGAm1k5F+u5jDyvf5bUmH2vbwWIJ2Wk4YiVXaC6UpJtqoomWEbMOcs+ic9w4MsmbtWr7z/R/zqY+dTkuzSUhTbhGtdUic/3H3jew1fYqRjQTlw51ETLMcRj+lvSeFSOPulyo3TbFMkRg/wm61doSWrlJfTrkUJc9ZdvhZey5K6sWLeVM0J/w7F+3Hv8YstxjJXJRFUDwkKBajvLx/LpxYVFkLmYsqDoR9GYsqCyipP3fLMQec2HUo7z3pkuO5kQSpnI9LgwJHGOliYifiMxh2IlQcaenIIqU9ItK/NezM5HkfIjsiC/gYcJ7W+iKl1DeAT2EI9v9ppC3hp5sRF7hYRnoVx+26q3v75ny/5kFRiELa1uXL0ed1/dHNvK4v+jxYiqanGlPRZTKyIbop2tKRZqolHbVdtkX5+0qI40zLQhtUh0zk8MTnmFezOI6imDKVzlalKlZw0h9Y1SiuIf2ZpcterWIcEnaN5aUtXdBb8jaVLZXLymOWe5Sfa3lOy7bI4jhezCO58giIeRXHvpcPYfHSV8K32W0YEe1fFLvR0tu5QvsXIOYBHq4YXcd2Das2JayoZAqQ5clrRNxHNbbjimsqOL+1fLtr+XJLJ0RZBEh6SMddIGpA/KCs5FaXLVbYL/7rMc3/ewiJiW1Hbg9OMpQYQMWL0itHy9mOcBxwI2JZDF7w/vVo2dE5k3paWRypFK/GpkK9Z5r5c2Zy5cXfYNnyFznmfy/C1h6UPUMmgspmdrJqsSVVLqBKOR56ejknfvKLTJ40ibe+5TC+/5OfMqVzIrdccxmTJ473d2r27yUzYWIWbhEcWbjJi7ThdjKUXhjC6e+zFL0LdCIl3EnK8UJJNoJk5+IERiYP+v0tqw7qUhGVSArS50VkUFlh3yvtRVXhPC9y3sj3ocvFmA1eMKjRdhJVimQIyhK2gcVINhANdkoxGQLKYvly40kwb685tGQz4JZQ5TxLnn2O7/7kCsaO7uDZRXeTbWgw5NyNbA/xooFI0AYY+r6LWcQJa0NTIdKJf49fETLsv0KUBCuTNi0byqXQ0g/LiiUshnaEnht3ohD2hKHtnZOInwuIZB+SPEMkm9B6iEwllpgpn70BSdbaDH4roZQYhJZjSYY6kYlIuiuuAynz8dsAgO3LSWRiYaB/zg2gfGu/mMxjK9iZyXMLsNn/PBcYAfzG//se4LM7olF11FFHHXXsPAiJnvYiUlsumpdtpZsCgU5ZEBMR5ZLJUapciBGFEMIfGIhHpCuWC9ZV2uOIQw/kiEMP9H8LkgHtKFpbGAj108bqzY9KWhba8/ifq37NK2vWMnO3aVz6iyu58Gtf4oxTTvB1wBX6UmWhEyJaXJIFjQqhrlO5xdqevrbQkAoNuIxEmy/8AYqdRKX87+UgWAy4lWXFBtGxNiecaHCorIhoBqWzAUUptCdTloW27OhvOxHt1xGDJbeItvzjLQwI95IilvR5Fucxny+w4B0LAXjwzpsJh63K4sOf/SpLnn+B3/70h2Qzfnl2P6kzpg/3SVoYjQajI5fJm+EPXqyfvESk5Y5V0i2Xomi5KAevMs3obt/mr3kEulTAzkS+xaGUkJ35AAAgAElEQVQ3sm1HSYqWFUVZS3HiGkaqPQtdHIja5rnhOiqZDmcRwr/9PgpnebSHLuZQMhAdJgAmRTl0K5bEG0W0RT8NmaXQ0f0Wux6FLrtUiEq7F7rjSZJ+fwR9VOnLvi3szOR5NUbf/ABwBPCc1nqN/1sLkK+14uuFXxHrx8BhmD55Evi01vop//eTga8RZYqfpbVeLNafhzH1nw2sBb6mtf719mpfHXXUUUcd1SGnjmUCWKwyqUgSBOLExA6m16MEMqU9vFQ2Su6KeeJGEWoz9S+TqIIExTgZi80LyCQ7SfiD9kBoN2aWNwTjVxd/jW99+gyWLF/Jpd/4ApPGj0WXBmMJaLHELiFJCCN02oNSPi4vCZLpZHvTkWwCrxxfvsJZIZR6JFKgA0cQ4dCgdTzhMojIV0lCC4/ZsgyBxCeh5SgKHRI7y0HZibDd2kmgVdbfh2izkHBUQiaSWrmoCGbSJ5gHzdsTuzQQRT+LA3zu9BP44Dlf5qmnnuaodxwWO6aYh3I5kj6ECZZCtqHLJZQTzWzgxZPXdC3pQ7CNCsmRaoks+8gIn2zPQ/labKW9uGwn6DtpTSjuA5SFytSy8wPle48Hxxz+HhLkBCopfisMREmxMsmvgnCH0hCR+KqVZWZp/AGtcotDBrUQXcfrN27msaee4bD5e9GYbTDRdBFtB0L7R+XEifxwsDOT56uAi5RSb8WQ5y+J3/YHnt2O+7oMU0J2N6Af+DamulUncCDGKu89wH2YkuF3KKWma617lVItwJ3AJcDBwJuAm5VSL2qtH96ObayjjjrqqKMSMjIXkM9iLl7MxC4L2YWQLQhnASXkGJTyKKKpd4UbkVFB0iv10zFLNF2I/xbTXkaOAcFnz8lWj2j7HtEJYNquzUzdbYb5HcygIIhwChcQIKowVzGNLWUXWkxjS9KiLSciM4LYaO1Byo47eIhthbZgcn81imygPVOQQ0Z/ZX9V9i1xmUNIWIP1y6WIWEvCrqwo+isJJ4BVDpeH6Hx2r1tNUzbD3352AZRLYV9e87s7+coPfsaPvnwOp5/4/qEa52A7qoKkBpAzG6KK5BBXCLmubccHiFJSFwxchC4c1zWFgMS1EBWJcWPuHZHGP6r8iNQPB8tUDOSi40kO+T4+8DPXXthiJyLplVU0Y9dBMJtRYZOna2nJvXI4MFH+OR0//60AXPiFs/ncR04ysgypbYa4jEaci+FgpyXPWuvvKqXWYHyeP4Eh0wFGAFdsx91NAy4NDPmVUlcC52JKhH8EuElr/Wf/t4uBszFk+pfAMUAOuMgvI/sXpdTNwBlAnTzXUUcddfw7EUa8FFqLF18F0YgikYhEQhGtlpXNkg0xwlkJXY08u4JgWxZRZoP/m8wXCEm9qHZoEYvwhrpRqyJZUUaC3WI09a6iQizGo9qP8FZEx7ErqsaVpc462K4bJ2my+ptHLOIZkm8V7/sg8qrMj9H2w2Ivyt9XYB0mdMKy72UU3a8cCZhiN4J0qmIujPwrrxy3HPP3qROpiFT6yXDhcUB4LCNamrAti5/97mbO/sipYNm8tm4Dp3/pO3zvsx/l7A8ebXTU/vLfv+waPv+9nwBw/sdP4+ufOiPat4x0el6ord1asmQssVEOyiBW4CeMbgu9f6ATjiXzyYFYIGVyS2D5dnbSnzs/EC+nXjFjU3ktyn4bcryWEyXvBpDkXdy74bmXuQsiQTGQx6CC+8UKJTsxqYXfjy8+cDs9vf3Mnj45ancFeY5HrsWs0TCw05JnoKY3qNb6zO28q4uBE5VSN2Eiz2cAi/xqV3siEhO11lop9SSwp//VnsATOp6B9ARw0nZuYx111FFHHRXQUsdY+RKtJGEEL/StJwVVEpvYFLEgM1p6xdoicitInVYWyvHCghFUkqEqfrcajG4XzHoVEdqQ8GodJ+VBpE5E5ZRXjpc79jyTPAWGfMmIpVsRWfT3ETp/AMpOhlpybdmgk+F+Yv1dEQkN+oJE/BzFEhDDSKIgUxBfXxJ3EXnHJ9MQl81oy4FkBQHz+1WJ/pbOHXZDI5d9/XN88LPf4Ks/v449Z+7O/Y8apeYtf13EmR98L00tDeHyxZLLbrtMoqN9BIcevCBe7dLyYpKGmIRHDCq0THUWsyPKj9BXhSDYIceUEhtAq0T8vATkVTiaVJYKj+nIkRIbFZ0vZUHZb38iVT0i7CN2/QXb8sqxeyRE5f1ZOciQsyBq6P0d/N+5yzR/555J7q4kzsF3NdbfFnZq8qyUSgEfAuYBE4GPa61fUEq9H3haa729pBsPAqcAGwEXWAW8y/+tCeipWL4baB7m7zEopc7AkHM6OzvfaLvrqKOOOnYK+BK7b2NyP/KYct1n+b9tK2/kY8DHgU7MM/hF4GKt9TYryUotcqRf9mJOGpXRu1g0q9ZLU2pVY5KMClJeuU2IlYeW8gFgCBmombAXIKgQKBLMtHCXqSZvCJIIgXiSmdaGDLtVJAW2HSfPMgocRrrLyEp+XqIh6mNZyVBEx7GJ+qtSey5g5XoiqYnjVO3voUU3ZOltbeQ1QGUVxXBbsmy3ipdvj0WilcX7jngri5ct5/tXXsf9jy5GKcX/fPvLfOLL36Z17tsBKLz0JLZt84VPncUXzxExPRnJlYMtJxG/Lrz49Roeo0Csv6RESbh7WKLgSSgxssQ5C9cXgy3PDQdbyi2hkj4pLeZCXbIuFYwMw7cHVIlUeE/EymtLaZBbimQfju+mIqLKleQeiDttqHI8Ui2u71jlUDkArbimqjpmBFKgavd+8HfFdreGnZY8K6V2Bf6CSQ5cDByCIapgtMVHACdvh/1YwF+BuzASjLy/3QeUUrOBPr8NEq2Yhzv+75Or/N5LFWitf4FvwTdv3ryaLlW2tBIT51JaUkn7OWltVhBelcHHzbno4lwrLOk2DEQP5FVbBsPPE0dENmSFcrS9vPicEL5d0s5LOrhJC7Xwcw2bsKoJPRWLy+OUwX65T6GwIpuoYSfnryBt2mrZ00lLOmn3pkpCFyanOKWuTdoVVWlHwlZhG+SxyX1KF7KE6KKkHf0h4xny+OX3ShROsEX/2rIyU9BW8YIv1eh/afmnpXpMLp+OxpDyGimKKW15hoSjISkneMlEL/SCrv5gKxSiZfKiwxKiH1PyBKvq/euJNkqrx+DalfdfqUZfyN3kxHvLEU2X11c1O0WobX8XtMGufmnvECilDgFuBE4HbsOc1pn+bwex9byR4zHE+ijgMYzT3jxgeKW+6qjj3wClFBd9/uN897Nnct8/n2fx08u47+HH+cDCd9Ixoo3Zu0/Htoc+O+v478BOS56B/wFeBd6NkVIIYRb3ARdup/2MAKYAP9FaB4T3CqXUhZjExKcwntMAQaXDvYCb/K+ewrwUJPb2v9+hcKsMvnYUkjvRm96u4c+8I1CDN/3XI+UMb/T/n8DOdO1W+jnvRPgu8DOt9Y3iuyf8/7eVN7IAuF9r/ai/fA7jsjQ8SKs5oSWWUc5Qe1kNYQKbNNZWJjIZ6EMrf6vmUy71oVrod4PlxW/SfismHZARM2k7J500BGSEe6iVl79dh6HRtiqRWFUuxoMAoVuDkFBoHYuqWm7fkDLi4XZlO4O2aC/SRlf8r1PZyHlESk2kZKXCEUW5lVHKKlpZGWF20tExymCN56IdGdUthtpky/M4dMF8Dl0w3+iNRV96or2ek4r6KUlcDy/t2QKphb/faKeBNEXFirzI4zLSGD9JMFn9OhySqGhVXFOVGmL8mYzg+3RTJBMJZCbyGhVafE9F3shaXodVjh2I6e9jT7KK530sOh1LJLRi5y+M1gv/ceWW8aRu2Yuul1h7tI6uJXkfSAvBrWBnJs8HA8dprbuVUpVPvfWY6b83DF/XvBw4Syn1RaCAiTw3YaYXNwN3KaV+iXmgfxITGbnZ38TNGFeQczF2dwdjIthv2x7tq6OOOurYmaGUygLzgbuVUk9gpBdLgM9prf+ByQu5Jli+St7I/cC1SqlvA/cCi7XW3cPdvxfMbmgvbn0lX6DKipNLWShBkglZ2axy/WryiGA9GFKRMCYZcZJV/aQryXL4Z+X2h5CeILkpEXkgu6WqU+JUFP+IwU5GcpDKqophMlbF94hCFUKGEE9KFETfLeIlGsJ2xZ0jKo4zOC5/8OL/gQ5mqoQ0BK8ck7KYcyw+y4GTrCpoWUOWidwovHA/Wlq3CUQkMRosRX7igugFx+Iko/63xWcpQREaZ4SmPNqpT5jFQMJcrxWSoKB9MTlLxUCuihwn/E3sK/w6lgxYjiUshuQ7OOYAvpd3oP2Pa5qDPvfieQGV5BaMXlseV2UCocgxCJervG/tCrJeRQ6kZVv8a3dbcwo7M3nOU3vabjxGV7y9cDQmafAVTIGyFRjivhJYqZQ6C7icSK93eBCl9sn94cD/At/E+DyfWbepq6OOOv5L0IahLR/B5Io8B3wOI83YlW3khWitb1BK5TD5LR8BRiql7gc+obVeUrkzmTcCxIlG8OKsoiuOkdkgYlipLw2kQv4LX77QA5u0GAFEkAsVT5jTAZMLImZWRQSNePRNucXIucKVOs+hhV5i+5YETm5XEubKCGXMA1q4L1QhMOYY4seqZTJgLY1o0N+Jhoi8StmVsiqKUySGEp9gO1UkfVr7jiSx6K2QklX4fA9BZZKa9sLiOTJBT8tBlS0GIpXb9BMYg89aiSQ56acsyGt47djR4MxUwxzmDFOV2Yjg+o5F0qsQ7pgXdux8xweBWp4jUnHCKs9XjX6JJ0hacSItC6OIZcJ1rYq8hQrEiqQE26q0PJRR9BrS0Mq2DAeqVpnaHQ2l1O+A6ZjCJf2YSsZzgWWY6MSzWusP77gWvnHMmzdPL7r/vvDvslA5SmmBnKqVn3Pl6ie52imVy0qpgNShyunpmOZaXP5pobP1xI4ak9E4Tepyg+OQ25O66Vqlr6VUuWapaHEc/cXoASpnthtEY1J+Zq6qUf1KlgGXOlu5fJAoA2Dlo1KznqiapTORRL6oohs5Xk586EmSfREr6yx+SLrCu1Pc5J4olS2hqkwLVq4bHJ88NsTLu1Z/DQvyJZSKDPXLyeiz1GUHXRQroS76RWqu+4rRtgdK8mUXLW/La1FsKK4pr547EHyS90ta3CPFGhr1yhn+APL+KovzL+9iu+a1rofsUy6ZqJAiTRjRiFJqsdZ6XtUNbkf4XvfdwHe01l/xv1PAFuAE4ALgGq31j8Q6fwRe1Fp/psr2dsd47+8CTNFbeUkppXS+t6vWj/Eom4TwA46dpMoXqpzirRaZk8RCTgNXRtsgTgLkfVTtHtVViE+VKOMQ2UXQbGVVjbDGClFUHqOMVnoVVnXVIpfBurWil2EUWbRFTulXOdaQ+GwlaStms1c5xV4tCi7XjRErtfXzLRFeL17Vdq9Zs4b7H1jEH26+hXyhwA2/+RUN6dSQdYYmrkYR8SFR2OC6kNHmiuMPN1OZSKmEpVzlM0VWOKzmRT1kNkAMGOQ+KioqDmkPFYOFoC3V3kOV96Fsa2Xfx65dYTVYpfhLVbcdOXMQoMo9mGpqRSmF1rrqQ3lnjjyfi3HBWIFJHNTAV4FZQBIjjaijjjrqqGMHQmvdo5R6GarmxGq2nTdSub3nlFI/BG7FRLW3bLUB1fyTwZS+9lw2btzI88uXs88+c2loiPs3B5G/rq5uWka0hwM5z06YZN8qcgcPFQVutUYrRW9vL3fecQfHHr2QRMKf8q8gn1oS9rABFtrZBmH0db6qChGQxKZq1Db4LEml8MOuLPISRmsrInaxtlT+Jj9XO4ZKol5pzReTVwTtrE744u4oypTdrjGNX5VwKqtmMEZVDAqqOkloDXhorXlm6TIu+eGPuf7662Pb2WP2LOxEMrbPqkEHreNRVtlG5E92eGMNR94gjyE6uKH9olUKiKwNqyKoPBhGlSt8n6tdk9oLZTbBoCAITFWOSeR9pETkPYoog2uZdfv6etm8eQvJVIqRHR2kEk54zrSWga8KeZUYhMTOpSz+YlfIQ4aBnZY8a61X+R7LnwHegnG3GAvcAPxAa715R7ZvR0FGyWpFuIIAV7FGNlp3PooktqSii2ZUQ3Q5ZC1pdC4uzLKsmiVfDtWXD+p6WVXfq9BTiG4+GSWWtddFUDseqRb7b05G68ZKwRaj6HC1l0GsYlW1qdjKzyK644kIczkVuUrEo+DR8Um3h+aUaUNSyyILsvJT9BEx1alKkSOKnJ6yC/1iXblNWalK3O7bnMaUJERWearxyIjp4gQ5qb40toigu7bYvn+dlGq4qkjUcqmQ9wieiDCLazAvsmnldSQjuMH2izXcO+Tu5eNWvobk93LdWDLvMGb/gtkHVfOYt7mJfzcuA85RSl0HLMc8t/PAQxhHopp5I0qpD/nL3OvnoEwAzgSWBYWrtobfXP8H0pk0+VyeUaNGUS6XGRwcoFQqc9edd3L33XfROWkSr7z8MguPOoqpU6dRLpfYsH49//jHP1iyZAm2bdPR0cGBBx5I58SJzJw5g6bGJpavWMHf770XZdu0trTQ3dNDQyZDOp1h1epV9Pb0Ui6XWb16FV1dXdxw/buYP38+hUKeQqGI67porUkkEowaPZpTTzmFppa4eZMSxDAg2K6nI6s55eBYFVHj1xMRr4Sy0FYVkrotUlT5fZXtbgsxYiSr2/nbjvkBB1F8ryxYlngZVOyvMqGyqsWb9lBhx0riWuVJJQdMgUbdc7n5llv43vcu5Olnngl/v/aaqzj2uPcJkqrCR7jW4v0nB0GqNqnX2PFjDdqhtVgner5aKj6gi3dEReS6iubcs1XNGUBlJ2KXlpxxtmLPQ5/IKoZW7vOfW3JG0ULHhtsBwfY8Td/AIGvXruXxxx7jsccf447bb6enp4f2kSPJDeYoFgt8/kvnsd9++zNz1iyy2Sx9Pd309/czcdzY0AXFJF8m4vuUXaMUr732Gs88swSUYvPmzRQLBS7/xc9ZuHAhW8NOSZ6VUglMAspLWuvzgfN3cJPqqKOOOuqojUsw2uZ7MMT4SeBdWuseYNHW8kaALgyhvkwp1YCRgPwdOHI4O779T3+iWCiQTCbZsGE9yWSKhoYMSikOOGABF3zve4zs6GDd2tf4w41/YN26dSQSDlOmTuOIhUezz1wTkV7y9D9Z8swSVq58kZtv+SO9ff1MmDCBD5x4ErZt09fTQ1trK70DAwwMDHL0e49lxIg2LNumtbWNltY2fvPra9m4YQPJZJKG5hZsx8FSilKxxDe+8Q2+8IUv8K4jjmDa1GmMHj2acePG4TgOGzas501vejMzZszAsqwYyfC0xsQYAjJnhXKkIWREwKsxdJXKC+W8PhlWwNXDnD2tY22o3A8MJXOSuw7RoAZkDhWRR9uuOqNfq31gBr5xkxyz3VokM5C3VSOZAcFasWIF8+fN44MnnMhRRx/N0888wzHvfS+fOOcc5u4zlxIqyrFUOkZsA2KssHD946pUwMQsPnXM/LNq6EmJ712thywUjLO1Vnja7DNpqzBY4GoLS+wluF4q+67sxdvihtvVYQuUJP5ahzaq8rytW7eOa3/5SyZ0dnLwQQfR1pQl29TMU089zeNPPMHzzy/npZdW8sTixXR1ddE2YgQHLDiQiZ2d3HL7nUyfPi20RF30wP389te/4sbf/44VK1YwZuxY1q9bRyaTYcuWLYwYMYKGbJYvnfdlTjrxBNOWYLCmLNatW8dFl1zCQw89xKuvvMoee85BKUVbWzuJhMO7jlzIxo0bq/S66P+dUfPsey/nMA/Yv+3o9vy78K9onqV2uSA0tDGHoWA96asrtrElVz3yPLaxVuRZRGRrRp5FpNCWkWfTGumPPCjaLXWrMvIsIbWitSLPMT/jWOR5QLRx65FnLf2ZhZYupnkuRpFfWaigduQ52r2MPAce2TUjzxJS41cj8jxkajXc5uuIPMuoUjUtXK31KpeXkWf5MhK6bHmNyMhzEL2Q/VbrGdUrrh15fUsdfy0NsdTxv57Ic1ZcozLyLbXQsu3yJZSRMyviHpCR8lrtDZqVr5HnUElgJrX/5zTPOxJKKd3db+4JqyLiVYvUychZ2dOxGQQdW05uS+yTOIGQZySYUbCt6DnsETweNSteWM7yZ5fxyssvs2H9OtatW0chl2NEezuLHrif19asoa2tjX33249DDjmUfebOJZlIkEoai7Om5mY6Ro0mlTT3j9Tax/I0KjXXIiJaeTuFEcOtHHuwl5D4imWD72ylas4whsvGSFbt5TytY1uqdiYtpWLnMrYfovwFpVR4/hRiFqdCox5vZ9R3Pf0DTOrsZMqUKeTzeZqamrnz7ru54vLL+dOfbieXy3HdjTczavSYcB3HUuEz3haEXeuov2sNfLZ2jioHVbHrMPhMPHfDtqJaArlCkYTSpFIpbEuFzydXm2dfLpdjzZrVrFj+PEuXLuOFF14gk0nz7iPfzcZNm7j//vsAhePYbNi4iXKpSDqVpqW1hTcdfBDNTc0M5HLgeQzmcqxbt44lS5bw0ssv88KKFzn2mGNYtXoVS5YsZWBwkFGjRpHP53nTm83AccqUKczZa28mTOxEKYWrK+9p2Sfm/97eXjasW8vEiRNobGyEcol7/nI3Rx/7PqZMmcyyJUtYv349X/7K+ax48UV6enpYtWoVJ596Gke/5xj2mDOHVDozZPauo7lhq5rnnZI8AyillgAXaK1/u6Pb8u/Cv0Ke+wVhqJUwWO1F3ihkDfKF3uBGZMzZ/HL4ubQympJyeyKFjN0eOQRa2abwsyRM1ujJ0ddC2uA1tAFxcisTxzaJihKSRkvS0ShIvTUYJQqpQiTPiD0IRcUsncpGn0N/SykZiBBLvhEk2UtHxyOLh9Ty35Uvt5QoJSoHIUGiXlACdwjE8ViSPMeqgdUgrOL4PNHXOimMbLaWgUxFdKjSQincePW2WHlRKyg2aKmeCe8lo3MU9K8kmnJ8Jfu8FpEuCn1EwpL3V7QdeY5qEe91/eZ6aErJxNhoI7W8oEdkouUzwsu0RxR1kUSl1vFVRnYqoSqI4vi2bJ0872TkOazETHS+ZJstBYVCgc2bN3PP3/7Kow8/xLJlyyiXShRLJbTW9Pb00NXVRUM2y9mf+ARf/MIXonb9l5LncrnMH268kauvvopxY8fR3NKM7Tgce9z72Xf+/Bh5dstlkgkHpdQ2yfPvfn89p33oQ+F3f/3b3zj+Ax+gr6+PO+++m/n7zqfkab79zW9w+2238veHHgvP685Anj3PY+kzz3Dpj3/IU/98komdnTy06AG01szZcy/yuRybN2/CcRw6Ro3ilZdfZnBwkHHjxjF92jSmTpvKrtN3ZWBggJtuuokRI0Zw9MJ30zcwiOu6TJ02jZRjMzg4yKZNm7jrz39GKUVDNouFItOQYfTo0czYbVemT5/O1F12ob29PezzLb0DvPzqKmbMmEEyGb0PXK1D8j8c8gyGLwW/JRR8/+KL+MrXvs4xRx/F1GnTufyKKzj1lFNYeNRRNDY1M2HCBFLZpnAdTw+Vvm2LPO+Usg0fXwYuVEo9o7V+ZptL1zEEO4EOMkRAnHcG6FrR0x2AmMPFjsYwEyX+EyjtRNduQJx3BuyswY6dBbVcWiRpcXXtfqx8UcsXdDW5uXzGKhUflAW/2Sq+YVcTY47Bdi0FykkyYvRY3n/CyRx/4snR+hhi/c8nn+TBBxfxra9/jXy+SKHshYTNVpHcQ23FFafGhGGsLVrrcLuKqF8rI71D+jv42dfZep6H67o4jkO5XMZJGquzcrnM5ClT0Fpz3HHH8Y53vpPPn3sus2fPZsOGDXzpvPOYtssuDAwMsOzZZznkzW+mo6MjptMFjbIUTS3NVMPN/4+98w6vozjb/m9OUbdVLVuSq9wbLphqG2yqqaGaEkowxbRAqHkp+RICIXlDzZsOCdVgTAm9BbAxBgOuuHdbrrIkyypWPW2+P3b3nNnVOdJxkXWM574uXdozMzv7zOzM7D3PPPPMW//hgosupGznTgJ+P7m5eXz00YdkZGTQq1cv0lJTGTJ0KJ0yMujWrRvffPMNaenpeL1e+vbrx86yMlJSUmhqMsbo837yE4QQhEIh6usbqPcbGwfv/OX9/PvZZ/nvR+9z3nnnhevRqku1zrwuEXVSp5rYhKI0tGj3uJRJQUix2rjt1lv5avZsyivK6dIln59eeSUPPvgAK1as4LZbb+Woo49mzZrVdOrUmdy8PCorK6nYVcnQoUPJyc3F7RJhhYI1Ibv7rhZOcVp4+LjpxqnGW3Fs1vQrHqdCCvvNzE5meJbBC4IK+Q+GIpOCoJQ4v0qWosLrFuFac7tExPQmFOK8n5zLh598Ql19PTXVVSz4/luKuvewKSjVlQtfUNpWJ+JBImue52Mce50DbMc4GMUmrJTy6IMv2YFDvJpn9Xjs3U0R7YI/hpZMXVq2ksRy2dXZFTEV8FRsCF8HNkXcqzZvXh++diVFOoInN7JMJZIi2ll3Zm4kfVaXSJ65vY38kiIaa1WTri5Jq0dPq27bOtdujjxzz67ItUfRiCoaGKm4kENJY5lrqKYaxDQxUGbFipmHS9kk6VKOvlZNO1TE3A1vaT8UzbPNBZOqVfZFnkOzYpISiE7wZFbkHcnkSL3bNL82GVv6v7U7uI/xUY7hEs/VGHHHbpu0uKJru9X3Zcmi7Cm1rZo0q+ZM/uirMI0x3AOqZhs2syBl6FTNKaqbjFUR+4cwIne6sqtV1Y7kpCiaZ6Vf7m5UtIRK+ljmH3Yti/E/lrs7gJ4H0VVdR0IIIStrjX7gEtE1uhZifelsdWtpCM1w6/toaqBa3KMS7FiaUisvlehYaM1kx0q/ZvUq/vn3v/PGa6/Sq3dvjj76GC657HKOHzu21RNKrfvdLtEqIXBqM1W5neVR0waDQWbMeI2KsjK65uezectmysvKaPb5qKioYMOGjWwqKcHvj3xjUlNTCQQC+Hw+pKn2mxQAACAASURBVJThOs3IyKCuLrLpuX//fjQ2NpGWmkrv3r2Yv2ABLuGid+9eFBUWUmwS7/Jdu/j4k0+prjbGmcsvv5yrrr6amV/MJBgKkpfXhW4FBbhdLqqqqzhy1Gg8Xi/l5eXs3l1JyaYSavfUsn37dvr3609aehpSSpYuWUp5RQVFRYUMGTqMgoJCsrKzyM7NIyOjE1VVVaxft5YP3n2HuXO/ISsri2nTX2PQ4KG2ugf7qpDzcNto9Rq5z3wPsuWkRX0/1dXVrF+/nnVr1rBg/nyeffYZRo4cydvvfUB2Tk7UdhsNQaVNW/CYGl13jDaiym3xETW9EAYZdim/w89TSbKyQdbjivS1kIyMz07RVY2+01OKDcqqi+UdB+yrTmqZre9EbqdDV/O8AuOUKo19RCId/WwR50SAaufc4YjTIfvBQLTjfzsKiSSLRZwTAe7EWRxISKhk10kKY5l0uEUkjaphdQm7RlBVaKhTyGjTyXjHXpvmVi2H+b+yspITjz+Wu++9l2UrVpLftastf6/Lbt8ajQyoxN16jkpmVHMPl0k01q1bxxdffMGAAQOoq6ujobGREUccQVNTE5s3b2bFihV89NFHLFq8mGt+9jN+WLKEnj170n/gIJKSk8nNyaVPcTHFffuSkpJCIBjE7XZTV1eH2+0mLS0Nn89nEmaLJRpjYWZmpmHjbckroLS0lFAoxNYtWygtLWXjxo24XS6GDT+Ck08+heqaGjZs2MBpp09i7LjxjB03PrqG17HBMZrJyqZNm3hl2is0NTfh9XrwB5awZMkSSjZtYumSH0hLS6ewexF9+hRz4sSTeOzpP5GX1wW3yxXRXjoIc6zJS6yVEhEKgjl5Ky0tZcmSpXw5ezYbNm6kvKyMqqoqmpubw5OGPsXFDBw4iCHDhvH5rNmMGj0ar8famGh/ulVWm7mSlC2IvRUelBFPRaoJjLP+VM1tOFzRINsejtUOzXpwR+yyjZWaCGEOhtu63cY9JGVE2WGrPHdMT2QhRFgGtxC2vm+R5ng1zwlLnqWUP+toGTQ0NDQ0EhuWbWkschztdzQ40wjsmmhnXGt5uKMQjL1FY1MzpaU78Xq9/OHRR/nTU08x68vZDB02zJa/tcTeQv44WIAwfQ2vWrWK0ydN4owzz2TEEUeQkprKHXcaS/V5eXkUFBRQUlJCt27d6FtczLDhw7njzjspKirimGOPa7WcksgqTUanzuEwjzeJrOwcRV77qk9YK4ugoMDYa1NUVGTP27Y6Y2gvrSCLsDmrIRhDTmul4U9PP83KlSsA2LhhA1Ouu54jjzySiy6+mGOPO55OnTq1uNciyNE0rABNTU08+8wzfPjhh2zatAmv18vgwUO4+ZZbmDBhgi1tXV0dU2+4gWXLlrFt2za8Xi+DBg3itFNP4eorryA/P5+c7GySU1LJzM6mc+fOpoY0arHCdRNNZouwOgl2PFCtdFrmbeTnC4ZaXflQw6NtG1H7oFUGaxJr08jHEERCxDWhQzawt5EUz95pJhLObEMIkQqciWGyUQp8IaUs61Ch2gnxmm2om4vUpVrVm0ayopJSl6HL6w2t2bbaiG2t2kiyUyOmDMmKeUSS8vxeNavC17JZ8TbRrNjr5vcKX4YU84BAel74uqKh5dJ3Z2UDllpO9cQ4dSld7ePqJsjM5OjmBM4lKAvBKKoh+2mLiumBYp5h87yhephQNciqCYVqnqBoU6Oai6gbfhRbaNtRvYrph0sx21BNRdRNmuqpfrZjjFUfpurJiorP2UhYDO14jGNxVaimGs2Kv2q1/tV3pFpfWJoAdRNdcowBTjX/Udu/em21P7B7qlHTqH1AHRqttlmjaKG7pCv1ppShq+IvXW1HqlmS6mVGNUuKtvkMnMvALeVTyw/QP7/TYWO2sae+pZlUa2S5NbvdSL4t7YH3gV9ERax81aXnJUuWcNHFFxsb24Rgy5YtAHz0wftMOPmUlr5823xo6ytca9euZcSo8Dk29O/fj98/+ihz5nzNrFmzqN2zh7q6PdTV1ePz+UhLSyMYDPL4Y39kyjXXmAWw+01W3dmp2s5oGk4LrU2AnHC+R2mLi3jOiUWWnc+z0CU3h6amJkaPHk3//gOYdMYZ9OzViwEDBpCVlQXA5599xksvvciAAQPweDz88MMPbNm8mVemv0afPn0AKC8r4//9v1/R3NzM13PmMGjwYM4991xyc3Io2byZ6a++yurVq6lvaLQ9f/PmEoYMHhxV3hXLl9Onb99W60Wtd2e97CtspkaKeUY0CCHC39LIxK5lumBItknanSsmsdBaGZ0rOm1NfK16yzDdXR4SZhtCiGLgcwzibKFWCDFZSvnfjpHq0IVFnBMBKnHpaEQjzh2GBDLb2OsPcjsilveSjoA6qetoHCgC92OELyjDE6G2tL12otXShtMKao/6FsJpo+mQTUqOPc7Q5v7xj39k3NixDB48mJRkc/IdY3/BvsA6lKX/oME0NjSwc+dOmpqa6NKlCzu2bzMO/lDQJS+P5JQUtm3bBkBTsy9yciLKxCCGnW40EhVPFUd7D04bcVUT6RYRG1zncn8sWO9+V+VuZs2axZyvvqKyspJ333mbLVu2sHbtWlJSUigoKGD37t1s3749Sh7G/0AgwNdz5vDKtGnhuIqKCubPm0dqaqrhcjAvj59ecQVTrrmG9evX4ff78fsDVFYae3ncbjd5eXnk5XUhNS2VxYsWUbF7Nz36FEfqxSo7LesxmnlKLPd+rdWOc8LjcgtbnLPsIWlXVDnTWQhKez+I2jaECO9tceYZy368NTiJtBq+tytECUWegT9iKF/GAwuBPhgnV/3TvN4nCCEuBW4BRgBpUkqPI34S8ARQjHGS4Z0qWRdC9AP+ARyH4dD/KSnlE0p8GvAX4HyM9/AWcKuU0j6l1NDQ0NA4oAh7tXCJffIwFM2GMxwXY9WrLUT7Dtu8XLSWmRDsqavjm2++Yfr06bzwwgts3LiR7t2707NnT3r36cMZZ5xBTnY2PXr0pGu3blRXVyOEICs7GyEEDQ0N+P1+UlJSqKiooKioiM2bN1NRUU59XT2ZWZkMHjyElBRlA7QQ5HcrCNdD3wGDWLpsOXPnzuXGqTcA8OvfPMSwYcMYOWoUXq/dbaWzzPG4CnSSudY2zu0NVBvcoJT4rVWsGC4lrXQWyRs/YSLjJ0w0ZTJNFKSkrKyMnaWl1NXXU11dRXl5OTu2b6dkUwlr167hhBNOID8/n00bN9KlSxfGjR9P124FFBQUUFhURJLXi5SSxsZGamtrqNy1i1GjR3P91KmkJCfj8XjIzc0lJy/PVr/RvL44rQZaurOM1hmidxC3S8RUKgkhoj5TdQ/nlLHFU6N0CCfxtvqu+oZ8wYj5jlsYm8SjuQVt7dmWFtwfkrYN2bBv5irhexPJbEMIsR24S0r5mhI2AFgFdJdSlu5jvqdjeO1IBZ5RybOp7V4O3AC8DlwMPAMMlVKWCCHcZvznwC+BQcAnwM+llDPMPJ4FhmKQZwm8AyyRUt7Umlzxmm00KGvZn22M+DYe2S1iHlFRHzEn6JlpmATs2kttb9d05TAUpVF1cSlzAMVUwdW0J2q4VHz1WiYEjUQGgjJFro27I3lnpkSery5xqwe5qCYn6hK7CtX8IkvxdmB1HLVuvbH6ju2kKcWTgmq2oR4YE+tQEZtv44iphmXOoL5zVW61/u1HQtsHr2hyqaYSqsu3WINjW94C1A9OPEON6uEi2i5m9ZkQ/ch5NUw1SVI3zKkDoVpfNntQxRCiNsbp56ruTj2ox5JXLU+dP6L1y/BG2oUqV7ZbaQvK+/cJtX1H8rS/98itqomW6kUiXIYYdQiHl7eN8pqI+VK8JgHR0js/pK3l1Vqe7QGfz8fGjRvZumULCxbMZ/68edTU1rJ+/XpqqqvpnJmJDIVobGyksLCQ6poafM3NBAIBOnfOZM+eWrKzsyksLCQtPZ3KXZVs2LCegoICcnJzycnJoaCggPz8fDIyOpGekYFwuaiuqqK2tpY3X59BaWnrn99nnv0Xl11+eYtwpwY0FuPY27qMtSHQCWeI6hLNHcdL3huOtHL1Gurr6xk6xD4xsdBae4vnmc4hPFoqZ5p42nG88IekzaRzf+ALtXRDB233Q6t8KR5hG0fjhTXetqhLs84t08BD6pAUIUQIOFZKOU8JcwN+4Egp5eL9zH8C8LmDPD8EnCSlHK+EzTHTPSSEmAh8CORLKevM+IeBcVLKiaaN9m7gbOs0RCHEycD7QI6UMqYj331xVbd9j3J6nvJKVbtJyyWWajPZOVmxiQ5ECKvPE3ENphJJVTPibo64ECIYwyWa6sFCIZvq6XEW1MNddtZFyuNXDlrZoyyVq+RNdQ+muv7yxujQKsG2yFaG4lbMHVIYlUKYQyrRVWfI0n4QQeQG1S5aqSP1sBXF/ji8m1ghug1BhQzHGGTV/qouY7W6azv8QyHqsVeNjaREj481w1flinW4hxqupm9LWxjLhlk9sVHtL/ZjdyPtq0lZaIvlvinNrfww66s+hru7aCdGAiT7IpNK9f2qk6eQiLRBdaKoEmmV4LepyXTEF2QdPoekHA7kORZC5pjpMsfF+vp6SktLSUpKolfPnvj9fjxeL9XV1WRmZobLKDH8Rm/dupWqqt1UVlays7SU8nJDM11XX4ffHyA7O5vMzEz8fj9NjY3UNzSwu7KSbdu2EgqFyMjIICcnl+ycbO65+x66duvWQsbDiTz7YpgYWNDkOYJDnTwnmtkGHBj79r3BCAwTERWLzHArfq1FnJX4W8zrgUCKI49FGFruAcDS/RVQ3XTUNyuihVW1in7lo54uDEIoUIihevKzP8LnYzkEE8omMtXPr1B99cY61U5E7rVOTgrFGBpz0yIkotHfcgIA9s1dzTGIRrQNVQANSiUFQ0aEOrCleKKfmKdKa+/L6qYY1f+x6sPYHTXcpnk2M1W1wepnJdYpeSqhinWqnTqREDFpcATWByTWmBhts4gT+2Oi7I7yQVFliUVS1YUHdSOnbSKjkGe3V9lsqUzCgjay3fKI9FTlvSUr5Nq28KH2BaV/2fqFMnlS+1eKkr86sUxS8rfqN5pPYjX+cES833K1iqJ1HfVgEGh7c5szz7ZgZdXaPXtNIF12+pGenk6/fv2MvIQIn9yWk93ykKq0lBQG9u8fNd+9sf+UMa4ttLZhL1Y+8ZgAtLXiHg8BbW3/S7Q+JWXrhDvsCYLo79L2uFbqJZ4ai0eRAUY59mZnTWtW9C5iT/D3FoEYg1as9+qs9vo4TtKKSvRtSifbk9vMT0UikudPhRDR1sC/cIZLKfMPwPM6ATWOsGoMM4zW4jsr8TjSWNctjj4SQtyAYSIC0JyannGo+rLOA3a1mSoxcajKfqjKDVr2jsDAjhbgYCCvc3rbiTQ0NDT2HptjRSQaeX6oA565B8h0hGUBtXsRj5mmWrlGSROGlPIZDJtqhBALDtVlVS37wcehKjdo2TsCQogFHS1DeyPWkuqBwqH67tsbh2u9HK7lbk8cqnWaUORZStkR5HkJMNERNgr4QokfIIRIl1LWK/FLzOs1QBMwGpipxDcCa9tLaA0NDQ0NDQ0NjYOPw+KwVyGEWwiRgmniK4RIMf8E8BIwRghxmRDCK4S4DDgSeNG8/SsM1f2jQohUIcRIYCqG+zxMd3TTgN8KIfKFEPnAb4GXWtssqKGhoaGhoaGhcejhsCDPwJUYmuBPAbd53Qj0klJuAC4AHsQws3gQOF9KWQIgpQwC5wDDgErgI+Ax1Z0ecDuGltn6WwPcEYdcz+xvwToQWvaDj0NVbtCydwQOVbkTCboOo+NwrZfDtdztiUOyThPKVZ2GhoaGhoaGhoZGIuNw0TxraGhoaGhoaGho7Dc0edbQ0NDQ0NDQ0NCIE5o8twOEELlCiBeFEDuFEDVCiFeFENlK/FVCiA1CiAYhxPdCiCMd998khFguhKgVQlQJIRYIIS45SLKfIoT4TghRJ4TYJYT42yEi9++EEJvMZ5cLId4UQvQ8FGRvC+aG18eEEBVCiD1CiLeEEHkJINc+17kQYoIQQgohZjryvEIIUXIQZN+ndp4Acu/z2NLRsncEhBCXCiHmmG004Ig7Uwgx03z/VWa68Y40/YQQnwsh6oUQ24QQdzniS4QQTWY7Uv+c7k0TAm3Uh9U+1HLMdaSJWR9CiKeEEJ870j9p5jlICetjhg1vr3K2BSHECkc5G02ZRpvxk8w0jeZ34TTl3sVCiAcd+S0SQux0hE0xx+yOPoiyQyGEcAkh5pr1210Jj2escvar6R1TiiiQUuq/A/yHcZz3WxgHqORgbFT8wIwbB9QDpwHJwL1AGdDZjL8M2Akcg3HkTSowHjjtIMg9AcNX9UWmbCnA6ESX23z+ICDTvE4DngTmHgqyx1G2BzA2ohZj+BB/C/g4AeTanzqfAASJHG1v5XkFUJLA7bzD5Dafsz9jS4fK3kFt9HSzf08BAo64nwLnY/jt9wA3AXVADzPeDawC/my279FAOXCJkkcJcEVHl/MA1ccEZ5gjvtX6AM7C2IifotzzA7AcuEUJuw7Y2dF14Sjb74AV5nUx0GD2iySzndQDvc34x4BZyr05GOc9bAKGKuHTgBkdXbaO/gPuAj7HODixuxkWz1gVsy0mwl+HC/Bj+wPSMU6tHKGEnWg2nF4YLvBeVuIEsAW42vz9Z+D1DpL9W+APMeISVu4Y7+BxoPJQkz1GeTYD1yq/+5rtqXdHy7YfdT4BCAB3AisBtxl+MMjz/rTzjpR7f8eWDpO9o//i/RgDFRjelsDw/98AZCjxD2MnTiUcQuS5tfpoq47aqg8gA/ABJ5m/8zA8WF0N/Ee5ZzrwSkfXgSKPBygFbjN/PwTMcaSZA/zavD4d42yHVPP3hRiT2GesPMzwHcD1HV2+Dq7bAcAGYCR28hzXWNXR8rf2p802DjyE8mfBqucR5t9CK0IaLWWxGQ6GX+lzhRCPCCFOFkJktb/IIIRIB44GmswlqF1CiC+FENbJPwkptwohxOVCiBoM7dHtwG/MqISXPRbM5d+e2OXfgPFROqKj5LKwH3Vu4S8Ymofr211YDkg7t3BQ5Taxv2OLhY6QPeEhhDgCyMXQlIJRb2ullHVKskW0rM8fE9xCiK2mWdCHQgi1rK3Whxk+DzjZjDsJ+Ab4LzBBCOFSwm3mHR2M8zBW9F4yf9v6kQn1vc/B6IPjzN8nYxyQNsu8RggxBCggscp5UGG+7+eAe4icvmwh3rEqYaHJ8wGGOYB8CfxGCJElhOgC3G9Gd8ZYbq1x3FZtxiGlfANjOXkI8CpQKYSYJYQY1s6iZ2O0h+uBnwGFGIPeRyaZTFS5w5BSviqlzMQYtH4DLDOjEl72VtDZ/B9T/o7Evta5cr8Po3/8RgjRqX2lBfaznVvoALn3e2xR8jnosic6hHG41ZvAH6WU68zguOoT+KcQolr5W9rO4rYXVmNoCPtgmGQtBWYKIQrN+Hjq43Mi5PlkYKaUshRjSX60aeecT2KRyqkY5hUWwWvre9GAsXplK6f5d6IQwm2GbZRSbmpn2RMZt2OY5/wnSlw8bcnt6FfVQoj/aS9h9xaaPLcPrgCaMezD5gHvmuG7MGyjnJtJsjA0iQBIKT+QUl4gpewKDMVY7vignTce7DH/Py+lXGp+YH8PeIHjE1juFpBS7gSeNZ9t2aMdErJHgfVeWpW/o7Evda7cOwPDXvDe9paTA9DOLRxkuS3s19hioYNkT0iY5HAWxiTqPiUq3vqcKqXMUv46fEVoXyCl3CmlXCKlDEgpq6WU92HYx59hJomnPr7AOLG3M4aG2dqcOsv8fRKG9npre5VjbyCE6ItBdP+hBMdbzpOEEEUYk4FFUsoyDFONI0k87fpBhRCiH4at860xksRTx0FHv8qSUv6hHcTdJ2jy3A6QUm6XUl4ipSyQUvbB+Eg1Ad8BSzA2WgBgkrORZni0vFYDT2HYNGZHS3OAZK7BsN+LdmqOJEHlbgUeDBvRQg492VVZqjFswVT5izFm6Imm4drnOgfuxrDFLWpPAQ90O+cgyW3hQI4tHGTZExFCiN4Yy/AfSylvNZePLSwBBpimPhZGEbs+f4wIETETiqc+vsPYNHglhgnMYjN8JgZJPZnEIpVTgSVSyu+VMFs/MuEs5+cYJPki4CtpnEQMRjlPw7DZTaRyHmyMA7oAy4UQuzDMXgCWCiFuZu/HqsRDRxtd/xj/gIEYO3BdwFHAOiKbDcZh2IeejLGT927su0ynABcDeebv7hg77FccBLnvAbZhmC94MLRSpRgzxESW24Uxw81Xnv02BrHwJLLscZbvAYwj3/tgkOY3gE86WKb9rfMJtNyw9BbGhq2SBG7nHSa3+az9GVs6VPYOaqduDG8qp2Fslkwx/wSGacI24JFW7l0F/AnDA89Isz4vVdKUcAhtGGyjPk4C+pltKwPDDKualt5HYtaHme4jsz+9rYTlmW2zBnNDZkf/mX2kHGPlQA3vi7Ex8jKMFanLULxtmGk8ZllKgduV8AvNsBCQ29Fl7MC6TcP4Jlh/x2IoJ8aYbWuvx6pE++twAX6Mfxj2lKVmB1yndi4z/ipgI8YMfR5wpBJ3PsYSV4XZYbcDrwB9DoLcAvgthtu2alOOkYeA3C5zwC53PLtvosseZ/ncGJ4srKX5/2AS/Q6UaX/rvMXgiPHh9tH+5Hl/2nmHyW0+a3/Glg6VvYPa6c8wPtrOv97A8+Z1nePvp476+cKs7x3A3Y78SzA0/848hnd02fehPu7A8OxTb/brT4CjorSXmPVhprnTzPPnjvAlGK4Sszq6Hkx5LsUYTzOixE0CVpj9aAVR3JYC75nlHK6E5WAQ54UdXb5E+jPbV9jbhhnW1lgVrW/O7eiyWH/CFFRDQ0NDQ0NDQ0NDow1om2cNDQ0NDQ0NDQ2NOKHJs4aGhoaGhoaGhkac0ORZQ0NDQ0NDQ0NDI05o8qyhoaGhoaGhoaERJzR51tDQ0NDQ0NDQ0IgTmjxraGhoaGhoaGhoxAlNnjU0NDQ0NDQ0NDTihCbPGhoaGhoaGhoaGnFCk2cNDQ0NDQ0NDQ2NOKHJs4aGhoaGhoaGhkac0ORZQ0NDQ0NDQ0NDI05o8qyhoaGhoaGhoaERJzR51tDQ0NDQ0NDQ0IgTmjwnGISBJUKIq83fJUKIx9u4Z4wQolIIkXlwpNTQ0NBITDjH0Djv+asQ4t/tKZeGhsaPB5o8Jx4mA9nAq/HeIKVcAPwA3NFeQmloaGgcItjrMRR4DPipEKJf+4ikoaHxY4Imz4mH24CXpZT+vbzveeBGIYSnHWTS0NDQOFSw12OolLIE+Bq4qb2E0tDQ+PFAk+cEgqn1OB54M0rcr4QQO4UQdUKIV6KYaLwH5ACnHwRRNTQ0NBIOscZQIcR1QogVQohmIcRmIcS9UW5/C0P7rL+LGhoarUIPEomFk4F6YIkj/DLgFOB64E7gLOBfagIpZS2wwkynoaGhcTiixRgqhLgH+DvwDnC2ef2wEOJWx71zga7A8IMjqoaGxqEKvcSfWDgSWCWlDDnCU4GzpJR1AEKIeuBlIcRgKeUqJd0S4OiDI6qGhoZGwsE2hgohOgO/Bh6RUj5kpvlMCJEGPCiE+LuUMmiGrwCCGGOoU4GhoaGhEYbWPCcWugG7ooR/ZhFnE/8BBHCUI90uMw8NDQ2NwxHOMfQ4IB14Qwjhsf6AmRha5u5WQillAKhGj6EaGhptQGueEwspQEOU8HL1h5SyUQhRBxQ40jWbeWhoaGgcjnCOoXnm/xUx0vcANiu/9RiqoaHRJjR5TizsJrrWI1/9IYRIBTKAUke6LDMPDQ0NjcMRzjHUGg/PBsqipF/j+K3HUA0NjTahyXNiYQ3GMqMTpwohMhTTjQsACSxwpOsNrG0/8TQ0NDQSGs4x9FugESiUUn7Y2o1CiC5AGnoM1dDQaAPa5jmx8A3Q0xzEVTQCHwohzhZCXA/8FXhbSrnSkW6MmYeGhobG4QjbGCqlrAZ+A/xJCPGIEOI0IcQkIcRtQoi3HfeOwVBKzD2oEmtoaBxy0JrnxMKXGEuGk4CXlfDXgD3AvzHMNd7D4cxfCDEK6IKxmVBDQ0PjcMSXOMZQKeUfhRA7ME5gvQtowtAuz3DcOwmYLaWsPGjSamhoHJIQUsqOlkFDgRDiT0A/KeVZe3nf74GjpJTaz7OGhsZhi30ZQ4UQboyNg/8jpZzWbsJpaGj8KKDJc4JBCNEdw25vlJQyLts7IUQ6xsB/kZTyy3YUT0NDQyOhsY9j6KXAw8Bg02WdhoaGRkxom+cEg5RyG3AtLd3QtYaewG81cdbQ0DjcsY9jqACu1cRZQ0MjHmjNs4aGhoaGhoaGhkac0BsGOxB5eXmyd+/eyJDzNO6DBWXiFHMSFS1ctJ21iJUmerhU09seaf0QUcLilCUu7Nskcm/vOlDS7vOTDpYAbVXMfsgh9IS/VQiXsaC4cOHCXVJKp+eeHxV69uolt27Z0tFiaGho/DixWUrZO1pEQpFnIcTN+3jrjENxh3Tv3r1ZsGABTY2NB++hMkLUhXJNKBgJD/paz0NEt/aRarjL3XZ6V6T5qeS5I7hRqI2HxooNxSGrK565RttJ9goupT5jzmPaEbGqsz1l0aTaQEpqKgBCiM1tJD3ksXXLFnbV1gPR+5A69bauQxLcwh4f7X5na7L6ukvY+73Vv4Mhidv8oT7PulcdB6z7nSu/QukgQSXO5YgLy6ikcbuETcZo5ZLEHmtcIvoznM8JSnseVpnjqRc13sozXBeOZ1rPcL6jaOoUp/xSyqhjs1upGKe8qkxCCFuZY43zzrFdfb4zzAp3/o6WzplvtOfHesfhvKOLHNe3Jp53EQxFyhKtLqFl+46FWP0jmizR7nH2t2gyRkO0Z1phuZ3SEEL0inVvQpFn4C/7cI8EvgMOOfKcUFA7tEJqbQTbilfJcAxiE1YDtgAAIABJREFUHBfBVpOrnWwviLRNYb0f3Eklm9GIdGsfnL1Be/JYV0ew5BjoEMK+jw/VpPvHg3gnquGProMkRSM/YHxYvcrQ5XG1JGlJbmH76FuiuISRPjp5VtILESb1gZAkyRwrVRIKdpKsjihuJf+gBK95Y1CR0S1aJ1VWnD8obXWkkiThyMBKF5J28mk9MxZ5scrhto3hLcmrEKJFHaiIRsjVulQJq41UKy/E+b6llDairRIlNaXbzNdvvRvrFvUbpmZs+85E6sbrEuHvjjTzFWH57bnEIsrCcW39drsEAVO+2N8xEZ6suYWwfQPVuGiTJis8WvtWJ5OqrE4IaW9HVj26hL1cztdvtYdYkw13nB/okOP58SDRyDPAsVLKefEkFEJ4gDbUpBo2KOTVNqNXSXKMNNHi42FJsQhzPIiWfTxazYPFh2KV/lCgY9FI474S0EMZe1vmfSXb6nM0YT/wCMrWtb3OtNDyPcgwgbCnj3eSrBJOJ+FTtc2eSMLIs4nIn+R22QiLSwjcilDWZVDJKxiS+MyCpXpdkbKJCC2WZrp4NKlhTRwyXF9uYdc8u0SkLt0uQYgISbVNRBTyrcJJ5oNKHYko9ziJuEuAtcapkn+VAEoh8AcjEw+3AJ/Px6q1axBSkpKSwtxvv6Vq927q6+sJBgKEZIi0tDSaGhtpbGzC43GT5E3C7fWQlJREkjeJ1NQUOnXqTH5+PkcddRRZWVnhZwYdkwJfczOhUIiklFTq9tTyzddzWL9+Azu2bzfK4Xaza9cuSjZuxOf34fMZtMbtduN2u/F4PLhcxnV6ehpdunQhP78r2dnZ+AN+brhhKpmZmYA6sSP8P/K+7PVnyRuSMpzGqTwKKnEq1Pp2NqdoKzvqfU6odeXseyqc2na1T9j5jBnWiqY/lkzx9vVEI8+zgdq9SB8y79nTPuIcRrARXFXbbIbHIhh7qWGOqaneC8TDdfaHSLelwW3LxAP2XcN8oLTHhyEHPmiIhwQfjpOQjoILydatW9m0cQNl5RV0KyjgiBEjSc/oZCOsqhYqmnmDCov8xDTVIELGnJpYZ3pLwxp+lhBRzUncQoQ1mAJpIzwhGSGwLodcFmGWUuI1yYQVZuQrbdo7j1LogGJS4Vfu8Tq06B6lntI8QtH4RUiqS9H22kfAiBbVqTlWNaYGsW35QlzIMCkHGU4jBLiCfkJubzhvq2wiFKShvoEnn3ySHr16E5Ihbr3ZsApNT0/H5/PRu08fvB4PZWVlnHbaaXTJzyc1NZWUlGTcLjf19fWkpaWRk5NDKBTC1+yjuqaaPzz6aAsZu3brRqeMDBoaGmhsbCQYNMwgc3JzcbtcbNu2DYDOnTOpqCgP3/fbhx/B7XYTDAbp37cvV191Fd6kJJK9RpnqGxo4/bRTWzzPiTdff4ORo0ZRW1tDdVUVO3fupKKighEjRvDeBx/i9bRO9ZzvUTUZcr4RK8ZpjhOeeLqEnchC1LYL9nus8FAwQHV1DVJKZChIXUMjRUVFJCd5bf0oGKXfqXmCfQXDmvSp98VjvhULCUWepZQT9zJ9CNirexIRzg/tgdBKxfp4280jYmihifXDyjsOAnwASPKBQiwes6/VnEjmESrimlRojecBxb6SZK2FPnDI6ZwBQNeuXTnq6GMo27mT1atXMeaoo7jl57eTnZ1Nbl4e3bt3x+1220ww2tLAquQ62hKw7WOu2FeGpEIUXcYHPBTjsxwhAzKqqYVTfycwTESsZ1r3u12uMPl2ThaikXWrTNZzvG4RljDo0Nqr2kwhJR5TwRKQrvB46ELa2rUr6DfucXnCD/WIlvtbLKKmXruFwBc0nmFo8SPae4uauRCs3rCJZI+b/Px80tIzwnt3Pv3kY8678OLwc44/7jhcLhehUIj6esNGft3aiAvw6dOn06DsPXr/gw+orqomLy+PkpJN7N69m08//ZTly5ahYvwJJ1CyqYQ/PPYYgwYOJDk1jdSUFNweDx6XoLS0FIDivn1xu91UlJWxvXQHc2Z/hT/g544772zxjtzhNmSErFi5itraGtLS0vB4vFRXV1NRUUFpaSk33TiVSy69lBmvvcbKlStwoqJiF3vqG8js3MmoS6ITWUn09haS4Pf7+b+nn6S2phZfczMZnTuxfdt2Zn85i+2m5jwaLp58Cc89/7yxomJpuB19IJpJT05m5xZhxx1/PJ9+9jlSmUTGg0DIXhawk+uARdiJ+G32xJpRO6Bd1XUgxowZIxcsWEBjU5Mt/KCRZ9sNMTYSRs27fcnzwdLa/dia/oEgz1pjevBxoMmzsmFwoZRyzAHNPMEghJCvvfEWH3/0IV/Omsm2rVvJ6NQJKSW1NTUt0j/4/37NHXff26Z9Y7TvZyzb3Wjk2foNpiZOxt64ZCPooiV5jphoRH5bxDgYklE11yp5VgmzkzyDXYsdD3l2IcPfiwBxkmcFscizWwgCoRDlZWUE/D5219QyYMBAysvLOP+cs1lrkt2PP/2UcePGs2H9ekaOOMKW9/Bhw1i2fDlOnDFpEsXFxVTu3s2MGTPCBOqcc85h8uTJjBwxgr79+9Pc3MwH77/PlVdeCcDxx49l4cIFNDc3t8jzZ9dM4ek/R7ZpuYWdrIXrTLnHWf9qi4hFnl0t7J9bYsKEE5k/bx7XT53K/fc/QG5eXtRVl1jk2bZSIiKyhCQ0NjZS0CUXgLS0NDp16sRDDz/C0iVL+NtfI+X3eDx06tSJnJwc3B4PN99yC9dee13YVAha70PW85ubGvn8889pbmqmd58+9OzRnbwuXXC5XFFt3luDSrRjbdKF6OQ5x9gwiJQyqtAJTZ6FUdNjgQFAijNeSvm3gy7UAcSBJs8HzHazDfLcHlrlRCRttvpRJxehGOcoxPPe2qrbmMIcoDpX69nMM64NoAoS8V39WHAgiPThRp43l5azZXMJ5WVlNDc14fa4WbN6NS8+/xzVVVXU1taSmppKba1hEdi//wBGjhplkAqPhz59+jBi5EhOOfU0PI7lbRuxVGx4Y10HAgEWLVxIba1B3FNT0ygoLKKoqBBvUnI4X7crck+sTU2qCYNKWBGu8BgUcnsRlqck4Qr3TaFouoVC6gQtN4dZUG1bnUvbLoXQuRz3OEl+JM7473WJsJlLQEbCk0UIhIsQgi+//JIHH7ifxYsX2/K45popNDc38+qrr4TDzjjzTH52zTV0yc/nnbfeorCwkAULFrBq1SoqKirIy81l27Zt1O6JWHMOGTwYj9vN1u3bqaqqCod3717ETy+7jMycXLZv285fTTI49aabOfHEEzhyzBiuufpq5n7zDU68Mn0GwVAQt9tNamoq/fv3p0ePHoaGW9onT+HVAcdmPAuqOY01QbGtTinvWNXe1tfXM2zoUMrLywD4bt58+g8a0sJOPNaGy9a8w1hwCUP7/OWsWVx4/nkAjBs/no0bNjBi5Eiuv/56Ljj//HD6qTfdxOOPP9GifNHyjeWdJdrGXecehoaGBjZsWM/GDRvYvbuKhvo6Nm3axOwvv2T9urXkd+3K9wt/IL1T53Berdk/O7/M3TLTD03yLIToCnwBDKHlZlLjQkp3lFsPGWjyrDwyAQmZJs/RkYjv6scCTZ73DkIImZaWRk5uLsV9++Jxe9i9ezf9+vene48epKenc801U8jKzaNyVwW7KiqY9913pKQk8/WcOSxbtpSlS5YA8O/nX+SCiy6K55nha6e28cbrr2PGa9Oj3nfR5Mm8+frr4d8TJkzknQ8+jOpyTLVBtUwdrLahXkNkKdwlg0jTRajajJxkTSXrvqAMk15fUEYl9eoGQ5ep9bZImMdlt9+2iLUQCuGD8LgiQoHwGCjdSTTV1fDD0uU898ILvDztFTIyMjj2uONYumQJ5eUR2+BY+Mc/n+Hiiy8iNyfHFj569GgWLVrU5v1OjBo5kquvvoqp110Lpi01wJLlK3ht+nTWrVtLfV09SUleXG4PHo9hr1xXV8e6devYWVrKnXffy5133kFGZ2MDn7ONxCKs6qiqTlBcMmgfl5VJlM/nIys7GyklPznvPF586WXcbnfMDesqeQ5J+2pGOHvlt0VYrXTBkKR8ZynLli6lU6cMxo0bF04XaxKoejhxTkJjecVQXdCpmvLysjJOO+VkfD5f2I48GjweD+NPOJFXZ7xOSkoLvWsLWPbQtbW1PPrwb9m8uYRtWzazcuXKQ5I8TwP6AJOBrcAxQBlwBXAVcJaUckPHSbj/iIc8741t5P6Qmva0u0xUshWrzCIUIBAK0OCrozHQSGOwCX+ggUAoSEAGkKYfbIEgGAoQCAUJyiChkI+gDBGSIWQoSAhpzG5thNlJnkU4L0FkYBEtbMNcyh3WcqA0tE3mcwzbspDh0sdcepMyRBBBCEOuoEsY/2WIIBhyI8NyWzKHZMje9hAIYSzRel1ePC4vXpeXFE8qqZ5UOnkz6N25D11Su7TqV1OjdWjyvHcQQshK089zVA2LlQ67K6qynaUMGdDPlmbQoMEEAgFS01LJzs5m3AkTSE9LY9HCBcyb9z2FhUV4PB669+jBRZMvYeLJp9hc0AlgU0kJH7z3HgsXLOCtt94M5/2zKdcy+dJL+fjDD1m1aiVlO3dy7XU3cPU118T0gey07bQIjdvlHB0MBJQNc07Nsc3+WUbm0KrZh0qsgtLujs+6321qra3cAiFJktsYm/whaZPR2rSomgE4Na9//9vfuPeeuykoKKBfv35UV1ezfPnysFYwOzub+vp6fD4fubm5HHHEEWRkpFNSUsKyZYZ5xvfz5rN06RKuv+46kpKSCAaDBINBcnJyqK6uJqQcQtavb18qKiqoMVchCgsLaGxsQkpJdXV1ON3AAQP49NNP6dq1KyFlw2MgJGO2MX9QMmf2LKa/+ipzv/maJ556ikmTzmhpZ66Oq8rExWm+Y60OeEVkghQy30UwGOSf//gHd999d/iehx95hDvvvMu22Q/skx+vY3kgmhmE09+03XVc9LFdXZFQn9+axxtnXDTTDktbXF5Wxk/OPotVq1YCxhkZtXv2cOYZZ3L82LGMHDmS3r17kZWVFc6rtHQHH330ESkpqRQWFnL82LHMmjWLcSdMICkpCYAnHnuMv//l/3C5XLjcLirMCdv/PvEUp500gVHGCtUhR563ArcD7wABFBd2QogHgfFSytM7UMT9hibP7Q9f0EdZQxml9Tsobyynzl9Hvb+ePb49VDdXUd1cwx5/LXX+ehoCDTT4G2gMNBKQMbTLGq2ic1Jn+mcN4LhuxzG2cCzFnYs1md4LaPK8dxBCyPIagzwHpcRlj4v64VY3DPr9fqqrqli2bCld8vNJTkqmqamRhQsXsWnTRpqammlubmL4ESMYaJLr1197lddemcZrb7/Hti2bWTDve3r17kNlRQU5OTk0Njbw5z89TUpKCrm5uTT7fGRkZNDY0EBtbS0+n4/8/Hwu/+kVjB03jr79+tHc1ERTUyOBQIDMzCx69SlGmFpkS1tnaS9V/hOS9iXxUMDPi88/x9IlS3C7BXfceTf9+ha3OFhE/a26hwtJCAaDlO/cQeWuCpYuXUphtwL6DRhAcnIShYVFuF0uG0EKe7iQ0mY2ol6r2lLrekdpKX379cftdjPj9dcJhUI8/PDDLFu6NJx3r9692VxSwgUXXMDKlSvp1q0bX375JQDdunWjctcu/vvJR0w85TQAiouLSUlOZuWqVaSlpREMBvF6vUycMIH+Awbw5JNPcv21U+hb3IdH//eP/OF3v2PI4EEsWb6C239xh1G/bjehUIiMjAyOO/54Rh95JH379uOUU04hNzdXcaFn938siUyAzj/3bGbNnMm111/PlVdeyejRRyKEwCsDYRtwEfQRdEdMeSLv1D4GuBRbdq9L0NjczLFHH8X6desAGH7EEbz86mv06tULAH/IaN8qYY5m1+6UX51wOfcExHIfpxJmtxA0NTWxbNlSBIKa2lo8HjdDhw4jPzcbAOly20yI1HaoTuKsOg6GJGvXreW4I0cB8Is77+LpJ5/g3J+cx9/++QydO2WE5bRkrK7dw6vTXubPf3qa448fy9ZtW/l27lyb3Onp6TQ0NIQnacvXrjfMZdxu0tMzSE1NJf8QNtvYA5wppZwjhKgGrpBSfmDGnQS8K6Xs1KFC7idikedY6Ai/vOpSYaJDSsnMbTN5be1r7GqsoMZXQ52/LmraFHcK2clZZCVn0cnbiXRPGhmeNFI9qaS5U0j1pJDm8pLiTiHVnUIyLjzCg8flxhXW8ko8gEe4cQsXbsAtXLhw4QqFjI0eCHN3eJT6s5YvTXtGqy9KKyySEIsWSIe+w9JBGQcZuLCeKDxe8ze43MmGXMKF8KRErt1JhtyeVFzChdsMc1n5uCP2nyGEuSM7RECG8If8+EI+GgNNNAUaqfZVs7FmExtq1rOschnratYD0KtTL64efDWTep2Bx5VQzn0SHvEQ6WiT68ONPKuaZ3W5WSUzKlQCYdfItjxMI7xcrbwLX1MTz/z9r/z3k48JBgJcfNnl7Nyxg7wuXajavRuXy8WePbVce/1Uivv2DZN11RXX2tWr+M9bbzJ/3jxKSkpISU0lLTUNl0tQXl7Otm3bmPHaa+zevRt/MEhGejoZnTrha27mmGOP5Y+PPcae2j106ZJHSmoagUCAnOxsvF4v//PLe8OyvvHmm0w648yo7rmMchmErLq6mt///vd88cXnbC4pISsri8zMLEaOGsWWzSWsX7eOMlMrl5/flaysTAoKCkjPyKBz5840NjTQo0cPehYVUFBQwMBBQxg6qD8lJZtZsGgxwuNlw8aNrFm1EpeAJUuX0bt3H7IyM1n0w2L27KkjOSWFvn37snXLFlatWtXiva1YtZrevXqxaf1ayisq6NWrF9NeeonHnnyKuro6hg0dwtFHHcVXX38NwKZNJUyePJmiwgIef+JJJl98Ma+/8QZgeN/w+ZqREjpndqZnj554kpKord1DYVERI0eNZszRx/CvZ/6B1+Nh4YIFLF68iGAgwKmnnsr//fnP5HVOj9jHCGHYI5umHt999x0nTZxok39PbS0ujxd3yNxI6TCRs0xuhJT4lfelEkt/UHL26afy7bcRMjh02DC+mvt9i9P/1LatrghYUAmnCnWzaDTNcXjVwe/j008/5avZs1m/bh1NTU2sXr2argUFJHncZGZm0tTczNy53wLw24ceYvz4cRQUFpGbk0N6p07h6gtKGfUQoGBI0tTYwP978AFWrVzJooULaDL50ow336K4b3/+8be/MnDgAPLyutB/4AAWL1rEbbfczLPPPc+ll1zCmjVrGDPaIN9ZWVkEg0FWrl5DanoGpWXlLFown3PPPRe/Ob+zypt7qG4YFEIsBR6RUr4uhPgG2CKlvMyMewq4QErZq0OF3E9o8nzgsLJyBU/98BRLdi2hV6deDMoeRGZyFlnJmRSkdaMgrZCuaflkeDPI8GbgcXnstsvq8eRWuHJMuQj4Wk8LoFyLoBLeAR5OpCdir4c7SQmPaDqkRY7VeJXgKkes761d9M7GcuaWfsNb699ibfVaCtILufWIWzi152ltl0MD0OQ5HgghZG19A2AnypadabQjj90isoHNCXV5XE2h+rFVCYV6kp1KOnwOm4skxQ2cxO5Rwe3Q3AYCAe6++262bdlCbm4uXq+X2ro6GurqcLndzJ49mz179jB27FjOOuss6hsa8Hg8VFfuYtPmLSxdupTdlZWkpadz4403cv6FFzGgbzFgbNhzKROEAf37sWPHDgAmT57Mbbf/gj7FxWRlZtpOvPMSIhAIsKt8J1JKamr2sGNnKQ31DVRVV5OWmsqWbdvZvm0rpaU7WbZ8OZtKSsjLzeW4Y44GoHevXgwbMojaunqys7Np9AWYM2c2ixb/wOhRo+leVMSylStZv349WzZvbuHhon///tTX11NWVkYwaGzUk1KGzTIKCgqQMsTOnWW2+6a9+DyPPPp7Vq+JuKZ79HeP8MCDv+KYo44iJCXz5s9nwoQTOePMsyjbWcaTTxob3i659DIuuvgizjzjTACGDxvKxo0b6dWrF4889GtOPekksrIyDfIcCobHVyFDPPGnP/PAAw+En1lTXU1SUlLYPZqq+fW4RPgzYW0W9AUlS5cuYfbMmeypq6O8vJzSHTv49JOPjTaVlMTEk0/mhZem4U1OabEiEc1+3WlCEsvDhpNUq230q2/m8sq0l3n/vfcYPnw4kyZNYkD/fqSnptKjexH9ivuEvx1SuJg27WVenf4agwcN5NvvvqdiVyWVlZUUFRVx3HHHM3bcOM674AJmzprN5ZMv5LTTJ3HMsccwZcq1LFiwgKVLl7J82TLe/s9bAJx3/vn4fD7WrFnDhvWGkuaSSy6lqbmJVatWsXbNmrDcb739DiefehpjRo0Ia+rV8UKdJKj+oOHQJs+/B7pIKa8TQpwBvAuUA36gJ/BLKeXjHSnj/mJfyXOiE9n2QGtE4rud33H7nF+QlZTFjcNu5Jw+Z9u1nLFIahsk2EaY49notx8bBsPPj7EZ0S539DLYoBJfb2TDhFSJsrUhRtEwq/ExT5JUSXobpFpKydelX/PsimdZVbWae0bdzeT+kw9qGz4QQ1xHd7l4DmM5XMmz5Z9XJayq/2MzXfjjaNgptySvvmDEz7Jqv2shmr2n6hXBaW6nbhJzkpZo4U7yr0Il5s2NDdRU19CtoMAg7wHz+6H0+Rlv/oePP/qIpCQvL00zPFWMHDGCnNxcJk6cyHXX34AQgjt+cTvTp0c2OP75acOsoUUft35Lw0OGsBQLwhUeg5wbqZuD0jgdj5B93LNW3DwpxrU1DskQIYt8BnxU76ln1KhR7CwrY8iQIaSlpZGens7s2bMZPmwY0158gdlz5rBk6TJ2lu2koqyczpmd2bp1G7fcOJXb7ryL+395D/fdcSve1AzWb9hATk4e515wIYt+WEK/fn25/dZb2LxlC398/El+/+ij3PaLO5g5cybnnH0WAEeOGcPCBQvYsnUreXl5rF+/ntt+fhtr1qxm6NChLF68iKSkZJ584nHOP/eccNlE0M/ajZsZPnoMf/7TU1x44UVkZ2c7Xr5ax8bL3bNnDyUlm1mxfBnvv/8+33//Peeddx6dMzPp0qULhd26MXzkKHr27Mn8+fNZ8sNiirp3p7i4L2vXrCY9PYPFixfR7PNz3/33GyuS2NueetqirY05XCuCcdKlC4kIBSjduZO7fnk/CxfM54apN3LBhRfSs0cPwOhHjQ31bNmyhe7du5OZkd6irPPnz2fCxIlcdumlHHnkaBobm5g3fz7vvvsuKSkpHHvc8Xw5a2b4FpfLxbgTTmDY8CMYNvwIKndV8OH77zNlyhTSM9LpW9yXzSUl9CkuZvjQIeH7ynft4utvvmHpkiXcfOvPeXXaNO77n1+G89xVXRt2e2fZgKvk2bLhT0tNOTTJsxNCiDHA+UAq8JmU8uMOFmm/oclz/IhFHnbU7+Cqz64iL7UL/5r4LBlJGS0TafIcuT7I5NmCP+jnvm/vY/aOr7hj5B1cNvDymGkPNDR5bn8IIU4BHgGGAU3A61LKm824q4BfAwXAMuBmKeVCM24CMAuYJaU8ScnvCoyVx95tPFeqh1uop+0JoZ6EZ/dyYKE1t2tOY6tohFt9L6oniZAnuYULOSupelogECbsvmAobD/sC0Y+7P6gJNXrCpNxdQOZO9AU7uu1VZX881/PEQwF+c3Dxil4RUVFFBUUsGDRIs6cdDoffGR8Nl99+UUuv/JqALp06UJFRUVYnk/fe5sTTzwhnK8I+m12uhBZwRJBf2SFLhQCjzl+hAIQQ4GBc8wwxzzpTopoLJWVQXU1TAT94XFLBP1hjW843npO0Bd5fsAHLuOZzQHJ6nUbuPzqKazfsIH09DQGDxzEmWeewd133E5VbR0nn3oaW7ZsCR+RPeO11zj33HMBmDtvHidPmBB+Xp8+fdi0aROzZs3iuDGj7GNjwEdeUS8GDujP7C8+w+v1GuWy2ojbG24/j/7uYf7xz2epq6+nZ88eDBw4iAknnsCVV1xBp/Q02zgrZIjy8gp6FvcNh/Xs2ZMhQ4dSX1/P4EGDeeaZfwJQU1uL1xtZhQwomwedXjDC+St9wusS1NfX869/PcsTjz/ONVOmcPe9vyQtLc1Ia6Z78IEH+Otf/kwgYLyzd95+m9NPPz3yDoWL9evXM3zESKKhuLiYSWecwaaNm7jvgftZtWo1gwcPZugRI20a9BabDJX+Gq1/Azz061/zwQfvc8+993L+BReSnJSk3B9F8y+N9pSSdojaPB8O0OQ5fkQjD02BJq6fdQPb6rbx0ikv0qNTj+g3a/Icue4g8gwQCAW4/9sHmLV9FreNuI0rBl3ZavoDBU2e21k2gwC/A1wHvI/x/RoipVwkhBgHfIqh+JiNsQn8LqC/lLLWvPcLoAa4StnXosmz29AAbttRSmF+Hm6v0Tdjkee1q1dyxJhjAfjonbcpHjiQ5qYm3n3nHeZ++y0bNm4iOSWF5cuXk56ezttvvs538xbw9ttvs/iHH8Ly9C3uw4rFC3405Fn6m/l+0WJ+9fAf+Prb7yno1o3tpqlKWloaDQ0N4ftfeO45fjZlCk6kpaXx7jvv8Mv77mPRwoXh0wrvv+8+7rrrLtLS0oy6UcsW9BMKhTjhlNMZMngwDz/0a/K7FdrI867ycp577jn+8L//y7zvvqVv3764XKam39Jiy1AL8gxw06238fwLLwAwYsRIcnJy2LptK9u2bmXAgIFceNGF3HPPPbZyxEuey8vKmDVrJt989RUffPA+Y8eO5bcPP8LAgQPCk7ja2lqmv/IKM2a8xoL58wEYPHgIl0y+mGuuuYb8/HwbeQaoqdzF2RdcxIIFCygoKODUU06hqrqal16eFvaAoZpM+R3uE/eFPKt9PJqfcvgRkGfzUJSbzL/ewE7gP8BDUsqGVm49JLG35PmZwhZXAAAgAElEQVRgYV+bRDTn7y3yVq5j8ZF4jr8OhAL8bv4jfLT5Q54Y/yTjC8fb4mP6aI5BnqOR2lh2yPHYBUs1PEa1qHaXEfIcXSYRy/7aPMXLlocTNrlUotySPKsfPFs5Y5BnFbGItErwAqEAv/ruV3yx9XNuHH4TU4ZMiVk/8bSng4X9OZL9YBPvVNOv6UEkz98Cs6WU/xMl7kXAJaW80vwtgM3Ar6SUL5rk+XPgXgzyPVxKGdwb8txYb2wKDpMpDCImQoFIm1QOl2hh7xxrQhv0h0liiIiLNXW527kxyxp3RKA58uId7Vjdd6AeeDFv3vd8/Mmn7CwtZeyxxzBo6FAef+wx3n//fR584H4evM+oXunyIII+6uvr+fCDD5j55ZesXL2G5StX4/f78fv9LP32SwYO6B8uO+YejJdef5v3P/qExUuX8vG7/6G8YhcnnX4m1/7saroXdGHkiJGMPfYYMtNTbOOfdHuQUvLZ7G/oXljI4P59qNhVSU5OTvhgGeG3f8fC44fbsVHYCneSTUtW83/4fpfbYfZh1nHQZ9RlNH/SQR8EfFTsquTqm2+nZPMWjj/mKJ7+wyOkZuby0SefsG7tWrZu287fnvkXWZmZDBs2jK/Nw1AszWogEKBLXh452Vn4/X5Wr10XftTgQYN4d8Y0evXsgfQk2yYZYbmBqqoqHv3j47z+xhu89MILFBcXk5WVRUZGBr+44xc888yzLPzuG4YMHmwUz5Pc4ptlI8/WOC9cNPn8lJWXU1G2k8qqGgoLCxk4oD/epGSb/b51nLp0uaP6AFd9d3879xsuueQSxo8fzwnjx3POOefQvUdPW3qASyZfTCgY4vobbuDee+7m/PMv4DcPPYSbUGxFimn24/P58AhJ0OwLziOxrUmwurlX0nIDsMpfVb/kan5WCst8pcVpmdBigyZARlpqq+Q50ba/3wj8BUMT8SGGn+c7gTzg2vZ4oBDif4GzgR5AnfncX0opdytpYi47mvFjgL9hLFmWAr+WUk5rD3k1YG3VGh5Z8AhrqlZz3dDrWxBnjcSFx+Xh4WMfxuvy8I9lf8cf9HH90Knand0hCiFEOnA08KkQYhHGfpTlwN1SygXACOAFK72UUgohFpvhKv4C3AJcD/xjr2SwJpBCRIiVv9EgGeZKigj6ENaqiukZATAmn8phGGH73aDPIOABY9OaWwhclvY1oExSPcmRiboMRWSxsguFqK6ppaqqirraGtLSUvGmpLFowQIATj5pIs2N9Yw/5QxCwSA/vWwyY44YwtSbbrLlU1W5i5tvnMqOnWWsWL2G7oWFrFi1mmOOHsM5Z0ziiksvYdQRw8jISEdKiSvQHCENAV+YfF112cVcdfklEArw7gcfM/nq64z8d+8iNSWJFLcgM9UbLreRgYtPZs3hmht/zu6qKnoUFdLU3EzFrkqyMjMZNWI4PYsKEULQv7gPw4cO4qQTTwi7A7QIUzg7n6IHsxHfyPuT3uQIeQ/ZV7rC4cJll1OGwpMEi3BeNmUqY0aP5P1XnsPj8ZircCHOmXQa8qyzCAYC3Pc/vyQ/J4sflq+ipmwbP7vlDp5+7A+cNP54PB4369au46//eoFpr7/FrVOv5c7bfk7Jli1Mn/EGb77zHnf+/GZcjTVItyes5BDBANLUwud0SuOx3/2W448ew5133kF1dTX19Q1MPPEEvp8/n7emT2PIoIHhYria9xgkXD1YxjrQypuqrAL4SUny0qt7Eb2KChxabx+W+satro4E/YTMlUghJUIhmR7zck9NNWNGj2bG9OmIUIDq+iZKNqyjuLgYl6oUkZLPPvsvT//paY497jgef/wxVq1czudfzLRt9ly7akXYNlq6PCBDJHk9SJcbtyma85j5ZPMxqo9t6djI6FdIspNYq6dbqr60k0UIv9meBOAyJxVejKPmIX5FSaKR55uA/5NS/sIKMInrc0KIm6WULQ+Y338EMQ5eWQ5kAS8BzwM/MZ8/Dvg79mXHj4QQ1rJjJvAx8DgwHjgBeFsIsUFK+W07yBsX4lHaxdLsRQt1OvCPnl/rebQG+/Ko0tnNhtwcbGLprqV8vWM272z8D5lJmTxy3O+ZWHSSbWOOBZsjekULjFQGmDY2FcpYWmBVw6tqhJXn28wf4vBaYYXbJuyqQsymMY6uSbdp9WOZfyjyRrsv6klWACKOwzyVe1WNWkh5P6aeg/vG/Bq38PLvlf+mrGEXtx5xG+leu716NDdjTsRywB9VvL0k6Pblwf/P3nmHWVFkbfxX3ffeuTN38pBzVkQEUUQMqERFUMw5ophxzTmLAcMqa86KCVkjBhQRBXNAzIKSRDJMvnNjd31/VIfqYUYG193V/eY8Dw89faurq6u7q9869Z73BIO/Gi7f8C+bexf/4vOGEsBAgd59gB+B81FjZC+gAEXJ0K0SKNR3SCnTQohLgTuFEE/xGyaEmABM8P62GqBXOcveDT3vQBB0ZRL+MQHFnLTvSZR4NAwhbc97bKZqA55k912vLC/ngYcf4Z777ieZSlFSXEwsFiORTJBMJOm7bR9mvjUr0KbP5r7Dop9+Yu6HH1FSXMwB+47ikaem0Xeb3uRHw7Qqac+ooXvQu2d3Pp2/gFFD96B1yxaB9pJUKamVJ9RZMg9HfQqAu2olbXYesB377j2CXXfbnWgkh5dfeZm77nsQgA7t2vLrqtXcdM3ldOvQjkPHn05OTg6FBQXs0H87+m27DQeM2YfSokK++uZbVq5eg21bLFq8jJtun8VJZ53H6OF70bZ1SyLRXI44cD+6de4UAMgYJsJKY0dim9wTYWWRDj1N2Jo2stGAp7oeYHavD2GwZNlyflm5ikMP2I8B/bbzfwNw6Dcty0qRQP/e3fm0agOr1qxl1YrlFOYpCn6/bbbigTsmM/7ow9n74KNYsngpC39eTL++2/LZF/P59NNPefiOmygoKAzQWkQq7rXRsNIcPHQQBw2fAWaYtevWM2vuB5x07JEM32tI4DuCtBHZdGBS6CbJklbaa78M5yFSTgpyM+I/uy7lowFtbYDZb77ONTfcwudfLuDZxx9m3Nh9IRz1xu9BA/ox/vPPueLyy6iqquapZ56hrq6O56ZNY9+x+2FIi59//pkfvv+edu3aUVpUyAN3/4P2bdow+Val4dC9ezcEgu7du1FSVKj1uT+REhp9KST8+yJs/z6a2r033Gty3kPTMOt99NxVC+07K/HK5BgGwrYJG5tmu0RKIvW/mbm/nZnwz0bbqENpO7+r7csHqoE+UspNxR//+DbsCzwtpSxy/t7csuMJwDVAZ+l0phBiKpCVUp7wW+f6d9I2/trgWS3vL6z4gS/Wf84X6z7j243fkLbTmMJkn86jObPfRAojRY3W11AWJ6BR7miD1I7GwHMDkeObVLeF4Fnnt3nWGCd7SyX0GgHEbhul7nkLbV62rlHahlY+AJ5lffDsJHSQNg98ey9PL5xKi9wWnLf9RezSdjftuAZPE7D/FHgO1NNo+d+Hgv9o8PyfpG04zoNKYJKU8nJnnwDKgaOAG4DHpJR3aMe8DCyWUp7r0jaklCHnt49QNI6FNJG2kV6zxP0jOPAFJs32JtxZr4yn/hDxZRul7VE/gCDFwMr670m9CfDaNauZcs/9PPrEk+w9aiTnnn0W2/bpo4CiAw6lMBDZJPF4HZU1cUqKizAMgxFjxrFhw0YOP2gcZ4w/lqqKcrbZbSSnn3gMd0y6KnjhOjfYBZ2GqVEdDD82wgz5771db7xy+bUo3d7X3nqH9z/6mCn33O8V6di+HStWKo7wp7Nfp992fb0APGH51BhFVVHbi5YsZc7cD9hQXsGq1Wt4Y/a7TL76Mg7Zd7jWj6pPvbHSDAfAjH7v3PtgR2L+Pak3lgs7G5zIAMlkkmkvv8bfLr6ccChM965d2GXnnTj68EPo26u7RzmRZgiRTmBnUjz5z5c59cIrWfnlXEpLip3KVZvLK6t5ceZsem/Vk0E77UQ6neawE05hzrz3Wf/950Rz1FgqQzn+fan3jZDhXK/OBukYtpOO26UgafdYUVU0UOc+4/U9+PoYbVteuVRdLQVd+jB27xHMmKkmb6u/+4yy0hL/mQpH+WLB17w28y0mTb7Nq6YgP5/Zs98mkUjw8MOPkBvN4fbJN2GaJgcffiQff/IpGzZu5OQTj+eu22/xrl3nr2dzCgM61w1+a/Vvt8ZxR5u8bmKad14H6C7FyWtLqB4dyZscb0qRjJS0+UvRNqJAfW6zGw2S+x9qwzDga+3vzS079gPmyyCinA/8R6KhthQkNwXUNgSUGwPGjYFq/fHW26gDhfrZwDYk1vPJ2g/5bO1HfLH+M+JOgpMeRT05oPtB7NhqEP1a9ic/nNdgu0WgPm27oYASCIJNfebvANKgJ0QDrBltfzruX2e6CZMg7YMuAlrMzqAb4Bn/Bm/MLRIA1dqScSNgNwAgQq6XRAso1PtHDzRszCXeBM1nPTjK5dU5i+uc1Od0BrcZwi3zJ3HRh+cxouM+nNn3XPIjBZskMnet/nPTVNNXNHRrrAZ9yGzsPDrA3hxHe0s9038Fj7SUskoIsYyGhxYJfAUMcHc4wLo/KpalITsfeAu4tqltEBnnk2FGvImlDEUR6WRgUtrQhxJh+Ks6tgWmG7wWwsgkPS10YfleKhmK+F5Fw0SaIRKJBIP22puFP/3MySccy7SnnmBw/z4kkkk2rl1Ji2J/om8440p+WBBrVYaQNs/PeI1wyOTb998iFApRVRvntAuvAGDYkF39tqpODL53DQTZkbUQroSdGQlwv4WdDXjYF/+6hkNOPJ1vvv8x0K9njD+O4488lK6dOzJ33gfsMnAApS1bIQ0jOAZKZ9wxfbrHVl06slWng532hXjrvQ846tSzmT33faZcd6kKDtMl8AA0jnmA/mKGfQk7KxOUyat/Xz1vrQKf0ZwIxx12ECOH7ELINPlp6TLeeuc9jjrhZNZvLKfPVj2RUnLMoQdw0D7DufLmv/Ppgm8Y2K8PBWEDkVbwQ4bV+UsL8xh/xEFqn7SImnDLVRez31En0nPnoQzdbTA7DdiOU489ghDq+yKF4ev+S+k5PGQoEqCgeH1hZ5GRmPd9MqyM/8waoeD4n0n79959Pt1vifvs2hbZVILnX53JizNeI2SazJg5i+37bsOX33zPQ49PZeKEE8jL9SHWjttuzQ59tuKGW26nsKCAqupqampr2WnQzpSVlhKJhDn+qMO57957SCQSvPr6Gyz4eB7pdFpRUDxQnFXvkTPZDKVr/VUEGaQ4ee2vJ43oPQve9fkT3OD33FmBSCf8YNd6336ZSWl9afpjv5Sa59u5VyVt+C1rEnh2ltO2xKSU8sYtPMa1gxwOsWsGahA+RAixc71z3Ps7z9GgCSEOQi0/7qHt3tyyY5OWJbVzeEuOnTp1+hdb/Ne3VfGVzFs1h/dXvcv3Fd8C0DK3FXu0G8rA1oPYodUOlOSUNHNi/4etd+m23D/0CZ5a+ChPLnyMBRu+4ILtL2f7Vjv9t5vWbE2ze4CzhRDPAItQcSpJ4EOgBpjprODNAyainCQvNlSRlPIDIcRMFIiON1RmEzM1hQdn20jWIEPhQLIiYTneOzsbWG2RzldQSNtf1XE0iBsCNyKjBQPaFpghUuk0udEorVu2YNo/X+TlGa+Tn5/HkmW/AJBau8yvywz7wCiTACtNr46t+XXlKkJC8urMt7j5H/dTVV3Ds/f9nf2G7QbZZBBoum3RukGQ8mkDenvTdZsG7Wng5MvPP+Ob739k8I7bc9HZZzBoh+0pzM8j4hJMpc3Y4bs7mxYinQioWnj0EG3VKsBzljaHnXQmtfE43/6wkH5Dx/L6M4/QtX1r7364bRIOhUZxfoV3LX4Zf+IgXbDu/u0E7XnHuJ5+I0TbVore0rJFGbvsuD1XX/g31m7YyKLFS3nsmelMe+k1dhu4Pfc/OZ0rzzuTy087DpGTq2aE+gRLB65Z1d9bd2rNonmv8f3Cn/hs/lfc/cRzPPvPl3hmyiQ6tWuz6eRc89S7QFCnpiCEohJpEx4dWIsGMrW6HH21nQlwpjFM9jv6ZD767AtuvOIiXnhdeZy//OZ7/nHdJTw34y0+/vxLrj73DLbfdmvmffghU59/jZ+WLkNKSf++2/DeBx8TDoXIZLNsLC9nuz69Wb9uHT8vWkRdIsmT99xOz3YtlCyezEDG8p4JaYY8ag3SDgaWus+l7oHX+1kvb1vISK4/WdYnElbWWw0JrGDUN/2dzjRM6WqKQwhoGm1DCGFDIGhxcyallE0gSTZ4nqba7zrHb5z7EOB+4CAp5Rxt/wJ+e9nxDqCLlHKc9vs5wDFSygH8hv0RtI2/oud5dXwl7696l/dWvs3CSsXE6Vm8Fbu324td2w6hW2E3Dyy743dDmcLqm747EAHf7Hn2D9XrD7lLjJqHWc9A2IjEXaOydY3QNjLaQxL0PDtltT9+KP+Om764hhW1y+lZtBV9yvqxbVk/ehX3pk2eSgrx+z3PDe9vnIax+fMEymz2/Fs2Afy988X/gtqGQFHXJqCA8ZfAOVLKBc7vxwJX4wdcn1ZP59mjbTj7egDfA6uaRNtYrbKMBTyqm/sANiSdplMIHPDngVFNRm2T98wNcjPDyGya1WvX0a51K4aPO4yP539FNpvl54/eolOH9l47A8v12QxSSvqOPIitu3flwy8WcNoxh3H+hGO9e4kQHjioT/3SqVuet1HzyAbOZ4Q2lcPUJx9utbZOx8iAafr9oHPDpR2YoMhIXqD/3O2Zs99l7LGncv4ZE8hkMtz5wKPMe3U6O2/fN1DOq9eMBOlkelCmdu6A6dzeelS1wPilJWUBiMfr2G2fcfTt3YuVq9cydtRQzplwvO+JtLKBsVAHf4Esrak4n37xJa+8/R433/c4119wFheffuImL7IH8M1wAOx747EL1hsY52UoGnjGvedTl/YzIwHwLIGcNt0A6NKxA127dGLOPJXee+NPC8hmLbrtsDvxujoevPU6Lrnhdi792xl079KRVq1a069/f0w7gxCCTNaiNl5HiZtVUeOve99TITTvsh2c/OixI9mkLydohrVJUMQH22jfbCsTpCZp/eJRXSD4jNhZf3JnhtSz7B3sv1OqfgfwR5QHPtRuq39dqs4BtUngFeBJ1AD4myalXL7Ziv8k5vCWbwPGSik/qPfb46h+Otb5WwDLgCs1zvPVeqpwIcQTgPWf4Dz/FcBzKpvix4rv+GL9p3y0Zh7LqhcD0Kt4a/ZsP5w92g2lbX57r7wOSJrBcwP2PwyepZQks0leWDKNL9Z9yg8V35JyPIZ5oRjdinrQOb8LHfI70bGgM+1jHWgba0fEDHIdG7Jm8Py/Z0IImVnp0A3sbGDpV2R16Tr/wxlIXR8IxK33jNdfytU+zt57ImVAj9jjdmazFHbfjq6dOrBm3QaO2G9v7r7uEqduI3hznXHolVnv8fTLb3D5xAlsu1UPD7AC3oc90Db3Tw80hX2ArXsenTYHTH9Xc9yAPT2WItXg8e411td93uQcmrfULZtIJDEFVNTG6dh3EACxvDzOGH805516EqXFhf4x+riieZSRdnBsgwDFQ+fHemO9FjwnzUhgv9u26qoq7nnkccorKrnmvNOJRaMN6kdnpeDTr77jmjvuZdkvK1m9bgOdO7SlV9cuLPllBTXxOEtXKH740F13Yso1l7B1j64+RzyTCk5eGho/Q2GwbR+YaxMkaYY0nrDtT9xCPvisT4eRVobXZs9j/cZyBmzfj1un3MOzL70GqLEik82Qzap05+P2Hs7JRx/G0L32dOpynrV68QPq/0b4mFL6751LJ3H70jC971QgYE9o0oTaJCigNOJI+HnPXjal9UV202ccZ+JXj7rlvv/CymqA3z+nS9EJdejzh4DnvigO75Eo78HXwFRUYN2azVbwJzYhxESUDN3eUsrPGvh9N2AmSn3DXXa8AF/kvxj4CZgM3IlS3HgZGLE5tQ0XPNclGgddDX1At1QXtylgl8bKbOa4+h7mtJViVXwlP1ctYnHVIhZV/sCPFd+RsdMYGGxb1o9d2g5hl7ZD6JDfwTs2rI3TukajC4INHRhuBvSCsxzqlsn6/asDX5ms9ausqfS349XO7z4wthP+thX3j0usq/BPn/TPn43758zU+W2x09qM2vQvOhRTs93cMp/tEynwU5xGin0lChHRvCBh/4Ovg3GR59dj5Pr1BI91BpGo/3sASIdzGtzfaABkuGEQnhH+h9rV70zrChwNcKJBPVsZO8OSqkUsqf6JJVU/saz6Z36tXU51JsiUKou2oEW0NS1zW9Ei2oqSnFKKc0opzimhMFJMUaSI/EgheaEYISNUDxhrl0bDFpiMafu3BGA3BQs3BWDb0saWNpa0sGxL/S8tpMxiS5tYXj6l0dJm8PxfBM+PPD2dB6c+y+df+X6mtV/MpqykuFHwvMlk+X8MPIMCMLYweeqfLzHptjtZ7NBaAD56fTo79lehRP9p8Cwcr7fvsbQ3Ac/zv/2Rgfs3HMp0yL4jGdC3N5fcdCfjRu7FS295i9e8+OAdjB01VNXzXwDPesIaaYT45JNPOOfKSXz+1bdekXNOOZHDD9iXAX37eP2k6moGz/9SwKCU8hvgQiHERcBwlLTb1cDNQog5KCD9gpSyaRy1LTAhRA7QHrUcWL9d3/8Bp7gTyAJz9I+flDLf+f99IcTpwIP4y46jpZTVzu+VQojRwN2oIJfVwKn/TZm6zZmUkoydIZlNkrJSZOw0lrS8D3LWtrXtLFmZJW1lSFtpUnaKRKaOeDZOXSZOZbqC8mQ55akNrImvYkPST/MaNiJ0KezO2C4HsV2LAWxb1p+inIL/4pU321/NwkaYrUr6sFVJn8D+6nQVK2t/YW3dKlbX/crautVsSKxjWfVivlj3CQmr8ZxKOWYOUTOPaChK1MwlakaJmBHCRoSwESZkhAiJkKKICAOB0ICxxJaKxWZJGyltbGlhOYDW9v62nPfHQuKD3Gw9wGtr752UTp2oeqSU2Kj/JdL7f3M2uO1gHhj5wL/Q638xC2QHdT6UhgIULmA2UnEfUFjC5+dqwCJIpwgC2UAwngYG6ivvSCmZfNf9PDj1Wabdcws773cUAN/MnKaAs3u8I/0oQ5EgMNKXld1tw1S6x+7E3zA8MB1MnqRzaO0AMPAcCEZI0UsiPphyg+L0pXel8KDRE7Qg7WBwWsQrJ3R6hE7B0CkEwkAARx9yAEcfeiAffz6fIfuqALy357zHwG2cxC6hiFeXkaoJgL9Nsqo2sJqoeO2+xrfOLdaD7wL3zwh5AdPCIHCee59+kTOvUCnPZz/zILvu2J8+ww4gkUyxx6Dt6dSuLZ8tUBOlL78LBl6++MYs9ttrsGpqqs5zYMhsJiC956GPjO31k2q/nuFRe9alDE4E66tNuM+GRgEx0rXsvEM/xozYi0VLllFdU8sHr01n4ACVWtyRC/PvlwvgXZUWK4OhZ37URZi1QDwXWBuZBN8sXMyjz0ynz9a9GDVkF954510+X/ANjzw9HYB1P86nJBYJvIcim6QukeDBaa8w78NPiCcS9OzWlTuuvwLPF2OY/q3XlXE0qgamCbZqo20q+UbvnuuUDcMA93VpjC9dz363VJ0QIhc4EAWkh6NoHadLKaf+rgo3rb8d8ABKO3STn+GP5Tz/N8z1PNdqnknYsuXdlJWmIlnOxuRGNqbKve3KVCXV6Sqq0lXUpGvUv0wNyWyCpJXEko2kdd5Ci4XyKY2WUZJTSuu8trSLtaddrD3dCnvQqaALISMU8NrpIucRzfNqWhoVQqdLuPwyPZNeI1JtAQ+E7lV2PMlqvw+qdG+y7mWWzn5b+5DpHmNL8zCna/zjsgl9v3+eVGWNVk/D/R4pVJ7nnGJ/chHVvND6/lC+5oXWvMpGnl/GKCj2yzTiqfb2BTxxjdA9ApzBRjzPWhk77Eduy5x8bb9qS1qT4Mg2QOuAhlU6gEZVOHRLZBJUpsqpSqv3oDpTSV2mlrpsnHi21nkPEiSyCTJWirSdJmWlsGSWrJ3FklklEeoAYn1iLXBAtRCYwsQQBqYwMLTtkBHCwMQ0TPUOCANThLzyYSOE4RzjHyu8fQKBKQyE8xF1kxPo5zSEQUiEMA0TU6unY3EHhnQY8v/G82wtfB/A0wUGEOEch5/re57d5zNAXdICiAJBdq53VQ8M1MGJex5Nwm7tunVMvOx6fvjpZ954/B5alRbTftAIWrdowSO3XUu3Lp1oUVqivIoOeBda9L/QAacmL+byjHUw666UiZwo5G4amy6sNNIZv4Rh+DxfYWDnxALecu96NLUSoQdg2bbv0Q5FlXfXTUZTzwsd4FnrvNcGJyhgpGoZdfSpnHTEQRwwYghmfokql/LHVWFnPW9goL0uf1u/nzrn3b2XGnhWnusGVFdcnqz7DNXDRUtXrOTHxUvZa/dduePeh7jx3keJ1/tuA1R++wH5sTw+//o76hJJvlu0mDEj96Jjm1aqLdmU/y3TMwnqns9QTkBqUFiZgFpKY6shja40CMP3yEvp89elZPK9j/H+p18w45EpwYBPp4/Ka5OkUknatCjlkusnc9vdalK+4N032Garnv4p9IBHzSbfdT+Tp9zHyKF78M+XX93k9yMP2p9H/3GrSontXlcmxaR7HmXSnfey1y478ePPy1j+60oAapZ8QzTiKmlkg/dVO15vV/3JlfdeRPMb9Fa7dZpd+v97pOqklAkhxLOoaOpcVHKQrr+3vgbsIZTE0bmo4JFGQiP/2laXqWNF7a9YdpastMhYaVJWkrpsgkS2jngmTl22jppMDVWpSipTVVSkyh1vbznV6eoG6801cynMKaIoUkRBpJAuhS3ID+eTG8pV3rZQlIgRJcfMIWyEMQ3T+5ALYWA6H35DKC+cKUJe2dxQHrFwzFsCb7Zm+7NZNJRLm1B72sR8Ln1jc1ivO1oAACAASURBVNLGAhCbQu34vXSOLeFKq/KbL+UW8YLM/p+Y9zHUJ4GeZ1SjZWhgypO10ryl+odWSDswGQx4YqWNyKTIZDI8P2suiWSKisoqbrv/UY49aCxP3H4tVZUVnHzxdVRU1dCzaxd2GXcMJUWFrPv2Q4XrXG9vKu57H82w3xbDDrYxUY3typLpsRW2heFed306Q0RTd9VoF3pfuNeil1HbsmEgqVFjXDPSjqPCsvxnXUpw6CBSUxcJgF9hYEnJ4mW/sHW3zkpz2UnyEtBslvXSU7teRSurvK+RTRUb9L9lKOrf+3qgUs92qCZYWjn3+g2DouIi7p06ncPPuJBuHdt5wLmspIiTDt2fHfv2ZtQeuxLLVclKduzbG4TBkEE7OP2mXb/T37KmHOECWcvy6HVCGJDxgWF9UBq4BtfRFMrx+ygUhqwv6ScjuXy9cAkXXX8LtfE6CmIxCgtihMIRlq/4lX59tlbxLXaWl2fOZs7H88nJyWH9ho3MeFPpOp9wxMFEoz4Vr/+e+3DjlZdwxAFjaNemdUBP2aXGvPfhJ1w+6RZef/oRRuy5G0MG7cBt9zzEnrsNRkrJnPc/5JkXXqa6qoprzzmVflt39+738zNe56C9h3L7NZfQdvs9CYdDvPbEveQaVoBD6mV01CXonMBCde9CyJSrzmEG/rdryj1nksykMfKVw0mPY/ot+13IRwgxGOVxPhQoBT4CTgee/T31NWK7AidLKZ/7A+v809nclXO54L0LNltOIChywHBxTgldi7qxQ84OlETLKIuWUZpTSmm0jNJoKaXRUnJM/wPaKF+5sXwh2rZb5s+UTKfZmq3Zms0z1/OqeW5lOFcBAo1360pc6ZnopKYcEfC2OvVVV1eTH8vDMG0P8App88V3Cxl1zOls3bM7LcrKKCst5sXH7mPgdr0BuPuuh3nKCcr64ecl7D9qKAeMHqGOz6QazZjnrarZVhAkhyIeuJI5uT49IRL1yokQypvpXK8Xs1BfhUL3ROJTMkQ22eBKnp0T8wG2E/sQmIg0ZPU43QFqhwZkK6qqWb5yNd27dQ6k5LZNLQ5Dy5Aow7mahzaq6tXApHctgeyQQfUFr4nS9oOidY80asUJEzaWVzDlwcd4/rW3WLh4KS8/MoUxewxmyS+/snrZUgbv0BchBCKvSOkzN9YvnpZ4Nki8cr29VsJfOUknEIahJlAAVtpLrCKsDHZUrTCKTNK73yKb0mgfKexILtKbvESYOfcjZr33Ae+8Mp2aeIKq6iqsbBbDMBg7agQb6zJ88Nl8Dj75bK6//GIwDFq2bkMoEubRJ59lzkef0b5tW/bbZyRvvvMuqVSam++8mytvvJVTjj+a2yddjTRMbNtm9Zq1FBcWcvWtU4jl5ZHOZJj+6lt88Nl8WrUsY+HPixkyeBAP3XwVFeXlTHl8GgP2PZyqBbPJj6n7N/X269jryFN5deYsvnnrn+x64HGMPOJkrrlgIpeeOd6bpHnvcSS34ZWhbAaR41COhBFQ/hBaTI9XBpTGdhOsyeDZkQ86GpU1qjtKz3MK8KSUcmlT69kCW4efIOV/1rZrsR1X7nQ1IRFSXEsjTCycR66ZS24ol1g4j1hIeYxNY1OWypYqaTRbszVbs/1PmZckJIw0C5ztUD3QKLyg16AXUwNZTtr7bDbLdz8t4ZrJdzDjzbfZbputOHTMKHp27sD+I/fiurse4u8PPMFZJx7FtZddhPB4oZYPnsI55MfyyM+PMXv64/Tq3s1ri50T0wBgsU8v0Ckcho3QvWdGyB/fddpUNgO5CoDZ0YJgIF/9AD5Q4C2cF1ii9zy5RgikpoWtUVjcc3qeWj15jB50pQUsumWN+prFDnAX2RTFsShSSlauXE3Prp5gFYTqcXbdtqbj3t9Gska1S+cBa1J39ScM4IDrAE1HeGX0jHd2NsOinxez3ZBRXtX9tt2GQQN3BGnTrWM7upTkKQoOyots5Bc3rOak0zOMEMKNjo/6NDuhbSMEZFP+c2pGPJAvzZBHadFpPjIZR6bUBMUoKvPugTomzNa9etF3m97suvsQvy3O6srSZcsZts9Y2rZtw0P3/INjDj/Ya0pOaVsAHphyO99+/wPPvfAiqZS6L5VVatV76rTnueiC83jy6We45OpJ1Le/XXkDPbp14cD9xnD6KVuTjlcx6933uXbKQ9TU1hAJR7js7FPJKyhCCoGQNn227sXc6Q+z7YiD2aHfttx6zaVMOO8yrrplCscedjAd2rVxJP00TKTx3XUpRV0XXJohkG5QqZ+ARQ+2bao1NUnKR8BOwHpgGgowb6JM8QfblcBFQoj33OC8/0Vrl9+OfTqPDuz7vWl+m63Zmq3Z/r+ZrXHqdc5yADxadoCq4ElDihyPluD+PuzgI/jw0y846ejDAfj6+4X02aonl0+ewoO338ikO+/nyIPHcd0Vl6oPsntqB4DV1Nby1fc/0KNrFxYvW07nzl2or8nrmRZwp7e/vk5y4O9sJrAE7QEAK+15H3WaibCz2K5H1s5ipGuRTlvsSMzj4EqHx79JGzVVB8+Lq6k8BL5WrvdUaGoRdlDhwmtvKAfDynD8EYdywc13MfXeOykIOcljElVB8KufwvGoYjqav+7POtXGzir6A8rzGuD86mpBuufZ+a+uLkFJ515emdoVC4mEnMlDNomsVAJjwjSx2qtAZiNZg60Hrq5Z4kmBQtxXPArl+KBWV8jQzKWs6JQjPVGITo+QVRs3OR7bwkjFkc6kwgaeef4lunXtjJ5ICDuLzKY485zz6NChPXNnvRHoC4AD9hvLi6/MoLi0jME770xdIkGvHj148DEV2nbzpOv49vvvGXfY0RQXK9rDjBefZ+wBB9Glc2fefPVlunRsH/QGZ5Lssfvu6lpc8O+sAEkcJ6C0STkhbTddeh79+mzNhPPg3DMm0L5jx00chULPwohPbZFu7INzvRghlXAIde+9SaQW+2DlKt795gLqtkTnOQF8glKm2JxJKeWozRfb5Dz1KRo7ozL4fYbK2lf/HIdt6Tn+TOYGDFbF6wcMNlzej/f3rSmUDKsxeoYud7QZmS090E+Xkgvp3E1dHk7jkhkah8jj+oHHbwOQelCfHnHuVdLwrFDoA6EWHa0veboz8vr7GzVdVsc9j86nDLSrnheoofPrgYnZhpc5jZhaeg4G/ZU0eH49GFBqwUK2HhEfalj3uL46gDpQk2TSZf206wnoSWvbgXulX1sDqySgXUcgw5smiRfxr8H7SEIg2t/WJPH0YEM9CFHXls46+3WmZoDG2YTVm8Y0xLeEL2029nsj52yKDJ5u7juan5frHvP/ImAwvdZZ+NSBkXQAnx7wp6WxDmQ2qycd9sas2Zx0+kQ2bCz3di/5dj79B+9BdU0NL017irPOvZDHHriH3Xbe0QNAS375leH7jiOTTjNs2F4sWbyUUyacxFEHj9vUC1xfSsxps8/nzWgAX3l0vd9sLbhKmyQEgno1xYNAf9lZRLoOO7fI7zOtjzwOaTbtj7mWfz7fg+xzm116iAi8//UC3twAbsP0xgAZioIQ1CUSjDn+THp2bs99V5+naBDhnIYDDrNJbwXBKumAWblS60crOB7rCWN0L6473thWkL7i9EkikaCkpcp+uHr5UkpKS7y+FJk65fFGjVvuN89I1ijvtXOdIprvUwrCOYFEHV7gqj5GWxlv7JWhqKrPvcdWOhjQnnFVWLQ+zon6154TU5KAjjfbjsR4+fWZHHrcyew4oD+jhg8jmpPD6nUb+O6HH/jmm285efyJpFMp1m/cQLw2TiKZZNny5ZSVlvHBR0o47PRTJnDP/SpgsE2b1syc8Qpb9+6NlJL9xh3IrNmzAXjztRl88/UCrr1hMuOPO5oeXTvz408/M3inHUkmkrz46usM2WUwE089KZjkRE9eIwzWrF3H7qMPQAjYbedBvP3uXA7Zfwy33nCt0y962nIzEJTqd5Y/JnjvkUtBEiKomlOPy/9HJUlZxhayAqSUWxw86Mjebck59trSc/yZrBk8N4Nnr5pm8Ky2m8FzI3X8ecGzEGISKgdAGUp1aS5wrpTyF+f3Y1Fa+q7U5+n1MgzOAeZIKYdqdR4NXN+UDIOpSkcesyH9XH2JuiHFgmxa46n6H+Ppr7zGUaeczcTTJnDgfmMYvNMOxCvLKe3el0mXX8SjTz3LpeecRcayuOjqSd4S9qgRwxg4YACx/HwuueIqlny3gPZtWjqUhqDKh2ca59pT4dCzBobrBYBK26MqNKhxDGq8bOB6MUKIRFXg/bOjPmfc81ZnUsr7C4oa4b7nDtVB99h5XZ7xdXd1bqlM1ATGYE8hyLY8jfmqmlr2PHwCO/TuydWnHkX7Tp38scIw/XHGtpRKgn5u7doCHFjvhP5baucW+ZMMLZBRlRMIK8PqNWu4/NobWLV6Na+//GJg7BPJGoykkwfADHlAzMukp30DpSY16B0fzvHGO92zHHgmpa2CL517YVWs875zIica0OX32q9n6DPDahzVgkQzls27H3zEz0uWcfYlV6GbaZrsMmgnRgwfRuvWrciP5SOBXj17sHbdevLychk2ajTfLZhPcXEx782dy3bbbkuPnj28c65ZvYqbbrmN+x54EIBwOMxzjz/E/K++4fMvF7BVj248/MTT1NTWEgmHSWcypCrWBt/ZBkxYWT77Yj7f/biI/KIi9tx5IGUtW/kFNMlJ753Rx3MzHJwoCwMym2IA5e2P+OWASEmbP0TnuUtTyv2r9lcHw83WbM3WbP8PbSowWUpZJYTIA65HBY/v4iSZuhc4AHgPOBt4XQjRU6Pj2UB/IcQYKeWmelb/BWvVoozSkmK23aY3gwcNBGkTy8tjn2F78tmXX7H3sL04ceL5mxw3/8uvKCwooKysjLdffYn27dpuFiA0GxQV5DPr3hs45vJb6LnfeAb27c1jky+nW8f2mz/4D7LKykquuOpqnp3+T8aMHs3tk2/6j537323JVIrZ773Pk8+9wK3XX83wPXdnY2UVVTVxhu05hGg02mh22xmvvQ7A2++8Q69ePdlt111o1bKl97uUkjVr1nLUEYez1x5DuPf+B+jWpRN7jxjK6L1HgjBIxGt4c/a7tGpRhpSSoUN2a3LbBw7oz8AB/T1N9D9LbFezzlizNVuzNVuz/W6TUupZIQQKDG/l/H0yKoHWWwBCiFuAM1Fg+nG3ChTgniyEeEPKLRShb0Ar1/POalrFwtY8Uxq9Q+grLw7Q3WOXnZn53BOMOuQYurUpZY9dByOySWY8OgUsi2kzZnKXc0z3Lp044fCD6N+/P/22H0Crli2Ud9MwkYCwjKCn2Ur7y+3SDmrYu5JmusfM8ZrXz9QHQFbz/AY0l7O+Z1OTXRPZtCrnHqR5RY1UraexL1Jx33OslXM9moEVRK8BGgWmrgrb9TbXW4VyvdB2bSWwHplSdRUBr9xwLql0huumvsypl93EhINHs+CHnzh21G50a99a1VWxTlUbjSkvtrb6ZpV08K/Z7SOdziJtTdHEn9R89PEnHHrsiYwaPozvPv+IVm3aqXLZZCDJCGgrrHbEp6zUVSJCOZ63WWbSiBzH+51N+/2XqEG4TvEG0n8DSKdv3ZVU0wkABOXNttzr11cm8Wk+GOp58zzshsnfLr2Y2nic2a++QK9evfw+aohzLW3/+RAGY0bvw9OPP8qLr8xg2vR/8t333zNuv/047ZST2bZPH04+7XTmvf8B+Xl5bNi4kUE7DqB1i1KeemYa/bbtzRcLvmHlmnVcddF5rF67jlum3M0bL00PvhNmJCgn6HHQtTa62+5zbWV9PXBZT6/dbX425cn5ebrQOh3GoQApLfGod81NsX8ZPAshSoHRQDvgR2CG/J26Zk6q7GellOu28JinpZQbfs85m63Zmq3Zmu1fMyHEkSgPcyEqLuZc56d+wGNuOSmlFEJ86ezX7S7gDBTYvm9Lzh3QaXaWbr1ldH0pV09043xQdYUFXasWO8v2fbamorKKZ196jT12GeSnyJY2h+47ghdnzqbvNltz6bkT1SG5RSrQC7BDOQFQrgo4/Eph+EBeCyQMAGRdnzq0qW63t08YPpDV1S5EKEDt8LjMVjp4zUQwa9aq3zJJP0GVppUrnL4BMOoqNsm26FLUrKqNPkXNtrAqFJ3GKChukPYm00kFjtx7llcIyTgR4MrDRjL0/Fs47AKl3jBz3ie8948riYRDHu1DxAqRha08GTdphvy6nPZ9/Nl8vv5xEaXFRfTdZmtOPeci4vE4sbw82rdvR+eOHdl5px144ZXXOOvUk7nwPOex1ROQ6CaErytuW+CCt1BYBbw5EwMRDnsgV4TCXqIqEY4gE46WtSYzKPXsjpmM0zeW15duv4rcmA+ms2mk+0zm5EJuUNdbepx5wdvvzuXVaVPZqlsXL5AQ8HStGwWM0saQNgftP4aD9h+DNEJU18a54OJLOH78BNatX0d5eQWfzp1Nv55d+PGnxXz80Qes/PVXZr35Jjfeegf9tt0GwzS47+FHiUajXHvZRYruKQz/OdbAr5qc1XHljbeyaMkyRg3dk+OPOlzJ8dm+uouuqiHNSFBppZHA4UBwrhHyNZ/NsK/aYjYNFjdVbeMI1KB2lJRytbZ/R+A1oAXOOwZ8KIQYKaX8PTJzf0dpRjcJPAshTOeY94Fm8NxszdZszfZfMCnl08DTQog2wHgUtxlUwHdVveKVKJCtH58WQlwK3CmEeOq3ziWEmABMcP92Oah6AJgUhuIDe1JkwucH6x43PcWvEH7aayySqTTdOnWgMD8POxJDaOmeEQbPPHQP0ghhB/SU3cx7VsCbKLJaEgdpa4FKGZ8LbaV9L6mVBdcTZpgBT6ICho43N5v0+L0infAAuw4sApnYbFs107l+I1Pne6UzCWxXvcEwvfgMYZg+kI4VQCYVAHZupla7Yp0HErPrV3o83fjPP3kaxuFYLtJS2xkn1idapgL1QuBxWMOGwdSLT6L3CZcB8OVPyxk/+UFuOf9UOnZRknZ2Tiy42qDZnHkfctMdd7F8xUp2H7wT5RWVTPzsCzaUV3D3LZPYqkc3Pv78SzZWVTNh4nkcc8RhPP7Us5x71umEQiEv0QcE+dsiHceuqVDnr6n0kmyYZW3UPiewT2S1mI5sRsv2aPoTnJpKj0suM2kv7gXURMS/F4ZXzigo9j352Yyn6GGGIxB3NBVyC8E0qKlL8sIrr/LQY0/QsUN7unRSXnk/tbo/wUK7xgA3H4L9K20KC/K5/+5/ALB8yWKklHRt3xphZ+m9VU969+yGUb4icF1V8SSl/RUr96Qzz+HIo47GCOsZFvX30IBwlJvuuJtBO+7AZdfdSCQc4pCx+5Bj+Lx8pO17jq20L2GYqfNXYDIpfwxwAiw9jr8Qvhcagmo8TbCmep4PBYp14OzY46ggkeuBT4ExwCnAOcANTaxbNwHcKIQo32xJv3yzNVuzNVuz/QlMSrlGCPEgsEQI0QmVgbaoXrFiYHEDx04TQvwNuBBY+BvneAB4AEAIIfUgrYAKBb7HdJMUxXoApqs7nEn4qYstiwkXXk3HDh2YeNopzlK4AyDrfEqDld/Sl2cjHfDIBhJlWFk/uEna/jK+1DzPejrwegHS0owgnd+EJvemtGobyBAIntddZFMI6QDcvBJFyTB8wOwqOdiZDHbal0TzVB2yaT+Bx3rlMRVhLauh6zHNZjxPanJjFanKWqfeLHZa9YsZjWBn1HYoFiWvVQlmbp7X58JwwH80j+69t+GQ4bsx/W2Vfn36Ox/zyY/LeHzKzew2aIdNUkK7ihapVIpxx4znvpuv4aB9RxGJbZq+HGDIrrsgQxHKyytJpFLk58e45c67uOu+hzho3Fim3HqzqhdtdaNyDamfv1bbmufYqliHWdIK6WaBtC2Ec16ZSmLECrxjFF1F9Z3nOdYmIdiWQ/VQz4CdrPP6L1LSyvdum5pySSbtJ9EBlq/ZwNGnnk1hQQGnHH8URx5+GIZhODQiZyKQSflAXAuikyEQegpz3QtvmP62laFLOyd4zwx59AiZE4OYQykpX41dU0lhaVsmnnAkUx59GoBzL7yYO267NXhDNPAqzQgvTHua4086hf33GcF1k2/n2ptv5+AxI3npzXeQts2Xc14nV9b516J5oYVwtceDEFGGIgH1jcAE150gZRoQLGjAmgqe+1Mve6AQYgegN/CAlNIN33zNGTAP4feB57moKXXLzRWsd0zNZks1W7M1W7M123/CQkAMReX7Chjg/iCUbEh/4IVGjj0feAu4tqkn83iPwgCXg+p4W31KRj31F32ZWqNtSCOEZVlcc8ttfP3DQrbvuw2LlyylbfsOXnE7r8QDvEa6FjvHUcixCQAAjzJiW8o77H6cs2lf67gen9bzSKcTSJey6ioX2T5tRAfcnsSZDiRtje9tZTzwK6odKoELzBJxZFLVL9NJH/ylk5q31PDBczaNrKv2FR/0fjVMrBoFDFd/9D3SUbyxLYnpJAaJlsTIa6NoB+FYlFCeD8RFJIpRosCYkVeAME2m3nIFB7w9l4k33sOG8gqS6TRjjj2N5x68k5F77BpcRXC2E8kkiUSS/fcdTSRPozLUa680lYf5hknXsdteI1jx66/06b0V2WyWtevWaVzbLIZ7L0MRQi1VEGPl/PleXfkdneoLfX6y51VOJ5FhTS0pzwHV2bRfhoiSm1MdhkzGyVSqvpSWjRl107YbXjkjGvOVl7SMkmkR4ZATjmbI4J24+apLVSa9htSqpA2Wxv81NbUJndoRyLopPZelkH7mRqNmnc//1iaNRlEL7EguVl4Jk2+ZzE+/rqWkrAWz57zHP+65l7POPNO7ZtdENgnCYN8Re3HfzVdx5Onn0651K+6/6QrOuvJGlq1YBUD7bXeiR+f2dOnQjhzToKa6mnQ2S1VNnBMOHsNJB++rQLyujx6NejEGhrYiIzJ1PtWjEUWs+tZU8NyKTT0FI1GTnPopuWcB1zWx3oBJKff8Pcf9USaUqvr7wGCgo5TyV2d/o1JLzu87AvcA2wKrgauklE829byJbNBjENY0qvR5k7u7sbTajUnc6TJzusyWLp2l7w8E0DgPmi49pweLGBltf8qXZLN16Tldts22te2G44ICsmwuv02X59HTqOofDO16NpEBaujYQIraqLatBlxbk1BLaTJo6Ua2U5Z/bUGpQE06p5F715CcWUS7cfozEWrkRjcl1MBs4NnS9+nnNFz+I/hcSPAF+6FRmTtP5gq1vOmatVElGHCDhFRhXcrJD+7RZfuE5j0SmgxVRLuHufo91OXv3OxcYf84/d7qcncZ7X7q+3W5x0bT2mv9n9HKuE+fnpi3KdJzQam6hk+q33L33uU3WPLfY86YeTrwnJRynRCiA/APYBkqBuZBYKYQ4nFgHjARiAIvNlSflPIDIcRMFIiON1Smvq1YvY6O7doEkk7IUDSYotrw+bBo2fX0ILelPy3iw08+5da7H6CkqIiy0hKmPvciI4cPU97bBjLeKZ60n2TEvdnC8r11MieYiMM9ztvW6CDeOXTZuKyS0HM97DKd9K8hVuyDHmn7GrZo3vd0Ejvu8GxdT6VTxqpYh13n+J70dzkS9d5RK+mP8a6lflUAJl1TR3yl4jZLbfzLbVHg/V21vALDeU+tdJaQAwTNcFh9D9z3PxTxJdlMEwpaEAIOOfwIWnTqzsjDTmTdhnJOOuJATj73Ug4eM4rJV12CEQrSCt7/6BOGD9mVvHznTRBGUJLOvUYry4aKtTz/0gwOGD2K6tpaDhw3lqemPc9+o/cO6G+bVep6M7/+7PV9uroOy/Gi57UpwwyFsTaqxXkjN+b1qzDqZcJzwKgIRbAt3+9nOJQXu64GmU6STah7GS0r8vrFrq0k7EwwREmboJyn87wdd9o55MdiTLriEoxQWIFFqWkda5J47nddmhqP3dK+l0IgQ3n+N1TTRiaT9MZ5xS32ny07r8Sv110BEYJHHn6Ytp26MP74Y7nh5slsKK/g6quuQlBPY9yxQ4fvwlsH7ctjz7/GoaedT8/OHXjkxku44OZ7KC3IY2Tf7vTu1JZUXZzC/M6ETZNIyGT8nQ8z6933mXT+6fTs1VO1JZyLSNepjJcQkDZUq06NyNE2Yk0Fz3GUJ0G3XZx++rze/ko2n5zlz2rnAIGRYnNSS0KIIuAN4FZgd2AI8KIQYrGU8qP/aOubrdmardn+8zYauFIIEUON/+8Cw6WUWeB9IcTpKBDtOh9GbyZr7EXA9zQRPHfddR8WfzyLTh07BhQGpJ6MJOtTKr76+geee+lVWrdqRSwvl/kLvuLBR5+guKiQQTsN5KZJ1zFq950Zvp9KU3zI7ttjVK7y0inLSNBr7QIQgaaZLAhG/acT/gzZtrzJnQIwTlrlRJWfDMMwvSAx27YU0HKdEIaBkevXK4QW/Gj5nuOsE7BmbVzjgWaRV6i8x05d6bWrEU7QmBEOYSXTTJ23gA11SSKWzW5bdWSbNi0IxxyHQiaLtGyPelH7y1qySR/sxNeqNucU5VDWR3GTo2VFHpAWpu/FNqMRjFDYmySHO/VSqazdrnVBZjbD0EEDqP7hI8affxUHjR3NjZdfyP7Hn8ENdz3EZRec6/ULtk15VQ0iFPZ1e20bgUVdXYK3P/yU5b+sIBIJs/P22zFw2L7o9tATim6/4teVLF+2jM4dO2DGN5Jd+4sqEIp4k7Cc4nzSNXVev9jxGt97DH6QYCTq979h+rQNwCxRi+xGbswLsMQwIBQhUug4jkIRzztvFLdCOCmz7Txf79+pnDfefodX35zF2h8XqMm0S+9x+1/nNkvbB/LZDNJFg1ognTcBdCd7WlZAIW1kuZosyFadsfN9woAdUW034hvVDN+556W5Jo/cexfnXHQp99x3H8cfdxwTzzmPsliOH+yZ9TXGrfK1PHjJadx/0SmYsQLseDXZtSvY9/4rePHDjgB5lAAAIABJREFULzn1zqf45u/n0CGvtfcch/NjzL/1bMbe8Ahbjz2B1e/9ky++X8Tw3XYmFAphu44b2/aCTyUoxRLgg68X8dJbc5j/0wp+y5qazHshsI/7hxAiHwUSv5RS1tYr2xFY28R6/zQmhOiF8qDUF+/0pJaklCngFiCFAtMAB6KyL06WUqaklLNQXpUJNFuzNVuz/Q+blNKWUo6WUraSUsaklO2llEdJKRdrZZ6QUnaTUuZKKXfSV+2klO9KKUP16vxZShlpan6Bs8YfzSkXXMniZb9stuxVN93G2EOPZsOGjZx/yeWcf+kV9OjWla8/mceqH77klenPMmr4MIQQvPLEvfz64WuEw/+/FF337teT/l3a8tB78xky6THOfmomqcx/X6s6LzeXZ+6ezPAhu1BcVEjvXj2YdNuUTcqNG7MPX371Na+/9XZg/5kXXcENt/ydV15/g7POv4TC/Hym3HQdy77+lKVffcKMZx7jxGOOBOCqSTfTa8BgBgwZwYnnXcHf/v4Ij782h9UbK/4j1/p7bfHS5ZQUFZGTE9l84f+SHXX4IRx52MG8PettRo4axXHHHM3qNWt+8xijHu3kp1XruPihF5i47650bV26SfmS/FxeufQE9tt9IN1GHcWY0y5l9sfzNymnm23bvDjrPY6ceAnfL1rCIYcc8pvlmzoq3AU8I4SYiuIYH4JaHXy4gbLDgW+bWO+fwpylx0eAC9g0DfjmpJb6AfPryfPNB475tzW42Zqt2Zqt2QC46dLzGH7YCRx1+rl88OYMFRgVijg0Bp9KVGeb3Pj3u5j39kz+dsFFABQVFTHxrLNUSuh0nbdUb0cL+W75N/x9yl0M3X0XTh031Ocs1/kASmYzvs6wTg2wMn7202wqmM3ODHtcbJGqQVQrj6OdSnplsmt/8XnK9YCDUVCC5XBlQxqdTVasVdQVwKpY73uxbQs77vRDTSWZ2jjpat+pn9+1k9oIRbAz62lVUsDAmjrmnnEIl7w6j6kff8t5o3amY2khoWgOiY1Vvrc6EsKqVp686l9rsNKq/bHWMc8rm40nCDme6+JO7clp195rl1nWxuMA6ya1JXVC/vXLUNTru/Mnnsars95h2LjDGH/8sYwYPpwWLVqQHy1g2tNPcvBhR7LXHkMoLi5i4aJFLFz0Mx/NmUnP7Qayz8hhdOnWjVO7dHLqjdC+bRt27r8t8z74kIrKKsYMH8Jjz73Mdz/8GGjb34YN5JnPvuf2g4cxuES1PVKmuM6uF13ECj1vs11T6QeV6hS1SNRX2DBC3mqAHa9GJuIYzqRN5EQJtVbtNEtaYuX5+s4uJc3NlHnq+ON55Y23qK2qoLDAob3pms/1qEOeKoWRbphWZBhKftFLj67RglI1gWfeo0Bkk4isf7xRU+FdtxUrQ4ZzGTZ8JJdcfgVPTJ3K1CeeYPyEU5nx5IOEw2GMZA1Sox+53Htr3Uoya1cw4+OvGH/P84zbpR83HD1avbumQbhYeeJlOokRK6QsN8a0S09CRKKccOP9/LJ0KXJgX5/jb1seKN9Ym2DCVbeyYtVarj/vdI4etw9m94GcccYZNGZNzTA4TQixM3AWcJSz+2Hgfr2cEGJbYDen3F/JzgbWSClfEEJ0qffb5qSWmiTF5Jous9SpU6ff3+Jma7Zma7ZmI5KTw5znp9Jmu12Z/cEnvPbmLE48/ni269HJBwHhKNFQDv+48w6OOekULrngPAzDYJ999kU48REyJ9+jVkgzwqHHnYxtZXn+1ZmccuhYSGocVsdkIu5zNPPLvOVmGc7xEpgIaWObRT7XNJv1qR5Wxguys+PVXkxAprqacKETWAZka2sJORxemc34oMW2fK1aLbaAbJr0Wod/GwmRqVbnq1j0C5l4klxHHq6gU2syFWoyYCXTJCvVNSY3VpFTXMD1o3fl+n12oUXvbuoc2QzhWJSMA8aFYZCJ++oExV1UvTpVI6e4wAt4Cxfk+bzrrAsgHTpMOFfjicd8MGdnfQk/M+zxtbv16MniH75l6rPTef6lVzj3wksYOWIEu+22K6P3HsVbr8/gpltuo1u3bhx84AHstOMOXvzPhef8jZVr1hIrKKS4qEhpNDvnzo1G+al8Gcfuuxdr16zhwy++Jsc02H+HrSkrKaR1aRHZT79j9TfLKT1ljOrjwjJEOOLRMAhFPJ1nnaYhwhGMQsdTavuShTKbIdRO9XF68TdgGJ6es9myvZcQxc4r9mN19OfQDKlgyUSKz+YvwLJsP1V5Tsx/RoWJbfiUIS9Y1owFwLNnZkQF3noydqZKHAMY6YTP58+mPb1wI1GlVGjc+1hP41uk4+w7bHd++PYQjjnqSD6bO5sDDz2c4yeczrP/uBG7ptyXT4xEya5fyaIVa3jkuRm8sWARG+uSXHvAnhy5/VZULlyu+iWTpbCrqj/SspVHmbGrNmJnM+zetRWz5szjhGE7aYGZNjXr1/D0m/O49N6nOWHsMJ6+eiLR0pa+fvdvWJPXo6SU5wghbgS6AsuklA1RM9YDO6ECRf4SJoToAZwH7NhIkc1JLdUAXRr4vUFOny6ztOOOO/5ZMk02W7M1W7P9NU0YKibMlhx45HF0aN+eisoqHrv/7oBUHbbFySccR140h0suv5JpUx+lZXG+J7GFMDyuZjyRYNVqBT5H7b03djiKqFDA1qqr9j7uMpP2AJDZ0vICXoVtIfLUZ0OmE5jpRDD9sfNxzqxairV+pao3lSK50QHflu3JkwnTIBNPkFivQG42kSbWVgGrULzGK2dnsp5HWZiG5x1OVdSSckBx9S8bicT8JX0XLANUL12NlXSUCCKm5/ku6NjaA+hmQYycdNaToZO2TbREgZHiHq3JKVYAPxyLEooqkGZGIxgRR4O3oMTzthp5BRgFxWrSgsMXb0hGTNPvxlHIAAX+QkaIE447lhOOO5ZVa9fzxhuvM+fdd7nmmmuJ19XRe+utePe9udwy+SZihcVMnz4dgKGj96OwsIB0OsPeI4bxzGMPIcIRioqL+Xz2q5i167GrNrL77VeQWbGI6kVLVF9078wvb7zP3oeOoMvBo72+s9avxGzdyZORI5PxtZnzNW3mUNi7ftejCo6iieNtFZEoZlEZZpniNtOyow9yNc+7+s/Noqj696pJN9GzRzeKWrfzg/O1LH3SDHkTEbt+giBNP9kNirXDuQg7S0aov8NkMZxJZOaXhR4QDeUVeQGtdrwaw9FfllYaO5Kv1CxQgYUyFMEwDS4+9VjmvjuHI446mgtPOJR9TjqPJ686E7t8rfdOzfnhF9549wMemfUJB27TlQt26cfATq0piuaQWl/pSf0J0/R0w6W1xvPaZ+IJkhur2bkwn8sWLOTjOe+xw9aKiy+jeWw9/hq6tmnBk+cfw/Ad+0LlOiwnwenmAve2iMzlZP5rNIGJA6j/UL6zEGIbYAcUl/oRR0e0B7BWSvlHSNTthpLG+9aJgHenc18LIS5n81JLX+Hzn13b3tnfbM3WbM3WbP9GE5kkJrDhp6+wQjksXf4LQ0buy+x33+OpZ5/j8ovOp1u37h4AO+rwQ6ks38BjTzzJrv238b3N4agHAGLRHEKhENlsljdnziTSYSZLPn6bju3bEErFPTCT/GKO146AvJsuI1bPjGgMy0mAYVWsI75KfVIz8SSWFnzneneNSIjEugovSC9dnaBqsVJ/iBTmktjohx2FouqTHi0rItZGeTilbXsBf7llMUK5Ec8TnNxY7QHrZEXCO540nkSAMA2sRJ3TXuVFdY8v69ONSIm6TpETDQTJuTQEs6yNBxhFTp4PBMO52KEI0pmwSGEElFCkHqymq9O4++uVa9OuHSeeOJ4TTxyPbWWxMmkikQgLvv6W8SefzKWXXcHAnXZi/IknMnjwYI4+4jDmzZvLPmPHKY+2MBCmT7VwgwSteA3lPygPZ27LEnpdcqk6b6KGjTNfUftblWDUVSNjrmyh5fWFStWtts2iMj+xB3jUGrcsgAiHMUpaIgpbqKpC0UAq8UA6ej0TpW3xzPTn2WuP3R3NcD8pj+dU1qgaCIF0IaKUvopMvbTd0gj5KlAZy1PVksm45x1P//wVsk75C43iVoScSaQRzUfafhptWVvurdzInHxeuPE87pn+Gkf+7QoAnnj2eTZu2Mj3v6zhzQWLKIjlcsh2PZg+YRzblRVTvWw1VNeRqK5DmIaa2KEmjnWrVXoQW1f0smyEaVBiGly85w5cPW0W089UXGYzN0VdMs0zJ+9Pi5bFXvKbhpRZGrKmZhg8EZgjpVzq/C1QHuiVThCdXnZ74Agp5YVNakHj58xH8ZAPQqV7DQEzgTUoDelf2DS47/fYc4AeWdABleVwJMqD/jW/LbX0IjBZCHEBcCdKceNAYMQf0LZma7Zma7Zm+w3z5DQzdYSySXq2LqJr506cMOEM1q5fz1PT/sltN13PmeOPU+XsLEYmQU1luVK4cOTsjFSNB8QqEhaXXnwx115/PZ07d2b58uV023k4H73xPAN7d/e4n6FOvciuWgpAavVKT14sr0sXDE8L2SCz9DsPGGYTcbK1CvCma+KeWkVifYUHmHXZN2lJrIxFxRIFXONr4ySTTtKMsElOoWp/KDdE2wHKW1nQqZUHmI1IiI3fqjYapkEmnvTqT1Zo3Oe2RZ63Olpa5HmLQ9EcDbjHibVvSbSDEjYWGl9ZhMMI5xqNojKlL4zKBOgCNintgGSkDEcDoC0g4acpbwT0s/VMjQEPtV/cMAyMnCgS6Ne/P59+8gkrVqzgvXnz+Pvtt/PwI4+QmxNh/fp1DN1rTyeLo/QzL5a0oWrlL3z6/c+8/v5n3DfjXQCuzCvhnB6/kJ+Xy/q3XvcTweTmUFSY9BUzbEvjM5vYFb7PMeTSVmzbB9i27WUUVEloIh7doX4yGK9/Inl+99hZhGnw0D3/YOL5F/HFlwvYYcAAv59M1/McxtO3DKTk1tJ5a/KLwsqQMXO8YwwhvPcl1LaLPynauNpTN7FrK8loyXZENEaoleK5y0w6IDsazS/g3BMOZ0ivjgw+41pO/vtUxgzajh27tmVixzZY1TW8++0Sto7lUZvMOKsw/gQzWa5WasxoDpU/+0GHdRvUJDiUG/LejxGdWnPTnC94Z/bnbNeyhPXZLKYQpNZXkDSEpz/eUCr5hqypnucHUQFwS52/S4GfUADxnXplt0HRIP4l8AzcjpLDGw58AGjisryOAs7/MniWUtahydMJIdw+WeMoifym1JKUslIIMRq4GyXsvxo4tVmmrtmardma7d9vdo3yOAnT9MCIgc3a9ev5ef6H2LbNrnvvz/TnX+TKi87j5tv+zrLlK3jkxkuhdqMnCScKShC2RXVtnFaDxtCytITzTz6aWx/0Jfs/eP8DBnb5P/bOO8xu4vz+n5F0296tXtvrghtguqkGAwEChF5DN2BM7x0ChN5DT+BLCRASggMEAqEm9N5Mx1SbYjA22LjX9d4iaX5/jDQzunvXXoJJSH73fR4/vqurMhrpSu+cOe85vbTclSwWlCZxFG46Sni8lLFq9lKIukbK3ynpq7DsU5wbTX1baHNpwWL90l/wzQL8KEEOI5HxGXPUd6VQMrOo0LFeGZe26PvWth6k8gbBjCkcxXmLcKLkyS+UyDTXa0vsdENeJ8xePqs1mFP5HF60L8dLUYySlExLA06+UZuZCMdFZFUS59Q3a6twuxgtkbBZIT3Fp9X6unbxmZsiFJ0nzh3haMQ5YalcGRXLHcdh0KBBHDB4MAcccADPP/88O+6wAwMHDsRxHKbOmE1TfR0vvfgKaw5bg7psnlVHncbgAcuRdkzbn3j2JS66aQy967Ks0NLA2EjjGuC+E/Zh8xVUkpjr1aKT4cQMhF/WmtuEgVF+91KaL63pHDGC6iV1onXxnp1UR+e7/bbbcNSnn7HzniM576wzOfLwQ1U/2cm3RY1J9JeNNscDFxkmfACQDjKlrrdo7Q+L1YBO5BtxM+raB/NnGxTXLyMK7ZSj34LXd7Cla16GCKFeZ+1h7LLJejz3zse8Nv5Lnh83gfVWXI4VejTy3JffsvOaQ0nlszjpFDJQ+y4uKLLwG/W5Y26BwtxopiPt6sLVUnvZyCc2Zjiu7wDOee4d/jx8XW76ehI5R7Do6xmki2VNM8pUGip1EaI7xgpCiBAYJaW8O/q7FcVv3kpK+VzFuvsDY6SUP0jrWQgxCzhRSnmXEMIFysBwKeW7QogtgEeklA1L3stPO4YPHy7ffvtt5rd3JJZ3ZXYi9PeW0YW1rhMYDlXSj94yZ7Cmf2zjk4Qmqb2OtoH1q35PWP04iePbP3x7Ws61PqdtNMKMqMOomrgrIwv77g26MLWwozsGF3HL7f3Zm5Xt41inabdxfsH00eKyeSmUE+fRuUAja1WWN2XNA68pY0bDdSnb1MSsn+riPVKlDASo+j7r0lCnmllPZdjmLanQoAN2hbat5an3VzDsq+S91YU8VlfTagkjgs5mOPa915XRjm2ck5gSde1tO7/I1GdrecJURf1hd3fCRKeL+8xex+5ze7l9z9VFN0BThDgKId6RUnZVy/E/EUIIWXztfgDclt4a7XRXHAHAFWefwqlHHsTCefMYvtO+TJz8LVf+6kiO3WVLPM/FbWimOF4p54lMlkXzF9B7tJpCHvfbU2ju2ZPBo88im/YoRNzixf+4kWDeLACKcxfqhDnd2kMn0k5zb10I5387kcK06cybqLjNHTPmUVyg7v9MYwYR/egWz+pg4TSFZE6ZNE8/w9oa0oSBZOZi9SzOuYK8p46TaUrjptTnXqv3pK53xCdOpXRSDAbJruvdjFeXxYna2TF7vk64M80NpHqpaXC3qTVpFx3d206+Aae+WfF4UUlWjIAqk5goMbOTtZRFO7ApAY6X/L1JmUjs4t+TkNJYk4dBwlJZH7daxPSOSovmqF/PO/ccrrnmGr08k8lQLBYRQtDW1saWI9ZlzLWX8tGEz1h7+314/NxDWF24TCuVKPo+78+Yy/rL9+cvr4zjntc/ond9jt/utx3rD+mnBh+Ru6HT0ls/92SpgBs5FMpiQXPkvf4rEkY64mLBDKUpHp1nWNeS1GaOz8NNm/dmRR+8/+FHjDzwUC678Hx+ufMOySTbukZ238T9Ekqpn/26v2Pny9DHidRmnMVzkcVI53rhPOWYCITtC7VZTMfMubipFLlBimfstQ1E9IzcOjsWaCMeWSog0lk+nTSF5lyGVjdACMFXX3zORidfzQdXHIc7bxF+e4HFM03yHCfMC6cu0oi0cB1mzlfLF/mSXPT76tOcJdOc4dAJH9KcSvHefDUgXLdPKw8dvQcNEfKcblV0p7o9foUQAill1TfeT1nAMgfM7uK7BqB7xJRa1KIWtajF/2zEBXf4Zbw2RSfYYI2VefOjTznj0t/iFNo5Zs/teO4PVxAEIQNXWZ1Fzz1AGVVQFFMl6nq3cPeTr7Px8v0Yc9BONLnw4MtvAOjEGWDCo8/Qs6dSP/ALJdyoOClfKmtjC3/adEoLDSVixnsT6Yhe9HO/nIffofbn5TzCCCULSiETF6kEYG45YEDO08vreuboEal3pDIu9X1VkV3jgEbyvVXS5eVzOkn22zs07UI4Dq1rKCWHTN/+iGxeK0Bk+/czaH1DM26MKNvcZMu228nlCeuaCWKAQwiTdTmucWoNfT1AlW7KoMtSmgTQcUE4Jvm13O8QTtLpFrNOpzF/hT13HHZiKOIBrBAacLro4ks4+ZRTufZ3v+Pee+9hypQpbLzxxnz7zTecd+bpjN55SyQwbMWBFF69T0mieSl6RdSM4aUCxanfcsleW3HsLzbg4XfG88v/u5ezdtmMA3+xPqVA0L+1CbepVStviGzeKEmk0tVts2PXQO1+t9gASjZtxR4U2OcuHNZca22uvuxSjjzuRMZ99Amnn3oyuVwuul5hp/4pl8t88sknfPfdd+QyGTbbeASO4yjwzFLlUJbexgUzDrdnP1Pw6KU13z1dKFFu7zADMQxwIjN5RHSuTlBCellWWas3IvQJF85BSskpd1zHCbttSc+BAyimv2Ph5OmJ2RUnSoyFK1gwRYEwi+d0ML+s2pZzBT3SarCQzqdwPYffDl+Tu76awqgRq3D7+1/w/vQ5fLW4g3WiWZeOaapsz0B41eOnnDy/BYxG8ZwrY0/gtX9vc2pRi1rUohY/VkQzjJcDB6HqSp4CjpRSzurO9tPnzGPdXY9m2ErLc8hu27HrJutx6Z//zhOvvMk/XniNJ2++DNetPiE6Z3GBX/3pUV78+Eua6jKseN6tPHbSSLZdayVevfAI7nnpXa5/9m1WaG2i8SdsQFGL7xctLS1ceNFFXHjRhcycPp22tjaOPfZYPpnwKey8pV5PiC6m26Lo01TP4T9flzUH9+PCB5/nwgdfoLUhTygle2+7GReM3JbGfG6J+1jWseN22/Ds449y8WVXssY6wzn/3LNZZeWVee6FF/jqq0nkGxoZPHgw7777Lo8//jj9+vWjf//+fPvtt6y/3rqcfuopTBj/CRttsB49e7Qs/YDLOK78073MmDOPk0/Zf+krf4/ol8tx2morkV+hBw9/PoUtVliO5VqqKgsvMX7KyfM5wDNCiGeA+1AzmjsIIU5GJc+b/ScbV4ta1KIWtVim8WtgV2AEatbxT8BfsNxtq0X7JKWE0NCrlcZsiuffeJd3P/yEzYatCEguHr0zO531OyYvKLLCoOUovv+ilrWa11HkzWmzuPD+59hy4+HcP6gvhz31OgCD6uuoCwJWaq7n7G025OhVlyfjucz5dDqKtQhB2Ui1CdfRBWR+e0Ejz6UFHXz1wmS+jdDmUmimkmfO7iCIUNH2IKQxomM0eo5Gz/rkBcIV1PVQyZebdmjop5DnXmsOJt0Y0SYs2+ygVK8RumxrE16PyAa6pTeOVcAlsnmt/iDTOcKY62rZMFOHRjUDL6PoT1XQ3gRVw01XV8hwnE7LQpsUZvGcHYt2YdOgRFec1Coc6U6rJNBsm2ol6N2nDzLwGTduHH37tBm7acfDjZBUkanTmsvlSeO14UswfzbCcdhy+eXZcouNIZXBydbxzYzZnHPbfYw4/jd8cs91pHv20Si+LBWM5GGpA2wKRmGhKVwTgrgsS6bqCOP13LRBf0PfUMt0X7ustMqq/GXMHbwy9nWuvPIqpk2bxuY/34wRI0Ywf+EiPvv8c4YPH85ll19O796KsrNw4UL23GN3ttlxZ6ZPn86QwYN5+ZnH6dHSkqDSyUweYc0uyIh24qYyyFi+saUXdfXNRravpY0gHxXmBYbaJ8lrmUgKC7l0zO3c9cgzPHv3LdRFomoxF3nBV9PMNYzup8WzOnSNgCMEqywXyQGGoaY1eTkPL+vhRJSUjHC4//i9AUg35umYoegghdlKNaSVJcf3SZ6HCiE2jj7HuserCyEKFeut9D322WVIKV8RQvwChUTcgLrXLwReR3Gt31oWx6lFLWpRi1r8JOII4CIp5ZcAQojTgS+EEIOllJO62iiWqMo7Dm9ffASXPfQif37pPWbNmU/Kdfn5iZdS9gOuveV2rjv9KMKOdiZPn8vlT4zlta++ZUDf3vxq3x3ZbVArpcUF2p96nZFDB9G6+sp8+NlEhrT14NNn3+XlWXMYudoQTn71XXbq0Zv1G5pw0i7L77A2oLjME/6m+NPFBUWdVMuIvNwnq17ipVDyxSLDX55aUInGIj+kI1p3/ZYsLRHtIt+Wx+/wtW5vvq2B+r7qFZzv20q6TSlsCMfR0+MxhxTAyTfitvYBFC9cZvKEEQ0gTniiHSRoE9KWRItCehlFs6imfoHhHwsZJutoEu51ySTXxnS1EIQASWe0N5QSJ1oe5+b2Nl2F5kxjnSNJOgdhyOjRB/L+Bx9w6+8eR0S1GNJN4WTVYAW/aAoB842aduHUNSgDlMhhEMdF5PIM6tWfO69fj5/tdTjXPPQCZ554tE74nHLRJKNhYI5XKigKTFw46KZN/YXjap1mKRzTQ8LRgx0ziIlpHLDJRhuyyYN/19up9dwEz7kUUX5SuTyPPfmU7p/lhwxhwtdT2aBtAF5hnqkXCUo6kQ/zrRBEx3fTOAMj/ravdNAT1z+uQXFTZoAWJduvvv4m51x0KUHg8+Lf76BPjyZoj1Q82heSbmkmE0krevmsKXbNpck0pqPucrXkogwk5SipdlPK0MdJm/vPt6Qh499XqnFphA0V3yd5Pi/6Z8d10ImCJKos+5dCSvkqsKkQIge0APMidYz/qcjKUnKBXXdXRaJGBHZRlTWSrqYFWfnZLvCzCgwTz50KjcdOyzzDOUoUT9lFCzbC4FQvvLKliGz0oWQV0pVL6nNgQQ/JYiz+5XASwIj5w63yFLbXtYvquprO8xtMIUzBN41cZBUPFv0lN97etWe9b+xCPqsmKLHcLt6ziyHLdq1NlaZ3VQwYdFGkZu/OtYsnHXP+btpccxF99OwCuLxl+WqhEba1cqy/qzawile7urftcCyULA77OF0Uw0rfevkL6/h2kU0CbbM+V1ayV66baF/1AkT7N5GgN9rFhtYfqS5LQ3/6IYRoAgYC78TLpJQThRALgDWBSV1t2zCwTX/O1Oe5YNQODBnQl5ufHMsDV5/NvU+9zO2PPgtBmbDQjpPL89ePv6TgOpy7/46M2mYTXNehNH0apQWLmd9R5J7Pv+aefc/odKy18vW8smAeU0pF1m9qYkZ7Bx/f9gwr5vP0GdxCfYQIO2lX8zE75hYU2hy9tBsaM7hCvca+WFSiJWWS6pifGUhTaOp3+ATlgHRe/aYa+taT66XQT6/O0lb2UtqkQFqJnMjlNVoqMwpplhHXVHqZqs/7Sr6wXbCX+F64+iEgQt8q0kve//aTzk7YHIuDDKDXtI09rHWsdLFbSfOSojLBP+mkE7n/gQf42913suZqK+O0q0GZTGXMoMDLGHWRplat1BKC+h3HhZU3mrnQAAAgAElEQVQNzVqSL3Q9Bg0Zwrm/u4VVhq3NJhuNoLVHC8LxEKWO6Bx8ZIdKCsOOdghDjTw7XkrvVyyeSxi/tzP5ToWC5uRs7nfFtYh1zaV5foTSPOPLodSfF8ydw8yZMxi25lqEUiLTecIo/xCBQb4Tz2oZEuYifNVNQ7mgn42iXDCc53QOpGpbBw4nnHQaz7/4CuedfhKjdtlaUaz8suKJA17bAGRTK40ZSxM76qOmFRfSc4FCjBfPmKtRZC+bobw46mPH0TMzoGZkYqUbW1/d5lQvKbqbPB/czfWWSQghsijL632klA9JKTuAjqVsVota1KIWtfjvjJh0OL9i+TzrOwCEEEegUGpAFb0BKpGJXqYH7rEz42Ys4pxb7+H5Mf/HY2Pf4+EX3+Tig/cg57isscqKPPz2BK7fdmtcL5ruTXs8+uW3LCgUOXvz9bj0BZ3H078ux19/sSF5T70yRyzXiwtnTuKlqUaq7OMRe/HSdzOYMHcBQzN1bNDcg7Tr0DG3QGu/ekqRjbXjCp201HsOs6KCwZw1Kv9sUYmeUSLdoxSQdgQDWlUy5hd87TYoXIdmXfDXotEzp67BDMrCUKs9EATItGcADbtgD2vwWGXwZ3/WSbTjGiRZJFHdqgNIIQi7QDxEkpvRxfIKCkdF4pxYNw4bHa8Emxz194RPP+fWP9zGh+++zdChKyILC5GxznK5aNpT7tAKGf7Ur4wRTEtvJUlXp1RIQi9lnPzqWjj8sMMIhctehxxNQ32eAf37MeqX23PM6JHU5+sgKBm3PC+t0No4SRROQvXKidFyi6ohU5kkbcOi09iDBGEXclagJ/HtJxyhBzv/ePQR1lpnXbx0RiXUwiMVJ8Yd8xMgmdDIc8ocw8sgZKiVvaTjKfUVIhBOFJg+YyaHHXsS+Xye9958jQZPmgTbug+cPJBvNHbu5TJhZMwi0llELio+THnU949k/4JQq56U5i/U8o1xxDSrbGujRqEzzd0TceuWVN1/IoQQU4CjpZT/+E+35ceKWKquuKjyfWGiKvIcLhvkOSEhljhAldFsVw/FHxt5jj7+6MhzAlleBsiz1bBlgTynrYPmLDk7e3nq+yLPVaIr5Nnu52qyfpDsN1s2r5rknY082/fhj4k8d0sT1r5Xu0wgftrIc7YuH23z3yNVJ4RoBuYC60gpx1nL5wMHSCkf6WI7WXrzYQCdyAC4rX2RjsuOh/+K3q09+P1Fp7PrIcfzzviJfPzXa+ndpw+7nHgB0+cuYPUBbfRoyLPB4N4cfeO93HDIzlz50It8PNXUKb5/0E4symY45P5nGdjaxNOfRo5znkuHr37Tq/frRRgEbDl0IGMnfsNHM+awSo8mNunTkzVz9axRV48jBGEp5IsJMzlo9qcAnJgeSLOTotFz9G9okR8mrm2957Byc2SDPaiJpkFqPFHXu4lcb4UqZ5sbtDazcB2cGCHN5XEiJzivV3/CfA/CTJSApOuSZiRxv1agsp3eCTa9w0Iyu0KBNddYOIn7OoFJV0jQdYmqdhWVSXKMioa+eZZULI/jg6+msd4mW3DIgaP4/bXXgF/S3zsd86FdDVaCuTO0EYxIZxHNSp1EphSC38kABtSy6FpOmzKJvg1p3n7/IzbZeR8ABvXvQ+/mBgb36cmJ++zE+musHJ1+hGI3tSJi/WzbUjuV0c+8MNtoNLZTuaScZ6Rq0qm7HC9xLULrfouR5zmzZ7PVFpuzx557cPY55+K4rnmGE5qk3up7aUkQhsLFDYr6/G2qhgjKzJ49ixWHrcvo/fbliovOJZvNKqqH7JynxNdQxii2X0bOVyom4YI5hrJUaNeItFI3iQZ6fpmwfQFBu0qYi/OSBtVx0uzm1ezRjy5VF7kNDkCZipSWtv73iFuAE4QQT0opy0tduxa1qEUtavFfGZHZ1GRgXWAcgBBieRTq/MGSttVJRmtfk2S4KUjX8bfbrmffo05hi32P5JozjmG7w08j3TYAt7GeP111Pq++/ykfvv8+fhBw7t1PsLBQYtsRa/HW5Bl8PPVlfYyxHUV+seaKhJ7L0OWXowN496upXLfb5pz+6MvMXVzg46kz2W3EGmz383U5d+dNKAt448upPPvxl1zz0UTyjsPVI9Zi0qQ5jA/a6e+m+TYocUfpG35Z34uNvCbS0UAv7Rh0en45xBVC00BK7SWtb5vKZ0hFUnuL2gs4kWxeurEO4c6P1smRjm3D01lcN6WTExn6yIxKFqRwLEk5WxItiU5LIRDSfI51yiXgVvCRrYuk10/ky0JUR4vtqOBV64iLGuPv/JLljFfSg2whQ12wJsodhksMunjvqUf/yYpDBnH+8YfhtM9GlDoI6yKqS7pOJ/9uGEC9GoiE+R7ahwC/lNBDjtsNIErtelDer09vnMJCRqy7Fu0fv0QqLPPF5G+ZNeVr3h7/BXudeRXbbbQOI4atwgG770g6lUrsi1RG2XXrPogT0ZKyVAfFPfasYkLpmetnJ9IyTBRl2pSYGO/o1bOVp55+moMOHM1RRx7Bbbf9URfcScy+ROgTVpEcFEIBZoaP7eprGaZyHHvy6ey9xx5cd+Wlqt0xeh33q12Q2mmQ125cHMNQ02mE1x8R9ZtIZ0EXwfr40ybhtCu02utRNgPMBqMmYsvqLSmWhdpGb5TzYDW3wR8SzcAawCQhxLPAdKigTknZmZRWi1rUoha1+G+MW4EzhBDPo9Q2rgCeXFKxIKBRVemmCSOTFNw00suQr2/koTG3cv8DD7H7CefRUSjSe4PtOHTk7qy84hCmTPqKlfr1ZtSOW3De/jtql7dtP5vEHc++yfHbbcRvHnyBtl5N9GrM89YlR5FqbiYsqGno4tyF7LnlcFqOvIxjtxnB8v16c9iN9zHmxJGsVZdhkyH9WL+5kdM3Xotf//15tnrsRVxhEuO+bpqzlxvCcV9/yj/dOezX0JtN65ppCiSLIl1nVwjqPYEX6T5nW7I0LKemzhsGtpGL3AKF6+jkOf4bwM3Vaf1mp6ElogFESQooTiqKE6pfsJFdtfrCoH9xAlMmTpqSiW98Xm7FrEmMTgeVU4XSzEJ1SpC1MYjRhhZBSSdYwi8i/AJOxBsOF87RSTKOq6f3cVMmYXRcZIfSuA7mz9bJ7pzJX/LFV1/j+0rXWGbyehZMehmjhJHOGUqCnSTa2tUAQVkhqPpcOvR68exSJt8IUrLSaj1YeZVV+dnWsP+oUfzxbw9x/f2PQ30Lh4/cDZnKEGQsKkHUx5WGUk7U3jBVB76hmkg3hYhR8BDikY+QZZP8CpGYFbYR6bY+fXjo4UdYZZWV+cc/HmWXXXaJtjfXpdOsmjXYChEQ1cA4UlKOTJy/nTKZBx95lM8/+VD1qd5XOtF2okJK3XfxDJ+UuqhVeFnd4oSKh636IhycugadHKf6D9TujzKVMzOgs6bSnfjBtA0hRBvKkrqT2+AP3O9XS1lFSimXX1bH+0+Epm0snJf8oos5Wu3GZPPBrOns5BR2FxQO+zBli7ZhTx3b08/VCgYtV6iufnD2FFBXrmmJwrMuaAFLC5s2YdMpUjadwaYI2FP+dt8VLRH38uLof6t/rO+lNTKNLXgB8+CG6uL3lWH1eTX5pYSta535rIsxKvahR+tU0GNsFy97+q5aNX0VxylI0gOCLq5bV1Ht+tv0EM+pfg09ixTi2LQN+362XlCJ+7+aw2aiyr6zQsC/FF1SQarM9HVVxGOHfd/YroZdnZv90oqSoHTk4PXfRNsAYp3nK1A6zxngaeCIJek8CyGkP1kB09LL6r4J0/lEXzrFdr6cMo0d9jmAiZMmd9mGMcfvzePvfcrkWfMYvrJSGfCDgOsO2J4Pps7i/rEfsv+Ga7DVWkpUKiiUEK7DC+O/YtigPrjZNEOOvhKA3+29FXuvvyr/9/jr3PnWx/RKpxk3ex7N6RQXrLwybZkMAzI5si1Z3pg5m7smfs1rs1SRWoPrcuTgwezWvx/CFWQbMzQsp54B6YY8dX2VC1quVwtuNHhwGlr0OQsvbQoJM1loiNDSVF3S1tlNmXvR9TTtQDpeMjmzCwErUejYfc5KDJGh5kIHoazqimsnX/H2RnotMEmQDE2RvE1T9As4xXbC+er2kPazIJ3VqKT0soriQEThiJPtRfM07WHh7Blc+dBLPPD4s7zy8F30aGpI/kZjbvGSqFcySWNIJIC6w6T+W4S+dj0VpQ59viL0+d0fxvDxZ1/yh2suQfglg4K7XvK9ZFNTAsNrRwjj/Oh4pkDUar+dZCIc885w3IRxTYgglJK777qLW2+5mZdfeUV9VekoXI0aEs1M2O+A+Hkvg4DBgwdz/XXX8sudd6yiFlLRzvj+6OIdFtM6hF/U11h6ZuAkSh1qPd9QeMKG3lGflRDx7ERJvdOdlX723+kwKKUc8p9uQy1qUYta1OLfE1LKAPhV9G+Zx5BBAxj/+gsUA8nMb75k+szZvP3SC0yb8jUTp87kodfG8cGkafz1lfcBeHXC13rbNU6/QX/eatXBnfa9+apDEK7DvLLPEVtvQL/WZu5+/UN+dd+zBFJy8w4/45vv5vLFgkXMK5U56cOPOHDgAA4foGyLR/RqZXhzM8X5Rd6aN5dTJ4zn6okTGdpQz7CWpk7Hq8WyjXwuy8W/Oo4Zc+Zx1uXXcvNl5/7H2jL+8y+5ecy9XH7Oaf+xNlSL5VdYgc8++4wwDHG6Aw4tJRzHYbvttuWZZ59j1512qCb+9JOOnyzy/O8OIcRWwCUoqkgB+JuU8pjou9HA+UBf4EPgGCnlO9a2w4Gbom2nAedLKe9c2jFryHMNedbHrCHPQA15/v8Zef5XQgghS9OjSUpLTzZM5RTv034OxhGGOEU1Fex0zMefrpBo/7vJ+JHc1UfTZvLbf45l1KZrseagPpzwh4c4ZPP1+MUaK5Du0QNR10jZ99nm1Mt5fcIkbjhoJ3o35qnv1ZOfDxuKkCFB+0K2ufiPFDuK3Lf7lgSFEu9Pn8O9H03k/s8nM6C+jid225IwKpDO9+2hqRZ3vv0Jf3h3ApPnLeLbi48i3ViXKGiKOZpOQ7OWpHPyjQnDEz0N7qZ1MRmOp/pE0xi8BMpoT3F39d4AkkVc1bjRjmPUJlK5LjnLqoEReuoXTLsCP8FftouHdfHZ/BnIglGudRqa9T5FOqufjTbyLN20eWZKaYoCF89FFhczvyRZc/uR/OmqC/nFJhuq9VzXoKGV/VVJ27D6XCOpwjFtsdUmLBRfhD6EPu9/+BE77L4Pl555Kofst5f6rtgOkTOmdNO6LSIoJTSXRWAK8aTjVT1nmcrqd0OCL16h3W3O11V0KARBELDhhiM477zzktQN67z1vuJLVaGOAlaRqAyZPn06a669DmNfeYkVll9e91GIQErJp+M/YbVVV9HnJYKSkVO0ONAiKOMUFkR9UU6i2LHMX1BWBZcWkh3bnovy4k65jtd36I+OPM9HSdl9vAz2pUMIcczS1pFS3rSMjrU5cD9wGPAoIIDVou82AX4P7Aa8CJwIPCaEGCqlXBDpkz4OXA1sinI+fFAIMVFKOXZZtK8WtahFLWrRRcRvZzelnc1AvVxFEL3IE0l0iIzdzIrtmg9MGBIWPgNgrSH9+ctpB+ot/nbGQcgwYOqcBeRmzyEdOPTf5xT8IKRXQx1PjvuUf77/BaGUfHb7xSzXs4VZMs3YTyeTcl0m+D5DgbXaerBafZ7LthkBKApGpkUV7Hl1WVKRhfPxKw3g5MN2BVRS7NQ1GBm6fANOvRpMO7m80RNO54zaQwLsMNJ00vEQwrH0+0UiaUqERdVIFOLJ0CSzUppkJPRx4uTRyyIjCUBhD/BkaCWvoUpyogGwsJIePUUPOO1zjJKK45oE2XURDc266E9kkuYW0lKo0JJu6ZwZlMpQD+ylcHDcNM1Zn9suP5fRJ5/Dm4/dQ/8+bUkagbQgIptmEi+y+jWZgJrkWxf5WaoUhD5vvfMee+x/INdedjF7/3InfS/LbINlJuLjxPSEoGySdS+DKCoVCVkqIHKGIy0sSTvhF3XSKb10UqEoHriHISIW7ZceSIkLvD52LDO++44VV1xR7cvmolt9IR0vCfDZ4FUFVaetrY0VV1iBWbNm6eQ53ua6a6/lrLPO4q4xd7DH7rspF0M3lRiIhZGrpOM5hFHhq1NYoClDMS1Gh5QJYEnz2lN1pl1dOVhWxA9OnqWUBeCOH7qfKnHDEr6L7/llkjwDlwE3Synvt5a9G/1/OPCAlPIpACHEVcBxqGT6DmB3lAb1lVJBpk8LIR5E6ZDWkuda1KIWtfgRI0bYAMuJzYMwsPi81kvUTUOkOxtmG3Ry5xQLeL3669WEl9KavrNmzWHH0y5n3MQpNOezzGsvsMagvrx26VF0TFOOc5vP+CttzfW0yRIinWXKnKkMXa6NndZblR1vuI/fjdyaURsNQ1pSnOnGvHacS7W06KQYx9XHFmllhHLtnQ+Sy6Y56oC9lUEGEKYyxrTKcROzT4Zza5274ypVhCoJs0qA4lerQR+FDA1P14+Q5jiBreTNxglj6CNKEaoblDXnViXPZh3Aki5LKmTEs4EJ9YMg0GizSGdxGvIGVXXTWpvZRoVlqs7cI7YUpZ3kZfKEjosotbPVL7Zgw3Uf4PhzfsOfrrmYph49l8B1tgYh8XEhaWFuLe90/oEZoIz5698Yvd9I9tpz94RUnurvzjMoSf5yWSuliFxKGa7EiGs6C65liBbPonqG7y69rJGaEw4impnB8TR6e8avz+T6a65gjaHLq1kuayBjZ8g2p15g9UF0LrakHUC+vp7pM01ZQxj4/PWeeznrrLPYa4/due7/rmeP3XZV7nsVyi9uWNZtjs9fZuqtYtMkIi4zdUZz2ktrV8cEvz+oGER2Ed1KnoUQ/bq1NyuklN0rWex6+07zmpEW6LbAGcC+P2T/1j7zwAbAk0KId1EuVx8Bv5JSvg2sBfzZapcUQrwXLSf6/12Z5Bq8CxywLNpXi1rUoha1WEJUoZbFYScEZqGjp85Dx9HJs9vk6xei9Euq4Cyd4/xrb+HSG29n5FYb88S15zD126k8NvY9dtpgDVwvRaZFoXx7bDyMGx8fy+ib/84Ju2zBxLmLGdTWk3NH70q/Pr258ZHnOXTPbUjl8hpFVo1QCYhT36xttJ1c3khsRUVSH0yayr2PPsmeI0fSoyUuIEspekp0Xh9P+IwRm27OfiP34ZabbujUL9Lx8KVx6nM6JXhWMm2pXQhLLVYEfpKGEaPabkojfU6xPZG4OLH1tOMh052NNVQ/+IYqV2zHn/ktlSGydVrDF8dJaHsr98SoMNCSh0OGuoAsIdXmpTsn09E0/i1XX8wZl17DSpvuyKg9f8khB+zHaisP7UypjBN34XTSebeR56rOLm7KJJ+OSymQ9B80RA12ZGj0jMvFpIV5PBgKSiZZJ2OoCm4amW/FXaQMfGSpgPCi49hyb6UOKKpE0kln9ayFcEyCKvwCuGk+nfA5U6dOY9ctNsKJ1EpkKpvoY7t9ttlOVxS1ObNn8cCDDzF+/HjWHDYMKRwuvuQSbr7lVvr368fLL73IiSeexLvvvWcGQ13sK+EMaw2KbGqLlvhLmxmKmAIpyoXEtehOdBd5/ga+t+V291rwPUJKOQ+4N6JK3AJsvgx22wI4KIR5e2ACqmDlMSHESkADS3a9Wtr3ibDdsQYOHAhA2U3qF87uCDptBzC/qG6Q+QVzo9jc3uasQRiG5C2eq12h3BXX036I2OYl0WjO5rnaXOVy2TYv6YJbbT1wujLhsLmuTsJ+Wn22ebF2lW+XhjHlKlxHkuec4AXX2RzhSPje+hHZ59wdzm9X55m1TjRhUhNVANvca1ml2j36wvps+1xb61cxPlCr24YlFt9OL6se9o9ZOlUQlSUcp9q90xX33b7zpeU97qbr9WfbWEGkrIdmNZ4zJBGcqut2gTSEFahctfW7vC7Vbgw7MbHO1H4hJw7Txe+pGo+3y2P+74dtTGEWKnRUVnm5g4XaucYJLnBTWifaCXyEX+TJl9/g0htvB+D3Zx1LXTZDa9/+DBu+PgBhqYAbIaPnHLkCpx42ihsfeJKRV41hUaHAAxccRy6b4eg9tuO2x17isXET2XWjNTXCLDJZXSvh1Dfr5WEmn6BaANx87VWst9661PdoM5QEi8/67HPPs+Ouu9HU1MTOu+xiqAoVWsq28oX9nW3AoRZYv6F4eeAn+jXBm5VSy7OF2QYj1RZYiXfoa25+VVeVOOnxUlo2MLarVn+E2kku7GgnXLzQ2JD7Bf0MTEzN2+cUGBQ3VlUAtFJLjKS3tvbktqsv5uuTjua2u//OJjvszqlHH8rZp51soa0Vz77AN9QHm7YQlJPPZpszHR2v5Ic89+yzHHHgfhECbz9jKqg18Tl6WaPLDZrmoRJGVyt0CK8DGQ1eKHWYWQMvpet3FPVFcYad+uZkn2WgWFZFgn6pSCrWng4D0y6LmpLIMbwsgiBRr7W4o4Nrfvtbrr/hRjbf/Oc88Pf7GTRoEHPnzuU3l13OG2++ybBhw5BSsnDRIh647161r2r1V3aSnPBrt/o47nsvq1DxKjMCMttoVDiWwPW3o7vJ80V8/+T5x4yvgGVVCBPbzNwupfwAQAhxGXAasHH0fWW5czMw0dp+cJXvF1Q7mJTyVpSeKcOHD/8p9WktalGLWvzXRdUp9Wh63LzI3S5fioYDmqHsZPh68mReeP45JnwynnsefIS/3ngVe+2wldabJQyMg1kqp4uJhZfC88v8+uQVOe2YQ1gwczqN+ToIAxzH5Zi9duDIa8fw2he/4Jwj9qelsR6RyWpJOZnKGZ3qeLoceOXt95m/aBHbb7M1Rx99NIniLuHopGG99dbjyiuuYLttt2Ho0KH6/CpNSNzQ4sra1IXuFM46DoQ20mFxeMuLDZc8MElKPN2u2mLJuUXHT1iCx4VxMg31ql/cbF4jzOHCeQRxgb1fxu3V3xQNt89DxPSQrOk/ZSEeUXPKHUlUMpYni3nBVgEewmHQgOW4+Ncnc/C+e7Le1rty3MH70dzSQ+/XSMUpebh48Csdizcc+AkU3+Z8x/HMU8+Sy2ZYb5XlDYAS0zDs5LsSfY370k1ZBYKpBB8aISAXy/alNbovCwtxmiMb63JRJ9XhgjnGZCTXgCgXWWOlIWywzjBOv/S3XH/pOeo7MO0KnaSldkwZKRe0CQ/Ad9Ons/0uv2TwoMG89+479O/TFm3v09RQT8/WVhwZIqRk7NixBEHAttvvmABsYmDGvq9jtF4tD4kvhKp7MPKBCaqLjVaDoT8ty+RZSnlBt/b2bwghRF/gVFQC/YNDSjlfCDGJ6oMDCbyPcr2Kjy+AtYEHokXvo/jPdqwTLa9FLWpRi1r8O6JyRqDiZWmvVzmt/MEHH3LbH2/j4UceRQAbbrQhI9Zbl8ceuIe1hq1B6JdMYhYpI0BEQ4gRPkstwgFaevRV6/tKJeDY449nt733YccDj+GJQ0/nnUfvItvcmnT+qoKi//OpZ7nmelXeM+HD9xk8aCDVVDGam5s5/rhj1WKrGK6TKoRtUV1BJ4gTDRudizmiECUcthJHUEpwWPVsmhMkua2xhbflSqfbYfOm437INpgE30tp5qzbsx/hAqWFHS6aRzB7GrKs2uw2NONEgxpZeS9EYSPi0vFwwkX6fCu1re3PKyzXRt/evZg+bSotuSix9FJJNNSiaggZGgMPa7CgEmxrhjT0mTl7Doee8Cvuvum3ODJACjWg0cmo4+kZwU7Fi1YhofDVeYapnB48AsiUpYEc+oTZqJjQLkTMGmqLyDVqJap4cOWGATddfCbDttmTvXbahs022kD9BuJ+tpH+0DeztmGg7p/oGkz7eiLjx0/gmX88RGuvnjr5FzLknnvvQ0rJcn3aEH6R66+7lhOOPUbN4lpcad0XlYO9aoWvwjEz6fEAx0667YGjnmn+EQoGhRB9UCjrLCnlF99n2+8bQoiZdE5o0yiaRAFVqLes4ibgRCHEX4HPgFOiY7yGQpafEELcAbwMnABkgQejbR8ErhRCnAZch1Lc2B3luFiLWtSiFrX4EaMqjUWGioZgy4XFU7QVFsVChozYaCMA3nj9ddZcc81EsikBRLsxtPBLysGNZDIjUzlzDOGAYyke+Epiq62+J2OfeYzVN96ShjU2Zd5Xn1CXjwwsvLRJ7ISjKQCXXngeq64+jMOOOpoHHnqYU046oXpHyKSNtbCl4CrOt0vqUZU+FTI0sp5xMhLv200jLXOPMOIMJ5RPLNpBghsc+AoJtgvoQku2Lj4tx6soeoyQ43SWcOFc7fbo5PLaelvMmwaNEaqaaTDblDoMhcDLEFqydTiuTvpE4BDGiXB5MTLwmTZjJm09W02/lItgsSMJLSUOx+I8V9AYCMp8NvEr/v7o44z7eDxPv/Qah+63F1v9bLhGvBODF5tqkOjLlC44TKiQxAMgC7kOLfRX88KtJFcEZcP/laEavMQRDZB69urJ76+4gOPOvIAPnnskkTBLN6WTUiW7FySOEffLuuuuS1uvXjzwwAMccdABCWnOl19+mSMOOZAeTfVMm/oNL7z4Erfd+H+JwYfdFyJBv6hIim151jjc6HkQD+SsNqvtO0u3Lim6WzCYBv6EVaQnhBgH7C6l/LrLDX9Y3Ejn5LmA4l8/IaWcvQyPdTUqKX8OlRi/B2wvpZwPvBLJ5v0Bo/O8g5RyAYCUcp4QYoeovRehdJ6PqsnU1aIWtfj/JYQQlwL7Aa2o5/RLwClSysnR96NZslb+0cCxqILtAEWLu0pKee+P3fbFi1Xy9flnn7LccgN+7MORTqf5/O1XOOKkMxj+ix24789/YPVVVupyfSEEo/Ybyaj9l0mNfC3+hZj49RR6NDfR0tTY7Wn9avH2uA846tSzmDN3HjtvswV77rQtJx95EButP7wqAv9Ti59vtAHfTJtOqVQmnUsvfQMrPlzqb2cAACAASURBVP/yK+649+9MnzmT/v36dvp+p+234/xLLmOzTTfhjjvvZvddd6ahof4nxRe2o7vI8xmoB+M7wPPAUGBXlArFFj9Gw/6dVJFIKeO86F+178cAY5aw/VsoxY5a1KIWtfj/Mf6CkuucL4SoQxlO3QNs3A2t/H1RifWuwJsoAGM4UKUScAlRkdTYdtE2jUFUvI0LJYVsnXXW2fzl9tsq9hm7+iRVGez92gVzyAhtTRltZYRDaEmBhRE94Jbf38gNN9/KqeddzOMP3qfWyySnv+PjJcVyu5iutukY9pR65TZ+qaqJk+Z8djqvKioHMWLr+9rWGCESfF6N/qWyOjEUgdF1jtfRqLZtQGIdUytlgFo3ZfdRoCkdMgyQ7abUSPdYI1pFQwSlRL9qdFaGylwjRrwtDq1M1THus69Za9gaSVlECykHFM0ibn/ZN8iocJBuioWL2tl+79HceMnZ7LPLdpDOmaLORFFjCceiyhAG2kRLprLm3hOOuS9saghJChHCMQXkYWCQXFt/2ka7LdtwbXsdbdPckmXYqqvw5CtvstN22yR/X45Bxw3qntL9OGzjLdl+6y1589l/svYaq6nlvrkW2/3i54x9/Q3OPPd8frbhCE4/+YTE7FF8T9jXrys1HX2ONlJv/W7jNsc3SaXtfHeiu8nzvqiH3paxJJsQ4hzgQiFEHynld9/rqN0IIYQHuFLKorVsG5R5yUtSyne73LgWtahFLWrxbwsp5QTrT4Gq2Fk5+ntpWvkbo57pb0Trd6Aoct07ti1Jpjmg8bRxTC9ImivYiWVzg6JNNDU1JugFIiibKd5K7nTMJ4Xkyz2WXgtDXfAfa9DqBCkM9NT51tvtwCVXXMWiok8+l9Ro1lxNKalUpkhM61dDQit5n3ay73q6nUKGho5SSX+JzzFTr6kZhMmCv6TbpUlapJfR9AwlpxedS7nDFBhGyh12AV8iuYkpLOmcUfFo6G0VKBbx8o0Qa3OHgS4slEVD+3CK7UplImpvGHPXHS95LmCoCKGfoAW88944hg4ekOwXGYJnDaosqTpRLhoN7OhemjljBo4jGLnr9mr95JETzn+JfVnr2FrY2G6D9mAFcBZbrsVeJnH94oGTdNMI2xQ37iPXRZbVfoOGNrWexXE/aNS+XHDldQxfdx36tKmCv4SKleNp+UQZyQ+2RwPUm67+DX3tbazzTLkev7nwXHVvxssrJOg0557kAFFUJM+mPUZ+MaZ8JJ2Yo+eEsOojliVtAxgC3FShZXwPiqawPLDMk2fgXpQE3CEAQogTgGuBIuAKIXaXUv7jRzhuLWpRi1rU4nuGEGI/FMLcCPio2hFYulb+S8BfhBCXoGY234lkSbsVTiQ5Jh3PJJxuzLfs/IqzX8AAjuvw9utj2XyrrTnv7LPp3buXUSuoNmfsuBgpLGGKo4TTWZYNVOLseAmVgPhza1tffD+gFAryboW8aIVKRldGHYnEOG6XjY7bCYhwVKIRJ1BO0sLcLli0tzdcXoUw6sTWTVsKG2XT/17aqJg4Hn7ULi+dN6YoHfOT51UhQSbTpnBLI7SZvEnY855BsVHIr9Y2Lpe182BCtzfXaLSkLaWRMJXDKXeY9gdJJPL+R5/gb3++xZwrqAGZzS+27L6lcMA3x502fQZbH3AMJxwyyrS3UyLs6s8JnrSNts6YjMhHKrh+SSPSIp1NFCLiZYwBSipjZgdcl9CS/Uxw+6NBhV046bbPTiSc0k1x4N67MeHTz9j/8ON46u934bquSj5jtNq+94TD199OZfvd9uHA/UbSt63NMi7qIv10zXVJaEY7ScUc6WWSia59/nEfh74ZVMgwIREau2Xqvyv6hNySJ766mzxngDkVy+ZG/2f5cWJD1PReHKcB10gpTxNC3AScDfxPJM9BxQO6T9rWhBTW8kiPs9l0uW85+Nj6nfZt1GHdIGnPrGNrJ9tavCWrQcVy0Ol7G+ewx2iepWHsWm1JW8uz0nrY2aN+m+9VTd/WlqpJGZFze7Rdtn6MJczUXtkWFU6Utnc+DICjFX66kLaSS++LrlhxBatvHbvaxFGfQ8tWtSvZXnsG10ksr64X7Fj7Cf1qLbNeUt3QCrbvG+v9pjW5gcRDKmVd57TWYbXOvRK1iNvaheq0bzdR2MYE5qP9W6iUkoVk34ZdaOAmZsoTD92K6vlqy6tMmfvWS8s+Ziowet+iO7zHcmfkBEhOKf8HQkp5N3B3VFh+KIrbDEvRwpdS3ieE6EABJYcDPYUQLwHHSyk/qjyOrZUPGJcwq9ApTKskq6reuPAS1xlg1TXXZpNNN+Wev93LCccd18kGmDAgDEOmTpvG5Cnf8Nbbb/Ptt1PJ1tWx6SabstFGG1LX0Ih0LPQPq4BKhgS271d0/V955WXWXGst8k3NlDH3n2NPV0fqFrYJRuKlX0UhojLRTkxvC0dTNBQSnTbbWFPcdgFV4vcaWpQUGZqEOwx0ohp6Gd3fEihHz73M4hmmvUHJoJ2gijDtgUjcllKHkVrzC6oAECjneuBkTMJKcSFhXhX0iUxe0z1k2dLTt9qo6AlRP/jFZJ+5hm7gByHTZsxkwKBBCatzLNReq7tgfoNOJDn3/sfjOeiE0zhw5B6cc8pxSYpGQj0jul/mfku4cJ4pcvTS5lXluHrAIMtl5bAYHz/SxZflouqTmIZjqaNIN5eUyovfO17azEbYCWdsEa6LOgOEm+LSc3/NTvscwJkXX86VF56jvo+LPYOCTozf/3gC+x10GIeNGskpxxyuqDGa8mOswnGcZAFinHwHpYoZmNAMpCpk5xIUnDiCktHzjlF3u3jWN7MDWqc6qJiB6SK+j9pGV2/VH4vP3UqEaAshhgH9gJuj7+4D9v+RjluLWtSiFrX4F0NK+Z0Q4g/Al0KIgSxdK59oFvEfAEKIVVAKSP8QQgypmPFMaOULIWScGLiLZsICNQkqUzmCqV+Qiab0/Z5DoE7p8wahTAyo491vttlmPP3c8xx34skIKZk5axazZs+hLp/nzr+M4Y9/up1SqcTAAQPYYP3hDB40kFmzZnP5FVfw6muv8fTTTyOBhx96iMuvvEqPX50oQfGiV2WIwEHywQcfcOrJJ3P+eeeREmp5nNOHuFrzOLYgrjZdnUhyK13s4sTHQg5jLnM16TPpppLHiJcLpxMqZw9YQi3JZugGXsd83NjJLfTJxO3N5BMJQxh9r/4IcYpV7JItC/IwldPn4hUXRLMD6m+nsNAkRkGQ5AFHSZJI53R3OX5Rq3NIT5nliJKSrgvT9Uar2O/AdR3F7w58Q82xQroe0svS0dFBNptFuB6h4zH2jbfYY7+DuPScMzh4/5GEE9+22lQ2duyYAXrolwnbF2gzGOGlte4yXlobm4iU7VCIScRjdN7iv8emOonZEeEgPTMQ0EhwggYUdOLPS+HgCjjy4NHsffCRXHnReYjQZ9qcBcyePQeXgE+/+oZnXniRBx56mKsuvZD9d9spaksIZcN5t+kgVQdkUhqpROGo5F1YfHCL7x/fM07HfKPx7aVgtnKqdBp6EGbyiLnK/DpYOA+nQfW/bB1okPquEPGK+D7J8zVCiAutv+Nh9JgINbBDSilX5ofFdJQs3ivAdsDXUsr4YZuja3CvFrWoRS1q8Z8ND8ijQI+laeUnQko5QQjxO+ARlANs5axnMmK0M9+aQEvdgasiFypRJqewUE/Xp2x039LDvfP2P/LJZ19w7cXn8Pyrb/D6O+No69WTxR0dDB40kL/fdx9rr72W3r/ehRCMGTOGrbc26qQHHnQwq662WnS+0XpRCiqAsh9w8CGHcNaZv2bUKDWVr5NkkhzSqFMwDhxSWWFLyfrrb8CuO27PGaeeRDZrFfwFXe8rYYziuLjzp+pzihMV4RcNN9hNW+ifkq1LoH9R/wXZJoN8W7xutZ66Ro5fTGpJxzQSQHoOYYz+WU6roiIRTBTCWbQNmcoZbeRMXg8+RKlDJ+zh3OmElqW3GyVPBAFOQw+ddLkLp+t17nn4SdZZdSi9vaIanOnsuzM6v/7mO/PFpCnsvePW5PN5Hnn6Bf549UXsvPlGsGgmsqW3NtiRJcsS2kubz8UCDiDjcwsDZCRJJ5zAJNKgXUhFvD8iCodwDDc7ck+ESAM6nsUNk8ir3mfFrId009ZNLPW+Nh2hfOp23Gc0X0z8krnz59PWuxeLF3fQt08b22+1Be+8+DR9+vZJaI5LEdmAW0YuQp2Mbm98j4SpHDIahInSYgRBUifbjwYSMrTMXxbpZ4LjOBDTXGSIWDgLf5YaYKcGDDW0HWsQ6S6YoT706MeSorvJ80tUR5indHP7fyXuA64QQqwFHAzcYH23DvD5j3jsWtSiFrWoRTdCqOznGOBvUsoZQojlgOuBScAElMxnl1r5QohDUOj081LKWdH2RwGfSCmXnDhDcurcRtXS9dAzsm62lRSEU9WM5NUnHubeBx/h0y8msvdee3LXHX+kqckgg/glWDw3UWQXx8F77UKfhixXXHsDY998iw3WH85rL73AuuusDaFKRotp1RZXCG64/nr69evHwaMPsJBji4pRTSkjRpZliNuuBgUD+/biN1ddw2+uuoZJbz1P//79Tb/Ernp+wSRSEYosrGMKyy67Ut8ZKl78cTIVTZHb6g8Ih4KIk2qpc5yUKyBG+p00YbSOKxTVy7GQxSAX25YbAw+n3dwCwuZVlwtJXrvNebWWa2MYAMfFiRwdcVzC9oV6k6BUwInQXplXxjdz5y/grKtvYsyV5yg6hOMou3DAyVcUmPpFHrzpCobtsB9Tp89kj21X5+yj/siQASYJE6mMuUcdF5FRiaHN7RVeCvINum2yVDBUB8e1aCcBstihr5GI3Rn9sjqOTngtJNdxDC3SSyOlTXuL7jObRx71Y2LAEx2/tUcLU8e/x2NPP8c6a67BqqusjOu6avZAD4gyapbC6ienioqLCHyTJNuFgDJEFNVsgCi1RxrSZhAZ91mYziVIfjE6TyqlHSmF4+K29sFbYU11mrkW3A7FPnYXzdTXJcz3oDvRXYfBzbu1t2Ubv0ZZXK+PKkL5jfXdeqiCwlrUoha1qMV/PnYAzhNC5FF85heAraSUPkvRykfVz5wA3BTJ3MXb79SdA8ccxTBTn5wGjhM9UImzlTSYjR2Ikse65h4cPDoq6LKKlvR60Xah4xluuoU+br/tVmy/9ZYA/P72Ozno0MPYd689WX3VlfnzmL+wzuqr0LtXK/c98jivvPE2j9xxE978bzX6J/yiaa+lPCFTmQSSKPwCYcT7fejuO9h693156dWxrLP1L1m4qJ2br7mM0XvvZpKx0Ddud5adtjrPtEla/EIyUQ7ihNPHWbzY/oYwaxetRWizlyEVJValQFKyOM9xHY0QZsradQSeBMdTiV1KwOKIzx9KQTbq71RjH5xCVFxoUSYqCz8TEmlW0ZtM5UzNgsUZxksbFNYvq2Q2GyXPwgHX5do/30NjYwObbbaZWh5ZrcfHkMJh1py5zJ83hwULFvLR51/SWJ/nhP1/ye5bbaLOpX0BIpbXC4OEEgi5uABxMcQ27X5ZJfuxEkQ6awo8ix1mX46LyKi+k+0LjBQjJfXZ4g3rLirb/GXTf9K1UHTHARkvTyX+B4uPHPq09uzJAfvuHSnTSLVPxzNUi+hvLVVoo9pxv8fnElGB8FLGCMWyU5duOoGiKxdG05dhRE0RwjFOk6kcXlRHFGaUiY7f1F9vH1OOSNebc41+D0tLjr+Xw+C/M6KH7kVdfLcs3QVrUYta1KIW/2JIlZntsJR1xtCFVr6U8kGMY+v/RBx12MEMGDCA115/g1tvv4NZM2by9eQp9G3rxZknHMkKAy9ihcEDf/BxJk2ewkuvjmWn7bZh7tw5vPrG26wydIVlcAa1AMWHX3PVJTNQtxl1NB9M+Jy1Vx3K8gP7c/sVZ7Pr5htVVX+oxf9OdNdh8Pta30gp5Q8q/RZC9AbyUsqvor8FqhJ7NeBZKeWjP2T/tahFLWpRi//+iG2FpY2qRtPLBol0OxfUodBeUlmzffxGjIqZjKxWKsEdTkiSxcfwMglUbscdtmfHHbZHyJCd99ibp559nnkLFrLzAUey6LO3OtlkJ4v/7GKqWEe6qL9zWMil/3cr5199A/m6HP944in69O7NhDdeZPnBAxXqHtMDPMtYo7wYW8lC+AXLHMNS9EhlNPJcqf8sPcOBFUEZwkghpLgQJ6aKpHJkPIXQfreoTCpS4sl4qtgsjqIfavWeRYE07A4BqVitxC8nVSl0fynJvE5azZDk8KYMcksYJu4DEat4RNbosdGHQp7TPPvqmxy8z+5qH9F+YxR//W13Y9xH4wF4+p7b2GJj45OWKNIMjb259MtJDaE4wa5vBd9wlqVfxolRcIujDRjOdBjqz6KlTamSQDQb4GieeaffhX3smD5e6tB0DOmZ2QgZobtagSIMNK8cxzXUnmyDQZvB2IFHv8HENYrRYhka85d0XdLOvJrWsm3qAsn71bqncTytPCQtcyJCH1zX8Ppt5D2V0Wof3VI8ovvIs4cSrn8KNaX274g/A1+gpvMALgTOipYdJ4Q4TEr5539TW2pRi1rUohY/wdAv5kqd3cRKDrH7ny1rJS15rIQeMC6hLZcmhM65QinxLL3fao5nKnmPm+Vw6IGjee2NN1lxheX5dtp3hOk8YTqdTJJthQsbe4oT9Oj7Lyd9zXW3/YWHn3iWtl49mT5zFuefcQr77LEbQ1ZcUfFf/ZI5n8BK0h0vUQAmvYzhs0Z9qNuQtnjhcddYsmdqpRCEJXUZJ+UyxA/V5551npYudbB41UFZJbVRO7OeoQYIgU7SROhr3qvNNReBr5Jay/DFmOP4hipgD4I8a4DiWhrXjkeYSSfoOIsXzeeNd8bxxjvj2HOnbWlqbEgkdXHi/Pc/3cTPN98SaQ8ybEUUL21k0HyrSM4ePFmyecgQMnlkTJtx08nBgBtf18BIMUqp5fxEUFbnG11LaW0vglJCeSPmuyf0sysKIXHTRh7PTZmBSHwvRW2WMZUHkr8lGRoJVMc1yXd8rvH5xxK01m9ClBabgUuFoyNEBZAQFVzGAwQBUVGidI3mtDKFWZzYh07GLWpJVancKtHd5PlhYHuU6sU/UVas/4yoFT9WrIuRI3KAo4GzpJRXRqofJ2EJ7/83R6ZST9jWJnXNQ7QQafSmrbGrrREbpqpLbuc888MLrIfj/GL1aaWi37k21EYLbA1nS9o3oTmcsv6w1wkcSwfTlknKGA1cW1M31rG2tbATmtRlW3LqXxdgSSc0qqP/HXuZ+Rx2oYVstzGhBS2Xvk58LPv1bZ+nvZ1v/WG3O9HP1rbl6s2tur/kOZt17OPYYe/aPqZjvVBD19Iij14QjrWlrcUr7D4JqyBKKA1cs0EVhAKQVnOrXa5qUmXRX6bdyUop6/i2hrhZI2fZBqesR2P84nYtfp59P9l8wsCySLbXTyQsaaNzHvN1AYK67hW6/K+FToQrZdfsCINEwmh0b1OdnfUwyKHhkTpaLUNinkuOEElJOTvpiLcNfXbdeUcmfP4FH30ynn8+8DdS+Qad5EoRt9W0qxNKLhymTP6Oo391Nu9++DE7bfMLZs2dS7FY4oVH72PjDYarJMMuxoqTJ9vkImWSCtUvoeE8F9uRKeuYNu3A1v21EEBR6jDrBcaVT7opq+/Ajd9TUpoCsCh5jJMjL6GrHZrk2TKzSKiIuCl1TMuoRGB0ieNfWGjzn22rc+EozerofFUxYlZfs6+nK5wwl83S2Npbn8+cOXP50133Up/P8+w/H1S23UgkGWPA4qaUm2J0HJt/bpLqjFEHcTwzg5LOIcqFRJFenNSLUgdhJiqqtFRP1MAhOsd0XdJJz/othOkmM5Phefrah7b5CxBGz29HBohSu34/J+6lRF+6iVkX/dkvktAoF5nqCHNiQJdTmt+gEnJbacW2lbdVY6x9KQUYU4gYxkm5ECpBt377doGxRp6rPA+qRXcLBncTQjQDI4FRKH7aHCHE34C/SCnHduto3y+agNnR5/WAHsBd0d/PAaf+CMesRS1qUYta/BdFAv2KlBhE6BO6KT0QT8imVRikVLW3Fk4n9DrezEXoAXQgpeW+l9LrOEE5+TIHfn3qSbqdui0eXQ4AE4mBDDn1gst56oWXOfX4o3nymec4YvR+XHPJ+QrZhEShVgIFj1F03U5Lxswa8JE1UnXS9YyMGQYFDlM5TXMBkFmDUgq/pOXVhHBIpdUxfKlMU0BJ1Wk94aJST9AmFpZDpAjKZno9KBv0EDRCKfwiAgvFVAeOGiaTg6qYHmAlstIqCo3treNE3g8CNttpT3r1bOWdF59OXKM9DzqSN94dx63XXsnaq6+qBg8R8hnTBUTgE9a16Oun+zJdr4vcROib8/WLOIuV8oP0C1FiH7Uz22Tab0m3yVRWS/qpRBx9jtLLGMTWTlJDXyfCIijpwZSPgx/GRZ2CbBj1a7QvbeBiq5tEgzq1X2OzHnoZdf+jAD2nXEganRjtRnOP+gU9cHECI1Noq3vIVF1iRgFrwGBTONSuY5m+dIKGYcs0Cr9oZkr8QuI50p3odsFgZJd6M3CzEGJ5VBK9P3CUEOIr4E7gNinlspKv+wbFb34Z2BGYIKX8NvquCSh0teH3jcgR6zpgS1SfvAecLKV8P/p+NHA+plL8GCnlO9b2w1Gi/msA04DzpZR3Lqv21aIWtahFLaqHtNAv20VQhhI3QtBCKY2roAXqOkjzArXVGyoR5Ap6Qhx2Gh5KSWwnYifuQkR0gkp+M2ikNj6GzdGutK2+6uqr2XOvvfno44+48IIL2H67bQmFMM5qQdkktsJBxrMSnpm21wOCKvxtyoXENLaMpw8dDyw+K0HJJLChb5I84VjcYpPIeIQIP87sZCIpV+YcVgJvGbvoc6lAG+PkU3rJmVaZymhurvQsVFI4RsdXmDmvhClMYDSVAcqhz7z5SuGj14AhyMDoIY8etR+vvPEWH306UTtaImVS4cPxjHqERXWR6Zy5XqFvkOeUrdFdSnCzY6URQBm5RLbmQb4V0kYbOe4ljTzbyWSMPtsW9kJQjhxaU34Hnm3NjpVIWuoyYSqXRGbj62XN4MjIjl6dYzRTYf/GLAoHgUUViY9d4RwYr6PPIb5fKp014/0KAa5HuVxmxsyZ9O3XDyGEStSt35XtIiqh0+zM0uJfUtuQUn6JUsK4SAgxAiUjdw7KFbqqQsa/EH8CrhRCbIVKns+0vtsQGL+MjgMq8W0AVgYWAZeg3K0GAj9DSeXtBryIsgx/TAgxVEq5QAjRBDwOXA1sCmwGPCiEmPgjIfK1qEUtalGLKDRiZi3TphgxdcH6zk6kQ4ROipVCV4RyRQCZWIpigsTQlYQQmhaXcgRBlM54jqeSZFvHOabkuOlkQhsf301rulUQFdK19BvEdrsNYtc998YRQh3baovjJRNxTe9x3MQgQATlBK0ljD47WAmKzbEVDkQJhfCLEVc2Qqi9LCI2TEl5iXOM3QITyZDN8430trUedbnDJLEyNImwZYmdQJFTWS0Xp88zpjp04ZwYWndJOZQEEWUt5aYJQokbcapnz51JQ0MDU6dNI3RcwihRf/fdd7ju939g1P77c9zxxxnKSuWgRIZGC9u1rat9izJjEjUlUxitH/PQK7nlkOBGuwunW9uXDDrcMR8hHFM0l84n+sOJtI0RDmlRTO4/PofYeMhNEYQSL9o+FC5hNJhxHZH4fcjEPRMbAqkZnPheTlkDDHt2QPWTRZuwf3d6ZqOYRNHB3BeZJH9dOh59Bg5l0aJFXHnFFRx/3LEgQzWotXn98f/pOi2nGP/fiyXHvyxVF6G1+6IQ6HX4f+ydd5xdRd3/399zy97tJVvSSO8JhBIFIiDSH5qADRRBQawgiuDPgordB/VRH318FEEfFbuISO8llABJEEggvZC2KbtJNtv33ju/P06bc/ac3Zuy2Q2ZT177yrkzc2a+M2fOnM985zvfgU3YJ0ntFyilvisiG7H9PF+DTaZd1AC37q+ygEnAz1yH/CJyG3AD9hHhVwH/UEo95MR9H7gam0z/FrgIezPlzc4xsg+LyJ3ARwFDng0MDAwGEJ3OHg1LfFt2V6FVmnI+4iIIrqkFdDsJdBt/sFBZjeCKeH6L7Tyd47VD+xY8DxGoQH6ephsrqFVWedDtMANat4RXVqAcTcpsXqFtI/CQB5KOVlHf4BiyUsHSTolTibRHKPV9J4HVdeVPQpKpYpQIopMePXN9Y5obpJnTKJ3UOxvAAja0ut2sdoqhrzkNeVVIFvnHKlsJbz+EspK4W3dyyhcym88HPHq4cPuQ2y9KK6vp7Ozk3gcf4fTTTyeVEHK5HCeecAJf+OIX+cpXvkIin/XI+n333cdHPvEp2js6+Z8ffo9LL36P53FC90Wskmm/7VMZ22bcrbubxjO30JdI/INR/Lw0zbt+6l6uG5Uu1fw892g+lNO+5lbvkzpUHnfTiORzpFSenKXty3DbT4FyJp66+VJCE93KZ1FikXTlV5a3j0ufnOpa+IAoAbKdtydrbntqm2hVskizn06ByvPnP/yeTZu3cPY553grDoHJsFiBybI7Ce/SxoC+sEfk2XFgfxHwQWwThw7sI1b/H7b7uH62Ju0Z4nyDKqU+vj/LAb4PXCoi/8DWPH8UeNo57Wo22sZEpZQSkZcA55xWZgOLQnVfhN1GBgYGBgYDCPdjl1PQmfM/fJmERbfzrUwnoMuJ6s4p3zY5rzxXadngDlHSiSAxd6P1VDovtQm6jbxSXroeBZYkPVvfhEgvQuuVrxF0d49uDiEpPtnLqyCRd8NFxCPsuRDz9mi8CPlUxiMRecSbcOibgkXwNHQK8SYFnkY/woTFQnmE1dO2Y2/Y0zW+Ocsmb2mVtV249fiuyzyRde1npsIn2BpZdu3avS+vwjNDQCNDOb9ZA89Yb7uewhpUkgAAIABJREFUvMICkm4biMUXbvwqF7/rAk486WROfPuJ/OgHPwDgmaefBsQ2jXBkuePOf9K8w95gmM3lA+Yl9gE7ro15sU90VR4y2oTKtRfv6bS1sq5XjFzWtxN34yG4QRQ87bZKFoGlHRCU6/bu18lo3IqAspI+kU3YsyjP2EXlvQlKZ9bfUFuctLyJhyV+n8pJkhR5f++BlSDvxFn4qzNYaZJoGmb9FEXdxlopf9Ig4mv3raRPjHM9qFQxp55+JjryknCzsJMp5f3QJ6vBCXU8YnYqBCEiZ4rI7cAWbA1wFrgMaFBKfUgp9cj+Js5OuUUi8gkRuU1EHhKRyU74+0Rk+n4s6hnsCdM2bPJ8EbbGGWxzjl2h9DuBigLjAxCRj4rIAhFZsG3btv0guoGBgcHgQ0ROE5H5ItIqIttF5Oda3GUiskpE2kXkeRE5JnTvJ0RksYi0iMgOZ4x834GvhYGBjY9+4lPU1Axj3lNP8J1vfpOOjg5uufVW5s2bR2lJMaecdjo5x53cr3/xM7p2bKGreTMfuvSSQZbc4ECgUM3z/dha5nuAPwFbnfCjJGoKDSilnt0XwURkCvAw9ubAhcDJ2EQVbNvic7AJ/D7BcYP3CPAANmnudPKdJyKzgN2ODDqqgFXO9W5gXER8CxFQSt2C44Jvzpw5+33CYWBgYHCgISInA38HPgLcja3snOHEnUDf+0Yuwd6Q/U7gBSADzAEK2rnjarkSllCWcpdhbRMKd4m5rUd5Wkfd5jkhQXeDujmE7h6yJ7SS6yqnAhpppTRbz2C4fn/e0rTF+Npc/doS3+zDNUfRtc1RH46U5dtch5To3r2phO0txNX4KaU8WbqyedJOA4joLi4VCXcjpJN/l9M4SUso0tos4WnxLRKOCz8r1+NpK9ty4mn6lTjbK3VXZPphHsoxO3A8YXj3OOnzyeA5bD155R3G0p3zzTN0LXxCwH0UKq8CbjzzhNx2ptIsXrWOLY2b+ecdf+fllxbynW9/h0mTJ7N9+3ZGjBiBlc44/rEjNphqNryu9jSfSJF1tONJSzyvFORzmmu9koBLOyzLt23u6QhsLnTL0O267YNNujy7GxVqJ73dPC200tzp9eFtQlkJ8rneKxX2b2elQQWfA5blrzvklWdTHHjX8oqcY0udTpf47ZKwfHdyWIHNh7qsWazghken7l3ZPBnLMcnJ2ysoUe+R3ndivLL2ghSiMBYJOCLu7wbBtm7ova6zBxCRB4BS4DxsbXA3MEcptUhE3gP8p1Jqwr6U4ZRTi61xnqGUel0LbwKuwCbUopS6zAkXYC3wVaXUb0Xkw8BNSqmx2r2/A3JKqQ/3VfacOXPUggUL6Gz3XbN05oNPTh903WcV53M3qS036AO/vgrRrUV0aJl3aL6d9TR+fn6YXo7+AqS08LR2rU+w4mQPL6eF0+t10HPQ79PFTsYsvejFxy2/pvp5e3IxsurQi4+zXcxF3Bxs22g59HbW/RXHtVGcj2w3fVw5eqieJm7I0OfR/W20itztD5EDYxiRdnoQWMJsz+m2p/b/ejvoTR/V38F/38L36tDrrPtuziR7t6n+bON8cutyBds8Ok2x5lDdNV+oKnM8IYgsVErNiZZ8/0JEngOeVEp9ISLut4CllPqg81uAdcBXnDH0p9irmO/di3LV6m22niJliTfWuO3l9ohsXgVMF1zo5hXgP6N0QnrZ/Xqu6kS8cST86ujlu88vboxw4cpqm11oeWny5pXy+qDSrgMW2xIsS0/vOa0TIZ3Q5fcJd9Ly7aR78iqQRm8HNx6CfTeVEJ8Yid8WetuD32etnk779Lou11VdIuD3WN8Y6JLHXKKol5/9qOaNmzx0axHZnN8u7piqv8/6srz7LEW71j8TlgiJfE/0+KXynglFT2gMcsu1VM6zv7U013xgm1147aJ7JnG8R/RCyPWh0mx7wf9mJkSwtIODovIIj7V5zU2j2y/1NnChT+KUUoH3Iup7KPjf3YSWb1LwJ1eO7bVrQpJVfpkBm2udB0W8fO570Z1TnpyWFu727TE1ZYgISinplQmFa577JIEDhBOB9yildor0MrDagu02bp/h2DUvBz4pIl8AurA1z+XYbumagAecD8A87BMPM9i+rnH+v1lEbsB2d3ciNuE+vVAZMiW+g/LO1vY+UhoYGBgMLYhIKfBW4EERWQSMARYD1yulFmDvC/k/N33EvpGngN+LyLeAx4GFjmvUgqB/tF27S29TUwThDa6WSuAD6sbl8va9riZSYgizPqkSgof/6EQyYYlvUylBYuvrMFQMKVcBjZkidAiSNsf0Jop51WsiAaCsIJmxRD8SW89TI0WaJC7Bj1JgdIWO106I33buHC8wUbcSNhksjtosl/dPnLMSni2z0kiSTryg9wFUuiw5r+19gi8i3qFUNpEN1tOF+/zcfFPepCg48dKPV5dcT8Bzird5MbQR1G2O7ryvwe8R+0RGSzs5U3evZjmHr+TTpR7p1b1ISK4b3U95D1bsDM61XU+onoCG2iP5KqgU0G2Gw4ob93dXNt9r4uj2hay2xwCgKOGSX/856itDSux1D7D7YV6bxeaUCij13OcSJszuL28CpXUUd4tEVqnAClYhKPSQlN8WlNv+RSfxy3aj2L/HhF+AvWlwHZDCPgL8PY5LvtUi8kngV/h+ns9WSrUAOOT+bOB/sN30bQY+btzUGRgYHCKoxv62XYV9Eu1S4Hps04wp9LMvRCn1NxHpwF7puwqoFZGngGuUUovDhYnIR7E3dQPaR9ySAJlJiE+s0wkheGKnrzn1tIqa5tfTMmtaRncVTCfSiqB5hq5tDXzDtd9Z/I2I+sff1Qq7iFu90q978n4eSkWfnCmiEQvP3MIvQ59UeJxJ+SSjJ++TlLQljnmI3076seU6oXU1zCnxNfoJS4KuwlLF2kEXOd/fr5XwXOiFyZBvftO7/aOQsCSwEuGulva34cu9J4ev0reJuPLq6MqWcPuGdgKi7sYu6RDZnD6R0DT6CRGvXinBcwkIjtmH58WkRztIpjugZfYWj620U2en+JjVFTfOvicRIOI9Wd//MQQJr9suCUsCRNRzsS4SmLjo/xclg62uTyJd+ROWv+EwYIqERXdOBSZ5ejm6LFETx7wKrcJqE6aevHj9IkpbHYW9dlV3APAw8CUReQTbbANAiUgRtuu6+/ZXQY65xrl9xEd6/dDiX8TWvOwzwsvD+tKQaxWlz4r1JfzWbn+pXF/O7dEy7dTMM9o0lyxZbZW9vcf/4S+/+PeVF2ndRjMzCSw/a2sFCa2z56JXQAJHgusfEK8aMbb1geOktfCA+YN2q968eo5R4XFpA5qrmAE7bvldlyWpL+17O501X5kx77C71AYEXGnFQf8IR1mkWDFtG1fN2KO1dXdJcXZzMae5RV2rGNMO/TofcJnlt4WlWZq5mrk4M4w4sya9z+vei+JMZYoCjdv705zRXxutfN30SM9CN6WKQ8Ly07R2O2Yb/d613+H4weI3SqlXAETku9juPufS/74RlFL3YO+pQUSmYfvev0dExoc3o+v7RkREeV4plPK0ZMkQQcqroK2rC0vEu0cnkk7egRffu00p7/h33W4yIWEzMlfb1tu9XYDkuv/r76kV1PiB0gi/n7eeJqfZL+eV3wYJh/Da99oE35UzaUV7/khqBMYSSGnjUrduhhF4j/y89O9SUiPb5H0il1MJJO94IgFIJL369OQVuR6dwOHJ79fXr6tdT3+c0s1GcnnfPCOsRddNZnJKRRJqXXMNeDa/bhxAVzZHy45mHn7gXnbs2MHVn/ykN06KytvaX4ITurBHE/eblVdgJdL+2JpIBZ6X3haehwqlSCl7XMxZKe9wErvO2oQMv/118xDdPCOb9/tRTjkrJZ7NvHgfBsEf83SNcph8WhKU243tyanAu+Pels/55XdrqxnuRMkdF1OWRpLRtdzaxEdbgYHgBDdtBfmQ23f0vtsXhjJ5vgHbC8ZKbCKtgK8CM4E0tmmEgYGBgcEgQim1S0TWEm1+qrD9/x/tBjg2z0diuzmNym+piPwI+Be2Vru5r/LdjUq6za++FyOfz9PW2kpZebkfFjMvyYU+wBIgp366sFu7bDbL6lUrmT59upe/r5ENacA0meNso3N56HIP1pCghjwor3+TbrOsT+RyGllXCnL5vEdSbTMEbZLq/G8JZNw8EkFNsz6jyOb8NtLb3MJXGuhawax2t92G4TbuPblWSnPbp/xJvd0uwXL1iUAuTvugQS9bN9tJiK+sCtuRu7K0trXx61tv4etfubFXvh/68JVUlPoL577Zh1a2Up4Lv7xSvqYYkBBJ1tvMf0ZC3jNpUP5hN64ZkntEdkDBoBHJuL0j+Bpizz7aCdf7sm2O4xDRhHZAkKZddlcj3GrrPTi8eU9HmDDb9XUncnjl66subh/NiT9J0leT8io4YerUFIaW6P3qICfPSqn1jo/l64BTsbUUI4C/Af+llGoaTPkGCj3hWZt27WvF/FBdS6sPOwGNhKb5DWjf9B3g2nevKNT5Iag9zWijVVw/02dvvbQ5bvn6kqW+Y7uwvmvnp13rMurl65pa3T9pAQpk/77Axgg/3NLbPyaPgLZZb4ucfkytr6XwgnTH+QENr3aKV8SpTmHoy6T6oOwN1hKdlsBlAXkXom1266lvEtRs7eLqoB/f2mtzSz9w3xG9am09/Txwgtpmva+GiVM0/JvdftnTuxmccO2d1HLozKnI9PrKZ1c2Ov0g4OfAtSLyJ2A59rjdCTyLrXmO3TciIlc4aR539qCMBj4OvOYeXNUX1q5cRlFRho6uTurr6sjlcrS2tqHyOR68/35u/+2vWbtmDTMPP4L3XvJ+xk+cTE93N9u2bWXRghdZ+tprbN3SyMwjjuD4uScw+rDDmDFjBqWlZaxetZKnnnwCEaGysoqWXTvJlJSQyWTYuGEDLbt2kcvlWLVyBS8+P5/PfO4Gjj3+eDo7u+jq7iKXy5PL5UmlUtQPH85bjj2etPYAldI0vyGSHVzIkH7NDHS7akuCGkD3Xrd/uWXmFIElcs+0JO/7wta/E1nHR3bQVMN5p3P+uJtMiOfPN6+C/pT1SUXC8lcC9LjwMKC/FwHCK758YU8p+ibHKHt3feOlZ4bjkjEJmnq4SIjw2uuv8/Of/oQ/3f57L/ySD1zKF798I6WZNCNGjLA1v65XEN0eOTC++8fJ65OjhCVYutmGWN53SzeNCWycFL+9LRHEStgG7l5d6QVF9KpDCn+ylRK7LTx7e21CmcsrX8Or0DTnmucKbULnxnmmLpZ430/dFjydsM2Huru7WbViBS+8+AL33H03y5cvp6mpiUwmw5Sp0/jM9Z/n2OOOJ51OB8pXoW916DXy5Bex+7lSiqbt20gmEjQ3NdHW0cnvf30r77rg/N6No6EgbxsHGiKSwjaDWKOU2jTY8gwUXG8bOhp3tQV+R5FnndyWpf3rXV3+EFORTmj3+S+su7QL0KJd6+Qg3Nlh4MmzTkh0Tx0u8dHLj+PWB4o8xyXdH+RZ3z0dR54tza4uLo2OgI1h4OPhxMeRZw350NJfZDlxpHYPyLOuJQnkrZP0OLMNTSy9z0fZv8WRZ70fBjaWqOhwHfpEVtf8uf1Sj48jz/r7Xgh5LtXMs9z3eVKdrWE9wN42BPg6ti1yBngJ+KxS6t9O/GXATfj7Rj6hlFroxF2ITahnASXY9tBPADcqpdb0U66aOGkyXV2dpNNFbN26hXQqTUmpvdnsrccdz2UfuoK3Hnc8Tz3xGH//61/YuqWRRDJFXV0902fM5Kg5cxhWW8v8Z5/h9cWLWbt2DatWrKCtrZVRo0bzjtNOwxKLXbt2UVFZSUdHB50d7YwafRhV1dUkrASVlZUcNmYst/3qF2zdsoVUKk1RUZpEMolC6Onu5r6776Kuvp4PfvgjTJgwkfrhDdQ3jCCRTNK0bRtHHHU06bTvTUHXmOm/7Xo7Yfjkzt3kqN/jIqz5TkSMFXFacN3MJKeCfTHqpEOwx+jAN8CbQAYFszWGyrsn6s3StfgivTeB+psfg2NZlPbRvi+6DLd+UcjlcuxuaaGqupqGqjKOnvMWFr74Au+88CLmvu0ELrv8cjKZjFfPgBu6MLTTHd2De7qy+QBJT1vawTQq6F3FDU9Z/uEl+mE3Yeh2w+Gqu3fkNLMLBQETDBW6LzguRpUX1OB793V389STTzJy1Cimz5gRCH/llVdYvXIla1avZsHCBaxcuZKmpibq6uoYPfowLrv8cmYdfgTDhg2jtb2Dv//1z/z1z39i5YoVTJ0+nUmTp7Dk1Vdpbmpi9JjDqKurp6SklKs/fS1z3vIWT1ZXnq6uLv7x978xf/5zPPrwQ3R0dCAI1TU1pFIpJkyaxI7t25g/f36st42hSp4tbL/SZyulHh1seQYKhjwb8txLAEOeo/M25NnDUCTPgwURUdtb/DFTU+LaG7oiHpXuGaA/6M8jHxOuyeJd633NXXFobtrOU088xutLlrB+3Vq2bmmksbGRrs5OaoYN4421a5kwaRJV1TXMeeuxnPj2k5l91NEkU+nebuwMeT5g5Lmjo4MTj53DlsbNvPW441mxfBl33nM/3/nG13nqycc5/Ywz+fkvfkkqlXpTkOe8Umzb0shrr73GsmXLyRRnOOfsc2hqbuapJ58gm4dUKsW2rVvp6ukhU5ShsqqKuSecQEVFJT2dtsewtvY2tjU2smTJEtasWc1zzz1HaUkJGzZsIJfPM7xhOFOnTeW+e+9lwoSJzJg5g/HjxnP4kUcyZcpUqmuqGTF8eOAZ6V5UFNDdk2XhghdZt24dkydNZuSokWzetInXlizmm1/7KlXV1byw6N/09PRw669uYfXKlbTs2skrr7xCXX0957/zAt524onMnDGjlw19XUVJn67qhiR5BhCRxcB3lFJ/HGxZBgpR5HlriDzrL7NLjnXj+7oSnzy1a+vC+gChk+3dGsHWNyTpg05Gu9kl53oeOsFIaffpfETfpKj7TdbDAxulIggzEFhG9GT1i6FEY6MBMqpD9zmsb7CT6JHf29mskT6dpMURzED5et76RjqdYOrXERs3CoJOtmN8JPfnOzlQZmhZMQpx9Y9DoF2i/D/rddD8mOpEX1+C1icgcXvqAv0lgjzr71Wb9t7ofW+nZhSnf5d0/+jb2/266f28rtSvR5QPWX2C2B3z0Wvt6v2sbFmi363t7fbH+rTJdU55hwZ53um499Q37Omb4lyECaGWhxembyzL0z9JDkOfZLnzN90W24VOcl1ZdjQ38cba1TRt384Tjz3C8889x4plS+np6SGVSiEilJWVM2r0aCZOnsw7L7iIs847P0BmcxH9PlxemIS797tHVENwopDL+67D3KVut255fFOLpCWRG9vCG7bDmxw9WdC9LwRNCf28fCKctMT7/e9FC1my+BXqauuoqKggXVTE1KnTqKis7OVfXffZrHt7gODE+MXn53PL//4Pzz37DD3dPcx7/kVOOv6toODxp+Zx2NhxdHd1cuWHLqerq4s777rLK0uU8sc9sULjqj/euhsJe3LKGwf0DaFuW3jm55a/sVDX8Ibh9oP29nZuu+UXvPzvfzNm7FienvcUnZ2dzHnLW+nu7GTb9m0kUynq6+tZu2YNjZsb2bRpI5lMhomTJjNp0iTa29u5/757KSkt5bzzzmd3ayu5fJ7x4yeQLiqio72dpu3befThBwEoLinFsoTi4hIaGhqYOm0aEyZOYvKUKZx00kkAbNu2lbWrV7Ns+XJOPuU0xhw22jeT6dVH+64jENCOK+AH3/su3/vOt3j/pR/ktNPP4Nvf/AajR4/iP845j/LycsaOG8dbjzsey/I3cobf0ZryvsnzkLV5Br4M/KeIvKqUenWwhTEwMDAwGLpQBD+0uj/lMHH27DaVr9a0CBK7lMSvcull5jUCppPPwAFSQuCgEs/dl4BbSkNdLXV1tQCc9R9nBzY3dXV1kRBYv/4NHrz/Pr5245exgAsueGdAa+pO/sIeJsIu9FxyEjhRTyvPro8THtqoWJy0tENSgt4jCvHm407+vvjZa6iqquKUM86isqqKxx95iCnTZrBp4wbOvejdlJVXksvl2LBuDePGT8CyLMc7ii+XCJwy962sWbOGzo6OQDlFmQw/+NGP2dLYSC6bpWbYMO7917+oqKxkzNixlJSUMGPGTMrKy6itq+e5554jkykmnU4zYdIknnl6Hv/6551efrOnTyGTydDZ2clLixYxdtw4SkuK+b/f/Y6pkyfx3LPPMnfuXL/NdKWEe8JguEdp7e1OqLtRWEr3R+0nT2htHHCtiK9Fvuuuu3jskYdZunQZi199hXecehrnnncery1ZwqmnncZxx89l+bJllJaXU1dbx47mJrZt385577yQESNHMnLESMoqq7zywO5/6XQ6IIzej8KP3dJk1H/nld03a+saaGgYzpxjj/fuiTL1sJvIX/3WvWfo9svh9Keceirf+863uP/ee1m+bBn/+f0fcPIppwbcMepafN3mvFCF8lDWPL+Ifex1DbAR+2CUgLBKqf3iHm6wUIjmWdcArGjqBCCjaYHHVvoarh0xZhu6aUeLps3Sl7bLtPQV4mvTEq3bALDad3hhudJh3rXV4x/qki/SdrMXRzvM6kkURYbriDo1UJ9l6tpBXUseq3kObILTlvP19DnNFZp2MlQU3NOeAP90LEDt3Opd55o2a9eNfvpi/0Ac1eOXnxw53v6/bpRfUIxGOODOTU+jLxtrR7gq7djSgAYkme5djobAaVYxs/9g+dGbFyVK8x437sTZ0sSYs8Tt+9O1TW5/6oxxhxhnzqGv5OiaoOYOfzl2Q4vfF1Y3+X1h9ogK73pEee8+X1nk10dfAdrZ6efdqe1YrCn2Vz70DVxpTQ2/29k9OHec/X4eKprnHbv9dg+fIhm16UupoNmDTqSjDgSBIDnIKWLNI/wygqtqAX/SBD9keh46T3XHvNbdu7nzjr/z21//irVr1zJ+wgQ+cOllXHnVR3uZJOh56pvhAie46nWJOMHWTRMwzxC/7uC337LXltC8fTu19fWsW7uWpu3b6Orqpmn7NtauWcWaVSvp7OggnS6iu7uLqupqctksu3fvZtnrr3n5T5k2jeVLl/rlJRKUlpXT3d1FeXkFw2prqatvYMzYMYwcNZqxY8ejUDRt3873vnkTnZ32t/Hsc8/nqGOO4Zl581AqT119PSNGjCCRSLBz506OmH0kqVSSbVu3smvnTlavXs3ulhY2bdrEpMmTKS4uRinFksWL2b5tGyNHjWTatOkMq62lvr6e+vp6Dp89mxkzZrJ61Sru+uedPPP00zz37DP87Y47eccp7+j1jMOHjES523Nti91nF14ZiTrIR98M19XVxcqVK1i4YAGfveZTiAh33HU3s488iqqqqtjTSvUy3CRhV3N5FVzhyqvodGHC7D1LbRIb1b/D+UJwwhbWMOsTxKh7+2K0+nOJI/wuqsoOXs3zEuxTqgwMDAwMDCKha177IoC+KyoCaSxPCxzWvPosW/8gh8lAJPnVCRO9TdHcn/p1GAlLaGtr4+S3HcvMw4/gq9/4NsfMeQtl5eVeObrmu9f9GuHVTVP0elqWTqZ9QXbtaGbVqtWMmzCBtt2tdHS2M2nyFBIoNmzYwGtLFvPgfffyp9t/x+Gzj6Sjo53Rh42hYfgIitJpqmtqePvJ7+BDV3yEsrIyerq7KCrKsGNHM4lkkrKycjo72mlva/Nky+fzZPM5RowYyfiJk2lr201xppjSkhIeffQRctksG95YR2NjIw89cC+JRILa2louv+JKtm7Zwrwnn+C4uXP5+Keu4drrrg88R52Mue3VS8PptEBzUxO3/eqXFBUVUVRUBNjayjWrV3P/ffexbt1ampuaOOywMcw94UQ+fvU1/PzWX1NXV+9ri/EJZ0/e91uMCq5U6M/OTeJqVN0opRTbtzQy78knWLVqFU3bt7Fjxw66urpo2bmTDRvWs6WxkTFjxzFz1ix++OP/5tzzz6e2ts7LL+B5Re//IbMVF7rnCt2lnE6yEwkJEH4d+iFCCiI15OF8wx5PwvA8tuh7QbTydRd6+j2ubCmLwEmGUXlH1SUOQ5Y8K6U+NNgyGBgYGBgMbXgnzulhoZ1fIuJ9afXDNEQzp7BU7yOtvSN7Q5sBow4+CttdhqFv+or6QOv3u+jq7KSlpYVMURH33f0vZs6cQXVleaQHDq+empwuPK2iEpvAuKYWTrmbN23if3/234wbP4EZs2axasUKrr36kwBUVVVTXlHO9m3b6Onpob6hgalTp3H47Nl89+Yf8LGPf9wnwP1oAPWlfls7rskIAVOTTKbIk/H008/oVZeovHXoE5m49o6yg//D7bfzve982wt/24knMW36DOoaGvjSTd9g1GHjaBg+nFQyEXvYkWsbbl/bgjz79DweeehBVq1cQTqdZuq06bzvkvczdty4APnLZrP8709/zOJXF7Np4wbWrF5FLpfnuLlzmTlzFtOnz6CmpoZ0URHVVZWMHDmK0WPGkkppq1MqWL7bR/XDTCwhcgUkvFIhof4uEffo7Qfg+iJwyasbEz7kxUV4E3pgEqvVSUdYc61vdtXJesB+OiIfN+8o8t0Xhhx5FpFi4Gxsk43NwKNKqS2DKpSBgYGBwUGDZCLeL3KeaLON8FK5bsOsx0sMGQsjalOiiyizD/0j39TUxMc+cgULF7xIy65d/PMfdwAw921zuejd740tM+5oYTc4bDLiEomNmzbx85/91As/fPZs/t8Xv8wzz8zjhfnzyeayJJJJho8YQXFxMSJCy86dnHHGmd6mK0viD9MI2njjXSdU6Eh17dolJ/qkImrzpYqIi0oXDg/Hu8/opq98CYAjjzqa8ooKbvrmdxjvmHS4WL1qJSuXr6C0vJyiogyLFrzAhg3rueYzn6O6xjab6uiz68mJAAAgAElEQVTq4vGHH6Rx40YeffhB1q1dwwXveg/nXnARG954g7//9U/8789+yrI3NgU2bq5ctZJvff0mr6yy8nK6OjvZsWMHH/vUNVRV2Yd1xj1LS4KHvOgIa+D1FL4//KBdcbiPhicFLlxiHN6oq+cR1rbrsujpo8JdIuyR/NAsyv2V0CYFelE9ef+glcj8CyTNXvqhZPMsIhOAR7CJs4sW4L1KqYcGRagBRH82z7orOYC/vGLb0R49yj/pVt+MsWDDTu969kg/zdgq3/51cqU/X0rueMO7zr/h259te8hv6sYFqwFoXumfVVA51s87pZ05XDd7rHddf9ZZ3nVi5CTvOls7wbtuyenu9LRZq2aIF+XmS7fn1pHIabbIujs33VOGZq9sdezyb9aPf852O/dF2/PqsDp3e9f5Fr+NspvXRKaXjG/zLEX+c0kOH2fnkSkP32Kn1V276d4zNFvtgLy61wrdnZtuo5yImDvH2FbrdtGBPDRb5Di3cfmIMSbgsk/3OqI9t1gbdq38vGbPrdvlB+Daf+v27j2dvqxaO6i0/3zalF8f3f75xU3+M9fdQ72y0e9Pm3f5+R8/oQaATq1fl6T8dhtR5ttEb23z69zeox/D7jdYWZEv75ZWvz+/xRkXDjWb56aWaJvnvhBnJxyXLnzMbxT57e9EuzgyH/5oK6VoqCoD4P/+8GfedsKJVFcH95BEfeb7Kj2O7OtkpGXnDl584Xk6OjqYMnUqRUUZ3nLk4YH0o0aPJpFI8Ma6dQBcedVH+eGPftxHyX45/cmip+tFkHVzHJeI9VNmHCHTEbVSsHXrFv54++3Mf+ZpmpubaWpqonHzJhoahjNh0iSGjxjJC/OfZfWqVb3ye+K5F5kyzT5l8v577+HKSy/24qpraujs7KS7q4vyikrqGxqYPnMWs488mtWrVtDTkyWb7aG5qYnHH4mmO7f/9Q5OPeNMu07QyzuMew29N+vp9Q3XOY42hu319fziTCXCZYa9Z+jh/Wl74yaDYQQIOtHPdc+o8cHnbeNm7D5wIrAQGI99ctUvnes3Peor/Y93y7bdfaQ0MDAwMHizQUSYv+gVHnrgPv7r5u/xiY98mPETJjBl6nQOG3MYY8eN58yz/oPq6moymcweacx6enpoa22luKTEsef1UVVdzeln+kqPbDbLF2/8Ko8/+gjzn3sWgOs//wWqq6sYP348k6dMDWhj3yyor2/g05/9HJ+57nOATcqy2Szr1q5hzerVNG7ezMxZs9i2dSsbNmxg27atrF+3jsbNm/h/113LqNGHsXLFctatWUNpWRnDhtVSM2wY9Q3DKS0rI51O09nRQUtLC2tXryKTKebw2bMpKsqQTCapGTaMG774ZYbV1lJWXk5ZWTnpdLT/e4PBw1DTPG8EPqeU+rMWNgV4HRitlNoce3Pf+V4MfAqYDZQopZKh+LOAHwITsI8Bv07XdIvIJOAXwPHADuBHSqkfavElwM+AC7EnOHcAVyulgr5zQojSPOt4ctX2wO8zL74RgElvP9cLa1q31rvu2u1rPkvrxnjXp/7HEd71r07xtcatd/7Ku371/57yrv+1yPcO0Zrt7XGiTvMUcFydT/anXeSfGjT6nWd714lpx3rXbZW+XBt3+1pG3ctAoKwSW4M6vMx/ZEVdmsZY07xanX649PgaOVXky5jXNIsBWPr54HaZcRrWDuVf64fOlGgHVui7k3UvD7p2SvcX7Hpc0DXstcV+Obqfbb3MjKbC1TdS6PnoWl7dVZKr4Y+zZ9NXNXTtcVKzLtV9QeuHAki35oUk4LXDqYdumxl39LbupSPra3ID0PK2HM8w4TJdjzABjf1Ov4/n2/xJqlXqa/67J73NL6bDX9Vptvw0L21u9a4fX+G/r8u3+HlWOX14p+YTeslL/lBWO8r3zJHQ/JuNavD76pLFvieXrKaR3rbC31OdKra1lY13XGvX8RDRPLveNgrd6BPWRhVyWzhdf2XFeTRw46K0gmF7YPe6rb2DlcuXsnzZMjasX8/CBS+y8MUXaGlpoby8nOEjRtDc3IxlWQwfPoKRo0axaeNGtm/bRklpCVsatzBh4kSWLVtKW2srpWVl9HR3M37CBCZNmkzNsGFU19QwfPgI6uvrKSsro6SsjISVYMeOZna3tHDz977LyhXLPVnHjhtHwkqwe3cLzc32d+evd/yDU049rVcb9eVSLKp9wvFxdtxx6ePa3U0TZaYTJXM4rJf8od/d3d3c869/sXv3bmbMmsWECeOpqRmGQvrVqOumLYXUIRymy9zXCkogz5iy4rT0YRRycJmdn/R7yFhf2ulCPHTEmensCcLtd7BpnkcAq0Nhq7CfzXBsG+i9wQ5sDXYxcIse4ZiK/AP7WNm/Au8B7hSRmUqptSKSAO7GNic5H5gGPCAiG5RSf3Gy+YkTPg27b/wT+C/gE3spLwCbtSVZgLxjTjBzVr0XdteT9/SKBxh1xDHe9Tum1nnXnRW13nXZ0cd51/riXMNsf5B87V/LgJD/U408l40o866L66qjK6Itl+udP7AUnfa7YpdG2N1l8cCLoZMtrc6S1chbwBRAS5P3tS2qyJc96MLNTtMj2nK+VrxeB33ZXj/soiOGMEe5KYLogUM/YS6nt2GAgGvLmb2zsGUP7PTvvfypG8HoMnVpZgY6Gc9qC9ABAxqd7GpmEVGmIDq5FY3U5rXTBgMndOl56M+z23eVqJuZ6M9fuu05rNJMYlSPn3duh09MJe2b0ugu9nQTn8oafwldd0M3c6RPgo8d578L9y2xt2yMqPK1dIu151ChmVU1b/MnHWltwiRaB+nQXLNlKv13u2Wj/94eiogkCDFEKcrLAfQmyDpRibNTjvpoRxEb3bOAm2+vTVCubbL4nggymQyzjjiSWUcc2Sv/N9atY+eOHVTX1KCUYvPmTWzeuJGiTIYpU6eyu2U3DcOHs3LFcqZOn05dXT0iQkdHB8uXLmXtmlXs2LGD5qYmXnvtNZ568kna2lppbW0ll81SXV1NeWUlU6dNY+zYsbS1t7NowYusW7s2IHdFZSXVtfXeaYoBwqOIdE3Z63EpFUla4040jXOV1jvbYLpCTAEKNf/Rs0qn01z07nf3ShNUSIQIurbRMmzDGwWByJNk9cmd7sIOojei9oX+mkc3ZfL8JKu+Ji+aLDGTFwkoaqInCHnVexIRMCcpYBoct0oTeC4FTaeHHnmGwhQBe5ahUg8CiMjJEdGXAwuVUrc7v/8gIh93wr8OnASMBb6olGoHFonIL4GPA39xNjheCpzrbmwUka8Ad4vIZ5VSMSqz/rGjI1obu/YN/0OuE+bTPvYR73pCnU8Mv/N/C73r4VfP9a6PmHq6d1259nXveuQJvqY6WWyTnDWP+PZdDUf4H+x0uf/hr5yo+SgOECl/EqB39mJNJZrUNL9RJ1DphFolSrzronK/nomkpuHMxRwVnYi2l9WJl+sKW+nEWD9MQKuDPgHQxw7dRlY/KUuvWzBPN97PQ9dMdwd292t5xAxYgVPHYkh61DCixydjyszHTAZEP2Y74xPJyKO49ZMGA8eNazvGtWtL0+pbGjHXbdgDGmyNYLt25DphT5T7BFht9Pu26vbzbs9p/bDsMO+6stXXMB9WUeNdpyx/VUcfo1ePsAn+cO1deWVlk3ddVeLXs6vCb8PdnX67VQ7z+7yOsqoG77r1sFGRaQ4lhIltlK2sGxcO0yE472KEq7pCtJI6gXGTRH2447SqYZ/TYbjj4qgxYxg1xl/Nc691X9ZKQd3wEc59ICjSmQyzjjySmbOPjHPhvsewtDrkkT61xFHQiZWO/ohsX1r+XjKGguO8lvSFMBmOigtPwqL6W7jvxHmuiNOc6wiT8rg2i+u7/fXpXpMh97qQWYZSwXZxiXEojftF0MvSjyZ32zEgX8Sz71MLHZqguQj7hy8EQ5E8PygiUczn0XC4Uqo+It2eYja2fbWORU64G79cKdUaiv+Ucz0VyITyWISt5Z4CvLIfZDQwMDAwiICIUJRKks3Zn99kIkEul/M0bslEIhC3J9d7c8+e5qWGkCxDqV36u3af8YGWpa8+tTfy95dXzvmdKPA6SpZC+5iXXkEyYQ3J/pII/BZSyf7kD6YppJxkItopgY6hRp6/PghllgO7QmE7gZn9xFdo8YTSuNcVhCAiH8U2EQHoEpE9PgjmhX//JjL8/k9Eh+s462d7WloEbMcctUDQKPtXd0YkHpLoLfvBgYNVbjCyHzDI973LqYMoxgFDVVm0Vt7AwMBgH7EuLmJIkWel1GCQ591AZSisCttFXqHxOGl2atdoaTwopW7BsbsWkQUH64YeI/uBx8EqNxjZBwMiEr8b+U2CuM08+wsH67MfaByq7XKo1nsgcbC2aV9mVYcKXgaODoUd5YS78VNEpDQmfhnQGcrjKKADOLR38BgYGBgYGBgYvMlwSJBnEUmISAZIO78zzp8AvwPmiMglIpISkUuAY4DfOrc/ha26/46IFIvIkcDHsH1P47ijux34hojUi0g98A3gd/uyWdDAwMDAwMDAwGDo4ZAgz8AHsTXBD2Lbm3c4f2OVUquAi4Absc0sbgQuVEqtBVBK5YDzgFlAE3Af8H3dFzVwLbaW2f1bBny2ALlu6T/JkIWR/cDjYJUbjOyDgYNV7qEE04bROFTb5VCt90DioGzTIXVIioGBgYGBgYGBgcFQxqGieTYwMDAwMDAwMDDYZxjybGBgYGBgYGBgYFAgDHkeAIjIMBH5rYg0isguEfmjiFRr8ZeJyCoRaReR50XkmND9nxCRxSLSIiI7RGSBiLzvAMl+mojMF5FWEdkuIj8/SOT+toisccreKiJ/F5ExWvyQlb0/OBtevy8i20Rkt4jcISK1/d854HLtdZuLyMkiokTksVCel4rI2gMg+1718yEg916PLYMt+2BARC4WkXlOH82G4s4Wkcec57/DSXdiKM0kEXlERNpEZIOIfC4Uv1ZEOp1+pP+F3ZsOCfTTHm7/0OvxbChNbHuIyI9E5JFQ+v9y8pymhY13wg4fqHr2BxFZEqpnhyPT0U78WU6aDue7cIZ270sicmMov0Ui0hgKu8IZswfUneJQh4hYIvKs076jtfBCxqrwe/WnwalFBJRS5m8//wH3AndgH6BSg71R8R4n7gSgDTgDKAI+D2wBKpz4S4BG4FjsA7KKgROBMw6A3Cdj+6p+tyNbBjh6qMvtlD8NqHSuS4D/Ap49GGQvoG5fxt6IOgHbh/gdwP1DQK59afOTgRzQjH20vZvnpcDaIdzPB01up5x9GVsGVfZB6qNnOu/3FUA2FPcB4EJsv/1J4BNAK3CYE58AXgd+6vTvo4GtwPu0PNYClw52PfdTe5wcDgvF99kewDnYG/Ez2j3/BhYDn9LCPgI0DnZbhOr2bWCJcz0BaHfei7TTT9qAcU7894HHtXtrsM97WAPM1MJvB/4y2HUb7D/gc8Aj2Kdzj3bCChmrYvviUPgbdAHebH9AKZAHZmthb3c6zlhsF3i/1+IEeAO43Pn9U+CvgyT7c8D3YuKGrNwxz+AHQNPBJntMfdYBV2q/Jzr9adxgy7YPbX4ykAWuwz6zMuGEHwjyvC/9fDDl3texZdBkH+y/Qj/GwDZsb0sA78AmUWVa/DcJEqe1HETkua/26K+N+msPoAzoBk5xftdie7C6HPiHds+fgD8Mdhto8iSBzcCnnd9fB+aF0swDvuZcn4l9tkOx8/td2JPYW9w8nPBNwFWDXb9BbtspwCrgSILkuaCxarDl7+vPmG3sf4j258Jt59nO30I3Qtk95SUnHGy/0ueLyLdE5FQRqRp4kUHsQ2DeCnQ6S1DbReQJEXFP/hmScusQkfeLyC5s7dG1wE1O1JCXPQ7O8u8YgvKvwv4oHTFYcrnYhzZ38TNszcNVAy4s+6WfuzigcjvY17HFxWDIPuQhIkcAw7A1pWC323KlVKuWbBG92/PNhISIrHfMgu4VEb2ufbaHE/4CcKoTdwrwDPAQcLKIWFp4wLxjkHEB9ore75zfgffIgf7c52G/gyc4v08FHgMed64RkRnACIZWPQ8onOf9a+AG/NOXXRQ6Vg1ZGPK8n+EMIE8AN4lIlYjUAV9yoiuwl1t3hW7b6cShlPob9nLyDOCPQJOIPC4iswZY9Grs/nAV8CFgJPagd59DJoeq3B6UUn9USlViD1o3Aa86UUNe9j5Q4fwfK/9gYm/bXLu/G/v9uElEygdWWmAf+7mLQZB7n8cWLZ8DLvtQh9iHW/0duFkptcIJLqg9gV+KyE7t75UBFnegsBRbQzge2yTrFeAxERnpxBfSHo/gk+dTgceUUpuxl+SPduyc6xlapPJj2OYVLsHr73vRjr16Fain8/d2EUk4YauVUmsGWPahjGuxzXP+ERFXSF9KhN6rnSLyhYESdk9hyPPA4FKgC9s+7AXgLid8O7ZtVHgzSRW2JhEApdQ9SqmLlFINwEzs5Y57BnjjwW7n/98opV5xPrDfBVLA3CEsdy8opRqBXzllu/ZoB4XsEXCfS5/yDzb2ps21e/+CbS/4+YGWk/3Qz10cYLld7NPY4mKQZB+ScMjh49iTqC9qUYW258eUUlXa36CvCO0NlFKNSqmXlVJZpdROpdQXse3j/8NJUkh7PIp9Ym8FtobZ3Zz6uPP7FGzt9fqBqseeQEQmYhPdX2jBhdbzFBEZhT0ZWKSU2oJtqnEMQ0+7fkAhIpOwbZ2vjklSSBvnQu9VlVLqewMg7l7BkOcBgFJqo1LqfUqpEUqp8dgfqU5gPvAy9kYLABxydqQTHpXXUuBH2DaN1VFp9pPMu7Dt96JOzVEMUbn7QBLbRnQkB5/suiw7sW3BdPknYM/Qh5qGa6/bHLge2xZ31EAKuL/7OQdIbhf7c2zhAMs+FCEi47CX4e9XSl3tLB+7eBmY4pj6uDiK+PZ8MyKPbyZUSHvMx940+EFsE5iXnPDHsEnqqQwtUvkx4GWl1PNaWOA9chCu5yPYJPndwFPKPokY7HqegW2zO5TqeaBxAlAHLBaR7dhmLwCviMgn2fOxauhhsI2u34x/wFTsHbgW8BZgBf5mgxOw7UNPxd7Jez3BXaZXAO8Bap3fo7F32C85AHLfAGzANl9IYmulNmPPEIey3Bb2DLdeK/tObGKRHMqyF1i/L2Mf+T4emzT/DXhgkGXa1zY/md4blu7A3rC1dgj380GT2ylrX8aWQZV9kPppAtubyhnYmyUzzp9gmyZsAL7Vx72vAz/B9sBzpNOeF2tp1nIQbRjspz1OASY5fasM2wxrJ729j8S2h5PuPud9ulMLq3X65i6cDZmD/ee8I1uxVw708InYGyMvwV6RugTN24aTJunUZTNwrRb+LicsDwwb7DoOYtuWYH8T3L/jsJUTc5y+tcdj1VD7G3QB3ox/2PaUm50XcIX+cjnxlwGrsWfoLwDHaHEXYi9xbXNe2I3AH4DxB0BuAb6B7bZtpyPHkQeB3JYzYG8NlT1xqMteYP0S2J4s3KX5f+AQ/UGUaV/bvNfgiP3h7mbgyfO+9PNBk9spa1/GlkGVfZD66YewP9rhv3HAb5zr1tDfB0Lt86jT3puA60P5r8XW/IfzOHyw674X7fFZbM8+bc57/QDwloj+EtseTprrnDyvCYW/jO0qsWqw28GR52Ls8bQsIu4sYInzHi0hwm0p8C+nnodrYTXYxHnhYNdvKP05/cvztuGE9TdWRb2bzw52Xdw/cQQ1MDAwMDAwMDAwMOgHxubZwMDAwMDAwMDAoEAY8mxgYGBgYGBgYGBQIAx5NjAwMDAwMDAwMCgQhjwbGBgYGBgYGBgYFAhDng0MDAwMDAwMDAwKhCHPBgYGBgYGBgYGBgXCkGcDAwMDAwMDAwODAmHIs4GBgYGBgYGBgUGBMOTZwMDAwMDAwMDAoEAY8mxgYGBgYGBgYGBQIAx5NjAwMDAwMDAwMCgQhjwbGBgYGBgYGBgYFAhDnocYxMbLInJ5gen/R0RuG2i5DAwMDA4GhMdQESkVkT+LSJOIKBH5kIjcICKPDrasBgYGBydEKTXYMhhoEJH3Ad8HJiqlegpIPw5YCsxSSq0cWOkMDAwMhjbCY6iIXA98HbgM2AisAjqBN4ALlVJPDJasBgYGByeM5nno4dPA7wshzgBKqbXA08AnBlIoAwMDg4ME4TF0GrBMKXWHUmq+UmqbUmo3cAdwzaBJaWBgcNDCkOchBBGZBMwF/h4Kv0pEXhWRThHZIiJ/F5FKLckdwAdExDxPAwODQxbhMVRE1gJXAkc5Jhv6UusdwLkiUnPABTUwMDioYcjW0MKpQBvwshsgIjcCvwSeBC7A1jDvAsq0+54FGoDDD5ikBgYGBkMP4TH0QuA+bNO2450/F88CKeDEAymggYHBwY/kYAtgEMAxwOtKqTyAiFQBXwJ+rJS6Tkv3j9B9S4Ac8FY04m1gYGBwiCEwhiqlXhKRbUCDUmq+nlAptUtE3sAeN+868KIaGBgcrDCa56GF4cB27ffxQDHwm75uUkplgZ3O/QYGBgaHKsJjaH/Yjhk3DQwM9hCGPA8tZIAu7fcw5//NBdzb5dxvYGBgcKgiPIb2BzNuGhgY7DEMeR5aaAaqtN9Nzv8jCri3yrnfwMDA4FBFeAztD2bcNDAw2GMY8jy0sAwYr/1+DugA+jwwRUTqgBJg+cCJZmBgYDDkER5DY+F4JxqDGTcNDAz2EIY8Dy08A4xxyDBKqZ3AN4HrROS/ReQsEXmniNwiIqO0++YACnv3uIGBgcGhisAY2g+mYnstemZgRTIwMHizwZDnoYUnsJcQz3IDlFLfxXZPdxr2jvBfYi817tbuOwt4UinVhIGBgcGhiycIjaF94CxgDfDSQApkYGDw5oM5nnuIQUR+AkxSSp1TYPoEsA74glLq9gEVzsDAwGCIo9AxVESeA+5VSn3rwEhmYGDwZoEhz0MMIjIa227vKKVUv7Z4InIxtmnHdMdlnYGBgcEhi0LGUBE5FngAGO+YxxkYGBgUDGO2McSglNqAfZxsIR42AAS40hBnAwMDg4LH0BrgckOcDQwM9gZG82xgYGBgYGBgYGBQIIzm2cDAwMDAwMDAwKBAJAdbAB0i8sm9vPUvB6OnidraWjV2zJjBFiMGhaxIyN7lLNp9BS187MvqyB7IuHfVKTz7mFWeQHt4gftS0D7cO4CIq7/B/odYFgsXLtyulCrEZdtBi7Fjx6o33nhjsMUwMDB4c2KdUmpcVMSQMtsQkfxe3KaAtyilFu1veQYac+bMUfOefnq/5LVHxERFN7PEhMelR6IXLpQeHpEmkiyG0wxAtyyg2L3Pew8F7q8N9qX+e1rPKNkLeUZ7m3fBiOt3+wMxfffNgkxxMSKyUCk1Z7BlGUiIiOpobweCfdbtdnmt/8X1xPx+HGusmNdGAmmCifbH+1oo9va93pfXOB9zc7gd4tIF5OiVd7DN456lznMKed5xSfZ1VFR7mYdeR3HaLRBGsD31pg30lz399u8HqD7G2j0udyC/CS4ceYtKyxERlFKRj2xIaZ4dHKeUeqGQhCKSBLoHWJ6DAvqg2O/gqnfmQjrjvhANN38tD12+uMF8IIju3n509qhthzD2RPY90pLvYd69Mz0AA+IQwL5MSA7mfjfgcPqPYBXcxv0RqCilUiGkK6ddh4m0S3oUKkiglJu+MFK9vya2e4JwkXvSHcP1KiRdmEjrv9zn4D6jnnx0Oh36s3Pvy+bzJETo6elh+dKlNO9ooq21jXwuByiKi4vp7Oyko72dRCJBOp0mlU6TTqVIplIUFxdTVlZGfUMDw4bV2kSrnzIB8vk8WxobWbtmNRs3bgQgkbDYvm0ba9esoaenh2yPTWusRIJEIkEykSSRsEgmEpSUltIwfDjDnb/aunrGjR0DltWrHX0Beo+xA0mYCy5Hj4vqVP3JuK/cJPL+wtplqJHnJ4GWPUifd+7Z3V/CoYqB0DBGDa6FfHxVgODu2YvV1+zSThDdUQuTa88+FvubaAwGcQlYthRQ/IH6nu63tngTE+aBIDd7+04fKlBK0dzcxPbmZhoaGqioqBxskQyGANa/8QZtba0ohPdccB7jxk8glUrRtH07q1auIJvNUlZWzvARNgktKSkllUpiWRbtbW0Ul5SQyWRQ+TzdPT30dHfz4AP39yrn6GOOYczYcbS3t9PR0U7eYc41NcMQEZYvX0o+l2P0YWN47JGHvfveedG7SCQS5HI5KioqmDR5KkVFRaTTKUSE9rY2vvyFz/dbz/POP58TTzyJlpZd7Nq1C8GerI0cOZJrrr56qFryHdQYUmYbhxrmzJmjnpq392Yb+32570ASmjf5srmLqKXkMApZrtyjMmPC47pL3HKfF/ZmJMz7uf/tC2HWm3d/8e7iTOaQMdtwrysqKqitrWXLli2MGTOGc849lyuuuILRo0djWQlP89uXVlNHWNMc9630NKFh2bTrqGX3cHj4Hj+NOPfFCBqBvR3rdaVJlDLFC+vHHK+QIaPQcS+szXWfQ17ZefjP1U/30qKFnPmOk7zfVdXV7NyxI7aMsvJylr+x2fvd3d1Nd1cnHR0dvLFuLc1NTTz68IM89fjjrF2z2ktXXVPDjuZmPnH1NRx51NFkiksoLi5GEgkAtmxuBIHJU6aSTqdY/8Z6Fi14gbv/eSdV1dXc/dCjjmmA/3wt7D5iiV3XW2/5JSuWL6e4uJiidJpdu3bR3NzEG+vWsXDBixQXF9PR0RFbty2NjVRUVMQ0bgFmHCrPc/OfZ/2GDXR2dlI7bBhr1q7lvgce5NHHHgdg1MiRVFdXs7u1lbLSUhKJBB94/yVce83VfZbjl+E/vExFda/oC995Pn/6/W9DQuovVcx4HlVuXL8LvWBFZZV9mm0Y8jyIOJDkuSACdKDIzSFCnKH/D8r+Js6w9+Q5rj8Z8tw/DHkeHIiIuvjii5k3bx67du1i3LhxVAjasxUAACAASURBVFVVsWz5crZt3dor/e9vv52LLnrXXr13UXfoZG4P5e4VFrZh9cPj389e72Z/y/MqH+xwKu/H74EJX+S+FpFgvHcdFFwvPu45KOx2FRG6u7v5fzdcz2233grAi4v+zeQpU1izejVHHTHLuyedTvOpT3+G5+c/x/JlS2luaiKft+v0yc98DhFh3do13HfXnV44wEknn8JZ557HBz78EZSCVSuWc+rxxwA26bbEwkpYVFZW0dXVyYb16wGYNn06Tz+/wK66JjdALq8inzGETDgi4sMjU3iy5f5KWELC+TFl0kQ2b7bJ/71338WM6dMZ3tAQK4MvTITZRKhPtOzaRd24KQBUlJczbFgN55x1BotfW8oTT82LzfrKD1/O//zkx/Flx8j2m9/+jpt/+F9MnzqVWbNmMX3aVN4293jGjBlri9TPnqo+sQffoExJ6cFLnsV+8m8DpgCZcLxS6ucHXKj9iP25YbA/7DEBGmyiM8gEO4705rQf3Tn/uifGIDIRo2XSk7v56O+iBMqPzjsXI1dOe3S6XHo2yYR/XZz02zrtjMYpTdikdq2Hx25KKQQHaf/aU5K8v4bXPSXVhxJ53t3WTnd3Nxs2bGDd2rV0dXexYvkKvvH1m+js7KS8ooKO9nayWfscqXe/570cddRRKKVIJpOMGz+O2bOPZPTo0V6+UXajUUQvysa1o6ODlpZdJC2L4pISysrKCqtL6PfebADrRZQ94XJ+vPvnpnGIpOjhsUJaQfJiWRp5tiLJM5Y/2ATCvTBh06ZN3HXXXTxw/wM8/PBDXtz3/vNm1qxZzS9/8Qsv7JpPf5rrPnc9RcUljKyvZfqMGeRyOZYvWwbAlGnTWL50qZe+rKyMCZMmk8lk2LplS0BzfOzxc/n0dTdQWVXFpk2b+OjlHwBg5uFHMG36dD57/ec54a3H9GqGiZMmcfe995HP5UgkEpSVljCsqhJx6qpEyOVd22rl9Y2crjnX2yBG8wzuZkDnWnzCnBTo6Wjls9d/ntt+838ALHv5RcaNGVPY+BbTDwAkn/UFAzZs2sztf/sHX/3uDwG49mNX8sKil9m4eTMfufwDfPXbN3v3vuPtJ/LAP//uZGT1NunsT7ZYLU6431hks1nWr19PU/MO2tvbaW5u5vVly1i+bBnFJSX85Cc/IZncO+tkZww9+MiziDQAjwIzCG5S9QRWSiUibj1oYMhzH3gTk2elFN35LNl8lo5sD9l8lrzKk3P+V6jglzQia0HII4iTMO+ECULeedcFIav8cOWEgUue7fDipAUCRQkLECwR0lYCSywSkiCV8J+FIc+GPA8liIiaOHESjY2bSaXTJBMJdu7cycSJkxh92GhKSkq58qqrmDXrcF588UUeefgh8vk8RUVFdHV28vLL/2bRwoUA3P7HP3LhBRf2W2acB4+8gm/e9DV++IPvR953/Q038IPvf5/6+gaG1Q7jwgsu5Ms33hhTr4iwGNIcSZhDHc8nQyHynA9pnjXtY7RgVkDDDKASSS3OJ9IBE4+IJXY3PpfL8cHLLufOf/4TsDXIVVVVbI1YOQjjd7f/kXecdjqHDQ96ZJw2fQZLX38t9r7i4hJy+Rw93d0emXWIEqefeRa/++OfyaRTXvif/nA7N3zuOlpbW708Ro4cSSKRIJ/L0drWiiUWYw4bzZduuI7zzz0HSRfb9bNS3vchl1ee0iOnVOSqU8Ihzm6LWWJrmcEOc6+tXA+tu3ZQO8rWyE6bMol5991JRWWVt3kwEnEkWWmTqBjsbu/g4Sef4fXlKykvK+WTV1xm22zn8zTt2EV1VSXJdJFfvlhgBclr1P4oUfn4fVN6XwO+8rWvs2r1al5ZvJhVq1ZH3+Ng/YYN1NQM8373530nl8tx7z138+qrr7Jx/Xpuv/32g5I83w6MB94LrAeOBbYAlwKXAecopVYNnoT7jjlz5qin58UvewwZDAbROUDkeU9IslKK1p5OWntaaetpZWdXCy3dO2np3kVz505ae3bT1rOb3T27ac+20pFtpzPXRleuk65cFz35Lrpz3XTnuw5I3fYXLLEoShRRnCimJFXCMXXHcNHEC5k+bGZk+gNGpPdTH9kTQrw/bTmjEOeZoD8Rw21+KLmqe27hS1RXV1NbW4dgezNIJoJ9Q5/bWgKNjZuZPnlSIM15559PUbqI4pJiqqqqefvb305paSmLFy9mwYsvUlldRSqZYtRhh3H22ecwdty4XvI8/tij3HrLLWzatIl/v2R7T80UFzNl8mS+8KUv8/nrP8eGDRsAuOT97+fWW28rbBIaJssxy+2BNBH3esQ5H5E2bNKhI8a+VIkVSZQCGuYw2dau//CHP/KRj34UgMrKStrb20kmk54N74QJE1i9OkiQRo4cSUNDA6vXrGHGjJn88rbfsPS11/jMpz8FgGVZdHZ2sn3bNsAm493d8U65XNIMMGXqNBqGD+ekk97Opz/zGYqKikjo5DVMMl1b8FyW7Vsb+d9bbuPu+x+kdlgN//vfP2b8uLGoRAqVSAOQRwJE2m3tcP+EaPOMpPiE95V/v8Qvf3Urt/329wBcdvG7ufUn34/W9ur11QhzYFLlXEfavUea6YSeaZz5jr46UQhCqxNKLHp6evjCjV/jf37xSwBGjx7Nhg0bmDx5Eqe+4x0ceeSRjB07ljFjxjBy5EgyxSV0d3fz8quvUlSUoaGhgWG1tWzdupW6+nrAbvO//fUv3HnHHXR2dmBZCZ6e9xSdnZ1c/uErOOmEt3HllVceWPIsIjOVUkv2MY/1wLXAP4Esmgs7EbkROFEpdeY+CzuIMOS5DwwweVZK0dzVzKb2RrZ1bKWpo4ntnU20dLfQ2r2blp7dtPW00Z5tp62nnTaHMGdVNjZPSxKUJcspTZVTnCylJFlKSaqETKKYdKKIinQxRYki0laa4lSapCRJAQlJkJQElpOHu1Pa1RIHZ97OP2ctRik3xF0O9OMVCuVsRlEo8vpc2wkDm+z5w7hCKUWevK0NVzny+SyduS46sx3s7N7Fs5ufpTPXybTqaZwz7lxOH3M6NZkaL2tDng15PlAQEdXU0tYrPM7fso6tW7ewaeMmGhsbWbJ4McNHDKeoqIiOjg5eWriQNWvW0NXVxa5dO5kxcxZHHzOHbLaH++65h/nPPcvyNetYs3oNixYuYOzYcWxv2kZNzTA62tu56ooPBcrKZDJUVlZSXl5BeUU5DQ0NfODSD/K2uXMZPrwBAJXLkcv2kEql+tcmuwQunw0uvQOvLV3Gktdep6y0jBOPP5by0uLCGjOEto4ulq5YQUN9HaNGjQpGxtidKkvXQkeMX9r1zp07GTHKNpVZunQplpXg5ptv5rbbbu1lqjZx4kQ2bdpEpriYHc3Ngbgnn5nP2992HGB7t7Act2+pVIqSklJ27dpJJpPh2OPn8sLz83nvJR9g6WtLeP65Z7n8yquYMnUai195mT/d/rtAvkfMns1Z/3E2Rx99FJMmTvz/7J13eBVV+sc/Z+a29ISQEELvvXdEUBRFbNhddO0Fe1vX1XUtrAV7Wburrr13FMSKiChVpfeETkhIT27unZnz+2Pmzpyb3FAUy/427/PkyblTzjnTv+c93/f70rNnT4RleoATGvLHLQPDMBh7xNF8v2AR7776PIccNIZgKMk7PzFqhx7Act7xpvSoHTGud+we9gsQhu1wEZaBZUT4yw038ehTz7hNv/vSs0wYN9YeCMQAq5X4vRoHnk1nUGEZCLOhF9reoTGPsOJ40n3udhHDAt1PeUUlPp+PzMzdKN8kujdUsK352LR1G5179gWge7durFy1iqOOnMDtU6bQtXv3BlVKBHO+/ZYbb7yRiooKKioq2LJlCz179WL5MhuWjhg5kpqaGn784QcA3nj7HUxTousaoaQkRow8gOYZqb8NbcOhWUwC/gz0+6WUCiFEJTBBSjlbCFEGnC6lnOasGwu8L6VM+6X9/j1t8ODB8puvZyVe+T8UVLe/LREY2lGznW+2fsvKXctZvms5hZUbG3iABYI0fxop/lT3L8mXTIovmRR/Kmn+VNKDaaT6U0n1p5LpSyYzmEFmMJMsS5CsJ9mgVx25B5K9sjJ9JaJ2YgetJnEEuPsiA5evaO+gPFbq1JwRVer2Iq+tWg9YyEjY2zVFib5Os6e1LL/S12CKV/Z7H1+pB6iKVDF94wzeW/8eq8tWowudYXnDGd92PKNbjSHJt+eP9b7QEH6NybHdBSrtfR0/v/2fk0wDdkMH/B8Gz2VVTpKUPdwoia7XnkC2FT/eBGBHUREXnH0mPyxeRMAfYMJRR7Ft61ZycnPZtWsXmqaxaOECnn/ldQYNHoKUktraWqqrKqisqKC6spLVK1fw9ttvsWD+fKSUhMNhotEomqbh9/vp1aMHr774H0pKSjCNKKmpqaQmJ1EXidChbWve+3Aa23fsJCs9lZTkZKKGQbOMdCLRKMeedo7b58fvuY3zTjs57pgSeQmllLz2zvt88sUs1q7fwJp166mLROjYvh1bt20nGjWorKqiR7eutG3disyMdFrmtSA1JYX0jHRqa2pp07oVrVu3pmVeC9q3a0cgGMIwDNYVFKJpPtatX8+KVavQfT6WLF1Gi9xclixdxqbNm1m+fDkZGRnk5+ezfHliusWPS5fRtm1bvvziC4qLiznplFO55KIL+WT6DPJb5dO6TVsCgQCLFszH7w9QULCBA0ePQdM0vvzic6bcfgc3/f0GAM678CIM00DXdJplN6NT567M++5bKioqOHD0GLp27UZZWSlPPPYIwUCQH39YjM/no0OHDhxz1AQuuegi1xusWgyYvvzq65xz0aXu8rzcHAqXzPfALYDu8zz1uj/OWyssw+OpmxGE4YBcaXHJtX/n6Rdecevu17sn87+Y7tFn3M4kyOdgWW4fhRkFBzwLIxrvha6/XyLTfGzYWsTX3y9g9YaNhCMGi5cu55t5i5BSkpmRTiQSpara/gZ99OpzjBoykKQU79uS0FutnBeExo7iEkYedAjbtm0nKzOT4hI7mfSH77/LkCFD+WbOHLKyssjNbkb79u156513OPvc85l6x+1cdtllzF+wgIMOHhvX9ekzZpCSnEJBYSFfffUl9z/wILqjkBJ7ztOSk3498CyESAKOwwbMh2DrRq/ABrY3/OyK7bp/Am6TUr4hhJgDbJRS/slZ9wBwvJSy3S9p4/e2JvD865gKnotqinhu+bO8v+F9DMsgPZBO96wedMroTH5KPs1DeeQm5ZIVyibNn4GuNQwuUF+SAeWHX/FCi9pyr/z/HDy7dSNYV76WGYXTmVE4g6LaIpJ8SYxpdRB/7nYGnTPjp8Xjjq8JPCe0JvC8byaEkBXV9rNk7uaCWDL+2u6rqIkmvADdWDumaRKJREhO9p6bGN3LtCDGHNGIn3q3y84Py6R8VzFJSUmEAn6EZVBcUsLocUcQrg3TvHkz/D4flVXVVFVVoes6hmGwbUcRzbIyOWzMAdTUhvH5fJSUllGwcRPFu0ppmZtLfl4O1158LuNGDUP3O8+tA5xj76IzLrma1975gPZtWhMMBbn64gvo0qkjXTt1JDUlheTkJOrq6igtK6ektIzCwkKwTMoqKti2vYjqmhpKKypJSgqxacs2Nm/dxvYdO9letJNuXTpRsHETGRnpgKB92zb06tmDysoq0tPTiRomX38zh+UrVtCzZw/atG7N0mXLKS4uJiUlhV31PMzHH38CteFa1q1dx+bNmzBNk9S0NKoqK6mra5wK98JLr3DG6ZPc3x07deK4E07i4QfuIy0tDQmU7tpFrz596N27NyXFJXz26UxatWrNJZddxpFHHUXbNm3YsmULRx4xnsLCQg4bN4777rqTzh3bN3CYxOycCy/i5dffcn+XF64iKaC8vxvxzqv0mcqqKhYsXERVVSU7dpawdUcRtz0Qr5Ow6KsZ9O7ZwwPPagCoWifEeZuFGXG/G8KMuN8ZqXxLGpimU1xexZvTP+e1aZ+xasNGDh01jG6dOpCSnES7Vi05evyh+ANBuytojD/1bL78Zi4HDBvM/MU/2cGVzbLo37sXBwwbzKjhQ+nbqwcLflrGzXfcwxGHj2PYkMEMHjiA7TuK+HHpMpYsXcajTz7N1m3buWTyBdTU1FBRWcW773+AZVl079aNcDjMjqIikpOSKHHunW++/JzBgwfRf/AwVq5aZet3V5Q1OKxENJdfRW1DCHEINmA+HkjFfi89Bdy7v3jIQog7gRwp5XlCiCOA94EiIAq0Ba6TUt67P9r6vey3AM+/RzaquPb34fbaXSCOV5+iKqFylJWNYhmnPip4lyeWPoAlTca1OZrD255My+S2CCGoqLPBaXnYA6lq+xkhD+i2Sgu65RbJ3stPr9julrXSzV5fSr1AF+Hze9ukNdSvBDBLtjVYJnweSFVBrwg0EJ1pYFalB8jN8hJvhfJS1Fu0dcv+1p28fVMcIJ3kTbWZIQ9oV0W8F3Kd4ZWjlsWyXT/w1ZaZfL31U8JGLaPzx3F69/PIT2ljt6nciyolVb3T9yThpdovubP35rbcn2mbYXdSZF5ZVwMy47ZpGKi5O3pME3iOt18DPDvtx223r+BZQ+GdqpQAhYPqBvU5AOinZcsp3LiJsQeOJDUUaAC8SsvKefjfzzP981lEolFWrl1PNGpw7qQTycrI4MjDxjJy2FAAjj9rMh/N/ByAY444nJv+ehV9e/Vo/ETUpy1QD3g45YqqKlasXkd+yzxbxUTzpuFdD6Pma8CllkKjurqaTZs2sWnzFo459lj7nOk6wVCIUDDoguq777ufOd/MZtWq1ZTuKqGkuJj09Ax27SphwlFH8/G0Dzl03GE8/cyzpGdm8cVnn5KUksJRh49D13U6durMY0/9m00bCznnjNO55tq/cuNNN/PZp59y0vETAejZsxfLly9jQ+FGmjdvzkfTPuSKyy7DkpJgMEhOdjaDBg7gz386meFDh8Sdlw0b1tN9wDAum3wep590HAP69AYzGne8CaktlsnK1Wv5YMZMHnziGbp37khWRjo52c1o2SKX/n16MnzQAHz+AGsLNtG6VUvyWrSgcNsOUlNSWLT4R3Rd47CDDoy7L+z/Px88R6MGD774Nvc88wqHHzicU48Zz7gxBxIIeN84KSX4PC86ms+d6SjYuJmb77qPQf36kJaaQsmuMuYt/pH3PprBMUccRrOsLP7zyutuXe3atKGispJ+fXrTt09vvvl2Lot++JHLLp5sK6h06MiGggLy81ty7llnIpBUV1fz3bz5zJ4zlw+mTePNV15m87atHD7haLfemooytHoBlb8qeBZC9MYGzJOAVsA64FVgHvABcKKU8p29quxnmBBiMLaXOwn4VErZMM3Pf5n92uD59wbO8PuB5x92LuCG766gX/YgLurzV/KS86k17G1iwBl+f/CcCDjb+/324DkGnGHfwbN6LSoj5by97mU+3PAGpjT5x5C7GdxiRBN43g/geW8VTn5r8CyEOBS4DegNhIE3pJQXO+vOAG4GWgJLgIullAuddQcBXwJfSinHKvWdjj3z2H4P7crqGnumpT5vFOITmCR6jzSWsKT+vaWC56gl3Xu2vqSkCrBj19LnAGdtX8CzZXhT9Zbp8mlj69x+KioFpiVZsWY9GzZu4vhzbMrAUYeOobyiitnzFnLc+EN4d4YNlP99/x2cd7U9OZzbPJuiYu89sW7RHNq0yo8LRGwwpa8EzcVL13nT7QnVNoQWr84RA1eJtnNBtu52xZSSbdu3k5OTi3QUhOpzhcE+18XFO90gUtVKios4YeKxLF+2jOSUFNq1bcf4I47gyquuIikU4tZbb2H5smVUVVXz3XdzmTp1KpdfdhlCCL7//juXAtCndy/q6upYvWYtr7/wLBOPPDyOZxwN15DaphuTTjqe5+69BU3T0CK1CYHauzO+4KnX36Ng42YKt2ylZW4OB40cyrUXn0u3Th28DZ1zVlRcQqu+I9zFqSkpZKSnUllVzeB+ffjim7kM6tOTuR++gtaY8opleEDZiCBNZ4bTsuJmO6Vl8tX8H7nyvqdp3bIFj0y5nk7tWsdhlDemzWDKw8+wYl0BAHPff4kh/XojfQF7tlJofDtvAQcdE08hUm34kEF8N38hD99zB2vWrad3zx6cOemU+G9CY7ioMY620Dj6pEnM/OxzLrt4Mn+95ipymjdvuH/cPnZ7e0qSslcCeEKIxUBfbM/vG8ArUsrvnXWddrfv/jIp5QJgwW/RVpP9d1tRzXbuXHgjrVPacN2g20n2pex5pybbb5YWyOCsHhdzTIeTuWXe1dyx8AbuGPEIvZr13vPOTfZfZw4Afgs4D/gQG3v2dNaNAh7HdnzMwg4C/1gI0UVKWeFUYQH9hRBHxeJa9sU06XBDFZBVP+ufJeMH2OYehl6xLRNtpdcb4Km6vbEmLCCW+9CwJFJ4QNuSEivmmBOga/YAW9N8YHqSZFK3vD6YDWkBEO8xW75qDQMPOx6A2/96Gd06tidcV8e7M76gZW5z3p3xOUP79WLBkhV8M/d7nn/gNt6b+SWzv18UV+foCcdTsOBL97ewDIgBq9ixxwYfllEPeDhgTNfjvY8xUK15lDQpNBuYx/at55V2q7Vw6WpCQosWedinpB4orHddcpp78nWVFeU8eP99fDJ9Otu2baWszJ66t0yTpUuXsHTpEu69526ee+45Hn7oobh6rr/+eubNm8djjz7K22+9CUBWZiZLli7jTycez9svPUvXzvEwSEiLgE9n27L5DD7kKB595kUu/vPJaBje8QoN04jyyezvOeXS63jxkXvo06Mr7du0ISkUIKFJC8wIOZnx2uFjRwyia/s2bNpWxE8rVwOQFvJjlWy1Bzgq9U8B+HHLFbPCtaws3MqshT/x8mffsbO8krsuPZ3jJhyG7jiBLCPC3IU/8uq0T3n8lXcB8Pl0hvXrRUpyktvf2ABr5NDBbFwyj7Z9hrrtdO7QnrUbCijbuJrkULB+N+Ipi7E+OzdGo7rk6gBNWnz4xkvx62NBkvVAtvss7aXTZK88z0IIC1gPXAlMl1KayrpOwBr2g+fZSYpykfPXHtgOvAPcKqWs+SV1/xFt8ODBcs6sLxOu253UTEJLsP2+poZuzNsbV6eaHSlBMA3U+0glmOpUNZEjallxX1ZHvIemSilXKl5j1YNcGbHLhlXHO4XXUWls59CcOzEjuV49zvZqX1pmeJ7cvq08b+uAPC8WtV1ASX26wlNHqf5hvlsuWebJKe1aW+yWTaXvme28+oPOy09TprzUqSRfitcvo9rzPJtR75hdTwFghiMJtzFqFW+zwrcLKi/flJa2xzm9pxe5HOw5zC1HW3Rzy9vD3j1VoRzbzmqvfdWbv7NmJy+uu4Y6s4YzutxH85BN4VD1opP9eoOyuiyoJHFRE7ao3us4r7byDW0s0cT+IEU1lr0rPhVz4jZVD7Pa3/jle6BqNCZNBgRT0n4zz7MQYi4wS0r5twTrngc0KeWfnd8CKAT+IaV83gHenwF/xQbffaSU5r54nsMVpbEfHviqJ6elJq2o761s7D1mycTe6PozISpQj73DIqZscO1j94uueddWE971L9tVwry537J9+3b69+5Jr66dePLZ//D3W/7J3bfeyJUXOoGASga4VWvW8MWs2SxfvY75Pyxl4dIVACz++DX6duvkbi+NCJFolAv+fhcvffAJALPfeJrc7GzGnHo+rVvm0apFDv17duWkCYfSo1M7l2IgLQscL3hlnYGu6x7QMSLgzJIJfzAhJUPqPnBiJRpQNVRlB033QLYaTKcoVFi63+Ocy/jrV/+TJYBoNMqdt03hP88+Q26LFjz62OO0bduWqXfewc6inWia4MMPPwSgb58+hOvqqKmuRghB6zZtqKmpRgiNtWvXYlkWNTXxMGTBVzPpo9BcVNk/4Zy/FatWcen1t1JVVc205x4hNzvT3fb6ux7m7qde5K2Hb2PiwbZiCClZ9vHGvgeWx4FW1VVktI65C35gR8kuinaWUFJaRn5OM/p2bEP31i28d6xl1vMkW97y2KBE01wv9MqCzZww5Qksy+LAvl2ZOPYAjjz0IHRdR/j97uznVbc/xIyvv+P0Yw7jjidf5ITxY3n45r+QkZllUzdwnkN1UCTsxCbLV6+lVcuWZDdzZmP3dpa8EW74bqUU65sqrbgbnBXIzP3lnmfgWuA0bN5xiRAi5n3+di/331ubDDyCnRzlI2yd56uB5sC5+7ktAIQQdwFHAW2AKqfd66SUu5RtGp12dNYPBh7DnrLcBtwspaw33GmyX9vKIlv4avtDlEbXc0Cz60jztaIsspvghyb71S3V34xTO9zOi+v+wivrrufINlfSKf3/NQ33f8qEECnAUOATIcQi7HiUpcBfnNnCfsB/YttLKaUzk9mvXlWPAJcA5wNPsC/mDhw0iHmhhWV/GGPrhIbP+VBabsogG1SLBEBa9VjHzMUi9VDavrJ7pJRsLCxASkn79u0JRyPcefttvPTC8wwZPIj8li254e9/p7paCfaVFk/85yW2bt/B0hWraJufx5x5CykqLmbCwaPo2aUTpx1zOPm52dTUhunRqS048mYx8BsAnrvlSp6bcjXCH+C7H5cz9Ng/U15VzaWnn0CbvFxGDuxNh9Z5WFVlcTSvLTuKuOb+Z3j78zn07dKe9nk5fDB7Pgf2686QPj1om5eDFgjStXNHenfpQMv8Vi4QFqbhefLr8aWdDjorNYQKvnXHsaCAb80yEc5yXdcxLM/Dn4jzfulFF1JeVsaCRYtpkZfnZOsTPProYwgBxTu2c+7ZZzNq5HA++ng669av46F/PcJ9d99Fu7Zt8fv9rF6zhkcff4Iff1rCeWefyRHjDmFDYSE+TWN7cTF9VJCrHpZzLD26deOzN5/nn/c/SreDjyEYCJCfl8tJRx3G9FlzeWTKdUwcN9odoMiyIrBMlz7MjAAAIABJREFUF8xqGdkeH1kFwabJ8F5d7LIR8SgYlomMRj3AbJnxgNmty0JoTlnTkWH7flu6ai2dWubwwT8vRcvIRgrNrt8RUIs5bT7/dj75udlMPvlIfly1jtnzf+C9z2azcMlKFi1fiUAQCgZ48+mHyMiwHUdCaPh1jX49ujr9UZxBiTSl7Z2Uk7ob9Y/GZO8a2abR8l7aXoFnKeV9wH0K7/lPwEVCiI3YQFey7++QRHYR8LCU8srYAge4PiuEuFhK+WtklzCxE68sBTKBF4DngGOd9nc77SiEyACmA/cCBwKjgXeFEOuklHN/hf42WT2zpMlPpe8zr/hFfCLAsKwryQ8N2fOOTfabWFYwn1M73M67G2/ntfU30j1jFEe0mUxGIGfPOzfZH92ysB2r5wNHACuBv2C/I7sCaUB5vX3KgHR1gZQyIoS4AXhICPHy7hoUQlwAXOAtUOSu6pn6QXZn4uqD3wTTcjbI8n5bMjGQVs2SnhfZr8FXX3zG048/yro1qyktLaW6qoqkpCT8gQBJoRDbt293U3dXVVXx6fRp5Oc2Z/acb3nu+Rfo07MH6wsKCQYDfDFrNslJSXTv0omTjpnAvIWLufum6xgzfBA+6YEkF5yaUQ8wGREbTOHET2gaMhLGb9RRXlXNsQeNYPXa9fzrhTfZUVJK25a5DO7RmelzFvD8rVcxsEtbOp9wiXuc5RVV1KQl88SVZ9AyK40fNmxlxao1mBLenvElP60toH/3zhw3bjQtc7IJJqcweuhA0lJT4hSH4q5d/fOv60jTAd+aD6k7M1u+AMiQs40fn+KJRhNxXHdNwOeffsqQoUOpixoNZxKkJCcnh8MPPwxhGZxy0gksWbKEKbfdQbi2ltEjbHrBiEH9OPPUE5k2/RMuu+av5DbLZNGPSyjctJmSXbu46Lyz+NuVl9nXvrEMj5rOTX+5nKsnn024ppolK9cw7dOvOH3ieC48daJ9vcxYwF4EGa5xlZLM0iL07LyE5ylmMhJG1jkzlDGwrIBn1dZuKeKJj2axdMMWnr76DNrkOBr9jhd6cJd2XPXsh7w1eyGVpuDfH3xO4fadfHzfDfTv2RWh6RTtKqNldhaffb+Y2powj9x8Dfc88xrn/vXWBn2rKi8n09EabyCnp54j72Qpz/TegVo7KNHzQsfqisPamjOY3k9iDD9XbUMAY7GB9HHYL8j12Ly3D4Fv5c+oWAhRg63t/JWyLBWoAHpJKVfsc2f3vQ9HYnvVM5zfe5p2PBu4FWgXO2YhxIuAIaU8e3dtDR48WH77+Qz3996kp9xNxxtsr9YnFYmzRLQKiP+IRJWbTs22Zyg7qJSLsOGVVTpFcY390t5e6VEPCkq8qa/1O710p9t2efSI2iqPBlCnUA+MWMe0OnwZhVipS7BSloFegz/Si5SqP9HDSVcKMLyjl7xjcL49+u2Y6fHJkrd7uXzCi7/y+vK1R68v/NKjZCwv9HDAaqWPkcZ4Lop1SvHabZVkv0Rycz0+dkoLT/LKrwQs1pR452XbBk9mZ0utQmFRgvfKo97Lstbcc7/ynbaGtfHwTKfDPJm5lgf0dctJgw52y9GWXobB7RGvvwVl3rVeU+J5zwp2VbCm+gNWVr0NCPL9h9LGfxS68NqNTWcnKxSTjGR/wnJawGszPeiV05RyqlJPSKF/qPQITWG2qlSQ2CPV2PrGqCI+Xexxm72hbQjloxeXBS5mu3nFBtMyfxPahuM8KANul1Le6CwTwC7s2co7gP9IKR9U9nkfWCelvDpG25BS+px1c7FpHKv4BbQNaKgCEWPX2kmBcMqNU9FU211gmoqjTdPkg/fe5aEH7sMwDC6/8ipGjRpFVmYmaamp1NbWUldbQ26zDNauXcfq1atolpFObm4OU+++l5fffIfxYw/i+ismkxTQGHz4iVx29iQeuOlam0eMwwdWlThiCg71VTCcQGMZjXjlWPCxynt1QFtFXZT3vlnE90tX8cx7MwHISE0mEolS68zgzZx6FaN6tI9rJzaNLwIhhD9AXSTKtBVb+eLbeRTvKmPbzmJA8NjUW+jXxgtKFq4CR4KUEAqAsjP0ORQOXwjpcygjfrtsOZ5oNWNf7Bu3bNlSXnrheT779FPy81vRqVNHRowYybETJ5KWmuI+Y0LaYLOivIxbb7+T9z74kCXz5pCSkkIsK6OUktnffsdb731Ij25dOeu0Uygtr+SYk0+jdX5L3n/p34mDLC3De34VCoZN7Yi410U6YNkKVyPrwq4nWBpRfE6Adzx32XSvo6yr9a6xEfW8z7HtnHNsahptz7yJtOQQm3baz83mNx8kOz3V83xbFi9/MY/35izmo3lL3OY6tWrBrMenEAiFeOzN6cxfsY4n/n4pLbIzuenJV7n/hbeJRKOcetShvPzAP7221WusDJ7i9MbrW+xe31ugW48aknBArepIx34nAOmxNoPpzfYLbSPOHJD4OfC5EOIiYCI2kL4Gm+JRDLT4GVWHgPrc5hhy+HlpkvbdDgF+Un7vadqxH7Co3mBhEfb5aLL9YBIJvjJkaBMECiC5AJK2YggLzBBaTQ+S5RD8kd5eVr4m+8OZLvx0Tz2BNqFR/FD2Gpuj09ka/Yw831ha+Y8gqGXvuZIm+0OZlLJcCFFA4plHCfwIDIwtcIB1f+xYlkT2F2AmMGWvO9GYxznug+i9GTSEG+uhCbBoOJCpz4WO80SrXHS87W+fcguPPPwQAwcN4h8338yE8UfYmeKQLk85mBKCJFvPuWvHdnRt3wpMg5lffMWiH5ew6afvyWmeDZFq7nn4cQC6tW+NiFR7NAYVPNfzMHsgRU8YbIVl2WBaoWRUVVfz5LRZ3PvGDGIJZwA6tMzhhj9PZFj39rzy2VwOHdSLEV1ax8utKcDX374nUmgkAyd36sPJR9kJgA3D4NEXXmfcyWdx27WXcf7pJ9mgROkTgNy1zZ1mF7rucal9BlgNA+hsT5WGFlP+0APu7ELsuvTr04feU+/is0MORdd11q5dyztvv81VV15Bnz59GDBgAKFQiEPHjmX0AcP5YtZsqqpriEYNLCniAJYARo8ew+jRY5wOWCQlJfHwPXdw8ISJHHb8JCaMO5ihA/szcujgeGAY0142o4p32vIAb13YvSYu5SKmuGREPdBsRBVVDDNeLSNWl2mDaqmAYc0HK7cU8d78FZRV11JWXcvwHh35bsV6Fi5fw6EDunsxHJbJaQcNYtKYgaRMdEkArNuyg6Hn/I3q2jr8Pp1bzjuZ9YUbWbVuPVOfeY0vn72XtRu3cuRBI5RBmok0Tft6xsy9rp4jpAGIthRQqwJhrfHU43tSbWnQljpA2wP/OZH9LPCsmpSyFluy7lUhRC62t+H0X1DlCQ6HOGYa9nNykhBieHzT8vFf0E4DE0KcgD39OEZZvKdpx72allTacKcc27Ztm2iT/3mzCGMG12EGCrEChZiBQvBVOit9UNsGisfgi3RC1HZC4COQuWcJtyb7Y1iKrwXdQxfR1prIxsh7bDVmstWYSY4+jFaBw0nXGk+u0mR/SHsMuEII8SqwGjtOJQx8C1QCM5wZvNnA5dhOkncTVSSlnCOEmIENohvm3U60T4xbW1/CDW/GLS7QUog4qJ8oKDDGhVZ9Iqq3WTUBFO0o4oH77nXWCy487zwOGDmCWV9/TWVlFXVlOxPzNYUGvgBJKWn4/H6at8xnXUEhU26fyqvvfMBNV05m8p9Psb3KMZAYrVWAVsTzItdLpiT8NjgR/kA9YKUEkFkmL336LTc+a49lLp54CBOG96d1diZdW+XYx2yZ3PSn8e729cFQoEv/uPNuN+RJ2Pl8Pt78aCa7ysr550NPMHPWN7zywD8JBnxxfFwtJQ1jxyZ7f5/fBVciEEJLSnHrlzG1Dsuw/2JgTI+694KmgHqfrnHk+MPsH+MO4dKLLqSiooJ58xewcuUKXnrpZVavWkl6ajKnnn4GZ/75dBbP+47UjMzdclFjSiMjhw+javMa3v5gGvMWLOKBx//NUeMOZuoNV5GeloowDTe9tqyL9w3GqBbSiLgAWeg60tLd66rntPIoGQq3OeZhhnr3gXOdhBsMqHPlcx/y9CdzmXykp/383Yr13HzakUx+6CVOPWgIfz/1cJKDATZtK+LjRStZu9WWXG3VPJMtxfaM59biUoQQJAX9PDftC0oqqqioruWKU4+mT/tWHNC7iy2zGutXDMir5y3GszaU2QfM+BmI2L0uNCXleyMzFLH/sf1VwKykDW+wTgXZSl176+3eb+m594c5qh57a/KXpgCv1/ZJwJPACVLKL5XlP7D7accHgfZSyonK+quAP0spB7IbGzx4sJzzxcxGOtQYhWPPUaWJKBqGSrFQpvLrDHW5d/pV5YuwwuGoUSgBlYraQqlCrVApGmt2eLSMzbvsF0eNsq2mg6ntIKpvIJS6mSq5jlq5mdjXLTOQT5/s3nTJ7EXXzF4cnN4MvyPtFP3yVbeeHx7zZL/fnLPJLe8NbeHnWp5Creid7snspGV4ZV1RjdAD3jUKZXlgP7WF/WEIZXq0DV2RKgpmesofdWWVbrl07U63XFO8ZzGaugqPZlK4zaunoMa7HjvrEksXxSygIAeVhtIp1Su3HOTx89qO9eTpMkd5lA/ZxRsHL6uu5P0NbzC98D1qjBqyg7kMzh1Di1B/WiZ3pLYu1QUuKiVIpR/F0SCUcsineMbU7JD1A0kSbBNUOBoxykciZRBoXBFEzUjZWFmldvhVWkgjyhsa3rRvzH5ntQ2BTV27ABsYLwauklL+4Kw/A7gFL+D6ono6zy5tw1nWGVgObN0b2kZttf2OqS+bJoWWEDzXV96Iqy+2DQ0pHbsDzzErKd7J/PnzGdi/P6dNmsR38+YBsHntCnKym9GYmaZJ5z4D+cvll3DLHXdz0MihPHXnjTRvluVxmaUHkvcFPKPpWNW2KqBVXRkHwBrsE1NJqMeZVQPOZDTigWdNJ9jLeZbrfbNUkDLlwSeY8tCT3Hz5+Xw5dwHfLv6JpdNfpUvbfLduoWl7BM/4gnYqa0A6tI0YeEYPKJJ43rO5WzqktNixYwfDR4zkissuZc633zJi+DCuufKKxPuou1uGS5URhp1kpLqynDc/mM4F19zAg1Ou55KzT9t78Ox6kaNxswNaWubPAs+qpZx6A83TUxjYpS1rt+xk/XZbEWr1M7fi92l0P+9W6qIGcx+4lhNve4qD+3alQ142uZlpHD96CHUW+DSNWsNkw45ShvXsRFIw4Kl1BEPe9fIF3HsvBp7VwD0Ry3ap6Qp4plH6Ttw1re95VuUQYzMz+wk87ylJyi/yPAshkoFhQDawE/julwT1SSn3D5N7H83hLd8HHC2lnFNv9Z6mHX/E5n2rNsBZ/rva7jJu/dYWA84m5UT8GzB8BRh6AYa/AClsZk6NlUyq6EyWPogh+f3JS+pGSE9jVDsvuYhf7EpY/3+rxYDzH8H2BJx/LctNzuP8Xpczqeu5zCz8gnlFX/HZ5vcwpa2pGtLTyQq0JiPQgpDIJcXXnCRfFkGRSZKeSVBPR6cRXdT9YCpXel9MSknUMoiaEaJWBCEMTGliSgNNWFjSwpImIJ2y5Sw3MaUFmBjSJGpFMS2DqBXBMCNErSiGNDCsKJbDxZTOPpa0MKXJyLYH7ql7+80cytpNzl+i9S9gB2InWvcV9b5DUsq1sPcX1AXIlhGXWENYJlrUAR0qH1rzuQMTlScbU2LA/S3jPq5qoprGJAPzmmVw9OGHIk2DpcuWkZebS7iujtdee53LL7BDYOKTitjTxbomuOLiC7n9nvv596MPMvGwgxFmBAn2f1Pz+LGWDa7A4TDHaA+KtxHN9CgQmu55IR2vpnBlcOPpHXFBhipAr5d1Lnb0od4j2Bu7+fLzOHrsKHKy0ph80gTajT2ZXuNPpXfn9tx11fmMHTbAprikN3P7Gd1o6xVraVkeMNSqXfClBZPjwLPUA64Sh/R5mRdFfSdTPT5sXk42M6Z9wK233U5lVRV/OqVeIg9FGhBpUV5ewRP/fpat27ezbNlyevfsTuvc5qxcs5Z3Pp5JTa19z23YsAGzqhwfphv8Z4WrvWsEHrUiGo3jpetZOS6YlNUV3jpFNlCaZoPrYm9jOkoazrOA4NIjRxGOGAzu2pafNmzlsY+/AeC0qc+wq7KauqiBJgST7nqWq48by+TxI9364ig0mkbb5pmAhTSirhcZXffAr2UCfm9fv/IoK8cuGnFgNJCQq6ecEbsWcc+RVAZ7mkqnUgIEY0A8JqGo+eKcDuq7Y29sb5Ok3AC8J6VcriybDNyJTU8Q2M/TLiHE5VLKVxPX9MczIcTl2DJ0h0sp5yfY5Gl2P+34LnC3EOJa4CFsxY3jgXG/dt//iGZJk1qzjBpjF7VmCduMTYSt7ZQGNhPVtmAJJy+CFOhmPsHoQPxGR/xmBzpld3RfdO1TG/fSNNn/T0vxpzAqfzyj8sezelcJ26rXsr12Axsq1lAW2crm6qVUGcUkotcGtGSCWjpBPY2QnopfS8YvkkjyJePTgugiQEAPoKGjCR2fpsfx46W0sLAQwsKShgNwJZY00YQNSC1pgDAxLBsMS6JEzDoiVh1RK0zEihAxw0StOurMMHVmHZJ9mUzbfxYI/lYhIr+/CcVD6kqdYSfpiHmj4hIqSMudAtaEyn8WcY6oBh/HmKqFVCgi9UB0bPns2bNpkZtDaVkZZeXl/OXGWzjtxIlkN8uKl2uTnifsqgvP4aqYlrNlep4wzYeo71VM4H3Esoj57zWVT6qapsXzoetpAKsyZq4ZUYwaReseSBky1Ns+hmES8Uud84K0GNirK0iLaE01Rx00gnc+/ZofV61n/OTrAVj93lN0aJ1vVxsJo+e0sruclOJlVtX9mMVb7eaiEXud4XfPk/Tbs37CiPdCu4k1tHpBYk65e9fOvPb8M949YkaUsh3wV1pWzpCDx7Nxy9a4w5s993sOGNSPA4f0o7qmlgE9urB4xRoeeu41HnruNeY+dw8D2tr5BqyayoTeYmlE0LNbuufU3LklLuBPJhrgKCY0LQ6Uq8BUIJl62uHuvkZdmO6tcjBMk/lrNgIwtGs7Jh8xklMOHGj3SZ1pAAQOYNd00GIzBab3JlZ1qTXNTaoTm6Fw+c27A6ZxyjiNeIeVYxd4Hm0pNGWA4yXliQHTWF1CWnHr4oI3FdrH3tjeep5vAwqwp9IQQpyCzXNbAfwN2Ah0Bq4CXhRCbJFSfr2Xde/WhBBB7HTgDUitKpj/BfYQYABf1ku1mur8/0YIcTE2iI5NO06IZceSUpYJISYAj2IHuWwDJv+RZerqzDCbqzaxqbKAgopCSsI7Ka3bxa5wCREHGBiWgUAghECgoQkdYUv9u/UYloXpAI2IWUedVU3UCjdoTyeEJloQMnsRsNpghfPxGa0RhNCVqXGxlzdtk/3/t5CeQof0fnRI70enFG8yqzRcS61ZRq1RSlW0hLBVTtisoM4qo86qos6spM6sojJaRNSqJSprMa0IFj/Pq66hIYQDuIUfn+bDpwXwawECWoCgHsKvBUgJZhPQggT1EEE9SFBPIqgHSfKF8Gt+/FqAoM+PT/OjC52ArqMLDQ0Nn+ZDExqaEAQ03Snr+HUdv2a3GdQCBHQ/Qc3vLvMJzd4WDYFEFxq6sPcPpqRxMRfvr8vxh7aE2sH1rH5AkOs5FiJOTSVufWO0GDU5Q+y3u6HGhx/PYPJlV/LIfVM59azzAZj53htkNWtmB7TFfegtD/w3ohbifuQV2sYej9cyIUarM6JYrvKG4+FUgskarS8B0LGiBqmDDvCC1oyo68WOOy7lvEgjGjfc9fl03njwViwjymMvvcWV9zwFwEsffsrfzz3FO0YHKJlG1AVfWlKK7ZUF8AWxyos9bncg5HkldcOesgc7wLKxwDA1wFA5x3GDLcvgo5lfMPHcywG46dKzOfHwg+l79BlMPHgEx4wZTkZSkDc/s7256zZujjtnj774Jk9eYLM6jZpaN6FVqFW+O4MgNB1j5xa7uUj8/Sx0DaE3/DbGAWTN8/yK+gMnFXBaJmcfOpyZP67lg/k2fPr+vqvp07mdB+rVNvwNB2GNqqRY3vV2zRegpKqcj2fPY0DPrvTq2omFy1axcOkqLp1yP/m5zVk+/RXS0tPiBovYdAm+mb+Yr+ctorqmlq4d23HWicfEP3sxkC4UIK3OFFiad3/H8F2M5qPKJkoLGZvs0vbO4bEvGQZPl1K+4vxegn2/DZBSRpXt0rH1kn+SUh61Vz1ovM184Cls7dAGq9nPnOffwwYPHixnf/ON+7sxCTl1uXq1Gtte5StHTEmtUcPConmsKF3M6rKlFFSuxowlE0CQ4s8gzd+MJD2DgBbCpwUAZ8pIWiAspLSQWOjKlEjQ5wGKVH+QFH8Kqf5Ucn1BckPZ5CQ1p1XxTrJ9aQgh2PGB7ayf9YiXpe/rveDq7i87VJGFa9PX9gTkD+voLsse4GWKCvbyMuyZLbq45XLdiwMtqvZectuqPICnXpe0oHeLNkvyXkTJCrk1lglKXRZU3+/ReK+Pu9z0OMzS540tI7rHuS4Nex9Gld+uvotTlXYzfE6QSpn3AZBb13h1rP7BLW+Z5ZU3zi50y/MKK9zyptqG04p7a80cmbmBSjBopxGt3HL+SC/zYeZAL7zA18nLv2E2s4NyDcukXPhs2oRlsitsT4kjJVVRywWsFWELXfjQNR+VdZbLcw07UoDWPsaIqDQAlSOtUkHU665uE1AuUiCOr22XVW61v963NTcj5TfjPP+eJoSQ4fISb0FsqruennB9Tngi/ef6MYXCMuMlAhUvVSLvVDQa5b4HHuRfjz3Be2+8wpCB/cnMb084HObrGR8wbNCAhv1RtZljdbvtxRQaDHs75z1g1VbHeZ6l6kVWgsRcSkBd2Jv2D1d7PFQATYtXQlDPY+xc1lZj1trvaStqkNJ/hJtBTtSfkk/kxY5G45NVKF5NK1zNoZfczDEHDORPY4eRndaQxiZ8frcdEQghQnZsiAgmIfxB71rXVngeajUleFyqx/jBSSxVOFLG88oVGoCMhJn9/WL+88FMHrjiTBYtXcmrn87hmWlfUt9WPXg1oYCPZz6bx/aooDpcxwUTRjOkc2t7AyPi8pfNujoXSBvheLar7ve7cS9awOfNJKgeXoi7dnVFdgyM5vehBfbsF60OR/jbyzPYVVXDK1dNsukxEH8f+fyuhvR/Pp/HJU++zeg+XXjl+vPIzsqM287jMnv9mzF/Kdfc/wxCCNZs3NKgD53b5rPkrafwBfxoKfa3VfpCTPvyG2686yGqa8NkpKfxg5M5s3L1PJICCRhdjalwCM3LVCniQb/LlXe2k3ogbn0wNWP/cp4dT3Av7Cx7cV9GJ2nIs8Cl+1pvAvs3Ntf4amyPd2T3mzeZajtqtvHd9jnML/qGpSWLMGSUgBakc0ZPDmtzKm1Tu5CX3JaQlodfs8GWGgyoptBWUymrADBHCRhrnuQ9xJmWF4ymldsvhRhw/iNYDDj/EcyfKNvC72Qx4PxHsGaB/Tsu9mk6SbpHZbCkqazzjjuqeE2EI7ofNv445+WPdL/8USyOA6mmMd6LfepLkbllUwFSEI+sFVu1ejXh2lpKy8q44R8306xZFt999Sm52Znc//AjhMNhcnOaM3r8MfTt1YMFX3wcV5cwI17QmbRcT1ocz9aywXMijWY0xbOmTLdLosg6B2yHa+LLpoV0gsPjgJnP74ExJzAQbAqFFbX7mNx3aPwJcNQ3GvRLpRrUz7ynyK5ZtdU2HaJdDs38eMfo1BHrl6reIJxBgRYLNHQCsWVKFlJTvJeKaXWOcItJvHdZoalIJZmM2n8ZrmFwqwxmpoU49MIbWLR2Y1zd7fKac/SI/vz54CG0aWN7xa879Yg4qbjozh1eudq+FmY4guVcBytiuIBX9/sQmob6BnSVOIBdS21nhub3uR5pXQHMuhl/voWuUVJTy3NfLGRHeRVpSSHSkkP4dY2wKUlJSrIDMi2TVZt3MK9wJ0nBADtLK3j2o6/YWV7BjeeczJz19jF8vWQNrSddx8dTr2FMn85omgaW5nnR/QHw+Vm7eRvHXvVP7rz0DK4+bSLHXn0bM+YuIuD3EXHup4It27np/se49tQjycyzKTtaRjaTr7uFEQP7cfct19NlhM2AffbBOwklJcc/l7Hzoz7H0TqE4QwWdSWoMbatvxFlLjdN/N7B4p8TMBiD95saWb8ZW77tl9oBwPlSyjf2Q13/7624tojlu5awbNcSFu6cx8bK9QC0TG7NEe1OYEDzUXTN7INP81GpTAuVh/c85dlkTdZkTfZHNa3GTvYgFbkqqfkcfq8bGafs4FM8zxKhUnpUYKVYfa/W5s2bOOv8yaxevYZgIEB2djMuOu9szpx0MkII7nngYW687S4AcptnU7SzmLGjhns6v7F2LMObelbUGxooaqjUi7p61LhEFAwFbFu11S74NcMRzIinDa16OPWQoi1smVix9k2LpO5OoiTLcjzMltumCxLrB68lAM+uVJ6zvri4mKWF2+iV3zzOay0CIUTAhhHCH1D4tF7wI5qGUD2Oarke5cZVYrDMeJKOOwGhO9zemPnd67K1uJT7nv+Af70+jcf/ej6Txgzmm6WrWbNxK6eO6k96cghZF8aKhImW2veiFTXcAYplmu75l6aF4Xib1W2kacVxmQs+W+ImytICOrozteRL8uMLNfS8+lKS8CeHnO19+EIBBVj7eXLGXKZ+MJuppx1OTSRKSXklloTc9BQuHD8SKTS2llYy4JI7OP7AQQifH79PZ1Tfbjz5/mfc+vRrnHjISI45cDALV6xjS3EpZ019GiHgH6cfzbnjD/AkB0PJCE3jpsdfZnT/Hpw+biRr121gdN+utMlOR0NyYO8ujOnWhrfn/sgrXy3kifc/p/ClqYQCfkRpEc/edi2nXjOFbTuMGLcJAAAgAElEQVR38f4LT3LsGRdyzpXXk5ebw7jRI91rLNTnNVaOVGM6s1HSiLqzNFpyGiIlHc3RKbcC8eo8Wp3j9IsNBjN372TbF/B8rBCivVOuBNo0sl0r7OxSv9SK8BKk/M9bnVlHce1OdtTuoKhmB0W1O9havYVNVRvZXLmRsoj90Aa0IN2zejOu5+UMaD6S/BR72jryK0q2NVmTNVmT/V6mVTu0DcsEJ/uc1P3IQDKW355tUGXspG4hEnmXlA9wdXUNDz72JFOm3st1V1/OASNG0KlDOzp37MCH0z/hun/cSo9uXVmxYA5pSUGvfQdI1tZUI4SgfZvW3HDFRRx7+FgCfh9YhgOSY5SMKMRkzAxPRQMjqkiSReLUGDAi8YlRYt1X6RiWiVln1xsDzOABNtMBcyLN83BKy4oDloG2XZ0T7A1K0DTHE+wFusVJrJkNaRu742g3S7fTk5fX1pGSmhIP/p16hT9gawc77Qtlul0aUU9hw9S8gZDquXd+u//VoEi1vWjUHQgAWJZFaHi8kNaILm3xW1EO7tmBgzrl2cdcW+1SMFTAHLtGBTN+IOo4qYxaA9ORfjWUDLHSsvA5YFkP6Oh+Hel8s/WIieXMxBlhAz2g9NHZJpASxkixwbMvJQkzFHAHRTJkMbhNC3rmN+eCA/q7oFroGnooQHlNmHHXPcCCdZu59OjR3HX+Se65Sz7Wlux75fZrePOzOcz5aRUl5TbILCqz6Xm3vvQhZ04cz4ezvmfSlEeob22OnUzztGQmDutN9xbNqA3X8ewHnzN53RbCzn14cK+OaNE6pDQQgRCHjRzMC1NvYPQxp3DeaScz9cZr+dtt9zBh0nlsmPcZrVvmOTMHsevq8dWtyjLMUpvCIsPVbuZGLSMb3YiiZdjJuIQ/GBdM6A5ijYZxW4lsX8DzSc5fzCYCTyTYbhx2IOEvtZuA64QQs2LBef8LZkqTtWVr+alkCevL11FQsZ7CygJK60obbJsZyKJNWjsOaDmatmkd6dmsDx0zuhCTTG0CzE3WZE32/90sx8tk1VS6esYiEELPzkPPtBPdSl/A5TQKaChzFTOhcdEV1/Dsi69w+KFjAbjr/ocZPOBrFiz+gY/ffpUTTzuLE445kv88+gDBgN/V8CUmJSclJTuLGDN8MLO+W8DRY4YRlFGEA2axDBcYWvXSKuvOh90o2d6AwlBfa9ku16NwKIoH6rR/DDAZOIOHmFcy4Hen+9UANL1FW5fqgS+ACHpcaqHr8VrDTjm8dnkcMIsFvsk4z3N8OalTFw4Z0J2HPv6Wqecc18Djb28X761WpfkAtJB9nrQUZcK7kQyLiQCzfRwR91gMwyRlrJfn7a0zj6JPTiYhnw9j2XI2L7TPvRk1MJyYDjNqOXQYJQ7JCdiMho245T1OHuw0b8Wdj9i503QtjpIhNA09YA8QCj5Z6NYrTemCZ7W9YD3ahqZrvDVvOZ1ysjCjUYQZP4ty40szKK6spvjlO9B1zRYJcAYkw3t35bulq0lNSWHKxWcwacIhfPTNfO574W0AjhwznJ2lZZw99SmKS+1ccfdefT5/uf9pAN7455VMGNANTeHrS8viyuPAtCzwBfHpGlooyRugGRGs2mp6trY9v13bt+aE8Qfzt9vuYfLpJ9E2OwMi9fyqDrUJILKtgIrlK6lvgbRy/CXb8bew/b6+vLbuQEz4/G46dDMGthvUEG97C547JFjW4C4XQuRgZ5j6ZC/rrb9/fYpGW6BQCDEfO2ufalJKecrPaeePYpa0mL3lazZXbWZz1RYKKwtZWrKUGsO+eKn+VDqkd2Rk3oG0SM4jN7kFOUktyE1qQU5SrstVhsYDBpusyZqsyZps761TR/tzt2DRYud3e559/CH6Dh/DhBP+xJMP38eNU+5gXUEhPbt62TDLKyq59IZ/UrB5C9XVNYSCQaZefyVJoVBCnmaT2fb4Facz7roHaJGZxtXHjf29u0O1Erz32WUn0y0rvYECxn+bDWyXx1/f+oK/vP4Z4/t2xqdpbC+vYmVRKf/5ejG3/elw3p77I8Xl1VQbFrWRKAU7SujRoQ0Rw+SoK27luINH8Oz7nwLg03Veu/sGJh42hpraMAecdhlL1mwAoH1+LmcfcygfzPqemnCEH9dvYvnaDYzo3oGaqgq+XrqePu3yGNmtHZqv8diWOmdg8+2CH/DpOp3btyOQQP3j97I/WobBhuGruzEp5cF73uqPa/0H9pfmFfZoKcmXTIuk1nTO6En3rL50TO9N81AeQgjUgaSqkqBmIFPllmLBxf5GMp0l+bxyupL1Tq/Y7pWrvQh2q9Jj4Zg7vYjZuk0b3HLZao8CX7rOq6d0vT3mqd7hZdpVR+Fqpr3Mdp6SRVaXHLfcrHt7t5zcxVNY8Lf31DEMR1UBIBLykqrUKNkRo+4MT+J7Pk7hRNlGDZ6sVeqrVJKK1JmJP46JstQBpDjTcCGfqsbQUIED4lUVapXgNVU9Q12u9rdayQJZp2yTKAhO7V+WEhiaqtwjah9TlHLA9D44mnLvaLu8+yK6eZ1bjmzx1DkqCra55aot9nRbraLCEq7w6rYiqqdGOUdJnh8gkOL1PZTlBQkm53j3RSg7XSlnuGV/lrdNTGfW18K7t6yUbK+c7G0b8XsqAZVKH6uUsprBM04pR42zUu47M8F9GpeNUDl+VdUDoG9+xm+ZYfB2YBJ2sqww8DVwtZRyo7P+DGwt/ZjU58X1Mgx+CXwppRyr1Hk6cNveZBiMLrKzi2ppmZ7nOabE4HibpVJG98dH2ruVednM3n//fU454xz69e7FqSdO5JqLL6B4507yew3m9af/xd3/eoKLzvwTfbt14oGnnmfJyjUUl5aRl5PNcYcdzLD+vRh/1uUs/eQNunfphLl1LVpqZsM262v2xry/CYLv3Ox7RsS9N+19GkqUCU13PbPmzi2ed9uhJsQ4uMEO3eOa94L/FG+vkjHO5iKHCC/9zmlHcxUjotW1aDFdX12L86rGHbLp0SZ0vx+haxQWlzH+vle4cdKRnDP+AIQ/6HnCfYE4VYn61JCYSoMIJbuKD5G1P8Ulkol5v9VgSStquMF70eowQtfQdA3DtPjbu1+xcHsJCx++Lo7OIS0r4XHFvMQqh9nlmUfqJZhR+pKoDqFpaLoeJ08XK1sRwz1/qukBj7u+Y95yfClJLjdaDwWoMQyemfMTFZEoj365MG7ftFCAYMDPgT070SIrjdSUZKTQ6NYmj6I6C58vwN8eeoZ5rz5CWU0dn3+/mMMOGMpBwwe6997iZas45fK/U1ldQ1FJKSccfhD9e3Rh3uIlzF+6kj4d2zLnp5XU1HmUk8i89+PPi8Lpj13HneVVvPfdTyxbW0B6ZhYnH3YgfTs4yiVKUKcq1RdZ+xOly+1vTbQmjOFcY6HbHPnmfe0Bb6hrbzvjJmBVlnop4B3FluChZ/96GQb3t/23g+F9NZ/m4/YRj5OX3Ir0QCYKziGaQAi9yZqsyZrsD2gvAndLKcudrLO3Aa8BI4UQo4DHsbOwzgKuAD4WQnRR6HgW0F8IcZSUctq+Nq6lOaBU83kA1YzaQNhNI+3zggnjssxpDZQZAKqdpCD3TrmRMQcMRxh1NE9PIhgM8Ndb7mD4gN7cdNeDbC0qjtsvGo3y0rvTmP7F1zx0/aV0a5kF1aWJgTPES8UpAMDuWvzEcYzSAcRROGIDBjUNslle4oJff4y7jMeLdsFgJOwpTCgWL0GnsWO6PZkczEwlmJWG5vfOmSu3VuPRTJqNOYSyb2fZdTmgxT5E3QXYOABR6BrtWzTj/StPZfxdL3Dr8+9z/NCe/H3iGNKTgoQ6dPWULwyP+136w1K7mpjKRCiALxR0yzHwGurgHX+cWSYhNaOi0Hjuk2954K1P8Osat591rHNNTG96fzfXK1YPEAe4dSUwEBoHz7FzWl9mTgX8eijgqYxomrut5vMjgjboazV+DMLnp3SxneRY9/tI0XXaZmfw1OwfmDigG4f16kBpbR1VhsnhfTrTq2M+yem2E0FNSuNr3ZkPv/wWgCpTMGjgAA4+aIwNKhXqU88ePVny6bv85bb7eOzF15m94Cdefew+NGEH85WVlZI96DAAjjl4JK1ym9sUIKfPIpTi0ias6kr33DVPTeL8I8cA9jGpiWAshc+sKspUb95GXZmn+KU790TVlhLKCsoJl9jrMjbuIJBuyx4G0lOIDT31QCNqHPVsXzIM7otJKeWd+7jP/6R1y+qt/PrjzAI0WZM1WZPtjUkpVYKhwAbDsSmi84F3pJQzAYQQ92BLmR4HPB+rAhtw3y2EmC6lbOha2137zkeXlCxPXUMP2IkWlOQYbmYxaUE0JmXlq6flbJdPP24CzfQHOOviK5j50pN069wBYZlUr5iLsAzuffpFXp/2qduH4f16MW7UUMaPGcnwAb3jJPDsRpWypiNjCTx2k5Wv/tfAld8zTS9Vd7TO9ZhJ00SkN7cPv1meV1WtByTs9NwWxrYCAKIlxVRvt2eKzHDEVYJozGusVYfJHDbCBVciECLocraVjHmRMBlDR7jHqypkqFa9+DuXEtG1RTPW338lP23czl0ffsN1L03n3AP7s3HWIg5olUtywE+02vMk5o3obXOD1WDCGLBVgwrD1V56aZ/f89T7Ay6o37C1iNNvupe6SJSHrjiTg/t28ZQcAiFFP1vz6tL1uJkCO122onwSk9SLhOPl/NyAxfjb3DtHapprkJqJhX2ONL/PO/dq2mxnRkC1ZiNsVYqaFUu4c9psPlmyjssOGcLEob1snrHf53qrRSCEiGUl9QXces3SIsb27sh1F53N5H/czZYdRWRlpHPt5LM5b9KJBEIhpv7rKe54+CmihsGIQf35x1UX0adHd5as20ivrh35adkKdpVVUPTTbNauL+Dosy9l7ZfvIYK6N0AUGiJk38d6IET4xzkAGFVVcR58X1LQ7bMZjhDIsXnRsi7sDQiVezeYmUYwK9X9bUZMNGfWN1oTpnS1nc8gtXVzUvLs90hynn0/e6TYxLYvGQZjz/LeCI1K7NTd+2ROquzXpJRF+7jPK1LK4j1u3GRN1mRN1mT73YQQk7A9zOnYcWlXO6v6Af+JbSellEKIxc5y1R4BLsEG24kC0Rs1y/E+iWjU82QFk5G1lUhnWlZLy0SEnI+oElyE7o/3PMe0Yi2Do8eOYuL5RTzx4qs8eONVcW1efc6fuOmBpzh89HDeefxuO5mOA4RlrJ4YlUZJIWz/9nkUkn2wuMxvsQRJQQMRk+Iywm7QYlywnC+gJCyJgGXia9keAH+rTgRa2LrF0oh6MniNTImLpBRkXa0LBoWijRwX4IhHIxH+AFJz+lMPSKf0G9oARA7vA88NH8Hgc//G9GUbKKuq4Yj+XXj1slOQhukmFIl5vIl6fGSV6qAFQpTX1LK2uIJmzbLJb57F4+9+zsaiXfh0ndZ5OXTo0oW+3Tpz12szGDV8CPf+7VL7Wmp6/OxEonTR9RO/1MtQaOxwqGmKikp8OnVPUSROL9s9AOdeNECL5UhRvMIiEPLAczCE1ojHNHXwSN6Y8ixvTL2OHqISPRh094mj/DSSOjsp4Oe2c0/gtnNPQAqNH9cUcP4t93P91AcZ0rs7s+b/wP+xd95hUlRpF//dqu7q7umJhCFnxESQIGIOICqIAROKOYc1xzXntJgVFbMYMYKsWXHNERAVFEGCIJkZJnaqut8ft8LtpgfGld119+vzPDzUVFe4dbu66r3vPe85Uyc+yE7bDWTym+/x6dczmfjiFH6a9wsLf11Cx7atSacz/LpchXU3n30cxZl67Jpa3y1Spmuz+jPcdQv+/tFXzJ47nx0278SQLXvg1FYjIlE/yA7piiyRqE8tilQkKO6kBo8NK1YTjqtBQVFluVvIqvbJ1DfSYktFySvu0JpQqaL/6DM8G8LvoW0kgSnAUyje2r8CdwCfoWTqNgohhOnu8zFQCJ4LKKCAAv4DcN1nnxFCtAVOIHhHlADrcjavRgXZ+v4pd4bzLiHE0xs6lxDiZOBk72+zpTJX0HWeHTOECEUw4gEvXS/aC2gPSdSrzc0qagGERNC5fVtl6JBj5WuEQjTM+cQ/px/Y6iYducGX/3e2DXc+5M1G6+fQs5OGG0Sagf5ylmaydAL9aK+tLkfQrg3q8GU65WtJ24kUmUbVL1ZpHDNenN1HfjCefS4fjg2OxwO2A+1cJ4H0Ara8zoZqn7KiCI9fdAJDL/gbAG/M/Jm/TfmQ03fpT8itF8hAlmY1KE1jgKV1DTw6fQGPTZ1G53aVVNXW0ZBIsqa6hqMPHEG/zXry+czZvPP1D8yc8zNjRu3F9DnzkFbc/X7E+oMe1QHrtxlAuEGzFwxLh5DLS1fUmEAdRWqZem+wIlOJICuZ05/SCSzc9QyziEQx3ECSUDjIHKO+Jyed4tsf5/Pgc6+Qth06dGhPtCweDF50Uxw9cNYcBjFMMr8FtU0YJn3alPL5/VdTb0venz6bc8bsy/CtOmFYIcbutxdj99vL77ua2jpKiuOsXrWadoOGss9uO3LJXY9x4V9Oxigp9787gcZlz6QRIYsDz7+eLu0qubmmlg8eupk+3V36jpNnIEaQyY+WV/p9XFwRaDVbLWsoSQd66Zn6BJH26jsyK1pjFKlHkk8D2wiaGzz3A45CFYUcAsxC8dyekVIu39COvxMCuEkI0Vyd6ILdVgEFFFDAnwRSyuVCiIeAX4QQnVGeAGU5m5UD8/Ps+7wQ4hzgIuCnDZxjAjABVMGgs07lTfRMmpFDD8Aws0088smYQaC/bBjcMuFphBCccsRBbjCcJ+PYZCOz5e/U/8L/26dt6J9vSJEjJ4DTp4ElblGkEQqoHU4mcF4EsAM6ixEKIzVOs3dWQw9EbAfc4FnaWsAXtpRtuVZc5QVzTs1aLcOa0/48RioS3AAo2zYZFNViSNdKhmzehc9/UhncGyZ/yDuz5vHAEXvRobyEojatkI6dRXcw4iWkMzZ7HHMZY0fsztfP3EXXHj0QVpRfl63ANiw6d+qAEIKz3T47+IQzaVVZyYL3PuK5Nz5g8htvM3q/kRy8/755+z/fwMYz6ZCh9Q1vRDgWBL92oIstk40QdZc3oIWtc9T1gFFRLaLaejfYdxwa6uo445rb+fCbWey32/ZMf348LctLVcDunSuRbhZR1CvIhOwMdVk4zIGjuqgPIpqtupT+YKm0KAZ2hsqKUnr36sEbHyg6xgPPvMypY/bXTmIGDoCogdWdl5zBuMcncdyBI9j1xEvYbfA2jB05lM9m/gDA384/GSOP+oaManrdjhNcrztr4nHGQ63x70u7ahWOO5AUVSp3G+k5ZIP90qzgWUr5HXCREOJiYBhwJHA1cIurkDERxWurb/oozcKHgAm03tiGOfvUbnSrAgoooIAC/h0IAXGgPfAtMMD7QAghgG2Al5vY9wLgbeDa5p4seFEGGTOp818hq7hLeEYfZAdz/mfApLc+5L6nXuLM48dSVFqGDGW/pAPrbN2IQ/oBsjCambGEIGh2nGyrcb/tGwnWfaUVI6CDGKHsYNzUs+4RhGseY+rBb0M0oFpofWdGIlnBMiFLy3w7vs6zWdE6K2OZT085/evcoE1e9lrvCk+JI5Ug1LoDk647lzsnvc7tL74NwIK1New/4VVev+4M4o5NurYh0EcOh/zgeVV1Ddf99TyKYlGkFcMxQnToXua7SwYzBSbXXfFX9tj/UAzD4KmXX+Odaf/gq1k/cNAhh7r9m9P/ecxXpLfsZ/5NkO6gJuT4gxrpRJT1OyAi8by61uudp6ltjFAW5cgfUNkpxl74VxLJJLNeeZiYFVbZb03LGgIKjzqFQ1NOlYQs/74Iteuala32Bz52yp9paApfvfoEgw88huE7Duaaux+mY2UrRu4yeL3tvOP/ZeyB1NQ3cOU9j7Hrtv0Yuv1Azv/bA36R7lc/zGXLHl3p1qk90YhFXUMjqXSaqupaxozYg50G9smiw8hUQvHiPV5+OuU/B4R7Pfr5N4Z/WqpOCBEDRqMC6WEoiaLTpZQT/6kD/gkghDBQFJDtgU5SyiXu+ialltzPBwHjgd7AMuAqKeVTGzvfoEGD5Mtvf+D/resz61JlujyYLm0W1vLuIh2IhhvJOrUuFYxljMZg5jSjyc3Za4KJA1kfeNE42ktFr/rW3Z38US/4PCTAL2ABZYkJILTRK/FgWsTWpL/sohb+si7xpcvN6X2kL+vqJOkmdK49aS9dkk2XgdOUv9aT/vKQLSWGtpxfekw7fNa5vEX9LPo5822rzp//nHpf6Ov1n7fTxE/db4t2Hl0STe8XM6u/8rdR316XSLQ0PqKZDqTo9HtTuOtFOpCny+sUlgOpbe9VYIOqyPahZ728aVS0gjOyeZv6NGJe6MoIWgZEL9zRfxdC/13o22jrRaQoaHs0MH3wg6KcwrPg8+w8iNWi/b9Fqs59Zp4OTJJSrhRCdATuQQXImwFDgDeB/YGPgLOAC4HNpJQ1rlTdu9JzdlLHfAnYBahvjlRd4vNXVKZZU5vwebre32ErO3huAj/M/5WbHnicDz7/hsH9+zL5rfe574bLOfnoMcF9aNtBhjfXxtuXwzMDmTy3eDFvAC1zgu/si3P/d2kfWnFVvoA767DCaPp34wTtF+mEb/IiG2t9Goesr8FpcHNShhkE1V620+9LExFV96yIxAK5PD1Tm04Ghiu5zonJhOZQmMriABulwbvh6Xc+4YSbJwCw75C+fD77F246dhRH7NBHC9gNQm078+5Xs7j2ySl8POVZdZ5Q0N7cDLIUgnm/LODLb2Yy7cOPOebIIxg2cn8efeA+jjh8jNpFKyRdry+bgv4dSccPmHHsLF60Pkhar3A1a/CzPkc+iwokgwD9hnF3MeHpF/juxQcoLY6rZ6AWMOumPFkDHJdC4mTSvpEIkC1VqAXSGGbw3NPukfW401pfzFuwiM2Hj+G0MfszccrbjL/8LA4fsUeThZSpdJqyXQ7Fth16dmpHVW09++y0Lc+9+QHd2rdln122wwqHSaUzlJQUEw6FiIRNbprwNBefeARnHjmaoph61spkwh9EqL5IawMBI8swBSA0cOS/RqpOStkohHgOlfWNoR52+cxU/ptwLtCgr9iY1JIQogx4AxgH7Izqh1eEEPOllJ/9W1tfQAEFFPDvxwjgSiFEHMVn/gAYJqXMAB8LIU4HHiJIPozYiGvsxcBsoFkzmW2GHcncVydQUVy08Y2Bmrp63vzwc7p1bI9lhfhy1hyenvwWX3//I6XFcc48+jDGX38Z248+BoAjDhzZrOP+r+Ctz2eQrK2hXbFF7y7tsSLNy8T9KzF2zx0ZslVPBp10OfsN6cdVR43i4GvuR9gZDt81e3y4dOUa2lfmn7xe8tsyFi7+FSscpl379vTol535nPjs83Tr0oVoNEomkyEU+lOp+W4UM7+fw7V3PciSj16lNLY+peE/jZ5dOnLZqUfx0AtTGX/FOZx6ze0csMeOxKz8bbXCYRo/e4Xv5i0kYkVo1aKCluWlnHXEAbw67TNufOgZ5r/1NF06ts+qA9hjyAD2PfUSbn3kGdZ8PpUVq9fSujiW9xy5+HX5Kj6ZOZsZz7y/we3+qTtDCLE9KuN8KNACVeR3Okrb878SQoheqGs4CJihfbQxqaXRQCNK51QC7wghXkEVtBSC5wIKKOB/FlJKBxU8b2ibJ4Enm/jsA3LeQ1LKeUCz5SiG9t+SK+96mOuPO4CSEjdb72bL/FkAx0FEorzw5jTOvP4u+vTqzrQv1GP+iFHDOXzUnky8/Ro6tW+n2mCEeO2Ru1i1eg2lkRAk68EOLKmlXrTkZdzMIACQ2pS6NMPZWWCnicy1xlPO6g9hIHK1qZssXHMz7SKHc63zqg3TL9pDGL5hjDBCmCGLDt16MO2jzzj25gmk0zbjLziBsXsMDlQooEnpuaCYS2uLFWSkZaI+pzhNo5NoxxVWNJtS4Nh0b13G2inj/e2HbT+QKye9x5EH7KNWhCzMlu0YPnwYF9z7FLPmLabPllsgzTAYBldefzMTHptIeXkZCxYu4vMP3mG3nXfiovPPYfWaKhYsXMgdd9/LgkWLOOLYEwA4/qix7DN8KJlMmp7du9Fn661UP+T2a07/Zy3rGWY7ExQi5uwnPTpHLl1DV/GwU8GsgafwgcuxziR57bUp9OrSkVZhGcy6ZdJZSh5Zah25hYKAoc0OgMerXx8i5BaMgm/f7h9HP650sr7Lq089kl8WL+WTb75li64dueruR7jm5DFEmgighWHSp3tnlR12j9uitIQ3PvqSYUP6076iDJlOZdEtBm7Zk388cSc7H3UWXfc4hCUrVvPBQzez/dY9sw/uzUyFLKRj88vSFYy59G9U19UzdJ9RedvjodnBsxCiJypgHgv0QNlw3w08JaVcsKF9/+xwpx4fRU0n5tqAb0xqqR8wXWbzX6ajCiwLKKCAAgr4F+L2Y0cy4Oy/sWT5Sl689izAC8I0UwXHpmHdOg4//1ree+gWrn4gYNU9fvU5CCEQ4TAyGUw8htKNfPLZF9SsWcnQwdvkn+6GoEo/XgKWym7JkOLaesukG3wqkrBTQTGZrcnmJQPTB5lKrCf9hlZYZ2iKC75cWTgScGCFgQwrSTJpBpSVfIYwfpAXdjCkwzZ9+9C3WwfOPGAP9j7nek68+UGGbNmdnh3bqgFJyMqixzTJEc0ZMOReh7CiahDiBnZGXJNay1FSCA4ZHOeoUXvyyOR3uGjiG5x06Cg279QVGS+nQ88WjLv2Cg448kROOuZIyivK+enn+Twz6SXem/oKex1wCNsOHMA2Awbx5lTlciecDEiHc049nj7b7cpvy5ZRXlHOi69O5tGJ2eIvj4y/mxnfzuL4o8ay9dZb5b9mnbaR1ccbMODwNMk9yoZXvGqntYA541MwsugktjKPOf+o0bz23kekjBARVw9ZZlLZykJYsC4AACAASURBVAr6gCVfYR2spzXdZJM12kY+aow6iRNQdVzayNBBfXhs8ls8culpXHTvRM7+24M88NfT1O459xea5CHAomWrGHnmlbRt3ZJXx99MOGKtNwiQ6RSbdWrHwqmPsuDXpVw94VkWLF7C9lt2y75+l4ufSSS56fFJPDDlA8bsOpCrj9qXlodcwKOPPtrktTfXJOUzYDCwCngeFTB/1Zx9/0twNrBcSvmyEKJrzmcbk1pqlhSTB11mqXPnzv98iwsooIACCqCyVQtmP3QVvU+9jrmra/ly9jz23mV72pREg4DAcbBkhlMP2pur7n2MQ4buwJad2nLKfnvgVCtLeJ3DKdNpzr7qdqZ8Mp2oFaZq8r3BCXOkvLzgWVpxnIjKfDuxcmRIBa9JB6IhB5Fyeb8aB1Yk63yLYHvNMr8GJV1XT7LKXZ/O4KQyhGIqeDDCISLl6jyh4uJA29qKZllV+8ux0qBAMhRVAbQWHPmBWSYNHv/ZlVebePlp1DUm6FrZwpWfyy6UVEoenh60rQVgOcomXvBu21nBi2FF/WLMrHqacDgwOnGDIXXtlp853Wl4LxbM2Ilb7h7PiFMuobSkhKPHHMTOQwZzzOGHUNmmLROfe4GSkmJ69erFu1NfYautt2bV6tXcd+dt6rpdXWxvEFO9agWLlyjjjPtuvYGjTzvbb9Og/v1YvbaKGbNmce+DD9O1S+f1g2cPuTMImlmPvyp3G50jnU76Wt7CTgVSf7nca+1vYUWxMPllyXJqMoI2FeoeaUplRto2pNx2JRqCzzKp7GA0ZGVZV/v3WygczLbkOnV62Xn3/sqyjjdNDhs1nLe/mMlZdz7Oi7ddyfZHnsX1E1/jytOOUuY1On/aCFFTW8eb73/Oa+9+yDOT3+D4Q/fnmrNPIlaihVleHycb/HssYoXZvEsHdui7JR/OnMPYkUOz+kI21jN97gJO/dvDlMcifHHbubS2DGisY2NobuZ5OxQ1YTawJXCDaKKgyoWUUu7VzGP/R+Fm1M8Hmiqs2ZjUUi3QNc/neTl9uszSoEGDCpaCBRRQQAF/AMKKUhKyWL2ujp1OuYK6xgQnzZnP3WccjpNwM8muPuy4I4bx18df48bHXuDt685gs4oITo1y2NMDu4bGRqZ8Mp3Orcrp2qaFMmjwsmwhS8v8xjDKlKtfprgV0i3yTBkW6Yx6vKccSdgqQkTcYCjhIGzXVri22i/gTixeSNXcXwFoXFlN3Uo3C21LHNshHFWv63CxRVFLFcxEykt8x7VQzCJUpNoVjscIVyiNa6O0pa9da5RUYITC2dlBTzEiUY+tZb4BWpWV0KqsJMtkRaaD4ErPOmc53mXROcKBnq9p+pbp0rbBMDDCbmAWCoM74MiSBnRsjKja34nEcVylECdaSmWrIm4f/xC3Scn777/PlJdf5KGJ51NTs46S4mIW/bqEfr234vSTT6D3Vlvw7AsvAXDpVddwxjnnUVZSzCnHHsk5J4xFOBk6lMVI/zJdZe3DMWoXzQEhSKbSRCIRP/i97bqr3LblaPJpRjj51DJEzt95iwqlo+gZrgumTtvIOoee3XZNXSa99S4ty8to07Iif9Y4ZPmqGqpIz/G/C10v2y8QjcQwisv9+0eaVjCjkY+2kgvpIPVrs9S1xOLw1D230G+fMdz27FSeuecmhow+jqsuOR9ME8c97m8rVvPBpx9y3e330aayFcN23p5Z777CVr16qMPnO6cRUvc4+PbzI3bfkVuefJnf1jXQobUSJpDpJPtceAtfzJ7HJQfvydnDBiKEILFG5UJL8h1b78qNfO5hsdvOf3tBoBBiK2Ag0Al41NUR7QmskFJuCom6nVDSeN+7AwLvbpglhLicjUstfYviP+vo764voIACCijgXwhPn3XRhMtYU1NLQzLNkXc+xw/9u/HR9/PZv99mxMIhHFcG56rh2xKVNg+8+j5/O36Un/G0GxvI1KuAxXBZeItXV7N4dTXbXXAHH407j0g4lG3RbEVxPHpGrIyUUK/U+rTjK+BkHImUEAurLFkRgcKMk0rguCpHdUtXsfYnlXmuWVJD9TKV/bKlUtDx1G1MAWWVKuCMt4ljumpMpmUSjrsua6Uxoi1VzidWWe4vmyXlKnsYyjPdrmclM+kgyNK3SSWUaYdvBmP6L0xpmEGGNMeww4eu3GGGs/jbMse23M8k6rQTqwjHUteelpDKOL6K0HY7786uu++BlJLlixdQvXYtvbfeiueff54Ro8cwaOAA+vXtw2knHU/frbdijx234/MvvuCYv1zAOcceqtwSE3UIwHCKAkqDaRI1LUg3quA3n+az6zyYz60yK8B06SGQQ9mRmmqKk0FkUgiPY5+brfZt2gODGGEYSCE55oKrOXifPYLvDRCWZmrj2Yjjqp1kAtUhvz7AiioKEq7Gc6zUV/6RZtjnyP8eiIyXRU8H1x+Bvz/7CJfddAf7n3IBALN+WcK6uga+m/0jb7w7jS9nfMsu2w/mnFNP5MSxh2CaJp51/XozKDplxjuvYQL19OrRlVMOP5CL736Up2+9XO3iSD6YMYdlUx6gJFmDXa9+b0a4eWFxc3WeuzbraJsQQohiFA/5IJSZUAglebQcuBEV0F+wCU41CXhX+7sjqtBvOPAjyhDmTSHEEwRSS1HgFXf7V4BbhRAXAnehFDdGA3tugrYVUEABBRSwAdQvWQaAWdNAJSClJCwlR94ziTmrq7n45WncPXQwu3ZRxYCl3drRu3t7Jn0yS0lvRTyTjxoaVlYBIIXg2CFb8/jnP1Bkhfl+8XIqDr2IuQ9dQafOXYKp62iR4jQDjhkm7cpqShlIORoG2I6kLqWivCIBTq3yAZPJhM/l1IPMSGkET9AzVZ8m05hBusG4IyUNqxUFpLEqgeHKQQrTIORmp63iMNEKdY5YRRSrRLXRKo0Tilp+gBCOR/3MdTge85ezLLl1CoXXTt3W2YXMpNczugCQIUszQjH8qX4/+DGCIDnQqc4fSDtWnITbD6YhKAob2G70bEv85cpO3WjXpTs2MOaY4xm29wg++fRTPv7oQ+5/SPFYZ3zyPmlbMnSXHVWbErXYrkGGJ8lWVVPH21/N4sLbJrDToH4cc9C+7L3rjkrCzCvkBCVNaIR8STkJ4LXfCGkBbyagydjpgPvuZAL6i2ew4hmrEEDXY9ah+hieuPUK7npiEmur19HCnXnIDt617LJhBlKaUbK4xZ6VvWPFkFYcGVF/N5ltNkwc93sVeTLlnhyiyCRU0SRqINCxS3eeeOAeXnh1KmNPOZMBQ0fRoV0b9tp9V3bdcQhHjzmIufMWMGTbAZim6Uo2BoW4/n3pZrhVv0aUUyQgMklf0/zkY46g3/CDWVLdSMd2bahNSopjUZyQBY2OMgby+rgZ+DPrsNwO7IDSkP4EpSPt4XVU4PyHg2cpZQOaPJ0QwuuT5VLKOjYitSSlrBZCjADuQwn7LwNOba5MXeui4CswMpq2ra3xlPS5CX11E/wpfyQfKfFvWicWME+MzvqyxtnKsaDNu6yLsuvV5fpoVNOktLVtbFNN9zRmguPVaxrODeuCh0JC20Zf1mE2QR0Ka9rCRpZesVq2nUB/WNck1rW1zSb0n4WeddBqRPUWNkfnOR+a0lPeyG7uOZvQn3byt1HHxqTem9KHbmobfTmldYYQwQeGiPjLVlEbf9nM0196XwgtOyb0KdMm1wfL/tThho7TlIar92DOnabNB62yvcnj6S8gberb0dfny2JBkIXb2JTp/xM0rlSZ52R1rZ9dLjdNvlqxhgmD+tNg21w07RtGdm3PsZt344Xvfual7+dz85FKpcHj0zqpDE46gyMl29zxDC3iUcbs0JfnPp3ln+uFL3/igi17+387DbWE6hRnWkgH033OxqJ5S14AMFesIL3iV/9vTwu/pHMbnLS6v9L1jaTdLHiqNkFjVQLbtdTONGZoWKOC54aaJDFLPW+tePCszTRmSLivzExjBmEqOoZhVhGKhgjF1L1V1DLuZ6Wt0iKsEhV0GFbID7BNivzsvBEtUjbQeYoXc+2evUymNC0tQyuyHziaGx0iEwTf2vNBmpYfcGdk8HwzUb/jkHvskADHzYM7UvrPDcNOU9minAP3HcHoEcO57fqruG/CI/TfcQ/223tPamrrSCZTRKWkqq6RitJiUg11DD3jar6YM5/iWJS6xgQvvP4eb3/4OZUtyunVtSNb9OjCpzN+8B3vPn1lItsO6q8uRTrITNBHfiAsHRVAgrKh1rLNuv41EChk5AZzG9AuP3jv3Zjy/sdsMfwwXhx/K7sMHpAV5AvDCGYFdF1u3XDFNLEtN1i2YoonHwq+Dw8Owvc9yDiSVFK11zSE/64VQoAEyy2UNCAw7JGOzzkfPWofis+Lk86k2ax7N9778BNemvoGvXp046sZs2hRUUbfrbZQz0Ev22yGsgpk/eei1kaRqke427TrVMR5px7PSX+9ntefnsBTr75Bq/JSWhTHyFSlmh00e2huwWAElVWdLaW8ewPbnQ1sAZwlpWzCWaDZGA2cLaWcJoTILbtdBHT5g8fPCynlQrIHexuUWnI//wpVUPmngtCC8f80vMD5zwDduKOAPyc2NtD4t6I5pgj/LuRRIPj/jlStCgwb1tSTrlMv469WKB7zqsYEu1e2ZvzgbTjh82945udF7Ld5F94/7wjal5eQXL3Wz7YmqmtpqKlni3ueB+D2g/Zg2wG9soLnGydO5oLjDvUL+zJrV5H5TYlNGSUVhDsqLqZo0Wl90wsXcu0y35hHOfa5pgxFMaItVdBtpzM41UHRkhk2/eBYtDIwXMMhJ2UTr1T61iXti7FTHofVIVXvKQmsP+AzLXd/bXBrpzKk61VQHibmB2QiHMZwjVCMkgrFf9WDNl1lQSuM0wPmrCyyzgFucrAqA7UJJ+MfK2xAyL12IW1yM5yGu50hjCaVIgSS0088lqefm8SUN98BYLPt9yReFGPewsVErDD9e3Wjpq6e+in38NnsXxh2yR1MuvwUdhmwNe/PmkcileKrnxZw9N678O2P82hIJLn13ge5/4a/UtmyBdK0suX8crPKqEy9btiRdfmZVMBH1pVdrOj68oDgc56jRWGeHz+OV96axqF/uYSXHrqL7QcPCrKyOf3tGEF23EuGyZDlz6ZghnHMMJk8GRQnJ+vivVeFEH4SRKISOF7eRL9+nedtClj54ze8NPVNykvidOvciV49ulFVU8fmQ3Zn5J57BNSYLKpMMEDxpSGF8JNGoUgJwr0WkUlw7l9OY/zjT3PBtX/jroeeAOC0cY9y34n7YaTVINhJNSNBQvMzzycBx6Ec9DaE14FbgZnAg808dlOIAWua+KwE2LCGSgEFFFBAAf+vcc2cnygLh9muXSse2nUwdZkMwwdsRkl5/nKg6b+tYvOWZTw6ZjjdOrTmw19X+p+VFMWobWikpr6BeN69C/hvgWEYfP72FOb+PI8xJ/2F7+f85H8mhGDEjgM5cy+lbb3D1j2Y/fC1dG3bEhGOMHpXlScbO2J3RMjihAOGM/OXJdz3/FQ2G3oIk+65geG77fKfujQADtx7KCvWVnHqxddw7cVns9/w3dmIyAPpdJq1VdWEYkVUtG73b2ppgFAoxGEH7JsV4F996x0cPGoEHdtvmvZYlsXEe8dxxS13cvlZJ/PGO+/z9Ovvc96I7emyARXBvO1t5naHAJOllD9vaCMp5c+uQcjh/PHg+SvgaBTPORcHA5/+weMXUEABBRTwJ4E7w3gzcCyKhfk2cIqUcvWG9vOoBvWOw43f/0iroigvHLonU+cu4omZc7lx/jyG2g1cul1vhBCk6xOsnbMIUJzfUDRC2nZ47OOZ3PfNHBwpGT7hFd4+53C27FjJfSftz+MfzuKrn1SGOe6kSK9aAcC6+UsJufrEVskKIq5yhlnWUuP5mlmFcjJRnzcraieTJN1ss51I+jSN5LokjVUJilqp7G+swqK4vZpWj1YEb3w75QT8ZyvHrt3NWoeLLcLREGY07F+/3/+mgeHuZ1ghfzmrYBBFc/F42rqxCWhUIo3LrA6uFf9paJIRJoQfRMlMKqsYTGjZ7Wz+rZPNuc6X+df0k5GSzbt2YMY7r9CwrpoPP/ucYdv15/i/3kginSHqFs0569bQzm4kuXSJ6iOPzhIv9uUA+7ar4KG/nsqQPptzzPlXY5om6YxNvy16cvh+e3HM/sMxDENlkX3lkpzJef2ecJysYj6/vxwb4QTUGCLq3l+v2NIIcdJxx9Kysi1X3Ho34594nluvuYye3bvz4aefsWDRYuJFRXTp3p3pM2fx6t/fYsbMmRTH4ySSSa688kr+csYZLFn6G63atEG6k/9hM6BkhIVm3qKRAqURQvoUSUWf8TnPybqAwmKnsosvvcyxq7Qy+fW3mfr2+3z13t/9zLoM5fDiNdqG/+1Lna6pzYwYIRAGu23Xn49efoK1v/3KI0+/QMvSEmJhE8fVYc8k1u/3fGhu8NwXuKKZ236M4v7+UVwOvCuEeBd4AfV7GCGEOBcVPP9nh3YFFFBAAQVsSlwC7I+SRl2DKhifCOyzoZ3iHZRUXDoe4ZU5CwF49vtfOHrI1sStEM8ePZKRD73K6Tv3p31pnIZVVTSudstcjDqWJZPcMmMOtak0E3YcxPg58/hg+SqipUX0aNeKHu1acfReOzPz50X07tIWWbXSl7NK1db7hUZOKuMHv7AsqwBJGAbCpRuE41GsUpdbHF7nB2PJ6lp/ylgYBpFSxU1N16ex045Pv0gnMjhuYG2nbb+Q0E7ZPpc5HA0RLlZBRlGrIj9YNq2Q3w6vbR5VQ5gBHcQMh306C47tS9c5holw7ECqLxYHxwuY838/qjAwnwqFyPq7SQ5/PprCRpBlICJlNl3BO540/XbFS4oZsfvOyEQdyWSSWfMW+ZztTF0d1fOXursGA4ziDq2JePzhVAIHOGHf3RkzdHuWrquntKyMb36Yy3Xjn+CVt95n8n03Ki60FzTnMyXR2ug7AerFm7E4wpOKc/nIQLa0n8dvBg7afz9GjRzJhMefYtThx1K1robBA/uzxea9qKmpZf6Tz7H55r249JKL2HGHHSgqKmLRooXsNmwvrr76ahoaGhg6bBjPTnoRy7IICzBS7j2eQ0fyv1eNsuJ9cyKp9hHpxqBuxLbzG/mELCa/9nfOuPBSJj/9GBWtK9UgSxjrGf5Ivd+0kZjfFXbGdwbFTmVplbcoK+HnV+4nZJrI6lW+3npzZ5WaGzzHgPpmbluPUuP5Q5BSfiyEGIrKRNyLuheuAT4Hhv2PmbQUUEABBfx/x8nAtVLKXwCEEBcB84QQXd1alLyItVMFp6FYhAV3nsdfnpjKd7+u4M3vf6E4FOKAhydTl0oz5ccFnLZ9X0JRi7TVyEvzf+XdRcv4eV0de7WpZNwOfbHiFjM+qebGUTuzec/OJEyLooiFHY7iWFGskjImTfuC3qVRelS2wCqJY5Wq112kvIRMwi3QTmVIrFESdF4ho1cMGG1ZRsQtBgxFrYBzvaaGZLV6gWcSKZ+zXLeinvoV9SSq1D6mZRApVUFHpDTiK2wUtQrk4Rxb+llox3YgoY7lpJVqh512i7vCJoalZY69gYDtYLtBXsR2MD0XQM1IRq0w18vs+cfSNY+bQq7V+O8NlKWTnX3OKnTXrKvzaC7rmWsByFQjdz74OC+/8yEvXXMmTrWi7JhRi/IeHQBYNWMuy6b/BkCbfm1p2Vt939GWZZhlLcGxiQG92rfGiMVpv+t2DNt1J/rsM4YX3/uMQ0cOQ0S9jLrmVOnYYLizAIaJQFNfMQNdbmmGlToE2QFnVj8a2f0etgxOP+MMTj3tNFLpDNFYbP19XC66BLp06cp3386ksbGRsBWh3zbb8OWXX7L9DjsiTSP7e9UCdm+9cDJN1ltJ09Ky1TmzL8JgxcpV3HDnfUyZ+gZTnn+KAdv01QZb698bMqtQXf2hiwQgnSBYd5ws/r0RjhCtUANvxwxhlCh1ErOiMW/bc9Hc4HklypK7OeiOciL8w5BSfgLsLISIARVAtauOUUABBRRQwP8IhBBlQGfgG2+dlHK+EKIGNfO5sKl9Q+2V/YAIL6VNG5OnrzidK56cwg9zF7B357Y8NXMutSvXMuu31UjbwYxGeGbxb3ywdAW927Tg/qGDKQqFKKosI1ZZQdlbMS597SMufe2j9c71zTP3cNztE9mmewc+ufUcUg0JjFYVxKMWZusOwYaOTdylcNQvXUXDquogW11Tj+0G2ZHyEr9IEPAD6fqVtdQsUYF0Y1UCO+OwtlEFs+vSDp2r1f6lHUq0oDmMcAttw2GTVL2afvaCcA+GVowbioUI2S4NIZzCsFRgbJkG4bg6rhEO+SoafoFgPuvs3OAmbyBtZn2+XuCs/91kUOwFX3nOqUVTQdDUhJpOTqB+98SXuODuJ7j29KMZMWhLEkuUIkq4pIhIZWsAKgcZxDuoZSedoW6pYhRJ2yEGgXqF4/jXGosVs9O2Azj87MvYbkA/urRXgz1h5Rip6LQF8KkPGJp7n66KoetK51JkdMc/l94ggEjE8BO0MocDLbw8sXQojkUojkVobGhgxYoVDO7fj6KQQKQTfr+qGQV1vbYR9pWVhLB8Cbmo3YhZv0ZT8gj72WJp6VQNk/sffozrbh7HmENG8/XH79GyRQsla+cLiTvrmcyIkDqW7UhfhcUQKLk8vT+8PnIIpCWNEMLVaDfiFdk0n2agucHzJ8ARQohrpZRNEkKEEBYwFqWH/E9DCBFFWV4fJqV8VUrZiHI4LKCAAgoo4H8PXgS5Lmd9tfYZAEKIk1FZagBCbtBqlrVENtYTBq47+wRGnXEFX6+p5q2LjqLdeXfS6GZ+7USSIltiITird0+KQh5too7Pfv6VxVU1XLBDX8ZpKhsA3z52E91aqCxz6/JSLnvqDe589X0AttuiG+/few3L04JZc39h4KBBtO+ngnqrZw3Fv/zA2tm/ANC4soq6Zeoy61fWAiqTKW3Hp2CsW1JLzVIVPK9N2axLO9haQLDWpW2wtJZkjQqkG0ojmgth2Oc5F1fGs1Q1dIRiYUyPwxu1MIxAhcOjcxjhEIYXn3vcbS9Yc2zA0/d1gsDIDLLQUpcXyw2o8wR93nI+GkeT6hywYc1NXxIuJ3h2z7F4+SouvOVePnjiDnYa0Ae7tpqYS5uw1yynfvESt1kGRZUqQ5mq0Sg76QzJqlpCLduqQ7tmNKDYBLsOGcTr0z6m+8770rlDO3bZbiCH7z+CvXbZXh3XyWSrXWjyfHpfZvVRvuvzO0qTbjMtP1CWUlPJyOkvXxJUGL6U55TJr9K/X1/KLCBZq6gSrmxdQljU+vJ0tq+wYRqBWpIMRZRMrmeSoutXSwcZskin01x27S1M++ADPnzvLTbr2imLEuIZrCAlGBk/cyzAV1cR2uyGEGRROPyMuDeoCHk60XFE0pVwdOr8LmyWHCnND57vRBXoPS+EODqfs59ravIkSkLu8GYeNy+klAkhxEqUOUoBBRRQQAH/2/DeKWU568uBGn2FlHICMAFACCE9Pq5MJnDc5WgmyYvnH85Ol4xn/Dtf8OlZh7HbfS9w4JN/5+mxe3PiXoOZ+ugUrvxmNgMqyiiLhNln+LY8OH0ut546hqlffJfViLmT7qYsXsS4SW9w3uH78szrH7CuJngNfvHjAo67+nbenTWPgVt055urbqNz+3YM3qYPe++1Jzt16k4Ld9vVqbmsmL+aYe99RP+W5dy1wwAs0yBZk/ID4cbVDazzqBUCWkdMSsMqGIpWRH3ahdTpGSkb3ODZMIRP7Yi5wZ4HQwtYzagVFAbq25iGz7920hmfp6uoBg54msTZOyG8ekDDaLIYMIteYORo9W5EEUJiZgd9Ou9Wk8ETuet9aEGmFkj/tmI1tm3z5idfs9OgbTBLypFFgSJLzA34jHipbywSzaR8LjiAtG0/8+zU1yBc/XARiXH8wfty3EEjef2Tr+nRsT0ffPYVI485nfZtWjN4mz60adWSrl27cOyYg2hZWYYMRwO5OL0wToMeiGbRE5oYeHgwmujj7Gyt2mbgwAEsWbqUV15+mdGjRoBVhGOqkZSdCbYPGYJYKNDl94JvI92obMZ1/rmr7SzSSdIZh533PZhoUZzXX36e1q1arWd5rl+7cDKIlBrUSQs/Wy+AkLfdelln21/2iyohm8JjhgLt/yYkDnPRXIfBL4QQlwI3AQtdRY3vUA+1EtS02oEoasXlUsovmnX2DeNB4CwhxFubQDP6T4vw2kX+sjcKAnztTwAnEvyIZVirjm7qB+JxorSHpHQ0nWX9BmpqmqwJ6DeyLpyu/Y7ymnSkUsENmdQ2Tmkb61KSujFGifZwD2mzfrpJii7d3NTDwYP+sZG1/vdpC+ttzPohNdGN4Tz60k0ZkDRH5ripfbNMXf5JveRm+KI0Cb1dWZw08q/X7wF/pjJr3fpGNwCmEVTu6++Wpsxzsl7nTWnN6stehqQJ05Ust648+wH+iyIXWS/DnKnsDSHr4a/jv9wwxTWbWgwMQEmdIoTojso6z9rQvp4rnEynceqUYYqsr4G1tTwyameOe+UD5q5YyxfXnMyQqx+iJpGieHkVVw3Yio8bGviuPkkmkeKSqx4C4KnrzuOrOfOzzrG0pBsyanPtoy8ydFAflq+rY/m6Oi7ddQA3/mM6AJM+nslZ+2zPacOH0G6rPsypgw+/nM49j0zkmOkzOHrEbow79wTKMjbU1LHNj635/NcVHPjOx9y96yC6hK2AdhG3aOH+BgxTIEyDknZKYaO4fbEfZKfr0gjfYVAQdQPmcDzsc7HDRVFfVSMcjyFMI6to0IOTyvg8Z6mbGxlahjiTwmms9x0WDYJnhTBNcAvAFL/ULX4UBlK6WWjD8N8/XnbVc6bbUOLYp9Zq7nUqQM42Xdno1LthBPrR2jY/L1Dv4RH9N8desxyZn3bpfgAAIABJREFUTvmmJU5tlc9XF42BUorZsh2mm2nOLF9MetlCjFg8uH53f0zT12oeMbg3srGeXiN2YlCn24i06cwPc+exOuHw9azZ9N19FBf99VIGDxlC37791O5C+DrJemCKYwfPl3yFex6k41MymnwbNNFfPTfbnMkvTuLwo45l/pJlXHDmaRj1SkE4Hi0h7LlTCgKes60dz06pgj0/Cx4Ovj8nw5W33E4sGuW916dg4A54cp+reuCt6USLZKBIIsNRyDfY0G3Pvb7JNwtB8Jx3Gt1sdFN95aLZDoNSyluEED8CNwDH59lkNnCilPKVPJ/9MyhH6UovFEK8B6wg+50upZQXb6JzFVBAAQUU8J/FBOBiIcQ0lNrGLcBbGyoWBLCrVImNrK8h06CyUun6RuqWriK2rI4HB/TjsbkL2O3qh0lmbP4y6R0OHdKHLpXl9EgVsW+Xdgzs1p5M5RmUbdYb0zQ58IB9eeEfXzF0p+147+MvWDR/LjsdOJL00h9BOjiLZwPQOHsGY7frzda3PsmBPTqx+KdfGfLe1zyx5xB2O3AXttysjPOPvJo1K1ex31lXEtt+tLJ21gK+cwZvycFvfMyeXdtx/na96V5RSro+GQTIiQzpurQvS2eGDYorXfvhdsIPhIVhEG/XEoBY63JCMRXImlErMDmJxbOd1DIpLascuKwJwwhcBUvKlTGKB8cJuL2hsC/XJkNRHE+OLxTVqAYicKA1rSwurmOG/QSLJH9CwNCm4dVUvavk4AZC/uBWymCKvqmAqQnM/H4O0UiEbXpviYhYmBWtETGVtEov+pFMjZr8kI7tG544jfWI2mr/WkIVrRFFAcNIeIF0kdZ3QiCi6rgDd66EUJjeW22ONC2ck09mxsxvufWe+7n5xhsZd/e97D1yX8IyMCAx7DQipSXZ9Oy6z5XOpnZkDf6b4pHnQrs/B/Tfhg/efp0+2w5hjx23Y2DvLdUHdpqwKxuX69KaXaQXGNYYdto/77JVa7n9vgnM/fw9zEx2djrvDIK77EsYog0GdDqQafnbiFQ9RiKbKOFJ3ekOyUI6viqHPpuwIfwue24p5WRgshCiB7AVKitQA8yRUs77PcdqBg4CvJLNnfM1BygEzwUUUEAB/xu4GTV7+RUQAd4BjvyjBy2zwpzRszv94sVc9OOPfLViLV9N/sd62+0xYCvuuOZi5i5cwtrqGqZOGEdSGhyw1x6M3HMPFi1ZyozvZtN785501yYLSqMWRw3akoPbVdIuFuXVX5bwl398w1P9N2Obru14bdqnTHz1TQZs0Z0vfviZLpUVnLxLf9qUFbNnu1bU/7aaJTWNvPDTIvZ+XjnejejaniM6d2SrilwWSwH/Cpx50nHMmTOHA867jtfuuor/lB9u/2368fiTE7njzjt558032Hvkvv+hlmSjfbu2XHD2mVxz821MeerhTXLM8tISSorjzPx+Nl2799wkx/x34ncFzx6klPOB+Rvd8A9AStntX3n8AgoooIAC/jyQUtrABe6/ZsNep6aRM/UJX+otVdNA/fJqGtaoTHTtb3W0qJc8WN6LWiNNTRiq7DQr2kZYYYb4x7c/8f702Yy7/3Emvj5tvXPc8+jTzF2wGIDLzzmVa05TMX1sq/5YbZbz4LbbkFqxjIVLVtK+vJje7Vpx2N3P0yIeZc6yNVw8eg/WNCYoKYqycMVaLn3hPV4753DsZJpkTZLje3TllK170mgK7v1mDk9+P5/XF/7Gp6cdTIuMTaK6kWi54ppGKkp83rIwDV+hIxyPEu+siifDHbVgxDD87LCIFqtpbyfInvqc8UzapxoYxeUYrkmIUkhwuaVOBplOBoYvpoXjZlKdaEmWgYWfvZSB8oQ0Qjhu5thR1Wt+MwXZlDO/+UJkUe1ELr/DyzpKe/11622TP9vauWN7ptx/M3sfdTrjHnmOv550RDBtb5iESt3+M02fFmnE4gg3ox9u1R4nEs8ueNTPrdPE0qq/RSaF46o9OLEyv4/ra2t4c+pUDjzkUMKGoChsYHo6yck6P/Msw0W+TnIuzzm36C34zM7KyjfFjV6vMFM67LrTjoy76x6ka8yCdDCS65W/QSalZZ7tLKlA4WR8emq0tpqdB/Xjl59+RCR3D87pOD5NSAojhxKnLZtGUGSpyw7aKZ/mbCTrfY60l7WWWiGmcO93kUnguLMI3v8bg5AbIho15wBCVAAvAedLKWf8oYP9P8OgQYPk51Oe9v/+vZznjfIcm+Bn/kc4z9pDsinOc1rbRq8sNzSm1r+L86xThbM4xE1s0xxm8b+S89zU77ip428Mm47zrHHa9eM3cQKf85y1Lv/3rHPOs7+vAufZqmiLEOIbKeWgDR7wvxxCCFnzxFX+3xlXPzmTSJJYU0PDyipAFb15jn3RirjvShjv0MrXiQawbYc1dQ28O30OJ903iXvPPZbd+2/FwJMu55xjD+O8Yw+jZevWyKRSTL3rsed48Y33uPOMsVQaSdK1DbQujZOsriURCnHR8+9gWCGeuPESzHbdePSF17jxngksXKaoJkuuPpnaX5VboZOylQGKlJz/9Xd8tnQFibTN4suOx05nCBepZ38oFmhDh6IRwiUuJSNe6svlhVp3CAw0rFiTRXki3RgEFxpkOJJVsOYHJpkkIpPI0vp1ilz1CauEjPvjd2TwmzQN4T8T7JwHUtgUvjKDYaezfjt+O3ML2Zr6jUgnK2DP+7uWjpI/w/1da9sb6QYWzZ/H4NHHMW3CzfQqjwTX75mURKK+QYxR3lopSQBG3Woyq5ZiFCuKhlHSIpBhC4WDIM1OIRtVwOk01mO2bK/6Jd4SGY7w27LlDNvvYPYcNoxbxt1OKBTCTDdgJNyaWS8YBRwrjowUB9fiPWtydZGzeL5NUDh0NLG+oaGBvoN35LG7bmHXHbbL7ld9WaeNeFQLT21Do20gHWbPW8h2o49j9rsv06lta3+913dp2yEc0gtazJx7eX05RJFJIFy3QJL1OLVVOZcXPG8drdhYJtxBift/7IBzPYpV3hfKP5V5zoEF7IaabttkEEKcvrFtpJTjN+H5hgHXo3jWCWCSlPJ097OjgauAdqhCydOllN9o+w4Cxrv7LgOuklI+tanaVkABBRRQQH6ESlUAI6wo4VbB+qJ1ayhqqzQuDNP0ucGRytYY5ZVqfSzuS4o5ddUYtVW0LS7h4L4p9rrseGW9vWQhS8adRbRlGfKX6SRXt8Bs05lRZ1/N25+pYsHDb3mUXxYpXeBF7z5Hy5U/Iwkz6csfALhs4RJ6Acfs1JujtxtHOpnAcSRy+a/Yrh1w45p1pOpTCGDCyB2hRSlVDQmiLUsJRSOBdXY42yXQaz+GGahgJOoRRW7wlssTzSmUQpeX8/igoQjScr3OdN6pnUY4DsLL8sokIqyyp6FIie9QmM4Jkv3BrSH8AbAhhBrQ5iuAg7yBkeu77X6eJ5DWbJn9QsZc/rPvMGjgD+ml4ml33mwLrrnobI689BbeOPcwiqMWa35YwKrvlWZ3j30HUr7b3qorVv+G0/izanokilFUGvC/zUDOT0jHzxbb69YEmf50GmGtdfvCYPGK1Yw+8WzGHrgvl194LjJZDUl3wOL2izQtHMvN/IajwcBbD4rtjJoh0DSgfbk3Jyc7rw2ksjSj8xiTLF+5EsexMTNJRKJWDQS8QUEoHHCJwxFk2L13XNtwj3cs7LQ/8HTqa9iyawd6du7AijVVdGzfLmhLOML7H3/GXmNO4MMpz7P9oP5qcKCps2QVD2ZSavAFyFSjKhhGFRN7M1N2fR2Z+oT/OxJGMGsjrKhvOe//njaCTRE8/6tw7wY+834XmyR4FkLsBrwInAi8hkokbuV+thNwP0pN5B/A2cDrQojNpJQ1rrj/G8A4FDd7F+AVIcR8KeVnm6J9BRRQQAEF5IceCEs9619USrzCnc3Tsk3hjj2Q5epFLcMxHC9ITCcIpVUWtrjNXKyyWf4MoIPgrMf/zqNTp7FVjy7YRoiffp7P/IWLad+iBCEE++wzgqo1q+jQsQMZ2cCCxSvp3qEtuw7ehl3OuIbnrzqDXfptjpNowEg2YgAp2yHsqmI4OUGtUdtAS5TboFUaZ9qC5VSWlTCgX29fN1emEtiurXB65WoirlKATDb6BWtGNB6oY0Tj2Rk7XXfXDCPNtL/e19NNB8GbsFPocmPYaYyEK80tHQy3L81w4HaIJFuezp/Cz1HG0OkERij4zpo7O95EYaAURvbMoKY/HRScSX/q/6RjjuKJZ1/k1g9nc+vZx9HKNJBukWDNwuXUTnwSgMpBWxPp4+o0h5QLoJeFd2JlgYZwqg7cWVqjpMIP7BwCygw1q7lj/AT69OzClaeORdSt8q9FmlYWPcOjjQCB9XQ64atdiExCZbrNQOdZp01k9Y1mvuL1syQcTP1phivnXHQZp59yEjvusac/i+h9r2bdamTVcrVLOOxn5+3yDmRiLTDd2XO7OI1Zp2ZdzFAYGY5RUVHO8jVVPv1HWjFmzvqevcacwOCB/bnjwccYMnhbv+35tL5Fso7MGnV+mUz4/WqvWUbDchU8J6vrSNXUB4Y/pkGkXGXuYy3L/EDajDXPIPtPGzxLT9tGgxCiHNgLVSj4h7Skc3AT8ICU8kVt3XT3/5OAl6WUb7tt+BvwF1Qw/QQwGmXgcqtUc9TvuFJ+JwOF4LmAAgoo4F8Ij5trxEsDYwrTcqey3WyU4/hBoiwNptsbrTJWNaiXctiIYkbUtHvLrTsR7twHo6GK16d9xAEnnM2gvlvz5lMPUJV0eOTJZ7n31hvoVCSRaZVJKy2vYOb3P3DTYy9x0oHDWSYaaVXZhiuvv4mG9CX89eEX+PThm9DynVgtW/i0i8SadT41Q9loB0GCk8ow7uX3+GLuYla+dBexiJsli8bRvf5Wr17DeU/8nb6d2nDOiB3VNpo0nTAMl6urAmuZqPf7TFhRRMR1XCttQagkoBFm2Tjr2cpUAulyRI1YHOJu8FhUkR0wexQSjeonDeWwlxXAakocQdbTyQ6gfXqAmd02aFKqLmsbrV3rSUFLgQAeuucOjjnjXLY98TLOPekYDj7lLGLRKPavP9I493sAMnV12F++B0C4bSdCrTtg+MYeCV+VI8vwwzCQHiXTMP3MrUwlSNbV0b97R+S61TiZtD8QNCsqA3UTOxXIKBimT8E0krV+dlcmG5TOtPe9RrSBjNsGf9n9PqQRCmQGAWTQt9IIsXT5Cr765huenvgkTpEKOBOEaEir6ypr04pQqRrEmjUrsVcsVMevrcYKzQ0y8uEYjks1SbfuyfTPP2bOvIW0b1GGcDI8P/nvPPr8ZGZ9/z2P3DOOJ555nlf+/qYagNg2IlWPU78+zzqTqEd6A8dUQMGwEylfZtBJZUjXJ3zZRs8cSHVrWs0ygT/Q3Bg2RfCcQmVkqza24R+FlLIaZdRShtKB3u2PHlMIEQcGA28JIaajLGK/By6QUn4N9AMe19oghRAz3PW4/0+X2aTT6cBRTZzPd8fq3LnzH21+AQUUUMD/a/jFcFY0KFgLhZGOGdAQwpFgWjkU8WW9lK2venTbtvRjNLs+Q8Rqyc+/rGS/484E4LnnnqV9u3aYNcs4ZHfF+RRVvyLdLOtL42/ih58XcMOd97PZfQ8Rj8e54arLaNN9Cx64+3a23G4XPlm4ml36b4VMqsyYk6j3M5GxkIXp2mNnEkmfzmGVxAmXFvHCJcdz5G1PkUxniHrcB8f2jzX951/Z9RqlhLBZSZw1PywAIFld6wfi1YvWUdSqyC8+tErjWG7wHopZhNzgPdamta9hLMKWn4E3rCgiEsV2A5XM0vlZwbdRpq7FLKsLJPEc2w+qG1v38nnRKdvBNAQR07MHD/saxtIw/e/CkAHPV9jpgNtruM57HrdYkx5rCkI6QaRshPwMqxQGOBmf3rBl79588eH7vP7WOzzwyOOce/XNPPjA/Ry03RZ+dl9N9atzhtp2xS6pxPEywXYKITRKiEZVkAm1LJMB19yxbT77djajd+yP05ATHGZSfiAu7EaEa7YsQ2GEJxWXavS51Pa6NTjr1vgZaqHVT2GYfpuFFc0KsA3PdjuTCmqrXNvwZStW0apVa8LFZdS4Y4LaVIa6lLrGlC0pcweesRZRTLcQUiTrFe84riQU7ZJKjIYqXnvzHS656nrSmQy3XHwmA7buxbrVKzj+nEsYf/1lPH/b5bQoL+POe8Zz3TknQX01wjBwaqux3cGal0EG/JmB3OsKG6afUY6UlxCrLA+Cadvx732rNO7LOXoDy43hDwfPUsoqYHe/4UJ0BnpKKd//o8feABYAm6oQpgL1EzoJ2Af4EVXt/boQohfKBGZDlrEb+zwLujvWoEGDpNSmt/wHP2RNM2YVCekFexsj/IeaIbiTj1dG/qmR3G20nAHyD5WYKei6/SZ6kViwHNaNSZooGNsU+J1+KVnIKl4z8l9HvuNnGYpof+gFmFkFePp67Tj6+qaKGpsqtsu3bVPfbFOFgVn76tec1d78R/WKA/Xj6ct6YWpGr9TPKuTM35acM2nbB781U/t9mZ75RFOV/s0oOhTeyzRn/e8tGMzK/OX9fBP/AP4bofeNF7jl6RchHaQbKMQiBi2k+i4yjiTtSBzHYfa33/DL3J+46/bbuPTyK7jk4ouJpGuDwE0/nkv1IN1I7y5tefaOa1jw20qWrq1l+0H9kXWrKSop5YjDDuGUq27j0rNO4YgRu2OaJmZjDY7HOXYcvDeA5dh+5nFZTSPUp2nfsozXrjwJYcogy6ZpM1eUxdljs06cuENfhrSqIFWjtknWJEnXqXY7KYe63+qoX6E+i5TWYhW7AWA0RMibup6/lFA0eH94lJKi1uWkahv87J1VEvczdma8GNudOk8kk/70t4hECQ/aS52vbgUR9zdUFIkjRQTp2hI6Emw3mrVt6RcXRkMmptB+X35QnlK/u3CeTGGOnnFWRtqjbXjBN4BQGWcpApc+IQQj9x7OiH1H8fb7/+CwMWPYa84MSnqqvJk0w75+dSZWhhOr8O8FI1kHrhKFkawj4/Fu1yz3B0updbV+3327dC1r1tUwpHML7HVrsgJAmUwgQm5Arelyi1gcXOULYad8a3QcR2VfvQytYwcFj+Fw3pkGES3CiLnUnFhJwAsXBtJO0XvznsSLYtx9550cd/rZ6iMg4roKJmyHVIP6vmIhi1hJJ7VcYWCmG3yaT+OqpZx45rnM+G42D95wKbv13wIhBPba5VjJJEURi526t6Y0VcMPX81h+arVnH3QcJzaKkTIQjp2dmbY04+2olmDBO+3I2JxfxAYdhwVZHuUJ302KpMOgufYvyl4zoOjgGshazZpk0EI0Q44HxVAbwp4w7zHpJSz3HPcBFwI7OB+ns8ydr62f9c8n9dQQAEFFFDAnx61NTVMm/Y+jz38EN9O/4aKFi3YdvBgzr3gAg4/YiymacDv8Lnt2rE9XXq41Ah33fWXX8JuO+3AmONO4e33pjHxzhuadawrnn6D5z6awdjdBnLnSaOJF8XybtetsgUTjx4JKH5nAZsOe+65J23btmXp8uVs0bp5wVVzkc7YHHX7RC46eBhW+M/JpI1Go0x89BF2Hb43Q0fuT+cuXf+p43zz7Sxe+vvbVP34JaVhgUwE9+lns34inbEJuRnlu56bysmj9yYasZo63H8Uf85vChBCrGL9pJeFyvQmUFzjPwwp5TohxMI858Jd9y3KMtZrlwC2AV52V32L4j/r6O+uL6CAAgoo4F8IP+MkjGzliJwsfZaVsTsjYEqH0nARlZ1UAeHd4x/g/gkP06lDOyzTwJA2IBWH1YUMFwUzgKFwlmShP0tohPyZRCEdpFWEKIqx56jRzJ25DR0378s33//I7LcnYWgzDx4fVc+KjT/naAwzxNMffEXbsmKuPXwvP7Omc6Ol42B6SgKmQSimzl9kGiQ0jcd0IkOmUWVYa5bUYLtT71ZxmIhr7y1MgeFOSaUTGdL1qr/WLFpHUWmENn2UrFjrvl2JVCgOawRodKUBG1ZV0/HQQ9WxYnGEx8dNLFNa04CTSSBDUZ9uYYSjPifaNMN4OX4DGRTGOZlAOcTTNvb4xE0odWRB10PW+ds6PzsXUiIdm9raGuLRiK/wIGNl2MWqH6QZxkFgevdfyALbzRzHShFG4ILZsGI1Gdvhzc++Z/bqKqbOXkCX0jiH9+xA7byFmFGLSEUJZpmiOohwGNPNhur0BJlsBI/6EYkhIq5kYWkLRVvyChNzaCA+zzqT9os2Da/NgIhqFtnSQdgZMFJs1q0TF194IWedfBzvTvsHyf9j77zj7KjK//8+M7du300njfQAaZBQQ1dQQGl2RcQCoiCoKDZQsSsKlp+AiH6lWBFFQXoNJFJDJyE9QEg2yWazffeWOb8/zsycM7MzuzckkETm83rta+fOnDnnzJmZe5/znM/zeUpgu8uiSrLblSkEet0lwt5SGUtkacyq+3rYgYowcPMd9/HRk98ZWHW79uY7+MxJR7MH3bSuXclN9zzMk1dc5K9miFQaUpkg7STlet7z1QiXKoJT8q9R3drgPfWvv1jQ6jRO2c+o6dU/GHZZ4xn4Nf0N2l7gVeAOKWXLDmzrCuB8IcSfgWXAF922FqE8y3cIIa4FHgLOA3KAl4b8n8BPhBBfBn6BUtw4FThmB/YvQYIECXZZCCG+D3wYGIL67lwAfFFK+bJ7fDC5z88A56BiTsqolb1LpZR/HbRxL+mBFfo5c4OdBux3uUR3t/opee7JR5k8fR+1X5aV8VrW+ryePrBKN+0GWtkhr5hpPBn0AJnKUnIpCUPGTKT55dUccOgRnPTZr/H7S7/FkMYG7JReUpclLQNWXV3H7791Pr/6apFsJkUqFbwmWdQyZOkaZWikqnKUupXBX+zqJV3n6loXipR7C5RcPnXH+k46X1Pev0Jn0U8J7pQl0jWMyoUyC5pVmWrbIt9ZZG/X+O5rL1A9XBlt+aG1jDpEURpqxo/21Q+cthY/vbdVXYdVpQI8Rb4ay+Cpy0ze15YW6Sw5V+5M9HVr3V7LDgYiQlC32VDSMKkHkamrQ1J3Ulg6mBA0zUo6rF/3CkgYXZeluPo5ANJ77q0VIuw0hbJDzpNRMxPD2Bk/mcrGouCiG+/jlieXMHVYIweMHcFH5u7FR2ZPoWuDkq1zikWyDbXkhig2aNVoQ4fbsv3JoqlXTFo/b1Z1HSKbR7rjbBV6tTFZKvrPiywV9cTTsqInDt7kxB2LD733ZH7wwx+ScQqkM1lSJS2B6NFssinLTydeciSFsqRPCnp6erjnvkcB6BVpNaF0DW4LOPLAfbnuP/fRVnD49b8f4NAZkxlZnQkkLRHZXIh24qrIOJqOYRrkIpPTeuXuvfSCJEXWkGB0ysG09RVglzWepZTffhOb+ynKo30fyjB+CjhOStkGPOxqTv8W/cV/vJSy3e3nViHE8Shj/zsoneezE5m6BAkSvIVwPUpxqE0IUYXSzP8LcEgFcp8fQhnWJwGPob6D5wHR/IQYCKekEyVICbbx4xhKqOBBlos4bjDXb6++mkt/8B1dHowf12i+upCONubslDbSrFQ/r6YXZ+BIm/yQETz5zLN8/cIv8Zlv/pQ/Xfd/SmKsViVsEeUCli8HpwLmGmKUJEztXrvRVTwYsRWnUxkd5bYWnIIyMMu9BYpdPRQ61DWnq3O+t7nYWaDgepj72vvoa1ftL9zYRZurquD99zDt+U3s/Z69AcgPa2TlzQ8BkKnNkXEN9kxtlVY4yGXID3O1txuHB7L0iUwOy+PgZvJanq2s9Z9lKut7SKWdUROnqMRGwgFDsEvantpFyrh/hu6JJ8lmrBb4EBbPPPMsc+bMRnRtoWfFUv+Q56MsVw8hX9WIcIPRlPSbKx1XLoBt01cocNSFl3HKwbN59upvMywt6dmkDObelnZ6u5SR3LO5g0J7t+/FL3b1UudKr5lKKQHj0TCqQXlp/c/Vddp4dsp6slUqBrnQngJLKuevoMjQezC8qYGRI4bzyH8Xccj8Q8kbXlovHMQudmO5Xu8UkJMSmc6yz6y51NbVcfUvL+O0D75XxR2491hIh5PffRx/vvcRRn/oQg6eMYVffuETWPlqHJff7/R2I0oFRI+RTM673uo6P0GNmchG9vXqTJmgrtfUuvaCTFOp2DivOOyyxrMQIgXYUso+Y9+xKP3lBVLKxbEnbyNcpYxvun9Rx68Drhvg/MdRih0JEiRI8JaDlHKp8VGgrJJp7ufB5D4PQX2nP+qW70Gt8lXWtun99VNUBtMVh5f7dXGLrBuM1tfThdXjxn5bqX4B1HFBmzo7dCh7mymlJizfyybdYNVMJsPHP3kmp5x0IgVpkTHoINLJquVy9UFVWTKMMX9ZPRjAajW4XsnqOmSXMibsxmGB1MN2rlNr2uYypKqVwVps76LYpdrY8HSzT+2YVJ2mLqUusqvs8LYZw8nWqfNXP7eJFberRCFVQ18l16i9fIUOj+rSgvCyCNoWuSHKmMkPbyTXUEvG1dq1DAPIqq7zjR5ZLuuEJ+mM73G1UmmXHqPTLQeSe3heaNuk1pT8UGFlRBtyeELoe4aRXlwIXlz6EpMmTkT29dLTop6R7PAWnLbNahyl4wbtaak9TyFEWimsXDUtW7toae/kh+coIS6ncyvpamUwl7p7sVxD1M7YlHpL/ioA4Cuv5IbUkRuiQrDs6lpEVX9dApGvRtjpoBfe8766gZHqgAwE1Doe5cjOGN59VzLQD8B1OO0D7+Onl13On/edQzZCE9nqbcfqdhUxygVksQ8nX8e69Rt47p9/Zeqkifq+eAZr2qGxoZ67/vBz+ra2kpLu2BV6tUe4t9tVynCPGVKOtuF5FrlqpDsRsKpr/fPD9A01sMXgdaqC/ctFoCLjWQhxSEW1Kewo/bW/olQsPuH24Tzg5yiVQ1sIcaqU8tYd1FaCBAkSJNitQ2HuAAAgAElEQVQOCCE+jPIw16F+4b7oHhpM7nMBcL0Q4nvA/cCTrixpZfB+gM1lbMdRK85e30LKKKZHLZtJcdsNv+H0877KD790DnW1NWCXAj+iwpXsUh+CXmzpGbeu3BmAKBV0khHzPJS5Zrvb+0waR0dnJ1s3NzOiqV5ngjOvK/Ka1ZWFk174abQzed/zaNU24LjGRDlXjVXfS9r1ZOa72im0KU5s++r1fjXDZw7zPc8HHTOLtXc/CyiaR1dzF72t6vxhQ/O+5zpbl/W3cw1VOAYXu9il6urr6vP3F7t66WvsJD9EGYCpqjYydcoTa+erfONZVBmGdEFzz0vNr7jXakjleZrfRuZI7LSv6+3kavVkRDqaFyrs/kaTIdRy7fXXc8WvfgUjxzPs2OPVTkP2DekgCj1aLchUyBIW3UWH0y/8LiccOd+nsACkXC9wtqjvo7At+lo72LpaeZ7LhTa6Nqp7VDum0Tek88NKvudbprTyB5alDMWUTqzia0ubhrF7TG/rlZJAmZDRee6nP8l/H3ucc8//Ar+9SuWpE9LRz36xB1yOu9PXQ0dHJx+75GIO2m8W08aP1pzxgOJQCulmTsw26PssU2nN83bKQa8xBN95EyVNTfGUacjmECmCEoo+DC98lJEdgUo9zw8THVAXBbENZQfCQajlPQ9fBn4mpfyyEOIK4BtAYjwnSJAgwS4AKeWfgD8JIUYCn0RR3GAQOU8p5Y1CiB6Uo+RMYKgQYgHwOSnl8+F2TK18QAeKOYa3UVggpdbaDXuiQzjmiPlMGDea2x94mA+8+51QKvaTORSWqquju4cnnlvCug3N5HM5Dj9oHkObGoNGuZVCFP0TA1xb4ZR8A+6x/z7O1EkTGFmTgb6uoKRayHiOTLEcQsBbbhjtnsEm8tXIni7KrRtVVUDGNRrGHHmCb5A6Ha1+MopC61bGHDYdgJ6Wdno2tlLqVQZQqadEKu/pNNtkG5UBlGsKClR5NJFCe5efwhuU97DUo67LSqd8b6JT6PWvs+ulZWQbXKM4k1IeZ1DGjmXp8SgVcIzMi5ZHb6iuw3IfP1HoMZKUpPxU1zJTRUBL0+BDlxxJc/NGJk2egkzb2I0j3DZ6tGFGF6SKvuElLNtfEdna0cUnv/xNRgwZwnU/+xZWSXuUvb6njUmBsCwsy/LHqdRb8Mdbjbm6xmJXDylXecVp12m/reo6df1ukKGpWyyF5T8Xg8UDqMr6e2Pz+TzXXX0FB7/tHVzzu2s484zT/ZTgPlwueGtXHx/52o8ZMWwYf/nVj1Tgre+dLwepEl5GxHReec4hkCpb2LainHj327KjjWfTyC4VkcZ7I01qi20bhrmjr9WOMchDqNR4/niF5XYkhgAbAIQQM4E9gKvcYzcCH9kJfdrhkBlj2SNCQxTwhf4h9MAHBGgN/WW7Pw/Jkds2n7GNB8jUtg3oycZUaeoGS3c7Zwtfr7gc8xvmxNRnahKnA7rJ0WUqqTMKAa3iGN3cON3kSnSmzXtgJoz1J/xGHVaMhna5guuxK+hLQC86oHns/Y8bT9mvbLiOuHS6ceXjNJ39FLAx1xwYrxhd7Lj7aMKsvhwYYL1t+/fIfP70gxxQTAi8lkF+rF+z+b4aOtNl8xmM6axXIqizHTS0toksvIMhpdwghPgtsMrV/R9M7hN3FfFWACHEdFQQ961CiAmhBFQBrXwhhPSMhgDn01uG9YxpJxQMFoFPvO8krr/p33zw+KNBOoGI/VvufYjf/v0/LFr8LIViidnTp7Dn2D3YtGUrn7rgIjo6u1j54L/I5nLcu/AxPnLquwN1C8N4F6Uiolxg/cbNXPzDn3LKO45UGdQgSMcwPKTqmJfEwtDMsyy9LJ1K62sUFuVaxX+mXNSGjXSwcl2+lq0yRtT5pU3rcDyFhq4Oiu1qu9jVQ7FLjXGpq4dSb4nuzYpu4OlFe/AM6VQuhbA1VcP3Qoe+wOyMjZ1WfU7XZHzPtZ1OYbnKIZnaaj+xhZ3L+PrTqeqc0ub13r3QyoM/Tj1dmgudKiLKOsDU9rjUriZzIMjT9VanpKRUKpGzyohyaFITVnLw7oUaLNY1b+KQD5zNiW8/nEu/dh62bSO9uNNUxr8P9pBRiIzyNFvpFHV7T/e5vuvuecSvv9RT8NNNl3sLflBoUG+7XaUB94zpchmrxuAue+NkBLUGVUiMSac0JqMGavJZLvrS5/n057/MmR/9sKZESQmpHK9t3sptd9/Hd3/2S9737uP40de/QMrlFcuoNNshjrln5whz4pfNqdTbhkJGJEL7/aQ0qbRKW+4p2kSf7e8fzISuyHiWUl5bSbkdjGaUfvLDwDuBtVJK78s2j/5tTRCDbbSX31BUYvS9FbEr5bbY0Ylmtge70stdyWTkzcJu9BqlgGqU02Mwuc8ApJRLhRCXA/9GJbHaMlBDvnfKkC1TP6BG1rEQpzFq6fqnV1/Ha80buXPh4zy46FH+cstdNLe0Up3PUSqXufTLn+Hqb19AU2MDmYyneGBRlnDaBd9m0hEn+VUec9ghDB+mpMaUd9RBYHiVgU985bvMnbkPF3zuHJx0Osi7lE6Ac6t4p0a6Z2EhpeQL37iEdx/3Do4+fH5QZcCQ4xPlgjbEy6WAAWWmbrYsy5frsmobsIco4yvb20WNa4gVW1vp26oC2kBlL/QM21JvAaeg+lg0PKWy7GBnvCVxY6JuWwhbBFKH+/23rcDnshvwKCyLsrvf420HYCYXMzzSfjIMk2phKld4DiczgYqbdv3+RY8xZuQwhtm9WF3dWv3BsgJZ7igVOPlz3+T+Rxfzrc99gnwuy49+cwOf//gH+eKnTvPr9yTlRCanjW+j3ymguLnZT3JTP2k05WKInoOaYHhj4E00zL74WSwtLVVn5asDydP84MtQwpjACo4Bq6AnSwfP2Yeenl4uvuS7rFi9lv8+8RSbWtSrKqXk3ccezZ+u+jnz583Rqy2Oo5RswggnnPI+l4tBFQzLRniXWgoZ0KZH2kVq+NiB6U9+o5b/vgQmpwNglw0YRHmXfyyEmI3yfP8/49i+wPKd0qsECRIkSOBDKHfnZ4G/SSk3CiHGAL8C1qAytv6WAeQ+hRCfQHmn75dSbnbPPxt4UUo5oOG8I3HTby7jquv/yqVXXcuMKRP46+WXMH3COLp7e2moyZPxMpuFlopt2+ZPl3+HmVMncfHlvwFg9AFvZ+XDtzFu9KjItv707ztZt2Ej/772Cj9QbFshhODP//gXV/z+Oj5w6olcdflPqYpJoJLg9UFKydd/9HO++YXPVLSK9f7jjuTWBxZx1Z9vZv7cWfzmuxdy3FGHvgk9ffOx59gx/OdPv+P2ex/khGOO4vtf/xKjR46gt6+P2ppqJakYQT/6X4GQFbgnXQ7bVOApKWWHsd9GcY9PR3kYlgAXSylv2+6OKbWNrwP7A08D35VSFtxj/wAWSil/tr3t7EzMmzdPLrr3Dr1jB9M24tI9VwKTBhFH2zCrLMfU72k/mp7nXiPHspliOa6PuzNtIzCOgfL9Uz8H+6K3zbEtB8bLKG+cW4mjNHAdbicCacUroG3EpQQ3+7itqb3945jHo+sI0lziygw+GoN53O2IsQrvN2kugdfS8IzsCNpG3JiHx7ChpgohxJNSynkR1exQuMbzrSh5uWoUn/kB4JveaqGr8/xttNznZzydZyHEKSiDegZQZZx/kZRywEyyQghZeuF+vcPzMJbLAXk54Xl2QXmvIjx+ptar7OtRy97eZ6cc1NU1uK143st0Biybjq5uLv7FNSxZsZrzz/gAM6ZM5F/3LGDmtMnkcxn+eus9XPevO/jlN87jIycf73sCpZHkJcDRDsvsGSmm+wolxu47n9atbcyZsTejRgzj3E+ezrFHHubTPJCOWq7G5VsbSSSEZWmd7GKfSrwB6rqN1MWeh092teN0d/j0jlJ3L6UeVxu6WPL1o8u9BS2PVyz53FLpOJoXbNu+19m/NJfeIWzF+wWXquEmfBGW5XtZ09V57FzGT6ts5au1R91NqOG1Y3p4hTHGwgyys+3g+ZbNj666lh9ddR0tj92GZVmKC96mU0z4NI1MDieVZskrGzjm7Iu4+OyPcO6Hde40kc7oes3r9SgIfb043WpMZU8XTm+3vhelIo5XruwExsgbP8uQrROeXriR9MMPqkxldLlMTqu72GlNZwhoYUdLPBoDEL0/sIISNKDjvgcDp5v1lvWKS2C/Uwo+o0VtP4ko3nKI3hMIDDQk7Lx7ak8/DCEEUsrIX4hKPc9fQQWAjAzt/wEqkK8NeAElI3ezEOKI7dU5llKWULrJUcd2SHbBBAkSJEiwfZCKcH38IGVi5T6llP9EJ53a9vYN3de+ZU+pfaGEB8KyDKMpbDD3z9ZX7i1QLhYDclieoWKn05pqYFtYaZ3Vz0qlyQDffud+/Pxfbfz817/l2dXr2OwGzI1qrOPT7zyEX3/6PbxrYiN9S5/UBlUqo2kEZjKIVKYft9YzDpy+Iq1b23jXEQexfuNmbr/3QT51whGIlvHIotb2LXsBaaUisq8Hx+WBZibPQnh5x0uGBJ4xLiKVRliubq5lI7J5o29bsXO9/ph52s6mkVcuFn2FCI87bd4XD9IJGoYerEwqMMZ+Fsayg1MoISyXnmAGfaEpKZ4h7LUnfW3jDDJVDJZJeROJAsK2Kfb2cuIRByLbNlNGPWu+EkSpCE6Z4795JQ88txzbshg3vImz33U4n37bPMqtm/S98iYMxr0Ulq1pB2FqQibnPwuyVMQ2VVhiJoEiEEhpBwzIWCqCP1koGYF8hkZ5RKCtaN/k9rkcDLgLBPKFzql3+femAdzPGO5P5zAzbeKUccplPytgsFw5eI1mXaGVosDkKSLg0LsnO4TzjMqa9y8pZbffASEagC+gMvIdLKVsFUJMAP4LXAC8t8K6IyGEGA5Ue54Hlyd3JspAv1dKecv21J8gQYIECXZ/tP33AQCskCcz7NU0YabB9tNblx314+zu9zynHkwDLnCOx8e1Lay02s5mUlx4wiFwglJ5/cp1t3HnsyuYNKyRhc8t5/PHHYjV140sF30FAJENenuFy1kNG0Jqn8XNDz7K6Zf8ipFDGrj1wUdoqK3mj9/7Eu86eI7iu5pGlmeIgUo6knHl4tYs0W0WegMGtz9WhiHvTUqcDhXclhoxDqtXTV6srg7/PKekJx52OUM5rTniHjwvtMnXDaQnN+DtN++x99/3/hoqC9LRKw/SsnzPL4ZHWmWQLPvjYK4iqPpt/vvIo5w8dzq9S59R5bp6/CC9r/zjAVq6enjg+ZVcfvKRnDxjImk3+2PrY0/4qdKtdCrA67YzaX+/CfOaSz19PpfcKZZ8hQ3zuoWtFTkaDjgo+IzEyK2FDcziOhVG5nurQelEB2Tvgs+et8Zlrkio5Cv9jVqvT7JVG9wBb3FJT9x8Q9xc6Qi9n1HvZRhOWa8gOYVSgC8uy05wYuZ57g2lFw/D9z9xwHYqNZ7HoXSXTbzTPf9nUspWACnlapfXdlqF9Q6EPwArUMt5AJegaBwrgHOFEJ+SUv5hB7STIEGCBAl2U9Tuuz/Q36tnwjSmgFjjIpBJMBSM5BkUIpWOj/R3EW5/zLRVrLr3ccaNGcUDT72IGLcX2Vw26BVNG1SDdFZT9ISlPIEuNadY6OOPN9/OV3/2eybvOY4Xlq3kbfMP4Euf+STHHHqg23kZkGTjlSW6X+m0NmqKBSP7nKmBY+jrmoGIbn+t2kYAyq0bKbmqHIWOLj+QsNDRjVPwVBG0HF25t+gHEzqFsq/IAUqhww8sHGDio8fYcoMOtQHkQTqOzyUXtoXtHlNqHTrIznbLWJmUWp2wtYxcSUrufHIJdz65hFOPOZS6qjxpgx5w7aNKRfE7Z5zMmae+HSsUCGd6ggPb2f4rClHP65b771bjFLH6oarSXvj2p57oF3jpGemmt96kegiTtmJQloRBrfHufWriLMIIa6eb6czNyVe/tNemwR3luSZaSSPynTaPxcjWBdQ5KggG9Ps0CCo1nmvoH/F8OGoScm9o/zJgaIX1DoT90HJEFvAZ4OtSyp8IIS4BPo8hvJ8gQYIECd568FQFTK1WaXJbvXIeDcE0BgfUijUMOCdCxWGgPoXKnP+hd/PEi8t5buVafn7BJ8m7cmvSKeuMd0U0v9MpB7mZlk13Vxffv/JafnfjLUybMI6UbfPCspVcd9l3+MhJxykNXy9jmlMKZLhj9BS1386oRAxewhaXAw0gin1aM9vrAwRVQEJKJf2UEQwOb9DD6ErCFYuBBBYmRCrNpocWDTyu5WhqRxRMo9rbbto/FAJgeuftIN1gfbPmNtdWV4MQiFwGmclz/1NLSKdsfnD2h/n0yceQsq2gVzVkMOrEHCZNwaCZpDL9npnGw450y8VM/CKecd1eOZqeYFAq+nG8B4KnshFuL8pINschyhANjIGxUjAIBiojoxKouG3JsLFufA7WsW2BjZUaz68AU0L7DgNapZSrQvuzqMjp7UU94D29c4Em4I/u5/tQ1JDdHp5IOwDSiJSOIdLHBewVjeihUtHQmnSRNmf4plxQ0RBnL3br/d2tervQE90XU086rcXMzWvydKzLaTONp35IC8bza66amI/xjgoGGywAa1t14+KCtwJwooMQfe1mU5O4gjbNOiyigwcrQUAL2UsbHIho1Jtm8KAZGBen+Wx+MIMHzTZLMR32ygeus4KBiQvkM7GtUnx+trCYgM1gGEn0fTa1oM13OjAWxoM/2H00AwqDAcHBcg28hRDncSJkKHv0CNNgDsuNeftdozbgGasEMd6zTDrNX37wJd3+IPA4t6CfrHO//VOuvfkOfnTBp3ns+Zeorsqz5K6/UVenMvQFDFmn7D9vwil5GY11xkUjoEtEBX0ZnsjwtfcLtPJgp4PfYd71p9IIJ2fUq8c0bBCNOP6EiNEIop88mUfPCBtGceNsGLjC2Ccd/VxIKbngst8xffxofvPFM/x3WlgWZ/z4d9y68Em+fsZ7OP+0U3WfTCM3xkgzObyyr0e3Vyz24+n69z9sgLqfhe0grQhub4RB6vO8TQqP4yC8BIlxTIh+8m/F2PctMlg3aoUnYp8wAvZM9AvUNfsS56mOWz1CTRj8r8pQm5W8lyYqNZ7vBz4uhLhGSrlCCHE8sA/RASBzgJe3qRfReBXFb34IOAFYKqVc5x6rB3rjTtxWuGoivwCORo3JU8AXpJTPuMdPB76FjhT/rBcp7h6fhxL1nwGsB74lpbxhR/UvQYIECRJEw8ukFkvFIGgwV6S84Z3nbcR4vWSEF82HF/3vGUyGJzv2hzrwwx8M3jv9hKMY3lDLg48+xQFzZnDe6e+lrqZKq2oYfVBGWp/bloWwgxrTfj/CiSr8DIn62mV4Sb1UMMbPXOI3KjbHOxUcG1OBJmBoxRhD5lgpY8ryxyqsMhQwjAZBv7m00WZfby+3LlQ/8ftPGavVSVJpZk8ez433/VdNQDwvrtd21CTLHIu4NkNea2GVtUEb510Gw5AeQF2CYJCcPm7Flh8QAwTjeX2Rxna/NszzzQmC2R+PQhKhcBP47PR3FHr3QUqJlFI7M7xAyhgv+xtlPH8XeB+wVAjRDIwAulBqG7pxITLAyWgP8fbg98BPhBBvRxnPXzOOHYSSxdtRuAKVQnYa0Al8D5XdahwwH7gSOAV4EJUy/DYhxBQpZbsQoh64Hfgpyht/OPBPIcTK7VUcSZAgQYIEA6Pcsr7/zghvVUCZIK0DojQ9or9KgClVpw0dw8ANeRgDBm9JB9+Zmfz691W1mZls8Eojyh4+dxaHz52lvOVpI+jNuEYZY4h6xoVQO0JGdsiT69YVifAEwfXw+3V721GGjg/DeAmpKXheVkE60nspHENSjJDBHNVuv/4HDe6o6wHo7O6hOpdl2fU/VsaXa3Bt6exh4fPLmD1lT044/ADf4JLhvpbL8c+YC/OZksViwMAOy+tF9TGAAQzlftSkwWgbVnCMAUqvrujfZlTfwFchietvLL0j4tkNtGH2O3xOBOZ/5Zc8vXodvzvvQ3zw8P30uVHPdmD8VDuDqa8PzsoHXI/vPFR67GdRovdzpZTLQkUPAh4F/lJJvYO0+UPgc6gU3Z8DfmkcbgKu2d42DEwGbpRSbnG1pH8HjEGlCD8T+IeU8i4pZR9wKdCHMqYBTgV6gJ9IKfuklHejZJfO2oH9S5AgQYIECRK8CairytHdV+CVTTrUy3EcJrz/8zTW1vDwNT9k9pQJ/rHlL7/GxVf9kS/8/P945PmwWZRgZ+AjR8zl1INmMmfi6Dek/oozDLqScecOUmYBsGB7O2XUF6kNKqU8e0e14eJS4DQ3+UonyvB92M12NRsjMFFKKYUQTwGz3V2zgcUymKVgMfDRHdzHBAkSJEgQgqf8oD5E83HDy79RAVTQf5nZ94QOxHkOUBq8FL/a0yzLZSXFFeVZM7aLrywP7g8FXfl9s2wyU/eNvk7Pg+hY0QFQHk3D8HL6P1ymXJjBsw146yICLAO0lxiOf2QfAGE5mD4+EeVVDZyqPdXC9VSLEL0lEoFkNx7twzY47cH/mUyGT51wBCd89TIu+MBxzK9Lc+b1d9BXLLK1s5tsVqXWLqx4FoCPX3wljy1/BYBsdzuzTz0qVuHClFEz75FZ3kqndNp5gs+lDN8bF+nxe6kNy6K0fk0/3ecwYpPHEMEV9qlR4Xsf4XkOqVqEOdvCCxgN38uo5zWCu+6PE0SOn4dz3/dOzjUpM1Ge/G2kapio2HgWQmRRlIwJwCbgP1LKDa+75crb/ATK6z0WOEdKuVwI8QHgWSnljqJuLAQ+hrquMipA8jj3WC0qCYyJrUBdhccDEEKcheuVHjdu3Pb2O0GCBAl2CbgUu++hYj96Uem6P+seGyxu5DPAOShZ1DKwErhUShmWSO0Hq8YNjxyI8xzFvYzaDp/nq8VVwA81DYAo3dqoQCZH6+MGdYodX5UiykgornGl5wJSd5kYdYOgASJsm9QeE9UH23INWAIcUv+8iGuNDRhUB1X/DcNZbt0YyWcNtBFXX6hcQL+5VOiv3hGjdqHpEQXfsJNOuZ8ha2oKf+OoOfz21gf4+m9vVF0Tgq+fdDg/+NcCZr/nLE49eBZfff+xWJbF3d87h7IjSVkWdoQKSJTxa2VCffSMQjdTZcD4DRSLCsKzKbdu9M+3ahsiqSJx70iY2hHgZscF1ZowKTdhKlAIUYlh+qllmBNPo41w+z4daSCN637qOhXEHlSAioxnN6BuATAJ3d9OIcRJUsr74898/RBCTAXuRgUHPgkciTJUQXGLT0ClBd/edizgHuAOFAWj1633ISHEDJRySH3otAbUlzvu8T0jjrdHtSelvBpXgm/evHnSVNY0b6SpRlAOKDYE6vK3i070/nza5dM5WoLI6tK2vt2u5z+Fl/zfMl6580F/u3X5Jt0Xo6FsnU4bXj281t+umzDK366dNN7fTo+ZrM4bsaeur14nrSxXaY2AbqOdQEpqNAJpqytQm7AjFBkytog8biKoKjG4ZENcqnITUbVUUrcwGHum8oqo4PorUZvYFtWOlPksGn0x75fZqDT2x6VWd7ZBEkPGqX0YSMfcX3OoSzEpz3VZEbymAcoCARUUs6GC8ZCabfbG7I9K5w76+TLVaSp55t5ICCGOBP4OfAq4BdX9vd1jhzJw3MiHUIb1ScBjQA7lMMlTAaxq97vH/CEcKKUwBFUpApWF6jCNQDNl8UB1AiKTD2RSC/OhA15l31utJd2E4yCLFXhkDaMnziNJSIINy6a08RXjMmMC0gbgrQbaNzCooslAxorJSzfLhtUqPGPZHbuAjm9UPx3HmMgUghMcLxWzN9kx7tEwoONP3+OeZ1dw2b8e5OXNW/nFHY8AsGTdJn59+yK+ccapCCHIbIMRJiIMfE+OMDAOg6UXh0hj2B/7qBWVSvsZ5gAbylr9Um+DGvdBshj6p8e1GcF9r1jlBqInBhHni3T0pGQggz8K2xIwOAmlSHEPSrbumygjMCxht6PwS5Rqx7tRVApDgJIHgR/voHaaUN70X0kpPYP3GiHEj1Ec7mdQmtMAXqbDOcA/3F3PoPnPHvZ19+9UeIbzrgDPcN4VECdl9lbHtsrdvVUQZTjvLOxsI3kA/BC4Skr5d2PfYve/HzcCIIS4FEUBPAW4FjgEWCClfNQt34NSWaoIMu3a2F4yEQ9x3k4p/R99YTkBo9eH50H1E5UIv75wuuLIPoWrk07AMPMMa+GUtJKD6a02Jc1cb2skJSHsrRuMtuJRVuICyKKuJWRUxilhxGkIxyqahMcxpCEdMNK8XdKBtNLIFuWiUqaIkoQrh8bFGEud1a4YpG1EUAcs4J1HjeSdRx0KQFtXN6lUipp8Lng9VkQWyMi+RKuOAEFjOZWubCISMcEI9Mtrq5LxD56g+x+aROoDhsyhCGUirLBus41A2m6jjX6owMiNmqj6sKInEoNqXYdQqfH8DuAGKeUX/YaE2ARc73oPlsef+rpxGPA+KeVWIUT4qWxGLf9tN1xe8zLgs0KIr6KCAU9HebmfQ2lN3+FmTnwIlfEwhwoKxP3/EyHEl1GTi8NQHuxjdkT/EiRIkGBXhhCiGjgAuFMIsRhFvXge+JKU8glUXMgfvPIRcSMLUL8l30PJoj4ppdxacQc83Vor4ufMN5LRBqAQeLHyAxrCYYM5rmxMApF+/Qh4ol0dsnIKbNdoyuT9xCamIefROQbNxhb2skWpLXjGV4QBEatUEVLE6Od78Iw+00MZGovIcTGyJkbCnwgZ9WB4LlPZaI1qCO4PjaU0JQQDZQbmSwM01Q8JHguNWRRvOKh97fQ7p9+57iTEV+vw9hHyUJvPpPl86Qr7bQ/4HPtlgxPQuGdaSEcbqTK02jaY6kkE/BrCE11/25jwRlYQ5tKDkoc08lGY2RNh21arQqjUeB5Ff0/AAtRzMQp4I9JG1g8AACAASURBVIznXuKX7UajeMU7CiejggbXokZ6BcpwXwWsEkJ8FqUw4vH1jve81K5xfzzwa+A7KJ3nsxOZugQJErxF0IiycM5ExYosBb6EomZMZZC4ECnljUKIHlR8y5nAUCHEAuBzUsrnw42ZcSMwgAEclwBEVaL+xxkHnpERm6wq5hyzfjOhjbD0j7909PmWozMBOlpnWVhG38tFpGP7/Ot+HOYIz2s/hL3Accv3EdfVz3UVKu9di7RspG2kFI9C3P2A2HsVHmtfGs8tH3UvgsazEZgmHUQ2SKfRXYuR7TPbDnu0w2XNSQpeeuywdz7CEDYRESSnL2wbqETePpNvHeHtH3Q7DG/cpYNws+8E6rVS/frYT088vB0wfGPaddykVUSMTYSRreoKthV4lk1dc3OyV6ERXanxbAPdoX1e2rmKgw63EXcDXxdC3IOibQBIN4jwc8BtO6ohN/DwXQMcv47ohDDe8cdRnpcECRIkeKvByyj7f1LKZwGEED8EvoyiZAwWN4KU8lbgVvfc6Sjt/VuFEBNCSkaBuBEhhPSNqMF6aQ1idBiGiRRWf6/UAIZfZJlggEqg7UBSB99g1uUCxrZnfGyrQRroy+CGUcArGUd/GfCcATzzxvJ+bF1mnwcw8nxjPaop81nwlUXCXn/DW2pMaIRTwktkE5eq2cyEF0iK4q5+vLj6FXr7CszdZ6r2yKfSQRqQ/4yFfPjeM2L0KYx+nmNjEhgoozob/K8vIr6sWWdEnyDoSde0Jiu4L2T8S2nUH3d9EZOh2Mmv2bdQ/8z+9JssDPYObwO2xfBtEELsYXxucv8PCe0HQEr52nb1TH3xLkR5ge9GPavfRGU2zKCoEQkSJEiQYCdCStkmhFhDtD0jGTxuJFzfUiHE5cC/UV7tLVHlwjB/aGXcjyeAlYqmeJicac8TVWEQktrtaJ9YFB3BMyik1P2Sjp8qW0pHGXrufr+qyNaMbvtBWxUaBmFDyzSg4sZN9Dd++nckZoJRycSjUsRwb4FgenJjP+Hnwu5vnHlef89TKaQD5f4BcNJx9H20Jfc/9hRX/umf/POuBwPltjx1L3XVSt5NGlzwSvjyHj/eNzjjaBSVTFzC/R/ovgYKxhum/mTPOD888Qq/Xz4dKW4SGWPkqglKyW3PCUx4YmG+x6Cfd8dRyygDGd1x+yKwLcbzr9y/MOISorx+DRBASvmKq7H8ReBtKC/FKOBG4DIpZcv21L+rwAncSHO/3g4qaegP5UAZ/aHGDRTMFjr8fVaPXjWVr2qFv/anHvG3tyxZ4293rtflC136S6R7c4+/XS5oVk1+SLVuK60fK4+35UWRq8r1rbON67F6dX9rc1q9Q6ZyxnbW33Zi4nYDageBF8H16pi8NFMYIuZnylRykJUEG1ai/OFWGggaqUgxQ3/JBK9/YMWI8H7zmrzNdIxkhfk9JIwBE2V9T83rsMtmbK/RQ+M+IgxPhvFsyIz7g2NcZ9HgPPYYL4OpUtHXF/2FFxdgF6dU0darUx239qrnvrVHP//mGOXT+jnKpXQfs8a2uT9tGC3VGX2u2X5Hn26/aFyfVyaqf+HzAKaPiFTKfCNxBXC+EOLPwDLU93YvsAjleY6NGxFCfMItc78bgzIGOBt4UUpZkeEcBSklCx55nN/ecCOLn3uRIw45gNPfdxJTJ02iryxp3rSZxxc/w3NLlrK+eRNzZu7DYQcfwLgxYxg/biwI2NLaykOLHsWyLBrq62jd2kZ1Pkc+l+PlV1+lrb2DUqnMiy8t45prb+DP1/yaQw/cn76+PvoKBUqlMlJKMpk0w4YOob7uTb8vCXYw2ju7uP5fd/B/N93G00sUY7W6Ks+3z/sUUyeM47D951BfW1PJ13mCCrD4uRf59533sXT5Clpa28hnM+w1ZSJfPutjDBvSOHgF24hyuczv//Yvjj9t6IDlKjWeL9n+LlUOIUQaRYNYLaW8GLj4zWw/QYIECRJsE36K4jbfhzKMnwKOk1K2AQ8PFDcCtKIM6iuEEFUoPvQDDEClM1EzZX/yuSy9fQWGDWmiXC7T1dNDqVRmzOhRfOq0D3HB+edy530P8umvXMKG5o2k02mGDxvGzH32Yt5++zJ//qEsWPQI3/zx5axctZrOrm5qa2ro6u7ikIMOwrIstra10djQQFd3Nz3dPYwbN5aGhnpsy6Jp6DAu+/EP+P5l/4/mjRvJZjJkMxnsVAohoFgosmrtyxx79JGc9fGPMnniBEaNGE5DbQ2OU6anp5fqqnxF9AYg4G0dzEjrp2ARmA0bnkwrnuPdzxs3SKrxuDIDLsMP1ma/48oLKSI8zLGUldBnf+w8aofpxY9ZnZh+6MnUVFex6uVXmTtzL4YPHcI1P/42I4YP9a/fqcQrPBBtIawVHbU6YKViqUH9+P5RVImYFYFBveNRqxNChChPhrfXOKd5YzP19fXkcsqR4vW4u7ePNWvXsnL1Wp54+hlWrFzNaxs28OiTT1NfW8sZH34fp7zrOIY1NdDd1cWfb76NKUeeyPg9RrL/7H2YPnFPnl6yjM2tWxk/ehTDhjRRnc9z+ntPZPTI4f3GAeC5JS+x8MlnuP2BhTz94jIE0LK1jWKpxB7Dh3HB9y8feBjkLih95Gov96C+YO/d2f15ozBv3jz5wIJoRSbTq2zqw5r3azDPc025098X53nuivE8d6xr1WWau/xt0/NcNVR7nodM07O0pr20tnPNJJXC1B6i9ZxtM2K5Ws8cpeFtdt4Qz7O7axs9z4FzK9BiLlUgbZaK8jxXghjPs+m9rERZLcrzHKczXYnnOSDBVInn2eTQlXeA57kU42F+i3qez58/ESHEk1LKefwPQwghW1c+S29vH9l8nvWbtpDJZKiuqwcrTeOQIQj3h30wo8A0LNra2ujs7GBIU5P6oZfSfxFkKCAqAEOCzvty8Zasn1y8mL/e9E9eXPoSq9espXnjRkqlMpl0mt6+PubMnMGMvaczpLGBgw6Yx6EHHaA81WGjNhwMF9F/MN4h2zAC4wLOBhqPSpbJI+oLnB9n2IbOD5RxIgy+wHZ/Pu72IED7MLZLZYePnnshi597gXcf+zZ+c/2f+fcN13Da2Z8nk05z3pkf4wtnfUzJDnoGt5UaPJAxvB2a5ATpGQadyI4w6p3QJMKQQ+yn9BLoUAQFBHUfN25uYfnK1VRVVTFrxt709RV49oUlWLZNOpNm/YZmisUSuVyW+voGZu2zF/l83jecy+Uym1paef7FJaxas4YHH1rEnffch23bzNtvDqNGjmD61Kn8/eZ/s2zFCvYYNYoJ48ez35xZTJ86haamJg6bfwj5fB4hhKJ5lAv+SmVn6yZWrVjBwieeZs0r65g6YTx7jBzOug3NvNa8id/95R+MGjaUx/9xDQAPPfEMy1atpa2zi0eefoFHnn6Bdxx+EEccuB+H7b8v0koxtLGBVCpNNpuBsTNJpVJIGb3eXGmSlEMqKWdCSrloW88xznWEEMuBEa+3jgQJEiRI8L+PqqYRVAHSzjBx5EQASlJ5tXq9maSEYO4a9XtoCWPyaNn+BLquoZH6+nrDEyxCxoVrSEs9sVFNecZIxne+CTuLJQRzDj6cOQcfHpiAdna009vdTV1dLYsWLWL5S0vZ3NLCpb+4gjPOPo/Re4wim82SyWQQQlBTU8O4MaOZPm0a73j70ew1fVqQHxrlcY1SEohzAkQZpCEjMDZoLeTJ9IfOrCOkcBAL6fjULmka0mYZ/4NNy5ZW1r32Go0N9dTX1ZJOpcnlsv59DiBmIiKxA9f/6mvrufWue3nquRe456FF3PSHqzn5o59i5IgRzJk7j5eXPsPSl5bzwY+fxavrXuOyL52JcJ0+MmOMkemsIcS5DVyv0S/Ljl4RCI+93/+SHm+vLnfHPQsWsvjZF5g4fhwL/vsYnd3dHDR3Dj29fWzaspVUymbk8OGsfvkV1q1vZt369SxfuYau7m4m7jme7p4eisUinV1djB87hvaOTspOmamTJ5PJpOnu7mFzyxZeeXUdtm3T3dONlJJCoUhDfT17TZvKlClTmDdvHlddeQWbt7azdMlSVqxaxfLly7nom9/m8COOIJfPu2MURK93S6Qklcrj+WCqsjXMHDqKmQcdFpw8OGW+/7Nfsn7jZo459ECWPv8CF//6WhYvXcmRB+5LXV0dh86bw29/cgl19SqOWaYyAY++A6RjdLs9VErbeDjimuIg3LLbxXkGvgH8WAjxnJTyue2sK0GCBAkS/A+ilFU84rKUlF1vvbdAEbWyaltaRs4W2pCWaO+y7XmOA0ak60kW+odaCkuvi4SDC90yfdJCIrE9a08I34Cuqq1XXnLgyKPfxlFHHQXA17/2NbrbW1m9Zi2FUpm+YhlKfbR3dPDC88/zlYu+yb9uuYX777wtehndRMzyej+EDObAyMUt0YepDSY9wB2vuHruuOtuxo8ZzbSpU+jo6GTty2sZNXIEfX0FRu8xSqehFpY/J5FhzynwuS99jZv/fSsbN28O7N9z/DhuvP73rN/QTKlcZmhTEzffehsNdbWMHzeWfC7LPtOnUVdby5CmRh57/AmqqvJk0mnGjx7Jr6/5Az+78nd+fWd89ny6urvp7unmn7fewRkfPY3pM+dw7513sNes2Zx14lFMnzlb9zlujCrBAAZzwLvvl0/5Y7Rq7Xruue9Blr60lIWPPEZnZxfvOvZo7lt4Iyk7xeGHHMgji5+jrraGoUOb2LJlK6vWPsmMvaYzY+/pjB45kqlTJjNy+DCsVBopJc+8sITGxgbGjxsXvC4vu6WVYt2GZizLoqqqGglks1nS6XQ/w3FETSMjxoznUKlXSUtS0lFQ9zYcm2POf9ISpJvlzE5XYbkr0UI6/rMhCl3sO2sfAP5y613cfNcDfPWs07j6sh9QP2Sor6surRSO13875dN0Kr1fFdE2hBAfq6g2A1LKa7f1nFCbj6PSXjcB61CJUcKSRbu1PFyltA0zVXVPSW+bD1ldRr9QjQUVkGf1GlQN44Fwaob521sNKe0eY+l7XUefv33bko3+9kMvNvvbLes1LSRXrYXID99vtL/9/jlKiGXfJt0/e9lCf3vL/Xf5220r1xGFbIOmcOSH6xTeNRPG6TpHGNsGLUTkavxtJ+PObDM6uDF2CXMbRd5FWS+bB5bVjHGPjfD3yxrzzajlyX7nGqmvzfsroikBcfBqMdNkW8VefdykYZTMIEF9zaKknxdR0NQemYpI60qQRuS0GbG/ngZqk86BVK7Vz2uLpRXPzHdhXbvu16pWraq5fKN+Rte2aPrR6nU6OLWtRZd3jDqFOx4p491KZ/U4pwzaRjav9+8xpMrfnjhMP39NNUY6+4wuX5/T2yZ1xqSLtHa7S5UGbaOlS1/zq1uCSqK3nHXwW4a20dWtnreylP53opcV0nv6Y1Opm55nw5A296vPIhDcXUm9gX6i762FDLw7UV5eUTTeoXKRxU88wW+u/ROPPLGYlavXcNoH38fPfvh93/A2z1XbA9DLBlLO8K4xjhftf1bHC4UCXV1dNDQ0sOG119i4cSN9hQKbNm5k5cqVrFy5gu7uHrKZDL19vQxpaqRULNHe0cEf/6y1Bg6ffwgLFurF6r2mT2PEsGF0dXfz4tKlnHTCCYwaNZI9x49j9OjRTJywJ1JKNrW0cuzxmhp/8EEHUVVVxVNPPYVEMmrkKEaNGqk461u3su/sWaRsm02bN9OyZQurVq+hs7OTtvYORg0fRlU+h5SS15o3UldTw6YtWxg9aiR1tbUMGzqEsWPHcsCBB/HhD7yflG1x511389DCRfz6N1fzh0u/xftPOREAJ13lJ4yRKSPZyWDe9qhy4d8oc/XApLeVHZ597jnmH3oYAD/47iXMmzuXQw+cp7/bw20MRuEJr1SIkK63+7gUHem/cyVH+vZL2d32FfUgcjXAtEOFEP77IwTY3oRWQNoW/ueylIHfLo8CaRW6EIVuurt72NrWxrCmBtLpNNhpZCrj0z5Mb3PU6ky2tkHRRbaHtrG9hvDrxAuoLFUJEiRIkCBBJHrdCU9Z6h9hh+CcM05pxoT6TVYF+//IR1vJlcYMKYPA9VwDtjvZtQS+lW4LoeMuUllwypRKJU5674dYuXI1Z37iY3zqjI+y34GHYHtLyjFBX/07EO+VjjKaHMehr1Akn88jhfANI9sS4Dise/UVbr/9ds47//Pkcjkcx6Gurp6Ro0aSyWRpbGpiwsRJTJq2N9XVVZSKRbKZDK1bt5JJpaitrWXuAQfS3tZGoa+Pqqo8+82bR29PD3tNn8acWbPo6Ggnn88zYc/x3PDHP1EqlXli8dPcctsdrFq9Btu2GTp0KPPnH8JC1/CeOn06V155Zf/LNPnnPv9XT2J6urvIpSwsp0SpVOKhRx6nta2NutoaMtk82GlWrVnD4mee5V//voUrf3M1K1etYurkSZzyruO57W83cPhB+1P2MiyanswYQzj+XolA31RXJUuWvsSKNS+zcdNmWltb6e3rY2tbO6+8+gorV65ixYoVjB49muOPO45vfOMb7LfvHPfaHRXAGGrfjN8Jviv6Q1QcjHdcOnqyKqUMvCHefgfIpyqRqNJlAsYz2qkTntCmLL2CI8pFHXfj0laqqqvJ19QqeT/wJSr92JtQkKMXC1VpGOAbleBkuyGlPGNn9yFBggQJEuza8AJ0BzKYQRu65QF+HD2DuQy+sVspHBkKxDW8bVJqb5xtaWO0BAHD1F2RpizTVKczbNy8nnsfeIhf/vTHTNtrb2bPPQArnY2nVHi7pDOwJzGE7u5uFi5cSG1dHdP32ot/3PQPzjnnsyr4sqaGnu5uZs6aRW9vL6+8/DKpVJoZM2Zw6nvew6+uvBopJelsDs+MLzvxY+EZQx5lxrtmSwjt4DQD3oALL7ww8hoidYulRBrUGFUwImBOCD8APVufB6eE45T5241/54xPfdovtuf4cewxciQjR45g/sEH8vajjmLs6D2YsOee1NeplSVppVyFjaDH3uxnc3MzCx56iOXLl5NOpdlr771425FHUFVV1e9a7rn7Lp555lleXbeOlatW8eyzz5HNZZmx994MGz6cIU1NZLJZxowdywEHHsjkSZOYMm0a1dXVSKkMXMcfTFsbvOb74cjYiaSHSlYuATK2pbn/liDjnydw5OArNeYk1HxXhBA+FUsbz8Znf6UohXBXfO10LnjvvbYJrh7pmtQ76JSdwL4qBsYup7YhhMgDx6MoG+uBe6WUzQOetJtiINqGeVdMtY1eg1phPtidBf2l0FXQygcN7pKwqcbx9Pp2f/umpzRVYtHtj/vbLSsWV3IJOxRDJvt5FPj9d9/nb79t0/3+9t9P/Y6/vWBzOOll5Xjv3ooKMPXEGf6+qlFN/rad1nQDO6eX3YQpsG9sWzn9qnna1gCyaNAcspoiIwxaiNOlKARtK9b6+zY+tUr3y9DQNikshQ5NQ8gN0cu3I0/VY2emhi0b9AhZLEaWcbrcZ8MMciloCkfvK6/421sNmk3nOl13T6sun63T6ihD99HUmtpxOhY4M0JTNKxGLStkjdsbgM01+ry7V2oVmOfWaerHyk2anrFyhe5L83I9jj2tG/ztYq8eu2JXOHO0gjDHYBBVFMtYmh17wDv87f321xSmWWM15ai+yni+YpbYC4YkSI/xTnvb69v0OL+4Wo8LwMNfOeotQ9t4dYu69+GlXxMV0hP77RvMuIhjR5ieaztUxrZEZL1pHF7tUve8xna47Iff47HHH+fBBx/0y1z+859z1lmf7n/yAP0a7NIdKbnn7rs55eST/H0nnXwy7e0d3H/fvQwZMpRRe4xi7Zo1jBgxkgkTJ7LXPvswbdp0jjj6aEaOHOXWE11/WNlHL8mLyOP6PNHvWoBIw8hHhBe+n8JFjLfRo9PkahSHvq6ujvr6eu698zbGjRkTqLO3t5eenl7SmTS5XI5HH3ucDc0bOfHd71IUAbf+tWvX8sqrr3LHnXfx+9//ngMPPIiZs2ZSLJa48447SKdTLPyvUrzyrurFF5dw0P5z/bbq6uqYPHkyH/7IRzjzrE/7XPDwKFRKIaoEAyk2ee9SyqhYhs7xV4DCE9iYNsLvZ6X6KebUKY5yFdV2uA9Syn5tjqyv3n7axpsFIcRE4B6U4eyhXQjxfinlXdFnJYhDQ26Xur27DDzDeVeAZzjvCvAN510AnuG8K2Aww/nNhGlEJ/jfhJSSyeNG09XVxQ033MDFF32DkSNGMGT4COreoCQrbz/mGO69/wEefOB+mpubOWT+ocyfP5+5+86hpUUF4mUyWXp6e3jppaXcfded7nnH8peb/vmG9Gln4Y7/3Mo1v/s9Dy9cyPr169nvgIMZO2YM06ZOYfKkiYzeYw+uvPoali1f3u/cBfffywH77w/Av2+5hQ988EP+sZkzZ7K5ZTN/v/HvbNq0kVKpxKzZs3lowQKWL19GoVikWCzR3Bz0Fba3t7N48WIWL17MsGHDOfU973ljByBBRdjVrKufoCYdhwFPAhNQmat+424nSJAgQYIEPqKWli2PC+l7L41g2AE5z9GoJHzYiSkn6e8J8z6nhA68FcUemtwA58t+/gvuufsuzj77bCZOnMje+8xg6vTpjBs3nvF7TmDu3P36ecojZdlQ11uJ9vvc/Q9g7v46Br+trY099hhNW1ubb0B//aKLKPT1seeECey1997MnrNfwAMZbte81jjIiG2B5tZaAT5skKvbzwsdIYknQzxf75Sy1HIPHuVGiBTzjzya+UcercpLSWdHBy+/vJaXli5l9apVLF2+grlz5zJk6FA2btxIa+sWOjo6GTF8OH/9+z9Y9OjjvLRsGStXrmTEiBG0tLSQTmfYsmUL2WyWVCrF8OEj6OzqZPGTT3LhhRcye999yWZzpFI2jU1D+OnPf8nQoUOpra2ltraOpsYGRo4aRb6qOrASHQfzlpj5AKSUsc+JWSaMjLvK6riUGIj3NkfWaWxX8iwG+xN/rBiUkAC2zdNuep63FbsUbUMIsQ64QEr5F2PfVGAJMEZKuf511vtB4BxgNlAlpUyFjr8T+BkwEZUG/Iump1sIMRm4CjgYlQ3rcinlz4zjVcD/A05Bvfc3AedKKXXIdATmzZsnFzz0cOSxMDfHg/nebOnRAQV9xoEhbuR/2vgmN2kdzV36vGeatbfxj4s0bWDZ4yv97e4WvTzf06pnxem8oSRgUC4yhiKBp07Q06nVGNY/o5chS716uX1H4YAPftTfvvWcA/3tzkvPB2DFf3QcqjSWxkfM1JSB4fOm+tvV4/SSncgZachr9TK8Ze5v0J7tUqM+t5TXtBAvMMj8YrMdTaWwW1/WbbZv8rfLLZp6wD6H6/JdmqrgvKbvnRg9RZe3NbUgkIQmregkW0r6vtUYChP51jW6js2atuF0btX7DYqDPWqSv11q0pSLXlvTVjZ162fQ/DHwqApmMpD1xrOzcrOmWyxv1s/OS2s0bWGDsW0+i8PGaGrL5LF6uz5vUCiMb94Gl1pRNr7tWzo1Dcc02kzqxagGnQxmiqG2MdSgatQaahtpY11/i6Gw0Wl4mbuLarvPUAPZaiRJCXukv3rUlLcMbeO11k7jsz42kME7mAFRKczfz7ilZq8fUcvKJs/ZNgKgkA7CKdHb28ujzy7lhRdeYNmypax75VWeeWoxPT3dNDQ2MXbsWIaPGElraysIwchRo9hjj9GsX7+Olk2bqKqqpnnDeiZOnsKypUtoadlMV2cX9Q317DNjJhMnTaFpyBAam5rYY9Qohg0fTk1tDdXVNdiWxdatrXS2t/OJM07n+eeeo6qqisMOP5zRo8dQW1eHbVu0bmmlp7eXc887j1kzZ27XeEbRNtTYRZT1pAR9IzkYAGf+hpYNIylg8A3YvrF/EEpPd3c3K1es4Ma//Y2Ojnb2mTGDCRMmMmHiREaMHKWSh4Tal2hjNorOoq9FxnOFje2BaBtRx3IVBfIFEWcsD0TPGOi82HYq7M/2mq8DGfKjG3cj2gYqdeuq0L6VqGd6JIoD/XrQivJg54GrzQMuVeQfwFnA34D3Af8UQuwjpVwjhLCBW1B0khOB6cAdQohXpZR/dav5hbt/Ouq5uRm4DPjM6+xvggQJEiSoABlj8rFjTGKFgX6XvR9d98cVGNw7bQYs+trSjsSb9ljGL7ltWdh2lnR1lsMOOZDDDtFOgFKpxKbmZtrb23nppZdobWujsbGRzV1FNm14jQ3r19M4ZBj7H3gIHR0djBo1iuXLl3HkMe9g+Mg9yObzbN7cwtIXnmf1qpUsWbGKrVta2LxxA62bN9PV3Ul3VxflUon6xkZqa+soFYvU1NTS2dnBnXfcEXl9J7/nfUyZvo8/Lp4xGOZ8m6hkRUCNnd4OqkHoYDgMxYewseapvVYaAGcLEbj/3qQmzqNbVVXFzFmzmDlr1sAVCxFKgDH4E+sgyLmDGOdUM1EpF3qwY359YT5yxDmDGfHb6qStWCh2O1/4uFWTiprexTzPDnCglPJxY58NFIG5UsqntrP+I4F7TM+zEOIS4Ggp5WHGvofccpcIIY4C/gMMl1J2use/CxwqpTzKDXDcArzLSyUuhHgbyuBuklLqqJ4Q5s2bJx96ONrzHAfzdplBgFlTDcfV3O1EexrNh8T8sWkxPYBGfWbdcctEZmCi6SnsM7y5nW7a4A2G97BgeM/M7YyRytjcNr2BTXl9TW192vO2qV3Xv9QIiDQ9hR6On60D1IZU6foaDQ/kqBod6FaX0193jdno3D/mmBqy3HQYY9Tep7erXY3grDH7N1M/b+nRZc26a40b3WbUZz4XI6v1nDgvjEAzqfturkR4t9d8Ruqz0V9fhUDKaL2/xVgFCf5wYZTXHzxPKgS9qTWuR9aIxQzc/9WtejFno/FMmX0xPbnj6rW3u8ZIiV2VNrcNHWejLe93Pe4azBTfxYDho/dXp6LH0fSsmG2WGzOfHgAAIABJREFUY95BHRUe3Zdw0OGU4bVvGc/z1s7XHzgch0p/F7d1Cdqv3/0f5+mEgWkYwt82FCqMpC791DYM76ynvRuGLeD5TT3utvDfo7Rl+c90xhY4hT42b9pIdU0N9fUNfgCbSVsRQvjn2CI6QFIQNLrMItXmz+YASV4i1TaADmM93wwGG+i2msNtB1RAoo38jDRk7wZLVBNxLbKfh3ngU6Pweozp6HoGOD+mjUq84duCHTnxHQiV2ssNNVW7lecZ4E4hRCli/73h/VLK4RHlthWzUfxqE4vd/d7xZZ7hbBw/x92eBuRCdSxGebmnAs8O1HgF+S8CMPM+mfaN+SI6ro5hnuAPsAfzB7rBMAzNkkXj29U0RkwDq2TUYzZj1m9+SXtGUqdhXZrL1C8b6gFm+32l6CAp0wAyE1Acs7dWcqjLaYM4Zxgy3pJgrWFQmcazaVCZL1urYbCaBouZsMMOLR96yBhWlXdfigXpG099xh14tV2PhTkZWW8kr4kz9s17lA58UziRZcpu6ttyWS8PmkoPZh3m89RdNLf1uHQUSsZ+XU+TkUikwbgvBpsjSOEo9ff27DVU02OmDdUKJ+Y4m/eu2tg2JyFxy4jmPbKk8dzFLA17MA3ZOE3hSto033tzLKKUJOJUCt5qsITy1HrPsbkd/ryt29t7flRdJffdsm2L8jZse58dx1EpfL26pVuvlIAV3b7U21Kq58W2LUrlsjrmtrPX0Dwpd1u44+o4DpYQWJaFlA5CphjTsCeWZeF4iSksG1kuARJh28iy2h+1LYWFZdnqXPe9siwldSalu+1U+fsd91qitj3aQ/hYdVpve5nnLMvy++Kfb5zre5cHaVNvp/rtlxF96d9nty+DtCGldMci/rmSMfu39XmTA5TxVWO28XmNenZf7/m28UwGrl9ue11igO8Lb9uuIEnarmY8X7IT2qwFwlpVW4F9BjleZxwnVMbb7hcaLYQ4C0URAeirrsrvrolghgKbBy21a2J37fvu2m9I+r4zMG1nd+DNQF31YIqsCRIkSPC6sDbuwC5lPEspd4bx3AHUh/Y1AO3bcBy3zFZjG6OMDynl1bi8ayHEE7vrsmrS9zcfu2u/Ien7zoAQ4omd3Yc3GnFLqjsKu+u9f6PxVh2Xt+p1v5HYXce0Yl72/zCeAfYL7dvX3e8dnyqEqI45/hLQG6pjX6AHWLbDe5sgQYIECRIkSJBgp+EtYTwLIWwhRA5UBJ0QIuf+CeA6YJ4Q4kNCiLQQ4kPAXOBa9/QFKNf9D4QQeSHEHODTKO1pXDm6G4DvCCGGCyGGA98BrhsoWDBBggQJEiRIkCDB7oe3hPEMfBTlCb4TsN3tHmC8lHIlcCpwEYpmcRFwipRyDYCUsgy8G5gBtAC3AZeaWtTA+Sgvs/f3EvCFCvp19eBFdlkkfX/zsbv2G5K+7wzsrv3elZCMYTTequPyVr3uNxK75ZjuUlJ1CRIkSJAgQYIECRLsynireJ4TJEiQIEGCBAkSJNhuJMZzggQJEiRIkCBBggQVIjGe3wAIIYYIIa4VQmwQQrQJIf4khGg0jp8uhFgphOgWQjwqhJgbOv8zQojnhRDtQohWIcQTQogPvEl9f7sQ4hEhRKcQYrMQ4ordpN/fF0KsdtveKIT4uxBi3O7Q98HgBrxeKoTYJIToEELcJIQYugv063WPuRDiSCGEFELcF6rzNCHEmjeh76/rOd8F+v26v1t2dt93BoQQHxRCPOQ+o6XQseOFEPe597/VLXdYqMxkIcQ9QoguIcSrQogLQsfXCCF63efI/AvLm+4SGGQ8vOfDvI5FoTKx4yGEuFwIcU+o/GVundONfRPcfTPfqOscDEKIF0LX2eP2aT/3+DvdMj3u78KxxrlPCSEuCtW3WAixIbTvE+539ls5hxFCCEsIscgd3zHG/kq+q8Lv1Z93zlVEQEqZ/O3gP1Q675tQCVSaUIGKt7rHDgW6gGOBLHAh0AzUucc/BGwADkQlgsoDhwHHvgn9PhKlVf1et285YL9dvd9u+9OBene7CrgMWLQ79L2Ca/sGKhB1IkpD/Cbg9l2gX9sz5kcCZXRqe6/O04A1u/BzvtP67bazPd8tO7XvO+kZfYf7fn8CKIWOfQQ4BaXbnwI+A3QCY93jNrAE+JX7fO8HbAQ+YNSxBjhtZ1/nDhqPI8P7QscHHA/gBFQgfs4452ngeeAcY9+ngA07eyxC1/Z94AV3eyLQ7b4XGfc56QL2dI9fCtxvnNuEyvewGtjH2H8D8NedfW07+w+4ALgHlcR4jLuvku+q2GdxV/jb6R34X/sDqlF5kGcb+45wH5zxKAm8641jAngZ+Jj7+VfA33ZS3/8L/Cjm2C7b75h78FOgZXfre8z1rAU+aXye5D5Pe+7svm3HmB8JlIAvAi8Ctrv/zTCet+c535n93t7vlp3W9539V+mPMbAJpbYEcBTKiKoxjn+XoOG0ht3IeB5oPAYbo8HGA6gBCsDR7uehKAWrjwH/MM75M/DHnT0GRn9SwHrgPPfzJcBDoTIPAd9yt9+Byu2Qdz+/BzWJvdqrw93/GnDmzr6+nTy2U4GVwByCxnNF31U7u/8D/SW0jR0PYfx58MZ5tvv3pHdAqiflKXc/KF3pE4UQ3xNCvE0I0fDGdxmESgJzAPz/9u49Wq6yvOP49zeThNxDuEQJJAahUmtQECjYWkEQirUtFa/US1lWanXZYrvQKtY2S9t6aVetXdVSqYq30lYgVUSlciuKpajR0LCKF5CQcBVCbuZGzjz94333zJ7JnJydc5mZc87vs9asM/udd7/72e/ZM+c5e979bnblr6Aek3SLpOLOPwMZd5mk35a0hXT26GJgVX5p4GMfTv76dznt8d9D+qP07H7FVRhDnxf+gXTm4aIJD5ZxOc4LPY07G+tnS6EfsQ88Sc8GDiWdKYXUbz+MiO2lamvYtz+nkrqkDXlY0HWSyvu63/7I5XcAZ+XXzgRuA/4TOENSrVTeNryjz36L9I3eZ/Jy2/soK//ev0F6Dz4/L58F3ATcnJ8j6ReAIxis/eyp/Pv+JPB2WndfLlT9rBpYTp7HWf4AuQVYJelgSYcDl+aXF5K+bt3Ssdrm/BoR8QXS18m/APwL8LikmyWtnODQF5OOh4uAC4GlpA+9r+RkclDjboqIf4mIRaQPrVXA/+aXBj72/ViYfw4bfz+Nts9L6+8hvT9WSVowsdECYzzOC32Ie8yfLaV2eh77oFO6udVVwIci4ke5uFJ/Av8kaXPpcecEhztR7iadITyaNCTrTuAmSUvz61X64wZayfNZwE0R8RDpK/nn5nHOSxispPJNpOEVRYI30t+LHaRvr9r2Mz9Ol1TPZfdGxE8mOPZBdjFpeM41XV6rcizVO95XmyW9c6KCPVBOnifGa4HdpPFhdwBfzOWPkcZGdV5McjDpTCIAEfHliDg/Ip4CPIv0dceXJ/jCg23556ci4s78B/b9wEzglwY47n1ExMPA5XnbxXi0SRF7F8XvZb/x99to+ry07r+Rxgu+Y6LjZByO80KP4y6M6bOl0KfYB1JODm8m/RP1rtJLVfvzTRFxcOnR92+ERiMiHo6ItRGxNyI2R8S7SOPjX5yrVOmPG0l37F1IOsNcXJx6c14+k3T2esNE7ceBkHQMKdG9rFRcdT/PlHQk6Z+BNRHxCGmoxkkM3tn1npJ0LGms81uHqVKlj4c63lcHR8QHJiDcUXHyPAEi4oGIeFVEHBERR5P+SO0CbgfWki60ACAnZyfk8m5t3Q18mDSmcXG3OuMU8xbS+L1ud80JBjTu/ZhBGiO6lMkXezmWzaSxYOX4n076D33QznCNus+BS0hjcY+cyADH+zinR3EXxvOzhR7HPogkrSB9Df/ViHhr/vq4sBZ4Rh7qUziR4ftzKmrQGiZUpT9uJ100+DrSEJjv5fKbSEnqWQxWUvkmYG1E/E+prO19lHXu5w2kJPnlwK2R7kQMaT/PIY3ZHaT97LXnA4cD6yQ9Rhr2AnCnpLdw4J9Vg6ffg66n4gM4jnQFbg04BfgRrYsNnk8aH3oW6UreS2i/yvQNwCuAw/LyUaQr7O/qQdxvBzaShi/MIJ2Veoj0H+Igx10j/Ye7pLTt1aTEYsYgx15x/95NuuX70aSk+QvA1/oc01j7/Az2vWDpatIFW/cN8HHet7jztsby2dLX2Pt0nNZJs6mcQ7pYcnZ+iDQ0YSPwF/tZ9/+Aj5Bm4Dkh9+erS3XuYxJdMDhCf5wJHJuPrfmkYVib2Xf2kWH7I9f7Sn4/rS6VHZaPzS3kCzL7/cjvkUdJ3xyUy48hXRh5AekbqQsozbaR68zI+/IQcHGp/GW5rAEc2u997GPfziX9TSgep5FOTpycj60D/qwatEffA5iKD9J4yofyG/BH5TdXfv31wL2k/9DvAE4qvfZS0ldcP81v2AeAzwNH9yBuAe8lTdu2OcdxwiSIu5Y/sB/t2PYxgx57xf2rk2ayKL6av4ac6PcxprH2+T4fjqQ/3HuY+OR5LMd53+LO2xrLZ0tfY+/TcXoh6Y9252MF8Kn8fHvH4zUd/XNj7u8HgUs62r+PdOa/s43j+73vo+iPPyLN7POz/L7+GnBKl+Nl2P7Idf44t/kHHeVrSVMlHtzvfsjxvJr0eTq/y2vnAnfl99FddJm2FPhS3s/jS2WHkBLn7/Z7/wbpkY+v5mwbuWykz6pu781v9XtfiodyoGZmZmZmNgKPeTYzMzMzq8jJs5mZmZlZRU6ezczMzMwqcvJsZmZmZlaRk2czMzMzs4qcPJuZmZmZVeTk2czMzMysIifPZoCkVfk2omNp45WSLuxSfoWk74xUbwzbXSkpJJ0xDm3dktsKSW8rlS+S9DVJt0t6Tcc6q0rrXDXWGMzMzAaZk2ez8fNK0h28Or2vo3y4eoPiZuB5wL+Wyl4EXBkRp5FuZV72z7n+93oTnpmZWf/M6HcAZlNdRNzT7xgO0KaIuL2j7BbgKklvISXLTRGxEdgoaWuP4jMzM+sbn3k2q0DS8yR9SdKDkn4m6fvl4QuSrgBeBpxeGsKwqnitGLYxQr1bOoc9SDoj11lZKnuLpA05jmuBI4aJ+fmS/kvSDkmPS7pc0oLR7H9EPB4RL4yIUyPi8tG0YWZmNhX4zLNZNU8DbgMuA3YBvwx8SlIjIq4kDc1YDhwMvCWvs7FLO1XrdSXpPOCjOY7/AE4HPtml3i8DN+Y6LwcOBT4ALM7LZmZmNgpOns0qiIjm+F9JAm4FjgIuIo0FvkfSJqDWZchDuZ1K9fbj3cDXIuLNefl6SYcDb+yo9wHgWxHxqlLcDwA3SloZEetGsW0zM7Npz8M2zCqQtFjS30taDzyZH78HPKOHMdSBE4Evdrx0TUe9uaQL+P5d0oziAXyTFPdJvYjXzMxsKnLybFbNFcCrgL8GzgFOIQ2XmN3DGA4nfVv0aEd55/JioA58jFai/ySwG5gJLJvYMM3MzKYuD9swG4Gk2cBLgLdGxGWl8vH+53MXMKuj7JDS858Ce4ElHXU6lzcDAawCvtJlOw+OPkQzM7Ppzcmz2cgOIp3J3V0U5FkrfpOUpBb2UO1M9HD1NgIv6Cg7u3gSEUOSvg+cR7pgsHB+eYWI+Jmk24HjIuK9FeIxMzOzipw8m7XMktRtJor/Ar4N/Fmey7gBvBPYAiws1bsbOE/Sb5ES4QcjottZ3uHqrQZ+V9KHgeuAFwK/2rHuXwHXSPrHXP904Nwu23gH6eLABnAVsI00y8dLgHdHxA/33xVmZmbWjcc8m7UsAL7Q5fEs4LeBnwCfAT4CXJ2fl30M+E/SWOhvky4o7KZrvYi4DriUNJXcatL0eG8rrxgRq4E/AH6DNA3dicDvdm4gIr5JOot9OPBZ4FpSQr0BeGTEnjAzM7OuFBEj1zKzaUHSLcDjpIsjh6LCB0Qe+10jzSv904jwPNJmZjZl+cyzmXU6nzQ7x8UV6/9Zrt85XtvMzGzK8ZlnM2uSdBxp+ArA/RHROQ1et3WWAkvz4qaIuHei4jMzM+s3J89mZmZmZhV52IaZmZmZWUVOns3MzMzMKnLybGZmZmZWkZNnMzMzM7OKnDybmZmZmVXk5NnMzMzMrCInz2ZmZmZmFTl5NjMzMzOraEa/AzCzkUk6GDgFqPc7FjOzAbMXuCMitvY7EJsefIdBswElaXntyFPXx9YNMPQkmrcEajOQakWF9LymvFhDEqiGVDRSLlNbWbmdZltqtUVHHeUHRTMoVZea2yteV7Md0jKl9Yo6lOsoh9FsvH05r5dDBaBWWqfWUVZrbr+1XLTUWaem9npFTPu2lb6qK++bUF6/vU+Kr/SaMQ+3Xke95nq09rXcT7XSctGlorX9tt9Lc7nzdZoxlZrqvl6XthGo+XcjIPLP5nKg/LNcts8yNH+26pfLi/VorqdmnaJeI1dttNZrNNq2F9G+XLQdRb3cTrNObiuiI+5SnShvL4JotNqOABqtOlGu04xp3+W0Tn5etNUWY1ononO93F4zzGJ7tG8/aMZZXg9o33bRdqMce6nrihiKOgS5OP+WUlsNWus0upSldaI4Imh0KYvS+q22Wl3SyNseIniY3cyixtOYy21sWh4RGzCbIE6ezQaEUnZ1Qu0pJ6yJbQ9AfSZauJzaomVo1vxUp1ZHtXrbc9XTcq1YrtVRrdZep1SvWK51ttPZdn3fbdVqQs1kXc3loqymjuWaSHl4qpvaSq83k9JiuaZWglmj1bbKbYl6bqeen9dLZTM6luu12j516hp+nf213a2dmkRdNPetXFbE3KyjVjvdy9L6RT/Wa/lnl7LU/1ArkvXmPyZdymj9IwCtfwDKSX+5rLVOt7Kc1JcSSkWjPXndpyw/b6Tl5mulRLVV1mhvtyPB3adeYyglmI2h1vLQUFovl0UjLUepDo1Grje0bzvN9TqWS+1GqU4MpUfncmNo3zqR+6AxtJ/1cp20PNRcp9Vuo6MsclnktqNZXl5uNKJUll5vW25Es25qOy83GjRyvSjaKi03IhiKIBc1nw/l31vxPP2sUifHNEK9cjuFbexlPTtYz0720GA5c/gOW04A7gwnOzaOPGzDrI8kzarVai/gkOO+zuzFaPZiNHsRtSXPQvVZ/Q7PzGzSWMAMVrKQlSxkNw02sJNjmPv9J3iS47WQdWx7EXBrRDzZ71htcnPybNZjkhbVn3b65saW+2H2Ypj/VLRoOTOWntI802tmZqN3EDWOZR7HMo8hggfZRcAND7GLn9M8VjCXG3hskcdJ22g4eTbrAUmza0eetjO23o/mHk7s3kJ9yfEw55C2cb1mZja+6ohlzGEZcwiCx9jDfexkCbO2LNMcVjCXb7JpdkTs7nesNjk4eTbrjbmxZT2xZzu1Q46ltmg5zF7sxNnMrIeEOIxZ6QJZ4Ef8jJ+wA2AO4OTZKnHybNYDEbGJdE3gYh20YNPQI2uJXVupzX8qWrQMzX9qa2YLMzMbV0MED7GL9ezkQXaxmJmsYC5b2bt4Szy5ud/x2eTi5NmshyLiCYpZwqSDtPTkXbFlPUMP3IHmLKa2aDlacBSqz+xzpGZmk9seGtzPTtazg008yRHMZgVzWMe2gx6PPXv6HZ9NXk6ezfokj68rEmnFrieeG7MWfKfx6DqoH4QWLae2cBmaNa/PkZqZTQ7b2ct6dnIfO9hDg2XM4cfsOAn43uOxx9PV2bjwPM9mA0jS0bUjT703ttwPjb1o4VFowRGoPqs5vEO1GlId1fOy0vzOqTwPASnq1GqlOZtrUKtRU72tHfK6zbbqubzZTq1tnmdQ2zzOOe62uZmL+66U53lGxTzPzX2FYp5nSuvVipuHlOaDznMdQ5pzuJbnXW7Nl5znWi7N81zL8zC3z5fc2n691EZrvmb2aTu10T6nsyTqObZivaKsiLmW50quUbRDl7K8XGyrrV5RpmZZ7sbmjUxKv5LmPM+l+800y4rl5vzN5XmeO+oU80B3ttN5kxRFeS7mPM8zQfs8z+U5naP9piRAumNH55zO0VGWt0WprDGUb/hRzNec50ButM8FnW700apD5DmWo7ReMa90MYdyc57pXGeoNV91c57nyHMqF3cIydtPcyYPNeMu6jTnZ27keZaby9GMu1HcyKRRxNiadznNudza/6LdRiOadykp5nNu3hClWK9BqU6xfVrtRJrXmeb28zzP0ZoPOhrFvtCqE8Vcz7kLIvIczcVymo+5UbpJSrHcnNM53wiltHkaua2h0k1Sym012yENyXiAXdzPTmZSYwVzuI0nVkTEeswmgJNnswEnaTHwa8BFwA/7HM5U8PPA3f0OYgpwP44P9+PY7QVmAm+PCI9ftgnn5NlskpD0nYg4ud9xTHbux/Hhfhwf7sfx4X60XvLl/WZmZmZmFTl5NjMzMzOryMmz2eTx8X4HMEW4H8eH+3F8uB/Hh/vResZjns3MzMzMKvKZZzMzMzOzipw8m5mZmZlV5OTZbEBJ+kNJ/yNph6QfV1znXEl3SdopaZ2kcyY6zkEnaa6kT0p6QtJmSZ+QNGc/9S+U1JC0vfS4spcxDwJJdUl/LemnkrZJulrSYfup72Ovw4H0oaQzJEXHcfetXsc8iCS9WtI3JG2VtLdC/ZMl3ZE/O++R9NpexGnTh5Nns8H1IPAh4C+rVJb0dOAa4P3AovxztaQVExTfZPER0o0ofh54BvBM4G9HWOfeiJhfelww0UEOoHcC5wGnAkflss92q+hjb1iV+zAb6jjufmnCI5wcngA+BrxtpIqSFgFfBa4GFgO/D1wm6XkTGqFNK06ezQZURFwVEVcDD1Rc5XeA70bE5yJiT0R8HliTy6elfIb5tcB7IuKRiHgUeA/wO5Jm9ze6gfd7wAcj4t6I2AK8Azh3mITYx153B9KHNoyIuD4irgTurVD9fGAn8KGI2B0RXwdWk34XZuPCybPZ1PEc4LsdZWty+XR1HDCb9n5ZA8whnYUezjJJD0vaIOlfJR09kUEOmnz2bjmlfouIe4CtwLO7rOJjr8Mo+hCgno+5hyVdJ2na9t8YPAdYE+1TiU3rY9HGn5Nnsx6TdEUe2zjc4y9G2fQCYEtH2WZg4dgiHkwV+3FBrl7ul+L5cP1yK3A8sBQ4BdgFfF3SvInYjwFV9E3V42laHXsVHWgf3g2cABxNGmJ0J3CTpKUTFuHU5GPRJtyMfgdgNg29FbhkP6/vGGW720jjTcsOJp3pmoqq9GNxdnkR6Q9o8RyG6ZeIKH81/LCki0h/jE8Dbhx1tJPLtvyz6vE03Y69Kg6oDyPiYeDhvLgZeJeklwMvBj4xUUFOQduAFR1l0/1YtHHm5NmsxyJiO7B9AppeC7ywo+xEpmjCV6UfJf2AdOb4ucBNufhE0pjIH1bdVH5odJFOPhGxWdL9pH77PjQvClxIOiPaaVode1WMog+7aTCNjrtxshZ4aUfZibncbFx42IbZgJI0I1/UNjMtavYIF7l9BjhZ0gWSZkq6ADgJ+HQv4h1EEbET+BzwXklLJC0B3gt8JiJ2dVtH0kskHaXkEOCjwGPA7T0LfDB8HPgTSUdLWgh8ELg+Iu7rUtfHXneV+1DSmZKOlVSTNF/SKuApwPU9jXgA5Sn/ZgOz8vLs/Oj2j8VqYK6kt0uaJeks0kWEvn23jRsnz2aD609JZ0g/Djw9P99ZvCjpNZKaZ17zxUjn5/W25p8vHSbZmU4uJp1lLh4/AP6oeFHSpZLuKtU/A7iDdFb7LuBQ4Ox8pns6+QBwLfBt0owvddLMJT72qqvch6QL2m4kDTu4lzRM6OyI2NDTiAfT60iffdeT+rD4LHyapF/Jc2Ivh3TGH/g14BWk4VaXA78fEf/dl8htSlL7BalmZmZmZjYcn3k2MzMzM6vIybOZmZmZWUVOns3MzMzMKnLybGZmZmZWkZNnMzMzM7OKnDybmdlAkPQlSU9IuqrfsZiZDcfJs5mZDYoPA6/vdxBmZvvj5NnMzPYh6cuSrujlNiPiZtJNQszMBpaTZzOzKUTSFZK+3FH265J2SPrLfsVlZjZVzOh3AGZmNnEkvQ74Z+AdEfGRPseybpiXXuzbUJvZZOEzz2ZmU5Ski0mJ8xv3lzhLmpvPWG+X9IikS7vUOVfSN/IFfZskXS/pmaXXXy/pcUkHdaz3eUlfAoiIlcM8nDib2aTh5NnMbAqS9D7g/cD5EfHZEar/DXA28DLgLOBE4AUddeYBfwf8InAGsAW4VtKs/PoXSH9TzivFsAh4KfCJseyLmdkgUUT0OwYzMxsn+SK/C4BZwK9HxHUj1J8PPA68ISI+XyrbCPxHRFw4zHrzgK3A6RHxzVz2D8CxEXFuXn4z8OfAURGxt0LsNwDPISXqm4BXRMR/j7SemVkvecyzmdnUsw5YBPy5pNsiYvN+6h5DSrSbSWpEbJf0v+VKko4B3gecChxOOstcA5aXql0OrJF0VERsBN4AfLpK4py3+6Iq9czM+snDNszMpp6HgNNJCfQNkhbvp64qtnktKWl+EymBPhHYS0q8AYiItcAa4EJJK4GTgU8ecPRmZgPMybOZ2RQUEQ+QxibPA26UdOgwVX8MPAmcVhTkIRkrS8uHAs8E/ioiboiI/wMW0P3by8uBC4E3ArdFxA/GvDNmZgPEybOZ2RQVEQ+REuhZwE2SDutSZzvpgr4PSjpb0rNIZ4vrpWpPAI8BF0k6VtLpwGWkM8+drgSeCrwZXyhoZlOQk2czsyksIh4BXpgXb5a0pEu1S4CbgdX55zrg1lIbDeBVwLPzax8F3gPs7rK9bcC/A3vyTzOzKcWzbZiZ2biS9FVgY0Rc1O9YzMzGm2fbMDOzcSHpEOBFwDmkKefMzKYcJ89mZjZe1gCHAJdGxHC34jYzm9Q8bMPMzMzMrCJfMGhmZmZmVpGTZzMzMzOzipw8m5mZmZlV5OTZzMzMzKwiJ89mZmZmZhU5eTYzMzMzq8jJs5mZmZlZRU6ezcy3w2yAAAAAG0lEQVTMzMwqcvJsZmZmZlaRk2czMzMzs4r+HwvmJV/Qw0zhAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 720x504 with 7 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# shift longitudes from 0deg...360deg to -90deg...270deg for visualization reasons\n",
+    "dQ_icon_vmean_shift, lons_icon_shift = fct.shiftgrid_copy(90., dQ_icon_vmean, lons_icon, start=False)\n",
+    "dQ_mpi_vmean_shift, lons_mpi_shift = fct.shiftgrid_copy(90., dQ_mpi_vmean, lons_mpi, start=False)\n",
+    "dQ_ipsl_vmean_shift, lons_ipsl_shift = fct.shiftgrid_copy(90., dQ_ipsl_vmean, lons_ipsl, start=False)\n",
+    "\n",
+    "# limit for colorbar\n",
+    "vlim = 1\n",
+    "\n",
+    "fig, ax = plt.subplots(3, 2, figsize=(10, 7))#figsize(10))\n",
+    "# zonal-mean change\n",
+    "cf0 = ax[0, 0].pcolormesh(lats_icon, levs_icon/100, dQ_icon_djf_zm,\n",
+    "                          vmin=-vlim, vmax=vlim, cmap='RdBu_r')\n",
+    "ax[1, 0].pcolormesh(lats_mpi, levs_mpi/100, dQ_mpi_djf_zm,\n",
+    "                    vmin=-vlim, vmax=vlim, cmap='RdBu_r')\n",
+    "ax[2, 0].pcolormesh(lats_ipsl, levs_ipsl/100, dQ_ipsl_djf_zm,\n",
+    "                    vmin=-vlim, vmax=vlim, cmap='RdBu_r')\n",
+    "# zonal-mean tropopause\n",
+    "ax[0, 0].plot(lats_icon, tropo_icon/100, color='tab:green')\n",
+    "ax[1, 0].plot(lats_mpi, tropo_mpi/100, color='tab:green')\n",
+    "ax[2, 0].plot(lats_ipsl, tropo_ipsl/100, color='tab:green')\n",
+    "\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i, 0].tick_params(labelsize=13)\n",
+    "    ax[i, 0].set(xticks=np.arange(-90, 91, 30),\n",
+    "              xticklabels=['90S', '60S', '30S', '0', '30N', '60N' ,'90N'],\n",
+    "              xlim=(-90, 90))\n",
+    "    ax[i, 0].set_yticks(np.arange(0, 1100, 200))\n",
+    "    ax[i, 0].set_ylim(1000, 10)\n",
+    "    ax[i, 0].set_ylabel('Pressure [hPa]', fontsize=15)\n",
+    "del i\n",
+    "ax[2, 0].set_xlabel('Latitude [$^{\\circ}$]', fontsize=15)\n",
+    "# text for models\n",
+    "mods = ['ICON', 'MPI-ESM', 'IPSL-CM5A']\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i, 0].text(-0.25, 0.51, mods[i], va='bottom', ha='center',\n",
+    "                  rotation='vertical', rotation_mode='anchor',\n",
+    "                  fontsize=17, transform=ax[i, 0].transAxes)\n",
+    "del i\n",
+    "###################################################################\n",
+    "# maps\n",
+    "ax1 = plt.subplot(3, 2, 2, projection=ccrs.PlateCarree(central_longitude=-90))\n",
+    "ax1.pcolormesh(lons_icon_shift, lats_icon, dQ_icon_vmean_shift,\n",
+    "               vmin=-vlim, vmax=vlim, cmap='RdBu_r',\n",
+    "               rasterized=True,\n",
+    "               transform=ccrs.PlateCarree())\n",
+    "ax2 = plt.subplot(3, 2, 4, projection=ccrs.PlateCarree(central_longitude=-90))\n",
+    "ax2.pcolormesh(lons_icon_shift, lats_icon, dQ_mpi_vmean_shift,\n",
+    "               vmin=-vlim, vmax=vlim, cmap='RdBu_r',\n",
+    "               rasterized=True,\n",
+    "               transform=ccrs.PlateCarree())\n",
+    "ax3 = plt.subplot(3, 2, 6, projection=ccrs.PlateCarree(central_longitude=-90))\n",
+    "ax3.pcolormesh(lons_icon_shift, lats_icon, dQ_ipsl_vmean_shift,\n",
+    "               vmin=-vlim, vmax=vlim, cmap='RdBu_r',\n",
+    "               rasterized=True,\n",
+    "               transform=ccrs.PlateCarree())\n",
+    "\n",
+    "for axis in [ax1, ax2, ax3]:\n",
+    "    axis.coastlines()\n",
+    "    axis.set_aspect('auto')\n",
+    "    axis.tick_params(labelsize=13)\n",
+    "    # set xticks and yticks for latitudes and longitudes\n",
+    "    # xaxis: longitudes\n",
+    "    axis.set_xticks([-150, -70, 40, 120], crs=ccrs.PlateCarree())\n",
+    "    lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                       degree_symbol='',\n",
+    "                                       dateline_direction_label=True)\n",
+    "    axis.xaxis.set_major_formatter(lon_formatter)\n",
+    "    del lon_formatter\n",
+    "    # yaxis: latitudes\n",
+    "    axis.set_yticks([-60, -30, 0, 30, 60],\n",
+    "                     crs=ccrs.PlateCarree())\n",
+    "    lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "    axis.yaxis.set_major_formatter(lat_formatter)\n",
+    "    del lat_formatter\n",
+    "del axis\n",
+    "\n",
+    "# add lines for tropical regions in ICON\n",
+    "latnort = 30   # northern boundary: 30°N\n",
+    "latsout = -30  # southern boundary: 30°S\n",
+    "lon1 = -150 # 150°W\n",
+    "lon2 = -70  # 70°W\n",
+    "lon3 = 40   # 40°E\n",
+    "lon4 = 120  # 120°E\n",
+    "# upper horizontal line\n",
+    "ax1.plot([90, -269.999], [latnort, latnort],\n",
+    "            linewidth=2, color='tab:green', transform=ccrs.PlateCarree())\n",
+    "# lower horizontal line\n",
+    "ax1.plot([90, -269.999], [latsout, latsout],\n",
+    "            linewidth=2, color='tab:green', transform=ccrs.PlateCarree())\n",
+    "# vertical lines\n",
+    "ax1.plot([lon1, lon1], [latsout, latnort],\n",
+    "            linewidth=2, color='tab:green', transform=ccrs.PlateCarree())\n",
+    "ax1.plot([lon2, lon2], [latsout, latnort],\n",
+    "            linewidth=2, color='tab:green', transform=ccrs.PlateCarree())\n",
+    "ax1.plot([lon3, lon3], [latsout, latnort],\n",
+    "            linewidth=2, color='tab:green', transform=ccrs.PlateCarree())\n",
+    "ax1.plot([lon4, lon4], [latsout, latnort],\n",
+    "            linewidth=2, color='tab:green', transform=ccrs.PlateCarree())\n",
+    "del latnort, latsout, lon1, lon2, lon3, lon4\n",
+    "\n",
+    "# a), b) etc for subplots\n",
+    "labs1 = ['(a)', '(b)', '(c)']\n",
+    "labs2 = ['(d)', '(e)', '(f)']\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i, 0].text(0.01, 1.02, labs1[i], va='bottom', ha='left',\n",
+    "                  rotation_mode='anchor', fontsize=15,\n",
+    "                  transform=ax[i, 0].transAxes)\n",
+    "del i\n",
+    "for i, axis in enumerate([ax1, ax2, ax3]):\n",
+    "    axis.text(0.01, 1.02, labs2[i], va='bottom', ha='left',\n",
+    "              rotation_mode='anchor', fontsize=15,\n",
+    "              transform=axis.transAxes)\n",
+    "del i, axis\n",
+    "del labs1, labs2\n",
+    "\n",
+    "del ax1, ax2, ax3\n",
+    "\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# colorbar\n",
+    "fig.subplots_adjust(bottom=0.12)#(right=0.8)\n",
+    "clevs = np.array([-1, -0.5, 0, 0.5, 1])\n",
+    "cbar_ax = fig.add_axes([0.3, 0.0, 0.5, 0.02]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf0, cax=cbar_ax, orientation='horizontal', extend='both',\n",
+    "                  ticks=clevs)\n",
+    "cb.set_label('K day$^{-1}$', fontsize=14, labelpad=1)\n",
+    "cb.ax.tick_params(labelsize=13)\n",
+    "del cbar_ax, cb, cf0, clevs\n",
+    "\n",
+    "fig.savefig('figure4a_4f.pdf', bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax\n",
+    "\n",
+    "del dQ_icon_vmean_shift, lons_icon_shift, dQ_mpi_vmean_shift, \\\n",
+    "    lons_mpi_shift, dQ_ipsl_vmean_shift, lons_ipsl_shift\n",
+    "del vlim"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/pythonscripts/figure4a_4f.pdf b/pythonscripts/figure4a_4f.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..f029888eaf28fd083b64bf752d2cd00e050a3379
GIT binary patch
literal 408850
zcmY!laB<T$)HC5yU2{ia^)4<$1p|frq%1BQ8wLG<#Prl+1tSFmg&+m}kjjEo1%2nl
zlEj?+bOk#*uGG8~kU|S24Xza>?!hIAC8-J~5KV6Rc_j+Q5OzRfNl9u^o`NZe%cUPs
zl%E`&TA~oGpdaAkrl22^T2Z2)@0pvJp6UdpouRa+Lac&*a7JQEW?s628AN-8e^ORz
za*2XDh>PSLLjxrDIOgT$mlP{RgY-M+=ar=9l@u#jf^=}{yBFn`7ASzc=^U(}?~+=U
znVcHr?xdg}te_uKl$cjskXV$Oms|<+IYhmk9hbguYD#9JQ+|a)v;xR7b3=1I3lkF)
zGXo<db7KWl6JtG7OLHSLOCtkQ3y{qLAcIOE;mD;Qlv<o$T9lkxtN;o*c))_f8p#_V
zM}k5Z<UY5|oRZWc1%0=i#FA8()a3k>R0VyX)V%bP3<X0_d<B6t7MB#ICgyTg%-OTo
zchhUH%_-N<2hQPqA>z=$a$`*xuOsiwsvz5&o4sbPymH~o)F1r)CHp0NXPX4i+&5WY
zzos%LPvFTjrsMYiXCAZv|1tf?=lM_n|E;h8x844K_0RwR<?D~x|6luO|9_9e^Z%#*
zn0(ntul{=FJp0@B|J#2)ub%gB-~Q9DKkJ@m{`dL6*USCO|9^@<o%rv5(V73#E|vfK
zUFrY+`;T<F_<H-#>3{Z|KDazJx_<vX`Q88Q-~6in^DlPU`%QaJ{VJA-xcB(qeEaYJ
zOXt{qE<R8xdF|u*Y}tQ&hj;LNuCCkvzvu9$@*jTl6KCE#{ONi9zxnn5uG|0rKL7ux
z_;^-J-unIXzZ>m&{{GY7&3}_C&tCpw`F|td>vA3Ge}B&Z*J%EAzPe!P3;Eyi%j$pW
zpZ2&{f4nee|K<7Lvw!TanN}Hf+GF4A`wzG7n|@XAKmUFkzsqLo<vjbUWEY+3khfi4
zs8R9x_t(mY^^dNvXW%=0()-P|zt(GBTkZR1IYs`YjsN;&jpCo0d+eXer_RYrE|Q+C
zaBr4R{q^%d=8E5Ex$d797;rXOTG9W;B>Vd5segSI`ycyi?Zi;{PkE+l&dK}x=fAI(
zx^E|W{XGZck)Qo3(*h=KzrXRKea4$dwFQlbPJTc0>qhj0-|v5Kt-E$J{n4+|nzlnT
z`W?#N=obIAKL38@oSQLf>+T;H*O>FiBaKt_r|G}BcIzL$t(*M!m#kug#s7Ie!rPww
ze4iaTJ@f0y9d)i83J2>|Hn-?j{<N;U|M|52syh&Mg+@`Qgb)6h_w29CXDR#FA?MEC
zw!e4!x9#-%jpr+k7D-ROJ%gqAr4jE_pFdjrBiD6D?_cQZYBzE9>GD~pg`ZY@SU*3!
zGU)f4{~G7ZE*tQDj%|DElb0@ZC3<$I^+Emk`ljO7;@dPd(>B?wWgMFJ=bqp3&yV~I
z^8WS-IL!G!=kbnx_V-h5mj$m=vb&sJm;Zl8{8Rf%-_I3iC%%Ikvvtm+(~D0|Z+t2p
z74k&ba+yb8eA4qm>;2Qa&8NS<_MWBB`R4bCsz18r_s)HMKi$4|*H>-F2OPh^fqc4b
zS$*%nFE6hl!ubB-vQ6>(|7jgrdtZ>L<MaEICW+qjwoU$9{dKwjc5o=&e>=r_<#x0A
zZ#kcQ{kUH{@9!}&)t^3nmYZ61f9|$zthxU$<vGMaYg^vHXP2ISzBSLmZZgPbuoGXF
z)cVidu6Mh8_H~nAn>(ZTFK~4=ocLGJQFz;vw_neeOZ@qH8DjbT;GVs&rdS7m)tVeU
z-R$%~uIHP7aocRKOYWXjqxM@S^U$<Cdk<Ako&Lj4^7?uXMwK7^DbqHn=C3c<clh@F
zsdpjqH}Q<nwkLl}&l&yRyeWFWGK;`-`$>^bo^jv9tv{ch?+8@|P7QBa&zFBu4~W^v
z#L~CmeaX4RBheH8e!ct&>~-VMO(jyt8E$^`epg=q)kOba$n$IOSsD+&{GKukWa+$p
zkB`rPb?29;Vgt*6h^1T4S^d5|31O+<`o#L!PxJ1q-x?2g$o)x`ATQ|s+;{A#`r}`c
ziVY%AouNm{C2Eb<fulhFq)wvuy?FOM*ZYxj$do6A)ruc$e<nWuB&$$h@ps<ozWqnv
ztyenrnqz+V>u{#y58t@!SpS>0dw<&xpZNLRugjYbJpAHr<gIaX{ae!`+xM82orI*a
zdjDmd(Vxop{+DdKs{R<+{Z;=z*Zxe20lU?HQskj&dt&F-FF$I(4iaef>sJT+#oqF{
z{k5`k<qLlwXiE5Id8tLWa=%@CT76Q{>+lu^p+D|M-Zv(F&whE+{{I7rb0>O(lIdHg
zU&ej^u3uSupHrrN)BBBIenh{kliXYLxAWxMcupqw3lP8SFMfX2{}v=oKt%Kw+dmDR
z3=0lB@uPEgmQ=o<{_OQ_P!#a$YJKW_6TE~o`cs|e-+6ylo?9C)$mH>%-1=(ZtF>p#
zYX4R41qt52u}EdU=knt$sd}+?zeVdSTVL(k@fDm%Z^{dsBzoUl|Kt9@l%~_+4F?3j
zxa(Q|6Wbm8Zu;g1`^sHkts5T)e9Pl^ITf=@=QnppRa@TQWn!W~UA`%TykF1wapk;U
z$f@Bi>yh-TpTdYV2#Wfa8EpUCGxpcHb10kxl|Ga9ywg`Y6?t8CH>4=EovD^{^7iVE
z^ILue&yC)%#4_OlBqH{9&1mblH{1zPraV)1%9Hp1v=05BdrtR0BUAh3a;u%jkJg^}
zw<rbT{WE(M<{z_j0F?vPo<_Zk|BIHwQ^bu)->37xe&Fv7Ne}-$(l{-B5C8j=7<YH`
zPL!0|Fyq+Mr;`i+_6Rt1fs{pm`X`iBTVI1nsS8#5e`j}me^a*>xtM)xdgM#h-ddw|
z;AntEVZ3uq`+8Umf=i>{qW^ze|3;)YC(pXv@IRMN*E?KX56%hT!sy=mbEkvb{f~Xs
zc4FX!)D^$CemP!0=K@5L{7IdKD*m^xelhX==ko|s5P`Gk^w%#-CH}OB`~fHN`t_%a
z{Pu3WslVdydH%5cl)wq+AJ0gv{W8fifBL1%TYi0>6uqBWgXi%*<Chn=Un!Eb<!$~y
zXHooqCYGKANEF1o>F3w`6}>KRVR!^h;iq4`mDfYAvF<-Ls?xpw{@<J@NDg^F{o?Bf
z@|W}eb_qB%L4vVP(e}4L!!M-R^xyeGcl|UmxCOOw90kwTp03k<`~Sz&Y5FOF0cRH9
zzB$z}KlEGo=kIU)OY;6MdnWqQ=36_n?Z0Wi@A{q8|3A}df1Nsqj2|dvo!xO$|Lp#M
z#;tYWs--^Mr(<$Zrtb5?g0IGVj;F@AId?pLE#Z=FX`EbiytsnV`DA_a);q3B>rVKt
z;p(b1SoxH%Z-tVY17l#_vn_WH3dSE{(NH*be#$iM9f>_NoV7)~;v{v;<Bo_`_W1>J
z7z;<eJJF$*)VD4`!}4?Fx(5?flbA#Vo~B!!mX(?4GLM1v$j@p^)s~&tlHX}<$e9r8
zYBe!${`<5mTjh(V9!zCk>vd`7m(NxlrE8DhNlp0K7^eEu=bX{{)SL1S*8jhM)pL*g
z?jE$0OJd*c<A2r}m82J0XFq+WCw$S5XN#6+deO9*(;k}U*FU>0@ch&Nz4zAtl`Pu5
zCBp9Yj+oRJ=bn^ZJ9aj9+1gDKDWMbno~$vdk9)r{;cdg=^r+K?<+rYXxM{cG+rIi_
zkjgNj^H)_=j!UEkPCVOeX;Yqaq^GiPeSw8-aK*a^9TLePKfV8EkaA_KND0i{2AVJU
z`Z5gt8<-ybxqHs1XIEI$JEILb3qn1uCg+`(?Af)g2hOkCCbn>$>EhKqdeRx8lg=%<
z94eN)PIvKcE*<+5tCZ$@=qGm>T)%ZGmUSBMrd1y5pR{vdY6(wj1pD&Pnx)njkC<#3
zxjH@@XTId?Tj2nS9-X@f1%*#QqGzeL#S*5O46H6cXKpNE-+pxN^AB9@m;bv&?5cKg
zQE=Ab+LUP!|FVlW(&5<;uJ%jDu`l`hJRHDoKNGgAS($GFXMn?$`6s>73w#)j7`Zw=
z8Hc~*>yvOOZ(tJo;}g28S(yo<WTsbn!4U?qlJ7fLEIc#yXNhTJDDxVwOO*njU;6b*
zxSs#W%9on{=(4Qz#m+MyMfsMd-@7dOr|X6b$l3q=<bNig+3H>z-uRR~GW3aXqTE$k
znT?Zu8kiRS`J1BV6gxYzTr$G!!YY-yCk<UE1$c*q8|cjj`^=@3-TlcDbqB`6x@Q4*
z59V5)l!<#7P_-x^cBP`}NtyTu24!ghcQ*>^zqH(U=;0Ti1-qJ+qb7kp_A|J=;D{pF
z)&Je*?^@NeM5TF+)}_ub#WOfcbyM!b5+9#vkII#IS7dokgB^Q+M{xMm36oPm30H8L
z-`#_`>Mt$#9D4ZWugJ1lJEv^~CF&Wju4eto4Nrb-H7`B-Xp`l>Lkqv0nZ2u7+3b?=
zf(8rw%gf$9=;%oSC86|dS7c=hCxZRzGiz6qvlhg4mLS);R56JNJWoG$MOG#dqU6ks
zT}{l7CRpw{wD60);Iemef`Ts<#aLgO%+N1A?xv$sT+{0Oa;9D>ySs{t@PY;n`^`(w
zJ($r9v1${@oC)t3SXF+^)GlRr=Yc2*Ub^nVga(L`WmjZnKK6q%=}e7McK0vJU{gLX
zdH0~B7NTU<6;YW<{a^>5nY61}`Q1gZpC*HpR6&&VT@jTrf++EsxT{%t(FKr_|Lb{H
z?)EutXLMkd!d!P<kJyQdUr)%)J1mg*%>C{{!PhS=_cT3x<I}&ZS^3gLa1`APEH5}>
z363IT%U4`{n(m+|sC(vi_n_e87n}hObLOuMEH7}efG9D3#l`p25v1hb{f@x$soP|~
zFsyE>k+c7_=$)G2{SyY=T{&_--Mf;NH%)}ZN!PBX);}$fh>hy9`p=#3dYAps(@)8N
z9zRvzR`&mSt=!isTPLlV$1nci7w4I-kCHNdeAZ=8ooD()*!TH6ikKEI^vUut+Qp>7
z^;}J9iYITSTR4O3!#hWss)C~DT`bMuI@r0FDfN(3+r`Q+QcW9${-1o(dSub-7a~o<
z!arYn_C~rw)YllTRAhX?vp}QixB9KgF9nP0^-`kx{1@GJ-=|rqYHRCT@V9B%*B?5+
zES-9G7|rt$j<8>tX=~WM`Q*<7H|EdWCO&I@;qUCipYD~l|7RY*{=L+6q4nh3kvIL8
zd3yZXxggWlu6y&zZ>lZtOKpF|9e!<`x1Q^i{kN+xYwaaJ&pr8eO^Etsl?8udPHd5x
zf26K2@%XwWOVow0uYYVTaH^&+Z|1(sA@eNDmD3~R4qNDW|2+OH_Wt1yadzA1IhU(#
z-#lrKPyYnl5~IsSNkT^oj8-b1ea^K&W6ti|&iz8+b(b%*T-VQt>Oa5e_R9vL@IzBF
znO>`#tW{6D=qtYD$W-0bSqFZx`o8`cSu**#M&VMgnQ9yA94}YZi2Y?TbBn1A@)wTT
z5B5ObA#v4pCYqO7uK8y~`JZ{D-ZkZ=;HMUFKs|D=yK-4YO)mDr7P<LHFFyIJyFUK@
z{X)w+uBS!|ZBDOae`B!E?sbvvwjbx7l!YCdnki&7(+_0IqTA<Ngu=O|XEMDOH(7f;
z-SLa=WT{V!)-iM)+S$4L>yl$zR%kaYD#%mHn|Y<-P>I~UCXQF}5z)(BJUVuDM4DQ$
zF3Pc;X(;~6%8vEnl_S@URw@d<0!8EO6H#iWDUPv>BCW;3!LR*zwF1B~?Q+>@rQ-jW
z91AqMc2D1Uq(b}c=`Rgmxo1v$JXzt?bWh%${$OS9TGqR+Z=M$rv5(K+(V}#1+RPIZ
zzLv<%Z!CBgcYWcU?UVNU@JH;Qk!fky>BnDwDtc$KKYz^r2_U|+aFY9a6aC3tuhSV^
z1@G+5F+CO?nY@gBO*}Yu`+E#8t1L+Z2NdhYqw}uJXfI_A5IN@?V>nsr(uQ*kT}nGT
zHPV8Zg|3xWa2;Bi?fs^+hcn{(M@f!UwXPW_d3J_B|ESrqK&@_uCvRss*tITv#w!)w
zUx6b1w@0e`dY5(TqSx1hf{_1xr|e#%bv{~a<}-@876{)ywWMvyVo->_o4+E=zkkNj
z62;3!H9|)=8?9u#|H8(GRq)FGiEDg%C+sgV++0+`cVt7AQSz%xr8QiKR(8gv207om
zB<T>yVqUn~C(9!WlJSzJdh$wogI#iDRaH>(u1lg0ffnY0t9-Ifgjz9cbUjeBo9fBC
z(hID_Wm#2_a@0kz=js!KW(p~KzEnxO`a`6{E!D`m4r-NiYLIgg#2mpD@2)JESpp8E
zH=2{BE=}rV=vuU+(<(K{*$<-R<Fa{IW=w!6S)w^vYSTnWI2xt~Icq_bTwLmtb;5ZU
zxTIKjWwO-d36M0Vks9R82JzFzB|cdm_7EjqS0+mp_k)%E&h+ZpF=-t<&mRs>az8Kl
z{e_jq(FbRyN`8HEbj#w`A6S|{3hACwX{%ZM`GbhFfw20iC2c9-kj_(bnR#VGCd73)
zE7VPwNkWpP=&2=bGK-BH7IEY~a-4Z(LIOmI$_jPUG-j}p|3?~(Y?;(9aQdw7wEW{%
zZ)EC}cJb($Qx`1-zMo8KTe9f&50RE&;g2spL%W36#e)+2^=p^6-PiU%ZdkBZX06Sw
ze-(Q@b>!V|TwbLdUUq5YO<g;7F^QHPm(`uKZh4jM(mL?y?5b54Ed_4A?8?b@d3J%T
zwLtjt%dVW+Q1;oEJ%8LMpO6W06i9k+5$l=T{=!nPbwxzygOb**R~3t6SRFe$@0Pf+
z?NKbwXm#3A?dc|(pXwE>n((nP^yv+iU9~#f)z-PJT+OB<6%*Qj=8^lNE0M|zxFtcH
zMYq|nXFu|qxGU?xqvqAGHb(yOn7AuzOQ>S=>Q@sZOD5N3CF#4z>b{xP82a>tN|xoT
zGu$3d&rUEcNwaI;=Jz;#M%;0YQ~8%|bRJjB-zuvOiQ5)G{cufsk+rt*E3J!VeR5Hu
zeZEZ@f#E69d`9hI8ZEo$2ZsrUJ6(xn7Ux~J%02C(@7q<K+S0F9F?RE>TXj6`;`!IB
zI<!SWe75kb%9~%Pmxdmh%3gZ4!4>SJKPQ^4vRQHzARLdTU0GXF7qEw4P2T*Yld*Ja
zMzsT5*i_}oKPLVwxyIq)05;>t#NQ=XGo&5B78G_^U%ja9{IaXX6&zf@cZP`;F13j@
zO}O}ARaJ_ZOQn@Ev(-e)El!Gej+F0GihgyzIDz%hih4!sSl(Mo6B9+RzS0!9{E~;q
z!sXcsu9g7dvoE`HxLwXK6y<uX)^}O-=C<}T3q`pesx@5}lnjKj%Ru5a@0_(oPSv`E
zxv$q*qAetL7OYI{lITsd8nBjkss*8Y?qyh6ADHDBdi8`%*5a3^vS-_#pUBFQX!mJV
za`?TAq8!~|Tg!jd#GZ}zbWi7uG1;(6W+uzTzI7+I)qIwTT4?aDZkeBJ45xcIZ-mK?
zRdO?r8t#1cVya|`>!C$pZ|z-I$XU2lYOZMk)XS#3lx|C%FV1K^w4*b<#C4mBTyX-c
z(~9hqFV1jt*np#3t?i=djk5B2%Gv^MzF!t;Z_<4S>iHb<y|YMrQ|?<Z`|jJEP~q@p
zmtb-0=(ALN(_04H_Arf}*%@BpDbd#rL22N3$C|#lmoDildb6ChMGpCvEYjZe^r{Ve
zm_pAljxWd8Et#(^Aa-^ltH)WNCG(997F?d8tS#W=+cRH#)7winVAEdMg{MR>0h=~^
zhh2Ee?L`oFhh2J#!$Jr<0wg}al5cH*gn3}ix)a;%lKIvKaFj2<&Sbj&dh0p94QT<P
zrbg|D?LHn~cV?cpfY^LxZh=ESXXa^dczXt7=azZen{>~Bedjx8p0ZKWX$ZSzp7y4-
zr|z_eX-t`Y!zMiC_GE~iD{RtJ940~76(I2m5c?-qtUIwy4s5@<A&4yvVP7miccMW8
z!Y(XdcVe3;I0o~S-o;GJRXrvXwNT()-u#p6I<<LUtZD29CufV0X|G;PU0>{a=n*8!
z))%|}+svQLx7vWCSoQUsL`KnLGBc7x_8hsg^U*E7GsOw52WNCHD|X$+DgjRNor{ZI
zx4jjIuoo1&v0Z_(=N7we+dKXF1+LaYVbkYbIo|q^;z<8_508WvnEl`7)K0H0Z>F$^
zh9(#P=$%+xnsHmNEo{o_=ME)vv^VJPf`nVl9OFq`<~uUL0j~RK&hNe5#qw;^Pbck+
z`1^RT^u`+bC1yqMZY)^xNrgks@4v9=@e<CP`sQ0+tw?i{k)14iDZ!^L>5**5n&eH+
zVLc}UeD*MJESvXcnqqR_x(tiG*UNoUPE4+3(%^lpCfD!DyV6L_;bK9R(ifYXhKG-)
zXsF#wJiknGYFF~6#J?v4d=?$<Z;`pI{$#mC-qp$HpSq`=yR5FZ3d-r~dns%bCYN_L
z_{`GV$G>WpFMU13ZbROVP=CAW@}Abq{2h7?udGs??`1x_EigRj!ezGWyxTHBJ#EdH
z?8?78l>6=%Mzj|x?wT68{PXmuTHpp@P_xhM3ALXSR!>XPIwELvQ!(`z$W;sHrybp)
z9slBG^Xs<guTP3!e#`dWsa<&DOXJt}=&vHhKPTFy{A$UOI=r^()6PF9l#ObgqIw^O
z+5U{#W!oG4?v!TLuLrxp{JIpenRbd-pFIq-JsMNDNMfd$;^SihtEbgy-Bpo275mc7
zUp~hC&MNi!rytJQ&~r-A=;nrhDH>`Q8)rDFS*x6z!E^M8^&byOqgto1KCpou)?ZSN
zv&c?fIHQ7HNpR+yhKSE98cG)*h?`AZDHK%3v*m?{y3>|L>XvEmW^lM3krvp0BBfnq
zp1QMPC!dRn(M`qa$3Z@9lyEOE3wUKH+0|M8;@irYQ?Zi1%lOyazq4xjEbry#`vYHj
zO*6_(xC?fw%S@x2irptb`W~K0lZ-2?T9kNGMMLS{g0Oi$1t+wtlvo6xtG}D<$#>F0
z%}MYh+ub@r&GJ+y+uDM=1*_-P==~LuJ{Fr9wv2y`{hd|IXPi#d+}Lxf*XZVkJR=d|
z_YORolVye4z$xk6{KtF#de+pwf4`yr)YLCVKJOnt|DmUTsxb2XeC4|{@0|0RTJ`Hl
zjtV&B1=3HYv>#al@!LG3n~bg}!LHi2V%~!pt5TF$1fQx~P4(oH^!9I265{O$Pu=AF
zY7!`wI&Z%$|8(6R-OKFPc(=bg`Ml`Nq|}g2S10$rR&zG|$mg=t=%(W8m!Kr+ynT7<
zsaVa}W&CTTL8-E}Bi6s{%seAdz$vs%Kgm}S;@_ks#G7^XG)sGpmat-nhJE3_c~549
zr7DRC<~uympDg=n^*o-VDpmsAXHwc-w82rgsCnj_35BU(@9){5ZoMpSCMc=}9M7b*
z%d7$WXzvzXx7e5I%XrsFXI-7-|8$1R=?~X#2=ks+a}@l@w$(bV$+_v8uwsXW{lpVK
zMJFyB33hduE11nZ$;TND@rCy8&CSoIf&9z-@w88w$HQI5B9mV^xEN2CE!qhV?vBE5
zDaV)SL7X&i=9>w3zk*YrMTVO7l1hk^B+sU_*XV<lBrUbQY54IpC?Pby$W*gVX|R>-
z@+^6w-fQ^ItKPUa0TSKEbt2uKuCcwj0}{PwOef0<9f1Tv>)90ZSi|C)qlbTLPk-y#
ztC_6U_}QRLY3s~86U@J<XviJ(e`7XTR_Fx8dC$@|IjhZt_~7omH#36Lz#(?Te6noO
zX^4r;=Th2LjKR)ZbjbFmq4gP%^B$`E&B+wra6~TcYT%hC=0$Tfg^e!ofXV|W9m~lw
zLKl5nlpgVR=zUMow&c6+3o692^56aO-(y}be^O_<_xjXddQXkySu8i^@CQ{Fm**Uj
zZDu)m_$B}2F4d4}vpwss<+dmV@pe2-+jRSxM4E=$y@k{DPpr_+Kewgw+Qg`>Pl6Ti
z-I@HiKS)Y0_F_TR`?E7oY@5i&IHj#nIRD&|ZLuai0VZ?iRTTS|9dJDij`{p^DckoN
zo&c4CUm0K2|GvFLqBQmFOtbS=L7?Koe$%sgc8u9PJHh2$Wbrcp+fvM+!tkm4wK*>@
ze>*k-Tu?oqX_%LPcBa*LBe1UDl^v=fZMP@qTr+eM2>d56nYYaMwiI*D)gYf%i9EI4
zxfO{Zuh*sQu&rfk6E6Z~R(qp6KJ&LdWCi6^@9n_~PuKC7Uw$6x4odw?=Wjf|L;LXA
zFO}COg6#V_@!_{GoDy*-Km}pRZk0uMranyjW%K&L+N!Rde~uIw=iX`)2fM`H=nmZd
z;z>JZzS(BV21+{$ZL?42Nyp7tIHRH+<UIe|QqCZoS|#%Q%MM6G!shVVl<g+^9sw?k
z4(jum2QPiws|YUVc($usCiEtPqw-<errXyfz^NDPvtF>zcFkqcC{I0mSEfuB9CC+y
zlO(4;OxrZSboRm-A?@=ezyab6%3$CCc?;3j@$g%U`B6ik0GB<ExjSY)*k;Zq*wpd)
z`{pySNJ#=k%3TxgQ?Zf7{_>mqz-4%1)yAGv1;#heTY=oMaQ@4qJG8UU!2(P1+MJVl
z(aB)1D$h;@#Y^rrLr{5h{CuIF{`%AZU+&(2`*Ym>%e$tDuRngcu6FwJruScqpMVBP
zz%lL$j`7xrVzu3>ixZoa9`R;nzvJZFks$#pb~ZlqDZ1^_%;BmcC6IkCW&2vgGXXw(
zoVN!HJYBcO5)p;0Cw6EHzkitwi9$uSc_;H`XG~Z)!=)YMs%vvj)<InLSI6O4?92+7
z@3;*=`jmMWG_$y>NL^8z$C>v#7i_KJ$9Yd0?zVwTACOtMb3taYCq0_^X4~C1a5)JP
z26>!4>5=VC#@)QepmN{GX7b&#iwdBs$=>jz&+KjY+dwrqm*K~GZ<al1<Lv4%U*T&b
zeCOM31t)>Rx}--lpKL?12x{Wpn}SFtZo8e+mJ}r0(V4#Kc9}FNYc|fP@Gm=%2T4o9
z=To-7H3Q`{W{`(&qX>fnj2UEo1H|Po(hnQHJN3@Ec3$ZNPz}x}-Ip4oHV+m;M~+l)
zVustHwmWx+V_T9C*y{f`3lBfmmOB?ev%){?K*3>_bBAwqcBU8IE|UhAav;BNyKMl9
z{Ub+=Z|1^0ut(iGVLLeKLOlRVNsTiq)OP2>gukb-=a_(8df4B`=JGPt#f+O@X`~f#
zq^K<1^vvhe=03ruj!)l%86-<nAA!mba8d<1b!uTcBxcVYss1-vCg9GgPd{R>zyIBD
z{_)7CT7mROH*a*@XX9*Yzg#WMKlygq?A`#ERgLB!4R*g>1a?wi&a{cnZc?ByT{xZf
z#EN3)V&}N4{pXo|Y<hC6^8_3+CAOP?G}xNEJ+WcY!!P%aG{1oc<OemmwC%AbpkQ~d
z7v{gc#n)s>nC{Pzy2MA0^BX$bz}ZLN$L7stvx^O&Cf3VkxdHEFiY`KmwPl=v?_>n-
zOaK+EFQ1DFy^{HKTOfMN662q(ciVGs9g_jK;O@OU3`=r9TJN&gGL=b#OSJtPesA!<
zod?c5PsPjRzh&Oe1(#S$<ZJ3>;k-YG-Zk4X?&bv-6!AA|Z!CYiopJjs&1aYHzdLM}
zyPJ1qsJGqJ_#3qs)DzAqf|?DF-rAkXlP(6Q_x$gPWzfX*=g_;ucDc!XAcMs7zdM#4
zm<djM6}$O2M|Vks+iM<boR%p&5?d4&{n@+4>DV0SV=_*w`)btw>X;v!>ntW$uzFsS
z-aUyUZ?+k>gYuBYrbstF$zpJd2V0fDS+dKs6fFER7cBh#QDWKc0*FoG{F`QXNvna{
zX!D)iRurEoV9vQX>HHG`?no!Tof#4fJ1Uy<?g>6Ur??;NUvaQz*Je;VMdqfCa(fIo
zg*AVF29Nwb=Il2a^Laoyx4^FM^uv9xjbzs|`!CP<f9&)5l6~nVwskMhJt<Q=IM>-s
z3gZ0Phu=)=1Lxy{donESIVL><E>rGT7tgp;c2U7eu#@fH?89%inS%?77iF)O-m!er
z3l7*z=b2OPSUy<<<~-VKc_wc+q=d@5Za&4jJ;vk-sIlD_xv58H(?xJ5x@+TbYA$n^
zbO5L+f9~kv2iqRDf$~AMIR7N(I%zizrF#c<SIoHk?KZf)xp(yNn{D^O7Jtx_OWXd}
z43wdo%ReeuKY--3J>Bg$bESEWL?*wuaR2CGv)ser_!oWu$gwQA@Gy((5orr?{^r|l
z(k>iI=ibNK_<#z;g&h^l;GoQh#>4qE_dhVR4R*iXev{|u5~~Vv{>``Rz-80H-4zpL
zKR^lsh@-&OBC4Z68o?QGS8c|;qURItL-NbRB^!HWK4J4v3Oll;kWvZcq5nBMAAS_&
zf9@{MAH>`ztyUm+>|LzQncUyG6Bbmk>@NppbtLca2ba?iVr@?F{Xj}%`QT)N;R#4Y
z{EfBAxg2z-A+l7&_~r5=g0EzZ?trtZWsSwO3C{4Sn6P$^b&NSEX}|c~uq0{T_TPDC
zyZ8Ll<)2tO@85!B>eJ3TR@q8v7N_#q$?w?kdRkP;6Jf<;3q1KED%6|=SF#<EFuBRd
z%@1x5_Bc+KHF&N7DoowYPM^@N<m&@<KfnL>NjWfQGq}~Y|NIiRIhGs&CUf>(Uj9&{
zG?m9L_l*^}djmEp{al)c+Qo<J#};G?8$4?O6*N0<)hz${)$UDGQP7_~r?wvdcd(^=
z=O2yf3WwK9T>#BR^c-C7e`E$TsJZg=&F83TwV!^=FWJAo-17SR-~9_>Sa|Ng{X8{X
zewXpixl;`@ezEjeo(8pxN`f6V%2Rn}*`>*Xd#`z`_?~_{wqWIF9p<fBCznt9u=}@y
z#iQ+xpt9jEkDgcT&Dv$Xk=t*qS~`Pk<8Pm`19{D$7Gp`ZN6@=d@2Y>@0M$)DV|IBS
zo3eY;Zy)*1c{@Y>4X4+c$vj^7#_sa*HO!#0>eBhP<U3RErvI7&Rc`wfReP*ZAh@bK
zv+F6Ss;f)-KGTeGH}48ip(lT{)_;D7Av>s;<_5cA2B`QcQ7D^#lJ5qn!mntTzgfG?
z{{SR7T5r_)mmQf2cBjDZ^C{*_EoU$2aB05v&iEkXVO~(r%)Tko>FFcelV!4?ep11Y
zWSzyIp80Hx+zxIP-kWohZwDyLSG4CXk2@8+v%;Jm;t!`7o5`{tZu@}i`0n&g%yrVB
z2LHm_>JK!_pMIYS4OQ_+-)(Q^9_1Ah5zN2f@2z}g>izUvGfKO4qdv_nDW0NH`jlsu
zS(@wykna|sFYzr~KIhrOKYDt{m49yKnSZ`|&#w=lD4qj~;=|A=-hB6L@eiKUAA?eU
zR~$5wd#~4j+kMJu|EI6OV+o%GeCIdZP6vm5p1u63*qy!0`XkvvsiSpAubTA(ZYNM%
zyW{qc6!$xJCjxx-98P?)vFDVt$<4I8pv2c$(V@0`<#$I=yKdKCGox3ha%*ngC_Nyi
z`_iZ5cE%*;eG7U6ToyTQzs&G-U5zI^V&7&?DGJ}W<Yn@;Mo^pl<@0)@cc-S;z|uvB
ze&#0TeGAS8_$+eXuAP4>_U9y+yOz%Xe{zR5`{$R**TGsn-|gl$+`Urq7O0K)WwSkJ
z>C*&oD7kuD2|r4(J1Mwc5ENSuGCq@KKS<?*8#~RJo0#L2L2=M%F+<JzfhokB%|BDz
z_qc()$y{jQTXw){3n*fLbT((+Vmafs095&RH2+N5e$~wb)XILFFzZ3X%?xGGNCMw7
zPriy?frT9v%#RXgy=l140V*aG_@2#`{UoIb%H>B6n%rbue=$Wv?J8bNv%!`s@GU#Z
zSJ68G)W@ikQ+d2@j~^`XCjF~^nqYTRaJ?Y7Ai?P`|FR?5EudT{z<xP}{f^u0g)>~(
zL5^#?%W*v1X3qX1gZWoFZgX(XY2PT!e)$R89=F*GDp>5nUPsai50UwAI$+)cJI)N$
z3Wj(K>Xb9;){hjyVOjSmVV0RM??t24eMxHj3k`f{Hr(X6u}F0;XQ6>_(Sht1@IVjy
z=aXUUmd3V&T=}KkAiqOKP;mPG)8D^p`gdqVccm6jh_{%r%<DwXmMe>t=X*R&a4I^G
zZ6es^VY))b=L9T#P91D{({L9Y;45T&X8%3kq$~sK!Il^(8YP(DV(>b=Lz`VVh*?aD
zMMKJO{-1K4TW>mA!RlXpQ7rJ9n=H0yX_)TO5WfGDQ=iN*1k3#BG|c?%(&P95RBH#V
z*Ee2t$1;s43e<gFIy=sJXYm<H7EnG}I-l{>j$#)V7Epg|>FhbjRurFcX34oY>D-eI
zVv$aLksW5BR>M?7&YO(M0-zWxNZH&Yv-vl;=>MDJaBOaJ*?e&E_3LIskM;34c3>+}
zIJ<0ZgWkz({@no1EG56Wyg-`3ZmxS^<}|zEHan;n;$^PhSM+>_J_o4G^EOZHD0)7l
zIRl)#Pfc%m)1VLanLcMN6Q2@zm}{zj=4NFvB~Vsa_(@d}mXRvrg_@Yflw3HJPR0M6
zWM=tD!3or3{Z-lAV|{#&8@Nsg;ZsXtmvI4Q7w7f<0>$rSK1+eK<Vr}~s5u+1<eS>e
zd6SVHoIEbP4gNaC`uG_)u>W>N@=vjLzXHiszg9N4SRFs(1}W-{r)re;RrWTljrz1w
zruJBAwSKW(T*$fiiN6;-{9bBPd*<{e+wb#gL9@+j2j?coDT94-vR+&T<Q`BmZ%>|f
zJNS;(zUP0<zgFzdtv+4*yOaO@_kZhdTYB#^-Z|H^;Q5T}kWhM>;8b=1lG?v~E|x6s
z+d1g~Xk;KHPCbP^#}jN?UcdLLxyrj#z*X<b+VrKoeK#fvD0XPnKP?5N$Ss0h9wr|D
zthE)bA1Hv6|E|AULGNUW1;F9)^7#}ac;LJ&`|7>3_)PW|&{)N3|2=*$gg-!n&GTQi
zL2lWR9B`g3DfZGV?_1G3Eo!Ssu;;sK14WAjGbd2>`nM&>ZEo^9l>|_4e(H73n~dR?
zKt=JwPgaW754^zEYpoaF#Jo-g6026ZWk;rh4F&t@47ea@m#>(6K`p_X2~>RtRn9fr
zz1G_aREqDp&UuhA`jQ)m(z*D`xf5gxR24zPqY#UPK<PK2a;}>76J(2)oDA?;<@~hN
zsq6sEqUC4%c1!}7UZ-BSylK$RGzK+F&#z6nWBJUB2~@dH`tzNjhJebs6J!fi!R6=F
z>zSLC;eJxIe&Brz)ba=U$-KwYV&9{Of6l$$vQjW!NXUXedHo*06TCYnnK^#s_y=(T
zC#XPPvB&QOAKYPEZVHCOyacibTsdHbT`oB6WVqx{pAZzhs0JFj2K9uVDT1S8sv+k|
zMs9Ew6CgR+EPCd|GFeb4UARAEk7ALFbj+!f?`_w<me2R;diq;ozk!<X)CuhwD_z~~
zCZ3wn@}!|PLrG*}R)FN>39=gmARYx372@D512XaV{8AT-U5g%m$?$PXIpDel)HDn~
zrm}=h#|7LpG*ZhgJ0b~o<DUaFTFe-^F9v}+6i6k`1y9QbS1g}#gCqOW+5b!KSU%&1
z7G)biMVSP&DEohMN3n|}xF}QInLlI8LBV7JP{Zf_vzvjhWQqlJw`FNA3;H=}f@}fA
zt#{=nO|d>M;{wjo-y$#d$b4o6hvKiFtv%MqYaqoZ3I|e_8MA@2#?MB5&RnKr3!p`r
zx6|wfeGX7jcFMoT^S1gUZg5ihBpfgFi$%r-T<m-)7LzRRv+MxpQkio~r%xC{%9ntj
zlgzA>Al1(<TRlYfdHHQc$`#8rZzj-K>ZSMYhgTGznaYxLb&|j8&-d5hsS}*oK0qpK
z`;S(>^CxI?f(uee!Zrc*U0*y8GkPaetO|DgOE70Ml#>=7^iJlYY9pu_{&IP^&?}kE
zs=C`UPNrWvzc%FxDAjMvI=Q^)+stEyGoC#@EB5DY#PdWA|BmacvtdP2J=DG~P(}hb
z173W)vEYv7vv_bYTsmKy3g>(h{(t3Lr^Q@wFogWmOkwBo0T)(J_J@mXn$4vKnpQZl
zdy$z%QUWBQYIB`r{C~+!L+RpzB3F1(u`9MW0Pdroo!VKyU1B`J(OLJX%V~atb|$#~
zn7?Du1@#9|cbvVx<c?)p0@zWL{**U3l?5N%!rA3v@?v?8&?^~Z14hs|hvz?Qhuoqg
z`@vOx$U2P__CMZW7oHMrebZ16$&WFCC-{C$hZGc|TW<>fhvdhdizdi!Pz9%?x(8iO
zvl|*YL8-#)Y1gec+nP8*!)zbcX|S;K_(&^uSkyo5aw<B2ViCAjdfGMX%>)#Sz;)8y
zJ+7zbCi|&_tBqPehdEZqbppYyyI+w@d#sP^1cDQq%Kx{^C&+Gafn>^yTsIlLML;<_
zKys~_by6p!pj|AwiFw)za6>h9i&NPFp;k~^Cd6&^*}jNH5N~C)zG=|R0+oLOl4~d2
zEpUDKqpSV1_2R3`+<XE(9@zBkHHuO+Pw2eGa#Z<;HrPN7aLH{HrD&Z1v*&7>yG|h3
zR}g!)f|{l)dcscd!R^_4Q_vsg!U=apTyvY0gn0K{<T}XcF9OQN>wCgH_#zg88mY~v
zGPd446?3!{GzrljFR@m=#XKtCZ1<mg|5gO}G1mvgik^O^u-`E1y_TZ?m7wmv8l@u{
zrY9M_uefL^U2Tw9s|Isf$HlBo%<I4oZj@N-|IPmOqJk3F!!P$<%u-@rw}N+pNzZJF
zwQ8mbolc<fwIdm|o0R?3LH>JK;1KEdbpEWI&3T}}xo~<}>XoS%vu@2O1;<67=cb-h
z_O+Ydf(EAVEu1{TX{Gk>D_aa-gR8`s%j^T+ow75nJ!1uq#=kjH$KJjT4t^fV25yLL
z^Pm5qqn;BqoTC2!?5qhg8}xI*6Ka}So0yk@YevPN`Pa7G6buHZxC`f9QtnLE%=$H>
z6dd_7)3i>nSmQT2_Zm3*|LS-gi;bKM>x4X=p?Z1+&l&aG>zqOTqq?MoS!RsvkaG9$
z9M@y9mNQ^VQ|nVM^qiVr1NFzlf=3Z<Pt9PSp75vK(W&gfTS%{y|6&R|q?^V3QDFX?
zj!t$^o#pYbT3T`U%Ck3FTveo0zVGc7kTJNU0Gb<lvVZ$UHTOSe9RV(T7z;o8lpO$%
zu$8>{QZ+Fsylj4E@-=XAWT|%2NK5$rzx)J9)$}&F71r(E5$bO`{mK5Vf}5Dtq(HH<
z@OFB+W_ju(Sf_M)-7=NO-_-5}ABS}HFTI`or)QVZM<40Uc^h55?I!1y2`ydcV{`e~
z8fH)dx9R__OFgG%RYU!|aK7Zx9ooX@zZkxr7X4ME_~o*SfOn^k7{lW2uHWh@yNy2j
z$ZzHYm$l}qO-12q_bwk_2N?l)E7VjJUN-+_@-<!1u%^=+yUBN_JW~KqC*J+e;y%Z+
zL%?Oq{2R4umI-HWg69!-pHE?b0~#&gb9mxeBQ4?cDYHw#8E3xvI*Zb$4{c$CD0}Z+
zdU9uKJ7{<T9OrNPd1eJ#7OUM}1CG_Iy;sle)J}f~>uJ6OmBsfC8<);Y^<Ep*wNmB#
zTu@Y81V@FRI?t(?$O?b)-Fz2TDbM#*H|`1wj|0Vk?$#{LWlnqSCjZUbT?8%>@~+2E
z*<Hly3-vR1A?y4%9rfV2e)06R;j2@2Cb?&JfvZHm`2N(8bqh|Ky$0!If5c^XGnbVg
zG(ZrryGhL=;lWJ~$0I*GwKFC$|C4pmP`cN!qe;#B!F@+ivh2{VNN@jR4feZze1Bp1
zzlAT8L6gTTpH2Ex9_mzfU>Z2xsr-+fYG$3Z4XkO>|8-s`_-5onI(LVRZ!&J?1(kXZ
zIyRGK4L}2TANh_Ps@|lWCJjn1jS&@U)(P8gf|_Ci+~-r+&wxXodE<w9Z#r(Wfzq#n
z*gVjH3*127{k(naD=g|$AKI=I+|3JWt*ML6JIOmE7t~s-OL{o-P5JE{u*>k7h|P(6
z)U6*uywTB`zG-&RY+umeL+-<w4;pT>fyx45?(-__XCN77<A-@Uskd)J(ndY^`?eE;
zqPhQ~=RMnYUV2d;XfUrX@!?D@#qDRo<=@m+_LGd8&w|Ro1)Dx7SSLU%(&FZakLPUq
zkn_!6I}cp`T|Cr$qTzlTvj*?ubvia4yfbnI7Gzk|rart03zro-HYfNhGQi<-vYuNd
zh1~`;*|5i1pLs&y^BL`Ipc?NKzm83Y@P-RIpj33pH+<n8%V!H2LG9<FifkQacNY`z
zP=x*bi2=`N+-3vyusu^BIu;$s*$nEGfbEz88SFZBX!A`$Zg6B?I4_fY$1-hOB)B^Z
z_RT_Y>|4!UqFLHknd<=Rdxh}LJKGll8PW3dzc<C|xQq!n<^MTyu-T4rJui4D@YKQ0
zHwD*&jSaA@m>~P%Rt{*4MT?z(6LTCmjVvtspkV!AE7$@p_Va1(kTl}_^nqhpaPDSM
z!{Gy;91AF31YD-<zkIUa==lsyc5psguI}nJH+k6{aBkQYs~7lAX7hVUH~8DH#-isl
zYQY11-rN1#g5Jp(|Ki#HYUQ&_FO_Fau{vI32d+qd?OfPneY^+St^PT)$J%`gL}piJ
zT#wc99=mSP2-}y*#*(FdmQCPpXNcY6vwc5mK$)&R@0Q-vbB6QJ7lEcX?)o`Tu|8e{
zG0e)=GvJlX=AYo9*OzLm1Kxo+pgy|gZ=cfvamjo7q}QK)`oDT_|N6go{@KOO6FF7<
z^kzGFlj$AHXB?0=_$Eok-I|=>-q$(Lb5D0>>jd9?Zd|i$t4-VY#Jz3jzp4D)r~eML
zaYoH=Zt^|Fgzjl2YEu<CPcpu~0B+9RcAix9e8x#ghju$V+tYJ~(*?niv-y0bS)J^4
z^~)ji=I{Sqe8FO`-RB6s4eRYdn|mfdKvI{kcYg8fs(^iM*VFIVeGmJ$alPOB-@3f8
zrl~xn8F=bx%bSMN;9&&NG)~{lc1RF`JIGdxA+a=<RkF12XHSD})TNmvyR#Nuv3zFC
z1gaY@z3r7bH8;6$33#}}Dt2-3D;Z-Ia256P=`EvIGR1me&dNUlvt<ocz%}p5`speu
z>^zW;_^D?tZyJ;#Eyo<c*>|U@D1vH&d(T=PG$>~(vj{$4pX2AjCou`q#sR5T1gn1W
zt&IEWIYVb5aHu@l?<=&4xed~7O)YjRJ1_y<e+n^Mezs2n+HD1E26tNnZqAt?YXEW1
z)U%v78J)pRhJc%M%&e0<Anm}}!XN`7?La&Rs=^Jt`#}ZL4xD{?nVXI$xE;93QqerY
z1KbV_UOt<(=$*`FJ#bHBB~Rc9zKH3Nu>Rh);ErWl5xDgo6uEqYtbrxCp{(^<WD~O*
zxM{U;lV5Jxk*5$(UDHf4PxS+hWi#i`bt*XUw1vab<)`**kx9&I>YzGf!6v`lZJWHI
z4Xyp9RnAX3s($|3&GUN8o72w}l5Wa85x=%_rIA~VpSP~nr_PXTnkwu*e!>eoLYhxm
zwZ3UM2@c~GYl2Vk{g?xG<SDDIH~+6GIdoB!ce(p(5hZ53<)D_}?oED*rU^yhmf+OV
ztj)@B=PFt!6hZp)*ECbu_jrRVtxxx_WNcQR25zk_y!`x_W@(@0BuMiwb&t_2na|MV
z!V`ER&uh|z1sxU5Pxb|0WOJAC1hoqGZ?aUhOz^k`Y88Z-se@7x*x1zKTW>nfLK5*D
z+i4S%%@#u<F3zd!fGs%CO02#HzLME22}zD;yl2Z6@`ICO`|aaKMQ4P;owFaE>YTMq
z?-aoe(5dQ~o0Z=wg6hPDpHvjBAIL$xGfyRj{f;x(-lv{$^F!t>Ioo#wl6g)|Zh5n;
zE<;#kV#WpUaFsKbY4S{<r6QMJ&YEoWd`2|~xFEC-pIG>OMm1zK@5<}l=QPXvcD93i
ze_wuGF?xQ^@VfvwasM?|Gf_V7<2V_#SR}5W_uSm%WeQ*??%m_>2I7E+vG)FZc4B9-
zizv9WzjQX=@fF2qM7G>mq&nZz{^jIAki9oROB46Y^F4-}UAImN#JK=23je;bJ2p4@
z8^rr}uPC2_bJFLh{>t<Io$p$?N@w}~#G7^X*WUk<JH<W!ysj%~7Rsl|`uH1Xa3}Me
z-TmuZ^xju4*SS9Zu+^03KiB&IJkP)OF?fE$nDd=Xu@t!BSM(*4`?^hCfA;L6*f_tI
z`G2SEsk`>x=<I3TwV+84pC)VfC6KYib7t$`Cflx0OxNkX{{EZER>eGV#@p3v!X>vE
z?(FR}em+B$^THzKxgOi)d6u3tbib4Y8Z1elzi`gnXHSa*&OM!f-{|w&^Pe=;ABR`+
z7F=5>Eu81mWOba!6H=M{Es-eilZ1>Bmi#)p@QUR#cksAM(bk`Nt1iB7kU7m+{+I9e
z>*lYv``hv@rTxogw?T&-iy?)mpS>(-%vl{A4|nUzHOl)c=YV6fWVgzKJC;gCQCU}m
ze3ss3m0o<#uwQtCtGCtUyzt9Ytd8sW9SGC?8M15dEl@+C5K@24pL%*n@tG%(F`VgB
zPp>FG!^;Zp1wlAw5ROr@qIJS-NUBWJNnx)E2B*r@W4GRHE8qfmsnc{=*lU8pUFy_h
zPDKaIT0z6~At2Rf0zj${`=5!pte!F(Quxf=I6-!UuP<m?OUqbn6Z1AraPl`w&MiA)
z2I&ZcwB`guy8S(^ZyIvBKuy9GXChAU-B<=GDtflw6ub@Yw_Z4VfAJm5v<(n%ZOT=&
zPS^l0UU&Vho??A`O$0c}Xf=y(VoqBF$+91u$`1Fof>y1(=ZTvwWtgnk_}SoFotSR&
zIYaGhL7>@(ll8~7Q`px;fZXq#`oXE}Kmyope~vuZTB{VM1I`;$4|3mR)V>BDNHwZZ
zv`#n*wpgqAdYbzlgx27mt>ESgn?4Kso(OOuV^pDNnQ#<5JPuN=9ef?qDf}h9$K0ha
zW6k6H3;(RI{MEc_U4$9?&(?$4t9k_WuR)rW2f0r&YF`64DN!sH-^84!0}0ED+;2bn
zt8~B<8YUHrMh}ibCN!GGgP6l~Koc7Al6%aolVI)@-^3h-2%7_4V6TR-tv}mmu?8I8
zhp(ncTBgkbr-Lt>+9gZ-BG*8gd;4@#%uT~U?a9XPxw!>Ll3KwP#eK0!%zUfC(|AvB
zJCz+sgc!MRE!@ac+gsl>9EJ>W{M<G{*1!*3R)XfW4IhJJHsIz)GwY-|;4u9qxeC-C
z3kLVOWZJY&pTMF>%UWy`^RbnXNIvdVcEAE+Yne_8dk-|>9>4XbqZpE&-b9?p(^_Qa
zDA>vN_ie-qAp;l2sFEeZKO1GUce}g^Xb6-2=~Go}(p~&~hHMsiK&#G7^YJ-DYY}jn
z88<)s$sNnIIgn(16O^o-!O0r5dMH^BT&F62{dG>_)ZAn<$hgtU>)Ve7ypy?T39ceu
zKJztxC9~NQJm9y<{!FG*U*&XgBP5T%_|)9wd#d16mOlURi&|OrtDi*7`A`42=fD4U
zyy&%}xV^t%rQ#lMaHy0_mH-tB)4_$poZ4rpmHe-t|Cs2rzGz~QUhuYhpQkRLXWGrb
zeSVSk<l8e@%KIu|O3ltLnj>$&yWP;|eWv91;<HsXQ8m9eyg{@%W5Iqb`eM0``}F!l
z{{&`l^S?5^`^TsL)Yx;}(>C+ppLyq;%8ueQdms}OH<!l*y*<w${j|EG|9+y>_W9>G
z#Y#<Y_PPGE;XUZ6lslG6@sQ%r?$)Wu%zr(<d-<+qYVCh^*yO$a+{(N6KF^weUk<dK
zpfmXSjA~AB2j$a!6|R$v{*bZA+lQNqp3hJR4}G4#y4>OH<ElSK)BZpDEBUQIZ)*6&
z$G`VR>XysH%1}*+!mkeV?ccu@y+8l%aoJ~|k}|^YmW6-%DmnkS<;@v)j;X9DJ~J6o
zv)!J|^7Ncx@Fj4Sb$8wo&GNpPkkb3hr#Q*dzL}H2iND0?fo5r6$E0bIr6R^ZTUEJI
zndYg08`}08U2<o4sB(g8!&Ck`fiHwNsDP`aPr}|JzgTP_gQZoKQ+uqA+dwLbN&mM6
z&zAiNZ82WvyvgVfnW8DOQnXHh&YUd2oVGpG6P(-1trRU1yl#QI^4iOVCo#`c0XNG)
zsvnqu^Gw~Nl38|&{*dPDsh2Hp8q_n5L?*uqu$((V_5;kK%+1R4AdMxkR!?vq5Ajn^
zVYl%Fmwx7}yNW=u03K?2+Ij0uhdQ|F=J8KDMA7;Il7>0pX>jLH_ZMVsR`vr=l`ov_
z>$bD_%v5l~@P1n2RCah;3%KN+<2PICqZGL0oo_Msg6ad$sI04jXO=)*0rr5_a^X$P
z5OYB5@hzW0{IzQ?BPgLy0*?)?oa1+buL9cqehD9%1Nrf8h$>_>^D^f_#$X}vXyzP0
z555X$OaJATo2Tw>0S}V2|MPp!JCQjlxzh7P?cTV{&-qWxPP!@gMBH!rN+CnlM$n?1
zm2><&@~S79ffnUVz07$t*Ix*<MhtAzHdXNY)~S~>Hy^JTQv3L#tL^gQ%bXK)qlG}5
zLe|ak^T@59BmwHoKP|cSra`?ET%*nLJCRona=S}AD1NrVg=fotP=T7rc{6vlAZT?K
zcnbKF6j*p~O_1AM=2a?2prv&8UTy*TPnkvV>3WD81r~O=G~+YTUkGI4g|qrg?pQvF
zQvwYQ1XV7YaJNh!Z2VO9tj)~xR6y$=6@TUjw!Ya0igM4A6%Yr5R^hdudb#B$BT^82
z10|?VzP<OXp5Qj~n<~i6g|~lBFM8h4z<FiW(ivX$-$hn!`Rm;xCi~K*s&+|7@bd|^
zouG{4rQh9C{Cq+!CwSKL=5m{?w(q;-f-YxQ)E;{)`{`4EZE4m0ep6^~b3$z=IEB9Y
zBC9yZy1mB_ymW5YOaCd>?cl-rRXbzmoBX@J->{?T`2^K2kmA#cFE;ha6j^~i4XSw<
z8HI&K1oJPv{rtYis(p^%0Wn?BX&3YV?p^;dfX{DslC}1mNf)wpm+xH7a~D+TttdY6
z!UZ%d^z=<}jq<DX|5GY{uAP7UZFO9E`I0|jdA}}~?q`R&@FK*8=F0s=&nH|2dyD($
z&m3`%&%bx<iS}zvs@ORH{9Z`AZvsT|>6__M_fzlxJNW&r(5@Iq|NC!0ZtHpe^=qxs
z0!S&&Cpj0q#PbSUsb!_Ecjcj*^(^zB{@P$?xMKd?lW%>R;6b71op@{ix619mzj?oT
zxHn#?HZIxHsdJ}(By2S!cyc32@A+!w&!65^UEDB#(*5)APyhVX0Udf!C{+SY{1$DS
z+2*|cew{*g<-`xNr@XJM?cHw;t^$s%EIuLZnsaf|xg|zXiaT>loIs=J=N$9eXWjpu
zT)ro6P0r$7$G-Fb|E?lYeBz#q+ttqV3vO$+7d@Y_9~v~ivynKvXMi~1a60|-bLISZ
z-|7^1=jC^;{ms3$bl0C<ub+b!B!L?IMi$^@`Y*p}%`AF8;V8tg?X!0Typy?L(FmFj
ze_7To>o(U}Og#xS5OOz9*>z>{iHDG=Q|HtEl4%WUO?U15vh$|m@^gyq!r(=)@)Bz<
zEX!>L`#VT-jhS^qYZ7Rbbl1z;Dc0>i!QjQxTH0cpZm-h>r|ip%Cj~uk*w=MtmGb<~
z?>UM)a@RYxC_MTzHJ$rpZn>y3C~=)HO}%6JWF0uyfi~nknXtPHTpZX$pUB(2+6=q|
zBAxqYZn-G9fT`SOX8m9t*j}ykVw-Ni(*muPUO4~tsU5{9VqHNCN>qQoPi}p)4Q|eC
z*@AFzqMiyd2b9|bDz{CzTLu%(-po7?>}18C?=4&3Y|G{X%?-VH{=?|q9g~QOk)=<J
z3+Ju%<=wGt#(_$S-~KkyFD{jZH%66;7_Wr56H*FnMz!{X57=7!k2wqdZ^yENhYCOC
zDDHj>bN{t8_BWxRHK@){Z#tEE$G3teC@Rj2HQoNE<px?gQn_uyow9I4C&7<wQ`56I
zPxa4+tmVFIdz)Q}J>~M*#+vosmONG4Ktl}d^VY5v+87QlpFhsiRoi|yRC-}Y2=n`!
zNoBWVkMbNnVqI}wZ1Zh4ZBXnStll=^Z@-W>c&o~X9K%hy8=M%HCf>QX`RJ8xySo^>
z+Ade07u&@AP7A7f#@(`TMbLt!yCEW{<~rNyfR|a{yW9GvfxjCRWgp(@rERYTHT4%c
zn~Sy<J)a=l4Juf?i|(K3x~Z!v1}aS+you%Dv)BmQM6iE*x#7;-Bj9|oXK(k-TxBs(
z6hC+ydxB45BPc}K^WP_x-HvMojg6~(?_D$F?lwr2-P>~X&9=SZgz{mTZVEIMo6U0#
zcjvBm0*#*T$?U$FTMbS#4}7Cf@ZDGqGO)dFoA%>#iq)b!K#L`x?3*aM`Sv%62WM|X
zGQIUpLpIp-AFY|)wNbk?!7GgK`bMw0ROTxPY8b!#>Zs>8*Lj&Hc%l8u+us)%y^}HW
zZ3Ioxc;4M7KDF@qgiJ`enp*U4_kGF3D~nGUyMjBFx78PEmh)9En-={wq<E)Y<A447
zdXc5)6pKZ{`7Do1;psU=c`?vR^66j>qoNo@hDl*DNM-|g+DMCU={ZGdv5leLc2i$x
zmQ1f&e*NEzTRv~zYX8}0_j$F=&uQV0&tKNK4Jw*<6rX4VXO5-6YQBG}k`Fpt7WzT*
zbns~l-pi?vF7%$v^=YzdkBL|STE(?%XAfw-bp*K5IA`~i^|q1E``9(n+g`u>o_@3L
z_UZM<%I7`%`tKuj;GjJQsx<t}=ihs4>vDdpN=*N5qWAl~-_NrVaZjBd)b6!O_&w?N
zbe3Yi$_*#hSbdr)6C1bt;P0D1Pitn)Y_Gh&;92Egou}*@W6m!uNiLF}yx^Q7zu1aU
zZ^NmJ&l;>f{QT=J={^1Wrt`~oZk}`W6m#~@_n!}$tKFHwQp%SBG4M_7wYSzG$BP;_
z{na~@T{%ma|HR+5(=+Fu3O@C1-P3!nIX*iK3!lk+$`S-c-$ynBwe4#oIzYRNeonY?
zc3<XxBmL%IXAWD)_J6ou`Ltwi%@63h_Ap37e}3}0&F1&v^6yW}+sYk#>YBJSYJZFx
ztTq#cr1ZCpvrb><t&}?DSyU6pco|yftbqj2uGpi&?_@S5fz!y#GG&=lbDg1vuRQ<#
zK+r3hO-bNgWG_pXo1L4>9Hj$Jb$jpKU3|qd<){*9@kP<JoBQQ!CHO9XuZ~H1!@umM
zE&u(uy5|rTaHlJ%0$zIESK6|iFLEPzPu7=B8Iq-ZksCcga}qLQx~ESlYJ;=d1z(vZ
zcR)si+B}o)e7}`cb{o{+Rk5mQ7T<hZ3|vqs?tH(s_06(lU7!Ju7hiUtm{EM9n>FL&
zME@o8T~DtlKG6lXQgvtk{iAQTi9(73P<J^3nukAtOa;xhmwsT=PuspW0#xEPn}f#)
zzy<l9gWWfCn?*t8@(1o_@!vJGpuuwQ0g{ROpdkpTR>R%7pzgYmELbbVGY@#<PVgby
znbZm?H`Z>O@%Ox(wp{$jg1Rlailzy3l9-++zG+{2vTwfgHcimZocCuV&g9)*1}Y-h
z^N%H!-8O?1m!L73G!0Mz_)t7e=Ue9OW#9m<Fc#Z<dmFgMI5>Ob1lbS1;DY{M&(Sy2
zKm$P@CIx9aY};#t!CN0@Z=7*wo3A0L5Wm;cnv;6q7IenU_*>fvLEDml(dRgx-ucEZ
z8nH2l?-RH2wGhsq%fL(DSDuOR;JdL5y!3slB=^nv+mJ?oES7^uBTn^z28!oG28xZv
zl$g)01P>G&B`caH%!UjUOJ;9Yh7T<%S|_xD`!#=#^t9SB-iCDGLB>D_kpe)YQU=c8
zA@RDTV@~rM^0~m}c<M2yvS5o=&@PAy<7;g0HNoKVo7?M^mYy?gz6u@(oSMshlMxh`
z!tVoaZZoq^f{Z_D-4@%#%(fab8UY#ufs7!9Y|~9)=LrLMtw6hT&lzfqfyWb0J!pN?
zAewCqTJ!eS#${*mnJuiKx_#-Urrfe4pfq~KTIKuS-7{o2B!L|Y8q>1R)fNNIv<67-
znIO9%2|R={^<eg9Wj<~2P|)<xr&biZByByjYVizD`<GJ#p3gYU1@2G({duGQd9{&6
zX`kd8@buLct*iS#>#EJMKF$*c9#Dum_Im%{yG!R-AD0OO52F3DSTx7#I8PXOP;;Hx
z|6k>Pf$wCBBY45{XTC0=C1M-ELj{xm^}bJE++&%xhH3GuBk32;9$9e5a?u)ar~i^C
zOY#}ZXRD*Y`DwDH>&)Uap{yBKC!T+ju{ksAc6on(&-(YjxAq+VR$@8z{-cdD2^R7x
zCGkbSCncOS3>KXc>TWlA@oD8(A}12(wpIRHcU$t+9tX+mp99s()V70KgT|rYzV@bi
zhly!VW`u%Ado0o{{hzZQ{dXX)tyJf_>+Q|gP57Sv%J>&||Ah`rn>Tpg#PZjh{B)n&
z%Rh77DC2JU^x8HzeWuesnM0>;wnIlRo=pRLa?|(7yvfO{1I`&{TSmWqRB2h;cX@;5
z;cD59h7ZA`33^*W9h_4akKJ4H@axSy*1fgCzrXeWl=>A3Gf8O%I7o`NY@GK~^WN0|
zzyI}b&5^ag|GNEfx!QK)!dEiIVc>O9E8j$U@ZDGnUKafP@F9zy-`mCO?0&0Wcx^j<
z^|DVHQS04VZ$k$$biqTnPxll^Ov{v=o?0Dq{^|F;O5evHzm(kg{rdO5B52p4Z|73T
zSW)=(r@!j=i`-aeefsN}!t+bt9(r4;{BX~?WsoigT;2M*b-&Bs^sjilDZ%<|&8gM<
z-y7_ICteJ#y$m;B0k0uEBBHlGug`kz8~v@PPw#)5`uyv!M$~}&#Ju_1w$2?(!GkD&
zj;v|5^W6#2yYja96`@x$#ok~~zx?`7Z}~aH%_8943$Na}{=c;Sve7FUV{h>Kh)>Mx
z#cr|0go2Z!)_So`%yHnc<cI2UYu^eNhJs^r<({Y$d^=WwC(NgYbKhi)76s>*%B^O*
zb*F>pPlf9Gb=lZ$0>DGqMfa1tPcm|gfR_IUNUokByTJjHsWxV9aux$GSz2fmrf8ke
zI19AHDdd<|3cC(?nA<sZ&8;^btl-r4BE8q>oy=wja5^lSF<VFZI9!oa*#RcVxa6@_
zXZs=+K#H`8);A5TkkL?7TQ@5s+u8&!#z3~3#{@vuuSRTLDJU!gS`o3nC-ekw!~)QY
zh<~TR27(>4q9^nOAKad;HwBZ0K|%0AI9c=;i%tMIuY*iP@drCxYhKp^@EGa6h}H)U
z>|CG~5#h(QRM>R_Kud@mQ`g+eNnHjh-w#joy?Q}rqR#2bcVgz<Ic~2p3A7yFcABjH
zaUSp43KbT$Pn(>I4y-o;uf~rFIPq`GUoUV;__WEX?7$}QG+Kz>inIUHFA9OSHrei4
zARxIxCl}O8pUTa(l5xKflL+tf^)UgnWj|_zBj#_7&#}45bxXn1!+i3f#rW~y@u?L^
zil%aN-DDI8kEcDX;W>NT^x&_1|EDF}S8m)}Ht*D-D*HC@O!>jN$!)6OL06Cl-=jjH
zMKc9HMRCVdqo%!oVqdpwZ}azmb$0i&CxH$X5?+4J@URegrsc{0O3_KobxT1b-UlsD
zT>tWG+WpIq^*f#`=k9;~_TN^G+wN=DJ6?jcj*idq1(&B<`>&+A&+&x>z;vgw12@4_
zge(38o#3;W4M`XJt#2A2{&`WR1X|Xa11@`lelDFL`#~FA4@~;s7IA{_$5e<0)~z=M
z_X~j{IAG@jxEd{Skxllw5b+Cdi&~1F&)5te6!kX0KBwsUjO`H4tCIHGb90p+Edx)=
z2d!VvlzPSTSuPW(9d_w#*ODuiX}OSD`O{sX^{F}FNhj5-_g`+RO}$h7d&c{3kvB7c
zzPrDrtbV;Fc!Xp}@tIrTStixeUslfN<|bcL1BdW)*W2GKOgDzlIQEGv_3xW_?@+&!
z?I$beazPuR$=8-W470r&bME|A`TH+-+Rr_6zo>Qd+@|gQSEtKoFv?xK{&iy&XnM{w
z;Q5T>;FX@IE<UTNx^MrxzRs*pimx(V=9J_U+qg%fu;FRQY}eBQi*@HG=c_jqUXCuC
zoA}$kl5xZ2xGeAphRTj&muKKH;MDx!bD^idRd21IP&cFf`}f^7->#cHe}C+UmAwqO
z!YD)x-A|v{zS4%{{_Xjz+twcZxIg}MW!b;w|BHocEYtFs7Q8zA`@MY2VoA%iNbsm8
zpEf9sra~t5B^OSRHBbU4WYGANVKsOOH+ZP8m=`QuZFcsAq45RKB-6taX_A(UK7uz+
z^`%UjkSrz-*=*4^LB`-+4rs6iJoiv01FHKUR?L&xc7Bh}<FcFf)5K%epHIJcpHohr
z@kPa~CE%mdOZ#>ff{S38aKmraGrs?x*K@c|dfq3edYhb{&q{51K6%MPS1g|$V+0NR
zOsc9qYV!1)q4~KY(3+O#+FN25&il^w`s3Wn%Xx;n>r<`v&Hh%^>ISN}IN!-^ehgl4
zWBL2c>5oO(_4dhCx{s~it<Si2mv6q^`PvFteyfuKr-tdBQGOG>BX5fydvCGksp8iC
ziW}}XCmX-W6P*e^r2USi(uv3{&;;jo+hZD~eLoAqD@DFkg--~6K0}@zG+uZrmA&lm
zJ>M6?22XUhztVj6iP>J@7RwxKaQ*PhvZ}}W_#A6+#^bv`G4;ueV#w;buYyYF<|fNQ
zw$o@m7udwCCJzd~g++Y1WzkQYL2bX1-@OS}EYsMdK%0w~e3DSKe82{oz3Ug;#GI!9
zR)2fF($jN>_aQUtr+Qo7G~{Q1$J=*KoFMxF5}Q+{GdC+k)nA`~-m<*!XB%W3`;Ny6
zz8`JiJRB$g_~9MPX9m!mKF!SfkpVdAXx$gu#LNd-c<?kDG_3|HG50M!+h@@O)|>a7
z>D1ihJjiMpt#;u}(q$?#pl-nPf?HQQq&Yzwx5D|<pRn!m0Bzi=e_G&FcAy(#44--m
z`yLN)akSl<JK&wnXC-hQY8m4;ZDMlV5^z)2UVUoe^BLKY^5SXhtv4OHkm7bvz=^z9
z(;!s^ck6?OT<}8L@Hh<>_84z)Rq?d-R?gFUNLA7N-Rb>*mF=ykH*KnwOR4j(U&Ej^
z?V-XwZqtp7w}pgR_?NHW6X21zYnlLf#Rzxnn`PNA!KGT|!U=ax^kPB7a9a9T(*92_
zc?qs6sul{|G|@9`xMc7yuTDkvoM8QB$JK2$N>j75Hs4;i^fc&<h)?&exo-Mi7Xml3
zeYqCgv3!(om3MXW`K7ZJTy_>8;VcEW`ppyji=KA~cYz0<FQ)Hm+Z{aZy4P*l`u_GS
z*^+kizgK*H2yGk9Sk?zwyTvpAr)f>w(;wW=J_pX+l==H~z|WO2wa{dKd)3OtpgH(H
zv!_zaYy|rAy)<{Xz5V<A@4Vwrb?o#{|ES>uPmMjgVwtqw3N(WHL?hYm@|U^i?sq))
zKY2M@Zae=0+0YyNo_tevoTGeCOKEjmlG5?xvrjel**CnOaQywDnm=iKj;G38`}|og
zDfv*ZXTb9g&ez~gt*@ECoHogq-+xc>_~Yp2Yo9%j)huxYjSX<Vk}1rV1!eA{Z8t^d
z7uvkHue~$rZ^e?S@vq;SzK?8s=e<Fn^O;Ox=|s>B*UCLfC-Qdf(sMTa$TwF`bc&U`
zPpmt*e?2)x(lY7QF3@mWiB)vKE1AOjiJ(E(l{Tp-@^<Y9>zKMcXY=iM>p{_Q_~)Nc
zJ<hnNJiFw=olk!>T=)3ZyU=+D_J1#*@exu(y4NH<0d3CRWg{Q_Os23?cJr$f>6hL*
zbrwDE@O}gCF6HUZ)+q10aReOvo_F^dPcMAF&94X4;`Vy=RdsWZm3vN7J7_uCocVLj
z;#X|7i+cX;Xx{v<Tl+q*4Z7URX|8r~j<VjyX3#WmpV|F~7ec->%}<?oZ+>F^>g=8S
z#6PbBx4}8z$rN@@1dVaM{OSp+9Q8In4zv9kQ}-xnwjJa28-<{=WS;*n{T{wJ=l))+
zePzn&)gDuiU$A&{e&Y4trO-8Vg0m&StENA9Ua8@J_d9o=eEGcg?;n?zTo;B_lSkCb
zK#A}4OU2m3ceVDk7n$zuIetANkMsT0;=eUVAVV|Cb`aZx=C7|^a%JaQVe2$d$I0aI
z@z2p4|Gz2wsJpBG_jftJ&*}S)6o6{SPUGhti9Ht<DbGK#uyz0Pug1CG-G6RAdGB<&
z?ER;^st@bxuRq=T)L;(3@kY?ZL%{Qn&2PZX?ZZ6!|En)2e!oBEV2$pF7yEAZ=R@j)
zBu8t|klxcDFJ;QzD&LwnN~$T>_1xaE{9$pe{)QWnp|>Mz+(2W$sqa7E+`lxt;;q|_
z4SUUQ|68{GyXDuFuYU!<fy@IZWm|)C-_sY#``>Ny`Lnn0@{axXMs@d|nx4s?d%k@(
z%ru5_aL}y$#K-=;?sfb7%JUQdKHt1|pUm}_yE25KSux@%I4!&^S+wkmWzs5T(CXKs
zEgSPWr*r>39DDoU_w9dF?mZ2ERK>LvQvc<he%}Wg=(gN-!(4d#`#pEx7i^B_lesUv
z^Y7F*8sOM3d?oYor7XDl^D@zGX7Q2p?irwymMm7*#;;#G=h*VU=D&a5f1Dn9>hr&)
zie}rFzN+qC=y~~U`H@wM^F3aDExk6y+Wk$<anSC-l3np4OV0_K-w#|ptw!tla{uKI
zEA%t#>*hSaUjAdx_wWV(e%t<pMsuDWq?Waod%WS?<MR6EZ`*D!{~P|)E^_|+3h2bY
z`yGh6b85|21y$}pemCv8|5KsLBioD5!Io+YTHgn!&z0xD8w9_)Gwm}tBmX=)mve#7
z<+J7Bfq?bjZ&;T0&G^X|z4b}(%hXTCuVf5AgR}3;WqX3&$ryf?1&x(mdfnVL$J#xo
z9_*Jdzq+NLpA)<dF@CSziW57FpYSoA0PXw#@+(39`MHU|g)BgEyL4A`)7iYcE(cUK
zl<q0)%+GCm@XVIQz)7I+U)+4tr&lbC!kOAZrASD5K*O77vMe#6l6}&DwT#KKJDM9n
z<%RS5c-M1tmCIEb@~#G-UAn88DaHJ~*8^~EaM$r*+V=MfU`|2ACmm(?cM1)lsSFD_
z=k=fc<$oJr`Wp7-Ur*INmOuY?YeJiXPxzR?X~py3?WKylE7=*RgZ50n%40X%U5nsM
zxVxvB0o3qXc)PNr==q6QP8m>01R>iw;g5NkbJ=G-rWv4vh2pNW&avM9&i4UmkV3ee
zoptuDea4O6p#3_#nwg%Mz4vP1>~jC`y=vjXoyAZ5*ujo?S*9;@YOZp*RRJiGdw;rr
zEqC+na;pN+1jCE6crmb?11LK!y&Y?;QQmjQ_8>S`ug;arDf|786I{MtohzrXyO5dH
zC%|P<<NnLcEava$KLF2pzx%>)^6YN)9iU}dCA&R2pPu`rCwP7rxD@;FPVkxi$+x$S
z&fI?+VwrdUS4(-n!0BfS72i2Jc<)SR1XaZ4<^2UG&srNfv?vAf-npwBQ}(%!2W;oN
zcY=DmE92Qfp~qhSo#V{E<<Z7F7HdoS<-eDEs5JX~zyZ)k>iUB39M_jry0fvbmHO0K
zvb&q<>A8u!Z6L|xeyoT@dEcF<jNlbEdF6o%?pPL0X9uS;yh`i72PWLHESe8h8XTxu
zo_GJnL2%}ZZK-veqx`+H;KU-uxyJ*ae7+eo@%_Plw))dfeg5e2Yg)&r1G}bFf=99g
zo}Z|d6Nug_5^VYF%<ErT=hZ&fecCF&>(0IF_t(zwj(H9(UGBVu1bX`XPt^uzpP!!h
zd~?BV<>K0@ldpeuNQR8`_uYAU&=52w&$<8Yy;Sq}U%)A`pnPe;&9lFac7W^0YM-EY
zGCQv~gM+`%?)@hV>G;<lb5B2x(c_PMnqK#3Ew`P&I&?^C=WU3(bHxuf{Oma{u2cKg
zylR^F<tBTd%U5B8NJZ?NkjirIWzF)wJ5vvV6UTCapH)+vYx{-opI#Ar|M)T6Ru9mM
z8qb2~Ct@|h>G;yqM~y}x-ULwX{<6GX@Yr1C@}-bexP7|d6l?c)UJt>Qt=)VNa8Bg{
z*Y{t3eK3B0?(OX$1#l5tr?c0gW_vWV%znA&?|*;X^HXZy{g3-TGK2Ekk(I?y_KEO;
zw)R<`Uh`Dw>Fzi4D<h|$519Ah`|j+u*7ugJh>N{(?1>quGXB1#0JLoN<jrRl;;)MD
zggp7uw2eK=(!Y22>O$KK(0-xv_a)%G@U&{hTyvY7^-71A+uS_=`)&NRhsJ%uI}2vM
zZ<m73|2&x|0?uG7{aMm3+|Jcn_V90I|8;I<a7|b6{Ddtu9L{zux?@@7&-DP*-&|L|
z`MWi9PS58ZdzKg8d_N;--GOP>qn6d#zTQxK@~wB1rTaVghoI~|`Ezmo)6xqCd;b2^
zTfQn)uJ8LT(2UOI>b>g=UVwb$I9IuRNdag>hS#gly2qzjZO`|F=v;idB+jkR`oH2L
z|Jy%KPkw6jcG`!?Hqap1qbrt0?p#Me%MSQbuijhzDzt9t^S`%ix7VK$f4p+dCvfw~
z%Ke?kLvSUX$EEl5+(hdja8^qF|HJC+iHW=26WWr5Wc%2E{WH6;Wq*1|oI`ED^b8sM
zzb`8$|F4;IxfeY1<^E3gA-H+C`0UTe_uh9D#?6qwR<rYs#3|LtN<X{T(1|XPGH?=j
zJn^7W(Gx#@aK=Bb^L_RW-t~WPmRiN!`NX~R|BvI}1L9uA<i~ylHLM)xDu1tX0Cm@%
z)+{fvihr3i;kD74$G>dzYD4GM9NQ@KvML2?{`UND55Ug&Tzl#1kA{Qq9_81(KdXOF
z{?yaX(%_o)&!a%Ov@`hmiMw(#pnAAy-^vKTW4Etw&To09yCYNYfA+j*4}TqmM2>~~
zyKfCARxO-y;vcuSanX}=kaFtz?E0rJHhQl&&3(Vk{_L8k%XinCq~7{pxB2hSM>XI3
z^L%y~a=wz;Y1|BMq@VM5t?BQ#ezV=#CeQEZ&G*7)_S>J@*o!(syS6)xp_%gf)b*E2
zCBMy<)wykc{QbUjjWK#k`?vS`eOJ9Pou#<%&Q!*kq3(v0<Gw$9a>ueLoDE#2&8g+<
z&9ZoBTDY&%<n8&~f7{kWn}`#wjlt3Qv}R50_y0HU@Bh<xxa@z=&x*(U=Qy-K7nTDJ
zIZb|W?rpR&B;Vat-MYs|`uWcv)(<{to<INiqx-q*A8y9=?wh}R$tF-jnPcVt?#u)5
z_|)bzALeem|LU=F%<;c(zq?=lzQ^-)!F14-1T$Gm`|iv<m<Vc<?6vbeyR-PoIUYzo
zzI!tB<8v@)ExkWi22@bbgcO5!w^V}ar8G!sv7Y~N;X9d~#?0VW%ie!kr*{@VspALd
zzMXmf-`>}~=U#s9ZM264sJY7WzVu<!?DFaZpv7zb3DYJhf3GS4ovT;y9aK_Q+k#8V
zFF!2U($7u&Z3EWxWQRHP=@S!w+c<z$4*&WiRP;(_XK@QS!tTWC8SJio&H<^0rgKlf
zyXQ1BsNMz-m=sNC2T8PFdFs8~qO|Xh`5|x>@lH;B#@&7SEuaQQ^X}uVr}OSTW(4;O
zUq5Opetx1>8C*zCvZ{G00&+$G*cnIe8XrzIe=pq#Zer*!IxYOc;OuktR>w(E&ljF~
zUh6vvl#7M#>?}3sIu4rj{Zi$4U`Fwie`0;J%2PhSC<|9UHAngTHV5!px7)I1pz8cK
zq{P1a&cqoMY?9z$ds+To^w?bG@24RlyuEsTz&n|p@oeA_{`;=}(2n9Kax!40h2Oak
zzWEkw0d6_n`Rf!@_Sj5j2Iw53yz<(_E0#s+{NRqzj_L_Jo;<U)hyfkT0U9a#TI=`*
zyi@kzef=l@{EMEr$plvhZu*<_@1S&ZM{2P^{eA&q>0R9Iz5+IL_U(%2P+@;}FcEzA
zz+HWoP0ZgPG=S=~FTY;%JU_Q_cQpg3d35RRHJK^a+w-KDKy6@-d)HZ%n9IL!03AW_
zeK$Xc^0|$_s~EOqolw8@)=puH_3?MF8NuzI{lC);-pTA<-wqzh-Nl)YB)9!{S^!9n
z9XwdH_nzs)JC<ef{NSPMFO~h%gP-51wFU2}vdrx&one39+0E`>-^QB0^PN-Fe}DWd
znP)sR7t(zx%H~f1b@_H>{_U|k{_YJUs1bZ}Wt-09k8*GRom*qM`t0rUzjgahe+{?Y
zWw^7~)8P4ySX-SfprZ%tPVL@fC3$*rz5I^9Ovm1TWc&4LuU*|~Xt}U^GsJnz89(Uy
zE5F_||M<1Xd#vB>y1gy`|D<QP8DP^ccXe67B`WCfq`ArE3L8Pg4BpG{%X!UB{w~i5
z>Rc_o|JO^Ryzg#3ROR=>3+`B!{TBp}URlKo1-z2k{ksD^NV_X`L*P4^-M=}&L31}w
z0TfWooDkl<xgdS)LXd#^^}zJ`xsBEnz|k~mmHy>Fea<&O{+03nKmT>J^Y!C@pew<W
zzbi0;o9>r;4K+&p?l!Z4OX$^SSI&5M{$H?UwPkbe|A=R$)&J(&`@=RWobdI~0W}AL
z?63WstDm>@ie;I&5co`|bHWFo|JZlGw|=9!){mNH=hGwO%Oydjx@W-i8@3({pnk_r
zzntT5ul8A&-?^@Rd#zI3)BRf0AD!>)g%19e@k6}uCSUDxkIe3P4)B0m`}Jcpi{Hd4
z9sp&uIrVym^@=;c%#J-*Y5)C^<^LEbSiHn{fJc(o+5cbj{_W=@>`#~7<9&Lv@b%_3
zPX#WQ@6y`<ZCWIk^ML*Rbk6~!{7=)>w|tLSckBE4|9j_`pE$>@18qLth;@bxZQ3ht
zjeU{3Kk9gY%8jFU?w-<}p0fV$vDMermq15-l(+LjVsmo+nHj}z<|&GS){$D?UwY#n
z_pdd(nXTTwXWe_fw3<)D|Jd`}Zr5*%fUAN9=QdimF@X2Jz0{MRVs-qTBh!^ts`F13
z{-0h{`>~3D{ns5Ek8fJ{bh*XZ>bZ$?+MZTTe)RwO+uW+y$ZJpbRQ~I--NJ4c`$w%k
z??&DMX6I?r9~>??Ojwu7&A}XY_}cyQu&~0nJyC+w88h~CXE=WU@Feo5%Y-%WYckl(
z<Zkeo8nK`Bc^fn<?3;Ft^V=^nvsazIJ<l-5>~+xp!tXC?TmAcT+9#eZP%fSzu>JJP
z>YM93Yfqm4wY|DBZrbawrgOIMmi_pprvAp46J-)NdCZO0a~AHNvupbH&t=w6qwi08
zy|q4Xp7!fm&ntX=`XL4x&xRNzZzccx+h>cq{kie|`z+%o`qx%(wb}PB=~ZJdyP0$E
znH;0w-BXrL{VR3prPaP0k5{D0RNT#vp7ncGeZ;iyUki;l$-0>x?sds^x}vu<FV#L_
z_PkR&&d=I%`|G{sJM8M^H=LaK)?ia+R!W)hAv4WX_39b9t4;WR_`i>R-1WQfL;1g2
z<CYV5G>jK{r$}jREcHlBNfSvblPpyab@M*kd#1<fj^6TjPjk0NaNGATW$Ayu?Qz6@
z<?po*pIk3hvfLoc26AFA*zTpTHcfx#_RMYO&RD<8r>CXc%gLRNng4p@ho@z7Qs<7>
zb$|V5R`Lqu8p*trJdsCbmZkdn*M04~WBhj<n|ZppHsF(G&dKwqf8YA{`|m{M+leX0
zcTT*~IP$jWRb1T>Ugt`?SAl6+(=TlaTKaa{l@o6?T5^L<`R#jOvd=Ge+tM?8&fV+*
zg=~Ow@nV5(-YcVTex9>!{gJZnPer@${?@#(W44W6>Ky&+>+i0Rxyh$I`yt$^x9=K%
zQ@bsDs`&oA_+N%+6zpb9d3vBs0+c3<xdL}j*)?_5?y0k+XG*s2i1oYcef5(*JYbf-
z%G>|UEe+yl?@k_PBW2^o0-H~-u&#_3{&9JK^WvQoUxansT6$$|i0x68l@ldn(sCvT
zm0#kjyXGUT{Q023Chrx}E31C^7b_PZ0w;)-RTja;%Ae1GIX|BrS-6u~`;19@a*^aJ
zJLy@{Gc(&jt~hP3ea@ylY1TqZnaSri+<zCz|MT7U+`X5xSmXOI9cz1d>%4H>_2-{o
zuMDw-B#<+4#>KnmESo;7J;&74sG1k-ud`)~pE;zh2OAQw(fs0>6FC+~-Wa{|i@MnF
znw6JgHfQGTrzU$tWVdDHrMSs}qb!si6c(xNAXj)_J^TdZr1WQHmcII?+M7&F?PiyC
z+)%yJEAsOTi=okJKEu~7t9q4I&sK4Jc75i|Sf|S#oxDCq%Ehn2p`^Jv!ZR-=PZn%)
zsh;-H-ZN{RK`CzOnZGJKC+;jw%bR}rOVG2rNq0`v*n*S7zMZYlb_yr+pM5x^q|NC4
zlqYVB-ppJX>vj3mvYUd&3dY|qh_rcpn*MT~im4I1Kq4sm^7k#O%zLgnD}FgBv;s=k
zKU(_5mE(!i`SkZMcKSJNQvUquk9!~AlFVC2bX<%j<b401ZFDiN|HgGT*g|RggW1fT
z&;Gq(cm&eC;q2OH4k>RR!q^Ac3;F+-x-WkD+Qt5UhhStiN0eGf?3JIjB8E!w{LZ^u
zc1>KBEONH@#P!2qZ=HL;c!%K6st!o7KF-c_*(di5loL`<A5}G1isvr|6&qT=w?A`B
zd7}vSe6grouyWBigRR~xqcwxwJ@QyC$t^3>EY<$K^@d-eb?K~+Un|x#-Th|Tf4OpJ
z%)RN;z-5q$sZut7^6V*_Ca>cDKTB%j=JpM-UYEU&`bwVdIdT2)8NJ2tmb}{=c&DSr
z_6#V8o!VzHNqXW&P_$n5J{s&jOLF4c_L;G6cRi1?rk(9MaRs8qXPV|t!JSnzZa=-U
zcgoBvRdc0q{z6c?T9rQ26vP3$-}ZdjEz_{``>#Epxc>BGlX+k6f73pF-H5>!k`_-~
z1qViI{I!DG9J_A8hnM&d&RhQcNBim5Rk5kE@u&TsK#EbA;k7qUe!5}jq5agNE#{Z!
z+4WbQKHa*0djIsfCm_X%%Q|Qv{*yS_d*T|{^rw5p5^hiK+5TkH`YF;}GrtD*lqP<@
zu4Dqu56}ony&vZ<zVQ9}zsJ}7{{L?N`OAM_2R8H{zGdz&sQPosE5*3!=f7-xzT=Nw
z!@lp2-|joOqu<>q|F|n}Rf=^_&Mc{kE892vdfoKA`YF=4_r&GHH}sa~Eq&mu)+rcS
z-*H3Lq&H+{sfoGLXGpZ>dpF8GzpKAFZ^OIS4?n)#R8xE538bJ=de0vWN~!jnf})L-
zivFDG(VP5w!Lzv+u5|F&`@9W$7549sd7QBFrr!n|y;n%zd|$R_oAycP)z|nptos{M
zFO#rtQ|s}^H@{1~-z{4Na$1{o<Ae5<v0isi{abSLoo9^y`|yiTUl#73W0vnZKPgi0
z^!3GQV1=`!Cf;w~;OlkwWZl`9pWetHxc=kFm%~Sw%Af!K_RcT<<^M!2V}C!q{(IJB
zaH+Y_?aBAVoasT^gPt%?y3+B-4(zyXCZB&6+!uYvZ?fk9hufxGk6wfn-yMJKj=U|J
z6}Qc1fB9|MHy`iyef?j%dtaM!_Wx%u8s8dhkj!!^lLsf})HH*Wy(iv*qb_y-KFcuX
zuh*~TM*e5AIk$R8io*KaYwLFWEo}{kR>Plu8-S`|&EQv_c`j}8k3i*5shh&lUWbo|
zK^5UrFBR>Tf|2zSx0g(r`(}EE-uc@<i{#y!zn*&ix^8z*^tt}abwZy@Ieo$A1t@>|
zC$P;sGwSANpWFAJf4%d4=k~ggZ{15AtL0$n<u}A>wLiShH=ek3xY$B%ZsP3dvyCTK
zfY}dgHA}2J<lg)JfAyufIaOx0-95Q0-_@L<wY||Rf$gU=t0ZGjSqj|Dui!hr#Q4qq
z&bJrm6|Q`AdeOeT$!&Qr|Jdv;|DFbky@~(ZcE<YMJw5OFo^>}Y^dI~A+<*Ed_u{j7
zDgLwT;_sHrm_q7ahkEBTdW&B!IhUfcLhxoj#Jh=Y$v?N~2EIA|wf6ru9@p2OzwXgJ
z{r2PUUpruNxDOnMM*FrD@wqIMnswN4CQoXR#>w6jAz)uFJ;SZKQ*dS$IGcx5P7yIx
z^5+F7&{fB$fU-F+B+oCco+UkTE!d^rXO#kddmX|c#l$N`Z_nNn;m$YImcCo!XT4;F
z;LR+F+n`!7(#6DFDVi5tOvFn4|N7YB@xgw(terjXadFf2U%$%hoeoVqJQm=B>7LM^
z;{S2B)9;?Y`TxV`UG~AXyYqLwD~HER1E^kGH~sIX@0Ygk+xzQt*@@fVcYgn!YCY*?
z^u)r(ceQt;!Es!myy+D<&8)1h7co~_%?EbE+33a39G)Bi)qp3#W&4u@;IjS0+3U{5
z^<~#S$n<%pueg<#ndfp&3S3Z!9y2-Hdm<84OTAorW{c`hLCb7#I8FJnP{mj&p4WJH
z&#uWv_EVm?rL2XN;LqA8-T9HRE-`I-V0qB9HlZ^eXH0$88n3eJ((#%kF>!m_3{br|
z(bF?XdDAs;IlnS0apg|INQl89Ya6cK=~!b54vtegE|a7uZUr?0E_+|)DmvSHq6HFX
z=T<G*A-J;u;+Dv%D&|ZF`2s;r$Hkl-YX9CGdZ@`W@yUI)Fk=OyhaW`xJk(cAw$#k4
zczphg6*wqX^)H$7Lm}Xe&2??<zX`wobo)9yd-}3JWUuKY$%&iWSNOW!J#kU*h;hBy
zw=<x6alx5#<(-0&4PXmpdR=Y4r;7`m2i3}pH+DSxxBHdczt??km#?p^+b5{}>6^e7
zpB1|_qNnI|3QAT>+)};LJ4Lci#at<wA7Xp->{;;oXYNDyLS>_G;ONpc{^OD7atu<y
zCnsw?cX)Cg99;oQ)f3Kiys<h1YOtKLdp=3JF%DehdEE>P4OHIr+F+ZfrnRQ^H&8ic
z)dFhU-#f3C>+QGQ|N1wZ6Pse^-??^4|Gf>kC~uRV7~c-cao$&pTW7&I-4!qXegAdf
z>#`#cD`PA-d_0i0LQt}-<JMA>wQu^f{(qGBzIvxa#~K_l_xi=(Km8|F{_;5Uk;mU&
zKi+%n+uygaauBL!pMB-e`2WTiW=T#=gjB9Kg=$Xrp4b3RO{w=k`z-JLe!KeMq4gi5
zzrMfi^?RN>H0>I_0SCs-^Nr!Y7c&2f{_?Z5pL@Z-@_c_?M_FC{EpVOBW3F@<lC1w4
zJTH;;&e4CYysa+l-S&k7JMLX?y?gr8zeXcyhXH1%J;&T5?AvcIafztcdVQxq_Wt(c
zXQ7oZ)U3iHrRNSQhr!t*V5?VfvGS%zV8^VSB%6`P5+$>!Ow(7pR7%#d_e9s>8){46
zEb*~XT`4%T5S-)pgxkJdt#mB#(QnVK3sa=dom}s_yePq%C#OwnqImlXP^0APtl+b~
zCwjoi*!4-}p0&#!OO)%VSM0kg1uG79A(3<T<+NpPDW_+yjP<&Hs(j_W)$`}?&s+cd
z+kq#4|JIzd?gN)^58a-eNz9ub{M|_G=1EHd$vkjzE3#H)>J<(ab8vE5wQuVrsfqX7
zKoy_oRm&aA+@5R)7l}bznXljJ_+ti+(pBdUo0=;fh7@*P*($RnC*ExXwTVvtyDRy7
z!)uEhwRz%&*F#(X?!Paay?^a$aE;m~J@GE2NSwLPp-6etZE#>|-fr~HbE%UC*Hocl
znP+<)3LrIA&fHy#z}8O=D%&I(bA_kF$Hb&n*@*KL3)>{PSvQZz6e$}$1Dkcz-1+p&
zx?OhfZXa9vzkT`jeLE(JPn!YhFP@kVHFdGpPC?5Ga6?mM?o5v?7dA+%F?3Pg+1?X}
zz=8d=wqtAdx8se+ivL=6*L4_vnlt@()vljkzd_qoEK+jd$W7K?nC6gj22p~1dI~N<
zZrnfg{o})JN2AxRUhrOg?aI6N9ijEoiD}MP^p<8Wee)!~NO{v!u(LHU@Au4e*(U=o
zMyuytu9Gp)_?~+3dtu=3jrN;Aol|z-cKAfv4#A&A;36f&_VdD>f<KGEUYJsQPsLm*
z9g?~it)0EZZNV8xd0O%_&QST&Q-LifS4eAa{_C0LvQ6e#nP#bW^}OCEd*(95|Nj4V
z@vXntA5UAj|KF}Pnovt_LM+*`NZ#P`osJw!aD<<_w#+NfWgDp1Q?mC;#sw2orEorQ
zy{FXOu*5Cpeqt7=>65l<!kvyDNYmz&j{YR+iK-povSV(jN1^g27DG_e<R*`A7N3io
z{Jg`4FL{#lEZLQQ^PPP-!>7$^_M}H{DG$IYbW`cdXAUW+!Fg*#Y307y-|rsm(mfJ0
z?d^3%v+oxpW`3=(znAF-2^Yy?a8UH<J(c<KV*A7W?<-8|Z*B`RQ2un=VC%URzcdOH
zJ>y)`q?O8k`pBnNr=09PkpqtArDx<p)p;&BSl`@RYX58Vomr9-uY%LE=f#OTm$*II
zq6qF<Z+sVGto-Sw0jLYRGD?5lPC-eCwj3oXQ+B4Myk{SD_%t<Fx2yll*#b@v`oU?Q
zSuS?c;4qJ#n8jCd{M;X_v!Hrl)%xZu&lChMtl7Elug&XE-7414p8o7#V|r?T{|P&1
zP)93%+mGlV<)ZUvZs;w|UV7^IlAVG-bHL7=GBZQPTqzh5;rVv+E8p$c-u7_+y9|@s
zo68?r8!D~lbv)g&s$2f!&wxqi?WEhvI7^l7AAO$rnZ-^ToWdR-)_v~qWFEM#fK=_B
z;BXH3wsXpzjyuNS7+>{HHZ#xVpCmY2{@%Oy_1``JzI`q`xS+mz-t)`PI4kXUd{GsI
zjz)Cwm_Rhm6S#7RL&OB!_RY%s;GO33PqNKSGFAD##^F77Wowgpk8X-#d-u!WQm)Oe
z|5IIiAp;Ye&O;iR`z`AKd`~nrSNhEZuKQ{aZ(Ao2slRBgVBGIh6aMYbe?R}=z3o}@
zZCms2&9(GQn3tF|J;40aH=Db8+ds~@RQuoa_vM0Io$c=S*I&j@j?X`R`Fr78gLRT=
zF4rWJ$|QZ&e_wo=`~T+bsYPq5UM9R2`|<0|@x^~Fo@cktk%J6<q|5~;KO;WZCo&y6
zhBocVmn2W==zvl(xad0lJ79^t{@nT3bI;!0wIX|G|5c9d>)Sc@^SNGuRu0}g;3nXE
zZ_i~@KfR7NusgH-{%ZB7a9NPY#6P;+mj8J%_iXP8AxJ`e^)d{^0atfRUws6XL^e>F
zjm~F#Pe3?NYg@Li?EH4WGx}HkmV48p@=xrUZ}89RP!P0b2#dRGGFf>npCrLW)bD#=
zwyw3UlIiFAz4Kj>l-`o>_d-B*r*E)w(RoNqU^j=xO2M7!;96-)tnFk_A~*u-o}9|L
zF-dx2HQ49gGi{@alsBCRmsmIF7ykWh|4n<R;LUW<NW|BmuRguc+)}oHL+?^ooxXpu
z@}^s0wJR&?yp5FuZh<>!n$_tdrb>%>6K7A^HF=f$b`w*j`Mk-X9$uIGb`xWz>5x|9
ztW=I!QWMX%fos8&Yz{`sM$oKRbtSqO!~vBgE314W;2ceBi3xW)V$2{8=ewq2&NP!3
zTtqE;J1fa8<#=Mo<Uq5aO}i%^>DXh@@<wQuTh=_0YganfSb&pj)W!9?GV)yFAf<4q
ze<~8E|4?S0OB!gH$5;P-^o;sn%d<?(m5d>Ia8);`T_g>zhfgot5?HJ-;qe8Yz7r}M
z(Yx2J5d2vN?t9c2GoLkP&y$&VNbn^~^~757Up0BZFZ|P&yZ$=u^E>%n|Mu>@yFX9w
z1hn&)25CH`+Bu(uH2{{ry4U~AE#(+Eh=WqhCtm5;19AE*8>=qqiQ<qUika<EMao5w
z!9jm>d+z@Fk53K%A3FW}=d}Ib-_K5TS#T)PX}X8`hv)O1ChzHxv0%yh^wR8`#Ps{u
zm%KawdMp3Fes8Pow}0Q9S}p|c;W_u7Xn=IzUj-_k1#!URH9lALb_z;D8r3!1ui1T@
zd#vF9-R<!zR`t0DV2v*Jb7$Tb?TTCV<k>9giL8(is&4;zqi^@I&_iE$-P{!)^Z5<G
zSZrRrwT~%u2&4&;?7gn7+bI}X04~_CL`*U@Rbq!!IIB!$XGu>ChZr{RdH??lYoED2
zc?AiTQd5^=<)W|PF6GKyvsUaB{8<kvHFt`rm@EC~2j#x$O4;p8+)_l9zy<r0%agDC
z$Pi5el_Z<&^)8mb-+npGv3{@Y+39b!O8>w4GWq0p>BXSRQEjGRW$TQn^pM&R+oOwS
z3R<>y+)6c>%TwAqhk4@v_U8pYR?c(Jdlo7eF@P(&m7gs&^IXIfz=f{sZF$e$6U;84
z%0G4g^F8{dch`x|H#_&dE<JNsUJhiaU5Q%&oMKl!&oVVv+AaWgZN8YwtlyJkI?@VU
z)EqAwHYd5Ih$Vs2@}{XP(j1<MKGKw#==b4lqsjTd7TMP?ez5{~HMsW93=vlp;Qm@C
zS8IR!x8lW#m6iXLL(j)~q`8DCE;5rWRknW^^2lWVTqomg-Y=t877J+Rx%er99h+Lk
zf3o*P*b#6{KhxX3>==8j;OAX6yZSfg{rMg5{zP;Ur%Lamb-P|I=@gV~g>+hU?Wf%7
z&~XJ<1pD;G{~PbOS+P@aW<NLz-&AgEy?Fa(Og;NA&I_L;wll_^zrE>>-2V5T;9+>l
zJeOz6V5?29UokaRdM^kLhp;cV%VtSW{NAx6*6*_S)JTs&<xg^kpz*$yRSK@f$^r6V
zj;64#MwZJn<zt|6{IxI4kC=c=NCb893ROUDbS>}@WxzMX>32GEATIpYd*Rgri|@tV
zg^igz@BGp{XYp#ryPxl)6~T%AaPNsQmpgjPUoL&7Y46*6qW%bI?BwZhXVv;=%O{wc
zEBzM)$IT|@gp(jya6r9@2`y6oBrgaW&(PdGO<||t&wg;?3;B5mp~Wb(^@-aPdnL#a
zrm}mm@+OEcR_;2xY^UH&sFu4jpyswaI5bz~P0Y??VNwB?=b_nqR85us3xbC*!@m4Z
zm?bswZ^y=1ue)B_zjz(a_MWH%yFB&$<~jP__CYtlR{t${T6y=qb3c2H{`;#FU_FPw
z;HKH>6PxXiRZHEUzOVSD_3^*Ei!1F7_8+~-d^<70_)5necW~Lb&17!=?i(9on<aKn
z%eA-C+Z;Eoc6S;y&3?Y<^EPN#nA@!1Wt$)G+`0U||B=4@-~Tke{R_MdHD(XYnEmr#
z%Jav3|NP<gtm?m;_>aGMT-$pGJUdYU3I<T2e)Ch$>4SeGDr4N@u0=EVU#{J)_F<2$
z|MbhH_9qM>^&H0+h<V38g_|-f1q=Enc9_)PJnj^vTqJ4;p5gdpqyKl!w~aZ|qkhHh
z`+xiNw&sX?XR763!>rJhouRC<Qt)S22dLXRrS_JJxl%kNT6O*ZTg6{neb@Qvor8XV
zMgH!QEzF6Y_I-08EbP{U!_NDr8z{y_!MR=YwiKv4t^{r{-DbS@Pvlx=P3pDfuaB)y
z=$U-@-@J9+0r%Y_pq=W*Egj%N$Z2VJUd7sbJl6P7Y5mpq>bD7(e^yEF@7vgZky)BQ
zXO`r|tsM(}-EN)`ds=AKyF7VY^y2AnYszF!$cJgp0uS+Kxm;5^1nOs+K34^eW`m9O
zx*ECRncEYcBv5B>Q+!dSzN=jHrk5uVzW%!FPTczA*G0u)-H`}z%3k{F)4XSHDLRl;
zsdjbposJ$zKIz(0HA!kBYbV&X7q1^Ft`8Es2&&y~q=^|T7>RuZPb$<NR54Xb76e!1
zM%>Gvz>WI$4;(0vtj*nN0#XIe+C~o-gH(ZC81$7{e3taYjgV}9_3+JE(i4wELip-t
zvsu!O=ODg1yLkU3$%&^s7Wlf|^_aNB*GT!3gy9y@oKkh^zc2oAnRza9kWwU7$?9b9
ziDXCtc20Q74#CPEa69Ew-KjtR|6i<r=Jv!8Y`4-L_u1TUjP|(qd)w#l-@h*YeLu7*
z2vrdD?B=999X@W5cEvsUlf5TWz~-jv$WJR)*u?h{G!k~>Sy-`x5et~DahuO8&!tTP
zoDxh|=bD%**+a_p?RsCg&SRUmy;^Je-|rmTg5Q5;_-myx36iQicpM?Qoo}D1xstyC
zxEZ;M{jRCG-K?e=H&d_7y`qy4cBDhc@yr_GRc5Q?@~)rhSmW&S)@YXBDi^j{(i2Oe
zVRrZzf;025Uy<@BK1dR+u2(Tv`V297)BFA>ZYgr$KrrePdn(g$#~ISxwUeGC-B{NF
zZhPG{4-Zr}k}?F17_HpZw{E4N<s@)BF~nl3iSZuxtg5-7e!u5ccHdWX1v(~Oi(c{f
z!RL=Zj`nGM{`AHD+S>j<zdL%|Oqw5F{1W;-6x7_i*aIpqR$VzVOM2pYh>NHG_Xt$p
zBn2+aEAM}e@>_m8)!HXwzV_Zd?{4c}JG|Zt+AgXIP&HhCdin1a!P>RTZcjXwGG+#p
ze*7oe`Bv{FTlvnr?`j{{-QM@+cJZ0_cN@X+sOXmBk(4n#z<ks5oi^K^$GNv;|KI=l
z?VkT9o)p#H`Q7=_x*s|=lHvgli%VT~E?&jTMk?TPe5H|=W|m8v%Ca)eQtkJvJAS`c
z?=^pNul()pNl$XOZ}JM*r>E2fZL`%uRJp$5_v}5<52@)r@}9_a<hX$YcGWt)>^v4L
zWw2SU^NWu5oJc)#L2Yr)l8n#FGX-}}<N!4%ro5F=F;_Ad0@p7_yL+FwJ#hm&EGTXJ
z#5)~tJdS``=1~{>mt^F*l&OGoR%m#ciMf(BM32<Noy$OaKt1wJ_PxK|>%HQPl|Ly7
zZa$r1CCRQ_#OK1N4DNj2zLUl0vQH7rHuVq5&T`qO2(Dumds?z9nM1}bt%|2Ua(luC
zal*E@Q}1-VaR8^&Q{Q?gNjJ)Y)5)ni-mkmv-Kxwxw)n5p``q1aRj(QS`k!Anh0L=0
z_MYH70v-T+W8f2{T*M46r8Re_sqYlr*$8eRO!2f*HCM8RG<g<%PW1$70adz7Pf4xY
zDfqJyoP9Svzd6rM%3k+R&7SLv*8blh%eKB>@_i+2R?Hr(U3_A?xn0k1=l;LOTjqq$
zTMsTLK^YPpR@L+Beihp8Jy!XDasA15v&z4R_zx8xelph`)G0b!pnQQ3oD6S%xBXvg
zpS+$!P_m8VqROS8-<2C){@k}u{l55&KT-PpHM&dh^)o;$HdWd$051Bz3!Z&jCVlDK
z@2_8W#Qw^B=W&_e|NP(Xn(A8F^EL9<`5w<obW0IW0u6V6a<>baBskHtLn2n~vg6I`
z(M8HeoZwu#vQj55SosqN*cq9w_8yCO3Rbp28WOgf*6b9V*#Zf%wT;v6aHKeaYv@(;
zu1vhr5#!X88+6KV)jXREAP#tFH|k=(WoDj>9<*h5`m(CI(rj=zO}9P2Rla22uk`eq
zuCn|`KRot|o7dYmsDRqKX*&dOLhQU^Be86y;La9sEg2H)02&l>0w;h~dihy-E`3Vi
zU=2NgJ3Ei%kuo^_i1wFwC%K$cb~EEll{YOnFf~@XFX#*!{$F)}^MyMdHSXX<+{WQ^
zuJMH55zv&;!gF(%?hw4$3GwIOX>HHkQq&=dPK|%cosKsyU@fQKL{5^PI3H4MTurh)
z+v^Yrsljr-uU#Q%*~M{t$(6ZNVwX&~(!t}}1DYUQ^=^Aso=Y3lnct&L&6S)5!MSVI
zaW@d>BDj;XFFvSl?zC+Cs-6A5UqAn=TjLQE^bgix2mqJ(OP^WR`1YRg2V0ox|M_^m
zLTIt_Ct*lQ@o6h)E(BWt%u_nqdtxy}*Q>f6&)l8_f<0rjhNXzl<(e{hX6bkO<Np6$
zpc!pjuw>BF4MA5r=0F-ZtLB}#c&B3zB&4#$o@Zp$n8+J~COKE`Dql21u(BW06}fx$
z(wUAq?vQGr@2RP|(sQWqQeVuHp7<FORA*xqe0xt+fL*@y#2>Ylf<ODfF)Fgxe3H~e
zM{xb_b+vl&3PH&!Gr-F-Vv8@{;Slk10nHDrlH-|prGv){oV-qL>6|1r(YX`c=DfN#
z;Vkd_u37QwpteTP#&ZFy<_mPp%-jA|{hi+5CDU92K|@<1cbKQ`>FDus0d+Q4y$i|6
za<N+`d3$Ne+K}4+rshh@!r%zm^fY9W^u(E+pfSVK5mz;zA7Gy-^dGc};IvNa{Z7Hi
zDd1HEA}3F(=qptVDetb?)xW8K+Y`4Ge@FnTX->Y=@y8RAR9F-zNl$bH8|HoW@wZvh
z6P>}F)6ZgpiWQ19F3R+sOwlj~jlGJgf)jD->KavZrint}7K+l_#Yv!O19i26wwc8R
zDR0sc1kHu6teWOlth`ABoLe=GQ$6xrp!$DLF0KEOo?~jN)Gh>`Vfs7shW)?U3*lCK
zUoGyRB|Xs<><;g%%Y6ftKWTt7x~5T*XO>Hv8aV%?hP$blE8T_$itWlLZcnNq9xU4h
znpax_DFEi?dFHwBX+oU7&*x<C3B{wJo=EEX&vBym-zKczH}%#1uGeL2tL#r!K8KCf
z=>&mu@2M?2CrLNDb%Cq-tB)-wNlkR^g3Q?m&zU7P(YXr}zrjr)*LOjBU}4V1%9}jE
z9{*XFnxj=^dM0Mt?Z0Ke{<2JkRihKZF8vg@cJJJMIaA_~|6ZN??2i4?zgOOW&&q}M
z@|8@Bch6Zj{jb;0k}YNRYorg}uD!#uuUCHFUOWBwzFWan_d~Z7s9F0~-Zc-peqG@I
zow&b0cIKNOJNE0>joc;gota@7R2ky&{TxM=dVgi|Yfk6iet095qw&}B)%#`p*DEvI
zZU9eGtyl_fNxd<DG2Q)srj6Y9k7ZxpN7~Pqn9id&d;ZJH-@9D(LFM1Fm4Y*ug3FRO
ziFteP9WR!6zV5u-&iu>A*X}+2xoEHbwbg3XV&Ivt8G<vHO594lGWX5%>#zCBB9AS7
ze)~`0u06jDzpS4B{q8;W8?f1r+%9m!uG1~qJA2o=sbQyTeGl)@-aSwGEA!s#pZ7*y
zhBgFqf*}c5CvTGU#C(XReYa=6JGt-t!sC+P-hNNKweL18I%|T#(YbGaqW!w}_Y30h
zH<cbPt*pKKXyRk3-t0EXiP>G?7TV04zD3HLe8FW^<^0(9-xr0QdR|%?H?8ph+kN)G
zzLx${W8ZcdG?8~=890ot>@{zanwSkq6E`<*S>l#5ODPAm%xsh3gfksF!H@}~bGJ>*
zl}?L*^Y7noW3d}?$5);$VO*>{Uw-=Ow{?I29)-Eo2IA6HVe7N<T;^$lo5#O@Z@$|c
zw{5lW??rn{4`1s)$k)9THdcBbV(2RG1+%0lW`cvk`|K<`-(CkZSMc2at8a}<+)`#I
z<xCDL3tHwp<w{3PFu2G+bx-DG?}>O<a1Z`f+@fc0Pu7D|WzaMENq0K_go1<Y)SrM!
z(i8VX4A%a+RL!^dM4T&lfM&+4Co&x|!Qf_F*1QE5uW*DwyzADV#pV*GG3$^(=D*w|
zQ)Z=lVgH96B~414OP9E%<R^g|T|wIxPP)_a#useKDiKgAyf^b%nPsfL>+1=srb^Yq
z;PPdadz*>5QZ*!#uM(A-B|UL(Cpep3Rdxn*z^UbT&Cm1yu1#C!_9PEtdfJzXcRFeU
zAf~T7myzdUrvVPj+1=h}8&BK=SEmnaRg1Q->1~_$n(N5(9X~$r*<<=IK3wT4bQl_H
ztJ3L(OWaZlAOm5~7EHPG<3$0ubrQ6#U*Jp!j~{q4{*=%1Ns<%ycCLtZyX<-MV#gDZ
zN5Q52_kS9BF8|cP1<-rz$@Ra?BTdYenjv1=xPNl7!Y5sDDGTl%ZBmAGkF2{V-s$+`
z0rr5~^ddeMBjs5K1!uC{K9j`ea!+yIApy^SMuzj2xTVM@fmhV1{|LJCp={~PQm{qJ
z=aXL^SGfLsUHslR+fL_R-ftJMd)~dA$}=FpZ870&Y<ltQ$Ll?Iy+68nynkK&=^yfU
zLc5Aviu|mFr4D!9&e}5g_MEUbF`V77u76YL+euOrOFK6BdffG#>+BV%yh&1U8|O;v
zmAhJ2ul(qk?s7nFUf$wUE$S75JA2a7ME$=8Y~u+3q*Np!xVdxrZH?cHKof|{hs+d9
z)l=X1E^&LJKWn3}$7Ron+CE0gMdE^6I#)=qG|tw{axqf@s|qcXJKA%i#l(4b$Fhk=
z8$sT5QpynyDi7M$J@E=hhzCoq(kr)b))&uzWv;mEw`BeH)V+tT=dr$d?_%F&|99WI
z72xt|reNiSjwtsjwIZ^b-bpTOOJ?3=F{zy*nWF+497>!$Vb^4%{S%geMw&o|8?{sw
zvAHZ;RLRAh^5eVQ{~!6&v$9;~DS@5jDyML==R}ap1+_(aOU^K<tQ3sw;<(*%W$qNs
za8*+!_lrHbPP6<@wal9&HE|&%tj-?(Jxg-p+>QmlE_Xey@<#dgp71qEo;_jN<XOk#
zOpKNE1s!L1?3y@>ozcWtNgcx3xPO|l!YB5NB5WR?uitDFF=eW~z>}*q%k9*@)m@Sk
ztvgnfy4-Z1d&$dC`4gMq*3K2un!hJ_X1QEjAbGpRWNwfC>N$)P@3${AaG13}<FoEe
z!JV}nw_L9DPFWi<<x0mHJK=4dFRe7A)@#fZjD*NssX1k0thAaR?3Pu!{ma}GzA9!2
z2bu?c>kT~9F~`n$Yu}3B8r9J%#!B<~13@m{W$qTJyy>R^I1yAOL<B1r{XBC+ZOO|e
zZzij)6r5QD4ww+xhgn%Jdh(Fqv-UmNbK<cxIQZVoop`0g$If^gXQq|r<z$a67A5&6
zGr>~j>S^|W9^aiLG4XKwj8cc2$0BZP{kK!Pf6k`)py3zO=}{)eO4s?o4qfYN%B-Z#
z=bPAI^51OpEXIlZ+rWN)(Gh2)Ty*`+1+_()OLCmGR|?L|hPY<!%!^k#?wGdZI=%8c
zrXF*y!NJ(rKcRr<ui5$^zdLFSOq!2PeDizu_Z@rmreEG9nJ3r(xhP6LG|s&CapL3S
z`I$4pb$6oMlP1M1Q0SDHfX2EL(lUfEngnf|IN?f%jse*4Q)WVwq$V=Af%D7Ny?(yE
zCm5Y?s4aQ7<ki7I-`*2i#^5wy^s;@4+moq^pp+N%R4wQXhl^=T4$~{URr6L&JkxQ;
z91`xAWIU5xu1P1EF_y~zW`EQFk7bXV+mqdjDZ&BY1E1;zo#}`%2j_-WW=XT8CcaKP
zWTqIa9?Ct*#8l}rFF1``aZg_4_GBl-rmtsqEOSfQITM@#&tCpBOLF4lHgF2P>6PQz
zd!hj1)HD1FD+Pb%LV|9tS$3Aou{q!rHYL(u#Z)Pt4{Y+;kR@pjPqr=8<eBhH-uSen
zz|4$inmiL8t`CyR&Z;rFD6olh#cz$@X`D$eVp2`h7(>NN_er_-oUk``p53sl|KrJN
z#tKG9FMtyJ{}%Q3%QfGQKoZsO5RELCXOiHg<L=IP{?AQoWB<ekp8ppo95${uI|9`r
z-+qbZ8bnp9d+H>q#uI66W`e%TsrPk{_MAv^zGAiL&EhxCYBL2Tb2>oT;L6Vq5z{@(
z)2rq}VrNrI>b-;Moo7>R9V4$jHof#^#`NX;1B(TNKPm~{5ZKVEzWc_#{-=fSjz9i=
zbkAR{)89VsoU?xU*M|$<-VJzsD>3Hs9*;Ao#_PM&Z><PE%#o$?NUE(&F;zYF7oThI
zk+{Pb^p?C?a%S~{6(7I<HSKx*=%m@J5_9)Bm3LA~(>}WJr{=dla#dQJm?ZAM?W6Fq
zd6s9=(|MhDPuMhh;}Vav4K4=G!WIf=_xtLkIXr55$SE`7iT>m&jVu)-39v1$QT#`H
zj<7hN&|8$3(p~g=`Tgaei+3B8?E02};^&t8@{f-<fXjOmQz20vu(5YH?)W$7Q|Wgm
zo!h3n-Ue^^XY}pUJ}I^1TMzG8*7-4#`S1?Cc{#~7o=5MyFUoniKfgevdhUH!1Lcof
z1vYoDkX|YDo+C|VlbBnXV5)NH_U)>sLjSqJ25;KCW0BjUdc_R!pz@$+DuGu#{^;|(
zbvosD%BQqTs`Fp#!dQ=+C*{(1?=8Ex?n}(?|8w)7|IM89^iKb^{qxwbg4%SKuXwzH
z=sEVz;cSD;6(^AA<4dg_gOm-o8f@X#v|hO@Ty5pVjwp#+tyAWP#CA=);^Cvq^495<
zU)P#RU6P$ES|`T3-1N99=NPD5xF4)V^LDs)mdYn_aDb(nnYi|z|0M2ICRnPR%HGl>
z+4-w=rmxFY_oJV;OcL+>+*%oHbJOkO%eEvprHP6u;(_Ly?kl~J|4_&Ar7EvHRqpoQ
zjc*@S{`b#YfBd>H6L=QHxA%w=IG$62zjsJZ;E1naVpsXuJ#T&38IKx$<4xTeQkv1q
zi&jkJh=(})?u02<JbEBLU6t45nN?%9&tOxxhV;s+SFwi5ANLAu?$r3L@w-JcO=XjK
z8Yrlf7p|Sf*g3sby})78{x_c&teBV)$#JXo%G@crj-sYQ+K@Qta_3Mn6jJ48-rcaN
ze^<F{fU@BxXc&lUWT|+GHI;!X;MoDLz2}1<ahQ7B@L-S2=R;@I7QI^h=Jlc(6C>g}
zZn|FS4Y}Jp?TW_{Lr5I%)9aGz>}~_aq36wCRj$1*ZeTAj$yvQ-#l#&M5VzEx5iu1K
zg{0qI<!%AWA8$jf2Tf<&Sr>DF4Yn;?K4YRp@r;`;A+=ZTT%B;lqr}qZ4bv&RRqvL0
zWvOhFfw)pg-L=<c8pM_}E~{5e+))G$zMgL0EH;%W>3IhjJ^!uxeP@zX=he0au^x9%
z%01hXS+)J|)u&~zbNTI)?@zXkTV5*q+PVi^ZZC6F+Lo9h9#m#zCzQojGws5M`Q;Xq
z_PsJ&m*l3jP%%w7@LS+ljvXm(NedIx!~@NY>_GOMk^tMYX|a%N?-2=zYkZPGk(r#9
zA%3YO=<7L;ER}tb>==4p!y`*&7nCzSLd8@lp2u-FsFBe-agp1iZixNYnpaCsm=Oz3
zCacc{tC|XJgv8$}?$Ak6o!47IzVW<i=NPCQcoZCfH~a7X`|!TqJ5A-CBslB2d-D1I
z2^58w4hPiNbN?@7SH8L3bN}B`6(+HNpQYRi!ew82C#l$pJC!k(%DXz5AMJ5@cIbrO
zqMRjXwk}*TaYqa|KttwE^3GDJg1FjM-sou05p!^f@<ij<!cO~DiC~9ze+%f6?38SS
z<gfJTz{i^<+a|=i-1V62@yyy-NT0`ecE_szUFNO^$`cP6Z0^>O*1YvVBQ4_X*)K-Q
zyE`^bENxcaYs_Jy_j<F@^5c&`b>B7pb@ioxNUYMtBONY!##{JS+}4Pms5DcsGDa;+
z_@ZghHWk+(Wucvr`oL=E^(!4Udf@u?*dazsX1gEZFZ!iLeB+*({5sctVxN)m>WWqE
zM(5j~xT?e{rV0CR4}ARh(wUAJJ#gh1bur&7Bg>^}2DlE($^6AuP`#?+&a%1N=FTnI
zxi_x=`z=H8hNQziC-}jQl$4apH|7t{KW^v9-}|pFX!qR}_IszDepymG+Z<e|@|Y^Q
z@_;MBiOc2}&-b5xdY50`pDB;34EE%lSJ`uIa>u^(dxya5>JImu5HJQeWpz*g<~p>C
zvD)Ukx|84ckNoHV7Eb$qaJeLCUClx_l`e1<y=m#r*!a`GE_|&p_WRrY;a2_W?fHxR
zUN7c-U+%`2)82U2KzYJ>aLsySpW$zzrprG%FO?p>Qyigt?ft>M^0|BEw%69q1)G`X
zrZQhKOE&P^#@rLrp5EbqKkxLv#i#audtMqZSGD^)^QY6lKR~7y4U{*XKXXNGQD(~h
zlRDckzuoe8#i!R_cFa4*c(TmpUir(@Pd~-|0Jo~sRtUaK2e%8Zta)_hOvf8za0s8`
zJELN%^!E&;8GOzR)Wn8_&#c#tvm__hK^hrz-8}-8i*A8q)pA#P#k2EFv%u}`?K7|P
zbmSPCv@%}$lPV<a+3O(=X^EUmTC_q?GC3_r_)<yGHqq%<I;I$c(?Qp_^^+tg8bZvS
z$mC+A9CS<o)RoW-cJ#_(ximxamWxSm&)XHhes`$ogPV7*;e9HGO2@ekXE*HXU$lN@
zirbQknG1bgE_>W$3kg#GbPVh+&E2gED+O03Lp*shQp8lL{7g%((=NYLVVk_NTs}#F
z+a;;qN-CyG^$<^PoaAt>;lMX1VF?-E_-zv$43#(SJ#)os(YwWOm=$LVa;89<AA1eE
zq$WB-nua%*xd$l+oq#l)v(%Tb6s$~vSUIy-#8hb_#Nhc8UIffKpaKnxYl~J0o=ky+
z#kai^uW*zYfkXcoU-aKvmsjGm93Ojpv)bB~<d#x5b0x@QGru?mDF^L`c<gqncb3aL
zaj^4Ew=<X+D}Ch#H>Wqb9-kyN@ptMmGeuwZ)cMAqy&nIZKyB8P9FM0w9WlC)cwt{U
zNvd&eD!7ehzhLD<jrp~@E^C!f*_}G~SjAW=mK)qXIIFlQ&EZMd%;g3SZTmBr^=1mL
z425(;YSln(M{aPo`P=tJ{{Px!-(HU!V4Ie_`nPMDTS^Y3WqNg%v~RBm3)tIFR;*q)
z(>^OYgQ<D(%hPtkU6K>Gr7pWBSSmmJvFqPjmuq6P4nD~EWmGt6iQAG~a2^W!c68E}
zjy<~IgmTQw*OFQ3<SCO@#-cx|+(%SRl}>Yk-C&g2y2NcsBt*+|;lL{$Hrn7`$x7j8
z8d)x%#K0jHD&A&ls#Fbew(rcvX%0)Gz)jwKSNr3OR|@V7gGPwt^eY`D+F(0h-II3h
zJ@F9Yvp3S(D+Ny`f>mAOs$1qH{CIJGTY;~|UDvzSpXN$T%xhba>TuQdrn#$-@}{$A
zE~qVdx%kZv=OE=vXCV=1tv2OKM~yMq=u<5dCP_^!f+nJB<&}b!IbfrUzP$Z#X8u-V
za9rI!lf~vTO=8v|hRlDP&M#i#_Mj7*(w7GsDt|g6u(eO)w}d>$&+mesu^DX5i(jsu
zXL#|-hgY+Hew76EYp<NBoN}LSeyHK!1K)mH#Q)~&OR;$N^kx2^7NzIqeGbCTC)5_?
zEPi!ucZ%Dij+rxKT`qgf6mShx4m<*`v^1kD7Oa@KBOOx7%!&0(`cwOvXYsC#O`VHe
zb?;|Pv`Fs=Zxhy?!Wk=~FLakjcz4C7UR|I2XTSP?EB?K4>gBESYIFR5pM10U^8H`m
z6Zyfbi<YgNcq0vLVop`p^G|!eIzKGbesFWU{oc24w;iZze)}or-S6;N{+#wkUt{Ho
zX9YHOuaLeuNAY#tua6Py9*Y;9+xx!w{-Qj4CF8mm%fmOMf)`6%zTy#M3~uST&A82H
zG4J$?>Q~R-nyfRnk?*hF`bf;RFT1_aS6Er_tic9ujo%WE>sC)mwVWUK`ro_4UEli8
z75^^#ZoW|d^Ec%Se{Uy&*4r*yIk6%Q(kj}c-6heP*47y7aP#=LSj+qKrWfYyX4?1b
zVWPd4eg3v-w?CJ>eEa@=7r4A$b}aoY54gI_<=z&fcm4HeyL~TT`@8na@3~bc^m1cd
z;G4PcXB&VAbWirU7##*R+>&o^Tyy^TcmLBCCN+8OLCbI75PYY%IMv=2;<+;(JjO@f
zD7|vqW>D+?cTdcB=?kZ`Z5LMNxp&s;S47{lkA=4XC%#CPxWPK5HY8SH+7*vCM&J-R
zbuL)MRA?u(9rL?=kz3Mqa69G`bJASPQ|?<K&Xxc8$|uq8b{05puEdy4I^*%hyai-y
zmt9hqWan>a%i*Z9Yp+W!q#<=iVA+a^GxEW~6mpk++7*v0<`6r-{q2(K{0(VuPCevd
zpd5G~+(Op;JwY?8=Gseev|4)AKZ~?qmH*?tw9L`C(rkAlWyAa6md8rrr=YHwG`J;M
zI#0&2_eeFw%AE7dR!q#u2fK30+9knPJl2>SZ{g0g(u`tWHe;ejzQj$}DZNwH$_HHW
zu(5(TW?Gp>R?W8;U<a(c{H`Y5E$Jepz4#?H@Q4SC6}a_!YMPmLmdZaFa6coNb=oY(
z&R1<}1rD?J`}i+hF>yv7*v>1S-7Ka;7a?urx5|oX4v&_A`*rKBIHq3lSYiV1%$!Ow
z>XMr8YTolk>6F_k9{DE8&S!1lZpzehR{>?iI|3WIK_fDtm^lbBYt?s9FYPwikvIG8
z^!wj(c5KYt_3gj){cYar&;M>ulzYF}AKGDY$%ll-n>`MJ${TMBY~fyMtr=~;e#JzN
zVz4u7jDPzG*KfQ1frZcGlXz{YsIlGdT#g&8S8A_FcI`7(HoR@HxpT#@6`zGU(^OW;
zfcq$^zfE0xk4$yGpts~*im*th<b;e|aMN*n=TROH9uu2J=1G4_jT9YwT^u0R=Lj!c
zG4V$_IR2-+^b<7|S_$#YCgD6#7eyM})=gFKYLe_!YoFoka?|~0dAy-=;S)$KS7x{x
zDGNRU`&o1Mm1Qd?T9iYaKbiTgaQ&6XXM`;j4##h^iVsxY_!wL$-IPm-n145R-tx<J
zNmXzEm)sTWS;Osgy>#pE^WrB9dykp=_PF#MKA^YY&Ehkr3sy|5C<MDM<n2`zQz2bG
za98*2BIPuPq@$2%3)be$QVD{@x~ad6XPSze47hi>_KEu@6=NY;K5%Z9FJ$yhw7XpZ
zcHWjr_cu*G<1xhooIj#2`rq`-swsK|E?YEyt*d$Ny6A9Xf~>zu;Fp6zdpv9`Sl&E(
zY4&Q0Ta#2LTRWr^#upT*yzv3pPnyO#8d)kr5I3mG8N2ozS?PR0Z^66Av;U;e`>{Bv
z9nx*o@eNcid<D^R`;|skP1!4OKGM9kkTXf8PfpE@F;v?1w~1?y%lX4c^cK8H-mKIq
znNaF@`7}80o=Ppe&%@DT^}J4Or_JyA|Bfmtf>y889Z)fG_iV9p$u)ZAc4}IaSC)(0
zT=1;rpBDd)&o$E^`{sUfE){tGGv`Jkcuc&IGsyUHb835LtkvCP5!GM*u2(jCbb)1(
zTjBLLUZ(m=l6>H4%e4-s>`K+V;I*1U2b)sdRMsn|O}|*ODRrlf-|d+P66Wa1#;?Er
z^jnqfy+qh%*k;IrW~2W0CvGYmA@+UpoP4Ik#_Y%&qgj5Zp2SX)o_MAWJaO>vp3VH{
z$DbC;?*6~^!_s`S?aw9NZ!hh=_;#*4bnm6WE%2T?&0E$QX)aFEZJ>qvq2a}*rb?@M
z!K)`XDO;TE^?>e`$jMyw#O=v8h^=3DOn>IKWIJRVU)qlecRFOu!2|lIu9bS{xy*v>
zG)TP<S}s)zS<(CExAIOw&ioG04(}_c>nzTuKZbZ`(`)NV(i6WxTy0S}rC6cp$_4P;
z?Cninc`mac+Y3vNDIV=T5ehNO&uYmIK~Bgnz$vk(r`+Liu>en0chwYhNlxTwU+C+0
z)8i_Wr7vg~Ab9if8EcK5f+ryhil@B&qGGNj4_UvxXno%jH<crh9W2Y|2HxpdV`04g
z^vkN7pVv&6&OiVBTlb^qPiySgp08Z9d*;`xr{BKr2!w{95OkgOC!62<U$W~yKg&>m
zEB|Ot__uSXSJ!La+bs*O&JOpU=mWbuwZ49v?1RcVWoydjzy4&woBF+MX=&x{<Is&|
zOwN!c&YQlT>5`hL3f_I}IXA>TQ2Ejm1JJrg&ElCJc`n~%!Sf)d=ND#Yx%`p^&lt~s
z<aW04#I(cUr4+C3xD+c-`T$-6t{J^wW2azc1$bS>l-y1gb0ta0#`I0iIwyM_PC#}=
z`K({GLeR4kyi|RP?u@BdI@Z{LmyaAv3q9B9u^3`-#@=;H+@4&71eK~w(3K7sEAaA@
zu6xp+y(gAHwl?{7fg%UG6@KnkuRND|kWGrI>6MeD8&`w(ww<cuyT?Cs{qpPI7+<Sr
z{XKtgd;8pX@7>SbfBpbGT{=r@;@Wo5bo9x8*S<`f-+#NbT49Crx8k|Cf9S4!o_ari
z|9vTNneW`|as4nThEp%USz#$4S)IXmJjF=nu9MC8^h|zm{#qQ@@w~3C<PCVw>W%#Z
zr&s2e{aTh$W3=wCeEj;tw7*Z5pFeZp81w9fZYnpyp4(Kf{44EE*{kErlEpXP(LcZM
zw)F4r&qeY2DR=kjJ%VlmbD0M^p21f?^_SksUXN|y7+(6q!6!)h!dnB-J|WG|M>Mls
z4#^%e(=1g_l{fM1J+Tw))TMs&mh2GBEC)x*mD(F3=1Q|6OVc-PoiRyz;swyT5wZHW
zS?~TXvcBtg{&&V-P=EC^<L%V7$6xM=(R;7G3%ZbW;`Me=Zuh<#{BoA`#9Ls_>3{$J
ze7yhr+MSL!cHo)hE-?o0ESFOXkd<dqa-O{>Bq2*dj<BiC6!dJK0a{)-MKeLgT&Wnk
zJn(J96E_up$gJtM`xEbU@IY4myn5?7=h<dA@Ukzjo6CKR9xwLo0M9U=4D<b<G>Ox2
z<GJO#G;Za4CAp|6CY5peDyzQlOmR~Yg3K%`y`Ffc!^R0Rc^nekB{k6pvbyu+avvk*
zPr~43YMNG;rd;V@aRnzXGyN&Em?s8yfEU<L-Q^yrynzd%>bAdjmP?xAG0?j2)b=-%
zq$aL|tc1SG?i+a6d*-w2owt@=S$pO7tbGa-G`fGeub9uIvpjxHs*%2b{S);Z-{2`H
z!cBr__w1S|ztJ>s)`2jS#NAWYO$Bl0{Z5Y-1fNyY)$Dw>=S-vv_-F_ZO~sWTJzHG%
z=*@q(_=v^VxneV!GufuS4B<E3Eq1p1%yO3#AemPhZpF&QT7sYz&6?jm1E(EWVPd?y
zXW8V5Pd{4BJvR6C?;lCujo0qGdiR|5x&G5n%iixkq1y{?C_i*d3sC}9C7XV4yvCmS
zZhP+hd*#m`&q#T4vtj;ueaC6wLBEG?X`x_ML28F5+&Qtv%NV@uJi1bA=fujX9iU?<
zL{2KJm<nwaG6XHW+7x=OOKN6#=LTP|n<wR-ec5yOw_oz_A2E5`tL-oC%5|UicW;b5
zb8S0hvi=IlK+swj&FW$mbEDNl;DA`9dTx@`%;3%ypvC4_J(oXodloVabf}H@#Wdd_
zWn(Qt(9-;$f{R6-a`t$E4<+e3cSXh2Xg+8)%&w_M@$;Uzr9rfuHV`{$IpJo12586s
zl-T%*cTPaHoQg@FBt0__G-K|oZ=W<}k<It>ZmQseP+Wg=diI`K4q957xAe^umm-jz
zpdelu^=awOi5^qI$KY&QUKtZN{d8vag3a=ezr8>FDPq6e`RkvzecAry-&VB<&^kZg
zU{K_M7qwPri<lZM7D@!|LE3a#_+;;y6(-;VVHWYuUIK~=@RWX;k<QMEl8|tnqPu(&
z$hE?tN<uT*Koc(Wrt+Kd=iJ#_|2?^t8GC-eQvA8^uUGzWe{TaW(%PhF27@N}?|R?V
zQaRb{vI^o4FJ`Tk6D_BvfsVfkdUkW-l@mQ)E#QS~>q0Z~Qv4uZPn{=wviHnoh|`Q@
zXFqX!mI;afv|AJJoUri)2e;Yt>9d$;26sLK??q|$EL7gCbr!M;qQ|>f`648SG_5rP
zK`{(IC+JjPgQ}^K|K%RgI<Hf2OeRUsTnTaI%(-qw%EhMOGz>l)z$jW6oDRTChtsmb
zQGfcz+mn_PW=@5~V{U}1xzTn=YT0ym-V-;a@LAv^Xnv%ukepCCA%n|V<>zTTu}M-h
zBRe;MPT?@;7C9?BW9l<YnaL*uzD=BR=R^*~E2ql(CrQs-4{^#(R-2Q(XRd=bHoSZ4
zUK2V+{evmgUralmxjoB)1jY0FL3ccs__}~XukKKUYogx#xxU8RJXcz;tYUEvRyH;h
z1XrWN_1<|Y$JD@SD%o7`xkFm`BGAD#0h^K{jg*bGeb4AEe*MJ#Owbf{18s=^Bd#u-
zIWcl-2e_b&+@xY|wEof=&`R86RYjKUM%+SYK^r^&7JocmZyr^wY^(^@ruqAxS6+&m
z3fLysXCj`xXPQmG$5vV8PkQ9`%n|JFP3w<W&Dr*KU2?YN-Lre*)}MZR)j$0H>5W$)
zXP_AIL$c4J^Rt$?r8$8E)az!tZ_(q;{GBsm-R^o$o&Va}&`4Sce5R262Zz8(2U<;x
zcegB?sC9qBBDXYWB~T*XG?#Pjc`iHuza5#@6QcAZ)~(LE{(1J(GU@BO-;EWaEtNCv
z;6Pq_!V+{S(?swIO;c_!(C~iXJZomG+vSt|Hx_94CPaWu{B)Mh^!!|jiIB+uIY-r8
zNc9r<u&`GmUQJRn1tG=FkBAeJ6K-~AaJerL7I~YdYPx4}X5CzHDYAF>OKzsl11se7
zzG?pIl=7Z+=JaLxpPc2FMN~J5pS_~CIPZ!39p5Qx1>(Lp^p<8n1#zDLyBQC0WSaWw
zl@lX-z>W-=dnPllW|E{JXo;lc>-7EqOH=MGtYq?ByrcfWb{9*g`vQuf^@59@KAa>q
zvk+8&-SxT}IsKVinhZE4dtd!)a<=!31;prAfsAlY>gmr>ddn|={UYOk{f_)~@BeZ=
zt0(pU+xnuq>FL+HdgyL9qsJG(3F2PAUC#B;>)W3gim80jKfLSjuJz?r=e|GvzStR7
z43vU)I@~>77hx(Zc2E9w(Zk!dHTA#5|CjEKnLqveZ}50f+K!1C?O>nn*>8LMUHM->
zo4Wb4N*}!5nJ;|)?~!k>Z!d-p$3(VsfDUuXNqjbc*`KO&nRi3hOD)Jfds@y7+)52l
zF6KLXLvLy3)4w6t>ke%RvRi-p^QNBmws*fn7ytfk&H+2q>$w2<?5n?bE8~9ey!dz*
z=bv|{zZS|LH$4CJs=wj6@0YLZYpsH;bx%14S}0zsecwL2{uz6)skzZ}i04m<UGUCJ
zIj0Ct@Tu*rlcZ-tJnKDkr)!b&W<E%^*!aXNEk$hc%$unub4BLv^UO-&1Fak`)lOBn
znIt{)FgSd?=Z3l$Di=#YGkRqH+1@ir;MhsMKe_Mu-09CN{_LxFeYf}L=M%-1`3?80
zgTO7q!*FHiH`nqWbAR(XAgz|$>h<5sx_Rr~3$wsddNSCor7w2)1}R^ZI15@*mU6zR
zZf&;HvE#3=mdoG1_w;&&z(*T{{r9B72K#~xz5zPN;f+8@kaDpEv^2@_%maA_)UoN|
zK3T+<a!hg7VZ)a^ztbP{|F7A*%<Y*pIJ*RG`xRcK{F&GHj^6UuOOL%<x^m*pHgFVA
z(F{{DH@XjMdhMFNiaFtIuZsn^c1T@g9%!sk%zQRjLg{S$HUZBdWn*TrwJR%6IR-0#
zW&+o_D?h)}$V-V^06vv$%G!WwcTVha0M`hs_}-bA8(oK(oFBKO^4$?`7f>(ZVeOUu
zc0tu~+me6Q$$h$2_b7e0-?q4o|Eyk!Lw0SQ*yCWl)jKn4rPcl`cRY?bfJ@b^b9$=A
zM%n_7vwJp8v^`a3Q!FpP_W19U(<Y|cY}%|h?e=C!<2WnDZ-M0Pr6y}b?si_gb7Bs}
zG2pYbW(q@M_okjxk#aE;Btcl8o_yzojWf6rv+}c$W?srXNE#|Vr**XVj0rfZQjLXI
zT25He_DoV{qGv$ahqWsv&TIpx{V9^3s-{Neg5X*_f1c_r>km9<i!Ib9FFf-=bLYg$
zHgJPzO6>(zbEET+u$Xmv)hwx*sgQDDrm0tv@@5`LN_)fLRHXcw2kfwwn-etiR2D%}
zyQ}zKQDdXi7kI$q0qZKfvr_sL50z<_YOj5ve!;}tC?C>bv`U}y$nBXPxNHyl+RZsj
zdgktoN1z3O_K)%w*);Bl1i-{pmmuZM;@}9pdFju-1>53;<M$_@PCa4x``YWj0-wZS
z9d%<Ru**{G%m4kzFUrnKaf8$-s>=*c_MB-0w@jb7=L8hbI|41fpX{A@=0uE#F=)?+
z=H?xqc`0TPEz0MU=S)~@a$EJ%?U#4HPfhl=340cE-#=hB<dlpvZQx|LG)G%^=S0bg
zpiLKFg0@YacIQWqs}gA6LeRIff@e;w@o)hh)6=Hn{I53U-=a#k<H<i>*SL2{&xHEz
zsu17V-ZKf{Xj^(FS9#~e$R2PUghcj>m>PA1_6*JnJ9SP{)!fJ!(q2%S4r*_?L2}BM
z$jMhcjzHaCl`djzbXf?T=JNeCW?61fx+nrVr{|Z4Mpni5%YUrE1y_~&6>%0O!%Hjw
zpTGUJbmt$XpOZm*UhN;Y%vz)prUKdX`lw}*$^5w<;61OJlR@3-FvuR7-%ls(E3MGI
zeYtb}*BS4tcE@ek?p%MoIJWA`y=l<H8C~)qN<%*to$cj6rK$!xS|PP=_4^|oJ>D$3
z!mIRF_1!czRJtwX3_9OVsdLs6w<l5HRhygkTlatdTX$FT`&5D3cAty(&Aaxz@%wkT
zp6vF*vj)nabif^&mAjU&*eO^!4csr>W9wG`OMQ-sxzc&a#-3Hnr<#H|;EiGL`~7Uo
zDzE%#`x1Nkb5UjOUhATm#UP_L=@^3go;T;~?}+`i-@4bGYn%GS{O^UPzkbEoJ1>7d
zeX1w8S}0JypaWicUMcT*KkxP1Nui>pRbOP^BugyI^S1y0dj8zouV4T8`Fls1#B~!x
zrNctXvs*Ux|9w$eyX{Yv^!z!Oe+w=W{a$<K5BQ|ajvTL+7eX`Hy!OdWlAP$>3F;7@
zthPP>PvqZ?s9f!`V{7~C6zX3^cb>j}9d`6rktTQ{`AzYtIp5@`$+Y+Xe%t$X?@Q~&
zwOemhFKmT&bDji2HYI+2u=|<YlORZk6g>O{<CF=3w%Ses2U<wxOH*^D#h?_mZ2F?f
zQl7mhmV<k`sr%hF-&z0s>Av|V&-lCF^?$wi<n_<jO(A0lhe4{qE9dY3{!%>YW2WT$
z154|h<}LU2EUAoL|NZn|@6(V8;vIrNr+`PWI)od)a{l=`qv-Dz+i#}pPe;z>r~#j5
zQK0+@>aXw1p6~k_-G3zP)c4DGoWEF})Be4`M!o=+nCu{X4&JBE=zqH)Ct%&|6{TCB
z&Pv~&7<=z}&R5W4RvvSu<&db~B<z2(*8$vN$Xt5n+tL++mQ%rFHCJA41f8cK1m1pR
z6guyTTMDRKaQRD6YH84w4jo@`5Bij!u!^~oH)LJzrlZx9q$e&1^{-;}L(gkx=DEy+
zEa7!!0_{=13=XfQIfXNxxGB_wQ*Y2Vk-$LZB6~qlQ~KtV=qxsud1~O33{vG(PWGO-
z4B6<C<GcKc+Y^ZWpOoimo%(zeBJ<SUCUna4&A-9h9!}4D{%Ox#{qL{K&i&hAEBCjf
z%=)3N%(>H$0_enFi1n|cTA#V4)I;KaS;V9}94rA~zpPrf$0N(-pE|hH|H$P>?fr~D
z3MZd_l(Mh*oEkY9wA{-0O2-@jmbXE(!jAdHoNGLB1-vABp;za+oq{uGfz!zp*}I;3
zF3TYPwoh8M$Y#DTsNXRw?pS*4xyBQ#AX<C`m3Ip6gld^P-7}A66J&>med4M`2J>Tm
z!5d;$$vwOTvJ$-ZeBaDf8Sl<7Qv>htDNR#9+I!*(BzVs4S-Jye*q?@#S$@JZW`Vcb
zym@~vjnO{;`Jvm&2Fu@uJl$fe^UqG<64)zuI(#7RI<=0;BhO_W#Koo0bdUBrT!#cz
zj{U+Ff;VS@cPoTsZWl3D3Kj-$w%Q~wIsv2~JTSW|Y<ec#$En%hRLzxwFN1eJbzR%$
zmF2Qb4LmxOT)BD<^Tg0j@L<bKVdo;{O`uVX%&MP)t3{sv%n1W$z)epr@2}hb@8ey$
z*w|^$KfU<<>ujuv9OK*LMu<(;YaqVPdb#kKTS_=sTTps((4CGqprL_Taalf*U6K={
zAw@;nv|IDmTJs)Dx8JcN_Pg)FS6lYkO#i*_GHeI=882|;Z!_t?oGJ4ucmI~cn`S}l
z-~M@AwDa!o#uIX|nsO7UyOvpX^V1sfOV`pbox9EYyzXAj{`ha7`!|-o`pd8hGQ@Js
zeZLU+I69@vOBCFmWGAJ~4cHp^>FxAA9X7r$Z$8bmJLLl!lwJ-_vEEmU#LvP~d1}1e
zr#HVpU*D#XVy#zyXZwBi7mNM2|NgYq%7quSf+axtlL@$7y?Nf_-wXcb*=a6)YT(0X
z>>sUIWHVpa7aSd@dNL+SPh1H$|1^KZDvh)1p~8ls5hAYbO)73FbxA3c1HJ_=y&ZI>
zV~;=2TccNgUS{c&B=6;#?mY({iMmtyRhp^s$IFuF{PH#0VK*vM<L3Q4!EdqtnMUW=
z&K00j>HIC$TbxaQ4(i+Q3iDDioFqB%Jvh8Q&u;SxRxYvwJ9Opda?QM&3wDsrWtX&S
zAG@a1D5cEwHw{cvm~^Bg$Dik|&?~o9>nyVKT#l)O2cK`3&iq^%+gJayj&qxQU)=oD
z+5XC)rIu+k1aHpk05$7#B7e2l8W;5BfB*LMo}bb2pslAj)h9xSS)Wva%au*Fm#(pI
z_&u+>y6^v1{WiJVt6pac-`?|{^#yd#<~oRNsZvfSdry1^wI*IJ^{G(YDJVG~l8reF
zRLq&)3I~HmZ~k6f{npv|Tc`8PEjrT+XIICT7D%t&d;feK_=t(jEEhEmaG{Z8>toOH
z?)ZV}g;yUH-s+#Q{}8mz>Y}G{s7%vWJM|mi$=(yJ;4MW<U!Al#3+H5A-1yAxNfV@0
zD*hN5tZd{64nxh`A3gG1)HJ|>6WR|dRH2;I^aYcoCvrnJP+fJ_oCV^5hiq?Z&UxbY
zqzRHUimjtSh6#dO+&je9&J>JX03MYMvDH|;6T|@x>8<J4du1tLIU9U%+mxU3s^(0Y
z!r+}|n_fTclA5@=6EtM*d37$AZ|{j4N5I44HD{j6bo}u$X-_tiJXPo8T%`O-8(i^f
zT2GyDr{j+oI6bcV<Ju)PF*b8qnP#kZ={B9Cy(iW~GVr<MOLhoKLfRxDH*cDlGaZF&
zklV!C(j_%<E2xiu*K_V;&p_oOGswo?->*FKT+Ts?s`tEKUvFCVdAstfxBp&jiv9BP
zxWenj_u}DucGE#)O3S8i`Z{5f^u*2J{NR1_R_V#!6StuDYcAU%7&#jf-!GF?%$4$?
zTE4p%DGQi`!++%@7Vj*VdureauAcGr@a6rNXHVH#U!m83+2TS?-t7COdw<KhfyVyM
z1}Gajf;aMMUb6GZa*@+m25Q2mvV#tlV~6Ypy4e>}r2NSN8cY`^-s!j#bObcovr4Zw
zGtVUtvggkA9lK}m3EiXMZOSixwJ&j7Fii<Gi5K+kY~YoSGeO|mp{?EPT*C?NqrnzR
za~GVu4LXZpDYywS<*ky6xzc(O@Ybobfy<sbq%=YfD%o;y!j%pgNPTzeiuokziOi7n
zqx~yZ<81E<CTP<9*7?kBK_fUT1%3UnXNlXBMkVkt;^sMy#>zzw;KLDCMwzbODQLL>
z9Dr9W_llS+u|w_LwB(sXO3tk31wMMt7rSCTdrvSzJd>ro1g<5d_L3<`3%J?&xA5@O
zYvzi#l`pN|o?IWZ`;Gj0@Zrkx=FndC2}X$9&b?f^17YcPgr$>?KAI#sk-2LIXgATs
zsV+evcY?-^S4J5wgIk*O`scB&AHNpco5h{K{qj!#l5Ocr*Khy*_*Y%Y37#Aq(D}Gx
z8sM2P)orRLd-}yRo|XPAkx%urKiG4E`REm^#jh5>N(lr7g5cKE8CEN+uK5*%YyyuK
z@3L43&r(;cH)!}ifCl38-k>`jHUZ$M_PXN&b||PR>v>Uf#S*s^sH(ItlkRYY1VAPn
zWg}#sY-aD8=<9UT{qF5WD+FgQ03VPrW$p^kyo$$H|5$;?Osj;iiL(gFUirHI`KEgd
z{vSQ14W3~>)MDz|853Z<_2dfapMt_-OF44_ghA)=Xh!eV-Z}B-0&u6P$L9OJADiaM
z^|!zD`)l!O>;Db+e_yG%zv3lyG{z4U6s6jt>T_pF&R-JX^7_(Cvn)Lpj<^)N6_Sz9
zf_+6iIaKtG_(i}YV7g~F&H3$lz4&JR=S}s3^RCD8m``~;{ks|DnD_$aVn=Y-S2FwG
z6PXidd_T+dolF65;M%Nn5q{Q%u@acAA;j;Mm14JKCg=<mk(a+zOpW9rqm`?c*O{6N
zDMC25XXXEAnt1k}X?FpSpS-$R@7sH(%_JFgMvweP$G~|9+CZiIyQNuAd!B&?EI|_>
zL0?UlJac>I3>lugDO7zDWB{n0zSL)p#?Fa9CxAmI$NhJ$dG*ei>*?8HPflm=oImgP
zqUY<glWsrU2i-^d%o*GlztmNC%Dq_mvm&H7eR}hIt8>ktuK7Ryt$1Ktx8>exr&s2`
z`960gq>bPP)fH5xr3~r|gYBB~bFGTGkv3%Lca>bhr8_6qfKFt16=&8xX%_QLQOMBy
z$*&40d(L!%JLXG{9MqpVkz-<7()0@^L1iwBR!sak0X%APrE`~vsnKD`+{3J|)w85#
z#)ArAU+vkqz0NkCX$23|EPU2BWtrPECrHP5n_p;=a<L+02r0*O$rF$aD6l>$>uH=4
zz5xl6kl4eQ?s$}VfX8f(O>!}1HY&bo)2evsPpX%$XYZM47f{u(G-vIqCvMMl!GROB
zB`zdLd9&DA&<4n*uP(Bl?L89(iIbe#rBB?_pvtzr@hwu`ECx;@E2~%{ij_Z$fx~kt
zXo7!YM>k|ZOV&s$E9IUN_-cjJ<K2^_W^T_o2C7_L=ZSfOOa>R4uXJLHVTOUL(3ERR
z;Gx6EKf=#7o-r^v4>}mq=w<U0w`UR%XMW{a^vvy<B!mMxUPfinLU8JvlG`Z)9s>fM
z?Y`-;pl9!y7_c`}jhR<kPKay+&oO`xJWP{>4ELvnfu>HJ!2@Nd%o-<2&rF95&0M`D
zbhh`5F=Vzy>1Xc}kd2@*^q_?d7tVO7IJ>+NdgYcScWT<16Ee=mpd&UjUG1%xt(+*?
z#sNOg`R5`LQ=|Qm5!J5QS7%AiT;Bm6tG~Ic@?`Is2$Mq4{%0fQ2~XV8K*#O`e-A31
zuxjT-$!>5uyK+b9!j%&>uHX?k&1iG|ofCg{fn}zwNuPG+M2su=I)YdCq>uKV35Q0L
zw*p8%WXvXw1vI1P3ieu;4eunWnHwQPU2`Qp3YCq;AyM|??!+rUa`coyho1#)>J{5_
zVveiJn$IisR>_rKI0LpHRCw-cUIw>6B=+UiJ12S|CZ9U9e3JA`@WDNIy=QI!jqpMf
z!<`#0kxc1=;JL?HTQAI#nz<Qb|HXO1LCP1!&Vq(pm-rQ{te6<t4bBZAdkwoJXKw6R
z0GiS0><TkF91WVl1x>iXCUEuYZLc*id9HuWXy)|g_Me2eEz|URqCIORsIA+7W0r<*
zg7&Npv0m4`Zh9%7M1;%Q#ZTPQAj5H+o>$J<raZ;bGWPxs&_v7Es+yyLknzqRD*8%s
z)BV41ydQ2ofBNUwTV)S^(Y^Qf&UeY}Z?8P7+^@U+^7UR*@IbI@&zV>gXV58|lT_O#
ziOt;D(GY8O*KOi_w;<(W1@M5LW^}3sXeJgM8=Kz$`~Ty-Vs>82IyG?eE`8ts$So}!
zl8Co(fij*cB;&o=;8vvk88YeiQ!rZe=}(OuaL(Vf{O4o)P~DXie}Z~?Q|9)t9xq}`
zNn2XU<(?umB{xLX+-Ngs*kjjpBjL$U+|t4zhHs7XELJww21j>l&9$d8Cv-eaz^7W;
z?3pAzlNCC@HgoP1w>0Q%RCJq}@TDIW-<#*umF!;g-0!vGx6iw5^iP-Ge+oHsDlbKB
z33#Mg#IjP=)QBBY#_RgpPkR}C^74-cTlw>+-|nivajiOg`tzdu`)#Tcz{eWTWQ0r|
z&%EeWq-?AJcGJ=qt2&mrJqrQ*G3cu`^DOC^;b2FdezrNNSix8kT+gi7!MtGR#Ec1$
zLiFp4nM**<1#kQ=OHf}qF>(SV+u5#MxO3vnso+o#DpOM2IdLa+(l++|ggYnhfV!Tq
z;!c_HO_H7&oe3V3bqx~t>^-vvGVXb9%F-P$EpIB%)jr>6W^cx@{&Vij^c}w+D%sY6
z*TAOjn8-03T+UtLoX28n6o0uVH|Uk$H-p=YCVehzT%Vt_{`BK5FVFkmF5di}cQ&{d
zS_q17@OI{Jfs^l?sPP47%~NlpL9?8o!5Clt&~Lh~y=SgLT;j7tVdun~v%q=&%FXQ}
z=CIjUqu<k>xIKf+zIxyMt-KTNmYv%{ZV^rd7l6uHp1o(TLuy!~sWU)YASq(Y<B3;J
z<Ul4#SH&cCNzMEZiI$sf4n@kJ?IF=}#zST2#GmuQ*5~LMnz9>33xlUPtrRCca$A%=
z3p}mszhjk#PeL}R(ODK$R-(Fc;?Mcuh^Q$Jy?Cebf95>!3Ht73lcZ<<2gj=S)w^tG
zd(Zrb6j|q<FWmvNB?Me#{=W>KKg<%_o|%=x2Wi*1p40H`bzuT+`hS;_6MU8DM2+uf
zkv5Od`NFFuC+wUGo>-i6@~Mis(SB$a_&NWH+p}<pho9>Q-8u2c3p`!F(klEqhyxD%
ztaEv$rbhcA$=8S*RLO)x+8Q&@`V=V_>wqgc&CO>$^HTbt)9`$tf@LGb^(W4$t(+)1
zEe(8*<d)pYS5EMFgKOMXeLN=SMu(wp5eFF@2{HKQHix3en{y%4wln{_8z>j+3T{2O
z;@66*CKqGn&pKzXfNm|wlAQ9)?O7zm{acPtymCSZYVtduth|(IP{-UhIoW$=3#67Z
zQeW}J?O7B=OY+&EGbduaA$7zZpDyXn97x0BwW*;cvyrioZ(@f^{YiHxA?43Xg5axm
zetT%-Rs6sF2ijcKzaq{eWEo_iyXzb8=eOeA3m_A-`d36$jg-$qCT8~pOi}xw1fG~(
znsc!4iQ6+*i1kZePq=d84W#vPDn)CO^n4aiaE-Z&kB`;R$oUcvXt4a$HGj{flrohj
z@G$y6k(0e=`oIC3s^dAeSix8lGJ}(KvhA5$ni0h0^kqSJPQ-u?V|x{MEZzBB;~8s6
z8(~xFl1b7tD<ReQ&2;A?<v@OLLA-L;JN1<lZ}x!em^X>P4xTBhwlhESxoF?~Yusk9
zE6@LW_4HdQ#}d%4`m_}jclM-#&$!suJqd2nDKpSK=4pu87X`O3aZ7Utr+=@xGrbCx
zH!FkF$xlIRk*A#C^SNHdc^z3ZNphwnG@iA?i<FC%AsI{bFVBQ$ZfWjd|7?01dHuKT
zyz7N$|L?TbtJ&4-fBS2Rl=b<)LUW*vP?*A<>#oT@sI2TgzIgum(?1J$f1i9Q_xb;t
zIdT2pEq6fGK68gAGEkxLb0RqJzPUgD^Xtl;@1_e+e;ZP;WM}OB=eIvit3L%f7dd60
zD)>&T)Z0uad(Z3whyGH~+>yr=Z{v;L8B&_JUu$Hg98-m~<ED$Mni}1Qv{yGB_CMKs
zW;-PD6`plH*LbEE++Ka?ekUM!-icnYVX158OaMitZ?T2i^o1F*o0qsfGX$6Qn@m?e
zb4Zf~H^jh=vPB$=BxNT01*EMHx^jZY5wdJ!7sJYx6Mr^>%M=mNDT7AVkT#W(XX_KU
zXY5c9CzYS<J;M*SacRy&P+`Xo4&R_{t0Ie(KQn_PNHfY@8)O(Hzdn3*^^C_82XL~~
zT4(2#loF@l1Uj$kv4+dJhBFV0{U3JtG;Qkbf8zG+gCeMf9i%pU@|_bppe1#$;<lY{
zo5eh{upPA0=5QM5)ZfjI&lH1Z9DQah?VKoC4i5b*H~U1)jh^#?yMXeBe1Y@&FU<wF
zR<C$gv6vb?=Ytg1z6+MPrF~QcRS%!eTDTOmADdeVTE=)qGFQah=rNN113R2S9iXS~
zJ<i4Rj_ibR*n6C(s1>|B18TZI1#>pM69Dz8C2uQQvJ1WCJNuxcq-l|VYm(cuk24qg
zy504d`_(;AdGinOg<zVuZ+hjWh=DGPDb-IszH*ZE%%kn#YpkZKx(6y3|M0m2I)(hq
zB;}nGBWu7O3;8S1_zdJ^aKL=6SOemKFF5m_$?Q`EG8xp<){K6t57#s0rk#qpQ9o$)
z>8|OkL}O=3&peq9z91`Ecjp}DnWf;sbiSD$Tco`C9r&6r&D&z0c`484LRuTLGd;3u
z%-#!tR(NO{9pp$#xh9)*jWblby6^hWPc?Ve-R7^|_v>ZQ|2r|;XD9w{=6<gLS#cpb
zvoL)b==|^KdFl20ug(7}TRR`L_Vah}kw4ta(-Iyxo()hoh6I_W^)}GzE^BZNaq3&?
zB<Y!jkifY4&#g$=_}v-sda5(G)OSvdgv9a`NgGvjqxX<l+5{Svn)nkO7fW9`ZCm2@
z?6V@cp`s=~`O1kLJMh}BSNCL&^5*M8kIlOD`Oo_O|K`X4|8ReP{omvDKezt*)xY0w
z|G&#sE+1a+|MSay|G(V&r}kg|fA@dAKXd)*`0u6p&iB2}=<BcF@AqEvw*9ut>;GT+
z_i=vx-^2e)eqFWv|MP#w`OERo>nf_=#XqXcDXhHvYvr4lTh@Je`Fm6SKmND-D|P?h
zuK)dd{{PGC|9_l+J0W9vokQ`<`{$mXnS5@2{j5?^{yo=jhkmb{^*iYDz5Tww_k3Tx
z;P_No;RV<2{eJKGcXj)$^Pd;zE97V0I$e0{bL!hqRk3`RK|0H7%ifl~+kH7T_Ti#s
zv3!&5u50;=+eI<%{a1MDZCkE<^{(&9nKQrEKg`sBzV+1e*8DTgasN%;))hYA6chhi
z+;iXN<C*f=Q@0z(A7|eCukcpx>DqVfap(W(PMZJt@RrNdpIrU_>+`<4mS5$|<=53$
zNBURU|GnD(>s|lb-Nmuu;W6`H->b0oiGOaR-#z#9#~-Wz|9@SpGwbvB(--IT7iK2g
zey#atJh$}R>-#f5U*j*kp8Ku)`JcZ<CeL$i@73B}=l}e3&;F%#=L(~4_1~AXdH#O-
zV$0v=8F$}*$$hpdr`YcQxj9>O|JXj?^EI^io?h+if~dUZx#ymK4FCV-&hqmYGJo2>
z{JnqA+W${4ZNK<G*8bc7(!Kvn_uk+C@5sw9;r99O*f;#WeVKg`f6TG?U*Z3M=Kues
z|NnjczuW8UKiB_TUH?7*etq%XclAea{6BPVkK-EYhPtMI5$kHrD}I;0>hQJ~i;<gt
z``4D|_v`+?-~aD@>G_Ml<~{!Nx?Zljug~DU<v%OibK769o^QYIc+_iV*<|sGr}dxL
z|6lp{@c$3n|G)qL>wEq0>;J#>@BjCA{{+7GSNl)qFaP{0LH6FSPo;k~r^o9AN+161
zcqd|`$;lJHUe{j#y=P9{#%rth|BG7p`}BU<$n~G&|7tv`l;y7Xdw$m9YW$n~JHIw*
z&7S@1_4VxgNq>?UgX({7vy(CWcT7e7)%x$jvo04e@SimQ->>AC^A8?0I$3n=$J45)
z{f3)Qq}Bf27I*#EQKuPSzlOhm^Z)tVyQNES?tBtuKR;>aq|Kq<yKhcVbvJslP1(EY
zLQQ@6nUv5Xwse<tjtsE{#TRDR*NG}WTlM?VgI|Xyhrassx~%e!`I$O5&%NANmaqGs
zy4z;X*TC!7>!edGj27FypY!T`p*5GGoNeIs*R%KkV*J9-U%0~l<m<(CaeMzgOyqcf
z-2VCHD*xYyompS~`u%s;9`jQQFV@@tx?LMOJFsN^>(}cyzq@_jn&a`;mtTJFS~rWo
z<NEi@RpvI^x8053H~-b$$G`UEp7%P)yl;Nq|2yyA{}TGg?)SEKYsbC!#j9`Mz4EJX
ztKIIoesBL>@jd_h*N41zFW2->byZiD*8h6+mHpkrU2*T*o|lEc;Jd#oF7W#Fh!3x~
zeSQ7=T3yuL;Oy)9Or{noud8ag>~b%2nqAu!CqM1{?S#_Y*Viw9bLNq{yelSt#cTf;
z`dp5;i)!!8-FA9+M6mp?uRot`w5xFpym{^QC;1M!*IBhyGXG|L+ZOfyLjT&p>wMR~
z{<`__Qoyfoe@plNW4M-Ik)Zr%S6%%4yNSU+w?)-|I4t(|{L#__^&4udc7KfiyEE7I
zx7ickXL0i4hs*Aj?tK=c|F-Pg+HJS1{`OqB_S@{n`LEmG9u(L%Id6OY?zsEWdH1L7
z{J3WSsr%P{vmNjKU$wq}_5K~91+jH&tasgd`g_{$(%QR9|L>&T+<tiN>(|?r*XG?1
z+qU-pyXWV>{{FTmx3;!PYFlOQ>#sYrs^9TRx80KPlb^TmYuaw{>+-+8WpGF*Ut^D!
zz5KTGclNdRAD{oMdB6LA!DhGGEX%v`xib>aJJ(9s`oFK*{{Qe^=F+`(Q~cI{)YrTk
z9kYJN-v1xA-^{-B`C~<I{mtd;u6wP2JxjWNchq(N`zw#$54!gJ<@c|@ZpEcO%Kv@s
z`TK9tJb%{S-1e`==J@@6YqtmAKbKegIKS=MozS}y|JNP;<y25L_n1BZ#)sF__r6U#
zbp2oH-oMNK>eqGd<4de<-Z7Oc-fexp$t&Tr*EDNZ?>_fwTP<hr{l05ouYdk`;~nS6
z=wrL$-XC55yZXnryuXoG-JewdxRhPnw&p$8w)Dq8o(9IQ|Ni^=XR8|C&w1y+O@GMq
za#ziI|Mc5`P3sId?0a_ge9H6J9~gh{wS8)P@9^_4U;D!3)1=RSvVZ*i-PgOpzt8Ng
zyLRlmQ~Uf~@4xQ*uxH<G@1ni2kA=_u@ONR`zw}{z%k5v~#(vqy&wuAm|55g^{(XM_
z{14x@?Gw8q{_6U#dr!C39;%vmefrHG=f3U#d;R~%`!B1X{Q9x({h@8=)4v+VHC_v!
zcl>Qw{FS)d`~O`3|7HKbulDu-U)KMe{`pt(ivRnocK_f0ul~nV_t<!+$8ROK*B#l%
zYs~ffzu5KlUvoY8?zh=~eN&zBhClWD?jLzz{pqh-{`#+$kN-cH-T7Dg=vQ{8_^)5;
zcl@dTU$9d4{MWC~!s_+vUmt$-Z_WSm-$Lu`60iUM|0~ry{{QwZb?eR--(K+{?Z~I^
zVYgPk(Mj~(_y6+>{iNr|XY{<j&%vnjBihJ2V)E<V-;e*gVyE`_mz-jQMZI?#=j(j#
zSEpb8lKpd|GUC26i@@{ylQIv@`g7x*(ASf>9>>1sw=f9((VeNf<^GQ~_eJ&xr^kR*
z<)749`1jqLJ+->FNQS-LKH=-poWJ}&a@W3dFdq52J!RH~y7|?y_b2!DKTrHCt=PZ<
zvNOBrZ^queALW}8EBOU1=Inbq>2~~fk1OV9zQ0{5T-^TEw()VmH{EIX{>}OwVSnj5
z|JG!^b@jq5eGBqW>LmKEdw=BB>^Zl8C_^oQc+7hK?_awo7)o9TTMQE0pINtV|G7QO
zo+Q@x3pmW#pZg<;Gk5dNDu>Ipd+K>1fwDjPY?0ILZRK(N?NamiwSBd9VkrDK?TpYZ
zwiCZ*em7xz{7Fusz~b+;(|P;fD#z|uw(qxplK6M_fkKPw?$qt~zdgRz&;Q!o#aVCN
zdrqeI%iB|?T_`iVf1SVdarWa4``kGc&fT9Bd1#mWp1LEuV$ZMt`1b%rbieB57So+|
z+jd>;XV;XxzF&~Z<HPopX&cn$|F67zjW;OSXx)23rjE}bv0w7*>+fB^p6nwB@tgV4
zPBoLs%j%}B@BeQodEH)+$>XEH^^&$A^V2VD?(SogyY=8#pRU)ZnL6|LubwA7OKV%+
zwW?()ka&x?tM{@~H*tJd72AJMVp2QA$Lr;$3(v}kkWYGk`$lENe>V<=gZC#zItiP-
zpZ-;QgQCQ=?+lHHUq<Wg{QGRL-K+m*HqHE}f4?o3@Vb|iQS{nZt}agQd&zvcYx@~x
z+9q$0DEpoL?&<uuDrY~|nXZ8a%!aNn@4v1uy>tBh8%XN=Kg~yY)}i`cF@BG4zb%9(
zj<+f;pPz1drzbV35E5^yn_J439Z9`=`-{Y6Bq6KgU;o6^uWUPc7?PH)pSP%PDfY{I
z{#KmB*=Sw8GRuSqpj0~dU6K9$b^RZ|mO;|@|9NjG3EQRLTC@M7<a`ro0Q_~CJ>`R?
z?2DRp`ToaJVqhU~==q$bmw*41nD2>58g}X4bK|CeoV@|!mU{bWE!CR7=T^4!mVbP1
zvj!Y(`6o>t7N3ax=VGo?&kRbpJD+^J?O8be@>jz;UbA)YIc3^6fr9Dnk-e{9Zo0K?
zhBYLZ@=uy9oEuwVJ@?(??W~V~nL9CXf>NX1a)*8Qm%sjzmICoY{z;vO#q*y1j*LHl
z92&1+A-$Ko|LH$IkI2YQ*7v{u+;{gF|2u?Xw+wf#|GsTws>d-%+=Ej4!vpWXZ<{DM
z85$bzFCMT=^j#<aJMR5;TU8{j7cafOHu?0AVnoi%V9$z=>remn!ye-E`u@x3INxS`
zdi}btlBfR&B#idUcAXQt)%a$6Y5R>*pJQMBTNr}=+<$zd*vb0Vzkj=8&b>#<w;A<H
z4?bG0{Vi*V<d5Ip+~=SF{^N6U$G=_yho=3in_Iqp*SdDs<a^;QX#9JpalX~Bzha*I
zyo6sGUi@rOyUyRRTG_Hp?iwtU1(>-$`m<-=<=Sd^Xo5V;F#q|NqrY~*GOg3^*B;lO
zzqI)mR{+U5_a|jK{k9H%-L`BFqD0N8-}w4p#ky*>c0@cZ{Cjuv@m<NOutM;8$L~2i
z|N8EF{<v&k@AsRDf4OzFx;k@$mvFva|9h|8&)3(Wp#<_&xX}Htadvf?hKT$xmG;&7
zY3*NTR_9NU!o&Xg0+w@o%2vvUyzc(+!=(Fkd`e)zndI4uyZ@SQtMl2LA05^n6LVkK
zf-g0H<C|~S_j~Prw}0RLWA7D@eYJIbQ1DB4rrMg5ulF6k{nE+|5iS@01%3LvuPzh0
zc6j^VdHwC}evkKNL&7TFu3pwkearqWdvoRGmfJ$&+`p=5`I)!t7wpel|2(y3m*lnm
z7Zxp=al*`X)`frHe*gZqXa4c(a}cNRule_>+Hb|l=ilv@-+pZM?u-<qOxvC^YlE77
zSg(rh_Q#*h9UgG}n&zEX-@Er;@y=Ye!xOq+S2G=7_(pfy-G8&Hqgp3kudewkckMe1
zs8BNUUU72ybNjCoKS=D~Dve~^{cE`@Uqg$15Ovs^lg~@n*HqaZd1~wMpa5*eWaaDZ
z2a|Wi^FYe8eQlSb^;fU>xk`TTvG7%iKZ`%hxEAC`$KN>jVbA_Q#m<L6y^XnVv~}%|
z0`087)y6sXKjq%Mx%G~btK;+Lw@<4#Y|gZ1(NH*bzHEAZ^IF^6iVlo{b=!8<@Rx1N
z`Od(4<mb(MpKNd3+$hT=BJeal`t<jN^uuKw0S;5<zt#EA7X5pxa|6?&KRL-i<=*7n
zfS6kQwEDxxwzmbJx!NyH&V716Bzt$+j@rh<H*T)`WP9!A>bv>z4-2ZctpwST)y}}`
z^7H0AkR2<bcAVOO@S59Ofdvg3_O}D~v0MM%Qr*Dx=ueI_$c`&~j9eX`HvfHcKOuQ>
z*^bIq=a(nTKG|Nqx$JI!{DXk9ZL@3oOTT5b-wwB!GA~!{e)C-2TM$1@|0A9A_5wuv
z+9%Z;HaqTS*HAcjzHHL_gXjLef!OEqkMrBMbcmzuK#ua<%dVkt@c-)EC)JYa#bpg)
zsxN(R=z(NrL!3MN#QuZVu0gds?_;;F-VAXr_fNT+J=WHD_8eOHC58Q``PCb9Wb<MV
z7!+-4tT|s|miB$NxWSY;Z{_bN&yBtL@S7;#()8QM_aD5r3~H7w$gE8evp)Zjdy{h#
z;`Y6dt2b;`hD6%7zWV01yf+~pEUw`%`<4uev|}G_Z`|yIxbXL}{Rgk*K}|K=$8J4)
zBgE9}KjhxLISMh=7i6j^#MEy+_04Pd-hh~zTElO5ulsI(+{1#ZP02O>rDaL&x5X`b
z=H^QLKNfX+!{N8uGG6Dub-zD&PVbG}f(8rw+j<~7Hb4@_c90zhA$FX7bUz`R8=87V
z?>Enty<zLXSokmXQas~=E0y1W#<5Lf-lFB1eyD6dC^6oJxZo!!p_G9AwY;`2?MkKf
zZ@9v3o8KQir}hyNd1wD|e*4w|iM+ILwl{7n?E^*L`EQ%vA3VngRdnhf?=~~2B0rEK
z`FqSF0?*T>Z+=fmudaY3?d1P#(Yp^rd?5W>?oAHgdvJz{eN(+*v$+j8!<cP+fAHM3
z4-l&l|Kr_O)&{X!3}mVV#8m4W-xJc~A*SXg{AY`vy#s9O{+s*vg%_5!mZyYH^l!<H
zzu!F9_aVr;|2(aCN*3Sa+aKQev|)|brOpj+Kip5q4h9?X-}><X7xrmBD=(M**y|nh
z_QWcs`5ZU-_Aj@(edh36Zkc2Ie135kO|i`1@IUO}(*t1byx*!n9KNv);+)^FzbB+$
zuL65AcRk3`*I-LC`EA_hn!l+({h$b(!qserji2p_uV2q}S~fEDiSW#)astnE7~X^?
zSSqaUDpB%b_`wz}{Tl3*od5sjYW8g0cYn{JhhI{D|DX3NXEpzJ{Q?Q=+kf{Tx2k>x
zNg-zc>zmi=eg#=qx9xj9f7!Py-@)a}wg0w1D#B|aS^3<5|5cmU+TGdJkoY9!@qhEl
z`5)S^{yoOZ^<3@uKl}emxqt5GXGZK_S6}s5Klg+9>ECN7^!``8c`I<gJBPwS|FVDW
zDcRoOM%etEzwb}pn+I-b+28yvKWVM+*J@DDAmwwt$F{Po;70e!cmF5k<gNy{fF{5F
zZ+r80IJmE%{`<f4rmb7+`UM=C=5sJ8-n<cWpP7Yk`FS>n{;y`&zq9l?-|S=(C|bMs
zYjx8B!7oP`IZj@C2C-`*gVUz1yTO&RzfQxvH@WM<#tZW*s6_vM{T<Y?>0}p}v{v^U
zsOes(#PlU4eR3_RS7A4sLGjwHl>O=jGUxn48YX1F-3V@q3X3bKM9+Rx-NNwbj|<z2
zllSy~gZe`D8yTH8Z9NNd<O>GHo43*-j<-87FDGvc#8yQGmFV4%Kn;nH|4(pm<gQu!
zO*VSU6Jtd$2aj#vZh=FgQ~1K<y=S4$VQopt-v3ulv4O>YBa_pnjnDV7bIAD3-`XJe
zI%n7W?dKCUD!(x~t=Rgsj{kwdoH-qgiq~%y-WO)!Tdtnw;Qwvg9f*-q0+ZI-eg_Bm
z5nhgy*Ooz?JdxRH)7ICJz<C1-oZS#-+JXY-9VBq%1tzWS{SFBnjxQ<s&mr+C!K8Te
zRuv?kMH(mMyxj}d>VG@Wd*$Q`fm;Wvj*F@O^y#R$FnO=-Uy$~HneT-(zpgNDF)FNV
z7ZW||vgw>al5X$<^#Ykwel>0LUUxEq8W&YcCM{3eleyl2x-`Oz6;+~FIe@xf^EG%C
zZx*pufr9<=ydsTKA=N7BnD;jpsm$jTRCU^v$_>`BJ!RU2Eo~EcUW2TxTV(nr<-GU{
zP*14-o%Qyw{Oi|CH*Bj-JRe-kwR`*TbAM~sa<Bip&v|`JoAzXF!CMiB4)p1Ib<Omt
zRtb2O;@x7l;oe49Pdnix@0JvAXRtZKu}S`Bwk_Z&|ETJ;NmZ#vnPtMG`Cr?bgVni}
zw={kQ_nic|7pqrSIfGrEA)$Ellk_)mT5A`aq<e57sAK2v(lhUkBp=wFNl7g!-i0?n
zT@H0EH;-*H?I832uSu`;o6FLFf$f_0HjR_%PAvWN-pmw+=%{E(@tzCTG5=eP_sYrU
zLhvv*zckslb`i*q|H6eTB^!HsWTQevglDQ27(7#1+@iPP-a=PbyNQ{<cWRb?3Urc=
zfP~`5z^YBlQ@?=v-OqoD^i-JyInCU$$GN*JNol^`^k4rH_rA~j@&5GRlFGf?tUqq8
z+fsG^-TC*;Q{#8?g!fJJUXgTCZtkq`C7*wUtUUi_dUP%G4#s=0{_nn{f4lhf)6!j6
z_&dL{eh+Sq+sPBIc6Mp`$3GMObhSQp3Y=F}v6pE~0p;%h#>ap0J+F(~FC4MFxGE<8
z>&qPJ(7y>4yZ67=zF*$=<y7hpqm#x9dsCN|<OEJSpK@z&Q;@o<IxNtAs$VU<a`NQM
z+=9Ky-IHq6F2_yKD7{qVBpq>oqpPRk<j6L`WWPAS7fi2Zqe7kt&s-{D_-x6qFM2z`
z0V25QS4)cX;+voj*ZFn+9a~Li%{x%2VLh?dX<h2YFQCR^=iAGZZF`r2g4Vxe{)C*F
zCXhV!o%3Xy?`3eAbm+WXHmB*|Z<ai&=a2dGix%<g)aTDz%#pX~&zAa$J@eo5@}6G)
zD<o=u!=zh_ukAN??wK$5rozP5fw8bo>Ccx0_r;u`HkI)GbpCBRv%vM)#oDS3$``+Y
z%ID6vmz!nV)j(CAf69EhHyS43BK*;>HwULV3WHjO>Z|<u%S2{@>wd%9st+5Tg!AGa
z2K>_b^=9QX2jRT<2L@%2etwBKKJVrB^#vBT7i+3ED4%ZuHT*iCUT&5xhZwFh-}XjO
zx>EzwqCZDIzC74xc^OnMt9SYHmtC0&c9mhxw*=?8oaXBbG-}0as$LxyNdNVgTjrGC
zpLuexBaFdqDD^6T{<0+y^&6|dC7hlK@!Zbk?AE7z_yZi~%->;ad&4jdY>~^`pKS3u
zi4X^znJ4#Vhi-KPlh7Y~q3SA0_vxG$R;kS8{8&}BA^9}Kz1KFgM{n{0)t~jZo@u(x
zby*n4HqCmA*2#1ymxXdQZyvPF4!4+MSM5~2YT<*HXmNucn`|fB%NO&1o#mGBvU_{*
z+>FT;S5_Y=N(d8u>C#cLg+1EJA7tG83U}KZ8!M|oEnOGuR|osfK*IJ~Ab(lRJh1mC
z_I*q6ehTr<^A+sYYW`sFXt>+n5Ud1y=ZM9vX5D^ua9p)4mV1+71B&E-mDl(e`f&y8
zGoNORn!3a|GgyW5q}i*38)U$-x9y@_j-)v#Qvb=HblZDo<I&3#LqVDKyUU?DUzWzP
zPGjD@;>0t@FH3E&O=>y>YVO&;y?0>6WPz)v4-~bBss8kNcG9uM$}(&(j}CiA=%jNk
z7GbtGHuiv>q&q`JMLLWB*i(=f{+rmh2dW=jHNEjE-&(IvGX)N=Vz<5(1or=r(CQ7T
z60M+AG26pgXcFhu=ER+#2KxObPp3)Kstk0%t*hsn5iM4g0dT7-0`4cA*W&^wVBS^i
z)=C%T7BsNbbE|QBM!>u{e|fy%t0xX`QwuB|R!=HXJJR^-U|-}FaPr~`;V(O~2;w;P
z_CWQOS^CY8U{VYU<u40a3QpFAtEx66i-H{&ZQ$wgEttOz>>>M&^S>pW)`VF9b0xd=
zFL0dfXPw-#MDuGx1i0OMe)2kwQlt6bjCRN@2=%m@Jb#A&-mc{TC7`BX$~+yH6_bBn
zIeh@q@S3IVA~b2qmF7fCP$b&t?zda)ckgl>+jMZd*vNl_;+4hUuIxT?wQr5qr%s>Z
z7>?pi^QuH6_|7a+nti<NdfN8+EK6<0ri0sD|0N$D552)wTpP3gtMj+&>P^=1`d=F>
zD&zMlFA3K>Jk_)6RjSO}<<6@o)u_!k`fB;3q<*i|qo*a2_qlTOMYdmkU0eU`8A##D
z%2%l}uhqeU_qoof#Y)m276B>q_Pef_{9()VgHIXOdR?07Q*D`W<z)G*)P$X2bL~IQ
ztr9){lk>zXrMV~kOP25LS}Mqz5<1bZ<%XZ_j|k;g=IaYAYNySuTBR)53hr0z@Uy*U
z*a1#w{vpe4ZwPgO6Vj2AR|oqXA(6HynBT6f<Iq`c8L#=a%kx26Az96@TJ8GGgwp+m
zjfZx2KK=4j+_U&rKIgUYwqL)t-4nah7sbEb*=6~JTnQILXTwguBc)t7+gw;AyE@Ai
zb_Jg=vr#$`;IoI>aGuk)g+fPpj;dG*ywpsQHWN(IP`lSy;jegGpi9Bo@FSl~?W>!8
z!4Qq#f=`$oSu|te3>S7Kht@aFJ2`|z1oJ1zu8@24!c{=AL&N^!0;f$6#gB5hsz?b4
zYo$ncLCiZ5pm=*j57@jT?XPb3WkAgH3OQjGvlwh%l51;@vqcln(IeIZhO5%$z1=4)
z=%{FZ<JS7%_{K63WfsBb>Qx~gW_y%70$lbm8ZL3#wouNoE$NYLhsxE>vcEZuM1<cv
z*sPq8%i#g`u*+1gn{CYyd$wJfS6gVJ0`{@sGN*5kZ%A=Tc6pZmm}o5eOTtK~VD-Ej
zJ(t;BH{1Fl8lHumFZ-ehQh&Jr$;u1IKTJ~E{z~(i)1Q?SYBSUwo0J~$ZgRTX+|R1Y
zAz(AbE;>Z<+Jw%erUwtd*bA+6l0F>3lyh~Gf9sAA+uIYTfW7Uqoa<)WauH*Z$uAsw
zR!zuV;Wc65j0$$8(AJ#8VGwVxUzKisNC+JMD?$}-7fefPOA?aph!x$$o68CI9?R-^
zZ)bReG`3f+5`OIWDC~vsHD!>?E-g`>HqmDF1lenfph&x1_C5IBlKfV?MA;po{&wO@
z1z&THCxfjyBRpT?yGCKFRjp;v>S;+@zI95RCwFq4Oq5k(5qzqCE!4m43OI}%H|IpS
zZCc_~7SS)+<yn$(Q%Bj;SJ8TnGdR$%iEQGH2M4;rTg{Fl_1IP4J6|7ITlHz@7Q5}&
ze^%Do-M`NJGt|Cv|FyNBZY%#St+$tZpD$nc)F@_V%gPJK4JJZDbk52NxhFh8USeP5
z`!(mdJJ^u|#ab!r{}(P$fuzhztrTfCa7s$N^>|{DdZX4CPKad!ty$-{-2un!VH3^P
zB6U;kFPyI%qrZj}D;9;FFym1LMWXZRG)d28uWlB~f`ZZDY|Mf?Cogi<9;$j0W_vW|
z*~y?D>y_~f{Ug}(u1-F`G%{UBd1jQY^*V@8SBq}q<<v^kP`lXpB1-Z0hXvsH+#IKF
zQGV%w)BFv5cUGy-=N3FzwJkXUk|4RoHu0VW>qxv+%=px=FY<-(wZ`bLPl|s|OuhEo
zVv{I1!A<@a7yK$^R;yW}EjT9Zi_SX9J3nFqIU;r5*P}Zo9~S%7Qu-jw_Giqr$a<Bo
zBK6+2uuwj;dB4Q>j7{)pyj&vhHaBJ41+_KI+cG@UjeL(Rx^i;j>)c0H39F~oXwA1f
z|N3{8?fh-)i(fS_-e)my-s|kAzXGfOzIwaywKurw7g@Bhe_@wv-qqkUsnx+w#*?m!
zZ8~fPN{$OtH}|M4Y<;tV4^({onAmphw}qY<*bkTIUD7NMy67~2gWS$gf5YjS`HC9l
zpFn(Yu$<P}*%zp;x^{c#YlpQ_pH}*Odad#G#m-ivT1%tVeMxFJOSliVxv&W~b$k-O
zsjDI_Ch4M~bg$t@p6zYHli+Z6spP)d<|_uyH*2;}sC_X7lKXyaW0y{nWZ{tWntyk@
z-0pwbi*~j?E%@E!wn6=G?tk^8!KdDpc6{CW?$h)y=3DpO_q%jo;da0&aE_YvkL_k#
z5F5xZ9>1c`lua=Lrx9E#q*J85BtgNT_%h${cHk+nvpnmYbDXuhK^ep2mvoAJR4TZ*
z3asxw*cSr!kNRKUNxVyS+%%LfD!j~}kgJgjO62WJ_B(D{I0c+eCjArJEW4Bklq4s7
zF+X88Wz&p>GhDzb6sN*f^shDY2yoeRaK(Pd4T@8bayTCOIr$&k$+jRi!LAN-kmb0X
zrwMl+LWSb(AczM(i<lgXwOOiDuzFsWo-cE<<k4V=1lVVq&7gu<<*#m<^)GRd-yf>~
zlKx`2WYdYYRb4w({_<|(-wSir(Fe)vd6-!Em&$)N?=WTAFhiljqLw?2^XTRM3QmF_
z**;&f2HC^|Du|{-ybsRRAX9jey$_3qq-~2~0R)ODaNI)z2uVdfIDqOF?RS)S*6hBs
zYWWOrPy}As4~`!Di}x3te;J|449ZKYpm-BJfRI=iDz-Az+i+^;cOJJ`n?T+TuHIIY
zEA6G+Vr{<iZV2_Zo4Vws<F<wSz|K5#`Km<u#}X@WHk|Z}{bt)QaMH=Rsk69ZmJ}p#
zX32dqys{k}I5oenw4eF?b<eiFdh>VR-lo0Gt|RXH=f!sCYkytPp8oKZYk|1`a)`TD
z)*Ifw_!8_c&%ez%&db3OHlu9+k~>E)zia>%7@3<>B#&N(sQDb?b}ZIrE+04`mmS#H
z^XO%XqO;*jK8S=XKUiXk@Ua~C<>2@;iS11l@vjA&3U=-*X^?XjGph`52i}L+d$~Es
z8KS~tmRyQ7iigZ0eqJWNS@tV0IGLK*o-i}n3Qnf;Gpa5ezi<WY%AcLf#D7~Xk^&bA
z_7}b^=v}zdHS21S&r@|!$e5Ud4XRu8(sBOfjmy|T1?FiJ_tqkD{}6CUfR$OATvghd
zrMc`Aw=e%GiA7Qg-P20c>@R*vl6DVf234nERfu5TvOY(zcaxp%UBC06YhM@JT|dtx
z`sH>zs0Xaqw7bGe7VMhOb#^^)&gFTxG~jVrw@BDY-g!AV?VR>6ae9%=Q3|fW{y3=j
z<jO4NTLDT5@-JF0JiBnI`^>7vGfu7$cG{r$(y>Kh(H~FsmK5iU%^a>rq*dk`q*-^#
zfrIvC%Y<ByDsThDQ@!Plvp+wmg=FxmMe&BgR|SU;0lxy(dp5rQ@4Lq_;$D9I1&*>s
z!gc>VFL8dKEp^R*`7e{I|K7J2MBUGCf6=0NJLpRlxC!7Vu}RleA7nw}ix%74!C#!f
zbud_XeLA>i0;@(6#;)2Ep?bp?CvY>y??$t&r@jk^(kcIvLlbf|t8ASFJK0>+d2UWy
zBo2ynhmu1Ray6^K?Ftw5H#g^@2-|`hmtfUPV5;Z6ji^#|6#U2*sm^n7+LG(wwwqO=
z$2O6@0t-7Tm=_7R<#=D@29>`GR*C1oiR=ZHjO-BM*PtR*!7A~@Hn{M+o6G#bW`9tg
zYw%^G$lkf&>K#Q5s);4LKqj`!zie69ullkSRHe0o!t(>d&$9md;L4-)kU+L)m9684
zf~rNrZ7JT%xk1J1kBNRaephtGfzxdV>EY~(2<ISJWZl?oJ68`BhY#JY5?>^1R?Ut6
zDpITn@&=N7&z}tZ!nFO>$>&ZbhvvQIECmO9wAopStNR6Hr&l*A3Gqf5d3wx>^Jx1D
zYH`<dr*V3&e0_3<oRWxOzQNnfh9Y%e{V$DQ&w)znKOUF4YjwWrg0q6lW$v5Peu;tO
z)MW3xx0zXB!#{5^J2uy3?*;a2*4tlcKD)HVY}&*ryC(3y2Ftpve0_7?GKi)ryC&pn
zrh;SKKIoN`ymv4+C@XUZzH-{ObV@6z%J}24^7ii;v!WmY7bLz(cWKV~0H0Nd`={)>
zaQxC0h}Wj<g4^!0lKbYgW!J#<JIH*fqtLC*%mP~rRviR(%?IVBdS5o0Yz1dofu-xx
zt7k=l>Tza>YrcZIG=Dr+a@XpBE4dmy`=D1<^8Q+2C!hA8vg^XJpi@@h0tal;luclh
zz*_wJg2cduX=WVrQ$MfR_syUtC8+rpB>qbxEOL36?$MCC#aCL5riF-sYY%zN(!IUQ
zr?7&{DR-~f7s;Bb;P}0HZ_0(9CHq@*BKScGen#2-1$R8_xoZ<_!EtigC-v0aFWc|2
zUuOnIy3yOz{v!3iy0G{=bLpr=>7@Hk(h>YuR;kWEr4ri{r2cd5_Jd!+%_)=euGF4Y
zQ5}7!Z5;(W*&;)^4^Cqc1GnQ>MR{!dvL2G(R(;L!|IY=oUSU<#iES(!=7D-}i&nMf
z9A@O^?CLN-vFeswPGo{2sC-(p>TATqB?mv%f!b2Sp>IF?Pg=F@zQ~&U*UGiOn*PlX
zxOAmzhb&05^ZzbzW?dC^!t9GaB<!zNZCebfnmbmBZQ}i_4Q@BD$Wpuwt(jdyxo@`p
zV}&~Ad>LG$(>BEhaD^)ns+%G&l>lx}ty%Ro!JVO*!_nnu=PI#DynnSp?WqQ$%=`8?
z0?C0a1~3PH+sMcU@pKf28OsI<#SRPmz^hK17S=nqC_UnZxSJcCOG38Jd;20DRF<&g
z^zgSF@2lWG%O8(W?pmI|+Ta!ysy9)?CkxzknU!$VXi}Kiro&Zd0(=%7w(;#N>|YhN
z;_~#ysI5<ePp*pMw<|jUt})iEYK?Ga=;mx{zkL4kQHjz^_nl^M;JdL(b-tIh%4v^P
zQRn+!<9DOewuP`rxwcvMFU)fja$m%Qt1492o-Yg01qIgO{*bK~j$hah>8OQloshdC
z3S>{a{K~9_=U+zr2lrH3S7h1VhPJLi=Crd#_yo8tatyobv_Y`}Tvxh;zCPKviWO9_
zW>^WG_K1o+!S@<$vF_|t6;_>;_EM02%z+1-wk-?=ht4uhlPT7jseAonz<si(?op91
zl2=4c1Q(f6ktfU`PGr7#s%qO}NPu>PiEZLt3+{G3genK;Xo0mlDbi7*kdim*=Dp)V
zTfvPMMUXLDR!vwqBcy%WS))lzu<lOcyi3P+Ob)yD`v|1(1vWSol9Dr06>kS@1vi~s
zv|r!sTLnqUAfrOog4#vwi>9{bIIo7L2yO0Ko=|Q`QF5MjiuKAYn2%C#oo@%{bk5gc
zPyL+uPwbb(FL7|GV1Ma;mApFxv~Bb&IwSc-{KTlOBEjgYoaSHN_>UD-2%ql%vi;t1
z!2@8g&3raD;9X!ncj>R9C7`0}*~yv~tC#r;eIwX&E>1d^GVk>96_fv6yM3heK$z~&
zkY}3FJ=QPt7y3u^gBsG@7w^Lp%(A=Y8s(Sn!@9W;TQ2Sg+X8V6Q^XTcC%SIY{#LU#
z1~zap<^N^-y<-zkHGopG;;-lvc3Vy*foiTz|HPVjSMq=hs9(_@W>bv7gE<%PSHYV6
z9sk5O@vhVXml`kf6@OpQZf0>kBAxO#m*4D+5qPlWb-ry_MP8!ioqY=g-+0#F{_pv5
z%BEjjzvJoyKbdFbW!c^t0-e2m^4h83902ZaX@Q&TpzfA@G^``poZzh0E!foY8PbvD
z0afo9y&#N!lEG{9@Hx9HW<i?bo}kJV($me*5<9Ii4^(wdeuZibs9y|D(4O_(H~S!}
z!QD!x2vErc8ap{!ct8Qvp!<Bp+9_6MJ<kGHcdLnk_06zi>Ay>TvsqgZ8@Nombf0hs
z4yT=7kzhMPUAX{Qf3*8%AEd&_=n_7yG4G!!sIg$+zc=~L(aX@3*!hpG*6+BNBslkg
z{SgB0q=Eb)AC+ndsvQ^qV>{Re>znJUS$l!U8lZi1L|j0+zGs3jNR)q^Vgzo-+|r43
z`v|G1oP)PTxPAPx9+cJFD__Yz)|(du?$3CmdmG}+55j+We@Va{)|}(~A5t{9)Pq_k
z$erR=o}){wz@1`90sTSvukN=(s1qP#7TCMO7>NKJzfkv{PLn(u3@Na5XQztzLrSKc
zn<k4ZxI(~T4N`G=DmVq$U)-7`?;Zgz*HbUui}s4OiPeORO<ml&pnst@BdC$G>F(uB
zw~trA1IUMMLVF6u{q?|Fo~mbwezDxr4eiEl<vJx%Bna-t-M%|VO~jwM3DjLW6I?D)
z{_)D96QBmF3NP2D^~a?IK&3NinCX$GHMok&RMU8>H*XU&xM<rl-RM-TO{RL$>Ul|e
z_5srt^eVn(*qU{6`6uR7&25D)3JXA`*rZJ?H`~<$K$XwI6*`U^6q&%4k7s04iZjG!
zl~m0%YlvNnn%)y~I~*X<9@+H9SsXl+ZJ_0?cw<8&xY`Yj?Amz9m+SPyZ>+ru{--Ye
z^Y2>D82hR?uC}-SFK^bQDE{q}r>LGVGg$ym3`=wzw=HA@S6-7giENhT1rLr+z@>ua
zW*ZxLtl8sK(3vt51yBX(95hYgwm>6fkP7S@0Tm6UdkG=ak~SzK`=(2<%frOulu(K^
zl5a8`z#+Fp=V*>QGdPi{q;hWJ<<$TcrcnRFRJ=(RhWPiaO5&BHle?9+Wt>c(WTN3=
zc0~zPBs*SOpl~~&8=NRSo4aoIMM2yuC6Xd76@W-K4G<NPTsNn|d;@Y+z=;5#Rbby-
zfT?K8afUexcO>MqgL=ysCV4s)?vVu*_H|df6|M>7fJfGKXQ+z!uWtk;Ar(=LH0vr}
zP@+*>=`bPpg()N=S(|d4*EfRtAu6IAn|SxKfm(4BLKe(;`@$6BbtcDc3$Gsm^$qZ;
zI0RPl$Az`Yu8j+v2EAvip4OPh#SCh<&RDK!`0f#>8Mt);GKQab_KXD`F3o|gO$p8$
z8bPhq$y_3nW%sgy3+)hv6J}p#K@thb{zDF+-g}f8+(3_8erL);BtS{vu*uV=B60uL
zPEbYc9h@HF_7NiCe5ovH+hT~;N!yrjwrvxF6oaOTca8=pf-7XtTYM?fx41yT0?tdB
z+7M6QaM-qRZ40P)IdeHiqWt3)QADw}MHFPMb5M@L?F(U$l$XSOb9!<vD>&>#X3uz=
zfou#oWPC2mX_S8qkpLUB%vL<$-J_SL(BQxtGoMRjj>X#SWdpZ_Jb!y>mVW#q1<tjz
z_8l_nS`G<tpIiApE4$UNgY&kLe@@b!qm#42KFj>hGcC|Y6da!hXGIp=Ia-(qE@dv=
zk(?A@BgzJ9Qp|rIZ20O?r$GaFq}h0tM)}7lvmm96AjhWl$BV!TCh=BnbCJ0JI!4gY
zVCpPx&z&F}LFL*f;hh}6B&vKN?HL7eM``Evj9FJF`9EbZ3e0(|VGZtcsqEy~#6Nc~
zB*OKY5}a>BB0PrWWZMR2P#f2yDDX^Ki!3-?Cv_{_4k&|!YYfZH_G^6L96hDmX~V;}
z4h;_$epwtNlHBSlGVSnNZmEOwo-F!1U&Q~0<@MQX^G{#jzm{eD;%kTBg6!l?R0n6|
zldcnTIUt3kiulnS_ZyJ(zLR4URuzuh6yJc;+oTwg&9aH?pjb7?)wg@9H;+vOJY;W~
zzs#bv@QhMInCwp<H&!h+>m)(YaL{}a4G*&|izF6yxHK<uaNM>~6jHb`vEFP80~ZG~
zzBw$pb2NA=IEp-@L{p?!1%b<kORE%aPk>Y@o~yfV9#0bl`Feq*rOLvJq`)2lmpS&D
z0TXgETtWR)RKrC#%dUl#oFW=0%(j3h8{1K=7u}?bq5|B2M^OQHpa)mTnX)b5ipn`?
zfx>NpZb(cpvEFRY1G_09WI@u0jnOQOP3@QZxkQdgB?bBj*vzrh446=3d94dPfbH4X
zb+ZrRV-GHo6zQlyuqQzVUVzMzdNwxYIBP@7Tvn|#>nO-v)j9QKzgU|<NDb<_swu}g
z1gz%FuNB93cB|WiYtu<Cx+lzBmV%3i`5jRgj!&2m3C~4hDf9bW!Sh##{ax1HIDQc!
zA^*!C(xzF#da&&u3uyjCJy2WC`jaqd{zRcOYC`S_e@K~lr76d`4s5MTAonKTpWvCq
z2`+1AyzKx_LAFCJ1^4p6j(MUEO1g))ERQ=CYqO9GoM%<)9k(gkgZt-Oa;62^z>Lv7
zVFpp|EVR{Wo2oq|iL79~*|tK&NM!P>55j@mza%~hLmFmRx^DLU0Vf@gMPez^pMt>w
zDYRALcaaWEtLSD~h~WnQ(?A8le6YhVJyDt#XcGu_Jc^m0-%0oEu5g0PsCoVac@{h>
z0UqyO1)fcP$i65n=kW=DNcIH<LZ~JvD?MaiB(}xSMHO5Q-BO8k`{)7*Z5vNen<f<8
zrb(Su>bSG}u|0S=J5^+>!i|8b3Qhun|0?%MFV>s4f(6v(J!P}Aqfp$xt_xgh3vE@n
zEdWXVm)}WG*<G;+GQn&w2x?u0K#ZMs<H(9`buEaoP!1!gO|!{1FVpQ~2-qdglU6DG
zz7X2Q+2vs(u~du0EJU?Kz-5ZPXXu2S4li)#Q3*Yo;|@tyDl54*@j|?&=ovbpHbWac
zRpz!*i$!{$5NNd1-Ye8F>_#xG@3iXHf6tFDOE24hop$f5Y4wEVSE_c*RS9+6rl<vu
zX|REiFrTnw6+FS<QlWLi3=)9OlU5~dQ-%~5bxNU*^3FPtkP)63;Z}G?2{NDMa5TYP
zrwLS9s#m5=*;%nDs3lDHsL!MjP~rh6k{Rk|hVLGAdVy<}Es>jg9(6*JEV>Iq!RZ3z
z#@aVpP)~C;@rG);aVVXezeLN!%taO4teLb59yOk;x^DKZ0NdjcB$^_<2vT&RsNlLe
z4MhdGS%abio~Kn-YNc5(0;e}n;ODOJf@Hr{O>dl|IYG@D1FulSA2-697!EqWbYIDp
z#2c!q#v$hia^60fZtSrc2u`SA1EIMU;&n(i3xOAwADCBi-I7=o1n%vFLofvFvmc!y
zqQ5Pm=?`22X(4h)5Tulvcj4%cZgo*`VRR|&q*2#$NX$)QV7=KM7YJ@oYdAP=SSSi<
zPd9X(><eK5S9DAwDbhjU((tfJV+&|H2b{Q7Jwqqt!rgl`$6X6t{+Mufri%DO9N+=c
z%7ke4b3z)gD%y_Q6d53iFOqW;FC(}rFnGIkT9LTF7Q}GQ0L9yrpyh5uQ;stOcqs=s
zze5aEJn3b4TM*jt3<IeE``KfYP>M7}MdB<Gr=8vE3=luJC{7EsVT3f3PkK$rJz)iI
zHcdNg)TMq6Tz7)oY7yYZpNEh@igc1MxZs-9pm6&_0=NlmKcOK>+I<bUxuELlFd;X?
z0383|K36liiasMWL8A1diUgv#nF4Nm9X4U?ED}H7+<9fy(ix{T-Z*SnxW)lA#q@cP
zx?8MGA}e@CQf<eEo=2S8U_(E%h#vz<fJ^4eCho_2^ENO+dP>WAPQ}`!vVvvgIjk=n
z3kU<ZlRhygvfq*r;t5zitwzi9M(52wHi&l)@ukRD89*wN4a^7I*qFhUNh13sUQS5!
zwPo&%w;l%IAW?baux;T%a1&4^k$n@tuLL+NYrJVmINaI@PS}a+$GD8ub=q%>n>5*S
zTK~4!oW@dIpSxdqU;gWdWml^9%vE{g@NFXtGid1817y3m!Hk77D%w@v9LaHRItXsO
zC$ewqR|U0)7dZ=+Dg2H=5k3>(v*)mhe?yVDcatNi5w~=uw$9=RDV`J!wTp_J))Q)<
z983UBZMh|?vq@j#a^p}sb$<)bv;dt{Rwa>%856!pov^#+Z2(#)1BxDReTb!^YH89{
zoM{?r_Y_weOsHKm-2pWBHi?V*=J6(&u;K3u1_wa{QaxHcEb`oH0*W0L^+AaWKO^)H
zLOLdFoBF>Bft=_Zl$f+_;q(MhTOVvl6(`t%5VN7e!kc9GvKWg9zn>5y0diDQTT+lL
zR5g-IV5&FsBB>VhQ2@=odA2sbQ9jNh44VB}WnlQ@g5g1MM2NB_^|K0lfEqI^4JOpA
znVtX|-JZlHjAF<&Z@3}JNM=KW$FsHbW*bivsMGVKk&8LE@2k)P(0C%)g<2dS7lJw(
zNh=k=QJ5*k_f&6M922+}3`$h^9l;6?T2PBYM-=Q&1OLN`ca94AOaM)8dus8d$V;kC
z0Qa3*8y_SeWKm`jeCn^|<74(ks3*W>k0ZpCMo@<h$&?9OL{Hd-IfA3mGrIF;8yDD(
z9=Ets<X0<90I#B0>+o$OOxWv;S%?5QQZ9voTm?2yC6{$m|5jeGFlY?qk{QH2L(ZFh
z+ZsWB_UPhFk<XSk1kJH~8aBR3&SeJ2mB{27xf#-6FITQ&eXKW)3*u$4;kOTfk}%k@
zFy+E0?5>$X!Wr2VurSol&YNv0c0&9x!{OV;6tGi%G$sk%mbk?h1kS$@Q;b9=znCB*
ze8O&;4%ifMV%`L{UPVzQP1=hE6hVoX@-n<)c}_FU2z57{9LV1IAX$+K6wLVtbrwcg
zvABUo818+mITouU%d`WuhG*HL4LwOKxxxMe6@p78!Rb%URzS0KqY3j8&|phiCTGvC
zh*^vQt3gZ1yb~mkUg7~e;<6oI;Jc)g+$TUw!BoyNZR&r+>Ji|w=-`syD#?1&_!=)P
zQl9G}WUlZtqU``U%M>c7NgIKks@N$#p>~ZkB;V~|yy@=7q6TuEh`G~;jlzwfHv0Lh
zXA94`M#<M&8g;iN$ra1}is9CrwkgoQ?aD+O{p<T3^#fl&EOXn-vbldM?}-4PMTb{R
zPx!WR6F3khz6zZ%n*xq;s4yd_6q5KVbjB_W68oP;_>aZvq%!Xe^|zaD<~=P?Clws$
z2Cr0S)avAdod!024X+PqRnCIx4jUA66F|lF;<%=h$4{}jXeeDwxZ-W_JK`odDtf9o
z)8w@wsU=XqF~=E27#z=m`Ul@6XTt26P@9npF2C6JvNZQE<?Rq~nNxqo+u&!!O>lq_
zYara=hPMMDo?9H(bo2Nrw=<ymSkz#F`+sp9)6F(`Xq~Z}21&Odo$mM8z_D?`Tj9rr
z+Xp~}4EtV|<o>0+phBh&)rBe2r`W)$4-yg$pbYF2B&$)nQAGfpfZP&UH}|W8Gv#58
zH4fkYLWAqfPgTj~dec~#z_sC;_`5~#k~&qvsYz$D-@eCpjtY5$3y(;(xjrX$cB`&t
z0L@w(b(zkn)maTrsBRnCHuoQe6vCj49Rw-s7qc|qbkE~d0maXR1cM(Dx(7jxPka8^
zuRoXUjMaO4uweE7^>$~rUB7(#bxEaN+}HWFa%P~VaYcexj!p^{h~D}nSn{aU8M|qr
z;LN-@qWR|WO<Z7aiewx7jtB#nc0EbFDbi5kTbJ#g>P=%{29=1XHC`ut+sM!iDp@2_
zWlxx~NPx<o!&|m1PuU$2#9IIw-CWGja`Si)FWAgW()nJoI=<{HLF-UF<=He#Hy)7(
z2i~%`0*mh)oz$tc{ng56MqU0hYITGYK^2YLN6t;WAK5{r)P)q;X@NQ)*+Hd*ftS~e
zTAhE8(D8&TfeJ$swI}E1{-g3>7inlFe%ts1;!su96J|${g~1iKgsSQpyK5!j91kvb
zE`z=9bF18YWw+`-2GF#+5vrw|{o5b$gZ(vSio$JyQn22$>k}o98k8!4#^;-ZS`Hpx
z#0RRb?X_Gd<Y<^mEbORgj@05>tT$~5GdMkHh$Md7xCG*|R;4p`VOd~fCeJI=EZsOo
z3LH4InhqOvExiKv)iX_tp4|~%yhWe|zPZzM7DqtC_Da3M?-PxUEUqe2TT&(k=&-VZ
zip2R(WeuMtX_|7ZwfZ!(=NEs9v=<~QK*}Rlfvb(4U;JtEm8LU5tCJo7cOE=0#>2)T
z=k=fYFZ(Kv^XfY6X%_>|JZArOo-fd5>9cR=KYv=4KkXmeS@*T=w>`l|LK=^k>J@GW
zWPuxxp8q><_60%OV`wTa#Di7XU#wryzwinJXqal!m-#c^YCy*`|2u3`yb5WM{bk?8
zzg7y|AY1YONP_z+$hg!$=96tf!ph)=kNgR<DN>-$y)$vPPe8cuco;8e3@71Ay~2$N
zSxGGlkN$Z6Z%lDs2^o<6%f5+sDR_8p0-Ey{UV%Fgp<+U=Cc*;?uYkuURgld<c4^YK
z#h}=HBs=LJ^UbypVbHkegfH?Z?7n1yXQdYZ6K?L`D+L)Zu2;A=AqzZSjN&}?G;1%&
z@ZYqi!z;R%UvU8~Pg|O4ptHCFDsd^##w*swlO4S5D^rT+souP0;IZG+HoR?x;{KPx
zW3s2W{QWa!cf~9|@QB8IyZO8Sg+2VWLcjC*^Xh6PtLx#%Z~y$XujV&=t>0zvK;zTP
z&qM7u&RJKQDqFJm{2jmZpR4LuU!Qw^{q>h${`U2Oc6sSF?XGy`4<3Asnt%Oej6H*`
z{O!$QwdXhNv#wij-*o+RpuF<*UwVtKJ`~rhc&N0ZTU{7DV(=-m*mADi`(IDCJI#~(
z8u_?3@_(NHZ*IH(?|*+EUMQ}2xV3wM-n@A%ps87}pp{A6lr_Np$9<D)u75Au?k#;`
z*Y4k;`u}e46W%rF-uvRe4Bur{cNa;ni(x4*T(jI`ZB*CFo+>dG=_Vo2xZr=u$GblN
z`n6+gddKs>KV$X>NB@8Pt>WtUHQQ^uz8qrJk6|hP*rMJ58cm!uhxKOL2k@fz2~TuR
zn6-dMmYgSTR=6!N51g<)&vo7Gn*;8v&iJO{u(Mm;2C@SA(rM<Udh?uEL5@DPWO|-g
ztW6^qBx>^4Xq10kvIab|Tl33i{rlHnYqF-CPybs{S(R75ZPo_6%QoN4KS4_FJ4Y{X
z0*|Nt{Ib(l?`!VI-0JE&Yuk0N_usOszEWSld%yqpzs<^fA>RFXL<cga-MM_q?usPH
z8t2V+H;UgqIvEFERX%ge#Qq?0e|cumz_9AdJj2@;kAr=3x$H{NyGNRt;Msi7Uot7u
zUf{){iZ6=|ZwFoitMQ!Qoa5{XUXSU4qGCd>Mkct2wdDNK9CuI1bZ{--CSFxt&`6cy
z%VJa&3Sbo`AG=aT{1qVPZIVurW`e9!KAAV6)=KOI*vidQT-{=AG<m^6x8%Izw}n&1
zgheK17`!SL$nnS&Q0&mCzw|t5lkx=c>X%txjv95TPk{8mZ}M*9ZG@~(PBA}WRsvq*
z1D+4QyccZv=Pw4wVr}kfgD2*E`I9A&LM1$XyKnY=0I!Yk$dXEtmx_n<FlVtHY@5dl
z>S6wO@NL#>d&hcVmGXSgpvy_y7FUB4<)m3`H`_iyrg-0Sb`*&pR|W@l>ZRIAh9FML
z#R=ygi!;TpQS#ZjL1u=lvthqHM~St|$0b|79=`N8GTpADD9iTFIg^#0MdJP?kma3A
z=JPGpn`gxiN=;su{v>T%d=6sUGxnQpR^p%%#lU}S@|~l>&%ucWyzDmkIoOk)pSy4N
zS+RqvZI4;<Dbk-}z@7g~e-wUSm<L{+&@(HZr|gMk2WV(6vu;Apief|18cNU4%{k6<
z!7-(BmVXm(DIaL?eS*pU8E;n<Lt^`<<F<w8Ab|~1Q3+R3n{ysAj&+v5iMLV@JdR~z
z?_qYu5<HG|>5szg0Ibft-*<H<cr1Ad*legT#W(4~Y_~sQc4a4I%p6$-C>)@Ej6YL$
z#S&6W{86|);W=c?{2BYr_J1;vI^a*zhmH2^p!RtGEcqi+pJG5`=5>?axy|fWf6Tb$
z)rs^;M-IY$x$M@)o<}Q-!9y3DL#*9mZAu|)Yb#fQ=FhFzAww6klc(&icqIcaS1*@s
z33~TvWidE2&D{2QMv=JxTxL*b|LNuBc7c25eZTEiSvTK*eem9_x1V>_Jvp8)U-i@|
zW+w+o7kIqTXR{_~0%#|+n8>ku`*LgUrTV?s^1b4vKfV4{8-Y|v&xe}*ytI1FvlELo
zMV9|6{JQh%O|`iB-evQfVt4R}>ox7FaFPR$pUgM=n(Xmc=F^RN4D+6UJ$&Qq&bzn$
zrvLt0x!QhmzAVfgnw4O8n6&n%iX1=L4IaaN>d0ZnVg*Vl`~Py>U;g#)-=9}SmOfuw
zw{KNG`>T4J``<tR-M26M#~+TLQ%@H>Ra()#{0ZZ>tdq+peQ`WtHf0YaX8E1AEqnrw
z*=4pOn&lr&?7@YWnr&dvt4E%7;BoGp?>w^tZB+F^#m7VAlV5$kYp-wM&8WRxR6B2b
z`Puc~w$+!Owp$F|9M}CoZ{8GWENo|)vb!Qk4jc=UzvOzw+NkP-R{%`@67CgiqsR{~
zNIZXOFV&mZ2hLBYY+|Priu)f22Vv^9_Uv=9Hj4V-RdAd4{dsWb=;S}(JT-H9x6!*t
zo^{|*@ws)vV`cYpUN=xRtg6{JAvdELoFyuEX*|}O*Tn%!6W*896mJIzCWFUe%s6kh
zb#Z`m;VqREX)PttG^b+bWW(Emg5Z^^p0itWoLzfBJvxtDDk<yD3l=DW7er4oliVyT
zDhSSeTRcygg&ctdqp#Dpg)kMIH<u?D3V@Vs=&4sWNV9&W05;#VZ$j-0zGI+vV$URH
z7U@?Cpek^_%JCU*I+`H^@Rm;76#0&UJ2+Lzt}DBjD=~q_@r~Y|<$bC*?;gY_L59iO
z7DFtX_HjK6$Y!t>m0Y1syfC+&obmQV2RIa#_&R-C*ed}psIw*u<g9207u29#6~gR_
zpj{Q4r}(<X+K38*qhpCL+zo$RX1Cb2e^US_)YBirnVdH~{N)ImXw25x`&a4g;SDl*
z@fSG0$#ZmCyKHRPb33ba?z-u}<-6LmZ10`(Z*h51yygibs7v*USyAwojCY*}XgXCz
z(J)PVl03NmK2PMtj&9YTU`3mH>Q4)7>Q}V~bsU_9gcN^Ad^!vo0725A$k{oecFj*m
za5PTfxamGm9^8=>5lY^$@Mj{Z@9gQ(@+A2rKX`bq#pQ(Ev_If>y{AXZo8*)Hpzh3s
zmLoHAJ?g-N65m8>>$l%`w7<<A^LI{(<=ptUkv~fI*}RILcRtu;Kcpt#c*OAmXkFT*
zCmc7Azfu4>T+y@7@b?ATBjEA7Ny;qpt3jb^Q9nsW@n?k05%6HdNx@D1M;$?)IlQIZ
zY|8EkBPDR(!E;W_o7)R}IKZjvkxGjE=?<_{RQ%d<+})0VeOxHCsXrBzwnExf{G7gR
z?CAifRut98a-5M=m%4z5C{*V52Z<jpbV<89@q9{%Ve*HCk2}DHtCrdkxz`;N6e=wK
z8vQ%!>R~rc&=3^)lUba+Vs-Wkf_sLQOp1^7raj;Q_c4uL=YI`+m&Dlz?lGScR+22=
z$m0Ga46=o+dP0%7cYzC}98Ldw{+G|ie~TVGEs5Nond{GfJL|9b@AI$?6cJ6z;2!De
zHTDyocXq2<D1ka3pKczkwcDHbyuA9vmE|jb&HP(<_f7lp)%T9(o&Wpq80e%2@q@8C
z2L-|7C!X6Fmg-Hr#{urTnV7f2El-^%aB>IC$W1-<vPNmrUCN+1g3Qhzp3MR(7oJ{z
z_HoCYch`fH|7c{t4u1aH$gbces9Zd>vU{no5@es-!9`b&3K<H5I_I93G*aZdXMo34
zJpErx*%cwB1|Be*{6*g@R)<#@9A2q^cF!=peE~E+|B>(Vy&VDXk}_u;04+u`VV#yL
z;yn`_o8SSwgMy%>XW*@va^<LyOe1Io=1nzE<F2L3Nub^~Xj)*J6*!h>l=<;I)thG3
z0V=mnujyYqXLrP_gePIPS7V;7T+p*S;*|n89eoZ7I2Nl@DF6<iOf8M4debIAVs4Ip
zqh;yF5*KhEHm!4Q&#s6j<)GD|;re4OZ;}rRf;#dOQhZL>iOCp(#;!df!XOt;NI5ej
zm!l7yA~SFA(=6Y(#1oSGA8_7$UH|9zB^6NMDss*<ygfk;qWeS3o8(L(u%RseC+wyn
zgfA~N=>(_Trt~vrTRcIT!CA;g@%M?@E#PvnNu5PLd$NRLheo}SP4Xs1-z4zJ@&nGB
z$Gen4W88_7|GQLE<X=OwNa`Q$X%lMKK!R+NmE>k#S#YpUxZ-)j?i#4<?&R~F+wvwE
zCVX;6E=MQWFH8KKzD=CS0j@f)dUDu_2^oT>UYGbeecEW#0h)q}IJTc(ax-tG04Nv?
zUK$H8)thDmNpSvGJYN()QBeXH#;YbP{<z_F1T<*nUTSoV%YBpnanKY+?d=WTtVfeN
z>$a!Yt}d#-zI|!)ixt-nzcrcKmn!0Yx*1fggOh?TxD+zbYMGF$Q37^c>W|rNGiujd
z0GDfSclkH>i&}xg>hOx+iQhIlwS$6CqSXF`nFx}w3p=O;ktnr4W4Gyr0ccI-WgQ*2
zSRF(Dji60vfr>|-B<q69K?ALp8MSMkLWXr(1vd9@wSkx};IwVw1+cJP`MujO|J<?b
z$d7NZ@jw6T;g-9V@4x!q|M~OQ`#rGk&!tZdpheS?qE2V*#6E+I)x}O6H`~+Xz=d!C
zhvAQiGtHoFh3>5all!;YfX3Yqt`JCq`5~fh|74DvZEz2ru?u?v8UK3Me)Bk&EGT6q
zUiq7}Z85}Ekf7K#1GKI>@cZF6$*p|g$a%e&_qpD*Y3<+~vI67_i09I3ix2MXUiu7D
zpYYV57u?+c#s)mPsvzj}Vd30%P+92z$w0DjV~Tx(81GM;w3UrLJ0n)fJFV`kQM-J_
z;Z&^7Reo@mO8v2VGAP)<ky5u%HEDjbE<`3iqw~h|h||uX!Y}pOKgV;iI;b+tplw1=
z#iNwI?Uc!?1ec$GoV;7?wkI1xOj!Tj@bi1Wr1{B)pq+Mx(<5i8E(UoB+^M+yBf@Rt
z7DyDSD0c*jd!Kd&brDl%u{-SSe)yCTJS6ruv?&lI173xF>m<{ZT@j1qlR%mL^1Y<M
zcS$Qjt)s4;KEEv-cXq4(Rs<EfMlXxCm+DQk>j2qvYRmd18s!_mI6{i_hx&O*-!|HT
ztECy=riwh(n>Gnj1T9%_s!_Ue3Zyt$X3HP=E-AAQT*~=W&s}imXps6u&=kzfZ-H})
z#J%T&>x8A5t92Gf%z_le*Q%Ay#p;|jECOv1y?xAXR-le5INyHYRu%pw;RUG|_Xikl
zJil=YqzJ1~6}~Ow-3e|moC!Bt*t^gYlKXP24MBw?C%B4QQJM5@qZPP>neo+cZn3!c
zaj@;FA?}K|1JuE#)9DZ8Hio|==C*+HU(YP{H2Kw&!I>`d_hpOnjU_%{@4J<XZ0;}h
z0o9?-v!CYLrmnG@m>>V;uKn{}wQ@!4t84x0>eElcDy5^s;1rVio%d9%PA+Kelil>d
z!qyyTnWLcUyQfP#O@8KL@MKixdZC_O5k^``pe=}t&A3mtb#;MC8;PxvXY9fP6+!cE
zi_N-k9@heGH@KI0CC%`6ge%w>pX%KnJG+-|2iKNHt9Hz&U9;T@)beo?72n+dH4Ku6
zA31GP+ySmbz`{J?;3<*?kCHxYe9#5z9`|eMsmZ@y3myRtJldM$>;^Vn=kR@*qi>Q+
zML^~Dg-wxehHpR<^m`5}>^$}$xn6`Bv<+7!yhGG1JA!Y!eg;eRq?qsZK{kb7zMcOa
z8!wSp-+X2jXhGRY(M`OCCZNuNqUX8^xgCqa%}$k_$8y|dz#F+#aH(+Grq~B=Rxi_>
zK4o`>krueC;5nx?$JxCXRJeIO(n*ou1q#TDX4e0HYAn{TG$4)Ua1XO17s2bvG7qUf
z)tlGD1u6@?h0+yoPXGn#N50MbE<Cz(baG%LC~amkX`a@Y*CPe$oqw45^l4S){(0BG
zt=@e8Ztic@+rOU6ZJT@Qe&i+CrrJVQP}WvGxx?`Hjlx!NBhN^WMY<~+yx#2OjtMy&
z>%cAcvhO?V<lS%2eN=V(pP5JXvt2g+{a<CzJb!l>npA8uA-lg+ejLkjp9KkygW{Wb
zGtIyO#<_1ouE%C@fSs?+s6AX>HD})2@ZYz0FD?H4w7m9p$twGmf9+ggh6##;XX90P
zowq4IYU2Sd^3Igl#G47;#b)q&XG5{L{}G7WJr5h+o|p#i&1{aFW?B9*<PNy|dZz01
zv7Oz?KOh~8*Jo{(>h(S52F;|M*php-XJ<uM{t_|SpDt-LZ}se~sM2=;m5cTlXD7?M
zOR|AO<>lE4xi9vDyWsX0XD{qu_#M0x&*-e`qB}<~SA)a*=a-*3IXS<sE#5a_&iwap
z7gn!Zuets6)4kc*u(|}QaOQGm<9Cl<?uGQup_~Jt2|u4p>6)b<pTvRJIMgYbJIg!2
z?*-?2{wHY}$sC8lebX~SJ(8s#TN1&lrdihO^#zIhOR#~8%cq}h{_feg{`%*Yw!iJ>
zfBpLH%bhxl_t$GpwdH@m)_{)E74|#?4@&wNPnH0gb3jb@rO&d=<SDx<b{T+=JNW!1
z=~%2ytOa;rYVs0q&_Z?za92tG#H9<zCbWV#S<U>qIq}NT%l#0}w-XER9KGBRK2F2v
z?abaHaeoJJ;HBPbH$N3?!zj4}G%2WdWK++hlZU`T`S}URnn($-L}q+Qz`IABC%^%5
zX7WwR@{cSj;Ewq+&uySib@2mGb5PB5+mu}uUdG@K+GG{b8vBKkV5j9e8=TdcS0@8X
z?*?aYEVy%2cmg<LW-jv&gq!R$8Pw%p@(i3XR2Zc<@iIz+`>j0n>EfHA9D~>5*XQi6
z2r`Cb&I4^Z&RKn+%sFH0!lq(z|15~duDQvdi?s=q0=xg(^P=i~@y~zf?ylZ`-gNoz
zZ(F`t+<kxh_-udhsU4u9mCj4xD35I0Z`gCQ?FtX5i4y_lEKgnucEtpiH#6R5oCRl&
z%zn;Ou`=r+$BbN_w^5?>V@M`At|ncPoh%zD1zH_#@HTZyk+}c9K5#18vb}uD?g}S!
zh_mh5bDa0JfeL3I>;Ir-(J#QxRz3NALN3Q$a130wa|?X;$nz06&{Y=NrdiLj0C(Iu
z-%hA~(Rm!yVD<T3aDGMi@_FEcF(#>0dYBz429KgmdXl_Nc^>$bk4Y;0H`}V@KtVr2
zrSgQ`mh<2p%!^gzn|S}rfKNA2{VAcH^8?y_Ryq0p|B{MFKX=-7+rN%(-tX8J{`z4V
z*pv#mDP~8CPXzevaYnZXqQbymEd9>W$v44K?D@zxMf#B?$mxla|96#~DTC`(yd7{J
zJOr{V^7fS77IxO)l(V=(zFBszENI=c|07!!=|`14pjmdC$T@}L{%PP%bE&g7`0ngh
z-wfVax~Zq0)jG}E$Qo?Lti3)U8Fx^VCv}#m_s;I+C&0=krTm*w`{sl*X#GrD?N<Ml
z-OKN~=Ukk0UPV@b;bfZvKd2haXpZ5XdHd<LZ71%$TmJoZ$=z+;*UMvHAKvueRtt2%
z3n;00eg{X%5@x2PZOV7SVSI^^aYC-gcW}JDY+yKH#!?9ip2N@WN^Ix*f8{-<x_{Nx
z3Bk4R|4se=V=8F)Ye%>GU9ht*{hBlHb^fAT-QT``K6PiCM(k_pi(Wr753h@Edo6Y_
z#-`KWV0B-X+RFosC(K%^!KSYH&H7w#-VuIK6?1ycbFXu;Hl6a|gdVBCXwL2mse15K
zOWNMOkM0~b{0S)o%8#%t)ayIR4=!5u`3xJh+D^!?bal6zC@+)55X;jkzaZ4zZt{GY
zB!S-+?9AZ#IHUIpjK^a4G&6!1sv70mTR+vicaQ<>{WI1c4Ta+G6Bxkdz_iHv^V5sq
z++{0YP1#++&g=q;g{PO7?+v{<@6xNo4>wxH_kVT&u&ZaC6|}(n*vG~ID#o8)US9k5
z=M9+`zw}?VZ~7&*|KIU%Q?IYJTV4yFZ+f2ru`6o+H<xN_(}(|}<gb4Jbt&Ti<DXS^
zQ{Ex+vMe8{6KXi!fBxy6bu|@Rm|6DK-~6@hYotBXmH!`q*PMmcUwa-if`{*ZezCN@
z&3)Q!XPs!ps`nAs?Ota;e;FEYvA^~OG_J}W7{K}V^Sk_>-4*UEkkEPiv!O`*c~64}
zXd0>JR?Yl!^JB+feyg$BE`Is#*CqRk-nNHt;GX{QP^+={`v!&vG1-?c+w|iyoIZxs
zfpY1=E!M10_2!+C-w9fqlF1)+D%NH$BqB5YSAj|kd$6td+uyz{sh+bvU;WkVq}u%I
zU3vUxzw(vbzi0opKe`M$Hq7}K94!;fd%r5@|L)6vTU@&@zyEvg|DPXV&4?G^J&>or
z#kd%Esow`DTu?uMUJYdb_BV^gcaBbe52+<yKAjjO?!T8ETytH1_H7OSf$NK9`O5a%
zoL~Pr`*(l#UUS=Z{r}cDLc`MLs~k85dOq(6eD$dFJES(WQk+;U?!TA+&Z_0JPOs6Q
zXHov~Ni{gZq}3Xp*x9ZA1)K+r-Y(z<Ey%WqRBC*?7F;=c8J2Esm>=uSI|oVZChpxu
z;_o{ez%|4f>v@fZ;_q)Tf(^VR$T=ZbMvwtiaQ`?d$hon<_zg7D`ZN>n9JMY34O1lP
zUEWf6Dt1pYJ2>WNZe80_3^yVz_xHm)N3Bmm6dG@9E`0V#wwK||D&_enm!ID0_dD+S
z9l3Yszlm+It-b2*{rAj{?F&H%t93unyI05!4*oMgZyG#%B)biwY0Gimr+ViyxxpJ;
zXMS6AY(;l@12cHr*yXq)jna>O`3yN%C;6w|TB$Z=cg1mYaDGX>6)kfrc8{_m#EIp5
zI3DZWn<xM=-#V_PQ2hN2PKci;N=(R=;S>aw?Vu*}$G(;ZaGmn|hR@FK@(V2B<a4=C
zeBqs=mYGW6!S1&u9Fqd}G^;6qh8s#$*i@vC`#69`IiAhcJ+z~{yo433>E#UG6J~tt
zJ3uw7$MGD8Zx4TpP5><o_&B3iAZJbjBdF)ve>~?%MBzL)NQ3<M9Ni~>4)i9;wrxCh
zbN%bAEe{!GK_jnQnq@S~H}c(J02KzRvTRH@kF)217i?TgR4}}4kpNyEG=Yz~@y+AI
z2H^fTXyL_c10HaXVvDm1Si1wLm{65v6WZL%3|aK^(m>#ZogE)DsK;RNR)zCaY>%<o
z1kldhnPq(}i}kK;l<m-sx-@eMvzx-t9}T=6plSrgxYS#ULQ{4}w3jJ>yQ6P4*iXf-
zakd7p!kL+NIQU(X>@7x6_3dr_q&ZdO^$k9-lX}*Fw=6b1_r@XV>IDCkYx;2-r5pPg
z89|jviuUKK`}Vi<%#M7ssmxBz`dj?>%%xo&+~Ru*1kW6`Vq#ecDrL)3I8JL^6NIcS
zG&}iz{+(Ru?dPWd{=A8A>E7!+vv(Y6<&N9I@hVAHs|nOM_OfDN-PF%73SOqMggHRr
z_YVfh0;A{4cdYDx{`vX)w7akB@9MqnT*bE6@BDlIiE-Nxly)cRU1L-@vBv7t%q`5$
z5pEm#7&<|R!+Eq%b@=u%Q5M|qwCs2Bi(RwW3KDQ%iw^JXE)8J^59tN>Jz03>sMQK)
z@B+K}GQmu>edk^|fXal_YunYQ?2<??RoL>vL*3}T4$q;OHH)npqDr0!N2dK<=;al=
zrr8R-uxRE}<$`xfvR4|x_0^tcWr^~Qe6PT%;c4>zkaf3z-Yxrh<@f*Jaq_9J|GxeD
zV_#C;S8?cE6I`E(b!U<I>jiw^?y=g=<SDx%j+ZEaN5J0BU_BMPCfN!+8Z<L)PSCp~
z*~<{ymY>&3ij}{8()+dk_1E5iN~^nn+SJ#5-go~ltY|Owf%x@)`s@B>o9`aYTOR(`
zVTX{to&2M3R$mUK?kEtva@1-G^9s<hO7E+ieLwGCxBkc5mDzu}^41ndn@7c*yZ-N9
zL+nnTaJ{D85$z@5r1a@$ZPkr$A8WI>**d)YThn}A{|b0`S7}FgsRzWu`F0Pdzv%z|
zv~unI&)3wq|8gm-TN5p5m&&IXed(jh#?C?qcA?d6HA?f<9x@+%9Ql6Y_TS0BpPsI*
zUbSm&`2~MTSOCqr$Os;Ve!lr!-jm$f%=*tizudWZ!=3ZrKWF})@bm8)XK)ei7rQ3e
zULbnQ662pWJZt4&%v*o`oA-s^W!LNPynijd?e^ns^Lh%Z>Umuu&74<BvcDR^8$h0G
zH@)?JT3X#-7BA1a{Bvn_f936eS%2T|yMGndlqr3|4jxc{%f0eP#?8Jn7W22Aw|@O>
z?KbfjpIb%t7D(#Fu#|4>`vXonOSkT{zb!WZYv=c{``50P^DY1U>&1>Z?cZMufBq|q
zi-CrtdmSVkUl!Zmea&2LZLxgssr#>Dv)*17`S?rn0sJte2&lqKzijlTzrFnATSevl
z*X=Vdm!<E%`hT_E?|F9TS-<Q`-H`{%eNHUkgnT}H=kn)YOY7{e?+*VPfA9S1Z{E#b
zKlfbU{^0B3oBvvEpiPsFeX8I^*iS#d-gf@^y3^mhig(X7-|_a{mzsFL<*zgU*Gi+S
z{4M<{xK`)-^(o)%5`KTmtQIcb9k=fM>7Rwa_kDs@!><#BzysKJ(WUp^ZvTGU`o-7o
zOP^nF+`D7V`o8necZELK9SWbRV4n;Q2BWvW(oglST~q;&-TC~kaM;;hYQhQ5q(5Ku
zKY#mM)?v4IZhKa({ho`j#UQ?&reXwYITqVR6u(N6^#T_pr`9xIuqfZi2lZKXLs<2s
ztm6__FMYM!viH-K>SsUe;^md@ufGY;9y*-hsNL+x{OrzAt7$CYk*3Jyrp51)WWAff
zS$d1}a*gtheX5M00zUQD!r&>pBi!dg9ezRcRP36?evl%y?1jivy=#H$5N}L=2-0Q+
z(KajJYiD=q6^Nfc_dQCybJXe;#J0?Kn}ByovgJ&mlKAwO#c>Nxe+*Oy7i(v3E;+rj
zyYvPpcsgOWf|qeusR?*Vd*ZEymQ!|1q)&#d*n4VsuA{qDhf}G$twiqgxzmYPj#^D&
z*$7&HnCZU^R0m9gthRi6K?YO@ctRXpp27E6@7h90xSz2$X)hFiy+9aT23=aHGoiNT
z0(j|r;;ly8DZ3-sVV*u9hveyRj!i}4kN=1)0Ie@S)*Pqs<Hrw?9s!pr_4g_*dv-;%
zFIND~gI{7hY1CC(0a<i;E4}no>>A}raFOQOe%#^P#g#hXg?X9Zz1(7ZHpdA>l`IjK
z<X_Uc@zIl+`(!`|ZhedV?pim+XJcQ=&UNuO@5X%%zEYsl8^yo<bGLHlhVvf{^}(a0
zJ?@thzI`;*2bcaIJ)};U^;Lq`IG(Yd)mkY2`UPn7>(Q8F$$199f6NdE)p+2QF;>r5
z!K2-8GsHl?ONNG!1@~jUYYz><MsG>3j&L*ds{(H%@UfoT8YuqygTxWgAjUJ<vxio6
zmzMA(te%#n^|>z%6v0+(;N+C)z8Mt3vd!S+H05!iM)AhJUPthx;Vni@P;$BmiJg}{
zB3`j;9%n!*s}euXrFzFQO~6UP$8v46p!jPIDF@Iv`mKYeItwG%FM_uQ*p(f6T~fVg
zyX~X*-<<30ZXN6Vyt~ftzN%{7L!%gQHS5w0u4ZSeoYuJJXaWuy%l6|2&yr+wn8D|x
zRdDd9$;-Qd*Jozj)L9HN8Z=RsCM$P%MR(~I-z8zXS3{o3${pU(UAhCZDs%I_Z-wuY
zWb+{2TC@G>oZS)ZcOd!V^<|Uide;Qa!NGRsm)X=}@yAo7Av0uee=fOl)Z!`ILRWXI
ziIwRm1fC_y7BXL1q&)w`n!Weu>;f4AN->{a7XSaV^6lHwPh0KG;-o*l{$<<#0#P!;
ztU7J_;LcI22cR9whSMY2PZ+#PlFbME_tfzm%X+!1+D{hm6JD*a{{8HgO56G8U;nQ9
zyHEWAv}JpZ(HxRntp(bP#9uc^gA@P0XBRi`os%==wYc!=ge~8G+I;)YTnMiY4nS7?
zZa!mhE_Mxb9yp=g?0dCD@~BlG8z>EZs9hSt&$BCczgmUq&m`00*DZGG3+9~rt<4Hu
zoVT%WF}PSzm7lv!{@b>FK{ofk_s4#E3#rQvf|CGfAa&-$<wehuWIdYCfEwxF_x^dk
zukQAxo(Esw6<6iF=X(G9^8bHv^I(;;`z3JTe|i~w|4QC-vo-d8?zQ(r@~dvA)V!~{
zwVWSXoEx57!U&$E{e1Fc-CFsh=WZ9*SM!I)&%SQ<HNM_&$&b1s@Zu8g<$Bj9nt+>_
zHT#xT*yVkF{NUT(i+lIF+`rXmv;FelpqKCOPv?MFs2<Ib3e|h#uT#<XAMLkKmVNd6
z$*=u!+iK0Ohu1n*@4NTgd^TjEVd+Lbh$B+(F`D)4j$ns4{nD=(`}pf?%Qw8PdUo$u
z)h4Cu{axpOS-$%8_wB+R(B%PqOTg7uYPGYIaaU;r4`>!^;n`1Re`}81dw1vj<?O#J
z^S}3gepzF8|JwH*xzqlfO5IT;c;~2<10;!@*Dv4KK4tCq2ftrdR$mwYz1IJ4PVKty
z@865}JVGc1XWaAeldi9y=ePW=?W4VW4dS<b54isQ*RJ~5{pSDv7)^toR~W&50vzl{
zZ&w(fie1B;0xr~MmWjwd)w{-M1W8@h(M~(NOB;B=RoeaB8Q*``{x*B~(K0B@T6as`
zjk>tF?_YJ=->aRexoZ@&o#R=OtO6v?mwVr+jp(#%pS&jb*ZPh2x$ugs1vHa#HRj*r
z^IT7l9JR7x>kM_aoA^GF=k`y#+v&GYr{8-$`9SjBg<IybeEWOngkDS=x42{Mn#IZB
zvgM?Ez0Lctu62J~>TbUC`rX*@^F==-BHty+%0gDXuhG}EDBsxE2MO+5fxe)E>Nw1=
zYT!Z=?AM=vYOYnEU269_cfNrC_1|AB@9op%y8olL&JH&GYy~X|BkTPeia|v%B$w^4
zyR(nqYHPff-K*y_%70HiwCwU4{;z+x_dkI(OfA^JGym@mOa5Q1?`<v?fBgVbd@qx=
zaoyQnS^x>r`F790dEejm@p0Au>-^JhTQ<Jl{p6eUF8I>2Bv~0qDP@v6u?SRVgPSPJ
z=Bk1k8Z{6zE}vVs;LcI2NzgJoeJQBS_JU|rlfK-OG)IXUG@qSuQe|NT`#$i_5zxsN
zuQSBJ6R*>Jjk`*FKxa5yOuV-dw0iyc3P@nRkB~VQyCyjVTu{s`*8$bJ7j?i1qv!Yu
zP-UeBUipxzzj(^-2vl9oP+es@d{6a`z0`344aV>sKaud^qoWpRCjbAQ%M}u(8~f56
z!Ch^L&F-7QHec#1N|ZcmHHQ`4g_KinzUiL661+nt%E(jWSf-YQLWRcPHSEl(dY|^p
zfUe2(J-EnytH|pUlTSaMfBfaA74xk=WQcE-%TK>Gkq7KNa8)&_ucq<M<Kz(VwDijp
z(`V$$RD!p1%_vh~d8&8KPzzl2`&bJ%6^Xyj5Ccc}B}1bLwKYA^HbA8a*f_9Djb1O-
zeXe)yp$<fsWq*^A_~R5Ym4Een_WG_j_MAOu`}z37X_uUAQ$i=Y>X~k^*}y27{E~Ic
zge@DEemv2<lYIl*wtxFRFRqA~=<i}IcD|OO_kzCl?<b-MlWI49TI6*?+H-TD!K)2N
zbUJi{F8NIg5t(ACqsi^Cx@Xa36;alueBLLUu4t*|tEPUnPX%$#XeqycQjt>-sdxIb
z<-MM#U$mRff6wQU@8`WVF;yy(r98q*>`9nqrM~j{zxU=P$;4;d-7dWqrZ0C)?#E91
zTaQkL%h_%6QSN@g=Y5Llj@I%QOXYXHlu7gqDd0PL#CS=r^b~8J$y`CJr|g-k^P4k~
z&-*OX1tsNtmE&!PI}Tskq_7F(WGj<^R~uaPJ=O+&3JW^7Ortnrk$6g&WTkp$`nxIC
zI+Z*HtLH45Zn9AIDWA7T^Bpbq_o}`OK06NwT~gS7>SVR&<gkEu8>X0~=S>a%TJ%Jc
z`>g(9_l?)@Uj4f1`|-8&`lF*Cf3BM~rBCPb38ftfP2pfoC)O5yirX|V?8%)(&CChW
zPoL~v@={QvJR(TyL71hhex?=UDcQE^Y%4>(?s?7fX$Wk8xYRLY;zYAc)8B5~FF(zJ
zElt2?&b$|qaoOj8_j9lRz4?FD*YC`0N>XOJi8;znvt!#B>UHnb#OJ@+SKT%`ym4Fh
z%j}EyyZQTUz$y-cRO}4(yXQUcLQ7%0>IBBTsli_+eXX&3&gZQF@v1lbkrjt89aq@u
zbu!v>vVY*a4POkwt}dE)?)jC(lgSNHOGVboWa?e7nz-jXYxemnpPcl+f2$|$vR%9V
z_NLnW?2?3ojjjRhOBXw4O`WuT($;GY#UM`J)XCo`rCnWoC-G%QL-bRTy<dWbtlT4h
zNz8FJ{K(@uKiW%nnhn(FO#MaeOZy$cTFOKncOL$5oMEe%W>jTvw)@t<D{Qwd`?vFM
z{OOGC?|XZDbuOPcv=ZdxZ62Q1m2X4(Ll6GtDco&y%{yMc#Qt4KeZ1hs##E^Ymg0y{
z5-p&JUjNkZv0L8#ZP%Q8uU@~Ze?2ww-SqEo<*cAdOO6?ow4Q#~4|;wiF*A8WgzA%C
z8UNRNubr;_nto#X>#v)>+kSbQ>QpJa=jREdUY#au9Z}w*)pPbtkKbbXd?#-%&$)#&
zD%woMC7<$nOM?wlJuB+I^YEo(;1qOH(5T?mh9!oO6u72kilt5>j{zvtY<bN5l+RlN
z91~05x4w``<ctF+ZJGJEwrAwqcYlqOnqmL@yQ@K)YO$l+)XwsP4fFS{%>Lf`>-X(#
zFK_==yFalBmhyJZ*%|70_4NA+eT(D>Ch?SznHB7{KN;pK>)hl5JJ8O2uCk6H*O`Sg
zT-tj6YNhjecQt`?=!r|B`O*J3?Yq0|&i2z4&%WK;BK>yHV{2a7$Ym2<3))p(Au*%&
zcHx~w&p>cwro?V4dbeST1~{pFx+i~3cA6L~IH}#|zi4?VXvPDXuFmumJDCrxJS;Q=
z9GNeDFIgU%)C-pI_&p`?-G&rpu=Y*+q@LbMJn05D_({#zV=E5_^@0<m<)t-;FWK)i
zypjL=-n<j<@(+~s&*0Os*ue2>gNrgaI5+L%d3Y!Br8hWl$y6S@?sK}rCU5os{GGbT
zjSoyu-EY6{e)ueCZfFx`T@mVa@l;{$$2~T`c1`+r{_Cg2+sFDA=$1#{e*X4%o3M1m
zvc^{9cGXC5E}XQjZC+6O(p<+JP{LleZ^50!%xH)!Gvg%6BW^(ouSzMoW3tn>fxUk^
zKx(7qp-bB!zT8|G_-?}%-2-cjy5cTv<2{8?#jw%x(4;jGRhKmb-x-|IbyyqJ6?W;{
zs~#(zLhhvQDO)C+%obeA=Y6~B2B=IupLS%&;h=-y6y<5Hy68?KXByZoOZM7NvF6F=
z1s8*n>x*ao*qq9y4!W4(wX^q3=c<x>`txVHI$d<XrDV107N>V)@!i{H;r4p*E1m_e
zpa0))R!U=0`_hAuvSCxgWTW<_R~^%)PAoUlZb-;;Zfq{rP@AWiyL-W%M9l)QjVeFQ
zHA*9bWS4|#R%&l%;CTK|=fFWr5#jR&&(expR9A!96SnM_6V$G{hB0eu(3VTHmlU@o
zPCqCqBIrLsNhaY);>uKkNR=hEDV-S-#Sux84Plb5>XDNa++?RkK?;TYdtS;UW+s5M
z!xGtj8s!mE65zTbvV65gc|?{Zqy%-dJ0&|UhHWRPl$+JvRMh@(I;0#*Ta<7mQ8SGp
zddZWyd*)sKbJsrl(8|L>XB4)1os6!ul{b~!DQz!yx&Bva^zVDGKSfpi{#zp=4N37!
zXF^i^<_!~q+f`>m4E*eCwVcn}kok(%(hODal?Qi%3<K2=C!-k7!8xA7d;#w^h!}&b
zi%HvL`ik0@&H$ShG^ws(QZbA-X;WRZQTx*A;E<lQt**JKU3CT|4z{fgd}knI3{KxC
z3b)Mjw7cDZZ~Nvsf2-!C+1+UTQVlBo{bbv=vn_OWyX7&<wbig)buDAo#EIrXlj@u%
z2e&U>15UD^USGa{{&i~gHSY~|iGO$O&y$?EeE)sr(<YlZ-ffs-3eJ3&j)+aM)=A|B
zSAy~1v-UrCH?b^_xFiJ$>+r>MtaUOWrQMon);ZQXxlqpfRhH!uk0A9}r1>oi5C@{?
z{{G^38;(GX-<0>J=-q}C3vd=lE95`-H!>ESpc2oVea7K!3}!37{^)&9c3K7`7T-@g
zC)g&+mKNZm<ajOIe2SHhE)O_6^yo)f7DhNpxP)<5Dl2>6&5gTV9QZfq>8-p?TOZ%~
z;kP(%+w{`fTHBNE(=t;8?<8g>f>UdcP4wOatJHTz-@n~=)$VrfnmIe~=as(RwfEBp
zXd@&FlCa$8{ql_1{`k#nBQb;C+B4VIi^tuTk`7;1=xWfubS5~WjI;|A@|-y#u7+d@
zh$TyE^EAsNf*=N|zEn@ND33^j@GSjn3tny5VgSkCek~g15vwG@A(biKGR0cwFAumb
z*}`3RN_JWuBn+<cik_35HtE@!wMDDqHtoCj{7zzK9=MEqQnUB`%ELm>!R2FRt>e$#
z^~TM`?W*S?X{XeBK8OQOaFd=2Jin88vKXu{#kS$#&cl<QGi*PlS><^tE#TFLE0*9S
zwn<JMRD@PQl+^~G+<92&6S$aBeE0hPr{79*taVQEgVTpesOVEZ?@!?R>S=i3={g&x
z>+=Iv&7bgi%A3-4&d_l8tOFbM<>}Otz711s4BC@~Bqv>oo?@k=$`3B2w&>0+YG3*U
z?8r}6`kDPJa%yk>ec5m)X7Aw*f6u|qsRWy|L{?LyTp~_xL71kicI5tv4l55|`lJA^
z{9_mWxi^3PgENVml>$+zPv%ZpA|DHCYE^<G{?9L#r|*9T`hY@`9aKP^*01~YymsYs
z{nwxEuHCO){k{I<<o)c^G7|)^Bzo3Oh+6t&ZOUDl$9F&+a9i!Bg+_VABzZ_l^G*De
z>@*7wkU`$FGCGRdm-0D*S}d3R8(zvJR@5c1xvB{LX?VhMxaQg)u=`Ga_BVXBLB+lU
z)bu=-cJLX8_X%jyISeXIA<l#}V=qI3#>829G2h{@%@>rEb5#!8I9EE)>ba*sztYv}
zqU$xqY2BTNg#N@#x4)Iu_w<`7XWy0A%lCg4Zc;w;Ir0-Ts1>97`giF$gfj!Wi`rEo
z&Ybk^U%<N!R~*4P@zOo{Q?k?gpq{C0Dr#S90rt$KZTpwqN%ZW4g#1hsjq-?BDq#Od
zPJb}Rnx|d}9D~Ydi|@$V+?(*--_`E@@29)&ypBAf4Q?;A2DhsQIOR;7R5odu<-#k8
zoKqO0mx`=?a;N+8l|;>%;6Pqd8Ld$s;iU%71d;n69oTs|$Vd@XlzM)?0BSe;fE`))
z*XY;xKUo~l`MgiHfZOHSsm9Ow4xefPcQRfdwDyvnHidJ8tJgixYr*AntaMa`lR$j|
z6JLR+a6P`lE;|ojf*61D*S2}Z?MqXcK<(g9RrTLKzRg&kv-`j|vn@8qjpyD!U-}VN
zBtRT@cZ%n84)296;41K}pVQ96K^k*G%`ESDOSk77-sKRP?ERqHKo0DMla*1^gWFYY
zoWQN&&j~!s`MfJwz?H`9lBvb*51}&4Dig0HTJ#G<r7Y=PA{i%99C1i_ftX~aa%A~>
zi_(Z)%11!8Yvg^l;&&TL+`(n_uZw->1gFj7coyKJ<UA{?t*Cve8YI@1O<Q;;ab+hY
z)>fu!lt*MKfkQVlN#K<1v{@WGLj5j!|9^AI^3WxYhv24JMMR@<`%(cXa819(KBsSk
zh!Z%ge){6uW38hr2riW(7q%3~+iA6ct6`N&0gcj#C?#;cuY5MH-}v-rOA(#ZpZ4fZ
zePhPg&|ke@wD8D7NCjiC#|2#Cxy`cLQuizW@tbw?ZhYPR;orTSuL<Go_HkvBpspSF
zaz1b0mK#c{Z<n;+eEsZxy;D`p+I7vV+h>YB?f}O{X+)9|I4G3QUx>|roOWoN-1Ie%
z)Ba`uw}ltrNlM@(YU}^ss_4GH^X&aLuMh5FlNWz{dZC_t<q>G3-4fy@MdPI67FG2_
z;0DXK-j8+i+jFlaYo7TrEid1FUafteFvQ~Wh$2WBDxcr9<!);H?AC8fOIItu-uTqx
z@Uf|xF@k3jJ3AX9Q$^<X=){&^ydw74d*|)amCHE}hi<w1O8R5fG$$TNTXl;IxS&0z
z_$W%h?v?AmA6*|S?+Cri-1d5FJ!{RIR+s|~Ar5>z;rpe1{kt39uf831;OV!TclX_G
z%r^KicQ4@c_J*V+-z>MChc5|%6P)Md22d;01)M}K`H5?mM?^s!F8Rp&oXoUIFV3tn
zTIJWLv;U_%n`LQ)7bN~Hr$^4Q(oqxy=jVM}I?f4Bvw@_nYrLB0WT)AH3y0G$CY=?W
z_JaL+fRByywO)~PveRC%gA>!OLu#i$9B_GfYm+g8b1nJV9BZAc{NMz%W$NoGAP%Jd
z@Mn6;=lvC2f2f{KcHDXR5<A2Xn|cCXZTR8{PBE8EI;L3b)Cz$0o8&4y<@1&Y=l`cC
zivN8*^fz@`-v8t|Q|<EBFXgQPwS^AKPICae)_W4$#Gv+v{7h+614|}tTWk1g1B(-Q
ztm2bTK#!G9tpK=u*di+pGLr>dV4mIYz4NdT2h<tL!60XVqifSV&nI^hUp9j?)t)(B
z`+pz*Vo@IPO97nL+~-x5mhay7`}^CFopG~lr@h|6`6o!O{<qmnXljGHe@i#ZDcNaL
zAkLe0dR|d`qAC-pN&G3Q@7EjqY1R_Q*B+_cQ6m?3?)3L-ZlEgk;gv+sPJ!qpOXe<#
zjSqgc!NeV0fou{hDt@=Y1X2`S@+qHUt#eTj9IRV@2T!r)xekfSy7ZZ61={9vsDpX{
zr+Xb|I{%vPr$2uNs0VQAR-INbm$z4l`JLBQd+&VHpQ69=`uTcw-%pM^4^I+e1h)+?
zCk4FQumqZ%&PYtL*3pEd%PrsAi`rFH!G&kh9{aCB+oBzA+27y3SI&LfN4_n~Mf1Ps
ze`S)5SOy*rP=OSHrHfANJRAf`sV8^oJiL>r2`Q$&JUv;`w}Ayx=4{f7v@DlkQv{bR
zk*8%eOCy*RkBDhzs%J7uc!8pKL#Wq9uUQOjMeV8rkTS10e`0X^Qhtav%Qi2B$JLXX
z##1W~Phw{T4Iy}5{v7ab!xu+L?%=VVV$D-808aDDXY>Du+IY!Mv*Q3)A@<S>jayWI
z9n=K%QNDgvc+Thj1(H(z?;P22Sm-afO(dx#YvvviBsas^u#+eAHrrFUs@&y{J7KCU
zKdpJZeCx5kUq5(vZWPF?s(x{x37mgrOO}OchH6K~`xb#JV~DF*3_#;hko3N$nqdw+
z@z1gLn*&O<0jsAhnrgC^_bK0D1!(1$XSEc>0k;#*pLd>d_!2wg))ObBPyW(m@B`&u
z(8!Qimr09JyQ(s{ke{S}Jn>HA$qsPaXi0AN6l)zxNW{udG<2MI-Uw1?IA1yXjKf<7
zQnBUUUI5qfN6D{g=k)$h3UfdMILUct?h#OSCcFD7kd@$a;o4)#Io3Lg5R<pmiaq7?
z_5|l%)u$EyGY<<1DQ-S>!un)H|GAlmHwZFr^wN;>G`2K&wIRg?oKxLqJl%G+eseGP
zq|-~k?Y2ACESY@p%fA{==O5sVWu+r32+qVNoLo=&yj{VWICVw$4VlE19pGB(&m!NZ
zo%Y$yV9t`-6QCxH0=P2t%(L~9oo2-W8U*mV)i@2_gqu{R<g)YdBuH8Ga(;}Jd&DAn
zNDQl=1m!bmS(ZDus9p6JxZOIb%+PD+;YpB0@v?v0Wy?cBpXWRe@X>NU#%Yz#=Y6Ib
zG`6DRyUZD`%=3~?;HwQG_TW;kO{(Lp;IvoZlJ&5D)S}OK+NOay&huxV6P)J64yxr3
z&zOByaN0XIaPfO<`NX33rMn^4Z(6?OOybJC36ZH!=BCIxT9!wwk_Hz{k?A?0(ihT8
z+p=`(6l<NE5YC+S|13)*R!M^!(wW)EG(md60Tao8uHfB<5OYX!bcvi|t#cQm$3&g&
zDc|98NT>H~$H5hcFWrT-ZKHw?tUNsFF1S1GS+oh{F>|oTF5QzoB|Gg6q$6WLcX@G(
z>N3cPz}8fQR~xpNfJ@h^$t8UoM2x^Kj!R|Fr&#N>Li<67b)WKiD?xHzcA(O8zQalo
z>)$@<3v5@N=m=_D7PUya|4p6apa1p0?)IlY=KbCD=KJyQd~^Fj!>}t32b}=B>*Qur
z!*?4*jKKaX5>cLGrPIm-&P)sEBo?<MPJ|3dY>PE`Wng2(p=)%>Evoa&`}Qrj_Qc!$
zuXR+uaXBn0*w;5=*Yv0h`*d<$|1a4cxPJaWzgb5birSY}L;76XKFtSlAn~#+b-|s)
zmvP`qV@YoQ6l<M_+~7ib&E$}CveQ0*M~S>|{p&4iSFHhSxitOmCCfuX`@n-iCw3_x
z-FY}@AEcYMsVv}?L6824HAbKO+AKQG2uz#9x*T-Qg1^|I6^Da1Gi>wHjC$z`(!LU`
z-9u<<z^e@=THqjdo1D|PVTrm$d(tDxUw1%-ttvRUkKM`X+fbqe76-8n?#Np-D?Q@8
zw8f;yN@p%dLidzClb7%-rSf^JHeJwCey@@%?z{7FP$#$m^t8$gezoC=3fPKE=T>Qy
zM-&NxQ(k8JohjBjmYm>vdy971DcNcBSisGLYoglE`Mmv$o`qS4>RWyfvMh}#5(1a?
znY(yS$xfRCQFg0}8=>cx6yqt`X$x4ug$kI{wwMJxP=0T>^NPa-QxvwG@Q~K@+|T4S
z^RUnq22kPma`luKJc%z|3b<U42>0x~DU-O;9#Rafov`Rm;!1l++4r&^R3`94lKy#q
zPy<^DoJ71X^>Y@y+fV}GO$y1FVx{BA2~IFej6=O-r+tFB;9B+J6^Di9f&1W|RrwmF
z5xayTxysAsl<c&35bw;|G^wb4sSP-iCoL0MdMB~dADk{y?j}CDlQ_d4I<#K**`F==
z*@i9Z-~<>KxJ!9)eBt$4*W5pw%I<vod}h0z<G*u<+(3gGR}ww_1)`TeS-Z#1;`qPq
zt`#}ck5|1sUwxOq_CmRg6||AKm<iO~NDbTf;LdzgEpR;7?e*O)|Lp0%;CrRQcJn%v
zw`an}flRc(UXSDVvc3Mg*rWT_@q+t$kK>N+{cCXG--_k0@AG?Y1UJOXBa}qJK~{Tv
zL2-+!ZKI{g<P(q)KMipH{_uKXo&7%N-CO<_?q54SdM{s{eS-_AK_hr4(G%kHCAH@?
z$|EibgVW2Aw{ib-_6EfK?)vh#D#oo&KJW#&h_}{x2}wiB=XaPE%2)kL%{+hQ`|BB(
zkCi`J2<cpGSfUPgwa2_Fv#qhW-+ullR&w{~<FfS1eNYQKL%=~jWyyWF2X_)rhMc>j
zwfvQ8?poQWeBR5Nz`e=byF5?%yqAMHPfL{_Z2v#S>?xo3MJ8~&&{NZ4<>5*Dz;S$X
z7vtHThlNgpGr-AT)7p#MRhL6Dznag&JBcSDb2}+JUt5+(G(m>WoJ)>8<M37k_xBf`
z_kGUc{fDVoLv12t;OkNoxJ&7;bY#cjOIx7kPMTZXzBChJ?$-{k=X~Cm!H!dXE8)2l
zuB=L>tGHb?3zDqV)-Jk}I3o(2l2qo#8$H`#q6<z&m%@aDUu`hag)|-KeR*;xF*6F1
z{A06%-fg&|4-UXfEecbtb$)V#^Q=iSXn02hQuMwJ<9*8KtpOQT@OL=8<FL>vusbD-
zl+4^Ceu;yd0rraf58BNCqYo+h`$T%IbpApHujfy=pD^qECvkA!%`-h>ij~e!Zg9h^
z<}2^ApE^^(1H+S+SuDMiXpssY7x>fQ_gv=L=9Q3f&1=%mGo5!;z}l|2KKZV?#_1k-
zIqY}LyZ)#DSk>e{8vU8N<ml`vmNK@y4&5D#Chog6>zqKJ2itN1hdK7S6IGY;xhpr{
zP*QoH;^BLP=OIUY0vDsokICEIPRaDWVO{9za_>aO#Ipi@uUH{E_+3{X7Tl|_jpL;C
z$xDX}o)x(0Gw3RHxm~&^=_Nb=t|5o6(kHjHqh~8`ou4E=r}1&Xw<TvAh1wVQFs2Cx
ze3|%6YQdF<8p#6DEl=jA>^1JOlwsv{>h9PxaZh<$V7u~G#~i^)<&(;)oK_yb_=I5_
zho+Th@uR?31y`&)be%r=)djN5P5+m2@*pP*-*SKBNTX*3DwYmsl|R{CnxZhpQpS-l
z2xOQ^E686H!2VKseQ17g`{LselS|#(g4>mkGv){el}!4Yqq>~Wy%(bF`97U=KKJhC
z3rb4)D!Ga_OZnWpi;syZhN@@IV)Byh6Jg)z>T%C=7H3OP`{E-I)0Sl{yz-Ev5bT>J
zd(Ed<$tdzAbWd0`*(8>8Y2SG_nHDj@O65!?-D5KIYb{QkVZLN`X^vcvh0I<)htCar
zdR0<cRQcSmHJ?#Zc>h>@?S;x`=c8ojI58CdQwe2F<#S)jd_ieZhRW-n3Bm2kSHN~&
z+Rka^Z1GAOtjf@MwxWzLub*OrMg9Dl=LGtK*p>-6G}(JQ9G-Dl@RY)qjuX<Jw@(JY
zDrhl+grCDQ=199!DGX6ABE2cGjm57DLLf4m@=}Xl6}Uh+Mf(^YoOzg$A`s>Br1y!&
zam(VGZ6_EuacKNHVRSI~S%HX=$64h|b{%gXR9Z+L`}P0VeEVBU9*?Yk$VC(+2p)O(
zB6&h2%adA_+=MBXGP00_x8}W&MX806)DbboO7+ZbW?r&=U2NbWy_6}L%IBU73Hi5e
z983A!r!n79TJqwF_*(ume*&|cgE<t=%`cnX69h{km#UW-w=ACDsL3+nf&Xne%~Fd`
zk`RNpztk+Xcm?H5FPLH_^N}a1d%~W{OOAihEVj5b(|AkA3MtQOkNH9Ei|0UsG~D*0
z<e`a&ABZq@d|s}*X5p2GClVQ=TSVqASzEd2%EJ|j;0XS*w&|Qe-w{YYczfA(<>9~`
zkQ92^KJZlmiyk<HCr#@Md{)q60L}-S`qs~}k~s=-fQcvjQa<-6u+LOp@0k+ZzIYAT
z{z+<27hQSCkqx%xPscj;OEp)nf=zyT+|tU~B1sY)*(SZhOZnWjA*t0j$8F`|i>JW(
z@MSdXTtz$UgaoEW<rkN?aUPTDV_;iZ>2k~cmfjqrcIA4<EWwH9lb-c}{1OlG*xX+M
zuL_RngPnZIZ=+_Z#Vv7g09H;?b(8J;!U~R=S=T^`y#|t7zTFFWRiFY%AeZv?BXMGc
zr&!rpLlV^&o&L4+gxB8Q=)JF}HT$u}{;$V>^nGvb)4sgpQ03u?#}y3w-FLq*++|(6
zH`e-Ia{Zd^xza0g{de2xeSe(N#;<evfKta{!Q%>>IZphRi2U_f?(N0C_4}HBhM6CG
zy~AhqZNL8)`<1!nLFw$w!;EBb3hg<&T5hZUSCf=Ax8>CPu1BBW6uZ9GzUEGkIJhc&
zRj|ddLD#9v&u!MOuQ}hJJ<1oo|Ly6g8}A>#s9!r}`?F%n#1{vQcy*dA?V^(fKneHD
zYQAsZA8&rh`rod7;giVpZBs0k9DMfssj*SN`Yw;?(9<<0i7R5K9e>-eW>axz--WEj
zarS>_nw)1^%y(F<`GS_pdzD;WtHpfIV#bcECv2I#W$UgUE1v&nSk^jS@>2`s^ZVl|
z)-0@{aL!&$&A8=Z*G#nlhbi{CmimkNoJAp8*3_CW<vR@Hs4kvj#S_Wnw0gpx$y-c6
z^jO((WvHcyPBfde?XdEhM2-x#G{K2qCw^OI@XX+i@rgA`pWH5meKLM!@Woho3zw(0
z=WT7{R|an&oRgJTI*r;F&YL+Q)a91PwcaEz*|tiyg`pnzJZ~|!1-38TJaa*)$1TrW
z3+D$Ocb|K<WsTA$w@dfL56QHhVVmg+N>|5Q4cikp&71);z}_|8xJ7X;#1Hw^3Re;>
z($z9VCzVb5W|?{=Q6pU-s`bg-FTPD@1={4(W;rkh{xdY3smL?+v`Hh=qCfTzHXbyX
z@1w`C)~U<ymld;_v&5yTnM|xMKPON7VDQYKM_YJPmxr{cFpt42gBERwccQz`tT=42
zPGJkzN$Zolb}hd0@#0P+#nl~KCT?M^X|c4^3Rg=KoUnD`mc02N+7?DTCJ6SIO<aCP
z@l4{6Xtgv@xTzT>T}kAKfjD%Vz=Xi|hxv{fqLa!eedSSI%IC}piH4K0&BFCYhkS%J
z6i(T%%uaaJ?=%DKxXp6+mRw1cNCbP1hnIh*B2Oj6L&-@-&JxQYUbyVi)MLeSkqZ)W
zxf281A4Wm~_rA&vo<xtpWt<`cPyKHz8ox5wqXG7tWTIZRb)lTS%O1J?W;W-JzFPTb
ztCC#cjU7h4+H)-ItO5nXk3P<oF?=;~S6$!y{*S7c?fgorCshAUxc6%5DQynWiiB39
z_J=MrXSljtbHBgl=6!zWc%#3yt<Eolx3Rd%wC!YR40X8Ye(U+<z;;DFsB>g)@FYgK
zft_>yrVK}+MAJmh2-YRFJo20~6?yh^_$_F#_^;x0u+x5}16Y;+Zw7-`25*$Wj`qCC
zCs`<wB*+rRSSg?Ro@+7RVQnKw(l_>WlWhx2X$n)!R6o4MIgR5mqml1|295e#pFG@T
z+n87ugnC@`JjOm%s6A0+W<#jMt>a7V8awSz*@LZ-FXJ_GmYByk$APgBl5TvDgVRms
z>SL0n64UxPqgt2DU2;-PqEuoMUrU%`rMhRD+A*27#mP=#f|<&duOysg+ZH8*?T>sd
zsZlD?2GKKRiG0E0D~TLd;3)huS7Wv!&-7yuvuCp`=5t<Z2=T$uEj?B|*6fftyt=%{
zipTOeI4AcVmYy?TF8<Hg!yjvH?dGjNEDa9);P!{lW`J|hytLMUcEvvs&Z(K^%6<Kt
z_>Y8stdLGV`7Ar}mW4_D@uV}yKTiGp(m<C@OeR93P-0PkX9P=1u8ifb_&-&)VrTQe
z*5{tCaK3i>YhmTu%g-Kj^=QvA=Q(`*$m&NI%_iLwI409}k9lIK%RP^4-<hXa@$81U
z?b4aV9xI-m5Y8tVs}?Js?GVl-5vv|6o~=;-ypD8}ZMz8xp3HJ7iBgHIesGYc*w*{3
ze7qQH_WmrTdV3zx<6pkB@+JG<erfQ`z(+=SGbm&33OzjI@Pz`O6Ix2SDsRJh7xNuH
z(g-dC-@fV(Jnp{#IJf}$bZ>h6%*Tr#BrAzAMoLFs-_T<*W#5y(uOuUmJdRzWtGU>2
z(uON?zwf;}dG){0SJg*PKgXZk#d~7q;iBp}8(lpvdfuuk@{*l)hj|0288(ftFStFG
zhY{RdeEu`xN@AwRIZ&HHCD&7BDc@;lCQzGJC9}~cmCxIm3EZgjJ?yaZ@TUn3pth^$
z?<)bXHiW38gByZd<_1192vKR!VftjZDNHu#*@h4m2T%*=l9)^Ivkg8f=~;q-CX>Ft
zWm?YX?Fupa^v$y?4{w?XHtpoD%2O*3UxIL6dOvu{lep9QTrh{i!TH-lL8JDH4WQPm
zTYpZQL5jRV<AH}?BE^?XvDCSFeC90oC$&#Ftt5&g{s}AqH5WHOXG#C3^SeQlMd11Q
z%SR1fZOD-aYcEpapJS=hctR4?cssL5c+Stwjx5VS?f92-rW&=Y3NU7X>iOrV60Rgh
zdivc^TJkDo+wuoz=Bp|hv@$&U^YfR;nNK$rp@Fd!)OYIuJKwV^U86WcY@+d&4h<>K
zVA;S|20ls*poaV<8Sx%Vo|zm5pBuLHZZU5aY+ov5=?rSR+PvpT<~yyzbOqF0em#-X
zPj;FY3pi@7smd+qJFQxDOia;L{V>C!G!AbyCU6Tby&&;QqNEoCsPVr<ckA*iiJB13
z6Pw2;W**)&Z_Ywjmx~^!f+D?Srn#|BaCNwMd`)%ZOy1|5K8g(%|2K4PkUS(bWzKR?
z8`od^(2B#G=7BwM^7Av$u$ekInChH<GG+4o=1c&$`fBA;`3~0=xrs5l%G)ofJ*Y9i
zR|^ugW`?I^riHMsaCN!oaqIZ}p!U>I%VbdFT`@7yxMgW*BRB$zZyLPXa7PPl@})I`
zQ>=6nxxprzoCc*cCQui_RXtO@dWw|}FArE|&HJksr4f1(2f!^|b5D)Z2%{Os+c-3>
zBzK9LIY&Gbn*nO#Z~2`z#Y#sOqG!u&-zio)@(|9Nzx>Pjyt#@GfqNgPdo@ZUmPtZP
zTdl5H8u3dC%-NjAp8oI6dP{%B2A2PCZXTRze>yFJi}A?M<7aZ(Hk>g4M|y3Vm2-sB
z^v@zp9v_zLbT2=W7#YI=YU3=?{ju~)VrC2^Hab-_N+aaN!RBUqb841G6hWNq8RhLU
z^Kj8&25?^@y2p3r;Yo+VfeuMEc{3oXCVIaQLMB?>f92s#P-WKq%daGQCPD0xG}A1V
zSOnE$&7FQG@nllNEcYd~J^2drwm&Z1$7iu^POi(&tA}%cn<dpSA7mGkiC`&=SSOJn
z##kx;bDGSVPm!X<ZDNA1%F3tz?a2B5d};k1_WO16{b|>@kL(iPvuD!<=+eez5)GjI
z^!HHnIe}@{Siw2v>7iz!_NOI`DS{KeU$kCg+@hKQ2|xc6=>})hnIUnzMOe;Dc3KN7
zI6dF$G+oN){I&>e=j3{}<$u>CHcDFXrTPnJ1w7keqvHU|DW6KLdaQH=q5600PO;Jv
zKP?IFM7*uiD3!1i13RYDP4<vX+a%T*l@7Pu&K<RR%Bwl2a(@levxhFinb{6A?bT!i
zPw)F%xW2l-O4Kki<I3yz_LH~0>kDjuoX7}no@_fcGq8PeBB-rWHfh^T!&e15Ivk*O
z<)yGcMz0D~bQsn;ee%0xX6z>0*UGvO+>lE<w&L)_4GN%^;K^Nei>^Ghh!6l*o3&{Y
zr4~|R4WMc>vY##B)sHoaj-YnsC2^O@`{nx#SpV-kkod;ZoL{rhVx5QrsCt)NRp2Gl
zr^ebC>Tt{bT(9#fnLcIKiJ+F?{S`NP9%=*?fEsVbc`Cur3jSy`fZC#y>=yM{$~@&#
z0=3X?@)XbeF<FlF|DHn&zhrW09+K&kVVwbPR(|X=Y)_7M1UJyi`cAAkJaH}9(Vo`T
z=~o`!2m?DhMKg$_*y5L%LzrNta^yLgLo$7P!S<gBcs4=ukl@+}EL<I*{<oyE9jYnW
zK4)R5$HkL6GaEbYyTTwYvkRGGDRUa)m_58r0qu(;A)%Q+qftX%R~zDFGs9yt^L4d3
z)-YYN`_(?>&)*+9E(iDPB}i1xpZw=*!4cID&slj?{WqH$J}X$GdIHo&{uE=?VkMKw
z=>%%?KeSLZZh5TJ$SET5-2b+UM5)Cop%zdhDD(7NiBgMWP|oTj2${p&PH7y+4VXYZ
zgZbO6rUkYu>q1<%tzc$g`(sBa=hF1R_Qj6S<nTQ4%EO2NaL6oqTPaa$AtVB}rgFCA
zLcZh8O&7FO-m1Kv(;j#{ou5l#b;q8GTfVm%v?n_{g1QVB`*YvCZ(po^aR2%OjoMoe
z8v@&t9UvyF`zT&{$N@2#=RMC%MVW9;KTyMM-oEyL_QhIY$9xi=C&uylVh9tc!hfP}
zqAT!h@d_4js=H_HyyEc3Dc}f{j1o3-wwNU}1JsJ!;@cG1o~#MhKS|wG@ybIFFR=T2
ze4EY)^!c->2RKaGzdkF$xMlG_3;zWTEcLfGf9|o8`3!2aY?*A+$-R)zT@C89xrtXE
z{_tb~^)XUxWgS-@4x9(Ja^_u~=biS_{@^&jEGA<7s$hvaByWUO8NVu+qYlnBbxuE+
z67977!46pR)=je1;+QZv05hxQ++_Pcf!e3{JTDp59FysL&jL>8xAye}wkz8}Jg{w|
z;j4lgh{?Ym_MR2!n+5iOedg=5GY=~~1tMLS^r~2@NfcW|3Auopq{^rM?z=Z{`tyoY
zd+++(%e!r6cK`XmiYse>PHhFv%^X_!c=I%t3860cPIPRtmGk~<9&LYG!rp#=@A9^7
zzt=9hUfHJsp3^@i(>IM}rmM@f;~qi(D>*cN@qH@U70A8*<NV**icFwM=2qeM$109V
zq7%LuF1oVzT@d@X;QhyM$j0T%mhX;xy)S9M48KSxXyn?W)FMa-TnZfjT@;&jd;3S-
z_`j3?dM@9`ef!nU3!C%8?&tGB8@G=w!5%l_j!byeA0;#g)S<hWWV>*U`=MWK-~I2G
z-IqK4)#CU4*LKgs`scfMgWc*U+xHTZEG{i<Fl=9J$(SNK(R@-_;(-;1H_ib^*h%4Q
z0<Q{8AklJ3WNwd@-RfY5NY^L5Pj-6NrSiGYX*#2%^ji7snd37KZ(ODTYJ5uGlQnX-
zXc7iHV#{xr9xIu{oDSe#GPkRn?0i}E4p7Ftv@P$D%zRUI4;`jWW?6mvf6f2*?*H%o
z|4-llyL<o7*X#d(I^TLu)N6lH)mM|L439NW*)LtAywq&!ha)O~PwxHo^5?8K+ONJ|
zzV8|R+kfZb;>n<8<QKg!U5fCMoi~SN1!!wR{C(Hw9OqR*<Ja@RW7+<H3+I6*z$4uS
z&&kgF%e(`${Px=0;B&I`7(g>N_q=a?$~+}Ij~T+5XVOyGuFhmx4BBb2WUs<fK6ia4
z(DZ1^wgq$4%SsdsS``-kX)j3zZxrc!d-~I!t9!o~WZ%&%y?%8H8#I_5W#<V$=>e^h
z?)$y6bp58h<GU7~{(LKMN}vDJYvDF~-<57GOqB{}DXs_-NC2(-w=55_EUj23xB$G8
zs{DdQdBrZl2cZ2Xne$~%$<8Z&at5?Ad(s!{DONU9LGwI&rf!)mcuKbK9K_%DHX9@l
zP41tw9CT;rTbZdr?dkH2;Kks}k0joC$m!7lS|<2pXNp95g&1fOtWrO6b(ckXh1Miv
z@LCGtLqYF8@TeaEZv)|xm}6~olCuD`b0E<*vAE^ArRCX$GeX)_7}=Nd`Ij<*mbImt
zoP5S{-Ul4i58e0ZJh$na2MNS!i{})#r)xq2aiM8qam!<^M(~2_ZK(#Y3Pdy*K=YSr
z{@gy<FTBnfgD%%gxxVns!<$|VptX@tI@2Y}D}+SA{`Yhj^pc&&`qT#$nwP?+2EY5@
zq5*d0r#WUl);8i?U{~(>-d@<gJc1Fl%<)q<58E@d9*yUqX`cyduNK^S=n2{j@MLd~
z-c6Z@mOcrPJvq~-SljfToC)6Xq4!eeVWc})0yG=<(9;RQj<f}{RpveqcvY}RE*-pN
zCp}&9%EOyZ44}m?f09fs&%aq=n*f^3TOxZvv%I3L9}=v$PH2`^oDu-XtEc+@DONV=
z909AR?3ubnnCX=4JTpju%?j@<YES2b1encLj>mlda!jC^pQZ1^U&=iE=?r$jpCqfs
zoxFFCSMnWIF<O!fa{gm>u<y70WqZo!uL9Phdj9^Q9fv<pW&p2JjJ9*wc{q5=oE@Ql
zSG{i;iJp?3w-jRMz2Ap-92TAmQC3~AQC_hQniRksE=cfaYA@C(uMmT9DvS7z$<E_=
z3Qmi^b}3o8SKJet0a{~WpOo8Z)3yt2^6CDL=yR1a)tnHgEsdXIZPN+~<|j5^kFPvj
z4BBOJGTJkGsqfCimuG-opvk%a?TML(jTg_E8R~ZNq&}bcjN1V-4}jPIRfSD2ZhvkJ
zj@u%R04?|EUDuUkZa<ECTaqy6;?=XiHmzI#b`Ge_R@!lR@+`1<CyUw*UKMOn14q`S
z?Zsx!6;eVoK&Qk6J}SDM_f=L-{quD1zgO1x7oM-Td9cSm{+bYIm0$M)zVpsZplu9G
zpWl4#xAFemz2DD2wUSZ!`|jPQ^{?N?o&V}CX9(Gj<L?TZCU(_VKL7aBj<s9AKew2(
zZu{F08@9A}U#t3BJcsimxCLBVQ3slGt<+ZbwG~~leE#`=A4+yl-hBVv_pS2v*OtDE
zocH^+OK1;hIlzv?!E+$azx>4D-3J>;cD!^XXo|JXRY(x3%)FsdTComdV&?S9Db_X*
zp&=dZH^o}!<;j_#ZBR>MpBTRSutmKAwEb<99P5KC4|j$zfaYVLRJKZ#S6GRHb64d*
z(POgnf*~<_sVsMjwajKNNc#L8-eV=>$?eeHvt^?F_EU2dTO6K!`IKpPP;C;=#xw8t
z7d`cwvEho=_vi9o|G(>3+h_S-_Uo^o@0aLKSaK)vWGG|;Z*A7HJBggp;0ewpYps^w
zN%Twrb5id9d<f!zl|5OZVObi%B>|pim;9b>Ssd{Tvhl6b3bbG6A9yLk>51w2<-z@@
z4?Ql~u>9tAE7!aK_g$I*DMurIi6?;eWoX`(OyxVQ-h4z$F<<3v#o-l)FP(%e0-1Q;
z;L(N@qlPs?U2dCXZp^XPnG0FPvF^fx;+Ca#;CbN*n_~^0ZP)@?#&F4Rg+_VABXRHy
zu>FF)jVAMt>Vwx3Oq!E1#foP-kJ0L$J(DA=n1$=F?K>dS)baVbXQ)JJ#3jf~V&<>l
zQ?k>(K-}K%k$<j|=OtwJQhwq+hk55OK}}ZL+h{X?DP)qf&ZVmO)Z>m6NEmgdOO!?^
z%{1QXwKB>xdZGKy!;>z9CpLe&E@3XN7dr`FN%2E);yKHH#Yy04)}kjj-+9+&N<Uvd
z{dbhVBm1YKo%!3pr5w`c2Q?d93)+`LW`m2KM1I@5{>+;xUroMjvN?9$QTv{rFnE~$
zodJ(2*q5J7+*_=8Uh_JEQot5|zGOb{D&{Ln%K0fX+HUY9zRU!#T~Lvotx+0LB?XSV
zy`EO?5n7Vq^+@)ME;ZWB4~48~+2rEhW2G~Z2Ry5~F?ECGAt8w4J*<-#-AU|B0jGl{
zxi3M>G9c@Dz$Losa<H!^eL1=GO5)4B25{2eYYke1!v~%SjxVt{`2KXU6J$NowP^=e
z9G>(7JQMC|&AH@GVnhi<Pww*`D;-0A@a~KyyuC*4s!ts=rcNxMv~3}1NvaKa8TTc<
zY|ZkBB)KQxidTHw6l)zr$a*TBvqFpcyiYfS>OEE8=}tQjU-|@I_;T{Hj^VovA@<-Y
z>bi?UbDx`q*n`(Ge7a)X17A+MFfysQW$9CJBKx2mrF7zR<Z0;SwbA6F_N7n3-n=Bf
z>XPN5pciwV2l!~AEU3EHsr#JIyBwk=w~_xTpLaQAzS}+U<Vw)uCeW_Plhx%C<q?~t
zA?`oDUZXsMNfw-ZD-X#Ylbz<k4qD@KdV)A;OV?d!;<<U=vR@IhRO^%SCixSeBcUdz
zZ)9E0=UoQ&^V0~f;`sdYr;BaA-z%GXdu?1$k2Le|$A!1!rY}u`E^Pe(Sx2?&4g01V
zu@?-RPia_rMy>T<dH51!3y9~hI{~jYJb`TGm^3ARij__+A2>mnhzdRBJA4wnb}Drm
z`@tjgzgk*=+F6;;Oh9`t*}*FWXYq6vwJ(M29x?h9Gw*9r@y_oY{kyVP{{H#(*7he`
z=Ox%&J6#sDr3=)QW+{*OB?AtK$kW}R#jp@g<!$N5eBSdR0eSL-8_0FwJ%6574Z(2N
zZMtS(@NUBwOK_}y;xX;9=BeicFRtk+JvPNcr<6~ryJbuNmfuUJSm_k<L00))<a^5J
zJqKcP=5n`{hlQR)Ox}InY3JbrXdv9=G<an2$C^Xu(?zp?F_I;10(lF*pMHLmWwytq
zsgCQ_)@ASi74f~wV|BP;t@n!SJHEEOOf?b#=gh1A5vS(-{^ve>aor5H)CpC8zm#wC
zdumx8aY_ap$&qRS=VYfDK_dC%znE!XgZN{%``uh;FL!(6`!`xQzkc1jRRX$i><lEu
zT@So$c}VEa0hun(loOjK6usM^0$E$<Ha(|rLyHMGDPIcF1g))w<jXC&%|-1?mqFHk
zB>h})Cb1$Dyb(3!?wJKw5?5w|*8}$)4z_=^<#2|*X2q56hrfdE&yAlyeVf_GuNwuy
zetEUwh)DyeN#`~%HB<im*X!qxMxCE^Yw<UCDYJDxkGm51yi1xv?QWH~0p2@72^`d%
zIk__%wB_<HB!k~v82D_1i}`^yMqPeEZ}O*D>RjXn7s(>OrBnG1&w<neuNwuuWT#oM
zgI3O-^v`HEIGdgeiLv<?*b?WRzXeGc_6vENY}(Agf#-eg^HtFPF+T8exVl`|=N#UJ
z&ERD)>8+rB0EOU8q5Ae@^(onDk05)W>YP3{SK4Jm_b_qJ096Ds;8HPj^<B_XB8WZi
z^Gf&YeEn2<r)!0{cl6##w&xb=dH>xK^F18C%Xc<7XD?mPxTv@#aVL1;-v{O<d5+H)
ziy*sgPJ26d9G>)yVYA1H-!s12S$s}E$m_STqoT>se73UALEdwqO}>%Gnv3hFT?EIh
zhjmlnyA35K;PecR*%C<17F}a6e6=A3ve0o-na&g|9Z}u@@ETrYM$n>FaB^On|GcDc
z!x2MpVwkk8*h_Yr85?A2>NLllhl4JHE2WcF<r1Y4T9BHc@;%>UK5sX$cGa^QPCE~8
zxCqV-FRK;JoFiUI%mKB<3=L;1>YU^TyB)meSCJdM=hq}(=P94}i6&4J`00tua+B9D
ze{ww7a{AJ>ZEver|9e&S+wSxOa5{RoVTumeSCE~(lfbpD_pNtbMeR#dAZfJBV&R>{
zOz1ktyC*<fV<8-s*ph%(8;%%)R|KV<<URK{@)KmS)7wMyirQ5x!C7R|x09gtaLM2*
zS>>dQMrnlBEO3>4vZ~yoJVFb)h>97sh)NogO0wsl+j&^%IHZR7b*rhkU9}Hl*!O=1
z?=~EP>|1Y}(Rx;J+7njL@>%C|ALj+PFYSeF;9UMD@eXKzH>l6{r^Sr@lf*5^4!z7S
z4bavuHt<rzX(E#l25;LN_-?}!h{2bp@dbf)$3rT$Z=j`}jgZF9mh+&hLlF`!@Bb#=
zN%VxYH6UAajUjQrq*(Tt%(Q8c#ZC9553e{p=@NLAs;4m*XvMt=#9$X0M5&;%m|-cO
zw<jcDoaJ%b3DN?}vYx>upb8eE<<nA|8P7IPfoz+-<qC3(H^eP(m&__^f4B_1(yB=3
z|E|8TEBZGY-#flN^)c@Xam%kMkE$6ZKuws|;P$1<zzb_9ZCe=#Dn`KT#x9jznPRPD
z3Mry`N+-{;)G_2W0PkGq=X=U`*dO9De<PO_hd<l_FUb5EY|8Jz!G8Yb)5|$czABPg
z^Y*@5e(PvZykR{5rR=wv8FkZZWw|%I&j(j<3$Jkc`(D<&rGNI0p=JeWH``=2y9IY1
zuFM3j*L$JrpL%%5;o!@V)_btJ;kyqd=HPDXr8^>1tZnX|1@|+1Y&d^2pOT&D1lpN$
z&wJAO#-Mif3yh!*Sf7-c78c97FJJ~Gdez)~hn<HnzkrNz#54Fl=Qv);Y^<R)FQF!H
zeYS1sy;qhc_PVjJ#cFD8en0>AOZSMx{AjyPKFZw7`TQ%HA={L8uKgNORv))pF!_Go
zSC{n4b#uRe`*kg=1zH4uSYn=@Gc{<-rO$WzkB9tzEcNw3jl*}{pZ``IZ>m~l^$EJU
zsN#||xUZ1O&Us39-ZxO%yXW1d)^60kd@mztPu8T;{)xry%lARLuaiDmtIV;o`3p))
zd#0K+b3WxeUe63}IGxvbUUB&H{W%*!`{1U<%nEK--wzq2_<B|OIiG(W#P6?HyPuPt
z_XlFpt>4Z&4-3Bn2gGUpPx3QvU$_tM7XD!Td0w+ubw4=pCVgYEf6C`ySNsUHZZ|U<
z)M@<%adzb{nPal^{y|IwcX}`12gj1+E*UfT3Z^-q!F8YTGlO>pG8PV?4Um(joiKh@
zAY;*>BXr5`l31nTvkyzG(z7N`G@q1elyv5yXBBvyLM1nOij~b<en@}mJjemRi=Tl`
z%WxJx@{Gg(H#4}(c)P=8=V9UhU^^{8$;^HkG4sCM-u>^6+uo|Oxw-E2=h9Z_KH!Hd
z>%qe`JX`r@E8F;<2Y2*kV&A<kUMn8)ddKS>*K=QN`W}7c{PDGsBJb{JKZUMBwfPF#
z^txyI#OH-OuW{f1Yq!tpj@;W@34cy;-P<b6%+06MWM%Ue;?Bo+S6WXwUU&Q0+N00E
ze%f(`|53Pklzg^${Chr7_Hr#~U;Ymgk&o|Ya#vlizCY3a)$-!|w|Q^WdH?vgqW$ID
z()r!|;O$}`u7EZOd<yF`S^NGM+qc=D*1oS=S}b|r;!F0iZ65zSpxa|%-jb=z+IcqF
za9_%f_*cu5?|<+<tjq^G#=te8efd9dG#Xu!;b-o7|6D76Z_e&7`Afe)e_OSCtM@-;
zK6yy9<*~3;FsOD?_O+jQQ?I#jt^2xY+mAV!a=$mG*DVDvxh;70LBti@?frC5%1w6O
z7mf|!lSk5b-h0>o+h|{u?GuOS`r>2#U+%@LM}S8~56aH_@&Y`l(RcXV54FTh_Q`*5
z{JbY!RLkC1{OWpQdmp58K3R?tRHRwzeerwr{&yU||LwQ;_Uo?Na6b30-1_$ik3!Z2
z+q?wrb=oss`TWc2iSO6vH$>0*{kZD?zpKCc51-QCwY*r!y_^NqL4ERJ^Za+$uREXm
zI5V#&Irs3t+N-A^Yl0uX>;so7PfKrF$<<}0Ggj|kTC?-3@V4sTeib|8?=8Pv0%>&5
zdk5Mtd5_yNaktI9^VNIz<=(zrXZ!A@%?-)h-=WTV2y@Pjj$h~ATok+X<@qz~PeyfW
zpSSLXZX&G^S_&DivRb(8%0ta54N*&<tW}BK6Zq-_ix)UcwDokK6`c1DwC&Eu`C2O|
zx0aWHGu!@o6K(oG-+p~#+WN=o0{KsRp4dW%M;5Yxi!yKLlRFOwYk-69WU!v$yAL8>
zpfd-)Oe#G+rMP{0026r7PMK?Ev7Gy9u%4&lts-Y~J*J!kEkl0DE)q21Sbzp2sEgwn
zz0)6VnrHM4H#p~Hun3aTpz830h!?m7_PV6sQwXvZ%=<NO>N&xA?_St|HhUktlhgO%
zii<&e(j&=BeLtpH+n7Q^>!RvxWt)itXFx5fIj=4JWcxfpn-jbI`gD@bt0d#^%G|I1
za(`0XGw&QLXsN5h0xET%a0IWHdVl`urQiF$uzEiZE3v&{yZ-z0x22-4;QiZY9(uNb
zOOKRV^+P)kPv!t^(!F^4_1#LnuXhS`s`tk9$LqekFCx<&x8K|pWOnxhK7VC!u&Cxv
z_u6^*G6y6mqi!BR;;^3Hd03beY?${sA$335d2XQHL-)L9ed;S}R~G^Y@+5V+q&p91
zw44L2x_=t+>PLmn)-P+{Z#-6eG*?G{1^d6~-h%4f9B`)albz?mvBA~rmgl^OU4iY(
z1(`s@$wt?%ep|YK`r|2|H|qU<TNmFiy`ukb6u<fL#t_&D7AM$wl9j(Ki>&3}E!Xdl
z{<|Qy-E(Wb{aqI|Wj^ql!7C3}LLG5Ka8KCr?bG^QdupR^Ur)_Wj^E8_1nB`BSAk>`
zbrrAW25l2L7Pz|IIx*jS$~l2U(@Ls-n#@iR_N;SR^rcsDp391Bq52PBeZ8aN9khP_
zzjGh-=e*~8|NVH~O6TL|8{YGO{Gbm#LZL!vAvmc^{%gG*#vgwE_YSp{(>IrX|0xlF
zDEE5y??tbc#xGz#ZL)#m)dvwLaN2j9b$$Ij-M?KMZSTiyUs<Ri5%02ho-L#jefL4c
z37o8sT?^Yj%YE;M9pAJc{QViD|9kWO&YCT<_0==}S@^(eQZA_7@6Q)iuc@u|vJbF-
zZTD%L-r-YMS><lOu8D(&;bce@dj_8lc=tgCYQgW~+PS%3uEn1}-YdNF^fueqneRXT
zgZoMmTt`3tTpagc!~5;0m)?C~Blka3y(xF^w;z9Cs<IY={qA{tf8e`<JD^?9pTeqU
zeGNQ6>s^1HSpELB*|vx5kH6h>x;FCHVl8DJdB`C%>S|2jqn;M$yzQunTz5BS%k{aJ
z|5eCrPrUy8+PNih{8z!VS1hF!QHzYXd1*%d6x0=dVz|Wx95Qb6wkZ^?U!L$+H*((f
zwS6~_uf6u~iPzp9JJ_b^iY(Bk=t_OdszN{6c{3o%_F8^l!MhJvTp%UI*9^YreExor
zT#)Um_?+*!9}Bom@!HV~H2d?SM>pt`-zKqhMXx?wacKb6;(a#z{~lj&Sq?Kk(tl?W
z$V9NC+D>(x6`VH<QVJB6aLlo?F%^VV<hpZ<+Lx<A^2^sh#?SfueIX^?-^h9^_X;UR
z@Q8Qh`MBbDA50)|^Jz<L54`A5Im@#Yq-PoU6o~WIMehp!K!UpMQP&xPK5q^+0h=lR
zG(K9&EwS2nu3rE0n(33Lzb>kOb6*vF*qB9eh1No2&@Q2q#ZHE=K7=@d{d4J?{S<4P
zsRH0(b(_EZkNN!lOTf*I$mdRTtZi%|CD)c>#Z$8L=7H-4?^!_|MeWONAf5potMFlp
zJ2*s*N`iCxKCrlgOTJC(3M|Vjnjo>@sXa}zw4!N|F=$Wf$ts4K#qH`EU;~Ptyxi{H
zpDrTTU-s|gixd4{OBpJjg6mw4cOOJt!QuL;CAi1h#uMt4@9jnH$(oQVd(Bj(DONU~
zf(hMIwoFz&b8X)Zx&8V-R~+B;_t%cTZ_D3n96b@gfANzm4>h~M<J4c8<>o5e%)J0^
z1TERQTcf<f3X;gz3om+JRofT;=l1*c?rr;Sec%1{?mGE1r@xzr!K%d&u=h`|7x(y`
z_~>Q-+<UjrKK)v$I^F$!A?q>GgEI31IA(;p-8)%mShwq6UF^JXf6u(t-D0VC47w-U
zX5j^Jd;QCK-MPv(Kl#D+fc!-Hxt}dQfezWI)X)443g&;$!OezCeSuS~Z5Sa@qsWs~
z+@j9VWGNzienOd++s?zn4B#U1q*ds%I}bS<{J<N0vZJ4aIN%1~lC`Bv;hYrPsDmIq
zkg|N9K}TV`Is-TYCY4^EQQWRB3gLjGbBhx=IwyVYm3YqQuMN&1sT`|r$UM|+08bh%
z(b=&0%)^)U4WR9pGUwNQ+xz!xmCgALSO0I-Rra;Du#e+jabyP*XvD?;Z*dxE5Iytt
zTg~!{R}g=CzJ9A&T4AIJp25m2V?QN3ZvmvOv}xZlkaxNuKA3wk_}zyk?%+hQN#*q%
zYnzXdL~vcJx$gSn`~J6%<?i1Xm0x?Uw)%Ff&i&OqC%}untz_O`oC!Ia;OqS_)zjZT
z-XEtwy>xf{ui)a-bv2W#W9EWOPm9uuN6H7pG&9wc?>@YlQoH8at9!jq_j;A<ST6w=
z*UvsIac5X-^vTa{)@REDU(4PsxMhF+`=)s>^z?t*f(kNFGt&l=7L%Q`^(Jh6Upf8x
z;<_F4vg<>VR?eSLXi%A(o|7<>P0Uet-Uo0gbgIzl!aRXpF~61`Tl+5Uch~N<@0t77
zGv%!}W`fns72qIO%?0f{6o#}9J$HAy>^vMS2Z_LQ#{cG6**t_4E+1d6+<mjk%x0fX
z_WWM&yZ*i24;DJ#n(r<Hn^LL-8<+ZK<#DNRkJXo4dpvR7$2%dHdAI1kxe@vqGO%fJ
zZZSA>O0GV<e*JnosSj0alHSYrR~cTbU;4sgKe%Elc=ch5JGd3x*ZktrI)mSvIae%?
z+W!37Jo`#n=aZmS%uN<HHw6_|x9pjyvzF;OpMN>nYSmol#djWh_JiA>sc){mn|^z%
zWc{z+zSkeEwQA3Y-tWx5yX)HZTqaOwv-<(x@oI26{50HOXs*7@XF(tJ7a7w&`M3W6
zJ3(&Q<<rae>u0c3UpJ1GE8V{**E>FEZ<%`F{%yIxlwwXQfj0_9E&cGt#aE|j_x)+>
zJr6I5v;RAHUuxVdGt+6dTPMFdy!OI*!90EM`-N5NVC8ona(02;w)FYVZSyB(S1tYa
z^X9Sl&+h(yd3SFt``z!iA6L{vkEyV6ge1X<%l`+&-F<6*;=A11x%x53RSy>mo&&eW
zt~`9%32yB2G@jfrY3*ajmH(LIzq^00e7FAe&gA`iP%B?{LamIv_IlTLYv#9~i{|i^
zg#N$x)XsY^hg9JYNK&@3gv9d1w3XGnsuXX%7rS%r_qM+VC-&%lg*nL*;-rr^Gruo?
z9U8UYbkpAa>az5cRnf2fo>Ww$D|@-}d4p)4#_4y{%aVT8*tD--!M*R>^?kn3hQeiG
za3VW>!nkhJhi@;Yw9o!*BqtxO_qScWe{&c#Q5_EeN0I9LyNXvHa(02Ita)rNuZ`1)
zdF@(t|F7NruTfuqy?MP-{(bVR3&xN>L1{%5q%QaTd@k_ahcA%2+-TpuXJ;Os1RW;w
zWNyk@-N$!89MCXT%39WEAPzX7TGza+u>EKoJ9DzBEOhrK%!D|r#gD@>?wjXNe-{5H
zoa6X()%)fRFCpP4V=ZU^no`^Hy)Cd^UEL}fw7qxD^L)$FiY%oA;H44W3oYOk`ugXg
z_3!nc7rgqA;tp=8ZQ952=nky!r0U;)WXIvlvf!fEv-m~eyALIh;;Bup6V#V^VbY!y
zB>Cx!M~}75T}Z5~QLncwuh^vwZcAClKPr0lp#)+yc&qrl50H}Y(i6ie)-wG<koH0?
z<6^$!i&?<u8=UnzG~@7Ojkzmb-R^nJE9wjcb#FlJ=1I$sB;5h^tUzI<@^-OiX$8|#
za4z-?z7hED0}G_9aw(^1inUFn5V(#9&w!~zx<^Kz{``yo^!Uz0&zay5ermAc|F`)c
zo`D1)1#oShMtMb)8rbQchXTE1=S_JDSv2vDZHl#xrZCvdHTU%&AoRSwi_jDK`hZ2b
zMcguoqpXEfuRP402~I0ZWGggED;B9kVxZrx=-mewe{i*9^y$jo%Rd&C-uYek{^qva
z*W63vR+mB})8?!&IDFPT-8IMB<|@Scp7&=hiz{ZSgBQJIT7wqeSiOQ&p?r&`Slg6}
zfL*y|GHB6@6&Gl+&gtyJ*YE#w>iWsfvv>vZP~YMy);5x&5T&=<kvOy8Avh*K`JVFm
zyOn}_sgd#Li{5=m34zp4YwpZ}8=!Z8VR4IkpVj$=GhEn|dTZpo8;>(jy<DshJuP&3
zFB52Zu4sv+CZpW%*M}ajwy(LPqSt@>^*MX!sKoMKNR9k;hUjxXf9X<iqbzfN%qiJ<
zU0^?WU)w%wj<t;}#K~(uSDllcHwi3r+JZkXta+PQ-k%ds!!AyH{e!9Yu)K|cGWg`X
z4^u)Q!91_`{`%{6>v!ANM4Z2Ky|j|A_39@1*BkoMA48A%w9$kZUH4>haf|u{NZX_M
zdwX#E@_tB__jvN|E9N`)U3~2I@Q2yL_~0+m`ML4Gemw!VI9bXoerZ5b&U4i%RyLI)
z0iZQ1JgL^{eExE*pm~@lJGlS+iu`q2{`O0~<h_1t<-51`+Pq_&44Hqoc(%eAbUub<
zkNkW7zhA3%^;Xo%ui<~l4jSKSHEvh$1NR_|#2V+yN3K`j(7)CG?4^qKRVjOA)s?{G
ztB$hsEV#fUH773TRb88yE1Jk{_^+~3GUDHxcyULGc`C1bRtR;n{Zi~bCphl{=d%DG
zo5LGL3St(0zkB>?)tnu7s+{|uzYY4o`SA=jXtB*X7o0VE_+R|A*cKCiZ|yhxU!0%A
z^jZ4+HK0+aUILD~qB|$vXuHY(UGnpqzWw{{3mI2D&#JEVk2|FTEkpfZLYmr^t9>j=
zE1cB9&7sKbIhN%WUh3eGOZNR6$rAbf(^sKw^JKUBpZ9!jaP11L#`aqd&Q_A&CRhKy
zfBHvn|I?*6rR?k?M0G&hO)QElg47$tBr}zjPi>wzEpA)%f39TPD{6o5d^4L{0dD@V
zlva2_GN9!nVL#b<7dS!7-A+}MPpf+Rza}m}H~#AUpKH?B*CyXO*1n|fK!15VbU{q8
z6{LzN6sWD-{;O~2yn9#IuDUN)@h!e6Vt?(b8pxTr$!$!aq1;c;tyT-SC3ZEvWRX2<
z^m@&?%Ut<aUp~EjU)-dr_Qjf4nfJGSUC%lF@t3ri=-l(sdyDq(S*Q3C)S7T|6rFbJ
z<+neNx0$_vD6X~o%IoL*jlW5}t^Sl&SM!DY`0v6iIn@WMmTkP&`#!bq5oAzOXCkPK
zSTyyq!|xThy=*yO{Mzt0GCSWb-=^DwZws_BKkXDJc-s2JXCXfQTKn2NbKey$tkcQ5
zHd~n=8jDMdoIqnpMt*NzZQFG1^1j=b@^`#Be>}G~?ib^$pH=*Q!q(8{iuW_fF)SzM
z>uvwF@LvAk-7U8ZUtO#3$%xMrEx8|G-UuDV)0rt;1X}(!G5x;W`MU5G@o%ow)>n()
z(mY>RZ<FV{rMRXJT35qVe*7u<Z^ORU+~=#WRo`9k>gJ)hUsYA04bP=T;KP54?sTn`
zZz{{WAiPDDxprr|wR?v8j?&LjaptM8V|Si{kIhPb!!36^sQlU8`ug?%PX;Xbn!V@!
z@2Sb*4v<z$;*2@q<5a%rsE3zt_t)`$z0+Ge&OWkWk104a`N>W@!MV}Z>()t*;(eKs
z=gnU4Uwiw^53}E9G112>SApk%1KO7sGJ%Hwi&lKP?Z5Zx<sJXN9NZlD(nc@)|Ek@x
ziF^~!K0LJ?QV?wj@dHn?T?+A>Vy!b35;Al2XIPX*D5-<zI4!l~EK4J#K>5N|`^ny)
zy8Ba3?>ro22|ldK($4z*Z@J&!%iVIrzx_J$=j49<CPSWlVWCwndm6WtHwCsY&1K4&
zIH`QnGQmYx5<O>w502=u+5ew?l4W_sEyxLXp1V`LWT$Q61fQ(&TWP|1!D$JgVnFHe
z>Dk}+aR&15xbFQsa%0`6>*r(i-+xsDk76B^ot6MeKK&fa{3>NKA#Puzeg<@O=rZH&
zr&d;ZMqhN;d3cf;*sY$?ZC*PMUxIK>R@Z|L&xP1unWS<|cG?b3@Z8%h+0LT&hk4*w
zowRlPvMY%@W`hsNlUc4Zeb@H2>Ir|VRvyc>{!+L7cjI~f?nYL2F+Z7U+c;;qI^A=>
zrKJn@3TR!!seX^u=PG$}Ar7<Y6?n|&eH)xeRdag{p7MF$2A@fk`Xq8&Vfa3Iv)^+k
zJ!5=V*|wmvc5X1Ve1Qc~q<>HGyA4}>!I4$x63tp^mpvP@v}Ud6@;ix{v%#~NkkeiY
zp*Btg*?0$HqyHDs`BCPOkoedh@NB~pU+|eOeDxl-*Y{m{z3J)o{^QBJLyq0n=7nXx
zTyW-_^yyx}GlMz44xklQm(FoXlt!FV10RfKna{1v=Y6f^gqC9d6Ze$R3C}mL1Bc@2
z6PvI4f7&G*ZZUl$$FAi&bN|kIv^8pCulD5~N;3`znL^HAs?L`vkJtr`gIBu8WT&lz
z#OOl)Rg3ldUw_@P*sRVe{SD`<gWn1(bF*t=8Vf<^pk{&3Rx{dUlYcz+%)ZT1ZVNW1
z{0jTtbp7<}jY5VS9vo0waahPy5j?7V(>eIr1`~)^FWH$+vDWbgHCPr+-x3Tu+hrNp
zLhoCwpd}uc!SSK`mJM_?8<g|fTlSpnv}G^Br=a%P9B1};yt?<BV#aB|W3Fe5?yo!j
z`L}mAw9DuX)#I;xY{%gsdvI8v{HfOx+`hC9eBN5olAmw)|2Vc2E?FhfQQW??4jjxy
zd+gUQJI+?N@^<j{ka=>`ZSTp!PTczgE;>|SH_Duoo%RFj<b9yydmvgTEjz#PPGaYL
za2ilK3EIze3zA`zIkRtjOgmk;Vde62@Tji3f?T!j>WaIw#9#$L5I9X8+g-f&`OmL1
zoARCe6D#)J`(<6Q=EJ{fFQ5aA5k{KeB{!L~Oi#&9^8vMRE_z=JR|KuL69E^eYuM*o
zmPdF&l)bcCTP)_R)e31}*q6>(@<nylSBuKK`L9b~u)SJ&;OVEmcJa`z&Id2>DQS|`
zuRf=KjYz$A{qNTQ7q2ahyZw1_vj17oyvf5WiJ40wt4|CL8}Iu1dDiRg%nSb&FOPnG
z@AU~MaM5`tv2z*t0M;JXvh%5#-!Ja^{`$-L>%aG1FMf8NxlO)(YP?AFgeRM~adm_`
zT|D9OX~&z_i|5VX=KtsE))((@D(3e`?-u;abr@uy;GM+G)!@LCiGRye>@mG)&0FmU
zU#-^6E7jk6=e6{QTejVh9(%+sEoiuCgHG1w0@r7+AH9t*y}o`~ytmQqXQul;{;;dM
z1X(Z|aZ3wwMo(WnT)FqPLy6~Pr|kgi^`2JST-^R}9XPod<#;{kp7EM{WA(AV?wP+g
zt_R0i!K)2dLczzBUAhu5#Y(4C6ue4F(OE+7#a4UPx}d#V=Z60+v3Z^Te}}dzq`{Q9
z65^dDxj9p;b!tIP%0<&RW@i^oaJzMu;d)i(PaBs1>sSAO?9>iEAz;Pf4GG{p`m?z7
zI_KlfqTI`cOH59$d1vLXEff2G`uY0!3mo6py*nkK75FwRf@$^b#s6NG9sO$ha`%<j
z%l8|%*otn5yRz=@#0kIRWxSqDd;Vd`9@wmN1d}#+QB&n1?PIdj4uHLVx}yHtVVx^p
z@!PB9!p|?B|5xtBuCKEf9lslI2R%<Hz7;emoGP>QmEoGaj`P|34+fhrNUgW~CB314
z^0q1ttG*yuwXhGII!{-W_p#Pw-=2IwZ~MomHUF3KT~F);71oZj)An$ItD0+;EYJD8
z<6A+KSx;|lzuW&f{eE)odcoZ4HP4H8$A6!`-5r`lg(AS2S@OBS-(^*QWxnLQyz*N$
zH@hdEwer5Dq`Dx?>LXyQz0Vilo>t{lT=}IsxB73n_uW;$#8>KDKKc0V10)$p@M(i@
zf3UoNDe&0_mN4*XIei+B4VylmxRNSsw(#GFb3b0rJpS048$5Lz(7tp%xJIA!)j%HZ
z<fSTqKZ!l(^G<+xAVTo-?fSs!#qCQsfXkCfU#BWR=krcv1s^5!e4gfVKJRRBC_deK
z?a$X-#uKMzxBvZm=F0W#wU*M5S=fhL!S!B|jn=ncd#8N+*nWEMOS4W;s{*t-V=JU8
z|12#s$5LmhsMG46J(F!*B_H#7XMvrt)O*7VnMBXE;Nz}TawVr&=`0lmuQ>{zmA*IW
z<}}7i+iUl}oKLNPv@*`2_IM(+2$~WGE`l!kd4P`O)dpuMOEy10*=ZL*{lZmYeOraj
zZ~Q2KpF8h&?#`IwQJqyG(X;OU+!_YEct9u$96y=A746(3K52rF1<Kr{bxL+x4LE&y
zgAVkbro{zXkaPIr)6zc|K34oH+k5xj>r3ag=j$K-`h9aev{Blo3r!qd;$E_C`dkZL
z-EMi@ayvKU@FZ98>4uhm-(P>+bYCLlf6e`GxzW=V`?Ks<R`0IAed7gqu)|U(Py`$_
zTS`Iea{?j7<G%k3i(6Dno4`94%3_w>N%WixE@7T{E|4gX2vP_8y7H3YG1+NXASL|$
zYcFLIIcFq*HU<1?Y2f-?BW3{hrf2kg-<^krAe@uCSWkgCjG)aPmUq~e-~Ux*=A69U
zx9_fRt$W`2zqj)opk<op46uz$B1|-jBbd~{NwC)5<vEA<Ovq7-Cm%SjJZzxG2wvfN
zQ%#~U;*g4q7-yz@<|jTc*=c&58$mm9?jLw5llZb1?5;iY{@3e#jag#9@`ufO)yll@
zx7WUVoA>_t|C^9GYMs51Lm20*-wHZ#O&Q#ztlXq^Om^A>$a$o<uDR_z93%sF{>iAC
zQ#%h|l7aZrns?Ei#7xLB&@%0Np6|>1T`Iro<LjdA{qz1=<eATrD~B$D&^ZYjo?A3^
z{sf!EdFLl7gTpd2E%21=v?pL&P8VMMwW~`0dB|gxf;;D<zMbA{JLTuDjHS>7r~*CE
z^oYn5Yn_u9XGT8_+56;9)YB`8ntk9?p`O&dJihX9kPNs@aq^d_&^g&@k3cgKpi1z}
z9BZAU5O0?C9(vB<?EwkR+}jK8Byx6wTWKkOt3YQ+dq7$kuXh~Z2|9&x`>B)FC$01m
z2a@(|e(-eL-K<9+OAkLaI>O@o;LiDn->=WAfc90rJt2*`*OmF81I58!^S<_12f;ZP
zD!!c0+XK>Gc&js`s9jYBQW~h3FS!Cb_Y|}MV2|7>$?}iCyk>v>pwk-~cYUe;mtS??
znxTs!CJBMV-*VrR|90x{!zOIZ*}6Vq?eR(8<r(|;J%M%{4Ay{VzPiFLy)o*s($N(J
zufKk5P!*N1<C^xNXxZY|bt^v#-<tkhn+M#Q3;>-I4H_>q5($33e)GETzkl3)qu6UP
zO<ZodCAe#I5OzlN>B7x5k-L^{amriXobh+X`>BP$ze#O^3`aynDS?yiamVMDeQIkz
zR#&&Z|Fz?L`p50x^MmEtWnnEbZ*V|Ay|H$#T>DD)sk^$fyt{7a<;r~d{(iS8thAm1
z4Zz-_bF$NBfTQ#D4e>px*_X}rkDvOJoW1z*DU)>^&p;>9t^pl?7?@}iTJ-k*<lMiR
z=hyaS%ntsWVsp#%>&E%uikaixhAogIYpdpcE4iE;eO!3$_o}$<*ZybS@p>iywd{#J
z>>OwweMo}cc<k@S_*Z^qw||}b`uyug+v#PZVcXaKOJ>MDd&@%^RCj}#K9GZWpGYo~
zD2)h$97O&2?9P2YN^3t|e!t_*>EhVm;wO(+JA>On@JRmCGKuqZ%{9o0x{|*de>JX<
zf3i^G=I$58_21f8%KzS$fA@<itX7t&gXGP6tyHVzns2fXOPc!9W-jqDSi3=gZk*j;
z&_R^1xBUNo{r~5$;s2|C{`y`2Z&%IVzt_LMmcJGK<E#C?e~+)%uUr4;`mg%>%l~{U
z*L~$l+52$%Dn|YMuO^RXZ1_{Uv+i&Ir|b1Uf35!i^H*u?{(qn9ryk#WQ|H#!U$^w;
zZ+|WSb;^gR@|D|vS^hX(ulxT|<<IZ`KfTuf|KV%?zaT5;y(ufC{}%0x6`Lax_unAf
z`f9~CYsIfZD{N2wd%fj*{Ic3R|5yA!*fu-h!Rz_U?!JEZZO`@1ldA5OC0}0mdCTcr
zyY6f|ZKAv9U*fHAHKBjMZ-2h@?-SYC-;8{JWrW6sn+US*`<Hp?_doZ$nO8S{t;%^G
z`QLm_S!~qQ{;x%cGar8Czr2lgd;jlUaj!P+uys6i?`Gw#y`ho*_ugOL^8C8JZ*_j(
ziYnfy^{KZlg>LsP&%7@`sfz2O*yQWMo!@S*{QW&X?%Cvf>+5auw%+-8bLI8c`Yr2|
zu5FF8TUUGTY0<=Dz3jaKcd!2zeO|La=WONL+SuDseQVp^7w6R*rQbb&b@JzB)s2?-
z^{tDyE$#X0vBUnBf1}RvXszctvvc;UM6a_xQ(1L$R`LF;!E34%w|rlI@YbAu`<cSu
zTHjlqw~jY^o|~IKaeCFW%g=NEZ?<j!darHW^zTd7|NnID-)Zl=?*CU;WqsIs)%)A;
zzkk(l9cH^O_2`laTYab1hfDu2-T(J}|L^DZ|LXt$zF+(I`2TO){~xcf`+IiV{r`Q1
ze_ER>9lqSsTibfOY<KO}$&KE7Q}(=hz1FtmcX|B(hp*?~nz;Ci^6^h!_kUA%|En^m
zU#320cktS|7rs<4c$^j-A6xg!{QtZBXUrc??!3P3OX=Qiw--M6lD%I4{NJK{=}RXW
zug9-HzP(D1!))uns=W#Ozg^G2AGYaVm91%neEfs&S?jkKuTTBW<R4bQciM*7{Rhmi
z#>e0KEE)eG_tpF>>DA93a?5!9{puAq@x0x_e?_u)GVevr`_}(;$%jon*Y|%l`}=k2
z&FcLQ!k6Rnr}v!x$GU6kzh8T+A38)E#jQ7-t}oEgvw!pZX#cNanO`cme_MOvdZgFI
zm)Cz6Px*h%y64iX+gCr{pVjj3*)`#&)Smxg5?ij{b}N6met#;%+pq4r=~q6)g~Xdr
z-S%q7yrjB=kG_2Sm3wpcd4_3~+po|6x+(Ye{)C++)$+HrCZ8*gIu&#Oq5Z9S`Mc{6
zPI~aIE^dDG??~2&b<xTH3s=^EymWlO_`Y?~t3U61cYgh6rAt+H@ssb|@;&gm=*+gO
zv9G1~md*Np=-98uzl&=nZ~i|~U7Jw7b6%zm+nMUOan*nC6<D9C=8dV|TUYmL<2UYW
zlfGWhzI#3HR<&<feQoA;rF{u|ul%t78nWi{{_C<|E5Dz<xBcwpUvvLey<NXQa(Su2
z->*?mH}}`CSAV(l+tN6dx`VfR{#Ds7e|ve~bl)%2um3fBRjKbNu|EFS^Phih>g!8a
zT0gRT`FrON!(DNiU$5Ukzo!5C`|pOYf8Tun@7Fe8djT5(?K@v|zE%7UJbz)|gPHgK
z{n~408TY@=?AzD!b&tQkPxoOzyXl+q?U$Knzx}!vR`dPi`{i=KU*CSa(a+!i+x6R%
zWiJPJy#2a0?`Z90E8DZz;@00znp}UVIPvY*?7IuUoIn4PbM-b=`_~&^UNbv*d9v5r
zuYb4M%3T)rfBQA+{Jo$4{*Sj@f4$S$_T&Gi<x#)>?UdX8Ygt*9)sor`*W9B$`1m8Y
z-2MEwFnc@egT&UYc_m+)!xz^aoc{0a*KZdis(Ih*pTB*4|33b&4If$KowiTjxoh{^
z_wQcbzOzky=T?2aZ~8yNw!AO>mR;?^x-UMbdgbqb649StR`1#-UX$0qF?8;}kFTmP
ze`~P)H_h{Y`1am~{=fh6E!(?q``KOpe||5Q{JSCeeA~5`)s5eNh1s9I{Pyd=qPtgZ
zt1{o;zVh~K)wypKe*2v+#IOHy{p9oeaq-)ZZ+*Yof4jo%*VlKozpg%b`Rtx5&f9XU
zvdq=bZ9jVJ^zW^8OTzc;y%Lw7E`R*Pduh|RU$bvF+kI?vzuR@Y`Skkh`}1YDTz~)e
zq~4wx`TE;=E01=+{Z@4MYu@9h@3p^uE3!4;`StCNKfgblR#;D#x_<xdF6r~#c5#i{
zKQD;hExN5|e|F5<GygkhH2+`va=*pjwf1u#Uow*WF14;;`NQ}7{Y%R&uEzdaf70fa
z`jR-m?Z)$RZ{Mzb_tWJ2{eN%&e_H?V?Ee4Tzs&i0bK9e>@$0wxX5}vze9MxX8y)ex
z|NrIvKkWZs-e2=~dHvV*>))<j@jw3W<^KWy`SaVZTtBT@dfOsP{p=#nmHzAhD}M?9
ze!ukIx7Hu_^IqHS|8xIV?8^A_7yRol*;=o6{L|ihTbgNm?Y;krKR5s1uqAi5t=ugZ
z_v=-9ySL;gAJg4jb?(-_9Tt24^nX5mz3i2pox*c_rMSAk6Thiw{Qdp5E%CPVwZE5}
z{-6Bw>pM?V`{nQM0WW!SpKbfSuKh^uJjwWa--R6^p#2$(&&Kj=R{xg0T$xw%*A}$y
z5VQu-?EB`qN7lUc6F=9xe*bgO)W(e2XD{ySiMVC?#N^}8qu=AhP3G)7|Lb*pe(<)-
z$Ex)9oZbBB^?l(0sbjXwQtJ1f{gtsiKRbFx&*n$3-*bxaE|)LfY<X<@($^6Wn~VJ+
zMuJZ3Hr!XTZo2F5Uo)N`yAHBP3AD@1aNmLbX6Xm^)cQgdUV6ppWh=LS#q7IV*S5Eq
zTz;JongIjdjMd{F`s&>l+quSPd)L>4X3W|Q&1Ww@TbsT6a_;<c|I4r6gI2wOj@sR_
zQ~qtwzhB-@KYXfY1D$a^^CZt(?@8IWr*F%@UhwSY*Y6@t9iP5;f<kHSTmRd?+A`B>
z{#J9jstAELVCTNu`!;m?>phES#ewXpXj^hLdP<eewy5%}Zy(zF81MbJ3^X6S*VF2F
z1;dVat6sZ4u`%EG&la|*^P@rO@4Ux$^;yfV-!Ikx-3s=S`>9<2uIqRIe>QvnXW8}p
zpzeHX$;oFDr`cYe`?c?!_5PP%zk~K0zbL+Jc}%Eh*XFqOpXVi1{jKIZs$v9kQ?jM^
zUbj6l&;H*3@~axOg&ZW9n;BqV|6a~#Ms*b=I)B|M=`$<e-x{KC`F!WcukS%!IY@xq
z{`vcJ(d_TxNTJm8w7#@|Z~o_hSy0`e#IW(r$9r!A5n^$t<?81q>nQH!ea_&=t6zV9
zL5E9|q4CUz|DV5&*%WhqYRb*$8t*vHU5Y>DnE3Cm5@%Nj!x{6vfmfo}2Od4NaAxxI
zDU*z3R>j^qeyRKA{D@tzc@=vu>~HD}us-`eHDPOg)XR0|Ek=)6w527t%I=#p``4@a
zVY^;iJ6m@0Jl}fQ{q?Q8`}O`F_}95=_q{ctUiYT%ntWu%bA>bhYff9_{L26Jx_99m
zi^Em(1dU$J6#6Xu+DPQW#?N2%oh?`LO!e()-Meqv|J^awW&7?)oa!_VF*AJSsXqVd
z@A!CI>-c=0r$;2UW=nj%GUI3G*K7He`|fa@>JVO&qIBhP`84~Dw)1T*<L?U|>iDZY
zgX6ZN+x6S8|6QN_`D<H%+nfcPIycI4mHys+e^+}-{a(W<!s#oHw+bd($7TQST5{&x
z_42kNA+X^qHvR1U`nCM^&7W1t8tUf)ZXQ|TzU8cc^Y`-q#`j{uZrJC(rMIW*#$6+;
zKVZ*;y>!a$SXt78uiLH|TbJ$IXFO%{iGZ6&Zk&tT^Vjy*eWjm8${Nak0Vf@9@Xe{&
zbM0QCQu%dhCy9ms>+U>pxY74^&i~K*|79-Sy-#_{L=TY0K8M=>wswE(%CAd1TNbvR
zQae^Q=S|U+y#HG+K^y@Jh>UxwAy04GuPuQnsybt6_{#A3=gSXn{XX%grZ!zeed5AR
zoq_%3^X9WnPkv<$4c40eayiMbE8hIf{P6zL|3~lEnYR@^;`u63nsg=k`1ASa(*Fyb
zo?hN$B*dvD$???Mx3>DbzxLg)Z31pD;t#q+_&tn|KhrmJ_iNsTJr)N~xg9$c7k_47
z+wza^ew_>OQ*urfUR*c%&>xeE{a-=ajs^J50l8xTgh!iYc<;eodrHmiZ(9G)%nx6$
z|Gx%xgSNEf*XW>Wo)`T={=6@F$}?p}PSTb9_R84z)5Aex;0Rdu_I9G1+uvn#pT3zT
zH&@@h36vgZa(sQ=`t13ErAZeie*P+}*mI-)*1nhwl`HyLyYzEE{CjvcHlHK)2&dL;
z3GV7z!`(8aw>EzM3U%Gan%Wz`lD>U>S@-xWBrsdg_O$NZGiPu7{q6JSuCJFo<(ax7
zCrRhcSJt=Bf4)LW9r4e$%bfcCLT=JuuwjX}_MOR3nUXL6vaI?WQY7q8D0&$d_pb^X
z2cV>FUb=6Z{;|q0Z)zY36690cx$`;l|4s;lq|u0*Csy2-x3(8ucb|Fc&7ZLFO-@|D
zJ|iBk3goW)*?aaZ+pB;4TUuE;*tCe7Cn9cqUVZEQ(@XuzU*PGRySg^=_WO!mx8AL<
zxv{_K_;3CA{rmPT*n8jp?`E&^y@EH|?}TgJtABV-KkfbL?~UK?)YPhL$Uls~c|;>S
zFsqKO#{PHuly|VKp^;trdh?WBzfgo0zWF;d-u?S|jk}NlNmX9FMs@pjqjMMj*OVhW
z#Paux=c^zk0w~ecyxw!Y{C^KLeTSJDiGBOkwe5efTY06rhVsM(lNvWPT%W%Ay!-zp
zmtyld5?lU>`n0tE*>1yl@7K;%|EiopIqc?<h-IIzi*K&~D-r??L-$LW9knxB{@>G#
z-}m44-!-+UeVse@+-FgHxIdzJ-yXph{@a&TYLufdKecv}T*+d>dH=?>lF9@P^>YrB
zKlJ9Foxu*u9wwaoH?L<;e)jO)skXQ6o<G{Qq@9sw$UQMz?V<G5S$g~osfWLT)a-rv
z=|F(roQG>V3pUB6zmA?&vNv+|l%(*CZTmK^g~%=3)M@B<=>3}-TZ1XW=?gr69NV_+
zv^1y$y+41!{;x4NtN!Kxwc2rd^}NS5vFCNF-`G2CDS8#wcloPszv*VVJ)wU0#AmI`
z&q>a(6__HZ-th95?3=S|*jo&o{!gCAa-nk0_58?7U)9zcb=fYg{CjMh+BIfS8FK&3
z>-U*^B!48V4f?e1!k)V1XyXsP3+K47&AOhSlN|?k%#W*k>P{!0J;0tnb@KPtXJ5;=
znKR3Siee1)Y<6JBSN@&*_Ur*j2(7<=;~Gy*vWEJ^M5~v-Z{4hZ!?4BXWz~l;%gXo_
z%olE4i>U>Ns%*pDx4zfFdY0R=FZzB#JEQQ?)3migU9pXEj?B@Qe=#cdT$o?QYJGF|
zRen&OT@ila#<i4MkkO#P+r}Ve9m@}@4$i$Yneg?7_K&EN>&;uePVRQv+jMMO+Sl^7
zq994IrZsh7D?!4`zJh{*?Um@8ob(ubaL7Sy<5ldrF~5qnH|Ojtc2L!JMf=9hdq^77
zzJep?igrd$c9=cb+i{M`(VKrYE}Ub*{FSS0oB3*RAO);nuyJkX-(vxOO3Yumq;5-G
z=VwVh!nq)PL-XFuzYPLzFZ}m5xou1PD(xiM$wH)gkqGl<T?Ko3Mfirzdo%xnl38OF
zYj1APYjaRxy&(L;foogp95|G}ERQ?r_bu%!vy)^Y(<@PvZKkX5OPumdS%BhfsoTir
zMIy{Q`^p?t8=m_m(zf^bI;Yc<*FloQE-vfaD;ZcorS0<?jfQi{zZa%@UZ1_?#0hJs
zx9x7*q*xgj_E<1(m6y7mCBg#AG*{|=Y&z@a2#$ic?Z>uBv08&_`YUxAIjaK&K<O&r
zcVc>VZxh%rxA=Q=O}V5%839Gb!i{U;X3TwS%EjbtS;&@UZ?f&GMh4GQ6{CRPxK(Ju
zRq$7{KKys8{qON_hyA`ru{IvCd*b)D{n%D1*4_m*E%qp`Cdqk;>D6-)9+<)<<tW+7
za-l9GVRf*8z#)#mEB{_N5w=)CVTz#of^Ub<h3U3KGQPxZ{@eAJw#$FBE}cHV{<Zk=
zlJ5^z-;eIO+b)}B##P2}dV{5jJk#|o;TldS_nXe|6(_9Kb9ClV{MLTWSs}W%sZGG?
z4gcJBw|#OVT({1)a?SqU+s?3M7t8Ozo~?8IrGC2JUg#(o^yKyKjU30T8UJ>=eUoD0
zRcyJj|J)zp#1~d9Mf?7_awtCJ_icCBc8eJ#BVWbW`=*p#%86s6{T3Ofo3lRM7j*LY
z@qfi*flCo*8<*)ieVXTRSaCw{BL`*<*=_bOE!%tAkGXhXioHMAQsJFjuEd4E?Pbmn
zp1qE5x*+)NLM}&2_OAVkEdsy)FS&VPQ$=p0ny%8PK8N*+6V|Rf&?n$@NIr_UF~|3-
zd5b{OfB8}=C#luy7q+;1+!M|)G1+uoD1$@s$iEBe94V`nHz>DE_|R_VtPsuH2=;kw
zo7=Zvj9_Qa;%UtB{q&wgQRR>JOb+Mg3KKvLfR-EbQtXX6z8^uR*T0Z9*<@aLU%;v3
z@9P;hg1^!n7?z)oZ@3`%Em>b7VQuDbw*=Xe_ArOXRg=H<DwN!ivtn$_IeQaq==oWv
z)SoX*7TEOU_3kYlC#-|YCvrH;C;ZR<_1YR7R*XzHXKnbe)H2~yyPktW^yjY-XE8M9
zoV^aQozY~Iaol|dr}nqU#T*VqZT@QASb9U&ilH(4>{auo3yIYk3?`e*L&5G#{AWL5
z?aW`YiY+bnKL6P_nFd0Hzu8Y%Tlov@`N{u#-}qhz8$IJUe@gbOI(JZ12LEr&;kj(y
za3S$`;j{gTdp&=FebxE@z}96i%0Y2r@LvAJHJ(~<GRpk#uubiSG{^^MewlAFw})7B
z$$rAxmp{R_pZUqY$<!Jmd}{y1y*Gb?Z8!ecnA3CaJ;OrfH^({uH*9_OOuDi3g6y;3
z(${Ct%x776_?y99`4iWU`~gRC+HdBYv!>^RqSD}|{E2H@YQVPd{O9&9?J3xHpReqj
zOt0<(#qjzRC7#dU8|SQl4_04$|HL_tDo|ou-+a5^e`1hb!RN2~prCv9g!%d`TZm<<
z@+Yo6sRWxU`Ezd0xw(*lnZTct{pwG*fYT}YXOEe0&a#BKLH7QMdq*IuZ~k!D_UvqV
zi-6ES14)q6Ai_I;IBZKh3vt>}^G)WN_dv-eQO$0`TFcMifbluPzR5HdA}qIW;$F$m
z;DEXOp)tpICOFL`irG!zUw-EH+g6_4{F6WQzVw}8&Twji`I&?4t4yQ!F}L&-v}^uw
z*rs+GY|ohk?3+x(AqFz-o49x7C$NE^-#6x*odPlNm+geLoe<&8?|a|)PJ#HchCd~F
zK@B^HY@+?Sz3gjDeeZFsX?|z$Rc^;Ml}cp}*=_AJzq^HPetY+;tYXWJ|8qWC&Z?Jp
zdttu$-K*4dTY4UqZx@)pz4`#h-(x23m%rcUmNZ$;`AatY?9%%8>q}Z}c`v+A$ky4*
zI7Q&s<v)M;wxwN`cHmrS-+R9P;PvL0U&^wVHa$E1<<Ggz&rW>by_m})T<%WwoRa$!
ze-`cD9pqR%tK@&v-k%@Y0-Rp>H@~yKAtisG(W~Qc=DAw-=*y3J7qncMf9%fwg#3y<
zARFeJXY*Zq{NRtATKv7Gp&s`pTV?UJ6dtQ(e|{RQH0@6L2E$i(^VXMK*q3ztcmL-X
z@j2x?@5aBF@Y}QbYl;ouj`xnAp5BdMee!n!<9FE{-b(WZA*cWM&up(>ToL@(H`4Wp
z?81-VWOI0X-!rHl`Db!>U-R0Z??A4LKj<Lw{6cxbzB>$F9DmQxUd8^paLZrmWxMYz
z3H7)mER}oz;I#uk_yU~X_)mUoePfn*K7(q@Ka(5(SgRjD0z2;6t?~_~y8D=?2>iYr
z@tbd3+fi^x`EGrmkR1m0-sOPb;%|7nL2jy_m3jZ*u?;`!s+S)AW^id=@Y=wSW%Uc4
z-<e$eceJYb(c6Ds>~Av{)UroA-?et&-1tBL+0E}7*QQhihY1$CXUwT(p6v{=cG=DH
z4W`QfSTz(M`X7E{eM3qR;<D5Gn%7D~0)FwE_zlL&_dvlWr*^Y^m8s&s`|&RpSo3ar
zACYad=WhJV1-555)*rlAQo*dD_+_~vD1_P}A#`+K^V*vqKq2Js3^JV;V*25Ktkshr
zg8l7wqkMy@6vW>wzxmAE4&Qz|mG9PJhTqd)@wRRM%`IEB{O4EMY~R-R-@~nP{2#xz
zz9Gd0F=p?+=Cv~+rXPMCzrkGS9w_uP%WB!9g&%_aZQr}@eL}VZB>0~E5`W{{0uDZ@
znEMBhxj=(&`@Z0{l^-C%x9#82s>2T;!IxFb9=-Vi*cjfm?-Q~`AjX{e#kWoEAUJY*
z*VG@prvUMF=U3UBvyBj6Z`jwo))C^a&#&S)7;``Z@7UGyRi<o^!1G=GJ|de95_r6;
z-zQ|VKullri_J{^0L1iF?-Q~a{%{949h$FpwS0r=|GQxC1^ngyc5FXb$=Q|f6S99*
zvuh}RTW<JOHix$!?7dk*_YYosQx1*|#jpA|r2poDliT8b&1+A-mtD|uW4_y!@(rdx
zAO<@9<^J|;AJ{<N74H+Wzd#K9`9-$I;`iOWbtxBWW&Hmu?LGLuta=(_{w%-y3$LB|
zURSMp_?^j|ea&kpz6VF}=9kttX8nNJH0vL0HS>LN1gl*x-(dQFFF0W*{NmeoY%kcR
zvrFp_-rECl<Hj$tIcKWhZx6T1;SYXkeRbBiyzk;xPyC!;T3?g;n)f~2D#PFSW&8#S
z+xL1P5B{Iuvn0GdQSI;QY5MoqegFQ)dh>ic@#)`Z9|-v+p3PTd-t-}{TFNIsCHqme
zyN2@AhP2Dlx21mZf!h2THhVX&efb{TWK_FS{_Sf5o6Virn;ZTbEV(z~8czlD0^Z8Y
zbE+0cF+X5jkaJ_6+f`66Mh?{4ys)JzIXd|PxYr{Uk)M+-WCL!_&-^;~EpHyUN3vfk
zI=^yF<%ef$i@ItTp8R@jTiYRUzd<T4KPTD12HbD>`BnA}ZxOi1b-!oBcAaZE6_djx
zkIuUwQk@)q_ztLF;G8O)JjeR}&7W1E)^EWjADO8B!*6tbcY%h*Hfo!kyLaQ-oC>hq
zy#&k3{^U=({=2|^yXm{8ACXvotGsL<#LY3)$<fS@A#Tpi&&f`MxcTL`xo>-W!EQEr
zaPP*oCl%oCkzLum`p>`np5Ol(JHPT-eChVnUxVf4roVpswX#0G>%*y)(U#}VZnwGS
z0O^-yl<eEMcIFpwU@m)JzRi3F#8QUZWa+~%dl&S$G+mxod$LOAOn&C2uM2d89?iRu
z@z3vD+C6aRV%E9*oNSN1hLGVdiRUk+VI4Cq_6c7tmi*uPVjX+-)Jf&7$G%A4o>dPT
z(n($5`S;j1w+E0=y_TPo&4=hqo;k!0>R%Xax_{uBNsTjy^0(zH|GI5E_7H5H)Sde`
z@43`~Ld{|G@7`SAqu`!OM$P_>Yj^$tdqVAp^lhnLa6c)dqdvX*@<&i?FrWQszRgq#
z(hCawcg*bA6J|%rLZ%td?jO9jpa$G$YW(N6P3<YTYi4r!{*7xJAoe8x?ae)V8WPSo
z_ix@i@h8}xw%^jXXU)n7^*=7u)F($be+Jvr`{R91eig(&n*WcPslAW}bq5Sy+&^%Q
zrxt8a<o~&EcrSu`nkMh=-?%0N?$<V|{gb{ewG`s;7yCD^&HM$n=h?sVZRP>s?&XCS
z^~ur3UqLCMZL=MB;`@z37d|a{eK7jzliGzr2hWwUeFJ;yg{a8}(@pmU4t4xJ|I?&t
z?(uC-rzfpr&zw5(d&@7b-ds^ea1UygPR-3UaRqP&xaO1`UD_~r;hYdQEj^QMS2;L9
zIc>%64V(7{Ie>%vYwNLXRg56J*|H2wwuSOSR2;c*Bg`6NhTP$E-?*5-p%5x5b^8^E
z38)vj;_QVRVZIO*PKVEZn*~u(DkXJWiwC0O+JzhKYa0vdpC0~~yg6}s)z(Ib1o@)n
zMb3|-);78Y*d3bxi?=sdlpW$~3zKbEWg(V7-LQG@FNpJ8LA^^Bu=8G7nQRMHf~a`6
zVe?)!NdL39{g~M;7Ep?2(y%qza8;cHG=y}eIwNIufPlcM4&i{WiRr5+IYV;YpGAK+
zcz$`?epfesUriqOp7oX;r+@n%`*yg`)S9(dq2`9%E&j$FQ?9ZWqae-&e+6!YEe89s
z;hS?p^j>gxknt9OZ>{YLv6kK1(%atO=4Z_O$|c2+dqVmae`A&@7n8%y4Yph4rEX_K
z`pOsTIC548UI6ve!G=IO#SgczF;(&Rc1=@{=f9_={@#1;QT1aN>Nwt%fHNJ#+x7$7
ztXRQ;zD1ttwuUIUd!GDzVdGvl2T*cbZ~WUuVi#BA9MG`65a+q9xCvh`)Ny29`U)Ng
za`?S)<KCbDK}qeQ`rGyi$Ff9BvZn^U;R2a9>mN8d)?KONs9fXb2p-5;@b|)vIEY^@
za;4<<w!68Wn7qzBe`@d>ZWAr0+gY06p8tgv89D2hg1h(*i<LI4b#nxlPMbOnx5zU=
z%Lvq9ONREM8E^47=87<Yd(l&QS{AMpIPtOy<dgPgPRiAn|AWRD4rcBzx=@{A-(vH!
z>T{Uo(R~iT6*sJfcmp&*R3iHA|FYfSlFT6-ECWi~ZIhqrT&T*hZ!vjUwINKiGTcx4
zkK_A=fr7A1)ad4#Z0*|W5a2fF!IJshMRHbBir%~KEpc_bC-@?RWz*Ga4$x@Sg2fka
z#JyJpWt@gSw}j}u?cfog5)-D|uWTW{zsQlZ`a8t;?u$3>z2^+dLkzOL2e!@P2Pe`O
z87$iZYdJu}L&y5un5)mWgNBFrWqTdARq^vK>~UcNskmAVPR0us3*HEWTbNwEw;dE;
zj8;;OxnJeL<0Tgm7S8!Li)(NDJ@?a-*Mo;`o-PSD%eZUq=`^Ear{(INB>!V-o($1{
zd%*VjPICKpOA-{Mj3%B;x3kj0InuA%V8Qnbew>w;zCKu6^l6`iwd#ho$K1hwcsu3T
zHz|2Yf(wT0(3&mbJXvMK<*#6e%~I)oD`LXrC|TIF(NpL^*z84$ErP$p4FucnxhpJx
z4YKZFq^{T|xmhZTzPsesgnHc*&6xBiXY*V^P%Z5+S!Ki8vSa50{Ir-Mu7U)rN@mV_
zWEF0pB*i#Or7?G_F}Q5Vn8dQ}>N!Y|d0x5^XRQp5BQ?*2=(j!KIKpFG8{D|s8y7jg
zhugieH}RCZnw`PI^m~G}i6_(btaOv6PlEq0sBq@2MsWu?V0<SX`*uqb954`Dz(Kjd
zQ|Lw*+#Si)e|w-I)R-$`0#4(}lT{kl*13UGxSFRz^xK|>0Jk{|vs8N5N-0BH4<EYK
zPO4or_bl69@$=XH=kI_1iT2X_sP?F6$H^NiH#dgaD+{&o-*%p?GNHH3%|SzXDg!7`
zwipY62FgHza`B=Es61cbdFjUW`fDba?oQ>s{oQv`gNc=tV1wBcUf)R$rne+H7v$WK
z1H~P(&T}20DsIm8XA18Z&K3I9^7<sGx>;H6*|X5|(v6Q*NgC?sHoSfM^>fYNz4oQ;
z@6JE}lUMssb%)JzUFVqXzaRg)>m6fRs@-1Zbt2isZqfErn%`J&X*TAT*g;&koaI~M
zOJ%_+g6a~tHF@8Z*a?BA#WML_x5!E9EBfw`+ZyV%QQJOqPm76Lw@T#dDSNapRAlBX
z|2z?tRQ@daD0E3ecTxsu@Yr&Fsnb2@ZnY<z*C%g3b@F#n)Mw_s?P9(sgx9Hq#<N+Y
zOnTpL@c`M|ma8v+diK-v#ediS+_g{t{pr7v-#=OYXNkW*zgEBS>6NuIQ6`H07kxVK
zX)V7Yo^g?7+eIHwa1gp)zTs!AYB)tWy+O=3LHg{J6QI%FEg4L=GnT1<#yl@9;>=k*
za}vmPSB{^1Y`pvI|L4DdefaU`uKoO<rfIdSe%d_0&t8B3IN$m?yQVrDFMnG2OAj2V
zmTz}5?ESsXzvHr=JE#mkb>kan!eZyiph3iiZ!e$lyRE7?MNr-1ZMbq3fA0JV>M{Kw
z=S}~7%lnC~Nr%(C0^7>fbN1+8P`Gt7Oj{l7Mz+8NY1vr^0{pZ<4bm6CS;}_I134|k
z%&;xbFQNT)Cuj`2q*&_rjs=rI)2Ua2I0f3&d==VX3o7>9ke_AJn6o8V$VsxWX)~8+
zifu`8)T|0yNHm<~%vt<i2sBC8kmr{mT|50qfZrU(U6zfxUt&Rl%=Y4$$+pYokZ_wV
ze8cUrs?n6mCkk$zF{=7rJ6~XVtlu>))%T}ve9uf+?h5v%e-)F{^M#Hgn_6B6Mx}~W
zGx07uU>0QwcBDxM)9s9>kT6!r%2_^jGRPxyt}ju1zi_I^r<T_jqo0cWW?H)hrUT^T
z3<1-!JzyVS`NVDbYoEWv_R|wVt=f(6g%7xOt0}e!{&K#*eBxX_UndP^KZe@*2h4uy
zO<Xv~1vKY+;VkEy0$XrEqWG})E!>AJ+b))Og0hH%x%!6QW8R?rz;JiYF}rnpR6s4+
zWOMa~-ecY_9LnF?^ZXQ~-%e?P%tsrVWHMRD`13qHB6;o=>%^}Y&fe6$^fhH|(5H1^
zqxN|xXsA!c7o7LO!O3uU4#>&iASx+ly8U7|B#6#t<}7~?PKHq9QZ&>j;xq0!+&H_8
zy-R*;%YT#KW!d|xBu=QY_Jr&%%f{?4u}Y3VIqF|L19=(|t@k0>A<r+_8YK-VfkyH#
zfKv(79m_Y)g@@1qyES`Unv8@vkLCF>NcT=}5pa9Ke|L_9*)Kg#&@@6xu~c+v!K1IB
zM3uO9O91CG3(={s>x<{Sp0hmv5~wxyOU?H{)ZZx{0(Lp|mr8W3#Mi$US`zBERo&TK
zePi!Fa8wwS6bs$X*b5F4XLI#U>;LQQTLNm3oxeM$#Ux4}RQ%bN6boH_v0J5KQ{wN1
zvxRT^K|Ca}%d#`KBpB=q`<Ks_*tp$S1?Ml2Idk*8Kr#Jca-QF*<S(({axL}6GnH)@
zE5HG>ZSS7F_g}AHTKfB6-ucRx>3{#4?BB5CkM8A$`+JW}4c=ZPbnocOiz?YuCzU_l
zGoNRJUR<|YX7`jG>h>=MmYTSAt7U;E4YOXiNgU0-2zGt?*XbvARp`zFr;tAjoTprp
zkevlC_kMb|YdkfyG65GN5KfgPm}8k+Ccn4)`e{#a)A8*kfyEVj=YR^V!<l>ezUakW
zSBH2=Uvtykb^ag^8GM-}bo<3G7f{o^EiNcYI(9xd0)9*GI_v-F^XpH)Zr4@MSi7D(
z?)&%Wb+xhY?$1{QmG9~gWB07{{{))qdle_NxZ>;_khX<lSsj6MviwvulqWvelFqbA
zFYdNF*qhI<?mn@rB6j`~P<p?j$7|Si{WLfm&AGl=>HVY9+DV`i+~~_BrrWQ6f&IVS
zch92okH4G`Mn4VtZB#N>==KYKRZxMO{x@b*`Nt?vu#Y8w1y8KCU8AZB%6rTIhD<8`
zILj|EddU-8Nvp`toGp{UMVWlbrX;E5&!>P|9#a=io_fRWye6n<GAP+3bo+%R*jQ(E
z?Tx+jg291OvPtRoOC;g2AW&v{s6Kbil;;~>L5$fqS@fWvz9y(Zxo*ZU*md2jiz8J<
zXwFr3<=2nC&Y1+7o-{%-f4Qy1h20gl%b%<*`n2y#o{(YJ_2Mp2LBcb4%@MOIKTw7~
zeBoqQ&hnR2Km{F0*lvxLD=5qS@(W{<_FWFjGWI2#ly1JXR0U03LY)k9TjGlp)omAx
zy+FlFn_pOxwC!?Gge1O5aou(qMHrGC@@p>cu6Vl=>=+)~^(XAs`GbS7_Plmu@3#<8
z@n!$k+$KtVegD)gpmjY9t*6~^tJVUQjXxaAb(U=W6>&0Z>62K=UCEufUp6v<=J}k<
zbvE|eg+YSwxYF&H$&iqR2t%CNr@HOpafmbDMI=eru7NnS&vn~n6k)J4FUWf5EbgBQ
z4vxDUPn7+NfP@lAc(N#{CX(2d+*y0!lozP|cE9wv($$wKs!YEp{JtRT9kaM!l=GDP
z5B|FwkC-9r#9?4R+`!x~8$tD1+d^xxn|{jLAU}ici8$HClBy!~<?conGpR^U#hwfG
zFZxtBT|Dju>L#?ki%41B7Xj%{_T1h0*8b)0<ll2YJ-wY?cYk-BpSj@l@3VXEZj{ab
zwp_~b$A;QmS;54ND%PT1pjAL#1!4KUYuevMcua<jps?;rZp_`f3Ea?q(P#QC&`=vR
z>Q#GRmfK_X)T;~`&i5|Ja)+$$7iBor_I9E5wHtBr+Tix@yNHD7yDLHM-^2a8k`?=}
z9_Ip;2izscrEb6WV+G|Q`&WIfHevFsD_74+ia+-{f8zHG?%c5E{}nwM!(Z<r9FCuE
zT+m~2Fn?FFZqN03T(^`|-+8``5=?wi$y&7Qp1>&&6^r%T-R?P;>pbzi-VDmWMM1Z@
z*0#Tk@SeOLJPP!5&o<FY{<j+^sK@4mn=W6~WhI?2YePE@58Zv&PdJ`s#R_VzJ$3h8
zKkaz7KZJv>@zyq_V;8<~y(s}NTd-JL+H%jidd<_55PO;4ZalC}DiYk&%IIg^c6A;X
zC?kM+DR9dc{^Pm3pMTk}LoW+=+P;7POQfheK5qT<ufL6tXfMxudO<F`a*tmaxX<fX
z?X#f#z6UpKmBPwc3k9CH8y)<vGlLqdm7x}!<ZdPF`tFkhXN}8sy^FqI@BoD$cogwx
zptA0hjZtynftp6QTj$KABSHNH=UiFA<cxmSvR$C{Vy75Dj=mKPmPr*(&ZuH7+Xd;u
zUS7R%z1vMq(9q+Gry2@8Yu7mVftHVL{9h?*yh(0W9H<uswtBwF-YBW{wxXbdO*Eql
z<nt_0nc{F+d&AmqA&`#B`UBe_)*R04=lBA0x&J=!$fGzotmcDtgqRurS{4qA^BZ5X
z64u*`f?J|5MNfoXU#SRLs3uVr**JF{cyug%>zNZ(8C9*Y-gVuTFIkm)zJ-8;aKTH_
z8)4O}Km&yZQMycf+rLGefUYZGy_MYiwiJ@EK@JE!l?BRGJ#RNMY_p04Ed}|%rClkC
zzjw<twRrwppcZ2$Kl>NCs60jgUHA5c`fb#|P{f_H+ENTuE;yXl-LUpq1lXs#+mC&l
zl?)0{<}G)aZf8}Rf~qx8Dp1yiCOJl_%-**mdm(+*iDC!B)K`Q0s{dC^6uT6myM6(v
zdU8<K-LTd#3}obo$!@pi9m}a?1y$UvQkjjpTlbWK7Mm=XD0U<4G$g;dMI~43t_Sz?
zASxhTbPw*F)lWsiZUh-PEgWPZL+_Sj-=gBcZZx?BcOxF-O!vZ!dvkbQ_>TRb68|rp
zcx^@8Wo>~Q?ROSV6x$JYdbQw`{txYLQ3=r~?f{n^8B0vJUH=5m4-i{cgCd2Ycgulo
zaCb=Eeq9MJ7cO{k=PZ74mE)9$iiC6~W6sw-OimID?M*H*-OQ?F1=TqhJhF4H+MK=)
z8qICnIC0xw^;+fJ{lR-`e!efR{U00m|MXSkLd!cTIZNI~tbQ)ad8qyE!ii!h+|;!d
zrcCq-xOqh4S8}85I(1MfbU~gwXYovM@$OK+X5;_Zb6(})W;yji|MS1dN@Xg#?~t2n
zDF2ql<Py`>j7rspO^MYY-(3C#u0KG&aZ}a?)#D&zZ^4ayzV+dW>Wn2@Z9Z0k8z^;G
zJh&@++`_(qMvktqi5s?ki-7io4p-({e0nFHspz+R4k!;zy>D_UN@Dr*sassV?g(cr
zVcm4`1h`uNvtpvyCyBXhz!m14FV)g(+ufqPh1aWt62{Xdb+S?XwOb~r#q?j(T6$yZ
z=U=5yY)kIIduaBrcC^~K9oGi8zP9Rn^epVZ2JK51L>V&dZMTa$A-v8VJgD~NBGc^`
zkc#tp>F*QOFBZc+vY=n=hTCzlj~QyW95Azr167C2NIIta_JC>vNH;y;cG!^@)p3k>
z_1r;?h-34@8K8}b`dgRfqxfytPg9HY2WPO#y&9k7s^S#=cgXDpWw5Q{u00DUi{5w$
z?(Z|qT{AcL>l{#>$o3+Ib=$>aE}o}Lj2zUpH$YoV1-E#Fs`zc!Pf(BX2iG-U_DKD%
zikR;O9`J%#+#%rhCjOv{gjHmt%sO>YTC#tcvem@zye6c3d6Fw<@pBPSrQYBdmH=(Q
zJlqo}Qi){n>CECAFKoZ;iJDgd?fib`%2{j+uDToMg(t{gTP_41hkAbXfM2y1sCDLi
zUVB3CyAT&pn{-c^P$mD}jWB0=-}O%7@m+s_@47H(#oQ^iV;4?ky{Ulo0K>u(q}MJ1
zwL`!i%K%nrSK6U@)yBDTL7-L+1MjK>b~<X{Hrg?^PzGt)MW8ks$d|YLdS%vweYsWD
zxo6=_ksA-IKrJA~S)Pr#TWY~!nW4tI?cz6Z|6#$*D>wXZL;CP(K?%~i^FbCfn@nc9
z{o*&cJ$%6@>&@ds{z@9keg$DGS?9E`3qB#V&OLMD#PTI&%^e0`CNWvY_=6fE3#N<Q
za5Dy*wIU~pM|aWR{hkmH7XNcObIn;_a|tJC`P|Af)+*1&+!BamUZ|RW`&xA8E5tb<
zBd)81@>an)VS#9V-{lk3V*EkfcP^8;Ot&*2P4NpQSvkvX!Oc~N%bFW{zXd?N=+~IL
zr5)l$E7NV4<skX>rN|ApW(|;;48F?`*u4-~`Ww{goaNX1%A^C_>73=)n7ySP-094)
zV%>HTNn^DJs2SF<EI8Tv?LttSk#QE-7I1g%LJ24lK;5x&<J^A%;Mf7#q9Xu_on^rc
z(tj6%Vu#;%xr5m)XK<&}WUf@S=`2X6b78*K+y9=0S}xQ7=UqSl$-HIXOBKEM<}YXa
zF=l^lS91KZ;qQeKuaw2MA_Av8R3&ElbwWMaw(#YY8*c4j2TIKHoA~$rCI4N!Hzod#
zx+3{5ZqG4)mIb_(^F!Au-G8*TebS~=$A24|%vHLb2?;~z%bFXZ0hgFzrMm6n7jO*J
zT`K9SoU;tl#j3kh;#Jx6EdX4C@%S!3Vz$c;l=VT&Xf2M;aRH4mOll0+6X)l|q5MT&
z%B3^MBtr?b=+Hh>V5yB;yBfIUvCj}VYU0<f2F`Ex8K915vsx6W<5_n}!K<=|%@<r=
zW<3V=LN9<*-Se%}PwcMXodquUt{emP+ZI6kZE;HPADL!=`)xtrCrKR5hUjp<t-i6B
z%@>pq9&ULiQYF5A>SWLo*69l!r`&LZ3{y!+xlDZfr3jQl+CINBc@jHklmC`5&7<qS
ztX;xlR%HolTJLY_4A{d49;Nv(nJw^C@|Ge<uRB9Pb=$>L;6Q3)3rvV!3+{S8+@r=@
zDZc)t@Sae=t@_T|nj3q={6MK7;N}sHIDK$#09jjWtMd#zP*dBi(bya32kPm71FR$i
z(p5C+NRnDUbuzd%fI1nJWDQI@gl=a*ya)-@W@w;h3LLfZ(^dzEuyeD<#@;wTu;<rY
zU-1Uyu}z?<hhJeqEY`8}LFuplR=-LV$feMcPOGIhZq*tP?U1wpa<&1!Bm&77ZOejF
ztp9>D11RNuOKj8-nljPjg85vb8!z}(LF<DTz7#p>SFHgWMua9<aDIWNIjB8Cu<Y!7
zS##6eZ{WORU@{jZ><Vf?wJi%yl7`sxaLM<ijMzC$fkk1GmHt^D**K2A=67u|Ncz9<
z<&+a{C^ms(xA@<jGuMu0^Q(gD$)#p>9f5nk1%L*+KrV)5aF9ph^^ZgHHALboIFbEX
z@N&u}iMI>EV<6ykf6Ez^?hjum>4FtJP+{;89ylXHN(xX$d<!XrAo&wg@__vHdx7&5
z@N)QUE7w(*6}(u!DSlu0a>@?3Y7L<&{U7Afb2bhGtHDJX$Uv0vgOoiW;oln^L^w}*
zsJxi%$C>k`9X!wtDM6-y<{x={m!AmhT?SnoI@|Ad{U!6c->h3tPv8GvZvE*$zcox}
z{m9yL^hWWmg?`l<Oc8Bo7d{o)as2E;2LY>7a#ntgHFu=FK+EPX6mUIx{4T%=v{tk(
zSo!~En<;sEAvgBqo3lPBJgt6je#nWPOfT;_3u_wO{#sJM@X)gh&RHpoZ%+m-bMu#)
z>Hd7-b&*Y5UI#|Gh*&eNUFKky_f-Y5L~~Y@)Z)vNK}$3z-)dDnbit16Ntvxu%Y+a1
z>%CpCInUQzl6igdHjb0kOu5S(?6f#lL2D5=p1!id%~?Y*g8lCKY~hKYFZ6Lm-ujxM
ztJEdCa<7gOkL@ytyz9bF92@`pNBQV>UwrI&NlEGb34bde#nXlD>R#O)N$y#X+c}(X
zYfQNPwMD?`O?_N>*P8Z!K^~Xaspkq#`u@cI?b2z-GFVhW9F|?)jWu`fcEZ+!o<`_O
z?^@G-FUVUMqKhR8r0^D8;eMDx{<n)9?DF1#{9OM+%yiSmb)KMbU2gk+LFs)RuEcMr
z!9ip6t&8c~j<u6P3+^sxWyLHGoy_6X{x+Mxjl=oB`h?qGI|Q5#{ofM5FT>WP%V}1b
zZD#j`J?a<KZ=Lj;uLfEcdtHo6u<e<@!uHpUiY-&@ztl1P+~Ez5g@s>*PaKb(1@bHZ
z-1%;HYc8pPL-M2WhU2!gJQ8Hf+V}ZCkTZ`Ha(uDjum3GO-R_GEz`@2*Qp@ynhrKXp
z<?j6J+Z10fv=zCu<+W#Y%M;s`zdc$OJ{LamwhELs{s*33zSMA*F<7dx&tE})dyJA3
z2j_n;HK+T>I3N5iV&ah9CcoQ)H+xH<P-E$Zz1wtO{BzD$E4cmDL%{0LKliyaCp_EH
zJ_(c@gfq^td@AHt1$oOke%ZucJ};0R?c015<jn&>#@4?$#qz1}zY17I@Un@$|2)Ae
z=J_bdU-egVc){^|qpI+R<98>!fR^I+`8<}|JK06RDu<tUrh{GHTo=$X%?tgUPadCx
zXe<L6?I#3Uzgm(kb@Rn+P<;L0ET#0srX<&CTA3|4;Vj4$K5;yEa*Ke|oA{G1FQN^3
z@93$6!%|py!*Soq;IMS_c_6pl2NagJUlN&q?hu>=$_n+D+HP*P;GL`jUbQT)HlhEw
zDmbD{Kx$&aY8J9zK5_kV9>hgrJ__>R9YCJ_@1=I=LImfNGFy;$=U?5Y_<SLw@TM)V
zJ)>Nn$Tt4-R+gSS3FIdJx6>W$@}@vMSIhb2u^q&yXWq)vxeyh5r#slan+#D=#rdTE
zyXPhFs?xdBkD2UJ;cPH^!rMFD!8UKAOTz@gcNfYzpFHM+7_!Y<LEhX05<;<3H(&IF
zLa07t7t5!@Y86nfZJ+0@AYbkdR<R{U>gJ0+u!<KuSUv@osxY<mZIGANW30X-?a6Y@
zvHZn$mUo5eDuOM1x1Dz{ofz7!8siVj7wNSDKC#n_Vq9m&zp~4}zW?d()<?2GvUWR%
zPvdl1+#>Y;oLa_R^HiZP8|sDf^kZ5o<0pIGIQ+?T*ZvKT-}fm`-q8Mca!Gw+^SfF{
zwWR-7?LEuI<T7e6rM!I*HAm0;%F>h#%(XYw82PnzUOqd-y!Q7p-y?F{eJ}lO<=u5X
zi|fvQi_pmx^@)eyrEjf1u){)ka*EEUhj~~2Hvbl1o;2y5e$IuzTfCSp#h1qm&2@FU
z*B`~z_*;B=97JZ18^6W$$A`R(#C{f-?+WrwkrVg6^!8@!p8AU`JRSL}wE`obJihzl
zwFzf+gr?_rakCe7b<@?@EZ<F5NuJ1G{`ilQFIQ27f9EkJ`S))37kS<|EC=ydd`L#n
zl*2-vMPi(V_OJL3{q4T20M>s`JXYx220Nkm`Z+iLZdqAdq~}+zV%goYL%x*#;lHDr
zeM^3GOP9R=t;<<`L#p$;xY?U~)1!sHZ7>2mcyInTl{bm;DtF^=EU1pp?!56h%N-n!
zQ70OHPk)@`zGrtq;^)irybtcMaGkj1%+Cz{UuNDda^)_U-nMej`W`y1#a5^I$Zu}x
zvh@)=>I-Mdy!>~F?e6bGo(H5%`yjD!TP2a-TIS)uLvB01hfZ#>)hU2DsalP*`o?_^
za3EZIBO*Edv7N^!(U%4KyUuwf$(1=idV7;~@9#riO>)!Bz_x|!+}Ur@+Y2`J`Bm!!
zJ1t6kU+4&Zs=JcMerLZ$EJUVusY)Whw<y>h^%vDU1N)+-PDZL6`TOFu3TJi1r4Dcy
zn0pF+Td-*2JH40-dsa_$c~)qve0N^#iQVrfsJuw*R=O9rW5Z8<E)~sFiMq<*(5$Tn
zc|#Ix?C)0|N94qfz)9x&-ia-?ImzH4uzzXFEh)bI&cq&9yF0!6nuRtVzY7V3<+k@u
z?3CH=x@hBx<GU}KMhSi1pgAe;yxx<$*CUm_>`<AMryp}+&-+a(ZxWqV?#18OP#vG*
zdE;=E2RJhJ9i6nH{q6*?$JK2&PADwwQal;)<nY}Uv3xt~3!@Z2{yWrm_xC5SLvquc
zAg($)wZnE*%aYyP;wJC2v^y&!*gLnUi+{0Oy`OR4(U;Ry5-0L~U$p*!%9})9NaP;{
zB`HQok_rzM`nG{V=$(E}OZEL=&l`uoK@!EjB|;mIU+o9Gqt;n9k-u6VVsn+(A-OOU
zu+8)D`+7R^Ny~%X_o7=<usY^DIF9da4-)#e;k6(rq3&J3MCDE5MP+cZyYJq4<MA}8
z4Ly@Kw43&W^Ixs7YU2N!pFF;cslAw+tsz(u^TDIsUAW+#wFYP9jW-?T;%aa1iU$aN
z+i-0nC|mB$pRe*JaXG}$c-zh!kDZ`~mQUKyp4$g8^rcE7|7vI|J?42t&fF60?C+(M
zTWntx9@)(;ZuWkcT4&{rhaTJ0#Xr64R^zOSxbLxDTrcC^b|0m%DV~p>R)9*E{VQhF
zsCETDtoU!fKQi{lPG2Rx?bTmYCm$=3lKJ?}iS2CrERgXQhyG6O+aTYiCRlUlp$BN$
zt@BltrvBYBoC{hm)N9OU`C$KA{N*(-*0b69i}sgqye0ne-3q32=~tr<Y>SBPd$Rh_
z!#JL)lNrozL3PY^`B3;<iD`<!?{EWwuB-dOW~P6QJ+L$4Z}*ZlN{{;fEU6MYEVJEe
z(H5?g)kahNm457Kod{YgtS!NDR3mB0ZEe{t?@uc=W^GZs^tY97=k-3;JNqNnc2?9c
zJ^amir*cz&G#|)y|JlFx2^@W4sgf!xSiZ#XEAzq#-*%1wr#JOsn_1>`UoG)CrKR-F
z<F2!U$m-V<Ko*?Op59QpQA)%!s`ZGiWS5*^&7JZN(9(EOo|Yt2IUxtmh5rN2a3n1L
z3|8Kr<;EhvT}}zKB0b<-$AicBoS8HfzsSFm6s);Z1NNA+qjE#<H;Ay7lweIrSO;iX
zaQ&srRubZ?|4-;~b-2~LaEagsxBrTumFIs0E_Xb5%;v(Pq4-U{OG>cjP9wye(8Y~&
z#auwf+vhIpS<`)WEypFTB{wE-_7Z#$vu2-L5NIWQTa+h@ytxj@o%O8D3nf&$ORASP
zf2$Q#3F?m)`}og^{cgLK#}T>hI+y-V<-5h7I)TB=N)Q}Y>ZKDTp6$pK1aCB0C?It3
zcx*RIfYS^65GSP{J0!v3UmwK9nb@<>byApOp?_PH2a9~U9>nuJoevh@a^1D}lH>1v
zQbH@--YeY&Z9@p)>%8%}&t=d4ONqbdUvW;F@%R~3a}!9jKFFc}J=bTR*cnmV2abE5
zt&=(I-o?8#2qpdJVsqLkB>{3>y+#+yhKn=6A+hx>Lrc;WwMTEK^4<P^w9msf&vyxE
zRlWUsaprSJvyxQOMFq=KG<sY<6pAZ@lG*&wMGViAzFJS()YV~abR|IP$BurmcR<N0
zD@6sgCt{(6(81$#dq9c9KEz$=$ByY>75=Y6CKMZ<lJksUJ@WSjx8}sEJ7+t-i(9>j
zTUqcwsni$}ilUP^?DEnf=D1us;AgK4+P%SV3KGs>X%G_n=R8rRsoz=(?3ERhST<a|
z1on#aOqHhoYAL}5EjQ{{Om_KDxLygQ^Z$YXp~W)grVs~*cro3`$cC66B6RS0Z7<lB
zSG<&d?AQo)WqXn*gY?{9NNjm4{n)Wn5VWhLy~va0|L(mLK?~mZuAa`a<l;S#?dg&q
z<haxXtM1(G*dA{5#xBH1>Bo+}U}Mf#eQ&>Z^i_*Wrl`>Olojh(HeBTL1ZVh4)u#Sx
zMTj%kyL>1#RslJapLH68*)2tor~WUAzxgDl=ai>N7-OaVuPC1-a^-&DyvcubMu+XY
zIZJ+P%WjchWyq*wW$>{GoQhxf+ug{~^!xh6^nd^L)5#ON%>}0)_Wf1ob0F&KWY8)G
z`;Zi&n=j_EfYy|@P4h{T{yG^nvX!WDN@d$cXYdGzpY&Om_eEC<JdbH9zV}%7KxN5A
z_fCc_itoFY>=s|&GYK^J*M7?<#kzJ1NbAET4=uOo#hp|IkLt8p`6WrOg-EdX&Y5v+
z<x=npgr(oCIs*5kd4Y#1_BaVtim(4P2{J}AYx0fut<%8+O8L)SHU!srf>zBsJE~9Y
zedY}wLS3_pCsKU<pGn{Wl3kOJXvF;ouLqHsW!0H05(XY$u-ACK#KesoGSK84ufDPO
z5_tIpcq}F#qFl<XGdCn0tlase+Q!~*U=;<ovJ1cH#c4vuR-9|qH}=N)fZUmw@j+!<
zU@tgO+JyX*q~FefcsSi*i(cGIs8yC48~L-1zzcr7*qlCg8G%NU>NUQ&Y`Q$f6Ers3
z=I5UzojMaVxOzC?wP(&^eekLxp0o1~Y<r~(8e4FFTO_c!qIL>&4b|d`so(%i)HtuQ
z?V>lt{(n9x^5wzcf#!WqlMlFAt17h!{^r-6<zn_q6Ev`RFkne%&T?PyGMGP0yeEH>
zP@Vb$w8KF1l}Tsrmk{vS$il$MH{8~$fW|df<Rpo#j|3~96ZXRK{iDz@$Y9rsYbxIo
zb5%j><zC!26?`KS4jx9Rv=!f^7gwwbSv7LCRpO}jdhmFi^I5fxz1uuNBRe0Om-+fU
z4vB!QM3|B*bUR}sWSz%8-y~_*X`tXsTye)`+vPNfudewf$(uzff!43repG7&_t%ua
ztWQu9S>G@TJYo?#^N5+0GI*%vl$zT|FJ(}G9S+F%%vo#>c03R7^b=*Ppu$C-Ig4$<
z>%}Zq=Q&+Fx_Sa6^}SOu><U))1WgV6+UCt9?K%lGHDE6iCv-Dok_u>I!1=lA#$F?^
zFAT24G2MPO8REImsvCQ~Ji)_98v9kYUDSd&{GWG<_0dTX{~S=+c2O5Rc*LVS<A~WQ
z1+WwOy9_jYFB*7)2Cz?EXzk2do&s@i>5L<0Rcc@#Efk!5!|f_KIwZUdC%)a{3yCH1
z$v50ys({A;Lz0DlFQ}XZ89X}fvMSit6Et}A`IXX>m_26RTR?k4c=padVs=U$WG!fT
zw&E`&PiLHR*%s^waqlLdBxzmnLc+rrrhDcr?tr*u>dX^myTD=RoEtB&*y8U*j{r9%
z$M|B;gvE}NKy$I@wYVl0fArGyj7oiCEBVTJ;@U1F$Xw5dZnm@Q0_S9%dc6PmC-FPq
z{}+Y2#qgQGlr~|^{u%@syk6j$vUsWxc<@@vq%(I*5X66ulW(~7gT4L3vsvxg&vIK;
z$<-};ly^E#p5SJ#%5<S^Pdl6MBB`}gSOUy)>`gM1ZoixWjt~2c3rkGgw4sF!n{Se|
zEI1ZG$A9eM14my$P$t9L?&}Jj;CZoIzZKj*TB(4-=J16w&o_sKJVEmr7q-VL-FP`c
z1w3N;cG3yA`^rjFz~`c9#NAg0<qwHnniJoCv4uEz_M{tb*2<s=0hcG%U=<dt#htGm
zeO(PsVyQ2dxoo@q-2=1;pe@fUNxHTloZ~O}dgd&iJrOh~8)9bIb^R<vg`8)S^xYna
z3T3zo9@|Mr%w~yz91D)f*e-Ai%cxcPmN-)hJkq+|PUyyqAc(ua3ZC?vtOOoujgs%o
zHPM6=ZLgI#_Nuvp@}t2PJEq%NLEw;ch6saGaz?Gnwu?(3F1hBOBn`L6<y+xQC2-D<
zmgmeV(NuDh*!Vv)`Fuv~o-(&fpiyPN*+<;pKiX;x8HA7KJ)#i@378FUpC<oIK9zp&
zMQZS~a7XBR*ZtS_@3a3M_XxBpi1Ym;Q#-Ieqb<Qgw=-%W?y^?hG`GwR<lF#j(IXmh
z_TX?fF!2=ny<x#bj#C}NUwkKVl<g7$6|DQW$#(?oQF8^=3k&R0<mdn7J^Ux7K3;z6
z{QbY5fBtoQ-b1_dKY4%O|E_o%w8lbZPxtk69-#Tb(-%}ca~6ApV`9#?FYWh^zD`#G
ztpZ7XF-c|H#q*Fw$ltOh_jX_Z3DJ?MKl{S&3g1cKnFyY_(~sD#nFL->==UmnV)4ga
znx0W9M`R_VOeVfDfh=HM=sNj^n=yEmqrsL8A=rXl=Wex)y=mau#$Zc^((O#hI^J~C
z$P>FN&Q1X@v0LdYmL#%%HY8u_&N^YIw;VEQ(5=?ko96|dG>9_k%t5sYoKmAq8gos9
zAt@E&0D~!$PoX(r(_FX%K<<JR%VNGs(zf6X^pIV5)|6uz%OHt4<D$#9%aG;BZ6Gy}
zHOPlAEb@dcJm%4zb)syRCMc;wgy({bU5O}@&e{w9o}k51^-=R#=X789^Sm}^;<v?S
zRxkb?&0gjLTHlTu9w6sHl0vr{%#{V#)UDsd?%C!Io`0J2&BFyg^JBE7R_XRj$h3&_
zZS{@(-X`GMci-E|2izX3g63bt4FtQcmqTjbJinCHe14Dxx@%g+Rvi#ozM$y$`=6Ej
z^|$|jdZ=fIOx~sM8BEu*mb)~4Nc_Ffeewx6b5+pF0fR3YLbqQ)qRP2nZDX$)xO@SX
z0Pd}mO3G6Yf7|(a(ge5JD&PX^ocAIr+ezR8t0Ye8c4jTuPxdeNEHQEGSAn#S&UwSa
zJMqOHmu;7Sf%9Nie3Qh{>{@V?oO^Y9Lg~j@Dv*_KR{EW_5vq`S>zp@>weKX*bdG&V
zoY2h|6J1)2ggD#KjZ}sd_z+=80aNLjv-m4G;e(4Hh^1|9UMbdV`ymC)3YBdae?fA<
z7j3z<-Pe_&^;TtP&T@B1nw&fRh*^~iq~7{G308nhSm}4>e(``LzRyB8{U(FUb&zmv
zglZ>fna!8E(^<@BserO?{fj*=n=UIuVg}ub5PRm7MX*+hub&NR9bQ)Bzqq@icKU<0
zMXPEpa}SB{?Y_PcvexwMW*auU>(7(_DxLe<d;M2k)y6$G^H0aW%8QnZvn<sHEf-Dm
zgUl|@J6&CO^!twWlfM5<y<o%}bHCwUe*bGD)%eR7cCCyy=Y0Msq;}FquM^gn$|nik
z$aw0~VvzKISL^ljpKcy{ym_Bxy^a29kF)pJ+PTQT|Nf~u>$VHnhQ!!CetwWr@wcG+
z`$u1Ez@=N!t^NE};_IIagV!}=&%0UpyYK$jjX!pr@!$LY_^;@<Klkig|M~X>DR-SY
zpALCOh_APVtnZwaR=2pee$V>%rRU#&en0VhuHf!9rmg#*emys>P28{Yp~{->>#knl
z21Vq5vy|99Wx?Q?KEGev9bZ2(UAAbemu6Y&i!#-3iK$wkQhdelAOB+H)-Mg%V3WSC
z`g7gY{7>`Z@5Ietf4W@0@ZlBRIX8Az$gWY*HG0%{MPvQ-+B(gRf7D_`o{P`vfBrad
zzW)Dv^UweJ^7HH=a8bIZ`}%>dTcE`zv(o=PHML)_@4Vsk=l{udD=T;3%lrEMrpyD&
z|7JHnfp>s%zJIiJ7dSYAKHs^2{nw|Q+KbzI4(?h1b^h~@J8b^{d&XYX+swT@5A3U#
z5MND8(=6OGZ|lmko!9Nl*7z^~ynFjk_b;DsK7IhLKfWG;8hJ))`%m9<k9Ym!Is5*F
z{^!TFf8*sg|NbNN_vhct$I!*kuRC2q%Ue!=<9_t-=kA(yUz5+@*7;jrd4>It(d$h;
zKXUfV7u=n4&G*pG3fYZM));-7H|LWd$K3AgR^I2dl;5As)PHz!x5d%T;NtnFo%4+P
z_5W+{egC@g!yT^Gt3SN{H&6cO`k$7Szj+wL{qCOXT-$v;)f=>A@noj_hXth{Zxwn*
zFMSegxi+fn-qGwk5XX43`ft&TYu5))h&$gm*x1V#532hNzVIsF&b$L&y}DJ^z2}kX
zJ8*5DUMhQXSB36A$b4k&;S+Z2KB|IN9@pMCXzUe>2iFU~+B$Peet;*F7v|5n;nuDX
zt`~l_HRhK7fMiXGFt}d$!Yh3H#RsrW&i4&A&4oJvBn+8;-Itgo-Mbr9HaujnJv`;u
zix1%0)YKQ!Zrd(D^aeL_Kx$<7K}r~NpPa>qr-K?fJhg{Ulv&k)>xIg@)}Qp^%nhnQ
zOFrB9l9S|3eqQ=JmH&76yNdshzWx9$z^Hv8t+wvs!)}(R%76S{?^{^@v8oZW%-X7_
zGxrM<c$Lh;!xA_BAf8$wYnddnK3^QPXb0Sd$%j~b_rQrVsdBKjndf)Ch@B%951HPt
zJ<MVjRRbw}q}4WEeCQ4Cl<iAQSsj-MsTSsZo+Ny_{pd=zbM|7>f8PA_Z+}dv$n?X$
zzu1xwMD0BQ?l+rA2;a<LWot1C;%s9}PLf`G02Dfj83t<GF7o<-1B5L(<^OKE8SmER
z+^{p35We(+&5hyKgzpy;d_oqB&H#6t*^*PNW%q$}F8ubcBXAF2Jh-FzLRxLxMR>5n
zlq7<McXWeRSAq-fo!%gO&b_jlR9cu-b22jZiS5hZZGvyM`~dgRE|~kIEIuqQ2wF+^
ztF1G)1Qzx1z>|OogA*2N+5<&B))bL(2b?16E|~jd_VC4n%bT`+iKuRT2zDb+?cpP4
z(5SzFmLj4cDdK{;&zr+i@u0=}3*JksZMgWz8{FByZ!l>tUp#1gOhMfHzCGR7xqHBi
zcQ@Nfr@w#nl?k%hD(rpV-tOz%KH%nD<z7(Y(l@ABJtr%ETju50f4&verL4D4I?eoO
zpNZ<L8;|BZ`1$?bb6?P2t2r(3bY+<;Br&)9I*$(|kI!ZJqUU$l0Gu7wO_@&YtcX3V
zp=<Q1FX!px)1QCssf&9(;s4jaJJtp7{py+XuYAXy_xI~1V8#EkL~!x{YVv`<pQ`TY
zt<ODY^Y8Yab*D2PKmI10^9))LWlO1n8k$eHL?(cCL_qSxw*EEGrpJGNf5=}}eZKtp
z^_34d^UXTHzcT;(@$a6qKn03th4}j18Q?(@-Sf5o?#p?nC)9?V|6l*_=q6j?_`LVm
z|9Cx^%??wV4^dj0ASih>n_UgG+Hv{coCW0{t=hrcmW;M23;*7rGy~M4uCbT+xBI+(
z+*bCjTa)y+%2m#cpB1-m`tg4!4c5-tHB~rTe7)if(1OItrP31v_UOff+uNHu1NS_O
z1(j9>LAgw8yRYx|23JOzs<L17;@<0l7nHpAXEW-$J{g=Me9~+66|2P8YflIJ;&PqY
zh20goJHhSgIo}rX?(Ghq-VN@iO`g{d3i_Sky2$76_s_1IE@y#rYTcz*-jzLZ(cp%l
z&)@QYs@pDRLoz~^2x#v`5u~XURXg#m$x}#ScXj#=xAnS4QzoA<_<H~6^c!xQbwLH9
z#p*zhYezLttENw#_<c$KSJe#{r*?BB9{K0IT7P2ivKUbMGuZM==yt{_NM2a2zhUjN
z7>I{2bFJ;ZzL)!&*3w&37pl*=;r3k*WTr$_)5NzW?;-X=gu(WHVG)KIGu5}}ktxJw
zmw&Onh~4uo7ThdpTb7U{{dPB`1QqegSzHS#%6t!=D4SK(2|C3zvsV9$UL3PNqy$}-
zkR)I70bGKX`yTWtm8$4GVE3f%+H<uxF?+tng2w`U{%)65+jemuIE0`!fXbW13@*2A
zmr;bl7H6Kfdl9?GEgs^cZ;2_^e<9_*`rE@(o^QA!z817Ovi7$@W3OL4c&XQ|_RbuW
zU*O7S@;$DFr5E=eg>Kh-UZd0)dZZ{uWY4+(kH3D7u;b}F>RM=dcgcHWwlx=p&agZ@
z{7v1rYH@L4RJ&(XYDl$_iHh*=4W&200Vy@9v-XDV8*nAUd-BA;@V^^&gO;@2nc#Ec
z@Vi8|1-zB~yeD03b7advCm}jJ8*S>3ZkGkEqFksr^G5sH!)F5gln!5*;PdA2wZ!8A
zesdBtJlwt&zTN;jWz_&;)eKO*Apy2Z2yB(l-|y;b-yD56fKE@n@Lf{*#}3sSpgshD
z?J*a-Hyml;Mz&pYl6)D9H7HLx&o|uEZ`}m3_xy|-?Xm|U_NM#1Ioy{3w)cgx+P6e^
zh`nDVm4EM0hIsK;PiO6o7pGwb`sEj|!M=Ta_=H{Fmr_vS-u5jqN#5+2k+WqdkMnPX
zjr`KJ5Swae+-UFJ*9T4%Q%%0;`T1}74B86S=9Zi!FT!dJ8bVt>_2G$K7IzQ(MK3vG
zYq^%Q{o2t?xiau-+sLJY-}L-G8&rd;;$@Tf&FkLVec9#>I9q;A?CyEA1>(EqqFonu
zTj(Bq0%>oTN$l;uECNw>c@^J_*g5MGo`ZH1<y5{Z&$@Fh{mjx6pLXn7f7<@wAMY)7
znP<O;>w)&1PX3^Gy!7BX&~BZZm(C>3|Nc4f_MH0br~mx<6eDLl|9q{sOYLQFqi$nq
z;jN}f(C(?5hisnB`8@l=t?0S(59a^W{qgIviT#`D^%tK1Tigb1fL<1T1Kxz7dp@^s
z*B{fwt$%jg>VKYn=2va;&(klCKwF6=tk$6NHud!9egE&izwTY@u;>2g*UL`--fLH4
zcmC(a4|Q*2ZJ=Aq=B!Kj2419Xv-NS=&o%x3e!l(xN9uQRw7kvt_x%^AwL^>7<=QtY
zK|5c!Mtk%;Dq#gDh1+p@{<_<rzuo%o!k;Tf|MTMN=h%N;SuZJk@0$>sw&;1kf_`oN
zSFwM8>6@qZEALnDJR_S|S@87A+Bq%dg;E_iK^sfK9f#?UxsuXBdjfJYUvWxKfAwQV
zy#874>FTq82LAkY$L{*^@2<+AAQp}mUw-ulc&FR)zbh7&7FJD)j9x0TJLvPDv;JRS
zzu$bc=->X>|9anFe_H(Q-aME0_m_u)tF4EzbC#umBeAC5_l$nZ^z)pb7N>68v-kb?
z=h=0V`~S~c0Ijz&y~@B<?X>i|x8G-6*Wds0TX^f~=JcO$_U{Y&|Lh=4Sv*wP^16#p
zetoT)|GTy>vwG)x_m?{S9nXJRAgfFRx5zX7^IpWx`IZWHMNVbj>7K`LH|_g0x8An)
z-z)Ps*ZLn$lV6%I6J=4#t)2){2ni7VruhEvPk;VglW+Shy#Dju>7K`qR_v^*e-~`9
zr|4Cf-=W<y;s%>RouH>%loe0xvY2}gk`-2ac%M7^vbgLLxLLn6_lusNy9qcewAp1R
z$(vb$qciybTu>480$eWeyuEzFF0Z5vk|{Gmii|;-a{1Sd7k68%J$DYYM}6k6{HZ-}
z7DuJKgO<a-pRe{Iaka5BXk7m9Wf!|QC1s$dreF0h=l74kxIoh6i!E&1F1`X=;q%u#
zRP9^hYGXstXpKpL@b3**Z$gT~6%%XkKos%tUO8fyQ<?@|70H&BB)<*f*yW`ME+Dz%
z{i>cfkHgYIrO(4PmJHwY{DPq#3<G)473@Lh)ux;JqvwJPlv~GC+zMySoeA28{5JiC
z+5YW6_q_jFd;6O~^#8iu^YnN9Y5n}$xCNZ=_M8rk-%<=(ez_|wdx@O6wKZtJ+m-tN
zsgLBgSs6S2<oLg^an_CYwdcU)(*+0LH;18a*^+MeMb9sI3#6<9xn-LbBpm;`xxIg6
z;tCFxr+cR9Rf;dyz6Hr*k34&dV#LmZ#t!COzsUOf(HDQ~+=)WpQ!-AeeM$`90y>8G
zL-Vp6pT$xe-&TRs#+<uTc!i$sXsVj~|M1h&v)P&-kIn8l{ZMVE=Ijk_(I&zz{I}=d
zoAP#(%r^hYTTZR`wj}#h*_*@PGC={h5X|Pwg0j=T?ax|q7j%BX@nt#fHg6WBG2EI^
zetpW@742^?^DW4^@ox(kOO^QYixAhw{@#`>Zx#ji6qF4P?AYICoBO5Lf&+V9?d^^H
z(rdwi4Q5*-iF>V;1#KU=v+wMK$9~!E0&XwvZ_T&<l(^UwbW-<)t@+m95*Kd;)nOO5
z<{SUsaq$)?jaaOWZoPLj^CUP!d0&6=_C~wzO;GSVqq5Jwc|0u#<g<rs_!V#Lwm5tH
z4QNuxa_yq_dq*=rLvn7Uyzu7oLa9S@x1T!sd(+iZ`({TUpDOpdA?NSJU3>M{U;n)8
z`YBjh6?Gh3RvFFxlG^kpc8*#xBom9C`dwQ0`1_50i}n6`)XGgi{U`c~b;U7A`su!$
z@(x_pn4bT$WxMIUYw|09Ie%GUA9VipZ>#;M*B2f+q^UorrL^$Y#krtOtU;Ie<Zu7E
z@ay-;`3v&5?|+_a7A<dk{`B*&F=|`4Tfp-A^~K=4o@({<HOs}F7I$Cxfreuv7w0&C
zy#CepLwen|T06O~e+%ZC?%%U5oiPqnnmmk|6IY_X*67o`D<<1-e|o&R&&=L#{_Q{6
zp9<IV|2+OD`}3#me|JBCjtZ45+PwLc#<wMDGw-Y3d*7eRk+yM9{^!%#vrbpnIey!b
zKYvyiv<!S1Sq>^Hz0ZE$7kB-<!u6Y<zW)iBF~8!qaMblG0az$(hJ?af&9}vsd;Yze
zeB<rUeX(}$!`B*~|81~8Z{M5q8CwcoiTNGcWuf~zWo^)^Sj)^Sl54v!Z+r)y``kFu
z$eu&)^Y0Vae<eNmJnR0UyYlb<ddpQptC6T{;0R>uUH4R5Q~vy~^Plfk@l1c;Z3->-
z`?9ZrgV)IH+5Pv=fA6hp|L|x3o_qH%)@PjA4)RFS>qlGGY~JQ^vbrehCnwlmaCLjR
z?#hMT7P7Cwh2Bcpv?P(`{BuDqsUKn0|DKf}@BcdYSM|S%wf1^npG>=+{qOC!e|Nsk
z=Y?83r>_*8MoMZw^wr*Ie+O#w)bKC6@y}w<K8e~GyYHuOX;<ampTDpCQ^CV4y5Mwh
z0qoFCOK<+0Q+t|!&CO4h`)%USXIuYdfK{ygbHT%F>VID^D79SYTz(Ezw*LzDYk6cc
z-5NBlqgkJy=Wh2#A|2F%+qZY`FSpXQitCrZi<$R&r~dleU(M`|^xv|>E9&Gs;KJwj
z>zf}sKfK<%XKMYvYyGdEi3@!Gc7DqH<E7A4XCeC-911t>-to=n*#GSQ-RsXk*GAUq
z+TX73fBQHO)~x6&1pB$B|5;?e)Q;=RxBi_xH}YrU?EClcuX}5%ux`$-sgpnG`5m_a
zS3}#3x$-_+?|gc^u+s2L?qj=G?CRgY{{K<Sd=!>+j37xT|M;(bP5XOUrN4gtyz_kd
z^RGOe&mWil{Js0%+qs1>yXQgd?%7}P|JwOA>)*e<JmvS>uRG2uJ`m4~h767NbsxJK
zwNzwxQIzPUHQkp@-hn%NoB8ZhUO)QMW1Ty7Qu)$4gD-#YERZ`>y7v68(mRH-msG_d
zgOHbF&OthDcF&w%KPp*h4PI&gI=B4IVZ9PiS(EsCXT*Go^<NinzWuFg`#f7q<!Lv+
zygklz-8b{D%AD@YYv0WYb-OpY_@C9$YezG~(m_X&c-6AqvR93l*>3N+KJwmY>EEwE
zO<QjFA2vW+veg>YYkRV0fAgktOTC72NY8V>G^m>Yv_?1R)4Y<m-}`EA{CfwQH=gtL
zdEGZXzr}mN70<43)k)I5pFqXq;gU<7hu_4`nFiXZcXeM$@2|ev8$s_uX|kmE*BQIK
zmF1u+f0tYBal4$A>7Z&C!kz*aKUbxf@cz-3E8uEtY4(-$Z-tBZfXZfrr|(PN-DvOq
z1nvw(?w7f_+d}s%IH|mp`Z}}r4&08u+8bKuL0tf!pVo7&zu8wmy$c!>TmG$jncVhM
zpsKa{dfodS?Y*CT0_+a$&)#4D=CE5OC|DnENss*k_mp3?Xv@8$nJd8s&*@0!ePCaG
z12tynls#gs5?{Xb9ym!qpKIlC@94{Y5QUk``4*I0>g@*y`l+91|LdJeoWJj~m}a5>
zxvcw>iwkdknY-oGiRz&9h6-*MdH+MUru{Jc|9}7fH&6SsejnAmdjDVazQm`yWV{9P
zmGs(Yf4Td=Ve7B=6BTN1{F`%G_{PqP+FuH5jaJ!8?)u-E`{gBM4Da{+8*Z!ZKy{bI
zuKyGNzE7&%1?t{SKG!Qz+kO3V|EU@MWl0vk3W2?5wM-h)+y0--WHRi(d;z?>?{wzX
z=r4M4ukEWq9hf#@E}`2Qf5AICmxl&i++Cs037*S)x`j)tO8k9E6L{r=<=UpMdq=H5
zD}aOH@JpV~+KLyBpy}U&sGn2UbeH!zT>|_2*Mp|D-Q`BkS3nzr=3IN?`u@?}Zxg^Z
z*5z4yUc~OXEC(KU-sCHO#$J89<?H2kcK5z&|9EA5_K*IjKh^I)v+jU2Kr7TeT)<6S
z%g??!v3ra)!Al{EqKqZ?c9)-X1^2SE=H02@n|D88i=9K<`K9sS{`5VA4Vlj^o(Q&e
z*7I*QHqYf3{t9|r^fTs}c=A`)?AkSZ{%_m9KM7LUe>}Id13W}Fnd^E+?4Dpfuth<a
zbBg`1Z}p1ZZ}={9|NM-5t=Ek>Hviqy2`b%%?j5y$sss*;?0H|6Cx8F_DWZLIe*Ndq
zAOA3I@H4x=tt<Mha+u%UQ=S##@27Nw!*FF~-ud&je>F0Gs{fcBzwONaXZc^f-RIB$
zdHwlg>lNw<)!;#$HI?%|Rwvwl|NN;@cii@T{Xf;`?U&Afd*6Kxq`bRlDGnaoU0M0;
z^!D?`b;3LBT%L)a{;dCV>&p+7d$MmPR_7|f%v{n9HB+wt`2FYKqS#-@*I(cIao4h$
z>udi_JO4CGD#pC@wc5j&In8>DHhO84rT7-bv+2Z7_kQcJ_gVax@5dL{?ai$Hv^SSu
z23+}<>D{vw2hZ8A41BhC@BXaDXJ6<1*Z<tT{;RI<*64j}s=J%OGZJ$^aWx6l;C<D9
z<CAL3^xHM(pEerU>z;kzy>0#f-T!UnykpCLPZxxi&gJJ^zku@HmE|wqzCN1&wLSaa
z+q#+ZEU*86`hII(_4ef%(5i4xu^u=f1;uaB<^B8mZSl(c-2W?V?Y#9j?0Y;XUf4Fj
z|2=mAOz~uh;-aWxj=kOG*IYk@Szg^Yr|cI~mH7KLkif~2f1cC-=IE!Lavlczt0U!<
zKJ#CR|9kZRUkli{;QK95mHqR}|JKz06s(T1um5~|Luy@iUDdwx`k$Xoy&t~_nyL!>
zc6)#e)^BC%GD3yb`|Yk@&;I)+xo)%B^Z(Vc``+_|Yv>z0E7D_KK>I*btPg0|$mD(8
z`TE<BfBSX0K|RyS8}#mZii77qZu%MCp0%R;scqf%H??=)e}Dda>j9`$AN|gQXW6~a
ze!k`RX6IUc1O4m2tM(jNbf<pOVOY3Uxq-tqXTDGCwO_wfFJC`h`g8vK&*y{x3cvl{
ztO@NP?)hv1PW_u|vv$<Ue6G_!pVI$LEazuq)xGtnr!&6)YYwd$_Xt~pgMX9hgMZJC
zu7CZjp)&6I^gpZbEUK9~-$8Hs@6`1N9zq8Z=AM9L#moO{FYK;ZUIfY3-(KvrTR(m2
z%<U0&`tN_5|JnLaD%SqiocM%$`}pOdw#-><2X;=;tzzj&@%LXQECHQqnzO#(TXXib
z;|GeE&OBb<wsQTX_48kU7v%%D1UBg1yQvr$y;NlPrrIZU_s=;*+;`ruKmY008^0Et
z*$bZkfA;?8--4##(ER{X3(iG1?TY^ID~zk(C-?pKXS4ln5pk!_=o>ztZhGJRM$*G6
z;(mvARj9YCfNJNbTc%sSh}|>U8SMX}TfvM~;_shK0B7-=|7>>2b!`_hoA&e3*OK$U
zqe7}`?A`zWvz!NQYrTIm0h|+S)Q{PnU%G97UBK_Z!DoL>`~0`^y8qJeorY16M#Y}Z
z5aTz^%_-h_{=Cois$FmXoU6b0<Mc15=YMUZU(AM$rab>J0X(Z_nXMqXw!6H{16&UK
zS<Pmi+g)Dd0nU2oetGLxi@$#ZapcPR;yKIZ?_Nvpng4n7$NSaRsxNoh25qaC+XyXq
zpHGC;0BiR5ZYuwHP6akeJWsZ)e*O9!yHdHQLH#>!on!o8_wF3`@;wDY*N$3GRsj$E
zoBIBqk@NHMf#hp@*X-A@|IGYn*Pa<ammO>k-VRna6*7IFHR~JW=TE|0{+Gqy_uW75
z`%l4rd#i<EX;se?T)LmLIx}}~cd>ydc&a38*3XmM_c=t?U)0Z^{6Fuj`1xPr{eKtp
zZ!9>)tzM>g&r>}xD&>jn%D`*(E6$$Z_d0&1{r8`ekH7A^ZvWuUHqS;xj<Qq-=ctwY
zUH0dPypk8#F3fuU=he3tYk&R|dI~Gvts%!pUDk}>dhps&YfDwI_tJTvZ!G`lm&|!j
zYx%9|Z}+~~^Qv<0eeZSC?oYP5Zu8msk(vGE+RyMh=))v%9kjX4@#gM|<;NhwI>($N
zCw5P926&G7X%F+48#^n~FQ}wXo%sF99L20{diPeEK?dUe9(3kB519=fbhc<z-`Fdh
z0iJLI4TH~hfUJF7{?uh#F_SN7WZhuSw8=M)X_|l+78Li*OL<*Xv&q*ejI+{x*XMGj
ztCrW*KvxExU$uBc@yBx~JFjUizA@RD?|sViM{_4m2Dc+OukwEryT`Z)lD6;7bbkWp
zeVT0C6eRb!XAU@}|2!$_sM%lW23Z#1XC2JGx4Ya6!aHXj+P<f|*vAh%Z8)cN4WEVh
z`zdq46B2WZ)wr$2-(Q)l0_r)=`RZ=?P48F9!V1WF0MYY~zux8(bv3?k`t`rY@Bgf-
z*`4G3<-QHLNl=pzVA%Kh=byjdE7q~Lmh73ZLneQd>(2eJ@B6$;kNf<8e*DDT{2cw)
zbKd;h3(@f=X3gcANn1~xunszZK+$RAxlf%OsY`@%q${hhzn>Si{rUTEb4*`XuK50^
zFB)2{Ui;~AGy3V1TFG-pUT+=;HyMEj#UJV{KJoAQM!TP&>x8z~AAJ4Xa{sd*SDw%N
z{rTst_#O7IU*G?wzTofeFW{d2i5(HoSyVH9JgN(?P1cnbf8DY`XRXkuzBwf}l2PKX
zYZl~y#w6#I-4m`7e|=`*6YwCy`yQoFde>$;gDtmw>m&aK!F!(~3zj<x9@)G$^U0go
zHIsWbZ3ms2cx<`%o0y*Do=u=N7e$vg>OP5CW8AZ8%ZU!_PqK|`7qh(oHR<24na=jF
z&R_f!UH|jmPBSKNa6VhpUD_0Q3EWKk?4Gwx@7hn-o1jr<%a<*}TlB8Igz#2ozA`zN
zU2CFKAMwZL`TyU`?Ve0OA9erzTh_)1NKv)sbN8g}r!>DU^$V-Le{Eg-a?ABI>mB#K
zlH|R;`^fv(rqEI);<<P#XejyVmd6YicEfl}<*ph0pHcJgTIP(O^B?T<NsfCZe(e79
z`<?4=XIEP`yk3?E>gAM{1(t!D5Z820Kj)wS{qttKSljKvb@yH~8hfwKs$>7~_g^v0
zn&slEpjM;z+0C_uuYWE3ywhjbdHw0v{Wb63-7o{@<jdXQ(A)Iv=RT(0>%XpgUmQ|f
zp|jbl|N3|D`9~quR?^(KDSJcx?oFSSUU%N$|A&}s*Jt;CQQb5BXX@$CzkbQVTUW2Y
zECR>j%F1om557+Rv(Z=dDs%6;`9IZP{QR{q4OXg^Rt0_oO*6cDoc=BP-<O?oQ$PQ)
zV_aXE_V9W2xeZTY4Ir2@KPzR9wV){423jllO1t^>>!|awk@a_L_W!A=O%3RtzWwb@
z2WYB2rs#GO+y}j;pc5tjT4eDWP(3;4n<ihB_-mfUYrqNas%G;0q`8Sxz=!bMUf%X_
z{u9yu<cd0Znd;~K(E8~$&*C@WNs0Uo`;XV^-aTc;T3vtU|7D$>_9Yp2udJQjQoQk;
z{weSXL77YH?<>!u;-#*4E{m?cpud0BHeszy$gsmkKm9K7{N7uJBiH{d`oBKx{=R0z
z*ZF_5f6u;F#-IeQsy~2J87Q}{%)fuDv3~Q@?+KkxLvL=Kc5?mwcY9!w^%)XbL7!vx
zsebw&drjcBbmLp&rux70)e|Fn4tH&uf9mkh>Gm%b7e+kiQU$Fy;!<<k=*MshG-Uj$
zS@U0KLfu`X{p%}iulMIqi@Nj6^Y*vEsW8)p8z4!+RO+y%<Mg*77ru5@+xBMFHvJ2e
zg3fnuJjdV#?jXEfY3=h}?|I|esr!!qx>H-d_Uh5s-*-yG!)^gM?B<j;NmPly=7I2X
zp6+~~Kk4YF-)gykzt4<ca##QT-Unx(wWbxLMl|S<)accQe@s7KyEo(PfA7B~2|w55
zt~P}(^h}z|2#K+1WeXYp9aj?n{hRmwsrdOn3^)J#><?{%y3vr2@f4`J=~cTfuIC#6
z)$8dGtaSdwT(+5a{`vjKML+GrKZBC>#?p=F7*5?%Qhn!HJ9WdJzDWD!u_A}L-(*|I
zZ`l`j09;F-J8Jb`-4k^9aMrBf&ntKDm+ODJv1n(W>C>;*Uo84PqyBGQ{Naxv(>UKJ
z&1HaOlK<`33o;_sY_8k1(CdixhJ7=f+%}$jdJ;4M5N2l7RoVtR&S7GrwcFp=_HWbV
zSHCUXxG!XP-g}{a?>h_bPPy)TXlKOp=P95{aLGTZuC14UPWAqK`O2?lU*7*-yzQ^l
zBWS&B<)~f_nmk%QH@*AbQ41&aNYDuw+x#DWi`@G3`?Eg};^!T?wm+)YU+~Yl?cjPC
z<mC$|L0&%jJ$c8siXS=k#yi&4|BqazetrMB_wt7?g1z!OY3_o_TS15AZBDDXxjRDr
zg$k$~Iqmt}dSU6tbLUTjLid#C^0oyCUSzSzo7gqNC6E-fS7q;c`_G@XXQ%%?YxMuu
zjChs5`L@kzuf1yHCtW(UGTMUkb<*7VptC79YTrKIHU0Xd&1R}`?|-s?Dyv;1Uskit
z{%HLA`~9NO7~SZ1;Us7v^z^q$Tl~D%<}Zl%w#=QI9RJy7-f546Z+|}$fi7e#Z1Dq^
zj()$lD}sHo#ntQHWT|IA_uZRrzj1y2&AIo@&+iZV7k1zO@9wK>cD6nQhvl`SR`%-I
zpw#zu>X+{;%m1$aQ~UezyI=jA|DOAQ?mcWc78c-_J>w;g-aCrKeF5QCfmV&2vkIB8
zx4X2-4_w4;>tFN#{(gb}z1^j45Rr3|&r)9}&0PfX{a4nnPpifLEA902k9+re{k;8E
zW}lvJw2kftJM7+3D|bjFr_0Vfb?>OvYzXhR!k<rJFTSq1tUbNDmV58N9k%bj|9t!Z
z`DXt^kHJy+K56dv$>1XU?VjyF3rp*BST~)%AM|<cf2;Gy|L7O}><fPc8IDexD?epU
zsM|*M<#S`(?;W+8tN~6`mp$(XAG>$d>N$j)J~ipa?ug~G;0oomXZrPprIt31n$n>4
z_3CrKvK>2WWvgjj>~yQQ*e^=ye$w1IQ+h(}Hp-`e6#*q6b#Q%``g&qq-09m--^#0$
zort^s)Oh~!-1igVnR^Z-`)sb-2ddO3gHuw`H5UD9@z+n5fU6bDw<$_r^sb%sgftCa
zI>>JU^T2iWdk6VXddD7mLQDUH@)@yfE>GUH&7-rr=-T}iH+Ds&tEYm7AX9CR2uZrm
ze=f2v9W?d6T(-}}-9+^9hQ;Uq$e+t!@m##&=Nxs=(O);+_SA3mv+@G1FnB(<+vOT4
zII>nx$qIjU)8&Z9HB0xI;F)uEk%i?O{Q^#blW3;9=)!VK3l~V(q{{}G{1AKnXUUSD
zpBd_Y*0VW!yGzT0rhyuwe%V_WmTx@g2i2GUa{-74DPDum?Q?vdG<Wutx!@s9JKv<&
zNpojSSqsjTcHOD(K|FBnmHt<@c`wLJaB^EVd0%M9-tNMhAaGrIPV$b^^Q5_Rrz~}K
zyEE~!-)G0yAl??x>Wi=EpTCZmzgPb{e#Ue4b?JXkegB%C`CI${w>@gmv69zcmVis~
z8tKZ<?|+_7uhpxzfB*fb>eFB5J?CE+?ba!M`F4K0xZhpSa?{sumOvVFC3Y-PpcqR5
z9c{gGd3nvf>Brw}on}6-{`&bpVjnht`*i>P`};q#WgyLz-~TJB=g&JiQ+0Q~{QO1J
zKPAO|%%8Y*i^6T`!y6Vfnm36tpO3h}py({c|K;o4Gd^LTQ|23sHds}?lYQ{*@<snY
z=T<7s^huMe(y-**Io0o-x4&}c`|@?GXMYn@-EcL$K(6AkHWx3qZ$Pz%HRsByUhlll
zN3B|Enq9l{L7i;E_1f#I&rGN9p7Gc#_<f-FnhR}C!dK+H{G76uPTGB`Z%(nc`GoYn
zDf>=c{HtYmePg<{MAj1r>!OT>ysc_0Y^Tg-x#G37KvlQ6x2Rgf9Af{mO>F1hEIgx<
z5+=1%{jJ*bTS-MrZ*CF)ocFZ<y`9wIP=-YpHe6uY+AcJ?A!?<_x-ZeMj$7Nr{g$0r
zB>U1nzv`E+>Dny|FR^TI7n(dF`sI^-Ut}-$TONP<oaytY_G;mKwiBLBH4B;b;9EeN
zP?7fBJJZ*!oiyjR^GeSXYfFma{~h1%Rpi9aqQW@;lJb}9kxADMI!C(Qa1sdocWp-L
zhk#cC+X7r-9N+p@S7<15RB5O!T=+H3)@I6!W?K>A>ldmv%gLR(e^9QgGkeAEq)dMP
z)TcJp8fr@+in76qCTux8H>g_UEgLv6r4Q`AcY4d&w>KYMiPwmlFFz&!j>&b=gS8CD
zwR2aP9DLizA-g0@Yo~Umb&urM_Ml3J=oL@qElE8Rkj0<+Nnu;i$=J-QdD$1AS<l$Q
zmz5Q8YOBQB*AJl{RO1JGaL*a(V{aGw$UO+NYSph@Ri$a3xqfrs?CZI?H<P{ReqGVH
z|EclL<*PE6@=jITVLRny^Bphs?@RTY<Cg#3dj9K=d}--z<-UJore8Oko_NOc{^<oU
zm8ZZepT@D>4ZC<P<^Jy}(O-Mke}DzA7R2^t%g^agJ^#*%_09L32Vv^G_jMn=zqjcS
z#CHp0Ag;=s&;RtBg8_e#_S8F5_btrG^31ya@%|&u_5B}DZM}7Uo6V1V{ztfSHB8RE
zSr{YNA||y``K`;}8ixDZE?>QS=(>EC$?w;4n>xLuwLs}~D*J}1UJt!aA4;^fnX(!j
z=#ZGX3XT~MX@S5z{?xAu+b^B0eYx>UakN5UvHki|w(D2?WIw<8UfuNj#_aH00hvv=
zohxk*tS#Y+zcu&b&b{AW@11Nq{p(K8@;rW->;9LR)<e?Srz&td`_r~X$Lqzy966Pc
zt{u!@HI~}i2rOZi6`2@t!D=#}+^IbW#hN-kEkF7;D2re99wh3{cb~rcIrbgT>#pXP
zQnTZ{@4j05rYtAevT0j&wLR2$qx^>Gmm>SVeC6!ls(-oEYTbqD^S)KJf2~XIS^;rD
zP(IiJD!u(0TicEDCq%7$vhIs-^4DC3>e?Gy@8?&{y!~Oz{)5l%nYclN{fhLHFsq&V
ze{Wv5nS1+>-EHo+Q!hT;IPF*%>-9VN;qTjOTHwUD@QO4f(M-*cUvxVxs`eTG`tytL
zFTOYXR|Pb+)PU2#()+*P)@qh6t?9XTDt^l0nq8aiToxuS<jmq{xv#MK(h1v>U2zMp
z$er5Dn6q$F^`&D=-s*la_4yw2{(9T>_B-X@eB~!ya+2oqHK^A3%(if<+dI#wDUwgW
z1w7*gr(ikJ8vkuuXJ5^{cklhO<@bfp#P&nIZUpiA6P>QdSLD3*R0e5JJvDWWe|vGY
z#z!`AaVFn1O}kdoM(@4X&FTBDx-63mG?V=<FeMBUzcbCj*?!i%d7G|ioPX=}c~$zO
z`R|1@vLfd4ma5ILol?$x#%uA1Ba`AXkM6XcQV#a5YW7b3=idVEK^(WMa>}<40d~CK
z0(@ee`;XthciGf8cK@ByZP}|PetiD-)_S{dPg~7IW-a&@V8t7tJ@wGkEi$I3-YzVW
z0>{Byw;esoubKXM?OgkQWe@xBfPb6suDHwb8I+a_sx{_9d~r^W%kS;N7O4ecTCLiV
zzoRX-*ZZz?Oj|m!I>}R?E9H#bsg;gd>n8rZc=>YO=j<bv8{37l8X`4C`o6HYUXHu3
zyL<c3DY@$k^+NrAKGJ!*VE_BNN@xTIfW5SIxx?D$zpHk7ombEBZoXA_s&v-*>M0tp
zcwYG!fE+Os6eoT{BFWzZjChT-d+$u%qM~u??ZOl(Z~}?kJ;8E&`=(5AI{c!tqS)@5
zQOlb4fBz!3{@eHQee9z>m)g99@5p&Acg$Nl`S+#iFSbv8Sv-A%>~GP7;r|2f*A>dm
zkA1%dqNrmzW7g839hZzbPwjkVbNl40%KGSv+jp+dm2={T6ahI>;3B|NFks3}=SXvo
zwI)UWpOh9zY=7-D|M~ewP^q8N8h>Gi9DmCTnfLp>x_8E?C|q&>^W&%YrXqcf&Fw-Z
z4N)0S`chcG7J|xAn~hVwo_d8%P<s9?09t4+OMjVvV72_oy*$g}6yv`~H|~~;%XD7K
zna8jC8B%Z@-dd{Hw0+(c?)a6(+R5*W)C>5pXMh9sueS}qkap{xiFO_HqEn9EJeK6%
zeKCvO{in{i?;j=IE_+F9^$J#N%w}J((&?FN&?c^@Ujx+mm9%T`^sfoYI0q`L!AT>s
z^VOW&&O2?uMNrW__X8_!r<`uS;-y;t^j>H1KkKd6bsPiycUImw_wsMC{JHg|W>;n=
zfP4Uspf!>ZqreeVdp^AW%3UVwQ`gg?PDO0<`@8p-@s#TG;?Sxxs1h7=PipOYZZjXW
z@mL#D6#mJ$b6ybBN*fMclOXq^Wx1A{+l49_qB2G1E$Kb4vAx|0qUX!+7yBlxx4)aA
z{Wv=5%02VDcfVhRMx@tMNNivK^EILI*NV-$KjU8?`1B$>DSrL|?kGrTF8#!?{gP(Q
z$y@TE{B;_V80Rj#ZFFO$UhnL>bxU`YW%y*@?!WDS8J32gfld7+Eu^Heusx_^LV)HY
zzAHBvZXI^+w7lSK$jQ6b{Pn|yEz)lm&e+j*ZT8m>0dkPc39hxR*{a~R_U9%<t(^j{
z8#4Ar^7B7kmB4@Wi0Kv!k!y#U4{BX-6y#)$oX9ujmUE<Thi*ua|F77OkAwE^>AGpU
z>fx`$VQrsEb&Bqbf#MZZ{rqL!2x=zPhuw=ys*ag|TvRk{`@XBSUrhbq)YQvOyX<rr
z)J8fr8IsE7V{MlGh`(-hr-*Bnf6DjjxeslZo`DwAJ&+=zmgDBUHT!OLt=`AHLy!6H
zY5SdKEq8)XLBr$JUT}C!GClJAj@+qBl||ZfPfcGV$~)(_bEXxzblddIz;b*0rxI`+
zf04bl|F7)EIk%Y`t-$eY^vpnWWBaBOhDePkbzhdus$7>X_^Rqva_;>Zzf83^ysnFV
zvs(n5_Otj^UxMqclO8XhoRRao2rhsoZLH`suGVm5pE1?#q35+?`*Uv>vdBUbur`Cm
z_I4qN#ZPoHA6=0<b>0!wG)(e*f8x;{Ij;+hc}s(T1T7ZM;OA$#m%#3NM05$Su;kYE
zPk92-E0)ZQxRkx$Vr#ol2}ATsk##9+g`VD#gC?s<MF$t3k@I>2am3bTO~ut36WKv!
z{%P67Z@cerIlI$#$_eH>UdunIzMd%i{9Aw@q(!o3>H0ahonP96!{%4b>1*@fU0ELS
zx+tbT{{IEx$a=d?iy;jthb01#^7?|H+uMaMibuq>R;qswx>tKY+wD^J?Ec!h{X3Vv
z_5U5%x9z&@Q`gryD~uiAEYwkS3FF$S{I~9-j`F_mA@8%U|8v=L@Bg~bJEy#VR#Jb~
z1zbkhPEln6Ic=%GkIlMSpPzFVr;5vGf2`RluJ#F369!akcyoYTh_|QRR|=fA^jYEB
z{^<Ulb1J59jkw1z9SF%jsho<SR?JV{jfGP#IInc{SRqo#{z{hP?ZbsF@-G(7Xn|w^
zC4O-2^!jX7g@PTswT9BV1!ZZnHd9KOby)<T=f__%+Obl5YIepQ^;chhIn^2U|NcG|
z+yc7g>}lQsDh)0bz0us>J}D29h5}aZ)x8_}Dl|*W`SSIU=laurPmQg8<rxC0R3jmk
z>aQyavhUZF7Hr?%`D80!{kH0dPi?0jgC^}Yv(>j>T3Pc_`QyHXjch_!Cw|+qefpi)
z@1@~(ztTT-LaS$}Nhc<se|#@1ZhyRYwN3GR!6%UDfmOi&eom?GtG&0a%>Mf0lh4XF
z-wHRqKc633vVF<}x1N@~tzC9U?$mB@R=M>3+LVnYmdRV5o1LFtxaatW5^(a)<4=77
zF4{d$-&$}7l)OQ8)ubt}oL1USS;!3Tsi<F_5DZG|;F!7gkN4c$g*=e7?pYZ+<(9Li
zmBZQ)uJEi+;%^_u8|Q!ct}S=&{;z+(e%ns*Z<e*-PhKDU^8NRKKAw^Qn<o3W77Omk
zotgx3l=7zf-`aaX88rnQ$SG^t9^H{UH5n{BX=_hgakYj&+m5Mz552<*44;1sn8yQd
z94(n*;PrN)jU=R-pqV)3HuFRyuq%qbT?$U)S3RY$<${Oo$&-4|&&YXAcFb5hv3k<i
zjw!{v{mxeYkpX2G?`w(9%>_0Bn!zPg{r}7=K4v2O@$qr}lTorhGi|4+GhcC1E?0S-
zba<uh6t&Ms!nCGp$NE=42=NcOp1h(c^j6=#GcV@d-4oAn2-<8kkpyS|%K7|{zXdFV
zICELL=JVY}0o#uToDV;>=k}?~kL%=jLRxY4ol_l?mQJvqBv$fCdt-Z0D#I+TlsJ`E
z#(+5fr6(0OT{`~vhj6CV0`&=M;QB#T^L0m1wT3U-3Q#jYDunszw}3?uTjsRho^#8&
z(g<9#)y1lRowxk$-u>~pR(tk~f8AUFZ`K=u>(p8E%nWU|&-r$J<J8l?Le9q>|7x`J
zZ&cUyuOFbTuRuua>wnEFyIX7R;;e2b9o(AcEpynW9pZ9!r&MrjJH>Y8(kpUaQyp^_
zPO7>j-u&J+X5T0Ow@0sjH9eGWSv~djlV6cMexRi9_;#U><N;7CuGa9!-+xEFow(1=
zzimDFcF>_B^Fn?0<<PVZ4Yhv~8{QVJoAUQ+c6M#d#wo!!!`M<jKQ~l>rf#EDa8mhl
zyrIAGR*hiX<<q6@f4|Bdd%3kfF6<!4zJnn9AWeX-zl@glMt7dimyZ6$W39bqA-ER}
z@j!{`{=ai)&AIJtX$&bAnVawbYf3-&cHtXH9prmHJvh*oamwTerhntVPB~p?>GaN&
z584&KQ~>FU&)k}-`91Bc?3UZf2anxauQs2RZ_T+jE8#P8Uf03J^rh*S&qQzix$DZC
zQp@0-x$E9r>oPwr(wqJ6CL^>!Q~d_Xg3?a{^7xlBFoGHfFP&diN0#huerL`7I<IqI
z!n4x*A7L>R$pKEl|7-fb?p;?rn<b*J=yr^rmgr8~-L`dgcCeO+wi7rni+(w`({@T@
z3#f;yntQ0Bs9J%A6P$|932U8tvyepv+_3!1w($P5?K8h_6WXiGdgSaLus1iif9e;A
z%6u~KN`S$w!_JYe;I@XRam|!l&YrH|1h=VdRZ$+lswlWj-no5+Epytb?JM?~?R%y9
zxc9rsd;9GxHbPU@$`>csmT1Lql2b2)>&SHe`CE0>+tPjWr{9W;U#WdEXLo$A3Uu&g
zCAc;?HUC5=lWqLtE^xBD;v2H2xqVXWf>wn`e>~&4PQ6)}qSyi&H~E|Qb^HEblZvY~
zVj%%^j@jMs?ZO;Ia0epuBF~iD&NrPPQQfxT{;x%@=RkVFV=mLas41O$yD&u&oQX4c
zhEKWeT<HqVFhTpWr`%*tboE#xQsiF5_HoKhXHQpf12M?ykH*G!qb>$erz1tz3{-S!
zf&)EC^S#oeD{@|%;4z^|o2T~%S8FT=`^L*lOEdLbfSsU$cJHCdRz=HgZKkNUfZAje
zzN`iH7lj~tw*H?|T&>{40gkC#3DX0sHT*d?wtBttJoTbks9M95W8ze&cOFp^ich}<
zOcN;3o_lEemJJ@K-Y(REc%t^@wW3_Tm}TF-ZN6T!@AkrraocOxM(+&I+X$^|<00+|
zzx>SX`Zn3>+U+HiU(dO-Y~i-~9}A#q=#&oFJ4MI8*T$`{)v1pDR9-tjF1IW9SIUA5
zP-9pjiRoID$+@=+b5y|r_<ixReR|I(U1+*LZP$T?GW?%^&U&}iaSvpqtRveA)QP*4
zzwTObWqf*P_kWvZMg1Swb+W&X*%$fw+rGy!p!UMCm9|r^vD|P{{jQ?V-5FS|v6>Uy
z#=P%-N6l^8>q|RqwzKQp{##%B;v_WFuTcYAUMuzI<GEj{y2}4v_k`ZR7<}%?(^c_)
z%HM4)pe4wrS&$Os{PV(<`g?xwjuX)?iq9?bZ-I3{SHA=&)L(c1C~sW3Z0`Oz)3doh
zXD+|^{#hh+5bsJ0s7tc+{>wAES60m1Fs-^UP4ymk;ZDWf^L0MKk~?H<@7l^)#nl=s
zIl;BqwMlvB-Y#4Map?C;3#M%=lohEy&$YU^I@(fS{`8+)@0K<}8@XOt;J}|`n)CRM
z+$jj>(s#GD_Uirdw)?i9t9g_A|MAaV_VUo0e5on8<k%U1>_Xd=?A-}@$IZ50kJ!6z
z%In2<cH9+agBhC*F?Q>e$;H(g>%opZUE3Xd{-F2n;(5QTxwMLEHSFrksy{;g!OjJC
zdQ_0o({Jlv2Ax=AQslpB+ESx5{->derq@sW*{~#BvoMW6HI#AdB@LUCxAZ}+(9l+J
zf%Cdk{`t3nFi~)|y+sGqe_o>nj;6?uGIMS_M}~qk*(R~{!aV+^q2N;FWaXhVD{ZHQ
zwSvQVnZhMGIgaT~d|e(I9>3!ZviO&JD{c$$wDq*+49wzB^;QIp2zqj}F1xeNc*{I{
zc2KF8#JT?6qKOf59Mh|Euk#!fEoNqndUX7J{3J2KV>4{0=&*vT_snSa)NcW+t_VkE
zhRpkNavHSw57C4;@cd~|2Y)Fzv8b?K49NN~q}RH~OaA-f`(OTjD{mJ{;!pKvGzmSi
z=Y`R`^7gCBk8G#!?%wKGKEIUx+n3J;4?*>s!nc4`B2M6*@%B%*@3SA@X*)$55;nQg
z#!tTmtP=s}-G8;!HvKyPrhh(Cy1nkKuiWje;rTz$$ik9jBp0~Mx1am=>6Iupjq93k
zcDz@A<@bNzllPmIn!)YX+s-G0Af?-%>yNoU-+J$}();}Rg^u(8F9JE_!MA`-5UZ-~
z-k0xdnP6P45zYl3<hcH+@>qf8y|RX@hyO|?`ISz+zqSq18f88h1TN)&O$_dPEA=i=
z-bbd^^5)WIc}Y9Pj@@(T1LY`-t?fli!9AA}!|;}yTPwae?NPp^uls%Tr*%)fXa1eE
zoYiXIb5F(%m(>59h)e|KYc)vJu6}v^;McuYzcwAoT<PvwD`xrM=j;NgTW5)Ylg#gn
z7r$9e-~7(W=J&7DR{IO@EW1D5ADZBwdV&-D%c^<nnO^Isuinnw&%gThLZ|`rAO@^k
zo_l<Ceu$oX#LhgKRE<dWkH3$9tlZ)bEi-H&ah<u+c*<?(PDuE@dw9$6ZFF?S&$@N0
zyO+&8UljfMmi=MVFi7`fsTbH*&)IK54d$tk%w!_&y3%%vCfHl5x{qcSRci!8vrV7H
z({BOGAdcB`r0Ue$g+35FBm0XiwzmgC($|#@%C`<PD+Yi&-kJA#+}<t}(ExY8B!4fl
z+}LikR3K9GNneU><-<F2UQ?MsUC2xN75o3{E}L`Pc_qZ*n~V-gY;8AM3aKdX9^KO3
z{%QU^Tan3^CVV~n;EtSE1H`qZPm1#RQyn0g?R0eV9XXC^kXlEi^vDd`DcY<TK&@X@
zu@<3fjX*ANMRUv1c_+w+;9RZW+*Jto;VsWuMWCbvPM|?n0!u+D9z3c&M<m)0<Xvzx
zJ(7Eu<@WYTOTm2;m0GJQx0o+N3KOGiTLY8$RlOBA1$g}R*!>_Ni~p$?<F+8p7*FY?
zfq5VqP>1j2Nt@&|a;K((YmZ4L&z4+~^MW}0(xep;{QRokj{HYeOqSGWYiw>WS~?*z
z^U1s=vKyzs^TnleE2i9Lz8D1VC|qLO({s!DWe|99BWT^NDL0&V26cey_(^WTQ*Jr0
zgep6>YszisozU>T$9D*xeV4wBe6RZSZ9?Y#Mcah8)ofUQ-R}Nt8Q2)H4mgW1)nA*v
zQ@c1m;(zhfYrjjU)PJ(-Kff&=Iu4}j4NgfXqvnEIXnGJG>sSALt6%f<j$FrdaFkrS
z`euFk-Dwf}de66Bd$Okb&-t(S*y~q=Qn}RfZvneR61b<{5#H4DdPlqNb@^LMpYFMw
z4yryuQ%$<9H@sBKm#*LO|LyxnPw&W`ng)*lOJ8HOpFYpcno^tS*6Xlm`rP}|VFP`s
z-rz*B(mFMhpI_C{7BrEgn7tD;NGJqJ!t2s=-^Z_8K7HkKp}6Dk48N=9&%bK~Z7z5<
zfz6+^b$3f~wFW0716=!*dhYE)6%BBiy1(tI+~2bkzq&mseOk8my}zE|TH_VQ2j46d
z(Ezu@YBgUbe|=H9YW<Aq)BZl+cz^n&OVC<~6<h$GmiIi!WP3k&0XP+v*!F*zcfC;e
z>#g{&VoPOSyf1odU;pk5thnQXxOmOn$T_#2H3Pt9<Ezp+-#!Fn34aOjadN(PPx;*2
z_~O~nq_Vx`rt?Z)kF%ym_MoJ4)49{vVXX<5f6%(JDL0)neZe)~CAY9Cw?Q1x)Y&Gp
zAW*es3J$cBT)Up%k@Lz1=gmo_*H7)VopK%0?AD&%P+YA6@q+icY$c1W>`n_BA~Qwi
zrTFRvWr6Y{s75=<_2t18P%h0`I%)T$t;`dPcl+(Cg7sJVT%;17HfpS>{r}oj_PQ`j
z$8I6}x_^`YT|ARpwafN+)c3u2zF+5D^u2cB|DFQSsO+(swo_OjHJ$d6X~ESR?5{f4
zhG>Pqx~F;Tu=7mc8_tG>kb%QFs^EdcEir1R-o`JQHX%auN#BxM<$Bd`0q2Aqf?LmY
z$G?}kSG&S&`@yq!#NNJna_(U|Xh^5ScFKm93to!lD(O!^J>~V_W|69{es@u|Mm(g+
zWBc`joZKm=L!b#l$WWtLB50^FCG}Ks9)GGhI1ecLFS}POwb0f_y2vC0GK-QbuDCVm
zWUQz4DUI#yhq}RK+LPMr99!FkdZ4vU@XnCD<E!sp%6;1ZexI(KvJ`j%CXN58IOCQ}
z8aAG%vlrfxJEadvlxA#;5S-G}M|Rpyi3blysb=4mdHyY+P7qw-EPH-yS^c@{xt6ut
z*<W3ESZv2}>$dXzb?wk9_NOa285xCH6sPg0iYtO9dOSNfE;u81N|z~ZX<)^qY5Gn(
zZKuRQBK~<Q&zxJ%J0V@AR}S;OeF!)v08V>xZJ>dIV*+4HpQ*lnxX?xc90_}B)Q`Pg
zI0e#(kIZj=a7V5~k_j|BFln0Fu@$ycOj>R@seV<_ebpOOt&z?FZWPDq2|oT7a83Z+
zl&}+c)&Kk!_nc?j1Xd}<-)_~Dem7A-*F?v}@$JGnijczi_F{|e?VGy6ZJQ;z{h*-H
ztAY%pM)-lcz)Il!3K`C*f&@+7pDW)jzUxjXP5*f%udA<Ua_!Ub`|kWJH!nQLvKbUb
zpk$+x`#a@~oR>aR#=?o#leRsd98|5b8{)`Yo()AH4!EM=wOC+lGsT$2R%G&p3!ph<
zFII38c~Kp^JbdT*s;|aJjF&$$jhFV?{&e&8sgUM~^G*kF@XwO7ssDcT{nsr4pV`*A
zZ;0iG&Knjrf;|**NqQ5=dyNgCS;Q;vt=>LtG?0I@pkqhVwV5R!0^ad$6L6VgpKEQo
z^jp9yz68(&)tbzdb8i<ufedVAKDIygcHtWcNAt1$sW%IC<iQ10@;iZV|K{yw2043z
zS<2!&a;NTrN2@OFNwKw=G6g*I8c=;%POf8XBe==Bt3Bb2+^MaO84D*`UGhnhwVC4B
ztScfI4pwxkyHT#oGXtD2Qg=g!;P0(zZ!e12(4O>2s%Y6)i>>WJ5#YqHBHJ<Lmb0V|
zr25k1n{wM(QwJOzm)J_D+-5e^0XNkywcY8t<*cdGpc_);|I28~+grDbx3RmNe|zV8
z-uJD49{ka922~!Qxj8oOB+%sZ8egS3x1A*+X64kZeDFJ}qkJ9fdfpv{-A1~QF_WNJ
zup3fzAAyFjOQ9p~y27BwhaT7wb-uop|L-h|fA4qt#YUb*cF_+&We{j~{Z$jV(U8k6
z^YmN5DsFHZ-J;tCs+b{KFMaC|%Hvnv4ITzL8Fe4je|Q7Yl&;UX{9C{}?f_66&6@30
zU7^v;TCJhBPBB;98q|8`24|pk&$sViH?_E0<2Ea}vvT@MqV1n-A?|;5M-Tsuz8_z|
zzuhQ!1M~C5H|5V<|I5@}@s+q7rkAg~^zr6d@B8*BfF>&yz6B(48ECg2nz%;B_uSis
zM?}C`;H$M`b%n-V7O<tSXCGW)J0-UX)H6|itK+)Uc1kW2XiQsG``<K>^(^4TeXF9g
zs9NJbgcB#n_4u2^0Zy<N_Be<*y<J!%3~t&*&VFgRwf&N>K=jHd>;80>h+kM76eDNv
z4(h>7DqiiF9BCs^P-OeBZo2d5AB>86k3c;bQ>le#<h;xovq1T)l=0~mxl`ViNuW94
zCAO!h+;ZlGB!gd;4{r5snxB6EiOJN!>!t#`)=jwXfBkQr`Vz=6UVBjlIIpDm+85>h
z7dqN>#7nV!$-BG1zHYD9FlLnskUDlZYSaC93v+~X7Gzk|-g;Jf>g~cDVQ`pap0oxH
zkZ6MYZkPN-rofXAD(8@t#`gB02uL<87JU0~;TaKdAqSeGayY<Q7T^+daQ(`o@89ly
z!@BA2gS9)Bxq$}M=iGAUR0p@rel>q7s;-@<d+ot2mV4X2?dvNNj_X_e_p4>{1<?3|
zLAAzRmIdHR7$f#`Zx@z8+!tvrXtBNhk}t%EZ$&_DW^?eg%cPAyvy7`XZnA(oKKC#D
znSDR!+)8+q=I*w9`Ym7|Cpb~fWBo8Yo)y#;&0_+MgfCqg`7L*T|Jt|4vz8U_5^9JJ
z^NoF8vFH69Hdu#bHaG=)dS`*gxP2hy!sM2^-`Z`K+uMzT!Qo(HyZ^uFVbHK6B*R@g
zq^_|Y78@$D)f!tt9MF1(E78KY4l^&*1osKn8ozw7utqpXu|uQYt4B)pTfinxB~Z6=
zjf#ld+l48@;88BiXf;rG%om(l|8&MoUp~)c9mF^G6JIw~?R!4UX6IDDr>EziD0Q^G
zUknMMCApak@5p(XgB?6c?5e{~TY&;_8ef{XCRx^IiYpU%&ZIYzoquUt0yk*JYN=&F
z9>3~Du!kjsgExHtt|A1UeA%;v|Jd7wDnj6da@PCWVds^K;Fd<_eeY9m7hVwnOX$9C
z{`w&xj{{T}9-dLqw0A#iJ7g+MR<P%m^G-!@?EiDg;#&1{o)ps!ucZY`>vS{t`BiJc
zrR0)c8Bo%)1IMt5ek4EtQiw!Pr^=1r)k^FjgPlQ>KN=I6L0LD^hrjV&qYocA`E8kK
z^Yoj84m&tYiamC;s?eCq9L=G0%Kllq!*d5UcF>BagEQot_U=zFasc%zdVVV2_+72W
z4xUrG<!k!%TYwfjIF)Si<UjRxVGJMGTbhZHQ*JuXlsT}*gv<Y*iyG&vpYu*Nf{MST
za@)7Gvn!cwXjXc}6|_&Z=Z5o3$p#&fBKu2x;a+bSzTr6nUh}j(_|)5lUwFW#WhxgV
zIFZ{IfTr*y{qvRv|D0rM2<nN<0~>u5x>5teTl((sQd^rTC5+%IYV)5-!POeinZT1b
zeqDmgzXhCP4FZ+=(PwwZoc^}$-BNq$xwlretdv=P*`_uu8$6?10MY_3$)dD`pMDD{
zV}lghA!?v%5$d>=KA-_rNpRtRY1_J>JpR-o@Wi&~?I@p}f3q*K8-W*1*xqls>Fg;F
zX;*)H6r9Gtw1xpRQsj9mY0(wAQ@r5WQKPgu3Gd%)%7c?i`Ku%EYx!-Le+xLq4tDGu
z-Ls%FK^{`~owJ{E+nG}yZ1bz{pa#7hBw|3b-3m6$RvJnR74+vcf!6OagU3uaPb~cq
zaEcWat&Z1@#h!a>b@uVcVsIcwwww39_~3BkXjI#Zr@y!UZLs10clr7H6H>7ON&HV^
zY!>cxc;|L4{m@L?DMcR_hzU(q&J1J$Rm9>Ax-Lcjm(1FNv-qFJFl-YzX?t>);qxp1
zRBf0WT5aC3EvZg8{C=n8`TOSsB#LjHD?0Uh;U1m@u}?dsBR~7jx#gTG2{z%?^v1Fe
z0qc%#Ze<Yqv)1_agM}<y8Hx=S_1AbbmVXQQ$CAK3@y_HqH#5(@S!mO(zGZ@jjOXtZ
z(6T2ZhUktb^LirXZv2d%!)hX6F~{z;v}1?ulvKtuF$$&1uP4f+e+%e4IyuTiq%XzR
z;OP}PuZ;{jij%58sT<ii_$nM`+R*Cp?&N%r4-TgHgLUTJa9Z*~#d<&U)EfT{3@M5e
zeovf#uQ6)h@^FSN6Hdtf6uv3DKy5-C;|(X3?<%_9ji9F8qfT8HF8^0cXO(>jIK{F>
zz+sNP?qQHjGT3a-ut$u^-vag>5eB(ICD(BI8M#x_7%~(=jl+X;f~qy5A?j?SGTHf4
zy&bq2kNiB&!}I2kZq%cj4i7kfDKawOt~=k@z$eqbY5TS}->Wq?GFoxS_{Cda=9BXZ
zuh=Hw(6ql4G_%{xpvxlg++T7VXf#2AVUxg#zdwY3@~?PS{qG=ibVta%Kb>FLLq6O7
zWq|nlM4f}_{mcB|K>XABggxN1X#nGbR+o1kxAw&yd$X{mP2F_*iN7bjixbYsd8IRC
zfgEkhe{`kol<y3nFgUU)&d7VE?UZjHj)*C>s_RNOm3|1g#taUGx6zI(ZKr$zt5eZV
zo)KKFVGZ$V+&$*S-vZ>03P*Q{%v%yGp|O?ykp@GQ$CJJ#u^S{ew{OyDnB~2sZb|PF
zjm_<wbmv`hT2!EtI|XD>4kO4~mG_$yugIM`1&+x{(}NDJu${6GBJ=i%&q~`V&p(3Q
zlj$7m^>$&4zyUF(o$ATcI7|4JRD#3zGMmDbTg;4#{uzpa7L&fs1$j?~F-vdaFGID(
z4)+~yag>14(pwXd7veub3`@4~db{w85ZJIxaTQRJ1?4oeBFQjYf@CJCZxhh8@tp0o
z?26neXGTzxGkUho;raTHsuvs{6#Uv#AaLl-!Z(w^0sKRFr|ycU)p?u&+?{tO{%Tzy
zYcs`w2^5$4b0gXLQyamKemza))<Nf$vi)LA9v{<X+2-7Go+%5?K%4ZU=iGAERDf{W
zM8F*X9L1oDOP9hU*!fk<zy?I8Upwf0Q|f{fL*c(Qih9ex1#DsiXRR$Y%3g05#`Hqm
z>}|g2ik#O~NZ@|u=nk&d2xbN)7|)<6q10~y%Z@>ka;j=z+W%QA7!Nqfl`HG2b_!H$
z_%bh8>F~@o%1TJ}Tfn4a!ciO|bt$<TpeEWgh<Vd`TvpmnISYv_-R)gL)f%%QhTkf5
zUTHh!3^eA_jlJG3T*D6z>|`y@626pLupcI`%bRkO*-_p<MKR#VM3ZL;N90cNGN$QG
z*k$-^cEbJlKjkhsJ}CIL#ZhBv+1#X0KP<r>T;r{MTJ__5LHXAqd4}=DJC7d85dQdh
z{(fa`$7aE5m3zz+S{+`w#de&l+wWdvF>inTLylj2Ztyw1ohZTA5~j3LJ@cV(&n@Lh
z8IH9sLH?IEsY`7Af0|RiWA&3j^Gn-){y+43VhO*(vQHiSk?HlPUQdkRR|)&HLON6W
zt>jksNlpS$olEAW=&CHdBF8Dun4vnU+GyDlhsWzJ6>m5&f)*K<eDGMoZWiD$W&hH&
z34C%V?>De<b$nhfd$H%1@<KVVrA5cSPr13jy-Hz&kjLK>zeDO$zj-WSH{$L*({Dd9
zjVWl~vr2}|lR#xuqME|9>^baC+7qu#t~!+{Ycpw2Bd>_S)ALnHZYynt_Ay@YQu(g(
zy3l0lH;-RzU}a0r{_nY|d{Me%jY^RFCZiCJ&F)3!0+F6e`bsoU8|l9P9(jJ&=}-5j
zKl*SlPv+cpJJAc#+>nuP_eC}gQJqib^~_Yh@FV*b8`u*&E7qm&d~v>b{+#=#=5Jf7
zyG)}z<oc5A&l9doUXfJ)=JAA$NxSh%|DF(Tr?(T&@HT`g?NpC^eM@7jyOKFLtd_)b
zOKf!yvH^2?3YE_vyPs^cp^<6PpUBf!HMZ9GvoWTqPP8^+nc;B#bF=}+zq-c5H;(_A
zlz#jDN`)W4MfsM>KlWbm@p^zj#)1Zm`dg7Lfz>MFEDNW4yz;#DeSToIiWr0wn}6D>
zLgnD&n+}Ye|Mnc<cX~UKfgc>>m6h@>x0E>{fq&^6i(%IPc@G*-cqx@GsoQ<>{dbRR
zY=7z+op1hkIm6-cQ))}&884+$m0V_(#os*6K|*y;0guz$i7)uT{;TZNY`LX;QWhMU
zQ3+fxA55IUo3o%nqyAoaQ$V#!GBd<=Gus2JRZ^H2Oa)a-C&U>I<DJaFG4ZFdV&d{i
z?**k#=%^Uk|8v>J;qi0Udd4$eO64m02S7%|L5#3%-oz*8dFTKeSI4LA$Cfm^J86T1
zE>oSu?d`-fToC7cRBpMYY$ySC&ZkT699!Ls48Xy?q*p*<YyJ6y44@Fclw@4@_phAi
z!2|d83nZ%J+PD(Gd9bh<X?I?kxMjWB;%^>IY!2EJ?@ZofAPfpS9&p&zEB$3YQge2{
zLx$?4s!!^N?B^xzJ07pFMaa`O^QX{~X7@>23mTao{i$3Ca>Pe*h$D>LIkwjK?{`R1
zooIC_NDgE#=c<PL`UM)*Zj&sZe)V|8`bn$uO79x=GgEFUJ4%6d9XrzR{@9@pobK!&
zzjo-f6<YX_C5)+6K2n{{>+M7qUa*UF+geLLc-&wGB~N?Z*4Dsk6?;e+OMGGM-G3}S
zftl6i=kYoG8GlS)GD&MFoSH9YeRzefP)XwjFO{!LcAc=QP?^jmrJ-={zSLwsxz2uY
z@Gf7v#UQKyi96V9CwHw~bVZJHA_FLcPb&THxAJdv7YjJ0Z`m+2zSCAnvGGKV!bhdt
zW_{&v9#t#~+KqSmm#lpa%6fv}tas@WkHl8@Ny^}eNU7Cpxv9JnD#KUp_IBbG4shgU
zevI$ArR*pI4uMPSbU;NDgcJ3M`Q?NAla(J_*Ou{{|E*QwjNHjZ4rz)Le@-;ZNIE0O
zxyT_+b)wZIvpK0(^bVWNvu6WE(WK4Ulb@wmDD))V{5R|L+FQH-{dle~2pU_Rvl`UV
z+QVwV-Fl~g$=oedZaTjd^UqisSb53GHG-eNH4xGn$$h%?j-1z02XM!I+rsHZzo+ML
zseqQmMTWCDy;+#U)v%0frg-M=K8=m-O_~Bx;HjK+(2)ExsHV(0Mb#Rgn82eKw>Uw2
zLp+%wE$}d*r{4k`*ukBRH97|8-Y)Fn1FvrJ_3tj3buPOix=rf(_E$0M&OeWNzh^Cc
zs4`F%+(4c+@B5Z>pUvifRj!o1y=(uns$QFWzxTYq{>JzEVQuh|_r@K3;6Xv%9c?8a
z0(P*02FLc->-O#CF+JU}zV61;y1jFLzn)mR&2nA#MCboe7eGVu0o59@%-}r-*Ei4m
z9rW(ntLfis-z?o!QTKP@oeO%;_uReD6_*i_(R9msqO1pKIo&VM6}?^4%CaK2SI+L+
zDH#9V|M?fo4A`3NTi~vYs`m5g#nl=+m?7byF|VjvV=p8e;&`|pe+y`Vgu|8z?5Ex?
z6yXQA;B9Lc%ZT4Ll+TSZ-M(Pz=JR{)jzxf%uWW5!<Op7+^CYFyAdP=%Gh|)<uM~-`
z?T;KGedLJ+A{Rc}DzbnrjFMn@`YphN102@&LKB&)_NDiOySP79RiECp77&B1o-MMA
z;OA#)b6|H>5n1AU(IAWe=mZ7O2>wr1y{9)VCpb5OM))R_Sp?+qyG{gmiZVG3*0i@z
zat4p<Mde>R?EDbYE#7}*j>G%+k@Dx|x;!(%1A(r^;8e8*G!VGS1gzncQ=r6lb|WjW
zn|lJ4F8ruo#I{AiWsZIBbnT_z0+z6WNAkAVrcb%;yiy7r@t4e4g7WxTvmw@d%B*Q`
z-((6l?NV7+P#*u$Y_QKV<2K33c^y6g8lV569I3G2d9@0(yZ4z5)JtXy0(BSn6bL)L
zU6{ZF9=NKsl<K+Vd{UwTwD2!#5$o%R3k!I_J?r=+n+4y$*FZUwZ07A{E))az=`y9~
zX>M;9(ghEKERhwSa@%>K7}%ko4uwf<Z=a+K?#nNUmDAkLE@TXex6~;DS^TMK;IPfq
zR9(~D&ZM`YRp}AeCAS5jK__wW2-K%XUJ~2elk~s_JW-uykjJkY3-;VeZr#K?a$FZ6
znQZ!wgF9@eEM&X`S|6*M)mT)m;Q>ip-AReIHUi5UWkm$TCw!KfY*eigz`UT<?On&x
zJ#DSV)f)cHpe-6F<voQNZSN;rfo=LDr19y6tmidw(0QB}Vbs0fY&!3Z*Wynqx&qBb
z)f(#|hF@C>8XDXL;dI|hu(g?T3(`B^wjY$ydBEd@r}a0gUie*I2I<LyM=th(M=l;t
zUm*D6ukAr*&?0Wd+{5ZmzXfzavVpx&;-@RZCq6>FSGI4-9l5U044}E;N#A}3<o%!Z
zvhj?U^7kcj+n;=|)@We1E|5Dmuk1)r8oz1*qzlfiu;7jy*F&%YLHk9ww6_NtgVV^T
zebPO*oex60_n(evY;WIW42iqmXPVpF9~pzg06e(9kcSr%`J3z(eBXYC`^AEemZmAc
zz1`j{Ji_fF#<fyDax&kXTh0^3!Ru;^mbF-HeVx#M{QN}FFjtDL-=acUxsH81w&l%#
z>TsvtVMqIqkDsTfylq={M$T&=19+r!TPSD;nfGJx4A!Q$C!n<>&~z@Ot+Bmb$Q0}z
z@N)kBEm;a1gHFhL-d_G$dt<whDR^;ZimPpL5`Su@!WNK}^+M2ws7!Dwd3k%n^J#?_
z>?W1ok5ApRb$kDViu2dMy{wit0=4p3wzqFG0sFkf_I>Kw+n-;Dzlv>Bf4Xmbn)RIQ
z`yRFMB?r^kzy-&=w+7#3-%M{Qx)gnCXZe1=3s2*}Z0UuU%aIUg|9bJvaKX-G*X$QB
zYFlbHxxi+Qmx7b$Qr^Y!r-SzEu@-6f>8Co>$lA7ko3Xtp^d)2NmUEEhg_j&a%cz33
z%FJh(#T40f?(<$5)1bUc-=nR`@A&t)LT1rgios=GX4JfyV&0M(`LC;23(K7j+h_6G
zNcZn#!Kr2;pjl)y_9X79S0;Z`U45}GwV|k1>~)ad<gaNzAK88@uG@QBHtqi`@M@p{
zaCZf?0`>Cd^}&|rXV+Jm_&m4Dz5P2z`%|{I`nsQfQ6MuxTMf-1Nz~4~Ag|araOb(?
z*Z*#v3JhpZjz0VL#=6?F+PsD^$lB?fGT>t1m*+3T&3~-c#qR#Sx^L0<wLMYSK1Ju*
zLYFO_dInC{Mf_Y<c4@ZvZhwC<>GLZ_uJxad)xe|o3%&&yLB@*ay)MpM|F`za=9`s!
zmc6aGy43x7$T5cZPfhP<!S-ODZUhbBFReFQ|8~Z=&ub3<tJ*eqJ?FdE5j*R4y_=s9
z03FX&Ee0nKPwvf&@5p&Q2RmTWwuPXYdOjpK-{RGL`Ypf?;?*9`vU6`1=I|wiNwuo$
z{%-pEA)t>9JYWdU&F<jboOtF>!@WioNQN=|%v@dHy|)28Q8fEu(iJ(cOAes*w3EaW
zK)w3Kji3p9)!ccY`PA8vN-@et_UX5Pdk`xPXFs`VJ?VQRc>UnEryWJr8qQC^i`OoF
zTNIeb|8x@A2a?7i8@_)R5d`N_@Ys6~2Wafw@zyaz&`J}*17cb`)phr@mVOAh2Oj)%
z1Uq>)*vX3e{>_Ee8t=jOpPu0h8Wn|9QA_4t)7akr2{H=Xb5rGl^@Ouvw}2<Nye>6>
zCbvAS)ik!VFERnwT~C(o5y;|K%><X|p11FSMm5edf`)ff&j=p8cYm`bxb!(DBlza8
zE!6tA-kv*cr<?^h5SCVXR##}agUiB&;BBatU<)Ud*#zbBFO36x_owho`4!Kj->`zm
zckL(qY)smx4zW_w*nUB=!e^#v4W)Glg6=H^twyR~1dZ;izV76F{w?4UD>x7DaS=QA
zcHt3ja08=~Q?2K=bEh~snO<tz4JvN*!6ib9?M2Y4&x_#lbJF*p26_B0nF`=}>(kRg
zgEW^Iz`Oq@X+^N}FO35aorCN3Abp5GTl&)9dw8*eQ^~c5poy=bk59s^rs`+@7SY_^
z9;5{>)&6u&;kzL0u@7QR>G^{@ZKu?L%L&!j>za!}BM;!V;<bXA#nl=MA!+m8_uj&4
zjjs?+oEOLAZvn5^!Q;5ob{wjz&{znG+_!hUcG^z4014ft2^-|(ysm)b4b&F-KWk;<
z{`ijtbw2+Z)-`_NesiEwqB^RKEA?BzC)NPa3Re4xe;TXyEr%4Op4OW*x3^z10Xuq0
z?<E8$;t)5d<>vNDCg4>MUu>h+m+Ck7x7G8$+*W)0R_wRm7UzpD*Q!^-7EjKFIQw$3
zj<@8#{n27CKiwz|<Lm#t)&KY2KyT0-QPXYbneyNm*)^~DR^0n#3tE@Ut+z_hs<^#p
z|FV9WuncF=X3QgX44Xk~0e-JD%;H~K2Tpe{e{VVUGB57jH>>ZJ+Ty2D-#uTuc*~9H
zZ}~XEOZFCk0t(!oTDCkQitG2?OIPl(-Br8ImA`Y#9d*;NbmzI8Y1dDx_0LxZP5+;i
z61cEIi2q34l-pOo@0ox4HM`op4te{!lcr8f_TP8@DRaT`L&2{-U%1`gE-dL&-xjno
z#xpw5f2Zw~bKpQ%&0Wv;^jm-%BuB5|(LDDyKFJEa1|x-spL1>dCrgGItCH=OyuGpD
zh@96mhm55YtS^}dy{n$BoF6~4H1=8c(okEATWK%-Ke0k9tVx#ODEN}Qj`eYD&;45;
zFYNcq-LUbB?3(Y-p{@RfDUe=7?D;!p_3=~YznPf5r{t}+e)x+|uDia1+xP|58Z*K1
zaN72;(e(BIe%A)RdtWp`=4niIui>`E`<WlcwZe8ar$8n^zMt5;_xM9At!>-%>$4WJ
zJdPEGPR(Dk1ZS8p7dp%?Sg-r&V}IoOO4YJ6m$%9Pu1TK^TiOmyy53(brY+7rzh5OM
zyFQ}$@4}v#Q)lCMzA&?01l=zA!U43S>e3Y(Ve#kJv#su@n#3vF-rD!=bjz|f&`J%^
zWPvPr3h9!al-JvZHGJUx2Y>B0{;8?-FBM9vm0$lo%5BB;d8K;)Yc!J^fA5<P(${p`
z`6skCviQ~Kx5Mwi^pmGIzAd({e(P=d=$o}s6PhaJ3&(@+T%T%NqPjBX$okJ#PIjy1
z_fNSw!>7q>UwSda#vl!uotO1*nJ;7O+tc^<#<H^DZ&hp8UoX^~@5l%b8Ax0?`b94e
z6yAGId&BB=msc#`_&8QM@m)K73*d8b=D+l{X3?>AFOUDc@$7Zo|6k75n(^5hyX2yv
zYZIXrmUKvP9{<u}aLeD*yB{>U2h(n|u7CcNt>5AdYhKP+u?2Ey0HitlWKGEPD{`m)
zFo4&Zh$%Vjw4I_1o`p|6V{`D{{bCnzk+o@`WX~<<n<|h#UE%Gd!?(T!N~+F({rhU1
zXodf_JMFrVeHQGCJi(cLi;KjigU*^t;1dP5ywLG_yO2i^JlRz_Q@Q81v!oKZ5kHA9
z((CQQ5Fv0^G`Z>2=5iHB@TB{~r7567>37Aq03R>sTV>j(-Y#Sj1Q*Q7w>ZE3o2Llw
zlo>3W>+pVkqx=m=!9v!0g|{q6Yt9RR_g)(<o15_bJ*UzQC&5D2<XfCy_?Faydss_k
zL5mPLA@&!!InKG|{8JI^uc&(*uOBY_BLJ>24PUcVv44W}+>Wgge)HG%Ex7(s%uF|4
z`pw}6be`+&yPjLlk@DbF_esb|Vr%;)XYdxjC#u^)JrZbDd>J%X`UPS#s45Pq;sBTa
zx4us*s@9kY?TA)@I-*LP;JRqbWQC{S0@NTJvEK))Dij=8z;j%=8&0gSo#NSa1GFIM
zrIr6o+bJGR7rd0eADI-l2(-e<1H3q4>Fdn(_EEPsx32xOea@C&Li;i`)#v`K^W=x7
zKp{_X3QVz81ugDS0Z#)5`8#cCZ@&cb^`?0NpmlETkOcL6U2q=%({^xG>j~ztbb#x;
zo#`UCy7%AuxoK~ESypxPEvFNizkM_}fcE|dS8GgW+0g3s&hye2j?`}f$2gt9lY<k@
zpMDF-<AV58LiN<!g?Av!E;OwzG&i>!1w;B%xyn*czXha0)a_CSt)tq<2@bYXY8I#7
zEX)xGH@dF6-#YAUsRHhAo<07r?QGfqTHX2k{LWroQ?!5Ul*#uhtznx5WFQmNwR?a3
zHkExI=3kk9o8RpH*P4xIb0c4*?}hCZDDnUY%@)^_sV0~Eesq5-eOFv7n`C=3R)6K~
zcb)8kkRgtfYT%j4RkOl(-?V+5b@FxT!q=5+kFHDJy0d2ay2x{@+Qe@KfW|_0s)5tj
ztXZk{*R3|}{G;#sdEfN<fc0*_BhSrxI^jhTtQ#;Dob#5xy!kCP?s~SQNA2!=rP;<?
zQ>VVqzW%#x|M?&hDKXF*9wx}rm}SqT^5l+hxw>?X_s%Z8^<OhyJG|c>Qf3KhJ^wSk
z&I(@eV9h<nx;v<VS9_iJtzUYJH*bF5^?Q%t+PQ2XYu#qrPI=XIB}V!4V$GMU^QKp&
zynib9p!Unvoqu=y+cOVRK;Crj)B~@I{IzUi<+|dEw{NFp?-se{zij=L{nPh#gNB9*
zsx>aM?wsoP&iit(--fF{mh!Heo?Jh5qx0_VcKttV@BH?31uY)jVLRmo#FPE`rvwA%
zmtST6ztOgA_qV1!_m8Jn90r|z0opny4lWUV&u+^9U9;t_@O8~{t81HW+cTus_J6nC
z1+K9ld<$3xU01ZYy{KB_GR%6N{Pio>H*c8MbIB>e&RTr740K3pr5-pME}gqN<u>z1
zJ#ge*I>y{{%Xy_9I0Mg`@l)>Ib>okJr@bmuTbC~$|Etm$-0HaHyi*U{i(NJE@6Ru9
zD&`*jW7Ki;<GkgsARV8wx$&R>SQdazS+Sp({rTVrkAyQ{!V5F3^ml*<75_{!y#DN>
z*_1b*-Y8U9{FOhsmC>{@W;#2lS#a{SZ{i)f)1{1gODF%HBr0@lr|q<NOyJc6uV;R%
zoPR#tR_OiO{_NSm?4K>Y6MpydW@z;4K4I+u?*@8wVf_&~?}|z%(3;JEOJ4f%W;*xn
z>`A&lOD{k#_OIcyzbiVyy{;R{H}x3SiWIq@*!HMc`}z0e)wjFOFO7LVz4)Hp?J($R
zC)3_SEx*~fIIZ=H=At5Yi|NrlzuLFnF^!ep^`7@9#D2NcWtBys4M_iLZ^xas%a68}
z__gHmopX`vv%eqtSLx#o8E4#>BmMw%1V`p_##3)$981pGb8aP{)bj_|I;HPV@3e(k
z`|9Sp$(OcFnVdhjO-KCD=bZ3AA9ED6PTp)Ns#dwfx&pM}Jalu;=gPAaubw_zr+kg0
zqxRPK#dFU8nhuVtIk%E;>NSA&uCJQ$bLP|{d;6VyUz4@m|61;SXK5P;Y96NbKiy@s
z5VU;gcZS}MZC+_v<y%j0+Otgi*PdF1|CjF1PWTeh#%-YGd#AZ<!WHRv;d6KCZ=YqV
zwD#QmY4hj4&t7tuUl7t9>|eTr0n`}GRNt^!WbN;m`C`-8*Gd+ARX_gvZ|=+I`cWY3
zviehZ*sKI~pQF-PpMHyI1EtwJ)2)@4_KWCWUVrmns@C*<RTuU@`!?l;+?<P$yrgp&
zw509bY1<h;e<ozVKfK=R>)y4etELFw|MrU~Edr90ragqjls;S3^1oZpn`S=ey0^Nx
z&~(N6*6?%RFNZ;P8iK6f3EE71x5KZxLMNZKN<(ekLVcmt{^osBf46US_b>kZNn`to
z>sepV8yP~{6#c5}7(lD<J-w|K-;wi<fkgB^|D?Y=onBwv{Or}DIkhpyr=T$`0*T?j
zQ5T<yOt+G=`DPTdQ|wLbiQ{`2AMFc+HY#<FgMH+^KWxh7f8S<Z-*zXh_I&V8$(pO|
z*3V08Z`R#A0bPZna~h)Z^5yxKTU`Z?zAWlDxyruV-BNOT{-rM`*&jppdU!aTnG8M`
z$$$B~tut?(@siv(h56B%{)gwj&dc3lFAMTXVOIas!wlO3JZ)blE&JxM%GT}9Df#=g
zoQ!&nqOEPMYBOx7@iK#|PL<rYNk!E<vd>O}PQj_O-MDvsZp`hHGr5=6&6~RXe0VRU
z1(@7vd;qireAm3>+V!vRTnn6@_&X@iqOWSr^yH-qa_i4;lK@%Enb*Jc1~>qJsur?W
zu?wZkf%ap7SG;=9X#@|ts>-rgu^Xi?0Im4k)K_@!?ZgX`3qXs3BHdY*ev9ZkD-1dS
zDP^xtLvXc@B<P@@cV4&j>`uMim?8ttP`dwHzkZ15JG;3(Nl5BaSw&D@f9hkfrJlE)
zJ$Bko+s+IsL{xLPTY^#@Ke%+-@?QGsw}`&;lcQgX?A!83<=SE8h1M59ji*e|_LGfg
zWDkJ${(J6D)!cmiQ`x)=UW-4d=(4vKRqGsP-vKJ!<K#phe~ZuqEjqq4J>IBi-d<%%
zy9=O2<y+0)KHRuxZaV)_6_Y;`_b6T{t~-AlQmRdx<h;{%+9QaA-ahi!X)E;j^O7*F
zR_)B~vOTwwE$zTrcGI#Ni>=3lY8XIEBcJ#f6lL|N{($72@XgbV@BPa1et7>cqtor%
z=4&LDfFf{(?X(BXpkbY-b>}WjH`>;pd~03!fj=v%Jzl??`15%(TM#r0GBJYs=O<@P
ze||^qGz$~Btlc_ia&fheFld7+SNyNw1>dyRZDV_Tj%iiC@|)Rz--|j!J09MwQ1y$N
zi>p<{K)W;FaanHOdi~(q(!+-hzbBqK>6ben(%{h%f6)nAgS%@+_O<Oifw!yP8ZC<H
z-^rJF&g|i)dGog?fwwjURO^UxYyg#Iw{#4jev8n81m~Ky=5uZ*pL77Hu}$0V73B4+
zGTZK$>i5(;=oIJDZxPo(=QP}zx+O;7)Z2}F6v62rQhT@M_Txr9^FRaKOJ7B<-~N5x
z?a2Ku>$l3JJgqXi`t`zm_X=O=IYP&cdKy5d#%y7|_%y#ib$vDaH>v$bQxz|&F3<a_
z+kB&L(=*Vj*ahDrngjztGXUEn{%TDBeckA4^)}wN+`qc}z8koMtHj&Ml5Svk{(AI#
zYfsoIfi>$wTTAbz^2FLTRPGeNzZtYrGoV`M@C#4Sd_mDRp@OV_RS9r3WM-}VvHtah
z4E;arK3Y`&EqJGE{=M4}+CG?;$O1~YOXqUFGo623ebe=&m6wBr=Wtb8rpg}QyW9h6
zyQLdwP27)5U#2uy-&?*lF6Ud-%KdZpf0^>T@ujWo_ni(9b^FyN89_z#OY5#aIge_=
zZA)9D_wrg4aD|9SiAkw`i|7(GC~iH|TlQ7w`@g62>hs<!$E`m(Z)Kg*_2!E|x8Bh|
zxeRpL%!98HRTn2mycDim(wn2P{rIJBNH9wDmgVofp0Ld*OwZi-efjN#FR#{XzJG2E
zEqb4VHaeWF&8({8^XC4&gDt6euc7ttFPCi(x`7VSIQVAc8>Ix$Hs-hM7WC|1_PVfI
zG~j;4eRY=idrn%%_KSg=kI5%p{XzBQr7K@z&w0;&QZYS0MRM&HjkDqVD__Ezj?-en
zp{DwDw%bhGX)!F|8Gy`}V%LQuC7brHQ;*D^efy2R#{1_PP^Y<w+kz{lTb8o|t95pA
zYyj;t7B=2GcS3Ic>8%`#)&*y>|EhcX?CWesaC7%&@=8|*(D_5RCOoT?2xg!7{`<ap
z>t|(@ZPET?+I_9fWD9ts@4C%1=h?GoEuFOcle*DtI|(@s=UJy7*0!G6Q}19g88pJ*
zGt;+!+r%qMFBB>)YOgg(`Mq6uW)XORB(rK=uh8>7*V!k&|EBSui+`ua@1Gy*uAGNd
zGYiisfxCaXkACd^&bqL)s(SXcTHB}>N8-+zeJ(lg(*-?lMi;z;YSPCdhI4P?le#B_
zt$dvK#AS+59KWg<qtVslb55M<eR@Rhl$H}{NM+L3b!_L}E?fgK+cVzC>+QlNN|0r>
zo=@l8a<+8!0L^3G>NyqUv8+7S_oLSLhfjCy*!KI=@7-6^Lo((j&gD$wUn&CL6tXgE
zSy9#8*Kev>_q~r;pLqYgxM`><v=s5u1n&{L^u^}Bkm3D)iFNjC4l4;kVuSyw2zWQq
zN<-c)?d(pi8$jztqtY)Obmnvb_n>dhDEkml$G;`O#R)P<o6inf-?|Vy7}|%}f8e#L
z5j6S=8pY#ZdJf#*1&=%mC4sx~;3>#VJ#bekb9wElw+mY&z_ZHJz8nG_@zEjy4&wcK
zk@nxd*UUA2HL3mj`I3e4)7Si8106O<0(XtRFg}>-Xyjk|^YNGBcVDaC*{nVN>7M=1
z=g_91R|k0A^`+;m*Y~k~Jzmne<ND%v-*XoH%NA~tJJsaqw6w!I;JnqA_V%J^gu^to
z!43n}BaI#+;Q6F$pq(3aoZ!jnxgzsFyB7acFV%b(7A|~c`?@&ib7eu`Gg20O3#j4*
z58iFLVE|e^D+Kmc?WRxXcJ7IrT(Guv&bD1ASH;YYJHBiFeAji5v?_N>&k>YTFI`#l
zm-F1$#y8iWe0aTe`%{<oYu9(Yg5|6!?U4S8fA9O+y4Sn3u9mznGF|I^{ap6$PkU;o
zy@zeqO@0a<g5Nc-+`DUC_RXlSYpd-p+^c&R{HhAJC*n5Pq^EU%Hovcq&G>QaSy{w&
z<|Q%J(>B*Id{2WmD*2ag1JB;P{OvC9zdr7Gsix-f%2@xB{S43UnL|&NX}lo@?jOaT
zO<w%-^|?Lkp0E47YsVe=Guw@%FK0O%`@TnvLG0HK=}dX9rQZUgAUi&)Cx6-*?;re1
z`2PIWR_m>Ie#=`uAMP{;@PQ*sUst}_yw5l!>(HscC7+7>k3h2?3nZ1qo`3%DS(H=3
z9PhiFWiNm3Oy3Eg1!IC7OR}$Xd0p-_t0gyYAN#PCm*dph7|R4Z%a}colPo{QgQo+w
z989-A@_NFi>OI%oCBFYT@uxD-5IThUDIT1>Ql3f{=kYH+1s-}hxyur?9cn5huI%S7
zKDutt>xV^g+VRVF)-L?DY5m)OC7=)njp}PRgGNP`)SKjTXW0JDOZ^gGtfZ&=G;9%%
z?(*t&6T$uQo6a+h7(iS6-sL{I{_NV?J{Gyz4(q4>_#r0%&5fz2z{4CH<L?)3x$~Oi
z^%{rz{}0lmZJ>@U$^tv`%gW2)zn_J0p1=L-`qo7sc16@ZS^;tgX!lDkG&o<b*UlE+
zlWVo*-pf7PQdgfpUBB;XM<{d#%p5!fwrSZm(2jG+`F>v#Z=dfCK5l&Pukgfw`hWIv
zy78;tRakuKi0u#6w{LcsiN^@u5`U4subKT_f0HP<dSG@m2QNIol$S5DwY>;(oK%YM
zvcfF>r*{-U+vGEy8<Oumf4TR%xlwMl<fZ-VYb&lxJeVb<nLML9b{TX$a8e$4sMf?b
z*Xi4u;JVj)P19GFGk?vP|8D6OXbE;|mm{d%bV*M1&mMlggyXjU!T-LWKdbxqt^@2m
z)Lr06npC#lZKv&&5=bDdXL|Sg!85D<KX*jO-LDnceE)O<w5vI#1afLsZr0qQYK_;B
zGiYx4h&=t~aDx}T03lxZS>5^DK^j}zH|0T21Z_<T%mRf8$YU=jXMLBN`ufuS`*UOG
z7s<Td6x+P9+OPM@&4Bc#o6ef%;Jur-7ERc7W7nT;yEfJAn&u>5T%Gw$cKIcB8)$Q5
zN)g1Bx?Gyhk4o+OXK8+~+JE{+cHMQ;7thZh&&{pnfDV`y<$;=5pH!3Q8mE5?I0ii(
z@CnDMw+nk9$4o|Y|FGEJZUhU-@(n?;^FBrWYJO&=a^snpCgQlArx34R4$jeAygqg9
z;&alQUcGGIw3VL|yo+~-E!0)2*|E0IzXhCw9Ke_zDE9v0!VoF&j*DkcH|;y^es5dQ
zx!PmZnTLPwd;9I*I#^jW6=MFaa?pYVDCck91vxpdiSYX2|Eyn4pjn=O|K{3E|M_>`
z?@tHT?me~9_G5OW^YPdJ{6G!WUZZM_@2o3#x;=B>eJTHR*gAprD{V9DZ01+a&HlOX
z?eAJ+$N`#f7M>Ab0Ga^J6}cuSvi7auv0}5AEApqs^;<VX8)D8g^}+KtQMZoP_-}fo
zyzF)0Gxhmvmd3(n0lq_rZ$A5k*j9atzS~>*uZHXH7nt-<sC2R1<w{%kb%Eifc5f=)
z>qalNSA4zwKQx7U)q(4spz|xXw6{-+0#_}wre7CLyM1k%-Dj=3sk?to>;7YGvb7R6
zBDh8jT;tWNtYrIA!=23tZfL!`e&6*?b#As`pHW}^T<==(2RDVczEfSY=R%v)<1=!n
zvLO5V^n|Wod6GTr+qXH@^S*uhu6y9+JeGIYIl#UCG=9~s3R^Cnu=V8fSbAmM=L|V}
zcTioE<f)&yNYGf0qhaPZ?Uui%qz=xJ0v$mmS(G&|SJ_kdg5!sRUu)LL`@LN_XBxOw
zw6eM>gP(sX<fy(c%k{6{`u92FcJz&1uBD51tdrZB_T~L@edu27Q{j*tI$u}+bjUm3
z*NeK!qs6VS?`?fQe|74w&8d*i>3^Y3kd0rOn&m<1JKMAL+h^U1uDTVx;cd*fm-`AA
zmYQ9WT>Ld)7Z*ct>6!L#Pqotf{_a|z6{&jt^4r(P_RYPs?eUEIeYKFW!5hvywKzb7
zO23?XtnaS!dhz?ot(~csr+BZ~-Dl^9=AB8Q;3D%*wqbv%^|Qr$&t%7aOP+aaI!|ye
zbj^b5YKE;rnlYJKrxc3ko_er*|BB@?o6oNmu7B4$TLwBczjQUYT+Z}A^6Yml=k<i=
zwfS-@PvqYGnm*eEYSAT#MOzwUyi4Qn=RSY5wI<*0R@UiCy~Q&>p9^{p>D>fu;|c)n
zEi~I~^8L<RtF1p@otN{QGcD8D8`glyfdu5UKUqB2wst)K#ZvVvE%wp&>)Q|KKGnYV
z{10g8RBeZ?05kZQ%B3qK<5OLN+_XzmFMaa7tFt}-^y)eHr~kDR?|^g*H6q!-TT<#}
zw)y`4%8<C0{kZbRHy__@vgZSz!MEUBKo~E0OKRB*ou_7N@9e#@{P*jvPruFjzp8si
zecP&S&hX91&_m}`ie(pU;Z=*S-T1pKclX|9eer)=3%{!vLn|qxQgDbzoXS?R*xDXc
z1zuWZVw&BrYw_`?>)kn#dizRmEj$SuN&N&lGH^?<^wVzvvmhIkw@ffQ^>(2NWK;6j
zJka?2Cw{~htEEUy&=ue&=!H!w5&ZnAj~qZl0N{3~Q6V@F9{VHr=C7?VSc77E9B5m5
zIy-oG(yg_&Pro@-@Pngcj_<T7H=R$~f)84{mDciiV!8GGeo=j0Z%H@b;D!4S-vI~v
z3fn2Sn?Y+NmcFd?Yd-jN9nY~-Yp<H}UxOcKwi7f~@zDFc+Pn8RbIP~p1_sskANW)!
zo9l9Qe>N<N-+`le($vF8zy^Xw5tin=Mbw{@*?;TRoTABvitoR-ovJowf`({OHMsnL
zy8X@iB|UPdUOKuh?W~@#O&oOY$4Yka(D!}ckH6zHeRtXl+<>NwmC_;4*6J1SmebQs
zov`=%QJwE*7k*y`g*s>nP8>hzAcx8SLVy2V->~e8oY!kd@F@Uaugoc~)>sQM)V_D`
z^4B|^Yel}ry!rgDnroW>4t~gFTl*$Rv@WT&0v%6a3oc;a^?u0JkE_0P_ui7A@(+7o
zPwpscsrj}CI<N>e^t5cyrz-j9CEt$6md@I!XQ*EuA6$L-cI~2NkioTpC`fu(x7;>$
z#c7dKD?Z(o+i*qkbLH7tx%S&X!VFsv3Fjyd(3-&n$f?#_viTQ(3rOMzEiMwC)DBvf
z6B}|peZ%(&&*q6e02#mFTR<E?II;hGc;}&PX~O2K4D0vy{&-zI)y|y{y7%}}6}YXq
zWbO@(?d_K!Cr{r|e)V1SRDkLf$MX8GSNng>Tl9LZ_vhcAbHRD&!8e$zfA>AV7hG|6
zw(Y!idzSz1eLvq?4t9>qS8$W^W!1B9wpr7EgO+}|gs5}Amwh+i+5%EK@~i#;mohJZ
zAAg>!+4cH#(EZx7w5-pwuGjcmw$_$SfDTh?90f;Dx9Z*l6N;-9j<JIe?TU(GT>LGd
z3+(&JTNc=W<~`-X^PZWLEkTPH?ZAz`OGS1X+uMU`z<Kn}caB<)vfA#x>sw;4U4Oa!
zcj>nI(JYXWEB@3U;90hp^UqcJl<xGfEzf<r|7psd_>RcwNoVI9!p?v<f*6&u)(Uhu
z>IZN&cuB4)rvBFRGN!uo<zJF^Uy%81wD$E}2528*p@=-V>YMiIkf-0<MghoH_u9x0
z&n?!8AFs4qzSS>ydiTFt<}1@#L0;|+uGTor4xY`cm#WHd&MiLwbl=mxSFRSm_umj%
zFX6?_%MCi$`Y=0a(WGbe!#~Dq>-I_2+TQ!i_m)p>=Y1A0?pzHM$F~bv<iVYn$m*Gv
z+uMa84&Rd7a$V~G<5F9_mG6^sou_}(yOte$C+1!1Y&mG7eCZGHCRXq04MFd^pYP>~
zdG+}GuFh{!!qN6kMk{LkkJ}!BOvZqMA3U|VCUpzw3=lhTw%9c7Vo@Id(jVaX_q?^k
zYo+a!hu}=A`ZfnN>-`YY4t)DvPx<Yv*B`Ss&;J~B_|&U2@1|}l;av=O##1J6Pd&5h
zmD&98YTwIW#oAu3$=<ep{?!Bhb$N?HgGHdDi3PwXy_Ko{{b{!B^%Uz^>85+8C;k{;
zyvWW5ZL6GOfgDjWMb}}a?Gz*MAsS0pMlQR4H2A%JeCmg-)0mU;Hk+2)xlV^I-uR*f
z?$-MHOM0!lKH<#~?{wMBZ%4oS^67)md5FK<4PHR<q}FJ^5$MbXaKkN5PayeQK%O9Y
z;ZE7|%W{Uf-rWx?zB^2*TK)Oe%B6q9U^UB5$T1hcw5~0^uXDZsNzLAS?)4H^edpi*
zt`!yqS#0oB4C?(=Pg%FfeJeflwQB9(#1Q_JS5@G$d57(kXvirT*_S|Tl(-@1f!z8I
zTJy>cK6lL9T7JvX==A96n|#-QjmavyR=w+d)ZY>ZXzI{W0jCbj&lYoTF(-O}`!=(t
zJ?)#amc3e1@cq+E_one~DR{a0erp%BZsp|!*R4@cB$j>)kP-rq1ME3rc<im!*Oxzw
z!Gol=vM=hUoc6q3$Go0-ho8*z-(Hn_#hbuQTz1P!m9)&?*|E!OE$b8BO#bol@${a|
zfc|X@ZI-07A3Xdrx=QHvgN-Ij+__zsi2Rv!hh;DGNzj>yg}jlg^DMU?{{$Hee4-j?
znD<{SnFX|`UM0QM{NdM#ri;QeUnTo}aX)wZ;x&e_<M-eCuCeuHKhy|r=6Bdmi)8^F
zq_X7w>s@h@hVQ>x{@<;;Xzr_5$G+Fv?%2En8luzUAY*%P3l`py^VY8d&$_MgR($>~
zqDl}vtiL8l*X`}bFQ9R&o!YgH&h;%Z`ij@DCg0w^b}dJR{PV3ZzD$EAqK#h`se{j&
zd|35-r_AfX?~C?5x8DB3y?RdYecf{X8{iW9!MBJyh{?;+HJP7%63u!oxqRi`t2>Ue
zUMrn_{BM^7BvbaYKn8SI9@e^cFgeos0_gq-v$F-?H1F-oTBNow=dH=+d!1&r(;C4;
znKzRyok1HZDlT2oIX$&-=f7XN@AxHu@0DK*K27AfQCkD({H7;9GYYc$Q+c3c#jk#s
zUw?de-u!#-U#>P*JNu>jP>VQt8a(3Ag~^~9pe?&U{jHmvI@fx}^2+M{w+|l=ug|;c
zZwJk1-V%_}d(+bgcG^xefCT01LapcDBC;TU+;YCXs9J~fC3x=VQlI>(w;M}T!O13a
zbKjiX$(_F7f$m#3e|_ISYeI3g4(lthQk|Eos-W@uAh2}Nv~bV}w>Q|;8<&LtDah+j
z^=1T3qh+3cV5h&WZ8}ff@#_EgzpwHJcM-DsTfA*&g61Lj8YarxOk-x%Wf6SpzuP4s
ztAD8jBdCLWvg#CQI+*F}lQ64Reb4RcQ*I?|1~`BQBsYaQ7vzD|fh;&V>+Qoka^7uK
z1)wvr|HZX_vYmNt?OTS!FYgx5URKm|XEr}{%f&PvR?z7BQ>(R~<m65lHi71%PH@#d
zxg*C}#02V~O!|6^*X!*@ndR!+0#4eVoK^Ddikx>L6S!HjO}MwHTIV<@OTY8J{JCdQ
z{rPB1n`t}eXZDq8m&^}?+41-b*u8%z`tn|!@qFLLZLD);-e&0EU-^4o=oLxO+3gW+
z!Uo`_AQ|kZ-frYk2Zwg8dsg?&?EFu&u1)id{F?LntJ3Gse{wvRg4zrZzD2YNgVXw!
zWKe7!g~Zmc?`!uaEb6Pg{%^|8y4!t48_r&S{W(_|QVM&t2n%Sp-kG@Npwi-R5lzAg
z+*7XzdslQysDF#7x-1Mjz;j9O70_t@Z18CQlA}C9dHqYx!Etu-ca6mM<Ch>ZPu4tm
za7FHPUR4mN*RbrF#p#nT@5Z&>;OG~V*>L`S?!EZS&-Zpf2SL2^zyW#b$`rveYo1k4
z-*Ru+y8g1A{O1yX`A*0nHB8C$qJQ7SXBFl3yO={p<M+-^m$jL;i3OAr-m5QoS(=;k
znz=tc$J6r2_3SynEg8WruYhWuWKPKR(OH|P-y)7(0?+3y;c?U0d|YT6I1{O;J_*R`
zf2s{mj-I=BFS;XlI-DtQ>Ez#_5onRpeZOxne5HQjyQJ^;A`3|Ws{g6BEqJE*+%6Np
zw;Nkj!Sj)xif&VGDKmN>038AOYtFs=`j<LOzeOCn1fHOL;+krh)vu}pNv=_%pqcy)
zkUaKWQ+fHfh<!rfd8B1&ySDGTE_{6|o8A6f#&73^RP3J(KJ}yNcJfaze$ep-m*!pE
zAAj61*FE}7NnZFr2V0w8r*>L*&$<R4&Pl%M1$M!$^v}QV+n(KNJ8do4nx(Ntzn(mb
zQH|N&VES)A-`wBQGv8<PL3)G7FHHqC**~bJI~-UE(g14Xt7h*2<td16Rc*d0#nn3C
zQ>)&2pSvTt{9DAXOW;x^#pc=LGjgZHm_Q5eCw)C>kkzjW3C)vL56<tjowgp5$|L!I
zT5PZPkASE%et59McG^0YGck(A%CA4lrGJaqbZIi^GJz*HOF?NU6r4DU&dPq4lRNDI
z&VL>|^#aoRpUQ(Ls!m4zJGj$!T0O*Y&-+DQZ#Vu?2FJwTReN=whCRK@qI0@BzHevj
ztlzQ^{_M;FHO_nss&$wl`SMoj?4oKFmY3jZw@d48_1sF9^Z-w<8qM2Tkkr3ao^eyq
z3E7js6C}33p0XTvjfCot3lG%#k7%uJ{Tvf_o4==0$iD8+B*VWiFPcqR`31CWr8X*u
zW9hdDuglEQD?`@(nWVwGm$}mmJoW3j({;+N<dt6Fl4;iDHSP7?j!pO1fliS5{xLkM
zKUKkYA?ON-s2vij-y(hqI)Jm~7L`+PH-1qD=l!pzeXA>UR=&6iy4N6b^;C=P$2WC>
zbES!XB!B-?E=T^OM@+xGf0|#P4669nT>vNf6y1Z5?#OwIffF`(DR%!6QD~C4FwE+I
zD#{3&{rCKxp|SP2Q1?90nse2+LasY)r$vI3kLueHhn=?5q9B}XQ#DYva1m^_3ady^
zR)4A(*tnB3o<BGvcUl`9%a`Qd$$yT?Uvf*^^ZK?8o0$0DpAv-@QgM(fWllwf-`kB_
z7O8{AG(5eT7u}Kb)`mE8D^GWEwa!`&&}{l?dCzPn+r}-BD*0qo*U_D})50Nc(Ut8f
zs@7Q#R_A@|qchyeM<>OF9@%Lt)beEsXa?Q$piR%sWK9nS(DfC!HY7xyzW)Esdc*kh
z-*@^4&n}<Y_b=$YoesEKU+^u0O(;Qo>Yb@`avA1;(gk>8anjbdiN)~rb4|+a+}n*j
zD&T0zOf;HuJ6X~LoIxi|&pf)rcG_x)`(FPBWur9^PVRfor{6rbK=S&Mw|zY~lXrUg
zLrw#`J~60TClpd%U2{LY!gkt97Enf9nkTp1)@EAcmp7o}`}f#rAA?&9IzcA664J<$
zd@lzIc`b0rPulXfFQ{5)J!DeZXxqxdwEh-RM$o>Wle>bKUIE1rXe-4fz8Tf;(hkm?
zkj=5{?bEP#aRrK8;O>de>KB}#vHweM#Zzu4M}kg!E{dOYsaRv{@kw0`pq)uqxS8KR
z+!&+y0(7g!nkRB@Z#Tv)gv8_S)k_eGt?UkH#RWH{vWUt&ztdJI0vaQoDLprnGhM+k
z^2tuZ?d`@jN(Vq|J1RM?dTu9Ix`L;!Cy6qGijfF#2rhm3^RNDd=Xd11bs)*)t3g9?
zwa!LJ^k19Be(vqYGmvEBIcw^|D{|ht;DTh5*-f9FwnEY15LML|>j<dU*$P>L@QG=K
z#Ma|R-Qd*}OI)`H=JhWX13TAqb_mELx)7VT)z2%c*4g>uAn2U#ATy7kG>|&bq`BwK
zgMKq@r$w-UXOnfe|NZ+u8?=5x2igRE`fASY<e88#+%#=<aULkQfZHQp`XH}BE!f)J
zUktJU+-Q2Y<xl3k?%QvLXU0GORkw9ze-(4>z143jAZIL3i-C9~eYNiLZxNtQ%hWql
z*VMYsxt)9y8fs;40`mUPiwC<&<?Sx#8Mf2nSU~F+mEU$b&$OKu`(+7eBsz0G&(m)a
zazfxX!=Cf)h1EL3&;qifp$Nf=1T|?yA+3o^>#U~SPG0E&ZqGp)f-%s1aGd|?HxC0y
z&9J1_s^?bnO-P}7NzZo5t>lv)4d6zZlBUJ>*DNcbg{p|{|98jh|9)Km|M}D7^}m+O
zU+(|^CHddS{_Atj_W%F)*#6It{-^5o@&EqU@BVk}-s|}FwRe9nJDsY(o%8q9Z(n|V
z+*-Zp-;O`e>XSeB|IhpXEWiHG>;GH-T>bSp|G&KT^VeHnhfk=tWT~HXJpT39ilYA?
zx7X+Ye`Wjk_y3p2@Be$;|Nm+J+HKo+_M}})y|tY6_rde~P4-+exOe^HN3Hm!-!FXp
z>V5q4*YK5htN2cy?>j%g{&hvp^{8#dmZvgP<gL~vA5YzT=JvMC7aaEgFMW*i*`fb=
z>#bz1bhkGaynoM~-d*`tdBXg^^X&g$TW>o<Z|mpPJ#*Y!|Ff6HOh3K5_^mdNo$SNs
z@mAkvE-bxu?|R&~kHIq5a?{IyUwZztuB_(YpXlRdd2!$VmfEh8+`n>u-~X+DF26i}
z-{<LynfHVLpV;;~dBySDzjrbGy&qS%-PeAdY~@$>r{!1teqVhV|M&g%_nSViFRkBu
zed`>NQ<Y1${oMUa{QaY^HTzDNzu%>~zW(F?tNU;K*ZThQby<x0)4%%vivM=MUH`K*
z=lZS<pZ|Q*|F`q|jpf%XzwTQ%{j2`JfB(8u@11-5{QUog|7#-8efnCb`~7_VmupWQ
zw8byv{wn#w|5g9l)AipQ|39+7wtt6>&N-h_!((6Pf3rV*Gq-yG_e#5UFFzJ(z5BnV
z;^+GRZ|(m)zW+D=|DX5&-|hc%`Tn2J^*_&_4zinH|NH-~{o4OC=l_3P^JU*P?m4&j
z#4cZ1l>g;)|Ig+BXZ^SO{^@Ss@|D?>??l?|s?>cn?bJS>!-Zd8MB4q>SrdNxyGYf)
zKZPrvZ=JTZrg(d$ecamT-}JxS>C>)A)MS==@$>WXh4XF)or}5rao4?-M&FaYzsG$0
zr8ez*qiy{^iz~%D*G+snyZ+4krC)9Sx6UiL`Sa%I=lzxEYjqEux}LSp_Wt|VpFX}~
zFSZn|`E~dI3b`5A4gZ>7zqohrzguzZf5*p%U;Sy*_j+c$W%R$b@$O}Reg8kN|J`2y
zYkB>@{Qn;w|4)AtTUF{k?cJJxKSg(Q@}8>PZ^FxaTFm2E-h~4u6H*HUMTMLmeHT72
zG4XxW?r(O-o?k8x5lvrLQ~c~qPtWNN!T+EC|I7b>{r}V6lW%`jHp@ITj=hq{$-J<~
zz$BpMcYlE3>Nj?tU4NF#|G(V-|MlIoZ{`2Hl^6d_uG>HR|BBtJ{ftt}a)ldu=Kr5w
z|9ySkk)1#5|M&m@G5_D){lD_-{~Z7ST>aHC+2eb-C;t&HP3~}3Y|#2O)8)g9^gb_!
z)8hN%@4PkLa_HmZc%Mo|`CyG{^LM^!FrE{6#Q$evoAulN9ls7S{rPBoIO@dt-tgZa
zjRSAKTzD)zQ|h;Lr^ExML%H^K&mMI(-!b@jy?=h?CMP+r&skscOM(kuPd{dCU$-pR
zsqQgzChI;y1;yuVA1vgx6pzUMIdQ(nM(B9gtC#s_%oNv8V7?-6Z+xU>&szz%Px(ID
ziu|%0_p;r$@P2fzYi{YEx%)oWx6C<F^6_)Ljnwl$7d2|8{*hKbI<bF$yVz&x&4+g`
zT=ZBX+wQ)Eki~S3)ZWj%nG8#%jW3t%6Mb`k)ug+N9_|<2cmJFFe$_jR<?Y2M+&73z
zF5EKfzShR|3*YVj`(x#*pGD1u+yDMpX%(@wk2m_kasSe7Cyqa4`~5L^Z`S0!1uMCK
ztb8Y2nQ?lp>+dl8n_j)TK^C$0R~41|_5Du0TV7@NB+;_q`~MKh_L{eMc;Z9TI?m7f
zoxe0|tw~wbnK#G%Q~ggQACK|<v|5R?@O9#ftPkr?$vv^%@@VUy;8NvE_rU)@RyMhQ
zy7{2-$4apypFZ5I{}U3S_)+2HhsV{OP44?$fB%-g5&!8!;;Z{zY%2V7L$CGEfAHM$
z_rlK~c%{~D-@Ekd{>C+`_ScH;Z#X43T~YQE?`Q3weDkC9f49z?S~JbEj_sjWjNi^#
zPsJAn&+od_wO`SB>%vnDWG|fOIDF$oVeYYMe?A%q>3{p%d2rgkljcXF-&}NKa$o<I
z*HWx{*B!IHhWisYSmYH-{$5<;Y#htz+IQ}@dCY}}r#jBBIllj4_M?uo!rNEZeUtW6
zeUf@_VemiM_XqV4?mGNs|6?_S9V_);+SeUZXxYQ}=aans^UsAB8rEdY$*=r4A^(Ap
z)br>%%O?+~eE<6Rxry$h4_UA7M}JXx@09gtj+u*``kU!rl<jXH+PB8O&M#H5zx7qU
zKWFP76TdJ0^Dk@f348soD}E)HNwvhJx9=6}b^UVQ?r%TmEEl!%?f&il2@@Z`ul^ma
z5q{6_WMmz8XPeEvmEMo*`E`}#OTE9>@n2M2UX}e<_r_6PlbQ?rU3+hE72dwL-#vbd
zYncRdeRq;VzxBeubJeY%?7p1ImHgp;eSh8-`TuIl(k>=-+uHxtCrf9<OGRgHO}g`+
zN&oZv`cM9KkH0JbeXGB(_v`$>y@#yRM3(;(IsEg!-Ltp<PVUK#Y2BE$@k*h?p-DIY
zCh^vq=l=h?|L^zzf9pTr|I7b5{@=BrzG6A`(0N63zHX>YVsANY!j=&9?~nbT@c$p}
z|6G6X|NrRzH8njy)=T{P-}C>!<pq&X^?#CEM7ObBcqh+%*<fAM(V*JN=Pl-)3E7<&
z{$%6Ce=~pF)~NqC`JyQI>A9a?zxrFd|IdB<S${&ao;9%WU3-_O=T&g=|Ht+6{~yI)
z|KMH!r{8AR`R(nu^X2pEX1x71bAB`be9OMxx_|m#CI5Yl|04H)hT(LJORXzgQ){iu
zF2@TA+w?t_SXRAb-5uwRZV%hrF9x{9RGv7zC8|h2z2>Wg@|zf5=ED=F=zZFumciCk
zb5#1IpF`a%j`-kDeascbf8=g&<T-tqY1%$cex-F^r9MxvdGoCHPmRXc3wEb3^Bey^
zQ8~fp&e~vI{`$9lQ~rP2Wo7xFqgFV|LL^(KGG=w6Mv>qj)yjwyKNL?Kp0sKg-^6mK
zH;U6Pt-k%}-*H=I9+#7|k4?0xnIZgYn^zy_m3%w-d~r4PM;lg5_p^T#<+o-+dh_dx
zs_OfM`AiNUVV`ltELbi|R)Oo&xwm(Ur!CA`evH2|#{T+cp8BMK>8n1z&)qhuem_^-
z!W#`A1&_QI{r*?}P3K{*qvpSw3(6$=Pek*ocNDk%6}oM+X2*uGe-^vTW=5WHJo!;r
zk>9-ef#oLyze5Ktqd#p}_u%d3Ils0>d^I@au=aL1_wv{Lk76G7D)5V5S^9P2WDSYv
zPXQjziQ>l&?szS9y|aE!|6`sbGYU^F_^+A1{LhhfcZAAM`K&rpXudVlbanyvA+cTB
zPpjMC8|l8cSmS?BztQi>!$oTzZh!i#_voHU-+fDrpNiUl@{s$ze9r7o(r$;h+W5ri
zrJhcnJ!i+a!!v(8{_;WVcY2MLq0+IJI{7m!`Zm5-?GMfR`6DSW(V^mpRQ=B|MLtV$
zrcYAS->=i;FWq9fV$Zdi5trkh9No9cM(6m(tW$@lWX@5VX1r(HFEi$MNx74l7v}uC
z`(x3q#7XU?k<Yv;Yvg$ppX`t=USd<`7kl@#{J*e|HCq1)Pp9@p_RV_~!RAwYB$4OY
z?PJqle7+~6YSJptf0&tj`_uKuo<3VE*_VG~qI31CP5N#(HT&nDndmCVzUY)0?`iEd
zlDeHwYHv+@`qSWAS)cs97ojCWKNYUM3+0gg@bjj@?#HQHrXF4$`)^0~>Kl{$PkVA6
zzP`CXUwZe`S20J^<xfwZ`Q}D;p+(0wrIIa%YgYRe=NyfzKK1y+m)FVMbLadCwcV2Z
z+3)n@@1Mi1Eh=Rk{u!>R|IIxuSRp?*@YTutZ&&;%{kwZ1@7jQ$)1}xuR%`q-+;U>q
z`|`(Arf09+{P@_)_djo>=hrM?&3*dAS+qbizt324y}C@ovCiAQ6^&0fZsL+r>|4C$
zo$&Py7oSbF+4kbM+Qy09e^~W%Di*6h-MD&bhI3u{&F{L!Idi*94}Jdl+w$B6U4>E+
zJ=exIgZ*K9MM5%v8NX?$4EEdk=;Nm&wpU-B>EHKZ^YnQ0dF%4IkCh#He__JMP5H;o
z=CsU9x|EjR9^Wc!Vq770uT!FA_1UZZ+NTfy|JHZnxAL7rlc^!k7rt1q;xF$f*?Sv8
z(j}z#EQ!l)OM1!jUgf#}-jat?L>l!4j!XA_JM!?mxLmr}WkH7{)g_r)oq-c4na}b3
z$6ER0U7Y!mg?c+ZlD|}ZRu*Qgd~>!)w?BH<vlOeUKhI>`Bl4|}`nq196wDue&tPGn
zSQ_(tF2l#aBd==sto41<S{HWeaO<9{MXxgd?0vNM(b@E=7J1hy?;9k`#W2^tNL4<(
z_=w^vq2u%J?%R?y&2-<&bph{IF5j<~*cUNJ?<dog&uPNf=9D{22n284t0|x2xo0M~
zp3AwQxEJ4Ua^?Ruu9mT^b?W<QYij?)b&i&r-uI%QzUn<X{OTKTCUx`{-}LwY`sMEY
znzxSO6`9L#{M={b6!*B+`*Y;M$Zay0H?Dj4vgFZ%sI!9Q*=Ov`D|uO!wJS6>U+P@*
z`lrFXTb`8}`(umd{7|d9EvV)!A+5=G`&CsboA-_9erGQ~4#+lTmt5`{EBa}NZ~OLy
z6UlG8O+GJi{-Wo9&-wP0RqKVqcRgNNRd@P<bKS~!(VFZm#d|$(?0I|E_|Dgr(cKx$
zSGWF*dYJC>c2b31UXuKd3CCUIi^3Dn|6Z3~dFbDj-UGcN_dh-{I<Ecg;?~T=Wx4wz
zA8nrEygU1(`oo@SpW?r^mY#gVelWE4w0L#q<R{1TBUv<^QlsR`_$rrf_<eJ2JI9iz
z={b@9!K-X@7C$X?%Xv5Zlk9HgIigQC%sVkFd5*Bwo=CabXQn@x61Mkuh0LPj-OK(=
z&#c?)c;o3A{kG+CeP@=(JFa}L{nPHO)GW=`)y2VnTc^FVe)6!bW!q$%ko4O>Pxnr{
zZG3cNnZMljuX48!ui0UlcB+2vx!JE&q~f<qv2f~bdmbOf>vwSPr1sutN8~?kShPND
z>ty~NaXESuZm7+>Xq&!#%W=z|;05iEAK!j@*|WbptNMee+8KAb*Ac6p6u!M<cJIZ*
zkEQ*_{(t^OZ;w}>udkME^sesOx<85;a)Q$gb|p88>rHu*a%}c7D;1`Iwwm(>7VUTA
zZ)URc)#XpO_3yGaQ1d*TcA~vde7RV=!H1Q<pDhyI-sCR#@8qe{87VDgpEn(?np0%|
zeyeAT;`}$g<~5p^=1e*sx8^<b{Hqspq}l`49pCR`<a2JybKYZ8E!NxYK1Z@F`ctz;
zw_Gn@bY8Fjv9|3ikJU}8IIg6bW^ewxPU!vh&c-9o-aB_rDzZ-g<ahs3@oAT*vRkKA
zi>-eec4Q-;er-k6UAez;T<ZS*>gNuIn5gT`s`&1AD(;ijtoBa-P0oc;GHmk>A2^Zz
z=gQg1xBBxvp3FF)E_!PB`kyxq3_EXTwYO}J(Q!ANZe)A5VEUUipQ4WFxPAScSoTBv
zUm5$ecXRGoGTW}5T=+rY#@ym0GhrUbxPtR0*DL0&F8s+6|7@+QsxF7^gnpaU*So@=
zmz+zDlB-JAeAz6sXw|ci+G)>EeypE+{(4N{lDn%E;#QyDmb^|@r`^Bs&Xd*qHtx9L
zH}Bn#^Hs&I30}8+KD}<>`xLR%)W%O^mQj$L)#}{yom^#=A^Ye1pZgkfsd#oZtNzZw
zkdrYdGn;12p484Zy|q{3xaeu=_m#`;J<U9j<NL^>D0tdOm1L_EJ&`uACbz|&_H9_*
zd;k8m$^1tz|2P>jY1So1_w#2Zmu>w2d*=S_S}ohYeF@mO_fYSJ=)iCGCr`XmKNS9D
zCws5BAJ;VP^`gH|io2Xh{#F=XxhzqJ-~PPC#*LqOjV^Xrm?%xNeDq`Kp9$;@$0kaz
zJpNkJu3`G&8@Eqg)!F`T%KRViiYsO%HvT?r?8l#f=hKGka}WRi``T`+oLP1aZ`jrP
zzUXh$OPr27ubA}t^wOp4IQ)g2N=`nG-afnCK7@6_<%3@y1=;xb&0ST#`^dg^p%(AM
zrrFj05nlQAd)CK;(uRBo#MF~(_BhS(XSddQ!V>>UyLl;tiQp&Zz;5NBUq%mm?@T#<
zY~FkCW2)!G9QzI?%vI|-dT@z*U;eCkyK{dJ?Vh$nIKr>+g`rQ(6Nh}+)vUFK+n4J8
zJ3TR$Epd0%2dVpCYSfxjZ|TY}T=wgB-g1q5tuiuyZijuWu&vYl)ED2)9C>ew42R$Q
z_q!)I=FY3lmdt#{eDwL6I=g8*s%z{57Vf*-E$sGFLR0?g!+u@&HU0ngy}j49Uy;B1
zpx2b?^B>$(;m==K^>L?ymg?C_?H})kowXI!QnZ_BZ}t7v$?j&0pEcFX-|pdf^iyrd
z{BKed8h^jr?pku-lZEKdeLo@>p8UIe;gnhWjlISJibj)dj_l-oe5oPk*#6s^(Q=jR
zkI7l?s5%iFpI;fnvb6fohoEE6<@U9yXZ*SN`s~B(Imc`6?(GUL3wFH4b}sUA|LP@s
zULFzU?(grL<15=V!CR3#<@K5J!~d&heO?m(Q$N5=z%Kn=__UX<$ICWt+_*T|{J@ff
z5h|;v{ki*N`HeY;)w_>B{-!<c@^{6j(h5pDgP#c4X-w&{*=HQiRdi<CrzZ+-5l^~z
z`bEWmY8G7bBK^es%61RMKacLut@)C?xNT1zPp5jBr}2&ZPYX9KTJb<&@{@1oJe4~>
z&FDChytzDjR`>x)*5vm;l&AdKloX(rkgqD}Hs|HL1*?|{Prv6`xw`b-9KRfs0R9uz
zD<0nr-uK{0<fP)_XP*jc*UtUKePr>oPe+d4Iiz;kB2n;m#-q!voqkWAozi=;FWO^G
z%gl1y`J%T=*8YiEz_ayFbM(t+HIJf?sGlk{V+=T7KjG${oqWrMHh5N^NqhEVV}F}|
z>OWPJi{Gq{E3R0&uP~|N+zPwXQrCEGMBFm!j>)QT+><L>Z+$`a%^~Io_D?rksT^J1
z?!V{0)s+jC5(;lN*ggNdCi={Wr&G9YbWHib>-T+Gk0%R?LXswKY`r$Ya)W5e0~5vd
ziOz3A?592u?N4?)H>+L0ZoQUZht0bQ-zL7_A^Pd3ul?3^{pN;yLe3!%^|yW0<Gz^p
z#P;3We_Ns>?B8%aN#1%ZD2D6ynZ@nqZ@(yet!Y2DzRqUK?6s@cW}M5Yv)gy=n^UvN
z?B&V6pZ=IIh%c5d@aJPzoFp4k({C~Jhru45$l2y+mK6K1yD8M6-rnDBuJ?cD-)+G!
zH+GuW_t<PXzt+Fp&#q=_P0KI8rzg9(<&`U6T)%Q~|L?Z<zvIrBIOPRzIAtJIHLH4I
zo2{6@xv)3kh5F@2LRB^<MgL=dZGE7m^xmbd_H5Y{Bhl&;k43xV-)`u6Xw7%>aN5p&
zW{lx_9}X)%pVgb6V(dFXHbQHn|AaT%Pu0yfP2>1t?QwcbP5O>Q(^ZqYV;A2y@tdQ4
zwtn(j3HjeY+X^dG`J}&TUUNz?mh1F&w=287iRra?^uE}WkH1)TNbk1F%c!VUeJ}9;
z?v&%JlX5;V9(r!@Wx~V9RcbEXHa4uQ-x{1(T=2P!VPWOGxBDZPuf2G9x1rkX@>|S*
z6)JoF)->_vG46K0-L7%?xHgCXlPh=lZoj?z^CqXp%}+ae<}kUOQ~$oOgMY`Z*)?|-
z&c7?4w@7#0g!WU)cMTZ730d06FIO&`#~--j%Co~u{iU<+J@#+3E1K0CoM_n>SbbUZ
zVKRR||B8}59}oXgu5XZe;=Ide;iX4@*>}&ce;Xnn&3oh0hQ5P2-=Cho7BfZe$JTYp
z*E*aVE2ci~wCLVxY<XqIylaN)p`J1w2Q5E75}%Oue!&8f?6X(rB-{K~>AP_z(J$xa
zw>N$V4w&0}&3W|o&E0}Uey5z5ukYU|=Y3;sl7rh8b8ndsv#Yhr4%J+?JYZ*gCeG56
zDZ}Od-o;6#@1mOntP9;e<?dhF_Vi$-oBFFMSFRni{+(EOZeseY8;+L`wfH_*?DpvG
zlivl&chx>J&Hw(zmuKMyQFcj#N1N|&EaHrwx;Un!wl48SQ0w~%?K>^!f4=hL#@Vi<
zbO-V1eXsU8`-pAavw?r6Tap6L<zqMAw=sObvu3^&<I1_=jw{YBn=EsjyEmtjb*<Ba
zxGL>`2inuMS3Hh&yOuEh>ysb*)W4>#eOq%Vsqn}W#|htOKeO}vT=8@AuN`Z7q6O!!
z+u?bndBwdw^FQ*><U11Z^=x_a+~W6JZ1x>~seeagx=v&kukf<_-0MDWJG)=%o7(bQ
zt2Y~Lu8@#A`_XVuw42b+tdE<|Z{4|3c>VjH8|GW>rJ2?(f2FNi_PONBm+j$K!$oYq
zF{GL9-{>fH!bkCv*Tjx^hS)3js?6?0oYlxFYd2dz=i5tH?KR7s4?QR~vs<E;wcy`;
zzK!MuZj+AJX0L93;u)^^Yj%CTV42iWz2m<Qor#j<ou?-$H>usvmsRzL(o&O2?b;#N
zyoLV!T9+^Th)qf6arM*%G38E+Pu1=C$5yB-I(v~#|H>Dw7S|gXn;vt?JhzLqwPkF2
z{A6Es-Kp#?oz15g)coO6sSmT0chA-JH;sF`M%-t4-14gbM;5Nu7nAM#cUFIm!=p2a
z9Sl$UIIhnBpkMU&qvQ1Bns<8D?{np4#c^k=th@B*fYxoh<I6MNi?99_$+x0n-_f6`
zhVcu8d<ynwr_71EDakbTKxlZ|VomX{+vhmw7QEDn|7~M9?{J3X(swV}{QKHA{pC`g
zKl!5H!CSYs?uh$&yI!m6=E;yVJzV_L4SZA=K0dHy&(!aG3LZbVI?=b&IInMW0hi2D
zwyXKN#+JVsp6IN<dgGF%i2I(qk9m?leYUmNWGT&4(uv5H7upcA*iv-E<N0wLwk^18
zBr4E1F~6#5w{fu5)D-vAt`=8jl&zPX_mZ3S@aF)TZG3k(+nwiM^=?iBLw5RA`;SMa
z-gLX?Fzw6~{y7__O}?+J{(raryxoZm$-7>w8b1q?yt3p4w@7pQBd3l3WFC~1-JEx6
z-{n@eHR;MPFBzq8H$EoyTCD4@>ceyMUK;qV{APYG;P*rscAfL3c^W0_|Jq-;>98zp
z-Tyg#jeHAkr9aW*QCHsoZqnJkdoC0fUY+waKknOF=Rck=mOc8+=d(^D$*ar!OYW<g
z&KEB}Z*4ubUF)%xg(m;nk0DC$=EV2#hKQ`)I?r-l&7+^f%WI;GC!ex6zW?UdjO&g4
zk9T}NtG886?EBfif1!R%2eWcc1Wi`c)0(;?tev^xqKBz)`0+F6xsN@L_*?I)*s`=e
z_26}JzxRGWS(Kh_)x4u*%f8(F*eC0w>Suhe9@sslcH!2Z+pqVW{J-nl&sdA658`HM
zx^9%-av*+EeyqPx|GfAa=WRb9ZLr&Rh9^?fr1CZI<afV{Lk;KM{=HbH<MFg2HI>)x
zUTega{=F?JTD8_n>FE6y!RF~JbVWX$_MQ02h^M4W)m^c49YaIY#_e0GKK^)hoK4?6
zbhG4*t_3kgXB#C-!zU}qr<m&UGZ(E>S2r-V`O~*vvq0nU@iv8NJ%6+|e}8U2vu0mJ
z|7=COjI~Wi+8$+^1@1a@ug3q$gNHRy)*fdsFH_v|abMeuPkRnzgkPMs!}zxQy^U*h
zV)d+&rU-x5ud|wxFV!?R;=)eOJ4da`bvk}c*pV;1Ooq8{irCa$lIM26)5{l`VtsS6
zws-ay^Hb~J|0-dri0cv;<>oz}6CJ*3?crOoeYs7^zh#;WxE)GcZF-th=SqAkU@{04
zap~6oc4X?LV?8_HPHgZ0;d1x%!~lt}Z`=w(cHY!E9&+aJ@x1K2f>s7CW)^IkLJWD5
zKi*1ikga*sRk~(6*XQHUt{RyBF8pIrR%tbv+1AZ);}ZvwTyfr|8^YOI)K^Y6|GVl?
z;K^jabu6xRBCS&_zO2|g{l0GDIy;B|y1zZ|mED*aynBPivRRB<mhIXg(fMk{2h&;3
zk&jbCIg8$SvidN@#VAKE{n&OZLxH`)YW|+)v&9K-znJX#Q0r&);Nz{YoQ~nOa`*IR
zCUqrln#1D~(EPffATZ}+<(mslXGEBJSHC=QJ@Ll<_u&sBOOH(Zb=Jf{*YViYpFWk`
zu5ayQE-@T;it0#QeP{B^hpOUQya8JlU%te<dEwH7Tx=^OON3sB2)8sITC06fV{3{M
z^NPZXz}t~;%F=&EOg4OSbLQ7|zf<?>Z~gu~rOet!Qe8wn)4Fgg$7`WqEB6-G)!to`
z%<yW<I-zA#5?VVWBDtQhN4)o`y!dv%gWl2J!=3hA+kby^lymx|eE5&}>$)e2Swgp$
zZ(3tI-{7xKsgTWnpYIEPu_<0<W1VBepOUm}#)iC;iH~Z}pG`cJx_Fnb{q0{TUjBKv
z_MUWbp7(?!|D$75URES8u;#n|S^D9uQ|<8&o^0>-??{~cHlpE4`_wCsPpNtNEbORJ
z=Z$Y$yxGQYPfn#*cmB60h1TnyhI22zb3B35zWxU1q|I8oPanq3HUGC;U!~pu@TU*F
zS$6+-Uq8FFKx^})sj2Vp><qPR-6I@lIjP+|_XGbY&&t^8HgRW99AD~FrhG>BGy4<M
z&?TLJnzXVf9k(xaJv7nT^vL<Ps3p%2OWW-+7OPt1TK(5Xc6(3J#K}^}GhYaOde*x*
zvE$ae^Pe|5)$N=7G**+{?xqTx^3v78-2zskN1T5MY?nFiJh6TC%0+52MqPHcd!|Sp
zytQ!GvCF@_EaPV%Un#rw?3RwY29u|m7fg=sbb9jS<qj`~=R#(2n*F6Yzd~#5lS8hD
zZCqKD@?fUD_k$Ts;+u1xZQ4`mWcNBC@ruaC5bd~!jCQ*x|4uI{xUKwjgFs*kv)-?i
zEWb|yD-&E<pY1JvJLR$rTLha#(t%3br@S|AOqjFewvS=nu6=6`R6d_KrG34sgyo9G
zJHBTBJ<(a}<yW(R@Aam~EteE8xUT=eSoy{-De1)W8Q+7~y?^ukd+z7W9N$;0NKKle
zdp%6C|75~npHD@Rc?;upOAdWH7CBS-;`*kgc9ZxSF1)WaV7Zrmqw{&KQ=!F^Z)qp<
zPJI;L(BUL!Hl6v_uP5HJ<y-c8FZ({ttFDhhQf5`*oT(1`7FJKUFj<i+kn7;o82U-p
z&-Yx><HUD1vlBh%))q;(f9!5os9f>jj~Y{b!;Qyp${%N`$S%^Jz{bdZIjE0Qy|*C6
z;<?fvzsD*M<S(_~ICz)4CDNYt$No@;35tde><1@#t}0Ni`1;s+hA+#{TdUq(_>><t
zW67WE7x&lg%&!!WdL?U?ds#m?Nc8&d<4v#Ju1|cD$n^TO^~xyw{jo23)GY;M_inAT
z?o0SS?Z!v8`If$tp_AG->91@3{kEoPU7@H@L*BY)oo{{jebNtaI#brYy3)yB;?eoX
z4m|Bg91?$dS-P~TpMK(@c6Cbsx+|;a_502hm7gqdt$Ln|U*-A#R&)2naXI!|Om%-c
zf8nI{0-fApbF@!HbfrGfJ+qzjhjiicu=r@tlZHV7_4PLU-f`}Io9MMuZ>po5+sp-q
zA`=fix)|KYwO;Sjn<<xTo(R0(d1CUNrz?N%{%EB2a^;LAM+LSm-69}7X^xsun3+NO
zg{)Pcc2^l(iUf+jGxe@?;q{N^KigPa|LLbeI<NTQ&qhg|4_D^@T%ewozF1Mc=D}-@
z|J!ceTd~AoTH>b@?>XzQo@UT)n^V0^*sZV2bVaXi@l%T<by|`NSD#FpIcdg>NOsnx
zp?$lzyr1&_SMGjAweuEQvstypZ~H$p{UZ?DVR+=rx{KYW1@0C~QO{>wES$D=wOBLr
zx$dcz!l}+bBb5zaEV?g#Y_Hejmkckgr^P&T>}uJw;97C-8HLzMe|fL$wBs(^H}5j1
zv1saw^P5&$PnaWeX3;s%Pdi>2v--Z-Kk4PwAB&g#|7ZU5d3pVAi~NUHCZP-`llQr(
zbbS5yROEJKQTD>P&S=x(RTjsCoNeTe-#IXcIV-i{imTlH?b3FQHaSajD>L5C^4#XQ
zmcg*cAl@J;>lvf^_MHwnyv&YUbx$0OHhDN%%DlApfsGcswX5BU^fxEJ&YS<CJMZL9
zHRI)4OO~(caC@6D`}1V2eO-k|OkDLg2Futje>Y`<|D(TePretCTd`88;>-7%IV+nA
zuPC_B)Hm1uz||V{kV80QPg$0t?<<8js_NeVBiS_Smpv^E2ul)Y=iu1z{IH2UC%<wl
z&%M_be=a=ZTP+*+%;CbqkB6V+$9s5v`YGpraQ2k%jGj}Eb8b$rWth3-<n(*mIgQ)y
z{n-C*-gJXQ89irrn}|)BT$_5RW9^<jswd1WixvuH1|`@13wrY9@VvLPKFCDoS@qdZ
z-8C~&CGlbAy0=%$Hk2`^3EJMjeN&%R<oT)$?t?1q#=)neLmgYLEwZ1Zx^;fx+WFJ6
zZNJsdE34UL`TPF-_QZ6?j~~sOeV?@37TidWs!L8X(|x*s-TCk<^LaY&tzBgt>$ZER
z)?<gtbv5ko^|^L*nEf<=wB$-pS$@)mPZGs4+Upz{{4BF=<9BBtto+AOclI&+jTc^q
z4hLT)E;uk#zb`&wTH;UFt^a>~p6~O2uN1S7jrZS@#R`A*kIp{ir^3I|{I`n03ZAI?
z`A-#&I`5hC(EP*=@j15=qwmKrJAZLiK#Ql`?p=EV?&t@5PG%3461UP4F57p3H>lg_
zaMZ-d*IJWv&Ra!?oHDgk3}AYn-s)Hvb6NCof5<}#i#dz9%53WwRQpu!>Avu-$NuZe
ziOe_U5B+|)_08L;unj*ar2hOUaWSO$gmkpR+-W<^eQXlmT$-@Z>*hnFbL^E7g0A}{
zj-LOz=6p%joJ(2DU*ue0@u#j-j-B~}??mIBB0;Jm^?wgXJW}pZW4*Ri<odgZCngua
z(EHbRtZZq`w9T8dtk2|4_Ne@`jLUP`l~=bk*DcR_{b{qQ@YGK8^2B7-m@i9YuUTA=
z4_ftm2RmN}^K~}n1uNfwG|J$AnH6xVKL6C=PBZfZ0w>=_Y4&$|mm1W}2u^*X^78zx
zSjT(EcBI$ed-*>5+qKF0F|oRRtJY=K7+>EVqoq~Uxu%sRzKGW??o^M({RL6|i-k;2
zr<cE6#nAUi|FXsFdxgR0dS^e*S!x-~v$wssdZWGVwNBpkO((SvUAFW*?C|H+x#V@-
z#kXo7Ros7jscw?U-&%${9)8<a-J7l)Q@3*69HzxOQD2w-`BgQ|UC{jGxv%S2t@vnQ
zvCQA@WZBR3>KNYVwfd`eO#0AlajxpV`I>UpQxooQK6Sf!>)f{w)%*V5J~bo$@cfOA
zdrR-hmDF-i?q}7@H)9SzxVhi^HmlP9|Bw9jS8~kSq&6`#CW-eA+Z(A0?deZMByVlE
zIwhQ6`Q^m+$dC!)(^q%-Cg(X{Yri3N^pDcF-Wz&)DgWNSuRFU^c&m}|@r<iWRy+4h
zh!!_wQQBG({>(XDGH+wqA}NOckRsuE=S?R~R$9j!e)CYi_wt+ZPd17+hRrT$nf2~U
z+Wy(+XKSZ!Ui$w??5F8R9&DIp8Nea;yFq>jpG(1l@P_Z3mfD<odGoLE2IjNs^O8D*
zGuc-zo|(^}>0+MEo+53R%wETqvDo&qRrmLo@6&$9J-DqOzVpq|d<L66Ut$(V=<oi@
z9zU~I&vJ!MaR7tsnnT(dGj44DwwCcutFqGterw$;9ok0<*$*++$e7rEzJ6lk(dEZE
zwRJsH4}1<hQ>YrhP)=srkGEg$uQt8NoM*ftro*H!j+fUl=-7V2`1?nMoETPHgnpXX
zqO~C}k4sNAO!csrrF=>><F#o$lP48#TD$W_@~(TI_xnBf-8!jyLU-4rPH*RxPZmzv
z>T8@W|1$KGM3-@DFHdT~t$jg$#ZUia{@Cu`wNTFf+R3AljJ%sZg*AF^-noFYvgYB;
zkJCOdRjo69x8su7CFKi`uT5#cyJP;Oqr4TLyua>Vf6Z&#>Zd>U?|Z|YeDYGl+bJGB
zht;$@Ilf$*F8Szr_P(-EwE)r2vKzS5B>%?t*RmEa)pYRv$#~{bqJqL6e?O<`tNRlf
z&et7#`K`WvLBMUU_DgMRof6L)*=-YV>JsxR&|weReQvUF$nHtOCHwAKEVg7bFX5h9
z8pauVLtsMksym_fpI)6ZnYqmK<=QKmIbMA7%W}@#lfI=HdNlEbZ~Mu|b5GYi+AVyL
zMSRop!joRk{Y*-t$5=kNXfC%(@q46IB(W>`rk<!IS3GZE@Y7VEZ@Y7wxKC(5xc&9n
z<=Gae+OD3y{wuhD?q|j4dq00}TfS<JiOY($^Llji-d_72_pv|IR6BS1r~Qq_dNMPf
z?&6t#Oi+0H_4Wke4J;>JU+xInx6FHYM7`bg<BD?^C8<m>xO2(&s55VouDZmnAU?~N
zU!U(S-*v$Eu#S&PK0C*n^nW@VCePcg;`qTzXv!Az_p9de6f)Tc$UKd``XHk=|Lb?<
zFMQ&8PcAXa8Dy<p=aL!Wv?%JG(D7&Mcb=IWF@fU`+jjqQt2_;v*6KycjXSg4w8AZ>
z+Vrkf7YP>iON`{Rm*2hriNzALC{N2daoZ$sgcUaW$j9@n`L#_t;nC~Iw^!b+Jl}5g
z@%btT!Ee@k6-<^NmF@mtcd|UIanhFfIh{XRcA6P9Y%33Yz;JAXq|#;2&_k|vQ&<F)
zUmBfpERLUgX`;oydIz&Vk(*ns-c1W{klJ}{qhW)v!u;<q{jSL|?NqJYd!1*`3F~t0
z$0vUH^uJCD(k^D-(KhMKv?Q-i!^gW;{8`6)<@Dc$rwUI_U-V+y@s6dxEB`F=pR!-}
z@~x8R9Phh79ba&EbEj@#(M!iP`JL0}&MDlwyQuSu&eLXRo|Ao?-Rn-2D6Ddoiz>U7
z`ulBNZ641{N5f~IL^)q@oap!y)HbKc<Mn)dMUJZ%Bjm3-2fn<;)v)1s=7G{+xnsH}
zawiybRes6{oL!k9d^?fb;rH?z_c)S5_TOUV|NP|ku?bJQ?k$%ovv?P=_g3uhK#q4i
zr)bD+;O}?;=zhWLi1C?!feSl)^vt5a%JHwAKBel>j9^K{@2W5U9=8==Cg!s}YR=Z`
zDh`IU6&&9TK0j{Y@a0hORp+(|JRSO@^yBBlJ`&F7uAE{#&~UGX-`OlP?rEhf|CX5e
z2AdqSO&?C2uCmj=x#Y(2%hUbN=#}qc;#&B9-4m1V8;aEW1dmxasOu@8aFly2JpIa-
zrEE{<Z#DM3zwlRCY>-5s+7zLKIor4JtH*dcYA0(Nu8ow77cYJNOXtn*xgqV7t;&l9
zn@ab*-soewbD8C=MejPxMK8H}v)z61{NoMPBda@R%-wFOuKHV8#frz-LE`)G$ePQU
zKNS*Et&~5OL^3*S@chz!D*L*~dtUro|IN-5-<NpRHC*2L(`IW8ldTBT*|50{rRFyM
zLhakPPiE~};&rj)%OmB*wm#3r1fHFEe9Ay9`V+7GiuvqozAr0wax_i<qpoVH{B*l%
z<<kfJ-%7*IzVW(nL;K<VZQPnBzc=4ZUnUX#`)}5Y<xe|qd0pD1_{Vjno6~_O`|OM6
z)Hk!8=-$6@<;J;nGKZDF7c{O8i0R2WT>81PfiL&U(;pIB&B|mG@|d}v{E#?!)%``;
z)flHsRlLu|_#Se7S-&D?#e`pFH9h;D7B_ok8<(q^>PrMpdc6C_nORdV_}-1Qx%A9u
zpT#>Pi(M-Fla_f^`Xu=;_C2&;Q%%&F@9)<sf375RGz;h$zRaB9oqvA!T&**^c0c`m
z)Y0kEl?&UWeLS=D_&AytF;%6WKEBI8@J__V$4{#M{L}E?nDEozo`2c-F!Pu1k`=_P
z*yP0Y&j%hWlVIFZH7oLk@ef;GFNUXYPJ346ak#N*ES&dctNQL62}>u;UwmHv(^98d
zH|G`{7yF>qt!%nH^HEW>wRhJHF5i_Nlg?^CJ!DXJe)&a1m8TX0%8kBH54U<Q`8_3h
zhtr&`Dc&p_7eC_L`y<%ZqNcXPHauX@%spi-Z@Lujomk2Bv%n|pYt!YbJK_tQ=H%sV
zI)2EnV6W|~lfIIhPDY%(y3Kte=ko7n%e8e_Uk7HLOFlBwF)hv4%rdq)lKp4)goO(-
zGk!f>5oBupbpELi@`*tvl|PQ2;aPdtVzvBo)|SkN2@E-<uN@rRh4ij_RnF)*X>i(Z
zGq2;+;F|M~j(c{gHZD!dSY3IR?dPt~ZS%Qel*DUa)?Q|O{=jv$y02r`7QeNeMT~sE
z+&I-&h`ev!Q2cKDMQ{HJ97k-fty^TRt!k)YID685FL{xoM{R6JZ@oF*yfWx+3(wri
z*KAUHKV04WcxKGu4_8|sZdxN^rXkJm{P(t~H|Jfoq&+<B$)Q{K_9Wb@xizck(m}h>
zskdKl%sD1nEW{*oEp1cjCkxT$Y0O>g{P$@ZdT<DM?D<|1dfu>hQq-jtH?jgW)_G4@
zW-<M*t-Vj#$>ncfo%*o+Mv0=I7GLwRu9><rm2ZB%%(YyQU(vs~t|&ZDJ$_=`SGS90
zuO6#Ko80=R^S;j_{bftO=_7#!vsb?VnsnUv$ARnv=R~KbpHg2a`d<3t)OTAL8HH6o
zw6~;0Es4>cvajOl!`{kmPnfix))sfJ-Typ4WAd}Vf_mpy^k13P=5)4U!6m<w4*vz*
zbgo*Z*h@OA7ZzrHbjwh6o;hO)6NBV8vq`(f#HQ}}GIhtJbJcqerpT_k%$l<9(Cy9j
ztVX;to1b2YS;z0Wb=QXzc}tW6F0GxAcKXXLt<;)L+&>hj9cOvfereV=sjBdx?WU6T
zygsj2r_IXSW9ndd*d_DwlQk(!V)1=dJ2<2wUwJfrc<tu9Z9!Vh)7Q%V!qK@q81*--
z6Q6!L#FO#Z_1u$xYg$u+Ygl)0ShjernX_8s!ap5MPrgdVrOrE%Iq9?M*_R?x-(LJW
zWp?zZ+UvfbUJSeT<s3IsiWjqQ|C`$Pp!saYNz0oohb?7P`9zj+)|SnCEq0u-KP++9
zhW^u^o!*sp@%>!&HP=MKX~%~tZ`WqmmR$+>$Xb+?_*9nT$Jy@1xdyAxY(H3Ox42+&
z!sC6+EQjtTF8HQ6_ny-9&4(97eSOX(wpC(wot%nCQMhwbih=&cJx22#7hJM(>gsAc
zDqCaUWzJKzZl)vS!}hCD9*Ut2JdTm)+KqQ_&;0IoS18L%n<H>{sPQ$sgC(<>3)dxA
z7A~KEeyia172%CDV$Uz(-m^GyqKN%@{<k9Mqg@!97jL<}`vI%HbsvY*%9{HxVvhd`
zwRFjxw5xbR(o>82fb@OR)!v~77CjREKPC5ld{(Y1G%Z}Bb6(-)ncT^TBwS9u?46?b
zB#>WwHvfh8jGBds{<Y_icTB13GBlg_U!Z7uaFEP=<;Xn4D64}RryqXYbH1&~a>45#
zCOf*SXC-}jI^8C0;n!n6-bQ+FV&CcpU7V?NasTHH|98r)uUUPut3s#7RIg&)zezGV
zTYh{Ekh`wJzI(;omgK)r-X{6qox-gj<16MXzE{)o)un6C#U5R0P=Auh@N!af<Gik;
zvx~HhT^6~!DMimTw0l{9&13pAlfsG5idU^!plkMb(cw?OzgHOq&+6wjmthF1ouzeV
z?%IQ9C1$oh2Y%_Kay4!HdHbcoU!A8L97@AGoOj;&$@8wDVeUdUhfj;%rMx;IZn^V3
z)7kVF;RR8C*A^RGE(%f#NXR%b$>0CT+x+GKn{-x*whJD6(Xy}Cc-m0|dGlQrQ_}Nz
zXUWDg3*O3{nRnQ0;@9am7dU%E^0uqZH2+?i|8mE_cjfns#BT)pP0|T2%IM(MJRWrP
z>d}pC8@AlDYQ1^KXA{qae4C$bua1h`{V4e@Ju?5!Q|Cu^=bXPf2?e}2asJ-0>c{3g
zx38HmGrGId?%y@pLod48>ZW`;)-QeP=7!8$*S5Q?y8r3D*e7w_r?WeLd@=DpdpgY2
zG+L2KqSODI-|xSl_MF%3()#)LQo;0ssmW<mrE2#}A3y!`e&)5UQ@zW*-0TYeEW5F2
z$@b%?q{W#pEEUuVym9NKe1H9g5Zwclj{Um+e8cJ-mFXqRe080BEZUF0bxbulvPw(V
z<W$U4Te)e?i$c5)ew|s}cRG8;X5I_CCaQkdO6gc%xcR(;?fdjb0iK@?L3iFx5$ErS
zj{dHt!mIo?wCCalX65$I$8)pILK`Y3RsYeLG{N4QB{xoMYlXMvQBV8LnTPK!-n+n~
zVuMrNYJQiUl}SgO?Sx~ulxynGFx=%4XLLRC*=$wTT{D?&8NR=hjuQ-M)7*F<w{BmD
zrR>#RkM8)tQ0q(cW#Ia~z3$qkeir?sd#<H_dKB^5VBz}meQzGb`<>>K$eH@lE_6-2
zxvY(D{j=X&LbOFz3kw;}_rLe8^p$kguiM4FOQWNdKKWPt{VRNW?Qb<D`#j;z@h8;!
zO|#dpZO_Qny`L&6f7CVbe8u_mn|W3T9Nuqol4IAyw_m5MKmO|eRc({d?>?J4-{f5Q
zv{f(cp86IWm&#SLr^SBy*uV5~-ELR@H|I}XaAT|H1nCJP7fLR(YwYsUeLq?F_Q~Li
z2Ht&t|E><I;A*y0dS$$7N6?J*$GMyfMQ(gv`uvgUGj7pi(*)ORH%v4&`f;*d^Ayty
zDXaJE7O`Y@&-bn3?)&<^ak<%?`t9q#R{p#GbI(pEw$k!#C7RyX9>!1d&p6iGzCtzd
ze^vg9RG~|P<qvAzSAJ5iV|U1XeU?+>rAZmv+Q56u7#7^$WY}-L!RF@;+vrOHN%i~h
z`L48BcQ5dg@Bg=d?(a^#r*VGe#%T`4KV>}(pGKI@4#;%ASK4-6RO0r}Evt7#AGC9v
z(RVss^m?0~s-kBw?{OXfA8JWSRqGW`xII<NV*hk=;^B6yA0-c0a;jcCf64KQ?$?;N
zw*Oye@13U>tSS<@<Z`uX{lq<O0h4cMO!D$J{vNl$_MV;UM)gFiG=3JJTfd{e3p_n5
z$NlQ`q`m7IR@EQbyzlI$C??I9)rE7M;+8G^|K)td!~1Jz>VH_|?acS}RBbI|V{MQ`
z;;-v9b=uSNE0^wfcz1E;+zJ=xOLr1hXfdbvPbqKpv)irQ`OLjYDdw)P*NKD~E8@M&
zj##UGJiFkz#IG0k@~`mT^gF`I`h4EniHG>L{Q1_LGWX2n^a?2cyf3_|y6ij)Tk75F
zo+C^`+$(<0X7$;eIMw9R*2`<$&OQ(0zx;FG`pd`G?|$%BfMep+S09eXYzy9OAnFsi
zV#Q;=HP-6OZ+*D8Y4f>-yfvqe#y*bDl(wAoULY>;o|l2<FR=r+?^n7W(>z<D8WhD|
zwag*sTl4}ZXQy>Xih`M*+8@r;?No_foIa`hnoX*joAI1aJf9}*U8-AB7RR~&$mEx8
z((_yX9lM)cJSnFxn{ADwPK?it)j4)+R_B#A-As8e7uK_p_v2Eb9n14?cb3JOKZ<&H
z``Z%-*<Z%?b7%G*Rj|3bwbHD!Nyqd}6UW?_eadg#ZtKck_WY<^s=+z^jN$^m*Khaj
zQfi$rFVA6dUQKygw-Uo&vrpERDvj)SFRoB$Tca;(c;Z5!*r&ZZIX;{2Ua3$jR-gO8
zrJP@Jhw<vyH(FvXa+l4KSfXe=_nBsShI#M=yVy3}62=ESyOj=|+Sh+$p+MfY*;kbn
zo-Rmze`59?p8msXjPYsBvu4c?2@1UucUHb|{X|Yy)$@**f4iKSx?;lpc~jPF+ilsH
zqhRsgYNKGRu2WHN;1>Sc2OrlZoZ`wpbzME4uU>mW=*gqJUviB0UH|aIK%_2bUwr-d
z*IN9CgEu&rE?7D%q&TXEeJ6v<!E3K)9uM6&CBxNk`_hl=in?0n*X+L{Ijt`E;f}VS
z511b@oH(5Sig|AMvuR=4eF|T4{TNa?H=bX&e8=+DHKyN0_?#MBk9$A*^lPczyy%LF
zSN`1iU)ZxQe(RTMs{H$7oAh5W&-J`|d%+}$wa3DJH~MrtyT0sA`xcu%u}kV??xEdV
z-cN}6`F(cofs6@;^ThklM$5eE$c;bF&Ee>_-oI1)c5bcZV$IK<wTB;F^Iy*>C;xGh
zCWmET`Ql6c$76NZcfC3OS<Z7~%>SJ8LZb8TWi4wfIXLCh9aFCMW$MKzH`LrQ{j^$6
z_06$=6BnPBZHW5fT=DMK9;LWT{eAk$l5)p(6`y=zH{nyS_2V6aK4Gc#We)=ODtugi
zJFoWBhA`2K>eGYs-R^i6UQn$0@$<*A-)|3PnlAbw{In_mtbxO{<1?R2N~wI?C1`r0
z(Q3bcwDawGJ=GUK{jJryVY|0@L7&e1)AQE+Ntw0V{`kvs>$j&JZkyDdHxsWgc`KQ5
z%k$lmj|XOLy1g#P;bP>wjq_^`$;`>+J#}_!aAw4A_1nsCa(1{K5tPa*H(k*9ck`!5
z7lZCpF}A(_Ew{Wo_FS5C`**9Bixu}Kcd`o^{k&cNE6D4LZ1;9oo#f=}AyZ0HR#|uc
zc>d#4uG86=)9g#+&x?1xx9$4P$53VIFBi6Yj%$=*!RP%J$JS)+)>~rivemyhBvyf8
zF1vo&y>q;|2l<$;-VNdU{M>%#zwrN&1*>nIU_U+8W|>3YoT5@OH@*$a>L#rU=Zan$
zxi<Z}^_CO8{<l^1l|Ab!=53Wxi@6!l*HdHnW#u_D(G`hzQkmw+tPqsTI<;@pGp?$O
zOOI^iazF8X-xbr&#=I^Wi`%!jS9E(^`xM}kxn<SVdjSq!k8Q5sOp9}rykJ$QdS=26
zwue_=CYBYgS^aLs!+@xLkCxS)FK=Q9FN$)jX_Q`fd&Znhqp#+DKbR!ie<dAwKgroP
zqBVb++@l$Rae4l4)J*1c8E%TXl^eHyLZ(Pk!GwJiWMUZuyrPqi_@tlcd4DUyf$7?E
z>*ZBHgRC|`j+bA+r1bGm(9=EA(>|QmRrTyX7W>$4UGu%OIt$!B7uP$mO%2kump}Kt
za;E4v-o~lLEL|sNm<sv`a|9UwP}*J~S|V8;!cfM#XzyIE4PRfs-SsX)|8gtqvh$}p
zrM2zNE4Hrcu<*DP@bqsY=OcrhDaKbMOC)P=*Tqeo$!w_mkSRTBlU4BbFE!0yUQT}d
z|7pZt<@V+fk+glEn%b>5uAUnjC_bNi<I|1%gcR%4jrwQo2xj6vFp2TnggpiC;<xR)
z@GmQ4mC2`bd&~~(ym@88qEjvz{2K)L1afv9dZu=CdzePvlc$L*I9KQ|mv}aj<JXGG
zFEaTz7aTZQJZ*`Wdmo=g#9OHb@jH?B8`wP_SIYf}4m+Oh=xn_@w#|y=4gWsHe;d0m
zt?$%&s>^hsJ7$jUM(5&-b+M0C?ntb<AsohjYT}JmlU=R`rF)58od56F3jIZ_3palh
zys5QVlB;viqr30^9J%dsLP{;pU24*wt0l`l|Gp6|-P0ZDzDdAR@%Z_y84u+wgbtfM
znLpK4$<WJtx9CU1kN@WXf3kGnUIUg5|I$i)C(YeIW#aO?i^>JI9Y0~NUGnWiA49y#
z(`Dv|4J9f$Rs|bN&F5-6&$r6oXSrD^U*Ma>^B?8@r&?KtPTalfDWfTmILA_{W8AYJ
zocJ5Mnss&klM0_5p3}2enHX<q^j)Andw&1zZ!<dCHPWQ>Yg+sL`#!&ZzfbL3jBVCW
zmVQ-n&-YnL^)UigD(%zn&1c%@K1<g0a>}GxBFjCFXWYzt&fxySEd1r9{d`%clIC2i
z`7<dlD(yLou+=>SlkeZOn~$Dd_FbS~<3_>NZ`z#^EamY=<}0}j*Io>8f0*XxCBt)h
z>VXRto1SyEyt_M9mV5c;7+1A~`zkAU1=p<<GM)ddx7@&1+)sUv*t?xZD<@iLPEX31
zR6g<4@|s|_|5e*#+IN24y<5{=KkY<fg!<<td)-WpQ*082XDw~?sMuwGX3pWWNne+?
z9hjrH=GD2~dLJ978R{&bvC4Mmfm>HYCVk$O9TbtuvMt>x$jsth^{JOh7yi`DKeWGE
z<}0h2s%p>LUF#;czg)iOUFmF#%X3S$CQWr&tjc@su<+qu_xIQ^8-1F3_(DYO&QRY!
zuWS2{U)Ae5D9YZK`D}r@s_3KszKJ*Q*>O+aukus#gy(BRvD|MHr>uUx^vjlvv#l3$
zR+P<Ef1Z9g`|Vlj-a8j+yV)34M9WFlPg55^88x+LUFc`!F6NLMb62yxIC(#IQI<Hb
z=JxMpF&>{ZpDCa7WDI%oT(dLyapBzg_wMpK$aCL#n7n$fU)AgK$M*vE3-uKj$GrZ2
z+&<KqS+dH#IG<z3laQBvbCv{uv$!d7f1YsbY4@CqCDM|ff6shgVfZy{qJQG2Wojlb
zUf!IQuI?aY8S!CW&b-$a?c%$|^|R8ZPxv6?`(?L_)}jBNa$FUscJ=ZyXuQ~ZpW)|s
zx#booC-*!~_wHT(khNlN@gYXDugae+^UIgZUOKmINz;p_m<98fU)py@CQhqjznJdw
zJvV!{`C6}WIb(KIVU1OZ(3hxd&n}qhR~z`;?O%4`V@8eG+B0vTC(be19J=`R3q#Sb
zLB89jp3mR^(D-V{<Bo#3rN!%%f1EbEW|S1x^*+^o+vy$;-31S_JWci``G$*BYpnUS
zMx4X=ig^rc@0ZFS5d|$5>vr5Tez!fH`Ql}F^{EHmMb3}UHE7(;e8Z<Ht8;nwycLYy
z{MY86^^)#;eJ=TJ-(SPMPMgJV&VTTG{m<^yNue9p?h20F|9YWEVM^Tc^|Nwc{<U$m
zz04h~{PWn#?a>z}%+9-cYW4@G;C`8@=eJEQG~l@w8~Ua3R`OiChC2&G_UCCv`P!!B
z<Q$&4{rVEmM^%pxPo1#mO!*v_ds<mZrQWqCYY*JJU;AZ!j!eUnX^M8IriyR~EI<9?
zn8H^7%O#tVK3g?;`2IYRu~}huQ_-vB>u-t{F1c6uDZ{*R@#Z&eNf(|zn~}im|IFh=
zn6vqguQeJ+K2BxH39aNUbG)-){?9)~f7eSK-<Op-$JS-`-bpLdqGR_;KWx+f-n_J7
zg-4>M1j}jlYXaI{zVlx{@!B6hRZcQgd4k%#eLSfxs%s{6bZm)xB+VPlVth;Qz<v2I
zOgj}$8^-<a{y25--9>^)>&=YRls+Agm6@HkdcC;$zQinD`}nJ`HRtoccm5HXbaTy}
z?GhhDn*FEm*n8vMlK7ur9_Oaba-8`!FvyR4!_R|zeZKl$INu~#ecCv*?Lp=|BYVNc
zAFf!bSv_v(t!tRE(I|qW_w<a{lN0&W%b$G8S+i$Keu7<G+wDm!ZwM~a{9m!#?YWKR
z9loEt+qYTim-s*5_vpNLPSxJtA4d1C=%1UJC>Ow3(p{{6`$uqjrSYa;UG+uWrpC7>
z+gBV96IgV`U!})xYo89&?b_J_GA%}&ldk_t+PdJ*mNPXwOrNEH-!N<a!Q6U{zWcfV
z);AkY&)REIwPTa*`J)0VAw>+?^ED6lM*OkS-S_%-fpVRGf5F_Fw!t?UcRjG0EwJi*
z`lSzZ_Zpvec<NC9__)`cXKxNXXt13i*y?F2EVt0eKJj(@vj0<k7L;zhuVA8*s^#{B
z_d>wG)ElC2P6cPTC~e%du(7)OVD+K}y7iLN&WIQ2Ennf&IdfalYwp+1iza4@?)Yr?
zxIKGs*YW!S*?W~OfB2s^uTD%|wMOIqow$oeatAu)%3Xat>z>}5r*&iZia!an+iU9j
zY$T2J1&=!aeQLnq8&_|5Xy<d*8}*Uf*4JHZRyxSDOnlYy`287c>Q6tuFz5RD?y9wK
zC4Ot(T;gim*89kHPb$}vn3UJs?DIa|JAC5ebe^JCXQ7`uY<nL665sbY=H>_HX%p`H
zEjy;MW!3vigROh_zK^!g<$gZl^ph_U#g$S$^&cgtE(m93XPu(iJ~uVeZ}H@Bw<Isg
zn%RqItaWGc5Wkdbd2`jzCxt5Zl6#m#uT9=Q`#G!H)z7y!9=tkrcb8h~Yv<1uT^vVB
zSl@q4%<XZG2$ESAQrr9CkmRJ-s}i%!4qbebfA;Ks=k060Z(5~mXL&l;VfzjF!%7zv
zgVs-;c4XQvk)!k1)g@j2Dzhk5rnctosx&T#MW=a<&pn<Xxn1VMA5G<_3tt@1{=nYy
zyrR;qpljx*R&B%iOE<jEUN13!XVmO~8A0*!2R)5N_J@h@f6xE9nkn{V|D{7GqSl{(
z7^Ez5TemzVIBe-#m*hncy@jN^&X!#HbJKP0)^^2$3!-VMbAHaMxtI23-S(opH-BwA
z$q=Ew|LV@0C4v)T&-zzCI1{BQ7tr*3OX-W`>Qjb0-I(?teEQEoRqJ4OZR8{Q4RKz2
zRk_+ZaqFLmyU6VhIeU$BeZbGDMXOA`m-&_6Q#sB#vs&u8gOl;h+(f-Qiz*gw%1xEl
zcV$^s=+sgYlVW-GxXQbiJ_nlCeSUm>=T;YQh5&=}dg}}fsvb&a$ljF~)Z6$m$%JjH
zp%=fNX_e=SEmqrSulGN)v*g{jJ%=xS<tY02a`i|4kbQk3!8>;I)@OKzsTw+dYnk!j
zj?J&T6_L&BLau*K^E{fh`!s|5fpcY=-pW(+wrGfjz4d&2JLJ`LhlH(+8)Oz-j^ekl
z5vtKMOLnYQ%|HD^{Y3vteOvymJFn0ES@Gtl886q;316Q)-qJn4(=2MK+VPEIUSCTS
zqGC0A=kWaed*XVDKFciIz}l2K7h*jh?#}pMdfUK9BTw)54DZ_Aug=_JGMUc#SNma6
zX}#!!?~|k_?zz0rv3H{5fn(c0nlIFJ(`dOV%;M&Lc*^SSs~KCQBVMKd*%oz*v%vbr
z0<*~LQ`fXS`jlA_<QC>0bTBQiN-FN`=1p>DUmSO8KTWDHS*diSPc0@a|3K+7Z_dNo
zn)mKyZF-Wj)8gRni&ZDI?`+EpHb{%|)v47vc<Hm!s`~j{66XuwYNYJHKG*YS%fmz0
zbPl&GoOWcX+J0g6q0}EO4tFLsf7A6|yW;8Ri^|6z3o~wUHm~*FZOe4lG4tS^V7php
z-fZFe^Ps)<RNU{|8|Ey1Q?bDAx?KH=`wd=sujQFO_1^hWIDhui{i`fP&$ahkTy^j`
zaIEnC^Mr}BR!&-c>a=x)cv0uGPX{zVMV&s_!+V`kNc(q>ze^NrP0G(Gw`rvpW@jJL
zsFh##*KO|y-|5`H`7FP=v->faanD~NTzRWcZtdQ5!*I#(8(Z3^d*3;n(0pAm#P;d(
zytj&5ZSBrpd_3u9<iD$r;>v}M7i~YXc+;Qm`Exawe|VyjE1I!www1iZ18wfxHy=6r
zp7oaextrbQ^KPq03)hq!K664lL$j|cre9oa@6DB0m}T!~TYkG*ZIgF(X_9xq^`~1m
z9k&-RpW`qi_3gjBO?O?w9j7YB+PlToEIgG~F8X+Ff27o^!Wr9Q?s(+iKYy3!*VUsF
zL{#d3*-zf8<EbSop0IlU^W!h-_610p-TS;`u21W>->25CyTP(p%Y**}@3~u(KQTQ&
z;h8k++TG_9ZFFJ+tR*wD;{HFWe?KYpxWz)obJcN$yQXfj%|7Rzy3eUz_w%<mX6bp3
z9-PZ>6@IX}VqyJMASbJ4&BAH5D(ioVX|Clyv^kBj^_lSW#7}=jLT>y1WK^j;@?7}!
zls$*q*VfDZ=U-41ZT;k6cK8d2qDvB*%d?vH<h8G=yXRk?|L1b*qNR4}pK1?ZKP@5C
zJ5jcA>WV$97BVYTR{uXUclU!IKYys0OD~eYx}9;l!XAHvt;@bv7R=xFq*vmSN9B)C
zPL^dnkEd;$s37ssE$`&@wf%?oT-smg;r023|M`4|P@go9-0$WbJNeDlY*^gDc9~`V
z;wE-Szx=HwE>{Xdmn7`f=KHDh-|6<+?84fV4<E(Swg(Ab%8;MW-Ba=J**a6{wEuDc
z<{Y~)@9H<jD^DINx!&R2ZF0NUbhpK&*FQy9#4O)EZ_bkQYdUxAKA$P_CjXnsk3*J!
zzsyi8EV#5md0%y~-{P&QJMwrY{jFv7Ikm{RYSLDt`=42p-szp@Q<>RYthN8R#5&=_
z>ZRtc9|F8@`YGDT%<}kYdRs+WYbMu~mAlq#3*y^(!>iI_!tY<<n!e|*U1l#@KZ#B0
z#KwP5Qks`P+|u1~-Pclf#&+(^4OTf}&F;+=cOQ#<HJv=C<(62$#7p`mpC@0gHuXNF
zme8rbTz9$ra>w}JHv39;CVZ6Dcx7jQ`}m&736hI%|G1xY$|AF&t>n3pOxAPnO*ZFe
z?_JoRpJm@W^^NZiSG~o{OdHBi?AUv=<MoAU%1`pY+xE}D+<RlW^9LV8orK6dMWqSm
zlCvDtD${rL`1w>%>a*1=j9KO+e7qpohEq-IM@w4W?Om<SWv(tiCk1cQe$}FVZ}O+I
zXHCVYTa3Qwe>uu>Qp2tBX4WH)C2~vWEV4J_)-c<o->f%1(C6IcgSmT-F^ih)jV$7-
zxg*COwKVARl{Zs3_8YLbx;=^r3_KPyzo4_y%s8z4bg*^d<&$ax6MpTy(xnhGyD#hJ
z^I5H$F*7+2h5Cklb6?x4CG2-J$Iow(^6`Uu&-UE<@L})ImPrAx&nQm0^3z4bK<0z~
zipYf?FNI$&`0GA-&g2=d8{9*F$9O)y5LQ2NO3|qqk<oHq_s()>{Bh8p{55Amar}a1
ziEm3HH4Ba}KcswT-M6+!MFIX7rhN7=e#zK6#nMka_rTUj;i_$C&Cf0BUw2k&-PXVR
zloR}CIvx=_cWSr)T)8Jz4bBmslB+&M3P0UZ@q0)Ay&rpbZoL`Mex&T4MM#m#M!DRc
z=dX=}GS*N2=BoSsa~$_J@%zt9j-C2?L`1%;-7%MA!Pi*b6{jcjbaJUYsk2-4!h~`0
zt(#9if8P-+T>jV3KmK=3ryz&rzF$?(n?zK;3zSz`ue1^^yR(Yr**m?(b?3P6>^u8u
z<-hX$8lHZ&%2x43fB(nz9x<MMK>P09i+BEiYw(m&UH?Jt$CT+IF>$xUP0u#u=N<jP
z7*ccb=z;iGw=Y?Lx%%zuI<x5c3U@{4Ff%Lu%iHUxvs>otuGh{-`v2aPclp11{_}S_
z>$je2d3mYLv-#1_n}%Py+z*~y6!GlxMAhw6tX{XQx@Np#BVYdM$V<}e_s+BWAh*!M
z$}as<L#=#U(b7y6iASCWnXf)pZEBwN*5#GqpBkB2Uppm|uKS+!tgXGrRrg-R`Q(Os
zk7ACVn{b%p`^H0u&e}w=r0slFmBs1rJ%7T67L%>}A2Lixv0U2xRra#0<D&a!+q{2&
zY5iH+z2{u7$<al(p1aRDYtdJ|vQXLbpx;k{q#yHHE`<hfzwjl?#_P_q)H6P7#TzD7
zON8xO{-<MMK!1Oa#p?fyXYnZanMd|5nY-xTwx1=w%My=V_@e92cKO9K1zFu^I|cX+
zpS7Q!()3cz@@)R;*V{c--+BAoIwI75f2e2KvM0R4w|ierGdg&6Gf!{Psn@fw8=NZh
zOYeWP{QK;sXF}}^D#GWmSH&>*3v&Ky3i$iA*|qUe>dRi&*9P049uj_`zGKCX^t(y6
z+a_s8O^<G#@~rLs(sb?ftG6B8u_@~T-`?r_xc;g7Dzr!6d7qbcqck+w{oux5htJPi
zaZEeOc~^+A<7&=~>yIrKUfnOX+`L^s=>Suo)8PWIP0{Csaxy+fUz}6=^LJ6~>a{bh
znvd^&Vjz9}S<qz9(oFRY_C=*DCX36k{;oT-K2+J>T9yCx?X&IEg~XhDukgQ+*uQ3y
z`eTkKEv4_(@*efR|8c%*N51$~<@H}4l}!H@G>OG2x~x0cUH3uczImTqBb#<_Z_j?8
zax}<p^_wZ{wVqD-WVa(~!s^<bv-kHdx*1;lr83v&f1Pvf*QLF0of_AFtDN1rW6`pm
zISP|bczdoAkve<q=P|8CtMy}jWio=B=Joa0?GvB=TWR^vLlbvg>i2&A(xq7LQkc-9
zP0J#}o_)(XcJi37_tJ#s9i4vMzCw3+r$^13XWz9p?Z`Z%bzitXKaL2CO6Pj>`&Q+R
z)DOD~-@g}osF-oJ!+f^7_=E>mJt3?||2WPF-STsXrLw8x!7AsvcLkHn(!97H@48)d
z$NqGN^~Xq|nga1>fpbN!YV(NJuI4soHS^!6XjQ2HeBYa?|H`JlXFVbMc>j;n0?t#e
zsnvO{R>@v-?taBu!+(0e?{x=mmejexsUf7(f7Oe_;AP6x3#<MX&p6h%N_#%P@y^?>
zhnL*CKYjh8+i8s%DtRU{W|n{cU6W4VJ(YR$!u9K?%+6+;E3T*|<F)43M>``9e$fvB
z#u~NLvTnuPGtE1;ckSv!rDk(g44yWhx7%b|R-P}CaCU-0*?K#ZRQWf*mMPCO4`7^m
z&Hk~>{waB_IkRo9Ml9a5b-DJHvp@g*^8NSuAvf2eL!Kv29gcnXM@;<1qNQqU*{1*d
z{O*P3o;b<aLyy1KEZ=b9f|izD97}>q<oRh;8}lZ8=QwllWbv;HYoF&H`WiCl-0Ufw
z^*b+g_9&K{8Zob8^ST|Gqg0pp)AqU4g1<(*qPecejz_lL%zkRslk=_b^4oh&OzUc$
zGG6g-c{0z4uX5h=9_CEzIR9G-w=zPEm$>=%Wvfh@XY?+S!CUq9_f<E0gX7#ze(w!m
zS;oHo){8Z-wL&$*WS%{0YCo@fnqM<c(%+AF=W#{j2NjA1iWyl#OBha^J<rc5xk<*T
zEbQdZ)0c!2c}_+N@t8lIFzbBFD%%*Iq8k&_rx_k|JN4f0S<Xs9gU6Q}{@D8G-aPlm
zo*|&#eNFGRbL_d3E;2qznrn7r$+d4sOn#lRdR%dkXYogiP*KjVMzibdSDS2Y43hb~
z(OBUM%dCLBsttc`-<v+^Q;XhT8{5OzrP<4mHf+4nT)yw)%0o7C>{=^7AIqG5W5e<G
zFQ*@e{LTApA$sS6UuAGloakL;XZ1H%dNyxb7ra(fXMOZmk*4Xs2@6kndZhO-S_($!
z+D$xq<G|6)JJ(Mub7EnLIZ|NwZCPz<*S>Z8bqx-^^Oh{M@M#rbSh3+o$mLqD<#AbF
zdp>B`?uxR#la}!)@QTvYxmpdHmVvJRLRNj3h5v}kN48xR$)2`4YFkuRo;=686|1Uj
zM7!3_{K?IgteN=DU_oo`g`JG21*7$>lw@?}MLI4nu-i51{6DAW2(_8|4(6?!zMh`-
zV0-G<?1+hehF*Sx+TCu)nb&+Y_q(|&`cS4sZp|_EN(CL(#6MX@Cs$s2^K>rr#2Y2g
zH=Nwd!FK29vKvO<p1XF{UcEm>=?dp2wWlrDBWkyPHe{<6y1mHb?9r7UH*K?>$XpP1
zQLCip>K26)w*`!(Hm_H2zcnYTO7EDz&7Nz<znKI+#C-J&cfT+%*LnGmk4Fsp{+Mk}
z_H{}r*7(@L9=S;>s>t<&YWr%X<u^lOkCZwu&^qVr7hG$6R8Zmeu5@R&yjQxH)J4nQ
z>3p4=l6-irvbg$-3tE2b3J<?yTjQ#`Ez4Ji@8%7~-HxpDvu7{6bYB1CS|j;W?S7|T
z_LbP2k61Bt_cqN*r}Bauil(TynYtY=nQS}%d(@#mrM#Q`Y%86fA5O}8a{sdU?UUX0
z4_vZ#&L~u}k(?1$^{U{g?q(@5ix|U8G4dOCdme1md9jPV<H>ESKP#M1$-aNwWqkGP
zMd`37e{W`|`{w&z)n7BESm(3Hgtk+AHE&6`s`TIL{qo7|a2x;6s_yoguXYE0`R@84
z#mZ~#)z9U-ja;<~Rj2N#s(dZ5{nMF4Zw|9nufG3s_olse>8Wj5Og9618=k0axNp_{
zWU=SH$?Y@q_uaV~k<O%bblxX}6R*E~5ZSwBySvA_?4PW<wdqZZ_UQ>3B{IJD<z4*j
zn%Am1d3u}A$FWJ|RK}k-nem7<fIanGz^04mRxUDc+))q}e%?ng@R{N+kMeHj(1}F}
zcaEA~V@*@&Jo;*#oI@6;NBgrW=NCrD6mg`^mnl2=Zc<Jwf8MFYnsst@j-0EG%1>E*
z+Bod!cLSxwuIp3w>{&HeQ^iuVuYVcax+|+MuQ|GS^0t`bowqFedc5-{1hW)wuA6sc
zTRVG1Y-_xFo%@F3WqYRAg~&KMS<UwD-W%cCwTg+g?B3_XsM^&vVYV0EaCqFCJ;6)s
z-_kD4<DJb*o9i<3tv`Qy{8RXST_}^3*wni=Ph`}lwh8UeTemq(KKj(F&0;BceO4LN
zNo1@lnZ3>}^XH#~dsj{p{&lXOdsmV+W0`ON^wY+@A`$j?&S&hmWjd$&rg?GUia8qj
zmYx?EPdpHFX5wk)DOYX#8C<8dD0A5_5X;j#+`0S4vAG_lRt~wM_vY%Xbn$cfzr)Wz
z(z#ye(La-%(x3jUa#M;9JyZ97`AFc#aRvSRM{8Ucdd6(D+wS)`_}tq^SF3D%5B*R(
z8Q!el5O4bQi@B`cM;_**Uw2KuVzXrGb<qNMh3F>=3*PNnr!)7Ftw-gJDKDzDZfV7+
z{E9dd{jkYyUCHCH&+m85*}Th$?^#9t6gPMAsDrIGS3=Il*)N>r=vOA%B6uqD>cel_
zL{2DcG0l8myJEK4)TnDU56(9!+dZ9}*Ex;(&xb$Ky6%4G@3+ccoIS1X`O@8=xDBq{
zimR)NZr^ur-Ggr17h>%vj&{DQ>}uM!bj~ZE(Dx6eO^$n|{Vs4;I^Os#ZCQctw)07M
z5B!qbtdw0d=U>hJOR-xGW>*<+%e73my3bw2cT2eP-|RTIpEhTo_3uAzqs*VbxV1ON
zvetdp&#b#z&lLAf=AN*z`^#?8BX`*rwajT#+qPKy=8JV7f)7fF`R;kj5;VPg(c@=Z
z93w0P6XT=z#2tLGX2qco{INSYFIm-#9o@9&XMScUzXBK2gwwNkdSrX@v98H@6#B2y
zf7|Z$8)8@f)-I0JE?gISb&kqD)9<%p|DL>~pK$fns#l*JUWhK5xv)XxhOtCw-l@%v
z@<o$2nDMR(nzg;U*FF4i^V185LdENaS8tS!x_V*b3X{nRr%J!-e!3XayZB?WAdl6`
z3q@b*Hocm1t>dk3TJ{csTbu9fGk?0U+~DjN8<y4D(|Prk&wpv?+HYSeDC1YX%2ubr
zNG!`?g|W#d52uF;3O1D`r$30PU%Q^7{CY*t%Og>u4W}J5KN*<LWjOxwrBL^uwB^>U
z$7HWIJ*k!rZrAFQ3!i^3SKOdx&&Az}jwe>;p57X0>vOi~n%CmV|I|+2D-_LLoKU%J
zPE7k3so2<Qja#^G3cWdHbZhq|jdd*5jSHjs79=dS>02^Qh<V$N7~zi#7%aQXPnTq?
z@j5rZ|9L9gSMNpQt}UkW#c3*y`q>3Do`|sCos&8<>FdQ03_qjxT}^mv>&H0dPv7ia
z7oMI!WLHu=Rl4%m%jf>T?u5=^PE%d*EN|w)ZU@_Yw+cV%{rz-r<5KMv`#4|i*&({9
zY2Sv@E%8q+R-JV{aN*grp9|0Iod5V^;>I)i-V)2dzFl=M&R8;j>JOF~of7Mg{xy^O
zv+nrO-8n0M-fT#m_S)jY-?gcFTZNc!gk7ETcMHqi>m{exJz4$c-oD=bC07MbN9460
zsd=C$Ep$KV%-IDZ%sJKPj$N3TwdXL~nsP50yUvHtZdpEIX@9bi*ZY-Q;oszVh4$uL
zyQR!^>FJx=`!e2Yep?x5c<O$O*_Oi>4y3K@mOdZ<Yp!i&PRa+BQ+x*}Zx7~++IHp7
z-FJGMVp4qXxc}U3U2a#D5F}S$*mTd8bIs-_)qw~8?A+mLu>6mmionu4bE}fq``_Go
zbJs1#+X|LlFC#n4vwRXZeEf8I|JG%U&QG31?6bS3)A`W1Irp^o!T6I06*XROJ*c|#
zEzdK-7t<a`iY;PSKdUpLFX-Wc?W?1=Bu_i~m8Yibx%5&o^Rv54v;E@sFv>sPs5?vV
z)l!A8yEN@xbB;?r+at{};icf;tzx|q2P%%`h@M>bWXrj%%-@@4WIubP6MpX0)Ci_2
znReElzb8(1Rn?EWa##KI?zUHJX8D;ck$?U8#(^cfs`5UjJ+b8zx_B&xHA=vWhjrrH
zEk#e3@TBJ!2qiDgs+)9UPpwV-<_p;>=c7yI3oDNlYyJ%0cBQHOQ_D(qvHR?T8sF;9
zJ3qU*)@{K<Y5iL+yJPtMt+wuMI5@ZD@5RR|vBlF`MAJ3nP6x$3lsh^zK&<kt)D>xe
zIje*xx14Vk$L9#}>HpVpc=X$;@JVl#U0k)(o)<G49wz99E+{Xk*>a-byTQU!mpwzO
zKW{8K!+4G_{Gi{)<Lj@UsVIodbB}*HW8b;Boiohe#&O)Z$Ym$6*wIPfa$`hj>dRbd
zvu~4~8J~ql7c7hN)87+#&%{~2mbLc%xua_W^7bhhZk!wA6LDhh$;el(vH5uiitnZt
zcJ12#CC~C{tmVF42iMft)oIH2Cu)RR1@*N|lnqfbi#^)ZyXX7d@FPMhQ#$rd(R{Xf
zIkN=!vE?@BwZy-Dt`5H(!y!I>D?8KMc}05;pDa#yTC`&GgHO|zI<KC(HG|9T<m945
zx@QVK&V8T!c*5@un}YN8w=Vg3PbZUAbMC@vcXnxcF0q{4kh%5R?cW9hzbl;>4zo{B
zd%k?z^bMT$HD&Q^g*$gBGH|NM%-mzswe!LM5~tOi8Eeja%sw{#LRa;w{PUC7B|TPM
z_hQqmBBqF^lO>vCw^o~fzi2ljQp)K1WHp8__a_}@W@7r?p6NWP#e-8_sNGJKwe{CE
z#;Q4~R~eqpw`I$!>E3naq>|?CBQMt&^W5@0#56}mIF{+{)h$9N8}5Ct<u=XrJaozU
zKz9X?b)hrc_O&h+eVVQrMn(EZICQs*roOxVsc?l??ebRNgyl2(PR6m7K3*WX<B3+)
zpA$d*t;`m5-#1%tlYcz<(T$!d$5jKP*m&iVB<qeVY8fBt-tzXef2YG;ozN$*g-)(n
zmSWAh``oIpllvCOWvWdSSDZ9AK6};t@=d?DY+oIq)1oB9U1`DcMEKaco|P^6pKgZE
z*)mHc%uxEb<C}Twp7AeQQsv2SWa@4=OLEq!nf!fzYhRg(3OnxdpC+|^=j@MN%L>2R
z`tMCQOy_v{<uk)w;n|8ex4$s`JMaFMtam@7-i9VVxODpEr0=^|ESWmTpt5zj<7t`q
zvmZn(E$g@aTY0SPiQ|HLt-oIiPwrhm-KSl}P+76i-2RE8Y<9<z?9UE<mGV30*V*pU
z{ITHVt~DvPcli4%5+?VB=NNcAia$BkqxMFqgyJgO{X311s!60rZ#rPGB7M~r<wY+S
zbF;5V^1tpT@T6!7(~2yey>(qnRv(x*Njraj(S@C-&mT{Z_}U!0q(!g)$ldi4s(w#(
zOvTgRu>{C})y^zCs-0UH*IRP*{pq7Qi)uFixidF#oyFnfhlTeq)w;}H5+M4bYLVKH
zi(eg=Jol?D`ZZJazqDV*|0{mMsqdJ*R@r7>yu$eONuSjX4<UcX1x4;h*=wFguA02`
zj$Y-%yvo#*bDfxq_Z}4AX|Gz4-6by`HfQ7KU5W`_6Mvpy4u7`%2;aPOso&;pQ2X2v
z_i=*Vy6sVAhxV^Ob9Q!2=Et9#6Xaek(zNN`abw4`xSbIz0uEl8X|yMvUsQVfFPon=
zyWY8<4fn2g$^X7@k-EnYk!Q=MO&9UcV|}_@X4^8}nA#ivF4XY-5t8)y=AHP}JMi@G
z)u-Z&GdZ=bQ=GMR?nO)UcT2zf>({2vk^5@3D|2PMFUQvP(VLa;#hRHvD!klgcXDU;
zBGsk~c4yz1L~WcAJ(;Dlc53#QuYnunP47HQUmmEs^6E=2$?x002zM;#TzYKIvuBQe
zFJEn%<KUBLI*ED9Qp3iOlXkCd^tDba|J3+>SarjsU4i0}(;ok3=JF_Ry+7wY_pz&X
zXa0MppZ|1?VM&4^<BQz$*^6HFZGKa}$fCf$z(jLan&s1#uS1VA+V1eHxT0^w{it&3
zdlezp9bY#*_@Q?6&djEUCv2U6^W7XBs@7L{nL2)+p(t!N>sOXN$3FeyO_QAO&zItl
z*)&C1puVfmY1&&8KHJXs>?yS#Pk#RV;Cs5-Zr!svym8O#B(kOU&Pmz)ws`L;PSb)J
zURr_Ew%bj36EWwdiil``q@v=QMNw`)e?EI#wM$t~?Ru<Jpq(YB^Yb0o-tsH0OZZiw
zr=9oJKh}-)Shn4@fS{EZrhMD~H^OgDW}VlYzKWJ9k=?~x;$xY4clBvDJba|RzV2Z_
zdq&qi>r*x1p^<rUt6A<=NjFNI2nZDlo%l3u>zV_ro(ZRS&zr{9E_B#ERr}4_+t(^`
zbgN~m;`lX}ssx5^z4V1GeGcC`lcyU@OO2(I>#mve2~MlAdo#iOKUe0y5RS*e9-r1#
z2)q@09B}9S<M1<CN+D`JA6MBqX_sEE<lkiQK3siQ&Fra_^<J_&+?RK`_j%oWzH<Kd
z){U2zocA_-_~)j@V<(;!tBiw{-QT`(tv!BH`rVf0m-Ks7K8HFl|G~(3%(iyY-)g_5
z^_OKHUn=g~@!jay@ipA7Wl@)ky*+PPEy+A@R9_~sG1vA&ti7(I%oP4Uem8x)og2lw
zzX_i|#?u}0rd}`VR92YiG2S<YPtSY)zt{hVYpUx$+qC~Hzj2p7)%BRB(%Gfbuj*&f
z^djK?=fZUd0=YVct<-JZSLL;GiOSd9dGeUqv*+*bd^`JVJLYeXJ#^%wt!7s3>fk3+
zUZ)?gny~e$-X=Fq0sEK!_fF1~+5fJltWwtRS#aZLCQT>VRfc@tnzvsq6qF9-3;uMh
ztTvBHE1E-O&x)vT>`#~Lo#AXh=`%y>&9|$6mmY|yKTtV?@88vVa~+>H%1@sCvBdXX
zW{f$LrKx;-{=dq$r&>oApA7c@X;Zvl^Wpoyw_OvSm9?jZkMn!-{Ff8MN)P+?1nuzc
zd{d<T@mZ<J)nc!wnv$EDojnfSUbpYy$Mt!lo0jfjUivD|XoZ!k+K1|m|9dZKNbU~(
zes7_Yy4-&AwF$2Ik7}wW30yoY9@ltqUu2(sigMyg=IyfuPn_{zBT%~GOQZ)w_?(v|
z2A&f&Y#Zmu$zHQK;k;5m|J@I+cgw$Cwzyxe>bNFi{%s-cEtft{sX4XzR?;7x&wur-
zf-0V@b~`fvLD<Y^)lRkdE#p6APGT~f)vvX!N6NQw-PBnt4op7dx@fVa8>>_6p9S3k
zM`8}zT9g_$+OH}U3tzCIqma4Y?pna!b@J~$=h)nhc9qfV;gkBWed9uE_<~yw%imAw
z-f~>m<bwIrx0+FvtBbjKet#%iE~8SDBz5>>)aSPmpT3@!IK)-|w0q$dH;0Seo)vEw
zrgO8Hy}Ri6{`lX3^<O$){k!{bW}0#6FaGVu^CQ=(uUfIT?Q(SF^p^aY3tv5vx~yit
zH&$oEOF!-CnCR8DPu$nCTzrz-|1&N4br3(tN%yF5oBOjKWUbgJCwFo3VJ92myT8ul
zoByAv-n=8Q_;1_ts4FY3@8~`*{^k3;B_S#%cj8%Cxq6m(+*$i%YM0;Q-dU2ynrUzN
zJ!G%7>^k@9kK*HxA!;4%GWG9fANaM<=9XdV<HF0ULiQd?kj#m``#rVm?B??|ds3NM
zI=c%jqh05g);AS-|KqjzXb}87__cUl@#FUG9^Zod?AJVIXnpG(UT7;5TDEz!pITVr
z3>Bfo!Z%IP_cbbxX?HSR_qDTi>`(WdXJ8Om`TtVD)@kgj^2!G%{dZZH)qek9e!b<p
zD_;H;c3-OITU<TnwR*jbVsKOR(kIrZxtC4+qG`X*@M&etF>%qQFaLi0{NZ%{DW(Gr
zUv#opsCy@Fueg=!Vdz)W_4}06iFDud_4mW<wy{o_JLmb`liLr!Y@4$}{Z?J?PbLSJ
zwq?sJzrFi<lF?NCwp?z<spVz+4{JS{KUbd5u_^M(lIKQSJ|%AcG1cRv=p3GJ({72a
z@NoWiKVHv;U-|cvBI)JztLj&>t!9fl{Htu9&AC+-&R_m4_OpI<&?b77q`>y`qCDnB
z`|gJxpEu<=_l)0DW+YUbZ8Uh9Yro)!$7Y|qq3f(1KYexL-y&Xe!1h+yC&RNL#_m^d
z7+VXk+<I#Hn;r9}I((7(f4KId?hldn=l;Aet3FF!pD6z1@l=Tyd!L>3W|8^+%VKu<
zst5BwhVMRq^zMgWQPtPNr#pUqRwpjCEv<Im`;PFl@@v!8)F+-)zU$)a602XsJo|uX
z;BhfdpZ_Nm51skQefQbC{I141yY}>b)X?4;6RpQP@uqlz$kzj>mWSV5?<QZ@`ZAEK
z)-!&s4a=9`cSSm_jwH6mo{Z1BBK{+|ZRt~|M|NM2=L9UY{LY^9Jn`Dh--7Q>9X`^(
z&!|jGYr1&d+q?GX53j%Y`PXgEWJCMqw?D~>UY=?`_r|@q`)c=}JD#il^t$`I-=Ab&
z+@HI8{UV#45-;tJu_|tTzQ`v0s{;SgNus?eFA`ZN+k4FX?qlfEa@4o>#m^n_d!<+G
zESdI@y~w{&^H{KH*>PT8@4C8ISJtgOE4f@HX~M2;ad%(L5Qv^M$#=~Rt$PcSvya-;
z2HU-hI`$$dc&qu(`1mmHjSnJZ@(j3S!+4_Cd7Vn^u*#Nl_df5nzu{feCF2~{@Z;g~
z3ctMXE5GyIzHX85t@!^1lg}Gp_7r8gHn;rA!5f$2wEDa>=PvD<pT>JSyP-ANl&88+
z)h8*pLSW~;&BdZ;b?4ix&72h}aHwYS<r{X-E$-YX=}dQIlRDLW;JKHjYUsLFh8@#=
zXIESdD-uxJdUMOma_$dS+BxFxODBaSSCxh(JU{=J@8CPz$UlxLUnZWK!`7;N)a2p0
zd4(;l)m=A3lcJ}_zCQQvMCQhINw#xZUS;v|8fWd^R<1r*?7qcxvFT-6e%6n(%@RY(
z#MP$EI}ukUVAATLs=ngcH)G!;v9D8}Z<{<vW0JI9PJhkS>v~N$S9r9ZuA2WwypYwd
zM3U|2{J*>WTG*GeF)9gaMqa(SQh(2@8w-Cp2UV9P+4!zBJ^El;^6b^+7cRWZWM%q3
z>j6*Y#Jb-PFG;*RG==}x*<Dvywf^UvY5W~gv^;lui%x0bUE|-o1N+0{!~2*t7k~V5
zWz|lZdFzx?cW^NXYn<l1`ZVSC&ASIo=W+&J7CL0x_LAQ#DL!3d-Huzr*Y;;`iwS&L
zdr^lm*0+83OB?4Ot1Dz)EP1^=*f;!o^(NOR&)vEn-`<hMu{W%DOT>b|=R?CL8%XU~
zHnHeZ#NGb&xmQjJl|OtTxn%Z3mz4W5eNSY%<|*v|d|AcoZrfj*o14E%SsZ<^yQ*eE
z|FWP3E=?`#uIB$)9sK&l<3(kH&VQ0C7Nli4?5pWDI)C@ruaelTwNH$ACX~HB`Tg9o
zT$gLXK4MSK@E8R#KWLMm<eam_Rc-cX$z|uB1t_Vk{QXx$ZqcGJr=xSexp6kHi*yhC
zmagXeLjC-yx9-s$Z=SiXG4X4@`l#YUt*@<LY1mW;himtJjTZzJWPCVwf8O;8U4AD|
z&yGu+`YmtYBy;&6=U)|Y7fp!cnk-OwV}0Jd14$om@t6vIT`siwFYC%>5hB0$E&F4!
zw4-KHVucS&LT~re4_;3`A5mQ=VZ87V-|QteaV%egKh_*7m3n-Vzwh?tx7NG44hk2n
zpHW_Uzi#tM?yK#a<Mf$p-T!WEskn8aBjbl7=WG7Yi~_OmrxpMHA){CNMex7$&h6|5
zZucC%?B8S^YCKbtG3eE^RKCgDl|hL|-trY_{QP+8)77ul-(}{TeX->Gs+o29(ZBA@
zHl^i)LC3V6%TsUupQNs*6i}jYWSbnjn9F^8o%&Em<4?ZY)Bim?Z~NiN!-HG?+_k7w
zd%>`J%Wmb(32xy<@AVk!oFyglt|fo^xZ%r>7w1A(WG~g^zGAcSZb*~D$KR9vC8h;u
z$~DAm-ha11CDlFi_T<ZN*Dc$o4VsbIU9+YyWAR5**&wr-G7XPj?iKl0tab3$wp+Je
zC7G<f^;pbXZicDrpLy(mr`>7%6_UdBDg5{sKe4GrJ6EzC{&zAvN6>%WsXn>b`_FbJ
zb+7n6@9XK@yYs#@$w*41|Np<Ddb;eHX-_Tk>*g(LztpnkcdCZtrUZT-52Xc-PbYc^
zik01-z#6gs{Vye>|NHWS=FNQmU_$Skt6#6L3Z1^@%!!U1bvsUjA7w@SZ*0v>msog8
z{wUmGwCMYj>|dRS*6&*Lx%X#fTi2C|d9NBbBs6(H*>bw>qNUYGn-|k|Dr>h*m)ona
zan@qHnR02nWM|(B`Q6pWI32GPGZqxSddIf^_auXw`wP#yuegwIlhQTym+$qdXJ1a}
zR(o*!P1+6dm&`x+-nrlHJ@1BK^qS9Wi^4vtT$&$X7IDc}=>HnI`Cn)MJ^Nm$t9e4u
z?Ay*EKU6<2W<Fkc<n!@Ttw~~Un&#g8*LPm*o#ndK>HDTkJ5s`(Ex_~syZnb+|F4|>
z|90(xGN<_4Nz)t}YS%g4>13EK{B-?l<rC8v{Lz`YAU)`~h{z8w`N9d}hFgyW{c{xE
zck2B63*mPzrP-W)`IEJv=!ud0msf7a))MX0OlD4f9c(q9>HHS?{z!4JW9q`If9~uv
z-}JMbMbb)Wjex~%KK-kwp5HH2(qv?7<Sr^(zM{kF+q4p&Q^s%pgrv8wIxb{>V1rG%
z@ZN>`g=c(TFs?0f-J(3ra=}$q{|R}0FK0bewemkWH}+=4uF4(L8j_VN7+5yi-9G&*
z#4o=1)ZCo?%}twsT`fL&h&^7bUgW;k;yvy!D=!5^shj$A-j`@v^p@k+vW$Ays##OJ
zy{^w;Opq|<-?TmN^opOm_D#~|=AS<ySXR~D@s_~qsLS0^IrqD#u{e4y(7bo4?=y==
zv&FTg*KRH9ikp3RQ=avz^*Qc4IfXv)n%-~=v8oOZUK$eha#?6-d52?bm8KTE>Fs>2
zi<4|qdbg$vg>K*3te&;gGR%E0YwyjllIhzWdP7ZuSF2wCsAqHjNN)6Hwhq-YrKDf?
zu73=;w|wQbSksriXY)UYRe342UUvH=?HIpdZ*ibO;OEL6%8R>mR_e~SKk8_=P%w=%
zP5zMLE%Oq-2@g)^1?BAVXNh>_`A=n1$--Gao|&6s53ZFHZ{iMF{CvG%cEE!N!g4<P
zZ-1UXR}ocHnWjHqTcs}D@5l3JHB~>iu`{~YeYkN{wos;pAxPEju6<Limq-ztugPSF
z&eYdDsTbF&3Z6gi*W2X&xzys>%#i)tnk1#3K5OEC;}OJiA*G!`+kdgo<H(=aetmo^
zw~N6-jHg<%G+IQ$I{6OM+~C+_T&cmWug|wLw5+wY`IhLY>B)CLZt?rx8M&)o&U<cs
zti|cwhn)A?PxoFr6%b(@)mqx~IA`;QKWl$~tZNb3_&3&TiQXY6w`Vo&bD3^O3!gW!
zfBPjXS7h5xbGx{cTZ&nFFRqLG^+&*IuehA{g2byw6)zoqdun=y_^s;id!9L17Vfp)
zyIz*3K!{VrdO@58&-dckOQzSG#Z=li?@Bu&bWPSF=hjMdYrAjyhbC5bR;9m=`uX>n
z$GNpme~i2Ct@N0exLiQDe0lM&e>VM>s}8TWsC>N3_USai<kOO2D=utOzU(Xga=G9`
z?)vWP+B1gNMcBS&P6=^uO=4>O5-?HE`sLAG5m9AZoHb8#?tT;>_x*VrL(`iNdP}=X
zetpnj*>~9L>eAy~b7y$|ndY&eH>kw(`nmED{_2$>Nz=b=)Mm}oH}$By>eI26OH@^L
z|BNs1<F-2gm-$kqH;IpH-_Z?g1589?PwoA<Yr&IbyTI!)SvShBE|b6fyE5;vwbdFS
z%d^vF$mHxZ&fEH7L9fG8N5#rVW?n9hn{}qFD|EMG?9(lDdGo%)EX>?wXZYuz9wEOi
z{xBCvm=)NczjLaAyYiFt^Oso*Ut4+HF$)hkeK2R?{x@7@&N9-{%b8^?KK4Do;JeMf
zoZY-);>XJ$Z~L_zuaxWDDkgpRECbh*fU7|}EB<c3dL=vWktVOXv_tBx!lSmQvhN6Q
zDf+Sd_Nhg4CTf??<kawr37fq6ZI!Xrw#45bWS`d_=CJO}KKk7?V9w_HS?gJD)t;JT
zc4n*N2i|oTC!cKIsJyNGfv~XZ?7XDh8<Uq9<a10BHsA8}x5mc9i*F?#otU<(A@;&8
zvB~mwvG1>35Pd(baFt`~=G%?ON<B0D64%Nu^z3SAzsw?2b#3E;7*5^WJc@768E77y
zTdDl)`@3(Fe61T3?@F{*JMWk+`?!bUpP}sH?-k8{c80SW?uFfm?ib){zW>Op{qL!Z
zmyX}c_dfmM&F(w>&tzZTwemZApS5Rq(x-sWA1n9Gdf`8Lt*eKKbz{!^WfsD!zc2s(
zx#INXZVN*@k&DM?DPMXPd1>jMw4Y&@9Cz2ToOyU_=f;SHk~Nmz(<FRa&%{po(LT3m
zO~Dhv`CrcI*nTbhysczis_&BGwU@;|?+cVu<Ncs{ruD#8i%{b?tlKJ^*R7o0|8U~1
zh1w1w58euK?Q+iD&FOXT`WxNq{^@d)o`~x9zWIAo%-ZF5`Bmvck3(FWS#9P$SaF|=
z^IO%TI@i!C)@5w3jxg2U*I>J~@#BFB0wF3_q>i##sutbNdEe3yos*+lV!Ls_W5--}
z_p`+<2^UJ1+NKpeJo-(t#(%~_t2tp0TDR(bdDdxmS7_3cZ1qxg)5UW_7M}4A49Pov
z{<XlA=}~R-IPGrD-}fhGqkzljgzeKS%~ay9D6{woP2=hAN}C~MekQ*<(^1keyl6k)
zH<78<9e#_q3-CM-n5ebnO_#gsOSRjsQ@k4g<o>jou<}vT-11P4y=5L&+}a`EuDR5`
zJ-lX;GhbBSKHlliDz{9ZHq&?q$JU?8)|>J@i*EZp4dB>ZJX7{(O?=b$43qSqCifW+
zvl+5~Js_#LKFM%%)F-?7%Hk_F9i1V5@Px3s$$a%IkM*s?<i2n>w7lMY?_O$Dc4t)X
z(}|hS4g|}-6XEI6c6qu}<9X|XBBMy2f4<G8myWj2F<upT&v(O>lE*7ddCtBl*YB#{
z@S<+wfwJFu(sK?4wN3Gw#rwtP&3R#4&vvIdZ<hV7JZ9ed?6&RCKhoL3jVr<olJa8~
z-7~qN=-_`fCvM$@4XYi`f0`D4LqGlEx<HOCbEjQroz{Eksr!4`u$0}NF>Y%`%Rd$8
z{d;qp)o){ML#O=D&E?;-+9vq^bazu&SR=1DPsqOet%}m|E+fqV+o!_T4O0ywn$p&q
zD~r9I<PvWEfX}GJLF(NOpR7YFQ$JoV*P8ny(jxcNbEmtUPA;9detZxK?tI_=@ysV-
zvjuzVDpHFAuI%5sG9-Mj(V2_!+x(|T&HK0Z<-a{&9v?biHOX=o_eRdc3mF>^S01fs
z^z=~TEvQj`8+!G_4Rw~P`BT_$DWn~9u-NiE_7}shub+3PScP(3iIv%(`pazdr`YM*
z%$f_eOcg{$LeAZdac;M&_T81DA$hp(Rs1E%^HL%_7gX=c<y-&vlIziCsGgf%H%q?D
zc2}DoGy8*kzYA8%C|Tdvv*ccCc=o~b=AM??J^sn5Kes1uWw<r--;cLiagF%_$|qEr
zY%*r;nXLGBck*V%me4zV*@e&EPPMxIYO3a>**7++2)t`$Yuzm${%g~nXHyNnTkf3y
z_?EoB%#<j*<sqSpYs7E$Ncqj}ecyfL&=a-X<GfxLUQRxYE}WN7oj%ZJdd9h@t(f0<
ztHE*kE~%~^Djf!&+x{;2Ij=o)^PIhr*}JmaN@Vs{yBnV7-D)vk`<8Ue>Rry~o|~1s
zIp1T8s`?Pz@?+Yvo6i>M8$W6JF1%w_Da%<_kLObxwe@-&iy0#nKFj9p`?zDy9?9E`
z|0)C8?)cY<{P_OT_@@57t;Rwn3VTW}?3UW^GN<pzvFPffYa{|bxVi}a3T$l-J?nSq
zz<KXwYgj&>Zj7~Ze)oP?MYF~;%PF@XrUguRf9P^dFTe1ib7z<>COm!hrQDO}5C8Ya
zQQO#e7H|HQA~Ed{mzLjq<@xH%H;3=us9Ey<<)t07{_Z*^d*<|+gl`kfHfP_w-!*5Z
z{*!x>Ti*!m{NnF1|IO3%%^j^A+ZlfaZCqZMc`I?ghx5!&FXjgS7JgM9y}evR({g^z
ztWR3E6JN>w+?21eT8w3Waf|a7*W$=z_utq0CM-y0b-wiZdCx25*Ua_#hQ<twniu*q
z?t7=ZS(u06@=pC3D{g=L*IV<fXL5?Rll?CF_tTa?e0fx$qN8);?_Z2{KP&%VeIvpu
zx>E4`WG<d{l0R<BBrHzYyRLAuPO|GQmY9b@l{+(d^R$ZcQszxtx#`2a=bbYboL;?!
zX`XCY+rP~DzkVu2aq-St8a4msw%PKkM`SLtR@z%N-*^(keOq~>gV#bf<&$e4UT<b*
zs(PI1@3Qa7XWv=9kFs_&&UpTDJO3S76YmY#?>D^PT2&AhVD$PY*A<6L^Nr4@_PtYO
z(RIHrzFGgQ^eK6n++vgOpJH$53O8JH3$=^vcNPnLT)1M%YHNSp+1GVWzSdi5{Wjx+
zc+{!pyOB;WqJD>#{;l`;_1HA;o{NBL*XI9<OD7nr=1cp?6xS_r`qgg!^o|tY0_C}?
zyPQv6<uJY#eEn`_?M|&sPm${TvTOXOM~9ZBJN18YWl{4GzxL+btF+WdQ)~po9`540
zx6#|K*{1Wn>eT4#^Un7_=8|}m+ZlU(m8|U&xpf+1QRanQ0$J82;xDQU1=)*syw}+=
zzsy0eYIU3YhG(DKZ`IZ7>3LbdnJ&}WzF+vp+r;|1<#VlGt~=JXIO(rtqNAbP%5B?g
zv@Vwiya-&fq4#=NeaE-iFCJGeW)yn*=(cC$k$E*?8oM=$1HIlbBu8GzdMUP~DE;el
zc2m~#!u@A%?sTuwdnaq15vDNp6Jz;9ubZ|Wc>yXX588wWB|4gkW;(|9b?L8ENj|4%
zX>r-+)Gv+4Evpw-8{MAuM(e8I?`yuAYMu`^Rj&Nb8@^f6aIf66^a*mT#fe)_#1%QJ
zr0h#+Z*mm;*&F@UZNsnG_wRb`5p(&tRPVn|qsdv{dCU17j~%`=HGN<Ak>~j{G&wdz
zcBIe06~5@*FO__qj_os>+3t2^Eem>++i4fjWu$U9Z42{K<(4dsQ!(%MZen)NRN>jE
ze?TN}e$uL>jcO9h?){s3K6<)eOQG?L#oK<VF(nG047HvTo!ghVQsGF-Yx@K-wH=?s
z=WV|K@7?M*8@`mS=H5H`8nepEwbdmnn_UZIjJJ6{%=S_d_$_*R#v37pV~SJfx)j|?
zyvgx)>E*>&;=Kx{n5-9wEV|0cRAR8QeD%zZ37gvXZq<CG6=CmvsAInDx1HH*mp!d|
zmM+i2bM&eDTww{p774c<>$NB6A3B)Uv5TeIUvRr$C~x}ApEjGy@7|TM-sW*qcK@^4
zTNiXVY%^eXTKSG|k^bTS#~0VWs9k^XRKuNzVlKym0!&M~+B#RC|C)ZkyyCIUKKB#R
z%^!nUkL0mwwr3UVFMQi;^=S8vX%nm;%|7y3#r9$R)VZGn*Xf_%Z`<!1@@;$QH_5%~
z@0J|Y@mlcq$4ySR#Z`T)6HMNSuiY-j6r#MlZpyrCOj1W@GEY%fcWpFRnYrv_pGw(3
zndZlCZv9rWZv+fQ^)0kmL{uC!g=>F5J!fNn?TDfCkxbTO8e8u#s;Jip3))h9v2L&5
zZvLY#Qd3+v?f?0(Oic3M;k0L)^R4<@CTIlBRS(%3rMvm~=llh?`f9t1Cd-}=<`wmd
zRO-7ZvAFrv=Y6bug>RK?ZrU_GRlK<&fA_6~mig_b2hQ~5+gY}$2i`QFINRJNK&kOi
z`d-b7x3%A-JXKD{nyGI;-1Ozg=|cV0?!R|Sdmj0G{`AU?j)(5rl-tzbI2ZQjw_4W}
zpSJ7|TmK&dT?`ZTZ`sA&$1bdtbg6u0d9ZTZ#KNneublQ-@$2)Y=X+)@Sao!v`ax|U
zKkXGy<`h4>d+y6GC$B|4j~$Q6UOkwrvU1VZq7@dQUjmni{rx55QfQF<a&61$-Htch
zj)m4uC=hS`<zfDrFNv{js<NK#`ejF+*?#+x%5uDU>3hrjT#Xv*<CaJ-n;dtF>Ej<o
zHrvPL-K(Q|i>#KtSAMP_q4RAeN9gaehu`irIzG>hRIO0;Ub6noU)x)LhmI|I-!`55
zz4@=t`+l4)>XQG*x1^S_<6~&9ZiGye&NQj2UO~r*BTTjBRelbkx1t#@mUHO`zYlu)
zv{Z3bT10wkz7vz{{0AOVb#kYwrn?BfV7nlvxc&RFb-qC}j;+(nT*`4lGo<G24d)d3
z*`jAYvdr`O{Uz$2<+=CX>)&xaa!9Xio12nwB=Vl%L!;`{<*QmkMSfMaH+~l?n641h
zbb@nMgJjvUXBG=iRz5UM51PNT*@b(mhyD3|F;)IfE9PFFeDv#`+T&C2{ma`j|0;Lb
zr5VmM-q}XHVtr7)UnB2N-U8j*?R9Au^J=P$qo-}y;~ny?Yth*g@+<Zwy-3siZT)=D
z_lD~2r&nr3<?}JU`1zf)x$mEE&U06u6LNdq-53gY%9V9^HfeSlwLE%m{dLoJOUo~8
zM`jdk77gM25M#kIdwY(>;k?M>lAAWq`pM<m85km?@M>l1&S=g;m9;W)A73Q8KGoDX
zKVSLh&E;y>m6nG+SkJA^6QIuYdG&RP8G38dzq4y@XqhiDLo=jX{Z`)d&yIR8l-!rT
z=eaUDOXJ?pYM=5lojY%zhp*<VWOmwj(bH(col7ap1b=5SZ8P_Ldop+1jjqK1hYe+d
z)?4j;6uUD0%dDWA6YRD73OfCo_HBuF_<M1-lk&+=vl(4it$MUe?BGRnsd;O|!pi?d
zmVRZsxntj^v~LObrn2)!J71W)zdwDBed(P8PHqAB7i&L#ez5+EoZ&Ur-qqg6m%TW>
z`gxXT`HYNvQCfG8{`sb8u6)U5l9!);=UI*Z&}FZ>azf4qS-U(eX}xyE&HhdCoqf5=
zlM>!rU4N81G2G(dOt$^quOF5bu2T7;>}7aT_pHtIB)0OKPtVI&>z7xY+V7oM;mdNZ
zZ_0iPovIZ_`3<Ksoh)+uUCX*O>`Pd_*))bPZhjGmzU2RC(pufP>73Ml&9;ihwfCfU
zzT9=7MC?ZP4aGxG9l|o^J>FC8Y-|;~xUpg8{QHOWTK0AaM1R}9)^bwUUY(y4-R^D`
z)|)UPFRf|HzhhSN)7N;$`3fxDert~pL-VBBhH(%7Iu~c36n&z>o3iX8qeb8O*tk@-
zSBeF3H_W5%9lLG+ebu|1r6$bNZhSA7wUs^2I5Tj8F4xk8i{6}-EQ=-;Efg$U*Ku@)
zuvWuuuiqNRTo)cR*~zzmUCT8!-)mCJF%9mPHsOVTAI7f84gVinpz~-+*qL8ldrkWH
z-C6SGM}XmLy$8$ZO6y##n#cO;6$it0x!O%F4}>;9SuMTu^yeuSF1g38`L8XnU0*EU
z{qne%%G=s03Cp$amKxn?yy<SrdgSxBjmu=Vi|q-T5?-Z!)Xx6!pJk`x>f$~g*v7Q~
zTiXS1*Y6!KZ$*0dSIyXXeZ_O-^m*(oH~Y5pvL9G;uUz1%?b6m=ikFwS?)W)jSEM*g
z<4b3cdxsUKbsI8G+rEC~{EB^3=Y+O%&COYs5q0#<n(a>>zpvP<8_;@WR<)V)$xG}X
za*kY@FyWd;peoZk-Tc&mpz5U!m%mspJ1xaN*}DGo9;Q6csqcGCFNVilo5giCYtf!l
ze{KA>Zi?sf_5Iy;*=uRz<V8_e{~f-P`J_yxA^cI_2}uj#@TGs8`<`+YbgG=o*0FrB
zyXnae*_fs+hqHvPc1Rbtik2lP+BQU(uaatKNlssLVf*9v6}J^*ml!X8lVKsYB=6eH
z&|vPI;<EX#Ypw_$oRc;^D(YZthrDPOyLH2@cH_fVAuf^0TFrVwcHyE`ubgk`s;}%0
z(%iY3cVh_e^c@r5+_GG*V)W4K&~wopf4qvjE@Vylye;}&x}WX)%2{PzTllrx+XH%U
zu6C)r@o2NKZoJ~WV=Et7a{msxD5$&ZMpA*2V%uwt?(AiWkNJN)6kl-hNt(Gkv3_?F
z_ufO#WoIh+1kS8#KF?_=JwJ{4=C5mK9YPpi?<_rGvF>N2M##;L^Z9-jRPPp=<KSeX
zoX`;}+W7CioTHd{wVLv!+XDV<sTVfr-~4x~Lsa{hmwZ7y<3U?*HrKh!ra$_7>SGG?
zcGHr0Awgm7bIl8UDvhT)NBS*GVr9tj<N5NU=0dZcthR>9g5<7spBZOIoOd}Nyhg`Q
zeBy+6+rA&ENRFR0cVgNLu8Emv-V5YAp89MyKVse`Zi9us!EcZLYk6=_A(nfUla_q`
z714u&k!<f=&6SPcvzR@dA^7ZU(&R^p>|9D&nt>YkW|-{|PiKGWubTRFd+6L#e6f)h
z{d?E2v2PJNdxLYE%Zdp}KN2nd*h7<d30+&I*4lJm`Fl`88;4uuk5cYn!LlpTu7_1F
zntq;?sNSj2)a1yryyE5}ImR94Z!f4X-+S2P!F|^E?@zo7dvhuO_qTiVt}&le$f!M5
zW;G|w#j1Mpv={So{>DzwO^UMQT63zUmYH!=*GI4XmK}PFO2t&wW~Ka>?Bs6g&`r8?
z;Mp?;Wy9}hrW^=ud2qQ#{hqenE4|${`#Lpjw!I1Xvitk5Fy~O_lyxf|&g6Hu2p?CU
znRjZ5e_b)x(!Mt>e$UhO_UNB@QQ+LL=b5qi19t0e!Rf}2whFvkw5##{(TC@+KfQF&
zb8*9+(x}OS$~{|h=l|H0**;-$rHq2%uN%*&&5|rD)a(1BC9>o;-y79MACz*l7IN~2
ze>uB8VyD}=A395?|LGDiUGt;ssmqpNF12g>Z|{5dwdYg#k$k7czbY9Fr5CuYKRtQ5
zqeH~wkI%oa75x((z<VyI?M>gA6vIEEKd!3Y)AkfSuDa8EqLYqrlE&-rOa5A}RNCCA
zv?6*w_vfBN?{pJd7S6vBZMs}%&*a@H#v#%2g$7P~Zp-e?eL3m%%Wc{hFFyWRzE5uD
z>q7=nX*$snSEnuT*mZH%sflR}?JC=Y<F&)~pR&yV(AyyP!H~iI*zT734`yw8bw~cx
zeFlD8wFAwMzw~X`FFqyyRN{?w+Kl)7Tqb_H>U5-kuX&n>Xu8jhi@{%cw{$NuIu~Uj
zyhp%O-Ivp(<N1@`gr0Nie^quDPu#y<DD2O)lfV8P4VT=hU?zV<V7tb@&7udy#lMB^
zJ0tyI+Jz8N@0EO??Ci?^v_E}bc*gzK?KRgHJag%dN-Qc4aSbhBcBp*IA-?&+U)2>k
zC3f0(?RmW}t>THBn5LHvYomzIW*0t}vK{-&=gw11=(n@<nv<A&MX1u)x#jJ9qkPdU
zy(bstugJ`jy#3&%bGg==m?gW8uD^e<bp8G5vz~<>{+Flvx33~@4~yOWi)U=C=eb*M
zs4VSMe6)DWda17G%|$aL%L2dY-)!_N?RO4MNm_oPYI6eX`Th2@)J`4EN<I2nSWCe8
z9OGH<&7m$O7ZjFF=}dOuy&5gG<D}_fzKzZ&F4$k!nV`m1)g90fcQ2aRMpvgO_^-&N
zw=pdCKZ^~D?ZWgc_OmE6%;A~l!ti9Bs9}VI%w8pCK0p22t;SR8J2-N;1veh9p2RKt
zn^CjD`_t!a=ZFtS7x2u8n&r7Y;xJoNY^d{$BfKw?_*1T@{?F1DGjW-)&RY2yZ)Sh^
zyWH1o5(|SlSMD<IG<d^ey`#fWqWywJRHyI5@czuu&eEwY%lF*gygFpnl2c4Cm1q3t
zdiRjc=JXAzyJ9LL+|C!dzRq5H<($R!TZdy@dw*KJ+VAmnN#dPbUJnFooK_$EtbA&v
zqr}uCE$++`Haq{4J3U+87=*H?aELW2Ix$TOtY*8&AG3iaylIWZ_Z@9>9~}Rb%U+Rq
zU^mC7?Ne>EMfk652(A&{uEx~kSfTLYubi3!+q-**eP+J<lDc-^?0w$TZbZ)8z3r^{
zAx^VRGri`SN0i-9U`y*gtg>TTr`z_1LWAQH(ZR0r3^#7_H7rOqyUTlEgX?$BFMOw0
z3HR{-kXY_~*HmPW;FUAaIV19eJ>nx4?C15*HLQK$xbx?qb%EO=Oz-y8SvTFk_biju
z<l~d{l_COdhrY!zMjwo8eHCE6b@mErYgY4xGIbHLKP5G_Bop`Fm16$&Mn~}WM-gv3
zf2oy~w+`)({`}K?dcMYl&HpPUSIWBZq}<o&-nJn=#Ba}=dxbKo_uLnqaZ-^#`SeD9
z#HpYhfAa;$l@5I>sS{rlV&N|Kd~-~j2-BBXF2e;APiN%oyDwe;X!mEE4d(sNnasjI
z|9t*d`(4<>m#@ulx1T<~`>?bz_nXYn&ujliooDU7B-~JScDnJtBdc!ONM+lu|8hQA
zhV#VZW5xb4cbns!pIu7IUVJUbMR`Y$@r)VYV;gOsgv?$0gTekso$eb^#|1ZL-Jg5<
zL*9vFeM<iy)hxD9IoN*4_@~g_#{Q?L`LsM97yV6p=KDKZ$U0_!`Hv&l9R8(pozMBL
zV|sj2)s_d0Z&!cGzt6SFX|wCT(}`;o-wW5?UO0ilu}NJ&>ALxw%j|aFwugj7aHOh<
zru|Kx-?cTb^5oU84mop!TXz-p_AA=@n6B%+o%X=Ty4=s8t824PZqdcFTF;vE{xAEW
znRR2Q(#*3JhtA$ie&+n+{u$vvd0!9yTGkspJtC0l``4Q*R&1Kg>{GK|l5q*|ChMn)
z)h^A`t{nNYa)P|P<Lo0AxmxpTI_rK%`3vao+qNb{?ueSUPKEBb2?xw~G_iW<M}CqH
z|CMy%NYIbPQ=hH&k~K9ioYCUe-F?=>VCshx`3{@j=Z8(*vY2^;ZA!p)7PsjZj=pj)
zpWk0=vcL9>{pwG99$PW}w2Xebde^Nlk_H)?PX+8YFjp?NnfE-~z^YloF0j@;;^7rb
z+w;eGYFgf`ouxA8^o_HdSEkQh^ek0Yn{9t)^4fXdnR!Z+?pt;=YkYfq<@aI6l9kK0
zXdkHy5>o41SAC~d<MH<@fw}v(Y$$dAwc$}h`t(n%jWw6sm$o0BrPBRkm-=qM)%TY6
zH3U37rF+unx@7bZ4fz+p4P2j0^!UYNC0$hLTzLF(QC5DILf)@35BY6V_Syy1%z2T!
z>mSn`%bV+$Su`HLw@7GSgLC7N!*UEem!E(9LZ_CKv6bO&m!Vve&~MYV#~K%PHQM(5
zRjd8Kro7^FxRKu*{`1*yPcCxpvR!n1!l6EumL`YIEiwmYR~Tm&CLCN>=HaH5-=X)M
zVLexSifiZ8M<(;mxSRfcc2<0PgruCAYG7@m*l7X5C2#w8{FXT><-(b<b?<?l(^NU%
zbC@TZ1WE;dIQm@4=7lHg*}La{@ud{?RsLaYsa-MWhQs3zD^!1MwDr8E=XuEHQ2t$|
z+qcZbGncpj+_$}V>(@K(!8i0-Z?~DqMl8;DWwk4wKVjElX=SgHh{BNl+47Zo2XF1{
zKVY-s0mH{fUlwi`IdG)KZ6!<V^7*_Ed>sqB%8xF1p1yy!!HwU3tqTgb?dJ-)vuXca
zHE*F0FMUJ!?<{=2>rs-8%Q5ZhwT|~xvrdFfTDCXxVz%a^3wzEruI$U-r)DuZ&APSz
z@ni03X3g(v1Da;qNnXm`+`jj0$=ik{-*;$ETKn6kuVMN7oiFUylw1vvyqnhkJ|-i*
z<ayKE!j3PxGk>0K)vG?SQZUcx#J+7C4r+PEI;p$K?$21$xm&=y<)5ng_jOWd^q)Mv
z&f&5~;(XtqORQ&<chqm4-nXt~GmD|uJl2@z5c%fXz|c)a{d2>8JZ{`KGcMMDI_>C{
z#tN=AzPHqmFyGjH?$X4i7R~4Hr_L{YnI`sqp|3kjv1vr`L-*UOELC=&_dXlLo9`d+
zt#oCJ{fh-0AFi*yeN<>u`MWo^o_S)=g}x}<Q1}_^bR+az=ZchB4})hLec!&kmXG7E
z{@)5g!DJq(m9lCf%l>{=Xf9-K&wn-VOK<DCds?1*G!>#m5)6K<?JDlyV;r$y4eMg2
z=?U_tOG1`CXLR=wzsmD4*40#S{q1!R6s{=S?_c*UZcF0Mg?}|KP0c@(dDifZX6wbW
zeQ!6q{&73scjn_y0o`v4o9i}--q}&3*{17S{IDWY`s8&EZ8L5`yBU)=PAfgayDOz`
z`YPjMZt;-R)9X_IWj?DF*(WBMd_w5+k~gt850~fsnR@5O`DyukncrM#sPD7eXUSdY
z_3ObkojT=)BTnvYzjB!hzxcM;2!06V+mxy+HzT@hN&6d)_3R5}MOGGXkndc!V%yxe
zGTBcw*>{FcOSg8Nc*pucz;w~_jMM6;`P+>iyp5Fa3p_G2vfFvjR7YopdGDRF7=PdP
zS?26C#YyRy=Wp+bZ3*jyBNuWMum`>uP48;Z3x0T0@nQcB|A!t=pKP1UlO~pC=Rac?
zpY6Z8FTvCN4D~iU_V)+d$;7Fo<Se&amip4>iE?Nf$M)uej8~%7H`Gmg65H==JH6&`
za?8%?w;zXh{$feK8KC&B^ISQLfZeylZzD9LF7(a+l{)9F;%^)ILpK*5Vw>am@L9UZ
zN#VHYTkM*TYr`KrP+SyJ^=jH7^EXcq@48Z`ylNTKoNMy;susp9d&8`Be~Gcg?Hig)
zcc;sqyjFT>^+oyDoMtOmZOSwY3A=Nf!OQNv-HBALEi6xN|FkJOzr}v4VVrU1P6t1q
z_YAWWO2W)GcWr$<@vUm2{I}<9-sjF<$zH9xviX(K9_53|?_NlyGJJTxk-v#e=j6)|
zH7tQu#+}b}=HGJ;brDF<(q3(RdPicH$~7y-W$Pv_@yq`$lzq|3PoN;;hAx|mPl(av
z3sWy1tvPfkV|m?-W3RS^%#q;qn`YV_<$RBWdyOa8sr6MWnPjX^zd9AY)nfJR33lEI
zXKU?r6bq_i<{$BJUiSCx53U5JE!h`dw8_RKZl3$)$*ET#pE9Mr$tby#B7LxM`dl9u
z5%!=vALZ^R?tA*VggI-&l*$%SjTKX0JQWP?GFr8~_IKz+L91X-wtt6@IGx}1hFxl6
zjdsMeMRT2JYricHTCwQNv)!`SpG>rz98{lP;XYfpbHfCalF#{dY+G3;uoQ}D`QLec
zuIb0hQ-zH3_xtWn-pw}ieb(<*&!hdTdm`?fPVqf&A{V_S*tx>oI>k?`JJJ2R@qY~^
zWBGXtwF*S?zxeegbhNLOH1&L*#V9rNeLMFBt@&wb|2H@_>R<iCY$auxcTsL{wr8)P
z+K!oDe7Lu*I3XA>{#i%$*S5`G0;{(Q=eTkytn)ur-oK&v;f-_GHh8@Mbz|b$9p_H1
z_*dMz_wmkqCpP<Bk5EuN&{yz=*I6NB{r1>UomlJt`RiBRi=5T6-aBP#*$Gik21k{W
zZ%_4?Y?9xt@IdQX9^0v;Wq!MUw0+toJ@HW5(+AmmS1^4Ker34l<pt%eD~U>0iR%8Q
zIrg?9Lif*d{+eDn=c_8)<h_o&EmBrBSgp<ZSHi74L1kBM{S(D+>!KdJ1Ql@F<-6Y9
z?VO&!IX{lq_vm${3)9vGbGE<P{z$Ao@Biuj|GOvLYiM6|Y1W(FF8zx(JpNaC_W0KA
zKh6IBVPCE>UF);fx>*9k$97-yvG3b8?W<RPhHGb|l>LFU{R-|^&i$E_eQMo4E}>Js
zDXq0%8WI>qZTGF$6~4Sfj$LVXu<FC)L)RU4efV>`U`tYn*{hyKH3bHep=Ba-{F2N(
z`{L~V9n2ZZL_~F1H#>gzI{K@7<D3h#jomHVu4ObbyVxeaE^;n?U6kh2&mL+s@2bY~
zC+D5E$JFNN`rVf*`($|h?HnDx5dGPCr>j<9&SFZdmpl{S<#fNUYeLAy<tjVlFPgpG
z^!|d)!9RL3lm0y_H2cqQw$S4F#V6|bR{U+b7IE;^{CVy*&jj=@eqOTR?!Jn`BQ<{>
ze-7GlVbPz5KezKUpE}fYDY!siYK`(Xfj1nz+gaKUHkMvJCF|IucE7km_S)n33O53C
zJQu9?+O_rJ#C2IMY|r&_*600;-Fn{Z#)FJiy%S_*1Cl2<C~p_~R$e6bc*DH=AI{Y!
z%4Gb%>lxFd7Vcrqb$92%84IPo1b0f51r)Tc_Z4mZ`lm%PRozGX`O^DhOcRg%-Zyc%
zm*3hqd2Y^A{pHj{Uht?^TONHM=sBtCb4=&VjPjBzuYazTRa5ye|Mm0dJRP<XR<W<^
zWKJ)AQfl|F=G5KGetR>^%`LSyU3f58QOF_XaqjJ|a~66W4V5bQbF<Ft+*06>>38OT
zyNF96a%q<PqRH<c?~Z8;cwwCo>3C*B`E<i$Z8O*tJ-+YLVENMS<?WYgxLfndmvsqq
z4{oiGvN`gO@on{`;P*KPWQtms-2B5BxX`4;SMdF^+kw(r4duOlfd?h7Pc&On8+@7X
z>7!piKQ8N#*7FgbTrFa=YL)Yqm%Lu`!fc%1ZpWVZc;<YisgtXgb*L&&uY}*mmd-6x
zRi<kFZo7Mx)xn)Jyk-YmRYK&;z%@N8veVzldI|9^F}XWmePe1pw?Ws|h2HDW?rjOP
zdHwuI@j`=mVK?ImVH2!{mM)WAwYhI&&XuY=i+r9NfBu}fe979=|MOKiZb?NRtxVYT
za#Qio`I+*Es*>7f+}_Qlzq?B#JUZ~5iC2JmVSel(=}@J829f2<g3kP@nfKk#-0Mc)
zDY2d6p&Lv3Cr(|)yyL^vy^G_^5A8c??|<|D+Cn!^&FK>tPGBp$=+ydGHplDvb!D}C
zb5*OG_k5W$_sQbz{mLBND;eG-{N~xIe08Tt;R+?wEoY{@%DsQDD?Rq<HMfN~pKRKY
z<7)aXIRD1-!=Y1+-@Tbt+AV(X=Xb`}lY-ty+V2;!ep(iHs%N)%$n~k4p6}S5F>k6`
z?~YUV%on*un#>6`Qk}ZtI%mm~tGk#*TV*At2VMwB+QM{>?f0I;PZzFxb6e@pnk2*3
z(=O?RicC4Xe|M0#c+Hi#CjCn_caL3N9n$~k*x%&x5OHspji>MJwBG$BRC?`)G#mSB
z4*A2fhW#HBLSOD&HlaD|$Hlot<-ZIzJd54u7`Nik(jfl3y34-3JCak$<Plck*<XA4
z`DKmOL4Rz%nyovKyFf$n)8txn_0MYm{=EKO^1j>CIA{K%7ymb!=bXt`_3f{{f3(a0
z&#T<<1j}RlyvmfS4y&5Ql`T1vxBA-eFX!#d_w;NjPdF7?yoB#jdE)*l=Wgw5`M$l<
ze@Xd<ef^ua819Qa(5UAbot6{gV3hLyv4`aLF1L)x(4Aa)+5)bvt2auX^ESTRnzn{r
zeUe)Bj7u?f61UC@=5wv_zTCV>F~5sPqHE4CnVOSVn!cP=pL<4YodUbP$$|V?4|75p
z7F~DI3jSReIAcK*litG2XxC~by_CJj$^!Mi@%=k|UVf_Hu@a|Q(RbS)FWjXeZr%C%
zQSZB-$EJm>TXnp>TI}<>gEx*J5Kq~1p8xlveeI_D^QO8SI(71+op6Mvl%n^`g?A2J
zIrUOe{dQYuL!sC`%_DPi_HCPXe#YLj7T?~rcI2IXUReM4kK*-`#ecc|t0(^rnvwZ?
zVo3wv2Bl@*-DkVitBNjO4J>LCoO9!Tk9Ow!+gwh<9RIBCXT4Pjwwb@n%XR6cv!6}1
zTGfuo-@SCw#$PSw{c3^B6SsH>@6G?}=dyxp!KJUCLo{xjd!*R$^!a^{%0R(b_h`Mo
zbG%<v-UMacwU?VXxk~@_uGc*+SA8Elv<lU*9Y4?i_T!D#>o0!R%wEW3r^>i6TmSQ-
z$S1|CS|$kb&0M&F_iVA>kGtRhek`<{d-whmr>$2H{o)ho(7M7QB5W#E+0FL-+wqM@
z7TbP^tj_smc2n%z$8{nfdC#v>fAXyGb?A$>awo~~(|&p`$ELk`&m9%j@^8)aN5Tsa
z{F~M}HF@G87oRh6es>+8DewIGw8`O{!IHwiyMJU%_R70?-yqT=^5Q1dS6{C4%?ZD@
zON{xx;DU9W3}QlCR#}93uB+S5@+fsx!Yv8md)czpe{S4gru;Pb)_&_Rb1$B>^ZIR`
zx-;n094VU>tG<3|+2NR`d9BKo!MgcjaM{O<Q2u|a=2I74<^3AvFA&gl@9oJo`(+KS
zRwmjeE^pZLqw+%A)vhy1Gowy7f8MinorrE3)9knZzU*%L61y_Y<gQV>-sRwgpisk_
z_f=lSKWbM!-Ci4a^h;Hn`MWtg@Aw`Pnl-D4N&OtxGgsD=e7}orRRo*mc_f2xF)r}`
zefi4H7CU{VC2T(CA}v|`e={@L&u=g<Idj=>uHnZCYTLq;gO>gIp}T)Yr|#z?FAPp8
z-Fa~8l7hqQi|0yJ8}jTf%zsjCo9>@j>8Ib>mB9A1pgQL8J&}SLDM1~#Vw7$lsi>?q
zitSE$$)>t&$E#<WpX&UDE{4o_XAy7j`mHWBp|!SDy>WSHe~6dk4*qnH!wt(qgEfT`
zttKht)j4fddeC+#@0fjZ-S+HwzZ333N($D`KYzM<HE{b2UP0dE?H%7@nNELP{X3SY
zG*XDu=j(&`##EM^+@=>14YPLh|GD=uD4((V^-=M>*weYIJFfY$uznMbl<QrZrIdb4
zeAWZG>bxJi$JfY;iWMsEKgeXMdd{Rq^Vd73e%VP2UjAS>w~4)X(zn}XKCL@L!V;|+
zwmptE2r)G@6||b2YJDVlg_`uovx#^2?0cv6fBU0y&2`tN*&lhbbF=-Um#gjXB~-3&
z<NACt$Wi{)GTEKxXIU?}o&Bl7`}y~)qq`rx?(>$KX)QWSZvBh$cw^QxJiKdOK7XpW
zTz1{+PoLjud&(Nty!f(U&x2#{4~ay)^PhL{>&E+g1^3BqnfTawW5nj=hj^bpo1|=d
zx%PKV?wkvn&tGkAIrltl*Rw8FUey_j3wT?$DCfUvE>>KvReY1_;?aK`e>be3DPn!}
znA(T>-rH|u1Sciev$z$$RVkYkVLk7;N94B2%AY&=4EiSJZ@)h;Tgdv}_P@Kj=GwN&
zdz=kvZCJPQd||(?+r8U5`@VhKTy$Ukq5IdSxk)U4(!MO;qg;E_d4FtSA;164RVfFb
z-zz_sBer}+5|hQ37jxhLiQ;-w80p|$alA`x#o_BWrkYHC!;>!@Q~0t%?|xsc*Nud$
z`Qcri%6m2)5sjU)Zh39!`jdWJI<@D_+po^pqU2?JY0<+V<6W9u(=s|&zv^4H<qh*&
z)puvNE&jVbZPBEqVymz8%Im4D*5X|e^8UMcf2gQ>=%YPet;V0e+TXhW?~!xi!OP#b
z{oTMnNx}F{{yp9M)?)52IE^FE?TBB&bo;FLbdBXF(qHM^b?>?U`(2acdqJfYaSj1X
zEIv9Fa3q<p7e3GV=7gy3%kJ9x$q`-Ri>^G9W_}pZn<`x7He=m;+ZZ7WrMdm3e%ne~
z=VqUXw6B`&C-b&4_qnlk?=7EXv3s{(rz+IX%G{Q8o3SE6P(Wb)S@%5Q&(6<S9;#}7
zK7KbZQ0K?A{<67zGuE~nc?+Mbth~NtUEVSyZv7j7YS_zXc<D`Vm(f_m;hp03IY)59
zAAui-`J`w2b;{pjynJzrQEo>6S`Vi3=Gk4$9TyI?i*Zf47A?X1h)uiOJj7zx=Km_J
zZdpqlST6tFy<xe<(XM#{OK-hXe>&~oE9We(dw2I2AMlVl%)j}~49BN}M#@j#@2)7d
zXq|W3AUJKwq#qyN-{ar^^@G{N&2Qey%<r+~InDP{sa5Kf&J+m~#)wK8sTW5S_t?I2
zyE66BpMM9{10KIPSjk@a+rd`A;Kx$q2JHpXpWh2D*d^cEn-s?It5|71PY~;$-s3+G
zRLy==-qM)%|7D?sde+GcpEDi3xzD}zee#-Fma%<uQ_B<<bMyTQiDq8T8`+N7eA!&e
zE+Th=?Z>W))w32kCM-R$=jOo!y*F0=i|p<GZC8+Y@m%O3Rkx7G%#6FQgj>H@Z}q^%
zJO72~oxkO#E0q;<ROV*4eDu~;TwT59uiUyH(I37yn_X)^)>BfH)UxxTi@Nlj<Hz_P
z$>v_&Ao#3O_$_n&okupM#wi6o&LNR)r!L(VdAh@X?Ww@uIesT<i^Q&Y9k7jjd$e(a
zM&y)lZCl-v_}N-!AGpK#@9%P#1>GCh&G5eAz#7eEU79hmVC9DADXN^WERT22Q{3l%
zb7|n6ZEy2Gw%bW$_8HV&YFM>NQ+2abt?H_PqWj(w!F5|+nEh(^o_z1RjhxICCEFj5
z1m0V3n)KdVT4l{*Z@J^&`QA->A^Rv{+kRcUSErA3E3<BsZ=2_RVUpC-?`t35^AoN7
z_@Qfs&DPl;x<%~ou-6sc;IB?OW5i%?{N@VRR*(Nvgf1-=YP+K~H~i05>xFxDj=wg!
z`@Q=u)5MI88;@*Xpg+0);of}B`M-muuiV@=L1h0umP?oG-UXeti_0^wtLvA1Dtu@0
zy_a*RKlI^RsrTJ?_5ABiuj<;3nySKIF~{=9xEj>%xil|0CG@N=?+ja;DJ%Hq>Fi3I
ztub+*^_9;xg&)6Jmo7E=TKi7=_ra+>GT*CJX1TYlxY_t4?^JM2+=})OuB*~*mv>#Q
z4*&S`yXDFETu=6=zWaaW4|ni#LD}Owdhatj%=@jmw=MT8LkgF_xAwwC0&NU!s^@1G
zR_wdEsl}->da84`Yw!lM)x00r+Y7p#Htpb=B%1M-tzLbN>Vs!T_`4bsRa_sK-G3G{
zSF8H-(JA#d)tO>TW)$4(-%>8S^^tt->FWy<URrDk%yGYdMm(VFL*RvtGdOou{@fK3
zp`-1#r!?qMVF|~!m9`V*I6U>=JQ9xG#Q!LJnS5$id)-+P%N}R7qgvV9#CFPU3)=X`
z?Sfn33AsgwmcD8E@xt9ydC}3szii~1Yx@_kb7lYb!q6n7?`y@M@Ke|B`v@IKZ_Q{q
zXd7*)@%d{IPuS+=u0k=}_`^9P6EnLf&6??ZHk5z2inVX(YOki*>)XEU*33+tQ&{rx
z_rC&@xan1YE?qx=zn1sZjsBPe))ROlcdT>an-){kxT)@6=Xve_pM>u>PO*{sI(PTk
zhTlcm1+RaYhZr!#RQ7&O+{k+G784&g?_JK_r;JnIZJoK`_M)O&*#^o-jOyOJG=C6U
z67uRpEZ5|@UlgYcT6G;cTy}-?x#X6W@8<|qHug^1`%obzWc8!K8+I#9W+hJ7TYP){
z_hT_lwGYbPuCsXid|St12CpeCEgZoo&Ys&a{dL8~?R9Q*Sgy@j`uri=m$J{dzkjlR
zy`-|3GoSg~bj_uA*4y0;3ocvXU2R*UeD%8SkH#GdRUva?7iP7JH}SOHe!y#8WpU@?
z4i5*@S)U}P>MlHe@1ADOrE{hwF4i2{PdvZ*@g0?(FRQj=;`#r#{yU_38s|CjWp(Xq
z-v4Ol-x$71ABW0$>fdr7Ez}N7RS*3;Ga+ELsQ-zwN%HbS!G{d$_PJe&lUb(1v|ZkP
zS4~T8)27mLHIcQR^Z&$%OniPpR%oZ~tp8hoTZVSd?(C9Fc<v-^vs~-vlRP%9S99l9
zG~AWCv!QXZ!REUr`|lrDy%)6ft+jIb`!!Rm)V~>>J-_h8txdaDX3fr<FZppvbv8>i
zXKQQb|E04(a;eCEU+y5II`in6U@qCB{~NAr{8N7)y{pE)@C(a&<7daDI<2l<%Q}CY
z(a`LA<NWXP%Zsl3G5E-x5_|N3_?rM;vFj&;zP|e+rMTl}OhDVSbF)v)+~)RtIlGjI
z(~O+wZ#ge{Jt?1kI@&;aR&?ykhzqJeZV1}Q1YWf8Kl_aH`12Q2>V)DioQ)E?y7Qaw
zmmQ}iQtLNY*Uq{bw{F#{`$yIP<+K04-R^i}(|iR_!HJXX&qPn(yX%tpt2-}*bHtWS
z6W%-R^%MhUv-NexH)cOEPCB06nZ^)q5#L#xXZ)-{h;{bfTQ4t37%z`!iEcf!^W@Df
z&6!WX&pj``c*>R;%^Z?5B9o3evU1N{T>tQFjrtOXw|kfkZ=`BW$jfY>V|pX$KvA6l
z_x^43_xGN<c;mW_SBf9ckF{RO9P@X%J`OAIW4pv_CO(BzNTcAe<Nc)9cfKaO@3ok*
zs*giBC%$+V=WDI?{|~OWvHyH;L9*1@(CEtt7V938(~CacBews2-M(3t2b**Y`R=;z
zKeg}TB2K;&Maug%R-EveremS>inn@x>`bFT-_}_zZ&HpoRc%UHwC9xQzN2pyzV5Jl
z`~TAX7ppCF&&!<D3F<gnU+PoiSseV$%>T%v&S)-GE2X)XcF&UI?kag6o~!ux`K2oc
z&FmLfXl;snwq2>rJK6u^t{G*lZp9JqhyP@&@89ddyiF>^Afz=*E_Y(U_mn%5o%0?X
z&5L(5{rvA<kNd04SaXR6jSFA;e1G@E1<cx`{5EZV-QT+}Cg0ojC4pD!JpWu}w$k$p
zZ6?(*XLkR1>-uyXyR_okd7Yh(HOtg$eV$C*&}{t4T4D3eeZAY7bM{EH?Eaqof2VzA
z!J)NgEmsfkZ3=w4x`@}Hq%(E)fk;mNIcqc;cI2+h<C006*Btt8$2|9P<MYQaty7&4
zdfKukV!}`1ySvW3Ush^=GQvxG`s{ky?iO*$#Y#%zf24Pa_}{31SF@uqz;1%TtY55?
zcFi^Qn80~4ymZQ?-g#3`25h=hnR8!cN7~FUjURux^uJr<xyD5%x3WR%#x$MVZNX7m
z%+3dw%=57ly{2W)FS|9{#N~golG<_GH?Q=b_9UDOs=uf5^}x@cFP<(icqF~^q_v~%
zydURmof9XER7~BgEI8?po3KRh&a3)g?QQRI?YFzN{LANH=KpG|#h!(>rPNnU+OgD2
zP`dotVP=&xtDMredp^4GF|@G6^T8pNw@+L4$v+DG5HqW1@3nuua;txDcAgUI<b5L~
z{@K~(YSk_QvyL9VWf*OB`{}u7_j$q=On&~*-6w3Fq914R-t^WDH+#zh4)6c0UhO~g
z|F<0F(3^{Ycur!C4KbNMHRia?{Q0^`YCDz6v>w;p`&N-B#`Wmdx%+G1OkCEGZ*l5p
z>3WG~-~E4|MV+^Fnw2-3L)vK8v?-R0S5F8yb6I_g_Ln^~3l&x^v$At%thrzs_;p27
z<gq2YlpKX7MA&3}EX=;3E}L0&KSuC{DSQ1_CW(pK++PyQKZnR%-=eQ_=8WUL2IIah
zhj(S~d-r{!@>Ml{rOLOPSCy}x<^Sgx&)JnvH`}n*e^3|ve3#4m>yG0+Ph~ImoG)6|
zceiZC?>wR2y}injf7Bh9zv;=Uw>7@+#5whe?%JDCNz3;BwaWUm)~95T0+;4uv9f@W
zH%|_2+`gju_uFq@bC1`Z%e=aUY0v7<vpBD<UUl(eQpNJ8CzpH-GYcu(@hMx$+GDzx
zZE8{9`SYx-RUVqNg;hT_9pky?t1UP+-K1o3WtPgU=$(seHkjFeGvI&y*k$=qTQwy|
ztGq40*G<`S?|sep$_C}?c2i|hB{TNE3E?{V*}VZG$?sk2zS<pKq$D6Fsnoste_v;|
zrtk|-W`DIeuco;OAGlGx|7QKm^nJ`Gftx-5bKHnj4f`4T?K#8N)SD5T*0LS_pgF&K
z`Yb0?TkpxKQ-wZhy<eBnUhAD;e!o(0YS+Jo-;U4xclG)~(SU9DzpC98_$I8eUzFGN
z!$+-iNB%K$mbxU~7yZ9X_`9A`%<Yu+X2n>w6^^UlvU_Ch(hYZ+*Z1*IOp^72BZ1RI
zSKr#f$Yi6mAVcq;_VS%vchVT<U9{2ZPW-?1_s1+D_LsHMEnUe+ggJ{?G@V|Vuh7_k
z%u{R4#XOD^P0|MY1m}o+RJD&6p10NRUb|_uKj$4~rlP&;e+h2>bR;@fDfZ~D8RsK6
zE#QB<=ljg-K}lEk-e!zzs(UkG_PTNl;UB-hca_h((=+SqKdv)ME*JN4UHAHxWp$-O
z;e_!#v1Mg5T2tz+r|fTfC9?8JX+X*3uB-lsPZ#_y+EB76<JG!Jow+N$zu5>ap1d+?
z{qf7QR^QY$6gpD!nrG|!=O3(}><YQ7^wX|(Mz)TDY3mQge{uPn^>3Dj-0|nBe=X0F
z&z$i_a*O|!**;5)pYxs!6X~@1<)O94|8erSBf|3hJ6J9iu-)ZinZH$J`@Q+j`SZp1
z7@fXct9UlactL`K@TUE9k5z3xuuwBp!;p3U?#Bs#6@m)Azwa;?|9#W%wc)!AtM~rD
z#b@k#bA+9VZ|&NOwt2bB%kqwA+tz2bpOAgoR}p*QU2<ibUHn<A?vlx$mIlbRFFA7i
zOn^vr`>eZFb~7(CzA$>kccad!;z0gwS+VCj^BR>}o0fRbbNaU3-?GX?La6(=<|BDd
zsi~H7nyFqVuI|!&b!O9)R6)bmmqn&#`C0kdzDi&6dbD&znME5e6wX=Zd(`d$(*{39
zQCailhob)q)w$g-JSS0Au;yvr_h+T%0)H+oo1m~%e!t)5%6U_t9#>q-!SJW(kWHM}
zi&uQsPbwCs{q_@2Pv5v-aj}-e-sOCC$G*7T)2|b&t2xeCw_CBsI#V%_i}lX#lGdME
zJ)hgYy=?1Av%bf%(fN$<sTtQlF<5cjZ}=wVH0y&_eJ6L#XF;W>w+!tCcCdw<Z<-_G
zexLuy&iXc{gcs+e^;RzLKcM{FXUqN*=c5gT<yt4P+n3~CWtucy>#^Xs_;~Y0_cmxU
z%>8aqTA(B(d`GQ#t)hcfRLHL`y{vZuH|GYNI^DDE$L%eDMFp6*>{#=YHK6B0$F&o>
zv+S$Z34L=~X<9bXCBv}#UE85&@2w>DKb)(Ou<>}Ic)^Qxa!48H@=bdqWVbiBhRnJ1
zWm5Xj%983u?hL#S3MTIrI<!4Z>W%l-pM?j`&cAi3@r-PkLbD#{-`w<~CH<@TP8<&H
zT>Wri<&ydC+$NFV6q(qr@8X-jC(>?*d3WxD48@%7)?Bg+<9k*Xly)WWKgggysjs|^
zPy4o0{N+twrsb~P_19d|`Ec8$7?mY=&dq#g@w4{(<%bGSRaMj$?aEhT@c5tQzR>)R
zPxps=7P1;EDyls;e$f{>V=l`rbp5c`@%NA0>kp|%n72%nR#~h3mv`M{InE#FYlMn4
zxWyjihZ(PHk`0*SUR7(9>wQ$~lex_$!8yzMQk}oP&zpDPPC?A!`iehM7y7=Ju-$8M
zW^zBg;rK_pkGCIoMlNjnwO6(7cJD-$Q#~SF<$9g>yH4M_Vy-wbX#LwMh7lPnAN!Yd
zTTec~t(Sc=X3F>a{@d?Ur|LXmSL<%>{mb_B-22~?@32njIkf8AKfWCg)}6k?x@61L
zjP;XN@0Snl*zPoKmrK(}-tr=Dh0c|xe7j%my#K}b-owjxmWKNO*9dpmW%(zoqCq)T
zj)6U6TfnwGLA{GsJ0$(8oH9rE^5xKP##>8yPniaVKCBIR@FJp}b>F`qlc)cEmQbwx
z@}IeZ@$Y$@A!|!?CnhR#o_B9JmE=BQ?xX1Q;(GR}84V}4=!J`{uFHrGs+7AByZGEo
zFTJ$itYy(xCF9H@Ll*wsUGTG4hhx{h3k5f>_pMr_7qqJG@#)t}Z<q5IZLpkEd+h6m
zM?&)-pKtorZfyL<{OV<{C?<Oyt_#myc20D2C^#zMBeV8T+fhfgoBq;<XU#cp<}9DJ
z((As!ytC5IZfaaP-EZ#RviPNxuWe(ve3g^Rw&02&8<V*?XU{yZ|Jn4jbZT9O)HzO{
z&J$O{r)RE}jAu27n{({Q?ImxzXPUh2NqiO*c;{5p;WO=q6OQx!l_}FxnZG+r_r#8y
zd<+ZQ{>JLB3AUeVzPHlZ?L2S!e6KfAVbd}%dcM7vWNLJB^68B;j%<5>FZ!3t+=w3=
z|IXWXdEau4gQ@j-Z<eol5M*eV((ZBj=WgXj&DAF^pWCJSdY#6_w-@CndG9lefB1Ft
z{0)9-sex-ByZpZM^|bnzOH<`8eR$JQe<E&4U%TwSOY;uCKk6d$ufteDO{-_owq2+0
zJ*?T6SU+#t)z>G_m1_sBO5(cLCHQTD^YgtOT+e2;eL3{ldDp6{IhxWrh7Xsl4QRh*
zzG=skigkOR%5C;4KkKF2xc}tlD&f;v63?e<Xk30}>!R|wdTw=%&EdBTM6zq*D-@F&
zXI?(~vDtimb<Va7lN*2Sru~Sx_kUr>zm(7wR;%*ZSNQ+^vFLrxR0|u`ReNhsF<meA
zQC0I#jGb@W?5>pkMY5B7tI-~()cNNgsOi4*x8!+vG0|Fbe}rDNl<-602_7%zKXqDq
z?&9ZyhDzq9u2;NY))c0#|Dd>_|EPB9@2%|f^;S#O_2fK%terFUPsPoNx>jLX7v*ZY
zj?Y|NU9<XX%HA{QH`HdC-rwfe68J54(I@%52cC>8W>vo4<nFg&^^aHEe&{&LS-3`5
zZChr%;jh@y*qmn~8|L1~|7_Q5{`;F-{(0`s*V1Wms&gCndc8}W%k}m~X!Y!yk_&bn
zO|v=v?dG9n?-tL{PC1symaulVw2Q7OgLlQF{HaF^IYaWEe^z)rdpZlN*S(}KD<d9k
zo4owAKkKg@$2Ueh?db70tvD=oJi{-QargUeI|UoPKd--Cr*h_k<Nd;=*WNjs{<xmL
zJ?zk_y8)@`^)|bW_zp29)!Q`|`h+SST3m7YS<0(O$HPpT_jn__{qj~U>VD90Ml7^8
zZE^bfFUv}*3nd#J_C1<?EwJ$Mx=k-WMZdJ}TO{Q&>C2n7Q>4_zV;Ht^YcWg<FFR5h
z`yfa){LWpTsvNcOJR!volf+VNy&R7$JJ9#|d3E`p8PD(E|0%`Okn7UtVo>e%<xk>@
z=C7ZBv|6nAXRx@1%|%~`Y3<Ib{STO1y}BQ1?+@R|bWUDv!Ru488T<DB6h2b2z~}Y~
zLwna~h2KX17cRFnd??&s?qXiH%gAs}Q{(nK2Upk|vibQ07Yc2B<-g+Lhs~?23O7#f
zd9>3xm1B;=J{ivU_a0R;1QzxyZwlS?`~CcHJN7F085K=(Ik_Xxv10B`e-ruc#bPlG
zhyR8Bliv31#S!Z)<;$!+bCs`!|K9#1_U=KMmghGd`_6Gc%Xz_Isx0Rmnb7}i<rEt}
zKZgHBla`l0W>&ga9BuG0sCcVP;DgGb-1(6^ypEj{VZZxv_lK)jIHd1NK4}$U_GEMq
zxZFCUsLx16wNJG<v2*>^C;X=FpVUq;?+-Iv+_O9Q<DRk-_nZ@rHMN&-l}7q536#uV
z6T|%}*OEthp5^q)ifLZjv-KXknp}>I`o8VTGUK=pZ?hI{X<cnFYvb9DZgb&3x_WQ&
zd!_1Xnr25FE-7PJGGG4U+*tiKF3-tvtrCVQH+J^uJWVlsKJl&9CBf38e1@&XlS*dz
z-l|mEvuO6W=bjGXOa2IcdH#++CSmi7xePPUEZ8VgH-9ou=%(`fAJ{c30-wrd-&Rh4
zdCqyc{re*2{7#8K`<66>{S8_mEopPp)ab9vCLUfp`}2y7OLxU(MP%LmR<!h^o`Y4R
z{PSOW)?vXtyr1R>N6gdy_Cor^`|tlBztfLU)0y)tNMjajM)RH{c1O!xf){1|3VKx0
zrOq@-!t{6Nhbouv_a|-L-!IG6E6n(Hs%6B47e{nt59Zkx6f^`(KgBCE-TtAS*Q>Y>
zT&g<9K5R%-PZB7sJi@m~WPZ)rh~I1iduEFHy_FZuK3O+u(Uf<GBg7j&ht;0GW+3pd
zQ=_0Wn)y_o%jx8;d)Mwwt<~!)`uQWwvb<#SF1~!O=e>1Lq9!Kh->dHQeE;UzB(s3h
zf)77MmaB<LJKlS{SLE%zNna1Op4jvK-pmUs4;1q!&ABt_{+lzWdpQDRHJd%YddIaM
zTF*K4&K|4K8)qIhC}hkH=ZScoz2kzKM4$E<>u-lrpDvPH`$hP>i`Svjgk!ADpHz0&
zT#;M9r{Ycdv(|QxZ&hl&2cjn|zOlIGcL3)y&SO(wG}j(9+-#ok_sxS%noq1ZzU;l7
z{ws^|`5qya)7fHrKIfBu|Bf?TSICn6xRPUuK<2jBK>|NI`TwnB(#^Zb{a=5&|MIX?
z=bI%uY$wRHYZR6G&araeD=zwk@$KS0PdBZZ9Xvr`?&HffSCsx;<Ns6qTiy8QoXH$<
z`!z*1KWg51C1sa?KdR{OqM!-cT8xJd{>r;y{kd8tf7Npf*XP>83OYw*&!6Yn^zU2w
z)#dfSpYE^w`MUn%zCVBKe+TXR^LP5Mr~7Lv+5b)d|L<x2?@#;fPv777|F85vwTSs*
zMs3ZS9*!%2{hK@YYv%9l-|_#J*8O~6|8si%=cnucFaP!Q>zDk0n@`o;<5<l9)9(zQ
z1JiomxV~Rc^Z$L*|No};+y4*e_y0Lt|MS!O|IhSawdq~dNbB1A`uF_5=l=Eo)A2ds
zaNwTlgPp(j|GfM6^Z8X_!apwj`Ix?c`~PJ7-7Y=eHwC{hxc}#s#{XZ(<6FP{?Ol56
z!oL4k-@pBTW4+f=@t|YIiU)q*RoEV1_uX3UR-8`wsuRV|Qs2{mzpvjO+_NEK`{_MP
zPRu#*xc^&oUHR1d|Ih8MmqZ3W_uv1^@PGf`7Xg0+br@bI*KPUlZ0|MIFyP|n%j@el
z|34|wt^NM(wxjmm=j!|})id1var4u2d#%co-Q3?E_t$Oye{=VwZ1$cP@~nlduOH7=
zegEi1`QP~eU(%m?>^;2ikIA9?H~$~6`?gBy&VgRp`(HnAexo*DzPEmY@J-<jf=4t@
z6mn(6G49yY{k}L|!R+7u|L;!M|M*nDN%8N~T#vV>|1aWQS-W5Muc%JklpFg@m;O0Y
z5v{QAGJpN&_y5jL-~TVX{`>zw^8a7H|95x)&*}9){r|uHed&z6U4zx?hAaK@5AOfJ
zTrvIq^t0vbKmFbG^Z)1BHT4xW-?i?~{(rJ&>U;ks@9#gg{%k+9{O7+Jzu(2~Gygxi
za{7Dz^Y5phE`N4^kM|FkeCsLfU)G+~Uw=~m+h=*cSMSYYxRxe_PSg38e)M1G&)s4F
zeoVf0b?cXl`zq7x|KD7<yuV&!J;#UKyANF28!dKeT)4UJ|6}{#xBve*UwruA>-xaI
zv+DoPs#<s7zwiF${~tExixq!d{doEGw@r^*+a7G+{!93C`Px4p)z|Ky{`Y+S&zk1{
zi{5{zJzn=m?*CWcDWCpvw=+!dP_ta`Ysr=WcmBS*pRfP#tp6GQ|N8X$(~I9v`uFzX
zx7+RQ^8d~*`S)d_&YAz)J^%LaKOQf$L!956x$q=UxT8p+!vSt1`{Pf3)g7>1I{DM2
zzXh!)nlwBD=EXPEI`-c@?6>K$X;<wY@A>*Y0>KB*+)Y(?t6lW-`KrxF48lKz>rHLm
zx~ORH;d`Cxr+uyzOpreAvuI)68;!n@+bazu68}F<RX%ZV`3c5bKR@L;eJ~7I@GbP4
zb>fxkZ+V@H!D7A>d*x<wDxDWeR5Uip)z?1lVD%||(wC!sRkgm$mS{dwIP-f;fYv*f
z8Rw+szds8)plWUIJh3^UeqO|eTLI3tuKT{#)W17^d5-FplEe4*<*1*2cyDn?SkxAN
zCCx3Vb>>{1rA&WZy1sd@4|3jGz>%R<v?jkO*`2}e=BLxMpL{L#G(2!OU8(!tYe%&n
zSy$cD`U<Bvi7hRNEpT0`+U)+n<KGJ5D=W{2P72y?GvUUGd+u93W=+ZQ6wJT*@bz|&
zb`$l7-S3W0dZ{{l<%j7$H}CJgT3RqEd*PedXS-(IbX{`rW{dU<mvbxh?j$ZhYMU$X
zvi$PBlM_$;D`P6I_Wt$xuIjC+vSBISqB$Km#a@QJQGIbNM9(KtD9tL&$5~~L<g1;|
z-@Zr2I=_9!=u|Q>y+>}vy0uxGw=di9J~GNb;?|8{1$lMt*I1H&s@*KK-p+D)*^+z#
z6{)(_zs0KiHmY>w#Cv^cnX91C-EmPSP)^TvzS>dYHz%r&zIL)${W?J0XKzaj+paG5
zuOT-BJ^5l1n(Z0)1esTMO1@X|_~Lg*;;EmF@fnuP-_vF;^7dzCwP}c7IaTVQIzt2Z
zw>dvTC&t$rYP{XUcVvo??MJ@fQ9>DuWDk`dH4=%A*d3bNzA^3S=l4hMT-^6WYjdrH
z#d3GXbLZrqv1xz3!Xn;g8>L>mFyFiK6W13dqrC;oH>^5wx4Kkssq6Z)3GdFHIDfDA
zUdGh9J^LQk=Iolysr|d9;d{$o2|;D+)km0Qok}NW9^jMzxKiG_Yvny{uL~2r{%r0r
z+QFTCbMA=+e}7FoZ{4=RK0NL1pS#<Sb-p_t_igXbKUwOx-Gh!WY+cH;?U!<O!vd8n
zWmC4jJ0Kig@X+If?=FKGiBdN*+m?Litq9+iEp^?|cx^}VPVR}3emwm@u5UTZq`73K
z%(G^R-=99`A4qoNz3X(Nr-Px}$9|vKf(aFO@3nhBUizJF_S)|^cDtW>^8KQspY`eW
z(W|@5TGq)3MI7_XP4+WknCFu+GyQhwE*ER#vOjy9&IEKsWP~MsQ7p~d*-&SxD3sN)
zO0j0k`}Ym~iuzhB6ia)%XXt#hZsNGbH0$>Ye}iBiV=1NXV3p#_Q&Yt@_n&2M^O9>X
zy3xu!Ly$jV@uW(NrtS_u)`l0?&TD;5Zi}rup|kU<)VEfFrnk*sHd-^UUTwzn(y7Hy
zJ*~x|O}_qJ|Kt@Wn=i)M)rJ3Qk^ELZ^+K0gT<@`)T-EiPci!ULe#R$rf%D$m#?9wm
zHlCZ))Z%cqW3Trw{pf}3T%I{8{_Bd{_p->+fw8ye&c0<A7R#u_YCcXn%IdlP+QXX+
z9ZP2%zdUKpl31IW+Lpgxr0NH3s}h|0aqaiF9jC5mU+*l?T%XjZ%Qm-5xJ=7++S?Nn
zZ85?-HypD)8hze$FT=O3>|N)p>~=m`vgg;m?I!C*!=L<Blw5u{aZzZwmecfY-gdF`
z=5Wb4?Qkdx$S;dsuWR7-R9XIOS(ngTmU)b815D};{i)HOY~@u^`fX?ObIC_@emTDi
zVQ-nbeNtFoXZO-fuh6`&VV4ekYTqlLI%n5|y~k7kUvra<z1z~A^{ztqQ*(BV|D<w8
zPJZUKmlq`^&)a{5KW)#o-N`;@C+V%2!*A@NIbAmDfX&(+dM<~Vx4)fI`#tbct!9vA
zL;6PNGp{G7YNTHeyDam(<7MXm()}JiDo<7<Ox~q(x$p7H84DLbidf#4eCD-_<kWQc
zs6Cqwf6h@c-7$fAo5R~Z4{y!y+QMnL`;BbH%Z{=Ho!o7!Kb$$gdG#x!{<+z6S3j@2
zel|b<Ls{?^o83=tiLKncp7GjI*{O4nyg9RIOS6CGZ>77N5AjKx_wh^4%?{u>>u~sx
zVaLyaGty-yQ6GCVpS^vk%eZNO*>mYT61;-FY&J#<<}v4;(K^sN<D7uYUAY7Pfd&_^
zrT(83IqCf!HnmL)lp{EnR4G)t+uAO<^Qk@X^)#!%*8*vEZ{F`n+2#N71k0p}&#WI7
zeE-x}T=bysZLQcNla0GKUsOEF{=R~H#an6d2j4c`moE7$B(wKP`o{ga^*t^=&5ln*
z!gfaYGwo8odQkgyR%Dz<P{px1%)Or*#l#tlQrug9GAp`0Tvd5zf`iTX&v8raQs0}G
z@QXERC^=7(tol4hAZNvG;YG_rj5iotoNJq%n9IIkgGTWDyN##J=i5JLTKoFc2i82X
zxS$6ckH0^)F8_f1A_d`HI%{Wazun7ndGGpnFMEzhJD*@!@KD5jpWCOq#Z^iyf=6WK
zwsIc2rC|N?#YF3Ae@icS)_$C-^-#Zh^R&HLy_#>gNUHBz7VGD;=89p{1nF;!TQl0s
z`)t;?%IY{gwsB0Gbe-{kOV$<PmPMcDdK_bIP5b)!PD>uo;q}4>!rKFWaVafnEu0V-
z{z$A~mXczW$CRkuk9eMQ&a2b^d8=tb>Z6}twGq}`VQp_5dNpo;{`@95GOJS2A!}nz
zdjGC{_rE@mj=$-#dwY|)>u&9WWjj3Ie^F}V{+$;6qI7P=9owZ*%XTc<UbZ>==dU&M
zr}RB7ur3Je*|6Vsb*7`&^y><n?|)a<UjL9!Tx75F!$0q~o?T-lzDF%G_s!8edTw$B
zg-5@#J+xq6eem(yS2u*ZUvlj_$^6?PeT(7Y%7DW@9O*az#rQDqOObcE{AKau#ZwAZ
zCZD*s%CBwz|KI28leZnzpPR?c_-JSI&1V6VUu_eJnAdr>O^N&YRB`6UsS<D2C9K=c
zb^Td;)c?N;`wkg&uRFz}@2qGX%B%b~$5^LUj@|u*uH%F<lgl>qv}gQVSYI*!-`p*)
z)R>GT+kVVqIsYh}ZLctBfYtn)s;oBeYmtYGB%g0H>O6Jg@U&m+qWFS@VkHl~xINE7
zVPlb~*N2VklaFzP8b>s4@19zIZ)QfxBKPQLGyj-sov;bHe)?YiksmI)CQD?R_wMms
zRlh}G){%8qFOHXQS#!SK(&@$NzLK;$k0mBId>A(>h0bZ6d%*Vev|5Gr(_Q~Es7*h6
z{;#Fx(}oA^-8@M-TGNA+9vaj|bk3|e;c_R$VNvPQbKia_{JVJM*_$JF-@3e*E&q0v
zC)OW7-@f93ZJg<}xypZbA9QS}epP;S`=!sD^M5XQWvf#vFQ-+pC4G;M>%>I$e=_;4
z*KbZbmleY9pi*kQsVeM4^3nSn)(hP!H#qOR!}`m{tkb)a`#7u>Z!EnUm+W<L)1ALH
z@|q4yDiW^W?cHhY-(z>a_(attolNOxoZs~}Kflq}7Sq3&ZP&>ku`A70L|GXwz4Kf;
z>8tEFHh~NKf3I8rHO29Q<FYlk|Lytl!hR{kiRm}?O){IV@k(g<`up0F#%dqe*WBHy
z<dv7kQ&Ds0?{lxYHUADgdwYGWz}ov_a}Pwc-@dhZfBd<VJD9>84u0SM{*UObxZ66B
zZQqNh@aS!{-D>`W^=@UmL9sH6%@MydGd}NlAiHhxh2oQD3F-UVUz``)E!6iV;n?<~
zOLeP{30OPco$GP<yE>~wp!U9<Jq|kO9^H4HY$D0#Ff-)hq2%?E?yLvi=stcrzm@s3
z%7>4!&!4LHIdOU!I35tHYTbF*Pq6Iomdy%JChzUBw*L{N^1|<i>n6#&mBGDBJ7se!
z{S{<R7^X=toqfeuMQKu8TkT=V$sH%kEf!lZFVhg5nONU^VEN&DJ?>lP@|-HIZ+Nux
z#iOF$*P(~czh8HIzoPc{jxvrt*Fusi!(T~1{@`~r<o-o5qs6sb%)PP<_m;+QJHAta
zbC%97lk-|nH}7Fwf3oZLJY}i*f>qNdUw(CW!b<i_IyH+09{ILRmz|b$El6kX<A95t
zv(L%(&f*BZYv7(XHDT(>=k;^{-ak>mCNI3)GwFrE_WG}VPFvZ-8<{5Q_pv@@V|yZT
z!`$y1hxP2cTV*->`v30SYdvp%K4(qV-(49e49nNujg;DPZ|m~k>G%1js>XOXc@|wg
z9q$_A>|@RG|3_v_!E*W7xtB}+3TM9JJ7qtq^#jYE#()iJ)eAJu=Pp0J*d_8++D*|t
zpKqSB{`uI-@#1c;)UT_YuDAV_l~{gs!dso~i%VVBtZSR`_~3S3u34wlws-&aJ^op6
z@9f~K`))|j__F8T9(%r63(i?vzpdQ&=c{m?a`=*ti14K=_pMVgT2myEdVfmmR+|~S
zi-c_araFc_+N;g&vNBdgYWH=K9o74^Rkzi?>e#`kC$}gyaQc%icNkt2?ej@^Wz*m1
zD<E#TdS176ihGmh9N~{=wRV|>w#AlP9VzxYyV8Hf)$|oom;9{vO_+3K?&HS}!AH+%
zD5zg4idQva&)Mz0OX$t6Ga^sQpEh?CeG4uxV%lHLm&6$>qqn^F%FcVMPu-r;b$@x3
zgh<(T?MKQhs^8?dE9{x1TXWp*+$rya#gAoXOxjX$qN6G9*{9d<tACw~X58b}yeago
zJQMHy?1Q^|=16^JoD%crP4S1VbG4&(HG4*`$ZYM8ym)@M-p${9?fc}{i-sQCus>YV
zODW#v#&5s1+n9L$rptzB&O5(-Zuah4uLVtoA)DF?vR?cY^6|`ies^>GZF#XJ8~$20
zc<<I)l2?0Yinvbn%V=BvpLaWUnkAIo$lJeFGF(t*|E8!t*LapbNWZtYa!NOcOp?~-
zRj<1Oo1d88P1Y*eJzJ6C`^v~#Yt_qviz6o+u`N3Ke3z^7h4v|5Y}B8me+*P$_2?J>
z@S@jOp|mJs!4(0Y**nWsgXBcs^jfk$^euB=C6U+WbNb}*>YdihM1HQ3VJUdR@_wpX
z#>L8&brZg)&eaeVOEb2v4DGeDSN?2sf3@j}$Z1D+%0&JsVv#P8Dn9P`HF}|T+pg9W
zdGllI3e3wi4D;gVU(gKa;1_8X+Oo}jU)krdk1PKkb$z5UedmGs(>Km<6xv=ckW!m2
zCz$U%_pJ4m+q&P+-n#ic;BwToK93Lg8L}C^J(7KOcdOseE6=t)%WR9jczU_Olto*G
zt<!v6-I9_8;<s$LFD$n|tG+94dQ#(Nw`*@E+2!23alds<{jbkq`}~fu{`~aUZAHPm
zx!cOu1<ikTQ|rIi*?<|LhtIt>`~PNAf(y_2NsCo$o8=7ZV&02=beY2G_41`oz~Pd+
zR`yYoS9fGBeRXcLDof<W_kOGMH-2~?nCE*)b?XUTcUKn?kL+9L>`yV~ChuN;BG_`8
zzm%d<S4x223stA547c4&O0Fdwjpe$s?N#Cl3HFmkSrXrt|294RW`(=XZT_n7x^GwC
zWN(UB_`uQCtN-%p&dI-{E52P1Kbz>_=-hNs?vhv6uhpe3;(KoY<Gqn~H(bNn|A>@m
zhF{by&&aGZlfNpqHoGkeX1M2^ob+5fB&Z<o`QMD9v<V;gdta7W)=}ohb|vxgx_NdR
zuBO;jg~TuT!0oroN#z5hRm}N++s)g;jOT3kjo?t4o*#Gi$-3q(LF<p&{$?{b(XpJn
zW67KRd9GVtx$pjwZ@2jK>5Q};MUA<aa~ob5G}g3h2lB)SPHD^ERlnkG$;!>O<@3#g
z_hb}X%($azb46OC=KUP|gHNoR3VlwPwSHOF^yRtm{8qQ`zp6D0Uq176T|epDwojEa
z)?M#>$slw8>HE#v(sr_k>$Z1r=oE;&TP&^l&79BfO}kU)cI%Y?Hs?6@e6VTnnH;kw
zTVBD6+kNXy7N7GIauch&TMpdQ&0zW{th|2n!V|0It+r{kN$}s|nfgQ1*W~xt=xp6t
z=}}*0f37t@=p+{!{lLohlh_lRv>WW-H;C<huW9pdx4+!wM34HiR6pl}h33+1+~3m_
z{?zU&STgZ$v(dp=u7btvTQ2h3+i%v3lX{b#s>e5L(yT8vrBid*zaN-B!SQPCPQeWK
zrLWW;-kW`{rScE!q9UnV`^sPR%xJfMkXIsqyt;CUVsLlfzh}9{3JaVjs!X~pbs;BH
z#l*fW$FxBA?Rn|_yWL8qS|&<(&i-N6cSn>l@6D2Uk?Ws()~fAT=(_obnNaLvvG&(7
zKhrWKkB2_1HObd>X4!M4J-hos@%8y{@7xa;knMfg6)*qcJy+>oWxlKv$G1qH38;zR
zAa~sQ?{*KC>+kedampsFwwCR!J@ot0-&gyJk9@9w;8ig3qghW>?KbCEpO4MhdF5Td
zz2t8Z-2j%3)yJi)4g_9qX?(!&fMY^r%(}Kmhh{$$m+ta&YxCeKTC4ejAuK1Rex26Y
zm{`WjeeX}iGd*++`LyG2P}mE@KkKY7hHmk_K4rgwg24(Gjs2(orM>a|J^RYL$*;by
z4%k>Bb=c-waL@`R?*sR$IbuwW*>tuut?$XN*4RAh?v}qlV;vn^C%t}=z2m3(v8!_0
zsh>Z~TE>1ezwu3`{`Sub!>l_6>^ys9-BmxmKl<z9%#+`1%04XZvo2rBxxM4Y97%`R
zdGS}5A7)q_eEax1-ow{=v`g=-H0_!n*AcpI!~VYy+_WuT=)TRbn9?aH5O_3pA+xWb
z?uvlD)ooH-WkClo&yBa1`Fnp~PM(lT`niH9TnDWSCsxFnA1dZ5=u4Dnzs6X@6kPU+
z+wNXl;>}XGhT@uQPpo(4vEB1)33Z>`^t{MIME`a;=e1YU*jMkkZ9O~rtKr=hOd;uJ
zHy#_v|41rxsn0jlXW&~HyH|uk?Y)MOBeQqc-u?2QPD!}NFmkm&N-qg+zRY)O$Ki)N
z>YBGr$~*LFvutdg_<K2N`HlAHKdJG>oj-h^xA4{ELRGmoV}qTd$$z!18?SOK+S_~T
zxE8~UK9gB*%a1&a5BXm&YNoi~tT$unmhuH|51%g-dY}2e;fqYHwfP)<(VNG0Wx@@5
z53Ko=_~q?g@hywacV@7>y8LZt_oMF0TzyZG<FmK%+V?+hUE2EX?t3={S?jsG%|9J%
z(5;=KZ@OXn=Y#LB<(%}KbEN#?UiHsMGF+AlNA)Khn_PXg*lDuY#HxP{C-?ka$s*A#
zyM0~K@7=ejJc;I8ShaNX!JOsJKmWbGIq{#`gT(%ZeVsW@cQs8vb?x8{UKzJ^=W#35
z+dsdSE}oNk@_YC#5jUqp%i~jR7gR4_`@(Ux6(dXVeSysK(9b^SUEZ)dZPDG`rV^Sr
zzklhDdhv}@#Anof?ef@Ne(BC(#&fDodmOoVeor*oa`yMyV~^4ps%JQ}b6kvWIXjoV
zxhAOR`}66iuDAM3HR$~R?C<fTmt*+XF@Gy5=~0N98NOAUh2JV;`@4jOH|_-za{Dzo
zPlvzVXVZEA<J>M?Iej(3%R3yWg&ekHRqHG4Gj%9maC7!Yrt;ZKxU5qwZ`REd+q8fE
z-kkd9fxXY`zwgpq&lKZjvwv?#Mh1WQr9f%BfHw#3CCF|(*EprE)kaI{;m1Vn#EIKI
zI#mv)e(LL=dR|yuyl+#Z7q^m_CS&G%XKtagyZzseSRT4!p6B`X^B3!+Dg7;ute55)
zY+uXKAN^A!)FX+<ukejQ+LtZO3zz7xIe5=5NmKOU5pC;==6Pj$DK6`|8Gl6DIY|^;
z*>F)@VdddHxtDq-%yU(qylr`;|B}0GGXG{aUeQtKUMk_Jv&nXM%7f?bwvvC0wuY$e
z@_M2aI4NSo>ow`|4HKMw4?DJg7d6l?h){pC*{hl5x0~s`vk&&J+O<rx*Ya&%a($ju
zLQI`lT!_Ei8-;bN-WUY8Z(#kBp~UcftChfBxo>P0IVbv*XQ#b;8B!3d_@!y#tD6s(
z-`ci+-<@dtvV^^x_P=iVT0XtvwwXfI8}rrj8}{Ga-tt~`;+6ibo!dP;S#Rn;YLI(w
z%oUy(8j*Qm%Ka_nH-f*MRFBEHY15D=`a?jY*QT>hY|_QWGuhm4J+I8OnD<qn?YMj7
zrO+6|{qH$GPFVUu=$*jl9WEZx^J_R~YgDgwlhmF1SA%_#tEv0njtLBx=0r75xqRk4
zkBV4C>hZZfeuua%Sqrqa9&q23Ir(YrDl3T_p|5-Li%RB3-xJ<)aoNn2rP~EwL?`8x
z?8wdKbgujCr8zBr`y7#NDxVkB80MQzST6c5{*y}h)kNO%<17bM!Yl-Bel0zw@3DuS
zr{g&L%r~>X#Yg}DcDnX=(ZL91HI=T;)h-XZHs1TQSTc9(!qYu$x38D~EfTG@3=6PI
zTe9yP?{0M#ouK)0idU@uu&oYzE&P9<x#u}wwcg;sR=fP0rLxzx*k=ay26sl!4D2z!
z`L}!3dWX>MLPvG3D3p|oF1i?S=!o5};Pp2AhUYx1t$)@;b87z2EuYjqq2yNdl>Dt;
z8p#XRe!1EcAug_a_FndaSF>2`4Yyyp*O1d~^68DeJ>TC2Ecv0azmDBqQfnZ4joHdA
zbjf+iS(){dKl83W?Rru8-;Mih+gE;8v9s$gzoRs(^i|ac`*5Wt2fIX19h)NiE&9D_
z&BvmbGG#6Od*^XUSRQ5H==|79sNGTS<By;JWGp_n7Wr^&S@P`untvbS)~;OHBP%MB
zzwqAs0`m>=C$g(<yr1~0Ic_`qx8Ofc($iwXj|=_!aiMST<Tq}Cd0!8nV_LN2l<78)
zShmdT@9o}}uQ<8=q8Pu%yvsWm=CWMga=cN{$8*uoJGaCR|9SUVdur_cBe_Svl`r1i
zxas8%?=!sNe<yvJHg{Eghss~c`-u}Ycr-T8YHxq5r}BJ9hPjPR?bO*($|;4juZVmJ
z?QpKyGU1-d{={}(P0lS2_E$tVCmy}~SN-?%@_K6v%Yq%b8?Nr%e^_&;Vt`lMTb;Zu
zH>6$a^Rhj3{`~m3ySve{{i?#E#5eD4ULIWU>NB@X?xuN>wC&sX8x9oT46-}%#mXd@
zTSEF<Ve;{IqeT-$K7CeFU!Ax->G$23jlpqNpDJIx|8ZA$-NC}i4KtX9<(XFeSaiy_
ztmWCwKtuhI$;Qop*3FjDxUq2UZO<^X29Bx{uEx$KzpJXnmvrQMc3Ko~KD18eE%T9-
z`!@3~&Mg<ccl=vt^4!A=vu|vPy(DPbwsx^^buK&0%)|aid%y8s%lUBsqo}{-lmn~(
z-VOV?Kx;*BXIWlY7l$b))AhG&N{_KmitK9V_1)If^RMh%%DxT-v8m0!%&SkQm+s53
zTOMlqF~4WtV!5XrbAnPc^%sY<WF67pcSVoOYO!pbuCT)+o!1wyUtwMNDS>y!t*<rq
z>cJ@|>J6Gher%YWEL*?o-OGiKH{{CyT)O?CY<arFj#=ezz8`(|#@@caZF9<szbE|+
zCh9kpaqK>-9=A^8@81tK-9MC-7KcyXa;4MZ`xLABW-LkPm0eOg9EH+XZ3@0C*_an3
z!Bp&GZSM3*=Gv)<*FUQk=QT_+%D9kPSKo1kOEt__>B)_gXTI{3*!zng(E9c~Om=hM
z|82j2W-Z_geX@G~JH~dEeP8zM5Y6AFRP7w&tNg`Tzdh;m(Qlf2j*GW1y&?8a|8D-N
z^}OZmM-HA;xT7D-+1@@^WY>S)`Tw`ZZ_$p5p16R^oVV$xs;#jT+vbz|zTGjd-QZ`T
zte<4s^`i0N9@+PK_VrVLY@B;U{dE7g>l?1z5Xh)65Wh0@>5ejyoPW3FXBK|<Dt1nk
z)zq6*)5Yzr8^;)y7qjGd3j5Ki=k3K8nb_~wOPu(Ix6kcs>x;QzdMbb3K2Tw2KH%%}
zDmMJDp8dgt4OZ_39fUWril$!@n_jVr_wLjC;Ss*K1*i4w%GGLGo3-#;^c9bN^P)3+
zew|v*WpV!eHjkjFC%<-d{8@Bt=CwKv?_$*_WeFFA9w(QEvmd@&|G6;b)_VDNYvm<r
zeI>4|yQkh?dtk}RNf+Ga?{Q^(<`X(!`{~MeQbh?{v+M7@d~SI9;}hxdtKEkUsu(se
zt2=M)Y$BjGz2K|LgGt#MMS*@PeNUn*qT_Q--)!Ak5&GiT(gWge-((v8-dKBYTFFUS
z!3i^2O%64O&pY>xccatvx!;=F8-4Vd(|%jZ&uag^@Aesq=@0y7-QORwH~HfnowuKZ
zy7sOVHG7)BMA+JzIja2l58=75x5eu%&77}MeP>4SaZ9<I+(NVGg*+(x{M+t&tfLWE
z#pxO9&lO_i)@8cuW<8&B^k>(ud!MWXWJEU@SX?Qdu)k;1!?lN#-QJ7y$lshDzrP~S
zyWz9CX>QWxgysvqg6q?|CNcbuUSPLvV{^&X56xMQ#j0;qKDWJH;rmXo>_W=j5~&4g
zF{l3AzW?`{x<$%~4Ck$l?b{do^S*3T5LkJ-<>q6byB)JV)$V0UZ#*72=~K*9g{1<9
zIXC=YZvB^3AN;Yy{$`5Ad(pfb^>6*Zh0am>Tm5d*`b~Z1OH6|oIBb9YwN}AeVE6j_
z4|MN|eS7YGUT%LtkH^%Rcfux=^<;J4SB&=yJ^bj0gdpqjeG9a9T?`D+vvja8HQN3E
zF2Az>R@c@gb@znc?ti@Lw^RKN)$e6@1Wa!)TforDab?}EsoTSUh4Ef_ch|9FX7}bQ
z$$M>cZyi%v@N(j|V}4uDuQ~Zou*XQ@=ZYsg(zq|yetw>K`rh+y!Q%I+v+G(*ZU``{
zzFTT0`Txkubq-QY|K%<ppO9HnKda+Z|L>g>YNHd|ds24KpWgg>*<Y_MUN$xgr#}6R
zx1KEPx<P!WfqvSm=}*L0gyjYYzCU_r4Y#Svb(?D)9LK7k{-3_y+;hvF6OB2~w{}G|
zeLrjU&rIa^{Au#W4gU7ZA+u7r9z9l_dvAf^jHCGrsueR7?0M%@wESGVugGV`r)eAS
za=hDAvq0qG^*g6k9IGEJQqC)`?lDRHv2Wv39+SgaH_m@fF0QX#_|DI|%Ik3ZN#BZh
z_wSoc4lgn)_`^R>V^zZs_mp|&@@$_=?*Fmhq@7xkqW(8*&YmE-mO~-IDQ4%=?I-=c
z@b!h?n=QddRRb6Pj`3dj+V1Ye_kt{0)th$;9cP+)cftluWe<h`nPoqZl`*X?ytHpg
z&4r#+v(+=|wrhTEn``57`nSKhvy{Ta@}p;8Ph?Tgn<DUagUsSDQ@d}>*f_cWQ_Hk>
zn+opmPWW70Zd1PgK+S}<M0cg*)$D&|&Pyxb+dOB-#8b|-ib9f^+q=AXJ*nQSxpI%_
zH|OTM8;QJog1<X*97vZue|c)&;eDM;_J0&#K4m^TYm@N(?`zGtF8cmm@!KV+(EHK5
z>h&`m7x~l*^ND|2amh4__xBEiGbjF)eH49Py@aK|nYa3fb(HVy#Vk{A?K1gS&BiTO
z>ok2;d*0`75&ju>ZfsxGB`@r_XU4o$X<8SXR{vGoY@7M<VD`BTt20toJzMy5_v>y}
zdGJ0;xcg00`c=*%i#LC+eOYs8?W><*|97_)m73P1gcUsgv${hjyVmnc-x3~oi>hY1
zXL<>8S88Q`t~j=32H(-6K5w4qY(JK;yxewL^2^49NB-Gu{1oH<V!P1yi3PEo*3lFH
zvMv*Cxcch#M3vJouiY1j(~s9U6&=@qWs%)<%aY`v#xrxa9r_gXuD>?h@Y5ILOZ#=Y
zzVr6K&F3>SZuzh}!!oa*Z|{_yYGx}kd!N=$PJeRCNqL>$&4a1OW^G&2^sP;EPs`!v
z)!Qxzeh++Ke)gcf{)yO4;zFs$Z|2ta{r0d>J+#)_GSJl8&uiE2su`KeZC^fi9Djey
zdasP)l=C_9QL@{vZ)f<rdCrdG`!;RkoOml?nb02Nz3~f!Cs*!qE_n7dKSDIJ$nL#t
zxuW~#70jRg0^VGy@z}Cq*72Ms_4vg9#rytwOekXV^`EyrD#*E1>6zCH_3Fi?3ducs
zcP!@@PS37csN!)w>=U#7Ru=hQjR$5X2{R&h9kgLLD%LuCBxk|#Q`bMwy0qYV;6m%)
zZ#-tc)R>i1S^jUf)ViLEt=qXRi(Du4ADRE|e(#0twVvl){O7x9Bu&z8a{09F?2*2M
z`s{0BpQ|pB%VgJb`8RK4C3_JI`+~U>u78Z3u*sY6(Dnv_1(yy<Y49CY_+$C)V{Ag`
zj9In4=f6+OyI#(iYrX#T?hDsUzl$cUcjdG@H(|5U9nr}y&H_tgwKrDH^VZ(ISg2vH
z-?UkCLLUEooBLa5mZ}7os*`Po!<1V2Zq*LcED`nC37>Cl<XnB*Wu>Ug@l#(<D!u6A
z_u;s(##>3dML0BV&Yfv@e6u^+CzOkp2FLYFFG$bX^6~4QpLONod-ryp{qVf#%CqTj
z#2@Zn(xc^YYUkdL4cE@hUn`bd!^d{K@WPgruRTmx9GmvrO+Ur`B)8*Z#osFWDSS$S
zuNG`@NtG47@gU=nIO9!aYpJ#KPCJyu@3|Utp<U~k-oFh>?jbMQrL`VazGx|Mm0wc&
zb6#=&hVQ%noxAzDlFx-Jd}?*ok4HZ_58tdvbzge%dDo7quQvVcc&9A?KiBnKQ={wb
z`I4eGGmpDxt3F|kiaRxPuYFJX(>3COU3%^^%5Rr@af@58bN5LOQFyR8Fl@EKZuc86
zXU3oFyO<_ilECo&3P)${J&B}W&(C$uxyh0+eX?|#@X<*hxXf0s&763l{7L-Y6Fn7e
z7v3(Ct5~-_TjG%6i`a;c;*);)aUYI)ri2NsaVpN?c8}W2nr|qb5%kRPa?hJ3mzKX-
z&D$&<aYnYY;&Jqa<r^P!iB+uG-5Zp!ugawHM|7!&gV++wyc^rKCa;^kU5KSM=6~Cl
z9c#`_tS&09+!r`|-#)pmhi~5N7mNs5U9B;Jr;tn5@W#S<N7{tarj$(o$T2rLajERp
zX-AZMI<_{h&V4*(Np;BIFz=%7&ATuC`?e(EY4nS!$Ail{cig_Oc-(&dEo1K2_E%;u
zX)0h1zWCVWR>)yLp<I?FopxdO<vkc*P1$rmW95UQ3Ax8Nw9VQrDB5m!WUhB@#nlH}
ztG~taymgc761&~+y=lhUV4YbL=Py#};OTg~+pk$YbvgUZm^J5xO`>P!F>9ThvTn)Y
zxk*c&RP>lS|6ZwK_y4%a%=eQ+f)6*nkw~mt{xI-@=aoxJ?5=aux}U9`p>t%SjI8$+
zg&Ipazda%w-t5|{aK=#P$Q+jmwbeX)sb2OrF*}dm+`6zS!lu_KWA)Ffpj#hP7nWK0
zu8=kTC@XweZ{yZ!k0hP$shkb@$#n0~=I60-5+PlI3Jhoemwvy*EW0W0$79}rlJuo4
zKc388ZeAB!D;N5?)6#LD*_*7(ylXC4XSm&Jys;%>uD(l$zsJWU&U~(CFLFy4Ci(sP
z-?fB=r7`5hKf&B(5j|Nkaykw-G+Ct$Kee6TTQbA*73+`X2lv)}DpHtY8Wy@vZr$>&
z3J2_0yK~JtP_~M(!~fHs#))M{_ph&Rob~49@|K{NRnHdulQwP8dbH$G%JbQUf|v7O
zPVx6YT~;iW99MdD&6{jh<@eT4+m;{fPRcKE-F$m~>gSr%)+Z*n9uVrA?QVaOp=Yk&
zzU(!85{A!{7Yf%Mclf-g^0zndtcQ9EjtX@G?mY9Sc!g&-rq=L%y5pJo*KIxj`Pt?F
zi$4E~o<1x4K6}Xa%AlzIC!<QUF35WENS0kl+_?JkOi9U-f|(QCewt{eFR5JdbE$Xx
zT9+mPK2fWC<#Q@k4MMKStm<N26}>cK!HU(ZC6sCweY3Rd%KG9T`)Ae5`peP|oaeS~
zeQvp3$8tj6UfZnf<#jFBLVkxnP1^Y;;g6|G@2|G(64m1kHG)1<%KY-U)e^LVWhKj-
zl}^h!^7Hi?+&Q?(Uj0U|@TUEu(QkJPM!4;Y*!S?Rb<JLno7{VM#Ym;Rdc(1Gsmhvv
zt}!RKJF-Qt%v;ar|7L>fUz=wkjJ|p=`xc1&c@-^wd)}+r>o#uY$S99xesbr%;8Z4F
z*A9IlYj&<lGEbRqE-==a;GOoN%{*E;uvj6oZ|4W5w5iin|8L7?3*XQ@XYCmd*4q;g
z-Y7nHuH+Hx-cysgnaVytaye@~;f`<T+}Fzd*H>(=<K{@%E9|InCtGjF^IWYo#rfg}
z+S>$NI?`k2T?u~E%@Te*-}L@0OV2&Nw=WjWdZYXE=S89G#@(B<-Uq8L|LS;p#y0+&
zj@wlCeyr9$Zl2$wEbpIga3J7#XpBJ4o!L(r5;rNyv)F&SQ1NfhF$c@t(yZcM-x%!Y
z{BG7%)t|q;=V8HX-v*m|Gv7S5ICWe9)1Atn3!Rswx`^;;vTI#>dH6cBW?tczw^1_r
zzPq+e`d+!GceSNjNTcDzy5&8qGx*LmW`9`thBr0+e*0hjm;3bDv%X&L*_|KvzwgC0
znagDpm5+RVI>o^Ly@f?yVPsYO@opB=xZM*g0s`1dbXR?9I(lBPSvy`{?8)6dxoy&x
zd*2q$ugoiQ`LBEAU%qwX&uPCE7s&QpVDb-2I>4tERkJx*<>{|pUG_`1N*Uifjr8AK
zojqs8BF~9FHy>7Pd*7*ctlCpo^v!$6k|UwN%GPJ{Y?Bq+sD8zF+QF^%@9Z^$%WkUs
z_}u?&BfjF-ukAv6ng9IVD-^Fak28=fz;k_&z~5Y};*ZmIPr7%0=S%g=tXt0B`&V}Q
z{pSPILwVG8e3`bqI__OrsT7mQY0*b#xg(x5>7EPm*WYh<Jw?jrz_rI2r3dBgS{mCl
zf8KGp_3!IT<C9DdP3t1=b_bk!k+kvNITbhid_UJYst1bqA5(DH{?yfffztK!%7M(n
zoqsDg^ffnF+z|_WeZS7!UAk>eWmBT$gS7{By+fQI9d1bc`SzEiT>KP)+-DD$Wv*E|
z_wB=5=VosGT=dzvB=d~(f7x$slNw*{jD9<@C$1^s#MfoUQxbk~Z+piuTUzFexmj}A
zt<(xv)AVe<i`~wOORm?>%NPB*c=b14K|AxM-O5*%PIZfUyhzr*(&b-i#i!z~*{gUb
zNBReOsTZY{u6P<>R#R2)cX{nviCvrXPV+ACx$F}9G3jXG>adbS7Q7c@rri$h;ypO`
znPTn5)wY^}i9Dv|uYL(ncJ0zM<+v2>J>^WuhaFXSmY$ouv+eopsjv7qDCGUm`~2+p
zCx`2jbH6$7VRydLQp2$2puY|8sfDNI6SnenZMbf<yz*Lec=n7lji2uYv6^RGczK{b
z)w<$%|0KSTs}m+{VQ9$R=2NgIR<6oOf5yC;-;-a2>MRuMirAjU^l0ue;{sQc*-t(8
zRchslPq*?uKT*9>Q1!ysZCg*|`?#K3w`3o)I+J;=z-CLYZAo|Zb3fahm%1Pv6!=~G
zlpWJH7V}@<Kb+m_a(K?EzUi{hj_`f$zIQilseWtFmalvrYpUuZUsRmp%lqEHN$%LG
z-ARj83c3yDO02gtJknRG-5-+Y+TvdJ!C!fE`1>7}jap3&|902i7XE55!I<+m%Ok<v
z^CF}Uo#V3D==fOo$zSgJJH_d}kAqjS>BePW-Y~69>esgASBeAO>}oE|P~tAg4tZ+w
z)|J2M@7)XUgpzxFwrubAon^S+LS@=UHbsT`mi_<l2o>#iu*_N~yvpMJN}V;9Q=KHQ
zN=W=ts7mAHpWPy;E@GKpcmH|r_uN4FpgFelzse>&3S!m{%8>Be{cLvq^mSkN{5${r
zWV$QIBP+RMo$g&u=ehLQcU9gzIpOXZkx8|)7@s#VXogQ(@vX)-W81{@E#8K`vm$k0
zOi-~>U&R_9|3LiDn+tn?mdD=_x0`w|_sWzTk%9~VfBpIS?uXneew|BqolYMucgWRv
zch#xZ>$6}JbHDa2ckQVv8R@caT)I&c|DOBuZSLd<m8?$fH*LAMYO?%01=Mn#W-YOn
z+Frl=;PU;!%uZ|OyV|I<@0zvw+xzuXi`169$vAQ4(wf@YTR48-KK$+5-gPe9c8Gsr
z%U?OQVcvzy_J{U8^zQm?b6n$zsLIJ8Ua>0a2S3l~-^)C9uBYRi%e7^nHcoI|+wX6g
z{Pn4diIvODa4D{(;Xc_C+*w{GGP8Ui{i>}#|A~po$a-1Ega^EW{U+Yr7q6W-H*-Cg
zZrBN>tC=6{oSAJh*%-3UtZ-AfoxREM-b$7qY?a1e_#e%E*D;B$IzVzEkLmp*mYMb0
zdU-_;eoo&y@%atL0w>E?$Bupo>N~*T$I<o3{IuBr>2JQe?66rd-~N^BbLF{tjGg=a
zo8~B7I20FX=y4`i@n`<c_a>QKQP#Qbe{Kd$_VRXJ9KCs-Q+S`1Tk7$*tA6s8RR5^r
z5UFKjczLhTfzRq(epEZhg5D|}!97j}4605&EORy(dHXJ(>M~)PTv?V<s+!qkpCcT<
zyBWfE{91A2XX38JW9ka~3xd~d*l$qU#wR#cZ~X;5k?lo~c37nD{wUY_^7#&_Ti(Cl
z_wLxHysY4A;`xOi`F5V~b4%dAKUvLcCZkK($Lec(apz>8eVfyK;q1;wyC%i9oc3LK
zM?m2A@yzh+Q+DX7KK|U)D*TO?cc-)K6V^8m%Ddc`w#x`4PX4}f-<4e(WQryoIo00Y
z=s8b%jm&1ttamDERjb$!W^F6Fa4%)!Bp>zP5(P8;cD{3JP+2N&anOy&ZYA?Iu5Xdb
zane~IBCo3(@UYrxwh07SnU+pqes$iHY1^9?xq!2_tGf2>{i%E|cF`1rD>ItJW`!Ne
zYFza5wbxI}hoLr)<HSv}yBiq(UfFx}%(*+W8Bd8!KJU=t^X;$b>E%b}uX^uXl=`Ie
zEW7l!{TbSickloE?!0H+$tAk(Z^Dmk*k5ZjKkfhj4yE)o-t`w>o2J&!KARDL_Wiq=
zWe3FP&%S?TLzJtY@V))bwY902q}Lvw$tmv^etNy0{Y>VAmJ&sst9P}YoxT3{`9}p4
z^!gqs1*T4Ni`swnwouY%b%qM<m$&}yx%i^&$7_v04)POJrgF{JNb7nS8vNzbBj1%;
zf7Z-hs5D3NY}pR0*WqD%KDV*mP*a~D_-9R;@T01R?=$&VJ-%{cqsXjTm;AUrPL%Jp
zj8o1@IB>?T?Zb;dS&Q_qY@W9?;#&3T2Z21I|3X)6|9p5)MP!cL)JOkbC?7VBYFj4%
z%u?mG_T6)Jy7SoX=<iq|yP-2^8&|94<JhInYTH!nO5aQp<p0uLdVIoHqf7hD5BYDJ
zFV^yUUQ6=vU?r*Y%j>o=E}yAj_U@<2_g3Sphcd4}-*&%j-{H_tA&Vw+r&?MZo5#PY
zX8w1nhuIFf*IHLx+|uM|Yp-j0?y<==>Dd~}KAWqmp82$vB$gguKCg&<-^2Bv-yC<W
zj^45*^uo*+4m&P8I^Q|DNier{%^icA3rbjbJ&`-y%<%BCXQsz|2G8y(r<Il$If*l#
z?UyR!vbe3p>pDlvY=5@*#sYR*iGMGCc%9$edAzdPfx%00essx&#J2ET?g!%IU!_OC
z;>cTYLLqIVVRp{c6}=&+gZ8jX*&jT6J7e8jfgAM)FU(F&I+)dU=)5?~e!;K}HyZvg
zty2BI(!2Alo9fD|`HxpP&DqoZ<8Gb1ng5shv2SI2XEgZK-S}VgNB(JKz-o(=vcFDR
zF5g|!Rp65%Z6#gV`Et`#F5#bH&mZhtSh4+qa!|kK7R`dF{xvJEi7(*0yylEx)(&Ug
ztw8|>{AWAlgudEJ-DRB1>vetR5%INk7w%l>eKP02(391(#n?@ced;VI<2;w-uC+Y9
z`G4K(nGt+avS&2;Z+>K(_GW&VYQuW10-JKnnT$fLX`&m2zV)ir#N2;a+-9?EQfHj~
zj<)Q-lj6=SocCSO+hMY7?yk9&H-Gy@y_zIjbi!E3jB%&%?>P03BC(g4QX3*}Zdz|{
z@tOU|#i{?^JTQJT{kL6f+g7dL$9FsAMQQDu>*WwB|83F4-(NiBN-wn4#;-j7iS_D~
znIh~V+nU8W&fGtz|MeUXXK|Tuv6@v=rE}6!=ju(yslL(6DwsD+wm8Fd^|s@a4-bX4
zCUpD^>66MdiT^I6{5mG(+n3nLqST|`+17_m6?{LZSX+f}=JfNW3B~V@oY#KX$HKSF
z@O{SBhovXtVwYua3Xb`E?d1H|TGwTS_i3EH^YZ-O2RrI^v;8~gVsyXY=EOf2*6!*!
zXnHjEW-r&1*~=?ZY=r#&bWC*q#r1Zz;_u%&+FiFaI(;8}zH#;PjEIi%oNm_b-FBt*
zUP}&qvJsljY_HuF`_MMrxmVgpqNA7ZZELLNqmD!7rKPjFbL@-n@PB5A-Lsy3;vV63
z4(g^y=bzI*`?pd0UPam2+Rme{>dGzhdyhTv@f13~;IHK|$1R3e)~GKySH1Z=SI+AF
zsrG3C&n`D_5oP86$#g|~)pD+=h3aq4f3&Siwkzako2i(0eU)y}uKe|FbK@Lp^%tIL
zuIZ3V&7Ho_cjKSlGZT1zre|LKa`}U9S5t7(x>qTm?%#hI|Gs-ii~UTmCiQ#Yz0B?j
zXSkJiiZ4D}U*YuS`R(lT%iV%fJrT^er%K+fe|YH$i%~M)on;TKYpSch{W@{_f5n`N
z5W`(juN#;p8B|@Dt4i{yzq{&r@A1Tjm7lo8Lfb#=`4#9|rk@!QwaY)FJMsCN&fnU#
zHIMA-|K**!Ui>BEO=tL{-yPFk_e}C`6#8Z{aYxO9qANaoe(LduR!8Z`+)A?F@b6@u
zX|Vf@`%m5%{#?3ai_eM5#?oiGt0pMgynGa%f9IJjZ;G@5bG=Mro%)tJXA^()KcDlY
zWp<<n<D^;3S;CG9Cu#psxxQj`>QXUP^#ym9oc!GK_mV=^CZ8GAzNcO9SeEl|6cu^t
zA7_7IW8S9lEvrBOI?Fa;k?v(rwZD3{LdrK3x((;rs2`FlZLhuAnpRNJkr_CHFD12o
z?wchQp%Zm>t<%t-*f7m7XT5pAp&Qw{Spq7RU*s+aPhaZVBR9+Syl<@Sn-k(&q@>)n
zXRN(Ze?Oc@>XiAGW6u)zyNCX@(-BCYWh`r{waByknMBj-`Lb$nrI(04*wA}hVU^xl
zB}dQ4Yp?XP9dU?1`iV70Ct>k^OTDz8Y9g~I?zeOhFTQDzHtDuuaAw#SleDwC7tXAB
z9yM2H_U5YxUoP#KEL?WLe$u`Mi8cN2s{&Vt-hBD0C!gbw(+*kvi?xr+8$07SI`M8a
zv@})uE%H$Co3nNE`sqKuSjFY9IW+OSvuPTO^V?PHDqol1T(oTZXNx?GAHP5KuU&X>
zVtFVdgRO0=({EjC*X07{Gc%Z~=UuR=KO^89YxH8?&Uv{$i?psRxO?Mcn)n9iO?=a?
za}=nQ75FV&{PB*}^$*ihj=kf#Dlp@V?O)jo9{mDqEKJ>b1C!7GJCS!`wZ!zpZ7<qe
zdTY+^kXm?j${9zkvZb}>ZU-l&&n*6&d-TDNDHdU-iIy@Czujumy~)&k=j3w6{GGaQ
zi=!`0)$2UnIX}ni_~B2R_vlDp-11l9f$=^^?c&?}%8ZiCe)-6<7XE&Irt<yI*XBO{
zyp9`-A5~<Q2x`c;c5m&Oc6HzMrxV|*DbJhwxA)gi4(pry-_>^RoA_pGqVVptZ?(HW
zc+P(&yJ+(aZ}IZ)YBEzcEep$<xc#cI5L?E*u2_c2hfPCc=kDQ~cO^}3>FKUt$9Rt#
zKC!*@dDVN4DZf3F@@8#{kdxe$8}_5AH9@6mN`Z~&z9^4NzkkKe{@HFVJE?Mh)o$}y
zT1DLr@?k=K*N!o2+*jgl+rR7LuMg|4|B{uL_}<E_^t`V93U|JJh)xJgVMVD&LHIrS
zX)M8p%%5yt1|AB%{-;p<%8Z|J^>tt77u{KDE8z4#Y=`vzSh41^bym@zIF|*B&Au+_
zB6Z69$?U+E%(Shlu9uzeIEC(g{3$Rs`kwNxybIY;MO~|RyjtvKq{{54(Il(8V!l?w
z>UB8>g6|#wZc}gb&%ZA@{<K82&6ZwC*DG7Ec<5~m{PlUCN@}^+G}gWKum0z|ycBxt
zyUDLM{nR4YptYf!7p1)w-sis5#UpQVmEgB~T>)-uPt2bwU)AU*cKhMyp9Yc_WIX3g
ze0@G*rc;f!P$u)6^MY$0FaMp~p}4qd%B_nV^bWEaUe=y{_C&32%K5do_x<zT_wVlW
zwZgw<l-R0Bb?(dfFxUUD-qi>H9>y)ZDzvI0F7p07roDZl=VwZN5BioNW4Vi8F_kIl
zSkWc{t#5J9eq^2b(slgDgM2l+B<9Z_Epi$za;h>st^B*Yox$?$;#FFUKh9Y^|I9u6
z^WGib!=}uZvlQO^>@LI9t0zAD6tc+mty*?=-`PF>t#x@P`-Bote)p|$SKhMwd)-Qd
zzHcXV7g<OgW)oU;b<6bMPYdq%d(ED5^N!K?Q(xYQU4FBw>}vk4e}=#7!;Zz2?#w7q
zaDB1S;MfPlNXI+#e%cDnYCC$p`SmW#V7G<aRo*y;u6}jkGppo9t<sla^&hNnOPFTb
zv2~P1F-*^$Xxk+E?d*b0Q}`A<GkpH<(lt=D7(RS^>uCN3Pm8S%KX@+${7XG|Z}!dK
z%xQOa^FDg3y7~JO$LK$w?tahC)LOp6wNriRR)dA9FRWZ*TMeG<{(mco>00dtjvI;c
ze=aXNHCcoqs3pH`ouKYi7YoJt5mh1e3;gwWZhI+ota|-3x%ZXzRdd^}KWPcp%a&+R
z%kMR{UtIq)|M0iPBDNQvcjs9BJTcAdB72b3^KbbDUpz$*@_X&Pnvx(SF4hu$O*d)U
z2JP6D#>wXscC}AftpD@z97gqo^Gf@y^J*Vz?+Y|IDWjs8-`#hyvEb3OuO8dKOpD)M
zSJXPW;r8{*8W$$N;7^+Q=py5f%$>YeXD+VW{C94oX7Cw5{n$Xeu=`&Z$JgB3nr&0F
z=4pS^-${Q@dYYd4`R47hti;t3nupw+wEd!%oIG~?T}1=aG0vQQp%YE7t$b#4Mx*RZ
z%@6Tp9sW;CtrP3`{o9v$H*Wa*<n*e|KaK>KE#B$+i(}X4V~w?0A0jVV#<|Qox2*9(
z^d!fiyT4`zpZ)X2z2b4@pTL6J@=11LJ6;`LcgppK;CegrX<SAQiSaH%#<H!Y!P$Gc
zJ}tIoJ2gcv&F@Ivqf%GjgsAgbF?++_-BDb_)*Z9+<F?!m1En)pPfZFfJtSP_;p2XG
zernhcGbO3;Nn5)nC>^nV`Fh2<@YN5Zyk?z@<19X4&d*kL!t1{E(e12h8!p)_J7Tt#
zEpeCktB{y=f*am%H?56X@!=us8|l400rNyxZ!^!C#S~WK{N{`0&UNA5LOu6Z`kfV8
zdinOZ<<ouQVsDFA9tvu{D3-NY_tDc;K}&Wrtp6tL*t(;pJwsI1j+y^F>y0p3v2K0y
zFBXn&J`#HMtc-c=uK&4L9R3|Yzv0HqFg>@Fp545SNB@1Rk#`RGsTcgU(?I-U-tE=f
z7Q`RCZ@oT&X{v~SMqtA7-04h$J0@Pti#u0nFPtXy!{^QWT-H6SUcEYboW=a^I<Xa#
z{BH-!T)C%Tq2u;S>*tr7%dM<8bpN|w_DMBcwWxySSB%LqrthcX9;wxAn;Id_VLa!S
z#)Xsj&3fOw{V?^~j(<6&XSgH2)T!<0y*YpTtk(=%`AjDyUtjt8X8Bd4$f+R>OWIpn
z?jO9nyCPx7Lmn0}(+OuL@L!h{(Eg^Ed*w#{i+x?zEAOUNyDtmvI-#`iwVmC@#j6Z>
zjb>j7bHA~$oO{zo^Z4%lJ0^Tx-72fFcr#xOd*`N$!Kc4%ICN`i#X7Z{!M9~UuFJPw
zm(e!0>N?l%4*9#wJ<jh?%6;?xkM-rh$9DT%kDWGUYK)G!_>WSb-oHQDKeyN%j5)?@
z{3V~`T2cI~&n2INV=sQvExxxuG}SZ6?xA(et1Wqq9cyRQKdRk(_0O#HuM6jLS|?>4
z<Y>r$=%c}LY;lL5593YUMp@C#kL4W7dO!MZ<@)1bTYFvm%(s7Poh^I;*H)jl`K&aZ
zJx<S>=jOkTFZ(8J{#-k6@|8!GSL7NqCR7N1SiJx1=WlT@>K7i^dG`2*b@Eqv6J0tK
zDh~7I<m})S2s$>o%qr~aUiH)uCv>vsns0Bp_$}_%iMJh2hl;}Q7roxF-Bf79#qS{p
z8m?_nK6mSGo9oRib=x1anFFq`7G1kcWW|*y%R5$Qx>_gKY<ls2&drPezM3gqKIL(A
z-$k<*-}K90-S&HalJk~Um12I*FNTGiba}SUmHhVYSk~_Hw`<!hX6p#Z&dm$C`uIt-
z(@pvBkKbPQJ3W8tUHu#D?+Iqi_jwYVENcEF@Qsb;y?=c-l){u3-4gqiJH5c8L{uR6
zvVzH@C)F1Zzj>F~lDa^3=8xI^r&R)jzW(h?uZp<KwKHLz=gV}X3924T->q6&d!4`G
zalmewdF4;Oip=wAZJV*zw4s2TP3Z2jj>_h&wA@;bS?a!;pTDtjCtSS1A%2DL)eKoa
zhCQkIvFjcbIB{%P9v*z`;$Kg@?KdYMkzu?my2X}(vFhJDk@|g|MM2y?e^RPn{9~zB
z|DwG9NY{$jNzWbj-2c31dGxYWt2epkZ`kMjm?-<OW!AY{P7lxh@qTbh*V5HK^KJDE
z|IT|~cI;o`)|JuzV8#0H!r#;!Vy%Bnf0h1C;=+B|T_T@YUf#&wv_JLQzVzn?7W?MC
zHE&tb|LgXV4%bQEJP*qp_}6ZWF4J6Juk`G^<MrKIonq$%w?w|55L~VMC~bFL&Xct~
zrtiI?^XuQ`+CRFWU6Ar-mU-pB^vf-}D(vB&>udLwYUL?T($dIkmo4wR7dva(LJhvp
zx4%AcoNB2dz@dB3pz|JA<2-Z6WSPX=HPy$~zl(kT|Ma{<<tf=^g1a?#E9bOS_^s2_
z-ghhc>G{Q;OSxQ91-kX7^VKxGOLObXdOG*6oxGCgHD2pmR^K@9^Vz)N{VlY$=}rFL
z)=m1?&#!;~=3a1BT>rFLb4;JC^?uQB80GwH#a8X<$shGZ+NXKX`yrw&5uCEW&9-cz
zSbAKa+83_fLU$7D?QZQW6HMIop}g^k#ILaJ2QOTDb(XIxiscmVs;ldY58Is*QC+_4
zw}(>u-b1_c!awKkU3inPT%SiI?{n4dCoePOQ)ayh`o?Oe|7Q78<BEGM8uy=i^Uk_)
z|B%^+X#3x6f86|^{r)?1ee1g*i-j5C#|;jgTCe6)8ZdQA_p#LxTi;}`vI<GqcRSyD
z6XJI&@2ABg>n~p&Jj>(!*Ia%Zx`^-3$&mg=>kp@yw66Cm2R~u%b2$3OQdZ!#=G=On
zMLT&qLj!rbcXL^HF(poack#rrj-7RHO5UwfEaMWcE6UneyH9R&e8(}JV4b<`lV^Kq
zNJVFg{?5G+xu*D(Ut;MJ9xsjJ#=9O@8T(q(X3hB=_j~e$`5Dh|+^zZlI%)E@9@g~#
z`k(vmSngZG$-eOJS-$C|?`-l5dvb+TmR<Ll+UiuliBs#s_l%vJ_wLU<{=}O_<^DOb
zNjjHKR_V>1TI4EhaW>8K*sl5SE00Z0Q_GY2TNXd>(OenlFOgI3U;8!5I)8iQ-FLTY
z7rOTx7FgP7_3vSk#p<+qtqW&ej9bU|eMjBm<V}}&t*kGbHppz>c`;$q&npTUTV&M|
zBZTy~%#^7%etmFO`LWzx9n1y&7BZPjPu_O$+wu0s7whL|&U;MEy=~lZ?2eI|Om6hW
z_6nJD&cyb`f7|{ZK2!VD?Ny(^$yI4eIWZ6C8u@1QeXF(jRD6Z&?}CR37w(mRHoU)X
z&zaL5N?|=}=YGt%Ez|ZT_r6V}nv0m@M2_h`e*YFPJExHLX67Z~&s;{nR&UCW{F?Rj
zeT3k0c`56?t!-^a-zQ01ENbYP8@$qe%i@}fV6hWdnRe%I-g|iAl*4R?V?T0wlpi?v
z{O9}06E*tm68>&~#%Hv8k4ZpdVcYbX%3afhANIO@o3i7BO^qP~ufz?_-S_95|NS=f
zw)<}}{kV1Rfmtt~eGyp3#(nf&fqllil{5PmKMAb;TkQN?eO^=4{Y}YE#s}38eQKK!
z(`VCl?aVS||GdH#Np+jmWpe`jwjT`+`|xw+GUk_p2U&h+tlen&=T2+e11Yb?Ki<5*
zGQojY=BwhIH1mnmc;fpP-Rci6Jvw9O*X5s=1o_NX;7f61%YS;qX8rD8W+xt8^=UPG
zv`&=&=Bw#esuvzHCyB4nwNtz;JW;0kf_p~rW{nI_n@#(jH`X>8)cZ{k$#LQ7Zkr!J
zcV5la({<jb*IqE*n=<dcNr+usR9-%_da(NM&N(wf#M?fY-(i#5Emu}?XS@FViN(|2
zES}n`DB@7+sQ5v#^a$Ic)!72P$!&}Ce<r#aM+JZC&Pl8jE0Q(;D)Mk5`vIM>_E&43
zTvC^s@@e-Cfg9B+?5{L0UexP6^X{7DlTR9~;r6PpzNx2vycHteF1P%<pix!5<SB`#
z%r2|E7R*Qzo3rPTc$bQqNkZZC@{b0a#Up=m%q?N$`XVe76s*3Y<!!o$k^btY2Xda3
zbuL-&y|f}O<a6F$KjG7^Bo2W^5wRK{l26`ydUaYr>wIg2mhukvXDu2v3b#ssS{MId
z_>;AKr%v5BrIYC!f4p={vVYog?qdGeB!T8_)B9dMzt?)?_crU}4;;enoM+BG^RMIJ
z!rQ?GQ#8Ld&UZ|H<a=}e^z^+Cmv$YUP+_(74uki~Dx)iGZ@dccwCFw1tC0!czrOm?
zzpxddl@kwh332$|)b)~mxo>~%%?B=fbbkry+~hlRSJGQ_%e=!vLGMg%&DrvOVc4CO
zVOOR4SN3^X1zvSAe(U+a*6Htwi+2A#7jd0=9>-j?bp~(rgOC@7ULPhe*0*Nl3%gk!
zulGV<^o3y6m#_JLtcyhUvV3jQ-5A@(vYPwsMvtYAk9J?sz0p#bDmwQu*YP0j8w~rN
zU)`j$dh?aji$4i<i@&(p*RFE$%AeKFJ&SK_Wx9UuXrIQSt5yHaI5-!IYFBco%~#4f
zn*Wz&N<q_%jiC*~-RiaH(&lelyylgQ;?YnU>Gji?OYe2Qez|Xcn46wb@Y(Q&V#6uZ
zuWl46n`Kd3oe*|!-M?>Bell&SzA7Bgvpwil^bOTXCCTd1$ER{Au<4)DxHmIHuwR{Z
zZpHhrJr`!3HCJBxmVdq9deL|Z*EO%^=j#9XZvG)lIDh4=XI-p&ciR4#{<2m%g|X4G
zK;_<z>b~178^o79sww0>afwNvee0_Cwu`@<pS`cRFu(urw30P%LMDFSseEL^de=Y)
zQ|2`<<f^~z<KMYY@KE-=$6qSHzPEE<|HN2v%cROVRz+)N0yde?dwyR3)BkfZ69hH0
zVnos}RX?s@%CgH&%+++0sO0s|N!6=4!o3<Em;UA6z^vISaNyK~dX-TA-MJsnE!i=#
ztU0Hv`R3zr71n#<8tX*Mq+072r5|4!$}&5Uaca?}GSO<!(BxDZ?sIiJIVZ5^#n0eb
zd%der<6%ke%kD4lk{<s0lrF>;6%}{qdDqb^-?kUd{GHV)bTMvX$b^iQpFh7zST<*N
z%c6-#Lg$(U&Nvq5)@gUn`O~Jhz55y-{HoOBn>t@O<fH)8?2kHuk0#CCGV^%uge!Xz
z+wBc*vCUun_Sd01Nfx1ktGL<(8%<@NzVLP76yNiL*ShDK@r0}eNuR1_OiVX1bXvIo
zklnGYi_+fd{mQ04Wbd!szW87MMUyu_q}I;m&laj=eDgGI?jPC6iL;zaH%!SesdEfX
zxv=BU(Qs1*L+*wNZ+Pup4OV*nS#XT!wq<PStYwF;Y*$|I`y=F<5zEt^AGMb;ulS<8
zRBG1h)hq$I%ef~DZ|c0cea#;K%^@8LDXBd>{I9+@JA6@3p<DKw+Qr1JCDT1-UAXc@
zWwk@P$X5Rw+Dnqzy1#D!EYJP_VB5ksO>cJR9&Z;4)7dVev(2}%ueN(et|X6z|Boe;
z=dE9z&+R5~cCqX;&xh-!h236veC1pomvzb}>%w#I-ifTKDUX-}Ob*?9$!IVwJ6QTl
zuu?-!jeHb`?+gRiSx?uAEr>tQ`RPnLdyC=k9f2Z8CgmMI=gqxYF-5<u<H_qOC5vVh
zNpHBAxJuxSftvAEDXAGV#pWDeayYo`lv!PL*`IPh_usE?1tw0Z^<FCX+nVj!cbkm0
zla<;2^A=a!lmF5FE8g>Mj<C1iTyO8-<qJDP*GigMip`I{cPGay>D0kJKQ`oF{(Y%M
zDmOEDUgXCQ`7iJM{Maen<t`c9ka?*5%>&CtnO_zBuN}JAHsK<}mg;~NXEj$A->}<w
zc)rbLJ4QbKo8}YxMZfK;^)jEH6#KKOpwq<SyQ6>V?)kB0sqa(gubBG#ACqFoy)~0l
z?e$)s_FMGeMBlr6Ctr6*l-;?xbMe)3CeQVs0#c4M%O<wpmUdqdK5Gwihw;S3O^+Rp
ztItY(zFSUH(4POwoJ{$kCsXF;HO$y5bJbb1w&CsFNkTIo_C7S@4Y*cjyd^HXqOqw%
z``nJlnRC}o<DJ<*@%jz@b-_IUio5sheBAhTQTsz>r`Wj1izg(jDz9^Un!04CUD9+n
z#^6`mGXF~4+;09+t#ZokPmd2>jJYdsJO8!Ock}BFr?RxT_wPL9H$Ppc(|23hvD$O9
z_g~)Mz3<G)lMTy{y*nqeeu-hxq&+X(AEfZzz4o|#_bZnx@%O4r=j(6VuKg|KO?OFF
z-4yd#O1rbITDAo%3m<WlG@R*uX-Y<r<L8Sh=N;EQ^1c(Nxi?R^%g=O@!cT?YRsW~V
zQ4G0e`a`7fVJpw?n(nPfzE-!NdNXCw)>E2qXPkU9`{ZVhT`RUtlRN4C?*Fo{U#2uo
zJC@Ac_*$fG^~&jHSuV^yr&qkHTXXNZ`wjLFa<}L2e&btnVt=S!gIKCdO!W<Q>!rUB
zRPLShZR3rWl<;>C+V(aaC}sbCn?vV#tAS4S`>%h)&pBAINqL`-eWsnIZ^Bjj!{+W<
zzmun?Ge18pIYIVcU9)(izESMjT@wWhzpZatwa#gM`O^L0JYsLe{YsQA(_*w<&u&}$
zyL7X<PQ|yZJ9Emf*zCTtZiiiUK9g3d=T?*VStcuG)_>0Xu$FN}O#MC2(yOY!`5f6R
zZ+z9i>$^kW>H9m^W{KFZ7rC4i>_7c`KVw(kTZP~6y=-`s+-vw_{y*aXeAOfE`>M;*
z)@LI=?hEcZm-Umu^LFv1hN77*EI0InZH`a=Wg|T)io4r&i^{&+u6;}G4y;Laoc#Hl
zj|~5<f_cf=@BOw|#r6g`TfLgtE+5j#mLT)>dZ6K#=Sm05UKiNkvp$*U6IHY)C?N1T
zN2%gpJ>7Y+cfw6(eG$&AIFo<&yOeD4#b$%6e{$C`TRr2L9DO6uO!nPJmkozP+3hrK
z((=k$d2g!k-8EzV4vB|X7A!M4{BMre#I3wX8Pd3CZF#-;S>=_NZBf1Zz04P^+hxqx
zGH*ZE>))-VSzjEV>MW^Swr#3rF2h!#{Tna+oxN4*s;%dZsWYVS2y=CZe%mN`koUKX
z_Qf)d%YXlz|63`ya!yRtr2HjnY9{haSGy+%bc=e6mhtV>`qt{`R42ASJo}mR`%T@A
z+gj&7^Et31$NZ^9sL^eHbCvV;u2xCEcUW!M`1r@yJ?C|lj(o3OH(Tu9gwBt7xBtmJ
z7k$raoe^nxP9*72+*0-OKe6{ZMOIHg*7G=`@4ZET^*;3n-*g{Hlr5RJ_b|8So|i2L
z&Y7jVOHFz6N;j(O{&QK?x6Z%!R(FLL?DS;{+m(|mf79?+Q;n6?O05%q)0>X<X6^oT
z?~Bx7pMb+%>1KDQmEL&sHEco9`!C@wrFAXmY+D>pPiD^v<({*8M)j@}l9d%6|DtUE
zaIf<Itiqo0w3*3f^Cb?cGfqWs+ibu5-oWp0{r-ao7w=?ns~YiHZ;HQq_kO;7fn3jX
z#}&c3tD-OY&I?g8I28Zw@5!}qH<&Z{UM%}{Pj%h&2htIYzEKY@S@PsRF0|IIu{~&Y
zV1r;<hTus#_O#H`w|CV2yDH4C@L|1|bCiqmER_wPCv7ad&K2No8h);Kt5Nn@|7f>~
z$D56;cXZGERvu8WfrnG3x>+Q4-KVHI@2h9nh#1d({Od{hBHoX_vzmPVcy&m`pAbwI
zRxg|W*K$VTnU53B$Zo&r)FkMyyy)Yq-d>*sfr`)T8p>Av&XCSFJ-*{Yg2kP9?imTK
zbKgzVHoo}xoWJRre+%B-jXG<(@b-eYwww2t9sTvt%*n&Ysaa|#%f2_i|6kqC=qzbG
z;qbjJc6a19eyF*9@WyYu4<~+3NxmYmuzNmhR&nx_mvQs9?N3%J<37Y2tn|R^P|wPK
zrCGO)?)F;qaopJP`}Z7yzvXwXwC%~Z;Z>Eb`Tl=vuvyo)Tjf^Iel=RJ>~0nM-Ec?w
zx%^%&@9ztxUp;$!Iz;|{$X1K*G7}%2ZdIE$b3)%!79DTd2`;)%pM26><ek1=O}*N`
z;a&ET)bMW~Jof)yz1{Ow{@E)jHvFHiIj2>$#niKjg|=EA>)YgU`ly@jl~NI}$J+Kk
zZ#cy!i90Bl-`LK3`k+8;+y{w@<?H<Pg*m1-)Na`9&wbQK(Qp;B&?ej1eY)Saf4@KP
zoB70xZ!gr|Gc7!1_<q->wSV$L)hGLJdVWtkeZl?O&4&H~0l$uamp{LMM`aL`i`K`u
z5`%j6@3U{*{bugTeA7eU+-1qW|F`+mE953IPjg?ycKB7_=1%Q?s|%k#=vQq#+^kqy
zl(XFI;d;K!6F&KD+n!d}CLSzgof~<b@2upX#pZ_BJ|1s%v;1Qe^GYw(z_sW0t2aMV
zn~RSxj?dV-<KcbX#!Fv<SXkzNzu}?rduiJ0mo`q(^2uu+e`xtDck))IPNJ#I%QHa<
zA8t5zykXU1;w|_1Fy;M%k^q05jZ3r+e*MalZ(r86LaW>BruwhlZBlDpob^_2_sDs$
zYdc%fHRGE5vlTCKciM7rG<@|4D7Nr>-y18`a<3<CW7)?29^0+I_b)oNDDo}8s_3_R
z8NuKOUw18fZ8Ry>g*pGt-aq_*c`9v7=H1<Wf+^==N8FFqkA1szJWjSShW<*kcD-KV
z^{Z}K#D^<ZwvQMVB}HG=SsL5&$LH4akpC(9FXYnl1m3#tzuNt1k!b&vI9;XOnMpUf
zO2l1dBC`7Hzv<qZx6(_d-2SO)?NxiP3L&Pfsf*JB?yy)-<P&6E^G3Q!D4t*Vb&#J=
zv*qFUu}h@;7pciTcU@8zIKjv=?{tuC_j7-1k%T(A0#EJFJ8Jt4;<I#(&wTe%_bJnI
zovEs}UAUQ(cc*cux7QWZY0?TQ?X28&vlj)-?>uv7W+uB~qP58n-F)ZemkQTPg%=(@
ze`vK;Y(~4#5x%EFG9j9OHDe>M|Mjdpe9AiM@1D%}tc=OBavRFIgFe>jdiKkH{hhTv
zLtRVg#__0q|75o<iwx`fr~55J^Tpg_wJXl<pZ=v*%Jq=c^~F_p|6F~@dn?lDhHKNE
zUs@rTa@@bBtex}w!tx)LM>fvjo<4W`lD}uC->enuIHsZP=dd>U=|0YcD(%oMvmB2p
zon{Z3|84u~9R0g)f(q}OPrUl}`F{C{x$BMCc4mFgSvLDQ^NL4i)qy1|KK+UN&>-^C
zsLM>nq9demQBg(x%(Rpg)eYUU>6O_P^A<=R-ta!D)k<d4t+R8^SsY#{tD^H>;Dpz7
zk<e_5PK7Jwx430<9S<4pYA!!>Uf<@M<Hzlb|2X6^v@Cifozx<B`4#KVC;v9sU%y>b
z8KoO?Kt@D=0*CUO)`x`!r&dYKpIfiA&e6_jdF9hzk{`Wa&QsHH@V!+q$0TECdd$X{
z@b=&px6aMUz4B}JV$%>l=A%46>fb25VJiB0^>Ie{tZn{5D%Sh1wMbn5K2ap#nzs17
z9f$X6vF_jCFR|Nbxlx|C^_?11i8Ts(=YMG~Nj&Lc%6!7p^81FX|BM_jckNA?{LM_&
zV5iEaUzy9*F8Ee_Wm@fVfAyO?EJ{)#CYx<JLd5i(FXSK8o_U>{?|s0`MQ1%-_T8$o
z<<ZJdeP6ybK=?3EaDiF9_*V9p$&3qE7tZDk?6Ft!O;KL`vOvX6ZOQq0JDeN+&V5SR
z@&0ca({F8umZv;!-1kyLU(f%%&t~S!4VgDH3|2gfXU}Ps>3`#!vFlaC+W8uvI1b+o
z;SH_Yaco+Zi>dAt+d`#)t1h155+ZXlZW_zgofKRpnLSNb_Q{LieLklhRH`ofJ=%1<
zX@<N?@tSpIWxT$3jSo)A&o3!T>Abu#wcBKku5sI@)%vHt6@TCGQ)%I=dujo7Yu)@f
zcg=pGsuZC2`xkeS)x9l?Q^mgI^R793-RkeXtuuXJ3)t*X^wE3J`BP<@-^}F~{0--G
z&E0?V+_yg=H%|L-9}g4$)@QQtdG_+R``iDnmEHJw(oL62?cMzoQ)cX&7x{ndb;nCP
z!*sR_^{{U_eYO7u??&<Zo7(B0)dHh5FP>&RG3TGy?c3!iA`e&b+<#s<^|gx9H-%*R
z>*bTLC8zO!(OMtQefz$cBfBr_7US!`W=#s2w`!Ae`Y%(a#y1iZ|H&P!)tvJ0bJX(7
z*RFhg);>kHY@w%N`N3a*c9+Po9K3v6Udd5w&U=AK#&6Pm=S35{WAZqr-uw38#cP)5
z>pJJ;X+D0PE}gM4N7z30T*l4SlV+a!_Be6g$FrtYDw1*`toM}GSpF#PE_YnNb=A(w
z4VQQBs`=0SJF2_?$24{EPKQ-3XRNMwpZs)!PyeF3RKlxc>zZ@sef-Q>noxSsJbl(n
zVWYq575^shEn;Bp{%Oy6Y~K3keOKR<H>I0!h$=A8U1g)8z2EPH3y1J>Udd-i<;}P+
zRW5!1Ku}gS=<fon(}GVNkM!k#N?Uxi*yX6k4OjC`#m@w|Wr9=qEQE{Qn`^3PPM-Sf
z>YrcM9VZX{<6AMUMqp0H?N%9ux4$3vFKE9}wsOJqukUmEmRHIZzOl;Mf5S`A@wU66
z@wenmiyM0qHvCYynP0N(bbyJCTQ!U9oktekuV0@u>)w9(YF^P@#(5UEjXKOiMAD1Z
zS~?#y_9cgJuFAKbZLMVx_jzO4qgP_#@fGWQXL#Ay{{QuQ-t6m}c7!#xI^E?6&UmlK
z`K!U;;?;unGLb79-Bs4~v531}*xq+d$&gj!YweA<xA*rN&PrtsGhJA*{Pxq9<Aqyp
zEm_ABY<BlvWy<@)ZwAd~Gp_zC)jB)lVb0ZzIqkBY-S2KGw7>SXmYlZZ-`hhI&p-a9
zJ7x8|de*kjH}@Q!ymFF?OU3=CB5HpuUMxKS=I4UT+fMdG{5ccPx@X1SR1cZQ%F7$)
zgx4Hb5piLdoNt}Rdo4X`PVtA^(NB(xT$%9qXtd|)xI5(^iu*rX%AC(M|7?2n%TH$J
z8ufFWzux;zUA5Hy*v{upd90$}f0kyQ3Eld0QOCx^wl3S#XFBfoykv3r*kz%kfg+P{
z^E_@mC?4R|V$5^xpH?&Xij*yX8`<tZtC{vuWKR8W<M_jyo|JxHe|dd=;Qp0={-107
zck@2Sbm0rLHtlOW-t}&KB75mK$%%`P)U$H8^2@zk!aq48!?6FgYUD)y-7H<%Q|cJl
z+vaAae?NaociW+>(^}R9a=o~JZOeDntfIYdyV6u9v^%rbHdvSkYck2{mBw$&{;$>8
zzSetXqoLlJ>pUVW(s}!zO1@I~seZ_+u#!vQGSAGplddln4^Fe|c&^G|`-i>$rdWvX
zkq5`$q(umpoqzDw?_`%$Zt!N)sfP^zALaKqPCfSQ#Q&qt@5-2Dw)W0Un95;XcsN#Q
zYLfqyOK(&+#EJ>!%bg6(x9f3I?Z2Vpn7LelcUJv>4d1EC!s4~BIc<`{j;LLT4i8+~
zD5ZTTx$}EpRqgEGk6iapzGQyk&~fXpE6ffZsNeSEM1$Dgw`by*R_wJ}<5m#L@o`(<
z1>F)?Mx|G#3p_X;hfP<PO6W7%`#7O~_ODNG*!Bm0|9|iK{mYYdu2uic77#pb*p|5B
zuk(4!sjJ`o+`Z-2RKXoqCM!Pu3-0mn4f#69cC&x*7S*Qz7Y~PhF6~_7#T)UUL+|6!
zPFo)CCl$SI=UL~y;QGiYc(-TCYoo(&ctp8YXyw;T`DizB8y90h((TrJbu$jP?w<V7
zFC|?vwvILQ<MTsvT*|t(9RK$G%iGDtt8CA^Me}w3DK5MBy!Qrgz~U2+-FzY@y*~ZT
z`<BY|=v<}e*Ajv}eg5R^JUyBH!}X3;sxseRy!ug|J&nKdu-1AN&;F=I(fz9#cU507
zdv&aH+tH8QmmF3;nOAXYx69w$vI9O7PuET9uKdO%f41*;fcie|H>!KI*VWfK7*{@h
z`@rC^U7Us`^L;Kat+x;K@^0+jlv-GSf}5wNRrU${-|AM;C!fTFugS2^nB1&9vBdpN
ztjLO09~AFA+wt7JbI+nRv-S4BI@~EMJay8JzrTbkOBg05n%>#AF5<$QJ>C*B@8Xg;
zLT=A5ENpydaJK1HH}53&|3yXKA9-iAT~lJ-)2qi3v+>j`+c%G#%~z^O?wqCY`Fr<q
zlSF-~sLJ9!n-ch~U6?AxogRytG%jKP)KV#!6{~*Z<hj_HT2d9AjH>gsX8zkAdzY{N
zZ~p$dWm!jg{BC>vviV|W7j?F*<=*9BjT7%~-MfE9*WRGsbViict6kl0?#6~2*H72U
z`=##SP_@NWAh%A=eXI1*+PE1THuEMi$bS3mFClYDlyRf*`JGeSeC)Y;S2g@pKKSLP
zqTZKcJubgY_A4?a)mP-sUEg;9H^)gGrZ4l}-MgLiyYG4XHpAOL|33*l(<dyHIZZdA
zT)@Rc_F%~s-o*hoXI^}CVeg8cK8_3<*QZwMA5D30d{y+ida;zD*gW?)MqfPtn{0YF
zbAPv7;jM}4Z+2dvSJJ5|=c#a6-ASRmKOj<9j$Q53q${;7?zf|DSbS7x27h?FtA5%Q
zzn@iot3S!z`f?zs#{Tri*T?JYBai!AomnaVMmd`2OH`23r?2UK`d9WuIq&*^Y6a)A
zE3vx*zlVqHF*|&Brv0w#$Cq0abP2`8|1P(5TvFz7u_X0h+pDjl?(8epK0i|XZF6_y
zsS`|&+EU-_ba(39yXN3FH}B{x32Ck!k`KB{6OKMzd*;n~b#`g{-{<apHC?v<y;jxn
zWv8y6?f7KVzVAoy)*P3x#-&Fc_I=oU{fWtn3xPkFCz<@v(Ee@s#;ZJY`!nl<DZ9>;
za%*2Gw>=`Y@9a8T2c2in*L;k<FDUJ9)w^Vc%keGkQ!Sgzez^bU5Kq|JU-0>S>etJY
zmUAdKxzCvS{Q9Kl>*QFcCc8<?eEn(JwSNBAStsY-dKL0{*U`mkozJ|Kz8fotv^{+K
zqsnle*R{C{B2V|M_kYW_dFPkb-p>oyuMOvx{r>Ql#|-vG{rh;m^Y89CYdw2<zH`yO
zCzt>K+$Pnz^@+pxfSrkQ^H%p2aa_1BWi&xdRA@irJO<y{e$jgi4gPLC`etinN6qC+
zp=XV<rsM|daB3K@VHLZ_cqHISMsk0c@|g^8(Re=L+n%gCk5(l<`CO88?%TnSa<@Wz
zvTnWg6_(JKIQQvY>J>r$PP5_});8Drj(?2MEj_WhyUxogL@EB)SN}a(mp5|G_`(_}
zX7~HGz>;lEOZdy*O`fnL>s;dU4$;>M!P^s7%;ples#4)k?-Dq3qM$u1M%`;|VtU%t
zY4g^;X1JlaCcH#-k^f`468R$ncg-$8EPMHLvkN1iHbcgLn{y2&j%7QV?|9$5kpEK6
zWBK!)Q~jA1Y017!_{*l;^+vWOf#vDKFh`!h^V}Y?<=^0yJ;3+Jz{+r5`_prQmqgyD
zDqsCjv-icDCD)(q4VIqR6p?1hve5o^Ph0ElD;Z6DCr8H!?%(9UUHaQ1+jDmf6N;;D
zxQi-Jbog(5WbcOfh0Qavm(P}Wj9ORScI0++eVd`enZS%$R$ht+vn1@jP8IGDWvJdF
z;`Jg$`_9wCNOkQqC!Vo{?Vp=g(%e!ekn{2DB({yR{{#x-UwymnV7MgxM7`*Jw#b9O
zJ+GD|uD!UwdiAL#bFPS<E4VN4@2A<dq`+9q@KWDT8LPJoXe@f~c|b_-zU|YwB0k?w
zT-wVo^Y?kk-wTU(CeAlLviQQ!)md?mznvGC(|j1RewN_Y#ZJc(6XkBjwtk<+bz4Sn
zUGjVm<s*K-r)^#-wLxEgN!2;yLw@UGFU9ZrAHDzY<>Xt|A-A<QozTs5&Q9mQdZ73&
zb9(jrqpuoHysq26(y5knmE29SH7Y)RsqfycSpFn-*|k=)V{#|O&glQRT%M~nt98zF
ztGTy&YYh+nuKHr^RWhx>!d2QbblSQH>zl<T%Gj^Q#I6@!b+vM8&Z}pNi!UyXKX@z0
zevXZE_VYb6113c!IQC@cI#>ms-JqHEySt{TDA4D(RN1NPlWsRPyKVAuEcvjlE6KXI
zweYV{uDrDO`m9e@o;?S?iLBnd+D7o3^P6ea)$2d*bGWpAMtNntl9&9k3D>y)9($^5
zKh3~D+D7S4U6=NS7KSC)A2Td!dp48vu9I-{VyS0Bi9NDQUR|&FZsrs3-?et#327zW
zcjvbjoSgG;!Nk0@bUXH#?dPVwV-}tIX3Gj2^XrFe@+ubHm_L1HZ<R^jY;)Exf~I=+
z)9+7FSIP~m{b%s!i|X$xqa9nHf3`oLwDj*$gKPU&bG-<kG2egH9i79>yPa;`*Lx)7
zGu2`9nj<@}ZsiJftqJqA*?8CDm!rzeUkQSG;-)zn**44G9o*;a)VX)v`OBC8y~~~G
z5_3*?3dgRvp7pmxtv+Vk@u|+%;NzGg{N7|r%C&VDik8`08@XMUw%!nIylIW*tMa>X
zS;^lr{;qt-QU0Oz(qUuCcFx!{H>zD{N|c?NUVi-Xb+N^6+|#*acm3bJ+<*1b6Hn*O
z``+o#bl%5$C;Ps&R&L9^)|-F(Q2y>pMGco(>?E~GD@xLB(iVMtYIV-qs(C@WXWZh<
z)yp~s&5rMot2y116{*?g_~A?I%NLJs&3^T+^$_0~<*E}GO5R#>H85;$U&C_Tda-Ai
z!jqpFZJ!EvPm|cU=nIE^_s@bEjcH}mYx^%qE0_Lwx2yJld8N*mwS8e1RlHtlSLCS7
zb@{$rf4+5xli9}S8j4mwt}U-t5tnq`wKi69Df8vmHRhasA>mOE`yvvTZC0B1$@cBq
z`{$=gmM50o)c?i5|F8YuKl_idZhM@a`PDhu(>d+Ncj^A8L6z0VQ#R;#y4iStX)jwZ
zcHKVz)2{!$u`8cP1WnL$W7wi_VCu{p=Uabo7rZm~weWT=mL*)0&4TkkJP_HTQP<%4
z)Tu`O5zn3j6XKk7o<FyYyZ+hQ=7F)C(5qgtGAY;3zr3aU-!_z=t=p9G>Q&tNbplV?
zD(5~)?I>SSrL&Ql=X9}Lp!B*s39h^uGgmY1O?$`He))=R4{yNxzSo(Tb#C6?u_k~0
zZ=GP9hNg<wI%ZG4ZuL8@`o{5--rVS=?xq<6lWKQgw0^qVQR&RZS?s)fOS9@0TB?fp
zY?Xei^~P>Rr|i?rYr00Um*0Qg6IvgArhS4=eEAuh`#)3^ms^GPG2N61xmjE3=&EhD
z{`uSK4Z#l6XI0;tvDTm8$hrPgQO23>aMAv}Woj)G9wzjjZQ9p+r{`6_mu4h~x3FI7
zyjOf*FFkKLuC{bSwdv{UX_|r2YHv%-F1tyeX5`a*K6h#FjkPcI(i`Pg@9@2=?6E-Q
zyOQ$lM_kex({8k{h;rHH@JQYLpJ;IEnI{v4F5S4%!I$b6WG?7*{2$BLx4!o6bvsif
z7@78|=KoJ?zf|L-eC5Zw3l<@!3X)|7$@6EwdXz8dpm18C?n>*5KW%wNzDs{voWFjm
z;X$oLa?O{`mz6{;ek?h1$-DaaF70{K;@|z8v4K&3eyjVH_{8-SRL=eXc;l#C;ha_p
zp~HVVHYDukkxj`kj;fk3YJPY<cSlNX*)EZuO%?3kJ|-{g-pc+uEn2(nOBLfD_De1y
z3kplGHi_4yxi1$hn-b}H^3{bGVn>eY-96Fp{L1Td;Tf~<O%z|fP^n;grB2Mc8;dNw
z!*>1P=nQFYns%e;&^?u}D-JWpJo71j5UN-DL^@LE;LqsqZbvrWF^XlK{=h`!rBe95
z!}qQkeQ}zw?C0I(;ingGxOi6NRfzTV4<e01&1rTwJMETerBvJ~Ywp-m7{5dQwu#A!
z`(N`_mM%Z^d5&Zuljh%~rDZ?ls%7kgZ(O)*V-aw0UWL@x-XD6rHxJiD7xwYiPI{g?
zeO|InRIK*?1cOT#XE+F%SlyS7;Z4kEP`xx;ve2cdHdEQGRobbVC3gGrCq_+EEl+aA
zMwO*rNR5|V<j5tME!N=WWBgr|?O*4W$0ytG_&H?qul!rb&mVfa@Arl6^UtJtHCFO-
zmQ>wHjGq-3qW-ty;k(;DtuJr#1V+6x)@Zcwda3F<&pDU#p0-zj!zsI^YZvOOd(@TA
z4#>GG#`-+R?{|5}y9*A>%ch)OGX1q}qGW&Y;kW?)Zr+{O<}?(rOqKdp{&VF_w!HI|
z()X@@lr8tsklMdYzrJ3gQJ3Sf;02qem4b|#o~&EMo!<S*<u`phd0U46jX<VN(!1_B
z-O8SNU0PD%!{H3w)AtrGJ28iQ>nG{-S6*k6=X_tLm$iF_Zr!!mH*J>tj91SP5@c$U
zl$^WvtWwD4kIffXe&poI+xq;gN$5?ztWA6V?G*Kke(>%5tA5tyj7{gY|Kucg9zOTz
zvx2jg+?}F|J<&6rWhd*t&@0rrUozkB_&v=BWumeCtn1A`q-i#(zTaYzq;md@q)^$G
zb&CQvG`!Bf@Zo^e9liZA4hq6*zddtiCh2`MwB6hC?s;!=f53U|DL;SQGYE3aUMhTJ
z>38*GRegrfPH<WuxbG3N_wkLdCywr_bPv(#j0?IS8PT>zWY68>g_{@MOjNz9=oMwp
z<Ct3f!Qq_0(!*_w^Ec-49NM$+?%A?JH--NkUy=%5^c4T(w04<LS?{-Ho^!p@qQmDb
z-<IxXc#~H4&Gq}@n|0nd7s{_Sn$!>*m4Ec8S#12-ugin4eql5^to~Bcd*6d6kN2$n
zd-C*p+2;}B2jBO7bz5|H=SjV{reBSVZ#ik$C+RtCD`pmmNqge*bZNe++on84mE6ST
z^4c;#x2HM1a_@TeHf=*mdj3p?wm-Mi&TXFdGbtqBzhL?o|MRoH6s<n~X`8{9V=p}3
zUeHx|^8MY}nLgROCB5#+yj7Lor?e(xh56Ze%hKLFIy&W=;;sGJ?M;^dKl$BYIC1&)
z+v$(`UC*n%jfu+ef5Ub9vtN(e`v7ysH63YfE7h;8ic#*jQ7yWA$1k|NGv!&tAx#$7
zlh$=b*AMz$=9%b{*UKdH#WFPJOP2hKi8q&TX527)rQ8HZo}E8^wKlh?{Je4Uj;Awg
zP`bK?a#e+rl9|Dz>3MDC$NJv?3*Oj2<;eHG+s$|5>LN46zka;?tiz`LOC|rI;9I6~
zC6X<Iwd$X>-%9OBxW*msRQbH{)0x}7il^LEU#dmBmUuP()~&Q{Soz4WzinIkvU}wd
zrF;L@t_qxdWpmW4V{2sYCS<O2ugsjunzsM^gB5@7f1jzPbmdIbWeX8m<&Gy?ZN6DW
zw_9(#_w3TAkJbS<7Cc=bYjOE;>B`f7NhkmQu~uGxj(w{7-Hat(I$u0LvI=fLp<K5$
z)X7H9BwMUOyK1SS;JZ5y7Y5wZf7LI~RcGYJd}-s|H*Nf4wl$lY+dhAlKGaq6Aj6dB
z<csZ9%3NYM^LHP<{BP$5^T;a3@-<?2O`gtTmNrbhCDPpd#HH0i>Tvb(mZVGT_tZEX
zxMoxQs_Trj;g#7Ox8q}~J&%QH+_?H6{bp{ftbQ%WhnBxR^CXKeEkC=~ZHrMqPg%T&
z`J#iI>gCVR%cZ#GEDyakuZbxx@K{%7%d<5;4o(@CXB?c)|Nr%AwksFsBIcwfi-QXn
zmCSY&Hd(AVX~zGfM|5A*W;px|;;r`l>0Iom8@caq^<?8a+rEB#QMj*R*W{KCxviHr
z{V8bu@Hpv-;U{jh3479{W}Yyuo&UsF+E*ZHU9FNu;HRWrHz&=zJZ*aUwh-Y7cNUy^
z5Gc?e<ZY*WQ()fFjz(_}E#8J2<+r8Wg0_z{eq_nj?h>8xw|2>6ohFx`e<$sE|8SyL
z%dXkaw_D9P$$4YiEM~<&70R;HF9&N*(%3r9iRDA9=;v<_a+?BnJb!vsh3A4npqEe5
zlkErA2Jv6oGw<KsI+srq7ggHvoRP3i<1P5#vm|lTy^X&&>OVhKufFc+Q_hdfIq6(a
zwr}2Y<7}M6q>TrZWM9V$UTdCpu;B!2&HQ63{}%aWIP6JrEuQSiH1GY+jjQ+HKEEM&
ze@-0F-zSd*A6{N-`1@Xp?ft;7*EZD{irwyU^OK#BTUi*ycq{Ej#I3CE+qI(m-%Y%D
zpv~$`?k<jL$Mepc$GrQX(!Ddhg>%u_J&Eb^H!7EG6WBUGD=_>1Ha?a;GhVT|oz!=$
zKD<Cd&fxrK!?ZLPg;TE_gEpqGV_))k(b0Vi_5Y}@Ut^H9s{5+D+IkKN*HT4=lP6@C
z9Flu~dZ9wk7ug>RHZ_~21S_4r^0IqDdQifdy-CLx&Inn{pdj?$c;6+r_d=Y@T=y>O
z(y(sq3O*F9F#Dd-(dwtYJHO7mtG@Z2e#{<6F=OdYl{XI>D@!MzJ}|>z^9%-|l%1}%
zeydOD9GtfLmvPC3vjuZBjdYfaURhYD?7QKr-@aMa*CQ+IqQ9-UxqhdfLh<{V7vzF6
z%A9}CR+u>ZE|<;Xg|eS|ex-iZOsKo<s^iMR=h1X*U0K<a=?7*g^QO*Qn7Sgl=iIBp
zoh)<x<Lq9>epTDycEFUu`+M|J;{cw>Q%vV?pUk@dzgT`n&%)@>8WVmOZ%Qfej1k{|
zEp{Q>z6aVBtJOHVJLE3$G=zTP6e-P;QIF27a{ViHR&ah<hqCsMmSb<(WQ#3-F3JjP
zGR_a-J>niasj%(Ejo;$6uSMVT7pHv@+bYbkPv8_w{6*i`bH0yKIt{!<wv--^31HAZ
z%5bSQ-Thm`@5^rTCEm-c^j17g_fo0onyqf+@Su@@;%+rH-hJ1~1)|q<_#7?Wb$GA)
z_ZPVizgZGbc0MxSo2T^llK0-r7x)Bf?<CkZ<#6gvlKr+fjQ>>^m*euc1t&D#g`};T
zxw@Luqx$GxZN6nvQcHra&s_XdvwPvE{~m>lcda_}G`W4cTJH%(gG(ZH+kak`n<KjV
zuI5HFrP<x*(zhyDt(K3ByZdj|;*4We&bMwaxBRtK;MRMUCo}#E^SqR=J+;eP>(`d+
zVx_qsEsA$86#cwZ^8O!NeGTKE-zHg@b^g9#e1BEOPYdBmDxYWc<m##0o--1)$b4_D
zw6&;n!j(TwvVQ~T`<(E0@9x}U(Z(6IaeL~dSOv9w^RJxcN4F@nrKP%OKPjHrU+b5?
z_3zP#fmg5BdU2l>u=x1ayYTPCwh4CEW1mSLu3I_fOv2)u@4}Dxv1fh#;4Je@)cy6Z
zK%e!opO0qV`;r-WU+q%z!pr^_K2>`BWWRsBT4wzY?P)!QWp7R;x9#KheYlxr>4gQc
zryoBMddg)sSB^(C#{T*aOKZhGAL~m#2UE6eXH77?{Ap&2dA601<FVhaX&Xc0&b$yS
zy*t+}S-z0Drn>K(N@8-^wC<Xcd;jjJ*=Kl_?R>W-zt!j8D|LojdqgKXPyV?;`QBlh
z(_0N#D=rGVp79pk9eF0rqsM7-f%5g+ik+WRZX|qvT=lQ)XS(z*McZ}HpYR3AU0bL2
zQ18~<ycyr827i`ensDB3`@)8Zb8Gi(b>ux0Vj}bQcB=FnhO1j<3VFzKA1In{{`!hF
z$EnV9w(<ItQm67h4=OMFdU=79_Sx<0ti(Pw7TV6<_qF4KzwW-jqAwf2nSM&XZTEEA
zp2bG%x;QQd|IOdL;GjaQ+nJm1_y3(HyDiSB=|+5ys((_$vz_h>WoNmZzj!@ehCyn1
z3e!gB$=C9G^hA?Znk3v`UH|Q~o4Lr0djf1}GkT1du+_;GS#H{-w5mVALa}?{R%hPt
zm%oHAh!ys}^DxUMyf~86`s`f8fR)Yp&S?#Axm501Iv?HM=62?{#=FmT%xhNt`ttR|
z$1i*2l)Cd)&iwXl!M<w(kwv0iF$WiIi(C^Tv`U`M^~tl<FDJ);eB<#f&R%8X&)NEN
zjJM|X?lY_X$~jeoBQfh%yi8)c?@KjHYiG~tN-u+#dARyTmYs53-STLnUB{Ugm(a>?
z&8ZWr%VPH3m~U&yDe$_hUH$u#g)u>4b3d*Qb~2xLzuHRMeu~$tL#Mr)Po4HUUl+4T
ztfF9NiNON<ES{$Ke*Cl2W_lbvW}&;TKW(m|?nUwHi>k(J=0BB8DE_vomT{W*OXu~U
z+&=vHXDjui{gdj^YVjJj&61((_IOMdYj_j*S9Zm^z3(@Fda`<*GOrPL>CdVej~n+K
z{aSpg_llb9<&%A{Uv_eB)d`AVENb`3ohiv5;J!quC2jfNM^&?{=55&~p7>%plgZnw
zSN7({&pL5-_uLCUZjbUO7u+zeV9qnRxWG94PWL`JHDCMvEib}b91o>k+40X+%5<Ci
zt*yWMUf*ZYP?9>De8K&`kcEAsi<sNZB^$SX*}H0)W67@0sT1Cw;9Hga?xysXGd?$d
z9j=vJH;Y%(xT?KrV%e;DV#Zs}J=96z{u5yAwe#-s=SvMsPVmLIIYbpLyJvDq%vwb}
z_7%@Mi!b-TdQRwjU4G*`Q)W%g@6|1DH|R4tICeZNbQUvPmw!1&iFtm{p9+Dmdz+m#
zConpDIR-1$%zEW8?e)TEoJsr3Z;0{Vdi$tF+A;R~oGY(?D;z1DeEyTt)phzDy?lS}
zAJmClTw`i6Z+S%i*_$(X?zI*#zFuNAPkP_x`H%j8zwfb8cY?(J()FyBg%^(Ad;Q~e
z<;^R?GEa)$xQKSYzQ1UKOP^Uw+;N`Y#dcRE%vx`5eImJ^JMfahcj2bUylyQecVT&1
zNuHJEEq{40l(zA?Jec><B6x;GpsTF*C7vm-ew*Fr@92K#a+E{xR^6n$lPeP6gfRCP
zN9HSUD?ZC!eQwQ>&=a+xU#2E4TCh??$KPPVS;;cC=N8K&1uw2MyuZXx&?QQv=vS55
zGp77SnG37V`G;M<dpL8cXK--$&p%}+mKdd9|0LG)m*HXQtBUV|pZ-mF%(r~X^pjI^
zr=Mz^{O5f{=h}9)BM&zOrJvdM#pavfJ2lB=b#s_6e68(Sabm;KBNhSqjw+W@8}H7N
z<^T2jl*HXLKfn8Y7v_=r+%`A0?{)c}-_<K4*Lt<2cVymjH{X-E{YSBB=x=}i-8VHu
z?=JFqn0mHN_DYe)u`PmOOXf9wn<F-F?sqqj17D>x7WmB&Ke5T<oIZQ4jlzkW?;7`S
zc>1)#_h3}gqPf9E4<?#Q`T6XZ%(`<~;QWQ6wWoM8@3&Vi-@5sp&bu3{GP&kD`!YXS
z9X?@OR?YqGD<|5p`vfN6pHuSwx7iMV+xuM4X1qJ@_{;Q}u&6)hE(2X@nX85=YqyK)
zqy=v>zV(Im$vW*#i~r8z$&HA*`=#W^<i<@8KRE2R(Bg2LT6F2c9=V?9kEFhII&G+9
z{U|k!W4knC=CRqUCnnWaFYPvW?%__+v{Co&51yU0c*>jD16B_Yc3OPwSWsorWN+*r
zy6jcgq$}sjtW~&V?2Wf(rvCQ3ZN7DpkQw8mUxtBtc4v(xIu_4ujg8Ue<n7$#Q*t`@
zU8|;7u(axie>dY*Y;B(2-zn%PoVoS6qRixmiP7&qPGL?HU+gve;r5SV$=e@%u{vy2
z?Hm+U$`UKaSAE`Wf99kg>vTH3pJhE?eXw#%>uZjFXPdRN(waKWl-WP@oS5em-+%wX
z&y6a{+jcu@E$O|^S-o(Je8Ai+z0-;wd&Hx|rzNgEub91KJsZc{#}>To@8krZOV6%6
zyH3@8f}dov@xw6thvxJ6=7&CzV|vyq`?53pi0vMA<NV;L2U9z|wm;pmG5Dj;3h%3l
z&yLq@{>LJb>U3n{de@qWp6yO;=c`%2eQ#XE{Pt*ndF{VfH@FV%PVsc>DH0TZRUm!b
zludvB{%;D-N*h-{k^gon>C4rS+_Hi{uWsKxa-X$*_QU*U?R)CC>=tbM{=vJuXv;j`
z`0Ed1*SUM_ke=e)eYyO9#Pb7DcIIJDnTOWQV0e90wX!;@a`F5}I}0AB1m-3O{`#ii
zx_4^Q{QCyM+7kQXCT2%7#;-oQ#hp)i+3)m~_r$Vao{U?(n15AA@+#MN&F`EaoL1?1
z_0sw4J)!ol>CSg+G*~b49!#5gS1fTt#@1sVTke&pD_&ph@GR2R=>KkC$!UHMzLn44
z^K0*q++(?=Pduycv8udauQW@_^zhD}k|8Yl^NotyRMWI)&EB5IGfrhMP!wS+bDqNR
z+MJ=aL)2}FTWKD9!Hd?Gywr<Nv!yvru2?;=4KRp0Dg45F?uztNa(c@G;{MLt^G}wU
zbM>p6`%R8`=2vijuQc!JG&3z;#n_i4qx+V9TBG3i`x_syut&Jv;LA+ym-@c^j7Y8B
z`z@W@WwZYCoH4FjwO3eh*7=;-N{UxLedK($eD^HHb(`FEH$KQy5RPJX6j<>4@T^4L
zRZd<7N0N&Q&b+wbobz%?twp=Xq8EP;o_NTZZhz;IncIn}yceTaGhew9k+7r4i!=XG
z-aWh1|CU{ewEc1X$e#^G6=%A&epk<$Jb$js&mwPQmapgd1^wnMVvh1^J{?i`iQBwL
z=f>=oWjXcBrz`CD-RW(d$)D)6hP6#aU}M!X(+eNUo}0c^nCO4&l5c6Ud6vTUa(3k^
z*NaT1f>RC}znSbO5$`Xin5Uf6Q7Wpb_f77kNFUGhTURXV)`pz^`u^L}Cx2&GindMg
z3g>F<WvGfUEaPyS{3odVl8uJ3(RaS-M~+-^Q`^fSaF>VQX-(_bN}0QBq)Rp&_ZNy@
zm#|qwL@#Z|eG$>;k}dYyAqOj+c1Y}cYsz@fSz`LFv!|L}RxOv@d!m|icIPDlfu&;G
z_n)0&=Dt__v-kd)i`~Ci&((Wb5xB{`MIqqymTXzCdzmGo+G|c!f3BMJ#q~<iq6w1b
zX}tSdH)sacg)U$DW`cXgwlKeGE4CybXPm@jxUTriVP1#2{DLnw4lA#eCH?NMb>#|O
zU$HDK&G`PrswEBG>hZo73)W~9DY%y%5??PTP``YYaQnj;+cx1hN+<4ZIDcXBw7t$=
zkMFlO-@2Z!s`qzWNA1$DN7b|1uf8amerTt6{=a8xYP+=G_t_~{&nju2E~tMa@&Co!
zTE6A`rs(Y|4NcqHdw#?I&ehjWXn8&KFu2TX&$@M;%)yKk%YXi4lxYo>-uH81>iR8f
zPw?fgpC5NWYeo8kMHe>m%sJTCBAlN7_L2C{cl&RDxbax>Zo#UJ(^oTdI8NW|Q?~B+
z<@0Y}XDWX_$g<_j&wnBLKkrs5t#^)hS^LP?;pNkv>*5L=yu(8)ViafIcqnv%;bYv=
zN|`u@5c}U#)_mXW|01I2$JOwe?iu}E=7C{P?z`Sz@+x5ITHj9*+mxRK{t*r2xB4l%
zFf-z#=<5!j<sv>h4ehha?9+me#|iG=88-LXkMFfJq`1EC*b_H>TboAC`>2Blwl<gg
zZC|)%v1GT*oc&$5U3Z^Yq~iQ8xo38?q1&4H=>-~ZUaxYL@!R-aP^SOkNB87%VXZ?C
z&M)NSo_uQGT|URFJI*@nzb?}=wQla?+F5)lE^WEty^D{3ecvN)wEUv+-aB^<TyAej
zyYYU<#tkc`ub=$Jui(eF4g2SMZY{X@qUD0cx9z;E7INL1YtA^g$mOWeEFI$qinBMm
z-}w3KsMN9#JU67n`uEB?wLhP!zRW{3+vi5%p_+n{z>s5+-04liRw0v~g{<4l>0_B(
zQm5rFvudH(2l=#5UH`R`YyUspzQ(2FY<ih+?LmF<z4xkaXokh?;mqsw4Go@JG%a4f
z;6|b1wDs+WmMxvzckb!-+P<dUtt-#i%I{?5<jK7n_>=i@?u#m6zpd_1``5Jph$uaA
zUEtCk*7Sn{tP^$jnm&8&cwv>e-=C1Rv%PyxJu>;N{_Wa2Po<pcIZI|R&(9V-&%D?-
zxGw0_jaRp~&Gqog(Km7M3^-jH$dYyVpIyd%<#qLeQ>`Yf`m#z^v)Gm~@bki}FRsbY
zuf2M~Hecjb`i-Nv-;4S#_x@@TVl^R5Mq7pLSl8?O7j-RsLML9aC|Wl^w_3Tr@!zhG
zn;D*7O^sz`HMi|qbs*nk)!QfMj`3LE;Zt<`e{RiznHq0v7yP&?SZlem&h_H#Fp+*H
zmt~K&=N-0vv$%ABww(skhlT{N8t&`SZVs$xE_1KGCilNdz(+KqK=7!e)VEvhs>SVs
zo8(;>A0!vF?-S>Kaa3fhm+{pX(RCLCORfqgYMFBdm`{kEuIqEKQ|x`L-JXqy_gvmv
z@zIH?>wx6Tea1UlUs%c}F7Gw8Xb(8RdBSC~N{B}_x7ySTQ_34w1}=ShHTpr>gW4I|
z932<MxKetV*iIfj6u5<%W!<fF7D|=YOv;iUOTYX`o3^;|m5cq3h}#TpN4~0Bt!fmX
zx=1HvvS0dv&qq$2b$I=2dtTIo)(K6rNh%p1u3t&`)yTNpZ>9Y~8}6LFZLzxVm)#Wg
zy0k!Z(w|(_%cqX7*sxyWTKij8mn9pMogR4qc6@X2;MC2k{MVX){<!zbhBaa>x9X*?
z+X~9E*TXqFn=`~$P1@5hHT#zSX2$sq1vx@fgD3d!n0xG&>U-wB?~NAf74$uj*s;th
zRxZtDdEUNv-0!mr+z%d_dwueTd&?%W%?zn;TOK75XZuj?$I*SOcZ(_Bob;`d$Jo#F
z^O~kvSx?g&|9h-1oM_5%f~$-nXW0&=ynB_lEfHtWH>Vx{E*WpI?&0yeud0tWZ~l6_
zkL%jW*V~P!EIU}|Kkd45sesm#l(f@--UWwlXo{GzZ-v~q?gM?{cXwM@?cEssLw?ib
z@5T**p<LbqMe=)=2wt9f?QV#rerfIL)ETYq&uh4^Z4!ubtA3tkW4hn^x_$VA8~<ds
zGI$i#S}sa*Fa67ssPfIYykow<_rar!+P>bN{@rr%f0ik6#WmMFR=wL}dw*TMV{NzI
zTIH6WAa9oU$|etTr`u>pOYgqZvAg4o;f)#ok2L#BSXy{hUhTU(>9w~LCv(f1ZO?+6
zcd^YnWj=Y;;_vU&_-}`6Upn*PK)m^faDmXc(C<&St$lb(^V@c{CE|<+Kb?Fh$z_nQ
zEorB9K<d7XPw3>g7JC*i|6ilCsydqQQ02RH-`@`^-voHHC@h>Telojy>xRB}ca#%5
zveGuRB>#y2R@ub+rB%#v^`U!~Qxm6_*DxPvZB|v>cs4(MvzAV=u#Eo)fA0I{hy7lM
zoBw@Z{J=M$Z?3_~mSgWd<|<ETS@Qqv^yc>&J53KvaM&c2^dM1z-CA^R*>RIYAIi_N
zoSqbDxo^%q_wO^jf_&z434Ri?@D|`X)Z?zeyEo_tr^!?41=Rw(*KByOLHlI-3*`)!
z?Ez)4+5&&<OH;^R>a8`?<ehQZyGLhsE$o}5*7Q?ux6#Rce{Fxi`MpF|m!Y<xV(B@K
z7Cos#)16CBUa$PyalLN(gL&&Tl-_LE|9?4OSgX0YRm`@PIn@)~)>|gO&`e-kTP)nP
z=~?YPPRr%$QgOFD>*ks_q;a+H%z5@wg+J7!%I8d2SdX2?bxpR!jWhd%3v#`jF7M--
z_vMB>?*-{2(%iCfb0!;nWR1G^aYEWTzTda^<mudzPm_7$TjYK#USPI|z+W4Co9@L@
zK^t{WKd<$QSn=WMv?)cedVKdxS+XUtzx(?i@u_Dr;ucAn=e;@kW$ui3OecKrn=cW4
z_l~V-=CW+<M8@-vmfco(bGcsUcXXR+<bi-M*@_AmCfl{1-o7hCXVHhlORjd62t2*H
zMb^D5if!AK!r2{;S)P4!Kl;7So4(}0z3D1xDNSv*iaQdci<}%6MLLx{+-YDdt*&r*
zU74qp<XgG27X@AO+if17dwyS4?Xwtr;e;hC-`_jjw&y{?1)XJzmppFE7v8@)$+E-k
z!U>)Iy~*qU=!g`!yUaZ@G2Wla(#e0-_IHzg+&fKMoqc=FzAsKc<iFzH*L==dIsTKj
zHlL9{d;O#DHmxjqvvP&=C!c*`+AWs7dRv}c^|Kt?!@KxG8<Q>OuqdB6d-~o2v$Lju
z+bXLMzt-k@nWOrIb;cagx@BJ$Z{Kp@NPC!~faOKwBVrDGXQLHozWA40S<K<+7xDGj
z`e$KV&#cvU`Wm-MopFC$$=4$jem^^<WG0vNbnP<{E;jvttU`ScvhA;Zdt~sUKz;Uf
z*^@5TazFa-oZt*`*?Idp|1`D#tuwZ*71m>pEw4T!_sux(S9$FYfq>S!d7pR7sh$_*
zd?0!x>ygs>tQTvA=1Cp&VawUd+3dLHw@v5d^O2{+E(`BG|D5?4pIXU=S;5+p6NN9T
zHcj{bs~_6Bc&dEs@+T&%y@J1fIJQ#8a(9eR+T1j&KVNxO-_1SFxG^B~W`hWKt?JI)
zMJ@v08z*dBJ~zO-c=-y^Rm=Xy`ZZjgT0Qgk^6K_`7xk*`Kfi9NdN<u{o>N^ld!?35
z=IyoZOy27g^4u;g=@gZycAflQxpj58p<81~j_YojZ;4$Slo*@}>ObtxND908yUWe{
z%!gIJGw(}D-&bUO!~MPW%(=T4)w&d%jbm#W1$P}gcbF$vY|p+$tB&zY#_kRMRFS%3
z;^y@B>$jti?sZRN-?>a>@nX^GOXO$HH9haH|6NQwCUWkX)6(1XnJc7MIw+>Z9rNki
z%YDUl-Pz5`n|~c%aBa?MlR4|w&ad6p@tosFtYq%f!p}Cce81V=yw6>DF-omWS!hXb
z43}@F=beaHwL|;-)MBP_X_cS!`Ek2gy53qW(5~#!ny+`C)lT`oRcht*!lqMGZl72>
z?XT{`-yZ|FZO^+sN%neLy1VrKKWmRHo8q%#Md6(ZuCMO6Kk7TV$-Q@XfZ{>Bhwi5z
zznmMD({e-5fG5dXrqz>u`5TYkC$$1Wmujzc?Ra!!=_<`7jNj%aeLd}T%Hr`2&-l8S
z#SJT^zY8{|3J7(4+|8hW^k2;h1&!tMLRH!C?zd#jzM0AUFZS`}8;Xx(1n;pv>`tG~
z<l*w6U};g+ZNB9$MhoVyTkJc1eL(y2*^}qRoMpQ;sauib(Wh4_{He>0*QJR6ojq~u
zDIfnX=?Tj=m>%KTq+hz>b{|9h^vL7KIX?e(u&vvAH$^ruFz(*Yd2AOx_y1+^IPg#A
z_lwNQ4tqB}<>6yFb#b@VmD?BAziGMdX;|<eAj9bXcK0he5ot^F>x(aNXTIAZ6q*(l
zVaHXS82h7T$%m*G0|%vT0wFi%uaAtLR3=+(=JV9_JEzymRqtNf?cMT1^xW(ATenl&
zd%r#VdSb<ke?J)ZG`z|A=IR*Kxbas+$;I09(X)(N_f~J4T{dZ}Nb-%!ZxQyjmrDG3
z-iAzeJC^cul8?%7g_|EIf8pD5Ui5u`_0-?Cwi<##mTxxat9^O%tj%yzOE%-YSv_g3
zZ@rIjviflIo=V)VB{2Jkj(y8%{Wl`)T<Pxe2dy3cf8LTNliDaAbhiJz56iAii|<IW
z$c8t>&UxBoKWX9C9jj-5uydVoR@Nrq$@@5tf?AR3((X$me5YNSA$nx`u1mS|RWx(m
zpJb<S|LoFx=Jj_ItM+pN#>I2)YXz)oPMt7i`KuLcUMcMLTzYrH_vj-1xDZL7o~l#I
z=R~|#GjQ#TSABmWX44X*FNK>FX1$*Dbd}<cHOGoJt=e~9&$J_S<Nn7U_ZEn#<oRgq
zdi(N6`O4`%2YIU}uUd2FJn!t2?f;tAOR+wdyD6Tjxw>`_lS!D@-87c{tKUl3YW-gp
z)p_(_%vMwBsk+}*im#da;l!lb0Wr&;>`ZmLxT~(kIaERO-iqr5OC3ziG^JK&L^JQ<
zKOUmHpx}|&R@Tq_30uV*!uwUE3nsZK7Q_{|eE*j*D`8%QAzQ%h(>@3DrP&=Of3UQd
z`CGew&EG>R8P<-+%TBh*E$F{2FVkG`MC*`(>y|_JI{RXuxc<0td26LRhs-fq-5U=*
zCQg4C^--{MV)-;R&No6!RV#{Wq@T^VXncBh|AZU)xA#=Z?7pCF9Awt`s&Yy8Js%#Y
zIHT>!9WiUYroP)YCAH%6LiblI@-ho<_vyXZ@V9sMRw41gKg9z5mrdI@sOwFaeh_66
zo2C3Vz;la+*!|u1Q#*JgZrv2D@UOqub+6pL>3!VQ)eBetkMg<YyL3;%iGNx}AMbzr
z|M~yl`6tbK_Vru4dJFpe{(k*_;s4!VAK$wDXMfM$)9Z9SC(kkeKmQTWNlxo`(-ozc
zaQLzWWHm4cDsS@aSTV^#P#`}3<IJ7wW0!x^G`+auUDo<L8<mWemH#B=UAybk@%6&O
zYdOnub)=2&H3#@DGRge8WlMeUqE8OJ@(fO%%U@nP_eV)|mq)$0!ITLpt+g?$mvS3a
z$!rugyfTAZ=(m!U%|5xX6Z5X$*PQ#zX>Nh~2H#gKO|BxlrnoC<pOm(Hf9E>4%jUy<
zdd}N-`)ge{tuQSYTN~J?DDYDEO+cOBOhH`(o5;Eg=Wc5ytGX0-m+ky@L+VS!^$qg_
zTV6e|n4KSc?YzlsrnJ1*t#{1}H{YN4Z2Peb&r%ro9NEA6RQzrMSKmFHovw=<e<?99
zJN<Ib`F#OiEV_F8pSt{44_V*(^xyK=;(WRq{;~h(bqZdH{bNy}@c-p6Wl3k5m-E-j
za|kf#<OHNXh*05S-}W}udevi9#U!rhrd+KX9QHnRVo;nWtGngJ&J^8Htp_~88h&3l
zIM2IhQ`4+({IPlQ%KiS|t}c3+-l4IxW$*p4tZ(-Fp7UODe7yh0jab1?tv7;9=1T98
zWS+jZBYlmh!-gG-Tsxk8mapFDl&IdbE=Fd?zT2#;ECOc*bm#8ZHt;>R{eo*{NW{gQ
zfD30``TqSqa=9{k&c~h-?|mD#&$I8{%yH5>uV-ESSCuLI^)r+I{4toGbz@)5#SiN;
z)7f9fmK`zJ^pHWV<@IUH;+_pk#T98bUS`KKYD)?=_3GDcOpUpEB~Yt+lA7n`x$V!d
z>J?0kQWCj&r<74Q?)_Qw**_A65|$o)^{nGd_1z@N=->YG{E{^yt$SWrf4s(JUBh=<
zKR~b{FVlOT`@@Ns<Ui_82y1f5I$;wm#cO@1`}O(h=Bjr&%C~9UU98w66Wi!4Yy9(X
z&U~A)1nFMohJ$z5UDi0NGe6_yZ2w*5(5F00>-Xn9vH_Q-etFlvp6|EAUWMOs>|2kk
zR*PPo^(NN+__K6HnG@4;7u~vL;(aSUZQI4p*G)e1X&Z~a8z}#`l1R%w^sX)Bhx<X{
z&)i&#X1;Yge1nr=!{z(eH_iUcVWMa)nCfrcw8Ht>c5}Y>T6f-j7W%;undjnGH%%mb
z_M(EY=X;(fo9)<~+3S8>VeV3cDBhWw5jmOiES2Hk+PdCyTCd+{^lJfgflGGg#9d{a
zzpG_Fc3jQz4c+g#(`<G~pT-$Yqr`f_iX8cpW0zt|Qr)FY-%YdBe%i3-Xtcbwbk6+G
zuA8OGc8He6<mSFj+dJh`ruCcPpR3pk|9rlhXD5BGWNowB*?U|6)dc%)k-vBPMA!j~
zQ_ibj<(S>*E&aw9d$w)wdY9kQk)jplv){ab&vd(7mN(|M^q$pn?wf8j_?Ft9yXbTM
zscg$E|Ep<fk!OQkZLa^>z2b?-+zlMcToVEhA7**^Evl+xdJtdzoO8eR8rLiBZQd(n
zv-|5*zwLale6F9D7CN!SWqFLxn>X=cw^e%H7+6)!c{%Bci|1!c*QlTZx%kzqd}SW$
z-Q|9>-2H4-P`&h`{fGJrrdk&|-nq!UF?D(C*{V$yU-Ca~u9m3~&A+ky#;^K$eFu1i
z#6I8E%eMcxdHVSS<=sisUANBUOU$|Rmgm|6%{4#IE#G#<L--qC(#^*g-j!$F(AV8^
zwR`POv6jmH>eo|L%Qh_8*0qk?ms2;ALHy&Hd+vVbKAXiFxl1;4RqpP3yOw>S&|#m_
zIVW}G>ele~NlcP3x}Pg!yq#;0H@8dI@vzw3q}Df8iU*v7B{y}Rl`=DU^L|dr?w#`t
ze!2LTNu{knt{9-7!Zphzr^(UT+?Cnw>%0$2o~J)>t@kTEQ_ay6r!IEoc8+ar2m7|&
z#mko@9lh50m(}8**Qy(LA6Oje`TeW%Q>y2*XZ_ZT<2t_RZ!vW0oW45QdsR$x4CnU5
z`%Txg3Z2cWWxjpld1pOoi-zavZ5OKYuC4048||{%bp89TnH$%?z2?xiKXyXx8R-*^
zZ$s*CT|Bqdr7H7grJ&p47Y{Z+$yF^1Twb+0&+~Uj-2R)c^PQwvt-Ef=`7hd+zxr23
zwr*9M+TC5TR;PB!J(Rh-Zj#T1XTNh6bH<;amm)gn;PvbJD`HZgKUVC0`ugLZoa3T8
zrsvN+|MUCf<oPb!O8?im`CXQL^Y*96(XdUEuT|fE_3^84Xx2@~hwJ8D|1Q<^z~u2l
z{zu2_cL~=7uWk9_bE4)qU+!0}v$HE+&R_ksxNQHVzj?QpuwBT_`LtE;vFwGobSuYs
z{x|-8(YSe-@5r?}lf|<OxPM#gRPQ<D>QH>h@BQMiWh)lMhNS=b{%_VaTh`93iGt6Z
zWB2gfK6v@{)kU2*7r0#dae|?q^OF8o)>Ee$Q(oRb>h7#@_?uj*_m+DH8Dsn7PkrUo
zU;Dk!Ztpt#*A_3Wo`!bq_1YiJ{N3oPx$ctAciH`-w?0(-6yH=+nY^_9(DoPdw>w_$
z@7I50^7!ks)ejZ!uarACP0U}ozi`PaGnat6A730bUiJrU-QsHFd7$au8%Aq8e_OT4
zfQJ@|`(-%y$<^J;o)|0WyS8FyL(yJ$*+mjjf&aejW|*##am%mO|KJyqWm~p~)fd?=
zwf7NUbXH*UH<4(y-TQ6MUfUb@lzEj#^VhjG)@mpJE3cK<c~Jeto(;?r{i3ZL`5s>v
zxoTZ0nLOdjyM->k{kFe$75zG$*=C%u{N?N_k)}YtB{p@9RjVzRSbW!TI2xxoy+q|y
z)PE1Z{U-w^20UoCbG|1YB6zy-QtzK*Ev8Rb$$A$WGE}aez-{K;yNT;r#*XYn^$CFt
zS6l2>Z43YE?V}X3$ET^_=4^(tDWV(otG=ha|Fm`6`sXIw8ve>oGTt)t&K#vHoF8SQ
zBz?avp2j!(CZDKd<HSi$EZ<bmim<M0F)cox<MET@z|x1Ox44`LS?Vv+a^wE9%rJ#F
z`T~o6`v1OFI_B*cI`!M#!tm|0Cnc^bV)tJq$H#C(kpKC<1qN@j`sQTDzi77Jw`}$L
zr_Rj{cMHEqU%t$Kf9c;`4UJ#Pf9yiLgnhf-2rSrAu~XmY#zwKYgy26#^JOJ&7mCE(
z<n+67vvWK1rNfrSkCyJ&73^YLdvN>j-_Co!eDOZ*on4mycuPrqwRY^s;~dj|S2f08
z&ReCn`Npz!TejCSFj`vadAu|f-*Mne?%tcbcTPMS%o_LA{8wK@z3`3qQkSorZ<juv
zB>jlvPv!T$vFzXbE<X<2uKH>B2G(i6)sHv)K6?C<8|$ZaPd__$@B6txW&gVw4SN{_
z_AK^iIqtM+&IRrV4T~?uhSywX`Zqmo`5UX`lV%pvUzBXTRJo_<w$1w`H@6+`y>9RI
zO#edXgKh6GxFlAyxD~!tyjJPMc;M?C4K9}Utd!Ts%%U0RRo7fNuITo^{cV)X+mBxk
zUSU{Jyye%N^%glZo?91nFOKtiYJS|kyZqL}XDhznw)(PNjKgmBRq688A4|CACY0?s
zKWF2N?F&B5;+vuM>Hp77Q?4tANNoR|rq87i<QQ~dqR-?vJQ*b-><;>DJvSb8+0M1g
zTle00leTw2-=ZSh$NC#0H$6_~p4vaR&Fs2W*9@<=O&YyxR&{c1kpIIP|3Buk!~DRt
zZ!R3Qeq|vzZC#X$e8DmQizm7}Uzjbt@;ms-#zm{Q{f<>Md0X}OeAxr#V<wjpJ8c@?
zPSK5xUpo1dD<7ZLgUFkemZ5&OrV(caK1_~%<PxV;A7SNvu*0CbzDIA`!pK8OI-S#8
zzIqDDmj2wlszqbn_XUwI?dQ)Y9=YwQDah0MjN_bX`R`R5f)~vAdvpKN2IX%*f1L5m
zT(e>Q(s#?}&+!%S`?hD>{;v`n^h{S>kv(_o;nt@=1iX%}`)v05!rOI=%pYZ>evfKo
zcMAM|^l9q9JvVh{u@%m-J!89a$EB9ixO>Klq3>5-Xo_gMWO&8qx@WEAg83Uw<1PrU
zQ+UNa@9O?vCx0a_S6E*9=Xm0>46QbI_eJZM<eBf8G;wna*S-9(E4oTdxr?Tq`^USr
z|J|J0mz=L&W#uf6j(>dM^P^psoY!BS|F)=hFR#;riPdZG+_b+Z9{PCIIs5+4+qAEj
zwkO@)J69)Gqj%{okEJgj-oGo~l%1KUA788Kl|EOtEtUVArdXBUk4w4NJnl4oEwz+Q
zc(!k1VeM<<C3_jvd#se5trfL>=eRp-|2sdKF|u$9@AV%kmxTM7lFENYEVVUz`HlU7
zw0*MKr`ak0QX10!Uw*2vAyoYO3;jD*ngJJP?^sb{X=J21&m*~DbL|3&hp!vMR>iy7
z->zzSIDN(Txk-y=XXLNXH=50GZ_kni9GjGc=G$;~eGI;I=hEEOE%tj>Jqo_9AA9ZF
zeE!y^7H?+5Y56XX-dvmZ!}Q6|tR){5`ClY1kC;*SW0qp=X=$c^8lO+pDerWCd_?8o
zXSTd;UODS;8n1fZGK<BO%OLgg;U3|RrM&;oEZETFe(ge9MB?(s1y|?47A^5UU>EuJ
z;KT=ff3ymptqi;peg6EN&eO6D@&7|uO6<jMMojnDldrlVt-CQ$vnnw3Y}_Qy-`lfo
zct6x_+ZM3z{<gzO5^rm^c&(f7-SBF&qqgZOUv0(K8z*=FPz*R=BhUA7yR*z~#cv;O
zYVv*Dw^-??(i#UH&5+ea7XMz{+t)iSxYNPy+w)%6$&!Ww36tz?YmyeI-r6<)`0>4=
zoDS3Xr^=|@caHgZbozdQ_iR76L@-5Fod3+a{h*X@wuOepdch@eHhi|8lRPi9UwZea
zq-I}7Sm>_#c00JO9X~Jo&~*Fj%rj4VE0}AZ-(OQN*HU)-@r35r@eT%uuGZzbC7fvK
zU2-_+n`QR@EqnLf_?c!gCsc9kbGch8_5T#E{PUh@ZO8HD_Z_hqSEJfLJNFu&`83N!
zIXuul*{v@-^}T7eYv(W7>NUIjJ{pNF_&UGq{tf<fDIz;}H*ma@t+(47(_z1^y6Qrp
z&zrBooU+PqcE48su~O~lRgM4cm;T1j+8<aZb$KJt*B_!RPb?Rd%<ks*zWuWxe##n?
zx)wW^<u~KMX^I@*G~v*~X?q@3&Cr^q%6>vm=l0ZzQ{yymF`3Bz4p%hTnYDHHqN$mu
zLq$Fr+<vlJB)RS4#-3)LsL$`qI^MhA+I=osaH8G!n~~F$ZaQ9Ew$PrD@nPprW;+f~
z;Ux>39YWeC7gP#NKh*v5_0ca{eg1yO<(T4c9M##ClD|^sU@+SUyP&Ph&&^n_dOfFB
zdfjBH2b<R4h@J2z^Y5KKKX$I$`on#`dvcmfV~)jMr#XvVOkzrMy3HqFj5fXdd;Q7i
z`i)*Ibo7LTj(yKry70`M-+h|x`e#J;uW8%6Bhq6vS6hYguX&0;Rc;3|td*O;?So8P
zJ@2)|2hH(Yx2=Ea)1rQU{c@@QZ@)k2`<uZwA?M%6*)ua6=N;p3J`;DpUNP^-Z~dBu
zQ~nreEojlJdA(3%<G#AXvdnX~Kdq^guF2-Md2>5FHh5q7#yJl+Y?af#llenA$>_`!
z%VYD?emTY+b;+O3V0~|6(RAUemG@Kk-_BHTdbN3vr1s6H*CgL8JumxH%y2E&E`Q@^
zabo+9`pHYEb6%e=sm;mPbbIU0OBZ@}Urw%>V*8=<3WIImXa1aT*MBZrU+Fe)iFpC*
zjX<5Rd7n@J{$%@lLF3ieZ#P_U(KnR%|L*czU4^oO4lmEHH5L{gzc-pss@P$^;J*0z
z8V-FH;WslI`PB^EOWvL8+ZOvl#^LS76_Lr}yOiD<H1$e6XEib9-&9_p@sL9%`O1_H
zKd$~^p4mEqDZ)g5!*)r*Z&jJ)U4d*d{#VP3AM%Q>FRA6cDyO?ge6xtYheeO?#pXXQ
z;)Ts`CT<n?E)KlB;mq%d^=>6659HX&hAi`~b+2|e@8-KKso(Y5@Xz;`&x4k(i*hrm
z;Wa6D*9m=f@~%(R<ZDaiycxb6EK(M=S~qdmV!hg>+A(XJ42?_MdHg<peZRoSw>>EP
zwAJz(CoiU*`uwv#K#g_rji{MjzwOTNXy@X2c3Hho=<V&Wx^mvXuHBAT8IN8(yDR_Y
zBYE*?{}0y5c{M5*&;GJoJ8Qamip5<%K9xhWm$b=0tAAP4{`7fb{ECaaqNmN;cshHF
z%=u;WjBcGOw_PU_aI*IMb!L96?HgZi;%0b$zjpQJXYZBfN86sW4m|g~Jbs78;#}FF
zmf4RdPdtA-_}x#Q{j;~sxw9nuxy$tH!Hagw#clW~nfAJQYVGQRpSR;}{;oH7{=5FS
zdBe-IqWRBiXYSqgu>8t|FH5EV?m3gH)G%+Y*NlU+!@mnZ-hL|c$T?NRGu#|m|8LyC
z9<k`_XO{JQj~NzEjdqO|QFqYXukhi=wMmaZT;F`&da>ws70HY5z9hap*Vi(C*YYoU
z+83DLEz5B<-t6O=X>GFBQF?P@uv*%~-#>od4iRZL(L8F!aj~Orw!n9;#kZDZ#ijo<
zlj5seSYU9hd+`KK@mPCDW?v-^y<4USqgefq@cf?jIc55{Vx{mt=hzo)`j;)<-I=s^
zFUQsVM!v2|9xd-LpN}@SzwxpD^%lnJgAF_upB`uYt6g4jAVuTu`IIw{)|C56mi!6v
zUbn9OQTFn`y7T2srl@*9E%lV&SRpfE)??#;+kYO3F}IXgm|=g$u!)VWSXF=Dl?htE
zZ?9L9kLQTbEDx5h+7NT2=Ew$b`7bXUUs!(1%9^3Bwb0&Z_qvcelg-hp)m;ydvgk}W
zzF0;0+55?Vb~Tn8yw44q!L@b$wToi1rT*{c&iuid_l7mW(JJ`2$=8W#znFSv_kJ`N
zV|)DhOVgbv3@%>3x8Luze7Vk>|DQrc&99F3UyIl#e&TMofByWXZpX<#8#Z3k@#DE<
zvTq*C{pA^k4pK93JnPGrv;LoFT6%cm{_=On|2_Zt<mO5><_A@ep0^daxi8n)<J#Mz
zbuRK@bFkD>#k|{bX*J<8t)Z$mHxms`C{KD3ZS^wig^Zp4ihnaJWQ*gkWrnzxo!Tv=
z{bOxjeL!HAXyGoNxP%Ph|3%*(o<6wk<2IFvkD5v^TK|c?sW!zedD;8?&5n}qR;+GV
z&V3@`sQMfBZ?A=eXI<QTmZ>@ULzUOsbN<`EJ3K0=@JeqxV|dOe%XpvMv)^;SC2J|%
z48M?}7uwgCGI#f`Uw@y})SeNN$oc)q(sFy%v`f3P4QG4WEk5>j?VBf7vwUaGw~_r}
z^?v#Gxmj7~mz&w|{qTF1G$-GQa<&?a$uFYCzJC?u{@8x%Rc>eQY{j_~u6Bm4SpUFs
zwpvd9>z*h1kuUDb2yece`)%Q=S5@y%ZCW2-deuNFZptO=Il7gWb7$wg*Esw*=lKVX
zmX~FL`yS~(QoL+#a_0TNZ9fub3SOSrdEE2pw5gp3+2V@Wrfz*<QS-C-uZtJ+RMUh*
zAAep|>Jqwm@cgBB&(r#+Kdbt!ljUpZx3u%F{cpP)RiB>P@%zTCFeo(ty71`xLpL(R
za%AS6@H`YyedL~|)oX!`7rs6_(YUqh>+i_SlES#nVde*vcN$5TvTP3E7W;j2Guz}z
z7MhEHPdoeD*Y3ociN(KaBE&7l`0d{p$Twshyf(wpJ<h?TZ%e=4(;a$ACs%AY^z-ie
zo%8nY^?*lmb6&o#+vk_4@W<=Mzqz09W@%2#NS}V9^7pS<_ve@0-mNC^?VI1FgfH(?
z!itT8oVU$&dp|iQeMyG5j)~RIn!Q)q`u4MLVQ6Ayt7n;;Qftp~ee0Qp_4oJg+m^FS
zajBPoa^e1an@-+1pp=l<X7}vWt&iLsI(hz5YumkjCmXu<=vr^$pRd7stpDx9<-h84
z)-@dJKWi%JIY)&3&qlYM*Y}-X|7?c(x5A^BnXFb+%vmS=+aurFWZlxoON<+h4w(Kv
z9<b_0^lX8M_q96S{Uup)=5J2i74h!bBb+61xt;CAi=gu64Z9a43YFcsqH?-v!;KyB
z-||17sdl(k`7849fz6(g|MY%ao4dUAPd4hQX%jx66`7vJbG1Z&yGGj4lf6vetj&04
zIfibnfA{n5?492w>*u_Te`{cTcSGHL-(N~^G}kVF@}8Sv+b3W5wXbIOq*|9BP!qCD
z{heCR9`C=ObJ2wh(_?+~7zL-NEITfKeBRqESuO1)5zl!H9taA%em-w^Ut8diQS;}X
zhuONB|Ly+nFwJcJvQO8`wSKR-P-#i0^C`dVpJs8B!eUZHQq_|To!EXFt30&1DsK4p
zKxvTM49$t%=Nul$Pn`U^_G<r*sp9v9QV(%f-q`-!S9unLyn{_{rXdH<TUPx<hq4a;
z=|OjH{CfSntJ;nCBdeL>$+E^}nGY{c+P<q}@^Y*0y9|u`zUKbx%1*esJRtP&Kc&A?
zO6z1+Ya6b3%@wb-ceAk%JHxUmMyEDhk$JK=(`{}_#PjY31NX{%cX__9-^_G_bCnpM
z*?xwQtDjzVYa2b<d*+0ok5$7ql_Qn^oWA^D7VWC?ch|%(Z|xcLLvzdTUC4j>`rBjo
zl*C%M`KARYY$Ai_G8x7x1^@E3c(Q%_)Cte>I1JS7Bp1oV_eo5CAM%CmcUz2Bkm0``
zffaQVojOe`j+LE@i~s!j?%z9^pEtg?Q>iq6v{U(yo&DqZ3$HfqXDDFPiQ4^fjb=vN
zvT8|_=bN3suG=qhdMj(uZ-K;<HfOTlW?niTvgV2V;VH!umlAdbr9AxA^uX<g=0DNf
z_tRg=Mc>am|K~?zT=DVTt9eJeG<}(Wvji*oOq(41%wEehtHLJi+#Dv8yDUrZi$0pB
zw9=q{-Mn*CxHf-LEPs)kV87(LQ$nB$V`4pDy9f933)2MM7JM#TSGpil_afWj$*pDw
zFE`4oiK(5r5TyP6>19^)^(J3$dh@i3EIxDk>*pP}_qy-V=Ft4kmm57}dU@Rcc{4c<
z&-|NV`(}|vIcNK4N7;=1e~-@lP<rE>^-&9htCl<u@4Roa&bL^gGd1!-li`|~;+Oq2
z^1gj46;XPV-FVusRHymD_rrEB)1I7Sj^~-XDX4$e#n08>+27o;_kZ;Bu9(54he2~S
zHl2EJC0Vndceg%wlH8J*>@)1&wn@yl3Vp&~SGs-T|7B-*I_^E1D=KAtk~?qn?rRfN
zYUSru*BzBHEzf#4?Lr8XX2X+p@l7Q^qHbs&jg8myntR^heebj_+eLOI6<7a%dgKx>
zV^jP&qjw3+i(_8dP5;6_#eP@w^MJg6?%%9dy`FTqX0rMdFZ~*ic|!d;n!=s6dD}xS
znE%@I@Y%!Hz02gzI3Fs{+3?)0{Dr>y<o>9Ty0E!ZZb_|>vCq1+@OJ&@eGea%RXALJ
zS2sE9gZ09-D;VEJSmgVEG5Owa=%;y|{by7AfhWv=-rcTTB7S(gYUM)tyhCdrDBJ9t
zw9Wd>hxEMj#g03}lIOht?7zJEQ+TjamDdpl(^L1~>Xf9O)V*$fHh<MKE=4gDF}>S<
z&zq#aZTR%@4PVz2?U)}<DS8*S^?k8ibwV~Z|2j*Y)%5LB#$PT)JqzE^Jn{2lx%sPZ
z3o#tDYnS_acmBL7y#MzvuVijMJdsy1Y0cX54J{UG78k#Jl)k$d8Qj-@KHhF#gjm+P
zaP9DRk3`O!e|NJ46?lg{7vH<JvcSp0^-*@#<(<z8maqJOX=A4B)AB9X<`$iAR(MeH
zM?7h6&a36`y_A+(+&sAd^Xs1~{fzBpg1?tXiKym&+1<Kwy4O3Kjo<f9pVCrs+GUPf
ziQYc;_w&k1Od9T2dA<L=JARe=?)T3$1taRe=p;P6lD$vhbi2{)D+}jcFGy{FwM9k#
zkhRV6FJIrgyuJ4BWfo)5q-?>p-=}yoehSe%o7lc~-BXME`QJ~U-DmLfcm9IxdFFTC
zL>?*K-}O~>kJ5d;z#~%?tk>>{GgP`J|FOd_yD#=f+V#*_{?BhrXU$u;Dd_gM=ch%d
zSKmxOsrw^6uzK5ccG-p7O>9<fTYQv5|9s+K5$_)nmRx%*wdbYpHBNFV5Q#li6l`QU
zO>k-J%8>mov%KCkcZ!r;ed~CyP~`dFNf}QfehP(m*BLxza9dOSW!)Q<i%(oq72}em
z1yAVduF{^<t#Mj+=3?<rN|%MZSFt@m9Wr}+>7$C5A1<8V^Y1qIndzs^m0M5fy|0<L
z=+|A_Xz!B&QK_8A@@?iP?u<WkWVNxJF_XyA#XQ9o|CY(=aO~>*Hcjy0{D!Z4(+p1}
z#~(c{|C`%z%8N-yl6Fm$F0whj|3XOkTIr6>hg7!LPg}e?{rt7)tScK+>)%y+ZeL>0
z-z2Wtw(DZrE%T|9U%lq+k>M^sARUzP@R#6M?E}AGM})^c-cr1YbG34s^yf(BD$$pp
z<&$fl?L4cw^vcQK7fkHrvh7k=TJ8=w^7v*W>%_egM*VJ2XB}9mJ<*i4c+U~Z3gNAu
z7c<`eUgcqZZ-e+1zGY%ZmfrdHa(>g{Lyr|=E^N|n{E|?2>F<$j_cz<a?9)HlT8qtj
zA~t2$b*9vnX_t>JdVKiX^Iz98Rvq}e&bjY{=!R9bvz%_tN<Mx)dez;)<p*l*luZo2
zotVSibF(mEftdJN)vBAeWw)0t{azTn{I0h~sGG$Dt-7zVwL9k8@!X$a{p*erYiY%-
z?X^`bEBiU#E9<iEo^UEA)O2w|KF<`(Y2Tyw{$Qy7Uq1cY*WI}{;_mYwdA@0>wV)rP
zZr()3*<M0?@}E}NRx&S=^;xaP_g2b}<!t_YWm~&H_jld<xVPc@M77R0^689QlosrG
z{c~|nWf8yK(epEHH`JKs#r<smc*E$RTfSH5BEjF*_mwuLcTRkkc<<NSK-o91j_lHn
z^A6zjn>a&Gwe4p9>rOv?v*IV5d*y?qz8f8%Ut2eI`}4*x<+J9OZ@wh`;`0-^Z($pa
zb_MTY{k(Z==?~`Gdp*Kuw?|LC^?K?3SsFWX*$RE%9FyZYoYODcqmnUa+TBXO`2Xi}
zUOrp-*Ic9J&nhhj^P8vV>BfuhRkrnu&3NFpXI0~d^4?^V>6<3p6RLjH-L}H)?EUS3
zHRgyeietZeuhzn{uD<NG`kEWOiuVJ#<jx&@e&P{VmieBm3zlgmCW`J6TjQo0^kJ$F
zPwkd%&1cIWpP9OTOYXY8tPgJqY<%)%*%s&PRf?sh?IvnBxxHPqxqoi_zVvvUb=HA(
zubVz3U$NNvprKIzf}mvV+QLP$+b`=E+H6R#czx$8)8#*FDil5?%yD$qoN%V?<kjf6
zy|=ntXNYh<j!?`Gc)U*G;aj_x_wKVURLK1w{d;2^&ssUpzU|p(E3duNm}Do-H{spG
z^X=#68Wq|9z4zgBnF%vvXvX4OKKf}J_UjfaR!!XBoWlP5wurCW{g)@dOnp2dwSzb3
zqWRt=nO~0IJ9zV39QgL{j?q1+$Mn1+t0RHuy+p|s2^;;2BV`KPEoZOx_R%P`xo@;c
zTw(jVX$%#S*VJb%3gvq`GfnlxqlOP}JC)x!^qsrV_~DJtJ-Np@ei7_*_H<117PyqW
z+*0dzxE`C#)2T0)r}^j}-d~@a?yi)<)}9h<y>7>9&mVVWx9kuIT603vhx5ss^GYVK
zcU($rf428W?2ha?Ypb#|c8T3q@|4<ex%AZXqddz$S)Kn=w!uN)Owleo=Kr}<2`gQ?
zxXL8s|1avEz~AJ@JnuHc!6JuuJNB(wdq(rrt1oNciG}X<$XqApvLIB|+WqmPIp^%G
zQ|`IlU1#9%FaPs{@ZKUd_SvGFxN^g^8~y#R1(+!pDYjXb|I&`SaauYy(W2z(*`Gl-
z6+2=!*`L>Z_1M*Y*OIt}nXZyy=a+ee{?iff7ErpA8UHB1Ot5oaMZfbS*Iip*+`6v!
z_4WNLQI%b*lDE9$$zHMf>pImO>2H#=)D4O+zrS+0s;4>rlFRB{>OxB#N;b{?Y&)~A
zO61bA^L?Qf%E$K9u`$H&-NW6{r6igE@Ji;-snMJtm@hHdp7u&S^X}O~`8RBAGLM=Y
zLYXd3StOPJinoqwPoYm*V)gOE`GvL;Hy^b!G~YQ}x#*}IXWgom%5N`Z&N;F2y_l`q
zp{bufW-i=&^iq+P!>2_|U+<jwAeZ=W-L;B^91ZK<@Kr}{D5#V@pBxqQW^Vqa!;@o6
zvgUp4pS8V5)PG;lvi(<6*PiEXy>~u2;BvEFwAAgtn*&nMNXM(&cB{@Vy*T6a>F;v|
zO*&R?mdoe*u+&PO%iGv?<3#OP+vS~aUQTRMIBC@86Z5UxT%><<`ngMfX8htspYK((
zw@%~tW$@U1XY%iRl6PkCg|6Im&;AT=$5gZTCvG!o@bPM0Nh@?>&^aa0%pP>OH7w_Y
zveS%RcYYUeTxm{Vnp?!)W!3Pk&nzdT?U?Sj2>o56k|*~{JZ$TZNY8lQWwT&0Uq<?d
z??IR9GA@2S*lrW(!+vAFP0YEIJmMdI9)D|GyVarWkO0G(<7EeY9CtYISQz)LUVUyy
zU0~RRdo3~3FNWzwJjfPw-G4h`{(JU2?`<C**(!LSGn7yGS=Zjx{PPbLG=`nLcjEaD
zj_pU+eJ(rjQPS>5Y5hy~e_Q_s&#U>|@x?SZqs{Kz;y*V&DCKOCpLz7Tkl}8YLwCb}
zn`))Ym3ix?U0LEg%hXj><)!i5BgUr-_Wz1K`||$3AM5S^y^G%_|NrOyzZ&-cKKK86
zy#G(d`$xy?|9{;7|A+m&r}q2m|MC7;<ydepac{lJv<Fk-Km9&m*5aB{pZx#t{a5|}
z|83v@zg@omyZu%9{AK??%)j!f`O}Bnn_pBgt25rJ@c8yc{@>&K|87>l{r_(M{~zuD
zKRu5BfB3!$FYCn%k1v1tb@}|ii~s!p>by-bc)HJ^VP3=g{k#AF*?hWX>6|S4zi<4%
z)jvv~o>BDDAxQe?_juW-@&Es<);O=dXN~>;S0Kr7)px(m^lt4trC+~oTmJsv?om-(
z;*&Xk{nabDl>aUMf8O*DE}_9m0U4JTN5_Bo(#KF&KK1|G_4U)X&2&|NcYgmb!~gw%
zUj+UWJZtu$>QBc1|33p?+*&9m_5FGL-{!yi^ETc%bH6?I%Vs6VxT+&1b)PmrU0*M<
z)??G>-~RT$Qva{6ZdKt9SX4h{0i&9u%_7O~zxMz6dj65e-nrk;*#CVq{cru7^!6VS
zTwfn=U-dU`f8DoS`JIJ-?(Y9}{Qvj=fB66Z*#B?#{{J84|J^=+<+%OYxAtcOPxNJ;
zx?%r9=>M%h?SXZ_yDx4%{B+y5tqcD?KQHT7Zy0b)KsdkBHcPYJH{u85yASvOZ?6CI
z{lCrokMIAbrf#qK|C)V!^uI0PcEA12qr2xUz4fnTGjDFAq*F}&j@9wA{~MgjuQ&X)
z`{w^I+i#rOdH>h)&cA=`{=M%1w&p2&fX#{{5*|&5!;hT&|L{8~QqRl(fA#<0$NZgN
zSS{kkx5vlrsWE(hGQBR&sD6gBZmRygh7U|DkDY2~u0QgwqWb@N`+q;m?f<Q}===B0
z|Ni0oYC9)s$u&o*W(3|*alE5bRewfHXoq%Vj*w*1O>wT=o1Ot@mdC5^yRxQX(YXdC
zAER&PKeKj3v0l>P3w@(%WX|LN`=@o${Bp;i<{pI?(lt7Ezy5UV@cZd!4mXG}82c+!
z83+7YyeZxK_ic{f+h_OA37H=dd?7Awy_a;@$76Ml@p~laX4mo=*ZBy3m7OVl%3@_g
zf$Xs>hmT2R-TlzNB7V;)zqbeeR!uqTvge>dN4V6Jo33X+&+|X?Oin$&rR}Qo!F^?%
zVH^%SO1SxN2HKaLxA(ZV=|$YMxl0x-@8k}S>iI9T?t<Lkr@<Zt44HCXPu?${K4(GX
z_k;2QlQiDvb8tKDsnx#MG;^!gW`^v-8-a(i_WjzqPOXZW`9qRsl*g(Mwu+*PT(6YB
z3B1X-F1%L4v7Cdw<xOc0H&3GbwG0El<tvq4o-MuMmd^T&*TAsdQS@!@{~OlN<M@iT
zJkD`Fn-FImYQFGW_4}yJirYV)>y`bsm%Ae4W-l*~weQqzpWS#5-QfEqy_tQ_tvi2u
z_KL0Cm{@=MxNF49hD*KrpI2SfR*X5;urc5pV|UDd9{-yG&yrr+@!F~U?yEfafoq1!
zl0f~MOD`I3``ew`tdMzZU-pD6iTdtRlDjky9j-YN^nOF_0?w$ze2K3%%68tI>%Gvl
zll8+JPM!YeoU&DmD>rr3q>6s;?kbe~=-69)p#9ti<=xwM)lYvj>v{0h*_WN!)(Eh?
zR@y1B*C=gAl+dTfDG$DCcqCLmJaEcriO!<<+SPR`B2RWcO#WR}VY`>1u}mj(c0zq#
zt>v@)`%TN%Wc|MJY`Wy42xq4o{)|U*`uNN5ehHR1dO+pO+f|DW>`FhWdVyt9-QMV+
zsn058gLbxTS*~^Hx#+1iQirxms^-`;2`Dc;Xd1&BcRTOh(SLdC<Lfue%FY)4_UO~b
zHwCG)Z|+;&n38uheO1rxKDFuPT~aJ{Hx$=hdJ;Hkr(1wgU2Qyn`-Lm*+tdEN`+cPQ
z+2#zpJ=W{v-&WLID=FXpN8oY6$C?fOqMzR<O?WHkK9$|xCvZ>e&!#2*#jYCDj=SaU
z*u`Px(yg=Yk`}||Tk{_V-i+Bd@7vmhPwu(9E?X^sJ@NSLM0K7kaa&F*M7mGk9-41o
zxclk?tK0Vv7W8euvG&{KikI(KtFo@Xz4o?2dE>+dHhG(zx85#xEoGdavrc!O5li^*
zV|DiB9~w9v+Su}K{%TfS&aW@DQ!#ih6v()L^`pDf%pSkr6fB*1e@TU5vy-T8r+91O
zi%=oX<uiD4I<_{sM23E~3+27>RI18u)BRMo6^gq$*Y$dZ{(4lx{z<r0qd$a|Z^Mec
zXMWFlclxEuoy_{|$y;N4_176nE;w?_V4BOGM=X!D>+(x@?p{8am|=M4*{sLad!I^)
z9Df(MYG1}A>l4gtH<U}b<*;wM797G{>R~5lBAA~r^Tw}xQim6-GK#J&>u0+6VCKnH
zY}^)`mwfeluAa-ivv#9uUa0nl?R$Mf`~LncjN^SGJYDlcioA;E-WiG9HioCSH?Mnr
zl_BJ>@$cuXW^;XOc9$;SaKiSH*!8fY+1#&hG=}Nl4rJh7C~S0`_pWNbt+8EZ(6j0X
z)-PszsHwfVkUTZ5+I?%}H)rqDU9z9HWjC-lX(q5QuNPk{bexxC<(}jZziw;2Z$IZ=
z@$_xF>aj}iBk4~UoKU`H9&7Klz<^zrrS{#8s)o+!_pTZ7M?S4OutV8{kIhD4ZANw)
zmwH1>^WPnp1rNN|Dwf!>=(XU?h)vB4JAO0m+kNb-R%6D2^mhzdThqQ~+nb0z`D>?M
zdCW-h>Wj-fe%n*)!#-?EU7Keszo|X=n`OxLZ^dm<i6uAZKYn%3h4ZWe>(wnMPVT+F
zrT)HwP#{aT!s)G|l~>Cp<U4<Kd}Z;T9Mf|7tVy<viC^x1?F@&6-*4QzxO<F$&zP^)
z$GP(3=5o;<rW-pL47&1Hf9TZLZs92Tx-ZIO-@Lh2yQG8bP0y~kc6cB(Z<CSAt_^8-
zob-JkEfETrU7jv~-0}XMZ;koW%Q|ur?=0RB-1H#qOV8X*?!hx|x*a&#aAcKW$l*Cf
zUWZQZ^MB4g`})m!64{fy^yZ66*fqb_oakTt(yi(ShwQ0+&X1X|XnqPkESx$)|4@PF
z;+L-?g?4l4c}>;n-537ln+~VWhC4HPjqbjioA6_M@&WO#zq-4o^1t}~MtDb`wWt1~
zxC<?xSFjrN&I#BkyD3C`{sF;D(J#J!dbItbP&`Kxdtcz%>C!%{4f^5@H!5`8Zj$au
zk4^uW#8~jf@sX(LhScym(>!dhB+g>5U;g;tF8x<5RdySGJnPn3COGluVIG}LC9G$q
zSZ4<J>xCL_le_(xLs(*BvSB*&^Q@TqzLdBP{*!0;3g(7?d|$Bqy?(jV&v~a0hp*sg
z3kg^9zvulu>)7MF2O0Ua(r1OuV(;W~Ka@F5vTsBAlipsBiE>tRSvCc0nJ#GK4|-~N
zGdjcc!rbkwEtkr<zG&|LrY2SWapAcJqlET?r$_1zRqlP1zTV@(-n_6)b`$Tlt~mdi
zndAMRgr(mYr>%Z{|8n=f|M6@0uPIt!yP#>;zV6!x9RIKT*Z<6>W8dQHrdg4pB|C5a
zdbD!ME@RH~;fLnl3TP-#FFs!!dumJVB8Irb|Mo1u996SdBl`G{`_Dg{hJOq6@cwy>
z@5ouh>vr$1=KB=dzLDWxI$QYuw;v^e2bTty<)j7Gooid{wX&{a&b%8wM!(i}xoq^f
zbZJ6Q{CV|i(TnjSd7GUYe%Vwfzdq<MH=$vZe8=m_zh)m0y&i4wC~&go966@BQFGSi
z*4_Bfc<POT{^>)rZ$#<l-+0bjq<*u#D3ePqx=FPE%TbQ=Gg5y2-aqe;xFXBGD_<hs
z?^GztbLwywx|Y0fhQQqklUBYhiaS`~RdVRtI+JzFe>H9Wl(@9*jagpe3eJn)PP)B#
zeem~I7O8!2-4`xd_x@t*HdY2!=XdP4n(nr*d-?s{^ACR<+tTizi*8=sBD*GmNoN23
z{Jb|BJb9|IN9;Nryh~I{7qw*l=2n@rSY>xp+w)1acU_c%zv({cS^dK^`a_v~<*MV0
z1D3zxyu0LR>FGO@zc}*xwAY2)Wb~Q;rmXg#Fl)mr=H*YT7j8}tnR(w_q(*Je^kC8Z
z+!lXh8d#RdX}5$KE}52Kz*69IsPOc?if1=vZr|LPQ+Mx?mr%)!Po8&Id|kR`){{pj
zJNLBzxp#g~n$T5+_rmL<zwy5MVm$NLyvXgf-vZ(+KmDBgHc6)Fz|M+$PeZ#~0+#)K
zc+*03)y)OZKUBW_U~h7MU%!V@zTn$S2~TG)eIrmd>3m^$ej(ddzAx*p{_J1tp)>m|
z%hlj-yuZ2DWxna{<LIxCE_+$%w8wvSMXSiRZ&KV`Oc&p=M!0L0Ye?S^-L<jAVYk|^
zZ95EBOlA8R!_~Q`l(BWio8)Irp()0X%a7jOedu1O-j=yy=ij`{TadP=;>7i}Ea&%|
zG6gt(`_67ypRl=CEa+zVCErQTwYPtCeoQxbI@!7Qv|--#3t7)gUM#blr&iG7-~H2(
z|KfJ<Ra)n-mRlWt&``GL@SjiFe)E{PvQ<`24UJbxFY$>>PCUsWXXvGxYiqx7#&?bc
zqo&_=GuPhwW*uJiNZFZ1xaW;Ydu!Y=G1ZeBYOe-|-O8UTCQ-(>EulP_FPQU!bIp|d
zf<NX(ek!kgZ~W0=c~{8K%217o^$#2jUg`hWc~YqT_Wkw`f;<0I#@y}G{8Lq~CC{yH
zaA1u~>_V@zb{#2lpF%VBGyb*i{hm<9EbAmzcB-yj#`*U3X;UO0A7&2{vOl78*v@f|
zO5KaUVl{qJ&-aR0`-SIbu(ZVZpON0vXCM@7b$-KS0W+tcd-XaNeEFe!By4|yNA(el
zoL2LvUiY~7ew4YVcR6@%N{5Ym+J;T)ru=a)0=Ko>TfEk7zo|6wTePKPO8X7ltf0E?
z50YzQLeEDsTCaEIXnWf-H%l=7y<o!X?=?Ij<{uoNxW8#h*4!r(8I)zpw<uokpZ>Rw
zz?M7f!i^3wNY;JtV=}5b<##*rye#+3M~_}VZ*f$3b5`sAjm(HYH_W$e+E%{F_oeY-
z!=0(?1YDPXxmX+)@NGqS<g}dfh#;v%*AH91Y3%f$w&?1@i^p#~Jji{D??%}4?IFJx
zyIr}k^ZJJdx4%nXo~?>!zRhrb{fiv-v+?)N9y2JjR{Cf0O8fHpO^i<sgcs!5m~ixe
zu6nsYz~#2szFCHI8;_luxVO{v*XFgWO!=xA56=9y`WfR*ZAZs%TDA3^@k>(9`$u<8
zUG>ar62qIfN0gR{?M&UT{+DYOb50&Z^XB}gM|BK%%r^ArAK$f-_p4v#J9+EqWQUJ0
zattiXCterga&muDC}hIGY*jTugkhI-me;|1r?}p3OWvzvt5m9cZKmAEn&mS0Rd!2B
z9_O#%KXpm(cXaFD$Bvgj9hW}PZM$=0&~BE=T|a9Jek*f)QIZmEIbgA`w@PjHv)jS}
zzEkF|Tl;2G)po6V=R<0`tz}&%D=k;8ixNv}w%($&@>Wr37PqZ}K->GjK?S=wa_<T}
zc+4a9MqtzWi^e(=7FhenMcIEpw$Uf%gUqwXrKinBeBHi?%e{R*{oOe^l_gCQTJ>*q
z)920E`|I^;`(s+OG;SyI1@O+CT>W*Xk$WqP^Yp)a4}KG5S^eg--2Ar2soS-673+IV
z@>;|zTrU~f)FmH%{^P60kE47ia?}rOUZC>wey(-(Jihs^?3OD(-rlIR{+b%+qZ`Rt
z898!~ZaiE5XWzHz)91nrv!p&=ann?_P5gCp*Y+h#%}#7tyeRH*rrJ@aFDd6MPbW&H
zv^-2cXIQe!fN#yTm!Fxo?%K$?<P3|v#)R9MpFcnHJLIJ;=(c8MWmB$m-%nMqtM@if
z{>P9J`0(-NNw)-M9dmX_?0aK-j-#|`$Dg2g-^)MED?PcszEdhDKGgrAo9!&NR!jMZ
zpZ)!+p3aHdQT+Xs;jb1Wjc1Rh&0w_P*vBbZZTihY_GoT8gK8q%d(MUh*=_*}{@ahY
zr`cXMTQlpmZe!A;Q*X{EEdL_b)PLpkgc&j`Z(o1EY4PXDkJd(AyRj&4hiH$WP>Y31
z?#9b@#dd3Rcw_Z$HZs-!T6XXC<OkIgk5w}?cdArP44L%ibIWD@H8p{!HhC2<P3@M>
zWjt&ByZh+xbUT47{;A#bwwLVx)qj5KrUqArZ+}f@2L{fUV|%pkiqVs@+4W@(&a?Z|
zJqyC_JTMPfZ*gB&s7vJRq?qXwDp#?)9ruxbs<xB8=E2p;>HZydhvH?!<4+bm*?sZE
z;`<Fbi)%!mvR_!bSyrdeF5pRDYHj+7Q)g6G`Cqo*a4(}w@<q)uYdbZo@(rF|D?_}*
zXJt%!;!&RC_5S+j{?A#R$tk+GC!Sn;Q=oQwtHDE$`PSbwHa&iy(-ZU2dY#kdkJG=;
zI?wp&r{mAS;9BYPp<M2&UJ}`VrN0)R_H9`Bqq98h{gc8OTMCalIm*76+_;?WU5PTw
zTjTtNi?(mJvDwiedi}ev*NyEx9SO_kJ>2-!OK`7qm~Whg-qBQ>=E>&-O#d7#fA!Qp
zoZ-NVpNH3mrQSbp+2dj%eS5+a4LQy!=jEe1_o*B@&UI+D_5HU3F4xar{`t+sIN5V%
zbd0KB#Q8k8@Xrx0akG|q`6gapw&UFN_SYsyRZQHwbH4WE_WZlHa+Ur0nSXA2c+Kb2
zo%vS4t}bZH1^;`JFCUs#U2<6%GWXlPPgQZRtgg?0^0{)6_*A|r+EoI7-<^HJbk<dR
z%AB`r+0PyfF#A}R{`T~5wcO`bUxH(`Bi`rNwghyx`W;tooa{ACq2$K>MJfdkK2DYO
zH`KCzP~+5dWe5L@J%6s8C_VDDBTxJ~*SFsdNfpyV%Y!05ojiS8f`fUA;-aF1|9&Mp
zDT!qp{+_*P@BXT%8)c4(d<+XS4g2uBPc>@QiPp`J=cTM@^2oLJ@0HlP*|a1zu=eBE
z6V+c+)-{EhtSV&iK67CCy7iMDD|o&#XzA0+>eegYqx=8Ok`+~_C0&*GH)fc&ynHp+
zN?A;4lhVGLlVAJP-I=a!{&V!~vtosm$+J4Rr6<=sc>k-h?aYkwS>hY!{@nRcJSSwm
zMQ-*<lW*U6^Sew|d@-B6(MLk`{ZW;`zvqr5dw4uLynN}j*8x^fU35O*n`z&m_{b}B
z>t^SG4J+@zoo&>uxxY>N$)3e~*1xWDmU-mS-<uX&ayVt#wc<S&>z^vQO^@-KbLxm~
z+5fgZC!+RL=bf7<*X;aNYPW;#N_V>@M<W*BVA<HSds^MkH<RD)?%Fav#L$S(m22Jp
z(|t|T&pxs@5!wDoswnxqWs{;&mdk-f_p`#z-23RcE<SwfgOu<&4lcLvI&{qCoVY)s
zhO0^a*iXB;GqRdzCqL2;S;BE);{_q79sev%Gui!DTdv$M`d!HQ&=o}`{?aEKuWKKR
zTC90Ng5mUPj#yp4yC3DezF#r7wec(Uw*I;D;YUHX;;c5i%aL52=WjQ)J=wm0M(rI*
zTg4SOBrCmz*X*5AcVzpDDeZN-Mdu%>h`rT25%-1p@0N#V>)2Waf7twgmwY^$EBo2B
zgreHd`un6T74nZ6Nbt|t)Z<mBSLOM;+D7@pDf0mN8Qccf(<1c0s9C?&|F@{?(368d
z&TgpRfAfy&in&5JwbXB24f<TI^X6D~XrHjrx%2G}8?Kd<@o<E3|2C1jb92jz;vU7H
z+kN)6p81#|loen%-FlCvWd9x3BuBYFM=L*m<qY=bDcA9Mb(p>A7UMPDPy3BOZEN24
zm`i>6yUc}&`n#Vr|5&v8%VO`ADT`NZ-DVN|-Hg?o$M{_Fqw6;cYX$Zi`g$08h$Oo6
z)wTXDSzGiY$c=wecf9SxE8i4TWJ=x6*p{yOr)RzL>WRf)lRN!OR>s-H&N7Y?H8{s(
zt+(`(T1v@k!?l|ol%17A%Fg|m^^MQx{Lih{iz9xtH46JB{;=*Ymtu^n)!V1o(^&G_
zcDWnhhB;zUp<ae*cl`RZXE}CW<#`^?eRV~=ZR3~M9^W{4yq=a{*pn-_lBw}~+&Yf_
zptaZ9`fuDjSiC8S=bmlth3|iL!dEn|+2*qJ!hb1?nWoEbKK*dv{_41+Wh?fV?^yOe
zN22h6^4UKh)f2V*7TL^H;pb0ywaPsDvZl3GH^Yv3=C_#c7=;G?e5;>leoK<UcHsuc
zx2+deyf|^7W|qg%R5j%VeWz8MESjv}yuI6Fn#wrELBT~*(CEp_kd<!^bWMA6UiaoR
z&FATv(?5KDpEu`GjM5aTDHB(D?DSpH^|O|{;ArL#p%N3J%{7gdE1BQaeiJzQ=V<Ix
z-pl!`qSpKiW)50!t(WvMAh%bknlp>(BJ)m0*DvQCuW0^e6kL4z{;dLb>j&G{z3@DI
z{kg-|9eY;1zrz1+?(==d8<{UgK6@Qr!|KzXQ2eWk<GPQqzS8E>qCYlzDe<fHUwS&o
zC)_<7e>d-y&<hqt-=O6yEX#@?FO`_fsFT!wEhKv5jFaElszVz6FYU59yl;NLn~`VE
z+S0x~^UQKDEpqnW{5{3Xz9}I2-Gn5Sk3YN5S6uiYyvO|i&R=s4wY-@4-c+m9{))cO
zBx7{yPr)AU)DG>Kr{a9e8%u(VgB>N5tk%m<W%RoDK#t|6j@lie*}rAAGB`GQzW9B3
z&8rDk8?G|nTyxaLJt<nB<6o%2R1v>g{{wF=_2<jR_|C4|D`ItGo#9+Pm#6LxQ}k;8
z>Ku$0QBh2ccV2GtZEI6#iuKw9YUV1{8<T!`TKc{X43JuvI(MI|;`cn0NgKHj*&ga^
zKL78%^U)%!P5arMxGG8}zF|}U^B_^H@SG!0l-~M$h7)aX-Zx17-0bq|x<8|s-fEtl
zmrpnX*A*<j6Knsia@yOsA*;jn3}qWXPOeSoW+@ALcct-({C(jme@>X?J^UuR#5H`^
zyhEW`r5blOpXz;6z**6I;MCvBQww$#-i@%f&Qkq#bCuc*t=>mBlXQI!a_)Ka^VQ>}
zIwvRT>VJ54AYo;&M{DKU$3l_0dq1lF<G#t+UgR3OE33w~=~h~aVDGvtf0j44F#@^{
zn;JvQIwn4zw@vlg>^BMpzdB3rbh#WzU0;1n+tO*(!$9F}UvC!Qocy9+cL}Gk*tcjG
zx!~nLf4g-_)Z8x$66^cI_fythUP89@ulQPfO|jYwsXN45ZgIIEnkdPB>p;fV-KJKJ
zU%s3-{q^no;`+Zu_xbcIuBkX)ncVB|9eN@;a59IZl~K2f)ZY!OJC(j(4xO_<hA-r~
zvFe?}?^r+X>-;%W$aDL{ugsU0^lYe~?<aK2>wB%~_l2F0`VV;8Dh79XXB7)GomeYx
zu^{Uplhf&+qGh*O{7O!Ly)g0czeU=j2|MR~`#t$v*{5Hdgu?!veyLI|{@}W+HlOd5
zCG%T+MLN%j7U`U^yLqD3r=scJll#WK7kH{>eb1l5@~`CQp~;QrZoJES`3`Q7SE<ig
zF1lj*+*c~|xMdf=X_Eha`vHea!W+efv5(6$OB3E}SS@xAX}@wN&1uv3Lg#<YcOnAC
z)xS-%V;7My*k4+{%INpB1fHzU<JW~tW+wJCbuaYh;lK2<d11x+&c}T(-^e-XP7z!6
zm$&n!objoyh0kg)-F|$h?%#nE8&}^l%a~AG{qc{%SCf;sR_SkVm3E42JEpb$`@Z$+
zF79<d^Zqx?wP8+j_ANDAzFg4bl~bSS%1!+#YBRSke9%;xlQJjexx}gyb6@X!#W(B!
z?Z0|eCjahbi_30(_Weh9yuOv$LDA--rdu~xHBUaVZ_>dB)sc07R1YqlQZ)NO+a~+x
z);ls*99mO$IPcE?{J`Ma`KyjQim#p<f5U$N@73*-&#zs~$2{*(<)tTWFBAUW4c)d`
z<Vx5}Lw1{o9%5nZ6S|ZxZ<x|NW6lc8jg$9sI?Yl{xwq|at?0$qJ%3wEcj$$dJUrQQ
z?&NNkwB}9kye_>o-`FVf%4y%czJ&}gFFIYzym`cLb;9Y_i9KESYuDGhoUA_?dZc}Y
ziC|x({nJOQdE8Z(TTeEeS`>S|lgaja_tW&SdiFIIby+Q~=06L6i8R`m)zv?>NXWgx
zu4T((E2eZ}VY!^_?faJ{0|l4X&z5O_^L|f!W8#sytKE5D2WiMF-{;bF{l<GN-cj;s
zw9Qio$rT?z=G&d%`jwnCXZBsCLw<{nJ}bPpDN8;fO|ve?c~RTj;ER8^Rc%Ugk>YMs
z{%d|obAFegQ$<$yapst_mE2iMF1OBp`+mbYxmmaFa?|?46Sirb9y<26&t|3kDv{Uu
z5W26<rE$KV=nDV#{GYNts@gt}n!YZ6+@U9bb<)<>e-{_WRj1A1o&VrX{l0x0-*Z1(
z9R4k{O(9pkE_?r@XWK5t+s|7+$NmuaE>q1-b54}{Gv2(xzrf+Z!veOhCb=S}P3y($
zT-M#rRNq_IFYNhK`CazhwvfxqXaC*tPsee>e92kQXRgefBy{z#$+{UIH@95))$ujN
zFJ)7m>EAu3Ctj(2W%z5NqrJ;G)cd08mAPx@N}AX&n6GB3VjYn4{z0;_A?w0-f6acU
z9pyRCR=B`F?(J=#L-z%5JGR#|PXC{~!gcndm<?ef+b;5#-10o1b5Z|#O8xww?_SO-
zReUYezL)jwHJ?fILvpsQZ$D7qHdl>fpWU(g<CCgmS$9Yu`m@s^=n{{T*S+skzC7hE
zUi?esqu0?~uHU~a+G;`+cB${$&|k7-N?WqTr()&w%U46!SG+jHE%)s`zj~y^x(KdC
z9|eD1PDtFL<?WttY8#`tli^6yz4Gl1i&Hin>Qjl{>|T-h|5f7qMZ(XETAtnJE3W-`
zt1R1MLD1#%-s+EcycYbPxn!%n)#XLfpYAO&6tLb|?R4Kh`}xxhnfULy<zMRZZYcV!
z$cu1$cJ$6?me(1-w`Ck!v$Cad?$r+}fr*m8i~Z~C(tg@h9=&S&_|0Y6c10EacSVO+
z{8YW;z`5s%RG*ILQq$-lJ&`RvSvShLpK>bndC$~8X8Cp6mf}0dEMhOT8aRJ2Jk&Tp
zElGGH%M-5HZ|47nV|W_e-t*kzsp6UZit$qV<m5jOZ<+H;$))ZMyzoW0R8&|ZS$=Z(
z?9!y?AveyH+0;%dzFXE|Rdp+H(H^;HMOsg8&+3>yFCu9Bwwm4N^TWG(ZvBXUq8+Xf
zyYgLDJ$t*k<jg?c56spr-_^qxNXH!E4_aI}W9#QT^Jn~J(3rCM=f8c$!A$e*Bc~{x
z(CARxAXbn$K`4Hcve~N@UK)>Ai|lw)e)8l|Kg0YRenIJd8~lrW)UGtBUGM#~|Igj^
zmZd^rzFPz}%+3iHGxhIla&(#1C6%oum$z(Y#k(oHqc+<AFXFu%bRjGD^DpsBSAL!C
zOY=8B?i3tfetKu!eE)M(&)vNA-y`nR?lrHtXPNnLNRrB2@#eB`9MgeAk_<B82gCkw
z>&L9fT((7Yi)_c8b2}JSX70{kaPCA?a(sa3%)g5j{_gzD_&0Ns<=^>rKX^0yn4VR7
z_w-wAUHr58Jl~7(Z?22#kJ>ou9O2$kQu$-st{ZnezFxfe?T&=^5dpS4+ijW~(_C&!
zS@YVz`Yit6J>V3>)5S9%pYoGSzVp8S?B?^**&<uJ_OT|KRDG7J`s^Tjh(*U`>P9)o
z|8k#?H~0yvp2(MCU-;_r%6-YNW*uU=|Mln6+rf8b1Cnn&yl?XI9Am?b>-8W%syK$G
zSS@{e^X&FzZCiP-H|~30sk78*Nr~094jwiydF?mhClmgb2&pI6$tPH*g*LjL=HzdS
zEL>7z*w!l}cX6Xp(wvuVCkl_8El<9kDWaWqBeCX$?KVI6z+LnHmCLJJ8}8b_@2*e$
z$+Hh$e%0#>T7K5U)_Ve*@$+rztIQf##pFN#E6yC)zTi;nBayO%)$+d?j}@i5$CfOc
z>!im%|JclFT9+;EPRtkQ%Bnsr_#{GC@y7gq0UrjD&lv{~^4ToBl`N;HqczWkyG+)&
z`(^p;$@#I%FX&~?KQe8b@{uj}-(Ed4>D+NBNATP8-x<trg5Gtx)*d~-j>qTvl{pWu
z*WBw?FYQ!$XI-(Uo?~$gi~ClQ_Z>M3ZxtUsT|eb~;Mudkvr;t*uZGHI8_z$Sb?B7=
zpWfP=DKq@@A891lwD{SbulHgJ`+QK`;$t265&ziF@_Xl3*hOy&sEk(*6ZqD*=F2qM
zRquih+r4mz+O$7%-H!N7uY<~cdnbI3O^m;MH`b>9N4^bTq`s-LVUI`kp+9DA!8T{L
z8ZvKKw}$UOCjMZ~?8R#oTimXfi#$sGB9MDur&~qg!!MPPbsrX49prD9Z8`hJ{o&K!
zxApfg__OWBoA_UK);&?}Hhl5n?bg%g_^f|)r>mW3_xcmRerk9~AK}js(lAI+H&5a<
zzZABm;Ab++&o`GR&s+RFl<z!8ztypYiyEaG?DY!fDvMt&uC!ngNNVb}6HixXe%Jr~
zr})eyHDTjFn>>z7*&m$6H2dVUlTVY^6z_jy{f)uI_WJYNsuwe@580Jz|BU={ew#eM
zj@(br9MLBR`*lw|usU0J)oJU_@Pn^>SC;xZ-K)OwaCiUmnneE(7U#|T&VJ^4$EF$b
z*1-GP&a@lztAn?E^~h0pwDx;ZdHBV36P0Bz$0&!d6qow4@x5z)`x_ZWmA>5jmoq0O
zwpLlqHaT}rrOx`<*2cUo>&!0m9WM1*n*Tj=wb+M!d*7bEZe8_ATg7#A2>Y|J_yaY?
zeff{w1SEe~GaGve?~hs^zpD1d9$$SqmCsJ)6E3{g_;UE(I%}==rS(slN-u4>%;3E8
z+uF5v+|{K^_ep%c$5{1u+lt=VC7Ig2%XNgiA3iv8qOaVpabH4x{FmvnZ{=lOLS2&o
z_J1ijdR>2pvaBu_`zof7v-x;z`Zhfbo{==~WsvK7>$7VM?!C%;xzQpsFH8ASp=X`#
z$>(t|oSsJUvo~H9-K@B`;LnA)1G8(Iodh?Pzdl_g|2V(?<A=vb4|x9lqhz~NdFszq
z;>^`I_GrEL%Je(cwg2S5Z-HI&Z%kzST+ZSg5UlO~HcX$VPW#6dD^|8QQ!Mg@f_a6G
z+;+d%-Tb_L<}2Ait0dWVeJRVN7HhmdBzV>7x3i4jB9=o|PRX2JYN1-D9CPjDwRL8M
zKKnkQ`DH-O|7S`pXV{FZh3p=(X7qKq?(}B<yo@>T$3(?5e|F0Ftx&a|HCem!(5d3{
z9&<`JCQ6E}dwD?GQ;G9qqgYI?vs2`)2FF52f5St44@}mVdz7C!<@BhX>A?#x8>XYi
zddnx~|M+BFq#G=Mryy`wL41ULp{>Zbzy;xQmT&XB8KTZve0S@g_D18WS?vAD>y~q$
zyRDuqC-(58pi~R<LQOUHj_)<n^R*X+FS>oZ^q=(lf*mYIsmH9}$QK7L7GJS<wn(H?
z+>}?3{<|5jU-s9)JD$%+_3d)5_g%8b56k_W@@vAb_iVk-uSSI~`q8BO&ShJ+`?vH}
zznAi+A9tIneD?iY_j5evyPn<>i=Q-6YRQxGPjh6K)y$pj%zc-eg<*Qsj19^SZ+z#g
z+`JvP%8;Em!i&G!Iq2k!=I6`Wq;<;-GIuA}GnRb}o^16d<XmRXOYWa<gkRn?4Pn05
zx$DigMMBLJ7CLfGIPxRYY2G)!7pc~B1wWRE74Dn$B2+!zG00-=_d1?imG>K1OSe3q
zbD4>SQQ&;ub_s6YgNq_;n>Nkg%gx8V_Kf%TdBsjSnFTdc{Q)nvqcYu}DtzQPX~|_d
zL(^#0wO@R%oL){o`_9Yyi$vWifd_AAJe~ONW7%A(gN>{CeBZp!-<y2sc=^J^-%H{O
z#P&>oHB-<)#3R_XFs5u}r}#pBi&tx>A9#A;Z(shmXK5;dD;2-RH2x?rxNZA8THkx;
z^hE(0Y0TN{C9MzoF*|S?Pw2_DR(LXRdj72mtKTG;`Cm#o6t{P-L?yrVrK2U^WRlM=
zEBTw%!_W2GGD=QfYyOg%PjbRfoLpC>#O*pWZT3sw9!0_97dN?Z9-6-XRLLPf(Rut%
z6Z(ys=S=>wG2g!V`$o~<StS;>_t*U>sy(BuSO5D(mid8n6``UZ;=-}|GF4CP%l;gF
zB>JiEdBqWz<y+=)95XtqpJ)7ZS&~S{k}mtn?DNxpH~3W_)0uy_dX|EndEHl5o~@y4
zm-qVB792a2>%4s3LZ=mW+qdlJDBSkP>bkhM_Qs2!!taH5s_>?4dOv&ZJ<)mc((}T9
ziYFPZDy%eMOk6IMbAV&R(pf&U-%qe){HG~$&Ofe?t+;o+)_%El%Xcaquz&5QBpzRN
zPp;y?G*O1NiWg&xy7u*FER_vg`nvV=zV2I-)5PB`d6c7`*tt^Z=*GpX=Bqrro>}=b
zuJq`ln)@Z(+L1x^TsbY8xqr)6rD_+nCiu544wBxlR=0>bg6pQoUj6&&yYmi+E&TAi
zEvox@>8a!9EG_~S@<)ywQdW(~(Vfuq;?a&(D(|woWRCI9^gi*8TgfDheNXAh%)isJ
za*rA5mIk-T=0v=CDayNg&%V7^V|fxDH_Umd$j_+6Qyx80vBmxA++TrPsvJ+=^tAeG
zV|`S~dC&iY8#z^Y|7?28abhdK=U0(z{;lh;*@aw5_4*yQbn9KEqJ>);re|B<SjoTi
ztJCx+H)JdBy*u^Vb9QE6&?4o_iq^Ry1%bEB6=y$d=V@5hlNSEcc9tN^!yV-b8{c;B
zY&U(gA@`Q(;-&Ya|4vL_;n(#1W#irbg_a!Kb{{r;^YZ@Z)LG2SHgA6OK>O;4S09d?
z3;$($_T?{0zLzW2yTy4;mj1o6JuELwIgH`sRf!^H6;|=Cf>4#xbuQ-~DNfgY#Xc!o
zKTKM3*W9OZm6J>g%u;pS&c7?W)ZMm+XQ#`<eN*)+=l{yebmu6tdfl`yx}_@i%d?}N
zQdM`d^a?oL=bhl4XnuyDBVq4x_f4;#v0r~UC3@oN)!N_Je&=|SqCHjoO>oeve728e
zFBzAaFX*!>67p(&yI@`F<=W+ug>Jo5yuFnkHzgEomMsV|%KUC7dq-#1>7wpsE3KQf
zf@BUJ_f0?XIopQo?t}Tti`P`JJ$aqRZ<R93ZT9D`B_7RwF{j?UzR_>-eE;5WUVq4R
z*+*x~Kc0zqJ?pc7Re{Exz`o!sOl|Acmt_`i$judrox0Cs&Fpv4dS&rm&9w=2=hKDM
zEgSEDzH-QwVPm7fs^dG8YdQ|(UuR!`bC3D9&%d4@+w!bo+Ot#qismwB&FrJ6oG*;n
zHRD?<`@`zX^-V?xt}|En&!1{mrnzt4EB7PQuB<w}u21y7`6Qi-`@7cvzvbt%uY2>?
zq{KWozo7U7d<s!ds$^oW?%#N|X{DUtn+4OdZnX-o+f;6_I=C!i-rLGYp^FMOAKvG~
zd+NPYVrBk~sllxd{mILBeLMbR^6&SXn3u&_%Dy;0t8M4zYUUqbb5*y6#3YMJN0c0r
zP*brh7M#A@%l_ESm)|b2Z1KHs*Ysy{qQC-uHz6DLuh+h8<-T(((f(c9!KvaaG-k|j
z?-!WH$FbGz=DxP2o$Vnm?F<)0zWRFqx*dPUPFTl5Q*$P(R-#be|97kfX-13np9C6t
zMamXQF|*v`dy*d~a%}6-nD^<ow|(2(r0`HWt$V`P@cpy>Z<`!DxPhm8_e9-E&TAJP
zzVOA3^V^R_DH+Cxji$_2eS6;c{`ImIchchetTuBl(%%wl{br9q;T>o1a%ExNtye$n
zUaD~OyZR-j$5nMKoPT2_XPRb6&VHkmd)EC+(}lplySaUwxqr{z><}5W?49nTm|q#&
zHZgy(-gy4$pZ)gpYUU;_4?5!i<0s$zin$5DTQa8B1~Fd9pOK$?bn))D)BgNBZQ?(r
zYPsK>ZC}3cmUfETpnEPyu%LTRe1FNB6P%fnd|S(2{d%ab^@c@~Z+5j)O3V4M;%2vn
zp|)rAy8_#~?$;koU1Q02L(x+@>6>KjH|H*%!;g5R-y~UleDpxR@1KW8&t4-z14fRS
zGv+?l(swtnT@rDSN9l`Z+V<+Eia(d`%(S;=Nmmm#%vYJP<4<L&v5NG)YMYsSH($(^
zR^M`fA@x_{gvADIPZ$<@7MpMHK0W6syFmXA%m1#S-)rS2-c?xr=s@%=KEZ7-duLn-
z>|c4u|I#zdd8P~0k6iryS?8ti<)^8AKWEyUe#ds?NsHC4BB$uCL-)+q&0h6o)jW2=
zCV?ZNrt!KyAxA6JOi~_CT@YUp{$|SDDxbdlTOZYKmnoQUqxXerU#y6J)U$OLF7f&Z
z>iv5Dt2ZyI`?$iY{M+gR{WsQm^{;6!WZGkS+rQ{n@bmU_I@_=LNBvwoL2P^LztxA8
zmKh)UzEHGUIV<to!IUne19t_lWIg;YEj?p(#K#FIUsoKSks|qds`-zus2mk#R<^pW
znorso&xFjZW6V8q;-0{7=hu6snm;n_3pDnum~d^Y(Aj8})z7#8=zF=3_k$wu>&;&N
zchBTBxV{KKC2qg<!Jpla*PQ=)|M}!%*NI=P<k;LD3nPnJXKZf0%ofk|PN`gVlE3i>
z8H>$3wGT2#XjwPhj5^23kQrlN^+D0|hk(iQ_48SimiEW)jQOkQ#sB^Fy^t1W0hTNJ
z!gKFGpZ{Hr_tU<ftv90+c2@9n@Ewg%2`GLT7|&-Qv~%OcB%v>x`A)0yrf1Y`e!?oF
z$><if{is~jf7b<OhLg{FPZgLU5!A$9x9-ZJirWX>o0hXSMA&!NdDy+my>~1AewfxQ
z0rt?)%@vat&)&-M+nWEI*@P#oNfY_yykoSE9+<rS@styH^d}nMm0)KSN`JTXR8X&&
zkZ+L~L)zD*MytQG#N#)KAOD(sG4=k(iRTaejx>I!AnfgYa7(#{M|zdUFCN*eWi3yZ
z?9MG(QT*9TwX<0|Ln^S}<Tdw2<Gad{=gt~sWGHXV`e4VOK3g>O@|-~aXESAm`#d?c
z9yo_^KI2@$x5O~;a)PuH^Pj^jR2gUFEH8NKXtBoDL;2m^#=@rj%;QHroLFWBJnfa*
zAGyuNGbLYH>6zlTuhLPWBG&$Xe}5aDP(3uQ(Dm4Y$vbtgr>^|s^KqF+!Se4D9D-9<
zY@K4d%bHv3z`0#U8o?zq9#$3d?~YoY(dBaSIKzy0dxh*Xmz7CQ<oOcmWd8hkoPuiy
z`$lG0<0Egccqw?4Phi}~?ysAyW>x&w<Gt4OP2m+6x*r6d-Y1<_!}RI4Kqh~+>gAO8
z>_4X12R=FyH&^(6*5d*b$F~JJ&ehwG^w$0eP+xmpE9TV2d;N3W8uGq>{@I#WBH!{Z
zRwD3@|4H^1NyAQo^Oezc3SHGZ81H^k*?Xk(7JJEoD=urEPG)Q_`SFgYaS_w3#G@7p
zoNcNt4KFK~zw%zoecDL<#m6->Y-M~b@=yCV^Uc{E(XFbeQZIAD+h%LkEuP=qmhLvD
zD$(~Y-`q5P>)q<Jm({Bm<hQoG;9GOGy1UjhH>~gT=jkyvi$Z?M-I6Vwvi)IUgsQ`7
z85bM-tmDs)?%l22{NT}B@r6c<k4=eslX<<A$?fxL{im;c>I>WFDC`n#_qbj6J@U6%
z)Jmg+>VeGDJDDpkKASXmikJ8QML{1wTV&g&E1%DayRl*Jhw3L5_v^pE*4dxVUDB~k
zQZluhN5AuuKKt8pXR}G^mV4tiTxI@tZ*fgm-Fpw;-<k6l&)0X_el7Oj?~l=Kj^T!O
zxmL^5MOxkm&2ik3o+6gAal%s(eddh3e;Q}h&wiVjqq559lE>@WSyQ&8w=v`=UH|rc
z_3=eNo;v?<vQzNV%4}Y?YQ_DT63en@IOd+?5j!1pcY&7X!ua233;+DqaJt^D6XI!Y
zS5dfa@xJNtMv5%|pA`f>JFtIJ*^d2A2eU7*&AjTfva{mP_qDC=+;)#WE>4=SYd&2p
zVE68IZ_PWVmi&x<G^ut$Qbg5hfu6pFFQ@Pu&7Xhi?UHS;ZeITWedFfY`m^u9v7h>+
z^6d5_>(9weH7hdi7TZ~oalZa!LdN@rd2?F%JTI)P7VML~%p$+*GT-j|Ul+A%EPPht
z5d6Y9D<}IRW8=RoEeuyRS6p+B>)UeRvt!c7$qhFod$;Gg^iKKYH}|K|!Ef^GZ-2G9
zIB9BnhwXCV`1JcVq3Tk0GoN;Lyb^!?=CotAw8<x}pjiyT*DpIRK5Oh^5~XqaWPb3K
zZn1+6>$kVn9+H%q#g;F8L-T=a*wYp>rYl{hZ$b*Tnev|FD^Y!t;(nt+%kiXWHlsi1
zx>K6JZ!<13ab4&xqdepO!9>@F`1@C`FT0ZYqrKYoO48!%H#9CLud>eg@jYBFd0+0c
zTYMWG&u47s3oLwHWgwJUe}Bg!*H=Z_tU6cAHcq*@<bvC#(kE@VLphfDe3-Yea7}P2
z-`8@7BfTBYdB*pb|5vr;P6-WpE6Uh?^X?MoO|Lq5UMR@#$kOQ6l1%%g+xNELOHKCC
zg9}GzZBom&TDM;RiELW@OXDX6?e~6MoUSW3YXZZfvW9y`d0S@)1?BLE1<v@|{Onol
zs(&mG)+S0P%RIQPJg4U4{RL8sUOS4q_f65L)lfcak$NobjH2N~o2hd*IX}C3|FDo*
z-RZ#cyvh#d&0SHPzpdTBO~1G77uyWJwd(OZ+N7n_PTRb)?DJrn^(J|$Ku4-|mHzBQ
zDqF<Ld(OyTSNdUmxcTkx28$O>xpiFcJN#yzUzPUd*-MZ5ienZHEL%5dh#lK`_@ts@
zeEH0?{NEN${P$(?630a<8ISHxc9^4d$1*T@>#y0S<}3cb6L~J86830L%zh@<{Yx}9
zdagb2<4$$jTJyhFi+C4ovbeU~h4uZ14^K}#tq}`h++4Re;r#NF(y4bIAMN6(T3hij
z$2HXR<6+0^K|4kMyt@15Y&*lQ-pSncamF(*uVGZ2&0Tu6b=R_w^ScY|<xhR**S6oa
zE@yX&YD0$Kr@Q-ibMfsdJ<0dKkjrj=!@iBjuI@65_E0nCPx!rQedME)iuJDTPbTaw
z;84>_bY2#fDsQo{v$f)LGu!m&X8WyAg?F8P#HVwAZ`n1G-xC`?GfJ8<JM3%ubuq1C
z37<gX4>#7?-;{1omE^Q$<?Utup}XtRSBLxmWTGVXYwpXJG>2?kz0O@V=lEH_px<(A
z^1D?QJ@{?RH?MbLnJr`K6%S*@<lnL1l(`c3{@UJhrpWow1Kp}cF4MX;Xe3_Ox>t8}
z%Zv`gro;#3*4s8)U)>Pge(kr@h78v40v@a@UL?;*<&~NFP~y{hrsV<?S)R)_t*MJP
zvA!$w=eF(NhjsVAU;dNzKw{G3{VbEK+rz#yMcqAkN{I9P+3>de%S9JTD;r6C<o%Mn
zOygMmq4r};m*To5Kh1gjP}=p&#Od|3{d__*3{J|1Fz!4(>6Td8rKOM7PC4V`li3v!
z<GWzOu|2*&t5yZfE??OkCs;Lek94)^6TaO-C(Mui{I^>(;rz|yqv{@JT>`f`Zpd$M
zn)Pk7k9l0dPls14W>!t+aPsH8a;PY!`>%%?$M36NvWe5|7U_$heqyBj+*LrW-SO6K
zpSjKPdkxQ6OSu&DM?7Zx?KPcmL(SRjKmFHNsI<<`)QG?E$VBLw__;d?M{OQ(>=o0V
zAf&3Ua%bDzb+LXs=DdD=P<Q6k?hT*!R%otU@$$-Bp&R$b6ql(-ZBN{P=CwKRhn07P
zl-B=>4e59L;HZ~uHB<eT)YX~^EAD--IhLU9baCmT@`+`etgTq@eNGmi^Ko6AiBa3z
zr7T_&)vfhgZ~48u;s2Rc!kdH1(Bo13w+)LEF0Aoq;rwv+qjdIpmnln5pJ`1m*rm1m
zxKiQ29S2=?u3l8}Fy=XU^*rC^Z;tJYPAIoEc6sk|ZJKm%&ROd_tVR}#_8BfJ<DA8}
zf3KxacuMltCBJkJR{pY4eZA?`O2vDx`d6n$`unfl$r+W+)vsPBK6k>it!|#x=Qemh
zx%lmS{^R1kJFc#}rehL*&!Lsiu*_XPv-}gYbz_T&O2UF2=Xg)rovm;=?z#Wn-^h|&
z-2>78TH@|pEwcM@K-n{EJNNxxv0Kij*IYO(%f9~}LsD@@xOM$zy(8RSUAyjV46fj6
z75>tlyp-XhjW&nt!B5r9Ro6F9G}WH};Ae)HZ^VVm&VkR_Y=o>mKFF!ebGY*5#jF|E
z(>&TmmZX2}kh=L@JM@tD^vYQaHw1q8m65-vL$^-MB){8pp43yTb#8fvrNzJQd|dry
zliya^*w?FPAKrLz^OdQVZuzNZ?kYU%eJhsRb+_)3Oy82b?V&D{_k0yzkDU^yRM<`K
z*dIPC7ZZH@e&-{W$?{T*GB)vhHzqB=_Qv5w(Uor3Puurbw7*;(nsrH?Ph!f^yQbZf
zxAsiGdTzStq_<{^U&*%0UE&X#^d<iL^1t8K&9%_qwlTZtzMI?k$A=u(=KkIE-0TfY
zanX^N-mwDfT`GC*JQFm26S%LcN5*YV=QZ(W{U^&VcQGC3y}R+dW_`_iE7jeBSEJ*8
z`yR+#8EhMRNprUOg**<MBW;^hw!HEPxxSy{z?CCY`A*6_uXVhaF+o9k`?Ieb63g;G
zPkJ5sa^t&I%lN<T{r+(~zf3uY-rD3-rL!w+@-xNreWqGHI`wgR#*dBr57(|g|MmKB
z-Le@IKJVMN|I7NWJ1e{LraX?eklDZ6=v&gncT=wXJh5zb@xL@aLB*SsS$Ez&lCxUI
zm%El*^jqI+_k{iTjDKEfx*zgXOuv>lP%Ti?N1o-|_esaX-G%OW%l*HgG2!!1v%l+2
z+AlmX7Ilf99q1lgAwMmvb@kKc<qey%EK?_KIV{CiBNG{rY5jF(WcRd4)6xr3hp+zV
zcsfOSN9X18WmBy^XDeFE`Tkds(0Fs>Ui$end4-aJ;h%4&9-CM*XWnK5zOA*T^*n_s
z6NDQ?{!U()<NhFW(oLJ~{_Ho4UvFFA9{tStoJf5C`uEi}s>>8@w*S54`@M0W&q>vg
z;xB29)m&e#!p;c$&67XJC|h!V_uHlJ?#ox0D}|qk{7|;vf8tJ!(~Fif&oCAgl3vn3
z|1itHDGM6E|J1N!yX3!D>FwfO%q5z}iHj1RuBsA!6kE$>9HsFu;EUM2V)sSt2@FAn
zzGWwJtNMZy=SOck>|Fn;PWU0?u8>PBEYIKb?tYSVQ(lHEfa9uAioSL5)(d8@4Y@bZ
zSQ$R?<%-_vuU~s89AAI!-}Um3cG0}7haT~89(t+X#_w6^+4pm%(9y?_UeAATTefaW
zpo3+b?ToBY*@}G&=B*G}_WJLdj8g{N?B8oAY-uv(uvsSiXp5b_Hit&&6q~TSx|f^o
zFZ&<rlkw<aVB@k&@!|^m85K_L_lc}epZ0HUz%N%5k&2%FzhZ?^MSnks`-!nHSn*b_
z{mI{RySPsAZB$>B`bV-p*JDo&yM9v6&$qmv-9nzfRNCyr+Vjpgo?p!B(%%e?uB{4r
zJLmq{cK=t{_k%{iE6#p=St|8UjaA|78H*h!qaV*+U!79-_jdB{pl-R2S8hgsD>v?5
z9`(iAf0Z};_cn{q6ZM+XZyi;f@~q{f-p2p@tGN=|b#A90lh&Q_CS%2Pvpwe+6dKcB
zWUs2xUB6@d@wNw|j=%EM=kd3$pL>13>(1)a-=pnjwHAMo)8@W+c9u{51sidDd66QW
zos5M(qW{^yJ-@UhYGWq%qtf0uKOu&FtxvT0EjCWu)0wc;|JsKO6QfUF=TI;V6TM>k
z+I^Gtx|q-tlehBkeJm)r*8f5O3whH&EC1QN5s$qv=kMpu*Lw=@Ei<;?ygzjH{?%9a
zFLhd6)g5c|=EL0IngvR8|8xng?=4@q%;V#-&G}p2mhpYm<l8vy_$Dt?2btnK7X8fs
z3^V1ss~mFePvo`yZLL`(5#Sl}_xrZsw%5kCty_a_KeP&6z3s`&Gf%2rLA@|y=iTyz
zABAxT<BCu2yKH~uY6r{d-rco|t-GC4)?J%^<-^;Sy*D%a=GXr2z5YhE_`=lm)Hze*
zxw2HRYGz-JS$m^%Cd;)?IxE+<h$wsPmU<tSGB;DM=H9xjz-RHE^SaKPGX42G=iJ1U
z73a<GG5(ADdNjR`<I&Y`^K^4O_c*_a77<>haczl&>$k%2iECFWe>yUq$@fSo@6m|w
zq0N`4JzJ{VC0_L7_KwJt%Gb3v2uznZk4&n2XTZTCn)uM=qw(%_8(7nrzOl0Q2RtZS
z@Wr0N@q^7AbB8186L}`d-kU!4`u_D-)df{}3k=)-D&4E)oz<{Zdu3tgtJRLY`RQBJ
zcP!cUy-BKB;l$MQCihhx_DxV@ymaK>yK5J;Gxt3)@vPpe{bFjA*S5nJNA|~kiRif=
zTkyW_P4TJ|P39d;4R6=<Y!$M%VQ$t_N>;4leNy}W?90hb@!Nz7jpK73esNQLvMcx3
zukAO^pLor0xxqp9ZCLXIiT!E2Px9ppsEOYc+_p#lcUfkxqp}b8q}iO$`0`eSu1-10
z^C5Kg?zCV<g|LcDp`CHBxPJ38Mlde1+?dM#Hmxw_XVdle7eeb(u1cyH+}P_Ub}-s=
z+Es^beQ8I|eVjj8s4OV+oQ=Y)E9*YaQF-F#w@-UZ;OaNly*`IxPCk^Ix?*i<=rgX}
zFXZpm|E$qnT(e>S^qOaUpT53&b$ZgFN!rhpSlj~*-%Oq77ra<}i$%1}ukRew)-B(g
z{%keVx#Bx^UDjc1eNSocxoaT*L$!L9;DXzqmId7H>|ZeHs`Z3C#rV9kGj`7RpXj<q
zy%W89P<%qJ@D10NTZi{${npva#pd|!ZCcQ6>$x|yBe=HBbUd<`*R=8Y!@YB#+^bu@
zi}Tm)Ro>b+SLX-6bjaaapkOy&fahiC+J+}v!!|`Zr)VxJi<z0az_{!{^5MM=1@ddR
z1V0kl%y@L4;Lp_BS7+BIs+<eU-l@DdIi82@i}cmU=OQ>a?C-UiwfCOl?WFztnkJQQ
zPd@nFe6n&){Dj?kp3F5nlAiC`uw}>BoXcU;q;=oL71rPR{X-_#`~1GCvby=d?n;(L
z1^8{*b5W==`F^~HpnLU=nWiGg7H+AM@2kG?;;dw4jm`hnTO`yj9ko)ksy+EDa>8uY
z`f1ztCmd)}H<N2V@YGv(`kEQjs=j6X@C^+-aDVSwEk3SAN*lu%_DgdZ9C`WuT+hwB
zXDs49q9z6H2|4loN^{4)_s=`(@^|dw6g>K%pTp$p=|`{ce-HQj9b>=b-kp{4+k}?O
zoIN&S>FkKKITuQgnkKB@GFNKXUzehT0sV6xEU$dOv-R~sO~W#Qiyk*`%scyg(US*;
zd{z%^ZD%Xx`ELF`XF`Oi>$~6G3GXZ83v~{?VzUbl35@uAhJD)ER6mW5hu*uKichB>
zkBj;elwo)NApb7;2YYqTu<!UWaVO7|Gl%ybGvpS?s<D2e>S-R<x%bAp^Jl)rsVH~L
z>VH}M!FR@~^JbyUIzHNm;)IR&uKzY?&gm&pliw^p^KIrXGtqV8t6Kt%g|4{G%s=(-
z*v*A1Yt7hFSKkWzbnVW+Q$lhFWu+|_Z*>24<o(m_k6+Js7iwg`Um*Bu&BQGh^0C<o
zq2Aa0<{8QsX3ULPf8+kjS|gvCUfL)74m|OcD_>x|#A}wv>ilEe`cnkuwVq9DdR?*g
zU?HnwtS4jX3hC7o)c(8*?ESU=t)#6|#uFK(*J<xK<g8<J&)!SsZma#ke{oHdc?5IV
ziqrSQE#Kzst2e4z(q@&u{kFTL-Xh;u|I_Ceyq{+;-*oqj<i5$51)_F{{7(NP$(td*
zWA@1tGi}b?iGB85liky@Vu9h6RHmW?E6WDSZQrt%=yY5S$P{~%;8K3OSfVPf&*TeN
z^=kDa3-#yP|GrhpBL6^FSS>js<}S}=eTEeqg2m?Lg;qaqO<Ve;W7$m0{t3_f*c!ic
z+)i4)iC?^D>17_?R>ocD)2;sf$h=nGzO-@2b)9vW^7CGD+wE7r61h``&tUOZ#S41#
z=eH)9RT*c7pM9ykPsDCTMsC>+ap{en^Ew}e@qNCt^3gV*UF*+=|E~*k+VD+tCI7cM
zeG>d{ZQ?wbKUXc9n`bR`P=4zx!*wp|SC)u3*#)mqI=(>Z`<m~@p3fDQcj!5%hq@g0
ztyGm-Ue#ghn|VJ#wEJGix77XD<_oNTKkHq?l_pmA3@)BiwdR*KW!E2=VyYtHHY0F7
zR}goVS^BBf{zco>7B{R+S^mL+H6nl2oU7OVX`J+b@y0jTN#la?T}SN{j&~d0Z}GqN
z#CG|s*V-@t-6>zun<uPzak|WPVV)4{exWzT-<iH`-@R=?347%Ko7Y(iw+3r^9^az>
zy{hBaE6cX|Klg|$K0MP{6d-US<Davf;JI4@rj_UZAML+;?$$ch%ht{bg<t>1Z`8hb
zzSv@w_llEyz6ndSP58HJ%HFvPjExg77nJ+-e~WuOU4i9%%8ahWIRO_J^c1$J9sD(~
zs7GnvpVGHiF8m2Do>F==Pm}4)^CRDDx?SeojyqV)`uyZa#xlLlj|zSI{e{+ghWS6K
zHT}_N>bH4=<dojMt=Xrv5`TZNVE(va$4&F!^R6`L&*3xW-jHzIPe7sL?&HKqo&2gt
z7nr+TH13}*ZZj*EfB*6?{%s#uY`!egb3)<Uj(KsjWz}o5d^R1s9(Y+q^i9>;W6Klg
z<sTG0(rD+EGuz8H&y=OOApC{<=PAr-iPg2wZ$4k?SQuXO%ki8=u~mJo7FWAE2lw+W
zvrp)Jc5+zuSz3Slx6gu7n!y}f-TeO4txd1`{^W=cqjGtjxQ1`O{2SqOFZ>t1<GOtC
z!}2yh!8wl#L@TUJgzua=ZYtrj>P`Ob`SO3Kc>YYulnJ<QT)Xi5a<6A6=3BTKo$8O)
zn!j}=PkhC7g}Hf`b=nslm|SHgAips?KyCfT>;Do(J}t8T;^w$;%{q@o7jtDFWtIs|
zSLvMH;#Kuqh4-b%r>}D>4D!9EY%<&bdBu~ktqV_nGHCF$*Ndn=K5ZW3<R^)BF>Bw3
zdjvU|rtLrUyxdW2Sv!MxO<hd)z9Y)kr;Ox%XT0}Tag{!*>~Q&CvBHe4T{16rPF38)
z|E!N?mQ%u)I~^sf-b%YRY$#`}vpF++{Xv7EmpYT?E|ZdsO!u_+ij(+UF?$ko!iJTl
z>v!y8y=w3*aU(bHIy*=HOWUK$4E8%;=w%g}xHx~;O+P2?w;fON;`!H^t9*8F?^wuf
z8(guZs!Jt^XWcy2cjy0y-`)KsXPVCS%Fq8qO{cIaeXf(7H9<#$jpu~Yn#QM%4zW55
zquG2<H2vTEIa2%4-&MO-drHblvfC_|*s5K=Z|7$r$&E>Cr(UXXF<CsD_o%%6|H%t`
z0`0Cuhve~1dMbC>=LL7r*N~>v-*1*yD4Y=Y`m;i_!(jcQPu<R4#@8Ob%5ByAyvc}T
zVa3Vw{S7j)oNUeir<MH9>WkCwj1FFzBU;_(Y=8gh<!KYz;%y6BUgUO11fTk#oA9>k
z&s@u23`Y*1>w4DB<+WP$@$QiKi>EXAe!a=M*S7EWixtae-F);UaK*s~4X<Y}JnxrL
zf8;@c?)sf=>HB@wu5fI2F7%50dslv~)t)JvBqjy8Z%a+Neg3qJSZ@9FV0K$pzPAcb
zzP#BHR(inC!eRcL(~bs?8He&NzVi4z_eU=O??omDW7((P`y0DD;Z0)w=Qq~X@}bI_
zQ`(vt_J~)WUfd{nL2vix<1fFcdQ>x>EIa>fA9K;x8QjtpTHl_>&zvvQdh>bJL;l42
z`^QZKyfv$q$o;k1_*brssZ)%#E&S>M@8z?mn>PCM_MAHOzIFMMYTkoWDi=@foR_|4
z;Z>bAn?ufA{u*?zc+H<JQ;J1DPm`<P7kT1hkeJqAHQWF1THKWWl?VvAXtUlE@U4rp
zJ0iOOrRe#EhgKfxo1VMj`V=Ov*F4tRM;)Cmt-exUxt3v$`JKK6742HLl+MXFM%FQ{
z>0Y>xN6Y-}`SaFwGEd9T@0kD9sGi|Knx5XT!reLAk94Pg%;$RlW${mQxon2#;){~`
z-Qq6>fAO5CQDnXL{p|g3Vz;!}|0(|I=F_pl?Mrsz%WviZjr(qFGj({d`qSm+`ioIb
zrAk+1UhsLT{XX{0I7YkSZ>&yd(Fs4RljoU>Y-)GZzTi)3jdzS%U!}c!X0@|crTkwF
zPQ@F#?6>~#b+242@ayM2yANM`CE`Atgzx!w`P|3#pUxg$;aL^zt|u;d>F$g3^7g0h
z%kOa5{$r<pVC{|Ab8{6N^^&qKWi9ajlvFO@b=GN@!-?0G49<+}7QIl`|F5i3ePUbx
z)3cu9#}^d_W^GUFo3!A-EIs=rN2<S_H?`DX=Ec44M5C8oruD?$jt{ziw{wp!dR}C<
zzhCTKe^%YB?28iZqH*Hab3<h3=*^k`Vdj^{X?e?*wQ0>ya8yot_?>UkHrqF?4%3c5
ze|u1O-f@1@IT1Vw3==NLxpijwnat5;+^@QL^Sa-kx0PHD@;_G|5u0S=ow6gP{%?-l
z_HSYvlsBDVWv=*SvETWW>wV!xpB8cP-V{8am3ZI7&qc`mK>CbC)A@~|%#xGKUNEO!
zF$_xGf5`8f?W<&UE5V;N%z2Z0;;U~bi+87FKW{eg+`;gz$T;xdJ72+>i=J)UaVO~H
ztd98~ExP;}yKk0SCV2(k{oFeB(X)RWjP5A@V}HKvW7fM*SF;ZXwf$*%`@TqIbK|2u
z%6p|Q9zPqsxmL@t|90i{RYsd+H*)>h`(Dm&(cD$v&9*y>=%jIKoPM?4Nq)<p62bhH
z3A_qzw|h^BRQ^-qG!4yr`#8kXb(&!8fqfUZO`Q9|m?8D%!Ux}F7{9V6T_|u^FgH&7
zN^NX?^pDu|6#<{}@Aro$8cEK{;xGtm|Fc5VIECGBO0er57H-z<Uu#};%oh~6+my?-
znd9ix>Q0VNFB|_?E$@3D^XObrDz{9>QpufmmW#ErOzwy1a`|qYrMT8ta&xyg`=_18
zZx+jJeCl+vqWiqnn@Q3;H!&;E%$z?_YXKLxdTNVoU(u&2(k_8@I&Y*?w!KN%Y4bUg
z{cg_fm4AP1`LCB4>{@c@-mJKyRW{X`uN;i3lP9<?4n3;Jz$976Y<_s^cdwgMJkN^e
zw9Y*swRk_P!S@h>;^>PC`40_ze%c+4FWgj68Z2=4(7m<=7xhYwC*Im}V3vga!|JKq
zif*WvL^^-#JoSaE`mWf~3+FD@y3YuTlJc^OYPe(ic9V9AzO~N2eKlQkjv4X_?&f>`
zIaS@SAVvJ%`u4pCwr!8O!}+}Z_u>r`So~dCe!r_yesfnr{f$Wd@1pKYHz(X)u;~2X
zUB!0i*GnH=eCd~mwWFmUXM~q^&aR8|8@sMg{VQ9ix|_eaXIA4wlZWAd)-3#ba$9ZD
z(vGEWmm)R^uR3vD|6Fj7UDYgGx6f-izAt+%(cgdinw09sC%m&aKD(?`GfDG9TZOEf
zpz##*kGic>qCdU9mwA!J?1*)d$c&tHU;n~&uMK|%w;DwWg=%Wd_hq^w=c-&TdiMRP
zn+|C`cjsE(<7j-MQ#pO=Bg=nLhPn!6n_RStRl6&0ohr<@F0)FhT=wbb&<X!S11lz^
zZr!jw`pAXGy;m*fq#0jszpdUT8tpGyyeMtqyK580SmF#-U3+RL{68J(lvVrV_o{0O
z>9?c(A1O^Xa<_kNoIP7ut9r&Io%!|qy*S)X<Y%hgzkM%jzIE8e&iUMxr$zd>-zR!|
zKDybM8Bk#zI_ZvM#hDHJ^L4)-*KOsiHeh+c+E%vI=*BU*vR4MXUmv{hCf(`2<HY^5
z>vtPOKWvu%cBw5(e`E86lHaqfR0U@}y5h?%>D%lO7B<`5`Mlx#IMw@JSAP|^+omrq
z-tesG<mc)&uExQo0_Lk;yzb={dKz-$TAP=hW?Z%=KezJ6SISzckABvOJ0^s@aB5F~
zp*Y9ueb6$gTgz4*{kZYF+LB3H4bx{XS2eEQbB)t||K>wM7j681d|VX~_T`uPoA&`B
z%bFJamlIs%a%|eGUn|%xO^vj+{NJ<p^`|M!wxQpi7wj*b%dzv=<j0pAyv=R~hV|a}
zc4PV&cyl51r<mrL*^57%(7QBA?Cs?F;ei%`H$<bJ1sIo}mJ8&IVE$;aMc$!gVU$eN
zoy6tW7Vmo1Ki96U(dD9mRJ)ONQQN;5f&P0|G1J-^+&!%ocRn_n^8AcWym7;}62pYR
z+)rg}znf=h@~;m(EVY#5eZ8bsBY&qk<DaZV_Xj0sG-fL|XjyM~zN|(dwcvf-%k|uw
zST~7>&j>rkm43r|=Tt3g?JJd%C7TioEH(vyf4lxt?3Kt^x$OZNR|~Y(UkG{Id@h9h
z;QZ~{%=4zWF#PbEP?;4U_*qNPKV)}SQ(nglre~`+?SHsV{q2HBJ54#3Tc&T}zxMM>
z#rxv!q-$pDl<q!_Z&>K3;w;TRS7hUc@6WY<ly6OoEBPKAvqksKm5fy_{mwZSaYnbr
zJ)fA??=k)tvi{()sucCK@Xd2i?yYyXzPyz?|HOpM+>7(Kn@8$A%UxEl$bNf&_JM~s
zkAHsj3wp=6T|4IG``b@Av#x%Wy>8%pVok*w*InzH9^5(LAHJl->_^O-)RzSZ^e&`y
zpL+D&vwBvitxkAgpKMFs=AdOe8mFvQnY}9Tua3!U^G4U(58b|J@4Tnu|F8VEv6_hX
zxtk@K*M46-J6V3^x91n$h<-hzdgPt<QLA~@CC^x{Y+bb^Sf=;OUf<~rmwx^(+xg7W
z?t<5QL$<9N4y}LR$jxX^_vf`|d3~$!PFyl`>akMJ7uHpC&aVo2VCES6Q|+;pm|Ok5
z#P>m=W{NkKAO5EnrO593JOA(8H}<oic3!$1cBneZKsvQ?-sZI}H)>fm)50R>-9Ko1
zU_;@>2-CNPab8pR^}PNU9QeCZuIRX2c9q*omTzXK(qC?4*c#H?IYn#TmhhUlD`mV~
z?f4tNTt2I%ZM}pk{M${RdEd+;sv7Rs7JlrubTM?kw8Y;|_1=e>iqSK~&ol>36Dxbt
za%K9;Lwxc@p^K7>cS%~TUS#}8di||yEgwuLn%htP?Nho@yXTO4`;LHQi<l(tSqjh1
z7paB!@2|``q;jTNDMkE4koKidg(~r<&j{TXJ>8zxGGRwhXGa2){5HL-{iou}d=4xu
zIaKyiS2TBie0O)`opY<M+h|Ie#yqLeO>s77+c|N`cG+ue-}edhm|8Lhf9IY3%u$f}
za*3m!s<Q6!y5KcIv7Wc1%?^ipr&!c)m~7s~6}>=OdAX$d&d1+8@Al7Gm%CL?bWga_
zqKh>%n^NO4Q+Ef%-mTosUC&i{di%k;v!}~BBkJmAI~>|CrWf?~ip30Nx&Cg+WX=Xh
z^LzfESLGl2_v`iQfY7%~uPHouEY>QvwOjhbj+w%Ic~d>&bN!asY*$>cICLo^gTqGQ
z0~$N`-ZQ`1{<cH>`kg|DcW*qt%@JL}U-ngVql9XfmxptK)t<u}LhS7snV0<aO<uPx
z>v?S5;}Y!&xmN#ARyUvQ4DM;U|K{U8=^xy06qeknoBbi>d8Wq|n>z9K=VyYY?UZjT
z&e~UbYX8q7<@nGCx3^wbv`wg14nG<E{y}Wx#g$E!UZGBQEbm)SoZPs#wkGmqYRN{y
zr2OL|yu!Mnoog4Z-{oAvc7Mf!k1z9g-&1J!cT3yiEz`68US8)n&5}(OkG`DUe1+-$
zyV@PEb7s$Awww1jTKec*mp2PqXD-;@!Lx2kv#gy{8ta_7vjr!9JU)^2{L78&5Bav=
zKOM17GP(HEzoy?MCFM0`EKC0S9+=@g{pokVDNn+GU47ftJtr_jeVyPEaj9P%^BxGS
zI^{Q~;F&_hmI4v3FPFcZJ7E=h?pA@T%X`y(93Ku%GQXgtr@Y=wv-kfi?vF7^u_+h#
z@k=;rhfKY9qxz%p{x?5uTIL<-)_b_I$lGoCj%0ItzLxxU$q5OY_g)vx51qKW;=`4y
z&dcpwy-~Hl9{8ViC|zN+q+g;+<7b*1n_&Ex{#CEtH02ogM)}-!YW>ZVBhGP(`|;BF
z(?>5pyr?w)?%bNmXF5|3&CU1Hs8FoE|J3NlPL(@rTNsl+n4RI+H)&cFSEu2$B>_=3
z{Hxaf;#T_h=AdFyP0ZAz>)&4BTUOhhw>Zkd!YR!AMCYWtIfnB^KJT?=EAD<0_D$FF
z%xg|o;hp@4x5n_l4y^wD?_;k+;^#%tcAqPFw6C4!i(6#b`S*@azuMb?l_gVZ^pej>
zuvz5sPxqczZyh*?-#g(#&|dM0>%JbH81Y`{WaIQ=f!0qp?&oASy1P0AJxX>L-S6|K
zSm#RW?}*dJVyY(jR~KnYsETn(g&GTUo?mWtk?(*>e7@@2)WBJ*4O&HurzU8KJ$bfz
zg4<~u4wekduPgU$o@@R8MCob4C%R!Dm#Y4;e=Rd<m5({&=DyZ$v#b9WIL>A~R&(t6
z;w?VuysGiZzA~F1UF6%k>h|Ay>FUV&TO_`$ii^G?Uw>fJT$azBkN3OZWGRY$-#q8R
z`xghDmXu7cVB0q{jin*Dhxw1i>3ggP4tPixZQSf8d+)?={r8MVI9F~m^X6)KHm@zH
zURz7#FrRYZt<#|i-f~Yn*0VNb|M=x*^}^-rJ0-0T-;{%Q9_V}3%p<u}`IYV)hiQMa
zBXySSukmGL{JK%x?RYr1nCtHw-6t-UK7Ei?zo~ZK{KC>m+ag5^p(&oPUwyLaomM=b
zCFZLy*WT~*CiBkP^sM{VZT4t|8AqA-H*e%lYnayTv-HxIy}~j#KW?0NUSU#<Xc$lM
zJOj^bBKDIODQM^aY<aNo&8ZBpovLs1)iSk1SdVtCVVvCVP!bRn`2XSgCYCc(ckR)b
z74=4S_RK851dUl5i%!ik<~;uHTYJir!+l{Xg<F=L*WqQF+<IJqC5FTB$>;onDZlsn
z-CX1HxP8;=W9&!Lm@KuYOfWoG?!xzH!$Qsr$FJ|ozV2Vh;9~f%>jlFWpQVQ<NjS1A
z$TnKF{BN<?m0$MUt<?FV)n&)Vc{ej`jel6YJ3V>ktyz;y*_wI&eNE+k+O4D8uDjsZ
zCbr~=rldfPslQ!Y|Mu~I)p)FM<!`7$!r2y&$;;OAZ9J2@)M}~+^YO0gXP*shmd~qo
z`2FPg{Yu;NTPOei7VDm|xM#zS($LM>Dci1AgsOiQb1b%aQ)#_1+Ms*Khoc_fY~5}>
zEZh8Z!}MLNI6LB33;H^3F<aHKLs|UA%P$L0ge;TYy8bDL>k75iIaTuUOSDR41@i+E
zIIHx0)t>0Y?lNJmy_C|F|1r&T+J(B@pFg+nICtvMM!ThP8ccKRHs9l0wMw%rMrqdP
zW1feX3i#aUIC|~b@^yTD=Te*IJzsL<(GtIPbrttktod5Lx5y;_(~^TLvoB<eFRb6b
zx5m%H<@RqW!4ItW_6YHuu6=#v^NC4qGi5iZp1wV|bK+7y=ZCpn&u;$;QPwn0HQOH7
z^xui$QTcL7!Ef`7XR?IYsvO+Cxar=tVz;e{-)9#5kl1J{6k`|kEBJS^TSADyeZ^%=
zYRaD$o4)C2(*3@<scFr}%`UsFW%-t~Sa9ED`>A@_QBe1G<OVi3=ft`#{KtRzm@;`t
z$xmo8eSO@zy49riXKeQDne5i4tF>>rYwkK4UbA|0{C54qd24owPkuV_Z|vK!vf`P$
zKJq-yJa*muN@Xd_-8qp>*H)eC@Ce*<u^^`9Woes*vqHlQ$qmXUP9%NHSCYB&c{cx-
zJG18P?>PH@L$h^)^)kJO-KU!}JYHH?xUfqs*iigZw@xl<<J{1s{LMy-6%KFTcjmmm
z<+3X-0SV9B*g|s)x+gilpMQ%_FD0@5U8ScH$F`>0=2^!6hL=>_OU+LGxFYm|`;G6_
z5D~tHnim`Q@0%QTQE`Tid&;Jju`8yD+ML?k#(nU+<NO;xm){g(Q+(EE+NAW&Ha`4X
zgh0&uI^8Sl%(IQOP9Dmh6x1;xYYyLeOF6&ft95q##TQLwvt4JcKYCbvUiRmu>&oA*
zpWn25`}J)et8BOH?6cUI|LXtQ^}l}Y+f>pRoHt|P_p_U9Rxl*8RAw)pV9YIY@804l
z6~9O2veJ?LAJ6G;WH|WolizHK#I>fPs~xg?tmhs7Dz`pRI75HSJ9|?v<7eBSG#o$q
z{NnZ(ew>f0-)$-O?z%T!*<Ej*I_rixMK$*_H%t+^aMAe8`I&R(A3yojt-RsmwKsgP
zqn?%9x#q+(n}(SC310ho#Uf<ty+E_3_`_3I)z!V-eVpaFarjZ0YNs#9S*{c)zUlvc
z;O&{1%T=Kj(g}x_$=8?f(El@k$?>MA)q8!7y!o_`-!s(yF<bcQ<IB7YkGh<<_1Yo&
ztG@4!fI``aW81$-`g=3D-wZsVoqO|I4}a$SYeMr3G^)?K1>LJvIoaOzkS%VP(R1Am
zPSakBDsb=M+GIGN>*!un=AA1hoc?p;K8N`2qph>PZC}yxgrnti-+TYoM>`KSck%t}
z4f@$27%Tkv`So9aw1Unbcj$Ff%;w|sJooPUxnw4zWbXOjZ}(_71Sq{NFo=IFJdeHV
zI(xCjoD<LAoV4gtXiu7cT<^V>Vmoj7p&yNhTh3-5DrPvEzb#a2!u1L34BYNAwsAUW
zUi`Rkm;F?ajdvv%&uH7PWB<5$g0-6Y;XBRMRb0WXY!N1T5{CWCF2#3``--OCJAE@{
zQU7M|^_sKNzZ)l{U%6B4viOGZf-mbFmbuNJCU{+EUQ(4`!aO~%cRv5$bjMs+QS>$1
zT5%oAn~Co-<$i9ze!eGiPd;<bA%<SDeH*V-x1XB*BQWQnq;uu|uOj6_e4l0+N@={A
z{dU3Aw<-)bRv*q{$@sNEUiMql1*Zq?H~MR3Wwjp8a?781_`T$zBu4$mna_gOo_&Ao
zXI-4oA*IrrOzI_%?rH9hIKVpb_MybvelueYukbCL>!0y@=LsQSg_z*<vllL_e6Mc(
z(`^3X+4-kYp=<m;_Pu_f8&$;7$`SKuUYQr;JDU>D^$hL#6WNQIAGlpIR&;jsysfUZ
zb^48~(<i8h-G20Vl5H%TQc-AkwEDV~>G21@*NdN>I@!I)cH8C09JYbRH}<>~I4Yl>
z#?gJnnL(=a!nHZSQeI7eJ3+vrN%z**bse&ce_pHfeWT;__2}aNdtRIfmkLt->GkaW
z$*Grors}<}_6>RUv1Ixr)iOOxZRV7@7czTpy)4w9GV9ou3tWnid-_k;iF7I6atupw
zx8AC^(&5CuN4t)EUdy?<t>f$K-zQuDO`Dt~$(6Y7FXtJ?9Xk@+@0o3%%az;cxc>dL
z3;QSR4|i~MciMbzXQ#QPg^=TyWA9kMteG{{>q_ZH!+i&*z0u)+EPwxwfuLsRvFm%4
z-*!xs6*k)^tbff|`n}K>H;3DD3$0YY_Ij{OPZf09cw8^IJTH%Fe#4zhf7$#_mgSwb
zm3{TRL1b~x&q~!N7EwF}nyPEMYM*Ji^T*$b)%NeXep~iT;(G~8>*$ABdzw@~c$~TW
zt=w6(y=TVBO)q3@LtV3YmBbZK%)cG_?8D{#zt0+~AMif5TR3Wu<byjuGE83!RQdWZ
zT(CR4+Sch;+ut2qraa&MZN9~<?u->W7dIdG`Oosiy<p41nqa$9?yGqsZ|7`Ne&({q
zyJ$yRz3fh_l@}D>$W{E^m*-Zg#TDB4o}J_O)A-WZ-$(r`Zl8PJXv}`~p2EQonm69p
zwj^A$zCX!fLdvvLuWk7j*GTC6JF#fSQnlutOFe|D54%*mUOiwT?ffG+_sr7TRdw0{
zRqrPR98sGsf9ulKO^yO<?((RL{^83v-12EB`@XMMpSPCI@85fQ?~U)LJ9=kw*Gp=t
zi#yp|`qZ@cuGrp0b_>tgLuWlig=0$6-xwTG?czw^(tKC)0gDrN=%c;Q%ym8Addzv~
z!ItWIedV_G9y6HryWXFRnDi?$IMLqLKJE7%<Mj#~vg+#t7w>tfcUSs3Us9PN_Zyot
z9wN0fMBFbQT)F&xpK97YkJrmP=V~uD7vP8~EH1bwtJIvx{$Aki{@bNDE4$xb?m8{i
z^29r!==7}gQ@_-0Szh+1c{&sxnl{hT!{FY>s0|n9&nnSqE1M_uwvOxneEax6E4{eQ
zW7h7MW7+)XhYjD;!0?Q|u)IZA`zuUD!a|HMac-Wwa<@*v*Kg+>q!Ql;NnN{G&a^iv
z&#(Ja?9_{_m-$!?P8C+)n*Vp_rsnJy%Fk-Mk3909el^^3UY<l@<(pHNQ!MA5t}I!p
zW1J=FdA8YY>fUzt&Pu;ax%bz|hI)&H6&2b~+qr8|S>f7uBDYtT+}+vIC%h#8!NdFw
zvnGFi$Mz%O!nM_<eWCufi~b0RFYD5IaU)dHe70i3!?bA}lNVXn|Jf?l+4}CrhJ6|f
z`Rg8q>RP^)YdJ1*$|?8e)`y|b4{dmKZtX#yB-84^;*Rpmr$Vo4Wz7kE+wpGl?su7d
zbNQyqi2lCmo_><c_*Br*{=)~h1u=AIUp06jxvMYWy<p3#rA49odXtXIoipM2(Q!Hb
zb!vxgli#@s=i`){%`Z)5T0ODs)yh9#D!30@RsUMK)<ye;am4pG%bh3e;)-7R=#B=z
zkKm=y8wLB{#IQ3soO#GUIZl4#eEH_!4T}z)<teod*06F=Ydu%wz5SY_+nbIx<=0;_
z^lcJid%I`z`(1I%g5F>Myf!07@8)rhzpKriEBxMcbJ?9XdvUsR+Ce6!r;GnJq+REH
zxlKAmV^jIU6{YIy&-o@UGe5djEasQb2F`wQsr7oQ8jRE2i<<;IT%_Ex126u3lV9bz
z-dV6i?2|-aTde)LBXQFXzUWFm`c-tB-t<r9tTNSScg^@NTXloIX>;G9FT$tdZmfT?
zab{M*!d<1^_u39gU#+lqwcOFM`J{7ufZM)O!JB2Q2c}ks1lO@Y^yNOc_np)q?X#0^
z`8j;)WSkq)_HfQ>TZO;d&9b{1%om(<J>T5q-zd`*boA^3h5hzUrm+IqS65A2Ak?b!
zk!L#3M925XB6S-6xtFZ$TFfXYm3aTr|7(w*u;1PF?vm}IlB+&~`@OhVEp|)3xcO9M
z^x<={ALnsg4!vK!#^maDAvxC#N2Ym&$z({bSt4fEy5Jty>0hj7A>um8@phgs)o1qh
zzY1c$^z`{@p1*wy1!d%9mna<W*{o2e)O+hUUun&oz2g0R3+~Q38_u}zhm!Up-H3x(
z8hNTdJ*<1Lp46KfX?9HTjrWZEA71Vb658P3QCS&u=Z3iO=Jo6B_iwRIS#fH{#O0?#
zOF6&Y?E32%8X7*C_1)VIUZ)SQ|M5Y&relBEp}r@R52@5_o$dNr=ftCpjL{#;>gGoU
zzkDSnxK=61?>7JR6?)bRd*+(3^qQ=BySQKQyzq1Zs~uczhVQ(L7``o!m^YQ{uZp)t
z%-y2={ib#L<!7}o#n!!_-7u|U;im$w9PJQ~I-Q4e&3Kfu>f9Fa88IAsUC1!e>GPQw
z*OS+u-r6<$MA92xjrwbMUe={YwX{i_<?i>Ku<CW-5p#}!G*3JBnC+*;&cBbf<@qpk
z|LH3$1%Dk~&+%JFH~Y(q8)nH|CzOq1^3v~3QB%qad(0s8rMlu(@a<n=j^E_HHi>;>
zjNdz7-P7XGp0e_su<|1ccVnZo^tH_{Kk8~ISA4!$J2LU6moe9g-BVZWJ~itXhZ0Zd
z2`%}xdq4hMCl)wasOjtE8*diG`~JS6C!Buwn&6egRsU8owB|Cp1lsX?2c3U&K=)>4
z(uR#^@=veaw#}qxS^4_PtbhXo(iQTmv+Bb)PS|>ByOPSY>t!Yhk8dApl-j-EM{V|v
zlW}fB%vKri<CFyC6<%GbbLVs~<M@3)<lRlbn#pQk%JZ6-Yl?jwuT-r!zu8##g3DSY
zRQ=BdivWc;%h)bf&MD7fG39SPwcy{b&B3vS3HJOuQr*_|NX?O(tN-H6of8X1r#t9s
z{#~adTdkKTBiLd)U8Nya-|_vq1f{tba@s{tAJ_djH_A&z&bufti*4WCytcWU>MyH`
zPVLIs-n?$7_^&X-)jtF)^Y1RZF(F5&bbj5Rvu6`bn)(u_Opv*wBVxY3+|r&a^+5-7
z$jm;?h7*BbQ~f``nAE=E(nFqCg)eo^X0$2^Si99f+Wvp#{QsA$8{Z!JRN^?R>Hn{o
zr_Zh~fBhkVzv5kG_qY3{%EDiEd@^Ki-Mj1DeEI4AyJkPt+P?IUP5J3rWqS4JZWk+@
zkD1@maxD9!_aVNJdh6Tlt(t{vx5)F~y0WdRXg9-dnY$|)rlo%oy3{LH#_Mm>fBgR3
z7wkK-+mu|ImwAY9m~VC}{q!EbPev!KLu{wbU~GG8*`C4cZl@o0;APr^EoXBdTIzga
zk*q1(A$xxDy0A?vHhzsb&(zm>k5PoBJ>>Lvx4T~i=f+&v?ftxL%8wn~3NO>GtDe`G
zdp$Ypwz^ZtGyTryzi}_NJTB+mXe_$@|DD^ylb3rh$v)>`u;$0EN&hDJ`2V>#<MA~)
zyLrvGTiiDq?)ez#RMBxR<N3FvVPX|rAp+qu?)zOU?OfJl-SuMYZC&l{-Gv+5ckBNB
zI_vj|;-GKo_N(HJmY&~jK7Z9NXBDj{-i14}w%sq#%ANn&xtPT__q!PfgJGD9p!WA7
z<Jvosm-IClG!{#qyDj~%RbA@kuM3KEo3>nkc;y%Ck~uYj=RezBjsCRok;<9;?_o_{
zvSM{Vw;YZWh!*L)<rmI=>qM#wqoIFxnp1qV%&W;p23`9T=QA9+BWriicb<xg$F{lk
zf36lREm65I;Kyb@rSJOZZ=d}bye{9LecjJHKt?cm{=D<wGk-3;5WnuGugTKBe)9zy
z^Yix2UbR5k-s0_}J`3$Ux11_@IUNgQXO5lM1TRMfaXNRJ9JJ_qy(ne5+d+r!;3yxH
zlXY)pna)gDe!ryVzP%o!=}yNf_EUH16#Co~4vo4oF-<h3%WAi^-Ff2^x*sen-g-X$
z;<q<~clw7o{`Io!wZCgT@w;?7{mAM-M`n@Ws-L}1e(TSEzg40AV1}U7(J7Ix3f>w2
zuI0-}r%vyQ;1zmUH*eS8j)+FVNT+y-%O-Yjzho7Pl<k^oHFwKrzlpNa)}P}4ZFHTq
z{_v-I*@z^zYYCIBF3vB${`{x;q-laGJfYEXy;?3g_uj9(G2`YLhVbVH8`;ZT^FvG@
zg=t96`kAd>RQY&z_tij)lN<9(*Zyg8^iY5HK&w=-lI8A(1*(dBHYGJXZLoP}$l@OK
zeOh{<Qzp}_&Uv#=Pw9W6qJ1T!@~qRAkBJP6EsU<|i1HhrjR}@uSkbhhrmSeQ@Q%M-
zOi{NUX5PHm$9gR%T;xo3#|!aKKe<0&`m$)(%ae<RI;vc6cpmGSb1Z)<%PID!OL<E7
zWoyec3I(_GZL5Fd6jO1Uvn}3KxM}UJMfWn&txxQGC*Wv*ck0`&H%%@1hB?cp@Nd0&
zJE=V9#MfMY$(u_V)ZWPMd@@h?&(HkByR94^%?WtVvf^@oapyWo!57LKDn**7?U*bS
z?og)qWu4|n&)-WFZV8JWOPjw!?3vi5d7RbTgO|62n{9XSf5N5d%58n}Q$%~J^dZ+T
z&teTj9CGzHAIpy2|E{xVd9K@$Ms;~dSy7cc9bFwWdnQi$@JmBb?RjO&wVug~OJ0Be
zW8EpTGvR{3_7V>6mKzd{oHe^6bR}13dGvj=P<_oAXUTfj`^21JVafg5PB72g#@})_
z-|qa^!_qtSi_Gk|pSTeJs4v8?ZLd&%`3_l!<ns(NF^knFbA&Ao-;);|?K6F&;hvWP
zGt8GQ3yJx*$B9$^klE|xoHbvVcC-9H5_aBjn>UNVt_=oVp_(q+ob22WNn{_LRIz-E
zxpIkN0aN&#s(X49b}H<8vv2x}V8stRFRm_@zrRUNn|TpO^crb(%dZoE{+a#y?ziU?
zT0Yn`UVX+R^6h%%`Z}g9cO6A~|8!W(e%sDis(-ssML7RAQ+w)f>&EgGN##=&*UhkO
zS#Ed!`qbUmKR1V){rAgV+4Vq5DAl+6{c~k~|Hg;C7ad&;rb#a}yT5;T%k_{`HCx_a
z?QgMku{LKoxYaFWisYsP>eV-$?p!$RXBcMj>Ajegl6_E!xO@8zH?OU8I#br|zSNrH
z=`GUk$z0RL8nZ<8@8UGyhMl2}DL)^ZSj|b>@o$y2%a61gkwZtarC0L3_?PnB@}kp^
z={Ap-f6lqJ>uFBtnrksz4W?yGV9hMqyHMoD>&{oAoASQhV-tA$E?CI1|Is9E)_I=Z
z#-(~ToTX3YTz@UR$*27KgznmwHR|8W>pyZX4DvrK;PCoH(iwwhZvAch^`91}dAz(8
zF8S!9qwGnx({{CIYntAyijCuPI~lWk+OxAA1ukq)+1ftEO-yOIBk=aTwAK9!{CCc0
z-#=UMUSnowm$qr~ky**J9!xs;ar@>i3%V2x?ifp*y;!zZ%#Xn|YWbVZn%ndZcgv+L
zac0ue=3aX5?Dr?18J2Z%+jgZ09zMtP?%8RDYc<9he9PVVt@s`<{9_|C@AMb_No+Co
zIqZRpXBQTnYFm`T65(+&m|wCzYnqhG$<4FpPS)nIT*12U=G>=J)*`##{j^iF|Lf`?
zXYFGudNM*$mj7{)=c>!DbqDopf7j){6b$KFW-EL_hnv4uWd9|>N5>Q+D-J0tbBEhr
zoF}}&>(_S?As>7Di95X5`@9antMjW6etYpi%g;Q<bxO`VPuE=$(^7wCp2757_+o$d
zQx$QqW34JiYkGFJK07Y^^T+3{lUSE*7dyCJbHk>-TiP~%f8JS}aB}6rGfYnx{gqer
zW~n?>clx*w!`4bA<|A2^H{Tj}t#$Z2{Y0BrKq`lty3l07>2ER%+)OPwI*!eno}<;-
ze$xG#M0JhQ9EMx5nylr?M~ogC)K+(8pE$AVY>!WYA$QOu=e5yxd<~cOSg=gDO}wb3
z;_!ae+OD4XK0eM4;U~)JsZ5W!9v<IZDq*!v=W$H8rCWmbznTNvUwf_YpQX%U^z8Xz
ztyhjWXSHM=y0hNp)DcN1CkyvabIbL<HM4AHpKA2<X1EH^qKgbC%`e4??iT51OFyjs
z_TqBw#+~-lOXe({tg?T8kXF-q%ZplHOE20@pE+lJ?oKm-!slU+3s;uq3WoczPW=8n
z%5eS6$twG#zVB2legDvrnf1p*SGN4BSjVnw4u4JZbM|U`zn7`ZytnuGmdbly+LuVG
zy_Wqge|Y)_{sQ02zc0`Bu6_D+$AUL`Uh_HAUE<j8ZM)jM>_z2PPw%x^cY^QuC5qLr
zn_JLOQP}lJEuT~5(p>4^RWsuy_p8-%U)Fj0N|MRv`iwf^cw_$6+h;uO-FPcZr07*g
zj&`{Ej?E`bgnD$=eZR_j?MeQrzlWrr1=fXc6#D(w<D1h}MtgJ3PqUNG?n#ti`Dfi_
zUDvmvOP^g*oa?=J<*9DZP0xSDT)JoQLX6*?p(+38RrQur2LlVws4ZK`R@s;RhP$BC
z|3}uUqBDPFU3ikZic@t?|4}Zysj!Z{de8i}T7yUB2`y8;7O~cwYt2=78O>}gX%H5_
z@oB@?RnPt}SCS9wsF-&nweaN6tj%r_ld4SFTQxJ^ud4cO`l;kc^8GW+i{5`;oqQ{1
z-PswAbGw?)DKt$iFx<>Di`!P1>wsfZ<TBwuD-!E(FYGc=*z&OG>q!$GcCnB}cFF+`
zzgTj%d0+4S@Gn%bGNW(ZcW#yXtYcf+Rc58y=S#e0YYNK~;s`fBAG%}y3A@NM=i4S)
zuFbAodE<Is{|wat>6V3Oj9fmMZ1R}SDcN5yGWY9`B~@2%U(sv4d1IftS$=#@llo?x
z_uGP!qkm_yKk{2~&4w%gW$y{GLa(oJe>N)!@YHgx6W+=eD|qLG`I$TB&1+xCZa=*6
z<64is@BT{pGViUZDGl`PuzMKydD|xo!NploOk5&18H*O{owQ))Zm<{oS#w;%XI9~%
z<$;}nffD{lR5VX{+R00;Q25ADeCcxCsxMsn&;9y;Fuo1;kWcYeU#^gTe9AhW{_6q7
zE;372%m`Y$dYahg&Bc!lTk}|dd2-v72+m;%?|HH2)6cYvZgnE_bB{h=E4b=c+Nu6W
zlk7bs8Pqq+2Fag~VCv63@@uEZf}d*-WV+r?<XR@nv}92!i|B*v=OoX4n^-K(Bf5si
zzh&{SWXDPC0`{Ce9Tu+ZeYbO`ng-8wJ|XQzoByml9`-pr)ODHPlkl&PKg&E~-SVYL
zopr()cl{;xKY~5fZzTtD?(^Dius`+fXUX-vPYO%YbBgoz@2b!9eikdh)9mc5)!wFZ
z(nd|;L(twQvW3sm4w-8UMnBxc@H@kLx{186j#~IkkDg@F$(xhf4==s-Pt8MSt&(1}
z!ROBCRqs1q+*=!TIm>#_^5?5%1A6YQy=^2te_s9WA0Iz7*qZb>u3kUu;|GuZ2OVX%
z9oh8uuI$CO%A<k%>RbdC#tMJm*(N*d@8j6Aptkw%MLFy^>`xhOe$wQ+q<MN@?9MY2
z$}Lx&;`36}@_u9faqVjE`7ilTFF5vj@`;!;=b8@$-uO5zDRb}XZhp&YPsLWn<(Qv+
zb??ikw=;D!;>5Hn%%j(9t=~M!J2GzJ9~YxfX|E>j-|*;X@y#1LXPXM#_m#cA^kjV<
z^Rlz+7sc&3`sAkC^w?PkuCEel;i-ONxYgSv`=)~L-Tp<Mvp;X|?mX_2{P)=TCZ%Op
zo?hSg_e2Nlyyq|Yg5<8PQ+ue#qWzrrbK$)L@q_bU&RSVD%X0a)C*?<64?nIE^ljDs
zxWKW<|Bz971Y@0dwo8k}4e1G~_Wa6KyR+{5q+j3LIA>qPMo*>St<OH^{JQ+f^?kIg
zdA)1Rg;j6!H=X9Z+fkwYOe=J8;Q4>mXAZHK|MM#TwtN3?-?AB1yN|ji9Gk3eXqC}h
z+|@eygUuI7cA@RTT8%dr`dqYjo6chRZt9x_DVO~iR9R*$;4mnVuuW~57^b1Cn;ZJx
z;`t1TyR*~^UY&e+&@W|Cq%>=(i*lEB!SUktu1T}D|1~`EW#Rv{wUeKhNZ+;D<)PuE
z!uDm!x0~h%n(BS*<I7z#EB`epZM$~nc6Lvnw364l-I07;jJJf-HfUT;{_t&X)Sn+_
z->06<wfbk-v0*{eYsCZZEArg#TvZQQv_flN=JK9zzt(cBIg`O=+x|+^W6!-8nHT1S
zCbiGXI<6zs{Do2C*M&Z<Pi}vAEO}*PoG7+m+sgk>W_8x0XVd4pv({FnnWgZC-B9G8
z8~5*5rKxrOlx5eLs@S*NeB7>kXnWmr-qd9e>g9#DPn2t%C(kHwsLw0@ja&Y`8^!XI
z^j%x7+~!L;mpMPQGI;C##Xa>JX+e9c9cKo8u1r$qHD$P+c=<rz5#6aimEUroPhz{s
znwFfAeX!)l<DWnMp2^-8IjXKcZ@GyU%jRkSoW3pVn*6r<!s}({EgEliYrNYMxOZ{1
zbkBk>0vs&%$<ln!c^_!BcXz)jNM==-|8<$hwx2Sq4PBdm-TA(|@3!M6Z@n`UUjLi(
zF++aWBB}H87iRs7eQ~{tvoUg4l=;1HyB(XHC$T(j+3Wad;rG0?_4;d*Oy=GaWSa1a
zxBu|nz5_gyRtX>bx97WMrP-2mFLJw-db4`0(k`tseqXNFCa>kKX+GoLy}XSjMf{2x
zc{9JwX;_^-Usk9`uaqrWG2SDd_2-T{_aDvMqrT<{FzZL35mxe2iEsSdW|Cvm@4f!q
z;~8I5<CHRaESt<YIQA^InEPUP?OfSMV(YA5{B2;Zy0GrRpH!8`yKC>&D6;J~_tf24
zT>VLdV~cF^4xzfw_ZHm$=hvx__r~*K?3AZ#UsmdTEOTSL`@P;>^waHo0xmMY7Dj(H
zFgPr<_=3dDkc;7WRb{&UE+sCrJNd*xdddavH@9E$Ji70C_OZ+S2i{W48k!cJWDWXZ
zl5ku3+qarMllMR5y<qw`FIsTrV(ZVhHcx*w_xB2~qL2R`aQDBSq<n0qO(s9niswJ)
zN|qHh31(X!v52l&Z{Bh#T#@OT$hD6)jMXwR{<AX<@mMDp%iL`Fdb0Z*k9|<)-n+9>
z>*}-*++RGmy11%s`>Pv5LHCy)FNrINXZ1DpVzhqCuCe~j=iFTN+wF4Y7N5G)7rwqM
zu>Gn@?N*WEo)1f9v-TNHcVKzgR(s=Vh)yn#vhSCg=}OBEf82cBf?<aAUiUHvsb6ws
z9$vd<exASjRnvt+mjLzl$f9qTKYUoYYO9v4oW<+~)}4D>I4%{MaTor$dRT8t*W{Rh
zm>(a1i5qi1yU?tuyk>>%QHed>#U*zo&pkHr>;C;lU_pZAjWZm(SsMA|cKova@FY5l
z?}o?@RW+%eD8mmT)A^6jzIa%}((zf8U*t^nx1Sew-0hih?{)5e(>JAk!aTQENt|e`
z*N!|{siyNUrnmO9tQp@E2F_Vm*PXh^mUgc|!9}3)1m7R$MS9@}Z)ZJs(CFXRbcW}c
z?s?<PjGkReZd{fD{MGe`WhW+S=}f)x;6sIafSS;@tNj*PE0Xvx6(<}#>)ti3Z9!bP
z)x&iQB|fC{q~?CDS^02NS9N1VYkDeYR#M+JZ_fRbeY-Ahvxqv_o|9fK@cYY}nB$wT
zdMZuP_LkeZ+GM@f)S#Wa+}+<<S1GBpNp3uEBw_U}Q@Lo(U8~zOrkZg|c3$7d&v{|*
zoJVS|&irSB1*+?hFAF~M{O<LzTgxk+PMN`WWCHtNhkuvScIcfx8E;y~UAEqoCsA7H
z$|^QNj=G@iX@7i$kFMTQVo|y7(mts_?sF|o7E8Vp`OLCWG&I!u?qbKp1@qe<-8N3~
zJd;ztI3i%vcfNfM(Y{mdG^dD2Z+h@CE<b2rT=ttUr*7Ri=y6omu4YFyLzQ%#>$9(q
zxr2<86OO3HMjS4$G2arJ#-PCTuJteP3>BV+47q~e7yU9DqaWqn(mmB%>rgCzpj#@0
z)%nHMDyDAFgR8eIT{&rWwJGptz??%<=i0QqWyv^xJiT_cQkUgXJ&VVCT{g6HTdk1U
z9Q${@ZN)^6_f?0QnsVi80vSV!TOLQ-oBMqIvn9SsKk9sb=hhYWPZIoW^c#|{)%$+d
z`)HGODDcI{bw@s5u3J<5ZDzl=_SP-mBY7rAJ`gCsQC)bke_sB>)QP3HAC&Y?uFRWc
z9{lFB@tHZ(&z=_!T%XI@!<%sE*R=4?l|fMt6Q{9$O<Aw^?lFgD;@wMJ^Z&hI|7FY1
z#Nr`lDe^beV-EkyIi<`S6~E3}*CZJ%BbKa^)*pWK^NI;Oe{SFLefdnIHFFp2%rsNm
z`tRJFXRLv`X5wqlOnafbN5lHaq{~vAEv~Ic^8U57g>FoaYG3l9MKb59=>q{P=KEO;
zu|f+ApFcd;e_K5Kuq?+SC#m<JEjBD+P@FH!dZ_90H_@$EMb>?r`0az?)_`}hKmW+h
zk9wn}xBN$_c7fU!XU6b8Cvl78Z@=tb^gBk}tM||my;IE_nguvpM4N7|b^Dz%yGqRH
z?T@X~YI)v#c6npVJ~_KUB*4_*+|Am&FPBYkORs$@{C3ZA)_;K)%L-Um{M9^WDJpHZ
z{-U0#YyFc$iz4#fCa!vOc%sXy(^(1&+O}L$kymfqBseS8=6vMZze!#E$L}#sUR5&j
zWbWLhsdZ{s6(7FvN{CR{G~Z><(c^Bd1(t??CRuHqCX*++e9arCiLV;emImMInsG#x
zb^nn9*Q^!iXP0@gh4QWCcov{i!jU7CmEiFF^)HtY3GMJi<&4LRa{_Yi?dsm6`J%^w
zueCHhM_1<L>tlIVPY%C*`@B=d#rROiiVrUCUrjsh8zoDQ+uiZFoVC@ae^=beZ~km+
zBQ9RIYP@sDJIB3Qq{hhCR{cfACdP+S`}7@8irk8B*|$S+mtI|@y`1tUKQ&#)66Jdq
z4@&1PW3funPn&VSN#yrUA=B+okG@REU)9(&zul=W|8?`DW4C<I7ngbXCeJIm?qV}V
zw_41@^uQA{XH|*6!p+s(52C`p{@wU{f@CbCj9~hMNCwA_`zE_W-l&}7=JdLCQE;E`
ziIh{Fp3Uin-?+YBzy7$RJv7#4+3#TQC$~2~{^!vm5!ADyN4mpci{c@}nuXhs{`$iB
zzN_TPC4&Q2hDM8i`dzuKbNE-3jrrU6+t#~!th{jh;v31vKh~c<n#_59tUyVzkTrU%
zZOF=0^`4ki_l`4hYDMwdOZpwv?r)LP_Q@=HR_Zh-tg1U-@5=|-o4<C;MV}Orx{>yT
z``dGGE$2P6jQ?Hy*;XJscjc;^TVCH0y&KT`WRg#W%gmMC^POUt)v_j4aT@z*1b^!*
zI_6Qmw92*YNA=z6+SLm$F+QqYE@|H^E2z%r|5I*v?X7ydhGTIvv|0o&$E`aj@40@P
z-KV{!UZ35*UF3Q5DBbapH`ny<>jVqu)~P-?ZrQwk>*~$3dZaepTh!B-zo^~+!pTUl
z3TbPZyZ5xL8oJk6G;-PXPu%}YOX0_|w&I4e9hTzf!n!yFu37h|*B$Lj``B}SQB%<E
z#GHtaqS2iR%Ts*TG^jhiO$;i1Gqq{9wsi`Jo&9g2?uN4>5;r<4`kNyn9FLYZ)%u;C
zaQkA9Dudikrb|ul-K<mE6$(=yCwJvHC1_muDEVzWW9Ln_I$h-*8_uox5a;A3!Q8bs
zwD@$;<X_7?wj8>)q)>FB<aN{XHleOfyWgHF{!;O8?uVx51;xA0n)2Q76mPFRUoer;
za`HaDdCMF5YH!^CpecXOZm(08O!doCVlx}o&t&NO!h7i6ah94TL9*B0-sxV)sa`VM
zVAadFE+X3A=iIpVeLcdna#260HJ8x7;PS%IW1hF~?My76lq1xTzJFTQABnmC-#p#3
zdMgf`KieX@KPWQ3{`2fLG5oXrb6!cYv>vz1>R$Y9QRu@t3XU(c&IS2>%1q*XV<B+*
z{CvTsH*efenId8OO)~Xx%JX^sIa*=Y-?)AA53z9Ckbf|=I_3X@`Hr3!-D|iN&z3s`
zH>%BOikQBv`N{5%HF1e)>+U}JJXcr7OE7D_UDDiZtQWr(wX46Kcl|e0<f+DjoJrp%
z+HvnzdK`A}o%gA-bG?&dr^)`g|EBoJXPM@s?k1OBT-?|6VfRm;g&L;w!apr)`%>u`
zp4S%p=5O4E6xDUd7e4yF#v-(XYm4al{gZF637n&Kx}a#@^IOI~4&mFGEoM0Tw`^{E
zaZ6p8C*$I`?SFKo8e}K6Pgv|8uPSt>N&Fz&(%j_%mS1&+?u#s`5Mld%K)7rL-&S8n
z>sO8MrnuaUbDU{$LsjV7hjYb(-<;-oUiiiBW)Qx8xm(|pH0!Uv?b-gm7B~5Q8b8f_
zAW$pqe?Y(CHLqZFuBWR@?8VT;mi6LG7C7~aSw}99xV)ERea`Qe1IN3oz6pm|b#2`F
z%cu0K`9nUvG@fq@k9p31A#zXZ)4eBgVTXe6J-zu=D|S+9<6T8I>u?XH{d+G(c^>-W
zASROIs_xY_^_Jv^B}LH-`p#LbSp2R#+0V;Z`PHGL_s!m|`uOMeny4Eq@7+qPX<dK%
zuDI!TFGiOccUaty$CW1e@84dW_iOJFrez`vmdMvJZ9By){L|+1+aOJ$A9_uHf|N~u
z=YJIIpQ|-zhpDVOC-0W3>{u>=B*8pKErrevay%!b??#*RZ@hNz;6Lsa8=icA|3f!1
zeJfj5Z-%>o{$zbg#>Wkp7H6F5e#+T;`wgGT{?kWxt)J{^#vq$Jb-(7FJ07pA!gou_
z1O@!4dn0Zdb@QmlKU0gVmp-iGHb1NXEjD)NiI@hqtfLB#Cz_mhJhhT}=F&Cs(({7X
zzh;aQydQWq*Xhotg)Ey&de`qeQo6b5nR|^mE5DuR&O6LU>g#G*-+mGax7**px4h6-
z<8kiq*(c0XPKYl!^fPn0Ry6DDH-h>dZ^b9duD4ui{k;1AO6`zO({lPG^QISxOjB4g
z_j>*Moywu7`_EL~{Jc4$Z3>gkzxP`2OwTG+6{|-aoVomC+^I>kA8qRSKZ|kVlS+ZJ
z@1E~-l<E9i`F3I5y~Gyzol6w|e|tPtvC!E2DbMlf^R<2Ne5@z!DO^~8+}+bg&U{{W
z^?XI9{M}a~KYD5GoN@8gJYSBJYcJ#~XnA@IKK=CZ?>d{a!I4><Nd}*e?P)&1w(C^+
z|CMFZ8dq{S?PAt`DY&)Z;EkWzj2qAIh<X2Li{`iOYARBUOOKxwlG>ync41?!<dh=`
zK{KwsWs5nIoW^H&rZuf_*{-k8+*KZLf9p5ltl70$a|J42Nq>9$SnhYU_A31?Avgb?
zTc=g@b6xkT{yUZr_08)Id){z9Z7HbSZJlb?eMs->D<zJXI~?aen-$a5D!;Jj;XB2H
zA&1Y&o?LV6Yl`f=lYg>}@4k;_J^59MVdkW37ns}qM1PAsEjylai1+8sslSuUcO^%j
zRSMYKqW5Lxl6`U>-VeC*^XCe#iJ0_a^WJZdX0v}{mwTXVVX>&<lZ3`i6BluZrva`#
z@4hS)+;YU{-jXS9*2XQjQ|+BoRSy-j%<yVRS@Ci4``}ZDwkdNi;LqzzsFs_P{Xy21
zCGDDMkDgD<+wVo9%}15rv}cs}pFZ1TG+p<uOv9f~^7jj$D^Gd;y8W)?mWOA{)U4O3
zN8Q{yn~V8(ar%07BhyONm*pDoq74&oM;ZQl;<CK6<>dWo!FGSF)9)?#88*jCGDq*H
zt^R`UlmMoq;uSZA7w(uaJ*upG-4?!6<t&yrW^0_>vY+9VpM-5w*2(P_+dhh%K2>vX
z`K+4@gwF5N7jVmcbTrcU;7#`pu3j3oY~ezkJ09*>EK}?}b=r-j?b#EpYxZmJ2s$t$
z&sF=tjC{vSx%I+DXSVcfw8tM>wN1>5NqN~Ox%*m6HcoL`katv;-?{Vetb30=0xuqz
zX0`5xynp9)uVoR7{1l$t4=k8`x+m*EqCH2~jY(GmCS*>V5VyciGh6+^k#%JrTo>QS
zeS5yh^JfI#NlW=%3uA3&N}6f0PTKmWGT6LD^8mv&{`&%kD)#(sdsXTMt}YM^RqK%!
zG3#Pk+0$9cC|$eB(3h!YUdRf=uWLRs{3-GIbu%#PR8q&!w3@H$`l|}=&iC9@=IQq=
zbwjgSwCH~R*}vJp=xlAg)TAOebM@TfZHJ`9%Iy!>DL=Qn!F^wpd*$Sq%kMeoMm{;~
zKEdSS<(aE|9v++-x20yUR+!1Ux+x3mwlReG%YIYgirp-$r+WF}O;0X^?FJf`x(+Yg
ztM1P7Nbd5SuMBc&>vZytIX~HRdXLk_#h*4RJo+&At!0j#mg2N*Uv1fzJGVXj<b)J_
zXT3eIt*83e{bl^o-f0J3d(;b@aNz$fVf}Zv-5izxlj#x%kMGNBSvO(jXBENose2tg
z>&}~OO6y#<nX}=b?|0cF+P@>aPaGEgv1j#@^Rid=n9bz=ayW8x;WVxUwciOmwc+xX
zr<XZ}cy^X8m55q+Vdp{SHET;sp3Yj{viGyb1F?{)dIIgq*W$cYzTC@bzg_5SJzeJ+
z?@hy%QEh*1{c@y#-~RPI{4L+s#j)S2vNyam?EQUVo%1bD!D+IW>+-M5*;(7KdREl%
zXr^!Rs#*3O3vX<{zvFR_hWX93^L3LRr<M9K@-Om>wAqtnwq}`Xr&rRO39CQG1*xXi
z^l>P}Tj+lXlfL`BP<iL!79r&lY2*G)&zV*}YWWiSzi(ongv@NCKjt6aq_&F3+|uD#
zusM6?YkBLVJ6QfS+}bC7u|4^nZ>*T`xANb2=Rf^lrm)bFZQ-I>F4ZpFt7W9M{_IFs
zT{*kxmyQ0$i)Q=EZYnKP77E?EWn%l;SI+K#8}fLV-e<61t1NRD3JO@ITB)pZ^K9A4
ziszqY)_6brUh4lhz`x1AW`3bZnrY;fjJhu0#v@`XK9ynL>bBJO>eYRieRh9t=pI?;
zi1{m~O}|}KvVzA`an4-P0+$I9&zq$V%?_y+F7Mo6Ue;8v&A+@nEmK-##vb<oCiC7S
z2RF`Lt9;wh*YmB&!2^#kJXJ9{mLRfPRDHGdA+;Tk0<5-Nvujy=_(si}4C!O(GOKjt
z>;6?vI2g39VTOdMmgB#m<VYPuaV|}-Q_J64gtC;*?7C2Pvf;>I*+W;<CYirc-tMTF
zpiuMWvGtXQE1xaVn0|A?aZAG#b_Nd}r*Gv}-zJxSVR>=?`djZew+~vobZvQctU>nO
zLI2#BVvT<H?QA|3u4sO=)_}e8owls~l*~6tFZkjTZ}vY~d$LWj&E~LOp?N#|+qxU+
z?OD<V?7I!rvg_XDPcr7*ZQ*m;w@+i*uW!e#Cj3rmEIvMU#jh74ZnZPsv=%289XeR?
zh>KY!N!lj$<hQ6vJ6^Y>JBx{gR0Sn%e7IrxrX5+m&LWTW9&8LPd%{v~_y10O;Dta@
zp4_lWg3a>+>I1&X)TVTPj$SM@tx>tz;}4JZ4`Cz2H@5C?)IZh;p69F<{ZnPU@@wSA
zTOSn`#-IH7VUD|D&F2HrDf90M3n)xE?04E!k$cy}UX?psj90pX63Xr-ePTJbK1fcy
z%$xb3mFacy_n&@ODmgv;;o$ki+09H>)_m)cwEqROwkp@Nn6N24m9_sG#AT6k-+KME
zMH{BMi5<Uxy@OTz-`C7Dsqfor8_uq`x}@#&#Z&XE-SgaS-}g0L6J62tdd5b7FTu$*
zEcau}9<@Kb6ZrU}+<mk2OB@?#e6F3P`o1Y3EI{YtN#$E2n^tY!vVOWyX~wxQyYeU9
z(^#*@q-#(7u;b_A6FM%|!WtLb{aL&ErEi|COD<5;oVj)G*|!UyEkE>CZ))z!oA0kq
z7XB;iW*T%fGRpkOEY0l`oBtm9$S~u<+i6$7ZND%1j^$<OPNw@>g;m=bZzj#Ja!>ZG
z*Woh^D^)$Rc6!t2-SVdvYL$rCuUP+K>59fhAypQ!zyCBW`1g?Q%d&ct&v#O-x7SAa
zEji|JPl)HYvyQ(hdqmCd{j)qfC0u$Obsg1R*X3KUX4!ko!ZBuv#G_v+weLBs&HLWw
z@cNjQ*1lm_F(t!w*W%->tHoIroaa6FJ;3qLG@t$WK7$wX?YC!D{K&ScXRn%>xLzh{
zpYWHIR(GDnMQn=3PgMVHJ)3=eo@J|%?pEP|lYJ4qFZW*XyRqor{$q|g84H4DGd{ds
ztRz(OD8=n@<C7_mJv#({FE%mQEbM08I{#Bo<}@R|i>r85W6l2Cn02ZYd}O;afB&o4
zhOLJ}ee1tpU%%+f-Rlk!{(B^5om%g@O!wtpu^<L}(Oo}^f9wDMG~KgQLdo7VYeOm1
zzi%tw?5L0XQusC}$X??AgB@;>&v<punNN>fAR)I;?PT+$Z#k*f<^hjc6V%05%2r>W
z8x`B-^~^L&|4ng}Zmh?}$FFaNh!pKsXs_*_@vHNBctdQ(KR-{?!%O_LOcpN6XpoU-
z7b#|4F=;^}yKr!Gl!idr1_hm?n=MoBi#=+R-#A6=Y~Z;Cd*?_U{`ag`&%9uVT=C==
z9~bmqm%R7w)b&GqVrtU_MR*$)ys~R~E->j+#Jlr%b9U)=TYc$GU`qRMFsptA_u8pT
zR4wJNwifZfZn_n6#f(WeaN@)XLK6Pxclw95PLj*`xJ8g>n=nVxw*No=9Gc5&zy5jo
z_E&c%^k)h^k)J=^XSLW<{`0qEnI?uUyd3*j?H}8rx2eBxx9S$Nn!TAD+Au9nd&gW|
z#>{+ejjQ>wx?iq^Z0D@Gy8qkV)Kv#J&e?Ux;!e#%FT=v-4{P1a=WUmMYS-cTK+C24
z-9Gbd`P0$jhm-5`dW)2PI^GI=b?vIrhFuC7z9wyd*Loa2v3%8`sv1XuShsE`*?XdL
zNB&Lw>Qkb2YV+;;Tn3j<cv|#L*7~C6T4K7guX~b&Y}S9Fxwf;i!s>I{mAke0_m``_
zT)FVq*E64YUySjJfBt#;jp|#P)~Zecz59R6kUXgUxu*DRtGUa@b5|m|igMiVE;jc5
z_@nyiH$H_u&R6HT=sUjMExGTlkisO(Pv10{b33XFb{D<BZeVzGf`MQ6PhY2_@nzlV
zIdA2|`5#s*oSOHQ<y>zB)0e1KL7S%*{F%|Ve&VEr<Mx~Uzq~Q<e*3Cx`p22ouNLzb
zZZtD=`Tt?Z4xiH7D;JfPKb`oa<>;cgg<m_3Vn3DLO_dRycTwlD%Gc1)g8|Dgy$QVL
zlHt+e{KkW+THe;>@AMPPwIlx|*hs8WvKDGs)%DJ&SuWJ{x~AMAK8Ka*iI3Nv-7BK$
zx<<n=R^wE7=c=g;(T;msdcIDR{W9%i-Ie&bwcKx*O(U+$h<$qV>EG&CU29`~WaYvW
zWR~A5UAQK*UcPm<E9<ke-P=X$-fAt1tNm8>u1hIoS><KbJ#8f!vjn3ujr!+`#!S&I
zQeU;`b=e%w-wb*+sqMYTI#w|+DB^UCPn@+|*~@EZ2M?>shU>9OEuraaOY9O>&Rji7
zMk6!A{{D&E?|(dS-}pUWROG6ab)EL=ppR`%yPUM%%`?w$^qR2M!KA{jwdVbdr!m@B
zTIPIOX<lO=aBx-A=O898-%9Dm@4D9WGuPbzyP}D?ka>^#qr<AlUT@mk)>D)`YpUAO
z9h*WO^KG8WK6{eA$$5*-Ccke#&wRh-ckHA^#>L+vg8UzABKg`*7FtGMneVVm=$~14
zmL!Am%b!(?YNl2H5o(zD>~^U~*)+dt?jPIU@BTb(DaZO7wq2KsFV8x5^iIK?U{@Bi
zg^fIwM?`LMR3D$7T9GEYv#aUS7UQ{(=ifTo|0;Uk%vI{yC&Po%+&NA<DVbinx_+~d
z@5Fe~8PP0)hx*<r_0(+&ZcMR_{PS~PtIxu@d$VRO-|?&djql-^d0yXN9XH$kbI(+5
zkI((77B<Jew7rh`b3;;e+WT#pAJ4zb|97Wv(l@?<n{N;3=P`Z^D=j~8HDTS?3480F
z*=klFJ9YN_tXsXN%5q|7BMcWGo3YnjWpcEOO3Kb7S_jr9h&)~O;OeH1-VIHs&KQUv
zkG|J&h+kPku6udO;psnD9@sT&`eEI(DJndY+G{FuzfHO|A(!+0{v7usm#dEPe4L$8
z5v?FUF}wWtomE|nSn^lxIcubn_cQQHY{+}g*RytsRI@WbdhULy(s1FuhYSAM|K8~s
z&@<Pd<fEJUcIQhxd@d|SmZEdbq9vT;r!m;X|6a7O{i^;AvHOy8&JLAdTG|}Wi@iLW
zc)#iDu`<pN`=04k_q8r!nQHOIP`0^kO+c2y?gK%VN49If?XH~@Q1VR7b))~}nI<!j
zzPq2hrrG1hCg;kRC)Ibos5D`kw1#hG`Jemc4}E@n7$zO+d%x^%j{EBK&y<hEeckD{
zw|lzC#m#w=spr;T>S>tMrI)#R>fgNJiN1?MLcYeE@7FMxK6k70pHt@#Yv%1f@hp4Z
zY@hdnWiPkAlRtmlbLVx{iLaT3;>_31(~Ns|t0qqQ*W2!gQv^KEKfk}{<Ml;M{PP0)
z|5YD2wQ808k~ZgOvQiGh6W3|S&6J-vZU4=`u4+sTx@%^C=(GQE`>^bVd8f98PBOLU
zdur6#cCKb((5!53>mrAbtc}&}@AhOcv(8vI<+M-w<;?%J_J+5^JU2xpw)~sWq-4`r
zyH$9vd{p*r=WY2PR(q7!?UWG^XP;KSUz|NR>?d>6m1DmcWBk_c`|V$KY}K|!53HH4
zgfbqG$(^fZCinT)*T(rLtTt&)Gdt39|7#!5>vNOJtK7@Ji`29qad-MVx5DdJ_|LL^
zH49At?Th|=IcMGFQ`dslpZ&VwR#Bhq(QJzacPja=y`HYML+R_StSJkoOG_MozBJ#w
z_})y>qQ{R~gb&7>-ZF403!T38(c?uCm0>q-D%|>ew>q?;a%oK9?n%{lCs<YA>egL5
z{(cJ6$KPS6%U&JIKBX&sJzmbILFgTy-2)Ncm{z@{_jA9M-<=S`6KC+{V5T~=XfYSt
zAA#3LISpcdRo>_B+CKT)Iu_Y)+b2G+-tM)xvn?dT?KscVWWnx}x{sU+pI`ecQeC@v
z!Pc!7TKhtlU(C<kw_smj_s-_^T`b`-8OmmMt`7@Z{T^kNDR~%$ioEBFTvxPuri}dV
z1>b$YsfLB#<Xmdf>Z<+5d1+<&o?D%viLG;`xc7<+HK?gQH{a<Ro5ESWBYSq%#8;sy
z=UzSEaPO_s9XHjc%!PS{eKGfaF0j|LubKZWCvM+Xr_|u`61G+y=k2Rj)$+W1xb*!p
ztq0DctUek!&h|Dw(%paAV$JQlf>Vz7@4D{8b3^b>X$K?!-8$|oBJbTK%BH&1z2R;x
zh+p?GH^VaRiuJEcu?aVKezb8-T>ZbI@;IO8g^~h>ioWfU85S#;zJ*l8Wp|1)>iPx7
zwXW7P)m4AferMAAb?-gwF4p_4QEdxamhkqOz`RAL_4bMB23A%@KP%su^Q!;*b<I~_
zRJne5&H6Q?oxxi5{O$9_(>H9`#j&CMV&B45w$2(etwkqn++P0RWt`BWZ?RksVH2CD
zW-RAsi>TZG*U93d?}vkYY-b<zem^7<@$S70bDh54wDt2oe7u$ZD9YXMqPpt2$@SvV
z%n3g-_b*#7yXfhiJ<~S)40Se5_B_m$#*v{K9g&qcq4@3PKNit1JboKqae5~%qIK^E
z%ir~dTU{SLQ`Y8ddvwcrNsevEiP>BiroHv*KWZ1P`QzKtFSU1si@w}{dwp4E`TM0)
z3y&BDI^K0(;eEHnQmb$Mwl&gkm5*7!Em+L-bbafNbF){TKHqJ*<JgNSYmLOTTGmA@
z*?V75Z>jZ<=Q7`{?WZlOiV?lH&bY{x`+{NZLyu{mWo_HFrt0c>F}YlcnKC){>TTDQ
zRL37aAJ1rbUA_G8*1ny4_OnZK=*xYp^u4s9>xSnMuhrF$OspBdHSd3LeExsA4aTuo
zmTp}xeYV&8<)rleuF1durlw>@TY7z}tA82MHIG;IZ1)oj<?#P==jOYru9{ze`IqkX
z4aF|jH+!cqYuWlvDgV^jnm-xQAJ0@i7VJO0{;cMwnO5HAf{VY}P3Qi_r@DsEPIFod
zkNJOrFmwG$=0<)6W(|(sQpxw@mG0Sjl_iAi-uU6kl{1WcbzKtHy}uh>WS%sy-}PS~
z)Azj}Exm1DyT@O)Tx`4kt?ibiTY;L+6<GrJr{~BDt-MiqD^GELEUU`3m0ZC|6SkCJ
zt*u&FyZxdr7wi2?FTZ(z?^TJ;ce2obUtjKKXtmNUMQE1%{)Zl(vuEFO&hHk`c7G<k
zaJ6RQ%J+|JZzLvKzb!w@@Fc@)N|?c?<1P$dQ@&LzM@7El4M<X#*~ofkMOAP}?uw+6
z^!MjI48&7UB#6$wU723?<Y?!XFx|*qpVjWTZ~Oh$Nq5e-{>QGnB%&mk^tODi$x<)z
zG&r#JsliK$jY)}2I}S%qSXsQWt#a+tbWJtOnX&ERH+?@hI-hX$s9qRWxra;mXZDGR
z{EdGF8ddYAe6xPlbK;G4Q&fhB!lUr>?|(DRc*J3~{@LyY4s8n<F3q*`pZS!rQ}I*T
z?@yJ#)=e*7K1pKZ{G0XvZKNh`P1*A^tN8y_FV6Soaoab0C@!C&^ka6~@7+1`W*$)P
z%JrJ_{%xOrV8`kr_rE$VR=vN2EElyTRO(9}2>I{gS$y+;N5W21>u^r@A9G8eHvif+
zCG>XTvAeqR8}5X5_UxHv<}94%`TXIvjyu;mzIeQ>@IDrE@65V|Ri{;XuPi>Jn^nZx
zS~L56(f#|kpZl$N#31#?zdNnOp-Ovs*QO>DX5YyR+YQd~gf0%3@LIk25!2K|mow(S
zo4jm+6VtJiufDiea+?~gjxqG_O_BSWY`k#?^Q(RLRsY8{t7eL*`U<Q&b!*u+RUe)B
zO-rh{w)z&--F|vh#?<YSM&3g%^UFW~z4|oWpf0F>)!Kz(Hk*9TCrU<kA70g0!*AL5
zHIeWABlXL%X-foF&Ny6p^Y}lR3l5qu`@)`P)x5v4&v)KukDkdl9=5MbyuaPE?rr<Q
z=bs)c9O!==|B^*-|F@qftyk=Auh`n1F15<T(UMoJdfSKD_kV6`(w3UGO;5(8m}Sn2
z+l?XFt25@6I^8Y1R?#PYa_9T&(pnm;E5l!y9^CyUZIw&R@B49$7C-liez<>ld#`HV
zZsS9z<w{w3xcYW(&Ylx0bnB#7I7`82r8zGZLZ8TaRo2A_uKJ<6Q&#)Y-)rx@9%$vg
zeEgNo_L0$V;}2qtimNo3e4Z<8dJ*Qrf266xuCj39M-?&ky(`~uzITJaE+u7q=)Z4g
zpFY~Kear91N0z_Y6TtPbEN@!TDxbTDCfh$z+P}K@zt_$GD}VB<%sp1b<7`vM_P1i6
zI_onpfdk=u*R#B{SD%`^`<kVmcMr4PmaoDqIt$jU$`HDiCRg@|t4~stHTkK|fmppy
zHa8dQ?A&D=BX}}pS8L99v%6ZEQ%|f?2)a16dP$Phw%;?qy*n(n=x3;o|MEATrw*jJ
ze>)a_Ug_R>At$x<p3^U`_<qDrH;B=D+WJF_R^L<ms`9H)iHGy8sbb;gL({b<-HA6n
z_TbLq?_cxubtk!A`Y?5CocPOxrC~RF1$Ny0`623@cY%I`j8>#?`Sh0Vww@o3z0dFO
zT>HcH?DpL2-=62Jt)HQ?=!xo+jZD`zi`H-2`*z2U3!!^9NtG#H`_rtx=Y!%dBlk{u
zp6+l)TLrHBv9gj+m-{X%TlT?KIQ8$1P-DjM=@oyLto~TOpEdH0yXJ!RLN)8wImvx|
zrYZiGe|<;%pW~{ZTm3#|?6LQXtm2p}xW}rlos0EAyTD(ce^Cx=&niUBnLDfYkyLuj
zKh^Kmi@o2^(XV@L{etK6uZ8BFJG%P3s#kXlZ&B2VcsTi&@3-xfH6FQ`JvPff##OxX
zLPVL7^f|NGiL1Fb`inh%yPWUd;*hHevp;;!`6ekYT=W0e-V~kcE&TcazErd4#2LSN
zY8CS3>UoZdU(~7^)7hoP1h>uqtM@-m)<i}*-$H7R`HCBR?yq^AYr3@6<K%{gYb`9=
zSd4P@jRo$Xi0IUf`1X8Ck4?H&R&ls<;Y9UQpVw|uF1cyh?0zeeLHg#IPOk966?v{w
zJ3sfzZYs5ZTgR|Tp^2^O+0UygDsN```cCIk*`~E>|FXLQb{_rHC%n42Wwn=4!^yh3
z9Anjfl~lE((pQh9GD<TjZWG}@a^`AAi|pL>@9u?6nHqLO@O<{Xx3VXn%boqd@VlkI
zwCV+AuRSX!R!;XmAAIS=UD1@ee?E1*zyIQXr`N_;vp!_z8m#2h7kY7bd-~S@??jJ&
z2>Nqz(n9-fbA`_D*N->;@_o<#-EI@6tuZxX`F_0aSpJGGv6V(Lhd%cnP~P8o<!81z
zN4!Sly_xS_>kYmBxqYxqUbe*ib@;;br;ba%n!PT*m8m9u+Rt6jym^#%OTKUVd)F~Q
zQeZ{#{1dA~3uo-^debFxos(H;$NTSJ85)}y|EiSv%O2EYQThC=I?-ZP-t)VH=b!I&
zIk+f5*67dNx56FgAFkZjxBBN@mc<2;c|S|iuLNfqJrw;caBAP)s8Ij<M^FB~d{JL3
zc}4d(XOW1e;_uTA5fQPExM!VT&VBIn=H{2|mMrN-uLO_nVVmydcvSyQh0aAE_u}8l
z^|MPllg<m9e9Kzyop2_lPQ6H|>tp;!)0dUud4KkN|9P4(;h2j2tSh<I=NjiU9=o{y
z!Azg^_US8G*Pi*jHioHFHt5=d&WUCR&(8nQ{_XQ!4jEp}z^>!~hwt}u_FsB4<?qgQ
zw)cCpn$L1y>4;Zk)BX8eYvI0Z^@0axC!<f)l_yxXoS3ctdegzLsn+Mu?lG^JktX1A
zsxSEUdWW-T*k67+{_eTIvFwe)o%(lXUlwlra(JTja-$Ek=67)aGjSGEd?R3gq))pt
zR@-md@6R>?FXWa?F5sEB!PzsyC&)48m}KMpZ|c9evNisQp44KRX;7;w=f`(7M<Ja3
zi23oo^ADd~6!Ngr{&}+Pvdg(aCT}v2@8mQtJ@$){Yt{6hp?mW(-)MSGPl;K0p=SBd
z{@OpU>~HzpUZcHaP1mxEVqZ)ASIsTAE)SY>pVfYAWP;wDnxDJp{Z@Rld<AdX8SY!@
zADYfS=@5H<-M%vai|78RmPd<NtDdLH8ZOIE(ri|F^g(KZ+=ZzEi)QO_Oj|YEveU6=
znOd>W?<ZPp49fr8Y@b`iFMjJFUAt><&EIYIU)1~kPMm0SsB(`Ay;AUhnG5qSrR$fj
zM7t#4pVP45MUTt+hS~31jr*OnF6@4*k^fAPQ_HvIht?yRdka)WbflcmOi4^{nzmKE
zKlrktapdvR*FSz1J5T!Y{4T#gUsLaP_0BVu9+4k6@o<_QyeJ-<n{dZ|>IH$k8}}H?
zRQF!|cyQ7Du&kCJGm{FqsyYJR{t~I^R?FMr|6Z+Zvd3~IgU8Pkcg@dqPt#}<QQa_)
z#d@jyNlRm~rL1#1=Jm%-lVT}eW@fp4*K`%m=E%0_liNzHu6|u!lhLWLUGT0^&HwZ_
z{+8C6SLQ7?vw!-&qD@C*;(<F~7kVy=hzz;@!$e+6;ay_1qRAE^hP>4GC#QKFiDBrt
zJZaO@xza+96_$Rt`KO<^#;$qm+^VG<b)mI7rR`tNbv-bVx#+t@?J5`3v4ZRiF+NM5
z2d?q;TBrE_n9lpXXWpOaJ!0Hvb0+e&vw!gR<<kEP-gPK{TBRo^WwGzXjhek%JEpok
zdB1ha@1Glw2T$I`enNEdT(7sgUfvXJjXD|q`I&d;b9T*X^WN9q{%yutrmSB3IlPo}
zQfKL}wyf59=DK|mYu2gerquD>F!eNLon@N7%xmink&j(ozdt;^qT+w3yQ|A(+xtSV
zg7EDwt{vC8e~Oyhf3ThWp8L>~<ZGXqrx^Y$z1JHe_$xW?7k})`=kiZyMxNijeu3{%
zo*$35{f?Z=WPhX2XSV&-ePTPl9I1T0uy*aU=d;UhUtG)iY2Ip?@(<q^H|+fEzE?Zy
z?Kb;%m6l02U9H|cotKfX<YKxnw6pIzv(O30KTXa>p^nua@B5#m{<!(>>(<Qv?cLc8
z2Y$!o=G?MjoZZI5tk`fqj@$Ftl-h;Y=N#a>wDgC;gOaLWPS-yb-ab3q@W!*M-Cb|`
zLhH)pIClj4KI@#5*1Ps6|J*aqzb$TO9-VVbQTp=2+9jK1A6=8(WG25YVAAZ5kF`SH
z?Dc)H`nF3$jc5-48V2DPu?v?bX+E29AVTSv;SxTLwG&s}UjEi#g=a@=N<62^J^$Y`
z_c!wS@ou~HCh6!8-*4ORuRbHEz%Nt7CZtnYrm6L1-x~WvV$0WD3Tfea;GLDI|M&B3
zPZf*n{FCp^tkb@^$YJx}HRdn-Hmuw-&ujlW!+*X3t*kQ}k~fMvE){&oG}~00{dYvz
z8lj}-P1U#AKiq3^D%juk?O_sM2J?<1flkez)<{_#Q2y8X?D{%uCMliIp$pm0PWJQu
zEx%jd-uIHi`&S#CbYCBF5o!(HSaBxQ@~25ikx)YJ^@CZQQ*QHxc+JTc^H<9gDtnT@
zK6K-XubeNG18%O1Nm&tD`6#f)%W&^omD@e3kGAovXK(MicJC|mT9=I*cl>9UoG<vz
z{@=PEXD4$9ZGI;2H|1UUe$Ja-TG~%OUP$@YJL}M~PQS*~ds)5r7dW|w6>>!9U*6{b
z(MVxuX5;4QN7I}d^;+f~-~TXIuhU5P>badvZh}tXsaqy(;t`M$mv?ykJ91&wH@1Rj
zmk;JXe;=ge#qjmatuVgn40{dtFL~m{Yj|sW0rQPjXWs46ytQkUB+o&n`Cl_@^7P+%
zGA`WdyPo61YID(5W~=$KZU#1bq<q?aL&yHy#usxMBzV8^_Fge8XR%8QT<O%QS#i4T
zOr5~SihH}?wkvHDE{lqP_lI?n&8ENHes_00Jg@sHH9yOI-ogy;wOzLvHDW`itUv#~
zuCrKBOG);$V5!>T?ejI?8g)%h(YJMaVsN13hET5iiS?~>@5FDMtFS6q>eo)&!;fQT
z)P_59Ec9OBRQALwm%X3mk_OZNiOU1$KHeCUCORooUFPpPfh}v6S)7Ug`fg(RZNHqu
z;aXX-?JTNmpYB+^qRHua<pIIWi4T;Xu6Vd?{)LK|eSe(USsYhYHy0)Ocwf<c=j(b%
zmPvD7#uBY77Frd@cIl^|e|+4I{fx#{Pm7ZG7dF=(?-t&A!_j|=wDzAb8}c>39m(eZ
z>-k&0yk-63uot%^cIaL_cE6?go^#eIvCArdRyDh5J-z43VwuTVT*uD%+UJ?(z0Msc
z&F3nLt&deMIJ)TFx=Y$?SM|-4pHbYuuwmcIEB*@_M6S3$E?htL`uo;ti%bm`9^%pY
zDX3&}>-bK?6`z;en;*J=M7~j@V#a}WdFLFjtWzjitLW_Ya$mN}PqpIZ7xc2Kjhy?u
z*zca{<ghLaD!d--XJa)#ZCT3kl=^jf{)W0I{ypzpDea|W|2Fjxljp*K1l5_>qSzdJ
z?}wb_+#A5L=8>jlN?zAVVXmbs?zl`paC?pDu62*ZwnyAj_#u_G$-y<2iT~lPd)L}n
z4<@yJonNNb9;NVVZOxo3R};!V2kfsuD>Jc{&%J0xsqDI{$sr$R|9Q5iz106lUip``
z(`N2UWo6l%{!-JC@p$!pGrP9sFRl5Ua|O1YH`iQsyWTzg#EpPS)rt4F$?4UuzIaal
z_k26{lk3f<FReH)qIxI)o9KflUY+-(*jZ9VCmi~D_x%fL<63T`8;6UI*Sc8og+I(K
zJ-V4MRk-@5cfmeM=R$?0CqIAxyQR?i_|EhOR%-@J{?gx1?)b1bofdSieZE{O)%i#M
z!-qlwGJZK00{!)3OWVxvHkv=)al}MiI!}JSz3jXhVyjl(kM7#$u!H60Ki?*eJA0Qj
zXxqIGu-Oveb#;=IQud}BLHC8$+!OO}TVA{D+40$dv0Zn%w05rO_#RXcy6w$owx{RL
z|DODY_1C-b=Ng5fYrF5SaqEqlaArgE+$jwTyVvOHE}gX}dco|CC8talW^B%r2wSde
zCi;fA@We0Om)zH`rL*;0ICre&cD!jCEwJD6w+io}-O0T#pDWJ(Zgwg3kMZpGFR^vc
zy=Jw3U#|BtVMl_Whwc9_&+960iodG)FD)_aH?MxRQohb+7FC;I^P9c<Y+Ra!V$Mq}
z>~P}|{K!B1XtHbEd1a{$TBkY!dT(yqKUGG8VPe2~>%X_IKmD*#RBGM7DJQ~Q3I*fl
zt@|o9|H=Bfi@r?TGy8b)xgAPjdma_9`BhuS&%tKxx7EdhA?|m=BgWX!<@W_v*=wy-
z$+HTpI})~7$j7ij@bjGFf@cDIRBz_hxCCB1(!sj7`^|?F*LTP%1XLvjZB3{;==Za8
zj&VZOZNtv_^#}g!SR=XO#r^xajMKVgSzca#xq88iou3@|jvq@idSu-8bFTQ-9aFdc
z?z&*RRqe{n6MUyHKHt}+H0K%9fqhS3_W#|f6t>#^tlr%d<&zX&mEGlg@=$k=sMXHD
zx5`_s=Xd`zjbHI*N$+J{#^%NRobe@@wr^i7%Mw0nIO}b2jKhXR9(#MGM%JwVZ@sTg
zVy`ST>TY0R+r*p4E)>7LnDzGgI=l8|>2Fz?tS|oi{4aUR(tB%sCbm6i5pwya)NAu*
zuWG@IuB02~JJ)jjUw%gG%kG~aGGy-?Os<_2@4f8b&PelJI~CVSB=QH9)QMd@7;`cC
zNVxl*=|(E+U$6;Sc-u*N#-ERFIHukH`7LYN1j&POi)S#s|NV3NyzRxQo;}@9S7=@S
zSF=?8(Ro*{1;2ipr<T`<d9Ix*{dzT*)KdYb4G(VQa5G;1`!Q(wUT=%NUKS6$>b}O-
zzOymE-IDjo?R|87-8`?(NtbgSFI-N^H&9CZlM#M(K|=ju$x1zM?k|r%bKg0h8UH@_
zaQf#`y)&0(=5{{X{EgSY`^WW=o`N4e?src9=AWtMF?H4a`so`ZdVS-*75<i1yL0Eu
zf)gjo?DjQ@<j)GfyCCH3uEJYQ{+fk)`}5_uSI_X-vFz!F)C%4pN2Z)@+QCAz58vLC
zUu?Xh^=Rti)l9FeEFxp=99&|mwxt;h{1X(7dz5DP&hGYGqlGMQx9`i(`MA_YbED?G
za0}-543Rrqzb^gVq4w5Vz3SRjv40!Y?e{(YnUi?g{8H<rK>MG*3^C&Szbd`Hp3Lri
z$<pt1xdO|Xyy9PrSst01G+Umyzv|kf$NZ(gCxvbl^>CcCYl(?l&FaQU+o%6}B(>|Y
z#N0!inV#O|dS~kId{ZtwW`4JD<+XRrY%jK_Z%;XN>aKuq-}n5mg;E=P?<I%Nbu5Th
zRkkq^IX<Z>(&Mt?-@I+jXTtT^aynDIQrB%~J$p-F`jao&D_IJU>~oxDUAAXh64!K>
zhRdx<8s`>?U6~LX@^|sEi=q98XL+;ENt!f4_LH0VZU=<}>mKeE_B|=N-ga+AAopRp
zx7|UB({ClOpF1%ovm)tkc%oPAbaUG}v8RV@%@R}oZu+sz`R%*Ke%ZE`AI-W>Z=7Df
zS~)oNFz2Pae|`n*aCW-xfBnt!PYNuOQjfgW$oStj{~hbf_>a$Px$wWFmem#e!Vej|
zJjG(DUbZEAZ|lO_J2%OSh;HBR!Qtn%?K7XodcC3x#w$+G{wAIAvm`dbY<tDNg>LV3
zbIz^s%na_~DXhMzwkz4dmGh0YjST0()byvvAKex_btJL=ebwS?HOY0CwT<F<HwCTA
zPC0)>*!V-2NKpAFUg^M^TYO2zOh$M7Kf9Z1Es&k-&~f$1L|+xQbc+X<z4*0aW@ubf
zU*fR#{vRJlKIe8mjYXY-8OI)<(%JcGs<FT>;p5ND8W-s3-TpAe;vb7>Y0YZ2e2sba
zi*p4mT(gv>e*C<`_n1Mz?G>A21a4f+E^%KIC|FpdefVJX-zb+aN{e>72tP{wXCtEb
znB~j;Yg4|K#{9katE4V*n?~T`7o}TREa%VWH1e>x$HZIliNh)Co05~Fn`O9zkM5hN
zTlFG;xvC^uq-$;x3H3;LAJTSfopS7<b<>yBd@hYP?Z0x@I<)281E1f~6OKepbxLyE
zZ7*a$`PRp&CT`znaGvnbd*gNYeACM}d-9*}JHF`q3W?o%lYg8F>D+SWu;L6=!7Z=k
zO`p89G++5*!Ixii+*jLKPkZzyIgX#HGBbZqjhWLW<APU5KgCZzf6Q!u>i#E3bC!D*
z-)(5{Z@OnYkKKQ<hqa#f3ylvph3}F=?1BRAv^i&#Z+wxZCX#A%NB)GK@`3o-Ol{kO
zxvG_x{nLAA{W^?0(A&OWS?qyu+N^@&uCv9vzP~tMyz9s`ot&?qb|mV1<Q(@=3z+)%
zeakahmG<8^raRrT*ScpEW|Qe9%J^RU!2JV^r_yCODpRlQZkxI3`%KAMcc)+f9OBAk
zy-U8nS#mp@V9B+|xeqP1thIKUKi}{@uIYyP?vvZ?c2{k_y}@2ZM_TRR+q3U}I<lRg
zF)bl@=~97-iO2TU2KZGL`KzUVK6{;Q<APJWN~fOR9bjR$a9Z~6b#*UG!k@@}niTla
z<8Wskd(46b1&gM?cQTmnvXot5uCTeQrr%qQ1IrRh?<CDHReox4$WQa<2gZ`fJGNH-
zzLWeo-rajXZ;QP4($lgv$uf5tf27M#uU%OG!-!3#%y{oshH@vq3;Fl9#0md(*7+#5
zUB9Ts_1m8st&+RvIqxssGST?k-TLS|i&vihwPpcd{jB-*_tTDeJ(Lg(TvxNWJo}^J
znVJ0oQ5Kr4N`G%uXj$#MS@Yr5zbnFjihrxy|9od~)iHg>{q$$*ofCM^A2MGVb8&^u
zlUXxaEBWR=etat3sr_A~-NUABv8@f|$3O3O<2~Vjf3@A;?)>`SZ}tE0{`S`X&)w~x
z-rCo!zW?v?_U&`_{k@+5|Mm9&ZzKP`{k^~b+<lhsmk$-M`*XzHSakcpgXcOmerNw)
zU$^r9zt{TpU$5W)_i2B-#lPF}|Eop+hD5wR8hBR8;eTP>@7MLePuo|;|B3(mIKTey
z{C$5n@Bim&dqMQqTSq0iUk`il-~PYQ+-v2Zxm>}E9PRfN{r}gy>gJMD>HmHllYjI7
zfb?{a!j(3U{(XMT?fx^}exE?@PxFdZj=%r4+TZx!DDJiY``MGvC+yYy^E)uNzT#>5
zmCZlGL@GL-Y!A%%Q2qOS{LS9TiuuKJ7o4mKE?d0jgN**Y-KX~d`FwrRR$rzy|K4ql
z|Mq{|^|GVV;>Z6Nr&Q$r{~gC&tA9%Bd-?jmoBp3<=uZ9|d#O8~`{V0HCf#RN#zp`8
zv(zEZt@Q5w@A`i?{lA&Nbc^7e8S!2_7DlKQo%^x&|K<7n#nSwDBtCy1_dE4}e)ZeN
zo9v;^Pb2@P?vMLz)_q6q->3QicK?5E|L^Sn-}C?fjIaGYd;jl=4}P?F{!Pu_aKZP=
z*8R2du0PeEy^s3&)j#Tb-L%;^u7CR~Z@0goYG+BNf59(7d+`G@5+aNde-G9F?f>_8
z|G(ourEkhhx6b`?sH(iVVA8!GdJ6Xw&RX36cfS7n+xXhw=jYG;BCC?mz4rdUpZfc2
z{(aoeI5(!pxp~pf1MGidi_dA;YA@BWpYdJ(_K)D#;lc|niZb?9KjeQl|I54U@&C%7
z9V=I7W{#>aSNrqh;Qz4XgY{X7d-fgt(Vy~Bl=1WZKi}T!|8M{McK$#4`~QyW-=Aw{
zm-)lRUbbJpo%70*{@V}k@B6QJ|KG{#=hdo-x3_aoQm#}teZJl7;QpU)k8|qTO*Ok4
z^il4oc+~#=d)EKmzW>9^U3Dj}&ySOSfBoO``p^6SOt1f$|L^ntzmxC(dtCodzy5pO
zY5o6?{vP*U-!0?h;(ovUfA#14_y1-qEh}SL{G<Nr-%sM7{}+FMpDtE&|F`~YdF%g=
z*EQC69gAGE(*OJ2{rB_xS4n3Wbk+Xf_5SSt1HVr=-gnzMBgL-%|GuBr_K(uLUu~B^
z^Z&qahYvX%X<^F~J{|vlb^ZPCcg5dM38;N5IpM{R<bQ{jOMdV0{`$9iZ|a9>^<V5?
zS;t-c(-{A==28AH?m+kb-r4_uefu9)UpOUcoyfZzfASCY_(<fvdH(Z%bp63;?HvOD
z9dtbImp(n~{B>#Fvn%EgIsN>!{%M?D{5-W<K;!TC7k~E}zvZ9z^nG8?|M_`S&bR)1
z`k(Rag7xxTsd*{IB}J);xgb`4QWlq?p@M+|h+%AKYGP&t6E-r23ftHy=(}a+l%y6Z
z=)2`4mZZ9*Cg-Q5D(L&9=B1ZpC|Fo1*x7MG&8(PX+OwPYfB}a~^|Bp;KP(!)cLq)T
zds`q{Z%6ed;pdhIPT29gzc`|s;{0$~g{S30yFinue5-99#ryZ97>kSkHNI2Z`u15v
ziizhF#fwjio<?d`*-gJCT?cX%)QZ%+6p(9;Oo()!k+Bh~0|Tv#SPeN|*K)-w7(dIO
zpKiR~>)m~~4U^Ln896zh+urCnGF{@5?9;CN$hm2fb?V)Fene`{*&`m<7~&eC`1V2M
zxvaK>#md1Ciqz~*pHaV@bew5br^UIxIcWwQhP|&dEM?PXvD+$MXIIX9V{$r_Cv$J~
zs_WmQ{sp`KJh5x`(`%ZuqgF<L>9OrReeU&2-M8F}`yMS*xb!f&{kuZ^kvT_Q)i0f`
zGk&^Zk_pRl)(^^tQ(oPCXnN?#`5qSko0nhKPHDStm$7SKx&Dh2XIp%pik<Q}I(h1`
z8HOSI1<$H{{cC?=vt9ixgAjKt0cJ{MfSFsOgqQEx-Mj}BcvvpX)3jlF@ZT<Q)rNX$
zX(gv*`<H%J2l+(rJlY_UQNAPU<I=zxwXbFhO$sQsb%`)mwQ5-s|Le5D;TbnhY<s^w
z?49^MX&Ff@&N3s?Sth8?GTvkoY7nqt3xiPGv}at;+@^79w#7Kubxb|YDtwx8Gf#s_
zL?)k)D_^)2!%`QXCs-^tC(>dIwDi+^P?W)th4uYPCr(9=FProIFa0m|eA8;kAMd)b
zd98+(x{p!ChNE+~NZ%^0>)>o|*)fMp?4psx>m5HX6?f;K->n!i<yp(m`48XzWtihG
zxeJTSEQoZODO!-2nubGyWZ5z|lpsmX$mC0V+7Kyr%z@2Aa!w+{l7q8~6RL`KTw+-H
zP#_A66D)~zf`vIsVzKSpEqK6y!?}7{0?TL4w%VeVbN=3Lu+O~UY~{Cu(~Rf*#kYsf
zHJUrVbJgFVm*2pp*sUV@^V_+ji^66eUBArrRf~z|9P_{ze%)TrnIC`QtFYTuDqDr=
zJYxeQoo8-};ylydjUeYSgPeDoQTW@*rH6iR=lqeeL|o>?lV=C#Z7SK|`<(sD^CiBY
zodPGUGPqEZR$G|ygfEOwJTAj)eb<Zgj_=uLz7n5>#YwPYlu&tTWQdlY0xbEM4LRQY
z?fU7U(wuAX{-#Fkzx!>BOCt=Uo*k-_6+Zr95^Fru{jTjjqS9$y?;}>VUg67;U7<H;
zbwyju!He7*JLihcIc;X%c||nE!zD8%I`4&0mznGGC+~fWz0IF~TjF^+H%f9wm1I#F
zi=gw#1kS8oV!jbuY(@VE&$H_KUVEHRyX4Np%ai55+8$1~YxmxJ^xKM?oi4ldPfWNx
z%bU~J<mScoCq&NKm@S!bPQfuKrYSph!rPbA7c&bP7;e{bC<|XSM>X^KrT@nBKK^86
zydAs}OW+t08DEBGs1fGcZ!N^E$m3k?w@|sE{y?SK<gUH-(x<IGrF42!?H6fVeLHnH
zIr-GF>@6GB4~e}Cvf^F7vS)qQ^7PmRrxT5W^JC7&B&^zSBF}H*FNvCkpWZxcSsyx2
z;?Q&-PF{nl);rt3{tBEktwv=xchjpWy{8TtxL^A2;Nv@cd28dJe*MZU$AFp7db6iZ
zb<Y+JHc6kM70uoBwQ+&f(qGJ%|NAW8Yk%j9Z37nH5?gf|8>7{oLEe+19XW3A4}QV4
zF6-af$~m*HKKXZ><IS1{jbcI*#4Ju6@#YEaEjlV++4Rw>asTV5nSbo=wO(mjuJrf7
z)=cU5$7h)aZZJvGJY)CmuZH6B;K%m`UhMP`PD?Q=QjqNUz16P%+H4=oKWs}fi+^c&
zRtf0dxGPmw6FI^0(qyS=Z=ST5>TcM@;X6Y*TS?M#tC8vX<MSRG&67}eysD$%Ie&-0
zXpe`noOQZx<%EY7tHkx|_V!*k>R&lMl+|b(=d%RsnVictlmzxKP}$kJJL8o`U)r%*
zw_DpLDSf|dJ7><9UHj*_u*Pvd)VU_qCs}pMNZp#(YeCjimKlkAzqJ<5GV|IIeEDtc
z#`X8p)e`SK+psyvi1%D!f&T0>f-2Q_4HJds+Gl)!C)jgj&(GK#!I+(AcB)<O|EqD!
zLtf<i^BCWmYc(FquX@rcdi}@$Kljd`x1V5MyAey&5Zh|7KrLErdlBVYa@{q%ogwG`
z<>tsgXR~EdPi&B0y^fLp9A90_wS6y@HD_IM-_W6F<XZV|t;XzYr6H$OVou%pIr&h*
zl?O7r_FuhKxa-Kp=<ok7cgoJh;y_|+X=4Kul%maclJ%s+20YHybDP9Z^!%9o<a3Jp
z)bIb^+8Lb;Yw+x3(9kcPxoMe=LZ%w$|BDYFCRsl%zcKIZnFCv0^o37ro?oba<c{ml
zO*4CUZL&JL>afAw=r1egbhr6Vp7mVITXH-1yu({NpHHhj!f$S}g1xlY`w;Kls~M48
zXA4UITkmzhS#D}0K0D;q74d%YK+$JE75x{rzw~-kW22!MQ*GcTCiEouqC?;2n6;nc
zoWAjGm)dm5G0XG$W_6nzrB(iVdE#dU_)~U<{O}8W^Y()AzBgW+wnEz;M!c)Fp0)9%
z)NG44b?@D-o$6Vap;&h!T>Z6b!ku6>SD_TYZ4r6hSLeN3sIjcLtyogw)y=N9pl3<p
ztLu5J^L6xZ>YSKzhTF((x$iuSiW7Ccv%XYLeO~dGG3Rr!HI{%UwjE+*j9TTn26`5;
zDDv$7uKlHP<st14^Zd@P{QN&#$Jo<PEFs%4v$0XPqEqqOfisQzJ8OJjnADgX-Tq*8
zQ?9^&hu)p(r<>9bO*;@CGQE7Se(X(;+Vb{Qb!jQpn?24>m^#(!tCNY^4Mjm)Wuuc}
zI>pUPG}i__-KP=Vp!aI(Hb3j$Neh%k9_CL`e)v+<tIRh?YV{SX1q(S&Z`13rnyIp=
zEU_@_<1|I3`K8IG$A5JDDU}_6{BMoH>p+!Bm(tnq7OE}wofgY%xwCTBhA=J54!gLE
z$68*MtZGc&bA8(v;mij+zr{afx2yf%FY#;VJ^N$tVwA9i8nKNib3>HWYP`)Pz#w3Q
zLGT4r6SEM5O(tOm=EeaYhEJHd8Y6bb7;Ka=IDJOwh>?l8bJELMl1`};BNQGN?MPsI
ze&EdMhhEGKAGe4pV{s0#EhjV7ID|UKBpl)#GlM{=bD9i`59(~l;S=|fZAoQIl8~IG
zu<=a8u}0O0JQE}>3oe6NQ0JOOFJo~Eu`MVgV*`|+F%9(0J8ZzS=e6kPMutav`;R;N
zzx}^n_7Z18LWcL8vx3snf)$+y&pSRj7JaQ}){ogIV?XY;5tZZI-lQJL64zFJlT$BW
zV)|c;Gc_OLqAVv%`5P&S-~95y<wU}ChZhIlNL@*sovHq-t>t{5hpBX=U%dAP@6`et
z{x|EEb9-%B`|AAL&3aqjX8T**e7jP8s=va#=uJ%1d&7Oik|n>mJk>k;#c|c<)_E<T
z7S-@=`nf_;D0b1DMs+s!#SYdRo^PAq8Q!{}v~>Qq-i1<{vi|?gOiVqMo(QYXxp`?v
z^pAh@s{j6BUKSEOA2Ya2h;7js8KFj<slW9mW<{RYmaTddBztlb&TpO>qW?XAe#$0Z
zp?@BqzPPxn#XUR0vF7H-ZDNugl0U?PKd!fZd${G5?T&Vir;nUwB&y6YeZ6D$^2bN_
z$38W_c5pZEzNBg5EZYnwf1P@C=IOG75mM@few(C|ue;<V$G(0ka!t@jgIRIzTLaY-
zGNPKbn-=$2TKPTce4e!GsNVkfiM0op87?{`6VB>?Athj%?R&Kavf^LvU+ul`Y0@3X
zWHd1$ajwd<bCG^Ou4cO*5A0SlR9_<b#7OYcoOMZD3ptNkS#xQLvQB?heCn><|BTpZ
zUo2robW_s=tu+;}yVu!}=d~@XI7h-?o$7hz9#e1cxAk%>XjP1|pA;oDqvL=#&&DbF
zkKElHZMpZ0w>~mHa$daE@m$LihdEy*1!h*X-Ezx&QC4tn&tc;pOD6H7Q3cB`&-@m1
z<H;O$b%AraQ$F@M?eYu}Eex4o=<{*art`hm8<%d)*?f888^zuhZ%<XV>2<+c|F>vH
zYrVMTD!jqtN#kT+lZQI?&XbbPESM7b-C%3qm%>dG-AgZ=ygA2GcjnD^%isFc@JFc4
z41B6N_qmas`pVBSezos5%U*o4Xldy0Ie+g>oc2j+>+OYCUxup&&g{Lqe8LW!|2^|R
z{$uW25NU@c^oVVX8e5_^)NO;j^H>czZlBlO;jr|BZ_&J!_uk#DkDh%dWEGb_^ESgN
z(|J~^+P|9AVeC`)wJ7#c;HSMgS?SLd-|3kx`w>wTzpL#=(ZyLw8~tTY>YvyW60tDs
z?qcVUts27o47v{*Ss(6``TtRT#lh<vT8j=>r!XaWUCDDe=6q4oBhpbY@%Kd07fS-x
z=RAC`p%8v$P3yvvqz>L`44V5^^LEZyadSa?%hXA$WG{W}S@I$JU~Fe%Ky>tNmWs3s
z0ypnX>=iVAdr`75QZU=z_T}P0qpg9G{J!ZmAMY9keZDCAV#%cwcTYK|pLbGEP<iG#
z<9UJd!+EzIxedP*uAk<g^L>V9*u)R4)~6Vm_x`;%srP*K1D&3j+i!f-KU~aQE+f2l
zpIp-4X8RoP*)hkp+g(Lg?9t$;yY47lSQBydd&**$@-2+ll!dQms0#219Xj{c;8Vr1
z%A5B@w><melCjuD?n<Aat;VLKPv?kkSpH|t*^M&u_|>ZOxAadrb7n=0=#{dn72D1y
z%U&s;_xsl$Mm>gwSVj;`h;42g8XKdOw7&h0LWd1FnBUj6&TH7n_<3GQmDj&|-3eyz
zSl{+EOl&jYuu0;1ZJ@fR>i5IYCEf*QeLqztU2QnBxbKLEu(~IA&HZuX?!q@qAH5Xu
z?S3s-e0j@~67xW<+`V&8{5ViM|DJs4HkG+ea?!6^^e(D=a%C#M5n^!u)iH1H{^f6P
z-jh$WGro=`c@o<~H8Mdh2z>*0=eij3yuL3I^MK)XcI7<opxAHu&L=r098y@Quen@R
z?AtMKo`>ww{QI6v40W!Tvp0NWtYdrf$rbx&J5Pp)>=Ruzdq#kG(!;+QEPKRC^p&(v
zvET1c<taY*{lQ{^=?Q8k32X8_)x@vvF-|$uxv=lB<LnTLa$gahb)sjDPrMB?-(<B}
zA*VuB_|Y*27nYmi6V4_q?%6nX!qFnR6<m{8qY|#aln(4}(w=gSvt-e=BfHK#SpEE4
znYpw6rw1!`Rn+pl_TF&l#nNh>nsrX{XTJDYmwPJj{jf|}FpZxzXy)9BQ>|>1YPUQ5
zpP#Dz<M+w)pZ{`;YQ$(^2|r>R(3Ysxu5YiS&;bPw=J$J)`~zGr{4c4x^gn*}6~4U(
z{Fpk$T${d_W_cUD+hHV{9iTa5%Jc)F1~J^X-Yq)y&&bnfZrkPR?aa-aJ{C4#^8Ed+
zu!>>z-zv7d{Fh{uBCxoS*p{ZD8ESfUov^c%#gNCjIJ8lyqQUBwq`mv*zstEZ_uO;%
zRnbz>Vas{ADE4UUMPB=R+s>Hm=`*_1`!)60j};po{4TIdC<%uz_Wb&`%Q)oa!>dW_
z7B7m?w^9;1GwJba2jv>8O~;+1Z_li=T3`Q0@xAbWEv@HyiHv%y-Z}gXlK*(6|7PH;
zSquBMw6o>1ZtdsTtu$p@ZH!;)oL$xITMngbhySi+Uh&)tOIO&0*!H0*YFTS+W*lM=
zV6ZX7z{o7nz|4dxNw`(SS#JRcY<$mQRnd+Gr-~C+fm&cMIe8CY31^}kgQ&f5W25b$
zwy6oDP@9+<*RwP>@W|r6m7P1C^u#@Qj+_FGE^bks)6@~|Wa2obDMDarnp&EGrv<ap
zbT)>QTST8?aSL*5(8(#kLLpi~*U-SoP(jzk%vizD+|oqB(8$<WAr}8&yRkW!esF10
zNo7H*g1%dRQLci12$&t=pOlrFT!K=*JvK5i2sSV?4L$MH$lQ!+bI}1E<zi(8Zk6r?
z$CS$qjPYDtm@YLXwjpM0gqnd&19ul5HQ;$|$}0Y0?vJS^{l)7~-QLgZU@e*`#p1AP
zPm0&hm{*fRHywK7-u_C&_orRLvOj!ZCp>;3cT;g!@U>~x5*(+G*evaf@SRq@gSAng
z$G3B5>*wzrFSOYf8wfY<I(pyUVY7-sX2FNx3E69-k~;Zpbi^VyYoA#wr5SP}w8q+O
zCp&9V;pPj=WoC(Nzti*~wIjtnYvcOUshXd5f8~^D5q;L-FVfliypb<W>7zPxQuVi+
zN#Wu8s{|#ldA73$v0Tc@6EZMy-Snzi`bPM1Q+t2+n+H!i?(aJI!^~o)zGr1T>q3Ek
z@qc{hZ=TpV$yr6@Q|;CR9m+Wkf(!lMDhs44n7Dp_H#5jiEwt-BgPWpE?W%C2J>nB@
zX0@IDFByANi;FEZQhvT$fm*Yt#pjg8T$h8kUf%!v&g0MQ$;nk%vW_XStvn0VcyNVJ
zz$CELsin==n7X-MTEXj1f&Z@R9acg{!S@o|+F9oD=(GiYWShA-!E}dPQ19F~i#O!O
zmo`4D3SRy7JG+*DSy`d&+0&9=up|&-+fRmQ6_l<2PF`k6>(k;ul}_~Mm<g{o)k~jp
z3*u06_&71u{Ww=l64T^9OCkMC`yZK7jS+07?q6EE5+feuO=9A2*6|9TryIvJ@s?Ap
z$B%0Q_tyHPEV5ZIXkDN#zL?!EL^@Kg%E8)2G;*Ei;fSkYu~~CBFv)B>cc|3%%qo_r
z7uB;h<pV;T_LlsgUw!L0H$%SuYb<^vx+#G+8)4e-%?BE%{BGH*ZxB@1QXsc#-LmiZ
z%@U(HIk|7^9~5hz*yHV!@McExL)8%fwRS4X{kuFZ1y%-_v-oHD@EGS@QvGnM<i63o
z=sk17UN!l7JbAgsOlnb2THN7_!RNSU|2ut0B`ei!CbQA&knO^oHYKn=W8G@=-T2*#
zm=`VWb5Ct};b*w$PMVuk-T&KP{xMY>86;!z9kERdG|w5EZ3!?4FfcJ-pXAo&Fl}O|
zQ<tK+2g8vwPn$TOHAJ#GNG-BpU#Hft&C77?1+N+wi;1n14NXzoG_DhN3OXBdxD<yv
zatdwWc(w8P#q$3v#eaHj$!E}QU#}XxN?u)Q*`4bdUkobw=KHFK>D*A;Hd(4jTFlYQ
za7Kln;p)ZP7tU<I@_NULRXa-4re4lGed=ia=ZtXU$+m|~U#Wlaeeq+y&6brfq8F^^
zo>J?u)ncw^fMM<Wq{hW_%IcNoNIbBUbf2lIT$q%{_2#=IL)yOZ9mgKC-eoke#Ntb0
z>vdza8A;tB%RUuDp3{H1>Jk`UfBHC2&gaVS|0SNGtgNeYPTM>wI_#oar!(PpVD_Wy
zZfOe+eOSNxOzV4(+b66#vQN0ioSb$j-9_h#;Srl7P4932kd*tm=FG{>?8o$PewPe;
zvy$_))3I*jEr+%G4r`s*nDAO@Rdq%1lEW)iZanV(Z+Em<yh&`Ia>fDupU+n-SL|Ej
zddoKL_LgY=X_@X*MW!{s%{+JdiT7)r@Z*nvD%`v$YVDL2-mu7^{8*)4pHXhAOLk&<
z^O9pnzdgIrzmz5R#j(^S7EC{9Y8_(snsp{;k;1<dFBO*?2`pRp(o21NplJE4lQElj
z?wRXp6#d<`>#WGR*N0|)EuUeu`mA;3G~uOwu0JHJx3Tcfef;WX_RLnd?Uo0%Rcp-3
zs)|1CofXM{a;1ld=;d8pev40tc;A@zV^-I!OIJ>RxIg{7Wc`0e<3}}&SR#ek28bD2
zBf!`!7&Jh|B(!W<8_HZ7czW@S&Y4CXW$p>nWb~Z5lMQl{a+V~dC9$PMDi|v4y2McQ
zLueuvw-DPPF*Zca2BtyYMb3txd4Yn)b2IkW&MVoJ^=|*#7Ip0nx(-fy`jMBs>#nHY
zUV8XRxcqn3jZSv`Z)cqeI{IB~v&ebf_3q~dx9f7T1Pa^!Fj5y)x^n)?3#*F6>2}QP
z1^hI{D%dA8u&sX>Uopk6`GB>w(LKS*6Qu-H4$kuK_Vt)z>-k6f>DMJwO-kz2w2OaM
z7p)Y@T6~g2R3T#L4fZA4nsO?_ww)fEiuRg^b=;c}KIwS6s+y$0UA2wATMj(FGj&VL
z%o$Fs&mtPGmTcbjOU5VS@rIU<T8Uy;n|<e*u53x$(wCfaxZ?XEpU&2{!$JYGYo~Iq
zn%;l;4yW=mci*zNhc-o<y;pQu{L@%x%E99rDva%Z$tqlzHZ%w}TJGJ@wf7mfrPzUv
z)VZ^CcycpTcUSeb9=I@P^U}m)*XLdT{Eyu=x_U8|SU_%y;ak{%775@|u;H+XvmS%g
z6s9+r2AdJvaxyeV9Sn8tKh4Xc$m9Gz<e|_fNxPNpSLfaMxBj)kEJvpwj!M=a4LH_(
z{$zIH=!c7o4x9foySh4gs*e1ws-Q6bmlN9ed=d@FGzdJ>8tEhJoOo`=sT0$Two5<U
z=G(j`XKKjW<}w>L{%y-sS98>@%uRfy^O5IJXxxtDy!I2k*Ou=M-B<4vY%m>*Ux;md
zU`}CKuDk2N172OxP<D3CbJmr0@9wuviRW_O64o`VPi$)D&s4=w-N}0U-+JbDN`Lx(
zlB-jAQn>1^r92Y@e%iE#>`y<vXWz9sf(qVKxh7AZbX=ADAJ6oAdNR+Gv+etp%WbO?
zLVH?-7*C4`FV2p%+I@Id?;o3GjP{QNi`GSKmq`}&;N4YtOZ2_-=gJdO3TZQ@b#cXp
zb&AzFeq7+bw)T5ONQA=0w=$juJ-q=F8_F7QdGJ_n7Tdi-|5xOc8Js0=yOrK8Iw0hE
zW=>M9)h~X#5}g(M%^sg#-{<wqLp$5&R{3Jj%ri=p*G+fLH_xxN-Qn<A?^J!<Sp~=7
zYZ{p~7go(p)|e%k+FC9%i^t@+O#2yOn|5QNDPL+e>f*iCc4<ts=i^;iA1}AKXAWCF
zWAVlL+q#&=Ki*7SFO$%E>FBH{wGLXsRSCcTU;k10?+>%gwuTTaQA2F|%g6+^NYf3p
zoW$(Nar(Jvl~eKM_Zv@7{QmzX*D1#4HfIGZ-NJxl{sPmq?|nKEy5-^fnGy%f4=%ia
zs#IFcQb5$>l0=B_ir77Jd)dom(wIIkG1Y07e9dg1%w=9xSmAT*=G#(9Q<m!M+5Tw(
zM%v<qCy%fOm)<xr^RWN29`3g>=Xp=;6ug!yv1IntV?8a(zKTH}3ty?NG<KZ8vUqji
z;$E4fbuUjV&rJ+f&f@tU<9+*jvG6%56Kk>6HkM1>!{?knd6Zk5{qLT$2V6s>R@(>&
z73{z5{CCcqC+7Dq?c99y%a6F?O?wPPBR)RcDm}q>>ko7NM?Y*IzyA4$dBxIbF)RT{
zbR!RK(!zIwFQ1d5K=b!Gi^L5UerE3foDuW#@Ak3}KOZ%H@m6$RewbO-{gIn{+qoAN
z8%`SX?cp|3i|hS7zvs0|ALlF4+=IKeSid`~W2mkptelWN<<4w(ksl9da62}=`E*!Z
z!evSJjC|AirIYLGc3+OYvb6O3Wo528C;9?-qzhPYT(;%ABXsWlEVcb1nv%0ErtpV|
zPuz5qvvtMNr0Kz-89k4}Y~Odsz5U5}@SF8-EPh6A`ccsTG%_(Gp#y3f;GK8W0Xky(
z&|YS7ddHPm@xA|-wVezWxyhLzeNEml*T!ez7uAzr{^))5o#>j7bU1}uAea5V-WQ#|
z1090ZK^u5}b*?kv{<7%s*E2n*-Ij*R<gbpB-0H8aCHdWd?#qC_a<_*UwX&>MH9x+*
zX729AlfRrfdrfQZwovuIyU!cXUh0`YZMr98^nB^#fn7lhvK>43b6sCi=wl(PX6q+d
zprf*3-Hl_6swd5~en0ZH<gu&bn$5aWJo4D<<Qdb1j9i6QAKW*Y|FOm8gTH1zysPC`
z>iYUIlhB0ZBfN9wz7?KX?c2z?CjIVrhV#E7@4uGsYmBeJ681#5e$kc#*!DYuR)#RY
zuWYp!&@6L`xVJgf|MvfQ?^$=_E^zc1ia9ywugKz?-Nbvmd#U$|YacYbI=%Q#%uL{0
zy5y2<`oyXv3yC{&TcpoD+W7L9;O<FbwHKbb?NZHXa(@$?d1qRo@DXNH)>oRZVixZa
z*g1b?_zjauceiYslx?x>{@&*+U;n=xdM`fyzFrR&FA>|+H8Mo)oSFul=5;pY*qzQL
zwnBudF=bxZ-qQcsxfiSx1^+umoS4E<x$@*W&6nPGRzCdO^!9I5;$B;-`sUOug?ZZV
z7tY+Y@#2j~2?bJWaSdYT2`@5xrA$j6HZ9Ye>eP5t^~21X(&`uc{3R>0&{n$G%%9-L
z_~?J#;di=E7EbznYM%5@={avdSZ~gIsGe1(bg@X(=*ni3;}RUgu5vb&uFDD@ZN651
z)kNq@8n@px#&v%7J$wuaN^y}5Z`Qe3dSB{WIzNBU@$dW&48dD4gT@HC=5$IdPIb%A
zD^bvQNzF<OD-BM}D^}2V&PXf@D9TSRRxkpU<w0Efu6fD%DVcfc3N|)e`YxGiX{kl2
zdC9583egJ2Mhg1H1&PV23MK{$`UQzasd+i6X(do*QD%BZiGqo#f__G2K}Kqxf__12
zQD%OMf{BHKepPBwzJh*!UMiP<NqN44eo01AYN~>MT7GGff__?NS*n75ab|^resO9U
zNM|b8Ed9L9yi^4<Qw4oT1v7I6eP;zTO9g#b1#@EseNP2*Q!agP1$`d{eP0EAKLve%
z1^oa83u6WSU<C_v1^sXZOG5?yq@u*+?9>vlGcAqbe27~u%@y<$74(x7^pm;tQxx<;
z4pJ~QFj3IYP|(j*Ff=q#&@WQZFILbmQP3|{Ff=k$(63a8<${iL!9&W<j!WMyv#7WP
z6q*VK3i_aMCRDQJ=asmm7AF^F7L?={DHwqoY(ZRLoxX`BMVX*cIRiZd15gwiC?Hs|
z3i>{YP@9ZQO%?S05_40L;}oe(1P#X-!$##mZc@+>&rB)FC{{28H9UhrBXqDOtRVYA
zYgs`{#vF^2Q}ap`ER8G`^qmt6JRq@Q0I~%lqibYr23~=iUaVkj1aUPH{zZ4Hg1%=-
zVoqkVV_ters)7NRzHed$*ntX$#wJDz`oSfsxnZF21bGA!sz^bm9|3om9e8dH<b1Hl
zK#XVwGXn!^U@mgaF*dYNFflMxFflVwurRhzFf%sevNSbNFt;#JFfun)Ft#)RV^af&
zJV?E<nV|xhHZ}*T$A`JhjLpFE#>VCfAPlkthE0tP6$}kP0bpUGU}j;aU}kBdU~X=p
zU}kKjU}|ovU=G5jMhZrjrd&prrV3`JW(uaJ<_Z>O#tP;p77FGT<_cy8#t<4LZ)~by
zW@xBjZfvArW?`aWX<?~gW&sfc(O}OQn{$C^kRw2z0%0>lV+Au~Qw38~kli5lrV7TU
zMqn{BV-p1<a|<vwHMa!QmgXi3AaOH8BQB6W5H>M1R4_F%Q~*tag5*psjT9^lEfhdB
z7#o?w0|FE%Ap60Q1_~ep15ki+f$TIjw15N($YC%HPHA9U3=9+u4M0Hz4mMMG+5yK0
z$T|q-GPN{N0O<yYFM?rYs9*v%!pIn`)fD6^Lr8Rjk^#tN$k^D}oC~BIguzCcm>VjX
z85)7p3Md_b1wpbP4Du7m6c7gSVJ3kbXKG-;1rmoDU}<Kl0K=e!0E#bc7#!A?po9sE
z4>$&=2T+=TVQ^Z3rU_8GK*k_<f%(Qp;IsisA0P}$D`p0!TxP}w3g9#VN(X4z(!vOm
zE({^*!VF5o(gchK1&W!m2^W|)Gy(?_j196M%r=Im8z>D*7ob=L(XpVK5mY9Ct2ht?
zT*xVaw-p3|sul18{vc4*Vgza+1%av;BT%~{NI~CQ!3Z>N69lShj6kC%L7)o92wZ@2
z>H8^w*Z&5Asvl!eSsetbg^a;<DX1ng1~u@5K(&!EsM#9?s&I^<b|fhngYDo#silme
zwn1wyNKIu7wK!S97;LeEehR1#Hc$ux)mkQCi@Ee6<+KUZ@-zkTY;+K`el>yG53X`e
zpian8FabLOUT1?R$%44_GeNaB*m!Uq44#Pz0$1P);K_g>Xr&LXSWTfef?EU-2b+TZ
z%>`=$m_jWtQZR+uT&!RUwHZ?7n?k(}Y6X}=eG6%8n1X%GrC*`|9@PkfH6F~szE%LY
zC(NKOC{-{6TMVkF&7d}cn;vEm%McX>NEs|CxEU&dn@Y$PBFMooc}GJ9P>OMOMASvD
z6(#P$C5a`e3i`>33g9smeMcjhGDBFUi>VB$&IP#-Y6ZewAa`O2g2DzWh}3%1&CSd!
zEmklAhYzT7hBfPSOY<^~j0`Ol%s{>XrDj6~LvRRj>3bR}7=ru`5;ayZgefplFa$XV
zBx<T)2yz67X{KNZvKquRS1^Rc3c{&iBVo>R$}A}kNG)>C&n?K$1GOG36!e|*bMlLV
z!3{=zm(;S%<kTQ{CoX-+rk#MqqTFIgfPs`1D;R?{l;-9YD;O#02Nb2IWF~`}M&M>U
z)~QG?eP|27(7+tN2gnTSV))dgXKrG8Dl9@^bCZyUkOJ~dug1jON!G!K4Fp>DPrhF0
zB(Xws;Q}66R{Mtiex8Q|0*q|9P6Vi^^~qatsR~Ok-?ejh>|3v>-;q-t7~EVhGG1Bw
z=-uAfyOs+q6jIVM#TkDx+;oxGesYj+&)*9?4xeopw2YWb7BMcl$*}1LQ;}#x0ei}A
z(**(38>a4`y)kF{1mS#PeWpW)7T#9A{Ncyvh*&1Bt6TvZ(;IHBFLyY?H^H2Dfx+zW
z6>;GWyPm2qc>36Q!TaUm4*C4@4rSZs?OpTw@h0=<!4Bo$r#I;3t!JF8E7ss+sSvw#
z-P&K9W-)DA_b#^TdFuqmO#;7K9&Ne*wDVrb%PDDZ&TO{f^yQoXS$>kwktDto>ML0o
zZ&k(bef`{3F*RxW3C~kU^b*VhZftQcn)afe&9}q?RFI->eFBFzC=D1{8iHg&OfyhI
z0Wm<ChPZU$UX)mgGhrAaB@A;5jHCf-dt=!WhAnA8a|&wGfHmjQlZH9!kk#7@2RR!Y
zco+^|?ps&C=HR3+Yv08ml>Ef`M6m4UGrQwAo~OS1ec$g`5zoA9+vR_#MNZQ3oTlPE
zN%iEU6wgg6Ly)^fSmIA4mZ<|XP$+_;*T}>Y7Ukd~1tdm%loMMNP!!|lpl(f&f_|`X
zVsW+tIAI1Mb&&8D4QTQIW^Z&)>di{IZ)>-HyO%z{I&|)?vafrqt1Qa-+GQpwDbAdd
za?DAD+cW2MVbWnv0TshZ?KUiq_a-ScG)gcwDO7ee9@wzfqH)oYT~?EHv^Ke^D4*kL
ze-cx@Y<c>w-OJvUu6lLn+s*3rTR(kR|Mh*TU#PjelJJv-*PXwwtc~6N|J&c`y1$wQ
zYlNLX<Y&LV+5GThyXof%pZRycO}t)z>YMWK&zZA+hUovg;{TiT%ZuZ=OfzD)+ZS`Y
zD<18yn8k3;R$s1YHecH3JJs@Kk7K%3QVN#-+wA{$alXa!<aD*Lu;=Gqe_1Yb^6|I-
z+rLeY-7f!gi@osQKPRf~|E`<-KmXnNcAl(%9!K_{OMQOr*5;PK=}W&9M;^X;-PT9s
zkIE6Ao>q|q^Rx5MmOeOdD^vOG#9^to3qQ=<vwFz`<>xm4-=y~E9ohC%uWm8pl=`Nv
z{IN{AIZIgnBrJWOb=C9T?EkKt#eeUAz9MzqZJVoJ3vBZ5$uDdE5ST1@dZzo?tvf5L
zzQkFVhb=Dd`&k}*`QP!K-#@25d}F_>b+KK$oxG7|y5(i%GS2wZyTdw*%}y=8{{C`_
zk;Iw{Yz$L)^k>&I-L=^M@LbsedEqZD8$PF7SH62@v0E?Hz4byd``W3W53j7skh44Q
z#Z?z%G5t%K=AAx~gA)^a`WJnhP{9!4;Cb-)>Yv-+y}1*cc)GOo%8v9pEw{tlKZZWH
zi<g<#cWD3ldu885>^<hqG(Gc9s6OSHCBNykH$3i7zGb{TXl<5KH~(MhhwRTC-!ets
zxcjiCWw!laGWl3o+rc}R=E-gndX)I3-y!dT;_g?1Wsi3r`E1bo>dtcswVeqH?=q9>
ztXo?|{N@&<pRY9DA6$J_BV^(;E0LfFJ5R5+KRT<+y(rX9^zVuExwWU3r?l*GJtwoB
z?Q;~b{zB6-zcz`G%{uaWR)-dU^I0#asM5Rt+%5N&mHh#STLhk;V-Q|$;jea~uYZa0
z@}E<-J@*K#Kjo$7k)5e^POqJJM`_{&jq;fv^^>I5ZJSlH{_)GJ2l;GI%RlESzxCx#
zwC)|_=V1XMcNSVP<zJfNwe5!GtQo<rcP6w7Y(9Qf^44tONp=2Fm-cxjXZCXaZz_1z
zB5;fQ{LZwTtEwBTZECh$tJAB0WVU>3_>>3J-RCb?ne#O1n0=GvjXP#S=@wt+JgY4e
zp1(SxJ=WG+^!cT4H}3_-Z;`*mBQN@V!-rzm<B^57*X7iVBW~F+>7*)oPO;c6(3xUY
zXnyJI(lYxkGb?}YtYVi<7k1@zEYaAr(l}Y<;<fKNu0P~e7Id^6x_G9y_MOOgy@Vh!
zhT`}{-8W~hM6LYcwoF)VnT3De{MF3!ZGXJ<y>t9+VfCGJnSpil)Y6&m`8T+E)Eh5a
zcB$#y^(kvyANsfECvl#WIm-R~v*^cw^E2OOef_@k6W70u#b={LHlGRQh<Lr``Gl<>
z_D;3RdzRlaeg49G@rGvgJ*xgEPCLmmFZ5KtlknUs;Kz3D%)^cCuMhcOJ9aKIiQ!l)
z=kA5)eE8OKzdo#z#g%OQ|DDM+lazUlhqPTwRDD~6!=^4cnRwcTW8oYxGv#_FhGYC^
zS6Y5%YMFJdMv{Re`(;(`YQf!s8K;eo-)L7_@%&YM==!Ge&%#Q@Y0nu04*r`xrDUaV
zTKX=7X}#?QPxy`B98&xHjH5K}Yr$3(nW<m1IGb&X-%mPZR6Fl#<+)TAALby7PZu1+
z<*)siV%D)V{^;k1z_zI!(?k*yw{92x`zKt)h+Vzqgq(J)(1vSoz0*Y^t&i_N6>0EF
zr^?O#oNcI7d$GttAv58p=c5>wZWVl)%;<Nv<w#bv4r}bPmhdN9uHI4{o7U{uyxBYd
z?tx~>8P{JiYNxH^pMLxGMq{@Jk&`?1w42`=a?75dP;x`*$Jr%Y9SsC`#`8+;*=nZE
zTRP$Uu5H(ToUTZ(UVA<B*flH1#I?HvTf`C_l35zPIPUFxu62BKl+~8P^WlxHS+(Cw
zK781D@N@AR^Y3d{d^6;BW<D68_<iQYY_?66XT2VaSp>fOl_clXwlysJ%v<TaL!YOg
zD*CW@5|e<_&&p(`1(%Dbu<hr6mgd7%IL+Fy|GE@IQSQ`|^ZiRTv|^bVlv*Ra-s#%p
zUU=52;w^Dzqh;M%(L+uLH#&Lmz1sLUXYblWK8jQL&%G!LyV_HjaW`bgQvUe|{+eGa
zRgIZhtSp`4y882_N%iht9hW-qcBRj5D0*Rf>&B7%Id@(g@|?&LUL&v5;L_OQn7AgG
zd5f<Sqe7@rN~w)z@!l)TgaT`vSH!Z+;-9~ES!b1yms#DMd5^EwdG>7e;ePmSY3U>j
zclT6X@i@V?uA9^t7d&}q7=FoSriF7@Bg6K0fngk%WUe@Ws1h<tFMYE)rTAU9Q|shs
zD%Z_|7z8w@NHy<a5%7Nb!Ah}b!9Q+oorV*WeHXbbYWiE8_NL~~nuh_E;w`t2n?2CC
z5lC9|P;Y9wgyHEqmo|LZ=p()GYC`jFgXN!_`Kt;Z^%PE&R{q<1F+}=S`c{vIo2%3>
zT&nQYJ+k2fL(=~Q*#(9Rr5rN+S57?4;4yW{=_zYerZzQq-k2nKjkBNY|5s(6ukLY^
z0yGRiy>LI{FL3b5rs%VcdlVlXmoryAZ<y(|f6f+(Wl3pfy($ch*}7ATe9}X9#U06d
z7T76tWoKq)!kqfark6Ieahhkpony-C&{4@^erJy2<(bt|=NFnyi;(!<SXw&CX>S$J
zfgj~Y&z9{e4&z+DaN?81Exj+681<&<PTLvw);pKm{bU-SFW(<~u@xI~-p=q?YQ163
z!qDWpg>$)B&)hnH>fy`h9bS)hwX^RoOA0lZ*7P$o#b#l8aBzQ$hTg-P%6Ek>(qc2R
z%xj$%e2Ee-^^TfY@pML<_Md5{aj~IJ8t3`7SZ}TO%FB5Ze#p`!EqtzK<Mf8BT2VW9
zmKJ%nmYm<d;)`(D1xYdc-D#OBp1qpAXJ0JX`tPk@=kj+?|H-|om-4*U_pGc?g*9R6
zT*18bwSsml{^~ceS6E+cRa|c0J?qH4OKVD>?K9h!Ajco)C2hA*Fr2?@X-ean9jr4G
z*KCedN_gxNY&*^3{F4Wz&o{6wio5k(X19R1;O}Ue1&_WKs0wI)3|O9|5SmdqbFGWf
z5fzr~8O1VU_F5^8)kj|o+&o}yr^);FP?bt%mRGaKF3Uy16H8urC9avIuyZ|chI0@1
z+O;efI_7?O_;#|!!@I0kzol*pa}s!-INepjjkS1s!L^FtRoZt}dp0(SZz`+X^r8FU
zWyiG(*9dw|da8Eg*w%UT6?;3jwYsmUN!M9&Kd!U<ed^MM;%cV^74wrk0(Ijq9JTCk
z*%qq)GWN@~_MMZ?UFzqVJHyeS@5>}JK_->r2VV^D&E4v;X_gna`r60S4@qe&FK9Ax
zyruS1@Tkj$RZ+>0tr}Y13NF4Yy=K!FXN_E$3#tuODhwK$nV%x{Le19BSSY`JN}M-;
zdfN;Kr6u3m7H#}8Da*H2eZ~j3c}H)!d$LS<_H@S9oMxBBht6`Z&3hGT)j7+B^P1G+
zEbb=1sg5d)A2+8hT5<gHrAw0+B|Ob&;<%9V@sv%4U;eb`D|4MVBsWPF8B|YN5Xk!M
zjb(?7zl*KiVk^#tU#`RoU)9<!+u*RA^}!c&`QJ09hJ{b=c42aOvov5`?}uAWoFP(G
z_TL*tT`R;DkLzn`3bFSoP6}<A&GXJxVbR*<wyLWaG<xh>dgb7pi2N5-a{4wmyJrb)
z)Me}_%KE#nbW5U_qB4UigB80%$;s(Ax123LVXWuFxhukrVNGvK2*ZMq){ETF@|3z*
z8ls*^nBO+LC;Hm$>}K_JbN@tv84*itE$uu$A9Gk#pip7DRO`m`HDa4$otO8lZ8&v&
z-PPl73x98nQfcK#&gyuvb!&@W%QHq(vp(GgEhqNcy32%|@`_%)C-dH;HLgO95iD9K
zm)Z7jZ!B)EY!LadYl5|?*Mvg{!!nMl$lTc((R6TsmCnr-$!iyU*|j@)`{jum#h=18
zVmnrHA27|7b`ZLnv-kD8FA;SjR~fb>v()S|`n%M9duO|+s?(E@-`jTwOn1m#++ERe
z&3eing+k%e=Zg%si>zVXv|Rg3n$<I1r_gC7MavbgBx{y3GPrfyuy^t~tYB#ny~Jz0
z&ieM5c!mR4W~n45^!5gQ7cgdRFe(p^;*Ml$=*n5kn-C<Gt()6(;iE<m8^gl~zHZHu
zW*oEEPDnhh=)LeS&w(>lA<6k-yQXq6+%S-;;7f5YSke_+^?9<e+4@N1#1j!6mGU0z
ze77%S(9l$wP&sLG-07Sn@7UV5O^H9Wxsi`?U+lvkK1OT)i~PqA#HN<JY*)K${4y(B
zK}CP_SMHc!kww+p=j`HLSUhE?#_}(>??#9@J!eo@vUKj0E54iAgF@z9%2yQSvEK6F
znV$!P+tD?rr};@MeoGOYQ6nV!Hgui;^LvFkiafExjxEx%iEmr)K6RO2GGS*Zi?g%v
zE(OywYQ77(8I<IA?-UA(NPawpEsnSAS<6q?iGqQg!CggO)B0yuhWwg6b>jELpPE62
zws+i2IV|l<uk8pA5f=R7D1J40=^}YI3;oH@c+bRs+rMS&mUi#t$cw49I`dQ&FRhj=
zpP9WdRqx(i+l%)?p1zGZJEMGU#Os1q7tc@Jg0BwQO|#^Vh&~=NW3xv7q6u8lKR0w9
z*ikIEeMJp7Q?JK{*+-=V&s|8F5XH67=izT(8yyMm)sL?&IK!ymm$}r{OhNSiDvLSN
zfoTeE**0@8oO|$8q{)0{-nTo2{@yMV7!*|JZVHrgD~=GoyqC?mSno*9g%ksh1DE4E
z7JpzZ)^c8`>tCJYZGNxl6`PXsWRuwNmFJhKC<&(WO|uMiVxG8D`1GD~+4l?%o4UW(
zrmojw2y-=QKQzT<wacPE8mkxG?EGr1w%1m|%5>&ducvw+iZg7Id2<!zEv%J&X0$vw
z7d6f4N$%r<Xn`*7mSVjokpm~9Op;G>KMr^LVQv^N61U6YWLL$F;`bW`Pupi?vN9JM
z|2gndZsG4#zfVjn+=Uu01&dgHJapvBErz7062-nvOIkFR=lv{w8L?RJ4%20=T^n7u
zR3w$WIKr*arTJ&xw!lYxLW~jIOBojE+*#%CURJ_&pz5AxxSn?QoUb}ds-0M!C691s
zG`G2U_<x==+w@EXSGqcTW8#?@)#dkpvOcz)A}74rX@cD}j>9u{U1$~O>pT8Bs{8BG
zQ}XWB=9veiUI;auIKF5`LRjwRKC>isfkjf2-EVYocO-cgYj<^4cl10sI(@6&%Jqx1
z6(5E#jB?y{PfGjIE2CFy+x>gzPM1g&=@1Zoy5Z`B`$3H1TlhsUa^Cs+rXc-ETfCs_
zCC9I~cIjIG_OaiXWXE?tR^eO>JA*;Ng_%4y$FB%BZM$<oB6Q1yI<YxFlpZN+KD>Tx
zRfOnohBaMMt(SNFS*`j~(acL_bN%D3f|GYRG#5RP%sse;F)m!r-SFwg9Y?#9xYC6-
zF62#NJDyg-<M8GC;;r6EPq`R^-wVB+8P$E_Fqfew&shmw|0E{4_s@NPEs@GBU8-3*
zHTI*)&sKe1iK5bqS(<YUX2x6kE?)39`;y+pNjgUE40ZZW9%+A+<gMpko8qUuc5Cih
zRtBqfuRHwOj2%T<r_MYqO>NXTmh(7u6XWj#b3~ZdbTC9r4H4>`7N<2W>X4MWU*!GC
z6P2CbZwfy2TXC=H`X&zBqY7J>@6|eYVe-t)2ljgRYN&sn7j=!3(Pd>(rE8{2QEue#
zE}Ik^cT3SVZ**l^uE^-zx$;@(c`bK@Yo?B|iJ4Mt#>_QJg06N=>G$Gl%b)EtQQfR+
zfBn|nQ*2k?7_ZCnN{f9bw)Did#tC^RdpBx*@(O>Gla#ltMa3h$JBrJ}?6!-O+4(R3
zrfG3Ae7hFDY^xrVNxj9@yfDj4?rI6=l5%2q)V|TU?3r<jXETFRSli((MGi$d>>s6K
z4HyorlG>w`^*UCa>(okN);KLL#hJAhU#I3c%_`3Jxy5=iolW9I)}^C84j+uJWizVU
zuANo<Sm|JnNVrSV+6z-_W@q|bic2opbZ&OamZn3qJlq(RRJDyep9vUkvE(dWk;IYf
z8gj=e@8}E5-Pa@alV``z={vS(^Hg!ZOYT<lqKg`0m*re+%kz5I@Kvk&N#x4U>6`~S
zq^s?d<@xp3mMvSWdDlvkH(RT}C4EluYNb<W(v%lmx+|!vwC?7Tz6lpkbzBoonRB7{
z)Jop4bK;W|-kyG0+AxDJcOK)0ZgH8NuMYXRZMw<0AX@ufujgc|v`148t0i%9P1X8x
zXS3&HnJ_17_U;hAt-_5$rs<W;8;*Uf$d35AW#e;Mqg8*5O_<$wzn0WkEtmRo${99;
zrHU*;Zc`7eiF<PGMCN`iq13>YE4|LzY}0vmMn(E)UyjplHxKjDz_n2vrn{Aln$FEF
zebswr=4Kla{qWVBoo1|PbKp%@W?vBy@KTvwAmRsKILBSzH+Hjnj_Zi6ozRo>KvCC)
z%{Nrc-5|1E_ERlWnrz~&FgFqL2*nyFF-iRmDx!PNXfY++%sqQYisSt@=M|e)x0nmZ
zueV<9!0K~*iKA3_$rr&HAw7EGc?~A)N-vY%%v-=6DZqcN?{u0n!?dP3)AesI@$}!Y
zRgEDyJKZj=C+69qDPe98w<s$}^tEldCl<Oa!9tK@8|!Oh69;|s1+t43PbN%e`_INH
zaOwM=SE`>n<8@yyTdkw8<m;~+Hrp@lG<Q;AS7JCf{nR9x9J{Hmtxp4vFP;*1)9?7A
zYahB6H6N9|z;xinDX}E!tp)G$J&tbS<?=OV+kB$stK0P3mMMo=-9*x)H=8~Bp`&}F
z(%DdNVf4R^*<TB*@6@eP+ceqP{e_cJu;D5rcINh;<laP$>&jR5WQa}N@NG^BXPHjZ
zALAt##FzB>&z+URyJ&||@$(Y?x6Ir3%w$pYUCVjk7_Y}uJ}KWthd14Oue>8??Nd2D
z(UONB_s*FZ7MQ~Dq$D6Re$6qTy{kAa1XkWt?8}%mO}ZlJe0D6$Q9X{!{EJ-+<Te~@
z-s-fesN2D{@X@Td!m;NPFPp7%_AnPnma#c-X!(p=IUEeVtmZT0F3u8^I&(4fjY6jA
zWeH~)r47+qhp(PA&z^H}QSqfl*GX2E2C|FqDgIqsrM&;j>8#b0yc#@CZVP7Ja_Q@?
zl1C@F=bs8p<o&abZ|W?st}2PSO#iuZB{@8nI9EwkovAbUA!f+-{zMyt*kWztyXP0H
zC`zm3NJdw3n$9_RSW9N5s?MjR#6;PaQ*u{58m@_6>v}2BaG`Z`Xv9hmn<ZvfPRnY<
zeEt}oFuAQ-@6@KKshb!Yc0Ah_KBdau`{cRcutpcVNlV)^I8R-6ZQZ-e+=}IlpK<mU
z4-e~87h_lyj@(FmdUQwFGX^2inZJ}84uv_!UkiJwqUW>u%$#FS&l*Ig<S>P<o6TUd
ze6C7~<@3GbM@76sXZ7c|ZCf*;DP(I6%ljoom!B3I%yN4k+$Z#{U1;kDv8b1UM<VZJ
zdo7=#TDt#eaujRud#eEJm9v*TE#P}^%z8OaWHSF^CWBCx*iAv<x+N2T-gmL|Y<1qS
zEBaUE4CA)}ioz2natDPgg()rEFg5AXk12+eCi2{G@A$c82KUW`lBa80V|TJMo6FCP
zcl^+I+^R)s5=YEA8^$LE3<_O6hncjT4YuU=Fe-dztiJq5CqqrBPHLGlgVDN3Nz1v`
z(i5i$)aVBvdeYLC5_)9!*_qlUhPm;ND{Pv#U6Yu&L_z4(u`AA#)00dX6n5J#$z?E_
zFR^`&>8piZ(hNd#8P6?tVlKI{SMzS$hO%>ewYxecWuiA-n-p?wHbYKig@4m#8JAm^
zdR^sOXKOCovPoe1@4AVm46C<xWHM`7&%GdV^pabvaxj0lCL>RnTSqX1n_JHIj-po&
z<ooB{)M#D2H%gWBF&jg4`GH+C`V?BW-)V{Vn!3aH32)%!Z71EfUJFq<RnRowN?UpI
zHis>5t=+^-ISwxOm6Hk#Y+`VmbhGny#4d?w{j0SX*y1y@b<Hj*RZQ>RaQW2ccZ$g;
z7&aAT^{8h%{M?%@;2!6?@S*Fa%I^z$#Si9rxM^f=mHF<NH9P)H*6FHOsV{hr?Ra~7
z()6G07oV)#=yqF)U13U5{v4h+CeC|3XFE^uF;-n!xoE~YO|3^2%Vz~2_!{mp+h2e|
z<&KNU<R~Twm6eingX+&L;CJ|XP51n4O~w<RZqsT_Y+EO!)SRvfskABebf05nDQo#6
z-{?|vGK0qF7ms`;^$&J3CB3ck`+qU>_QiRoXJ)@iNl=&DxMb$(m@ST5%39|I+^Ovj
z{+T*&<+kt-Qn3uz4$n?F_0geb#kLz!lXuQ5f1tj{U3S~U@>y%kwb#Wy)3dr8b!j8(
zY2Mdn4LZxG&3$~i^L5+SH)7&EITZ&ETv*(~vig^fs7<u^wF`Yg%XeRKz8WEv{9M*B
zbNMTk_hR?W4d1@E%1yjuE?*ZPSI^jxsq@J?=gtT7?hk^-FR}zqo2*~S+@jK^Fkj2~
z+GEf4Yg3jMonue*+E%<OKx(}-$6RYu&2@(DX)8n5+$);fnRR57nw@;&*9W@q`Gowk
zBzf6Yk2;AjdBTysYR5dwj%yMHSxGNN=N)8}z0jO&m9e#NosH<Z-M!gwjvHj&c6@bN
zQNKT0^!*{BpGP+Fxk;}((Hi6z_+?h7soR9qq@Kx&r>D1kw-ztIU&Ny-ZTNV~-FdHV
zIxlzHhdy(0+H^B)FYiM^%Uc)J-UcW&_huFQS-LMRE^|sqDEJcG&>y~zd;1QDr;oqo
z9A#YcCi_vr)r6N1HG`+jG;b7Q=l4?8w%Rf^_him#_bod(dKR;{thvQKf8t{0TQ_!X
ze#T^4^033qZ*`-{`hU~xELjBN_ax5pe)=f&)e5VhEO9g07R<I?wAA6SppAj@mCSXF
zQ*NDm>QQtjZry5SZbP@KWBz9@F#n#|a&aMVtl_Pn4yO8BZA=eE&os-svBK?Q@Zp%>
zPju(UtH?T>TrVd&?Xk$x0>+N($K<V;8$R;9m*u~^b!ya#z1NRgmz8Em{&->Z{L1!Y
z$G&db+ocfBK2OlM_R(U-WvV|_Wqw~|n^<zw>+1>Mkep8y&t)0Rq-UPwXvirmspoI#
z5aPPXpfD-qNS}(wvQCX{E!`fjlY|>`^qB-QowrS|m_FfyVXv#Zci`E#-iudX{b*(H
zd~c!uGNznWr6pl?PkTAkXMXO!!Riv6?iIMJ!)|p_#jV-rGr0OK5^USK7~UED>6&6&
z)baB}&D}RAAN%K|i!R}ldCxduuIeJ6;OvdteS6e}FYVwG+}JCfcB@e0#ZJ+JRYf!8
zIvyWmycNn~H~*6WyLMg7sn7x&4V$eJu`}0h))O>utKms%xp!@mg^2XkEj{W>84b?x
zwp*S(%C*32y1?a2PweJT6#6maQj0+6`aXm3mQI-q>(Zo-J61nC-o?(f{KU;2c@K;f
z78y^y+j{ZI+{dSMZ-uiiI>X9jHg#TD)`sH-&t;9aY;I*yP**>ak^Ay-!z;aAP8v@m
z^5?D0<8R2+>ojT)7dd%w>1^Bd?3W5ES{qJizcYKjVDd$o+%pMDb`2-kEI!;!;i}r<
zIm<_-N4lNsT+G&0AI=y2&yvq|khZv9#^<msLt)pOlvU>Uf95hgeO})gzA9?##fl;^
zxrF6%?!2ERRte61o|JAfZEjfN-`!eAo8*ODHU-6f<PnnCw9(SuBz`5grR=Wk6KP*F
zdO|;5@$##l;~n(WSN_nK$(Jr<Z+Yrc{`~XWea{<DEqqg@C*T>__$kh9uJebSxYH+o
z2~_YO@wJt(n7281O;^m8iCt@ZVvd-+-g0^2<f6LeU8gpPEc|_cW<=tfok0q{6D#%v
zy>n%J%PH@ey*OoE@}d(?JOy%<Tm{C*H#_GYG@lony3FnWqE%-fzM1NObgsR(lZ=D#
zDF!~f4?B$=pBC2FK3P4%-^=--P2yLBy06LCUp@Y|<8OrT7k1@G%QlJ#t(&yyLqOxy
zRbKJM<sm<Hh0>?!v6-|!Ib#-fH7)LpP^arRX9@n}@w+C!vHhacI8{u&#zrbxVaFUH
zrttT3vQ90Q6K@M$X0Uz9GL{Ax&c6DkuUD%GXSbe{wODw1)epAf)HeAQ?M6*qd!5f5
zmwi6jf$OJ(QGRw{U;5M|j%^l-)9jee9^2~G{Hbiu2eD#NAysYp7dBx}R6B(`<@T@o
zV9wsn&S<ym)4V{nq^lAIkDeM=`SrA{=Sw*~vqCS=&&G<;?)tM+M-t8CbVKf5%{j>u
zHgOe`;<ZivGagRh;^3I#V<^e{bJwXS9PF0Tr%aix*f|Y8%bgDh{3sRmbnmzQyjuQy
zcE>(1&fDG9!zdSe_3#0kRPO%m7R$Sjc(r&w<Jh|^Zu$bd^Q^U>wrFX}d~M^>WtNkh
z#Ah>aSI|4p!&3w$b*H>_?|ka?{LRkwYSZ*4UrL<hWFQz8C$(04chk2OUsj1fFBG_Q
z{++_Ed&k8NNK7tk;7Uppw_DjKny(ZSAwIS4#dDho%ffeM%jLp6W+|U$c#=}B&`|t*
zP1^(A=SQ~PRM^-heSA`pi^q*;3Nj3ro-^%w%&5!3zq0tewi3INppp0D)&drT>n|ni
z1m46R|FLw{w(B_;mYYmHy~j%`(O>M%o)3aW@1)obHcWZ^x^nLvSuqc-O;-|?US`E|
z2P>7&oI2I-jC~2?`{D)7L2hk9{CkXKBTrwOE`4InD|wET`|_6DjW700vaySadLlgA
zs$GINQtYwUfoIALX6vH;Tav7b&Pjf=Z!<H0YoNbR=D>reHKO}`?|!M=9d_i<u9FWZ
z%*?XbC35X%l(C@Omt6_Bp1-|nnWJnYF@bl@w-<BD%I6$kfB4S54K_AgH%DBzdCbky
zQLXv+ik;kaz1f>{X0YxMWLxP~<LPE+UEUgg*uqS60z<3u=2cl$SA!32d6jis#DVoH
z`$f)4&hrxXdfT1&#q&#;qjtWpt@`2_Vd-;35BBzKv2ykHI8`=JvD)vd8|(f{{X%_D
zmXyZCiwK`rJJn@bIX_?2LyX78;`*!3;*`}l#DcqGSL8jpkvli|;AF1F-!J5fPGFK)
z-yCZ2&S$}ami&!9OM+h{JXpFi%<CwF&)QH|l@~TGR~QOj1x`J6Zee!fwj>7a^Xw+`
z*jI#UKaKp&v(<(radvjel&Qsvdk(EnU$iBy<f!GXdA+?>&OZBY`-JdZ^69T#!yY=P
zfN!N2Z}Of#$LGcJw$r<{yE+fgDm}PVy~fOg%OPz!!;=z+=!IRyj9PD%N@NW}&%Dgv
z)$*C?>fN?ya|O#xuVj0Mf8>t2D)c~xvHWIF!HTBKB`=dE)?8ya!IyZP_4j+P<1R51
z4w@{Ev7N;m`2Ax1malu6kGpwZ4UJQ8D$y*M)-D<H*&$=*51-KWJI|^u@^&?mY`awT
zF?98X6thJY#;kJZH>(`E`OJ9Ue9Lm1`Me9)t~fTk_p9Nug`4BwCq<j&?9n}6A(;L#
zMepYW{;tTRG}9EdKAnhG%j*UX6K~y{d#HTVPrX9|EjO1>X!zvF78=K%t8Zz!(n!p-
zwN%aTrTNksyClTUNjK{GBs0!C;P7U0-DK}*HX)vdkf}c&T{PM`U$R(r&5n|`@X0Ow
zk5t%?{#1)sh+Ac3uJvf4qes#or{{hbFG<~GXqel>!YZk_VMDLmYWK_MBL3V732)8+
z(-bLs+oE)u&}%uFUe*t7>vH(Nr4@<ztTmm#_pxob&hckUPtC0L*EiBCd%BrbMSRno
z&&92iPcC1gw4SeW+WESz=k{AEG%%c)_xy3F+p>9`4|tBf*cJG9p86q4)BJyPwjVe=
zA@Ki`6-nO~cJNor?>f+wtx?r*Sz_XJh7?1=E%|-lO<EJCvc9dm8RamK@j`R*>|U2!
zEDEoDANnSGdL1fJy6vs7&#z;0PfpBp9@f6c>pT`EiEd`<dT}t4b?4Jxnp-}1ZM^+u
zS&8c74vtRe&8MEMEt?YDWoGbo9lt`ziX7?mwUJYIgmff5I<apW*UR<l+k-<kZ{#o2
zD^^cTd)u|Mbn0bB2Fn|pzxtJ)+P#0zr<b7(n=XA{&^^JGDOANG<;X_Af7+7{vaR~I
zcV^<r8HxAK&0WMD=(9RgvDWA4=UZ1KOXuc@YNkzN+kC8TcA|Y&qI{KE4byfn`$wJ}
zUr$ELZd!Ey!mW*tOM*(T9OleBQ!}Sz>VvFw#$uK%4a4ppZsn6FIT?!gtUu1oF!^@=
zw8@$bE2sD<F%+(j<Z);Cba`UW;$O$47+OQG#BA6s$(zBIW5%X1JNIG?OTyz>pLX7y
z`fP!cI&X#5o++~h-JKkcF@&<t?EPuJtjM$~AY#hS>8sl&>F3N_c#lo9OT>6t@yQj7
z`zxEzoxIebsp)aV$4#ciE6`YjTl}W)57Vpf3}<QhMkFgS?b~B?vdFqTQ%i%}&~mAU
zT;S^F6PkXC>826)wu)pQ4t7~OYtN3=8{{8<73Oweo*?q_O!nDdis@^km>pIfx!pdq
zH&{ID#ak9Xhjm>0T<!Eb%!L9Uuc>=cxBGRPqNJi^&WwZkbBveGX*V(8F4|!m!(!CF
z-k2ff>%ledmEYD1tXW`Nw$?7M|91aXr3h{oFZ<J5EkE=*Mx4tP3i4q$n$K|IH~*)}
z&J4@;Z~y*lH-q21cT*<|9k?|4bxCF2t0$p%d=_tU6Fit{R^}Mlyie1M!Rchh<5ktp
zfeZ$ZgFRF)t1(=SEt`1d-nRtndmizvKB{sHCT`F>e|}ZO4NjXLN99HT*Ltl;<9o^)
zP_U&VyKkkrxTE2ohO0shla8G0EDgT3#FIbdaox`StOt1dWV;NkLT$}CvkI@?4f5{%
zds9R8dB4N6mS~2=-F7aVJHuQzZ)t8W`mM|`q3ctt%Pj#BFXg4D6}<Mm6uoi5%y0D@
zalaE^U7sFIP`fK0)|k3d^i{h|pqKE4h!#`6X5NzJTy{%!-8fAXH;1YOCb*ob4oPou
z;P`U(U`EWOcXy1893>id>vWu&ecsSi>d(#qMZ<7wPw~)c7q;w=);waQq|ms2Mao`w
zh9^7TAF5s)A^$Gm+_abPdF_8N9C&c=-e3ED%m*@}<9!%?{FjR;EJ(V!^9rNEE!nA&
zH}7RIX5^O4nRR`|>qRU9eKJzBzwNp!J)2>T;n9pmk0cy+ZB&cqW^md2GAYN}dr=sB
zL)CH1uakFO|Mh6*%0%Igoc^fUXFp0l?Y%a`SYgvbk7$OR7-N~$a#tG^Wcs{r^!{Qf
zsrQ$E$1vmF8=ro5hEJCZZ@p&7So1wbX3Lao5{tC2#x-0IU(K;=mB2#x$$MSZx8*;V
z|HI%=S0S=pnjxin;umKI7pF~I9T?g^ycFe_Dzoy=XJ`Ip-k#soszV+>c)^v+Kj+pO
zugEa>))kiy?c5mqu$%kG<7K!0Zgwc%ks>qWkj9(^H$JRtQjxB>r;+;3?D^D10`GTv
zG*~=sx#?y3#naq)sp8K6Z+yOQ7VK1VJ`l{A(3$$C;^-3<tGkQ|Z0<*byC*wuPi-uE
zE|(gR)~?=MUCr?B|Hrv+cOPf4>b1x`#&An|?VA#=16kQcya`oSvhqI1*o7II-zMJa
zVNChk(-)DOeV4_dcxz=%`t7|LL2h3;9QIz%TJxR3C3Ddw7Kb})F7sdgT6o0MYj^Om
z&K0I_QWzKlojB9Y&QDmPAUnh31oPQ*0g4g<9O9vO-&po9VK*?4J@s+pZHIkE(k)jO
z2Q%#2A1@=vpy4+8<U`Gd%zA@+ubC}&Zl3yW7emx+?XBFi-@VP8d^fVKmT$_!le-%9
zwAE)XpZu#-+;=g5dDq`qhQQUTv2_biznGVJY+1?ewHG8r^Y-{y=6Q$iyS{23BhwO#
zGd~tQXWu$~byoDd-doF=!;fqCi6tfR<O|Gwa#>4o?<?k~SN&JJ_#9x>s8pXfhmTjZ
z`-_5P{2Q&u8?SfsiP>eI&)Al~*FQ<=Pjc&;S8pbs&2KKb>yf7ZM0nb@8ycRSD@A7M
zg&zL<X)-_K4JGwwS*L5ZY~^22nkjpr;<<ps%%@A1_m;U&(J3%EbNRAngOT>~<-rVx
z>#oJ-GIh-USP&Jo^w`>eEzFtyf5a#8^SLqj-Lu_utAlaRhD!{0rdNJ)($Cq#P@-3M
zj6Ip*RQ==PhhE{&r5twMi1~9yl)-cP$}H1I$5(ClyVa*#{P^3ic_)uCtTFreOO+w3
z&{bvS&HGFWm(`vwy{X~4j$y_Q$EN{rPRgB3ls-B|KUVIYLf2fS?K>WQ^A8L<>YaV&
z<Z*R|5FP2|!VH%mJHD>Cu&;>AVVhWrH`4}>7NyH~tWzHCYVD4AJcns^uj^uFhSa=c
z%nX0a?N{k;V{qxUT6$+@@bULo9<5qy%9(%VuPu{(YPI8)m`I(+FOR6&O{?6>+AH`}
zVBua_)dxz#Tb72rQEt}RU2btvdxfUKYUPWo=k__w3_SN!xtT|>Tv2tkAA5@94jb;O
zKCc&r%l3J6sMdU1WBOo=>+$ks$}=wM-dXUzBxhyHVqS(+$H|(P*bI{*^B3J+?Vw{_
z$gHSeY4$*id176Gb<}RA150uPeH?z?Sf+EoTD0NZ=9+S8hbvjVayiTrc|X6LS=2N8
z<-66}8LwECPIX~0i;I%q`-$Pe29x?f?-Uz$O)6Do@Yxcp&(82|`LAyV@m?YgTccbg
z*$-bzS@&(@T5V7BzAcO&UdzwlqI6QQak~+3!jHQ8@+c;cB{MRZ9|YOnTjS2K<!I3J
zT86vYb6d6VetT-l@OA3%J)2*io)k9w<UK=%WS`pS0uHY)MQtgY8I<88^0<J#!O~LY
zh>z~NMK>7}KA%b5c6GK=E`x&z_sTOS%n8TOT@&&O67sv_b6Z-fLC>V#c#TAAl@;rP
z@7p;VMFMp+FIuhIIX8EU_ktOHU(Urcq!sAA_FWV-ySM!RgLsA)_itwA>oIv$$L`+$
z^xnKB45!}qhvd&a<Dn>8D4eY!%W1YQRF3=Fo6g+TEwAI-y#iCUF2`3&{`$D;2y?pM
zf%~niI5`&xO#Bkb7Srt}@%G}+j?-t<Z*nq}?g|%Os<}*W?zEFW)1N#t?sc`aa{00C
zWd~R0i^<NlMHzm4j8Fb1Kgvrr`)dD5!#9KP@jWBm?Q?oKny20kRiEs;^8VjohBO<F
zJ>B<z+CRA!%HTKs>#3w~x6B!R`1`spvN&AIJY~To@O|3We$H9n*sIs?Wj~PRJ=^(t
z)%*6}ADoyE{K(j3ugh3tQWn3~_SE?+k6CtY%+ca}FnLYa&J0(f16SSFv`9>2JK+8}
zX6LShNtS^OzgTNGiFJzjZx!CvZTE7W(9U0XvWnMoF4%c*weA*%g4~9rDKq!5EU*pK
zy>r7yOne!;JA+!gdZ96E!d6c!UzW9JmOXjCa{XGD*V8jA-=w%$y*)WsH%fG&%EqZh
zlhkF!dyH-6m<%d4CwKh19P!?gdD-Q~x_XzF6(5y~wb{XZV2;eQzscXvm`n`hN%-(l
z-AbR)CG*ma7mPRl-}}AztujN<$#Yvv8NAQi3C8bp{kF<yc8HGSR&lM__g3yJ4d?aN
zx*f&Dx%A}9$p&BhPV@I)IyFr}KQ~5p<%MFg8J?TD-pt6&DGlb$icDeP3VpocSCu7`
z!tvTw8x#HdGpgoFEL0M3n{3c&wyv`^^g6GQ-O&~U(dtd^FT5*v7~i_}{{BAxgeogl
z?Zwr}ldpArGwV3~t0T@xfMLnrye*qN^Yy>kF&f;twfrrk!lqO|kr=($#;!T*7Crj$
zNta<!nf_ERhnkn1y9>D+PPljKb4%_0`*vv|TSFDwfmuZ#e=#*YeAn@yg<F5^eJ_!Q
z?*EVOX@B=)&?r2|9_`0fd?=o0PHz4@zo`eNPkY61?XuO=3D1tj)h2N|7;2SmYiB6i
zRAku6U^4CX%OtLZmz_&*HT}*=G@K<ccZ>e|i(>w_e65roYsmL7yx4Q%_whhu)(d&d
zR^4P`NdA(-<B*=0zQUp`-s9U;H<w9VFYVkm+=zQpbR_g(bChhugiXE=W}KI1RglhI
z9x{b>nIuE7n8bXh3%{eQOc(@o*O^??XLb;|eX?WHuElOv_ii&@sQlRZ&sv`O$L0DT
zQoe8Q27a8noSz}aPIjw&PWilQxdz5P;?X+~72b5P{&2z3Wz)s7SE~&--Q4EN=-_6U
zIH{xiXT_eE2hz>et}gdd3J-~U(e&3Nbk>$`&5f)o8b_Cv#4~gxtVr0Tv0TOH$j5DE
zuCYCKci0ltlqHOB-eotqXQ{PW=D?%1zk8p@E&8`x>$$7r>VP-*<n!g3ENWioT{~Z7
z#57f-Eo5cd>^GmUJu?zK^QFSz#w+F%za$+`mF)Er(fx7ia`u+)Dd!i7AC=y(tzoe5
z>SoWoty{%~i@*Oixoh(N+p*^_rSn(SpFg?jp&^6kmH20q`R}tA)TFPrkY$vR@4M7$
z)v#jTn|&WS8~X3rDg2!5QJ6l(z9*qBMfu{Eu<mQYuKtT_i-RPrF1^@sb&}T_yX~uz
zI2UYu^<nR?V^MEco@aI_zNqMN^TMTjXWbZ78oAu8+sxPYgtIdo;aust>9(+3<_aSY
z2E8jUmaVvVWX;^%)D-`3F6lF?POfB+Vd>W93@^3JaG5M@D4STsmGHa%@6@H~^BESX
zKi>bp{9ihQw&_>(c0b2>e`SXFz58zLyt40GuQ<buMJfi$d&{(|9=S3o&6oLi%%0PK
zrOCpF-BDW7x$V-f8-rQ1SFWBYQawe#E7tP#lDx%RxW29aa@hD&`+k|jhR654+ODxY
zrSY&-cu{4E&;5m({N*cNefn|l@5_$`o9?r3_<ZZyCE;#{Thp&wg_|=R*_&!q(tU8o
zmgO%$PACXu_&W9I<^FAqDSuC1{9VhkCD8Abr#<rq<5MTq)@x7n*l2(C%kP(0)f$c!
z?cI5c<-^SS$LS{|n~y_QRvAX8Y~HA-`#HhAwE9`6K6A&h+C%HRs<&sy|LA5o^0IH=
zXRU^VukR~{rhoUppO?2zXWs-S0nb}C4^tU>mm95OPf=H%oX+6)K974V?}K+McG%DS
z-*S2W;)#JKI-ji<{|vrw&&cqmuY>)5mg=+K*!S~JdEU5oJ&fn-dd--F>Vd^ebC-Df
zzH3^UI%(JDeP?{Hp1Sihu_n;}`%3<_y_XmaJnwD`W5|gA=^1gDPjYw3%*oN5*_#Sa
z-D}nIp7K}jN&V`rJ0Cqf7XLHV$@Je#{XfgMw_7&&8+k^(TUu3<K84xBPU5=w<!1Ri
zj0=kI?%c!W;NiKW_3Y-u+ut#1sJni@W!13ddS={$S%0M%3QK19ZYYy%IAJ_(%NI%R
z)k5O6^4Hg1zb{ZVCp7ir?t{OC4$ir){zu&=#jfaJSJ1@y$9>d)w&ycmm|VDJ3)6za
zpOd`GJ{^=e@V#!wcS|pgcP3pInHrKx=JQ;?`0e4j)$&Xcdv;FRGMgcbTX$hfb}?(i
zg!Zp>YzhD89^So}>44`#?(EF+i9wsEtXLcqzv?(c-q!3V$8y%0-VzsQoUy29?{pij
z@7qr;u4VZ7az*9esx3vF4*R|>`SpaELGApThhhyy1vOvZ<}+sGu9LaHkG~=3=Hd7I
z7#-4ozB*rX(>F|nxnqy$?Ng`MZs%i&$v$Q;DD=xDS6%z%{cD9~+4hVDwGjf_)@^?I
z>GN@hOQ*vhI>rf|+H_lZUR2IJOVM>V1-E$LNX}UM+hyhd1dRrP%|##A+>=kA+Rbjd
z`QiD{Qm215a`F!!)c>2ePT}$GjEQEmOBr^2Y5MyvpXtZH&S2BdoeVpSPjRy5mS_9_
zx%B)*`rnK1_uu?~AyMebxoMuezRc8SND=DY-p?SixaX0?(~_vyxf4p&Z*zxC4pdp$
z{VQ8f>RQ6$EH(?bz=B$Nb2&ZvbCID}zel-D+&Q80ZOxssNjqQH_7v^e<F<a<T2@JU
zmA7mS>ucVglK*$mo#Efw_^OpM=?p0{6K|CjJr~|ov3-Aayqb{19Jj4`zDKzn>`pCT
zZrL!|Nw{nGlpRlR&(C_a|E|fUr7O1zGjv}Uukv5V6p*?0-s=n9KK1>1oqhE`wsk2p
zY(2V7xBJo6`^*Bl_ZE1(TCv^lnD&yWig%d|X&2NrR#qo({&{r0{GV&<87(Sa$6fg&
z*KlrY@1qhPhg|yw2jA4cZ$AI$PAJ3Ir)BTw-(~yos`=pm^erYjXI~$eY?yo~=Up!Y
zhbjk8$NM~e+iG41ou!>g3`w(2errlT5EY)tb#8y;hBJlnyekh?Ki#=fY+YyZtBWmH
z6@DldXBs#)C`~=&#lU27j<?}y;s3AuzxQWkq_g|I+g4ugwl{xY<x71V-UrY0>)ySX
z+s~NNu73F+!-0>#^H*<SQ^+)*X8)h3;o;riExxMa>$|rw#;5izUH74J$!AGM<3_$y
zziLit1zhFSNPcD%+`_WlGSZogskMaBpgH-FO>W=>b053EQ=d(qKmX6<|AGf5*FS#V
z_2xgzhllU?1in^bn3fk?AiUJ~|2xBmm!9i{I2Y`@WAX2YN#;?8l6CI8lV@3NDihM=
z;EMZV$QsnSXT#&mnhn=3<c3ccufD&V`N501{U@tf1Z3}*Z8o!%Q9Zk4+YOe2hv}k{
zeFn?^f0Jc+JooU9%Pbf6Z8^0p{o_Sz@A%)942$173r(~-o!Kn+=Rvc^TE-VK(ein3
znGGr{KkMIR`p`1P>h%5JU%xZ_xwg&t>$S@-+>F@{uzmF3HZh6W;eSGYkpbg{T^DA_
z%wveCTJ>H@&TL(0)T!3Zvbz$t^hd2I^f0wO^=nbEv7)YB@w%*gC1PiKT5Zf%KFhI6
z{wk}n_~Cxp`;vFqH~jwoe|G(!-{tbQugcjjXWzeV`)2|Fg5r&Pza3I*cvE0-%ZkCk
zQldofI^zo+`?}|R3{zdU)GV6TrLtD(S52H}K*dx$(R&3S*`3&aMNimrIG(-e{K{1`
zcLi)JIyKe(>60Tr?i~48ozHxtkNvd$cV32zx1PTFy`CZ9`~6Kpg75yE|G&6i;<`w~
zyQ%NaNmn!Q-LrjV`;hD7GH%U=lOIiHPhohsr`|+|S96zqZ}%K+Z4L%emzpWr+e7(2
zIGNjOnl${~{_VS+1=EBhSr5I$8!o18c^>fM#ku$QRE>IPdtN*LqWu5gzf0AxGpwoq
zTKwel3HHYa_x>%YeB^d(Z>C4Y+WN1>hj)Kx+_Elb61#HVHR;#h3~LNq7Rc}YT=@Q&
zT0_#5(sj8pf4BcvYdHV!TK+%&`tP$D$~H~fvi|Fpse$~mF7^|z>6<hxb>aJdoT0DG
zo%=gGgIc?CP=WY7i<Rqh1y^a$&RyOn`F7s{Q>#+PIa|Y)?%&CwmwdQ?<4=W)J6G-e
zb6Y9l@cc!EM_=6#5omJQu;u#6^HT&KxXpXLIOe{r=-<aY2hRO=pT6%iXG8tV^!3-o
z)ERbNzvg-TwQcFs=Kp`A8D5?4J#22zRPc8FH<wAfik{dlzUQ_v)R=LNj0czILHXOC
zx6KLtSd+v*=Y+2AiLF_ohfZ>v%{M5TtFwjSgi6)x_y4|^+<(=5o$<<dzE{`R<?sE(
z*Kobx_?Gcqf41#WoDI7sJzmVopy{%V_bkK9?d5JiBg450`s!PyvrowP&J~GTx$@~`
z&4$TN<$L#ZMes4K&@S9Mk>N#s`ESqXt~YO0J$?IO=hF<QAnm<dtlsjc>|$52w^909
z^?T~|?{zzP6P~^_z4ZOo_B@sA^BFgM_;l`@{cl@_%l{IpY&!Dqvv2s;JO4lbWtIc=
z|K|TSTlwDp|D|IO=h`)_UuUAB_wMd(_a!}lXY?w3T^wV7bsb}d>!Xxvh6i`qmrs|D
zW-zm_-%(M#bmv9p3lZ;A+tnGO%-6X}hcjx~*fS{f9Q>%q5ShQr=k^lKAKkJsJ2$Tq
zdeJPxd~{is%%_N@^`TSS{%mJnDkSt|lF=-o$G7$C9!`(1Vm<Kx)2(lZ+x~FB*3~?c
z7sjyTVvqT?C<Z?}yT~2)m?y~2n_#T6vmkZH@81l3_pJAP+icEo<DzDd;oHzNGiywg
zriOf+Zqv7+M^biU+BwngReDXPdRy2VeD3&oIOW;>`f6`g@m`=|Len<~L#;($<QlFW
zeOg}s_4fUL@5~zJu2J!uDE<5IWX-=3D>WJPOM<&1Z=UpeboABbPpjRx{#~hdl%KJC
zekZ5@o?8V|Uat+`?wGgGg>l9_KTW3G8iSRkSq#7A-}Lhzd*Y$HSu3lJ>t4?OZBLo5
zuCrfkKA%w`JYOgOF5`y3r}+Ke$z8az<^IoukGl04e(3*u{o(<;JkyJNJ3j3E|3s3(
z{eJc9gWB5}_k8%-`|EqzzG9Pu%9Y2K=WlNhX7JydE%M^SvzJqHHmC3Z``}UY<)g3L
zK}G5ULDjjoeQ~P!ve&b>SE@Z_Xt=txchV}k{r%k!0}9pq7=DQz_Gz;;*e+|SHFI^Q
z*8j{~dklg)qUJDlthf9A=Kdc|hKje>D>BZPWijZPCtWIdb-K6t_i_;f(~D}a(;39p
z>&xuf%e`P@%>Iw->p2hn`1^g+V;+ZH6V~nhW5Td?ljd&Q!yk{^@oagufxpiBx$)NY
zBB!4VM4K2UZLo4u*>k5atA+92|8v(8?U^_1ySV7ZKmPmsuJ66XI$?|S?D#$Zw)*iN
zc=x`>p~T5X@W2KW7QZ@!k}B(ktPDoU;>kyU*(9=A+jIIp-x&V_yyi}f@x?JA2lb#2
zA*Ua``0%%`cr9bX%QXLV)`q#}W&ZL!3@>8xc|V_wW@ngk;Pd>Kj5q#VdRnrP@4>(M
zcm5y#|EZiI=I`9=^Z%9q6KZ&}{9n<pt^3&?ByC^r&v*atRC^|a9ouK?=rKh6_!J&>
zU5_!~uAJr3>i9f8yWcDg7x%7xH+A>P{5xzP&MBxbdM{q}>A9$9$$dwGRqhL}&6n}p
zm*N<4HltidxGH$cYHsdz$)5ZzZzmbrN^zW;wp!F^-Om24KXOzL8Z=M&P#SXMvvO0H
z*p+sHoP-$1PvwlPwhkG|FW0<_i}*1!pW#RK{~f>i|24-met7osi?O&h!@c`bIZO;<
zRwq9#<vZGZw=#Qv$#VAX{O0R)88URPFTUE%aO(2qr|Q+90&B%(R))o^mpDKD+`7ZB
z`&?{5Q<v7?4%MIt{n_UXS_GzrFfq6Ub=17E_e`_<)0@xu<E?eA(dU1+j(&R<KA&xZ
z$>XWw^BERA+VOGe^zeNZJP+>If9l;ak;&q3#_xmW+ZZ@B%kSH>T<E=ewN;8?v2N>T
z6XmTxKOMWg{w;&WERmFxCevaT{5pQSd97!s{d88j+T5ju505D|^iDThoEDoN%<y<`
zaM0~VCQ((dj2Nc6Jl>nkaQ@Hi@P7LnOa>JNMwPkG=fAgPUtaZ|<G_;nxpj%m2dd}u
zoaESTp!KNRoH0Uj<~5^+C(k~oU8w(+znsBE=6Lu#ri67i^0u=XCM<To8_6DUO66KG
zL-*mo_Y&Sey8e&h!1K7D2M<>NX6Ops`28YhL#LTZ#kQYv*F4I~m40@9mzuk`?TRbI
z^uEpd_hVQtMA_b|d|JwI;PvbHDn5srzmkVuxXcmY$lh$2-qRK4ze1+LGb;4K-rsFI
z1=Ck?gg!N@nfg0xcHyb%;XBrbcy(N=6;diX_h|aQZ`c2?W^8!3|J(b2&${=sJov4C
z^Jy9T0r|i8=hu9^CZw8lw<4{zDYEGQ!Wn<J^Xb+6H)Ux4T`i(I=i4s7?A)?7UNzHR
zFX>WUnzzC$d+z@Yv*f$2t-EWDedNuguf}ABg=FV`WBBu>=<(+Ir;-ff`@R(weXeA9
z``lhUzKZF<m$~n|($wGOGDI+Qyqx#u|GT65xl9{w)#++8^0ZfGFJ@h^Z^k-C2DaOW
zpQh`ZhD9^XlD0KsIvp4mAInhi_1oXS+shgMyxYG0Twc#tlc?3M3`NQO8YVZJHqLpm
zbpJ1%zmp1=JnA^HYwJ#@d6!$&^;T~^%@FX6JCMm?tN5<-_n0Tx?zmt5>)*52-x+-T
zKU>RxW8CvA;lhinjC($O`NYl8ApURfevR3=3@7|vGW$P0XM6RntN1#mjxe+C-gJg9
zzBYP14QJ0)DGD=8zVyyVw4tgh@vPLRDM#l%J0?DhVUbDXzTM0T&wFFH+OjNYQ8=SJ
z@e%iFUIz8ZpLhSY{P2DCG%HUgdX={0whJdKnci->QeU;4|3SBxPRvZEj5XVi?Ph0)
zx+}X~@se6@(!?d3ZWbOfu=yevJ$-MuBu~)JmXhGM``nH34Vz8%R=w(4w`aDP)2>+$
zj?H+wn!#n}$|I^bY9H_a9nJ7*|7ZS=D7)SFvhue?iQi&4<>@%(^1TezxmFE}`T4%x
zuaIvzX<8XOeg57zcaoZuui7oS_oA<PTdUsrU6axcj@=9{7PVPn==1(lq;BfPYYZ>G
zom#s8-)V+x`+r%U64vbN&ld5lc>6ikjxC`26}Q={n~QT9POcSaU;jt0;p%j|;N9O;
z8s40<&RoyykX~74!!|+B#Lw;>bHx8QQCEC4^`ss4US|z33%(UD9bZ}ZFihSdd8eb^
zkB<jkv<hq9iyU}#HSdxa!xgKOACE6*n3T3=ubA?;|F{3oNb-9fzRp4GocW?7{(;#)
z{I4Ffn|oRH&h6jtUmVWu^4sy<{r$f0e{C7odg#T!V%YI(^Y&}?-<C735a0Js=&#?m
z4K<t&Kd)_1+5566Q_t3Mey&O8bi1|cYcyS05+=+}%wt%yeNmKMz+ZNTP4EBkt^M`k
zpyQo2j5~g_m$x65IdG^b`Joqk!$;Ga-Ql|?HyeJu?rCqlb77>!yNRpJZb?03SQnpB
z|N5|9TI-K0soJ`Yd=9FUcy1nj&F$?U%Xr~V%*2)6aTgXVGF;7ZT`jIzdHR=;?V@{2
zxUAE+&(+>@ig9|$h28FHOyU}yx!a87@&hcbm=yT!mpO0+7R#^J*=~R9@8s(YI`;LC
zzq~U`?0K3}_2*wLgZ%%8?Q6MpZ?QjFVt%Vcf7h)j?(KR^5fzU%neO`b<ut>Fs<V3o
z-1O$Cd#F7Ro~mFKeCl;hDa*Q8xoh9II34->`(LJUkxvop&6gP;e*cetdq}OL`08wi
zMcmgl%`JaF+^)I6?&c1U3Fq(q|H_qm_qy1vp9v+uukZ6_ejgXfVsNMI*0o>a>#m23
zG4z!8alDxSja~hFpC@}<-8UoKmf$77-`Dsw=r*h<eeKy-Jh9iTmH+k<ztt-qTm3P=
z_pEEd>eEJE(%#1yG>+*R#b{MN^bTkIGH<6_pz$J!;L7MLyN?84{anxZ{l3t>{~m^>
zStTA{x8#I$OLsF&>DXn;xnSDYr+>{glYGCLiRGs<JaY5uxcRxhx>sr0ulKpZ8{Qrh
zUw2{h<Fs2b=6j##F=-qZ?wYn@z23h6tJgC~)ETMV{QU3QgPnQ24(4Is)m_ymG5C2G
zM`bYV4f6>sJNq^6`{wzq0&8=M)>*XX-8jh+G;Q~H1{dk;Kc;9EGc4NqqD=1jx{JpT
zTP{4yes1n#*O|GhDJo3&^McqHgy-)%#b~8p_am3#WO#k%XYc=942A!7um0^Qihc5H
z>yO#{*%IEj-(GuFt>NX%k}cLu8-Cq6_3Zo}hJ@d@^WW9JcV^hV{$Avco!joku}rw~
zO5{;Xk(Z~%vYk(~&b9rL4&P$RC~E1%82?!8?ym~gNv?JaG+)QDOz7din!xW+`Q3NV
zpXrV>rOM;k6E+p**3NyEzT&9p?lNYECKKyhH+!G&kI1QKS+H-HgWkV`d+%O5I#oNq
zp6kH5)$-ro%Q0rGHRCLJR-?%9)_XO>wE6oB1HF_^B$+5$>M!Z3dd)D+{=VL?ce@(`
zx0Kzqy!)8tD_{NUolGe!PjH_Pd14o>yG;3F(L;m7?Ch)0uVsv=dgXOzO>qC?tF{au
zU!|_HJG^q@p()=!6=#)j95`nBOUvqdeZ$r-XQHO~crzbR^Nq|en!5AWF|~%2)Y4s>
znH92@O=;Tp>85(u!5M5mo82D1Q<t}6Ncc4AQuy+}2M?V!WjK8I;@s_g40qmKlR90>
zkd;2gqj2Y3h6!FhYN`!OB>BtT8N%W^y5|07aG5kIjxRe#?7*W{x<ygpv(ulxt7TZV
z-EU{7m)5TrTh^BQJlf~Z8~kfi&juE4j+1&dkHXxJ#w1Ob*e}GyIMvcM@RRt4&|jCX
zGu%kB`t!D)MPYA^>90rnlQwKBjM`nod*E!mOn}bIZ`=3z|LZ(<Ea=i}#vOk?$N%|Y
z9>@6Mp}GCOziZj!bIlpn=&akZFg5vVFhfe&BeCw_W~c9kUtRM|^(UrzuG=+H?$O<|
z+wO@T=XY=v%Kxhv8<%&VRl$1ilWX06>3MoV8y02iOe$Gz`?qMzHfD$UGC}h#wRsMF
zIB1u8BERONn&-2BZ+|a2!I%-Vk7dE%L*62LvX3u!-7jBi#jvPNTXDrM+lwl`?#H!L
zQWS+w&wdv@=jj!<jjIdRCWWtv`t9{ZZMkxiRl)tmGV-%C-3lFE$N%9u8sqXc>ds4s
zj@!JSJe)kfS2DftH~y+u;yFLQz3}VG)%{FYqeKozPxi?A!h1JJKW@@jVFu6Yg9Wm+
z@7FC1?~aPC|6tbe?sWXJKlg5B7}#2@QWb2t_$~2aHgllQgQfHLdG1@eb~~SkZuE{j
zk(tL*TzmM{eoa<vXw|+u`~NF{Mu|JORV|lgeV@~uQFv9<n5iY`UGT%oXI=A`_)ZFR
z)7r$w`rtu}Mr+R<_nlk)_isKX&i?)7@0d)@0!hactFD-~UgU5zR#Q`d*W3K~Snzq~
zfa!L@*LJsi@*nv0f|2#jmid)sKi=JD`1SsM{EwB<3{tDRpT6W|2+fcA^{bm9YwoY|
zx~o5*rU>cUd{$xDx+(I`ZeE8YoxA>sFib9sVf4Dbe^nnZgGBD)$n=Xd9eAxySa3}>
zwY}=K)|P)kw3x_xgT0@(t-5;0xVACXP}Zr8VG6hS=T>iqMJFdNn6f+5?c(>s{Fx=U
z-h5b6ojiF_=3~F+S1s%I{fQ~8;aRY)@@8wHulf?(o8O$aR33i%M1AGz6VdsXF1f6p
z{=@syMA1t@hFq&&oxd0p(yz3p`pCSrS&L6{1iopy_f?E@{;j3idO_8tle64zFR=@M
z+L6T;D!QtsZSm!*<<9Q04PQ)O=Ug&q;d5R2C92frV~CseqFH`f;dx9AhFPh?4IcfM
zt0ot1yER=|kL}XVZHx(3Hak9Y&u886>5JJy!=RHzK|ul`&y$wd6mcFnyZ@v9WWJkh
zA#-0H_4wX-DebuEdV?sFUF&4hHaoL*t}uW6jF(}XPRxb!DIeIy*LZ39t6o2@7!}m{
zlq1|+a9<z0=&xjH+ZFSiH><3(;di)KoBVtJKdXkb`?s!StM2w)wK(YXykAxgFJ}J_
zHax|!MQ_W>1O{XAg-<em3pDsF65n4~`~NL7!{O@PC6Sv?baJe{wxm-d_C`&|feFkE
zl7ffWRzBnEZ;1~rJi(RAAT@WtPqd|;PQ$aK&lf*qYMAwZ#?Du{Q+`LU+u^l+x!ye{
zhS&)kf)_iNR5Nr{Z`afhFuNtvEBAd`d-=O*%KI0uXo}i9Q-k$Dn)39dIq4x&+{|t*
z)A7i47WsY2!|sW{+lt?3{A}|2Z$JK)yv5^1&<n)}Mn!WywzBb6d+v?SedSj<PjUC&
zqWbPh+pW&q`u_{KnK5}&$1|q-AJ;yruhTlVGm_&}lO%Ie?9UD!--o9KXD!JL)d}Ho
z;Ny?cow_ODv^c|!q*tF0v&B5Tw{lsb(vrtzfy=#587@)EZGR=fwBf&h_4P|C?s;?U
z7p&S<eM5$Cr^<K5Q`w$%a$$WRZtlNs9{;x6zpSP9L)5f27fycj`gG~F=*g$&3fgQh
z2Zu7$oM0DnC@n4%eJETwbKW~Gg^3<dgirJY3b*}OxO~Z~)tBFXyD9vt?8n9V%rEBK
zE$+~YPIajGDmu?jIpNpYY0qXa<6c)-w3#_}{q!rAGu%(jekfP_CcixK^i)}m#>r~t
z-jl>c&ShVnyeBD$dxeF7?(wC&Z)-E$|M%Ixz^vo*^uHUH@yIdwEt6(2zrSx+WhI|N
zYsKGJOizACu6K-cso_=V`~2+Uw}brd4Eg_l*Gyp1nSD3fDec#fV1~S_&Y?FACM`Wa
zLAd4KpX}Mbvu7nOU4BR2X70Rd(=vIxA1n^vHJ4kkPnh?9-ToTB2VeB(Pb%Midybn|
zgu%Td0t`PkAD{Ark>Tg=zu&&tZTNeT@4%Nb_r9$ko|!%u?OeljWVY-E<_GWRe(Sei
zW}PqL{Al+(;ivq?mwTUWoS3|Af>DA9%Nz5UZ;M|qwJIt3%){_^){@VEUTL3jZTR=n
z*mswM{G(q}Hb3sQesbhrljFt2M_I4GFER9su`oO*@~nS$@Sz;{t<OA#UtITWv5S0Y
z5m}zD7N{HTUbO1$?>G5(au|>N?VEhW+i^O(`t7%ymoq%O`|sPMS6`0TJM5oy`|Mh?
zDGul7+b!{3;pW$+xaY^D4|4bRJX^E>^O8E&U3w3Xh%q^E?UF9ftexL|{EKwaij*JU
z&v0M*WoNzBThzmD$1~>7eck^n?&bS4?D=tf|L*S}+12H3Ssz@Ro&WFY{ev?jtQZcL
zJwDk~Tj17rq++wM?)Tgq_k%ty7J0OHIX`2L-2A|82R;_D|IvO?b>f*E!*;vE!?P5-
z7d4dGP71rP@V;hmbbuiTgF}DCws#DB_RagB9>r|&`+@(CXW#7qeeJIQb@OJw9pi&v
zqMw(2yfryKaj&ZF{rmMEA=8tVh#1~o%>Q??e2~+cxS&?XgwU8(dSCqKU);v|eEp%>
z*Hf1NxZIwjc{X_0-n2&-zs{=v&E3ZvtoGlC@9f^&<xhUNm48**^DoxVwfb9&wc^~O
zh~j0Qo@}%4KKjcwt1#)##9}4O^LD#lPK#MlxOeJv^Oe#b9-Gve8w@X<IMA_vU&_PH
zw+aqznH@XJeeYWd{r#*jKOSZ{b+YVKQRkbbAD(@Er9NNq&%;+uMu(PGK3bEy$YJ-?
zJDQ(l?>0N|ye#v7wB5RT&C!I6jO*(&j+pq)S(AR}H@kd++me@R>W?&5Gda(BP%5x(
z)sbZ-lFt9nu4jz-`}h8Y=Z}9qb)BPT&%=<XzwX7R=U-2omrQ$cGXBqxH~s$w9KQcZ
zUL?xkQt)~8`g=7WMP0e`;^tj`IIDVojZ0BP`jaqeBkR8}mDM9<FK;-PF79EJohMej
zM)9`j+MY>bvE}>t8O-)t@2=uI5W7$2|Lf^93x#dw|Cz{B+dtQ&Fzus;sQH$2q6}}&
zeO+K6yy1OCrb@XCgZUa0{od(Oc27LL6a!wlZ4e1sX|*Qu$BQ*zm?G1)&V4$pes{8b
z##P<D=95(VRJ3*9wbxAzlJk=(thwit{ovuVt`d*^zo*IimVEQsEOMe#Xj=7W-MuTG
zGlw+&-mL!dta;75Ha-D{%>9d3<o&<6d=DeT_aDg&e|KCj{rY)I%R9~BDfYD*H*@_g
zzK7ad1oB<}s+zmOq&MZnuEe8{UVNL?ymqy~(X^vBKc~kt6sRwkxwrGbNqYQ@rOP<t
zXP7=Utj+J675Y4n&B|%(zYm%#mpy*^_4f6AjUU3xc2t&dKlpM}`4n&2ryo6rX8tPS
zQ-6PvudT8=n^N;We*eP{C!VI(=R2>suuH#XPQkxZYt0TXuRr!<$rJb0!j|kWCOoNH
zA19(d<2Lt(6D%($+F3j-DSr4xnPFe_+PYs2b0jn8-SG*E{q(DB^E3I<I+h6qPA9&6
z<_&tX#%J;h-F=Tkckh}o>HJ)=!#?KLVTobVK^l)%ulHE^VYY6r7Q^1z`NiMV)?Qvz
z%s72|apJQnfg!EJA%ERY?a4f-xpvtMrKd-qZ+XhFL`?LylTe=5lt#0j8S5B#oW15H
z!7w8~H1zB2-xEK_-g#_tIm$qvtuL_6VU5zgdpi;r$UaRuly_8B^wD1TxKnk8oA1XS
zWS@5T_T`^X!&`zkwF)R-?)^Sj<(YDN!uJ=6mm1p|Bf>4}UuqVw*O+{+`dpvqDd+u6
z0{7!~Y!+>J_lY&qUGLnRi<fRKo3-?w!)*UzH@!noZRWQ`{Qt84&*A?p0?X=^7k5bA
zt*!ZU)BnZ&tB;SD99v^ueI_QdKWvU|*=yhWe_RKa``alz@y{=hseSyasrmF@uAp~{
z`}TG`*9R5GuY#Y3hNb5`+Vw)hY|RAg{Pml%yu^x=?=arbcpR7SY#uP@?Ahv|f0rvB
zSDmtzpYv?>g*m^3@=G4~xh$Rh=B%dMHa}O6;G+z$v>0=)9dqzr_EP8YRo17I86G^l
z|L2aHg8n2%feW+BW(uACF^{?Rob^h}>8l;f7F9oKI<iQntU2u4m0c_JdSZ%{eI~KY
z^j0}g?$`WluFDIj1u7p4YrUd(-QIidl)9(c)N^+y><Yc~WaA{^!&CaIPgg7tX%-4w
z7P>@V^8%aD>r;C@7F*xE<zv26@ZRygc@lmnw%ybE9b#<6`{s-P>)fR$b{f3CvT0Lp
zc-QB5Y|&hd4&`5&?%S{%)c?Kx^6CG$f6uZRzT4Go`8Of>ZqbY6c_D_$ZaZ&%Sh>GC
zJ#&wuy-`d3O7qI9zh|HM+Xwd;TKsj8Q!wYT+4}YGnu%OzzJ~r>=YLnrxOLOhPZa_e
zP5NhXoII;s>D9H1=g5n8VLi1AYd=lw$XqXbY5lvh<yli~Gg+V1tT1R&yzkOyJl&ch
z=EtLA+sX6iTsa&NYRaZj@b;td-YV6t>tp8>`zAfr_+${gT*9n{bt&^&`#^E#ckFA`
zmsei6TXJ^Q+UZ9OAGH^REaY|Yvg}{xaVzGdlQCn9Lv)C?`K_<skA1buJ+}3k=v>Q>
zk+8fb*8EKS3B$w)z8iK;cNTnm%=`So)I<Fyz7g*p*Yxeuni%Qbx%AgEErVCjZ0CBH
zh{v~op8m#N^81{Q=TD}@n|Ov+W(iF!nVmaJ{p#<N>pC9KTe8mnrjXrblZ_T#jD}K&
zXXLfcN$GZY>$$b{N?g&sBU7#fO<HB}b*XLs>3NI0;<6f3bS*qf{~g$JYLD8Lw%TQv
zZpYSzC$znfn7K((zligIzTNYSomQE9)@A1_Z(6vl`REMO0}{oO$4*_o#4nj7sJ1ei
zbML#-?jq5O(pmo3b(Wo!36Y&%()>|PTye?DV;YB+tl&80)q1R8>$xc$^UvtaEf-c_
z{*;T!CH)gubmXfw)|R33rY~RVe$?gh)|u9oPp*1C>pK@*8l`(+PDo7oSKo*(fsm=8
zt35xOM}?&CnONoJnpRNP&8`0FV3@dD(z-3JMX$1q6q5u>XYKBKJg-b#d$sZPn2B3H
zKI(dNU0{yE@9URtcBw`ssmkfDJ*~I2^qy1I{FrC2pVjJpi(xA+4vym&{x&0jp{vG<
zP)U7{^__w(wyrzGme$Ef)!x6i{r={iFMqB#`L8hN@}F}$D{~Whu4?XN`qol+p~e4I
z&V%~rd!<BU#2x&V+9#Y}vcgS$nQ`<bhC?q@EKAQdD5@XXk~VvG-ei$!i&jm|{6EdK
zOJc>gZF374**uR5Y&v;y_7dZ;JIqneMtAS6xZGC!>&)cn`=^W77bzZz+;YLMxN_3F
z<Hn1gPwii|ChTkI>P@p}6>u9fT{#q@d&_sbq@3V&t(t(T1>fd|g}KkT^7fgZAESa#
zmZZ|@r5p#oIt#t#OJQeP7e7(N%kYxrF%jk8x;+OrZjT9-J#oF-+jHJVl^v`;AA<z-
zSH6~1pEaSUZqlcUoWtFI^W1h$*nO+u$*w(bjy#?f^t`h6xqiLojsBJK6D=pIFBZ}*
znx{Tp={lQk$R*F3rkt(nD_PG<Y;<nBIPIo@MDn%J6Z0<r^L(jpCE@pCM(ry$yYId~
zPfyIecs6*M-`1GklT(gvoFk$#-T7O`jn4K1FT`{XKUb-iWWKjqf498J<PCAT0f#5m
zD{beW`DwLp-vp1pA7U;}l<<<c>UMT}XGw2u`zEV^x?`0`A}4)ZmSdF4z5B$iaM8@G
zOTzx_k?UdD^ss!h^UX(JMU9j03pQq5;Cy8odUkWXXvZV{&5zVynEJT9F1Yz;la2iL
zDaxJcb8oJTIvwOVqcC-&*W{-Sx93#eJgdr({$mq&e9gR_3pA%ks<<^PUNE>l`(qB%
z%JLJRP6%;-v#AL@8dT`gpLy^>oq&4L^w{3lx}Ktaw+|Vxt!6pBP=#Z0(AleMyeTs;
zlrH@hEz`Hm^l{yl`HMGApP}u#f~7}mdM~%~{u{hfM%P>XKgh0kpV85D_5b8HVYjV~
z20!h(%fIrie7eBqcHZW$)}xXByVE{B5;>l<aAmecTH!&)`ERT)PdYEI|F@aHB>v;;
z?KM0~zH_dNe@>ZO!EmQ4Sv+c{$nP&9JnM=M6;4l*%4f(h2*0`RsHbmT;+8VMzJnS!
zPl!E=Jd?cZ?rQNC`Io!qoYT~f+5dAV@7lCWny;@v)19)UC$Y<N@8q8cjJ&!ZOGT}T
zowJ8$l0xv#eU};)Og`t|{M(wis!!+fHm2Ns-(Px@Y`@O-c~tf1<{<$u^%<vDh-|*`
zF#Cp5+T%6hmPVJByz(sjyRxF?<MK{xmG<*fPv1JVJgLUHd>_*UCF2f(7jd3`^Hv=6
zz1%r_`5U8)hkAmVcCFLC^TN-etoZ4n2TKo3=Qetj8!ln;*e+C7?_&;IL_pZ)DFOSt
zKbIu9cV~%m#)U`=O;xcx9~8bM=AQjGxqShxa{JHBQDV^*UCMOx?EZg}^_!9o{*>vu
zn2`I@$@8w(>jhzxw9c>lw*B6u4WGOWZ<JnjFnh1pqisBOwoGAJ>QmO}{~H`8GhIF~
zx%<7EU0;f_Q1{do-T5BxIJ;LGuR6N(+tMi0P<_|z*4WqWx~v}8(iy~`SA5lFIO1V?
z@6v{4T-hCp?pv<LUENWsaY1#mNcIJ#c)p0#<@>*8A6!#?eP!;-SB6VW%Jq5|F66%W
zG2)y=T%?0)>N$oL)6aVyy^|Y!&muW=cA-Lg_Jr8!iuN}%g1TqNh%arQyt?V+gt?ya
zNBobS5La`}P`mH!SHDenWiGR#?AOo*r{ixm2TeI^dB(?n(VLx>E$2h|zx>;|<mkj3
zdv08)l2OY)cj!m3<%79QZfjp(Tw4*WQQx~+TUIM?p323oXHHmn#LT$BdGeaiksD`)
zj0=PGRZgZ}m3cYMV$-f$o(rGHKXtzIzKWCAc;m4H7fP7jVp$ivXhw_PjFUgC?55zk
z_SG5ozg~d{*O<9kxM$BQpY>zWoQw@0r0@Eb?CSD8sP!ZHy4Cscglm7?Q+-Y9V&B>_
zt_g6TX^>W$zd*$9))Sr3+>M{v@2AeLtoo<@^I8YT?r+l;hkrKNy}7UPM!Pg$`kf@@
zQ%@rqu2<^bpSkr$<(f%T8BeTnUD{>Tu`WH)_0OgTgX7mPZAd$OcgCv7rvXR%s|18o
z8C}CZ8n3x^tg^^uhZ*<pGfW|s*Is`=7;zvgQqW!AFXGS{ZrA7CPxe|R?Tyg8th$Nm
zknN3JwMQOveZq{cpFGlfWOJvH|4sMhrz*E!I(o{{rc^MS<Fw~h$>MCc{;5~Jx&p6q
zJ>b7s`PJul>gPSP_y1Wc)Ka=T^6Bo1`??`4kro{rIp%yz@clpOzwUf%5iR{Y4OiCO
zU%#~~I=<IZdyC0dA7_zQy63E3#A!9IKPOduOzEn+sKH~QtJ^nKvmN5A(YrGFeZ_3Y
ztB2Lprrj`Jy|z@hDE!*f*sD^-ajW-qoDlV$>T}$yeY=ESqQ<3;+qcAy^|C$rV8~F$
zSusEIfX&lGvtNk@d^^(a`t8k;%~H$eCQEi{STwDhvhm$3pYpQ8MydbPCVibDac}$g
zx3#}*XU(qv&7CCr(?YFh<=tm2-WwmxI;El&mi5-D^pi^Rb*~B9?FvPowgmBd7#>b`
z6pvn7_Hkve$6Rgpsrs8Ok39J4^jM2`#*#qpw~mYfk-4hNPcOW5X5sWXGpEi9$#|=E
z=Ss&ZDQ|;C2`M%!zD%fz5@WM#O#36ywPMbpaO>-l7SsKOI9q-m^4@&v+Sm53>8~$E
zyLV@4_r6;9D_Zc+h2Ub1SYM4VSG`(KGIjYh2+jYws`2Lp_3U)TEfckMRu&rmdw1PZ
zWP!Vc=#)9Vsp~Et{N9oEKG;_HHTSakh`C>P3jf^auvG4bv*$Igwfi*m&b2ZG)_I&T
z>?yq?rO_bRZpyx3&B^8RKXx5oR`4|RLfPS_N2mBz#M46@ZU0W#{6<PCZ~Mk|8?8FF
zR&Ny3dLFc|WJ#og>6}F?F8AJD+tvK=1mC0@ueDZeUSHO-pShioSGS|1aTbft(nm{T
zLSJr>p4QY=^z7`c#Hsr2^VTcHPW276n?L*R2cv*8(R=%<^bUNTHaDD6K0;_ZdsK(!
zr_|?j=4yTWTGOq(t*7Pt_O`3it)|~&7CILm{C(5IN!ehlPU34nos5ZpytP_OIBbjJ
zjvm_DF`;0`pD<qsxuW&!cJTQ;c>PvEJNE4xKHd5!CQ(~kS5EaW{-$$tb<(p`|IQ7E
z9`W>T%i<1w*L7)aQu(a7r)wlrO-+Bg^@u&z%f2E|d)=*9ysXctFU{&%LP)L3oYMKz
zs?C^p{(V|`^L1m>!f!3Ew^w>ud54C^YVq#BaW{!?^NExmy+rZFbF&uD@C^5TvRtU}
zl+J0DpfjeT|D1b**LVC}YW&kG;N`|GzA~Ik?RGwKH&j$x=`*W7o2$-q-I}6uQ$_2|
zjADoGw>=0s^>l9XgXiXJo|L~@rJMin#LIRk;XL2s(^tM+^1XRucW@*xYklUQEt|4t
zZkKwJQru8@LqEsq`Sh2Q|Gm2(7qusV&3L=VakECF2SGh|A6%)MAh&YWlw!-kO-n-b
zJ-6K|S~X8Ea8ll{M_#RZai`C}5nH9C_4acZ`)0ibubf@?ZJYY<vQD_PmsU*uRhJmy
z;IdbLbWTf5pS`CbI`qU6iyw-{SEY7|mK!waRtSn0-cve$PQ&<MfW3bCfeA@#>$h?3
zxmc299%AFN@|;}z;`vSTQ?5CA?aiMwHQbEDurKTMOo1@5+Hh;TWiRJ43$SXOGJh)@
z&-8vzcK6F$l0iZ@wDR}+tzo+U=h~E=(~eJi-?XwrO>)th&K=4{>t&kMVjiz(+5d0Z
z%fyXOOS3Mi&C));aZ~6jyJ-KDOa_%tWA?T_*?5EZ)bBNS*GESMp8d_b^3}pyTi!Ma
zSH8IJcfu`mJJXtPZPxxW*SzJ6o66ViF`UtPf%|~r$MCCr!)gyqcMUgrySHp=!vfYh
zMsh;6?_{<FO`2PMd+ntqX61ET7su7G#&Q-iDTQx-AnPN1<NU;XOa0j1uUL}U;ko^?
zjBvw@PXgz7mM@k+#HYAOEB?~X<`><m{;BJ>mYZZV2!E^n9ObL`pf@&K)=5uP#l21K
z%FR^^xLIy#Y(M#Zm-&m0k@H#Stl9o(|I*(bvpQC?K6-It@6(+o_cOXVgOtQppJRMs
z6Fkp#ncp?*a9)um>{FibC0rHdUNoyue7exez+xZA6@K66m0$REu7&IEnz<hD=UzRU
zq1kyWJ0xb$-mo)Cok=C~ul+Xc4Kc{H?_y0|qIii@u0lb|_8j-JGfdv$Y5A{17Iz%q
zr=!8YP-}J961Orf`|QSYjUTK1CZ7`csoJ#iN7dD+d27#Fi_b29@n0bLXxJvM4I*<|
zSKQzAR`IpP(IrP%434pBu9@<A`jRW37Q0@F+{m!|)XId<M{JXmW<{3w?RzPcZQlHR
z?ZXrAqdu{UwsEJYNMG*$r}}=+)5tBlOTVq3wEY~bSjc+=0h=n3$&a|2B1A<eh92yh
z)~t2v_qTm}^UE_Mxir%kE&HR{@z3r4@kz#^UQK^X&#g-T>7`XNHDI&VL{7gO`?cq-
zcWp0@X}_|wJj=@<$m1*T?dGXGrwX;B^Bnm^_TAN){^jVdOJSM$AzmRKo~BK2N-|uh
zT|6CXw0h0G^PCP|nO7~RW^R1Pe0b5Xb3azj&odQ~@RSx_^Oj5b-KyhD%okjm?z7st
zX6gFYt{n?E?tS}6$Ut$U#imV3szDb$`Ol>|UYa&%{!`npB0URdC^LNjRkVD|4Jnni
zRg+W~X!EEXXPH<&D{qzSTaR#CsY?^*acjJJ_U2BL&bnFU0W7+IqjXlyU97!QC0pvt
zd!epU<A~_iy|b>dN9@$jxZiPk%_X+AFZXzCy`|+ED5{>jWar9tp_wN#cpe-TT)S`j
z^E|fJoTFa54?i^JVw-W#`t*^v4qRtMCfhxhxw0uJ;d9%>+%?7O5@B;UZ&-04qt|EV
zw(F_B=eB<Pqp`<6UvZ|7ZEu#*FX4}GoW(9CS+`txb=URx*0){r!vF48op|cl>TO2^
z?W3<o3E4BnWp7<P@o;N#kW8x8MAwkl`^zqzsg*JhG?Xciem|#dZPvl)lkAM4y?Uvw
zifV7`CkmzuS6$4yBItGgn&Rs(7i8WZ3p?xTS@L1)-<w%_Q~&>;;9q32Yx3?pvDxa!
zE8}j9-4yzM+vZNtG3(iWaThmcw1y|h&vIGH9hv^CY5zTqsP;E?G7Ea91zlwhD^bc1
zImE*IZPmljPumT`84d`1DRkY=yWz?C?wVaZ5wahbC2+<bpMBNibHks>(#|%EQtvD+
z-B(t5dzn^4WBdQjR%L8HkDV+wwDxr<UstLA(N`@H5w*v)Y1;D5vr5|6O>eTfzj)>h
zo@o^yK2{vC-gryP_2Gdx`^+zftQGBl+n{@;>+=>9<<o-iwgtaRYt8BoN@6J9VmS4W
z_Q{8?Y8SK2S#Pj6Y^<&blzYLoYxP}I&!wT|IgL@3w`TF~_uqYa+5slzJ+BWxS`Z`g
zI>TaX>Xzf8JIk}&xf7<z7%n-qCF8dB)YivNb%qw7=gv}XQ?`ko`@nsRXyv51n16EY
zHHzCNu1)GN{_hg~&g{wF>wRDSShjqbe}8X9_1&7vHM;L!mIrYjE@TfY|9;I)_uY@A
z)c3N>PlR3CcJ|xlS%-E=M@2oeZ8ecumggN58uQvBX!43r-6~H{sq^<nFh*NW?lZY`
z&?%<k?zan5P4?}me^W47?x3YkaoF75xl4{NoNIa9<meX7kNY*A-Z^c)JL}D(^v^rL
zK9{LlUHkq2X4%dtJu}|aX>*^PcW3d=KBi;0pCje#S;4Tidbi#&?0WCCJNaZAE6=|T
z9x}PxyA^xCEq@%hRJnJ_qgT84+fV90R}*~pM46<p+1}<I|L)&>Hse+2@-6R<-v1k$
z2pV_ze%9>!+0?ncMH{zr9hFVJXx&yn-S)fft-F7_$}j%iH$PS9ulx&R-4nLIU(5bp
zC?@sy)r1X;%F2((Np54!WPG!D?)}!v`*&qc+N-{lXNa|Lyl~3lZMER~|LnXA>hFVY
zXhFTQ2Ye?=eo_{fk*T?bDM%i~0pA1#Vo?7E7mOQw6!fv&b&hnIlLh=TCv)f>U#K_s
z5P6x?SwAL6ftLOA*1Ar3kblVf!@vCGMeL7#`I#2&KK-tzoo$<-|I~Tw-pyJ!r8cL`
zfyr&c(O3TY8Vsv+?7r<}ST%`plJnaMrvzr))N)AMxAZ2%rZV;uZF&aYLJFsAE0&}<
zTr20xO;}{rmn~IqTmPkzEnwyP*l*kcS=$@d{FeMWWqJ4il<$pAtDnDBUvS6t;)LtV
z1J=ghV|Z(Rzaj0kwL|w+u7J}0EFrtt0(Mn0q-;N3aq6l}z`FDX4^DxrECDOC93q%P
zWY#?4R_+hYx>k6g{MFw|n_m~Kd;QZ6GHnmt@#f%9Gv*a<jTfY8#2i^xk+bWefQZFY
zpWvm2!p9q(t8CJZjP)LwSya5YnYcXre3{i}ap{Q6Fi>oxr3O$4gW}!D+!7=UVwxK%
z7$|@k#HR&XUf_h39E=sfchaFI2cj=<+Q@q-fXCsW{Dez}!D1=>XC`*}ZeqK_xt?9K
zyeRo(>(^z^H|ZwloK8IV`>NluFLE`z|Nd(HuQHVHaDv=BRZ@TE^`7^yYi4||+dBC=
z`xo60%Ro_$mJmQ;3yO3jb3>3Uh-nDA6Ar{6J|WQXS|_A*0KK*ja;+0MxdxGat&?ZJ
zisv-7Z?=MgThE@I{-NhYPtU0}tJ3_Nd)1_wnVvM7H<>fB=>HM?!~MknVef<7K9+-u
z&x}+qK4>t0p}2eb^5wg%vQMu%aiZgdNBo(yzP_QZE$!PoR?JHGWiI8lO^MpEva_pe
z&)4ei3+3Od8Cp(GW&D@S7R1J2zPEE(`K_r&914@-KhD)mXXtZqSz`ZC`bXNo^mCgJ
zI=C<-ohwTJ>b~I4dF9)SUrRoFRcu?i?`+#D_MWR}Dhu4dIOk6>obPk$v+2zJS5B^Z
zmC5|n@mp4z|6fu2i5;)p=i7B>{B!@=wPN14H}n5Yzi+(p@=`tF>Q9CK=O3|O*HXJ3
zQ}yX+{R^w5tJUR0?z>&ie|xcHQ`y%I-ztwuP2R2kzox5x-k!Acy4<x^i{<Yn%-O?W
z`}O$Ex&C>t_-((OT<BNts{VQ1{TJVRK0IN0ank<ZhZ?{5w<q)KKV1B}F7*G5^=~!T
z8r=W4@9stZ{q=1BA5_oV^S0#U|HkX~AHvVr+kdz^`S!;n>A&99<v;p%(tFE<uESAz
zS3e!dn_WA5)1Qx?53{~skLuX}sl~8!!PeVJr|w<MG0DH5#*iW7TDxVr`ja`DD-^}P
zW(dzdS@hfcT;;YkU(YVL-}3uy^J1lkZ#I2(+?s35JK1Q@?3&Q{Z&z1lKImktU9|pL
z-7Yn=^={M5(+_AXe>7g48}N75ujw&==Pox{R^t`yr^_uD^L6K+k6%PHew{yAWc$_1
zt^Mn@8$9W!<%8!<{JZ~phlT9?eY@{pzheKm<(Jjf>;G2Xe)3FMj42@aQcsN2*Augt
z7HGfrTjF#@-YE8);d&|dh9W<O-HrQgO^f`(Ez>H5?3QE+_GG3{dAt0y$?Z3{<W{J<
z+BV+g?_Kp{o#Hde=N0b$`#QKBjTVRR*E068{JeT*grca`@;!flx9+d@st6C(^`G-L
z>KCK*8_#NK|BY623$EM$S><l6nzrv%?6F{`*H?^|%)UF%{$tiO>t!K9#ZI-AvudJ+
zpRU|haP{o+JywgCD5fR{x=*<hSg7uAqpJTqQCBK*d8PZZ8ozXo1z%Yv`a4}%en(q)
zUeLUYjQr91`<&S(D5$*a?0E2qLE)#`t0Nk&3<}4U7N}YL6InH}{``?1&fcxBe&;5B
zJ~?Z)+ymDCwvTUzFPr7V5p*tD?|kj2_HT*DK7ZS^P0iS_{ng$_oL8U5^h^o1TDkIF
zh|t_!t%lRtKZZ)1n#uku*l)je->b&D^TGZzUxif7Y}vg2hQ#X1zb6fCecu?qIQ=1g
z{i)??mXB2z^H@zx*|uye&oga{Q;{cREqe<XWCZ`K&fX~A{>I5RZJE=}v_&`C?bL$z
zdwy*Q)}9~4Vp*s3bcwPW!%fzotE#M?&RIRxCepU@%gTk;%bZ@@r>I?BHu3s$iJh}u
z&13y<vPQp(S~2(1u37`Lbu*uQKl8lAKRbF^RO8R)tki;CNz11jp7EJ`LjI@b)Ds2&
z?+Mz+$*=Ff{(dLdoCdEg_MCEO>MRcnxoi<WE7NwFe+Cz4^_R(fY#}nUiV_a`WcuuL
zR6S}en7VPg$5Xw~rknn`{Ij$&=0xZ(w+i^LXScmMLdP)K(P(4K&a<5>U8Y~1y{rCf
zcfgxWo1|5(BHM~jnlF2ocI<<|=gGSRq93nNkaS;BTQyr^8P`q?hq;NXbo7m%ym>jp
zYVTL;Yiv%oOV!WJd|Bi7zfYLA?WO(MZ<b4U{o2HN#O8lBufo|mi$ZFb@qhna<yT|-
zGW7h1rSeVB->x+NeelQR_l9v>^PkU%OFhCqsn^7~EhpAN&z<4s&s!6>{*+++I`OZ-
z-vGn4j(pD)j!rrHafMA+Qq@Tj*`<OEMW^;Hz42Lo=Jw-L)X(q-NZn-eQD8r4<9C<$
z)Xes?R&`~KxqE#2icXyhPx&UtkZ{7^qRvosvEQ9Ne~w(U$#k4)@=#Ro&zdHl0}+7-
zH63sCsZTZCI-Bc2@WMAUy1ADK2V5@q`fa@AmFEi~t3zjIwES9hnX%h7i{Z`5+b1k$
zER>Re_x)MbHTzk6oqPYxOS-vDY3m0LtygKcn^#V?Og?d|dCpNQ#tPMsRje~anikIt
zTY0yt_;2yn^)>Y?Do%zk5aYjHb$rJL+g<%fW$mXvx_9x+-SU8K>+i@-Fy`-?e?uYl
zdEiEkr5gj*>aO7qn0_+i#E!s2441FUg`|AwHm^HpuuR4CDR=N}%TnIc6`>pMbsk!8
zTE9l@pi7YP)dyRHtaw#6bX!!%JMVpL?=$m8v!61HMPT{Y?%VvYm(D)8^H}?2@yhb;
z&rj}rb@Y|`$FshM8uK{XXWMAca6D(0z<Y-IgS|kz<<Z}ZrR0tsNM^m<xy9ioL!`L7
z@sXAPWQr#y?m4)1mvicmkNk%@ciw1M>M0I<bB4|6zlk8@TJ=@t8tNL-3@4tP@iAI?
zKIhpn<r(YeoY(uHe9XlB$*ZNSm31ShXFq$&oUtiu=MCnLx<u!zTT%k#qBpSJxw-o3
zoOTtLB<^Ts^UWvx*O>hkabG(>I(Y^|k=}~7(-)^5YH6x9a9-Cmw`A(PM{$>LZ>=%x
z{jy}H`r?^lNmHZ#Uy^I)TJ3uDTHE!bF&XEMJX?8fRikF~yP2_he%^xj)~uRRQ>kG*
znXR|)s_~l4?<OCz))=iYJjpfr;*FWF9@sKJIHo+?XPL~T{5usa4I;%662==8(_g7R
z6<R;#VDXf~l12uH%J(7X8BQ&IvWfdygJj{1=+sx?YR5KTzj-c4*jTMr>Ql(w)aRPd
z9p9U;GHMN5Z>-g^=HIn1W`0NJ<hCzX-{Q4*>Yn${etpuL5xLra#_BItEctrQr&|4W
zB$DssUC-pX<s)S5(jMaZ=l9=aT{ay>hp<S^+jAv$t-1Dg{jv4NhtJ>9TJFXazcz~@
z^?`a1%gm%MF)hovZfcJhx_7cfvid7XcrP$|QTfE`)8S?_kJdHXlOC;IG^eLekbS4O
z?@AdlofEmu>|DlH2FFgE^Pf-{=APMd_n26$j8XC8d!Ck(&8nZ4H->z^cE$6wLK1J9
z&$%rTX|0>Q4AZ%7X9~O&RbR1Id~>7w)}q9kAjxCK-5*6xuX}lQTV2ROFH7;*+^QLK
zJf>}$x5;jsT3XKaJ9$zkeImQfuU+@aOn$Xu{wvig8=0O>uWQ(g1FtOAR5|zEyzkWu
z^%B3Qn;%(j3ythGoa3VMYQN3Oo4x$6KPWNSm$}wyubsW?gx-uABcJzE{9WdCPS)Qr
zqbB=FhW8ukB(YT?E_~iUm*=+}Iee(%b^v2#j%k9L`eMs?i^)4LZa*6Er2LGfHnYm7
zwA*JE7*9U<CQS0+$L5?C&yv?F454f*Ep#W;%!oa+_nG@yv+aJHXYkG|&fEL=XRwrY
zOI6FPS0yi#BwN3)-X&Do?3|vEuudp4N>zvZ*Uj$P`Yuz~TQAAkldf~6inUaZpZ(vJ
z<2mQ{ehkVrx9|LR>+_p=GmRPpef%_a7DOG@xP5Qt`eT9e!VL*~US(c*GS^V_`n7&p
zgM~JZ+iR1JEPfwzD0nPfe&-|m&+gADTh6VJI-MhD_RWKn!HHY0Y?bYsou`VDzv=Qv
z7jL?=!o{cX!jgDa{vsy(yR1Eb4j$aT;*Lt?{mchj<?014`fc51wj$u4Y<uTLjsQO)
z#S=G6GJkd+tI1ZmV5k0R#xb5OmxPe=Kkb|LE{LrBn%|ur>n8NhRkgwA*A2bJOm}z_
zjUOA&Z()4p@%N0Nb!orh<x7!f?~*gVKK}agSF@hg8+n&ILaFzoTox^GHvXQx%F30e
zrFCiP*_yMr<R5fA)Cp8!cWk`m@?t@M=1U`y$40YVSkm8gn;sR)c=2SqUuv1mMV+Ub
zQ}dk{?Q^*y?sJBH+AoHLHW>#qqx;X8{-_*e*Sqrlb#jW-O;*#xXFi-3sjmEJb?V5g
zq&I?5JLey*-)!a^<ko%I=b%_=igEwmm6wyYt>p6Bx6tN(OwiPMhm-o|-QK{pVn(!*
z+%1zGG9t^?KQ0w3Gd9d;>;Ai8P4-*yGfBZ#iIKZZm|kd}VY>G0#KkM_7iu-``CYlt
zQ4?zU%8^-=uegJiq4c}C!R)BNEZib#_oHHB-l%R}GEwQMo%Gp_iOb6D84PcqQPz1T
z=G((1w?U~xs&>-v+zI~zcPwI?lDoW}&w)?ZRg}eUMy)E_jJgF2XGb@@ebxEav$cmy
ze%GlY=8m`P4)JW7w=<IAfXY?hiJVttrZOn>`QPyVv+2o^#*;UH9Fff{-u=v6>-}kA
zW1oH*-q>$xZhd>~_AvcCqNMxYqc16+C$q`aTzlXCANgz>eePvAty&p*PEqM@fSk=P
zwlgZ1JJ$YW^_{kT*~f^>{bvls<4k{_O)%h|b#?Nli2FP?3QA@=H@8LyFd3|PDQ=>h
z*kb%`+2gafH}yT6e^X>?D;KlGTcg!87F_jyp`fGUtvV&3SwM2N^)-)kr{%SurtO=&
z;cS76XwF8*9M7(nYw4+}#)^4yPcJN*^x`IKdCh?{OUn9QuCZD1jm782Y$i>)y~`gm
zC~TFkH0{{2axzcLk<@#Ow7j1ke6wwei|j|Y7g`&|bl1C`yRd50p|<_umCjeUeAVAm
zxX;jR_7Vk^skK^en^zsbvxf1)2aT%PUnh08O)iiu`DfI=(#33_=pEDl39sJ1nUxvK
zZ1XC1c1lG@M2~RSDz_O8zrW^l`*M8>eD`Yq-_(W7BD(Q4Vf)V41T1y^F-<r+#pQG4
zOcv+gEiaxLUcJrc@HlXv?CwX)mJ8|_h1Q;3B=+aC(zFPst5cr4TFm5Q)Vg}`bwqpo
zujV`NrH@L?=`7o7AG>y4YUk<b?_6nH7KNAY%r(^PU3vFJQK(Yjx0RDjoi6Cjm}As-
z((Xf!X0Pyd`Kd2o%&vOuB_?#6^>LwF-_FRHiDAo9c8VOE@HlXu#I$YP!gsT8r|7Ib
z<<%0x+7-gJ?d+s?5fAm;UZ+m$$_wv!y~Dy?^t#p!bFMXkPm+7@+(@03ko7y@4Qs|)
z-@micL@F0O++MFNr1Z^F=P7scqgUpe9P~~&{ZRX@P_j(E=b%q%ihN67tw7yt`G?FQ
zH)fxi#=9-lK&8Abd6vr@D~3(4&-98;P-RIm=$lmW&GALh;^i{!nxD7NeavfichRzh
zi{2Z}FGe2<ZhPtYq;;jW<C)Ud?oWY}Ol@lWZXLb%qwA6e_v-sycR3t7gTzv}P6fY7
zeYvQ}XyVH0O?t}=w@b?{iI}H8CvC>OgGo2pBlpfZ^47%V;+afg$tRom(;}v=oW{@9
zek-*tJ9px_m@g|`wTd<T@}pa4x8%9@ggG6QdGFK};2YfPmht1+^R}y(3g<gBo6h>l
z{z^8}KygcJyspHfKQT-z7fzksdV_f@zm;5K^_m)`;v}t!?Q=CgYAN)-Or4TwWPROl
z|2l=E6Q9OMx_{mm^6JE+V{z}c|25XWF2Z;JjMt5h{Ir$V)28~Ap4cboyxnN3?>}D=
z?yOU4UCx2N$M>$;;I-YzxiYfs(iOStQ(~*$>sL(TZe5?{@mJ*9c6qIXsrN+;*W2jq
znc~$lrMKzLA(#BwZ#J|(eLg|hDlz%eosiAeKR!L=<Vx%`{^k*Q=kA<@JqMTMvDGX+
z-owwm{H$2-|NHxYt~&8DxccO}SslF%s~l1c&o5haeNkiD-j1`&HZ4qOu=!(g;P=U0
z5sNe!o_{LoRTDesvu?8Xwh6KOw(g(O@?zrKqWDEKPoD9(d$i0}Ibd`0>x-whXNsg|
zF!VGk9ourXTZHM-RlVly9byb$e{cF*wb>)JRi4)=rDx(V_bcBvWENHLTjn^W+DUnJ
zxNXNJ4J9|vqdVqano%2VGkN8wIh|z;9eW$+-)zmP+Lx18Xq2jPcy-Sv?dlr=VUfAT
zx6j--d6Fq<vc&c<uIXz7?UjBjv@|-^eL63}TeIll*Yi)zEk%=*k_7!8AE@elzFazZ
zVS(}9v`;!ZXFkq4nXsfVNp0p=rTfP$)s5YcTHZ@tt+4u8%uOfhJ9?)XBXfFQcTHaW
z{d(F|$=%BpugpAY=NO#ja`B4b?G?+|wc@umoXA=uzW#cQukg1w!v7l-!+H9%;?-6g
zMrS=wQTDrR8sm^r@n_AVxyRyG9GY`xPODAChIty=rHiZzwY;JdQiG@Nxp<1-JpN)@
zw%PJ!0iwdoK7H@9%x!21T6XZuP1bwAZcWg(HuBoA<i*ts9V%;!-k#0*ClU3xqIS=}
z1>J4;|Mk{%EuQIV!pEwa_WU+az|;4h*F2ZL&VC%RZ;nz?PMQtl#SQZLi}Kbal>9EU
zm=&ZI)%1Roz_i9~$?3Cfx4+(*opGo-Wb^XK+q*@w6W^RTvufsP6Gn%VXRahg8};N}
zt<ah}-{C{{@5@a^rqit6USnX`I9*gu`}9oRUWxReopG-gJ#DC|VR3kC)X&Ud<b2e;
zLW?nLnXsBzm+z)eY20ZUTs3JvMsp5?3-u=EJ#?A7Dn6jW`Z>2)s0?Etubw9}!_gl)
zX(64t(_#%|BL1#snsjs1jPIh0FDN>EeE&}=`pbsMj)}|KWX>EoI%nIBUd{DZTQzfk
zs?`TBIM%~rp?=LNgS#hrUyJJVRozKX=9O*V62Wxfl}y#iw%+CmP5BObx-9N`PgZlJ
zL@Lbn;X7^B(Rpgo>>Cx!{lpIhs#zR2nL9nY?0ceL_~sQiEY8Fhe|8mh(ejB__Dh?&
zBt-e~r_>CF9sdkIHd_YIerUSy%54#$9%c#o)2d4*A3oHv^2Bc8*DHRs&xqc0)7;2;
z>9#j4thyY%+^W1z3-^0!oiuR{XIuYAsq!69<B86bn&#ZSk~*(H?DEtW?tT^%kbCRn
zrCw&;^J@ALJB=0lnP=)~imejm(@>k?CVVV)np@wmNhW2hvig#Aq@EbaoG#K3PA_sY
z`^$LTHbQ{w#hpps-(J-0V4u)t_kC90WF-diS&=h(bWR?qVZJ9iH^Q|~a>k`a`<BJ7
zt4}cR@lnz<W0Mr0rV#!_*njcusSW3+7-{qcI9P5^Ty&P9(JJs#`j37F35kH0%kIz0
z*rMJ0AT(+Xqr;|Z??r2UE?rBvcy{+Y!-?NA$_(3Y30U$trEl(YO$~cIk^TG=0jX)S
zBGqMEv)hkkgd6mmbe(fgY&dx;`<$1f=JGs615Sx)8ocah&pf$!vg5<nKe2y91z%6g
zKltzb$Bh@Je(t=!JoEDf=7RL;SGsF>BIZgrO_?3aS>Y*mW-({mnt-b=yCsD`_xwJr
zGcCU0(gg(}hG>_{UdO213sd+sz9})!ka9X5JzHFx!DHer)q3we`yEqi7%OLP@>Tj&
zXZkv_Wd0+CSy>iJQ|9cNxsb!hu>aPv<f!yrU+jd_ZI?eW{}pg@+6I=HGSfD#RNJ;{
zOQ)n2%VFJFskv8D|E<-3w>zOw?@6-y>Mi>YT(Q%co^@!^X{YWAh6%w=^$%nf)qm9G
zg{|qkRHV&+Nk)XpKt{OuTvGBjAI{_x*?J}`Rx~=w3%Dz>E3}3+8M|!G+4N?QhYa@@
z-?a?O7O5Zd@>9Bav-OUSfZB;LHT45gx!M~QBG$aVp{!Zq!2Pi1@+*^nzy1ri%xm=(
zlx9=&lh~VaekJ3ogw#O&q~>XBCVN@WZ;G9|qxR4uV|}KhS_bk8`rB9NtmEWadg<H;
z;jYDReig=_F}Qqq<%@@w9FKM77d?-eH_M)P!dlj{xSWPl<_4Unep?-Vr+cz=l4nS^
zB}d>n<&R%4^~y3_e|zchTHnKSV^8Hw-gj~3&9H@^t)!;9IeoKwW5DBnd)A$|j8BrE
z>#Y;ccZrCaawnzT=TbPUvMJ9G5lJ7rp1&$ACX)}P85H;Io|UK;o~|{m%c%786HT#c
zAv<O?A2nvVbm4#0+x9IM+R_2XwHIj#SN>EJUSF-ZY}MU2x6c@_sNod;ld>p7BrvhY
zf>U|ZvatO0r1a;jl1fZkS1+9_!@Rb~Gp_H-8qMBy^$Zh|&!036c<V3qQAavh^_Emj
zG?RvAqsS9q;l)jl5_WQA)}GwH`|&y1cPUesEsKiE=}~-WpscSnU3Y=WYR>#=uGy*w
z{0pR(Xox*dbic>kvHstg(%mUXe!bOaR4_Rp*ASh1gr|66!sV(+t%Q?7vQ~lnv%;S4
z=D!;4dVJwMi%%lO5gb#cpNBkLP{|;5nd6y{+}5cD=9AB-WuLU3X7#u!>{4bzgJ$nz
zCksxk8C*eItUk}FWJ*?l_#@zw)T38kb(i-44ZW#;_%W~Cg^(?tr#A0RS@+4&?`eDG
z9H}jOpVwX9lEd;l^xBMNS;eOvms!kup}R7En>N?2DeOxp{%zl~YsOxwqw~%fh22jO
zx^?+Y*Q5)U#p`#oCqBOLWP^@p<Y7h!IreM+gnu}GTvYK@x&C)ld?fQXhJd3Tp5E^c
zIpsus6ABk!v0m%;)HZj9b+<d^B>2|d=Cmy1e<M6Q;n@pCh9BEfUKDa&y76>F$z8u`
zvv?=?wbaVBZ4%+$YAPnJsS}?!*-?D6N#yRV?d^ATu7&fY%}T$}HE-ra2eV0z0b)I2
zN7k#zcN|<aXYs*nT4}0p0#@W%NZqhLzv;h(_%BeEb)dU%`+NW9%fg3G7WlL&uf1lU
zEyl#KUT(w3)l1VDg03yvH@V{Es)EzPKUYoS@NRGo4nH-waL$phKR3m^;o?x*wrtJQ
z13?djrL4DA-F@hHXHua?!^)!vMLw+f?DZ*;-65u|AxwIShqvHf&$H4|xeODM+A3vS
zrs$nlyS86#?X)J<yB%A0F|2x%f7;$f)Mn+M<X2@3G3EM;$}Og4@&`Sfe>~`iZk3VF
zv!i@(I@}z6ADy*kcw+NfraE{Dhxdw)y*XPLYfCG4&d&L6!x>-~?x?;xXmj{BnWUoP
z<`b)&{ETmE{Y@4Lowx4jACqs(m|N%Ec=L!o)O31R?^LIjpd5`H<Issyes#`l_gs8n
zlE%gN-gn#rV-44Pr{!g*aUMPO;c|!vtI8Hu_pYa@pKSPN6&;E=TI_1=eQU=rw$5Yo
zcuFqGK4swRbuV+)%(Uixt}E!bK(VqR@5W=<hLSgF232-tFCU6k@GHoFZC|)_AM=B0
zv(H#xf6bqNZ|BoC$up0lKE85i%NJ{Rv_0k|BdQj-Z?5WQUiNR-iZ(Ae9-TBjO-5qE
z(xYA*W6y7D2%D^<SlPGE!S7;x%<1Qa3<CN0cCM{r3V3m5YRuJ0XNk!hwyxAUrlqB~
zimT%F_37qaliI>M7XEMwz2l=Oxp{}m8&5vZ`RghaWWPVV9dhG_Aj2``NNFD9)Wbo}
zHKz|bsh%_b7V5E2e_nH+_51$Azpd`(9Eqq-6F5CPcB5;ieNuRr%A#1Kxob=P%9ifi
zC9>kh)Wbo}s_dZ|dd7R!a&;xe3;ixWmBIMqZnS5=ME}xRt;b6a+TNSeV>hq<{?Xn1
z44)FuSIgwz+x=EGV(*QbUw+%N-elJDG2D&2p!GL#;@{Q0x#vFr<Yw3z*~u1=$9}*$
z^mgH#Da(F(8opeqaQ?AEcg-DTlcpGX>ntgTkI!V!&$*>)sw+`<fx|IO#f+c1UAU<0
zQK#&;GvEF_nl;nlI7gr18WU!zpq(5IYi3;#`oDMfnXvn1K@*xi4Rw0i@1?f2zSz;u
z&GUDnl%wRMlE{}1j#a<hIUg@`c^sIyy=i}{wxo!{K9fo|tpaa#HQghRGLA^bl;^L@
zGQ8B`wQ*HsNlvfI)728M<L+fvGB&Kbc1b;OR?PPlp}6%IR8BRYnd<&w?TRC5k+-f%
z96sC}`?+kXYKEv@=Emn!o;-YV=Yxj#$)`)p<*)2})%o&R<*l59g<4Bzm)uY{OTP8=
z$3IhsqPqWA?=zp!G@UKlAai+x_{_a~_FY(-Yq@SxHS4Bp&+Do=55(5a5}RG=vVTH|
zS@2D@Wh-JCEKl2Q%Sh&o|5DA6Sw6XJJHv|1zhBcgIo_S;#=E)T-w}%!KlI+`F*=w|
zy*-CH;pW75b{&#td^*+-_B>d$@S`s`!|&)d=Oh)^bRYb&XpW1Ii|@yEmvYs*6;>_g
z$P1j|vNDpnU^jo|i@8dV3wJYBb1jWIwBicmhG&vfykpm@GE8Bz6rW+U>2i{~(&nR=
zKE>Rfta54Fq4P~MPpnwgq2mxz5V|?IR@wfeoaft$`&mn_US1sG{_&0Ffr`R@uXU%F
ztlbfMM(Dh5OLyd<_X*uPT(d-Y<waJ_zn*aEMz-8LyS3|&L=_*h+<AL>BEy6!n?4(K
z`1o?ZKlo{ely8+sAji7*yZFl)`nL0DN-!>|`*K>$LF(9s$aV2Cj2~8;vi~^g8nupb
z$6L|v;_`oIa_2L8yv+()n8~8<cY5EG2a+C3uNs*?6&3fG-jTPTwcyXI^}ef*%r5`;
zinYP!%S_A4;&X9xZs+{m_N74kl8V^DMiJd<^LM$|-JjNORmL+bIHToh*z7e{jD<RU
z&HENySo--{cuL?>#<tX8O)eqk#1}3%`rSD<<*xhiS6Wcud|a4bN$RZ=mpac(J+k^%
zWB!qt^23XtuIjc~6yb3<uJPi|Q>T`iTvCv8U+_5YXKCUw`AqxvlXFr+&N7rQoWl7u
zC~5Asa0ZQUYbq}%Y1>M7@vP{Yf9Zr=Tw&j8*NHodxUbt!n>x#i!KAEs{jHO1Po}*1
zH`nj}(!+8N@8pi!U5rsYz4EkX;+xNpZ5g8SUj5-?C@lZ|EdGzKzQdzyDZSBgxeROU
zcjuX%-XL}_c~?oe{+%lBhCRpAxEXHyPYNq}F12B1-HZqOMK7I=pSV*vlwqE|b?#r`
zdHZ+$z5ajJew*J;@2$k^*%n7-^lGSXw@c6GeSF}Vp6)b{iM$sdelt7HazNj8{iURr
z)1(>lsyVls25p|^65VZoZTgL$uR<bXuj%v$KiN7<E3;&Gxy`=T$9Ipa&tVh19&TWt
z&SpP@*R5|$?t-Tpmmm7govs}0T6O0m|KFpgX5mIxEE0CIG+0=i{*Vy8OzSAWLVDs>
znQ2FVO<E8XpOshoTxF-S>+PIuv!IfWTU%8po?N*@b-MVg+h=+brr1mo%9OK~Vt4(+
zr+PoVSaWt_f`Y$sZ;k)0_h({HG932W7SW(Fr^e=pUu4Mo$M5&OEbnLdw*I~`BV$DE
zCe{hbyMCYLWq3aOMnA)$O<#SL_f7b`C+UezcUF%5$ya+%6u0x8yDIDYq<N>$rYo+S
zvVyL9IH%v0ePSK@{@=UV56j~}KKk;#pW%_gI{V$<7BULh?<ri(yT0K`kf`KCjV%m8
zcTURRO0Bx{(WtNe@uy!+_d6!b%~~y9@>SBp?M$(HyVW~&rT7+euYcDUJG5rH=qT=x
zxwgq}TDE-&!<>s%c}uRI`?V_Mjk8d&#g?;|6?~fO8eFzBEXk0(nlpL%UEa+CkxFki
ze!f0Qb;fK_cG0^923JCSH+<Tp*uKo@*q6B{J^QzsJUhac$5?svSoGY$|0j-ZudkRt
zvuXP6JAMyDUdc!5FMDb!Eps!0;lY;2#$RRGzZP#7fBk5Kzvd~q@3NEoqBEToHO~pU
zuI@2^|EN8mF(4zOme2L@ukHB^6Ux_dG9+E!EP3s|-4Y2#li8tCZfP@2didk_vl^6b
z68^pY_tB$F2foh#JHu1!xJ%rX>G9k8HZQq;``KxGMwOky4rNOx1pX6>YF?`r8>}PS
zmK$<plH`Hg2OT;RdK?#3Y5x4n&hYs5de?ise;<9~aoAt&b9lx#>kUZ{7v5Sbv3g-*
z{E1DCf36m%ZLat%ckW}x+n;UX^Jg84-N)c?J}yeg%~wd(vuXVd5$#KB#ACZ;x|;1g
zgEu%8hMl;-|D=8$kHW@ah9zZ>zsc*^&v2}1nRYv4>73RrS7(&B?{?x@?R)D!v&8*>
zVQ#nY^6YkB*7YohSz%wj?g881nl-mSDp+s2mGS$Y<0V=9wlL5Ht^J2pJUn{Y!izm>
z?M^T7Uc4c;D{22SL*4V9z17<yC%RSbnRtKGi`cp0Nu95E*}VFueCe#^#<O1E-%n1H
z?9boNw%bH>-2uT)3qD8YnxD^f8)Rlxe3o0Y?}qxl@*8*g_^TQA$~`Opc3D4i$Fhfi
z@9M`fpD=6<J<ZQ``sl;MvJsJ686Ec6-}#@%uJEn!^Gh~|{nawx*%=Zy@A~sewBhLU
z^%Inm<MU!)P2ZGN&my|zTFA-DxZ6Q3!QmIXukYTn>B*%<4${6>M;kNVsEB(OPW)Z}
z`TC!$8{Xf_E^NG0<vqKYK}4$T_(ZQ{sgL)~o+nNE5_{|Z^TTot*-YHeKD?a%@0H~Z
z&WG1Cr->D?KUi~eqGf5Yv+Zt&b=##Ecv)nxnm6@ACv)=IPLt+o#~7a9dB?^ur+;=f
z!_LT)mB#0aw@kQn;#+jsXS;sqn(tPd{$4BR>7DdB$K7Q5bf%v<=PC<7Z7ja+ZTNM!
zyIaznVj;E_3t9s%Jij1SGcmS-t=Mbc)?Frt!d;Gvcil2rd0TSlXSNGB9>0-lu)gDY
z?#&F1<xlimVvY&syg$n5aOdu(ZN2jQWZ%7KG<p79QbJyip=Go2Lm$?;5BCVLERkAL
z|GRBv{f_!QKYw07ypMUqu6;M^erh&6e5O`r+wiXJILGZrMW?^#)c>iJYERpo^60U+
z<Ts{0G5?+%db9oLQ?Z8lZD-5Qy3BN6d}!?nsUjvN$ww)Fw>P|59hY=DLs_VcJ5WLF
z*p6!(zU`k7!y@ypJ^sHn!*TQVH>GaY{CxHP-}8F52mSwE|35P~{`0!utDoywKRRo@
z`OXjR@_%P;8GQKEcK-j0|3~*Ha$k;*`Tcx7!;ZJ2xAVn*Ha?QsT0Qsc(ablJNq%{O
zOmpL|AJMx%EwAOwrR3)lo>4lL{(s-;&i?-KO=Vn;fLa0T*Xm2ACH(Ihcl<jbYUk1U
zJ+<cluMge(-{+MxOq+iDxVe1AbjcXo|C+a+>oWxGe)43J3E#W4vk7Xt)0*<^?@V%H
zZhFtnt!viM5~ISC70O?F;g*u+6NV*alRMe=GYD+cmlEqTzklp_^*pP?b3HEF_wR`o
z5|4_1^6$acF6U_vcgXMiDcbPkU#X28V~PB`Bf2l$KlL%|w|_T(ypVlEWu@#l>wnY2
z7w*5m*+ubvpE*B6-}c?V*V}KAu1t@!WB9(midmtoIoq;r!nXJtE{1cz-=<yc2Q?So
zROzjsHog9jX2a2^lEvW>dN(?YaucS$FngZ2_o?aG?#)|lo?lE0<-BQb!FtW0RHb3n
z@`dM@9pIkG%D4Z?#}`Tb3bNmH9C!1VpM9#@u>Swc_&+b}zu*7#{?YI2|1Rq@K1pUj
zmU!Ipl>D6ZsFK;A*GyGr^5b*Qnm%XBgZ1%`eu~>TUtVN&Go*EYbmH<UJQ|x#u9<Y7
z&Q4*|TatG4-d%@<2RROu?tb`sKeI!3YD7H4f`<p1uC}K3)n=V%xbPw4#m?$IjM4t>
z)eME@hxG)4o_Lh+`d#q-wYg8=@!RbGCM2gQB;JrO`Xknm%@iE<{h{1}oBer=KT=;y
z25;5g66bBt%sY2V^p-CEume#q8E3jNGt4-fVWFTSmA0HmZ10yp-3Jywz4G^|{q&=z
zZ*EMu@G7ao<X&yUk(~c$t*>zg{{4}7f2Wzuy}Jw^hi}}MXSnnC(d=(EtPegsbi9`$
z8R4B{SAFct{hYAXuX&|2>u!EpB$Ho$_iW>PcKbx;XL~Cuddy!%=-+;A|67^i?bW3}
zroU=^zE5~|Zm}L~gyqw;sTL0R^0xF(S@mL<rA7P`9hJFX=SVbZtKXJbVSMzpaTkZO
z{<j-HzP;XYpYg}P`+w8E{^2?>|IhdT%<1oHe%${*{c5-N_X>W6{B4icZ1+C<MNsWz
zqUOY<dFS7Au<@^($GqUP|D>(*6FkFb8hx97Nx|_quj-Vr&N*g`>whMNp0=L4WFChz
zi-Wu8n-AjG|AyDID%jsMo+LQyn(p}>o7(z*|M_6cP}HZp_{%%<q%+@R@7-tic>Exk
z>BEQF*Uwf}{(o)$sq7x(jk=GTr|%y(zpt)+r>ir+;GFHg-HaD<ruklH_V_Dd=FPB<
zb6G6Y(Z+>&QoDoV<_j<9iTY~9%dYMA{Bxzz&O3P)b+1AePR=iWuxD@bk5B##J@@~-
z`ti)P;bTF}|0n7R^9u8RT-~2)CCy*W@c6Lv{@ctFyZ?Ro$97=Ddmi6&hQ}3|cKm$$
z_TO7MhwHt$j~R8&i6@FO?D^v#m$$!$aly?sHzxf4V7|ZTo}u%z8M~xQ+vAFqTBGfD
zGd#E@FpZm|{+;>ydCU?2UT_DkZ~L62vE|((DF#z+wqoP<a)n3EMTt`_xP0<US;Qn)
z3+>fdep2ww*7BBB{k#A4J1nic99zrQ@Xn6qIpd!v`+w@+vj11i@bcT=-}T@2Gg{oU
z+wy$&h4O?6y}ZB9THf}aQ_85o;`n4`?5FmU?*}i{3(UIA#x~6=W>SyNfz&q-z0Ln>
zt#_Z)p!3YJFd>?)YC>9`*u$s(6|25H<ZY0NGP7&nx4GxuheuOSH1)m<iC);3ll88A
z_x!&y2malDf7Va(o6_9f@8AC^Vtnvzb^cHN{`;~s=7>G--aK9W@MFdU8{Qw<#JXY6
zzJwLUe{XI*>g{x^R)6BNvYD4pWQu&~?Ub>+kX5h!;zOeUZEc1ri=yTJ{N4U_RjT+7
zRwpYt3zoc&-TBgWS+Bk^nKK{WzCYElV9(8&pB~OQ_PD(L_x-!f61xpEl`ign&tH3r
z;hy~C&#mkqGS6I}Z^wKfOswHwUHzU~h6j73tsBdyUl)H{#@w)nJE?!`oO!}#-p3aA
z-@mWBZrhyOkJiN*Jn%kkI@@+<>`ea{jl&*V9ggv*_A6NKuj!boqsDzV>gtv2FXMCm
zXl;z;*cE$xwLIg8Zr;0l*aY6&ecAtKJ44-f|Nr{`uD&`Nx^VXT`r}qwcWX7;4p=aF
zRCi8IEpU|kbG6v`?Sx4O6hohtUj4FV*5*qMPi0<Z|F+p2<?GhMTBMc!AeCLgJbPCi
zD?|VGGjeqsC*>@@%X_TR;@R!DGcRw-R~5RtCCN|T+V8pdZ`t=nyJMeA#NK8&@$p$j
zJ<EpQch5dt#(d#!$-b`)N%Ft{G9>&j+h4!?`T6e8WtICFF5H)&c0HOQac9Jftd=i3
zlIL^obM%_zVRqtCl!o!UJjo*xb$^Y`az1VJu04Jv{D^}9lT`ja`TR15n%i5hpJ$lx
zUB^bl<ninHlKgv2JN_PheRy{?!|~sbAJs56*x1&UGi<2-{9*U~d(0h@^YfygEt*j%
zCez?Q{p_PftPiB?zrAF0@XP%E)p|uAn}FHs&-3>^S;F|-mO0{V+Q|fm&wql=k|!-|
zT(>T6$JuF;$L7Xz`CM7ISaF)0a9Bl*5QjgXpwWizfIha1e*%B!+bKG($PE8CXSKnK
zBDIMkMVAZDzr1%i{_oMZ=j*v2JhHF2I!`-BQh2di;@*_o7Hh)A?7HOdF*Fn_y`N>a
z=T|aA=FX+R%Omm_Bc_Xb&rp#uo}9CLmfFr$aa;G~^v#+el_Ms3IoM~9@~H>Hrn<i;
zU(#URFze{_xm!+o?4Eu2xAc7zhA{ho8>bo=mrZS-XJU0c{^#rS(|nl^Y;D{l{axpp
ztgvVK<+u0km?Xa0{(t&6_PaqEgSP+tSiR}t-VBy$VZLY66a&-ZXR)^Y_-AUbQ}fGp
z-+w#Xd&Z2O>gvy5eqwDn{QvX$n`foI$*MPhJhmbEZXSP5o9w;2pW4fIKU}aR|Ijjd
zhAq!$e>@w_P;+?q|L@`qeCBu0>gO}|v`<W*`AgzA%L8%#zh?y)Yc_Ii^ndLi#xSpU
zWn=|Iy8iid`z_cvRBq&*_4;JQ=Io`DPkycc;@&-d{fzv}hu?m>`kY}!?4|{u!u7k<
z7i-$*ZB4wOY4$quVQ}LNU+zezL_aa5HP)_~UQ3;fF2r%K(3|yb;;P>5YtrXkUa}zg
zT=yp9*jcQLL(lsE`*KwNzhy(k=Xv*E{5YG<pyN_=o8!(Ry?{NH>Qn7CJI{udH(Wf!
zJRv#we$Z)+<*T+G56W3}j^%Rj@(GuHGz1DQTK&5vxK4Y@1>{dUQUA$O;$A}d=J&VO
zr3XDZ!X)QnaNy`M-_=3_Qqz8{{cO4H?)CgYNu6`T^Z(ZVzkT=dcXozy=cr1i4{N@@
zUG`Ar-v+MN;?EgoeO+Z6&-~%^w-0W9qQ78shuUxI|IYq8(fHK6*K?%m{|Yr&*O&cS
z{a^UNhUwEh($~+^|97#T=fUj%AM3NuUw?gGrRccZp$+zT{`{?GIPlwoL*vY$_Z7bn
zWNo?s_V@3@>;LtyXWV1g^XB#%o4x-F7zB#%9cOu9^W*aahC943H}`sUf89JaU$)`x
z^Yruo|EM$E`n+}NlOz9l95zR8+Qxf+-tN`nezE@3c3A3I9yZN9(S3>ITkpxE8#Inf
z&WJS4onXXx?aq}W?xlB@?s8aXH9PYC+@&A<{zujan@BKN8V83=z7_uRjpc8TeeWaI
z?|Lih-X%7Fe^<G@$6@P9*EdIaPP+1KlS<+DqEAgBw>Gw3dwby6&OM)$w>x{i<x<@n
z@!HF4o?qYz)vc9Pr((~YsQD2SF`+8#=>;y2&&r$9wwzx3oawg6->aWZn?F5%u+ENE
z!2J5tIhi>JDjn`TUmN@Lv;Pn6&v6#37#rp!uTOmA=4SNou>4%(1&^fV!xVLx8J>4!
z=6roL$#(VO-O_9oj4j8_?|&9D=jUI?dxo<+-23CPy!+l-tJS`l>)Y-BAO7FGA-(?B
z<L~ufPoMvP`oE0Bt^5C9)&CV|5PPoO_mug;iqrCc!~f6NJ9qxy$@^2}^D4KV;o`5^
z_T`LIye-cfhy5=f9iG7;ll0Gj{WOMkw>JDNF_v><uv~g}c{D@1zP_3Mdd4mD_dWR;
zUD0w&)tTwvFXQ^JP3Fp`*?yi+rcQqQeC|3Y6H6Vg1u>O6rjBQn7kb_N<o-9|=;@vB
zn2xA>On<!YbnfzSH6<S>x13vsmO*|;o^GEd`F2{m%x>>;`3lwtbE5NA>vrAq+C1gz
zvXuKp8iy>?|Gtb|Q)0b(<JrdwJddy5|Gc)feC@yGhhEF<FWg(QnfcyvmG*q|c{V>A
zWg3>nw!9N-xZ1O{Y^vFH27#q*2Wodd_4$AD$3D&F?LOY|Z{_L>=YHG$?Um4hM`gz+
z2vr_8>_1w0y1*%dP3_!5>DtE@8_rGX(MmL0eq|1~nxsV<|3{<Q1%D+O7$q96ytRD)
z;SKl7+3sCDxwd!g^WyAY$JH}G*uDQ>SNew^j%S1YSN1d1ee?gPYOR|-fBwgiIm-|G
zs-If^_4a302LJwe+b<03q!L%9uT6LJw(M`8==iqma!&j_#t7T}lO8pdY09Zgm>M?Y
z|J`p|`ev6TOEzk{i+s}BVPN@dvgfvxDHAl>Lkez7t_ex9mh@!2S(L+6)M@Z4oX?f#
zw1@ox`_0*h_Ad1>T<G=t#FHJzW>3pLcK>tY`~?9mpPRx=wb$)j!N2;k3CAmb7v+YU
z8%qzz9q7McvGU>fIeVu*QkZv%$4TeiosxwuuLZx}_%-9{mdi69YRV_GZOD~v4-Jyh
z%sRUD*(}fM1y@;Xv|ZipA{aNx$vpWKBwe~9T6N{R)4o5xbk`K}KDc9)=Un{pxHZH4
zJNJt@UVM1hrYv*#apRoi9TE(;O*g*QjmhK-jo9~V&PAS<WAXc^+*x>br_0K%{tdf#
zr0wf6e{b<>Q(a-{p4uPZ;{WM3+@0NCrrh-Q(Q$ExTbt9qpJisa|Lg5)ZH9CAt&ZyP
zo8SHVJe}d!-ve^dXJ#(k_Wsw7NlrO`{w!qw;Q4y~*Nvqt54vApz0u3S_dfrI-JYE3
zbCf0oKl&wOadx9@^^qCTCm(6Qv(t}XbuQTIr-NqK)s&S-F1wWeJFsWsGIr14)Qxlh
zER85Jel}BPUoKa{HLY7mlURg4?tXG1W8u=n1q=?p)^(q?8Fs$^bCtVs!}aN%mIt?c
zPQJr)SzEO*P-~aw7Ns}hQOWDurk%E2{Womay3l3$nV+&4&U~>b_g6T6@Y*I3LuL^M
zlhxb>muFnsdA;udXK2v>#Vhuut#s|0b$jK3U79`&dCUbzk~W`>Df?NWf9!46;h(?L
z*U#I0R_xm9e|hOEr`E{k%TK%hoZ;BI^cZmm4*mM1*j0bOdQW>1S^a$H+9S`_#=70Q
zZ>@Li&GEO>^(9!W|4(eVb^3L8nRZe_<xe?>;(a&kJ~AD6R8+m^E~CV^yPvXd-YsEh
z%k!ya61Z;@A^3AScW3Bk*Y5_)+6@hxWB=qmmk295^1kN#=XhQH{mcSpk4knvon@*%
zhx={NtSdZ4J&7wFSMVAi%u+YH8Zuc%^6fJ@?xiQ}3#)dR%+N^NdS~hiF=?N)1@&_c
zd#3S6zdpQcfyLVOYql@=v+Hia9_EI>XHS^ES~&H|y3^u21utKj^tsqLf3JU4j&{)_
znTeM)Sr-%*#Jst%F3tV*r3<QaK3hLaQ_Y_u9G)kAIY4Uev-AxWCNqVNi_YoDzy0&J
z(P_dVU)I+(mQMN;zdK%vI9qqQjrCYjSwVENZJXD|lSQXZ#n0_j$t?@oQNz~Yv{)lG
zCN5_CoOL_v6E4N>oltS>=IZBl%91x4=agU9FKwKa@_fVl{p{`SH&=L1{C*&Q?*yMC
zQx5&KRQ|Gi{rydaJ1Z;i&Y90F@$S8DU{c{$)(utva=y>bXV{_E6MJ6o?!&|X{@$-+
zf3WA{p1%3Iw#9wwkM<v#^S(_beL?lB@3sx^mSvl9Go0O5eWTn)hq>>`dzD#cd{^}L
zhF$G`5HlyTE}iwF7^|vV_%wdQ&aw|vnHMiv$SCtn_UFStTUhI?w06(AzIn^e3%l;#
z<YbUwfBj11Fwb85``)o1ZWNvhjf(fw^6Z)y`R<KX?mR}1vy*n8`XHQZbSdcW*?x_)
zwdp&U6vPx(X12_^pu?cDnW6W4l|tVJ=IG7KRzxeB-=4E8DeZ!l)|-&Nh3dH$tEzND
z7cwbHsBd2CV5wU6>WjnEOL2#O?GIx=#5|#H-Rxq+u<6-c>l=bfdNw#n9XH?4_Tbz1
zhc_9fox8Q`gu>Scdh05kRz^mIdrPUxTF=*Yy?RUzG|hJ7v+*tapU3~6|5x<!q%lL{
zW}7Ub<x9TnMTb@H%MG$;Dp+{)-;ZL3-S=yZ@7S+fr_b<Z_q$iir!(C9|F(ReH-p~1
zwR#cyUpLAtHMAR6F50ZXVe7tooBgCSudjY>)tK*g`Q)C@t4$f|zaGk6e}&_sUwHG9
zgz4KNBG>Rp^=~`HEaQ82^Nh{wKjko_EQ+{4nNi`wl+Xi$5o?n!@GkqP@prxM@`&5J
zcb?tG;m7EaZ)w&q^6}yA4?q1GpKMNNiar{*?C!b)dW~O?uH~P5-Pp#v_}Y?mjt`uw
z3^mfzqV6>beNN2Q)f4Ft{HmJIzT?L7G+tZNfGN(Kr?dx8yJz$yf-mxchA;0Prm|OE
zXZfa15J~?xH9O{9!dll~YoBdPzkY49<Mz!e;Xf2SgDeHr&-sajzg&5Kouk#8+2Qd_
z1-DPH+0*rY-^1U{mUj}uripzGdXRKdXPxxs&_BJl4G+KSpRhcxIb(0~!S~a1|39o|
zSjTy;E7S6AmduiMn>p)l7AeJa&5V5X=(zZEL*|G$T}exed!9>=FJG(fKPPeH-;1iv
zlCP(qw}?F&AJd(1;Z<tZ^ro7e^*h&^?LTqn;l-ThRm(0Zt8Y6irFCQDMad$T33JoW
z6}qq~PMEjY%JBRvxos<UNj6t|7bq`$ziF=F!noaEqAqSOytDM!p<u86@7JpQehExi
z9M`3}YML4|gJo>Uyf~#9ufjb}Pk%G}$evZ{+5u~<ie4^sm{#d~I8ZqK>g~?Gugf02
zjC}6<Iy__3VX=7TYkhN+kLye<N_!i!<*(<Rnflv!j1H`pjIqqxwB*$^z4<z~Z_Vkx
zmij|6t6Eda>TO5G20M-`@)qY;?A<YqYs=ZKTc)3y>An1e;g(+?e^vZ#4ENwZ+xXo6
zMWENU$U_q%IS+rm`{V6(h9LW0W*LXo)ep|Bi`i4b*KqCm9j@j7748=P{T38-F)oHN
z;c$MfZl%L>`&&kS6OwN2c{0ap`Y%R?%KbZRlI_zAccz-3%Uv&#QIze;vvr1Mk(bWV
z+oCZiHoyB3D);5iqg7|*r23hbUz;~cX5Mw7?9V12b5AMUvUZC~TQxcPhfdMC^7m_=
zcPgY+B?Z-bUVER^z4<wVM(@LqYVY$Ic08Ra7x?gr!z`0&dg*Hajt4CaIM7g3lfcYy
z)+o}XXS!bRHE$k<Pl64v-?`Y{vNS0>=INzsvLrzLYk$y=m)%yAo`yO!6?5O!NvnMo
z@$BSFiM&@+XK^N|?@Ki`6zWKv_eT15N79Z}yOss|OI%DzvRmzayC~$j%x8|bTH4Jl
zPjr?}xy8o9;2PfLY+=3kZUNV}{Z)#hHFwXSv^@DKE>}g?z|}M2%BnXX3%=woF8;)D
z=<4UK#XM$r{yr)d`<;7O?AD`KJ<N7z(~gQIMCk8a#@iE<zm4I}P1VDBJ0nk?4Dj`=
zJaaAk6zirgk=K(;nr6K8;=RgfI(J*iE76lvn>Ne1&DzS8&V6Clp-<~()XtcEyS`uQ
znb*WU>V21Z_RjsK;=E0p(X2+>$x(ZS@r09>*#|Utcuf7TbwTOP#ncGxTN{m?YBbo@
zr+qTmdjAAx)yzdEr#y>NW=LCQi)peH*PN(z*Djp4Ms(SnfD}u4wURZDxA>oUG_&A>
zfWxQWpH55fg!;PMJT-dAuBT+U_Uj&nmqrKft9{b5V8|?dwyWCUedKAa4#A9h(nt5n
zoXDPetE^14!g1!r5Glr4S1;LniHC{b*~ly~Z-3LQ_hk)n@4ns9P~Q=4_A&W-`&Fg`
zAO7Y3es$bvYT3zD%XPeAB1cXheG*e#%Ia5|x@T$T+B>`x;@(H(Oxh9>Kg}dy=i#X)
z?$5hxbPfM4S-p6Xs<)u`%4I%<Y5UTr?zqxFCvuMX>>$PDSV7(;K?%Km)z0}l9#*`Q
zTN%4cSNZ*`pDo8+N-e{3t{tB%BPRVVdd2<oRTk%L^XEm(?MvC|{cZKlKZ{qJL~qdZ
z+oiVD{pFpPpLo|wt^3^kc~fMZcH&Nb!&3)ymomRD3_llNJkR{%(ulbN%LV#M{nqd0
zZ?*C+6}!Jia&^n42iLiLbb_8-PWZ59i?PR5!RRNSl6a@AI}~Qeeu6QE;YG#gZDA8X
zCm$#|>aDTBzJf3Ce(m(*^LjO+*0kUM;}g~>?fG5SJ*U0hHe1wTH+RnZqWhi<UZ+*o
z9uyCHQp8;UcV<iZk2OI{g}!|&+AOB*QhUu)zF&*AaiWF$q6@jkYKvAoomq1CO2wR~
zsn0K1>7EdkIkYQioA#3wbq<3RpTiTsnr+`R!Cn74!->ikw@Hf|Yrb+h@NplU^?HpB
zYwOmvX%14|wJUNN7e-~5DQy>d<>Q}gp!>z8tL2hjIn&0zOGVpUb%WpNWW@$qPr7RF
zG0&p)*rI|(uKoR+?y|*9)Sh|w)(xxQX<_?0d>S@It_)QSx3YY`>X?fEhrPd^T(iu|
zT9KCfA$nVjp{0P%BenM@qh6RKJ!n!`yRUZ*@9n9Voy8r`^<{mEIydzfU&HogZx&89
zo)@I@yzB1yrBl*{4sShGS6-(1FQV2<WeInjW?^xilb(a;ijz&VPinuAPd^*mJ4r)b
zBO~lw&Z(jt$=<y$9&TLUH(!FWVeP)kU5(1R@xr=Gd|5NLdbZbA-D$i$aYoQu*DBlX
z8jtSt9oL<EeeLU1t=?5{Wu9`jq{=#bKPj9b|0?9E_G`gz<)W7X*4rB|YiO*S+j`1t
z_Sp?zMOokN-NUTDcA19I=MB^Qq;@=yoo4=YQK<EE{#VgbYu>MZ?0I<7Z{4)}XN=aW
zwXHsLvpBF|?aEg!D!rPwzlEx=zhTK&YIo|B%!(>|hLVakQkCa?=DwVh*6%K(v+H@A
zyQT2b$-msWdJUcz>Yq0E>Rz^Ex9ifCs)rAqTbDUK%6;#KQ@@KEssl}n18vuLZ~5u>
z+hZ=<25#=9f}!GPoYEur98B69v3}Xi&4HFYQ`|H;F0=XVe81#iP?rRIUU%@Xqk3j#
z8EY(cFTFhF^4LPbM5|vrG-3Ukw#dwr(I3k?yIkfz{PJXW(N*15KUHpKX{s&TBy(Qw
z%?Ep_-Iva`zn%Y3!}I=Gr(Hoa&)+fGa?5MW^4N{6*~_c1XgJkctzyyjW{<I*WHR0C
zwEwAK*{)}TA5OiTv~UM^{#?E=|Ha?9`TF~X@0N2N-h3uF(0t*QIV`@{LpPgf9Zo-W
z@tWz|zOLRI+x0|vCdfyxJT7zV(#lx3g*UbQh03y2^U{A^+rQQHk$uMbcatpAzeOCa
zHvXMkH&0RjO2j24-3MxMJLcV-@ov9A|MsMlJk2uS3kuI>vM;^3@>asK?{_{b{#JO`
z@-fTzZ`mW&Zr$*6Ggk$&WY4p)UbxXp$1qam?6#sweYqhEwI|G)I*)BZ-3f)Y>8#-{
zr6!GXaW01wo0xCT3~{?~`EvOZ?daMNo`$qc-kZ-&8k7>%KjmqqdpE3JHu)EeU$DEV
z`f2~&?Z2y5?9>l2-ncW*-||IL=8MD%lW8wz&txn$&alp3lheGfr(@kl{qMUc_!pd)
z^o!c-tk?9wW!D@pb_eOVeC!cY9x`7}7<f+bJiBX4|D3%O`8yV8@+^E~F)b~77Q62M
zJ^%H}`!ma#6-xVg&RF!`fBN}(<wjT6*RH2F-Mhe5yfUiPQR>8#6rCk!Wh8@E7i?HL
z)$XyI!y+k>>g)}6f(M?>)@+OXQy1<3JT<A+Q0%Dy*WavDKW(#ah7_LDncE*6uKO}B
z#-%xQO-=T-D+{*?rtz4GDs682Rs3kp*;3hu$r;eiWZBa+!!2h=F$<a)OZnGwGFYB}
z5H5Z2PT`Y|WmjZXSj{hoT$!on%l&oj%{q&R|300cY<xhy{MN>MW|3zntx2m$+GoX|
zx7mvC(~BaX2<5l#N%|UhZbV<>30=-`W5d?FObop37Rn6ly(iutl~HKeJpbYvRkiG}
zjrkht)>CeKxwEpYKjYC|amdEJNWzUFL|{+bqLPQF#h7(H-0UqUvnjC7)xE{0<Q$gZ
zZ!Vc%dT`a6P3yh<wsb3<;5?Js{#>dnfX};Jb;Z=#S(9E}IT<&5Wu(p-p@4JO&L-)Y
z{p6|ab2c>8lJWLv)rvoH?^ex1&!h5c$L&AZP3^z>`1HyO^?x&M4%7r(-nLNp$Go3f
zx5U41`S4-M?_)<)XJ6r%<5J{tR_n&X)~k-2CogB{*!%NHK+^{2%%TV{|M?f9PRA#5
z+9gFAKhj}Ycj0D)Pq253e4pq}cZQwsj~tH6Rk^XsXNK79J0TClx2`ySGHi3|^;PF*
zu8rQ1S)4heZ}!zWty`XU{3*!NjJ&a-<nSk6hWgbXZ1qDnU+8(yRri4Lck`N6+=be%
z^QQz`R(#)bCeSUf@@qxS>>Ga$NL<>?P`mL(*Y$);y63A;opVwy{t%Y?!|LgzzU}X?
zzJJ~v@Z9(Nvu6plOCvT<i&6bsxyoEi!NUC3WZ#W~r>povYzxauZg#Fb)hw+SxhP*$
zEOWX0IfVy7_QBWR%~oH0_2`FQnIEEJRSTXssoNi7?f6pIzWdP0XPIYW&Wm_Y&sA^q
zUNP+h|NEtuJBqgiXtWx8y={LIv^i<Hc021bSEEt~pPl6!in+M|7=#6+Xl|POsV(0t
zYE|#FV}IUdGi<Tk&fKqRp;*YRIWJYd=UC&<mfzpciKjoC;~>P5l9XD{sq-W2^)Vam
z?5_9RNB!1$ai8@5cv)9GZu_!7i-fpXGcH!GGTOws?BDJ9uG&p^mX#?#m6Q_Pobt~~
z+w;vV3!gcM7FjJ5(AtvOHnmk@^0zQ~?esI#dcSmDT4z5s*ocvL<JBL#Cw8yAdx}|4
zbjszk+O-eUCNzIl5$vxC{dK>cbrshl#b<9HNAHX@UeD-pZvWKXlP1rTTU~6qCU2wc
zxwwKA(=VM^F0tcr+?Tle4WBud?7Q_dW_s3ni^~R{%F5=piPc)qR2*W~CjJbFeEjZk
zK9_g<O1?~~b-zk(pH_O@zSu?oP*B7Qdyn1U(n2?+u`<jPm|_+h@3VELrmCkW+kdTw
z#N{E8a*O}QY`o7}w9WXN8i()O@);ZFx-AKD(q!8HZQGS)49rEJ_}?==_;>rxnn&jG
zj1e~Vrgfi!86xbH^`xduFFL3Dy!lt#Cc~AA%kSL`-0hm#mG)$z(1Vy@x&Bp8CQlDB
zz9)P=w(|XCsXL-SA}-91oMP)bIV*J0aZibZZAO|MUB<iTG8E1#n^4QqZq2YScC$##
z6BQMu%WjcX2V_^L2%L4DbZWz#Lm%(0i0MmIR<D><DW2><=il@vcP85KS(;p0w69*^
z<-3}b>`zx)>E3WC*eC2@By>iz{_FZLk<1n=yW;JSn(*D>oEP@AL+|3@c3X2#w=N~-
z*oLLnFR!I%Uy)!}>`&O+^!i3^Xl=&rMAOYlS*HZ~AADGS{feEL2>aO_li+|>kG!x&
zEx+B1XLnw4+q!>)Y~!SVP5kTcev@R6dhu-bj@_)+xnt{38tW`y{x!coRkK-)<;Xkd
zeKnj@lBG{eU+d%!JHO<Ts_wGbB7>LJN5W6-G-+6?cd6lvO;4z`%`5TL`y#JjKUw8_
zW7W~!><`}W6Fk1LKIN2mcW;D#V&j_SQrSg?aXCS|9iJ|VoRnX7@8riBsyyjj(~|tP
z-g~cGvT);DsmsTtRAW{%zP6EBx_wvZvwZ#Ho|<QcWeY2UFPn-x3vOEO`e>7D)ZfWh
zm0R7qLl+;Z3_f$*@4WDfof9KGy^QuIE}zxUyw!W^g|#<V?<rATY0@j2xMF6kw}ZE|
z>4C#O%-QZf>)x$AP_LQ3M0-hMg>CoRJL}#u%u~`h?k84n@$4NV!yNtP8IzKW6aIXA
z{j9tG$l+6+Zu>s+-#@8voPWKm>dF-lrfY8ex$=3y`32|ROyQ48v+*nsJ>Dnj<56$J
zWU(ze|8A~MQo*a*K+Cpi^WXLHyMD<snq8B>#niiaQ^owBY&KWRmTKM*5@cfVy?n~A
zXh9$6nv!6*$LdN7sTEA8S&v`h^Ef-n=g`~z(=$1Ewr;q7MsLcQyxPKv9b5)eu9&Ko
zSZWn3v%g-oH1E0I^22en5+=@0(VA(l(I1#8!Jg@TUx%x1>FL?utY7P?S?&wqNC_xE
zSKShJE2O1WCw8;e@ue-DKY6v(C(dHcyR_Wz)+Afi=U=WQTHh#t^iKT4XF-kB`V%KT
zrvKV&b?jtD!{tA*^$B99j`xY?+_^jHb4`nTT+X9cTn+YjICe;}>#b#X_`Cc5lB1G7
zoU0Tr9$9N*zwX94!~SI6a)}>{|4#p{#F2Y1boybTvr}|0y6Ec$8?w%bJrNblk=noI
zhS=(oD<<k!pG^vIUUzPx+3$!rT`~TkyZ4zcFMqmoTG_5Gdl)91_-@GfA}LRX@x|g5
z5$qN2jgcJ}1Q_19Xa3m2bELlT?%bIXrQ6ykRd@;}SS?sQr!d9S;b(=$*N3;geM2rc
z_h^M|kXbKXJ=v~o*UXSg(@TrpB}5JQ7M9KYy{<+(cT0$zX|7`4u}98_V^|ofTEf=J
zOcI(r_t#&M)n_tp_pN%n*Kwax#*YJ!CqHrc`81-n%G6wDT8xwW-dVoA&s7Rk)4dJK
zb<OT9O{w{&djI{dYHO`iJHEi%1h2}rht{P`eQhV&tDtpjv)2@@f5%L6Pk#L!+2k)d
zdADG}1%tjxe^UcHLQMTPZ~1JMIjJ=)L+A6V10P@Qna1$(L&k=PmnI92GEMp~q@27y
zXZ>c*th^Pnp2wbVWIS=M{<i@`hKz0#^MSOxCl>5c&eNG;bmQ^vtir5Sk!n|1cIdxz
zoOC^1H{`7opKj)ch|Ar#gcOW4XD^xU^j2SVbNktC4;89b2JNp|wR}aP-QB}Bs<W5P
zbx%2d^gDY-{H#3|r_;8r3{>79@`5Mq=Cj*5&sRj{ch2d$mbEm=Jx91`=}TAHgPR3n
zc0XHNZxj<(qTp<ISkeFF;Yk-Ht<t-CSFaXYeyR93*M_`8#f>h@0~23gO?k)~+3|AS
zgC&o%0~%KKvAoU?%4D4EwsyT<+KneBrjkcR@8)_h_M4@;YNhM+6-BGlPL_(WKaA^*
z@>x{J6+g{6O;=^T`cgiTCA!nDDFjM&tG}!X*%Nri#%@moukqF{-FsPv_b-WgZ~mm#
z)*gCgN>+;L)a==j_8DJ48k}^Rlg6N|ZWf}pVV~R5iK^kEhUZRRtTt@sWl+${-2G&S
z){z%Rx<_9vTPR$a61=vfw~t>c|AN+Ett;C7>--m7EOA`b?<vNzUdBoBo}m1hiO<{?
zA5wq3<|x<lRIi#y=e=U{R<*C%GGSZVHQQ@jnrBWnW(`f7J=Y;{H*b`Nr$S~o%kxQ$
z0XB`VWKR{%QBghcN$Rys-QB6d%U3K&w>x3oeyzcX`QX#}HM^!QHI5F`;9um)Y3q4>
zsoK{^Q|08(EY|Hk9q=jJD`DNKd2@8FuP%HZnYLwbUDq?wD}2tJ{U=^T_UCJU(ByUZ
z43y`ab>@=yscjqYR7~m1SlxYR-I4gvdkb!OKi_rM_^|HO|JwJ~O}~4|A+&5s*`)sY
zCw9xsy()E!<8sUoE#5^-KSnt1O$>Z*!GFkJBxcE@b({^EYLia#tzDI*tg3rnokMYb
zI_u7<M{Wkaap=1=V~K6bnja}mc00LT?ADrWdw0^)+3lEj+fK&TEbm|Z0c$4SJo?^p
zvG>{3Qwy(JoP4Y!n>^`D;?8@&K0TTdronVn(NtUFOhzCdccZyC!^*n_s%y$s7JMsM
zuy~>EB({l%57{IrS84BDYs}L<&*XC9tb?wZTkbIn$8FX2TP^n};LWRmnKFT{D_Oag
z&e~wS!t0HyxL1gJFVBi83C^pH{_S|qezD@rv?p<;_E%hXERDE$HfsSxg3nCpQ@X|R
z7Yk47Yr57+c}$S&EA-e`n6ooPJ51_owBXq}JT)6@Usb6%-~O2<z94<ZVU0Tvf{WQ}
zq9a~>RM<4_@w~J}OEOQY>-?HI|5Uuu@8gxpiaz@8mw2b#NZP2vF!$G*bL+2czw*<=
z^mJrHhvwC5sV{hbS+703*u=}>*v^@Mm3>Y$^5r_P7kg}ZWvr|3!}Uofrkww^Yt}c<
zuSY6p+iR;nvNw{GaJO#Q_hvq)5jVT^`^Xh8qDH;$%2m9ndR>0obgyqxeWLQ#_e#J@
z=Pg^+r@fs}CF(3Aw{YWQ@xtTnch;#(hJGuVsAk)6aO>F$2EQbgRZr8NiZ1ihR2O__
zd0npJ<BhFsYXr`B?ph&Sv%sN#V@!mS`Dv!KtV0)7oSQn=UfNQ!zurV|WpGZNynd#;
zlku`sjU1xfA2|Y_@-iH23O>h}Ddz9;Ms;6g<X)cwXSXYxO^h~tFqzM9t+ML=&+QEc
zW|3{u=O@g0G9&Y5!QX(zPEvB-i+LWK+?^D8jZ;?slw8EhOh?vZyB1H_6SXxo=|VWC
z*D-@@Z-UP`dhGl->B+-V&ONhB_l7I7da&-WoGB%_xu7@o><rPhf~}{v&FL~*AmSzF
zm*6J)zT_ag$&J@L-ko!hRV>Wzep>UXcZs{w$DLcmYL;_lZxqgWliS|ICL9^YV}DsF
zbJnkfSB0+v#cwavlAQNp?K%ek#r-?4%YFFrF7Nz-ixbvN=QHbF!Q=nHI(gP|5rh5@
zxxIC%%j0kGviVfH$K9WB`AJIu>C+i}YxE+od^RrHCfv#LZ<YGt`Ay&C=aw28EY%PD
z_a#R@<e9@M%Mf25!`)mNi~sr_W>Vw0vR|iD#Q1Z=%S%P;woHvwJHGqTl-6TB)sb#L
zb9jGl*45W{@|o!zB=&)~Z%&!9uBCp}RIi6qj$|0xCS=yR?2Hs!;y&$C@;03;$Hr2Q
zV!zEcrtDosGh)xpW=t|TGoi>gkinze=J};Eb?fs-a;u|Kj&}+k`POaaF?S)866+Qr
zv7K200qkp3I@Ir!NL)?~nE2~9zxBNhdTI>b?-|xGZ7oXUoN?PDnxEA@`KrgP{LQw0
zmGgADYAd;4JlFJ%C~Jx}v-^MlhJ;4!na!V8Ek1Ota94rJR=LPSyqeoD-(fmsnP}Hu
zrE;w(S!~9|FOybw%qX7i{%u3%i&sKY3<Y+D=ee%_%V{jQlr{Hz%KG)}+GnR95^S52
zs{BPaMlfaDm01h3pQ&=qpTbsBBg5RKpq=<{qxr>ow?j2$9*C}PG@UvB)~>C~!%gew
zh~Eo&F~wBQ=ud8g^r9W2s~<3YF)U1bHer);pk2UKk;yXeQnDo!{9+TUr(IO{?M{)(
z;=L-itT64I!KF)6E^acFcU}!TSWLd8)lqlL=40Zw6_V{!PBhj%;;!8I{mJwilf5t7
z6@8DDhP+f=%aL^K`TiS!PoDhyC)e%g0c8uNY5NWw(cHB9qH)MFcf$?O8SMHL52aQL
z${c4|5SpG8AaS(Wr$=^iggbY4tA*5L<_CLI7F!qn_F!mQ?6WG2H_tF}zV~YP!#r!}
zu)KP1(r3}A@iZt|Y57NnKY7m6>X{@;U+z`5o1yOZgN5OALy=Ta@3&9sUxhbu=e+J0
zQL)zKyC!S3v-G2q%ic9Cr_Bs5tYSNn`gO5`iEZ1GE9U~Fb_&|vWHh+kz16F$*n8pE
zzU^*dowxHHwiL^6zMd=e`2Nmqv8SagdD|Th&wKXk*^#Ga2fL1U%&?iJ_r3E>h}o*m
zXE$+P(!YP-m{Vx#t=1*iLS*l4Ec;c%>b`dQOlwD#wwdZavCED2&6l?}ianyUC(Zu3
z<%i3QjZ)V1`5MPfb-hw8Bp>u7*X~fJ<Jzn^zTc~^eRe+OcKl897sJo11Sjh9#jifL
zbKzux--Y=f_i<J*JV_J%%QWM_)URH1x*FpCAK{s-wSBY5>6d>^4<tyx>9Ei%pH(=!
z)>_0^h(XG|O?2n3e_C1IGc)byTAhe<S3VOy@#J!y<IYbbE|~odeXB54S#DX|OhH9%
zug{0i-k<jT)iRSfnf!10m4~JX?~dlXDOGZ=MmNN?sBEUS@aBk%WfxQ%5+=V+UKPvt
zxaC!X)+%?!MKfAzj?Z}6Qk-M*uQ`;(P`AqQxyuEqyZry_tFLcT-I?pm=#@49<p28k
zuzOE#B>(O?zVULX(q4wbO3r{+eYPi8?OYY)DZ=rnl5y&)lKBRj4?X5Ge!0p2A<gx-
z<2Kf{JZ0jpS$)~b7OQXV<$U*NjjqX?oLf%s6pcPO|9n!=G2Q*vM}Fb0?eET-_ZYhw
zXfYV1zux_U>s!=(i-szZ^|DEsd8=;T>y2aazBK2`^4-=|p40YRdsi*LD?hI5rKjM%
zDW8AH@;5MSb_!gWSt;Q@Stso7HZ#U0{c4X+i)`oaWf6&(ZpprF|7<gp(3=zAo0+Dq
zS{)ylYqmUx)#~M}W}fF7QYOnM_Au61ueRAeg|8&H{zsqbt)556q&Lr5%d2yBFUu6}
zwD+mf0rO%{nms-#{cQeOjlUmrBKi$Q*4bD{))+jsjJ_^jr*VP9x@+FPAA21bcRexn
ze;R-O+4^(2`mVM*GPgMkO`7avk6Nw&eo3~rzHIOEXBGK}`s^e5ZzsRs&G+Zw!xzE*
zrQ3?8Z{Bvz@1;%AUE_@tH*Y(8b4AScYf4JHrwMO6@OMLP#kH~*Kkf@@>6Ecv_{rZm
z-*?F#29wJo8%m@uOnSWQdqv*?ndOQL8{S;IR^HpVV$r9&c7|+iKW<v_GrpU<HdND0
zF-Id!n#1&X5=-yAyWXc4uX@YzE#&{t!{Xs`Pj5KbzTy16Tf9}LYeT;jd+S1D$+~05
z7H_+zRuC4!7}NSKDSy4Rn%6G1@BFiaX9(IP&z~t)I&*{Ut*$*gPHy;IUw<vV|HZEs
zr#O!lyALVf;}cHY+j}a$$3&@~nfs&)XU4YFZDtW&4pZ(fu9%W7B4#BKV-={UloWBT
z;?wo)P1iIOdZL9aZbtFTT$slsm!!D6=l>DQ(+61(+igA{u*aTxOC(R_wKA)le-y;r
z8811{Q|vhEJEJyN$>GDH-7z~Q8f5EjZ(qFKAi_3l`y|P8%l|%H?^ScntZ3o;`d?OQ
zic|S!9Zs9F<VgBVQO@tr7{%}88a$0v+7z4ab^g|s<}FVjuT!YVF<`Q6S2k~Vwv$cn
z5)htO?D+EL#TwS=F8wD*H!t2-!}RDNm)nimugmz2&n%0`J3sfx5dk|T<Mxf~51J(^
zuxvR0PeIu9=&jyu$|tHsQ>V|q-2Cjd>mPpAhxV`6yo^u!q@Cg0>eS03+8vYMqPkWk
z`c+71_=ywTlK1MCNaVe@*#6S?;JK_iPMyW^96FBY>!$2W*LQWy$hM7MzwhsiiS{2F
zGFw<26l^vgzURGoTC4b$soV1YANiSaeD|VRGAVo~JyusqI7{+zHNJYpeZFs1x7NMl
zM9;Z*Wj{t=4t9B>k+pP2l)LAtKRuRL&(2OOFpv;aO8c>TGoNl#ljG9^stp>8_dH|N
zeq<}z7c$}E%5Ps1w40tins{Kr!vowp2B9w)M0CHcFAO!;xbb1lt;(PfYn~f>o;N?)
zx%AX+McZEotS!&qN|3GEJ#+e%^7HTd7TxK+=%{wyr)zuOm21L{ZdqyvUVFqC+CS-?
z{P0m>V_@F37#F*@PZ#TbF|<3jUGmps@&DaCL6LpD4|e9IH7Z>zaZ#BSG_%{I<Guyk
zT(#@28QpoEuLK3>A2U`CI8%P+=Z%|fZ|_X1+^8uKo8vlDw@fjpa@o<x!u?_;EYp~o
zeL6GvX0$53lG(5L@1Ta&I@$hZ&+T(Qnl=5u5@+I^pv3ZJ;e-vAFM^gl_j9zFaIk%^
z%d(BtZu`Yu*L6&0XL8%DRGpZ&AVBa(@r7$XFDE3=>v$*dTzPJz_^g_J=ldT>YF~@r
z_fMKXmdS*hh10X%qpbJ3cPnRel#1A+b91fBSa@~RDjhC4`hShDy)~ov#+)^!P7RvJ
z=TtOr&+317PAjy^CT-I3lO+${nB}XSnIOAjiSO*!$KJ^{Gnh%r9q6?xdOY*Er{xpv
zlh+S;q^I3tKYj80CFwoO!uxM%*_?JyKbxJKJ~zlqaZZ{(SEHEJbDgbwB6mNYW5G0o
z{o^aPXWKR8Jd}4nsj_0?H2z|7o5A>b$>Xk&jQoEA6LzbKCVl#5*sZU;Cb4Dt+S3*1
zSLr@ne87-LqiXhLmCf(kpGTe8$0WgQ<26^)Y18gpRx#Eyvj2mhYgYx`GdlH?Wm|`1
z;*=Ybx7wCPF9^N)BQa!qiqX~d-GXk<n|`&bb=$4Iv}JByjjJh-&;gHZ39n7rk^jO%
z?w0nrB_2phU7z@R&X?(n)?e}pURWQ=D6H_sb$QFb4^AG>clM--yH95KTfMLL)py(U
z>t{bdzV;@w-<Q41VEMCyk)4mHb(Azs@@6`aReVds>M)P=Q@>xI*V|5T&R%>*QtK9<
zo9oq3r%8Vg+uS^FFxAJ4qq^wKF(#9qt|ONVbpO1+Y<lW>X9|n`vA=7)^1tvX&Hm5M
z?-3ipbf<K~BO~=|(vjH<-yY8mZPW9dWPD8~Z~pr&6Wy6sJ8Moh^t{s)c)20|DU-?k
z^S(lR^yaO4(K7Gri)?8go*Pj!z5X1&uzA9VpFhMLT&;PsPp9j>4GK_PmOkh6&(rzp
zt^tm#iUN*(JQgA3+c`mbip%od=LA>9tdO}jt^U-mBg*VNj=3Ae>~3;(FT7hl!LePi
z>gk<+=DP{CJI*O<f0**_YU;+zHsUoFmkw}l5^4(Q+Hg5>&vZ|w`>GM<p0ioM)MzG#
zAC;72Yc0I$tzu;^*K^%_(S)_R8`L^}rG(99SZw^!U9vGILdt*9|6fnFpFEg(DEs4%
zZpEk>O4Cj!c(w2J4P18NTk&dXw;NNpML8GUEuQtnx>hZIj{OtsPZ6JFn_anfiHo!`
zpEgLJ@$*%m5qIjkot^hjut}{Cvb%8d^a^JMwfsdf63J?x<{TB=$$RQ!u;Wad+z(M3
z#20?`tht|P<g_weD4#j^@#`}s3ErF6%N6=ctSOqzb&~4|Uz?c=_rdGw0UG@>IVZTv
znomhy|MF;y<MXY;-0Ceqr<=7+m+Y<mlyiA~C&Ru#gY%7h{$$%3>FNp?{58>gav*w=
z@e~1<jQueyOLxq7d-^`%UuFM~hbOdex5ON}A-%0_F6Xi+yV{Dw^WQ9*`Tt>8g3sYU
zH7fjn|D>L3UFT*N^6)x?r*Zr`C*{b@H&fZ%<~z?{pB5kW{fzj|3yZ3&o*at(u>PUN
z>`T&V@i#eU+U}e%`Q(92`@~(pcVsO*DPESl%er>&r!7X(b9H8UmvXID=Q*$E$#pMu
zQt9K3IguxX^^%u<@9Dqv>i7?d`s^3y_x~$fy);mB{kgOAY7Ik++|54*Y2?L7Zc8mW
z!ly3rHC15h^s>j(9nOfVNbxAnJ|^(}S@z-e4-d{zmE82GEY1G&L#{(Ry8?|v%?mB$
zWv(x~xo(n}v?8zf^;H3rFJ3a%?@xK~&Msu1)Si2cS)Wf-mu>Yt*m$oyN5M(s)!v(%
zzvn+UlHx2sqq4E+Uc0CH?mA_q(-#c2|D3HbKD&GW2iwo-zqiVSZ&Q0>6Rvr|n*Cj$
zj{S)Py`7vzJEr(}E-Grhpi`ZyqVO+Zq3ZihFQr`eOq~!jQ*~Mh-=oh}MXwLfs3{eA
zna{T1=k@<(Pt^H-yzc6;_KllYWBPC^^B(!rPb@b7T{b}=W4B?Dcl-R8@l1EZ)%O?Q
zd9Lfd`K#KWf_|Ttn>lZo_gv$&ezmoDSDXER{x+f1`kQrs>yOQTve(x>_y6|zHUCt-
z7jj##czOBhp7$FUcCTKya9O_H0?yzTNu{8jn=@=0_Wb9}XR9>=ohV;iQk0sQ3u1we
zls5;R;SORL8Cx0}!$b|u6iB^#fY=k~74!p&Qd2UMOY(~p3=I_Q><C>$VUD<l!c+mv
zy#qvDLy<bk+Mn4_pvC@nF+bBo#TJ*w79}q&u77s2|64pd1XPt|%6HzmDI(pd*y}zm
zy=>3!$G4sde>lK+Vkw74C8Ly3L)#37w@M97%mIQj3YFj8=P~TuXnrF#|74}Zn}h5Q
zh9Z)w`A^=cDJhueFz&Qq_!O`0u<tg5SMBVR$B)WPnD4`Qblu6GLtl9UYU&wXwp==O
z_xRP>2M=i|D}-N_TpF*(Si5&ELvQT-@9%6EOrEXn@b#_if}}Ejjn+$1FBy7IU-uEe
z%@z<dyLvO@lhaZY=Fej;`f9i!!Tj}$<J&YC6pJ;q96YbSXZjW_<orMSO}ch-;4FTJ
z*U!}*mh<;FT-tWl>-XYhhr>zpPX0Y<xuBqo^MvHlsqT>-96!r*Km8Ayenv5D+m4g2
zVpH<Y9KPQF(m;Qy>&7#}nd<k$3M!I8Ndhg&fT97EWQ+~XK(ZjFIq3<;y(qDgOW!3m
zIX@*eAh9U7SOIjsfpdONeo?W4p@P11eokp_Ua^9axdld=;nH`@%qdANQqXtHNi0c)
z7^0x>k(!yFQKDdIfRtv;v85SO?y7JQU~uH&t#Qx$e|kaB`GTIkmeXcjR8@~Hxb^n)
zgI7Oav%mA4Hso)oc)7LT^4hG&+2?-mpSy=&&2GIeC}z>(9Tb$H$Tl)H0m*`xhA=Tu
z+&N{I6bGahIp^mV<maX4l_*$%V==!dxF9h(RYBh+wJb9^mDqxUvS_z}M!Rofakc_D
zb&`KI#m&ts;Z^eAti97xL+|eLz8}Y6Vj$g?Tx23MOHpr;EZ^iwIhHEz@iGVhpZ_-b
z{u=ctMXQwAQ#67d3y<V_oZ)F?T-F#@P<VY;=+v3dW$bHCTh5HU%3xaa=JSPE^XZe*
ze}6lhbFJJ!?C`XngN@TJEwpYf+tGY@ea+Ez_3ysTy7{*LpM7@B$J24M@Aa|Y^EkYY
z&-PoWUEzwoX|6ei=Xs{*6==uHly58FyFX=jaLwJj>+h+h|F&OWth|1SXS>|7R}(LJ
zy53y6e&5;nTW<<vmut^U_#m3_{yj@(y?VyaSF-*G7u%SxXPozmZS4}h(<O<bMSM-y
zo^(~do!?$n@i+NbX?BIjF$vji52Ks+p00LLUoWxZ=kJEzmzH)ne!e(${_od6oRZD%
zU2J0UWw*Y)OPV!j>UD;Q3G&KorcDTVmn5}#<Ha5S)|ot6y?xW;>&=%%F237q-K6?g
zdD)(lSeg5-A7}8iea|f^xFevuw=VY7`t0pLW0RMKyA=otzmN6OJazqrmrv&TSt8HB
zzGp4kx5s>M+`2#6cC`#5{NHRU=I#D_Dt1q1{;k>D*3Ufq%dhU1(82U&?-;bE?rygK
zerf4NRmH!bmP<a^d@;G`^ohgO&nCoI^1hw1V3B5dcF-9ar^ftcJ@2;cjr$}S*f1q%
zr;hR_0imXtphv|SQw?H-%YSSX2=;g!o^d7kQ?}2)6{gH_ebp1}ze)ygC}uZ*bV091
zv-j64rL!IFHdma}tkiAaKV(zCtT`=bzfQ<H&9&Wf6E9xdaX3co^RIZd%Uad8x0ZiN
zopZ8c{<lrMntj)<EU}1M{7KtQY)gx(-M(X=jw-HWoFKHuFj&LNq&T_9)$YR6(pP$3
z+pjF&>h?qRNXrDFyGxIj8#!#}KlnmbeStv$Cr7ed{ZT^;Ly!I~9BvgJ=|9>#4=(xf
z^i}tyi(1>0tM2e}itpl%zgEh|`S+pP`8PN3thah_`0RJhW<R-SCFS4u+N9Q>PCg>B
zx}o>r*TcCb|Giy8Yge;K%lV#QSZtqEBl}F)!jM6Sndi)p_KkaN|7_T3wSKRP_jFZl
z{)96h7Ok6PY|y77d}K>Fa~gw+iq*b*QmsobPA<9T%k%V#lTWSB7gyHg*zQSsQ$^TV
z&la-HljG3+#c<%ryy-6jX1`%Nukx*Vs#MZy+uZ?obnk6iuP*Y~`c&SMhyz#S_C93c
zQ$PDX-uGyk2d8mX^~A!$@(a!TiheAftS$WGrhmbgFixjJk5(4JKD&e-jy^>uk8{sw
ze~~@WX?(0>N@PK^)sH>qVQD_ylPeyTq@F+W()ZeDj*pFdp6W1IB<l*#e;H}+^2hhh
z#j=`x2i@=dnprB^;P;EyK;YCgb#3dslofv4PDLg=u`?LXxWHskJG<xUW4qko2G7Fv
zUJfs6j8@fkIg1^LlE_{ozbEw1vb@PN3+#_6vDyahDxC1V@^Q=21&PNrOJ|zQ|M^(4
zR$_B#rzC&u&AkgIah26qg;zUt_IHNQ^srXrUAjW>j86npg1q9a1$!NDpO*JOxz}cn
zk)_q2CsPdl;xp9?5-z&wE<0nxJ@b4>N1zW^wMK4Nhwa{{F)RtOvTIo{92If-X(L*#
z5S_N*$a3cw4hn)*ukOe^s}d>ld6R1W%XXUB(MzmnPdd1+(7mbhJZ}EXM+u9|x5|qg
zd9_-zG<l=^;^0^%yZRNIo!^A5ydV?v$LomCym==UbDr5`vG}>dJLXQGR*9X{=9J7i
zaOvK$Zf)C_Vo}z0Y|a)B#m_1}V4Pso{LM<X*|bBc;|X8etW<4{3jI8PP0oEjGdUF*
zolp9C8JI=(fBMljP0rwN--Vr<^?ph@v?w}uUwPN{MyqK~-Emv)Co^um_B<Psp}+0Y
z!;8zE9s3##^_&Y&b#fbsU1RpRCe0EzJyZL;tL1@7DSO4f_wLJ2^jh~Y;Pbgz*A?~)
z8HlWiOXjm`ImULr<6pzP@`NJ?jQqV=bKW$o9$c^X<);$ggvC9_;=HX&cDCL>eW~%l
z)WCf^72IdOp4@7txw)VvG*mlaUDQsmFSjKt7aW*)B=*ITQ@&w>_9ETy);?Z%EWpOf
z#)pfc(?7}Rng#!XsP{2Pi?>`m!pGqB>>8iotVwrU|DEgRY_+}2{d3l%<C`=Ow9Nah
z|8mtPzf;>@R&gHmkqA(%oF4hu@W7Ogi0$VimUbVyE;{!le?ITBRf@Gy?`P<L_Fj<R
zdMLv}DNNCD`vaXdo36W+TC@I^b9EA3WPgECBc|8ohS08()ZV4cbJxi0-fswMbz)wq
zF{euR<V2>0pPo)DOxZN=pl92XH(Mu)Pc>AKv5!j3Jr%fGbF$8b6T2RN)LtWY*)aP2
z=I%s;vpn8L*^iDh{9;T#lVHobV(O2c2_3pi-kxFlvRKY1gOlT8`5)!BE9H|{7PlV@
zH%fT;#z|j7>(DO~DYtnG=KKiy>o8?zozp*KPKRkbxPCnBUUNk1%ll<-{z_kdHT&DL
zzjMx7AFi5z>9q@Qz3O+<t?%BZdMwv*7s~DbBe3kPxAepQ3(9S0o^nss@I3pVGIXEf
z>MK(o`W<sx(cGtB9#<e9nR)o~x0!n`9L-3Wan@jC`aS1g=4x8a?p_7jliV_+uBL|D
z`kv%jedLA9={37ria2LlEjz+elfs)UHK|f-T3^}rZFdvo(|o_yY~gNB)6wq>$iMu4
z3b(;VcaG-csn>(<FWtvF!Rf)rBMb_Hw<Q<Hu47m*>tpxA$p_gVr!!1iJ&8R=cXdI;
z%RT2y64i|7e#$?Q!_BpSizol4fA^L-NYA+>H_`3vlSKJFQ*!2Qo7m|8cXyIdXn~V_
z@FZi$BBw2@EZ6Gv+7-B;bZu_BerX=R!?}jP0V@xDtA1mnIbVx`V`0l`!^Ig^7RSR|
zg464)zpPR-ayWUnki92-4#WDHS%RPDe>(i`a@hNg{R=1XemS7|I`o^)ow;w#7<}%p
z?BmN)fB5fNW$m#?ECNwtE?=EBm+ecgcoFqQR>WY!Li3{^JAHQR{u0~Amas~z^}yqa
zohQ1PD|cLo>35$o#e2TYj88LdrM#PD1a}>iS}E8d>Q$WYv^@Rjv}@Yg3@j51=PH~Q
zI`hR}bOlcU??W54upP^%R7KS<nIN&NH_CF7m;1@dM=xAG<GFl=)E<@N*H`2%&o{g?
zLr1Dj?`TF2JHxtDZ5JmhNbho~zO((q){SBgT@yd3*5q<%N}YbQ<3?BSM$Jx6b=SBi
z5l&OJ*Pd?eUn|e3tU1nd@zIRhM;A`;HBWqh=JnTJjc>aH`d)5&^3r<xg$pyjdQ9v{
z(z8GMsi$zy)~?w`2TH7?Hr^;@2)e&)U-Ajg#_}Z$42~&%)59P1>fO32(-12o?G&_2
z*>FNk$|}jptg{{O9*Mh<p;5vRzph922Alg2?Tq=Z_S+ifb2j{3v&_S>l7H*1s$@^?
zgafmJgAZKt$nINcFRFk4wOR;Ikic5Qw$|iFyb4{i$IRW_tZig8u5cP^cr01xeT~T=
zRPC?Tk}bCx8cuB0WIJ+u$!-5T37a>3R%Hk_KgPUt7Kg-3xl>DxomwAgg$3=rCA9dd
z)^iy}k>H9WvT-sW4YjT^2RqCvTJn3#8Bd?dIa-=k#<C2Ny{o7Dg#J1=Z_ede8j^}d
zjE*KOLPdrg)ncO4GTeK3J3pK*n_CvmP*$21zPzV|BR%tZLm}UajI+iQmds#zIh)gY
zVey^(FV-2mW@Q|1zyAHtglC%<W!~qQWT>nl@#C=nq1bO(TS7CVt=*Qc+fdWLXKl`l
z3#<%kTW+=~gnh8}nlY*D^|_1t%3`y&Z&6x#_Y~KTo*2$-uI4_8;Om=~d7NW3dtFh@
zdO)w=cQZr6s#{lh87^~Akco&nv{JLeZd0G7*pg#APVMG8qP6**wXbr=n<=@oZ%kq5
zid?q3){Z?m^;yb+$f`g$y_PH6GpqR(@~%Dnq{>kKPfV>>%<Szp$>Nunc<oGMWbU#u
zOtk!PrTk<$Lr<wo&6M8;n%*J|A(>_Y%cjr2eA72E)1=PuZd&dRr<r$;pYpr)gQbTr
zBlGf&Zf);lvaJO&fef7&#G{Ox#8TfyPLHjM{;K;oL4VSPSt6DFbDO2OI5)05!YQct
zyYE88t7zApuFhnRWvduw><Y~AjAdu2oqg-A$IYxY3Wv(F=hrl=IZe@x%+Ir*emvxL
z0LKo;6M`S}&vA$Kt&pla7`kQCNgs_JTV@EYUFO-a@s4L#@~73a<BjAbtW8!H*iVo%
zKFGhP?X6j<u0FSZh|Uq|g-*M9b^R2%OK0Y;)?)b3Q}SumFE4Seb@>t9Z?n^`+g|t_
z9#J>XH7@bB7vBXIy8}0WnP;7o?K(eMROn!6g68HXPmjq=uUuX*J@6I^nY3TU!Si3N
zp(>kDqf|PZALlCTQ@d(jUh8`1utYX_;cdyyq8+Kf;w0X+TwvPpmaS7)q9BxQp@Wh3
z<vBe!yhJ3F=Qi_57%o`vV7)fHr6%<rv!ukT{F?1CMoU~i<Rl&WBf+rdY`XoiFGtf$
zCR$d<OZy)xT<fnXoEmJhZW*inlBFTXWs`GGz1epn?M8XYktJpq&h?&)?CDv;!V$b%
z^`F+)*fy5<^sfg3Zh6)oXW4&u)g;}ox)YUOPvq#l!H{}s%Ic8VIigGXCMcbBYBV)h
zefvn;&(bX}E-ukjwKwJCCGQ&s-kYXRe0cnfTvX7C1<N+Pn*8<D1?`<a*HX_N>{umw
zAYk#_BTts!iGA6-s{bR`2}gs(>ArQrhv%;kR+`z|yZq$W4#%9dizU(@<cz<YT76lz
z%Hz|-T3Le^3@5&%msq#&`JGYyD*lIlX`w;T;^}2KntD~v=KOyoJVE1)_MwAi`%*%K
zUIf4CT<E{gY#sB2HQSxpKirw5bMAz7vHar$<!b9LGymUmfX^<o-2TV8ywjU}d5&4y
zT`=6`?*CHH<&!4IjyFsaT0Nz2PQKF?b(}d-?}E(Uj5*FaIls-A4B|@4Rreo{+Py~L
zJXfOhq>Ljou3p|AbY|Pvy$|`bl&>8PnZBr~RrJ6U*Vu37%dVQg_5Hnbmj5-wP3C5i
z?i*FN-A+pv`{rV@#3G2Z|LU4Y57~CkI9qe&%C}43ndkXB@gIwur@Gs-ChO{q3r5}o
zw?wQNR%T0X<ZRAc)2zyK<fF|oE7zsRxF-i>MTssqx;%gB0v40|zt>)0KUeeT{B>7f
zn-o|7Y4C{r{*k?`)Xljymf0XQH@(|sn^U}cIJ3bzrTFt}GPEN9Tvsof@k-Q1IQf_C
z$HO@b*?iu3s>+(b-VyuxQlNRQ_n+LX?JMu@+U(Ad5F2&>gKKDMn?c;hHD!}4v>q<{
z+@*M#{o>XMiYr(zM?HO)!R~x=KO=+IW0_SOGfUU3JJ6D?8<N``tR59(_R&#Et~d0w
zT#skgv<1_9d_QI8xAYnwQ{%8Kz8Vo?>UTK&w8V~$PAaTzD~+aPJ&6!tzvFR`yYp>*
z(p9f(vlaP!o2DmhdY3p=@mgB0*o3xYU27bf<XivMEq<?C|JU3_?cQ;H-<<&u)r0R}
z43m7Fw43#ToNee<i<_;7p3k4P?rC?e>+Q*_X1>f8c%-1Zeq&k^-@RlppTN6rmD-^*
zZ<a4jXIR*?BYCQ4%>5(3qvN<99`Be~{5)T|?ZYccuCESS8~yLe%+u*AUenh2$&=w)
z_!@(N_bgRCyPQrxzvR}Ys<7IB<!6B@$Ms5u9#0EB<t*nDYjVKr|C)2YuQ>TSHk|6&
z9&<)ZGVu??58G+HRTUgZ+<F4cyv>=7@85_s3_T=Oda6fLL|!&(w-3)uhEpCrWi#6B
zPAoROyms2sdpGhT*Yi50+_7CRep_JozZdfVt}n1vQ(mm^rZIn^a>OO3;LyUuO{S;U
zbXg?x+zE9}czjOo;Q2>ipMOzWeInRr9Xo^ivKuQuXgw4#>EZGAD)u;fDR0JsciT3;
z&xmB3#FM$mJo}JT;%zhk`-~HIO>0<K|5ayOWq;4+U+Z&b$?(`cIydEqwzV*Ccr;&a
zW<c87*qt-Fesu9|b~<r=8I#Adt%d))Ss5QztIoW1Sd!^=+8W=R$6HzN{#m!a_y`N5
zXx85?=iRlA79CO!n!xaF>E(iXEMFDw33FK)x@xjp%<%7AYNF+RT+96ki)gF!w%vlO
z^xQS27J6hYEt|b9+my+uu;A#u7j_r-S!F+R3BOz}ad4j2!PAjP4m{tKy}8IqN`C#S
zzBL{EX<~0bGBcd~wPokRmnk9XE(ep1<rpo_q{(PZwZGf?R%(f8z!62SZ5wVMUB`Z*
z=5OuXQqydPA9uIy|Hb5RW82@d<%i2cSr3?+GWLhAS^q(~duR2}Q(^b6{a$Ob^XuHq
zlZ&d-)@bajU3yHlt@nk9(dXS;R^@U|j@>4EIrjC7u2?zeJ(6DE9A)^A&13&5`O(e%
zsO#nJC;NAuV81F}_~fO4D-+vAqeWY`{Y*)gZ$5WjR56wR;@)p|h0W6|jw!5L+LBty
zy1nvW*alYlk25YXdhGVSbMG}j*G3P;OKj2c8yB6i{Q6R<PrK~zqu=`{y8D&4>#%oR
z>wWXraKZaWX}k(|?<Z{eYj{C?^RD&zYahM5wd|>6LrQyF)PZ-`-mouaQD^&VqxEyO
z%4gq0R?Ai~1<J)w);oPZ;@r!4TjdXZx&HRMzN+O!GZ?xk*=_r_?i0&_s;<c|T=)Oz
zmcMz5+2Gu+Q=dP#`p*hlJLxPlL%iXYqY3@zpC-0n)m$s#_`4ysW7@Zlsnz?Oda^X0
zH*SqCGr6dJyZYOT8M=Wx&KMn!5K^(ddY7-^<#v@>hn}6WS}7&5HA8obUS)Ot%8l|T
ztL&y<OTQsusUWT>R;_gVRQ`p6(CJoOlcZglvj6yN#HhIL3OIjM!@_j?!6M@s7c=`}
z<+tT#+^kt*an&^GT?eDX8*8S`KlSV64V_#Qw-)s%MRN&g#YRmLkuVJuXb)Ro@w@e`
z!L@^*J_hwqdSjxg<4`1e+U!>*w=$m>o5F1UCJV0XyuFHX@dm4J=3UM^&9UfhC)ZMe
zWR5L%CLil=ztTNsVaW93#rOX*4p%Fptr^yBs*7X%;A>X!^Qnx(){LCDFLxDAn|AA3
zoI)?}Vzn-{1G~1wGH+OY`AX@co}x9$4!JJd&#jhPta@D_yVN>}BWvm++3-~o+rK~i
zq}uT6?)QspKHa-`NbFrx*D2rKYyv4SFO-*UG&-HkU{<nGPJ;8zyRf|%_r}I|u;xyS
znfi*gA>!=S4HINe`q!ECP4qmzqWJCy!%&u~<)@EWxs~#yJbPWf=kKczx679<>j?MN
zUG-DO*pz>_?87S;%BsAauFn>I91<pT(%|*_T6cl==B-YKT<`U_s(<?TrZAz=AXc-u
z{N_Iog_N4JXO^trnSNkL*VJB(73=h_pLpG$5Nc!n+3PY#YyIhno$pIbMT&xY<p0jM
zXSk62yY4bGN9+>$2}eKnmTxT<)jT^Xo4FxkcinB~f>P~ZpRYyS3*yb{EctzT515u_
zDKSVl<yH$=7Kt@vD^+uzlX7Bt_-N-OWrmxR%;G;)wAh|gQ+sN3&0Onr>pJEKt4^7k
zGSt`1`K$OvC0iwF*(=MY$#-@fdaB*@c1z^#$;H>p8Qz?<+$oj5{*Zvr`4xALzvd1)
zedKHJO6gC{Ma%s?4$hkMBc^9c!+{Ahev>wH_NP0!dxgGuxS(*lkJN-;dehb^HCS7|
z*Pr)Vsn13{_<EnERp2d+$BA>^GP*II+chh2F_*-<lh-r6Z{(O4y9qAL`tvLA_v8Iq
z=NmuSGX$NmfA;=A6NB~fkbJ{W`*mznb2dL!kW|p-|GbNjGv|8hDvc9A9`XNgxVd4Q
zx~E#s?F(NSe))>4Z0~rsmOJ;ww%W?4)9b!pU$kNOu99n!Pp{2byn1#2zpL{D_`l@o
z{F)=$Ge`6&bMoo{4`pu4CY86pPo0sPSW{GHxOI|xQ_C72o|UhA-ZLazv)FX-%9>Lf
zN|V!g_xrs%e)g8`HHArWrps<Oom*noxhli{H^+gq@qf48TN!@+>d|6`tCPR~iH>JZ
zIKr!xdp&XUvx$#<t1sW%GJkPp#Pj?A*gCk*KJ(cSH@Vl-^xYFll@?X@*PA_zJ5L$i
zd~Yf#ZTHuZp}J&NwOY^9>}SQhuFbWb7X2pe{{9~=0z!$b2@CvECn~Ucv-Ormm%eG0
z-Cg(XY`o6%iM92g7@WEqEAG6F|IfMb-iF-WU)dT;`&I<ZI#P60AgE{d{68EGh1-4}
z`^`|KGILXzlX;THi&dq8hYWAY|L63LVP&}5I$_PFwdQxLPX97YcfQSR@%vu+l&#4>
zbCqr`o=}{0eR9o==}K<ab3_8=UdP;QF8ucT|CjL0eZN#LmR-N1|L@28F4l$js<`9(
z)URIc=w9}Av26QRB@?SsEmLJrJGRHKJ*qxD-KeU+Fw(dv`Ruv6+rR&9-p`uQ@Avki
zrlrZzyJ4n=tA2UUHf^Z8T=qSh;cwOAC*L1_uTIi={LAcKTvN@~C*5j)Ui3$7pP=M4
zeU&A{53QeU4n;XXn%9dKeR4W3H|e%((dVx!9J4NbydZvj)err<=Ywu2`+c~(&@H?F
z;m!vy9{p;ww94+B>&nBGz<l3b@H_kcMQOSX;`_g^Ph0N3d9x@(bfuNm-LtjTr&WF*
ztpDxL5c7BU|8`Tqq7zHDZ~W*I{rT+s4;3z__WwB;e?c_7I_>^!$-f=3>(4(AJ68DO
zSI-`8ucLoMG}nAenLm|%*9_%72A2YsE6$#-w3<EV?a4X0X}!Oy;{Ls?S2B&=srF^h
z{LeDEf~`;Q|1JA==-jT=hyMglOR0L88O<bNob9ujWx}@CJN7L-d1=krHHQ0w8alt5
zGh9krd+PSr<L4Rf)ctXCd-rZ$Y)owl?}I<$a&z|l=WF;?5h$<E7_xl%I~S9#zw`gw
zO-pY$VV1JHc%I{l^P7U3k0q?~xwgIRFYEr(*X|$s9AvZdGgEKO_ln&z<#u1g{gZ3f
zPt;Z0B4u%MLgk+T`?+S@clNJizEJzgvHYWD!`IK;lVpD7S}#@qn)UI8{C_@%VB;k3
zw_%GrQw}g6owaZGzsvRf3at@Jbqot%zv#YOb$hMk;k{p@?<adYm-3t|G?|#hTk0Uj
z*;`sZcSpsl`nEMGb%FEy1LqXFl&-w7#3R9g>*Tq>(4%*6e6@MD>!ja{HKj5Fjlbpp
z?c5{9uw&OE@mS^a=b!yjlFeiI_Hg%40l9*eYH@1WF)9yKw@SyEA77>#HSKNvukC;D
z%C>y_^|PnV(K^V!N@w27x4&*`GnAi?JL?zDke2SgU4H+be;-sEp5@$|GoN9{@0-uv
z-`lZlsCj+xkuKxHZ~gz5CMNDO+{`MwZ^yo^tAiPqS)K}f<M)U?)u{T+g3H^kUtP3C
zqR1j@@BgpNxepF2?V8y5U;0SCtIXG%@BTeXz8dela_3Ba&q}U%;g4tj@&3vzb&xwK
zG;w#3q=H!7qJMwS@-F;ew>x;&<lUkNf@j_^@piiUK~&c0S&sWdiS@A$gI>C*udn|Y
z+;Og0Bz{J6otsV5nnb<_sxv;C@?P!xp>c6m&i`lZ40m#t1?^K}jk97>JX^c8inXxU
zTirjUQR48e+tZt4*(OzJ?cD6Hyt+JVyNtz-eVyCGcWqewQ>pFSBPNH^Eqm%eS~g@^
z-j9pP*UMu#vTbp1^q$hXFJA;fb->DiA1CWilqo(BZFqRQ^_Winwjj~D5kD6TRD4Qi
zxKiT5SEI~+s<x%Ne!~<|>%BjkJAKXg+IZEzNC_XC^7micTDRNPYVNaT1Jk$LZ2GKP
z$W-|x^_cOmMeC=;bjZ(@wy=FsBigb~pJB`O?Mn>1bJuq{+On^jkh|}1ELZ<oo^r<n
z>^^+Dv6&6_A{Hzkr!P)D*(V~%y7X)wuLi?b2T#?P3<<MUS1(L2UJ<oFL1$%ja;#bU
zbg^^;ov-ujEFy{@@o+{9*42O5wk~VlEUEj>)(IsO|8CxL_{#Q3!C7}Bp62oFimbf$
z-JE5@#=GBM>o(l9_CNXcnqFV$F@_Hxe-$4U*d`<2zM0>Tzx-_YqK(rww@=aYY%iL;
zIN{7G=L3CfT@xO}HJRC{S}JnBn)4y7$<X!ctA|-h*Ct1ZDor?C)G_h)n;F;hx364v
z^7P3QA5BYz^Y<}4e)Dhw*Xq?)F4O+SrX+UEF1_)Vp=Dd}wZe~25+5eKW4Q73lujSx
zjI_k*$G>EX`HC(N;$jT`!#TxKr)F<SW?*^I{M>8HW-%KG`K|9@^ELO~#GG<o)3)+Z
zzp2&hC3!iM<$`!_^zG$3?e>{<f@C;n`B5JOsf(AC9BQMUx7}mi#6OQ|?M%~|o{~?}
zCcKm0xJ}dCF#gh}8xnt&8657noepPs^j36c9^;QCk_BtLy&O_CSgT`wl@{slc@jFa
z<@&P)Nptt8oU)Nve478c5YO+;vHi1DR6N(6s}juWyOzXuAf$M?LZQBdpW5p*V~rad
z%1(Uz@!PNVpS$1vm9KaC+dasC`R#=bQ}ngJi<g(UtZKjMBz4{V?ps?1<!9o%V<tA9
zu&wC6w8Pc&uki%wc2m9zRsJ1q4I4UVJ=VCReD$O|gW9(}77NWcs~VK`oZ0)<a^)m8
zpR`;jYrY5CJ`qmSyUrLaJ=yKiyWYcc&iTDtb3*3)(Bn&snl*3f)5$iEssoS2OwrPo
za?Y7DHMBo*aiH|0%(zdoa$Z?E2G>+C=A|l6?@3-GSsZF4=FH|cS%&A5)TNZrTZ)rR
zpWOep>-N(tYgSsA-&(kXS&Z|U>y#(^Gb25@4~ZO+Gn~bdB=Y&x^xvnhoV`&Pal`EK
z>YitwlLei=eyNQ*pyH+2tLboG(>XsYQuU(3&7YgD#j3o$c5-L!550znvmVnY|1@t^
zidKo#x4pUiA%E&(^|?<gR9HC^+a{+QYNj3klNc+R)w*Za#|3ViwkUL`$K-4Bcq*!=
zF9~?F`S!7W%mKEQ{0`@ox9@#!8lGb+H2IX|Ql$eaPcB#lPDogyym66CSo%}NC6b30
zDt~%C=hyTVnooN(zxq~Ru3Pu)@YB^nUf153o$)<8%cSjGq7J)d)yjE>8{&PmKDG<*
zo)GX~<`VnFi{7i2{!Cr6)F}Ce2}9qkYmpAu?kQv@xpb<1F%4(=SSrN2dQ~m=sdvZj
zEM_q~6cKzrGfU;|igd01uquN`b0*#7@zV;}z4`c(qg>PVIoWrA-hMfUQ(@;U<9|~+
zE4)gXVuRyPPMG`j)YTLJr-he9X7GAehb;477|QkcLa2X9mE$Ds-bu#ac3;Um`8@Si
z=nT_}R=tB=%qp8AqIsr8eBw(p3$#x-v!C~lCV$K1iPh^iB`SS5;?uWes^+I-dm~Sm
z{g=2jZTj8gx4rB3M`j&TSALjuQ#Werwh0m|nI=ry@sZ!dZ0~l9H2Dox=eDW+x_Fn_
z;I7_rixox%$Ls1|nM9szY|a1LHYsQEthM@~#$UtbTlp_UE$U*(=~CveoRqYAX-ww#
z6}*k}<=3%ZZ%LTG=%MVY+Kh!i`g-o~|DBt}nY8&)K*87P=anY-D?OXK@2yc!Q|@e*
z^ZaeLMXY9G!RB>4m%cmmiZN%AO8BeYXRO!?|Fe2LoqI%CWw(Mxk!EXY?4rYlQ<kmT
zbiv3_Vp(mEl5~*z?}%qkk{PV+QitA11wD(t`mtPg_VVr7w$tu~n64~*TjRMaWS*jb
z>1@{2jW1Hg9e5)pYxK3X8E+gdTs58HQI6>I<qVVNzg3c&l%aW0)N{*jYlgyFX+1k;
z0lj(U<=G6oPv5@qRpj`i=cb(ZH(#D=Z^g8!xP6(|mea}3J6G0Btx@hwnLEk)a<})6
zS7oJ7EKNMFRw=T7NnSC3i=K67cdp9H-Cd8QI#+qbW}i&mop&im^0hL9#f)EB3)Cfc
z__|*7>OI3YVUbn)Ef+Vb3tKKu)-2-aoyF_YIcIlJZ{^(=n&zeEp-(<JZJoAsu0+u*
zqYXMsylPChWl23hB$aukX1?t1Ioh7=z3zJ+i*o#((lGr-OQ|Ar&66`62Uyk~|LPlY
z|DtUEE4TJZw{nGMcg~t)keOO=(8D-eOKe~6-3e<C%(HpZFURC@cGXtXhIRhAKB0RV
z64KV*6yhknbm8CC&2Nv(Gw%5FVDj11+6?9T*ELm&cCV6(m%Yj$_S}1u((Yy7K1(&k
zn}{A=H)rm||9fKR-nuHO9-?t3>_~0v*{T#{R>g&V+s%%@SgmTexlFV{MEU+AU6r*C
zTc;dp+PtPjt^JYOv715;Yo2Yi<h#nm%5wADy)BC_F6zDV=ZsUO&vxU#Va%(ACdS`S
zxyv)Z;m|~<*%2GPd1o&ZyL>dTXWGqed9xS4+p4Xav9z*a)ehwxr6caKs#m1aYEsjR
zi>7W_9h@W|WLiD<mf6uI&1)(X$~c5hUS0B{OS$x^iJ$xIryXbBaD>fTUhOyGP<wjq
z_PslvX&$?+ZF-40WBogZ72y#)8{>2tLQY#s{_9zP_?aAo<m?qYmwn^z;$5?;-}5d*
z$5)%P{tR1=t>4YDfOqBetkBP|W^l~E8{^*ies}tMhMJG&=kx2zm>;~_yjx-Fqq!mM
zmX&*A>>`;8rj~AH4$xhF^P`MIah*|pjhFqMS5pLM>qjuT_AZh?y<Nq#cjKHzM<>a!
zDzKcf_*Xb(_mv-~H1<uoqqp>QP@0aW%<8x@&RqG%IS00U{5)&&HTJVBkIY~ESZR%j
zVEdN6n>VvIJSi)QF)>PAa9sFt>C3Q5{!@=kNY~rN;S^YY+;F4Tr-ZJ#vO8C@1*J|E
zQ2F6?DDD;88S6D~KFu(SI+o_@l<<jpf3LG{b=oS`fQ`+okK5Ed6q^zx^I1*v`d;Bv
zo6nhYsVwz*X3d~o*HHI&^Z8q|tABdkiM`8oBX*r;z{QB_KWDcynmkv3#V(Sc$8cx=
z9+PvsZZWT5{Nz=#neCO{6&(hZ`!1{W?-srcOz+t`r~B_ZU+zz9cmHj&WnJC#CjGcE
z!*Yk+?=;kOT3z<uso!@qCNFdU3DaZd`|MURn54&_IWNWVb=AuL=^|d4+VQ&54C_{Q
zM(kX6uFm#Up=N~$-vg~rtG4RBoczVW@^M!&*W#dX|GWQ__Ofi?JsG)qg-(NjWsdrh
zEse|%=6nxjKJes{^1Ma!1en*D|K)8c_<5;go9%Bdo~?YxA}j<sV$VMJxiou<YVhXi
z1(MclmWF+@Oj*tMg{zm5)!vdJaG_aC_AJ$@lLAg2F>&8GPk8nGH23O`{!)fTt9?8<
zGt2(=)$R`Y8JJ=BZIaYR-iojrKV}_WCE`1S(c|l-FV+kxwP`-_uEy*P#r51DTf?1R
znd`6T$Vuwh_`2NOnql|sYvytd^M5}rTkyd%);r1bO%=EQpQ-U?|NiJI?5<-_*sfat
zy=&R?XX>AyRaj|%f5h7G?x^~nr0%P)vi(=ocNx97cKchIH-qpkhYcn58+Y!%$vESB
z>E0)s{kCtraf$!&wQI4jT*RJxGo1bDS-XcJVEwc?z6(F`aWfpdzAaMVf8;A&w{x1y
z@+3U2SZk`MEL3uh*`h9~XL>Z`L}<u60~L#cGU<Ga!$B>oZyv1K7&Xc6_yK<lf!9;?
z)5~XkUHf6e&8(bRs(%(RdA%x5GT4>$Yi(AT`_?TDiQhQ>eNoYBv^Qf**k?Ukn9+RS
zDYM8;=dQYYe)XwaX6x$deD^rZg1fA`8d*z1oaTO>w0h}k)l;1&C+7$Ma*K4=^e#Tw
zvFIMVYlAdbq3EjYkl2NemoL>+@7}jRg89X}D6X_At&iJp%{FcL{ak!sqW<-_S9Kfm
z_O6^(Y}I-!awYTO73MKE@Ap@*F8Ke&*~=wj@9%w;ALI;7ZZl44w938yXlI0=|BX5F
z!7ozx>|%CsJn?mt5x*|O>zo|shNq8@zM8AdurRg%Z`s|iw<l`zT~&RkA2h>v`@N8a
z^LmS%wng5!I&*4>L@@j3DSIt%&fhzQ@!O1VJ5S_>9P8=QuT1ylV!p_<A?kjnR()25
z&EL?oj5{_T4=GTLi+}KMn%be35S}B)t}lC?Qs#Z`=ZasylzdrdE2)??*e_w#=W<mt
z5ZUM=cItTGi#VyJ`g(tLRo<t3;*D{w@rqA*Dlh82UiSHqC5z4-IW!|gq%rhm#;drH
ztk0Q`xs)4k*x0B}<Tw0zldIul@5}8nPj5Awcy5cll(_A#wy)5)V_SYL+nZ@0{`qUx
z%BH}ZCw5zJv2EQ^^YQTfNjeW_-+cB+>cHRAyC1K&pD|bN;^(Bm)SsKGzdrh<exBh+
zYVi6vh8cUS-2OexnIq~rXYFLxPYTP=+`SsRz=t9CM(q2JiP1JOXU=CaxWAV%O+RDU
zX4cfQC{b>6Rb;4p>D7QGUZI^k+ZNkp_i1h3dj1v5#lqRE!nig40}R44Kk6i#eEShl
z6li>L%d$mP*BydI0#8LPJr#QQ_Lh>e?a5bGPg}i9(f`BUr=tFAKjl@jgncPK((-aw
z;1NeNm#j3KTtn^G?3I2u3>4-WZGP%dZp1aiSWR>4G9l})b7a#QuZFo7tb3`q<dos|
zFiFE_U1bwBXB#T2={|C66A*d2{L90Q{CaPv%Xh7GvRs_9ZCe!cIjgnnvYk%<tlgIF
z@gijXva3%ow?FxupZ$JS*OC5jX3OJu*Ozi8eEzw&a7y|Kt^Vh;BwINpvMt|tMs#fx
zzrN&}_oP`l<)!R3Y=TEEv?pyY+4TDH(zWX{e@B{SS68K#*}T6N`$DOq?zZrD$=d=}
zMcrNtc^UrP5#AEw{`JvAriN^-@M>e9){AS+r7YHFZj4aBnYTDibiK5nlJMIpA>DS%
zuN1yL`E&m5>^mvlW|KON#Zz>Jq|F~x`K?_xv;B43qEqYYKArJ0&}`j$Cari&^sA$%
z417Y>SKeFvZ&Pr*kL<RUvyJ9)HLOf~!ZG`7-lM|vuZ=(Phs_rXpMH&%;p7azq8S$1
zC%P|hD-Yhy+roYI{EWM@Q-5A?IMWz9_e#~INevA(DaF_K+}IhhHu0&tMy{WqxNs$F
z4eJ6cJ2Cd6A3tyV?^>-rx8{2hcf#MBtaIOFS*rJjZGE$=ls%!i^1jS@hLF>%;&fk4
z7G+RQG;^C%y!z>$I9<jo$GMFje7P-q@Y1(OY2~HTs(texF{Zy>J6*)<cDFRc?$yyu
zU&`*@-5aq!ehp)e{`PfhJ7!JXch0=-;{-uz)hQd#ZMd;{sY(Q=!wV+Q;4mAz;EupW
zUYfsqxDT!><2$j$^YEN6H9m9Yo;0q15_?WI^=Z&Q;Tx0Ji`-m$nL%Wsq+Wa$i^xrB
zzx(ySUisTIe7ITv=gZ0UdsrX*sowqU&k@g=?%EGGrfrkp+0&_P9&m$gQnx{Slh@jf
z8Y{nq2FP3q*YR4cZ7CJ+Inla5F)epG!vbzi%eQCy<5G&V=1*Sh^wmUjR$%74HI@R!
zn`i#mth}86s?Wz=f-%f~EpgFj8FpON6wi;JyVJNV_v630`LkY0>b7t6Nz`CwZV*|N
zoyPEtKX+>mW60^Ok3U!r{P}qE;$`<K#+TMvOo<Wxf7Z%RcX!Qm!_egqWtpa}pSO1Y
z-d**jtV&_#E=uJrnP)At-^K*5kH5#X<LAw{&x)jfaXjeuEx+r^5WoADtbHtFgw34p
z;7KdB*cZfZe`~c_HEh%RUpv_!G?$A8-d$BD=CE~+_crzEwhZ2r|7W~p-!R2=C%bpZ
z8^%c)%kEBVJ$1U^!6yHzhC@rlkDuAUw<dJ07(-gWyzM_z?u4IT1V273KX2!+c<!sN
z<5K0>ot_gb6Ii2CTN;)m-dM#W;QsqfcT3ZijHthh9I~XsP4#2;1S>87da7FNezJba
zKCW#{7uqs-QjOQn-cb0O``vuym9a_zo8&HcmAqk}@z5-K+FoTjBM;wmi`GnQ-Fn1T
z?Y>Kw=j!KWm25mtQ}@(=nd1LHP4;%~-biMPTklRpTv@+eWx^J7>8lxUZ~Up+Us-8s
z{g>y!NAvsZ?*A35pMB%$s$~y~Hrp&?Elux#^NNw-|2gy5`S)f1zKv)4@o4?Ovd^D{
z4%|(@&SG$2`K<46ex+|`$eVY!?jl>$90lV)i+C%_xD(1Z?^a)R<HxHNOac0<7a#X_
z_<W*ZvCo`!k4ogPZR%SWoo|tp9yg<T&6Q*q)t7%`Cq44DR48ZgbDm*XZIi^$@<is`
zQkzp#-G8!VTCYAe&z8+#{p^B|G6#M=o-g=%cSVg`M`zIgH+uPuKR$1_n6W>PCBoHt
z>CW#h43m!elzz1OXtT9wLS@w=g=xEL*G%%sG;vR#xu@WUJnPmK2Og(K2Q%-u%bL!-
zV}}MqMfRlmM}KlMd|4ZKTJ-J2^(T+CT-aE$<ie%x9-T>XlRgJMIG)uPX#Ax#^?ceb
z$M=(?nGAMs?Jd8OeQxF2mrY5#eP2s^Wn5ajz2#U^kCTkwl~=!Bgx513c(wcf=GDfF
zoTT=wTl@dZ^6B=Vd%$k<i{;xhCd_&4!*JTzrlMcqJoAIk-<TPu%hx&fOk4f--7?k<
zyKm;&?Po8z%bNZn;~9fYc;6O|g^zO@u1Q|XTl~?bAno|(pO1}YJKG)^JrU7j*Ip@V
zx!CvmQ<X2Z;Zx$2SI#~E@yj0LKPf!AcTRutv|6)t>V^;hOcrZ9lwA#s&|<i;){k)s
zYkJX~;|CtDJG*J3&&~!FzfYkt_ZbXgPZ!?$YBTBd&S@<Ivy)fNdXhfH+v=xUuxMsg
znX%zbZI(;Fe5WM^IA4tLY`)mE$NY}Xmp={L*$&+Cmi-}-vt2Q1YU{BJo2=(Q-C|jN
z=&H#UNrSg-E5w$(>fBxz<0s5`>{-IAH&!lxpYUYa#q4{+@NxI*E&F!<f5UX(*;Ca{
zjphFGfl&))^Ut6E_tJHSJ)f=jpZs|8bLx(oo3(!!8*bYF;NA28HN%~!=QSK-xC}Y;
z9oOY8pIv?H^sBw`9;b_cKgeacy8V!|)V9qmi*BDbm3CXZa++xayW&djL$BU0UR>VC
z@FuV9uB_^n)cNzDRfOqkGkpEHC~AVj^^ns)P0U3*Qx=|1yphDT=|%Lpb2iDFW1D`Q
z2sJK@eZBKr!lpU@uK#?Jm87+3HJ_kp@&dK8$x1<q(~d4QNZTYL$|jcV+4fF<UbbYU
zSH95hdpQw%U!J?q_Tb$8SM%%d)P56Wu#VR%OK4vp;j_EZK!M@S<ouSa$_$y?Zh5_3
zF=bNnRi!U7*^jy=mUc@Y6n$f-V>B;0@%|SU@3PvBIbjT|mZ`Bezbv1%P=4XlL%Xl3
zp1iKSlgl^Iz|CxXz@;Y_zRPM$TRyGnRP)lFpC!_MELHgT54G7ZL2E?!n#k+L2TC6J
zS9f`>`J+ca7u~jFzL5W`eSZbtgD=+aC-tq{yCb8|kMW1QzhYIBiM7$~Xok#fTkiiz
zW#}#CPhu(f{jqyC|9s{h|2|lLkZ0KQy}$nJ3-fw+;bjx%m3-Z*?xOK4cX!k|hB-BV
z*F;a=esSIHZ!X2NHXjQWJ8<#w(#qQmmS^vOdi(k3;$WXoe?^zR*|DtSSB3=VBUQ!5
zzd{x(wXO$jJe~ZAchQpNXOvpjdtUZpGMRa!`Nmc5;N1z2mzbK(HD#`pl9=}0`pFL;
zpT(;gW~4cK%ATpY`uEFv#xLgPQk#!#`SOkHT4hy^qNd$5Zyl9Ror%-aj?OPTmzU4z
z5`O#Cc16Y)NvlpQJht(<prmI-%d65fwS|%z9+%@31%xdp)O>StFIiT!RWd8gCGc3D
zOxRtYn+=y6_uS=9-|4v5ZK1(Vt2VFAOH8H<@o(X)()PTO!KZt*Vqrn8quur0t8agM
zR`>T0*MYxBpMAS*&2awu+voCej5GA@f1dmQ#hc;Y&-DGiaVk?zwfxS#mbdd^f2c9T
zzdvh#me-3q{C)ECRrY+w7uTeN0!v<>z5D-r{;J2x4Bwv2IiwxbvE<ObyKheHNuIv>
zSq<xh7cUQ=J^J-q7V`qjxy9Q8S081{YI^(h`n<6Bb+g%Bo=tpOIFr5q_5X~Du=^YP
z{}wIP{IrE{<ww!AnK@w_BR>j7PfWSwuvN6TTT}Cbz?>aTotoa+i>9z-a0j2*e>#m%
z#h7c#qJ~(xlP6fU(iI9NbNq6}t{yJeIHa`N+<-0ca_-5kI@gLPU77s#p43sMCxWlb
z%2Q66ytNADW>`6Es@CMd+Epn!SMTe2Pw87`bYcAxj&Hvb-}~>@W_dG@Ic@Xn1t0R$
zj!!fyEA^T^b@TlxOBDh;rYx~t{zsmnXX*@%8+WB1c$lpXI;=E7MYm^r_#7+o51KBA
zZa!J&aARehY5%_4%s;B6XKhx!8*5j~p|CE0!#>8fy-V_fw{D$zcI^+%TWOpM*Lvek
z6kcZBW-17MD$e`#&DZxe-3BZ6Mo(riww^b!>cPLH+ArJKA51@cD6(lz*2RF53E5en
zZmtfSV|2>4$}3fKQhpKJoI@`%r%5wxJ3Da|%Uj1E2@<Q%?GN-3F08wBO`D-M<xVQ^
z9A$M67Bg-)hLp(ft&>;C2sZ~+9TN$eVUha2rRH?e|D#7u?AZeL{<hQH`un;3=5wF_
z<ofnx_{(2>Q24#_&&znG4eraA2>M=AFUoimnLE{NyU6CZE;8<2df$4Ne_feV&41v{
zyCYdkqS{+$WN%|u-RE>=f()<d?dleekDkJh{UuK<Ipv_LCiNykr&u5=(|exhHR<RT
z1$P|ulbnuMiQFu|{8l4l))8+>&1@ZKzpH!G)=M4u{aE<Z`!#Y*2Oj-mI`C*M`>aVd
z-+l-(RR4-Fjy$$o``58=>GLOSI;daomgsu+C#Ut)eSdjBe~4xHxAyzn9L@zlzqDVS
z|6h<{x6QV0(UoGq{QploW?21xw#}(rZ$6i|R_bqZ&-HUAbgl9~WPF8*q1Jt~5%+wq
zs@!97#}>^lGi8su-n~YKd+tM#7{<=I_fEdQV0HT_<Ml+|%^BwoNF{rQhj-oD#9YJk
zL~w?Q(R1b#H}`mH7%h74!R4K>KkfD7)#(gn^J^+TPM2q@_$q$>-hcW3iVc_V|C2xT
zd_GghZ26;+$>PViyqPtrQFhDi(jEI40@J#tuiKvxeqHIo^&MS*|2v<avNNve$c|D;
z4<>f66&p`v)S1rhSg_f#pnBz(<@~w%rUzwzD{+=jUe)?;!QFdC3~%0f-pmM3&p6UK
z&rap#1dIQ>GkiD4EzD<(@YI}h&HTw8>2>;te)UP1oSi*WSSoz$Gly?n(r^B4v0&R^
z6TSN4hN|zi3@^Xre#-0m%5+z(;k}u=zugM|e?4JyA~?$bnHj$L`0;mn_i=`2FW&rB
zWe7I^cQKeDtujYkJE&>3l<iwH7K5uFmH7DoetUGwV)e@dI~n$>wDG;Z{qE^=hP2tH
zPn`@ts|q?8XP*+7CG*!w;!5e88}I)p9E$w1<cR*wx2DFTUk|OU7vFd@i`&bPIqPN6
zg2LGKE2lKtPV$#}n8Pd2kTB_!+`o_249~9FKA9x^@Y&+$40->z|Nr`N{a<E=&GG+q
z&)yXkPd~C`=G|M{${8M{Z<&!<D||3UFVBv>P<U#K+>#Xsm)L~xc5=(M<jtr%Ey#E-
zb$O#;w)(NiB~w<o%-6N>c|DVN@{0D9HM@VyIP9u9_wQM$u;2V|pFvZQqJ35j@7_&)
z+%mhEFKn&Y$`$;a46)CQ*;${Lmn(c-#_@bg`GbEykG^}=cP87dtLltj|Fh@n3!*xU
zzkM)xEC2uW9P8kv+b=xba^-kG!;z;ym)S9Xc(rdm%h!4Od-m6I9=I2uRLjY5dh?DG
zW|9-+?p|eh^Q$SL^V_A^S}ui}U&*|t*U#(~3EI7P$3-TVs~;CFOnJ!fx8{k_vwz!P
zJJjg~IUeblaYWQELMy_kcT$c~n%VNEgGcUNXw!V0{!4bLxW9E+#fvLNneO+W2#AOB
ztDN+n)3qRDSy9&ZZszL}uN2-DUeV9<)IBh1dtmDh1I34v_p@#I`9OaY_oL|dg3mUs
z4n8F?<?{=#51Dt?Y>w=|Y<bmfQvNati|OA#l}Pz!m|tgj^DWG?apH{sHg%>}-Uc;V
zMNg-i#niTjy!sw%Gt-ix?sMzzN=}7+KQb1)RNP``?RA!`;cm?3ilog+H5YTIwkWX#
ziB3os@ej|swUIY>_d7j(#+<m=cY5zT6jx2-_2xa!{b*ZSy7qF;#<!EaU#W&44(}9-
z)4D5?$9}C_+eL{{LA9mSe)W0A9XFkSGcfdBx^}n5?Y8H$?vS&YhfYRVH5JwgJzIX{
z>o4{A%US1bW_~?8XOh#^sn>E=hkN%4=qr1gu8hCUoRNQh$+{b{cPDmgwpM(-oLyv@
z>-XH{_^Yc<#kyza+b}&icmGn*j#&}vIoJMfp1**>vbyN8-w7jKhfOxOZGQ1J*ex@2
z*);Ra9QF61!pzl%>Niwo`gfG8_c@hD9=#~JHD_)@Q(K6H(&Y5~@V4CJ?`k)njr!4h
zYX8^X4OKh}UOOF=m4X8;zj%HSKhNj-sy54Zxx8T_^MQoJm!_;fx~W8ZoxX>e^TcHV
z##tgKcRXjvc@wE0W$F?0%RI{e+ne0^dAH>b#7cW=R~T8(wa;MKQI%JgEfzlQxru3Y
zy{AN^?y9uyWlnOI>pM!_PCakAt<CGHV_bT1zbNN4Ut8<gK(@vkU!R-^TED}hD_3k*
zb?pO($QcK?)tZiMx^X^T>_GDqO_NpKE6dt6CT;(7n8!JWaYi0<(ekN5u3`=e>MQ<z
ziS>4D+P(Gm9fpocfm_+K*6vXdbzxZHz2nuglMff{-I;!V@odwh_sYt1a~|JaUe0h$
z|Jvrq(F|V$j~1@+eXAj}c;?ABj~`vktghx?5M}m6?e%nCR=$?*=eO_jHO$uMII}AL
zclzet;tXk;x@q2BfxgSsIyDant>ZK_y~kKE>zSV0k!c4P`#771Fs3K3)-?Xrt={#L
zn{(b)k;0!04u9XqUsPfF`$y&6`3z;9R<<{JFWu{F9p^b_)?SXge<@|B)`sHLhr)d)
zzi-cyNH}E^z3D>IT(L)fuW!#;8-GdY*({AYh5JoEi!yj+&)MNMwS6{Y26N<G!_R5n
ziBrCJ3cRlQdhgE}t5XZaqNWMnGVM;hZSBOBIwN77)648>VJaJ>3?qEk9^{tK$a?o@
zZB|scTb9U;w1rm_?#~Fjzs3CR^DMjNU23k!1AM30S~xuqVkwBxJ+y{#!@EU6inE(8
zO0i#MVpwzi(#@K?nHTbNgRWe9lykUqudlm<-foAZObm>*zE4zns@8p$Q)b}h{q(u&
zp-#hEV+M_VEAD@p!mqJq;-)EQ`qH0BrmS6<zN@tS<K@>!Kk^)y9AEe4#qawJ2G-U}
zN?R){J?}kz|L@)Vq8n$vndRCuC(K%WBY&&jg4FAqW)_P!OtX2%*rIoRUO>OmNmJKi
zx%cNAS1=|>_$>4*m$`o__}Y?!FB&_$J_%UxF6880d9*im^{>C(=il4^W@?x^srpHe
zcN<H2k>8OcXQ!X~X7G6X?Si0|n}_7=6Z&c&8LZqo-}lLvPbaT06Lju<#=j}|sTPC#
z*1KOB9ykTLhg!Maw#)sUaF*x5&75at*-@&2W}hB*ZlAuyT(8-B>nh(goxhW|Z<^QN
z#W2-Uv1q3_XOPLH@8S*Z)0%X?=fvCaoEQGi;;n6OthqsYiPf>TIGyjCjTTK-I~<*n
zvuU2o8o6uc>IxTYs+kYG%k$iw^lF(-^!a_0qH05zU*Gs_i&d2$+lqhlx=)54Kb?9z
z(|7mn^Y0k$)K*=;SISUkZr!DSX~EwA-;dtCbn|B{`-9!H=k1A|-Y@>SU7I2QfB62Q
zFJG54{OW#w<jd`=nwd#&l2V^}Ybz~nTO2s+>awUAvdi;QHTRUf7K=4lrYdbxy&!74
zmv!37ubov5Eid0a=3kXxBmQ7ZP;Li<l&+-yyerEhCs?L#yY0Dh>9i|5Zs$tx_Ot0(
zFYbSI#<Jsqi*2;-1@E>|vsBj&3lnbQ%Wjm6fBNao&xDn`R42W-zhl)ZZHBl@nk_TZ
z?lG;H`!ZRHF>|_4=_iqf`*$xK@lCp0|H@i9Il*-54!fiS5oTt7MUK}W#c)4d@%PM`
zD_`>_u=A^MXBP2H77`VajM%h9^&FQp$F!hKU+q61Hr?$yETp^S&=ZqG7bAryGYkCL
zV>OGh<E-K9>0$mHI=U}|)B-c^v^*_M@4q`)o8jZTt~0V5-)_B8P+jfs$FuoyWcl%l
zHM7>exW6xkdB;1Y){ubT`u`q@HoX6L{{CEhE9MWA|3Bt`CCYxoD{pUG!M8sbnXA7=
z$TCIzHJBaz>TSr`qC)RYE))5@yroXLSg2P7O`n`m#4EIsd!`Jdm6<%_j@=9!ej0|?
zt#8<1Ghg3B?3L?69nTqam1o|tuh=r{EJIFQt>eeOk7av*{+V{gc=q(^EtC3guU%#S
zS@6o4mrwVfPM)GAf3kA!(#2_-F4pRjp{f;3?(t`~dgU{nv@ffD+}IYgC}i#OkFKKE
zO|MRQ`f(mN&+)TXdG9Ta=T&qt8MLtU`(4%YZIVylc#TQ8=7d&7|H7y{;-=nb7Q{sz
zEIRR5vA><kcN&9n)fuJMg~z89{+i+GDRW$)mpS3D&f|oYb-^yR8GP?7E(kJz+p_4X
z$Lrv2zIWq}-qyZ;r%~i*h-ii7`@CxmyS~2r$sfn?!u;>=(_9BOZhtNC|KxW$<{7fr
z<^TQEX0ZRaS6)}{A5X)wtc?8a2Ur=BEqQiY#-Ej+Kk?RHJKIg0wErZZEPKLI@X6%$
znq|$m#Cs3tc=j|rxtw$)rBOrV<kJhB3j??Oo!$NV=3{P#kH3o5dltDJ%5<2WJ1uIJ
zu8?Yc-ml-f4AG(M%BFC13h*{;$kkNXWNBY`T6DtScMLOrUdkxYp51S8c2(nsS&No+
zCB1sE!S!2Zw}FpeW_E62kglQT_wb!(-hDDTbF*oY-t9RCdvB|F>Kxp*USi{3^=I-g
zia#+ebc%VtBU0$Y6P?Ma+_7dMCoI3;tYK6rYMgn=VP0Z#1*_tL)TI*)I3KS%tm)cj
zyOBlxx#>C2NWbt|E0%Uy{I6B;$xYej99Yok=aw^VVdSmJx(%!Dp1W?&aO?H$+5Gm4
z&E@`oQfAma`<wjV^84%`F4zA}-#-6tX3NjT?ZqO3&o)1fEZ)T+;QH&;wYPbD7i-_G
z+HJj?*}&fZTX#0Y*N@^UwU<AYmhB9>e<beHv(%+Oi<bVAmoYcAR}4-ryT+7ohr^Ti
zPTIX+Vh!&9|JtAbIWt&g?`A_aUS+Gvt8e=0o-Kd7M)>#Q%_6JIzdlUOSkJg7{@%KK
zw#)+C-u?;XU%=$Cdu|P{cI0CgPPO<{3(bApDSjzYW?j#<pLl#;KB<@G_U#?FJ#Gs6
z&9>+`ta>Cwf9B%VT5^dT8cj7%9(tZ-JQ*{=Ec=X<o<ZOhg{OO7xiZ=2JDpZN!cjRP
z_ui3a)#>c_U%N3X9_x!YQ5BeU*dts)Yi*^@n#T$W&VTc^{J)f*a^sUYYtP$PSI$g7
z!qR?v`W5foySw-Q)o1vkZ<i>ve_yWtdWJo}@Bex9>`~jIjNiHbiQaYZG{p+aw&lpp
znG&Cq|NdlE?oCStrWfYAI~A4+XmYR{uKE9rnPKx~(dRsi-W-wPKEiox@sH>mX(#Wn
zuDkh4Nk#kG=@9*dV{+xK_S{QnR8NW$Ww`c1mO)vve$##(hfA}rWxDW8W!SlK+T@uQ
zw>R6Iyl^#thV8fR$~}qVio0#D{o>0qPTaVbL;3#YH!KGfoIEm2?`y^9hi#j;_<kcp
z&!(AC=S}^-tgvwRPK;SP&*GS+?lyDY_vbyIs4kUD@^F1tz2JmbW^tj_{9C!_Cd4n3
z?Qx#DHRq<ceP7X!Y*WSLHn~k(9Lz5BDo=1*W%G5v)~nyXf37n6O0DpopOhjNlaU=^
z+a~hap=(<tv%%-3*Dkz`w`CT%Zl1FAU0$9^Zr1*L7aVu~uW^3jF?)Wsk%r{)KhalG
z_HD`D%KSjfyYqAUapUm9NxDXcN7tpNZJN1~)h*P`CRIpLrKs=Kv6%<7<i&3-Id?iq
z$Lq7OYs#$TT`@{GO-{;OSbtU{)c(NE*5}?`SB<|eUHj)_dA*>+oi+3S{@edN+*}tl
zk-DaC$9=JDo2Aoc-dfAc*kCJk?x<CV+R6)tT${pf=C6OevdVkon~>Qzlyx(`vbM-r
z<evD&;Big*=<>~O+Jf&iolW*k+V=fq_?mRR*ZMD+KOLUE>!e+jA%k=Cl$k0F8aA`G
zT-wy9@HMjAR)fcHg+^yu*ecPPm)Ils%>MS{=n6I`rC#p4>!eR6r{1ZVws=kOdSPoG
z;iBiaZ<g^sSaG*(`t&C^FWkFRtfzNULhSZ}n{k~FcHENeJiX=Iq^_99(_fUwu`75)
ztxwQBcxgfAAuC-OrGLCpY3-lypKdbBdSBEUd^qk{_=FT&hAljuDaWL<4l@`>OZWzB
z9sc0({U<lW+q1u({9VrAG~G}kk^TCWR0Z25ITc%Yp3A&iZ<oJMFZYN|H&f9XH>JJv
z{w{Q%H0`Ob-+zxg9)ZR$E-Nt@%uDfE^6AT~Bl7#hzZw5r#ag6kwa0MnzRdhv=Wo`m
z+vq&?)s(gjO>4cYVJbC3S1a!1{wV#p{KT`S%+ig4T*aB5r{)O?KiU<0u77b-=*kzt
zT1%q30{dTSTrE$P;!+Nk_~Ixm&5$vzGo;e+#^TGb{)jom+@FxQ>i!##-pl#74?J1H
zpL3Nr%F}gj<>x(4Pv-Pb%dWC^yrFsQ#@DoJ{%;}M7=pB~UTE6zc+<0GXG4n?hTbgR
zq`2H#$YYmsylK+CBd^bUyxp+GWs}yNn@_kbcPg_b>t4*=ZnNm)k$sn0=Ds?S-MuJk
zr__>V+fsJ!PgbpXF-dt+1jpg0&-yyfPZ60CCYG#Ol$Y-jFIZ#xJoKuOOT(_W>KkJU
zzn_~}ZRqb(C-StwVAt!(FHV%p|H;fWND9Btxcr=4_A4=gZMh3}Rn9u@9MmF}ZfdFf
zUw}QD=Zo}B;lN5!p6t3AyEJQ`l&qSyfBJz4-ea?78*hp3NY%}I|2n^3zM(PXNne&4
zw~p^kHO~F%ua5oDW>|Mq=*gAi-nI@VuQ%lGUUXv8x=kWiJGnxloSY)9eLrRC%r~C9
zVCGp-Gl^Ymluf48Oy^ep*;OoVJ-yhVSE)GJ<M!7BHv9*!Gqse3_y(?){&f9leNR>K
zD&@HfVRE8>!}$HCMs@Esn<pcv@+vXKYoX|lhrjlxvc4}gOFJ;fMlN%n8*9z!w+f{(
zDf720ecd-LQ)X{OhLp*~|MzCi|M#o^Uw-ep%k|5B@8$+QVB#`t5n23f`}6mwG*9+#
z-FqM?|20p3iJtTApO)f18`j9Jy&<F{ap=u9jjVGgr?-Vp4s=MHxj{N%bDHe#{<;%)
zvm}kbx`;%CstD!l|DC*^al`Gcs`r0LD1|@l)w{yr6go8_Sw-@F#?e!zSC;Bs7LoSN
zS^F|wwOIej1?|RHcE1)*Dt~v)vMV#(x~P8tRhg=dZ@Ggq8Fwh<OjJJkDr-vk+_;zK
z))VF%U3}QPDC=PVxq1JN**7(vZ8<F=d-mN;|DGN5Hl*`rA7+o9xj^$)_mrc%dbkz^
zWm*eQp7$|1$ZOu|7T2$=(y~#K3qFL+dC>Wig=@ivbE|fl_NRYu|Nnc(25tQ$Kc9W&
zrN>IsyDcUk{JMzu*ZZYsbb}ktOv^a9#!)tD?Gt0AcWzg@7aa^1E%^1M-68OybC8?i
z=g2GPC9gbHskxKaS@YH0e2UDTy*t&_-`yxHI&^EpTZWR`cH0hmY-0(!v$N{VEnfHB
zwV#|q(>^fVSoLVLUZnC~kGJbqnKT(4e{1C(XL)w_d(G&iE%W+i*8j<j=k;LUoXCFu
zfcXDs@y8X-S`3yhzM!)+RCA;3-LvabU$Mn$8SML7D{}wY#c3y<C$x4P%+gviHDvXS
zrZqq1q!ztA#J+dswLCA6t?a#%Zv2b?-+e+$EVVZ5XV5p%``<S*weT_DzGv2QfN|{=
z{b^29c0`HX3;QzT{H<cW$_J{NYO}vJ%$Xt?lwoLHt~EI!XQhJF>XKi5uji-FQNLPo
zMDDo$FRlZt?SGVC_UupT-0RzT%HsEf>-D(>=Xd!`=uVn?YJckA<x{GYCM)q)mwf7C
zd@Xrl(T8UBWk04!?);c}aN$~+llkqpW^4}d=%^G+Y?@m<@#O~b^8a^d&GXT%Fx+^O
zul9+X0^@>+S#JVXyk5jJwRD0|Q#IGZw~{yIjx?M!<6&F1XJ4F_{JeRkuOb&NJ%6e?
z`OS=2x5i6qP7fYLr@Yj<zld2%dg`)M45C^7|9<Ybu+ZQ7h%xHmb`MVbNCC^gZT0*G
zGYccPrKH%;PXF3mCavryul0oG+n#ND@=`xt)-7MF%ko&MA%**7;->wc2Ae*L_V0I^
z^(lb)<6`Oc2RMq7?ldp<X3TtYHH@jOuI_xs=E>=vJ5DTG<t%kkkD+1v=cjSI4A(jD
z3O8NO&(E&wd{g;0qr>&IovN$64}Q7xVoKMgN2|g&oV&5`eN)oS9l~Mh4<=h}+b6lM
zD#@!eSknG=!s0XGyDpf1Y_61is$>u_t!HQJp1ER%%Z*N+oWq|yx$#<IQg^Utf{31%
z<<Fnahl@VgOuU%>s3ApCd)vN~2X>qnIA)Y(*d61?FMRLG2OoA}ozyDJv(5T_cO6)7
zeJwVe7WL?n>*;cLW2v=44_%_SF>(ZMYPA)XUKz9M(;L4O_oD|}z0zA^rix8wUjK`$
zhmAekvvk}4ynjgnACh0D7M1bNwRyPk@&s?awVBO%?fZiZYmR&U{F5#y8T#R=+xpep
zbh)gfoX*`lSIM)nCe38e#$Ag7u1O|t`DA=;Q(Ee-sjP`9S}Aiir?RmB(5?zPX1_6g
zO8By#IcL2c*Z#lRfBf=%j`KHpmuFPp*fa5(_{?4>&+z!-177p8nZz}|y@s!o-n{<Z
z4f%A3e_j_S$ZNdF<Vu{g&UbbYo34`Yo&8~ca+_2ccKO$t><IFhkj1xZ|L4_4dz>1U
zeae68v1$8^(-HAs=cR5JIAnWd$IL?8lz)@g8zggHG<`ogd#aGs%qf~@f*&v6eDIc%
zm0a=0n6wjWvHu^iFW>(&TEk++x8wC;x18N?<%UjKsTMxHZ(ibBw};D4ZkAXp9Z>ss
zdP461o9+@BRmXB}gzy^**gQLZ@{xZ@Mozdy*Jal{X5-MCzA8S-rpr(LeD-|m>A7A<
zfB*2m{P+0%+xpzSZw=PJPPOT{m~6G$DcwG37QYUIGVi4gK09~a6ZQHawK!GQ>oCI~
z>-$YLnQJ6ui%P1+`u?9e82Iv)szJhz&+gyXHPmQC*DbrXXXP=Uo3W94R<D(rWsfXl
zZ0O0^_9@SddDGjBeCdWG7Kux*K6)#u^5y8uM(YFee*M?v_O7!ryAUGUZ6NWm?uf{-
zQw>g@6ZnrM3TB@V@D2#yv{Ag}(EUG&?>?IDtId=zUb+6o%~>sXKJLC!yYjI-m&eR2
z9&>76MNeb7;#hlyZ{e;#4YIZkwW|$`a(jPY7yquM{#{8#RQc=qiEL}~H@{uKLUK-Z
zf`Vp7>Bq+kyVoa+RUi2B<$XTum$c^zu7_LA4@XS54QloMIYs|()y}Y1cHOq9Ya16I
zo?d3XRiyT$0bA4G7t3~?<M}oHS+J?NfkE@WqAI^m3yI7F0S<j3d~>X_r>y-VaX#}<
zXZS^p)%%RS)`UFO%1Ar#w&%)3;a84-&NyD&CKFMpu{>+b%EILSqD^zYUfEvT;<9Sy
z#FXi&8<#W1iwV0=Y+2ADZJqMuAV<~mKG|k|-YH!>1#fsLe0RJPn9#l_;Hkkr5$oyM
zroG~mG>ks~s&nfr)`+Pyu-SMx(m%TMGW+LQ4}$-`eYo28VL<2M@U2PO1q^0x6O3!q
zr1TW$Kd4vL5o`>OE&i}F<$H?w3}%+v2iJ}YZ+kke|D5f&SNph9Z$+Gc{kliFU0CwW
ziZizR(>tGt?qWD_ewnMXyI$O@-;;NJ^Ip^5ejqc;fHBDOxZpQU`LKqIb9%g{=k#fx
z{vEMrjXmEyE{Em=-xtMlvUEM}`4@k-V7|dZ#-j?ZS-SBWc^j8)Z+fuOc2BKg!v60m
z?=?ABnP$7c_;x_5SN^hJikBs8NMEMvnlpRsdX}!7B_e3GNnOf*8lSh0U7o7Bk?P;n
z12^OLIWV+Mp5$lLa`DIaJ?1+tqMjJ7tE*QH6Ya~iPWyc)`rF6($yQ<aLMJ$wPP6*9
z?o!;+|KSgB`}V!C33>UmbeAMU=j1raFRp?w=9rbpoQ?c<;()=+u+^fAXI#%_&^cOT
z(Dsq>>5;wDv~S&iv+wAo6Jf>+uT(Qnb=%J6(4^PSceNmwamkc}KBvQLr#jo5$}Z;E
zbM-yn@51PhH}(ZP$=@nxN=cf$`{>Ep>niVch%B_(ylJ;9!}<!X-n$VCm$>!n8cw^n
z;?D%NH@cIS^l24M-`An)CJ`*^xaPpT1!wjO%Rdf&V}0b;&P{1Mp8YtVyye#;iQK7~
z#e7fhNz{h4TQU50ZY+0|PWf{4{Gul|K0l2aG$xh!|LSn=i_m<RSi0u4OQ%5p#yMr@
z#Z-m({1wELt**FL#{``FYw;<d=hT$&pIonZ?_a%XYU+(ATyEBnK4p3Y9%ZgHoU-os
zmXbI2hRbwY9M}3Q-QDX}aJAJpvnRXj%7ot^ye)S+hiKRbhUDqpn=~t+tmXYN)yc~{
zDh`Emn!V(GbniUxv9NO{ZqNL`9h&{;pVyqHv%f9do7p}~K5>eSp_lLa9h#z>e%=*)
zAF|EJ-DT$WtVPKWjt4br#Wg=XwI|^6Z02Q$p4`_k>fAR^{m%1Blf7H#dsg^v|Cw|u
z>G_o9_D47tDxCAGTh7x|*P`ziVi$jkUs(Bx+TjapuQyoE?JEiD(pbMz?)R=I0jkXg
zUK<l~18ojAZF(7X^2UyEpG6xZ`L!RO*_a-`T&X|m(*GCEDxvQlr@0G%T&W|z?xy0K
z9ly>dGzAx>E#aDKxKiMETXXlaMN9Zyxppx5ZBqI0e|veZb<u5uF9Dy<`0bj_pnKu}
z|CM!4Q42CI>P$MDo38V%QN%THQ@R<)ClT99n{6%^l`1`ME_o#U-7jCt?vL38BcJt8
z{av@mY@0Vzf58K{E&Ct8wX+UiEcx+QnVkshtMw^7OvP(WW0UoQ^`+lv%Zta?<T0vc
zt<HXP#AwI4X@AbXzWhjp@%!8l6RNIpCUPrFvR9=px4pS><p!%?F4b*Yugurkx<D&-
zo~icTpQm5MT)F;d|Dtsp^_0R77I3S7c)9gjY}7kF9`D38?z)Rs{Ft&}=3`-r978_u
zjhWnj*`L<saO*bq9pXAw9(Hhg)q+gbbsh6&>s<A3*yTR&>$)9%nL=iaM-xiFf4%qP
z%%9%9Y)_e-UnvF{^C<qmw&c~jy$Ro6mF{~N{PophRYO_v3|_fgyFBLKd-zzH!D{cb
z<WJK}V_j!SOT2tjmcS=|vi0!Nw-0@GymDr0-cr%n&-B<`=J6a;`_+}@X8nf(jkua;
zPJb$@a(b1>o1Hb8S_@X(JQ?Ki?r^gA@4)Qv#pk*8ZS|+`HrGD={bCO1Qd`ELO0F}X
zCP@metPo87{9NjKgphNz+C!Ej72?y^&sj2==hB>wYXn`qX1@73Q%6$!db)S#s`;0D
z0~yb-EKolXf9#>2GhgEFGYOsgH*BxIh+bvh=$<LL=JgWEwATS$S%1T(uZlVKk&%IK
z`7)i!VyvHzW$7C(%9oz>_;b#-TZt>;&8KyT89Yb~PtUGnyTsIL>Z`dtM^(<?#{8`x
zwC-OuN-^C1>vh0Ye};kyS7&L;*D+3b^-iXEB2&eeKaoY;m;XxNxx3w|)Xm>RV7=<D
zlD;X~vwW6?8Q31#(;4|nUG&hbzGD&_wT>#O{5w`><lyyWpTdMcE1xD=*MIH5Vy6>3
zf9Wcb<x9^d1{D21pDC7g`N<X8tgFfKOMIqf-O(uN=+o`GHRa<LUgoo{cR1Fq&(lbo
zd{tAu*V5srVAQKQpEowvc?I!wPmfZtOZ_sl(Y(@h*2FdmPKL_|=daJ7v*v^|ZzHeb
z8~4n}rn9R&I$wN^(ThqEoW?NO<DuEk_S9SPerll?Pq@t7qE)RX<f-iuxhZnW)KwFv
zT$X0oQSD&YadzQpWB(w}Foo|=7tQ846Jr&;f;}^0+S;6A_u3;<nss^Sp5WO!FVe4@
z&*j7?@rd9bQ@1{4jO(k}vp&{^zf>am(G-8*X&h&wEYw#it+k%i`f2lllhbyE80IeX
z*}`ywvrPH7LTUb@=)U^MroV?ftc@8Ag=3eTpS8lWFiPjObGU=_fg+Q6H^SfTxwDpk
zKl6i{1AX6S7Wm)a{-S6)`|=Zl{&!w!n6tcS*ehqTMwLBtMn$6Q|E7Hpu7xFvJh-}P
zv9|UpGeIVXCoXY?r?ZsP&i;>z>hkv$nl|aQLIGDG@8&Ls7w?ZRfAmZ&=UktJL}&Qy
zFPY)9J~_;tedhL^4Kb$`Pfyw#e}c=Zz%FjBkJa@8XXE^{1;q=3Z&jvVtY@7dzW8{j
zhgxu=hnk7``J4{Eo6IL15A95f+Fj?f_x&V?9ZiOboA_k>?)IN*JTd3NWFF}-nXsUO
zT30O}l|9ZzPv2e*lL%ryXOs0ZsK5Pb*Uc_d-S@657VUoa@c9*Ed5r~^z8@1(6S%qU
z-~E5zMRM+oX)60(Tee0raO%w1{|7ftcvo$)fT7~|#y?f37~Y9zt=lvC-(11+bsv2=
z`6ZINcK+tx{QSz275~1RKlz_kAuvV4_hs?3l0R;Dwe45VyzV*u;mHfXB>LlCtN1D@
zZ@Xr@D1w{a^<L?v|2#UoVndd#KW0#TROP`xqi64OXT21D^XtCs-5-xqGvC|^UTtLa
z`bqlln|0grGf%%-VrE%vvMMw?czLb6*y#dBWi2x%mis|#RX*Q-={RRUQ`E#O4cGe5
z*n~!h6@GuZ|K!(8)Au%SE&Uy$9sSu*<Wil5X#-!#afMq-;!4l&wLXx_aC&%%%_&O5
zW8a}1YnIKmTJIFvgw!gY?AgX8I<ItP+w?Ox-fg~eBO|dsOg!(<2Ek`C#g`hSFJ{!J
z*<NXmmiuz$!+cq#oflPSG92B1&-UfSoW%S)Hct=LZ9eFhY-PIO8Ix&9)L}3Gnj1}A
z*%u@B9E}Tld+Pop`T7L0Sm6^dW5c66LKlVGnpy7%x2e4&cHork7k7SLrZxOi-Umxh
zOKX4g`mOS+`4)1{?R6#fpSFlI+)&ARQ^~cVd`@4j!glEox0KJD|N6f7*_FDD9UOw!
z*>3lrHnsY5Emw6Z*VUBJ*<9(1?Cs|~Owqr-PNi+x?l{(<$KPU3DXKCY_c6V5Gw+P&
z-|L!xpGotaTzqT4LHO2r^WEmW`BNh8z-BAHX7`=bwJz;xkG=$*oNuQ1X2PQCx3_ig
zJ)X9+gYV3`?VC%l^JfHq_3HPZe{8e)w!fBl`W9bs-kqUZwQKGY*DpfKMN?*Eto_Y-
z&4uCLkLR0p4mzs|u9{PDrbI?;E@NQt&ZRrb9x8Pe2=9D8Ym42Rm|T}9b|DFgcCV)#
zJl20FsX=zJ(8Ck4Zx5U-uuW84Qup}Lok=U^?%w{0JzT$f;*J{ry%%rolUnp$et&Gs
zKJV&@OBfgMroYMhAN|np<%BN{96m4Za_aqN-n1`yVL;G>|5rmbUiWV+k=DFu=;k8g
zckhP8?4H}|rCRF0Cs)5T{+p<)Gf(>Eo%o{v%<JszazF=VqaCAdp#V8s-^kd|zyu@@
zI!N2x5-MtAqo7aRLE6L~pl)ntK=J|V3i>{&dFdq?3Kj;?gS1PNN-7Id74$uG6Vp?1
zoSzP|$<B@o>R*q}w^y}=4jAwp33&OhJuk3+rsip>x6FOctU^C6R^<NKX;Rei`qC*w
zyUkM%vqV?6y|r=vRmAh*7td|06V(j4vX6?Ga`)a{{f@Ka85bugoS^2W=B0o_4D2!x
z!`vJs31S(-f|mF|403nEc?i8R`1o@0A@m@h=?9=*T);)(5PC!y8bZSmau_)%rind_
z9AqydL^B%S&N}UT#6iGib(PK|1=gTPE*^6{Iz>8|SFX0)l5Vr@`*G1<C)-!O?Juv@
z$jmiX`XJ%2zux)sEenPXrqZ{h&RX2wR(i|EblR4=tO;&Xp0flQdQGHG=AHFmZg_K&
zjp63zEM-rrZK{_KUE^oaoHlps&MP~ne#<?sYV9q>xj?XN(`>cdtlSKimw0|&=9|{i
z$lxJSxW(a}N+QF|>(5gfZNlU3R(1(;FeY#)%B;QQ^yq?M$IYy*3`^GD@}AJX>D7ex
z-?udREmas4k6(C~{oF>?(elN^?DRYiO&fO8?4KJ|_FvL$)!rYmCW_(8?L&)iPjHvN
zvqj|L!h1Wjo`yVOOZA-Oo*%tciQ&ody*nZq<aR`IC8qO--e*5hT@&lwF!O0yC13X<
zjej=zHFCe)I%4?xPIWKRaO;>OoFXnWRopdjj-~pECXkq1vPws2mWb=e=xOiI_lHbX
za1Fep`hRWCcMC1Yu0=bJJ^c5gb-5NuSmpY>6Zfk67Yi-X_@`bT&-|P5k6pneP<lg4
zjG!n6B|&3L@Fg1{rV&z(cFr%&D^W01(D%+vDOQLE-FyMM$|6=lKLnhs0us|xixuqb
zKqiCqTA*kyN=+=u%+GU4EJ;<+aIrEnFfueSGcqu=FflhV);2IwH!x7w<kEKrsmm`?
z(8x_JDagq$$;nJoFxE5FGt^PYC@Cqh($_~w=;arsYjWua6y>LsCa0q6DM(3ENJ>o3
zPR&b!=+{JYSw&H58kd2Bg)x@_94MHXni`ubq$$9~Ko^LBq!scYVkQP=7M7+8ARz;o
zn6Z(Cg{dK?n1wNhm?bDYK$;PHEe#AX)L9xBnV{+g=`lmI*TBHQ#K0UwosoeBs+h5%
zsig^;dB#SThM+4`K<2{TVr*b!V2P&J)Xc~fL(JUR0Np$bLlX?YSs0m`pt;Y)z|6=5
zBdpAgFx+BfZh$FfW@?D;79$H|BQ!fe{x!o8Gc&|gXJ%q-gyvsEGgFLsGc+^D@UNkn
zg(*fjn^{_*yU)<v&;&!Bxe-PhGBh^@RRk#UVQ6jvstHiVER2jW?65GlG(h)<g*j#z
zSQ?mPgo~w-5r$q%V~jXAv@|or2rElV3^5}EBMg5S8JL@(rCnnq153<2V`yZKkv0rX
zj4|?up_v(a7#JCvTVkrS#MEnKh?(DvOf1dN!q3Ra3?tr*j4aI1<I>3303+;;jExL2
z{9$Z@neL4(Ofc*<wzR+yGcg9;{DG1Vj7&_>%L8L06D;9kYJeFZrX~g$?lU#Rj3YAx
zBaC=6Gcv|-pQRaQ7+9JcqNgik14E4bVQOY%jGiV<&CJcv<I>d393x+vnj2YQDTmC^
z?X@s6FhV!a!pOh`Q_K{-j4&}UwXj69!^FVU5=*^cWQ3MKKy`&VTKJh5m|2=4iIo&3
zX6B?8ae*3oo_T5c3ZOz%AxJ?#C_f)m&w?sf{ou^1R0RuTP~}xzl2}v%uDVPN%nc1J
Lxl~nM{oS|#Hr4y8

literal 0
HcmV?d00001

diff --git a/pythonscripts/figure5_tr_ml_po.ipynb b/pythonscripts/figure5_tr_ml_po.ipynb
new file mode 100644
index 0000000..d490148
--- /dev/null
+++ b/pythonscripts/figure5_tr_ml_po.ipynb
@@ -0,0 +1,440 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Zonal wind response: tropical, midlatitude and polar cloud impacts\n",
+    "\n",
+    "This script generates figure 5: maps of the impacts of tropical, midlatitude and polar cloud changes on the zonal wind response in ICON."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load own colorbar"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mymap, mymap2 = fct.generate_mymap()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated (total response, SST impact, global cloud impact, regional cloud impacts)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# simulations with global cloud changes\n",
+    "runs_glo = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "\n",
+    "# simulations with regional cloud changes\n",
+    "runs_reg_TR = ['T1C2TR', 'T1C1TR', 'T2C2TR', 'T2C1TR']\n",
+    "runs_reg_ML = ['T1C2ML', 'T1C1ML', 'T2C2ML', 'T2C1ML']\n",
+    "runs_reg_PO = ['T1C2PO', 'T1C1PO', 'T2C2PO', 'T2C1PO']\n",
+    "\n",
+    "runs_reg = runs_reg_TR + runs_reg_ML + runs_reg_PO\n",
+    "runs_all = runs_glo + runs_reg\n",
+    "\n",
+    "# responses\n",
+    "response_all = ['total', 'SST', 'cloud',\n",
+    "                'cloud TR', 'cloud notTR',\n",
+    "                'cloud ML', 'cloud notML',\n",
+    "                'cloud PO', 'cloud notPO']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal wind at 850 hPa"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T2C1\n",
+      "reading T1C2\n",
+      "reading T1C2TR\n",
+      "reading T1C1TR\n",
+      "reading T2C2TR\n",
+      "reading T2C1TR\n",
+      "reading T1C2ML\n",
+      "reading T1C1ML\n",
+      "reading T2C2ML\n",
+      "reading T2C1ML\n",
+      "reading T1C2PO\n",
+      "reading T1C1PO\n",
+      "reading T2C2PO\n",
+      "reading T2C1PO\n"
+     ]
+    }
+   ],
+   "source": [
+    "u850 = {}\n",
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "for run in runs_all:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats = np.array(ncfile.variables['lat'][:].data)\n",
+    "    lons = np.array(ncfile.variables['lon'][:].data)\n",
+    "    levs = np.array(ncfile.variables['lev'][:].data)\n",
+    "    uwind = np.array(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()\n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # find index of 850 hPa level\n",
+    "    u850[run] = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Calculate DJF mean\n"
+     ]
+    }
+   ],
+   "source": [
+    "print('Calculate DJF mean')\n",
+    "u850_djf = {}\n",
+    "for run in runs_all:\n",
+    "    u850_djf[run] = fct.calcMonthlyandSeasonMean(u850[run], months, seasons)[1]['DJF']\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF jet latitude in control simulation (T1C1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "jetlat_sh_T1C1 = np.full(lons.shape, np.nan, dtype=float)\n",
+    "jetlat_nh_T1C1 = np.full(lons.shape, np.nan, dtype=float)\n",
+    "for i in range(lons.shape[0]):\n",
+    "    jetlat_sh_T1C1[i], _, jetlat_nh_T1C1[i], _ = \\\n",
+    "       fct.get_eddyjetlatint(u850_djf['T1C1'][:, i], lats)\n",
+    "del i"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate responses (total response, SST impact, global cloud impact, regional cloud impacts)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "du850_djf = np.full((len(response_all), len(lats), len(lons)), np.nan,\n",
+    "                    dtype=float)\n",
+    "# total, SST, cloud\n",
+    "du850_djf[0, :, :], du850_djf[1, :, :], du850_djf[2, :, :] = \\\n",
+    "  fct.calc_impacts_timmean(u850_djf['T1C1'], u850_djf['T2C2'],\n",
+    "                           u850_djf['T1C2'], u850_djf['T2C1'])\n",
+    "# regional cloud impacts\n",
+    "for k in range(int(len(runs_reg)/4)):\n",
+    "    _, _, du850_djf[k*2+3, :, :], du850_djf[k*2+4, :, :] = \\\n",
+    "      fct.calc_3impacts_timmean(u850_djf['T1C1'], u850_djf['T2C2'],\n",
+    "                                u850_djf['T1C2'], u850_djf['T2C1'],\n",
+    "                                u850_djf[runs_all[4:][k*4]],\n",
+    "                                u850_djf[runs_all[4:][k*4+1]],\n",
+    "                                u850_djf[runs_all[4:][k*4+2]],\n",
+    "                                u850_djf[runs_all[4:][k*4+3]])\n",
+    "del k\n",
+    "del u850, u850_djf"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read masks for significant responses\n",
+    "\n",
+    "These masks are generated with the script \"calculate_significance_bootstrapping.ipynb\" based on time series of the seasonal mean zonal wind."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ipath_bs = '../../ICON-NWP_lockedclouds/'\n",
+    "du850_mask_sm_bs = np.load(ipath_bs + 'du850_mask_sm_bs.npy',\n",
+    "                           allow_pickle='TRUE').item()\n",
+    "del ipath_bs\n",
+    "\n",
+    "# only store masks for tropical, midlatitude and polar cloud impacts\n",
+    "response_sel = ['cloud TR', 'cloud ML', 'cloud PO']\n",
+    "du850_djf_mask = np.array([du850_mask_sm_bs[r][seasons.index('DJF'), :, :] \\\n",
+    "                           for r in response_sel])\n",
+    "\n",
+    "del du850_mask_sm_bs"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Prepare plot\n",
+    "\n",
+    "Shift the longitudes from 0deg...360deg to -90deg...270deg for visualization reasons and select the North Atlantic region (otherwise it is very slow to add the dots for the regions, in which the response is significant).\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# shift longitudes\n",
+    "du850_djf_shift, lons_shift = fct.shiftgrid_copy(90., du850_djf, lons, start=False)\n",
+    "du850_mask_shift, _ = fct.shiftgrid_copy(90., du850_djf_mask, lons, start=False)\n",
+    "jetlat_nh_shift = fct.shiftgrid_copy(90., jetlat_nh_T1C1, lons, start=False)[0]\n",
+    "\n",
+    "# find indices of border of North Atlantic/Europe box\n",
+    "# -> makes plotting faster (important if mask is plotted)\n",
+    "lonind_west = (np.abs(lons_shift--72)).argmin()\n",
+    "lonind_east = (np.abs(lons_shift-32)).argmin()\n",
+    "latind_sout = (np.abs(lats-28)).argmin()\n",
+    "latind_nort = (np.abs(lats-72)).argmin()\n",
+    "\n",
+    "lons_plot = lons_shift[lonind_west:lonind_east+1]\n",
+    "lats_plot = lats[latind_sout:latind_nort+1]\n",
+    "\n",
+    "jetlat_nh_plot = jetlat_nh_shift[lonind_west:lonind_east+1]\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot maps of tropical, midlatitude and polar cloud impacts"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAIqCAYAAAAaSpDbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd1gUV/fHP7O7LL13BCkqih0EOwL2HqMxlsQSk2iaiUaTmGiMmhiNGhM1ljRL7DUmRoOICKIgiKJYUFGpIr13lp3fH4NYdskbf2mvb/b7PDywh3PvnDs7c+bMaVcQRREddNBBBx3+fsj+aQF00EEHHf6t0ClgHXTQQYd/CDoFrIMOOujwD0GngHXQQQcd/iHoFLAOOuigwz8EnQLWQQcddPiHoFPAOvzXQBCEcEEQwv+B4y4QBKHRfExBECYLgiD+jp8F9fwpj9CLBEE4JghCz79tUTo8EVD80wL8UQiCIAAXgJWiKG75nWPWAgaiKL74lwqnw/8KDgPdHvjsA6wF3gTOPkDPeODvo8ACJCOnBfARcEQQhPaiKKb8lcLq8OTgiVfAwLOAJbDjMcYsB64JgrBEFMWbf41YOvyvQBTFXCD33mdBEAzq/0wURfFMI8PyHvhflCAIN4FTwFhg6V8mrA5PFP4XXBBvAltFUaz9vQPqLZBTwKt/lVA6aEIQhA6CIPwoCEK+IAiVgiBcFwTh/f8wpmX9mKL6MWcEQRj4CM9mQRBStIzVcGkIguAtCEKkIAhVgiDcEQThQ0D4E5b3n3C+/nfTv+FYOjwheKIVsCAIzYHuwL4HaBMFQTglCEKBIAiFgiCcEATBV8vw/cBzgiA80efgSYEgCJ2BaKAZMBMYAqwEnH9jjBPSg7ID8AbS204RcFgQhEH/DxlsgDDABpgEvA4MBKY87lz/D7jV/771NxxLhycET7oLog9QDlx8gOYG/IB0oSuB8cBJQRDaiqJ4+wG+KMAeaPfIeB3+GqwA8oGuoihW1NPC/sOYt5HcS93uuYoEQTgCXAUWA78+pgwzAWNggCiKafXzHQNSH3Oe3wNBEAQFkpHTHFgPJAEb/4Jj6fCE4km3/joh+eHU9wiiKC4SRfEbURSPIwVCXgDSgOcfGXsFqAM6/13C/lshCIIR0APY/oDy/T3oBZx50E8vimIdsBPoKAiC2WOK0q1+vrQH5isHDj3mPL8H44FaoBrpWmsLDBNFsfAvOJYOTyiedAXsAOQ9SBAEwaveZ5iNpGBrgZaA54N8oiiqkF5nHf4mWf/NsES61jL+E+MjsALuaqFnIfltLR9zPkcgWwtdG+2P4lfAD8lFNgMwBA48EMDTQYcn3gVhADRYVIIgmAIhSDfU20ivllXAd/W8j6K6EboOfy4KATXQ5DHHFaD9AekAiPX/B+k7Vmrhs0Zye9zDXSS306PQRvujKBBFMa7+72hBEIqBTcB0pCwcHXR44i3gAsDigc/dkII6z4uiuF0UxVP1N4F5I+MtuH8T6/AXod7tcAp4XhAEw8cYGgF0FQTB7R5BEAQ5MAaIF0WxtJ6cCtjXB9nu8TVDevN5ENH187k8wGcMDHsMmf6/2IKUCfFOvUtGBx2eeAV8HXB/4PO9m7v6HkEQhO7cj0DzAN0WMAJu/IXy6XAfs5Es0mhBECYIghAkCMKLgiCs+Y0xXyC5iY4JgjBeEIShSP5aT2DuA3x7kSzi7YIgDBAE4TngJx5xT9XPVw6ECIIwRhCEEUhvTJV/xgJ/C6K088F8wBZd+qMO9XjSFfBpoGm9MgU4A5QB3wqC0F8QhCnALuCOlrG+SDdt1N8i6b8coiieRQrEpQNrgCPAO/yGX1gUxUygJ1IQaz1SuqEVMEQUxeAH+G4CzyC5OA4C7yK5oG48Ml8eUuZMHpJFuhYI5m/KTBBF8TDS9Tb7Md8EdPgfhfAkb0kkCIISya83QxTFrfW0gUgpT82Q0n7mIN2QeaIoPvPA2FVAe1EUg/52wXXQQQcdeMIVMDQo0uaiKA55jDFyJL/hHFEUt/1lwumggw46/Ab+owtCS2enez+HH+B5TRCE5PryznOCIPg3Msej9AWCIFz+g2tYDgQKguD5HznvYzSS32/XHzy2DjrooMP/G7/HB+yHlD9578cHyXe6B0AQhDHAKuBTwBvJx/WrIAiP1rxXAZ/9OWLfhyiKGcCL9bL9XgjAi/W5wDrooIMO/wge2wUhCMJcpOCJkyiKFYIgxAAJoii+/ABPErBPFMX36z+nIEWlpwLPiaJ4oJ6+AHhGFMW2f8JadNBBBx2eKDxWFkR9790XgW31yleJVA4c8ghrCFIF0IO4F/1eUl8jr4MOOujwr8bjKsJ+SHm339V/tgHkaJZyZgN9tYxfArxU/7PhPx1MEISpSFYzFuYmnYqKyx5TXB100EGHPxWpoii6/VmTPa4Cfhk4K4rihUfoj/oxBC00RFEsFARhCfCRIAhb/9PBRFH8BvgGQBAEMfjHt1mzIYzv101lzKQ1DOzXHoBTUdcIP3UNYyN9tn47jZ17pT7Y40Z3ZsZ7Ozlx5F3GTFrPwL7tMDVRsvdgHLs3TyNoyAq+XDqWnftiADVjR3Zi5gf7OXHoLca8sJHRT3ehtKyK4NBL7N7yKkGDl7Fq+UR27JFSh8c+042Z723lxJF5vPvhTrxaSp0Vg0Mv8s2al5k87Wvc3ew5FnYBmUyguLiCFs0d8fX1YtDALgwc0Jmqqhqat3yevLxC9PT0NE+C+pQWWrUmTZA3chLr/hivTF87rzbItO+4c6lYs1VzbZ3msdSNuMNWLpxH4FMjeX/8KOxdmpKUcAELOwd8+w/mwoljzNmyj/WzX6Ndj0Aq1HISI48x9uPVfPfGcwx5ax7XYk5TXlRA66DBhK5bwnMrf+Dgopl4dOkFosjt2EhGzP+C7W9PJOi1uSQel3rztAwcTPiGpUz4cis/LpxBs85SDPlWbCRPf/QloasX0nnEOBKOSfzt+w7l5I7vePajz9n14Zu06NILgKSYk8zbvAuF8uFqaTN97befsVKzqtpQy7VhINf+PeorNOdtZ67l2gKoffTlFagtaoT30bqW3+CVa0lzVpVq0pQ2mjQApT0qVR17D0SzZMUBZIKM99/uzzMjfJHLH3lx1xbKqWuk55M2edVVGiSxrkbrcJnzl67aJ/7/4Xf7gAVBsENKmn9dFMVv62lKpF4M40RR3PsA71qgrSiKAfWfU4CvRFFcUd+M5DqSFS3nd/qABUEQ1SUbycmrwsRYn/0/neVMbBLHI66Sl1dCn8A2PDPCj9FPd6a8XFJQxsYKcnJLsLczp6CgDFNTAxDrKC2twsrKhOycYuxszSR+dTXGxvrk5JZib2dGQWE5puZSr5eH+O1sHphfn5ycEuztzSkorJLmf4C/sKQOS0sT1Go1GRn5ODlZoVDIQWEKQFlZJSNGzqNdWw++WLVXy6r51ypgURS5efUykUePcPzwz2Sm3KZt5274DxlOx+49KUEPfSNjSvLzMLexpayoEANjEzKLq6mpLMfIzIKygjyMLa0pKCpFEEDPwIiKwnyMrWyoLClCaWQMQE1FOYZmFpQX5CE3saS2Srp59QyMqCjKx8beXiu/WFaIiZU1NZUSv9LQiJL8XEytbakoKUK/nr+6ohxPV82WFjoFjFYFXF1dy5Y9iXy28iBOjpZ88M5IBvb3Rqgr1n6sv1cBI4rin9bA/3F8wJORSnwbUrdEUawBziG5Jh5EPxqpMBNFsQqpJPMdpLLM340xk9ajkMvw7j6XKa98zYbvj6OvVPDtmink5JbQN7ANYyatZde+M+zad4aXXt+EQi4ncNBSbtzMZu7CA6xYHcKNm9kEDl6GnkLOmMlfs2t/LDv3n2PMC9+jUMgIHPIlN27msGJVMHMXHpD4By1FTyHnhVe+Zte+aHbti2bMxDUS/8BPuHk7i7kLdjF3wS5u3MwkcODChie1TCajaVNb6urUhEdc4qMFm/APeBOHJiNp2tSOFctfeZzT8D8HURTJy87i8rlYQn7cx/I5b/OUjxezJ46hIC+XYROn4NayNbNXriUm9Chx4WGcP36U9bNeQ65QsHTyaLJTkzmwahkRP6wnLy2Z714fj0yhYNeHb5J0+jhXw45wcOEMBLmc7TMmUJCRQuSm1UR89wUFGSlsnzEBmUJBxIalXA8/wvXwIxxe/DYyuZyd77xIQXoK4d99Qfh3X1CQnsLWt55HrpCzc96bJIT+QkLoL+yc9yZyhYLvXh9PXloyx75eybGvV5KXlkza9av/9Gn+r0dJSSUr1oTi0fEjDh6KZfM3rxMZ+gmDBvgghZ/+9/C7XBD1wbeXgF0PNEC5h5XAVkEQYpFKg18BnPhtH+9WYBbSTgS/e4eAoQM7YGZmyOvT+jKoX0c2bz9J3PnbvDJjM4IgsGjpQdyaWuPZ3AELcyP0DWSYmRnw9DAfPNxs6R3ghUymxsPNlqeHemNqasDQge3p2NYFxFr0lXLMTA14emh7PNxsKC1XU6dG4h/mg6mpAX0CW9OhrRsASqUcMzNDnh7eCVcXG3oHtgHAw82Op4f5YWR035IpKamge+C7GBoq6dunM/PnTaR79zYYG/85FalqtZpDv0QxZHA3tu84xvBhPbh6NQW5DFq2dOHnQ9E8N74Ph4+coXVrDwCuJqY8xC8T1Jibm/wp8txDdnY2IcFh1NXVIYoiqtpasu5kcCctlcy0VLLS08i6k46RiSn2Tk1wbOqGIAh88vVm1Go1giBg5tyU8tJSjExM6NJ3AM1atyOrpBxRFDEwNsGn90BsnV3w6tKD/EoVVk4uePXqj9LQmJbdgzB3awmIyBUK9I1NaNGzL+aOLrh06Iwgipg7utCiZ1+URsbYtWyHrVtzAGQKPZRGJrToEYRDyzZYN5XOm56hISPmr8TQzILhsxegNJR663j598XQzIJnF36JsYUltq7NAFAaGuJk/hhvEv8yZOeUsPrrcL7edIp+Qa34ZderePtp28RGO9IzCqiqruXqtbsMGdCO7XtiGTWkFSYm//3n/He5IARBCELavaCLKIqxWv7/GlK5ryNwGZgpiuLJB/6fQr0L4gHaIKR+AFd+rwsi+/Y6du2P4dWX+7NlewR+PtIFfvFyOi1bOPHhol0Ul1Rw+Wo6MplAi2YOqNUiE8b5Y2SkT/cunsgENTFxt5j0nD+frz7ClAkBxMUnI6rr8OvkwcYfIpj15iC2bD9Fl85eqNVqzp6/xaTnAvh81S9MmRhE3HlpYw1fHw82/nCCWW8NZfeP8bSrV8xn424waUJf9hw4w3Pj+6FWqxkx8kOcnKzZsO5tkAdqrK+gkR3trLS9OaqOa5LK0ikoLH9Ifr9OHsgEiIm7zaTnevL56l+ZMjGA+As3qatT4+vjxsatp5g1vT9bdkQxdtwQTEweeSDItTfuulTeS4N271pSq9VEhvzKj1s3EXc6ko7deqCvbwCCgEIhx86xCUb2Dtg1ccbO2QVbpyYYGBmTV1rJrxs3MGDyVE7/tA/3th0AuBB/ibZ9BhO1ayPeQ54h89olKlRg28yLK0cP4DNqMonHDmLv2Q6A7BuX8Oo3gvP7N9NmwEjyb19DXafCoUVbLh89QKdnJnP12EE8O3REEAQyEhPwGTySUzu+p++z40i9mgCAa+v2RB3cw7jXXkehxQUg02KV6TXiFtDm37Y01P7wNdFyLCMtbglPw9Nax2t9/a5upOWxNrdCTb4mDair1GwcqK7W3sdIpq+5Nrnxw26Y3LxyPloRxa4D5xk70odZbwTRzL3+pbhGUy51lfbGhVGx6RQW1+DbzpZN+67x9ovtiTyXS5+eLhq8glzT5tS6K5lMu20qOC77U10Qv8sCFkXxBL+xcaEoiuuAdb/xfzcttF9/a05tuJ2SQ2zcTZ4f24uQ4wkN9IuX0hg6qBM1tSpWrZjC/oNnqKisoX0bZ7746gjHwi4RHXuD6a8MpJWnAyHHLzFyuB/BxxII9PciPPIqIGJtZUJw6CWmvhBESNhlDAyNqKquIeR4AiOHdyE49CKB/q0Jj7wCgJWVMcGhF5k6pS+xZ69TVSX5jUJCzzNyRA9iYhN5bnw/5n+0iaKiMvbtWfA4y30sqFR13E7OeUh+AEMDPULCLjNyuC/BoZcI9PciOvYWFZU1WFkaExx6mamTexESdpUhQ3trKuDHRGlxMfNenUJmWirjpr7G4g2bkGtRNFllmhktdXUqLp0OJ2D0eK5ENTy/uXP1Ei26BXAz5iRu3p1JiY9BrWeE0siE1LhI2g0aTdo5yeMlU+iRdi6K5j36kRoXiXN7P7JvXKa6rAQDU3NS4iJpN3g0qeeiMDHQQxTV3Iw9RZvAASTFnMS7pz834qQgrrG5BVeiIqiaPBkTcwsNeXX4/+NyYjbDJ+xk2KD2JMZ8gL3d425uch/xV/JIvVOGlYU+R0+m8/JYLy5dy9eqgP/b8MT0ghAEQcxP+xorawuys4uwszO/HwwzMSInpxh7ewvy80sxM5Nu+NKSMqysTMnKKiQ0/DIz393C5Of9+fjD0RQXV2Jvb36fX1twrlIEhPpg2735SzAzk6zCBv7sIuycnCkvl5z5xsYG5OQUYe/kxKFDUUx5eRlXEjZhZ1e/gcNfYAFTlUlBQZlmcBFRkqc+GJmfX4qZqfxh+ev51Qob5I9acI9hASddvcLMCaPpFtiHdz5dgV691Val0gySaFPAeWVVyGQyivNyMbO2obpCsuSyqmSUF+ZjYmVDRXEh+sYmFFaoqK0ox8DMgvLCPIwsrKXgmQh6hlLwzNjShsqSQgyNTEB4INhWz28ql0660tCoYX792jIMjSU3TFVFOcbmFiirSzC31gwW6Szg/58FfPjYDV546yArFw7g+fGB2uV6DAu4tqoaURQpLa/FysKA7LwK7O3NtPqN/9ssYPmCBQv+rLn+UixcuHBBzNlbDBrgTdDgRXg2c2TZFz/za0g8piaGjJn0Bc+M6Mro5z8nN7eE6JgbrPv2KEH+beg95GNGPdWFoqJywiOvsnzVYVas+oWYszeZu3APB3+J4/yFFNZ+e5xB/dsTNHgJns0d2LLjFHt/PIOhgZJxL6zmmRFdePG1DWRkFBAdc4PFy39kUL+OBA1ehFdLFz5bsZdfj8ZhaKDPuImfMX5cX6qqaggJjSMk5Cx9evtgZmYMMjeN9VWqNdcMYKjtflYna5CqywsY9uwXD8m/7MsjnL+QglqtZtwL66UskYlfUVJaSWRUEotXHGZQv7YEDVmBZzN76kQlNjaPWCIy7dHznNqHs3FCDu7jncnjeWPuAl6aNechRa5Say6urEYzypx19y7VlZUse2EM9q7u/LpxPZciT4DSiH0fvUXrwIHsmf8m5UUF3L2RSMz2tbj6+XPg3clYNHHj3J7vuXs1HkGQEbx0Ns39+3Nk8UxUtdVkXDxL7M6vcfPzZ+87k7Fs4kbc/s1cPx2Onr4+uz+aQdugQQSvW0Z2ym1uXzzPr999Rduegax640X6jnlOQ15tN7hcpj2urc3M0ZbZAKDUosS1KXZrvXSt4xG1PM3ryrXzqrUo6zrtSlVUadLFOu3V/IJCc22CnjFfbIjm/U9C+XHzWIb089SeLQFaHyLajg+w48frhERmsGRdPAMDXOj73CF6+jXBwVbTeBC0fD9aA3yNbJa+8PPTLFiwYKF2oR8fT5QFfP70Yjp2aEZo2CV69fQiJS0XANemdpw8lUgnbw8Sr9/Bs7nUFiI55S6dfVs8zC+qyM4pJjwykRbNHLh0OY2tO08z681BdPVrRhe/ZoSeuEyvHq1IzShBBFxdbIg8fY2+vdsRG5eEu6u0g83tlGy6+NXPH+hHSmpOgzyRpy7Tt393qqtrqa2txcVtDMFHltG1S2sqqjtjaGiIqt4yVCgUZFfUotRi5fxeC1isvMOFhFQ6tnflVNQNuvg1I+NOAWq1GucmVkRGXadvUFtizt7CrakZMpmM2yl5dPF1J/TEVXr18KRObo2R0SM7NP2GBZxzN5NjPx3g6I97ybl7l5U/7MKrg7cG7++1gHOKypDr6ZF0PhaPdt4UZEvbwZXoWZCZmEDT9r5kJV3F3N6Jwoo6ynIzsW3mReblczi0ak9J1h0qSwoxtnGgLCcTp7adyL2ViIW9dD2U5tzFtpkXdy6fw7FVe+QV+QiAma09GVcTcO3gS0VGEmWFBVyLOU1lWQl2Lm6oygpxbemFl18X7Jrcf63VWcCSBVxRqcLQQI5KJa1RoRCoFvUwMtSjqlqFnkJGTU0d0xfFcT7hLru/GU3LFjaoVGrQs0ShkFFZWYuRkZKqqlr09ORQk0dtrRoDAwUVFbUYGiqoKcurn19GZZVKmr9KRXlZJSqVmuT0Ejp3tOf46QwCe9w3EB7kr64VpfmhYf7KShWGhnqSPPf4q8HISJpfT0/WwG/ovvJPtYCfKAUslm5i2RdHeO3l3ixa+jMtmtmxan0omXcLqaisQV0n0tTFmuFDvGnuYU+fwNYs/fwwa1ZMYNHSgwT6e6FQyAg9cYX5c0YwffZWRg73ZfyUdSz6cAyDB3iz9PODrPl8CouW7KNfkBe1tXWERyY28L/39nDCIiQfcJ/ANixdeYg1KyaxesNxOnaQouThJy8z/4Nnmf/xLqa9NJBPlu4hLi6Jg/vmsnT5ftZ8+SqLFu8ksFf7ev4EFi2aioGBlm3NtLgrqDqoSWsk7zHhUjLbdkU1yD/n7aFExqRSU6OiT1B7lq44wJqVL7Ho0z28994ErK0f3r2pQOzz0Oec7GwO/bif3bt2cePKJQIHDWXgyNF0DewDjSif3ApN2QorNXMvlY8m2NejslZLfjJSsG/fquVcjDxBUU42ZUWFmFtZU1Ndjbd/AKOmvY5nBx+M6hWaKIokXbrI0T07uZOaTEe/rnTo0o3W3p1IvXmD0IP7Cf35AHK5gl6DhqDUN6CqopyK8jJO/PIzNg4ObI+4H4NWabl3jLTk4AIotFhe7U0b2QtAmwLUpii15dUiPYw1WCu059DWlmjOqyrWzqsw19zZ69T5fDq2MmfJtzfw72QNQOS5fOZN78Tbn8Yx++U2HApLZ+PeW7g4GuJgY8hX8335dMMVevnaIVPqEx5zl3mvd2TGx2d4Z2p7TkRnoq8n0q2jLcu/u8oXH3Ti0/WXCfC1oq5OJPJcHu9P9eLtzy4w+4WWRF0soKZGTVAXO1ZsvMbK971ZtzOZDl5WAJyMzWbua+2ZuTiWd15uS1i09GAP6ubIim8v88VcPxavu0SvzvYN/POmez8kj8TvRLuBB/7+INx/K6JibmJva0b/3m2Z8/ZQ3v1wNz4d3Zj/yX7atXWhcyePRseKokjSrSwmTfuGEcM6oVT+daeiuLic/IJSEi6l/GXH+LORlVVA/IWbnI6P4dKFeNLTUikpKiI3N4f+g4Yw8Y0Z9OjTH6X+/VQfbcUVfxXUajVbFs0l7XoiUxYuxcreEXNrG2xMjakoKyVk13YWvzIFe2cXRr/0KlkZaRzds5OKslIGjB7HwDHjuRF/jq8+/pCkywlY2zvQ76lRLN24Hc92HR56LVWLIjXVNXi26/C3re9/BUkpJazcmEhHL0tWvufNio3X/vJjlpTVkpJRxp3sCtIyy7l0vZAtB26iVMrwdDdDTyHDQL+RYqS/GU+cBSyKIiHHLxPQsxWvzfyBhMvpbFz/Mneziujfpx0xZ29hbW3Cx5/9RPCxBNaunISJsT5BvbxITctHkAnoK+WMmbyO6upaZr85mH6924KgbHAphIReJMC/NWmpmYgiuDa1JuLUNWn+uGQ83OwAKSuji19zQo5fIiDAm9Q0yZpwbWpLROQV+vfrREzsdTzcHfjpUAzvzdvC9NeG0q1LawID2pN6z2XhakfS7XzatdPywPiDFnBWVj4W5kb35T97C4/m0jZ6t5Oz6dLZk207IygsLOPq9Syu38jg8hXJb+zdsTleHfvQroM3rh4eWFhY4ty0KYaGhtyp+H3VbfDXWMDBW75j25IFdB86gibNW2Lt5IS1gxPNPDywc3ZBJpNRp1Jx6sjPBG/bgqOrGwOeHUeHrj2Q1VujhvXWak11NXpKZaPJ/mpRZMOnC/h1z05mLl5OwOBhCIKgs4DrcSw6B38fa9LuSj7apo6GRF+poqi0htcXxLDgzY48M9CVlPRifNtaERqVhb+vHWmZ5QhKA1ybGHMyNpt+PZ2IvZiLu4sp6toakjPK6NzemtDTd/H3syc1tQARgaaORkSey6VvN3vOXirAvakUt0jOKCcrr5JpH57Fq7kFzo5GNHc1o0cnO/IKqtBTyNiw8zoXEwvo5efAtHGe9PdvwokzWXT3sSM1U3KLuTqZcDIuh/7+TRrkAUhOL8X/2cP/bhdEYWE5Pfp9ypefjWPbrmgSb2SSdDMbuVxGRPAHvDFrKwP7Svmgh49eoKSkiqvX7zByuC/V1SoEASJOXUMmkxF/+mMmvPw1A/u2QxQUHA29yO4tbxE0eBFffjaJsIiLZGeXMPaZLsycs4MTR97n5Tc20b1rCwCCjyWwe8t0ggZ/wpqV09i2KwKAsaN7MvPdjZw4+iljnl/GwP4+APx0KAZDQyXn4m+x4avphISeq+cPIDwykSWfvqy58D+ogL/fHIZzE8sG+cdMWstTw7tRXVVL8LF4nh8XwCvTN9A7sD0+Pq3o09ubNq1dcXS0RhAEDRfEPfzTCri0sJAb8WcpuJtJflYm+Zl3yMlIIzXxChNmzWH0q2828Bo1EuwybERZPop7/tv46FN8NvtNmjZrwZzP12Bmo1nI+W9TwJVVdfSccJLPZrVh71HpVf3pPo68sugiBko5Nlb6jBog+WOTUopZ9GYHBrwYxvL3vNlzJA19Az1G9Hdj9qcxHNs6iOdmhNPfvwnG+nDgWDrbVvRgwAvHWT6nE8HhaRSXqRg9wJn3ViTw67e9mPheDMP7OFNaUcv3e6X8fIVcYMMn3dl5SApWjx7sxjtL4wjZ3J9XPoyio5cVe4+kIAJh2wYy45NYpoxuwZ7D9/nnLD9H8OaBDfIAhETe4WRs1r9bAQOPpFlBeYWK9+bv5uAv5+nU0Y3nxnTjqcE+CAJYWZkSHpnIkZCLbN8dhaGBkh++mUYzD7uHeyODL/wAACAASURBVETI9B9OK7Mzp7y0mIY0tHs9JQorMDWtT3Nr4C/GztHhkTS0YuwdrCkoKH2AvxJLSxOeemYxA/p3YtLzfRv4S8obqUL7gwq4uqoKpfKRnhiWkuJ4a9Z3BB+7wLpVUxnQzxu1zFgjDe2/VQEDXDt7hpBtm+oVcCalRQVY2tgy5o0ZDJkwpYHvz1LAVZWVfL/8Uw5s+pYVO/bRrmsPDd5/mwIGyM6vxs5KSXllHflFNbz28UVUoow9qwMQAFNj6fyXlFRiZaFPdl4Vdtb6lFeqkCkNMDbSIye/CnsbQwqKqjE11kNdW0VpuaqevxI7awNKi8pBEDA2lJNTUI29tQEFxTWYmSr5cssNDp24w8F1/tSqRBzszSmvkIK/xkYKcvKrsDLX55td19l5KJlbaSV88rYPLz7r2TD/Q/yFNTjYGjXIA1BaXotD5x3/3jS0lycHsHjZIXr1aMm8jw9QUlrF9aQsDh6OZ9EHI0lNy8PPx53134Xx4Sf7uZNZxMFfzjFxXE/CTyUyYWxP+gS0JjTiCoE9WzF99laauduybXc0UTFJWFoYM//j3Qzs5828hbspr6gi8Xomm7dHNvB7uNuxfU9UPb8R8z/Zx8B+Hfh4yQEKi8q5fuMOm7eGEdirDbPnbMbVxZZtO8OJOnMNS3Nj5i/aQWuvpuzcHYGVlSnXb2Sw+YdjBAR4s2dvODY25sTGXuP27bvo6+vx08/n8fT05Oeff6a6upqsrCzOxh6jqYsNO/dEYmNtRmxcEmlp2bi5alpkGRl5hBy/RLs2Lvyw4zRNXayJi08j6dZd3n5vMws/HMvIp7py4OAZ3Nyd0dd/WFlVot2PXlqrmVrWWDezilpNZa0tM0Iu035dq9Ta562tqSE3I42CrCxy0lJxbtGSLn364dLcE0tbO/QNpAdfY5kJeo2kjD0KEYgKPcrs555B39CQ5dv20rx1W7RlDjY2p7aMCXv9RtLItKWBaUsXU2tvGKNNMZcUlXHlZhFZuZVEn8/BzdmEXYduY2UicvZyEcl3KtBXyvj5RBbNHRQcjsqnukYku6CGmCvFuDoYcPBkPlbmeg/xbz6YRsdW5ixcd434xGLeWJyAoYGM/V8FMXdlPO4uJuw8lMyZC7lYmClY+NUl+vdwZMGaBErLVVxPLeOHAzcJ6OzAjEVncHcxZefPtzl3KQ8TEwWLvkqgf09HFqxOoLS8lhsppWz7ORV/X1veXnoBd2dj9h5N59KNIsor6rhwtYj+PRz4dMMVikpquJFcwqZ9N8m4W86wqcfJzKnEq7k5gwKc6dbJjkWrL9C/hxMfrb4gzZ9cwg8/3iKgi+ND8pyJz8HcVMnGvTf+1DS0JyoIpydU0sTBEFNDFa1bWNHWUypsEOtqMTMBL09bpkzoQsd2DhQUlrNl+yly8sox1S+hdXNT2rc0QiYIVJSZYmZQSgs3Y1wdoEMrU0R1Ha62lbRwNcBUkUXrZvq08ZCjVsuoLDHETJlPC1cD3Bzq6NBS6nLlal9HC1cjTJWFtGlhSNtm0o1eWWyImV4OrZqZ4+oko4OXJKerk4wW7mZ4tnTkh21ltGlphyAIVJaXYqxfS2ZGJnpCa2qqSurXW0VW6mEUVSoK755C5iQpw9LCfBSUSvyyZtRUFqHWN9eaMubm7oybu9Qm88UX+gPg0tSJqqoalEoF01+R+iiNGdUZ9E01T3ojL0jarN3CKk2rFqC0WrN7m7mBZp2+NisRwMlUMzvEQKGgjZ0Nfbt0BiTr9FJcDF9+9AEHv9vA+KmvM2/FKqDx3FxP48YNmdTUVCIiIoiIiCA8PBi5XMbG9dMZMKAzkCn9aFOUNY2ke2kpLCBPeycxdbWmBaqu0TyWqlK7BSxXal4H1SUFqOu7tuVnFyFWmJCRnoeyiyd1SIpc38iE7MIcjJycKZPVYmArZTWUZedj7ORCYXQGpg5uCDlS7MLUwQ4TWxmlem5EX7lI+p1sPpjhj5mpPjYOtng2t6VZM0cKK6T7wsVeoJmLMSaGAq08TPHyMKG2pIgSGxV6pXdwtVJhryigpV0NQnEFtsUqmupXIUtOxsOgkhZWRogilNkJGFQW4m4t4KisAFUNFxMLsLFQ4u6kh6GsEk8ncLWq5vDJXHb8nIF3KzOe7WfP++OdiU8qA2qxF/NxtVChKLpDcysVzUylXOkSKxWKnBRczWqwU2XjaS6dNztVI9/tH8AT5YL4dtVYJo3rzGdfhvL8GD+uXssCwNenORu3nWbW9H5s2RGNn48bANExV1m+Ohz/bu4sWzCUuAvpKBQyOrZtwsbtscx6PYAtu+Lw83YBsY6z8RlMGtuJz9dFMmW8LxcvZ1Bbq8a3YxM27jjHrNd6sm3fJXw6SArtbHw6k8b68vnaCKY835W4C5JF49vRRZr/rWFs2RGFn48U9Dp7PplJ47uzasNptu48Sbcungwf4oevTzP2/BjDtJcGsmVrGH6+ko/5bFwSk8b6NPRwiDsv+ah8vZuycWsks94cwJbtp/Hr5I5caU7bNlpalTZiJa375ihbtp8kJmLxfaK+nQZfgTpQ6/iUUk1l25gCLqzUVB7aWi42poBNtfAaPPKqr1KpGNm1A+m3b9Hcqw2jJryAU1NXHJ1dcHF1x9LGRiPIdk8Bi6JIcnLyAwo3nMrKSgICAqSfnka0bu3aELxrwB9VwI20cvwrFHBVSQHHoiXF6dPagh9+SuWt55uzPyyHdp5SmXXc5QImDHfnm703GT3IjfNXJFeITxtrthy4xbvTe7JlXyJ+HaR0reOn07mVVsGWPZd462U/fDs4YqCvwLeDI5u2xzDjxQ5s2X8dv/bSdXXxQjKj+jvz5Q83mDTCjfNXC1GVFePd0oytR+4yfYwLO4Kz8GllhphfxrlbFYztZc3aw9k8F2jNlXypOZZ3CxO2Hc2ml7c5b3yeRFF5HS+NdMHGQsmEYc58uS0ZAZE1O1NxdTRk3sseXEoqY/r4puz8KZ0OzSVXX/yNMsb1s2PT4Sye7mVTr5jr5//1Lm+MasLO0By8PU3r+Ut5c9Wtf28aWsiJa4wc1oHt+87xyechuDpb0rK5PW+bGBF8/ApTJ/sTEna/7d/Z8+ksWziU56btYNJYX8JP38LS3AgzEwOCw64zdVJXQk7cAEBUqzkWkcTIoW0JPn6dwB4exF24Q2FxFVaWhgSHJTF1oh8RUbepq38lDjlxg5FD2xEcdp3eAZ6En5Iau1lZGBF8/BpTp/R7SJ6QsKuMHOZD7LmbzJvzDJNeXsPdrCKsrEw4d/4mpaWVhByPv89/PJ6RQ1o39HAIj0wEwNbGqL7nQwAhYVJOsp6BqXYFrAXRMTf4aPFeoo5//Ae+jf8uKBQKlm3cTmZKMncz0shITeHs6ZNkpqeRlZFGVWUlDs4uODk3xdFF+t3EzJC4uDiio6NRq9UNCve9996jVatW9xV2Xfg/urY/A7UqNZHnpIeAlbkeodE5TBnpxtlLBVTXSM6U41FZjOjrzNmEfHzb2XAyVlLYlub6hJy+y6sv1HDsZBql5TVERN8hODyVF8Z2oGMbO4YP8OTAYSnFzMrSkNBT6bw4tjXHItMaZLh0pZD+PR04FpVFLz9bTsblIqutwtJUj+OxBUwe5kRYXCEAepXVnEgoYWhnC8IulNCjtSlnb1RSUaUmp7CGr/ZnsP7HOzhYK5n3cnPUIoTF5tO5rQVfbkvG3cmQ/t2ssbfWx9xUj9CYPCaPaMLphGLuFWaGnStkWA9rEm6W4e1pwqmL0oPP0lRBWHwRkwc7EHb+/kPywb//LDxRFrC6YFVDw/S9B+N596OfSEkrwEBfweD+7ejf24txz/ghq/clGuvXkJNbxpCxG3nrlZ6MfbojIFJaVoOVpRHZOaXY2ZpQXl4DYh3GxkpycsuwtzMlv6AcMxMFIFBaVl3PX4advaXEDw/zF1Zidi/YVlaFlaUx2fkidnZmDzdwzy3B3smV/PxSkm5mMn7yKnoHtuWrVa9RXFyOnZ3FQ8G87DupODza46K0XKPng6BngbHxI1Vs8JAFnHgtgwWf7iMi8ipfr3mZp4b6Pcz7BFvA96CtGblcJqO8rIy76WncvZPO3fQ0MtPT0K8px9fXl65du+Lh4dF4z9nGFPATZgGr6w2H0goVVuZKsvOrcHSwoLyyPvhkqCAnvxp7OyPyi6oxeyD4VKcW2RmczdGINM5eyGZwbzc+fqcrphaW2NuakF9QgZmp5FYqLavBwrCa7NwK7GwMKa8P2OrVFjQEz+7NX1OUR2lFHVZmeuQU1GBrqUd5ZR2q7FKMDWTkFquws9Ajv6SW+Ow6vtp3h1t3Knl9lDNDulvh6mBAlZ503Z+KL+CVjy8xfbw7zw+yx7K+Cf39+aux1hMpr5I0sLGBjNyiWuwslRSU1GJqJLlKyirqsDSWk1NYg62F3kP8loOj/r1ZEMH7XmXNNxF8v2Y8Y6Zsprd/C0IjbnA65jZ+Pq5cTpTydq0sjLCzNWPc0+1YuzGKsvIaWrWwZUg/L0xN9Nn7cwK7v3ueoKc28OWnw9m5/wIgMvbpDsyc9wsnDr7MmJd2MHp4G0rLaggOS2L3t2MJevo7Vi0ZwY59kpU6dmRHZs79mRM/vcK7C47g1VJ6NQs+fo3d30/khel7mfFav/otj2DsqM7MfH83YcGLGDvxCwb286aysoZ13wTj4GBFZWU161a9ys49Uiewsc/6M3f+Zg7vm8WYSWsb0uuSbmXx6YJRBA1expefjWPn3hgMjU1Yt2qa5olT15B08y6LluznaOhFZr05lNenDcDERIuy/h9WwNrwWz7gh/A/oIBTkzPZcVhykYVG57BliS+Dp53miw982fFLKgDPDmrKO8viObqpL8/PPkV3bxuu3izm5NkcRBEM9BW8/FxbUtJL0FPIGDPck+92XWPt0oGMmfojA3tL7WGDw26xc3Vv+oz7iZXze7Lr5yQAxvSXAmfB3wUw4d0z9OvuANUVhJzJZ9NHbRg68wJL3mjO/uM5WOmp6dXWjA+2pDNtkB0fbbuDibGcbm3NyS6sYcs8L4a9k8CSV5pxPKGU5DuVnDpfgIWpghPfd2PeV4m0dJVcDaExeWz+uB1D3jjP0mnu7D0htTAYFWjLBxtucWh5e15YfI2+vlKsJjSukI3vtWD4nCssmebOvgjpuxsVYMOoeVf/vQr4nem9cXQw5/WX/IlPyMDdVSo1/PX4DdZ9d5KysipWLhlN4vW7XEjI4Oq1O8RfusOHs/syoHdL3JtaIqpFUjKK6OzjQmhEEr26uZOSXgRiHa7OFkSeSaFvQHNiz6fj7mIGCCSnFdLZx5nQiFv06tFC4od6/mT6BrTgbPwd3JpKX2ByWgGdfVwJO51Bz26epNwr0HCxJjI6ib59uxN79ibublLWwu3kHOIupDDvo2189eU0/DpJPmBXVzsiI2LoG9SW2HO3cW8qdeRKTs+hs8/9Hg4paXnIFOa0aOGkcd5u30qnZceZzH9/FG+9Nqihk5tW6BSwdvwXKODC/GIMlHLiLufR3ceOhGsFOFpK925GViXtPM2JvpCPb1tLsgul2KmTnRHnLufRzduO8/EpONhKD92UzAr82lhyIiaXXl2akJIpBZlcnYw4fT4XN2dTJr8XzfXkEoK62OPX3ppXx3tSKzfD1tqI2voMGD09Gcl3a/FwtSI2PhN3F8mXnJxehK+XEaGnMujV2ZGUO9KDwsGonKgL+fTuas/ZywW4ORlTU5RPWlY1nbxMCT9XSPf25qRlV6HKKcPFVsn7mzM4d7OcsQFWjB7cBLlMRmpWFZ1amRIeX0j3tuaklwk8OzueWRPdcbY3JKizNXFX8mnqKF3raZmVdGptRvjZAro2NyAtW3ordLHTJ/pKMUE+VsQlluDqIJ2f1KwqOrUwJjy+iO5tzUjLkd5gXWz1cRhx5t+rgLv6OFBZpeJqUgFtPa3Q11dgb21IUBdrjkdl4e9ry4LVCYwf7s7QoCbEJhTy5qTWvLP0LO9Obc+JM3cx0IeuHWweqjHv1dkO5HqcjM16qCY95mI+FZUqend3YtnXF1k1vzvLv46nq7dk6UbE3GXeG968tSiad15qy4kz9TXmXR1Z/u0lVr7fkU/XX5HmB07G5vDBq21ZsPoiU59tzokY6WYN6mLPlh9vMSjAiZFvnOLFZzzo5WfHybM5fPR2d95aeJp3X/EmLErK7+w/oAtLVoWzZslwFq04TmAPDxQKGf2DPDXOm9qkAx06vcpnn77I4EFSxkCj+2Vp2xNO314r66XSLhq0ai2pZdC4Yn0U2hrOAHgaRGgSG+nYpVUB1hZq59U2h0pLDqxa+7q0dQKrq9bedUxbHm5dlXZedY1m1sjtm8VsPJzFu+NdeHf9bWY+24SwiLsIgoC/lwmrj+Sy5DlHVvycS2ArQ2rVcPp6BbOH2fL+jru8PaUZEfGSDAHeFnyxO4NlrzdjY3g1HVtL2Q4RMXfxdDdnxsdnmDG1C3a2xij15PTxd2fpmtN8/81sjUBkbWkKU98+wJw3AzkeeROAPv7NWbriR1a898D9BcRF3ODlgXbM2ZTOW085cPJyKeqCUno2M2BNeAmfDrfk8+MldPfQR6Gu4/iNan68VEUnFz3m9TcjLkekWiXSy9OQ1aFFfPqMDZ8HF9LLy4glhwowM5SxeaojH+zJZXpPY07elAwC/+b35199rBBfZ8k1EZVay9v+Rnx5spwx7fU5lSK5Snq66bE2ppJPBpiyMrKC7q73+ddHV/x7g3D+XZyZN92HqXPCGBzkxq8nUsnJq2R/cBoXEgsIOZWJIAjs+iWFIYGSNajUkz8x+0l1aGXB0EAnNu6/TfuWf04DcJlMxrz3x7Fk2a77CliHJwpm/mENf6/eJz2EdxzL0eDbeUqyqL/69T7tq2Apk2Hn6fMa/DtCGk+rWrJas9Pa5l0TGuXfvPOcJm2/VJm2clNiA+2TXZKRsjNCs7Pa7nOSYbDu5MOulaPXqjl6LVeDf1eslLWwNuz+w81jlnTMXTGa7pl78z+I9dESbUz7f2b7oifKAq689SYno1Po09OFmPhsPOprwG8lZdCprTW/ht/BycGIqzeL8W1rjZuLhWaNeV2tRo15WmY5gkKpUZPu4Sq5FG6nldClox3HIjPo5Wd/v2a8iQknY7Po17MJZy9k49pE8jklp5fSuYMtx0+l0b2TVPMO0NTJmMiz2fTtZk9sQj7uzvX8GWX4tbMkNCobf19bZi09T/rdCvas6kn05Qr6+bsQcyEHDxdpvRnFpvh6OxNyIomA7u6kphfVb8GkZYtvM2++WHWAk5GX+HHfRxJNZwE3Psd/oQX8oALW4a/BoYnmuFpIQbjUojp8XJRE3K6hq6uSjGLpvnA2l+OxNPffWwnXqb0d639IoE8PF16be4LS8louXMnjl7BUunnb8sKcaHp0suPwiTtEnc/FzETJ7KWxjBrgxusfRVNaXsuttBLWbrvOAH8nJr4TRUsPc77dfZPo8zmYGCuZ/WkMowa68/r8aABiL+Twzc5rDAx0YcKME7RubsGGHdc4fS4bU2M9Zi+OYdQgd5auv0hGVjkXEgv4dtd1BvZy5oOV53CwNeTb3TeJOp+LqZGCdz47z9N9XZj+cRxl5SouXivk27036d/TgclzYmjlYcaFxEJOxuVxJOIuh8PTGTnQg9c+jJTWezWPY6cy6NqpKeOm7sLL044Nm2OIu3CHIf1baZy30hpznh2/mE3fzsLevn5HDm0Nu6V/aJIU2jfpzKlx1qDVaWm8DtqrwLShsYo1a0WqJlHbVuSgvfG4lm3HG51Drfn6j9hIt3wtdLFO+7lV12rOK6q084qPFLks2STlf+//pDUXk8qI3uDN+RtlTPY3J6CNCao6kaMfNuNYQikbpjrjZKHAw17J/GfsuZhaSeSiZqSUiozvZ0+gtwWqOpHjqzsSElvAjtV9kckEOnhZ07u7E1eTCkk9N4OzFzN5ZWIn+vZyR1WnJubIi0yd9gyrV0xiwQejGn7aNjdkzZLhnI3P4JXJXekb0ByVqo6T24IIPpnJps+6o5DL6NDKkoWjrIm/XcGp5V5cuFXB5H42BLjIqK2DX1+3J/R6JevGWCOXgYu5jIoaEXtTGeFv2HLhTi3Tgszp0dwQlVrk15lOhF6tYN1EO6xN5bSwV1JYocbSWMbpD5uSW1DD0x2N6NXcANUD8699yhS5INDGXsHc3sbsvyx9LymFdZTViFzOVrE1voqgZvq8drCEFtZyfjhXRWx6LSZKgf2Xq/+9DdkVChlxvzxDOy87CgorMTWRLKbC7GwsLQw0arpNTY3Iya/E3saIgqIqqca8ruaBrUvu88v09Otrxu/zN6SV3ePPrZBq2B+sGc+rxN7WiPy8ckxN9B7iv5tdhJ21oUZNur2VfoM89/gtzZUPyVNdU8fG/cl8seUGE0Z6Ym2hj75SjiCASmaGsbE+xkZKXhjficrKWgRB6lmhUtWhUMipq1MjkwksXnuNxGtpbP9hzv2TqbOAG5/jL7SAVSo1CoWsIR1MrKlooNXVidw7TaqqauRyoeF/9yzgwiPdG9KmCktqMSiR3sTKqtRYmijIKa7F1kxRn/YlSGlWJSrszPUoMTPF1FjyOJZV1GFppkdOYQ1u3m0ars/4K3m8uzSWs6GvST1PTO6llUlpmFVydwwMlKjrH7QymYyyvCRMTAzq+ZX1/DUY19zUuB+F27fIKarFzkKPwjIVJgYyalNyKasRsTSSk1uqwsZETnm1mqqKGl7dV4KFoYwNoy0orlJjbmsICJRVi1KaWIkKW1M5ZTVqSqtFun+cTtSHTXGy1CM/qwwTg/q0sgfmt0JFRa10/o30BJosllwbV2ZYYqIU7vOb6JFbVoeNsUyD/1/rA1bIBairJWj0PhbP9uNgSAoAz45oy9jZJznw7TAmzjlO/wCpICH6/DWWzQuk3wsHWTo3gAM/XMfS0pSgHu6MeyeUA5vGMPGdX+gf2Iy6ikxCT2fy1cLu9H3+VxbP9iPsZAJFpbU81duJD1dfZufn3Zgy6yLdOkpBi+Nnclj1fgd6jz3Gwlfd+emE5JcbFmDHgvVJbF3YhnEf3aB3fXpLWFwhX8z0ZMzcRF4f4cShKMkPNqy7FZsOZfLxBGfGfZBGUHvJ1XAuoYSDb9jz3LpEfD0MSM6VLCZ3RwNibpRjZ67H7Lk/MTHQkmZ2Sk5cKWP5RCcmf5XG/NEO7D9TxN6YUk5u601V4rf3z6Oxpfbza9FMk6jNIgTayTW3RULWSG8CbZamNmVf3ciDoVLLvNoUJaCu0bKVjbqRhu61mpaxNqu0MVeBqEUx11Vq5521LJEPJrgwc80tevtI/v1LicW8O9KByauS+XCME4fPSmsa0kafRT/msXmaE7N33H+gTHw3ns+eMmfQjgLm9Tfn0LkSEAQGtVCy5GQF3z5lwgvHKuhlD1UqiMqsY35XJZPCq5nf15jDN6S1Pcg/dckFWttJiupoUi0p2SrGTPqeV8e481OY5K99qrcj89cksmdtH95YGEPf7lJ8JTQqk6VjLZm8/Bbzn3fmlxjpQTe0iyUfr09i7WBjXjtegX99EOtSciUvtZLzfEwdb7aVEXZHRKxV09MW1t+EJR3grUTobAVKGcjKIDkf2izOYm4bSKqAqjqB3o4CaxLVLPeTMSNBJMBR4E45VNWKzPk6jVslInM7yjghFcrSx0lg1WU1K7vJmZugxttG0p/R2feNzx9PFXM6W6RWDa0tBH5JV7Osm5J3r6ro5ig9GaPvNvIm9AfwRClgQQAbSwMG9HLGo6kpAV2krWbcXMwZGOiGqYmS/gGu+HWQNv+TKxQYGSqQywS+/CaO555pjb6+MR6ulgzs3RxTE336BzbDr2MTVGUyEATMTJQN8xe1saS2Vo2bszH9ujtgaqSgp481Hb3uKzAzYz36dbfD1cGQnt4S3d3JkL5dbDA1lNHb1xKfVvf3WTM1ltPZyxQ3BwN6tpPobg4GdHA3wsRATlB7M7yb3U8Va+Goz+QAC8Z3M+NCmqQwvL0s2BFRwKsDbXj3hzvsPl1EWxcDerYywlBPRo9WxhgqBbKLVAR2saOFm5YeDzr8rfBtZYKJoZzePhYNpa2KmlpMDeX0bm+Gm52SHq0ld4+LNfRuY4yJgYxAL2N+Pi9ZuoHN9THVl9G7hQFNreR0c1GAIOBqLiPQXQ8TpUAvNwUt9dUNjYJMlODfRI6LmUzih4f4vR3leNlKdLUociqtlg4tzXBrYtSww4VbEyP6drfF1FiPvt2d8G1n3bAuM8Ma+nib42avT8820rrc7PXp6aLg/9h77/g4yqvt/zuzve+qF9uyXOQi94qxjQuY3kMJkAQSSAghkPAACSF5IAmmhh56tU0xxRjbNFe5dxXLslUsyep1pdVK28vMvH/MWrJi8T4teX4vv+T+fPYPj47vvcvsPWeuc53rWHQCC3N0TE1XD3jJK2LRwdnpAsPMAjNTIRaELDPMTQazRj18JzjUculRGZamw2+OwCPHYVkWzE+HbAvMSxMwa+GsVBjnEBjrEDAmTrOiLoWny2RuzhMxagSGWQTmZ6j2E11qJZPqXqjrGzhQ36mSUVAP/lAcNILArduj5NgEHDoYblMP4U1Nf99D+DsFQeTlOrhk6XAevXc2qz6vZtZkNehUUR/m+svH8czrRfzk+5MoLFUffSOGu7j0h58xNtdFY0sfZ8/O5t/uWMjB4hZuvn4az7y6j5/cMJ3C0lbi/k5mTUllxZoT3POTyaz6vJoZY4zIikLR8R5+cFkOL7xXzY8uH05xhRptnjHRxar19fzqB2P5+Ksa8kerP6Diij5uvDiTtz5t5HtL0yipUiOy08fZeO/rNu68JI3V29xMH5vISa/2c/1cOy9/1clNi5M5clL14qaNMrN6Yxu3n+vio/19TB+p8hQruySunOvilW/c3LgoiQMn/Hx5yMs3HskzJQAAIABJREFUxT5CUQWLUUQUIMWuZdVzC5iZnzRoLf9LHrDxW0p7D+XBKv9DD/jboJGh9Cy+Yx5wtDfMXz9r4Qfnp1FyQj1Qp6SKfLDTw50Xp/HRbg/TR6kP3iMVXq6da+eVrT3cOM/OxN+qkf2y32XwUVGQny+w8klxkEk2CUEQONIe59p8A68Xhvn+JAOFNUHissCkZJG1NXFuydeytVNgUrp6Qp1uf32+nqOd6vpMTdeydEUvX7+9gKLyXmZMVD314nIvN106nDc+7+CGy3IpOqYyK2ZOSubDlQe5ZVkqq7d3M2OMKlJVXBPgUq2XN4sjXJev52iH2v+IWIh1DQo/HCvyRYNCvksgEoxT0QsXZ8GHDXBpNlT2gkaAsXb4sgVuzIF3T8Kqerh/koBWhEuHC7xfq3DFCIETfgFJgXynwLoGmZvGCNy1T6InAlOTBU54AUGhpleNcgyzwEibwIJMkT8WqmN7aIaGfJfqGR/vUbhqrJbXj8XZ3y5T2q3wwAwtF+VoWPR55J8XgsjPS2L7/jZ8gRhb9wxonh6r8XPx0lw27qhn8bxh7NjfTDwus3nXHmRZYfWrl3HrvRv5amstOp0eb1+Eqy+ZwMaCGhafPZIde+uRo30kOY1s2tXMbdePZ+ueFnRKCuGIxLYDHVxxbjZb9rWzcGYyuwsTOfV2PVv2dfKTq3MpKu/tz6kvONTNZYvTOHy8j5njbew+oh7YLpuWbYc8/GhJMttLBg6Q7SW9XDzF0p/zvrdcPbCdVi27q4LcNN/BjoqBH/aJLonzpkpsK/Mxf4KFopoQw5L1fHrfSJavaWfVXTnct6qVxfnW/nTSf7X/b1swLLG1sIcFkx3sKVPV7pxTzBQc7ePmpclsLxugTR2oDnHRVCsFxwPMHztQuLPRI1FQHeYHsy3sqIkgZannwK76OBeN1bOjLsa84TqOd8v0RsBhgN0tEtfmaTnQEidRM3OQ/dkjtOxvUh8kTqOIrMDREz62HRigfW074ObyJZnsK+7krGmp7DqkwiJJDgOltQH8C5IpOOKlvSdKhkvP9tJelkyW2Vkf46xhWg40qw81rQ32dSh8LxcOdMqAiBSBQx5YnA4Hu2GGC0p6wKoFi1a9duUw2NQO4+ygERQOuAWWZsL+ToVZyQLHPArBODj0p/oXGW2Dbr1AZ0j17G+foOHNColrR2vY1iLTE4E9p0EKn9VJNPlFBAFKu2UQBVZWSaSbBM4bJtIekGn2/+diGf+V9p3ygN9+chFrvq7lzSfOGQTuO1KS6ewKkp5qodsTwmbVccs9mwiFJda+cxWdXUHSUswUl3Vw0Y1reOOZy5k3azjpaQM57PHepkTwbEAA2tvZdYYAdHdPaCBH/rSc+iRzlEBIfZpaTBrcPVFSrRo8vTFsFk3CXs1Jb2vsI82lH5Rj3tESIM2pw+OLY0vUoveHJRyxcH+wIRBR98qaZOoPrvTbSzL+sJQIxsRJtavBjKTZE/qrup5q//KAE7b/ix5wd5sfl003SHPA29pHklU3EDyLqPeDKRLG7ZNIs2vx+CXG3a+KPFX8PhOXWewPDvV1qkFEsw66ggqpFpGekIzSGwZBIBADp0GgK6QwcriRUxr6p9t7QjK204JPa45HqTA6eeeRGYPu505PlOwRGXT3hLGfCrYFYhjaTrL7WB+Pr26h6ESA+6/L4t5rMqnbeIJUi4aekNwf3Gqq8+HUi3SHFZIMEJIg5Itj0kBPFJIMAr1RBYtW9VRDEth1Ah/VK6xvgdfng0UnYtKAJwLJRgFvVMFmEEAQEoewQHdYIdmo/v+usMKGepnDbqjuU0g3wSi7QKZZIMkALx5T1/yCYQKNfgUBMGrBoBG4IU/L9BShf/zBGMxf+/f1gL9TNDSLWcvmPS2s3VRHS3uAr3c0ceioG51Oy5+fO8g5Z2Xzu8f38O4nxzlc2kH++FTOmpnFXQ9uJSXJxJeba8kZkcxjL+xm+946LjlvLL9bvpW2Dh+FR5p4//Ma5kxL5Vd/3k+Ky8hHX9Sys9CNIMITb1Qyf2YKf3zpOK3uECWVXj78sonZk13c+2QpSTYNH3zTxr5SL4IAT71Tx7zJdv705knauyIcOeHjo80dzJpg499fO4nDquXDrW72H+9DEOGVda3MyrPw5w9b6eiJUloX5KNdHmYM1/K7T9wkWTV8tL+PAzUhRI3A0+vdzBtv4ZFP2mn3xjhSH+STfV5mjjLxwAdtJFu1rN7jxZFmY1jG4PRjUT90OXTRmHTmRe3QVRCGFgr+tqKcQ+FmQ/z/b6PHDXVYf0twcEga2Lc4GUMdoIWlnVQ39NHQ4mfr3jbyRtp5bXUVyU49Ow65qTjpQ6sV+ODLRiaOsvLBl834AnEaWoNsO+BmTLaeNz5rJsmhY2dxD5X1AbQagb+8V8+MPCt/ereBNk+MIzUB1u3pZmqumQdWNpNk07J6l4f9lQGQZJ79xsO8MSaWr++irEmda09QZsYwHQ9+2UuSWcNHhX4OtagwxAv7Q8wdpuPxXUHcPolj3Qrra+NMSRVZfjBGslXg0+NRDjbHB9k/tzdAi0+hrEPis+MRLh6r489f9TB7spMPv2pmb4kHUYAn3jrBwtmZ/OG5EtrcQUrKu3l3TQ1bD3Ty0IomLprtIn+kife3uqlqDrOpzM+cbB1P7g3R6Zc51inxTU2MCU54olTGqRfY0KBwpEtBEOCdkzDNpQbjuiJwtAdW1UFZrwpN3DEGDndDUbcaC3rrhMKMZHipXMETgXIvfNkoMzlJ7d+lV1jfAF83KhxwK9h08NJ8kY4wTE0WcegFan0KlYls8N9O0QAqXnxVjkitT+baMVqePxrHHVIo98hsqJeo6FH+eQXZb796GLdekcWqDQ3UNXgoONDJ8rvzmTY8xveWuPj004PsPlBPLCbzyTNnEQrFsEab+MGFSUwfFiBpiQVkiWsXTOPaewvZt3UnN51rYmR2FNkP+SlmrIFmblpsZVqqj7QLs1AUGJFpJh4bQapTw81XjyF3mIp1Tc8PkJ5m5cfXjOHsSWays9Sg2ogMEwo60pL03HxJJiOz1ANvWp6NVJee7y9JYe44K5lO1ZMenmaAUDKpdh0/PDeFkWmqhzFllIWMUVZ+dLGOeRNtZI9UPcERIywoVhMZIx3cfLmGkRlGkCRmdETIGGnl5ktg3iQ72SPtZGZCLPA3mgPC0K9Silw1xNWhroEwVB/f0u+Q3zWEpyl8Cw9YHsJ2qMMThqaGfRvfVo6f6Vm79H4yLOo8xKiMNtpFXqZAhjlCVI35kmGOkJcpYgj0MT4FRjrU79SmgDEUZlyqhiy9RDxZ7SdLL3HZNBtJQpybFroG9tchkayJc9NZdmZna8gwqvdVphxmrSDzm/daB3GoGzqj/PpjD9flG5hmlbDkqD/fbLPMVbkaTJEYV+VqyNAAgsB4u4BTVLg6VyRPjGFNMAqzNFEuHwa63hAXD9MwLBGjHWMUGaWTSNXIfPHsQc5KBrMWzI01nOOF/fd/zRi/jKmuhSKvxBeNUaY6tPx0hIGZ7QG6IgrDhxl4fo+H81PM7NqrJSNkQmlT9zVJMnKoVsdwMUpnpx5XTEIRFbx+LSMNUco69AzXxej0y3zc2kumUUuqVscVGSJOjGg0MQQEon6R8aY41e1a8gwSOWIcBLBYFNxdIrOtEimyxFwbZIgy5T0Si5O1iEGRcxwSmUZ1TdOdIusSTkOuTsGU8D/StQqXZIAxEuOSdMg2qw/wUXpYe3LIW+m/3f7+oMY/sDntOjZsb+Pp+6cyIsPMfT/J4/cvHmfejQXc/nAxT71dxa9/OJZf3jSG/Ue6cdl1/PxPJZw1NYk/v1rJyeYgDW0hvt7dyQdPzuSG3xRRVe9nXUEb63a6cdq03PmXE8zNd7D83Xoa20KcbA7yyGuVnDU1iZ//qQSnXcfnW5r5fEszLruO2x86zFnTknnxgzrqmoPUNQdZ/voJ5k5x8eArNThtOtbtdCf613Hnk1XMHmfl0Q+aqWuPUNce4bEPm5k+2sJdrzXgtGjYcNDLhoNenBYN97zewJw8K4991EJ9R5j6jjCvrmtlzgQbv3yhFqdVy/q93XyxvwenRcsvXzzJnPG2/v79wW9JWPhXG7KZDCLrtnewbnsHLpuWXzxazpyJdpa/U0dda4i61hCPvlvP3Hw7f3ynAadNw/o93azf043TpuHBtxsGrf+p/Z2Zd+b+Okwid69sZ/ZoE0+s76LOHaPOHeMHq7o53BjFE5DJTRp4KFV2SVR2xVkwQsvT+0I09kk0+WReKI4yPV3Dg7sj2PUCu9pktjRJ2PXw7wfjTE8ReeO4RJNPocmn8NfSONNSRP5wII5ND5vq42yqj2M3CDy4J8oDE+GbVrizEJ6pgEePg1GE5RVhNnfEePBYmE+aYtyco8ehE5nm1LKmJUJHRCYgKWSbBI77o3zU6sesESjti1DaF8GoEfmsvY8ck44tXX66YxI9MYmtXX5yTDo+a+/DJIoc9IYYY9FxY7aV7pjMLIeRrzuDeKIy7qjEF+0hRpm1vNcUwKwRKPLGOeiRsGgFXjsZYZxNw+ctMm1hBZ0IKQaBN0/G+cHBKJ80yex2qx+rduDh9natQmsIWkPwzkmFqUkCjxxVsOugoF392P8B4ZTv1AH8t23CKDuP3zOJ3GEW9ry/mEWzUzl7enK/HvD/rc3Kd7JoVjK/e76CprZvIfX/q/2r/S+3HeUBjrbGWHFTEiOStFw3YwA+GuXSMHeY9ltr5/292ng7LEqD306ADBMUeuDJCuiOKjh0AjNdGq7M0jLaOvQbywizSGtYwh//71G2emISyfqh+/7PtlP1CQVBYIJd5C9TdRhFMPzPuv27t+9UEG7HikWqZsL+ThbOTKGxTQ24jMg0s7uoi/PmpXG4rIeRCYigrsmXsHezcGayai9LDM8wsafYw7lnpfDcqlpeWl3HR49MRJZh1gQb2wp7WDDVSVtI3w9B7C7q5rx5qRRWBPohiLrmAHOmJLF1XwdnTzLT2K4e5CMS/S+eYqKwvK8fgqhvDTFrop2CXe3Mm2in6ZTMXZqBA0d6WDjJRmFNsP8Vtb4zyuxxVgpKVXZEk3sAgthb1sfSGQ4Kq/z9EER9R4RZeVYKSnqZP0ntP3NsEg7rYKRJZx0C6wU0iVfg/9x+/P8Tgmhs6cWQCFrWtYaYnW9n2z4386c4aOpI7Fe6gT2lvSydZKWw0s/ITDVjrL4twsxRxkHrDwnZw5Iezpk8eH8b6lVq4fbyAGfnmalpj3D5X5r4/NZk3AGZxWMMFDfFuOR1lZEwJkkkFINgTMGgBWR4/BwDM9M1HGqXWJCtodQtk6GRQBBo9itMSRbY1y4zO10goTpJlkXgcIfM/EyR470CwxIc1yafzNRUkc2lQaa4oD0Ro8wwqsyEbL2Zar9MulG17wjLjDBp2e+J0xmR2dMVI9+u5aYRBlacjNEZlbkwzdx/mLaHFYYZdVQHouSa9XhjEgoKLp2WumCUsRY9jaEo7zb38uuRdsIK5Ji0VAVijDbr8MsqBJGkF6n2x5hg01EflBhjUyGI9pBMUFLY0Bajxi+zJE3kqmyRdJNIWa9CQYdEplHhqmHqeNrCCr8uUSGIzYtVfBgg3Qjlfpl5qQLHvJCdeAa2BOHW/co/bxCutinABfPTueXBQsbl2nhzTR37jnTjsOn4zdNlXHVeNnc/dgR/MEZplZfPNrdwzqwUfvx71f6tz+qpbfQjCAK/fb6cK5dm8szKWkYNN/Ps+w0cqfZx4VnJ3PpoJXk5Jr7Y42Hr/k6sZh0PPFvGledl8fsXjtHtjVJa6eWtT2u5YGEmN//2ABNGWXnrswb2l/ZgNWv57fPlXHFOCvc8ewJfUOJotZ93N7SybG4yf3jtJFnJet7d2MmBCh9Wk4Z3N3Uyf6KN+95qxB+WKasPsXJLF+dOd/DTF+rIG2bk3c1uDlT6cdq0/O7Neq6Yn8y/vVyHPyRxvC7IOxs7WTbTxU+friFvuIl3N3aSnWlmeMZg8XXNtwXhtEOnAg/VhlSY+6+ozg2hGyF8S8qyMpTGxH9Bn2Go71JNzwzurStoZX9pL0dP+HhnXTPnz0vhzscrGDXMzDsbWjlQ1ovFrOXBl2u4YkEy9/y1Fn9I5mhtgHe+bue86Q5++szA+p/a31e+7GDxZPug/d1a0sfsMWZuf6uVvAwDj6/vwheWWDTawENf9XLZZBP3r/fS7FXHmW4ReP4iC9vro9wxy8RX1TFkRcGqF3j8YIQLc7U8vDeCokBZt8InNXEWZmr4zb4Yo50iH1fLFLsVzFp4sijO+SM0vH48TkdQocIj81FVnHOGaXn+SIxkA3zeDEe9aoLEiydgjkvLm3VRQnGZI70SG9tjRBVY2RBBK4IvptAbl8k0atjhjuKTFMp9URSgJRynKhBjhEnHx629pBq0HPKGaA7F0IkCX3X6mGQ38klrH2FZwaXXsNsTYqLNwHvNPtINGkp6I1T6YxhFgTWtQWY4DaxuDqCgUOuXWNkYpdov0xVRuH20hg2tMod7ZLJNAm/VxmkJK0RklR1R61f4qlUh8UxlqlNgfYtCWS+YtQKvnFBYkinwxDGFoCRwog/WNiq0hfjn1YJo3n4xSQ4DHV1hVZPhb0uppBjx9EawmVWPr88fTdDKBuzleAyrWS1/kp5swNMbxWbW8IfnyqhqCPLZE5P7S6OEdVYEURjUvzdAf069LxDv7z/ZEh88Hk+UFFO8v39I0NAcetrrvaQ69QTCCZqPUUNbW4AMl4EeXwzrKRpaSCLJaaDTGyXVoeu3tyWZ6OyJ9msCWM0JGtqpHP/T7DXJVixmLZ7eGMlOPV5fDGeiQKU/GMdp19PVEyHZqSeiqJ6c2aSluydCSpIRb28Ea4J25w/GcNoNdHnCpCSZCCbm22+f/H8Re/+b9o/ygIOBMEaDhm5vlBSXAW9fFLNOjbT7Q3GctoH5+v0JGpdRQ3dvjBSnnm5PH1ZTYn8T+9XRFiA1ST+YZuiJkmoWB9HKfEEJl1E4Y78sRg3trQHSkwbvb2+nbxAN7cevtXB2npmfTNbi9kuk2bT0BCUmPKomFh29w4HLpMEdkNheF+OLigjPLjZg1qlUs1SziDcso4+paxOIg9Mg0hWWSTEJBBNEYLNWpWqlmER6JQWbXn3wBWIqF7i6OkBSgsYFqLSvKISiFvqiEu81xijrk0nWCzi0IuekaBhu1vBweYifjjQw1amlrleLJ67wVmMf9+Q6cOhEvBEBq16LLyZh1YpEZQVFUTBoRPxxGZtOwza3j66YxE3ZFiKygkWroS8mYdOKIMQBAYNGwBeXses0+OMS2eYYmzpi7HDHWT7JTDCukG2J0xWRWV4u4YsryIrKu3llhoA18YYTlODafeokdywVCUlKYr4CQWRSjCK9UZnE9hKUYNlW/nk94Iummvj3F45x3ngdtz9Sir+rj2PH3KxaU8vZwwWuvq+QiS6J11bXULC7BVcsyG2PlHLleA23P1qGv81LTXkXT71Tw3k5At/7XSkTbTFe/7ierYc9jHBpee2zZq6aaOAXz9YgBcOUlrp5dkU150/Qc/V9RUweY+K11TVs399Gsh1+8uAhvrc0mYdeqqLLG6W81sezq2q5eGEqdz52nNEjLLy5rpVdJb2kJhv42fIKrjkvg188X0tEFqlsifD82jYuXpDK9Y9WM3WCg7c2d7G7IkBamom7X63jqiVp3PlSPWFZoLI1wsfb3SyY7ODahyuZMtrCm192sK8qQEqKkZ89U8O1ywb6r2sJ8tSKei6ck8Q19x1hcq6Zlevr2Ly7BZdF5tbfH+aqRU5+9lAh0aCfkqNt/OWNMpbNMnPFz3cwOdfAy++Vs21PI0kWmR//Zi9XL3bxq0cO0dPdR1l5B395vZTz5zp499NKZuSZkKOh//gTj57xkcJ+pEjwjI8cDSHHwoM+UjgwZL9fbmtg+avHWTbHylV37SN/pI7VG07yzY4WkowStz5cwpXzbPzsT0cIegIcK/fw7MpaluUb+d59JUzO1PH6p83sONBFil7hp8vL+d5ZDu546gQhX5Tyah/Pf9jIhVNt3PtiDcMdGt7a0MrOoh6SjQK/f6OOCyeYuPOlOoJ9Ucpr/LzwWSvn5+n5/tN1TEoVeXuTm12lvaTp4Y5327hqkom7VnZwrDlCOCxRcDzA4uEabnrfQ36SwOpS1U1bkiXy600Bci1w9+YQC7NF3EF482iMxdkafrY5zHiXwBc1cXa1yrj08LsDMS4cJvLIoRi9ITjhUXi7PM6CVIE7dsYYpY3zfnmcvY1xLHGJB/ZGmevS8lg5+GIiJ/pE3qsXmO7U8lRlnPawwD5PnNlOLRekG6nxCeRb7bzTEMQTkwnGtexwxxlnNbGmTQ2ubXQH8cYU7HoNH7f2Ms1hYk1bH3FFwR2V2OkJMsFm5O1GDxWBKOkGLe1hGa2o4YNmH5PsZj5q9RGTBBpDMpvcEfLMRl6t95Gu17PXE+Xz1ihXZ5l4vzHCdIeR1U1RfDENOWYRXxx+mmvkhF8i16xjQysU9whYNFq2JrIA6wNq6nNdQKW9nZMCvy5UyLPCp40qBc6lhQ0tf18P+DtFQxuZaWDmWCtWk8iSaQ6mj1UxS72oYDOJnDttcE56TpqepVPsqsbCZBvTR5kRZJlwTMZm0nDuZBs5aQZy0/VUtUb5ydJk+kISVqOGxflWJo00kRCuwmbWcO50ZyJHXsVQc7NMnDcvFZtFy6x8B/mjBzQX7BYts/Md5GaZWDDdOWA/NwmbWcPSmS6m5w1IPdpNGs6d6TxDI2LRVAdWk4Yl0x39qctGvaiO5zR7UavS0c6b5cJ6Wv+iXkMoImOzaDh3ThIjs0zMiYAkKwOaFWYNS+ckM3mMrZ+da7doOW9eKjlDagJomT89ianjnYPmO+7/Ac2JCbkWls5JVsc/N4XcLBO+PCtxCUZmGjl3tqt//aflmFTRAehfz5w0AwsmJdY/3ci5053q+p92v52ynzbKnNBwSGggpOmZM8bcf/9Mzx2AeuxGkaX5FnJSdJydp14flqRlyXgTVqPIonEmbphj4dcfd3PBaC02g8DiUfp+jVqA4XaBCcki9xRE+N44LZePGig20K/5YBXpdYnEFci2CJydIWLWwsxUgXGOU47bgCZDplFhZpJ6PdsM81JVzYQZLoE824CjZ9bAGIuGhqDMLKeWSXYdqXqRbKOIQRSYbDOgF0WO9oUZbzVg1IjkWQ1MsxmoD6lQhUunJc9qwCAKjLXosWhE2iNxbFqR7qiaqTfZZmSizYAGSPob+yyjph/mMmoExlv1JOk1iKIGSYE8i5aeqIJBIzDKIpJjVj1djSAwwiwy06Uj3SgwyaFeTzcMzG92Eoy3n/q3mgwyLwWyTDAzkbeUNTRy9z9q3ykI4sVfjeb75yTx0rp2fnBeKiU1atbRtBEGPtjezZ2XpbN6ZzczRqs/lNJqH9fOT+Llrzu5aVESR+pCaFCYlGPiw50efnFRKh/t8TB1pIkdZT5WbveAAOOyjDx2YwaNYZFYHKaPsfD+Vje/vDKDNcVBpo1XkxOKynu56ZJsXvywnpsvy6a4Qk0xnT7BwXtfNPPLazL5cGMHMyaoP9DiCh83XpTB6x83cu2SVEqqVU2A6WOtrC3o4McXpZ+hEXHDuam89HkbP1iWdpq9hfe3uPnlVZn99oJOQ8kJPzcsS+OlNS384IJ0Sqr96Awik8eoGhR3XT+cDze2M3OKExShX7Pirx828sNLsyitCSDLMGO8nVVftnD3jSNZW+Amf0xi/AlNgBfer+VHl488TRPDyar1DfzbLRPQaP77b2ffBisMhesOBUsA7C12M3aEhfe+bOWuG0fw4ddtzBhtQlGguNLHjRek89dPm/nhhRkUH/OiKOr6v7+lk19elcm6XV2MH2FKrH+AG5am8OqGdm5YOnC/nboffnFBMh/t8vSLJ5XUBrl+tpVXNnVz40IXR+pUiGNarom1e7r58SLnIE2P43UBrpxu5dUdvdwwx0ZpU4Qt5UH8fRFGODXcNc/EmmNR7v9G3fc/ztfzUnGMqKRwbo4Wg6CwaJiGySmafs2HdTUSE6yqsMxxj8JlI0VWnZC5fLiarAADmgk/HCvy9ck4YxIHT3mvqsWw6oTAojQNJ/zq2ZBnFdjcLjPPaebZmiC5Fg1zXXrqgxKjjVZ2e4L0xGTK/WH0osCyZCvFfWEUFOqCMQQgSadhSYqFKXYjuz1BJlkNvNboIUWvQYOAOybh0IpMsxsZZdYjAE3hGDMcJnZ7gsxymOiIRlEUhWEmHYe9YRYlmyj0hhlvU1h+IsBNw4zMTzGwpSPCBRkiJ4PqfTPKIrLDHeeSDB0HPFFGWdUDuMYv80qteh+tWyhSpf58GWeHTW0yN42Er1phYiIX6dlKNRj594QgvlM0tIJiL/6QxLYSL/UdYfYc62PPsT4a3TG2HenFH5LZXtpHcW2A4toAB6oC+MMSBUf7qO+MsrfcT2l9kIbOCNvKfPjDEjuO+SmtD+G0aJiWa+IvP8yiqDbIhctP8smOLvYc66O+I8y2Ei/+kMzekh6KynspKu+l4FA3vkCcrfvdNLSF2V3sYXexh/qWIFsOdOELyRQc9lBc4aO4wkfBYQ++oMSh8j7q28PsKe1lT2kv9e1hjtQE8Icktpf0UlLtp6Taz/aSXnW+RV7VvqyPPWV9NHZG2FbkHWx/wk9BUQ/+oKo5cKr/kio/9a0hth1Sv7ugsIejJ/wUV/Sp4w9KbD3YRV1riKLjvewu8lDXGmLrfje+QJzC4z0Ul3spLvey7YB6bes+Nw2tAXYXdbG7qIv6lgBb93cSiX5bJtz/Xiuu7FPHf1Atd15wqJvjJwMUV/ooKOrBF5TYdriH+rYw+46p61nfHu5fT3XtA5RUB9ieuKd2lfUNut8G7geJ7Uf7KKkNUlIbZPvRPnwhmW1lPhrtMju4AAAgAElEQVTcUfZWBdhbFaDBHaWwLow/LLOjIkBJfZiS+jBHmqL4wzLbK0M0dMfYVxumuSdOSWucF/eFuG2tj+21Axl/B1okli80kGIWcBkFNjZIfFAZp8kvs7tFIhBTJSirexWOexT2d6gaCfvaZVoDUORWKHIrNAcV9iX+drxXPXjLe+GgWyEQh0qfQltYocwrU+ZV+bSFPTJhGXpiCu6ITH1Q4lhfnKgMB70h6kJRptqMpOq1bOj00RWNM8thYpxVT7ZRS3dM4mQwQkRWqPKF+bLTh12rIdes54I0Kyk6DT8e7qIhFKM5HKM1Eqc6ECUiK5zwR/DE4jQGo9QGY3iiEpV+9W9VgRgtYRmHTqDQGyMiKRzzxXBHFcr7JMr7JDrDCke8ccIyHO+TqfGrnyPegQd7awhKehRKelQ+8MFuaAnBoW51bQ53q4fv37t9pzzgnq/PprMzSJrLMCj40eeNkjQo+KQurFmUcffGT9NYEFHikirobNXS6Y2R6kjk4EsyFsOAgPXXRb384ZMO5k6wcelZScwaZ0UjKGSNTz9D8yEtSQ3m2S2Dgzdtbb2kJRnOsE8xDQ7e+IMSTqNAZ0+UVKeOQCihEWEScXujZ8zXF4yTZNcPtteJWM3aM+xFvUhfQB1PpydCqktPIKYgiOLg8Xuj2G2GQePv9ERIT7UQCCbGb9bg9kRISzbS1RPFYTslKK8GI/sCMg6bHikRzNBoBGIxGZ1OJB6X+71jSVLQasX+v52yFwVpaPu4pNrHZXQJ8XI5HkWjGbh2yj4ei9EXiA+ar687qArWnz7fvhgWQV1nf0jCZVMFytPsWvyn5msS+wXQB+1XSMZl09LeFlDvt4SGg8Ug0tkeIM2p77/fQBVMd2rl0zQ9VPvmthC1XXH0GoERLi0jU7Rsrwpx24pO7phr4vXDIXb/zMmsl1XXteo2C11hhVSTSE9Yprknzm1bory6VM/UNC1dIVnVR+iNgChi1gh0RxRSjCJd/thAsO204JxdUalbAGaNQE9EQYnr6YsNBJ9CEth0IpUeHcd9Eps6o9w/xoxFK1Ldq+WZOg83D3OSY9LhjUm83NDDZek2xph1GEWRVxo8GESBzqiEAsRkhSS9hp+PcGEQhf5gmy8uYdWowTlZkTFqNPglGZtWQyAuYdXIIJxpLwoh3muJMMai5awkHQ6dBoUwZq0635AMNq2INyqTZpQHBduu3q9yz9YvFLCcFmxbUaewthmuHga/TNS6fekErG3+Jw7CzRph4JFVjSzI0fHj507i7ghxqKyXj7d1MjMNrnziJCPNMn9d386Wwx70kQi3v9HMxaO13PpqE50dQSpOBnjy804W52i4+tlGci0yL33lZmuRF300yu1vt3FJrsjDa7u4bp6d0pMhVmx2s3JjJ8+saeOzjS2sWNfIgUI3FinKTx45zqWTjPz+1Wqqa3o5UNzFX1acZOkEI794upoUi4bnVzeyeX83RhFufaScK5akccsjFXT54hyq9PHM6iaWzUvm8geOMybXwl/XtrK1pBeTRcddz9dyycJUbnn8BN0+icNVAdbu6mb2BDuX/+44Y4aZeXFtKzuLvei1Arc9XsUV85O4eXklXd4Yx08GeHxlA8tmubj0344yOtvIu+tb+XKnG4NW4NY/HueKBcnc/O9lBMIye454eXpFLefPS+XiOw8xLsfEMytr2bS3A6MObvlDCVcsSuXOR4/S3BHk4FEPT71TzbKzUrj7sSPYTQpPvV3JVztaMGglrr/3IFeck8S19xyg3R1gX3Enj7xaznlzHCy+ZRejsnQ89XYlX+5owShEuf7+Qi6f7+S6ewtp7/Cxr7iTFZ83MHuskaW3HWBkmoa/vFPNvpJu5HicGx84wuXzXVz/mxLaO4OUVvbx5Dt1nDfLxaV3lzAq08iHmzpYv6sLo0Hk1keruOKcFG7+cwUev8ShqgDPfNLCsrOSufyBY+TlmHn+8zZ1/c1abvtLDZcvSOaWJ2vo8iXsP23lvNku7nujAadNx183dLD1SB8mo4aHV7exdLqDW19upCugcPhkmOe+dLMk38rVzzUxKsPI019189iGblbu87GuJEBDd5zHvu7haHMUjaA+oFr9Cp6gzJxRJtYeVQ+JOSMM3LM1xGUTjdy9OYxGKyAKAi8difG9fD0/3hhhdKqODXUyW1sULCYNv90f56Ixeh4pluiKazjWJ/B2lcySUXpu2x5jQpaeVbVwsEfEbtfxYKHMVeME/nRUIqYTOBmBjxplLhoj8vTxMIvTJXa6FUr7ouQnxdjsDjHFKbLJHSLdHCFEBE9Upj0S5ZvOIO2xEH5JJs+mcH66gfqAxJ/yLZT3xdFo4gSUAAXdQS7MjvF8jZ9pyVF2e4L0yWFM+jBvN/iZmxrlkxY/VmOUjliYrV0h5qZGebQqwPFAiM/aovjiMhMdMp+0RLg4W+LDpig9cYn6UJx1rVGWZEj8+7EoObY4X7dLlPVJpJjibFQ156kOQFAQqQoIvHtSYUei5mlFH3TKIkU+kYvG6PiiTvrnpaG1rJrGwdIeFk4wU3QyRE5qgtDeEmR6joEdlSHOHmOiyaPiOtlWgQMnwyzKM1HUECEnWYeAQn13nJk5BnaeCDFvtGqvxCSGObUcqIuwaKyB4qYouaPUYExDV4yZuUY2FPpwZVhYu6+HL/b3cN81mUwcaWbJVDslDWFGpKnYXn17mFnjrOwu93NWvoPGBMN7eLqRfUd7WTov+cwEjXFWCop6WDDFOch+b0kPS2a6KKz0qQkXQGNbiBl5VrYXe5k/2UFjZxiURP9lvSyZ4exPEBB0GurbwsyaYBvo3x0BBIanG9h7tJels1wUlveRm+tE4FQCgoOCQ90smO6ioW0gwWTvkR6WzkmmqMJHTpaKfda3BJk9ycnOw27mTf0b+xIPS+Ykc/h4L7mJ+Q7uP4mGRELN8GQNe0u9LJ2dxOHyvn77+pYAM8fbKUgkyDS2h0FQGJ5mHDT+kVkmUBR1vhMH7Jtagyin1vOol6UzXRRW+MhJMwzs13gb24u8zM+3qesJDE9T13PxVPtAwstp+7vrsIe54600dqoJHcNT9ewv87JoiISaGZkiBccC1HdFeXJDF5dOt/GHC+0caYqyKM/E5yV+Vu7z4QnI/GqBmdEpWm75sAdPUOYUsrPiSgsaQWDhCC0l7RJZRpXGdfeWMGYdjEvWcPNkPT19cQQgyypQ2C5zdpbI0S6ZYQnss8kvMzVFZF+rzKwMgUSN2X77WU6ZMo9CtkV19FoCCpOTBLbVxJniEvi6RWF7p8JT00SKugXiCvy1WuKWkRrG2QR64zDKLPJBo0StX+GSTJFUg4BRNHDCJ5Nv11AbkEgziDgNUdrDMM4mUNwjoRcFdndJVPQpuCMKGUaBqKwmcUywCfx8jJbuiMKmDpnemMKV2RpS9QpmrUiaEcq8CjNcAnUBiQyTOv62EEyww+/LJA50w7IMuG20mmCyaJs69xfPEpmY0ANuDsA37fDxCYlrx2q4ZYK2f32mfxj+58WAn/i0lRmjjNz9bisOi4YvCvv4orAPh0nkV+93MnuUkSe+6qa+K0Z9V4wXtnqZPdLIrz/qwmkW+fJogK0VIZxmkV9/1MXskUae/KaH+q449V0xntrSy+wcPb9e48FhEtl6zM8XxT6cZjVn/9zJVvZX+Ln8LBfLbxnOo6tbyMs28suX6rGbVU2G9Xu7cVq1/PKFWmaOs/Hoygbq2sLUtYV5bGUDc/Lt/O6lMzUi/vhmXb8GRV1rmLrWMI++W8+cfDt3PlOtaj7s7mL97i4cFg13PlfDnIl2Hn2vkbrWMPVtYR57r5E5E+3c+VxNv0bB5oOeMzQuGtrCgzQN7nyyCqdNx8Y9nawr6MBp03LH8mPMnezkxQ/qqWsJUdcSYvkbNcyd7OSO5cfU8Re0sa6gDaddxx2PHGVWvoNHXq8e0MR4o5q5U1wJey3rCjr6+//jKyeYO9mp2if6f3pVPXMnOfjF4xW4bFrW7ehk3Y5OHBYtdz5Zxdz8AU2GxrbIGeNft9PN1/u6+zU3Ttk3dgys59x8B3f+5QROm5YNe9T1dFq13PlMNXPy7byyrrV//U+t5z0vnezX3Dh9f2eMsQzS6Hj84xZmjbFw1xtNqubDoV42HOrFadFw+1utPLbezQvfePjNZSlcNN3Gir2+/vtzyjADyyaaae6JE4krvHsoyJ67U7llzgC3+udfBugNK9y/JYjDILCxNsamOokHzzbgCSlUdElc+kmAFr9Eo0/hxZIY09JEfr83qmo+NMTZ1BDHoRf4/d4o09JE3j0Wp9GnDLJ/9qiEXS+wtVlma7OMXS/wUKHERIeqmRBXoDEIb9XK5NkECjpk5iSpB+7tRXG2tMs8Xx1jnF3EHVF4sirOA2UxnqwKohHgrboQFq3A4Z44uzrjnPTL/LwoyvPVcZ6sjOGLwdI0kWXpIo9P0TPOJvLMVB3emMK9R2I8URnnSI/Mb8ZrKe9T8MWhNazwXr3ERIfAcyckrDrY5VbY5Vaw6uCR4+rhC7ClXRV9f6N24Gy5+4DM/Ycktrao+g9RSWHTlQZsOlWmstGv8Ncjf39dle8UDe3/pZbu0pGbYWDVFvd/bPyv9k/b4pLC42va2FLq58/XpVPXEel/c/vbtrY4wMwcA7NH6DnYmBAxP033YelILQ/vCDItY3DCikUnMDZJw0MLDJy3OsDhdpmZ6f8Y30pRFNIMAjEZmhMSKlpR4IpsDTkWgRq/wuYOFeNuD8ex6eDGEVqCEmzrUHinIUREgol2iQOeGA0BmZEWBasWHpygp6BTYrJDRCOANzYQJNOJAldma4grAlOdAmuaJUz/AeMmGFcwJwR3DBqBizPh6zaFs1PANoSwTkk3LEhXOMVNTDL+YzU34DsIQew/4mHRRMuQEMT2iiBnjzXR7FGfVNlWgf21YRaPGxqC2FEVYt5oI8098X4IYn9dmMVjjUNCENvLAyycl9avyRCKyFz+UBV6rUBulpHHf5bLiDTDwCvqcT9nTXLQdDqkcLSXc78FgjilQXG6/Z6SHvWVeQgIoiABQTSdBkHsLetl6bdAEP39nwZB7Cnt5dzZQ0MQ2w52MX9aEk0dp2lclHg4d27Kt0IQZ01xDdbEKPGw9FsgiG0Hu1gwPanffniyhj1HvJw7Z2gIYtvhHhZMTWgyJCCI08f/txDEKfvmtlA/BLGn1Mu5s4aGIAoSEETTaRDE3rJelnwLBLHzcDdzxw1odAwFQfhDEgt/V8XXvx1BZ5/E2XlmmrvVwzXLIPffn4X1YS79azu7f5NNQ2uQpWMNbK6MYDUIXLPC0/87sOph5ZVWREEgy6jgCckEYjAtXcPuJglJUXhoZ5jXz9Uz3C5yuF1m/rdAEHtbZWalC7QlNOSzrAKH22VmO2U2N8lIiipes6NV5mCnQk9EzYqzaGGUBe6fIFDuFZnqFKn0KWQaBeKyQqVPYZZLQ2mvwiSHSGdYPWO06Knok2gKSWzrjDE3ScslWRCSBMbZBEq8cr+9AKQaBY71ykx3ilT5FDKNCoIg0B5WVMjCqzDZIdAdkQFhEATxeEWM3V1wQYbAZVkiE+xQ6FEY55BJxEAHQRAAl40Q+FW+SHMAZo/QsbdNZna6SGuCjvePgCC+Ux7wwRN+PtnvZeIwA6t29jB1pPoDrWwMMjwpiQ/29aHTCOyoUDHFc8Ya+OCAj0lZet474GPaMAOCqFDSGCUnScsHB3xoNbCzKowcl1icZ+LDwwEmZep476CfWb0CcRlKG0PkpKTy/m4veqeZHUdVwuDiqXYWT7Fx77VZ3P9mA9c8VM7dV2dR2xomJ93A6i3tiIJAQZHKX1ky08Wqb9qYlGdjxZdtTBun8n2PVPkZkZbDqm/a0WsFthWq9ktnunhvUweTR1tY8XV7Pz/4RGOQ4Wl6Vm3sQKcRKCj2IqCweIaLVRs7mDzKzIpvVHuNXqCowk9OhqG//52lvcTjCktnu1j1VRtTxlhY8WUbMydHkGWFI5V95GSaWLWhGa1GoOCQ+u62dE4yqzY0M3msnZXrm5iSpz6gSip7yckys/qbFhCg4IBasmnp3BRWrm9i0hgbK9Y1MS1RnPRIZR8jMgys2tCMTiuw7aDa/5IZdlZ91cqUsVZWbGhl2jiVf1x50s+IdCOrvmpDr4Vth3vQaWHh9MHjnzbOiggUV/nJyRyw31PiJRKTWTrTxapv2pkyWrWfMtaCiEBJ9an1aUMnKBQUexPjcbJqYweTcoys3NjBtETNsyM1AXLSDXy6y4MgwPYjvsT9YOOjXR4mDjexarsqtg6Qm27g+W+6kWXVk9tRrp54C3N1vLOnj0lZet4/6Gdkspafruqksj3GddNMlLVF6fAN5kD7o2DUwMrSCCc9cQrbZUY5BT68wsInFVFunKhFAB4/HOO2STrWVMeZkKTjs+oY4xLSluVdMsOt6t80gsi+NhVLzraKvF8RJy4rdIYg0wxxWc0Qe3KuhhXHJXIscMIHI8xQ64dtHTI5ZoFv2mTGJhI3qn0KeVaFLe0SWgGKe9Q5jDFL7O6K8cMcIx1hmRS9hjJvlNoApBu0g+wlWWZWsnot1yywqT1OnhUUQaTGL5Nu0LC5LY5W0FDYHUcrisxwiWxsl0jWi+xWb0E2tStEJYk7x4p83abqYBxKPM/mDNQW5YJsyHfC1haZci+MTlNYUx1HK2jZ26aC8Gdn/v2l1L5THnDX6ul0dgRJc+jo8cexGtUFCWh0JNlOo5WdVurnFA2txxfHahKRuvpUGppFM6jUjxKIYNYLuP0yaTYNPUEJm0MPgoA/LPfbpzl1/aWBLAahv3SMV9Fw68tN/GxZCnPzzLisWrpF3SBanMWo0prSU4xnaj4kG/s1KE637+yNq5oVp9OgIrJKQztlH5IQdDosJi1uT5S0UxoXidoup0ondXZHSE3SEzzVf6LUzOmaGAiCSitz6OnoVilnf1uaJj3ZQHdPaLAmhkNPh3sIzYTTaF+DNDHsugFaXMLeZjUOHs/f9t8dIe1U/4pKizvTXhjQcOi3VzUEzpjvUP27tGfMN9XGkOPv6AiqNMDTS0t1RVTNh1MaHcAdT51gzQ43V8xP4t0H8vrtH3qzjnc3u/nJ+ancfXkGV/ypigb3gELbrFEm7roomZtfbu6/dt0cKy/9KIOajihnP9LYf/348hwURSHVpmFbSS93ftLDrxbbyLRrmJ1jwKAXiEqQYtXgj8i4zBrcPgk0Aha9yLNbe1lfGuC8CSaunWbGaoTcZH3//eYya+h0h0mxiARjCdqaTugvvXV66SF/VCEpydBfOikYVe1DEiAIqn1QxmoQUCSZBo/EmFRtv/1963v5sDjEj2YYufccK6lWtdSSKR6nK6hg1Aq4TCLugMxz+0O8dzTC9RN1PL7E1K+Jcf/WAGsq49wwUcd9c404jQJdQTkxfhLjh9GvqM5U6c8dWHTq+AMxhbR008D4T5tv1p87/nlpaFUtYS6cYuP65+qZkmPi7QIPuysCpCcbuP3Fk1yzIJlfvFxPOCZT0RTi7Y2dnDvNwXWPnWByrpm3NnZytC6IzShyx7vtfG+2nV+ubCccU6hoDvPSjj4umGjixrc7mZRtYO2RAFuOB0mxafnFynaunmXjtx934gsrVLZGeXGzhwunWPn+Sy1MG2Xm4z1eGruijM828vPXmrhmSSp3PldLOCpT0RDkhTWtXDTXxS+eq2FMtpk3v2xnV2kvqQ49y1fVs2xOEnc8VUU4IlNRF+C5j5q4eH4K1/z2KFPHWnljnUo3y0gxcNufy7lmWTp3PFah2tcHefa9Oi5amMb37ilk6jgHb3zaSOmJPmwWHbc9XMq152fy80eOEY8rHKvx8eyqk1x8ThpX31PI1Dw7H37dwpb9XaS69Nz6x6Ncd34mD71cRVfPKY2Lk1y8MJ2rf32IaePsvP5pIzsLPaQmGbjt4VKuOT+dO5aXq+M5GeC59+u5aEEq19xbwpQ8O29+1szOoh5SXXoefbOW8+alcMfy4/32r3/axLKzU/vH88aaRnYWdpOebOAnD5dy3fmZ3P7nMsIRmdqmIE+tqB00/jfWNHL4eC9Om45bHz7CdRdkcfufjgJw9ETfoPFPHefg7bWNbD/URWqSod/+T69W4e6JUn7S378+Nz1QwsTRVt5c29I//p8+Us41S1LP2K+L5iVz7e+PM2WMlTc3tLHxgIf3N6tFLKuaQhytDRCTFA5V+Hh2TSugZtAdrPKj0wqkO3V0euOkO7VkOLR8UeSjJ6A+EC6YZOap69O44ZVW5ow2UdoYotMnc8kUM58c9nP1TCuLnmjm7f2B/8PeeYdHVW1t/DctfdIz6QkJNZCEkBBIgNCbNAHFAgKCUhUUKwICUqWICNIFRKWKgvQWei8hQAoE0nsy6b3N+f44YZKQyVWu3qt8l/d58jyZfdasWeecfdZZe6293427lZwbCeU8VFcy72gee0KKWRFcwInIEtq66vPOrmzuppTzzs5sLjws5eT9Evxc9FjwoiUjtmTw9elCTkSWkJhThY2JjHd2ZdO5kYLPjhRQWilwP6OSby8V06uJHm/sycPTVs7WW6VcjK/A2ljKtIP5DPI05L19eZRWwsKTBcw4lE9OcRUbLhfiZa/HlmtFLD6Zz5fBhfx0s5ix7Y2Z+HMu+8PEFNCd1Epe9zFg/N48PO0UTNhfwILzJcTlVvHDnTI6ucj54IQ42g3P1BCWWUVfdwVjDhYxsY0+elIw1pNgZSjhw+ASBjbVY/b5UgorICpbw/qQch5WR+d9Guvxw50yLidWYmUk5f3DBQz2MuS9/fl1zjcqs/J/lwuim7epyPngpcTVRo+OzcUhoYuNgh4+ZiJHRGtT7VJkmVRSjyNCUliCq7WC7q2MMTGQ0tXDmDaNDBCKpSABpYGUbs0NcbWSUyRIqdQIuFrL6d5SlA9saoi3Sw29o9JQXOPvbK2Hq0oPJysFrip9engpUT7B4QAih0A7DyWN7PVrOB/s9WnTVKnlKPBtUcOpoDSWazkcgnxE7gUX21qcEv6W+HookcgVCEINh4ObgyFBfpYoZJI6nBXd21nRurmpdks2U2M5vQKsaeRohF8rczRVAo0cjegVYF3NcWFOq8amWntMTeT0CrQR7XmSE8NQ1O/rUUu+FidDpzYWWnmfFqZaDorH8nKFvI49Qb6ifld7A609Pdpb4+dhhkQCZRWaevJSqVS0v/p8e7S3xrOpqXY1s9Z+RyM6+lggIKkj7+thRkv3upwenf0sdXN6GNa/X6ZGMgJbmYocHa3NqKwS2H8+E3VeJW/2VdGmqYm2P3T2VHI+rABrUzkKmYSPXrJHLpPgYFDF8TuFtG9ixNCv4rW6+3gbi/2tpTGu1nJm9Lckr0RD5+ZG7LxaQGmFWN8AiEivZO4LprwVaMKbP2URHCWuqAtPrcBYX0L7RnqsPCOmTkISy3m9rRFtGxlQVikQm1WllZ3cWYmLpZyySoGgtVkEuirwcaipYCn10XJWdHAR213NZfg5KTDRl9CliT6uFjKuxImR/a6QEt7vYoKLpYxWdgrWXhDnwKUXaCit1NC7hQH6cgkHw0sJdFHQyEJG18Z6mOhLuFO9vf3RRxVMaWeAq7mMQCc5V5Iq6ddETpCzAhM9CV1c5TgrpXSt3rLJ2VRKZ2c5xgpo5yjH06YmlXCkeimyi5mUACeF9v8ujfVEXY316pzvwYj6G7n+GTxTKYj7G7z49VwmY7pZsetSjpbsJFJdxdAOlqw5mM6I7taERldzRLgbs/2Mug5HhJBXyK3YMl4LNGXtqRyGB5oSmlCKprgCHxd9dl4vZFIXU3bfLMSvqTEaAUITSnm1vSnrgnMZ3tGM0ATxJvi4GLDjSj5vdjbjo11qzoQV8ulQFYZ6Ul7rZMn3V/J5qUtdzoefTmYw5WVHdp7KoE0z8cG9HVXA8BfsWb1X5Ci4HVUt38yEHSczmDzMiR3H0vCtzqFGxhcxtLstq3clMLK/AyH385HKFbSpxeGw/XAyfi3NkAA3a3FWjBrgyJ2ofDSaGs6KqSPc2H44mbYtzRAEuBVZLb89lpGDXLgdKe5ALMonMnWEOzsP1+R0H3NibPk1jiHd7Qi5Lw7rfFuY1uVkqHa0IZH54vnuFDkoHsv7tbKsY4+fh7gIPzy6gJd62Yv2DHTidmQeMpkE72am9eUlEtGeAU6s2h7DyIHOhEXlU1El1LF/+6EkfD3MkEgk3IrIrZEf4PjE+Sbx7jAHdhxNq8fpseqnWEa+YF/nfo2YHc61iAI6eZuxeJI76/Ylcy28gP3zW/DzuSze6KUiOCSHK+EFhEYV8DC5lFc7W9HE0YDO1SRARy9nsvtSHuqCSvr7Ktl5SfcO0M/x1+HLnka0thUd8530KoYHKFl/pYjX2xhyJ0V8qbV2kOO1PPN/twgXl1HOrZgShgVWcTa8UNsekVZB7zbmBIfm0bGVkovh4pvd3EROcGgeo3vacOaO+JDrlZZzNrKIAW1MOB1eRMemhlyOKkGoqMTCWMaZByWMDDDhXFQpBkbim/9sZAn9W5twOqKIDs2NuBwlVu2N9aRsv5THxtM5IJHgZqvg9N0C9ORSBrQVd6vwa67k4j3xty2UcoJv5fJmPzttoQdEjouBXVUE38ghqLU5F0JztfLnQnIY2d+e0zdrFqLfTyimV4A1p65l06mNBRdv5yJXyDA3VXDqSiZjXnTSFs4M9GWcvp7FoK624s4gvpbcCMuluFSDhamCk1fVjBnsTPA1NfoKCWUVAsHX1AzqasvJq2o6t7Xmwi1Rl4WpgpNXMhkz2IXLd3KoqqaKe6z/TlQhPi1KuFi9aN7CVMGpa2reHOyoteex/MAuNpy6pqaTr4VW3trCoI49j3HvYT69O9hw8qqaIF9LLoRkozQSo+Un5RVyqWh/NztOXskkyNeKW5G55BVU1rE/+JoaqVTkagnO488AACAASURBVK8t38XXggsh2TXne1XN6P4qjl6qsef0jWyuheXx05FUQh4UamdrgMC1CLHvXbybx/nQXEKjCknMKMVvfCgSCWw/mUFSZhlu9gaM6m7FoWs5fD7ciQ82xWtrAg+SSykq02BqJMXF+j+wEdlz1MOF+Io6/w/yFTjzqIwOjfS4XB29mxv+9dPSnqkI+NEmL8zlQl0OB0BpZaRzzX5RSRXm1Wv8xWJJFVVZBXU4H7ILK1EaytAUllFYWoWFsZyMgkpsTGQUS0U9onwVBnoSzj0oJjy5gluxpYTEleJirSA9twIXlT4OlgouRhZxdUkzNBqwdzcnO79cSxD/mHNAXVCJ9ROE3RmFldhZGZBVh1OiEksLg/rFKqVYUFNZ6WvlpQo9LQdCneKTAMZG8priWW4ZZiaKJ4ptpSJnRXH17rKGcpEHwsqArLwKTE1qcT5Uy9uYy+sR0KssZHXtL6pb/KtbnCtFZWlYR76oFJFw/7E9dfRX25NbhqmJAgnUOt/a8tLq860lb6wACfXOt7C4opojokb+fkwujZ1N6tg/fk4IO46lM3qAPYunNKW4tIomL17S9s3I3e2wMdejoLiSBZvj2XwolbED7Jj3tpv2fJOSCqkUJMSklODfQomBnpSC7FItB8Xj/glgWF7G2fBCzkYUc+JOAQ/TagpzGd82ISOvEhtTmXi/HvfP6mJwdmElxpUVYvG4TMPJB2UsOpHHlY/sqdSIBa/bieUEPyjlWlw5owNM+LCXOBJ43P+z88uxMJYj1NpXTaMRyMouw8pIqqXAFAQBKqrIKKxCZSLTys84XsS226WM9jdi8QDTGnkJSKVSNBoBqVSCIAgIVRqt/sdtEokEobxK+79GEJBKJJQXllNaKRbD1MUabIxlZBdXYSgRp6EVlQuYG0rJLK7CUk9Sp3imLtFgYyQjt0yDyWNOjGr5rFKN+LzXks+VybFVyskurkKpX83pUaah5bL/cgQskUjmAnOeaE4XBMGu+rik+vh4wAK4BrwjCEJ4LR0CUAG0EAQhplb794C1IAgD/oixY9an8MPitgydd4klH3rx83GxOvxKTwM+/jqaw9/68uaiR/Rsbw3A9RA1KyY2YtC8KBaNdeGXC9moLBQEeZkyc3MqBxa2ZOyah/RoYw4SCA4pYMunTXl5VQSLxjXiwt08MnIr6OZjzrQ1sWg0oK+Q4OFsiLPKAHN1BXmlGgwN5bwzyJ5318bh39yYe6mVzPw+kUPLvBiz+CE924q5z1M3c9j6WXMmrHjE1Ndd2HtKLM681MOW7w+n8/UnnoxeEEavQBsATl7J5IfF/gz88Gad8x3ez4UPlt7l6MZOjJpzl14dVMhkUo5dTOPHpQEMmHKJZR+3Zs/RRFRWBnTxt+GT5Xc49l0XRs66yYDOdpRVaDh5OYMfvvSn/zs3WfqRFyevZJCTX8GwPk58uvwuRzd1ZsbKSFpU50RPXc5k22I/+k++xrKPvNh9TLTn5d5OTF9xj6Mbgxg1K5ReHVSi/dX6B0y9xtKPW7PnWCIAw/o4sW1/PCtm+DLq8zv06mgn3q+72ayZ247+715i2XQ/9hwR85/DB7oxbWEIJ77vychZt+jdyQEDfSm/BSfx0/KOdeRNTeT0DXLg4yUhHN/agzdm3uClXk4UFFVy4lIqPy3rSP93LrDs0zZs/y0WhULKsL4ufLIslLaelvx0IA5/L0sGdnXg5OU0Vkz3Yccx8T5tO5RKUbmUkYNcMVcqyC2owN5anz0X8rXXZ+sCH87ezePF3i5M/04835d7ObBmVzLrZ7fm67Uh9AoUH/QHsQXMf7cFL358jaXTPPj5RGb19bRj5q/xvNbXkbjgbIL8LGnlbsSdqALyG9nz0rshfPleM/aeSwUkvNTTjunfPWDPstZMWhDBgHZmFJUK7D6dTU5BJZVVMOLXYkIi85BIoJ2nOQ/SNRzbFMjK7QlsTVHWul/eLP42kg3z2tZ7/myMzOq1TZl/g/U/3GXiKG/WLuoOwNZ3YWmuDJXNE3sManTkTxuiINWB2DQ5Xy4P5rUhrZk26xBn9o9j6ts7GNDZgtLSKk7cTOWn5R0ZNSaY5dOas+tYSvX1tOfTryM5srYtM+aFElCd6gm+lcPWWR4s/PYRo/rZ8ctp8foP7WbD5xti+O0rHyZ8EU6PdmItIvh6tm7D/gR+NwKudsCvAV1rNVcJgpBZffxTYBbwJvAAmA10ApoLglBQLSMApcB+QRBer6X7e/6gA5ZIJMKZ74Pw97Qg+Kq4yWZ89S6DjpYCl0Jz6d7OkhvhNRP4H93LpG0zY87cya9e41+GVCbFyUafy+H5dPMx42ZUIY1sDUAm1U6wP3M7j45e4qaKJ2/m8vXPyXT2NuXb9xtzJzyXRip99lzIZsPRDI5+0YzwhFKW/ZJK+xZK3uxlg7ONHpcjC+jRwabepo1tW5hw/n4xHVqb1yxAsDXg+oNSurS14kZYLo0caxY4tGttXe98Xe2NuXg7ix4BNZuQSqRSYpOLaOdlSfCVdILa2hCfUowEcLY34uKtTHoE2nL9XjaN7A0ACXFJRfh7WRB89fEmp6UIiJuQXgxRi/rvZODqWHfBRfC1TIL8bLT2iPJZ9Ay0rbMpqlb/NTVBftZ15K/ey6FrOxXX72ZrNzmNTyvF38uKU5fT6OyvIj5ZzOW7Oppw4WYGPTvYc/2uGjcnJYKgITapkHbeT8hLwMXeuFrejut3s3BzMEKdU0ZBUYUofyWN/SeT2Lw3mldecGbDvHYcOpPMyE+uavvbzb09KSyqxN/Lkpffu8TRC+kM6+PEzAkttNfHs4kx8Sklde5X25amnL6mppOvZR1OjMt3cujmX/f+JqQU4dfSrJ680kjGyBmhlJVr+GCUOx19LNBoKrn3sJC9J9PIzq9gRD8HbobnEZNUTFJ6KRGxRUglYkpFEMQteJo7G7J2WmOW7kzG1MKA115wwMFGH1d7Iy2nx+2oUlwd696v2w/y8WtVf+NW+RMOOCOrBMeAHdrPaaHjUVmL5yZRmFIPf9IBlwoWxCfm4upszvkrsfTq2pRrtxJxNBK3bKrdHzp4KOpxknRvb821G2nV/R/tAqULt3Np71mXs+XivTx6+FvWWzDV853bfwsXRKUgCGm1/h47XwnwPvClIAi/CIIQBowGlMDwJ3SsBl6RSCR+/66x5koFn60MI6C1JfPW3ScmqZiYpGJW70igvZcZkxdGkJJRyvvLIhk/P4wNh9Pxf/cee89n0fOTCGZsSWDOtgSGzrlPQkYZL8+9T3Z+JbvOqNl/IROJBN5Y+ICyCg1vLHjAe6uj+fbXFLr6mLFySmM+XBuLuZGcn85ksWRvKsvecmbxz6mcC8snLbeCzp4mWk6Ads1MmLkpTsvJ8NvFLMyVIoeDfytTFnwXQ0xyCTHJJSzcHEvblmZMmn8Xc9O6HAtTFt7Rcb7RBLS2YsLcEMxNFew7lcxvp5OxMNVjwuybBPhY88WacGISC4lPLWLe2nACfKyZMPsmFqZ6HDmXyr5TyZibKpgwN4SA1lbMWxtJXEoRMYmFzF8XUa3/FuamcvYHp7I/OBVzpYKJ8+4Q4G3J0s1RWnvmr79PQGtLZq8O19pTX38EMYmFWv3+npZMmH0DC1MF+04mse9kEmZKPcbPukagjzVfrLpLTGIBMYkFrNwaSaCPDeNnXsHcVI9fT8Rz5Jx4vk/Kh4ZnM2/1XQJ9rBk/6xoWpnqM/PgyvkOOsmZ7FOM/v04TFxM27xWJAPYcTWT68lD6dranWfWOHh3bWHHhlhpzUz0mzL3FtsX+TBjmxuv9nYlJKmL+ukgCWluxenuMyEFR6/p8uiKC9t4WzF8fVcOJsSGKdq3M691fMxM5k+bfE+WrOTROXMqk7WsX8XAzQSaTsGFvPCM+C2XasvtMXhjBzYg8mrsaM2N1FA/ii7Cz0aexsxEhuwIZ0t2WS9va89U7biwa14gtnzZj7W+pXI8swMhARnmFQFxKaR1ODzNl/fvVsnH9SFcXVFaGTBzlDcDEUd5a5/ufQll5FdFxWcz+8iQd/F0ZO3UvFmaGHD6bxL4TCXX6w6rtsfU5SebfEzlJzqvZf16t5UjxbaGsx8ES4GlWh2PkMWfLX40/WoRzl0gkyUA5YophRnUqwQ2wA048FhQEoUQikZwHOgAbaum4DvwCLAV6/AW210NcSgnvLY3Eq4kSI0MZ7vYKkjLL8WlsTMijIjJyKzAzlpNbWMnZO3mEx5Xw6aZ40rLLqagUMDKQIpVIyCusQp1XQdvmJkwaZM/1+4V1fufAtRzaNzPG3c6A6NQyrkeJkdrkNXF0aKmkke0f3134Of46rN/5kGPnU2jdwpwZkzwByMot49wNkVtwz9EEXu7rgo2lAa1bmHPnfi59g+wxqt6Es31rK9bP9eXOg/qzDh7L/Kdx+rqa4tIqLoXmkFtQwbRRbty4l0d+UQWfjnHjRngen4xxQ4DqaXESLt7OqeccMnLK2XgwlcNXcvBpYoyV+X+mT65d1J25HwT8x53v/1f8kRTEC4gR7X1AhZhuaAG0ApoDlwBXQRASan1nC+AoCEKf6s8CMAwIBSKAQYIgHPu9FIREIhmPmFsG8Du3rTN+rcw5c11NBx9LEtPEIa21cQUz10Rz6moWX0xuQre24vApJjwT3yYmnL9XwJC5DwCwVMowN5GTklVOh1amdG1tyrAuVmgkUlKzyvFtZsK5O3kEeFRzAkilOFvrcTWygC6tzVi7O5ENxzI4OKcpmXlVbDyWwf2kUn6e0YTJa+JJVJdzdkkLLoQVUqUnR08hxad6XnJ8Rhl+zUy4cL+QAG8LkdMAcLbV16YgbkXk4movdub41GLaelnXO18XO2Mu38miWzsVN8NycHU0RiKTEp9cTFtPC85cy6BDG2sSU4sRBA0uDiZcvq2mW3tR3kWlD1IJ8clFovz1DDr4WJOYVgISCc52RlwOVdOtnYob99JpZG+stcevZfX1b2MlykO1fDY9Amy5H5OPnY04xEvLLKW5m5KQyHy8mpmRkS0O8VSWBoTHFNDGw4IHsQXYWYvy6dkVNHc3JSQ8G69m5mRki9fH1sqQe1G5+Lay5H5MPvY2hgiaKiIe5RHoa0NIeDZ21gY07vGbtu8c2tiVHh3seRCTz9dbI9i2L5ZhL7jww5JAQiJy8GpmRsTDXKws9FFZ6XMvKg/flhY8iM7F1voJ+yOy8GpaY4/KUp97D/PwbaHkfi3709SlNHMx4nZkHp5NTcmslrex1CfsUT5tWpjxIK6w5nwzi2nWyITb9/PxbKLUyqtzy7h6N5e3hzoTFV+MnbU+gqaS9Kxymrkacft+AZ5NTHh/aSRhjwr5aLQbjip9VJZ6bPg5keArajLzKkRe4v52SCXg429PZo5Y6bex0CPsUQFtWpgSnVKFrbV+nfONTiqhqY79/Z5MQQDIDHXvA5hdIMfK0oi8/FIMDcSXg1BVgr7+Ey+yp0hBlEssyVAXobI25m54Gn4+jtx/mImlJB6QkJZZou0/Hg4CmTnlta6/eL6RkWpsLcWXUXpWOc1cDLkekU/rJiYkZlQ/jyp9roTn07WtJbfuF+BazQESn1ZKj0khf2kK4qlnQUgkEhMgBvgSuIrogF0EQUisJbMVsBcEoW/1ZwEYJgjCXolEsgboCPgCW3iKHHBnf1t+WOJP37fPsfQjb9btjCY2qYg0dQllFRpObOzAh8vC8GtpRkmZhntReQzrZcvGX5JYNq05K36MIyy6EAulguz8Cjq2tuDszSz09aS8EGRLYloJ2xb60m/yVZZOa8m5m5lkZJVrk/i/rGiL/+sXeKmnLU2cjTl1Tc33873o/24IS6c0Yc6GaB4llWCkLyU7vxLPpkruPSzAydYAv5ZmZGSVsW2BD+PmhzPtzRbsOSq+s4b1dWHLr3GsnhPIiGln6R3kCMCJC8ls/6Y7vUce5auZ7dl1SKxfjhjclPe/uMzJ7f0ZPvU0fTo7IZVKOHo2kR2rutNrxGG+mhXIrkPRqKwM6RZgz0cLr2rlB/VwoayiiuPnk9jxTXd6vXGEr2a25/j5RHLyynmlnxsffXmdk9v6Mn35TVo2EYuIteW/nh3IjgPiMP7V/u58tPAqV34bhtLkj0VaEmn9dfWCjr3fGsI7M8+y/qcwJr7hyZoFXcS2WefEthEt+XZeUI1eTSUZWSWorOruqihU1d9CSde+dEJVA05CWj+DJ5E0kNVrqF2XqKz+tdGld92OKNb9GIa+noyMrBJKyyoZ0rcxw1/yokugMzJZre/o2+n+MbmOXG1D0Heo1xRe2kun6MtB/qz9+QCfjH2DDj16A9C2iQsjR478Y79VdbZ+W0Vu/TaAygbadeotrte0ecsRnB1M2blPnDfw2uCWfPTFSU7teplXJx2mb9dGABw7G8e5K0l/rwMGkEgkZxAj4mVANNBOEIQbtY4fBtSCIIyu/lzbAauqvzMZMRXxhx1w6pVXMTeq4n5MPpPm3iJNXcorLzgzrKeKy6HZ7DmeQtijfBxsDDBXKjAxkqI0knP6ehaTX3Fm7BAn9PUV3I8t4tjFDG7fz+fq3VyKS6t4vZ8jS6a1rDuNq3rRuLGhjLBHBXz6dSTW5nI2zRGHt7U5DayNpRSViFNn4lJLUedU0CPIgZTMElb8EEtMUjHfzfXG0kwPdZECW2uDOtOs1PkS7GyMyM4tQ2n8eNpXBVZWRqSrS0ROhsfTjoz1yMgqwdbaiOzcUpTGetXy5ViaG5CuLkZlZVgjbySvK28kAyQUFFVgaa6v1V9YUApIquVLsbU2JKegopb+WvLWRvX029vV7JL8u/fzKRxwhrq4zhA3Q12Mvd8W7efUm2O0x9PTC1BZP+FoG4iynhUHXF5eRVRcAREPczDQl9GisTmNXUyJTSmjz8gDxF4aRdiDbJq7m6OnJ0Oqb1xf6X/ZAWekp2FloyIvJxsjEzFKbmkixdDwD24t/F90wEVZcRgZKWqedyMF6Wlq7FQmZOeUaIOKgsJyrDzX/b2E7BKJxAAxBZEKxAJpQK8njgcBl3V9XxCEDGA5MB/Qf5rffhiXz6sfXOb1D66QlVfG28Pcufsgl86jL7LraDJZueX8vLwtfTqoaO9lwfQxbmRkl3FwtR8rt8cz+L3bHLuUydrd8UwZ4UZ5hYb9q9oy5fVG2Frp8yihiL4Tr6CQSxg14zaHzqWz92QqL0y6xotTbxCXUsKEYc7M2xDNvA3RPEoopt87N5HLpXy66hG/nM7g1zOZLP8pgdbNlIz5PJSk9DIOnEknIrqQ0TND6TvxKgq5lDc+vsLPRxP5+Wgib3x8BYVcSs+RR3kYl8fnK0P4fGUID+Py6D/2GAq5lOHvnWH34Rh2H47ho4VXkcuk9Bh+iKjYPD5fcYMvvrlJVGwePYYfEuWnBrP7UDQHTsUxfGpwHflF6+7w+Ypq+RGHtfr3n0pgz5FYhk87h1wmoefIozyKy+fzFTfryY+bfp7dh6LZfShaq3/NtrtP253qIUNd9wF5Z+ZZ7P228M7Ms9o2lbURE98QX4IT3/Cs45yfdL7PMq7ezsCn/z6s/bYzfOpp9h2PY8ueKAa9fQLz1j/w0oSjJKYUEpOQj1cLK/T0/nq2rn8Xcrmctwb0Iv7RQ76dP5tv588mO/uvn8b1V0Amk/Lq+H3s2h/Orv3hvDp+Hwq5jK4v7yEqJoeZSy4xc8klomL++l05/8g84OXAQSABMQf8OWAMbBMEQZBIJCuBmRKJ5D4QhZgjLgR2NKAS4CtgEjAYCP4XcnWgryflcoia/l0cuB2Zw9Lv7tM3yI7P3m7KlBHurNoeQxNXE4KqN1Vs5GBIRx8Lvtwcg5WZHp9PaIyLgzGlZRotZ0ITJyO6+FvBE5wAIoeAEkEDO48kY6AvY2gPOxo7GdXhNOjZ3hqlkQw/DyUt3WtxPhjLaOdpjpuDIY2djbCzNuByaDaDutlhaiKnZ6Adfp41U31MTRT0DnLEzVlJl3ZitOLmrKR7BweUxgp6dnKkrZc4v9nAQI6piR59Ojvh7mJKl/b2SAB3F1P6dHZCaaxHz05OtPW2QSqBktKqOvIBPjZoNODuoqyWF/W3bm6JRmuPHr2DHGnkrKRLe3ugrnwnfzvatLKuZb8ezRtb/NFbqRN10goLu5KhLmb9T2EArP8pjDnT2mmd7ZoFXZjzvv//6+KPOqcUSzN9rt4ciKFB3dROSWkljxJLiU3Mx9FWR8T7N8PIREmHHr1xbORG206dATA3/+MjpP8m9PRk9O7qhr9PTYRvqtSjb9dGuLua0zXQCQB317/e/j8SATsBOxHn+P4KlAEBgiA8ZglZCqwA1gA3AXug9+M5wLogCEIh8AVg0JCMLvR76xRd26n49WQSvTrYseELP17v78IbA51ZtT2GqSPcOXI+HQcbAxxsDDh+Rc2l0BzS1GUcX98WqVRCelYZ/YNUrNoRx9ThjTh8IQMHG30cVYYcOZ/O1GpH3q+zLelZZUTGFmBsKKOgqJJhfew5fkmNg40+Djb6HLmYyZThLqzekUB3f0tS1WWkqsvo19Ga1bsTeXuoM4cvZLD0Aw8+GOWGu5MRpsYy1u96RP+uDqRklJCSUUL/rg5s2h3FtDGeHDqdiIOtEQ62Rhw6ncjU0Z58veUeA3u4kJJeTEp6Mb06OvL15rtMe8ubg6ficbA1xt7WmIOn4pn2ljdfb77LwJ6upKQXkZZZzMCernXk7VXGONgacTA4gWljvbT6UzNF/QO6O/P11jCmjfHk5IVkrT215ft1dSYlvYiU9CKt/m6Bjn/4Xj4Z6T7pbB+nHRqKdIH/184XxBdwdEI+566laYfHj2FoIKd1S2sG93HHwOCfxyiwY8O3jHr3fc4dPYTK3hGVvSMPHz78u83Sieu3UxjUuxnJqQUkpxYwqHczvtpwiw8n+HHgRDSOdkoc7ZQcOBH9+8qeEr975wRBeO13jgvA3Oq/hmTq5UwEQVgHrPtdC2vByFDO6asZ+La0YHBPR05fFVcomRsJPIwvpKCokvDoAgyqlw5GRBdgrlRQUVlOWlYZYY8KUChkmJkoeBhfREFRJRHRhaK8REp4dAEFRZU8jC8kIbWY8EcFxCQVcz4km6bOxhw6l8H5m2ouhOQgk0mITy0hIbWEwxcyeRBbABJwtTPA0kzB/fgiPlgeyZELGUwY5oKLvSHOdoZ892siA7o5EphaxN0HYu7K2kKPnPwyNIKAu7MSQ31xKOnurEQQBLxbWIo7BFjVvK+8PazQaAQau5hiaCADARq7mKLRCHh7WFXLGyJF3GCltrx4fSQ0dlGK8tX6rSz0QZAgkUjwbmGJRhBwdjDGsPoBry1PtX5q6f+j5QRtsWykF2sXdgNq0gqPI2BtpLuwa53I938JHo3NmTK6FUs33OW1qWdo09KK7h0ceOuV5jj8A6Pe2mja0hNBo8HJzR19Q7HfWljonjHxd0NlbYREUvNCl0jA28NafF5czWr6v+sfmx/9NHimuCCcHJR892UXegY5k5VTquUoyMspxNJCv36xykjOmh8juXgznTVfBGJqoodEKqsuJv3rYlWNfglrfgxDnV1GXkEZenIJpaVVVFRqUCikKORS7FWG5BZUcuFGGrfCMpn2ljfnr6diZqpPdm4ZU970ZnAfd+QyKc7tv+fqwdexNDfAVFmT3LdUNVAkkeh4Rwo6ikK65BqCru83pEPSQF5RV7tQv6gFkKEuQWUjpmcyMguxbVFDp5oe8Zn22OPjtT8DoCmrr1TXqipAqCrX0dZAEU6jowinS/YpZmc0VGyTyOpfW12FSACp0r1eW1G5kotXHnDoWCh7fr3O+pVvMmRYf902yD3qNWVXOv8Lo+siqaj+NQRwMq4/w8WyobUJNZOiarXF62hroC9WldRvkzcw5a2qU327pGd1663UMTB/in4v0evzv8uGtnhGN1ZtDcWrhRWvTzlJny5ipwq/n8mS6e3oVT1da3f1dK1XB7iz9scIMrNLGToxGLlcQltvFbfuqetN15IAr1RPpxr3egu2/fKQsa80p7CoQpx+VS2/YoY/Ow/FAvBSDxftdK0p868Rl1SAoIHlG+/w6UQfQsKziYjK5siZOE5fTsLCTJ+y8kqUJgpeGn+wzvSW334ciZnpU2Vk/pF40oFO/ng/67ZeZdKYQNYuH4rKxoRJYwJZt/UKk8a0q+ds6znf5wDA2FifPj296dPTmxGvdGDE2+u5eTeDBfPe1JLdPMezh2cqAi6J+5QLFyPo1sGRa6HpuDuLU2hi4rLw97bm1KUUOrezIy5JXLnm6mjMhRvpLNtwF3VOGQ/j8jBT6rHgI39eH9iECzfS6NzOnrjkgmp5ExavDWXRmtuMfqkZiz5pJ+pPyKe9j4pTF5MJ8rUiTstRIOrv2dGBX08mcSg4gcLiCroFOvLOqFb8ciKe8Z+coUkjM1o1s+TMlWTeGe3Fp+8GcC0kVZvUj4nPpX37FrofpGcoAp780S/VzjaAtcsGi9GuxwLt8fT7c2oi4fTsP+5sn0fAoLCu8zErq4Au/ZYy/LVuzJj+el3Z5xHwMxMB/2f2rv4PYfbSc7TzUfH2J2ewMNXnl6Mx/HJUXI8/7rOLBLZRMWdlCDEJ+cQk5PPlursEtlEhAIVF5SgUUvIKypk86yLm3t/z+tRgzL230vGl34iKyWXCjAts2BFBUzczktOLOHw6gV+OxmJhps/b088T6GvLonU1HAVzV4US2EbFuBmX8G5hRYCvLT07OdEryIm3Pz3LC11dGfuqB4N6u6FQSPH1tGHSSE+mzT2LhZkBew9FsfdQFBZmBmzeHvJ3X96nQkZmYb3P67aKZDbrtl7VRsKTxgQAMGlMYB2H+zzS/XOwslJy8uhitmw7zuo1v/3+F57jH4lnygH/u3C2N8ajqQUVFRqsLAwwMVZgbCzH19MamUzC8BcbExqRxW8n41g1tyOtPSzJ4CwTLQAAIABJREFUzC5l0ZrbpKvrT9x+GsjlUvy8VAzp25hm7ubP5HDxSWc7+eP92Lb4gskf/aptq+tsA7QOdu2ywaTfn8Pa5UP/ewb/j8De3orgY0tY/vVejh2/8ftfeI5/HJ6pFISQNpPyQjUymUjq/NiXVZWX1CN6rv6Otk2jEUhXF/Pjvlg27YokJ6+MopJKTIwU2KuMsLMxZMTgpowa2oy4pAJmLrvOpVvp7FzVnUBfO60OiaZSp35kilpE1YjyEhkymbSevFxPv479ggBS/QbmGP7NKYjJnxz8w2kFhCrdRTRdwzmN7mGuTjxPQdRLQQCgbwvAuIlf49+2OePf7ie260hBpBTaUFggDr/j42LxbevP2eBTdAjqTGK8mBpwcnHhysULNAnorDNQ+HdTEPn5BWzatJPtO3bjYG+NoaE+m7+bjqmp8TOVgkhKysTZ/Y2/fyny3wGJRCIIeet1LiVEqk9ZWQXxidkkJOWQmJRDbl4JFVVyKiqrKC+vRKGQMf2DAcgNrdBoNKSl5WBtbYqentiDNJWl3AqJYfvuC/y48xzvv9OfD6YOxNj4icJYA5X+p4JUB19Cg7nWP+mAdTkvoYqMjDxUqif4XTMLUKlqXgQZGbnYuo7Rfk6P24xKZcbk9zaxbtNxJr3dk7Ura443eG00Ou6ZLlldtoJuZ93gb+nQUVlYv40Glj5r6rc9DUdFQ5DKddxzfZVuYZOW9Zrulfat11ZQJp7rJ28MY+CI0QS9IK7of5Rdn82tJCud8/v3AhB6/izTVq1n7oiXmTz/S87s+xmAoIFD+G7e5+w6dREzi/qLalqZPsVLXnMRgPDwWDp3fZc+vdsx/u3+LPtqF0eOXuPE0WXY2lrg6d0TqY4l3U8FSf38dnaFDjkgubj+gSod97y0su4zlp+bw9jeXUiOi/nfnQXxr/D2lO0cORmBdysHnB0tsDA3Ije/gt2/Xkej0TDuza5aWalUioODFWlpOZw4dZvjJ29zIvg2NtamDHjBj4hbK7G1/Weu2nlaZGTk1nGqQI0DHdeHtd+Mq9s2vi9rv5kAgEplzqRxfbSyjx322m/GMfezF+s58Of4e5CdmYmlyvZfypjbqBj41kQAer72BkpzC+Zu34udnT3NfHwBMDAyZtGufTqd77+LzMxcWrVyY8f2OSBU8iAqAbU6j+EjF2BubkJJySzu3jmBpeU/83nLSE0h/uEDbl++iNLsr+/vz3wOWKPRcPDoPe6EJTPoBS/OHHqfpfMGI5dLOXgslLdGdSb67nLWrBiNXC4jIyOXRUv24BvwPh4+kzlw+DpdO3ty69ISIkJWsnThyGfW+WZk1CUlmTxlDbauY5j83oY6Mus2HQdg3abjZGTkkZGRV9O28VgdPWu/GUd63Gato36M5873n4PszHSsfscBV1VWsHPFl+xc8SWpsTHMGf4SMrmcDXM+4/yBfZw/sI8l77yNTC5n6YyP/jLbMjJyMNCvif7fGtsfR0cbZs8axcP7P6FSWXP8+Lm/7Pf+auxY+w3z3hlHzP0Ipq/49i/X/8xGwJnqQn7+7Q7rtlxCLpcz6+O+vDSoDQBd+q+kW1Az7l1diKODuGrr4aM05i/9jYNHQ3lpcAe+WT6OgPbNUSiqL8HT5CT/AXgysp08ZQ3rNh5m0vj+rF39juhoNx4GRKc6d+arqFTmDUa12rbxfetFzM+d7T8XgiCQnZmBhU0D6YxqyOQKWrXvAICtiys+nbtiaGxCs9a+NPKoSXkYmSjx9PX/l7rCwsL4/vvvUavVjBs3jg4dOjRYXNbTk5OalkVFRSUKOcjlMn7dO097fN3ahQQEvoidnQ3dunX4o6f9X0PYzet8sWErvh2Cfl/438AzFQEnp+SwadsV+r2ykaZtF3HxagxfzX+RkPPTeWWIn5b/tLS0gunv98bRwZKqKg1ff3uMwB7z8GjmQHTERr5bP4WgTq1qnO8/GE9GtQCTp67D1mUUk6eu08rUONvDWuc8aby4UupJp6orql37zTjS47dq0w/P8WwgLTEBfQND9A3+9SKe0qIiLO3tsbS3J/TCWQa+NZGTO3/Ev0dvNFVVaKqq6NT/Ra6fOk6fIS83qGfnzp10794dY2NjvL29GTNmDD4+Pnz22WfEx9ef5/vii0E4OdrwyquziY1NrXe8bVtxS6OvV36HplYuNi8vn7KyMqKiYtBoNMTFJZKXl09eXj5xcYloNBqiomIoKyujvPw/Ezw9iggjOiIcW3snstLTKS9roEbxJ/BMFeEsLZX06d2eQQM7MnBgR4yNRS6C8MKAOrKD2nnzwkuv4Nq0OTs2fItEImHO6o04u+moLlejXAc3rC5IG3jTy3UUEhQ6iLUBsjIzsPqdiAVgwYdT2LN5A6+9NZHZX3+r/W5Q4xrWpgvRKVjZqJg37V12bV5fR7ah37I10G2Xzop2dTGlHnQVQ3W1ge7Ks6DjoWno+zpnQTTw0DVQdPxT0FU0BZDqYFNtqJiqEPOqubnFLP3mGAeP3sGtsQfNmzWmeXN3TE1NxG3aBUgutcDe2ZnGzVti+i8YxAoKCxk7oCfd+w3i7Q8/1bYbKOrfyIexsVw6eRSAa2eD+WTZN3w2ZjiLtu7A1LxuzjentO4Mk4rycn7d8C2XjhykMD+PuVu24+7RCgAzPT1uX7nIgZ++B4mEL9ZuFm2Q1wQ3JcXF/LBmJTvWr2boyDF8MHcRimob80tLyc/N4cM3hmHr6MzsVevR09fn0M+7sHdxZf3COSzcsp3ln7xPYI8+VFZWcOPcaT5aupKZY0cwceYXNHZxxdG1UR2bPZR/nJozNKd+n4nLzeXdXuLsCv9qQvmAPv2Z/lL//91ZEBUlx5Hr1SdledIBH9y9nZsXz5ORnkb7Lt15ddyk3620/rcc8GOn+spbE5j11eo6x2o7y6zMDLo1ddIee+xogadytrrw3AE/Jf4CB1xcYcS3G0+z7JvjDOrnw7jRQaTkNuLBg2geRMVQVFSMRCISIeWW65OaEM+jB5EoTc2QyeXk5+ZQWlyMXKFArlCgUOih0Wjo1LMPizZ+XycFoMsBZxcXU1wozgYxNDYmJzODyspKbl26QETITe7fCcHU3AIn9yZYOjnj4OaOQyM38rKyWD39A2wcHBn+3oc0bumFXq1o26L6//SUZN7oGsDRiFjkcnkdB/wY+VlqPhj9Ot37D2Ts1A/FtmpnX1pSwrwpE7h2NpjOL/Sny8CheLTxxczSiuyMDCxsbCgpEne9NjQyJiczE0uVirzsLNwcHOulQP6sA/525XL2b1zDu0tX4lmduikpKmSUr8f/rgMWKk7p7PRPOuDHKKtsYI6hDvw3HPCTTvXMwyStw9TlmHVFwLV1/RFnqwvPHfBT4k864EcxaroM2kCAvzsLPh+MR/PqEYxJb51qIwvF4xqNhtSkRBAETM0tMDAyorKiQvyrrKC4pARrW7t6wYUuB5yiVrN8+gcAdOrdj9kT38TQ2AS35i3o2PsFWrZpS2FeLklxMTx6GEVqXCwpcTFUlpfz1qx5dHlxaL3+nJOZwbFtmxn13oeYKE0Z1aMjU+YswL9zN50O2EChIPZhFK/16MihG/ewsbXTOuDHSE9JIvjAfravXUVpcRHLd+1n4dTxTJ2/hKunTlBYkEePwS+zevZ0Vv1yhDkTRrNi80/YOTrV0fNnHHB6chIvdfJj7rY9fL94Lm06dwfg9vnThF+78twBP4lnxQGDbkf7rxxzXpb633a0DeG5A35K/EkHXFBQSpcXN/Hyi37M+KgWg9nvOODfQ0UDfVaXA84qKiIhWuTjTU2IZ+Xn09lx4Qb5ebm/m4J4jNp9/OaZYJZNm4wEmLtmE4E9enNi38+snPUpy37cg1+7+s/kY7uWzvqEe7du8s0Pu5ErdS+uSMtIZ9PieZw+sA+35i0Y+d7H2Lu4IpVKsHVy4c7VS/h36U7ErRsEBnTQpjQe48844CXTP6C4qoo3Z8wlKjQEW2cXANITE/7yFMQzVYT7JyM7M0Nne9YT7bO+Ws2Zh0l10g9WNipeeUssfr3y1oQ6Dvevdr7P8d+HUmnAplWj+GHnlb/NhvycbJLjYkmOi2XX+m9p4e3DovcnI9fhrH8PuepMFkwcw+cbt9Hv1eE8uHcHgN5DhvHZim/5YPhLHPv15wa//8HcRfi0a8+QTn6EXtW5cxkPw+7y6sR3CejZmy4DBrNw6ng+Hj6U0wf2sXnpAjz927P4/Ukozc3JzVI/9Tn8K2SkpGBt78i3n7yPiZkZV44e4srRQ5j8B+YB//OnAdRCcXEpRib1o4605CQsrKzZ9+NWug94kYfh4s4KLs09OHvkAC+OGE3wgX24t/BAKpHwKDKCHoOG8Nv2bXTrN5CHkeFUajQ09mjF+SMHGTB8FGcO7se9hQcCEHs/km4DB3Noxw906TeQmEhx99TGLT05d+QgD8Pusv/HrfQcNJQx0z4m5n4kPQYNYeKrg7lx8Ryd+/Tj9fGTadrSk9OHD/DK2PH1zmHWV6uZNP3z5w73/ynKyiuxMP/vkMpH348kJSmBZq28OHVwPy+PGsulE8ewshM5p5XmFhQXFeLSuAn5OTncuy6SKLl7tOLC0UN0GDKMy0cO4tKsOQAJUQ/o2G8gJ/fvpV33Xlw6dgRDExPsnF1ITUyguLCQoz/vxL25Byp7B14ZN4nV8z9n16a1zF+7mYSYRwC08vYh+NBvvDxqLE08WvH2+x/z0chX8PDxxbtdAFFhd5kyez7J8XEU5udh5+SMjZ09A0eMprS4CBDYtXY17bv3QtAImFtZI5FIiLgTiizsLs1aeRF86DeGjhzDz8eO0KRJEwDCw8N5+eWX2bJlC4MHD+bevXsAeHl5sX//fnyHjCD4wK80biFOx/Pw8eGn9asIGjAEkNTKef/1PC7PVAri+9OXUTVpVu9YWUUFoRfO0aZzV6JCb2Hr7ApAfGwMTVr7cvfiOTzaBaBOTqJSI0FuoE9q9EM8O3Yh+k4IKmdXctRqSosKcfduQ/jl8zRv257EyHCMzS2wdnDk/o2reHbsQuy92xiaKFFaWJKRGI+NkwtTg9pobZm/+zfcPb24cfI4K9+fpG3/5thZSoqKaObjS2VJCUZPDL30GpgxoatdpiPd0dBQRtf3G/otXXobXH6qKzWhK9XQUHuVrranSEE0lFZ4mnSDTMcGnrrSCrIGHKdMx/C5Ab6C85fzmTFzCRcv1BAYhRfY65TV6HgmdaXTiip0r7dNVaspLy0hPTGeZj5+3D5/Fq+ADmQkJ5ESF8O2L+fRqEVLPlq1gajQW6icHg+xRfmzp4Jp2safrJRkAKwcHIm6eQ03/47Eh4Vi6eDEVyNfpM+4qZzbvpnAF4fR9fXRZKeK8pb2jjy8ep7rxw4RF3aHETPn06ilF7npSbh7+nDv4jlatAtAnZxMdkY6dy+eJSs5kei7oahcXJm07FusjPRJS4ineRs/Qs6fwat9B7JSU3gQeoufvl5G+x69mDh3EfdDbtK0STMEBFLi42jl58+1M8G0bB9IepLIR2Hr5MydKxfx79qDk2fOYlN9vplJCbh7t+HcybM4e/qSmy7ab27ryLZ3X6XdwJdwbemNytUNAHVSAiveHPq/uxS5sUcrCnR0uoKcbDYvmM3CHb/ww5KFtOkibnMTGXKTt+Yt4cdFcxk18wsuH9pPbGQ4CZHhGJma8eXhs/y8YjEV5WVE37mNuY0ts38+wq4lX2Dj7Mrdc8HYuTVm+PS57Foyj0+27mbth++QlZJE49ZtUOjpM3nFOoxMzSjOz8PBvTHBe7ZTWjSYn1evoNtLr3Dmlz008/HlRvBJbp8/zUerNlKSn4eLsvl/+/I9x98ID48mREQ8JD09E1tbm//obz0IuUl0+F1unzvDx6s38N38z3lt6occ3LqR2IhwXhj5JiFnT5OrzuTwti04V0e6j+WDf9qMoBG4cVSkufTvO4g9y75g8vodHFy9hBaBXXD19OHnxbOwtHfk8m97cGzmwc1jBwBo23cgv61dyQcbfmTp2FdZ9+Fk7Bq5Y2JmRv+xE/lx8VxGzfiCy4d/Q6ZQ0LbXC+z48gtKiwqJuHKRLZ9/TJuAjtw4c4Lpa75j4xezmDB3ITfPnKK4IB99AwMuHDnIa+9OY/PieXQfMIiy0lKunj7Jgo3b+Gb2p0xZsJSTv+wBoPuLQ1kzZwZf/3KIQxtX07RNWwDCLp5jwvI13DywE42mirBThwBo1aM/pYUF3Dj8KwdWfUkTv/bYOLuREH7nL79Xz1QEfCm9gDwdk6ErqqrIzczA3EZFQW4OhsYiG1dWbi5Kcwty1ZmYWVmTmZTIez0Ctd9bfTGUorxcpvfvqm37+lwI+dlZzBnSS9u28lzIYxt4r3NNtPvl4bPYuzchT52JoUKKvqEYKRkYGZGXpcZaZUtyzCNtRF5SVIjS3AKJRlMv9/Y8Aub/dQSM3IMxYz+kjU8rpk4dC/znIuDsoiIEjYajP33PpSMHiL8fiUJfH7eWrRj1ySwae3qTq87EwkZFfnY2hibi8/K4f0bFJWFqaU1ZiXg/9A2NKMhWozC1JDU6iuiQ65QVFXJuzw9IEJiy7kfs3JrUka/Iz8HM2obC3BwEQeDY1g3Eh98hJyMdA2MTpm/ZgVQqo0oAfSMj8rPUmFpZE3rmJBd/28v9a5fp1H8gwyZOxcDYGHNrGypKS5AAowLbsHT3ftw8WpGfk4PKUtzTsKiwADMLS7Iz0jGytKKkWNw4wdDImBx1JmaWVpwIPk1aXDRKCyssbO2xsncgXl2MiaU1FSXFlOTncv3XHylWpyJoqogPu0NeZjrmtvbI9fRQJ8Y/L8I9iUf37iCVy5n52hBSYqP5afliflq+mLS4GOa98TJyuZxv3p9I2JWLtAwUJ1cHDXmVNdMmUpSfh0t17se3Z1/WfzgZc5UtNtWVz+b+gWxfNBuZXM7aDyfh1/MFAFxatKQoP4/Fo15GJpfz65pvuHxoP5cP7efrqRORyWSseG8ihXl5bP9qMdu/WkxKbAyzXh/yTHICP8efh6WFOUVFf45f+o/gRvBxti6ay65vllOUl8fy347TtkcvOvV/kZjweyx9dxwyuZwZrw4mNT5G+7ykxEYz87UhyOVyNn48mRtHD3Dj6AE2fjwZqUzOlo8nEXX9Er8sncv1I/voNuItjEzN2THvM777aDK3jh3k1rGDbP7kXaRyOV++OYz0+FiObl6HoNHwyofTUVpa4dysOe908uWrSW9ybNsm1nwwCZlMzpejh6G0tELl5ELf4SOpLK9gfPdA9m1ax8IJY7h45CCn9u4mPycbC5UtH708kOSYR/z4zXLWL/qCxOhHTB7cF5lCwbefTyd4315O7/+Fz0a9wryJY+nlasPGT6Zw/PuN7Fw8h1XvvMn7ndtw9/g+fpn7Pme/X83GcYO5f+EUzfwDyYiPpcPQ15FIpbTs0JVR87/+y+/VM5WCAHHtu0RSw/kLYGphiZGJEt8u3bB1dsUzQJw4rXJypXVQVwyMTfDu2AV3r9a4ePoQfuUivUa8ybHvN6JyduXl96eTn5tDq8AgLu7bg4GRMf3efgdbl0YYKc2IC7+LgbEJXp260mXoa/j37o+RqSkqZ1e8grphYGxCk9ZttEM5JBIMTZQ0a9MWW2cX7URuW2cX2nTpjlQmQ9fI48lze/z/k+f7uO05ni2cPHWBtWsW/L7gU0BXXzExs+DmmVME9OmHQyM3sQ/6B+LW0lP7PSMTJb5du6NyctE+L7bOrvh26Ya+kQktAzvj2spbK29gbIKbT1t8evbj+KbVdH51NN7deiOXSblxZD8mlla4tPTSyhtWPy82Ti40byeOOq0dnPHp3J2+b47D0t6JnPRUzuz+kQHjp2BgYoJXUDdUzq6Y29px6sfNODdpRmNP7/9j773joyyzv//3pE5mUia9N0IS0kkhJITeREVFxN53V13LrgW7q2t3VUTFilIFRJEiAlKkhZDee+890zKZzGSSTDK/P+4YyDL8nt3X+v0+66PnPy8/ubzue65zee5zPudzUZqVgaK7i5V33oOTqxs2YjEjBgNJi5bgFRjE2JAe0/g4PoFBpCxehtTeATdfP7a++ya3PvwoyQuXcvbw93j7B/LI5zvoaRLoeEFRsXz91t+pOHUEO0cnqs4enXiXFpzY/Al67QAnt31GzPylxC5ajttE7viXtF9VCuKWv73FzCtXc+7rTcy65kY6qoVqpldYDJl7trH0T3+l6Mf9+EUIG6c2L5uk628j+9stxF+1hq7ackZMFniERFBxbB9JN95L5Ynv8QqPwThmoreunIhlqyjat42oK1ajaqphbMyIV2g0Fcf3k7jmHurPHsYrVGjD7K4tJ+aKVeTt2UrSyjV01QrsC58ZMRQf2cvC2/9E8dEL6+moLiPhqtUUHthF4pXX0lYlrD8gMobyU0eZv+Y2sg/tJSgqDoCWylIW3XAzx7ZtZP7qW2iuEHJQ8XPSEEumfhZLbcxzVc0R4u3MjIH51ITdZWhKZnmWxlNmsWZTEP8qNxgurxNszsx1oplLKwCIzLwzcymEy6UgrJZcMlQ5YJ573tLSxF1L53G8qnmyceJyKQRznHRzaQlLkYjc0z8RHhfP0d07uenPj3Ds26/Zt2Uj06JiCItPZOENN3No8+fEXnnD5H4LjIoh6/s9LL3zPk4dOIBHiBA4dNWUE7fiejK+20XogivpqxP2s0dYNFUn9uO/6FZaMg7RePoAwQuuxcLSktBF13HwsetIuPNxrGwEtoBrSCSdWYeZef3d1Jw8iEeYcPAPdDQSvmAFBd9tJXrFDfTWVVB+eDftFcX4xyRw02sfU/zjXnL3bCNu0TKGdYOIRBYUHP0eJ3dPIlLSiJm3mLL0U+Qf+4H73v4YVU8XcbMSMZlMNJaVsGD1TRza/DlOMmd2f/AuoyPDLL3pNpqrKqnMyyYkMZWrHhHattury0i86no+uHsVw4NatIpeklbdRszSa1GVpnP13X8i59gRImbNRiQS0VBWwqfPrf3tFuFqcjIIiE2iJvscIQkpNBbmApBzcA+VZ4+jVfYxohc+8YqPHaS5OJfexhrU3e0EzZxNS3EellIHbCX2NOdnEHv1TbQUZAJgHDPRXpTF9LRltBZk4Bc7i966SgyDGsQOTrQUZBBz1Y20l+ZjmhANac4/T/i8ZTTlZTB9ViotxcJ67BydaMg9x5zVt1CfeyFXWp97nqgFV9BcVkhQbDwNhQL9R+oko62qDIP+OqqyMybxVdkZpK64mvKMs8yYlUpNnsAjDYuKuuQA/t3+u+3UDweIiIv/z8XHLzKTyURp1nkcZc7knz3Jyjvu4dSBPWiUSsJmJlCWmcHsFVdTcu4svrHJ1BX8vN+cqMpMZ+4Nt9FZXYZxVPgfX1N+JhHzl9NTU4ZnWAyd5cI1R2IHGW0F5/FKvY7ushzGRofRdDRi0KgISl3KUL8Ck9FIb30BALb2TrQX5xC1Yg1tRZmT6+1vbyR41jya8zPwj0umvTQPz5AZxC5fxYHXn6S3oZqKnw6j7mrHND6OTtPPLS+8SUNRDkNaLTZiCbX52aRecwO1Bdl88dRDhCbOxslejHFkhNLz50i+4ipKzp3ltseeQjegIXHxMtRyOV3Njfz1nQ85e+IE7dVlgOCPMQuvQOLkwkBvF+Fzl2FpbYvJZKKhpBib+22pys+ZpKGVZJz9xX67n+1XFQGnrbmdzL27SL3hdlY88ARie3sGVUpeW3lBxu75w7mMGPSsW7Nocmzt99mILCywldqjHxlnZEiHnaMMnVqBRObKqEHP6JgJa7EEfb8SqbMbQwNq7CT2IIIR/QW8s7s7owbhkLcWS9CrlUhd3DDqNIgnin/Deh0SRxmjGhVSF1dGJooTNnYSBtVKPL080PWrJ/EGvQ4XVxcGlHIc/qn4MTKgQubuwaBajXiiWGJrMY6teGoB6fcIeML+CyPgU4cP8ubTj/HpviMEhV6gUf6nEbCVhQXG0VH0g4M4Ojujkvfx3pN/ZUbKHBatuXWyGCxzc6e5vQc7e+HZDHodUicZA0o5OktHRif2m7WdBJ1ayahYxtBAPzYSKQCjQzrEDjLamzsRO7mS8f5a/GctxjdxIcr6Ys5/8Awr39uLvavnBF6Ph7cberUCuwn/ArB3sL/gXxo1NlJ7JNYWjOh1FB/ZS132Ge56/yuqzhwlY/tHRM1dxLJ7H8TR1R1dvxpHJ+EWdMG/nPjwwTuZFpvATQ8+BIimPO+wdoDjX+/g5Hdf89zGbQSFR6CW99EzJp7ij33Njay//UqWP/wcSatuE96/XsecqAD65XKc3NwwTAR1YomE1SHev2gEbPnyyy//UnP9j9orr7zycvvEJ1RHdTnNJQXoB/rpbqhB1dPN0EA/dg6OBM2cRe6+nRiHh9Fr1IjtHZl1/R3sfflRdP0q+prryNz+EcHJ8/l27d24+AWSt2czLfkZWNmIOfaPJ5k+bzk/vvE4xpFhOsryydu9kaBZ8/juqXtw9Q8m55tNNOaew9rGloOvr2XG/Cs49dnbqDpaaa8oJuOrzwhNWcCBt55B6uxKxq4vqMtOx9pWzLcvPcbMJSvY9uwjaNUqmsuK+GnLJ0SlLeD9+27FMyCYE1s3Unn+LNa2Yrb//WkSFi/nk8cfQKtW0lBSiKqzY0o+Dy7PbDDbIn2ZKMwcC+Jyim7utmbmGG82izXbNmy2lfgXYDaYu5Ptctc1/auHtcVlusUsLlXXkw9fer3Nd1u/JHnhYhasuHrK+KiZq3AAxszVB8zgRMC3n25g14Z1JC9exto112BtK6ahvIzG8hJsbO344LGHSLlyJZtefBp1bxdNZUUc2/QxUXMX8sF9t+ISEELmri9oyD2Hla2Y/a8+wbS05Rx783GGNCp6qkso+OYLApPmcXrdM9g5u9OadYzOwrM0nt5Hy/mjOHj60VWShWFAjbyulPJSUiz3AAAgAElEQVT9mwhKnseBZ+7B2TeIor2baS3IwFZiz6HXnyBs/hX88OpjDPWr6KkpJ2PHp8y/+xFObXyXEb2O7rpKxgx6LCwsOP3VF8xceiVbnnmIYb2O+qJcfvzyY2LmLeL4to3U5mfTUVdDeVbGlOf96i1Bc7gsO5P8U8eZd80q/nbrapz9gkjf8QW1WelYi8V89/qzLPrj4xz/6A3UnW2oOts4v/NzZi9awkt33IBP8DS+3/gJRWdPYSMWk/79Pl5++eVXzG+If99+VRFw6vW3kn1gN6k33E7SVatx8RXugpJ3dCDz8qW7oZpp8cmoJwjhRpE1yvYmpiWl0VlVirOPP0OjY/R3d+AdEUdrYSZ+sckM9HZgHAMHTx86ywsISJhDT00pzt7+iID+nna8Z8TRWphFSGIymh5hficvX9pK8wlOSkPRUIHMS9BzUHe14Rc5k/aSXILjEifXI/Pypbkkj7i582mtKMF1Yv3KznbCZiZQnZ1BaNJslF0dALh6+9JaWkB02vzJhhEAa5MRV++pegG/R8AT9l8YAa+95zZmL1rCdbffPWX8l4iA1Qo53a0tRCQkUZB+BldPL+5fPo8XtuxiRlIy1Xk5xM5dQH52Hm5+wn5TdLQRFBNPdXYGjqHx9PdcaEBoLcvHOXI2vTVlOHoL+3mguwPPGbFUnM/AIzwebU87jWf2Y+/hh2vQdLyik1HUl2Pv6QvAYG8nIfEJtBdl4Rszi4E+YX43X186ygoITEyju7oUJ29/JFYi1N0deE6PYMPNi0i7/QEyd32Oo4srt/ztTYb1emakzKOlvBifwEBAhKKjjeDYeKqyMxgzjrL9xbX8df3HRCanTD5vW2UF+kEtbz/8R66+8w/cvvZZSjLOYhUcM+mPzl6+NBfn4RWbwpf3XU/M0pXErViNuqudlVfMo/R8OlHJqfR1Cg0d7r5+3BwR9Nulobn6+PHM/jPYSqRIHJ2ozjxDdeYZbB0cOL97MwHRCWTs3oy6pxN1TycVpw7jHxXPqY3vYufoRF32GZrzMxE7yDi3aR0+UfEU7N3KQF83mt5OivdtwztyJpmb38PWXkZL4Xma8tIR28vI2PQePlEzydu7jYHebgZ6u8n7bht+0fGc+WIdYqk99dlnqM8+g52DEz99/i5+kbFT1nP+G2GNRz57D4mjE5UZp6nMOI3E0YlDn77PtLhETu74ElVXJ6quTk7u3MT0+ET2vPcm9jIZJemnKEk/BSKoLcpnzGikqaIMZU83yp5Lxa5/t/8OW3H9Gra8/w57Nn3O6L8gHq4f1FKZn8uY0Uh9eSmK7i4U3d3Ul5cyZjRSWZCLTjtAa30dOSeP4yCT8cUbL+Pq4cETa1aSuGgZY6NGDm/5grCEJHa9+wZiRwcqMk5TkXEaiaOM7z/8B9PiEsnbtwNNbxea3i5yvtuKf1Q8OTs2YOvgREteOi156dg6OJG1ZT2uIdHU/LiDIXUfPjPnYhzW4zItiqJdH2Bj70hHYQYdhRnY2DuStXU9XpEzKT6wDW1vF9reLooPfo1PVDznNq1D7CCjKfcstVmnGBnS8c1z9+MWMI3K04fxmRHD6idepKEwl+DYRA5u+AcSRxkVmWcpP3caiZOM/R+8RUhcIh111aStXMXGF57i+42fTD6vxMEBRVcn19/3MGf27+HhpXPxCgzi/Ddb6O/ppL+nk4zdmwmISWDvS39hbHQUsYNwRtg5OrH97dcJT0ji4ObPkXd2IO/s4IfNG/+Pv92/a7+qIlxHjwJXgx1dnb009enp6h0AYMzTQHd3L819Q3T3qMBNIGArVAO0Kwz09fTRpTQgVw4ishZj1W9A2SOnVzWMSq7C2kOPyWSiX6lGpRlB3SenXzuMdnAE44gBO+0IarkcpWYUtXoQ637hymylXEWvagRlr5xezSgKtfDftdWMoOiV06sZQaFQY6sR8AqFmp6BYVRqLb0Dwyj6Bbx0YBjN4BC92hHkcjVSP0GNSi5XI9eO0NfTh1w7grJf0HPtVWo5tnMnNz8XysnvDxCWlIKz1JY4F9f/6P2ai7IuZ5UDl2KjHC+NCAEQnb10zFxUerlI11wK4nIKZebsshGwmWjZTFRbpzP/XgyDlx6m/3ybLkDqiqu5R6tl54b3sHF0ZMkq4caJgcvcsNDU3s6Br7ZwT+A0juz9lsjkVEZMFlRlZ7Dyz4/x3dYtrPjDQ2SeOQuA1k1JdVM7Ne+9j72XPwmrbqNvcISePhWd/SN0dfURPmJiUCfsw6HRcdQKBUOj47iIRfhONNtoTEOEe0kpFZuI9ZVi2S4EelG+UlrHtLjJbGke0+NgJ4wPjOmxsrRgeECFBWAaFZ7HAtCqVOj0Y2jV/XQd+obe6iIsrKypy0pnoLuVhuxzDMq7MA4bsLSxZXxsFPewmSgaakl98GWqOgbpae3DrlFDc0s3kpYB1F1axoyjDLoO0NTaTUHzAI1tcvxmpjB2LoP8vBLs0/qpbuzCskpBV30vg/Jukh9+i/QNz7P+jXVYSZzQS4Rzo7ddgX2LFmVnm1Af0mqxFosZGzehUSowjpvQavoZmfhS0WouvZ3mP7VfVQrivgNFdJQW4BuXQl9dGY6ewieSpq8L9+nRdJZk4RWVxKC8CwA7Fy96qwrwiZuDvL4cB09fjGMw2NuBW2gM3aXZeEYmMqgQokd7N296qwrxjktFUV8++Qk22NuJW2gMXaVZ+ETPQjcxv9Tdh97KAnxmzqG/pQoHDyEtMNDTgUd4LH2VufhEJaLtE/AOHj50luczI2UeXdWlyLyFT8L+7nZC4hJozDtP4MxkNBM96U6evvRU5hM2ex5tF6UsRlS9BEbFUpV1jrCk2Si7O3GR2uAddGlO0lxqwlxaAsDWTArislgz45ftmhs7a2Zs6NKxX9sBbCaFYO4ABhgyGtn01qtY2dhwz9pngcsfwBXFRQRFRk/RMNENj09qMkTOmU9zWTEGe6HopWpvARF8+9wD3L1hNy4OYsCEs7cfjUU5hKfMp2VCwwFA1dlOQPRM6nIymLtoHoqJlJebrx/VeTlEzRFSXu4TKS95eyshcQns3X8cn+ip+7mxKB/v6ORJ/wLQ9nbiERZLV0kWHpGJ7H3wSmbe9AAy/+n0VOYj85/OiG4A15BIrKXOZH78AhIXD4b6lURecxdSdx8wgdTNm97qQrxjU1E2lOPqGwAi0PZ24B4WO+nvQ8oeqo5+g8lkIiBpPn7xc+iqLsPBw4eDT9zI8KAGqasnDl7+pD3+PvoJf5e6edNXXcjsJfP54Y2n6K6r4PqXPsA0Ps5Vy9MozUgncnYK8k7h/bj7+nF71LTfbhHOOyqB8h924huXQuZnrzFq0KFsrqGt4BxeETM5u/4ZZP7TqDm+h97qYqzFUvK2rSModRnZG19n1KBD29NGzbGv8Z05l8wNz+HoG0z9T98hry3BWiyh8Kt1BKQsI3fT64hMoKgvp+6nvfjGzyXjg2eR+YVQc2IPvTXF2Igl5G57l+DU5ZTu+wKdshdlUw3Vx/bgnziPvO3vI3Vxp+LHb+iuLMLaTkrGxn8wY8EVnPjgZUaHdPQ1VFNy+BtCUxaw75XHcQ8KoeD73bSVFWIrkXLyi/VEzV/G/rdfZFivo6uuirrcDKbFxrP52b/gHRzKuT27aK0sJ3HR0kvem7m8rrnC3OXG/x2sh7nCHICpxcyYmYPqssU2Mwfg5a7+MWeXLcKZWa+ZwprSfKoWo5kimrmxn8dzz/yE2M6OuJQ0AIYvo+f75SvPE5GcysdPPIxvSCgnd++gu7UFkUjEnndfIXH51ex87Xl0g4NUnvyBU5/9g86qEowjwwQnpVF3/idqss9hK5Fw8P3XiVtyJYc/+ge6fhVddVVk7/+aiDkL2PniYwTNiOCnr7dTW5iPWGrPjjdfJvmKq9ny92cx6AZpra7g1Dc7mTl/MXvefRUHN6/J/WwymcjbsQFtTzuVh75i1KCnv72B2hN78UuYS/oHzyLzDaarLJuWrONo+zrpLssl/qaHKP5WuM9Q0VRN05mDzH/iXRpO7cdn5hzqf/qOge5WRBYWgj/OXkbeptcxmcZQNFRQc/w7/BPnTvp78/mjaPu6aMs/S3dVEdPSllOy90taMk+gU/YishARf/PDtOadRhYYRsPJC/5etHMdMUtXUnb8ABKZC6VH99FZXUry4iV8+PhD+IWEcmL3V9QU5mEnsSfj4G+4CPfnwxVo5Qokzq4YtBpsJrQXDHo9YgcnhvoViJ1cMRqE6EpkbYtBo8JO5sqwVoO1nYTRMRNGgx5beyeG+pWInVwwDgt4K1u7C/hBDTYSKSIEWo2tg4CXOl+Y30p8AT82pMVmgps7MiSsxziomqS5gUBbG+pX4ubpMYXmM6LX4eLmyqBKgdR5Km1tTKvC0c0dvaYfW6mAtzYOYy+TTaGtuUptzHKDf4+A+a+JgNfefB3+IaHMmJnAtBmRbPtwHQadjsAZEYTHJzJnxUoA+hQKpI5Okxomw3o92mEjtnZStCqFQMvS9FNUXM7eFx9h1YvrmZaUNrl/HCyEddnYSRhUKXBwdUerVk3SGId1OiROMrRKOWHBPuj6+xnS6bCVSDCZxrG0tuHEzq3kHjvM0KCW8bExLC2tCEi7goDEuWi622nJS6ejNBev6NnI/IJpzTmJT2wKdi7uyGtLWfLsBgwaleBfhiEM2n7a8k5Td3I/I7oB3MPiCJ6zHO+EBRx+cg2pD76Cg1fApD+axk1YiSVT/NHeyeGf/FHw9/GRIUQiET+9/Th+8WnEXncXWpWaH9auIThtBcFzr8QtJJKhfiWInab6+4CKqIgAhgb6sbS2ZvN91zP/D49y+103T77/i2loN4X6/nZvxAiZewVz7n+Bk28/way7HqMlW6i6B85ZRv729Sx95gMyP38V35kCL7inpoSkOx/nzLtrSbzjUdpyT2ElccAzchbFuz9kwdr15H75Ot6xqYCJ7rIcZv/pBdLXryX+1kfpqy5gZHCAgNlLKNr1IQufXE/BV+vwihAEeTpLskl94G+cefcJUu5dS1PmCQCCU5eS99X7rHxxA2c+foWABCHiaSvKZOEjfyfjk1eZdeM91GX8BEDYvGVU/LiH5Y88x+F1LxEyS9CraMw/z43PvsaO5x7myoeeouLscQBSr7yGfe+/yZ/Xb2TX688TmToPJ6mYhatvuuS9/X4A819zAL/64B8YMQxjZW1FZWE+y26+nWlRMbTUVnN0x1ae3LCRqOQUKoqL2PHWKzyy7iPevv8unFzdEFnbIG9rISptEYU/HSEsIZmi08eZljyf1Jv/yOkv1rHmtY85uv7vJCxezuiwgdrcDK577G988eg9hCbPpaWkgGG9DksbG+StTVjbijHotIhEIqxtbDGOjuAVFExPawsRs1JwcHZBLJUSN28R33++AQtHD7oqi3D09EHmG8zosJ7Z9/2dM+vWInX3oumccDM3JhPe0cksevI9sja+hu9MoRVZ3dZA7Jr7+en1h/CJTaH+9AEAjCPDOAeGsvCpDyf90dLaho7CdJL/+ALn1q8l/rZH6avIwTg8RFDKEvJ3fDDp74HJCxk3jlB/9giqljps7B1Ie/g1inZtYHRIx5w/v0jhzg9Z/NT7ZG9+B/cZMwHoLsth1h+ep+H7T0hYeRM1GSdQd7XRVVWK2MaKpKVXUJKRTuqKq/Hw86f0/Dmyjx767XbCBc5eiJWdPYGpS3Dw9MM3Trj2xN7Nm6DUJVjZSfCftRCXwAmyu5U11nZSAlOWYO/pi3fMbMZMIuw9fQlIXoKVWIJf4gJkAWGIRCIsrW2xspMSkCzgxwx6TJgE/Gxhfp/Y2bgECK2bllY2wvyzl2Dv7o3vTGE9Dl5+BKUuxcpOSvDsRbgGC+uxtLbBRiLFf+YsZN7+BCUIG1Pm7Y9PxExs7KSEpy3BI0TAW9nYIrZ3IHrhclx8AwidJRzkLl4+xC9Zga1ESuz8pfiGR+Ai/TcOpN/tf92KM8/x/EdfUJRxFr9pIQA01NcTk5rGiMHA9fc/zKZX/8YDr7yFs48vfqFh/P3WVTg6u+I3PZyhkVEsLawQS6X4h0Xg5hdA2p0P4R0Wiczbn/D5y7GxkzJ9zmK8Q8JpqypD3dPFOzcvR+rsgkE3iFfoDKQyZ4JiEmivKmfOmtuRV+QQNEPglLdUV+DuF0B1YR6L1txCa3UVAIERkcxbdSP2s6+j4dzRyf2sbK7DasK/vKJn4eDhS/WPu1n41Hv0tzdgZSchIGkBzoET/mIrxtpOSsiClQSlXYFnZCI91SWInZzBZJrijyZMmAArOyn+yUuw9/DFFB6LCBH2Xn5T/T04HBEmLKxtcQ0O4/S6Z0hf/zSW1jbo1XKkHr4ETvivZ/RsZAGhAFhYCf7uMyMambc/wYmpBCWk4BeVgKoqD5mbB/6hYfz0zU7C4pOITZtH9tFDv+i++FVFwCs//omWzGMEL7yR9qzDyIIFFbOB9gZ8k5fTcGIngXOvpb9F2DiOgRG0nf+BkOV3TOKtLC1QN1USkLaS+uM7CZp3LepmAe88LYrWcwcJXXEHrZmHcZkWjclkQt1cSWDaSuqP7WT64lWoJvAuwVE0p39P+FV30pF3AueJH1bZWMm0+dfQdGYvIXOvRNEo3KDhFhJF3akDJNx4L7WnDuIRKmz8vvoKEq5cTcHeCz3yAJ5h0TSc/oGUm+6m5OgBfCNiJp63kfhlV3N25yaSr72R9upynCQ2RKctuOS9yewu5fFejjNsjvMrvkwjhrkI2NwYQJjUTMBgajcz1mr2783miy9nFiGXjon8/+U/r9ZeGm1f7u41c9Hu5fK6ysFBDnzxKUtvupWGiSt8PMMiSd/3DVfd+wBn9+4m+8hBRocNOLh50lhSQOyCpax+9Flaq8oQ29oQMCOSc/u/YcU9D3D+++8IiYlDJBLRVF7CvFU3cmTL58xcsIQDG96lrqSIVfc9hE47wC2PPsmxvXsImDhomytKSbtuDce3fcGsa9dc0IiIjBU0Iu66j5x/0iRJvWYNJ3ZtI2HFdbRPaLD4R8Tww+69TF98A80ZhzAMqOmrLiRg9lKC511DzY87mLZgFaomYf9be4XRkXmIactupyP7MLKgSIxG0LRW4ZNyNS0nd+E75xoGWqsRWVjh4B9KZ9YhgpbeTlfOEez9I8AEA21VeM++mrZTX+OTuhJtZx2m8XGcAmfQmX2YwCW30XVmN2JnN6zEUkZ1A/jPWUnDCcHffz4fnIMjacn4gehr76Il4xAu0wSNF1VTJRFLV1Hxw1eELllFT2UhzVnHac8/y7hx9LfLA9b1daJuqsRo0NFXmUN/cxX9zVWomyuEsYosdPJOFLWFKGoL0Sk6kVdkYzTokFfl0t9chaa9nr7KHAFffjG+CH1fJ73l2RgNevoqctC016NurhQ+fQx6esuzGezrRF5ViLyqkMG+DrrLshg16FE2VKBsrETZWEl3WTajBj3yujK0vR10VxTQXVGAtreDjuJMRvSDdBRl0VdfQV99BR1FWQwP6WjOz0DT3U57aR7tpXlouttpKsxiWK+jMf88ndXldFaX01FdjkGnoyY7XbhJoDCH+qL8/9s/z+/2/2PDQ0MUpZ+mp62V8pxMynMyUXR2UJZxVhAiz80iLGEWTeWllJ4RUlndjXUoOtqozc+mpbKcvvZWyifwFVnnaK4opa4on+Nfbeb1O25g34Z1vHHnGvoVcuZes4rI5BRqCvMY0g1SW5BLc0UpzRWlVGadw6AbpDzzLMquTuoKcqgryEHR2UZlVjrD+kGqsjNoqSylpbKUquwMDHodzSUFk/utsTAHZWc7qqYaRg16ustyMI0ZUdSX0XD6gDBWmsVgXwe91YX0VhcypOymryIb47AOeWUu/S1VaNqqUVTnYjToUFTlMKToRFVXxEBbNUOKThRVgq8qqnPRttcx0FaFsiaPMYMORXU2Q4ouNC2VqOsL0Su6UFZlM2bQMTygwDQ2xqhugM6Ck9T/uJXe8vPoFRedD/JO+sqzMBp0dJfloGqqRNVUSXdZDqNDejpLMtH2dqBoqMDBw5cVr2z6xffFryoCvvbT04hsHTFolNg6ujA2kUy3tLVjeECF2MmVkcF+rMRCsWFkaBAbeyeGNUpsJvCWFiKsxBfww4P9WIvtEYnAaNBjY+80Ob/RoBdSExfNP24YwNpuokd+ophn0EwU5/6pmOfs6YFhSk+9UDwYHVQicXbDOFGcsxJLEOnUSF3dJ3vkQSjOubtfWpxzc3acLK7o+gWNCJmdldkLFn+PgPmviIDbe7pxkDkzoFYhmdBk6FOqsJc5o1HIcXR14x/33kpofCIz5iyi/PwZzu3ZScKyKzGOjDCk1WDvJGPG7Dl4BgQREBFFyanjfLv+LYKjYkm9+jrCk2ZjYWGJq4sMERcE1vvlckxSJ4Ynikk/C6A7ubmjVCiwk07ViNAoFTi6uF4iyG7l4Dq53wAMOh1VfTCkUSJ2FIpntUd3MaxVE3ntHyeK3/2T/qJWagR/HFBi4yD448ioCStbO0a0KmwdXRkZ1GBlJwWTCeOwHhvpBfyIXg8isLS5CK/TYGUnQSQSMWbQYT2Bl7l7TJ4PxVtfpavwFHbOnjj5hzI6NIjI0hIbqRMu06JxDQ7FO3bOFP81DfUjcXbDoO3Hxu6C/359z7zfLg1N2ViBR/QcMt/9M/aeAdQf+4re8iysxBIKNj6PT+IS8j9/lmGtGlVjGS1nv8MtPJGsdQ8i9Qyg8dhXaNpqYHycgo0v4JO0hPxPBbyyoYzaQ1vwjJ1DxtsPYO8VQFvmYTryT2JlY0v+5y/gm7SEwi2vMqTqRVlfRtXBzXjHpXHm9ftw9A2m6oetdJWcx9JGTOZHzxE8Zxmn312LQaOir7aUkr1f4p8wl7PvP4/E2Y3ifVtoK8gQ5t/9Gf5xyZM98l1VJeR8/TmhKfPZ/uiduPoHkfX1lzTkpCNxsGfH838hbvGVbH/uYQbVKjprK5g+M/GS9ya2/tdvxDCn+/BLUNZcbczt1wEzYxqzfw/mqV1mTeRiZuxfv81WMXJpQHK5BhVzlDNzOg4A6578KxGJybzz0J/QKJXUFBWQfnAfoTMTeePumxg1GMg8tB+ZhyeegSGc3PEld778Nqd2bsbOwREHZxdq8rMZUCrY+8E7HP7iIyoyz+EfHsny2+/hm/feYv6qG9nw2AMYh4epyM1m76cfkLBgCS/evhrPwBCObvmU8owzWNuK2fjUX0hafhXfvvMafe2tNJUWcXTTx0TPXcjOvz+NvbPLFE2Szc/+hZjFV/LVxH5rKSvi5NZPcI1M5fQb9+HgFUj1oe10FWdg7+5L1Q+b8Zu1mMwPn2ZYq0ZRX0Z7znGcp0WTve4h7D39aTy+A2V1PhZW1pRteRHP+MWUbnqeEa0abVcDjUc24RaVSv4HDyH18Kfj/PfIy9KxtLGlYvtLeMxcRPmW5xkbHqK/sYTm49twjUyl8MOHcfAOpv7odnrLs8A0jq63nVGdhsHeNkYGB7AWS5BX5dFXmUtr5o+4hERRc2QH3SWZWNnYkvnxCwSlLOXse09i0Kjpqy2lbP+XDMq7frs0tEUvbcMhIAp5VS6uYQnoFQIhXOLqg7K+CPfI2aibKpC4T/Sk93XgPC16Ct7S0gKpmxeK2mI8oibwbr6IRCL0ik6cp0XTV5mLW3gCOkU3IkxIXL1R1An4gdYqpB7C/Dp5B64hMfRW5OAdmcigfKKhw92b3poigpPS6Ksrw2GiYUTb24FHWCx9VXn4RCcyMNFw4eDhg7quhMCE1MkeeQBNdzuhMxNozM8kaOYs1BM9+/4BATSX5BM2e+6kpoRMYo29kwwLS0vGjEYsrawYHx/HWWJziXj77xHw5e1/KgLOy8kiNC6e2pIivCZuW2lqbCYkNo7Sc2f4+u1XWXLLXcTMXYDE3Zv6wjwiU+fRXF6Mm28ANlYWyDvaCImLpzIrg/BZs1F1/txA4UttQR7Rc+bRWFpMwLQgRIjobW8jbGYCpefP4RuTeKHhwkfAR82ZR01pMW4TDUeKzjaCY+Kpyc1kesIslBPzu/r4Ul+YR2Bi2iUaJn22QfSU5+ARkUh3aRb5m19nziNvMj4+hld0CoqGcuw9hPn72lpxDr7gv0OKLkaNJuxcvVHXl+AakYympQI7V19MJjCoOnEKikZZnYdLaDzavk5EiBC7eqFuKMF1RjIDLZWI3X2EiF/ZhVNQFMqaPHyjZ104H9y8UdYV4zYjiYaj2+gpy0Ts6AIiEfaeAdhKJURec++FBis3b9SNxfjGzUFeN7XB5Mjzd/x2aWgLX/uOlrP7mX7N/TQe2YxLWAIAmrZaAhfdQvWedUy74m6UNUI+1DVyFs3HthNx85OTeCsrK+Q1eYSt/BMVu9cx/cq7UVTnIxKBe2Qy9T9uJ/a2p6g99CWe0SmYxozIawqJuO4+Sna+Q9R199JbKczvGZVM9aGtJNz9DE0nduMcLFR7eysLiFnzABV7PyN82Rq6ygWdYJ+Y2ZQd2MKCh16g8JvP8IlJBqCrPI+5dz3MmU/eYNbN99FWLOj+BsSnUvb9dq545DnSt31MUPxsANQtdcy96S4OrHuZxXc/SH1+JnY2VsyYNYdjWz7llude5fDnHxA+K5Wo2Oh/WbhHYuYA/neEey6nnGZu3M1MVOxyGdExc6a6THOEOTMX1YL5g9XcmDlxHIARMxHw5Yoqgzod7z+3ltseeZyi82cBiJ+7kK8/Wo+Hrx8n9+/hkdfeFq5ZL8zjtkceZ8MLT0/irWzFRCUm880nH/DI62+z4/13iJi4aaI8J4tbH13Lxr8/x5oHHyU/J4vRIQORqXM5/OUn3PnCa+z6aAO+kRNFteI8Ftz9MEc/fI2wlffQVTaxP+NmU7pvMwn3PEP53i/wjBIur+ytLCB2zQPk7fiQaYtvpK8qDwCPyGSa0g8StvKPlGx9FXllDgELVjztn6EAACAASURBVCMCglbcS82e9wi+4m5UE/7oHJ5M8/FtRNz0JI0/Cv44MjpOf0MRQcvvpX7/+wQsuQN1fSEWVjY4BcfQdmonoasfp+XEVpxDkzCNj9HfWDwFr6wvxjQ2itP0BDrPfE3wdX+lL/t77H2FovjF+Ijr7kVZLazHLWIWDT9uZ+adT1Pzw5e4hQtfkIraQmZcex+lu94l7Kq7kU/g3SNmcfL5Nb/dItzv9rv9v2TjY2N0NDVwcNuXJM5d+Ku+Zsqg7sMlLGHyEPvd/jX7VUXAac9uxj4wCkVVLi5h8QwpewAQy7xQNxTjGjFb+IRxEz4ZhpSdyIKjp+CtLEXYuXqhrC3CPSqF/omUhaWFBTq5kIKQV+bgGp7AcH8vmCZSELWFeESnMtBaOflJNdjXgev0GHrKs/GJTkSnENbzs6ZEQGIa8vqpKQj30FgUNfl4RyVM6alX1ZUQMDOF7ppSZF4TGhE97YTHJ16iEeHj709zcR5hKYJGhIuvPw62Vhdk+n7WiOjqJCDAG6mD45R3+XsELNj/ZgRcVpjPjJkJVBUV4B0QSNH5c2x/7x84ubiweNUarrr1Tno6hLSMt38ApdnnmbVwCVVFBfgEBmEcH79IdvI0cSlptLW2AODh60d5bhYJ8xdRW1yIrbsXIKJvQsOhIjMd68C4yf0j8/SlpTSPkFlzKcsrwGEipTYwkSJrKcrGc0b8lJRaT1UBjtOTUTdWIJnA6/s6sQ+MRF6Zg7W9E9nv/hk7Fy9mrH4ILG0Ef2y+4I96RTdOgZEoq3NxDo3HoOph2DCG2MWT/sYSnMOT0bZWInb1BUwYlF04BEahrs1DFjITg7oXMCF29pqCt3DyQAQYlF3YB0SiqcvHNTyJYfXE+XARflxRN5mi1Ms7kU2LRl1XgGto3KRGhMTNG3lNIZ7RqaibKpC6/5xy7CT99Xt/u0U4XV8H7tGplG5+EXvvINrP7ae/sRRriQM1363HK2ExVbvfZsygR9teR0/hSVzDE6fg9X3tgIiqPR/gk7SYsp3/YGxYj6atlpb0fXjGpFHwxQs4eAfTXXSa3opsrMUSynavx3fWUir2fMiItp/+1hoaT+/FZ+Zccj5+DllAKHUn9iCvETQoCr9aR9Cc5WRvfI3RIT2q5hpqT3yHX8I88ratw97Nk8ofv6WnqghrOwmVP+7BPy6ZUx++zMiQnr7GasqOfEuYGY0Ie5kT369/jbjFV7L3H38TRKwbaknfs4OYeYvY9MwjeE0L5dx3O3H39sZ9QoTlZ/t3inD/jni7ubHLjUssL93Ddv+GvMPQv1GX019GYsJccc3c2OUKa+bGL+eZn772EtGzZvPSH+9g36bPyD9zEk9ff176YjsfvfAUAaHhHPpqCxV5OUgdHPnk78+x4JpVrH/6cfSDWjpbmjmwZSOzFy/jjYfvIyA0jENfbaG6IBex1J5Nr75I2lXX8MkLTzI2Dk1lRZz5diex8xfz2ZOP4Boo7J/28kJsJFJOfPwmkQtXcH7HZ+hUvSiba6g5JmgsFOz8EDtnN+pO7KGvphgrOwkF29bhk7SE4u1vYjTo0LTW0nxmH+7Rcyj68m+4hidg1A8CJjpyjqGuL8YrYRGVu95mbFjwR2VVLrLgaMq2vIi9VxDtGfvRtFZiaSOm8eAG3OMWUbf3XcaG9QzJO+g8vxfXiFSqd76MxDOQ3qKT9NcXYGkrmYIfNxrRddTQm/sDsvDZ1O9+DXvvaXRlHkDTXDYF33DwY0YGNWjaamlN349nzBzqDm3Cxl5G89l9KOtLsbKVUPHth/gmLaZk+5uCxkVbLS1n9qFXdv92i3DLP/gJC7HjFBoLgIX1P9FSxAJtZGxYdwntxdJSNJX2otNgZSvF0sICo0E3hYZmGh0yQ0PTYj2hQXExDc3e5VIamqOb+6QGBVygoY3pVZfQ0EyDKqQu7pdoRHh6ul1CQ3OROUzS0H7WiHCwtWL4oqtmftaIcHeSXEJP+z0CFux/MwJWKhV8/fH7ZP90nPuee4nZS5ajG9Ti6OyCSt6Hs5s7Br0gTyqR2qNWyHFx95ikrY2OjzM0cfWQWt6HzM2d/gGBNSKWSOlXyHF290Dbr0YvEl6kQTc4SXOTj0kuuXrI3sWN5rbeSZrVzxomarkcuwkNB7igeTJm7STQxMTCfjYa9IjEDlNoniaTiZrvP6Mj6wiuM5JwCU/Cc+ZCrKVODKnkSN19p/ijwWDE0taO0UE1Ng4ujOoGsBRLwGRibHgIa6kjI1oV1vbOjA0PIRKBhc1U/JiFNYhgbFiPtUTAS509GB+ZOB8uwosthibPh5/93TiouoTWatAosZO5TTzvBfyRvyz57Rbh5j6/lbbzh5l+7QM0/rgFx8AZAGg7Gwleegd1Bz7Cb95qVLVC0txlRhIdGQcIX/3XSbyllQWa5iqmX/0Hqvd+RNCC1Sh+TrJHzqYlfR9RNz5K3aFNuIZEYzKNo26pZsY1f6Riz4dMX7qGvp+LcNHJNJ7aS9xtj1N3ZDsy/+kAqJqriLn+Psr2fkroolV0lQuXIfrEpFB7Yg9pf3qKwm8/x2O60HnT11BJ2h1/JmPTe8SuvJm2YgEfEJ9CzbHvWPbg05zb/ine4QK+v6ORhbfdx+GP/kHq6tuoz89CbGXBjJQ00vfsZM3aFziycQOBkTHEzUrEJ3gqM+D3A1iw/4kDWKfpx1ZsR0lOJh4Txc++7i5K83LY+8WnvPzldmpLiwGIT5vHDzu28ucXX2PH++8SFidoFDRWlHP7X5/g89de4tq7/kDR+XQsrK2ISU7l0I6tPPC3V9n5wTqComIQAQ0Vpdz8yBNsfesVVtx+N3kZ5xkbGyUqZS6nv93BLU/9jR3vr8crVOgc7a6tZN6dD3Jy4zsELlpDZ5mw33xjZ1N9bA8zb3uM8n1f4hIi4FWNVcTecD+5Oz4kaP51yKt+9pdZtGQcJuy6B6g/vBmnwAgANK3V+M69noqdb2BhYUV/U/nk+xFZWOASlsSYcQSv+EWMiWwY7KglcNndNB76FJ85q+ivK0BkYYnT9Hi6sr4n5NqHaT2xDXt/wd8H22sm8d6p19J6cif6niaMg/2Mj40i9Q3FNDqMxHsaTsFxDPW1TuKnL1mDsla4PNRtxixa0/cRc8uj1B7ajGxi/f2t1YRf80cqv91A0KIbkFcLRUf3iGTSX7v7t6sFYefqjYNPEHb2Djj5hUz2dFtaiJA4OuLgHYiTly8mg8AxdfL0Q+MVOAVvYWEBIyOIJY44eAVi7+6LUacBETh4eOPgFYCtRCrg/UOEnnTjsBBlegUg8/JlTK+ZmN8XJ59A7KRSXIKm4zKxHsZGsHOwxyVgGs4+vhj1wsZx9vHF2S8IeycHPIJD8Zy4DpyxERydnHAPCMbd1x/joDC/u68/6qDpODo54jM9DL8wYYM42Frh5OSIV1AwXv7+jGgjsbO2wMvPH5+gaTg4OOAfGk5geAROLq5Y/FNx55//+X/axswcVIqRS2NFxWUuizD395fj5pobv1yQYY7Ha45adrm728zZkMGAjZ2E7vY2nFzdAKirKGf/ps9Yc++fiIuLx3piPcHBIUybHoa7swvhkdFERMcCMDwygqWdBK+gYJy9ffAPj0BnHEckc8PJx58BkwXOgcFoHXyEBgQXFZUqI2Myb7pMjqjsfDGNGakZlKCz8yS3dZgRhwAGbIRc5oi9hvo+EyMSbzRGJ8YdBN1fzbgzJnsfFIOWIAtgzF6gyyEbRKGzxNrZn3GxO9ZugmTnuNgdG9cARky22LoFYe0WBICtbggbmQ9uEWn4pK6kv6mc8dFhXMITaTn1NfY+02g/u4fa/RtwCorE3jMQBxcZMt8gXHz9sTQOYmlliaO/P0N+QchcZQwGTccxIBwwYWNhxNHVGanMhZbDnzCqG8B39go8ExbTk3cCl7BEuguOMaTqQVF8HO/kFdi7yHDyEfz9Z/+1d/fB3isQSxspDt4hOPgKAdTYyAhiqT0O3gE4ePpg1AvaFw6eU9lEv4T9qiLg2Luex2/OSppO7CJg7rX0t1QDIAuMoC1zquYDgKa1Br+Uq2g8sXMSb2FpiSwgnNbzPzD9IryFCNTNVVM0IrSd9YyPGYWe8fSDhF15B125x3CZJhyEP2s+VB/ZQfjS61FOaD64hkRSf/p74m+4l/rTB3Gf0HyQ11cQtvg66o5/S/jilVM0H1oyjxN/zc2UH/8e73BB86G7tpy069aQ8fVmklauoaNGiCTC4maSc3APS+64j9zD+wiIikVibUFzRdlkj/+81TfTXFlGZMy/TkP7T++Pu1wEbO7Av1y+2Jz9mg5gEbDr4/e5+pY7qSktAqC3o4MfvtrEztPZHP5mJ1HxAlOgpqKM5dffyK5PP+Sa2+6iukTAe82I5Kc9X3PD/Q/z095vCI+Lp98wQmNZMfNW3ciPWzey4IZbyMjIQyQCn/AYin/cS+rNf6D02AEsvMLBZELRUMn0hddQcegrPJOvpr9Z8JefNRBCr7iDxvNHJw+egdZqfFKupi19H15JS9G01gBMaiz4L7yVnrwfcQyY0GBpq8Jz1pW0ndmNT8pKBtoEvGPADHryfiRg0a105x6ZxOt6GvFMXErrqa/xTV2Jqq4YbVsFvUVncZ4eR+w9L9GZfRinwEhEliI0zZX4pa6k6add+Kddg7q1FsbHcQqMoC3jAJ3Zh3HwDSV4xR8QWYgm199ychd+c69B01hB/aEvGOxuQuzsScCimxhRd+MWnojUw4/+5ir856yk5dx+fJOWTmpEyIIi6cj6gbAr76D1/GGcJzQi1E2VFG55/bdLQ5NX5jJm0COvyEYv70RZW4iythC9qusSzYf+5ipU9aXC2EV4TWuN0ANekTVFU0LVXHmJRoSquRp5dSG6vk56ftaIqC66RPOhqySTwb4ueioL6KksQNvbSWdxFqNDOjqKs5HXVyCvr6CjOJuRIT1dVcVoutvpLMujs0zQfOiprWBEr6M5/zzdteV015bTnH+eYZ2OupxzqLraaS7KpbkoF1VXJ9VZ6Rj0OmpyMmirLKO5omxKj7+8o43avGzU8r7/2z/bb8rGxsbIO32SrrZmSrLOU5J1nqN7diK2k6Af1JJz5iSVxYVUFhdSXVKEblBLzumTdLa2UJSVQVFWBr3tbRScPc3Q4CBF585QW1pMe1015ZnC71uWcRZ5eyutJXm0FOeh7mqnMS+DEb2OpvxM1K31KBoq6SrNFjQNirPQybvMaiBoWioZaK1moPWCJoOmpQK9ogt1feEUjYXxYT3KmjwG2qouaDIM61FV5zCk6KK/oYj+hiKGFF2oavIZM+im4DVt1cJYVTZ6RRcDbVVYWtkSuOhGekvOMqrXIq/KRdNahbajHnllLsZhHX0T/qtprkBVV4he0UlH1iHsvachsrRksKtxyvoFTYlu1I2luEXOJvmJTxFZWTPY1Uh30RmKt7xC3aHNdOafRNVQSl9lDoraQuQ1BZPvp/dn/ZeKHNRNlaibKumtyPnF98uvKgK++otcRrVqbP9J88E4rBN6xi8qBoCQTB8ZUE3BW5jRfBgbHsLCYqqmxPBgP+IJTYaL8Y5u7mYF3Mf0mks0H4x6NXZOUwXch/qVuHp5MjSgxkYizD+q1+Hi5oJOJYjNXyzgLtL3TwhwqyfXY2U0TCm2jQzpkdpYTunxH+wX8DKprZB2uch+j4AF+5+IgMeNRqysrdGolEgdHGlrrOexG1ZytLwBraYfF3cPhnRCsc3azg6VvA9XD89JPECnQjGl2GbQ61DohhBLpJO/r1atpkMvvMMRvQ47R9lksbapXQmIplwY0Nctx/pnf7mo2Dxm7TTVX7QqrB1cLmgywKTGgqF/ong2UdyytBEEzW0dXRjVabAUX8Db2ssuFNtGLuz/f9Z8sLayYHRokIKPHsPRLxTvWcux9w7G2s4OK1vJRfh+RDZSRCIRRoOOrrzjqOtLmHnfG4JGxEXrt3V0ZVTfj5XdRc87oRHh4OKOpq2W4q2vYhofA5MJC2sbDP0KLKys8YhKwS08kYDZixgd0k0pzunkXfz0ws3/uzlgkUj0MPAAEDQxVAm8bjKZjkz8exHwd+B+wBnIBR42mUyVF81hAkaBGSaTqemi8W2Am8lkWvmvLFZemUPL6T3MvOdFCjc+j3u00Amk7Woi6sZHyVr3IFG3PEFXriBc7pN8BZXfrmfOk59N4q3tpHQVnCTpgbfIfPfPxNyylo6844hE4Je8nPJv1jP36c/J/+w5/JKXYjTo6SnPJuXht0h/6wGS7n2G1vM/AhA4ZwWFX61j6YtfUrr7fZz8hNxYZ3EWC594h8xPXyL2ujtpOHcUgJB5V5K9+W1ueGcbx95aS2DSPABaCzJY/dL7fL32bpY+/DxVpwVh68hFV3F+6wfc/d5mdv/tr4SlzAdA09XKNY88xUf338rqJ1+i8NgP2NpYk7T8Kr55+1We3votnz35EDFpC0ldtoygGZH/yuv93X4B62hqxNHFhZfvv4fkxUspzjyHlbU1A/1q/j/2zjOsiqsJwO/Se5fe7YpiRcQae6ImsRtbNJaoidFEY+/G3mOi0Vhii7137B2xYu90lCqIdLj7/VhEgb0KEfUj2fd59lHOnT17du/e2dk5M3P6f/kpQ6fN5tC2zQA0b9eJOaOHsXjHfsb2/RrvRtKSUpf9zjFk1gJGdPqCbydM48SubeiamVPBy4d1MyYxZvVmFv04APuqUn3oR/6naTdhAWuGdKf5oDEEnDlDakIMbnVa4P/XHFpMXM7VlVMwLym5tqJunKPmgOmcmdWfsu2HEuEv3Z92NZpxd+t8qg/+nRsrx2JZQfp9xd4+T6VvfuHmX+NxbdqDp5elam221ZsSdnYnZTv8zM2/xmJRXqqHHXfHj0q9fuHKou8o0/bHHHm7Wi24t3lurv41NTWJvnmW8h1+5PLiocQ9CiA5MhQ9sxKUqORDzG1/6oz8k8tLx2Dj2QBVZjrRt85Trt0g7myeR/Tt80Tf9CMjOTFn/DWHLOb+jt8wsnMFJL1Rpe8v+M8bSOUuPxN24SCmzmVzfu/egxdy8Y+RmLmU48XTYALWzSBg7TQASjbpSELoAxKfBJP2PK7I75e3WsCCIHwBpAMPkFwWXwPDgeqiKF4XBGEEMBboCdwDxgN1gbKiKCZm9yECqcBOURS/eq3vvyigAhYEQfz099PEPQqgRHkv4gNvoW8l+TaTYyIwd6tIzJ2LWJSqQnLsy0U57aTXkPI1c+QFEVLinkg56XcuYpktr6EBBpZ2xD4IoESFmjx7fAtjGzsQNEiOjsDcvSJRty9iX6EqSbEvF/WzJ+b+NWwqehEfdAvjlzUoosOxKuVB9N1L2JWvmpNwYVTCnqd3r1CqZh2e3ruBic3LAPhwSlauQuDlczhVqk7805cB8/bE3gugVE0fQm8HYJGds58S+wTXip7cv3gOd88axEaEYaSnhbWzKymJzzE0NSPlRSLaunqKBUzRWMBB9+5iaSMtghkbGYlLmbLcvx5AyQoViY2UAv4trG14ePM6FarV4O7Vy9g6OXNiz05O7d/D0p0HuHjqBJ7ePkSEBAHSJOsNfz9q1GvArauXsM9eBPPug/uUq1qda2dPUbGmN5FhIcSnpmNpa8/9q5eo6F2Hxzeu8VynBCIiCU/DsS9XicDL53GuXJ3btx8BYGRlT9S9a9hV8iIw4Jq02CXk3M/Rty+i61CRtGeRgLSIbfzj65iVqU5C8G30Le0A6X4zdalAzJ2LmJesQmr2/a9nYUvco+tYlK3O8+Db6GXLp8Y+wcy1InH3L2Hm7vlK3sqGhMAbWJSpkdO/pqYGqbERmLlWJPbuJcxLefLiSSDPHgWQEHSLyIDTGFjZY13JB8d67dDU0iYpJpzIK8eJDDhJ3XF/kxT1BIRX47coW4OEkNsY5IxfqhERd+8S1mWqkhKXnXBhaUfswwCsK3gR9/gmBq/pE1M7R+7vX0NCyAMSnwbhWLMxpZp3Zf+QTz+sD1gUxV2iKB4QRfGhKIr3RVEcAyQCtbOt3yHADFEUt4mieBNJQRsDXfJ0tQjoKAjCP85VDDywHEePKtxa+wumFmY8u3GCZzdOYGJhzs21v2BfsQqP9y0j6/kTsp4/Icj3L+zKe3JzzRSMzEyJCThO/D0/jMxMub5mCnYVPHm4dykZCRGkP4vg/p5l2FXwJOCvbPnbfkReOYahqSlXV07Grrwnd3avJDUmnNSYcG5tW4Jt2cr4L5uAgYkJYf5HCPM/goGJCeeXTMCpgidXN/5OSnQYKdFhXNv0O04Vq3DuzxmYmZkQct6XkPO+mJmZcG7lPMpVrc6FNYtIjwknPSacC2t/o3z16uyaPhJLCzPun/bl/mlfSlias3nKcCpWq87hZfNJigojKSocE31tbKwtMdLVpISlGWZGeujr6KCrpZVr09LQkN00ZTYNQSjwVhgysrLybakZGbJbWmZmgbek9PR8W3JGhuyWVMAtLiGedFHFgW2bObBtM+miiqmDB2Ds4MBvv4znxvVr3Lh+jd+nTkDX3onx3/XlhYYmO7duIigslODHDxkzdDAaziX5ZexIzl0L4Ny1AGZOn0aytQs/9O7JoxeZrFi9lhWr13IhIp0hvfrwUNORccPHsP34FXYfu8HM0ZO5l+nIuH4DOR+UwbHtOzm+YxfhzzVYO24YSSal2DZ/NhFBoYQ/CuTcml/RKFGGo/PHko4ej8/48viML+noc2HpRLRty3Fv319EBT4kKvAhN7f+hsrUlVub5pMhahPq50uony8ZojYBqyZh5urB431LSYkNJyU2nMf7l2HuVpG7f09Fx8CYmGvHibl2HB0DY+78PQ1T14q55MOOb8bc1YPb635B18CY6KvHiQk4gZ6RMTfXTMGylAcP9ywlIzEWMwdXDMytaDFnD3qmlsQ9uMq5X7pxZ9NMHu78nfDze/hk9FKCD/yJRlo0QtJTQn2X41SpCvc3TsXMwoz4myeIv3kCUwsz7v49FYcKngQeWkVGQgQZCRE83Cv93h/t+R2LEuY8u3WCZ7dOYFHCnLvbFlHzqwGUKFkWn35jcK7qTcjxTf9UdamlUJNwgiBoCoLQGTACzgFugC3g+1JGFMUU4BTgk2d3f2AbMOtdBqygUJwwsbTieVwcmelqYuwU3oigoYmemRXVeo3DvXF7UmIjsSpbBTvPuugYmry9g/93RFF86wZUAl4AmUA80DK73QdpzXDnPPIrgUOv/S0C7YFSSO6MFtntfwF733DcfsCl7E1UNmVTNmX7yFtQQXRmQbeCJmLcA6oAZkA7YLUgCA1f+1zMIy/ItCGK4kNBEP4EZgiC4Jv3cxn5ZcCyAo5RQUFBoVhRIBeEKIrp2T7gS6IojgKuAT8CT7NFbPPsYg1EquluElAS6PoPxqugoKDwr+GfJmJoALpAIJISbvryA0EQ9IB6SD7ifIiiGAXMAaZk96GgoKDwn+StClgQhBmCINQTBMFVEIRKgiBMBxoC60XJUbsAGCkIQltBEDyQ/LovgL/f0O1cQA/48l1PQEFBQaG4UhAfsC2wLvvfBOA68KkoioeyP58F6AO/8yoRo9nLGGA5RFF8IQjCJGDxO4xdQUFBoVhTbFKRFRQUFP5tFKtiPAoKCgr/JhQFrKCgoPCRUBSwgoKCwkdCUcAKCgoKHwlFASsoKCh8JBQFrKCgoPCRUBSwgoKCwkdCUcAKCgoKHwlFASsoKCh8JBQFrKCgoPCRUBSwgoKCwkdCUcAKCgoKHwlFASv8XyAIwglBEE58hONOzF61+21yJwRBEAVBkK1zLQjCX9mfh+VpDxIEYV1RjVfh30WxV8CCRIAgCF9n/x0kCMKct+xTQxCEWEEQTD/MKBX+JbxcDbzU642CIBgAbbM/V1AoMMVeAQMdkeoQv6kAfC5EUbzEq2WVFBQKynXgIdAtT3tbpHUQD+XbQ0HhDfwbFPAPwFpRFDMKud8qoL8gCAVdmFThHRAEwVMQhB3Zbx4pgiDcEwRh1Fv2KZu9T3z2Pn6CILTII/OXIAhBMvvmc2kIglBVEITTgiCkCoIQLgjCOCTFWRjWkl8B9wC2A0mF7EvhP06xVsDZr4I+wFaZz8YJgvBUEIQXgiCsl3E37AYsgOYfYKj/aQRB8ALOIy3G+iPQEpgHOL5hH3vgDOAJfI/0phMP7BME4dN/MAYr4BhgBXwNfAe0AL4pZFdrAXdBEHxeG2djYE1hx6SgUNytv8ZIVkdAnvavkF4V+wJ2SMsmLQc6vBQQRfG5IAi3gCbAvg8y2v8uc4BYwFsUxeTstmNv2ecnJNdSbVEUHwIIgrAfuA1MBQ4Ucgw/AoZAc1EUQ7L7OwwEF6YTURQDBUE4g2T1nkOyhiOA40D3Qo5J4T9OsbaAgerAHVEUVXna9YGWoijuEUVxGZK1004QhPJ55AIArw8wzv8s2RNUdZAWcU1+m/xr1Af8XipfAFEUs4ANQBVBEEwKOZTa2f2FvNZfErCnkP2AZO12FARBF0nprpO5BxUU3kpxV8C2QIxM+2FRFF+89vd2JF9fzTxyMdl9KLw/zJHus7C3CebBAngi0/4U6bs0L2R/dkCkTLtc29vYjLSq93jAA8X9oPAPKe4KWA9Ik2mPev0PURRTgBdIP8LXScvuQ+H98QxQAQ6F3C8O+YejLSBmfw6QCujIyFnm+fsJYCMjJ9f2RkRRfI40hzASuCSK4p3C9qGgAMVfAccBZjLt1q//IQiCPmBEfovKjFc/ZIX3QLbb4QzQLft7KCgnAW9BEFxfNgiCoAl0Aq6Kovgy5jYYsMmeZHspVxIom6e/89n9Ob0mZwi0LsSYXuc3JPfFrH+4v4JCsZ+Eu4fk28tLU0EQjF5zQ7RFspou5ZFzBe6/v+EpZDMMSaGeFwRhLpI7wh2oIoriIDX7zAd6AocFQZgAPAcGAmWQoihesgWYAqwXBGEeUpTDKPK7sHB5HgAAIABJREFUpuZn7+8rCMJEpLefn4GUf3JCoiieQXqwFARnQRDay7SfF0Ux/J8cX+HfQXG3gM8i3dwl8rSnIIUrtRIEoS/wO7BDFMXbeeRqZPeh8B4RRfEi0kRcKLAI2I+k/NT6hUVRjADqAreAJUihhhZIk6sHX5N7CLRHcnHsBIYjRVDcz9NfDFLUTAywGumeOAisLIpzfAv1kB4UeTc540HhP4Qgim9Ng/+/RRAEHSS3whBRFNdmtwUB25DSQgcguR52AwNEUYx/bd+qwGXAXRTFoA87cgUFBYViroABBEFYCJQSRbHlW4Vz7zcdqCmKYpP3MzIFBQWFN/NWF0R2cRtRZtv3msxAQRACs1M8LwuCUE9NH3nbJwqCcPMdz2E20FAQhDIF3SF78qUv8Ms7HltBQUHhH1MQH3BNpPCtl1s1pAmtzQCCIHQCFgLTgKpI2UEHBEFwztNPKjCzaIb9ClEUw4De5A8xexPOwGRRFE8U9XgUFBQUCkqhXRCCIIxBmkCxF0UxWRCEC8B1URT7vibzANgqiuKo7L+DgF1AP6CrKIrbs9snAu1FUfQognNRUFBQKFYUKgpCEAQBydpcl618dZDSgX3ziPoiFcl5nZcz4NOVCmQKCgoKhY8Dbgq4IRW2ASnmUpP86ZyRSEVu8jId6JO9/fG2gwmC0A/JasbSwrR6bFxCIYeroKCgUKQEi6LoWlSdFVYB9wUuiqJ4LU97Xj+GINOGKIrPsqMPJgiCsPZtB8supLMMQBAEUUzZAYJmPrnbt4Oo3XAky34bQKcOdV8bRX5Z1BnfcrKFkcvT/uhROCtW7ufQ4Ys8ehSBZ+WSBIdEEhn5jGrVyvBpC2++/KIerq622Np/SVTkNQwMZBLFVI/yt4lZMnLpBRs/gIZc5q4a1J6vzHUUXGRF77ywz9eWqcpfu0ZDkC/Nm5aZSVZWFjcuXeDUwf0c3bMDEWjYug0NP2+De/mKCNn7JqSmFuhYAFoa+V8A5cagrSl/DXRk2uX6BNAthKxcu9wYKpqouZfF0PxtWWryjbJk6iNlqlnYI0umPSM+fxvI32Ny962OVf42AD0pYfHKlQdMn7WBEycDGDSgJd8PaImFhXGeccnk0qTJ57c8C7+HoYF03RKTMrAw0yMiPBprS32SkjMBMDTQ4ml0ErYlDIiLT8PYUDtH3tbrb/mb/B9SYAUsCII18AVSZbGXxABZ5M/Zt0Z9kZNFSPVdfyr4MHMjiiJ37oZy9Ph1jhy7xqkzt3B1sSYltRBK6D1TsqQD06b2ZdrUvkRFPePatYe4u9vj5maLppYuIJ1H7z4zaPlZbXnl+x8nKTGRc8cOc2Tfbs4eOUQJWzvqN/+MGSvWYVe2fI7SVfh3IYoip04FMG3G39y6HczQIe1ZtfxnjPTfPWT2UXACm/ZID6O2n5Zk1IxzbF70CV0GH6dJXalcyZEz4Sya6E2TbgeYOqw6O3yliqVtmhWp7gUKZwH3RErf3PiyQRTFdEEQLiO5Jra8JtsUKRkiH6IopgqCMB5JEb/VCpZjwaLd/DR8BRoaGvTq0Zjr/gtwclLzJP0/wNranGbNpEJsT57EcvzEdY4dv8yx41ews7PE9+C8jzzC/w+ex8cTERLEFb+znDiwj4CLflTxqk3dZp8yYNQ47Jxe/QAS0uRqMCkUZ1QqFfsOXmf63L1Ex6UyYlgndu9ogq5utjUtZ60XEhdHYxrWltYBcHc2pXkDF4wNtWhS14EalV7pEBMjHZrVc8DNyZgGXpJ96eZkLNvnu1AgBZw9+dYH2PhaEZSXzAPWCoLgj5TW2x+w580+3rXAUKTVCGTesd/M4O9bU79uRfYfvMT+Q5fxqDGYT+p78FmL6nzarNr/pTLOyMikbfvxnD13kwb1q9CoUTV+HNKJChVc/9WWXGZmJvdv3SArKwtRpSIjI4On4WGEBQcRERJMRGgwT0JDiAgNRqVS4eDsQoUq1ejQsw/z12zC0NiYtMzMj30aCu+RjIxMNm71Z+b8/ejoaDLix89o37kNmmpcPwXrM4vb954C4OZsyclzj/isaXkOnw7Go4ykHw6fDmFov6qsWH+VL5q6EnA3FoDWjZxZtuEOP35TkS0HAqlU1gKAI2eLvmxHQS3ghkBp8q+FhSiKmwRBsATGIsXi3gQ+E0VR7UoDoiiqBEEYgVQToOBk+5A0BKhe1Y3qVd0YN6oDMXGp+B65wv6Dlxg9YT2CAKVLOVC6lAOlStpTs0YZmjer8WZFJ+ezKoSf8238NGw8KlGfqMgAtLTk+nXK3wbycSqZMtUP1fnt5M5LpcZ6lPP3aujKit5KqZuvzU7/1Xk9evCAdatWsGndavSNTdDT00cQBDS1tLC1d6SEgyO2Lq5UrVsPeycXbJ2cMTAxzfUdqYDEtDQS0/O7llLVKGVdmWurr+Z7l/PhyvlqDbS1ZffXlPHVqvPrylHeWI2CyTqRv03Ox6/uLUDO16rOepTz66q7l2TGIKbIexoFvbzVQAHd3JU/09IyWLrkKHMXHaCkmzXzpnehaSMP6R5Il/Fjp8orQFVyVL62ZzEvWLtWmqpq09yNOQsv4F02k4PHHpOYIC3dd/hsOE1rW+F/PZpK5Sw5ejYCAGNDHXYdCaXLl2XZezSM1OzLfORMYUtav51ik4osCIIoJm99q5IQRZHIyGc8eBjBg0dPefgwnF17zlOqpD1//P4DdnYyNwa8VwW8fPkG5sxdxgW/XZiaqlnIQZ0ClptQkVPAhZkMUUehFHCjfG12+lpkZmYyZewoNq5dTaduPejaszeWJcvlk31eiMmywijggk6swb9AAat7kBYDBRwV/Zy23ZZiZGTA5DFt8apRMk/HMudbCAWclpLGy6/95WRbZEwyVmaauSbbomJTsS1hSOyzVEyMdF7Jm+sTGZOcb3JOp/RyRFEsslfWf108riAI2NpaYGtrQb16ngBMGNeNqdM34FljAHNn9qNb18Yf7LXfz+8Ko8fM4vSpreqV77+EmOhoenfthLa2Nuev38HCUvoRxqQXj4e8wofhxq1wPu+8mO6dazFxTEc0CvHQKihnLz/FP0BSzIdOhbLh1yY06bqHeWO82LDnMQAdW7ozbNoFjqz7jC6Dj9O8vmO2fBjrFzaiWbf9zB1bm417JS9pp5buRT7Of50ClkNXV4fJE7/myy986NVnLmvWH6FyJTeMDPUxNNTD0FCPpk1rUaaMGiv0HYiJiUMURRYuXMn06SP+tUr4xuWL/NyzM+07d2X0pCnv5L9T+Pey58B1en+/lgUzOtClgxe8B+ULULmcJRVLS77bBrXssbbUZ+5YH+pWt8TRzggAFwdD5o6phbWlPlOH1cTdWZpkq+9lh42VAXPH1qa+lx3ODi/ljYp8nP8JBfySalVLc/H8IjZsPEFUdDxJSalERcfz96LjZKmE96KAW7Vqwp3bxyhVuj6dO39O/fq1ivwYH4uMjAz8Tx7nwI7NnDywjwVLltHqyzYfdUyiKCKK4jtZVQlxsVw6fRIAfQMDzExM0DcwxMm9JCZmhV2KTgGk72Xur77MX3yUPZsGUquG23s9no62Buv2PQCgkY8DfUacYOGEukxbcgnvKtKCOau23mfsd1UYM+cSX7crzbaDgZJ8bXv6jjzFgvE+TFhwiQa1pDIzq7bcK/JxFmsF/PTpM8ZN/puw8GdEPIkj4kks3l7l+G3BAFxc5Jf60tHR5useTV/rI44Vqw7RrWtTWfmi4Pz5y7i7O1Ov3odfgPn4yRvY21kwa94OFs7pzS8zttCoQSWyVCpOnr7F2JEdGDxsBcN/asM5v3ukpmXQqGFlZs3dzsK5fdm+6xQ9ur+6NllZWZw8dYM/NmzhyJ6dOLq60aJtB34YOxlP97z1l94/R7du5MrJ48RFPiUu6ilxkZHo6uvTqnsvWn3dGzOr3LX6E+PjObl7O0+Cg/Co4UUlL28srG14kRDPmYP7OLVnJzcuXqCKtw86enqkJCeTnpLMlXNnqFTdizWHT33wcyzupKVlMmD4Xq7ejMHvyAicHC0+yHFfzm+JopjjDxZVr9xhr5yQ0kP75brW0n5iHpnc/y8qitckXOKaXJNCvy4+wAHfawwa2Ao7W3NsrM1YtfYo8xftYeyIDgz6XiaU5bWJplOnb9Czzxx6dG3CxPHdZQ5a8EkpRJlJIQ1pYuGnnyZz7vxltm1dioODreyEW1yGfLcWcvM/aTIrqavJhHuekMjtu2HUqlka3yMBNKhXgeDwBBDBxbkEJ0/folmTKlzwv4+bqzWCIPA4MBKvmqVZs/4E+roa3LwdSlBwNAnPk/G/9BAHews6tatNx3a1cXV5bfk9uWsAoJc/Ew7NhvKyBSQuAxYvmMfKpYsZPnYi9o6O2NrZU97ZjidPnjB//nw2bdpEhw4d+OGHHwgKCmL16tX4+vrSokULPDw88Du/n7PnbmBmZkxc3HMafVKNjh070rp1E4yMDF8dTHBi0KBB2NraMmbMmFftKpkVidRdg8JMjBV0wk2uT4BMmQlZdRN26dEy3crfS4Ju3oVnAG25JRkBLak9KiqB9t0WYmVpzNoVgzA0zLMGrkrNNUiXWew8VW6RbFBl5D43URS58/AZt+/HcffRMy5djyIuPg0LM11+6lMFayspIsfFwZiTFyJoVt+JC1cjcXeW3IOPQ55Tq6oNvqdCaVDLnuBwaVLSxcEYw3JLi3QSrlgr4EFDVxIeEcfKpYMxM3v1g7n/IJx+3y0hOSWDP5f8gGfl15zngiapqemMm7ia9RuOsfT3wbRu5a3moEWjgDMzM5k+/XcW/fYXCxdM5Ksu3+cTfV8KeN+Bi8xesIdNqwfzyWeTWTDza/YdCuB5YgqdO9Tlx+Er2bt9LG06zaB0STvCwmO4cy8cAUhKTsPHuwwN61XA3dUGc3NDKpRzpFRJucWK1VwDeC8K+I+/1jGgV3cGDvkJr9p1cHBywtHJmTL2JXLcD9HR0SxevJglS5bg5uZGz5496dixI+bm2W4E1RlUKhX37oVgb2+FqamRfJSL4ESPHj24e/cuf/75J56enjn750NRwBJaZly8/Ij23RbSvXNdJo9rj4amXEhk0SrggNsxdP3Bl/CnSVia62JjZUDss1SmDPPm+/En0dPRJD4xHXcnEyb+5MWYWX4c3fAFX33vS/MG0hvcoZMh/L2oGU267GLe+Lps3C25Mjq1Ls1nX+9RFPBLoqISGDNpI3sOXGHimE706dUULS1JaYqiyMo1Jxk5dhWVPdzo1uUT2rWpy6PHkXTvNYtyZZ344/cfsLIyfcNBi0YBv+TSpQC69/gRT8/q/Pnnnxgbv8qseV8KOCszg4SEZCwsjIiMjMfa2pSkFOldy9BQj8NHAxg4eCkW5kZU8XSjQjknXF2sqVO7HCqVmGMtFIgPqID9btzl0L49hIeFEhYSQnhoCOFhobxITGTx4sV88803b+9EToGqUcAqlYqVK1cyevRoevbsycSJEzHQu5JfVlHAAKxYf42R4zeybFFv2nxeM7sDGY9nESlgURRZ9vctxs+9wPwJ9WjXwh0NDem+zQlDi06mhKUe5y4/ZdgvZxnQ3YMWDVywKWFAXHxqrpoPL+WtrfRJSpZ+nIYG2mi5LS5SBVysF+W0tjblz9+/5cDOcWzedhbHUn0YPHQ5F/ylXO/evZoT+mgNA75tya49fjiV7EHzVqMZ+XMntmwc+2bl+x6oUcOTK5f3ExMTw6ZNmz7IMbftvMD9hxE0bDEJbW0tOvVYwLYd59m45Qw1fIbRtec8dHW0+HVuH5wcLYl4EoetjRkdus5GW1uTOQtklP3/AWXKlaPppy0xMTHF1MwMEzMzTM3MUKlUhIbKxE6/IxoaGvTu3ZuRI0cye/ZsTpw4UeTH+DeQlpZB/x83MHvBXk77jn+lfN8zf6y7xaJV1zm1pS1dvijDi+RMxs65wNg5F7j/OJ5GnXagra1B6157GTH9PLfuxbFwZQBaWhr0+fkY9x/H55Jv8tVOtLU16Pz9ITbuecjGPQ/p/P2hIh93sZ6Ee0nVKu4cOziF+w/C2bD5DD36LCQrS8WEsV3p1qUR7dvWpX3busTGPkdE44Mr3tfR19ejUaNG3L+vpjpVEVO+nAM21qa0/7IWxsZ6fN6yBpUquaPKUnE1IJBbVxZy9Ph13N1sadG0GpqaGpR0t2XI960xNTWgeRPPDzLOf0Li8wRu3biO//mzxMXGUrVGTb4bMIDmzZujUqmKNL70zp07DBw4kPj4eM6fP4+3t7e8Bf0fJjTsGR17rcDW2gT/k5MxMTH4YMfW19PEo6wlZUtK7iUTI206tS4NQElnExrXdaTjgIPcefiMPp0rMGeMD8mpmZiZ6NDmU3fKlzJHR+eV/HdfV8LUWId+XSpS0lnSF25OxmzdV+jKCW+keLkgnv0qn9mlmbtIhiiKnL/wgP6DV/JZs8rMmNypAEeQe50rhAtCU6aamZZ88Y6t206yctUB9u+d8fZhyWUlyb16qikbGRoSwaHD1/i6W0PmLtzDNz0acfXKLVJS0+nUcwmTRrdh6A/NWb3+LJ3bVMLIKM8kibqsKLnjqSstqCMTkSL3SqzulTwjNn/ba/eBSqXi3oNIzvo9YvHyk1y9Hsq3veryx/yv5Pt7idw5ZN9LmZlZXLkWxMkzdzhx5j7+lx4wflRHBvRrkePmkv0e1GUeysoWwp0l55YoTHEada/6hRmXtkx2m6DJ8+fJzJ63ncXLDjBsyJeMGNZO3t+b8Sx/m5y7BOQzO9W4UULDExgx5Sj3HsVy+XD2wjxiFqIocvxsMJPmnCb8aSJjBtehW7uyaGsXIEZdJe9KEhzmKS6ItyEIAj7eZTi2dyR/rT/DpSuPP/aQctGkcXXu3A1m5673b0EFBkXhezSAxMQUDh6+yuOgSM5ffMTqv89hXcKEg0dukJiYiu+xWyS+KJ4VxjQ0NChd0pqtu65w9XooFcvb0aRhWW7ffcKLF/lTnuXIyMjivP9jZszdTYsvZ2Lh1I/eA5cREhpLr+6NuBfwG4MGtnylfBVIT89g0eK9lKnUn5DQaK6cn8+o4R3eS2abHNExSfw47hBVGi/D1cmUI1telao5ciqQel+sYcCIA/TpWoW7Z/rT6yvPginfD0ixtIDXbPBj6pwDtP+iKh2+rI5nFTW1YcUs1m44y7zfDnDx5KS3/Hg+nAUMcOHCbVp/OYYDe2dQvXpZ9cN6Rws4LSUJHR0toqISsLExIzY2kWdxkdRpMpXVf/ShRbPKREYlYF3CBFVGEpqaeX48xcACBumtZ9O2Szx4FElIWBzBoXGEhD0jJCwOPV1tnB3NcXa0wNkp+19Hc/T0dLl0NRi/i4H4XwmipGsJGtSrSIO65ajnUw4rq+zvT1PNq/R/1AJWqVRs3X6e0RPWUaqkHTOn9sSzcp7ECrkJtyKygKOik/h1+QWWrL5MlzYejPmxHrbWUpZaUlI6P4w5yIlzQUwZ0YBOX1TIfU+Lama78x3rw1jAxVIBZ2Wp+P3PE4yevIukpDRKlbShQ5tadGhTiyqVXV4p4+zXkKp1xjF5TFs+b1ntDUf4sAoYYNv2k/QfOJ8J477mu4Ffyj9E3lEBr1h5AEcHS34c8Rc7Nw2naavJxMQ8p3HDCjxPTGHT6gF88tksFsz8Cmd7A8qVyRNiVkwUcA55ro0oisTEviAk7BnBIXGEhj8jNFxSzC+S0qlexQXvmm74eLljbm6Yz50FKAoYyMpScfZSFFu2nWPbzvM4OVoxbXI3GjeqKt/ve1DAjx4/Yd4ffvy9/SYdP6/AyEF1cHN5lZkYcOspHftuw6emI7/+0hRjI5nrqyjgf4acDzgkNI6BQzdw4PBNatcqTcSTZ2hqavBFy+rU8S5DbS93VCoRj1qjeXB1FpaWb1KIH14BAzx8GE6nLpNwdbFlxZ/DMTPLk2/+jgr4aUQkGhoCw8esZd+hK9SqUZrxIz7D1aUEjwOjqVXTncPHbtGgblmy0pMwMMijQIq5An4jb/AB5277byrgrCwVp87eZ+vOy2zfcwUbG3M6tPWhfRsfypaRVo8o1JJV/1ABXw4IZ9ai0xw9/ZB+3arxQ99aORbvS8IinlOz+XJmT2hCt/aV1d8H/2cKuFj5gNds9Odp5KuFOZ2dLNizaSAb/xpEUHA09euU49fZPTA1MeDPv45ToeYoytcYSbdOPm9Rvh+PUqUcOHf6NxwcrKhWsx/+/jKlJt+B2LhEylUZTHpGFkt//ZYNq3/E0tKYFy9SqVjenivXgmnUoDwPHkWipVWsbgeF90RCQjKDh2/AvsxQho7ZjKODOacODOfahfmMGdHhlfL9AKzbco3WXdfiVc2RwIs/MG1M43zKF+Cr/tsY3NdLUr7FiGJlAbdr7cHRUw9xdTKnWmV7ypaykjYXbawt9Zm2yJ/VW26zbFYT2nxaGpWGIQ8D43CwNcbQMNsyUfdklLNy5KxadRTCKlXH9j3X6T90K5tWdOeTelJIjForqSDHB9KFEpTyGMTW9UPxqpndZ1qEfB/JQfnbtNWE7KmzCuWQOwfZBVMLswCoOkvzHdcFlB2DmnEV9LzUtRfmfAtqFatDnWWuUyXXn35+V+jS9UeaNWvGsGHDKFWqVM5ndxLz32PlDc/L9yuXSJESmL9N3e8xK5mMjCzK+Sxi5cIvaeDjqv6e09CldrN5DOnfkE5ts92M6hJi5CjEIrdCiTH/YRdEzAwy0tO5eDWMG3ciufcwhnsPo7n7IJLwpy9wcTAhM0tFenoWIRf7ImjLWL3/xwoYYP/h23w/fDvXT/+MkZHuOytgdO1ZsuwQ+w5eZu/20VKbooDV83+ogAXdz+TlFIoMMXZ27oYPpICLXSKGtrYmPl4u+Hi9ljKaHktaWiYPg+K59+gZMXEpxXadtc+aVqBe7WuM/mUfv85oWyR9Ghnp8SKpYOFYCgoKH45ip4DVoaurRcWyVlQs+/+3IGdhmT/1CyrXnYOerjbjhrfC2Fjv7TupIT09g4lTN7Pyj4FFOEKFj4GYujt3QxG7IJYv38C5c5dZuUo+Tf5DuiD2HrjKiCmHuXX6tcJVb3BBAFRrMIvfZ3egtpdbgV0QgsVPBZJ7XxSrWRenytOJiU362MMoEjIyssjKUpGVpSIjIyunTaVSYWKsx3nfH4iMTqRczcksXXWa3fuvs+fgDfYeusGegzc4eOQWVwJCUalUZGZmkZkpfyOvWnOcku42NKhX8UOenkIxxM3NiceBIR97GAB4V3dEEAR+mXeyQPLJyencexhF1cqO73lkRUuxsoAzMlWkZenlD+/SU7egpYyFoM53KBcOU5gwHxlZMeO5rGh6UhKrt92jRmWplu6l61F0beXEgr9u83XbUly+KYVdTf3eDX1VLPt3n+RhyAtMjF5Wa8rExlKPizfjaOhlTasGdtiYCzSuldv6T0tX8cu0M6yfU5vUh5tz2gVN+a9d2yh/oWwNDTUPvIyE/G3qfOYFXRhUbViWzMNFnYUj5y9Wd3y54xV0cVaQlm0uSJ/wj+YD3kph+lRjPd5Pfk1h2dXi/qNwtTUuymvJLMCZpCaMLKWAilyNBWxlrs2RzV/RoM1akpNTmTC0HrpvmJK5/yAcEFm45Cid21bBxUVNyVR1CUsZGrxISicpKY0XSWkkp0KFcnb5wzKLmGJlAaenZ6GnJ79C7Zv4e/MFps/d/x5G9M9Yt/M+rRu7Ev40ifCnSbRu7Mqfmx4wpGdF9h4Lw8HGAAcbA/YeC2PW0MrU8DBn/9J6DO9dluG9y7JvaT0aellzb/+nZGaq+HlOAHtPRpKcmvtmXrM7DI/SpnhVVrMStILCa9g5OhETFUl6egFjZd8zttZGnNjejTsPYqj0yZ8cOvZQraynhz0HNvUhMCSO6o0W0Ou79bJvhaIoEhIax5adVxg6ZltOu4nzcEpXn0LdTxfS7uuV9B60BrfKY5g6ez/x8YUwxApJsbKAzUz1iYx6jqWF4duFgeTkNAb8uI4LlwJz9h/Qt/n7HGKBOH85knIlzTl5QYpGsDDT5ertWBKTMjhy7lWEwpFzEbSuZ87hc1HUr16C05ckv5qVuS6Hzz3lm3Zu6OtpMqxXWXYfDaNim5OYGGrxIjmT5NQsVCrwXfXJRzlHheKHlpYWtg6OBAc/pXTpol8f8Z9gZ2PMjlUd2Ov7gNbd/2bvui40+6RUPjlBEKjv4059H3fmTWlNm6/X8lWf1bRpWZnHwbE8CozhcVAM9x9Fo1KJeNdwxbvmq/TptMj5uTvU0OH23Qi+HfI3Mxf6cvbQz1SqWPTxz8UqDK1nF29qVnViYJ96uT/Uyl8UWqVS0aH7r2hoCPy15BuePI2nbvOZrFvenyafeOQ/wAd0QajSUoh9lvqaSyEDUwORyJgUrC31SEqWXq8NDbSICIvB1kqP2Pg0TF4WjE5WYWGmQ2RsKtYWuiSlZKFKTyIqLp2sLBFDfU0MDbQw1NNE1zh/GFmhXBA6aiY+5DKF/msuCDl3lrpzkO23cGFo+SbhCpP1pyYr835ao1x/92rdjDE/NeOzz2rnF06TcUG89rtJSUlHXz/7PN/RBZGXqQvOsP/oY47v6ImOTp7vQ8a9kpquweCR24h/nkJJVyvcXS1xd7XC1saM9PTMnFohP4zYAsCFI0Mp5W6FhoZAamom4U+TmLXQl5NnHzBsUBN+6N8IHR0tBNP+/90wtE/qlWHPwev5FbAME6ZuJzLqOUf3DEVXV5tSJW3Y9Ne3dOixhP3bhlKjmvtb+3hfxD5LpcN3vjSvL1kZh06FsnZ2HZr3OsycUTXZvE+y2Dt85sr4eZfZ/mtteoy8SFMfyWf8MCSJSYM8+LTvKWb97Mnmg6HoaamYP1yZaFN4N6r71OXwkYvyClgNMbGJjBi/jfWb/diwsh9tWr+p5krh8T3xmN9XXebS4W/zK1816Olps3RBZ168SGPH3gDO+Qfy69IKXClFAAAgAElEQVRTPAqKwd3VChcnC1ycXhkc/X/axMPAaAQE9PS0MTHWo+/XdVn5ew8MDQsYi/8PKFYWcPCNKVSpN52ZEz+nUgU7PD0cpCduHgv4783nGDN5KxeOjca6hEmuz3bvv0nfQSs5uGMYVT1dX33wAS3grNRkLl2PxsVRSqkMDntBtfLGHPd7gk/VEgRHSBNfznaGnPULpoFXCS7ffoaznfSkD45IoYaHBScvRlPb05KQJ8moMpNxszckKi4NuxJ6RD9Lx9hAEy19YxKTMylhoUdEVAo2lrqkZggYGeb3pSsWsBrZ/5AFfP/WTb7r0JSgx1vyx9LnsYBVKhUrVu5l7JQdfNW+Fl+2qkLnXsuYO7UjXT+XWYZKDjXnIIoidx/EcsY/lHEzT7JpaRsa1C0t34fcBGP29/D3lkuMnrKXwf0bUKeWO1UqO+dS4oLZd9Lxnv2aZ3/5e+Y/bQE7u9gx95e2nDz7gCUrz/IsPpk9G/vjUS4TURQ5de4Ry1b74Xv8Hsd2DcDaOBFScxeT+byhIRnTm/Jpm5n4bvqKyhWyC8VkpeQ/oI7M5JU6JSNTXEYQ5Oc4J/96mc6tS7HtgGTpNvJxYPSci4z61oOJC69S30uydFdtuc+ofmXoP+kqw3qXY+expwA0rG7KtxMuMvdnDyb9foN61S0RVFms3hXOyN6lGDDlBj997c7OY0/R19eiViVzRs+5wpxhFRk79xatm7pRp1r+9b0yk/M/MIQ0+SgI2YLbGjLX8A3XIZ+chrxCEsX84QYaWmqUqtz3U5i01MKsA1jQ/dWhToGq0tmx6wKXrz7G3u5Vta8Jk1aTnJzO+FHtMDbWV7/Om1xhKTXHKqNzONffpauI/KSjwY7NO2nzuVduJZzxKrb3akAoA4ZuRENQcWhzL6pUkhTu0e29qd96KXUrd8HFMbfxI/c9osrfdv1ODE2+2oGxkQ51ajqwYl4LGtS2f0OBHfUPaFcnUwwNtOnb3Ss7s1SNysv3gPowdYOLlQIG6NWtNr26Sa9H6zf780nrhfTu5sWOfTfQ0tSg39e1WTSzDRbmhmorebVrVY6sLBXNO2/g8KYueJS3lpVTUPgYbN1xnh+GrqTfN024fjM4p/3PVcdwdLBAR6cgK7z8MwRBYPbUroyasIGR4zfwTfeG9OhaH2MjfW5ef0zAzXDOXXjMoWN3mDbuc3p1rpirAHvFcjb071mLKQv8WD6n2T8aw96jgXRtW4EFUxq/8/nUqOpE1coOlPeeSZMGpbG3t2DquM/fud+ioli5IMTny/M99c9deMzfW/z4qm01fGq55n5iyyng17KH/t5+k+FTjnF299e42MtYVIWxgOWOJRcrC2SmvODCtSjcnSQL4XHoc6qX0+fI2SfUq2lDyEsXhL0hp/zCaeJjg/+NONwcpOiP4NB4qlUw44hfNPWqWRLyJAUxKxNnO33OXI2jcS0rLt6Mx9XBAEHQIDA8mZoeZhz1i6FuNQtikrRwdchfUUqQsSoFTXlLQN4Clrd0P7oFrM4FIVv/o4Bt0gcFly2gZXzkWABdes7Dd/c4qnhKs/SCQXsAKlV05sTBCVhYZH93hbGA5cpsgrxrIiMeURS5cPEBK9ecYMsOP9LSMqhQ1hZPDwc8PRzo2rEmlhZGsvf9s/hkStecxfndX1Ha/ZUFX1AL+Itv9tC9YyU6tC6X+wMNNRmhsi6I3N/5Wb9AJs06hLOTFcsXdc1pz3FBJK7K26nsoQTjHv9dF4QcPrXc8an5z8JDurT1ICommU+7bOTMjg5YmBei+M47EBefxujZF3JNwq2Z6c3PM68we2R1Nu+XrJ6Onzoz4bebVC5nxriFN2jqIwWXPwxKYKKtASPn3WLm0IpsORSBlqbIl5/YMmL+HfYvrsX4xfdp6m2FkYE2O449YfXUaoxYcJtZP1bA71YSE76v9EHOVaHgZGZm0e2bBWxZNzRH+b6Om6s1X/VcSGamCg0NAW1tgeW/9c7lpigqBEHA26sM3l5lWDS3F5qaGmiJMvV8gfT0TPYfucfazVdoWMedQX3rMKRPNSbOO8/63wpXSEgURfyuPuX3Gf8sXPRxUCyrN15h+75bDOlfn97dvQGo4+2Gs6M51Tz/P8LrXlLsFfC7MqSfF6Hhz/my9258/26Hnt77vySW5npsXdwM4+yJsL6dy2Oil8GhVY2xttSjdhUpo83QQAuPUobYWOqxcZ4PxgbS2BISkrAw1WH/Hz5YW+jgXdkCMSsDQ30t9i+uhY2lLn/PqIqxoRagQYfm9pL8Ym+sLXSo5+383s9RofCcOHUTZ0crtWnjzZtUxtXZGh0dTV4kpdGpxwIM9N9vphaArm72hO1r+RkZGVnEPUviwf1geg7agoOtCXp6WgSHSpPZg/tUo0y9VZy7GIFPzQJOyAGBIc/R1tLA0b7w9bvHTD3EsjX+dGnnyYwJrRgwdCvpGVkM+KYOAKf9HjPo20Zv6eXD8p9XwACzJzSmS/9tfDfmKCvmvvnJm/A8hXMXggC4HBDGD/3qMXm2LxOG+sgvgSLDyJl+tG3hxuHTYQA0refIqk03mDS4CkN+uUQtT0kBXwiIYdyAsvQcdYHvupTiyHlpFrpRTXOGzQ5kzs+V+GnmDWpWMoesLPxvJzC2byl6jw9gQCcXjvrFoKOjQb3qlvw89xazh1bkp9m3qOdlj6mRNlduP+O7rmWY9sdNerZ1x8zMEDvrD7eUuEJuNm09Q6f2ddV+PrDfq3tzx25/6vmUwcysYElJRcmM+b6Mn7YXM1N9rCwMmDS8CZ82KUutZr/Tt7sXAMZGOiyZ3phuPxzgmm83TIwL9ts4di4U72q2ha5muGv/LdZvvcrd8z9JiVoaOpzY8x2NvljMzn03EQSIjnmBR4WCPww+BMVLAQua8jOechEMIOuDFbPyz4gLgKONHtGxKWSlvpr1FzLy+9g0UrKwM30BgI1pGnpZ4VgapaOjkQp5+pb1eQHlSlng6mRK1UqSP9rVyZSKZUtgZmZC1Uo2VK4oKeB0lSZm5mZUKmeFm6sV1V5IN6W7qwkeZRMxMzelioc1nhUtEFUiGYIu5lYWVCxniZtbCaqlaKGlKeDmakbFsomYWZhStWIJyrubIAI2USno62piaaaLhakuWtoC5B2zSt5/qyJ/nQ1BVBeuJdOHjL9YzJK/XhqahUg/L0wUw/uoz6Bupr4A47p8NZA6PpXUjyt7Zj8sPJZho9cydXx7NYOQ2V+dvzhNJtRSXU3lrGQOH7/PkhUnCb42Gjtbk5zwy/MXQ0lNy8DJzoCsjBQ0tYz4slUVDpwIY9D406xe9CVvU6lJSelM+fUS6xe3AU2ZB8sbvsdBo/awfulXWFqa5Mi6u9vjd+RnLlwKQldXC0d7czS11bkZ81yzAiwnVhQUq1oQ74vAkAQWrrpBj3ZvWJ04G309rZwaDp83dWfusqsM7VeVJ1EFr9LWrU0Z9hwJwsHGEAcbQ/YcCaJf53LMX3mD1o2diYhMJiIymdaNnVm05k6+GhFHzz9lyNflWLD6Lq0aOhARmcKT6BRaNrRnwZp7DOlRln0nIrC31sfGSo99JyIY0qMsC9bco2VDe57EpBIRmUKrhg4sWH2XIV+XY++JcHS1ldvhY/Lnkh8YPnolJ07dVCvzNDKexq2m0793Yzq39/6Ao5PYvCuAoQMbSMr3NbxrONKsYUmadljDwmV+Oe3zJjXD73I42/bmX2or7lkK/lfCCQx+xoukdGb+dhafGk7U83bJJ/s2IqMTqVElv3/X1saUL1p60qJJxf876xeKmwX8nrCzNmT0d1XpOvgInuUtGfxNZZrVc5R9YmdmqjhxXnIdWJjpcuhkMP26ehAZnYyrk5rVI/KQlJyR434AOHw6jC+bOHLoVBj1vew4eeEJAOamuhzze0LPdqVy1Yi4fT+O5vXs8D37hPo1rTl1KQpNDTAz0eHw2af0bu/OkfNSzLCeriZHzj/liyYOHD77lPo1rLkQEEtKaibmpjr4nn1C7w4lOXruKZ994iSboKHwYaherTQjh3Vg87azNKyfP10+K0tF09bTycpSoaOthe/RGzRr/GEnU7W1NNHUzP/LWLzSn/XbbmBooE3jeu5s2nmL0xdCOHYmkIzMLBat8Kddq/I58unpWTRqt4asLJHnL9KIjk1CT1eLgGPfFnpMWdmr4Ojqvt/Y3YGDlxZ5n8UrDC1xlXy4l7qVe9Pzr6Yr54IAUGWkkZqWycY9D1m48gZ6elqsmN2IimVyh6KJaJCV/aqcmJSBhZkekdHJ2NrnzyITs+Rf5aKjErAw081V8+Hp0wRsSxhk14jQyenfzEgjX40IAx0VUbFp2LxWI0IUVSQmZ2BhqvtajYhMEKX+o+LSsLGU5E2NdADhlXxMKtaWuoiCJpqaua1gQV3gukb+H6E6WdkwNDUha7KHknFBqKtngVb+8Dr1hbwLmMlWmDC0wmTCyciuXX+UlX8dIu7ZC1o0rcr0Kd3QNGwHQGbCWpb/dZyIJ894Fp/Etl0XWbWkT8GUsFq3hlwSgxoXRMYzfhyzGycHU34a2EBqy0pmxfrLTJpzkpM7e3HyfBDfj9xP0wZu1K3lTF0vJ8bNPM4pvxBCrwyhhJXkWhgz7Rg37kSxa02nHH9vVpbq1f1XSFdSqRoz2Lm2Jx7ls8tQvqV4e86uJn2kU05ck1sujwsiKioeG5dekqwShvZ+0NPVomf7cvRoW5Y/N97hk447GdDDg+5ty2JppoepiS5BYQlsP/gIgOPnwlg1tymte+1m51/tMDWRvlxdHU2SkjMwMRRIfJGOtpZ0M2VkZmFkqMPgCafp2aEc2w48BqBtCzeWb7zFwvG16TPiNA287QA46feEZVO9aTPgOJOHVGX7ISk8rV1Te8YtvMH23+rRb5w/DWpaoyGIHPOPYtlkL9oNOs2kQZXYfiQMS1Md6tewZuJvN9i2qB79xvvTvK4dKhWc8I/kj0ledBx8mkmDK+NoZ0xpV5O8l0XhPZGWlkFCQhIvXqTg6GiFjo42piaGnDh1k2/7NGPuwl0M6NciR15TU4Nve79KTmjTuhpde//B1bNTsLEu2NvXu+LmbMG+w3f4cUB9BEFApVLx3cj9nNzZCzcXc5JTMjAy1GHE93XwruGISiUiilDG3ZLG7deip6tFUkoGsXHJXDv2ba7JtrwP/8JQt5YrJ88+eqWAi4CoqHisraUyB9bWZgzo14Ilyw4WWf9Q3CzghD/k6zMUIkVRTJZfkDIzNb8VfeVmDOPnX+HGvTjiE9LxKGtOCQs96teypf2nbjyJSsbLswRHzkbQwMueoHCpDxcHI077P6VJXQcuXIvG3Vl6mj4OSaRWlRIcuxBFvZr2BIVJqb8ujsacvRjOJ972UoKGc3aCRshzanlaceRMOPW97HL6d7Yz4PSlSJrUscc/IBo3J6n/wNDEnPHU97IlKOwFGhoaONsb5hpPGXczLMzyB7XLWZVqkygKMUst14esBavO2hZk3CKFSXhQZ/29oYZA7jZ1NS4KWEsij2xaWjrTZmxkzvxt6OvroK+vi76+DosWfE/dOh5cuvyQ+Qu34u5mx7y53yFoSSVFxfRDuftUpTFm/FquXHvEvp3jX2WkFWapIrlrozZFOo2MjEzqNJnEN90b0L9PEwD6fb8cKytjpk2UMvTWbTzDqAmbqFu7LK4uVpw8c5fNawbx4GEYBvo6GBrq4mBnjrn5GyI4VGmoVCoCg2KxtzN9VWUtm5SUdHbuC+DU2QecPHuf8CfxzJ7cjn69sgt1qavfkee7FIykpAwxZUeu9oFDVrBk6V4GfNuKxYsGvZLXaV6kFrAy6/IG9PW0+K57eb76vCS3fNtiYaZL9UpWrNvxiBqf7+LyjRj6jjpD7arWzFt5g8chiTwOSWTigivUrmbDz9P9MTfVYdvBQLYdDMTcVIc+I0/jXdWG8fP8eRTynEchz5kw7yJelUvQZ+QpzE112XYgkG0HAjE31WXguLPUrmbDhAWXc/r/dfVtale1pu+oM5iZ6LL9YBA7DwVjZqKbM54JC67wOOQ5weEvcsbTZ+RpzE11OHo2/GNf2v8sJ09dp2rN7wi4/pj7t/8i5ul2QgM3MH/OAAYO+pXuPWdSpowTfXu3ZNnyvZT3+Dpn37t385d4nDjuK+ITkhgybDmXrzxUuzRVUaGtrcWIH1tz8Mj1nLY2n9fg8LGbBAZFIYoi3TrX5e6V2ZQva8/m7RdY++cAHB0s+aR+eWrVLIlHBUe1yjcq+jlrN5yjW9+V2JUZQcNW87BwHUrZ6hP4YfirteqGjd3GoqXHKVPKmrVLexEbOPeV8n0DUVHy2am5ZeJZsnQvAEuW7iUqSs2qH0WA4oIoIGYmuthY6dOhpRslLPR4EJTA5F+v0aJB0RdpVvj3ERERy88j/+T02ZvMn/0tbdvUzeUzb/mZN3V8PHAv052TpwLo3KkRMZG7ePgwnEpVvgGgYdPh7N89hWpVX1UF09bWYvO64UybtYVuvebh5GjFod1j3uuq4LY2pjwOlJStIAhU9XSlpJs1dZpMQkNDYORPn/Pdt035pkcDNDU18Go4nlLuNnTr5E3ndl6UyFOh8N79J+zad5Vd+65y6244jeqXp0Xj8kwd9wUuzpakp2dy/2Ekbbr+gYXLBTQ1NVCpRO5cnJCv2uGbGPjjOpasOMGAPk1YvKBXrs/yuRu+bZVjAb9sfx8oLohs5FwQUbEpPEtIx8XBkFP+kTSta49/QBRu2TUcOn1/jM6t3XFzMqGBlx3BEVJ8sIuDEaf8n9L0DS6IujXtCA7Ldlk4GnPWP5xPasu7IA6fCae+ly3B4VL/znYGnLr4cjz5XRCHz0RQ38uG4PCkHBfE6+NRXBBv6KOIXRCiKDL/111Mm7WVfr0/ZcyoLhga6smOa8B3C4iNe86mDRNzKdCXLoiVfw5lxOjlnDo6h3LlnPPF9mZmZlGx6vf8Nu8bmjb2lB9zXgrpggDIyMjEudxglv/eh5YtquY61z+WH2XM5M1oZdcQad6kEqOGfk5oeBxr/j7JvkMBdGrrxYRRX7Bpmz/LVp3keWIKn39WlS9aVuWT+uWkzDuZuOW0tAySktLJUqnQ09V+82rhghZR0c9zFHRU9HNs/sfeWYdFlbZh/Dc0DC0hqWK3GGAi2K7dveYa2N2Kq6uunWDrmmv32oWJgQEGBqiEMkM3DDDfHwMjMGdcWfXbddf7urwueec557znzJn73Od5nyj5oQNyZLA3VlYmShcEwLDBLfBemROFoWmQj5SVu/3CLojvBJwDIQL+/UQw56+F07WVExPm+3FuR0uGzrhOHWdF9bT9f4Tw6k0CWdlymrvZo6ejiY6OJt1aOzHhFz/O7WxJz9GXaO6maHx4xjeM3Ssb0XeiL+N/qsbe4y8A6Nq6FJt2P2b1z/XoOepiPvtdK9xp1ucUS6e78vsJxaJdz3ZOjPn5Fud2tKTXmMs0a2CHpoaIU1cU9k1z7PeeCMbKQh+P2rY58/mBnqMv0rtDGfp3UY15/k7AfHECjo5OoGixvvheXEKd2hXUzksul6Oh05T3YfsRaWhiZWWGXC4nNjaRIlbtlHbWVqbs2j6Fxo2cITtdhSR+3+fLspVH8PNd8GkqWA0Bp6SkEymJQ19Ph3MXH/HbrsvExiZioK+LWKxLcnI6B3aOxto6/+JfXFwyN2+/oEolR2xtzPLPQZ5BfHwKY6fsYcfvN+ncviYjhzSmtkvJfBXVgI8UGvo0eI77XaF2B7rjvby3YkxAAeclYIDIN1sV11PN/fWdgL8SAWekJJAhy0JPV4uU1EwM9LVITZWRlZ0TxhWdhrWFPjFxqRiJP4SJZWWD7+13nL0agX9gFMc3NaeopX4e+zRlzQdl2FpMBtaWYpJTFMn1YgNtIiMTsLYUq9qb6JCYlIGhWJuMDEX4m46OiMQkGUaG2qSkZqKro7h50zOyMdDXIjFJhqFYiwxZNiJEObUDZBgZ6pCSmomenjYaQmFk3wn4qyzC/TRsDUZGhixbUiDGVaSJRBKLlZWimE6t2p7Y21ly5Nh1hg1tS3XnMgwfuVKlSWbIi98oXqwoniNW4LPhFMMGt8R71TBAUSTd2XU0s6d2oWP7T0jUyHNtYmOTOHHqLoeP3uTC5UBMTQxITcvAyFCf5b/2w7aoIafPPSQ1VYbX9I5oaxfSg5knvC0tTfbRBruSSOknuxfyKt3cv61LTVL+Hflq2QclHJWBVZ6IkY8pYCF8aQL+tnzAsjjhJ6O6+EChIulq4kdnLLtP+2YlmLbYjwPezRg05gqt3e1IS8/i3PUI1syuTZNefzB3bFWOngsFoF1TB2Ysf8DeFQ3wvRVBYlIGi9f5EyFJZfVsV3qP9WNE34ocOfsagPbNijN98UX2ezejx4izNK2vULrnroWx9ucGNO51gvkTXTl8RlGovUPzElQqZ4mJmeLmUS4Ei0SY5pxyboq9hpYOuS9kuT1LdRQfAGCWE9ZobIj6sn5CKEwxcrX7+MRuEGo7TxQiwL4w+xUi1sLEAasrTVoAqenZbNp6iPjEdDZvmqIc9xy+AZ91Oxg2tA8rV3qRnqHBkWPXAfBZd4wWLRqyZfMSevcZrdymd+/mFHdyQiKJxWfDKYXthlN4zRmGlZUZGoDXrIGMGL0KPcMiVKxYHAcHRZiiEHIfABs3nWT8pPV4uFelYwcP5s/3pFw51Yy0mnUL1KrQKCm433zt7nMQLZVQxCqn9nbOpbPQUeWyCSM92breh2HDhuHt7f3hA3koEkkUVlYWyiFPz+k517A93mvHA2BlCMOGtMFn/XGGDWmDlWMVpb2Vo/C9FPnumPJBqDgv9TU5viS+R0HkwM3FFicHY5q7OWAk1qZpfXsqlzWnRmULmtazxdhQh2YN7Chhb4ibixVuLlaUsDekWT0bjMTauFS1wMnBiKKWBjSpZ4OxWBvXalY4ORrT0NWGhq42ODka09zNHmNDxf5rVrGiZhUrmtZXjDV3c8DJwZiGrrY0dFXMR1vr+1f0LUMiiWXX7vMAbNl6EokkVjnus24HAD7rdjB48BSKF7dn6FDF6/KwoX2IiYknMvJDF4rId8fY8dsMAKyszBg2tH2ObXsleXgOX0rHLrMoVdKW5SsPULfBSIzNWuE5YqXy2LnwHLESa7suDBi0mGkzt3Dr2mqOHpqL3+2nlK/UD88RBToFfwa8xnhS16koXmM8VT6TSiT5/r91vY/iuvj4IMnzmafndKyLVsfTczoAEklUnmt4JN/5ea8ZTWT4frzXfHh4fQz5yPf/iG/LBRG18LMVsLoi6f7333L3kYQfO5Zh2eZH9O9cjgeB75BlyqlRqQjbDr5gbP9K7DwShHMFRdbb3cBo+rRzYsW2p/TrVIqBU29S0tGQacOq8Nuhl4wbXJ3th15Qs4qi/c/dR1J+7FgGn11P6NGmNHcDpADUrGzJvj9eMaRHebYfek7NKlY59hIG9RTIchJ4/VdboFzotf67As6Z19dRwHndCnK5nJJlehES8i6fSoMPCrhO7erExSdw6+ZRjI2NlCovMDAI19ptSUlRFJuSZ1396LEkklisbT50e4iMOISVlRmbNp9k4aLdvHoVwbAhbfBeM1pha9dFaTuwf0s2bRivMp67j4LH+nC9hBXwzdc6SrUbLZFQ1+lDgsSN4PfKzxaOH87W9T70HzKMJasValdIAUskEqytrT/M670/VlYWggoYUO9DLnB/KGOsC15bNQpYJBL9h10QXxF3H0k4dy2MDs1LcMY3lIauttwLjCY2IQNzEx3OXg1nUNeyXLsnIStb8dC6cOM97Zs4cOZaBJqaGtx6IEVDA0LCEjl7LYKfelbm/LUPNR/OXwujQ/Pi3LwXiWs1a674KfzR5qa6+AdKSUwuxbk89ueuhTGwR6WvGlL0HX8dQoTkOWI5PuuOMWxoW7zXjGWt9xHMzAy5fHE/jo4KEpLJMrlw4R7JKSkYGxuib6DH9u0rMDZW+IlSU9No224Aly/fok6d6ly4oHBLiDT/PM41L6xtO6qM+aw/js/64yrjm7eeYvPWU5+0j89FXjLOxdb1PkrlmwsfHx98fHxUbAGsi+bvvOyz7gg+6458uUn+n/BdAecgPjouZ7EtFWsLRU0GQ91sQJSzeKZLZFQqFqYaH2oy6Gty6Ewoq3c8QxqTTsNa1tR2tqBZfTtsrQ2QJsixKqKfr+aDJDqVopaGOTUfCizORaWo2KOhpbpg9l0Bq8dXUsAFow08R67FZ8NJJdFCjgLNQ1iREYdw8xhNaKiU4sWL4mBvhampIRcv+VOypB09unehS5dW2NhY5ztcaGgEFSs1YcH8ydSu7UzNWq3//Ly/47PwdyngfzUBP3j4msVrr7N6wQ/M+vUSrtXt0dVMx9cvjJ8n1GXkzEuMHujMOd+3REkTaOHhwPJNj9iyyINx825Qv4YF6Rlybj+UsnSaCwOmXKVna0d+P/mGd9JUEpMzeSdJoZitmDfhyTjYigkOTaKlmy3ec2ozYeF9BnQvx6lLigymFu6OLN/8iIPezXj1NhFTYwUxxSVkUNbJhICgGJwcjZFGpwFgWUQPY2N91Rz57wSsHp9JwJKotHyr5ACeY7YqyHZwK7xXD1cUZnHoqfw872t6QQUsl8uJi0siNCyasDApUmkcbm5VKVHCFkTqyy4eO3aWTZt/5/79x4SFvVOOC7khVJCnC/Ra78Ns3HySu7e8iYlJwMREjN/tZ1y4eJ+Nm/+gSSNnNm+ckD+iQeAaFjwvJTRKql0Y6zFoKF4rvFX2lRcWOiKkEgmWVvkb45oLBUjIQ9Wc7xvVsU90QSjGhH4j/xACFolEXsDsAsORcrm8aM7nopzPBwNmgB8wXC6XP86zDzmKhibl5HJ5cJ7xbYCFXC7/00e8MgxN6GIJhaYB6bEvuXIrjKZuxfDzf4dTMYWCCX4Th2t1G875vqFhbXtehyngvGAAACAASURBVCYgz86imJ0RvrfDadrAEb/775UJDk9fxnL68hs27XmMlpYGlcsWoVpFC4zE2izf9ICVXm5YF9FhzM83GdClHPVqFcW1mhWX/N5Tv2aemg92RvjejqC5u2q/L5GOmgLQQuQlVCxaS03IjiB5qSG0zy1QrpboBM5BKHRQ3fE/l6zV7FciTcjnQvhAMh/8iSp+1ZzVcs/hS/FZd4RhQ/vg7f3Lh51mvxL2lRYGOed2+rQf/QfOp369KtSpUxH3hs5Ur/7nNatzfw+XrzzEc+Qa7OyK4OJSgRs3HnPn7jPKly9GI3dnunX1oHrNliqbx2QK90279SIEc8v8RDlv/EhO7thKqz79Gf7L4g/7kEowtbD806nqqGn6aqanKhKcjIV97pFpqveSLEs4NDVToAmolkBlPnVuvyqmOn8LAXcH3PMMZ8nlcmnO55OBGUA/IAiYBdQHysrl8sQcGzmQBhyRy+U98ux7G1+RgBcu2seI/tUYOeMSU4bX4sK1txgYaFGnui0L195h9TwPfl5+C/c69mRnZXHlVjizxrgwatYVJnvW5Oa9CJ69jOXgqVfIMrM4sqkVB06+oE4NG+4+lLB4/X1ObW/D5t+fEPE+iZS0TLq3KUXjevYsWnefVT83ZO6quzSsrSgEfeVWBDNH1SQmXkYx+/yE+Z2AP3L8L0DABUnRc8RKRZhSjqJTcR/kCUv6QLb5F3okUnE+5QdA9ivheRUCskyYNXsTO3aeZdeOmTRsqMg2k8kyWbZ8LwYGujRv5sLz56E8fvKax49DePwkhPfvYxCJRGhofCCQFUuGcv/hK27fec6YUZ2pU6cCJiZ5SnYKLKKpI+DncfmbDsRIJbSq6KT8e7f/UyXpZn/im/V/nYA/dREuUy6Xvy84mKN+xwAL5XL5wZyxvoAE6AnkrWC8GhgvEomWyOXye583bfWIeBeP/8NQYuJSuH4nnMysbAKfRbFlbyAvQxR+3uRkGdLoFMLfJylr++ZCJssiOUXGo6dRHD79iks3w5k1phaBQdGULGaCSCQiJTWTtb8F0LpJcapVsODZq1iSU2QM6lb++4LZ3wyh9FEl2eaJAMhdiPJZdwyvWf1ywrraKhVwXrL2Xjser9kDVFStCvl+AYSGSujeay7GRmJWLh/FsePXuf/gBfZ2lixbsQ9jIwOMjAxYsvR3ypV1pGLFEjR0q4bnsA7Y2Snmky1LITtbjo2NObq62kyatondO2ZSq1a5Pzl64WBuaUWrPv2VCvhTFO935MenKuBJQCyQgcLFME0ulweLRCIn4BXgIpfL7+TZ5iQQJZfL++b8LQe6AF2BInK5vHHO+Da+oAK+eTuEDn024VzZniLmYoz1M5BEpeJob0TA0ygyZFmI9bWJT8wgQ5ZF8Jt4EpIyMDPWxdhIh4TEDGLi07C2MMDYUIfK5YowbWRNUlIzcXW25qzvWxq62DJ02mWSUmTsXNGUdbsCGT9XsUpd29maTi1KULu6NbWdrbl46z31a9rwRlmm0ogrfhG08PjugvgaCli5MJanhKBEEoe1fTelTWT4foULoYACzoVEmvjp7gMhH+5nKuDOXWdz5uwd3Bs6ExAYzMABrZBK43j9+j0eHs6MHtVFNW23ILJSSE5O49jxm+z6/SIhIe8JfLRNWBx8hgIGiE1LIy5KqkK+3xXwp+FTFLAfCvfCM8AKhbvhhkgkqgjkxpNEFtgmEhAqEzYNeCISiVrI5fI/rWwsEokGo/At/ymO/RHAwFG72e7Th5ZNFTn3ftduMnXBNdb92gTLyopwFgN9LdLTsyhXyhwDfS2Wznbj5t13pKbJaN/cidVbH7LP5weGT79EC3dHrt95x+Vb4ayd15DFPv68DU/g4KlX/NipLH4PIvFadhuA7m1KEvg8lqWbHlKvZlHWzKnP6q0P0dTU4OQFRWZbmyYlWLzOnyYNiqH1PcHis5FX7UokcfhsOAkoSgh6zeyDlZVpTmWrPFlROeTqvWY0XrP7C6javycgPxd7ds3kxMnbhEdI2bf3Z/T11S+C/jJ/Oy9fhjF5Ui/KlStGRoaM06f92LPnDKfO3KFunQr06OpO+3Z1v9qbWVpqCkZm5sRKJejqKQgyPS0VQzNz4qOkGJqYkpaqEEh6+gYkxcdhYmFJQkw0unr6yDQ1yEhLw9i8CHFRUoxy7EW6uugbiEmMi8XM0oq46CisNS0Ri///XaC/JgodBSESiQyBYGAhcAu4DjjK5R+WKEUi0VbARi6Xt8j5Ww50kcvlB0Qi0VqgHlAd2EJhFHDCpnyrm9ExSew95M/Ovbd4GxbH4e19qVXdgfT0TGLjUoiNiSUuPo1qlYoiy8ximc9N1my5TX3XYlgWEROfkMaVmyFUrWjDghktqFGtQPpkAeWVmZmFa9NVjPqpDn27549DRJ7JkPHH2HM4kLq1HEhKziDoVTQaGiLatahA3+7VqedaXGErpGA11ShgoSQAoTF16lFdgXAhCClYuXALJ0Fbdav6IgFFJbSiLWQHPE9WvUdnjR7G3s3r6TZwCDOXrQFg7rgR7N28nq4DhzBj6ep89tFSCUUKLCAJKR9NgTGhdFkAcy2Bc1CngIWKpKurYfKJ+HXJAXw2nCQlJY2KFYrxKCCEihWK0aObO507NsDSMo8rRqu84D6E1O67VDVtuwS4IjUlBT19feJjYzAwVNzDKUmJmJoXIVoSibmlFanJCuWsoatLjFRCEStr4mNjEBsaERgZTVpyEoamZsRHSTEuYkF6SgoWhrroGYiJi5JiZmlFYlwsluZF0NJSve+E5qWtRlmb6H5aVI86Xqxqpvv3h6GJRKJLKBTxYgrhgsghYKucbTyBxvwFAk5Pl+E5fi8Hjt3nh6YV6dOlKpZFDNm4w4/9Rx+RlJyOuZkB5qZ66OlqERufxq8zm9K1XUWiYzM4cTaIS9eCuXQ9mKTkDGLjUunYuiIHt/UpcNAPX2Jqqozhkw7z+m00Fw4NUFUUOUSVlJTOHxdekJUlp2uH6rwJjcVr0XnehsVx+VhOoY/vBFwoAr4ZEvmhhgCqmVVXXoYryVUqiVQhWnX4lgg4NTWdZ0Fh6OvpULKkDdraWvg/CKZnn4Xc81vLqdN3cHUpi4ODmnP/SgScnpbGsE6tGT17HheOKxIhGrdpz9oFc1i8ZRdzxw6nTqOmADx/EsiAcZOZ3K8nI2bN5dKJo8RkZOLs3oT9yxcwYsUGtv88jYp13TA3FnP7/Bk8f1nM/KH96Td5Jm8CH9Fp0NBPmte3QsCFzoQTiUR6QDngEhACvAeaAnfyfN4AmCi0vVwul4hEoiXAXOBmYY+fkpJBpx83oq+nzYt7Xpy58IS5S84T/i6BwT+6EnhtPLY2xgqCzPEN+958TW/PQ/xx/jm/re1Kvx7V6dejOnK5nLdhcSSnyLC3U//qGfRCQteBO6lQ1poj23t99HXO0FCXru1yOtpqaOBUvAjRMSmYmxkwa8FZ5kxpKtht+TsUkEgkWOUhW09PT3x8fPLFlBaxsqLbwCFKBZyXcD+VfL8FPHn6lllzdhAQ+Jq3oVJKlbQhNTWDsPAoShQvStky9gQ9DyMmJoHOnQqXJfeloKWtTd3GzbArXoKa9d0AsCtegtrujTEwNKJOo6ZUcq4BgKaODoZGxtRp3BS7YsWpUa8Bb+KTsLR3pHI9d/TEhlSs60aJSlUpYqiHLD0dA0MjajRsRFHHYugWopHrt4I/PSORSLREJBI1FIlEJUQikStwABADv8kVj4kVwBSRSNRRJBJVArYBScDuj+x2KaAHtC/MZBMT0/ihize6Olo4FbegUp157Nx3hymjPQj2n8KMCU2wszXJR5AyWRanLrwgO1vOgJ753QYikYhiDmZUKGuF8UeKO0//5TTJKRmsXdTho3bqII1ORltLk3W/+fHiVdSfb/AfhaenJ9bW1nh6Kgq2SCQSZSrqnk3riM5TmGXmsjVceRmudD/8G/EsKJTXbyI5uHc68dL9BPj78PLpZuIk+9m3ewo9u3uw8JcBGBv/fX7RF48D+XHEGK6cOoGVjR1WNnZcOXWCPp6j2b5mOe4tWyN5F4HkXQSuDRux03slvT1H43v6JJY2tphaWXP/0jma9xvMmW0bcPZoSqzkPTFSCa5NW3B4ozcdfvLE79xpzP6FURaf8kixB/agiPE9BKQDteVyZfrJImAZsBa4C9gAzXJjgIUgl8uTgDlAodisabtliMU6BL+OIlKSwPUz4zlzaATtfqiElpbwK0ePIQe4H/Ae//NDaFi3eGEOByhcDw52pkRKknj2QvLnGwjg9rkR7N3ck+YeZfjjfNBf2se/DRJJlMrfuWSbWwXLysqKYcMUdW57DBqazw0B/y61KwSnEkWJi0vGUKyPjs6H1DA9PR0qVypB1y4NmTyxGyYmfx8BR0aEkZKUyM1L53l8/y6P79/l5qXzpCQlcv38WcJeh3Dn2hXuXLvCu7C33LxwjuSkRPwuX+DJ/Xu8fhzA4xu+pCUnEXD9MtKwtwTdvsnLhw94//YN965cJDU5iftXLxMS9PRvO8+vhW8qFdmtXhleBkcy1rMR40c0/qB01SRikJVCm9676N25Kt3a57gFChnAf+HKC9r12cbCmT/gYGeCtqYcLS0NtLQUfakSEtOJT0hDQySnQW1HnIorKqXJ5XLW/faAG3feMHdqU4o7mnPbP5QuA3bxwn8OOjoF5vEf8gHnuhUKZpF5Dl+gGC9QB7agDxjUhxl9avgT/PN9wOnpMoaNXMMfp+8iNtClsUc1GnlUpW1rVwwM9AoXNviVfMByuZyoHL977mKbvlhMtFSCpXVR4qKjERsrQiQTEhMxNDYmJSkJfbGYTJmMwPdRaOnokJ6Sgp5YTHpqKto6OlgY6iHLSEdP34DU5CT0DMTo5fzetXV0SE1JRt9AYa+hrY1IJCIzIwMdPT1SU5IxNhIOy/yn+YC/KQK2sDBmw8of6dC2Rv4P1eV9a+jivfEit+8Gs239oJwxNaUFhYhKQ5fs7GwmTN7E6zcSMjOzyMyUkZmZhUyWhUgEJsZiTEwMSM+Qc9n3EXp62syd3ZfTZ+8S8FjxkjBxfA96925OdnY2NnbtuXDBl0qVKuU71NPEz1sRt9b7zBheICrj0++FLIF4SqEYS0D5AwVFNEKjMh9+9OeevVGmt2ZmZxMjlaikuxaGVIUgRLQA+tqqBQds9FUfLIJEC5D1XGBMjRgQImB1922BB6xcLufxs/dcvPSQE3/cJiw8it3bJ1HNWZhUBYn9CxCw0HeekpJCT486TJy/mNMH9wHQvGNXVs6ZjveB40we2Ju6jZsBYG1jR5vu+VsAVTEVFggxMtWx43fus2vFYhq27ciGn6fz696jzPccRIOWrUhPS+PO5QvM9NnC+C5t+WXDNspUqqKyD6HvXENgTUfoXOE/TsB3r/1KjaoCr50fIeDgEAl1m/xCWNBSTp5+ROXKpXEqYS1g++FGuHI1kKLWZpQt56Rqp+ZYMfGZ9Bu4lNNn76KhIaJbl4Z4e0+iuFMX/O9uxsHBmqNHrzJv/nZu336ispD3byHgguFe88aPZN/m9XQdMJjpOaFhv4wfyb4tG+jcfzBTl6zMt70Q/usEDOQrirRrzyXGTFjP4oVD6Ne3uart/5GAs+Vybl48R416bkS8VQgOGwdH/G9eo7Z7YwLu3sa+uCLxKCszE2vb/OkBhSHg628iiAwPxdrOgQC/m1R3c+fZ/bvYF1f8Tt+9eU356jW553uJBu6N0RL4fv9pBPxNLSvWqC5c/PljcCphha2NKZ16raV9j9W06rSQ+Hg1PxLg5q1nNG/zM7/vv1ao47wKfkd8QjKVKhZn5bJhbNs8gfj4ZGJjk5jz81Z8fA4zy2szkyb0/NemK88bPxKP0vbMG6/IQouWSti3WZGNvm/LBqKlCh/69KWrOffsTT7y/Y5PR68eHly7uITps7awd9+lv3Uu925cpapLHbznzyH0dTChr4PxWfAzVWq64jViMMamZpw/dpjzxw6jK5DdVhjIMjJ49+Y125cupELNWiwbPxJDE1Nunj2F74mjGJmYsmTcCCrWdOHckQNf6Ay/Lv4TBdk9BzVihfc5ype1ISwiFlPb/pQuZUMRc0Nlc8CrFxbwNlRKxx6LaNakGqFhhYtWqFWzLFcuLMk3ZmtrQdDTXRw/cR3/+8/p1rURHTu6fclT+9tQUOnmI9vN6xk2ZSZFLK3oOnCIUgHntS/oZviOwqFsWXtOn1hA05aTEYv1ad3qExpwfsc/Dt+UC0KecgCyBIIrPuKCAEhJSad+s/lEvIvD1ERMaHgMJUtYY2tjxuWrT/h1bk/atK5Nqw7zGD7kBxq5V6Z5mzk0qF+JFUuG5C/uUpjXRnWtbARqjf6TXRDREkm+RTCvMZ7s2bSO7gOHMmv5hzAwr7HDFWRbIBMtSiA5Qsjd8N0FkYNP7tasw+3bz2jdfgYnjszDxSWn2M7/2QVx48I5atRrwLtQRd1rGwdH7t24Sh2PJl/NBfHo1g1qNPQQdEHcvXIRN48m310Q/xQYGOhy76oXh3aNoLZLGTQ1NUhOTuOu/yu0tTWZMG0nDRpPp2O72owY9gOODhZ061yfg4evc/vOfztsrGAzxWiJhD2b1gHw++Z1SrcCwIylq7n0IkwlDfjfHi72d8LFpRzt29bl7r2/5z7Nzs7G1rEYmTIZevr66OnrkymTUdTegaysLMwsLMjOzubW5Qssmjqe5bOnsW/zemQyAYb9E4g0NNDTNyAzU4a1gwPZWVmYmFtw7/JFLh4+wIH1a4mVStnns5qAu36sXziX9Qvn8uj2LSb17U58TDQJcbF/fiA1SE5UG1n7l/FtKeD0P9R8qFB/WVlZvHsXQ2iYlLi4ZGTZRZHJMsnIkKGtrUXHji0JSrEnPjaWZwEPMLe0wsLKGhMzcxCJiI+N5fShfaxb9Asubu6MmD4Hu2LF8x1K3ZOxMIouU+Caq3sSCqk3oTGhp7g6fCxaIa9rIEYqoWWFD5XbTj1RFOReNGkMB7dupGO/QUxctOLDftXcS0L3mLo5CKEw1ap0BGz1BOoHANiLVdWXoNrNVBN/KqR2hZQuqFG7at56hCJ1tE1Vx3KUcoeO0+jTuzkdOzYE4EF8LRXTtEw14YQCKGMqHFcs9IaUkiF8vrnf77vQt4zu1h5tXR06/DiQI9u3EBTwkG3nrlKsVBnMTQXOSw30BNQrgCQhAeRykpMSMTEzJ0YSiZ6ZOWkpirA4PQMxsVFSzC2tSJPJVKrJCf12Co6lp6YyqUcHHt/x+96UUwgjx6xlw6ZTmJsb4WBvgZmZESINQy5fvkV6ejqNG9ejTZsmAJiYmeHq5kFWVhaP799jz0Yfrl04y/PHAbg0cGfN74ep6Fzjs199/wkQCusSGl84cTQHt26kU/+fmJRDquaWVnTq/5NyPNd+0qIVDJgw9bsf9x+C95ExWFv/vVXc1OFt8EsMTUzY/MdF5EBGejrmllZM7NOVpIQEKtWoxardBzEwNPzTfanDkd828z4sFPdWbZk6bxYLtu5mzawpOJWrCMBd34uMWbCMsZ1aMW/nATR0Pj02PjU5ieSEBO5cvkBCTMxfnqM6/CtcEM+eveVRQAgd29fj3ds9XLu8jM4d6xMUFEz9+jXxvbKf8+f2oKurS2ZmJueOHWZC/140KGnLjOE/kZgQj+eUWVx99U5Jvt8iYqT5M/XmTxhF47KOzJ8wKt/4womjaV6+OAsnjlZud3DrRgAObt2Ybz+TFq3g1JMQJSnn4jv5/nMQGRlD0aJF/u5pCEKWno6mpqbyjaVNrx+JinxPk/adOP30NZJ34QTcu/1ZxyhbpRrV6zXAtlhxajdqitjQiHJVq1OumjPlqjlT060RYiMjark3QVPN25A67Fmzgp4ulTmwwZvBM+Z81jyF8M0q4KysLK74BrB23QmuXn/MiGFtGeGp6N3l3mQiYrEeO3esoF49xetYXFw83t47WO2zG1sHR9r1/JHxcxdiY69YhPjW1G5BBTt/wij2b9lAlwGDmbZkFTFSCfu3bABg/5YNDJ08A3NLKxWyHTxpulqlm4vvZPvPhVwu5/37/68Cjo2O5vzxw8RGR9G8Sw8si9p8xDYKESKlG0psaMTWs75o5WSvjZo5l8HtW7L/6l3KVKr8l+ZjWsQCPX0Drp35g57DRrHbZxVNuvYg6OEDAOo2b8m+dWvoOnQEKelp6OmrWRwXwOM7fszdtgeXRk2/SvjoN6WAMzOz8L0awNgJG3Ao2ZeJU7fg7laFkOfbmTWjN+bmivTD0DApm9ePU5LvH39cpFLlpgQ9f8Wa3w+z86wvXfoNUpLvPxkFVS3AggmjaVquGAsmfFCweck2l5y7DFDUsu8yYLCSRHPJFshHtlMWrxRUut/xz0ZMTAIaGhoYGn46qXwO7vvdpI1rFa5fPE9oSDCd6jgzeUBvju3ZQVJCgop9yy49SElOYuXsaaQkJQGKVOJcMvNopRBNO3xW5dsuJTmZyPAwsrKyCH/7mrTUVOLUuAAkEWGEhrwkOOgpaakpvH4eRIxUwpvnQbx5HkRM5HvevgwiLTWFLNmn+8KzMjN5/ugBFWu6frXY/W9qEc7MzIgSJUrTpk0bevToQdmyig6xAfH5V1Tb1qrEkInTKF2xCju8V3Ln6mVmr1qHi5uH2sWfNIHaAoVJt80Q2F5d+FNslFSlspPQQsDKqeM5vn0LbX4cwOgFS5XbdqlaRmmz/+FzzCwsWTF1PCe2b6H1jwMYNf9DPHKUJFKwV5dQG5nCLOR9Lj5l4SMXQm1rtNVcW6EFN101r53ljQRC97IFEnDUhYsVJrQsZ8EuKyub3fuuc/TEPZxK2lO2tB1ly9hjbKyPXJ6zYKlljKOjtVJQAIJ1NrLldnTs2JGiRYuybt064ePmoOBv5GNIL7BgJ5fLuXj8COePHuLe9SvMWLme+s1aAJCRnMSZQ/s5fXAfTmXLKbMd89bjjYwIZ+msqdy5eolpXnPp1e9DPe23SemEhrxieOc2/NClB0Mmz0AkEhGflISOri6xUgnmVtbEx0RjZGIqWJDdSKC+g7paIUJEmioQkZGYkcH9a76smTmZzZc+VM1tYmf2301FDg89jK29agXLgjfXhsXzuXHxPNLId9R2b8zo2b8gNlIUu/m7CXjVtAmCRKkhEuUjZnVEC8LEnC2XCxJ7YaINvhMwX42A5ZnJHP/Dn2le+zAx0eenfh5ERKYQ9DycoBfhJCenIxKBhoYG2XIRb95Eoq+vS4UKxdHS1CQ2Lp2UlFS0tbXR0VH8S03NRiwWc/78eXT+ZGFJiICzsrJ48TiAB343eXz/HiZm5jiWLEXRYsVxdCqFla0d0ZL3/DpxDKEhwfQZMYYa9RtSNM+bY+71fv3yOYPaNufc42BEIpFgQfTwQH+GD+jLmElT6dZb0fzgbZLiekVLIhnZrT3Z2dk079iFtIwMyletzspZk1l76A9mDO5L6+69ad2jj8p+vwYBnzlxhKXjRzFu8UrqtWilHP9PE7A866pgEoO6p3thCPT/QcCxUVK6VSur/HvvgyAlYa6eNkGFVIWINu++8pKtOh/2dwL++wk4IiKGzj0XkpiYynyvbrRu6awgAqHOKADaZsjlcsLDpTx58prsbDlm5qUxMNBHJpMhk2Uik8nIkJlRq1YtjIzU7CcP8v5G0lJTmTywN3euXcHCuijOrnWpVKMWiQnxvH31kjevXhIa/JL42Bi0dXTpPtiT/mMnoVWA5DPS07ly/DDNO3RBR1eXtrUqsXDjdipUqy5IwNZ6mtzxu0W/bp24FfAMIyMjJQGD4oHgf+MqZ48c5OyRAzTv1I2aDTxo0OIHHt+7Q7FSpRUhowXwpQk4MT6OjrUq88v2vZSvXjPfZ98J+BsmYBBWwAWJOa/aFVK1QvhOwAr8EwlYIomjRt3xzPfqSp8eeTpXfISAVSBU6lNNCych5P2NPLx9izljhrH5+DnMilio2Oa6INJSUkhLTcE0xybvPfY88BEzfupLxNvXeB84jksDd7avXcHhndtYu/coxUqoFrLKzdb0HNAXuVzOinUbiVTjGbl++SJLpowjPiYacytrxsxdSGJcHI3bdlCx/dIEvGnJAt6GBDNx+VoV2y9NwN/UItw/GXFR0k+yGzV/CXsfBOVzP5hZWNLmxwEAtPlxQD7C/Td2AfivwcrKlF2bPZm/+NjfPRUAgoOeUa5yNUHyzQs9AwMl+eZFclIiIzu3od+YCXT8cQDPHimiDX4cPoZOPw6gb0sPAu7dUdkuFwuXryIpMZFWHg0IfxMiaGNkYkq9pi1YuvsgWZkypvbvxa61K3n19HEhzvSvIeD2LSq5/H9qa3xTBJxZiGyewiIuOorMzEzCQl4hl8uJDA8jNTmZ1JRkJOFhyOVywkJekSmTER8TTXxMNFmZmYSHBLNy6nh6Vi/PysljSEtJRhoRjlwuRxoRTqwAMQuR6ugFS9n/8LmKq+E7/h3Q1dXG6C+0s/oa0NVXFDv/qwh+9hQTM3N+6NYLu2LFefPyhfKz3sNGMXXRcoZ1actva1YIZkEam5iwff8hOnfvSZ+mbuzbsoELx4/ge+YPsnKUq30JJ4ZO98LIxJQ91+6x+cwVGrZqw4hOrXke8PAvz/1T0GfkWHavXkbmX0iXLiy+qTjgI35iylRWfe1Tl2aZKjCeIpMJRgAsmjyWRp26s3neLH7ZfZDFI4dQtYE7iOCB7yXGrVrP7B+7MXDWPC7s3Y2Onh7127Rno9c03r1WPMXP7NmJkZkFT+/5MWHVBqZ3b0dESDAtevVlyNxflcdS+6ptbEJygdROIRdCYWKWM7ML0yHi090ChXEhCHWZ+Nx06sJAnRvmebLqHMqIVV1ciNQU4xEJdL9Q06UiNUMDPT29/IV21KUtC3Uh0VB1N6gr4JSYrkquudc7NkrK0d07sLK1Q5aVpTZSrC5Z3gAAIABJREFURwi5913Zqs4kxMUQGhLM2aOH6DV8DEl57luXpi3ZfPoy03/6keuXLzB16SqsbOx4m5n/WD8MGEbRSs7sWruS7Oxsngc+pE6jZkxatBzDHL+2o5OiBG3xUqUpNWYiRW3sGNW1HdOXrVGGsAn9HtR95ykCnFDQBVHapQ4mZubcu3yBes1/+NTL85fwTSngUuUrfvY+1k6fSM/q5Vk7fWK+savHj+B37hS/7D6IqaUV1o7F2LVkPpKwUCZ6b8bUwpI5uw5y68wfXDt5FA0tLao1cGf+3mO06NUXgGY9+tBt9Hgm+2wBEUSEBANwetdvn+yi+I5/J0qWKMqTZ6EkJqb+LcfPzs7G7/JFerrXpkzFykxdsurPN1IDLS0tOg8cyqCWHkSGh1O3WUsVG/viJdh08gJlKlehZ8PabF+1jNCQV8q2RbmoVKMWC7bs5Ndtu4l485ojO7Zw+8pFtS2BWnXrScXqNQVjjr8kug8fzeLxIxndsRVXThwlKSFeqc6/JL6pRbjAeJngwtinKuDYKCkdKpdS/r3bX1FkpWf1D6X61py/xppJY3jmf1c5Nn3zTo5sWMuQeYsY1fTDIkrNxs0YuWgFizwH0nHoSAJuKhZwajdvxY5F87ApVoLz+3Z/sgIWwn9JAatTY5+7CCd0fBBenCsjFjgHuRoFLNT/TZ2qzUqhc06t6cEDm+XsV80PWkcgrVjTXWXozxSw3+ULnD9ykFfPnhDy7ClmlpZMXbKKOh5NlLZC11xoQRkU92JyUiLPAx6SKZPhPW82aSkpbDnri66+fv5TyPOdvX31kjVzZxL06AHRkkiatO2A15qNaGlp5TtWSlISpw/u5eCW9WTKMukyaCg/dO2prBORO9fmFUqw/dxVrO3sAeHvsWAscy5iEhJ4+TgAc0srbIoVRyQS5VPAsowMzh/4nYToKBJiY7l84gjSiHC0dXXJyswkOyvr+yLcX4WZhSWt+vQHoFWf/phaWGKaZ6ySa11sHItTq0lzGnXqBkB198aUrFSVam4eWDsUo1LtegDU/aEtLk2aY2BohLNbI0pWrEwl17pUcq2LtYMjzm6NGDpvEVtvB+Qj3+/476KkU1GkUfH/l2NlZmayYNwIHEuWYpTXfE4+es6xe0/yke9fgf81X0Z1bsOaOTNo0bkbpSpU4tcJo9QqVgDHkqVYtG0PJx8EcfnVO2KjoxnwQ2N2r1+bL9PTwNCQjn0HsvOyH5MXr+SO72U6u1bhzKF9yv3LMjKIi4nG4iPpzwURFxPNoinj6N2oHm0qlGDZ1PGM7NCSRg5FaGBtxIVD+wFFPeHxnVpx+dhh0lJSMC1ShPb9FL0k1x47y7k3X/4t9j+lgEG9D/j8oX1UrefG+f17aD9oGBcP7sXSsRhGJqa8fPQA945dObZ5HU269ODRdV/ExiaUrFyVC/t/p92goVw/eRTHsgol/fLRAzw6duX6yWM0bN9JZQ7fFfB/UwHX85jKjCmdadk8p9jTV1LAUfHxzBzSD1lGBst2H0QkEqm9toVVwOlpabSrVoZt569T1N6BlORkBjZ3Y4TXfOrkNN8E4e8s91iyjAyunD7JuaOHePPqBVvOXMmX4Rb+OoTVc2ZgX6IEmTIZvqdP4liyNAs2/obYyJiGxa35I/AlRsYmgPD3+P79O2YMHcCIGXOwtrOnf0sP7IqVYN7W3egZKPzwGenp7FqznId+N6jT7AfW5LglazZsRFamDFlGBvEx0ZSqWJnZ67cB4G5j8l0BF8TLJ4G8DX7JzCH9eB7wkO2rlrJ91VLuXb3CXM+BJMbHsXL6RC4dO8SN0yfZs2opSfHx/DpyMK8eB7DfexVhr14QGRbK8/v3SElK5Jn/HWIjIwl+HEiQ/11SkxJ5ft+fyNA3hAe/5PmDe0hy7FOTEnkV+IiQxwGEPA4gyP8OqUmJPLp1jZAngRxat5pD61YT8iSQZaOHkRQfz4bZU7l24ijXThxlw+ypJMfHsXT0UIKfBHJw3WoOrltN8JNAVk8aTXJCPJu8pnP95DGunzzG/tXLSE6IZ8VYT0KeBHJk/RqObvAm5EkgK8Z6kpwQz+Y507lx8hh3zp1i688zSE6IZ/W44bx+Esjlg3v/7q/sPweJJI4nz0Jp7KHaqfdLY/awgWhpabPot9+/eA0DXT09SlWsTGjwS0ARqmZR1Falxu7HoK2jQ5O2HVi4aTvmFpYMaN6QK6dOAIq0518njsbc0gp9sSEvnwSiq6eHJCKMUwf2oqGhQZ1GTRjXqzMhz9UXob927gwvnwQyqnsH/K5cpO/Icdy9doUdKz+Ef+ro6tJn1Hjio6PZuXwRAJ2HDKfdgMH0GjWewdO8mLZ6A1NW+PyVS/VJ+KYU8MWION6/f6eiXldPm8Cpndto2bsfPcdNxsDQiA1e0zizezvNe/Wl66jxmBSxIC0lhezsbPTEYuKjozC1sCQxNgZ9Q8WKa2pyEkamZsRFSTEpYkFSUhIiROgaGCjt46KjlfZpyUkYmpoRHyXFuIgF6SmKfH9dAwMSoqMwsbAkMTYW/RwfVq59nFSCiYVlPvuoSAmmllYkxcWiJ/5gr2tkSkK0FCNzC9JTFfbaevokxkRhXMSSpLhY9MWGiEQi0lOSEZvkt9cQydEzECvnkxQXi76h0SeX5VOrgAXUso6mukQK1R+nUKaUkGpSN65bCFt16k9IGX+yKgbIuqw6pkYB79l9hg1bznLpzNw/tc3bofvDxFRLpD6IU61SFxT4iFHd2nP20Qt08iQoqHtrEkpYSFITfpXrV53WpyttfxxA7aYt0NLQoF9DV2at24JTnkVyoWsr9C1kymTcuniO+WOGscv3LsHPnjChVye2X7hOyXIVkMvlbFuxmE1LFvD7dX9sHIuRlZXFjtXLOLp9C3uu3cNYIBMwViqhg2tVpi5ewemD+xBpaFDVpTbuHbqouC8C7txi5oDe9JswlQ45LgdjNandX7olkaaXl9eX2tdXxZw5c7xio6TM9xxIXJQUl5zXnbgoKb8OV1T3evnoAU/v+CEJD+P4FkWDyFcBD7lz/jR2TqU4usGb4McByLOzWTHGk9otW7Ns5BASYqJ4fv8uh7xX4dywEV69OmNbvARXDh/A7/QJdPT0WDNuOC4tWrFh+gRi3kfw4sE9jq5bTVU3D37p2xVbp1Ic3+jNQ99L6OjqsXbCCFyat2LVmCEkxETns183eTSmFpac2OyjtD/is5JytWrjPW4oiTHRvHpwjxMbV1OhXkOWDeqOVTEnzm5dR+C1S+iJDdk4aTjVm/7AhomeJMZEExL4gD82rKJSfXeWDuymtH/7NBB5djYbJo2gRtMfWDduGADFylf6pOuuTkEJjWsKkLK6caEfqDpXwae6MNTZFsaNIrTfIjpqfm/y1wJjqoR27Xog/Qcvx2fVEIo5Wn3UFhAOZdOyVRl6n6bauWLF7Kk0atmaWvUb5p+W8JEEiTlDTQhXrvvv6qnjOJYqg0OpMiTFxbFj5RL6jJ6IXp6FOKFrK3QVNTQ1cSxVmhipBN/TJ+jQ7yd0dHVZOGEUIqCqax2c69Sj22BPzHIq92loaFCxei0uHT9KRkY6VWu5quxXbGjIu7C33LhwlqW/7aVNj944166LVoFSlHHR0Qxu7s5PU2cpyRfUP+DX/ToPLy+vL1YY+JtSwHn/3u3/VKmEV00dz+ldv9GiV18adeqKtUMxfls4l4sH99K8Z19cmrWgoksdJOGhyBFhYWvL09u3qFK/IS8e+GPtqEjzjHz7htLVqvPo2hUquNThXVgoyOVY2Nnz7I4fleu5EXT/HlYOCntp6BtKVq1O4HVfytaqTVR4GAAWdnYE3fGjUj03Xj30x7Kg/c2rlKvpijTsg/3Te3co71KP4Ef3sbR3VNiHvcWhYjWe3LxKmZquROfs37SoLS/9b1O+TgNCAu5jYeeIhkhEVNhbSlRxzmevqSmiiI0tQXdvU7FuA4If3ce6uBOGJp/WCua7Av58BTxxykZMjXWYPrnLn9oCn6WAR3ZrT12PxvQbMTb/ob6gAl42SZFwFB8TQ6DfTbR1dTj+9E2+h/KnKuBcpCQn0aehK5MWr8TVowl71q5AEhHOxIXLlDYF10Me3rrB1AG92HTiPMVLl8n3mYZIhPT9O7rWr0m3QUMZOmUmoKhylhdyuZwdK5Zw5LdNzNu8k4o1XYD/nwL+pnzAbfsOBD5EMOSiVd+BrL9ym4z0dMTGptw4dYLSVZ35Zd8xMtLTKFu9FnuWL+L9mzdIw0LZu2IxZarXwnvKWMQmJtw6dYKbp44jNjHBe8pYylSvxe8rFhEVHk7k2zfsX7mEMs41WT91HGJjE26fOcntMycxMDZlw7TxlHauyamt65GEvkYS+pqDq5ZQ2rkmuxb+jIGxqYp9qao1OLBycT57p0rV2DJjPAbGJtw9e5K7Z09iYGzCzp+nUrJaDY6uWYI07A3SsDdc3LUZp2o12D5rIgbGJvif/wP/C6cwMDbht1kT8tlHRYRxZM1SSjnXYOvMCYiNTXh68+rf9RX+JxEaKsXB/uNpv18KY39eyOpfvJC8i/hqxxg8fQ4aIg2KlS7LyRdhHAl49dm+Zl09fYxNzQh69IABTRuwddki3Fq2/ug2VWvXZeh0L0b36EBsdJTK569fBJGclEjVj6QVi0Qi+o6bhFP5ity7euWzzuGv4JvKhPOc/QsenbtRunI1pBHhGOT4YpNiYylRsRJiIyNEIoWTH8DI1AwDI0VNVT0DAzQ0NZCL5OjmvIYYGBmDSPShypNIpLTX1TcAkeIVSU/fADmgb2SMXCTPYw8GRkbIUdhp5KgvXX0xcnLmIULVXi5HV1+czz5bLkffyBgRH+xFgK5YDHLFfEQ5qkKkoQFy0DcyUthr6yhe70Qo/NN57EU5/5fLcz4TgRwRCdFR6BsaEieVUMTWnrjI9+iKxYhEItKSkjC1Lkp0RBhmFlbK5oZ57WMjI5W+7dSkJMysi5KYEI+RQLWq/zrcGlTGe/1p7GyL0Mi98lcr7h0XE83CSaOpUac+hjkRAl8SUe8iMDYzRybLYMjseYgNjZCGh2Ht4IgkPAyDHF9sSmIiNg6On7zf7Oxsbl08h0gkIisrC2s7e3ZcuP5J16ltr76EB79kyoDerD14Il80Ra0G7qz6/TDTBvej28Ah9Bs9AQSU+V3fy4S+fMEvW3Z98py/FL4pF4TX70dxrORM4PUrlKtVm6iIcADMbGx5ftePinXd8r3CR4a+pURlZ57c8FW8kkeEg0jxSv78rh8V6roR8ug+Fjn2ylf4XPv34ZANRWztlPavHvljYZdjH/5h/6WquxDzXjEfcxs7Xtzzo2LdhkoXQT77W1cp5VyLmHd57P3vUcalLq8D8s/HrkI1gm75UrJ6bWLf5bog7Ai+70fZ2m68CXxAETsHtDRFRIe9pXhlZ57d9KVUDVdi3oWjqSHC3MaWF/f8KF/HjdcB9zG1dUSUs/+89tER4ciRY25jz8t7tyhXx43Qxw8pYuegnE+ufZlarsS+y3++1Rq4C/5oDHRU3QIG2p9etawwbgUh14Q614aQG8RGX3UOgp2SAbKeq44JuBWysrL4ed4Otvx2gbUrBtO2tYvw/nKhKdQVuZnqWIHKbRMnrUUiiWPLFh80C5zb8xR7wUMJhXWqqyT2PimJZ/53KZrTKfz9m9eUca7BvSuXqFK7LpHhiutkbeeAsVisnMOBjT7cOHcakyJFMC1igY6uHlHvI5CEhyOJCEMSEY7YyBjneg3wv+bL+jOXsXEQKkCvxo2SmYlnSw+GzJxL9Qb5fd/JiQkkJySweNwIylSpyk/TVd23C4cPIlMmY+7G7UoCF6txQVQx1fnvLsK9f/Oayg08WD9xJDZOpbi8dwcv/O9gYGzCnoVe1GzWih0/TyMtJYm3zx5z59RxyrnUZdPkERR1Ko3v/p1Evg1BJNJg3+I51GjWip1zFfahTx/je2AXlRt4KO0fXDjD4xtX0DMwVNofWDaf5LhYQp8p7CvVd2fzlJHYliqD776dvLp/Fz2xmANL5lK9aSt2z5tGenJyPvuDS37B1KooV/fvUtpfPbCL0jVrs3f+dNJSkgkLesz1g7soW6chu2aOwbpESW4c3E3Iw7sYmJhwZOnPVG3ckgMLppOekkzEi6dcO7CTCvXc+W3aKKxLlOLagV1IQkMQiUQ58/mBPfOmkynL5O2TR1w/uCufvf/ZEwT5XUfXwIDDy+ZRrUlLzm5eS5zkvXI+ufY2JVXPt267zsq3j7zQFvQBf52FNaF9FGZxz0hbdUxfQ03aqzxaYEyVvDQ0NPBwK8+7dzEkJ6dRv14F4f0pNxBov65ZUuBYb5X/lUpjGTdhDSuWjcLWtpSKabTMWGUMEEygUEd07ySRrJg0ltSkJF4FBnBy5zZqejTh15E/4VCqLCd3bOXxHT/0xYbY2jugldNGft7IwbTq+SPFSpdBS0sbTU1NSlWsTL1mLWnXdxBJ8XEYGBkRGyWl79hJVKsjUI8D9QuJIpEIaXgYkeGhONdzy/dZt+rl8T1+BG0dHXT1DagrUNuhdkMPzh0+wMnfd1C/WUv09A3UPrR9Fs797y7CrbsVgK6RqUrYl7a+/ocwq/g49AwUq8PJiYqwr/xhXIrX/9wwruT4OHRz7AuGcaWlJCMSidDVN1DaJ8TGoJ8bJpbHXmxWRBkmlmtvamFFcp755NrHSSIxsrDMZx8nlWIsYK9jaEJitBRDcwsycux19A1IionCKGf+emIx2hqifPMxyrHXEMnRNch/vlp6YkQF5m9kbkFqcjIikWL/ufapCXHoGaier6mFhcr5WlpbC353/3UFrBhPZ4bXLjQ1NZgzs4ewTS4KoYDv3n3GUM8lvHgRRof2Ddi6ZRoijeIqpl9CAUcmJ5MQG6tMDU6Mj+fV40dEvA6hokttLG3t0NTURM9AjDin75tcLmdQMzcS4+L4oXsvWnTtiXWejhopycm0r1yK3bce/GnzV3UPhmy5nMd3/Fg0xpMtvreVyvue7yW2LpqPhoYIl0bNcCxdBrecAj55IdbWJisri8WTRpORnsGsNRv+bwr4m/IBv38dzOkdW+k17Wd8xntSsa7iafc26AntPMeyqF9XOo2dgv/5UwBUa9ySdeOGMGz5BjZM9KRCHTe0dXV5ePkcvWbMZ8mArnQcPQX/C6cAEdUbt+DQyoVK+6ruzZClp/Hkpq/Svv3oydy/cBoA58YtOLzyV4YuW8++X72wL6PIhHt68yrdp89j8+SRePTqr2L/0xIfNk8aQfk6DZT2XafOY+VP3Wg7cjIPL54BoGqj5pxct4Le81ayfdoIyroq7N8Hv6DpgBGsHdKdViMmE3DpNFpaWlRu2IRjq39l0JL1bJ0ygnK1G6Crr8ujS+fpPn0eywd2o/3oyQRcu4IsLY2qjZrns69QvxFZsgye3VLMZ/Xg7rQbNYUHOfPPa7/TaxJOVWvkO98Lu7fRuGe/r38jfKN4GPAa11pluOUXRIXyDixadpjk5HQqVXTEpWZpKlcSKLr+Ebx6FU6bdpNZtHAY3bs3QVvgofZXkJ2dzY0LZzm6ZwfJCQlky7PREGmQmJJClyHDuXL8CBGvg4l485qsrCwq1nRh/c8zqOneGAsbOx5cv8Kuq4paKiKRiE1nfQl6eJ+Te3YwqFkDSlaojHO9BjRo0RrHMmUxt7QkMiz0s7pvV6jpgpGZGbfOnVa2EJo3bCCujZrSontvqtVr8NHtNTU1GTlnAd3rOPPk/j1qudb5y3MpDL4pArZ0KIZTlWroiQ2pWNeNEpWqAqCpo4Oe2JBK/2PvvMOiurY2/tsw1GHoRemoiAhIF1ERu8b0nhhj8t30Zrrp7abHGGOKGkvsGmOJxt4VkCJVkCLYqCpdKVLnfH+cASlDxHvNzfVm3ueZR2fPu/dZZzhnzT5rr/XukZHYObviFSp/ebZOrviMiMTIVMng8FG4+/ojhB7NjY3yGCMisdXwJUnC1rkz33ngoPZHtHa+kysDQ4ZdGX94JMamSjx8A3D0vLKrhYnSDPchgdr5SjO8wyNw87lSFWWkNMN7uGyPZxvf2RXPoSMwVirxCovAZbDMVxgZY2xmxqDwSGycXOgfPAyFnsDW2RVvjT2DhkXg6jMEhb4ezQ2NmCjNGKw5X48hQUhqdTe+s5d3p/MdFB6JjaNLJ3va+AOCQnEZ5NvpfPt6aHlM1qEdFRU1rFkXxfpNsWRmFXD/PSMJGOJOVEwmr721jKi9n3ZywpIksXNXIiXnKjAwPodCoUCtVtPa2kpraytffvkhH7z3fzz88OQ/PO6pU2eJOn6cC8VFnC8u4nxJERdKSqi9dJHamhpqay5RV1ODnp4eYZFjyMk4hrGJKfc/9hQOjk4IPT1qL11i1rszmfXyc5gozfDwHswjM98lPy+HKVMf4YN/TCXxwN52Dd3mpqb2QhAhBIMCgvDyD+S5Dz/j6KH9ZCTE8cp9t+EfPoKLVVX0dXX/t75bIQT3PTOD+R++jb6+PmHjJzH5/ofQ09e7qvNtg9JMxVNvf8DXb77CtKeeo7WlFbVaTcTEydhdg/bENdl9I4UgnvlqLgETbiF6wxpCJ91CQU4WAI6eg0jeu53Iex8icddWnDWaDIUnsgmeeCvRG1YTPOkWik7IfGevwSTv3kbEPQ+RtHtr+8y1KDebkElX+IU5WQjRmZ+4extOnoMAKM7LJnjiLcRsXEPAuCkU5WVrxvcmZc8ORt79IKl7t+Pk6d2Z/9svBIybTNGJK/zU/bsZdtt9pOzZ1skev3E3E/fbWgLGT6FEM35fTy+O7dtF+J0PkrZvO46eg9ADzp3MIWjiLcRuWkvghCkUn8hG6Ek4ew1utydlzzb6DBiEQFCUm92JX3QiGwkJp4HepO7bwfA7HyT9wE4c+3u129PGD5p4E8W5OZ3Od/yDD3db/AFdCEJub0SSpPZFyrq6BpTKKwLtX8zaSOqxM/yy8lWEQklOTgFPP/89VVU1hIZ40dxqT3NzM3p6eujr66Ovr8/QEGuefrr7JrUIN06fzmfFio1s2LiDyspq+nn74+DkRB9HZ/o4OWPf1xFzSytMlEqUZiqUKhWNDQ3EHtyHo6s7QcNHdltQPVdTQ/6JHKzs5ZlqVWkpLgO9yDuWitDXI+XwQTYunMdLs+Yy/pbbu5Und/U19XW1bFzyEy3NzTzyyhvav7eOX2EPvqqqopzmpiYuFBVSXV7Gj++9iW3fvujp63M2J5s1iRnkpKbgP3wk6tbWbusUSoMrMXe1Ws0PH71LTUU5CgMDGhsbiN2/l0deeJmHn32R0D7mf98QROye3dj6j+DIjm2o3L3JPHwIAF89E+J2bqf/qJtJ2LuHyktybDI/IxXHwAjid23Hst9gMqMOY2phQbO+MQm7t+M15maS9u/hYm09arXEyaNHcAq6ws9NSeVyzUVqJENid27DZeRNpMUcpupSLQAnj8bgGDSShF3bsOzvQ2ZMFADN+sYk7t6G99gpJO/fw6Va2Z68hBjcQiLIij+Cjccgjh+R+ZKBCXmpKQyMmEzawb3U1V9u5zsFR5C6dzu2/QeTFSvn7+qbmJG2bwe+424h49BeGi5fRk9PkBsfjeewSJL3bqfPQB8y46IxNbdAz8iM5D3b8Rt/K6kH9+LT3IK6pYWc+Gi8R4wmdd92nL19OZuRSmN9HSZKM47t20Ho5NvJT0+hpUG2JzsumiGjxpC2bzue/kM4eVRehTc3V3Fs3w4m3f8gRkbdF5CMFVrEdLQ4P21COqBdeKcnp6rNMV/TnnDahHekfK39tUKbmDqAnlGnSjClyqhTxduzz95F5LjXefL5hYwfP4yXXvmOt996mGefuRN9fX0qW7UvTFV2Cdeq1Wq+mTuX+V9+yu0PTuPduT8TMHRYjwtYHYsbVMBtU6f3eGp9VSr6hoReaXB1o0WtxkEzw7xUVMiw0WO54657tQqfdxX5URibcPczM4CeBbV6srUjUhPiqC4vIzX6EM9+Ogs7ZxeCR4/jeEIsPmHDyc3KZMW3X/GO92AUevqoLDsXIXUV7XrivX92uj6Lzpzixw/fYfmP317VxmvFDTUDnn30NBVlpais7ai7eEUzobGuFlMLK2oqyzGzsum8WFVVgcratp2vJ6Cpvg5TC0tqKsoxs5b5rerufAxNEUJenDM1t6S2shxL286LYXVVFZh1GB+u8C9XV6Cy7mJPZQUqmy78ujqMVJZa7a8sK8Pcxo76i1UYafjqhnrZ/g58hb68WNi+OFddhbGZGYIrGhFti3ktDfXdFtvqNBoRXRfntC22mdvY0VR7sdNipJmFJeqG+vbc4I5QGvZutmtqoGX1n/9iB6xts87Weu1cocWGLiXHqaknCQp7DgB3974cS12Kubm8INuTA5YkiW2bf2P/7p3kZGVyIjsLz8F+fL7gZ9z6X8mG0LbYBte2aas2X9Gxf3piPK9Mu4/PFq3Ad3h3e7Vp9F7L8XviXr5cj7q1FWNTJdXlZVjZ2VNbVdWel1x8+iSlRYX09/PHXksoQavanpa24rOneSDM/++bhubuF8jO+bPpHzqcNe+8QF1VJQUZqaTs3IzbkGAWP/cQNi7uRK9eSG7cYQyMTVj3/kv4jr2pnV96Opc9i+biFR7JT88+hJ2LO4dXLuREXBQGRkad+M2NDZxNO0r0ivl4Dotk2Yxp2Lp6EL1qkTy+kRHrPngJ3zE3sfP7z6kozKcgI5XDy+cxMDySjZ+8gZmVjTx+7GEMjI1Z895L+I6dxOq3Z1BXVUl+RioHls1j4LBRLH5+Wmf7jYzZ/PlbDIoYz7r3ZPsLj6eSsX87Lr4Bnc43LzEGAwNDVr33EkPGTmbF289TV1XBuVMn2L3wW7yHRzLvmanYuboTu2kN6Yf2YGBkxIp3XsR/3E0se/M5mi7XczIlgT1LfmDwiNF8/+SD9PEYwJ6l88mMOYQjjyO9AAAgAElEQVShsTE/vzWDwPE3seqjN6g6X8KpY8lsX/gDviNHE7V+DV4h3XNctZUia3OU2i56AH2tuhPaQxC91XcAsDPS1q4t5awHDV9tWg5SD/uICS3H6tL22hsLCQ3x4sUZ96Onp8fb7yzEyNCAQ4dT2bo1hhM52ejp62NrZ4e+vj7Zx4/z+LQH2L97F5NuuZW7H5jKOx99wl2PP4uldeeCmJ4mWtcibXq1/g5OzjQ1NpKZkkTY+O5ZG9p+BK7l+D1xNy74nsObN2JobMzsGU8z/KZbWPrZR5ScPU1OSiLz33+T/Rt+YfuKn6mvrSF6x+8kHtzHqcwM9PUV6Ovro+wi6KPt+jK3tGLp15//fdPQvozJITclkf4h4RRmpmHtKKezVJ0rxnnwEPKOxtAvcGh7gYBlH0fOpCXiOXRkO19PDyqLC3H1DSAvIYZ+QUOpPFeMWi0XOJxJO9rOVzrIqTtVJQU4Dw7gVGIMA4LDqG4f34mzaUcZMHQkRdnpWPWR+ZUlsoZDfmo8Hv7B7QUXVn2cOJN6FM+wkRRoCigAKooLcRocoMV+J06mJNA/dCRFmWlYaQo6akuLcfbufL4KPbDq68zp1KMM1Ixv7eSCntCjorgAN98AchOi6R8URvWFYpDkgotTKQl4DYsg/3gatk4uCI2mhLtfIDnx0XiFhFGpKQCRCy5kDYri7GPYOV3RrOg3JJDKwjM49uueg6qbAXPVGXBm5llGT5jJqZylmFvJZfYbNhxk2/ZYrK3NMbb0o7iwgKSEePLPnMbGzo76ujpef/cDHn3iqU4VYOVN3e/p/8QMGODLmS/h0q8/dzz+TDfunzUDvlBUSGNDA/ZOzmQejSMgYjQn09Pa091mv/Qs6XExtGqO7+TRn8EhQ9m7fm37GLvPlnaKDfc0GYhwUP19tSB2/fQNLj7+bPz0DUxUFmQc3EXGwV0Ym6nY+OkbuPkFsXfhHCqK86kozufg8vm4+QV14p+IPYyJuQXrP34DtyFB7P5pDhVF+VQU5bNv0ZxO/Lz4Q2Qd2oWJyoItn7+Ji28Qh5b9SGVxAZXFBexf/C2ufkFs+vRNjJVmHD+4k+MHd2KismDTp2/iOti/0/h7Fs7BbUgQW+d8gom5BekHdpF+YBcm5hbsnj+rm/37Fs3BxTeIzZ+/iYm5BVkHd5J1cGcP51vI7p/m4D4kiHUfz9SMv5PsIwcxVZnzyz9n4j4kmJ0LvqGiuJDyogJ2LPgGD/9g1nw0ExOVOcejD5C6T9aUWP3h6/TzD2b/ykWUFRZQVljA1nlz6BcQzMoPXsdUZUHS3h0k7d2B0tyCpe+9hl2H/E4deg+1Ws0zL3zPh+9Naw85ANxzzxiWLX2Hb2a/wGtvv8uc+QuJTkkns+Acm3cfIDH7JI8/81wn5/tXovzCeY5GHcJ94KD/6HErzp/jfMFZVs/5kkHBoXz3+osozS04smMrR3Zs5amPPmf0HXfzw54o7nriWcpKijmddRy/sOEEjRrDMx9+qrWA6D+B/46/XC+hr1AgSaBvIH9ZeppHW7UkXWlTKBCa5Y42rYWOfEmik96CvkIhr/YKuW9HPhLt+gv6hpqUGn1F++pwG19haAhCtB+vrU3qOL7m//IYeogO9guuVPl0sl+hkMfQ2CPaxldrP199A8UVDQrN+UuaE+5oD5KctqOvuMIXgEC0r1y38SUEiCvjt31m09eJEbfL6l4KAwMemPk+CoO/5iK+0bFsxV4aGpp4+smbe8VXqVSotGjg/pXISU/jlYfu4fZpjzJs9DgaejmzbWpooPz8OX5ftohHZ77DxoXzGRwSir6+PhkJ8dz95DMs++pTbnv0CbJSkmhpbsJn6DC2LlvM9Nff5rdFC/AMCJR3/VDIT1AGhkagVne4HyUMjYxxcHbB3MqKj5atASArKZG7n3yGzYsXUHz2DBkJsQD4hQ3n92WLeOLN91n30w/4hshyl8eTEq7vl8YNFoJ4e08GZ9KT8AgeTknWMSw1IYiL54voO2gIpxNjcPMfysUL8iO8uYMTBceO0i90ZDtfoQ9VJYVySOFoDG4BV/gWDk7kpx2l/9CRFGWlYeUoP2K3hyCOxuAROJSLF0ra+WfTEhgwNILi7HQs+2pCFsUFOPsEcDopFtchIZ3GP5smP/LLIRF5/LaQxcmEaNwDw6g+fyUEkZ92FM+wiE4hl8pzRTh5D+nEN9QXcggiJYGBwyLaQxAG+ldCELLmwzBqSjtrOLRpRPR1c0Mg2kMKmbFR+A0dRrlGWcvWyYmco/H4jYzEQGrFoIPgN/T8qK8tu0Eb1/gaJCZ7ekR0MO7e3mMambbQgrYsBm3hA9AegugpDU0b9E2IijrGvQ98xK7tXxIY6KlpH92NWqkltGytPWJDbl33e7qnTSq7bskOf6C58AdOdcEnH1Bfc4lXvpzTI0fbVkcNzc3kpqXgFRhMStRB/MKGt8vG2jk6kZEQS9CoMZxITcbOWQ6RnS/IxyswmNSog/iGDed8kVySbefkTGaCHII4nZGOvbN8P3bkDxk2glKNrKu9kzMZCbGERI7lRGoyfTSytG38jvbIfBfuGOj8912EcxkSQuLGFbgHD2fnN+/TVF/Hhbws8uIO4uwbzJaPX8HWrT8pv6+lMCMZI6UZ+378jEGRk9v51SUFJGxYgeewSDZ89DJ27v1J2ryWgowUjEyU7Pr+U3zG3MS2r98HSaI46xhJW9a28+09PEncvIaC9GQMTU3b+YdXzONS6XnO5WaRtGUtA8NHs3fBV6hs7UncvLYT33fMJH6f9T6N9XWcy80icfNaBg6LZN2HL2Pv3p+jv60lPz0ZI1NT9i78hsGjJrD5y/dkzYfcLPKORuPqG8i6D15q5xdkpWFkbMKWbz/Bf+xNbPjiXZrq6ygvPEvUL8vwHjGaFe+8SB+P/iTt+p0TCUc6aFbIGhFIas5kpHH4V1kTY+HM53H1Gsy+tcvJTUnExFTJqi8+ImzSzaibmzBRdhYEv5Z9x65lT7hrEW83U1yDloPWxTUtTkbbAhr0sAjXu63L8/KKefaF7/nuh0388N0Mxo4JuvKhllLiy1rMMtH+G0SFFmd9LTHgaxFvb4ORsQnLZn9BboYce9W2aWarlv71l+uZ89oLsqbE80/i6jmQ7auWUXTqJEJPj8X/fI8RU27lx3deQ93SQl56GrtWLyd49Dhmz3galwGeRG/dTHpMFCZKM37+5H2G33QrG+Z9S8W5c5zOPN6J7zrQi52rlpKVlICx0ozF/3yPkTffxg9vv8rl2jpOZWawY/UygkeP46sXnmq3JzMxARMzMw7+tv7vuwj33qET1FSWo7SWNQoM2zUcajE1t6K2shyllQ3NbVv3dEgTa+Mb6AkaL19JK1N2Sftq49dfqsbQRNktDU1lrT0Nrf5SFUamndPQaivKUVp3H9/CVh6/owbFH9kjp6FVy9KUyFsndeUbKvQ6paG18RV63bcqUjdeBtE5razuYjXm5pqtljRpZRfLy7BzsNe61ZKRvuiWaK+bAXPVGXDasVN8MWs9+w+mMeP5u3n1lfswNTXuTLoBZ8CSJJEcfYhjcUdIOLiP+dv3dyvK0TYDbmptpaa6CpWlFVVlpVja2tFQX4dakjqlldVUV7XfL21bh7Xxa2trEAiMTU25WF6OpZ18/XfdaqyqrBRruyvyqm3j29g7UKPZ2kvb+B35N7vZ/X1nwOVnTzFg+Fh+eeMJ+ngOJmnzas6mxKOytmPzJ6/hO/4Wtn7xJs2NDZSdySN58xr6DR3ZiX8+LwsjpZJNH7+G34Rb2fzZG7Q0NlJ6JpeY1QvxGjGWVa8/Tt+Bgzm+dyu5cYdQWtm087fP/oCm+lpKz+QSveonBo0cx8rXHsPRy4+EjSs5nRyHmaUNG//5Kn4Tb+G3T2fS0tTQib/p05nYuniQsHEVp5PjUFrZsG/hHE3q2kyaGxu4cDqXqFU/MThiPMteeQxHr8HEb1jJqaQ4VDZ2/PrhKwyZeGs7v/RMHgeXL8AnYjyLX/oHTl4+HFm/kpLcTIyVZqx872WCJ9/O6g9eQ61upSQ3hz1LF+AXOZ4fn3sUl0E+JGzdxPGYg5hb27L4zRcJu/kO1n/zOTVVFRTlnWDronkEjZnIrCcfJvK2u7rtK6ebAffQpsHCxTt5/Jm53HtXBCt+fpUJE8O16zfcgDNgIQSObh4EDB/J4e1bWPr1F1SXl2GiNMXGoa+s9aulf11dLYV5ucx68WlG33E3s195nqaGBkrOnubXH+YQNmEyHzz6AP19/Ni3fi0pUQewsLHlm5eeJfL2u/j2tReQWtWczclk04LvCR0/kY//MZUBfoFsW7GY9NjoTvz5786kXlPRt2H+d4RNmMz8997EwdmVrcuXcOxINJa2dszW8NvsyT+Rw/p531GQd+K6zoBvKAc8fOqTOAz0pflyPa7+ISiMjLHs64KNSz8kdSsufsG0tjTTd6APKjsHDAyN6OvlS1NHvr0Dtm79kVrVuPoFo25poa+XD+Z2fTBWqnDU8N38QxBCDytHF+zcr/BbGhtw9PKV+WYqefyGelz8gjEyNsHa0QU7j/6o1a24+oWgbmnuxr9cU43bkGAM2/ju/Wmsr8XFJ1DmD/Jtt8dpkB9Nl+txDwjFwNgEayfX9vOV7Zf5Vg59MDEzx3mQbL9HYCiGRsZYOfTBwaM/6tZWPPxDaG1uxmXQYCwd+mCiUuHq7UdjfR0DgodiZm6Ok6cXfT36Y2ymws3bF0OFAg/fIdg5u2Dt0Bdnz4EYGhnRz8e3W6mqzgH30AZs2BTDm+8uI3r/LG6eMlSuGNQmOwk3pANugxCCSfc8gF9oGPl5J1j741xWzPmKA79vYumsz0g6dIDCk3kYGBlh29eRFrUaQxMTWlvV+ISE0dLchKefP5a2tihVFgzw86ehrg6focPQUyjo4+qGy4CBqFtb8Q4Jo6W5haamRo7HxXAqI53kA3tpbW0FScLQ2BivwBDcBg5q5zc1NDDAbwg2ffqiVJkzwM+fi+XleIeEYmRiSh9Xd1w8B9La0sLg0Cv22Pbpi1KlIm73jr9vCOK13+M5vm8boXdOJW3nbzh5+wFw/uQJfMZOIW7dzwROuYeSExkAuHgPIWX7BkY8+BhpOzfhNGgI6AmKs44RcNNdHFm7hKBb7qUkJwNJknDyHkLKtvXtfFcffyRJoig7naApdxGzZgkht95LcY48vvMgP5K2bSBi6mOk79tOnzbNBA0/ftNq/MffQlEX/phpj5O8fVO7uE5hVjqht9zN4dWLGXrbvRRmt9nvR9rOTYx96B/Eb93YLt5z7lQuIRNvYe+KRQy/4z7ys9LlLWIG+3Fk8zomTH+SuN83tIsPnclIJfy2e9i7YiEj7rif0pNZqNWtePj6c3jjL0z5v6eI3ryecXfc3S2uey1hhZ7CAoZanOW19Near9tFjPxKu5awQE+zUm1cbegpBKFt7zYtx6qsvET/Qf/HwX1zCAjokCfd07hCiypaS3b3Nm0SlUDmpe7hhosNDVq5XctwoXdlwW3oySl3LIg5l3+GytIL9HF25Ux2JtkpScTu3EbD5XpG3XIHRiYmPPDCK2xaOI+J908lLz0NoVDQz9uHvb+u4c4nnmX/hl8YMCQQSZLIS09l7N33s/7HbzlfkE9q1EFCxk4gZOwEkg/ux32QN4kH9lJWXITrwEEEjR7LmLvuY8viBUy470FOZhwDYICfP/vWr+X2x5/h4MZ1eA4JBGgff/Pi+Yy/tzP/kVDfv68WRFVJAcXZ6QyZdDunEq/cgOdPZuM5LJJTR6NxDwjjbOpRAJQW1pxMiCLk9gfadQsUhsacPBqDd+QkTiZE4REYxplUOb3E1NyyE9/Q2JjmxgZOHo3BZ/Qk8hKi6B88jDMpV/i58VEMvf0BCrOO0dIk39B5CTH4RE6i4HgqLoP9u/HD73yAEwlX9mU7kRDNkLGTyYk7TP/gYZxKjm/nnzh6hOF33t9pH7dzp/PwHTmGzNjDDAwdRm5SPPr6CpTmFmQeOcyoex4iK07WmTA0MiYrLoqg8TeReeQwXiHh5KWl0NRQj5mFJenRhxh730NkHIli+IRJ3RywDv8+omOOMzR0UGfn+zdCXzcP+rp5oCfkzIah4yYy/bW3OJOdyYGNv/LrvLl4Dgkg+fB+hoSPID3uCEpzC0yVZiQfPsDkqdNJjT6EnkKfluYW0qIPEzZhMlsWL8Bn6DDG3zeV1tYWrOwdOJd/mulvvsu5/LOEjpvI+h/mkBp1gOyko5w+nk4fF1dy01LQVyhQWVqSevggkx58mLQO+8GlRR8mfPLNpB4+iN+w4RyPl9PTumpIXA/cUDPgmdsTtS5WKYxMriyGddBMaGm4jNKiK1/C0ESpld91May1sftiW8PFaozMrmg4dNVkaON31aDoyL9cXYbK2q7LYls55jb27RoOAA11ddjYdhWUB5MOAuu1msUDIbovtjVerkfSLGZ05FtbmWvGlwXr2wTuTRR63RZOdDNg/u0Z8AMPfcbw4X7MeOHu3o37PzYD/qM2SZLYu34tu9euZPZvO7lUVYmpmYpWSaKhy2JYXW0NaBbbNi+aR+L+vbwxf0m3xbbqsjIsbG1pqK+n8fJl6i5Vs3PlMgpyc7hQWMDFijJe/uZHBgWHYKoyp/JCKTZ9+rRXyhmbmlJdVoqVvUO7PW3jTwsc9PddhCvKOsaAYaNYPuNhbFzciV2ziJPxhzE0VbLxo5fwjpzMhg9fpK66kqLMVJI2r8EjaBhLZ8iaCUfWLKLkRCaSWs2Gj17CZ/RNnTQWolbMw3NYZDs/becmjh/Y1UnzYePnb3Gx9DwFGakc1Gg+LH7uIezc+hO16qd2DYd177+E35ibOmlWtPHXffgqKhs7Dq78iZzYQxgaGbN3yQ8MCApj+VvPUVtVydn0FPYt/RGfEZHMfXIq9q4e7F32E5kxhzBRmrFo5nMETZjCwtefpaaygjPH09ix8Dt8R45m9mP3Y+/Wjz1LF1CQdRxJrWbxG88TPGEKP732DA31tZxISmDLgu/xHzWGTx+5T56hoMbc2qbT934tcd0et/7ppT5DT/21ajZ02I6nc7s2Z9vDJKOXKWM9xoCFth+MzscqKang1TcWsnTJGxgbd3HYPY6rZaal7r7rr9ZtioCyxu5x3Z6yILTFgK+pPLmHdm17A2pru1xXy6WqKjYvno+eQsHqb76kprqaszlZrJ7zFcGjx/H2A3fi6NGPXWtWEL9nJ4ZGxiz9/CO8AoPYs2Yll+tqyTqawIZ53xIUOY73HroLp/6e/Lbge9KPRGHT15Fdq5fxzqKV5KYlMzg0jNWzP2fTwnlsXjiPbcsW8dvCH9n36xri9+xAX1/BgvfeYPjkm/nquSe4WFlOTkoSv3z7NeXnSv6zMWAhxHPAU4C7pikT+ESSpO2azwXwAfAkYAUkAM9JkpTZYQwJaAYGSZJ0ukP7MsBWkqQ/3n9aM8ZjC35t12RwDxjaXrBgbteX/PQk+oWMoDjrGFbtBRrFuPj4d+YLgYW9I/nHjnbTWGgroGjj15SWIElSJ82H4qxjVwoiSgpx8ZE1HDwCh3bSiOioKdGVfzY5ln4dNuW06uNEQXoKA0LD2zfZBFkjwiswkOy4aDxDwqgskRPIbfo6czJF1mRo2/RTT6Ph4DEkkKy4aHlT0eKiK5uQJh9lcHgEZ9JTcfFwAyEoK8ynv38Qx49EMWjoMEw0imodoZsB82/NgGfNXk9uXhGLFmrRu9XNgGVx+eZmtq5YQnpsDJmJ8SjNLfAfHoHHYB9ueuhRjifE4hc2nHMF+UiAvbMzBzb8ysYF3/Hq3PnYazbwvFBYwMCAII7FHGbw0HDKNAUUdk7OZB2Nx39kJHlpKe0FFxcK8xkYEExG3BFcB3oRvXUzWYnxZCUlYGBgROQdd+Po0Q9P/0AOb97A7rWrqKmq/I9rQRQBbwBBQAhwANgshGjbzmEm8CrwAhAKlAJ7hRBdayVbgU//HWONzSw4uORbXHwDiVu3lOrzxVSfL+bob6tw9glk/09fY6wyJy/+MHnxhzFRmbN3wSxcfAOJ1fCrzhcT9+tSXHwD2btgFsYqC/JiD5EbewhjlUU3fvX5Yo6sW4qrXyB75s/C2MycE3GHOBF3CBOVBbvmfYWbXyBx61dQda6YqnPFHFn3M25+gexZ+A0mKotufBffAA6vWULVuSKqzhURtXYJzoP92PbDV5ioLMg+cojsIzJ/83df0i8giAMrl1BRUkxFSTGH1i2nX0AQv839AlNzC47HHCTzyGH6ePQnNyker9BwCnOyMDA2xtDIiMIT2XiFhpObFE8fj/7UVFdSW1VJ334DyD4ah3fYcPKzM9vLrnW4frCyMqOxsQeFtBsMcbt3UFV6gfS4I6THHaGq9AKHf99Ec2MjsTu3cjYni7M5WcTu3EpzYyP71q/tzC8rZe/6tTQ3NhKzYytnNPzflixgytRHcPPy5pstu5k8dToNl+vZv/4X7vftz641K1jw4duUlhRSWlzI70sW0tLcRE11FaYqc1KiDpFyaD9mFhas/OoTvAJD2LFiCWVFRZQVFbF1yUK8AkNY+dUnmFlaknxoP8mH9qO0sGTFV5/Qf0gA+35di1P/AUx4YBq3PPIEM776lvTYaFZ/8yUv3zyerMQEnvti9nX/Tq+6CCdJ0pYuTe8IIZ4BwoUQGcBLwBeSJG0EEEI8guyEpwI/dej3PfCqEOJrSZKS/xVj7VQGGKibsFMZIhprMTeUf4gqpFYsTQ1orqnC3FiBgSYZ3sRQj4aLFZga6tNSdwkDoUahr6C1/hJmRgoaL1aiNNRDr7URCQmloR6NFysxM5I5Job6qFtaUNfXYG5sQOPFSkwN9REt8vimHfj6UgtG+vJsoKWuRm5rbcTcRB+Fxh5zE32aL1VhZWqAdLkGU823L12uwd7ckJaaSmyUCs4j822UCqT6WuzNjKGhFnND2UFW6UnYKo1ovlSFtakBxVIzhvoCDyd7PJzk3QqcRsjbCOnr6cEgefHHdfxYAAzdndq/Uw9HuWLJccRIrbNSk2vYpaKnEILWXSa0ZWC17NfanyYtxQ09qY5pTQ3rYUandWaspU30oHGhbQbbZVYcNMSZud9v6n24A6BVy2xX4d2tSVvBBWgvrtCWgwvaiyN6mtXmpafh1N+Tgjx5JxRLO3tOZx4ncPR4slOS0TOQS9OzU5LxGT6KY3FH6OcfyBnNzi/mtnYci40hdOIUslIS0TMwAKHHxapKGltbqSy9QItajYmZisCIMTz40kzWfPsVXgFBrJs7m5zkRIZNmkLSgX1UlZXiPyISPT19WpubaNFcIxfLy0EImpuaaG2V/+61l6pBCC6WlyNJEg2awiJJkqguK0MAtRerUWu+i7pLF/EMCMJ5wEBmzPqO1KiDKAwMcOk/UOv38u/gmhbhhBD6wL3ACiAYqANOAUMlSUrswNsOlEuS9IjmvaTpdx9gI0nSOE37Mq4hBDFz5W+4+QaQHReFZ3BY+yO8ia0jp1MS8Bo2qtMjfHlRAa6+AeTGR9MvKIyq88XoCYFVHydOpcR341cUF+LmG8CJ+Cj6Bw2jtkwOQVj3deJkcgKDwkdxNiMNW+cr47v7BWo0Fq7Y08b3GxnZHiIAKC8uwMMvkLzEIwwMCqWiRObbODqRfyyZweEjOXUsBTvNI1VZYT6+IaGkRR/CJyycMk0Nu53jFdm9vLQUHFzcUOjrYWFj2+170+YUe5Jy/K91wNqqy24QB9zY2IxV32mUn9/UveJNawwZ7eerzQH3sNPxJS3hBm2hBoBaLT9uPcWAJUnqppnQb0hA9+vTyZnMhHgCIiLbr0+A8pIiBnTlS2DnfEXDITctBQcXV/T0BBcK5BBBatQhvENC2blqOQc3rcMrKBT/4RGMvOV2ctOSsXOW76+2EERa9CEGDw2nvKSjPZrxU5NxcO0csjgedwTvkFBKizQaEc7OZMTFEhQ5hty05Hb7LxTmM/Oum69rCAJJkq76AvyAWqAFqAZu1rQPR47Du3bh/wzs7vBeAu4BBgBNwGRN+zJg2x8c90kgSfOSdC/dS/fSvf7i19ne+MzevnqbB3wCCAAsgbuB5UKI0R0+l7rwhZY2JEk6KYRYBHwhhNhztYNKkrQQWNhLG3XQQQcdbij0atVFkqQmSZJOSpKUJEnSW0Aa8DJwXkPp06WLPXChh+E+AvoDD/0L9uqggw46/M/gX1321gOMgDPITnhC2wdCCGMgAojV1lGSpFLga+BjzRg66KCDDn9LXNUBCyG+EEJECCHchRB+QojPgdHAakkO1H4LvCmEuEsI4Ysc160F1vzBsLMBY+COf/cEdNBBBx1uVPQmBtwHWKX59yKQDtwkSdJuzedfASbAj1wpxJgoSVJNTwNKklQrhPgImPdv2K6DDjrocEPjhtGC0EEHHXT4X4Ou9EkHHXTQ4S+CzgHroIMOOvxF0DlgHXTQQYe/CDoHrIMOOujwF0HngHXQQQcd/iLoHLAOOuigw18EnQPWQQcddPiLoHPAOuiggw5/EXQOWAcddNDhL4LOAeuggw46/EXQOWAddNBBh78IOgesgw466PAXQeeAddBBBx3+IugcsA7/FRBCHBJCHPoLjvuhZtPYq/EOCSGkDq9zQohdQogwLVwvIcRyIUSxEKJJ8+9KIYTXn3MWOtyouOEdsJBxTAjxSC/5PwohlvzZdunwP4l0IFzzehlwBg4LIQa3EYQQ44EUwB94GxgPvAX4ACmaz3XQAfgfcMDIW91b8cc7cHTELOAhIcSAP88kHf5HUSNJUrzm9QtwC/K2Wk8DCCFsgF+AY8AwSZKWS5IUJUnSCuQdxI8Bv2h4OujwP+GAZwArJUlq7g1ZkqSzQAzwzJ9plA6dIYTwF0L8JoSoEEJcFkKcEEK8dZU+Xpo+1Zo+8UKIyV04y4QQZ7X07RbSEEIECiGihRANmsaib7QAACAASURBVLDAe8g7eP9L0FxLZUDbj/njgA3woiRJDV24DcBLms8f/1ePqcP/Fm5oB6yZxQ4HNnRpf0IIkaG50S4IITYIISw6UDYiz4Jv6PO/USCEGArEIe+G/TJwM/AN8iN8T30ckX8o/YHnkZ90qoHtQoib/gUbbIEDgC3wCPAcMBn4x7WO1WFMC8BaYxfAOOC8JEmJ2viSJB1F3i187L96TB3+t9CbPeH+mzEOqEN+tANACPEu8E/k/eZeB0yRb3gz5D3tQN6x2QHw69hXhz8NXwMVyI/l9Zq2A1fp8wpyaClckqSTAEKIHUAW8Cmw8xpteBlQApMkSSrQjLcXyL+WQYQQbfeMG/LmsvrAr5o2F+DsVYY4q+HpoMMN74CDgWxJktQAQghL5IWPbyVJeqUDb1OXfplAKzAUnQP+UyGEMAVGALM6ON/eYBQQ3+Z8ASRJahVCrAXeF0KYS5J06RrGC9eMV9BhvDohxFbg0V6OMQLoGOoqA56WJGmz5n1vwhn/cshDh/893OgOuA9Q3uF9OPIOzUv/qJMkSS1CiGpNfx3+XFghh7qKrrGfNZCqpf08shOzAq7FAfcFjmtpv3ANYxxDjt9Kmn7FUuddbQsB36uM4YbuR18HDW70GKgx0Njhfdvq8rle9G3U9Nfhz0UVoAacrrFfJdp/IPsgO8BKzfsGwFALr2umwTnksFNXaGvrCbWSJCVJkpQsSVJRF+cLsB/oI4QI1dZZEwt34OrhFx3+JrjRHXAlYNnhfYXm37696GvJlZtYhz8JmrBDDDBNCGFyDV0PA8OEEO5tDUIIfeB+IFWSpBpNcz7goFlka+P1B7oWPcRpxnPpwFMCt16DTVfDYuQfnLlCiE4/7pr33yJfc4uv4zF1uIFxozvgE4BHh/dxwGXkVe4eIYSwQ16cy/3zTNOhA15DnpHGCSEeFkKMEUI8JoT4/g/6zEHOLtgrhJgqhLgF2AoMBN7pwFuPPCNeLYSYJIR4CNhC59BU23h1wB4hxP1CiDuAPcjXy3WBJEnlwINAAPK5ThdCRAghHkZe+A0ApkqSVPFH4+jw98GN7oCPAK4ah4okSdXAx8ArQojvhBCThRC3CyEWCiE6PgKHIN+0sf95k/9+0KRljUCOkX4P7EDOUOkxLixJUgkwEnnBdD5yqqE1cLMkSbs68E4C9yCHODYDM5EzKHK7jFeOnDVTDiwHfgR2AT9fj3PscJzdyIvDx4EvkMMSXwHZQIjmcx10AEB0D2PdOBBCGCLH9l6SJGllh/angBeR806rgCjg8bZVcyHEXGCIJElj/vNW66CDDjrIuOoMWAhxtosISdtrewfOs0KIM5rCh2QhREQPY3Rt/1AIoW1luleQJKkJWAU80KX9J0mSBkuSZCRJUh9Jku7r4Hz1gbsBnR6EDjro8JeiNyGIUORFrbZXEPLj+68AQoj7gbnAZ0Ag8mP9TiGEa5dxGoAvr4/ZnTALGC2EGNhL/r3Icb9f/gRbdNBBBx16jas6YEmSyiRJOt/2AqYg51+u11BeAZZJkrRIkqRsSZJeQA4LdNVaWAgECiHuuo72I0lSEfAYvct8ADmH9DFJklqupx066KCDDteKayrEEEIIZGe3SpKkek0MNhi51LQj9iBrNHRE2wLM50KI36+nA9QoU/WWu/Z6HVcHHXTQ4d/BtVbCTUBO+2rLY7RFroXvWk10AVkHtSs+R64kehxYcLWDCSGeBJ4EsLG2CK6ovHiVHjrooIMOfyryJUlyv16DXasDfgJIlCQprUt711QKoaUNSZKqhBCfAx8IIVZ2/VwLfyFy6AIhhCQ17gCh340XFZXGPQ9+xsZf3iFi5FUqQbX0/8P2bka19qo9Ni6Lr7/5lW07k+njYImHmz0n8kpQKPQpK7/EmFG+GBkZ4Opqx8/L9nH7raH88M3jPD1jIRPH+QOwZ/8x5n/zIHdP+5EvPrqXTb8nA3Dvbb68/v5mNq16gqdfXsvEsd4I1Ow+kMP82fdz9/QlfPHBrWzamo6VrQNjIn15871VbFr7Ok/PWMgDUx/lrru6C4plXOpeeHY0Ppa8zAwAEg8f4LUv5/DOY9N44u2PiNqxBYCIKbex8NMP+WjxCua8+Qoho2Sxr6SoA7z0+Tf888npPP3ORxze8TsAkVNuY9vq5bz40Wd88doMwkaPA+BM1nE+mPNjNxsGGh8GoLS0iu074tmw8TAxR44zYXwI9907lptvDkep1NR4aHuwau0h1be5SkublhTda3lY6+lYWrnapTGklrpubermRi28Ju3DNvXeBqm1+7lJrdqv8arKizz/2XHGhck1L/sTypk9ox/T38/kwyf78Xu0nHp9W4Qtn60oZPlnwbz4eTrjhtkBkH26lpmPefHQzKP884XBbDlwDmOlkpvHuvHOrETWzxvPc+/FMH6kM0qrvvy+O5uP35rAxHuWcPFSI65OKoL9+/LUwyG8+el+Nv18H0/P3M4tY51pbFKzNyqfeZ+P5Z4ntvH560Fs3HkWgDsmuvPO14ms/3E8r34cw/BA2f59cef57t1g3p6dxj/udGfLgRIAbh/ryAc/ZLL663BmfJrCuGFyseT++Ats2lvs1usvtxfotQMWQtgDtyPL+LWhHFnUpuuda0/PNfbfI8sLvtLD571CfX0DMUcy2X8glX0HUmloaCImNvPqDvg/hOHhg9m49nUWLtmLkZEBOSeK8R/izvNP38S2nSlMezCSpJRTrP01mgD/fgwP80KlMmHiOH9Cg69oxZubmzB5vB/9POwYHSEXd7m5WjN5/GBUZsZMHOtNaKAbSK1IEpirjJk8zpt+7raMHjkAAxN7+rk7MHlCYPv4vr693xnHytYO78Dg9vdKlTlhY8bTx82NgOFyUoujmztDx4zDxExFyKixDAoI7MBXETZmPE5uHgRq+E5uHnj7B6I0UxE2ehyDNePbWll3OrYkSeRlZbJx72q2bosjK/ss48cF89DU8fyy9p+oVKbX+FfR4d+B0lifcWG2BHtfUXY1N1Uwbqg17o4mRATIRanujiaMGWqHSqlg3DA7ggbL7cbGCsyVCsaH2+PupCQi2BZDM0v6uZozaZQzKqUh40c6EzLEjsoGMyor6wmfPB/PfrasX3IrVVXVtLZK9HOzYvKY/qjMDJkY2Q9/HwvasmnNzQyZNNodNycVkWHyslA/V5VmfAMiQuwI8La6Yr/SgIBBFrg7K4kIkR2zu7OSceEOqEwVjBvmQLDPFf6mvcXX9TvtdR6wEGIm8B7g2KEMFCFEAnBMkqQnO7TlAhslSXpL8/4s8IMkSV9r3j+C7IhXApGSJF3Va3acAS9asoPnX5xHS0srj06fwKMPjyNsqBeGhga9OJH/zAwYoDC/ACNDA5JSTgEQEtSfxcv2MW6MP19/u4Vz56s4m1/KSy/cyovPTmb23G38Y/rYTvzlK3fz0nMTWL76CKHBctHf8eOnue/OYGb/sJ9/TAsnKTUfgZrgAFd+XhXPq8+PZfnaBEID3dAztiMh8SSPTBvN7Llb+cf0seQWWDBy5NBu9mqbAVdcukRS9CEAvP2D2LZ2BQ8+M4Md69fi6SfP1HPSUph831R+X7mUyFvv4MQxWUPHyz+QnWtX8fBzL7Jj3ep2R56dmsztU6ezet5cbps6ney0FACGDY/AxNSUlPgjHNixlQM7toIkceetQdx6cziRkf4YGWlkH0QPcwfdDPhPmwH/vP4EUyLsSc2WQ4GB3hZs2lXAo7c6smbXeYIGmQOQknOJ6fd4MnfVKabf5kpKliyXHORjxYotBbw4bQCrtxUS5GOJgZkVSenlTL9rIHOWpDNyaB/+OTeFhLQypt8fhIW5MR+9MYHlvyQzNMAWSYLE1BIeud+f2fPj+MeDgaSmnaKlVSLE34Gff8nk1aeCWLshHV8v2XEmZZQz/U5P5vycwbSbHUnJkv/uQYOtWL75DC9O7ceqbQXtjjY5s4ppt7ozd2Ue0+9wIyWzqt1+93HbkSTpuina9WoGrFl8exz4paPz1eAbYKUQ4ihyZdrTgCN/HONdCbyKLIZ96lqNvv/eSExNjNmx6yhbtsaRmHSCmyaFMGVyKMPDvTEw+O8QeVPo69PY1IyenkCSJN7/+BdWro1i5ZooXFxsue3mUIaGeHLufDXNza3Y2qja+QCNTc2cOn2BmpoGMrOLMTGRnU9mzjlqai6Td6qU/IIKjmUWo68n4evtiK2NkpaWVpSmRjS3tCKaWlEqjWlpuTK+/OfsHSS1Gj09OVmmqakRC2sbWltaKDx9CoWBbM/ZEznU19ZwqbqK5sbGdn5zo8xvqK9HoTCgrqaG1tYWLlVVEb17ByezjvPTl59w5kQ2lWWl1FRXU1tzCe8hAYydcivz121hoI8vXiZR1/PP8l+PnQfOMDrchQ3b8xg7woWcU5XoSS0McLfgYGwxd0/pz65DBbj1NUYIwZnCGiZHOrNx1xnGDHMk91QZLa0SXh7mHEq4wF0TXdgbU4KbkwqAM0W1TIroy6Y9hYwOseHEGfmWHuih4vDRUu4c58iumPN4OCs1/DomjehD1qka/AaoyDgp820tDcktqKemvoWcs/WYGMl/95yz9dTWt3CqoI7Cc/Ucz5NF62ytjDhVWEdNfQvZpy9hbKyHsZlAaaogPu0CG3ae5pvF6Uwa5cKyH+5jaJAzuw/k0tKiRmlqSFOTGgClqSEtLWpsrU1pbGoBIdDTg8amVmytTWhpkTAxUdDcouGbKGhpVWNjZUxTUyua24vGZjW2lkby+Cb6Hfj6tLRK2FjKx2y7H9uOfz3RqxmwEGIMsoJTmEbVv+vnzyKXgLZJ/r0sSVJUh8/P0mEGrGm7CbkkNfNaZ8Ad0draSmJSLjt2HmXHrkROnirB18cdzwGOeHq6MKC/I0GBngwYcBUxLj2j7m3aZj49zbzEH4eGZs9eyOo1m9m29WccnbSIZUmF2js2H+fChSrs7S2pq5N3uVEaXqa09BIODhZUVNRgbm4CCpX2Hx6j7loz6dXaZ076et2zEtU9XB9ldXU01MszNWNTJVXlZfR3uZL6fbmujr1bNrJ51TIyko6ip6+PEAJ9hQIHRyf6uLjS19mVvq5u7f86u7ph69Cn3YH/kV1OptqfdqwlLTrtTT1Ew7TOgKu7t6kburcB6sbuM1VtM0qAVi1cdU8z2MZ6SiubcLAxoqK6CXMzBermZmrqW7C2MKS0ohE7a0NqL8kzXaWJPmVVzdhbG1JxsRkzoQYBtfWtWJkbUFrVhJ1Kn7oGjYMx1qOsuhl7K0Mqyi+jMpXvqdrLaqxUCi6UXsbOwqAz/2IL9jaGVNa0oDLRa+ebN16m9FKLPH6jfK0ojQS1Lo7Y2xhTcbEJc6V8XTYZ2WNtacyF8nrsbUyorWsm+lgD3y5M4FR+Fa8+PYzHpgaiVBpq/c5b67Uvwmt7Omj3sv8q1Nqve8NBy67rDPiGKUX+o0W4jigtrSYrO5+8k8WcPHWevJPFxBw5zqPTJ/LRB49gYqLF0cKf6oB37z7Mo//3Cgnxv+Pq6gRCy4YIPTjg0uIYRk94g2+/foq1vx4CYNp9obzw6nIO7niX+x/5nskThmBkYsbLM27vPsCf5IAPHNzHzrWrABh7x93M++BtVu+LQalS8dvKpXz7wdsEhIVzx7RHGTVpCgYGnR1mk5bHXIWW4/dk1/+yAz4cV8hLX2SwY8FwHnkrmfHD7TAzFvy2/zzLPwlgynNH+fJlb9bvkqU07h7nwFvf57H9uyAe/eA4t4+wpvaymn1JVSx9ZxC3vp7OF0/1Y/2hMpkfacvbP51h65e+vLvwNINc5Fj6/tRqfn7dk+fnnuSpKQ5sjJHFAu8aYc07ywr5/eNBPDb7FOMCLTT8iyx61J47vinkk/sc2JQoz3TvDFXxyY6LbJ4byiPvpjFhmBxbPVMKn7wWyoSHtvP5G0N5+eM4qi81M/fTyTxwhw8GBh3ubZ0D/u9Cbx1w504yt7S0iudf/J70jDMsXfQ64eGDu3P/JAecl3eGkRF3s2H9fCIiwjTc3jtgqSmDvftSiRzlx9mzsiNxczQg6kgOE8b6kZB4kn7u9ggDFXZ2Ft0H+JMc8Lnqas4VyLv59HF24Vh8LJGjxzLrrVdJiY3h6xXr6Oc1CAA9LSEPnQPu2QFfrq0lOqWCcWF2JB6vxt3JFHVLM2dLLhPqY8GBoxWMDLQmv1B2SC4Oxhw5Vs3YUGsSsy7hZiVfo2fPNxAySMXB5GpG+JhRUCo7Khd7Y2IzLjImyJLkzIu42svX/tkLDYQMNONQchXh3ioKSmX7XOwMic2uYUygBUm5dbg7tPEbCbRWcyirnuEDTSiskDcLcbYxIKXVgrFDbdrtBzhfryJkiB3rt59m7tIMrCyNmPXRzfh5a5Fk/ps44BtdDa1XsLe34te17/Pxh49y570f8PyM71m0eDtrfznA71tj2X8ghcrKa9lcofeIi0umqamJ1NRMmpt7tXFzJzz/4jyGh3vz3ocrOHX6HKdOn2POjzsZHjaQfzyzECtLJRs2H2XL1oQ/wfqesf6nHyjJP0NJ/hmWzvqMPs7O3DM8iKqKClbui2l3vjpcO+auPMWwIdY8/c9jWKoM2Lz/HHtiy7BUKXjmk+OE+Vny8U95nC6+zOniy3y65AxhvhY8+3k2VioFe45WsiW6HEszBc/NzmOojzmzfyniTEkDZ0oa+GxlAUMHm/PcnJOYm+qzJbaSLbGVWCoVPP/daUI8zfjsl2LOXmjg7IUGPl9XzNCBZry1pABLM31+j6vi97gqLM30+XhTGaH9TfhiSzlnypo5U9bMl1vKGeprwTMfZ2BpbsDmA+fZfOA8FuaG3PX0Xt78KgF9fT2enTaYC6Xdf5j+TvjvWK36D+HeeyIZHenPnLkbSTiaQ119A7W1l4mNy+T116by5hvTrvsxp0+/h8BAXyJG3YO39wAmTBh13Y/xV6KqrJTs1GT2blxH6IgIPl+88poW+f4boVZLZGTLs2alqSFmJmqUpgYoTQ3bF2R0uHbsP1LM3ugi5n08kqyTVTf8dXI9cEOHIGprL/PTou0UFZdTUlJBybkKhoV588G70zAzM+lVuOLSpTrcB0wjPW0Zzs72nT+8TjHgI0cSmf7Iy5zIOYRCobjmEMS+A6lEjPAlv6AUgH7ORjQ2tmBmZkx9fSOGhgpQqFAotJzvnxCCOF9UyKZf13Jwy0bOFxYw8qZbGHvH3YwdN1HruH9mCCL+SAxRB/Zz/lwJ50tKKDuXg5GRAc8/cwv33h0hL0x2CEGo1WoORedw6nQZ4UF2DB7kgJ6eHpIkEZ+Yz7qNCazfmoXS1ABjIwV19c3U1jVSWl7PuAg39v16f/tYrQ21pGdX4OJoBkBhSS1+Ay2ITb5AiJ8d58rkNLO+dqYkpRUQ5m9HxolqnPvIj+RFJRfx8bQgLq2CYB8rzpfJj9125mpiU6sYE2ZL4vEqOQTR3Ez+ucuE+Fhy8GgFwwOsKCiSn9pcHIyJO1bN6FBrkrIu4mypQE+I9hDEodQqwgeZUVjWFlIwIi7zEqMDLUnMrMLdXi5iaQ9BpFQxzMuMIg3f2c6QuOxaRgdakJxbh5smBJF/oZEAazWHs+sYNsCEokr5fnG2ViC8XLE0N6S+oRUDfZi7+gwLNxazYcFEvPtbojRV0NSkxsC8L4aGWq7bv0kI4sZywP/P3nkHRHVtbf83jQEGht47dhHBggVUVMTejTFRE41ppliiMdFooikaW9RoTGKi1xhTLYm9USwoAgqIBmxI7x0GZigzzPfHQZAwvjH3Nfe++e5d/yhn1uyz9zln1ll7rWc9q/ZIq2Nf7TzF17vP8PS0oTg72eDgYMnuPWeIuvQbX2ybx8gRBtAGDxjl9PR8Zs1ZTztvZ3bvWtJW1xDmV/IQ8P9DMJ0Ar83/jNR7efy6/z1MTf9cG7qigkIGD1/Olg0v8OM+AViyfNmMtqgOmWHjhzbiT52v1Ve1Om5fjyExKYvM7FIqKjVEx6Zy604BE8d0Z9rkXgwZ2LElefKwF57EvO0xQ9f2Yd9vNIxrPXw8kZfmf8uLswbh6mKFk6MFzk525BdUsHn7ae6lF7Lw1RG8MHsoRcVV7Pk+im9/jMLKUoGvjxsxV1IpLaumT6923Lydi6mJnGkTOjNtoi9dOra8jHXVOSzfEINOp2ft0v7Nx0vy8pm64BKhQQJ+OuxSAd+s7smYuZdYt9iX/aeFJNkTw13Z/v0dvljRldnv3mBYUyXZ7XtVfPCSN2MXX+fj17w5GCkkySb3t+SdnZkcWd2VORvuEtLDEoUUjsSUs3OBFxM+vMuaZ105eLkMELUkyVZ14vnN9xjnr6CmTk/Eb9XsfNmViRsyWDPdkYMxggGb1MeCFT8VcGiJJ+99n0snRwFOePaWhh3P2rNoXwkvDLbk16sC3GxiLzPe+6WEY5v8ee7j2wzrLeBlw6+Ws2ddL8a82pQUPCO0Ynwi1JEhwZ0wMZZSV6/j1fcu89udCn7ZMQxXR0Wreyg1NZC3APTatuG6h8XM0RuAh0lk5BbU8NudMpJvl3H7Xjn+PnY8Oa4jdjYmv/v6Q7D9BkTq9cV/DfB9eX3hl9TXa/li+0IkkpYf75mweOa+vpX+fbuweeNc7O0faBsnkqDX6/nH7lMsXb6TpW89xcL5k1t9v1kekwEuL1fx+oLtxCfcZe83bxHQ+9Er0WisawtDM7dou337XxhgvV5Pfn4pySmZJCdn8FtyBjd+S+e35AxcnCzo4eeGt6cdVpam+HR2IXRoV4ykf8KA/gUG+ExEMmOf3MrKpeOYOLYH7q42mJsbg6ilP+fVhDQ+2XaK46evYWJsxPQnA5k1YyD+3T2bdQoKK4iJS8Xbyx5fHzdEtZltzqWrzmHcnOPIpGK+XBOMva3wDDSoSimrrMO8yRtXqRuwNIXC0lrsreXUaIQ1Kkwk5OeX42Ajp6yqoRn2VVWqwVopo6isHjurFtiXibZBgH1ZyihXaTEzEdOoaaC6thErMylFFQ3YWUhRN9moZphYk75pQy0gatKXUFSpxU7ZGiZWXKXD3kJKSV41ZsZNsLLaRqwUEopr9QKsrL5J30hEsUqHaw8XylUNmJnch63psHW3bobFPbheIwt7cgrUPL3wPG5OCnauCcTMvK3z8bgNcEGxmnkrozkbk4+JsZSuHa3o1tGa9p6WXE4o4MTZTPr3dOLpCR2ZPrGjgNH/rwH+YzFkgG/eyubl17ZTpaplyydzGRzs1/xZTU0tqz7cyzffhvHkE4OYOX0o/fp2obCoihfnbiInp5i93yylWzev35+qRR6TAb4v+/afZ94bn/PKS2NZ8c50wyGD38nYCcv5dtcbzJ33OcNDhBJfpYWSJ6cGt1b8Jw1wXl4J059Zw2/JGXTz8aSbjxc+XT3w7eaFn187zKVFhr/YaGDb9y80wBcu3WHPD9Fk55SRnVtGVk4ZMpkEd1dbVr/3BONGt5RDl5SqsbAwebQCHU1Gm0O66hxq1A2s2nyF73+9w+q3+jJ7amfWbL5IcB8HDkcInu6EEFc+3XOTre/4sWBNEiH9BC86IqaITxa155nl11n1SgeOnheu6YT+Vrz3dTp7V3XljS13GdpL8CxjrpXz4XPuPLvuLiufdePo5XIs5SKCfMz58Idc9iz2ZvHOLIb4KUEk4mxSFZ+86MGsjam8N8OVqIRSKmoaGdvTnA8OFrHnVTdW7isgoL3w7J5LrmHDM47M/jyHFSMtOH5deHZH+5qy+ng5u19yYslPxQzuIniK525qWD/NjiVHq5g/xYWj0UK14LhAG/ZElrJ6XicWrk9haB+hEXVkXClzn/Fl1psXmfdsFxa/4INIJEJkwMl5nAY4MjqP2UvOM2dqR+bN8cfWum0PWHVtI0fC0vnw0zg+WNyPJ8a0/7ca4L91Eq5LZzfOh3/MgV/jmP3CJ7i62DLj6SFMnTIIW1sLNqx9kdfmjuP7HyN57oVP0Op0VFfX8sKcURzct/LRSpcfozw5NZigQB/GTVpJxw4uTH966B9+Z9hQvyYOhx4E9O4AgLbxT0Dx/gc5E3aVWXPW89or44k4s8HwLuCxtax8vDIoqCMd2zsQfjaF7NxysnJKSbqRQ/y1TC5cutXKANvaGngB/ElRmMrYsDyQjl6WvPj2Oaws5HTraImXq4JBAYKh9XJV0NfPqolDwJ6ePi07L6VCwrC+tng5mzCgh2Bo3RyNCQmwwtxUwtBeVvTsLMxTrNVibiohpIclng7GDOimRKLT4mlvxFB/JWbGEoZ0V9KjnaJ5J2RuIibE3wJPBzkqd2MaGsHDzoiQbmaYGYvp38kUX/cWg2RuLCGkmxlu1lIC2wmeqYeNjCGdTTCTixjcxQR/9xaP1dxETL+u5ng6yRngK5QcezrJ6dFJiblCytA+NvTqaoFerycyroRn34ziH2sHMCzI+X997R9FDpxMZ9FHMexeP4iQIBdEUiODehVVdWTmVFFXp+NWqgEY4r9Y/tYecLOI5dTXN3AmLJ4ffjrLiVNXCAr0YcWyp+nfT8D86vV6rsbfwchIjp9fu0c76WP2gO/Lqg/2otXq+OiD2c3HamvrkctllJermuPEanUt5goJn31xnBlPBZN4TajaDgzyQ6NpwM7OokVfNgxj47ZbvNrqk0ilEsrKqrCzs6S8XIWJiRF6PVjbT+LE0TV08/HE2lqJRiNsXU1M5M36ZbnJKBTypvnUYWWloLhEhZVSQm2tkHQxMZFRVq5umo8aU1OjJv16rKxMKS7TY21thkZT36RvREN9fXNpdbP8yRjwsZNJLF6+jzupQpItoKcnT08NZNb0AVhbm/3xuIbkIR5weWUdKzbEcPhMBmuX9mPGpI7UVpTw04lM/Jo4B5JulzN1mANf7stg2kgXkm4LMVe/Thb8cjqd2eNd2B9WSPcOgqH97WY5k4fY89WhPJ4MsScptRqAbo5SDlwokvUoGQAAIABJREFU48UxDhy4UIqvlyn6Wi03MjVMCbJi5+linhhgzY1MDYhEdPcyZX9UKS+OtOfgxTJ8bEUgghtZdUzpq2RnZDlT+ppzI0vYtXT3MOFATCUvDLXilwsldHES7sNvOfVM7qnguyvVjOthzo0cQd/XVc7Bqypemd2BA+dL8PUWru2NtGqenODFVwezmDbCmdjr5XyxL4vSynp+3hZCB6/W3u1f6QF/8X0KV6+XsGudgDL6vQHOylWx4ctEfjqaytSx7XlybAcG9nFGKhX/1wN+ZDFElAIgtcRIAmNHdmfsyO5UV2vYd/ASk55Yyapl45n7/GBEQEA3UwHZoE5tO0bjQ27u70Vs+M1qsJBDbNhYd2xnw69HYkHbQqtxLjKRPr3bt6Gj/HLTNA4fiaJ/T3siIgTSGmtlI0tW7OOX719n7sJvGT7UB5lxOLOeCWlzriOHzuHuZtuKjnJMaGfUmnrq67X4d5Qxedpy1q6awuljYahqGpg0wot3NsRy4PPhrNwQRbcOgicXEVPI1uU9eXrxZT56w5dD4QIz1IQQF9799AY/bQpi3kfxDOsvJKXCLxew7d1ePLXoMh+94c/hMAHpMSHUjfwSLVNG/Q/hnwfEEDmMSCJhZE8YeXIsRaUaLicUcim+kB1fH+etd39k8fO+fPhGTwB09YZfjo0GSGsaH/jhl1c1EH2tnIvxxewPK2RcsB2xe3phZQ6a3DtU3Cvl2LFMarIEj/Ds9SqGeOs5eiaLns4QES1UkpnWWXMpppiJPqacjMintkTAvqbk1DHMT8nxqBJ6tzPlXJygrwy05kRcBU+H2nMmvpKGRjCRigi7rmJUkC0nE6vo42vBhZvVgAgLCxkn4yuZHurAmWtVGA13RVOrIzJTw7hpzpy+U0hgiBXRxULow6arBafvFPHMcw5c19aDiXB/z5UWMrlPd65duEGgVyfiUoX75ezlRvivibzq5UfkV5FIHIQkYuTtGp6078nJuDvUGenZ/OVNXF0s+GzjeNr5OGNk3Nq8NGra/n4NIhgwXNAikhg2V7X1erLya0lMKUNs1DrskJFdxdrP4zlwPJUXnvYhJWJ6cwxfOJEekagtykYkfjy7zD+Sv5cHrNpt+EOppcHD927fpO/QNcSdXY63l8BJ+lBmq3+hAc7Lr8S//5sc2b+Ufn1aWtkVFlZgb2/RkmxTGFOYl4mjgyWlpdUolYKHq6puwNrajMKiSuztlNTU1CEyskGhaOsB6xo0VFaqsbY2bxm/soC4+AymP/81SdErcbC3oLS0GkWd0B9VVdPQXLNvKatplVwpKqvDwcaYsqp6lIr7ySeBo6CwrA57a2NqNNomfSlFZXU42ptRWlHXol/TgJ294XtmSB5mgFutU9fIko/j2PnzLbzczNm8vC9BPe0xMpI8sgEuragn6moRlxLLuJhYRlqOmgAfSwb4WzA6yBafdmat9e+WYm4ipqauiTNBLqakQYSDdetkW7VGh6WU5uTZ/WSbmZW8mZOhlf6DHA6WTck5nQ6FsaQ52dZ6fIHD4f74dUpl0/WXUFxWj72NnJIyNUozwYCp1Lqm5F8dTs52be6vs7NVm/tlbSmnrM4Ee1tTapqyfwpTGQdO5bJ26yXEYlj/3nAG9vNAVV2HtWXb34MhA6w3hGDg0QxwQ4OO3ftvsXpbPH38HfhgcT+6dhQoTdOyKvn4s3gOnb7HyzO6sfCFppjwo7I/PsQAi923/gcn4ZoM8MHDV/n2h0s8MTGA8aP9sbB5SJypoZT1W04Sce4Wp35dKMTL/g8YYEQSDh2JY+Fbu4mOXI2zszUaTR29gt5my/rZ/LjvEgBPTQ1i+cq9HD8wn2mzdzBymMBZdPdeMWtWTWHI6PVsWfc0P+6PxURhzudbf9+GD44fv8yGLYf5+dtFDBm1ii3rZ/PLrxf4fn8sC18ZxsEjCZw9/ibTZu9g4lBb1Botpy9k8+PWYQybcZSNS3z58XgWAFNHuPL2xuuc/HoQr3+UQN/uQtIlLLqAvev7sejjazw3xZt9J5v0R7rz1oZrnN4dwsw3LzE8SOBnPXMpn2O7RmFq8mgbsEcxwI2NelZvT+ROWiXZ+dVk59eQX6zBzsoYNycT3JxMcXM0bfWvkbiBhJRK4m6UczGhlOwCDX19LRnQ05oBPazo0dkCI5kYfYPhZ2PFhmQG+ZhzsMnTnRxozfaTxexY3J456+4S0qtp5xBfwc75nkx4/w5rnnNr5liYNsyet3dkcGRN11b6cTdVfDrPm/HvpLDmRU8OXijBXillgK+S5bsehKdZAKJmDofxy1NY84IHl9LqKSyt54lQR5ZuucWJ7X2Yv/YGAU0x6fDYEr750JcxryewaWlPfjzR+v6e2TOcmYujGD5A+F2duZjHd58MZNbSWN5+LYCfDt+mtFxDTn41d9Iq2PLRKPbuT2JUiJCjOBWZytlfnmmD1HlcBrihQcfPR1P5cOtVvNyUfPRWfwL8HJqfg01fJbL+ywReecaXBc/7YW35gGPyXwP8z8mDBriqSsOyVQf4YudZZDIJw4f5M3VyIOPH9MHS8gGcYUMpDQ1afPutYuv6pxke4vN/xgADbNh8mE1bj/LNV68zItSfM+HXCB7oQ0amsFX0cLfjwvk4Qof6EHslrdmLz8wup3dPL8Iikwke0ImMzBLEcms6tG/7IqqqqCDlVg59Azpw6kwixSVVrPzoJwb278BXW5/lwqU7hA7tSuyVNNzNchCJRKRlV9HX356wizn072xEZr7gQbo7mXIxoYSQfvZcTSnH07mJrjC3hj6+1py7UkJgD1syc4UttruzgovxxQwb4ELc9VK8XAUPMj2nmsAAA8UoD5FHMcCGdLXaRvKK1GRklZKdryY7X01OgZrsAuH/1eoGenS2IMDXiiB/a/w7WyCm7bkeZoCvx+Tj7Sgn636Bg60RsZl1DPa34OrtajwdhR9+RkEtvdzlnL1eRVDXFo4FdzdTopObOBYe0M8sqKVXJzPOJlYS5Kskq7AOdI242cuJTq5iiL8FV+9U4+nQNH5TAcXZa5UEdVOSqxOeRXdHEy5dKxc4GW6U4eksbM/T8zQE+CiJjCtjcH+PNvd3eLAHcddL8HK9T1+pok93Ww6dLyOvsIYfD98mPauSd+b1waerB6GD2xEbn4O3hxALT8ssp1+vts/i/9YAq+v0/OPnm2zZdR0PV3PeXdCbIf1dmo1lfmENsxaFo9E0sPfT4Xi6KQ0M/F8D/E+JoRBEdMxdXpq/h5u38/Hr7knqvXwGBnVl4rg+DAjsQicvY6qqamnnt4zEi+/h7mbzf8oAA5y78Bsz52xlaHA3tn4yhzUbfmXwQB/hs6hk3lsSyrwlP7B00Wgizt0EYNiQbnz8yXG2bZzBB2uPMHhgJ6RyK4aH9mhzqsjIeJwcLXl1wU4KiiqorFIz76UhdPdx4fylO7z39rjm8S+cCaOuXsfQQBfWf5nIpysHsGVHLN07CYmSqPgSlr3UhUXrrrFkTmfOxgkviiF97dm46xab3unJmi9TmlEBF64U8c7crixam8SSF7pyNqZA0O/nSG6xlmED/oAitEn+WQN8X/7ZGHDzmA8xwKr0MtbuzyOoq2CoLqWoeOsZD97+KoOFT7hwPklIwgX7WbD7aB7Lprmw4UAeA3wE/Rs5dbw83om3d6S30d9yIJd1L3ux/sccBvgqkYngbFIlb01zEcaf4sz565WAiODuSrYczGPdS56s/zmXYYNdaNDpiYovY+nz7Xjzk5u8McON8/FC1n9wb2s27c1gw6JO7Pi1CL9Ogmd8//6u/vo2z0/twNmYAiqq6lHXatl94B71DXqcHRRMGd2eHt3siY7PZ+VbI5j3zgmWzh9IxIU0AEIGeePpao5c/scx4EcxwMWlGj7fm8KOH1MYGODM4pf86dujhcBHJJZQpaqn34R9TBnVnpVv9EEqfQjNzf8xA/y3SsJt/uw0L88J5sSZGwQHdUIsFvPF5mc5HnaLz3ec4pWXRlDfoOXI8St8sGYfFZXVuLva4NPFGRMTI2Li7iERN+LpYcv5i3cYP9qPiPO38Pa0Ra+rJz2zjJDgjhw5eYPgoPZkZJaha2yknZct5y+lMn6UL5FRd/HyFLbeaRklhAR35siJJIIHdeNemlDJ1M7LjvOXbjNuTH8izyXj7SU8LGnphYQM8eX4qasMCOzMvfRCjI2NOHP0XZ6cuYnRk9YQPKBrc2WZtZUAM3J0EAygwrTF+Ds6Kpt1ZFIJYomIk6fjCRnSnSPH4gge2I17aflkZZfw2sKdVFTWsH3LC9y+k0uv7g6IRCKsrQQP9v74MqkIiUQKej2Odqag12NkJELW9DBbKYWYoKONHERg2gTIRw8OtsbQCNYWRsgkwvNpbSHM19HWGNA/EHLQk56jor5eR+TlPLzcBIOUkVPNkH5OHI3IYlAfR+5lCUnKdq6mnI8rZNxQNyJj8vFyNUdhZoSbU+uY7L9apBIRIf4WuNoI6zQ2EmMkEzE+yAYbpZSATsL8bJRShvhZYCQVMayHBa62gr5CaYSR1LD++CAbjKQiQntb4monR6TTIZVYNOlbY6OU0rujGSKRqEnfWtDvaYGnqwl6vQgTuRgjmZiJQx2wsTQioJtwn60tZUwY4oCRTEygvy0uDoJnbGIswUgmZnAfR45F5vDT8QwycqoZOciZF6a15+15A7l6vQj3JmJ3C6UcuVzKE+N8sLU2pV9vVwBsrU2RSB4Pz1f4xRymL4hkyigvzu+bREdvw7mD55dEMLi/Kx8u6fdYzvuvkr+VB9ylgxW5+dWMCHbDxkpOn+72tPNU0lBZjL2NMXNWJFJRreXduR3x7aDETGnOt4fSeW5KO3IK1Hi5mqHXa0nPEbbM4dGFDOxtR1a+GrFcgYeLggtxhYQOcCYuqZgO7YWYZVpWJX17OHLmQhbBfZ3JzBXgQh4u5pyPzWX4IHeuXMtv7jiQllVF3x4OhEdlMqC34wP6ZpyPzWd4sDux1wrxbtoipWVX0cfPkRffPsvJc5l8vXYIHbws8XAx58LVQoYHexCbUIC3h/ADSk8rpnd3O85E5RDc14nM3Gp0GhXuzgqirhYxLNCxectfWaUm6OlIzu8dQla+moG97LiXLGS33RyMuXS9kqG9LLl6S4VjeRkikYjM0gZ6ecg5d1vDwCEu5JS0cAhcSlYx1F9JQkYtHg4tW+zencw4H19G387mZBfXtdIfMdqLK8mVeD2wBe7rZ0t4TDEDe9qQlS94ou5OxkQllDGsn10rGsOsPDW9fCxb6ZsY6XF1aAu0N/Q8N9YappPU1xsIN9Qbamn0GDohGDBIIiPD/o/YxAA+/U8YNLGk7fdl5jYGdY2sW3OYZOVUMmPeaYyMJCx+fTjDhnQVuEYATDzbDmCIvhNAk97mkF7Ttp/aw1AQIrFQsRowZh/LXu/FlNHtDaIVQIgNdx38DZtXDWbEYGGOD6MFfWR5CC+J2HXLf64H/MmKAaz/4ip9/e3ZvPMGkZfyKCmvpaKqDg8nU4rL67A0lzF/zQ3GBjvw9Lj2HDidzYtPdmDFliSGBzlhbirmYFgOe9f3462NSWxY4se+k9mIpTKmjvHmzTWxhO0dxfKN8Uwd1wlVdQOnz2fy0/ZRLHr/AlveD+bHQ7cBmDa+I4vev0Dkz1PYvucGXdoLMbDT57P48bMRbNl1ncZGPT8fFWBvT45tz5urownrass762IZEezWpJ/Nj9uGE3etkKfGdWDOkkhGD/Hg6QkdefeTWPx97Fj28cXmh+vuvRLcXfrw5upoPlkRyM9HU5GgZVKoG0vWJ3J619Dm9Zoai7GyMOKDz1O4ea+K9Uv8OH4mD5W6kSmD7Xjny3sc3dCdVbsyGOUtQdOgb+YEeO9wGeudLfn5vLB1nDzAmuW7szjyQWc27csloKlwICK+gn+83YHdp4vRNcLBqLJW+j37ubBy+22G9Rdi2OGXi9m7zpylm5JZt9iH/aeFbrRPjnBm6aZkTnwZyHvbbjIsUNC/nVbNRwu6ttLv6G7ComcfEc/9NxflwMh/y3kjz9/6t5z39/LkK6ceSW/kjF/+6XM0Zs3/p7/7v5G/lQesTX+VgoJKHOxMKauoxVwhbOVy0zIor2rganIFhaW1FJTWseqVTljaWFFUWoeDrXFzzb6+UdsCm3qgZl9ibIbCVEpRaS0OtiaUVdRhZSMY1GZYVrEae1uTVjCcohINDnamlJbWYG4ma6VfUFiFvY0JNeomWJaplKJSDQ72Zk3zb9G3sTKlsFiNnY0xw2ceIbivMyvmB1BU3oCjvYKy8trm8SvLqlq1dqlRa9GqK5vGb73eRm0DB8Ny2PbdXX7ZFoS9tZzyrHwQiVq1pimvakCWJhy/zwlQpNLh3M2+bWsaSxkVtXrMHoBZWZnLmlrZSNvou3R1pKyyHvOm1jSqGi22NgoKS+uw/x2HwP1WPL/XF+5Xi75Yr8PEuG2c7v9HD/jfZYD/k6SNAf6vB9xWnnr9NJ+tCiRk+jFWLwng0JkMAMYFmrFi2y1+WNeLBWt/I6SvLQfD8rly8y5rFvkT+lwEHy3043BEDhZmEoL72DcVDgQy861YhvV3QCSTE34pj89W9WfYzJOsfrMXUQfTKauoY/KodixbG83Br8bw3OJwBgQIoYmwC1l8vmYIQ548yLpl/TlwQqhUmzTCm3fWXWb/9lCenh9O6AAhNhZ2MYftHwzkqdfOsPCF7vx6StimTRrpxderL7NxRRBPzztD6EB31nx2laMRGZz4dhJDntjPx8sG8MtJwZOeMtydJ149w4HPhzeP31ivITy6gK3v9m61XnNTMT8cy0IqEWK5z7wdS4ifKTodRMaXs2l+e8a8eZ1Vz3sSHllJdZ1e4AT4poh/zLZn6a4sfDyEUMDZpEo+edmTce/eYtUcD45cKmu6/ta8/80d9izxZs4n9xjiZ9FKf9Qrsbz/WieOnBUq1sYPceDdz+6yemFXnl0WT0g/wdONSSpn9YKujHwpmg/mdeFwpMCuNSnEielLrvLDht7N+g5WMkYO+B196P/nUhU97JH0/tkQxBffxHMtuZAd218zPPC/MAQRGZ3H6++eJzliRjMH8/8UggAImvATH70VyJAg90cOQYjdtz6S3l8lfysDnHy7DL1ez4hBrni7KwnuKxhCdycdof3tMFdICelrS6+uQqDeyMQEpULG8CAnvFzNGNTbHom4ES8XBaGBjpibShnW34FePlaI5QpEiFCaGTF8oAtebuao66U0aPV4u1swItgDc4WM4H7O9OzW8sNXmhkxItgDDxdzgvsJ0BtvdyUjgt0xN5MROsCV3t0f1JfRv5cD3m7KFn03JT197TBXyAgd6E5Ad3s8XMxYsTGWMc8ewt/HHrFYRCdvK0QiEIn09PGzR6drbB5fp1GhhzbrjblWiNxIzNQRbk0cBQ74ueibk8HmphKG9bbC09EYf3c5jY0PcAIYi+nZXtFsgKGJc6CHBR72D3ACOBoT0ssSc2MJQ/ws6Nle0Up/WH87vJxNGNhLAMl7OZvQo4uFcL/62dGz6X5JJCKUZlKGBdrh6WLKwF6C0fBwNmFYoF0rfcVDWvv9V/558XK35JcTt//d0wDA292C6poGfj56l6cndPxD/fp6HUkpxfT2c/wXzO7xyd+qJVFhiZovv0/hjed9OXE2CxcHBS4OCiIuFzN/uhdf/JzB6IEO5JfUkl9Sy8iBTnz+wx0WzurEyQt5uDiYYGct52RUAQuf7cDnP6YyJtiJgmIN+UU1jB3qyva9Kbwxx4cTZ7NxsDPBxVHB8cgMFr/Ug23fJDFmiCf5RTXkF9UwPtSLbd8ksfilHoRHZeHqqMDVUcHxyEwWvejPju9TGBfi0aw/LsSDz779jVdm+nDibGaz/omzmbw83Ydt39xg/DBhfEulnIsHJtPBy5Lo+DzGzjrMqk0xvLfxMmPnnGLfsXt4D/qBO+kVpGdXkV9cw9jBLq3W62RnzP5TOQQH2Ldab2FpHQVl9YzqZ82OQ7m8/oQLp2PLcFCKcbKUEH6zhleCleyMqmSIvzkF5fUUlNczqo8lX50o4rXxDoQnlONsK8PZVsaZK+W8PsmJvRFFjOpj2UZ//tMenIouxtlOjrOdnFPRxcyZ7MEXP6UzeqAjBSW1FJTUMiLQni9+SmfBDG9OXSzExd4YF3tjImKKWTDDu5V+eq6a0sp6vj6YiVbbyP4zedxKr+ZWuooDYflotY3sPCjwEtzJ/M9ue/Oo4u1hSVrmv5+gBsDLXcnJveNZ/OFF9hy4aTC09KDcvFuGRCIi4mIWdXX/uwScTteIqrr+D8/5OORv5QFrtY1cv1lMZbmKU2cz0NYL25fkLBGTLbw4HfcbQ0JsuXxb2BY5tbfixKVE/HpJ+OZwLmKFLcamlkQkFDF1ui8nL18jONSdizerQFuGrZ0Vx8/lMWd6D8IuFWIkE1Nb10jYpVzGDLLnyOlU+voqCb8gVA6ZG+s4cjqVmePcuXw1h2qVgHYIv5TPmAE2XLqajX9HEyIuCHSFZrJ6jpy5x7QQS06cuUNdlTDPiJgiQjrUcfhYCj0cazgdVQKAXGVLwe1sfp1tz5J9dQzuLKAObmWqWRisYOZ3dcRF3GLHnhv0tNLzXHsR+27pCfjtOvuv6zkt01NfIeJedDq3Jfn8Gq6h3b1UonJ11Gr14CXjSGwdI+tKOB5VC/0sqdPC+du1jPRRcCZZQ/9eGqISBXyqUgqnYst4ur8Fl65X0dDEF3v2WiWjAyxJyq7H3xcu3hFQDdYOCk4nVjGzpJozUQVo1cL9iowvZ3SQNcfP5xHQVcG5WAFPbGEq5vj5fKaPcuTMpUK0DcIP6bdUFaH9bDh+oYC+3ZScjyvGzESEwljEwbA8Jg2148jZfKpr6pGJ4fTlUob0VHIwLA/fdibkFNbSybstI5rIxID/YQiB8DAxFNcVG/5J/RlugYdxHkhNWhPXiKWG52oIWyuRKwxogr6+hY/E3V5MTn4V2oY6w1SptQa6ttTmGRy3UZ3f5pihxqSGcNv3pbObjONfhzBrSRTfH0xhy4p+dPJuS94jkkjo6Cpl7VsBbN4Rx/OLT/Pmi9158yW/NtV4YqkROl0jyXfKiEls6ZTiHbibanUD1TUN1Dc0YiQT49PJhrdfDWDSqHaPDVbXZu5/pySco60J534YgamxBHsb4+bklpWTM0UlahzsFJSWaVCaC8m5yhoxX3+fyKYvY5FKxWxbM4KRw/xQKIwoKq7Gwd6c0rIalObG6NV5bZJtlWWCN/Bgcq60vBalmTD+/Rr5whINdhaS3yXbarGzlLSuqVc3YG0hJz+/Enub1oTdeWmFTcmnBswVkiZ9HYqsQoqqtK0Iso01tZTUNGJnJqFM3UhKQQMrfi1Drwd7E6iqB20jZNXA2sFyQj2llGr02JqKKa/Vo5QDiKhpAEtjESXqRmxMRIi9rBEhwtRIRHF1I/bmEipNTVE24Xera3UCIXhlAw7OijbJNkdXszbzN0Q4rjAWU1IL9tZySivrUTYl26o1Anb49wTfZqbS5uTcff1GbT0qTWMzp4GdVZO+rlHgQChvwN7aiNLKBizNpEgkf0H/sX+RAVb0OgyAOnFKq+N/xgDLFFYGdcWy1rEcj37/4MKppXh62BpQNhD3+QsN8H1paGjk8+9v8f62axz7OpSgXq27KP++KCcjR8XEl8MYO9SDySO9SMuqIj27intZKu6mV5GQXIyzg4K+/g7s/UUIuaRGPYuZQobCVIqJsRTEUo6GpfH+phjUGi3H9kygvZflf3YSTqdr5PjZbL7+OZWNy3qx73gGAM8+1YN5757l7P6pTHvlOCOb4Fo7f0zGUinHUmnMa3N688xrh5n+RBZPTujOGyuOcfbQi0x74QdGhnRCX1/J6fNZ/LR9FEOnHWTzqkFEXEijsETDkw/A0+auuET/HkJM90xULt9vGUzoMyfZ/E5vfjwqJB6mjvZkydp4Tu0K5pkll1u1rNm7oT/Pv5fAwmfat2pZs2tfKpvmd+C5j24SEiD8WCKulPPFFAumbM/nw8k2/BoveNiTuxix/EQVB5+z5uV9FQxpLyfUCU7lwnBnEZ/f1PNMexHxpXqSihsxkepYE1PH3jEmLIysZZinjHqdngvZOrYOM2bGUQ0rAuXE3K6gUt3IxB4K3jtcxsFXnfjwlzw6uQied+T1KnbO82TCR6mse9mL/ecFT33yQBuW78rk2GY/nvvoVqv5717RpW3LnSF2fHu6iE8Wd2rVoicuuZJtS7sx+rXWLW6eGunMm5+kcOLzvsxacY3QfrYYG8HR80XNnAZrF3TkQFgBSlMJof1sWLbtLse39mT2yt9YMN2dEf0NGJT/ShvxclNyL73EsAH+N4lMJsbWSo6TnSndOhp+kTwonq7mhO0dw7TXwzlxLot27kq83Mzx62LD1LEd6drBiuqaBrLyqpsNsLWlHAtlywumoqqO+OtFZOepmDiyfZs2Ro9L/lYe8OI5PhSUqHl6nBeDAhzIaCpw6NDZiwuxOYQO8iA2IR9vD0u+/+Umm79OJDH8eeKvFxDc351tu66w5aurRB5+kYysckIHdyA2PhtvD2v0moLmgouwqCyC+7pwL60AvR48XBREXSlkWJAzcUlFeDUVUKRnq+jjZ0f4pTwG9rAhI6+p4MLZjKirhQztY0Pc9TK8XJs4E3Jq6NPdmoiLOQT1tCEzr6UG/1J0JoP8Lbl6U4WnU1OBQ34tvrpKzt3WENjehOxSAf7mJGkgJrOB4HZGJOQ04GEloeBaMblqEd2sIKYYetlAngbMbOU4K8RcKdAR5CIhqagRdwsxIhFkVenxtxdzMUdHH2cJFbbC9s7VSkpMWi3BHU1IqpbhYSd4/BlF9fRub8q5GyoG9LZu5jS4z1EQMsC+zfx7dzEnMr6cAd0tySoU4GBuDsbE3VUzqJcVV5Krmgs0MguaqWXLAAAgAElEQVTq6e1jQWRcKQN6WDdzFHg4mXIpsYyhfW2bCzQadQ1k5NU2cxoM6GElFHQ0NgoFJkkVDA2w5kpKFZ09Fc1e9mOV/w894LdWX8TEwpEPlo83oGzYA25o0LFlRzQ7v7vK919Opbe/62P1gK/fKmPUnDBOfzMS305t12GwLL0JMdHYqCf+txIuJxRyOb6AmGvFFJdqcHM2w93ZjMhoAZmhMJVhaiJFJIK6eh11dTqemtiJFfP7NhdAweOHof2tknDB/Rw4HJ4Nej0ffnadzJxqMnOq+XRXAoG9nVm06hzWlsZs/PIqKz+5zFcbR/PRlksE9nZh3WeX6dbZnrEjOtN/xOd4uFqyaMUxrC1NOHLqJkfD0rC2NGbxB1EE9nJi3RfxZOWpyMxRsfHr3+jfw44lH8dhqTTiWEQWxyKysLKQs+TjOPr3sGPbdzeb57NxZzL9/W15b+sNrC1kHD+fy/HzuVhbyHh7wzUCulmy6Zu7ZOapycxTs3nPXXp1NOOdL9KwNJdy8nIpJy+XYmkuZdWhUgI85WwLLyerrIGssgZ2xdTQ203GylNVWJiIOXOrlguFesyN9Gz6TU93az3fpOrJq9GTq2rk66R6etiL+TimHgs5nMtsICJDi6UcVl+uo6eDmK8S68kp05JVpuWzyEp6e8p573AZFqZiTiVUcSqhCiszCSu+yyOgo4LPDhWQVVRHVlEdn/6SR59O5qzendFm/u98kUbfrko2/5RNZkEtmQW1bPkpm15dzFi29Q5WSiknLhZz4mIxFmYSln16i76+lmzam0ZmnobMPA3bf86gb3crlm65iZVSxsmoIs5eKcPJVs6Gb9IJ9LfkmyO5lFU1UF6lZc+xfAL9LNnwbQZOtnLu5Tw6Wf5/ukwa2Y5fjl57ZP0L0en4D/mMyKh7LHoliNFPf8vFmIzHMpfaOh0XrxYybcF5Ni3vY9D4/pHsP5HG+OdPceteOWOGehD500Sqb73M7XMzCfthYrNeRfJLJJ58isSTT5F2cRblKa/wj0+GtzK+f4X8rUIQbrYSOnmZs2rrNZJuVXD8XDZL5nRCU11LXUUh2dmlbN0RzZ5f03hmohcuZlWUFhZTV5pOZUkRdeUwtr8xKclmjH5yBz26WFFbaE5NcRGN2no0JXpKikrRFGdSUVxCo9YUrbaRalUtjQ31lFfUAhLqtfd3DSIqqhoQiSRo63XotMLbvEZdj75RR12tlkZdI3V1wvFGXSPlVfXodQ2oquvRNggeraq6HsRiKquFGHJdQ8uuRG0kR+Zhh8a4HpFdE7tTvhaprTkqNEitFGiLRJh5iHDwlqOrqMaltwUSlQorLzlSMWir61B6mKO5UYnCxQwjExENWjDrbEptdhnKHg7ocksQWZsh0kNtvh6pkxUqUTVihZwGiZA8E5kYUVWvR6yQUycSo5cLHphaJ0JsLkeLCJFMQn2TgyCSSahU65CYKdDoxGAkeFAaXQ0iiRGV1Y0gktCgFfTFUhmVNY2IpTLUtXr0TaRFOh0gElNZrUMvElOn1WNro8DTw4ZlcwWo2qszWpiv+vcR/l32igBv83oIfhSDRNxtnZuHebWGwPoP9YAfQh5kUFckJiG5hJS75bg4tCTPDp4rR63RMmNiB4zl0ocm6wx52yLZQ7pxy6xb/dkvyJGyshNci43Cr6tdq890tS0ebGGJmqXr4jgfk8cny/sxcbgHIpEID5uBTHz2W64fG4vN7zmBG9t65obIjzLzanj+3Xiu3SyjSzsLXp3RiWmjPR5K3CPCwHqbro2jgxmebko+Xz1Y6Ev3kJ2I1EiOi8sD85X8NSGH38vfKgRxbs9g+vjZEB5dSFBPW5Ztus6xc/ksf6Ub3x5K4066ioEB9rw6oyNd21uSnlVFn+42hEcXMLC3PVl5NUAjbk4K5n8UT9z1Uj5e7EcvH2saG2rJyFUT0K2FcyCvXIwegVZRCEE4cfWmqoXDIUtFX387wi7mEuRrTtZ9Wr8mToZmGsCmEERGTg0BvtaEX8wi0M+KrIImDgRHE6LjCgju0TYE0dPNiMhEgWYwu0gwhE5aNdGpGoZ0MSU+vRYPWxm6ihqyyhrp6SbjXGod/T3l5FRoEYnAxULK5Yw6BreXk5DdgFcH4a2eWdJALy9jzqbUENjRlLw6KXoEWsXom9UM6W5OYnZdC+dDE+1hZGIlA/vaNs/HzcGYi0kVDAu040pKVSvOh4CuSs4mqhjQw7rVei8nlRPc27oVR0RmYUOr63+fI8LNQc7FhDJC+rWEIOTGRliaPxpi4WEA/v+rBjj2WgmTXg4jJNCZghIN52OF7by9jQkmxhKSTj6JmUL2lxhggM++PM27G6IZ2MeF56Z1ZUyIFzKZhOKCUm7cKuNyQiFbv/mNZ6d0ZMVr/pgpWt+HV1ZcxNJMwkeL/FsP/IgGeNt3d0m8VcX2VX1bj/2Q+2goFHO/JZGqup7QGUeRSkWMG+aJpYUJc2d2a9aTeHwGgD53UesBHmKARY6rH2sIQrJq1arHNdZfKu+///6qe9nVjBjoxKylsXTxVpJ0qwLQE5NUSm6Bmgs/DGf/qSxM5BKSbpaz/1QWwQEOPPv2ZTp5K/l63z1Ss6oRiUTs+TWd0cHOLN98HZlUTPKdCnYdzGR4kAPPLU+gk5cZR84WcOZSAeamUpasS2DycHfe2XiN0vJarqWU8tWPtxgZ7MYzb5yja3slO35OJTqxBHOFlCXrE5k0zIX5qxOprtGRdKuSnQfSGD7AkWWbf8PZ3phdv2RzOakCM1MJuw5lM9DPkje23EWl0XE9tZrdx/IJ8bfgxU9S6ehmwu5TRcTcVGFhpGf5vmLG9TTnzR+KqK7Tk5JdxzdxNYR0Mmbuz+V0tJeyJ05NWokWkRjeO17JOF8TlhyuQKuHa5l17LlQToivGS/vzKOjo5xDV1Wcv1GFmYmE5d/mML6vFZt+LSCvtIHraWp2ny4itJcVL25MpbOXgl1H8on5rQqFiYR3Pk9j4hB7Fm68TbVay/W7Kv5xOI/h/Wx5buUNOnuaNa23HDOFlN2HshnQw5oF65JRaXQk3VFx4EwewQF2zdd/58FMLieVYWEm5a3NKUwc6sSCtTeoVmspLm+gWwcDfK8G5PdQpAc+eCTdhxvwR9cVPaS09feSfLec8S+GsWvdIN6e68ezkzvw4bZEACwt5IR9Nw5He9P/cUyDLXYeYqwNGZqAbma8NtsPvV7PF9/eYPm6aLbuSmTDjiRSUssxNZHx6apApk/ogJGs7bn8ulgzd0U0Myd4tTagBpw9vQGj/Nn3qYwa7Epv398lAh9yHw2+cJqOyY0kzJnWBbFYxJ4Dt9HUapk8qoVD5IMtcQCsWty/9QBiwy/39zdGsWrVqvcNfvhPyN/KA845Nw4bK3krDgcAM3OTVhwOzRwLqrommFhtE+xLi17f2Nwqx95azmvvX+VeVjX7N/WivkHfinOgVi88nA/C0CrVomYOigdhaDYKXetWPKV12FlKBE4D0/utYAROg7y80lbzV5hIKMiuEGBoD7SaUal1WIob27SykZdVUqzSYa+UUl6jw8xYjK6shuo6PVamYoqrddgqxKjr9egBhZGoGbZWrm7EwsUcEFFd18T50ARz08gFL0khf4DzQQvmJm1b3zi4/A6GVt6Ag6Npm/lbK2UUqzDA+SBc/wc5H2rqRG04HwBM5aI2HBFiifThnK9tnp2/hwes1+vxGfELK17vwYwJ7ZuPyzrsAuC5qZ1QmMjQ6hoRi0XIZFJWzO/duuMD/3sPWF9b0OrvtEwBB+5mJ2kuC25RFp6Bm6kV/HAkle6drZk62ps33r8IwMZlvVp0H9ED7jTqJCf/MYwOnr97wT6CB6yp1XLoTCaHw7N4aYYPIUGuzZ/Nfy8KL3cLFr3Uwpv97/aA/1ZJuNRMFbOXxSKTipn5Viz7T2Wz/1Q2i9bEI5WKCZ0dzt1MFSs/TWLlp0nczVQR+lwEMpmImW9Gs+9kFkcic5m55DJSiYgRz59j5gQv8oo0DHr2Incyqhn5UjQyqYhnl8VzNDKHfSczmbn4UvP4dzIqeXfTVd7ddJU76ZWEzDiOTCpm0doE9p3MYt/JLGa+GY1UKmLW0lhSM1Ws2p7Mqu3JpGaqGPHCeaQSEbNWJHEgLJ8DYfnMWpGEVCZmzKIk7uVo+GBXBh/syuBejoYpq24hk4iYsyGVX6JK+SWqlHcPFCMVi5iwKZt7hfWsOVzC+vAq0kq0TNopfPbST+Ucuq7h9E0NL/1UjkQMk3YWk1aiZfOJUtYcKuZeYT0TNmYik4h44as8jsdV8Gt0Oc9/mo5UImL8+3dIy6vlw+9y+PC7HFLzNIxdnoJMIuL1jXc4GFnEwcgiZn94E6lExGtrb5KareaDr9L44Ks0UrPVjJ6XIFzP5dea1/vs8mtIxCJGvRJLaraa97+4y/tf3CU1q6bV9T9wJpcDZ3J585NkpBIRI+deJjWrhvc/v82ew1n/7sfxscuV6yVIxCKmjzfM8mZmKsPTzZyuHazwdley7Zvr1BkgFHrc4u1hgbeHRVvjCxSWaBg56yQjZp3k9IUcYhKFopolL3blh6Pp3M2o+lPnyivSUKPR0t6jbeHMH8nu/XfwHPgTe3+9S98eDsxcEMap8y3PyaWr+QT2dvrT4/6V8rdKwnm6KgjsYYu5qZSxg53p1hTLNDczQqmQMnm4G16uZoQ0deX1clEwOVTgQBg7xIVuHS3QNzYiEiHoh7rS3t2MdUv8WLE5iV/C85gY4oS5qZQxwY74drJEj0BUfX98b1dzQoLucziYMWWkF+YKKf39bejSTpiPiVzQH9DLFk9XBUP72jfPf1KoC0qFlDED7fBpb96kL0ZpImLCIFs8nOQMaeoN5uEkZ1SABWbGYkb1scTHU4glG9eoMTcWMb6nGZ62MoK7mKKtUuNhLWFcNxPMjGBkFzldHIzQI3gd5kYixnUzwcNaQoCxESJEeNpKGd9LiZlcxCg/M7p6miACjI1EmJuIGdfPEjd7OUP8mjgfHIyZEGiNmbGYwT2t6Opp2jx/c1MJI/pb49veDAdrYYdgb23ER6+1x9JcxrIX2mNvLSQ5+vhaYqWUsnp+Z7p4teg72itYs7CroP9iJ+ybiM77dLPESiljzfwudPE2x8FGjvHvW9r/fyD7j6czdbTXQ0Mmm98Lav5/2MUcArrb42RvuMLtr5T9x+/x7idXKSmvRV2rZcmL3Tnw+TBGzj5JpybCdAdbE957vTuz34rm3PfDkRkIVRiSy9dK6d3N6uFho4dIXFIxyzde4dyPY+nS3hKR1Ih+PR2Z8vJJpo3tgEgE97Kq6NnN7o8H+xfK3yoEsX2FPzPGuvLpd/d4doIHCSlCKW/PLkq+PZLFgpnt+P5YdjO5y7WbFTw1yoWt36fxzDg3Em9WIm6sp3sHc/Yez2PeU+78cLKAnl3M2Xs4h4vXKzn7qR+f/ZLHzOH2JBdqadDq6dlZyd5jecyb7s6+sFL8uwiGNiGlghlj3fj0u3vMmtSOhGShcq6njxXfHspk3lOufH88t5kcKD6lghljXdmxL50nhzuRcEvwDnp2VnLwTA5zJrg0zwcg4aaKp4fbs+3nbJ4Z7UTibaFstEd7BXtPFTBvqis/nC6kZ2dzEItIuKVi+kjHVvoymRjf3623V3dr0EN8SiUzxriw9YcMnh3rQtJdFY06PT26WLD3aA7zZ3hxMKIYn6ZYa0Ly/fWmMmuiNwkprde7+Pmuj16y+Ygx0Yc/D38irPBQFq2H40cflN9jZZuPSw28BB6WPZca8OgkrVtW+Q1Yy6qlo5g01q/1lKwEqkR9xXYAVKpahk/+jKee6MeCV4cbmJiBVlgPa8WlN9BuSatqewygoZzEG/mMmLaXg/+Yhk8nOyxN6xGLRZyLzuaZ+SdJPPMMttYmNGoFLoVxzx3Dv6stH73V3/CYD55W20jvMT/z7oIAnhjTloDnf4pj+wzawQdvBTNlbOemY8I1uJ5cwMmIO8iNJLTzsmbc6J6tx7QWQg/3r+0DJzN4KpHF3P/cEERETBGqGh3hl4vIyK0hKr6EqPgSsvLUhEcXo6rREhFTTEJKBQkpFURfK0NVoyXscjEZuWqi4ku5dltFep6G8NgyVGodkVfKOHelnN3HC7BRyqjW6Ai/Wk5Gfh2Jt6q4mFjepF+CSq3jUmJp8/gRMcI5w6OLycpTN88nI6eGsOgCVGotEbElxKdUEJ9SQURsCaoaLbHXK0jP0xAVX0ZUfBnpeRqu3VY1zyfhpoqEmyoir5RRrdYSEVdGRp6GqGsVRF2rIKuwlogr5YJ+fDkJt1Qk3q4m8qpw7EH9RAPrTbpVRXxKJZFxpcL8LxeTnqchPrmCqIQyMnLVhMUIc72aXE5CcgUJyRXC9VdrCb9cRGZeTZv11tU/Bt7c/2D58J0xvLJ4H8k32xYx3Be1up5xT32Jb1dn5s19NHrKxylffXuVRXP7M7CfB9ZWps1hiaAAZ4ICXPDo8zVff38dEBKauzaEsHvfTS7EtqWi1OkaqVK1kN58/UMytlbGrZJkjyppWRWMGtr2e919HHl7/iAWzg1i3Iguf3rcv1r+Vh5w9dXxFJfVYW9jTGlFC4eAqqb+D5M3pRX1KM2kNNZqUGlacxTkFtWy7NM7nE+sZHyQNW886YqFmRQLRzMQPchpUIejg4VhAnGV/gHOByHZll9QaZBw3N5K2ooDQVWjxcqUFs6EB/QLi2vbckSo6rFWGrXmWBCLWnEg3NcXicVt1qvWSprHLy6rx76JY8FCIQWRqBUBuoO9WZvkmYONMWVVujbrramjOQH6h/JfD7iNBwywau0JysrVbF33RMuUmjzgxvLPGDllO/fSi9m6biodO3rQvp1DmzH+Sg/4lSVH8e3iwKtzmsDWDUKC7kREGk/OPY5YLOLKienUVGu4dCWfczG5TfwpMg7tGttyWr2esbOPce5yDnrA1sqYqup6og5Owbez7Z9CcuiQI3P9GF3eOy2hCwPXVjje+v78GQ/41UU/8MWuC/+5XBDhl4v58uc0Pn/Pn1nLrjKsvxBbvZlWxZoFPoyeG92qxc3UUCfe2pzCic/7MWt5AqH97VAY6Tl0tohv3u/GmPkJrJ3fgQPhhZgZS1j/ihdLv0znyKUyZFIRr0/3QN8I4bElzZwDG5f48vMp4W3+xPCWFjortt2is5ewVQ+LLuDbdX155cMkXnvKi/1nhPk8EerM21tSOP5Zb2avSGrVoucfK7sybkFi83wApoQ48MFX99i/tjvPvZ9MSB8hY30vR83KOV6tOBakMjHjB9nxzvZUjm32b9Y3U8g4fK71es/EllNVo+OJ0P/H3lmHR3G1bfy3EncPngSHoMGKFy/FvcWdBHctbsWtCVqgUFooFKe4BHcJGgIESEKyUeLJynx/bNhks7OUvFDha+7r6lVy9pkzZ2Zn7332kfu4M2nFY478UIPe0+7Q9kt3UtPVnLgSw9a5lWnpd5WlEyvx65HXWddbmEnLgjiyrg7D592jZkUnvevddvA1EwaU+zsehf+38CzmxN37EXTtt5nmjcrQr0f2T3eVSkP5MgWwt7NgRcAZbt55zenDE6hUoejftj4zMzkZuXYNORn4kj6jj3Foazseh8RR4+sdFHS1ok71ArRsVIw5K68TFZ1KUnImNllCVmu33yc2Po23DwejVGmIiUtDIpFQ+H/YaFUqlVDAzZoXrxLwKpb3brkPgSI6kYBNgZ983s/KA4691IrLd+NoWN2Z6/fj8SikTUC8Ck/Gp7w9p65qC/hfRrwr4Dfl4u14fQ2BzDSthkA5W05fj6NuZW1DhCY1kyKu5lwKekv1sjaMWvWM80GJzBhcnJLFrKhZwY7T1+K0m2BGvNtE0oILt2NpXNOFW49TKFpQ+637ruHizOVwvqjkwMs32Q0IF2/H8WV1B4NNKquVstBbj3b95ly4HUejao7ceJiIR5b9q4hUqpbOpbEglWRvslnNQWcvkUp48Ub/el/HqLQNJu4WXLwTr20YefAWz4KWIEHXkHL6agz1qrvrNBmKFrDkwq1YGtdy4ebDRIoV0m8wCXmdTmmvD6vNzfeAEfXS9h2+R/seG2nbsgL7jwTx7PZ0ileZDRh6aT/vvsvcRQe5ETgDq5wK9X+hBzxv+TkeP41hm79Wl0KTkYBdmTXs2dCaZg08uHIzgu7D/+DsrvYUcteSac+Rx7l8M5LypR2xtzUjJVVJ4NUIAnd3pEwJccLMay3zN0P20qyBF32/yYqffwIPWBGdiKtL9vP8V3jAn1UMeOHGJ1Qvb8+I+XextzFh/+kI9p+OwNZGzoj596hV0YEFG4J5EZ7Ci/AUlm59Rs2K9oxYEIS9jYm2sSJLo2Dk4ifU9LZj4ZYXvIhI40VEOot+eUWNcjZM2xjKpB5F6Pl1QeZueEbbkbfwahnIjiMRdBx5lUPn3vA8LJmFG4OpVdGBEfPvYWstZ/+pCPafisDexpThc29TrZwdCzY+JTQ8ldDwVBZuekrNivZMWfkIe2s5+89Gsf9sFPbWcmasC8m1njS+3xpKzfK2jFoajJ2NnAOB0RwIjMbGQsqo5U+pWc6W77e91NqHp7Lop5cG9seuGF5vdFwGHgUtUWsEGtVwIjlVjU/WDhU2lnJ8ytmTnKqmUU1nlCoNHoWs8ChkhVoj0LiWC8mpKqqWc8TG0gQbSxN8yjuSnKqilGfeS4f+ixAEgR2771C6+lwcPSdh6jqaFp38CQ5RULuGJ+tXdMPWxpz+PWvh5WFclax71y+o4ePJqIk7/ra1jxhYi0vXX7P/D+2GnVKphMZ1ixL0SKuMV6NKAb5pW4bKzX9h1vKrbN71kOt3o/h5dTNaNCxG47pF6NamFKd+bWeUfHNCoxF3EAVB4PZ9BSs33qJDv90cPfOcN4rkT3adfmN24FZiAn5jsu+t/7JvP9n87/BZhSCUKgEEgUylBgQBIevNEVQqMjLVaFQqMjPVaLIUltRqFRpVJpmZKgR1JmqVEkwAtYBSqUFQa7L+LyAo1SgzNAiZapQZaoRMNV5uJoztVgSf0jbM3/aS6qWs2XlawdqdL7C2lFG5lA3qtFQy0jNRpSejytB6iuqMJDLS09GoM1EqVdrzAkqldj0apEhkMgSyNBNkMiRSE6RmFqgFGRK51ptRCzLk1jaoJHLkltZITLVqYqYOzqhksZg4uqAxiUFmbYdULkcwVWPm5IZaFo6ZvQsySw1yS1NM7Z3RyKIxcyyAYBKDqa0zNi7ZsUPzrM+BJEdB+zv/wULEEzF30Nrm9DEsQbTTSTuxiMMg1hVlpNdffEpjHWfGdQEMIBf5uSvmqYqNAcjyYpv16yg0kqEjVvHqlYINm36jfPnyWFhYsG7dOmq3mMegQYPoOnojbyTbWDV3BqE9T+mmuBDXAQenbEKWChKGL2lHx3rVmbY2kTbdemBjZ4dGZXhvTYw0gig1hnXEJibitqXswrBxhllzXPlp3zHa9uwL6mD6D3Fg2YrdjJjcDBMTOXOXfs0AvxdMmb6Nhf6BXDzzPdV8SvJF0zTDSTX6e8JpNBpu3g7l6KmHHDt5l6vXQyhS2IkK5YvSrFE5hg7SJh7nLNzHj9sCadGkAp06fsmqZWUoXChHU4mYchugiE7G1VVEYMfCM9tGkaALNwRsCmTmrKG4utqLzvex+OxCEJduxfBljpACQOjrRHzK2XHqaoye5kARVxMu3E6gcU1HneyhRqnkZUQ61crZcup6PHUr2fE6KgNNUjpFXM24eD+RRlXsuBGcjGdWMXhoZDrVythw+mYC9Wo4Efomjf1no/npUATLxpSm2RdO3AxOpph7Dg2E8racvRHHFxXteR2ZJcPobs6F2wk0rVNAf/1ZP/lPXYmhblV9zYSLd+JpXMtFz/51VCY+5R05eTmKej4uvHqTilQm12lQNKntzrV7sXgWtkYik/MiLIkaFZ05cfEN9au7ERWbiUdhkR0ixHrqjRGdmBRiPgEbtU1Xylm0ZCcrV//OmFGdGD+2C6aWLfRswsPDqVChAuPmLaZTr348e/yIp48eMLJnFwA8SpRi44FjuBfSdndJs+7r46C7LJw0hqBbN2jTrQffLVtjcH6jBCwiB2nMtpSlVr/67NnLTJq8kCuX94M6mOfPI+jQeRbPnkdQo3oZhvq2oUMbHzQaDb/sDOSHdUco4VWAnt1q06iht36poiaD1NQMTp55wP7Dtzh09A7OTjY0b1KZFk0rUbtWacIj4rj/8DWDh6+nZHE35HIZQQ/DuHV+Nl6eRjZmFSFgv1EbCdhwAt+BzfFfORAAiaU22Rn1eoceyfqN8Cdg3SF8B7fCf/Vw3bjEtPknDUF8VgS8b/UXrN35DP/vKtN78k2a1NYmsR6FvGXe8DIGQt6dmrgyaWUwh9dU1Ql/W5vDvjPRbJ5Rnlaj77BgWAn2nFIgKFV0qKsVFj8wrxz9Fj+lXQNXXVna5qllaD3+HotGlWLXCW2S7OajRN4mqzi/qQbfBYRQ2kP7gX6XtPOd+xC/rkXZfULb2tmxiTuTVwVzJKAWvafepmlWEu7E5Wi2zKvC135XWTS6nF7SbtbaJ+xZUVPvep+9TmPWcG++GhjIovGV2HX0NaYmMto3LcL4Rbc5tqkRPcZfpFmdAthYm/L78VdsX1qPZn1OsmSyD5duxzJzRHY7pu4e5xPwX0LAh/+4zoixG6lUsTjLl/hSrFjWrw95Yz27BQsWcPjwYdYfPoNcnr3m0tbaa/Wd+B0Hf93OT8fO4lqgoI6A3yElKYmWPuXw37WfspX0399PScCpqWkUL1GX3b+tpU6tbG8yISGZpct/46ftJyha2Jm7QS8oU7owk8Z15HVYDD9tP0VkVALjRrZmhN9XHD95l3WbjnM68CHVqnjS9uuqtGlZFU8PF1ECff0qgtdhcajVGpydrClbppDoOgGD4xWKt7h5DtL9HeninGEAACAASURBVBW6CVdXOx0BA/gO+hr/1Vk7QktkKBQJBp7vf5qAk2+0ITpWq+uQU0Pg7ds00a1sLM0EouMztZoDWRoFQobKoCwrJU2NJjFdt7WOq70J8UkqbBzMQQLJqWocbE1QxGfiVsBSN/+ZG3GMWRrMV3WcKVHMkgEdCmMil+rK1nKXxWnLxDJxd7XVW3/Osi9DeyVuzuZ69slpUhztTfU0MaQyeZZmRUaWfQY2liZIZDLt/FmaFa5O5qRnSrC0MCSlfALmkxNwTEwiLoV7sHf3LNq1rZPLNpuABUFAKpXy/PlzlK4eembvCBjAydWNOT9soH6zr5BKJMRGK3ByyfYCt69dw/mTxwj47YDeHB9DwDcvX+Twb78gJEdgYW6OpaU5hw6f4sjhrZQpqf+ehYVF89vuc1QsX4jKlTxxcsqRlFWnEXT/Fb6jNvLwcRjFirgwYkgT2n5dFUfHXO+FWAhBI76FvSikZigUb/XCDe/zgN9B5wkba8T4xAT8WSXhxnwfhEwq0G/aLZ6HpbB0SwhLt4Tw7HUK/WfcRW4iYdySRxw8G8XBs1FMXhmMTCah/8wgnoelsmxbKAF7XvM8PI0Bcx4il8P4lU85eD6GQ1fimLA+FLkUBi4N4fmbNAL2hrNiZxjPItIYuOAxJjKYtDKYg4HRHAyM5sz1OPwnl+Hu0yR2n4iift9rLN7ygudhqfSfGYSJDMYte8LBcwoOnlMwbtkTZDIJQ+fd1a5/6zOWbn3G87AURi4MwkQuYeziBxw4E8mBM5GMXfwAuVxicL1hkSlMXHIXS3MZCzc85sLNaC7cimbBugdYmMuYsOg2ith0tu57zq4/QomKTWf89zewtJCzYG0Qtx/G/tNv5X8Gzs62tGtTi/v3X4i+rlBotRMkEgnly5cnLi6O2Kyxkwf3UauY/k/sWEUURT21DQezRw+jXvGCzB49TPd6l74DCXn0gFuXL+R5rYIgEHTzGktnTKZFlbJ4O5jhU9CeQR2/pkCRonzVoiEZmRlEvIni5o3DlClTwmCOwoVdGD2qE40bVdIn3yxU8C7KuWMzOX98FrcuLaRvz/qG5IvWY/1QKKIN9Sb8Rm3EzXMQfqM26sb8VwwgKnSTjnxzw3fQ139ZrNcYPqskXOVyjtjZWlC+pB3FCtlSpZz227u4lxPepVNwcLSnsrcLlcprs0qC3BwnV1cqlI2nePECvM0wR6LOwNPTFu8yKdg721GpnBOVytkjCGpUFm9x8HTG2zsZr/JuJEvjUKoFPD1sKF/KBlsnC7y9rChfTBvrzUhT0aCiLffqOtG1mTtfjbiDqRSKOplQrpgl9g42VC7rSMWy2jdVJchxcLChXAlHPIo6UDWr2sejqAPepdNxcHKgsrcrlb21yQSVxBQnN3cqlIuheIlCJKRrFa3KehdleY2SAMwYpxUXkchNaP21dr7lc7VjFSoXR2qqjRuvrKbtApo5pZjxGyz7G3UFNCLlT0a8DlEY80pFPVgj2XYTkQ+biWFr74NE8RIupYgQjird0ItPYjPfzdzC9RAJE5eu0o0vnjiQfVs20q7PAMYsXIbc1p7Bo8dx8/xZ2vTuT0piIl2HjmTt7O90x9Ru/hWWBQvx5GUov25aC8Cvm9bSddQ4HJy1IapBU2fy3fAhfL99F+5FiiGVSo1qK7zzwC6dPMbi8SMxt7Skfss2TF69Dq+y5clMT0Mml2NpbYMgCAxq1g+A+0pAARqhuvi8IuezyBFWwRNupoOpiGc+b+xwdv24nm8GDGHmCn/deClrCQqFAlfX7C8lPz8/AgIC8B3SE3//eQAoFDEEbDgBQMCGE8ycPRxXV+0z4FpEdLlERd7C1TU7wRmnMmL4ifFZhSBenm7Fb3+8ZGAnL7YfeoVPFtE+eJZI5+ZFWfFTML3beeTQKHBk675QRvUqzfYDofh4OyJkpnHjgVaTIadGhEajLcX66VA4I7714OfD4VQrZYkGrSbDt1+5s/rXV/Ro4srtp9pylyqlrHWaDL+fi2HHsSgaV3fAzlrOty3c2Xw0lk7NCmVrVpSz56cDrxjVqwzbD2av/+aDeHq1L86KrU/o3d6LWw/idOv/+fBrRvQqz7Z9Ifhk6aNqkONTQV9URDQkADoC/iDkE3DeCFjk57sql+RiXLSC5mU9dH8fuv8cBxcX4qOjaeXtpRvvPXYi5/84xPOHD3RjxUqWovvIccwfpo1d7rn3VEeyACsnj2X/1k207d2f0QuX6cYTYqLZsWYFZw7uJSk+nqIlS9GoTXtaduuJg4v+c/M2OhpzS0u616vGhCWrqNWoKRogPjrawFaMKzRG+EOMgNPi43B00ffoTWUyvTBKbLSCRqWyye/S80icsgh3xfihWrL19cXf3x+FQoGbW3Y1T04S9fMbQcDaffgOaYf/D2NF1wggkdXTXptGX13PGAE7mUr+uyGIF+EpXL8fr9VYuKLg5oN4bj6I53qQduzEpUhehKcQeCOawBta/YcTFyNJSlVy8nIkN+/HcT8kUafJkFMj4uJtrSbDyctafYfT12K5/yxFp8mQlKrm5NU4XrzJ1mQIfZOtyXDzURLpmWoePE/RaTJcuxevm//8zVhCw7WaFYkpKk5didKt/9SVKJJSVBy/+IYXYckE3lAQeEPBi7Bkzlx+Q1KKkhMXI7gZFMPNoBiev8qbxF8+/l7ERSt0/3Z0caVEOe0ODO1699eRmoOLC+36DACgZqOmHNq+lUXbd+vG2vTuz/hlP7Dmu4m6uXKSL8DohcvYGxSiR77LJ42hXYUSZKansefWI/beC6Zhq7bs27qJNt5eLJ04Wme7dOJoWnl7MaxDS7yr1aRWo6a68dy2oCXlD0Vu22UTR9O8rAcLx4/UG583djiNShVh3lhtpYGTiytd+mm/cL4ZMERHvrEKBQEBAQAEBAToPGFfX18AfIf01PNg/X8YS9SbA+8l338DPisPODywDQ7WMkNBdmtTnUZBbEJGDo0CtTb5pLNXoU5PyRJk19eIEDRqXTLsXTIvOVFbDpZTYyEmOjVbwyE1O5kXnaRi0LxHdG/hjm+nwkTHKylY1Ek3P2Qn2xRxalydzfWTbW/VuDtb5Fq/EmdnO13yLCVV64nZ2FkZ/KTM94DfM/43esBzxw5nz+YNdOw7kEmLV3LuyEGWTh3Psl/3UrREtsJXeOgLTuzbzfHdO0lLSWbm+i1UqF4LgJDHj/jjl21cOn6E9LQ0Yt5EiK8/H58M/5QH/FkRcL1qzmxbUJ0Wgy6waFwFdh3VlsV807oYYxfe4ejGBvSccIWmtbV6wNeD4lk93YcW/c+yeEJldv3xChc7KfV9nJm4Ql8jQtBoOPlOAyGrnO3cNQWKuEw6NnZj8uqnHF5VlWELH1KzvDa5cOp6PDMHeNJhUhAALg6meBU0Z3DHwkz1f8Yf6+vQe/ItXfnYyUvRbF3gw4DpdxjVuxS7jmo1Fjo3L8yPv79k1bRquvIxgOMX3/Dz8i9p1ucYSyfXYOdhbSJnyrBqlPDQLybPJ+D3jH8CAs5dbQAQFflG7yd1XLSCxqWzdRmOPQqlT7P6CIJA6UpVcC1YGBs7O66cPkHEy1Aatm5Hk/adqFDjC6Q5WrNDHj9kQOM6jFywlMbtOvJ1ycLk469FPgH/CSQSiRC4/UuqlbPn7DUFX1Ry4mWktvOsWEFrrtyNpUENV27cj6NYQS2RvAxPo1pFR85dU/BFZWdevklBk55KkQKWXLkXT4NqTtx4kECxghYIgoaXEWlUK2dH4M1YalVw4GVYIhKgsJs5V++/pX5VB67cjiMtQ8Od4CTO3krgTnAyLg5aL9jV0ZSnr9O4urkaUfFKGtcvyvX78RQrkLXp5Js0qpW3J/DmW76onL3+om6WXH/4lvrVXbl+PxaPgtqscGhEMrWqFiY8KgV3ZwuSszxgO3trg90J8gn4PeN5IGBFfGW9JA9AtwFD2LlpHV37D9Y1OcwZM4ydm9bRud8gpizJTqzl9oDjohWEhb4gIuw1iohwEmJjqFK7Lj51GyA1EX/PlGo1v29ax77N64l8/Uq3e7atgyP7HjzX2YnFWQHexsToQh3r588iOOgOS37ZS0LWeJxCwa0L59i17gfUKhU/HDiKpVV2JYJYDHjpxNHahGHv/oz5fnm2rSAQHxOtFx5ZPmkM+7duMrD9kBjwO5iL3JtSVkZ4T3gtMvZS3FYMEsPE9L+GgCUSyUxgRq7hKEEQ3LNel2S9PghwAK4CQwVBeJBjDgFQAmUEQXieY3wL4CwIQiv+BBKJRHhwshsbfnnIzJHVmLP6Jg1qanemuH0/ihF9vBk5+zITBlfk9GXtT7Yva7iyeMN9lk+twTz/e9Sv4YaJTMqpy2+Y6leR0fOuMW6gN2cuaxs3vvyiAEty2Deq4YRSLXDuWhTFi1ozN+AhySlKrC3leBS0xLuULdsPvmJIVy8QBE5fi6FkMSuKulsyeWAp5m0IoX8nL85c1cYEv6zpypJNj1nxXS3mBQRRv7o2gRB4PYrpo2oyctZFJgypwulLWrW1RrULUaSwPVaW+g+jKKmK7O2VZSxyMz9B8YsxcZcPhVidpzECFiNQMe8VRD3YewkiZA+8Dg/XI5klE0ezd8tGvaRWfEw07Stkl1v9djcYgM6VssMJv95+jH0WAWkEgYSYaN3f74MxAn03/jL4MfN8+5OYEE8hz+I0bNuBr3v00dnJjQgavassiHgZysqp4wl78Yxvh43h4a3rBF29TEzUGyrVqkOjth2p17qdnvcNhonEdwiLCMfOSV+bYvWUCQTu2k79Lj34duo83XhaQiy2uWztLQxJ1cZMvGXYwdxwDzsv2w/fKj4mU5zXxMJGYu+DsXtQ0d70H5GjfAI0zPF3zquYAIwF+mTZTQdOSCSS0oIgJOU6Zh7wzf+62H8CcW8z2X8qHGtLOeWK2zLDtzS3H73ldWQqm/e+pFYlJ6YMKkOboZeQSyV0+6owl27H/dPLzkcu5Pay3pU6te8zgHHfLyc+Opq9W7Q1o/u3bqLPuMk4OLvg4OxC6179OPjTj7Tu1U/n6b0ba9WzrwHZfgj5/hmO79rBhrkz6D9lBs27dkdAW4Vw6ehhzC0tqVSnPlEvQwkNfszLJ48IDX5MXFQUEqkUmUxbdhZ87w5dhwynYs3a7NkUQPPO39Kqe29KeFdElkXSxohGDLnJ921sDIG7tgMQuGs7rYaM1pFubvLNhzg+1APuJAiCt8hrEiACWCMIwrysMQtAAYwTBGFd1pgALEZL1DUEQbiZNb6FPHjAF35vT82KLhw/H6aVhQzXloMVdTcn8HokTesW4vz1SMxMZSQkZvDoaRyeha25+ziOCqUciY5Px8xESsUyjjx/nUTbJkW4fi8WzyLan18vXidTo5Izxy+EU7msEz/vC2bxxkcM6FycmpWc+Kp+Aa7ciqSwuwWtfS/RqXkhJg8szdy1T/jlyCu2LfDBxsqEogUsOH8rlmb1CnMtKA7PLNnGF+Ep1KjgyNkb8dTxceNlhHb9xQpac+V+Io2+KMTVOwq8imhjzM9fJ/JFdcP4X74HTJ484K79B7Prx/V06TeIqUtXG5Q6vSsNE/OAQUtSuX9mA8QoogzI1lhZlhhES7VSkvlh2kSC795i0LQ5xERG4FygIM4FCvHb2lUE372NTCYn7HkITm7uFCtVBo/SZfAoVRYnd23uQCbRbvfuWaYcrgULMaBZfQZPm4VPvYYG5xMjYGOknJRh2IlmzAM2kRleW74HbIgPJeAJQDyQiTbEMEUQhOcSicQLeIaWVK/nOOYwECMIQu+svwWgM9AFcBIEoXHW+BbyQMD1axbkl5WNadLjIEun1WbnwRAAvmnjxejZV9i0qD6Nux/G3EyGpbmcTKWaimUcuXInmhLFbAiLTMHMRIZEIiFCkYq5mQxBAHcXCyzMZYRHpuJgZ8qriBTMTWXY25pQpawDQ74pyYTFdzi6qSF+06+SqdIQGp6Ku7MZC8Z4U69HIHKZBI9ClngWsmTot15MWvaAo5sa6iUFT1yKZNuiWvSfeoPR/cqx63AoAJ1bevDjnuesmV2Pb0acpHl9LTkcC3zNqV87GMR78wkYowScO4abu1b0dPBrnFxcDTzgbPsoA6I19mEUG/9YAp7n248bZ07RtFM3zuzfQ7WGjXkbF0PU69dUrF2XwTPmYmZuQUZ6GtZW4uLlpjIZgiAQHHSXE3t2cXr/HnbeeKDzev/sGvJCwLEpShJjYww83nwC/jB8CAF/BdgAjwFXYBpQBigPlAYuAsUEQXiV45gfgUKCIDTP+vsdAd8BHgJtBEE4+mcELJFIBqGNLQP4KG73xdHWlKiYVFydLHRlWZbmcPpSBP0mBjKsV3lG9dU662/fpuo0EIrW+y1rTvAsbEPZEnY0qOlOpdIOqNQCcQkZWFrIKeVph0wGXkVsSHqbDBKyyta0ZW4370XRZuglTm+uj5O9KY37nif4ZTLbv/dh056XPAhJ4umRJsS+VeLibE1iigoby3dla1llaAkCbs7ZZWVWlnJikiS4u1gRl5Cu29YnKUWJk7NhUimfgAETewOxFL/hq7UKVlmF+u+Q2wN+h9wxYABlHgjpryDgOEUUJ3/7ldjIN3QdOhLnAgWNznti1w7exsbQulc/rGy0v5rCnoVw7sDvnNz7GyqliibtO/FVt+4U9PAyON7YNeSVgMWQT8AfhjxXQUgkEmvgObAQuIKWgIsKQnYqUiKRbAYKCILQIutvAegsCMJuiUTyA1AHqAr8SB484MxnQ1BmqDA1lWp1fAWBwGtv+HlfMEfOvmbVjC/o3NILtVp7TXfuRzFh0Q12rWpAv8mXiIlLJ/hFIrbWJtSr7sbx8xFkKjUUL2ZD9QpO9GxXghkrb7NjeX1GzLlGizouZGQKnL4axYopVegx7jIpqSrMTKVUr+BAm4YF+G7VA35eXJ0FG55w9loM4QrtHm7Vytuz82g45UvY4WRvSikPa7q39mDWmvsc2tgEjQadZ6vRCFjY2JKRocbERIparX3zZTIpUhMTg5rffAIGvzHb9OQCFYoE3Ap31b0eFRWl84TvJWSKZtqTMw2Tc/80ARsbF5v352Xfsz8rbl2/VVue3LlFbFQkX7ZpT5P2nShXtbru2TG2ro8l4HPHjuNZsSq/LviOsjXrAvDo6gW6T5nN+vHDaD9iPLdPHQOgQavW7FgynzGr1rFx5hQq1qmPpakZN86dZuic75k/tD99xk/l0rEjtOrYhdIV9HeH/v9IwHn+JAqCkCyRSB4AJYF9WcPuQM5aEFcgysgUs9CGLbrn9dwmdh6YqFMRBIFlP1xi9abruDhZ0rNDaSaPrMPRM6HU73aEqJhU4t9mkJyi3TK704jzfPlFYTq2LEHwi3g273xEyKsUklKUFHSz4s7DOCwtTSlZ0p2m9T1wcHakSX1PqlZyQaMRkJlb4ejmhqm5GZExmUwe6oNcLqVUWWe+apyGS8GC1KyWSr9vKvLidRLb9z3D08OBWaML4FXEjmWb7nL+VjyzxtWjSYMULFw8DXvz5TY6gXM9P0FsaxWxMYkI0UIeVaUMH04EkTFjMEagYqphYl8MppVFDw98LtMjz9hoBQHrtGQbsO4Q7UatwdHFlY59B7Jn8wba9e7PE8GCJ1HaHHCqUgkWlrxJ1t8xQYyUxD54xpwUWR62VTJGth9qK5dKSUtNQS43wcRUe+986jfkysljzFi/lVN7f6Nhq3ZUql1XF2pQC4JOdS4vLcOWRsrj7ES81boVyuFVypOEZs0pX7UaAMXsrKhbqjjPmzansU8VCki197Rk6TK8+rIJpQoUpP6XTShXxYeolGTKpqchmJpSrmYdbNzcKVHFB7mtHW9zEX5wgjgpilWDiGlMgHh5m7Op4T2IShc9/JPjf/GAzYEXQAAwB20SbrUgCPNzvK4AxudKwnUWBGF31t8zgL7AZcDmQz1gIWYhGmUKw6f8wbXbEWxZ2YbUNCX+P15h37EQWjX2om/X8ngUscXBzpwjp0Jo39yT7iNOcOF6BI1qF6Zv17JULufC5l2PGNCtHHNXX6dIQRtKFrMjKjaN3h1Ls2zDHfp2Kcudh9EoVRqKF7Wl4+CjWFuZ0LFFMZrW1SbGbgTF0Kt9SZb/GETvjiW4GaTdlsWngjNbdj9l7MAq/PR7MHuPvcDERIqrowVrZtclIdMKd9dc8bs/2UnhT8f+nxCwQhGj11Lq5zeVgLXb9GpwAWaM8tOrt32HiDdvDMIKqUrxn8n/NAEbI+V3hBLzJoIDWzfx4skjQh8/JE6hQCNocC9clKIlS1GwmCd7Nviz5+5T7Jyc3nv+vBCwsfI2EzGik0rZsmop7br35sGdWwCUr1yVg79sp4ffCA7+so3yVbTE/PhhEE3bdmS7/0rafNuLR3duEZOWTnHvCpz67VfaDhjCmd93UaJiZTw9vLCx14/zWxn5YvhrCFj8uS9nK/97tSAkEskSiUTSQCKReEokkprAbsAK2Cpon8wVwCSJRNJBIpF4A1uAZOB9G1UtBcyBdnlZrEqlpt+oA9y5H0nPThXoM/IAXQbuoUwJB4LP92Xb6q9oVLcoXsXscbA35/LNN6Smq3kUEodKpSE5RcmtoGiev0rk2LmXSKQSIqJSsbXWxpVPnH9FUoqSY+de8fxVIjeDojl3JYIhU84RGpbELv/mPApJ4EZQDDeCYjh5IVxrHxjGy7Bkzl2L5Ny1SF68TuL4+XCSkpWcuBDGheuR3L4fw9Y9T3j8LIHEpDzomv6H4Oc3FTf3qvj5TQWyVK3WbgNg56Z1xObQWJi0eCXHHoXqkS9gQL6fM+5fv8qFo4dp2rErC7bv5tDTMA4+fsXMDVtp3L4zVjY2NO3UDbXItkJ/F1RKJZdOHScs9AU3LwRy80IgYaEvuHL2FKnJSVw+c5IHt2/w4PYNHt25RUpyEpdPnSD8ZSg3L57n8Y0rRL1+xe3A06SlJHPn/FlC7t0hMf6/Ucr5IUm4X4H6gDMQjTbu+50gCA+zXn/XiDEY/UaM+znm0POAs8Z8AX/g8Id6wJ3bViAsPB5LCxNS05RMG12P5l8WRyakih6jVmbgN+UsF66/IWBBA2pW1lYjJKUocbQ3Jyo6FVdnC1JSlSAIWFmaoIhJw83Fktj4dGysZGg0Agt+uMXc1Tf5ZXVTOjYvopc8U8Sm4+ZsQUyclsiz5zcjOl6Fq5MFiUmZyGRSeo89TYOaBRg9rJHhYv9jHrAiJlUvgaZQJOBWtJfu73fKVsY84DQjXm2ayjA2/bl6wI/v3GLpuOH4HzmDmZFk1Yfir/KAUSoxt7AgIS5WlwhMTU7CwdGJWEUUji6upKWkACAzNycuWoGTqxsJcbFY29gSlphIWkoyNvYOJERHY+fsTHpqKk62tsjk+hHS/48e8GfViuxTqRCpaRnUrlYE/+9bYmqadZNV4ruh3n8YSYue+1k4uTYPg+Oo4u2CqamMq7ciGTe4Kt8tuUL/buU4fy0CBIG61Qvy465HzBlbkyXrb1OzsgvX7ypYtPYOy6bX4dKNSLq09ODm/RhkMgnVvJ3Zvj+EXh1KcvBUKHWruSOXS7n9IJaxA7wZMesqDnbmFClghYW5HIlUwuyVN4gMGm248eF/iID9Rm4gYMMxfAd9hf8q3+zxUb8RsHabnrYrGMaA4b9BwGkpyUz6tiMvHj/Cu0YtqtSpj0+9BhQvX8Govq8x/FUEfPnYESpWr8nyGZN1oYYHt28wdvZCZo8eyreDhnIxKwlX/6vWHN2zE98pM9i2ZjllKlYhNi2NZ/fv0X6QHz8vXUjTrt15cO0KdRs3o0iJknrnyifgfxASiURwc7VjzPCvGD+qlf4DqE4SP0idyuJVpwl9Hc8Piztqx/JIKJmZKtr1+JGXr+NRqTWoVGqUSjUqlQaJRIKdrTl2tuakZ2h4FhpDnZpeTBrVjMBLIazdfBErS1MmjWlFv14NEASBAiVGcPzgd1Ss4KF/LjFSzVrDB43l5brysrWLsXnFiF1mJEsta6j7Z+663DNPw3TkmqZUEhetMNALyBDJXGeKjAGkixBwXshHDMYISWw8L8k2Y/PmXu/buDjuXr7ArfNnuXrmFEWKF2fyyrU4ubqJHi9GzqZGzmUuN8zDF7YS/zJ/lWz43MREvsG1QEHu3bhGYQ/tzsJhoS+oWK0Gl8+cpFqd+oS/CtXO6+Glt9cd5O1L7G26eGZM7J6LXReAmci42BrURqogPjUBf1Y7Yviv6E+HNj55OqZFkzK07f4jgiDwPDQWJwdz7O3eX84S8jwGG2sz3NzsMTWVc2RX9mZ+oiIyQIbanGHjd7H1l6tcvRFKuTLuXD83k1qNZlGnllY34MKlYGxszClf7u9R2/8noFDE63YfyB7L3sXgnYZrQEAAXfoPNvBsc5NvPsDO0ZGGrdrSsFVbVEolW5d9T/8mdZnuv4mqdev/o2tzdHFl+tCB9Bs9nhP7fwegZoMvmTliCBMXLGXNvBlUr9sAgKjwMGo2EAm//YfxWQmyd2hbM8/HeJctgFQqYdiE3ynhM5+2PbageU//+7MXMXzRYg0bt13L03kuX3vBgT+CkMul9P6mJmcOjkIQBMLC4zlw5BZnAh8yc8Fexo34SrQj6f8D/IYtx61gB/yGLdcfc3PDz89PN+bv78+Zp2FMy9EUkY8Pg9zEhP4Tp/Gd/0ZmDu5D0PWr//SS8vER+KxCEELKTvEGgPeEIACWrD7Dtl03sLO14E5QOLY25lStVAgnB0vSM1SYmsjYtKozSckZfNF8DTbWZtT0KcqaxZ0M5zTiAYvFcAWpNUdP3OPAkds8eBSOZzFn1q7si4W1SBvtZx6CUCgScCvyre7vqAitN+RWsEP2WI7miKC3hnFZY3Hd/3oIwti8186eYt6wQSzasYfSFbNrqP/OEET0mwjcChYSDUFcOn2CanXqE/FaKw2ZH4IwxGflAf+v6Nu9rmXkQwAAIABJREFUBpGKJCKjErGwMEERk8yLl3FERCay+8A97GzN0WgEOvT+iZZNy7B6YTt+3XuH2YuOkZZmhHA/ABKJhK+aVSJgRR8Cj01l6/rBWFgYSZb9i6FQJPzpmKurPb5D2gDgO6QNrq4OuLo6ZI/5+hro7Obj41CjYWPGLlrBxB6def085B9Zw70bV4mLVrBy5lT2bd/Cvu1bWDlzKrHRChZPGcfNS+f5cflifly+mMiwV38+4X8M/wkPGCAlJYNd++6ybstFnr+Mw8XJmviENCwtTNAIGqKik2nRqDS7fuyJRAKLVp1l8pw/2LGhB990rJo9Zx48YNEGBPjwygb4xz1gvxH+BKw/iu+gFvivHKwdG7kua+xr/FcPzTaWWYjHgGPLGZBvvgf88R7wOywY6UupCpXoOGAI8Pd6wAgCMpkMZWamrmxMrVJhYmpKRno6ZubmqFQqXoY85fi+3bgVKkyZCpUoU7EyEonks/KAVSoVFR3N/7tVEILy5J+SjyAIxMcnkZCQjFKpRqlUkZmpwsREhre3JxKpnLt3Q7h0+QEuLva4uzni5uaAu7sj1tYWnD17hwmT1wGw5PshNGiQqz3WmI6CtO4HX0ucCM84ilfYfDw0FwzHRHYAAAy60BSKGNzcs798Hodpu8vLFM7Ovp8LCdcl0jJEyA/EyfJjNRfyomObF80FMVI0MRKzFyM1Y+VPecGHlse9W/+kft1p3KYDTdtpK33iRYgqL18i9iJCOMYgpq0A2deQEBfL3JG+3Lt+leYdu3DqwF6i30Sw89ItPEqWNrouMRh7H8TWIPZFDOJf5h8CtVrN/GGDOLN/z3+3CuJ9WPD9Dn7afpJXrxTI5VIcHGwwNZXz6pWCjAwlHh7uPL7/I2bmcipVKkGlStpdDuLiEjlx8gbHjl/n2PEbWFtbMHN6b7p2+dJgp4DPEWIeqXZcvOU3Zw2uq6szfQf7snldAH0H++KS5cW+G+sqUsWQj78fsYoooyVp/zQe3r7Jm7BXHLj1CFMLC1wLFuL+jetMH9yXxLcJ1GncnHHzF+v0Lf5t0Gg0CBoNdy5d4OHNvCXmPwSfP8MAiYkpXLr8EE8Pd9683snb2AP8tHkiRYu4UqCAE+sDRvPkwWbMzLRv8v37L5g1eytf1BmKR/Fv2Lb9BFWrlOLsqeU8frCVb7o1/izJV6FQ6P3t5+eHW4E2+A1dmmvceMtvwNptKBQxOtslq/15HBbFktX+emPnQsL1OtPy8c8hNurfS8AmJqaYmJhibqkNsTVt35mg61co7FmcZTv2cP74EZ4+CPqHV2kcO/1X0a68F3N8+9FlyPBPPv/nxzI5EBYWzdRpG/Eq1RNbG0uWLR6Cra0V3brPpe+AxXzbrRHBD7cwcMDXSKVS9vweyJeNR9Psq/EkJ6cxd3Y/oiP3cujAAoYNbU/JkoXz3GH0T0GUbHOUeykUCgICAgAIWLsPhSI+azzegGxdXZ3xHdITAN8hPfU8Y0Dn+eZEvuf774G2vffvez/UajU3L13g1MF9KEUkPXPixdPHOOQQa3ctUJAtJ84zffU6vEqXpbvvcPw6tuLNvzRBd/fyBQZ/N5sdV+/Svt+gPz8gj/jsCDgyMo516w/Q4MuRVKo6gIS3yVy7tIaft02hTBntluDnLwRx+vgS+vX9ChMTOQ8fvqR2vREsXrqLIYNbE/rsFxYvGkLjxj46r/jfitxEC39CtgEBusYHX19tm6/vkHa6MIS2MsGQbP395xEVeUuvBTgf/36kpaSgUil1Ogx/NcJfhtK1fg0WjB/J9oDVtKpcmoAFswm6fhWVSNy1dbeePH/yiL0//airv3d2L6DziLsNGkrS2wR+WffD37L+vECj0fDo9g1qN2+JpbWRhPpH4rNKwlWrVpGnIa9o3KwFHbp+Q6NmzTEzMzPo225ZtRzzAjZSrrIPP/2wki2rlzF82iw69x1o1MMVzXrmIdEjZmssE5sYF2vgQZa1MUww+Pn5ERAQoLfDQ+5WXp1ozdAFBrYAl19EGXhH6UqlqEC5WLLMWLWB2J0xVjv5ocLleREzN4aPrUIQG5MZmVMs4WYsqZQz037vxjXOHT1EUQ8vPEqWwrNkaaxtbBEEAUEQkEmlmFvod2saez4XThxD+MsXrP51r25cLNOfLCKmDuL3PEnEqw25f48Lfxzi8I6f6Oo3go4DfJFIJLwJCebAz1u5ePwoTdp1YPDkGQb34cm9O8wbMwypVMq4Od9TtXZ2wjpTrebOlUtM7PstY+YuonnHLrpr+1BY5SF+LPZ8iAnNJ2Vm8vzhA2YO6MFPl27rxpsVdvzvVkGcPbOLMjXaYZJLUCM3AU8bOpCzfxwiIS6W6nUbMHvNegoV83jv/H8XAb/bi6xb/yFMX54dQy1rI9Nr2TUg2hxNDH6+vQxFayRF9I5/h+AUw/c33Ui5Vz4B/7UE/OzxQ1bPmc6DO7do1eUbYiIjefH0CaEhwaQmJ4NEglQqRRAErG1sKVm2PMXLlEUul5MQH096WipyuQlyE60oe2pKMo/u3eHnkxexzaGdmxcCTk5K4v6t6zy6cwtbeweKepXAoXARnNwLIJVKyUhLY+vShRzbtYMW3XrwRZPmeNeopTveIutcT+7dYfrgvuy8fFv0Pmg0Gk7t3c2y6ZOYG7CJL75sAmQ/XyGPHjCyazsq16xN0/Ydqd6wCWYfWI3xVxDwrZvXmdm/B50GD6N9/8G68f80AQuaV8SpDHUUjCkXZSqVyGSyD4rr/h0EnHs33vPPInRe6OqJww08WDEPGADhtUEVAxJxfYl8AjaOv4uAkxLfsnTKeAKP/0G/kePoOmAI5hYWRslaKpGgiHzDs8cPCXn0EEEQsLGzx9zSEpVSqf1PpSQ9I4P6zb6iQJGiesf/GQGrVCr8583k6rnTvAwJppR3RcpXqUZSYgJhz5/z8nkIKYmJFPTwJDU5ibJVqjFs7vcGOh2CIPDi3h3KVvFBIpHQtnJpVu85RLESpYwqlJ09cpCVs6ex6/wNTExM9J6vhLhYTu7bw8n9vxPy6D5DpsykTY8+f5oQ/9QEnJGeTsfqFRgycy4NWrfXey2fgPNAwHn5QP+THnBstIJ6xQvqbHJ6u2JeLcJrDJBPwMC/k4DDQp9r46brt/Jly9bvtYU8NAYYud9/RsCP7t5mYt9vmbP2R0pXrIJpLq3hpMxMUpOTiAh9gVKppGwVQwGsyLBXrJg4hmtnTrL+8CkqVK/J6plTeXr/Hgs2/4ydnWG7/bvdmn07taKCTw38Jk8XrQcHePIgiPmjhyIIAp37D6FRm/ZGPeJPTcC7N63jwqnjzNnyi4Htpybgzy4J97lj6tLVnH8WoRd+cHLJkTDL1bKb3777+aOwhxfz125m9dzp//RSAAh5+ADvajWoVOMLA/J9B0trG0p4VxQlX5VSyeQeXSjhXZGWXbsTHHQXAN9psyjk4Ylvm+ZERYSJziuRSJixIoBzRw8zoX8PkpMSRe2Kly3P+sOn6D1yHMf27KRdldKsnT+ThNgYUftPibNHDtCgVZ426/mf8VkR8L/ZW4+LNqxWAPS20XkHsRIuf39/oqKi9EMN+fh/A9eChTA1/bhdLT4VPjQsZwyPb99Eo1YzYPJ0SpSvwLNHDwCQy+VMWLySZh260KtJXS6eOCp6fIEiRdl2PBA7ewd6NarDjfPnePb4Ia+e6etZyGQyGrRszYqd+1h/+DQJsTEMaPEl8THR//PaPwTtevZl74/r3qua+KnwWXXC7b4YRZmKBQzGjf30Ffv5rNJoiI+ONtg7TC1C7rHRChyc9e2kEonB8csmjmbf1k206zOAsd9nSzEuHD2UvVs20r7PAMblGBcLTdxLUIOpPZEJ+hlosQ+KWmNI4CpNmsEYQLpYG7CRsMLfuc36x9jl1fZjIfZsgPHnSwwJCQmYW1rptWsr83C/8tKOnSDSivzuOVJmZnLl/FkyMjNJNdKua+w9f9feW6hsOeKiowiPCOfSmZPUa9VWr/3564G+eFWuyrzhg2jQuh29x03BzMLCIGQzdP4SyuzbzaLJYxE0GuJjoukyeCjdR4zFLJdtEa/iTFvuz/rv5/JNHR+WbNtF5Vq1AfHPv7HQmViFR0quMe/GzclYNJ+Qu7cp51NddJ5Phc/KAy5avOSfG/0JlkwcTStvL5ZMHK03Hh+t/626bOJo2lcowfJJYwzG21YozrKs4+Ojo9m3dRMA+7Zs1M0THx3N3i0bAdibYzwf/024FizEq2dP/7Rx4a9E2Itn+LZqwtu4WD1HIa8wM7eg7tdtmd6rC8F3blG/teHP9Qo1vyDg2DkU4WEMbFyby8f/EP0F27hdJzafucyWc1d5GxfLz6uX8yZLvlIMgyZOo1q9BgQ/uPc/r//PIJVKadOrH5N7dmb5xNEE37vz153rL5v5L4ClldVHHR8XrRAlxSXvIdX9WzfpfvLEx+Qg262bdJ5wu979AWjXZ4DOM3ZwcaF9nwEAtM8xno//JoqVKIln6bKc2LfnbztnaPATfvFfxfwRQxjQrD4DmzWgZbcezN/yC3aO79/G3hg0Gg0JMdH0mjAVe2cXCpcoiYmR0IqtgyPT1m5m5MJl/LhwNk2LudCpalm2rVgsSsbbL93i6297Mbh5Qyb06sr1wDOidg9u3aB24+b/0/oBkhISUBvx/gVB4OH1qzi5F6DToKFcOXmcIS0a0qlyaXrVzdtuPB+Cz6oK4l6CuPeQlxDEwvEj9cIC8dHRtPL20r2+P+gZDi4uurBC2979Gb1wme71FZPGaMMNvfszJocXkRATY0CyUhANd4iFIIxlxMVDEB/+c/TfGoL42IqHTxGCyMuGlGIQq45430abq2d/h7WNDX1HT3iv7ceGIJQaDYIg0KdhLcr5VKe8T3W8ypTDs0zZD+roMqZql65ScemPQ8wf0heJREKL7r15FfyYCrXq0GvcZD1bsfsoKJVEhb1m5qDeFC/nTbNOXalcu56BEE9aagpn9+7mt40BmJiaMXHJKspWropcKkWlUlG/qDOBL6ORZ/UDiJ0r52c/Iz2dgzt+Iuj6Fe5cu0JCTAwIAu5FiyKTyek+fgo+DRuTmpREwHcTeHr3NiXKeWNhZYWpmTmHtm9h5oateJQqS58GNf67ZWifgoDFYsBLJo5m75aNBqT6oTHgrPUZnMvYRzmfgP+bBDy8Sxtaf9OLZu07vdf2Ywk4U63Gf9Y0bgSeYcPxQORyeZ6Sbu8j4OS3b+lftyrrz17FzsmZxNgYRrZqwoRV6yifo0HjfTsVJ8bHsX/rJs7/cQhHF1cWbNult763cXHs3ehPwWKehAY/4Y9dO2jaoTMjZ8xDKpPR0NONk09e69qZxc6VmJzMD7O/o/vQkWjUano1rkPZKlUZPGMeRUqUIj01hTcvQ/l55VIkcjmNOnVl+eihJMRE0/zbXpiZmKDMyCA2KpLMzAyW7jqARCKhUUH7fALODWMEHBn5xqB4PFOlIi01BStrG5LeJmBta0dmRgZJiYkGpJoXYex8As4nYGNzAqQlJdK6chmOBIVgaW39XtuPJeDl303k/vWrLPp5N7YOjoD4c2QM7yNggEld29Jt+Fgq162PVCLhu15dad27PzUaN9PZfshW8SqlkiEtv6SIVwm6+o6gTGWt9vSCkb4kxcdhY2tH0PWrOLm5k5qcxDeDh9K2Rx8GtmpCYU8vRs/5Hlt7B9Fz/b59CyunT8bW3oG5G38i8vUrpg7sxeDv5tAhS7geIDU5if5f1iY5MYG05GRqNGmOd83aWFtaYmJqhomZKT71GuLk5g7wyQn4s6qCeJuRIep9CoJgtDKhTe/+jFqQLcf48M4t1s/+jqkBmxjfpQ1DZs7n7P49jF26xqiIc058ig9+XkShxYhKzLM3Rmh5ITqxL2NjH9y8EJUYxO5jXgjJmO2naOb4UIjSn5HzB928jleZsphbWenWaGytYs+H2PsgFxl78+olR3ft4Jcrd7HJ0Qxh7EtX7Jk3ZhuXqnWAJCZmxCQmE52cjolMQvSbCOR2jsSlZldC2Jp/QHOEVMr8n/dwfNcOpvXrzqazVwh98pjT+/ew8+o9XAoURJmZyaJxwzm6cwfFK1QiU63m+227WD1jCkPafcWm44GYmRjuZlCtTn1kcjkd+w5g+uA+SJDQsvM3VK1dV++LwNTOnlnrNzNzcF9afduLoTPnI5VKsfmb9Ik/qyTc0omjaePtxdJcFQzvq0w4kCOJBlCsZGn6T56OvbMLQ2bOp2KtOnQdOuqzkaHMx+eH0ODHzBk+mC4Dff/yc/26bg1ff9tbj3w/NUzMzFDmKDuLi4rE4X/UI7Z3cqaL7wgq1KzNzyuWUMjTi4ZtOtC/SV1O/v4bJqamTFm5ls2nL1PKuyIA1rZ2jJz7PanJyRzdtUN03sIenlSoVoNnjx6y+/Idfr92j5lr1lOqQiU9u6SEeGYM6kPr7r0ZNmvB364D/lkR8L6sCobc5V7vq0xo07u/Xhw3IvQF1vb2LB07jPLVarB18XzehIb+q5s88vF54+hvv9Kyy7c0a9/5Lz9XcNBdPEqW/kvPYW5pxbN7t9g+7zuG1KpARmoqNv9jVcU7DJ4+h2O7dhAV9prxy3+g8yA/bpw/C2i9/xLlvfXsLa2sGTZjLluWLzbamDF91VrOH/+DrSuXir4OYGFlTeUv6nDu8AHevAr9qGv4X/BZEXC7rLKu3OVeujKw3v1142O+X86ee0/1wg/5yMc/gajwMDxK/bWk+A5Dp89l3bwZJCXE/2XnaOs3mifXr6B4Fcrs3YdZeOjUR3uODi6uFCtZmgt/HGLB0IH8vHo51ep/+d5j6rdsTdP2nRjfqysZIs0n965dITE+jqp1jO/XKDcxYdqaDTi4uHBw+9aPuob/BZ9VEu58VNIHx4BBm6RQq1TI5HLUajVSqZTklGRePH5E2So+3Aw8Q8WatYkKf00hz+JIpVI9e4lEgkQiQaPRIJPJtLu9mpjoWhRz2797CN/Zq1Qq5HK5gb2JiYmo/bu5ctorlUqD+dMyM5HL5Xr2GkEQXY86qyQp9/xiH5iPjQF/bAz33xADzkuM/0MTrz8uXcjToLuMW7AUt0KF/3Te/zUGnJmRwdLJYwm6fpWVvx/B3inbKzWapM1DDDgmKQ2pTKbdJy3reZMKauQmJmjUaiRZz4Sg0WBvZWFwvDF9bNC2Ny8cPpgOA305/fsu5m7ajkuBgno2YvdWEARmDu6LqZkZ09es192nd8/nni0bWff9XMbNX0zTdp1Eu/9CHgQxtms7tp67prtnxmLAVf7LuyIfD4vLU0b99uULrJk8joU797Fw6AB8GjTGzMqKi4cPMH7NeqZ904EB0+cQeEArZl23VTs2zZ3OvB17WDx8MLVbtiItJYXb584wfvU6pn7bkYHT53LuwO8A1Mthv3nBbAqXKKU9b+Bpxq1az+oJI2ndbxDn383fuh0/zp3O7O17WDpyMFXqN9LZj1wRwKwenek7bRYXDu0DoM7X7fh56ULGr9vK6tG+VKzXEIA3L1/QedQkFvbpwreTZ3Ll8H5kMjnVm7dkx8JZTNqyC/8xvlSo1xALKyuuHT3M8OUBzOvdhZ6TZ/L09nU6jxxvcL/k0g+vChBT7DJm+6GqYZ+iwuTvbFH+0POnp6UxZ/hgLp8+wdLtv+FTpx5gnBTFCFgs8Wqg4rVmOQ9vXGXq2i26Sot3MPbeiBGNsXs48tuOfN2rn+7zUq91O479so1BsxayZMQgved5UVbZFsCFIwe5f+UStk5O2Dk6YmJmTlxUJNER4br/0pKTqFyvIddOHmP2TzvxKl/B4PzGriE9NQXfZg2YsCqAslW1rcM5OeHhjWusnjSGhu060XXYKIPjl40YjJmFJdNWBujGjCmsVbQ3zSfg3DBGwEq1moSYaBxcXElKiMfCyhqlRkN6SjI29g7ERyuwd3YhPTUFQQBzS0vexkRjn2VvbmWNBEjLsk+IVmDn7EJ6aiqgb/82Lg6LrIdeZx+jwM4pt30M9i4uuvW8s7ewtSMhJho7J2c9e0VkFPYuriRnrQcgJTkZa3sH3sZEY+vkTEaWvZmlJYmxMdg5u+jsZRJIT9G3V2dmYGZh6KHkE/DH431e/JIp43AvVIQeQ0cCn5aANRoNY1s1YdDsBVSuVcfA9lMQ8LPwMGzsHUhP/b/2zjwsqqoN4L93ZtgREFAURXEXFQVxX0AtS9PKsjLrq6xss/2rbLHF+iqt1GzRSs3cSsssd03NNdcQ911BFlcUNxBEmPP9cS8wwKCgwLjc3/OcZ+49973nvPfMnXfOPee970kDtLHglOPH7d7P/jbzLi9070x4h0gsTs6cOXmCi5mZ+FWpin/VQPyqBrLsj984knCQo/Hx9Or/LH1fft1u/ZfyvPlh8CC8/f158AVtIj7HJvSPbEm12nVxcnbG08eHVz7/qtC55w4l8la/vjRp0ZrXh47A2cWl3AzwdTUGXFK+/+BtzBYLbz5wF4diDzDx80+YOWY0h2IP8E6fXlicnPj8hadYNWcmq+b8yRcvPI3JYmHQg/dwOO4As8aOZsqwIRyOO8CgB+/B7OTE12+8zKo5fxaSP5IQx8/Dh/Dz8CEcjovl3b73YDY7MezFp/ln7kz+mTuTYS8+jcli5ovnn+JwXGw++VEDX8FssfDlS8+yZu5M1sydyZcvPYvZYuHjR+7j6MFYpo/8jOkjP+N44kGGPHofZouFUf99jnXzZ7F+wWxG/fc5zGYLQx7V5GeM/Iz543/g6MFYPn5Ek//m1efYsnKZo7+amxIvbx/Onk4p1TKPH0pk5KsDeLJ1U1zd3akf3qJUy7fFbLbY/F5m8vkLT3Hy+FFeu6sr8Xt257ufM/UxWaUUKceOErdrJ7VCGvPsh0N47ctR9HvzXXo++gTNO3Zi65p/eGvUOKZt3Vek8b0cEVFdWD1/Tr5htCPxB/ENqMLJY0dxcXOjTuOmds+tUaceYxcs48TRI4wZ+r8rqv9Kua78gEtKoxatcfesQETULVSpUZOmbduDyUSVGjVpHtUFNw9Pwjt2ol7TsFz3TXfPCoRHdSYgqCbpqalkZWUREFST8KjOuHl40rh1G+o0znNlyZWvFkST1lp0poCgGoRHdsHN05Owjp2o2zQsn3yDiJYEBNXIJ1+7SVPcPDxp1iGSOjbybp4VaNqxE5WCahLSqi0A/oFBhHbshKuHJ03aRVI7NAz09cRcPT0J7diJykE1adiqLRYnC5WCatJUlw9tH0lQOU0IGeTnwO6dtOl8K2dOpVDB24eF06dxPi2VOiGNqRPSCE8v7xKVd+70KT5+/CHa3N6Dz2YuoHI1+0H5r4TE2AMsnD6V1HNnUVYrYjLR5s57CO/YiRr1G7Bt7Rrid+/iw0f7YDab+ajfg9x6f1+CQxoRu2MrjfSXKkSE8as3snbhPBb+MonR7w6kY8+7adq2A2EdonBxd8fJxYULGRlX5QraPKoz333wNtvXryVUj5L24h2dqRvajHuefJZb7utzyfM9PCswaOR3PBzVkrsfeZyGDUOuWJeScEMPQaScPMHCXyZz79MDWPL7NOo3C8cK7N0cQ5fefZg59jtufaAv+7dtwWq1Uq9pGEumT6VX/+dYOuNX6oc1R1kV+7Zu0uTHfcet92vyAHVDm+XKr5o7kxoNtC9t/9bNdL73ARZOmUiHO+/mgC5fJ7QZf0+fxt39n2XZH7/lGub9WzfTodd9zP3xe7rc3zef/JLff6Xbo/1ZNXO6ZmiB+L27ad3tThZO+IHIex8kbvsWEKFW46as/GMa3fo9wz+6vNkkHNi6iY697mf+Tz8Q1ftBjsfH0bBFq0LtZQxBXD2XGoJ4KKo18fv34uTkjKe3N34BVagT0pgDu3aQeGA/k5atpUr1oHxDEEmxB0g5fgxlNmO2WFBWK9bsbKzWbH74+APqh7fgsbfzB3ovuCLGxcxMziQf58SRw7np5NEjpJ07y8X086SdO8f51HOICM07RLF/xzZ2bNxA9wcepnJgNUwmIfXsWaaMGokgXMhIp2aDELr/px/paWl0f+RxhjzTj31bNnHulNbDn7XvEE52gr0fS0xg5ZyZ7Ph3Hbtjounx6BPMmzSekfP+pvJlJigv9/LPvCkTWDh1MgO/+o5qdeoxcuDLVK1Ry+64ry0VbVbamPT1cLasX8vzb71HdlYWVquVJs1b5AauL+0hiOuqB3wq+Tj7t28lvH0k29avoVJgNQCSjxyhccvWbFyxlIbhERxN0MPZWSwcit1Pemoq8Xt24+LqhhVF/J7dpKemcijuAMcSE4jbuR2lwNvXl8OxB0hPTSVh7x7traXsbBL27iE9NZXDsQc4npTIQT0AtVfFirny8Xt2g/7jS9DLT4rdx/GkROJ27QSgQkVfDscd4HxqKgl7duOsf/EJe3aTfu4sh+Ni85VfoaIvR2IPkJGWStK+Pbnyh/buIaNjZ47GxZJ8KJGE3TtBBE+fihyNiyUjLZVDurzZZCJp3x4y0lI5ejCWE0mJxO/ajtliplL1GuzfsolmHaPY9e96GrdoiYube7l9nzcbo2bMxaOCFyLCgV07CA5pjEU3lt8MHsQvo7/iv58OA7R4COOGfsQ/C+ZSrVYdLl7MJDsrCzGZMJvNmMxm6jYN45E337VbV3paKhuWLGL1/NlsWrWcCj4V8a8aiH+VQO2zaiA1G4bg6+2Du6cn7p6eZGZc4N+VS+lwW3c+HjMxN9ZCDk5e3tQLC+do/EFEhNqNQ9m4YhlZFzOpXqcePv6VWb94Ps2jutg1vulpqcTt2kGvJ5+hTpOm3PX408ybPJ4WXW69rPEtDt0e/A/pqam83rsnbW7rjrIq5v88gQeef7nYves+Tz/PlvVr+fT1l7A4OXEhI4PUs2d57X9D6dLz7qvWsSDXVQ946pa9uFbw4nRyMt7+/nYnt86eSsmN+JSWek6fDMub3LJWGsKkAAAgAElEQVRarbh6eHDm5Al8/Ctx7lQKbp4VuJBlLTRZlXJa6xW4uLlzLuUEXn6VOHc6BTcPrfwL59Pw8Pbh7MlkPCr6cSFdnwyzkU+1mZzI0OXPJB/Hy79SPvmU48fx8q9Mms1kW8b5NJw9vTl3MhlPX38ydXkvL49C5ZtEcss/ezKZCr7+XEg/j8WkTZbYTs55e3tp5Re4XhezYC7QWy1JD9heT7eofHs9xdJYfdheuVf7lmNRsUZKwuVeKT957BhP3B7JA08NIKxjFB8+04+IyM48OXAQFXwqlqiumOV/M+S/L1AnpDFd7rqHyG498NBjQhSHkkwMnbGZCFw+awYr58zk/XGT7cqmpqXi4uqWbzJbRLs/S5Ozp1JYOGUC51NT8fTxofezL+beA0527iV3O68y2waE37B8KV+9/yYurm7s2hxTqj1g8+DBg0urrDLlww8/HLxn80bCIzvz/sO9CaxVm5k/jCJm+d+4engw/KVnaNftTr544SnOnDzJnphoFk6ZQJM27fng4d5UDa7NrDGjid2xDWW1MvKVAbTp3pMRLz7D2ZQT7NkUzazvv6FZZGc+eewBqtasxT+zZrBx0TycXVwZ9+YLRHS9g0kfDOTUsSPEbtnI/LHf0qRDJ4Y/2Ycqterw1/jv2fHPcpxcXPnxrRcJ79qDsW8M4FzKSWK3xLBgnCb/06BX8farxKKffsiVnz/ma+pGtGb8mwM4d+okcVtjWPTjt9RvE8l3Ax6mUo1glk4aw641y3Hz9OTHN18g/NbujHtDl9+2mfljv6FJh06M6P8gATVqseinH0jcvR1ltTJmoKb/9/99jozzqeyJXl/oekVZ8SrwRlNJfHPtGeWi8u0OKxRRl73zSzJccbUGuDQ6KfZKsF1pw93Tk7A27RnU/xFmTxpPBR8fhk6eXqgXao8DO7ez6PdpzP15IpNHfsHS2X/y3tff88Rrb9EgtBmubu7241YUQUla60K+P5GjLPxlEuEdO+HjXzj+9eLpU/ELqMKgh3oTGFybP8aMYueGtUToS9SXFi5ubjRu3ZawjlE0atma9LQ0jiXG4+XrZ/desmeUbf/gqwXX4u5HniCgWnUWzfiNwYMHf1haul5XPeBhfy6gdtMwtvyzgsat2nL8kLY6sH9gdXb9u45mHaLYuzmGAH2Z7iMJ8dQPa55PXiH4Bwaya8M6mnaIYt/mGAJq1ORClpXkxHjqNGvO9tUradiqDYnxCWAFv8Bq7N24gUZtOxK7dROVqmvln0hKoFbTcHauXUXd5q04eURbiNCvajX2bdxASNuOxG3bhH81Xf5QArVCw9m9/h9N/nCe/J6YjdRv2ZaD2zbhb1N+tUZh7F2/ijrNW5Oiy1cJqs7+GK38HHlBcsvftXYV9Vq05uThJJzMJvyqBrInegON22n6V6tZE0QKXa+LiUJDEEYPuHx6wAAj3nmdhP37qBvajG0b1mEym+n32lucT0vl7KkU/CoHENK8Re5kne0wRZe7exPcoCHBDUJo0iy8kOHOKklUuxJc15kCvsg/fvIBGefP8/wnXxSSPZyYgH/VQDavWkGT1m05lpSI2WymanCtEtRYciZ+9j9mjfueno/1p26Tppw9dRKz2YJv5QAaNm9BYGC13KGgHAouiZRD28qeN68bmqe3DxM+HUyD5i355cvPOBp/kKPxB5k97jsaNG/JtwNfwdPbm7UL5rJ2wVw8vb0Z9earNGjekqlffs7R+HiSkxL5deQX1G/ektFvvYqHtzfrFsxlw8K5uHv5MOad16gX3oLfv/qClEOHSE6KZ9ao4dQJi2Di+6/j7uVFzOL5xCyej7uXNxPff506YREsnjSW5MR4khPjmT16BLXDIvh9+P9w9/ImZsl8YpZo8pPef4Naoc2ZPWp4PvmajZvy8+A3cPfyZtOSBWxasgB3L2+mf/oOwU0jWPD9CE4cSuDEoQSW/jye2mERTP5Ak49ZvIBNSxfkll87LCK3/BOHk5j57XDqhkfw03uv4+HlTcyyJWz4a16h68208zqnQflw/MhhFv7+K+99M4an3vmAL2fMpUVkJ8Z8OpjZE39k48rlTB45jPvCQ+gX1Zo3+t7LY5EtcXJ2ZtKqf3nx48+485HHCW3Vpli95rIiOzubytXte2O4uLry9cBXaBjRkp9HfMbRhIMcS0ooc512R/9LdlYWs378nuGvDmD5zBns376VT597gkdbN+XWID+yLl4scz3scV1NwhkY3KiMfHcgvR/vj19AABeyszGbzfzn5df5TwG/2KyLF4ndtYNTyclUrRlMjbpXv05iaXEhI52d0Rt44PlLex2UN5/+NovkQ0kk7t/LoqmTWbdoAfF7duPq7kHG+TTufOTx3NU1ypvraghi+My/qBXalK2rV9GwRStO6I/k/oHV2R29gabtO7JvyyYqV9dmVI8mJlGvWRjb1vxDg4iWnDx8iCxlpVJgdfZs/JfQdh3Yv2UzlapXIzNbceJQErVDw9i+9h8aNG9JYkIiguBbNZADm6Jp2Lo9cds246fP2J48nEStJmHsXr+a4GYRnDp6GCCf/MHtm/EN1HoEKYcTCdbl64S3IOVInvyejdE0aNWO+B1b8K2qlZ9yJInAhk3Zt2E1wWEtOK3LVwmqxoHNWvnx27fgG1gdk2j6FCzfYtKGUPbHRBPSpj1x2zcTGFQTUJw4nP96XS2mQm/IGUMQZT8EsWbJX4x45w2mrFiPq5tbieJF28Pe43NZD0EcP5TEx08/RmBwLf47/Ntcjx1bcoYgcn6/yYeTEBEqVwvi4K4d1G0aRuL+vfhWDkApOJV8jKC69dm/dTPBIY05cyIZBfj4V8ovXykABFKO55c/rUdJs5U3A9bs7HxeGpebhLOltIcgrqtJuMNxsTSL7MKIl5+hWp16/PXzJHZFb8CtQgV+/OhdWnfrwfeDBnI+NZXYHdtZNWcm9Vu2ZeQrzxEQXIeFv0wiKS6WbAWTPvmAsFvvYNz7A0lNTeXA9u0snTaZkPad+O61AVQOrkvMkoXsWL0CF3cPfv18MM273sHvwz/l3OkUEnbvYOVvUwhpH8W4N1+gcu36rPh1Mvti/sXi6s7vX3xEg6huTPvkHdLOnSN+13ZWTv+ZOq0i+XPEJ3j4BbDytynsi/kXs4s7q2f8THBYK379dBDpaakk7t7BP7//TMO2UUx59yWq1KrLmhk/E7clGtcKXvz++WBCu3Rn2ifvcD41jUN7d7Hyt8k06tCJH998gYDguqycPoVj8QcBE9M+G0zzrj2Y/OHbZGddJHb7Fv6eOpnQjl0Y/doAqtSph8UkhSbhnMxmTCKFkqvFgsVkypdc7ORZTCaczebCsmYzTiZTvuRiseBkNhdK9vKrezjj7WwplII9zAS4FkguhwlwSS2cXCsWlrWTzloL65QzcWM2mfIlJzvXatGP2ctPPpTEW0/+h/dGfEv9ho1wMptxs1gKJRezGVeLpVgJKPR9WZVCoFDKzM7GqlS+lF1Eumi1klUg5UwkTvtmOM4urgz8+gcsTk5k6QGibNOqebPwDajKsJeepnrdeiycMpE9mzdhcXHm+/cG0rpbT74Z+DLnzp4h6cB+Zo4dTVhUF4Y+24+qteuw7I/fiFmxFBd3d757dyBtu93J1wNf5sKFC+zetJG5E8bmylev14C5P41l29rV+eSzsi7i5lkBBbkpp31sk9jJsyrFT8OG3LyTcFM27bYbM8HZzS3PrczG7ev0mbNUKBAzIUupQm5Zrh6eZGVbyTifhqe3T6586rlUKOCGdvZUSiG3srMnk3H19st1E3PW5d18/Dl/5jQu+mrOF9LScPf2ITUlmQq+lfLJnzl5HC+/yoXkPX0qFnJDc/PI0yftzGlc3T1wMtt3QzOL4OrukU/ey1tzoyvohuZuKeyGVtCpPwd7ka2K6gE7FfOljaJ6tfZmqau62dfL196TpEq0K4sU782xvWlFxxopSHGjtJ1PTeXHr4Yxbex3PP7yazx+mVdwSxLlzV6MCXuxJKD0Vmf5d9kSfhj8Dp173cet9z2Y+5Roy/nzabobWp4bqVUpzY20wO9XQW7Mlpzfu3b/S6GYKi66G1u6jXzFQjFbNHmzSKFIgCW5lyOreN28k3CH4w4w8tXnMVssDH/pGVbPncnquTMZ/9G7mM1mPnioN0fiYpk6YihTRwwtFANh7fxZbFq6yG7MhD+//oJjB2P5vN8DmJ2c+P71AWxZvpjohbMZO/B5TGYLw5/sw/GEg8z6dhizvh3G8fhYvnyyD2aLEzO+GEzMX3OI+WsOE956AbPZwpR3XyY5IY4Fo4ezYPRwkhPiGP1sX0xmJya98wKbFs1h06I5THrnBcxmJ0Y/27eQ/A8vPobJkl9+5oiPMZstfPP0gyQnxDF39DDmfPdlPn1+HPgCGxfOYeuyxYx5YwAms4VhTzzAsYOxzP7+G2aM/IyjB2PzxZQ4e/KEo7/iG57TKSf59tMPub1pPRJjD/DrivWXNb7XA807duLux5/mUNwBRr830K7MuZQULUaKkyU3Rsqa+bMZ/tIzmM1m3n/oXo7ExfLL8KHMHvsdR+Jief+he3N/7+sWzssXU+XdvvdwOC6WP77/hl+GD80n/+NH7xWKwfJu33uKXI7eUVxXk3ABQTWp1yxci2LfISr3VV6LszNunhUIi+xEQI2aNNZjLFQuEAOhdmgYVoTMjIxCMROysq1Uql6DJh2icHX3oHHbSKrVCwGl9SbcPDxp3C4K/2pB1G+hrf7qX70Gjdpr8jWbhBOoh6MEcPXwpGZoGL7VgqgT0RoA32pBNGwbiauHJw1adySoUV5wEBcPTxq2jSwkX69Ve1w9PPLJu7i64urhScO2UfhVC6JuRBssJsmnT0jbjtRs3BSL2ULmhQxcPTxp3D4K/+o1qBfWHKs1m8pBNfPFlMh5AcSgbPhnyV+82f9Rbr2zF1MWr6R6rTqOVqnUMFss3NmvP936PsKA2yN5/5H76dTrPlp0vjV3WMvTx0eLkeKRFyPFqhTKatV/v1oMlsat22G2WAgIqklYZOfc33utRqEo3aPa3bMC4ZFdCAiqQf1m4WRnW/PJ120aRk2beA458uZLxCR2BNfVEMSrX46izR13sejniXS4sxcH9Vd8azQMYfXcmXTt+yhr588hOKQxAAd27aLlbd1ZOm0ybXv2In73TjCZqV6vAevmzaRzn0fYsHAONRo2JjPzIvE7t9H2zntZMmU8be/qzcFdO7FmZ1EjJJR1c2dwy0NPsG7+TILqNwIgYfd2Wve4h6W//ETzO+4hadd2AKqHNCF67h+06/M4G+f/SbWGmj6Hdu8g4o5erJnxM81vu5Ok3bp8wyZsWjKftvc8yMb5M/PJt+xxLyunjqdFj3tz5Ws00sqP6vs4/87/k6CGTTCbhcRdefq07nkvCbu242Q2EdSwCWvnzOCWh59g3dw/qNesGSaTmYTdO2jV7U6W/TqZNj16UcHVCc8Ca4kZQxClMwSxacNaXuhzD19PnUG43kEoyeTetT4EkS8vI4OV82ezZsFctq5ZRXBIYypXq07C3j3UC2tO2unT3PfCK5w8chirUtRu0owVf06nR7/+rJj5O7UbhyImEwe2bSGq133MmzCOqHvu5+DO7aCs1G7SlOV/TKfn40+xYuZ0vPz82RW9gV3/bqBa7TqcOXmCDnfeQ1bmBSpWqpxPPjP9PB76m7JZWRdxdXMnOz0dNw+PXFc0i5MT1swLuNvpkJT2EMS19XdwGTr1ug+rUvTUlyYK6xAJaDdGj8e0vKhevXPlq+o90u76kkU+7TuSbdVuom6PPAFAx7vuBWDxtJ/ZsXYl4bfcztYVf1OveUsSd24j7expPL182L5yKR3veZD90etQ2dpjzM61qwjvcjvbVy2lXkRrDmxcB4CXjzc7/1lKm7sfYN/6lZhFq3Pf+lU0v+V24rdEUzs0jAMb1wLg6e3N4V3byO5+F3vXrcCkv7e0d90qWna9nd2rl9KwRUviYrTy/fz92Ll6GZG9H2TPOq18s0nYvXYlLbt2Y+eqpYS0aEXsxrW4e3nj4eXF9pV/E9m7DzvXLKeyf0Va334H9RtpPYS7H9fazs3ObLC9GWIANzsGuKgVD+x5TNgz7PU9irivs5cXzlNFGI7MTPv59pBddvIKG/v67vULywEpWYUN+InMwkYqLTWVlx66j0+/H0+EbazeEnhy2KOoeML2DGVRZdr70yvJCtv2ynV1c6NTr/vo1Os+MjMy2LJmFaeOH8OvSiDOrq6sXTCH6OVLqOBTkeAGIfR8/Clili3htj4PsWXlckQpnF1d2bJqOe279SBm2RKatGrD/i0xZKSfp4JPRTYuW8Kt9z/I3Ak/cjT+ILUbNeHihQxq1KvP7JXLOZuSwsHdO6kb2pR+b3/AxmVLuO3Bhxn/8fs0aqE9YW5atZznPx3GhE8/pNtDj7B6wTwA2nfvweQvhjDst1l226E0ua56wLPijtm9CYq6YTKzC9+gOQa4IGfOnsPFLX9Acyc37R+wODEfzp46mRsjImcy7FTyCSr4Fp6c8/T1LxTzwXbyzFY+/fQJvP0r54spceH8eTx98k+2OZnEbkD2nPJtJxdduWg36M4NYYCtJTHAdnrs9vLMV2eA//l7EaOG/o8pf63Il1/UfXu1Bthez7yoHvBFO2UUpZe9+orSwV59WdnZuZNhyYcPsevf9ayeN4vt69cydPpsvH39CsWIyFlQwTbGS3paKp7ePnzc/xHSzp7l6Y+GULVGzULy6ampvHFPd4LqNaDVLbfRqFUb6jRqwsVMzXUuR75SQJX85aem4ufvb/e6ugT63LxuaH1fecPuO/VF/YVk27mRivq/+emDt3F2dc0XM+HihQvsjV6bL+ZDQHBtFhWI+dC86x3MGP4JxxMPErs1hoXjvqVxh05Mef8NPH39WDLxB3auXo6ziysT33mJZl26MeGtFzh3KoW4rTEsHj+KkLaRfPvsw1SuEczfk8awc/VynFxcmPrRWzTt3DU35kPs1hg2/jWHWk3D88V82LluFU7Ozvn0P3fqJEn7djN71AiadOjEF0/0IaBmbdbPn0kTO6sm2HvUt5cHxR9WAPsGxZ6sn3MR97U6aC+zCNkS+NCKHX3t5Znsr/ibbi0cv/e8nerHjfyCRs3CadE+Ml9+Ufdtcf2WS9JTtfdbKEq2KL1K0vmxV9+huFg+erwv7brdyZevPoeXrz8BQdVJ3LeXuF07mT1+TG6MiAPbtqCsVoa/9Cztuvfk8wH9SU9NZceGdUz/diTKamXOhHE8/eGnrPtrHusWzsfZ1TVX/qdPBnP6RDKBteoQt2sHqadPMfnzT/ht1JfMHj+Wfds2U6GiL1+8+Awde9zFJ88+wZmTJ9i18V+mfvMlrbt0xc2jcJCgicOH3rxuaGXZA47ftw+/wGr5Yib4BtqJ+RCRP4ZDbsyH7Vvw08NjnkhKIDg0nF3r11A7rEVuDAffqtXYH7OB+q07EL99M356AO2ThxKp2SSMPetWUTeidW75vlWrc3Bz/pgPAKeOHKZm46b5Yj5YTIJ/Af1zYlYkJyVQu2k4O9asokHL1mSfTbH7uqjRAy4i7yp6wGdOneLW0DrM2bCNSlWq5lf1JusBZ2Zmsm3tP/litphESNy/h+EvPcedjz9Nz379ST58CJPJRKXAauzYsJawjp3Ys2kjAUE1EBGOJsQTs2IpCXt389rI7zh2KBEUVK5WPVd+35bNeS9kJcTTIDyCzauW07B5SxZM+Ylp34zAu6IfGennsTg5YbE4Ed4xirD2kfgGBBDRrmOhP8KLmZncHlz55nVDK0uOJ8YXipmw/Z9lhWI+LBj7TaGYD5PefwNXT09iFi8gZrEWk2HyB29Qs3EY80aP4ERSAieSEpj33ZfUbhbBn8P/h1sFLzYvWcDmJQtwq+DFnG8+o1azCOZ9lyc///sRhWI+xCxegJtnhUIxH5ITEwrpH714PltXLsXDy5uf3nuduuERzPxmGCf1N/YMyp45v/5Mx1u7FTK+NyNbVq8sFLNl3V/zqFipCoG167Jo2mQeDqvPiFeeY/b4Hxj70SAaRrTk6zdextPbh3+XLmbNgjl4evuwf+tmEvfvZcqIoRxPSuRowkF+/vKzXHl3Ly/WLJiTK//1Gy/TMKIlf/zwLTUbhPDcR0MJ6xjFkGl/0va27jz13kecSk5m4hef8EG/vjzUuhmLpk/l3OnTZGdlsXL+bJ7vcUupt8llJ+FE5HngGSBYz9oBfKyUmqcfF+AD4GmgIrAeeF4ptcOmDAVcBBoqpWJt8icA/kqpnqVxMVeD2WLB3csHpRRefpVAQMSEs5sbmMDLrxJKKVxc3TGbtWbz8PIGpfDy80cg7/VLEbz8/FEo3L28Mem9PXdd3sXdM69stHoszi6gNBmzjbwAXn7+IJJbvlWvE6Xw8PLGbLZgtpioF9EKs8VC43aRuHt5E1Q/BJPZjLuXN43bRWK2WKgX0QrfylXKtW1vZkQED0/DvQ+gcvUgLBYLYR074eHlrXkrWa2ISWgQHsEDP07m99FfYzab2bM5hl3RG9i9MRp3zwqcOZGMxWLBbDJrMbrd3Tlx5DDuFbxAab9fT28fUNqrx1ituLhq8xwiouUpbdzXbHGiYuUqBATVoFJgdbz8/AluEEKHO3oCPaleux7TvhnOyvlzGPn2a7i6uVMpsBrtuvVg/45tpdomlx2CEJG7gUxgH1qP+TFgIBChlNoqIm8C7wL9gD3A+0AHoIFS6pxehgIygJlKqb42ZU+gmAZYRNT8hBN2H4/sPXKB/cejC1n2H5mSYg9oQxD/rqNJ+ygObInBr1oNhLxH+O2rV1CvRWtSDh8C0Ics1tO4XSQHtm7BL1B75MkZsti1fjX1wltw0kZ+b/R6GrWLJG5r/rCT9cObs331Chq2bMMJXd4/sBr7N64ntIOmT6WgmoAWI6JOaBhb/1lBSKs2nDiUhLPFQmCt2oWuy94YblFDBfaGIDyLGIKwV25jryL+z+25gWXvtSNX1LDCBTt5JRhqKAp7ww0lkTPbiTpWYLhizZpoXnr5AyYujSm2WiWJtWwPe7+Hon4jGXZeTCgqboQ9W1GSIQi7w4dWK3s3x9AgPIKYlcsIbd2O44cSETHhG1CFBT9P5PihRJb8Po02t3Wn5yNPsGbhPBZPn8r9z71Ez0ef4MThQygUAdWC2LpuDRFRndm7JYaA6jlhaQ/SMLwFG1csI7RNu9wwtjnyLTt1YXdMNFVqBgNwNP4gTVq0InrFUuo2CmXP1s0EBteiSvUgutWuUr5uaEqpgr4Yg0TkOaCtiGwDXgGGKqVmAIjIY8Bx4CHgB5vzvgFeE5FhSqmNpaJ9KTJv3Ghad7+TX4Z+yFsTfmP6iCG0uK0HGWlpbFu9nOeGjWbaZx/x4FuDWT9/JgCtut/FtM8+5I3xv7Js6kSq1qkLwI7VK3j6i1EsnjQGZbXy7wKtCVt2u4vfvviQV8dO44+vhtK4fVSu/HPDRjHts4/o+9YHrJ8/K7f8P77+gpohjZk2fAhNO3YC4HjCQfwDqzP508E8OuhD1sydiaubG09/NLScW83gcjRr1oidO/dx8eJFnBwUcetaJvNCBj8N/Yi3Ro1jzIfv8szgT1g+6w98/Pxp1r4jf02bwtBfZ7Jv62ZSjh/jzQfuxtnVhUE/TOC7994iuGEIG5f/TeqZM0TddS9jPhrEZ7/OYvbEH6mhu6FGL1/KO6PHMeajQTw7eAjLZv4OkCtfr8lsfhzyES063aLL/817349n9AfvMODDIayYq/3eu9i4uJYWJZqEExEzcD8wCYgA0oADQCul1L82cvOAE0qpx/R9pZ/3AOCnlLpFz5/AJXrAIvI02tAGen0GBgYGjuSkUsq+j9oVUKwXMUQkFFgLuAKpwD1KqW0i0k4XOVbglGNANTtFvQPsFJFuSqmFl6tXKTUGGFMcHcsCEYlWSrVwVP03Mkbblh1G25YdIhJdmuUVd2BpDxAGtAG+AyaKSBOb4wW70WInD6XUfmAsMFTEnsOlgYGBwc1DsYygUipTKbVfKRWtlHob2Ay8ChzVRQpOq1emcK84hw+BOsDDV6CvgYGBwQ3DlfZCTYALEIdmhLvmHBARV6AjsMbeiUqp48Aw4H96GdcyDhv+uAkw2rbsMNq27CjVti2OG9pQYB6QCFRA8254E+ihlFqgu6ENQnND24vmkhZJYTe0+5VSv+v7nsB+wBv4+1rwAzYwMDAob4ozCVcFmKJ/ngG2At2VUn/pxz8H3IBR5L2IcVuO8bWHUipVRD4ERl+F7gYGBgbXNddNLAgDAwODGw3DE8HAwMDAQdw0BlhEqorIRBFJFpEMEdkpIlE2x0VEBovIYRFJF5HlItLY5vg6ERlboMxHRESJyGsF8j8RkYSyvyrHIyLPi8hWETmrp7Ui0sPmuNGu5YiIDBCROP0e3ygiHR2t07XM1d6/uowqIj17ufpvCgMsIj7AajT/5B5ACPAi2ivTOQwEXtPzW+rHFotIBf34UqBzgaI7AQlF5C8rtQu4tklCm5RtDrRAa6eZIpKz4J3RruWEiPQBvgI+BcLRPJEWiEgNhyp2bXO1928OTwFVC6SJl61dKXXDJ7QbcvUljgtwBBhkk+cGnAOe0fe7or1cEmQjEws8izY5adbzPNCCFz3m6Ot2YHunoEXQM9q1fNt9PTC2QN4+YIijdbueUknuXz1PAfddSV03RQ8Y6AWsF5FfReS4iGwWkRckL+JyLTQvj0U5Jyil0oGVQM7r1qvRDEBnABGpifa69SS017NzYlV0AJy4CXtqImIWkQcBT7Tel9Gu5YSIOKO11aIChxaR19YGl+AK79+r4mYxwLWBAWg9q9vRHtOGAs/rx3Pe5LMX06IKgFLqPLCBvMfizsAGPX9FgfwDSqmbZqxSREJFJBW4AHyPHisEo13LE3/AzCXa2q57St4AABIQSURBVMA+V3P/2jBZRFILpNDL1X2zGGATEKOUelsptUkp9RPwNXkGOIfLxbRYRn6DsFzfXl4gf2npqH3dcLWxQox2LT2KFZfFIB+lEevmDb0M27TnchXfLAb4CLCzQN4uIGdyorgxLZYCNUUkGG1CaLmevwJoLyK+aIP5N9Vjsrr6WCFGu149J4BsShaXxYBSi3VzVC/DNl121YCbxQCvBhoUyKsPxOvbxY1psRZtZY/+aF/KGgCl1B60gfn/or1deLMbipLGCjHa9SrRf+wbsWlrna4UEZfFoEiuONZNiXH0jGM5zWq2RFuTbhBQFy04/Bm0tetyZN4EzgL3Ak2AacBhoEKBspbqcqsK5E/T83c6+nrLuW2H6jdkMBAKDAGsaK+rG+1avt9FH7QJzf5orpZfoU1k1nS0btdqKo37F204IqfzYJs8L1u/oxugHBu6B7AFrae1F3gJ/VVs/bgAg9GGKzLQHn+b2CnnPb3B/1cg/1k9/1tHX2s5t+sEtCeJC2g+kkuA2412ddj3MQA4qH8fG4FIR+t0LafSuH/1+9Ne+vhy9RuxIAwMDAwcxM0yBmxgYGBwzWEYYAMDAwMHYRhgAwMDAwdhGGADAwMDB2EYYAMDAwMHYRhgAwMDAwdhGGADAwMDB2EYYAMDAwMHYRhgAwMDAwdhGGADAwMDB2FxtAJlhYhUBx4DunMDX6eBgcEVkw7MAH5RSqU4QoEbKhaEiLiYq7TOsJ49CMqKyasG4lENLM4gZjCZEZP2ickEYtK2JSdPP26zn5tAzzflL0csYLFgMpkwmQWzyYTJbMJkEkxmk74vmMSk74t+3FYmL89sFkTfBnLLNJvNmC0mTCKa2jafJgER0bZNIKJfnohWh4DJJHq+jXzOtn5MTNoKTSbRyzUJZv0cc+65BbZ1Hcy5uujHbfLE9rheltkkWPQytDolV9Z0mSQimGzOKXie7bbZZMLfWfB10m8SlQg5i2qoLFDZNqmIfbIL5F9CVmWDugjWLJSygtWqfeq/s7w8BUo/ZlW6jLXAOVaU1UYOK8qaI6dQ1izItqKyrfqnyrcP6Nuq8DGrvm0t+vy8c/OOK6tCUzFnW6FdirYNYFWajLKVucx5ucezFFYF2UqwKiHbKvn38+Vr+1qdQrYiv4wSVL59sFq1/YtWE+nZii1nM9h8Nh1fJzMtfNwYn3jaopTKLks7ZcsN0TMUkWYmnzqbcfZCXTiNuVIzxNlm0VIx5Sax2UYKG9uSG2AzmCyIyaQZMpOp6G2zvm22yS+YZ84zxqAZYM24m7V8ewbYVNAAS4kNsKk0DfAl8srKABdljM0mE05OglOuAXYCpd/2ClBik4rYx3Y/J6lL7OcYVQGrZgTyDHBOnhWUnq0bo7x98vatKi9fs8X6vkJZTbmqaZ8q3z656iuUWEEEJaL9Q1v17WxBoZ2gaWi7L3oz5R3PaRqrbTOpvG0Aq7Xo8GDWIposJ99qUliVILrRFDQDnLufL1/bB/Rt8mSsuoyuu+jXoi0DKVhF8LQI7X3daVfRjUMZWUSfSaeKiyXrFn9Plp5Mq62UiiuO/bkarlsDLCK+pkphJ9W5BMSzGuIegMW/qWZgDQwMDIqJiFDdzYnqbk5ctCp2nMugrrtzbF0PFyK8XfntyFl3pS3GWepcVwZYREzmwA7Z1rMHEZeKoKyYq7ZDLC6OVs3AwOAGwMkkhHm7EebtRkpmNjFar/h8m4rurD+d3gqIVqU4bntdGWCcK2Rnn9iKOSACcalI3qryBgYGBqWLr7OZWyt50sXfg71pmexMvbChhqsT5A7wXD3X1/N65rmWJjd/so/FYE3ZhbqY5miNDAwMbmCOZFxk3vFz/JWcSoS3KztSL9QvzfKvqx6wUioaEBFxE6f657OPxQAKk1ewNg6cM1lmYGBgcIWkZ1vZfDaDTWcy8HYyEeHtxppT6U5HMi5mlXZd15UBzkEfEBcAEaml3PxjsxOXYXLzRbyCjeEJAwODEmFVigPnM4k+nc7Ji9mEebmSmHGxckK6SgZt4biy4Lo0wLboriIiIiapFJptPbUfLqYiFYIwVahhTNAZGBgUSUpmNhvPpLMz9QI13ZzYeu5CS2BjUvq5cnlB4ro3wDkozVM9p1dcUbxqpmQfWZPrpwu6/6PuB6hL2uxrSZACsuR92pHPd67oHodCvn10v1tsjuf00EVs5LGRyz2u1Zsjl6tSTrnYXo7kzg7kqS4F9nOvJE/eppy8jxz9847nllWgvNxrtjlmq1+efF6ZYqNz7nkF9222c9sq75socL1527b7IoKzgFPubEc65HoU2TrfKvv7lzp2KVkbx958v+TcfK1+lZuHzXl5ecpG1vb83MV4c51pc3yJ7cjb5Cvb40Uds/0kJ9/GaTdXDZtryznfdt+mfmUnL+8yVd5lW3OuWukqSP7LQHLLsT2e+22qgjKSr+6c40pBhlVhESHC25WjF7Lcj2RcLBNXs0txQ70JZw8ReQ2Y6mg9SsDDwM+OVqIEGPqWLYa+ZccDSqmRjlTgZjDA0UqpFo7Wo7gY+pYthr5ly/Wk77Wg6/XlhmZgYGBwA2EYYAMDAwMHcTMY4DGOVqCEGPqWLYa+Zcv1pK/Ddb3hx4ANDAwMrlVuhh6wgYGBwTWJYYANDAwMHMQNZ4BF5GkRWSYip0VEiUhwMc7pp8sWTK7Xor76eb1FZKeIXNA/7ylbTXPrdRGRb0TkhIikichsffmnS50z2E7bHi0j/QaISJyIZIjIRhHpeBn5KF0uQ0RiReTZstDrEvUXW18R6VTEfdqwHPSM1L/rQ3qd/YpxTqiIrBCRdP2896WcYgSUVF8RCS6ibbuVpZ43nAEG3IFFwOASnnceqGqblFIZpauaXUqsr4i0BX5Fc3gP0z+ni0jrslCwACOB3kBfoCPgBcwVkctFQtpD/vYNLW3FRKQP8BXwKRAOrAEWiEiNIuRrAfN1uXBgCPCNiPQubd1KQ18bGpO/LfeVpZ46nsB24GW0tdQuiYh4AYuBY0BL4CXgDeC/ZaijLSXS14Zu5G/bpaWvmg1KqRsyAS3Q3j4MLoZsPyD1OtL3V2BxgbwlwNQy1tEbyAQetskLQltR5vZLnDcY2F4ObbgeGFsgbx8wpAj5z4B9BfLGAWvL6Tsvqb6d9HvEvzz0u4TeqUC/y8g8B5wF3Gzy3gUOoU/+X2P6Butt26I8dbsRe8BXipuIxItIkojMFZFwRyt0Cdqi9Zpt+QtoV8b1RgBOtnUrpRKBXcWou7b+OBgnItNEpHZpKiYizrp+Bdtl0SV0K6odW4iIkx35UuMK9c0hWkSOiMjfItK5TBS8etoCq1T+pXz+AgLRjN21yh8iclxEVovIfWVdmWGANfYATwB3oz1aZwCrRaSeQ7Uqmipoj3a2HNPzy7rebOBECetej/aU0R14SpddIyJ+paibP2CmZO1SVDta9PLKkivR9whaz7I3cC/affu3iESWlZJXQVFtm3PsWiMVeB14ALgD+Bv4VUT+U5aVXhfR0ETkY2DQZcQ6K6WWX0n5Sqm1wFqb+tYAm4EX0cauSkRZ66tT0IFb7OQVi+Lqe6kiLlW3UmpBgfrWAbHAY8CIYqpZXEraLvbk7eWXFcXWVym1B83o5rBWn7R9HVhZFspdJY5u22KjlDoBDLfJihYRf2AgMKWs6r0uDDDaxM/lGiGhtCpTSmWLSDRwpT3gstb3KIV7EZUp3OMoLsXVtw1ar80fSC5Qd7ENgFIqVUR2cOXta48TaL3zkrRLUe2YBZwsRd3scSX62mM98GBpKVWKFNW2cOX3aXmzHni8LCu4Lgyw/u9U8LG3zNBdZZoCW67k/HLQdy3QFfjCJq8r2ix6iSmuviKyEbio1/WLnlcdCClJ3bp7X0Ng2ZXoaw+lVKauX1dgus2hrsCMIk5bC/QqkNcVbeXbi6Wlmz2uUF97hKENTVxrrAU+ExFXledN1BU4DBx0mFYlo+zb1pGzqWU041lFb7iH0B517tD3fW1k/sZmphn4ALgdqK3LjkczNK2uUX3bofXS3kYzZG/r+rYuB32/Q5vJvhXNdWoZ2nCN2UZmN/CCzf4wIAqoBbQG5qLNkNcsZd36oHlp9Ef7U/gKbWyvpn58EjDJRr4WkIb2BBCin5cJ9C6ne7Wk+r6C9odRD80VbYh+z9xbDrp66vdlGJrL5vv6dg39+BDgbxt5b7Re8DSgCdqY9VngtXJq25Lq+5j+GwwBGqAN62QCr5apnuXRGOWZ0FyelJ3Uz0bmIDDBZv9LIB64ABxHm61te63qq+fdpxu6TDQvhDL/Eer1ugLfoD2inwfmAEEFZBQw2GZ/GlrPJxPNeM8AGpWRfgP09roAbAQibY4tB5YXkI8CYnT5OODZcr5fi60v2njkfjS/1hRgFXBHOenZqYj7dIJ+fAJwsMA5oWhDUxloPckPKCcXtJLqi2aAd6L9IZ8FooH/lLWeRjAeAwMDAwdhuKEZGBgYOAjDABsYGBg4CMMAGxgYGDgIwwAbGBgYOAjDABsYGBg4CMMAGxgYGDgIwwAbGBgYOAjDABsYGBg4CMMAGxgYGDgIwwAbGFwDiMh3OeuXOVoXg/LDeBXZwOAaQA+qvgc4qpQql4UrDRyP0QM2KDGiEaevGlvX0fpcChFZbrPC7SuO1qcolFIrlVJ24+QWWFX69/LWzaDsMAywwZXQlrxFDK/FYOAFWYam8zRHK3KFjEPTf5OjFTEoXa6LgOwG1xx90cJLrta3P3asOpclRSm1zlGVi8g/QHU7h/5WSj15ufOVUklAkoicLXXlDByK0QM2KBEiYgbuR1vFYSrQSESaFpBZXvBRWUQ66Y/QTcpP26IRkQkiEi0iPURkp4icF5F5IuIrInVFZJmIpOkyTS9TVmMRWSgiKfo5u0Tk+ZzjSqkOSqlgO+myxtfgxsYwwAYlpQsQAPwKzEcLXt3XoRpdOTWAj4B3gafRVhoZgzZUMQ0t6L0FmKYvU1UUs9HWd/sPcBdawPoKZae2wY2CMQRhUFL6oi3QuU4ppURkFvCgiLyjrj+XGl+0lU8OAOg93TeAx5RSk/Q8AeahLf20q2AB+sq5tYFeSqltevbfJVVERMYB3fTtJGChUqp/ia/I4LrC6AEbFBsRcQHuAX6zMbbT0Cbk2jhKr6vgYI7x1dmvfy61k1etiDJSgETgexHpIyKVi5C7JEqp/kqp6kop0T8N43sTYBhgg5LQHfBBG37IYTGaESrRMIQ+9rpFRDaLyBoRCbE5dlAfl92sp0Y2x5qISIyI7BOR2SJyNY/6pwvsZ9rJz8lztVeAUsoK3Ia2AOV44KiIrBKR8KvQy+AmwTDABiWhLxCrlIrOyVDa8u1/Ag/oE3SgLcLoXOBc3wL7Y4EHlVJhwBS0sVhb7lBKhelpp03+98C7Sql6aIuSDryqKyoFlFK7lVK90f6cbkUz1vNExPh9GVwS4wYxKBYi4gn0JH/vN4dpaBNznfX9JLQxU1u6Fti3Al76tjfaqrmX0yEAqKWUmq9n/Qj0vqzy5YRS6qJSaikwAqiKZpANDIrEmIQzKC53A+5Aqoj0KnDMjLasel9gCVqP+EkR+RJtAqszcHuBc/4DzBWRDLTl7dsXOD5TnwCbi7bE/UU0X9okG5kEIOhqL+xq0CfuhqH9McUCFYE3gS1KqRRH6mZw7WMYYIPikjPG+8klZO4VkQFKqXki8g4wAOgPzAJe0T8REQuakeqilNomIk8BE9B62AAdlFJJeq97MvA6MAQQtLfvriWOAseAQUAg2vjxMrTrMzC4JEYwHoNyR0RaAKOUUq31fXcgWSnlYUe2J/CMUupOEakCbFRKVdOPNQBmKqVCCp5nc/5y4CTQB8i+Dl3l0MeSTWjubclKqfscrJJBKWGMARs4giSgnojkDB90A3YCiIiHiHjp2xa0Md6tAEqpo8BBEblDP+9J4I9i1HcvcBF4udSuoHx5H03/SEcrYlC6GD1gA4cgIo+jDS1kAWnAs0qprSJSG82omtDGltcCLymlzuvnNQUmAp5o4RsfVkqduUQ9Dch7Ky1BKXW8jC6pzBCRQLThDdDiWsQ6Uh+D0sMwwAYGBgYOwhiCMDAwMHAQhgE2MDAwcBCGATYwMDBwEIYBNjAwMHAQhgE2MDAwcBCGATYwMDBwEIYBNjAwMHAQhgE2MDAwcBD/ByywToJz2/X+AAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 360x504 with 4 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "response_plot = ['cloud TR', 'cloud ML', 'cloud PO']\n",
+    "\n",
+    "du850_plot = np.array([du850_djf_shift[response_all.index(r),\n",
+    "                                       latind_sout:latind_nort+1,\n",
+    "                                       lonind_west:lonind_east+1] \\\n",
+    "                       for r in response_plot])\n",
+    "mask_plot = np.array([du850_mask_shift[response_sel.index(r),\n",
+    "                                       latind_sout:latind_nort+1,\n",
+    "                                       lonind_west:lonind_east+1] \\\n",
+    "                      for r in response_plot])\n",
+    "\n",
+    "# box around region with jet exit strengthening\n",
+    "#lonwest = -4; loneast = 25; latsout = 52; latnort = 61\n",
+    "lonwest = -4; loneast = 26; latsout = 52; latnort = 62\n",
+    "\n",
+    "# plot\n",
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(3, 1, figsize=(5, 7),#figsize(10),\n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "ax = ax.reshape(-1)\n",
+    "labs = ['(a)', '(b)', '(c)']\n",
+    "for r in range(du850_plot.shape[0]): # loop over responses\n",
+    "    ax[r].coastlines(rasterized=True)\n",
+    "    ax[r].set_aspect('auto')\n",
+    "    ax[r].tick_params(labelsize=14)\n",
+    "    # extended North Atlantic region\n",
+    "    ax[r].set_extent([-70, 30, 30, 70], ccrs.PlateCarree())\n",
+    "    # set yticks for longitudes\n",
+    "    ax[r].set_yticks([30, 50, 70], crs=ccrs.PlateCarree())\n",
+    "    lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "    ax[r].yaxis.set_major_formatter(lat_formatter)\n",
+    "    del lat_formatter\n",
+    "    # draw box around region, for which we determine the area-mean response\n",
+    "    # left vertical line\n",
+    "    ax[r].plot([lonwest, lonwest], [latsout, latnort],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # right vertical line\n",
+    "    ax[r].plot([loneast, loneast], [latsout, latnort],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # upper horizontal line\n",
+    "    ax[r].plot([loneast, lonwest], [latnort, latnort],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # lower horizontal line\n",
+    "    ax[r].plot([lonwest, loneast], [latsout, latsout],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # jet latitude in control run\n",
+    "    ax[r].plot(lons_plot, jetlat_nh_plot, marker='x',\n",
+    "               color='k', linestyle='none', markeredgewidth=2,\n",
+    "               markersize=2, transform=ccrs.PlateCarree())\n",
+    "    # plot different effects\n",
+    "    cf0 = ax[r].pcolormesh(lons_plot, lats_plot,\n",
+    "                           du850_plot[r, :, :],\n",
+    "                           vmin=-1.5, vmax=1.5, cmap=mymap2,\n",
+    "                           rasterized=True,\n",
+    "                           transform=ccrs.PlateCarree())\n",
+    "    # stippling for significance\n",
+    "    ax[r].pcolor(lons_plot, lats_plot,\n",
+    "                 np.ma.masked_values(1*mask_plot[r, :, :], 0),\n",
+    "                 hatch='.....', alpha=0.,\n",
+    "                 rasterized=True,\n",
+    "                 transform=ccrs.PlateCarree())\n",
+    "    ax[r].set_title(response_plot[r][0:8], fontsize=16)\n",
+    "    # a), b) etc for subplots\n",
+    "    ax[r].text(0.01, 1.02, labs[r], va='bottom', ha='left',\n",
+    "                      rotation_mode='anchor', fontsize=15,\n",
+    "                      transform=ax[r].transAxes)\n",
+    "del r\n",
+    "# xaxis: longitudes\n",
+    "ax[2].set_xticks([-60, -30, 0, 30], crs=ccrs.PlateCarree())\n",
+    "lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                    degree_symbol='',\n",
+    "                                    dateline_direction_label=True)\n",
+    "ax[2].xaxis.set_major_formatter(lon_formatter)\n",
+    "del lon_formatter\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# colorbar for response\n",
+    "#clevs = [-1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5]\n",
+    "fig.subplots_adjust(bottom=0.08)#(right=0.8)\n",
+    "cbar_ax = fig.add_axes([0.13, 0.0, 0.804, 0.02]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf0, cax=cbar_ax, orientation='horizontal', extend='both')#,\n",
+    "                  #ticks=clevs)\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf0#, clevs\n",
+    "\n",
+    "fig.savefig('figure5a_5c.pdf', dpi=200, bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj\n",
+    "del response_plot, du850_plot, mask_plot\n",
+    "del lonwest, loneast, latsout, latnort"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/figure5a_5c.pdf b/pythonscripts/figure5a_5c.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..24ad293f489ba9d7e88b26b48dc85322c479af04
GIT binary patch
literal 170887
zcmY!laB<T$)HC5yU2{ia^)4<$1p|frq%1BQ8wLG<#Prl+1tSFmg&+m}kjjEo1%2nl
zlEj?+bOk#*uGG8~kU|S24Xza>?!hIAC8-J~5KV6Rc_j+Q5OzRfNl9u^o`NZe%cUPs
zl%E`&TA~oGpdaAkrl22^T2Z2)@0pvJp6UdpouRa+Lac&*a7JQEW?s628AN-8e^ORz
za*2XDh>PSLLjxrDIOgT$mlP{RgY-M+=ar=9l@u#jf^=}{yBFn`7ASzc=^U(}?~+=U
znVcHr?xdg}te_uKl$cjskXV$Oms|<+IYhmk9hbguYD#9JQ+|a)v;xR7V^bqNOLIdD
zb5jLVQv*F?17kxYQ;>}TAOlKZ;TM!zoL^d$oLZ~^3b7zAXn=yk7|Hn{$ALl><Sw_&
zoRZWc1%0=i#FA8()a3k>R0VyX)V%bP3<X0_JOzO?7MB#ICgyTg%()tUx=41r;NA1#
z37YyG5C2BErMgcInd2gMI_^f?i79V9Tu&|CAn~t`?^$8`1>=kf4^3AGi7fTLGw+>S
z`C{qkAH2H#o5l8Xs@gsL9rs70?%4kKtzzpx{=HqWkmcVUo@>%G7yDhDK7ajo`|9;e
zLc^r{OZP<n{j)ytM`^`R^%c8X?_EFqpr>Tzp6630oBisTZvJ|exnG)iSDeJgh%z&?
z>E>4J_)X*epZOZD-{`vcrqUfj{r&$w%<m7E-&g(DE9Nd=e2ZtK+MdNNW?pQDuVh4j
zWx9u(KYAL!<;Sn`k7??8G0yj7PH(?*+q0%Ddg_}8D}R4lC1^K0#qP#0?IqvpDoQou
z{zY=XJ@RzD^AxumbC!O(mzi87GW~tKc-Y^++J!$oYl<y<mYJnBO;*f^mW;f1OKr~i
zOIA~Zw^;tX*p`3mhDv$zQm@L>eb*z|glh~YPuwB(Q|a5rB0*_A&l67@Co#)!{dP)2
z``=&3KMHo-%Ky6F|MpGgS;3RM*2m5v)a9PgH<5?0Gp}mroSgN*E&e`V{*lXT_)BA>
zI@F%?8t&J#pZ&LY;q%-73P12Se+v2h{jj*mtqKQLEy1wma?gDxIjW16c<A*V{}SDr
zTqX4F(oKQS5$isLMYnD;xmV&cwda_X@TN<(fzl;cu2qU!EsB$xznSmck$Epzoy6Ca
zNxi&Wo4)reqy3UA;n{Ppor_o+;~w^y<@k!J$M4r}^>8}b^>Lf>>m?iashnATC!G5+
z-(9VlaROVu$aSs#zH)h(_vDLe#awqM1sX-STNRve3D+)q&{H08=jy68PC`kqt}&iE
zuy9ZDwq@cGPqdHr%+<VHuCQ3MC1=Vz%ZAUpu6Xa~v;8JNwQt{aCgtX?YuULu{;MZ?
zrOP|<#IEhP*cz4gHl)KV^}cAYq2=S454C}3_RLv)Xy?mcU1?JSHXpQG5Z8N1(BtNJ
zA?`ra?dLyl)nz$wa2KE9x6fI{4sn4kdy8sYm{V0|tndxI`}L~poN0Ay7i>>y{g`;#
zbg6oG(NPEPds^409(@>ht8jnZMb_j`*IpH`+IvB0uf)?{mlF1-sRnYQZNBEbZp(54
zZ#(X+JINNSCH=DYz>5!Dr3_b}uYNZvcCI1Mv22&^g~?~CVmyAaCw?^f_Ng`EWyrHR
zwFj1*=ZiO7na9xZHs_Svagi!Phm%r|dk#j{90;^{Gdus7bhP6FZj;sT>(BQ~-sfX2
zec9{ITCMxyu=tmUd$#Q860r_*>@>CP-Msq1g!yrMe!pDJ+M(0m`e_DRUSH%??TpI2
zZ|iM}OaK19TV43`?x!0(v-%J0oOST$E4#ey8TXWZtk){OGf0iu`}gtH%b%~aTb*ZK
z)NK_L<)?A|<ANDozmIpew<o;tz2di_c=v0z7e~&D+3sc9p39IcDibVnCofEL&N`lT
zyR~=ZD!(vY87)2A$K01?MaK=jS!?e(zTomW+h}MhzT&HiLi*OJ5=Q54>Go_ncdFrc
zyJbUR`i6Z>$4>o8`+4)td>-5T@A{MLB_^xi&R>{uXYG>1OPo^Yv31v3bmeuud(Nfo
zmEY`p(Y7nEOKw5NxyYtPmRm(!%~QW?%nJ4nED0{_2MZYA3lcfo5hQZ9W!j<)H*MF8
zJz-soBm=t^?W_?LIh)(P;Ki~Ra<0Zvnq6sIAS!G7f_J-L?9p(&7?Ua}a`uN;pvm&7
z3o`t+9Fu&W5nU~ER;7E<i(-on?iYL3n|3{`;&#25d(*b-*_WUlr{8ohda-$htpivj
zZIXAO$@T6mk+Xe#O^eP4+-298m3_yw>scC)<HeXYSt4h5c?Fm(p1LSw-C-e-vy}xm
z%;ozQ{m<C&L*q-1a@H-C1kF3Ke|qNCXD&+DHEeZv36Ybj4X$d`6K?tUE&so8%Q=h9
ziN`WuZ!>YTvN2U*I(~X}*K6gy&ktU_kbZ`%B>8#yMHico2D3cU*<7dZuIVYgGi|HL
z68pD58LF!KyMy!;yA86%8l<oAn;y7o$7sMZX>RG(boTItla_Cqe`><gwg9(FKX0Ac
zbj>*E1;bLehG5CSt(}XFcHUg`?M%d6)mfQ0-annqrX6rIGNN&njPx3Zq8-j__BhYJ
zbK&V?xp^P>UMJmda?6>zwxZo^_eRUy=tXJOY_mgpofco*aerpV$wL>Vvt#6b|7_rj
zRd#%l6SZ>7(Qms{uHTr^U+4JG<g|9vdY}Ah^N)VZdQ!QqR_4Ru1e>EJ-6t7NObScf
zmhH1na@wqRV@cnOe{<4ZUiR+M+?8%LYZ1E-+jE^nBa5w5PG+2XH<QOtH`Qp?rfRk3
zVDFhc$D&WA7%ZA{GQr7vCXbtTs*%LnDJK(LG$$W?+HD|tXB)@liz0W8C40h7r5HqM
zPCnQXr1n^5dD(ferUzQx29iDNr<{DSMM$k#c<sh}mbb3WJDD)ab!Jbo#fEeviTG@_
z=GVGYPG+12S**WQW=3tG+GCw8{uw>n-hfnk&*WJre$|J~+KOXxVcRRa1fw0tVvQy5
z^eFnUiLah@G9gyghi&mxBgvR{RUfwJ2NUntSWNz?GvjYyN!vxoS1)9wrgs_7E<9Qz
z=J5LI%9G~Cho^L&`tjUeYfaMAmb0;XKXP{Nw^H9=8dLH-`gP~K0}R$bT>cjXJ!brT
zNoMcIT{6rQF0cAib!3jk1<lqf$%}_wcLZIGi4FasGkNCp@ao%FnXe!F@AM(-&VL_g
znTskN2P5K>WxA$4%D-2a5^orC?BcW46IkxVWuLJ**wig3{={?LpSa7MEROy1?|1A{
zjA1z@`Rm7(hT}4iBc^}hdwTel^T}&lI=_mBBy664ueSdCx4X}8chByh|32?I^Ckh6
zRWWONkKMSrYhP?yt$*3H;2%|U-oHAz&ssh7Sm=rC`|_tn-fw)V?)aSB_cO=ytCCFf
z7oFK>*JFPB>fYB|gAJ$n*=}6Z{d{tMi}|6(37n7BuP@tnS~hx_K+VM`DMm`JXDgHR
zsuUbrFNVy%t@Hg1Yxsl7<|kLK$u6Gt?%jsNcS26f7Kf?Mu`h|9ed>bpGr!%p#rk?L
z^+r1F-{5`p!G#B6ya@qbs-g@_zBo0mo%`?T-3UubapTnG=L;WBd)6d%^Ng!Vpls`9
zjh=h+8j_6IGUjPt*nV$@U#MozlWli`H{V!2e@b_tNUxBW6T=FF&3*F6&G-1sP}^aV
zu;^_5ou2%RcJE2YwpM-i2)_RIiwDCM{%gHgtkWu7&U>)`zFPfW|J$X>Z_Y1Qwve-_
zw`zL4I{3@Uz&*eJ2o{!KPMk9@<n`hT$w1zW3<<Xv|Cn@ZY?9tI%B82?>hY?&`{Td#
zjQox3|1;&dSFQy$lA#SWXmc6da09jQj7&^TK+<5gB~qgmU$f8LQo+uS3u<D;9N)9M
zc@HS?uw0m@X~Xp3zg^&}4fWE}N>0i4Fa4|z@`>Jgv_T@Hd`HyBrGYbQU(FPn6i{sI
z5@D=r)v_f1*J*>pGj5#N_I`WVJMnwcGLj(2Kuw0a)fm*g1-Xw<Yt$6gS;nTO;RXR4
zwlD}STjs{~%xxN%W?PJdUB}eZsTrAkX-^v>#f~|!c}UJlWLR==R&hdA(T+<DD<29(
zVQ~VeolA@pEX+|t#<p*_-~j^;=jvq%ET1{sYKvCR`Fp#;KJ$XJmER6dGoJGo-yS;G
zXzuvVReytCegl_cw~FM?Z|9CK3Y&R!{W8~AEhe6G%mZKeb$dN$e*A^6!fscoY!w#g
zfjURTIM3V^#d)T^8$r%v208CEqwu$rOAr0t&iNx_iMY&(C(jPf+f=f__c{BQ=SzG)
zI|WWyWpJS+t+p`Z311kWcwC0p`mPt}9pAIhd?h{$i<3azEn=KxWN3uyrT|MmW<!oQ
zf4hD<s5IvqyuYat`|o}m<I)JjsAq@jWQC7^n8X^-biZqRkEnE7*ZYW7tylPRWLN0T
zSzXZ<bMPYf#?HB7b55I?cU}=q@o>pZiOzc=)Me(n{K<RYVsG=O-<Eh@&W)0sQ6*Va
z#v<r^GJ!K|mzZzF7F*H(!Sk%TzSkb-(=NI5@bYB&ueOKN?b^Nf9{slBW~a+8{Sy-|
z&+_K<HMx0l{RxqCHfBpEoKtWNifPJDo$&VM^u^3V28P>p9LmBM%~8!fe(AsQypKN_
z8E*%##1c55ekn15V`zpNVXpnwLd=Rh&eeVkl^g00RGLlh+FLJu+S*e}r$^O(k+#*h
zQ-_n2PaVtNvQhnz*t;Mr-sLNM)^{yWk6my&(I_}S=4?#DstqUd{5JlQs9E^w&9j#E
zq4OjTP50sCHJEC>v;FI@z&X=uRCaSWy_(W{>X3o^rSA?tzO$FNHvZ|?ugr1`nE9+X
zd)id@Y|&to^ch;w+)ZB_7g#O*#eDg{&+@(YcfQy*VDT-et4)k=jf_xpkLv{QK4wJ$
z=kIe4xi9!vFt2aZt2_19dR7;6HmGV`H{QuCT>bHc&y>79DLbssh|Yf~X;A#bYevoy
zpBH{H%2U>fJPeu7(RcdZo|g+ct6k15p2r$_^&D>&WBR0LO>dj@p7)5FpF6qM?djPs
zi?0jp%Pg0_UfKT5<MF-2A^Xl*UOl(FizAae^6Hj-6LLgO@@3m=`QAQvT43XY9I3Du
zGWR%khnK5+OVsWEWS}Z+&wuw<U`?#~;@2YS>fvhH=PO@$zKs8RYBB%OLd_TA8{eK$
z`5wPKc+$$?>h$-Sf0yq#{+oY7UYI48umX)M5EE8rCMdba*w`e*AmD;2lTccl8cJEm
zDtwx8^BJEr4LZre!79@jCzu(THeVKyT)<es=29=kpy@B-hs7PB0S#i@VS!ra+V&y}
zyyUuTb~{7P{madff6ivhqMq0wy?PxZ|2e+8mTUW7Dr?TV;=Z9n&&aj%-CB*=*GfZ9
zsl=SR^K<f{f-4VXcJ04<t8mwmi_zczUG9{fiN%4S;R|9MXl#HQQnr(<CmlB6aju@*
zBz~gj$K)rUQ`Dz^|M%9;=ww)fXD5S(e(B6j%WM=f)j0oOeE2ZQ`f2%%d1ucY*y^G$
zd|LDTLhU1WTz_tw*}H3#)zMXl4dzCFSuv-(&3E#w=UU#9+qvf*-rD(mTI~^jbCVV9
zrM=#Vc<)}#h~zq3Q2O6`ulvn%QycNwA+N58_lpOLKKrTYzo`AC*P|L64aJyh12-|D
zC&3pT`ZmX`{S@c)jc>curbCWdp3gU{+uSIv^4H4~KP$kWvNPm|U*Ma!7mWA4@#3@<
z+V(KwU9I)3jW4BUTfC`z?{@7}&$<l7x)b5*uT>N71gp6UrTA@&$m_m3@7+R;WyNj9
zk_xYGcC`gPOA23I&tsjhqkmK9#FR7KMsCY}=UG&osOz2erE==?ioc9GpNp-r1U#{g
z1S4a#+#Kjx#G=Tv`@8m+#+8S(Kg{zxyYln@Y#n1yKe2>t!_3A;-HJ}dYX{CW>hG-a
zePL2#Zgl&D)lInq{~daFrk`#~KQ!$?c*ykfz51~?J!;F_SJkDZRB!e;J7MZntFKNb
zYBv-GZIz8qhUpYHFVS2Z^mLy_bc5cjsoVUldnYYW7I~OIMfu@NQLi%J9I4e;tQIWf
zIK54;!)m6=qO!!otdG+amFAZwn;!qs?Wa_B{PDjv2CoBECS6Krzgwub*mqhiv*pgp
zRU5*zEIaJtE*@)nRkErvdC&E2UxYIs?EDu0kln8Kf4{`9o%igIy^B%83^fyC+c4&a
zsQG%ENq|AX27}-WrY2?~2AfR649txKJPe;OaWzKlj4{|KV{rP6&=DgObLXU&vm~8T
zCq^hdF4~d6_WZz^(+|Cv89r_iQ^w*PV%sxjsBvfvagIqi#5raLfl%i(85SSZ*^t90
z?jzfh%9bP{IZI*VnTBJHst<W4NLm(L1~skDHH%)x;uK=rE=I-%C_!Ty=$UuefM?HZ
z(a((xkM#B*cl3Yzf4%G_&V+;v?>T1$rKJTcIuD+Ad~z)MTF<N>vroo;+-)N&$GN>p
zJ&+}?t@<XXUcSWizZPd|KEy>?PL}dFQV_rS<%7$Kgy{}14!n`Nk~lk4{a0Jd`92R*
z=}5nL?+f0m1vLC`)-C7u+Oqc5`L~<(w!F>ux48LsrTSEVg?Z7Nn5OrJ`-mk=esOuK
zcl3+ns?DwQT0SkR;oJ0cg`!aGqB)J~Z0w62tT#O0Hor5xbwO$A{B6Apr8H&z|C^bZ
zdMZ5;R-JS6(vIjK|K?Ty{lmO0BzQiS;3B$Rg;trG`de>eR^)kY*{U}|vL`p;{N|Y<
z`rq^Cr)=UC`seZKi;KHj+_MuLYi@qrCMMY-`9m!D<9ge-hg)9R?r7(D`p9WUqRJf8
z*E?n}e|&U*>{H`w2Y2)COPVImvdv)f*QrNmo-R8WA*EjEw@Etrx=T)S?CX~z*93hu
zm=))~HBdbvBdS@uX>pIGmEV)j=Si!M>g|7@SbK1p;i5w_;jI1_QUa#gzE@iyEB@vF
z)!zG_Cf#vNMiUbf=c+tA7wPxoYPS3Fz-}c&^(B%|j07*uS(n7Mkn^aOHJ6qs>-1N}
zr|#PQ&xnoo#S&J;HnWT^QQM%lLEd?+h8(xgYwmDZ`oXto-pYIL?$$@oJ`=KvOP_h0
z;gsn-D^=}ZP3kcAsry<K`zY|!-khxTXNvFi%$EI#D2m_JcBAOxtfY<pGAH#<Yzc{2
z7<PBD^T$>VVSWbP2aT)`_sRVKD8Az0^$o2>hpSVV61=YDIUIAoDCrUDD46(rqUehy
z0qb)fzSmF)zp|!vVM$U4?=%L@eXDspXRNrnpuJ`4q*bz)KK3m65PdMVGch1K`Zh~N
z+694|_a^oV8o#|LSr{ppZEyQ>aiG!GKuLbz^qP-%je<U36n(Me(uupLoYT)csVAsB
z^PKU#K>6Xk+m76ZUkcYx^UwJ{Lo;mR2UhD-jLdug-ka2WzWRYqPt5H%KI$JXW-gZz
zUb{~&>2I@rj`!@C<J#@6A}jW2aMWFQ6fUfZIQl(hu}k?D#%s#LS2I)vc!Um}du#Bi
z;#lR)d!k#OeR0WH>>_uiPtaCl)6u7ML^mw|v*zqZnR)zb)%jccr<^&nqDAydS=EYd
z=aXfxl+XM9>kp$I!$K@QK@*}|k|wC-mT%zhTo*&0*Y`zY9x%MluAIjm6#FgT`6S1L
zLkbJ^HJ7W3eLLpO^N>B7f8Uddq0aSk_J(hab!<;Qxnlop=gAO}eWI&o&j=7tdiXbk
zWsg{izLNGS_WS**JjLg}KUgd<JweSRVNJfLn)uZ{#wmw77xo=?oE;)j?kl3RPV}tt
ziML_qo2)h~<W#5%KRU+X!g5o5!r6qyJsYP^I9epPf@>0MRKoR_(t+Jg+EcD^mMpq<
zWY?JotDk=>Gk4bi^kBuVidvr6-Wv|RSX!-9v(8EW%oiW)a!=*GAC?IVrtz}|&73=N
zs+Db0?RJO%^Ha5d{62a9^IvXJjTkK~8G_i>r3q@c!`Ns$s1`C|6lxPw<9e3H2I@&q
z6A052_t9ZL!*p?40hiJ|Hir4NJX^6?N^Dco$Q0F9*NNVfm=!o&zRzn?Zus-WX6CHW
zqW^DAX84$uO<(c1#Y=gakj`_FN`t>AKAlb3_HwJt>bbp4T}mQno@jlEXuLXC^U;~D
zE?d8DG%C9DQnvXK@AGwYLN@IPJZ81ZO4MT6^HaZ8z5BC6=hQysb|coDYnFUw1y8pn
z_6RRN8&=-_+hxM?$txE>Dw~k=qj~bNeW$L9?(j4F{Yq7Wy{T>?r_U$f1*L5ckDqB)
z6>)z1Sh)MM!-nm9IG5ybJUJoI!{@l$Z(V)i>p%DYTOFSJ{1#7mU-?ICpX}X_^$kyU
z?QC#;CvxSpt@zs4JhJak&P*=4T<iQiX2a>bj?2#fk$?T2KcFkE14}p}w|Jc(6Mwpf
z21bSox+Z4E3WnyECJKf|#>SvIKYW8X#^zl5!KFzh;E7bX{Gwdg)FNyy6M1Oov5|>E
zuz{Ir=!vIB=4MQriw@{07b`1pt8^zgrd(!VjOXIQ;!>iUh=yow^MKug&W0SXZCSaW
zoU3_je*W~*)Bkc+<}7hCa}t^|%je{jcB@m9)@b_6+Ic6n?`eOUmtv-><*Gk<gX;GS
zTpw#YpNV|Gdv)4oXOrm}mUZ05TC1dGFMFHKD$o+%wcyTS<6peFCCp*%avP%+E-Xp7
zzD=R%IKKqX!I{F{N<3b^Z2#95eGj_x-c}}mQOA^$59@wD{c`%e?jAqeK9^m4e|BXT
zF0<ltDR9gB)K!vrbkhmvC0AKYZJD#TGOW8-_0v4Vy+pF%jd15<lch4w|F7*h{+hYH
zE9eVm@R$<Y7PLTZ@VNHu<~?A*;Q|`1sZ&dvuQ7FVy|jYYodW+|)jO<&jDqhawzad&
z<I!mg{>V0Saf0a%x1ip+Zx(OJi!W__Ru#PZ>vwi7|FW_|+q0)7vAK)bMxh~E>1yl0
zlb6|$=d~@XxW$1go#@Xo6JBkqmp<hd#G&Nyabl|bajuvorpbMlLi(BZKQg5nBiKyc
zzqE8EMm)%y#KhmM;}t$nH;!lGEvHzIAJ+u#t@TM+WV2q-x<FlgF}q!ebfjFBgSCrj
z<T}s85m&=vv*vDKlG$|bP^s;iRV+_0s%LA;2ZT87E%`sc`qpo5hJ5|kSi+pxR;Hl|
zYKPXe-<uCK;_}_HRo@_}uBAY3)w*Th@0%q?adL9s);}oLJh8{yC*jSE<cF#u{%h@2
zl>2viS_-TTFlX`4@ZmAexup8xRLOm#dC`03guQC=^LX-djhWP<p0v2b7lY4n&Hi`#
zj!IUl+e~Jo*CE@5H*HE_ea5=g=DYE`6)`Vb+UK6y@WRh<(Va9msk;BSzx-pWHZn-Y
z;yYp+g=n5LHro<l5MW?pz&^>X&0*TaPNyzKaSw(gXP!23K5K|%bC6nO!M;wdU7MHT
z*b81YEEW^p!ZJo}Vd(~0_Nf^1oc_yIm%#A))5m#oK39JKFYydzWnGnX+U7~oVHedp
zoe8%Cvmae|OIvX0!}`@{THkxzK4I07eZn>7<g`QSE;>&PkJub(dVl+eq}<OnXHITr
zKc;{4yJXm#m7J%Yj&&PvIjq%pSnI^bgx5-|sw;w*9A2q%<8k+YyQ9V8O=A0$GY;tg
ze7;(_V&4+iTefMpw?y+#%XFVAGOhV-=DE{PykF~tAAkH);pRP2Yp1O6hD8SD$13&u
zjB-<5vJ=yrmmE9#?b(g~r7W>8j-@WKVEQ>z>kzZotTQ=_6#kufskq!oVA;BtUh3Ne
zMay5EjM=<%&s<NV=<lvwXGPAvJ~Z=d`3$4gXRRxz2`}|?{UKSsjfHpa<5xGcXSTX+
zw>+q=T4PpLRrG1^tVsToD?L0!FYn^=TYN&q`^K~%v$|$ox^nu%{psH&>;E$vKdNEG
z5-G&ClFTenI#kBSX2GDoCX>*zWo=l-kaW&8>L_zhm?op=%$;nIo0PL8AuWk5B~rmq
zVb>*wq8~yNvABiU7KgDRYKzS@$h*kdkmL6L;DW|;GxpccE7_FwZvWaAb?pth4o-Ud
zk(a#duBhH#diY7W{CCxjPImooXPpT;`dw_Z$a&rM?&k%!>vFLK3fulLQWsUaa{kH-
ztBS<wcFgMq{4~WX*e5fvt$!F_F~zU>fVH&IJ;BKnr36$C&hqZ|^_XJo`A7Td*CkU;
zO6t_Ki+@%ZtrW>xe3C;{A!6qZ_9fbyaw@{MogSNt_L_%v+?x<S>3F)Tnxw#8wT-@8
z4m`dybxX_48BVOvA{wriY~J-t#wX(OhL(?7iDFlqedn33Y)RYFmz;9A;`<?=&epcW
zLIJaDr*f{E-hcTHr}8p)-?F!dHbtAgS9DqY(^zN9!Q&b#jO~8ODqNQ~Gzd0Y?%mL}
z_ZhdP*ny7JxwCY5ax+wSSM{|XxG-n)(!^ue=UxB&kKHx8dNGz*AhrpH775_;q2aKI
zvmS%g6s9*=3`TB~;B9mmqoy^}Aj@@k9e7^Xa>Xh%l%1XPoONa0yZdcZ;<=o+gmum8
z6Pud(GgUEEce398x1PD3(x1Mc<mwcj6s~$}DbK`!pEj)_`_oVF*>`P@pn~^QuE~=p
z9arW4$20w&p3L*)Z2NxYa@(qe(4H0{#?vCgi?buGb|0SA`^RP(qx~bnqID75Ws*fb
zcy|@v5`FLdx$=aRLfVXJU0ktYonm#49~Zc<t^FPm5}|PMt&C?uPjA4)hO)+69z2$t
z#dfdI{}nl924~6JZl!mN4hVUknUfT2^^4!GL}$f*v&W~`_j&#D(9ZU`Rle9W^NiBu
zb<<t*&GTz*cQ}03J5?WdR>3j&nnq^Lg;jHtHD*bswwBAx;xRcc(|$(SrrlU*%9mP=
zx_EE3T^bYZ`FI!B$IC75nZuUPSbTB*wk~Gzk2e$7%Otd3Iy&n~t%H_uRl=|T*MC(0
z`@<}=tsw+U)DYVUGejG5@}1zz=cFjm{C&<Maf5}QnfpIy#Jv2wz3ju!M@?V66`hwK
zW|nn-<mTRX?nT9hlZJeIxQ*1}dOy$ad9BjN`ARhR;I1v!@6PHNs_O_VCuC2#GuvI{
z$HN)ij!kbq9Tt~xS&}^?-*kTI<hr`umt(IiE&YC3nQP98z5pKS0@fRsZTap9oqIn^
zZGVWS<ZO#6{2}5KH{IlHU9mK2dT?k)&!aHg_uX-Ce=;8YX8jw}&t}LiD+-#(W`-m+
zk<AQ)42;c!PCPYY*`(7WQnbS-k!MB>-}Kfd#(>s|tuvc;PE_?cc8Tefk+C`RDaVi}
z1xpzjl9Tw0u=s%3HkgqiYU9u};54tZA;<1?F0mCNOpPh?!uFQ_&(6JIohbO<DdNNw
zj>?rM&uPB&wzKl#-=?>JqZ0SpQq?!7W+}|me!p<$ri~YGJW42#Qj2R4Gf#Mt*(+sQ
z@~~-{-c+Z?qpBZf)|6Ji*yk@<k%cyAW;1_+ALFC{b%)>SK3O>F^Qn2#Kc(lq{b0R0
z@1c5DnbO4~QKKuHO^!=&2)oMJRJtxJc(nOi`Bf94D{0(*(-_zJ+4t}<Bq+s2HoRHq
zV(ERUZ|VH}J;%TEJ1_)q!3-KB<U-6Tu{agHs#D)3H7hZ!G&nJ@SV7-8Be4jyptD%P
z2vjfyap}9}CFg_JYueaw>APg6rKN&aQ>KCzV;UPN=oc3xCZ{Tx7%1q2ms#edrj<aM
zMVaXtB?=~H3i<`9MVa|23MLi``c<h#`3m~^d8rDfh6?&68AYk7T&Bhf`e~VEsS5hV
znH389#i?bfc?$ZeVC`m>3i_@J=4J}|J_`E23i^Hu`u+;~0SXpI3i?3`7A6Y%Aqp1e
z3i{y+mWEvVNkxgt*{LO9M_3vw!1xfCSeh&7Co1SCDd;CF=%*+c8dxak=P2msDi|6X
zD(L4c7#f-?=oc#(8k#HUmvY5&LDzM{{SR6(>XunlTmlLs1p@_rQ0NiLBKdhGE~&-I
zMVSR9`9%swpt?MW3#`*Ov7{&yy!2GhzyOqH4HOLEtXKtopG2rlMy93;`hJPIsi4KJ
zu$V&1U7+>6#;_hJ$W03R;h8BV8N~`lpk@qsZ7Fme0N8%ml#gR^a%x_Qf~AoqXf<$w
z2PD7^K(;_+bd8M7z>8MXixrHGAg(6Dzvxa?(Dy7!%*jl4%uCNnRWRVv_f4z-J5a&U
z*u+RdKe!|{Hw+Y>Adf&o6)DK{Bj650EL8@34CIe!1v3K!YG5vM%`rB#P%tqtR4_3!
zP_QtzP%tw#<FYh0P%yVJP%tt#RWP<R0Ao`Fh&)KWv6-O)m^L;CsmF)8%#6*z^2WyI
z3Lp%!1BOkF4HXOxKmlN3qF`oWreJ1ip<r%qpkQWfq+n`ps$dSnrbY@zmZn@rmZl13
zre+GJrsfJ3X2uHUCKd|j7Ul|O2F4H?ByVi0U}k8jU~X)rU}j;WU}<5gU}gak1JPj5
z7@Ko}Xpkd7o&sSrLt_OqV^h$wX)tYOXsTdrY6M{$n<yBWTY#~txh0skG&fN&Gd58$
zGc@7?=>uUCLqi2qBSQtyNHR#y)Y3@7!q7qiM1!%BDLf!RfdaB09BH5cGB5xIC>O|1
zQ$q_#pnx0(!{C$#w#C3e!O#E{MBrdEg{K{Ge1NQjU@lWj0|k(7aQGq^MurL|U?Yr-
z!CFm0t}=u~Cny<!T!xH|jm^10x<MFhl!>_^$lKtw0!jy9L69s6gZu<C1%yF-m`NbV
znHm^yfy7}3SejWXz%VEwfZ_`q28XpJC}D!)1CGJz0hA_S7@St1X#$ikkTJ+zV7{>t
zIBkH^2MB}GikX2amzlAF0yqtT(g7N_v@n9C3qw#kLSR^$fYD}#Ah(%tfoTvM34`nh
zi-Xb(5(cFUP^^OJSWtZjDigpJ7l;8`?BuFo1Zu?vf$9(NDySe(HDU}ZZ-YR!i7{wY
zBM4Nf7=uOtf<SePF{n!(1gc+*!38Lneu#oGxa0=aGsd7wGze6c7=vp_P>o^?wF9~S
z0nb+k!RsVQ9b^KvI9b62YH^B!3Djap`D+5T99$uSN9%*Q^m9PfD0uTmu7U~F{(J=!
zsIB1I6x41Dg4Vp?`p*<>6&IvhhS+WjwG&z&n?fxvRxpKH3aNTc!M=vn#-?C@b3v<l
zQ>fkGdRxI1>i<#&Q>aV8wYwSEVo<+06|%7eWDP7n+zb`Ktq|l|31m4;-q8@Ulfw~F
zA-KZ#qUa|lDu5?<^&O31$_!yOAEq)SCxCnewE|I#fV_qw2=XCR5UF9Lo12+eS`2Ez
zfMWsCV$v<m%QP^yG*JLIoP!kfJq;BM!NJU>?`deDU<C3UNZ3fh5EKp|rm=z{Ow>fd
z5abGwsHuV>$ZinROu-Nwv|Re0<_bp8nDw+!FoJ}vzNe*v5!em|eP06wLy+e{$=XoC
z5E>7@MhZp{+mL(<(gE|CQ)WqVKx&b5er`d29;g*yp`h=apOaq{3~tUrchR^PC026j
zLpH1gBo^fsLjoP7u2{hktfMqHuUNstz*Ip$peQvZGa1y%fwZgjv36#mmASF8DSQWv
z8N{WC5q0p^Az1SZHlz+|(}1l)9$kNXc_S|qBM*yXb4JHMSKcXKj{Ikwt?)2GZS!L9
zZ)H3muKvBxoM1cEA&^sKlo$<z(R4t1HkfieJMGy|JKO1VqRVvVmTpbGHc58>oUe?V
z7Ffi9>Ri;N#^BrxDrPJ!%|WstCb&QZF+epkaYav%yA#fm$Czp*540E#_Dw9#Rxkq<
zkU>ZtD{wgkt6m6|Lw8TFPrW`@{KMAspY2{f)Vf_Ll+;-=t3mXlkdMQnRwY-3HiP6N
zQ|!ALALVCoUJP=`RAF)IIAPRfHP?dw__3#2_jj%Te5=~HVVaiYmh0D_uupyQdFI?p
z-`DK^cB^{*-@Wdus@s14ir*T}JNsI`Tyuf<p^GOj+i~dYHx+D=I;=JGSfxOmEzhB~
zTc4IUfB4d@GDqj@2A)F~CD%(=Zsa{Q@u<A}NBKC}--nMIS{%!q_xrGZ+3tTI^w;P8
zJ}e*0di~N_yIWaIzaNV{J#T(+>-Pldmc^ex^{S`;edvBWA$!*ymf81yR^64ii)LHB
zF_yLX-|hb9%q`b$eY~&s@ciTtn^#R-?0)Q}6-WL(uS4%uE_?75*s(smcB?|XW%1H^
zO}_bZ{C^+18gMc&6#WuoaL}#gW>_$7A1gzE_kAXY6-)CO8LnK~&cKlMGMa&5>la;y
zhA32J*)#J0on8Om`P0(VrSZ}-wWUw9KeZmYxZTS=-cG9ae@XWF=6tI>|Hb)Lwtq7P
z?$u7=nLDF-JxA{B^(+scygpN3@tgnm;o?uZN7in=tGR>KZr{$A{Pz2~!`>f$elUFd
zz8&2A3%A`a;y9FV$Fc6Ex&G$$R&~D}Ka`&9R-EzO>ZjH77pK?GpToZUZ1WTC75bC(
zxBvV0bN<)%&H2jr>V;aOf2_UKe*V|y$A3Tn`><vIdw%_G2R&or>bBb7x#r*WK`~-i
zrudp;HD2?g*Yd7@;3PZEaie70lj0Sw2Aj^~^E8oR16H;*>+{3w{~nsh)iplNFExt4
zmL%P>yjDPN5_6B+Jb%ZEKa&;i+`9a<Qs{r)1lw5lhZ$d=8FH+@&vWQ>_rEuve^wtn
z@%Dzit#7bVQT4{#U)$gJ9en!bMb1_Ee}}g(&er_!<<T1ZnvHSa+s}s|WL&na@*V&D
zNgrH|-d<Ju5&E-V?%(l$1=clUE&b=4K0H78&hY;KP4+drc5^Mec<W=T!Q0EB20vbX
ze4L?n@I<h|r<c!M>nk?$zWex6!sgjBX92lsk#i%~H1jU;Gs&G#FeQL}OGJXX>UTZ<
z-`#Fsfq(mdI@WKkT*KwgZlTls;Z>keoifMvYtMoO_Wi$p^1{hiu9xTWg+6?-=Zxbw
z3%1oCleTlW<-M)i|DNC8?)JC#@a_lO*Q~ea$!pwvb(Q@d-$SQU&fVW9^Xu@&kH0;C
z*m20)c^*37^kMV)-<vQ0)8deCVz#-<-rw-_*&_RzJ+&9*^VaHapYHf$HUIC!v)l8(
zwzvBleA>e8_voS4j%n}ge|gsb`10}ezYm`>H=XNmD#*^AH}8A<^4SU2XM2L{uRX_+
z9f%ABu(GXL<@U8-zm`~i+5fZR^B(&>5qZB3UzYGm-gxg@d;8H<_II9Xp6E-ix3D^3
z#(Ftp?b(xCu21*>b@=r0`#jG!{#W6!|7Go1v4{H*D2e-Tw|~L^zv$=pUx)j*9}K+}
zRsH#o&8hFZZ?Kd<+J63Dt-+TH`4;|@PYWvqTi#F3oU;z(C9ALL&kZ^Hf8YN1;icY;
zZ#%f%=JEYjs1a`Qmsj_mn^U#A{63FcUhe0!`RvX1zp@Wrm|kzp@xJcfeA|2fme|*P
zKN!!V{Qt}4e;;Z%^j<!FoFW{ZHvgZ?^*E8d<WC2Dm%aUrSzdsBPB@jIDdSx(|NnG&
z{Q1i(|DRpmef(g5)S9LbpElW7@A?&4|D)n_r9p2c*RqYf`Pl4OUfbM#^ZRgST~*;_
zc{#oFO_e<dU&a2ryZ@?uT&x}Eq5PWF_IJ+R<303wMhm~=j;&_w;T~p_Kk9M#pWNaf
ze)7OUlV_S12VU;rcC(ZHeR%EG!g6Vzc{$4;*BTU+^!J~iJTac_xvJF9FOT-w*Zj>a
z5R%_F_l@^L_5Xk5zqBu2`|?{e|F6T>|35tc`|$aCu{W>2Uq2Z(`NlkU`4>82H<#NV
zp3oxhST*n2zYkfP-|+vgA+fYY3l>D7eE4qt-}L|ab(d`X9V=|UwjY1}`rn6Fz3P7-
z9<7r0NiLUedEfM*r1ZXg-df-9$NzoUz+?5jU?1NzL$>sqpWhDu`|#`F<%B1jPyZ`O
zk(d-8zNjF>&NaQ}ru@7~6Q67D$X#4*V|CzViN~Se{|d5m?Nl!Ny*rZe<b~Y)xO-pQ
zkNY>j{qiGngX!H^*5^+v#Mii0<?EUs)cx>B{NSs<kA5w(-y`2#X}_CW&TY4$#eowy
zi{9|(haXga@G`QXa?3TjoTli6y&P#p(|mr{SbuM?C874g86KcYYVFmBlmGvG_4;SQ
ztNPD15|ayzK3RNij~1Gj_wDb)tJeO%4j(pPd6;^kr2VsR{f@2MJlNI?`&#d^=`%n7
z`|$GJ)Bip^nsrw`&$&oQe09PTug@YnrL!l`eqEw7>sU=a$Ff3sALU!NK^J`%CC@1j
z<raE7;rsQICVmHl`aLV8p8qSze)~gd#<#0>H-z)}4(9$lc{j5Dhv`P?>3<&<^3Cgf
zeM+`yH_xt9H&?w{Ri`U=hJj)KaV*s<UJs&G)?204zl*Q6z5njleVe=TzYc#+e8cbl
z?64+>{NxW7U)$TyuF~1_hJX9Dwx<{5=N-3{u!@{uFz1Y=<>SMV8?Ib_Dbcfs<J{>Q
zuDog2ZrP}V()f%!+b(+6*t(d9mrY$(eaPr%tJ%!5E&Z--pG)g2swLmNS{`~;S)ufs
zfz`2umHOAr|2|xAyW{_(3-MNd2e*Ey+5VE>-uCpiWp&+(H;zp6+_80AEL-`bqgEE3
zv%4So*;H5DlmGUUoHhrxKndIblfQdG<Jx<bkGES+5AQi2_pN<-;Vb_0?ZF1U{_B1n
zKKwMYzT)SXP4;&tG3Tu1ot+w5v6Ju6Yu|bcBOd3ACvrK~{jZdoTu|_EYE;g)|NEC;
zh&nxO*M&KEV=gDk_teVW(f@4my<NQjeDlQj{eK_6d>RWf?Sg#Yw~a5=BA#zMvu>&4
z$@3?-?4P7l`o%zMQufMs49}f6yzDJM$T)A(#OUncqWwJG4<>GmVPCzyQYL5l`s35s
z89w~R<`+`a!P=`g?^k^H-d}m={<n62`S`Ex;qmoCXObhYN-dvVTVLU^Ot4j)f7{=O
z*KQ?M&pVSM+S2|)V*1~QCv5s0t!93<k!xz)yp-F|EBoe_#Y@*&KmKg<wcR+_pva{6
zO;lFyMmugcdwbT0Pb7>lHk~OpDkx}}__6XsLFC@A7E(1kJIhWycor4QVjMZoo@d#{
zx-0T|m-RTq=N{Si*Q>tl|H=CPV|I7<yx{LQKlpS?r`*%f$qWn&wl2$OWC*!Tb{lJL
z;{SvDE53d$+3~vm^N#)R`TdvI)>lNVne<_k{henk?X7!{Cp<X3(teMH^=tn1dU9Xe
zqq9$+b*-<6P+M)jM~>Cjvh%aWxAxaz$s2F6D7P<)PVfuUH$LxJ#`A7^rPra8lKpOZ
z54YS_+Tqmp;+fWN;l<Gkvpy%u=2UgRO|9RNyI-m$I(v1FJ8#bZd-H4SzxV$-{8;49
zw)!t_H}j0^>^bD^`425unIqMlbh%7kRheD)#n*}&CWb%%@HVB1ObXdsD?hzkz5e*`
z=YR9#<jVKI{rN}!a8jsAQ3|NS>i)XT-e%3UgC|yl%Cu|O`kOyY(D_=kO3E_Gyf-mY
zbl!1=Ied1qO^u5)eSWLR<ZyhJI8!OtY;5O$Fvwl`|ND!ZYxXPtcv~L97XEbu$GW9Q
z58J=s-~Kh)vEsL%K-}Kz^K0v>zIQvvU(?TP=Kd<}ydk{)d7x4M&*zR6zYHWTcd{P)
zt+0nvumAb!da0f}w=N(3-u&gI703K~V-9uctyFAPKYzdPSJlqS&HvAyK5F(O@N~Ol
z#a}mpd3=r*M*X46?qaib>~$u8(Be41eAUF|wMM;9_PDGT?2R#he(hFCxM_vS+l;T1
zcoQR7E=#n{{`bMg|L?<XG3*aZJ{Wa}Zc@+LFVv#{Z-f2s!*}gp^2hJzIQL_|{r*?{
z@oVa@%IB?}yS{nyzw7ro<lOu>uhulIpV2b8x9a0s6`2&}mzQkq>$cnfIemAdy^Y^N
z+kMuo-c)G^Nj-bK|M%AVh@9W||NJ|9|2_YE|K<M*o*4AGD(kl`wBHlO^0ahs%(Kgy
zg1)~^Kc0)+Q00I9<b})pO&==4Mf29qUDy1fX2q<NTl^25G+8w9`KoH0Z8uaNCRpb>
zZ&F_~pXDL@{~h+f51zf=JW=>~%3`}{_U~^$?|$=a*0Y`Vf0DMp=6ApSa`NWQ|32Kz
z5^b4$wR)z^gLQ8*e?R+KIi>!6;#K1>`}cBeTQ<M$UuFG|^7oP43?Fv864!&oo9x#<
zJa4zN?(5g9b@%^2du;Ko{e9o^e;*R({5}jS-1XZOIrN)89JSI|zuHwGPJcS6h*LZ1
z{xH?(?TXX;)r$X}TO3-y!`GhU(DK*%=W1U5k!XG2^g$$tBbU#tMMoxb9{a<iW-@=2
zIPG~3t=9MxSO4wr>-AsTms{Sb{=PgRe7~*S@5AA{W9utC%D!H^HAm*L`t^gl1@%1Z
zUVSy1@$IM8jW3HPPHxYw{{3l<y^QTMxjeIjHc_|Lzdk-bKlW?8{U4nj-|p2(_}r#O
zcLCgJj`}-2-lqEN*TOl!@5{8l=TENx@y<fjH`($_`t35=FBjjg(yG~bGON(!$Imp$
zGb)i2PM=+7U$ZUhYy0`hAJQac9<X0O`1Rwx!}jm^w;!F)_VC&*rHH*|st*%vqofy=
z+&s~pYgDvJYIVEgj;-7Fc(DBkg~;^f|33T^Y02;Z{`cWwiJU8!W!~&v?Yg1b<?@d&
z&o0R4t*xyQeG-3%)%)+8qx<al_-(s<od4S2hc8ZwzI~-H&$e37wsT$#%kHY|+}Sp)
zcDrren!o=(CY}B_k$Qc~ul9EPs=t1HY4LS`<*erUCVdA_EH{+2+8Dv}_hG6~-1_EE
zyL=Cc&t4-oKYyBQv%OWct8t~QPw~~QU;dp=c=F!nSDe|e4}TT*++cf{Dc|zkaON>J
z4);aOGEJ}duif<d)8g9?mb}m7bNo^AivPa)!|A^t^xT*0`}^>9Y(ZtskDBZ9b)Spw
z%KN?l_<dj5O?kP=&+pV{>Hj`_efz<n`*&E=|5!y%c#--0as1ud!Wa5;bDOOTck;~J
zwsvdsrO>k951jrsuV<frJd<nLLuz!GqH2HLe0TNw@y9V=CNHy;sN5>^>+oTL7UkEa
z7u>^-ue7(xoBsFV<tcNgY<wlN?W&T+vA0=1Zg#2<AM9B({a}!Lc&5m|i@9ZC`)YsQ
zRoMHZQed9F&!K~rCw2CTwzQXbr+qwFS}=9nwZ7yD_vbcUy{)di|IYj75AQC>@3U6<
zUa`q}-}kHC|2{lTyDI<h&%Yb;d23_uhR0sLU-Np8{h#^qEb4|uwbD8scb)5f<XoM9
zJUo9ivY=JPzvr8{{M~Qu_P@TeePzAOk;cg2;75((<7%G$zF)sg&i&1wxBP)Rujkg;
z&llS7iD7ZppMLPfL`BJpSxu#WS9$Hu9z1dUNtBiE!J{Ir$5m`puLqfYDwNr8@uf@t
zuHNs%`MLMr^4rI<KRod{d6HjQe|r0iL)_D>Z1vk!>OIy?NZr(Ib1U!nVScmO|2`<q
zbSqJR=ePXdhxGE_|33K7yZgO8I(vVWAkRK~w&NAW(lU=fPRUX5w5T$9Uv_ZLYni@_
z-!Ag~F0KD@aq$DOAH6|eqIsy-F<gDWVsG4DG2R?Q9!HCrMIv#!&6zF_zgo>Wu4bco
zJLN;JQH4mHI`^cxA65QXXU$pm@55&2g1C9ItCks_Ee@>kJG4CI-0sUO?e9cct2Mhn
zd$Ou-$IUP8i&-l{gHiME-uvEO|K((C{g3qdY|8Pm@}M5`?%x~j=fti!c~!7iCb!D@
z(~%u}V%RTxxb?l8y7{B|?Gy33R>v~FF3Mbg{p4hA2?>UVITZHz!ua*C$NxHec}~mZ
zFG+?h4;5zj?um1KxL{A-b;ln`ldnE<Phb7-L-X5Dr5yR;2j_%$Cpb>?tT1#Dk1Ki_
zYSouqUjg#B3H$b35j&OQKAFkPcjo$Ce6T#_L#@$|cOp6`5_zWm`n)^2{zr3v-tWWn
zYwKR{yT2<xdFgG_<V#VzcX9O<Zsq&7@pSj*e+75hgnIYHussYF@tfDV((-2Rw9`*s
z&ao-j{7W!}k>LcQ#}4YDB06xdP2WaetpDn>>E?;j|B`mUUP~l@X*WOgCtGM<T)%x#
zfOwzY9{q{`=LUb@Zn9{i_x~mCcYPLpF#2i#I{oDQRh|E)IH>#z=6rcSwBw)E0h!#Y
z<Zsh8yHfghK4CcQ{`vK$&QLuMgWmtFB`cyog9iT5rUgJl?Vu?DQ%eK*X(?u)nM;r$
z@$&+-oRTy_Oi4l~W#OBAz*7OlPD$2gmP|>V^=)p*#1>tJL~ntclN97`UsH6rt=D60
zd%3IO&FlpqXB*$G-L?N^a{c`|{#)J_il5c!NZK{q_lnrW!*U`wyIYPnBwU!Ls>8WS
zSSVGHo#oZ<K*c9jpRUDzeG<F+)xNqfmbG(#SIuAk?)kAjo_nuX2TBD-9elLWWr}rv
zoStB>u9k<Ym$rtJ-rBy?Zh5mf-<EV$|Jmip-}5WzG_Uiz0C(#$xgyJ~xeGpOC}{22
zV0xo}l9raX_M{c@8{Ql$c3~AiH9>pD<E{y_yGw;5-)24Oy7TYLx5W(A6VmTYk6I_P
zli}Le)U5{@iWryrU8qpG?{j7K9^I!wQP)qMTDS7b<XcnA)nA3)<J&p=^$wmVQAx4t
zVYm5qn&s8k{4SKLzHoJi{;@lrPc~KNN<X=!S;{0V;cQ}7@z6!=VpBo^W8k&UgaVd}
zHxdMP8kXJ(dBPN7-f~q;Y5V!N{`vN4iTp;rzk^P%b<CUI_w7jGlYgtOah_Rt|A&s!
zCw}>N>WkKJ)^>LM^5r=GbAoiHll76E=U<3bxnG?gr6;`epw+E4g(rSqv1)Ws*dXXT
zOF%I2vWn88CCk`iqNbGgUOHyKBkm{f4!5tCO3yccQdX6b+g<X~Q0aeDf~#I&o@+tl
z{0ycdYw;hiucuzWDw*l7yuI_f8pDS0;8)*YZS;P<vEJ_SylX}8B@5h274_J6w%>W@
z?DP22vEJ#kE__H>P$YM8&nbrj3scL6J9i!wWEJhr^NO82u}rt9cthT-MZOFP>zTe*
zmu5bed2?R@WRN<K#o}E8;T?Bk^S&!io9Hto#bNi+qsEK=?zxoy{^3UN>7RJt?SSH0
zQW<dPypj#ycMyc<hJffDR$u$H<KOM@S^RDL?kyMcYgV$wcugtoeYD0oXz%~M-|7z)
zZ)3XlwCaKRgEudWoBn-!cV{LyODC_qVBr3GtJ=O3_FtyehIejiTPCZzsP2D^XxnFA
z=6BEUo5tNP?_Vmf_Gi~W_Ijo}59M`Yci0)ZIq_G?^eofg8uQHHK@s1FC`R_B=hfHG
z+7TvWyO8O1+M{3@=>mOY-B<|&@%eI^8{cz^GIB3HuX`pYTQV^4=D`OnSyDVKO_^Uj
zK4jed?c$p1J~2A%c&^(zj@S2+wx*uQ-Ly*CWyu<Ap=-S74(-+1P?C6nE5h7By4v8-
z4*jh$nnm)7cP(7C6Bd5ixwF$-^}XV)xz)42UHTtV_BN_=;<upC^UW^1i&sy$9eg}g
zxt#BH-=<qyPqK8fIVWz)V_g$HbK#q#ZU=V7-hQ-e>akkGXI2W^{Z|Ta2&j@WDb$QV
znW~lfuD(w7V%Hqy|6#uFr}KY3`KcXpY0t^c2mW4vntf+m%mY3D#$D4R--=!Nx8u&H
zc>)i29Z$F`diVUHxH#*ar-vFAZ@&_6zWh_+i-TH^_gyJ6z1#5nS^efHP#C;klE~EP
zpim&}=J!hGN!qM}ZQ^bhqT262jB9JVIsfTvsfNgMjiSk=bKWi%Irpw#@V3Y1PiK1P
zT#23#-KF<UJu>~b(vxS&cQ1EcbMiU1m*vnK{Uc8!b{Z{Gf9=Pwus!6sXuZ?JH@|s4
zHk53wSDTRYWXU-vJ=wW8=SFTXlfEW;-}Pct$K{K=PHOL7HmUdCUg^>~Z@aYj&F<TF
zY2SGP{vC_Ho#*M<_jp$C9lt+)1scEiJ`{OkmUy?oHCyrC;k`QioA(Q(KhD-Py78X3
zdxG}0pXWYiw{CuKe1!SZ)qgV`Mc#e6XtwLoT4(tf<;yEec?I@vu3f+x{-<EKy<3j*
zmp4<B)Aa;6e0HrqyZh1HA2M~!=hPye=kzZT-Ed&uteunAAO3#j;mXePHGG$5tQ6M!
zH@7DE-+kxk{Y&56-2Y3nVE*-($8LLA?|iV9UN2j^%gDpF{p-JdvnJJl)VJNg(_?Mh
z|2@94%RBk}d0&5Voly7h2=jfpWlPLot+#%5GyY&)(6-r`Qr(RG_kVtWzy7`I`%8&l
z|E?xq-ys{adw*5T-FcJcf0jRZw@YA|-jSos@9Y-O*?CbW<}uqn?wIY1*M!a7Z?<;f
zJAu__CHZ19)@xrhwQVj9pRQoe{W>mr>+OlrEv4_Zqm1p=Mqd>C$M^2&vE{O?RvIqX
z_sKs$+HV}vQoOb6>Z;G%xpuyMGe=B$dQAQ4xS|8mwcd)`HSV=fPdnSNyJ6i+nQO7O
zY&#qJwCiMwrtWFJ%`@p^)$4-Z|0d;yjiDM>3O+s8bIx1Zx9!oMPD%c^S6`Ta$k-WT
zy)}*D`sdp}!<iiyFErQBD@?Or>LBoc$G0rrb93wbeIL(#TVB6<Vd&2FJ~eyi)J=?a
zejxZj^66iuXA4dmcGboGT3{BM?WcU!LU8Bz7OpJ&kR2t$ck6GhRS#i_I$(UOVY6Vy
z4Ew|>o`R3~6w0Sv*D{VfcD{n+#UZ<vzK365B<ZKjearYHEa5Is*zdiEwi;dh8-8ew
z;G<vB1^bw|Cp4vhQ9O4n#%6nn&1sV>>s;PWW6Kw9uw3DgCu{w9Ydxpi@vnv@Jo8=C
zza?H<8+&-yBmRxI@<Yz?9NKkqcUat#WHFfy2blhJq+j7nUu-+?wyMqP?iFu)Zsq)2
z%cOq8GBj<^x9>tFiQ<c`|Guivwz$1rd)<$d0pFEY$F41qpYelrQ5O4igYDn8iZmT#
zKEEPXdq(d8?N_rId+vz^oW6U3XNUj%)U8#<dIB6QOpU4$FM{s<zOQ7l_bkKu?^f#y
zx1a3h);ZMjV$&PvJ1$TDtyrvUVElOD-f6q0eBa0RT1_*`_`T=*o^u~ncZgTsx~TkP
zL1NzCz-hG|(fxPQt!{CrrP+Kj*W3Q-UUYKox<#g+*DsOXb!7F_y&QWQlVAAxAFT8|
zDrwbPTsr6Ks?XCKW6bAnH~;a@*5&X0eNq2@{XCt!+cYx9WqIEIlGI;vyGow#v^}sl
z^!U>!Oy&PLuAJ3-zQwkv!Ma-D)xEH5zVm<XKPGGG^7p=+xxxo#+n=xNUvHXt>&%X0
zU+?~6wzVw0Q_2^xweaXJ$>%F7zJIdR){Bpe3$*%a@K$%<G10jt=^Bp&*NR=UUi|BM
z;tAW&?+<LP>7Q%*<X0T)yH7s6Z|6QQIQD<n^vlm4^$1Vwu6&<dvgKd9lI3mIJO$HJ
zHopX}v+ulTb<0NhRvrKB8Nt@K)C7)5$DFI)-otD^^FW|Q;l6K0g3qqp-BW(WZdF0?
z&6r~OqQ{Hvf*X$>Fuv9Pe0QkwV!Lv~qVCcyvnSj>ntfb3{Mh-GyDQ(X`0MxZ+=iXc
znkVeO|2EPyLL+^P{Q2_PeVc1Jv&3I#m@h6Xk6^D+u$VLJjr%+1HM4u7`k(II{j^Jb
zM)UM%2l&q2-SeHTJmx1`c?|C>r#W{DD_JYtet)RhzUuk0otMRxw@0||=G+;(r_81(
z_0ODLZ*#WyOum2bZnOEFm)rL3byN`8P+<OkZ~fLj?YawV56rdF|M@)5A#2{b+dRK!
z6l|Mac=Y@3^GAAi&;B0QS-QA#`e()`*H)J@g<mjRBYd~xH`h*Gt6RM%-d?!KcK-F5
zAG1&Foc;Zu<u%=qEsrm5+$XSpyK}7b1Fl;pXV#|QdFdKq9)JAiKfx^V%~7TLzb97r
z&%Nvm)**Xss`jm-k~QgWCp^V>G_9`5+xy7x{GnZaR_DHbTX8mN>#Mj`6IWlTtZv?2
z`QC){RmJj8U2n7=+>22Lxz;PnLVcIu^ovY$-|A;)++NDO-Ov5@o$pSM)9<_$<7Q!M
zRN#A1bkBNrsh!oST^n7dRIlG$+nxPm!}-e_zgr%ecU=2~?eYC*8MgW__{J%l{(JL@
zy=St&rriO><h!sP#%mVu<S!CBmMQz|k)-aSd(%JgeKtPv_PAB5s_SmHt*cAtyxl#)
z`e^pnv^!7tlwY|gQhTlPddRE3JC)(jH0>^ORnPC+`~JZEi*---9khDtxJYfqTBqEp
zecJyFviLt3Uzs>Jxb)cFv(?Y<FRN|%yH7)Sr~4hr6+2w`Z5E&3_}%!&`}cZ^<t^u9
z`+K)%?w<2KPxkuJQ-+=;3G>|(-`5_Q=N|v$lhhT)HO1Ss`+nK&37dI2Q1F@n2TS0A
zr+dC<Y;~LYc2a$w^dj5SCToquAK0?*5p>__vQt$2!dLE-J-jl9lP7S0=zGZaa`D%l
zrwU5jVl0bVv*sSqda~*H#O9dNCB@9^%-4miSRC7S$4fRh_E$!7+MH*CXIIC(J-g@o
z!WTL5P1kQPT&K8!t6y?|=7MRzjf>{DoR2UsSibtdSIL~WlfLJvs&A0<n=^5G8i(bM
z$EVDHWKPNda9QL2gFbD0sr21(_o|z%*VTaV&c~Z%EZ<Z<Q3#iPd8Z-y{SKv!yJxGn
zUpLH|c}-(;Y+dzs-iz~6XI-1A{b3&Sy$<6WI~)`ke(0Pyv`zPYZ1?M$V{7G(DQ-B=
z9Odx-bn~0aFRpq^8?9vpq$}TF_VQjXn7U3=SJum9&6W~hwTrJ$)b3K7{OT(2s@2Aq
z{G9SEuh|~Sx*xJbH1U;F4Eqx`zIV=3zMVeUY%N$SWwT><vaqQ1i|E_a<Ch73m9*JW
z{x|Mw(e>Zu*7GiMz4@Dc?0I4D?WQ|bTlucLzBRg{$GyExaJ$$}-#ydje>~WA?ZnsD
zQ}=u~&Pn^7@#NmYU7dOTOOJox`?mhZj^$hL+&;1P;I5*u=q<84ORdh8t$(&xdS{*O
z<nQOww#mEb9X_<?hs6=eH}Sl;pDUl3dvw?2Ka#1+*Ikd_e0OzE`RB+R-=6N>zoo0#
zMBaJbamf|4%Wl2h`9<tgnbZGyDY1`kM=@OAC-F+|x$HCDpoZwLO?{hVKiy+xYIG1-
z?xF0Z9g%bBW?uR|>!QmOrO#!vaxDm7dE<HJjr}=~&N*K^*I$x%;4kOS<t1C*J>4rV
zAR2Sy)!9AY_q`~(*K_^$!CebC%goq4gXvqA(!7f?Z|(<OOZ>-EBz-u2jda27iQ0X=
zd%n-^teRSF^4?bb?$zU^F&}g9%=22$SbbIU_jRV<*W2C}n?Eu7@j2km%i|l~we)Si
zyLHd^imKUW8PPjzr_N*kk|puYvf=OSQ&wl(6~gB-<X=|nn!l&KP^<XCFPos#H~a2b
zoU9h-V7XVcZT7>Sn2$|XOJ=;-Ja4nD+D?vQDf7zr(i`$LIA0}ee#_^1Ep*=PUGbXg
z8Rav)@9l2?eDD5ItIAt~ABDc<+rG}Jm)-e&W1jfxse8W9c+7I_!zIb149{<W=MSI%
zYtpIc^iaPw3pdR-i?%YY`0A4XB+Q35Zg1T8KijXr>e+JtJL9^SUMs5mu7+vdIi4?h
zy>-W5bB62Itgpo08UHx2vG-YPdF@x*(jS*!NSCv`TxZX>#?t5H{-325>uih4L!AFF
z`+Il8@~w9oZ#SN{VJuz0>6X!zG})iZS89)D{ocy>?#X7UTYE|#@Y#wkJ6CXQb{$u#
zzDDsY&Gg-p=T3;qryE?>wk_XPdQ0M=%KKOagZ3S#s`=lq>k}{7D|N-^_}sobe|4qT
z%ihu1Wp%Q8x_XFALw~){V~e8t)cH3isD}udzL(vyeV6U!Yl}6%SITqNb>6vdb?#eg
zMEIes=L*}SKix~#d@s90YJ2*vs+fm%@8ecEuIqYxHSx*0*E=3*Pgp%|&-aK^)$DIA
zAqwu^pBu*fon1D)`nGR?`Np=(b#1r&R)ZWSz`@ew(J_0^cg+)bA7zNkI$rLuO}O*2
z{^H4;@GWA`_Zml?tln<<zE<+u(TA7&B70WvR{S1+LifNf)ivKde}B4Hx%SE4+jG9h
zt-W$oanWmU-Rq(|r&*o*CjItw_4B!)5~ldxZ?`qS`M0~@swzp@XWaecZoKBTy$e6j
zUA(pO{hY8*_j1ow%eTbX)P2ue7G5>;?Y3uoZ$HVIzNftLK(0%j-z_!0Q192~8`o*-
z-sH&BuUl)oe3k{j@hz4Ik2K%UEk3&b@UHD8*Y-MmW4u1Mt@@|duD@4{j!%?6o;CH%
zH->AyS1-PLx_7;6-p;<TPxo|BRI|Tz0A+LCHDw${(m8*^oAzoQ-K%rpFYm)|Ha0tW
zcIubTd275;FCqTkZ>u%GCALobF1LG*@P|v!Mg5*W=+nOcV0qxagZ_(u%_;wM&++zy
zKJHidE=69S2`MCBd<#GAT6lbFe!=xA`31*Kquf_d|GrOb=Tj?CAS%7TtG0ISvGlyy
z{nzH*E!w8upgoU;$&uxV|GnSM_7@9}Dw`WjT6|Bh#D4k5O5^sKFRn62!GdGE@q632
z`2mq~bEU10)VAK4o;5f32k$%8$#*|r|J2eI?Z4tk_Py$ct9?%IoYz<{%E~>QaOb|q
zwVQQKg{9_C(v-IceY&UmesAKv-F@4fS=Q!ebiNMzaIQ>uozTwWN#FG<-}8RD_kT~A
z^X<KCueidrqi$a)lzP+ucaQu2mqPch%3hp%Z=VaugjfXu4wiR{x^bWHO{|vPnP_#3
z|4okl8f%{KK@xZWW$mm~1Jx?$&aHgElK0D%=I3oW*3-6ZaP4+{A2k1DdY=D%4}aT=
zI)eg9>2-yzvW?cZe6MEZJ=<b@i~0LqjupEXN^IS`{K|E`oJow=f8We|Z0dB!eh;He
zs#EO!y>ra?ujd9{d#GZ%|8LvuKj|xr{bsLAuUm54s*LCO-D_++%48#TzrE^ISo2z*
z^|!X|xi>q{Kbd9o;N495W$(_sm6U$*ap8fvySQI{5-Ys*zlLK+es%jw<0tPpnXd2D
zzH-)4cj346lMCKfO+L1Zf1d0r!^ipQOw;GMUr~Q~Ejn-6mVYjPgI8YH-L8Ju>5BTx
zvL~Nj?U+3wyT3FxBA5S3Rl;4_HQWC8pV-P7?taC7YL&uw=4(qg-->CSz00__EkD-u
zb?%}=k*l}yEnH^3T<gvTt9SY*{>rbZcDVTHd2Z|LxI=%xKKXX%^|Y8LMTf86oj1k(
zitNs95!Yv4{pPeTe8(<<>0NhR*X%x!CHju3$UY&KYjtS)p6Ta$j=#OVW$Jqw^Mt!z
zvTysnWdGm2AN9nmWJ~sh+e;Tu-Ja=v&w66sJ?qz9+b{Oc@4Vw6eCuFTbzsr;t)N)a
zt9;MY=y|00-frQjntgX2*UF`<fvTX#rtfRJ`o3|mnSI!L<^Q%jdTTy!yrp?!?e&ZM
z#Md(4J25v-tMdJ%@Ankm+b&o<x4+aq;_ZjaCv*?(I=IHH;f~B2=_6VG2J7Cn#V8iN
z_qw<H$==;3BoA_~EjU-`w(dUXiP+uXcE%M4YpI>SR=3<m^Vaoku4TUFd+}mjV`*`P
z`qrxBt)+HhtM3)Q%(!a3uAsE--4~5_JJw}yo*4XYM}_;}ui)IKS9kvUd+>;qQii$W
z_U`L_?(2Hy2m4#zK3lME=cBK8US7*QdNWT^9pp{RBl+N9I9i$i!tZ_IhL5-AFk4km
z+*1xNd!KNMo~+((^}bf6X!C|V?$xsGcdVAaOT1RPk9X(I2=k_^)0DmoUhAC<Qoh~n
z{oX?@+I99t=9;BXt^B@hI}!RS!&+gx|EGJ7uM_T7e-zc)SMhA>Ru_5m`+t8+S^Zj?
zA9+wzYu}H%Di74I7Dh)ie1DuBVE$8U`Q4sd@3|Me6D_;jZ~TqPJiB(ru4lXJ<DHLB
zc)dgZ)w2yzQ*Srlu?nlc#D8bv|J4iEI=x+JpOLZOCzkKd<@-hR*M1Qyc&WYMo$5CI
z*@3g8L{`>+-MMA+f!c4Y+RXmS6iAnDdDXN3)VY;LkIVjsI)E}RXG_J|YWY=*=eFI^
zh_mL}x&OtE%k4_$k?z)7r>ss^tDmgy*L!b!AnWsl==M_gA2lB@pO~5uE4P|gVS9*s
zwG*fSxcg{Nx$Ij{*|n!+-Pi5z`({#fw`2>r1esSg+brw5()RG@yZ0+S>3W)b>p<n#
z+*==KeP8#qOMcDL&^s^rcRuNw4hlqZjy<f_vWLa8VvDyOZ_~b~n_kVd<B{rn+pay|
zHD2==-)4?DZhc$z{oJcw_jXVJd~d3iU3sl^(fg#k4q@7$#5Zrk9Kk(X>>n<Ah+HVg
zFg@Ap9+^JlrrZImdpGqe->(V#bZ_sQoPOT$Jx})DJ~q)op@U(5e!%&^j*HGTp6wF~
zykEWQys+k-^ZT+-NM5}gTsu$WW=q&pzt<V^FIZ!)e($~R7O`Eq$dcW}ZuX+Hb~h^4
z#`!x}zAwFFC;RrVZppQ?yTx}L7Vlh9dHQsC=cK6Ru_}wy)=sYHIc(~zrx`O>@Ol-;
zn%QMO%frj-PG37Ito5m-Ypwr^lC6*J-?_a|t$hFP+1|(V{FTk+U%PF*#Za{Qk^Oty
z(<|#$@2b4Ndv{Oyw9_u{8aTsiY@Y2kFMJj6x$4Q@-Lt><Rj)g8=j-A9%~o;M%d89T
zCzM(Ju1q$0|9A2K!WZ$LMfKpO7gJ;TM77HI6SovEUSoVFr~Yn>ncb&*vMsTd??W6y
z3KF$<)y+?qJ?who?9pAFYsyTEvNz;STJ*MC@A=t^y|Py4zNtoRZ@sGZ`d$B%9c+2h
zMW;*Vyj^;Nb;COS_y715#1p>T2=3e&v3<%_yXHG?`}FymY!?R!8_%mT4qX3f+lyas
z&snt@M;tEzkHue$n7%rr_+o5r%<;c>&$ejWN$<>`vMWdU+_!aBw<bru-sZSYcDGyl
zlc*Ov9_?0~ez2bJxZHb>N7b_+;}IurZ+V(~%WS{zZA*`P)}HsOTlQ9%zQ60}ac{T7
z1Gzm<a?B5V-rH?H_w5r2mG`!rKxJ5D`L68B_vW{L`#-kYlzXPy{?Etb?SD<4{Mht%
zb4OZkd|3_0&vJ$D=RPVv*&p{kDt7L~Z^2KNCEra6+a3RquVp27A@ju9ou#WI-ZDJ7
zcX-$S)wd3v7n6~6_;>1PxAtF?2d`P@i(Y%27XB;qz(lKe@vmO>CER`FWzQSYb!T?O
z_w{SamNTY@h(C&Re5bo6`cT$<=RB!vQ#af?<a;9Zl}}aGZt2-ULCe3rwN?$hEPZ?H
zm5XJEOPOodZ&NTAPXDyOFz%0RlxnGmQvC5RJ<nXu8lNlu5*W0a`@qt&FM*f7TE)lC
zow&`D`$5nKz1FMSY#U>48<Z;Qaqd)GyRa`}?V+U$w{4C39<8Lb>(11U4!fT%9U<?I
zX;_B-t`?4}yW81&E54)p+00|vy*pNXZ2$eMKjOvu8?&w~|Jlzhmh<C_C~xjjj=6vD
zcHRl8JEr=6uF~_p+%kuZEu@8Iqb&~ImbQ7CV}AJNt1fX1=Id4SFBQasQk#iF<@<>{
z6?f0IpMHe(%e}Rws_$d}bBenAYae{ryF6OueXRBS+O?CHPrZ@R^!(w2^(>RV=NY}<
z+g+SK^~H{!=Y=<SPW`#(`=rw$m+t(x*-<w?{qD=#BI&<Hc*FmQUAd&P;_=*5+M8B4
zR2TR5ZT_osW$)QtkFJ)ATb4&~^1s;|{aVZT-4iz!aL;MNp7O3a-}MSOnm_iiS#0~D
zQs)OQR>~WlD|pi%yB-&tr&{@b+2?z#d=Evw{o9hvy?xT2^2_;`#VlG@R=BOV+E&mo
zzwrKnMmwcbG8boetT^A{qvYk5m!T$kU9!;g1n<R*t75d3y!JirOHs<Yx?Wo_aC=?i
z&f62buV4IU5;XUKWJ<#O{DPc^(Mo4#IVf~6-8)+?&atN<=2IRhwep_%TySsq9~;36
zCc~-U^#pb>?|6JF-$iU&FQ}F(e{gqCd831Zz!8R;z#W(0ugu)D`R}{@QkiF5-$O6#
zJ;uRu{ozyfkV|*-`Wzfw?wza7e_B?|!la~>|9meuOI*Y9&-d(iyeg{(1%-kDhfagO
zrN>Fz-IpvEJ=>l(@ApKF)#+8dr%j#L6&qa%o!qv~TWJ3}1-1({hpvZfJiXYyV$zDs
z@87MnaR1W(^X~d$rp5(Z(?8wIZT_)=MQ!4niJ%tw?u^$nLG)^muYUJ-gDRCI@p~t#
z#W`$v@}KPGW|3?A)Ykm>$F=5)AK^;%oMI6SmBoz?2bk~2Y~a6NCBSd*&BFBg!M%b9
zm!`2WH7@?Jb1$Rg8fDY|`q_;R3KP^rSeiUCHYaOd+$7t+zGwNe@M~*#PjVApC$sO|
z&F{<CElFAQBxSyS=ZWca-Y9#0`Z;NRaoU8Q>zmW|H?g?Amd~0$>AiGS(Y=kW?+=$w
zUJ<`x&AqrYF;!Y|{&o6-GhDoGeKi+vxtI1p;E%U{aekmd^W5!T5Kpi$<v*<QtC9+w
zRc!uo$GgolME^I<)HV+U^~Wa%+<B+jr`z-TozwHbp2p#F%b)Cx-kR)q$f<C*^*63B
zDKXy-tlod0y|ZN6qbK4VXPEYTm%K~oTvyGo|GG`~vs2|-_a}3)q&4Q1Kc6?_c<Jv2
zpZ9IQxw?6BJg7$ArgZYa+jkFMz1XyVzqs*%*E9FcQMh<fEI3)dIOpN+E2V}9ukrkP
z{B_OE^$Lv_SAi$>thVn?=Dy$h`q%3@-xbfDS$dycy?*H*)rbVmJG-nmR>kf-Efm4|
zv`_o~#@6>i*SCJ@)3#q_z3xIY+t%~fejh6K47?^;c#>_-f!_x<uX$hg{r7887h85U
zix~5@|KgO+NBuDUP{k{yAiyCa@sIt^);;AX1AACi1godjPV}}ETXwGF^l#Pz-;yo0
z0kc<`E}xiohv9O}sp|g+{t1iCa2Nl2=Yx*EVtGsXQRVH7I~)4KYMolIpL1K+Grv&z
zO}X~_yEiY3nec62`MfQCr|izsi0NIoOs>>*+}de%YwC)-LV5Ly>zH<yzUh(vr~0GA
zyYhYe9J_qS<N{AybDPsSPj)5TRlO4Dl52fs+x3fOZn<SU{<iKAelthQIPXXG$+p>d
zPgci=KK|0kE!9{&eQNRH%{dd9?yM4zD7Pwl8^tJI;p$xNZ2Z8kcG^|3=daG}03~0R
zGKJ96zt^m~ony?3E^qMj{=J>8l<B=P=lSxwy`N33il6*zxf5)4tMkO)K=<ek7mm!4
z+V+rBZ@=|Qj-5Lr%qL!5=a$ENZEwouja)jeYV+Q^*}ac_xJ@~H&Ei<d`1{fmw#$tl
zx79y>b?|BV@>GTELa(hh-YPq>^_W#<q^pmD=y~(z^VR;Y?<B6xb;#vfZQFY5@tUx^
z-fTs8Z&>Cw&q<VK+jRf9kE>oosdGfGV$swH^GgpOi<xk({aCYFd5^F3&h-;+FIs%J
z;|`x}?gyJ9<%qYlPqgN`{`iw8U!;8as_R18%NzV2)IRvx*In>z;@y`Qvp)M|{I<<W
z@>`p~&|!ka1EB*wMtctzS4BCVaVX~7bIx_f<=xBu_s`b&xqWloTZbzTuSV|oRg;qA
z=u!RTs~b7Xcgo(9pCR%WZ&<Cf4*YgW=*gznI|NVY@`k4$=?(h!X?DuvzpWOPukLI9
zVX3ayub<{UVfOj?mPPNCzOU;mlPls@J|k5m|Jk@N@~-0X4~$QqIn|Xv6)BKjeQWE9
zvj=x&uK8x&YAw7>@5t8j>IxyY+Ku0L_ncSux%b=b+T3^UZ-uVtUAvg)_V!)DZ|=h1
z6Mr+jR$FXl`D;zy`eLT^2TP61yNru?{2lVtt-3cyZvU9^#O!5;eCUpyiLadI{P8a2
z`kws$xa55I8GF93-D54g^XLiPYZvpJ^2FE6_Qy!tFAw}9HaY8n<kiTvy(c*5G@gG{
z{8>S~(2tdgky~C6G(~;4BK`OI{n>lA!N%m@?tBz<UP$1MByXPB!#ft`yQXcv+oQej
zeyv*CoMQsLym1$Pe!I6%J;d#^zl@B-ySVUYs)mfu4V6C53y5?J2`LkZ-T!`b-@~&f
zL=*2uui3`4^ZdrVg^OhS-@R(B*c-pY)~b`)=CozSzTJnd9`xcGrH4#COU3SIk33#r
z`dY&7RMzSVzxiID63w;Twc2><YtA`L^HN#o<(EdV@0n<A%l+EwmBsDbi_N;PuBu+?
zw$ADKTi$&H>)+X$>thOe3gqT*Z7_bdMQe`m-Hy{4jpx2iFOB*5^1#~57tOx!z3@Y_
zeD`0_)N%*2#Ll|n39~Z~8OE$w9J=#j&D;ZuUyj{-E>NAfUg7(kKI^}nPv%{?s8#u1
z|8vw{N%Nw=d5(FSyPD^x$R6&VFuT9hfAg)oT;*-0Cfkd0yo6-S6W@DRwEvWR^6mAG
z%hwgQN4c+lvUmQYtx?AFa-RG;>!c@p_u$-8nZsS$`?y!{J=tKqio5Xa9l3cej$GgN
zG1t5Op7`7C_|3T1TUxSfCw;GLn7^>^&74)n|LQ`o{&tyJy=s-4VDGwBw<ddj5r4An
z&B-NIrOvNj^=w(MxLxjb+ooIPB6;pJb_ra6_&Rubn-H&c>8sa$E}PwV+Iny7y}8`)
ztlBGyS1+5l+OB=dbmO<v<Ig*e$-2LLT~O+FC+kVr>x|PAtdC@WO|#*;{ysyvFHtvq
zkLJ4WTHz@i4}RHjS;p_!C2(DQ=bnPnFzef*?zQr9tIxb#!I90u(xj2FJo$#xTKk~6
z3pRe3UC_6@^8C>}Q^-7lfw6V_*^6?`F$}LaMZUFoqILMHWYN<TqN_@q+#dVi_`MN6
zVjtaor%3j#(UY)O8QSM&&nTSbZnD0}bXQ&ahQ5bFPtp?aX0Iu;F6!R!uGZCB<nC4P
z4^`GzOj&x5DZfbK-*E1mz4CWYaMG!jy;i&CagM&zTdlCw?@~pJF5k4&P5X3j?=!PJ
z9d!eC{kcocEp~vr_{dWUzfs-hyz{Zt*?I1KMOP=D<K40Kgzoi=kU8adecJm4js0B8
ztlM-i|5ConDaE~?^LfQA&fK1Ytlcb3ja>6tBX3-Lx_9<NtNDei+Y1@joo9|>2$xGa
zuPpcZ-r^I7%5>iUb#ApjU^UBlV)c>Un_cn_^V=Uv*7oh4f6)5OW5f4%PkgODv35^6
zq?GA(dpAAre54Qa?>}bqE=s+rt$g$pG|Jz<bISLBz2H_npVIY1Zymcc6Xy3Pyg#4x
z-d`>5-tM0|Ij=w63)jBmz1qV4v*D9T{5x$k4S8RDHY?e-UBB&~{W<G1s_(($Wle4H
z@%-F-*3XOP_1!7h>UV&tYHC;QytcjP)!x~N<SIRZ4C7}hao;|)=euXuHvL_5%pZR(
zTanFSk+5Fvk>pud^PixBe4j^8_d?b{?W)_od-`|2TQMc!^8F9G#0w6@l^*-I^}xJs
ziNEjYe*APV`FrlI*H^6=x!+YEW~d7{pZfQo9^?IGzAjht_XMB&cB1lq&*`6vPmH9m
za9R}9%B_5w0~&XAxWEusv~Bjo1O93O6P3=D2^VKQ`8BuUj$aA;=X2jKp2)p)5j2Gw
z>AsnN=SP)<4I;nI+e$mrmA_kFvpr*d=DXr{)0nw}+a-1$wYued;_aiYk0)wBer{6s
z`5wDs`TpC*FLL*^{Ea?ubvxeuUG2&0?;V?O*r<2N#aV5Sc#vfNKK9*?5`m+jB}HI7
z{mI_luXD@~pUi)+6LjPzc+{%4<Kdp~!OyQ+F|w~a|9$(F!font_kIT~TG&{6+PHHW
z3sZ21(R6mE=FT=YrW3qtAIG`n30~t(+B$i{Z;{t>L0e=Uty5X!^5^Y3maD(dVx#KC
z8{+XY-cug^k*Jcnu-dW0t^4(NOM!|=Tk{KiZh4_Qteo>Ki@Zy=cu&y2bdl}at1~-{
zmK)CbzOT9T=>1pU0;+h|Y_663w!WowoA<qHou_*@ulpgjefg#A197s){>?r9@9Kuy
zX?wm)oT{!b=6&8~_xxK(72llAd*7<PxPL_ITq4*{4hjMp%59(TO`P3yN4Kx+;_r$m
z_06$`+x(~R`99-p_50>KMr&rjIPm1C(7glybQ5DA`73Sr_;fGX?EPNrqN`qW87_Do
zzgeeT^pbP_cRBO?%lA4;|3CZ|QN`oEu|9u;USZ|zZHszm@A>X{;$(KS;P;sY+q^-I
z-ww8qlfL)OacJ~C_l>3C=<(ot))`0h7B!vD;rF;#z39o_=55PwJHIsDaPHg8N#Exc
zRK9=IW!^UZobt9EGK=OsTA%i#<JkLKUkxVaAG`NR&c*U*^~BRFAG;}i@9ZlxDT>~p
zH~VUzzT>;E1*N;oY<0?GO7thb|2kKDmq2Oc#?6lFs}knhAN$v9@Get#dhZ?ahp%{c
zx}G?D`C?ti9VXeeR*(Oz>2>PscvHq>J^j0$U#h5|#ckmOqW(;c3QUjG-~T;0pP~H0
zByZWTJR8FKGg3jpKj+!r)52OE@k#T&pMu8q@}+9nUkm-4`QYS@=TmR&Pr3$5LLX;+
zpSSRes+HEp`sd(@P`UM$?`_XH+}(0HuYcv~A5JH8^c(-#p4@dr^*wY}F2V59BlY*P
zTRZz^dmILt!8!Rm-z}Zn$1gmNI0jN@8~FKNWA@{3Q+D<GYzv?Cecp=7_X~V0+~2RZ
zx-ac@ulmuGz1_h(<+dQkUMo(5%(+!?Xzo0QbKf|MwJP5ma^HKocE@FJu(iU5?`?hJ
zvvxW?xi=L&Y$h;q`#I%#7ALFwBcDirUwTkBylx6)aRF$7!Q+UvPxgK;4a@$z<H*0a
zv0!@yc5t4o?oUiu&zAUZ*EG=3$W6<?|6gv+#BvO=8E6?QXnm}qfrX&~Xi+VgV~lji
z;DDc|fwX8AdVCS|G!4+&-XOA1)3{wWdl!>K;D;Cg{~JATl<n(DiHvDco$*<7>efle
z^kx)&w%|Ez;(OSj=ds0~neM09w_4vy<ul3t_x#qUqAyRxUYyXjw9>!*Q0QM~K=qPV
zJ(GPhwwqahO}clFiQ$3H&bMo?#=Z8n-njLtuF1OYr!O*fFHFC_sinQUDs7{`-{p7N
z3zg66xkoLiUF<5(uwd171D?kg$J7&!HMd^gGCL|G{`cvN%(od|oVx8K9bXY+x8m+C
zCvmCxKDpaby$<pB&P~7nrGD9u`m|e8x?7eV2OBT-y_tbw#p~Sa)!nNX%)jQ8T@}+e
z?;6uu$>o`|%7fR7J*(JIFsm%MI{)#GeGF!DKTUEyY#Vn+PvV;Y{M+=!?A!je7UzGD
z-X5L7$nffy_&>#cpHwSDV?QxTzP<L%GJ4nBJ#IX{dfc^J9eB6b^VjO`_xZ6pO|Qih
z<d^veKHpihY+7qv)B_{)=<Uzf`N#YXn_cIbTlw2$-t%u?cgXxKXWd?SI`zU|1qOy!
zUitZF+g&GzE7#j5t<ue(f9&&}eR9*4|F3(Hmba5<mz^NP0=?tHj0~@;tW|Z3GfVzC
z`M%xv?Vgw3&hIw=1A<RG>94I132?6HZr{D`w($J$zh8GXJTU<|Q>wmq-m-(K3)hS7
zI5YR2v#dW0!-~_-L$}|%*YJF&qpcoy@0J5c-)+qEe{-L!e)7}TPZoUh_-&#K@tW<n
z13UBf^X!smVQ`3j{rTzR%NMxVx3b@s{%o^-*~ip{AH`NIsrkA0gMR6(FQPL}9z2wJ
zYyNiM%!fO(K4kt}c-KFn|Ma1kx^q(hv0r<?X~ErF|Dt6Ld6yrHp7JzX<}Lqi-}?)<
zJ-MIqJ^uZP;-fls$GGAbf13X3m~PDCmET3)YOek5$iQ%A>g{_`xhr#j-JkcZ{cZ36
z__`-MnO?XCzt_AKeCzAG^%d<A6+M>55f;AHk+&Cf&(m%YTXQe>cD?^axtzKGm>2@C
z?|<^5NGxJcsyN@V^k>=8+0}x1zvlmoVKiBB{JY58cV>nE!Yq=1T3N2h-S+k(>v>U!
z)3a**FUsYAkDtHeSKsV=SGQc>V*4qE(f`8Z>aK4duj>RD7)on@?s>IDv-EP~lLg<x
zbNg+=4-|j-I&YEfJ*2pby3e0vcX;&&uM?>o3TA!Vw9Q@ICY+&{<37ZB`Imohe|CIQ
z`m=gl`}o^+w-+q`yN|)scHi<0?<jCw|1$q~_qz2xjoHgGzdK64&A<I;--Ra$54Ws+
zyR*+G{D7|R>z4cLUVqy<f6F(J&HJWFKD^>HZO*c*)BJy5Y2#uy_hrs|^Zd2dTC@9*
z7+jwyajdZCdjU90-AXNB*x|MOwdY&sTej>ACpSms+GM=fEa<JfKKWMrmi+7L$7ZKV
zew;QpY<IHJ0mt4oueaRtfp~szZho%Sug$a8Tzxm2ryxKXWX0va%lCOz!upSbvg@tX
z3vJ>BGyT9O-4g_*+uwU$J^ivSRawW**xu52_1P^9Uu$k%HYnLT@5;S>wYvN*kw3nA
z70n8Zw&Q(JVjq7!bL&sD^4dqQtn;eauVyhuU3gp-RK5QiJh!mRhA)4h!oKy^C$R@!
zw(HclmgmOK=U@n!{<xEYp>*%udsBBFF_hDkzhbv->vxg7H3v)mlyes@`*-fvt=vbS
zSM8sdJRclV%z4XJmimdm-sSf1+^y4~fPcX9Z?$LJ`PJ9L@*CSTQsyqcYIZ~ITYl^0
zY3o6ORLOnE=ke<~a@R|3|LwbV2;!os`TFwmb$T*avW%M#yxqF_+{>ic>nH9<R>xZZ
zdHXxcR*YZF?{d~*#|P_<73LJo{d{{{&EDsKzh|yJzxrC-U8e09k6JB1UK-oKf4!Og
zeXt)-<>s&b)}3c%v*aq%_UlN}|KI*P^5o(3Lyl|Bj5+SaS-+m6cdhjCi@)C^q4~vP
zVjYLy@2>4{CSBfg>xoJ9=YssTYm22axlO;8U%Qqk{5-$a7~++Evd0bQh;^~s{|!h`
z-7J$Twr>69vMmqeH9v3f-M_Cq`Ui^{Sj+YA)_=b+f3go+ZM&Ma?{(qL>sjybLXuSe
z?dZ>r$Je_rn0$H5t!CYVnEuoI!hW}0`wEH$%Xu6O0oN`5y#2~`{;k#?p`g{a8(GaV
zvwmL9+WOOMZ+&*1PG#D^>z_Ywy(Oh9@G2W5-lxvQaOLUeRa<Sh9$0hyY53~eqTf+z
zEy2c-MYF=HlephpKJ;nz)vU=7&wiC^OO!eOgJ(UcBoC|J!)hcIU$-?X*XGB!8}+;Q
z9J6hXdVBENx-g9`Iu>tr_D8KXyZ>uXR&F%Zq1Epp(dShYSGw?O%Gz&J#MYUxJ(>v0
zWvkv^zrXr;YW(WG<<@?eP4xG!KK|(7q0FeaAI0=8|JbzPYS#OUkTCdv$X;jn%IUou
z3XYfBNaWwl+`2pZ$HHaPSl5PC@Bg;dMj-9sb?uXxQExkSW0rkPbzFV*-m<f?kita}
z<n=2T9)ryLopqO=iDALIFW;`!TqrC}@+}Hjy?0rwR8@@FmZ;qRwXZ=HK#`3g!-93&
zFYh**ZgEWcX>-)uWia>TUskhQ|Le8oH;`Qi#iA}hE?ROm>vj&T%+J1^wb0a7&pm4G
zwykCx>$T@>shKNtCCfkOVf(Bou`N+=|3-l;%<S5IH8n~R4;O^3KI<>tvE`do=GLg(
zwPinUf8ScABd0TG+10Gc&EHhloBROFEWP$TG<)mxZ7C+7K>W8aA#pSH_Pr?Ce>X}@
zTvlIwH{(x1?;f|PwPDp&zsqVL?J>`}D#Dkw_0}H~>9~#8;*{5htzLVjiXT*6zx}c<
z^>()9TkU(By!|d`ZEe-veD(kTSyjDTqSk)<f+()9W|?nQG5rd%GPk#^cK>C6dxihX
zTch6Y`}S~G1z2?jyu3QgF1vqT_9T$g&A0NL-4Aw3*y~>|3=O+vKy_la%)f6{t<TGJ
zt@m=VZ;g6;{o1}KQ`zFd4!hxZS!BPk%6;icm$yXaR{qY6I{D!3ZN)`bvy3nM{cltM
zH+SpmYad;9ge(s?ioeX{=|0U->fz^ATcg&7t-hM|dfWO`Hw)9rs>?H>BKBL~u`@CR
zT+fzhE0lSBc<;xAhbCa9TcdJ|3MASRXDzEJ4+n++)vT>iYt3%{+LHy5zqJb*wm<f~
za{9Q>2qGGld#CTR$=T|?(Bc<j@79M4z!m6M{Xd6`s;+Mm6r1-!l>b<C8C3dK=<g^w
zj?EulPkjQj{q1r{nVVME0CM@(sI}jO!AU}U?_N{+l9;((^JT7poD{bD>a*zU;H+Aq
z#NZH{zr0-c_pU>i_dPpUv7{zoHQ3!@)+uevGQIfLdBdE!suYxZ_2!4Kg(!&L?)&CG
zm%47eIy*FIw#G+;EqtB(|C&YLN8Xp*aG8^3kdV<2w~4Uug<2uahZ#1v?{$5jI<-C?
zYU|rKZ+{)B%)hZp6Yh33s3qu04IDCcS%@MMWW>GQyuS61CO&yE`L^rh_3u;P{;FF(
zzs}*GJ2)VIZ<$tPyKmp~ZICFv{q5Qw;}4hh4*r3Jsr;p&b;qx7cf+01)`qR#n|j)@
zcmKZWTVMW-{+xW$`1AgG^Vfqy=&fxOU)G<mdpCi??NUzZ+h;4IKUQ7^J5y}yl-D1>
zuDyk*_OrG|y>*T{_4UWEFlb2vX+s~6d<-hMz<yaQYq8+(_3x*?z1{e~tg^S74IJ)!
z<6moBuv0ys#l8N0DyU8Zd9BR9dZyuqU&%!uuGimhk&C}ye7pXsVL`wj`KM3n=Yrzp
z?Nr^_YvvvP7JvWAyj8-gcI$TqoD5!hHH-0F>fGYq;``#qGG{$oyYp%?B!SPCXSs32
z>bcS59sBYRN51EVhS<;O(}|~3m33?;NJ3KQx8T?R%?>!WzLw!z^>N<^P$E6^GwEbz
z)Y`IO?hR8*&zWlN)qi4VU-(tleD8#)wPnXs8fKLGHE-Le|76>C1_lc~aBB65<NW#c
z!-lZccTIQ|&RaeAntD$>2BV2ke{pfxYF!zY8(EPv-|P@(oPFkeV(<6XBhN$YZI9bo
z`mVm3m&Lek)482)z28~E&9YCGSEJtQM>nipQ@pP5-EXI)|6vxHKdmfRfC?lAcae3)
z7AubZZUX1Mt#<Ktc7kgP0&YifGnhR3f8BQ7y$$xUkA9TS`u1Fx;eyEg@Y=)I_USQX
zbb-}Ry?yW1$5&Nvuf1nrxbm&6_EC*Y*4MmPixs(RSsA1rf}5VI>&m5@gx5W`)jpYd
zD=nJg!E>SK`K|BYoxXn3F?X{r!-c-DfBjCMUiPkG0V~6-r(ivMbMr;-`6^iY-VWhr
z*m4-DcK-i<^344&9qK?X{2;LU_k%h6`dWi6=5aV2H@Y4DIiV)9+~&th+rRmzlR?#a
zX5PWWkvaK{1?eYO@A<xU!|b=Z47;}HNVG<K%v`(l$(BQ6Wd;Al7#w21<uewrKejlw
zJQ~y@WK+*C)cU=h;YHlPXM9ha^LQLpzvVMt*j~YZ%~W^F=Dn;80n^{=GW;rgBr7jt
zyF}<YNcZQ32d>VJvWc+BmHQ%gGV)I{6T^zv_t*btV%Tthxow2=x5X<bU$)~tRCw+_
z(}L>LWkEYKr|!IAV7YcftL&TmOb^aIvbLM@es>X9xW=8SJ0AO`{X8g_`>QrLpYemj
z=jen_wsvxF%7Y(N@!wzf_m{TCJdOjlsb*^}0zXyi)qKkTELHp0b=UnxEDRZQ{zfw}
zlv>tvH@tiL{)fSy`8(enIF~nj-t+aB+s@@5*f?i%=%?Se_Om+NpETd{Z5!WKQM>ae
zGtKLI?f&lDww<BjecsN>63N@q3}4Qs`^6uA-ZZ_tKK^zz!<~R1ZQE;Ve{cW!y0&(n
z@%hU4`p1{uzYcEyZK~&P=<9tfF@Ltq{LCpbPdYw5-}%Ax)y1~^*Z=7<{Mx!}p~J)H
zzcx0X_m8>x1!Vbwxp$N8y?#$Bueovk+l$xh6RNox7U+R&iQM15`d87TyGm7GzJ^;A
zSFirF$MWq&u?L)Hb3e<)&$RaqE;9J9e5(E(^KF0s%x9H)^;<68-<h@h<@eHkHVh82
z?RM*}Dvut26*SSm`Ihh6vq=vu4^55x{W^W^wk5Vd|E&G6TOU+_yGJ#szbO2>=BnD^
z%iFe_<;tv4%RU_q6-$c(*A}I>zFn(1@ac7?+sRB&%bl|-#y)%N%xj%DKmiPHE?)fY
zcxLzUPvSn$*tgDRW6WEB{Ojhh+4<-1?>DW#|0MEn{Q0-nr)_8Ozwr21<mz5fnhXeE
z`*!V<$iKHP!)$Bg%gxulZ~Mn^ru@t~%XIS@=PiJk0%>3^J}!K`u;)BqH#_(8OnYDE
ziZ#cspO4Btxn=wDN8NI#*|+j%z7=3Ci@2t~7u4%1zP<f#^v7k9ZhKOfUuAl8`SC8l
z)w=l*qqe_Y>)YNHHhF7Q!`-Tw>zP}hzP0eZyytrM*9cH8RsCBmVYS@#(x|tcYcJ2o
z><9fm0F&2zn_a1J=Fs}^Ntd^r&t&ww@@ALcYTNCwc4Eoa?|F>dUKPeJzdG+Kq}loM
z?b@FU9>4OL`((klOx*)^wQFB*xmAo-E2rue_JBre%Ci`e{DUanSZ^#mUOG2y_f}91
zvj9{x-@Vq?Sdn5H@$Yd%Sx(d$<K~AauFK!L1$GUhw!ZaA>_vG0Ynip%R$c?AS5Ob=
z{a0OZ56D6MR%Cw0*7EH3{k8GXW^=9uM@dR#*YDWp8C!F=*{zSNF6I8R`gmzy*lj0B
zEA8pF?P158&1B^+Wi|eOSvYs`)omB{#m<+QcW!HG!0NL+OtBg1dlz24x2DvdgP~!U
zkoqP5gPHLkr^Ob{3Y$GAEnBYY%6lvK)w$bz=j<0f7qQQeFKg>l-3#mGu3JXs1|!wl
zyVaR}GgFX^y0>lnv*y0|^E*BLE@z!y&UiKpDq9O`+kkr{rhN6)dk+=w=33u!CCi(w
zQA#TQ+t#Su8_T}upY2yYf98Kx-M%pHE7z`XT7NYQ-r!!J*Z8<9=G)d=>e~@*z^9iR
zyk<p#bpL1t7y783nB6>l4y<qWe@Cq?Gez`bz<u*88+1y}>Vaggf_gDu#dbs}pWYX?
zI`-cSa48R}fiGlj3frA;RItl!TJ74f-G2(_EYqx9<qJxTt7F-6D;#;DX1|aHbtLK^
z%1^tzds^>?4=w8}4DM~Zob_02#lpX-@vE=uHLri#Xu!Qc4iqZJxf*hRe&segt<?qD
z|5FLtH+R31mAwVlQG>+e((RzoTpe66sX6McDXd?&4%Em#{SnmOzUTM;RLmoZ{we%f
zTW3cp<VO}r#eh0(MNx>3xm*q`<hFprAJikv-Fl$VR_}Mz+r77s{99Xa=~HP@0CJBK
zkr3x|gjuY(Dwp5rJ1Yug@;cdn-)h&&f%E&;-%-1x5+^U47QZ%Z_WWlkJxz!QzzMP3
zO!nQytn4iX;iv2Sj+f78tB$Dy#bdtuSrzfehaA^_tKdFU1$Otc(n&_pHt_AZ(|&I%
zPU~6vuD0FSnx2&|c_nM>^6j0Uw;z%O)z53c9TA(irZqKS_0?<HDBbEbTfO~JYrh3U
zoUk`HAKYVcn>=UPRk@tT$o|vo!&aZ&jueW=9_FtPugD93ICTQ3XK8a&;tuadP>1>I
zv)f<(t^K+2$;_Ye=g(gU`JuX3zd35{H;>og#=715sN2EZ=GTrIt+<-?eJdhms&D&{
zqN@W^`2`Y|RlJ7{`jTtfAT91#HufD`zfE^s8+O~{H@trhPMPM$|L$&GI346KvrCY)
z`EJQ^5cl66Xm*_+9-Cnrx%#fT<gZJQK{nUl>$_~C>c6!UR0?lBy?|H$-P*q(EoPUh
z+*ue_ypI3T4jD4Cd8jSdv;EDMTRU2<UlxLb)IR?|dy4ELchK-W+L;%i0ddfXy{UyE
z;>-)s$^Ib0!ExpV(lPwdy93BN^Wx3i^qSyM`G)hp?5)%GexG2=ax*%Gzfw}GgGZ3%
zCP#-(WRsG&83)ISFo(7r$8Yzlrv*ltZ7Dhbq|#m`cd}aM<S%M3cbs1@KWTRH`Jc;o
zKEGG|FSvuHhxwP9O$Pt0gXfpo7v}DHA?c9s-tmwpM(Y1JsfGnxbB!&cXKZPHHTm<A
zM|%q^nDwpuOj%!K9{-oTl4Z4z%()9`N2TwYuYJv+Dbs(ty*rLcVAICE?VDRYop*fQ
zvv_aLygd2qHtl=eC#N+$<F4*ka>)yrKQH8X=>Ld``))TecHEG3?wI|zwZLT6ug~)t
z1-8AM>~l^`O?P7E2jPa(_FMH|%wSwvDe!sa-S)tr3<4XL`U@(ytU7Z1{`!3@_e!?p
zyqdF9=grpL9DHu8Y>)FdeAsVYZ52Jk#C6-o^$dL`(`C$;eUWzAzWKMo`@gGZi{80e
zqN!8n__NA)caKvCqrs(jLKZ@yZzFHrc6#zn-^e<8#unFmnT-tAvU{Au*S4=X#wW3&
z;Jxp^Ba7`!7q)r*J}I{183UtCOL+U#TYEjOta}$ZSJy{s@r^|V4tw`aa&|v^A>-6b
ziG=ORZN)21A1;yldN<d;Hc&PB&c#g!S$0^sG3*Xr@qZo%!=mqXQ}5n9w8Zq(`c6ir
z`s(wI$*WfN-B};~+vRJ)oeeinsReu!sbbQWG2iz$Aas6>=kNbKckfv*-@Meb_{tqN
z0i(?ghux-l)or#6W3Mj$_kYe#gA;|qdZ~qr7(Pw-_;_hlt61Ist><QxRI{$0FiVD|
z!usI5tos#qU#^`M*l)kfGB0bELh<XF_a4l>KGW!g!#}(KFXo*RR|_j$@Je;>f~<P6
z2QLk(Z}IisSoPQQ`qc7g`m;8kyb^54pf9uY+!WcBr+yUQs!#v1E?;KJe*gF#rTaMx
z{%5oA*4uLBm(PbX=k0g;WFy<F_kL_wE<L~b@_TF7mK5dG^_S{itdE|bvH$4jr~iX>
z+P@tr?%+Rg^;}>0haFeu76tx(opsKqC-j6>kB_!fsqvF*hy05yD?X$sKVA9pWjS|Q
z9Cy$4toWHhmoNT5T;g=DGoQh4OWCzm>i@%Mm)d_>eRaNdL9oh_UIv?pf39`xeY0{x
zSYMS%e!hM0cA|v9&U^>K^zLb4nnva#3E|A{d|4*)cVBJETWfkD!|(mx2XBQR3mCfn
zRXVgy&g#z%#b(w1ocNk~;g=SjdY$(na7%yx`Q-V>?fhjw`+K)f`M+=VYJpe1#_O!3
zg%r8I-xOQ4Ti5OGUDNc0&yULD7`9z(_#2y);*hmPPe%Dr-uu6~CDV7YPEnm!yK*<P
zLQb8bJAY1I?(~IqtFJwMbl=T>Pkr%C=W5QtZ#iOyiCufEruR3+f2;E6P;4^EV5s<e
z<M{K9=O3F}L~kl-xRO=Etmty!5bOH6x?PM%_y0;gef7c)>$DdM)_1ix-)+^^{BIXi
zI$i2OeO+q0_awQKI|L70-}p?hdm@+FE92zXUke%*tG+dCIvuxTmeKw_c6*f>`D)g=
z_*pjpdERi__U`1omp&n`VvLE-ZwpS(=gaRpeShtqlnAaL|7JXT>a)1!0k>lOl0RSD
z1mta5`le6XeS4k2=ZSabp7LF|`9PCMox1n#5+2t1A)79Ijbdo2)n31Eb(ICrl&$X8
z7hZ_ASYPmra+J@MDbV_A@vZg;gGFG}F*)O(hq^@G@o4aNH@eGPME88@I&PJan{|t?
z>KyZ-_S4@jelk?t(spH!smx>frhQP+Pw9SULQir2lCb`J1y8G;e(dAo<mKfBVO~xf
zp-DX-Loc`Q<S2anyH@kslYpXVSH)$$;nvZ8C0<YGwz@`a&pju0ILhXE7LV?E@k!U?
zZ@y)i{8Z4d?$(~>1$^hGDc!wf$5IpgG-><4nF?F)=~Pa;^G_<S#khz=&3e@@@5bAy
zb9LRTT&0#a8lNj~DD~adDX5;st=YVM`ts$=r>DP9ONuQ@wJ6)T>c+%7eox$2-Tb-P
z$*E(lZS!1RFPosP{Vo|EE8gk%R)?lVTyyT|-FtYhZhPb&FY~OV#;AjDHD4v2lwIwh
z;&^k??anhESJQ0R6q2U=HS2rlnpG}ivTfQ^r_g^lZzpV&{-|auaVtmlJm-V<DJvLs
zKmPm>`I`SeFWZN_St+0WHrU=wKGzUG>2BwoBeA_@Uh}7}%>A#a{VlF`>F#U(Tg;a}
zUVUfho`)hD_CNbJT7O!;($hIhcB-87jK9S_QBF-Wqn<80sK2@D$n7Kk_HpqhmQ#EL
zH`#ye()njIbM6U`R=>HYITTxdJ&3=}{KnAXq;spV%uf6C(isOE_r&h6iRbtqtnL@n
zA>zalxT^ShmlMZA%PmiPmrq~*?fmL>7es0j`2~X+a?L9`m%r7sislLSxp;43(>u91
z`_B>|UUeUltC%_caBqse;PFHGC*L}odG+sSZ1|NRUwu?``j^YC?`-V0rv7^&_cxDe
z&&)aM>m1ws%a0w=U)A^jQ(<f1ttD}@l>dHy@jXPA@0O=Wx^nIE#?Rk8pFN(a{?e@T
zlm3^?kf_<m!>&G;-LQSe&11asjCUtlE)v*%;Py>d38Sm8%=6FoEe@|uUhnq%r}LCA
zt*`e+?VGRtZKdv38xDbuYt{%jd6<f2PChhm-lo62zvjqH`mkswYy53rzvYt>RX<FB
zv(xm>sd}@Y?{{ad>(!gp6Boj0bG_Q^$$g#{KJ&HgpJ%LWOpvTwx@_Tse<w5NwcM2M
zk0=k0-&}j>Mb?zb-)kOL9nvwCU(?O_<N4vH#d(YmeiutBwuF3pZC`TxYq4^V^2<>F
zj<S>@rsEUeTNnhMtKI!-Z&|W=On2A+sr}!#SFR0^;tAdK|1+~*h~dRA&C&-x3T^9K
z;(s#uz|v1eC8?t8Qmy=Me2e&BCj0NtlMgM`Y?X$Vo-G2dX{<**1-Gr6d9TdwzIt(4
zkJ-=qI{81ZZ+i!%2R)Z;DWA0Q@Va#8uXRtlZ>3~j+`a2YnEYblJNYREDyN-zkNEii
zcvCDZ&O1>#_0#?$S!rIu`&NFdS5~dRd*f@k(xZQcfz!iyvLe*h|NZJ(S<`s(|8Irq
zA8U<XbG$8jACd1}ykCrqZQ8P(EO&$cYkXL%7~ei`b*X*vmtOnh<r+_wTsjMHxtE>T
zb<Hg1(AA`d{k-`xrFjheQ4)XFEIrQ<o^qx&{;S%D`OcR<d(2<EZ^3j)jUPvv;zDJ%
z-FYqkeb0{Sgr`gHojvvH{@FXb<n|lgoV8?H=s9M6JO55G*4rN=IA#3au|@ZHZD)9&
z8*IOR#dl-x(6o$vulk!8lK*-;JTYlDGI?k3!c>0zxUXDh!i+c8ojv=R8t=aO-<<wa
z`<qkm&aIV~(wE9+Pt&fO$+Bne^qzMyZ7j^ymxEYRCw@MV6CLB^qx_YtIU!h7AXHxO
zD|@dlo8k0(`i;+RdG+QQxieba)L$;(B=SpqNBnWIiNcFN3MXvdD|^L$2mgxqxpR{W
z(hC(Ny-i<QCjR^vtyuVZNm9`+?Jc|<zwORWS&;Kb>d>we*XLi4deF7AV+Bw4!lk}{
z(`L$X#{BTvKc(SSx3g5kinsHtY6KZ{HaW*0$jNSCFZ1o!`P$u3J~yaoZ`7%{pO61-
z_IGtMI(z!<--gvcpG-V;(nI;m2Zv)S7pJ~s@IDiM^oLa4rj4(^Z)0Tndokw!&hUyU
z*Y1e1+2kfBpZEOmGI~Pc^)#1h_Kn5o;^*%WS#>${$ey*&;~75G8daYzlANK^9&_&4
zXa9u$o>v{q9tvE!d1v|2{nosHl8fK>u4nvERF}KAw<)A@+O~|dRl8S)?qj#Uc41u&
z|BTmfMEEPs>^rxwVXm38=bx4gtJA8}%5#D>D`jUWrQdnQwj)PvZs(PEJ>TxzANckz
zcGj8;%dXZLES>Z3VcKfvxKk@n_&Ko8$k=|)nDv15^W(w1U9;t~_FtZzR-e7odxPel
zW$w(gxlgLhG0yzV*YxCUv$del^DhClMXU|k!rChNEd71aTi9Apvzc3q|GdI~ETrLU
z+3P(#cMAVyc~9vpuG_zPN%qAjnqQaj`7`9-Hd~;{eU*jxj+S!%@?M|m&r4p`Fh95@
z5&3CO%G*i@-Vg1I7unmG%-J0MT=YTt?$SKgRYkR7_8oII>+1PdC4H7!d?ZgHDab3p
zO=Y@_b%XBA$$1%~lFB>tOD;U^j%Ij%>qL6l3HvWhA530)2v=74G~D%33r*<U`)k{*
zKl9J+6?knUw&k|kTEC5)4-eSgyv$+6*#G{Iqixi``TuxS3QiTjEfjwc!d=Nexr)uH
z<xIa*u?)lRtE*Qta=*E{-8UuA>SM#ToK2Tc887`_wf-aHhu<c=68B=OelX<EK7Ft7
zX{<x?U*){Latt#0TL1U2y|BOFh~fTYN)lP?_q{%}{@bhDVO=^`8cI*<E;XvX{#q#{
zDedH5mqMnX)2kbv@!u2`SZc-;b7}M1-QO!&3U*A4)qCc{zi_&(mDwZZjxE!JHnaO|
z558^|lvrvau=!e2yT!_y|Mv4=U&~DV->X0Ui=^hfEOy3kC*tz9UDzaX;QQ-})Zn&%
z{tSF3Q>s@)%xd1B{AtU%Hui5Ers9h_?6++9KEKU~tzo<KswW$s+*`KFB;&L9T^`Q6
z_S@!dervZWpoaNC<;~42pU;zJ-1E;YZsSA48~h3RMvwn~Qd@Q+id%Zp^}Ve-<~N@G
zR-v$KZi}vFwqU*Txgw#O;`f&d?@EaoKkr+*%BUne=Rwkkd4XFmciawJw=?iS^SPqx
zIcYORcv$+bNB7r#<VgrWoAT|Bo9y2I*_$6m@4WA{I;Af`@+i}r$<1|AHeQJ@d!pvn
z^eIa150+lepA&7l`(DYnoF9Mr>hC^(Use}>c-}Xy_DPvJ3LmOA+~GgkqkNCyq45`)
z^v!EnZ^Y@|tnFv$_<23XuSNgiMp+vf-wS+7zfaU%&S$)Ma___&jQx{(tNnibJ#e>0
z)z>-iZS=Rp)8#|o?Rycl#=86ex5Uukl52&p3;zDn6fiq_X@ar$$zOks6{<WP_a<+Z
zXS(g{dMB#;xYXQxPaNWdcSXFkpP_o#K<tC|2FJLky|2Ub6LzeLJ=HyBchvFx`nyH%
zSk)^3exLCDa!B2-Lx=MiU!@kMOPsK`6}YhGvVQIhBQrLpr=R$9#Igm#{$D?D5wa%5
zB5U`QP?JNsf(8D4GuIzpdb>6u{M4-}GZd3os_j)<XHlT8H!G+(_h$IhOILUVkGf^Z
z@@_x9cCq&7YLx{)Z#yK0y)Y>7vb(;-Xa5n))vNd=pWd=$|C%DLRcOcE((%tI_UbCX
z?F?nh*X1Y&ty}e${d|n=y3RY=Lg~RZOU%rf)t~s~1Xj;x>xfCqV90;X|4Kgf?wL?a
z`TtYG<>eO0-wI~WvwAb_+db9?`j#e#g4(kg{##}>X{#KoUaX&?zizeti8;sPvx<2X
z3Zj}=zRDjvAiPsoMbFupVgA+cTm644AI>_GrLfJ>e<r(k3(seU_bIPcmh|g0%H*pw
zdvKjxawQ_S%}cL;>gHz)1e|t!-NE<a%kCEcdrkTe^Q~K)MQ^gQ)JFeZUVUr5NL`KF
z?>$aau70?(uxt$<qkyGF<Z8W@M<W}I&juasQ^^f}#-8iIF79@E-|nwc-&h`$=`YUs
zz_a{e{B8}lrGEMi*<Y8Q3VwfV-9EW>_AK{rCYyW~vF83Wmq++`yE=p3sTT@s6QrN2
z#axebf4*<J>e+>gYyU9%Z8hE~AHma~deXe;>2x>F`GPm6XEt1|Yz@hL@T+~JvFe43
zzdgQ39#Ed$D^r@(u=?#(%SS0o-kEO|zc5qq=$niCuS-9WpS-F;UvbYWoo0rEw||Qo
z+eExp`j9tawSd!;Z2P|v76zfy9<EvRHo8M9?Q!Wnxh8w>Xss((Jg)UJ%#li4Kc!{y
zgB3G3#N@xwJ+H7!{pj4CZ@peuvhV!D&!Bf)?QYR(yB+(DZIrv_uxz`vP5x5_myuMg
zNY0{f$`6hN{66}$daqlqU;H-X$er?EPF^m}&GB9K!rD6R%ewW&fhYG0CCssDzR`2L
zB<I{BV~Ky$LM2$U3nhh_8OzqDf2~zoDYWXa@#md8*0_Y`-YMMs#5~`Bt<>Fxdv>p=
zX1!8&BRA50cE%#@+a=468&9y!aXiSy^@n|qhu_KxDj#cFkL}^Cm+qNRyd_7r{?F^K
zedlA({EaPsf2hWiePgF)!AUd!j|(?MrX`B3dGOeL!MvRNQ-76rwv~ij`VjT4z%TUT
zvu1I*FIQ)4x7<)yImKmkr@_!{?#z#sMw35iskEQU`tbY0zGRhu8iGm8e-hR&wEt1_
z=$QAelJncvmOWXrY?jCEKac9XlxI2ytG|8FvUl?0{)XPp+BmJY@-p2IN}^dt1^?E0
zY96>}!0dNB$)R*FZ`rAgH4{vxCN7=Ze&UOe?<3PIb=%XoT@Z0SR=th2{Y%SZ&4fwI
z!#5oewB|RoIjLoP_0su!TlTdTyxtlrDd)`mvo&zTl<PJd-!sgNTjZJa_@<=V?eLB%
zhiy7$C9d6+B=BZyw+Yv@Lb2Z1)fYPsZqV#h+i#^6@62`Jv(<+^yF>q}&C^%-`I12-
z=ehre{HklJ1!|qu&ow7FH$SNTdZlXlY`)1yJ|E|JFvT?d?~5;+m3$Ze$;p4}xiY*!
z=i(gIcY=2&C#y6pEh<S#_sU^5IsK_R<-~(`&z`+{w8*O_dEQa^(x?-)GrE3C{kmP=
z^8Nmy`p%yVt~8hy@q95edU-VV)PkR~Jr```6OW01VxRfXp3CgAMB0tYj;!|y`AW0r
zA1qQW*JfUw`troP9sL|e^VIKTXTMrF$+Tg{mVnI)rol4XZdCW&I{2Z#a{0%v1_5H?
zGqpa<micSZRP&in-m>b;jgODj{pQ(}{yH;rv$*Mj{c4A})edPLKfQcGe>TtbH+CM)
z0T!v(9G`G-u5ONMI(7L)i<QCks)s>bq5X`8+(OF)Pkrl~@qLcc1ScE*iuC`EQti!E
z^CZg;m%V4GFfje7oAvD2-+i-9vQOU1{XcKlw+E>lHquiSjJ6y4Z1$LQYX7NuQZZ~x
z&dV|XYv!51da|$hmEZym_5<tuLZV*XXN@Z{{=4VHiw%*{vL(}IKJWBiy1st@I>WdV
z`+uKQC{C81k<h4f>4HbntjOQIGLFaOof>EVS~_JDyU<)FuHI$k(=3lAO-=NXC^!=%
zI%AFP|4`=c-nF?uZ~d*&usHaJqx$cQUo(TH6mlBlQheAY=5JBiS<bj;vgP#|J|Z#9
z8#d>?UG{d@H(9&7UyBxRICIlUv*Y52na*rln?yTi=9bN$mp_MX+G}6o>5F>X|NgYl
zoA&C_BfI(A*8F!|`6sd@Zfk0o3**Jrk7G2oBZ98IUz~m*c1M1Gc!u=KQmccyil^2I
z7IBGP<aD#lSP^zlW!0CrtJ*^KoGL=I>}xLGs}3v_?|T32{i}4NLZ^q83meqTIJbZ4
zI<RC)>SL1+tEOHLwV31NZLo6JFUd2LN*+I&HfiNMhp(BY3u2Y#m-jUWFXt)x)h;*p
z-o^ztg_pz`zL4}ZbL>5$`hs2NjK0gn=^Jd8{#sPc_rLbt6~pH0(yY&kUpJL$e_5Tt
zYWXmpop<V2xiwy2F8xuls;g^>xox&Pf9jEWyqAuPGn_lB>-p>O2^ZB28Ro~KP8@;O
zOl^_Mdz`A=xQ^U5R9?C5@KTjaOSf>hrymdZe-Wmh|EJ`W*8NrY&l~@~Vt&WdW9>P{
zn2xjDTAYF3w%xdGHSwPJ+_QRVuP@E7+ZcDDY&&nfv!ZR$My;RmQI|H{ss5cb$@s#I
z`K}II-91fC&Hh{%acB0Nt*1qFqn2dMS@`zsTkGxbS<*gyIPqYjV({`?P93KwmkHHx
z`ZDK%%cLnOyP0=CV#=y-c_0!|>8t4a$@t601(Dy5N_|sNFAOs_oi$Bt`?OPEe*N9H
zvGs_+;yXK~7jC<$7yG|e`eU2NRke!cEx8&IE~VZ~50~i2Gs<kVRSmdkE*5FrBA}G~
zH}L<S&e>ds{r&6a-dgT@*^&Eyb(Vp9UQJR$?8Fv<+UZ>z)6Tx<X6rOJ{W>pIvb<h}
zX;#d(m$x;R7^}=bba5xMaDH%MA+w@W%XEwDr|xeHwCM{M-+e1nCo`(JKaW|c_T`nO
z$L-F4omLrndW!aJMI$98B_pLrKMNn<^Ey~peD_<s#^IWK^V}cyPBIQWDD=$fQL6pk
zv||jjxvqX_U(MMq5_O{J!?q1g$3q&nTf3WYsjF50xp3#kM4#D8$7XF=W_V0>gVFq!
z>uH;6v^8E_HYj{v`BK>aK^?c^k>C0c*Io78zEsF|+Px+N@AtQyAAH|rCZ-gzFuHf|
zZ*|9<{I?7<GOyU2maJHLgi%YS_q4W?Z{)VEQ|_?4_<Rs>;t0GYo)<a!RoE)4l*`6%
zTW_DeR2+5id>Bun!@tz)C2GH~SFK)srdFT9+V@HK=_<K-r(>o451xGT;>w~RzPCkA
zr((8bT|RfW_w~%^vql;D&y@Q;1rN;I!O)&`@51%2b=zOQdwVf`|CS$fCY|(ddl0ws
zwSIM+b4vN!>XpAX2{fEmGv&Xje=zuXNPT#Lz|TF5hva|E+w;?@{QRCNHTK=p3f69J
zU+EuJ$?R|Sf;UjQ#@Ec$Q?X$|?PGf{6I&Oin8lTIXXIWG+9b=cY*ovNOa9S*U!CHO
z`%ljaf6)18_Pn+eWk+wM6`1|JyNjLSAGe)H#hwph3RSzNA3QkM;L4+U_Kjyl*ZB2R
zGv0`e>Nr!ncT!#s+ji9h&wlN1XJYw3ts_?Dduhd*A9t5Y8p$!wpC9&i|GWBrf%&J|
z%QGHqm8m}e?be|=)7g*zZb(^Yo)F1Vpt6u_1=pS}KTaA5--^=rd->SmN|XIzi-f-?
zH+nc<+4cLx&h^6cb1L%=9zL|Kf60VN1;5$jGRtS>Nwx^&SwEP2k@<jHi2Pb!_KrWR
zTf0}ew0qu`%h2C2U2PG!`N0hD-?n_)-ppQdzI3YlyjulDGPzBS3yymJZ~t_^^)~0@
zv!X$&t4sx!Y%eOf$)H%8`r0o0zA?j|j`NMedrwShT|7sso}2sGj@Hiy%rdt~3QT^v
zHs<A#i*aJM-?;9zKc4n}n@Et(C7F&Z-dPH|?Hy{H_yQBda=!XGo!5~KIPVkr<*Hct
zoR!l&Y>zI{Fv~LY+5R<0Tl1sPwi`haE{ds!Y*%C--S;Y1xYcG_|7ged|LSi(_G!+a
z=5=O8xY8_z(}xn-4<)QVW*%|Bw^?u7ylma8eN|mQ?@uamZk^)u(t6U1wc!(<AOGld
z`Ekz4@1Gbl8fJU8*QifEBWut5{<j~;$J^#fZLWa_vUhjRdanC!f5CUTpKNQp>-Rqu
z4*a)mtJ5v7)e<wi7id{Da<;L(oaoRKcQ)<7zMaJ}QERwacX2DaEaW)!DZ1!Vt&$F}
z-uWA;``Iph>9ba{Rld>Ky<mOAd0F#0O}0BYtN22$_PkZwwjxG%*#VuovpxA0TLg-A
zR&&qg_KUn$zxMvUqjkM?8;^S(vWrgHI+au4=81{SS|@y2E!KVCCgyNqsjvO_tecBM
zUz_FLZWT=It-S5^YA?%&{j%1gpWB2o^)^qF%Y6{u{cAqcfy13g>si}g@YS(C&Y5yu
zZAt2fb4~e6CnWteJZQJW@%ygIFWXj|CQjemR(AHTIoG0XWhV@@*X_C=vSZqoXJ6c3
zq@3h<+i=0&E`(F@uhX4x2~!tmbMAV_WWU;Wo@fxyC0Ucsw=8v=bhNH}-HYDy{tolo
zpcni1IHg!{@2XyVymZFoCqMr?339h-$}vnXUDt6*B&l~Ae@DRv&cmN&VzwJ_xG6pj
zwCoJpWq#qw<k}10=N*4r`D`cG!dnb=8{<AtRa#KFD4qME)CptmE1TavPbjY0{qew8
z>F>4k4hPP5-9FLg-naG77A2V1dF@HMT3rzJ&G555gGv6ox%c+&+AHAX)3o8o9A)PR
zmFtdJOJvMs|6}vv+V-dYeY0oxozL2FH>r80Q<w86x49lFYme7y$E?;l`c~<V&XV+4
z9+M8IiQf)=bD1w<`FEk;rN>(uPpo2dXWP@mRr&kR$Gvm;&Of;=7N?=T?n;-s%WU)Z
z9q(HlK1Vv`rbzsd$VuftoL+TV>Hce#Z%*C1+U!5fc{X@D{QOumCxnfmb;=noj<xyE
zjIW>FRAu|>gmlX>gXekb2l69-?~wiaUtvqnPd=^HoSF#-9oi4pSZqw5$;KX>^)8`x
zN#R|##%0Q#G1r_blyADfVcah*SNNUnfzzGREi8I7OxJq5>zqlg=kw*-Y1Hj<_`0Tx
z7;E&24f6M9Y56RU;+t5u;>Nwx6}D50AIvNGa%J<(cLzcas|DS$TPA$Re~Dhc&2|pI
zwi!i1;tz`WyO)G{OiZz2lkVa7=2o!Un8d#A($y1lua{nY{8atR+?(82dX;V*SQ2<I
z{O_x06VG<5@xJ+TBxt&%{5<vesK^OyKNxM~*NZrNY)!dXaPGwd6Xq*oH@B~S8vNtj
zgN7_#hJKq?0Vl2N>1UmH%{7_B^^Ps^XSHtho;`&jr>eONUKjBxJo?^sZko$Mw|j-x
zUqqBU{QdH*GxoLHsUSn!dHuo_fu5(gT(8T17?=K}?}yI5`WIV&a^ADyyIL!dn)vXL
zLEcIA(oGXz<%Ti;xqag1B#j#_{O4OUZk|7|vas&Y+TY@p?%8a?U+#H*R#@iU&#SB^
z%Xytwf-&Pm|M|plci#|EMVs!c8GoOa2kU-4xXZc3>tbQ1rkS<CgL3Z0(?o+ru5(Ua
zcCfNGe9E8Vf0lK3^;sI0ZR)#r;Xt_aEVfzaTLrYY8b5h!fB*VPg||$$_M+#18(jO<
zIIVF{;mMQgr!TZO#1|DeX<9T2Z{T_`u`o|@`<=%RcCMLyE{aW2<?+R(i{jYMU;CoF
zJ~UO7pLyD`ZILX?b0fZ$`gVRbjort|6qa7TO@`~*CTWMyTz`C?B!$0izFYL_m-g$`
zSAGe+cE9Gf{@U__{j7V=gzoUU%BE{o$G&iBj>HNB8NYQK$`+icd$7}XOFP%M6lQ^|
zJB^Rb*md-2ZKm(Jqf1VTby}UfRd19xd6MFU0~YZ!;}s&}S5Nhr_{yciqr%H1&|~jC
zM(h3g!Do(r`Od|6aB;>_tF!h$U%gJcwY^($N#w!lA10r?rmGk<PoymB*n!12LYyBz
z$~IraST<eUiR0tMwiSj|lT+sVPM>_+&)|8@;~1`Ym+IC}*sSfoMQ4q~(_p1{!iP)3
z<DX3NapJgW@+y<}d+>+#GpBHFez5LsWod7LrP%%*pK2JlZqffdhdoK`xu8<Jd{4>D
z(v<Vlu6C#U%9*|>ejOSrC*Nl;;Z-A$&*l6|Zv98K4_7{&pV||v*>lVM%ezbcw>_OY
zV)7QT+n9=9eOSjBc0$8(qr(rM@4M>%JafEyR-8lT=|<Ln-p7)TY`!@qdE%}0;(EK+
zFN;a}vEcTWdbwkN`L<hYu3j(Fa@~gaNKU+A`Kj-J)7_b?x2T#$IfZB!cP$B0{PgV9
zOSbS*{k!j+V_XW4Z9I4&`@{A#vGH2p-`>x5+orQ%f7;1i>QUuSf3ABy`;zd!>ahPs
z$KD-hh{;^NW={~8Zf!$%XvzCiavjlSp4|<g9)HbUh4mlLUu9-WU2{b7uCm6ruUr?r
z?dIpNlv=Qub#BV<l$rf`c6)3$Ey&L~a>|53Zq1uWo2xOUGiS@QTdazZ4rXcn$8>04
zcYTV-{GUwyw>cGKz8|&ycYm(u4Ec~K{_<m2r~4+C$Rz!q#lQFKciE}m4sTj=F8u0`
zhb@U|woF?-w(o4}jQQo7bvj&Wt406gB5`e%rr#?B9z3XKW8YiX=@vcH;PHpE;mNfw
z5;Gs%(cx!2#P2_0`I!S|9leWxNp@J-{(W4bTJqOVZz+3ylHKXf@Z(q4Zw+#LBOmv&
zS<d*oE$fV5froc(U8UdRx~bzu!jf+j_iWz#Y;Ti~$!_L7?=rXWtrX#WT)IBgbvAF*
zhWqR@rYwkkYJH2lc)QLfo%S2Mc70XaBAdOgufOz;*3Kwi#?w+WZe4ixdb4-=p|?AA
zAJ22N+}~5b!e!Z|O;*}ZOuaR4I84-Ss9MOm`Jqq6428mj5eaEcnMzaNZ2cu@6sb_x
z!ntuhcS-!R*^O^o1P(p@J9T6BO7~!%>^ojh-RECp5ZGgS@Yo&IxY#WLe2jA)SSwUE
z|K8dZnj#_0HD^uIqs7|<LTw)&%x^rZmiM&w;R>1AkBSUiUM`<|`f}mBT8V(Q=O0~O
z$nej8-9@XYd9otb>tm(P>{>sU&42n9lY0tNWsILbm)!hZH^#^^^(SNWK{;;WFs&Qy
zV&5CWZGG1!bp4pUhUHQ?^XgvT*mdQT{WQ}BixVb4oOrNG`s2sQmJe^X#q)kx)-2%k
zMB;PE@0(v&nqFF!x{z~@uW8jzllJHL8>;r5ED6Y4{xCn--gmpii>#U-#TNR9^;gbf
zx|qk-zVE8<ME2S3$Gv9N9}#VsI@4R1i?ze@Pj2Uv{<%pL*B!WY&-Cq#-7yDk9ydIm
z>RbP8W1Ga~n^&G43P0u^8qRBUCbCtl{N=5+`y@=3Z9B13dU3?>PmG4w!|Q)1GR<~e
zy1((dl*8u5yAKziwVd%T%JkS@->q|WJ*}Rsc6s-I{*e#UU;2M@_7raa&wf3(*lJZl
z@b@hpa(`G%CJTLglyyl;`6~|_$ISopR{CES%llpWf8mE|=fqV1PCUqe=I58NhP5Bx
zzbeTL-JN5{uh>$+`*7vTm8x^Mu2Wk$L91WJKIuUC{Q6HW=UGl@pMIS^)#Bjgz?Ujn
zn&pr4!{_ifpXi^f>-j5r!od&&2hkIscbvT7RnF<YXGiTXjU1Cox8NP=8xIAA=3i_6
zv9hrK?H*6(>Obr<TUE@Hb%H#%FOgoVc*op%%G%RWtkEAU#PW}LpV%*uUU{Q|@vqN3
z1=&qo7IjvCzCZ8v_wNp~w^={m*)czOdhCIVUFz3OV_h5;8nE}zdM9ZWp7Zm}7x&5P
z9eVXy@w@h%k^Gar?aj?isi)`ZZWcJNz2B_TZEo<RyTA8&^1i&e=<)H$RspBll-d5r
zdS)7>rF=Dh>#p^kLwcWc)uE>X63-O^Ht0*nH_R-_ynjIF?rEtH<!=(N%N#wcSA6Z@
z!6i9jXPLI%zVJ5w)Z-sh&&@~=e96gLDaltq>(7D^hnlJLKVG;#>D;E@hve_BQcHXM
zt%{9h-EWtRe{Ua43Ahr&cl@)cRB)!praNtKH=b`5u8N-GlDX*WYx_I4pI1jMyBo3m
z&`GgrVkzMUNi%{J?{TJ7a;OC@U0HUhcgJfRhu4nzjLBCEqdyr0uX8`D)M1pG6S!f*
z`ZF*6MBcP-5j;10$JYNW|2|&ZwQ|9`oXGZ8d%2yj)|iP;(3JhGw)9HcrxywBPPJT~
z7sQ!-D;!GOB=){pc1fvYqslb1ZM6@@_8*LS%rA97Th+?cvPPx4EUk6P3K_=v67v5P
zbR6&WXGyyJKR;_;`|P4`L9tuBdw+a6!v10Q=2VaLlzrJsCZ4N4zLt(iO)$_l(_wO2
zQ^*#{8`{fP#~ME6PtZxnSBZY=D-+b0lol8|id43)yvMNou`JKhEc-ZC1(WU#64RxR
zNE}_BUdPv)BO2z&5%}F=TBu^!gx-4sDGLg;48KV+1kV0^ME3Qw)t{AqUOgma<-`&A
zn(2;-m6h*#i<JqsPq#77nP#|gveTpxo@V{W_r-pE<6(H!y!Y$cN9!5R^{q{4JstG!
z{y~?ni;pI{EPEQEX&s!jRBFd%N6x4cjsJ{$cJ3+uc;lV?)c4gMvtu7#c~H}~*6aXt
z_Mej0fV<4=%uTHJxdxuU;de3h;(^Qe%isP_j;cSp{dl2_s$#gCsBzZR->QGEY*`~J
zrz&~)0e^D*`mzs)y5{ya$+e2PGd8-H+&tE26+N%SrH|3rd|rjjZ0qUOlYOmcZ@XM4
zQ&4+;)5myI?Q}<_Nr@k<9zI_F#cV<Or&hmuksm47R%$4GnWy$`xmTxZ*Cn%6e@w0T
zW^SyjGTr?8?tR{Q=7OHrvnG`t60GfAA5!RO^6a&>#*Bk&e@*DU)pM(bjlm^%#eKm=
zt1Y7qSe0X<`F^F|y|_bU#p%g*%FFX>e6v=5F|XgtQgJPMrb^g^<#+YnlUJWC$gkyi
zV63)Y<4;oqr|0~&4|taB+qn5j%%zhOOZ?7nVHI0aRD1nrra$-01wT$jJMLS%QCQ{6
zhx56`+xgm!b7NahR47)8#)!P}m}bxD^sRSYuH%BrnamDHreAH#tzG(iDRVjB`T1We
zxe80_xDOou+PrEPm!e&7(_A?xj!b47pVygFgS12UHl~*9cpaVaa=AuA_*?gl-w*v=
zoV9FSLYel4^Wvwsu9z&a{@NU?zfQmR9oL$A<BDz+hvBAfj@<9p^qRF)_%k2mlndUt
zJ?Caj=oY8eM_Rpn7gw$juyg)DGscJG<GUjtlcz6|QO~^fpkBXW|D*0Nr7U4PITT&A
zc}ogr#c*{_c$@!V&b*6ze*MgD-rFMJq;;$6iTrbCp{UqJb*EHR@=cuYg^OLdHu)|8
zgSBxc{@cVi1gN$Mu--f1l74dO1PN1l#{I|Gvpf$kZYbaEw#G(!PC*?*!Ga!vMQSo7
z^UkcC@oe7#zuN!psvDezoMziUm4A9{GSkF1_vZa^DW2<MIn`Q^RUhAyXL@ga(AKKn
zsM1%a84-a(P92qM#hlA6g}$zwwCVYYiOTNZWGpu^NZpP9aytF|JX>zlVz+soe_J@D
zcFp>cT<X_(p=h5IhvBpIk6Siv()6r+@?-H@f#th@T=})~)#l^<a<+9-vO^se)Bc!l
z$YxVKvUs+6{=GfPTJ5t|$KN}#r?GFES!&?tc_-c1hP^C*{a{vnTTRsV3^v6Ut@5YS
z_8!x{Rdr0A>p?@^PqBw(vin4xI0Dt#)TS36GY|Bb66N3UGSBte>;H$=M{y|@)&EWX
z>cXRNRz&`%*}`Y)opS5*Z91>j%Uc~N@HOSq+sUQqVzyTB-!B%`%-B<h-l}fUxP7JI
zLGQXW#s8`=6?8&p{=1U0py1ZwKV7T82Z<Lxo>kwle}BD$fR^W^7_ad4O7H9{rteH>
zWMbu-Rn%Vn_s`7lHu=rYNAuIJT-l}2GT~pB_rc2IpG>_m@eYbNJ?^Qt2uMv8$XC}3
zey$z1C*tEBcJbB1_A67S>pg7|U}QZktC+;)I*TF4i09gwmAlW{-2CRedQZ@`BHvy8
zv$p@d^0*^B{M))2Rtuch9#RXs=~10HPr#|;J>!isE(X>2HC{^Z`|B72H~UQgeKN-8
z;odC|K73|4@@8#%{mUS|b*CG4a$X6X_lsM5|65xhu~bh7^$(|&S_Cd}KX5Qr<htLM
zp}ojWRHniE^;*a1GfQR$-+g*$d6is`<$lXWU*FnYv)`V)#Cu`II~F&UJ<TSp3V%WZ
z-u%nUTDZjO)Hj=RT@^gDI2DiRFSxdhc}mu{Pm{v)Sgj{WKFHI5>vVASYrVI6UmlgO
z+_Gv{jEMAe-axfivZAp|+2l&}ucuyn=+H3ZEUz&C`B;|!FQRr#593sHvEy~gdpF6o
z<5jz2Qv0MyHb)ohetGtLZF<|c`pmg|-urnyUv=tDZ670xnc2_GpKBTN|H*}1T>9@=
zM#Jh_q0X$;YZaGtJXE}{&EWFx-jZsiqcShnTTEJ(@$8Uy!}j-EE~lnl{W5pwfxUmH
zc`)>4Xsdh9><-KPlX*Yz^7MSEwb3$HZB_&`<jdXoa$KCj{Oqp@yJA}(x+QOkTF3qR
z>A#}fl`3Z&ZI=0kdq{3+Ji4_!qkfaQx74!Y=bfv%x4wI~{kWL0(-Vohk4yI{KFKV<
zyMOt~Zwz-APQU$*>59qa`6iNjvx}_Ca!u~@$MKhmuiCX)&Z&l#w^gJgT;zM}iXCQZ
z6~3##gg&^y(!4eN-<_;U0*j8VDiA8#wr$<g)9i=;SBlr)3CXHcbeYz>z|g!o#5DT#
zC0*~(do$)|aA`I!4)Ec4IO*N;4uQpu8@{fMX%(1R70dA8<I?8Y)BL1w?oM9(ef2wr
z2=Vn-idLE>O%J;%niAFg<6!N9Nf+*B6&Tj)mjp`$Jq)|Qe&?SjA08b%%jN0B@v(W5
zOmw%2=!|)h9EzvTa57Yw9}noi_(n~@%IW`v?622)vqFtlo}K#3-C@DZrs-`u&31=k
zcls}7*<>QI;Ymfqy<dti?#wcLyZew@y7x4p3D1}ow+O70-Mag8_uih6@O8|88*izd
zGgEu5_Q2^9CtHg^q;uk}gCAZzyXLtjfj#T^`o&lOv8{f)-787t;U*ag6_>`&I);a<
zvt~swdD=QFo=}Po`pABu#yjV;6VH{ue81OBia03eb8S`C_cJfzjygYC^Zn}^TmIzW
z6-$ey7YQ87wOz4)lHDyC=7Rbip3d>lwjSu^5-YXfpON<Pft9Fo<Egu+Uh*_-{mMIc
zr%~ujqsq%)FWh}u=Q<}*+NFG56|=+My*o2&E2dT-Fyj7{#HHx6S>uAvhBYqP`(LEL
z-e31Vzv6ySrRW=1?;kgB8Z8MhdfVKw?X6Rzc<>pUh^3Ab1yU+=?{bB2+)=ZrTct%}
z-3^~0hNV-ve9}%7i8#&fyKrEsU)uYB`x(V`^nK@K7Fk@&<j+17r#(yi25UL*^EtZC
zT`I>TIsSYwPiPK&xxQjiVqfa)LdBMhhs=9kWcCUkxyo+0VbR{E*bj<-uA9xAoHza6
z4z7IZ|J*)aZx-!in6_IbjkEbhq*$ntp7?SdIgZ)7a*hZ6-Y|FA{e0X$?Y_`u)(?B$
z>UO-Dm9cu|h0Blh?lwP2-rh3VZ|cr~)?H`4U&@#L7A?Deb>F!kOua$^?{ikoy_#8f
z_@8WOY@pS#gOlafKPdfsB>L*+tY~xAh8Z0b%Gb~TZMUob^{u7ZcJE96*Ug_An_OJ_
z)ShiY=IUB=p|IOuctxJ5xF2^dFWFW3KlG)wSYZEZW#tEDL19JL8UE<{YtB(Nn{|=L
z{MoiZ&WjH$U2I$Bx2UInQ$IG#>oHf^;(-3Ex16}oM_WWs5jj-yVE>Z!=X?W>fAWid
zV^{O%ORKi|JDU%czdq##M1=h4u71w{Z*S4LEzDNok6SN&kod56uSm%{&7FriHeQff
zoKU{Ri1{BM%QKZlmpt7WPU~)1{jKTbrk>{)E8KVra)dv`=N0yA#D;D0G;p6LD3YRd
zKkmV*)O%u?GA7Ep7jK9)Z1yzUl(9Sfn~i`B+n+Z|Tn7u^KJ>}&(9AmdlZ(&URE6mf
zyG3-5h{KH5R-tu^PU^bM?tNN4EBoO#J&QuunF3B8&W9Rr3kuxu<G3hWccsoi;98_w
zXVc>qC9)Eab2R7pmvZ0!%hbGNVOED>aoZQ`IewdFuTL)j5bn*Tc*HA1rA6S-SH+NR
z0V1r&Cl=ZnT(}vuL`v(>+M5h_%=R9aW3}<yH2dK$&rNQ(PsZ-BTsyCO!oGl*=fN6_
z8}#Sux~zJr!C<U^Kq=Vj;dut7Np~LYD4%VTe)Za1+Y;V>h7ZpIB`&z6HHtoYs2;Gq
zd(O?G3zCNtN^TZ#*l%8v-}@+a^_9FUn_`96HmxbMXlZ`wviaFbvu`CiGtRTBezQ$g
z(rs8V?c6k_sSp0mk>I^}Ib6j+@SjeLz|r`F@~;oH{n=kxl~?)u)v<;4UZ-_8H2JLf
z*RY`tr2d0)j6tGDyh6)~GH$-z=bP$IF)Q*u+Qr(W6Z&~cG1pOt9c8s8`M-OnN{9db
z#$+)gl;ivV2YzLS5;ta_6F#xb*XT{_cG0=IuCE@5Gi<5MFmZR+w_{&ZBJLE$xc<Jd
z(r-nbvYFu?p($2u=S3H<SM`w3?P21m6x@DiR_yY>=ECNVF0qO&6Rd0*=S5CQ@K6k$
z_|)c1!8U=Ft#|HcYEQDOVP4QVTX&=2$E(d9YfV>8SeC(RZ&`I_&iw7?=3ANX+Q=_b
ztJI!pe|momZ_J6OF`S}r9Qh^Q+z|BE;b4t>H~X9Gq}G79XI!HFx@s4&+_C(1{ZHXu
z`*rhzITTy2KM6Rn-QDW^o%wE(nP%C$YFF&^lr0zUTk-J3L}4Z0W5<NEx33L6V({s}
z*V*C@4_@>bome{I(+pldlbI$~Yy!J7mYK=tn;-AZX)$3H;&nI^v7+GNo4mYtV3_wV
zFHb!!d%0-3(3Ue7vtle2lcxDp=ISSk&hd^@jI+ww@Q6LOrNZ*RdA%Z=u0YbEV@dxU
z`J`<aC)XML4*dFF{N0W(Qp!H6%tb4WU-n2Pcx(PXx#~d*U(@4|KU)uO-(I%Xh|f;g
zev#dGZ*Kqg-u3Q!XMVX%zb@e~&`|BRa6fBx?j==q`_Sw6n6xb>z82fD>6BaIjb+uA
z!ux&%R9m{OFFZ8O+*(F(S$K@zBmt+tSFT^b{@pjEB&1}iU~7wjewq&N<@~3C`%}5+
zI(~ch?{0hUoyQtWxIT4?_x)~+&j?{H)nCuO(I7%-Uu$c@Tf6^Fhg}4mN_4iocRW7P
zX~x+{<pOR;k3PS4gY!d9$G>ASTDB?Mx2-Z{oL!|J`8`%~>f>b_6&6L?&HL!{{ZuLc
z0mJEg=Jq>kvv(=1Vt&u?Z00|k#|-m-Y}vc@8^aIYOTn3*z0++jof9}a^JJ;cd50wv
zvNRd2Wz3@jP0N$x(|7VIs<sFmUNHT!i$KzvZ$kU;98IxmUy~fyw9ROmK<PKeAAA>1
zcf7p%f7!P`>8q`tmvrpm@_Wu4@odM%x~7kX`CWEl<-$%Kd;(Vv6dHBREinAxU_5#E
z#yyvr7{8fKX%V<t#{8pZvAMg~SzeY78;ehWue`Kbkifn6(WMHDro|Vm{>3h{apF*n
z;dhP*Za=B8_gU{t?U+?NRb&GGFTMQZ8@t@s&h^(9WbGAicszf$j^(NeX)iU)`#O@E
z`78d%9X-?D{9sq%q#Zrgjb@v?CUPuIn7;Dy)8$pnE_&UYt82J7e_gV+gi+zno9V$G
zn|s(SlkZE%UDCVNUv3s@bo?n(O@57q_=i)0w;sqDoO_Y5@nSe5$IPYAqpz{=>#Kfj
zrN>oa5_GeBiSsiDA<pY-7y6qx@Eq9OxlClq)hjKM?zN_jS3Y@8wD4ZA@gU>MLnkIP
ztl<A*bmIL5*0y8&)>Sa>xajA3eZJmJrfJiiyqT_B9=KXK)#&vVhwszM&(Gd)wx(m=
z{0lp64!a%*tkhb!;M(o5l&sA^Hh%k9p60QSMfbn>_bY|6!kn+>Pkp5Sa&o_E%jv1F
zY+lPH^sN?f@{s>4%j}SG$l-&|_J(q0;U}NY6>%(@?5Ci`KJ#i!XZ?2f=`8<_-4HtF
zJNwAB9Nl`p9if*MKWW|&y>7Srn*WQKo2#<-B^mfkNG_NzW}j2XcJZUCIk&%+U~A{4
z1M`HP8{OyfUiFcSE(n+spBy3dpHJb{f$d9uwf1HmZVj}ZHSNEh(3Slfp1*?aSNVM}
zv8%NE{hUAN=9b9rX=`uQ+}RfUTg>%res{5Li*M1JS=w`%ALJ@GFP4nX*pYZ=#{n+h
zf?EdV-KT{TX8p|-xcRSH?qh!Ct~Glj-KT!~*w<H{bvxFGwOV=Wju{skP3KK0UhTF`
zZ<WxhH%C{SW!~SG`j~C&>M*U~MFscnxIbLP^Lj1M<i(7KzDvI?@N4Xx+OwjDfx|RM
z*Oz6R*~ZO>-B(%*tl9p5#iSd1LS(Q0Wj8gR`eM};|F?%3+@(WaSd@L8S)TUHt3k8=
z!}GApS37GAG9F*87w7-IW6i#K+rRlfD7(H%P4C0Sswkz}C1K_d=d-Z?&Tg3AZNFu)
z+{#Y-Jr}vHydT|E71a$`;L!MI*3;#0)F(A1uQ1rUSK!g98Gobh$7%Y{G;(EGz{s1T
z9lvnL&2Gg{&fT%Hd$X>u4!6!LTvS<f|M$Pz_w9j)ieCkI9`X6Dd1*<8`4Pp-nTz(m
z6BAe~^d$0siL01mOU1s_<V&V}Igcjqk2!L7TmK_|jX1TJEsG}aUfuFRZog;pHqT{6
zqNl<&w3$GlDWp(v)w{e|t<$bDpZK1*w`ywX_KMzrc5a`a)U8Z%ig{Cd_Dkoa^3EA|
z-uu*DDV@9HciohShUd-Z-m2hGJaWzPyspq0D;v3I;=6ZQ=~@IGjP#hS)R=xhB0%~=
z*{vgL*DH5rdYE31Dc$vd$HP7McInkD`53kOUrO$$ZI&NTt`hR96LOP~|MqH=tq{kH
z-1ggl7;dbc!FpM7X=6iRncllyk{4p4FRh(%Z>siD-)YLnKHjSgI~=IkBG8-IKJ)e7
zRc#Ae%4`%{1S0p>vHnq?z0r6Y&%S`rcYdNljPJfbXxS@j@SP(+b(u-~l+_b1ssw!f
z%D(7MtH2>$hOn8H7j#=gm)W1(DHV{Pued%tJpP7ec01R~*6(qL_<pbQw>6!!eNpAg
z;9IRTu9be%=6!QMX;b1mhKQtNVb?FQKREb(=h`Wzf_LN^lkEJLhw!q^E)t3I$^CKn
z)3r+V_QSU%KTQ4hH(jvcXo=AA{08qdv9LJdKMYFOuTIZyzGQ6Y6RvpoB8%Rw(uRFu
zPd(<c*Qm@oP;<BO*S`-(QVJ_qhFh@IrY%#x{_QuT#cjWNt=HchcueaP2~vDlaAzH}
zPs=tjb3G|fmqf*)7o4Hr4EGqvhVQ*3o3Jo4{PrZ{dklA8Wc2QMmchsG!?ssr3G*kZ
z=#5WP7np9XNq-%5<F|mwca9U~f)NQt?2oqc?a0{oq}_eHw!ro(Z?Q{^5|chG2o@IA
zw&*MR&>qYFgU2oEPK9obN{hgMhmSj&<7PLWR^!g`s#Q`jm{{Ps@~daZs`QNv&sK8f
z3oYBYWId0p_L7=chh%p1T@Xl%ytAV{Oe#Fyr0SRE%6Jx**?bBsYxpgyKb_ghJ>6`^
znp3K}E#dP|KiIMFoP{vkp80?3M1$;dzij?~quFo6wMWNpF8UD4c~S47(S}d52}@7*
z9GGc-Z05&W->~;3)*LoIb!(p|U9|C7VAz~>@?Dss=mohm>Hhw9>w--;-1ziu_rgAb
z-#wp9tNt?HF^Uw3c=es@!jTmZLmh*8i{>!T6W<)eVJu^$b+T{&qfL|aR%Bh@Q|#)`
z#J<Ku=8|w-xh5xn@0aa&ogFr-w6B~TvQEp><FUc?r-4^rNcn7y;V|ZDk1geyr<UVU
zww!Ba<D89l!QUQCX6TSh?LDYeZF0w2V7Akh2BYu>^Z41X*K#*V`b%u&JtG;Wv)tss
zTEWUk{eL1=ZqC(O!ln|xVX~9)<NO1Qqpr>UV$3jcS&jFdecWv4X58fBVcqe4?a9iZ
zh~D`;b?5C_m|gO7*Ro7oV$OD`{?q?gs~+VZzr*lv%Qm(NSN;fWIQONU)tqV8>FWP8
z?A8PyTD#};i|q^xy?s~AwVRxLP_^a5n@X96xu5I)y<1&ol%^Ey@o<Oz1k=xRCUBWZ
zZ+n!(!H~G^NM*=Q-pgldZ~O>b<MevtM8k_)A1gBSmH52aZ^^VPLcfDEX0z!%G5K3M
z-qX2OHZg7zTP*k4%<jOeqRQ2NXK(B&-1$aw`B8=~#@A2OJ~^Bb8xS7(*#ERX4_k%N
zsenWSc^z{dv8=#@H@t6s{r&j5+&-@345<&N)@5vu?J+)8ovK|q-`k1f;9+U=ygPd`
z?R;*CtWGZevFD7oQ`UWx+kR7(^Y7IpYj=eEu9vQ#vGn%?Bd3lI`(yh%?RV^*tMMki
zkwwyOMeuSzMMb4`@gKQ4`8aJv7XDuF!0qrO{`b35PEHIy`Ezz(Mvju@oU<iu*~a_V
z<ORD1tQCHLdj+TDKbHK-R`)B4V%rYfx1MpLZE4m%?gypYe?<RHT{PJw=gH5KZ!0+t
zr?ZBa#G2Hzw(PH}c>Cm^ZoSTtC0u@rzL!JX<V7=uO}2l1vi{-Gf3>=&xhK99`ZL?5
zAmZC*hCudTGk5&+KFiDWulM%OJr4_mn$0<`p6z+?KkaX+dD;7kt{jR+e^)iCmnKDD
zYg=B%*A(Vac*fKte1=X)x8j*+r!LKOu3XNoulI>7P5q+HX{lV+^DTyP@ARBHm}WPA
z2(<e8UijY3yUrC`PV2P@+-JHIe>r~ko1?44UZ30B$mG;vRo-~lvNe0zo1b0N)`k3)
z=$f3o%lWDM63gT{Q+KRo_RYV2KAv@>UN7&Wi%&eaY!pyRe(h@Kz}?&&f2>7j{`JL+
zvTv&&2wm%cT23QpSwD~Z2VKRM6E#c{$p+J(9lo#h*vIt1ZiCW4PH*PL7N65t;_&L^
zw66z}*^j8Gf32>y4g6<RG|Q;dL}1<v_G98#*UmZQ$3J^{<Aoq64#T?(uFN_3b2Y>K
zB&QCZ?1rnq6k~VB9c;NRF}cQgpOcpJHrDWG&H{;*5sNrgOrIyk%U{Xmnq>1_LFSFX
z_EVF~UcK^R?#_;H+}|RwNczs-3r}8dWvB=V;ZW>l?Rzcm{!+%?@Ll}=f=?Ijy{%sx
zxvyZG%`)-UD@T}jip6LvE-AcpR!F(U;_f?LCmmyV5pKpq(_b=qSRMMj#&UMwuhY^u
zX4=n^2v>A@7?9Aaxi*ruqCi@1+PP`A)xE|Cvi9;XeS2VT`hs`Kk3w3%G>gxfxODNM
zi!4zuH>Vzves_Ey&y#tr>ZKLz8|5@2=N((yzRUIC<r_bKb}erRSM!?Ub$#Kz*u7V;
zDE;;4zQZ%KUiQ%c^uy(W9?n;`XbA==ooPCG^6g>%_`BNr7D+E7C8Pd|xw>#FwnQ-O
zPLg-*z0dd}D`xdC_M}ZLUo|A+6}DA)pZRyM?N|EtqW%ZDvDy3Eoo+e(5^XzqG4Ptg
zp~)d$s;%bhOV@iPhQ2w*b3?1;ga9l1<4Z!J6->t;tGP8=CnV(uNxbu96?=1cclr5g
z>xIK|M7G8?`&(+W1bQ@kY;HVN^u<J|&bv(Aoa5TwUl(R&R4Q)T)3D6Rqn+Wb{Kk*(
zS@~=({LXuA(A6N~)N#18#bi5YYxc6@XPQf-W2Pww+d7roo1Em=-S4pFU8uN3-r1S9
z5Bu5$*455qnz-5L=G)gtX84F-W}J}}6?j39jqh}dcaX<c9^ZMQ0sV3tbbs!h!;m{M
z&hSu<FWco6ey@!xQ~%g87_6LpitnD<vcm-lyG~|qVt4AE{mVhob|e433Cou^Cpa~y
zIP1qbg?#SY@l!xb?QUFuSKyHh<AU`2nde%cu=E%fRtS7pz4BYG(!<u$B#kAud4g)e
zJx6M8%>A>j>`=w@Z&t5&{+!aQHj`ue7Vfpa&n~5GJ)B}PEz3IK;uTKQ8ilkOLT;1R
zO?29!92|agzT@|l??!?<Ry9r+EI4~g#qQnpQogsV)LUj)mh-qs9Zh{^!@I{ID4$cY
z<wPk%M8;eNuFP(k59?!U|MLIwy|!!<+jV(UhS#<+UDr14`VnAXq48<mJ~6)bGbR(K
z9lqUibh{gq^{3gEhf~Ee&OCb^=D{8^@$@2%76Ivm;!o9?PuPWXqaKBDHl`+tGdw<H
zT6CNLyKu#-5H8mI$&re!0*~A!->Yz~oanZ}dELGxoC3<uFPr8Z&iTUnTe>VYgZtw4
z@*ZRPN0Yu<$#^VKU-ygWkFT|J*QALqk&kAtnUHq!kCx=b*0z)w_B9ii>(4$Rc#^xn
zr+-25qqkjqjQGy#)QB!>o4skHNA&~ooh~6BbHB8($9kVya9Fd7bH=MPOLqQE*ft}@
zF>fPV;05D@8_!fXu2#FWW(#|~{!En+kEJX6nD-d2ic8k5jCb%*3UztYHRW-0ne(!{
zO<Jl-9e%f7uF`i=yJEEa+(ia$A-63lpBnvBg+mml2Hg`^Fxq+5)~#{7XLIu%kHu!X
zKMOxR_tg?F5RW{y{e|tz@3q^TO8NF)UozL=a+6<Ov!EM$b}Z90H46)db=ud2Sl2(Z
zzr+4|(`m_KF`-xCZ=GNNaG1a%`6S`8M@5#>=Lv#O6Q_R+oUT}4aB$<k15&E-T}=X$
zg-$NXkZgU}WwS};sMBMGFBhuW!{&6>CQp1n{mUeUziX?uC4U#&`bpqjfsUj1^qB`z
zH?NEFeBu=3;e1C}Y398>Z(DC@_3L<EbXj44W{!3Fx;s0IQ>&l8e*XOR^Vj_aoxIt1
zzE4-3Td*Yf*{bJ{?qAPT@Z#mL-r?QR^33_`iO<@$t7Bd)itxE)YdR_NxqIkar5S5Z
z=vlKqT+(^??Zf-L+s*nj6Bq7XHb1fGSWe-}USAtQ?R(6<ItN*~R?fUraNyZw?r(Q~
zNbPt%!!|Fy;&b=LnSWNC{Gj!DN@MV^_w7x;T4zQoZTj1MS8I>P5~)>^YJ3~pd~R?3
zp3r;eB;Q@{*>{Z1SssMQJNLe2FStFcD%xomV^yclCNr+qGE=p99@&IdTeH;WgqXy>
zoO932ec$eP3><f^#Xk#J>Q#Ji!OrceN$iUqel5GbnDNjxvum@({w6e*GJk3F-MId^
zE#sEN&uIm_lT$rrINeHStP%Nr>!{S$-YpVMb!*bAtpd*Tue!b_c6;4nH~E*o?Q8DO
z>AoD#8ZP3*(fqq&-oxvR6(%cP-Yi^nanDvg%Z<mmuk4yRH`F?)BuR1h+J~Ks`2Ft7
zw9BmOapHJrr>gPj)2+bVuBdJMB$zMy=E`qBGUvdKmjZ^a)uLX#TQoN*m&J3iODMSX
z+AH&jw*+l%{m1YlPbw~0$f?8h!r5IL>l-R}-FtVq&rx12jy)+~Nm51R67wpBMgMr8
zoceOibp5foEspKJ?7t;1$gbA+Q>=WV_XadC<$n9I_Ik!2JW^(V`)m6dcbFKo3+Saz
zI}rZgnkzul(Ohosw^x&*=jSSNeq6mVJxu5ckFv_{Z%;Y6xq_$kD_(KYtW4cJDX-#u
z^n2ek&6A?0ALTZkyh`duPXB6&$y@g4Omk}GdU{r-eYHS-+27(dcQ1Tz6%f3AFUv%#
z*KP9a(?3$95B!=sed~I+ze-J8w|((E_VWW*S$^1MZw^Jj9{ay0=_!o=Ra6ZVE;4K^
zJ7KNZa^mH4!3YDB&S#(5yGxHPoN-FW(|pPv{g#S<ziJg*c6@s(+HWMP9kynAtcmf5
zYZ{kzgG)+EN<y~WI(qcz(W^&~9$j0Xwy|Qu&Xp>u`b!S)Iep@?>*>c`yQa=u|Mfw?
z)wZPSoT+9XFW<Nk?)-fAs{>1&?lMko5hy>^_4S(F6|Z}fTmJWZFKQ83UDdTdT;-xo
zdwH3m-I=pjub#cCoAA_Fn?2a$Z;jpG&x<CV_<QtKws7*=qPY+3_liZPxk*>I9Vj!N
z_bG0!8SBg}`A>iD9aXk2&p!Qq-oHBu*Y!>1ZarQ6$&%;Yxyg-(KPx3RM^3K^RnL9e
z;uco_no+Rfd-@~+(+5eD{96zHx}QAf>cwMRnF7<RtJqktPS^K|{XEBD<+qccj)vLV
zAK9?`|Jt9G4()2Dr^U_)Rj;hx5>r$-SG96`_nU~&wS^WrUOpe6T{?T)Y;oGftqjYn
zOMbu7z2dWK>uu3y-;i`qj?|-5@4fuH+v0+i8;7FH&#7BmI_7M=fA;Lzvv<$Bf{qw{
zC9&1&QPPx)nR;{WuUB>M+4%-kPCWmvH`DZ@@y}H8+g9%Cw~no?Zf2dH^K#FtGdmtU
zWc6&j@g(Dwkg%+<u<YV@CI?(Qgzv{~N%d&m(z07Vr%c?bqicQReqCefX*P@px{vlg
z{WNVY+wl~RW#-LSel2_V(BR~(%ctHmo2-^PF<CTN@#`fku5T4wfzMd)Y&)Z|NJ@aq
zX72rfV+Za<6_)Y-esHVs#)AB+()_%;Yo<lrXY_bh9HjX5vJ%gt{G1xD=bNHRoE|bC
zXnq!E8KUaBcZv5`E7t7`8Bgg13M^Xa=U-}B9i+STk8iu4tss}qH0#Mu&O3r!p4mNB
zynZCL%YJXu^mPtb9=d#2S#{34|MzRL@B55WbuTIZ|9^Y;_XR6fS@1pBAG;yJ=Ze@-
z4sVZ3MJXn%vr6Vnxw5HdO4lsSS&L`hoMD+TZN1@UHu)vXgu50!USJt)+||7Jv9jn#
z#*9|}xUNN-6O?vytXX%u?su|yrS6+eyUWktd;0w+ciZ8e_vh{`fB$;U=hZA;_5~H&
z(<)qx4CSvSd1uR2XDQ9j6A806`gl!EQ>(V+KFgPLH|noD%b!-3iah;e%E5q`qV*x%
z3EslH`|p=MwtRA7mt=laXxS|`+4GELVgI&f8HX~ga~BW{oc%3qAIHPW_iOLo;oDMd
zCHV7?Rc9JsNAB`Zp(|@{r_HyW9+{eTG3^|e{32~`|Li4a0>hk2&K4P0`+iniv|w@j
z!cU<;C#?IC7Z~`?%zN?f2<_|ZM6Mn?+AMNe`}N+U`bj$rizZCU_>ju*s&d<Ty^TR;
zTl#AA()x_#Ep8VSIEL073^}>|Oo|TMjnL1<=Vu9i{k7^=@=_s&Z8u}5URUZrzC-1w
z+ll?>4t_Lvd&2(z)jyxMeYu@h^fa8!`EAhaxcO)1TPf|Sc3=AGt0ZUmymx*tukjq)
z6rQkoa;~iF#;+GI_b=uBSYxMAGxOv0wU_c|pA4OJvuK-}Y@4pPW%0vHKP4~4a|m86
zP}lwSPSEDr?IruAbR}+{m%N>}$wWlst%?<kprGb8Mn4(-rx$DE_clLC*u3_qWO(+o
ztur;A&3hr@;&Sg}aEH;{?R#Hk&oAW)S#6rNHEMBK_Pg6A*Jf<x(ryS@9^)5z>8(<O
z=%QeQYZ3mk^DNR`gSnO7F^itv^E2H?<S1vt)E5FSF2buDYnD%OO<dEusDWv^#KjUJ
zkBLb+63JyjJ{1gmw5?bL1=q4J>ppiNBDpr0F(Q=JrRw3dc}I-Y9G>g4F|f~$=ev?A
z(pq7Z_hZ4kMa2eTuXkpcHthKxo5ncz>ap<ZV%O&hXI!@K5pnp*^m3X`=Ei$f3=T6(
zh2Kj~zR~?!i$Ox@j|=-s^_+i;L{}a#x@ak(%yn-S^Md=C`L5ZTEH4*s+~L5QEcE$a
zAg{x3Z}W?eXKr&nIaB!MkxtLnj^}j@vqIOEt_?kYI*MUd?Bk`gBG1oo?Q&U=G*SD$
z0>1?-!v)!YhmKBrRy4D{(I;!;#U;{(XNs&R{;IJ&SE2UP`e#FWMa1tlUwW*+eOdnE
zmi+^_Z@zoyZv3H<sk<ndbK?GPzr>5i&2GKx%GESaov@ghwqc?A(+7<U7tZbMDEWEQ
z((-1dC?DsEJ2y-iHoLZO=u=85w0iZk{H(O@Kdbte8HYW0Z?D_@)v52i>RRU;lKfG>
z_P!9g_F3L?iI(l(y8Ra}{5xj7a?joBPf;KKclkfQB^Vg#mgbmn{(6(|X_Z*6>sB_J
z#qzTodq4eg3)v?%HD^uo^q*U2e%kr$=W>P}vR}JiDp#}h_uQ;|rnn(;)s!=`F>U)^
zep;aCZ~D50k%6Z^YRwNf7njL$3?4ZasY}B}4X%BBIAiw*)=RGG8~hJ6aWj0lFze~(
zW6T;xn;ZW6FtEj5i>RCzGV_WZQ&{)8gza*t*GGRfv=U+79h&xU!Hw)az4m{v&e$jW
zGa!*ShkZ_vj7!qL{(!4TlUDm4u=`y9@n)f(^7SuAR@=Nj@JoRGd2-RROHOygN;up*
zm>=nE<uqQfXr}wVu8EfZ^Lg*rADsAb#va`*NzW&>>V;nT6`e7eODAJn<MZg?X(}=&
z>v<kb@LuC~ET%DCktfe6wv2bfL8r+%2k!WKDxX@g`@q#T+B>i3-Pso%6t$yxQMXS)
zno|#BkV|^OgmY6XWG>W9<~?BX+DiJ?gQqp6w;t6!^V4(G?K}D8xx|NgFL?Ss2?rF`
zJncx^_pP0|Gpy{J@6pGnK5eQ#TF%A&$yc?nOV~cAg57-QoogF>?5Y?m^NRnz&0e*8
z?&iOb)x>svUggrsEC2mw`L#IHvbDbR0-vw-d7!uM`#q^OEYCX6J+NT@e$OaY!Pe5~
z`kT#b{yMD4tu6m;bF;$BaLG{?VL?r$Z;}VxJ+nV38+etlwZD>*ERRdK3DVPhefh=L
z2RaEm&(>D=cIY={-iY|{<}^cq-OYI$eB_kw78VM<SG2!x@b0X+xyzN+J+CIR+%WBT
zlic?zYi{80`#aqvRn*o#P`mGXdbU!E=dwb7y~qgbDVLQwFSy>gU0(2omBArv$&;;}
zGra?*Ee<GQTgh_9at(6>ySHz*NTmwnu8Vyyb{+rpn6p;)qTuA#;IMt^lb3%J{%62&
z;m?K6jw*T9l6R%z$L1v4e&~C_GwIbvXZ{66x%XSL>^x@VE^3gtD5)YQkze(q^-$uX
z%?6QNjNdxWDeP?c8pZG`L;s@V44bW$Eio4*=N!=g<~2w9e!XF5Y>VTu&G(M}mS3#p
z70i{Imx6ZoBIq<j&@qcf24)79AbAkS&}1-OorE}h(cD16Kp{v$KiD_1I9tICbVOtj
zmp<xAj0*Z8l?AB^`Vsy~S*gh-3i{!hDJ2;S76zsYc6MA)-&f3ed-vwHM;2nN4ktqY
z|3CeOIn;#n*fi6h9$gi$PCb+AzvOnUpx#DqyYaj4zkk=y`}=w7-ub&eeg0OccyFhM
z%ZB3aeZ{*Etr6mGEEg8%_&?`w^YO<Y>)76Z|9vD~eL>G{@hYLs4PRDe&0X}M<lZl}
zqEw69*HqI4=geTeBh=ND%H4Qo#g|&A>9)-;FTFoBspP5Cg~>BmZQf32<7)h~Omm{P
z^WC&nXKS8mU1*%ay61)eoJB7}7o3>7HjjJS9#{D!u@8Qiyry5S_l{pwlpZhp?#>Q9
z_O+dn2iQGdueq{kX;A)?zx!(DKKU~H>K7T4qzb_eo|jH-p1%EDnvVLefQK;|0e)wg
z%wF=vzevCLiA`}${Pbg66=u(1{iBo_I??j~w9mI^O8TzwJI3_QGfFh|+1lr(1?y%9
z$p(4fTb=%0RLA?$s=R!=j^NZSo8u=gah<0X`|D1~1|!ea6R-T-uF{aV$LdMI*M&lP
zS_cjsUgmecJnKSI_U!Z<nKAC?6PLf!exR0F8dzEP(`DU#{b!e>!Y<Ev>c(W|8Fg3W
z>DvGKM}M6%<%rH+HDk*iV+XFeTYjycy#3#;MH2%eb=-C;xXN9aZ?@L^%K7N|@e3B$
zG9_j^cG)bjH%^ORT6yo*zcACY_xE_lbbaF6(eg1ue3x4O-~X>;s}r*g-&H;kidz!%
z`q7@!=zrVyZP+UERQAIB`IUk(^S95twnzHPzSj|-`PlWAf8cy{{;Ktd^=Gr|_usER
z_gCUz*74mOPh|@@Tm5AMZ*7m8Hp}_yjz&?9_YK|^twLT?zO9|U^j+KW#~ZJF)XUhs
zr}$#ywU)IR|8`cfo7ueYEWNj8ZP^~}h#C=&0>#`{hOTF#{nyV<o~ZDt!bZ&UQs+$l
zx(v1SG^Rsg5v8BPE_?FU<>qcGF}nFsNA>9~&G&JOuChz^-+S#J6Xw+Ut>ELknEIaq
z`~Tl7Piy*}x#@7E<D<tL-dugNXG+#F;gF~9=QdrRo>6jx>z&K*Yb!Us{Fx|jJ@MGu
zjTslLrqp`R*R?X+pJ88Jd1prd2GRK2|Dt<?uHQMjv|UBVP&@Faa8*RflKP`7=X&m}
znYD=XsP&P2!{{2X&)1HB{PSyV<i`!m{Xdrai>H^?ahuKWab({A@5$~9IbWhrKTQre
zbnWd5hMldJiYr5Zuax`P%XZkmCfT<p<KxtjhwCo3ADZtRy3X}--ZC*8)jm`0zC!Oe
zbM}N@65r~Te&f?xR+GPsYzw<fthe5pcRp_MX8ZqMdh_?V3S8d*>Sx%-%HNZUuP&*5
zeLa5e-_Kprl83C^Z~3l$ep%Hbr1ss$!`bD&oiED;!=pc_o%zixw)S{#+P$h*6L#H+
z@Gq7xifxrVz4F}U75AeL$bYO8FI>o~-EnAsT;Z~Xb{9=|SLNLL|9L9+)~Wq_1KifW
zUlV4Sx4esIUVz@ls2i^?Xs=9ZUS7T+EdSb}D_=LZUVXR9*Y8l|#i)MqDRXzZ?a`Yq
zeqTp5Av!<!ZPtO+Rf*4hYy&3knx@rvx-+KpO3lHeZ+b#o+oxO;+jBfh{*&tF7f=1a
zhWzj|xpK+jprp{&{DX%wIIgNo@n&yrW3P(ZP?P=LA-3A+^K<LF@Bi0ZoR4_)p>gN?
zRWAL<liz86_11}yVBLOe@2*=PFHQdRHtcalv&|CGXVdT7Px_nrwS1XI%-d;7&9~F|
zn&V9KH)eYMEXy|btvdR4eo*4yBU3Wx@{1e)x^beZT=eN3v%`{KCV57gER9?pGbd9a
zE^A$Qt;C+7O;e(~Y~IaL@Z0-OuJCPoV)wF^wN8wauLa*;I#JX|v^T<d>$5pLiL?4X
zbD7L4YTo-~>f6N0*MiS}TbsY%>gfIVxy5n<#~)s)N}PGI*G^^a^gT*S6_={AW^bQo
z7Cij~E4SCnca^%qS1$xV)Oln)(<0OM>xpQ8HPaOyQK>PE+B5cCEm$}qZSC?sMv4iZ
zo7R_a&3$!F=-fT)^kkR9w)E(%$=se%{@p5Tm+$?yRxH>!<LRo5r(t^K7uU?X=4>Q3
zUD`xDWO}XKvEEhopRc{1z?a^ozp*Ikgu>c?kMw56eZ5rKe!EjlW$kj-$=5EQ-*NfN
zxesb9T0GnD+6#AlJAE+L#d^}U;FFaz5~4QE+4D6hd+qCuevvGv-PWb@*T~uy&zRkQ
zO=a!!qm!>)KKOdikxlxKPq?lVx_qbprCYw|vY4qF&)OC?H>zo7tTiY+7jjd!e14X>
z`IeIhxzCm;zx%*EvG$c&Q-|>%v!+jrsyA8bZQWh<^=Iam{7}Q2Z+|#mVtTZh@8IsJ
z{q@gY+ZH8NB$OrpdlsH?XI1K{6RMev2RkF>wYHg@7vGjA`FXBb*}@w!x6_+GSM1CT
znqKbgkdkz5`>v<orX;?eX1>4XE~88FoZ}p79Wk@EHq1D(CVtiQ+ncwYcp`uGT*bz+
z*f%%LOP&}p33j-hxfQ<m(oEBwyLO+hc~>r9_gyz*%Zr=~S4^{|jSMvIO7n&Gy9<AR
zyUt+mwUud|or|+Il-=~cvkA0|eRtO7dVBTrwe9aW8ziyXZx@{1tyXubA#lYxp{*Jl
z)&D*G`~Tmkr+XimSLdBA+2m$&ZLjsUdrY4Nw+U_4UYGv&;os+9_sivf+9sOI7?l@q
zp8X-)<nm%x9`_rkF256DUBB7yXZq)O?XXMVtItglE-3!YAX{lad0i%tmG$X^8rwc!
zYo9XjeaqLv_iX%zo9!|WL?}(4yl{(M;KA2xN<1sGgOjFLDoJP*?d)zi-Kwjo{35{1
z|L0+A`~2GCW~KvHSAM_zCsW^|$#b#r-Vc`tT3mBP3}5#to`~lD*%vc$zD%lo!PFC}
z$ueFqgP*Ludek%4v5dJvgzIfEPkpT44OgwSxsUlIT7zB$%#So)wnxD9_i5vn=X-zu
zJ)`n3D6{1C@3|}j_rISwc!K$!^Th39U$skRUm5)0<SwqDGg14z{PT=d(Qpafn3e^n
z@)#~Sp69e!zEa`K^!V75T{GoZ*@)ILFdVsVS#(tL*4HT;y}$RjIc}AGxvFHZ`ExOW
z<EveQ#Fl1UIh<mDoaK$%oK4>1&vnbcy(r7Oa3ovn9dn_^#B*6D&;A<x-Qrg&`K|or
zrah^u-)5%R=SyvG2zauV$9K7;*8kA?JGMsEy}fE$sr^PIV2Z|`{@B_FMW4d9T{Epd
zw)^z1m#;#mZ|&v(em;8op6N?xzxjQ8DZ8F}zG&9pPp__jJH0scTb&x)+4FlsKTTEL
zeKnW;g~H=~<rf<{o~$ie>+HHVY;~9Qv`gQ<ozKmFx5-T?dF9N@Zsp&ux1HuSXt$GH
z@@S8T=l#ibpHIKvVpzsq^F_s#QD^CGj~z#DZ20`Pl>PehoG1V8id?LEdon&gafKAa
zbYu6RZRfsLJbL-+&VtS6b|0(re|^cb{_|vkxeUW&Bln<r7N$Q!^Ur+a|2hA9yVTqG
zleSBg#Tkl!hyLsfWsZ~Ew(jlJDMfq!{>ry~`+johamJ3trLtS*3%RXi)PLVtTgHCw
z+|k%gE2nR()K>n`6~hp-;=I7RBkLtLvh{2`EcyHLBY|z7!={R#yt%epNt|J`)f_qF
zI^Kx#-nn8;Z;tKWzb@(MQ^nKqPyH@b3N#3Aece07O1yH9l)<Nxr_N`Bs^8T<N<6jh
z2HWbX+z*`EL;oGoez>h-X~nCOUJKo)EZ6t0e9KZ?CAL1zTZ!$=4~EN||J2;QrLI3a
z&hEwg>+@=M{3$wa8E8Ezs;5khZPgDhqrbP4=Xo_)azt;hT3g<FoAc8$ojTW=9SIMf
zTF?2_w(eKL>EK84nGKdx_8*(Itma(am6bQ7M3y{N^LTUn;=-@XFLcTUcJe1Kb{5*n
z5as=5^Ve*ZyWgL?hwl{*efYw#GTZ&j^m%h<yLtQkPhgIDkt4Y~WM)m`=KD{5W1L&o
zPTz3YqR8z}Y{lE@ReKnB32qZgWm&)L?~JEwMHt_o|CkoRQ6a?WR{pAeOVN(ct5;{w
z-of;2?UA1go!(Zy|0;ZX=5+1_>%@#h>SwQ9@a}T(&#$`5e#fsK`t2#P?$!U|uY6A=
zUW+jEEO`{PZ|lE;s_*}o)bD%w&*k&$KQimS-7Q+~CvB8}chYi8wgpP9xv?(|v(HZK
zY=5r)<7Tya*1cVwF$|_HuO4rjGAS#&RZIV)guA8a<FEH`8Q!@a)3C9oT*d2s<ocSr
zQ|H*_)$8AB<=02G3+^uLpS%6bTy~AZlW*9(Ex#Vhp0aG#H9qzOeG$Li@9!6JQ)7OT
zdH3Izir-<0H*VP^+dgmGks{X>T>8s_Ihp<4{;xt$LYO}I-LU#|=JCfLrD;O{_eM{?
z5gK0bznXp5`eSwTe<bAzHEf<GHoJTJ$=U7m<@nC6%e=cQchl@1v8{nj2UIGvJBoQX
zaHM`}?^)Va{%=YBp&d&kR|eYbJ;n20SU>)>aDq$kJ)f7s(M!W_&1c#AHQKdv=Pt=l
zVho{Eu5UVYt$kN_==+?VNlur#E*|<&>CMJ|;#=(0YjazIL+7r0zSC-J%>~tGyNlIc
z?*IC(lK*V^N`|NvS0z1eXid4%w{?H(6#o7DG8UW^Q8P%qS2bxDgV0oWy~Nc4+qY&n
znP>av{MfVAUVZ%))(MM#O)%%wxqEKr{<2NX)7LC|_&eYBt&e26^g~xu2b15AAFoLL
z&okfl|MG3y;!ESCw>{hau`U08)%RVNX6q+!(`yjv4O`Z||4?kb_1cED%PT5sCw5;t
z9#Z)_^||U|cDV;@4o@;pUAlkDTOGYZtFPbx&si^<5mx+c?eh4Q-p=9&A|(SeHw%dE
zjJvdar`7H~=O3oWH2qV1xqs{9>%TMib23;(?8)+9ll|>{&|NO=PokCgx1U_~vb8Q<
zCT?e`AM1vWzm54X<?sEeIXTZK{@yZ~_rKGHZnLi1<I_{~NqwJxTHX8~iS^Gq&i>C{
zrp>GKbc5QvJDVRR$1&%N+RvG_>dOYJ+kzjq_+RV$db+FpkI8q91Isoqy>ooVj`x=H
zvwHp4>^plx%CzvW(Y2pzKFuoC(SEj8eI@q{|FYnN54*J{Y9GF7@%43!%WMAPSGJ|U
z?$5h>CF0uI==;<5ayD4zh$StL@;&GGZ%Uwqp6E`#&tZ?!_u2nkciZwzp1JMTiIMr7
zmD&EDE$lDU7OSlj-T7_5>f>tl;MJYlzdyHfS%)tz`7r<MrTPim`_|UfGaM8>HvR9X
zwZ%_P-3X~swcT>=*we1%>zw7koz(lHSgAerVz-0I)>~cYzP<UU`nUReWp%((_nM;%
zwyn2Gd_D7X_nuO}U)^O5Wv}*4JzeJ-`pLOu;)&92+}D@wiFEM3Wf7fUu*`do$33g`
zmGkB~I9&a0FDjP3_13?1-B|A3>7f_vmvyFEAALVzyWiy_tTC!lH*VeWxL1~THhTM=
zsK+^SUhhS>Ke!Vvcp`eaZ;S>*;#P@k;Txl~y6>2|znoP&Df-LnQ@0gDb+*j&S6**@
zJD2NA$lf!WHy?bT@}>L6`_^ko3$8vCi{jT;?f<q`#+x^dO(|pV0l%MYt8;SKsIBYi
zm}yw(c317po4E@od|Uf#&0#K|X9e4qcS>*1l8tiP8?f5&OpTkM2iwm-c??yn>>`$5
zdsHjW^<CFPIQ%Y4Wo7Sz*QcLu$$xq~ewl-|_yxbILTNYs!mU5~ov14nSg6;rfxr8A
z@mIbxkALTdO<)v_4NCo{e>^Dc&gysn=J)LXyH9U@eWi_D6QBRB?OC6a1z#+ySFSq6
zeOznzm%wS;>@JB-F7Aq~nXp|;cxOY|t7!(}-&pKd$9`YzI!*LZ(I>G3E4-xYn*JO8
znW|&WvsHL=hU0(ThNnD+jt*a+PUHU{R<3<(;&z6%iz@<GId3|7+4!$Vl*!Xtr2{K|
z=?7O-s{d`cdtIURn{I<)%qF#xEi?1v{%hXxJD|B~#_Vsp4U8hsns+IltT|UOZBOV-
zwyXuax?&IAf19%GfotT$cbRt<*;lS!_CQs{pnXbBfKhvT_fLE6RkNqH=>D3p{ndmm
z4Q_r%yQgegp_16*6(yd>a&FRgubHzYUT9kDrA+s5?Amme`TCBd8c){Nv@ea@&8op5
z6e@E{e67am8}hx;F|PMcJ?vy{(yqyzv16Lw)b-vWJIbC21ivyiOs)!^YV+LBDBxmU
zVaVzOmeDW1#%#6v>s|U&f#YqoedZCSq$o2D6|=&vawZItPuA|AlD_8sqXWUbJumjY
z;rjHuINkix_kfvaRG+M^5A}=+-Nr27HR0usb7h*p)iMheD_@sc-~6%Xa-&1NPlD0@
zuH*AsqaVJHcxoWHX5RL5WlL?QuCRG>U`N!M@~!(nc8TnF*<5nZDtgwNcHO(%8ZuK_
z*3LEBkhkmC)$F*H-YMPB)_z*_L@kGLvetjyU$5o4bKf<8nx?pB#`aZz47e<c*cSv$
zy}zjUL@3W%&wH!>{Rpi*<CV78`fAP600y@&+Bv1!E4`km>nX3Azdg!^vvaa$dQIsm
z<Nfm6Y<?bKsS{1D6xJ(wo%Ha#?&1}5w(D`q-;9qcl)QenK16`Qc|}mk{^=FEUiS8R
zl2K>(m|i$MAx>;c&kn&o4X!4-PuW(*JeY1(xq1nE)qHl%^*RQx1R@S5s;@nCN&o%v
z^a+)37j|(~uKsVMAvka2+{NF5c_hxQf3!MpfA{nMdh#D67K$|lzuQ{3b<gVG+|Q<8
zJAXUz@wMOVm!3cR^);L!*egcR<4jWC&&t(Fo5Rj*-FWG9nAh@kf0yaEau{r!(Q5Oh
z#43O4nWU+EpNf>qpLjDbdSM@vLeqx#h6`q2*;Bghe$u1MTmMgbx5kZoWmwOWP7%Wc
zKIf)&opN|qd?(({HZ%1}&-;Cor<Yr<pE2#*ZKl%I>|$GjPjpB6yjf7Y`tFf;`^~2Q
zd)p~(x%B9bIsIpsnY`32X*ii9)~tD0G?A~m^7V$|^7Exa);zI04ZhEK!7bt8)-UM1
zIr2`~J*%9TYmJQK%BqXLw!JtVz0KZBY5&iLfLH%^h3(k5pm)#K%V&aXx7|P8?AKD8
zVg5vTK}`3#WnAWApKr$h3%@a|G`98hVX*@&J&aAY^-tHHUB2}0qA14Aep{B5?w_v5
zzz}dZZD&Y%o&1b5|38O4KiI%{_}bY7$%feFUGAxxd;ZMce(7*nx25>195eqGvk&k2
zK23iw#1L@NetXl-2iZG6m<LQqc^t05;Pa+wiD>$|l^a&OAGdU6Fu!c%yz%kZnpt)s
z7Y~K~&s3-@wdTF_fo;RdKT8Wv#ohbF@%D6{T=oCMQ{;ZRX);Yb8CUS4X{Om@o0)5G
zPw>;_+G#%}N{}sP-SZP#GtRKe&UjSf_v+`lcLld@9A23{CEh`1vtJW$Z_MR(O~2E=
zbMk^di5V;^D^5D>WA{6M?YEo|`+LD}-%34iytsF|-~H5C@0Ne~^8BxTTCLWv{pLPD
zZ`3Kr&uKGna9M7(_E6BjTAp9(Yu|6V_((PRx%hO=qo<y!e6l*tY-|`WUh|`v`-8-t
z_uu>5H=laHu)%(nkbmg`TXv7-XXWhv?6k@GYjpqc&f-<?|L=UM#_#j+V?~Wf{O75!
zCcHcU(fyW3r=TkT^R(?}->jW_c@wLS$CIYzkH6Neo4S44x6uAA+cX+#-E=lBJAG^W
zEy<_fFF&^bJ^$r4dj{PXr&+h(e*5UY<koq+&N|lrp3kyCT3IaePRQG6&GVb@hcf)t
z?2Wv0v~u;S_p{@@h5z09@%@W1!xpuojhiHIZ8!UT`Srnjp0T;*+ztCH+fQs_>J?ro
z(I9kvN=NY<hSwYF+^o|Ic(gCn2<(sJewO=u?lK*QXWJq#cW!gM^ZvU-<!jB_B@h42
zm(M#gm;C^X&}whv`LT~mOAkF=JAL!s2lgIO3}?>Xp8epSe!%2CQ)}64)ED;TsAMu4
z?2Vs#_gwa(=lfT1=?5z2yPmkd%#t;s(AxCw<Bt`gQ>;qAew^sz_4(S?MD3@y@A@#D
zdAniR@6gz+kFOqotYCSyKlGlVcJ*wAFUvd9)PDb5Vv@htJaFH?r*G;~*gx-C%UCd#
zBR1gKhuHr`3lC=pPT4NR&Yz~PYsk%DwzMSX-pXaEThAGN4*QiOzyIHQEl=-bObzjN
zO4rYEYkbXAUN2m2mG9~imB-EC@v$qWed_vMrqN!<S6$h&RlZqB|I)eRJ}(#!OtD&X
zZ}<FZX8+f}-`=YfF1r8R!@_%6bGLlke`qUvLcs6M26xu2d+f4qUfr{`UA%skXQT8i
z86JDRlnXZcd(}N^mC)2Hd*1$;y4~t~kbO)y14CPJ*^BsZE${D7eEmjj-**?$J16Y7
zYqK$XMKN$kCGs_$O|Dsg_nW^{<s-|fyY>X>OqZA*&C7P@=dZ)nf(<qk>(8qB_1P}k
zv(Ip=URdS%IefOi)Wa0>MYnk_tG`jos&Qq}%M~xPdo#WMy((P3XXfG>d9QCNnlG=f
zyULt!D5$}%YTuI8TiedawAN4k_<MHrX*+w>jhaP|GkliUxo(k~lyxhpfzR!Ypy<L6
z`tr^3wKcU<_mpbqd70!pEZY2hXX18?>pTnQ2B+rCi6~3_8DA$f&-(rf*%e{;e%-ru
zllNNg_Sr#hD@=J96AbRwoelHP{F^<;&T;dp!cckt3wlL!@7_xJ6eVDMeKp&H{pa5E
zx~&gB+_v`Y&!^d6dsjc&n*2NXNq=2?$i!Q==T0(7v^u6NpRz|h`wDmE{<E4P!q@*T
zTa{Dna&vjeJtm1`M>cD1xnQ#I$}H9FdaWzj-z)30<;8Z2Za%+!537ODMD4)4a{@JN
zmxb)#x7Il3Yp;9QqzC`6+>>OGnzh?*cF;qX2d#5=Me&5)op17g<p=FY*1uIwMKd%D
z?rbZo_-W<yJW#brwyYsqv2^L=?F<X1?lBK2Rlc5PwrWzl-2b0n8#|S+-*g7aw1?~6
ze6Rff@67A!+`-qs+h057Y`rr3(TUPi^6E?sOsnQinB}(a_WLWQzLzXy?rd0m^;aju
z7U8T9u|AG|7oX+LsXBQh>C)CC3j%8Qt+RZ0bx-u`^WWu}8LmEcoglV%eb90j{yWpe
zTz(0@+|PO-#HqJu_0>g}pWjVtU*A!jx#?+aa3yy`CCmDA-kTD>wyk^58&-ec{5bcK
z+Ro_@?tfhsZlTO@CU=LOv*hn>JJ*z+e06c{`SZoU4;B~fJnX$-zs-S)RqJ^yc0KT1
z{VVDG+pzw;jZZc6uWw$xFxp-)!6W!u;_^9bKj>Z2;M*pVcH_|+Hc9QMyE}g>q*)a;
zl&+b!ohw|iXTe2PZ%gC!{jUpV-;~sQw)Et*y698U42x&&kor9#ZZ)eVzpUC0tKX$h
zeS>e_<|$e%_RcL)+@z8_A;fXj#%pcd(c52t+j-IY+M%;?rHj*4mXxg)`WyV?J3~RI
z#miMk{>E*7m|TBw=Jon{e~<k&Y*SsVyjnZA_0}$#%G-Z#^zC7Fh?!g(e49tFRQdYx
z>$z#Idmenvwq11He%YC+^Z%7ft~zg3n6=>WzwM`^8CXouF7ds8xvR{2OV|CcS;v1}
zy;Ew#9=bPWrl90~`<X?4b**dn+$;K(&&ZRxscnA#{jIkmj#u2sT=`j4XHLZGl$wmM
z|DyN%#eUl(EngimFJS-vD^+$3ho!YUmPpv<EPYYq(*M8aPj#8M|Izc}c{TgjuKs^6
z|6SW2RtFvJmbKh-V_P=nRb+`A<x&pct;ntaE1yx|)`G;<>FR4YuhKvCBX{}gu*DyH
z)}AkW$d`SeN#gtw<9y%y`nkdX51)Cx?dy+8oBnF8{~2}LUh%28$2}&66*~`Kd)m0z
zi^pq^o2YX5?%j{BPg`BH_<JWq^Ugi<^3oqUcfTy~T6?5-iT}h4KZT~dFOB->caKTp
zq*Z6iyJKrl810Iyby@fKd(Zp%XJ${-{`=Z5(<<QbZ<mI|Gqwf!b2TI{JnM<HUYY$l
z%;wFNt0(^bIQ6Bs=8yMX=84-G+)RUS{4%(?@Nd*{gMDH@Gt<qkyy;EJSFiou`b4)u
z(RZ4M*vG6+PKll0)LYkA?+?8hb=iHvFV;!h893AvWHdvb&JEB0t?U2xlkZ(oxzBUv
zvVGI3<WArbKELy*z^r{6PT#2b`sdb{jUe?4y|&L2Z1p<7e^#Z{mQvHG9UBU`x4v_(
z<ZjS#QtdC=zspwD?_yo&Jj3m!^S|53SBJi4IvLI2V))KtpRBz0Z5Qr{-@o*|X8h~z
zeH67?bnEe59~e&0s!Ke$GhJNzP~DXm*W&+O5zl>B{B7N~>Qh_t8G9b?uD&ebd{4-?
zSmE*u$ujR<?|3&#eDnP+cEF+Ts?y@=PolQz1<GZ=T6OPK=#GiI+H?N8G$j6slCa1Z
z+_fRiYT7kE<KRb0m)fN@?>If$p7Q>cYIoxNN3}`^JeHkTx-6fNK2h1Dv^0O-uH}Be
z#SSFIO+6(Oy0S8+dH1VDOSas~+t<17M@&eL<+XjR4BA{4maaeliRit&oabfmHku(O
zx$oOf?$QjY9<dWvKk^h;Upl3l&v;?#jH`z}uMs=e^zc&X-R<qxvvvDp?x{0fIQg$7
z@o?xjRVm;3Wo4TWZhrsp-PYUxU+If&&1bxDIJ9`W`{w;=7gv7XaCz6~U*Es*vh8H)
z^bM1JwrKU8uXZPXvOZWd<(+kCoblAz3CpfcnYqsEUrn)f=lYGCzUw|y3T&^wx_RoB
zYnqd`Gq`QF*R5XhZOM$URf{H7-Y}N(*th(hk4@~&iSOQsmu}b}KKF6;)L@l-MxK?Y
zX7|~JIy~91b#wmO-)3`X3GF@g$gJI3;Q6IFS&y>z-VV)6sN_!Y*m~)JKxyd1>1~s?
z?<-1^t^Z`x(#7(--0%7CRW|ot>hl}y)Vf=@SapW?xAf(Ud~eSGm-*~U5X-_t*S7c1
z>*!5u^0+@azOHO4cU>LhkEg%Y|JC)cJ8OR?!btV@*3IqHHC}GHx8?Bf$mFxfH`aUU
z=RC67@{!5p!B5r&E01)o%G;s2GH=!KHAkjb-CcF!T(h*<e!Vog6VfaNZ|Cj#b5+*h
z8A#zI#qW~8O6;|Mu2ZN=+c(4ZsX1$<e3a16C%O%ysb^FR---y`U$$nyQvcIE*95*F
zKIeBTnxXrb=uW+wwckXto^3eCmQ}pV<<Gx#`}9Bjo9Y?9h(9qsyPGp@k-lR7*@wT)
zrfp}KR+gI_bl^a_?t9_%Pj#ke_p>^L7rM<kI(<i-lE38Y67#S7r0ezW@G~^6wi9gL
zuyy@chl{Rv-ha<{?pweX5q|#5<)noNA}d$VP)rSY+sd2pN$kL`y07QfS$_=uW0=bL
z(xN^ru{rGZ<Td}r4lMeX9N_kL>rJiAKPsGmt=Qp|vDiBJx7dM2K~VuwB~5|vWiIU~
z4QqKS@a?5O|As~0Rl&A${4X0#E9Y};*!7oZ%Df3-^Tg+6zumv5&*2_Zgx}&U&qb@0
ziZVFXoyw8w%}ahS%y=znUE_(CwYwheIRr}GiZT0weymZN<MuY1f&1bP(P<k@%`3SR
zL=S~U9J==9i7rEj>y26c|DqW_U#>9{n4ac!YdeFQdd|V8Tk;uwPCsE%-ZbO<lr{4?
z3>N;~x}y3WXQ$2^Tl2Tk48aq(s1@(emYmtRht+`7GdrXI_~GC8J3Y@b9G<-8S@NbW
zCr?B(Fi+m1mX`3+XOBON#8kO!t1Dv*r&n0q+Ro6nMRJ?S%gL5+E<Ww*ce=+UG3lS}
z>l5$X?O((iKF#N><W8_Tbgk)>yT02#f1^IVPY-J*Z)adr&e6@=_aL;w<sx7DWKjDf
zvAbN=Q}xi<;OtWyIgW2S|HFkr;%eQw8~(=A`^#)hXP<mA`C!(4CW+3YJtu{8S0q<1
z|FQ8_)l=PuM2_ew-3IP?Ygfi7%Xllj7iLUQT(3}cReG1*=V$KOe=qH0HQ;$09dg}%
z`jx%C?lV0e`Tt+fqHy@d-_}k|r|oNn`pv`NI&*>CDYZRgNxIm|I_c%h*ZrI5{a?3%
zG2_mnxyK(HUgq5<xpN=C!N&>NtxlEP2?kQzGhWrr-;n?PbB9q<>ePE_-+#y6V`{is
zYf^aD%4qQhRsH<78_(l?XCyMJ3FoF*2YYcUU2PXWwrA#L<H%os{(Ta2DA{agCg8hv
z&cuJZAKyRk$%~s^|EN}pp<wsinOvo7&V(p^oFg;Ou#%hM$LYlEv%7=$&N?Q`5ox6V
z|MABO+Zh_>pEIj^yJTJA;cL5t6TkdV&wrQZ(7?Io^SiddCC_{2+RuEMW+%h0kk82D
z@I-0Z-v?VSn{B(5`=(ZjVM6Br+{f!pwng386=^TXpfP=4*~6y9*J}BU3|nQEtusA*
z?d)$Ch6U@+9_5<u8|DA&G;@#R^h$~A{~0V2EcHN3fS`+HQu9*sld`zLi*7&+3rh<#
zkTi&GZb<S9A@`!hN-lku)a3k>)PTgI++qdL)vnI@Ir&A!3Wf^$&iOf|xp~Fll{)$X
zMX4#7$tC$k3Wf%tbvycQnK>n?MGE?EIf*5y5JMF7JyJ8%GfEVUjggiJ89|o_l_r&d
z*8zFvCZ?xy5xFSn@<!f63<4|%%~LPxue~7VH<3BN=?J^=&D7~{KF*q1x$pVyNjsk&
zzZ4xFou~Wr<LT(*=?&5S_3{m0LzrAu14fC_Fc?h-WMl)sWg9IVK}8E%$pgyEpwh;|
z(i9{MVj7x}T<`?BJK-#MjHy=c7(>e)@X|zZ@ksvCMC<i2*DKi`Y}Ge@?i4sl^JW*X
zAd`|qL(opo<%dG+-0Ol@UHQqZ$+U!%X^FrDC0_<>1&0HTsY+!_E*PnHJvTD0ejnoJ
z!D?{*^^<1*p64&m9klMgzh>|ES<^4iN!<PK^|!8#yw0z;=<YpP^3-fw;+jayN#|nB
z-Tvooxwh|mTlc*;zq+rjt3G^DG`@druH(M@2JO<9*1yy9)$_`pAG^PJ>zvZI>7{S)
zzgW0+;cr{HX{ooXuK#;h5V7dPuClhp<`#U1Z~SFjd^cn5+hr^5ZTge{t6aRXd(+g#
zAExwtJoxm-u{(eF<iu|&yDc3zkEJ~#J9lU1+VA(WPlpz~(+yu++U|dU%iAl`eSCXg
zESPsc=kY%CJ-_p2pQ}E6)9yao!)v!5X5OxPKjH1K`?rfOTc3EiD|heYoVzEl-TJ?y
zF0@xM#`2fRUTx#+y@F-kPl|1=mm8U;u6`;lv?iu}x|{gYuhZ9x<&}i!|2iF(y>@@j
z)@#2`hjHIesAtZ2n73q+=f4Ms9dBmoYDBMn+8*&~=e*jr6Iy<s4qI*W1*8Eab^E!_
z9S|F)dDR;sCWZ@9m$x%8ta=&Ez_9g;E<;1qFEIuO-CAyj1=IGiG6Z<vXJS~fG@p^-
z%BAfL3|R<e#XpW)#GA6!2W{uQ{Qe*R-n5=4=X3drh5jkbed;G6$M$eV(R?}8htE$+
zoOF$uygx+hZpBI6zxvnbe`()eKk-h*THoXk=Ck5u`2Ic&{?xu`zPk4PIZgZbSDUd*
z7ft*V`{b`k%*V|tccOORdHd_|WeJ<uVxhj88vDxr)AlS6O?TMd%Kdc1P2T5ps6gIY
z-IEtZ<|dzP%eg-Pdwcum@+QM`_qY$~?zCN3FV>R(Z>|0AxLUzAcW!NCS$=jG%k@-`
ze<nW+*q+aLkLo2NeU3$$Y0mloucpTLq#s;;yjI9BOm3NiOlMeM+C9IMr{vilK1>wI
zdwV)rpl*Zrw0(bPE9{YL`ml}V;frJ4F2?SQZZF<i_ODsN=C4Nd9=C_R;*s{ehYqvf
ze01@!gs;$D#fzUe#jrknAsCV0TwwC~W#m<fwObF@e@Wl2dSk-FH@go??B3q|VNOfC
zCCB=cZwo7=TJq~8eF}N>AN_aUhb!{1cmZ1+gOsgJ{QWh4&!_G}`8`#;<Xg6@a-=Vs
zx?I6}o+@`d%R|eXyMmTKceL2m;k@bUYef$IlV?tc3iOpJS2h1GZ!XBr{U0X~m)~5l
zMe%q%>%$jcR#*!xdMzZIw07%DBM$fX8}q&|D$cQHefVahZ{D60QtM*2SMM%wDkxdZ
zS1e%n&x&LIJXLM=hc9BhT*V8m!+JNeo$sbzq-}rtYHIwPdF<=$Z2bPMGzZ7YOC!#B
zmWLiDpAABLCrX`P71n3=<PE!{#V+slbz&{$`K%9L9J99JJ)~RHfAOtI>*DVgZ<;@p
zaU3eWWaxJ?R@OEq+sLy-aC`8kPckj<Pt@Ni&rkpPm%sVLhYj|>UsM)U*VMe1Z#G=S
z{NzKWKp)?$7jd)Rvp@VYS!0$;wB^kSPd4sV?&oGWAg@C>1A-z4e?EO?cEA3q_-&y*
zzy2f&+~aesxWWGL@@9oSF{}?gHhn7lv&(+Zy}0ydnWjHQe{CYFIJkZl{a$2m6TeT=
z$MEdmhj*p<e;s}-apq26JnO@kN*vp-9eW~pBFv8a(8b0LbDKU0#2m>nUt~VxU9rix
zS!-l^ZGBE&DtEqn=5ne?ea+Xp`X7tC{eK^pKR=(nc#ntO&UN*2Ey@>->&ma#>R)WD
zS?%~Yj4J7KXK(uYKS_Ie<7#W9TKvy9f2iU(bh=dF-hSbh<=qN%a_$<4nBC2_Wu5F3
zTwh`9_P+21zrMNtufv~@{{8pi<*V2KJ`_mz82bJGS0Fuk_m)q5lE)r&<=?&~FZVpf
zc~N^dcizi00&m>1-`-|__J3i?q`KQeEsHmsM_c|Z$UJ%KqQu(TE&q2b)PC0CxL&I^
zZ{N%FZvDB@%^x;c^M~D=6m7Mq<K|2O+nC}HKQBdX*hIy&n^*;o+Nzy=hmNoRwfT0@
zEB^JzZ~yxs(0csk*M<MN-k<w@`1ZDM?YC!KeUw>$Q9kbYPJ0`bhi`1JbsmdoUK@9N
zp}kGc!E0Nu-I@^d<q6--X$j89GR1oYC7aq;_ojzx-<Q33GkSY<c7apcL!VD<mksmQ
zH+>MZd6w%L)^}{){TJu?4(?jG`|}OAZuf^T?#+JB9<1Wbz#sssOps~`!if}1os*sS
z`mOf<8-Ad|RKV_coWQ<cuJvWHd<RbjS{UBhw<4<2@7vC;W-O*vbISid%$>E#a~JQ)
zGZ&?0mhH^xQRHY}<hkhkjbkb{EZf~@>rI|IxmuH}KRxu}wObQxdTy$uYP;_?k5zg2
zq^th*=4Yl4S2ge2THw4*m81XUyQ?=(mFe&5SlagDg7)s!lQ&Q?z8-H5uiJQ!ZN1$2
zrh-kM49*@DxokJ%kwni%z4m_}3|O9)-iiOxetQ?&!-7ePd}Zr-o$Jeb!sME@?;ZQB
zAk&%mGAOwucA3hYoYE~tOY)u>R_?f@Z5ONdFlCZQnV`Lf^yAG6GP!rlybgH__+7PS
zdffi^=JD|N?Aq+lORCG|m&m_qntJ=23a9$_Anx5>4>Lb|PT;-9%Al|uOU+I~oUKj#
z{YpRn?@^gORXe#3h1+u<>ddudeVFSz?OxY0iDe1%+Y4XuZ@<>|_pgHOyXFsb*4XTq
zY-xXCtM)MGsnNyBR}a13q<c~&b+`E5<A)4SrTOv7vpoE|JhfQG%X~@vmxn^OI%~In
zJpAv?^yTe;A09s+_ocnQw)nDq++_a6C+fK7O@BXU{`dC(KhAdl`|#ZSq~f((g`A(3
zoBp^n|M-LI6^RnR4pXCq0T;5@?zH`!8oy@y!PSdDyj!dAXYI<m>arPKhjMLM9=;W6
zIlfuJ=05+SwOch$`cDsin6dhJtw5j3_n<Pt#Z%k)n+mdXD<oRBtGjC3*KPdT-hcX%
zeBAbgrzdRK{`bzARFM7l?%xaYbq4C!RVT^%9xT-qk>!~9@vz3fr<xTkb(OMnIKO{8
zXj!)N_Sg1y#T_5>{12Y7|M@5U??dNLJ^L->ejk3>xM6nF?U!peKVdfCsG9t{j$reR
z$Ve`peZTIh`039Nt{xU?`Tm~m;YTCR_me+Ff-3b7Q_je=9`|o5$nKw~@Azwq&fJ#!
z*8X|@rjp7Zzibd)yJyY83(HmRMBU!zyy-{z<PV|s6?a#a=^OPQ{Lgdz?mGKF_v$*-
zDh=#8FP(m@A`>%x8{2mGhn8Zp%P&4ZI!z|2{Ma-b{hNoUwtNrXaJBxQ`up$g`)$6Z
z-?p#)ms)R8bu2pjx552<nI_{z&vjI36lCAX`~R)}<10;$^YY)*<!e7T|NF2j*Y#m)
z?C-<NcNG{Fb9;ZWVf(0I!{=<|p>S*Oi!S#?Q!jV#aP3x?7V2F0V?xZw+D)H++I(-n
zzkmCCe)}2ozqChZzx|@Yp&#y8VXN}+w!)oh3f6IK5AWV~tl$d!_k8`oE%r6VR;<Y_
zc2&RQ>VLdctjJl<cTjY_^_NBM+C}?re{J8t$4hS7wRMxb>mr)m6@EQAb?9#(14A7<
zk@1ID+1cEE|4->3^Zyn9=kfZ!zYvdpy&%6Ya@r=trVome$#UGY-&ydKc7KoFzSdqQ
zxAaNh8@H7&Y_H{>n6qZj{AK?>=yBTL_?jLaZSQ?)E$=~<T$|Hk@3+rw`tYYr;9jjd
z2fw_^!}h;7<<)}!{8)YH@t64h``+=px8DN=()+jH|33VFu6g&D=lAb?YtQ#P*el+8
z-^%_y|MqKollku`TFzS6@3^tDj$>CB^~&KtPgXxZZLk0O*8fMdFR!$(ncK3y@A&oh
zy2m?oKphdb<B2c$uWQOG-<nW*`_!=&QI&Gdce}Uk(z_Ei``Cm3PQ{TG_P&1~#zNwG
z@m&k=uzxS&eiY>TH+}eZS*3>K(CJWtdriWd-rnatbh-c6=Kgu?$u|4<zU6n{UNXym
zO6@+E<C$MnuI)YOVdD1X#<pvDi`@iEr!J{;xqkFJsa-HEk!xE2@zK%K_V?%b{nfYA
z^REA~W!>M0rMG__o_JYm%^sD9yC3ghNp^quVpq@M3-a^cxqa?WlRK`kXFjNen*Zj6
zmG8wze>Zi{Xj#mxSTtKEsXzYA#YggYt7jakm(q<(<>q@;RwLGOT>bCO+n2xpI{f|o
zxnGB0K6m|cvUGCG;_7_4$?1FSZ{3=4M&_ov``Lv#Jz{dc(M9bsZ_55YH2?nl--o+D
zrZ6-7IE<^W0WN9rcRS&JzV@ek{r<|I&mV94y1(LX(}zvp(%*Nz;B|XgDA5&`_b|*o
z+-B44rtcQ2XYH$+ORuZW`f1YsfBQ}Lo0WTn{})D`nm65}MDYGy_J`M^ZqHMBxKv9<
za`NoVT|9>lAO81-|NbwN$e+#s-aKCYy?N?kYZb2gIvY?LUH<RG-r54e*Yl1%mXg_b
z@s$3gwc4fm+h6nZU)(!|pP9kIff`+|pWV-oPp{u+yLSKjz&JBi+X7FwzIzYyq?(or
zmuhb>aPB*OO}_6~+;#;UK1YjPwy(nMW;d6J<gJ~1KDfTZob}=7O1?0;=8fM^N)&JU
z6lwJN`1fYRTi;YTwqM(JepAhcPnsP4>5dg1W+}VgoUf~_sePt8|BL&4xu)XG$j$w0
zgD1&PVt%r>`g_;09agN{k0(ZU9qVw>ULRd>G`eDg`|`7;o31WT$+=Hi(*Y6J*>z>5
zH9w!H{;u`?)OFY7&p!8zwOdoyMqA!^v2v5Bd-UGCi+=^z$m~6y@ockYgcVo(n`J3a
zciP{HviARU@zL{OgKu`6?<akze(w0=;GZS-cdngp`cTGoXzf<T-F@XrPYdU_*mEB8
zo>04i`;b4s<Bu(A>R-Qp{PF8TzDxT(!#Pj%I_@RJR(NjD<2m>01z+c}eU_~39n>gr
zvgM9Hd^&&ezpd+{Kj{0GFS_j-+;jNDuYkRGr}PT;*6!mzbn#T_?(&`d>mKd>dq>`G
zcJqfyp?ki;^*gq1lW+bWVSe)X_sJWt`%nImD`2M^s=d4|VfF1D{$YOGtfDPvR#sn{
zUwc80ReQVr>wdZE54!C4pI!Ik>&q+h`#cX#EakRycz@!i^vy};Gor4U&QQ5I;mMkl
zcRKl47(TH3P$iA_-@CK_&*xpafA#lSvOUarS}5`B@Wi_zTZ>erl;{4;;mi7RG_OnS
zy?OsZiD037{s+%I|9nS&pU0t#5*MX&*4F-4n(^eIUgWPY-yMGxK#I+2DmAO3cDg>i
z*7o<c@qbx9y(H<yQ&-E~-e$vf==1TvH;?N#^*6kJywQG-ioD+1t%rqTzPy;MUF37D
z<4SGAwY4#?`mXTfO_kT`nOMH>O9Tzaq7Bx920%e0w5CQ#(?q0iB&X9fktuYzmaJ)_
zyR{`DPv^3KxSygnlaq6$O3>sD4o6ZNu6=J>s5>?9_T{baE87<A5iyzf&eAr0_wDfV
z=yF@RYin=xiuyTT4$fU2c67~C--2w%gCEkitTnu{)`P`pPm9tF4}~@rmbCv8Mh~lt
zpU>QB3?e@N{d4*9`^tGw&fPhF`0Sa#_uN}FxVM^`vep)*Z&+N~eB#)(wFi$*lIKb1
zRg#XjJ`~yaZn5g6g^L#{UC^(7dgRG>mv2A(PshFFZrOZTsrrxlp_$R&FABZfkb7!k
zewmm1?UwuZ?KP~q&e`wreDZYF!km|uHv=c^R+%FxC@46wG)^%7?=e=TNBKElx=%Fq
ze%)6P);aT@v+AWM_g!99M>k)6l*P|-D>g_r=j~elbZNuK=`mBLs&)G0N^94B3}s;w
zjhm^He0y2T=A<(v@;Vd6%)50s*!rh-ui;}0@17#h&Gx)~v*?VMb`eUstHh^wcP!s_
zO<Cz_cfQ2AJ2PHdyC^AnrSIISq%`ThkYM3YpG|+djTgNMwl*l(-jQCq;jaFp{QTIr
zf;+9}gm(S7-Td&((%%`KL62wc{w^wC6ZLM^jnJP@^1k2FoB8AF!RUWq|4w4IpW?12
zyYJb<={B?Z`BLlm`peC{5@|Z6vP9lGFe{|4Jo>1#|LN;#ENO3V%>Dc_dEHCBkM|_j
zybzZxkA2^(eZ<r_Un3jDNw82p#rJUa>IYf<Cl)m}T20no2gYaF{iZl|?Z2{DO|nN>
zN%fnzhPBQc8{J1Me_r|h-1Ss;jjU48->1TYM&D&ln8;fNc71tpSEIPHoonL7-#2pp
z>zdtem;NAo@aUxd+{X8WeQrK<&e^s-d2{U!#(Jl3Uh(2-yZYy9n8wY}Kis>T_bVuN
z*v`~ETq9&W_qeZ%i^~+x1vleb&wh(fWUh13o~NOmuz9cK?6>+!%>UwYj(#@QJ0)}@
zNB?Nr?~I%S{pMR9b#7v=%l{$$=iUa<{qbuIYo5OdX;pf(@1@%Ij+n6G-i{MnO{cq_
zO3SeJ@tXUI^|FggUPOSN(!1#V()cN7O;75{xw}Mi-#R_-MDMejX*ru3Pg<HsvoDK$
z)n|0HXhCuD_pl60_Hd`uGv&XgHp=B}3s2m9_rk?l{WISsZ$CTr;4+8B9?1(dBeZui
z`@fSpG4)o#wHWQ4%+~s+PQ3gl&{F*G$A?=tI<u7{w0GV%JUz?5>FmF&CGYkx5%FB}
zTEY6-u?}dU#}%gbf=rj3^;UV^j#rx=cAdTu_syl+P115s<Zat)I;HNOQ&!6S?)40;
zf1{gzzL)W=ySL_otZnrRz3+CFulTKGGRt@K^-_7=oBic0dcIud=zSJY#-7&y(k^O~
z{JQ3{ci;7tCQ6-M_=X`Zbr=7%H|?(<NPMprpD3&={{DXLe}#AVYehC+x?Uo$ca!h>
z!7}^r)#^%0UQ8L5zvU0w?oEGXXSK-0KrZUs+t-Eu`Rw&O+)qBgael`!r_(zZUEZ+V
zT+manE`JB_e(yh1-yK%=V&71|J>Bfx%h)xaPjqx>OfLAJr_|~yD0Oz>nT^|J1R_6x
z-FJ+=U?OYZUlj|LYU#5s7j?TXWbmc#d8D+f;di;P;L@gIecKItYd(iw$grz%`~Fby
z<#Fo}jZB+e{0H<F&$s)!(f`QrzfFrSE#CS2`ubT<Bz3sc+e_r-K)D_pc71S4SWwV^
z#g9j&u~T;X8cDdjxI`@pf4|r4*x#FHH+{T2i+`Sm=$^K{H@<6s&(S~p#_z7X{}e9P
zw!b%bPp#f|{_q?55_wz8uqazbQ;EX*ZxY{f^sm%@c@mNNwfyAHtUL4n9y}}dE$6)D
zir*hPJ32ay4qy29rgw+^ZzjQy_I;6S3uOYuPDtOIZ!3^dev)@b`tR2}(yP5I?zHxt
zkjwlk8Gi1=zc-Bzt>J%mr2oFpQ@ySIc<hOeO%2CC>|OY9_mRId_NK|WPf^u-b3U&7
z_vY!{9nZtgoO0_?R#K9>b@pufro+)!-W-aL(EA}j`M>j&i#Bb4Z-%e@o^w1$x-U9!
zj`tG|xJQn?$&|UCGRIqF{gz)U7T^Bf6h7HuH1qfd``=n$=e<1!PmvQ3YkW)ZpH;c2
zS6NAE_L9*3E-p87=GUsG9Iw{d@@T!?vhS&as-8{dD^^5()Gpa?w&=+R$ysl^H{9IE
zCjCM8RM?-lGiu$xXD{ZN7B-({zPZWm+Z%4ir7ab`-xs;@-E}ufowfh;EY)x1m~XkO
z?eDPdQ7HG?9~al|ikA@-6by_yVYub)bI%sGJ(1gFHcLIWP;!?LJ&;ztedA5OwLf0Y
z$URW#n{zaHQ$^0dpThfgd~WzHEq@~Q{M_A-KJWc2tGnvpy6a1{*4IB;_iit%QmZt#
zzhA}W+aK-HY#-*>q&50UlwY&>?#+5H@L{s%)9F1^?8F|Fx5S6>`Mt=zWnFm3`_#@q
z2{SHv96ceny9t#4a>}-Z*_=^TTGUhYFz(x*8*cFu?ca~J8})mpndx2I>5|FxJ2*bL
z@2sK8ZQi@9&CW=z+45-nqaD>jUtV=4HTHhhJ+(2;dGlVj*>7KOym@a?&e8i#Hz!-<
zm3GD1S~^ADeOqB@_CT}xNbS+k^dc}eEt(UlU8mjmSX6wec*Y|4sUDl}K8jIN^5Wb5
zTXlNB)J2zYkCgr2XRqIMsY~5Uevfmj#;n^-7yRlyEG-uPy*K|zq3@}kn}fc5Iw|<(
zpUMvT+b>_;T_$|%{oW&|?kqOjpHn2V`@f#%eIDI!?&nsrsc*UeTlB8MJMrj{;@vrQ
zH(gv@T*^La+<rNAhOP9*qjKl#-mltOy0TuqLuqDe#`5IkzoKX2ju!H(Zo6-NW^UU}
zp}X(7Q#UNBKNgy^PyBalj!xS22Nv~7zxO(qS*HCdo_pzp$W!5s(gxfQc2w5PGE40}
z@wUV~?X#}w?ZxlDubWYw>lJ4qD5&cGrTXSt(`&+++lr4{czK5>3D=5myP-Yx?6=)J
z?pvp}$|nf_U8%6;vb^b*%NsY=P5Qkz*lN?myyGDz*KU?A_bF2~yI7vsy*KD)&i?M-
zdxOgk>|e82ZRXZvR-n?%t9;uRZ>8;*?-nb}zM8r8=DEN3G=s0oYYA8GTmQat;wI<X
z+IaDq_pg_)@L95P{d&VGXSvh+6Swgnzq@eG?TW4X;YXf+{dq?zZ~pn$LMOi-o$>Tl
z-E583x(CyKdpRGLiGIFz#$U<fYXjeZw+sC4y;NuF5A}n#Hw@kfY&++lP$qPI>&oxd
z&-b%0aeq`l-KSP=)?4rME5GIBe{)vjKe$7+`PAQg)&A-aS%n1!1yfZ*H}7Sf{UWZ^
z+V)o6dlyNr=;zrRJO446-F_du?a_Ca+wbRkw5!~C+p+d@QqH3OV`aZwQj=?)j)?tk
z?a^>fd|hJ+35c+pIrVn8E^p~Hn!4&{-R`An)mM5tI%G7z^j6gLmS(T5xcA?0X4cH9
zX}_J$FbRGyGe7;~xpnHQ{N(Px>8H|uN6%P$wDA0j@73!s{0-9du1u2rax&ZQl>N`X
zn9`Fo4R`nNPOH_Ke?y2TeWxz7P>!umrK4nq<)!=jMK$j^&-Ar#=HI3G`beRC*B;{^
z2X8(Wy0a<VkNxT4@c%_A=L^b?y)$ptsH=EtEI<2&Z`iE2+=ko_c4)0#KS{%|YyURk
z%x$y5`Ayh+|C42L+;2;qH`hLM51aM&PRCrMt7Ur@FLA4!?x|G1!e;sJsX|Ayb+=uX
zo^tk^+L^dxh5j1P>(>09Dm1h6>AVDI>%SW|-MrU&^QGYLz1q)Kl{c$jQkk~jJIy9-
z;mv<yX1Cd=AKWot<9Xh*eR-hv$KH^$-`v-lfKsO4l!Y7S?i0NIa`lFz{~oh^tF90D
z&aG-B9Q<B(_6yZhX}@<I`BtrdD&WW6`{zIYKA`re@545hZ`J!_zjLd0#b28B_97_Z
zDJgAI*{7~HBURHfX3>?y>N0B%FPB@>{Yi!8MBLTCK^<=%9$T)w=D51rn(P*J#flG_
zTyk@EAKkZjOXB`=CG9iorU;$vn8P-|Zv)@_84ckvrE1|ZrF$MN(h;~XEPQ6u6d66i
znVVAgmoJhCE$#f|$uYtAH&@C|_uj`Hb6%8xo?32_xJ`Jo7^ncPs$jO^JlO5;^x@%U
z!GG-YXKXlUaoy~X%8U}J?{YSri45~wF7*4m|4^|rTzCg0v%954>g$aKuRJ+s^y)U{
zybd~Sp`@gwWYp~M{zK5t@S(fi(_j&U-N*MeKM|j{Wb$j?=`86i%h%`5-tnrg^1-i~
z|8wkl)6bsXwPeSOoO>7RB=wcrk4D=~sMc~ad%AC>>DqN~^*HZI>?ylD@6vr+mGAd%
z+Rb@cx6-BX)Zz10^N*je+MoW^J+`lSwz<T-ZQfH>eyBd2`(y9J`skmY!G-TM>z;e~
zHTv7mX!G}x$bYK-^zogSN^R-}0)i8bU9-1E9|^Ou3~1hUGp~1*=>52i;}3<GIy7&(
znfLOaruezDN5g6q*459}dvLdJirJ*v&?BpLidxu8H{X>C)t(m~GiBo<)7!d9+Vebw
zzj=FTr*8hcIFH+2vtIGc*S?JN!l@ef7CMQzrrmja;&-&i^3AhjH|>m%`oC*?(rk~*
zU-NzPrtT|9duzn`eA>2-J*F?`-m|^5{j#$4Z`J=@cKOc@HFf1aytP-ZG`ses)2QXV
z`lHqN4dUBwM@heG-)wWX-QC5-<q1pMvOiKer#?r!DNX$5u;8xh)q~gWRZaYL&%F8S
zBdK%8qJ9SMxjj*4m6E`U52sQjZ=1QMWJP!WIBGuU<NESNg8t9n9b8`Af33E{C6ht=
z>(%=j@)HFG1zo4_akHJsEV@eitLv`*evkc!I(UC9OIZ6PEb?dMAC(!K81_4>7zM7#
zyYjiKTSKL?w@N7}>HS=z(7^p0Zu%|xl4^FlbJ2=tb?;pQd%SMey?2?ps>o&Y+>VZp
zj!8PHzxN8K>f~(OpL<{bQF_djl|>tF%3Y|namnPE{kFP9o-a`9kl635v-;aQI*dfk
zZg+Cj+`Eyp-S^S&=~w=JxIfz_`u<e^+RP8#-uLxx@AQ$|@hShh<G1?n{Hf<loWD(1
z?cC3FD(wA~t`m3uE%Gnfb?<kN$gZYsf0rHkudVqvr*lWzlO4-;FL|<=S(M%7&vkYK
zX^!-N#uMgx9@1WrQ~GL($Lx*{mf5EAULmJ9M8>Slk=8%*ruOV{zbR4+>wC}4I(pGq
zTAR_uWs1?s7klGxthT=5P<DQ2#s7D&X3Ebsd-w9}GNaV_A2z>lK7Pt|+T+h3${&9I
zkbN^`*&35A;pHnD@38zX-@cEhx?sEA#67k<I)hX>zq7obDm=Me`b4a#Xyd<!Z@vU*
zTTYQ}Syoj4X#boOb)G+VFIk*>=>2>7DYC3Pz0ErJJhlIH_T0mqf}3g+r>}0?G=Gk?
zl=vx7*lMu-@A#cj?OO9y+VFGhX0J1H*DD{mXcqIoTl_b9;;(yQXI>q?sXZh2O6><1
zLytek>zwYmSI;?dW!uIXzMSdFhT49Iv=uHX`5%c6GE#F-De*j+F>#Kes_H$Do65PV
zO6SW;ZMB20UAy|VbYf*}?2NmD=faY%2|a$_p<J98w&1s|s`{!po1*$R0nd)T`R4IB
zX@>RvQ!(e)&X^iGvwCfAzKEdU%<j7L)lX`-Og6tB^{msZPh;k@NB?f@E<FFn>#5zX
z&jz<sQ{Tn5<%G5rE<DqF(@bXj9gFE2EAJityD|LXyql+|{?5oh_(oIa`--A>p3c`~
z6Js=H_ujm0vF@bBbd5McJ5ICRE`?rhQ+SFu&fRz0Yjdq!+U_-H_MV=ww#z_oO7D(G
ztBiL(TJ=~|{N|B0bLV+%w%xb$nvwsOLKl~m$sK=%GM2BN^>)7X%Dio>pPhTP#o)T}
zZ?6-5-y>#Je>MDl-}{u-c8OarZ{+;9O!KvPXZG|C+ZiT{ym>|MUj3c1S1dEeU`Nyv
zp3S1W?gtmmI?nsHBxl?HzMF0`+k-5(i*B}myu-9@XLmwg0q?&((>V4kPr2K7v%F;g
z@+k*>>^bk{XDm<Nyf^q}&ijCKwv9JEWv-{qxXo6~oT^+u@8)}s)VDJ}zDw?!|MI?S
zz1fz_8*lzocivoU*%Q5L&h4J!r-~BWQvyuCKRqQpVQq!!p&hG~@4uO{ct&rY?^kPY
z7Z(?iv}=Cr54{QJG`TIk=8S3D=Omf!4laLA8?N4H^gZy*JA=N(DM54kXYT6PW!hX;
zWt^s;)crRub#tw5n*M_wzo!&`m)P`<<FV7tk~3xxcBnnQlQ|>zXrX&gv1aC(^Tz|e
z<=$;i*E_yuZd_la;I<pbwP(LQI-~bkq43mV^%*H?kDYF+oUsy~@!N6A&M784f7n%j
zl$m>_wnA`5t^RlEGi8sz*O;Dq|8I@0uk>@f{1e}zf8Hxl@2mE-ygp%X^Ue64#~Pg>
z&mZsJ#jn>SaqH!0p^R<OSx42Uob_8E`u}T2v1X^p^Ti?03k3t4gtF!?UneTR^=97X
zm^{^aE*J0rE_ovUar^fq;k{lr{pR;aPKLB%CLWuamOH~VBJ*he(L(LDf9}QIeSX68
z+JoPJf=+$Q@%LElk^De3XOaEFoaOHiyt!`iF8$Qb{KRcy$8D2mL^q%P_Vvf-s3~iI
zL>p8K9XHi}ey{DO8Q6eFw|>Oeyq~;bZlCOf4VPBVo#!X18lSfJdjYt$4r{fCiXX3g
z-{|q!XEVGDFg2`BfBlY08NB<>>r3AM{bg#vYn#%wKUSPAoBeFrd-<u78o#RjT_jJ)
zI$Qtcj{RtUd-2=v^Y*-Xw)#>2(fdMc1N}XhSjaE6-Nk=S=6%3JS*?{*8_QQz9Qzyg
z=ia}WZ}Y#O$(j<mnp=P7&!&8)w1f9%>i=jvUYmFKg2m>Y;R$7C?8j>Bdb8f$m)z6@
zist7Azc1HGn6H@gJMv7~mIFI%9>;jin)7+*|C+P~;ZH7vfBsagy1Z~{Pw9N=Q)Q~}
z#eeSm9=vn=k`)zCx9tgie`>kdoVj21W0%|Uq)(UI`eC!p(o`Xt3C+f3{&AW`ug-1D
zX1Ww_z`ZFvjb%xF#U18{g=xj?h3~vAzB@j><9$52tg@wW;TwT8(eT4NCZF2bmUBww
zgq~^N;w6^)?EGCF9xv=WKCgClG4Sr&lQhxr|CKV|y>tGaG2!I%ihuj=r1s&N*H4`<
znr(V~d$RT4KZnI;y}kCW`uNWE5}Vk~qcgU}U*vsUxAEwqJD#xy>;8!zjyYws?)nt}
zz!$d5e=~G;Xzc#sQuFn-P{ua<SqJW<C+8l}7ZCjac*fPJnZG&Gir1W})l*e(nslZ>
z@A`wETg%LS_IlL5m*3d<Xa1?OUv6i@R5#rJz1rfP;^8~e8x;Rq{o5m^efHZ|i*=Ef
z*FRK$zgft4GOz9PZ?$z>H-^=PoD-S2GIx5?<?2bBEaMjCY>U42{;!bCbMrG_lZF50
zhs}CBUHwAW`Xg@^#6F++CdFdEYQ?$FI)B&vRN`*h`{VDqnCG^>)zW>pQ&QhW&h}Hj
zd8(kUx*)c9+n>*?#FwtRxh{AA_nVw1ubxNLIcxGtoO^2SHZNYuYf(wow%fbzTYv95
zZ`W0v*BN=adZY07>hQC*(#LI&?tNq&zwlQko9nc?8IixM_d{eDkIO!c`#5v`g^F{9
zvLTT_BQ0NEHSqu5V-&pT`K2{4_ulCIy?6DqeZ7z8J%TC|-ucLDb=vN=zxPJZ@y<NC
z%v7XwuF%9u(Jo7VdCMQWpL4$F?>*kNKQwx)yu7EMYyCW}Iz-1t_ThWsh{t=JkEXm!
zwVKZ4x<%r;oA;FEk{a&=0@r^OopF+FV((h^g8N_7=WM_KdwpTd=Ayi{@18m=%R5-Q
zmGAuQ>tABpHrLMh8@AK0JaO9Rc_-xlx9=$b#rXW~_qe3gcZ_#WH~NS^tkgdK*=&K`
z{<$-@YF~F0PkSfZylL@)&kS3d<qPiBy`SuNaL4f}Ykwr~n$A4))Ly=8$F41X^|fi{
z@BNSBAMc8{5EQgz_+Bl)^ZxI(npN*l8Xesk({wZFtL64>$9CTTed6!E$cMh+tM)#+
zfAmeolET6@h3~%SZM$#1RCRmN`X7fY&V65f-En2nT&e38^OxCv%Dk2TGLBEA@m0*b
z<8P+?nj?L!Vs%w-@&4}<fA9Ug`}>xq7Sk^q&X&uZ^U`Xs@~J50MG`SP@^1+L>OaQ*
zeTw_pPeL=Y-+tfq_?K+p^D5uI)=QJN7SB5oby&yyd-Z<xpXn2F!ke>`gQt9Liu7m7
zw(<U69l!Q>OR&td2fJ?dJin8?i|^3Qv@>$y>n^{Yk@~gn{gjzO`{Onh?=O!lOkE@u
zBRzZ38u2q#LJ^OZCT;z_H+b2`=bfAvH$T}gq_q6xwZHc?jWw?w{IcHR+14$7i`RU7
zv&VU9#PgZUcD&r>e00s%YJttyH^|;uki%o1_|2%V+R5^Jvh%gIIm^!<e&Z=~eaRea
z@9!^{S?u^2^XtQ(yhEi|Wi~S27mU&Q`F2Kb=(>+Go3FhOJmZ&W{bR$_V;dHV)(2RA
z4>+Q>tJ2!`U)t}$yXtcu74V%;wV!wYW5qe`tFIr-D4HvEtzz1{@AsDeZV8SFIs46U
zvBK}>Uz%Lku2~2Q1}>_J+<E`^nJaq_PBFRu_~+k#jps2t@9$n(I&10gy`S@r`)m=o
zepUKa+U~0T<=)wMjJ=jTIQr+U@Vzf`x74Rr{uSOf|5mU{(1)Z%^OVJhZvNDrF!%V*
z<SE6!3)Zne7t?qy_v^LXiI`)B*7wfozYzPriBEER@w+SKc6P;87S<1Brx&lYp7U{M
z$u6CFe>&6u&DfnYKjhzoH@w}u`{({$T9fVbFyPzYgVJK<-)l^!R8HgXef{&r^iOL~
z^BunRBSB=%^gE1)s}7o)a9zKZp`Crl)Bo}^o)1>@?x$({AGx>kZRRbdb2s15y>x&1
z$3Jy$D&N#)e7qCZ-K=|WxIVc0zK~LS!Ku3U7t|M*q`kJ<kUG~YZU1-I&N=2@vZ2<s
zvT3i^nA|Q;{I;&@ozj`8tFNyZ{@#0k$?rG8Iy`Sn_~+gKy2I?6=Ipm^JJ&zHV=E~A
z!S`U)$-C`0i!Jgb&y`*PrJ75bysjty$#cEeS&e1F3^WA=nlLjnH#7iAgV=`VgLHcX
zXxjz+<YjZvv|bR|Cof+tdaNP98jzj!@Bj3@{Hrc%u_?<)UR+Q-Z&S-`i^)^&bT8Oy
zGygn0!-1Y@sW<;W|NPU(J!{$AGyi^`&1Pp<Fsq82VMlAJ<*N_p;>vEFeDkPIiNPWG
z+I9wpTfc7qW@TX5vPs8#*Xr8cJHst2?6PaQ8FozH%2s9RIz#qPSlC`xh6~d`CM<r#
zdBiR9s~Cg9+O<Nrrn|I$(y)G86K2oB(6DVyJ|ly1^fcAGC+G2n`TdT)_6ww}sJQ*t
z!O4+-w=*;x{PS+-#c2I?@ipC(BfkqXGTaKvXJjbewdt|5W%hqD27@JEx82=0$<zH6
z`|Px<(F_c^H}&}$dY+^juKaW7MTzJt?`!{b84_$-+nwLrf30U<bLT-S*e$EJe0Dms
zriz<kfiB2t^GcgTwq+lF7<u6J=5y*y3|mq`i<))+DljyBoFcCldvoi<O>4gDG9(zZ
zKWDtoc{8{rcGD|ehK6ldq8Sd%d1SNx)<0dRh-pvD{XHto-(HVYFJpXEZ8!gAs*SaT
z%4&HQ28ZZ(>Ov<r>AaLXTvD9$^ubIWhQ!j!c#GLv_qnp@*Ux&%dHYSm(=Gm+8C<><
zeSX*Uz4deC>*$^(*NZ(FJ5GLH#mG=$b0xZG>GhLw3`t#=KQ6Sn|4*06)7mJd+9ZT;
z-bp5buwB3ZG<|QK4Dy~s^sl)>O?Ar|YMyNR-nu^J?R}-LLl67@F5lL_x%vKCCV}Af
z-&^C;uSOpcdXl2gAk6V;-X@)HXlMkk`MzhfdJg~hkXl=Ahm`C4_2-<in$N*-VcJ)a
zkH0i4bbV^J*Y<xtZ8O7#)~~uw7B=5E`kk03R=7o=;lUM9B&^&n(V6bYY@qa2O!1BO
z^0$xQJka07aAA6#00TpA<b9<@sgajrKfFwMYQpg1^e-{RHKLbxhw<ru4SxE->`}i=
z!@f27g5K-XyO|uUp`m=FXxZcDJVAydDcRhDZ?_kVvS}}8bchGb+N__YvF+{Kmt5Bt
z|Ej$DREMD?@xPejo7F4e_EvRIeDQ<fK*yW=Obi*PLF;m&!8)OiWq>5BElck)F=Tkd
zQZ6`UIN(!gIwLi5TI$cc3F~zj?%erQV^_VOjiF)Y-?x96R%}`;k^8mKDrnv{)z!1u
z8`^(&I-j_=+1vgc-?aU=rbaUC(EWNX!A>jVl5IrnCWeAysC$|t%UxvOb)WKkJ(aa#
zcCnox!vfvcpdfw8ZaAr^x$P6ku7uibhMSM;UMGALdHC?-fw)M99qM1j7#yNst=*XF
zFUWSD>A>9;+u1gR8vow3EZ|Yf@~@|u7=Af2fRc4K&*@Dm^B2u{7rlOFS)|$T<`BMr
zRZ<Kt$+g)GPuY0CHcw7vOc1%Yoz3{s=T-WrnH+pzE|XmJxY<vbVMF@=YZBLPXX)=>
zQ?jAxmPsUoL=!mWoL?<>W?TK9PdhKZ^tvPy`F}pc0f#sDr4ED@zd1eS(80ZLwsdZ0
z5SUYyougcq`y)w=p=|*qyiFV4#4Rl~xNZBeApbJhyw9EBbOMSE`wqq_yVY}=r(Rxm
zlIeiPnta|gU2DGnm#NEr=dd=MSd%~X&FtJ|`9EJSD4njo^#70db?$Zg3|~@fSBFh_
zuEGED&I`fK3>W&UUPnC4t^U8V?ESl!;pgh^pAs*AuES9BFpQhQA^O_(RXV39y?gv_
zQ>XRsT5a}J#s%E3quDoEKf2Fr_UrhaeV-n7ubfl1eT{t)!>>*IzRK>s7P#rIa0;V>
z2sGH=b6k>3>Nv-3Wyerp{w+T=@_qE%|7$Nzj9b5?E<lW7S3o`^!<MI&cB=Z^DmRt$
zZzo(nW%^g|=KJUwWzTgOzNG%Yw(*eSj=#%q&7FGs+bl2pbv1_N=a?MCU#*RDv=ZdG
zSebZ4hhfWNNO+az++~~c)}`Pt-@;SxtDl+P*X3qdYl+CAdDr=se!qEs%8%vtf}HPb
zN+TKAl4@Un{PA6Ep6%VTietXpk`aObb-&>JgEgOZ7<e9*eZBUrZEyW^y*=IO%TKnQ
zVsa<|Cz{gTU)LUgyiv#dTW8BlyLYoPH_2{hFlf2GHh=1DzAOBv%FZ(#(0I3F-`1ZQ
z8&z%}bubGNV@TRnx|fxqpfUP-v~rol1lER!ck=#UdwiBT@zTLlPy?*5MKdsj@4EYW
z)%R_CZ%jQO=og-vQl0v@o{52ZX5#;ApU$7IPjmm){Cj=Ck4G<$Z(6vCLEui#>*!4L
z#$T-yZm03f&knY{q0P;3@a%?ttPBD-ZN6UH^=9H*wSpZ=O56-v9@i)_I7EL2RWe6R
z&e#3ia@1kxONYu2d65hY=6YV+&NrKNjqs(*HJcb5vL}Ozg2cP4?@4`>JTvbv55wZw
zOYWU2dt;OHSaUTKa|8Dac1DH^*LYq>zhwLHw^)c9lpxRBF*Hm|i@0A^$(OJ*(CP1k
z+D*cLco`g0jMwD9O|@1yaV>?h!A<XNdDPB#lddtoOfchS5C}N(@00%3tIK5t)XpuN
zf68y2Oo_B0!@7%!|HF2rYwYe`Q3P^ef`##$>Ff+0Z+89e)b}>MX`P|3&U>Htp22Dz
zwuZvkTDy%K4%hx)`S$Uf1v(4{6YTyfG?h3=7;-c4q;LBd&A@OmCN_WV?+I~b%Bk$B
z+RGUk4&LnGWw<cyHz;St-i_b)r{L+ScbwbLGBGIcDye<_VZ~i5#p+r9Vhj>fz-nCA
zY~Qr}X9{D3V{BCZTkTGeO*v0Z7!>UODljnI>Z-68WO$blIqgeHh*gB8Zq&DfeP4AM
zUM#p{u%gZ&C#-Q}dM!7@y0SFWj3YYG5`>{(tDv>O%ea!ZztIdA+{@+%gLQ^AZhStU
znPI`&)$_x78TRP>&#6AY{oogsgtDkVI@-UtGc0IcYjtzFW~+1k&CG+FbFM@)2%PSa
zl`rYm2nJ=VrT3T`G_K|P-#o|NZoP;p?WP4HD|~5YXy7|FSA5&SQ<;pL^A@~axt-xb
z*2~O&&p%gIEYr7syEx};_s_7h`wO(^PUBlv8mAatcaU-Ac7_D4Xv;}!y+MgpKJ{yJ
zMdE)khM2c`=X>|vK0iAspV5Kix0ljxw@?k!Lt%<j*Z;gczuW?xSwIbkb<^He`kUK?
z@}(_r4f;9jb^Sdt{Y|E?qZtae)*f#;oLn{avfRhK16TJy^RK^`VgFL`HONci^QG^0
zr^oIOfO#rn-woS^)1}L5G&a|BGpze|X`}6LhB>DW{@_2qvgYhp`}`;J-{vaDn=l-3
zusP4pV5MRI+cK8-l%MsPZ$-~c!_$r@{TE|s*|1&<RO>&@(SSPhl`g}MTjJJsJb_d0
zynXJwb3O+H&$GpTs|52L+bRSZ4&?5Ay)Ay{_tyr}3$Ji~RAOLIOZyM1T)yQqGR&R3
zCpp6M#>B6>3<?vrhFICO&zKuFbMHKG1@KjjLEyxc^Si?G85tfzs{Mr2ZTjH!vS}YH
z0}H6V_;7ELfweBv>u3fC|M$O6r?YD>w{5aLfBcsigTQt1`K5O!!p*uqvyWf!oyt0=
zJ6Bj3BHnH<uC<ymSF8~%e||L^L*HJRFSoZXYOi%E(EvFvbX!+eeAH1(W{H_q+zb}4
zeXh4z!vd3`F8}VT(q-9)Wl>WH!>SZ(yFJx2wn%4GU)#>m(7)DoYH`O@P_xc(=~c;B
zx(p9y2zR8f*v`-pe=9up_HnO`Q=qLFCI-80I^Me$Yg?Z<{7Z}>Ao>2&hf7y@v4@K5
zr@h#}^>5Ss^XXAx%bVZ-3)4IIE1D%i>gDHEd(XZ-3v$!i)a}Q_-EPdz{eNxd<yCt(
zF&wy)7V*woTz9j-kO#Z=^4Q6&3~8p$d%?xp@9mp@U$}hm(`GaMb4(271}Fcmtu@_T
zJ4d!>GAlz~(xj@@K~+(vbz%$>clUzw+H2pSeA#y$QR*qX&AyysVlaOQE(s@tO2QUX
zXZw!n-xfYy$9p^B>6Wrc?QVtw;m>RG*OvNxQ+e>P64ab{!1rwBb_Rwdt5W;I>Vk)-
zozCr^o!5TZFYWrr`0}Ft7Q6TJR{h<7^+jZPGNZ(am0#Dswax$kEWASbjNjy`wli59
z9(-wLV90p==HJ@X$V;=UKrOw<oBr&K3j2azNB=h8zp?E93BL)f4S_XpYaY3C^S|V3
zU-Rat4#SZp;I?x7>g{%K=P79a{;I=pq~u%8qe<CqQ~1LCCQtoaBEazIGCvc;g0<^y
z*H_)XzDKm+rRL^0CXqMeQ@}Nc<<|P_YW+L=YsL7cq%J>sYTg+phk~`|)cbDuI+X3u
zVc>BDcRlvS=dYE{-n9G||Mxp5PSs6eZBT@y3~=f9_eO1u#kzRA1Nz$9(Uu%O>yMfq
zH%%$Azqb8a{Huq88{U{iM&9h-bRZ?hT%*8VkYT}E`LEa9PfxuWoVIDxrfGj4&WkbE
zII$-GZT;)p$8S196n~i&S1bW(1Mht|-QWCmDBr15r=~5pZCDvwd^R!Q|9qp`pG)^y
zAF8tO4GS}~&d`;77Pil8&i-cxTQ2=PvgOyh|GPGA+O&TLkI&-krtLGpVZ1sdzqevn
zT$ovf*pAM)>oQ5d3hfMcpI%ZF5Ei!0=B%jjv$C_M?T(fF3=A3C#cGc>-kvo*?EcNn
zO`A4NjZCQ0U1zDMy!iB+`?vnH=E$eBr>3UbpJKY4U3E4wX8m8k*OT=pr>3UXPh?&8
zaM#D|)0^JBKE1a@#X90#*{_XtKW_hKWjMfdExPWebp6YOr(4RKd7dBt74|UyX~C>D
zYu>m=GMw61SNraSm<>b2wlCA!88Wgf|3v5B&evFNvsO!6J9_@sX*?g!v0i_^@6+q(
z+w1-vh6EMEl-PpWee=LkQ5m;&&6}l>45##V+r_^;|LxQ_{f!@rHeXHwyENe2*Vo1I
z;F9<2^N-7J*IGqb`htAU;c)Q!`tyQ+Dtuoip8f?g_HZV{l55;)yI&W#Xm5BPdivD2
zGfV;Bj=nB-2Wy{N8CSYgVfpLS)b?{w@zbAw-nno7_rLJTgr_EvH>=Ya+r<7zSy!1I
zQ8Qv_==^*4|M6{WbF>d#5@rMi==U>BJi0$j%a*;F|5o^SM529t*{n5h&TeLK=C13V
zs}OB9|Hmg$`>OJZQ>U^@obI@OBXASM=JngJ&F;G?Jfqz@JS8=i@tDyg)3P;dz>Q!~
z>3rc@|J&GB<-VuR{hKzKpNCk|l=H0eYJ2q?P(b9*V4dM`Bm0dHsEhny*`N5QsW$7Q
z!oKB*B?LIfBtJiqc5VB&$)H*QtlvlBjcM7kHQ-_llo0cuhVh*`b<ddFV9SH+H!3&v
z-^o1o2JGXE$nG5skx#X=K4kxnh&;b~+Foz5hE0O&-!4x13d-QCL-P0DY5n<PS<jlB
zEjkRT%5k^dPyVx*zvKS7uP+y@c_R?X@NL@Dt-%L7u7CRx39blE<t(Xxv#oaN)Y!6F
zYjU1IG#x*c_AUQyIwS!eKgBemtDttC-S1oPzuYy~sP~S%d2us?xyg~Qm3<&r7X*Kc
zjd|w2ck931^8a3^FF$#TZx-v0og1z{pScO#d4CETsfa%P`2MQ!pBIuV1H#HWbQr2{
zFWvO}Yvr$;y4vi&F=grh9{#I|yqOWnaLR4Zw*IMqqyH^paOj=h+WTd#xvbB1KdZFN
zRU!F%|Fqfd(p1*|{Vw?C$*Ilhn;62o>T9R%HTs=Cd*l45pWigKt7ow8m>sz8{HE|U
zaG<<C|M+9XG}XPGv%w|ST{d}!?IQnw=~NeP%laI9cEOq)tBkKA5G~^Aw(Fy|Rf;{}
zbK7HgI&Rw4csYgzYyUIoYrb3y8mdBD`VAT!0*zjon3^C?2qJwXi%v_w!PkZ<pj{hA
z<OxA<=9brpxJoyqU)EUoT}#31y@D*`%MTY>Su%r`c#2L@<IqrG(u#el<ni9O>iyp7
z0YVCm0z#L5+uoNi_k5>Uesb#G)2cV0x7!!*-fWy-WWC!sU(|_x<wWtA^O|oQ+-D@b
ziRp{8KD2PF?U4=Qle~}VSbh@I`IWe`Xlk~}i;ebT4DY`CW*)pG5cHT;T<L;9VWQ)D
zBR{L<#ycXetuJ1rEWfwO`=;*evpTO1$g}xBk*+Y1YS4eH;OaHu^J?Z-@gF|=i!Pla
zruO#1m4}PcnvUFwF<dcgwlBN(XSQ=`TVDz|aVUBnc*?f!m%F`Gp_19V%z!K3oNmm2
zv-i6j<A;<m(bTRJ?b+*hzfwQ{EAXq)?ZiD?bp?mMF{g$xHd?by@32;Qn!oviv#q^N
zeYW6X<=Nc{<(t0U5am4Z+0t~1rjqi^Haq4WHxKL0W>stv2xWdy;5M88bNjQYA2R}P
zC;7JNTR&a?^G`t<ujiJARI}*^_U$OYy)MpV|BQI=nMy^I-u}MMkbdjN*Ym$T72cdr
z_?*b~_2vh$*hT&I@s2`H9XBsrea3WS;-1>=t&9);y2mbmGFy9w-@W<wm}N2&?kC=r
zdc*SUMzY3oDPe!N?6ecB57(ERS!Ssh+gkHY;DDURQ}sE)j325lE<YtQar&bA7RFU)
zL*H7i2!3k#+nM1;-g?E&TjMuX*ZsG$+|vJ-WBXgveYu6%zm5lg4L(pF`S^&IE9+{F
zy;@QoQIWU$lBY>*xETI9p?-tHep&Ww=^Pg<S&vWezGG|7y6XSD^0cd=%R26a++M`w
zRKIz?(Up~-<NZyHk5tFbS1Oaf&M@=W>Vyz4F9q(U$L9uVZ(ZEq^T%Lmt7o+b?|){F
z8S{?!HUC>RPtkF=+Z1n4)}H9Un(9i8H#Ieyd3Ko1`tI?U{p<hbvu$&>yySgZ|C}MN
z|Maw)XvxTx|AM~P%q`kx^W1;mfBg{MW3NKiXr28K_??$gYU#H-{<<Yy0Ulh__465R
zWOJ&kTlL;OKA+KZZ+n`#Pm0iXTlt<lU*k4Es@}9GIctu}%+uRsOtKH}49_YRGgRNF
zJN1&%QeUI`&oU3bP1pRya_Z~R`?JngKbW?j>sI-jU$ds4IKBV3*yi^q!X~dxx}E<l
zZ>Pxe?+g$A9@8&gx+NxaN{sy;R*U=R`m9R#wr>mmdTp(Jp#1KA_5Y7XRCj(nICYQH
z9^1M%GuXdLT}qmh^=$eT3sIf0JrRbs%R9{Hou4mfCp*_@)6&YWzJIr3ISLcLy%gCO
z`03l74}P0J+x&Wd<J;3W8@`>c;q43a5Iwy{Y4ZFej;r0quj~Kqs(k6AshbeB?9HnT
zg|gaI>;CK?=StSy+*P`D2Y-ca-J6d;K3>+i&AIU*_s1p6_MiPVop<}TztJ!DzDSO@
z`TnKm-OoQu-~O}V%F61`*Kg^FuzWvrue;g5KYAB7eNErF)y`e-pW+!eryBd{mMi<R
z7oU5&IOcy`WvhUU-BPE$uHUQQy_B7NDQT(jDcwwsmWuru3-i6a7x}M?vR$6LV@Y84
zrxo*Z-7*(9ecSdj%FSpk+k>B1t}Ki7klw<_6jz(wen6dj;-@PwO>2``Ry@0{^k#{V
z!k>iZx~EHzlqwV@8y}4}RGr{<{LtdMZQp~pPcwSnc>L3D_2(5F(K2<9?;VnNI`+hG
z-@+!|f@r>+jqV(au3FSf^R2pnH}&0DhC64J^5<`QY!b-Ie|q^AiI-FFs5fM;e5xDw
zOXtDIm1}DMG1aL~%Ad9<<u>D+pgS9bIyT7(T(n)f)Ij$6#fJx&B;(cP8NFrhTwi&I
zIl$LTw||p~`)P*{E2mxxn&G<A_`u|Mz1h>Wr>Rfo+1<(1ctG|yo6c;{=LsM3XI=_g
z623%mV}b3~rI!okM8)#+`*`c#7Jj}W9`-dni~WFMdu++hGi-Sp9~CuQUK=IMK2x1o
z{o!L~?EM}F?cdo2j22qm8J{M9H~8Sc>cYAuu0^t}bzUEju49dEI?ii7t+>3ry!`y5
zckkxij*ZARv5!svry-b=s&1y3eLGM0uFIJju6^&DW}0d4{jMx{v%c1=dtys_S7y$8
zja~U$!rG*#9!WpG_Ki!~o!ceZa|1a(E<62likNDn&)VIlVha@)zN%MTxN!BQPb_)c
zRCj-PTVS{JsDXud%qMZJh!p_~oz7+d_x+}=@$JgV<ukU%JzD#%+k30*>)Yq9tjfN9
z#);$M=AYv7(L4%IwU+$T7C%*%^Um_}x|0_cMO)XNo}|3mc1`LH`E!rbtk+KwQ#Q=w
zUjJ*wqjDMc$#;X#PdmKxiAu?qUBZ$lFT9(dz;I7zoA0kR>;3GzFWkF1_w^Kw{awYM
z>({N33@}R++OaKaao^J~^}p0i9$xC!oOS&0v>iHZWmZe}?p*)wn9Y~lOTOzK{nN3<
zN;xog$NWdXH&@(=%6{jz-`;-nMA`JNvWQdJ_6+?Ct+<+uHpi{<|NT}fT)kO9@9ebI
z&UH*-X62$z7CWE+-;gwS+1>}e&9`Uis69_inD+RN_^mYz@4c<3`@Flqs_5P}{f5<7
zd(5Z(VmoNH`uHDdG3x_|6q6e-ZH+34f4IKZ{8o!R!~SUY@V_QooX;w)JGAzEZbP~8
zBRO-+_86Dh9l^64UN6{x`^7Zr7o6QWs;OL`KRS23$!+eN>$PqEmu&CX^K`d&dU9+#
zy~}~saKBV=^RwHW6;bcq|A}w7I?r?Jmx)|kXYTRUW-`2ZS3}#LA-Uvuej$fKQe~uK
z%&nY0mX3Q@4YTjQFWcWOuJz<TUuToscc<FhoU<mGd}NQG$!xkrN%#1=oonLO?u!h#
z{fWIeO!WE|`|JC7ZF18#<g&*nOyxP}d-EEjoo4WlQ!f|m8T0SCSXb1ZlaYT};MvJe
zwN3%2kbl-v3Ge@0XNZws>N)96$h+5D{S|7w#hK5qin+L_?2KyXRFC_|4y}Fksr1F2
zf*<qK?=L<)Su$1k&058rOO_AJG?{)_f1GUhTk1ggvKuSU-)B7iW_RFZE_3<4k7@!A
ziM@IBZojyX{N;nk*jx@zcHsz2=~D~W%76B{wN!jn`VaqL;Ttn=)tLJns8!zJeyn13
z|9aIo%<}JNTzvakH|y!itsBK&+U;WgefourRw>hm*Gs?G{W`;aLoqt+N7HY{eygI=
z=_Wz{&b$4oR8#oJ-+uq0<=xXa)VuSA8P*&BKlgK4?Nytq`pY?s_bL=+M^83)(YxL7
zU}C23{}1ll8($jz3%h&eywm!>#Z}>#ZCEycw-w=DV3l`pliqDlg<s`!?^p)?XLyjo
zzIJKVvipq(?2PhuE<LzV;P>R*?1w8g%OhWJ{hjmtN}2216;>}6{yoQET~Tqh|1Y=d
zoYLIehu2u>ue_c8U{h?j(2Y4}?-f0cF}&~bZe)+Ye(}Dvh(x8}gQcwZ_g#6+`oP@9
zojo8y_`vR^rKYmicJRwgw*2$^G53M1MW4#D8tkN!o3A(SthL{`+w9)X-%YaNrJrs;
z%=cY(d(P>G8<l*Sp&K}sYijLKPhQv>WZqEP_TNF?_hXw8o4=~_Gx@^}w|z_a{=MH>
zb=Y|C6oGZY$qF?~-rRPZe)6J#p~t(t(vy3*Dn9&faPb%0J?Z6Rwc6!6|KHEs72uP+
z`q!#*@ehCI`%GGDa<iN{I`z(^68^Rgb#C{??;mD3ZKb!1@xiBzw=ygAbpHq1H|zK9
z<cZl9Vmm?Q>U+l4N%`rPPv0@rTe>Cf?2$Kp_xJTq4~dLe`#fRg0)ywQ-J1V7l8&F=
z&UEgFdcpptjhD~ynjMVtwq9Q?=}@|4ep&4*oxT4qFS*?}GfTNUdfD9zcg$kB6<c1&
zaw%%Yx&B+Me@ypAp{nCwn_H*;y|Q6Ac1kIV>#{1#y_1#9XPB-@aQaP@()q}EBd74a
z-`@310z3Z}zh%!~Xn4Kxx2euMb4#{E2D3}`beZxZxA07zyo|H1h+(3-{f1S$@0@1*
zSMo>3=H#PK+y$}M3igN^-25Q9@~0%jqHj^A2{T{5y7jtob!kvQ=nS)aZQRq^KI}eg
zrT<1^^;(wjo!0gxYbM^`^>=P?z5Ro#+?grfo}XmcuAR(Y_lkWokL>iQc!rJ}H;vmD
zUVf%<^-pXrr(NWwTkCw53cT4K`8+kT`>d6@?DK=wk8?~{&F-#__^P(DhL1yLo|ui?
zYTNb~4~?{+dLLSN#C>U5IK#VdlRUj2Tq+4w5U@Jq*C!Cf(Vu&*QuW8_w7IiegIgV6
z&pWy|aE}?!R)dS-+wLbd@RqGJNftKh<8HtH>DdM$Cy(_U7w<b;m+s;#cwKDy{-sas
zd`9cHCcf*0la1r=yxMRhtTx)=;X3YhnO78j4E}#&x;yO$1OF_Q`&S+ozI)6%M_;G<
zxTwv7W#<H!>uqOPS32Q$+qq3F5=zC(-EQ!R=3Xt&jn1pmQI6i+s?~7!S!~#j<MI5A
z9P?+emAwsG9o>+%@Xh{H?XN=`wxu@}f8Wh8{r0UxcNa0UoU*^jYbfY<Gi&NyhPthR
z*QW)Q)NveWe6%e7ljHiSa<j|>&Xl#EJ)gp6+Q;~2^52IM1)e4!R)rrDoF2!|sJCU)
zMDI&pH_~R$`+DLjtNqPo*_q9Pt?pfc8Kouy$wjH^D_!oJ7T%t@VzY6yMc!1V%RfKF
zH+c6xd1rq8jlqMvH(2H_dmS#vkUs0?nOyzp`Xw7epIcq&b-a2=&Gvh{!*MO!Mdz}`
zD$)+WQOwm+du*g!d!>GE_?*tCS9;Vkm7OE**)L+~UsrU0N2J<b_NL{ke*$CKZCEWX
z-q^Kp)47>pH!Jw>K3rP+>U=+Qe00UiDg4cPW-qRDeS0-SoH_q(tkFLAzl%D>=LEf6
zZ@%Z!7B2gL$&06K|9QgsnWtmJd-I~|rgVvy+%9L%&n|fJ_%wsNRMhRSE)OoA5AE?0
zdC8!&rHo^8!7Xm}r~CPh?zb-8^gT;f@>c)9+TWtF{D~bOZT8k(yYN5slp?31%eG~c
zzyHcS*CIRfjsowSYo<GRzOXqhKmGT^*$elDJ0jPK&Qtr!%gA?1K=F<NTf=eV)lzdb
zRGk8Es=qIPCvNsZxiF5^T=t9PoSh|`|6RT&^SR^7Y(2+v{x$n$pPv&dDsYOecDa9p
zd-=ET4KwVYnte-={>_z;thqMX(u|4!^{GqsSG8y9A4v`~Wfp!Ky(85)xQ(yWNpVT|
zr?)=GUw+;#FzJz8%*h8K8^WgN|G!cBcJ95Lhi~V-&${{CKVN;0ee4IWg!Vh}o(Ch}
zGky!bXczI`a)Z;lmOFZjogVF*uD*HoYk!gH*4NyeX87#1KA?5;+w!2_(hRmwU!8xp
zV|wPb`dh1%`;`=)y;?L+-qJxzO|md=%MJF1%|+syb-#wIEV#Aq@zrNWreaJ_?o1TB
zJ^uqk^)GMUx%ukd_7}~1|6Wk~?Db%sO<{M?Yi)+-Z%ht9bvYGnm%Cz<P{Gffl~ySV
zMgG+@)$7mZYAF=$%$u|LcH)C6rFqwXdEC9n@MDFo`n<D0RUVp4a%QK<YI|0-IYh+2
z{ylNlT=pGzjB;)JgVptX|A(yBQY!m4#WE};tCUHhVB0^tbj~Ax6srIA#GGzik*dtM
z+WhnSZ9OaJI&vt+*dEL{Go4qXm^&gn*QR`NFvIoSM-vt#h^;$2eRXN+!`r)0uf10E
zwvzimb<Co^-%c%8U&T9{RB_m3PELQI_|--6)15u%x$8Nra}8$&8vW(Gv;9>5!gqlU
zx946;N!uRM8hv_d)?Akx*YY-1^X%yT!cvj2K&oad#|!P_5@&@|jm}uua@~lGdGfAa
z!6I+A5bvhnrs{{q4+_{_cy!(2*j$G1yEThdS_?BbN67{V@7md|>$QI^yT$c;2fokw
zy)(wm=+L)*jiu$<)2#Vg{Ld-06hA$fEx+>lN!H!^(RTaTayERqd71gci>cRwb}h9#
zbtgc&#;j~xuht@~4a@f(oLy`@XZmrT)nOUBnahifz3%R9JTBF~YEN#u96#^0==^jh
zNpZ&hRVw!{2uxKl5Di=FlkD-=x$(hQ+1#{CcX{tiSblZc#(Kf4w>{v>P0`1<ruLb~
zrOp;-&gs7X*J}BhLr*_DaBL08-f%iE(2(ociH)2)vQPhca`i#$#_vZ}ZYW$f2s&Em
zzWC90dH(YAFXQdktF)}B;My_ylJ>Mo;SVOI3aVc{sQq?_?NYB-cI?w`UU{)uxJ}A>
z`cqvk$;V-vw#15v-(qg~|I<|1YTEn%Qg+kx1x}x+;6D~w_A+im;VO^TB?a?Dm>K8h
zTDgT*Wc~@XU@JRe9e3@O?Xvt`g3C<9lbRKtaxb|SCYTs`?}q;YW8F%QWkyD_jDDxH
zzxf^Ed%Rmn(PdfqhfZF%(q9XHesFEyE41v?aWjb{HqQ=5o))Y7eNfExxQNdp*(3il
z9;<kSJ_rq(J@4R$`ET9I*Z(?tg*V(;!QkoV8!2@>$~wD>Cc57A6nV1HP-o*;iQ9=4
zLC^2byLs=Ny6Dd<aeRHAA2nO*G7gp=RpQ*bt7${iQjzAjW^#*+D%987zfKPSepn<`
zP-e4(@Lr*`Q~EtkofhuJhmSeuc$ZBLln%Qc!Qrm>x;P>+Y^sK0i-zp!-*Zly2X7FS
zW4U!LezDLGmE^TDtj)Pv&CC~hD$I|Z(fy+~BSX4S#OIN~jK3Mi-K-y?jeO0TTK7p?
zm1G6li%zMOm0`M*k#J5m^r7#ql}n~cMW#uc<}fW*)S9W4aGrCj^I5hPL5;h%T(D~3
zO-q?^Cw*m_kE7bY<~%dm1DU)oYLTKV80Jh!R1jBex$-VwvTBp=y}i?P*J$n99xd14
z@R^@6e_NaMz6E93A0PSuKDA=OX=BBl*^5H2-e0@>_PT4wd$+GpJ>qKV_N#7Ujb7rm
zqd&9lg+AZ$NIKB`Ve4GhkPAz9z4cDqk<)tN*Rk{GC#`;z!WyCJ?Y>R@`k@Hs&rd>3
znSEa$C_ZYfntGDcJ;%1~b{@yCGcR5qE?71H>eqEGDp@gN-IEJi3w64tPF4~8?k_aS
zd;c@14Oy3@|F*Ty>SSD*`e}J2Q<2TqO3AG}yQ4ThelPFLV=(<+r`XbQYkT7SiKRQu
z{NBBb+?4Up_LkJj>P?JiOnnvH&-7~ieJ?2RW$wKA4BLuH%Y^nW^;##G{5z>^CLiPb
z{f0IH*D`0lTCjT3hh1mxX5BiteBVMV?kVBPC0`exO>EP=loBbq_qO0+(>uplnB;c7
zoZELGTvK&|lT7qMKGCo_?JNw}ds8fWSM&YaG-cuDJkz$d)hP+0{6G9pFTT2AZ|1S>
ztN0uD%NnKn@3Rj*F!9F(x08EWE0(lQnzM3_Wy18PvdVDAHK)>_Z1KK))$u`W*!LA*
z9IscVAAbDo$nW&+=jHGHJin>(@-g0*cUK-RYq)S<Sf^9>VSmcg32v*3ZLL>y=RSSx
z@aEjx_H*~XRLHJjdNKKuk!Ht1g9CQTSNAghknZ<BQ!RY&h^^b^kT(WtA06lK;1sI-
zw_V@sh5f(N>pIyMg&j@3etPAjv?8Y`H<@E3IZHOZ*}lOvX!-J8?@zm*TCMUlGts_0
zc)Fm9<mFkvrS|;YQujXd^|`&*cKO;|<6obdA|06H$P?Aswa!WIFz@3N-&tn7R#S6Y
zp}2Lm@`OSs1BV^=KkpXre;b#2-ewAy+Ybq|TiI()epu%r^t?Fk((Up+_9lCM;~u|V
zs+P`p>{#u**>|Ls4oiN>Rc)DY?Vz`NhlQcXvY^&Yn)w3mhkTE!TJv6YYSr?L7oGTb
zPFhvP{5b2S>2v>ZX6vXk-@4$Y&iJmRGykgEOr!8iSrtp~9Z#|0o_;w>u7q{=!_NJ+
zMj@j0)A#Ucz23B!+imMrugCK@hFt!4`MONKl<4P-@A~mquNm2yS+EuOTkB_hi+HDU
z^|uAb>V-co=d0(06?JLNIHtE^ZjH7g*Ls`G(3Puv!V{-kZclx;ZL{CLYtc;)i))@Y
zK7PLbZuKMP4-0nZEjgxYu*^l+X-lZ%^&kGC%@6fcXKBoEiJvjKMtl0jg96jORB3uH
z3H@;6N)&(4%sOrP4FA4{+1H)Es`K<$zj8PJJ1OMrt*(Oxp|6W)OGG@HkS5I9u3XL|
zck-V0*SuAto2E_o`hV*Q%Yt*xWyg1)sha=$`}BpmT4};g7NXgPSvNgP3#Xn?h+p4b
zE0kXltv2zE(*5EaD?WGE33AtKTy{Aq(&w;rN%WIQ&K1*g+h@p$@dX(R?V5e<i}Y8P
z&RquUCpSKEu;hMnBBf;R6xCVjYr7=&d^DcZc)IFev~8$?|4cP5H3N}4pI3V>Uw_|_
zy|v}ERRHgnl#V(7s~PvtzEL6d<GtMd14{iziW&Z?i`T79KO%l9s$#0g*W2!_`!z1R
zC{}VET&v<2zL$Ze?y*iwL6qC1OetPP(f2#w@EynuwvDbnDDnB2$AbDl%Tn9EaUXxV
z`EArI-M!!JH9>mMsZNwN`P~$e5X<;gJyY*UO^Vy~QuBRR?rin<^;;Wpd)6lVrB&xF
zSFF3RLGxegl=r)jC#1yNbKKS4>m-$MVCv%6Y5gz$MBX*q>wY$3&&LZ_ZyT{x_qA%a
zo%gVfWBx9jrS84|u+`=2vf%3rx_ADGPQQHm%9FO>Yqs}_&3{F*igR-)wgg{38_1B~
zTd|s#SuN6ZR#Wpu{fTBG`LC~Yt2SyM=2_yZUCqPsH_m#V$!+V9Wz+TlvpDhl=O(4i
znp0k&Bw6dU>5sm|9<9zl_g5!}_m!AR1sHMtICtuzh)f4x;lWD>IX9<l<M}Jc-tlAm
z%ysWHp0CkJa5ucW?f${A$<}gwhtG(o^9k%$Dc{Ixy{4mm{S(%MyB9IuJL6Y0(Lzky
z%!#YdZ866W+v=Ok_Nw>%PCjLRH@YY2;QgYA{=4llYzK;?3Kd%f{N&5$?R#x`V6)50
zEk^s<ChyI>?p*r$=)_x93=12k{}ewS{9w^9!=e|TpA>2L9A9*D&4Z2*?xxbH$&0EK
zaweZH-Et{E%lqENea_S7@?YGuTq#}R1G`L~+ukqgEzu&I=RU0ddfUiz{hB8yws6Ls
zH&H$Mn}5Nk+=a@l)`6$Qzh&Jme){)8L(jw8d2_$NOxe$AxBEiE!(}{i0mrxKeLk4U
zy;O6H*|F<7u8oXyZf!Lz>^s-ep;Dx%xkRk1;!x&V_uuYz1wm=o-yaf|TfKFgb={kg
zOD}@*7-US>?%$@SZfe-@I{d@hqv5mLw}}1u$~%#3CExbwg5cBnf0+GuO!57exP;A~
zZ*BUT=#_8Woj4x;lITgle(72I=d8M2TYpDY-};}pyrV|3rQk3ByyZ0;by#0#@XN6Z
z*@;!KOx*n6=9Q$Jn3Rl&#Do9uN{lwH2@8Jmd-stVr51tsLza`joOf4TdBG)C>;FHo
zbD5RA^S#aN!reB-HNXC3Un=tE6kEpB51OCX9%-9AZ<~x=_WZ?K7gW}i?&DtTyW@mq
z$8@!C^V5%%e$6j5yq7asv&(&2N0uV%{KJZ>morwW6?6QHvc9;jF!=G^x6#|*-`o9P
zK`KRO*1G;LwJ`<lRvjyaV~iID__7B3Y9HO^#^{pst$B6f(-5hHT-;B$b{M@+So`SG
z)LAdrRG)rg`Mfyo?2~u%pIoXrCwVydcJ0A;vl(obtz#^em{xLCrT8nu+9SN46Td1R
zSgL60>Keaer6;@L(R)W{zivHzzDzdIG0x0+vx?t$k9`lOs6JVBW5wqKANSv5x*A`q
zvXLcgmA^@V;M6@k3s`3?ikte6^?v+mZp9Xj=gj3-u4eE%7ji${Hlc4-Nysie-bZrB
zZZCP$K6}B$Ka2f(yP|KfZWVR9!qvQk%g^|s<EE?^)-JObt&-zu{K&c2dvD9{wNd47
zu4zvZ{}%VZhIwOI@M_HyzUC3rj=bb?{Be5z{>+#?Ne>(?6<s{z*EU_wn?AWbUw`GJ
zF3!Uty$rgC%RSHkNW31cv^Dfk^7FkDn&#v*AM>2^E^F=7TLSTn|Ihubb6DQ?bZ)D_
zBO@7qgRj%MTFX4kHyF>9@G!k;o6z{J@zME5X`N3UzllwHY`SIR_XS)=55@c{+#WBt
z=bgNI))cX&N?#x8-D@aYIJxn|wg!);XAkC@{wz#8oEmFCd(ZuUCQpA~bY?f%u=`M^
z;F}HKXK)owe5jjawyJ8aD3A3MKOI%smZMhNU*><fKb<pl{ZiQigU-O%_m29)Y`^$<
zc6Bdhn7@L<b5ToIQ}bmFnK0>{s;k*fy#BgknO()pHt}g}9k$~0JIwpbC$Ua*KUf*O
z?44x6gdl&t>u;W0EKA^yay_WjtUZCNt{~(eR|a$9lzR(39T@~adhdTGka%Uv%<r~Z
zletdbS1|hNR`xLX!Tz+aSVPgvnrv+n7ICjk=NQ^9yOZ)uMQ+`R>9OYz-EFy@VK?V$
zredw(y8PGvUAwsz{~2wKdzXAKQgc;|$OpC^#s>tu^|WTV`CCl<@uFQn_mPy2%XXLd
zle8FJ+SOm&;wt&K_7n5otm6BbQ-Txcg@>>_GtX4WU(F<xs``7zbB6ro>MN%P6r?Ea
znD`>%VY<Lq-`BfRxliTly<~V?$~UE&dxfrA(8{{i^33M<Ug<s2cFn4epS9x%|C4<&
zM$!GJpQke{x)$b{=_#UfczU`M$KBM=`5(V8@vp3O&t5ux*{fvv9j|-C8)qeN`<->R
zwV2b_=uXR3=jD30YW|#?9pN|YMf~r1;e1;~SL{?|OQ_%YWVV)tT>nRL*FM{;hEKnG
zb{yQRoPXz0`mWX|UDXGtzR?S<V#{jlwz2h|>%Os|X7<biZNKZ!rkuSJ{eMGj7Rzks
zi8uc_d=OZg<*fCD%P`f(ap~m7Eg8*ad)@v1=AI4C{-h|iNbijQkB}dncTVZH++Y;g
zP+s%5$7%96tGGG4Ho8P^2>5xBvHQX<{#r&EbJdM4P058Ke;5znyPJAAMb9c)R_u8F
ziT@1mo(ns5eB7|v>5lWYpL_)|pB1~?Q?D+RKBV>9Wh?8=|4dHq8tW%tIabyn&Fzrt
z!D`IF^kj?l^fv2{%TAsB;IenqFA2RP>z8V|GHomtTX$#2^B1k@1?PlBosN0ftPu~d
zn`OuDH@$R)?PRA-YuNnK;<@D7<`rB@vrt{U$a@#({$sT_<|d@>XKgpR>1lkI@$I5r
z3*CZ?)K6-@-P_ANvDC2P{z=utQn&Q~#2xh6RKNSjds%nAd-W#%bFEUj-ki80erUB+
z&b-6H_ny3*suXxM)hm-h-(=giI)^u(n4CB^3gm_Lbj(&xjJvBNadhXa6Tj7_|KDid
zJO9YvqWnHxnV9<yN~x_P%MP#p(f(!jy-5N}=QkDVEj_ew{Y36pM}=-XxG^3((7i)C
znZM`qpBqml1&k~=XYf9J>bmh-Z`L&ZdFSsoiSEf>`~KTL_Jj#BMyGpzKRJ9aO8<1W
z?3Az5odXlR?}Q7>u+CYz#?FRkp5#~FKa6{dB&{>;{M?0|CTXqs(0_Yrii|kN9*IB4
zzC76#bke2l$EnHuN1sN1jh}n?f-9fXx?jy=a@C6kzZP+)&a>bN+Ru<sfA>=BCaX^V
zZA=@vi#QZr6yty7=iI);mfrQ*^M=~v?GY*x^LNZI&lG1mwOfO&VXqqRwBOxV*B|))
z;{D%jwI8!h16Jl+-`72?y_C&0XkMH1^g9d|q54Z*0|SCzX?)mL{m1skAH@&L`X>u4
z>Z_6$_*-!P&U)z=?sG&c*^9LF*9*$3A2zzMt#!&>?md2sw(Me?zU#8yDxqmQTK)1@
zk1q{AaQbWWsU^$YH(&Y2CUDtc>C*rKryb{enEqY6wmL;Zo@>rY{gxLpGYT%po?Km?
z$*z#_ef#_qOI};C6s{C|esE<c@0LfZv*&&PV>0tJ_qY2(3oh2lTKtJpF4k3S5$JvB
zc=C#g^A(HI+JvIM6jo`a(r--jwqLRSb1=+=wRY3BH<rnldkq-gy%e7tyJVjz^Ak<u
z4T_3w<t7Y*%j@zc23&vDoT{(KcYXef!u@VLImJyrKl--b*N8*$Q=M7S(cB&N3FptP
zoh{eARCQyp*mU=Vh~p~~?7iffl<NIt41zR+)L*X%zNqFL-_$<Oe_rtZw{;BpDV-LP
z6DFLqI$k7y*7yIe9ltyt9-YW=v3i$U*NO5xgYO&DcICZWK38Lh!=dUAjhs6bWhWl|
z;O}*M!nu=1)?5||2dt)lUAXOd$1EZLgW7@7%Rf1<i+H9zse|!Ws>9O$-)rlbF2r}N
z;dNWn&2Z)CE~apkE4O%dmd89^UfKC4#J&Edx&1k7<6~274)=Ma*)Qr|wngBj<jT|B
z2QE(tii_gEE@Zp8+s5FHVZ7Qj2Fod{CFNd9|KZYajGZmF^8J?y^NT}&xW=yd^;6>O
zYDMSwwhv!L7SwEUj6c|Ov*?*_z>*v7eQSRE&dQ9k<K!w^{zkCpN``O}1B>K}1vCGP
z{gC`%9nWn1L|`Si&1G97t-6yUzr5oVTMF_vsYyI2;Z*$eZ^6CA?Ky9!-VP|wY^o7t
zIh8Rr$e^1o@POUnqbZyBbf5mV&V8MB=VS{GMK2e@oRsKXKGS)NCclj1xX7;X=h7xe
zQ{hF2?^eqMI9~W*f0%L4^sQb>r4dpImPhRFSS?-L?0R$we;v#FGPfy<<#SEMWcHcp
z@$S*<PMnvT<njM^>CtbG&G#^w?Wz^#{8zPix9_~`tDTZui}x;nCGPWPS=GveZW*Gf
z$tL-iOZg@#YT5>}#z|IlY;RL-JAX%6t-JAX>!HpKXD*gi{h9QNv*2Dx`k$QD4GVrA
z)s-@yda>xM=+|f2%ily^5Sf&`{9%Zb6URhuy(9G}_C5af@$Kqo{*o7W=QdZ}Qs46P
z>Yf{}-_O0SZN6u-zuq@k+4fVZ$pIVVEa$EF?aZn_t-Zu?ZmIo$OPOy=-)>#193;D^
z$99gKfMk6Zm(>}=3dea0i+p)K&R$Iq-x1b6SxfAkPN$u~g?nf2E7V?8;n}uyi@?i%
z+gY1h*&-H)CjH&>PRB6lPx`FRdHt>JvVrS2-@jk|%}Qg|jhC~8W1nf<zP#k8$q~oL
z$1j=8KTxdfJ;%|&?Q`<Fh<7P^A^YNH>$m&P+nsbeLOEFRceL=N$lX2Hc1--Cle<pt
zrt8Z6nO5~LcQt6;X#IQP{sYcT*+1)k?$kbGx^(k7ff+G=E2qB7{k6XI@}8tqYJZX@
zbER;3220PAx}sOdtypOGEz~nS!Y4u3<=!oer=N@5;`z5W%(f5ns@=Df?@)_~hRYHK
zy~cgU8w8xTbX;Av@)_qcNuJHer^a>f+n?K{Sh}%9&Mit~Ws^Ws$Hxy@tg|n=xcb~Y
z((b*tJ@e!IcZW4E+tk_rc^+4CNACWFs2%KgrtX(Ywpz5?@i;r{?4So*9pmr4`CjT3
z8~U+5d0CousqXEc?e+O?2bLXqekb06`?N}^fD^~XQ%ep_<SKepb0mS&?D^gT_uY1h
zU%wZe&?ycppE2Xdi;x@H>w36uUGcoIQsYLa`~mAimC9@PAI@D@yCIC_jmh%oH$Uum
zVef7ee5=9A8?2eS)vH?jMr+%~Bd^ruPF$(<wm4#P(dx;yq?6tZ#Y&BQ5?TA?>NdOh
zwOYKI*Y;LZ*X5Ved~=^`mXB^_<q9mAdNnrX%|_4Kj{36!_suH%>lZyMJ>c&dmcg1@
z&d}qRX?RK0@BhKXwE+do+q|!CU0x%8-N&Lzq@klWUfg8w^F^~8nLCf|=5SssXfZc9
zrBdg^g2_qQo7C?!cK<fjp6$w^xJ2snmBvktt7pGnk!7p+;{Ca{9C<fM39dQbB6qHG
zztf0H@YdX+AXM?yd23DA<tE#m^657!>VF@QDrK6q!B_T+Y2@Am=eNw7SC|skn1A2p
z{?gyt!MZ=VI#1Z!%T(-tY$ov6Br@HS^`?Z}bdzxBEA!;o;v_GXRa9nN-O{*L>xseJ
zSp8VTCGDEk9A(j(g;uJ;e|IK2+?bkh*8Ho&QdKX1kDsfy%A38OFYK@6SX$CB@egyQ
zFjqa>{r%#GW<RB_Ep=Y7{N2JD?_`Bjo061Y&RP^(zh8n?;3reV=l=}*muv}nDWsV{
zRprxrvwfn={+=>)oPJx_$xF57&w}%}6dt5TzgG42-*HuH@6Xm}{c?r;3SZW*N;13?
zd`MJQP&0h#`TIxD3JKron4@>7{*^p;S^T?&b^N}QwlBz+T7GAa@yDY*@7Bv~k=|i%
z(=NdLpjRm2(Sj*^*WTN8=VqoxZI|3teMa`ykWZ^aXRTS%qHF5UJmFm7Op&FLkL6}w
zw3>cmhxnph-cB7=fgeJ>yq71;uv;ilTjeGk9LH`seMLhlv-z>9C0#a#TN@|+JS=l6
zhN<Gu_XnrWIdM#Us?oAt#HnLZ{)7H0Q+*F|yvuI5{j|q?!ltzIujXks&+eZ5<jQsN
z9k(}ZO>3L;@8*(~OD8m3eo@ddS8{*wnKH2^X)Z;VXR8ZB3@t5HMBg)?7JgT{vhZ|E
zzE=L?L~p-eFIP=*KDMh%SD>cg((+SwmviiFIBix;ElAL1xgzGou~BN?lDjtRS4w6&
zSg>S={yXuD-$r_J?2}B3l8>D6LYsGX2;5YzSgcaJfg!ViW5qM|Csm^J4_1Gz`|HiI
za)MKlri$w|-UGb4Tk}l6w%PpXy|(9rUEPNZ6O+~b=2}+&d(`;MiQ}TU*pewH`r5MB
z&9U5+e)`co%V0P2>nV4<yX2VWW&O@fuaTI}vnnM($#_bWbHG=_4Hk=6*exjCdB%w&
z(?x|vwsXF`o%_EZw*mq`IS1T+cj(sqCEqxL+M{+BJv}p3d-^)(=JngRZ~v~HpPwH;
z^<3fiCRT1yEhB~50`+~|*R1UJO|jVS#G!cS-&w7HVXOXH$X%Ln|BlOr23`4cFLhc3
z^5@x~z8un_9dDy){HXiI?(+Bd_I^M2p_O%3N4of1&6STI?mBiLDP;Bxaq)7Uc{jF)
zZogRk&$7yXU&&MNyB*JsCc3N+kKE6&JbY`=wT*qpgdTXEd{eBnb$_g|(9d1}x$JK`
z?h`q_BRP87+E=@6Z{4?7;86FRG)F~qa`2MqMki0LmDhSJ)*B!A*p~E-MX@Dgo#AD+
zH@9j`PFbxKeR9M!Na)d_hX*TLD>f?xcM7R;aeZ8OeqYMEqU?Kn_wE*W`u?Wtu_;Gi
z=$zcYepiP~-AQ|eDLb5ZZo76$=U)8os=t{b2M@J!iE71Y#2<Q^c<<glyL)!`{J*S9
z{1T}=FO);r=}GnEf)78J>p%G|DzfJ3an4uY-Jbl3Jm|zRabv_iX+_Vthkr7^pWE3Y
zkW{|QuRHdYCd-S^yJda#((H2cZ!eyr(vm%KmTbGP{O!esFLT_MMa%8qk&~&;*mvdS
z20Mut8Oa|-&nTT=vHQTWM{Vc7#oTgvetW9j%>P^r|DVoZ`Z{1?RQ|)(x{oJU?Yceb
zcC*ikf^AY}T#79dm>#AYE4rKvFYw&xWGNB!_T;fCp)(u0Wgjnh-YJ<STlk`F+so?q
zm)DGW^29IN|2gQ`@SxQGT@ZWgr@A^%=jquOIqqdMt*n0g=aeUCOy|%lZpD@rJHP&5
zQB~|c{8)^sV155;fkijIn=^LY`r4|KdOuh<=&ftrfkJ22M(sB&JMR5I{AaD&eCB|+
zxf8Egn;&+TSX1p0yZ7I(Cq?pkEDzrGtn!lBlf2pgug@2me`g~ZLfn5Z|16@Zx_s6B
z<<g~ltmhVqU4OAPOP>8e_S<mPRcregDt@$nytnK?<=@CF-}`>`uj`86Wjj0E_t||X
zM?bfN=PrM|f30<5T1up6_Y=8AbrCK3Il7z=FD*I$LbBUjX3vw4eyscAS5Lm`adv&i
zznJsaYj$7Z?lAoot}W_Wa`Z^McmIB#hW8ixkIxD87gL?vz#J_1t^3z+hCF|htzj`y
zs@L}izWV+${AP<l>#}`U?yf0bJaO0Dkn&3pcicGdVKC=oJcr_`JEl^*ejhwBxxD_A
zT8jWHyL?xp-KPI$T$>d4Dw#A3Os$`}?8k$r`#B4K?_T7@vGU`z89#0=ta@Jf@_}H(
z+K*2^7+v}QFry~YQ~9Y!RqFv`;cpf1-g6pn;SBPyT*7pA*VT@4pQzO$X_o??Fz%Th
z9Vz7WM50h$q3rkt{aM#FW(M!wxT0RP<45G_rP_y=2lw6GS@P+CPV=&g@1X}`gF_<z
zCM@OI-_T@}vevlZU}33B=k@w}p1c|HLbeZ|PZ2w<_~V0QMXgSYK<M;#raki(PFKCT
z@_zOMPr1v#wClwqGJ}5HQe6?7dnQ8litf{s25IMwzkIac&8)X{OGcl=%;^sTeL8yf
zUOn35Ut*eIc<MKkaQxm&;fVrCQCYiQIWTyAQgly<xO3)%rA_^xuFd~AgI$-d>2ytv
z-x2LGWzJ)Efh_^|U+J|7EV@#f(Cn$l8PB-=)C{w4L1(`g+%72;%{h|7Vfp|1hhwu?
zo2Tr*_`sfTFGGi6A@9Vtm7)ySKW(#Hz_i2iM1j{+{bt3a37KLCZXTHDw2XHj>xbLl
zVk)C78EhZiKH|Rl+6&XIEC03@8c4An-nr*AqtgGC*%fj-)-$~eH`;hS$GYMBvYTA?
zGfY=anjFEf*5^&k!L%!FM>Tbun=cv3^oiPX+5Em2q4@aI_lB#>cE3xp=RafY+>vK+
zx#t;|nd1D$A{8ztj*Es|-=@|x2*z7V=YF~K<m?UsCyTGOycM%1hwK!n(C#~=*(-AB
z@|U+qGg|bM6TFk{KdhbYvYNp|Y4%JxKkLR1@@IqJ=J`JnUzt#!=Xm9$=GU0uC_Z;*
z*6eEcLwkihx87nZ^?7HczG3eUO<nG_zl_hlTxewzyl>8ww0TkYCHCa|Of8X(U)tUh
z@$DPCB42s!{E*H6w2ypQsrJ2c-?Sf>wbiWD)YR16{@PD}b8~b0>3O!*)6(7h_V(uA
z$OyJm-1ePY#EGMD!O|C>w=dn_)?{N*o^j7b*!W5LpBMY4YijpCKG4K_U{i|R<JPmA
z_HFY?*?;xfvpv^d3DrNovM)*aiul#`-={vGX4JTr|2O-qxu~VvPp2zBcHFBBPtJ18
zTWGZGzgJI*#mP*ji|VVpb8a^{-%jXwwrKi<bIRf}Y%BkC#5OXt`<PTMEnKo()g_`o
z_T;wTPpv;bWt&`mHbQ%IclYY<U-shR;?r*&Sa1LYI;4DOhfHn}Sl*VWuX>~>vpTAC
z)2mN~y?x!%S3P#cv;KY<wD-BW)1KG!|LmQ}*ATue;=j~ktC?<Z<d|dlTN}&{nX=@c
zt<JIk;_=Ig)%x-m(G5O@&Z14(t-hJh#Cq0G7FZ|RQn=b}<wCV3lh5zr@a=o{TAnMA
z{o3mO@RsLYeWwqe*vq_Q^_pEr^bW^Gci!OK>eA;N=&mQZd;03uO;$Jay6jjg7}uOq
zX_>*nd`11*A&$!`fg9v69SGR5y246o`}WtD_`{~{VE?fAA)9O5!MQ2BXD+?D-<@wt
zi@+m}nz?}-id}A>{WkuxQdm0w(9|cZqqI2`TMGD9Vq){nmn~cPIWnIipLg!Xh1+&<
z%}?k3dR*P%#k$7WwzussH=SCoAS_>XSTi+0NvWRULJpUW<j>4S?cLp0nZci|xiyOq
zZrb{IbqJroN3q;I7tNwpktK8FWkODM&2r1+Xz9MG&-7qp>dRHUx4+9<|Beq;Y?&bD
zc%an4Q+R>zv_5T9H67JWw*ptnaonDgG-FwzM4aOZRa@?dYKkoqoELllvv^-RZ+Z1k
zUCjKjr&D?Q`Mm!cM690i(07q?h3o3{W6j=$oI3+bMVz(-JH{LGo(u8J)D+Ee`0Np}
z#O9dK!K1<*T?_}R6X$1{{@&Miq0FfxYvG5<0%sd;EbY2wz<bG%Ep6!*ftAf&uZ}Ez
ze?|DI?19%(P92ZdKZsXXba{Q;;ef%@g_FO%V6B;X$!UquDqU{2jtaS@ad~_HrvJXF
zu6Q7FtE=7N@`Vo9MWzKEWUJxdzjO=F$~GP5tNJ2you=Ac{J||AxAahkTS)5_ANLs<
z&lNxaDR_G%f3Nn^J@+TwoE0tj->LKP|9>BszA~8*ncl)U@9tC4z=MhsOn={4C7g8q
zD77eZ<{PU`cCK>KC6Ut@m%p2T<HzwMb-7t0z2@dS`M$E=>klrnS>jpOVpb-z?pxT@
zYm;|umv#4Z3FH@kY^h@Yea_FWDH^GJCd|9?kWt|4Y|glYTq`Fo4Y-@voO**-;8XR-
znzQSf8`-)Z-00<>*AO^4>)E2Lq8+<-?mD{l)4DI`0-~>5>D~$vbIO_b<A_+1mIVWA
zOU2|G?U^esg>_u#p2o^ixFSikaCPM})%^bWjt#dz+}a`cE1*Kc?&-FR{LLYLceedl
zAnV95XI*M^rD)Kk;)MN^_J}^%kfv$RJS%+{dyD+sIWcRaqXRhh^t`zzebm4EgSfxk
zon2LN!S|!>nN*5b+skE0#l2iG!}F4nzu}Ia4ZM~QI-VVu+~76&e}}>E=rv296&yRU
zQ>L-t%k=zPp=Xsj6<vPzYCX8CBI}>9^3V2mC6lztU-xp~h>2^R;==WGovb_e!+p<=
ze-dO6RK8ZhH2<bQi{hR0`(q5B2o+rOV4l8qgULJRqi3}a<ky6)WwYG9=E9WN9!uMu
zZI3vnKRd~F{Ehjn&GP#S?aP@Zv|CK>o}0EqZkG9t&uwh}=`vqher!24bvxsazRO&H
zO0$X;!tORckDoiGitA-l|A8+eR$-Ufz8$Tf!Lxi$tH9w0^1;g4PZI<guJ4u(DM<Z&
zj{QNBree#AP0SC@ZjU;+&GNWS;QI)^KCRU`u9vvKzJ0Y|6Ys5~^%M5R20CykdL2Df
zWi9n+{i0t<LB`G7EAGu_V&F5K)*`Sd&g6lym-f8PkLE9AIRAXRM`ZPirrMW0_fOwm
z9I|!t#j|hBW=#8$F+Jl(-u4Ba-zAiv-ZUz`C&jp8TgIYGM<XgsowBV=tQil~=f3^<
zEVzK7%`skb_vBf6pPE*DE#+D7cFI*abHSeC=r=pwWpmW4+P%7z<SXEC<rK@$Hplrb
zVmHGXSac0GCM<H2O0wEAW&L)Y+mCg4!}lBQP@BnlT-bj>kweSg5ZA{Kwf8#veHHu3
z^dT)yaP8sRgp5D!&-5GE?`uS+UsA4j483WkT_xLLv*7^$gS$<9op)y$*|&;zUTO_#
zQQ6~~k|zFQ4_{G9?CN<+jjLzBJoUk{=klK!Z}k;27A*SWJ3VC|_ok&4YyL_xRi}$8
zCC}G>Wq#`I%U|9<t~p#_`TPBhLPCG-COOZ2Kh*EMdAi?vrQQUAeM^It%I}4Jw0t$I
zipjm}rmF+%>_;)%HtgKxnQ44yqWeP4sS-kra;c{Cv(^T?Yt=5ipBG{9;A-&um3K6S
z&OMvtIw9o;$2awwApd6*=I-TPyTq<FzEwc!b&x{JhDASo|9Z@Q=ltR7*Wg{DW`7sj
zh&G)*ZCG`AaU+BJmTM7~x6kffb@Iq!=YOdi4?Jbt<u1*BaIR9P)ammMGv<8YtoRab
zto&>1tA_h;|A*N#_o+q(`6-rOaIp@Y@_eInd%v7@-KQ%rH$U&wle={yqIH(uf?xA_
znxDt4l>4r4yWewqIg4b$Ql0(s2~*#_Uh*pYgN}Byf#+rGpxg3pR$KD-e+*c&=U(CO
zDH{q;hnR`^9DG(|w0Wh#qo(?oLT%rt=fA(VSA4E=`nfrln~%A<ySlr(f{2xEsY3Vv
zX5I5}J-zoM$3^RFg`SLxak2X=|IDb1xO{)F%jd&vRheenCkgy5Dc&;u&-x`Dwwo&5
z8!DM*wthbIzQy8$eenAqe6!En^fLI>WH`?hdE-2DErWTqw^NG7{me(VxEW`hiZT|v
zeJ->u_XE=h%dJ^X)3plM`Lb?faBSxBJAXcL;lq7xhi1Rob^KF2d&jNo*1HdSrzpJ6
zOX#djtJ4hsS#+vT<!W$=tImfd?bmX(QqN91YFoUlCvTnJxt-EHaRpztPV_9gb;aPV
zj_)!Vu1mXbJpZzaGj`RNuk7EXZU&}wKiWAlI!F7=<@~>&jTw~6XT-(c)%n*rW8q2j
zV2|u4GsPKy@c61t(kgFmWVX)_TI<56KK;zi&th8t3U_MFzmolBWoDk@&Ggvbi)VT+
zBo~Lzzc{}*f4BNP&RLef<wK0_WPU7IBs_ED(pjJ57+m}|x~4=#iZ=S@URdAMJozej
zh5f;8qDggO{%r4c7iX;q*S@)`Z0-z$$ZP6hd{b_Sngwwv9x;&Zoy2E<$dUQI<Z`S1
z)y&&-1r&bs_e|X%&f30QqTt50vbM<u)sg3gI`dxUgzol>`J4aR<?UUymcy$pe#S`^
z)|`67naexxq=hkCh&PW#P2|zz8-L7<Q1DaCHI!E3aTh+>CUU^L_?Gz|_J&*hPgQ<g
zH@~xv+r~8M+`1ys2N~j#e_w_lX0iMo>|yGWt#IMQrFb>F3w(3E#8w&#yk^vG5pWXO
z#V9ymI<HdZ5AS~8meb{l40gtL2H{bQYb2WYKUzJ*ukbGWHr>1T#L{Nn+jUiWN5t0f
znj2o*oEJ#tZg|=5-w@xsN581Il0{(m?ukBCH+C9?&YLF^B>%49>N4gY_REv+Tg5it
zJ-3J{=ZZ{WEbpJZ3y;l@n>~mLOpZ0ZE5%%}tykys6ZHr+cYCgt6LS(y?9r8fym0c#
z-rWa6)fHouDkRE1X0gpN$_Sk3=5o;bv1A0dZzX4eU*DNUmCYTVYpSL#Ol}QvFuaj-
znQ>o}qMCW!^3I(7Jz9?Quh_Hw;j!+yTEq4ysb>1SOON>qLi%$5sN7gspVJ(aYFis{
z^_q64*~dgNwGXS+TK_s;xb)=OSC(gzTST7S;hd8hvEK3UF<+i_d*|HR-+1&HM-EGQ
z{)*-0J<_L4JjH9$UeC%mP3Sz?o4xX|IoI(Ai~s&Pzg2ig%7x4TDOuU{BjJ*MA%W&X
z>%N+}ryS;Kxm(r#W{!cs;?fr?)nX#CpWe0B`{wCZ3Qi5~SZNUZ{l^Cn4wD$)wcFD7
zY(DMNEZu6yV7%s@^NtGPb>h{+>DK~19-Fkr=iI1G&OftikA?g%uIu4PUg^(YWy@wJ
z!6Sd}>)k&)i_^~kVb4h2aCzPIGs1^BPH(;3$f?-!pzZ2httD)BMj`?l;(GQg4_yDS
zHhYHEhaH!nZ!o?%Ge^4NfuWoEqo3~+Y8baj)fqT*9p2LZ;%)Ahsh4=R?+R|c;?Ncm
zcXO3r<i^bh9yUFTdGtl3qw!g%zh~{A2J2%oS<4toOy+nU{V7?K(<i}JSkL?+E6vIO
z>Y8`KilrN*_ign&9`u}{<KMkAU#zC)F;qzG(fV#Ax?x}D(LHQ_*ST0e%*x1EenG)*
z|JG2Exo?>dboLu*Oq=w@RaNx;lXJE6c0b&(bUAZF`qs1i!m=ub_Zb&$YE!ebKlZ$<
z?w!TN;xEY!CrV9)W3R<qH_kELvE}Z<u$8WR_m$t;HqVxe@2J%a)%g6KzyFurQ1^Sj
z<z&;#>A&+IEHjiZUEcWqk=1|2i=XeTd@3h;pjH2Cj`rm>>nF}y=y&@3Z@&2-J~!2J
ze)V7bCP-2AV(2;5>7N(>sD5$up#ItD={03f9?Xh7es$vh=-#+l)gR7;{$97oWYKqB
z!{@RM=liWRcV2Jkoa(jo(Oq$wSnFMZetRGD#xFdadp;p`+7k7slP}*!F+X_wv9<Zt
z%>PoBYj-l=@8>s>TP$&0B4Ob|8IPI2?z3?G4a-)p=kfVabv~s2&bJ@e6FSa6&OZM5
zj>%lLqp$oXO`ar>=e2NqiA(Ja?dbIT2hUH7x;2gQ$NT$X0b2qcf2Tz8vxYoZ5BL1z
zG|}#^6nBib#>T%b-%s++dwJYD@P+WQYyU(oIOfbTD=Rqv%{ObB_FLxCGr!M@1lj)m
z!h1LD!^Y`xn=*@6aPrUEa$2QD;IZ!sshj?L9V>zkAK1w+wpyXA?#{bsw&y2F*DR@u
zWBK<zxx41-Z+)A}<DX?G1ac^r*0ZnD{HWP|TyoPhjU|PA4oPb#q=r=SPS*{a<W>Ht
zR%U7M2MtTvqNnli7;LWJeVP8hF5>MOrz`t-E3y{7S}&Nr<yXk;&CV?XkBl8m_ceW+
z;l5zAz|U=rITB`Rhx#`^(~sMjSFE5Fd1;^45~U(nY2T_;y{*g-rirfpYRGxdXl8yh
zXXe%}{@uLYTlziP8*W%<yVrelw%Bkgl0)%YlOc1$S`G>Q7J=Bq2c4hW-Vlv@{_2z2
zMXMguw1072E9cd1%JrVrcAzrbXw#FcT8s9{`kd;EH4>4^uKj29FK*xUM;x<?LXs0V
zJydt(%fE0%a^+8{d)exDCY3dXKeB9^ZhNUr+d^cM?v7b*hXh|2eRL_(eRrIDg-`cf
zDb7`&?;l^<c;YE{aadeG+lRHb0`t6_I+h)XYvv4}<)mQX#-V7pgVXTVzn<26%s&|W
z*}uKIweM>B*Q^ko&@~M~;)Zt>SwDJBW1W7P`9|ha_XvgWkLtcW+S>Ve9uvnEjV)mZ
z!W3PONj1N7yzwBTDW*kWU39~Qi)?fDY-;^n#<d~o*_y~`r;DFcBpKdsb3LS*ocUe!
z61)6?xJauk_Vl&7x4+F=K5PD*MZ$5~Cnu!d%6-r@S-`1=%Ten6uQ{(K?ReGOcjct?
zjid*!dOz%!7YYmBXO*h7^xx&Wpo4X)N``YUOQoH@bWwA|t{EqbYfS8)nrDBSwugOh
ztH7n)8G_{ohpQA+-sw)L-FPbD<I(>I-3(pVhJ5?IdSx7Urr3sCeOI4|%1nGDr{KJ0
zwZPT~^R8Ysl@|!FTe9k4(?z#THoM5y69TLoS3hFfF{iF=zVNL#t^b9rS$6yqjPnr5
zzq6xo@vKg@iLav`s2}}rJ~#N8s?Ai@-*3fy<Jed4aNO}seRGi)hho{P>tS>EHg@bR
zT-iE{|I)6H=}8yfrwZB_E!uLbNFe0!89`@7-k?+B@5HAqUOs8#j~QVr6gBl4o*lFm
z*k_jg$0KPKm!eUBJ^znzg9|E;g_>6$=dx>7ZxiOzZ#{ADna9EjVv(%ZpPtO$;4m%b
zvbsXEK+ti)T(Q}^PtRn!9@{FQbY1_U+nhN|!&@XyxP574uaG)(ev?qraqZV@znrt2
zp!|NJz$1+>TlY<G4)EBqHemJaGu+clcdy;JklXP74W4Mu?L0r&#OoO1+NRC5{Kj~D
zs?4pIbEYqoQk}GvdC%$mQvKNvDpx1J@)XK__Ghi6cgrpAH#`#C@}GQcXzmmZ>wU-E
zR-@K>IYiVZWY4xsrt7ryPG7z5W@)tYTBx{P?~E^>p9QD2KRDM~>m-t8sU*X%?CZ6+
zdH<K`0cRPnu6Gj)Tg&`lr|zrsphbj-&367e^;>Ms{g-tGQXfq1BjPw7?qQVc$kS@5
z?=j61m}%j8KjA_7;=5%n-@~$Zhz1$Xms%~7%NgG|{i}8C^vuNR-Vr5FGdgl6UKUqa
zv+-h>t%u0{sfp|#x+l(jP;#(h6<2GCBWuOf&}I8h*)Z5!PE*U9=4<+raf@*GgCpTz
zCv&OI<2hJWmGpe)foW&hW`A$5KGmchtNhkC#`Lb!E!M_*;mTi|I%X9(h4iYbNNz8C
z8DFtzy@Z4iw?A)c<jJSYRnGW*uaW3`_3YEXYp<=;nYZ)Yl6ljzMc|j^Tw_Jk3ed#R
z{hxb74K^qjiXL0~Yzb4i$Kn-x6W2%Yo}a;#v#tB_n&^*fZXNQn)ZQv-lzsT7xM5&R
z`fG0fN%3-`waE+E%3dZrtf+H){7S1Swa_=f<LnNf9g^K&zp{oMD%pKw#pnHP9pcyj
zMgRZ3<e~jq%TER&+ARgee(@QzYUCGj|C#t=!Ij6RZ!TK@P_8%?YaXX)Iw`gGk(7Vh
zqet!?7vFGiGCJkZkSinC?`v}NNypP^=Nfm(7I7$kI#jrK+EXS)gPl{{xn4F3PSAM1
zuF_;%Y3{L#ZwF@Hw)=Q>z0*7SDAQbr&6lE0<~#R_zPb9eYhB?#VNt{5`*q*)q<@XB
zt6`t9u;qi+7NgY)yA{O_iGMmViAT?I&%~AqMblPY-{-%Y%hF`^9;ZN-BMxVDg}WL5
zugYdvyKr7o{{yc@%OcGf+1GehE}WpIv64@8`;<k0&07UC<)<I8Dmd0K>4Ex>pOg2^
zpRwmf_S)$F5G$$gdAsKBSo<Yc=gu}e4F|>2;2T|!<V5TDvp3A`68XZ?6n5ouut>@$
z<y$(wA=fniY*mjI72Rm;e?)@EUhvW8?Oi`(7mEJLdbqS#iLqk;Nu%XLi&Nyc)D-;|
z>YVHLDL!m{uiC2_eANf4KL3j6zJKKJoW-|$WCaa^pZrP6N@@n}Z0=M&QB|Mb8giDU
zTe~={hJR!F@@pH-O1t!e7VkgIz+q<|TEA5J>R)XRg>MPlTb8)VK3q`g9MYsdOSh8E
zxAlInr^$ceX|v56oT8G2kGKXrk+Rwq={T8J-Zk!!o%X4WrxJhPKU;gd{N26X{}1?o
zyel&A$-<>~-)gmJ7&;w)uT|{-)$CAx<o8EefwA)(ML)OMiR`aGFT&gs6O(1JEZldW
zLrCaZX$QsLj}ul%H7_?gui;`X-%zeD&j0U7%gRZA&0@CQc@S4s*m14o!{1Y$7SGpT
z$*tFE_<yJ^w*J;r=4O|*x*PXg{p_M+_jTs4RoA1XxfG9xNF?2Rp!;CXv*T+Gv@Eax
z*!ZeTmFwj+ompHN581b8-Q9Xp^roQFVZ(}~MHk~vO<A8Zm2K^AUJ2W$*ISuCaVu`M
zSdcIB<;%s8OM$Y#oc7L=;yitx;ezje=jF#{g-W`=;wTi6n)%h5`=!~H(EmRq=Xk8!
zc{};Xojrmgmqey+&A(dv_u1d?TnZlRQ)X@6mwGmnd5`Zdt1VM@7tMAw4wJ7G5Lj$1
zAM(6@C%?d^9k1A3xkOJ)SATvy`jNlge5w84W(w6`nDDshnwY&@4gZG!#T6;<Chyb#
zQ9s*}W9#YKO@_PQKA4%N{AA6Ml%>v_Y>#GNUZEepujRnLNdit!vNkxsPn}flDY5Fr
zga&hc+xTBU_EpQvh>3D1ZteLRnRH=I>2dk?*ZcKKD*mngHf`C-sVAm~e_Quw=ge!i
z7UB;C1(I^EKfL3;xzjK@c=kiZ4_~-FISdcAM3}tf*i-vg&%ng%=<oR{o(an)tSSg~
zkM?+4E!JcGB~d3|xJ*Xx@E_j0&o*|-WM8c@`PY?qIG}&E`nQ}P#qX{dGVk7+cj3eG
z+Xqhi{p#9yB)|Dy!IHOT9N9BkKK!+9%=j$2l{I{IgZF%{iON$Jq`d##b*oi$?{5o9
z!AM2hjr-aqM4y}A&Tw>9bjsVgYuC<QyDX0%J9g{{2)pUrN_lYTQmozjH9rkMENyf6
zo3u^7uIT@?f30mR#0&Cs^94WdU+igG^xA&sg`&+ycQRM}$u?Fz5<4}!lPBrKrYBMT
zGLL11Wrc-hg`@9=c4#ja+F7Hy#9FIqzt#6X6ZVAMgDH9epI?@KJ^bxd%d*rIPEkF^
ziMo@rr!1V)8r>?k{n0(X?6W&wEuPEpUuv6!))Mt?4gt)HEnm0`j&7N>W#+Th40=6N
z&kOzM)S0?=^AU^hpF8-tzkJ>qczw<3S$CKYeYe>%F@$SnYtC|ooS@f>E;j})tL(d8
z!w@5{``UOL-ygN~dZUL%FLW2|pAh0vo?<7lT}m>=>$6O0`f-ON5;L6*U%kF6Rw_|+
zrnl>S|N04aCl^F+k@kPFOs#q@<9^vH)&oyB6>$f0hg_C1=Fs}>-lsXe$#&(+PL7bX
zUaLf|q=!HLy7=Pcr(df?oH(xUJ&;)KQhsIErWnn6D-!fRYU`bozS~<bkZ%0les502
zrM3$0!dVj8QK#6oC$4LV_c!KM=-R8YH~4kahhNS`MW^iVxU%rwQF2*!XXob~_p29e
zO+9N-mZYZmZqDB7_wS@{zfHORRphF#u1l8XRy_{IBlY(uTKm7VnR)+L#qS?2w`u}f
zubhjM&}b1@^i24{y6I}m&)>EcwhxwGwRD?*!0%7DrUfg6PrIh_Lptx(Pq95YGdG8N
z-tJ#Bp=u>x+$@%YoByts`|jMB^XJ9F-wiYFujSDHSzlc)Cz2|AjPXxmxnr9l-|^%y
zndm*|Be+fbO_t>toHubbUVl;Vn9tieTdrL3Q7^u7>XhVKiNL}=i##2zb3#OXOe7Ca
zZWKJ6P#EbdQ1<uR@zaZ9cAx&V@BRDO3cGs4H>cnKW%~SX-|_d~ZRAd^e|3BHf@$9y
zcCW}?eR}?+|5iOer#y98eR`>WuD)#C&0|3s8zZ>1<>aq)d5A|^az5=hHx}g=y3?np
zy-(Qa2J?x?m_-S7fzgW%Z~3^G?7kBEInd5)*7m~18tY%xibQXp_<7gi^{*GGvwyuR
zC>UE`y`Ag))m=idL3R4q77AB?f2T9oW?QAMs*1^$Pph6Zefphdw<>krX|Cvg9(j4|
z+C^HWjhS8SteaAWBrHpx-g}iEQ|=UU%lxzL>xPuvJI~&fF@D$}HrK{2OjdE*ozMGs
zud7?tYcD8#xF#z8+VfQ}L|j~wA2)06-|c%gwy%3bRQKAj)n^wzi<`Or;(R8tZazns
zCDD8jYQ!%ZO03rPQ;xmlG>Jjw)2GN~j>nP`X1ow^aj|FWEB|?Ce&z(di+2y3Yz?vf
zm+lkIHlK|vy4%mu#brIy{LXU+B6MZ9F&_xIXsD9=X2&u07@uS&@#zc}>t|j&t9jt0
zvgiG6;&Yn~moNCalR>BO*37vk;Z=LScfXM7@jNt5gkeMerJ&+13zRQad7k&$VX#c+
z@vYko6RsTpyX=+GmY&tiT}6{ub^Tbz(~w*pf6?*Pqk7R92SwM+OgQYtFeUe$ij})<
z8q<zV6Z9X>^mvx^;9JyruQ^=_9&8LtbUUBiKIAju+|L6C4Zh#*Tr59V>F%3TH%*ip
zI&OV03jOWjT64ur{8;i_jnbBDuUo&&Fbd1c$?!Jg;aI+@=gXHbr@!x&@wsoisy?Ls
zP5q`#n~L_xHk+z1OmFnjz591<`0*W2K4rb;SnGLt&rE$Ag`eM=4ZY64i!pOuEuP||
z%+$|h`EXHig;qsSjbOs>(&?Lf-`|~^EFJNE<Iz>8%50~xw|CtQW#u^bjFI)OOM3=~
zbBMmJ;MS_VkN;{I4y@I^$h+eD?f3Z%mDP3?YCTSDXJYp1pXOr_{km;ma*u|mvbX1+
zh1IWKJ24#S{W{O&o|@ACe(i=&Sx<YIt9ts`H%-;oK2|gBUKdmRzQD)-YxZ0*savhS
z-*vSK!*iwVy4(L*CVV>ABoY75*?@IsqwOMNlc0b%|B4utZEk#FKd^66-_lcR+6)h#
z2;4lpaajVRL3~NuG45!tCA<Esbg<=pUH^G1=l7+je@LsBt*NtJmOkMQ<4pa}rx{Ev
z%U3s+%sk*xF1>X}M1A!7eZp#IPp;YZ{OJ#;XEkT0^RixYNuO}E+hNvj{>l9fA>otN
zc-PDPzFs+J$BOKq2Ky#u@|F26ll-{I`Gn*2j}pB<Z+<nqsb)04*w`<@{qo{v^YjBg
ze&O2dxZeE5*EVbS&#B!fYXT}*^HyE#@nwD7Xq<QNW-!C~u=77uL)MG_xqeFVR^+~u
zSH5v>a4KP&`C~3)nCs3tEI-9Q%u8=>eYT)2dUx8^)mtMENZCEk`W5wLTj`8--F}Lb
z4ebR3Gk<knxzbd%?L}4RKbdzo69g~+l`U&OoLFulvut9TlG34-f7v(5-CJ?GZ-v{F
zRJ$ap2^v<-Ie+-9?teF)_I34d+kZlD;&cTJ&iPG|Tk+u0tb^xn8rbgBY2>;aJtIT9
z;o>6W6Yk%S>}kodxW3RP`uNG~RSMTmALMnmU%Mx;=JW0h+m~*t%ne+3+h=5OH||_y
zeBzA7!_SweUVbH<)SSKNN6}-g-DPnlA+!8yl23~=Xxuzdx^H&l^2YTp=>ZNuq}!L2
zYCLU!W>dp{K8MlFEbqm&&EG7er^H1sdHHm%kKRIuRWEo>am?EjyKB;k=m68(OXjm$
z#C?9e^kGvH{}kr-<0c8)>^^6P7j8fKZ}Z>zH)k+2{NJl@+AW{K*mwG}xt-3k-8zpA
z=5LUGp=#CK^oQ*oYr~?YiB}%}{=G?7WliNzff;I6&6|FySTNiuo5EyqjGgnd6VC>}
z61JtKx6{}eM0B&1iVJ6)y2ZG^^W1_x9cRB6<j?h=(wP`Fg+04?Mwf`)=_O|l{Ac!V
z-#rV<5s9Ef2lJD%xQq-;jS#nez(j3q6!e`kONs+hi=6Xw3-a?)^GXyf6!e|*bMlLV
z3lfu474%(F%QBNwgWR3C^j%Vu^HWj-5{q(+6+l|S%8C_?!5T_)^NJNL3``aD1By~p
zGLuX4ixdnE6zuG{^xZOZN>Ymy^xbk2OHv_*DCm2nW~OJ9C>R@?D(L&9=B1ZpD41I+
z7$_ia`v9Hf7{rBkV4{M4NM%8)f_{X5QdVkmiGqH3W=cs0*kU_7uHurS)Wlq_iaBrZ
zp4|4xf{E4PMDYLrr@u7mb+II8%PEK5ooe%#^JUberN1A4+|j!8{`>p?4gZ|4v~OH`
zZg#hmc)NL=)OKwhot<kqG$rGt<@ZbMy#N0DjlF;D${))=SKxZK_Ota3(S^GYI9=Pz
zwYtkU>hyHBi<Pg{ik6<T&wpjW_FRm03UhnVr)$1Xyo!pr|5;UY>Tc9yd8--MID6mp
z;7*WIRZWXmPoI9QxFR9RHvNds1J6slrp()(rxZRZXyWU?A*Z9asH8FKbH<ui|5E>{
zpKWsW&4beaQ(tM9C}t@9F$+F)NKIv}Mq#D*)wm1m*;d8R@4Tz_M0j&U{-m&`1$$J}
zu7(we$btl%CxvaAU#Y!HseIaP<BGmVJZG5rB>Cp+*Z#S7Rx|HhGwadJQ%rsyQA<^x
z=`P<PY1<~U{HxRsmCUJAXKeRz2$(H3u_iQJk2y>=^J;<Z|7q{qzB!%Sx%sSjujkzc
zUeBnnE@#SD9bL-1-MZI$;@yyjRm-;}y;hGa+Ug`TFJgI~Jny7ww>c}G`>rwDbnWxb
z)NuZFPpyM(a#mkDH0$Vg&NVKVvNX-}|8CW7F8*9I$6<LY`%ll)wM<7QZMmgAbNjzr
zc`3S&n7E^N8%8m`SagM}$Ytf!?R@)AT9@zVjNbjRfOCs_X6Y5ZeA$}q8y{}JeRjjz
zzdJrRew$)b`}It;d1UmBTRornUN}9x9Q%CF*Z*^G{II()c}M@;_r(j8`M)XuxLnPi
zw_RTRU)_HF{Ur}Rv7hMPz*?f1!<*FcZSC~C*Z3~Y-NpG-_QJg5dlvRg-JbW`_mOJR
zTHi|cl7$~6&kFqQd@t93Jk0z^-tpa{Ph~H(9!huk|K(m|a{uw<)f;_x%f7#LW-V(;
z3d7+UY-gjlZ}{!(mMHVAdwx_@;-gJQQi<6Sot3XQ<zy8!w(7biJZ$l9w7;sCuDM*|
z=ATVQ3W?b%f{&lNM+<$dtry#|RLpwL)809XY!~0$o!&CtkIQcD+nP?vcE;$(t8dKz
zvFA_ons(bANBPndlfo9viMHDF!s7q5_vtfkoPOSZQlw?AW=PKcD$VMv({uDqPycBU
z%Bv86r<tX+x1}(DYEr<1r<X;}225Kce3@sSweaoji=<w0o0a5#+EKZm-(3IJr=G`}
zs^1<y-1GG1-Y+ktHzzn)x34|G^ziG(cj;<d;`(cstQIt8?_XyrX168rY4|<83)}xp
zyA|}FGpuU4d$39KjSbf{J{`IGQRM2W=<WBHFAEXebFX*n$;7h6ni6K#%^n{Mi<ZtS
zEYI^xkdY1(J34#&?fL7b?D={{r!==TIk$Af*E9blOcqOZ&*!r!Uc<WMMc&~orJsyB
zEjw4oUHW`2_?flK^ZI@17q>kR6gN51ExUWAIYZu-k1y*MmTZaU&R*HRPEhXNsXg;&
z{C`%KpcDK1Sk?BQ57k#+Jmu7J#_Z@zz4j}v$<kq5xol1SGq(Tx&tAFI$KzGd1l!yn
zuTLdf&b{cOy1`R_g1lyKPQ~(2+b4Q!pLKrbd$Of;<~5B|d25enn(6c`+nl9P_CD}-
z-uH;jOG3*|Pv7+HzLkyU^!JQM&)wbgAy)KJk&}nZrHeVG$A7g3P5tyX?9l}G9~0Bo
zJ}-{D@PvIm@B3BGTwmhLs^82$6!!g97`u1!sqMG5JYQ>;|2;C{*s3iLw%(3)70jFc
z(x>XAjcU-;4O8=1oK(nTy}p_+vfy#iOeu5WlXq-Plyd^7ZkU>R=HjBGpRQd_Ee=1p
zRiu&eDBp!St3#tNEz<IQ?ffR|P_o+E<*!~VY0vYTxjHKAu;t7XSKc4*F^E*k4i4Y9
zWG#<b(WNS_JNv%sE}1VFaj&}4+_h0)(`03lM`!$I)q8479`ld#zxw&w<?>fuxhhZQ
zZe}-)nBQ>BB-?iB-1f*x*Mb-C`I-{P%vGd+He-u><z@ZL-Ales2~#^Wb<4b2&(`uw
zWiF~&5}MwBbP4aR6aN<p)Mbm9+zNKr|E;oi`TWwdy_?oYuH2=P{{Cd;jF5?8CtFVI
zCL1z&zSjI{<8xO-;?}-W%XH1yH#bkI=H%*a*f4FQMEjDjThcF8apm6sHLZBUtJ5;G
z^_Oq``A~o5`v9Bo{Gpyv{+7=Zdoxd-i*jFeZn|>O(;LRcYd%g^j@c{oY}>+ZmF<$E
z(`Q;t*ZiqpwRq8~-E%w>(rwCXb&I*%A{MC5-1J4%XxYVUZ(e&}suDN(rM@l0`^K|9
z=^GXweRtG()}zj(lZ?A&RQ+s``qcgItJaPS7q4aV{%)K*HF*BPcVTa%uSoIp_?`I`
zu;EVJ`Yi38LQi&1{@#{m-+5Q}hs=UVZi%TgzOH>E{ArS+Vyao=rsjz27X5d1g?Fmx
zCio;>TllC}(7SEz?YGk`R$n{$<Ed2hUJjGeSCh6hFm^^hKeg}tmaH4Q_I|py`@>;t
z`_u0(>OJd?`TWjugVuZLdD?M#@275$D~gN#^Dla9rt#!?uUhNV4wUTKB)sUy>U{3~
z-r>vM>u<CC`19vczo!{#H9M0Z#!DFp7XNEq@o~bQ0^I_CiNdcBOWo9R!y<2#O!O8O
zzc6=~PC#$YmIB=m=XI-FukXvAU#Mj7V{Uerk6C--mP4UhtHsx`{;T=(|M+Y@YnMp*
z>xJunSFGF1x=bxcb#?i)uvM&4XUbpIz0F%EcB}RG`^H3HbB4u>Z<U^!wDo{};Cwrq
zH&Y*}Gw1{#HxKw7bN9Wb@MeAuy?j}#`M(l-FPrS{m-{#|KmMa^LJF_fOI7zm(G$`4
z+t!{gHw%1HC0WnUShj2m-*?Nnd9^%0z8E~vW1M}WCbVAooR3juwsO1e{=@$&Y|I#Y
zd^BaBp8xCne(u6u6Yp0@q?j{sEWFV7Dg5`e;_c1x6SG&We!r13p=PR9pX&WxtBvC3
z9kk8A|Ng$`@t;@Qys8;we$^EhbZuYnmhk7=J}$lTP&3`1FPV5=*9d9U{al=PJMv)b
z?4r8-y44KAnUXu*q~A??^Y5aWMqTdeE4*_HxOXx)I_~LGPQAFaO51PV75B62yesBP
z?C}2kdD^=Bm7+gA&urbMyuqx$KCtd8)6C`Xj9yRKYvMXfTCaR%`n{lw>lBSkHSabQ
zYD`QD?TS&4K6k%vFW;%jdtXi4{%Wi9CD%9p=Xe=-Jnne~>z9h&tavP#aQw60*7MQI
zUrq;kp0j=XiuvxzXv-{nkNW)m$5ieGTFb~~MxEbZS|`@?bk^NT-Mg3t7L|z>So{v3
zcsA`{?uooVKYuJ+m9C}obJg1P>1M}U=J0N4xYb%Y@vZ&8X*;(bxN~V;t@Z}V56h-z
zbGA>spUN5$-JE2<R`hL-%J08*{~CoKRu}zWC!RfL?&%Gp^NukrkaONKX=}|fKM5E4
z*_Y0Jw=XlOn*UXJfBDf#J`8VizRfW|WZfWdRKBu6`_}9GuVP<*IIwyucf-D0&*!l|
zJ1)88*E<WAKc6aAuMd~Kx+_D}hvC@81$@80iUx<*_a46XH=eV8wtbe}hx4z$sW01l
z^koFgg6V0WZ^hJ|*139LWW8JLyU-IMagmd6$$wLycC*Co^&<t{$qYFw{#vK3e?M#W
zFX@#0)#vi!PsQKd`5?;m=k<gMt2qwjt$Mchbb&$9*XtFkFCBvSWC={%K5t$40ln*f
zW}j@?4;;!0dHC?G0drWrtB{jw@RPOskL9<PM9nWz7tg=2*@DMG|K!p48${#WH-3Gb
zarOR*#Mg&6G~d%J(|#hRd4pSW6MynN_lBukVm_Apg#ONA+HU6e)%+jB%EEJ3^%oj`
z*pRz9(*E6#=Yk26hpq*`VR`g0+M~KUXTl!SXJ2KD6K?Ll@Kb?rd8WnBf@^-UwZAv4
zZDrUjy-GSeqFwvl)psSq-+gu8J^FgKKWZn#sxH}OwhuPElk!Tv@aLTe^QH4!b2z(1
zWvBhtvsNf#3{lFNd)hOWRef_#{iJlxX#M1M{ZlSk-28r}eE(;LYsxvT-28E-Y=)<!
z8{NFQHDCWMx&N~K*Jef|&gj5-?9ne(_Lx;0eZ3Tx{@c0YhjgA_ucZF%XZEEHn-)be
zRh6#ReZME`^^GWFkKbWV`VSSV|AmzAedV<#lQ+O~?}nob5Bg_*KT%Xy$MifwUQzMS
z%e~B<PGR;84<;SjJpK3Ic{U<B?W@Hq>e4JlgSX||W<F)o&|c1A`{#D#t3%)B%q)Ix
zY<(u;xBr~&d5?SBm?NS;I&5oR;kM?(97ER=9>ta+*~d<pmfzd;w&Xvf$n%L?x2^De
z?yM$yf5Rzjn`0|d^W6+y|5#ft{Vj`GBz(`aFsbJ)YXzG^rYk;w_*}7Ix|_x1?WUiu
z<<8j5d0-*0_e-zSn(OW!5s<c0-?e_(d;glKH*L%r3$jk`tlT)~W`wBe<n*O+M<drg
z&{5tgelq&Kn%8cI#~Km2{(=9mPOkrPUbiK_@6p8UmUCx6=+9krFMgqY;b(a>hgn|2
zl2J@goIgFB@8hubr{>&?Un;X(c=!xfKAPx#<JW}y9>Nkkxy)>P0yeHIzrE(#e2Lp^
z+#7Z_9gc5Vd+gG>*pS&XwIfbtRlfFo#l#V=Qp6cOb5YWThwaAhg_3iEuYRd~y=2CO
zT?|aAZtLQ&{{Q`LviZK|(;Gt9^L}bs9d_Z%<L!CdZ$JKMu~U7K7z^uzrS~Q%+?zXR
z&hPzM^%pbLZe4Y_ygh&K9DA0G*GwGWwLDJy2`v=(7iJdWGWW^nd0yhH*OY#`cKWl}
z#9a)RRMxQAoSrjzv8CjfvN}8AUy{uCtwLPGHYMDvvht68r`}M|IPvxM`);}E@*DFd
zL}a+%Yi-${bFb>x)LkYej4qyiUb$lPCBuGvoW>O`C3Squp^Bg0``NBYd+}eG*Yy2%
zxvHqq+{{}uWh~$Cdw)CW`^mENlGEqkeAU9hy<6wwA~lWkI@0B@&vRMcJAGazZsHji
zqc=16+uXSMcIx(dN%<Fe{RItne`wN6c~UwtDd36Kf1e+FmTg}wE^;nDQsQ&YaXTTO
z+~a#nqc`%3Jy_{6+kI)yme40!myUe>JJUJ#T*{|2f}H%!+&4_}_g=okx<+wB5?`eG
zvLNr1dD;J3&TNpk;I6-V@1DlYpZXil#lAl_VLM;W)kB<X6tlkWop3%pt3_aElKqF*
zhac8YT_3Xig2l>>ww14)as=5fL=+jC`aSWweNN<(TgKe^?P=V>&-N=;{Pa6k75+!O
zQv1ZY?HmScl=xeoKb?JIs%E9jpP%u6f8GAGdHS{mU%m3Z!j$q|Z)7b|H`vj%_I+S$
z^u!fg{Pzdd-Lv|0_|fAyF1FXX?iq6@Z+~QxeU$ab(l-|EbJS1%`8M@ydMuaqUPZ<&
z$7X+hds|<4+cvgJ?LIZV1&bfuEih#Y{(ZxI)0W3tc3Z2i+}XDOpVle6*kg@P)@IDw
z(V&;LXJ4?&(<>b@+EdqM9-k`E>18@;ZONzOiutb5Uln;IB75t$H!Y3qy|c~j<t!Pu
z(|wEiHy-1Zzh=L;Ji)Gi{nmH(|F-^=W3<+azLk>qw#IPgH0jKhAH6Fd)=PiAwIFLX
zZ{_L@&(FU7#=7d(!U;R?hre#@w3?%ITyDo42HrJg=H`!|axd8U=<w{WH7cLiCg`Vs
zZ`zVj9eqDp^3|Gmp7%~Y73EpbE45fWN&E-5;kgx?f_@7;-R<cad%(9oY2TL48H`E3
z=6f{HewVnJR=M<w!RPPJ0^2GkZTET=;lr>yGx*S(2_G)0Ew++hyZXcP<~^Y|)c6-T
zh^KnbI40W~7;kcJ^J*7Y!B1ib)`;b~*w3$g9;WxMqPE}ciEhKpDOrzZ)%uiA6n~dy
z&*}5T|Gg}Og46L0S1UHOd^zm(M7JR`B<kIUv-j01{;WQB%rx)fq<=0AmRB-v?uvcd
z^Zwmwz2;;4_HWGjB)n~f?{BdKQ-qY9ZmsyNy17IAWTww=u>&kcR{JN#AN>8by?d|t
z&Py8&bShUHocD1kG;P~19%Ha^?-^T}{|u4+dqR8U4Fa5VZVG++IY(@6;kDShuDkMw
zpS*Osr{!>oDatBlwtjBltODgHLan-=CvD&K<0G?dtGMH5vy8nma%+z1rYYvDa_Kxf
zCvL*JVwJ~3<7ZvwKi8*g&CJYPS?(j{k$s_PQlrdU@o9b<ucbsvPByOexGnKy!uEAf
z%cZPNI;gr%6WnvBsKbmkHspzwCCgEx-k1J16C^iytySYLSQ(dBkyp9v(wc9tXHIat
z_sf4}nT|6{Ln_O%b$Y$g>i<8Avl{Jv;lJmu(*2K?^6UyZjNOt8!_V#DOIu#6{ch*m
znpL)m+!3D5iO)iRYl|N0Nq)UY^!KFVkQ+=hqH=C<$?S|@vcg7EO*`3eS?%Yrf5o?d
zw*P(B=&35wFJJ#@R@H_d%_|Z&`D7j6Gxb|Y$-mFv9<yJYAiquTfAy^R-wXDna`}D^
zo4r(B=-b0juUm8z*!O##h+jG<@r}TWntNKG9E$f%JY(59dAryr(Nla0Zt9+|f6qU6
zKVr>ayTu1LomugrMxgjF4^zMGszU9u#|+9EraiXx%Fk^c8Lgc3Hu})DhxVF$4F`Mg
z>so~WWxC(>bnO$l1K;*93VQ1FVBY=rYExO;#6BrKJb5|ovEX*zed1l(leeE!U#6v9
z<GKD%?S%r~9Hlb1)hj+3n9a#Nn`F!SDeUxyufKMEyZC&Q`o;&`)(mfJ?ayA5xK|g~
z7M(jQG_|x;H1d_A`dkx^GWGkV5n8d!{BzR|ggM29i)@aF^SZa{<GTE`*#RH#Cl+Z*
znb|RYS(MPSW6xCkl8<|qR?WGe;-`Hj<EG$(^({exo+px;K800y=l|=^YB>?Q<aB-u
zGo!@8<CDwYat0<kh*xU=;eEL2qf&0RX<M0C{mGBXvt5rJVC;FbAtu*&F$>Qlo&2d%
zPb4&+mrnhx+miif-P85&L%%QtbLbl{)i(QHY}awRGa_m7wbcC&*H3TJk8bXgSU%U&
zlZEH?CIPwSI;{(3w&$ysG|JX}dbGPevT{Q;qv5%g3_k+?IEJ4**2Z^hdtK|=8&~D@
zRQWgRuc*HCYb!s)>P@F4rGK4?Zcki&k1LGXjdv-7!-7qhe;qjV?^JaA{>fGP@A@um
zGqLb*JP@Ggy<~!+R+p*Sm-u^KRT_~NnWg;}(|NlXiY1p+wD<j+znw|@hm>%P=$)b_
z!9%^1I2f*dJHPh3(?Z$HZr_)PE~>7UKF}@1d8x!Bs`*Tn`417E<~gbjw?D9|^}K&x
zv)n)W@3bo49i>0_%4swjRvNW9q*rEdm-lbp+R3;7MM2VELAGg(E!CotyRXU$EIO?8
z_OT8BR!)<~;Lq`X$%{Fd-7b9ks}*r<{^9>oU&}A0*&Zpp^Zxtu#CHW74t$dPZ}oqM
z5dXc}Z|ZqpT`p}p?{|?|=h>%+H*W-2{M63R{c(6j$qB`5-)(ae#1^aymlQR!6E*u1
zU!S!8{^8fhBUj#k`)_^I?LB{XeLi0^KP!6zV>U<Rd3Lie|My(A$eDYjd(*_#AN%)Q
zI<rxZx3RM$=EK|bxec%OTzX${VE*^@!L>J-_zhMbX8h`9R(37dAo;Cp%f9XRA9xfm
ztLFIc+z?r!*_G&U{IjEpz^BRHa#den`_8=a_Q<c&fK%cL{!u$0tbBfY*VJdl{aGom
zv=dWo50q>va@_uH?d<!}AGS0y1YbVII#+$M_Seb3O~0Q0ZW4Zo*FijL=Z(no-_{2C
z9lG|tJ^I{H)&t!oN6%S3U;AhN{q-A4|A_{PJ5<ZFZYr8l+p}p$=*Rfj6YHxcB(vW*
zRo%EoCQW$$>(K9?{+tw*KgY^2yW`dKg-d_`wez}Hwd;*c&#e<bm))snSo3htrJBF1
zyViF<|0%DXzt_dIoK<g<@F#T!1Ht46Y~Ob|to<Ao!sg}YI!TNnd-9fJ-|Kq2p054F
zUBCZ1-#z>L?4H~WTj#Fd_Q<z&n%%kjyn9lL@zJ8}4QG#DD`6`&HM{U*?Fw(Xd7tli
zG9(AtO`lY(_St&+k8ie&)nE677O1{lvCX8M|3HJ=3(>|$diie-Rjxj^x+zJF;mEHz
z#~)!;+q@4geZKa<>Zx<Ke34*s=sSGk>)-pOnqgmUwrf^qPgwHw8AC&X`qyPALJ$Ae
z>^&X*P*`ut*;ns;of)oOE>voZkN<x6i)xW7_s)Hem8(ze3A6M(Ez5AAgm3jWDPhAU
zu1n+h_FgHNw%u#1nX0<3A$Nmk?6rmG`Bko$m>x^We6;GhLVoL#yFu3vCtYG#qrT_v
ziiG0nTTC|nU*~%>@YVF%nUlm0<n2>$e6v+O^lz2whwJvTbw>YpPujlWRq0BV59`*M
zK0j1>@6>*K1`CrnQkAE#zkc|ZBeh-U`Sy67`pi{ae~w<QlK*i1diFJ@6-%CGOkm+Q
z&zm~;zsAEe9Wk=0PuD8#J<&M7#Fg>W)#{6DJT&)a-O#!k6#C>($}+u)+KxY3S6_XT
zb1taCY+3cv`W2Jxm;c@xw>{z6ugfQ^7x8Pw<lIg<S}y6ck~QFJs`<4Ufot-A%2)f%
z+WRTA;6ZHf3DMnix2l$~m{*mTT%DHEpeLo{8|^v$)Bb~j;_~gmWz9d|+w2SORFBaq
zE@e2g<h0DirJuYWOD&Jw;UoR9?%%zn?+ogte<zhCJ=JZ<l!y~neb{<dX>adyKc~=-
zJ8f3+9rnNX;LRny;5$`U8F*69bLn3`>B%j>HniYcTfDs7lSlK;bkEzVa<ONUw6FWl
zISefZGG-StKJR1O<{Kt^G&H$6)!c61li#oWTjw$^nE3AT{hcNI?_ZX7^@_j$hj*TD
z<%Gf|!6z)OD!CKXtW6Z(=#+h&zlHZ%{%51owX%EiKJIs^<W4YBy6z&h?2y*H35%8q
zbl-aO^ojE6<?9MQi7}W6&6wJ)zQk+d>u>q5tn%NT`ag~FsND7Wq5dokJWoZv?p;24
z(&E>q+V1^k5d}qC<5y<STr%<UmOtlnmrVC#Y?yxh@khZhqvZ)d?mc+xF6Z^TYohoh
zEj=x}zm<P|xBg{h_$M6teA~-toqwYDKgX<@XfkQ?x{uKeYtqiFvfU}U((MUX)Ti}d
zEdHhjUHAU+@I*9&PU;G&y;mgGNG)D3#iJTkv?b`#CJ)Pc9tZKozVqxlnjTN!(y~^p
zerswXthS-!Zq9e@N%{}{F7IPC*uHR9v6Yl@j_CD&vIqX?<`;F(GdIuMeo5tklvuXG
ziNM__)#H0@_wX2Y-i;HT<{tAYj+b*{z3-omXC^Y|q&{z5t?k;oO6tqyze2xVpWi<7
zhFSK*r6(NuyC!dENZVRq`c1K(srB8f(sH(Wb2hEi&T2k=XN9HgVo<Aa+R9_+&Pr@M
z^nK?&i|;}Ar{2GF^}CzyRp(ijTyN*kv1e;|$96KJw)M=#soUn9`8nm|%+Ghjg=X|J
zSyxV;eC_v2kmFa|-rl~<;?ifcsnguAq?vVnUc2|-s&8Ahw=$Ja%&p6D|1HMwc$Q(#
z-%tDEzWy!@jXnCK;NX!b?`v!SU03P}j$gpPF@Nej`~N4R8F;d0R?gN7KJjDXYl9zh
z%hr8vTleVk)k)$mR(Ecltmpi>T=<za>x@fAkx!<332SUA+_}29|LMo|TkP$7l+`8I
zeLMT}qScRI_uJWLd`L=r_D{ZU@g7!#y`4=S3sxQuTcGFuW$rF1_U}@gug-U0=Qz*j
zi7vyjO>Q@&D(CN4zFt`!dMI4veLwgAT`ea<KP3IVHRWS8!)M7S6Zf{69tvCI*!Quh
z=IY6cpEvY(O|^UV$M3)+;n({?{@?Dn>Xnz6-L8ELEer0xo?QOr9DB>&|G_uAZ>*L#
zE9U+r#?TyPk<<IY$hg(#m|#UO-~JWHN+M6rxBM9~@pr&IrWt3#=60G0STy~+F0uZ-
zMUhZUSN}Epm(0Dj+MDl5O*enMo#ELgf2E5%u3mchV(H=k6&7D!)tsIGD9cA8y86L_
zZ@LYcYiy_0Jk+qfyD;{g+OO4`8tK#4%N#vl@Nw}3Pyz_L@oU4Yg?I0Nxi{T^f7P!p
z_Z3R9U0a{u)T(QIqT8Ukc9w^jS;8@{aI?}}iJeb$8-D7@Z(G)<*1pVQQD5-+a(nys
z{VSWQRr49oEUaz~x&2A;)AWUWf5PAVc)@)3{_{WAR!Svrd$o0DrM+N-plIdGHS6Pp
zr}fvwJYOw5t<-X9^_y#6xyz3!X5VK@5UHIWv`(=mZ<XQIeJrf&D^_k7a7wH6Rmf*N
zlisLMlyUNL)%&GVHaV<ry^e9=Yiu8_()ruTz?1m)=Fw%=)86N8O=}mpH?_v%e3qYo
z$zJDq`^se!<kh>`&F@Wqbd4`M*dkwYRjs8_enZgXC#Uuaf4DyF?ga+nNTVXoXv;-P
zPDSO>&DxW0Zkr;%bJe!zFa22(bPk2>c)xCo)cs4(x>EK@M7-R4C<xRw+LN_!;_7J{
zd)YVzGd^g4+WRhG<$SlBlAe3!a~Lc=n0?U1TTbNRz5Ip=H@^Iv`KMKrU)|dDz9vJ?
z+YOlpWjCttCw^LN`DTjFr3<S0j28|X{av_N)8cH^#J4`ngPu&<&XDn3B`r7l;Pg*+
zlQh5iC;i{hdwNQ6W>3w{!UX?MVhp_*m#bFoUGb>+_eN<Ml^j;L6_Yyyz3!&T&pws&
z2&CQd^tDPpkBqri=fyasWiBM1$~1enCZTHbc7|!D=WG@|e&adofY<lyj!UoJRBY5t
zshe<sGw`%u{e<KjGq-FC<C1#vgh}9a&AOixq*nWi8kFAfTJa<M%<Y*rDzC4H%hc7)
zd0n(KT-SY`=uf@3(G0;{Ip<&GwQLYAb^3JNOI_t|f1%UK_*(AU|F<y4?QQ9qmA}pS
z<d%F!pOp_5JXn!`CdPF~&{E@&BQ_K7Je+Z_S9HE9dtu#Yle*2HKE2kfm%X)}K}_5_
z{rmQywfal7j_SSCD%N}v7pV5<6~E{<zP;(Q_9gGBtNrTv>e4<|gVl!**``?dRor$s
zsHMAq*UQlT$IM=;%4D8aDY1K#uMwy$B5ht6`|D34Uqv0`3SGr%Pfx7O?&?YR`myWS
z*T>qn+dBoD&zJnt`~396x9U%y!XH06v0S3T>)h(wj<Xz&t<0GH@@ks#Kg%`dN7hd1
zzP97tZ*~Xq{j0v++C0B~M(vWoO@`^|5=TVJkFK9<5+~PiJ9o*?`|O#q$tJ;f81}P$
zIvve0o2&Bh>Qr8HzX#1S?T3GURcFds8-D6$K~7kQ;Ij6m3$C+H-OjM>+P+ThKdS3_
zvsVbRoj;rX<YN9Ou>;ql^fqf`wq7_gHSNO+t$fBe+KLQIuVy{gnP=NQady_RDK`Gm
zvoB}wv0>PL`>IHc;%oW#oaaxZ7j~N!&pR2-FniaWvl{gqk52AY&#Cl37uxYrT<8Dg
zYIcSf?>7Xk54>zI$Itla(vO#kiBtXdeba4_b@e@7u*0D2%`(4j3^OOqPM$q+JHs|%
z>x8F&m=&3~spw|?&MtiMantlYtPY-wLYFaaK2&lj{??8^w?R2#@0LpGZj(b{ywCUc
z=GHMiyU%o^V}q&A-woNH>y#Ku)N*wF?=jtIJ+`)UhgG*>9d`ovp=&xZvs5$hGeyh~
zym4Xr9@Y(;e*gU^yKT#Y9v_RiN#BJTuYFm4E9_1G$*)nfKSndGerb1A;Dh5mrik_>
zTj%|b^}oXPM7KfIBWiPXtlH!4(^O2E&-h-7nzUU;OgW#?=ZwPZ)|n-Bs=tI8)0W!Z
zyYSn!e69MTTJ8j|U$e^uET+A#elvY`qRA(*12rvc@22oAn*a10hvk{bzNgK5SPdi-
zv(s0zt$*@Z>RX51iD(96!EF^$Y86k<*BhSOI0sZ}ehReIJZvfBC@+`v>z>o|-#;sC
zlH51&df#K3(RuxHhiO`h=e$!Xmn;K7<0Kh(l#Zu<$SQLeop~x{-ORfGU+yt71o1>H
zHrR1|f7SaFjV*hveokh*?gC2FymLFJTz&erd(+u18!xW9&hP$P?0^hgO-g#%+r#c3
z?LIc`oe+95n&I=s9j==4-!JuS{P$7q$>-R<i@!P<9N10er0;F7oV5Cue@gxzu>&l7
zW_pC4&D+qIEKoda>!<S2-(m++T6D9j-6kJ>x8=jl;Qdc^SpNNqejClO`0@@{=IOzE
z#s5#!D=%7kFnVM1(I>hM7faVKy5YE4wIOZid}IF;$LGKHXJJs<b-T#wx|+~FiKo9g
ze|}A@<Yw4$_tEpV8@d&D*PT0ga{sAlh69Z)b0+S&^+o59^j^DvF87!i^jMztd={5Z
z=Z}8x<aZ*zvGlE(LxbrVqa!nFW7?LVzIXEIyC<LB>?*kvm_CUe-ZjVL(Ff+;caQxN
zW^5>VZkv7R+T^dR7#o<F!h7x+<lNno&&a@P`*=#)TK;4CjAsrC=q=lPk|kF0AN#Bq
z?S@!Z5P{a@fL0J$8W@^`q(N*80|f&G5CgOdh`0qr^toi!!VtQGs5GeryiCY5H!(ex
zi^w%Ymlp~$G4i+`JaB>g@ARf6vz+g9&P#0Th@HM7|K3}P2djVYXFpJ-)woDVW0V*T
zgVA(AMmFfbe&)>Q+A2NE?QbHiUT2+NqiS7e`I`BCjYR>daDlGhOU+9Gl`i1i3}#ru
ziykA=iypeHU9>QQmOQ?R#n}qr0y2o~wTssMIX5fi9&FVQt+l*d{LC#-#8QEkQJI75
z$q7Fh34sGXGwY}PZ%tm#_vQ#&&ViYtH$*rkC*Qc%qY*so_Rg~KtNSdB3etEcyq5jk
zT;1{f<gSm`UakKYSA9L2bx!c%x?kpReGgyx^)_3e&n4OAp~n}N#UFlIaV+;YnEk|6
z$nRL+u^qpf6>9$W|K42x_0RX;hxPrI|ND@7``6*y`@XkFXNLzDT<Z7y@%HuWe;?eh
z|KDhTr_GY%y|+Nz`{oZ%PpkZ?6v%scW8w?TG;Q|jZ};ta#h*X@LDkLa#q|}o(`9?F
zeKWP_{4I6o__pGL71w`1usoN4_iOuYgKz2m{`LA2kLTKR9qTZ=_q1|DQTFTF52v=O
zJgnWxQmoQ$)xpH@LH9*81H;xYx(p3bzr+|EbZfa87EIg6$`IgvpNV0`(tJjSE0?x2
zFl4<%QMUHs|Chg4ZMF~H_NhX&W%2siz5D9Re-sMz@yMtB{5x5p=4Yjl-#*R?zkLZ`
zU+MqaZ2w#9$D`YsJoiFe?rZ(M`TD`_i2J_#RCjGP<8!Y6F{ftfyE!rwUcC7G;oAlI
zy8Qp!|2{1H7b<XW-}+yx74AgcmTP*W`QzR57v58@r##jDx#$H1r``WMsi$y$P5K9^
zn&O)5TzmEV;kA5v>&#fEzx@^YLG_e*{kQhN4_AM$zal^Hecc85zHk43{fgXB@agXJ
zwOh^D+IL+L+mrI6hA1x+5i*DWeOSN$@8aXD@8462H}?tEexEHcFR%H-FRQsv18?{_
zT39`9pU?L2>3#NxR^R_CbGWzb-Mw@<R-mt})Z}EDe2em7L(b`U1r{0KyY=hS<$oWZ
z9)14z;aj1c<zK(7vfp!mezRd5TXN3#>Hj_$u;#zt{=9Yj<*$(&R<|c__}*9l<?p`_
zU-Ali<>&v4tFM^RH1qlG<$oX6a-RFKjYWF>+h~Ej+!@W%Ck)uwQ|?c?oq6avN`w;O
zJ6y>_>YMogPq*!>>eM;n?f4J<7HZjEEYR0;T%~4eOMdeQ1J;LEK7|VOsafukZ&^Hf
z#+g0;4%ffqpFh9;n!Mbxh4y#a-t0YVaQ5%RmleXg_wwVfgM4>eIjYij|2zKt=f4&9
z#QZwEcI#iEoGYjAvq_iMXzyrz^ZnqB!)F)T&xzc=sP*~#{kP@sZGZB0(bk{OGV3dL
zap|o)d|UoYdwcQ+ncH$P`nPL8WbJ-`(DTmq2LbNp8xz;m%)I@5QS0K3wFJ{Sk-@UI
z^7kM8`+q8<&;8}MtNnQTf&Se)U)#UuzU22mdFpeiK;N6&QZ3gXaBeePee|%vllGq%
z<nQ@?|NHRi*Ubq}pI(x;`+xZU_jZ5#|6A;9ew<|g`|zQ~_xA6_MaQD8{~Y}N_o1m}
zXX&EYz3;2*E2=9v!tB(;lPcnF?fRO2eD;$)D%$)fPhE67n>KINy^Z{bFUZ^N`~3Uj
zqvPM}WR~RrH{iJcM};GPAJ?Jp|M%KkpE>{g@b9Nr<mLFo4@z9rz9{nM(zJbTY`Zn5
z?6LYyjg0W@>A$1b>o(^9<*)m6*q-m-l@j5W=ez&C`S)x3--k~h9?j>g)&5=dl0W~n
zB}cs9MU~Ux@!udm-($D?J^%kt`v3RY*L?q*P~G!bV9lT7@?YA&|9+st7yO|twQAOz
z|JSyKum64c_t}m1Ha*1xa!t;A*B-o>on5fHlkaQ6<UPH6ELk3gn3R>o9n+k@EdQyd
zlrl$ualwl3Po`$<s=6efxAyJx2cZc&BAb@V+j$;3sD1t0ulK(WzkV57UlD)(UqOn*
zq`&s9(N>W)bDFJFyz{D@KP{Yk9<u->GGU-8GhNTW{@$NTiS~c&^Y{IVKREx^wtsK-
zu|IrUb6<X5-n*s`AJrt1V}Bj~y^Bpd-tX_jD-YH0zvk!P|7Vl^pTqS*SD!6^&#GQn
z^V^K$zD(1H=x|6viOzm(7*TWod%{!8ioWWin||T`zYb4K^!OGe)c3Ap?bbw}bB`r_
zh1S^k1RJ<1SzUQ}#<PNF-h+Z2@A$W0yY+DIzc>FL?f=@o|6|p!+0*#+)|pn$?2gOb
z{`8Xkymd|2k33j+<<^Bwy0W>;%~+=Yw2*I}y8J-{^$N|;`*idF?a4p6SbzDyH~Uz<
z^Oyft_+uoITr0K4MmGP~;lm|w`17Z?|0~F{IQRGA$IJ^m`}1R2i+v8Bau%^;X|IxK
zQ?OCj?mt;LkN@w(8$UGeS@1d=xe4`!$t_!%(R1xq1&3av;Z46>u6Jg+`@F;U@gAC}
zXnEzLM6%Gm>G$XSjQV$HzU-up&mT`eC^0?#?@hx>!&Sm@od;!&ZvWT4<9G2<@+YI|
zF--lB%y=0-So`3s6wx9ZTiyBDydIP_?oIQqued)=VGmpKo978n-#%Swe<!cW@K%X@
zi}2$b(WmXJXDisS&8?o%_xE9;or?DV_~?(<TaK&9^ct$TD@X2pTP={cme={>qw1nw
z_f3n<{TwZB%H`H+bKYltXkxGWFz4y*l&ALZ&)5CYy5T*&^eumX^@gR}RV5x9uvV|!
zT6VK(BY%6s$NqVBQfD^S-I*_Y{rbsMC%Z3B+oRTZvO91~k=Cpfk1~&vLRIbG)F>0c
zt&78d>;FE_|F>s-_J;?VUjITayuH>Q{`X-mciKJu=L$7(zYgbe&3o|YT5NsAjJ|^s
zYkNN{a>%cn{2{cyqT`swy>IQtmnW~9D&Mbr<7%#l-t7}IZ(bSv$rG^KGr6T+swMjO
z(a#U&6?o<?KfUd1`}vcn4(@t*W@4d4*CA)2yobkmE?&I--8RCK)1CcE+PvR~k3T8>
z^Go2)Rr{(*bEf~D3~FQiPoMVQ{Lc>i-$y?s*59C7?Kq1+zy5vp{u|r=vA@54Ngf>Y
zHZkAZm2W>)<ecBM^!tMgz3r=2=E(NGeC1hRF@yi0%JJI?eTS<ZD{R;vCh{FB{g&|m
zx>WPqD{Yz_=ijqEJZ$axWBK2k^J`1r@$avZY|+2{`CmbHuIIZ6ffcvEXH2SlY#`FQ
zc;<7%it73~O|iSwj_=%Bre)o!?|0Dq*z@&G*N+?)nKQjSuW9$MyP*Z&E52J*82)-x
zaalg^?O~NWcGmw_*w;i}|5s4LsS_QP^J_5!Lk%~ssvk?s5L+gY`gR^%DeU8u+q>t@
z`MlGX5tf_YdzNt@I(g>esmCR6`2GFuUVsXt8u6Cpw^w}-usLoP$NKQCNXu=hl<z7s
zlFM}LRn-f9_`ZIW|C(O^@e%vqhrds&a_D>4|0vz`Y1$ouX}UXdqO+?v{V)mJyHK`$
zp@xmRvAg#5&T|#3Z4}y7YHZK{eVFm=v(%mAcD4WZ*w>Vc-dQnUhVSpg7Z%&E^#vEW
z@AXsr`9MPERlF@r`z@-)zSOty|F5$5-<ba3;_GgeKUN&?vjzHif(7oKbFA3MeJEID
zAMc?|J1d329q&}~mam$+c;@ld3O09BCj0zfWB)t+yx!l3zr6+Q)*fWERDam6y5nlj
z?|brc?F;Sa%sT$SHcMokw6)aZi88MgBY)1YIe6{XSDWwc^<SRckpDM(`oXoCT*u#S
zS6APd*OSiA|My{uzN`92Elzj#l)KyhZJ=JI_GWth_pk9j2N!?;y50KhcA3TJ4A>uj
zoG<44@u=$Q{pBlWF23?@e$$5!j~8j~i?Dmc|NrjaOY(NQjytxN#Wi=o-jw_I;nTtv
zWl*|(ZdiT3az<11Wy8onGuFhU-~Rrupyb%%&!3(icCNRu?F{@k_x0<Hk9E_ZNcErd
z7V+zk+y5e|v(GL2t>Vtb^9~*Dre3{tc;DZ%v+e6Q*4+62Al`P(--o&Pe;=M$di&R5
zZ=pUH?fCP>^*;=JFRIiRO@GS#TivmO<J+a<>zm$wEZF&_{e1QY@5KdMCNGM;b?B`~
zY)ol*Qi@F5qN&dfE2Je`qqBpJz8UT;TI{)O({qWnG3D>~dcB*V@4x(C0k?jm`19f|
z75isDv2;^6yj5}0cl|roFDE}nY$@V?Z>B%#tw=8ad>p+pY<Uk?7QOai^ZIl5e;s@c
zDlT8&l8>7-^?L1l{(R30nYMo)CbTS`S8aRVbI;l24K*fZCC3&|{xKn^-}`1<*EV;R
zTi%)b^4@s-lIeCyb`kf^>UzhSn(VIa{_w@4u0zvRWbPgbTAuon-(Kb6F5|j6%l;KS
z(TcR3Ww}>qvD?Q-GGFF|d;WO$YL)$)&m{Ibar*D<dB5fPe;?G||9$xMHqqACJ%>O1
zuWq>(WxY20?xW};q4OtIE}jas5PEw_(em-<9})M~xk!JV*z)?^kH-`59zC^gx`xc%
z+)b~SzA3BXd_RHzbkLR`;_J`<eRx<zX2SOM{eK@?1s7eueJV~rs^Yh;U$DTwoiF+C
z%Qk=h6cJ~@z)%;C+BwGQOuWiW@5k%q|Fhw9{@=X4_C3G;?J$vhlMP?FxGxSV`Qqm-
z5O;dsBat_|&3YZH&K(MU?{I1A;u?{@bsrTu-OqmrC|j|A@uJT{t&63dO609U<>Jwo
zSLFB2dj7AVs?c`tu2=lmWA(F(;ubxRs5o|gt9?wlb?#LC9q;4fzqc=cac?$1GlPQz
zrHz})*!zEee)=k3-@UC?pKJcKwf290$+Re6JhN0U+rU#~pB>NNhlL!6+BG@i&mR2U
z@>ry0@yx{^Y|`H6E~+s(Ii;ol@)h}YvnxFgExoq(6`N3{O8M-J>OJ+<x8?VFg~c6O
zJaO)!l#k!@^L`yZ@3%Z-LS5<l#}nO)Hg37bce2dN)%|_VyYs)O)?WF%D>wh&p10Ni
zn-_n`yjfTL;(tVQ>+MZ!+ShFldK;C9fJ)&zhc+%gx_BdhaQ(Km(FSf?Y?Urc>|x$H
z@A<zEg<gE_+3hKlcIwo49Q$|Bx4_|^^_TSM+xDD?4!57YG_yb6b^6a+@_p-$ypZZY
z_v5Xih2cesiK*W2UY#t=TRZnqjloG}ONCVZ;)%O-V|P`QtXOPVL$&VePig!9!vSBW
zFEfm+y#0H#w~^ajVH=;&<ecgPlc?-qZZUfwM++(ID9fU1j(h4cXYb#6vcK%9bNvss
z$e&i6+pjI#_{y^Gi;AWG>w1nuzolBvKUa{E{Ab0femyr^{%+kB`F}}2H`xEVX}R;v
zc3lqj>Xq;KcB&Y=o9``oW@)K#QDteecxT_Sfa?NX*Uq|1n_6|+QJC~V4V1M%4Sb<7
zrvF;%&(gvd{Oh9)j@huTEtF}RI$879E>{17bvnD+HD{=B`JeQ(QG5PW`uB(HyFt-)
z_TdHjI&DsO<Nq&jA3U>m>$ZBKmh1h^A5?eb+%EGv^jsk(o#UK$&R_k%H@`1?uxC&C
z@4)&W;`((L<kuPZ9yFC}J+8Rps>{P`QPI;BX75qE)^|78oA0Y~V7W<9>ExR4=eQUS
zly~EbKe^2NRXYC-zU<EQ|Ht^b+)(E4dezd08P6`y`tw|A?N+hB{{@d1e5|{FFx${l
zf9p40PWJz^j}`L#b8q&zoBF$=hW-1O_xp}-p8iU&@jq`!o5=^R)Vvh5kzdegDrn@_
z)Y!}zBn@I)7!RshClmO-bqf>d*e_YLPIId(LPBS~+wT>sw_-tq0w)vWBqrMm>BcR6
ze)Bil+TMLDs?@ex_FT-onIC6flsukUU3JT?ze_kIXUpQpqWpY|m{~aQnz3wXU^shK
zLDxfJi3-cb2?Ba<Ld>T1A$jl5tqa{6G<|RRtG|Db|E|e@yY+h1fpxcj-<==5Mm0Og
zZEeSszYE^=bfjOp%C7$<WcOpK3;XP{*904UP*2=baOcd)1(mCNN?kgWbdTTXi+Z(D
zpfv3k%a>)Vzjs#~Wo$QF(VwUpd7Qa%rP5`l#>bIL?^&6=cV~r0DtYtX`pBm%ytQae
zbn2H?J0$nc*Xo~L%CMC=V*0!pGmG_>72jHx>u^?l)j6NlPH(r|`Yo0v8ex9&!PaT)
zOj|{@UA?rkm^UvuZ*CW_u(-P{YuXo1i7gK8VGXx#M?5#K3hi-zANaIT-lFjqdxW`(
zq4D#OO9g($1@rE|wmRQ<>!`)|mtOC)zT~~#mbYQr)fH=x?@IczEW$dSeM#P#=Ssi#
zmKHgjlRbIvo4K?}y~kUFEat-%p-W!NTwjs8sLTvx+P=d-vyWNIwtTjcc)ri|rEJ?h
znXkKK-QV(DySm_d?%O$6!}$K+eY|$l%STr%SG%4n>i?HoEB^MSsgk_p7R%MQw<fRX
zwPP(^zs9&C^vhY+{J@#7c5MA8xZtV{N9k@MlhVGUC4RTJI8JYRR&C}ocjmSKN*C(v
z-Cy2)!TR=)&5G)0HdUO8EduV7O?_SVcu%WvO^M13Z1Zpn%=CC`dgW8;p4LRSMW6Kg
zK1ev~8b8~7Wp#zX^Y{0aW?eRWYj~w@;bYyXwy0f~W;aJIQs<PEJ0Tpt^?v-@NqZbz
zFUL$=w5-c7H)+A5l`Dd8Uy2jIQr5iv!~@y>TXPJQ17*JltVo`bW$$<7h~@PD!hdFN
zCd+eY9sJEMn}6Bt%DjLo@4(I9%=NZcs4Cxnf8KApq0x#<+C`yH7x<mkZq_<pmKDG4
zdavn~nVHIg*&N0~AD%7v-tkbva@FHL&l5*1r%T0be{4~oX|epJ#rgQf-@TV!-{Hm_
zD82HIGjqV^vQtGL<NO+b$pwjK$-ll+93zmXqV>MKEjdN&ec|0{6J{3cL>JU<e|5)P
z$31s@pLv1U*56a^v95@;POUX|Jz|_W$=$^$-A6!hriJp7vhOMV9VzE{vW!7el3Om^
zdwqzPb#Fxv$8qs1GL`S|J{1xyT)M->B`9duAH{38uI|XIR}xCn_1*H(;=5!1j;|Tl
zm%V&rYMyn`S5NUs*^XZw9UfV$Iy$}-mR?Ny%gfz2k!8l&%-Pct7tOq?>ZF|bF^qj$
zl}p<8Eoa0E^?5_8t+&qHXnkfuUvfp$aSx^kHO0HmZBBoAZr$fQmy8xKKG$99_*Nn7
zw)54QnW`(MO1$=9(fRnB>F1<dL2>scX_d3q{8OEKt3RoHhM?^66Z~?Ezc)YsU30zi
z9KX&htMgBv{<eBGEg?3*y5$z%n$HWaH{TO|q3gIlwLduW&z59=&m*Y;n_{xICYS9i
zyWYV$_y2D(wFh0R4Nk7x!Q~6V%Vx)ziq48D1mjhEA#PCFVdQe;$6LJ>A8%Ke%s8uA
zSIuwxo%0HZ;<h7?YC6U2_w0Lqvdq@tXU+S65p~;icbZ90x;K@vcRT-`+KK0)xzt=H
z=E&Dx+QeDJ_xrHTLLuWjZR#OOKQ5X*o&F=``1+~-)py#XYF{jO^4YRC&}QML6R$Fh
znEuOOKE1ni(%Yz*p3Lv1hJP|<e==D1+q~7|5Bt{E6>s@N(`WhVAKk@YGU=^<w5hG%
zFV%_+k&|V*Q6D9gL1r)Ie7?oe^8D2mS6AQXN$^;no_JSaZpv?g)ys~1-uGU2Jmq)O
zR;iO^y62L2S*2ILvAebG$rXoLe>Sp(9{R&Sy}_)+cZJHXnPwk^e74yye(3vq@zu{R
z9EvSp1k_^-JD2>=srpqnanAAjk`<0mrb#aT7CYg}O#6w-N|A?OC6&+ktQ1*ads#gF
zR{ui*y`2wF1?wsuJ{B7$KVeFtWznwS-Mi{*9q!0RJuZJ+nj3X{j^DrIueZ&ge&zVC
zbDy8=m)ifgX8KP1icNd@t}phjE@8{~pPk-eW&E~L{`5q>;`x;uiffytIQdnk>Tj(w
zDPtDC)1SPmT2t*%xJK|Jd-q(+Yq>${XZ#nId8p6*x8Q1VM&IPR$3`ks^*2FO-<<L4
zU3cdP##81TF`ZHNYj!*R{nqHbLiVEPHuEUk_PvZdu0J{PA}1#B?(f@e-(SUr+}l69
z=a%1^>e$-%>shxhw))O1zp09=nzeHCCYK|V=fB@rrBb#eH*Qm!uZZE9&})BJ>~y~B
z`hIT5tsf`)1h44qR(9g>l(SLG%(&!e^0H+09-nQ;=j@#^Yu~k3A8+*B`VhJD+|Sdl
zXWL6Jm+bkf82l#fmerLo!<%x+|5j%^-Fm<KE=bwZ87}`rX8M_{+`fOnYW}6)Tv_|M
zXEvC7Z(DzS*ZoD;m)Y;URTA+`#XHA9?1tvtb1BtKH@jD6#uX|Gg3~f2O~0sk?Y!*9
z*)63j)+TMTJyzj!>B5rcj7u-WDre@XFPZ*e&2rh?E6un2R!n+qzi-L&li%iNRH`qU
zwrp~a{GoemFCJD8neu^CRH?1RG<vh-fh#|wXSl@ozWmaAD&=>6Ky-KMRImJ(dRMN!
zR=J%XVcY)f#;?j1;m>5t&K7$<xOm`2{577)-}`cYK5Sh0`$^17kIc<q=0+Q*y!{>Y
zp?Q6qZRHKq{F8nk{BEXx*mixV%7=`EC+i)oFY~`*vswSCuWk$9mgoJECbn+3o~8bO
zcI#lY>$l!FM&ZBB<$Z5!#XeiVaWUVsExxOFNtx`Iezh;8YWtl!jxGBZzB*$vJ5K(_
zuWHX@VuJr||IS-IeR6G{{jaRmZ)7I_Oq+RPUG%=+m3yzSZ(TL}*wh@MkKg|@?O8cr
zde7U^?_a9d#YqM3&gHnW_RgA5^Y*-GU$E9b_2QQjWefe|`}RJ(ymRfQ)vse@f0spk
zy|eDK`SQhi>eudmczGx6X78<z!vWuST-tqkHtVf*m5Q&<Z26)bc3x4jMPO3Pi?7w;
zmGj--rz|#~RrlWPp{z{&x)sOf^xZlgF@5plzY2H$G=4i>@b_M)+T*Xk_A(#7u$yUb
z^i<89vvu#y7V;c_9^CiS@QPUS-FC0{>jSj;?<U`MxxMtw_q?w%Z3nLTTR(gCwVItR
zF?O%t`U;SiM1^_B6`ua&bABr{H{_4U6}DB+uT03XU-ssE-fQ{EIb93iSM8{K?_mEW
z&*6R6+_;Yqf9<{95@pl>|H{t%7n{%C-qL9{W5Pc6;L9_Ue0;U{l(%}vxG%oh{Cknd
zHvi5;*0I^^)E1N_Z?|&d=wzR`Y}wg;iLS3qy|1{>xwb8^?1bXUZx^I4rcX5TT>H+>
zD){(s&TG0M>O1bcp0&#~2(_w}o_9PX)#~o1y7xT$UKgLT@sthR|2@5Qk9@-2z@_H@
zS+Xpz`S_I=oH;tfrJnu#<K(#^HIIJn{U5*j`30Hi|3We<vsy|vscwEdCE~qqaaOsQ
z=Hx4av4yVB{<6FlTP1v_Y~Ld-o~eHQ54u)gc+$1nVB_C=l}E2SEBX4i|Nka;D|_0C
zev7rai|e^%C*|<36?Bs6igr<XzfD+h>7?da)kYcS=HKr8{#(Vn{`tDX#9w>0_msy7
zN5+1MdX{p*P2TL9;B&*!l&A%q^Hp~E|2%SVec<QByL-Lz4YTUjXb0H86nMuedNo+>
zV~rE*@jZN7eIu@4fAv+(HgTy(=FvnSef^-X@84}^-5Ru}+VkaFhg|h*y2cghNxP~d
zXVkraFt_Q}?1=55FX#5%s&c-|Gxd9;?25gurQd$8@>f!ST0HUZJ>eUxe{Wb-|9xlG
zm2(NPYcEB&M=4(mmD)4)MzM{t&;IfYs{*B0JhpAQRp1=E^i=j0J@>WuUa_j%9@x7w
z)GYQ*rBGG2eP!I$=IVCwE!TbqeDArmTXe6H_^W3ts_UO$S^0Z!^LL4?#eU9r^RKyH
zir*8v+BLWLQnbC0$^XLv+poT2Rc{e+>JXiwI<+{kn)&kSm#3x_^JN{iid!5eka*Wb
z@Z&l6+(~`kQ?I-WuYT|T_A00}Ja)9y&~uJ~w^qLETW25r|1mR*;`(l}M|^+p^}epT
z%xmV7c@4L`)_m67+vf7OYK`?Ozk>M=xx&|a!>i=CSMBxW_b~LXPhWVAU-<0dDJMTN
zuK0R%m!Q}C4--5~jB`UoPL?%)*Opx$_*-aeV3vNNQrh?9_ndP1?>(QrWY2eV`K@Oo
zrmz39Fa5%*l6QZnCf{Av5p*N>R@@c4&}#k#We(5hJys4|Z~l@q%`??Ji`A;Lpt;;D
zNB9}n+jRviD_Xzj>E^3teSgt2^ZPwc#l6#3Tsob0-sSjlX<sYbRVmdbvzG66lW||?
z@otxYTxqw@|0k1QD!mK;zD`<o((XL{tevvAM6QIrtl$pNKECUs*ZUIrtj|tYYd@VV
znJ984Ea`5&#$LAE@Rm}?T)C{(8}wXLKKPpRiWT<m{CUhysWxv<WzTBo-Ire7bvP5L
zwCPBE+smidL;vm$HedKn?V9cKFYlakEwAYsRj4QKs$#9XmzQew*YC=`W4qRRz2Cbc
z*Wk+C)jmhxJG_-$vpe`@Z06TIg=G$h&ikEwes9stgI~5^{?JvidbUC1oYg*B{-Dap
z((8T6l|K`gF1)?P>q=MYq_?j(zEhq1*vvIT{7RhL+4j=BrQbImS!a7uan+ZiszZA&
zF1fteYn%Jx$}M|Z1Ri<Z5nOUPKlerDroYoBfApTAJ^5|a${*HSg}%0>?B3qB^2a^C
z`2n6UgteBg$UU-)G3-5CQeR}#Z|*C0$4aU;8r^*7{8o8Qb?nQ(#}>>DT6UQ`pj!HM
zjo16XEB3aRx=+2w?zi9@<F&i%zx)cQ7JmKj&a1l)KAwi&+49bBO_uG-p5pnQEmi9u
z_tNhkM>0R<)NhvQQ@WY=A#UMg)2x{*LR}|zt>0Q@Ef9Psjq_da48Q#b{>nG^ou1HD
z&-iLyP}OOkTbEC@>{PsI_e<o;-bFs!q=P^5284$!^V#;>y&>$g!j+YKm%BBVu>^mV
zUUQGHMZk%plV4Iv(p5E3<#v4Eq2GB+IDd5f+Piws$2Z^mZlzqAcm3nP$UoO+x;Rht
z2)tb8v&ep-&+_Suwn@B}3$8jH5Zzr`e6{xa;jh)<s<$8Cd@s9IcE#E&o<~1tx>rv!
z3VX8Z)M>-3wq7&8$gS|%#vfY6zOYR4S|xAX`ndh&7u?j=-QWG`v)_VgXG8Wd7ta43
zb1wG&hWFRgqxDZu5#2v^{qcFW-=8sBme(FmU$FOA<!-Yoi45P+fbV%rPtC4X%~;Oo
zaJOEnzdAJhed^4WA1dSbB-QmSxR&tYTjQ=-;i31ezVH<$-tE4xu_xX?gYoRw>J`=h
zVqV`nw(8N|ps%4v)Az5OY`gY$_`d6x)|rMx?UncN_>`umbu;gS-&L<|?Qg%!RchJw
zW!5-r{X3Ue+9Gg?dt>k>TdA{~LiTuWihZc+cVrFwcbzNW65{htM3#OQTd*zi`0wE6
zZ4t}Uf3vNbJ%2;p``;VRt^MM+v1+fUzkzpR_`+=xmtTIKdh%Q83f&{Srcb@+*1YWM
z`@gblKC7;||GQ|-?&z0Kr32=AbnOj#<agyv!lu3DiPH|vYrQ2mH>H{}Yj)`#d(({W
z(n)WnH{{hF`nC7Hw#m*%Tu+~hPB(@*&1Ul3mI+JR|K7X#er`)EgldLRjSvdL6L8{C
zENuUKPx-}nzezIRs{0q*xAx4t@!ob)-Fuaj4{vW#u9$7+Sp*Si5pX(mu<m`9ug4_j
zyYA_;OXS~9doZtSmcRN<J6Y5E6;{D(g|;TmP5E85rrPuQ4&Si#f*WV4zWFY<?f&ko
z*)BS5fA1+@@Yr;??)}5xd!sk%9m(5pe|MCy6NjSKjrX>T>fWpDtlYiqS?<I$wx*`v
zJMY8?Z&nXpBC++8?abKM?_RDj{(R0kSNGc8)nE4IUD(#Tf;-DOK>P5nRJZqcuU@rY
zC!o1*ot~KFp2fR<t@F!`E!}uRRQA@ZzFlU$Dwdv?-_M;eZ<5X5dz>#dPhNgM7v%9H
zMw6D@uTFfFHsy=mq$T%%%dCDr(_%)-%kTFRzPbpjPgcpl9GCFbMtJ#TmcRGb_n$r@
z=)}R9v^=Fc=J#IVOTm+t-M3b>Rm=PZ=4`lctvG83e_Z`P@%dh<`*r>&^9B{>&Y#5E
z$bCHD;cYoLlepFEc~&>$(x3f(=61!dX_xwxds&AI>wizGj190ZIkNTZ$^4Y$S1+$m
zW6_)PHNWCXhs=u$b}>>r0<P`f7OcGF`3=pR>sAUnacpGed-wg{&&uv+Ju0&2YMq{*
zUo+2Yl8MFk`@i3Y`OA8W&AIb_?t~)`9@M?h|8PCli9@l)f`$EiwYrKUNX=5P8ksxq
z|0=D1-lxKQ?(O$^d0($gTypT>-+P>jEjK#0J-=;xuzrE@g3D16y1HEJ?-j-#^a+hV
z9P(nemxoPZ!2a(W!_JF(hRIxcZ+rXIP9@K-#lQ9nC-L&V`hHGZFG-Q_<@a;{<2V$L
z%(GZ?-&!&3!3y;dj*TqtU#r!RaLu{;ey)IaLD>Fski!JrA1$bR?<{O*+0xN*B4*;w
z-r2L&yH<aCaL{YIPtLuIKX#nBb4+$_RNUut$I@Nr<=(kDM|~ZC;P3U%_N*)Ye=9Kk
z*<ahN)f?Yw9xhZjd7m-o_R8LERqH&?cz*4uxODkau*;=OmoB*kUAlZp`O2j=ayFAz
zm@oLZ{i?c`(AhmxH^g5m+@JD5u1fy<)$A~SInOJ%w=9pSU8HjH&-RbGY-#xx8P`t*
zMyG#$z^k(1zO|=Tk&9CO>w^_ne)L!<o;&pB=eHkUs?|@rpZ_-X@3+&(T)tM%PyIS`
zQcLsi1uWm)I)C|cY)f)H^lNW)?J|{%I|}939M~JUiRD{2`*-h0|K?@vS>JxLOo+eg
zWZlgblXLVPayR!)505#?{;pZ*j<o74bHy874{Xo5sNDAaba8X-(Z5a|dkfq{rXHw!
zud?z)?t~Nfs|@~?U5N6Fu&HSAUopYrV)wj&hnM?Q{45@49`C5*^h?-ZJ}HLhsJYCR
z2X&dpY)vG-U)|8sYqUvzVgAmgWhcugS(Uz6c2;R-@YBD^bEEFt&UW3zb!+SQsN1it
zw)(xFkhvgs-`xoJN!^;-vsM4jZ(pw|c=B(xrk#e-&;K%&3!M+!nq-Q+Ssj}i);|xN
zodh39^VPNG+y3Z0+N^wpZ^x>?|FWh(Vbz+|<<fO6jOEj=4F5>mJ!UuNPKfZ#+ID~b
zT)pI!fTs}?SHEKG3^%eeslIEbazyFFzK3jk@_)#O_4f%_FYwu>{;rQhu|?qdqa`WU
ziq`_(EC5q$e73nyd);CGM|H*xw%O{pIXAW?v8&$Z+{mVOoAagYji<i_J%eJD^{jQ3
z#CgljJ5M~FdG>zk#V832B~WdrNCUz{WXD(C+V{JkomQLpy3S<FucnH+DPiKj0|g%y
z#C`g`I(CxyiVQ6w&8%6eUn@8|jWvHwbF8Z`+toACacZ*bx>aw4e>)03D*2}=5TP}x
z)J9;2mXYp<^I`q%0>2-gJO91I<Jy`|C8f&nXd4+P4n@ABqJPXL&C2>{!Ld<&rqaDv
z2ZH)fyqPxbW>|llfc2*dCxrIvPtaef`}C>qpZhIes;WMC7lg-blw?)h%d_K=)|M)h
zmK&nsZ5<zOTPwB*Oq8>I`(j?r*Mr<jk&}(GTvgr&*}e7X5VTw9G^t1K&#|f76P@eY
z?$jOKXnWap*?UXr-;RPw+DgBoi{7T6F1J_ubYk7p`LW9DKCfIkdv<F5Rr$+hoo{^h
zKHQvrWb3juIlbQN{^tCAxBume*H^6ezF+Xo?3!)PhdAbYrrsYudpXM}ujqAtd$7V^
zrL$*yVSY`+>$I;goCGd@pS0dDZu{O9p>`+b{>=WWG{4XOZ^2%f)w{D!2d~}q*6aN4
z*RI=Y-`{qB{dD!@>$&sm_w8L5{QAqkk7^h6YMEa>+q&p`_J_RPADL?I9pZg<+~6zU
z%8u_olR9=>;;v49&UAQ}pc99p=jqLtU5@Nd=?r&SHdSnCcZ$f=Mbj=We7YcP&12In
zR>5n&!h-K>uBb`A?uZRo^Hevif9>-<q9=sIOWkk%eXiu{E4o6oG~;yOZ-&?ZVqf0P
zzu*U|nS=wPJ4@{rPrt$Rd27z~oL|b`D*Fp#)#6T`c;~U3UwG%LB7v-A>n*Uxe}VAX
zHF_(0oz~j*Oux|-60^7@=DyqN_UpxFa_5C2Zx!knPCBv0fnn=P*;_SN%#vgGUHU!G
zaWz+<_!Xl-?c=*b-Sjtdre)t;XPff%LDjkVl+F(J%kMTjWwwR<5s}RgxfQ!2wQRMr
znd8Q3&TC}E6;<ASDeRQE{4O`Dturl5eDC$ki<4Ql%Gq4?eB}6}v{-B2(#EWO_itHQ
z-lyN_&025F_&!o<#W}+zk1kpxD*C0@dvDdOem;REvhDTmQ#<m`soFpItpCzucfOW>
zzUSL3_ulv%c+Ot)?>W!P3PjVsaeFFj-Mx1L$2qdf7k%4swb-Lc=lI@_(J|XKn4f)I
z<bK%5d-v^F<!_6=uZ`ZWz0PSeD$Xli7NweX)JuQ;jyETbV(y0?E8T2(aQ_j#@agso
zrV0L;HdRkaNzOl9_pFQY>h7)K{@#X`=1GhXuk)Txyvw0jcJ%E`7R_(+SLVK)ma~8B
z!=8@FSeARyepwZZFTLBrwq^Z!t-VJ$Q|1a*ubF*QSRsGmw&meA3z_aQPCILU@j?2r
z(#>5B=fzJ<U`L+D5MNO%Gefo3>UEd(t22A-uGk&gb$#l+e4bk?1xg*)GHl(x@!aw+
zb@z91s!ueQzJ7Mo?mo?bZ$M4@3A+sEcfa|5?IfdRInUP1MGogmuU##<GP6=Tz`D6K
zUSqGjkICj;3(6$6Hd@_F4m)dpF_B?i^y<*Z1@%*^zv#bSx~=HPd%66nzT(TzMe1(4
z$bGA|a<!|~>v@*<<I<nqZM}C*e8D@-rQ6Reu-$uXkKPJd=iD!vE2>lHp1PfIwMJO>
zlDOoxUI8bLLM`;Rf2Pu-THdWSvhP2yu(XJu8}cA3YWh-bA<e8?eVk9!r@Z_U1RA|b
z_R5#c%HEi_?x3}x@TKSvpUbp^KRynOZY&l1x5C5Zz}MQ#s}h&=i0)kVsmQ0ZKWN!G
zcCE>8ou|e*udi@kbT9iumEqBUOZ~L!mRO1U&uL)4{(VO(^Gq!x-3u+>f4&R8_xrbL
zmff1&;V*UF&i0qGdcD7-b;a)5&gVNAU*Fr1v#*nH$G&bIS?_yiTvTuK-dh=U@>}&G
z)!WMcM?c@&ZG2#>Ozy`F4n?k{xqkg~!~HM&92H)k&|az?v45Y#k-v}HCdEv=Gl^G!
z*Y3>K0n(zY@(y?BO{}>RmT)&?>Gc)1>(_WY=2~8}UHmP|;;~9nT50rlYq?o><Cpw@
z)BeswaOW@ie-B^z<*H@b^M;CFxwM5XX`0M>r(DBjm!E4-e)~Egx}#KIdv7n>+bKpj
z>%_C(C(QMK`8RIPw5dm?>_1%k`9V}wLGAVj`)=jO6yIUrY4zA+W4P7al@&r<+Sl*s
zSlV%KwY56=jp>Tn>x%lU3u3QTZks3Et=VdRDpHyAVgBJgoQzw}u6P?<{rhFF%Af6T
zzi_-xdVBS<O;y|@kw;tNITSY@(N&sMe!Fv?`tAI@H#@)o{%Upd+wNm8Rc=pR`D0f8
z+8H^ExYs@XaXYa#xWDt*ZNYzge#`aC*e!H=!@Vxw@?G!Ug}<z4WTgkbUTxYpRcWbc
zyJ6=(kC}e=o1!$Y?OpOEY{53+*V82T7#nWf$77$r-RPzr>sIrPedk%MnfTYe|Gi_q
zSHaoKzTX|&%Q&_!w0i9EGbUyKca~*G__ZfL{(35<8fm0wM#T9mp4-A#2Y)=mx#iI>
zzGJ5651Hl%zVEHN5>;~S;k_$bv-Q5&aC&}GpZfBPY+K6jn%<B<VP8(gteAay)u*~C
z!R)u1wo0x15x9KeyPdNtbagsackFBab?{!q|DLM-3!eR}U$Az|uPYpiEh>^}njd4X
z+<PJV_ufVCIS2mpZGN`ktm9kBt>N!8-8Vn^5q8Dyjp*Nd2UmYxBfYW9-RWzq`Q>j5
zziqu`9h5GknRfD{&Xr$ZyXxLANIjYz>#37@pwv6~Ti5!7rt5>=Gp~I<#pXKiw0ax$
z_rEWvtUnRoKY3d2r?+#%8_NEL-+mIkdDnulXS+khx^(^=4WF9*^!D0%#q}i@^?qDC
zwS9ff`dIC^;My_&uV&VKP!(c#rR{t3uE%crJ(b>Tu1`MF>@9X^mic2li}vcrj(5V>
zwVv8rc0YI1OHRojS@o5_l6Stn-}m+B?W&(w*S@{gvp%U#@6C6=N6yPUp8QT=$`Za3
zci3+4{%To8m4z(&A8x##d!*TAkKsX|Zd3gY_pLj{ckI(H%wNN|IX=L;J8In}YprYQ
zpA>%Yooq3&>2-A1@2p-U(fm8o*#XtQJN<d{Rr+q8c6l=;DSgx4?-#tko#wVWS@x}3
z-Ri-wbw~DYv^rDg_*N%tr&s=&^*fq;cL`7Iy6&^B`B?t@b1H)QJ_%a$CcNl8x_=|z
z%kO?N?%(U)chwp&27i1Rm7lO<t72D3jmz>!J$3JoRF=H{zRqh~_`<TNx3%0`xz<Pv
zehx15*kAt0CQW<tTge^fVUPFSk}_h9m!6?oyDBiczx4j`!Xpo+C$xX5RzH{AV080d
zPj#}yy2`#Pe%bJMmoHoNNz~{=OxOh;t@s_!a_jxo{J<L>zrP%^SrIL>;nx+=^el6I
z>g>ArOQwHT-(g<2aB`P^l-N<b-ntk6lfc5pvfr=Dmjr$Ey&X{P^itPV_t*U$dK-QB
zmtQ(<*_-`uDJZb&LDQd~zqP$+|JRgzZ<%kE<>sUxX1QObAB!&#`+MQ|?dA8aU*3)B
ztA6Yz*t=c%Oh?juwRa+%o>@5;-_Jd}a&nW!Tg9(-f90Rd<N5?zC4shx0<<h4KPijL
z!pO`FBn@I4fp*A(7{qVgrQ!ZLq%{<#&@~j0{d1tD9^~(zyInPVml#{XiRs_#pT6PV
z6)AC2L0;{J!Lg~UU**f*?vPY``1Aey{6}h^ZS?uKy?45`V_S-}`?<Qi2Pdz5`2264
z7)Q|0jr!Hz-_jqc-7Zh6os&C7_szG`(7$`cQyR~2t$1@fZbE4O)x7WL_Lgjt(f#e}
z`)AM8Jz)nHbtcDuTeqf)n?Ye()oZimr!%JU?asUDc60seKhOW#aM#2NAK&*T_U6q8
z+zbMz{)jO+thv8?{(%M4rk1o?`&~bFC{H=X`FX1LpUVBSO;_^@UQ=FoD>?q#u{A%}
zTI;@dEMq_N(vIV1cF5PyaT8eWu0PtSFFiLjpON86Q2t&0-ONtgRH|os)!jS2>A>?S
zn{TO)H@#YGExX6|_WmgObm`Rn>pso@9v$g%_Vb)L)yiuTH*)8^S@kJ7{@b)QQ#Ug(
zY&?_y(f?cd)<ehA@9z7jk{$Ms$?311&9~I(GeW2Sh+Up?#qIpI{qxFhn|}NI^47ne
z*7c$$4?iczZ(FM)Zm{1q?w9nX+c)3Ueu{F;-B<DEblJ40!mo508X{ile%iOgdt3GV
zJz)W}!^*Coj+_5f_*(u)|FWZ@iH|quIoIww74NX(e*5u#Io**?y`^p}3_Iq%UoCfc
zS47d;J(s6F&Rc%7Z||2V-cPeGY)Rj&d^!5~z8v95=gX#R?ms&CO(Rx5U7CBd?C&RA
zn`YHMy)ivk+uP);*#8@WGDo_d{iF7DH|A7Mvw*tgU!>l{`Ee)Cmua6Vd$#vFm(<sj
z8}*~>r)7wpVq`dCw4aqh;PhXG8Ot`GJ$$^E{qC=Mws+qx)~jcfJp26k#5HeNBNy$Q
zcfv$fI^y5If0uN1y%+QIOsOuDc^h?U9{ceHZ)QX$=f95eXJP1AdQVAz_hHtGlj_GO
zuF<g#%s2GyZ~t{LG2f-(d@BET^FGI$jGMQdE|Otrh<LW$&HQ}vt{mgsGiA(tB69BY
zWtulJr)5t0x%T2(_RpJrO?JD<OK5z#cd+!9Z`lnUU*r8p?d!Umx|bTuY}zzGedT0G
zlIyNN6Mpz;)E?o+oWGH;QvP0h@$Amr?#st=%pW*BEc|lPP{TT5n%m0l3=By>_htRN
z`F828Z9a7eo61xB7k?=@ZFcI^x?Z-2*CO{HHL;cZ#x9-sW@00fW4-sf&bxc!!%ngH
zY6{Wy)5LbpyRopeGqs9gdGGpjfy;#-ytJP&m;e8-V!I#p>}PgeW7u9@%DzY{TjSaG
zUt46p-IP7LT=~%T&8@4d&grJD3{aiVdoz2}?fq6~r~PmKa!|+y91;u+Ns;@nE`J;v
z*1CJ*{z<tXEw|5D>a@GHN4IWWO7`hXdY_|Ztzw&ZmYjIk$9Z<%zs-*S-)BU=y8h_7
z*SBLjvH|&w4p*nd%Le54YVX#5-t<QO9oV+`?)lm`e{H_vx%cYAw-a~ToimG@pc`_v
zIM2{~Yu^8y6J?W^X1-%*WDq$0C+z>TO274gm-n{bjXSmN$DH3Mf~KyrlisA8_OjvU
zT0UL&SDSN>?LNF?!^gcjKbNnb_xw)AwZ@pWx9z1j)uzZkUTeJn>gF%oS4VHsU-<;=
z_^CB!Db}YiDSZ`VaM1Z0cE0TMd3|5^dc)t7yyg{mM{0$fOn2V4Sx0wM-Rk<A+5a<>
z6Sq&_lwZFqujX8B%1W=$`Mfv9HkUZ;Wn~a}{qXmy%X|G^zU#~}kBp3r+`os>=JV#h
zska|~O<3%*ZT6ZqYu-4DB^0>7ep<fxxp(u*HEZ6?h-3)*rq0B0<ka=((^fri@~&Q1
zmD;pvlX5zv$Iba13<9UWx-c|E@SjfL-_|6b&o_PQ)TwjrcO2GrxG(o?`!vHZCHg^N
zlXVy(*MZEbTCqKDm)L~62UWDSwYd-YrPXCySFP*c+`DPhrcKN1SsT8tWnkF&?e){k
zuIpRDf($8VgY&MJZ`-&5?857t(;hW0`?)VGGV-R}CI-`Ddk%(%2=}ko@|gZF{aF(k
z8F^ECGlOaMjrlWT)dO#6XlrXrPiM`T_1lqw;mD~s{IkqXhg`nzviWXGYHF(f2__S*
z&2`z<QZOfcPh*_5VgLQi%A)I$VPRorCfpbFzBe;4bbJlS*X>sEo9>me`{b!pr`pmO
zZ>82NF*xX47iMHgI(zy5^H=@mneyhRz>;T=F#Dc9pRem2SEhdPWt|e#Szn871sN2k
zy<a_T>eRQ2+yR^Cm%7~M%Vj?t0}iA&+X|;{n_`|9J<nFVK`o+{i$UOZ`mAM@^Dc|7
z%uG%+kBq#TxS1ivmS=kXNwv41+(5DT`6)x>zV%UIVc&M?9GG#3pNT;s?Ah;C+;6Q;
zpE`AlX@cqhzkgH3<CgTcf_&V5mTAJ%IspcTjdk1WBd+gV=Nhq#Tl2PWSXkIK{d|V=
zf7T>FEvvA-Q84ALnzpuf^#oRlI~V^Qx%=Yhr35W)ZR<3#hAEJcgrtXc?+K;{-5iz#
zhneqJ+uiL38~Qs)tf6qnJW$&C9(wxJy_u{DEHi(ueR~sJS5BQ;tH}-Z$F;h>HM>r1
z-w+rU_HD;)mIEuEX>LDldpqKWZ&;Yw?F>E1gb0w&zg^N{U@n3tgRt)1uTxXC&odb;
zX#d-JGgJ+nh>qVCiDNii#K*wUG4-amX>Qn$W&5|LgCbHajZq>X?eDd3XExfMGdp$a
z)V?XK2|oL8+wa+OB&D2d;?%tsvvd8Wxp&7-W=-$`=knJJ??u%q+yC8bbK5uU+c6!6
zD`)<JG66V!|9XF{=eYE(e(BUy{d2RXvo28l`E%{lDbwDGcuS|I=AU755C#|VPk*mU
zl|IMhAY6A%_{KM%vVySFWs|4wHRNWP3Q5uSmrc%oo}=gNC(XV4<f*u6tPN^5bM{{H
z{qeMS(<bqB#s#AMub;-xvhhgQOi6uzmdRl*BJM+r+!-Px8CKl+^Zonwm`yk5-new^
zP~N7y>5L82cgVAVnhtN}uWdb<EjaC+$mz1lvIg7?BEKTfFTNf8{@}6=Ip#MDH!&Po
z-S<s>TZKEr&FoDK4wm3dFm?U*X{J^;=l)!Nx;*9gIVOhno9sae`gJD*!$!Gj9`bk8
z9{f1Qxan~UV?%iAzV*LK=0|Oty+(&&!qX~HUb!Ex`}?mB!-lCd@86midHwiJx0@3;
zGdL)M4c{8CKVPpyFK5bI9cxvcY3vQ(&ji2gW4H-&`q|X8g-i|__rrC$8IB<0x?E{O
ztu;3TOC>0`pAEjDaXT;UAuGeeIoXU1NvYq~_|Bes<>ecXZL@ROBN-GtK=I787ZlHB
zlUW%ay?I|AHE+!mJ+@7bkqi%_!Qpq!dGFRW&n#mvPkyU*+gFU?hu&{c{@w{nudnw@
zC&=Bmc(5aI+sieUeheI6XXnPgvz+%X&s#cm_erLLnQzzc-hJ`MP5qP0@9LfS_4iNi
z{@2;l_jTNyzIDUJXrY7EECx+)-d~!UZW;FY*V;GhtRflM9@bo$@BMo1TkGj_!>uc_
zQyE{JeEWQg`KCQ*LlhYt*1UeU{nFK&pKYd_h?Tvz=60x`(|@e+?w@PF=3U+MdC{#k
znH~-2wp7?X%Kg4(y1#bD%|kj2vMZj<c~ny}Q|h}q6T_D$^Qu-Kox5&o3gZh0)#oD5
z7oU#VRhRv}{_IZu$)3{OyT8t5U0{FC{qY6?X$FO`f4_wvzbVtS%l0YvKf!dN_pYh@
z^TqFCchzP8)&m!jt#=tRu0R~P_SoOfsc%YhmB6n06`Z`6mEpqV+xyo4THsu^eU%Qw
z-D0~}Q~!dJ1~|!=e*LS!(D3rjIqvM_#O=9@wZlb0ZKm+k?^tZ^^3Ql1Hsfg=w57$c
z<5ui_%d@dpq8S2ObDwUpJ7*@BzH$P%<N@pPzP@KU_dRau&39My{?ujIaVto1X?e{F
zGqJMSF`;W_{M2Pwaaw$T@hq<upa#pz?F<X_;`c<eOx;k&&9KhwJpc3iZ;RH2gSCU3
zKkrwwHAqjXe_nFy#qU+Klj}gO@UNd37&cys9==4~`#Pq|&o=A(|Nr|p&vcz`wmd__
zEfa(NTSY=|Cvh_@P~-*q-Zy)}y`r@O3>i_(U#}%am#*!fn#ADnH%*nB!C?j4v+d6+
z{lrhFOEWTPg=FsCdM)TS`^{so=Swpj@YY(po$pPSj;c6Az|L==nBBG|JpZlOkLdUO
z3?b_p|8|}hJ$(1`88aq^kQI$p+zbmcee2@CZgVra$jT71ZsynM+gxWrNv6#tAYXG8
zL&LJzD%-+vOI>ls%g4;Q)_h%+G|N}|^#AyqS)11>FmJuNw&mv|i_9ah4=nv0y?p+R
zrOw~__&04*y~~i7zD5~bS+8Ncme0sw@^;tP=-txhGWS0w=IXprvrZ6O;3xQaN#Xj^
z@bme)^Jl*)_nWUbdHPh=71K8MF@wwXUCZzNdSbmiHI-2-WzFLQSHE66=$`dE{Pp9U
z#cOmN<~kksyalOO^LEU$IA6TW&mdMM;)aHGS{c)dGp3JKdUuu7Wq;r4S$;ANRG{-s
zHPz?7@~k4|cg>t7nWpdjeOA{+-ZZyjzVl*T;Uuf85&4V^UzQxJT7A@7@Wj1ItShEj
zKi;r4e!uDYnbR~YH($=vPb~-6=>5{(c9R(#*Gay%t1)Ujvb*9Xxa4#3nZ2|!^XuHV
zYTD7oVhJ+4J#`+Zs2aWAzU}>yUlzADv~P!rC9tgTn;i3C;k~MtXK$2Fo0@CIZNT*S
zNo>}g`5X)vCbw5*@9e9tGBv;L8@BDD&H)a-W1e~mh$he9a{DcheSaM9-L%O!h0*Q9
zC5z0KJ#KY%*_Hg8c1!quH#%|Z+B8;)X@#4F)~Pc&*iQ*7wOX~^?&eVi?dWK+1eRkb
zt^Tfgf8?94WkvO-yD6#J=a_iTSyWns>w>SwzL#yzzkGUc3#i$b(;C@eD5<Xf@k7ya
z>6fRaQ&U%;opprum|_0APXYgb)c9^|+uQ(ZRIy69c0c|szS$g7Ma+D^TJOpuS;mx9
zMz?E^e*8K5ruW(Y{rlf;z4!m0Ql`!uHSOp`u>_y5{pZC~vICAP88I~U{muKoK~Fon
zdqau4!?xLLa)cur1h-h&#ZTUQ@%*orZT{aAZ0kYdXCoU9hFaUj&)j<*)IbWZc`11s
z>|w|5$DcW#vwm-8Xs8P*`q?wLX7AQL(KlshEYDxECMP$tAu-g>uD>{L19HtdRW@g>
z&Al8=NNk-pxN!>XtILkhey{Ss{teVrF`LCI0W$mgX7eI=D-z=2=Qn@;pLXnLVB%xP
z?Lwh3SN?Q;J$~<>OXlOv-McsGrZL`_DL-9%tHrkMGi<N=?`35OST1)hf2nZQ&B%SA
z@Xcwx$=UE+O7`~b)6-rj)@A?wIX{>E?p}x1-c6?I)<5nrv1FF#<m*M(8NEuZ%hq1&
zmTG;DX+!YIA2w0nLh?a9liaG++i%@ntM%JWtYNO#vF8^zEw_r?zxB7~Chr<>(?c{3
zWX_Sy5|BCPD!CaHuD!qO{~)_;x5#|cW!8czx6d+dFy4LtrR>e%xohs<+NT7{SvlsB
z44d-g=ewVt_F~CBtu57=aaBuGUY}<wSaWpa-lI8Lpy84SRdcUIFTWlzo$uz{`I}@@
z7%i?nx^XY*n<Tj6E(KK=0c+*nv2WB#)V{NKr<qvU<i7^o4qM~)G9N1WZn^Ysj{WE8
z)8{AO^)1-7+~M0S9fs1Zk8>`CZJQ4&lKl2wjlOx8Wm9M><BH(!=TpKq{k;;+ZvX1r
z`fH%p%ldT274h27r<835Hw{<M|G74E*0V~#>+6?xU+0oewLkC2V6y06vDf9B{~3Qt
z9m)U=rJ;?qfd;QYgK8$`24)~>5Zl6RP;FO2T(fBbzF1R1KbV~DN^j<tSBSVuA4u2l
zop8arX_11*dnMOd9ZgD23K|No4pvPZHypYYWGAY5{T2vt>=I#px!1grq0u3uQ6R`e
z@#(v|`|{<}?>zlBX?Mzdz0`Ue{_}U=y*X2TbMD-k<@c0YR4>I`C>7INVCpl?UODvt
zHzo)9@Q#OkOQa^RXPoe*{QaMIVrtJ7On*nWPdpJDY&~u2oa<MdJhI+zc@?~ZasP>}
z|37_iJQjcJ4r|bkMlE3`h70fBL?5}k>50OU?fnvRvzNC&FI&B$uqb=h(g`=No$TdM
z>~g*{O;JDU%lALB)9)Dmxw1HF-m}7e0(#3YnTs=Cc>8n7jNPdxJuB)87$01lRA*`%
zduhROt&aM;FVAMkF$ipVarciCN8p30cALMcOU_?#@cfkaSU>TDS3`b$l41Dux7mAF
z^fZ}P|Nqhq;=6Y)Yv)jG`S6GN(JafoGjFYylRC!x_8_bEyBTUzKHj$1(`tFa9&Z)P
zG(D*9Oy*&I8=E(h<)<fYK4JdK?!d<KIksmv9m!Tcvggg8GLx;x-*_JBIZ&DVNy=|+
zYxo@fhSeW3jNWc~C@v=*c<t_?Ck9<U9PBr49;(bPm0Xf_c)JbbwjIkX|8IXD%X*0a
zpUI!EQ_A0LerQwp@WsoJPvudPX)l!2?e(AMB^F7YKhwwfWAi+1>Dq1IUkMzRy~<x0
zyZY&@DO+j;MR*&wuFJmPIYoNcWrL_!e7&0Q^Ad|>^#9G_P+7a;%`P?W{o7y6Dtz|2
zz<2)hnClxv>yAH&`WDWZ8Ta#D)5G_Yd-tV(`)?W9H*5dPhUNCVJ_N3<_Q~I~INE;g
zyGxpJS~l@=#cc1U7cb`UdT>8+W}v0upX6-$a_`B^nVWbOvb+kz&3-L^IPKr98>gqP
zUFH=0`SSin3`*HM0=v!xr#<*qad^+y8{wvRex5qH(j%9Tp`|YHz}B~AUB)YC-uqIT
zd)jS@7xVSjnI*Bkca)r-ebl(T<o0y$b5eD#Z<h66%@s_4@bjQ$!-IqC>Vy8?*58-A
zV|QURyY2f|*Y@t;pZ-R1;r{whN!zObR@vU)bN$ED>O2)y?XB<i@?Ou|?%Q{~JV4;U
z)BZaquP3hRy_de{JmcoL&t<8Xxfwg|n5>D~_DZo*Yu~;6Ppg`@PhR_mXO2|7di39(
z9G8Xbof!Md3!aKCx_VaU!m8Zp!#0X(*Y7W1XJ6PWF<(c_bNBZ*wyTSMi)S8OUVB|=
z5~J_R5aU%Vq7QCwYR<pQQ{JCpIX~U4=8=BOkMvu0F*n!T(e__;by==+ayTz956>RC
z3fo&dgZAt?9{lCc{NmdIZCUc)Cm25A<=!V+qitbfap^15Q?<BXd)lW9{JOt<e(`n{
zH?Hzn$t<&04$BR1jGwQ(Gmp3Rrr+vV%TM3!=Y3MY_<D<{qI>=Cx`f$Ub??M<!asbP
zU-jVSA@Mu99jvo{Ev~;=Z~t^7$Lm*1c9z{U-eCOt_TrETL2iNl&rJ3Cdw0DlFr4?9
zL21AC!#u~7kL$0#>`rCpP1Ba1v*^Z@y5`rda|1Uo+Vh*`!JP?f^fUdIJm7oqZ-vgg
zn={v+dw<|D|J)CJvfLL#r>+l+v{7T8$o+a%a!2%v0#>2+RCeJuzl8_fj<!$U{`CPD
z|0AEkAMy{j*Sr%`-hN3*MsDw`Jk2+YUqmVFnZ0TK<x~C-vR$)Fn6@@KSUbtO-*Ne`
zvg5_4-gi8gKPqn6Ii<<;S4?YZ<lm34|A{!w-W}a_r|Wr4LbO=?#E5_rUV)3wJCE<;
z6Zqga?VVcO=Z43rcXZwImL9l&K!<<(sRtiE-%JeTR6J+f(b?PE3&OpfR%_3?{GPY}
zi-?nqM5&Q*sm1i5dK1B<lN(sdPfzsL+`n|w1-^(^d4@7ePh@$|R{fT`Zl9YwgI%bL
znfiqnb}C;=w~OqYwk+|(jh_>}<~aP87Tc?0GWn{f?D~V8t}4NEye11j?BixiU2)=5
zp%TlE`@&Yr(f4Nm|Mczi=g;3k`1PHTKl3~VZ(JzZ@k4#`REy?M@5@(ew%oXFy7@h$
zs^)d4BgY_6ZCA8d`eVbl#)@SnokiPa%qDV$ug*N)byAr_D|Or2MH`Q#T5kVPG=IL)
zjO?=oi{AFcw=RqQ9lm9M&CH2uZ7C{lcQ^}jIkc`%s@FC!*Pf*(TDkW44EbxaTwUzv
zu6S;*us-oe!+`Nw>MkKyP2)#19y;3CU6Opb*+#ld&Mx=ryVDcf>UON`oWr*?=XA)k
zrK;_6hq}_<h5oac{9NDZlKQ)8PJPqo&AQKY_so|yvE_%NXXakEpQBRlmgDKGdHHfh
zRf*+tlYn1IuhRcUEDzz|9p4{YwPV*Bf7fJoEwhC6idDyVu4k_?tNYb7_4R+dif2+2
zlA9lxR<b<Qy{p@*^SF2W+mH3u)BdyH$(b9LIbXBD_Hyz+j)<8ztwa|8I8fWR{NtbL
z`c^ADFD<L^+j#xk+L@N0UhigbbpAV;J7bn^x8KFyoF8i(JNwJC7<ZVwQ~f+^)nP|<
z&X;9Xs)s_K-(k|+Jb6d%ht%cA&OaA);#jZ$xG{8FIFIQ$W@h7?iv*${&e^?IcIl_N
z`{r%^a{g|5X_5cpMN{^%IWFG4y+(6?;fxRO>i87?SU39~=DyFySWx>hvHQh_nAst^
zp`rH=CM-YsGR$Tf^MA3RJ@=B%w(Ho5ti1iX@SsnKQtQVPIemW~$tk>1{yEpZ|03rE
z3$xF+pUF;EsB5`BZDHKi>T`GHr#`#9LS^ZCrwf~>9bXdmpFu@u^{n;h>lhZ*<>_!f
z{QXKiTA9b`?w@_zuEt00YShc#6`eATDZ1fj*Sg!>Ca=C9e%F4|+%oZSwWQylk4!nn
z|Mk9dvX`BzY@ce+60>6F#c5|&R!iRaob!uy>N1bZjoyC8X769W_4=}FMXPrDXwLLg
zY7sCEQ(>}Uz3~2rLH;LB->v>(vh%)fniCMJc;;^NhTs)dyjz+@)_gd-cKg}9q78`~
z`l9Y>C9mrD3*)cryx*|n;>z7yuh_GFxh!Jz<NI7@7tIXWX?m<uUw<ctdz_MgcP?J|
zUUtyhp8cC$HA+M!?ygvKCVSJDkmgg`2|ar|rB5AozEp0hKQHjPM8zGioxk>^&C2`S
z9Bcn2JHo-^>vO3|&s)x{oZo1DkK@AMl$}DAugwas87(Vcnd=ZR`AkRN$?Wom(siB-
zt`%LgFAx6J{_j<Oa@6je?azcS&nW$U;Z~;ey_KOy{-`~bmMbV<_+~|7bK3O=2iEz^
z*EBpgd9bFb?9+K!W+gs7xl4E6m{srF_lJ|gK6SydGV_KN=XIP4f1ba}?9R5#=I~s3
zW_!(7lS2wb1unUr)Ovbyv%=11n_Jrx0+RoK(GQ$3y=kM$w^QabSLmHT;&LfuLyCRZ
zKkhZBX4g4ZXUa2n9!|MuyKk<UN`sj)f5Z6~84qsV7Tdb7hEbugc)5)eM_`7jz@mz0
zN6+;)x}M{64|>ScW`6p@mDy$M4ld4Fyl(#g9WT!;p3*l-^LDEid*kuFo434fRKBv4
z)zf+EZ_9g|8x^8&`f}wqTsI2IKe@Cj!JYf_)ZXhG{xfv^**SCBSK9~t>OOs5|9R(>
zuXA*IuKuB<;HA!ofTwGJM7=NEFXP+NH*=NyWpkz*vn9`_i7k2_TyY^}=dV+;?ALDp
zd;Fy(-#DUlZZku9`YiX4Q?kw(u*h;TD%lmBN>=0TX#KJ_$;fZs&jVL=1kT<2esr4c
z{>V??k7_hroVjMrkw^vO&)amGzt=oi(G;mJ?c#7KA(}sX;k<g)1J8QG^!Db@u#5k>
ztm$T8f0%YM!;Obq-pq`55>LOX>+<vR0jcu#3XL5nYId>inZNVbsdel^qBZ|_^#-*!
zxO%a9Me<(H-CHJ|Z`g7~ZuZAlpG$7$-1uQ@cgH59>wf#~t%l8W%;R4^IpZN%>7=l4
z{%!T>=Ad8hhraIp|NGrqAI~RWD|t3-?+UuKbE4aK#fANgLj9WZKBdok$M)dgAD^lU
z(U<%A8SeUZrzo+`eYq^2d5*a54y8LmDdHx@S3LT3stbc&pZRAvJB~%Jti1aAd7DcM
zTy_M<-}H)aKU$Q#^$vSMdYH1Rj@_v~E9M3BU#^<FdQZWX%&Fn6IuGsM-u`m>?Zjh!
zi>!YqPwzP&-@TsY%je=lr|y<pZV1oZx;S2F`dU7(wfu}M--7i1dp`9vZ_wuYUO4-X
z;+f3S>yzp??qK!(+PFG@=CLWWwT+%^jw%RXDOj}b(x#n^{c+nHXP$a(-tW9>p88fx
zu7ahzH}zKbbhT%QTQ<C5Tz>T7T7G-0)$e!$x4r(ena%jGZ(m&0j=yg%TPY+t@O?Nm
z=~fIw(r&G|kHx1;FC1F5vP_*(uQc@E`LLfXIi+W>d{_T*BeK-|RMSg&F5m0SH4jgi
zx?2A$I5)$;vNgKQO?25kxrVh}&vWz*^#ymtnLO=Sb~v(ud+yw%hPVfH%f3!6`y_V6
zO8e;F-v(zrL(?Z1ZC=FqFEjDG_KJ$<KmX5E%MyQ<dR=Divnl_1AGAC=*uqsO&h66U
zYxwL!$v%dHYneNrSsh}28k_Xw2dkb|#*t*VPJtf>G)>c|G<Gudv)d-${}8|G^`g_q
z_!ik4KaagWqs?k&(r2N@1LwTXhx|F_#<21JQVlbkU2#knH}#5rE0=G4GTkioOvR<b
zPyg8WTP#jG%XeeuR;9ieqh78~$KU_Vcm9{2nk#*8>dS3UR(a}{6{T5U-?MQ}-~Dj^
zh6{>b&v$;6lVMUhXIvau{g~^(#%(j-^yv!C`*Z8wvfp7dGYWiD{+!x);V$RbzSapk
z&u(1*x@zfZJsZ2-mG@SBkJrq-H`_Gym(JcioAtJ4YjYX5pImJ)@9#V2jlxs!HGKZ@
zLTy2GoZiz3=W`kkuQj$!>1D0h^ea|6TG?6QfT?GgUDFM|uIslVy6uv$%|CZ!@fYp)
z{l5x7-#osu%KOsUzx(|pFKqi|oU8W6#8O&aZr-Q1-D|T&T(asVFX)9CH8u)3Rea}T
zh{)f!Yi$jm#f_lG%(?%|4xjCayBxS~afM9t$C>#@<)$%yp7M5L(C*y^ffu!=s>V+>
z|Lq^Q^?#bsCKZ_(UuG4DW#=t&_}<JQJ%#Vk#QH0?4YJRceG2+-(Gh+^D*jd0r@8$<
z-`c*84pQ!9xxQoB?|+PQf($Iye0j#1P#?x4G()OCU8+>p`2YIiwC2;zy^Ci*(^-GF
zNj}$;!QxKD!!B>BIg9vB%<Ut7_&=Cb)b^lty4w9&Gwxe2eW&4m&~@YfrHvm2u12nW
z6(z@JvF^)-cQJpo_g^f3)b+M_x7~E+oGoWG?^MrDG!^@>?$G`<k0!A+^z!QV?W+=x
zSn<N)&ZDSP);iz%&pqpF-uj^J^u1$S*D-P%$#5N;6aJlPPWZ2BD^gmN<p1Z+2)_6G
zVQA~u-nN_%o!-G`AHK3_J?^#q?HOZBPL4QvHitXA-kqO4Z{5`eDQ~8ioY>B0G5hC*
zy7g~ZcD$K$HcYf#<Jx(Ng`dvJxaJg|op9?7YlYF?l2yX4c?adxcQ}VybJ@JOS=G64
zvB0K>pVjs`O}YH(#MIaBEAIz)oO_~|a5tCXy4@MZZGJcBK4LDD+~x6MP56|$)XLKR
z3<5^Sygc7+6z<d7E1kTe@`G?feCYWw`<XSbg#7<(kUVC&*!1?59ZWhWkL=odOszrM
zcJtv?w&}q|7v!8%Zq7EA;arlU-rLN$?%UMBZokI%t{#=$ZlT_~6*GGsE}f}4wE5@{
z*^?U`lVfv*9{#s~;M7*yy7h76gMFtg1y`i>Z2Qf-ZKnCY_0M~bCeHhPz%cUhnsUe0
zJ;ykA{PtcR(r1&qp85MO4<`=atNTtfF+9_{G)LKE?_-5!?riJp_><Unr74FTHLI*+
zQ7G_|Re$N<cIf4@Po?pVf~QQ9Bs8|P@5{@1cVlAuo#2G+narCDW_LaoxoBbOG1dFP
zdCBOoAGS{K_ni2s^)2uzQ$cBw@A8!rpYJqBnVtK~Z96q{>7@_*eP`Cn$wpcIn(K8;
z^AvY<!;v%3V^7FbPG?d!E_*8xv2=}z7N64B?&jspb5^#>GfC&p&E|6KT6?$l{tV#>
zoBSu0d|m%i-dt0yv&>xaWTs>5o2SaQ{>IA$zwtXicR1%HdQ@`@-;Nh&Y{U;e*SoT<
zvW%T4VAIy;zw~bv^BW)P*O^}+x-WdwL>@zNz7(JGAFg3uo2GJS%JArvtSddcz~u0`
zy*%GV^6l&Q<_Xu^i>Kd<REm+#jbhuspeL>7)OU&8)-T;FE!t0Y3ar~xx}DXo{8As=
zF3*i$tFuhbZ<Dk7A0Heg60NO#{i0CPsni#zR_fh<66pCb*5d7(J1dwUuHSMl{JQX~
zE8q9TuU+@}x=j28)*NfG!}}#88M4kD*xlv5I7xl$+$W`3ZRc}6tS?=Pl6ah=xQXLu
zzVm&anCp^$>5YE#qBR+I&%JYm;l`x0&gqGJC%2x^+QS*xr|$k~4^zICqm-yM=ksO7
z(jWNPqE~wMl(cA`6IFV>L1vMCdC2Fx(tInvead?xV)gtM``6aBFGXhZy|)N$({Wii
z`#|V%Hn#Z*;jCK%CO+p6xbQfnZGJ+ym73yj$IclF$IJeIb<SG-XN~(s*Q$ig%Jp9s
zZn&HIX~m6$-yhsLv%+-VfoUeoCFT{LI`d0mb?f=5%fC4)Jha~ZS?^ixgFAbov|fJV
z{8FCB-JAU2{Fb!Rt%+-ecp29OFH%ZZuC3tr=;*5x5*3vc6#Vz2FyhAI3*7QIFC_Jz
zu|3th=G5zR=65sxiCkNj$ZO5erhTz**)(J0*BV{_uduAKyce);&3)%Dex?dRp3^^l
z*uD97##{#NoYlX>9r#^MEVjmo-U(rhi}`#1sP}X|c9xi(RbQhXe0^=+#27Yxqn_m{
z)^ZQk+&v|8N~)CeRS#V&+IH?8`?{XfHGfz>c3I1;5qZ4zf5VQ#m9d}xI$eC;64QKh
zcC<}dowDqf4_~sS-<8?&1oryz_*<Ww;{MfdFI)dilj@VR&hGAy-y{0%OU?TbuST(N
z=j7)9KlIlu_F4rW4|87mR+(^j?JZfsCwZz5um<+t-^b6gPqF^e6xopM%YI9*><<3!
z7VZD!eNEOvjjZhSjLUf!kC+#@RD}m-<Ovm=s1Y`cm#9i#>KM3jc6>~-&g}YaVm~g2
zJ-N7P@i``+4RP~-n92RD-Vpk~qq0C*Kp|(&%<p;ZyEnQ2Ue8eRV3x#+zE79R9QN-?
zYK`iRE`MWKaAo`K#I3tqg9PIp-KU#`{ACcZzV=LO->H~{u1fQd>n|q%Tlr+gneEqW
zEjPHgU+c}9qW^HYpi_riJ>!uxUS&>eSfwwCF8&s(z;bTq-McRH%)*2A3Y1K}qdTeV
z2ZP(rWvVNGGhgyCv*4Mb$*DLs>(9lOP<Oc{Ju<)dy;s=2I___{?t}~HeuN62d;CQw
zon6JD<h#=K#A2~thUca>hZapwY45!x<If!NV%4^+$z`iHHy)UFR{U%%&)4bGzOK)-
zj=J3*<ug%OMbT`ZcGg_~;HGuitrmB`?y7hh!Dwi^de&=k*+^BjYajH@)ZTEto96B+
z!Y%rLOQCOYW&afs>HFTVmwk^-GJDLmQ?TUgk&`P-y3A*MXcKr;RUN$VN8*RfSwegM
zh}3-$bLzOh^}=bng`puW6OwkkS~M-}(AAPjSzoU>)*RSYIe**gS(^$KMA!encfwFM
z&MWm<P`&km-Z)KV-(C~hH?11NOy0eJ3j|cmO5d=rcoKJRq3)bIO+}ZLY%^~w%5xZo
zUe*rTm^pLG(pLZG{(b){pN9rdS-YfxH@ND``iQ;%R<FHRxBj?T!|d8KyZh97PMCyA
z*DX)1|0H+1h9h|U>yS6eVl^r5hW9%;*PQFoKBe8sw=_!s*SYWPkJoPZ(BXJDJuAMj
zHtO8rSziUFOp3f$%x)9lthVZgYx0dLbt|_yGR!uTTf6N@?2Od-z?GklpI*1@OY4o(
z_4@xdMPJXax6i+s{f=kD3*|`yNgrwqPo*gf?-#tttG~2Hf5Yx|9GPM>7RE20bo#;_
zZOM2YwYNs+&%IS>345<wR@QMkLVMnSGjaAP)tkXvex*%LuedPLczaXx;mOy3%bgEh
z7jsfw(N59MPSGyKyXorE&`Sk9e;7(~b^Ao@xXb6hZeBJiID%#FC7lPhYGOB{mxk)d
zoLOLbnrBD)a_2`b4M!Glwz8UMA5i7-=$`zqeL9aHUQxJb<&!^=TOj7#!?2Jd#r210
zZ8>MYpU38f8s|j|E<ek8e-<aqKKWa5<HWf~-4EPSlkEAn<JOMTLOZrBdD_{f_@R61
zw}m%ccg!@+4Gq~O7AI)4aqm5iom>~r8ZTj8Db1!Xduy}a?}JUB+pcJo9sgG&t!8<t
z#qxaqp8Tkrvs3?kef6XNUd-O9PMr)p6dzw%IBD+5+l%}>F9&P=w2gkf)vRo{|Lru@
zEn5puC3~n8*xY=(>s9TGcMezg&zN@0aq*il<?yEaG8syyN2B=uKXs9D*`I3j;m{Oz
zhU?v@rs|c7u1ozpLr9A+;DgSBy~Tg7Jo_vDUV4rbfBL<%>uqIfeXlXBI+&@jXaCKe
z(+cj^)fRX%+<jU3-g=VQ!RX_E&q!^XZpFCk;Us~$_itGqJe%J7#M`b|mdWeX{NR&)
zPi!;xrWfdazWVDJ!}eqL(|=VwJX)0yY1rMoTekDzO}T${w(}Q%ieU(wCUofa(H?cP
zle_sMLNZ@5H!S(OHaFUF8gG;LQR6!kyu=P?Yq$K{^7IUIt-z7Hw)GDD7xlFR3eO*B
z_%&C43Cp=pE57`j;(nm@*veC8Ew{_w&+=*IVcD|2TChXzd-966cN|_Wo|#hBe@9~W
zw}3!B3B413$3r&B&kFspq)))9LR9;)c1s$oO{iMoa{uT1zcL7Nzw%miV6}6dogBBr
z7mn9AuZBrv<?pRlR4%SNztHXR$KR4WEN04aI$YXy{W7of-$Sw%D-ZngJNnnd-l3*=
z^ZU<=fjcEmr|#dyc;M-5&CNUQpG*@jec<>?fX(bf&%?4~OEh<Ru+QxMa`(rpr-o&3
zFNW-3zkMa;m1X04$Ln@aSAVg6aW8liqwnUan)76@|ChOb@0i=6Dv8|qUekyDJzl}Z
z$AotKMj82T_4pCl8$S21B*Pc8-~U7>Tx5A<cJlsvjf?H#ycsj5?amgp?Z0f;V1CK|
zaAanyKvIuz-2&ZN>MKqzD`I#$>4EX)_lFxBSznh)8dY34!1(v~*S`^FdI@YFHe2?7
zugd=ERIk_)k@{YEE6<y|1>#O3FUmjsicY&<-~8%Z{9MmnOtmrBW_1-yB)??1%kEK=
zvQVgOo%h6$@^{WX|8_jx>T>hxq@tNF)w;eWYwLQMC!J9WWf6XUXNjO#4O^7>&zw~j
z-NqlBPHoSsdfh9W{!BpE;@PBy6X!W`C{8;NQoXK8_}kU^x=EU@E4FpNyit74|8i=d
ziFnc_PxmF0wpL#J)R@h7VD4V~{+Ad3E}pmdSB;GOBH`roq5Mo9J9yc?I^JYSdb`0Q
zpZD{dRsVx+4?LECy_R9_Nrq*+=Ni74;<TAhZr_AD%c(l2!&g3HES31^C%XBhkME6_
zTejI+9b;hsEk0|W&Dz<_?w7C6>1*bHo4KHsuO!;~C&$8{l3(`nxKDRD-P1Kk@smtL
z_N#YEX3uOQBqz);JjXaW`nRTG;?-}D8y{9ZC~;M^`PO*xg4zAjA7*!7Z;w7BlpFMk
zQODrdqztj9ee(sJI<!@8?$li@(yD(rP<;E!MKbyaFK#(EpY7@9ZPU5D;y$lAsok=L
zL2jl`gjB}GrOWqSvQfLzXUoxVyFoc}quN>4Z*OdiUNOm>-0?>8@y*{e4Q_=Onm@kG
zXA&yrr+qJNAvZ%yy#2nl>s4AL7(Lgk&i~8Sbg5fvir*c1W#I?&W;!l4QQnzvW&L-8
zY4+WVE4rLwnoMF^ZLV7;dY?&_zq2aV<mgkaLrWeSZK>o4TNdf~kNrc`EY%hPCzI=o
zH+wi}*9vp19Cec^-g(=dyCYz2^JeXT6B2GecKU2zv1&)rGWnLMlzWz3x@Y!H>u%Ch
z;$3!le%Y4K)-@AfP00Uelh^t1b@9=co@$|UPE>WQ$b39!i%Z~YcjeYY3w9ozIPbtt
zP2WlL@4pk6*mk<&sLP}I+iR_6+D-^PQ@For@k=Rz)hUrR-yK%ew3uefW!w+lb2KkZ
zb4Ja3#tpZ(C``Y0!0z_@Ke=UkE&YqnEBU9bTwa#7E_9Q|KlcZDmNSJfnOs<E`T3-T
zyz~B$_Iba*u}qlqW@V^>L{3|7K6m*WDP_HhemVxzFN!?4zb$gf`Bf<mP3eiPXFld{
zj0n+oGnYuJbouq|$(6g$GG+cmz3SNTVQ1~XGmB6EzOFmRV2StX)fcX=Ys>qn@cEKf
z)A1h~4cg3`PVodBP3$^o_<C`2ga4e1G0U%<tY5N|p+&-pPxQUP>x!V`%n9?fE<WC{
zGxjFq??0w;h0dBYjeYkenll_)ZY6ZaNmct}3&ZMU*~TTGf1ByfzwDhTzo_iP)Su;<
zs~+C0kM|I*`a5aT)tt`AnT7)5*;Wfz=f*o1#(3?YaQZ{Wetw0_t-7(DUe})SeQ#ZH
z|Ky<=HIAoNTW_^8oxG*3^V$9VY;AShiXTn*s@ZwR!9U~Fuf1+czm6SRAM<yct-J5<
zm$KH<yBurgeevEo!Ro&^OUeCo-IXD49xH83Qu&je_xtyu_3rC!430d#v~N*Hwr}FD
zo7c}bI68H>w%wapky5o=>5^T;lMf<x&yBYf?!9w!o?%~bR*;0if+_K{ySOcRj2ZrU
z=WbN}Ic=4Zbd!kb+<XT6B{kA57tPBpU2^|#T6s`rr<YLLwvWLNo!ErTziiU}yQTZ%
zUoF8e#>NtBB97MPuq&`JrP}<k=|2#qI$dq+8Qy?h2~|_9XRUX!(PJn#-RC-gZOrye
zec4XQnP>Jt@LBx7C-^H%!P?H<M*|8cY;CAZNWUOH*)m!$=w{9=*DWe)>-X~?lyMe6
zBkdhgbm4)%0$<P_HRCNNlimqDb~+xr`=g93|F6`&@#hv*J`CmYs8fw!bNS8NZ^uG7
zx)nDTUrd;xAHB=?NJ!9zuPX~~nmqoYmzogC{%b1R>C?YFUo4xU`;<RjW6{(tj7HL;
zH!Sy*9Qm+2FL(C0z}TyARlFBTe!1}Di!1ME5vPuCHknU1GWXr!nD^Uw&dCZVbL~Cn
zm#nemYFljHW?cDBO2GVJJjZ{B8E^J}dem8a`(MPygk#&Cb6QsWF|Rz;u=V?fTl>#w
zRrGjt`Y+r6@%ogotRw4m+@3n8<-h#w+aj>YsqP}HQ|{Y}pR5ORR8=du)Ra%1Pni92
z@%Ik}59;Lmmlo&<2dny?O{|w{K9CXndgp6~*0}#)o+}4xE>7+Kq90f&dGEdoL%Z4k
zT^Ya3wHd>tlq$;_B4!ubWvSgb=R8S}?Xc$K<2KtBZ+=|#VUCJ|z@oQjJR|n}_TOB6
zeQSWk&wuA7IA^@5-&YcQWi5~5)Y{LRQ;#oZys>sw`(_^Af6Pq2`s>2asrc_+a`nLB
z=KVGI{;AHaydJ<&Y9qeTcZtFxpZU`pBlEt9n=^dN<lZyO&ocK;&;DI?HOHHd9gb%f
z_;`KAubZki>zCbWpU!Y?^{a<Ejtg0<F4WC0GPhxKV|X4f>h#3ZZ0aSpyh`P(t(U|s
zZtkCywE4Mn!mOab9I|J7Q)ka@yMH-%#hr#;{|yR9Hmsa%FY|W(;jCRpuWLQ7DB0cD
zeOP|wiN!yE2o@~sJ9;o_e}kf4?7@}4eP%LWT+Vkh@{8SpW_vcR<g2?leP-G(V|rNM
zn>AsNz{L`YH^HBp)3%*GV;eU&bJI5~<E^Q$&xg&a<1$!P^|VXh#$0lmw$h^RkFS=i
zhRFKd@w=Psa3*7QrN?5H83}*p?0?sOf1RzY@?x1Rk)#Se<H^$vT9*c#{jqWCxq!kq
z>ll|YF8FcAg5#gxHS;s;4;MW?_2=R%xn=X71!kt4TCiyCf{qTo^xjurUYBv{Ut->W
z+NJ4-l#@<zVMbc=Th^y{3(kB~caUAkaDOK2hjlhZ$ul1QG}GYl@->e9KTl?w)&i%_
zebMuzstz4o|0<HlEbipt1#8y(lr7MU3H-a|PUo_CiGoPI4<5y`yPmD=^PJq!d99nd
zf8&N&&dRLUokp)`&eEE{hOe=I{%eE6)3FW9xwmICZi(JKgC}F@spNhMv&YHTzHd0k
z6JP!9(fsNE^UuD2EiSUfYP#<Y_P2L*o%5F6D^z$^ywmrvkm4q@#(0L!Yj$_~8!Yi_
zpP^W{Ey|9k(dBW5z<*~=MX#Ey3ki3#)LI1g{ne8ae`&w<?8>(1ZxiP4PCc>rht4(T
z?9}f(w*Ok^7I7_1bWneNSpKjbt4Zvo=MxfkI!PtIQ40LMY}T^Y&}H`+zg({As+Z<E
zaP)oLxr4<*XGMRk`^#<lLp&|jj$QBOjoW8`t6Tld$l^}<>{T7teBD^9!~Nl>uhHc%
zqa%N;XZpA8O>XHUj+_5tmy7H4WktPV&O5>^BboU;EP2~fdxned;$damRd!BbEVwo8
zp!;qQvy=00auu1sX118P@!*m>jE^$}e>*a4Q22Ue<%Aq7|NisBj9ao_rLVY{)B0ZX
za>c55hj+{D5BTy)aC^%N*8R(CR{yBl%jL=|drCRTE@A7lCe5oId#AiKUGV((+bC1-
zj~VRqZpa^6am{s6+7iJddh82VUP}G+Y_`Lf)i1@v0;gTvaO#+5ch7~hJpKh==KkmV
zx0UhQ>9~)4F&pY%#T35zIAxvSr|+|VPIjBea4x*Wq2_(~C(8h<-@z~9JI-!On`J5X
z-=Jih+-chhd)CBvvO1^gPw2ZXy*yx*@ykh-wTe$$1e~VqJ2vUf){}3tHkaM!&F{MK
z{88+ktaZ=3HIq{He+J*L)wGgy4$gizy(2nqL%_i%R_>o%it|Ets#m+Nu6NDY>i*L7
z<;4}r?9Sg7a7#DWg22z0vmQ<<KN#R%@1S@1xrWBe@5_?-e;&SgD?s3DW9G5`tqI*9
z7yEzg(!b5csrZ*w`f~N&eMRgHe;=N|Qqv@v5Eu4!)0vAkyxyt)Qz{d95|vsclGBTJ
z2=ymClTN+-N~1E5$<x|SbEcc5=xv`ZJh>|$330hhP?>If@w>_!!_3a_O|@-J@1?|k
z9-rP{cl(&!jR=eTy0>R_?U+CDWlBL{A=|$2l-!mj@roKZ)wG1}ZCk%9Qq%jBfu;Ph
zpo=dy?U<c#ZCU^1B$L%kjwWs1pqkdxG-Jy0N;{Psmgla&u*^Np+x&LnoP8BDD;X+9
zkH4JZmc}Kjev$RjswnxoV0PKyeN}5(mzO=!Hkr7+Z2Q$s7dv0Q>I~UDJH2h1!PUD)
zPt3Gz8n2vdck1YxxH4#U^}6;QY1deDjqg|`_X}Kdlz2F!MQhrXM%Q=K6sJ#o&a-CI
zC6B!yp61?2*!V;5hOwNI%*_{ZT>8<nHS+6jb-Y=cB>z4l^=fdT(dUO=s}g1}wYTN_
zFh8=tBJagIl?D}drz4)}7b08LzU)oiF6Q7m?UZ!m)pygB$}e)xyJlb?u;hQ-;X~E=
zT}40M7PCza{h`HPwpr_4gLatv{wCS16^D90pE+;!z-#Ll?^POZKQ+2nF#p_@@5}Vy
z&W)n9rE&}`XEWb9@M!N}*?C~cm3Hsr3#MKaS#iUC<4ga>>c5-34K~Ug3RAF3c)qFg
z@2wF1dms6oYi=Fr4At?@ZIiw#E5*3P*r9-Zb#~Ydu2X9#*|{z|!Z6YM|Mse9>2o(t
z_ssbAOk(9u>&@$~ZjLn*vRfN@q_J+2Ib+@CzUlWwl-4Ahuejm7u+zWc$6v>`-(UK7
zKRxL>MRtGE^{Z1jp7)EHO*Pee$>?xrtF88a=?`VP)w@o!?3ldEeoEA$=7(G!b6=mh
zo%1H%zu`zj#pShDkMd>~Ne3;I%C(=lrRMo2^W2@^yk6@bo9({#(%Q?(@;Mt{_^KW|
z%5Z#hQrg@#Jt6N7%ll_CdKkGJ{IUIT`-1aXo{FI@CoVs}z0^8r&$2qt|6S>F2MsPy
zSCV}m&(tBc*l)S4g8$;c`nDPWo;{R4+}Lqb)b--*BWH@X=V+O|$T*cHkkh^~>9m4{
zev80St236_7j)InPCjk9JgJ$<Tgb=u$))qPaalsF)2pA09?I6232c9|#&e!L<Co>>
zTQ?tmvG+@qgZY!2@9bG6^0$0@A>w}LW@yx1HifL`E#_QYigDeoe}A?LB-ypx@Y=cL
zQJmHsMzej%*YE9q-l2YA<FoW0TbKH(wA+8qiCu`bNPmB*{+5E`B6Atbsz~(~fk$t@
z+9jp8TPV8hKd7{^d5`thuGuelsm%9~*vBHh{B!8aUwhovUw?h^_18t!rHXR>vEN*C
z6<fZ2X>4vk9IKh-x8P)HLV4F$=hZ4Vo+!5n^a?NBe)~y~C-eRJ4Xe{KuWIMr|J#_D
z^(KD*^`5r}SC+?q@$TYyY2=f$(#LD^9oKm?t2(47Et>M3yUjGti6iid-kH+b30j#S
zF0m#|o#~tMUE;yH8U4$0_hxR@<t$j%D6mLPreyYsb<RH}!~ag5+G=r0+u-SmAL&Qu
z$yq73Z22O&F@MS<-Bl^`<huVHxvY44a(eW?&(&OtE;HXx_O{ts^77JEmR`5T7c*3P
z)&4a2aeQ1Tu=8Mv>08|}-+zZ%xy1EiH0&GheTctw`1kks?zd*``Bn3`wcX=S)i%AS
z0cS7Eab9I^6-c_k^l`_sT^c8=ew=-;dgSSM{m@wf&;Ol`HqXDO^DA0aaoS(I7qXrl
zg0(*{E%l!M?&O`Kvuiiq3QAlz%`7|c=L)~FHLQ=;$^XdxmM(8nebGSmt4{3pyXyD#
zZWdX&u+Q1Hf#a(M+kFnjmKAdR@h6U(hZm}c>NB4H!}WhcN?G?}dl9E8^46=)Zr*l(
ziErZS*GJAwGU3~P)%{H8o;}wunER;oZok7T$--#o#4+)^QA6H)1yi@+YlmK&eE_vE
zgFd|}_;s{oz4qsuq1DL?(~5KUt6Qx(sr-(m#l5Ay-QC7f*>lpeh~BJ6$KD<hTIxN$
z&aLdW=l2i)zDlO+@J-z{Dc;0dp+&%c<{TM|4Jm8aO3v<jJ@MUi5vL<RxIdQs;yGXR
zbe{hAnvM0#RhHBSUi6dSqs1v0taVJ)C@qlfW#aOuW`Ti+qt!lsnZ)?@^Ap|wS=T2T
zUw^~h<6Qmy$+M%6f9(z3y~M|F>3v^ER(r+=0SXg3Z49;i9<;i)U3saU8Z?<panIji
z`IFa^cPAE=dFe@nuXCKmw8rb{!}rN{>#e?fOE<3z|KzXDSQ}jt;=-Z0<o1D^*CvH%
zGpu;4b1>AXCH{Q#oAv7TepW~A&z^ZEQ)#u%_{m9LiRu5==%_#5Dl}tOmDx8n27l%+
z$L0zBSh=?1^vNfCIpsMOTPB=4*e<1bL}Jq6Yg5;+-=&)-nX~N68UBJLb05xqakHvY
zgyG=jtfzVRzd8N&Z>;P1+9?&y;8&Vql=IY8*5S+{t!qoq{FM79@qflosY-4|mqJ~e
z*e|=L3y5BGym4uJ%@nbC*Ti*<AL7gXeINhiXXKcB-=ci^i7zidq%#TJ5B!$%n3*A5
zyj=I?^+a)o-S>TyZC1>4anjNb%x~VF^rMT_t@PAn)46M&?bV9xWEJ2oxSX&=XzQci
zJGQJ7r1Z^J)ay$XS9w>SzLIh6;p4zyu`i}C%9om@^YWJ;SoA$wr-#uZt2lO%CD-F%
z`7_@yE?a&~^Y-Ch!#2-5Ql?gwV$Wh{Tz}W`aGGuGb;IRp(c33~66SsXlfC$rhtrdv
z8ON7SNRb!h$Vk>$`m*Z8mY*druV*uq=7w6xtUKkq;*a(E-nJW@KU>~gYb!hSuAjS9
zbHUS16K4HwF01aB$(G62zbnL;R9|~Jm?N<6SaQ(jyHlQDeg9R{{miyZ>(ket8}n!6
zE#7F8|5YdV$CIyB5-TJ<HygPx=n+`dVfCoHuIj?uHxvCi9)3J$&v4|P<^J#I=P&Pn
zdw*r>>%$J0=1kc?`M-2<zog79;U~^hrrNjGvK<J0SoAJzdWz|%Yp-pypTD$MD_NUb
zkT{=V?;Y*Hu!q43nVE_$8Xr>)91gATJu^Rc<!jjof&QPfKkdD_`E#_c*U4+wEx8`C
z-}wCHd~>4S`KDD$-RV!y37fOLn!KFz*Mi*5zs&NMv#k|%;!v#RJu{_cLR{=@j)LNz
zsnhH4eJsq>b<#PpSzt%l>3NIlCK{yWdSocGyM_hMn^hkC?4o8Y>x0C1*Zy!RwoF*Y
zbl*$q|AKCYUu$!pehGUkcQ{yjW}L2ODPKfxe9M2kW4|}3{#~TymuACIs6M^7V(*gh
zqu-Ll=T#)VQu}mFdnf1F{sS6;wSguF7Oy;iTJ+OAW)|};s}J2gz+<f*DBZjL;l^Lv
zimaUzlH0kS<$JuG8RjhhhVx;?y8C~=MzHbJ6v{KS?>_n8_SAe9vl}ySEozn%I=(#h
z{?tPmN##Ac8$`8kYp?IxoWVUg#eYTPi#>JBvFDfdH_kX}nk(|^6N^yWjlIY6YD9lr
zS+^)iF<<dW#*6Iyr&{M8sg};nYqqI(3|ihV^zc{0>}%ck85_Szf2!i^Jg{-WsouoJ
z%tu4#ILTSO%9GrrQup8K&+W;L^_Mn$@NJ5J>%aZ`DOQE5Dazcu@7Z5m)tr8Nr}r6g
z{oCfj=R###W^CKf%zeoyaW})a<Mn67IoC|N@8;=x@=49{`G>uBM+X!N?PgRm=Uuz%
zU3?_N#P@Q{e?OS~*SjoRSn#cq>-{O2^TCUfWV>s`XKlQ-MD&=TO1wo><lR|a+?i#E
zR}}I@-hICFOZRiBiYtG`j%@MX9l{-vT0eKQqTQ#!6LV)bPS>AfS(x(wo$PLZ);2YU
z7ykbBho{)De2~_#<T}s&W2+_CZDt7i`ES3y(YGnDFUy|HoV%Fw*B8z^p83=7SkDUh
zJzY}OciG2JDsO)8YE*IQb-3WJx_rIPpO%)G{K8qP7p}<cJp15M!CkBA)$g82>(0@d
zo43*T+pT3BiY+gy{_Jl!5M3_c;(Am~Vv)ehL;3TpH$1%_-}7_QOr@$Ljuo@zAL<@9
zWt}Ime&6m*Tyed}-}<w>4Sy9B$D!EJTjt^{#}J>ofwi~%-k*ObSI<j|t-HqbTbyb6
zsZQ^VUgi@SKQx<lS6H-uI^Mv1ephtQ8U~-u=~|(De43XNX4W^}(0K6NW)X{wvCOxf
z{c*m6led1DwW9gN_q)1oVhShE>Aq(uX>G}{c`s@CcB+6A$Jsg2FJCaU2s~=$cu=Hs
z<h!6#N#n}4$F&dqf2#x*%C2W){(D(}`sK>A=ZZEjT>oMk!^drhmicT}_xj(yOtmH;
zSFt66XKky1QwGxmQES)0LRr@94R+x!mZ2?G1<$-0{Hjljz2Lv&vwfC+&)k&R2lI>=
z`0By}IX?2q1O&y1woXWE*tU1~(i3KL7;M+<VY`2FZr)nfN0;tyI{W+OpZM)EHfEQ0
zh*|MDJUID)r6M}AGIWY#6c6W1_4;r@CytB4j}jB+s_fWan$%wO&vm|L{MNk3v)Z2T
zjS|T?c#*e1Xfv~K@CNTy^`6&UK5HLYHE+qchreg2RQ&q+D5Sb2o>S4~WWtRf(iZEM
zPSWbVwfw5>pZsXqqpD$nZ0mgmR=SmK>wj4gl&1byUD4&9aKWj3vziGDXYIYZcD0W0
zy!wX|vo_|6>%Taduw%jQO)uMZcW+x)&oD<zuO*H7j-IL;!+-C3>3G%K56dOqt=hJt
zY@>ujc89pY|MdHuw;RsZIdw>WSh7n%^&F#Na`E2w622u5B6lo&X0VyP|2r?^mcz=E
zmPd1Io7LrCaJsNhu|;5B^WnzqR|S(kYluzQ^MCauIniaUOe(By%r7Qw{xI{=pKCQt
zJq4>fwEQ0G&Up07tTul2d|&7C>hgcrvl!RU&#?$kcoqDhD)PJ6ibp)Vti_HyFn0CT
zv)t-l?Y6CCyK}3L*8DFkKkQY!&Yd{@+nTw?+sdV#Rjl7H>~Hum@zpLB^-q!|g{js0
zdOhBC-0orJsi(tu&L^yjdB44S``XVvuE(-o?sZT|OiNUK5_GcY%!ax42RN_XTfn|$
zzrOho<*!Atr?2%im~58vWIa7i_r=qvZ^7{C+oz=!tq)xuT?<jIoz<VM(h~7I^w+c)
zt(%jCoNNjrlT-VCaR`3?%zx0SXNK;P{_M}kGh?q+XxYup{T%Ys?!Mk#NrB|8Oe+<`
zcO06ayOH7dD{J2n(elm0Z+PCUWaxcxQNp=6-bw$XrvJ9uu;aSb=UYpRe%|2;@!0fA
zp5e|`F7qkx=dvE#AkFyp$_o?A8J|^ly!&T2{ZWpItkpGRl~bJapSG#5;gAvfWW4Ur
zJSUEiU%t(?E<YqRdD5g)Jo?Hl9X|`pW>jjfd?uZ5W~SpO_wL5FgSp9zy0|qo<<bfS
zXEQoYm}gkGNAJiVbvdPD@f}Xe;d6^;ayWG?OZ~^2ZFa0|Ldr{yn&=}}inVnvGx@7U
zAGxIU>)<JY!wQpjr2FVzooC+uc;Vv~?%CA`WFIfLX=m`O4wtNvx>vH0W0BR1CWdLJ
z=6`=7!*IJNUTfVIrisF5(wAOUpJ$-fxO3xzxl%t=!~-rZ<xKNZ6HNIP^M>t6xTsT4
z%e!^LjveQD{eP@oxG7rNu6BLn$?LC{#+N!Asn~pEa@^c+((C$f8trKEeiB+}ZTc|%
z`qpn-cdm|q>dqtR)S)MkrLEdze1qZOoWBlbzK`rb$sJhv-NdP5kM>uGAJ@|gw{_R2
zp3o|*i}Ei0ZSegAn@?G6_HW;Z0xbegA}du|1P(nnaoM5QGf%{6iQB!(y?>SzG~8V;
zeNE+W<MH@ek{o;f>}P3cP+aAj{O*zRi3xMte7VYEt8-SZ4LFkgV8_;b+aCyC*s1fp
z((;C4`JO8U&C<Wx*p?|PCv@K2wD^u6!{23LtInBkH<Yr{j)+}5*OOsa@A{K=UiYRa
zF8KN|=|F6_W|v(<{#rh<Ulr5&6f8OR2snK)KOdl4E5zI4um8M;Gjx;GW`~2@D~{iI
zqPwHvV9~Z7U&TvR3o=<>Oqr~d`|P0fG<UCWx27;0xOq`*XN0|pF-vWkdcp4exP_Cr
zBWF*X!DcpLA5-4h%)n=}s~I}mmv8&%ADd=*q{mx!=Joed3Gx4KpDE_rJM)y+=T9t)
zt*aj#xw7x<+lStV)mOe3e(>DnQtHYl3A5BDWqeghpJ20}Y4s-##g_2&#k)*&z8(nt
zVpg!eeAQ9UkCz3myD3^;Qp*<-58k(y$Mi&HeOc{m%_Qx~ZtKq2ABdfv_iBX&`^&pe
zi`lo;99y{b>F550WlFu*WjAOr{7~BY^VR3|4LvJEF3N8`aC6!;_s{Q}mdJT|Op^1}
z4Y}Xed9A!R#rLGtp+>vhEV0+JtUB5n;V!Dx7az@dxK^Sz>+24^uUS{uMX&#Nnpes!
zD@MI{q0)cXAL_oZ3#~P`GdJAe6La@2YrlN0RXdmMMv~>l&p%~<_%H@uI#@3J#q+1v
znPdCT-_VNIJ$m6|T=etqWsh=Rz4ORDFze9T+{@Khzl%G0{G7M;=90v{Qd3XcM{n}j
zXCu|GTj1Ilz9enM!4rRaLUYy!2e>_J5=(C=IBhKVxlz@0&YD!+TBdoke%{$P@7lcu
z$5}7WFKB&zW?ASQ*QNFh|6X5M^Z!lm^-{B6UJn*uVS8xBQGan^+o_VDh2Lj&+Qw;S
z{WA!+<GJ(qOX$q4Z!IE^t{0fq|L%~~>Eui142;67tW+i@U)jxW_<qLLnPr9NZ!Ptn
zt`!@#-(u_Ssb1R_pV?t2=XB>++FHk%uYwl_ElpRoZIIK5Sh^~=+2-!--EVS_E{=Mv
z);rml*)@)TkDNrsU&BM$Uo7$!#rk_E?OyRs^5gbDF-t#eReE$aWM=WN|1We~1g8J{
z@pjhUAj@N~>z@i9d>`Xsx!@iDGoh{?*;mRgFP5lwZu9auAF?)T=__v~B_$=JN1bX%
zU9U!)e>dNK>qGX19fi(2-}aw)-58q9QMmVgowV<Ly~z<OZr`q`cOTtZwbIPfYtQwk
zp`ILy(|V@8Etz@b^{da13XTV;Us*G0tE3F8OYPDrX5rJG`S%2G*|B%>eVw?Ub0>EH
z+q=|!_7308Wmi^MZJ8qA)WLcoa9>dWX3fGiXEbcz7#y%of70`U^>?WB(HM_Pg*vy1
zU%1oSwlXNbcE4iIE&XWnoyc?7H}5)7KkZtE_E)tvTLZI&IVQ)7O#iDS^<%NivZsEn
z=?W%cyMm_XG`x?!@pNk4PM^Y=E&Xv5<{$bUvMzV2=QOK3jF0xV2pm$EO1rV)LKN@k
zC+BT;%Xa)d+W6$+w+pgm+R=->%oe(dtSNb?bS3<_BzxENyGb)TLWP|;44HoT*3Al5
z6Z@<3^MpXqc7q1ty`o!Yf8uCJI~BTo(%cNO_iyg*sM>Jo-=$W!qlfQvAKWq7&Vl{+
z)9uo3%+=l}!-I3~2{&}?)VEYyle?>dSGL*f+;ZhPC0We1GF<|;tS?mdGA=6!f1C7h
z)0)GbCQ;n{xl2!eeP1uukju4Jb=o0?)U2SBbrlB_mzx>Ly*ZJRw<JX;M0k<K8&la;
z@?46ais!18JN{q0wjw5|S=68Ln|ZlQOms<uw^zjD6)Emr*4FzDUwCqJvaC<*PA87S
z{*EVCgMMZ&kXFAf-u0LF&9=D?OFwi(H|%RZ%k)iIwy{50e$5hxqgpo`ygt}3H@m><
zb~CnOYhmXe(V(<Q*Y6C~Dd7sU^h*RT9V%;$vt94dBXm)D)`7iOZZWvZnuc!D<L%AQ
zUw%<$+3naJ@;<^&8S9#Fay<Ol%ja}|!rnzMYcJ&9-jjO!zIC03Uig8>;T(0ojP3V*
z4a}}8mSjbpjB$*f{V{K9cEZxTt=(BW6*)h${mCxe^V0SKXjknc>&e?cu0Ihe&~0<P
zv3S#RnMbO!(}QK1uCwL`7Anh5`s+8h=}V^4pQQSqu>tNKzG2feUAHs2r##+MS@YTC
zX3@?SF^xgtjnZZ%$M_03PDRTpdc|IN&h_eW((|ivIobu6mMxxSI{$#o$~Aq}E9LFa
zo^bJ)p|RV4#`ctti(0w+jvjJ8#WVk$c|y})ryB`6Yqph$CO9wC4n4^yQoQV;YxnO1
zK0hV$KZ#sFc+oyJz42>v!|b=Ykz8BYC&bR=P`suksJ2z=z`uEE2Q|x9dab+D_(h=B
z^m)iz%Sir(d~UfB91UT4KR*7q<Gc|T_iTzm&e7r}v)5R9cd9svdPG=-bAL$b+$C|c
zw1%(Va^bB%yuW4H$}D%ueE9K!Ni)+cD6mpoV1Mz|o<Q5EW%DNeJj3$fVaiOM?Xrn&
z%|$1IK7D3j5UaIa^!#@3l}45C530r2ti5g=ocLDm@-|lKww8^O7Y^(z5Zkx0(68$M
zy3D2j=7;|O{JNgeVfVYMS2k}F>^i!1dQ^_j$KJqYUQ^#3Sl)H)*WV{uUC;mc9(Ouf
zd2MB&&tpR)z6)mCLr>JtI=S-otgj0c_x_3&I<V7j+Pv6e8BWKS;qJ%GU0-c3Jl}b`
zTuEon|Iq$>cMk8CJ~};k>Z&y-oSQXIPVN@hkF%Qd;KJ5!Hjag#1)Prj=sx~6@1~ZT
zs7~M}mrlW_N7ha=^33(FHCoUj@aW^A%#E7t<|P78o8C@vs9KnKxXsk&Nb~0B@7#{N
zxX(5G$s-<>_wuiVwL$$uCBJWR!6&`;q|Fmm*<8{xTiY%_*i3o-%~*ybFP@9u;Cmi?
z+|t+erUS>!TP|t)5B)xz%wT@DNpqgl^moVH?xiK0+aH<4e609uKGTc&clK9R-M@Cf
zp_A{A&eS;$+%pzOq@I4bwkOV-<&fX}H<toBn!*!ftz_3;Np1LG`u^mU>dH{14QiFo
zL{7c^BDG#T?TzFwZtd?avv+ygDYkt0qa=9f)=x?4RV&qf^scpf`K3vH30|R<siczj
zgHub!e@0>c)1?|etmZyC`rmBL;?%9-qTiVw*7op!vptma&GP)QeNG&PTnaV6&DVb7
zR$P*P|6j%ji3KYJ7M<dJP!Oru^5I1EiYLXlWs7D6o)q*jzj#Wj%%U$%Zsw<&81DCy
z_WPE)M_cUubky#bE!P)c9lm|PEh-LQ&-L=yd$@6Lo5M=$1Jm4Y6-zTNZ4q$&$GkT+
zWZL}1)(<k1848SlI99B=W^w3FSi*Z()#yO}GOggr&$$vJ)U+~OyG|aTpWr{kZGHZO
zRXd$lyR<y?-1j^D|5XQ<NX3>JnG>_lHQjV@;8b+^mwP~`*nHZhi3Tquu6-%{F@0r9
zvB>O#pE(S%=g(YOV0gNFukf2L$2Wx{*UUXDcZ4^4irRiWJ9~o<hho*Cl~S9gUuSy|
zRH)c;TqdErQswkMO<857C)ck2_mjQ%`TMf_|IK}_GCa3hr(ybV7CYz6FI+vUmiu0~
zK6+Cvp{>ra@V;be#M+02onG>1?g(@KS)U@*InSv>T*&eF-Z@KCbazxr|I=1$(I{u}
zzU-fAE>I)>d5WOc&WU@f{4|3CJ1ZW=ollYN_vHI1eX!J8|J76mHTIQz%zerZUgEH2
zN%&LPtIzCc)Tp#1`^D_LjC;efBT9A5?SCK2{k!S$g11u}?=PCvyy9_y!UB^SPdfY;
z@xD{d&iTA7Cv1uLL%G+bN2Z85b!cw5|K(Qwd(8$zmp$iquy9P=Ss~N2uHd}MMl0iM
zMVIgWU&<};dX`DFR^;@2*+OrB=KaT2Qg6wBU|W`O_36QV0e9KNB=&r-op)$iil$WC
z!Iw`~1}#-skyo2qxkEwgPuZ(0D<}Wnx8c*LRW;IbE7cC{oU7l!_EOw?zG9!nyIYTh
zE*|q=zs%*yrgo)=AG!oCX)4sUdA9y}wDW|UX6iL1>A4>{c(#S+J}%%W(sA$h>T{mO
z<rB6@?YzQ->q?e~G$-}Um+9K0)FQ!?ZqxeVw-Hx|OtOrlO7Y|;VG&PUOfEA22-$aO
zn*YNsj}mu=Zj!8RH0-)^Me^Ut8r}8-D^^P}%3BpJeO~!kU(-lgPFnE5sU*>RjvR`<
zjBcmHcJU_7pK7~!QumE@GcNwQfAaN{GaI=7v{Zb2F}GHH;ZEo2`_?Gm+i)>1ZTi}T
zrRoU{Ujs93K1_}I$zM|7+!+z4b#rF-5p97LUL1;b8|P*oVcd4eVdc%_=6x%Zemy-q
zlarmtKF#z*dg=={E6LiaTLdTY?!K$V^GM{={h*V}JT9_mg@kq<|B$yVdnVf(&z6b@
zvzjYIKixCnRdhUZb4Qt#OLQ;q&uxr?pUUFS&kZ^Iq}ZBOv}gV$UMHiu8!XQ&F>HIT
zAMpNdQeWI1c_!D!$m(~u?qywE)4Y4-*Q?5nw%gd&*?2oHf7W^W>=lo#SLaAB(d`Pk
zX2|p`T|*@1=<yBLCd}*e+{X1&uC;jOCJ!@@md$3)ZM|h>K6O)d{J4L_Zan4Yut<60
z_M8uIrtr9}h~s7d8_kgD{_NJa$vSc@uY=bfjdD3~H|o>V)5jL9o^03{QpCopEb6`D
zrK$Lj)4gVmKOa@hx&Jz77uz{~*MmDkj%%?yo^juF=s)9U(MbWSvyE8v_Dy_wwMAgj
zjkpKu<>&5KA7uI{DdX**c|DAOrSJ4^dDd?ye{9~vx6tcPZOA4=xpangx8}DVXKQUz
z2vqyKEBk}S<sZ!xmoIR9nepXi`ZHN(!<FG5_N{JMlDV>0pmv>;{?a2MC)Zu6<`I~F
z^Xm}~jzV9(FLvDOyuTNOo=xA=dO>9U<+=}7;`#5G96PZ~ZEd6L%W%cD6F;xWDQ14{
zqbGmZwbg7&$R@+1yZ;uj8%dx3yg<k;=Gz6Mo0SHy{G7DxZ-?$x(20$&RCMvZkx_f4
zJm}RDO(!1Kw3R2tLt17$@u&)j^m_G_XUUv{GTG`SwLfm2eeM(g>sD~*GsB0^lwI!G
z_xr3^FL>|TZ=HLm8~1Kwy2-uu{}Z`&oD)4CfA}`3AW*6QI*aTlaow;r5gQk=I={cO
zxBB_Jxz!h)cBR<VR?M`W`r>=JM#$%!Q{SJ-x*jg%-<~V1^!1GK#`B%>duGkAe80o!
z((07>xRW{a=0E3a&i*FSby|ISJu}}sp1an&tL<h^HsaaZvm#XImWjyRt$Md#*r}vw
zJ!|#yTVV0##D}B*^8Z(e?sz(D?j*m0_r}@n{q<`~cV`CKPE9=*zMz{qC@FYG;3tKQ
zx13c=CQV++nQc_D^7{GCw&@?9cX_F_gm`Sby_M}kUfuPgv=G*&l*<QiI~Ct`y8R%~
zSnOWb?hj`1C#HV;#agz?Fr>)R*7(l^Z*9gc?E5|ICm&KgRa4r$;&3;c>Bg=Vcb^(C
zEG#|~n#KH({kW7txxHM)FU<p1iYhmk^g8{x*R)+W+d*}?A-j=;VusNX{haw9Ph65q
zJ-s*J;Zd)ttHX@DV;=pz_w5Of#=>jMc8M;R`1EIv+@v*MY6H(RA5WU}t95e5mi#mM
zKDUgGdLPYwIEzUwOY7#0y(c}bO%La{{;_`knC)L?e8MB)3*|ohXXtj-&75<+>qMg4
z+N`ZN`x(9*&u26U==fxRZ)R%Y+~c$Nt24Yfr}ygxt7415>jkTmbL-jfOWS4U9iEqO
zebeJwhJ)3FGX0>FA3X$B*70@yD-Y@A`t8e~d%^1FnOD>HEN))NXTIE!Px@-T=ebLK
z2kK+1YwSK>zszt)>i--8R;l$(alF@GZ@BkW$L7b9kDGE!TLtbPKHldUsMW}^*y)Y7
zhxze9S=)(5|MXrZsb2qZNB47ne=p}ez7t2DY<x1+c3)CkO$cl8l0~Vfrkt3rAOEk0
z?T^cYXZ!oMO5O|NIQZ^()!w-E*Tqdwn@rtN_%d&=fK$iC%Pt)UTR&vKHgUOHy=|Qu
zr{a-i9~rlMXPvh32^Zp?_EpTjuTR{mW777$hfXb-z9l<Teq+UguldDme5bxS?ak=a
zv3%mv7J)}$@BbcM9lAPfZJ6A}BZt1PxbnMl@+6_jlY~m;<mBY$$;rvZC3kggz58`r
z)>n<VV+V|j+75ZfId!OeKWCrGx5w!I3I>b)C8axFK6vtE0&jB4Vz+12I|KJ`a_U&j
zdvyNXH$PXVh5YvKxE;UlD!1abGSR!2f<H~=`Es4V@AIcGUp{^5`k{O2;IWWRwwER>
zb$(Ulsn2`6tbSjn<0bBGvqV2i%J%Y9=R};U-WE}y?D>u<_sCoC<9-s?o;5n_Zey_B
z<s<d2?y?u_nSNh3J-x2>Tr=NKwQTp<ANWSI=6vdvv$*TTaZ!YCX>`q+o98RObY{(3
zq}1{~_cL$nw(C#iD)mlOu~hB-7rY{J;Ro*9^>X+3zm8siO)LJ+bpvP3OUZxV%I4or
z%!>Z_;hOm?_d|VKL?ZSn%Q<auzOBl(>Ob#>t#4<)m2=+pu;o+4A6~sZYApfjF+1lj
z{Cwotcb=bT=Ewe+Ch%*1Sw&@Kb!BDsixR7~e#<Yvdi32jI#zA#t6zDEiY*=-JF35*
zySuym{n4nYg&gyvRgccwK7U!{vHXI|lE00Ee!e!IWPN;2Nod6RJ+Bw~Udo!hWtU!T
zi@<F6o6<t@s>dgpi%hHFP;}XO`#{}qr|nbk@HpJrrB@~uveaAFVy54wdp-{?e(ozQ
znDOjHYOg<2r?J*{|NSex`j)Mh3#;Y~G~;+zwlzQNq9sp9-0yi!{iV$9+po$V-u}P*
zew}I6k@kHr#Z8?rU)~^9G$}yqX4^W?4;AnCWD6u*-hZe`X+I<XZp&|bmbxn+cRIhD
z=l{u%S^9y3i(>aA8VN;M-Cb0fRr)(GSYm_U!j%0dO<I**Mb-sNo;rI!V{hl;Nw+`j
zOnIRieObn9$+XGlamKe|Tk99>xb*y{%Z|rF{Z;3uz1+_m5)x#1YRNaA%+%chNB2+O
zy1203;;~`&-~Zp<*{tZ)?qmMp%@oDREiq+fu#3&A9`>tU%5huejtW;>q^7J1yS?%8
zMdz;2*9*>7^ehM!Tq?Kq+M;b<ZyQom*68X6@q2|v>0fDVN)ib4VY6gXx&Ln?qovTK
z33qd*{jsZO{q*VE@iTU2yWj7<zg}cTUg<<pf3pQymcGpbuXjvkD81wAwEv__(W`TY
zrVIg<nuSk$;+URFy`0Cq#mML9qlJtGl^vz>ivpj%5i3hRepqty&pK(X=&!eaowM^=
z+JEWsvDWVGufms}NXvhDE+Vibt<mp*MaWM_9sdLWc%Rvvmyn+H*LI4Xm;CojNuh-w
z*Di_LEU)ahHn^~Mt>4d2%U1iIx^!*NyOR>!R@@G|9e3R1Y0kc|Eivt`*QV76TAy`u
z7n#r5T2?7hsO8-#{B?c%b94LpFa4pcRt)N``;#Yx-&F3t$ld#I$FAF!tJ-Q4)F$N!
zADU6_`B?Z!@y%uDpZUsPynZ|RP1lo2ZI@qevwgMTJ3~;5eV5J7i$^!fPp)KL|Gdsa
z<lhaKRo@sq)$UDVbvcrLSF>iq_CtCnH>)#6zbTYiKT$r%KKF)A<h26LhuW(4ne9#u
zpPq3pciqGnk+FYqWvj_v>ytU9Y#s9oEsd}5?Qs?Flx0os*?GjpC{1PhoPaChht9LC
zxGJ?ZYHi?Z(|)52Q7*$o%YvJV|NP5**(W4CZ@#onFp2R$*Nf((d`*VO+U~MuiCv8J
zmg#?!t`PS|K_WRP%QV0y=#2)4;Uis#r<wa^e)z|5PE!A{U&oGPs~gOwoqT#zPr>Pp
z1V`q|>;4RWmdDl}h*)g8nnQ5<@ncyGk$j&_-4{B2UG2=QtI6cvF?Ywla(Rc3Htj37
z@0=WMl2*)_=u~kj)02_mZQ8y|^FJuen9ZOsSaa7<aoUHNP$mXVv6PG37N3;f@3Vu+
zrBjw&v8VL*62^w$<Rg4XIvA^_SY7zqYoU2vH<aPa@ilkOXX(2)bZ?ePI>=KP_sN+d
z>)Y*!vr!g*UoqUdZFcU+vudXn_1jz-+bvI6RW4q3kAcC)Qs|w4H&ci3FPRHB1HPY?
zOA!v<vG@Ddbh}qK)sv1NOx1loDe8FgnKy!N!Ox<_r=PVI$c!jx*x35}Xx|~7^_q#n
zQt_T&u5aFKoVRV|>ID}M9%g#lvypx0&YkAP-9BMjN-dw;_<lIOQP8=Z=ya#vcXG&|
z&4=#4iko6@a=Ik2uyXpuNu6Q~vpb6=rre$QwqwefHk+FVHgHa@PqnR5wWv^-Uiae8
z#U(-6RUEgUpO#p?d)8d}3-%lAwr5|HIJL*sr<++wHqEgs^p2ZrVf2;Pm+oz?usZr$
zpkdPr!L}nmVx7c}%-gee^8ye3!ZgbZ)!nkrx4*`nP5raZ>fZfD-xj(u1kGM<%(sqJ
z?W4R*rv9F<8<JnKGM-?|*JEjLpJuaR)*5z`&(ZgMTo`Xn`u#F3yIlCW3G)rbGM;Ud
z`ftT@tuelTVK2jvqvs>|+m8IyEOz_NIX`Er$Jy`$vy+Y=Xl{tgIP>1Ald;b9U&yNL
ztT;za^PsHHm-*e;KgcRfG&sL}MTYq0o4*@)pWWhF)%s2Ka=!Mn)lzbN;unwUUwV+7
z(0{}5!=e3bPoH&Noy&M_+pPn&X(=&YeNqgQbY^od{3)caaQ^LSwpd|nt~eE)Btz}!
z{G#Rj!P6oyOilkE9D8H_Rxa_@L#_)8Dt}c+rSa+;3VCv|UOL*>sIH$Cn7C}p2RVf^
zo6g<KGqaAL_a~7*`EAYG-bo$-S-*Fbr}r3&@vrEswc6ACQp~tvuUOf(snW7mxv4v&
z&hOnPXT9s^<MkINZDaFZvUs~(`R%jMmc0wT^Cv0ojEb=G(Y;dNb@omyc>U&@<3ZD~
zbN}8cng__qaTHfybJ^MZYOi(k)`pquKLr`R-M+j{-{aNdhv%iUC$h0@U77uJ!;8-`
zu9Hta`FY2=X~Fu{4vUXS9$~tCq_5FmPha2f%wsmMvoDY8Zl9{VHTCP}qIaEKhc|89
zd2h23gTwDm-HSq*9SmXJvdr&m?pyw8k=Cqt=g<4Z>OGC&PlosPxy#<yhw1Xqdb>BL
zdy0qCg5LDr#YM96;RoiP+%9Ib+kN6&mM_M+Z=&RcqB$6L?7VUK*t!lA4Xp|KWjst1
zS=a7lVbF;AGUuWB$A&sN{@By*Z-1Fr3Y}HA>iyjCwtBzpwEL5I7y@*Q(|dl(KhK;X
zkiJ=3LcNTqiOZ9<;ZkVb?A45aV>TXE4EkaxpjpPlBwe-WU*7M+9XB=#cuH}pbjdb9
zV3WDXc;T2=g}0hu@Nuaaacef~7r)OQK5ToGugT+@=!-jNwks|B!!LX)cme2yMYIDL
zK}Q;b4qY@dFf%j($%8pY3I+-w#-O<C1nB@q3zWM~K<7kKaM#JLM;cOW0c)4P|37Um
z^YWZ%U#A;SnXg&RTKTR2<{@o?9rkkl(VKq%{r6FS`M;XN_v!2Z?5U0K?vidVvflo}
zdb{=+t&IXd46<i_IKR^0Uar6Ya{2!I>9(eZPw(!#5PT|j)t!dUxvN%*Y4R3bniRIq
zCi;8)shh>`h33y-)nMP2vdynEMw0LSq3^{r?)E)(x-j#R=nh#?R<6cB_Z%i_JKw!`
z;5z4eYa^bZj>rR(mrPxh@n!0Xsml#YYv-p_cH8kZvfuNJdU>vQdc9G~?f|#_56{KE
zF1j#l25ZfSzCV%bpQcsqZC(3jYQ_G#7?E;I(ay*N=APQ;9q)aLit$hPU%=v1`qF&r
zbJ;NE%&9ldM0efY;Pq^3!+e|f2lzZ!$DI4IcJ}AncUSIIQJ6S`^^JkdzC~yDeBHx#
zt~B_Slh&yhwPo=KH>s?B_3c@6!2S568!R_X?SED5e(;paTDM8h?g#xXU-o^1^VR#)
z3W5(lQdzsq?|ivd_0}|tKaZ;RmAzWVls73%-1Pcq&nKte8qB|T>XxdmxzLBn;{3Zc
zqs~9SzgFam@VXb>8@4X%GCXa|tTJhf)#}OH|J|MAwmwE|am<A9poV`cYrR9xMceOl
z=$+(nBWi*Y|BLei4_BL<kKVsO)c13ImC*D@|Je0DZvGJX=1ZaPy<gv7$5tn18@{W2
zAY>J^uC(ypF5UavG;?%aZ!qa8=ET1Hwdd=WG}|YP5nZQwzidzYDittgPigd~g{PA@
zaEMFoXgQ?b=TP}NbETxJSkDaZpnHtdFD#Su+OenfbZ-nJzskg46-lS89|&>H&-fR!
zm)YJ%u77D>_fozx+3&w&E7@b59tvNu4}X7P+4090iyz+0ww>Qn+E<?R?3&cAhsH0I
zgy!%~-tg+lTDQqkZ}QVOl^ET8xW>)4)@zIW{g?jpIb%9}Zgjo5^J8s5_vbzD&#-*I
zoYKCzV~Tpx&DA$66`s9*eQA5ZQ}=V5u20Wc^tb2X;m&VsgHtbmKCD-!)Ek{FxS22Y
z{-yNpzW4f8IZdB-7|JJV@7wlx`@8RI@9odU##DJ6651>@)qY|7O6}e31@WhzUKa5+
zIdrXkhOV9Hr)$3zbN^mjQ*q<+{fJ&Ct<JF7eM@%rEX;|n|Fro_#>e8*Pm=@Ka%}(F
z@JlB1%<@`$%fDAB*QEFPk<HCjX?h_+^}F5Vz3TX;vajs<UUNRq@$u8n<eOc|7b-6n
zf4X*4?R)vt=ET)Gx(i<N8}Kb&BE9nJx0-KEsU_Cev^wsv#iagPH!olG_BMUXaNk?o
zxBYwdW`6jc69U&PFU@nScX1D_eY9~#aL$id7naqnYkTe|bk<+`yeIY9+T{=Gtyi$}
z@3e|-`D-fmUF<_4#}4l`$p>$*|FHb}zxnQGqPK6lHhs_iecbmV{7=hO?CgoU-?=tv
zWzTBOS>8GkrXe;@PRrlU`aD-`*}8sRor>_<Vxe<J@rSog>x$XVaMav8a;;lN`JV9J
zLuY1IEl?@t{S|dEG_3l7*NQ(%-Ifxo=j`sY<GHcRbasSR$-Q6y<Hf#ohSmJfs9J5C
zCb{I&2B)<Q*ZSJ0l!@uw-?cR-^iEONpPzo;kN<z~U;OLW_sIIMVN(p3UI-G?>1m37
z8yEYw;-%-$vh0~#th8sv|1;o{Irnat{GPDgt1V9F9&RmByELWja&)hA-{-odvtMgA
z&ECDweA9ziSIg~ZBii=G9TI!{Lp4$_;eF)UudDc*!@Z^zc~3k(SJ>s3Pjj>0ADzsL
zQ#OQZ_%&Z^-{!5XJwvN&+m|$!=CB*yGhaTHV3qRSc`)wNsc#!RU$0F2eQo<%#<=g*
zx96Cfr}sD3+*vK?wsxM-hVZ7J9#Q(0t}Y*ze7$0pZ~NCL)`?k1<L})k+^jK`y`7xV
z{=({Om&;YY)~pR-Z(kC6Omwr1#n$k7cB>|AnWwex$MjF_;V)xz<4ybj$;{bXe(qR@
zljua_UfpD!*6zo?$rG1+-Ew_jY8Km}uA6R73;FE7r|PUz&9qIO-(KkdAnkY9?wQw2
zyr&d=n>VN3F_iz5?zNm!>x+kWI4)erI{Dh=&OKj)YWH1NJQpH!Zl1Bhu7<Od-znXa
zwAHv0R3xV+@p{_i?QvOaOKmUw<Vw0(DmTscL+O{Eq&&H($y?@$`A7LzKYn_ddtc9C
zv7KHz7K|TF`eiD!o*J0*$nsb%*xh>Qh-GkU`JcL^-Pf1+^2H@B+x=m}hNFDJlZ0F@
z*DZWFW&2y-u(M0gu?PNLD)%-z)Thk4?y?j=OM25C{?Jozf4cS0nNhF3+xGwS@QgdF
zQm>s*&19U|87Z&zZP7XLZF!QP=Zf_$`muA{d6wrNqb9rRd2(}jpZOJ5zUS7I#Mjfz
z_t)GN?|5d>FX%I2mx``}nqjv0*P`lcVl)3Nz9o4mM|IO`9@(8dUF=LoTy^dsnGL1C
zPekiKZQd0Z{UItR{juA+$lDVd9V@?n4ftAA{b=J|(WKuiE36AkcvFvDd3ulGk-?sa
z0o_j3FZX=C{5?`)W7GWG9cNvI?K2N(^yGS6S#)IHkM{4j8z1W*JwGwpc<vg(-qQDd
zTelym*&?fw6&`c`*WusiU)S5-dy=dDKx#`(%-ILmGnTn?OZ07+y8NytS6uqsPv_6q
zuZ{4$|K2j#@4(r!%q2_e)nYG8l$1?t4*X;J??nCVeO^)rcC@JJHEf>Z+8H%}#e>qY
zUH9Kcw+G#`Rq5-W&pq*W?;Y0zPY+F-AXuWYba~FBQ)i;>cRDgA$iDhp;`z7JC!r(G
z^}RY%c;JI29g*ccj`yNYlt20OgrO$bY}teW|B2hf#Fs~0+`(!v!Q$$1fj$3r&DjvF
ze%|W1tO3{33k&Twr}<PWZpqh8&vxt2-Yx#ukEuhy(A0k4)f)SWjX8UBXMcZk<?mm^
zv+E@re%6G`Pkb)X<^22FE-k;<=pVn2omXyX{F3u@*0QD_%9Hihg}qvJRrX~YOUL@+
zC$khv@7hbTT`gO(+UU!@>`n)n^+KMJQx;w1y8rv-s*6iCJ4-ZomlWPBO7G8m&gQ#k
z*&{oFcA=MR7Al9|P22o;?=GYK%o{V@%ABWHGjO=xJ9VLC*1}KmUpu2$r)IBTcQQJ0
zdBY-?hqZ5BF;Aboebd%;H$O{VTE)KRd%n$7R{ayv)4!a)<ooUH+e;v6FOyf%cm8)h
z|8}}K^jn=8+u8GbLO)Ga-F-Ee{e{BgedQM$Ii9R7TI=k3RBd(F?=p+e|LnKFU8%o1
zTil!TXew(&@O;Lgg;qgA<;(8>`DA_Z{o^|`SC;YVDIEy<wPsy~cVCS4{kT+#e=k2q
zZ~vydLi758)maQN=VUx@T3vtK8NRAG{q()xo%gFRr<dG*sLsCkA%nzq)ymb;rvt1P
zW_|Ex+ww;Kll^*r(_1?yReKy)Vz~S}@_%0_bDZ3^b+U$YiuU|HmT&v^{p8T&j2(+h
zWw*>1a$Cu$UvItYo%hG(+oshu-g>sS=YVz*W5GhZ_ixnej&_(PY>~CwZQuLtfBC&t
zmkeg?6`aW3(E0ZK1WOlQiJG}H6n1}nXCMC2AaD8}mCA1q)Fo^<4s_h=b@Q6rZIi+q
zVW@J&^oY*Z=f8ycgUgN{SUr{dfs^LU#fN|CPS3cwv|?4=8#DgOT^YZP=iKL1OYS_p
zOS|HIPFa(>q=Loi^Viqbev(qwtAClF?Qa)TxAXCw6|$bXZr1w~thVTN#W2`%MsKgW
zYub97^HQ+bekHpYgAbo%{oXFzUB>$8N4Qi1-_yHpm#3V+*=r>l-Q2Y04ohdP^`So9
zYD+^Ut&fU1B_2xR4%xp|-<B`6u01(thev#s$5{(|!A*WGwH6|KFK-UJ{9^5UFVEV2
zf(f$er*AAh^@Mx&U%mWCQc5{{Tjs8KbpEFOk9&`g$4@PLc_h3#mT7@t;_FyX)9?t_
zbG1pUUkiH}^_U+%l*Mo9z@9E0sFz=|Gwk`g)!FC2MZArE@AS6v{a4}BtaGNaBxJNE
zzJ9*HX7`>$t6!AroM&ENnh`DTbo9GP$tnB0^Cb>GwAsV(<RnLQ=Q5qutG~qE{qOa^
z=An6C>gzu}rE+a&qRl6AKj7lJz3Wo)wORRUa`WcT{V%o3_@i0gy<f{j7)}VRjf!&j
z+`83i>hy}9#dEqo9?Rbwks!EW^ZO?Azou?aKYPcy{IK|09A5eRvQ<ySZ~i&k^OVFL
z%1_-0_A3?dyA*Qy)<YK-<!k>ge%Ei6RATtFC9ghePwi@hoWC~7w)ZdYeo}kji<Rw<
z3)}gPd+u`;X)#u)=Pa$sd3{FZU-fpijjPu^IQPA;G`RQf{2xhqLJa|8`jffCr*=+I
z(c9US9({#v)nE0K(TnHgHCWu5I_K0A{?gCE{~JF~f3iRLrb%7$tCq*x)hv`6?4qX3
zKX&EW+^d^?lYC$ATdj5N$41TDJdd|CtXQ-s*6YTvfYfh4yW~%A_#wI`^~av2h1?3a
z%V$QG3;CrM?b`f&)!m)F7i4Yj&ow^zW9{_ou}1foGG#2h+mZbAgJ!GqoBWf^JN;tw
z#5Yd6`RSVXUDMl)YGJBHFLO06=5Bn&ksF>ZWtac<{7LOn#w8j(G570N=NsNVH*<g4
zKIZ9b7Ck(kZ)+>pKlip$En^wOym$4ndzHPdtN(qsuV2Oc>DC6*`@QBhzpw4Se)i*M
ztIXF-9#@j8mjBSc6Pu*X9Lg_azyE~j%d}N{zHYjF@<k*2jqjU_KZHb|I48lc`eApE
zV}AJB=gtc)KVQ2X_Uh6F)`Dv*SA6+*vfnA<NtGvm^zw5NUQETDzh<ZWxz@LKVQif+
zL&=7Ut8q)$t&C3WEpk;`y-fVq+>P~5uUYaRu=*BX<Ng1``Sa7?oc!XNcj}|uy4d0$
zed%#Zoi(4-_xY#2^Zzr!sQAeD=ZtP85yItikr(SbpKhEpYgNg9tJ~rqw)kJ`+nRdR
zx^7mr$b;o?IFH0%t!yt{vs^z!+O#lN@^y`x-1P|dt@%gye4R3J*EHMk0~(uVbA7X3
zl{K|a+kM>>i>;+jeEQk{jeizTf3;4{<mTIrdG~&8cq7Z;qr8{PCT7+8yViN$uImo(
znfhbqd;fi}%lOVO`?*JKcVs?iW%lHcUk_*)Wj)fG`1(V%(Y|t{t+RG)vzz}(z18bj
zxGLX=`Cnh{pS-;<b^9!)EnyLjZ>Q(aRSrM4?2)$Q!qRQk8y~HFZO~S`iM!V0p4U@W
zH-%YIU*FxFc=u`iEI}i-&{UV2xa9?Hhg#<TU384=$=c#e*0&gMt&G0@taqi>AJJVN
zPpqt4UN7I1x&4xV^4&Hc;XD6T^5<^8;^D8b;MH0w)uT~sABqW!uU*c!Hc&tA|4g-M
zvLgGP?^*c@ix*4{NX*VwuDl(oQnWR@*h^k?`-3~-f+wPvpNw{>uVs7Paw@l2WW!DM
zoxgUhb19zltwAj6{BqWt+&jF!8ZA$0z8`#PeX=^&_c!u?eynd>=f1dB`*@JPF|**7
zxP;|3&7s@O!i2+LmwKJLz9S_1=)&67cCR-uO}2a^GJAL7>Qfg}uW&yNJsB1~-D{Qo
zNrlPN^&8Hu;!p6nlQ1<j=F-v3N2?^1^w$f<9WVMhPsjV-s$={d3s$b)B{Ka~bfx6#
z^I7+K-k!f|ZP5Q-J?kA?*@Dg9tKR;5dPCKA>i7Ld|Gxd+wddc{j};uzHj?{8FQ3YP
z!7%r$yjE1|&Zj(U`?nnZAz;|e|0yh0N&JG}U7=^I5+7*Z{&Qn{+2MY%$gqynC!-k_
zYi0i6{CB!QJF-kdQ#<Wq)5mCr(~^(=&g=TTLH*y_hhbZk^BLEybKZ3FvhiP!D3hi3
zf(a7S^@A&ZD*Vkjd|hGUH{Axq7@=*8&X#=svAV!|*@;EQmD~voPc_x6>sE?cGq1il
zpTl6@mv1xP{Nz(=Uv;SV@($PfPhq|jyVVn7B!4bQ;XD7}^<gjX9*=vgoG&p+S&Hfh
zomw=hK}ahz^k&BnH~CLtn#ID*wyEiTg~``~yXS8e?CW+t5&e@-{$Ck)0K<~iU(MpT
zEYeA?|KeI8TB+TxF4m!MEw^<2(%^rwFS)Mw$s~Ezs;T8KowTvRd(PYspC?INte3m;
zML)DkxN*<clgeBySJbbGn5mgg+81sZtf@VD`@h9|YJTeR*<3x)aZ7i}WsgU4T9bFS
z?D<+BIw@@GTZR^)C2L>2nXoB;l9>3U?RncL8(*6vRr2y9Tido!n{PUIxayB<wRa|b
z-Lv(-#B!Z0zy3+ub{_Dln>Jyq*S2MQ8N1>aMOx+0)%9x8O%Rmy%-+wlX2!a0ZfCVi
zJ994XnR?MlFNd*PgFiZ2TJuY>{FLoHiAVQ@K5f6~cY{eHyz+3pa*?QW_SEgK>>Ag$
zbIauY5BWURiBaNW*ri?f-!HtT_eFTR;MMcdy7OATxT>71t3Gz;$l<e|%mo>%HBQei
zSa|!9W!-(Fu2Yq(>wjqcJQkI`Bk%9xCI$(osf&K^J(3;r>u2rh9a+!THqLALvS~qz
z!k!1LI*T$j%>$k?MX!3g_RY1&jmM&1d9o}k*`b%1`19wTA2)khW?q+DwPM2dU+0@Q
zO|4#4|MJ{ry&Oj4n^6<jJlfHHWYe!JP4Wg^)l=hj<v&^7J(u-&&s<rx{iXpW>65Bl
z*#s{Cjf=A0lmF`Z{^wsMG|VJJ{t1U}jC_5|@O|{Bq|0?Dg%VYb8qS@vW)Ydx^RDEc
z*Zf%zzpQhKnrKozqh`foh7N@sd$y9vv$h)@(@pzwkeySzwfplARrU|-j-Kf-nD+SN
zr<WTwmD6i@1W(-a)37%Fx3@m+%VCxi8-jmzM*6&2P^<ls_o17v)!%v{(^<klYd351
zHgd@(7}<9p+*7HP;8I=r`h&X1SFu@#R0CJ@E4&Wl68V<ER8m$p;pD&belzZ+)jz8H
zp)tQLFI#oaT6>#6-?H6bhkwb*372Cme8MZ9xl!F<h5XlFezR8E-Om5NGl=<}^X_mv
z##388{J6}+KHuE8Rn$&u?dpP`8$O;sEXH84_y3c%^J_c4|K1zO>~m&K@lU=zmp5`8
znPQ&7GVN>ry<1WNTfa`9uFrC%ql0;a>fVYwRj*?hPtW={fBU8Sj*$8C3*SvUziW^4
z=h)ri_KZpb+aj*nZ-2MCrEON8meZy{2F3$-^dkCg&&32MKDX#A?qbM0Sf_rtqwo6X
z%wGYn+|hrRH~#q9yRgcVao^1SB7T-9qF>v%-gKXJQS9qKb<NX}5{X<c-?T1I3EA+p
zX{OoZKU!IL+e)$mPyFpnpPF=FtDoqME}b6*2N{-GG*7Pjc2m~xLcPVs{hzow79DQd
zW-!zK{{Jh#6gxi)xJ6iSBv|yDN6)`GUt2n?_^h`2;jdGc?w?(prMCI+XM;PDOk(9f
zt33p+nc9XGt9Krm_U+4tub-J27&~J=Tu#-WTC==YOmR*92JiSA(T~Lpv_F>~Y`5Po
z(SPvxVats5^;I{t?(jLJwC8@?Fw36t@U?UH)AGMLRWf@k$0#&xcG0W&{`l_^yQt$G
z@7aIfa<?s%3(5b&a9LpIgQpd?^SS3%UDtol|N4>`>xXyMrAFLo8<w5Ewf&al)9;u6
zT`^sM{>x3t2DdFm2j7<M{!#9>cKN&K-u2e<-I}Sot_^~f$rF$IUfoyv!-id6cIu@^
ztOiPJV|3m<+7qf8my?^4&Q)>V(ji?*TzhxjoutLj-~Qd<vz0-h<*0GQ<*${mmnMDq
zRT<#M&)|~qx2J5*?F~$4*+1@G<$tp5UgjpYguM36eqHh6yY9bl{B$k&(d@SN`nny0
z<#G(d9&7Z@)|5?s&dN1?dtBM9-9pc^?%y|J;PHL$TeCj<ib{TH=B!&kkH5*EzJ+1N
z;fJdeqHTLt9m>0>@7TI0R6AbWtd!68vL=Jbt(7nDiH8|2+t=S85j1Q2y4*89f6BfK
zGYDI+dA4npw{Bdmja<LO<LyH0zpre0F2}^-EqK=F+h@<od!}0az54I@<^MMM%?w}C
zJIZz6$F{`0`w%7abnOvI7w<`7zs{;8Gj8ZR{Oe=7g7%z}&YYQ*+O^yI*Z$uk-_LV~
zsliEpVs?6D;@3>&^}^Lw`K}&OdE5*hAG>1Or>@^+8tqknzjIHh-9snOOGWYw28;Ms
ze}A`p>DrgN_GLa#Rwccbk$b*Y%h2NzQ-bO5%?5YYt$X0IZl2lauu~3uj=aC|bIHyJ
zj5C5xeV8%n<$AkIK~q;Od6xU!IRC4RUFi-nMh2eeZ&uge6y8_wzHW2$k9)$Q1<L>L
ztgDa=xWp83fvZ^HkIk{~w{rihOi`Z~ywZDm(#|70?r3Gct@-<KFNedt6Z_Nbzv&**
zyE@67Yv;A2TKE0h1^)`Kp0NGaTDjPd-3%40ZdZkDPnoyFO<%qvMzvFH*}6{sfZ&(c
z*IoT-nyBeuUi<5%mY=Vk`@{I}Pk+4$jA`E;vcu-1jQHx-V8yLhwO20FWqpxwL@>~i
z>;IuGA%Fk=(yDwNb}cCNQbS4l`QpQgg?iEs*2_=bu-N$K(5L-jn`0K2Er_aoU7ek7
zo)L7$S#sgEYz~Izm!Gq@xw^cLe_Zk|Q#bH$ZByCA*Ke+=O}^eVV`rQx!}J$sC(@d@
zOmlAhvfTgY`xPE>E1A{lw>qXD`K*x7$aA>HN_47@$@ERFZ_Zu|N@e;r_d%%L-d7!)
zqIsVNHzZbM{-5${`RbI8P_M%&-LG$#L_{3b?N|C;b1IraS#YP&)w7bVm)h@`p6%#0
zizs}2a4Jvd@8IfmhK!7NzjC}<g&V}n9Jk$ga8D=rd-a^a4Bxr6LQi!Y4tB&8zc!fb
zK6Rzxl6ApPbQv<9?q=6g)w|vsW50ikmr9gn>0DcrN^XX#3fIYh4L{wVUs=1!ptSaX
z@>H8IKVCntpKDPx_tWuChK7b!>PyNdzTW!xT72Q!!_%e9wnW(rHk3K-tq~8N5d5Xs
z+;8u*Ye|>39$64jE_wVA@3D#H*?)ijOJ-QGYY)ezq%WaKULAL)naMof&M?DkMdGck
zQ6;~==$8HHvY4(Ged@#R{7+&GpE=^@PER?w_D9gBgV$thic1vUdE5N|A8%jSYRq)t
zPMfrGN!k5*^Vjd5l6X?$!<V=0=MT2l={fv!{4I9i#<O)Nh5qI|dwHR5@}ggMCG#p5
z?x`=^7hUpPC`We9S7F9Bktct5XD?mvU9r}UH(xi-IA^2Hqcz`O?fj{bW>wTsIz?x$
z^@=aAbf4YKC_E{3_D#W#n{Rl;KVO>Sv4`c8*nt(#)*ZXYJAI3lPeJLo*GBtRhrQw|
zTD+`hlh@DBXY%=rvY86PCS<MI`tZ=Tw~K1m-PV}8@9E*QaixpXRF;$_KmMorr<!4h
z*PMo_Z|l}y`%t*!RB0LW`G3}JqWlYEx;Or;y#2>Q{gW8O;f~<-&wonB+<H3o_~Vbp
z+D};5ul?E)_kWU6c-^n-sT%yz^4A|-;g<Y;UoW3g;EKs-j+!fHqYYPF3@@J@^xB{_
z)MuLH#6orbclAfl_rA%0?k*+$cRSO8S<C9}KR&OCn*PRf-eE`Yx$7T<S!8V7aQ>Xk
zD&2dh?r;WGD*rky{ObGnS?@&>Dw0_ziY#tlD>AqL#mDQ%_b*TB-u!cM@!=<a(c#BZ
z*6JR*=6jDxVV3BjYpttVCgp^-MZEo!d{617Y@Wg6?F<~b7dBiio^UPF{(Elrm(Y8G
zZ+Nb1MZPtBDt&wI&q=k@wlf?v{&*((a=-WQmH!jf+9v%yJ<%eeM*H5@j+mSEyX&1!
zm50_VF*u%;-KLlS_tfjE-#45dnXanPynR<RI(prw-cMo-fiZH9VVg}m{;hns%H@81
z$kU?t^}qiyPRqBS`_HA}ppKB&v%EW9I>|4tx~JbcxApgrl(_Yee!E4TdHMC9Yv{I`
z%llXjCcOWCB8^M6`^kwJb=z#-E?GA><I?|mYl@z4snZU-$0TvpC-L>+ly<YcDK=Ln
zr~h~;Ccgcm%rDWC(G1SBbSCON`uFTr?awXtnl*QS>lTL2IifoyC*Auiw@N;vL$RUp
zwf4Us-@H|-YdLY%>cGiphU6I)=ho(bT+G>e>VD{(3+)jfwV&uRIAs_{9uRO^`h4xx
zI=frXlll&7-Ctcc@pO#<!-XT8KgnfVo|tF&z1r)$*yMBbr`l~ls(EWWLr2mnwRQbd
zbM?*(FW<6{MfI&`@2y2rvY);>3N?rbpWpNK%jS8r-y103?w7iI?DYI!i(YN_U7Q#E
zHku*%N8az5i+?`%ywSDn`APlE>pJnQn@-8g<=?!^W6-tsRKk}@HERU@j5S~GS-q}G
zJN%*BE4fV{KQSEsAs7EgBymcitFf#%yY<Y>>;wNIKd$#!tDNgzuXMoU(e;|vW%dVl
zeG@(wG54HqTCqmp_bZwAnIz7v4w77<b$8<xn{~>&UM*U(<<`G9o$G$YgydLW+sDeF
z&1GTf`t#qF*h|X`n%{59XDpa$IqSu`OA9j%q7<^<KDXGQwKnFH7(?vI2wj`=S&2Fl
zda+mE+TOXDQ~Bi5d=3Zo--oxiuYTiQv)-fPWLk6j{lj;&xBtJYzW(|?RtNs@v$1k#
z%MYLY{ol4!t}LqDXx8qgn5H9YtN(It&)WL!s!WyqlRr!a*CO)2_1ZQ6NxZtdUdK0G
z?CibmGrC=5--VtJyA-wD<G0v>IZj{i99?r=Sk-OmTC=Hp%q9gV{wmmZe(hRQssAAw
z)$5h+hu_-H&=#_E)|+6~BmB{&i-Q&g2QLbbyz}fiTk^I^^Rgag?Y$kEmr%)_;Ia70
zTJJ+)2h3)dOCHqQ+-F}Y=j7V-*LwNq+EBUoU(}h_X#dsy-oUx+zuwz9tAl;L?#_wo
zQV6;6>)S=P%0&N+d$Z*~i5)m|YWbOU5vyaZt1CLE2!{O5KNFjM#B@R3yi2R6rTO=l
z&#t{J_>P&O%IkeMr_eU3r7eH;R?VNEx#V+-B=cVFTVM8`bF2RJrLz2}&3*=x&`+mo
z+w2bad+pQin9prc{$t$(bzP78jAOh%^G_#z2<CC%{{6M8<y*g-^NHr}|9a0u+jhu*
zTlS=5Lp{Tn?V>xI+Sl$}y|(ez96iDR$8OB|Xn*1#<AwMMd9%tVy3Z|F$Upn=xJUhT
z;e^!b`q>sP_JQWVgwsFOnVw~5bO>M0CaW)Jv2NDCgn;$Y+9y1#@Auk^zhh@O7&^b>
z;g#2a9kb5Pvs$ldvikR5xwm^b&oR7yWw|qOPUn<ImsihFJX9@b{Y9OrV7IKVW1P{Z
zf1ebS4(}}3IP2sQ&!3;f4lMe1pXJPo_x1atxBvLv_9alxKf3?#rTH8iR!mvR9<^oD
zigLc0qL0>aoK}2e94D9H+W9s3ZddwQ#Sbk-S7le&3nrBQHVsJnn<AyFH{~8@-PHpY
zmD~xIRh%<}p4>EfqT8@_Mz+Exi=PR6lKS-~RZ35E88{NNSqr)L23>D`ez~Hup*7<U
zm-p$g?Cba5-rCL(rkK;ZG&Q^G)^-L3vBYe<PhtmzO!9gUEuA^(pG(6@NePzeleaT0
zOMQDtF!D^g*EN5Z85jI!PfM~_dsvZoYdga-rA*&vw;~s>aJ|Pgqh*QdmgA2Tm)t$F
zB(340XVmA9b}v(&=r%NZMhP2pzVi8^&eU^?<Mq`&>vnkC$h?haaQ-E^P2}ZdOPPyL
zyZW8(F-c7NXxptJ>0<vb*6{vY-F(KL^nJHFoLlqtkL~w7CztR?xk^2sk;m;u)Sa4x
z+541#spT{F9I?*cb4D<D)fp?XClO^8_JRosA6HA>vfT6Qci^*6+hzUFrWyT8*>Gz+
zgIkhe@+X(-s~i8Y-ri_+?Wt}<B1g2yE&tfNd8?u}&*U*-o%_#)A>ycZN6Zb|>xn!`
z2bSr-jb=D}VV`U1-^HGH^UrYfO}DZBBz8c8>0e4ZpKWo?<=Ymv)nDst{+0Z*V>rbb
zZE|Vz{EfeI|5VrrZNItS`sxqe2F9L$Mm7^|<@#slZJ0mt^=}4Y{+(eOSN5?QNc2XV
zm<E5V^34DBtKk3YC%4~!-~COOA>yvP@bxwMX;Zd5Nu59WxxAD<zrfsypGqbOxtw~x
zm&5$?!xoXP$L{`DKU9^+*fe|V#>R|ad+wWG_&cZ8Y2W{VdL@Q}-G6y`H5DI!+A99L
z!hYA0qZ->!L^B-N?^n8RZtfbXa)Y{)SN`-LcfQBOV7Bym&vW*&pzAvlU*BE%;OqPL
z=XsngGY&XBj*W1<cj6b{X|*`j)StPaF(4&z!?)?{=Pp}tH81&ZCxgSXzvs5DHQ5$*
zW7o`hIR=gCc8$NA5?`z3Gcs(IS+>sf@HO9hC5C|O=PUP2^NsR9cAB~8;Dkzv>;D-Z
z&GS~|O3h0tE-6Y)%muMP3x6y?D{a6GOLJ4Wpe4!6g4~M|E4lPtQj_yjQUel;a*Gvg
zY!vjJ^K<fxiWLmOtkT@PVg(BW69xT%qSTbk<dXa%1w#V`J3B6Yx6GW9)FK6ax17Y1
zREQx8`W~s7=@}&oMivVCKB;->B^e5q2GC_erAZ}~1*r=9p1FzXsa*OYU`~X8QdVkm
ziGqH3W=cs0*d{wWE~s}a=DfXQn0MHK$02aj_x;7z61qGyr?m0p9{%2NWYZJH)9g74
zVaHBB|H$>@{HLSbB8OOh^K4r!l-L!^@pqQfjHS5?qbG1MU$vaFnJaOXR>$)>PBY$K
zJYuCNc;f6zrw5b1Mkp0be(j*R;nZzM#embVl?7j<E^$eC|9E>n!=F;gciR_CzkmL{
zQKQ$t8rK&rVLN4%OPI_fdz4a`rsw!8l`v(C9KHWM^-#)rl~>^#OAh&@^1rR#Yn3=>
zS=(7PL8HV;cCCNgoUIbua@m*PeVuaXw{=LtokxM{d$t!d#k2pAmIXx|)T60+DWK>C
z2Nj56WMl-A1v5=Zj@BS|C!DcrOs!ZogvP3GVsW;D1t{$izu3zJlzyOIubA`pu4CS8
z2NAXhjB{ibyjrBb;>zzY2DVQ8mw$)6TK8&MdWO&oCJCOy2|3Lox9@MCWpj@wA^hU{
z!mO@knTO8Jv#*~!?bIr1k*iCBrabnFd}bxib~NR$XmH;(ef9QTSKH1xn_Jj?H9l46
zc9Cz@!b|+89{o73H8V&pc-1BkG0n$8*;dXRp;K+I%-bbpwOe`(U#)ZCm-P-2>v-M=
z-50P<=Q|tHCE!#qe3)0vQ}vtAvt!P#w`PW%O35>|3p6dh_w(Gvg&(tnRQ03Q75jcZ
zWO}^(|Ad%JDF&b4&9RsG$9tseMBE?A?lX5PwtqPOeBGyqnms1<zYe~y`*4f@-lyim
z^C#N`oFXn>UR(B$wTDe#u_d6K*EhKQ>#liWzwY0@IZth7ka}=hl~MPX;`C)awl6pN
zax8qAufFH&*Sdm`%xTqqbvbF$Y1)V1ri4dVGrly{(GiMYxA?lL?Uj~?xpS@^58h;Z
zS828X_JU(yO1@^BubRDR|NEq<mC34?H<+m2znmiVs#SBQ>m*J6(m%bXKfZm=kGga1
zVae&GX+~lU2dY2)J-xhaL;R~-syUsJ3<q*EgRjd?%s#zAHJOpYJh#7hUGAZ2Gguk!
zOy&)~9-8QVjEUjh?XU9saYEZtbQm5ijM;p#H13AbW`+j$vV(5dSAq4pr015*<%mua
zV{kY(>x!v7NNK}YF}paKR$WPMh6hQTrDJ13ni#ef?YUSgu$h73+Xc6EGmpnJGi;c8
zcz?Y8t%<sN3=M0K*x#1==djN=R!N-UfT`Ml^}=6Q`OS7QFz8MAy=v{7>9f3I85pv4
z>ihq^JpT1Zg&>2%)=!+B+43&Ai@6yT=KK_SwZSgO)od3-!|{^5Gg)(Gw?%<C?1hoX
zy7YLWCthJ?xU*V2IqdbV4Wd6Q1Q~Yl&rVsBv3bMQO&3`i?ySf)4%<?AqbsL`kzsq%
z@)=ieY3FPOao%5BC#n65U+C_f9#9U3CURK*24xyhrZzV=0Lg-whNj5*+bO?7AzDG#
z2!xCjj1*!Ouott?venoO>Aq{X{Gwd+Vimb8H4ZuP$SB~$qf4eC42xp)oLQY)Wd!&S
zU1a^ZW6lnS9znKiAUC19*btPlLCyqK3{Hd1bw<X6IqZ;^={o0^=9Pe|RPW4`Vuff>
z6>6Xm1d3irH5ibXo>~kl6=5j_MRQSVVo7Fxo=aj$s)B}#m63swp@Er^fuV(|fvLH+
zfswj_fx0G_zB5Q&evyJkZemG6PJT&FW|D%jo}r$hjzUIBNr9EVK0-n-zbIXkOFy6}
zKczG|6;)3`N}57aVsdtBUJ69NCX&l4ic-_K3=}MlxeVYy!OYau*i<1+0WM}}rT~^z
z$b*O(npv0|8=;CB7#dlcnqZ1qpy@R*G&Zm>MOSBRXn?8C(8wH3oq>UY8M<Br17k}|
z40T2Z7U*I|mPY7eh9)MKhG^=H4b6?v#Y`>C%nVS~8JbxbnWCF#W@%uG?mi1cQ!_Nb
z85)=ynxN@5G_x?l2xmicQ*(5^AoroW#njx?6kVN}g{e7Od>ERU8=<?!z|hdt0L?rD
zLqlUsF#~f8^!P9|GBq_u4Hp9gBTEyE_%JraFwel)$QV7G4UCOJttL=ngQYbC17lNT
zbbAeqEsW69pMi-1dK?)Tm>6RbGqFSqD+2=)GgAyZObv|D!q33K)Yt@5%mgD`3{1_8
zFzhh3G{OiMGb1cwW|kOsm>U>kiWy>tpSg)Ch8^Z+n0A<3qNg<j0}BH)v@~g8U||I6
zouI~tg{dKWdNHst!*q+KfiXrHSQ?_IX9ELEjQn9>U}=Vtj|>eAFw?GqF@{?V4NMKt
z!^+SYGu{kMOw7^KpOJx?F?tvn8JJ;&sj;CMMww%5Zf=gQ*Vx<~L!GGwrX6PH7NABq
zN;sRDTVnXl%+kOZy?ik@F||PVuepht0lGR1LsJtBF*9R~aJDcrMvo&<d4-;y4Gqmq
z(92km7<yVWG{jOi85tW|pygjfBV!{2w6eqyOE?=Eo0*xRrE!oLdbwd}YHo_2e+|vd
z%rVPEGjmI{Z~>K*CTM9FRNkYf4NyI3iR6!xqQuOc)FLiW^U5<XEnfj7sSu=~AC#XD
pYA=8q3HrgARjCS=#-K{LxFoTt1Y89hnps$ym~pA9y863u0RY<>x<mi~

literal 0
HcmV?d00001

diff --git a/pythonscripts/figure6_tropical_cloudimpacts.ipynb b/pythonscripts/figure6_tropical_cloudimpacts.ipynb
new file mode 100644
index 0000000..a00fdd4
--- /dev/null
+++ b/pythonscripts/figure6_tropical_cloudimpacts.ipynb
@@ -0,0 +1,471 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Zonal wind response: tropical cloud impacts\n",
+    "    \n",
+    "This script generates figure 6: maps of the impacts of western tropical Pacific, eastern tropical Pacific, tropical Atlantic, and Indian Ocean cloud changes on the zonal wind response in ICON."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load own colorbar"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mymap, mymap2 = fct.generate_mymap()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated (total response, SST impact, global cloud impact, regional cloud impacts)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# simulations with global cloud changes\n",
+    "runs_glo = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "\n",
+    "# simulations with regional cloud changes\n",
+    "runs_reg_TR = ['T1C2TR', 'T1C1TR', 'T2C2TR', 'T2C1TR']\n",
+    "runs_reg_TA = ['T1C2TA', 'T1C1TA', 'T2C2TA', 'T2C1TA']\n",
+    "runs_reg_IO = ['T1C2IO', 'T1C1IO', 'T2C2IO', 'T2C1IO']\n",
+    "runs_reg_WP = ['T1C2WP', 'T1C1WP', 'T2C2WP', 'T2C1WP']\n",
+    "runs_reg_EP = ['T1C2EP', 'T1C1EP', 'T2C2EP', 'T2C1EP']\n",
+    "\n",
+    "runs_reg = runs_reg_TR + runs_reg_TA + runs_reg_IO + runs_reg_WP + runs_reg_EP\n",
+    "runs_all = runs_glo + runs_reg\n",
+    "\n",
+    "# responses\n",
+    "response_all = ['total', 'SST', 'cloud',\n",
+    "                'cloud TR', 'cloud notTR',\n",
+    "                'cloud TA', 'cloud notTA', 'cloud IO', 'cloud notIO',\n",
+    "                'cloud WP', 'cloud notWP', 'cloud EP', 'cloud notEP']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal wind at 850 hPa"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T2C1\n",
+      "reading T1C2\n",
+      "reading T1C2TR\n",
+      "reading T1C1TR\n",
+      "reading T2C2TR\n",
+      "reading T2C1TR\n",
+      "reading T1C2TA\n",
+      "reading T1C1TA\n",
+      "reading T2C2TA\n",
+      "reading T2C1TA\n",
+      "reading T1C2IO\n",
+      "reading T1C1IO\n",
+      "reading T2C2IO\n",
+      "reading T2C1IO\n",
+      "reading T1C2WP\n",
+      "reading T1C1WP\n",
+      "reading T2C2WP\n",
+      "reading T2C1WP\n",
+      "reading T1C2EP\n",
+      "reading T1C1EP\n",
+      "reading T2C2EP\n",
+      "reading T2C1EP\n"
+     ]
+    }
+   ],
+   "source": [
+    "u850 = {}\n",
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "for run in runs_all:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats = np.array(ncfile.variables['lat'][:].data)\n",
+    "    lons = np.array(ncfile.variables['lon'][:].data)\n",
+    "    levs = np.array(ncfile.variables['lev'][:].data)\n",
+    "    uwind = np.array(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()\n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # find index of 850 hPa level\n",
+    "    u850[run] = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "u850_djf = {}\n",
+    "for run in runs_all:\n",
+    "    u850_djf[run] = fct.calcMonthlyandSeasonMean(u850[run], months, seasons)[1]['DJF']\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF jet latitude in control simulation (T1C1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "jetlat_sh_T1C1 = np.full(lons.shape, np.nan, dtype=float)\n",
+    "jetlat_nh_T1C1 = np.full(lons.shape, np.nan, dtype=float)\n",
+    "for i in range(lons.shape[0]):\n",
+    "    jetlat_sh_T1C1[i], _, jetlat_nh_T1C1[i], _ = \\\n",
+    "       fct.get_eddyjetlatint(u850_djf['T1C1'][:, i], lats)\n",
+    "del i"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate responses (total response, SST impact, global cloud impact, regional cloud impacts)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "du850_djf = np.full((len(response_all), len(lats), len(lons)), np.nan,\n",
+    "                    dtype=float)\n",
+    "# total, SST, cloud\n",
+    "du850_djf[0, :, :], du850_djf[1, :, :], du850_djf[2, :, :] = \\\n",
+    "  fct.calc_impacts_timmean(u850_djf['T1C1'], u850_djf['T2C2'],\n",
+    "                           u850_djf['T1C2'], u850_djf['T2C1'])\n",
+    "# regional cloud impacts\n",
+    "for k in range(int(len(runs_reg)/4)):\n",
+    "    _, _, du850_djf[k*2+3, :, :], du850_djf[k*2+4, :, :] = \\\n",
+    "      fct.calc_3impacts_timmean(u850_djf['T1C1'], u850_djf['T2C2'],\n",
+    "                                u850_djf['T1C2'], u850_djf['T2C1'],\n",
+    "                                u850_djf[runs_all[4:][k*4]],\n",
+    "                                u850_djf[runs_all[4:][k*4+1]],\n",
+    "                                u850_djf[runs_all[4:][k*4+2]],\n",
+    "                                u850_djf[runs_all[4:][k*4+3]])\n",
+    "del k\n",
+    "del u850, u850_djf"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read masks for significant responses\n",
+    "\n",
+    "These masks are generated with the script \"calculate_significance_bootstrapping.ipynb\" based on time series of the seasonal mean zonal wind."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ipath_bs = '../../ICON-NWP_lockedclouds/'\n",
+    "du850_mask_sm_bs = np.load(ipath_bs + 'du850_mask_sm_bs.npy',\n",
+    "                           allow_pickle='TRUE').item()\n",
+    "del ipath_bs\n",
+    "\n",
+    "# only store masks for tropical regions\n",
+    "response_sel = ['cloud WP', 'cloud EP', 'cloud IO', 'cloud TA']\n",
+    "du850_djf_mask = np.array([du850_mask_sm_bs[r][seasons.index('DJF'), :, :] \\\n",
+    "                           for r in response_sel])\n",
+    "\n",
+    "del du850_mask_sm_bs"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Prepare plot\n",
+    "\n",
+    "Shift the longitudes from 0deg...360deg to -90deg...270deg for visualization reasons and select the North Atlantic region (otherwise it is very slow to add the dots for the regions, in which the response is significant)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# shift longitudes\n",
+    "du850_djf_shift, lons_shift = fct.shiftgrid_copy(90., du850_djf, lons, start=False)\n",
+    "du850_mask_shift, _ = fct.shiftgrid_copy(90., du850_djf_mask, lons, start=False)\n",
+    "jetlat_nh_shift = fct.shiftgrid_copy(90., jetlat_nh_T1C1, lons, start=False)[0]\n",
+    "\n",
+    "# find indices of border of North Atlantic/Europe box\n",
+    "# -> makes plotting faster (important if mask is plotted)\n",
+    "lonind_west = (np.abs(lons_shift--72)).argmin()\n",
+    "lonind_east = (np.abs(lons_shift-32)).argmin()\n",
+    "latind_sout = (np.abs(lats-28)).argmin()\n",
+    "latind_nort = (np.abs(lats-72)).argmin()\n",
+    "\n",
+    "lons_plot = lons_shift[lonind_west:lonind_east+1]\n",
+    "lats_plot = lats[latind_sout:latind_nort+1]\n",
+    "\n",
+    "jetlat_nh_plot = jetlat_nh_shift[lonind_west:lonind_east+1]\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot maps of cloud impacts from the four tropical and the linearity IO+WP+EP+TA vs TR "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAJyCAYAAAC7cE0mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydZ1gUVxeA3wtL76iggjS7ImIBG/aGsRuNxhpLEqNpmliTqIkaY+yxJGoSNfYeOyIqKqIodmyISFEUBEF63fl+zKoIu1G+RI1x3ufZB/bumbtnZmfOzLnn3HOFJEkoKCgoKCgoKCgoKCg8L3qvWgEFBQUFBQUFBQUFhdcLxYlQUFBQUFBQUFBQUCgRihOhoKCgoKCgoKCgoFAiFCdCQUFBQUFBQUFBQaFEKE6EgoKCgoKCgoKCgkKJUJwIBQUFBQUFBQUFBYUSoTgRCq8VQohAIUTgK/jeKUKIv6yHLITYL4SI1NI+TgghCSF+1PLZaSFEaKH3URpZSQihFkLECiG2CCGq/TN7oqCgoCDzb7anGrnAQvaw6Gt+IbmVRT67L4Q4KoTwfbF7oqDwZvPaOxFC5oIQYlAJtlkshPjtReql8EZyFHAVQjgWaW8GZGr+PkYIYQ7U0WxXmP1AI8AHmAR4A8eEEHYvQmmFN5uiNlTjyM5+xjb1hRBJQgirl6OlwhvMRWR7WPQ1r4jc/UKfvQ8IYK8QovXLU1VB4c3itXcigHcAG2BdCbaZBfQTQlR6MSopvKE8cgYeOwtCCD2gCbAcqCeEMCsk3wTQB44U6SdRkqSTkiQFS5K0AhgAlAb6vzDNFd5kSmxDJUkKBc4Do16UUgoKGtI09rDoK7qIXG6hz/4EOgKpwGcvX2UFhTeD/4IT8SmwWpKkvOfdQJKkKCAI+OhFKaXw/yGEqC2E2K4Z5cwSQlwXQkx4xjZVNdukaLY5WTSMrQl3R2nZtlg4XwhRRwhxTAiRLYS4I4T4BnlU61mcArJ5OuJQG7AC5gIFyKNkj2gGSMCxZ/R7WvNXcXoVXgQltqEaVgDDhRCqF6CTwj/Aa25P/xaSJKUC4Sh2U0HhhfFaOxGaSEJjYEuhtoFCiCAhxAMhRLIQ4rAQor6WzbciRyNe62PwX0II4Q2cACoij3B2RH74LpoeVHib8sgOYW3gY+RR1RRgjxCiw/+hQ2ngEPLI/yBgJOALDHnWtpIk5QAhPO1ENAPCJUmKQXYGin52WZKkB8/o2lXzN+V59kFB4XnRZkMLffaNEOKeECJdCLFWS+rSTsAWaP8SVFUoIa+7PS3Sj0rL6y8dEY1zWwHFbioovDBe9xGk1kAGcKFQmwvwB3ATMAT6AkeFEO6SJBWe9BoM2AO1imyv8OqYDSQBDSVJytS0HXrGNqORUzEaSZIUASCE2AtcAaYD+0qowyjADGivefBHCHEAKBo618VR4BshRBlJku4jOwqPIg3HNO8RQhgDXsCvWvoQmhugHlAFWAqo0fKgp6DwN9FmQwHeBSKQc8vLAT8in6u9HglIkpQqhLgMtAH2vBRtFUrCf8Gegpz2qS1K1osiNrFQVKws8I3m78wS6qygoPCcvO6j8PWAq5IkqR81SJL0nSRJyyRJOog8QXUwEEPxfPLLyOkl3i9LWQXdCCFMkW8Wawvd8J6HZsDJRzc8AEmSCoD1gKcQwrKEqjTS9BdTqL8MYNdzbv9ofkNTzV8fnjgRQUADIYQh0AAwovikapAd3zwgB7gElAd6SZJ0tgT7oaDwPBSzoRpMgI6SJO2SJGkZ8gjy20KI6kXkLqDY0H8d/yF7CvI55qXldbCInAOy3cwDYpHt6CTgpxLqrKCg8Jy87pGIskBi4QbNTe575BB94Wo2VQrLSZKUL4RI0fSh8OqxQXZqb5dwO1vgnJb2e8h5tzbIk+uel3JAmJb2+Ofc/gTyTayZEOIq8jn4yIk4jhwd8+ZJWpM2J2If8s2vAIiTJOl5v1tBoaQUs6EaDkiSlF7o/TZgDfLD29VC7Yk8cZgV/j38V+wpQLpmIv+zSEBO2ZKQIzCxGgdIQUHhBfG6OxHGyKUzARBCWAD+yAZqNHLINBs5DG+sZfscHe0KL59k5JQdhxJu9wDtjmBZ5JvJo/kG2cgP8EUphXzDecRd5DS3omhrK4YkSZlCiDPITsJVZCcgUvPZQyHEJc1nj+ZK3NPSzYPnvGkqKPxdnrKhhUgo/EaSpCwhRDryQ2FhFBv67+Q/YU9LSJ5iNxUUXi6vezrTA8C60PtGyJPG+kuStFaSpCCNUdFVy9yaJ0ZR4RWiCbkHAf2FECYl2PQI0FAI4fKoQQihD/QGzkmSlKZpjgbsNRP9HslVBKoW6e+Epr8KheTMgM4l1Kk20InilZeCgFbI56q2KISCwsukqA19xFNrkmiuSXPkh8LCKDb0X8h/zJ4qKCj8S3ndnYjrPKlcA3IeL8ijYwAIIRojT7Z+CiFEGcAUuQScwr+DL5FHsk4IIQYIIVoKIYYKIRb+xTbzkKtvHBBC9BVCdELOt60CfFVIbjPySNpaIUR7IUQ/YAfFUznmIU809RdC9BZCdEOObmWVYD+OIl9bHSnuRBxDdiLMUJwIhVdPURv6iLZCXgzxET2Qr5+iI70uKDb038p/xZ5aCCEaankVdVgUFBReMq+7E3EccNI4BAAngXRguRCinRBiCLABuKNl2/rIRjD4pWiq8EwkSTqNPBkwFlgI7AXG8Bd5vZIkxSFPXr4M/IxcrcMWeVKoXyG5CKAncnj/T2AscspbeJH+EpEr1iQCq4DFgB/wewl2JQh5PoNAuxPxqDSh4kQovGqK2tBHZCGX9ewkhHgf+TrYLknSlSJy9TV9KPzL+A/ZUw/kiEbR15wS9KGgoPACEJIkvWod/m80VW7uAp9LkrRa0+aLXNquInADGI9s4BIlSepZaNsFgIckSS1fuuIKCgoK/wJ02NAo5HV00pAX5DRHXhPiI0mSUgptWwc4A7hpFvBUUFBQUHiDeK2dCHjsDFSSJKljCbbRR87pHC9J0poXppyCgoLCv5z/x4ZqtpsBeEmS1ObFaKagoKCg8G/mmelMQogoIYSk5bWnkMwIIcQtzbL2Z4QQTXX0UbR9ihBCW/m3kjALaCGEqPJMySf0Qg7Xb/ib362goKDwulNiG6qZHPs+MO2FaaWgoKCg8K/meeZEeCGX9Xv0qos8l2ATgBCiN7AAeW2GOshzDPYJIZyK9JPNC1g5UpKk28BQipce/CsEMFSSpPx/Wh8FBQWF14n/04Y6Ad9JkhT4QpRSUFBQUPjXU+J0JiHEV8iTs8prauKHABclSXq/kMwNYIskSRM076OQKzd8APSTJGmbpn0K0FOSJPd/YF8UFBQUFBQUFBQUFF4CJVpsTgghkEes1mgcCEOgHvJE5sL4I68YXZhHFSJmCCF2Pk8UQAjxAbLjQalSpeolJSU9YwsFBQWF15ZoSZJcXlTnLi4uUnR09IvqXkFBQeFV80JtqEJxSrpidVvkmuK/at6XBvQpvoR9PKBtst0MYJjm9cuzvkySpGXAMgAhhBRyPwOVXvEMrB1rV7Hsx+n8tieA8hWcn2tH8goKOHk4gLqNm3I3NgYAe8cKnAs+RoOWbQg7cxoHZxcA0pOTcatWvbh+ajUhgYdo1KoNl0JP4egil1uPi4mmZt36nDgUQL0mTTl3Mpgx7/Xhk6+/w6edL47OT8qy5+bksHfLRiKvX2XPpnUYGRtjam5OOUcnflyxjjPHjz3VvxCCO1G3qFXfm+BDB6jfpBl3Y6MxNTF9rG9hqlvoaz8A+Qe1t0sFz3X8nonQ8r3a2v6Kkuqipf+0tEx2/HmEDZsDORYURvu29ejzTgve6uCNsbG2BVefv++/bNdvobX5QZ528dsZudq70XK+A6i1RBB1RRVl3//vo1fCfnTJaz0n1UHaOxE6rmf1Te3tOo57UTIyMli2bBk/zp6Nu0dt2vi+RV0vb9w9amNkZIStgZaN8vy1d5aXor09P1l7u9BudoXlsOczXv8n0dHR+G39hHZt6xNy+iZurvJ6cpG3Ejh7IYqpP+zg2IGvKMiXzyNnp1IcCbpGuzaehJyOwM1FIx+VQAOvSvgfvERzn2pExyRq5Etz7Ph12rRyLy7f0EP7eahnpF3ZItfVtWsx+LT8gulTh+Lb3htn5yeLKufk5BJ84hp79p5g67YjqFT6WFub417TlRUrlhbvW9LhSOk41x7kV9DaHp9dMvtkb6zdVmg910rIxRTt9iNfrdbars1+AMQkxBNz4zrV6tTnzJHDeDRsTFT4NQ75HyD8dDAR50Kp1awVTtXdqe/bhdtpEg/vxlKuem2iQoOoUNubezExIAQWduWJu3SaCnWbEH/9IrblHQFB6t3b2FfzIObscRxqeZF8Lw6QismXcnBCCHh4N5ay1WoTc+Y4Dh5eZNyPAwks7ctz++JpnOs14e61C9iUlzOoi+qTm3QPkLC2dyDqwikqevlw58oFSjs6gRAk34nBsaYnEaeOUbleA1LuxQFgXdaBW+dCqNygKQ9jIyhfqfiyFCYG2n9TfR2J4ram2u85JgbaTwJTLe0Whtr78LTRcS3poiBQe7sOG3o59elx38z0dDatWM7axfOoV68eHTp0wNvbGw8PDwwNDUGKLd5Jno4psLlFHyE15Kdpby/I1NosSo9/oTZUoTgldSLeB05LknS+SHtRiyS0tCFJUrKmosdkIcTqEn63Trr2G0RmWhrDu3Xg972HKG1f9pnbPLifwLyvxzF6+o/s37YJgLbdejHvm/Es2b6XJVMn0bCV7Ac9SIhnzIziJamT4u8x+6sxLN+5n5+++5rGrdsBEBt5k3IVnJj91RjGfD8Lv62bqOZRh9DjR1k663ssra1xrVyVqIhw4mKiMTUzp1PvfhgZG/PVnIVM//JTHiYnczY4qFj/ekJwPMCfH39fo+l/Nvu2bqJceQc+mzT1nzqkrzUPH6azz+8UW7cdxf9AKM183Hn3nZasXz0BCwvTV62ewiskNTWVJUuWMH/+fHx8fFi/fTcedeq8arVeGqMmbuawZxXGT96Eb5taAPgFXGLjqpH89PMBWr71Az4NK2NsbEifng0YNX4dh/e5MX7SRnzbesjyBy6ycdUnjBq3mvk/DmD95hMA9OnZiO9n7cDD3amY/PZNFbGxMdeu1HNQtWoFfl74CTv3nOKbySsoVcqSqlUqcO16DNHR8dSqVZGObzVix/bvqVWrIr37TKZli7p/82i9eVw8cZxty3/ms5lzmfflJ5R1cub6ubNYly1HvbYdSYy7Te9xU1g+9mMktURytsTNk4fp/M08Dv/8A61GTODyoX2o1QVUataB4OUz6TJjBSEr5+HWqBUFebnEhAbhO2EOx5b+QLMPJxB19jjZqSnF5Ks08yU3K4Po0GN0mDiXo0t/oNnwCdw5H0JmSiJVW7xF4C8/0GvWSoJ+m0uVpu3Iy87i1uljT+kTc/oIORkZ1GzdEf9F3zNw/moOLptNlUYtkNRqIkKO8s53P+G3cDoGoyZxwX8nAB5tOrFnwXSGLV5L0OY1vDNBub8CpD18yLplS1j7y0K8mrbAz88PDw+PV62WwiviuedECCHskBepGSlJ0nJNmyGQCbwrSdLmQrKLAXdJkppr3kcBiyRJmi2EMEZeJfVX5CjGc82J0BaJuHs7hpDAQ4QEHuTU0UCsbW35bvGv1Krv/cz9yVerSUqIx7aMHVkZGQAYmZry4H4CpezseZj8ADNzC1k2JwdzS8tifegJQVJC/GN5U418Rloa1ra2xfo3t7BArVZz/dIFYm9F4lq5Ks6VKpOr6T8pIZ67t2MZ2asLK/Yewrlylaf0MTW3QE8IMtPTsLJ5un9DAwNMTIs/IL8pkYjY2AR27j7Jjp3BnAy5QlOfWnTv1pQe3Ztia21csu/VhhKJeK0jEQ8ePOCnn35i8eLFtG/fngkTJlCzZk2dv8crikQgSdI/82Np618I6d6NH7EvW5YHD9KxsDAmKiaRPX7nCQ6J4GDgZeztrFi6YDB1ajtjZmZEwv1U7O1tH8sDpKVlY2trTnz8Q+zsLMnIyAGQ5RNSsbe3Ki5fxk67Us8ZiXgib4harebcuRtE3rpL9WrOVKniiKGRyWORkycv07nrOC6cW0l5h3rF+1AiEVrtx93YGPbs2Ebwvt3cvHyRanXq06xLd+o1a0lSgQojU1PSHiRiWaoMGQ9TMDY1IyIxi9zMDEwsrclITsTUuhQPH8qjxypjU7JSkjC1KU12WgomZrITmZeVgbGFNZnJiZhYlyIrMwOhRd7M3AIE5GVmYFyo/4KcTARgYGxKZkoSZjalyUpNwdjMHATF9DHIzwbAwMSUjOQkzG1leVML+X6dk5mBqaU16Q8SsS5dmtwseZTb0MSU9OQkLGxLo5ebgbHm/l6YNykScTwqnjU/L2TDr7/QrH0Hho0eh1uVatS01DEW/WoiES/UhioUpyQrVr8H5FCoLKokSbnIiw21LSLbFh0rQUuSlA1MQp6cXXSV1OciOuIGPRrUplPtquzbvIGGLduw7nAw20MuPpcDAfBRtw6oDAyYOGwA/ts34799M9M+G45KpeKjrr7E3Izg5++n8PP3U0iI07bgNZw+Foi+SsWwzm2JjrjB4mmTWTxtMrdv3WRY57aoDAwYN6Q/fts24bdtE2eDg9DT06N67Tq06/Y2lWu6Y2hkRGT4dd5uXI9ffpzO4Lda0b57T86HBDNp5LBi/S+ZPoXoiBsM7ST3P3ZIP/y2beLYAT+tOv5XkSSJ8+cj+HbqH9Tz/og6XsM5dfoawz/sTFzsFvbs+oFhQztia1vc+VN4c0hISGDChAlUrlyZ2NhYgoODWbNmDTVr1nzVqr0SVCo9Bg9fjl/ARezdPqaK51jWbTrBxbAYAvdOwL2GI9dv3GXDlpP0HrQYlb4eXd6ZQ3jEXb76dhNffbuJ8Ii7tOwwDQMDfXoPXMiGLSfYsOUEvQcuRKXSo4XvtGLyYyas/Mf2QU9Pj3r1qtKrZwvc3V0xNDQgLS2TPXuCGf3FQrp2n8DK3ydSvnzpf+w7/4tIksS1C+dYNnMa/Vo2ZGAbH47v241Xqza4VndnwuJfOXPkEKFHDnHu4D6Wjx2Jnr6KOUN7Ex8dyZ+LZhH8xyKSb0exYfQA9PRV7Jo6ihtH93Hj6D4O/PAFevoqdox/j5Q70Zxev5STqxaQcjuabWMHoadS4TdjNFEnDmqVP7t1BSdWzif5ThRbxgxEX1/FvumjiQw+xPXAveyZPho9fX02fTmQ5DtRnNr0G0G/zy+mz5Wj/oQd2sPWKZ+jp6/Pqs/6kxQbxcHl8whYNpekmFv8/nFf9FQqNk/9kosBu7kYsJv1X3+Knr4+y0b05YEmxelNJD4+nrFjx9Kxbg0S4++x/lAw3/+yArcq1V61agr/Ap4rnUkzoXoYsEGSpKKu4VxgtRDiFHAcGA6U56/nPKwGvgCGADqGFHVT3smZwZ+PIejAPkICD5GVkU7Cnds0bf8W1Tw80Ss0eitJErG3Iinr4Eh66kMAzC2taNmpKyZm5jRt35HK7nIgxMDQCBNzC1p26oqDsytezeTFrG3s7IiNvImDiyvxcbexsLQGwNjEFFNzC1p37o6jiysNmsvyZSs407pzd0zMzGneoSOVa8ppA6amZk/tx5aVv7J74zquXTxPuQpO2Jax44tpM/Fp6wvIczTMLa3oPewjXKtWo61KhZ4QOLlVos/7H2FmYUn3AYNxqlgJU2MT/mvk5OQSG3ufqOh7REXFP/57K+oeNyPjMDMzpmvnxsydPZwmjd1RGZRgjoPCf5rY2Fhmz57N6tWr6dOnD2fPnsXZWUmXtTA3oqFXRZo2rsLgAc04FRrJxbBYbGzM2LozFA/3CnjVc0MIgbGxARYWxrRr7Y6bqx1tWsh20s3Vjh5dvTA3N6JLx7p4uMsj9cbGBlhamvB2N69i8vXqVEStVnP7dhLW1rIdTEnJwNGpPJGR96hQoQwPH8oRWysrMzKzMrGxKT7yW5QlP//J2nUBXLgYibd3dVq3qoe/31xq1670Ig7fa0duTg73bscSFxNNXGw0dzV/70TdIjbyJuZW1tRt7MNn387AtUo1wiNvYl/BCWMTU4zNzGjY1hfX6jW5k5KJnp4eRqZm1G3TgdKOTlRr4EPcw1ysylWgSrP2GJqYUqlRS0wdK6En9NA3MMTAxBS3Jm2xKutIQc068lyGso5U9GmLgbEprg1aYu1cGaFFXk8qwMDIGGsHZ2p36YehmTk1O/SklIMTILAoUx4jMws8u/SjlFNFVIaGoFZj4+BCnW79MDIzx+OtnpTTzFW0si+PsZkFXt37U9q5IioDA4SAUo4uNHh7AEam5tRp341SFVyekm/UcwClyju+uh/xFREdHc2sWbNYt24d/fr1Y0tQKOUctUflFN5cniudSQjREjgENJAk6ZSWz0cAY5HrjIcBoyRJOlro8yg06UyF2joAe4HLJUlnKpoikZ+Xx/mTwQQd2EeQvx/paak0btWWKu61qOBWiavnz9J/5Of4bd1IjTpyaPvKuTO81bsfa5csoHPfgVw9fxaA6p512bXuD/qN+Iw9G9ZSvY6cUxt59TLte7zDmsXz6dpvEFc08tU867Bz7R/0H/EZuzesedx/1PVrtO/ekz8Wzadb/0FcOXcGgGat22FkLIf4d21ax4Kpk5g8bzF92jTFzOxpBwPgalrxcLmu8HQtKx0x8Zxd2ttLmrb0f6QdFCO7+GjO1Wt3WL4igLMXolGrJSRJIj9fTeydB9xPTMOhvC0uTmVwcda8nMrg4miCi1MpKjjaPJ2qoyPEqSt9RKuOejrmTOjaf13oOi7qHB3yukLCL3Apk5IcFwC19pQJnejSXdLSj67fzqi89nYDa63N+y+VY/m8mRzcvYO3Bw7hvY9HYVe2HFXMdES4daX1aQuj67pmdP2mJTxnhGnPF57ONGNKD774tAOr1h7Hq578cHUiJAJXlzLMmOtHbGwiD1MzqevpRjOf6kTcvMe4L7pzNOgKDb3ltehOn4lgUP8WzFmwiyEDWxF6Vh4Hql+3Ims2HOWTjzqwak0gXvUqPZEf0Jo583cwZFDrp+Q3bTvOh0Pbs2rN4afkhwzp/NRg0GMM2j3+d+XKlcyYMYNFixZh59lYazqnNnSdCyVKbfsrtKVxAIiSPYBdelhcoZz84tdUxNXLbPtjBTcuX0RSq2UbmpfH/btxJCcmYlu2LHaOTpRxcMTOsQJlHCqQnFWAvVtlrgUfoeWA9zm9eysVangQ9zCX+OuXqNamK+e2raRGux4khIeRL+lR2q0a1wO249FtEOGHdlCmsjtCwP3wMKq07srF7auo1rY7SZFXkAC7yjW56r8Nzx7vcT1gB1XryEtM3bl6Cc8O3Qne8Dt1OvYk+3Y46oICnGvWIvjPTbQZ8D4nd22labu2lCpbfOmSzDwdKVpq7c8yWXnar1sjVfHzy9RQu902VulKW9KezKErldPKWHtqrbmOdCYn8+I2xFYvUKssOQna2/V1DDAa2GhtvnY9jx9mLmHXrgA+eL8vn38+FHv7MrpTSHV9r7YUJV22Upf912VzdbSLstOVdKaXzHNFIiRJOow8WVrX50uAJX/xuYuWtn1/1efzojIwoH7T5ng3a8HoqTOJjbzJicMBRIVf43iAPxdCTvD7vFkYGhnRqU8/KtVwJyTwIM07duHkoQDqNmnG2eBjAFjZ2HLyUADdBg4hJPDJw0V42AWatuvACU01pDPHZf/I0saWEwcP0L2IfHT4dZq2bU/wQX+8fJoRGiTL12vQGCNjY65ePM/0MZ+zck8A1dw9MNP1gPMfZtfes8yct4ubkQkM7t+Eb8Z1QaXSQyBQqfRwKG+Dg6MDKm3GW1euucIbS1ZWDh9/uoDtO0/T/8OR7D8fjrWt7atW61+HX0AYHwxuif+hy4/bDh29xi89vClf1oYfvnuXX1ceIirmPucvRnEoMIzDRy9z+04S5cvZ0qt7Q27HPaBH1wb4HThHi2Y1CTwm92Vra86x41d4r38L/A9eeNy//8EL9OjWWCPvTuBROS/a1sacs+ciSUvLwj/gSa0O/4Dz9O/f4S+rp4WGhjJ27FiOHDlC9erVCc8o2XpH/wUC9+7kj4XzuBcbw1vvDuC90ePR09dHCNBXqbAr50C+mTn6quK3+QN7/cnPzeX6yaM06tGX6yHyPTA5VxBz9jgVm7QhJjQIx1re3Ll0GmFoiqGpObFng6jWvhe3z8mT6fX09Ik9dwLXxm2JORtE+VpexIWdQVIXYGxhRcyZ49Ts0IuYs8FYmhmhLijg5ukgqjdvR0TIUVzqeJMQdoGsjHTMrKy4cvwIPm/35eqJY1R3r6HViVB4MWRkZPHRiDn47Q/l008GE3HjKDY22gdrFBQeUeLF5l4VuiIRj9DVrpYk7sbGcOv6VWZ88Sn1mjbni+9nkZ2VJU9YfpCEmYWcN5+hZcIygIWFxeMJzimF5NNTU7HSMoHaytJSq7yRSkVGWho9m3szevJ0OvbqA+geGfsvRiIKCtR8/d0m1m8+wbwf+tOpQx0MVNr3SWdUQJcToUQiSsZ/JBIRH/+Art2/pmLF8nwxdxvmFsXTYJRIhGxDpdRfib+fjl2ZIhOi76diX7YcSUlpWFrKI5ePJ1AnpGJpacoev7OMGruSTm/VY8xnXXBzK1tEPgtbWwvi41Ows7MiIyNb078xCffTsbe3JilJ7utZ8pk5+piZaRm1NWhHQkICXl5ezJs3jx49egCUyIl43SMR+fn5LPruGw7v2cHoqTNp0q4D+Truf/fStE9MjU7MJCs9DTMra9KS7mNuK08ojkrKwqDQBOes1BQMTc3IyVOTl5WJsYXV4wnR+dlZCCE9JZ+dmoKxhfYJ1FYq2R4YFprgnPkwGQc7a/SEIDszAzMra1KT7mNhWxobQzAwKn4NKZGIQK2yfycSEReXSJdu46lZw5UlS+ZjZqblPqhEIhS0UNISr68dKUmJfNa7G6On/0jtRo24ePokPRvUxtDYmN/9Avn6/UGPS7leOn2KCXMXMqL7W4yaNhP/bXLBqY693mXWhC9YusOPCcMG0KiVPI88KuIGH3/zHdaKGQsAACAASURBVB916/BUqdjOvfsyc9xoft3pz9gh/R+XfvWs78WGX5dSq67XYwfiTSIlJYO+QxaTlZXL6SNTKVNGM+lZ20OlgsJzcPnyLTp1ncigAe2ZPGkQN3KenUf/JhOf8JARo9fx4ZAWrN8cAkCfnt6MGr+Bw35T6D1wPr5tagPgF3CBjas+4+2+c5k0sRd79p2laZPq3Lx5j2p1PmPzmi+Yt2g3vm3lErl+B86x8Y/RtOwwhfk/vsf6Tcfl/ns1YdFSP35dMpLeA2Y/Lb/6S1r6fsP8WUNZv+mYRt6H23fTGDrYV+s+DBkyhObNmz92IN4kHiY/4Kv3B6FWq1l14BjWtqUAyC8o2aDQrQuh+C2dx8DvF7Lko750G/0NZ/fvosDYCkfPBhxb+gM9Zq7Eb8YXONX3AZURUScCaD1mNru/HkLjYeOIOLoPfQND3Bq1JvjXmXSe/jsHfvwSZ6+mIEnEnDlO+/Gz+XP8YHw+HE/ouWPkZmbg3roTfgun895Pa9g8+TO8279FblYmV44fYeiPi5j//rv0/HISetmpNO3y5v3GL5sLFyLo0m08H7zfhYkTBiB0DaQpKGjhPx+JKFCrCQk8SN3GTYmLkUv7RYVfZ9qoETi5VUItqbEuVQpjE1PUBQUMGzORxPh7mkXoZHlHJxfOngiiYYvWhIWewkEzUet2dBQ169Yv1r+Tiytng4/RqKW8SNwjeRNDI0KPH+X7caPwqN+AGb/8jpm5+RsRibh6NZqu3cfj28aDOTP6YWBQyH/V5UQokQglEvEXkYgDB0LpN3A6c2ePoH8/2bEPz26uVVyJRMg2VP1wOYeP3aBJw0pERT9ZJO7o8eu0beNFyOkbuLnYAxAZFU8Dr8ocDLxM0yY1iIpO0MiXYeacP1n62wFKl7agTClLTE2NUKslnJ3LUNfTlQHvNn9K/vjJG7RqUYuQU+G4uWr6vxVPA+8qHDh4geZNaz4lf+9+Ni4uWtb7MWjHpk2bGD16ND4+Pvz++++Ympq+EZGIG1fC+KxfT5p36MzHk6aiKpSmlK3DidAViYiIS+ZuxHWc3T0JDzlGxboNeBB3m9spuVjYlSPuUigV6jYm/tpFLMs5kpunJvXebeyqenDnfDDl3L1Ii7+DngBzu/LcDQvFsU5jEq5fxNpB3s/Ue7exr+pB7LlgHGp5oZ8WjxACK3sHojWLvt2+cp4qld1AQOLtGFxq1eHqiWNUrt8AMykHq1LFK2wpkYhArbL/TyRi794TvDfkexYu+JzevVvL7SUtq61EIt5oSlLi9V+NJElkZWaiVqvJzckhNycHtVrNkulT8PBqyLIfp3MnKpI7UZGEnT3NmsMnsbSxpUu/gZSyK4uhoREnDwXwy/ffUtu7ESvm/cjd2BjuxsawcdkSPL0b8cOYz7GyLcURvz0c8duDpY0NM8d+Tm3vRvw+dyb3bsdw73YMm377Bc8Gjfn+y0+xsrXlyL7dHNm3GwMDA5q29WW1XyBH/PeSmZFOXl4eWVlZSJJEpkb/nJwccjT6Z2VmIkkS2VlZ5OXlkZen4073isjPLyArK0ejf7ZG/1xycnLJzs5h27aj9B8wnSbNPmbs5534afagpx2IV4harSZPxw2mJGRl5bJ95ykWL93PytWBbNl+kn37z3Ls+BWys5Uoy4tg2fJdDHjve7Zu+vaxA6HwbD789A8a1Hdlyvc7uHkrgZu3Evh2xg4aN6jEuK/XYmNtxtYdIWzdEYKNtRkffrKMht5VmDJ9Ezcj73Ez8h7ffr+ZLz7rTNtWHowd1ZXq1Rwpa29Nk0ZVWf57AE6OpYvJN/CqzIcjf5arQO04ydYdJ7GxMeOryWto3LAqU6ZteCI/fSMODrrLs77zzjscPnyY3bt3/+vs4T9NXm4ugft2M27YAIZ0bMP7Y77i8+9mPOVA/BVqtZqcbPn+kpMl31/ycnKIC7+KiYUlm7+fiLNHPfyWLSDxTgyp925zau0Sytbw5NBPkzEyt+Rm0AGiTwViZG7JscVTsKvmyZl1S0i9F0vK3RhC1y7GvronRxZNkeWDA4g8fgAjM0sCf5pC2eqenFqzmOS7d3hwJ4YjKxdSwb0uu2Z9jbGFFWFBhzl7YB/Rly8yd8g7JMXFsmLi55w64MfV0yHk5eh48FT4WyxavJWh7//Aju0znjgQCgol5N/xNFcCii6Ss2P1Sk4dPUz8nVhuXrmMJElU86yDT/uONGrTjrSHD8lVF5CXn0eeZhQ/Lz8PYwtzrErZUqtBY3Jz87gdeZNSdvbMW7sFIQQjJ05+/B0+mnSkCbMXAOBU8Un5wImzfwJgRCH5Zm3aA/DVnIUAOFesDMD9e3f5aeokbEuVxrliZc6HyoWuFp87w8CRnzNj3CiGfv4lIUcOA+DdvBUr5s9iwo/z+eXHaXj5NMdApcJH0/9T6BpR1TXaXFJ0jCAEB+xjt/81Jn3Zmk8m7GTMyGYs+yOE0HNRXA5PwtBAn3Ej6mNlWBEnyzjy7wUW60PPQMeIbQmjZEJP+2iRMLQgOzufqfOOcT3iAXfupRF3L4179zMwMTbgg0GN+Hx4M8qXsyo2ehwVnciajcEgDGjauDre9SthYmJIXl4+Bw+HsX7TEXbuO089TxeqVi5LRkYO6Rk5pKens//gNeZM68boka2edJibqF15dXaJ9lUq0OKc6IhS6ULoaz831PnaHR8hdCx8V1CyBzl9Uy3Lw+iotlR0hEqtVjP26/Xs2neeoIDvqFSxHOQmPf68iuEB7f3oehDRFV3RFklS6UiVEq/P5MO8/HwkSaKg4Mm5cuZcFIM+/JWQ05Gs33ycxMQ0GjesTEMvN/Ly8kGdQ0F+7uPIkvy/Gj098KrrRmqqPBfM2NgQK0tTGjWsTsDhsMfHsKBAAqlA7ktSIz0aNZfUqAvUIBVQUFAAklojX4CkzgdtA4oaO7d86TKGDWmPlVko5EMVXUEfrRHBFiU+blop6QKJOjif/PS5WVBQQGjQEXZt3sCxfbtwqVqdNt168tGUGagsLbmfWXzU9naK9pHciMhoTmz+g5aDP2b33O9oNuBDboYGo2dkQoWanmTn5JKWnU92bh6ZuQUYG+qhjxpTQz30pAKMDQUG+qAyUmGuyifpxiWOL5jA3euXuB6wlZz0VPT0VZQy18eUHKqWM8U8wQQkCXdXS+LM9ahqnMbRyAskSOk4ValKGWM9vJ1tOGUo0IsJ44LfDm5evkSV2nWo5u5OwrWLmBroc9p/H8uOjuXDqTPx7Tfo8T7lF2iPcKp0rPCma0G4UmbFTxpti7sBTy1y+1TfOpw5axPto/9VjI9obScrSnt7upaou46qSujrsk9P61hQUMCoL5cTcOgsxw9Nx8217NP3JbWONTHydNy7dN3TCjKKt6m1/3aSjt9U171Fl7zCy+e1S2cqTH5+Pm0rOTBm5lwys7Ko26Qp0TfC8d+6ictnTtHno0/oNewjTgUexLORD/duxwBQ1tGJ8yeC8G7RmstnTnP7ViSLpkzk3Q9GMvSLcX9bV10GJyYyggquFelUtzo+bXx5Z8j76KtUlKvgTOjxozRu1fap9Ke4mGhq1fMiWFMVKi42GgM9fVwqVynWd3WTQO3K6HpIKmmajJbw4f37D9m7cw+34x5y7lIcFmZG7Pa/Sjl7S7r7OuNZ045uvpXwPxJN84aOREfFU9FZy8rfL9iJyJVM6D54C0ZG+rzbrSYO5Swob29BuQpO3EtIY+6SQNZsOkOPTh58+XlXnJ1KsW3nGVasCeL8xRje7dUAIyMTjgVfI+xKLB7uTtyMjKeimz3v9vTinR7elLW3evpL89Oo2/xH5kzrRsumhX4vxYkomRNhaP/434yMbPoP/ZnklAy2bRiLra2Wm6auB31dYfSSOBH6pqSmZhB2OYqwy9FcCrtFUlIq3br60LlTI0xMSpjyVvQrDdq8+HSmlJ85dCySJg0rEx2TSG5ePg1bTePjD1rToX1d7iemUsnVnmk/7iDkdASrlg9HXaCmaZNqRMc8SX86EhROuza1H6c/7fE7y5cT1/DzwuFYWZrSvGlNomPua+TLEBQURutWHlrTpfwDLtC8aY2n5O8mZOPqqiWdSZNqV8NjCB07NOCH74ehr68jdRB0/I4ttIqWOJ2ppE6ElnSmhIQENgWe5MaVS6QkJZGcdJ8ThwIoU648Lbu+Tcsu3bF3eLJGQXqu9vNVlxMRey8JfQNDos6FUKlBU2Ivn8e2vBN5BWqS78biWMOTm6eCcPb05mH8HXLyJCztyxFz4RSu9X2Iu3oB63IVUOfnsH3KZ1jaladUBVec6zUCtYSrsz36+ir+XPADN8+FUqmeN+989Ck29nYc3ryBq6dPcutyGD5deyDl5hJ+8TzxsdGUKe/Iw6REbO3L0rJ7L1q9/Q42RVY1zyso4FPf5oyYPptq9bwetz/I1H4MdDkRutKcXgsnIu8fcCL0n6TopqVl8u6AmWRn57Fl3ZeP12x5Cl028R9yIh6m5hB2PZFLVxMJu55I8sMcurd3o1NrF4yMnj6eJXUiDCotV9KZXjKvXSSiMHeiIlEZGtKodTsWTZ1EM99ObFy6iAYt22BsasKS7yYRFnqa8EvnGfX9bAK2yxOl23TrycLJE/nxj01MHNKP3OxsWnXtzo0rl16ovn7bNvP2wCHo6elxLiSY/X9uoW5jH3oNfp/ZX43h153+LPj268cTsc+dPM53i5Yxa+KXjJ0xh31bNmJoZMS3C35+oXoWJS8vn/DwWMIux3DpcjSXLkfLpRnTs7C2NKSuhwPHQ6IY+0lzLl+/R49OtRAF6Sz47RyN65dn1JRA5n/bgl37rzPvm8YvVXdJkugzfDu3YlPYvKwHbs42mJpqbhSGBrg42fLTDz2YNKYdi389TjPfGeTm5dPIuxIfDmlBl7c8MTIyeDxXIj09m9NnInBxtsPVxQ7U2m/e2dl5XI9I4PTZGJo2qqi9VK3CcxMVfZ9ufebi6eHMxj8+wdBYy83vBZGXl8/kqRtYtymI+/dTqFHdmVruLtRyd8WjlivLf9vL8JEL6NHNh4ED2tKsqcdL062kJNxPY8nyQxQUqFm/OYTk5AwMDVRs332O0Z92Zsr0bfi29cCrnhvhEXcZOOxnCtQSP88fzM698vo4fXo2YvT4NRzaO4kvJ64hJzuPyOgEnJxK09ynptaJ0ot+3kstd2fGf7Om2ETsUeNWFpuIfftuGkO1OREa/HbPYODgmbRqO4Y/VozD2dlep+y/gdzcXMJvhBEWFsalS5e4dOkSZ8+eJTMzk8oenlSp6UEpOzucK1Vm6OjxOFesRJoOh6Ek3Lt5nbysTPb8NJ1hi9bi//MsKjdohsrYjMuB++j17QL8Fk7H99OvCAvYjaGlDc51GnJoyQ+8O2cVR36dg2t9Hy4H7CQ1Po5WH45l39xJVKjtxZVDe7htbkztVu25HxvN6BWbWfLxYKYOege1Wo2RsQn9x31D8v0EvNu05+KRw1Tx8GTgFxNY+u1Epq3exPJpk7Gv4FTMgQDIysggPjqa8PNnqexZ96+dRYVncvPmXbr2/I7GDauz+KcRGOj//VTe5yU3t4CvZx5j446rJCVnU6OKLbWqlaZWtTKYGKtY8sdFPhx/iB4dKjKoZ3WaeOmYC6fwr+O1j0QsnDKR/Vs30nv4J7z70adkpqViai575In37rJ2yQICd/1Jt0FDadG5G+UqOGFiakbI4YPM/+pLqtTyZPSMOZhbWiLl5mBh9fdTE3SNWmSmp2Nqbk5SQjzWpUqzYv5sVi9ZwBfTZtK4VVtK25flYfKDx/pnZqRjXaTkrL6eHmbm5sX6fhGRiJSUdD4YuZhde07j7FQG9xpOuNd0wr2GE3XruOHqYk9WYhgmJgZyCUc7Cx4kZ2JhbgQ5CaSl52JrY0L8/QzsSpuS+iAZM9PiIz0vMhJRUKDm8+9OcC0iiZg7qcTGpWJuaoiToyVOFUrzxcgW+DR0eyyfmWdKWno29nZFIgu6JlzrcCLITyMi8j4ffL6B1LRsfv3pXTxrOSqRCEoeiTh85DLvDl7MhC+68OmI9vICg7omLf/DkYg7d5LoM3AO5ubGzJ8zkkqVyhd/mBH63LmTyPqNh5g9dzNbNkzCx6eW9n7/gpcRiZAe/kJ8YvbjEq+5uflMmv4nG7aE8N3XPenVvQHW1o9KsGajr6/Hp1+u4uCRywzu35w+PRtRo7oDCfcziIxKoN/ghbRoVoPZ3/cHBLalbbWXeI1/gL29NQ8epGFh8eySsDpLvBaa9F9QUMDsuZuZM28LC+aO4N0+rYrLv+JIxIMHKQx7fyz79h3GxcUVd3d33N3dqVWrFnXr1sXZ2ZkLKdrPQW1OREkjEfdSMtDTVz0pqZqagpGpGbn5ErlZGZhaWpP+IBEzm1LkZmWSnVeAgbEpmclJmNnKJV71DQw5/MsPJMVEkp50n9SEuxiammFRxh678g74DhtJaYcKWJYqQ8bDFEqbG5GTlYmhsTEW1jakJN7HqlRpVAX5CMDY1IyUxPvYlLEjLTkZQzMzrWtZ5BUUcCcygiUTvyQvJ4eRM+biXK26Eon4PyIRBwLO0n/wbCZ/1ZePPuwo29CS2sT/MxIReyeVdz7cSZlSJsz5phkVXazR03vazEkF+cTGpbHuz+vMXX6OXSs64+1ZVolEvAa81hOrVSoVo6b9yJI//Qg5dID2lRxYNX82CyaNY+mMb0mMv0fi3Ti+W7YS/60bGd6xNYPb+NCnkSffjRyGvkrFOx+MYO3ieSyd8S13oqNeqL6JCfcY2qktKgMDxg8bgG2ZMvQeNpyZ47/g4O4dDO3UluiIGyyaOolFUycRczOCIR3boDIwYMzgvuzbtgn/HVtfqI6POH8hkvqNR1PW3oakuLVcu7CILevHMuXrPvTs0Rg317IIIdh38Dq9h61DpdKjRZelhN9M5Kvp+/lmVjDhkcm06LkJA5UevYfvYceB6Jeie2H09fVYNMMXv/XvcnBzPw5s7MtXnzfBtYI1x07cYtuup6NPpqZGxR2I/5NKbmU4uONj3n27HvVbzubgkev/SL9vCpIksfDn/bw7eDFrfxvBZyN9n16h/AUTeiaC+j5j8G1Xhz3bv6Zq1Qo6R0PLlrWhXt0qODqU4fiJy1pl/g206DgHA5U+vQf9zIYtIWzbeYaE+6lsW/sx387YRqPWk3mrxyxGj19DeMRduvaey7yZ/ale1YGgE9dp2HIS9q4fMXHKBpq3n8IHQ1tTupQFP8zZQXhEHN3f+QEDA31695/Nhs1BbNgcRO/+s2X70H4S4RF3+WrKer6asp7wiLsMGb5Ylh8wlw2bj7Nh83F6D5hb7CFDG/r6+owb0we/3TP4ZspKNm0OfPEHsASEhl6gXv2OuLpU4EHSJa5evcrmzZuZPHkyPXr0wMXF5YWfz8lxt9nwzafo6evz68i+JMbc4sDSuZzY+BtJsbdY8Uk/9FQqNk/+jLCDe7gRFMCOqaPQ09dn3egBPLgdxfE/FmNRpizNh43GxNKa7t/+hEVpe4TQJ/z0CVZPGoOevop5Q3uTEB3Jn0sXsXfVr9y9Fcnkvm+jr1Ix79PhBO3ZReDO7Xw/Yij6KhVjenXh9q0IDmlKo2vDwa0SU9dto0HbDnzRpS1XTp18ocfrv4YkScyZt42BQ+ewae0ERgzv9FJt6MkzcXh1WE33DpX5c0UPKrvZ6Ly2y9mZUd/DnvL2ZhwPvfvSdFT4e7zW6UyPcKtanXmbdjJrzKfcjY0m5HAArlWr4+hSEff63tTyaki/j0dR2d2Di6dOcCLAn3mzFnBwx1YcnF2p07gpAGUdS1aCr6TYlrajcet2mJpb0KhlG2rWqU/NOvWJvnmDW+HXaNy6HQ4urtT3aQaAg7MLTdpo5Fu1xb1OPQyesyrH3+FGRBxt3vqGRfM+pM87si66Sqq5VytLcossLC2M8W1dFTdnW1o0cYP8FNycrfFt4YKFuSHtmjtTu3rx+RAvC58uqwg5K08YszA3pMdb1Zg8th3tWlZ9Yd8pSRLrt5xh9qJDfPheY7zrOgPpL+z7/ktkZ+cx4suthF64S/DBKbi5Fk93eNEcPHyRjr71+GpcL50y+fkFrFkXwLQZa7EwN+GdXs15b6CWwgf/Enxb18TCwph2rWriVc/1cXujBhWZOKYLdqWt+OW3g6xYfZSIyHgcyttgbGxA77cb4lXPjdzcfFasPoKxsRFfftqJIQNaEno2EgA3F3ua+tTAwsKEdm088ar3pACFpaUpvm3r4OZiT4umNR/L1/V0k+Vb135K3sjo+euq1q1bmaGDfTlz9gbv9GrxN4/QP8Ply9fx7TCQpb/M4O2333plepha21DJ2wcjM3MqN2iGbXknXOs0QK2nwqa8E5UaNMPI1IyKXj44VK9FTr5Efm4uhmbmuHk1xbpcBZw8vdFT6bN/3hTu3wpny8ThqIyMca3fBI8mTTExN8fEzJwaTZpT2tEJlXcjQMLeyRnPZi0wMTOntk8zKrk/ic6ZmltQv0Uryjm5gI65bCDb0CN/bmH3yuX49n8PN/da6Ij9KhQhKyuHDz5eyuWrdwg5Ng8np5dvQw8cieLtjlUYO7KB3KAlWJ6XV8CqTZeZvvA0tlZG9OlShf7dX9x9WeGf5bVOZypMcvIDzC2tSEtJpqBATZD/Xnav/YPcnGxGTZ9FjXpe5GRnAWBkbEJaSjLWpUqTlpKMkYkcvtcryH/h6UwmZmYkJyViaW1DTpasz4nAg2z6bSlLt+8lNSUZY40+2dlZWFnbPCWv0tPDTMuKvCVNZ0p+kMKhwIt07dyAVasP0r1rIy5fiUFPT4/4hBS+nryai2cWsmNXCO41nRCouRQWQ9fO3qxac5juXRpw+Uos2Q8jqV2zHOu2nmfk0Ias3XKeurUcIC+Js2EJ9OtencUrz9O3WzVCz0ZjaqKiRmUb/vSPYmCPKuwMiMa7rgNODsX3KeF+BtcjU6hZxZbt+yMZ9HY1dhy4Ra2qtkgShIU/oGtbV1ZtvUb39m5cu/kQtVqiZtVSbPe7yaCe1dnhH4mHuxPZOfns9L8BwMYdV4i+/RBbGzM8apTjvX7eJCdnMuhdL3b6R9Gja/3iB6wE6UySJHHh/DXGTt5Bwv10ls7rTYP6LvKHSjrTM9OZzl+6w4ejNuPkaMOKZZ9ibq4treXFpzMFHLrA+G9WE3p89iPFH3+cn1/AuvWHmDpjHQ7lS/Pt5EE0b1Zbe1/PyctIZ8pNXMTyP0Lo2bUe5y7IhSbq1HZi3aYQRg73Ze3GYOrWdiY9I5vfVx/l6rU7xN5JYuPKT0hNy9LIu7Bu00lGDm/P2o1B1K0tOyNnL9yib5+WLFnqR9/eTTl3/pYs7+nKpq1BfDi0LWs3HntKvl9vHxb/sp++vX04d0EjX9uV3fvDGNi/NTt2ncC9hgsAYVei6NGjpdaR1M1bjrB+42G2bZ5SZKdfTTrTnj0HWbzkD/buWVWoXfsgVdHqTI8oSTrTzbtJhAUdxrNlO07s3EKd1r7ERVwnOTOPMi5uXPDfSYMeA7jgv5PyVWqSr4a74WHUatuF09vXUKttZ+6FXyEnX8K+UjWuHNxD3W59uXJwF3aVaqCnJ4i7cgEbBydCNv5Ofm42cVcvYmFjS5X6DTE0NaPXmEmc3rcDz/p1KOvsSk5WFuZW1qQ+eIC5lRWGmupbRsYmpD1Mwcq2FOkpKahMTDAwfHptGrVaTfjF86z84Tsy09IYMX0WFWvJ15eSzvTsdKYzZ2/y4SdLqVypHL8t+wJTUy029CWkM+09eJNp808QvKu/pu8naUj5+WpWb73CtAUhONib8d0XDUlMzsa9qryAYtj1JDq3duSPreF0a+/K5fAHANSsYsu+Q7d4p2NFdgZEU7OKfDwuhyfT++MAJZ3pJfNaRSKM/2IU3tFenoT36OJ1GfIB/Qa/z/rlS/hh1Ei2BZ+lVOknDy+lNPMKCl/sBToewoqWlX0WuToW/lGZmJCnVmNuY4saMDCVH0qqu3tw40oYGamp2BZaXMdIszCNjabN1NwcIYT2BedUOuo8Z/+ptflOTBQbNx2iZWMnVq8NoGYVW3btCsXWPBcDAz3uxSeSeuckG9fvJrlFRYwNYef+G7Ssk8/qP3ZR0ymDXXuuYaSfi4l0n+07z9DX14Y9e8+QkxoP6jwOBMXh28CK7XuuUq+qMUdP3iYvX0KfCqzdfp0uLcqyaVc4+qKA8jbFb7Ax0Uns9ItCr8CJNVuu0LmZHRt3XCWjpQNZ2fkcDL6Hj4cZq7dcpmoFAw4H3+FhWh5SZnn+2BhGB29T1m+9wMOEeHLy1Jw7m8BPEz3xD5CYPLUuY2ZfZI//FSwNUomJy6K9+0PWrrxA+8qRxXTR5WzrGRghSRLXo9I5ejqRY2cSOXomEQszAz7sU5mP+9VGpYoj57YcBVHna39S0TPU/lCs68Fd6P0Dl66OsLLKVHs6ly5d9C0qaW0v/ND9FAaltMrevn2fb6asYt/+UCZ/3Y/hH3TSvZ+6bnS6boy6Fi3SomN2di6Ll+5n5qz19H239RMHR6goKChg/foApk5fhb29Lct+GUfLFiWcSF2QVTL5f5C05AROh16jbk0bDh6WU/mszPL5c/cpBvTxZu/+M+Tnyfqlpqazc8MImnWYSf9hi+jWsTb6+npYmavZsfskA3vXZu++EPJz5AXN/A9doUtbV/7ccYyGdWw5ePC83L9pJidPXKBvt0rs3Xuc/Cy5JK//4Wt0aevGn7uO07CeHQcPntPok8fxoDN0863Ixo0HSG5VU9P/ZTr71sLQsPiDXs0aLoScukpqagaWls+YdF8QqLXZVkdy74O8FtrlDXy0todnSNxKtSBHz4LwzEKVlXK0DxRk6FjrIlVLWeL76dr7iE98wIm9OylXy4ugnVuxcHQjLNAfI3NL9A0MuHo0gDodehB+IhB1QT6ojLhx4ghVGrfi2rEAHP7HR1cUtQAAIABJREFU3nmHR1Vt7/9zpk8mM8mk90JJ6KEloQQCoSMqvYhYsGBBEWkiSJGq0kTFAldAUXoPvffee00P6b3PZOb3xxkDuZnxC/cnKPfyPk8eceedPfucnLP3Xnut9a7aDblz+hh2Oh06Rx13ju2habeexJ46hBQzEqmM+LPHqN+2M0fLSmj/9kjOb1vH7ZMHObVtI1oXD5oMHMqpPbtJzy+jXidvQAo5+YAc8h88bLFcQ4a4+bSTF2I2F5Aee5u48yeIPXeCuPMnUWt1RPR9hRa9B4FMxp2MP/dBuGqtF8l0VFs3DKwZDLaMAnuF9b4bOFgpqAa2C7OV2JBPtQVrBoPChoiAREF8fCrjPlvM7r1n+Xziq7z5RlcEU7H1HEhrxeD+ZIzlRekPOWgoLjHy7ZJLzF54nld716K8RJwjzMYyjEYTv2+6w/TvzuHjac+i6S1x08twdpQy9OfLtG/pCcDuI/doUVfOr2uuEOQtZdOeRACEMh/2HIyhXRMtKzdeo10z8X7sOW7jep7hseKp8kRcsJzYmEwmMtNScfXwrPi9rcqRAB8O7E3tBg15d8z4P/2Ov8qIsFVV2hbUcjnTR39E+r17zPllRcVJm7Xx2IpntFmx2oYRYSjORiaTkpaeh7ubA5mZ+eh0aoz5d4jquZTez9fh5d4huLlqKCwsA5MBjUZOWkYh7q72ZGYVodMqMRakkV9owMlRRWpGEW7OagqLjJjKitHYyUjLLMHdRU1mTik6jThGka8kNaMYN2cVJWVm1Kqqk7fJZKa83FyFX1BQDAhV+reXi/crv8iIk4OC1MwS3JyUFBYaQACNWkpalvgM1e62g5JSE81D9DSu40hwgD1ajZx61e3w81SjUVcez4Pvidls5lZ8IYfPZnHoXC4Hz2SgUkho3dRF/GniQoC/lY0y/51GBHYB1tsf0ojIzy/my7nRLPhxM0Pe7MqYUf1wcLBsBG1W/n5EwQBbRsQDHo3y8nJ+/W0vE6cso1HDIKZPfZM6llNwgPUbjjJ23I+4uDgweeJgoqKaiO/jo8ol2zAiBGXXx+6JSLk6DncPZ9LS8yktM+LhpiO/oAQnvYbULHNFwjWARqMkLT0PN2clHXt8S5uImowe1kHkO+lITcvDzVVbmZ+Wg7ubjsysAnR/JFAXlIjzQwW/zMJXkJZRgru7Q2V+fomYoJ2WW2U8pUYVKpWVDZ3ckXfem0defiG//fLp/XnS1vPzCMgytbHabstDcSWnjIEdW/N835cY9O4HFe0FNmqV/CVGRG4xgkRCQVYmWmcXCnOzUWnsbSZQlxlMyNV29xOuc7NRasRDKmt8k8mM4gF+6p3rLBrSm3JDGd71GuMfEobKXodLtZootHqc/aojV9molIw4h2YlxJBw/gTJl04Sd/4kcpWagEbNCGgUjn/DMHz9Hy282JYRoVNanyu1yqpz7t9mRJgfQYnLihGRl1fEzFlr+XFhNO+98wKjR/ZDq7XMv7aqQZfaGMv/hxFhNJpYuuY6U+afJjTEjSkjw6lV/b4htHrzDSbMOY2Hqx0ThzUmMlzcw5kMpRXre2GROJ9q7GSkpOZV3T8UGdDby+6v78Xi3K5RS9E0XvfME/GE8VR5Iv5Aeso9ejQLwa9aDTr16E3HHr3xC6hmkz/2i7n0aRVK1979Kgq//dMw4vOZDGwfwfwpExg6btJjl7Pbf+g6JpOJ4Z/8zr6tY+n36nd0aleP/QfPcf12Bi/1bEDbnkuYN6Uzy9dfwkWvpH3rQIZP2M2+dQPp9/Z6OkdVR2YuYvPueH6fH0WHgVuYPb45K6LvIKWcnp38GTXzDDuXtOflEYfoEulNebmZnYeTWTa7FR1f282ssU04fSmLse9WPc29fieXLfsT2HkomWVzWtPxtZ3MGhvK/uPJpGaU0LeLH6O+OMuOxe14eeQRerTzoqDQyK6jKfzyRThd3jrIl6NC2HUkhey8Mvp08mHM7Ets+ymC+kEONAzWkZFTRvT+FNJDnIjen4KjVkZmrgGNWoqfhxofDzV+Hip83FWUm+DkpRxOXs5BLhNo1cSJds3d+PyDOvh72dgwP4NNlJSUsXTZPiZNW0n7qMacO7ngb4nbNRrLWbPuMFNnrMDRUcPvS0fTstX9kLbCwmKGDf+Wg4cu8u384XToEPpEkxP/SrTtvpB9m97jxYE/c+5iEq6u9igVMlb9/AoTZu5m2LvtWb7mBAD9e4UxfOxK9m3+kLz8EqbP3kFuXjEnz8SxcslbtO02h3kz+rJ87SmR37Mp02dvY9WSN+j3+s90bl8HgO27r7Ly51dp+8I3zJvek+VrLVKxPRuz8NfjfDdrAP1eX0jndqLHYfueK6xc+j5tu37JvC8GsHy1ZTy9wxCkdnRs39Dqtc2d/S5hzd/n86m/8tm4l5H8ycHS44LJZGLOpE9x0DsxcMj7T+x7MxJiyU5JYvPcaQxZ8Bu/jf+Q4GatkSrtuLJ/G/2nzGfR0IE8N2w8F3dFo3Z0xr9RODu/nc4r835l7eSPqB7WCqWdhqv7t9Nn8tcs+fDlCulXlb2OamGtKvjb508lrPerFBfkE3/+BOVGA0eWfY+jly/ZyfGUl5WhsNOgc/dC5yb+aN08MZUbSb56nuQr55AqlPg1DKNms0javzMaRw/vJ3a//ltQXFzK4qW7+Hz6crp0CuPCmZ/w8bESLvqYYTSaWLn5NjO+O4Ors5oV33WkWaP7Es0FhQY+mHCQk+dT+XZyS9o296w0hxqNpor9wKotsQD06RrAj8uv8+2EpgwadYwOLcX+dh1JYemMULq+fYgvR4WwanuCyO903+v3DE8OT6UnAuBeQjxThr/PkT07AWjQNIzOPfvQsXtvPLyrPkzTR3+EUqlixJSZNr/j7/REAGSkpjBy8EAUCiUzFy7FwanqafZf5YnITk9BrZZz8MgN2retyzc/7GLJskMYDSVMH9eObh2D2bX/DpEtAohNyEEwG/DzduDg8Xg6RAZy4mwy1fwcMRZmcDchj/CGbuw+nETrME9ik/IxlZXg723PodOptG/hycmLGQT62AMCMYn5hDVwYffRe7QOdSc1sxQ/r6qytSWl5eQVlBGTUEBYyH1+XGIOZrOAn5eGQ6fTaN/Cg5MXM/F3F+9BbGIhofWd2HM8jVZNXIhPKsAM+HnacfhsBu2auXHqUjb+XuJJVGxSEaH1HNlzIp2IEAfkMgnp2WUkpBSTkFJMYmoJ8feKMZvNhNV3JKyeI36eagRBsClPK1VYP4X7X/dElJYa2HkggVVrjxC97TThoUFMmzSQJqE2JFEfoyeitNTA0t8O8eXsNXh46Pl0dD+6dG4qvmNS8e937VocvfpOpEnjIBZ8N/L+6d7DfKct/I2eiB2rB9Mhqi4nTschlUoYNXEzB46Ip6Z1gj0ZPCiC0KaBuLvq8Pd15uCRm3RoU50Tp2NZsOggzk4a+vVsQnhodXbtvUZkRE1i48XwJH9fZw4fvUG7NrU4cTqWagFiGObd2AzCm/iya991IlvWIDY+y8J34sipeKJa1+LE6ZjK/LBa7Np7hciIYGLj7he5yy2Q4O5uJW/NEnKWlJRB3wFTcHTU8MviMTi7OP1/37eH8USYzWa2b9/OuHHjMAhSfloTjbNbZYP4cXoikjJyEQQJMedOUjM8gvjL53H29sVgMpOVlIBv3YbcPnmYwEZhZN9LoqzcjKObF3EXT1GtaUuSrl5A7+WLIAhk34sXi9CdOkxAwzByUpIwmbHKN5jM5NxLwKt2CDGnj+AXEkbmvUT0Xv4U5WSSl3aPvNRk8tKSyU+7B4KAV+0QPOs0xMFdNBrs5NbnFZ360ea4/xVPRIlJz46dZ1i19hBbtp2iRbPaTPv8VRo1rm39A4/RE1FcYmTJ6uvM/uk8vl72fPJeYzq29q20T7l8I5N+7+2keRMP5o0PsyrzbjKUsutIMq1D3YlNEsVH/L3sOXI6mTZhbpy8mEWgj+idjkksJLSuQ8X6HpcsXp+fpx1OzTY880Q8YTy1Eq+evn58t3oT035YjKOTMyUlxVw8fYqeLRozqFMkP389m/Mnj1FWWkp5eTkHd2yj3fMv/t3D/lO4uHuwaOMOaoc0om9kOOdPHHts35WbV8SEqesQBAGvmsP4esFOmjQKYPg7zQmq7sLgYRtoEerLZzP3cic2i9iEXCZ8eYAWoT4M/igavYOKNdHX2LwnFr2Dkjc/OUjzxu5MnHeau/F5xCTmM/mbCzRv6Mrb447hqFOwcXcC63bG4ahT8Pa4YzRv6Mqk+RdISrU+ycUnF7JuRxyODgreHndU5H99nvjkIu4m5PP5Nxdp3tCFt8efQK9TsP1QCut3J+GoUzBk0hmahTjz+YKrxCYXcjexkCnfX6NZiDNDJp3FUScnen8KG/bcw1Er553PL9CsgRNTf7qFRCLg7qykaV1HerTz5IOXAvny49p8NaIOfTp64e9l99SeRP8dKCszsm3nJV5752c8a47gq7kbaBYWxLVz37B90wSaNK7+RMeTn1/MrLkbqFb7HTZsOsbihcM5vG8WXbtU9jBkZubSpdsYPvqwF78u/dS6AfGUoUWoP59M3oLe0Y5T5xLo82II0z/rikIhRSaTsuiXQzzX62t6v7yALr3mIZNJeGf4cuztlUTvuIxCIUPvaMfg93+hRXg1Ppu6iTsx6dyJSWfCtE00Cw1k8PvL0DvasWbjOdZsPIfe0Y5REzbSIqwan03byp2YDO7EZDBh+lbCmwQy+P1fRP6Gs6zZcBa9ox2fTlpDi/AafDZlPXdi0rgTk8aEqetxdraROG+Bt7cL+/fMpnYtf5qEv8fJk9ce+z09ePAgrVu3ZsSIEYwfP541B05UMSAeNwylJez8aS7+DRqzesoY1DoHLu7dzo2jB1BrHVg37RP86jdm98J5ZCXFk5uSzL6fv8a3biM2zRyLSqvj6v7t3Dy2D7XWgY0zPsG3XmP2LhL5OfcSrfMP70Jlr2PLl5/iU68RB3+eR+69RASJBI2TK561GhAc2ZnQPoOJen8cUe99Sq22z1UYEM/wcCgrM7Jl+wVeeXshnv4vM/ebDUS0qMuNSz+xddPnNGr4ZOfQvPwyvvzhHDVb/8b2/fH8Mq89+1Z2p1OkX6U5NC2jiG6vb2H0u41Y9GVbqwYEQFxSQcV+4G58AXfjC5j8zQVC6zkxZMIp9Do563clsn5XInqdnAnfXK5Y3+8mFHA3oYAp3199Upf/DA/gqQpnunTmFHUbNalwUwuCQLd+L9E8qj1fjR3JxVMnmPLdQqQyGUf37GTaiBXE3r6JT2A1nN3caBjW/G++gv8bMpmM4ZOm0ahZC4YP6svrw0Yw6L1hf/mm1dnJnjPnYli17gSvDGjJ6I+6kpKWh1CahLurhkF9QlAqZfToWhsvDy3JyVk4OarAbMbdVYMggJ1ajrlUgiCAu4sKzKB3UCCVCpjNEpwcxNMbNxc1AqBUSEEAwdIG4OSgoMxQzpWb2dyOy6dzpDert8bSIcKLmMR87NQyke+squALgqjEof+jf2clYEYmBTuVFEEANyexzVEnRyIREARw1MkBM27OSgQBlHIBhVz8nZteAZhx0D68tOQz/DkuX01i3oJdbIg+T1ANd/r1DGXahB54+9tIxH4CiI9PJ7TVKNq0qkf0unG2T++AV1+fSe+ekbz91vNPcISPF2cvJqFUSCreX4AObYJIupdDUkoRB4/cYuSHokTt9t2XGf7JSq7dvMf+Q7dwc7WndpC7+L67ip5DJ71dhSqOk94OMOPuqq3UvyCAWi2+e056NTLZH3y1ha9DEATs7JQWvoBCIbPw7SqqvTvp7TAYDPy+8hCd2jfkxi3xxDS4phd7D5+lZ48Itm47Sc0a3rz2SkekUgndXhhLp05hfPXFEG7eFBMza9Xyw83NhsLNI6J79+5cvHiRSZMmMXDgQKRSKTcLn7x3X6Gyo16bjsgUChp37Y7WyYVqjULJzc5GEATsnVwAMyqtAxKplHKTgFqrwwxo9M4gCMhVagSZFBDQWPhqnQMSqQytqwe1WnVAqlDQoNOL2Otd8A8JxWg2o3FyoV6HF5DKFQS16oBa/+RDEv9bceFSPF8v2MXGLeeoHexFv15hfDHjPTw9//89bI8Kg6GcLXvjUCmlDPpoD3WD9GxY1IXbsblU99Nx8ITlfazmyM6DCfR5rjqdB0XTKdKPJvVd2bDjLp0jPFm19S4dW/lw824OAEHVHNl7/B59Ogfg5KBAJhP3Ok4OCjCDm5MKJAJ2KotXWiKglEv4Y33/gy+u78/wpPFUhTPVqe1HekYenTo0pWWLutSu7UetYD/c3BwRMLFz1xneH/YtIfWrseCbD3Bzc6SgxI8TJ87h5+dNzZqBD3RYNWnL1uRfany0cAVb9/RRw6KS4mIYPfhl/KpVZ/pPSxEEAT9762EvTuZt1jsx5tvsv9ML0+jVPZy3B7evaDNnHrHKjbkdj7OjkkOnUmnf0pOTFzMJ9BET8WISCwhr4MKuI5Zwo+QCTIZS/L00HDqdTvsW7py8lEWApx0I98ONdh9LpVUTV+LiM8VwIw81h89l0S7chVOXc/BzEw2ImORiQuvo2HMyi4iGjiSmlmAGfN1VHD6fQ7swJ05dzSPATQGCQGxyMU3r6NhzKpuIEAcSM0RXcRW+iyX86V4JTWtr2XM6m4gQR1QKKw46G/KBEpUV6bw/gS1j0Jbcqs2wJSuhRYKN8CSzDYlDW3xBZt11r3CwvjkQdPUqf5/ZzE+LDzJ+6kZGDu/FgL6RlXMdFF2s9mMVtmQ0bT3XtkKLLKFV738wH61Wzczpb1kGbyNcSpARUK0Py375jIgIS76OrbAAW0nbtvg22gXtK489nMnXS0tpmZEm9d2IauFLjQAH5HIJndv4s3v/bQqKDHz0+THqBjnxw7SWXL2VQ/Omvixdc51mjd0J8NFxNz6PsAbO7DyUSGS4J3F/hB9423P4bDrtI3w5cS6Van5iXZi78Xk0a+zJzoPxRIZ7E5eUb+FrOXI2haiWvpw4m0I1fzGM7m5cLuGNPdh5II7IZj7EJeVZ+DqOnE62ym/WxOs+P9HC99GxfNNNvvnXWTzd7fl5rlisMD5NQdNGVpJ2NbWs3ziJ9ffhUmFr3ujWgRcGDOLFga9UtNtaL2yFuVqTcgXILKoa9pZfYv1Zyyux/p3p2YWk3r6GV50Q7p46jH9IGLmpScikEhzcvYg7f5LqYREkXj2P3ssPo9ESnvRvfDsXD+TKqnOdxkqokFxq/RFWyqzPoSq5db5abv3dtFdab7cWngSgtRGKZC1EqYGjda6tsGCbCke23n1b0tTqwEr/azab+e77aCZPW8noUe8wYMCL+PiISchX8j2t9UBdOxvysUW3rTabsi9ZbTcW5VptP3cpheBALW+MO4mLXskXI0M4dDqdDhHeFfsBwLIfcGbX4WSGTDzFrDGNqFfTAT8vDQdPJNOumSunLmcT4C2GJ8UmFdK0loY9JzKIaOREfIr43Pt5qDl6LoPIpnpOXckj0Es8eIxJLqZpTbuK9T0hVQz783VX4t7p0LNwpieMp8qIMJftIC4+g23bT3L6zE2u34jn2vV4TCYztYJ9qRXsQ4C/B6vWHCC0aTBL/jUSZDZOGp8CIwKgrLSUVztFMuDt93jhpVf+UiPi0JFrvDbke26cn1tx2mfLiJj93WFqVdNVSmTu2NITpVJG9N6ESonSq7bEIhFM9Ozgw+hZF9i+KJJBo4/TJcIDYzlVEp93HEwgN99I746ejJl7ja0Lwnl1/HlebO1MYXE5u09ksWRyPZ778CwzP6zJwbPZpGWV0audO2O/ucWW+Y15beJlXox0oaConD0ns1g8sS7dhp9nxtAa7D2VTXa+oQq/czM9BqOZPaeyWTy+Nt1GXGTm+9WJamrllPIpNSLUIWsefnDP8JfDXGTl/v+NRkTtmk4smdOBgR9sx0GrJD2rmOSUAuw1oicutIErqRnFxCbm06KJO3GJBexZ0Z0BQ3fSKdIPgB0H4vl9fjvaD9zM7PEtWLlZ3KT07VaDmT+cZ+V3nRkwdDudIv0t/DhWfNeFqH7rmDupNSs23gSg3wtBLFp+hW+ntaX/u1vp1CZA5O+PZcX3XYnqu5a5kyJZsfFGBf/HZZf4fkZUFf7KH7rRts9q5k1uw/INIr//i8GM++IIaxZ1p16bn+nWoToN67px+HQG0SverHqD/gMj4viBvUwf+SHrj1+oEMP4JxkR1y9dZuf8qfSYOI/fhg+iw9BxXNkTjdbZlcBG4Wz/ZhqvzV/G6onDqBHeGqlSzfUDO6rwm700BL23f5X+/xeMiGehq38vbke34rXPLtE+XMyZ2n0ig58/q83zwy8wY2gN1u5JA6BnlBu9Rl98ZkQ8YTx1RoS1k8OMjFyuX4/l+o2Eih+FXM661ROeeiMC4PrF87zX+3lWHz5No2p+Vjn/iRFhNpvxqv4OW9d9QqOG4kmILSMiLyMVpUJSIamalVOKViNHEATyC42VJFgLi4yYjKUVkqruziqycsuwt7gj/12CNT8n/wEJ1jLcnZVk5ZahkZWDAPlF5Tjp5KRlleGql1eSdEvPNuDmpCArz4C9QrDKLyozW+fLzJbxVOZbXTSeGRHP8B/gn2ZEpJwfgpuTkqycErQWycS8gjJMJjOHj8WQllnCpRtZ3IzJw1GnYN6E5nh66ivx8wsN6LWySpLOIEoypucYcHfVVOE76+1ITS/CzUVNYZHBwpeTllUi8rNL0Npb+AUGnPQqUtMLcXOxq8RPTS/Cw60q39nJzjo/sxQPN3t2HYhh0AdbOLfrVVQ6b/SOVvJb/gMjory8nLY1ffh5y25q1BbVpf5JRkRWQRklBXmoH5BsNRQXIZOCQq25L/Gal4PSToPBIgn773xkCiRWFAOfGRHP8LiRd7Q9WXkGtHZ/7B/K0asEq/sBx7YHnhkRTxhPVU6ELbi4OBDRsh4RLev93+SnELUaNOTFga8yfeSH/LZiFQobk+KjYv2mk3h56mkYEvB/cg+dTmPJ2jvMnxBKh9d2M3V4QzbuSkCtltGplRfjh51j5deRDPz4kFgsptzIrmOpzB/XiI5v7GfKsPps2ZeMsdzMi1FefDb/MstnN2fQmBN0buFEmcHMnhMZzBtTl87vnuDz94LYfzKV3Pxyno90ZdIPd1g2rT6vTbxC11YulJSY2Hsqizkjgun6wVkmvVOdg6ezyCkw8kIrFwb9dJdfp9TjtclX6dLShTKDuQp/x+F0SstMIn/RVX6dVIfXp15nyWe24+SfVhSd61Wl7XGEM126kki/137k6qkpoPSyPpi/IZwpLbOUWvUGc/n8Qry87hd0/LNwJoBXXp1Kq4gGvPXWC48UziQou1rn/s2QSSUMHrGLtwfWY902UUGmZ5fqjJ15lJXz2zB04lHaR3jToLYzuw8nIZMKdH9zC5+814T1O8QijD06VePTL46yekFHBny4mw4RohrersOJLJjWlqh+65g+pgXrt4v99+hcnQW/HOLryZH0f28bHVqLByG7DsazYGY72vZezYyxEazbdtsynhos/P0SX41vTf93t9Khtb+FH8eC6VFW+fM+3cv3M9rR750tdLR4QHYeiOP7LzrSpudyZo6LxMdLS9teK1my4GWahQb8Jfdzx/rV+FarTvVadf6S/v5q3Lt5BXN5OXt/mkXvKd+yfvJHBDZtiUqt4vrhPXQbMZnFHwyk/TsjuXZgJwqNjoBGzarwq4W3seRJ/O/CXLy+auNjCGc6feYmb74zn/OnvgV51T3N3xXOdPNOBo177GDqR/XRauTstqzvw6ad58NXgtloKQb3Yjsfxs+7wIq5LfhgyhlikwqpV9OBgiIj88bUY+DoU3z+QR027r0n8qM8mf/LTb7+pB7DvrhCO4vHYej0ywB0ff80k96tyeYDosfh+Ug3lmxIYMo71Xlt8tWKyIG9p61U936Gx46nyojYu+88rVs3rAi9+V/CkNHjGP36S7RuEsIXX39LZJSNCtUPCZPJxMSpq5k55aWHOmmp4a+lXQsPdBo5HVt6EuhjT+swNyQSCYE+WjpGeKHVyGnf0pOm9VwwGUsxAzqNnA4tPAj01tCykQsms5kAHw0dWnigtZPRrpk79Wvcl0PVaWR0aOZCgLcdjYN1GMrNBHqpaR/uhNZOSlSoE/WqafgjzF+nkdI+3IlALzX5wfYYyyHAS027MAu/qZ76NewxU5UfXkeLGYEATxXtQvUiv4kV+chneGgE+rsQG5+J2Wzmn3QcdPfuPeRyKUajjfwFGzh95jofD+/3mEb15HH2UiqN6rlSzc+BNs3FzX81Pwc6Rfqjs5fTPsKbpvXvbxZ19gpah3tTzU9HZDMvC19Hx9a+aDVyOkT40LTBfeNSp1XQKdLfwveu4IeFuIv81n6EhrhX6r9TmwCq+T8wHn8HGtdzQ2svp0Nrf0Ibulfu3wq/RVMvtPYKOkb6Exri8QBfSee2gVTzd+DTD5ox7etjvD50BT/M6U1ky/+/BH+j0cj3M6fw6Vdf/2NPq+2dXJHK5VQPa4XCTkNg05Z41aqPXCbFUFqKUmNPjfDW6L38CGgUjlmQ4ujlW5WvfvqVyZ4WBAZ4EBOb8o+bQ5NSirBTyahTQycmOyOu780auYj7gabiPBDoY0/Hlp5o7eS0b+7BtB+uMPrN2mTllKHTyGnf3I0Abw2tmojzTIC3hmYN9Gg1MtqFu9CkdmWJ8fbhLgR6qYloJBoLgV5qGgbZV6zvjWvpKrgb9j98Ve1n+GvwVIUz6XR27Nr2JWFhVtzOtpIb/wvCmR7s9/Le7Ywb+RF16tbH20880RMEATXxAEilEl7q34aw0GDxQzZObFevO8asr6M5vn9qpQXQVjjTieM38PbQsHZ7HG/2rcGqbfE0CHZEkAhcvJ5D3y7+LFx1m96d/blwPQuToZSQWnrW7kzkzd4po4skAAAgAElEQVTVWL0jgbrVdUgkcOlGLr07+fKvtXfp2dGHC1dSMZshJEjH2j0pvNHdlzW7k6nrpwIBLt8poFeUO4s3JdGjrRuX7xZiMplpUMOe9fvSeP0Fb9buTaVeoB1m4PKdQnq1dWNxdDI9Il25HFOEGarw6/qpLf0X0quNK4u33KNHpCvGcvHvpNfJibtXQk1fNbFppThZ1B+y8owEeKq4lVBEYIAj2XmGCn5scjFB/hoycw246h/eNf64w5melCcCwDXwIy4dn4yHn413729KrJ47bw3f/7SZg3vn4uFhUTf5E09Ebm4BPn49yc7cikwm+488Ef+0cCalQsqhtb24fjubkDpiUaoLV9PF/IRl5+jeyZ/zV8U6Dg3rOLFmayxDBoWwMvo2IbXEujUXrmfSt0sAPy2/Rp/nqnH+ilgnomFdZ9Zsj+Xtl+qxcvMtQmqLm4QL1zIY8GIwPy67TJ9uNTl/Jd3Cd2X9jrsM7l+XlZtuElLHwr+aQd/na7Lwt8v06RbE+StpFr4b67ffYnD/elX4/V8M5sdll+jbLahS/yu33OadQQ1ZufEaDeq4YTabWbo2hjWbLtKogTc+Xo6WewOCXHwmZDIpgwZG0biRxciwEc404+cEVi9ZxJKteyu91/+kcKbUjFySr1/ELySMW8f2EdCoGdnJ8aK6nZcPsWdPENSiLbHnT+Lk7Yeh3ExOcnwVvs7TD4UVQ+J/KZzpSXkizGYzDq69ib25BCf3qoqSf5UnIjP2FGqljKxcMTHZyUFJTGIe1T0EYhILcXYUx5qZU0qgjz1rt97m8q1clm2OY8bHDWjd1JW1OxN5q28NVm1PoEGwuMm/eCObvp39WLjqFm3C3YkYsJvfZ7egUR09a7bG8EavANbsTKJ+kGgsXLqZS68oF/61IZFe7Ty4cFMURug+7LT4/QeiWLsnlXo1xMTty7cL6BGhZ8mWFHpEunLxdiEADWpoqNHz2LNwpieMp8oTEeDvikJmtP6Cyv5cP/zfkWWlvo+Lwvqz56SxLh1my+iw2c+jKpAZdlZpatQ5n16tx7Ny7QmKigswm82i0WIEsxnyC4rp3msCXdoHM31cJxzNMVX6MJnMfP75Fj7/oB4lt1ZX/l2Z9cnv3PkECgM0rN12hx6t7YnedYeiXGdkmNhxPIu2dQTWRt+kvpeRnYcykJSbUJfks3ZLLD0aK9i8/S5F9e0pN8G+C3m08TaydvMd6upKOXouh6JSE6o8Peu3JNG9lozo7QkYQrSUGkzsv1xAWy+BdduTqaczcepyPjlF5agztazblsaLgRK2bL9HeUN7Sgxm9l8pJMrdzPrtydTXGDl2uYDCEhOqdC3rtqbxgj9Eb0uhuIEWk8nC94T1O+9Rz0lg62lxEnsu1IEpK5NZ+lEgs1fco2mwOIntu5DHnLf8GT7rNpNf92fjUXHT9XxzPZN/SeDXT4LYdDybVzu7V7mPErX1h0Bqr7Habrax8bBmdJj/rMah1V9aX4zNRuubmvJiGxv34sr1TAK8Vdw6tw8PVxv5IiYrSie2Fl1bKLdlRNj2NAx/qz4F2YlEth3Kz9++TMtm1W0bEUBWQgZSKTz/3FBe7hdG925N0WisbAL+pNjcpbOnKSgsvf9TUIpCLvBi13qoVE9eklAqESgrNbJp912KS8Vx7zoUT5e2fhw+n0PjpkHsPy2GMzi5e7JuVxIvvxRB9L5kykzi33PngWS6dWvBul17CGsewr4zcQDoPQPYcziRAS8Gs3l3LCWl5Zb+E+jU3JXVm6/TMEjDzv3igYdGbuD46Xh6tPNg4/YbFOWLKk+7jiTRIVTH6k1XCamhZOdesSKtnbSYw8dj6R7pwsat1yjMFTdTu4/co31jO1ZtuEyDACk7LGEVKrMPm7ddo0+UCxu2XKEgWwx3yExJ5+Lm51i9LZaiYvEemM0gkedgNpvJKzDQtdsYXugQyNRRzXDzr2oMl5ebWDr7a76d8yYNlJsr/1Jb9b0HOJ7ZyGp7Wbn1Z1ZlxeNerrB1EGV9KXf2d6GOfxQAQT0sUsUBrhgsByXVvJ4DwCeqDWAxAOrXqMK3ZRhY2+jLreROAChstKtsFHizVfjNVj+2vreu9p7VdgyXq7YV/klITElC1bayDKtUU0mW1XaJ0nohzwfnLQEI9NMTc/0UTg5Vr6muzMYcl3XFanNZ5l2r7buiz+PqKGfTIfEaXmjlwqSf7rLk42qM/TGWtiHiWPddyGXOkACit8Txekc39ugkfPj5aSYO9GHtoUxerC2wKTqW/IT7/DbeZWzZGYNjeT5Go4lhn5/kpSgXjlzNp0djJdE74yhMt/DP5RIVLGP9jkRCvGTsPZpZaZwnjqewbEMidQPtKDWYOX+7kJKcYtbtTifEV8W+4+K9tpc8WpHfZ/hr8FR5IoJqerFxzXhqBVspb27LiJCIRViio3fz3YJf+P23+ej1jmQZrUj82YCtzf/fYURQauPk44Hqk7l5JUyZtYelK88y5s1g3hkQhNxSFdRsNrNuZwKzF13h0LK2VU7GbRkRZaWl5FUkIJfiqldQWFyOucxYOWE514BWI8VcbKCguBy9Vk5adhmujnLyM4oAAY1KQnquETdHOVn5RuwVAAIFJeXo7WWk5RhwdZBRkFcmJlwrJaTnGXFzEPlamcnCN6G3l5KWa8RVJ6WwxASCgEYpkJ5XjpuDjKwCI2L+pUBBqQm9RkpanhFXrRQxH7QyP9sgQasWJ+6K8eQacHNRif1D5fGXmNBZEr4Kik3otZbxOymseh0e1Yiw5nEA256Lf4emyUYAis72sNLHo4UF2qpk/e94adhenm/nz6A3+lgnWMuVeAJGBIjP/+oNZxn+6Vq6tK/LF5/3xNmparX0P1BYWMqmbRdZtvIEF68ksWfTCIJqelQmmY2Ulho4dzGBYyfvcvxUDKvWnwGgXm1P7O2VaOwU2GuU2GuUpKblcfVmCiPea8OQ15pXGCaC08eP3RMR4KNl+bedCA1xq5zgnFGMp68XmVlF6LTiePILynDSq0lNL8bNVcPy9ZdZuuICKxf2otSowN1NS2ZWITqtysIvxVGRZTWB+l5iOu4udmRml6ATX3jyCw04OakqCTKIfBmpqfm4u6jJzClF90CC9r8LOFTw0wqq8osMODtrq/DtNdbfTanq/juYk1vK5HknWb7pFhNGdeKd15vdV7Azm/l9zTm+W3yGI3unVe1L+WhGRGax9QrmBivGRWGZdYO1qMz6BsrW5v8PI+Jh+f8zRoShqhEh2A8EwJw9vyr/rzIi/u2Z6T5wIS/3bUrvvs9V5dqa4woezYgoSUusWK/hvsDIvbvZuDrIq653Wpm4XqsE1h3NZtKviXQN0/PuC27U8FJX4bs7K8nKMyAIsO1kNiv3ZXI3pYTFY4JoEmxfiZ+RX45OI+PQhRyuxRVx6no+m4+I9zDIR4VOI0OtkGCnkqLTSElIKyU+rZQ3urrzxnPu2CmlFBSXU23A6WeeiCeMp8oT4eaqIzExw7oRYQNGo5FPPpnJ6jVbaNGiCf36v8/WLUsf4yj/fjjoVMz6/DneeDmUD0b+zhc/XUEmFSgoMlJYbMROJWP57GaPFMcbfTCdn9YmsGRKfZ4bepaZw4JYsysFe5WEjs2c+fS720TPbcjrk6/QLswJwWhi1+lsFo8N5vkxl5kxJJBN+9MoNZrp2dKJcUsS2DQpmDfm3qFrUwdKDGb2ns9j0bBAXpxyi+mv+LD/Qg6Z+eX0CHdk/O/JbBhbjTe/i+eFxvYUlprZc7mARUN86P5VLNP6e3DwWgEZ+eX0CHNg/IoUNowK4M0fE+nW0J6iMjN7rxSw8G1vesyOZ2pfd7ZdKKDEYKrEf2thElENxBjLvRfzWPRBAC9Ovc3MwX6sPixOag+O/7NlidT2E938e87l8POomrww7ipLPg2mlt//ZhxxgI+W2ETbqmB/JwRBoG+PJnSKqkO/wf9iwOB/sXPDMJt8jUbJgN6hDOgdys/LjtPuhdnMm9mftPQ8bt9N405MOrfvphETl0FQdXeahwXSrXP9CiPi0tGxVTs1Gzl3MZH+b/7KzK/3cufMp2i1j6by9Z9C76Bk9PQjfDq0KSs23QKg3/M1GTHlMPvWvUq/IevoHCUevGzfe4eVP/Wgx2trcXfTsPtgDM5Oajr2+42CQgP7NrxNvzd/p3M7MXRy+54bLJ/fhnb9NzBnYitWbLpZ0f+3i8/x45SWDBy+n46txFyJnYeS+O3rNnQYtJ3Z48JZGS1udvo+V42fV11n3rhQXh5xiI4RotG583Ayv85uRacHpKQB+nQNYN7iK/w8vTkvjxKlpwF2HrnHsjmRdHp9F7PGhrJqi+iVfemF6kQ1t5H0b4Gjg5K5E1vxRv86fDTlFJ/P2oVEIlBYaKCwqAx7jYKNq8f+Y3MhnuHpRqC/MzFx1g2RvwrFpeUMmnCZdmFiGN8f0uhjFsYzqIMraw9Z1rsIJ8YtjmfTRHG9btdQNIQCPZTcSCym67gb/PhRtSr8zVNrM3jWbdo1EkMGy81m3urmQZcxVxjex4t953LJLy5Hq5ZyNa5I9AYKUDvADl+3+x5fQRAYO9CXtQdFg61nKxd+3ZnKyH7evDztBnNXJ/FBTy8OXsh7rPfrGazjqTIiIiPqsv/gZdq3a/jQnxk1ahrnL1zl7JmtODhoea7ba4waNY3Pvlr0GEf6z0DtIDeif2pLXHIhSoUUjVqGRi1FKpVgKit9pL7ahjnj5abCVa9g5rAgIhrp8fNQYTaU4+uuZMbQGrjq5Ux6uxoBXmrMJQZa1nfA1VHOjCGBtKzvgLe9AAj4uiqY/rovrg4yJgz0wd9ZDgK0rKPF1UHG9Fd8aFHHHh9HiVhUzlnBtIFeuOpkTOjrgb9ePDlpGWyHq07KtP4etAi2w89FjgnwdZYzrb8HrjopE3q54eskFq1rGWyHq1bK1L7utAhS4+uqAKEyf3xfTwLdxQmsZW17XHUypg/ypnlte7xdxPYHxz+kmwd+lgkvor5l/G/6U8NbXfUm/o8gwEfLqYv/7AS3rOxCzl1MZN2yIQ/9mcGDIpDLpPzw836qBbhSPdCVFuE1qBHoTI1qrpSUGoiLzyIu4b47Pj4hC18ffaXN5sGjdxg/bRsSQeC7L3s+MQMCoG1LHzKyiokM98bfW/Te+ntrmTMhAjdXO2aOj6Kan7jot2nhj5uLBhdnO/LyS9mz5mXs7OQM/WQ7AX7OuLnaM3NCF6r5i5uQNi2r4eYiMGdiqyr9S8tLcXNWMW1EEwJ9xfbIMA/cnNXMHhdO6zAP/LzsLXwNMokJN2cVUz9uRKCPyG8d5o67s4pZY5vQOtQdPy/Rc+DvZY9UMOHmrGTqRyEVRa9ah7rh7qJm1tjQSvxAn/uJmP8X6gU7s2fDEOISslEqZNhrFNjZKZBKJVUKhD3DM/xVCPR35tqNlMf6HWqltGK9BmjV0BFXvZzXO7kRXtteXB8BX1cl0wf7VazXAZb1McBDyehF8Yzu50XLutqqfEc5E1/xJcBdnN8i6mtpWltHWraBE9fy8XVT4uOqJKSGhoLicvq0deX4lXwkEkjKKGX9QXEe/bivNy3qaSsMC183JdfiCvlieSLuegWj+vvQMVRP20aOdBxpxbv0DI8V1mMl/qGIbFWHA4ce/iFZsnQ70Vv2sG7tjzg765HJZKxY/i1btu5l0fffPcaR/nMgCAIB3vZ4uqrR2cvFxe8/wPGLOei1Mt6bdpXw+g5MXXiHu0nFxN4rZtriWMLr6nj/ixs4auVsOJDOpiOZOGqlvD/3NmF1dEz7NZ64tFJiU0uYsTKJsCB7hi6IxVEjY/vZHDadyMFRI+WDH+IIDdYwY1UyCRkGYtPKmLkuldCadny4KBEHjZQ9FwvYfDoPB42UDxcnE1rDjhkb0u/zN6QTWsOODxcn46CRsutiAZvP5uNoJ+HDpSmEVlczc2MGcellVfh6exmbTuay6WSuOJ6fEggN0jBn3T1iU0uqjF+nkbDxaBYbj2bhqJExdP5dwmpp2Xbi8Z4i/ZPRrJEbB47fsykw8Ge4cjWRNp2n8ub7CykvfzwxrqWlBvq89i8++agjLZs9mkLPoAHN2bVxBHNn9COsSSDXbtxjzMR1eNf+hOoNP+P195ey+Lf7OSLNOs5B5zcaz1rj0QeMQe05gtfeX86bg8K5fHQ0fbo//IHIX4HzVzKITchnwpwT3InP5U58LhPnnqRFEw9GTtqN3kHFmuhrrIm+ht5BRctuS7lxJ4N6tVzJyComPjGP+nVcOX0ukYiu36N3ULNm8yXWbL6E3kHNhxMO0qKJBxNmH+dOXC534nKZOOcEoQ1ceOvTIzjqlKzbEce6HXE46pSMm3Wa5o3cmDjvLHfj87gbn8ekr88RWs+Jt8cdw1GnYN3OONbtjMNRp2Dc7HM0b+jKpPkXuBtfwN34AiZ/c4Gw+s68/dlJ9DoF63clsH5XAnqdgvcnHhf5X5/nbnw+d+PzmfnDxUe6Z4IgEODnhKeHDq1W9R/Poc/wDA+L5qEB7Dt86z/67MUrqbR6YTHvjt6CyWR7Dj50Lrtivd5wIB1HrZz3v7hB45p2TF+eRGxKKbEppcxYkURYsD2TliXiqJGx6Xg2aw9nMmNFMgHuSga0cbbKH/59DI4aWaX18aNv7/LJQF9CqtvTPcIZR3spCzensP5gJgF9T/LajBu8P+c236+/H4I2flEcfn1P0XHkJdp+dBGf3if419ZUZFKBFRNrUVxmYuORTBztn6oz8f8aPFV3vUWzYM5duMvduykEBrr/qSv5+PGrjP7kRw7sX4tef1+2U693ZPu2X2jd9iXsNBpeeuW1JzDypwcGo4miEjE+MSffiNZOSqnBhKncBJhRKcUFVC4TkAiiqolCJv4dlAoBMCOTCIhRiQIquQQwI5eJheAEBAvfjEoh9iUIAlKJKGenkkvAbEYuE/8r4YH+5QICYAKkUgHBDEpL/wqpgBkzEgEUUrF/pVyCYAZBMFfUilNZvlsuExAEszieB/ncrysnjkcAsxmpVFLxvFUavwkq8h8FLNdkprzcRIklTrnUIOZN5BaWo5NLKTWYLfdLQn6REUd7GbkFBsu1WPh/3H+NnFKDyXL9EvKLynHUysjLL0OpsFTILTOhs5eRk29AayerxP87UN+i0nHpSjIN6nk/1GeKikqZ8sV6Fi3Zz8SxPdkQfZpX3vqepT+985dKOufnl/DxuLX4+zrx0Xtt/+N+QttMQ6WSEdW6Nu++0ZpffnwNN9f7J9yCwzsAJF+bSk5uEcXFBlQqOUqFDLVK+NvCYPy8tayJvk39YCcExHdPYXlOZBb1HJnlBTh94R7nr6RyNPp11kRfQ2IZs4NWxbqlg4h47ns277hakROBYEZheacVckkF/4/+VUopAiCzxNcLgEQivksKuQSJ5XFVyCWYzeYH+JIH+Pc5D/5bnJvE50T6QPy+Uil5oH+xXf43vRfP8AwPiyYNfSkoLOX6jSRqBT/cHFpYWMbk2QdYsuICk0e3YcWGywz+aBPfj69LQZHxgfWiHJ29nJJScU2XVaj0mVEqBMxmcT39Y4r6Y338Y100GE2sP5pNoIcSL2c5mLHKV0rFNb/S+ii3vO8ygdE/xmCvluJkL+O1Lm54uyoZ3s+HwxdFYYfh34h1Zs4uasjM3xIJqaFBLhM4d7OQEX09mLw0CalE4H9Q8f8fhacqsdpcuJIRY39j+apDFJeU0bRxDRZ8/TY1a3hVSKcZDEY2RR9n2Igf+eGboXR7vpXV/m7cTKJt+4+ZM+s9+vcT1SswWVelsangIg2y3m6Os95ushFCZCup1JBTtc1opQ2gKNZ61yWF1ru2oUJxLykDnUbG4XNZtAt34dTlHAK87SjPzic2pZSmtezZezaHlvUdSEgrwZRTjI+LgqPXC2hbX8vp20UEuCkw5RcRl2GkSaCKfdeKaFFTTXxqCYIZfJxkHL1dQttaas7EleLnKAUE4jINNPFXsv9GMc2rq0iIL8CMgI+jlGOxZbSpruBskgF/TyUgEJ9lpLGvgv23SmgeqCIpqwyzGXwcZRyLLaVNDSVnEwz4usgRBKrwE/PKERDw0cs4dreENkEqTieUEeAiumUfHE+LIDWJWWJS44PjP59qwtdZTOSMyzCI13u1kBY17Ui0SID5OMs5erOItnU0XEg34+sqPquxaWU0rWHHvov5RDR1IiFdfP583ZQcuZRHVGMHzicb8PcU3c0xycWE1tGx52QWrcM9iE8pAcDPQ83hs1m0b+nBqcvZuOiVYv5LkZH2b4gSqYn7niMrtwwPFxX2dpazA5tJ29afd8EW34ok7KiZp3DUyhn3XoOq/H+Trd1xKJEPJx8ntIErs8aG4uFqR3GJkb4f7KNWdQe+HNPU6vdahRUVqpy8MmYsvM7hk/e4diebFk08WPFNexy0StvSurKqCfCC9P51tnzhN2aMbU3r5tYFGgTPL8XhpIx76KELHtMee2K1MeY9er29lWPnUikpLadekBM/zowkPqmAjhHenDifho+Hhu0HEhg36yS/zokCs5GIUHfiksS5xN9bw/6jCfh42NH+1d1M/7gRXdt4E5NYQNNgO3YfS6NVExfi74nzmp+nHcevFhHV3JOTFzII9BXDjWISCmjWxJNdh5NoHeZBXFKBpX97Dp9Kom14VX5ofUd2H7lHq1B34pPF8fh5aThyOpWoZu6cvJhZEc4Uk1hAWANndh9NoVVTtwp+gJ9DxYaq0v2xIads632wKTSgs+FdsrMe/nStsKqMJ0CxoaqEoC2ZWFvttnx5tswomcT6byQ2jF5rSc5SG33YSnwO0th45B9V3tlWu8nW+mplDbTsAfLySygoKMPdzR6Z+6cAZF77mMzsYrzc7dFoxLnAVGJ9PS63IVBiaw6VyKuGNA797ADeLjJGvVVZQttQUHXc2w6lMuLLSzSr78C092rg5qSgqKSc/p9eoparjAn9vUjIsKwvlvU60l/KmZgS/F0qr18HTmUR6q8kMcey3jnK2HWjmNOpZvZeKSQx20jTQBXDOzsREWzHwZvFhNe0IzGz8nrXLtS5Yj8A4noXWkfH3gt5tKyjJeqTq4zq5UWXUEeO3SqkbUMHTt8sqAh/Cnr1LABrJtemZX0dCWni/snXTcmJ6/lENnTk9PUCAjwt6+m9Ujp8fPFZYvUTxlPliQCY/cXrzP7iddLTc1mx+jCt2o9jzW+j8PP3ZuHP2/nXkp3UqO7Jgq/fp9tz4Tb7CQ72Y8fWL+nQeSQqlYLuL0Y8wav452L/qUycHOSMmXuNrQvCmbDgJh2auaA2G9h4OJPFY4P59McYZgwJZM2BDDQSEx0b6hj3axIbx9dgyspkMTG51MCeK4UsfNOTz1anM7WPK1vO5FFqNNO9sT0T1meybqgnUzdn0aWumhIj7LtezI+vuDFhYxZTujtx4FIxmUVmXqyrYuKOPNa+6sS03fk8H2KisMzM3hsl/PSSMxOic5jSTc+hW8VkFJro3kDNhC25rHvThak7c3munh3Fhqr87deKKTGY6d5Qw4RN2ax9x53pW7NpW0tMiH5wPNN6OrP2jLjJeXD8P+3Joba3OIn9kbj92ao0ZvR3Z/UJMdGrR6iWz1alsX6EH0t2Z1HNU5wk/0gkH/dLIl9p5Kzcfz9xbNyiWDZNr8M3KxIICRI3RbtPZLFkcj3GfnOLLxVKVu8UFbl6d/BizLyrbKut55M5l7kRU4Cx3ERh0X0Vj+Cu2yksLmfy0DqMGhz82J+jvl0D6fbWblIyShjcuzqN6jhX4SSmFDLmy1OcuZTJNxObVyTcAqhVMv41M4IGXdfz4au18fGwoV71EFizPY6zl9P5alxzQhu4orKibf+oiAjz5sPP9rBgRgfUKhme7ho83GyrPP1TkJZRjEQqYcnsdixZfY278Xm07r0BB62CFfPbM+DDXWTnluHqpMLTTU1IHWd6v7uD8UMbVkp8HvPlWbb/3A5/Lw0jZp7h8Jk04pIL+WVaE8bMvsSXI+uzarsotdqnkw8/romjXpCe8XPO0rGVJVH6UDK/fx3FyGknmD0unBWW/vt1q8a/Vt6ibo2q/F9mtWDUF2f56pMmrNoqHtb07eLHvCXXqFfTkfHzLlRKrP71yxaM+vIcX41pxKqtorTsSy9UI6q5da39Z3iGxORcWnb9ntIyI5lZ940BvybfUFhkYNbEdox4t9ljH8eAF4N4YXA0ialFDO5Vg5DaTlU4CSnFfDLvKpdv5TF/VDBtm97n2Kmk/PhpbZq+fIKmNezYe0lcv3o2d2Tcr0ls+NCLKRsyiKorzq17Lev1LycLKTfD+ouialj3Bmo+3ZxLdQ8FSrnAsE5OyKQCs7ZmEeyl5NudWZjMAutOVV7vGgQ53N8PIAqV/OtjNeOWJDD9dV9MJhi5KI7UHANrjmTh4aRg8i8JFYnYf2DcolimvxVQKbF62e406gRomLQ4lvaWitW7n1Ws/lvw1Hki/r3wz45d5xj4+lzMZhjYvy1D3upC3Tr+9wk2CgX94V04c+YGXbp9wm+/jKNDu6qnpg9yq+C/0BNRlJuDQi4hLatMlGjLLUOrkWHIzKOwpLJka2GJifKsQlHSzSLBml1gxF4lxZRfJEqwPiCpWpBfJkqwKgTS88tx08nILixHIwME4T4/vxxXewn5GUUIgJ1cIKPQhKu9lOxiE1qdXOSXmtDbSUnPL8fFXkJhcbnIVzzALzL9P/bOMzCqamvDz9RMkknvPfQWSgi9dxABBTtiV0C6AjYUlSp2QQURlaYCUqX3DoEAgYQSSEivk0nPtEz7fpwwSciMV+61fN6b99/sWbNnz5lz9tqrvGuhdBbbldeahfQqF7mIwkoL/m4SSvRWlArBW1R7Pf4eEjRVwrNSe/2lFrGt+dHdJWQ1hmp5pxr5MpEc5d0lZEuNBIS41i2RV2rE30tOGRLcXIVDb19OBnkAACAASURBVIWtxG4VAYHuaHSCkeDqLEFVXIWzs5xBL5xkzKBgZj3XnOLyKhoP2Q/AY/eFUlZhZOMn3WrSOf7ESARAVm4F67bfZvWW23h5yHl8RCPKKqq4klRKQlIx5ZVGJjzRkjmT2uPibP9g/+ZHcVRojCx793cqbTuRiAlvn6VThyAmPtmm/tr/zUiE1Wrl5203mDXvKHkFGr6YP5BpL8bUyP4/jUSY0yeTX1iJv4+zreTpsbM5PDvzCGIxPHxfYyY91YYWjT2rS6oqyCsorSPv6iIlP7+MAF9niksNJKWW8+i0Eyx/vwv39/KloEiPv7dTnfuzSCslwNeF4lIDbrVKtvr6Ku2WbM0vKLcr7+UusSuvKtQK6ykz4OZSU+LV28OJArUefx8nNNU9IZRKhd10soZIREMkoqS4lN4jvuHZx2OYNaUPRqMZeZDwDD8yshUms4VNK8fYUv/+zEgEQGpKLmu2prBm6238fRU8OjwSdWE5ibfKSUguR6M1MeHRSF57rikys97uHDMXXUUihrceEQznOyXTfUVGSjTmevouL7MMP1cJ2mp95yIX8eLPxQyK9uD+Dsr6+rHSIpRYv0vfBQYpbecBQd6Mt7eipoS7zsyW08V8sDEXVZmJTyZGMrqXj6CvAf+H4gC4uS7Gdt4AbOeNAG8nSiqMNfpUZ6bRo+cbIhF/Mf7xyaFDB0dzI34ZmSlrWPrZxLoGxO9ATEwLtmx6nyefXkhCgv16yv9LuHyznKfnXEYqFTHs5XOkZGp4f/ktlm7OISVbz/2vJSKTinhu8U22Hi9kV1wpLyzLQCoWMWpBMil5BhZuyuODX9XcLqjigU+zkElEvLgqj18va9h+qZKXVquQSkQ8uCyX24VGvjhcxuI9JdwuNDL6qzxkYhi/tpB9N/Rsv6pnwuYyJGIRY1YXkVpkYvnJChbvLyNVbWL0NyqkEhj/UxH7b+jYnqBj/IYSJGIYvaqQVLWJZcfty++8omXbZQ3j16uRimH08nxSVFUs3lNSbz2v/FzI9kuV9dafpjKyaHshi7YXCr/34wxkEpEQeYgrZ1tcOS+uzEUqFvHAxxmkFehZuDGHhRtzSMkzMOr9W8ikIt74Jp2tJ9RsPaHm+SXJSCUiRrxxjdQcHfNWpjJvZSopWVqGT72EVCripXcvs/lALpsP5PL0W/GIgDajDtI8UkmF1sR7X98gI7dGkeUU6Fi3pAtGkwWd3ozeYMbsoFb8H4WwIFfeerkdSQceZOHMjtxKL0csEvHsQ804tO4+VOfHsnBmjF0DorBYUIivvtCGzXvTycyt/LfXcT5BTZf29rtt3wvyVZWUlArrEolEjB3TmqyLL9OrSyhRLX3/4/n/Cgx4bBsyiZgnphxk485kNu5MZv22W5zcMpoB3YN5+qEWrNuWzNufxHErrYwBY39FJhUzdsYxNu1OY9PuNMbOOIZUKmbws4dIzqhg15Fs+nUNYPzb5xg+4SQyqZin3ojjl/3Z/LI/m6feiBPkn95Pcno5cz+PZ+7n8SSnl/PimyeE+acfZePuVDbuTmXs9KNIJfblX3jzDDKpmHEzT7Npbwab9mYwbuZppBIRg587THJ6Be8uS+DdZQkkp1cwcuIxZDIR42adYdPeTDbtzWT8nLP/+kI14H8ORqOZUePWMqRfM2ZOFtKgZbX6YBSX6lj/5QNUVZnR6Yzo9aY/rfjDHYQHu/LOlPbcPPgg707twM3UcqQSEc88EMaBb7qTfXgIcye2sPGBakNdKqQvTbvfn+8PFrH6UBHbztbo62lr87hdUMWiHWoW7ailr0Uixm8oYXtCjT69mmdk35UK+/ISeHFlbj1998iS27bzwMJNeaTkGRgxNwmdwczzn6Wy7WwJYrGIbq2UtGvswur9BaTk6pi/Ppv567Ntv0MmFfH8kuS79KOY+19LJCVbz/w1mcxfk0lKtn0jqgF/Lv5x6Uz24Ofn4bid/O9A797tWPr5VEaMnsvZE58TEvLPOBD8GQgLcGZgV1/cXaUM7uZLZIgLvTt6I9LqiAxyYlAnL5TOEgZ09CS6uRuWMi1GM7g5SxjQzp1Ifzk9WyuxaoVcywFtXFEqxPRr5Uq7kJrbzU0hZkBLFyJ8ZMSEO2G2QoSPjP4tnVEqxPRt4Uxrbyt3AmVuTiL6N3UiwkuCxirGaIFwbykDWihQOonp10xBq0BZLXkxA5opCPeWEF0lx2ytL982xMlGBnNTiOnfwplIXzk9mgiT1F5P1yYK2oY61Vt/mI+MHi2E9Cfh9ypROolpH6GwpTnZ5NsoCfNzomdroWRlpL+cAR3cUSokxLRQ0iqipq+Em4uEgTGeRAQq6FUd3m0U7Mygrt64uUjoHeNDx1Y1Yd/E5HLkcjEfz27HlZsCMS0ypCYFKC1HS9iA3YDQnddssdKmqQdnfx74798svxNisYhBPYIY1EPwhDny+Gq0Rn789TZrt6Vw/oqa20cfITTQmRcebc4H3yTy9fv2Pba/hfLKKtJzKmnbon4qwO+ByWRh16FUvt9wjZPnc/HyUHB0y+NEhgleaKsVrlxXER1lv8HY/zcM7RuOm1LG4N6hdGpXY1g1jXCnZ+cgGoe507erkD7UOMydoX3CcHOVMbhnCDFta/ZFd1cZQ3oG0ShUSZ8uwjw9Y/yZt+wKWp2Jgd38iWnjVVe+dzCNwpT06SJcq0ZhSjq29sXNVcagXiF0qj2/0r58TJQPbq4yBvYIpFOUT135O+vpJKynUaiS/l0DcHO5Iy/cA05Of32n8Ab8/8fh47fQ6Yx8PG+43UjVrdRivFt9gkgkkI/NZisxUX6c2f7wn742iUTM0N7BDO0dbJcTcQeVWhM/Hyjgp335XEqqIHlrD4J9ZPRs5cqVdC3TRwrPkpuzhPbhCiJ8ZfRoLnDubPraSUS/pk50CBUir9oqC0eT9fRp6WJfXiGmX2tXoiNroiluCjF92iiJ9JfTtYUrl25rWfxLHhdTNIyen8wzg33p2ETQTyazlUPrspn6YBCRAQp6RQnpT8uqKzQpnSX0j/YgullNuqi7i4RBnbyIDHKiV1tB/g43ogF/Lf7xkYg/Co8/NoBJE0Yy4sG5VFTcY/fc/yKUVRoZ3tufpT+mMe3JRuw5qSLYT4G/l4y9scVMGRPMl1tzua+bN3lqA/mlJoZ1dOerPSomD/dn36VygrxkBHpI2ZegYdIgL74+VMKwdq4UlJnJLzUzNMqV5UfKeHmAB/uvavB3lxDkIWH/NS0v9/Ng+bEyhrZxQVVpIb/CwtAWTqw4q2Fid1f23zTg7yYhyF3Cges6JvZ2Y8XJCoa0dkZVYSav3MyQVgpWnKpkYi8lB27oCXC3L19QYSKvzMzQNi4sP17Oy33d2X9VQ5BH/fUMau1Cfmn99R+9piHIU0qQp5R9VyqZNNibrw8W07+1C3mlJvJKTQxrr+Trg8VMGuzNscRygrxlBHnL2HexjMn3B/DV7gL6R3uQV1RFXlEV93X15stteUwZHcShc8UE+zkR7OfEnlNqpj4ezrINmdzX25/cQj25hXqG9wlgwcpbTHy0EftPFRDsryDYX8Ge4zV1xrct7U72kfspPvsAJbEPsOTVtrRt/vs6UP+ZyMip5EKimj3Hsug7dg97jmXz5sT2eLrLbd61V55rzc7DWcQl2O8O+1u4eLWY9i2963gU7wUTXj/Mgi/OM/q+pmRfepmZEzvT/6ENpGcJhlr81QIiQt3x8vzrej38J3j1pQ58+/MNRg6KJKdAQ06BhpGDIvl01RUmjm3NzsPphAS6EhLoys7D6bz6Qju+WneDEQPDyC3QkFugYcTAMD5ffYMZz7Zi19Fsgv1dCPZ3wUku5uXHGtPv2eP07+JHrkpHrkrH/X2DWLnhFjOebcOuI9mEBLgQEuDCriPZvPR4Cz77PpGRA8PJLdCSW6Bl5MBwVm1Kti//aFM+X32DEf1DyVVpyVVpGdE/lBUbU5jxTEt2HcshOMCZ4ABndh3LYeq4Fny+JokR/ULILdCRW6BjaO/fbjTXgP9NbP41gbEPdUDsIB1rz/rHKEmaiS79dfQZb/DBnP60a1Wf6/VXwmq1kpGr5cK1UvadUTNo0iWOxhXz5rORuCjEOMnFZBZWsWBcCIeulHMmqdKmr5/u5cG+BA1BnjKCPGU2fb3+gpYhrRTklQv61FcpwcdFzHN9PO3Kf3+slGHtlfX03cRh/uy9WMaaI2r2XCwjxFdO0rftaRbsxA/7C0lM15BXXEWwtxwvpZSZjwSz93wJQT4ygnxqDP0vt+VxX1fvOvpx9b58powJZm9sMUG+TgT5OrE39n+3rPrfif+KSMQfhddnP8rt1FxenrKM9Wte/7uX87cgPUdLpdbE+cRSKjQmYhNKkEhESPQ6zt0oZ0QPH+JulNOrrTsXblYgMRjxdBVzIUVDpc7E+VsapGKw6PTEpeoZ0cGVC6k6ejZ3Jj5Dh9kiwstVzIV0HZU6JXFpemSABSsX0vTc39aZCxl6ejZRkJhXhc4Ins4iLmYbqayycCHLiMJFgsksIi7DwPAoZy5kGujR2InEnCp0JvByEXEhq4pKg4W4zCrkchFmS335+CwDZjN4uYi5kKmnUq/kfJrOVjKuznqaKbiYLoRLa6//SoYOc3Ut7rjbWkZEK7mQqqVXC2cupuqq5SVcSNVSqfcgIVWDySTIn7+pYURnDy4ka+hbYODCTSGn19tdSlxSBZVafy4klWGuDq/EXi1lZB9fzl8ro08XLeevCh4pDzcpCTfL+eS1tny7OQNJdUnc2ISaTTWqWV2DYc+JfF54uPGfcAf9fiz46jJfrr1BRIgSH08nnn+4OS8/2ZKFX1+hRSMPfDydACs+Xgo+f7sLz752kvNbR+Dq8vs9yYfP5NG1/b8XWfxxaxJnLuQSt+cJlK5yRBI5U57vCEDX4esID3FHpdYyYnCTf2v+vwMSiZgHhkTi4eZEt2jBK+nqLOOpMS3Q6kycvVRgK8F69lIBo4c2Ii6xkO4x/py7LDQQ9PZyIvayigpNU2LjC23ysfGFLJrWkrW/ZjLzwwTatxTuOW8POZeTiqjQGDkbr7I9X2fjVTw0vBHn4lX07RrIucsqQd5TTuKtErvyowYEce6Kmr5dAzh3RV0t70T8dUE+9rLaVhI29rKaBweGcC5BTd8uAZyrNkJ9vJ15dVEcy+Z25d2ll+kVI0QuMnJ1zH6p7Z95+Rvw/xRGo5nte67yzswpDmWiWtVNidx5IJlXX/zr7xeLxUpicjmHYgs5HFvIlZvliEQi2jV1xdtDxpgB/qzZlYe7qxSLxcLSXSqe6ONFr1ZKPt6WT1S4k6CvOymIS9VSTe8gLlXLiA6uXM+rol2IjEtZQjpUWpERsRgqdGa78gkZOmIa29F3OhMbTpaQWWhg9ugALqTosJgtSCVihnX2ZPaqLNxdJJgtVvy9ZEjEIoZ18cJZXteIe3yAH+6uEjq3FCIRLgoJI7r7CPJdvXGuLjsf4CUDbv/5f0AD6uCfRazWbfsNAQeeRqvZ/rg9EpaplJdf3YhUKmHZh7VClFK3e5tbfo/51/YI1NXrqYcqB95Yk/2ccUfEaovRPsnbUFFKWaURbw95HYKkSVOKq7OUwhIj/t5yisqMuLtKMBdrqNRZ8HKT2ghTGr0Fi8ZgI3D5e8gorjChFAnXq1JvwUspQVVmws+9mnCNqA4BubjSjFJsrku4riYsVxTpEYnqEqiLtULt69oEahtBu8xQj3BdrLXgbiNcW/FyEVNYacbXVVyHUGaT11txu0Moq0XQ9vOW15G3EbSR4K6oT7j293NGY6gmiNW6PiUGK27V3IA6hOtA57qEsjIT/p4ySs0iG+H6VqaWQVMvs39FVzq09KhDaHXrtg8AzYWRtv/4+60ZfLw6mfMbB9SUe62FeyWYWk31CaC/BYupiqPn1UxakMCx73sQ4KvAYqq5H0dOvUjvjl68/Gg4ylr2wksLruOulPLJjOaIFfY9/+JahOhclY5uTxzn5Lo+RIZ5/kv52hBJ5YT23MTOlQOJbiN4G2v//qu3StDpTMjlEppGeqF0rTuPrOm3AJgzHB9K7oYk4su/hFhtNZvsvl9UXIGnu7wuYblIj7+nlKJSA+61Cc5uknqEZVdnKQVqHXOXJqCQS/j49WhBXmvE18fNLiFaXQ4Bfi4UlehxV8qr56/Cy11qVz4vv4xAX+d66/F2l9ldT75aW09eYwBvT0W9+ZXuznbTWByRXsUy++kTIkWg/T9AZv8eRObAyJW42Blzti8rukd/oKNiHo70qKPy5/ZgtX9/3dMc4Fi/OiJKO/pNjuaptc7U9CI69PmYG6deJiSobkdzUcA8Yfpaz/LXaxL4/LsrXNo5CmdF/WtvMejsL93BXmm12L9mVlP9a2Yqq6S43Mi5a+W8sfw2WxZG0TTMhYK8Svw8BALymHeTGN7Vkwd6+hDpXa1/FSLGf5GGr4eMj1+KoKDIIOjr2vqoWr8UV5hwc5aQpa5i8JwkTnzYCrlcYtPvUKOPAvwVFJcbcXO5Q3AWzgOFGgsxL15i28I2tIxwwVUhRq0x4+/tRHGZkSyVHn2VBaPJSnQrD1yd6957Hv2OAVB+ZlC9a+BIR7l129dArP6L0RCJqIWEqzms/vk8yRfe/ruX8rfh+IVClqy6ydoPOnPf+FO2Uo3erlb6dfLmzWXJ7F7akWffvcqgrt7IjCb2nC/h+9nNGDXnOotejGDLiSLEFgsPdPW0lX59cVk6Q9q6YjLD4auVrJoQyoMfpbPw8UAOXSmnTGdhdCc33vmlkG2vhPLSqjxGtHNBa7ByJEnLymf8GfNlHvPH+HDqWiWqyrqlXMdvKGZke1c0BitHb+r4ZpwfD60oYP4oLw5f01Cmt/BAlDPv7itny3PeTNhUytBWCoxmOJKsZ+Xj3oxZpWb+/e5sSxAiDrXnn72jlJjw6lKu1aVix3yrYvEYXzbfKf0a7crcHcVsmRTE4gPFNK6uj32n9OvoTzJZ8kwom04LEYTRXT15+6dctr/ZmPc3FdA8tG7p1wfmJ7NkQgS/HCsCYExvH+Z8l8GvC1szaVkavToInt7DcSXMeDyMQePPserdtuw/IxiaDw+pX8Zy074cFn17i/0re9g1IP4qbNyXw/RxjQnwrX9Ae2dCU+atSOHjNelc3dgNPy/hOn40vRk9X7jA8J7FDLaTkqLVm3F2ltqajb37VRLPj4kgItjOYexfwGq1oi7R066ll933o5rXjDtSaP80zFx4jidGNalTynXWonMc+GEg42aeYkiv6lKrp3JZ92EPhr5wpE7p1EfvC+ftz65wM72C9i09+XztTQAOns7nx0/7MOTZQ3z8ZgybdqcD8MjwSH7YksrS93sydtoRhvYJBWD/iWx+/LwPg5/axydzutZZz8qfrrNsbmfGzTpdp5Tr+g+7M/SFo/XWM3dpAtu+6s1Ts88yuKdwuD95Qc13i3vUW8+LT7SiW/R/TsBvwD8PjSN9eHvWYAY/up5Tvz6Ht5cDYw1YuyWJD1dc4timMTgr/p5OZ0/Nu0FZpYm2TZRM/yKFH+a05LklKcx8NJgtJ4rwcJXwy/Ei5q3L5uxnrZm5MpOBHTxoHqpg6Y4C+rZzZ8tJNU8P8GPLGSFiPaaHN2+uzmL7O02ZsCyDAR3c2XK6GDdnCTKJiFdXZvD8UD+2nKqW7+nNnNVZ7FzYiuc/TrGVZj0cX8r3s5vx6PwkNHoz3+3OQyQS8VBfX+avyeSXRVE8t+AGAzsLe+jhuBLWzYuqZ0Q04J+BhkhELWRnpDHjra0cO5XC+Gd6MHV8H4ICPf6nIhElhWpu3K6gc1svDscKTaMycrWYdRWEBSg4faWUAZ29ibteTqNgZ8wlWtIL9HRqruTo5TJ6RrmTWWDAoqkizE/O2aRK+lU3oYtwB0QiMgqriGnszLFrGnq0cCEzXwdWEaE+Us4m6+jXykVoguMhwnpXE7oeTZ3JzNJgRWiCE5tuoG91U7mIACcQQUaRiZhwOcdv6eneREFGrg5EEOohITajir5N5FzKNtqa7GQWm+kYJuN4ioHujZzIKqlpsnNn/vhcE2He0mp5oWnd8WQDPVq41Mh7SYlN1dO3uTNX1BbCfKqb1lU38Tl2XUvPdh5k3mn64yPn7E0N/aKUxGdWEV6rKU+npi4cS6igV0dPMlU1TejOXCunfwcPLmVXERkoHMDT8/R0auXGfTOv8tjQIPp0Ejzn4YHO+PY5AAiRiH2nCnhi9gU+ez2K7h28aRzqZrd7718RiZi8IIGYNp48Pzq8eky4H6uMFp6ak8Dp+BK6t/diw4LWpOXqOZNQxsn4UrR6M1q9me3L6vaAiU0oYdTUOIwmK57uMvy85JSUG7m8ZQBurtI65Vlrw1EkQmcUE9R9I2WXn/yXv9/e9brXSMTkOcdYsf7q3xqJOB+fQ9uW3qRn32n65srJuAIGdvXjfIKaRqHCPpiWXUHnNp4cOptPn07+tiZ04cGubD2YwbYD2Zy8UMhTDzbimQcjqdSa6dYxkENn8ujTOYD0O03lgpXEJpbRv3sw5y6raBwueIBTM8vp0s6bQ6dz6dMlsM56Tp/PoV9XO03lorzsrudkXAEDewRwPqGYRqECkTMj30CXdr711tM4wgu5nSZ0DZEI/usjEXcw8rHlPDKqNU8/2t42VjsSseNAKo9P3sfyRf3p3jGQyECprdxrnSX+yZGIuBvlfLU5h+5t3enYwo1OLd04GqumRxs3krN1vLYyg6tpWlpHOLP7/ebsiC0lr7iK2KRKSqqjDBPu86NrCyWZ1U1Os9VVjP3wNharFVeFBD93KZV6CyumRNKrtZJTNzR0bams0Ud+cs7cqGBAJ686TeLunAd2Xyhj0qcpHPlCKJ0f5q/gbFIF/WO8uHCjgsigWvoryqNeFPBeIxGvfHiNVVuzGiIRfzEaiNW1EBrixeY1LxB78FXKK/S07raICTM2UFr6v0O0TrxVhqe7jAnvXaJbex/mfX2D1GwNmfl6Fn6XRtcoDyYtvoGXm5Ttx1TsPV+Cp6uUKUtT6dLSjYU/ZpOWbyC90MAHm/Pp3NyVqSuz8HSVsCe+gp0XyvFwlTDth1w6N3Vh8fZCMtQm0tRVLNlZROfGzkxbV4Cni4QD17TsvFyJp7OY6T8V0rmRgg92F5NdZiK92MyHh8vpHC5nxtZSPJxFHErSsStBi6ezmBmbiugc6cSSfaVklZrIKDbx0ZEKOofJeGV7GR7OYvZd17Hrqg4PZxEztpbSOVzOkoNlpBeb683v7ixmV6KWXYlaPJzFzNhcTOcIOV8dLSNdbSJdbeLDfaV0jlQwY4MadxcJOy9VsPNSBZ4uYqatyadzE2eW71OTrqoiXVXFB1sL6NzMhWmrsvFwlfDruVJ+PVeKp6uEqSsy6NzClc+25JGWbyAt38Cin7Lp0tKNKUtT8XCVsv2Emu0n1Hi6SZn80S3aNXPjlwN5zFt+i70nVSxYmVznvy0oMtCnkw8/bMvkgSnneHzWef4uJ4KTkxhDVV3lbjJZePG9q0jEIvZ+3Ymm4S60fDiWETMuc+xiCR1bunHqcgmnE8ooq6xRxlq9mYnzE1n1fnuKTg/n/IZ+rF4Uw6n1fWwpX/e8PrlASrxTavbPhEqtZcX6q3/69/wrtGnuxbufXyI1s5zUzHLe+yKe7tH+TJ8fh6e7nK0HMth6IANPdznj3zlH9w6+vP9lIqlZlaRmVTLvq0RG9gvB013OmiXduHStmN5PHmb5T8m8sjCO7h38eG/pFVIzK0nNrOT9ZVfo0s6fF984gZeHE1v2prFlbxpeHk68/clFukf711tP57Y+jH/7HF7ucrYdyGTbgUy83OXMWnLJ7nq6dfBhwtw4vNxlbDuYzbaD2Xgo5Yyfc7beer75Oenv/gsa8DcjIsyTwiIts947wLmL2fXeL1Br6dc9lG/WX2XouB08Pu3oX76HWq1WPJVS8ooMxF2vwFMpZfInyXRu4cq8dVm88nU6APd386JNpAthT1/mrR+y2HKqGIlIxJVUDQfjy2gRomDxplzSCwwkZel4/vNUVkyJZNJwf356rQkju3ry0lA/Ar1kTF2RQcemrizakEN6gZ70Aj2LN+bQpbmSOd9l4ukqZceZYnacKbadB3q1c0dfZSHxtoa0XD2L1mXSpbU7kz+6hadbXf21eHX6f3RNCosNrNqa9Z9f3AbcMxqMCDto2tiPLz96hNvxc5FKxbTt9jb7DyX+3ctqQAN+E25KKecSS7mZoWHeN8mUVtT1ej3zQDg7lnXj+JreJG4fQGGJgZW/pP0ta3VxkpCvrhsNW7QqldIKEz/Ma0vbZm6oiqt4flQw13/pznfvtGbiQ6E8/0AI3m5SPl2bysZ9uXy/PYuJ8xOJaeXBqH4BSKViAnyciGrqTpCdVKnfC4lETLcO/py5qPpPf6pdqNQ1jgl/Xxcmjov6U77n70JkiCuPDAtnzsQ2mMwW1u9I4/j5gr97WQ1owG/CXSln7pJjxF3OZeDD68jIqpsNMH5sFHvXjuLsjke4eewpMnIq+X7Trb9lrXKZmDJN3QjG2WsVmMxWpjwYhJ+njIISI+0bufDrey0Y29+XXlFuPNDdB7lUxPI9KpKy9Ry6XM5Xu1WE+MgZ2MEdsViEj5uUIG+5jefw70AmFRPoLedW1p/jhC0srtEfft5OvDgm7E/5ngb8NhrSmeqM2U8rOnQykxen/ECzJgF0bB9BVOtQ2rYJpWUzfxQKO+kQ//B0pptpFcS08eLY+UK6t/chM1+LRV9BqL+C2MQy+sZ4cTGpnPBAZ8zFlWQXGolu5sqJhHK6tlSSVViFRaMnzE/B+VsaerdREp+qJcTVglgsJlNtIrqRgpM3NHRpWp3OJBIR5i3l/G0dvVu4EJ+hJ0QpdErNLDYRHe7EyVt6ujR2IitbgxURoZ4S4jKq6NXEicvZRkL9ZYgRk1VipEOY8qJsoAAAIABJREFUEydT9HSJdCIzryadKS6ril6NnLicYyTcSwJiMVklZjqEyjh120DnCDnZpcI9U3v++Fwj4V7Cf51VaqJDqJxTt/V0aeJMdplANAv1knI+zUDvZgquqC2EV5epyywyER2p4GSShq6t3ckqFjb+MB8555M19G6tJD5LT7ifcOjNKqwiuokLJ69W0K29B1mFgjEQ5ifn7PUK8kuMHLxcjlgsQiyG+3v68GAfPz7elEdeoQE/bzn7zxRyYEU3/PrWpDPdjZQsLQOfO8nelT1p3aSGTPhXpDPdztLQ//nTHFjZnZaN3LCYDHy8Jo1rtyv5YZ5Q8SQ2oZSxb1zhwX5+vPVsJKoSI/fPuMyCl5uw60wxrgoJzgoJnm4yXn26Ed4ecsdE6XtIZ8pX6zh1qZila27Qu3MAi2bF/Obvv9d0pjupSxPHRfHVwn628b+bWK0qLMfLQ07lHaKxi5QCtZ4gHxmFxfq6naY9pOSqdAT4ONWRz8itIDJEycVrxYQHCelDmXkaSiutPPf6adq18CIyVEnTCDf6dPanRGNlaJ9wLiQUEhEipEtl5FTQqa03R87k0KNjABm5NelPqenFtGziUW89fp5yu+vJK9QSEuBSR75SD/4+zuSqtAT4KGzy7h4uiMUNxGq7+C9KZ7JYLKz5+TyXE7Ior9Ajk0l4ffoAmjTy5ZctZzgZm4mPtzOHTqRyZMvTyEMXCtPbeZYTr+UwcOwejm24nxaNayrgOUpnMhqqUFVHN309nbiZXkGbpu6kZpbh6yXcT+qSKhqFunAtpYLWkU710nxMZZWoS4Vypw+8nsimBW3o1NKdnOxKfthXQFq+gU8mRqJUSNh9rphXv05neGdP3ngsmBx1FY8tTmbBM2FsOVmEp1KKXCrCw1XCrDGBGIxWgrzlqMuNdTpN+7rLyCs1EeApQ6OvLtyhkKAqMxIc6Iy6rG7naJPZyu64MtYfLKB3Ow9mPRGGUiFBVWki2E+BurTKxsmr1Jrw9an/jP1WOtOrH99k1dYsXhwTxmevtbGNNxCr/3r8s4wIw54/bkJ7G52jw7y1iooKPYeP3+DajRyuXs/l6o0cUlIL6NYpggVvDaVn10a1FnuP1vs9GDpWY7n9KRwc5Cx2cirBcQ7moROZfPBNIus/6V2HeOjlLmFAV39e/ziBvd/24enXzzG4RyByqYXdxwtYsziG4RPPsGRmG37Zn4sYMw/2D+DNpbfY/WVHnn0nkaGdPDGZ4dCFEn6Y05KRsxNYPLEJB8+pKdOYGdPblzmr0vl1UWueX5LMqK4eaAxWDseX8d3MJoyam8Si58M5eaUUVamJMT28mbM2mx3vNOPFL9IYFeNGpd7C4cQKVr0czoMfprHwiUCOJFRQqjUzuosHb2/IZ/vsSF78Jpth7ZUY6xG9A9h6XrjGteVnrs+nUxNBqR9OrGDV5HAeXJzKkhfC2XSyLtHs1/daMH9jLk1CBIV/+GIp37/ejFFvXefDyY3ZeFgolflQX1/e+iaNnUuieG9dDs0bCTneh84WsmZBB4ZPPs/HM1uzcV8uAL06evPqR9doFq5EazDTqokblRoTJy4U8fLjjTgdX8ypHwfy8PQzeHvIeW5MJAOfOw6ANv4hu//36m1pLP/5NifW98epOh/c4WFZcm8HFXv5vADmagX71YY0Tl4sYsNHnbBazFRqTbQYeYyErX3w8RAO/eoSLYu/S2XLoQLcXKTMfDqSZ0aFYK2yf/+K5PbXWGWWcupSMScuFuHlLiOqmRttm7kTFFDTwGjFxlRWbkqjoMhAz46+9Onkx+hBIYQGCv+7WG7/0CiRO6Mq0uHvU3PAkzX7DgBT2st1ZFVqLcGd19heF1yZiL+vML8o5NM/3YiwZE7DYnaQl+3AuLC3V1jN9ves9OwyFHJxPeLzj5/2YeBTB3j0/kh2H8mmtLwKi9VKdr6WHjEBVGqMPHK/UCp3/4ksfl46iEFP7uSTt3uwcWcKAI+OaIpIBEN634PH0UHNf3sQiezLisQOnge5A66cvcM/ODYiHDVKldiZ39EB3REcGRcW+04kcKCLHMGe7rrXNTrkLNzjWhwZEbXGk1OLeOGVnZjNFh4Z0Rw3pZyc/AqWrrrE9BdjmPVSW5ycJAx7agfhwW48+0grej+0BQBj8gv1p67S8c3Pt1izLZVj6wfbODWOnHfXU8r4Yr1QhvThIcG88ek19qzoweufXiOqmfB/HzpTaNOnJ9f0qk/ettZ0yf58XSrxSeWsWdgBq9VKWaWRFiOPcWtXf9yrUznVpVUsWJnMjqMFuCokzBnfjLHDQxymYTkyjvUGKycvqjlxoRAfTzltm3sQ1cyDwFoR3y9/TGHVljQKi2vtoYNDCfEX9sbf0i2qIj3+tYwJRZufhO+9NraOrKpIT3ifrbbX2acfs+298parG4yIvxgNRkRt/IYRYQ9VmkJ+2hzPu0sO8MzjnZj35lDhjX+wEWEyGCirMOLt6VSnBKLZoBNKPhYbCPBRUFxWhZuLFKvZQIXWXF0S1oC/txyNzoy5Soers4TCkiqhpFu5Edfq76zUmvFyl6EqqcLPU0ZlmQFEIqFkXKkRfy85JRVGXMVWEFGvhGxNSdiaknQllSZcrSZAVFMitbqErFDysbqEbLkZfw8pJZVmlApRtXzdkrMag/BM1JE3UMczI8xvJCDAxW4J1hKT0BUUBM+Ml5vwe/19nOrKV//eMrGTLX+/QmPC20OOqsiAv48TJeVGvtmcwfKNGUx4JII3nm9Kuc5i86zeSq9k0cpbxCeVsXdlH5QuUt7+4irXb5dxobqXxFMPRLBsTkfkdxGprVYrY2fFkpWvY1jvQB4eEkqrZvYrEv3RRsSl66VM+yCRU2t7Y7UIz0CHR07QJ8abwd396NHBC283Yb03Uis5dE5Nt7aehAc54+/m6GBXs8bcQj27TxSy/4yaswllRDV1o19nXyo0JhKTy4m/UcbcSa3o2s4Ljc7ME7POs31Zd6JbeSKV1Y9QODIipi+8xDc/JTFhbEu+fL8nUGNE5MY9YzMS7mDqu2dYvvYKLz/dnq8X13QM/28wIkzGKiQSMcWlhjqRAh9vV7slW3PVZg6dzuG9z+MY/0QrXp8YLZRs9VRQoNbi7+NcR95QZUbhdA/3YYMRYX/8f8yIMBhMfPz1WT5bGcs7r/RhygudkYhq9qeMrDKmv3OYG8lqDvz4AHKZhDeXnOH6rWLirggpjS881oJl7/aoU4zCXKXDarXy0OTjqEsMDO0dzKPDI2gc6CBqazHXKcGtKq4iwMdJ0Kd37f8FRQb8vexEVmsZEbEJJcxZmsThVd1tRkHrB48xtIcfg7pV76HVDpmrKRUcv6AmprUHjUNdbVXv7kZtIyI7X8eu43nsP13Amfhi2jX3oH9XP0rLjVxNLuPSjVIWTI+iY2tPKipNjHv9HDu+6kl0S0/EdgwGR0bE9IXxrNyYzPjHmrF0bmegxojIPDGmjnEBMH3BRb75+SYTnmjBsne728YbjIi/Hg1GRG3coxGBUTig5eSW0bb3J6ReehNPD+d/tBHx64FU/H0UvP1pPBu/6MuU988xqGcQcrGZ3cfz+OKtaMbOimX+tCh2HMlFIbcypEcAc5fd4KePOjF9cQIDu/lhNRs5fK6IT2e35Km3Enjv5WbsOZqHyQQje/nw3nfprJ/bileWpjCkkwdGo5Wj8WV8MqkRTy+6xbvPhnMyvoRSjZkRXb2Ytz6bta815dVv0rmvowf6KgtHE8r5+IVwnv00lXfGhnAyvoQynYURMe7M+yWfNVPCmbU2lyHtlFSZrBy7puGjpwJ59uts5j7kz8GESgwmKyM6ujFvi4o1k8KYuS6X/m0E73Rt+XcfC2LnBeHaj+jkzrxN+ayZFsEHOwpp20g4NBy9Us4nL0XwzMcpzHshku2nhQjFyB7evL86k3VzmvPRxhxaRQjyRy6V8umUJjy1IIn5M1qz44iQMz6qfwDvfnWTHz+IZuL8ROKTyvHxkBESoODb99rz5BvxzJ/aih1HhI7UDwwIYurCBApLDJzfNBg/7xol4BIteNFG9AvCYoEfP+pqizjcgaHKzLHzhRyOLWD74Ryu7hpeTwb+eCOiQK2n0+MnuLKlH17VRkFicjn7ThdyOr6Ys1dK2fJJBwL9nIi/Uc6qrdnkFhooKTfSLcqdscMCua+HL061mhMl5xrYeULFrhOF3M7SMqS7L/f18mVg9yCbMr2Dw7GFzP/mFmaLFZPZypMjwpn6pOANt5eiZM+IuNsrlhM7Fn8fZ5sRATBxXBu+nN/H9loid0al1tYzLv5bjIhhLxxhwSsd2HFQIDo+MDiMFT8n8+lbXZjyfiyDegilYg+dyeXrBX15ZPJBpj3blnEzDvPS4614bGRTvttwgyVvdmPSOycZ3Eso/XrwVDZrPxlgt4KSQzQYEfbH/4eMiMNHrzL5zb00b+zD0oXDiAyv/h8sdYsm7DuSyosz93J5/xN41+pAL4n4EoDh/cJwkktY/1m/mohDlbCX6Q1mjsbmc/B0HnuO53B58wC7le++/SUVWXUz0MOxhXz+RjuefO0C86e1YvvhPEDYz+/oU5PJjJ/XXfdHLSMiu0BHj6dOk7i1ry3ycOVmOQfOFHIqvpizV0rY9VUXfDzkXLpRxsrNGRQUGSguM9Iz2puxw4O5r5e/zblktVq5lV3FzqN57DyWT3qOhmG9ArmvdwADuwfg6VZ3D913Kp9FK5Mwm4U99LnRkUx8rLqJqZ3nyZ4RoSrSE9H/V9vrO0bDHSMCqGNcAIgl8nrRX2gwIv4O/HcUOP+bERLswfBBLfl27TlmT+33dy/nP0LTcDd8vBQM6RWMm6uMQT2D6BTli8WoR2+w4O4qY3CPQCJDXekd44sIM5EhLgzq4Yebq5SB3fzo2NoTi9GA1QrurlIGdfWlUbAzPaLcsVhFRAYqGNTJC6WLhAExXrSNVGBFeO7dXCQMjPEkMlBBRRNXTGYrkQFODIz2QOkspn97D1qHK7hj+7o5SxjQwZ1IfzmVjZwxmiHCT87Atm4oFRL6tVESFabgjqnsppAwMEpJhJ+czk2csVItH6VEqRDTv40r0Y1qNqY78uF+cnq2EnK8I/ydbPN3aq6kTXgteWcxAzt4EBagoFdbgWcQGahgYIwnSmcJ0c2VtIpwrZF3kTCokxeRQc70jvEGoFGwM707+fD6ZzeITSjltWeb0LeTN5eSynF3lTK4my+RIS70jhFKuXq6ycjI07L2g651DIja+PyNaGZ9dIWpC+JZOa9Tnfec5BKG9gpkaK9AkjMq+WFrKhMfb/bv3UD3AF8vJ5qFu/Ld1kxmPSOkA7Zt5k7bZu7MfrYJj866yKjplwj0caJ9CzeeGRXCo0MC0RnM/Ho4n+9+zeXt5bf58rWWqIqrWLoxC3Wpkfv7+DF3QhN6RXshqy6/KJbW97oN7ObHoJ71e2n8Fu4Oufv7KJgwtqUtEnG3UgNYsf4ac6d3qmM03G1A/LdALBYxpGcQjUKV9OkicMMahSrp3NZX2E96BNOprY9N3l0pZ2ifMHp0DKRjlB96g5nGYe5ERwnyg3uF0qldDcfMXjnNBjTAHsrK9bw8axtn4tJZumAYo4a1cChbqNby3Ct7+WnZkDoGRG18+X4Pps87y7R5Z1mxoFed9xROEu7rG8J9fUNISi3nx11ZPDs6ot4crRq74a6sOXa5K6UM6uFHZHDNfl5bn+r/RXG4QB8nwgOdWb09i2lPCnto+xbutG/hzuznmjB6xgWGTTxHkJ+CDi3ceemhcB4eHIxWb2bbkTxWbMpgztKbfP12FNkFepb9lE5JhZGR/YKYP7U1PaN9bMaQPSN7WK9AhvVywAFyAHt76PjHmtkiEXdHHQBWbkzm7clt7/qc414eDfjr0BCJqI1/MxIBcDkxh973Lyc81JP2UcG8M2sIrVoE/M61/P+JRGTnlLH/ZA5PPdCEz1df55kxTbl4tQixtYp2LTxZuz2D6U81Y/3ODGLaeIHFyMXrpTw5Iowv1t/m6VHhXLpeitVURXRLd9btymXq2HB+2pNHhwhhA4i/VckTg/35cnMO44YGcDmpHIvFSnQzJesPqpgyOoifDxcS00iBxSriUoqGJ/r78NWvBTw5wJfE5EpMFisdGrvw47EiJt8fwIYTRXQMlWGxQnyajsd7evH1fjVje3uRmK7BbIEOkc78dKqUSUN82HCmlOhIZxBVy/fw5OsDRYzt5cnldMG7VFv+l7gK2kUKm1Z8qpbHe3nz9d5Cxg315/JtwQPWoYkrPx5RM3lkANviymkdKRwU45MreWKgH19uy+OpoQHEJwtE0ejmStYfUDFlTDDbL1bSpongebx4vYxu7TzpNu4Mset7kJknaJLoVh6s25nNtCcb8fO+PKJbCR61rQdz2bgvh8ljmzF1nHD4t1qtlFeaCOpT4+Hp18UPL3c5P37UzTamKtbj712zMV+6XsIjr5zl2q776nVi/XciEflqPRaLFWeFhAXLrxN7uYjiUj0ebjK8PeSYzVZ+WBCNv1f9uQuLDYgw4+NZ3wC4w4k4eK6IKR/epFmYC9MeD2NwL3/75FipAxKsg99kLxIx44OEeiF3+G1OBNiPRNj9zv+CSERxiRali5R1O1LpFCUcii5cLeLp0c3q7CcAMVE+bD2Yw/gnWrN26y0UTlImzjmOl7sTfboGEeTvwuzx0VxIFDhEndr6UVymp2UT++l2dtEQibA//j8QibiWVECnQcvIufyK/eZxtSIRp85l88LMvdw4UtMXxmq1Ul5RhXfbb21jfboEEhzgyrpP+wlfWaWrdyg+G1/IM7NPcWXboHrpo+UVBs5cFiLUHVt7svbXTKaPa8Iv+3OIaiY4nS7V0qcznmxMYYngkHOSi5n/zS3iEksorTDi7SHH1VmCTCri+/kd8PGon/qkKjIglYltHLPauHP223NSxdTFV2nd2I3p4yIZ3CvEbud2R8+HQ9iRn7H4Mis33Wb8o0344u2YGtHf4ESA/UiEPTREIv56NEQi/iB0aBuCOvk9btwq4MCxFAaOXs6R7S/TsvnvNCT+n0BvMGMyWakyWhCLRVRqjej0JvILNHi6yUnOrKBCa+T67XKB8GUxci2lggqNkZRMDZl5Wq4ml2M1G/HxlJGSpaVCY+Z6aiVyixmRCK6na6jQmknJ0ZFZoOd6eiVmM/h4yLido6NCZ+ZGhhYXiRWzFW5k6qjUmbmdqydLZeBaphajGXzcpNzO1VOpM3EjU4cLFsxWSMrRU6k3k5JvIEtdxfVsPSazCB+lhJR8A5V6M0k5epxlIqyi+vLXsgQFW1v+Zo4OWfXTkpRdS77QwNV0QXn5uEu5naenUmcmV20gzF84HJjMVqpMViRigU+hMwjhaI3OgkQMVSYrJpOV8upyfWazlbBAZ5pHuLLlUL7NuNDozEjEIqqMFkrLjVRUy3soZUI5V5HVZhTsOJLLU6+fq/PfHjtfyHuTW9teT18Uz7e/pPLSI4354q1oADq29iKmjRff/nKbaU859tw5gtVq5cbtMrYeyGL7gUxyCrQ4ySXoDGY6R3nz+VvReLpY2HwgF4PRwpsvNEMqFds4EbXh5+3k0Ni9g8Fdfbi5pYfttciOAfHv4G7jSlWsZ+VGoe/GvXjF7HEi/mmoqjJz6kIBIYFCBC0nX0OPaF+7KW8gNAw0m62UawRjxWyuvZ+Y0FVXd6nUmhCLxVQZLZjMVsJDlGxfOYyjZ3ORSUV88UMiw/tHoNPf4VIZ7R5uGtAAe2jTMoABvZqw6ddrTHymU733VWoN/r7CPR0Z5kFJqQGr1UphkQ5/Xxc27kzm6RkH63zmxPl8Pnit5jA7bV5cPcdC92g/WjRy44dt6Ux4tHGdz6tLq7iaLDgCfb3kpGRqqNAYuZ5Sjrj63r6aXM75xGK2HMjl593ZqIoMyGRi9AYz3dt7s/TNKDzdpGzYl4sIeO25pkgkIrtEaX+f+tWd7sbw3v4M7z3A9vqPesbs7qGbBFL5yk23mfNym3oRCXuwx4lowP8f/LMiEbptjvkGjrw/0oH2x40H6o858s4Ycu2PVxU5HH9r8SkMVWY+ebevfZlasNbKcawz7sAz6GCSe5obi4PvdHBoq9LpKK+sT7gGgfCoKtIT4OtMUakBd1cZVrOJCq0Rbw8nCtR6/H2cqKjQAaJqQplA0C4qNeDuIgZEVGjvEMr0+Hs7UVmpFwjXtQhoRaVVuCkA0V0ENG85FWXCYV4gdBvx95ZTVGYU5heJBAK4uwxVcRV+XrI6BLc78sVabLmltQnOAf6u9glxFVbc7xBIa60/0F9p35tjJ63GES5eVTNm0lGSDz9c58A29f2zAqlsbEuWvdedohI9jftu4pHhjVm7NZkJY1tSZbTQtoU3ry6ItX3uoWGRrP64LwonKaoiHSHdajw9d3L5QaggMnDsLvasvo/2rXxsnn2Hnqhqb++NlBIembgPjc7E6KGNGDOsEd2jA5BI6n7OYq4fHXPk2XbEq3DU+dURCtQa/O2letl5PmZ8kMC3mzN46ZFGfPFmh5rxJVcdRiLuxp1IhL2ykGInj3pjAKLAhX96JMKa9xpWO9cfcLgnqArL8fG663kv1BBgxzhyuN/c61olUmYvPINcLmbh7JrImVhiv4TvPcFBdMJRGWAkrg7GHegcR5EFsYP5Hcnfqyf+XuAoWnCvUQF78zgq5eqwZKsDvevwOx1F0up/79mLuTw2cTe3Tz2LTFazh06ac5QV6xKZ+GRrvpzXG5VaR2Tv9Ywd2YTVW4Q9tFJjpEeMP5PnnrV97qGh4fywpCdOcgmqIj1hvTfb3ss89qDtsHvlmooRL59i1/JetGnqbttDK7UmnKqjE3frO43OzPXb5bw09yIanYmHh4QyakAI3dr72I2u3g1HDhSJs/2ImSNvvshBmezCkiq7DhF7emHSm4ftFo+Y9NYRlq+5zMvPdODrD4bUmqT+d4oChdK6VtX79hZpf+1+cxoiEX8xGhJM/yQ0jvCgtPzP73b7V+HXw1k8Nv04BWodQ549xKEzebyyMI65X1zm4Ok8hjx7iAK1jsenH+fz1df5Ym0Sj804RYFaz9AXjnDobD5vfprAq0suc+hsAfe9dIKCIj1jZ8XyzS9pfLE+mSdmnaOgSM99409xOFbFB6tuMfOjqxyKLWT4xDMUFBl48rULfL89i6U/pjH2jXgKigwMn3SOI+fUfLgmndmf3+Lw+WLun3YJVXEVT72dyKoduSzbkMm4OYmoiqu4f9oljsQV887y2/Xl34xn6U/pLP0pnSffiEdVZGD45PMcPV/IzI+u1lvPrA+v8MW6ZL5Yl8wTM88K63/pBEmp9tPO7gU/bE4hv1DH2BnHbGOqIh3f/HwTgG9+SiJPpeHpmcd5enRT1m5Nto2fu6wiwLfmcJsTO5YNywbaKtv4+zgzYWxLgHq5/K2beTF7QjvGTDiAd4fVdH1wG8+/dowrN+wbzXcap82cf5qnH25J6qlxfDq3F80jPesZEH8kVHa6Sdsbm74onkaD9zFj8RU78oZ6r7/dnAHAt7+k1Xl/6dzOZJ4YU8eA+F/A41MOcPBkNtPfO8n0905y4EQWQ8bt+tO/t1GYO2Xl99hboAENqIW1v9wgO0/D45P32cZUai0r1gnNY1f8eJ3cAg1PTDvEhCdas3pLzR56/kphnX0x6+TD/PRZH5tDR8jlbwrA+Mea1vGWt23uwZQnmzJ62hkCeu+k17ijjH/3IvO+vsYX65Pr6bvth3N45YPLPPZqLL1jfHFzkfLKM83wcJP9LgPi34VKXb+fRe1GmHcwec4xAjusZNJbR/6lvEqtZflaYa9dvvZKnfe//mAIBYmT6xoQDfhHoyESURt/YCRi865bbNhxk83f1m/ydTf+CZGIkuIKklLL6NLOl0Nn8ujTOYD0nEpEQHiwkpMXChjUI4jzCWoahbphNRtJy9bQpZ0Ph87m06eTP2mZpYCI8CAXTl1SM7CbP3GJxUSGOAMi0rM1dG7rxeFYFb1jfEnPqQArhAc5cyq+iIFd/Yi7WkpEoOBBSc/R0jnKkyPn1PTq6E16ZjlgJSxAwekrpQzo7E3c9XIigxSIRCLScnV0bu3OkbhienXwIiNPh0hEXfmbWhqHCPdSWq6Ozm08OHK+iD6d/cnIFTbc2uu5eKOSiBDBUyms35vDsSoGdA+2SwJ1FIm4O6deVaQjrNcvtte1a2HXjkS4K2VcSFCz+/shvLLgnI3g+9CwRjw54yiF1YdqezXO7X0vwJR3z/DNTzeYMLYVC2d34XpyCfc9sweNzmTz3Nlk555kxY/XGT4gnJS0Mq7sfwyZTMKUd06wYv21evIA+aqyet/5W5GIu3NlAabOO18vFcteepaqWE/kwN22z6UdHGaLSMxYfIVvN6fz0sMRfP5GO5uMo0iE2Ml+ytJ/eyTi2JkMunYIID1bMIwjQt04eS7XVjWpNv7ISMRP22+x52gG678YbBtviET8QfgvjEQUFJTW8ZSr1FoCO6y0vc6/9KLt/dqRCCcnCUkppfy6ahjT3jtp20NHDgznudknbHuo4fo4O0s0OdifzvHtL2m89Egj3p/SmqTUCu6feAqdwcK4keEsmB5l03cPzzjL3pMF9Iz2IU+tJ/an/sQmFLPzaB7fbk6rs5/ZfttdqULw25EIe/v8tPfPseLH63X26Dv7ee1GmCq1lqCY72uu4+XxNdfxrSOsWJtQP+LgIBKBg0amDZGIfy4ajIja+AONiG/WJbB59y0ObnjYvkwt/BOMiN2HUmkcruTjb6/x2ZzOLFyeSJ/OAf/H3nmHNXW2YfwXwt4zTLe4EEQR9x611m2rtdZtq+LqUGtdrW211jrqBLWuOrq07q3gQnHviQsBGWGETULG+f4IIkiOlX62VZv7urwkT57z5j0nJ8957/dZmJjAkdPJTAnx55OZZxn/oR/wk0tBAAAgAElEQVSHTyUhEXS0auDOnFU3+WFyPb5ddp0W9VzQCfqGNZOG1eTT2ZcYP7g6Jy/IUakFWjdwY+6aaOZPrMOsFbdo1cAZjUbg+Pk0Jn1YTe8JGFiV05dTyVNqaRXswvyf7jN3fC2+W3WXVnXtUWsFIi9mMHFQRSYsiObTfhWIupKJSq2jVZAT8zc8ZM7H1Zi9Nobm9RwRBErqD6rK0bP6xLeWwc7MX/eAueNqsmDjQxr46xM6i89n/NAaHD6tT/xs3UDG3DW3mT8xkIgzqXRvV7opliESMearU6z4NZphfaqx+Et96MaJ88l0+uAQ+UptqVrYWTkFrNt2l71H4rkbk8WJzV1wdbZEIjEhUZ7LnQdZbD/0kI3b75KmEEugNOKfwOtAIrKz8/h64TlaNtKXZj16KoFpo+tha1P6wf8iScTiNVc4cDyOnas7FcmNJOIF4TUjESM/P0DYT5cYMSCA0G/18f2HT8TRZdB28vI1jOjvT+jM1kX6mVkq1vx2hV3hscQ+yiZqa0+cHCzQaQtIlOdy+34W2w8+5Ocd91BkGr1h/yaMJOLlhjGc6QXj+q1kugzcxuzQs0wIKZ3MZcR/G/K0/FKvV/waDcCKX6ORp+WTl69h4ITjdG9fnp9/aMmo/jXJyFKxIzyWvp8coUrrTUREJTLwbV8u7u6Ba7EdqagLcjoM2ouTvQUH17/1j56bEUa8CFy5lUanQbtY8tNVPvmgzr89HSNeMshTc0u9DvvpEgDL1l1BnppHdk4B/cfuo3eXavwW2pGPhgSSkali67579Bq+mwqN13D0VCLD+9bi4p5eODk8IXJHTifReegB3FwsifjZaEONMOJZMHoiiuMveiIEQeBmdAqzFh5lX3g0TYM9eRCbiVRqwicf1qP/O/qKOAUFWszNpeTmqbG2MkWt1u/amZpCXr4GG2sz8vM1mBc2z1Llq7CyMiulb7DZ0t/sicjMyOF+bDYBNZw4eSGF+v4uJMjzQRDwcrfm3NU0mtRz48otBT6eNghaNfFJ+QRUd+TkxVTq13bmUUI2SMDTzZLz1xU0DnThSnQmPm4WINE3zgmo5kDUpTSC/JxIkOeAIMHTzYLzNzJoXMeZK9FZeLvpdyMfJSvx97Uj6rKCoFoOJCRmIwjg6WrBhVtZNPJ34OrdHLxlFoCER3Il/lVtOXU1k3o17ElMVQKSEvrXYpR4u1s9NX4GwQEuJKbo74/i87l+Lx+vQv3i829U1530zIISbu6xM86x4re7JTwOUNoTka/UMG/VdR7EZROflEd8Ui4J8nyC/Fzo07kyPTtUwMVANSCJxAS1Wkfjt7fj6mRJ1Yr2lPO0xcfThvKeNjSu5/58dfYlJkXu7yXrrrF2UzSntnZHkalGVizPQhAENu2+x5jpkexd14V6td1KDCOX55bQhyfu8sdJ4UVjiYQzjZl+Un/N3q3KoqlPSLlOozbo0jckA/H7Wp6WbzDh2mCzuTKEMwGYiMlfMU/E6QuPCKjhQoJcv3jzktlw9nISzeqX7rHxVz0RgiBw/Y6C70IvERH1iCZBntyPzcTM1IRxwwJ5t4u+dLHRE/GC8Ip4IuQpucjcnlz/kRP3EvbThVKJuU97InLz1Hwfeo6YuCziErKIS8ghITmXhnXdea9bdd55qypWZvp71czMpOj5m5ubiyBAk7d34SGzolpFB2SullTytsbTzYpGdVyxtDQlL1+LjbUpebnKojKuBWodVpam5OZpsJCqSUxR4eZswdKf77L5wCOOrWvFuWvpVPLRNzONeZRLkJ8j05feYNUfMaz9tj7VKtqVeD4mpBQUPY8ew1DYJoiHM308+1pRiFZxm2siNUeeml/KRqdkqA0nUIuUw05JUz5/BboyhDPp9UV+M0ZPxEuDV4tEZK8BSRkNcVmgLd2XAQBVcsmXKg0XryZw4tQdTpyJ4+TZOKRSE/yqu3L2UgJvtqpA1zeqMHxiODvXdqVFI33s8DfzT/JBn5q067uDedOa8ttOfRLXe10q88nXURzc2Im+YyPo0EKvf+J8Mj/Obl1C39xMyrJZrXluiJRrE6u0I7YIMNSsC55RW97AOIbKeAJlJjRiC86ywlD3TEOLRxCvWCGRmhrsPjxq8uESMaHy1Dzc6ywrej/56qii8oJQstzgX0ahIU5NyyPyTBxb99xm3SZ9AqHM1Zp9P/eirv9zlBwudt1VKg3VW6zl02H1GDu8BWnpeRyNekj48QccPHofWxtzfvimIy2bVCw9jsiiQZ4kL3W9dGqVwesoCDqDchMzkb4PYhWkTG0Nyy1EroehnjEiHXFFIbrIFKmK4jLh7ycRmcvK1JdGVC4Sly66GHhKX6XScP5KMidOP+TkuQROnk/E3ExK9SpOnLucTOd2lenYpiLDJ4Zz4JceNA7Sh1JJTMv4GzG06VTWRb6pSD8IsR4MLwqGFuhlJRZlWfyDOAEQW+gb0Bc0uQYUn/Gs0KgNLmZHTTtaYvErT8vHp/GvRe/HRfYqEeefnJJjsBSo2OeO/uosBWodvd4sx2dzL7NvZUuGf3GOpnVdycnTsPPII6pVtGN7uH4T0dJCSrvGMj7sVZmJc6+w98cWTF14leoV9f0dDp5MYt3shnT88Bhzx1Xnl736DtRdWsroN+kSX4b4Ev0wH0+ZJQ8f5XHsfCrmZlKSU5X8+kNjOjQrTcoNhb+a2Tobtok2PshTcpC5PWXrLNyRp2Qhc7N/Su5l8LqI2q1ifbGeT1+k75YhiP32RPVF7L95ByOJ+IfxpyRCIpFMB758SpwsCIJH4fuSwveHAU7AaWCUIAjXi40hAGqghiAI94vJ1wKugiB0/tOJvgQkQhAEfvnjMmMn76CctwNNg31oUt+HJsE+/LjhAtv3RbPn5764O+lo++4ftG9Rni8+ebLjnJWRg62NGckpechcrYpKJlpb6HdE3V2tSc9QYmejP8ccpQ5nR8sS+hKJBFubMvzgjCRCFGUlEQbJwrRjLFt3pUQs7tMJfcmXRyBztX6SbPZ0ebsXhcIFnCAILF51jhk/RDJpbBM6tCxPzWouz6z/LQgCKpUWExMJJuj/P3H2ESM+D6eijz11a8vYfuABD+MzaBJcjrbNK9G2eSUCa3tgItaETnSxmlNKFDLxAMs2XNMn9M14UhZZ9H40kogy42UgEYIgsH7TdT6ZHkEFb3ua1PegaX0vGtfzYMlPVzh0PJZda7vi4mxNq3c20f3Nqnw++kk1LCOJeLVJhOENl4hSCb7y1Hy8Gq4r0omP6oPMxYox06NY/vOtUt5ceNbzwrA8J1c/9xIlxxVK7KzNEASBeWujWf7bPUb0qUK3Nl74eFgjkZQsUZ6eWYCdtf4+yMpVY2NlSopChZuthnyVjpOXFExadIuKXtbUqWbHzmMpJKUoaRjgTIMAJ95q4YG7iwXenvYG5yhGIgxh9PRzhK05RcjgRoTO6f7kDTEbZyQRRrwAPC+J6AO0KibWCoKQUvj+RGAqMAi4DXwBNAOqC4KQXagjAEpgmyAI7xUbey2vCIlIV+QRMn4bV28msSHsXerV8S5aVMwLi2L9pisc/L0fbq42jJ64nbiEbLas7FKiPFv0HTnDPj/C5mUdGDnlGO2b6z0O568k8/WnwfQedYiZE4LZdiAGgJ4dqzBp9ukS+qamUgb1qvn852QkEaIQIxGGdsVGf3niySL3OapWPO2JeAx5uur/9ziIQWJGVraKDz7dzb2HCjb92JPKFZyKFnDb993h5603GNi7NlaWply7lar/dzuVa7dSUKq0CIKATqf/5+1hy4KvWtGsgTfVW6xl/6/vE1THQNUpsRDD5yQRT3tpEs8NLrqORhLx4vBvk4jUtDyGf3aA6PvpbFjSmTp+MgS1vvLNt0vOsmXPXQ783ANnR0uGT4pAkaHit2VvlSC/RhLxapAIQ2Rh5OeH/tSGJpweUGR7n/ZEPEayPMdgc8eykoj12+6j0Qocikpm0ZS6vDcuim/G1Oa3fXEciEzCzNQEOxtTti5pxpdLrlGvphMXbijYH5nErE/9+X7lLVo3dCfitJy0DBVZOWrylFpMpRI0WgEEcHIww7eCDQsn+tFswEmWTAvUN5YzkdCtjSdfLL7Bz3MaIFdoqFW1dJjj85KIp69j8s2pTzwSRhJhxN+I57WCGkEQkp4WFnohPga+EwThj0LZQEAO9AWWF1NfDIyTSCRzBUE4//9N+9l4GJvC7ehHpCtySE/PQalSI5GARCLR77RKTHBzs8fbyxlvL2e8PJ2xsCj98MvJUZKYlMGlC1f5ZOouenX1Z+2SXlhZPdF98FDBrEWRnN33AW6uNuw6EM2uQ/e5uP/9UvWdZS5WdGhZDjsbM9o396F+gAwAc1OwtzWnQwsfKpe3p2VDvVuzUjn7UvpSAwtfI14cikrcPbUrtmzDNQCWbbjGl580QOZqjczVmhEDAoo8EcUfmqGz2jJ9XONSD9K/jUAAl68n884Hf9CueSU++jCY0DXn8fKwo3J5O46dimPLnmjGDg3iq3knMTeTUruGKwG13OjboyZ+1V1xdSmc61MP49C1l+jUthINg0qX9HwRkLlaM6Jf7aIFxqve4fl1QExsOtH3UklLzyM9TYGqQFvChkpNdLi5WOPtYYu3px2eMhssLEo/TnJyC0hIyubClUeM++owfXvUZOPSzlhaPtG98yCDH368yIW97+HsaMmWvXcJj4zj4v73jR2qX0E8Lvv5tHdW1Ia+X6vI5hbfvFk8vTHTxgSWIgxi3eHLirq1nNDp9Juo9jZmtG/iQXauhi0H4gnyc2JQj0osWBfNum0xWJqZcPi0nJOXUmkY4MIPP90hK1dDeqaKxoHOlPe0pnMrL3YeTuSj/r78vuceflX0i/jzNzIJP51KbV87OjSR4eakXwBX9LahXWMZdtamqHX/X40bmas1IYMbFXkiSoU0GWHE34Tn9UR8BiiAAvThSpMFQbgvkUgqA/eABoIgnC12zG4gVRCEgYWvBaAX0BtwEQShbaF8LS/YE7Fz9zmGhIQSGFARZydbnJ1ssbQ0QxCgoEBNUnIGFhZmqNUaEhIVPEpIJzEpA3t7K7w9HXF0sEaekkVCUgZqtRYvT0fKedoydVwb2raoWvIztXl07f8rjYK8mfxxc5LkOQS0WkZuXgH1A9zp3bUag3rXwrqQdIQfu0+z+h7MX3mZwb1qcO6qvjRoUC1n1m6+zSdDA1i3JZr6AfoE1Us3Fbzf3beEvqlUSoeW5f/schW/cCJioyciJaOgVG+G4l2ci++KGfJEgHhOhHh3579n91IQBMoFLcPe1oKG9bzYd/gew/rVRZGp5EGsAicHSxZ83QZnp+d4ABde94fxWfy89RZL1l7kx+/b81aHAMP6/6cnAp6dE2EIRk9E2fG8nogtu64xfNxWAmt74uJkjZO9KZaWpvqQtwItyfIcLCxMKCjQkpCcy6PEbJJScnGws8Db0w4HO0uSU3NJSMpGo9Xh7WFHOS87vvi0Ca2alLRduoJ8OvbfTrvm5Rk/vB6PknKo88bPqAq0BNfR29CB79TCykr/uzF6Il4uT4Q8WVEi8Vmekou7/4Ki1yV6ChjwROinYjgnwlBne3hGT5kyeiIORiag1QnUq+XET9tiGNvPl3KtdyJzscS3vC1Rl9II6VOFw2fk2FiZIiAwpEclmge7sW7bQz7q78vmA3H4FXoQzl9X0K9LBRauv8P7Hd24eCuL5DQV9+NyWb45lnUzA0nP1uHnq9e/cD2D9zuXY+GGu3w8qGZRgnZxlCWc6Vk5EQZh9EQY8QLwPFbwNPpQpVuADH3o0kmJROIHeBTqJD91TDLgbWCsycANiUTypiAI+wy8XwISiWQY+lyL58KadRFM+uJndv8xiQbBvqXeb9F+GsdP3MTc3BQLCzPqBVaiV8/G9OzWkCqVPEh4FE9GZh7uMnu8PJxwcLDS74Spnj49PXbsu030/TQ2rdT3gpg+5yhurjb8OLEtsY+yGT3lMDWrOtO6qb5fwLVbadSp6cL+o3G0bOTF0VP6hC1ne1P2H4vngz41OBQZXzT+ifPJdG1fsYS+uVkZSYQRBhvtFG/YtuSrpoB+h0tsV2zpzFZFu2dP42XYOZdIJJw/MIQ1v14hL0/N7RMh2NsVGlqR0JOPp4XzVtvKtG9ZsWjHN12Rz6YdN9m49SY3otN4p1M1fg3tRPOGf48Xojhehuv4X8eP687w5eyD7P99iD5kE0qEM9Vrv5KLV5OxsJBiYS6lnr8773arwdudqlOpvAOPkvLJzFLhIbPFy8MWezsL/b0lcg9u3n2XhORcPhqiL+U6be4pvD1s+HZSM27fUzByUgT+NVxpGiyy4DHiH4GhxenIz3YRtvYsIQPrETq7IwAyNxtR7+yzbeiL8S6UBZEXUlFrdDg5mHPwZBJD36lMu8buaLQCWq1Ai2BXRvfz5cTFVL4YVYvt4QlcuJlBOU9rDp5MYnDPiiz4KZpWDWVUr2hHxGk53dp6s+dYAoqMHH7dm0hGtpr2jd2o7G1NUC0HZq+JQVWg37gNPyWnaxtPDkXJGfFeNYMkoqwweiCM+KdR5upMEonEFrgPfAecAk4A5QVBiCumswbwFAThzcLXAtBLEITNEolkKdAUqAes5v/0RGi1OiKOXmfNhkhOnrrNvu1TqVHdEH+BzMxcvp+/nWWrDtD1rWAqVZSh1erY8OsxXF3s+CikDb16BGNm9hS3MkAicnML8Gs2j1Xzu9C2RWX9+FlKbKzNkQo5TP3+JAt+vMCH7/vTvIE3oT9dJj4hi24dKvPOW1UIrOWCVKo3GjqNGolEgk4nYGIi4fF3YmJqViR7/L/oTqv4hRMR/zc8EUVkoVjDNnlaPj5NfyvSeXSqbxHJEMuJeFZ1JoPyf9gTof/Q56uM8xg1mq1EnpZHlQqODOjlx6HjDzlyMpYOLSvyfs8adGxdqWQ5YbHd/BfkiTA4hNET8cIg5onQaLQcOnKLNesjOXc5nv2/D6FqZddiCk9IhCIjn9lLovhx40V6dPSlgrcDBWot6zdfx8vDlo8+aMjbnWuUzpsxcA9m56io2XwlvyzpSLMGepKQkanCztYMqZkpn804zrL1V/jwfX+a1vdi8eqLJKUqebtTdd7pXJPA2u5/Hu5k9EQ8/9hg0BMxcsI2fZjMoGBCv9c/quUpObj7zSnSSb76cZFHQiwnQqdRo9HoyM3T4OhgQUpaPq7OluRm5wESrK1MSU1X4uZihSJThbWFDpCQm6/G0d6ClHQlrk4W5ObobYW1lSmpChVuzpYoMlXYWoEgSMjN1+Bob25AX/pEP6sAOysTBAGyc9U4O1qQnKrEzcmc3Hz9tbGxMkWepsLdVZ9wbW+rvz+y89Q4O+j1Ww86TEaWmirlbHmvc3n2HEvk/DUFLYKc6PuWN60buKAq0OHsYE5ymgpPD/ui53vxZ76J2POljJ4Ig7BwR6HIxdZWf9/n5hbg6GhNdoEjdnYGbJTRE2FEGfCXSrxKJJLD6D0TcyhDOFMhiZAVHjMSaEtZSIRyR9HNk5SUzoJFW9nwSwQe7k4M7N+e995tRdSpm+zdf5a0tCzSFdmkp2eRnp5N86Z+fDdjAF5eLiQkpLFg8TYOHLrMg4dyGjeoRmZWHqfORPPV1F58MempLtO6kosHQRAYO2EjaakZ/LxyYOnJqhUIgsCN2yls3nmd8OMPeP9tf4L83dhSWHazT7dazJ3ernDAMiQplrFusugCr6w1y8u6UDQkF3twiUHMtS42l6cgT8nBvcaTbpfJ0TORuekXBCPH/U7Y6khChjYndF6fJweVNUFfdC5i8hdU+70s11dk8Ttq/CbK+zhRrYorm3depX1LX3p29sfeQSRkROweE7uXpCKLL0MPHXPX0jIAk2aG5dojhuUqucg4ZbzfxRJJXwREvg+J7ft/P4nIXlN07yQkZvDD0oNs/P0UPl5ODOxTnz5vBxF56h77Dt0kTZFLuiKP9PQcFJn5tGpamVlT38TD3Y74hEwWLIvk4NE7xMQqaBxcAUVGPmcuxPHdF28ycWyrkh/+1P2q0+kImbCDgoIC1izsVnqygj7J/9qtFDbvvMnhkw8Z2DsA/1pebNl9k3W/X2bwe4HMnFxoQ82cDJ+0QQIg8tt8Trvyp9Dl/7lOcYiR07LYyxeQEK3/yKcbuZWsNJd4fsiT4hFTjrBswzWG963Jkq+bFRvD8PMsOVnBmi33OXgiifVzGvPm0CPM+SyQ8BMJpGYU0KuDDxPnXWXvimYM+PwsPdrIyM7VcPBUKj/NCOStkaf5/pOaHDmXhjy9gHfae/D5glvsWdqAgVMv0bWFK3lKLYdOp7P2q9p0GnuB78b6si8yhZw8LT1buzE59D675gUweMZN2jdwQidA+FkFa6bWpPO4K3w3pgqbw/Vhxj3byJi89C67fghk4tJ7BPjq76VDp1NZ+40/nUZfoIKXNWkZBVhbSpFIJEQ/zGH/8sbMX/+AKuX0dvTgSTnrvgum47BIdq9qi7d7afsntTBsc01tDNzX9kEGda+qexiUK5VKQt7uRJO2+oqAJ8MPMHvVBv5Yu5JRk74opa9QKg2OY21q2P7bWhi2odVsDJiyJ3vNT8kfGpaL2P/oXMPr1uq2JkYS8Q/jr3giLIEHQBjwDZAALBYE4dti78uBCYIgLC+UFZGIwtdfAoOBKMCurCQiNlZOmw6f0aF9fUYO74yHhzOr1+4ndPlOZG6OvPduKzzcnXF2tsPFyRJ7e2vWrgtn+ap9TPikJ5+N64mkcOGemprF0cgbnDx1G0Gno0fXYJo3far6UTESoVDkMmjESpLlWez4eWjRorQExBh7oeFu2X09Y4bWp8sbvvpkRCOJMIxnkAhD7nWDLvfxWwhbE0XIkGaEzutdUj81r/T395qQCEEQuHtfzpVrj7h6LYYrNxJJV+RRvaobtap7ULOaO3fuJbNz/w32bfqw5Dhi52QkES8GLwGJeBCTQpsu8+jyZgAhH7TCzdWOVWsjCF0VibenA+/2rIeHzB5nJ2uc7U2ws7Vg1cZzrNp4lskft+aTkGZFXoCU1ByOnLhP1NlYAN7p6k+TBhVKfnix+zUtPY/+IzeRla1i+0+9cHE2cD+I2ZXC77Fxxx+Z/HEL3mhVRW9DjSRCRP58uQyPkZyUUrqq0uNE6adyGQCSkjJKhYqKkQhVXg7pmQU8iM+lQYAz4VHJNK/vRkxcJghQ3tOayAuptG0k4+xVBeVkUiQSiHmUR3BtRyJOp9KsnjMPE/IRECjvYcWJSwraNHDh7PVMKrqZggQeJOQTXMueiLPpNAt04mGc3vNZzt2SE1cyaBPkxLmb2VT01DchjUlUUr+mHRHnFTSr60Rskv6a+cjM2RyRgp21lEPnMkhKVZGVo8HN2Zzm9ZzIU2oxNzdj/4kUFnxeWz+fi+m0aejKxdu5lPfSX9+Y+FyC/Z0IPyWnbfPyRREIxfF3kgitTseVs6fxqVgJgPiYB/jXb0Dc3Wiq1KhVSt9IIowoC54nsXousBOIRZ8TMQ1oAfgLgvCwsMTrFPR5E9HocyZaULrEa3ESYQvcBRyA8LKQiAcPFbR9cyJjRnajVYsAloTtYMu2E3Tt3IhRIV1oEFyj5IGFRlSr1TJidBg7dp/m1uUwnBwMLCpEO2rqjfzD2FRavTWbLh0DmTvzXcxNRB4WzyARd+6nU61JGF4e+sVu/MWxSBB5WBhJhEHxyAnb9cRgcGNC5/bUyx6ThWKyx5CnFRgme2UJdRDDS0oiDoTfoGf/5bRpUR3/mjICanni4mzD7btybkYnc+N2MjejkzGVmhB3dWrJcYwk4rUmEXfvJtC26zwmjH2TRsGVWbIigu17LtGjkz+jPmhOUOBTOVeF89VqdQz9aDMHDt/h1qlx2NuVbuwlisL79d6DNFr3WEXvbv7MmvoGZtIydk42Mef6LTm1WyzFy8MOMzMpD859jMTccIiHkUSUvo8N5TLAk27QxasqPUZycpbBXAZDYYhiJCIlRcGmvXG0bihj7upbzJ9Ul2+X3aB1sAsarcDxc6lMGlaDT2dfZvzgapy6mEyeUkurYBfm/3SfueNr8d2qu7QKdkajhePn0/l8aBXGz7vJpwMqcepiKsoCHa2CnJi/4SFzPq7G7LUxNA+wQxAkHL+UwcQBFfhs8V0+ea8cRy9mIAjQqp4jP/wSx/djqvLDr3E0rK1PfF63O5HD5xQ42pnSoamrviO1hRRHO1O2RshxczLncnQ2ttamhE4N4Pj5ND7/wJfxc68zYUgNIs7oPRqtG7gxd0008yfW4XaciuCA0rbu7yQRt69dxdTMjDPHDgPQoEVr1iyYw/SFYZgbIABGEmFEWfA8QZ0+wC+AK5CCPg+ikSAUfevfA1bAUp40m3vjMYEwBEEQciQSyVdAaFkme/deAm07fsHgAW+wZ98Zfli0hZBhnbl9bRUymaPoccnJCvoNno9areXS6YU4OdmKG91nwMLCDDtbS+7eT8bMTPqX1oMuTlasmPsWzRqU4833fuHuAwW+lUQWW0aUgjwlh7A1UQCErYli+sQ3iv4uLivukTBIIF5zuDjbULWyGzt+HVlikdKuVbUnSoIWrdZwzoERryduRyfSrutchg9uyR87zjN38X5GftCKuTN74eoovohOTMqi7/BfMTU14eLhsWUjEMVgaWmKna0F92LS9DZUJO/pWZC52vDj/K40a1ieVt3XEhufSYXKIiTCiBKQp+QQtlYfeRz20wWmj2+BzM0GeUouYT9dAGDZuitM/7RRCdLwXyx6YGlhgm85K2pVtmVk7/IcOZcOQKv6zjySq5jzaXWW/5GAX1XDjeKMMOK/gL+UE/FvQCKRCD7ervR5txVbt5/g3Xda8tWXAzA1/ZPdI52Kd/t9j4O9NaGLQp7oGyIRf+KJmDV3F/MW72faxC58NPIN8eZMfxLO9BjDxu/Gx9OeLz5tZFjf6NBZQTkAACAASURBVIkwHKJURk9Emc7pNfFEKBS5+NSaxIJZvWjXoiKVKrg83xhg9ETAa+uJ8PJ0pH+fRvy25RyD+jZh6medn4RXiO2Ia/Po3n8d3p72LJrV1WA4xp+i8F77em4Ei36M4pvP2xEyuKH4df6TcKbHGDh6CzWrufH5uK6G9Y2eiFI29K94IsQKaJTFE/F0ONOhk/pwpofxT8KZjp9PpV1jw+FM4adTaVbXmdjEJ+FMkRfTadvQ1WA4U/iZdJoFOhIbr8/zKOduSeTlDNrWNxzOFH5OH84Ul6w/JwszCQ0GnWX2mKq4uljS0F+/UfkgIZ9gP3vCT6fTItid2CT9913ew4rIC+m0bWQ4nOlQlJx2LV6ecKbYO7epWtOvlL7RE2FEWfA3l5d4sXjzjXqs3xjOjK8G8sGQjn9+QCFq1ShHbp7yzwnHn2DfoWu0b+NHQYGWBUsPYCpRY2pqgpmZFI1GR2ZWPplZSgqUOTQKKkeb5pVwctTHi966k0K/kM1UKOfAhiXdsLIy45NhDWnZYz3jRtTDxrqM1Qn+AyiqCjK4EaFzuhfJQ+f2LOVtMCT7L8PJyYZ1ywaxddclps3cga2NOe1aVqNXtzq0bVntzwcw4rVEpw51WLPhBHO+6cWAvk2e+7ha1WX6JnN/hUAUw55D0XRsW42c3AIWLDuBqVSnt6GmUjRaHZlZSjIylajVWpoEe9O6aUUcHfRej2s35fQfs5NqVVxYt6QnFhamjAtpQod31/PxqI5YWopUJ/sPo4gwFKusFPp9Z6aPa1oqJyJ0dke+/KR+mbwO+47GcepiMh8P8efrRRcY+HY1Tpx5BEDjejLWb73LtNGBLFh7g9pVrElMyefCdQUVvAL4cdNdTE0lHDudiKpAoF1jGSs3P8C/mj0rNt+noZ8dBRqBCzcyKe9lxcotsZhJJRy/kI6yQEvbhq6s2hpHbV87Vv4RS8Oatqh1AudvZlPew5LV2x9hZirhyJlUNBpoE+zEmp2J1K5iy8odCdStbosECRduZ1POozJrdiZiamZCxFn9JmCbYCdqVrTmwKk0Dp1RYGstxbe8NZaWJiyfVpvV2+KxsDTjYFQqAO0aubJyy0NqV7Nj465YfCvqCeyFGwrKe/mxcvMDateSGUys/juh0+koKFCRqdCfV0GBigLV37hJYsR/Cq+UJ8LNzYX16zfSoUOH5z9Qe4SoqOuMGDWfyxdWFZMb2C36k93HGzfjWLfxMBqNDo1Gi0atQq3WotFqkZqY4OBgjYO9FRKpOcdP3OT4iRu0axPA4P5tGTY6lMkTejJx6gbS4tdga2uFWq3Bq8owThyeTTVfA2VpDe38iu4Sl5EgldWzUFaUcRy5PKNESJpcnoG7z7tFr5MfbUImK9yVKetOuaSCiLzc809QbAdFVF9kZ0Vsd7Gsc9fdKy0zdE8DgjqLa9fjOHT4KouX7ePN9nWYN2sAVhZl/O2LlboUkafre0qWgrM08vk/s4w7USpN2bxdpiaGF8U6A3bR08rwd+QstnbViZynyD0gMW39t3si3Nzs+XXNSNq0LJ1Q+XQVuiIIWo5G3mH8tC2cPTyxcLC/Zj+uXHvEz5vPFtpQHeoCJRqt/m+p1AQHe0sc7CzBxIzjUfeIPHWPTm/40at7PUaO+42pn3Vh4hebyIgPxdLSDJVKjafvJ5yP/I5KFWWlP7AspSPF5i7mKRC7XqIeHREPRVm8XjrDu8ToNKXKqspT83Cvs6zodeK5wUXvl8WzoJcb/lxVvorsPE1hCVMlMmcLsjP1HnobKyny9ALcXSxIzyzAxlQDEgnZeVqc7c2Qpxfg5mRGtkL/mTaWJqRkqJE5maPIUmOtVYMEcvJ1ONmZIs9Q4+ZgSk6WXm5jYUJKpgaZoxmKHA02ggaQkKPU4mRrijxTg5u9lOyUHJBIsDGXkJKtRWZviiJXi62l/refo9ThZCNFnqXBy9+DXKXuyXwKx8+wsCYuUcmRc2ms2BxLl5bujHmvApWqeBosCavI1mBnU1gStqiEbD7lqojYc+uKhuW2Bn6nUsObQOkaw88zUfukCTcsL2uot7nhDV1DNlorUs5dKmKHxfQ1IvIAR3OjJ+IfxivliTh4YCN1AstAIAoRHFyDuLgUEhJSSUnRJ1MF+hvuJVEc9+4nkpaWTYNg/Y+2Vs1yfDdjwBMFkYeFYGLFrDl/EHnyJtF3Ehg7biW7/phCTk4eQXUrY2ur9078/sdJatcqZ5hAvKZ4miwAjByzmLDluwgZ3pnQxWMAkMkcCRnehbDlOwkZ3uUJgTCizJBIJPjXLo9/7fIMGdCaEWN/pEGLyRzYPgFPD/FcIiNePxze+xV+1Q2Etv0JGjeoRPQ9OSmp2cQ/ykBqakpA7T9vQHjnnpzMrHzq19UvngJqexNQu5i9E7GhOokl33y/l5Nn7nP1RgJnzj9k/x+jkKeraRRcpcjr8PPvp2gQVMkwgXhNIU/NReZa0oswclI4YesuEzKgDqGz9ORd5mrNiH61i7pE/x15DXNW36ZdYxnTFl3jl3mN6T/xNG0bOCEIEH46lQUT/Xgz5DRfj6zGwRNJ5Cl1dGnpxvRl99gw059BX17nzWBHVGqBiPMK5o+tSqfxV5g+tCLHz6SiyNXSuaETX2+IZ91nVRky7x4d6zmgLNBx+EoWc4eWp+tX0Uzr682xiwqy8nV0DrLn6yWx/DS6PB+ExdGumjlqLRy5lc/3vV3pvjiBqV2c2XslF50AnerYMGN1MmuGuDNywT0a++lzHA5fymTeiIp0nnKDbz6uxfbD+lDJJZNrM/TLyxw9n0bDOm5FidLhJ5NYNK0+7QeHM2t8EFsO6KuVdW9fjqkfXeS3hS2JiIylTTNjs1gjXh/8/y0S/0HUqWOAlT8HTE2ldOncmJmzNhDcKIS69T/k7LnoZx6TkpJJ+05f8f38bWX+vPT0bLbtOI2bqz0VK8g4d2IODYKrcfb8XdIVOaxaG87R49f5/oftjBvb5S+d06uIkWMW4+7zLiPHLC6SyeUZhC3fBUDY8l3I5U8a1IQu+YjkR5sIXfLRPz7X1xUODtb8vHYs777TmDe6fY9CkfvnBxnx2sCvVhm8b8Vgbm7KW+39+Hr2Xuq3nk2dpjO4fDX+mccky7No120R85dGlPnzUlJz2LnvGi5ONlSp5Ma5IxOpF1iesxcekJKazZr1xzly/BZzFu5j3Jg3/9I5vYoY+fkB3P2XMvLzA0UyeWouYesuAxC27jLy1CfEbOmMliSeG8zSGS3/lvk0DnShoo8N7Zt4YGdtSttG7tSt4UBQTQfaNnTF3saU9o1cqehtTbCfPc3qOlLJy4p2DZ2xs5bSJtgZv8q21K1mS5sgJ+yspbSr70RFD0vqVLGhmZ8dFd0taFvXAVsrE1rXcaBWOUvqVrGmdYA9dlZS2gTaU1FmTmBFK5pWt6GCmzlt/e2wtZTSys+W2t4WBJa3oFUNK+wsTWhTw5oKLmY0rmpJ06pWVHAxo00Na2wtTWjqb09dXxvq+trQOtABO2spbes6UsHLmuZBzjQPcibA147R71WkYzMZ4VHJ1KhkR/3azrRt4oG9jRlvNPWkgrctLYLdaRHsTiUfO95o5oWdjRneHsZwWyNeL7xS4UyCLrZsIShQlIAZFXWd3u99hVqtoXevVqz9aR/1g3zx96uIiYkJSmUB5XycmPzZO6hUatq99SXm5qaoVGoiI2aJjC3ithbp4JiTncP2XWfZsfscCYnp+PtVYMkPQzExFal08hqFM5UKT4r/rcgjYcgT8cw5GsOZyhTOZKgAgCAIjP98LVFn7nJwx0RsbJ4jodwYzmRQ91UKZxLyNpc9PKfwt3zkeDSDRq2noEBDj8512fD7aeoHVqB2LS9MTCQolRoqVXDms4/ao1Sqad1lIdZW+osTvkNkI6CMNjQrV8L23RfZseciyfIsAgPKs/D7vkikIg0SX6NwJnlKLu615xW9Tr46qsgjMXLi/lKeCHhGJ/gXFM507XYapy+n0a9LBRauv8OA7hU4fyUJBKhb04H1O+MZ+34lNu5+RD1fKwTgws1s+nb0YPGvsfTv5MXl6wo0Wqjra8uG/cmMfsebXw7KqVvOHEGAC3dzea+1C0t3JPN+G1eu3slGo4PAytZsPJLGqE7u/HosjXo+ZugEuPggnz5NnQjdn0rf5k5cvpGBToA65S345VQ2IW0c+O1MNnXLWSBI4FKsincb2BEWkcmAXhW4eFf//dWtasOGQymM7u7B1stK/AubzZ2/kcn7nbxZuPEBD5M0nLmSxpej/Wlc142ftt7n44E12Hwwntq+eu/5uWup9O9WhQVrb/DpqOZYWRkwGMZwJoNyYzjTy49XyhPx/6BRo1q4uzvh5enCtu0n9O3us/PJyVXyKCGVZT/uQRAEBEFgxJhluLnas27lR9y4Fc/M2ZtQqUQawpUBtrZWvN+nBb+t/5Tjh2YQuvBDTER+PK86insU4HF4kj6xL2R45xIhTaGLx5Ac/1tJAmHE3wqJRMKcmX2oVtWDt/stoqCg7KU2jfhvoWUzX+xsLfF0d2DH3it6G5qjJCdHRWycgmWrjyGR6Anq0DEbqFDOmVWL+3HhchyzFxx4IfeYvb0V/d9rwqb1ozi2fxKL5rxf1PTudYM8paSXUOZmQ8jAQABCBgaWCGkKndWW5MsjShCIfwJXbmcQfiqZ7DwNB08mEROfS+RFBccvpBPzKI+Dp1LJztUQfjqVy9E5XLiZTcTZdLLz9J2lHyTkc/52NpGXM4lJUnLonIKcPC0R5xVcf5jHhbu5HL6cSU6+jvCLmcQkq7j8IJ8TN7KJkRcQcSmLHKWWw1eyuBar5OKDfI5czyFHqSX8ajYPUwo491DJibv5PExTE3ErjxyljiO38rkUp+JSrIojt/LJUeqIuJXHw+QCIq9lEXkti5hkJeEXM8jJ13H6ioLzNzI5fyOTiDNp+nM6lcqQt6ugE2DS/EvcicniwIlEsvPUXLyezrlrqZy7lsqhE4lk56o5EJlAdu7/v44wwoiXCf8ZTwRAVlYuG38+ROiy7WRmZFO5kifXbz7EVCqlbt0quLvZ8yAmmazsfI4fmomNjSU3b8XRrO1kmjauyY7Nk58au2y7aM9btrAIr4AnQi5XlMpXGDl6YWEuQ+dSxMBQTkSZ52j0RPzfngj9GCo0Gi11m07jh+/60q51bcN6j/GSeCIEQWDn6cvYOzrh6VOuxCLS6IkQx//riQDIzMxnw+9nCF11nNy8AiqUc+b6zQTMzKQE1SmPm6st9x6koFRpOLr7Y6yszLl6/REt3vqBti2rs3ndU93Ry2pDxeQmYvKX3xMhT04vVSlp5MQ9hK09R8ig+oTOfqvYZyoN5kSI9dsQ9Sxo1KgKtFhamJKXr8baygy1WotOrcLMTEpevgZrK1OUKg3mZlK0BfmoNQKWFk/eU6t15OcpsbE2RZ6mxN3VirQMFbZm+oXy44RreboKNydzsjNyQGKCjZWUFEUBMmcL0jIKsJFokUhMyM5/KuE6JVefQG0pJSVTjczRnPQsNbZSHUhMSiVcZ6fnI5FI9AnRWRpkDmak52iwLVAiADkqHU42psizNLjZSckt0P/GiydcZzrZ42Ct/0FnK7U425khzyjAq7o7qgL97re5mYScPC12NqYUSGyQmkho2Hs/8z+vR9smnmTnqrG3t0JVoC3UNyEnT4OdjRkmNq6YmhqwOf+wJ0IQBC6fX4GLiz0+Pm4libjRE2FEGfBKkYhrmWrUWsOG3kxqeGFpSC4IAg8unGL96pXk5ebi5u6OzN0Ddw8PZO4eNGjcBHsHB7Zt+p2vpkwkILAe02d9T+WqVUuMk5gvYrhFrqnYtS4QOSdDCxyxsU1EduPKqi8mN7TbN2PcGH5ftZzeQ4YxZZ4+zyEtRU6bak+MWUR0HC5usmfORQxi+mWVixkcQxA7fzGYi9x3Zb2+ZYWhcw10Eut5ILKYLQyjqFt/OCuXjyMoqPDhlB9jWF8i1g9CZAFn2UBkHAMPOxGSVvzBqNPp2LtzB4vmzubRowSUynwUqSlMmbeYd4cO1w9TxntMzG68CLhbPv/Y2zdvYkjf3n8/icjfWvZFgoGFuIAJkSdusGrtQfKVBXi4O+Hh7oi7zBEPDyeaNq6JnZ0Vv/x2jEnT1tEw2JfZMwdQuZLHc072RfVsMHCuYuFDYv0dntE/o0xyA5WVRn5+gLCfLpXozSBPzcMjcEWRTomqSoJhW6ZTiVRmEyEXR0/G8k3YDdbNbkjHD4/x/YQ6/L4vDlcHKa3quzJxwQ32hDZi4JQLtG/shqWZwM6jctZ+40+n0Rf47qNqbD6YhLkJdG7mwuTQ++yaF8DgGTdpW8den1h9MYPVE3zpOuUG335QgX1RaeQodfRs4syUdfFsn+bLBwsf0DnIjjyVQPjVbFaOKk/3WfeZ+b4Xx69mIs/S0iPYjmm/y9k6rjwfrnhElzo25KoEIm7ksmKIBz0XPeKbt904eiuP9Bwt3YNs+WJLKlvGejNsdRJv1rGlQAsR13P58QNPevwQz4xebmw/m4VWJ9C9ni1fbE1jy2hPPt2ZTePCjtWHzilYM6UGXSZcYdW8djQMLJ28b+qgT5L2a76EX5f3wr+Wu/4NR8O9n24qDW+s5KsNeyjqOZ4rLRTrQyW2EVXsftTpdGzdcYbZ87YhT1GQna0kXZHLqqWDGTKghV6pLP19QJSo38xvVUqWKdKDQl1GsmBIHrF1M9+NGWYkEf8wXhsSYWpiwtnjR3lw5zaJ8XEkxseSl5ODRq1Go1ajLihAo1Ez6bv5BDZohKt56ftMEATuRkcTvn8vf/z2C1qNhm/mzKdpC8NJaa86iUhPkePsVtIwKlJTihb9xZH+lDwtRU5r3yfVWYqThZnjxvD76hUlyMWz5iIGI4kQx4skEV7l3+XMySX4+Ljp5S8piTiwZzfjx4Qw4/v5BL7RmXu3bvBO0yBWbNvLhagT1GvclMCGTbCwfP5uyi8Dibh+5Qo9O7YjNSXlXyURgiAQceQa0XcTiY1LJS4+jewcJQVqLQUFGtRqLWq1hsXzP6R+/eqiY9y6Hc/e/ef5+Td9eNMP339AsyaG9cUn+2qQCEPNMOVJKaU8CwByeVoJD4I8NRd3/6VFr5MuDSsiCyMnR7Bs3RVG9KtdIin6RZGIrIxsrt/JJNjfmfBTcpoHufIwIQ9Bo6KchxUnLqbTpqErZ69lUNHbGkGr4sEjJcF+9kScSadZXSd90zeVmnLulpy4kkGbIH0Tt/L2EkBCTLKS+tVsOXwpk6a17Yl5qC+1Ws7VnKibObQKsOPc3TwqOJqARMJDuYqgKtYcuZZDkxo2xD7Sh3P5uJgRFZ1Pq1rWnH+gpLyD/ifyMFVDUEULjtzKp0lVK+IUahDAx9mUqLtKWtWw4nyMiooy80J9NUGVLDlyM48mvlbEJukXtD7OpkTdU9KquhVXJfZU8NDbj5gkJfVr2HH4fAZvdg/GzKz08/gxiXCtMZsbx0c9uRdeUhKxZdspxk1ax/zvBtLtrRpcvBxL/RZfcWjnBCKjomnepBpNm9bDwsKA++IlJhHRVy4xbWAfFClyI4n4h/HaBORrNBrG9O3J8YP7sLK2pknrdvToN4gW7d/k4b073Ll5jdYdO1PDv06J43Jzc9m/excTxo4iqEYVerzZlpvXr/HJxMkcijorSiBedXw7fixtq5fn2/FjS8jaVCvHzHElQ5BmjhtDa18fZhSTu7jJ6F24+9t7yLASBGPKvMVERMeVIBBGvJzQ6XSkpJQhxOxfhLmFBZWqVKXr2+8glUpxcHLGycWVmePHEvfgHvOmTmTGp6P/7Wk+Nw7s2c3vGzfw3ddfUr9h4397OqhUarr2nsOB8CvY2lryRtsAhgxoxRttA4m+k8CNW3H06NqI2n4lS1Tm5OSzY9dpQsaEUrnGh7zR6Utu3Y7nyyl9OH18Ls2a/rWqei87Rk7YhnvNGYycsK2krPY8Rk7cU1J34p5SVZVkrk9yHEYMCChRgjX02zZ/a1WlG/eycLQ3Z/j08zSq48LXoTe4H5dDbGI+M5ZH0zDAiZBvruBob8a2iET2RqbiZGfKyJk3aOjvwIwf73H/UT4xCUpmromhoZ8Do+ZE42hnyo4oBdtPpuNoY8roRfdpUMOOmRvjiU0tICZZxXebEgiubsOYZQ9xtJFy8HIWO89k4GAjZezKeIJ9rZn1RzLxaWoepKiZvT2V4CpWjP0pCUdrEw5dy2PnxVwcrU34aIOc4MqWfLc7jdhUNTGpambvTie4siUfbZDjaG3Cvis57LyYg6O1lLHrkwmubMV3O9OISVMTk6ph9h4FwZUs+ejnFOxtTNl+PJXtx1NxtDVl1Lw7NPCzZ8Wvt0SvpVqtJTNLiYvzP9tE7q/A0tKc6r5e9OjWEBMTE1xdbHF1sWXExz9x70EKH0/8hbHjVv/b03xuRB3Yy6E/fmf9/Nn4vwQ29L+IV6pPhBhSk5PYGLoIExMTeg8ZRos3OhJ7/x7L58zk2P699A8Zw8CRH2Frr6//rNVq2btzD2t/XEZU5HEC6wXRtkNH1m/aRi1//9cuUe9pj0N6ipxNq/Xu8k2rVzBi4tSivwF+X72CEZ9Pw8VNRlqKnN8fy1ctJ6RQDjB13mJGTJxq0HNhSGbEy4f09Gzs7KwxN3/5u/3ev3sHV1e3otfuXt5MX7SMYwf28sWCUC6djmLSsIGkp6bgXEzvZcVXkyfi4upKy7btGTpiJFXcnf+1uSQkpjN3wS7MzKSMGvYG7doEcOduIl/P+oN9hy7z6diujB7xFnZ2+h43Wq2WHbvOsOzHfZw8dYvgoKp07BDEzi3T8KtV/rWzofKUbGRudiVeh605BUDYmlNM/6xd0d8AYWvPMX18S2RuNshTcglbq99RDvvpEtPHNy3ySIR+9wZfftLAYA+Hv6OvgxEvHilpubg4Wf/f3dz/Cdy5l4hMZl/0ukJ5V5YtHEj4kRssnd+fI8dvMWzsOtLSsnFxEQlreomw/OtpuHl5E9SiNV0GDOHYru3/9pT+c3hlSYQgCNy4eJ7tP69j/5ZNdH63L1tOXsTTpxwajYZeLYIZMOpjDlyOxt5Rv8taUFDAryuXsS5sEa4uLgwbNZYfN/yKvb39n3zaqwFD4Umzxn/E5jUreGfwMCbNXQiAs5uMXkOGsWn1CnoNGVZ0zGNZcc+Ci5uM3kOG6cOThg4vRQ6MZOHVRnKyAnf3f6eR36NHj9iwYQM3b96kf78OtGnT9JmLTzs7ex7GPEBbLPyvdaeutO7UFYDAho1p1q4DrX19OJOYWaawpn8aWZmZxD2M4cjZi5iZ/TsEThAEzpy7y+p1h9m09RQD+7bk+rl5eHs5o1QWUK/p53z2SVeWLhyBvb1+QatSqQldvpdFobvx8HBiTEhnNv8yETu712PBK0/JQuZW8nkwctzvhK2OJGRIM0Ln9QZA5mZHyOBGhK05RcjgRkVhLEWyQfWLQppkbjaEDKqvT5R+qqoS/DtkoVYVe67fyWT59CAORSUzLaQWsYn6cKapw6sReSGdsGkBnL2WQfc2nkXhTKFTahF+Op0pH1QmLkmJoFLTvG5FIi9nsHRCNc7dzKZrYycehzMtGVuZiIuZTO7rw8NYfThTcz87Tt7MYfGICpy7m0f7OvZF4UyLPvDh8NUcPu/pTlyCPpypeQ1XTkbnsWigB+cfKGlXW3+9HqZqWNhPxuGbeUzs5Ey8QgMCNKtmxck7+SzsJ+N8jIo3A2wL9dUs6u+u1+/iQlxhOFOzak6cvKtkYV83ruZq6NZc3zwuJknJ0nG+RJzP4MN364tey+SUXNwNhK/9E4iNTWHjr0eIvpPAwP7tadni2ZugdraW3LufjE6nKwpDebtbfd7upj+/Vs1r0LxJTVzLDUaV8ctLvbmUmZ5GRloKq4+deW2rXL4KeKVIhCAIRF+/yuHdO9i7+Vd0Oh1vvdOHLacu4eHpVaQnlUrJy8lhxGdTsDTXx+tFX7/GxGEDcXaTMWfleto1a/zK7pYZIgvfjh9bRAomz11UpLd5jd6LsHnNCoZPnFJ03OS5ixgxcWqJcSbPXVTC0/AYU+YtJmTSF0bC8BoiLl6O+78QyhQZGck777xDt27dCAwM5KOPpwPwXp9udOrUhsBAv1LHvN3nPdasCOOzsaP4YMo3RZsDjyGRSGjbpTu/r17BnRvXqF1P/MH/b+PCubP4B9b9xwmEIAhcvhzD1p1n2PhbJFKpCf36NOfWhR+QyRyK9ExMTMjPL2DqxJ5IpPpcm8tXHtB/6ELKl3Pltw2f0SDYcJWYVwFyeWaJ8wUY+ckGwlYdIWRoK0J/6KfXS8kibLU+pyhsdSTTP+9Y5JEIndOd6Z+1K5ETETqnO9PHNS2VExE6+y2mj2tYuqrSMxB9P4NK5ey4E5OJj4ctikwlOp0OZ0dL4pNy8K3owIO4bOztzNGp8snKUVPJx447D7Pw8bBGkVmAoNPg5GDOo6Q8qlaw58GjHOxtzLh8PY21Wx8wb0IdFq67g9REwt7jiVhbQPN6LizceB//anYs/vk+jfydMJVqOX4xgzmfVGfxLw+RSmHfiVSkOh3tGjiz+Pd4/KvYsGRTPA18rRGAM7dymP1hBZZsS8TEBA6fTadAC2/UdWDJrmT8ylsRtiuZptWtKdAInLmTx6z+Xizdm4LUBE5cyyRHJfCGvw2hB9Lx87Yk7GA6TataoNIInLuvZGYvN8LCM5BKJETeySO/QKC9nw1h4Rn4+ViwLEJBY19rNDo4ez+fb3vLCD2oQCqBg5ezEYD2ftaEHc7Ez9ucFUcSaBGotytnbmRTxduKtXsSqVwnk9rVDHsK4x5l4u72zzeRO3L0Ku/2/563uzchwL8iI8cuxczMlD69W9CpYwMC/CuVOmZgv1YsX3WQj8avYea0LtjbW5V4XyKR8E6PxqxZf5gbN+MJrFN6Qll46gAAIABJREFUjJcFty6ep3qdekYC8S/jlUqsdvf2QWpqSos3O9GhZy/86gWLEoEWFdxYs/8oPhUqsWnVMn5a/AOjp31N936DRI8RS3DWlDFRWilSZrKsSbiGkmcXThrH1rUr6THoA8bP/gEARUoKnWtXLtLZff1+ETmY89nHbFm7kp6DPmDC9wueOfazIJaaLFaCrSzjv6hEabGk+7ImoxuCWAk6se9UrHSoWCKvmBksPseYO7fZtHIZ9k5O1KjpRyXf6vhUqISJVIogCFS3NcHExAQHB4fnIshZWVk0bNiQ8ePHM3To0CK5WCO3alYnDA8kVrb2qdKygiDwx9aT7N1/np17zrJ+9Sd0aF9P/56pI4cPX2DX7pOsXLWLmPubcHa2Jzq/aYkx0lNS+OGrKRzavYOQz6fx9sChmJqW3As5sG0z/2PvvAOavN63/wkrQCCEPUTFhSgOEPeou9W6W7Wuuveoo26tq3Vv66h7z7pHtS5wIQ4E90IEZIYNCSPz/SOIYhK/tba2/b1cf8H93DnPeUZOzr2ue96EMSzfeQD/uvUB4++pMQjN9P0rxt4BQyQN8B7qV2Dq1KkolUoWL15cKBMIBH97YbVnCSeEQnPat61Dj25NCKhR4c278k6BpLnVFzy6t5kSJUuwctWvLFu+n8ULh9OnT2sEGKFDNW1iUJxmhB7/fffIIJRnDcuNFUsrM/REw8dsMWgsuJYbV6iT9GxuobEwfNyewojD2sUd//c51Ya7wGsUhgu0jdGwpkgzcJAISUrJxcXREnmOCnW+HJGVGdK0fFwdLUnLVGBrbYZakUN2jlpHqZqaj7ODBfJcNRp5TgGlqhIXBx1Fqq21KZocJbI8Nfa25kjTFThLzJHnadAqVDqK1EwVLhJz0rNV2FiZgFqrR6kqz9OgVasLKFgL9GUqRCa69UOWp8bexgxpphJnsRnybAUIBIiEApKz1LjYmZEuU2NtpkUgEBRQsJoWUrDmqE10FK9Ck7f0VdjaWwKCN+MXzCe3oBj/3flLSjuAQEC2XEVSaj4rd72khKsl3n41qFjOhco+LqSm5eDsZEO6shQODmLEYuuia6iR4vr0LDW1G3zHzGm96NXzraJpY8QAZh/Wx+PdtVir1RJ+6lfOnDnDqVOn2Lt3L82b68bUqgK5cOEOJ3+7zpatp4mNPoBYLNKjLk5KSmfq9M38duYGc37oQf++LTB9+3fJwo/du48w7vsfOX5sM3Xq+APwWOaBIRj7fTVEiZ2U92G/0cYKsVNzc9n80wyEllb0Gj+lUN7ey6W4sPoT4z9lRPx67Q6lvSv+oQ3SlAHf8vDOLZITE6heuy4zf95AidJe7/3MP2VEZKakYO+sn8OdmizF/q3c7vSUZDpVfUMze/JBZOHnlk4aa9BYAMORi2Ij4r9jRCQnJrB58Vwu/XaCr/sNBiAu8gUvnz8hLjoKrVaLiYkJpgIBKpUKCwsLqlSpgq+vLyKRiLS0NLKysjA1NcXc3BwLCwssLCwIDw/H39+ftWvXFjnnhxoRKmU+d+9GEHz9IUKhOd4VSlKhQgk8XISF39W4uFSGjFzDq9gUhg5qRauWNSjzNt2n+ZuUqvYdJtO9Wwu6d2+hZ0S8xt07t/lx3EjqNmnGqOlz9I5fu3CWqYP70qLDV7T+qivV69b/II/V32VEaLVaFi1axOrVqzl37hw+Pj6Fxz6FEfH47loqVixteA19x4jo1Hkmd8Kek5CQxmefVWfLpimUKlVAYWnMcPyHjAhpYpJBcgBpfEyR9CRpchauZd8U3ye9WFZ4fPiYbXppS4BRFqa/24gIufWKacvusH9lY0bOvkGLBu4I1ArOBktZOaU6PSbc5MdRvhy7GI9IqKVpHSdmrnnK7gX+jFn0iGa1HRGi4rfgVJaPrsC3sx8xa2AZjl9JQWIloGFVO2Zvi2HnNG/GrXlJU387hCZaTt/KYOkQL/osimBGL09O3kjHRmhCk2pi5uyOZcf48ozbGE3T6mJM0HIhPIslA0rRd1kkP/QowW8haWi00LammDkHEtn+XWnGb4ujRRURKrWWoIdyFn/rRt+1scz42oVLD2Vk52poU8OWHw9L2TbMk/G7Emldw448pYaghzIW9/ag7+oYZnRx41pEHhlyFW1q2/Pjnji2f1+W7zfF0KquAwqllsDwTJYO9aL3wufM7F2Si0/zkaYpiE/O40JICqO6e/HbVSk2EnsSErNJSs7GUmhGbp4Ka2shWi0IheZU8fXCt3JprKwsSE/LICsrp2ANNcXCwgwLCzPuhEdRv15lli8ZWvThfaARoVKpCA8P5/r161haWuLt7U2FChXIFrsVflcTYl8xfeRg5KlSBg8eTKtWrfDy8nrrvQsq/LPVlxMZNLANX3/V2Gj/kzu37zNk5BrafVmbGdO6vTlgoSv2P3nyPP36j6drl7Z069YOh+odDK6hn9qI0Gq1rFs8j7P7dvHjroN4lHnjQC02Ij49/lPpTGV9Kv3hzen8zTsBEGC4x8G/Bcsnj+PY9s107DOAcQWRBYBlk8ZydPtmOvQZwNgFywCwd3KmU9+BhZGItw2PCYtWMGDCVD1jATAoK8a/H/m5uexYuZjD2zbTrkdv9l8PRyzRbbZthfp0rr5iM7RaLVKplAcPHvDw4UPy8vLw9vbGzs4OjUaDQqFAqVSiUCgICAigd+/ef2puubn5LFu+n0uXwgm58ZCSJZ2pX68KarWanbvO8ex5LDJZDhXKe1CurBtXrj1i+ODWHN4/xWCebWamDKHQHEtLIW3b1OfkqWC6d29h9Pw+1fxYtmM/XRrW5Ktv++s5CBo0/5x9QSH8dnAfCyePIzM9jfHzltC8XUfDA34iHDlyhK1btxISEkKJEiU++fl9KnrCH1wPjxycDYBWYPGvXkOHj/qZdetPMmxwa9auGvZG/t061m04zbCBzVi7vC8ALs5ihg1oUhiJeNvAWLu0a5F0pbehZ0B8Anh52vB5Qw9sRea0aOBOzSpOqPNzUGtALDKnZX0XvDxFNKrpBBoFZTysaFHPGVuRGc1qOxJQ2Q5tXh55+RpsRaY0r2WPl7sljfwkmKpVeLlZ0jxAgo2VKU397fCvYINApSZPocXWyoTm/nZ4uQpp6GuLKeDlKqS5nx02ViY0rS6mRjkRWo0GjQZsrUxp5ifGy8WC+hVFaAVQ2kVI86q22Fia0qSKDVVLWaD7RQZbS1OaV7GhtLMF/l6WqDRQ2smcZr42OoOlsgjfkkI0BT/3tpamNK9qS2lnC2RqASoNeLlY0MxPjI2lKU2rialSxprX2wNba1Oa+0twkZjzLCqNs9eT6dWmBOP6lGVSv3KU8bSmUauWgIBbYa/o060mS9dcYuCwfjg6iklKSufBwygePopGoVDhU8EVsa21bg1V6uiOFQoVtWr50ruX8XXqfZDL5SxdupQrV65w48YNSpUqRYMGDVAoFGzfvp1nz54hz8mhVNnylCpTjlvXLtN7+Hcs/mGywTTIzEwZlpYWCIUWtG1Tj5OnQnRGhBHU8C/HwT2TqVFvLP37tMDT06nI8bZtW3Dr5gn27DnG8BHTScsaz9RFK2j2Zbs/db1/FS4cPcSVE0dZfOQ0Di6u/+hcivEfi0SEpuZ+sAf9Q7zNnzoS8W5k4dj9F9g7O5OenEyHquUK5UfuRxRGJMxNTEhPTtaLXHxo/4HiSMS/PxLxOPwOg1s3ZfWR3/CvV7RzszEj4q/AH4lEHDhwkfkLdzF7Zn/q16uEk5Odnn5maiIRLxJ49jyOqlW8qOKr331bq9WyZds5JkzdzuRJPZk4oSdxcclUrd6H308vxa7KQINzed2Zev2iuTy5f5dlO/a/d6N7O/gKs78bStmKlegzahzVatV5r/7fEYnQarUEBAQwc+ZMOnTooKf/KSIR2rzjxvnkjXV3NjHQf+RfEomQSjNw9fym8P+kmB24uEh08lJvDOSkyNVvDAatwmAB9Yc3j/t7IxGb996nV/uyrNj2iD5flSf0QSpaZR7+le3ZcSyK0b0qsOtkDAG+9miV+dx+lEHPNiVYtSeK3m1LcOdJFqbKfKqWs2HnmURGdfFkz+9J1PCxhXwVoc9kdG/uzOojCfRq6ULYcxmmWg1VvazZfTGFEe1d2RuYSo3yItBquRMhp3tjR9acSKJnMyfCX8hBq6V6GWt2B6Uyoo0r+y6n4lfSAgQCwiJz6NbQgbWnk+nR2IF7EdlotODnZcWeqxkM/9yRfcEZ+JfWef/DovLoVs+OtefS6NHAjkcJSpRq8CtjxZ4r6Qz/wol919IJqCRGC4S9yKHbZ46sOZVEzyaOPEhQoFaDf3kRu84nM7KjG/P2xLLqcALrfqiKQqkpcn8eZ+ny/Wv6lWTL7pt8P6IxB86k07NHsz/+DhjrnfAHIhE7d+5k1apVzJgxgwYNGuDgoF9zERqfQdSL50RFPKNSVT/KV6qMt6joEqHRaNi0aRMTJ45j1oy+jBndmaioRAJqD+H870vw9yurN+7b1zR95i5eRCawZ8d43ZpYEIl4F9t+e8qMUUOpVN2P/t99T7Wauj5AnzISodFo6NO0Ht9O+oGApvpRneJIxKdHcUXKPwh7J2c69NHlonfsM6DQMLB3dqZjgbxDnwFFUppeHy/G/31U8qvB6B8X8PPMqf/0VPRw7/4LOrRvSPv2DQ0aEAB2diICapSn+zeNDRoQAD/M2s2CJYcYPKg9oaHPAChRwpktmybzZdsJXDn/+3vn0XvkWJITExjTszNZGfr576/hX7cB+y7dxL9uA34Y1p8eTetxbPd2lIoP7N78Ebh+/TqZmZm0a/fPevL+L8HFRcKwIW0BGDa4dWFKk4uLhGGDW+vkA5vpGQx6BsS/EBeCE8iWKzl7NZ6XsdlcvpVEyL00omLlnAuWkp2j4kKIlNCH6dyPyOLizVSy5SrOX0/mZXwuV0LTCHsmIyohjwu30snOUXMxNJ07T7J5FJ1DYFgmslw1F0IziErM4+r9LO6+kBOVlM+FsExkuRoC72ZyJ0LOg5c5BN7NQpar4UJ4JlFJ+Vx9mE3IExlRUgUXw7OQ5akJvJdFeFQuYZE5BD2QIctTc+F+NtHSfG5H5nLtaQ7RyQouPJAhy9MQ9FDOo1f5hEXlEfRIjixfw8WHMqJTlIRH53LtqVynfz8bWZ6aoIcyHr3KI+xFDoH3dOe8GJ5FlFRB+HM5Vx9kEZWUx4WwDGS5GqIS8+nYzI2FW17o3Z/LwZEEXXtBZFQqZy4+JVuWT9Dlu5/s+d67d49OnTrRrl07gwYEgK2dHVVr1KRd1x6Ur2S438qkSZNYvnw5gwa0JfSObg318nJj/bpxfPHlRC4Ghr13HpMnfE1EZAJdey4kK8uIsQTU+awpR4LvUDWgFuP796Rr47oc27MTpZFGeX8HwoKvolarqNHEgKFXjH8ExZGIt/BXRSISEhP0Nv4A8vQ0g/I/WhMBukiEIRRHIv7vRSIA4qNe8l2Xdhy+/bCI/J+ORIwYuQwfn1KMGtn5DxdWv4v4+FSqBIzixaMNxEmVfN1lOk8f7yk8fvXqPTp2ns3g7yfRZ8SYIpGD/LeifUqFgiXTJnL1/O8s3b4Xn2r6nrS331ONRkPwhXPsXLuC2JeRrD5wnDLeRTsq/x2RiNTUVCpWrMj169epUKGCnn5xJOINpFIpLi76aZjSuAOGax/+YE0EAFojhuO/LBKhzs9BmpqHq5MVqRn5iEXmqPNkhQXUSal5uDgIkeeqUefnIrI2JTlNgYujkNRMBWKRGRpZDtm5ahzE5kjTFDjb6wqoNTkKXcF1hhIX+zcF19p8FbI8/QJq1NoiBctp2SpsrUzQqrV6Bc6ybN391RVEq3CxK9A306AriNZgb2OKNFOFs9gUWY4KKCi4zlbjIjYjTaZGbGtOkQLqAv0cgdmbguu35mNnLwQBegXg99JMGDDzHmEHGhW5Px7VPwcgW5aPg701SdJsXMrWNxyh/BsiEYMGDaJmzZoMGTLEsC6G1+K3IxHR0dEEBAQQGRnJ8yd76TtgIffD3zSLCwoKp2v32cyY1osRwzsYLRbPy1MwZvwmAi/d59ChbVSpot9h/u3CarVazZWzp9m2ejnxr16x4fApSpUrX0T/74hEpCcn06NRAEuPn8O1ZCk9/eJIxKfHfyoSkZwQ/09P4X9i2aSxfONXkVVTxxeRr5o6nk5Vy7N88ji9zxiLLBgyOIrx/xeyMzMK6yD+TRCLrZFKjXv+/whsbKxQqdSYmAiQyXL1jjdsWI39gdc5cWAvo3oYjzSYW1gwZfEKRk6fxZBOXzKqWydGftORmaOGIM/WN2RMTExo2PIL1h85zYCxExndvRM3Ll38qGv5I3B0dGTs2LHMnTv3bz+XMXzsM/sUGD58OK6urgwfPlxf7vkNw0f9rPcZYx3X/00Rhzv3pdT8cj/SlBxa9z7Osg1hLNsQRo/vLiBNzaVW+8NcDI5j2PQrDJt+hXPBCbQddIGklFx6jb/Cyu2PWbP3Bd9OvklSah7tR1zjQoiUCYvvMXfjcy7cSKHj6NtIU/Po98NdVu+JYuvJePr99BhpWj6dJt3nYmg6k1dHsHR/LBfDMvh6xmOk6QoGLHrG2qMJbD0npf/SCKTpCjrPfkrg3SymbolhwYFYLt7NovNPz5BmKBiw/AVrTyWx/nQiA1a+RJqhoMu85wTey+KH3XFM2x1P4P1suiyKRJqpZNDaaDZdSGXduVQGrn+FNFNJl2XRBD2UseREMtP3JxH4UE7X5TE6/Y1xbA9KZd3ZFAauK9Bf8pKghzKWHYln2vZYLt7Losu850gzFAxc9ZItvyex9ngi/Rc/R5qu4OuZjwkMz2TFzpdkypR692fFL5dZvu4y3wzYSZI0my+6bOLS5Xuf7H0Qi8VIpdKPGsPW1haFQoGJiYnBNbRJEz+CL69k89bTfNPjR7KyDBu4lpYW/LJ6ONMnd6Vps29o36E/7dr3Y/DgScjl+gaUqakpTVq3ZdupC/Qe8R3Du3bg5pVLf/o6VCoVXRrVIiToIrNHD2P26GFcD7zA9EG9SU9OZly3Tuxdt4ozB/diK5awZ9lCxrRpzt1rl1kz5XvWTPme8Kt//vzF+PP4T0Ui9l6+ibdvVYPHjVmyxqILKVKp3uZdoVaTnpKst3lXaTRkpCQjeUduZmJSRD89JZku1d9wp7+uZTBW+/AapkY84oY85R9CB/s+KI148415+Y3dR2NyQ+/Vh0YWVBojNSdKY5GID4toGIKx+2tu+mFykYVhb6+xSISlAc83QPTjh8wdNYRtgdeLyK0M6FsZ6TlgNEKhuWpYbszrZmKBVqtl+YpfWbBoL4cOzKZRo2qGdcEoKwiaN57gdp1m0bypH/ceROPjU4qJ478pqmvWnPz8fCZMmMCJEydYu3YtrVu35nG24bGjI1/w/NEDNBoN8yaMpl23XoydNfe9EbNzRw8xY8RAToU/fS8JgbFIhLF3xtB9j42NpXp1X44enkfDhtWKeAYFpo3+9kjEk4fbqVhR34MHgEk5g+I0VUk9WVyOktRkqV7vGKVabZANDgyzxJmZmBQZJzVZSjPvN+e78iIeR2cXUpOlNCr3xhOalJRUNFKhumD4mgxFw1RGDClj770BmljdOJkGxZp8wxu1XFk2l24m0qKBBzfvJlOmpK6AO/JFMjWrOnDhehKNajoTHaf7vIdEzbXwdJrVduTWw0zKeFihzs4hKjGPmj62BIZm0KCaHTFJeWhk+ZR0siD4cTZNq4m5/VyOl6sQrTyPqGQlAWWtCHooo35FETEpSgRaDZ6O5lx/mkMTXxGhkbmUdrYAtEQX6supX9GamFQlAhOTAn05TXxt3uibCIhOVhBQzpqgBzLq+4iIlioQmEBJRwudfhUbQl/k4OWma/4YJVVQs7w1QfezqV/JhldpSrQIKOlkwfXHMppUs+V2RA5lSupoVqOS8qjpbUNgeCYNqoiJU5iAFkq6WnLtbgbNajlw61EW5cs5oUVAVJycWlXsuRCSTKMAR86EZPPTmruEHGrLlVtJhfffu1JJQEBkdAZ1arhz7nI0TVo2w8LQ2m1qpHuzuWEHzzNlK4Nyb+FFNBoNS5b9ytLlv3L04Bzq1atsdK18pmipJ8t/p+ZySKcvadqmPXdvBFOlRk2+HT66yHETgYD8vDzmTx7H9cALzFy+mvrNWhpdzyKfPyPiySPUKhU/fj+Kb/oPZuTUmcZ/p9Vqzhw+wOxRQzj76GWh08vQ+O/O/TWS5HLuXA6kap36JMW+AsClhCe3rgdTuU59Xty9g3NJXUrs09s32DZ7Cp2HjaZ1r75I42J1+p6edPEpXRyJ+MT4T0UiylXSb0D1Z7Bk0lg6VC3Hsklji8hXTvmeLtW9WTnl+yLy1VPH083fh9XvRBfe1bd3cqZd7/5A0VoGY7UPxSjG/4JnmXKkJiXw6sXzf3QeSqWKBw9e0vGr6ezbH8iN4LXvNyD+IKZP6caGzafZvfcCfXt/blBHKBSyatUq1q1bx8iRI+ncuTNBp0/yMCwUWVZWEd2SZcrSrE17Auo3xNZOQtDpk/y6dSO5OcZzfUtX8MbB2QWJo5NRnb8Knp6ezJ87hCHDFlPJtxfbtv3G7dtPiIz8NFFWb299g+DP4KfvR9G0gic/fT+qiHz++NG09CnN/PGj/5B87vejaOZdkrkF4zg6u9C1v47GuNuAoYXGhaOzC90G6Gg0hw0bZjDV6d+OXUdfUM/fhUFTriIRCzl8JorDZ6KwE5szZMYt6vo5Mnv1AyJj5UTGypm7MYI6VSUM++kBElszjl5M4mRwKhIbM0YsfU5tXzFzt0fzMiGPGGk+8/fHUdvbhpFro5CIzDgeks7Zu9nYWZvy3ZY4apW3Zv4RKVFSBa9SlSw4mkyt8tZ8tzUeO5EpJ25ncfaeDDuRKd9tjdfpH00mSqogJlnBgiNSnf6WOOysTTlxO5PfQrN0+ptiqVXBmvmHkohJVhAlVbDgcBK1Kljz3aZY7ESmnA7N5PjNTCQiU0ZteEUtbxHzf03U6Sfls+DXeGpVFDHql2gkIlPO38nkWHAaEpEZI1dFUtvHlrm7Y4lJyCMyLpe5m19Sp4odw+c/xt7WjNNXkzh6Ph6JrTlDZ4dRt7oDc9Y9wdREwKsEOWN+uqm7/1OvIRELOXTqOQdPPsPezpL+485Sv6YHC5a/vwbrY6BUKrl/P5J2Hadz5OhVbl1fozMgPhJDJ01nz/rVnD9xlPbdvjWoI7S0ZNaKtUxduIyZo4cxvl9Pgs6c4kFYKLJ3orWly5WneZv2+Netj9hOwrnjRzi0Ywt5ufqRDtClYZYqWx43z5LY2v25xqXS2FdUCqjFzqULSIh+SUL0S3YtW0jZqtXZMPV7rMUSbv5+ipu/n8Kzgg9lKlfl9O5t9K/nx+97d3Ln0kU2zpr2p85djI/Df8qI+CtoBtOTkzmybRMAR7dvJj05uVB+Yocul/DEji2kpxTIU5I5uXMrACd3biWjQJ6RYlh/9PylHLkfUUjL+hpjFyzj2P0XRWhci1GM/wUrkYgvu/fmzIG9n/zcT57E0KvPQqoHDEXs2Imvusygkk9prl5eRZky7h81dlpaNidP3SA5ORMPd11RYUzM+0P7rVq14sGDB/j5+bF30y/M+G4o7etU4+Xzp3q69o5OHA0JZ8rC5Vz6/TdaV6vAytnTSSrwWr2NqGdPqfSRnU+T4uO4cu4ML54+Rm0kOhcYGMikSZO4ey+CmgE+ZGbK6DdgPl27zaB5yzF/+twfgr9iDU2WSjmweT0ABzavJzVZ99xSk6Uc3LoBgINbN5BWIE97j/zAFp38wJYNheNMW/ozV17EM2P56iLnnbF8NUlJSXp9TYpRjPfB2sqMJnXdePzi06fyPX/0kO/796JdneoEuNvRudsc/KqX53Lg8jc9V/4k0lNTCDp9ksz0NJxc3ECrJSE25r2fadyqDcdv3KOMd0V2rV/D9BGDaFe7KjGRL/R0nV3dOHHrPhPnLuLc8SN8UbU8P/80A6mBtPKo50+pVN3/o9aX1MQEEmOiSEmIQ2Mk6hEfGcFvW34hKy2NclWqk5+Xx/HNv3B4/Wqunjr2p89djD+P/1Q6062UnA9O5zGUbrNk0liObNuk15th8cQxnNixhXa9+zN6/tJC+YrJ4zi5cyttv+3HyHlLCuVrpk0wqG+sqNbY3IvTmYrTmYylM1mYmvLrxrW8ehHBuLcM00+RzjR0xEpUKg1DB7ehcqVSWNt8YH75e9KZTpy8Qefuc6lTuyJtW9fGq0wJJkzewO2QtTg7v+XNMtKc6XU606GdW1k55wc6dO9Fi3adqFpAO/guol48Z++GtZw6sJc+o8bRe+QYzMzM0Gi17Fi9Aml8HOPnLTb42dd4NzwffPEcx/bs4O7NEHJkMipWqUZcTDTxMVG6dKp585gyZQoqlYqffvqJjRs3MmzYMCR2qdjaWJOQmMrCRbuJfnkQsVj0SdKZtKpA4wofkM40bNhQDmxeT9cBQ5i+9E2NwpyxIzm4dQOd+w1mypKVhfL540cblC+cMJoDWzbQtf9gpr01jrHvSSVbIwWr/5F0pqAbibRsaDid6XywLp0pJv5NOtPVsDSa13EymM50sSCd6dVb6UzXHmXTrLrhdKbAgnSjV2+lMwU/zaGpkXSmwIJ0pldvpTMFP5HTtIrhdKbA+7rxY5LfpDMFP5HTtKrhdKbA+9nU97EhNv1NOlPwYxlNjaQzXQzTpTPFK9+kM10Nz6B5bcPpTOev69KZEjLN2XzgGQqlmtaNSxbe/3fTmc5eiqZJy6YIhQbW0T+ZzjRlaH/MLSzo2m8Q5X0qU01y3aD+n0lnOnfsMFOH9KVKjVo0ad0WZzc3Vv80i31B15E4OBbqG913FKxnezf9wpoFP9KpZ29atv8KX/8Ag/oRz56wd/1aTh/az4CxE+k5bBRmZmaoNRo2L1uILCvPw0prAAAgAElEQVSL0bPm6o1vaO6vce3875zat5vwm9eRZ2dRzrcaCdEvSU1KRKvR0OybXvSbNZ9noTe5de40IadPUKNpC8pVqow0NhYrGxEnt25izq6DlKxQoTid6R/A/5dGBPw9NRFvyw2h2IgoNiL+jBExc1AfajVtTtseb3jv/24jYuPm35j14y6CLy2ndOkCj5kx9h5jeI8RkZ+vpESZb7kdvBIvL1cwsWDi5A0kJKSxc/vkN7r/w4gAeHQ3jPPHj/Dr9s3MXbeZhi2+KKKbIk1i/eJ5lCxbDom9I4e2b0Yuy2be+m2UqejDoW2buB96i1k/r3/v5ZiamLBz7SpENrZ81bsfB7dtYt7471iwcQdfdOpc6IXTaDQc27ODo1t+YefOnfTr148bN27Qvn17HBwcyM+LJT9fycNHL+nf70smTugJfJqaiL/KiPi7aiJe4/+iEXEzNIZ+Ey9zbmdreo4J4vNGumaDN+4k8POMmrQaEMTiiX4cOK3zJn/V1JHJK57w25ra9JkeTot6zpiplJwOSWPrNB/aTbjH/KHlOBiUjMRcS1M/O6Zte8XxWRUZsPwFzf3ssBZoOH47k03DStFx0Uvmdnfj8I1MnG1NaegjYvq+RI5O8GLg+liaV7FBJBRwPDSbTUM86bg4irnd3Dh8MxM7kRnNqtjo9CeWYeC6GJpXtcXUzISz4VlsGlGKjvMjmdvTg6M3M9BooFMdCdP3xHN0SlkGronhy5p25Cu1XLyXxaZRXnT4KYJ535Yg8KGMtGwVX9V3YNqOWI79UIGBK1/SsZEj2bkaLoRlsGVCBdpPe8S8gaW5+jwXaZqCr5u7MuXn55xaVYO+Mx/QsaUn8lw1569L2T6/Jl8OucbC76ty9kYGx87F0PVLL367FMu57a3oOTaINp97o9FoORMUxf51bWja5VfWLu9Dk0b6zER/xojYvWEtG5Yu4EDgdVw9dM/aW2iEwOFPGBG5OTm0rFyGQ8F3cPUogYlAwILJ45BnZ/Pjmo2F+v/LiAB4EBbKuWOH+XX7ZhZv2UXdxkUpVKUJ8WxYupBS5cojlkj4ddsmFHl5zNuwjVLlKrB3w1oinz4u4ggwZkTsXL0CB2dn2nzTkwOb1rFs+iQmrFrPrqULGDxrLpePH0ar1WJlY0vgkYOM+XkjS4f2JS9HTony3sgy0vGpUZO7165gbWOLo5sbJStUpFHbjszu263YiPjE+D9vRCQlJhqsQVAb0DdK8Wpkk2vMWCg2Iv4ZIyJfqUar0aDMz8NSZIM8KwNrWzvy8/NAC+ZCITnZWYjEduTJZVhYWqHVat/Sz8RGbIcyX0e5qNPPRCSWoMqVY2Gp86Qp8vOwEtkgz8zAzl6CMj+vQN+SnKxMRHYSzLUqLISWenP8UCMClYoOVcqxN+QuEsc33qW/04jYsvkIs3/axfnTC6hQ4a2uyn+hEQG6ouoBfT+nY4f6YGLBvv2BHD56hQN7Z7zR/QNGxGtcu3CWqcMG8O3w0XQbOBRrkQiASQO/RaFQYGfvwP3QW6hVKmo1asyzB/fZdPIcT+/fZehXbZi29GdatO9k9HJyZTIalXHF0dWNYZN/oFWnLuxev5otKxaz7dQFKvvVeHOJGg0jO7Tkzp07ODo6otFomDx5MlZWVliYvUQoNEcksqJly5qYFTzLf6sR8TReiPM7NQhxOYY5W43RLBvDh1Ih/5eNCFW+HGlqLq5O1qSl52Nro3vuGakZOEgs31C25ug2iUJykKYpcHUUkpapwNbaFE12Dlk5KhzEFkjT8nG2t0Ceq0aTmYPIyozkTCUuEotCClZNdg7Z+eDwFkWqPF8DKrWO4jVLjYudGWkyFbaWJqDVGNTXAjZWZnr6AjMTsnI1BfpKnMVm5BToF6F4lakQi0wBAdm5GhxszZBmKnAWmyNXakBgUkDZ+mb+Yok5AhMTHaWt2BxphgJnO3NyhRYITEwQWZkiTVfg6iAkLUuBxFEXwczOUeFgJyy8n2m5Qiq3OsKLi11QKNW6+5+Rj6O7C1otZMsUONhbkSSV41LGz3BKzgcaEXN+iWbj8kVsO3mekl5lCuV/pREBMPSrNvQcNopGLVthIhBwbO9OrgeeZ8GG7YU6f8SIeI3A0yeZOXoYvUeMpvvAYVhaWQEwpvc3mJiaYmMr5t6tG5iYmFC9Tj2iI56z7vApHoTe4rvuX/HDirU0LehobWj8JGkSrSqXwcHJmeHTZ9O0TQd2rVnBnvWrmb5xO1XrNiQ3R/f9sRBaMqb95yRFR2FlY4uJqQmt+w4GATg7OaHIz8PBxY2K/gGYmplhaS2iY1m3YiPiE+OvIZb/RDARCIxuWg15uRZPHMPhbZv4qu9AJixaoTfWuxAa4/D/wDw/Y/of8mWGD9uIG7sv+R+4+c8x0jhGrjAsN7qhV+nLPzRSYEzfmPzu+ZPEPXlA5cafc3bdYnrMX8uxGUPxadAMlVJBxM2rdJgwh9XfdeHzYRN4GhyEWqkoor915lC86zQC4PmNq3SYOIdVo7rQdtQk7l88A0DVpl9was0i+i5cx77lU/GsqCuOexJyha5TfmLx8K/pO2cJTp76LDh2Briz34fYJ49xcvfAWiIp8swM/dDlGXmmD9E3ZgB8rfQ3TXl5Cqb+sJWzpxdToWKZogeN9Rcw1jNAY4SPX5kOgJVQQH5Ohu5/gRnxr2LwcBGBIvUtZcObw0q2+sZFpY6tMTPfwYalC0iVJjJp3hJuX7tM8MXz/Hb3GdYiEVqtlm2rlrL6p5l07jcIhVpNmcpVWLR9Hz9+N5SkhHi6DBxqcHMrkUio4FuVbgOGsHn5YhZPHY+NrZg2XXsidnTSC9XP37qfnyaM5tnD+2w5/jtuJTwB9DrOfko8lDc0ug4lJSXqRQR++n4UBzav5+t+g5i8+E0akrH1w1jflL+qF8z9TMNyoZnh5lPe1vo1MJg8MKj7+r3UgzFj2JjRYQQLfrnH4G4VadHrNHPHB3DkbDQAHZs4021cMPuW1afXhOu0qKeL/J2/GsfySb60Hn6TOcO9OR6UhLlGxed1HPh2zhN2zahEv7lPaBZgj7laxZnbGSwd4kW7WU+Z0cuTkzfSkViZ0rCKLf3WRbFjfHkGboymaXUxlmYCTt/OYMmAUnRYEskPPUpw6nwadtZmOv1fYtj+fVkGboqhaTUx5qYCzoZl6vQXFejfTMHMVMAXARL6/Vygvy6GZjUkaLUQeDeTpUO86LAwghm9PLl4JZ2cfA3t6jvQd3UkO6d5M3DNS1rXd9RFKELTWfZdedrPecysAV5cu51OepaKdo2d6bP0KbvmVmXAkqe0bVaCvHw1F0KSWTG5Gm1G32bOqEpcPhNNpkxJh+ae9JgYyv4VDekz9TY+3g7Yi4UMn3Wd1bPq0aL3GeaOD2DZ9qdoNFo6tSrH1IXBHFz/JYOGrGL9giZ6z85UUsnwQxX10BPl5OTw84/uXLmwAJ/yD4G3evxoDfRcATA3TCqRkan/jqW+VeCsMTMjISOD2AKCiecvXyKUOBCT+cbANeagMrQO+DRszOQV69ixYjHxiYkMnT6b25cCuR18lQM37yO00jnedixfzNYl8+g8aBgypRKvan7M3riDhWNHkJAQT/ve/TEzML7ITkKpcuXpNnQUGxfNY/GkcdjY2VG7xRfYO7uycMRA/Bs1ASDsShDjlq5mevdOmFuY49eoCdnJidT9og2XD+5jxMyfWDJxDHlput+LW5+AprsY+vhPGRHwx42FtGQphwsKqA9v28SACVPfS99YjP8+nEuXw8JKhINHKSrU+QyhtYjytRviVqESFGxWhCIbKtT5DAePUpSqWgO02iL6FWo3wrPSG9YhS5EN3nU/w8Hdk3IBdQBwKFESn3qfIRSJ8Krqj0eFikX0feo1xsbecAfSD0FWehpLx4+icbuOHz3WH8WefYHU8PemWjXDXum/EpaW5uTlvzFOExIzcHf7uJ4YdT5rSjmfyrSvXY2u/QZhayfBydWNYV+3ZfKi5VSq5ke/0eOpVN2/SFO66nXqMW7uIqYN7E2zdh1xdfcwOH6nHr05uns7h6/eRmSr807mGjG8V/w4nfhX0ew+exn7t6JI/zQMpQ/NGTuSfZt/KVLjkJr8poD60NaNDJ44rXgN/Qj4V3ZEbGPB541KUKakLY1ruwFQ2sOSlvXdsLU2o0U9VwJ8dd8BjSIfsciMlnWd8CphTaMaDqhz8vBys6RFTXtsrE1pFmCPv7cN5OaTr9Ria2VCc387vFyFNPS1xUwAXq5CmvvZYWNlQtPqYmqUE4FGQ55CjK2VKc38xHi5WNCgsi1mJuDlYkEzPzE2lqY0rSbGv5w1AnTOm3f1BQLD+qDbQL49n5o+WjQa8HKzpHmABBsrU5r62+Fb1qbQYWZrbUqLmvZ4uVkiVwlQqjWU8bCiRR0HbK1NaVbLAd/ytq+Xc8Q2ZrSo74xXCWtk+aao1VrKeNrweQN3bK3NqV3NkU0HI2nfohRVKzoUuf+f1RGg1ULZUmK+aFwaW5E5jesa/t5/CHbs2EGDepXwqej50WP9L1gIhYWRcIA0aRJuBpqwfQhqNm6KV0Uf+jSpQ7tefRA7OGArkTC+x1eM/mkx5X2r0GfcRHz8a1D5rfoJ//oNGTl7Hj+OGETjth1wNMB2JxAI+PKbXpzev5tdl25gVRAtjoiJxlZij3+jJlSo7g/onKgHf/kZobU1P2zZTWJ0FACuJUtRsZof1ja21GrcjEpvzSHw+JGPuvZifDj+U+xM88ePpo1vWRZPfMNk8q6x8Jr5w8HZha/6DgTgq74Di3/8/j+Apa0YsbMrj6+ep2GPAVzds5lKDVsgS5GSlZxEpYYtuLpnMw17DODx1fPYOjnr6Vdu1JzM5EQykxOp1LA5V/ZsplGPATwODsLO2Q07ZzceXb5A454DubR7ExXrfUaGNIkMaRJVGrfg4q5NNOs1kNinjz/6eg79sppyvlX5duzEj785fxB79l2k2zdNP8m5rCwtyMrKJfKllKHfbeTMuXA83D++sZ6TiytDJ0xl9pjhePtW5fC1UGrUa8DaebMLdeo2aV6k+BCgfosvqN2kOcd2bX93yEL0HDqS8pV8GfJ1G1RGOM9Bl84U9fw5Ds4umBtJM/sn8OO4kTQq58GcsSMLZanJUvZt/gUoyrbk6OxC1wG6brpf9xtUvIZ+JOr6O7N8ywPG9q/CyQuv8HAV4eEq4syVRMb09mbFjme0aexOvDSXeGkuX37mwqrdL/muZxl+uyLFw9kSd0dzToekMbJzCVYfjKN1XQcSUhUkpilpXUvCmuNJjGjvyulbGbg7WOAiMef07QxGtHNlzYkkWteUkJCmQJqppFWAHWtOJTGijStnQjNxdzDHVWLOmdBMRrRxZc2pJFoF2JGQpiQpw7C+m72+fnyakoQ0hd583BwscHe04PSNNEZ2cmf1kQRa13FAmp5PQqqC1nUdWH0wjpGdS3A6JA1XRws8nIX8djWFUd1K8fO+GL5s6ERSSj7x0jy+/MyNlbteMLpXOX67nIibsxUerlacDIpjTB8fVmx/wrOobMp7iWnZ0IO2zUu+c/9tKOFmw/FzLxk3yI9lG8P5/LOPp0DevXs33bo0+gvemP8NC6ElOdnZxEZG8PPkcYRdCcLB1e2jx3Vyc6fHyLEsnTSOClWqsS0wBJ/q/mxbOr9Qp07TFti+0wi1Yas2+NVrwMk9O4yO3X3YKNxLeTG+V+dCFiaJkzNHNq6lTstWpCYmkJqYQO3mn/Pk9k3KVK7C3auXcXBzx8HNnVsXztLu237sW7eKhl+0ITkhnuSEeBp+0eajr7sYH47/lBHxmibwjxoLExat4NTDSL1UpmL830R6fCyxj+8RcfMq+Tlynt+4TFp8DK8e3eNl2A3S4mN4fuMy+TlyIm5eJeHpIz391LgYXt65wcs7N0iLf8WzkMvky+VEhd/i1aN7vHp0j6c3rpAvl/Pk+mXS4mOJCA0hIjSE1LhXPLl+ibwcOQkvIz76epJeRRPwWZO/hJbzj6Lvt5+zfOVBlErjG+S/Cu3b1GDOgiPUbz4LRwdbOrWvTdPGf00vmJ5DR5Lw6hXnjh/hzvWrRD59TIXKVf7n58bNW8zh7ZsIPHXcqE74zRCsrEUG0w1fw8TEhC0nzmLv4MjATq3/1DX8HdhfEFnYt/mXIsbC6x4MXQcMKRKlmL70Z35/HFUklakYfw4J0lzOXokjW67k3LU4Qu+nEHo/heCwFLJzVJwLTuRlnJzLt5O5fDuZqLgczoWkkC1XceFGCqGPM7kbIediaDqyHDXnb6cTlZjH1buZ3ImQE5WUz4WwTGS5GgILZI+icwm8m4UsV8OF8EyikvK5+jCb8MgcoqQKLoZnIctTE3gvi7AXOTyIySXwnk52MTyLKKmCa4+yCY2QG9S/+zJHT//6o2yuPszWm8+9F3LCnssIDMtElqvmQmgGUYl5hD7N5urdTKIS8zh/W3dtF0PTuR8h487jbC7eSiM7R835G2m8jM8l/EkmV0JTiYrL4Xxwsu7+hCRz72k6tx+kcSE4kewcJWevJfD0ZRYiK1Mu30ri5avsovf/npRbd5M4d+UV2XIlv1+KJjpO9tHPuW/fvixdedQo1fNfibpffMn2xfOY1KU9dk7ONGzTjiq16/4lY38zZCQxEc8IPneGeyHBRD9/Rtk/0KtrzLwl/LphLdfOnTF4XKvV8jD0FpbWokIjQqPREHrpIokx0dwPCeZ+SDDSuFh8AmpiZm7O/lVLibgXTsS9cMKvBJEry+ZG4Hnio18SFnyFsOArxEe//Euuuxgfhv9UYXXnfoM5uHWDwRoHY4wgH4IPrWX4q8Ypron4a2oiFPl5qFUqLKyskaenYuPgRE5mOhbWNggEkJ8jx1osQZaWgsjeEUWuLt/0bf3crAwsRTa6a5DLsbaTkJ2Wgr2TUxF9WVoKto7OKLLTsRTp0lrycuSI7CRkpSbj5OJicPNvrCbCVqhftPzDt11o1bUHzTt10TsmNFaIbQD2lsZqIvRzSOPjU6lUbRD7dv9A69Z1ih780JoIteHmRG/nnj96HEtySjaNPzPciR4LI2lA/6Pg+tbVS0wZ2p9ZK9YyaVAf2nf/lp5DR+JaomiKQZ6BaMLju2GM+aYjvxw9XcTweF24vnnlEnavX8Mvvx7H27eq0XQmG6GQKcP6I3FwZNLcN/SxxmoiBALB315Y/c2AIezfvJ5uA4bq9WEwVBMBhrvM/lU1ER+6VhoruDb2fTBYE6H8wJoIZapheX6SQbEmz3AhdkZaJrY25iSl5OLiaFlYQG0pyEWalo+royWpGfmIReaF+g52FiSl5uPioCugVmXKdAXRGUpc7C1Iy1LqCq5lechyNdjbmiHNUOJsZ4Y8TwNqLSJLE5IzVbhIzAsLrrVqDbI8DfY2b+nna0CLAX1TQGtEX4vI0rSIvthON/9355OjFoBAoBv/7fnbCREIQJajxl5sjjRdgbPEnNwCH6fIypTkdCUuDhakZiqxdxSDALLlqiL3J08tBAGIrMyQpubj6mRJ097nGfGtL52+8CJbrsRBIiy8/7kqcwQCASJrc6Qpubg6W5OWnoO9nX7dgtGaCMkoPdGrV6+oVMmb4wen0axp9aIHTT6sJuJmyvtrIgBePnlETlYWvkaMhw+piYA3+5Fbly6yZMIYxs5fwtxRQ2jdrSddh4zE6Q9EOh7evsnk3l1Zd+x3vLx99I5vW76IY7u2sWzPIcpUrIQ0OxtTMzOy0tOwtilIE5XLsLQVs3BYf0qULc/XBZ24La2tMc2R4+DiSmZaKiJbHfV4jiybNsUUr58cprNmzfqn5/CHMHv27Fk7L1ylQ58BtOj4td7x17l1HwNjHt8P9QR/6DgfYqQYM/kMsU39Gbkx1ial2rD8QUgwGo2Gm7+fxKNMeW6ePk5eTg4pCfE8uxWCc8nSBB89gLWdhIiw2yRFRWJqZsadsydxLVOeO7+fID8vl4zEeCJCQ3AqWZobx3/FWmxH1P1wkqJeYGpmxt3zp3DxKsfdcycL9SPv3MDRszS3T+r0w8+e4Nn1IAQCAYFbV1PGrza/r1uMLC2V2CcPCD99mJK+fpxYNhtrOwlhZ44SFX6zqP7aRWSnSIl78oA7p49Qsoofx5fOwsbenlsnDxEZfguBwIRzm1dTxr82v29YSUZSPK+ePODmqUOUruLHoUWzcC5RkphHD0iKisTEzIzQ30/iVqY89y6dJTc7i9SEeB7duI5rKS+CDu2jjHdFzMyLGhJ2Do6smzFFx59duSrCt4wBY6w2hmCIyQnAxbyo5+bRo2gatxjP6FGd6devtf77KjB2TsPvhvGC6zc5vM7OYrxKOxsf29TasNykrP6wGg2PY+J59ug+u9evpWWHThzcvpleQ0cxYNxEbMT6fS4MFfA6u7nj5lGCueNG0rFXX8wtdM/l9Qa2Rt36OLm48X3fHuTn5VGtTj2Djeoeh4Xyy+L5rNxxAAvhm82Do4Xh7/vs2bOZNWvWbIMH/wLMnj171v6gELoPGkbrr/QNU0trw/dabeAeGVs/jDpEjMzpQ9dKY+Mb+z44mmfpCzVGmhq+9V4WlRsxhtWGWZi0KsPjXLgag5uzFbuORuBoL+R6mJQXMdkkJcuY98tjGtZw4oeVD0hIziXscTq7T8ZQ29eO8Use42Bnzq5TsYTcSwMELN71ivpV7Zi1OYrEVAX3IrLYG5hKTW8RkzbG4GBrxt7AFEKfy9FqYfGhBOpXsmH27jgS0pU8jJKz91IqAeWtmbwtFgcbM/ZeSiU0Qqe/5Egi9XxEzNkbR2K6kgfROQb1Q57JECAoop+QpiQ8Mod9QUXn8+ulVK49yEJgAov3xVHf15ZZ22NIyVQS9lTG3vNSavrYMnHNCxzEZhwOknLlTiYCE1i4/SUNqtsz65cIUrJUhD7MYM+pWGpVkfD9ogc42llw4Ewcl24lIxDA/PUPaRjgwsmgWLYejODa7SQu30ykXg0Xxsy5gYNEyI4jEVy5GY+JiYCfVt3is9ol+GnlTVo1Ka337Ews9RkeAbAs6mi5f/8+TZo0YdL37enZ3UAU2ZgjxtRwDZohFrQcpZLEmGge3QohLjICRzd3noTdpkS58lw+cZS8HDnJ8XHcu34NDy8vAo8cRGQr5v7N67x6EYGpmTlBJ45QqlwFAo8dJjdHjjQ+jvDgq7iVLk148FXSU6Qc3LiO5p06c2TrBnqMHEPPkWOxtrHRm0/QyWNYWAi5d+M6r148x8zMjAe3bxLQ4DPmjh6Gd1U/UpISuXPtCp5eZTm5dyeftWqLXJbNkknjyExLI/LZY9xKlmb7wh9JS0ok4v5dLh7ej1qj4cj61XQYOJTLxw7x6FYIAhMBxzavxzegNr/MnUlKYgJP74Vx5te9PL9/729dQ4uhj/9UYbXQzIzSnoZzFo1txF0tDXuuHP49acpGYYjG0pjXU2Fk82/I0/o+ubGIQ2auYX1zB3ewccLKyQO51hwr11IInT1R5asxz1WToTLDzMEdpZUDAgdPBGjJE9pjYu9OmsIUU0dPVLYFng17FSl5JmDnSo6FPSpbHUuJ3FyCVuxGSp4JWnsPVGKdviBXTarCFCTu5AgdcKxaD0ctWLl6UL6FArmZmHItvkbs5olAIMC6ZEXkZmLKt/gaqzLVKWvjhEAAYtcS+HyuQCG0o3Krzth76ArTJGUrobGyw7dVZ1x8/BFKdF5aO9cS+LVRYmpjj/+XX+HgrqNBda3gi4XYgZrtuuJStiJmVjrDVuTgjMTdE4GFJXauJZB46LzhSo0ArZkQiZsnAnMLPXrMao2aMG7pKvauWoa12I5OA4cWHjMx4Am2Exr2chmleNUW9a6tWL2NwYP6MO2HJYb1jUH7ysgB/S6ogGFWm/9BB/sa4ydtYs/+IFxcHHB2kiCR2CBNTufVKylxcSlIJPbIZDIsLS1xsbVCKctixqghPJEb3sYa85w37diZQ9u3EHzpIg0+16UjvfamZ6Sm4Fu7LjsvBjOkwxdUqdeQ6nXq6Y1x62YIFkJLImOiKVWufKH8vuqfW3zS8/LAxlbPmwnG6VkNGVrG2JM+lGra2LptzCgw5lU1xqx3X6XvNa1qZyTvXXDWsFxrhGVMk29QbKI1vIa2aekNwNjBtQDw8dZ1fc/JykKNEHcPRwZ2q1zYhM6/sgNuJRzp39WbhjWdKVnSEbVSQWkPaxDZ4lHemQHdLfAqIUKjVFAjPocSlSX072ZOwxoOlKqcCxoVnq6WaO1FuFd2oF93IWU8rECtoXpCLh6VxfTtYkpDP3tKVc5Fq9FS0kWIVmKNe0V7+nUxx6tA3y8hD/fytvTpBA2qSShZQQImAkq6WhbRL+NpDQIBAfG5uJcX07czNPCzx7NiPgKgpJslWmtL3MpK6NfFhLIF1xsQl4O7l4R+nb1oWMMBL28tWq2WUu7WYG6Nu6cTA7qaUtZLl4cfUE2Gu7tDwf1xoXQ5NVotlC4hQmtqgZuHhNlja/IqScmKzXfxreiMu7sjA3tU5bM6JfAq6w5aKO0pRoMpbm529O3XBlN7A4XJlkbeGfmeIv8uWfAL3w39jIlj24FWqW89G+sr8YHrk5ObO2qV7j1zdHXDrVRpzISWuJYujXNBYbUGLSYWQsSu7lg5OOJQUmcc7V6zgqunjnFk2ybMLSyQODmTmZZKclwsi8aPwtrGhrycXMzMzTGxtCRPoaBWu05IZYZTvcwl9gjEdtgU9MJALEbk4op/oyYc2Lye6PhYqtZtgI0inxSVCgsnZ1Ly8/Ft2gLvBp+xdtJYWg8YjtLSljodvsG5gNXQqXwl4h6GYSuxx62UF+4FVLnOJTyxs7RE4uREu5598Cilk1es5sdve3YanGMx/j78p2oiivHvQ3piHGfWL8OrWgD75kzE2lbMvQuneXTpd6zEdhydP5mSVWpwYdMK0hNiSI+P4dLWlXj6+nNy4dHxoQ4AACAASURBVBQsbcVEXL/I08u/Y2kr5rfFUynh68+VrSvJksaTkRBD8PZVePj6cXbpNCxt7Ii6eZnnV37H0saOc0un4V7Zj5AdK8lK0umH7FiFe2U/zhXov7wRZFA/MzGWjPhXXNu2Cg9ff84smYqVrR1PLp3hyaUzWNqIObVoKp5V/Lm8fS1pcTGkxcVwcfMKSlapwdH5k7G0seXexTPcu3gGK7Edv/44idLVahC4ezMpsTGkxMZwat1yylYPYPesCVjZ2HL77Clunz2FtdiOLdO/p7xfTWKePjF4f2t81pQGrdsS///YO++AKK/s/X/oMMMUeu8WEOmCdOwliZtueo8mm6qJJrF3Y+wtsUSNvfeuiNJRQLFhQQWk995hht8fgyAysxt/u8lu9svzH6+Pd868c8+973vPOc/JTP9Df8fc3AKOHjvHm28+/4d+zr+K/Ydi2bnlO37bOImJE97glZcHMHP6h5w9vZTK8lM8ePAAXV1dRo4ciYaGBtu3b0dDxUb8z+ATEkZKfEyX64e3b+YZtx58/8GbNDU00KjkgRzglQ/H8vaX4xk7agiXIlX0MejG/3ms3HKLAC9TxkyOQyrW4eCZhxw88xCpWJtPpifh72nErNU3Sc+pJTO3ljlr7+DvYcins1KQirQ4fC6P03FFSMVa/H3ODfq7GzBn3T0ycurIKqhn3oZ0+rtJ+GzeLQxEmhy+UMjZSyUYiDT57Mfb9O8rYe6GdNJz68kuaGDeb5n0dxXz+U93FeNHFXPqYhlSkSafL0qjv6uEub9lkpHXQGZ+V/6R6GIORxZ1GT8rr5703K72nIkr4vD5gi72Z+XXkp5Ty5w1t/H3MOKTmVeQirU4HZPHofBsDMTajJ2WSICnMbNW3yAzp4b0rCpmrkhR3M9JsRhIdKmta8bKXEhJWT0fTTxPoI8505de4sHDCh48rGD64ngC+1ny4TdnkYiVp37+HmTnlHL8dApvjg78N86OrlBTU2Pr4h/Jf5hJ/sNMti1ZgIuPL+tnTkYolhJ/6jjxp44jFEtZ+d04enp6sX3pAgqyMsl/mMGFg3uZsHIdjn36Muz1dxAbGtHb05uvFq0k6NnnWXkmGi1tbXwGDkZDQ5OvFq9UGml9BHtnF3Yu+4mCh5kUPMxk17KF9Pb2Zc2Uibj4+BGxb3e7PeumfEcvb1+Wjfs7019/kY0zJ1NTUY6JtR2bpn6LQCzptD+WFRYw6sNPmPD8MC6eOdkxvoc3C8Z9hkhiQOTxw0QeP4xI8q+LcnTj6fGXikR0oxv/F6GhqUlzk4rT0H8Rhw+fYdr0xeTlFfLWmy/g5GT/h3zOP0N+fjmJl+/j3MuKHk7maGh03bRkMhmGBiI++mQ5H344ivffG4mVVec0g42/7SE4OJjt27f/yzYFDhnOpA/e5NOps9sbwpUWFSISS1BTU+Ol9z4iOyMd+15KOty24cV3P8TWqQdTxrzLvoSriCTSf9mubnSjG08HDXU1mlvkaGn9/x0o/CPsP3SJmfMPUlBYwftvhWBj/Z+Rc26oq+VaXAyVpcWIDZXbIJfJ0NbVY82UiRiZWzL41TdoaVbsLaZW1mhoaBB7/AgewaF8s3zNv2xTX/9A4mcex3dQR9O8iuIitLR1QE0Nr9BB3E1JxtS2awoZKF6Yhr3xDmlXL3N4/c/8fd5TRsm78YfjL1VYfbNSeZgYutOZ6lSkJ6ni/7vSmXIysxAZmfDgykV6+4fy8OZVjKxsqG2UUZ6XjbWrJ/cTY7D37E9xbg7QisTMiofXEnH0DSbv1jX0zRRh0Ir8bCxdPMhIjsXWw4/SvFwAxGaW5FxPws4niPw71xCZK0LLlfnZmDt7kHU5Dit3X6qL8qAVRGaW5F5PwtYniII719rTmZ7k1xXntaczZV9LxL5fMEV3r7WnM7XbkxRLr37+VBbmAYp0psyrl+jhF0LxvRvt6UyludnY9vUk7VIMrr4BlBUo7De0sOL+5Us4B4RSfO8mxm3pTMU5WTi6e3EzLorAQYOUnpjraWmx4odvsO3RiyGvvI5IKiXzzm2uREZg06Mnji59MLO2RV1dXWU6k7eh8tO12JgDvPTyJ+zcsZKBAwM7Pl/tKWUOVaQztTSlcfhILDGx15HLW5HL5Qj0dPn600FYWxvR0iLjTPhVfv3tHNFxt/Dz6UHa/Xzq65vIvb+GU2evYmJmjp9vx0N6a2sryZfvsXHLBfbuO0+AvyujngtiwAAvnJ3tiLjQyPjx47l+/XonW1KrlM9fVSk8jwQG/j5qKK+O+YxBf3sRbQ0NFn4/nkuR5xn+0qu8/snniKUGKlN7Hl+T5o37DLGBAV/OmKeys7i7VPsPL6yOKVTSwbkN/4vpTMrutZtExeLfrCKdqTFP+fWmEhXXi5VeVtXJuq6qiqhLBQwNtiTxWnF7OtP99GL83I04F19ISD8TsvJq29OZYi6XMiTAhKSb5e3pTA/z6vDtKyXiUgnBXoZkFXSkM8WmVDC4vyFJqVXt6UwZ+fX49hETkVhGsKeU7MKG9nSm2GuVDPY1IPlWVXs6U2Z+A/1cREQklxPsoeA/Smd6nP8onSkjr/P4WcVN7elMj9vzKJ0pM7ez/bmlHelMMZdLGBJgStKN8vZ0poycmrb7U0BIP1NySjvSmaITC9vvZw9HU8bNisHaXJ8fPvcm6VoxBhIdDpzOwNFWyqAgGzKyKxk+wJ4r97Xx8fz96Uznz13kjQ9Ws2fLl4QEOXccfqgqoNYxU3o5rT5I6fWqujoijh7iWuJF5K1y5DIZci1tnn37fVpampHJWsi+d48D61aTm5GOpYMjZYUFtLa2MnH1eqrKyigrLGDIq29QlKsQGTCxtOL0zq1kpd0h9vhhenv74hkchomVFUHP/I1z+3ZxattvLD7a2R9U+XZaymUcXfu27e+KdKPUSwl4hw7kbkoya6f9wN8+/AQrR0fs3TyZ/9HbFOVk4x4UQthLr2Lby5krcQm4BoaQfj2lPZ2pOCcL7/5+XI2JxLV/AEu+/AQDUzM+nDab3BvX8QkJ49aVpPZ0prysDP7+7JDuwuo/Gd2RiG78S7h4ZDeOnr4cWTaXz9bs5MTqn3AOCKNJ1sq9i1GMnr2S06vmMfKrqdyIPIOsqYk+g57l3M/zeWvZNs6vX0zPoMG0NDWSnhTD81OXcf6XBQz+fBLpyQnUV5bRe8AzRK5dwKuLNhO7cSk9QobTVF/Hw+QYRk5eSvS6BYR+OonslATqKhT86HULeGnhZuI2LcUpaCgtjQ1d+BkJEbQ0NeA84BkurFnAa0u2ELVhKY6+Co3v9MQYXpi+jHO//IjuuOlcD1fIfvYd/CynV83jg5U7iNuzGXMnxUPu3YvRvDV3JceWzUPvh1kknVA0vvEZPoqDS+bw5fpdRO7ZjpmdYtG7ERfJ3xf/wu6fZuPm6YnURHnxXs6D+5zds4Mti+ZjYWdPWWEBYaNe4Gp8DA9u3cS9fyDT1m7q8v/qa2uprCijoEnU3qtAJpMhk8nIycnhlVf/zo7tKxgy5PdpmtfW1pKdnU1OTg7Z2dnk5eVRWVlJdVU+1TW1VFfX0NDQSFBgP4RCAat/3oCVpTEvvRiCtrYW6upqZGQU4OH/LXq62hQVV+HlYc/YD4eyfeMX6OvrUllZh5HNR7j5TeTW7RyGD/Xh9PE57Taoqanh268Xvv4+LF3yBQcPRhFx/jKz527Gv78rfv1HYmj4rzf6e4TRn3zBpkXz6eXmjmOPXgx/+TUuXYhgzHdTnkpw4ZMfpvFGqB8jX30DSwtLWlpa0NLWxtBYRcFmN/7PIOl6CRMWJBK+ZQRTllxmWIjiUOJsTDZbFwbw3aKrLPrOk72nstDRgufCLPhh6Q1Orgti+qpbDAkwRaANRyIL2TLXk++X3WbheBf2nc3HxECTEG9DJq1M48Rqb2auuceQ/sbo66pxOLKYzbP6MmnVPRZ81ZP95woxlmgR6m3A5J/vc3yZJzPXpzPYzxA9LTWOx5Xy21QXJv+Szo+fO3LgfDHa2uo8F2LSiT/U35hWWjl3qazT+KcTSqmpk/HyEPNO9rwwyILaehnhF0s62R9ztZKCkkZeHW7N90tucGp9MNNWpfLScFtqals4G5fP9kVBTFyYwqLvvTifWEppeQOjn3VkwvxLhG8byZTFl3l+mBMJlwvIzq9hzfabyGSt6OhoYGWuT2V1E1MWxiKXtXI35gPmLjrPoR1j23+bmpoGyivq0dLXb49iyGRyZDI5D7OKeOOD1eze/AUDQvv8rt+6pqaOnJxisrOLyM4uIr+glMrKGrLLt1NbU0NNdRXNjY14BwSho6vLtrWrsbS1Y8DIUWhpa6Ours6tO7f4fEQYcrmcpoZGrJ16UFNVydKjZ1j53XgGvjyaA7+sZMbbo2lsqEdqbIKFnT3RbY3YQka9wNld25i78yA5D+4jEImIPnqQrLQ7RB7ch5qGBqKnaJZ6dONahr3+NjFt4wePeoFNc6fjuPMg2xbOx8rRia0L52JiYcXEdb+Rcz8NNTU16mtrOLN9M0HPvsDJ39Zg09uFfct+xC1oAKDYH51+/pVNc6fz0bQ5aGppE7F/N46ublyLikBsYMDPM6YQOFxRs5Z4/tzvtrkb/z50RyL+i/HfFImoqGtGLpOhoalJS3MTmlrayGUyKqrr0dHTo7qsGLGRKbWV5egI9KlplNFU1yaRWlqEvqEJ1dWKwixtPQG1ZSXoG5lQX1mBmo4eamrQVFeLnlhKTVkxQgNjaqtrUVMDLT0BdeUlCA1NqK+qQF1HgJq6Gs31teiKpNSWFSMwMKaprhY1NbVO/IbqCjR1haip0YXf2lTfbs8jfkttJdoCRUF0uz2lxRibmT0h8VqMyMiUlroKdAVtkrDtEq9FmJlb0FCrOHnUEQioKi1GYmxKa0M1em3jN9TWoC81oLK4CDtbq3ZdcQ0NDZqbmtDS1kZLTY2S/Dz0hEL0BELu37yO1NgE+7ZC3Ya6Ot7y92DpgeO491V02pbL5Rzevpk182cp0nBkLTS3zQNNTU00NDTQ1NRkzuzxvP9+V5WeR5GIyspKjhw5wt69e4mPj6e+vh5ra2tsbGywtrbG0tISqVSKSL8FsVgfkUgfDQ11LlxIoLSsnM8/HYyfX1dpxIKs+zQ1t2BmKkVHp80R2wqrGxub+WzcRoyNRGzadoGTR+bg269XVxs1RZ3+rK9v5Jc1h/hxwW5Wr17N66+/3unf/38jEXK5nJ0/L2fnLyt4dvRbhI58jslj3mHu2s34hg4AVJ/KP7km7Vq7mo2Lf0RTSwtNTU3q62oZ8dJovpg6C0Njkz8tEtHc3IyWllaX+YaGBrKWFtTbTvUf+Xt9QwNa2tqd+O3XnuCrPTZ3lc3nJ/laWlpK+WqtrUojc/+LkYiW+hrKK5swlOpQVdOEQFfxHaurqhHra1FW2YiBWJuGRhny5kZ0dTTaJUzLKhoRCTVpbWmiuk7WJnnagKmhDrX1MuQtTQgFmhSVNWFmpENZZRMigQatLTJq6uVdJGRbW2Rd+UJNaJFRXS/HUKxFYVkjpgYKPhrqCPU0OvHFIsX97bBHMX5Ngww19a58iUj3Cb7C/vpmDUAdoaDz9xVLBKipqSkkXqU6FJTUY2akS71MA1BIthaW1GNuIqCsogEDQwmZOdVoaapjaSYkPDYbd2cjTEwkip+9RY5jwEYuHX8TU1tXRCJdZDI5v26JY/r842hra9Lc0kpzs2J+ampqoKGhjpamBj/OGs1brymJIrRFIsrLazhyPIm9B+JJSEyjoaEZGxtTrK1NsbE2xdLSCIlEn3pdN4QiEfr6ItQ1NEiIjKCmqoqXPhiD62MdmQHya2ooLcinob4OiZERQpGEmsoKdEViqsvLUdfQYMOcqejqCYk7eZRvlv2CZ0gY9XWK+acnEFJeXISBiSnV5eXotSkuVRQXE330IPvXrOSLn5bhO2Q40OG/GlpaSteHmopyRFKDTuNXFBdjZGZGdXk52np6HFq3mmO/rWfQ6Dfp6eHNuqkTGbd8Db28fNAVCMnNLUBqYkpNRXm7xHpDbQ3WFqaUFxUhNTGhvq6WY5vWc2zjOjQ0NNDS1qa+tpYhL77C+xMno6WlxSgX++5IxJ+Mv9RLRGvTGZWKGE+quHRcV8F/GqgKTarkd9X8B/6BvJue0stl8gFdrt2vVKJsA9SreClQ3fdB+f2qalA+zvl9uzFz6MHRVT/x8eJ17Jk/BWf/EFpaNbgTf4Hnv5vNjkmfM+KziaRGnqGlVQ3n4CFErF/M6DmrObFkBjb9QmiVy8hMjmPo1zM4MusrQj/+lvuJsbQ01OEUOJT435byzLQVXFg1C1u/Aciam8i5Ek/o59M5M38c/d8fT961RBpqKnEMGMLFLcsYPnkF0T/Pxq7/QGRNDeSkJBD892mELxiH37vjyb+RQHNdLY5BQ0n4bRkjpy4nctVsHPxCaJXLybocz8CvpnNiztcMGTuBu7HhADiHDOP8+sW8Mmc1UesWYuPmpfgNEmN5fuJsdk7+nOe/nsy1iJMAuA0cwYnVP/H+wrVEbFqFhZPi4ffOxRhemzSXDRM/5bUJU7h89gQA3kNGcmDZAj5bsZ7T65Zj11vxwH0tNpoxs39k8edjeO+HaSScPg6A//Bn2bZwLt+v2YSBSNT+MrL75+XEnjrBhkMn0dXTY/w7o6ksL2PK4pW4eHipfmhSkYbU0GjClClT2LBhAwMGDGD06NEMGTIEU+M05afvqnxMTUX+sTI/UOucExsY9CITvh3LS89ZKB9DhU/K5IpGb13s1FDyIgIqU7eefIEvKSpk1fzZPLiTiqamFu98MY7AwQptd1Vh/gZVvVvafLWmspKtS38i4uBenv9gDFuXLPjDXyKcff35cPEads+dikuAIgJ1OyGG16fMZe+CGQx8831SIs4A4DV4OIdX/MSHi9ext83fQTGf35o6j3XffsqLX39PSsTpNv4Izm5ay3uzF7F9ziT6BIQCcCshmremzmPtN5/y0tc/cCXiFADeg0cSd3AnoydMZevsybgGKvip8dF8vWQFOrpd10VVqWD62srXXGUvF0IVXCuB8rENUfFyoeolQlVfCRV9KFqbVFxv6bp2V1VUM2ZSDKtnBTL6iwjmTfDl8NlM9AUaDAm0ZMqSy+xdNYjPZyYwNMgSXW04dj6HVTP68/rXUcz9xovD4dlIRZqE+Zoydfk19iwP5svZyQwONEdXC45H5bNyihdvfJvAnK/dOBKRi76uBoP9TZm2KpVdi/vz1fyrDPY3RUNdjbPxhayY5MGbExOZ86UrRyNzkcvh+UEWTF91i52L/Ph6/jVGBJvTLGsl4mJRJ/6F5DKqa5t5frB1J3tGDbGnoVFGeFweq2f489pXF5j3rQ9RySWUVzby4nAHJi+6xP5fhvHZtBhGDe9JY6OM8OiH/PLjIF4Zc5wfJwXj0KMH5mairjdYq6M+ac7CE5yJuMXJo/PQ1tbk+VfmUVfXyM8rPsHdzaHLoUU7VOzpOdXezJk6iV1bNxMyYBAvvDKasMFDaBJKla6hynqxgPK1RdWhxZ30BxTn5ZJwRrG/JIafQUNTk5k7DvDr9B/wCFb416P9ZeO82YS9+iZXzrX5Y9t+NHbxL+ycP+0J/53PvsWzGfjaO134Y5asZee8KfRpW09uJcTw5pR5bJr8Nc99Oq59fejp48euuVMxsrCkKOsh/qNexNKxJ6nx0bwzbR4/j/+EV8dP4nK4YnyfoSO5sHsbr38/vcv68NbUeawZ/wnPjPmcA8sXUJDxAP/nXiR6/67ul4g/Gd3pTN34XbDs6YyBuSUugWHoCoQ4+4dg6+pOfVMrMlkzukJ9evmHYmhpg4N3f5paWjGwtMHJLwRtgRBH3yAMe3SEfLWF+jj4hiCxsMG8tzutchliC2ts+wWjpSfE1jsII4fe0LaIagmE2HgHITa3pqm2BrmsBbG5NbbewWjpCbDxCsDQvhe0KhZYbYEQG+9gxObWyBvdkMvlCr5PUNv4gZj26AOotfH1sesXgoGVLXaefgBIH7PfzrMflr06unXqCPXp2T8UAwtrnHwUTX6MrGxwDghDVyjE1sUNi54dufy6Qn1cAsMwsrSmt69CDtTE2pa+wYr72cPdC9veHU159PRFeIYOwNTahr79FWofZja2eIUOQk+oj4ZGh+u+9tnXlBTkE2xvioGxCW4+vmw+daG9GPj3oLKyitTUNG7evMvKVdtxcXHh/v37mDyeYiW/97vH+1fR3Nzc3s30afD/q8T0z2BsasYPi5b/c+JTQF8i4bNZ83n2rXc5/Nuv/9axVcE9ZAC6An1cAkKwc3Vvv64n1MfB3Qtja1t69VPMZ2NrW/oEdfb3x/mugWEYWz3Gt7Klh48fOgIhfQJCse/b0WhLVyjCNSgMY2vb9vlvbG2LnUtfdIX6uAaG4vAYX0v7KQ9u/o9AW0udIcFWiPW1GR5qjaOtiLD+Fqgjx8FGxLAQK0RCLYYGWeLjZoxaq4z6RhlioRbDgi1xsBYR6muGloYcB2t9hgVZIBJoMTjQnH59DQEZDU1yxEIthgaa42AlJLSfCepqrdhbCxkaaIpIoMlgf1N8XA1Qa21FJm9t45tiby0kyMsYAHsrIUMCOvgezhJa29bbx/m+jdDS0trFHrfeBsjbnqHF+toMC7HCwUZEdYOC72gjZniojeL7Blvj0cf40XahuD8D7HG0kyAQqDjUewxTJowkN68CienrGBuLCQ125eSR6U+1npSXV5OamsHNm+ksXTkGd08vrtxNx9Coo8g5X0Vt4b8DOnp6mNva4eaviIwknw/HydUdPX19PIJDcXL3bOfq6Yuwc3XD5DF/fLQf6YkkSvxXH4e+Hkr5ukJ9+gSEYO/awdcT6uPsF9hpfbDr486Qtz5g2LsfE3dkfyd/19MX4RY0QDG+X8f49n3dla4Pevr69A0Ow9bZlRe/nEhJbjYZN679u29pN34HuiVeu/G7IJAYcCPqHIPfHkPE9l9xCxtCZVEhVSWFuAQPJmbnRkLe/IjbsRFITMwRGZtyNy6CgNc+JGHPJnoHDaamtIiakkKcAgaRvO83+r36AQ8SziMwNEZobEbGxQt4vfQ+KQc34+A/kPryEmpLi7DvP5BrBzfj8dL7ZF66gMDAGKGRKZmXLuD+4ntcP7QF+/4DqWvj2/kN5PrhLbi/8B4PEy8gMDRB38iUzIsX8Hzpfa4e3Iy9/0BqS4upKS3EMWAQVw5sxvvl90mLi0BkbIbI2Iy0uAj6v/Yhl/ZsonfAAKqKC6kqLsQleAixOzcS/OZH3E2IRmJihsTEjNTocwx4+2Mit2/AOSCEyqJCKosKcQsbQsT2Xxn89hhuJcRgYGqOgak5Vy+EM+y9sZzdsh6P4FDKCgsoKyyg35DhHNu4llEffUpK9AUMzS0wNLcgKeIsz3/8KUc2rG1vgAaKOgF526l3eUkxVy8lcCmqazdqZYiMTMDTawRW1n6MGz+LixdTmDFjBnv37u38AvEnY97c7/jk00ncup31H7Phn2HymHfZtGwRLSqifb8Xdr2c+frHJf8mq/4xnvngE2IP7MR9wBAqigqpKCrEfcAQzm37lZBX3+Z65DmkpmZITc24HnmOIe+MIWr35nZ/fzSfw7f+ytB3x3A9Krx9Pl+PCmfQG+8TvnU9HgOGUlFUQEVRAR4DhhK1bxtD3x3LtchwpKbmSE3NuRYZTtjotzmzeT1eA4dSXlRAeVEBXgOHcv9ayp9yP/5qkMlbGTXYlmWbbjD+QzeORWRhaSbA3FTA8fPZjP+gL8t+u8lzg2zIK6yjsKSe5wbasHzzLca934fjF7KxMhNgaqTH8chcxr3nzPItd3hugBV5hfUUFjfwbJgFy7emMe7dXpyIysfSVA9zY11OROXz9ds9WbH9Hs+GWZBXVE9+iYK/Yvs9vn67p4JvooulqS4nowr4+u0erNh+n2fCzCkobiSvqL4L38xIF0uzrvYUlNSTV1jHc4NsWPbbTcZ/0Jfj57MxNxZgZS7kWEQm33zkztKN1xk12J78wlpy82v42zBHlqy7wrefeHP0bDpaWv/8MUddXZ2WFsWhRUlJFdGxqURGqehs/gQiIpJx93wPG7uX+XbiapKS7zBl9jzWb9vZ6QXij4ZQLCHx3BmMzMwxMjPHIyiUpPNn2bdqKf2GDO+yv4S98iZXL4R32Y9iDuzs4r/hW9cT9upbSvlRe7biHtbhv+5hQwnf+iuD3/qoy/ow7N2P2/29rDCfbXOmUFaQx7mdvzH8/bGkPDZ+yoVwBqhYH6L372TYe2Pb7enp5UtPb98/7V53owPdkYhu/C4UZ2Vw52IMHoNGcDs+ip4+/txLvgia2uiJxKRdjMbv+de5dykWgOaWVtKT4nAJHcaDNnWm3JuXkbe0oCuSkJEUg/uzo8lMjkOurom8uZmsK3E4BQ0hKzkWazc/iu6l0lRbhY5IQvaVOPqMfJWcK/FoaunQ0thAdkoCDoFDyboSi6WbLyX3b9JYU42OvoTsK7E4D3+VnJQEtHR0kDc3kXUlHsegIW3qTH7k376KrLkRXZGEh8kxuI18lfTk2PbvnJEch3Ob/b18A8hIuQSAnljCvUvR+L7wOg9vptDSrEjnuXspBreBI7iTEIVz/yDF/QEEYgm346MIeulNHqZep7lB0dE2NSEa76EjuRkbhU9wCKmX4gHQl0i5Gh3JkNff5s7lpPaH1KsxkfgPf4aU6PO888U4NNoiDYW52Vw4cpCYjAIkBoYkx0bzw9j36OXqRmN9PfUVpWhra+Pv709gYCDe3t4AzJ07mZiYRJYtnc6LL47o0AJ/WnWmPwDDhoViZPTfq/uddvM6548f4fzxI2xa9hMmZhZUlJWio6uLvkSKk3Mf+vYP4OWPPvlPm9oJDbU1ZN26gV0fN9La5qdQIuFWXBRBL77O7YSOvhi3E2LwHDyC+5cvD4HPEQAAIABJREFU4ejh02k+34qPIuSVN7n1GP9WQgzeg0eSGhdF734B3E1KUIwvlpJ54xr+z77ErYTox/jR+A17hhtxkTj7BXA3UcHXl0ipLsyh1xO54N2AxiYZ6VnVnInO4ePXnDkXq1CA09aE8Lg8Xhhqx9mYXML8zIlKLMBApIlIX4uzsXl89GpPzsXlA6CnrUZEfAEvDLHmbFw+ob6mRCcXIdHXQKSvRXh8AR+94si5hEIANNUVaUjPD7IkPL6IUB8TYpJL0NJUQyrSJjy+iA9fciDiYhHQCq0QcbGIvw2y4FxCEaH9jLl0o4z6BhmG4s58XYE2jY3yLvakpJZRVtmEoUSbszG5fDy6N+FxeQiEutQ3tBAem8OLwx04E51NWH9LLl8voqKqEUOpLmciMxn7lhvh0Q955aVmdHX/cRHkg/RiDp+4SkXhLiQSIRHnr/HOR8vw8nCktraBkrIadHW1CfB3JTDAFS/PnsjlcmbN2UZi0m2WL/2SUaOC2tfQMlnwHzcJVEAul5MSE9n+d3lxEToCAVl3b1GY9bDL/tL/hTdIfcwfH+1HWbduYufi1sl/U+OiGDD6TaX8B9cu4+Du9dh6IiU1PopgJetD/8f8PfHkUdJvpPDg+hXU1NQ5v3MLZQX56Ojpoa2nh7q6BrVVFUrXh4e3btJQV9vFnm78+eiuifg96K6JoLK6Dk1tHarLShAbmVDbVgBV/XgBdVkJ+gZGNNXX0dAkQ0tPQG15KfqGxtRVliPTFgAdBcu15SUIpEbUVNWAGmjpCqivKEVgYNxeQM1jBdF15SXoSY1oqq1DTQ00dfXa+Q1VFWi0FVA31dehK5K082mu7zJ+Q1UFeiJFnmtzXS26bfaYmpnS3FZA/bj9rXWV6Op3FFALxFJqykowNjV9ouC6BJGRCY3VFeg9KhBrL7guxszclMY2vo6egKrSEiTGJlBfhUBfYU99bQ0iqQEVJcUYmZjSUKfg6woEVJaUIDUxQV9buz23dsmErxAbGDBlfoeGdllJMZfjYpAYGOJrZ0ZtbS0JCQnEx8dz7do1GhsbefON55g27WuEQkHnH1vVS4Q8VsX1f39NREtLC/oiFyoKd6Crq8SfVPmkqs/8F2sioLNIQX5OFpuWLuTB7VSuJSo2zwHPjMLZw4uDWzZS1CZPvDfpJhZPaKCryn8eYmXwh9dE/Bybgpq+ATUV5Urnp8jQuNP8rC4rQWjQ4e+P+FJDA6X8mrJSJMYmnQokG//B+PUVXfkNtTWYmxkr/Q7/12siZE317UXYhSX1mBrpUlvXQqusBaFAi6LSBsyM9Sgtb0Csr02rvLm9ALkTX96CUE+zvWC5tKIRsVCLVnkL1XUtXQq0FQXXGhSVNWJm1MEHuvBr6hR2KwqoH/GbkOhrAWpd+PXNGqBGF3ukUn0Fv7a5k/31zeooCqg1KSqtx8xYQGl5A1IjscKemmYMDXQpLK7F1FgAOmbKm6U9VhPxztjfsLc1Ys6cT9uvFRaWExt/G0MDfYzNLKiqqiXh4i3iE1K5fuMBTU0tvPvOCCZPegeBoLOMtqqXCFXpTP+OmoiC6mrU1dVpaCtwVtfQ4A23Hmy/8YC66ir0nthfsnPyERsZd9mP9A2V+29tWTEiJXyBgbHS9aSypLjL+I2VZe3+Xl1RzqmNa8hJu03GTUUqUr9hz2Bu70TU/p1Ulyn8aOn5RLR0dDutDwIV43/sZtddE/EnozsS0Y3fhdj9OzB36NEuVfrbD1/gEhiGTE2T2zERvDF3JRs+f4tnx03levgx5KjjMmAEZ1fP593l2zgwaxz2fmHIZTIykmIYNW0Ze759j0GfTeL+xWgaa6voGfYMMesW8NJPmzn947fYBw6lpaGO7CtxDP1+MUcnfUDQ2B/IuXaJ+vJSeoSOJH7DT4yat4nwhRNwCBzWxo9l8MTFHJ/6IYEff0/u1Tgaq6voGTaS2PU/8cKC3zizYAKO/gORy1rapV8Pfvc+w76cwq0IRSHz41K0Z5fPwKaPIifz3qVoXp+zkg1fvMXLE2dx+dRhALyGPdcudXtqzWJMbO0BuB0fxQcLVrNq7Bu8PXUOCccOAuA38m/s/mkWEzft4ciKBVi1KS5djY5k/Mq1zHzrFcbMnEf04QNAh3TenB0H0ZBKEOiLuJWcSOL5cDZGXuz0exkamzD0+ZeADjWagIAAvvnmmw6SisLq/zRaW1tZufI3HB1tlL9A/BfAwtqWKUtXAyCTyzm4eQORJ4+RnZHOoFEvIBJLsOrRq8sLxH8a894bzVfrd7Hxu8/pExQGwK24KD5auJptM75j4JsfkHxaIWXcb8Qo9i+ew5frOvwdFPN57KKfWfrx64yeOIOkUx380xt+5pMlv7B+4ue4to2fGhfFmEU/s/Sj1xj93UySTh0BwHfE34g7uIu3p85lzYTPOkk7Tt24HV3BEy+33aC6pplXPz/HzhWDGPr2SZZM6c/u4+kYiLUYGmTVLhX71vhIhoVYIdRT59DZLLYvCWHY++dYPMmHvScyMTXSIczXlIkLUzizcRBvT4xjWJAFQj01Dp3LZdtCf0Z8HMWiiR7sPaUoxB4SYNYutfruD0kMDTRFU0OdUzEFbF3gy8ixsSyc4MaB8BxkslZeGWbdLkX73qRknhtgSWOTjPD4ok7884mllFY0MXqkbSd7XhnpSHVtM2djctmxbABD3zvNkkl+RCYVUVRSz+jnejBhXjzndozija/O8fKzvaita+FMZCa71zzDoNEHWDYzjL7uAqwsJCrvaVRsGlFxaaxZOqPTdTMzA15+sa37dFthdVCQW+f/rOpg8D+AsoJ8ch7cI/roIVpbW1FTV0dNTZ3qijKWffV3PNvU5B7tLzvmTSP0lTdJbPPHR/vRtxv2sP67zv47dtHP7JgzmQGvvdOFP/7X3fz6/Re4tq0PqfFRjFm4ml++/JDnv5zYaX04tnoR49Zsafd3M1t7irIzWRZ5mRkvj6AkN5usO7cQSQ1xDQylIDMddQ1NVo8b22l9GLtoNYs/fJ3Xv5/ZyZ5u/Pn4a0UiSheBTPlJvMpIROtT5CurqQh5qjrdVHUaqkrJQdV1DRXXlTSmSa3xV0qtbEuReRK1TxuJaFR+IpKblYNQKuXe5URcAkLIvJGCsbUtdU1yytqbrMXi5O1HWX4udU0yDMyteXgtESffYHJSr6JnagmoPdZULg5bDz+Kc7Oh9VFTuWTsfALJv3MNPROFXnpVQQ5mvd3JTonHys2XqsI8oBWRqSV5N5Ox8Qqk8O51pBaKU+Wq/BzMnN3JvqLg15UoJBqfHN/YqnNTuczLcbj5B1KerzhFlppbkXE1kZ5+wRTeuYGhlaJJXGluNnZtTeX6+PlTlq9osmNoYdV+f3Ju3cCoralcSU4WDu5e3EqIwTMgoL0pj7GVFXeTLtE3KJTs1GuY2ijsKcx6SE9Pb67HRhE8YDAF2Yq6AHNrG65djKdf2ECkbaepbw4K5P0vv+GZV1/HXarigVtVBKFVRZFfi+qGZMrHV+F7TxORU3ukwS5jzKfLuXzlHof3z8TBVvx0n6ky+vGUPqwsOqgxQCk1rVb5GqrqdFGVrKyPkd4fHol4Y9EmbLwCyLt9rd1fHs3/9MsJWLv1o6pQMT/FZlbkXE/CsV9QF76DmxfpyXHYefhRUaDgS82syE29gmO/QHJSr2LQ5l/luVn08PTi3qVYHNvWBwADcyvyUq/Q0zewvUklKPzL1ceH1PgYevv2p7TNX4wsrdBoVujePwlVEQplkrB6KgQHVMnHqhrbRV+F9Guzilx6VZELmQp/U+aHqqJ+MuXysa3NyvcFuUxFU9GKOm7dL6e/pynnYnMJ9bMgM7caWmXYWgqJSSpkSNBjTfHkrWRkV+PnYcK5uDxC/cxJz6pCTR3sLPWJSS5kSKAFiddKcLSTgBpd+NmFTYomcdYioi/lMzTEmktXC3FyMEZNTY30h5X09zYnPDqLMH8rsorU2vgSohMeMnSAE5cu5+Dl7dIhGf04tFTUJeha0tzcgle/Mcyc/j6vvBz21D6uCg2qpNhVXK9WsR83KVkrZCoiEbW1Naira5CflcGORT9SkpfL3z7+FO+RL/Dg2hVMbRQHGkXZD3Hy8OZqbAxOXv0ozWvzr7b9q4dfcPv+Dor9y97Ni7SkeBw9+1GW17Hf3b+SiLN/iFL+3YuxOPn4deJnXk3CJSCEjBsp7ftvSW4WfXz6cTM+Gmdff0oe8/f7KZdx6R/YxX4HNy9S46Pp/Rjf2NKKsd49uyMRfzK6C6u78btQWVLEsV+W4ejpw7YZExGIJVwJP8Wt6Aj0xBL2zPkOe3dvTq9dRmnOQyrysjm/cTk2fb05/OMP6IklpMWe407UaXT1xZxYOBnrvl5Eb1pOVX4OFflZxG9ZiaWrJ2eXTEFXX8LDxCgexJ5FR1/M+WVTMXfx5NLWldQU5VGZn03itlWYu3hyftlUdPTFZCZGcT/2LDoiMRHLpmDex5OL21ZSWah8/Htx57gbfQZdkZiTiyZj5erF2fXLKM19SGnuQ879ugw7N28OzPsePZGY6xGnuB5xCoFIzO7Z32Hv7kP4lnUUZ2dRnJ31xP0RcyX8JFfCTyIQS9gyfQJOnj6c2vwrRdmZFGVncmDlYnp69WP95G8RiiVcPHWci6eOI5RI+OWH8fTy9mXX6mXkPcwg72EGvy2aT19fPxaO/xyZTMYv82chlhow8pXX/tPT49+G0tJqtu88T1TEYhwczP/T5vzPwdrVi6hfl6ArEnM3+kyn+W/h4kHc5hVU5GVTkZdN3OaVWLp6Eb5idhf+0QWTsHH14sLG5ZTnZVGel8WFTSuwdvVs9/dbF05x68Ip9MQSTqxagJ27N2fWKdaH0pyHnF2/DLu+Huyc9R16IjFXz53i6rlT6InEHFj+Ez28fDi8ajFF2Q8pyn7I4dVLEEn/e+tk/heQeK0IA4kOH/8QTYC3GTOWJ5OeVUVmTjUzV6QQ4GXKmEmxSMU6HDydyZFzWUjFOoyZHEeAlykzVqSQkVtNelY1s1ZeJcDThLFT4pFKtDkakcXB05kK/qRYBX/5FTJzqnmQVcWMpUkE+pjz8XcXMBDrcPpCJvtP3MNAqsNH34YT2M+CaYsSyMyq4EFmGdN/ukCgrw0ffn0YA6ke+YVVT/Vdm5tbmDT5V6ytTHj5pdA/6I7+edDS0WXXsoWk37hBStQF+vgF4Dd0JLsWzkEokZJ05gRJZ04glEjZMOVb7N08OPrzEoqzH1Kc/ZCjvyzF0dOHY6sXIRBLSDl3ipRzpxCIJeyYORE7V09O/LKUkpwsSnKyOLFmGY4ePhxcMkcp397DWyl/6/S254dzJ7lyTrE/7vhxBj09+3FwxSKKsjIpysrk0MrFOLh5sGHKt13s379sAT08+3FoZcf6cGjVnyNO0Y3O6H6J6EY3/mIoKyrkzUGB3LicyOzV65+qc/J/O0xNpXh6ODJ1xmY2bT7DXyVS2o1udOOvg/ORqXj1G8P1G+lsWD/xf2oNFRkYYmRuwZ3LiUQfOdC9hnbjD0V3OlOnD+lOZ/rn6UyXcAkIVZ7OdDEGR+/+lBd0pDNlXr1ED78Q5elMSbHYevop0nva05mSsPMJUp7OdCUOSzdfqovyaU9nupGEjXeQ0nSmrCtxWLn5Ul+iUCR5cvwn05kykmNx8w+iouCxdKaUS/TsH6I0nenuxWj69PdvT39SpDMp7o/SdKb4aDwCAihpK7o1trLiTuJF3ILDlKYzXYuJInjAIApzsmltbaUoJ4v182dRW1XJ+JnzGf7iK502v/+FdCaAS4l3OHI0nn0HY1i64H1GPatEuq87nempoaam1vr6wo3Yegf+g3QmH6oKFfNTbGZFdls6orJ0pgdJsdh7+FHRxpeaWZGTehmnfkFK05nSLsXg6KVYH+D3pDNF07tff0rb/KU7nYk/NZ0pPCaH0P4WPMytaU9nik4sZGiw8nSm8Ng8Qv3MyMiubk9nik4qYGiQpdJ0pkf8nKLm9nSmqIt5DAu1UZrOdDbqIWH+1mQXd6QzRcU/ZNjA35fO1NraSkRkKnN/Okx2bimLF33BC88Hd36B+IunM6mpq1Ocm0N66g0yUm8SdXgfH81bikAk7pLOlBITTQ+vfpS27V9GFlakJSv2O6XpSYlxOHn2a09HNLSw4v7lSzg/9jzwOP/OxRh6PJa+qEhnSsQlIFR5OlNcFL19/Tv5+70ryfTxD1KaznQzLkqR/vRoP+1OZ/qPQGPmzJn/aRt+F2bNmjVz5vfDVL8UtCrfmOEpGlapfABREbBRVVSl6sHkaa9r6ne5VNxkrZSq8oFFxYKj6kGmUaacH7V/F00N9exfPAfvoc+wa+4UGupqyXtwj7j923AJDGP7tHGY2fcg4eAOsm6moK2nx+lV83AdOJJji6bR3NhIQVoqKUd349Q/lCNzv8XI1olbESfITklAW09I5NoF9AodTsSKmbTKWym8e53Uk3ux6xfC2Z8mYmDrSEZ8BFmXY9HWExC7/id6BA8jcvVs1ICCu9e5eXIP9r4hnFkwAUMbJ+5FnyJLyfiy5iYK025y9fhunPxCOTZvAmYOPUg8tJOH15PREQg5sWIefQeN5PQvC6ktLyP37i0SDu7AJXAA26d+jXWP3kTt3caDlGR0hcL2+xP+21rKCnLJvpNK9L4duIUMZMP3X2Db24VzO7eQdiUJPYGQ7Qtm0X/4sxxdt5rS/Dwybt0kfNc2vAYMYvm4z3B06cO+davZsmQBFyPO0lBby6qjZ3F390Rbp/O8MdNVMX9bVfVaUOEbqh7QVUGV7z2NPz12zdrKmMGDvLC1NuXL8WsRCnWxtzNBIHjs+6r8TFW++rQ+rORhRN1eKbVUxZKkarNX1eF6/cJ5zJw5c5by0f51zJo1a2ZBWiq9woZzdvkMmutrKbp/u33+R21Ygr6hCVeP7yb35hW09QRcWLOA3qFd+T39wzg4+xuM7Z24fGQX2Tcuoy0QErN1Db0CBnBs0TQa62rJT7tF8pFdOAcOYNe0cZjZO3Hx4E4yryWjIxRy8dBuevj0Z+/8KTTU1pJz9xbxB3bgHjKQ9d99gYVjTyL3budeShK6Qn3qykswt7Pv8t20VDQF01SiyqOlTKlHBfcfjW2ireLhX16k/LqqA7BWVcqCSq6rmveq9kW58n2htVX53DwblcX8n1MYMcCGd8ZdwNnJgHW7bpOaVo6mpjoT5l/i5REOfD49geraZlLTylm78w4jQq15Z0IUzo5SNu5LI+5yEfpCTSYuSOal4XZ8MfMizS2tJN8o4dfddxkRZs0730Ti7CTlwOlMzsXmoC/QYsLceF4e6cRnU6JRV1Pn4pUC1m2/zshB9rz5xWlcehpy6NQDzly4j0iow/jpp3l1lCufTjxOWFAvjAyFXb+UhoC8/HKGP7+AQ0eTGff5CNat/AhXd7euEYin9HFVUKWgpGo/VvayACBTslaoOvgtLSog/eZ1zu7cSmHWQ/oNHkZyRDhXoyK4FhlBU0M9OffucGHPdtxDB3Hkl+XoSw2J3ruDBymK/W7f4tl4DnmGPfMV+3vO3VTiDuygT9AATq5Zhr6hEbH7d5B+NRldgZCDS+bgOVg5f9fs7zG2se/EP7p6MZ6DhrFj7hQaa2sV++P+HXiGDGLNxC+wdOrJ+d3bFPujUEjEri249A9ky8wfaKir4eHtm1zYs52+IQNYP/FLLBx7ELlnG/euJKEjEJJw/NAfuoZ2oyu6IxGdPqQ7EqEqElFRVdNZ4rWyAl2BkNomeYfEa2kx+obGNNXXUdckR/txideqCuRaChm8donXshIEBkZUV9Wg1ibBWldRirBN4rVVS0+pxGtzfV1XydbqCnT09JXyaeqQeH18fKFIv4s9llbmnSVby0sRGRrTUlv5mMScQsKuurQYYzOTLpKYYiMTGqqq0BUqNrTGJyVe2yRbdQQdEq9N1ZXotUnIPi7xamFoyLiXnsU7JIyPJ82gqrwMQxNTDHV1u2yA/yuRiMdxLjyBNetPE37+Gj5eTrwwyo8eThakpWXj0tsKXx8njIxE/3Sc/59IRGlpJUlJd5HL5bi42GHn+JpSqci/UiTi64Px6EoMqa+qQFugmJ+P5r9CrtGI5oY2ieM2fxEbGnfhSw0NqSkrQWhg1EkSuaGyDJGRCXVVFegIOua/oZEB1aUl6BsadfKv5ioF/9F6AgqJSDNTI6USjnrqMrR1OstpQnck4t8ViWhpaqKyuglDqS6FJXWYGum1ScI2d5KQLatoRCTUAnlrFwnWmlrFeqCQYO3gi8U6KJds1aBdsrWkHjMTAWUVDUikivXwScnWumbFPBEKtSkqrsXMVJ+y8jqkxhZK/bOyTo+wEXN44bl+TPvhRTQ02ji6ll1vwF84EtHY3Nwm8dohCV5RUsydGzc4u20jaZeTsHd1xy04FOsezty7cQ0HN0/MHXsilEjb9y89qXEXf3xcovlx/33yeeBJvpqaOg9SkgCwdnZFV1cHA1OzLnxjk8f8/bH9sbK0BKkSCWiBWKqU/2Ff2+5IxJ+Mv1QkQi5vxbuvKRNnncXOWsr+o6kkpeQi0NNi1a8X6edhwbzlcdTWNZP2oIzt+2/i427KhNmR2FmL2X/8LklXCxDoaTF3eTxBvlbMW5Gg4KeXsffoHTxczZg4KwI7Kwn7j90m6WoeQoEOs5dEE9zflnnLY9rGL+XomTRcnc2YOONUmz03SUrJwd7OFKFAycPJXzgSUV1VTWleDgam5uQ9SENfakBVaQmXjh9CW1ePYyt+pE/III6tmK84gcx4QPKRXTj6BHBkwSSMre25evoQWdeT0RVJOL92IT0DBxKxZgFNDQ2UPbzP9RN7sfUK4OzSqRhY23M36iS51xPREUmI27gIh/4DiPt1ES3NTZRn3Sf15F6sPf05v2IaUit77sWcIvd6IroiMbEbFuHQfyCxvy5C1thAWVbX8W9HHCXnkT3rFtIjYCDhv/xIc309xZkPSDy8kx79Ajkw7wfMbB1IOn6AjKvJCMQSjq2YT5+QwZxcs5T66ioKMx4Qs38nzn6BbJv1Peb2TiQc2cf9lCSEEgn7l8zDPWwIx9Yuo7ainLz0+5zfs50+AUH8OmUCff2DqK2uor6mBj2hPnnp9zEyt2TGO69h7ejEu998T2lhPibmlmTcvY2VhWWXl4j/lUjE43C0N+K1V4L5+vPnMDOVEBWTypnwq6irw5HjyXw/bSe798VRXV2Pna0JYrGSk8h/ML6yF5q7d3N44eWZTJ66gfSMfJKS77JoyW6mT5/FgQMHKC8vJzi4Qwf+rxSJCHhjDOfWLEBiasHNM4fIuXG5ff47+g8kat1PNNfXUZaVzrXje7D1DCB8xUwMLG078SPWLqR30CDO/ryApoY6SrLSuXxkN06+gR3+fuogWdeT0RNJuLBpNT39gzm+Yj6N9XUUZT7g0qGd9PQNZPecHzCxcyDx2AHSryYjkEg4s2E1fQJC2Lt4rmI9Sb9P1L4d9PULYPtPczCxtObiqeM8uH4VHV095C3NCEVdlby6IxFPF4koLq1DR1uDu+kV2FmKSMuoRENDjbikfFZtvcWgAEvGTo6lp4OYbQfvkXC1CKlIi+8XJvHcQBu++ymZ6tom7qZXsWFvGgMDLPhkahy97CXsPPaA2KQCDCTafP9TEs8NsuG7BUno6GpiZKBHTn4tVuZCUtPKMTLQpbC0gaqaZkT62ty9X4adtZi09ArUNXVpbpaRk1eFlYWY1DtFGBkKkKODllbn30omk/Pca7/g7WHPwrlvdH7JUHao918Widi37meqK8rJzXjAhUP7cOrrzsZ5MzC1sibu5DHuXb+Kjp4ee1YuobePH5vnzaChrpbcB/c4u3MrboEhnNy6iRHvjUUgliBraaIwM4Pze7ahb2jEua0bCN+yjotHD3D57AmcfQM4tnY5hhaWXDp2gAdt/nho2Tz6Bg/m8LJ5NNbVUZjxgLgDO+ntF8i+RTMxsrLpxN855wfiD+3m6IoF5KTd4l7yRcI3/Uzkrs2Eb11PXVUlD2/fVOyPYilHfl6Ce8gAdi+cTWOtwt8v7N1OH/9gNk79FnN7J2IP7SXtciJCiZSj61fgGhDCnkVzaKirIz/9PpF7t5OZer07EvEn479H5Ph3wEpSh2bdQ8zFTUjUCrGSKBZliVohUr0G1GtzsJA2YSZULO4W0ibUa/IwE7UgpgwrseIUR0wZpqIW1GvysZC0YCZQnOKYi1vQbCjEXCpDolmOlYFi5RCrl2IulaFZn4+VgQxzkeJzy0QNaDflYWEgw0C7DBsjxaKv25KFvKrr6ZW6rqHyL6atvLGSsg3DVaj8VPm2WojS6+pPWTCmiq9tboyVucJOY093xUUTA6oK3TF3sMehTx9MDKX06OuOfd++NLTI0VVrwcxYip1zH2wd7WiqqaSVVqzt7Sjs3QdjQwkOru6Y93IBQEddjpmJATa9+2Dj4IBGcx1ymQxLJwcqnF2xNDXAsa87ls4utLbK0VOXY2FqgG3vPtg72CNsbWjjO1Lu7IqlmQFObm44ufeF1lZEWuBgZUSWqyu9ejkioQFoxdbZiYq+fXG0NKLcwxP7vn0B0FWXYWlqiJOrKz16OqLRpJhXDj0dyOursMfZ3Q3b3gr7tZFhYWpET9e+9OndA+2mGgB69O5Brrs79hbGuHt4Yt/GF2io4WhhgauHJ30cHDqlJ/W0tOTujWtUl5WwJzwazcdOSe2MAumlF9f1R2pW8ZCi6uHlaR9qVD7AqIhoqEoVUvZy8U/GFmjC34bZ8bdhdp34MpmcuIsP2L43CY/+R3B3teTbLwbz3Ag35eP9E1vWboxm6twjzJ76MlEnJ3ScWgJVNTJu383ljfeXYSLJZGCoK44OZvTSVN4sEm1VhwMuv8+2PwD/j737Do+q2Bs4/p0kkIRAOumNXkOHUEKRDqIiioqo+IodLNh7ThzJAAAgAElEQVS9Xnu/KBawYqEpooCA9A4BUilpQBJKeu+9kXn/OAuk7FFW6c7nefLATmZnZzd75pw5M7+Z0jpLWnm0xczOjVZ+Wj3M7Nyw8+5IlbDEzrczLTy0/UrsyiqpNrPC1rcjZg7u2LbpquV3cMfOpyNlWGLXpgvWnvXyW1hj79sRc0d37Ntq+c0d3bHzaU+VmTWObbti690BAMeySuqa2+DcphNWTh607tANACsnD5zbdOCMhTVuHbri1EbbKLCsvJIac0tsnFwQNnbYuGh3koWNHZV1kpKqpt9bvQ7bxRBdbHz1MH87nc0ahc6mdbU6+2EYG6Gu0zlmdUYPhYXxY9lc59j38NK+yw6ttTgCf39tf4WKGnPySsCptSO9urvTvp07hWXmCCTt2reml38B9s4O9O3lQd9e2udyxswSZ9fW9PL3pH1HD0pqLamrk3To6EbvHkU4urjQv48P3Xt0xdPXEU9DHXr3145xe6/z77+nYVC+ay/AQtsk7uyn36Of9v2rv3ncWRFhcWRkV7F1+0JE486gkY0m9UYcOtoYPy9GFRr/fE0dcdCbGWDj1JoWTloMUCsXN6rNzLXHNnbYuLgbMtnRwtmFSixw79gNJz/teHEvraDGwhrXNh1o6eKBj39vfPx749u1BwfW/MrIex8k9I9VeHfpRvLRGEL/WMXHM++klaMTnfoNwK+b1oa6eHnh3akLNrYt8e3aHe9OnQGoq62mpa0t3h064+rlTWV3Lf+J8AOcPBjK7c++gjA3o0333gAkxkbSb9R41iz4iCM7NtFv3CQ823fCzdsbn05dsGnZkjbd/PHtorUbZ2qrsbe3pU2Xbnj4+lBZrO3T5OHrQ5tOXbC3t6W9fw/addPyi7oadq0w+jEql9A1NZ0pdf+drNx4igfv6MDStSfp1127qI2IyeWem/34dNFxZkxpx6FYbafDPt2cWL7uFI/f3ZGl607Tr7ujIX8+997chk8XH2fGrW05FJsPQN8eLiz+/SRP39+NpWtO0s9fa0ij4wu5c2JbPvkxhvtv68DBGK38fj3dWLQyjjkze7BkdTz9ehgC/sya0bt70+A/kzsRzZtOZ8LSxWjWY+XGOxF605z0GrMK3WFY4xeKCcfiSTgUxqCbb2fbkm8ZMvlOko5GUV1bh3dXf0LW/sbIex4kbP0qXDpqjUzqsSj6TJxC0M/f02/S7SQfi0XKOjw6+3No/W8MmTaTI5tW496lJ8g60o5F02vCrRz45Qd633g7GfFHqTtTi0cnfw5vXMmgOx8gcvPv+HTvBXWStONR9Jowhf3Lv6fPpKnknzqGrDuDVxd/wv/4jeHTHyRi/Wra+vcEAcmxUQRMuo0dyxYyfMpdJB2NAsC3aw/2r1nBmPse5uDmtfh11ToXp6KPEDh5KpsXfcOoqXdxKlrL39a/J7tX/sKNDzzC4a0b8DV0FhKijjDytjtZs/Arbpp+H/GRhwHo2LM3m39ZxtRHZlOWk41Ho7ney79eQOapE7y94Nsmn7vRToSpnYVrqBNxIfmrqmr4Y3M0Dz+1nLiI12jtrDNNUKcue/bFc8/DP7Jj3dN07NimaV7DiGFoeAKzn/mBpORcBgV0pH+/Tvj5utClszd9+7Rvkr8JnU6EMLu0Q/FCCDngvqfpOXkG8TvX0rqj9n3OiY+h46hbiN34K+2GjifnRCwArdt3I2777/S67X7idqzFpYOWPzshhm5jJnN49SK6jp1Cdrw2fcelY3dO7llP78n3ELt1DW6dtOM9My6aPhOmEPrrD/SceDsZcdEAuHfy50TQJgZMnsahjavx6qLdnEg9FsXQyVPZtew7Bt4yleSjWn6frv4c3bmR4Xfcw4G1K2nTXbuoOB0Tybhp042usGPTvOnNnBY605NMneakN0JxdnPHJmr0OhE6IxrGjk8TOxG6o4q6bUKF0eQDYSm087XjhxVHefbh3ixeeYz+PV1BSsIis5hxe2fmLTzC/93RhYMxuSChXw+XBvkDensgEYRHZjJjalc+/uYgD9zVneRsQb9eRkbYdacFN+0sAEY7ER/MXUlqhmDBgreb5r8GOhE5OTmcMJwvzp5fxsx4mH1rfqOtfy/g/Ploy5LvGXTTFBJjtfORX7ce7Pt9BTfc8xAhf6zEr5t2vCTGRjLoptvZs/In+o69kaRY7fjy7eZP0Mqfcfb0Yfk7/+HxBT9i3bIVSbFRDLzpNoJW/dwk/4E1vzLmvofPlX8q6hBr58/l+cWriNqznYE33d7gfBq2fhVj7p3JmvkfEblnO4U52Th7eNFv9DjSTiZwwx3Tqa3Wbva26d6T8M3rGXXXPez9/Tfa+Wv1PxkdybBbp7Lhh28YcftdnIqOPPf5PDqop5rOdJldU0u8nk4p4fDRPErKati+P4OImFwiYnLZvj+DkrJatu7P4HRqKXvDstkbls3p1FL2H8qhpLyGHQcyiYjJJyImnx0HMikprzmfPyKbvRHZJKaVsjUoXSv/QDoR0XlEROcRejjn3M6Zp1NK2BOWyZ6wTBJTS9iyN5WSsmq270slIiqHiKgcTiUXXemP6rJJOxHH0eC9VJWXEbt/D7mpycSFB3PyUBh5aSkcD95DZXkZx0OCSI2LIfVYFAmh+6gqKyM+ZC/56SmkHjvC6cOhFKQlcyJUK+tE2D6yThwn7Vg0J8P3aWmheylITyYjLpbEw2EUpKdwMiyI6vIyToXvJ+tEHGnHozgRVi9/WjIpRyM5eTCU/LQUjgfvpaqsjLjQIFKPx5AcG8XxkCAqy8s4dmAPOSlJxIUHExceTG5qMrH791BVXkbCwVBORR/hVPQRYg7spbKslOig3eSkpnI0LJijYcFkpyQRGbSbyrJSTkRHkhB1hISoIxwO2k1FWSmH9uwkKyWZyOB9RAbvIyMpkfDdOygvLSUvO6vB5yqlZOMvyxg/ZeoV+steeywtm3H7LX24c0ofPl6ww+TnP/ffVXz8zm10bG+k815PQP8OhAe9z+mj87nlxn6Ul1excfNBJk5+k2U/7yLhRDrH41KJiUkkPj71qlpiMeXQPmoqy0k5HExOfAw58TGkHA6mpqKcrLhIijNTSY8OJz06nOLMVC1/eRmphw6QnRBDdkIMqYcOUFNRRnLEPoozUkmLDictOpzijFRSoyKoLi8jMWI/mXHRZMZFkxixn6qKUk6GBVGYnkLSkTCSjoRRmJ5CetzRc8d76rEoUo+dP36PB+8hLy2FEwdDOHEwhLy0FE7HRlFZXkZs8F5Ox0RyOiaS2OC91OlMB1EujkMx2ZxKLmLLniRKymrYtjeZ8MgsDsVksy0ohZKyGrbsSeJUcjF7Q1LZHZzaJP+hmGzCIzPZuieJktJqNu9O5FRSIdFHs/66An+DlJJFS3cwdeqNl6T8yyE3I93o+SXmwN4m56OEQ2HkGM6/ceHB5KQmE7NvD1XlpRwNDiIxNpLE2EiOBmvnu+RjMeSmJhMfEUJ8RIh27g7dT7fA4bR0cGT74m9Jio3imCF/Ukxkk/xH9++hsux8+RsXzse1TTtaOTpzPOwAuWn18qclczRkH5XlZeSkJTPm3geZPOtZhLkZZcVFHA09wOdPPcKOX5YSsW0TR0P2E31gD0nHYonct5uT0ZGcjI4kav8eKsrKiAzaTXZKUoPPR7n8rqmRiMyQaTjYmp8LyCor1+5S2rSwICu3HFdna/IKq7C10e4ElZTV4GjbjKzcSlycLCmrMOS3tiA7rwpXZ6sG+UurRIOAr7Plt7Rpfi5ALK+gEtuWzQ35ZZMANABb+6axDHB9jkTkFpTS3MrqXIDV2QCoypozTQKyCou06T31A5bLigows7RBCC0As4Wt/bmAzcrysnP5zwVoFxXQzMoGxPmA0LP566orjea3t7fVyi9rGABOTSWChgFiNaXnA6jrB0Q7uxoPiK4sLqBFS+2OWWVZKS0NAdEe7u7n6m/VwobC3BwcWrtQU1J8bu52eWkptg4OFORk4+XhSX2RIQd4b84sthw+ZjRYUI1E6F80Jqfk03vYB3z76TSGDGyLm6udbt76dRl10yc89dhIbp7YE8yMTDH5i+VgDwQf4/8e/pwzZ85gYWGOubk5ZeVVVFfXMHH8AG6cMICxY/piY9e7SRHp6Zl4eg245CMRD6+LobJQW3CgtlK762xhZU1FYR5W9s5U1g+grijHqpUdlcV5tLB3otYQcG1hpQVEt3BoGHBdU1GGnaMjZQW5tLBvGKBdW1Jw7ni0tDm/oIGT8/kA7foBm7KsQAvYrB9Q+ScB15ZmEgsjIwxqJOLijETUVFVTXGoIuM4px8XZmrLyGqSs0wKuDQHReQUV2LXSAt+1AOrz+curtGsNLX85rq1tyMuvwM7ZHQsLI5/lPxyJ2LkrkiefXUh0dJDxfSCugZGI3Ly88wHIhvNLTlZ2k4Di4jztGCptdLy0tLMnNzsHW0enJguAtHR0prSwAOt6+c+e7yrLyvjfPbdwx8tv0XnAYIBz5/fG+UvzcmllOB4/f/QeJj78JD5duhvNb+/oYPT4rSzMx751aw7u2MrP/3sLWScRZgKLZs2pKCkBJP5DhtEjcAR9Ro6hsqwU+9YulBTkY204/6afSuDFm8aokYjL7JoKrA6LzGHcUA/G3r+d9n6tmPf9UbYEpWNlZcEbn0cyIsCVu5/ZR05+JSFHcvlwYSzjhrgxbuYu2vu2Yt4Px9kSlIG1lTkzXgrm1tHe3P3sfnLyqwiJzOWrn+MZEeDG2Pu30t7Plnnfx7IlKI1WLZox/Zk9TBnnx7SndxvKz2bF+lME9HZhzPQNdPCz46OFUWzek4J/Z2cc7ZuuICL05k6b682JNdIZsTAeOJpb42s0XS/gWi+Qy9SAsFUL5lFXW8t3L86m75iJfPPcY5QU5HEq6jDbflhAl8HDWfDI3bj4+LH3l0Uc37+TZpZWrHjtabqPnMDPrzxBdVkZiZHh7F3yJR0GDufHJ6fj5O3HkU2rOLp7M80srVj55hy6jhjPr689SW11FYlHwti37GvaBwxjydP34uTtR+Tm3zm6ezMWlpasfPNpuo2YwIpXn6CmqoJTh8PY/uOXdB40nK8en05r7zbs+3Ux0Xu209zSisX/eZJeoyfw/QuzKCnI5VTkQTYuXED3wBF8PPNOPNq0Z8P3XxIVtIvmVlZ89dxs+o+9kZ/ff4Os5CQSDh9kzdfz6TnsBt65dyre7Tuw6qv5HNy9g+ZWVnz85KMMnjCJxR++TcrJExw9GMbP8z9mwA2jeXbqzYy6afK5xhZg0Sf/o/+wGxgYaHwnVadmKU0TdZc/NjEdvQt0vRsOOgHaJi23amLZuvnBzs4ab097lvwSystvruO7JQc4nZhLC+tmeHk6YGZW7xxTry65eaWEHUzU4imMrdT2F8vBenu35onHJ/HkrJuY/dgkZj1+K08/eSs3TxpEcXEZy5bv4NkXviU09AjV1dX4+XlRXFzCvHkLmfngC5SVlV/ywOou4+9g3zfvYGljy5HVP5J8MAgLSyt2fPQCbQaPZfv/nqGyqICs45Ec/u1bvPsEsu39ObRs7cbhVT+QHBGERXNLtv7vBdoHjmXze3OoKMon89gRIn75ljYDhvHrczNw9PIl7NfvOR22F4vmlgT9+Bl+fQax+o2nKC/MJy32MPuXfU2nwcP4fvY9OHv7EfTTQuKD99DM0pJdi76kXZ8BLHppFiUF+ZyOOsS2H76gx9ARzH3gLlx927L5x6+JNhyP1J3BzqnpzZjmRi709S7+TQ24NtdJ113goO6kTroJKwvqBlCb2vHXaxOMny9+Wn2Ulz84wIQRfoy8cxUd2toz9+tD7DyQSrNmZkx/Yiu3TWzPnY9vJie/kgMHM3lvQXiD/F8viWbNlpNYW1kwbdZGbr+xA1MfXY9tqxZ07WTk5pjuQiRNz60AmDdMf/PdX7hxQj8GDh5hPL9oenNBL4Daqbnx69KsSuOfr6kB1HoLncx//ilyUlManF/eve8O3PzasPH7rxqcj/qOmcjXz2jn35ORB9nwrXb+WvL687S0d2Trj98Qu283zSyt+P6lJ+g9egLfPf+44Xx9iM3fLaBb4Ah+/eB1nDy9yTx9kkNb17Nt0TdsX7KQwuxMtnz3BRWlxZyOPnwu/6JXnsHWqTVbf/yGwuwscpIT2b50Ib1HT2Th849Tkp/HqchDbPpuAf6BI5j7wJ1Njt8Vc9+mR+BwfvrwLQLGT8Kvmz/Febm88O1igjesZfJjTxG5Zychm9ez5qvP2LtmJRbNLVnx6YfkpqaybuEXrJj3IbKuTgVWX2Z/ORIhhJgFPAL4GZJigXeklBsMvxfA68DDgAMQCsySUsbWK0MCNUBnKeWpeumLAGcp5aS/rKgQcv+vk+jX3Z5dIRkM7t2apAztTq+Pmw3BR7IZPsCViJg8fNy1C+3kjDL6d3Nkd2gWg3o5kZyh9Xy93Vpw4HAONwx0IyK2Xv7Mavr3cGZ3aGaD8n3dbQg+kseIADciovPw8dDyp2RX0M/fhd0h6Qzu40pSmpa/bRsnktJKaO9nR2pGKQ52WmNYWGGNt6ctJ07n08bHgcIi7c65k5u38Tsl18BIRFZ2PpYtbCjITMfZy4eCrExatLKlqLSU/LRUfLr1ICEimDY9+pKWlIwwE9i5eJASe4i2fQaReiyKlq09kFJSlJWOZ5cenD4Ugnf3PuRnpiIQ2Lm6kxJzmDZ9BpJ+LJpWhoCyoqx0PDr7k3g4BO9ufSjOycBMYChfy592LAo3Ly+EgIKsdLy79OBERDB+PfpSV1WOuZkZVi1bUZCVgbOnN+V52bQ4O1JQUoyDqxu5qcm4+3hTXlwMgHWrVuRnptPay4eSnCxsbA35i4twdHMnOyUZHz8/yoq1aW02rWzJyUjDzduX8rwcbGy1k1dZURHO7h5kJCfRrm27Bt+BL99+DWsbG579r/H28N80EpFwMos2vs4UFml3Se3trElMyqZdm9akphXiYK91zgsKK/D2ciDhZDZtfJ0oLKqgrq6OlLRCliwPZe+BE6SkFTBxTDfumzaATu3d8PZ2JuFkFn4+Tjz0xDKKSir5bfFDnE4po31bV1LT8nGw1473/KJqvL2cOXEykzZ+LhQWase7naMTiUnZtG/nTmpqLg4OhqV6q6B164Z3RwsKSli/OYVVqzexa1cwZmaC22+byFNPzcS/x6W9iyaEkA+tjSYzJhTXzr0NmzZqAZuZxyPx8A8gOz6alq21gOXSnHRad+hORkwY7l0b5s8+ehjv3oPIio+mlSHAuSQ7Hd/uvUg+HIJHt94UG/LburiRfTwKv94BZMRFY2vIX5ydTvsevTh5MBif7n3ObVpn5+JBbnwUHfoNJDk2Ckd3LX9+Rjrd+vbhWOgB2vfqe26TLEc3D0qyUvBq34n8zHRsbLXPvKy4EB8je0qokQidskF3JKKirJK8wko83VpyOrkIH89WFBZXIWUddq0sSUkvpY2PLWmZpTjaWyMlFBZXNchfVFoLCOxsLUlJL6GNjx1pGSU4u3lhaWnkM/6HIxFznv8OdzcHXnjZSDwEXBMjEceiInF00a4DctNTaevfiyP799GxT39yz24S5+bBiSMRdOw/mNPRR3A0jGrnp6fh170n0SEHaN+z77lN3xzcPDgVeYiOAwaRGBOJg+H4KshIx7dbD+LDg2lbL7+dixvhG9dQlJNF+Ka1VBQX02XwUDoNGMKgW6aSEBFMu579yE1LYd2CuVg0t2TIrXfROWAwp2OO4OhuqE9GGh179jZ6/CZHH6brwMGcio7E2VD/3PQ0OvbqTUzwPjr16U+OYVM5K2trNi/9kbQT8RwNPYCZuRl9R42j94hRfP70Y2ok4jK7kE7ELUA1kIAWQzEDeAHoK6WMEkK8CPwXuB+IA14DAoFOUsoSQxkSqATWSCmn1St7ESZ0IiIW9WPpxkyen+7D/5YlE9hTuxjbF1nEi/f58MKCk8yZ5s3uQ4UAjOhjzzdr0nnj4bZ8uCSJob20RiboSCEv/V8bnv80nmfu8WX3wQItf4AL85ac5qNnu/DB9ycZ2lebfhQZV8Ls6e14dm4Mz85oz+5wbb3vGwa589EPccx7sRfvf3uMoX21O2FHT5fz2N2dmPNuOM891I1dIZkAjBnWlg+/Psxnrwfy9vyDDA/QDt4ePXzw9TYy5cLKSLCZsY4FQHMno8nHKkYYTddrtCp0Ri4qddL1Oh0bflpM1wEDWfPNAh547V1WLphH+36DQdZxPCyYWx6fw9J3X2XSQ7M4Fh5CbU0NXQOGsPH7L7n7P2/xx1ef0nXQUM7U1hIXHsxNjz3Nz++9xsSZj3Mq8hDVlRV0GRjIxu++YPp/3mbdV5/iHziUutpajoUFc+vjc1j8zqvc9NAsTkdGUFtdjf/gQH7/egEzX3+X3+bP455nX8TSquHokLE7l3+WrnfhYdPc+B4JF3qB8cuK3fy2ai+rlj9nPL+xi4NqnbnFpu6doEevU6C3dr0eYx0GnYuguLgUPN1b8dbHQYwYrI227T6QxGvPBPLEK1t56YnB7Ag6DcCooW1YtCKSV54ObJp/zkCe+O927rmtK18uOsKe4GQ6tnXEy9Oej98cy413/0RV1RneefkGwo+k89pzY3ji5fW89NQwduzV7iCPGtGVDz7dyfwPp/DW3K2MCGwHQNihNJ57YjRPvPAbL80Zy449cQDcctMgPD2MTGE0jDwWFJQipcTRUbtYEi1uv+SdiI6jJhP4yMsc/OVrPPy1ncDTo8Ppd9djhC2bT+dxU0mPDAXAo2cAkau+J/DR/zTJP2D6YwR99R597niQ1CMhAHj1Gkjs+p8ZOvMZQpZ9iVfPAQCkRoYx7P7ZbJv/DoOmPUTioWAA/PoM4ujW3xk+Yxa7Fy2gTe8AAE4fDmXcQ7NZ99FbjJjxKCfCDwDQvv9gIjesZMIjT7Lxm8/p2E/bMyc+IoQps+bw83uvMvHBWRwL0Vaw6zIwEF9fb6xaNBzp1Ts29ToXlnrHvk5+zxbG0x3NdfZrMaUTobtPkqn7J+l0/E0d0TClDdHbN8ai6dK8WrpOZ0Gvc9FsbIOHixcvZsuWLbyx8Cej2fWWYDZG7zynN7JQpZOu17nQK//UyVNEB+0GoOugQNYv/ILpL7/Fuq8+pdOAQQDEhQVz82NPs2Le+4ycdj/HQ7UbTJ0DhrD5hy+59bk32LzwczoYjpeEiBAmPPwkmxfOZ8DNtxMfph1fHQcMZvuir7nthdfZsnA+7ftq+U8cDGH8Q0+yeeHnDLzlDg5tXU9a3FGSYo4ghOD+dz7hyK4tZJ5KoCg3my6DhnLL7Of5fd47jL3vIY4a6tM1YAhbFn3LtBdfb1L/KbPnsMRwvo41HL/dBgay7/dfuOOJZ/lt/jy6BWjTqmJDD3Dn7Dl899Z/GTd9BkfDQrC0tqbHkKHMHh2oOhGX2V8GVksp10opN0kpT0gp46WUrwAlwCDDKMTTwAdSylVSyhi0TkYr4O5GRc0H7hBC9L3I70FRrju9erblSNSpv86omMTLvRWjhvry+rNDmDSmHVt3n6Rr4JeYmZnx9ks3YNNC50LnEnBwaHmuA6EoysXVu3dvDh8+fKWrcd1pae9Ip4BAHluwGAd3T5a8/hz7Vv1McysrbnrsGSyaXb421MbWFktrnWniymVhUmC1EMIcmAosAfoCZcBJYICUMrxevg1ArpRyhuGxNDzvDsBJSjnKkL4IE0Yidi+fTW/vAnbHWjG0f1uS07URBB8PB/YF7WTUmHGERybj563dlU9MyaNPmyJ2xVgxdEBbktMM+T0d2LN7B+PGjyfsSDJtfLS7hafiIwgYMprtQccZGtCe5DRt6Vcv+2wOxDZnzLAuhB1OpI2PNuJwOuEQAwaPZNveowwL6EhSmrb0q69TIftiBGOGdyP00Cna+mrLvSadimLAoJFs3RXN8MGdSUrVRjQ6+tVi3qJj0zctC6F546UmS8HCyE6bogLMms4Jzqh2AeHQJL2gqoYW5k077PlVNbRq1vTuUm5lNXZG0rMrqnBobmTDrtQ0yjPS6N63HyG7dtJn8BAi40/gYNkMNy9vDgfvJ2DESGIPRWDu7IaLtSVpSYl069OPsD276DVwMLEnTuFs1QxXL2+OhBxgwPAbiD0UQbPWnri2aF4v/056DRzC8dOncbK0aFJ+CzcPWltbkZaUSPe+/QjetZO+g4dQfEbi1qphjElR9RmcrJreSSyuOYOjZdP0sto67I28/6o6gW3zpp+XfTOBjYWRvvuZow0elpaWYe80iKKcddi0NPL3PpMFZo1Gn6pPglnTpYU5k2n8O3MmE8yNpWeAubvx17Qwkl6TChZG1syvTTf+ujVpTcupPmU8b9VJtuzJZXhgN5JScgDw9W7N/n27GTlqDKER8bT100bnTiVmEdCjOVuDCpvk3xe0g1GjxhAakdAgf5+uzVm5KZ0pNw0iKSXbkN+FPXv3MHbceELD42jbRntvp07GEjBwBFt3RDA8sCdJydrIj68n7AnJYezo/oSGH6Otn/beCvJT6dSlf9P3JAvAvOmIorDse8lHIpYcTmXb9u3cMHwouRmpADi7e3E8IgTLjv0Qacdx8dJGcLJTk2jn34dt27cxcsTwBvl37t7NhPHjOBF1qEF+C98ulB0Np2v/QeSmG/J7eLE3KIhxY8cQH3kIV28fALJSkrFp15WC6FD8BwwmO03L7+Lpxb4D+xgzahTHjxzE3VsrPyMlCadO/mQeDqZnwGCy0rS4IFdPb/bt38e4MWOIPRSBp2EKU1pSIt49euHaaOPPkpo6nK2bXuiU1dbhoHOM2xk5xivrwNZIm9jMzPgx3pwTNDP21z2TZXR+PmcyQTQayapNN9rOU5ti9DtFTYrOMZsCFp5G0pN00pOhmZGR8Zo0aNZoWlBNStM00NoVCyPpdXnQzMhrymIwN7YXRymYG/kMhDuYnT/XFRYW4uzszAgKzZ0AACAASURBVOmCMpobGX0qq63DutE5sPyMNHpeLKquNZpeWF1LSyN/6/yqGqPfjZyKauyMnBeyyiuNfvf2hobTwU87XtIN57tNmzYzcsQNZKZq3383L2+OhOzHq+9g8uKizy0Vnp6USNc+/di8dTvDAwPJNBwvbp7eRIYewL3PIIoSYnD3MRxfyUl06d2X7Tt2MDwwkCzD8ejq6XUuf3FCbJP8W7dsoY9/d2oMS7O6enoTGXIA3wGDyY+LbnA8OnfuQXL4fnoNHNKg/lr7MJrYQxEN6u/RvScnQ/bTd/AQMgz53b28Cdq3nzGjRxF9MAIvQ/7UpERmTBitRiIuswvqRAgh/IFgwAooBaZLKTcIIQYD+wFfKc9viyuE+AHwlFKOMzw+24k4AhwFbpZSbv6rToQQ4mG0WAvQOi2KoijXqyQppd+lKtzQDiuKolyvLmkbqjR1oTtWxwG9AHvgNmCxEGJEvd83PjkJI2lIKU8IIRYCHwiht31ng/zfAk132lIURVFMou7QKYqiKBfTBW02J6WsNsREREgpX0YbUZgDZBqyNB5zdAH0dpB5E2gHTP8b9VUURVEURVEU5Qr7uztWmwGWwGm0jsSYs78QQlgBQ4EDxp4opcwGPgLeNpShKIqiKIqiKMo15C87EUKID4QQQ4UQfkIIfyHE+8AI4CepBVR8CrwkhJgihOgOLEKLm/j5T4r9GC2+YvI/fQOKoiiKoiiKolxeFxIT4QYsM/xbBEQBE6SUWwy//x9gDXzB+c3mxp7dI8IYKWWpEOJN4Mt/UHdFURRFURRFUa4Ak5Z4VRRFURRFURRF+bsxEYqiKIqiKIqi/EupToSiKIqiKIqiKCZRnQhFURRFURRFUUyiOhGKoiiKoiiKophEdSIURVEURVEURTGJ6kQoiqIoiqIoimIS1YlQFEVRFEVRFMUkqhOhKIqiKIqiKIpJVCdCURRFURRFURSTqE6EoiiKoiiKoigmUZ0IRVEURVEURVFMojoRiqIoiqIoiqKYRHUiFEVRFEVRFEUxiepEKIqiKIqiKIpiEtWJUBRFURRFURTFJKoToSiKoiiKoiiKSVQnQlEURVEURVEUk6hOhKIoiqIoiqIoJlGdCEVRFEVRFEVRTKI6EYqiKIqiKIqimER1IhRFURRFURRFMYnqRCiKoiiKoiiKYhLViVAURVEURVEUxSSqE6EoiqIoiqIoiklUJ0JRFEVRFEVRFJOoToSiKIqiKIqiKCZRnQhFURRFURRFUUyiOhGKoiiKoiiKophEdSIURVEURVEURTGJ6kQo1zQhxG4hxO4r8LpvCCHkBeTbLYTYZyTdQwjxhRDitBCiSgiRLYRYLYQYcGlqrCiKct7V2nYKIe4XQsgL+Hmj0fPaCCHqhBCVQgiHS/5GFEW59jsRQhMphJhxgfm/EEJ8f6nrpSh6hBA9gSPABOBDYCzwBGAPHBBC3HsFq6f8y1xIGyqEmF3/wk8I0U8IkSeEsLs8tVT+RTYAg+r9zDKkP9ko/btGz7sPEIAlcNdlqami/MtZXOkKXAR3AA7AzxeYfy5wXAjxvpTyxKWrlqI0JYRoBqwEioCBUsq8er/7DfgNWCiECJNSxl2hair/Lqa2oUgpI4QQR4A5wBuXqF7Kv5CUMgfIOftYCGFl+O8xKWXInzz1PiAScAZmAF9dskoqigJcByMRaHcnlkopay4ks5QyEdgHPHYpK6VcHEKInkKI3w13PSuEEHFCiJf/4jmdDM8pNDwnRAgxvlGeRUKIRCPPbTLEL4ToLYQIMgyTpwkhXkW74/V3TAHaA/+p34EAkFLWoY1ImANP/83yFcVUJrWh9fwIPCqEuB5uRl13rsO288/qPRRoCywGlgEBQohOF/t1FEVp6JruRAgh2gOD0e7s1k9/SAgRbWi4soQQKxsNu68Cpgshrun3f70zxAcEA+3Q7njeCMwDvP7kOR5oncSewGy0u6yFwAYhxIS/UQdnYCfn727NAsYDD5halsEo4AzakH0TUsp04CAw8m+WrygXzFgbKoSwFEIsMFxI5gshPgGaGXn6OsARGHd5aqtcqOu07fwzM4BatNG0xYa0+y7B6yiKUs+1fgdpFFCGNoQJgBDiv8BbwJfA80ALtAa0JdoUEoADgCvgX/+5ylXnIyAPbdpPuSFt51885xm0qRmDzk5XE0JsBI4C7wKbTKzDHMAGGCelTDaUtw1IMrGcs7yBnHrvx5hEoMffLF9RTNGkDQU+AB4EXkE7bh4CpjZ+opSyWAgRC4xGp1OsXDHXY9tplBDCGu37uVVKmQVkCSEigHuFEK8aRngVRbkErvU78X3R5knWAQgh7IH/AJ9KKWdLKTdLKVdLKWdKKdPqPS8W7W6wWgnnKiWEaAEMAX76iwvuxoYBIfXjXaSUZ4DlQC8hhK2JVRlkKC+5XnllwB8mlnPWhQzlX/ThfkXR0bgNdQIeBV6XUn4spdwE3A6U6jw/EtWOXlWu47ZTz62ALbCkXtpitBs2Iy7yaymKUs+13olwA3LrPR4EWKPN1dUlpaxFG6Z1u3RVU/4hB7TvZ6qJz3MEMoykZ6JdnJu69J87kGUk3VjahUgBWhtO9Hp8DfkU5VJr3Ib6A1bA2rMJhg7GWozLRbWjV5vrte3UMwOtk7tHCGFvuJm4CW160wWt2qgoyt9zrXcirICqeo+dDP8aawgbqzI8X7k6FQB1gKeJz8vH+EWNGyANvweoBJobyefU6HEG2tS3xoylXYgdaIHTNxr7pWFecl/+euqBolwMjdvQs8dOdqN8jR+fpdrRq8/12nY2YWgvR6NNV85Ae+8FwAm06dq3CSFsLtbrKYrS0LXeichHW1v/rLOr3bhfwHPtOd8oKlcZwzD8PuAew5zXC7UHGCiE8DubIIQwB+4EDkspSwzJSYCrIfjvbL52QOMVPYIN5XnXy2cD3GRCnepbDZwE3hNCONb/hSHQ/3O0C4DP/mb5imKKxm1opuFfl0b5Gj8+S7WjV5nruO005l6065iHgRsa/TyLFpNx20V8PUVR6rnWOxFxQJt6j4OBCv5iCFMI0Rot4Dr+0lVNuQieQ7u7FSyEuFcIcYMQYqYQYv6fPOcTtKlq24QQdwshJqHNwe2IFih61m9od9d+EkKME0JMR5uykWukvDJgqxDiTiHEZGAr2vfMZFLKarQgQAcgXAjxqBBimBBiKrAdmAw8IqU8/nfKVxQTNW5Do9HuNN9yNsHQub0F4/xQ7ejV6LprO3XcB5yQUi6UUu6u/4N2QyYLNaVJUS6Za70TsR/wMXQKkFIWAm8DzwghPhdCjBdC3CKE+FYIUX9otx9aI3jg8ldZuVBSynC0AMEUYD6wEW3FLd25voYlUgPRgue/Qlu60hG4UUq5uV6+E2gBo57AGuAFtNVJ4huVl4u2gk0uWrDeF8Bm4Id/8L4OA72ALcBLaJ2HL4FiYKiUctHfLVtRTNS4Dc0DvgXeFEI8a9gj4De06SLG9DOUoVxFrte2sz4hRH+gq155htjHxcANQgifi/GaiqI0JKSUV7oOf5sQojnaPMinpZRL66U/AjyFtkZ2AbAXeFBKWWz4/WdADynlDZe/1oqiKFcHY22oEMIS7S7ydLSpdcuA08DHUkpR77m90fY0aWvYxFNRFEX5F7mmOxFwrkPQXkppNFDVSH5ztDmdL0kpl13SyimKolzlTG1D6z3vfaC/lHL0pamZoiiKcjX7y+lMQohEIYQ08rOhXp7HhRCnDTtEHzRsQW+sjMbpbwghYv7he5gLjBBCdLzA/FPR5mT+8g9fV1EU5Xpgaht6NkD2IeCdS1YrRVEU5ap2ITER/dFWOzr70wctnuBXACHEnWgrybwH9EaLM9hkZA5iJfDhxan2eVLKVGAmF7YiE2jrXc80zJdUFEX5V/sbbSiAD/CWIYBVURRF+RcyeTqTEOIVtAAtDylluRAiFIiSUj5UL08CsFJK+bLhcSLa6g0PA9OllKsN6W8At0spu1+E96IoiqIoiqIoymVgYUpmIYRAu2O1zNCBaI62MdZHjbJuBQY3Sju7SsT7Qoh1FzISIIR4GK3jgZOjfd+8/EJTqqsoinItSZJS+l2qwv38vGVSkqmbGCuKolwzLmkbqjRlUicCGIO2pvh3hsfOaLvvNt7GPgttF8nG3gceNPx8/VcvJqX8Fm25QYQQUlb8DmaWTfKt3xDKzEc/Y9vGd+nh36bhL4W58cKNpevmNfVjaig5OYvuPe7jiVm3MmF8AAMHdsXCwhwpJSkp2QTti2XDxmA2bQ6hR492NGtmga+PG99/91LTwvT6XvKMael1VcbTdVSWFWFp2Yzs7CJcXe3JyyvB1tYai+bWaH3LRoz8nTDX2ffIfITR5Pwa49lzq42Pnp2pq2uSlpaUyPqVv7B51a8U5OUy7tapjL/tDrr36Ud5TdMXqNUZmbMw9h4BM510Kwvj3xlzM+MzCPXK0cvv3LxpfsdmRrPqq9unk67z3bhY37HakqZpdeWmla3HvIVOeqsGDzMyCvj483X8sGQnt90SwMRxvRnQrz2eHob9/4y1BabWxZS2BxDWt/qa9gKmSUpKRVauM3psrv59H7Oe+oIdmz+ga9d/UA29z8jM2AbHF+7kyXT6BjzGE7OmMH5cfwICzrehyclZ7A2KYcPGYDZvCaN37w4AdO7kw1dfGdkWQSbp1F2nbdVr/80CjSYfKzH+GdQaaZ8A9GYDGGtX9doJY20fQJ1O2Xp1MZaelniajatWsGvdakoLCxlx8xRG3DKFjj16GW1D9V7TUqdNbG5u/Hho1dz4d8ZCp020bmZaA+hq1fR1HS1SjGc29TtjrI0D4+dFML3NNUVdtfF0vfZJTzP7Bg/T0nL5aN6vLF66lTtuC2TCuD7079sBDw/DxuXG6q73uZzRSdc95xj/3IXjM5e0DVWaMvXq+CEgXEp5pFF641ZDGElDSllgWNHjdSHE0sa//7sm3RjAu2/ex5iJrxCydx5t2rhdrKIvCh8fV7Zs+pg//gjiyTnzOX06g/btPYmLS6FlS2sG9O/ChPED+fijWbi7OzP1jlcZMbzXla52A19/t40unTyZ89ISdm18jTtnfMb40T2Z+X/jaN3a7kpXr4HEEwns3LiObWtXk3zqJKNvmcKLH8yj96AhmOucsJR/h+SUHOZ+so6fVgRx77RhRIXOxcvT6UpX64qbcmsgGZn5jJ7wEiFBn+Hjo7dB9ZXRrp0HG9a+yx8bQpn15GckJ2fTtq07cXEp2NraMKB/F26cOIjPPn0KV1dHbpn8MiOG977S1b5mJZ2IJ2jTBnZtWEtGchJDb7yZJ9+dS7f+AzHTuYhX/h0SEzP5cO4vrPhtD/ffN5aYg/PPdxyUf50L7kQIIVzQdi2dVS85FzgDNL5qd6Hp6MRZ84HZaJvT/G21tWcIC49j247DbNtxmMio0wT070RJ6cXcDPPiGTSoO4MGdua9dx8iIyOP06cz6NzZB0dH2wZ3urZtC2dvUCQL5s+5grVtauqUQTg5tuTTD2fg4mLHB29No62fKw4OentQXT51dXVERYSxbf0adm74g+LCAm6YeBOPv/QqA0eMQqiOw7/eyVOZfPDR76xeF8qD94/i2KFPcXW1vzh3+q5RNTW1Whu6/RBbtx8kOiaRQQO7UHqVtqFDhnRnSGBPPnj/YdLTc0lMzKRLF18cHFo1aEM3bgwmLPwoP3xvZCRXMaquro7oiDB2b/yDvZvXU15aytBxE3n4xVfpO3Q4Vdf4UvDKP5eQkMp7Hyxn3foDPPLQJOJif6R1a3s4ozOKrPwrmDIScT9QRb2lUaWU1UKIg2jTnH6rl3cMsMpYIVLKSiHEa2idib81GhF7NIkhI56jqKiMUTf04tWXpzE0sBstWlj9neIuO3d3J9zdz/fcT59OZ8eOg2zfEcG27RGsWf0erq6OV7CGTWVkFvDZFxt57eXbeeDRr3jp2cmsXBPCXXeMwNGx1V8XcJFVVVYSvHsHO9avZdem9dg5OHLDjTfx7pff4d+3f4O7ZXpD98r179jxdN77eD2btsXw+EPjiI+cj5PT5f++Xm2OHDnJsFHPUVJSztgxfXnj1XsZGtgda2ud6RZXGQ8PZzw8nAFtOtCpU2ns2HGQHTu1n/XrPsTJ6eoaIb3aVFZUELZnJ3s3rSdo2yYcnFozdPxEXv/iOzr37N2gDa0yMm1J+XeIiU3mvbmr2bYzmtmP38KJ40u0jruicIGdCENA9YPAL1LKxpPX5gFLhRBhwH7gUcCDP495WAo8CzwAnDS10l06e7Ny+X/YsCmc9RvDeOCRT5k4vh+TJgxg1MhetGypM/f+KiKl5I03F7H0p21UVFQxamRfxo0dwEdzZ+HlZfpUgurqGg4eTKBfv47s2x9D717tSU3NoVVLS3x9Xf9xfVs72zJwQAeaNTPnhmHdsLdrQbcu3lhamjoR/8LU1taSnJhKclIiyUmJpCQa/k1KJDExkZysTHr0HcCoSTfz4JwX8G3XXndesPLvc/BwIu99tJ59wQk8+dhoFnzyKHZ2Nle6WleNHj3asGrFf9mwKYw/NoQy85F5TBw/gEkTAxh5Qy9sbK7+GzJSSv776vf8tHw71dW1jB7Vj4kTBvLJvCfOdTD+zWpra8lMSyE9Oen8T8r5/+dlZ9G97wCGT5jE/XNewMuvjbrhopwTFp7Ae3NXExKWwNOzb+Trr57H1la1oUpDF7TEqxDiBmAnECClDDPy+8eBF9DWGY8B5kgp99b7fSKwQEr5Ub20CcBGIPZClngVQkhZtsJoMFB8QjobtkSzfmMYYRHxDBzQiZ492tKhvQcdO3rTsYMXHh5ODQPVjAUV6QU9XSzifMzPZ599z6LFK1m29FO6dhtlPDhZGgnyqjPe56oqL0ZKyZ690Ywd04fQsDjatnHD0rwKOzsjwaZ6QVV6AV4WOncedAJZ8+WoJmmO5g0Deevq6tix4yALv1vDocMnqKurQ0ptqlp2diGuLnb4+brg5+tq+Nfw422Hl6cTzZs36gPrBW8217mgMBIYGV9m/HjoaGM8oFE3OFlviPdiTZ8x9nfSC6AzdUsU3TrqpOu9VxPSZWWe0azCSmeurc7fdG9wCu99vJ7YY2k89+R4HpwxHBsbS6gp0KmLCVN39I4Bve+dmU6Qt15gdcvpSCl1vmj/nBBCGgusllISF5fChs0RrN8QQsTBeAYP6koP/7Z0aO9Jx46+dOzohbu7k/F2qsGL/LNFKM6X89fxkXPnfs1vKzeweNE8Ondub7xuwvvCX1PvWNariyllo9+26KmqbXrcNg6sPnPmDMG7tvPbou+Ii4lC1tUhpaS2poaCvFzsnVvj6uWDq7c3bt6+uHp54+rtg5u3L63dPbBoFIxcoTPioNe5MBbM3EInwNlSZ1qpXqC0Xrpe4LZe0Lle3Y0FdJu68IVeXUytoyma6XyOxhbbgKbn3T8jpWT3rgje++An4uJTeP7ZO5n5wERtlofe+cWUYOlLGUAOCPtZl7QNVZoyeZ+IK+XPOhHAuYvZoqIy9uyN5lhcCvEJaSScSCc+IY3q6ho+fG8mDz4wQTvZXMFOxO7dwdw1bTYhwWvw8/PWPxmZ0IlIS04hJjaJOc9/y66tH3DnPR8wfmxf2vs5cPutA43U5cp1IqSUfPvtOj6c+xN2di156IHxjBrZBwsLc4QACwtz3NwcaW6uM4Sud+GnOhE6r3n9dyLy8ku5+8FFnEzM46U5E7l32uCGo2SqE6HbiWhcr8LCUnbvieR4XDIJCWnEJ6QRn5DKmTNn+Oh/jzHjvnH6nYnL1InYtm0vM+5/htCQdXh7e/xJOddnJ0JKyS/ffcWPn8/D3sGRyfc9QL/A4ZiZmyOEwNzCHGcXNwqNlFG/nMZUJ+Lf24nIySngrrvfIDU1h5demMb0u0fTvHm9v6XqRChGXKQW/+phZ2fDzTcN5OabDBfOhhNjTEwiM2bO5fe1B1j41dN4ev3zKT5/R0pKOtPuns3SJZ9oHYiLxN3dEQ8PJ3Zt/QBXVwdWr/gvrVpZY1ZXdtFe42KoqKjikUfnEh1zihXL36Rfv84IqdM4nVHzcJW/lnAymxvv+IrJN/Zgw6pnsbBQgfT/hL19SybfMgQYoiUY2tDIyBPMeOADVv8exLdfP4ub25WJ2zp9Opl775vDil+++PMOxHWqoryc1594hMQT8XyyZAXdevc12uEAQC9dUeo5diyRSTe/yJ13jGTrpvvVKobKBfvXrNXWvbsfIfs+I6B/Z3oPeJyfft6huz73pfTgQy8QGNif0aOHXtRyi4rKuHP6+1hYmDNizIvEJ6TxymuLWfrz3r9+8mWSkpLFsBGzqampZX/Ql/Tv3+Wvp0coyp/Yuz+BoRPm8fyTo/nfW7eqDsQl1LNne8KCv6KHf1t69nmQX3/bdUXq8cDM5xk9OpBhwwKuyOtfSenJSdw7dhjmFuYs2bybbr37XukqKde4nTsPMmLkk7z6ygzee/cR1YFQTPKv6UQANGtmweuv3sOmP97lvQ9/xrfd3XTv9SADh8xm1NjnuWXyy4SGxl7SOrz63yc5eTKZIYFTKCi4eDtwW1tbMnZ0H2xtWzB+bF/atnFjxLAedO928UY7/omQ/fsIGPQIU28fwc8/vX7NrKSlXL2W/hLK7TO+Y+k3M3hoxpArXZ1/hebNm/HO2zNZ9/s7vPbGj/i2vQv/Xg8wcPDjjB77LLdMfplDh+IuaR3eeH0O0dHHGTb8doqLdaZSXIfCg/Zw9+hAbrn7Xt77+kesrK/+BUSUq9sPP2xg2vQ3WbH8Te6/f+KVro5yDbqupjNJKSktraBVK525yAZ9+3TgSMQ3JCdnU1ZWSVlZJcUlZUy9623+8/I9l7SOgYEDWPnbV/Tpe+NF7fGfOVPHlMlDWLx0O8/NuY21fwTTvasfLa2v3Dr4+Xl5rFu9ktUrlhN37ChLF73M+PFXx93Duro6cnKyEELg4vLPNtbKyMhl5ardpKfnYmNjTcuW1thYm9HSxpqbJg28JlYLu5ZIKXn93fUs+zWM3eufpmtn9ytdpevGhbahAQFdiTr8PSkpWhtaWlpBcXE5t93xOm+8/n+XtI7Dhw/k1xVfMnjIrdf9XdP83By2rV3NppUrSDqZwIcLlzBwxMgrXS1Aa0Pzs7MwNzfHzumfrYaVk5HO9nW/k5edhXWLFljbtKSljQ3WLVsyYsJNWLf48++jYpq6ujr+88q3rFq9h727F9Cpk8+VrpJyjbq2AquLvwPRMIjx7Q/XsGV7NOmZRaRnFCClZNKEviyY9yDu7g76QY+NAgDXbwjljXeWEx7yxYVPsTE1ENsQoPfUU69jZWXJhx/+x5B+EUYLqjeZll8vSFSPXnBuo6Cq4uJy1v4RyvIVu9gfEsf4Mb2YNnUI48f0xKq5Thl6wVZ6gVx6Abt6f2vzFhQWlvP0y78Sl5BFWkYhmVnF2NlaU1tbx8Sx3XjhqXH09PdqEAwrpSQ49ARLlu8Ds2YMG9KNoUO64u3tTEFBKavWBLP81yAOHTnFzTf2p1NHT8MFVSVlZeV8v3gX771xFy8/f2u9z0snwNfUoGhjgWh6wWl6QfS6wfU6ddH5O+kFRcs64/Uxs7K/8Lo0a5i3srKGB574hdNJ+axZ9gCuLo2+x3rHpKkBfcbK0Q2g1gtUvrC251yyzZ2XPrC6bEWT9/H628vZvjOK9IwCMjLzkVIy+eZBfD7vUVxdHYz/bYykrVq9l48/3cCB/b83zS+TjFfKyOIGgH6Qs8Fjj3+Es7M9b7/1oKE+FyH4+czuC88Lpn13QL+OZ+IbPCwqKmXN2gMsX7GT4JCjTJwQwLQ7b2Dc2H5YWunckDAfYTQ5XyeszFFnZe7YYv1A7MK8PD54+VkST8STnZFObnYWtnb21NbWMHLizcx86jk6dmu40KKUkoMH9rF2+VJsLJsxaMhQBgYOxdPLi/y8PP74fRXLl/9MXHQUI2+8CZ+2HagoL6O8rJTS0lLWLlvEc+99xLRHzu9xqxcoberytKbk1rtO0rtW0JvioRdYrRdEbkoZehoHYldWVPDKo/9HXnYWn/20EodGHcBurTKMF1R7TCddZzTQWJtrcgC1Tn6dcoTtgyqw+jK7pkciqqtr+WDeetatmIOvnxce7o6YmQnefn8lPQc+y//euZcZ9439006BlJJvFm7k1TeXsviHFy/LHP2w8Eg6dPCjrKwcG5tr8w5LdXUNsbGJHIqIIjI6kZycInLzigmLSGBYYDfuuWsovy6dQ8uW9aYt1V2ZIL/i4grGTfmcPj19+Oid2/B0t8fdzQ5Ly2YUFVXwzY97mXD7fHp08+SFOTfTpZMHS37ex4/LgpBS8n/3DMXSuiUrfz/A0y98j5Vlc4qKyxkzsiePPzyBieP7NNmkS56pYn9IHDcM73ZF3vP1KCe3lFvv/RFPdzt2rn0Ma2udi/RLpLb2DCdO5RAdm0b00TRijqaTm1/K5En9mDY1AHc3I52jq1xFRRVzP1nDxjWv4u3tgbu7A0II3nj7J3r0m8XHHz7I9LtH/2Ub+sWXa3nznaX8/NMXl6XeYeHH6NmjPeXlldfs1MiqqipiY+M5GL6dqOhT5OYVk5NTSHhEHCOG9+T++8ax6tfXsbG58iOZRQUFzJw8nt4Bg3nx/Y9wcfOgtZs71tbWFBcWsvy7r3jg5rF07dWHh+a8gE/bdqz5eQmrly3CzMycW++Zgb1Vc9as/JWXn3kS6xYtKCosZOSYcUx/ZDZDx4zH0qrh37GypoaIfXvoPUhNVbxYcrMyefLu2/Bt157v1m6hueXl3VyytvYMCScyiT6aSnRsCjFH08gvKGXKzf246/aBuLqoDSKvNdf0SERcfAYDR71J6M7X6di5XYP8h4+c4oFHv8TFxYFvFjyOn1+j1ZiEBVlZBcx85FMyMgv4adHzdO7asIy/9DdHIoqLS3jiydcICTnMyRabMQAAIABJREFUT8s+o1//SaaVY8wlGomQUpKenktMdAIxsYnExJ4mKvokx44l07atO316tqFXzza4uTpgb2/DwAGdtB2sjS2dWaczgnAJRyKklAy98Uvy8suY/7878fVxxNvTESurhrfiqqpqWLYijLmfbycjq5A7bh3A/90zjEEBhvXnDZ+XlJITJzNwdbHH1la/A1hZXopv59lMmzqYd9+46/zmXWok4m+NRByOSuXWe3/knjv68tbL4xvsptuw8Is/ElFaWsXjz/3KynVHcHe1w7+bJ/5dPfHv6kHLlpb8+vsR1m48TEC/ttw3bTDTpg40LCN99Y9EREUnMnLCa4Ts+ZD2Hfwa5I84GM8DD3+Kt7cLXy94Am/vetP+DH+vjIw8HnjoI/LzS1i2+CU6dNaZanORRyIKC0t4fNY8jkQm8POy1+nVe7TxjFfBSISUkrS0HGJiy4iJiSMmNo6oqOMcP36Cdu186dPLh1492+Hq6oCDQysGBnTR3xFYd4nzEUaTL8ZIxJkzZ7hnzFD+n72zDosy++L4Zxi6QUJpUBQRbFHBRuwu7FpXXd21O9duxe517e7uRkTsLkC6le6Z3x/DgizzuuIPg935PA+Pj3fO3Lnzzsy977n3fM9JTUlhwvwlmFlaU8rCEjV19XwpUdPT0ji6ezubly8mNjqKFh260KFXPyrVqIlIJMpNQSqVSnn7+jWmpUqho6NDeKr8Oe79hw+0quJAm+69GDR+am5Ik+Ik4stOIp7c82NUb0869OrHoHGTBdPZfo2TiISEFH4ZsYXDx/0wNzPAqbwFzhUscK5giYa6CvsO+3Ls1H1ca5ahT/c6dOlQM+faKk4ifnSKtRMhlUpZuvIM85Yc56e+7kwZ3wkdnbxdm8zMLBYvP8liryN0aFubPj0b4eYqywh0/ORdBg5dQf8+TZg+pbssH7JQuIIQX+hE/MXevcf4bdh0Ro4czbhx4/6/+N6v4EQEB0fStfvvvH4dgrOTLU5OtjhVkP1VrGgn2yETzBH9YzgR2dkSFq26wYvXEQQFvycoJI6QsPfo6WpgZWHIzMmtae6RdwQvQZ2sLEnBQnaFDf+SZBATk8CoCdu47v2CdcsH0NSjssKJoPBOxJ6D9/ltwiHWLOpI53aV5dvldl60TsTT5+F06vsHri62LJvnia6unF1hJTVSUtI5evI+k2ceYp1Xb5q4OxULJyI7O5vFy46yyOsIgwa0YNJ4z3zVqjMyMlmw+CBeKw/TqUNd+vRqTO1ajoiUlDl85Aa//LqcQT+3YsqkHqioKIO4rPwXL2In4i927jzHiFErGDd2KKNHDyzoXH5nJyIwMBzPbtMJDIzA2dkRpwrlcHIqh7OzA87ODmhqahQIZ/ok38GJyMzMZMvyxbx785rwkCDCg4OJCAtBV98AM0srRv0+B9eGeU6cRCIhKysLVdX833+hOgZCTkR6VhZx0VEsnjyWp/f8mLxkFS71GyqciC9wIo7t3s6SqROY7rWGRq3afrKfonYiHj0JolPP5bjXr8DCWV3y3aN9THJyOkdO3GXSjP1sXT+QBnXLo3AifnyKdTiTSCRi9LDm9PCszYTfD1Gu0jD69GxAr271cCxviYqKMhPHdaZ3j0bs2H2FgUNXk56eSUVnGx48DGDfzonUrfOPxbK/Gp6ebahduxodOv6KgYEBgwcP/m5j+TvnzvnSu+8cRo7owtgx3VASFW6C/lEQi5WYMKoZMbFJvH4bRVBwHIFBsfjdf8fl6y85d+lZPidCSUkJVdWiSVpmZKTLtk2/sn7zeZq1m8fJgxNo0dimSPr+L5CdLWHSnOPsP/qQC4cHU8nJ/Ju+/qVrr/Dsv4WFM9rSr0etT24yZGdLyMqSoK6mwv2H72RORDFALBYzfkwHenVvwPipOyjn/DN9ezWmZ7dGODhYoqqqwtTJPejb24PtOy/Sb8BSJFIJjuWtefrsHYf3z6B2bcfvNv4ePZrg5uZMuw6/Y2RkSL9+Xb7bWP7OyZPe9B8wn3FjuzNqpCciJZvvPaQvQkVFhcFjJxEXE827t68JDw4mNCiQp/fv4nv9Ct6XL+RzImRzaNGEGhoamzB3w1b2bFjDLx1asPbQKarWrV8kff8XyMrKwmvqBK6eOcnm4+coU/7bhteeu/iIHv3X4LWwFz083T6piZDNodm5c6jMiVDwo1OsnYi/KGmqz58bfuXJ0yC2775Kk9azMDHWo2e3egzo3xxz8xKMH9ORcaM7cPfeG67ffMafm0ajp6f1vYeOlZU5vXr14smTJ997KLk8eeJPj14z2b93Fg0aVJE1SounE/EXnXqv5+qN1wDo6KjTqW1V1i3rTp3aZb7aa2ZmZrFs5UkWeh1n7u9dadzIGfjvpKT8f3j/IZXuvxwiPVOE74URGJXQ/uZjuP8ohPatKskcCAESElJZseEsy9ecp1aN0kwc3ZIObYpf7n4zM0O2bxnLo8cBbNtxkUbNJmJWypCe3RrxU//mWFqaMGlCNyaO74rvnZfc8nnBjq0T/zGL07fAxqYU3bu15cmTr5tatjDcvfuSfj/N49CBOdSpU/F7D6dIGOrZjod3bgOgo6eHR5sOzFyxnuquRVvz6GMyMzLYvsqLHWtXMPz3OVRxFTi5UlCA+PdxTPypF2KxmJ0Xb6Bn8O2LQ969H0DXTrVlDoQA8fEpeK05y8p153GrZc+0Ce1o37r4zaH/VYqVE+F3L5BqVe25fO05brXsCQ6JA8DSwhCfu0+pV8eRzu1rM/LXVnj7vGTDH+dZseY0u7eNoXYtB0QiEdWr2VO9mr1gSMH3oEyZMpw6dep7DyOX8PBYKlUqk+dA/Au4fGIUge9iuX7rDde9X3P91hsOH3+Aa007unWqQU/Poks9m5SUypWrD5g0fQ+lSupz+8psStuVlD2oKCD7SaRSKWcuvWHY5LO0bGzPotmdUFH5Pmk8y5c1ZetuX7mPJSamsXL9ZbzWXqKJewVunJtEubLFP9VsRWdbFi8YwIK5/bh85REb/zjDijXH2LtzEjWql0MkElHTxYGaNX+shAH29rbcuHnnew8jl4iIWKpXc/jXOBAAuy7cIDjAn7u3bnDXW/Z38cQRqtR0pY1nD1p27lpkr5WcmMiNyxdYPXs6pays2XHxJmZWsnDgwoYt/deQSqVcP3eaxRNH06h1O0b+Phdl5e9zv1O+nDkHj8r/XSYkpLJ87VlWrD1PiyYV8bk0nTKlTeXaKvhx+XHupD+DMZN2svePPvw6agtec9ux++A9ALp2qMKqzbdwsOvFmImbaeYuW+DS0lJYPLsDXXrM45nvLHR0Psr+IC+2VElgV00wtaNA7LhgDLr82Ffn8vHcvetD6Lu9mJt/lG5N3tGfUGy3EELOkpCuICuR5A8RqChlQ3rkP/efXQQ760Jx7ILtAp9HWpj89vQIRICtCdi2NaF3WxOevCjL6OkXuenziqZuJZDG5winBeL4hRApiUlOycTbL5zLt0K46hPCo+exVKtYikm/VcWzrSMiURQkRn26I6H3VFidg1zbQv7M1c3ktwt8Z0QatvLbheJZxXL0JSIxDx8FMGbiVoJDYli6aDCtW9YofEpAoe+1WGjHvOB1jIlJZO6SU2zddZWxw1uDat7ClpSUxqp1Z1i68iSNGzpz7dwMHMoKLHw/0EZFLpIU4Tnko+GKRdC4oSONGzqyd98VOnedxVO/xXl6CaHva9bdwo1HdFx+u9BvX+BzdHbSwcfHj8iI+5iafrTjKnkrZ4yFnLMEvzsCSNJJTkpERUWU/1pn3JJvL6STkoeKQD0GlYtymw3FQro9+Tv6FbQEtCg5mgvHSmVpWqksDO7Po0ePGDRsJPdve9OweV5ykLRM+UKMN0Lah+xsUpKTeOLrw33vG9y/eY2AF88pW6kyvUZPoF7LNohEIuLTZdcyRaB/ISRfUfepLnBzLtQupH1QE7AvjP5BIpXy7MF9lkwdT2xUBJMWLaduk+aC9oXVVhRmLo6Kimf2ggPs3HudyeM65vs9JyamsmLNKbxWn6SZR2VuXppD2TICc6iQJlBobVHwzSlWwurYV5MxNCpBSOgHwiMTKFvaGLFYCS0tVaLisjE10SUuLjnXWUhMTMOwhB79h2xBT1eDZfM/2ikpEidCKB94IYWswMzZ27l85QEXzi7ME1h/TSdCYCxpSbG41JvAiKEt6d/H/Z/7LwonorAIXQMhJ0KSlu+/kdHJWFVfR0ZGNlWcjHEqWwIrCx2szXWwMtPO/VddXf61S03LwvtuOFd9wrhyK5QHz2KoUsGY+rXNaVjbgtrVSqGpa1C491SMnQi5ToHsCZ9lHxoay9RZezl19h7TJnbh5/4eMpEuFJ0TIbjo5F3H5OR0vNacZdmqM3h2cmXq+I6UzEnbKpFIWL3+LLMXHKZhfUemTeiEY3mLnDEKLHSFvO7fRFiduAUQk5GRxeOnwVSpZJ0nRhZKHiDJoGf/lZibGbJgdg9ZW2GTUAgOSuB7XEgnAmDK1I3cufOc06cW570neZ/NV3YiUlLSqFZzCFMm9qBH94/m0Az5CQiKxokQSC8suBEjEBYkJC7/m3A7JCQEW1tbsrKyqFClGvblK2BmaYWZlTXGZuaUsrSipLllvrStaVl5n0VaSgqP7vhw98Y1/G5e4+3TJ9hXrERV17pUcauHY7UaiAV0FcXZiVATSJ6ioSJf6f65N/rhIcEsnzkVnysX+WXCVNr36vePpw9CDk15bYF1NFMg5PqjOTcxMZWlK46zYu0penatx+RxHTHJSdsqkUhYvvok8xYfxqNRRaZO6IxDuRydm9A8X5jEIoBIp7dCWP2NKVZOxK3Tg9i44z5jfmtA1QZLUVNVpnplSyRSKXv/HEjnPhuZ/3t7Dh27D0CHNlWwMDdCXV2FCi7TOH1wBFUr52RI+sGciOzsbBo3HYeNdUnWrBomqzvwjZ2I9PQMhv7qRWJSKnu2jfy8mhnF0IkASE/PIjgohnehibK/kASCcv59F5pISEQSBrpqWJnryP7MtMnOluJzL4Inr+KoVN6I+rXMaOhqhWv1Umhp5l8ERKqFzOb0H3QiIiLes2bDWVZvOMPA/k2YMKZDQZ3SN3AiEhNT2bDlCktWnqaeWzlmT+1EGfu8Cq5RUfH0GbiGD/HJbFw1EKcKf6vuWgydiJDQOKrXm46yshKd27vg2aEmNWtXlv+bl2QQGfkBJ5cxXDo5DWcnqx/SicjKyqJBo2E4lrdh5YoRqKmpfnMnIi0tg0G/LEMqlbLtzwn5H/wXOREgq3Nx7WUQYUHvCA1+R1jQO8JDggl+F0h48Dsiw0LRMzCkpIUlZpZWGJmZk5WRyWO/2wS8ekFZp0pUc6tLRdc6VKjmgvrfqlILhS0pnIg8osLD2L1xLfv+2IDnT4PoN3wMWjqft/YUpRORkJDC2o1n8Vp1EveGzsyc2hU727zThYiI9/QasJK0tAzWrxyEY/m/ZU1TOBHFlh/wvF0YO2tDqlQ0p4ytMQumteLqrbccOv4YgGr15mFtaciH+BTq17FHJBJhZ2OEiooaBgZadOtUk72H7uQ5ET8YYrGYY4dnMWDQElzrDuPA3umUtvs28YFZWdls33mBGbN3UsHBnJ1bhn+TonvfEzU1ZUrb6FPaJv/i+1c4k0QiJSI6haDQRILCEgkKTUQqhYWT3ahe0QSNnFMKkdL3idcvrkRFJ3DouDd7D3rz4FEgHdrU5P6tRVhZlfzmY4mJSWTl+kus2XgR9waOnDo4msoV888P3j4v6dLLi17d6jJzape8E5JijoW5Ic/uzGPM5N14rT6L1+qzWFka06WjK56d6lCtaul8c4CpqT6d2tVi36FbMifiB0RZWZmTxxfSr/886tQbyv69M7GxNv4mr52ZmcXWbeeYOWc7VSqXYcfWid/kdb8nampqWJcug3Xp/Mkp/gpnys7OJjYqkvDgIJlzERSISCSicbuOlKtYGXUNWarP9GxFaEphiImK5MLRQ5w5vJ9XTx7TpF1HDt68i4nZt81eBxAdHc/yFQdYt/kcTRtX4tzxqTg75Z9Dr914Rtfey/ipTyOmT+6CsrJizfw3UaxWxGNnnjOorytLVl+hfw8XypQ2onplS9b/eYusLCmODqXo+8tWxGIl6ruV5dipR0wZ1xpNTVX2Hb7DmUMjvvdb+CQ6Oprs2TmF1WuOUrvuMNavHkb7dl+vWqdEImH/gWtMn7kdU1MDdm4dj5vLj3mD8K1RUhJhZqqFmakWtap++xvcfxOxsUkcOnaXfYd9uXMvgOZNqjJ8SEuaNamMuvq3rToNEBIax5KVZ9m66yad2tbg1sVpcgV9QcExdOi2hI2rB9G6xb8vW4ihoTZ/rP2Zrp1qMWj4FvT1tUlITKVr7yUAtG5RA7faDrjVLI2+vhaHjvpy9ez07zzqT6Onp83BA7PxWr6PmrUHsXnDWFq1qv3VXk8ikbBn72Wmz9yGlaUJ+3ZNpVat75fy9kdCLBZjUsoMk1JmVHKplS+cSUHhiIuJ5sKxw5w9fIBnD+9Rr0lz+vw6EtdGHrkhY1/zxOXvBAVFsXjZIXbsvoRnR1d8r83Pd/LwF/4BkXTqsZhtG3+jWZN/T6IWBXkUKyfi0MlntGpeibq17FBREWNtYYi1hSG9u1Zn7PRTHD7xgJ96uVGnVmmueb/hlq8/ld1mIhJBlYpWVHQqROGh74RIJOLXoe1wqeFAl+6zuOH9hPlzfvoqO6ANGo8lJSWdFcuG4NG4qmznsbBH/QoUCHD52nMWLDvFLd+3NHV3YvBPDTm6ZxiaOgIhGd+AFy/DcfWYQ78edXjsMwtzM+GxdOu7nJG/tvxXORBHjt/DvYFTvoJPTdydeewzl6lzjrNr3zXmzuhJJWcbzl96yJ87LjHw1zWIxUrUrG6fF8P8AyMSiRg5wpOaLo507f47N24+Zvasn3J3QLOzs5k2YxcTx3VizfpTVKlkB8Dzl8H07+PBvIUH6N2zIbd8ZCljXd0qs3X7eSaO78aadceoUlm2866iImbCpE1IpbBu9XDcG1X9Pm9Ywb+WW5cv8sfyxTy5dwc396Z0GziEOo2b5p7ifA+ePA2knvs4BvRrytP76yhloi5o26XnEiaN7aBwIP7FFCtNRJP6tnj7hVK9UincXCwpb2+Mg30JypUxQltTzKNnkQweJ6vcvGN1W+ysDZAqafDqbQz6uhqYmnyUa15erJ2QsFBFQCQrVJFWKA61kHF/sTEf6D1wA2npmZw7Og6xWKnwGYuEYo6Vdejs+TuutSswckTnvHYhJ0KovTBx31+gFZGLUNy7kD5DqAKznOxT0qzkwo1FAJFIoGCdUhE5g5LP39WTCtT4EByjWGCBUhMIr9OwyfffrKxsZs7Zw+at51k4py/t2tTKVwW5UJXeC1vNXLCiryzeune/hTiUs2TShG6y9k/8Jh0rD8Vr0QCaeOQsgPKqsOfYym8vnJ5FpN3jq2siGtcvi4/fO1yqWuJW0wYHexMc7I0pW9oYbfUM7j8OZ/DYk6ioiNmxuj02VvpIUOHlmxiMDLUwNsrRrAh9LkL6gcJmOBKikNc6Ouo9PX/Zh0gk4tSe3igpKSEVqSASiYiMSsTEWJvkZNl3SUtTTFR0EqYmOsTGJaP7cYIOQ62C9oaWtOu6gibuTgwd+JGAWuhzzxTQPqgJaJDkrTuCld2byG1+nih/LEK71pkCoUVCOgR5M0u6wIlDhkDfQvaF3VkXss+SfH4/qmL5c6KQNkFIy6AqpH34zKxNWZmZrJs/i9P7djF8xlzqN2+NRo5mRGgsKgKvKdReVv2q3HbhOVHW3rXHXKpXs2fMqJz7BoH1WCqVYu80hM3rhlK/bk7xzcLO20LzjEIT8cNQrJyIM7u7EhGdiqG+OncfhfPidSwv3sTwyj+WEgYaOJQxoqydIZdvvsOxrBEHNncUXryKgROBNBuJRELj1gto1awyo35rXqROxIMHb2jZZiJvX+3MCytROBGFG4sAP4oTITJfWjSvp+CLkCZuK9j4HZ0IadxSkhJTuHjtNfcehfLidTQvXkfx2j8GI0PZHGpvZ8jF6wFUq1iKnWs7yJ9ziokTgSSD7GwJ9dtsoluHigz9qRaJyRJSUjNp2HYdXnPbsPvgAwB6dKzEsEnHuXzkZzwH7KKZezkAnr+MZOHvLWjYbiNec1qx+9BDACaO7cSH+BQ69VrNm4cLUFX9h4xiCidCbvuP7kR0LF38678UZ6RJO+U0KpyIH4ViFc5Uv7Y10XFpWJrr0bppudx2iURKUHAcL97E8uJNLNkSSeFzIP+gKCkpsWFFf2o1mkG7VtWwK110IVlOTrZkZ2fz6lUwFSuWLrJ+FShQ8OOira1G2xZOtG3hlNuWnS0hKDCEF29iePE6lsxMCepqxWp5EEQsVmKTV3vqtt5A66YOmJmVQFtbDa+5bajvWhprC9nNurWFDl5zWmFirM38ac2xs5bVmwgMisPEWBuvOa2o72qXa29na4xEIiU5OR3/gGgcyiluNhUoUPDfolitEtMWXmXOpIK1C5SURNhY6WNjpU+zRv++m+EypU0ZN6IlPw3dzOE9Y9HX1/rnJ30GO3aex6GcFc7OdkXSn4IfF0lIwaQCXyOc6fmLYNp1nsvLx2uFB/MdwpmCQpOo4jKE18/+wNBQN++Bfzgd7N57MR7ulenXp3GhwplE2j3k2/6giMVK2FobYGttQHN3++89nCLHwd6Y4T+78tOIQ+z7ozejphxn5fx2TJ13hgZusjVjz6F7jB5Sj/7DDjBhWAMO5GT+a1yvDP2HHWDlvDZMnXeOBm6y+fJNyBNCwuKoVsVG4UD8BzjsH1Gg7WuEM718/JDpQwaw5/oduZuh3yuc6e2bYGrWGc7bF3/mT8UtmFZbRseuC+jYrjbdu9Yr1Lwt0uz0yX4V/BgI3EX8mDx5EU1a2n8zw8Oo35pRzr4k5auOYtvOq/y/YWiZmVnMnL2NWTP6/+vTuSr4dthYmxAUHI1EIMf79yIuLhGxWImwsLhCPc/X7xU1Xcp+pVF9e7bv9SM9/b85h477rS5W5vo4uS3BPzC2SObQOYtOMGtK+yIaoQIFYG5tQ1hQ4P/9/Sxq4t7L5tDwcIF6JwL4+r2mpsu/b2NCgYxidRLhez+M2/dDaVzv83fOQ8LisTDTIzwiAT1dmVAuPiGNUqaaBAa9x8JMl4RE2W6nnqGWTLz8A6KsLGbd8n7079OYoSM3s2zVKawsjfjr/l8kEiMSyXYUe3StT9vWLp90DrZtP0tpOzPq1q34jd6Bgv8CGhpq6OtrER7+HnPzEt97OLlUrlya5Ut+oWmrSVw5vwh7+3/OMhQTk0BUdDwO5Sy+wQi/DcMnHsbJwYQqFQuXZanA/GmiRmDQh3zzp66OGsEhcdhaGxa0N9ckMCgWCzN9EhLTcuzVCQmLx8bKkPCIePR0NXLsUylVUk+ufXBILLbWJeTM51oEBsVhYaaXbzwhIXE5/cvsV85rxflrgfy+8DzV3ZdTtrQR9x6GAqCpoUxzzz8oZarLyfMv6Nm5MgARUYn8saITr97EMHdKU95/kJ1I7TsZiLOjBTVr/PtOvxV8P7R19VBRUeVDbAwljE2+93ByqVG9HIvmDcCjxUSuXVyCre0/pz4PC4sjOSUdu8+wVVA8KVZOhFkpPYyNDeWL9AQqdg4YtZyta3vTbfAhmjWW5e8+c+EZe//8mRY91uI1rwu7D94BoG/XKtR3K1OwE6FKyEJC7MIKhQuBi5MqPmcGcenaG5JTMnJ3K6QoIZVKSUxKZ9LULaxdd5jl89rhUFq3QB+ZmdnMmfsn29b/BClvP2/sygIVUYuicnJhxZKF7V8iILiWI0YXqRaycrQQha00Laeq9ie7l5NxSZotvMMszSoojJQKOZmZ8kOIBN3rvwnUbS00CXhyGXPjevLt5SUkkHz6SLwAgkJ/IfG+Mt1am5H83oP67iNYPq8jndpWRiQWDq1KS3iPoYEGlaoPoWeXmvT0dMHcTI7Y9RPfjdOnvUlKTicpOZ3k5AySktNRUVGmd7eaGBsVsqp5EWBirCOsdRCoVB4Tm0S3Xw7RzL0CAGcuPmXvn4Np0XMjXvO7svvAbQC6dnRh7qIj7NvUjW4D99CskWz38cyl1+xZ3ZgWXQ6y7Pf67DkqS53q2aYsm3Y/YfUcd7r9cpJmDWxk9lcC2b3CgxbdjrB0Wh32HHsts29tz/pdT1k7pwHdfj1D0/qyolZnr75jl1cjWvQ8wZIpruw9/gaALq3KMHWxD0fWudNz1DWa1JW9vyveIRxYVI2Gfa5S0aYEN+59AMDZwYg/70fSpq4eU+acYd3mq7SoVwp1VSlTB5XDQgzpQaAJpGdks2DxdXZ7NSAzNH9YiFhDG3koGVSWf91VBdIMy1vnBCpNP3gv/zcrFqhKnC1wUihUJVoohEaemFnItrBhOEJjFEJIWK0q/vyTdqGxAGjJWRuEKlMLITTG+PT8n5+ppRWv3rzGzaRgCKmmwBpVVjNE/otmv5LfnipwXyMVCDmSZtG7UxmSP3hQt+FwVi70pF2ryojkyusBkZiM5Bi0tVSo7PIbvTxr0sPTlVIlBe4lBDh9+qZsDk1Kz51L1dXE9O7qQgnDogntVvDlFKvsTPZ2Rhzb2RsHezneuYATERMTTwlDLZatucQfO25xfM9g9HQ1MDTUJTIqARNjHZKTZT9gLfVs+bv3QrHQ38GJEIw//Og1MzOzWbXxBnOWXqBv1ypMG9MQLU1VklMySErO4MCxJxw5+5ZLJ8Z8sp98/EhOhNA1kAh8TkJZUf4hlvOzxlJY+6JyIrILTvTynAix9SoAsgOHyhmLwOIqMCcoqX/e5N9jyBGaNSxNrz5t5Bt8JyfiL276+DN41F4szPRZvaQ7drbCVY0lEgk3fd6yY68vh0884PjeIdSsbpvfSJpNWPgHbvkGcOuO7M/7tj8ATd0d0NYCcDSfAAAgAElEQVRSy/cXGZ3E0VOP6Nu9FmN+c8eslOy6ivSHfvXsTNaWhlw6MhA7GzmnRELzGbKCgTv23Wbzdm/2/DEAx/KWREbFY2Ksmzd/aqkRFfIWUxMd4t6noKMtc9ASk9Ix0EwmMjoZEyNNklNkDq2WpgrRsWmYGmsR9z4VHW3VHPsM9LWViIxOwcRII599ZEwqJU20iPuQho6WLB49MTkTA20xkTEpmJTQIDklK8dembCwOEoaaxL3IT3X/kNsHIZ6akTGpmFiqEZyanZu/1Fx6ZiWUCciJo0dxwLx2vaa7i3MmTKoLOqqSiSnZZOcks3+c6FcvZfAiU0FsyIV2olQF0iW8QM5EYLtcuYKoQxPQtmZhPouKieiMElW5DkRLaxkTt65kIKhkIV1IsQCY0n9W4aqGT/3oV6rtnTqWlBbVWROhNDm6CeciL+4cv0lv4zaTRk7Y1Yu6IyNtZz5JGculkgkXLv5mh17fTl+5hGnDgynWhWb/F1LpYSGveeWrz+3fN/ic0f2L0BT9/J586e27N/wiHiOn3nCgF61GTW0ISVNZZulIoNhiuxM35hidRJhaa7H24A4+U6EAJmZ2ZjaT0BPVwM9XQ1qeyxmzx/9mblgEwe2DcKz70aaNJKdUNx74M+axcVfzKOiImbkkPp061iFSTOPUaLsHCQSKVqaqmhrqaKro8af637+3sNU8C/F1kqfgKAP33sYgrjVsuPe1XF06beFwSN3ce7IcEFbJSUl6rraU9fVnjYtKtLacw2TxzQjKjqRN/7RvA2Q/YnFStSqYUvtGrbMmtQK97YrADhzYEjBTkViAt/F0rTjKtb/eYOIl/PQ0REu2FSUWJrr8zYgVr4TIUCHHmv5EJ/KsxfhmJvp06XPBgxLaHNk51A8+67PnT/PXXrG2vlNaNB2E/OnNuHQyWey57d0ZNWGqyyf2YCuv5zCo57sBOH8tXesnd+YBp32MX9iHQ6dlp0gdGhehg3bH7Bwshtdfz2LR10rmf31INbMbkAjz0PMHe/K4TOym4z2zUrjtfEeq2fVpduwC3jUkYWfnb8Rwoop1fHofZbZo6py5HwQAK3rl2DaCl92L65Jrwl3cK8lW0/uPfvA779WoOmAq8wa5sT7hEw6NrEgIDQZC/dzSKRStDWU0dQQo6ejwp8LG/x/H4YCBQKUtLIiIvjd9x6GIA3qluPhzSl06Lme38bt4/jeXwRtlZSUaFC3HA3qluPIyce06LScyWNaEhGVwNuAKN74R/E2IBoVZTG1XUpTq4Ydc6a1p1GrxQCcOfhrwU6l2bwNiKZpx7Ws+/MGES/moKkpEEWg4KtSrJyI+q62XPX2p2UTh8+yl0qljJp8EFNjHU7sG8KTZ6EsXnmRFeuu4NGoPDo66jRp5EiNqjYAaGv8uxzYkqa6/LGiI+sWt0VFRZz/lEUo044CBf8ntlb6XPUO+uLnZ2dLEIlki8/X4vnLCG74vOXyiVGf/ZyWTZ3Zvr4vew75YWttRNuWlShta0xpG0NUVcQEBsURGBTL0xfhuc/xvu1P+XIl0dVRJy0tk7T0LM5eesnv809hYabPltW9vpkDAVDfrQxXvf3xaPh5YnGpVEpgUBzWVoasX94DsViJDVuuExoej7a2Ws78mXcyo6ujRrNG9thZG9LAVdZuZ22ISxVTdLRV8KhnTY3KeXOPrrYqzRrYYGetT4PaFjn2+lRxMkZHSwWPulbUqGjyUf+qNK1vjZ2VLvVryXQddla61K5aUmZfx4LqH9trq9Kkrhm2ltrUc5G9rq25Gh6uJuhoKuNey4RqFWQhasrKSuhqqeDhWhIbCy3qVpPtQNd00kZDTYyKsijfHKqq+/0qryv4d1PS0po3Tx598fOzs7NRUlL6qklTnjwL47ZfADfOfP4c2q5VFVSUxRw46oedjTFtW1ShjJ0xpW1NUFERE/AuhnfBsTx+mneqcsvXn/JlS6KTO4dmcursY35fcJrStkbs3NBb4UB8R4qVE9HAzY4x0099tv2i5efwvu3PY+/J7DtyjxpVrJn/e1u69v+DsvYlWbLyPP17ueJ3X+bxf+7CWtzILYKkQME3oF4tK6YtvIpEIim0I3Dp6gsGj9xFGTtjDm4fhIZG0S8OCQmpdOr7B0tnt8fJsXAC46aNK9C0cQVCw95z+fortuzw5obPGwLexWJjZYiNVQmsLQ1z7UdMOsTzV5GkpGSgrq6CmqoyFcqXYt3SrjSqX+4Tr/R1qO9WhhkLPn8OnbP4NCoqYpo0dMQmJ6yjqXsFNm67SYtOK9i1+Wf87gUC0KZFZVZuOs/oIXXYuuceNarInIJjZ54zuFdFlqy/R/+uFfB7KNPQtGlix/odjxg9qBpb9z+jRiWZ+PLYubcM7F6BpRsf0K9LefweR8nsG9uwfudTRv1cma0HXlCjkswpOHY+gF96OrJ08yP6dXLA73E0AK3dbVi57Skj+lZg+5G3VHeWnb6cuhbK8J72LN/xmt5tbbj3TBbu2NStJMu3v2Z4L3t2HH+X61zcexZPQxeFw6Dg21Gxliv71q5AKpUW2hE4d+4aQ4ZOxtHRnv371vI1yr28f59M5z4bWL24K+XsC7ch2bJZRVo2q0hwSBxXrr9k8/Yb3Lj1hnfBsdhYlcDGyghry7yT0t/G7efF6whSUzNRV1dBXU0FZ8dS/LGqO/XdFFmfvjfF6u7Spaolz15Fcf1WAJWdzNDRERZFnjr3mOXrLtG5bRUA/ANjMC4hi1Vt26IiR048QE9Xg1bNnHkbEANAaSsdhVBHgYL/E3s7Q/R11blzN5CaNT4vk1pUdAKjJx/kmvdrvOZ1Zv+Re7T2XMPR3b+gpVWIuhKfQCqV8jYghrHTjtKobll6dXX54r4atFyKfWkTmjRyZEDv2lRyskBFJS+eeu3m6wD4XhyTm/wg92bga2qm/gFXF1vuPw7F2zeQio6l0NbOu7aB72IwKqFN3HuZPsXb9y2rN1zh8olReK29mLvb9/hZKLs3/0zNRnOZvfAEJXLmVaMS2jx8GkFiUhp+D0Nzr4ffw1Dae5jw8Fk0gcHx+D2SORFGhuo8fRlLYlIGfg8jUVFRyrGPpK27JQ+exRAYkoDfQ5kTYWTwl30mdx9HoZpjf/dxFO0bW/DwWSyBIYncfZxn//B5LInJGdx9GouKiuz6P3j2njYNSvHoZTzvwpK59/R9znjUCApPJjU9m4DQZIwMZNcmKUmgVokCBV8Jm3LlESsr8/LxQxwqCmhp/kZERBSjRs/i1q17LPeazrbtB2nbbgCH949DQ6Po5tA3/lGMnHiAVs2c6dKheuH1gjm4NZlPJScLPBo6MqhffSo6WaCsnDc3rtl0GQC/K+MLzqFf+JoKip5iJayWJmxikdcJ9h2+x7OXEVhbGrJldU+Z0DGnKNX7Dyls2+PHnKUXOLK9H67V5O8ghYdFUq/9Lob2rcqIgdUBkGbKF7eK1AQEpYUVVgsJiwuDUN+FKeD1qX7EhcwYI/he5bQLjfEfCn59NoUoBib4ukKiMqGiZ0JjL6y90HUsTP+Z8QAEhyYSFpmEeUltLGtsBODh+Z7Evk+lrJ0BZiVzhJ8CwkV5mZ/gE8Xp5Jw2TF5wk6yMTOaNq1mwf0ne5yGRSNly4BVTl/jRs30Zpv1WFW0tFbKzJfQffw1lJdg41+2zxyJv7BHRqYxZcI8bd8JRUhLRpJ4lK2fWRV1NWbAfkXLBIlIicd6pSP32u5g+2o1GdaxBJMe25BzZeCKnyelc/mctMpn+1YXV0vcrmLvoOIdOPuX562hsrQzYuqoT1SqZQ3YKsXEpZGZJ2L7/MQtX3+LUzq5YmigVEERHRHwgM1NCPc+jjPqpIoO6O5KYnImeppTImFRMSqjnEzjHJoKpkSax79PQ1c4TRBsZ68kXUEclYWpc0N5AR1mugFpmr5Fjr5prr6+tJHc8UbFpmBrlt09JzUBPp+DJl1DWM7GG/LlSWVtAs6chJKAWmHPlCqsF5lCBApGv0urLbS+ssLqwYmm5fQvcawjdgwgJpYXE4kIoFyJb1F9F38JDgoiNjMSklBnNnWUZGw/cuMuH97HYlCmLcUlZcUGhbE7ldeS3xxVMkgdATEbB97pg0hjM9bSYOXNm/gcyTuf7r0QiYcOm00z9fRs/9WnAtAnt0dRUIysrmx79V6OvI2a9V9eCLyqQWESaVrCoXmh4EqNmeXPdJwhlZSWaNyrDqnnNUVUVC69R8r6/H819tZquZvGMltSpZSO/2FyJsbLxxC6S378cRCXGKoTV35hidRIBMHaYB2OHeZCdLeHYqUe08lzH+mXdsCilydo/vDl88jEtPMpzfNdP1KxuLZjFpZSpNhf3daVe+11oqCszqPfnefsKFPzIvHr7nvqd9mFmqkV4VHJue9v+xwgMTsBrRn2G/VTlq4+jezsH6nXYx/M37/mpiwPNG1ihrJy3+GdkZHPvaSwTFvqSkSHh1JZmVHbMO8IWi5VYMd0VB/d9vApIoKxtwVTFn8uhc+9ISc3i6v722FrqFEmccMvGpek34jSLpzdAXV2N8vZGlLE1/Ocn/gBMGtmASSMbkJWVzeGTz2jm+SebvTqgppxFn2HHiU9Ix8G+BFbmulhZ6NKh3z6mjXBhz1FZlhfPNmUZPeMq53e2xtRIg+nL/LjmG07M+zR2LHajSd/zLJ5Yg30nAwDo3MKGdbtes2F+fboNu0DTerKb6bPXgtm7pgWNPA+x7Pd6+frfvPsJK2bUo9uvZ2laXyasPns1iJ3LG+EhJ5Xrsk0P+HNxA7oPv0TTehY5/YewfXEdmvb723ia2zB2gR/n/mySL/Wrf1Aia2fW+kafgoIfFf8XzxnUrhkmZuZER+Tpm4Z170BY0DsmL1lJl/4Dv/o42nTtSd8WjXj06BEDBgygWbNmKH+UDSojIxO/u68ZM2EzAJdOTsLZySr3cWVlMWu9+mNfaSQTRnpgKy+D0mey59hLsrIk3DrZH2tLvSKZQ1s1caDXkL0smdkSZWVlnB1LYWtdPOZQBXkUu5OIv+/A3nsQROtu61BTFTOob236dXfBxPijnR2hVJDZshust4HvadBxDwsm16dba/mhF4qTiC/oR3ESUTj7IjiJCA8Jxa3dXib95sKA7s6ybs2XAuBRzwqLUjpsWtw4bwH4iicRAAlxCRw4/ZbNe18QGJJI55aliU9I58GzGF4FxGNjrsPgnuUZ1M1BsMjj3FV3eeEfz58L637WWOSNvd+4GzRws6K/Z/nPfk//dBIBcNU7iNEzLvPsdSyLproztH/1PNsf+CTi73Oi771g2vTcgbaWCs0blWZI32qUMNDAP+gDNauaceHSM+q6mBEYInuetbkOV7wD8ahjwe0HUUil0HnIWYb0cmLcAAcueIdTr4YpgaFJMnszbW4/+kBDV3NuP4jCzlLmEPoHJ1C7hiXnrwdRv6Z5vv6974TSwNWc2/cjsbPKsQ9KwKViCc7fCKG+ixmBoX/Za3PDN5RGrmbcfhCNnZVOjn0iNZz05YxHi+t+UTR2LYXvwxhsLWUnc1ExKTiVLVgHRHES8d85iYgND6N/i0YMmfQ7LT27A1CthOzaVq9TH1v7skxesjJ3Dv2aJxEApSRJ7N27l02bNhESEkKXLl2Ii3nMg4f+vHwVgp1tSYYNbcPPPzVDKTtebh/TZmwjNDyezSu753+gECcRnoNP0rpZBXp1llOc9gtPIgAuXnvDmOknefE6mhXz2vFz77yTa8VJRPHgxyzPXAiqVrYi8NEs3tydxPjh7vkdiM+gtI0Bp3d2YsS0S1z1EcizrEDBD05GRhYteh2mv2eFXAfiY3S0VJk1tjavAz7w2v89bwM/EPehcLUpCou2lgp9OzlwfX87zm5rhYGeGrWqmLJmVh0ifHvy6ExHhvR0LOBASCRSHjyLRSqVMqSnAxduhvP87ZenjPV9FE2NSv9/5deHT6MIDM5bqOu7WuF3tg+VHE2p6PjjVJYtLC5VLQl6MJb+3Svxa//qXL4ZyIETzzHQU6f/iBPUqlqSqYt9ePsunrfv4pm2xAfXqiUZMP4KBnpqPHgWQ5+O5Vi2+RFdh1+ldmVjfl/+AP+gRPyDEpmx4gEulU1y7Q+e8efgGX8M9NSYON8b12qlCvRfo5IJP429JLM//ZaDp9/K7BfcxrVqSaYtu8Pbdwm8fZfA9GV+1KxswoAJ1zHQU+XgmQAOngnAQE+VodN9CoxnzppH1K5szMDJ3ujrqXLo7DsOnX2HtlZBx1HBf4f0tDR+82yH54DBuQ7ExxiZmDJw7CTevX3Nu7evCQ54y4e4grUjihIdHR0GDBiAj48Pp0+fRk9PD7fajmxcO4y4iL08fbCOQT+3KJDAIjtbwoNHgUilUkYOacjRU4954x/9xePwfRCBSxX5xSg/F6lUyv1HoQSF5M3l7vXKcP/ycMqXNaWiY6n/q38F34diF84kDxUVMUi+3B9ycjBm15pWeA45ztX9nShXWk5VWgUKfmDOX/VHQ12ZycMLahAATl0K4MqtEAz11ZFKpSSnZmJkoMGj8wWLGX0NHO0NcLSvBuTXRHxMVGwqq7Y+ZefRNwSFJfP6chesSqozrE955qx+xI6lAhWwP0Hch3QiY9JwtP+y33RySiZ/7nvGH3ueEB2XRmamhLO7O1OpgsxpSE/P4vHzKCo7Fe+UyaqqyoUqyvV3LEppM29cTUbNuol/sMDprwIFPzC3Lp5D39CQXr+OlPv45VPH8LlyEV19faRSKSnJyZiamXPgmu83GZ+zszPOzs4FNBEfExH5gRVrz7J99w1CQuMIe7OKUiU0+W1gPWYtOsvWtT0L/bqR0cnEJ2Zgb/dl4VCJSen8ufsem3f68T4+jczMbM4fHEAFB9mcmZycwcs3UVSsoHAiiiP/CieiKGhcz4Z5E9xo2eco3ke6YGIk5yhOgYIflAPHn+LZppxgrGqI388YGuTVI1i01g//d/KPv78V2dkSbj+MJjo2lajYNBase0iTuhbsW92Ypr1Po60p2xke0sOBSq2Ocv5mGB5uhdsN83sSQ9UKhoLhUp9CKpXSbcgpsrIkzJ9UB/d6pTl06hVNu+3PdST8HkbgUKZEbnXm4sz4X2tz+14YnVrJwr78gz7wh1crzl98yszRtXiXEz7UyNWCyzcD2LSgAbcfRNGxmSwM1D84gYUTqtN20EVu7mtJYo5QumGtUty6HyXXft4EV85dCyrQ/807oWxe1Ijb9yPp2Lx0zngSmDe+JueuhzBjZHXe5YQnNXI148btUDbNr8vtB9F0bGabY5/I6hm1OH8zjOnDKvMuLClnPCW5dieSDXNc8X0YQ4emsuJ3UTGFrJqu4F/FpeOH8WjXSXAOvfA8EF39vM2IjYvn8yE25lsNTy7Z2dn43H5BVHQ8UeFhzFl0lNbNq3BkzyjqNpmJlqYakMqIwQ1wrD2XKzde06BO4dKi+j6IxKWyKUpKhd9kkEgkdO6/GxUVJZbOakGDOmXYc+gRHh035ToSvveCqVTBDA0NxUlgcUThRHxEvy6OvHjznkETLnF4U6vvPRwFCj6LjIwsjp19yazRwrtMHzsQUqmUY+f8mTi0uqD910YqlTJsxi0ueYdRvow+hvpqLJ5Uk3ZNbBg56xZu1UwpYaCGNDsLbS0VNsxx5edJ3vgdaY2h/uffsJ++GkrtKl8WarRi8wMio1O4frgLqqpiRGIlOreWFbqs224X2loqJCZlMLh3tS/q/0fjQ3wak+Zepkl92U3+uav+7FrbllnLfZn8mwt7T8iEz11a2TN+3i0qlS/BlMW++SpEb1tYm2le9+k5+hplcrQJHZvbsH73K5zKGRSw37PGiLGzr7Noct18/W/e8wRHewOmLPLBo65MS3D+ejA7vdwZP+8WCybWZv9JWcXqTi3sWLb5IRXKGTB1qR8ebrLaH+dvhrJ1oRsTFvoxf2x1DpwOlNk3t2HCIj8qbvZg6rJ7NM5xTAOCFcLq/yrpaWncPH+W0bMXCtp87EBIpVIunz7OyOmzv8Xw5CKVShk4ZCU3bj7FoZwlRoZqrFrShzYtq/HL8D9o1rgiOjoakJWKnp4Gm5Z3o++QnTy8Ph49PfkaGnmcvBiAa/UvC2VasuYmiUnpXDk6QBYxIlKieydZEpvazdagpalKYnI6IwbV/YeeFPyoFC9hdeIWYcGqREAQKyAektsuSaPr4GOUsTFg9oSPvtRKAhVl5QmHPtUuJPAtjOBaqG8hlAQmi0L3I3DjpiRQDEyeeFTofYqs5bdL3xWNvdB1l/edKaxQWuj7Veg81oW0/6j/sPAPOFSfws2zY3GukL94mkhvsMw8bmlu28yFZzl4/BG3z49AXV3O7o/Qb0ngGkhSouQPUUCgLclM49DZQH73useN/a3Q1VZFkpnXd9vBlylro8svPcpha5b32xs9/z6RsWlsX1gLJSUBcbI47zv2KjCBBt3P8uB4a0xKyP8NyxNQA4iUlDGqshXvQ20pa6tfoO+YuFQyMiWoqihhqK9R4KRDbLNa9l6DhhXsXEAYqmTh9fWF1dFzICNW7uPZGanEfUhDRysvpaqhvjrhobEFUqpGRMRjaqROXHw6OjknRokpmehrQvvfvHFxNuC3nrIdTy0NMdEJEkxLFLQ3MtKTm4I1Jj4LUyNN4j6k5xuPLMVrQfvImBRMjTQK2BvqqxWw19ZSzU3x+rF9apZIbopXJWX5c5zgd0dVIHSusOuFvDlXJDDfFnZ+FrIXShaiVEd+uxyExMNCGApsQH/tfj4WM4cFB9G6ZkV8fXwoXz5/Aoa/Tiak2ddz26ZM3cjpMz7cur4cVdVCzKGFSfIh1E+27MRu9/7bzFt6Cu/zE9HWVs+3Frm3XUW1SpYMGVAHG0u93PZfRh8gJTWDrWu6C4/xI569jKRB2w089x5FCQOB+yABpFIpWtYzeHZjODZWOb+Jj+4LomOSyMyUoKYmxsBAu4CuI1dY/dHalYvA2EVGExTC6m9MsRdWFyU+d8M4fPo1fbpU+N5DUaDgszErpc96r14067iCoOBPC/2WrbnKjv33OHdwsHwH4htx8lIwv/VxzM3R/zFzRlUhICSJCs2PERWbJ/6ePcKZJ68+cPCc/AQIASFJhEQkk54hW5AnLrrH6J8cBR2ITyGRSElIyqCMtZ7cx40MNTAz1cLIsKADUVwZOeMGrwI+MGWxL1MW+/Iq4AONuh5FRVlM95FX2XcqgH2nAug+8irKyiI8+l3kdWAi01c+YvrKR7wOTKRx/6tcuRON75P37D8bwv6zIfSacAdlsYgm/S/zOjCJ6SsfM33lY14HJjFwsjcqykr0GHWNfacC2XcqkB6jrqEsVsK9x0leBcQzdakfU5f68Sognv7jr6OirFRwPGIRHr3P8jowgWle95nmdZ/XgQm0+vlCgf77jruOslhE416neR0Yz1Sve0z1ukdQTriTgv8eZpZWTF28gqZNmxIaGvpJ2wULd3Lo8FXOnl4i34H4Rhw79ZBRvzaRORB/Y8nsdjx7GUGZqrOIe5+X6nvxzNZ4+wZy5ORjuX36B8YSGh5PRkYWUqmUUVNPMnlkwy8qwpuRkU1WliTPgfgbxkbamJXSpYShVgEHQkHxQRHO9BFl7Qz4pXdlarbcQavGpRk9uEaugFKBgh+Zbp1rcvLsQ85ceMrAfvKPhnfs82PMtGMsntmGJ8/DUVdXRk/384+1ixIVZSVEFNwwSkzOZPBUHx68eI9nSxt0tJS5dieKG3ejueQTiZGBGhv2vKFzs/ynUWeuhdF7/C20NJSJeZ+OhroYkxLq7Fr2ZcfkaenZqKmKvygO+EsYMunSN3mdT+FS2QQ7S13q15KFLthZ6tK0viU6Wsp4uJlRzTmvcKeulgpN3Epha6FNveqyOdLWQhv3WiY42eux43gQymIR3VtZ4V7LBF0tZTzcSmJroUW9Gn/Za1HZ0RAdLRUau5pR3TlPuKmrrULTehbYWelQv6ZMcGlnpUM15xLoaKkUHI+2Ck3qmmFrqU09F5lg09ZSm0a1ShXoX6QkQldblSZ1zbG11KG+S0kAzE0VOrj/Mu2698bv/EnOnz9P37595dps2XKSSZM3sGzpbzx8+AaX6qXR0fk+3xtVVbGcGRQ+xKfQ/9ddPH4WRu+uNVBXU+Hy9ddc8/bn3OWXmJfSY83mm7RrXi7f8w6ffELfX/ejqaFKTFwymhoqmJfSY0j/2l80vpTUTDTUv90t5pCxR77ZaynIQ+H+fYShgQZes9x5e2sgFcoZ0aLnAVr2PEBQyPcVoCpQ8DmYmugSGv6BHgM2c+TEgwKPa2mq0q+7Czd8/Jk8+xTNO28kK6uwYVdFg5qqUu6JwV+kpmXRYehVqlQwxP9Se9RVlbCod5QpXo9ISslieJ9yRMelc+dJHNFxeScU7+MzGDrjDvuW1yHwakcSH3bj1fl23DnUEjVVgfob/4CGuhgtTWVCI5L/2fj/JComhXXbHn311/knOrcsw/ELgZibamFuqsXxC4GMGlCJ1Tue06qRJWGRKYRFptCqkSVeW18woo8DJ66EYmaqgZmpBieuhDKmX1ksSmrgvashejoqDJ11n8MXQlm0+Tkjepfj5JUwzEw0MDPR4OSVMH7uYo/Xn09p1ciC0MgUQiNTaNXIgo17XjKyvzPHLwZhZqqJmakmxy8GMdCzHMu2PCkwnnW7XzGibwVOXArB3FQTc1NNTlwK4bfe5Qv239CSZVueMLKfEycuBef2f803/J8vkoJ/NaampgQHB9OtWzdOnjxZ4HEdHU369mnOlSv3mTh5A63aTiG7ELUyihI1NRXSM/KHRyUnp9PKcwN1atkR8nQmWVkSjMtOY/Ls06SkZjB+eCNCwuK57uPP+w954U8xsckMGXuUk7v7Ef5sMhnhcwi8Px6/C7/KtAxfgK6OGiKRiKjor3/CFxWdxNotPl/9dRQURHESIQcDfXXG/9OtnVgAACAASURBVFqTkQOrs2TdHao12ciCKe7061a5SCo1KlDwNdDT1WDmgpO0bVGJzn028PhW/kJn7VtVpH0rWbEgiURCs04bmLPkAtPHN/3mY9XVUeXNu4R8bZOWPMDYQI3lU2rITgBEIkb2LceUIU65NjfuRnPsYghTvB5ib61LcmoWN+9F08bdggY5O9AikQgDvf8vW5JIJMKtWklu+EXg2ar0/9WXPKJiUnIzwJkYaTK4d8Xv7kikpGZx/npeqNj56yG0b2bHNd9Ialcx4aqvrAiVoZ4q573D+alzaS565xWmuugdQZt6Jpz3jqJeNWNMDdXp1dqKpJQsFm56QQkDNa765ulnLtyKoH0zO85dD6NejZJc843M6V+N+89iSEzO5MKNvNCSCzdCaeduwbnrodR3KZlvPLfuR9GjjR0XvMPy7L3DaOdhWaD/EvrqnLseyoAu5Th/M8/+TXAS7ZrYFuUlVVDM0NPTY8aMGbRr14527drx8uXLfI936tSQTp0aArLMSO6Nh7Fw8V4mji9YV+Krj1VXg9dv8+vRRk0+jJWFAV7zOuSGCE0Z3ZiJIxvn2py7/JKT554zYeYZbK0NSUnJ4MpNf7p3rESdWjZAzhyq//+dsIjFSrjWsOLG7Xd0aFX0IeJR0UmYGMsKRZoYa/NLv1oKR+I7oBBW5+tDfvGtxy/i6TPsKGnpWVRxKomTgwnO5U1wqmCFlYV+wXg+hbBaIaz+SsLq9PRMlqw4y72HgSQkpCIWKzFlXEvcatlz6coTfO4EEJ+QyuNnoZzYNxSxwRDZcOSI08LC46nacCmHtvbFteZHN0/fQFgdHpVCjbZHObSuMS6VjJFkprNm50vOXg/j6DrZIv345Xs6/3YNp7J6zB9diej36XQd4c26mdU5ez0SLQ0xGhrKGOiq0re9HVqayvnEz5/D38Wx2dkSHj6P49qdKLYeeEWzBpbMHy+rvSHUt7yq158SVg+ZcoV12x4xuHdF1sxtlNv+LYTVca+nYKCZQkJiOpo5KRVT07LQ0VYlPDQWYyMNknNSs2ppqhAVm4qxjojYD2no5gqWs9DXkhIZk4ZJCbV8Aufw8HhKGmsQ+yEdXS3Z9UpMySI4KpN+E31QEolwLKOHg50OVRwNKWmiQzVnI+Li0/P6T8nCqIQ2kTEpOYLuvPFERiRiaqJVYDwGeipy7aNiUzE10sxnn5ySjYG+egF7bV1NuZtECmE1/yphdVpaGquWLOLeg4ckJSYgVlZm6ISpVHapRcCNczx8+JDw8HD8/f05cuRI7vr+sbD6L4LfBVOt5hBOHp1NjRoOeQ98A2F1SGgcVevO4uzhkVSpZAXZKSxZdYkbPv4c3jEAgPuPgmnfcxPVKlmwaGYbQsI+0HXAdjZ6deH0+adoaaqipamCgb4GA3q6fDrN6meuaVlZ2Tx4Es6VmwH8sesuHVpWYPYkD9mD8u4LBNo/JaweMnofa7f48Eu/WqxZ1C7vOQph9TenmDkR20D6zxkF8iH0o5V385edKvDiYtkP43E4T19G8vhZBE9eRPL4eSTaWmrMntySjm0q5TkTghN3IReRwlCIH+cnX1NcVqAfS7nNQhN9ZNrXO+IVC4iwjFT//7lDaCFCGiy/XeC6CFLIfj6+vnfv+PLbgH7YlbGnc7ce6OjqEhERztzpU2jk0RSvRQswMjKiZ8+eJCYm0qNHDzw9PWUvm3W5YOeSDI4c9WbUuPU8uLMGXd0c8VxhHXXBBVDAwUqX7Qj/sfMOB44/4dSefpCVSHp6FiUrLufFjUGY5uwwpSbF47XpPkvW30VJScTaee50aFEGSbrAb1WA0P+xd95RUVxtGP8tvUtdkI4VVGzYsICKvUVN7L0L9l6iJvbeFexdk9i7saKiIoodsQsigiy9irT9/lhc2qzJ5jPFZJ9zPMe5887Mndnhzn3u85b3qZy9Gol/YBSmxtq4VjSlqosZtVzN5RPHH1YGs37XY2ws9fCoWxrPuqVp3tBGMGNPEYjUkMR/QGxWQNg1y20GIOfVsCKmkrgPWNfdJd9+f3ewXJFQs1/zp5MIl3ImnNvVgl5jr9CikSyT17mAd+xd1ZghUwMY2deF/afCAOjSxpFJi4I5u60pvSdep0UDWWzCuevR7FrgRuuh11gy0ZX9v8rUiy4tbVmy9Qm75lWn34z7NHO3AOBCYCw7F7jR2juQod85cOh8NEmp2WhrqfH0dRo2VrpoaajRvY09IpGI8zfes3tpfVoNvszSydXZfyZCdv5W9mw58Io1M93oMymQ5g1ksQznr79n7woPWvS/wLJpbuw/FS7v/w+r73N0gxe9x1+lRSNZrMfVWzFsXeJB8z5nWP59XX45+RqAIb1cca9pVfK5KcgEpqYtHHSvcMxVNEFXikQoci1R0uVE0XnyFH0Df+Nv4P+5prIESBEUPcdC171xI4SBQ5ZQpbIT3bs1w9BQj3fv4pgxazPt2zVg4fxBmJoa0aXbj0ilUrp1bULX7rMBkGadLXluaS77D15lxg+7uBu0FgOD/DFA0eKSIii6V6GxtVDbhs1nOXvhAUd+mQzSXD58yMLCYTBvn/liYpI/hmZksGLtaVauO4OamhrbNwylbasaSi90vYuK48y5h/gHPMXczIBqVeyo5mpPzeoO8jF06qwDbNjmj621KY0bVqBxo4q0aFoZo0+xdwrfX5DEpiC2MJJviwwHyG43dXsJO8syY+TbMa9Xy48TGQ5QkYi/GCoSUaRNMYkQPLWaLhcuP2Pq7OPUqemA3wrZhE1FIlQkQiH+AIlISU5m/g8zOH7oAAuWr6Zjl65FVkxTUlJYNHsWh37aS0BAALa2tixdupSQkBAOHz4MQPNmtTh0YHbRIMB8UuA9cg1nzgbT3KsG/fo0p6G7gmJEX5hE3H3wjkFjD3LPfwzkyFbXKjXaSPkyJrTwLIOHuz2Vy8lWh99L0rkc+BZNDXXKORnjWtZA+NyfuiSVEvwolmPnwjlzOYKIqDSaN7ShaX0bUtKyePg0Af8bUfT8phx1a4hJz8hhwrxAgk90xsZKHxSoKEIY+cMNNu57wrCeLqybI1ux/UQiooL6IjYvqgaO/PEGG3Y/YngfV3znN5G3/xUk4vTOdnjVM+fWg1ic7GST2rC3qdSpZsGla5E0qGVJeH4RNwdrAwKCY/CqZ8Gth/E42cqeeVhkGrUq6nHxpoRGbua8iZL9zval9Qi4HUWT2mbcfpyMk7XsvsOiPlDH1ZRLQXE0rGnKm2jZOGtvpcvNkDSyc/KYuPQBHrUs+GFEZcIj06lT3YKLgTE0qmXBm3eyuBR7a30C78fRuI6YWw8TcLLVz+9POvVqWnHhRjQetYv3P5ZmDUpz60EcTnay/odHZVCnmgUXrkfhUceK8EiZfVknc7QEYmhUJIKvnkQkJqYyfcYWjh2/zppVo/juW88iynhSUiozZ21h/wF/bgSsxcLCmKXLfuFxaDhHjsoUiNatanPgpxno6xfKhpQ/9g0cupLLVx7R3KsGA/o1p14te+X6/gdJxM1bzxkzcRtBVxfJ28tWGU3VKvY0b+qKZ8NKVHK2QiQSERWdSMD1p6irq+FcwZoqlT5f+yEvL4/bd8I4evIOp84+4F1UAi28qtCscSUSk9J5+DiSC/6hDOzTkFo1nEhJ/cDkmfu5d302pa2Mhfuu4B3wGbcLvy3+eA9ugu/KvjLTfBJRmCR8zv7TMSoS8ddCRSKKtClHIj4NWvEJ6ZSrOYcnQd9jZWmkIhGoSIRCKHEeqVTK5t0/MWvqRFq1bc+MuQswNTMTOBiOHTzA/JnTuHv3LkZGhVZz8snGsKHtefDgFb+eXkypUvkT8HxSkJeXx+PHbzh34Q5Llh/g5eMNwhlHvjCJiE9Ip3ydZYQEjMPaQtbPqPepXLgaxpXACA6ffsamxV5YmOkS/DCGjbsfITbX5W1UGqaltOj7bQV6diiPRb4CkJ2dy5Vb0Rw/H86x8+EY6GnSobkj7Zo6UKeaORoaRd+boPsSlm16QG6ulNy8PLq1K0fPb8rl39PvIxGS+A/Y1Nsn334X1Buxma6cRAAM71WJdXMKskSpaWoXiYmQt/8FJCIpZDDzVt+k37cV8A+UxQM0cbdm6aaHrJxei/m+j+TZja7eiuF7n6pMWxbMyN4V8b8pi0FoUs+KJRsfsGJKdRZuekqjWrIsSQHBcUzu78DE5U8Y39eJK7dl6YY9a5uy8/g7pg+pwKItL2jkJnuHA+7EM927CuMXP2BAJ0fae19j+jAX2jW2Zs+JCKYMdWHBhlB5NqertyVMH1aJ8YvuMXGgM/5BMje6JnXFbD4YxuzR1Znv9wiP2vn9vy3r/7j5t5k4pAr+gbLA6Sb1bVi2+RGrZtZj3vr78uxMryI/MHpA1ZLPTUUivloSIZVK2b33IlOmbaJzp0bMmzMIE5P836GYe+3eveeYM28Hd25tLFAUAJGGjOgP6NeCl6+iOHVsbsH4mD/25eXl8SgknLPn7rBq3TFePlqLnp4ScVl/kES8f59I5VrjCL2zCkux7L4i38Vz0T+EK9dCOXQsiN2bvTE00CH4Xhgbtl7E2sqE8IhYxBZG9OvZkJ5d3DE3lx2blZXD5YAnHD15h2On7lHKSJdO7d1o16o6dWo5lkhnfT3wBcvX/kpubh65uVL69qxP1851FPdd4B1QpCx8IhFACbLw6bji5EJFIv56qAKrvwDMTPXp1qkmazddZd6MtoJp11RQQRnExcXRrVs3JHHx7Nx/mNp1FVfSTYiPZ9JoH349c6YIgSiM2T/058c5Oxk4eAmHDswpsk9NTQ1XVydcXZ24c/cF6/xOMW1yly96P4UhlUrJy5Oiq6NJWUcztu69zcyxsg+PtZUhfbtWpW/XqiQmZ9Jv7FmqV7agRhUxGxZ70bSBHXl5Ui5decWuQ89Y5HuPxVPr8T7uA+t2PsLaUp+OLZw4u6stzmULV5gtSQrqVhdzwLe5Un0v7rYkNtNlWE8XuRJReN8nbNgbyqzRtYooEsUJxH8dZsbaVKlQimt342jrWfrv7o4K/wLExCTStcdc0jMyOX5kftGYhWKQSBIZM24NF84uK0IgCmPB3AF8P2sHQ71X89OeaUX2qampUa1qGapVLUPQ7Wds2HKO8aPbf9H7KQzZGJqHoaEudjbm7Nx7mcnjZNeztTGjX29P+vX2RBKbQo8B66le1Z6a1ZzYun4IjT0qkZubx6XLj9i57xrzlx5n2fwevI2MZ+3G8zjYmdOpvRuXTk6lYoXCf4slSUED9/I0UKRcK0Dxyb/YwgjvwU3kykJxYgDgt8WfH6d3LHGcCn8/VEpEkbY/pkQAvHglweub9aSmZVK1ii0Lf+hI/brFsrqolIgvgv+CEhEREYGzszMPXkVgZm4ufEw+bgXeYHj/3oS/fo1EIkEsFpOTk8Pz58+pXLkgK0Zjz2rY2FiwZ9f3soa8LCSSJMRiY7nN06cReHhN5OXjjRgZFXtHlFQicrPTuP8wgtzcPHR1NflxwTGu33xBQmI6pia6WFoYUMXZik0rOqOvXTIO4+PHHNT5IFjM7VNMxN2QWHxmBlCxjDHjB1ejmouwUqMoyFshBOxH/nCdjfueMqynM+tmNyjY8ZmYCBBWIoTwVygRp3a0pZm7hUJ3pvpulryJKnAHunr7Pc3cxYLuTBcCZe5MEdEF7kxXb7+jaW1zQXemizdl7kwR7wvcmYIep9O4jgW3HyWQnZNH36m3SMvIoYaLCR28bBj0XVkiogrcmW7cj6OJAnem89dl7kxF+y+heUNrQXem89ei8KhjKXeXUrkz8a9SIl69iqJqzaG8iziAsbGA+2MhJeLy5Xt4j1jOk5AdSCSJiMUmZGfn8OJFJJWrFqyIN2pYhXJlrdm2eYKsQZpbYgx9FBJG89bf8zJkrUJCUgIK7jUnO4v7D8KQSqVoa2syc84+bt56TmJiOhbmRpiaGlCzuhN+q4eip1tyTTgzMwtNDYQLYuaP27fvvMZ73A4qO9swcUwbXCsr+qYp+U0X+C74jN8r6IYEimMiQFiJEIJKifjroVIivhDKlxUTETKb2LhUzl95RceeGzi1fwS13Rz/7q6p8BXC3t6eLl26sG7FMn5YsKjE/liJBAuxzM2jgrMLcbGxeHt7s2HDBry9vXF3d2f06KKZgS5fecDypd7ybZ9Ra/HbeBLvYe3wXTsKAGdne1o1r8nyVUeZPUv5tIXZ2TlcuhzCoWO3OHriFmILI3R1NfnwIZu6tcpw99qPmOql8/ORB2Rl5TKkbx2Zy1VOSRKhra2BNOfzpWxqVrHg5pHOv9mv4pN8Ze0l8R/YuO8pABv3PWXW6JolFAkhCMVE/J3Yvv8pVcsbsHX/c2pUkhGue6HxONoasOf4a0RqIi7mp0lt6m7NjoMvqVbRkG0HXlK9kkzZuR+aiL1PRXYcfYOmhohL+W5FTeuK2XcyCtdyhuw4+pZqFWUTggfPUnCy1mfn8Qg0NUVcCooDoEkdM345G0OlckZsOxJGDWdjJg+qyI0H8bhXs2Da8gdoa6vx5p2MpDStZ8lPJ95QuWwpth9+RXXn/P48TaSsQyl2HHqJpoYaF2/I3Jaa1rdi55GXVHMxYdvB51TPJ5gPniXgaGvA9gPP0dQUcfGa7H6/aQV1a1j+6b+BCn8Nypa1pkN7d1as3M+c2QNL7P9EFgBcXBx4/z4e7xEr2bDxON7DO+BWswKTpmwsckzAtRC6fech3/YZtR6/TafwHtoW37UjAHCt4oRno0qsXn+a76d8q3S/s7Kyuej/kIOHr3P81C2sLI3R0dbiQ+ZHGtZ34cHNZZiYGLB73xVEIhED+zWVjaECk3YdHS3FC6n5qO1WhuCrcz5rA8LuQ8rYS2JT8NsiS/ChjLIgFBOhwj8HX5cSkf6L8mlSFfllC0GRb7fCVX4FKyXqesxffIDY2BRWLRtU0K4wfZ4SvpOK0psqWBF/kip8Tzl5wiuzit4HRfZ5CuzVhFIlKqixocw5Pgdl7ZXpi6L7V9SereTzEsIc74FcOnqItj37Mmn5Wnn7yqnjObZzKx37DWL84pXEvIukT8NaZH4oeNc9235D3cZNWTKpwNe0bffezFjth5qaGgmxElpXKkjrevZJOKYWMlIS8+4tvZs24Ie1G6lWpx6lTEwBxc/3U/ujO7cZ2fUb7MuWo1n7jjTr0Blbx5J59230Sso9ChWg3MvC7dlJwu05JdvlQXgD6+O77Lsi+yTvIhBb6Be1n3IGv513S6Rg9Zl6gQ17Qhjeuwrr53nK24VUDg0nP1l3wrxL7FNTF77Zv0KJeHOlE2JjdRKSszDUK0jBalpKC0lSLmIznSIpWyXxmVia65KQ9BFDeUrVbIx184iJz0Rsqk36B9kYo6+rzntJGpZm2rLzf0rxmi47f0z8R8SmWkXsJQkfsTTTKWFvbmbAlOUP0dBQY9oQZ7l9XLo6VgL9MTPVJybuQ8n+J2ZhZaFXxD7tI5ga6xATm4HYXFdub2RsKFwHSFOB4vA7sgEVgaJxXuH3RYk1vs9kvRGEogxsir6BSqesFoDC56X4OyoIhWnFSz6vbr0Wsv9gAEMGtWaT31h5e/EFlPDw97hUHUJmZoHa2r5dPTp3bMSAwUvlbf37tWTrpgmoqakhkSRiaVPg9hkT+YtckXj9Opo6DUaze/tk6tV1LojD+I3neP3GY9p3no2Lsx3fdWpI506NcHD4ncRWodeBct4FQvDx8cHPzw9vb298fX2L7PukfgvaD++Dr+/8Qu0j8dsgI2m+68YVHCCgcou0ZPWLBLNiKYBIq6VKifiLoapY/SehtJUJySlKpnlTQYV8JMbFcunoIQBO7dtFYlysvP3Yzq0AHN25lfeRb5k5qDcDJk6jU39ZbvBO/QcT8+4tokJuX2dCw5i1dqM8DbGphZhvBwwB4NsBQ+QEAqC0rT1jfpzPthWLaV/dmRaVnPDp3JZHd24J9jU+VoJUKmXJtAmMn7uI3eeu0m/UeHT19QXtvxQkkpKEQRKbUmJbvvq17QaS2FT5Pp+JB7F0XYXPlDOF7NPx23kXgA27HiKJK/gbXj/Pk+jgAUUIxNcGDQ01hs66zYs3qfywLoQf1oXw4k0qLQZdRkNdjd4TrrP/zBv2n3lD7wnX0dBQ49sRV2T2qx/ww+oHvHiTSqshV9HUUKPP1NscOBvJgbOR9Jl6Gw11Ea2GB/IyIp3Zvs+Y7fuMlxHpDJp1D00NEX2n3+PguSgOnoui7/R7Cu2Hz75DaQtdjl54V+T8muoimvc7x4s3KcxafZ9Zq+/z4k0KPcdeRlNDjZ7jrrD/dBj7T4fRc9wVNDXU8Op1iudhycxcEczMFcE8D0uiafdjaGqq0WPkeX458YJfTrxg6oKSdQBU+HohkSSx/6DsN9289Yx8vJBIkvDbeBIAv40nCX/znk5d5rBo/kC8h8niCryHtefNG4ms6GU+Yt4dYPuWSfIxVCw2wXtYu3z7dkVcmsqUKc3CuQOYPW8PDuX6Yu3QgxZtpnHn7guFfc3Ly2P0+I2sW+XN9cvLGTemE7q6/1/RzN+CRFKyxk/xNolEgp+fbFHEz8+vyH4fHx8sLS3x8fERtt+wG4kkTr7Pd904YqIOFyUQKnzVUJGIPwmljPRJTk7/u7uhwleCTyThE0zMLXByrgRAh36DMDG3kLd/00+mbn3TbxA7li2ktL0j3X1GM3HxSk6GvGbi4pVMXbGOTQsLJOrCJOETpi5dzdkn4UxdurpI+8KJY5g9ahgVXatzJTyGXeev8jA4iL7NPVgwsaiL1IKJo2lawY7hnduSnZVF++69AZg/YRRNytsyb8KoEteNFfhwfQ4SSWKJNp8xG7F0GIDPmI1F28qMwWdcQR2GT0F7AN4D6yO2kK0ISmJT8dt2AwC/nXeRxKbn2+vj3a8mAMP7Vi0RAP21B0Qb6WtSs5IJTjb6eNSywKOWBU42+jSvb4WRgQZe9a2oVcWMWlXM8KpvhZG+Jo1qi3GyNcCjjhiPOrL/N6tviaGeBl71xLhVNsGtsgle9cQY6avT3N0CRxs9GrmZ0cjNDEcbPWpVNsZQXwOvuua4VTLGrZIxXnXNMdLXFLSv4WyMpak2pqW0ip7fQJMWDa1xsjXEo7YlHrUtcbI1xL2GBYb6mjRvYI2bqzluruY0b2CNkYEWLT1sKWNviGd+7Y8ydka09LST2TeypVZVMbWqiqlXUxXQ/TWj+KKCWGxMJRdZqtXhQwsm+WKxsXzyP3xoO2bM2kmVyo6MHtkR33VjiHl3AN91Y9i2eSITp2wqdL6SRQR9144iJvIXuTvoJ/iMWstQn9XUrFGO5LjD3AxYzfUbj6nlPgafUeuL2a7H0q4nzVt/j6amOj26NS5ot+2Gz6i1FIfQAsrnn01ciTYhAiDUJhaL8faWKare3t5y1UERuShiP7wPYnHRmD6h56jC1wuVO1NhfCF3pjyRDguXHuJKwGPOnfyxYIfKnen/Psfn8LW6M31yT/qm3yDGLZJV57x+9jRrZkxh2c+HsStbNPtFdEQ4J/fs5PrZ0+jo6rL68Gl09fVRF4n4mJnJ5ZPHCPj1JEH+F8lISy1xPRX+OvzT3Jnmjq3GmN5l2XPiDW6VZR/zO48T6d3egc2H3tCltQN3H8cDULOyGTsPv2Jsf2d2HwujVhVZTEFwSDy9WpVm9Z4X9P3GkbuhMpJXs5IJP50MY3hXR/aejMStkmzSdic0iV5tbVizL4w+7e249yQZgBoupThyMYqBnRxK2Pds50TnMTdQUxMxslc5+fkPX5IwtFsFdh97Ra0q5vn9iaNvpwqs3P6Y/t+W506IrP9uVczYc/w1o/tVYdeRF9RyldnfDU2iT+cKrNjygAFdnAl+JCPwDeo4YGoiEL+icmf6x7sz+Yz2w2/TmSKxCYeOXGPytG2cO72AsmVtiti/ehXFpq2nOXY8EBMTQy6eXYSeng6I1MnIyOTQ4QCOHLvOhYt3SU1VeRT8nVC5M/2zoVIiviCkUinnLz2iVoNJnDgVzILZvf/uLqnwNyIxNrZkWzHFobB70rGdW0mMiyU9NYXF43yo4FqVkOBb3Am4zOunoRzZvpmRHVrg3caL9NQUJi1bw8ZfLxdxG7p56RzzxwynTmMv9gc9+HNvUIWvDueuR5Oakc2FwBjuPE7kzuNELgTGkJqRQ9CDOMIi07h6S8LVWxLCItNk9uk5XLzxnuCQeIJD4rl44z2pGTmcvyEhPDKdgOA4AoLjCI9M5/q9BJl9UBx3QpO4E5rExaA4UjNyOR8YS/i7DALuxBNwJ57wdxncf5pSxD74cSL7TkfSoLc/d0KT6NHGrsj57zyOJzU9mwvXowkOiSM4JI4L16NJTc/mXMA7wt6mcuXWe67cek/Y21Qu3YiS2V97R/CjOIIfxXH55jtS07M5e+Utr9+mcOVmFFduRvHufdrf/fOoUAwSSbJAW1KJbb9NMpdEv02nkEiSSExMZfDwNbjVLMe166Fc8r9PSEg4a9cfo17DMdT3HEdGxkd2bJ3IjasrZQQiHydOBjJ42AratalL2Ivdf+4NqqDCVw6VElEYf1CJyMj4yLXAZyxcdpzwiDiqVHYgMOgZamoiZk3rxkjvNjJ7lRLxf5/jc/gnKRGLJ43haKHgZ4AVU8ZxtJjiACWViJzsbM4e+InoN+FIot4hiXpHfEw0FavWwKtzF2p7NkVLq+RqnLpIJPOr/bYdSfFx2Dg6IbaxpbSNLZa2djRq0QY9g4JUh58LlE6IlWBqIebUL/vYvmopey7dIDM9rYhbVHZWFj9v9mPzsoXsuRCAY7miAXwJcbGYFXOjmjdhFPu3bmTAMG+WrS0I0FMUWO3j/Y1wIF52UonUigCS6AjhTB7ZJV2iAMiKF2yW5pR0RZTmCOczVjZ97N+pRGQ+7kl0dBKW5rqkZ+QHOOvJApytLI2IT/yIkUGhgGhj7UIByNn51p9a8AAAIABJREFU9prERCchNtMpYW9sIEIS/xELU62i588P0I5P/oiRPKA7VxbQHf8RPV01LgXFsXrPayQJWTjZ6XP/SRJqIhEzhjszoJMjqek5WFiZFgqgLuhPbEI2lhZ6xCdmYmSgKe+PmZkeickfMTbSIvOjrD+6+rokpWRhUkqblNQseWrMHLTQFwj6VykRn2lXBkoqET7j9+K3+SzeQ1riu1oWv+UzZrOsbWhrfNcUyjRXTIn4+DGbXXsuEhb+nreR8byNjCUqKp66dZzp2b0JzbxqoKkp8HxF6uTm5uLZdDzJyemULWuNna0FdnZi7O3EdGjvXoRwfO65fBqftmw7w5p1x7h1Yw0pyalFxqyPH7NZvfYoC5fu507gGsqUKepSJ4lNLTHGCWXV+9R3wec4aid+G3aXCHJGZCcYFC3U9ocglM4875WwraL04UpCpUT89fi6SMTn+pp3Tbhd0eRBaID+nTUVYmISCAh4wPUbb7h+I5jHj5/jWqUiBgb63Lv/mIEDB+Pl5UXPnj3x9/enWrVqADxPF+5/riKXmNySA5Syk/ksgXN8DrkKziOYteQzUEbiUjKDv8JzK+q7Igg9G0XPV9FzzM3LIykuFuP8mAWApLhYBtRxlW9vv/UIoEjblqCHlDIr8BVNjo8rsv0Jv5URSagt62Mmb5495de9O7mwfx8ikYgylV0Zv8oXu0ITfUXn1tEo+NtIS05mWItGdOg/mG+HjiD86RMe3rzOvetXeXTzOpXc6jDw+9nYl1eQAUQAcZKYIs8LhJ8jgK6mpmC7iY4OQjDWFU6nWkFfwfurKPtThsDHLqukXzEAOQpcxhTVnVEAkc2KP51EvL3WjdFzbjK4awV+ORUGQNc2TkxcdItzO5rTe3wALRpZA3AuIIo9KzzoNuoS04dXZv+ZCAC6tLJnyrL7/LrNi94Tr9OigWzic+56NHuXN6JF/wssm+bG/lPhMvs2jvjtfYrfnLpy+9T0bI5fisS9ujk/nQxHKgVDfQ3U1dXI+JBDaQsdpg6twtCZQXj3KI/YTIdz16PZt6YZLfqcYfn3dfn55GsAurUrw8ptj9m1sjk9Rp6lpafMD/7slQguHe5VJDgWAHUFAf8Ka+coSRaUhSKyILRgpshWUV8UkgIFi3EKq88rIB2CfVGyj2ragulALcuOl2/HvJbFbRWtbLyuxDGCCwjKkLR82w8fPhLy+C3rN/3Kzj2XUVNTo0Z1J37aOZ7y5ayFz1cYhcaEhIQ0qrp/z+SxbRnp3ZZHIRFcDgjl4uUQrl5/gmfDSixdNIgK5W1Knkegj8+zWxEvkWBWbKKf9OGDfPGnMD7m5pIYG4uJRdExNDNH+B1Q9F0opS1MgrXUhZ+vpkC7pY5yfzMKs/YpgEgkUpGIvxi/udQhEol+BH4o1hwjlUqt8veL8vcPBUyAIGCEVCp9XOgcUiAbcJZKpa8Lte8AzKVSabv/7zb+GuTm5rJs+c8sWbqP+u5VaNCgEcuWzqBmzSqMGj2LV6/eEPb6OiI1O9zd3VmwYIGcQKjw9UNoMrtx5hR+3buTVr36MWzuYgCMzS1o1aufvP3TMZ/aWvTsV4IwCBGIPwp1dQ1unD7Bg2tXmbxuM9UbeWJQyvizx2SkppIUH4uamho6mlqI1EQ8vh3ExjkzcW/eipi3EXSpWh5DYxOq1qtP4/adGLtoBSYWYoXESxGKP0MQfo6fs1fhj0FspsPwnhWpX9MSe2uZKuVgo8/yaXUQm+kyb3xNeVE2j9pWiM10+N67Mg3dLLAvLZtM21vrs2RKTcRmOswbV11ehM6jjiViMx2WTXPDo7Yl9tayybqDtQEa6rJr/zi6Kr9eiWLz/pdUKleKMrb6/DjKlV7tHBg26zaxiR85vK4RQQ/imb7iAeMHOjOyV8X8/oixNNdl+fd18ahTGnubT/03QFNLG7G5LgumuFPGXjaR9KxnU5JAqPC3QhKbKk9u8Ak+4/bgt/Uy3oMa47tS5gKsqIpxQVvTEoThS9YSUFdXY9/+AK4EhHJw30S8mlTH2Pjz2eaSk9OJjUtBTU2EWl4GamoiLgc8ZcqsX/iuY20eP3mHuf1gLMyN8GxYiZ5dG7Bl/TDE4lKgrlwtmeIEAmDJ5LEc2r6ZbwcMYfKSVUX2FScQKqjwpfCbSkQ+iegONC7UnCuVSmPz908BZgD9gWfALKAhUFEqlabm20iBTOCoVCrtUejcO/idJOLvViLCwqLo238+6upq7Nz+PQ4OVnLXoqlTFxJ06z4nT2xHT0+XHj0no6+vz5YtW4qs4KuUCGH805QIIbKwetoEzuzZQeve/fGetwSQkYq+tQoqQm+/9aiEIlH8PPGxEqUIg7JKRHzMe5aNGoaOnh7jVqzDyNTs0+oMZ/Zs58qxwzTp3BVtHR0inj/jzbMnvHn+lJSEBFlfpVKk0jykUinmVtZ4/zAP89LWDGvhwYZzV7GwLrlapiyJKG7/ueeoqym8FKVSIpSHSCSS9u1UjlUz6jLP9wGedawAuHLrPTN8qvHjmrsM7lYB/0BZsbYm7qVZtjmE5ZOrsmBjKB61ZROXq7clfO9TlXEL7jBpcCX8b76X2dezwnffc+aPq8F8v0d41LbMt49h+vBKDP4+iLC3aXzIzKFneyc6t7Rn56GXTB3mQouBl8nLkzJtWCVu3o/j5Zs0noencnBNI/yDYmTnr2vJzhNvmTGiBvPW3cOzrkwBuRIUzaxx9Rj9QwBTvGty6UYkAE3r22LvKEZfr5i7jEqJ+NOVCEGyMPEAflsD8B7UCN/l3QEZqbAsP1VuE/NqRQEZEKkLqguS2HTlCIOSSsTbyDi69VmBmakhOzePxNTUEETqSKVS1qw/ycEjgfTv0xRNTXVCHkcQEhpByOMI4hNSsRQbI5VKycvLRSqVYm9rxspFvTAzNaBe09ncv7kE69KmJa+riEQoUCKKI14ioX4ZK/n2mdAwuSLxUcEcQKVEqPAl8HudLnOkUun74o35KsRYYJFUKj2U39YPkAA9gcLlHtcCE0Qi0TKpVHrn/+v25xEc/JRHj16RkJhKQqyEzI9ZiEQiRCKRbJVAJMLc3AQbGzNsrGX/rK3N0Ck0AUlNzSAqKp6o6HjuP3rLgoW7mTqlN+PGdpXniQYICXnG1m2/EPLoPPr6euzceYBHjx4RHBys9MRbhb8WiXGx8tSpn7Bu+kRO7t5Ouz4DGLlgGSCb5J7ZswOAM3t20GPsJIzNLRQqDp8gtIL+JRWH4rh/7QqrJoyiTZ8BOFRwZtOP0zEVW2Fp78DjW4FEhb3mO+/RXDt1DA1NLRwrOtOqZ18cKjojtrVHPX/QL+zOBHBgwzoatm4nSCC+BH7rOarw1+PNuzSOnHvD4xdJzPN7TMCdWF6/lQUev4v5wNz1jwh9mcSvV6OIfJ9OKUMtPmYVTFakUikZH3JISP5IRFQ66/Y848yVd4zp50xpsW6RicqDp0k8e52C3+zaaGupE/IimWhJpjwblAr/XAiShQn78dt2De+BDfFd3lVu57dVVrPBb2sAP05ti9jCELGFId6DGsuViN+jLvyZ1Yt/PXeP/kPXM25UW8qVLc2IcVuwsTbFydGKi/4PiYiMY9LYjvxy8Bo6OlpUqWzP8MEtqVLZHkcHccHcoNjCwsJlJ/iuY21hAvEFYCaW1f35pEQIpfRWQYU/A79XiZgMJAJZyNyVpkul0tcikagM8AqoI5VKbxc65hQQJ5VK++VvS4EuQFfATCqVeuW37+ALKxFbtpxg5g9baNWyLqamRpgYaaCjo4VUKiUpKY1Xr9+jq6uNtrYW8QmpREXH8y4qnujoBAwMdDE2NpAXfrGxNsfa2gw7OysmT+qJq2vZIpeUYo+H53f07NERb+8+vHoVTvUarUlLS6dcuXJ07dqV8ePHY2Ym+xiqlAhh/B1KxKcg5/Z9BzJm4XJARiq6VCvw7f/53lP5hFZIiQDFvvyKoOyq/e9VIqRSKT5N6qGmroHYxpa46Ci+GTSMtORkYiIjMChlTPfRE9AqtIL/uZgIqVRKaPAtLh45gP+xQ8zeuocqdet/kXsSsv9cTIQQVEqE8hCJRNKPT/rhfzOa+jXFvHknCx53sNHn6q0YmjWw4taDOK7efs+anU9wq2JGBUcj4hMzqOBoRGJyFinpWcQnZZGWkYuDjT4v36SRlp7N+7gPxMRlUspQC00NEanpOeRJpYjNdLAvrY+mhohl09xITc+Ruz+FRabh5mJEzU5nGdm7PJ61xYRHptFjQiAZmbmUdzDEvbo5Ewe7YGyoRVhkGu517Dl/7R0edax48y4tv/8G3LiXiFdDW4LuxcjdmV5HpFDfvWzJB6FSIr6IEuEz8SB+224UqQQviU3FsmKB93PM8/lykiGkRACCMRGfvSeUfO6/U4nIy8vDwXkkhoa6lLYyJkaSzNgRbUlITON1uAQL81LMmNoFbe3fsTyek0peXh43br5g7/5Afj50kzOHJlKvXmVh+/9TiYDPx0QIQaVEqPAl8HuUiCBkrkpPATEy16UbIpGoMvBJP4spdkwMILRsOR0IFYlEraRS6a+/dWGRSDQUWazFb0IqlbJg4W62bjvJ1cvrKF8+P1tRIXemZq1nctH/AYaGsj9YsYUxtdzKM250Jzq0q0tySiZJSelYWhpjaKhXMHFW8BHZtesgmZkfGTq0JwCLFvlSp041li5dS0hICIMGDaJ9+/aYmZmRl5dHTk4uGhpKZNxQ4YugeFBZYmwsR/PTqp7YtY2+E6ZiYm6BibkF7foMkCsRhSe03vOWyBWI4vgnrJyLRCLWnL3CjdMn+Zj5gWZdeqCRPwFXRAAXeg/ErbEXTTp1QTM/29Pbly+4dvwwl44eRFNTi6adurD+tD/WDo4KieqXgqLnmJuTg5q6Onn55ENNTY3c3Fy5cqLC74ckPpNNPz0lN1fK/tOywOoubRyZsiSY01u96DPxKmnpOfT7thx3QuKZMLgKPcb4062NAwfORHD6ahRxiVmoqYGutgZ5eVLKORriUVtM5Pt01syqx3cjL7PmhzqcvCRzK+rSWhZYbWaszbj5wTTPD8Q+fz2alg2tePs+AwdrfZZve8q1u7FUdDLE1FiL5vWtmbbiPvp66thY6nHuejS7V5gzeWEQS6fX5Zf8wOqubcuwekcors5mzFx2kxYessDqc1cjOH+gjCou4guguOJQpFjjthv8OKVlgbIwsKFciSh8jO/y7nIFojj+THXh90JNTY1nD9Zw4HAg2dk59O/TBA2N/DFGgIhIpVI6d1tMxw516NnNQ57tKfTJW/buO8/e/YHo62nTq6s7967NxdHhz/9OGJmYysfJvLw8NDQ0yM7ORkNDo8T4CbKxVZSvnkjz8lDX0CArKwtNTc0i9nm5uaCARKjw34bS2ZlEIpEB8BpYBNwErgP2UmlBPi+RSLQdKC2VSlvlb0uBLlKp9KBIJFoPNABqAttQQokITSnJnNNSUjh3/DBH9+wkNSWZLUfPILYqSJNWQV/mDy4SicjOzmbz5s3MnTuXOvUbUqmKKzq6uvx68jiRbyPoNtib7oOGo29YdJATmjwlJyTQoW5V1v1ylMo13GR2eXmIRCLypFJ2rlnBxqXzadisFTXcG3Bg60biJDE0aNGapu07UqexF9r5q6mKVgqUURGU8Z1XdE+fg6LVZg213685KLrml+qLkKKzYeYUzuzZQcte/Rg6Z5G8fdOsqZzdu5NmPfsy6MeF8vasXCkp8XEYFXM7ystTru+5Chbn1f+GyiyK3oFZnVqQ+SGdvJxc6rTuQOjNayTHxlC7dQfc23XC3qXK71Kg9LSEJ/OG2sKpG4VUBAOBlLUgI0DxkhhMLcR8SJetnOvq65OemoqBUcmJhyJVT2hVDKCykQJSL6RQKEpDmKsgjfTHKKXsRWaT/nQlIifMm/cxKYjNdEnPkI2nObl5bD/wjCNnw0nPyOb4llaIzXRJTc/C1FiHmNgMLMx0yPiQS1Z2LvuOvWTB+ns0cbfGyc4QQ30tTlx8Q1RMOqP6u9KxhSNOdkby8+vraSBJ/IiluR4JSZkY6svIbdjbVDy7HGHv6qY0rmdNekYOeXlSDA00kcR/YNv+Zyzyu0+bxna417TEd3coCckfad7Inl6dK1LfrTTaWuro62mSq2WFpqbAb6wpkFBA2dV8ZaFsqnBl7QWhyFbJGAeBvvhM+DlfQfDAd0XPgvbx+/DberWksoCwm5PSqogifKk0tMo8XwW2LvUWk5WVS16elK6danLu0hNi49Po8V1denWtSzVXu6JjqJoCxUGR2iWQFv75x6aCpmkfP5KcmICegeyYjLRUSpmYEhvzvsT4mRArwcRCTHJiAvr59un59iGvX1HKzJzMDNk4paOnR3J8HA62wmnkFanC2gILporG4Qp6kYLtilLXK4JKifjr8YdSvIpEIn9kysRSlHBnyicR4vxjfAAv/iCJCH/xHN/F87hy9hS1G3rSqWdf6jRqzJnD+7ly7gxJCfEkJySQlpRAQkICjRo1YvXq1bi6upKWlsbaTVu5fPE8gdcCsHdwRFdPj+CgmwyZMIVxP8wvcu3iE8XsrCymDRtAKVNTvl+2pkRfP01kEuPjuHz6BLeu+tOmSw+cKrty5dRx9m/xo25jL8bn+9yrSMSX6Ut8sdShSXGx9KtdRb69LegRpcwLyEGspGSQc1augj7+C0nEz0vmoGdUiir1PQg+f4bK9RvhUqc+KPGbwp9LIp6HPMTK1o6540bg3rQ5AIGXzjNn3eYiNS8+QUUiFEMkEkk96lpzYJ0XI2Zdo3IFU075R3A/NI4WDW1JTstmmk91Vmx5SHhkKno6GryKSEFPV4OEpI9ULGNM17ZlCH2RyMLJdWjZ7wxiMx3uhsRRykgLcxMdnrxMYtKwaoS9TaV5Q1sAzl+LZP1cT7r4nGXBlLoc+TWMnJw87ofGERufgf9P7Rkx8xrN8u0vXItk3ZyGdB1xgYlDq7J2Zwhvo9IZ3M2ZwPux1K5mybzVt6lfqzTftS3H+asR7Ns6oGDVuDBUJEK4WQGJkEiSSigORQKfXy4pmla1mP1n8S8kESOnHMXe1pRG7mU5euohrbwq4dGgHOqaCsjCn0giXoe9JuZdJJdOHQOgadtvWDt3Jou3/8SiSaOp29gLgKDLF5mydDWrf5hOx74DuZxv37jtN/jOncXotRvZOHMK1Rt6ArJYu2FzFhEX9prq9RuWuK6KRPy3obRvjUgk0gGcAX8gDHgPNAduF9rfCJgkdLxUKpWIRKJlwFwg8I90+kVoCIM7tqbXsBFMXbSclMREft66gZmjhlKnYWM69uiDuaUVxiam1LQ1w8jIiB07duDl5UW3bt1YuXIlw0aNYdioMeTk5HD/7h1uB97A65vvcG/i9dlrR7+NYEL/HphbWjG2GNkoDhMzczr1GUCnPgMAmQ/itwOHcvKn3dT2aELs+2gsrEp/9hwqCKO4/7zv95M5vWc7rXv3Z3ihVKute/eXKxGFCQT8uUHOfzdyc3J4cfcWb5894d3LZ0Q+e0J6chJWTmWxLlue0mXKoV/KmNDAa3QYPoYyVWvIj/2z3ZaUgZGxCXoGhrg3bU6VfMUPQFtB7IMKn0dLTzsMDTSpWMaYdTtD6NmxPN3blcWrgQ2jfrxO77GXqFzBhK5ty1CvhiX+gVGMHejKiQtviIhOZ82OENxcLbCy0GNQ14r071KRoHsxvHyTQlpGNvcfx9O9XTmCH8VSq2qBb7aRoSYtPe0oY2dExbLGLPa9i3NZE9o2roihvhbNGtpSq2rB37ORgSYtPWxxc7VgVD/ZQoCbqwVa2loM7VWFtdsf0KGFE462RjT3sEf972DnXzGEYhCElAVZ4HMjuRJRMvD5dxKIrxDZ2bkEBIbxMDSaR6HveRgaTWJSBs7lLalU0RKXCpZYmBlw8cozJo9pjnudMn9rf3X09LBxdMKtgQcANo5OuDdtjp6hIXUbe1Gp0PhpYGiEc7Ua2Dg4UrN+I5m9gyP1mjZDR9+A6g09KVe1utxe18AQ0y9RgE6Ffx1+T2D1MuAEEIEsJmIm4AG4SqXSN/kpXr9HFjfxHFnMhAclU7x2kUqlB/O3DYCXQCngojJKxJOH9xn2bTsmzVuCoZER+zb5EvrgHl36D6L7oOFY29kXOe5TQOWHDx8YNGgQd+7c4datW+TqlaxCGpMpvJLxaVIV9uIZvZt70HfEWIZOnIqiJ6doNTQzJ4ewZ0/o2ag2Onp6aGnrcOZJONlfICj6v6RErJk2kdN7ttOm9wB85i8hKS6W3m6V5Pt33g4pQjDiJZISBAIgS0Au+LcoEY8C/Nk8dQy1W7XHroIzdhVcMDA2ITr8FdGvXhL1+gVRr56Tlydl9sEzRY5V9vf4M5UIgG2rltKxd39C78mSulWq4cbju8F4tGxTwlalRCiGSCSSfng+lBlLb7Lz4HMGdq2IhoYaAbejuRcSx4i+lTE20qZ5I5kiEPwwlr6dK7BuVwi9OpbnRvB7Vm57RGx8Jj06lGGqd012HX4un/wHP4yl37cVWbH1IQO+cyb4USwAtVwt2H/6NcN6VWLh+rus3PKAgd1ccClnTN9O5Vi59RH9u1TkTr69m6sFB0+/Zkh3lxLnH9C9KhPmBrBux0N0tNXR0VbniX8f0LHCylJgQqtSIkq0+IzbJau1UMg9SRKbgmW5yXKbmBeLiioScQrSqiqz+v+VKRFHT4UwZNxBun5TlapVbHB1KY2JsR7PXkoIfRbDk+cxhD6ToKGhRtDFyUUPVlSd/E9UIlIzMzm6Z4fcvfrxvTu0696bA9s20aLTdzy5fxcAl+o1Ob5vFz28R3P657241KgJwJN7d2nbvRc7Nvni3ro9Lx89AKCcazUuHvyJfqMnFMlM+QkqJeK/jd+jRNgCPwHmQCyyOIh6Uqn0Tf7+JYAusJ6CYnMtPhEIIUil0jSRSDQb8FWmsyF3g/Hu0oH+o8ezecVidHR06TVsBGt/OoyenoI/QuDFixd06dIFFxcXgoODMTQ0JCFbmSvLYC62wsbBEf/Txxk6cepvHyAASxs7Vvx0mMputRnUsjFhz55gW8H5D53rv4ikuFhO79kOwOk92+k5Thbs3Kb3ALkSUTxAV4hA/NthbGFJKQsxfWbOL0IkS5cpB01b/o09Uw65ublcv3COWg09uX3tCiALHnwRGiJIIlT4PPwD37F+12MGdq3Ill+eoq2lzuDuzkjzYNygqoycdQ2TUrIJ0IVrkXRq6cjVW9FYW+oxZvYNLM10WT+3AfPX3WVE3ywuXCv4+F+4FknnVk6cvfoWz7rWXAmSkShTY21uPYihZ8fy3H8sc306dSmcd+8t6NTCgbNXI/GoW5orQbL6FCaltLn3OI7U9JLn/66dM/dCYlkxqxGvI5LZefAJV26+o4absTCJUKEIJLEp+G3xB8Bv61V+nNYOsYWRrLjbIA+5ElFcYfgnBD7/1bC2MsLe1pj1SzsXIRwuFS3p2NZVtqGILPwNyMvL46b/Bfn2Tf8LNG33DY/v3KZyzVrcuS5LsWtkYkrgxfN803sAQZcvyu2DLl+kcbsOvHr8kDJVqvI4SBY4b2hszP2r/vT2GYPaZxZ7VPhv4g/FRPwdEIlEUlNzC77rP4jDu3fgPfl7egzxlu9XV7AiXkFfRJcuXXBycmLx4sXyICchEvFbSsSCyWO5cPwIkxcso1XnLp9ZhRZeDc3IKqhXAbBq5hQ0NDQZMmO2oL1KiRAu2FZcifiE4jERn6Co7/9mJeJDWirjm9SiZb+hVKnvQZmqNeTZmn4L/yQlIic7G00tLZIS4tE3lE1kPgUMCkGlRCiGSCSSmpnoMLSHM1t+fsqPY2sxoEvFIgHUYnPdogHR8R+wNNej7YAzVK9kxg9j3EjLyJbZx2UUCdDW19MgNj4TSwt94hMzMTKQvW+p6dmYmuoRE5vBjytvc/rSGxZNc6d7h3LExKRiaaGXb6+Vb5+l8PySxDxKW+qTkCSzHzXrCgZ6mixf2E34plVKRAnXJSEl4hMUxjgo23dlbP+hSkRcfDqONRYwaaQnzTydqeNmXzJ4X6Hi8NcrEckZGaipqQkGUCclxGOQP35+CqCOlbzH1LxkwPUHHV1SExPQzQ+4/pCehqGxCbpQJEX4J6iUiP82vioS0aX/YC6cOMp83y00bl3UA+pzJGLRokVERUWxZk1BEPQfIRHe37VHpKaGnVMZNDQ0UddQR11DAw0NTXJzckhLSSE1JZmsrI9UrV2Peo29cKpQEZFIxL2b15nUvydWdvasPnAcfQNDot9G0M+rAfsC72FobFLiuv91EiFU+O1TX4TIhaIJ5H+RRAC8vBfM/cvnCQ28hiQinApudanVog0Nvvnus1mXvhSJ+GnRbDw7dObu1csA1GjkybFtG1m0ZXcJW0Uk4kN6Opra2kS8eoFhKdmEMDU5CcfyFQVTvKpIhGKIRCKpjZU+mZk5VKpgQscWjgDcvCdh5Ux3xs8NZGBXZ077RwDQqrEdq7Y+ZOsST1r2PYOFmQ4dmjnI7QdOusz4wdWK2O8+9JxtS5vwIjwFYyPZb5qUkkX5MsaEvkhk7OxraGioYVtaH0N9LdLTs7A01yU1PRsNdRGp6dnEJWaip6OBg60hnVs5YWyohUgk4umrRAZOvkrFMsasmeNJabE+4ZEptOt/gvD7UyllJDBB+4+TCJ9x22WEYXATfFf2lbdLYmKVc0/6D5IIgIDA15w4G8r5yy8JexOPR/2ydOtUnZ7f1ZSNof8gEvH85XPevn5FwDmZe2rDZi3Z47uaORt2kBAbg6GRzIU7NSUZ+zLlePXsCaXt7EmKjweglKkp0W8j0Cxtw/vw1+jn26enJFPasQzaeXkYlCrpBq4iEf9tfFUkwsKqNMv3HMClek2ljn328D7Th/TjUNADeZvQxDLnN56FJOodAWdOkpuTQ25uDtLcXHKys+V57A2u/VLXAAAgAElEQVSMjDAwKkVWbh6PbgXif+wwZVwq4dW5K7tXLmHQzLmsnTKOffefoaWjw8cPGQysX5Nlx35FbGtf4npCkzlFk3ZFJEpZcvGlINT3z5GI4qQgKS6WvrUKCvMUzqwkNPmXtStHALIF7JWdQCuyV/R8NdWV+z0+5vz+4oKZ2cJ90VQXkZaYwPPbN7iwcyOlLCzp9cMSDBSs5iuCuYGwkmGhL/wBDL9/h8o1ahEVIfN8LG1nz93Aa7g3aVbCVuiDA8q/py6GCiYG+cUoS0DkINwu99Ys3KZgsqOIXCia1CgiEXrf/ekkwtxMj/MH+pKZmUMZB9nCxes3idR1s+Xi1Zc0qmtP+NskABxsjbl68w3Nm7iwdU8wy/2uc+XYYF6/SaBuLUfOX36BZ/0yhEfIavE42BkT/CCahvWcBC4u+13evE3gxK+PycnJIycnj+ysj+Tk5pKTk4e6uhqlDHUoZaQD6joEBL7i58N3qV3Dno5tXVm48gKrFvdkyKgdJL5dh6amBmlpmdhXmsjDoKXY2ghUuFZUxEsIyk5OlSjMBihPUhSRHQWQSJIRi0sV2bZ0KiizFPPat2C/shNuqaJ3XOBvQhGpVlR8UdHzyssUvmSugr4oWECQ5gnfq1Ra0l5NU3jyL9IyITYunYsBr1m89hplHEzYvKIDphaWwn1RRCK0FNgrIhFarUs0PUkVvp/UtDTU1dV5FxEOgLWdA3duBNCgaXPBRaPSusLvl6naZeG+KBjnnmQKJ6MRmpOYayk3vKmKzf3z8VVVPtt6xp/SdiUn27+F8lWqkpaSzLs34USGvSIjPY1Grdv/5nHPHtwjKT6OuvmpJcXWNnw7aJh8v4aCCU5KZiZP7gWTm5tDUnwcJ/dsZ82xs7x6/oyK1WvKJcFLh/bj4lZbkED8WyGkIPjNmFyiGrSxuQUte/Xj7N6dgpmVVFAOBiam1GzRjqpNWnBy3TIW92zLSL89WDoKVPT9QnCuWgO/hbPl2UKO7d3BkInTycvLEwzQU+HPx7UTQ9m2L5iBPWtw8EQoAF4eZRg45ihr57dk5mJ/Gtd3BGDrvnvMmuDJiCknGDmoLmNnnGLz7ttYWhgwY+F5ju7qx8yF52jcQJaVZuve2/w4pWi8za07ESSnZNK8qQsADnamjBzSqMBAwcQyW6rHjVth5OVJefsukZ0/3eLm+fE8fJJAg3rl5IW9tu0OwMvTRZhA/EtRnCwA+Izdgt/m83gPaY7vqsEAiMWl8B7cDL8tF/Ae3KzEMSooBwtzfbp3cqVTGxemzD1PzWYbuXjUh7JO/4xvk7aODqt+nE7t/NSsR3ZvZ/jkGexYu5IBo8f/zb1T4d+Kr+pL/kcIBMgqLjZp9w0bFs5hQu8uTO7Xg1uXL332mOiIN0zs0Zlju7Ypfb2M1FQSJDFUqFqdau4NWXP8HNaOTkS8eEp0RDg/r17GlWOHOLLZl46DvX/7hP8S+H4/md5ulfD9viCTRVJcLGf27ADgzJ4dJMXFyvcNnbOIbUGPihSJU+H/g4amFh3HTaft8HH4juhL4nsFLjcq/CthU/qPBciqq6tRrXJpjv/6hBFTT3Dx6muu3Qz/7DEvX8fRuttWtuy5pfT1klM+IIlNxa2aHc0bO3P913E4OZgR8uQdz168Z+7i4+z9JZAV684yYVSrP3RPXyN8xm7B0mkoPmO3yNskkmT8Np8HwG/zeSSSZPk+31UDiHnti++qAX95X/+t0NbWYNW81kwb3ZAW324kKjr5tw9SQYV/Kb4qd6bbcQpk0t+B5yEPGdWlA3m5uXi2ac/Jn/dgbe9IWZdKiNTUyPr4kdL2joyZv4T01BR82jXHsaILkndv8Tt1UfCcipSI9Gzh1E+pHz4QejuIWxd+JUEiwcHZhS4+Y5SKFfha3ZmS4mLpWdNFvr3nTqhckVj//aQSSgRAtsIifCp3JmXdmYRwcfdmAo/8zNitB36Xa5PS7kz3gqlUoxbRb2U+86Xt7LlzI4D6+cpeYajcmf4ad6Zff+lPi8aOBN2JFHRnaljHnjeRBe5MVwLDadG0EkF33pKS+pG+Iw7y8WMOndpVYdcvdyjjYIqjvSlqIhHq6iIMDHT4ZWtvkpI/4N5yHdWqlCYmNg3/4yOEO6XIxUXAFxwgW6pLwI3nHD99nxhJCjWq2jN5XBtQU+AO8i9yZyrhnhS2Sa4uCCkRsj4qeGdV7kxKuzMJYcGaIH46dJcrJ0dgaqJf6ER/jzuTmpoaUW9lY5e1nQPB16/S0KuFyp1JhT8NX5U70/+DClWqUq5SFd5HvuXR7SC0dXQwMDJC36gUH9LTuHnxHBOWrCI3N5fZwwfiWqceg6bMoH8Td5ZPGceQqTMxUtKHvDjUNTRwdW+Aq3uDoju+EiKnDIq7LRVOw9qm94Ai+7znLaHH2EmCmZVU+PPg1WcI6UkJ+I3qz+hNP6Gtp//bBymBbSuX0tN7FGcP7QegRecurPh+MvUD733R66jw+zFu5in8D/dn6rwLtGpaDoBfL73kl01dWLnhJnl5Un46EgJA946VGTfrHP6u9kyde45WTcujp6tJSlom14PCkeaBmpqI8IgEsrJyiYxOxqWCmJycXLoN2kOLJhWYOqYJ1RuvZPTUw8yZ1hrjUv9fkUBNTQ2aelaiqWel3zb+ylHcbUksLoX3kOZyslB4n++qwfw4vYvKZekvxrRxXsQnpNOu+1YuHBmOnt7flwI1KT6OsBfPOHPwFwBafduVpdP/x95Zx1WR/f//SXeXCraiEqKiCKiI3bF2dyF21yp2rbEG2ILdayvqGmArgoKKWNhSgtJ5f39cvHC5M7vyWfP35fV47GPl3Nc9c2bumZnzOu+aQFX/AAyMhEVQEYrwX/F/xhIBuTnnz57moO9GQm/fpHwVW6Jev0ICWJYqg5KKCu9fv8TCsiR/7D6Eqpoar549waNlIypVq8HcTdvQ0tElM0OqyLU1NUlOSkRHV4+0lBTUNKS7DwlJSWhqa5OSlCjHz1JWJiUpCW1dXdJTU1BVl/LT0lLR1NImNSkJTR0dsnL5KurqpCYloZWPr6qsLJiV5kdZIoRiHD5nVWrVuz+e85fK2oUCqD+3C6HIEvFtLREAEomEpb3a0nbkJCo75/mqZ6SmopqbMSkrIwN1LS10lNLR1NYhK1M6P1XV1ElLTqaUhTlpqSmo5c7nzIx0NLW00cjORltHRzb/1dTVSU1ORktHUawUxhKRlZXFlb/PYGBohLVdVbTz9VdkiRCHkpKSJClyFjrayqSlZaKem1UrIyMbTU01kpNS0dFRJyNDOm51dRWSkzPQ0dOT8bOysjl88iGbd93hVvBr7KsU4/nLDygpKVGhjDEoKfPyTQLlyxhzfPcAVFVVePgoCtcWa3FzLceRnQMLXIvCWSJE239hS4RwjMNWaSxDQcuCCF8URZaIb2qJQFUPiUSCQ70/WLOkA26uuTFmP8ASkZGVhbKystzzNiU5GV1dXQVuZmYm4ZfPY2Rigq19Vbk6W0WWiCIUBr+UiAiMSkRsvOJpPIVvuJfPn3Ju/x7SU5IxNDPHyMwcA1MzDE3NsSxfASQSTm7fwqF1q6ndtBUvHj1kykY/Nv4+BYe60kDRl48f0clzDH94DqbnxGncOHMSAMemLdm9ZD5jVm9ki9dU7HMDS19FhPPb8LH8OWow3cZP5dZZaSq2Gk1asn/ZAkau2ojv7KnYuUr5j4Nu0nPKLDm+uro6PcYrFroTc3MSW5wWVnQIYe30iZzYvlXODalgVqVtt+/LRENhU7CmZIosoL9SutXCoLBiQSyVq4aq8AdaBfOP/ws+pSm+vMXGKHZMFWXp2Ce1aYzH4pWUtbEDwP/gQYyLW3H3vD8ADg2bcXT1Yqat28LGmXnz/+7lAAbPWcjOhbNp23cQl08dB6Bui9ZsXjiHLcfOCApeQWHwBSmEMzMyOOC7iW1rV2JibkFaSgqPH4QxZvYCBoyeAICltvBbR/RlJCYuhJAlUj+zsO4rAguM1WuPMGqs9zcXEZLEreIEsYW40MJdWZ2nT9+y1e80KSnpFCtmTDELo9z/G1OlSimys3P4c/Uhli7bR+9ezfh9Rj+MjQvEZIiJuEKmdoxIFp771jqFuJxic0F0kSu2mP3y+TB8lA8+G07hMaQV3qulLl/R0QlYlMyr3xD1ahfm5gKpavNDbOFeWL6YWBA7J6F+xO6TrCThQ2YLC52cbGG3YDF+YSHJUuxfRVPYGqusKzIfNaSioHKNqRzaNQKbypbSdh3hhfX9xOKC7WIbZtWMvm4xu/T0dNatW8fy5cuxLKFLwsckHj58yaoVnowc8ZuUJPbcEssWJjKXIjIU3VZTMoTnV+Hfr4rvNL/VK1j2++QiEfGd8f+NO1NOTg7nDu3j1dMnxLx9TfSb1yQnJpKZkUFWViZZmdL/Jq9aj72zK8VKlaFXgcV4WloaD2/f5OKyhVw9eYwylW2Yv/cIJpYlOb5lPVo6ujjUdaN81WoAqGlqoaWrRzU3dyxKlca2tisApiVKUrWeO5o6utjXcaOcfS5fXQMtXV2q1nPHrGRpqji5AGBmVQr7XL6dax5fVUVZga/xhQXDvgRCVgGhNqH2hNgYTmyXLkhO7fCVuSMZmprRolc/WYxDkYvSz4+PsTEYmORlGDEpURITy5JUrOkMgKlVKaq41kdLV37+A2jp6lGpmiPFSpfBwaUuAMVKl6Gme6OvnoEp8Owpdm1Yy6KN26hW24WIsHsMatuMKlWr4TVqGNVru9KtQ3uMTX6tTD23bj9i4ZI9P3oY5OTksH1XII+fvuPlq1hevYnj06dUMjJzyMjIIjMzm8ysLPbtnIqLqwPly5dg3pwBcn2kp2cQeDkUv+1n2H/wEo41rLkasArryt8uC9iPRHR0gsICX6hNqD06OgGfDdKNJJ8NJ/D6vSfm5oaYmxviMaQVPhtO4DGk1b8LiCL8cETFfMLC7Od3JTt8+DDr169n//79ONVI5PbtR7RuPwNrayuGDFtO3Tp2tGlTFyOjX6v6e/D1q+xYt/pHD+P/JH6p7Ez/BElODj5e04l5+xoHl7r0HDWB8Uv/pGWvfqSnpqKkpEy/SdOxqVVb7nsxb15zeqcf8wf3oV9NW3YsnY+mljaTvTczbeM2rMpXJCkhnjYDh3Fs8zpqNm7Gh6j3fIh6T9U6bhzbvI42A4dx+5w/xhbFMLYoRtiVAFr2H8rJreup0bAp8VHviI96h31dN05uXU/L/kO5c/4MRhbFMbIoTtjlizTvN5TTvvL8au6NBfgi5tBCQihTkvf0SfSoUYW10yfKcddOn6jQbmhqRqve0owfBcWCx7wlbLt9Xy5Iugg/J3Kys0lKiEffOG/hXcrWgdBL5zAwt8DA3ILQS+do1Gsw5/bskJv/NRs349jmdbTu3Z/rZ05hUrw4JsWLc/3MKToN9eRTQvxXHauOnj5mFsVxcMoVN8WKo6KqygyPgRgaG3N83y4mjRIJ4P0J4bftLIuW7GX8pA241bX/0cMhMzObMZP9ePsunob17ZgxqQMb1gxhyMAWpKSmo6amwuL5/XGqZS33vcjI9/isO0rb337HvEQnfp/li4GBDkcOzuGvA7Oxtrb6QWf0bTF85FosSvZg+Mi18m2l+zN89Hp57uj1WJTqw/BRPrI2qViQuqsUFAveqz2JerVLZp0ows+L9PRMkpPTMTISseT9RDAwMMDS0hInJycALC1NkUgk9Bu4FFNTA7b6+TN67K+zGD+0bSubVyxh+cwpstS2Rfi++P/CEvHs4QO2/SmtaNyiWy8cXOryIOgWG+d78ebFc3qPn0KjDl1QyfW7Tk1Own//bk7t9CM+Oprqbu7UadUWjwV/yO3IfkZSQgKq6uqEBFzEtrYr929cBUDP0IiQgIs07taLu5cDZPzIiEc4uDXgXuBFbJxceHjzmpRvZMK9wIs07NKT0Ct5/GdhoTjUb0Ro4EUq13IhPJevb2ikwNdQV6N0pbwsR18CISvCyR1SK8LJHVvpMXai7N8AJ7ZvpefYSRiamslZHPK3A3jOX0rX0RMErQ1FFohfA5/iP6Ctp49qPgtXdmYG4dcDZX+HXw/EoWFznoXdo5xdVdn81zUwJCTgIh36DiIo4IKMHxRwgTot2qAkycHgPyYjyI+IsHtyaZ6NTc1Y5reHmwEXGDZ5Bg9CghndvT2Rz55Rply5r3bcb4X5i3bjWKMiA/o1o0e3Buzdf+mHjeVu6EsWLDuNmqoKg/o1xNW5EpevhjNh2nZevY5nwZy+dO/qjqqq1NUhMTEFXz9/1m86QUxMAs2a1KR71wZs3TQBE5Off0e2sIiOjsfc3Ejub58NJ4A8K8Lnf0v/fxqv6V0xNzfMtTiczm0/hdeM7jLB4L3KA6/fewtaG4osEL8GomM+YWaq90vUvrl79y5lypSR/V28uAl7d83g6rUHTJvSg2vXHtClx1xevHhP6dLFftxAvxDrl8ynhmsdugwYQvOOXTm+d+ePHtL/OfyyMREZ6elc//sMJ/fsIDw4iE5DPGnbdwDaunpkZWbSulJJRs5dQoOOXWQLpOTET+xetZwze3di4+RMm36Dsa3tIrv5/8ln//NCPDH+A1q6UlNfanISeoZGJOS6g6SlSH0DldQ1+RQXi4GpGYnx8WjlBjalJSeha2jEx9gY9E1MSc/lq2ppy/hJ8fFo5vIzUqT95+erqyoLBqaqKisLuiJtmDlF5lo0bO5iWfv636fIMiUNny+1GHhPn8TJHYoB0Z9jHwq2f742X4qimIifLybiRfgDVo/z5I+TeSLgTcxH1DW1yEiVzk91LW0SP8RiXdZScP5nJ37CyNSMtJRkADS1dUiIjcG6dBnB436+Zo/vh3HAbxPPI8Jp0bkHzTp0Rl1D3gc4f0zExVPHWek1jf2BtxV4n7F5/kz+XLqIFx8S5QIKf7aYiLi4T5Sr1JcPUQdkcSNK6s2+a0xEWlomJ/zvsmVbIMH3XjJ+VGuGDmyCrq4mqakZGFsNwGflIHr1bikTDwkJScxdsBvf7edo2KA6Iz3bU7eO3b8voMQCTX+ymIiCYgFg+PAl+Kw/hsfQNnivGZ3X7rlC5nL02WIwfOTa3LbmeP+ZV5h0+Oj1+Gw4jceQFnivKlAbqJCVqQVRFBNRaHytmIjbd54zZJQvdy7Pzmv/TjERISEhbNy4kYiICPr27UuXLl1QVxfPEHXgwAFmz57NnTt3UFMKEOSMHb+OlasOkJJ4Gi2tfMf/yWIiot+9paNrDQKevZOlsK1qqF4UE/Gd8UuJiHMvYrhz+RKBp45z6cQRylexo0nHLjT+rTOquVWgQZpxpklJE/xfxJCWkcGD2zdI+vSRtdMnUam6I91HjePjx4/YODrxODQEQxPpwvtDTDQV7B0Iv3OLUtaViXv/DgANHR18589m6LwlbF88R+YT/ubpEzqPGMf6GZNo2XcgIQHSAnY2ddw5s30LA+csZteSeZSzdwDg7bMndPAcy+aZk2nWewB3Ay8CYFvXnb93bKHf7MXsWTqPsnZS/quHYXQdP1WOr6aqQv3fOvExNpZKNWryNOwuBiam7F+1jMCjf9G0Wy/qtmlPKevKRIY/wKt3F9l18bsVJhMZKiKi41Nc7BfFRHxGkYj4tUXErTOn8N+xlRnb9snaL587j46hEU/vSIuEla/uxLXDe+k3cRJ+C7xk8//pvRB6T57JqS3radyxC6HXpRYKu9ounN6zA69lqwUXl8pKSpw7dph5Yz3pPtSTshUrcWj7ViLC7uHesi3uLVvj2qgpIC8iJBIJo7p3QEVFhUkLl2EpIFLehgbRvJ4Lh06fo37DvBf5zyYiTp66yfI/D3LudJ6w/x4iIiV6PecvPeTQ0SD+On6H6lVL0aurC9061UZLJ2/nOzMzC03jXmR92o2SmjQY+uy5Owwc9ictm9Vk2tRelCpVCNfKn0xEREdHY25uLtc23OM3fNYdxmNYe7zXjs/lxWNRvK2ME/Vmf57IyMkQjol4HyUcExGTKGxdKBIRwof8RUTE3oM38N15hVOH8lWF/g4iYu/evYwYMYKxY8dSoUIFNm7cSFhYGB06dKB9+/Y0aaK4iJdIJDRv3hw9PT1WLO1IyZLmCpyAwDDqNxzDxb9XUL9+XvzbzyYi/j52mEPbt7J23xFZe5GI+P74pUSEjp4+5WzscG7SjPptf8O8RJ6vbcEsTJ1tyjB13VaMi5dg+5L5PL4bTNfR47F1csHM0opbV65g5+rG07t3MC8pfZG9iXxBWftqPLgWiHXN2sS9eQ2Ajnlxnt65SWXnekSGBmNqJXWpiH/3mjJ2Djy8FkjFmrX58FbK1zUrwbPgm1RyrseLsBBMLKUPoNTYd5S1c+D+1UAq1crrX1Nbm3fPnyiMJ+71S8o7VCfsSgCVnZyJef2aI97LuXL8CI4NGjN5gx+PQ+6gpavLuBYNZOc+YfV6nBo3J/rNKw6s/ZOLf+2nec++DM1niRC7Ob9WitPCcLNEREF2IVKz/lP/YiJCbKH/NaAq0rm2mnC7ukAWI0CuSFDotSsc2bwePUNDrCtXoXQFa0qULouyigqSnBy0VFVBSQnL0mXk0p6KXZfo9+/o07guExctp0GrvIWSWLrVT2lp3A+6RYncxfvbF5HYOtYiLi4WA2PFYOaENPkUjdlZWZzYtoWgi+d49TiCGRu3USFXYJtoafHiSQRXz/qz+Y+F7L0ajImFBdoFEgmkpqTgt2YFu9evodvAYQybOA2tfOkJs3NyuHX5EmP7dGP26vU0yj0vMaEqdh/Y6r1TbBRK+wqFT6OpYo2n5wwMDfWZPz8vJklJudQ3FxF6elo41rCmTSsXunZxx9Iyn/umqvzCR11dHX9/fzKMSrDdZxXnTx5jvvcm6jRsQnqW8DkXdqNADGL8gvPhMz7ExmBiprggEspat3TiSLau96H/UA/+WO0NQEx0NJWt8kRRVFSUTGQMHz4cHx8fPDw88Pb2LtR5yEHySrhdTDBlCRQ5FV2gJwi3i4mFwmacEu1HMQ2rWApW0cW/2DukkGnIlVSEn1tKKnk78+cCIlm1OQhTY20q29pTuZIl5cqYo6ysTE5ODhJ1M5SVlSlbtjja2nkbk2L3+Js3MTi5DGfjuvG0bOmc76DCY/mQXbdQ5/QmRV7oZGZmsnejN5fP+vPs8SO89x6mcu4z1EJThUcPH3L21AmWzp9DcMRzjE1MFDZQkpKSWLJkCWvXrmTE8PZMndwdTc181gvVRpw7d47u3bvj6+tLq1atALiXIDI3RFDVUNEi8kFYFxYab1MymTVyKMVLlsJj8gxZu52BWpGI+M74pUTE4fvP0TYQ9rctKCI2zJ7O47vBvIgIp7pbQwxMTKhRvyEAYTeu0mLIaLbP/53Wgz15cE26G1mhliunN3vTbeocjq9bSaVa0uxJz8Lu0qDnIPYvnkWT/h48uindcbVxroP/Fm+6TJnNyfWrsM7NZvMy4iFuXfpwYIkXjfsNIyKXX72eGyc3raXHtDkc85H2f373NkIDz1O/U3eys7PlxlOmig0X9u+m74y5/OW9glKVbfGZOFJ2jq6t2tJl9ATCrl7m2qnj3L9xFcty5Vl65Az7Vi/DrrYrBiammJawVLAiFImIX0dERIY/wG/RXF4/fUxnzzEAxL14zovHEdLqpBIJKCmhqqxCdnYW7169xNSiGOUr26ClrcPH+A8kJSaioqKMqpoaamrqqKmr8+LJY5p17MLQfA9hEBcRe7dtxdaxJrcDLgJQ082d7auWM3j6bO4H3STs1g00NDSwKlceq3IV0Le0QtdAuvMaGf6AVRNHo2toSJu+g7CpVRs9wzy3EROtvHz+0wf1xrlhE9r06CO6aEyIjuL3kUOxKl2GWSvyAls/L2LvBwfh0aUddtUdadGxK/VbtEZbIF/69xYR2dnZjBm/m/MXruB/egdWVnk7k99DRHx4twsjU8XFNqAgIkaMGEFwcDAv3rzFqW59pi1egb6h9Pf8mUTE/PEj2bdlA10GDmXGMvmg0I9xsXLiIi4mmnrlS8j+Dn8dhVmuWJgxWlwsCFkuCo0iESHcx3cQESFhUUyed4mnLxKYNsqZ7GwJ4S9VefjoDZEvY3IPp4SyijpZWdlERr7D0tIMW5uyaGmpEx//iU+fUlBRUUZNTRV1dVXU1dUIf/SSAf1aMHVKzwIHLZyIiIuN5fqVy9y6fg0tLS3KVahIuYoV0bYsK7vnwu+FMNNzMKYWxegx2IPqznXkishZaOa9Q3p1bE+7jp3p3KOnqBX25bNdDB62HJsqpVmxbHjeB7nPgRs3btC2bVucnZ3p1q0bZd2ay21O/Ru+lYjIyspihOdwQm5eY/3BE5gXz7ufi0TE98cvFVitb2T0xS+jIbPmA7B5vhedR45j3+pl33Jo/xNSEj8RGih1gbp0YDdOLfN2g6+fPMK2udMpXjYvNaKOvj7V3RsRfPFvGnbpQU6+h7Jbu470mjCVs3t2KBynKMj510TSxwQ2z51J0KW/6eI5lmnrfWUFDfMvuj9D93NxuKwsXj9/ypPwh2SkpaFrYIiuvj4SSY405XFmFpmZGaioquLcoPH/NLa01FQ2L13Itb/PcPHEEWwca2FXszY52dlcO+fPq2fevHr2BFU1dYqXLsv7l5H0mTSdJl17Cub4fvfqJbr6+ugZGFKnSQsCTh2jTY8+oscvZmnFko3baOloQ/dBHljb2sl9blvdkVN3HvL3iaOcPLCH+RNHM3zqTLoN9vihAZDbd5zj+o07XLl8CEPD7x+AbGSkKKTEsGbNGkDcVehnQFxMNPu2bABg3+b1eEz5XSYa5o0fyb7N6+k2cBgzV0jPxcTMnP5DPWSWCLN8wsDb2xsvLy9BsfCfBUQRfgji4lMZ63WGswEv+H2sC4N7OsiKLKLvqPgFTemCNCsriydP3nD//nMyMrIwMtRGX1+bnBwJGRmZZEU4JqoAACAASURBVGZmkZGRhYaGGk2a1Pyfxhb/4QNzZ0zlamAAUe/fUcvZBSdnVzIyMvA/cYynjyN48uQxGhqaWJUtx+vI54ybvZAOvfrKWag/42VkJIbGxujr69OsVWvOnDxO5x49BY4sRalSFmz3nYJN1YEMG9KGSpXkxWzt2rWJiIjgyJEjbNu2jWueIxgx3YtO/Qf/0Gfojq2biQi7x/bTl9DV1//3LxThm+KXskScf5tQ6KJyGVlZhARexLa2CzG57kNmllbcunwZuzr1hd2ZrgZI3ZnevgFy3ZmCblDZxU3EnSmAio61+fBOytc1K8HTO1K+sDtTAJVy+z/ivYKbp47i4N6Isd6+PL17By1dPaa1aSg7B89la3Fs3IzYN29QUwENLS3ePHmCQ736PA65g0Wp0qgoKRH16iXW1WrIna+mtg4mxRT9MIssET+/JeLFo4eMb9uMOTv2Y+vkLPfZP4mIghC7LuIxFP/uznTh+GEOb9vK9JXeGJoXw0Qg9XB8aioJsTG8ff6MYqXLYGIhzfaRf+5lpqdzYN1q9q1ZQd8xExk4YSoJcbF0da2Bl89mGjVrKTgWzdwd6e0+qzl77DCbDksLMYrthD+JCGfWiCFkZWXRd+RYGrRsi5qa2ne1RGRnZ2NTdSA+3ktp2LCOAv17WCIkaUfFq+OqCvtxC4mIn90SERcTTYOKee6ugU/fysSFhaYKMdHRcgICCl8dt9AoskQI9/ENLRHBYdG4tN3LpUPdcXYsIf/hP4gIxTEWMg7jCywRO323sG/nduYuWY5t1aqChTlfJ2cQFx1F5JPHlKlQEVOLYgoueulpaWz4YyGbVixhyqw5jJk0hffv3lG3uh2bdu6lQ3ORjaLc+fXH8n2cPRfE8SPzUVNTFX0OHL5xl5kjhqCirELvEWNwb9EaVZF3BXwbS0RWVhZOttbMXbeVGs6Kz9AiS8T3x8+fk+w/IjH+A1vmzeTBzesc8lnNIZ/V3L9xjd2L5/ApLpb9yxcScGgPAYf2cGrTGhI/xLJv6Wwigm5yeos3p7d48yzkNoeWzSXxQyxHVy/m2pF9XDuyj8D9O0j8EMuBP+byOOgm/lt88N/iw/O7Qfy1fB6JH2I5tnox14/s5/qR/VzYs41PcbHsWTybR7dvcnKzN2oaGgxfsY6YVy9l4wm+cIbyDtUBqNe+M395r+TRrRsc27iWY5vW8ebJE3znz+JjXCw7ly7g/P7dBBw5xPYl8/gYGyt3vldzqwgX4ddD6UpVGLV0Jd7TJvzooQCQkpSI97yZHN+9nXOHD5Kc+Anz4iV4E/lMkK+kpISRmTm2Ts4yAVEQG+bMIOjieYZN8+Jx2D0ADE1MWbp9H3NHDOGYgGUtP7oNGoauvj69m7vz7rXIIg0oU8GaLSf+po/naHav96aFgzUbli7gU4LI4usb4PKVMCQSCQ0auH63Y/5fwPRlq7nw+LWcK5OJmTldBkqzI3UbOEwhXqKggCjC/5+obmfOusVN8Zhy5kcPRQH3Q+/RuHlLqlavLiggQPoMNbUoRs069TAVeYbOHuvJzcuXmOo1l7C7IQAUK16cbfv/YljfnuzevfsfxzHSsz2qqio0bDKBt29jRXnlKlXB7/RFug32YPvaP2npUInNy5eQ+PHjF57xf0fghfNoa+sICogi/Bj8UpaIv9/Eky2RkJOTg7Kysizdq5KSEulZWSgpKSGRSGSmPolEQlZODvEx0RiamslSsGpqa/Pq7XsMTc1ISohHU0dq4v+Y8AldQyMSYqMxMDGTpWBFXZNPcTEYmJqT/DEBTW2pX2BmWjI6BoZ8jI1G38SM9NyUmCnJKeTk5CjwU2JfU7xMBRJiojEwzetfR0+Xj7ExGJqZy40n9vULLMvl8dNSUtBQVUZTW5uE2BiMzMxJTIhHS0cXVWVlWcrN/OerrKKMhqaW3DVTUlJCOd+1yv/Z59lQkP/5ehbk5wi0CZlaocgSAYWPiXgX+Ryvvl3ZEHBLrv1bWiLUVVRk9xIg+32TMzP5lBCPto4uK3+fjFnxEvQdPYGUtDTUBI5dMLD6Mz7v/ke/ec2oFg3wvR5CdkI8Y7v+xsHbYTJeZEQ447t3pFHb9oyeNR+1fLvQmvn+nZOTw6aVS/Fbs5JFG3xxbaiYFaTgznbE/VC2rVlJgP9JvPcfoWpN+SKU38ISkZSUSsUqfTl5YgfVq9sp0IssEXmIjnqPsUCgdGpCvGAAtdgzp2BMBMj7judHkSWC/+8sEQD3H3+ky5CjPAgYKP/BD7ZEjBs+FDuHagwY6iHIBcXAapBPFvDi6RN6NK7L3w+ek/z6Of27d+ZGWLjs8wehofRo34qePXsyd+5cectBvvmVk5PDgkW78F53jJ0799OgQV6ils8oGFgdHnqXbWtWcvXvM/gcPE6V3I3Pz/gWlohPHz/iZGvNhiP+VLRRfIYWWSK+P36pmIhzR//i5vmz9J82C5/pk6hWT1qhMCTwEn1nzWfFyCF0nzCVm2dOAeDUtAV/rVtLv7lL8R4+CFsXNwDuXwug0+R5rO7VkbYjJ3P3vD8Atg2ac2L1IvotWYf3eA8q1a4HwKvwMOp26ceWKSNp5TmJ0AtSvkOjFhzP5W+Y6Eml2vUIOnWYp3du4Ny2M7FvXsr6D78eyJuIBxiYmTPjwBm8xw2niou0/9fhYXQYNZEFvTvRcewU7pyTjr9Ws1bM692Jkas2smqsB3aubqipKHH38iUGei1kZo+OsvNV19CkWv0G7P5jIePWbGTxiMFUrVMfNXV1gi6cZaDXQrnro61vgI2TC3uWLWTM6o1s8ZqKfR03VNU1uXPhDP1mLmT16MF0HjeVoLOn0NDRw9alLvtXLGTEyg1smzMNW1c3VFRVuRdwnj4zF7BmzBA6j5XyO4yeJFfADEBZWSRdm8gtL6IVRPvJEfnC1xALYm4vYhBLQ5ueVbgsQYkJ8egYGFJQ7H9MV1wEZBdSLIi1p6SksGSMB45u0hdJUMAFRi1cRtjN67g2a0mqREKOsjIfExNJzMgAZWWyRRaVQvi80NQ1MiInJ5uU5GReRz5HU1eX+HzCw6BUGdb7X2TBqGH0bdkQr/W+WFhKXVRSMuXfRp2GjaSsXVWmDO0vtXpIJBibmeO1ZoOgC0BFGzvmem/i4qnjjOrRifFzF9GqSw/Z5x+yhBZ2wou9qDRhV0qFhbMS9Bv7O1PnbmGZ3z/vDn4rhL6phrKpcJrJ9Cxh0SfkKpolMnfENqVyJBLiY2Mw+oL4rBVTxnHEbzPt+w1i/OIVsvZlk8dy2HcTHfoNYuKSlXLfERPhukbGCoLnTYrwPfj6K22oCcX8AKipCFfuttYSSTNcqPSphWwXFRHCc0AUOV9+3yuritQvUBZZhihrirSLpD1VUdxYAYhPe4OhkQFoFyhAKSQMxMSSWLpmFWvBZuHnh7xQ1VFXJeVDjLRNRGDGqirOmfzpYI3NzMnISCc1NZWw5y/Q1NXjXWreeRlVqMLOizeYMrgvzvUbsGTzDixKWOZ+Kl/h+bcxDbCoeo4u3bpjXrwEEokEs2LFWbzeF2MzM9QK3GP21WqwdNM2/A8fZFT3Dkycv5QWHfNSygttPohtMoiluFWAqha9R4xl88qlLNrg92XfKcI3xS8lIkyKFaO8nT1aOrpUq1efilXzlK+Wrh4O9dwxL1kaGydpViXzkqWxdnRCU1sHWxc3Wf0FkPpiV3Gtj6lVKSrmZlUyKW5FWYeaaOroUKl2PUraVAXgjv9RlnZtQim7ahhblqS8o3TX0riEPN/EshRP79wA4PrR/TQd6ImpVSmsKtnw97b1AHyMiSYzLY0qLvUobSvtX1NTA00dXezq1sfMqpQsK5SZVSns67lLP3N1o5x9NVSVpRs3Bc9XSVkZ85KlccjlV61Tn/L2DigpKZOZkaHIV1HFrGRpquby7etI+5coKZGRnoamri72ufzKTi4oKatIx1NHyrd1lV5PJSVp6k5pH+7S8Tu5/BLVO38FqGtqkp6a+l2PqaqujqNbA6yr1ZC1aevqYW5pRWZGBlsWzeHyyWPM8f1vC2ENTS2q12vA0S3refv8Gc2691bgGBibsHDbXvZ4r2JwUzeGTJtFy+69QWB+Odatz74rQbyJfE5mZgaT+/dk70YfPGfMVuB+RoOWbTAwMmZQ26Y4uzfCxLwQtQ/+BzTv2IU182dx8sAeGrVuj4amyELpGyE7O/ur+bDGx8RgZKYoCoTaPwuDdn0HMnbRcnl+PnERHxvDEb/NABz23cSACdMwMjMjPiaGw76bADjku4mBE6cJWiqKUISC0NJUJyW1cOlJvyXS09OZNGkSJ0+e5Pjx/+ZurKOnh1M9d7b7rOLh3WA69R2owDE2NWPdweNsXLaIzm5OjJu9gHY9+gha71wbNub4rTBev3hOemoqo3t3YddGb0ZMmyU6hibtOmBgbMLgds1wbdAYA2Pj/3RO/4bmHbuycdkiTh3cR6PW7UQLjxbh++CXWum9eBRO0+59OLzJB6fGzYiLekdc1DucGjfj3K5ttBowlKC/z2BsUQxji2IE/X2Ghj36ccZvA9UaNCE++j3x0e95Enyb31s48+Hta0IvncPA3AIDcwu2zxjFua1rWT24C7ZujfkYE8X7Z495cvsaAC/DQrhz6ggGZsUwMCvGjhmj5fiZGelUqSPdvS1tX42WQ8YQeukcxcpXpHoTaa7luh17cOPEIaq6NyYhOoqE6Chs69TnjN8GmvYdQsiFsxiZF8PIvBh3L52jeb+hnPZdT42GTYmPekd8dBSOjZpyYst6ufM1Mjcn6O8ztBowlBNb1uPYqCkfot4THyPMNzA14875M7TsP5STW/P6T4iNoUbDppz2XU/zfkO5c/4MRhbFMTAzJ/jCWZr1G4K/7waqy65nFNUbNMHfdwPN+g0hOHf8hTVFF0EYJcqWI/nTR57dD/1ux3wUcgfnpi2Ie/eOuHfvqN2kOduWLeJDTDTjO7bi9bOn+PhforyAObmw6D52IhEhwQRd/JsG7TsJcpSVlekxYgzL9h7mxK5teLZtyl9+mwk4dZz3BeIgDIyMsanuSLlKVShX2YYjO/1Yt2guMe8F3JNyoa6hgVWZst9lUWpsasaiDX4c2u5LY5uyeC+ay9/Hj3D7SuA3PzZAqTJlvko/yyaPpa1dOZZNHivXvnzyWNrZl2d5vvb4mDxhcMRvM/GxMbLPVkwZx2/2FVgxRVqoy8jUjHa5C6H2/QbJxIiRmRnt+w0CoEO/QUUCoghfDJvKxXn3/iNhD978sDFIJBLevX3L6dOnqVu3Li9fvuTOnTvY2tr+575H/T6H25cvcevyJVp26ibIUVZWZujEafjsP8qeTevo17Ih+7du5PyJo7zPTTjzGUYmJtjXqEn5yjZUqGLLni0bWLNwDrHRUaJjUFVVoXwVG/SNjEQ5XwsWJSyZ572ZA76baFSlDOuXLviuz9AiyOOXskQEB16kdtOWBF+6gL2zK2G5FXL1DA15ci+Yuu06cO/KJRn/3pVL2Lk3JezyJSrVcuHRrWukp6Zy5ch+AK4c3MXH2GgA0pKT5MTCq4ehPA26DoB9g2aEXvCnVpvOvAgLRlNHl7TkJB7fuqrAL1auIu7d+3F2qzdpKcmEX5dO7MrO9dDS1aXdqElsGDcU65rORNyW9m9oYkzY5Uu4de7J/Wt5peifBN+iRsNmhAZepHItF8JvXkNVRRldAwPuBl6kUdeesvNVUVPl3pVLODVtwd3Ai9jUduHBzWto6+mhraenwFdV1yD0SgC1mrTgXuBFbJxceHjzGtr6hmhp6xAaeBH3zj0Juyodj6qaBvevBuDYuDmhVy5S2cmFRzevoa6piY6+AaFXLlK/cw/u5/ItK1gL7hYXoXBQ19CkSdeeBB47TDlb++9yzPe5tScuHDnIvWtXSElKJC01hQe3b9KoQxfa9hsk6oP+pYh995Zb58+SnZnJx7hYcrJziLgbTA03d9HvVLSrytpjZ/Hft5v7t28QFx3Fgzu3WLp9P7aOteS4egaGeB88zvNH4ezZ6EMHl+rUa9qC3p6jqVK1mhz35bMnVLKr+j+fU0ZGBuH3QngUdg/LUqUpU7ESunr6aOrqylnkTuzfTeCZU6QmJ5OTnY2SkhLeC+fgUKs2Kv+Q5eRnw4eYaJlVQMFa8NmK4LeZ/rntRmZSYfDZEiFkdTjit5l+E6ZiZGrG2EXLGThxuoI1Y/ziFQwuskAUoZDQ1lanf09X9v0VhJ2N5b9/4Svi1vVrzJk+hYf3w1BRUaGqvT0DBgxg2LBh//kZ+u7VSwLOnCIzM4P4uDiys7IICw7CqV590e/YVndk57nLHN7px71bN4iJes/9McPx2X8Um3yWZ5CKCb8T54i4H8aOdatpXdOWhi3b0nfEGCrZVZXjvnz2FGtb+//9GZqeTvi9ECLuh2JVpixlKlijraeHnr6BXEzm8b07ufr3WVKSk2Suk6vnzaJa7SLvhx+FXyqw+lhkNHExURiZmvMp/gPaunoApCYnoaKjR0JsDAYmprKAZQ1tbd6/i8KgQAD1tjlTufLXPpzadKSX1x9k5AZEH1qxgKsHd+LasRctho1DM7c4VUriJ3JyckAiQdfYVMY/sXqRID87LQUdA0M+xcWgl4+vpaNN4odY9E2k49HKHU9Oegq6hkZ8jI1B38RUFqCto6vLp7hY6fjj49HU1UVdRYm05KTcAPC885UgDRj/GBeLoakZifEf0Mq9PkL8rJwcNLV1ZP0nxsejpatLtiSPLxtPSgo5ORI0tLXzxpPvegrxNQWK0nytmAgxZIlFUH8FFDYmQgxqIierpSbsc6uqrMyRTet4//IFQ+cszNePIv9rBVZn5eTwKf4Da2ZMwrRYCZp160WpChXJSEtDQyCgWwxpInESEomE4ICLLBjSlzqt2lLdzR2LEpYs8hzMsr9OUaxU6X89J7XcF8aVs6eZM2IILg2b4N6qLU3a/ib4Ikv59JFD27aw3XsVjdv+xqjf56Kjp4eSkhJbVy0jLiqKCfOXyPiW2v8eZXto7x62bvAh+E4QpcqWp7K9A29eRvLq+TOi3r5hwJgJjPFaQEpSEounjif4+hUGjpmEvqEhOrp6vHj6mA1/LORkcDgamprfPChQSUlJEpchkfOZzg+xYGmhmIjFk8Zw2HeTYtzCpDEc9ttM+74DGZevXSwmQszNSSyuQFXkPhSLiRC6b8X6/lrvQvGYCOExWmtdEe4oM16gTSSAWiyw+gfEREgkws9hJSWRRd43jolARZtFy08TE5fEsvn5rJ0qeopcdVPFNvifYyL6d+tMBetKDPYcibmFhXjwvkhMRESKeEzExdMnmNi/B03bd6RekxboGxoxbVh/dp+/SnErkWB9Afx9/AgzRwzBrVkLmrTtQLO2vwny4mJi2O+3iW3eq2jVqSujfp+Lto4OORIJ65cuICU5mbFe82V8ofleMCbi6J6d7Nu6gYf3QihVrgLWtva8eRHJq8hnxLx7y9BJ0xk+dSbJiYksmjyW+8FB9Bs1Dn0D6TP06aMH+K1ZyYmgB6ipqxcFVv8A/DrbX8CdgAuc3r2dYbMXsnTkUKrXl7oOBV+6wIjl3szr05k+02dz9fhhAFxateOQzyqG/eHN+gme2NWVKvTYVy+Zus+frZM9Cb8eSNDpowA4NGnD41tXaDZ4FL6TPajsIuW/efyQdmNn4DO8J+3G/k7wGSm/ZovfBPlxryNpM2Iiq4d0p8OEmbL+a7f+jX2LZzFm4242TxqBTR0p/23EQ7pP8WLpgK50m+zFzVNHAHBt1Z6di7yY4rsP73Ee2NdzR1VZmZCAC4xa6cO83nnnq6mjS3X3Rmxf4MWM7ftZNcYDh3ruaGhpcfPMKQW+vokZVZxc2LFoNtP99rF6rAdV67mjoaPLrdPHGb7ch0X9utBjqhfXTxxB18AIG5e67Fk8h0lb9+IzYTj2ddxRVVcn+MIZPP7wZkn/rnSfMosbJ4/Qd9YiVEUWgEUoHEKvXaZum/bf7XgpyUl4tmhAWkoKLXv2Y/XU8Uz32UzI1UAatOv4VY5R1bUuOvr6dBo+CqvyFVFTUaFt/8FsWTCbaeu2fHE/dZo0Z/vF61z2P8maOb8jyc6iWYcucpzXkc9Z5TWNkmXLM3TSdK6c86ejaw0WbdpGdWdXDI1MeHw/TOQI8pg1ZSJ6evpMmP47qmpqBN++xeJN22lc4PcJOHOKxdMm4NqwKbNHe/Dq+VMcXetxYv9uMjPSyUhP5+2rl4yYNuu7x0V8DYxfvEJmgciPcYtXyCwQBSEUVD120XKZBaIIRfhWOB/wiMF9hatFfwtIJBLmz5zBo4cPWLZ2HcYmJl/9GHUaNkFLW4dhk2ZQsqw0aLxz/8Gs9JrG4k3bv7ifRq3bYVOtBpdOHWfxlPEoSSQ0bddBjhP55DF/zJxC6fIV8Jw6k0unT9DO2YFlW3dh51gLQ2MT3ryI/NdjSSQSFk0Zj6mFBYPHTUZVVZUHIXdYsmUn9Zu3kuOeP3EE7wVzcHSti9eoYbx9+YKadetzYt8uMjMySE9L4+3LF4ybs1AwO2ARvg9+KUvEoUevuH/7JvYudXgccgfzktKib9GvXmJpW5Wwa4FUdqwtKypnamnJtTP+1GzaimehIZjmFn2LffOKYpWq8ujmFcpXr8WHd1K+rlkJnofcxtqpDi/vh2BUIo9f2taBx7euULZaLeJzi8oZWZQg8l6QAv/T+9eUsaum0L9JcUuehdymcu06RIaFYPKZH/WWcvYOPLx+mYqOTsTljt/cqiSPg29h41yXp6HBmJUoiZoyxLx9TYWq1eXOVyKRYGZlxaOgm9i51OPJvWDMLUsikUgE+dmSHExLWBERdAtbl7z+MyUQ9/YV5e2r8+D6ZaxrOBH79jXZ2RJMLS15fEc6nmehIZiWkO6SxL59TTn7ajJ+3NvXqKirY2hmTuT9UCpUc+R1RDimJUqgY2Co8NsWWSLELRHZ6Wn0dbJn85VgdPJV5yysJeLpgzDMikvTF8a8e0u5KrbcD7pFRXsH4qKk8QLG5sWIuBfCvRvXOHtwDwt3HMDIzJzMzAw0tbTJysxUyLj1T7gfEkwp60p8iHqf278FT8LuUql6TV6EP8Bv8Tzc2nWgbGUbKtjac/HwAW7+fYbJazb+6zmpCez23g+6xfgeHWnZpTuDJkzF0NgEiUTCqK7tKVm2HKYWxQi9fZPH98No2LotoUG32HE2kOcR4fRp5s6wyTPoNtgDFRUVQUvEp0+fKG9uRNly5enYrQftO3fl8P69LF80n60nzuHokrdIkUgkjOjegZAb19DS0UVHV5cR073Q0NJCQ0MTdQ11tLR1qGhjJ7Oc/KyWiHfv3hEfE41Zidz58/YtpavYEHb7BpUdahCbG29iYlGM8LvB2NV04tnD+3LzrUxlG+7fvkklh+rE5s43E/NiPA67i02NWgp86wLuEp9RZIkoskQU1hLxKVkJK5upvA1fhK5uvj6/oSVi2hw/jv91kAMnz2CaT1B/TUsEwLCOrek5bAT1mjQH4K8dvty6fIkF67aKHOifcefaZUb16ET7Hr0ZPvl3DIyMkEgk9G/TlApVbDE0NuburRs8iwinfrNWPAq7i+/J80TcD6V/q8aMnO5Fl4FDUVZWFpzvsTHR1K9oRYlSZWjfsw9N2v7Gsb072fLnMraePE/Vmk55l0QiwbNzWx7cDUZLSxs9Q0M8psxAQ1MLTU0t1DXU0dHVo3xlm+/2DC2CIn4pEdFu8HBaDB3FjvkzaT3YkwfXpKnxbFzqcsp3E10mTOOYz0pZdqNDq5bwKvwBFmXKMWzlRsJvSGMYKtd25dRmHzpN8uL0xlVUcJRmZ4q8F0zT/sPYv3gWTfp78OimlF+xlivnfBX5bx89wK17Pw4s8aJxv2FE5PIr1a7D2a0C/McPce/WT6F/G+c6+G/xpsuU2Zxcvwrr3GxRT+/eptmA4exbNItmAzwIv3EVZWUlKjm54r/Zh65TZ3Ni/Z+5fCUe3bpGy6Gj5PhqGpqUr1YD/y0+cv2rqKry8PplBb66liblqiryUVbh0Y0rtBgySm78qmpqlK9ei7Nbfeg8eTanNqyiYk1n1FSk42k9bAx7Fs6k+YDhvAi9Q93f5HeJ4du7OYlBKA2r2FgKC7Gxa6iKuGmILDwigm+zbsZkVp48/6/HTMkUXgQmR78nIz2de7nxKlVd3Tjos4rxC5exbcViqrlKUw2HXA2k0xBPetepwbqzlymez60IxHP9i6XnS0xKZN+qZdjWlhZXu3/jKp1GjMNn5nSaDRjG5imjsLKuQrMBHlz/aw8GpmZ8jI2h++SZsj4MNYXfumILsvfPn7J9+WI0tLSZsGw118/5s3SsJweCHqCpLa2PcHr/bhaNGU4PzzGMyM3c9OJJBLM8BlKnSXMGT5ouuCjVUFWlR+O6dOwzgKN7dhAXHY2Onh5uLdrQecBg9AoI5I8J8cz0GEjixwSW7zyAvqE06FBHRBjZ6Kt+cxFx8d1H0d8xOkpaOyc/1k6fyIntW6nX9jdsa0mz0lV1deOAz58M8VrI3lXLsHOW/r5h16/SddQ4NnhNp+Owkdy7GpjLr8fZPTvoNmaiAr/bqPFs8JpGR49RcvMz5tULagnU+xATC2L3j5CIEPPbFvOoFutbrF1sboq5yBkrXxQ+sJAA+Gp1IkSyFYmJi8JAbMEtUjsBZbHUryJiQax/Ef6lK4+ZOGMfNy/OlP9ASeC4EpFUoxrCWdsiMhTn6KeEBJral+Xe3TNYWQmnU1boR0AsAHwSqLWTmk/sT+/fg2adu+PWsg0A21YuJTU5maHTvWQcFbH5LtIeGRHOxsXzMTQxYfLSP7l44ihLJo3hWK7bJcCRnX7MH+vJoAlTGTZ5BgBPwx8yY1h/Grf9jYHjJgv2r6aiQuf6tek5xJOD27cQHxuLnoEB9Vu2oXP/Iejm2ygD+Bj/xjEItgAAIABJREFUgWlD+pGelsqKnQfQ0zcApM9iIXzrZ2gRFPFLuTMBfPoQp9B2eO1yrp84Qk52Jjq5kywl8ROvwh8AEBX5jOQEgV2dIhThJ0b0m1esGOtJu0HixYi+Ns4c2EPpSlUUBMS3gIqqKtn5ClAlxERj+B9TrJaqYM3oRcvp7+bEo7vBlLauTAV7B/o3dGX8kpXUdHOneefuVLStSonSZWTfK13BmtFzFjGuewfa9OhDqXyf5UeX/kPYtHIpvifOYZo71tRMxQpKEomEmR7SLENr9h+TCZifAUKxCX9OHc+xbVto1bs/nvOXApAQG8OJ7dIdzcCjf1Guii1auXFfRSjCr4Bnz2PoN2wz0ye0/m7H3Oe7kZYtG36xgPgvUNfQICM9T2jERb2nVPmK/6nPcpWqMGXZKrq6Vue3vgMpX8WWspUq071+baYtW03Num6069mXKg7V5Y5VvnIVxs1dxJienWjbow8WxYUL93XpPxjfNSvYevwsRiZSy4+QFTQnJ4epg/qgqa3N8u37fkm3z/8L+KUsEY279eLcnh007NabOu06YV6yNInxH5jWpqGMt+TsNTJz1bu/30YCDuyiXudeOLfpgKmV1P0p9vVLLG2qEX4tgAqOznnuRiWseBp0g8oubkSGBufx37yilK2DAt+4mCVP7kj5L8JCMMl1l/rw7g2lbKoq8E1LWPFEoP/4d68oY1eNh9cCqOhYmw+f3aWKW/Ik6AZV8vGVUCL2zUvK2lfnwdUArGvWJu7dGyQSCcbFLXlcgI8EYt+8pIx9dfn+lZQwLlZCgS/Jgbi3ivwciRJGxUoojF8igbjc/qXnK+WrqShJ3aVu38DG1Y3n94IpUbYsekaKOaSLLBHCu5pb5s5EWVmZAf9Q5yA/xCwROupqhN+5LQtYfv/yBZWqO/Lk1nXsajkTlZsm1cKqJJ6tG9NuwBCade2p0E9hLRF3r1+lfFUHmXuhmaUVD25cx6qGK89Dg7m0dzvGxS0xtSrFvfOnefv0MR1GTcC1TZ4/bmEtEZ93qs/s282hzetYe+JvVFRVObBuNfeuX2Xxjv3y/ALXfbbnYPQMDZlSoJYB5O1+LZ0xiYAzpzkYeAt1DQ1RETFlYC+i3rxm8dZdMlcd+LGWiM9Zktr0GcDohcsAqajo7JDnlrHrzkOZReKzJcKlWSs8cgPP3798gXW1GgQHXMTO2YXo15/dL624f/MG1eq6EREShEVJ6XyLevUC62qOgvzwoFtUda3Ho+Aguflpl8+tIT+KLBFFlojCWCI8x+1EX1+LhbM7C/TzbSwRPZq4Mc6zCz16fHkc2/9qiVg42oPytnbYOtbCb/kSIh+FM3zWPNzzxWgV1hLxuf3w9q0c3eHLxpPnUVZWxm/FUh6FhrDUb88/9jNlUG+KWZZkXL5EIJ+hpqKCRCJh4eRx3Lp8iX2XbqCmpiYqIsb36crHD3Es2boLU4tiss+KLBE/D1S8vLx+9Bi+CLNnz/Z6FnYPgOdh93j79DEZaam8j3zK2yePSUtJRltfn0q1XLm4bwePg29Rq1lr3r+MpMeM+eyeN520lGRehd8ncP9OqtRxZ9v00RQrW54rB3fxLOQ2Wjq6HFo2l2qNW7J3gZT/+tF9Qi+epVz1Wop8fQMO/TGHao1bsG/BdNKSk3n96AGPrgdS2r6aAl9bz4CDf8xW6P/ehTNUqOHElqmjKFa2AoH7d/I0+Daauroc+GMuNZq0lI3/9aMHBOzfiV1ddzZPGUnxshUJ2LeT1xEPUVVTU+BHvXjOxd2+2NZ1l+s/5mUkSkpKCvzY1y+4sGurAv/98ycoK6soXJ/3zx4TuG8bNnXc8Zs2CouyFbh8YCeRocFoaGmzb+lsHJu2YsfcaUhyciiXr0DgZ4i+1EUeBV9L9grp5/+adu8zxMauKvKB0APdf/d2HBs0olTFSl90zEyRRb5yTg4rx48kNTmZZ/fDOL3TD0f3RuxcvgQjU1OObttC6M3raOvocP7IIcJuXadFjz4K8Q+FzfLkM30ixuYWnNm9jfCgm2hp6+I7fxbVm7Rk57zpGJiac/nQbkIu+FO/YzdsXOpSo0FT1PNlgNJUFV4wiPmdf24vZ2PH/nWrMTQ15UVEOOcPH8CuZm1q1HGT5xe47jXq1GPt3Jmoq6srpDxUVVYmJyeHmSOGUNm+Ki07dUVJSUlQXCkpKdGgdXueRzxi87JFdOw/WPaZ2EJ47cI5eHl5fZli/B8we/Zsr0d3gwGIuBtMm74D0dLWQUtbh/jYGCLuBtOqd3/c8i1AnBo1xbVVW66cPFZg/jTkj9EelCxvzeldfjy8Lf19D6xdSU33RvhMn0RqchLPHoThv3Mbjg2E+f67t2FX2xWf6RPl+q/Xui2qaoqLPLHfXWxBJHQ/i93jYnf+vy22CkJsjPoicU9aSpHCBxZa6Isu/kViGSSKAlfaLrJYFmsvDMRiH0TbCyk6RPtR5Ptsukj71jWoZC1gFRA8rsjbRVXYAheXXV6hTc/AgKVz5zFoUDdUvzB1c1ymvmC70OI6//NGz8CQVTMmc/bQftr3G4SDsyuuTZqjoZn3DC3MvZG/vaJdVXxXLKGYVSkiQu9y5q/91HCpSw3XuoL8z3Cs48byGZPQ1densr2D3GcqyspkZ2fz+4gh2NeoSbP2HVFSUhKsZK2kpETT9p0ID73LtjUr6dBngOwzMQH/rZ+hRVDEL2WJaNajL/67/GjYrQ8dR0+USzGakZGJRCKRS5GqoaVNbFQ0+qZmJH9MQFNbmnY0LSUZdV0DhRSsmto6shSs+fkpSZ/QMTRW4KtraQvy01KSBVO8ivWfkSpNkfqZn3/8BfnKSkoK/aen5qVgLciXAOkCfJCgoaU4HjF+djZf3H9GagrqqsoK49fV0xUMzC2yRAg/FOcN7IVz0xY07dbri475T5aIxHwphVOTk9AzNCLzYzzGZhakpiQDSOuD3LzGlN5dmLnBjxr13OX6KawlIjYmGj0jY9JSPs9/aQribC1D2fxJiIkiISYKu1rCO8//qyXi+jl/Ns73YvB0L1ZOHkcPz9E079IdPUP5YkgFLREAL58+YWibJiz13UWNfMHSn3e/ju7ZydLpE1myeTsu7o0ELREgFVcT+3SlSrUaDBg3Wdb+s1kiPkMoJgKkv3vB+aNrYEhCTDQGpmbyv29sDIZm5oLzTYj/KS4OQzMzBb6RsXA2myJLRJElojCWiKbtltO7ex16d3cV6OfbWCIi7ofRraEzJ0/44eZWW7i/gt/5Hy0RANFv35CanEzpisJB3v+rJeLiiaNsXDqfoVNmsmzqeHoNH03r7r1kcQn/1M+zR+EMatOEP3cewMHJWdb++d44tMOXFV7TWeG3m5p13ESTOgCM7NqemnXc6DtqnKytyBLx8+CXskRUdnSi/7w/eHTrBualSnP12F88CQlCR98A/22bsHGpx6E/F5OWlMT750+5/Nc+ytdwZu/CmZiVLM2tU4d5du8OWnr6HFv7BzZ13Dm+ZilpyUlERT7l5vGDVHB0Zt+imZhaleb2qcM8v3cHTT19Tvgsx8ZVnh/kf5Ry1Wqxf/EsTC1LcfvUEZ7fu4OWvgEnfJYp8k8fpXx1J4X+dfT1ObpmGbZ13TmyainpSUlEPX/K9WMHqVjTmT0L8sb/9G4Q2rr6HFn7B3Z1GnB49RJSkxKJfvGUq4f3Y13LRY4fef8uWjp6Cv1Hv3zB1b/2CfDvoaWjK8CP5PqRfVSs6SI3/siwYDR19Tn+/9g768Aqy7//v9Zn3d3d3QPG6JaUVDFQVBC7CAVEEVRA6e7ubliw7gDGBgzGYF2s+/fHOYzNc45feR71efw9+/ylF+9z3deueN/X5/7Uul9w6RXG6TU/0VhbKxrPIRz9Qti3dAH6ZhakXruAraeP2Nr2WCIkE7GBuQVrvvyYx3l3sXXzQEVdQjaRLtLc1sb1w/tpbmykvPAJGTciMLa25cKuraioqRF+4ijZKYmoamiw55cf6T14OOmxN6AD6p4+5erxw6ya+xnjZrwn0Z2pqamJy4f20dTYSOmTx6REXsfM1o6LB/egoa1NZlwMBfdyUVRS5OqRA1i5uLL/56U01NXy5P5dwo8cwCWwF9sXz0Pf1IL4cyd4fPcOBmaWnN28GueAEG6cOExzk3D8mTcisLS359yubWjr65MZF0N+7h3k5eWIOX8Gczt7rhw5SFNjIyWPC7hx9hR0dHA7JYmze3cyYNwEDm9Yw+uff83oV9/o9nXumUh6wWrq6ODk6sG8d99kzLTpnb97dml0dPPAxcubr2e+QV7uHQLCBkgsFhcXfpVT+3axeP22bl8k/yctEauOnUVVU4PhU6eTHnOD/Ls5KCgpcfHgPhx8fLkqms+u67tx4Tz0Tc2675+fl+Ib1p/dP/1AQ20tj+/d5erh/bgGBbPp268xtrAk4uQxslOSUNPQ4NDaVXj1DhXDuwUEs/HbrzGytOzW/5XD+7B39+xc32fjsbCx4+SOLWjrG3Qbf1tLC8oSatP0WCL+b1siLC10eWvWdnLvFuPvY4161+xMf4MlIjk2mrfHDmfdmsWMGjVQcl+S+nkBS0RzayuF+Q9JjYniYW4OWrp6xF4+j42zKxcP7+/kw8Twq5jb2hNz+TxWDk6dv29ra6Ojo0Nsn7a3t1NZWkJeTjYZ8bEc27WVkZNfZeeqn5j9zRJGT30NJSXxuARJ50lbTw9re0cWzJrBuFffQFFJqOA9e6azhxeOru58MeM1HuXdJ7DfAOQk8GLkxXNcOn6Yxeu2dPv3HkvE/x75VwVW61vbo29mhaGlNTpGppg5OAPC2ARDK1sUlFUxtnXE2E54YJoam1BUVUff0hotI1OM7YR4LSNTDCxtEKioYmzrgImd0F2ktaUNeWVV9Myt0TA0wVDUj7qBKXrmVsgJVDCwdsDAWoRvB1mBCrpmVqgZGKNvK/wSoKxrhLapFe0Kyuha2aNjKWxvammnTUEZLVMrBLpG6FiL8Hom6JgL8XpW9uhYCdsbmlqQUVJF19waVX0T9G2E41HWN0HHzJp2RSFe18oBGWSoq2sUw8vKyqGqb4KuuTUoqqBvbY+utQNycrI01NUhL1BFz0L099o6IScvj4ahCXoW1sgpqWBoY4+BrQMyMjI0NdShpKKKvoU12sYmGNs7IScri66JKQaW1p3zaWzviLysDM1NjSipqmJgYY22sSnNDbUSXV9kpby+pVkcFKV95n9BkVf48xUuX/Qi8aImZEmk6BkQxE9HzrD9x8XEnTvN+JmzOv9N0jyqKoKinCxaogwXpXKyaKgoIysnh76JGVZOLgDom5hhYm1DRWs7Jj7Pv5SlJiXy0sw5jH/7XYlf19sQFgtSEF2q29rb6ZCVQxEZDLV1qRQF3Rpq6yLf0YG5viHObh44eQpd2JQ6OrA0NMTYyhpDc3MangrHY2hujraJBU3tMjS3ttMhL3zhNLe209guQ219Ay1yirTKyHJ+91ZuxUWjKFDm2OZ1tLa00NrSwtPyMuQUFDCxtqXkUT4yMjK0A4oqKngPHk5FveQvstIufLZBIVg7u3L58gV6D3+p2xo9efiABjl5Nl2NYc5Lg4mNvYFHUC+xPkqKi2hsaOCmKO3pM5H/g69uf7cU1zdR2yZLWXM7lc3CC2NZczul1U95XNNMeV0Taq3CPVpe18TjmmaU9E1pVtVD1cwOgGZVPVSMLClpkkPV1AYFYysAVCueUtqigLKhBY2qeiibCi9Yjap6qBhLxlejiLqxBe3q+mhYCPtvV9enQ0mV8sY2nja2UC96TT1tbKGqtY2q2lrqkKFeZEmsQ4a2xkbkJHy1lbS+0s6mNOVOWrs0kda/tNS6KIdJbNZRlJD2U/a2lIdK+WovzRLR9oKpX19EpF7+XyyrkkRLwR/1I+G5oaG+XDu/iC/m7ebIqUw+eG94l+dK6F9BW7wNQFZyjQkH+e5rtGDzMn747mOmvTJHIv7mU2lnX7LyJum90NDaCoqKtD/bl4qK1DU00NDRQUNLC20ia39DSwsNHR3UNzZ2s178MPttwk8eQ01TCy09fVTVNagqL6WsqBAVVTUMzcx5nHcfZGSQU1BEW98Qv0FDqZNicZUm3v0HYW5rT1TENUIGDwOev/8K8u4ho6bOzoh4Zg7rz8CUJFx9/cX6KCkuor6ujluZ6Th3cS/9q1Ku98h/X/5VdcK9+w0i/PBehrz+DqnXL6NtYIS2gRGp1y/Td+KrXN61Cc+wQVSVFFFVUoRn2CAiD+5kwCtvkxlxBU0DQzQNDMmMuEL/V2Zwbc8W3PoOpKqkmKqSYpxDwgjfs4WwV2ZwM/IKmvqGaOobkhMfSd9pM4jYuwWX0AFUlxZRXVqEfUAvIvduJXTaW9yMuoqmvhGa+kbkJtygz9S3iNq3FefeXfCBoUTt20qfqW9x+8Zz/J1Yyf279O4ncTw3I68Q9soMwvdswTV0INWlxVSXFeMaOlAMr6FnIBFfU16KW9+BXNuzhf6vzCAr4gpaBoao6+qTJWF+npZJxmvqG5AZcYUBr7zN1T2bce87kOqSYqpLivHoO4jLuzYz6LW3yYi4jGZPQakXFitHJ3z79ufxg/v/Edvc1EjAwCGUFxdSXlxIwMAhnNiynhGvvknClYvoGhqja2hMwpWLjJnxHsnXLgHCL1D3MtNIj7iG/5DhUvtPvxEpsf/R098i+tI59I1N0Dc2IfrSOSa/+wHHtm6k15DhlBUVUlZUSK8hwzm4YTVDpr9DWpfzm3b9MmFTXufK7s14hD0/jx5hA7myfyfD35hJyrVLaBkY8TD7FmPe/4gVl6LwDO3Pa/MWM27WR3ywYh2/Xo1lqshtqP/EKVi7uDHnl9X/ZeuSR3AvMmLFc/jHXDzHrOH9eat/MJVlpbQ0S/46PGTCZD5fvoovX5vE5WOHJWL+aTm3fSN9X54qNv+Dp79D1OE94vO/ezN9J7/+p/jTre9Aog7u6sYPWgaGZEVcodf4aRLxN47u6+SHZ+PJiLhM35encXHHJrz7DaKypIjKkiK8+w3iyv7djHhzJslXL6FjaISOoRHJVy9JdMPqkR4BcHezZPBAT3LvFv5tz2hrayM+PpWLFyMZN27Y3/YcEF7EYy9fQM/IGD0jY2IvX2D8O7M4tWMzgYOGUl5USHlRIYGDhnJ88zpCR4zu/G17eztJ4dfYej2OreFxfLNxOzO/WczSPUc4cTOPo5l3WbrnMDKyMoyY+hoO7p58sXLtf5lDvYJ7kRpzQ6w94sxJZgzqw+v9gqmurKC5WbLy+tK06Xzy/U98NHksV08d/y+NoUf+XvlXWSJKC/J5eCuTxrpabopyigPcjInEo98QbkZH4OgXzJ3EWABUNbS4l5JA4KgJZMdFdeKz46Jw7zeE7NgI7P2CuJscB4BAQ5vs2AiCxk7hTvxz/KPsLFx69Sc7NhJbnyDuJccDoKypxZ24SALHTCY3/vlBKbqXi2NwGDlxkdj4BJKXIsSraumQExdJwOju+MLsLFx6i/evpiVhPDIy3ImPwr3fULJjI7D1DeJechwKSgKU1TXF8PKKihLxqpqaCFTVyI6NIGTclM75kVdSIjsuCo/+Q7vNj7KaOgI1dXG8giLZcVF49h/K7ZgI7H2DyE2KQ15OFhVNTW7GRNBnwlRuxUahrKyMqd2fCxLukefS3tYm1dWiq7S1tlH86CFZccL6I+paWqRGXGfwpFdIi4roxKVFRRA8dAQPb2fxtLycI78uR1NPnxEz3kPHUHpawke5d1DVUBfrf9Ibb5MY/ryORWL4NUKHjyIjIRZX/0DSRPUC1LW0Sbh+FbcR47kZ2+X8xkaiZWpBzPGDKCmrUPQgD0WBAFVNTe6lp9L7pfFkRkfS0d6OjoEhpzatoaLwMQ+zbxM0bCTZSfEUPXyAtqEh0WdO4tGrD9O/+l1O+P+CBA4cwpeTxjBj3iIURekF8+/m0FBXC8Cc73+itPAxdlIKowH0HjKc346c4YPxw/HpHYrufzOF7X9XMqLC6TV+itj8+wwaRl5GKlZunuQkCflQVVOTW9ERBI2d+qf4U1VTi3upCQSMGi+G9+gvGZ9/K4vGYXXcin2OvxUbReDg4WRGh+MUEMydBCGfq2lqcT8rnca6sWREP9/PGdERDJs0VaJLWY/0CEBrazuyUqyO/11Zs2YHCxetxMTEkAXz52BgIKVg3V8oKZHXu/13ryEjSLh0kcriYkoLn6Clq4e6ljbJEdcY/+Y7qKgJXWHb29pw8vblwzFD6Td6HEOnvIqbf1C3vq+dOELQgCG8+813/+1x9h46gi+mTWDmvIWd8ZB5d7JpbGhARkaGT5evojD/ITYiK7kk6TdyNMbmFsyZOBqfkN491e3/l8m/KrB6dXQGalraVJeVCgOoRS4KSioqVJSWoqGrT21VZWfAdVN9HfKqGhIDoqvLhfi6Lvi6WmGAcE15KWpd8PICZWorylB/hhe5bTTU1qKiqUVNeRlqOrqdeDklFWory1HX0aOuurJbALiqpjY1FWWoaT/Hq6qpSuy/ub5e4ngUlVXE8B0dzwOcu+I7OoTz83u8rIzkgGg6hC4gnQHRovlp7+iguaFeDC8jI9M9gFqEV5ATDwDvaG5ESUK+fHm5FyP3v8yd6QWCqP8n3Jme9bPi0w8wsbImaNAwLBwcyYi9QcyFc5jZ2WPl6IydhycCZRVa2tp4WlnR+cJ4FtBaUVKMtr6BWABsWmICOxbN5avtBzDtku9bXUl6VWpJ/XfU1KCtr98tQLuyrBQFJSWObd3EnYxUOtrbaWluRk1TE++RE3D0C6T08SMyo64Te+oo1WWlOIeEUngvl6L7OXx/IY6YEwexdXLC0tm123mvra7i6v6dxJ0/jZKyCj79BuESGIyNmwelD+6z5suPWXO1uwVB2vxKc2d6hp/3ysv0HTWGwZOmIS8ry7pv55Iee4PRr8+g/9gJCJSl139Q7nKpXbNwLnU1NXz5y2pUpFT99tYR/O2B1XuyCygpKkFDV7dbAoen5WUItHSp7RLg/Oz8Vpb+Of6UllBCmICiHA1dPTG8jq6OxIQSTdUVaOp15/PGulr09HWpKitF83f8rySDxKQNf6c7k9IL4qUFXBsrS1Z+dOQluDO1SnFnkhZw/X/cnekZ/pU3f8XT3YrhQ3xwdjLl6vVMTp9PxcXZHHdXS3x97BAIFF/YnenwofV88ul3XL2yHwcHmy7PNJeIl+7OJFkqKis4vms76QlxdHS009bWhqySgEmzP0LfxJSqslJSoyI4s3s7jXV1OPv5U5T/kMd591h9PpyEKxcxNDah19AR3fotLsjn4qH9XDiwBw1tHYIGDsErpA+eIb3JiL3B6vlfsu16bLffSOPQ/yQfjh/JyGmvMWjcRGRkZFjx1SfcSklizPS3GDRuIkrKylIr0Xc9qz9/9SkdHR18vmwFAikfDDy1lXoCq/9h+VcpEY7+Qbz38zqWvzGJKV99S/y5kwAEDHuJy3t3MH3RcjZ9PgvXXn0BuBkdwfSlq1n9zhTGffYNyRdOAeA7ZBTHVixh1oa97Pz6A5yChfi89BQmzvuBde9NZcwnC0i5eBoA76EvceKXxby3bi+7583BKViYJrL4wX2Gz/qCje9P46WP55N2SYj3HDKa0ysWM2PtXvbPn4NDkBBf+vAeQ2d9yZZZ0xjx0XwyLgvxvsPGcOKXRWL956UlMXnBsm7jkZGTxWvAcE6uXML76/exa65w/HIKCtyMvMJrP6zuhlfV0sYhoJcYXllNlbQr55i+dDVrZk5l3KcLSL54GnVdPex9gzi+YgmzN+7rnB8lFRXSr54XwyurquHaux/HfvmODzbtZ/tXs3EO6Yu8rCxZ0eG8vXwNK2ZMZuLn33LzxjWmfi0e89SjRPyxEvHFxNHkZqSipatPfW0NCoqKjHjtTYryH5KbmY6mji7f7z1Cc2sr86eMw7tvPwASLl9g4uyPObD6FwaMn0JKxDU6Ojrw6h3KsY1raWps4IvNe7D5XRo+SUpEU0M9j3JzWf3lR5hY21BXU8OjnGwcvX3JTk5EW9+AsqJC2tvacPUL4FZKkjB4T14e3z59kZWT425WJv1Hj2PHzz8CwmJzGrp6hE6YSlrEVWau3MimT97lfkaK8CJZX4dLYAhVZaW8+vVCYs4Kz3vw8JcIP7KP6QuWsGzGK6hpafH4bi5NDQ2EjZ1AScEj5m3d86fm9z8pEckR1/nt60/48reNeAQEce9mJvNfn8Ke2LT/+OW7qxLxtKqSqb18mb96I8ZGxrS1tqKkrIy9i1sn5p9QItbeSGXrwrn0fXkaCeef8+eBZYv4cPN+tn4xGxcRf96KjuCt5WvY+Mm7DHvnw278eXTFEmb/jj+zYyOY/sNq1rz7nB8AfAaPJOrQLiYv+FEM//ZPa1kp4ofE88L+/YaOIvbEQV6Z9x3rP3sf915hAGRGh/PhqvV8/9pEXpu3iJgzJwAIHjEaUzMzLLoEjz6THiWiR4lARo5e/eeReTMfPV11amobURYo8t47w7h3v4jE5FwszPU5fWyBmBJRUFBCQUEpCkp+KIiU1La2Ntra2nj48CHvvTeTSxf34OXl+rtniisRdXV1XM9+QFFBAcVPCih6XEBpUSG1T6upq62ltuYp9TU1NDU14RMUgqJAwOkDewkZMIiwYaNQUFRERlaWW9m32btqOY11dSgoKuLg6UNxQT4/n7jAT3Nm4uIXwOG1vyIrL09bSwuGZubsjc+QODVtbW2kx9wgLTqS6IvnUFVXx8HDi9LCJ3y3bW837H9ViYi+dJ41337NgrWbcfUVvhsWznyDA/HpndahP6NEVJWXMamXL4s3bMNA34CWlhaUVVSxd3k+9z1KxD8v/yolYv7+U9h6eHM7Lhpbbz/Kn4iKxBmbkp2ShFNACHlZaeiZCA9w2ZNHmDh5kJsYg7VXd3xuaiKOAb14mJXeWSSupKAGMjNhAAAgAElEQVQAS1cPcpNisfb0pVKEVzc0IT8zBTu/YB7dSkfb+Fn/+Vi4eHIvORZLjy54A1MeZaVg4xtMwa10tET4ysJHmLt4cj85FgsPX6q6FLmT1H9lYQGWrp7dxtMuGn9eRgr2fsHk30xHx8Scjo52KgsfY/E7fAcy6BibiOFlZaDiySMs3TzJTYzF2usZHnSMTclLT8HeP7hzfjrooOJxgRheSUUNDR1divLuYmLvROmjB6jr6CEvCzUV5RhYWPE4NxtjazuaaqslxkX0KBF/rEQ01NWiqCRATl6e4oJHqGlooizK1NTS3MxbffyYv2kn1m4e5KQlo6VvwNmdW7l0YC9mtnbUVFUir6BIW0sLsnJyKAoENDc2Munz+dh5endah5rq61HX1qGluhItPT0e3L5J3KXzJFy+wKN7uegZm6CqroGhhSU6hobIyytg5ezK06JCXLz9qK+rQVZWlkf373HvVhZvfbWAytJSjERFx4oePcTZ25cTJ09i7+1PVWkxINzPt5MScAzsxb20ZNKvXaSjo52Es8dZuP8E5YVPsPfxp0x0vvSMTbmXnoJrUAh309MwMDejvb2d64cPEH/uFGPenU2fUWNprBNaRpRUVKirLEfHwIinFeUIRFl8Guvq0NbTp7KkWJh6tBu+Ah0DQ6rKy4i/cpHdPy/FwdObviNHs2HxAj5ZvorgwX/s+6z8OyXj4pGD7Fm9AkVFReTk5SkvLsLe1Z1Pv/8JS1u7f0SJ2H37EenRN8T48156Mja+weRlpqFnIkw3WfakACs3T27HxWDzO3xuSiKOgd35s/yxOJ+AsGhmXnoq9v5BYnhHbx+y46Ox/R0/P8pKxSkwhPuZaeibCsdT+rgAV19fsmJv4ODjT+kT4SVb39iMxopyjCwt/9T6KquqSswE06NE8P+tElFT04CKiiJycnI8eFiCro466prCVKWNjc3YOL/DhVPf4uEjDN6tr29k6Y97WL/hBHZ2prS0CGgWxT7Jy8sjJyeHgoICC7+dxZAhfSU8U7jHc3JyOHz4MIcOHSInJwcDEzOMTM0wNDXFyNQcA2Nj1DQ0UVPXQFVNHRU1NeTk5IiLuE5NdRVjX3sTI7PuCklRbS2NdXXUVFUiJy+Ppq4e+XdzMHdw4smD+6hpaHJs0zrqap6SdP0Kn69Yg3ev0E43TIGKKtXlZegYGFJdUY6yKNV8bc1TUqPC2b3yJz74fjkuPn7d8AZGxlSVl3dmQWuoq0NLV5fykmK09fS79V9VXtbputnR0cGFg/vY/ONivIJ7EzxwCL/O/5xv1m8jsJ8wg9UfKRHlxUVo6xtQX1fLhSMHObptE7KyMigJlCl58hhnT28+Wvg9OvoGhNmZ9igR/7D8q5SILw5fIebEIfpOn0X4jjVYewszy+SlxhP2+mzOrVpMn1dmcj9J6LNt4xdC3JFdDHr3czF86PRZnF+1mN6vzOR+stBsZ+4VROy+TQyZs4CoXWux9BJmVHl0Owu/CdO5umYJgZPf5mGK0KfX1j+E2H2bGDxnPjd2rsXCS9h/6f07+I6dxqXflhA85W0epAj7dwnuTeSujYz85Buub38+nqKcLPpOfYvjPy+k//T3yE0UumI4+PXi2q4NjPt8IZe2/Iatr9B38V5yHINnzOHYTwsZMP1dchNjUFRSwNY7gMvb1/Pyl4s4v+k37P2CkJWT5U58DMPemcPhZd8y6I33uJMQg0BFGRsPby5uW8/ErxZxbuNvOPgFIa8gz+24G4yY+SEHl37LkLfeIzs+GmVlAXZefpzbuo6pcxdzev0qHP2DcQ4I6nR/6CqS7vlyUi7t0i7zL5L7/Y9EegpZ8fa/Sln4q9qlSdeaDWf37uTIxrUs2LaHhpoavp/5Bqqamsz8dglXjhxk9pJl7F35E56imgfpsTd45ePP2bPqJ4ZOfoXUG0L/eO/eoRxcu4o3P5vL51PGUVlagltAECqqqny8fBV7fv2FwZOmiuHfXfwj+1b9jEewMENRRmw00z76jG1Lv+OlN2aQJsJ79Q7l0NpfeWfRD+z/9Rfcg4S52zPjYgid/j4Hf3y+3y7t2Mjwtz+g8H4uo97/hLMbf8XBT7j/c5LiGPbOBxz6cSFD3nyP7HjheXcKDCHu1BGGvf2BGH7c+x+z94cFDJ8xi9txwngk56DehB/aw9jZn3Fq/SocA4IBuJMQy5hZH7P7+wWMfHsWt2Jv0NrSzNOSQipLS5CXV2Dg5Gk4+Qr54UXrBTy7ZLY0N3Ni20YOrv2VXsNGcn7frr9difAbMZ7Q9+cRves5X+WnxdN7+iyitv+G18hJnXxl5RNM7P7N9Ht/HrF71mHuKeLD9ARCX58lxm9WPsEkH99D/3c+68afD9MS6P3aLC799h0hU98hT4S39gkm6+IxiXw+5O3ZnPp5MWHT3+VuonB97fxDSD97hGEz53TyFYjWd9bH7JOwvpd3bmLaV99yfN1KnEXr+zArnckffS42P9Jyz0tTCqS5VChI2Q8vqlxIGo+DqpTt0XpVcrs0JUKa0iE1xetfkPoVaZd/Ke1yUlwFpbVLqzchFyaxuaJLsqEt69eyfeN6Np+6hECgzPQRA7CwsWPushUYmpiipyh53suaJd+fSkuKWfTR+6TGxzJ49HiGjpuAT1AvJFfaQWKxNZCchU9avZ6a3yV4mDmoD+8t/AHngCC2//idGD/vWvUTAyZMJiNaGI/k0asPx9avZsa333NozQrcAoX8nBUfw8QPPuXw6l8YOHEaGaIYN4+QPhzdsJp3Fn7Pwd9W4Cbi86y4GCbN+RRZWZnOWlggdH89vW0Tj3JzkFOQZ8Rrb+Eoyrgk7f2Xk56KuZ292PtlwqyP2Lx4Pi+9OZN9K5aREROJX/9B3DhzskeJ+IelJxKtR3rkXy4jpk2nsqSEd/oKL2E2ru4MmfwKOn8yiLetrY3q8jISr1/lblYms0YNQs/IiHfmrUNBUZG0mCiJX27/TpEBqsuK/9Fn/pHIKygyaMqrmFiLV6j9r4qCoiIvv/sB/ce+zMWDe//zD3qkR3rkb5EZ782ipKiIPnamAIycOJWft+7+01mJWlpaeJCbQ+6tLHJuZXF093ZGTpzCT1v3dNZIAGF2pH9KZGRlKXlcgPM/9sQ/FmVVNSbP+fQv7VNBURHv0DAcvLypLi//S/vukT8n/ypLxAdbj6Ln4MHdhCisvAKpLn4MgKahKfmZSdj4hlBwMw1tUwsAKh/nY+bqJRGflxqPbUBvCm6loW0ixJcVPMLE2YP7iTew9AzoxAt0jXiUkYiVX28Kb6ejKXI3qi95jLGzB3mJN7DwCqC6SNS/kQn5aYlY+/fmye3n7kzNFYWYOXtwNz4KK+9AqkR4AzMz8lIScAjqQ35WGjoic39VYQEWrl7ciRNmbaosLKCjowMdE3PupcThGBTKw6w0dE3NkZeTobwgHyt3b7JjI7HzDaSi8DHIyKBjZMLd5HicgkN5kJmKnpkFsjIdlD9+hJW7N7djI7EX4WVkZdE1MiEnKR6XkFDyMlPRM7VAQU6G0oJ8bDy8uRkTiaNfIOVPHmNoYYGCorg5uscS8c9ZIgCWvPcmmQlxVFeUoyRQZtrHX+Dk7Yujty+ZMZG4+QdT/FjoHmFoak5GXDQ+of3Yu/InzuzZhkBZFX0TU9wCg9HR0WPUa29QXCDCm5mTHnsDzz5hZKckYWRpBUDRwwc4+fiRHBWOm3/Q7/qPwbdvP7JTkzC2EOIL8x/g5O1HQvhV3ANDKHksdF8xMDUj/Ho4zkF9Ovfbozu32PLFLD7evJ+ainIc/AIpLxSeF6E7YhKOASGd+xmgrCAfGw8fbsVEiuEfZiTjEtSb+xmp6Ivwz/ZzVnQETv5BlD0R4vVMTMlJjsetV1/upadgIHLHqil+jL2o5kVHRwffTBmLpaMz079cgLKaGk0N9cgrKHbGSvwnS8TvZbCZzt9uiVgWd5e0Gzcwc/fpwlem5KcliPFVVeEjTJw9uZsYjZm7H09FfKhhaMqTzERsJODNXLzE+PMZP1v7hvDkVjpaInfTqiePsPbwlsjPxbdTsPULJl/EbyB0f3Lx9e3GVyB0v3yUmSJxfR29fci8EYFTQBBlj4V4CytLFJTEOavHEsH/WUsEwKsTxpKSnERleRnKKirMXb6K0ZNfAZBqiShtaufEvl388s3XqGpo4ODshr2LK70HDulWqfmZSLMi/B2WiFvJicx7bSKLtu/Dzs1TjJ9dQnqTk5aCobnwvBQ/ysfBy4fM2Bs4+fpTKuJnfVMzbsbH4hPaj5y0ZAxFfFj86CEOXr6kR0fi4h9ISYGIz83MyIqLxTesv9gYu77nOjo6+HTMUBy9fXnjy/nCOLjGBhS6cChAcsQ10ftCOH4DU3PS42Px7NVHbDxfjBvRY4n4h+VfZYk4u3Y5Exb+yoXV3zNsznwyr5wBwG3ACOKP7sbQxpHLG37CLlAYmHw3PpKXF0nGX1yzlOm/7uLKhp878flZKQz/dAlX1v7AoNnzuHlViHfoN5Lr639k0i87idzyC9b+fQCoepxHPyNTrqxbysBZc7l17SwArgNHcWXdUqat2EX4pl+wCRDiqx/nof2+KWd/+54RH84n47Kwf7/hYzi5agnvrdvL2bXLxQKrT65cIjWw+uyaZTgF90VRSZHMiMu88eMajv3yXWcguZqWNo6BvTsDn0+tXoZzSF9U1NRIuXSWt5av4cjP3zHhs29IunAKTT0DHPyCOPzzYj7ZcoDjvy7DNUQYiJ1y6Rwzf17LgWWLmPzlQhLOn2TCR1/8YVrQHvn7Jf9uDmnRUWyJSmTRm9OwcXHn4JqVNDXUo6mrR9mTJwhUVVFRU0NLT48+w1/izO5t6BqZkHf7FgPHT8LA1Iyk8KuMfn0G67/5CksHB66eOApA/9HjWPvtXJYfPMnWpYvxCxsAQFL4Veat38rJbZvoaO8g/KQQ3/elcWxaPI8fD55k29Lv8BO9TJLCrzF33Ra2LfmWtxYsJvLUMQD6jBrL2fWrMHNw7txvAC1NTTQ3NXH458VigbdRR/djYufAiV+XdQsEfnv5Won4mGP7MLN34vDKpd0Cdd/7eR0Hli0WS9Rwct0KLJxcObxiKe59hPg78TEs2HkAgLvpqdxNT+NeRjoX9+4EQEFRiY4O4QvezNYeJ19/3l+y/G9LLflfkdqKclJO7qO9va2Tr1z6DRfx1c5ufHU/IYox36wkZtcaQl6dxe3rQrxT2HDCNyzDSAJ+7DcrxfjTpf8Iko7vwcDGkWubfsZWhL+XEMWk7yTzc9q5wxjaOHB+3U84ihJT3ImLxGz56m58BcL1vb57i8T1/WDFOvb8uKhbYH7/sRPw6NXn757qHvkXya3MTJIT4riUeQ+BsjLZWRl89Ooktq76mcaGeqrKy1BSUsIvMJiA4BA8vH1ob2tj6ZLvaGpqZN2hk3h0KZYmTSn4J8XF1x9FgTLlxcU01MWK8fOiPUfZvXwJ3qFCfk6NvMZnv23i4r5dtLe1ESWqy9B71Bi2LfkGm/3H2LXs+87EHakR1/l89UaOb1xLR3sHkaeF+D4jx7B1yTd4h4b9IffdTIzjwe1b3M1M5/T2zQAoKCnR0d4OMjJY2Dvi6OVDZlwM7y76gfCTx0TjH8vFfbuxcnQSG0+P/PPyr7JELL6cAsoa1FaUodolRaqisgq1lWWo6+hT/7QKJZEfXlN9HSoaWhLxNRVlqOnodcPXPa1FWfM5vkWEb1cQUF9Vjqq2Hg1Pq1AU4dub6lHR0KKuogwVbV1aGoV4BYEK9ZXlqOp0x8u3NqCqqS02HnV1tc4UrPXVVSiJApf+VIrX6ioEqqrIy8pITNna0dGBkorq8xSs1VUIVFSRlRVP8drUUI8sSMTLyQoz9Khpaj1PsdtQj4qqqkSi6LFE/HOWiEVvT8fOzZ2XZ39MjShFZ1NDPdmpyRiaWyAr2gMZMVFkpybzMDeHxrpaBr08hdBRYzsDDOtra9HQ1qa2vAxtfQOxlK1qOro8raxERZSC+Bm+vKQYLT19GkV4gYoqVWWlaOsbUFNZiXKXlMjq2tqUFheJ4W/fy0dD7/l+a21p5pNQT36LvU3d0yqxFKCdKUZFeBCmDFXX0n6hlKHSUkbXVJaj9Tu8bEsDappaAFSXl3Np304e5d7hZnwMT8vLcQ/ujYt/IJEnj1H4MA+A7bFp6JuYdlu7/0lLxPL4ezwqKBLy23/gq+b6OpQ1tKgqLRXjt5anFRLxXfntGX8qKAsD29Uk4LV0dCTyc2tNBeq6et34sKmuDgMDXYnr2/K0UuL6auvqiK2vlqa6RE7osUTwf9YSMXXMKEJC+zJ59nN3m/q6OnJuZqKlo4udsT41T5+SGBdLQlwMtzIzaG5uZsTkV5n4xtti7p7SlIh/0hLRUF/HeHc7DmfeQ1FJSYyfBVrane8LeJ6yu6qsBE1d/d+lBC9Dx8BAIr6ytETE591TiGtLcKft+p6rLC3h/N6d5OdkkxEbzdOKcrz7hOHs48flIwc6LSFrLkRg7ezSbfwlRUUSx/OKt1OPJeIfFrmFCxf+T4/hT8miRYsWuvUbzJUtq7EN6MOZX76lpbGB0gd3iTu8E7vAUA59MwcDaweSTx/iQVoCKpraXFy7FIdeA8TwtoGhHPn2Q/St7Uk5fYiHaQkoaWpxfsW3OPcdwvmVC2lpaqDs4V0yzh/DwiuQ00s+Rs/KjsxzRyjISERNS4cLK7/FMXQwF1YtoqWxgbIHd8m6fBpLT39OLBbi084cJj89EXUdXU7+tACXsKGc+lk4npIHd0k6cwQ7vxB2z/0AI1t74k4c4F5KPCqamhz9cQEe/Ydx9McFNDU2UHg/hxsHduAYEsaur2djZOtA3IkDPMxMRVldg4M/zMdzwDAOL51Pc2MDJfkPCN+7BeeQMLZ9ORtjWwdiju/nce5tVDQ0ObTsW7z6D+HIz4tpbW6movAx1/dtxyWkL9vnfoSpvSOxp47wOOc2Kmrq7PvhG3wHDuXAskW0tjSjZ2KKopJAbL0k6QV/d4YjaSINL6n9RbD/RLs0efZySbh+hQsH9vDVbxtpaKin4G4uF/bv4XZyItZOLuz66Qf6j5vItqWLMTAzQ9fImLqnT/ni1w1cOXYQYwsrzu/bTUZcDBo6Ovz29af0HTGalV9/SlN9PQ9zsjmyZQOB/QaxesGXGJqZi+FDho5kzfzPaWpoID/3Die2bcSv30BWfvYBJta2XNi/m8y4GNS1dVg99zNCho1k/fzPRWlj73Bq2ybsg0LZ8sUsTOwciDq8lzMbf0VJWYUHtzJx69Of/d/Pp7mhgcJ7uVzbtw3nXmFs/WI2JnYORB/bT25yPKpa2pzb+CvOIX3F8B6hYaz/5H1M7RyIPLKfO0lxqGlpc/TXZXiE9mf3d/Nobmzgyb1cLu/ehnufMNZ98h5m9o5EHN7HncQ4tHR1kVdQRFEgoLW5CWf/IPwHDmX4tOk4BwRRXvQERSUBdh7eBA4exoSZs9E1MkJRIKCmqpKOjnZaW1poqKtBUUlAdUU5cvLyNNbV0dLUxMG1q1i4cKF4DuS/SBYtWrSwIDsLu96DuNiFrxKP7sI2oA8XVy1Cy9isk6+UNbW4uHIh9r0Hc+W3RbQ0NlL+8B4px3dhFxgqxm/KmlpcW78Mh179u/FnwpGd2AT04fiij9C3tidVhFfR1CJixxqJfO4U0pe98+ZgaGNP/MmD3E9NQEVTi4ubVuHSK4wD38+npbGBovu5XNu7Dc8+/Vj/qfj67vlhIb4Dh7Bj0VyaGht4fC+Xawf34BM2gKfP5r++jpbmJhTk5ZGVcKH/T2mAxfBSzrK0fl6kf10pbjW050lu72iR3N4uuco6SPuo+Fd8bJTyVVpGSruslHo10tqlZn+yktjcILqLnz99iuOHD7J26w6auig6CoqKGJmaoaWji46aMppaWji7uTFw6DCmvPY6r7zxFraefhI/okn7OCtJKfgjvKRWaX00tz1X9NpaW9n8/UIABk+cysrP54jx88Zv56JvasaVA3u5GR+LurY2Gxd8SfCQkWz85kshP9+9w5kdm/Hu25/NC+dhYGbO5QN7RHgdNsz/guChI9m44MtOPj+9fTM+Yf2pLClBoKLSyW8yMjLUVFWiJFCmpqoSgbIyzr7++PTtz9QPP8PY0pr62hpkZGVx8Q2gz8jReAT3xj0ohHXzhO+L/Nw7nNy2Ce+w/vw8+20sHJy6jefywb1/K4f2iLj8q9yZ5LRN0Layp01eCSNnb7SthXnBG5taqJcRoOfkDVpGaNq5C3+gZYSWjSs17QroOHghMHMAQKe+mVZ5ZQydvVHUNUHPUZgnX13fBFNXb2SVlDF19UHfVhiSJCMrh7qmBpbuvhiYWdLmLvSLNjQ3x8rDF01NDWy9/DB1Ej5XS00ZU0MdHH38sbWzQbFFqEGbW1li7+2PnrYGjj7+WLgK8ZrKShjoauHk64+ltTU0CM2i1rY2OPv5Y6CrgYt/ANZuHsjKyaCqIIOpoTauAQHY29sg31QDMrJY21rj4u+Pga4mLv6B2Lh7IicrgyItGOtr4ervj62dNbKN/uibmmNq54DbGqEZ8d0lywFQkpdl0OiXAJi7YSsA3n4+nV/RfP13APDJ8hWA9K9okuRFv7b/3XhJL+kX7UOaSLV+vMBY/qhdVkaGpsZG1i/4krnLf8VER4eGhgY0nZyRa2wAwMXJmfshvTHW1cM/uDfO3sJMGErIYqKnh5O7F1bWtjQGCAOyraxt8QwMBoEAR19/zJ2F+bcbmpuREQgwcnBCSd8QM1GFZiV9Q6w9fShtkcHIxQsVczsAjJ7WUdYsg669K83qumjbC2shNKvrYuziSVED6Dt5oWgqxOs71dOhqIqFuy9K2oZkRkfQ3tbGa8vWkR0bSZu8AHM3X/RE57GhqYUOBRUs3H1Q0TfFxEV4HlX0TdGzdqBFTglTNx90bIT8YNrUTKOMMmZuPijommDo7AWAgq4JRg6utMgJMHf3QddWiDdvbKZNThlzdx8Eeiad/ctqGXJ6724Gvvo2cafPYOkqnIei3FsEjhjLnawseo+dxIObwpzs6hY2nNizk6Gvz+TGqZPYuAuf+yT3DoHDRnJu5zb6jp9MXla6lF3x14uBkxeySqqYuPqgZyusEtva2oaMQBV9WxdUDcwwEs2PqoEZxi7eyCurYOLqg4Fo/tvbWpFXVsXU1RsNQzNMXIR4DUMzjJ08kFdWwczdFwM7Yf9tbW2oqqlj4e6Drok5TW5CvK6JOcZ2jghUVbH08MXEQbjfOtrbEKiqYeXhi66JOZZu3p14QztnOhSUsXD3Q180/samVtoUVLDw8EHFwBRTV9F+MDDFws2TdnllLD19MbRz7vx7q+qauLhvL33GTSJPtF6uvr6oaYkXG1NVlHxplXaZk2ZxkIZ/EbldI5kPnNUHSP6BnIQ0sQByOZLbpSkXHVKKpElVRl5ApF3+5dUlt0tLCSulINwfSX19PXM//ZBVG7agqKiItFrTxY0vZolpaZOMl2ZFaGyVPL+S0NL6fibNTU3Mnz4ZGVlZluw4gIycHC5+gdiI7hutra0oq6ph5eKKobkFjj6+ABiaW+DkG4CMQBk7b3/MHIXnsam5FVmBCmaOLmgYm2LlITxfGsam2Hr70aaghLWXL4YOwvNY19RMm4KAa6f30HvMy538Zu3mScSxQwx69S1iTp7A2k1478rLSid03ETyH+Uz4v1PuuHjz5+mTkYecw8fdJ7xc30jtR2KmLn7IKtthKGzsB9ZbaM/nJce+XvkX+XONPyzJbgMHE3ike24Dx1PUU4WAEYObmRcPYvHyMncvnwCQwfhYSnOycRxwGhSj+3AZfA4SkR4Awc3cq4cx+/lN7h56QRGjkJ86d1buA4cReLh7v2bOrmTcf4ogZPeJOPCcUxEykLlw7u4DRhO9P6t+Ix8mSfZmQDYe3iScOowYa/MIPHMUcxdhJeN4vt38Bk0kmt7thA0+mXybwnxDh5eRJ84yKDX3iH21BGsRIerIDuLoJFjubRzU+flRE5OFmtXDyKPHRBeTk4cFl5OZOB+Rhq9x7zMhR0bCR0nvJzIy8lh6eJGxNEDDH9jJlEivLq2tsRYBiX5v8YUL0l6lIi/TolorKtj+defUlNdzS+7hH767R0dHN+9HVdv4UvhZmoyIye/woHN6xgyfhK301IAcPby4fS+XYyfOZuLh/bhJEqzl52WwtCJUzm8Ywt9RrxEbkYaAPYeXlw6uI8Br71F5PHD2IqK093LTCd07Muc2bUD3yGjeHhLeBmzdPEg5sQh+r86g/jTRzsv2w9vZhA0ajwXd27utv8tXNxJOHOcPpNf58ahXZxZs4z3N+yn+H4uPsPHEblvC/6jXqbgthBv5uxO+pWzBI+bStKZY53n69GtDLyHjyVq31b8R03gkQhv7uxO1rULBI+b0u08PrqVQeCo8Vz/3Xm0cHEn6exxwqa8QfyZo1iIxl9wM52glyZwZfdmQsZM5OFNId7Ow5Po4wcZPP0dYk4e6Xw5Prl3h8BhL3U7jwC2bp5EHOt+HgHmjRn8t7szfXYxk9Qzh3AIHUqxiN8MHdzIunBUjA+L7mTiOngMycd24zLgJYpyRXxr78atS8cImPgGWRdPYCziw8LsTDyGjSXh0HY8ho2n8I4Qb+zoRk74OXxHTyG9C38+yc7EZ/h4Yg50508TJ3fuRJwnaOxkks4ew9xZtF63M/AfMV7ifsi6coY+L7/abb3yb2bQe/QELu8SrZdof9p7eHHj2EGGvP4O0V3Wq7rwEf4San9IUyL+qroSUt2iJOCl8YGzuhQe7pCiRLT1KBEPyp/y5YezaW1pYfOe/X+I/TcoEc+U1IqSYl4N9uZY1j2UlJXJz7uPQEVFjM+Hv/kO4ccOYech5J+7GWn0GzeRc/t2ETh0JPczhXxl4+5J+JEDjHhzpkT+v7hnB1ycEf8AACAASURBVMEjx3RXFo4eYEjX+wlwPzONoFHju91nAKxcPUi8cIoBU6aL4X9/n3nWf8y50/QZP7XbfelBVjq7F33Z4870D8u/yhKRlxSNXa+B3E+MwtwzgPy0BAAE6poU38mgpf8o8pNjOvH5yTFYBw8kP+kGZu4BPM5MFOG1eJAUjceIiTxIiu7EP7mZgn1If7H+1bR1uZcQhfeoSeR1wVc8vIt9cF/uxkdi7R1IXmo8ALr6emTHRhA0dgp34qM68UX37uDSqx/ZsRHY+wVxN1lYb0JHV5eb0RGETpjGrdjITvzd1AS8+g8m60YEjv7B3EmMRU5ODlUNTTKjwgl7eRpZMUK8nII8WTGR+A0aRmZUOE7+wWQnxKKqroGKujoZUeH0nziNzGgh3szOsScg+l8obW1tXDx2iNWLFuAf2pf5K9d0/ltHRwdx1690/n/c9Sv0HzmazMR43PwCSRHl99bQ1iHu2hWGTZtOYvi1Tnxi+DVCh4/iXlY69u6eZMQK97q6ljbJEVfpNX4SGdERnfiM6AgCBg8jLysdSzdPcpKE+1lVU4ubMRH0GjeF27HP9//t2Ci8BgwlOzay2/5X1dTibko8/qNe5kFmCjrGZhz/aaHQZajPALJjhdnJ7iULz5eKhhYF2Vk01dV1O1934qNwDRvMnbhIbHwCuZ/yHP/odibedS+J4b36DxE7j6qaWuQkxRI0eiLZcc/xOQkxeA0cxq3oCBz8gjr/Xm0dHbJuRBD68jRudjm/j3Nv4xnav9t5BNDU0RU7j/+UNNfXUZSThaG9K4/Sn/NnXmIU7sNf7saHD5Kise89iIKMRExcvSnoik+6gdfIieQlP8fnJUfjGDqY+wlRWHgFkJ8mnH9lDU0e387AfdBL3E98jr+fGI1b2FAx/lRW1+TxHeH65sbf6MTnxt/Ao98Qifvhfnoy/iPGdVuv7LgofAcN42ZMBA7+3dcrMzqcvi9P5WbM8/kvL3ggUYnokf+/pK2tjb179/Ll11/Tf9AQfvhl1f/0kP5S0TEwxMbFjeUfz8LG2QX3Xn2gDDE+7z9pCmlR4Z2/S4sKJ2jIcPJuZmLt6s4tEV+paWmRHhXOgEnTJPJ/TmoSdp7e3H6G19QiIyqcvl3uJwBZMZF49R/S7T4DQr7NTU6k10vjxfC/v888wz+8lUXAsLpu96Wu/90j/5z8qywRc6/fobq8FDVtPRqqK1EUBdQ019cho6JJXWUZKlrdAwBry8vEAgBbGurQ1NERwwuUuwQYdum/rbEeFQkBg2rqap0Bg/XVlSiJ8PKtjRIDopVVVZ4HLHcJAKS5ATUJAaEqqio8LS/rFjAoLycrMSC0A2FAUye+shKBmhpyMpIDSOUU5CWmZu2xRPzvtES0trZy8eghtq1cjpqGBp9+twwvUXGfZ/IsOK+hS2XeitISNPX0qa4oR1VdA4C62ho0tXV4UvgYHX1DsQBqRU0tnlZWoKKmLupPGECXX/AIDV39bgHI1eVlyKhqU9slwK1RFLBfVVqCum73ANiaijKUtfS67f/G+joE6s/Py+OcW9xNiiPp3DECx0ym14RXhHhRgHZTXR0qUhIOPC0vQ11Xj7rq5/031dWhoa0jEV9fWSYM6P7deLoGaEs6v13/3vam+u7nS4RXVVMTO48ALfV1qGlpiQX8zvB1/NstEbMP30AggT+VpSWIqCpHWVOXhqeVKKo8x2toa0vEN1SXo6aj340Pm+vr0NCSHHDd+LRCmBCjC76pvg4dXW1qystQ0+kecF1XUf58vbrsB21dHbH1UlRWoaGqDE09gz9eL9H8a2qqSTy3PZYI/r+wRLS0tLB3716WLl2Krq4u3y5fgX+geBpWSfJvskSAMGNf6o1IzuzZzpQ5n+ER0luMz4sLC9HU0xMLoBZo61BTWYGyCP/s/lBVVorm7xJQVJeXoa6j1y2BxjN8eak4vqKkRDwBgijBgqQEF9XlZcIEF134s7GuFgVVTYkJFmZ6WvZYIv5h+VcFVpu6ehO9ax0WHv6c+O4jGqoqeHIrjdh9G7Dw68OxL15Hy9SK5ENbeZAYhYKSgIj1P2Dl34cLP3xMQ3UFRbfTSDqwCZvAUA5+Oh0dM0sSDm0lLyESBSUBp7//FMfQId36z7x4HDN3X/Z+/Co6ZlbEHtjCvfhIBKpqHP52Dq5hwzi44APqKit4lJVK1tWzWLp5se69qehbWHFt1yZux4QjUFFl59cf4DlgGDu+mkVNZQV5GSnEnjiEvW8Av7w1CQNLGy5t30DWjesoKQvY+PlsfAcNZ8Mn71FTWc699BROb/wNjz79+PH1iRhaWXNu63pyUhKRlZVl/Wez8R88grUfz6SmspyCO7c4umYFnqH9+H76RIwtrTmzdT2tzc2YO4qXoZGWKelFgwIlyV8VEP1X4SUpDC/ax4uORVrvfxRc/ijvPm8M7UvBg/t8sOA7Zs1fhIkot3dXqaupITkmil2rVxB95SJKysrMe3s6/UaOZu6M16gsKyUzMZ4dK38ieMAgln/xERpa2uxf+yvxVy+jJBCw6N03CRk2kqXvv0V1eTm3kxM5uGYFfmED2PDN16hqaHJ6yzrSIq+hKBCw5pNZeA8cxqbP36emopz76Smc37IGt95hbPliNpr6hlzesZGbN8JRFAjY9vUcsf1/edtaHIP7sl50XuJPHqK2ogw730DOrl5GQ81Trm5fS0NNNQ8zU7myfR1OwX1Z//409M2tub57I9kx4SgqCbi6Yx3WXgHsmSs8jw8zU7m2Yx1OIWGd/T87jwpKSpxdsxyHwF5i43HpFcbqd6agb2HNlZ0buRUdjoKSgO1fz8F74DC2fP4+NZXl3M9IIfLIPhz9gvjpzUkYWtpwYfsGMqOuo6yiyrpP3+92Hu+mJRN39iR2nj7dzmN65HXys2/+7YHV9+IjsA8dwunFz/ktbt8GrANCufDzXFS0dDr5UF5RiTPff4Z978GcWfIxDVWVFN5KI2H/RmwDQtkv4s/4g1u5nxCJvJISl9d8j11gX04s+oj6qgoe30wjZs8G7AJD2fXRq+iaWxGzfwt34yORVxIQtXMtVt6B3fgzcpdwvTa+Pw19cysidm/iTkwECgIBV7b8hq1vILvmzqauspyHmSlc2b4O15AwVs/svl6KSgL2Lv4Sz36Duu3Py7s24xrch+VvTMLQ0prz29aTGXUdLX19dI1NxOZNmlLwVwRK/1G7pH6k8YS+kjQefiq5uUNKYS6p2ZmkpCyVin8BkRpYLUVZkJHiQCEjzonP5M6dOwQFBZGfn8/y5cv57rvv0BHVK/kzUtf6Yh9bpcW/SGuXply8SGB111ZNHV2cvHwwMrdk5ecfcvnwfsqKCsm7fbOTz9cv+Ao1TU1ObFxLSvhVFAUCVnz0LgFDRvDrh+/ytKKc3NRkTmxYjWdoP7Z+8xVqWlpi/O8/ZASrP5opxKclc1KE/+W96eiZmnNu63oyoq4L+X/B53j1G9zlPpPM2U1rhPeZN57fZ57hT6xZgXNASDf+PL1xNS69+rJixuRu9yVFJQHxZ4/3BFb/w/KvskR8eTGTBxlJWHoHiRU50rH3ID8lBlN3f2pERYvUDU0oyEjC3DuY4uwMNIzNAHhaWICFuxcPk6Mx8wjgabEwlZiWoSkFmYlY+fbq1n9taSEmTu7kJUVj4RlAddHzIiwP0xOx9e/drchdU3khFi4e5MRHYesTSMUTIV7P1JR7KQk4BvXpLBIHUFv8BGt3L27FRgmLZD0r8mJmSk5Swv9j76zDqzi6Bv47CUmIECFQJASCS3BICAGCW6Etpe4utH37tn3rRvu+dZevBi3FpUhpgSKlWAKB4O7urnGZ74/ZhJt795JcioXO73nuk9zZs7Ozc3dn98w5cw7R8e0Kkih5e3txePdOajZpzpoF83SSLEs+vHIEG5csomF8QkGSLC/hrPz8edSLjePwnj0EhoQQEu66jMxYIq4sS8Spo0d48NpO3NXvaW558NGz9djUn5WdTV5uLvt27QSgUmRVliUn0TKhI2uWLibCShK3d+cOGraIIXnubBrFxnFg9y7ASiq3cD71W7dl4/KlVKyqk/gc2LWTus1akDxnFnVaxHDYSkJXLqIKGxYvomrz+IIkcQBH9u6ieqNmrF+YRM3mMQXXf9lKEWxemkKt2LaFrv+je3WSMuf7JaxSFZZMm8j+TetZMXMKvv7+1GvdHr+AQHJzclBK0aLHDZTyK42XtzdhFSPYvmopNVvEuSQpq9G4uW39O1cvoU5MvEt7qjVoTPLEMSgUZ44fo1yVqtSLacW+LZup37pdoSR3p/bvpXrjpqxdkEjdmLP37zVVItm4tPD9CHBs3x5qNGpS6H4EePHa9hfdEnHrhz8S2bxNoaSZJ/fvplL9JuxclmwlldPtCa4QwZ5Vi4lsFs/+DSsJrWiNtwd2UzW6KTuWzieycSwnLfmQChHsXbuUqObxLuNzteimbFsyn2pNYjlx4Ox4u3fdcmq0aO2SJLRW02ZsXpREjeaxBUnlwipGsGv1Umq1jC+UlPPY3t3UbtqcDQsTdZJNh+ttx4rF1G/drtD1eerAnrNJMx3Gz8ioapTydQ0TaiwRlGhLxP79+2nTpg2vvvoqDz/8cEG5c7K5c1HSLBGObFy7mpFffMz6JSn4BQRQv3kMDVrGsixpLo3j21G2QkUqVq1GharVWJeykLpxbdniMF4d2r2TWk2as3bhfOrajP8NWrdj68pllLfk8983VsybQ1BYGKuTtAtU7WYtOXXiOC269HRJClmnWQvb95kty5dSv1V8ofHz0O6dVGng+r4UXjmCJ2PqGEvEJaZEKRFt7ulHzK0PM3fgJ7S48V52rdI+ulUbx7Lsj3G0urMfS8b+RCUrusj+9StoftODzP/5M5pef3fBmoiIRjGsmjScDo88T8qYH6kcreUPbFxDq5vvZ45T/dWbtmLJhKF0euwFFowaQJWGeiHq0e0badX3Hv787iNa3XwfOywf4Bade+DlJQSEhJF++lRBdtS87Az8y4SQdvI4/kHBZGdmAFAmKJD006cIDNXypSw3o9zsDAKDQ0g9cRz/Mlre29sLX7/SpJ0+RVBoGGmnTuLjVxqFIiczk4DgEM6cOE6AJS9K4efv7yLv7e1t+8A0SsSVo0Tk5OTw6LWdaN25G/1eebNwPTb15+bl8d37/y3IlLoyZSH3Pf0ffvjoHW64+36Wzdf+4s3btGPMwG95+NW3GfXNFzRsGQvAmiUp3PnkMwz6/CM633w7qxdqH9pGcW2Y9PMA+j7zEr8P/Ja6zVsCsHHZEq5/9ElGf/UZ8X1uY9Ni7XNeJyaO2SMHcf3TL/Pn4O+o0UQv9N62cind7u/H+C/ep/3tDxSsQajVIo7EcSPo+fhzzBryPVGW/I6VS+lwz2NM+eZD2t56H8v++JV9m9bj5VOKtFMnCSlfgU0LE8nLy6NGsxgCQsO47tnXmfrNx7S97f6CNRE1mrdi2R/j6fLAUy71d32gH5O+ep8Eh/b4BQQy9oM3KBMWTik/P4LLlefEgf0c3bub0oFBBJcrz8Mff8tmyye/QavWzBrxMzc9+wrTBn1Lraa6f/ZuWkfnux7kl0/fpds9DxX49DaIjWP6sEHc/vxrTP7xW+o01e35+LF7L7oS8eykpSwY+QPRXW8sNH4unTiUhIefZ7HDeLhv7Qpib3uYxJ+/pEnv29ljyVdpHMvyiUPp9OgLLBzzIxFWdKa961bQ+o5HmDPgY1r0vY9dK3X/VG3SirXTxpFw75PMH3l2/NyzZhnt7nmMmd99XGj8jGrairUzJtLh/seZM/QHohpr+R2rltHp3seY8s1HtLvtfrZZ/V+jRSsW/z6Gax99hplDvqO69ftuX7mUng8+wa9fvk/HOx8suD4bxrVm5ohB3Pzsq0wd9C21mujf6/iB3XS/636XfjNKBCVWicjKyqJVq1bcdNNNvP7664W2/VOUiE3r1uBdyodVyUkc2ruHMydPsDo5ifhrr2fh9D84feI4WRkZVI6qwX2vvknK7Fm0v/GWgjUO9WNbM23oT9z+/CtMGvidy/g/9uvP6HTLHYXkR338Ljs3rCUzLY2q9Rog4sW+rZtJP3Oa3NxcYnv0Lngu1IuJY9740dz41HP88dO31LbGw80rlnLtQ/345dP3Co2f9WJbM3fCL/R46Clm/PwtNaz7d9vKJUwZ8LVRIi4xJWphdW52NqW8vcjNyqSUtyBWdthS3kIpySPAzwuv3Cz8SulryCs3i6DS3khOJgF+Xvh4afkAPy/IztQvzLnZ+FguPP7eeZQN8sE7N4vQwFIcsXqnfBlfSuVlUSHYl9KSR5i/3pDj50WVUD98VRaVQnw54afrqRruT5mwsnrncP+C9hc8XMpZayHQSb68vbygnPZXJyzQ9cRD8suCzz5Ewiz5YBv54LPyBS+bYSFWUZCrvAPuHlLuHoAXIiGcp6EP3clfCAXgQikR7urxxHVh5cpl5GVl8sG777ooJXYPtTNWhuc860GVlZmJUor0zEzSsnNIt5IRpWXncOZMKicz0jmdmsrpzEwATqemciIjg5Npmew/lcaR09rXdP+pNI6eOM3B09mcPJPO0VT99D15Jp2Dp7LIyMrhTGYOaZlZVjtySD2TRnp2HhnpWWRm6/ZkpGeRnp1HZnoGWbl5ZGXrB2dWbh6ZGRlkZOeSmZlJVrY+t8zMTF1HWjqZOQr/stdQM+4aarSMZ8nksSTc8wT+Q74hPDKKnStSWDNnBtuWpRBUtjw5uYpsq/6cXEVOTh5ZOXlkZWaSnZNb0D9ZOblkpKXrNmRls37+LPauX0PVhk2574Nv+fPHr6nZQofA3bpsEXE33MaXD/Rl1qgheJfyITyiKhnZeaSlppGRnUd6ehYZ1vmmZ+ZwJkP3xZmMHFIzsq3+V6SlppOalUtaegZp2RcikVfxyAXIy8PLSyF5+rheXorczAyX8ZDcbPxKeSF5OZT28cJb9H1X2scLsrO0fE42PvmZJXO0fF5WJn6lBG/LwcKvlOCFwtfHC/Jyzsrn5eDvI+RlZeDnI3hbr0x+PoJSeXiLkJedXeACmJedDQjZVgjj3LyzL17ZWdnWdZRFdo6uJzMji8zcPNLT0snKySUrW/d/Xl4emenpKBTZmZnkWc+RPDcvcp7G/HdbblvqWe4Ad7LrT9tfQxVK27vslPVx48rjTunI2+pG3ua4nioi7nDnKpWXaV8urm1fmLwIL68cXnv1Xpdzs+uDTan2/VuhtP3zb2+avSZSnFwOjuR6IO+pS1SeUngpRV5uLuUqVqLzTbeRnZlBn0eeICszg4at4jl6YD+zxo/h6xf+TerpUwSHBBesIfLxFnIyM/Dx9iIvJ6sgB1ReThalvITcnBxylQ6drJRi8qAfWLMgkYfe+5ztq5dTN6Y1ABsXJ9P94acZ9taLbFy6mFMnTlChWnVqNI8lKzOTtKwc0tIySM/S55yWlsGxMzmcPp3GidRsTqfp6+pEajZZOblk5uSSnpFJpjWep2e4uS4MF5USZYl4afpq9qxdpt2Z1q0k1PJpPLFvNxXrN2b74iSqNo3l5AFt/g6pGMHuVUuIauFqXq/SoCnbFidRrUksJy33p8ioSLYtT6FOq3aF3CFSD++nWnQTNiTP0+Zyy7weWa0qG5cspGGb9oXMc35eeYRXdI185KlvrR3uXkLdcSFm58EoEReqHk+UiIGffkjqkQN8+MXXLtvslIiTaWnk5uSw33JPqhRZlWULEoluk8D6ZUuoZLkz7d+5g/rNWzJ/9kzqt4zl0J5895sqrFmYTMWmcbbuSSvnJ1G9SUuO7z/rDrR12UJqxrZ1cR+q2rApW1LmU6NZLMcPnHVH2bZsEbVaucpXqt+ELYsSiWrWihOWfGjFCLatWEzNlm1c3F0q1mvM1sVJRDWJ5YR1/4ZcU5lV08Yy68evuPHV96nWSM9oHdu3i2oNm7F5USLVnerfvXoJtWK0e8yRXduYOegbrn/uTRq06cCmhYnUaN6qoP3h1vmGVqjMuA9e59SRQ/iW9qdclUiqRTclJyuTLvc/zvED+6z+iWDr0kXUa51QyP3p5IG9RDVswroF87Q53hpP3rqh00W3RNz0/kBqxrR1GQ8r12/CnpWLiGzYomA8DKkQwc6VKdSIaesy3kZGN3Hp/9AKEexes4QaLduwZ90Kwipbv9c+ff3Y/b571y6jVsvWLtdDVKNmLv0fVjGCHSvP/l6O7kxVGza1ld+5Qve/o7ta+qG9VM93Z2rZiqP7tHzV6lG21tkAn+JbCuAclgg3FofSHtTj7lnhbrxx9/Jb1k2+titKiXC7JsJdhus6LkVvvfUZp0+n8umnb9jUU3wlopybJH/ulAh3GajdWRyy3chfKCViw7IlLu6pSxPnUL9lbEFm6PIRVVizcAG+/v689/A9vDvmd0LLlefg7p3UbtqclfPnUc9Jft2ihdSOa1fgbrR81gwmDfg/3hwziW1rVhW6v8IrR7AuZSH1WyeQ8sdEUqZM5ODO7ZTy9aFWs1hyc3No2K4jlWrURkQoWymC9UuWUNvG3bRG46bW+1gcx/bnuy9W4fl4k7H6UlOiFlZHNm7J8t9HU7VpLFM/e5OstFQObl7Hst9HU7NVO3575z+EV63J8kmj2bNmGb7+AdaivvZM+6w/WempHNyynuW/j6Zmq/b89r/nKFetJst+H8Xu1UsJCCrDpM/fpXGnnkz48A0y01LZt2kda+f9Sc1mMQx59WkqVK9F0rgRbFuxhDKhoYx6/y1aduvFkP++QkZqKrvWryXt5Ami6jdwOQdPHwB/VxYuzGJj8FxZ8OS4nqqx7uQvxKLoi72wurjZufPy8njjyUd4+Y3+RFRxfdjZLfQ7deoUK1OSGT94ICsXLSAgKIjPX3+JttdezxcvP0vamTNsWbOKScMGEdupK4M/eZ+QsuWYNnII65ek4B8QxE/vvEnTzj0Y+c5rZKamsnvDWuaNG0HDth2Y8sOXBIWGsWD8SLavXIJfQAC/ff4OjTr1KHS/LPx1FPVad+C3z/5LWMXKJE8YwfaVSygdEMhvX7zjcn8t/HUUteMSGPPWs1wTVZOUX0exc9VS/AICWPDLYGrGtGHSx1p+/6Z1LPltFLVatWfCf5+jXFRNlv6m71/fwEA2Jc2kasOmJI36Ce9SPuzftI7FE0dRt3UHxvR/hvJRNUn5dSQ7Vy3BLyCQxFGDqBPblgkfvsGKGZOp1TKeDQtm64zJbzxDhahaBe33Cwjk98/foc1Nd7Fq1lSadOpJKV8/Du7Yin+ZMswZ+TMnDu1n2Z9TWDd/DqePHuGP7z+ncYdujPuoPxlpqezZuJYNyYnUaNKMn17+F5Wq12beLyPYunwJezauu+gLqw9uXkfd9t2Z8UV/stNTObRlPSsmj6ZmbAJzBn5KUHj5gvHQNyCQmd+8R732PVzG29pxNv0fEEjisO+o07oDkz/R8gc269+rXusOjHnrGZffN2XiaGo2b+V6/cR3YMQb/y7U/6UDAlkwfgS1WsQx7oPXybLkkyeMpH6b9gx3+r1KBwQy9btPaNShK7+89xoZqans2biOhb+PJTo+gQEvPkWlGrWZ88twNi9fTNkKFWwXVvt4e7aA+nIsrHY33gS5cU/1d+uF6m4h9nE38jajsaeLs93hdgG1u4XY4YW+5ubm8sCDz/POO89TuXIFm3pCXIqOunFxCvC279/T2W4WRJ/Hi74ddhYKd88/t9aPrCw+/89TpKeeYdva1UwdMYSWHToz+stPCS5blukjrPE/MIif3+3P9Q89zuwJY9iwNIWM9DRmjBpK8w6dGf35x4SEhzNj1FA2LNXPi8Hv9qdl914MeetlMtLO8Nt3X1ImNIz46/vy8xsvUD4yquD+Kh0YxK9ffkzTTt2Y+NVH1GvVhip1G7B/2xZqNmtJ8m9jWT9/HhsWLWDz0kWcOnqYpHHDCQgOYcZPX5GVns7ejetInjCCBvHtGfraM1SsXpP540eybYV+Hi2ZOtEsrL7ElChLxKuzNxaEVHUM2ZqVlopfmRDbkIPu5ANtQraWK1uGM8eOUia8HGknT+AXaLkFZaYRFOoaQrBsaBmXEKwA/qUUfqX9ccZYIuwxlgjXa2D+zBl88fZrJC5eZvuC4M6dCVxDvPqGhnHq+HECrBB5aWfOEBwWxs49uwkrV94pxN9h0v2CST15gtLW/ZIfsvXA/kOUcQq5eebYEfzDwgvdL/khWFOPHXEJqXrmmA657CzvExRScD8WCtl65ChB4eVIO3UCP6s9mWmp+AYG24YMzTlzHBHhs9u60vGBJ6nWuAVhlasQXLY8p48dIcip/vSTR6wQoycY1f85mvfsQ924BIJCw1xCwpYOCOTMsSOUCS+v+8dqf256KoGhYWxeupBpA74iJzsbb29vvH18SD99igPbt1AtugkNEzrTKKELwaGhBIaGFgpRuH/bZj6864aLbonoNzaJYJvx0D84lMyTRwkIK1eoP92Nn0Ehobb9n3biKGXCy7v8XiFhYba/b+ZJS97perDrf1//AE4f1SF57a43O/n8EK+O17N3TrptSN6wkDK295qxRFAiLRGTJv3Ju+/9HwuTf3NTzz/HEnHaIcRxfojXwwcO2IZ4DS5Xjl2bN/L6bTdwy1PPEVU/mgYxrTh5/Cgh4U7Pi6NH8A0JL3j/+fTRu2nb5xba3HAzRw8eLHR/+fkHcPTQYULKlXd5vvgH65CtJw8fYuxHb6OUopSPLzk5ueTmZLN/ywaqN2lBvfgO1GoZT2Sdui7vY0f27OSjO3oZS8QlpkRZIo7s3Ert+E6MfukRKtZuwJKJI9ixbCGBoeHMGvAJtVp3YPIHL5OTlcnh7ZtZOHIAteM78cvLj1KhdgOW/jqCncsWEhgWzqT3XiS6c28mffAy2ZkZHN6+mcUThlG3dQKDnn2IynUasGDcMLYsSSa0/8etxgAAIABJREFUfAWGvPZvWva4geH9nyc7M4P9WzeRMmUC9WPj+ezxe6lWvyGzRg5h/aL51GgQXRCT2RFjibDHWCJcywd8+j5tOnejbXy8rbydJSIrN5dXH76HzIx0tm5Yx9CvPqVdj17896nHiKxZi4k/D2R50jzCypXnvX89Srvrb+TL558mKyOdXZs2MOH7/yOmS3d+evtVwitXYc6YoWxIWUCZsuEMevUZmne7jlFv6+v/wNZNzBr6PdHtujD2vVcJj6hacL8EhYUz+q3/0Kz79Yx++wVyMjMLyf/kdH8FhYUz8eM3ie7QnfHvvEh2ZgYHt21i3vAfqNO2E8Off4hKtRuwaMJwti1NJig0nFk/fkHtuAR+e/9lsrMyOLR9MwtGDqR+u86Meu0pWt10N8umjCdl4kiSRv5Eym+jCQwry+zB35Cbk83BbZuYO+wHGrTrXHC/b148n43J84hq3IIJH7xO4049C7V/9rCBRLfrzMB/P0BE3Wjmjx3K5sULCC5fnqGvPUP72x9g0+IFNO3cg8q165GXl8udb3zApiULqN+6PSmTxzP9p29Y/tdUHWa0TQeG9H+ehb+PY/qg78jNyb7olohWtz/Cn1/9l5CKVVg2cSQ7ly8kICycye+/QHTn3kx2GA+TRw2kdnwnfv3vs5SvVqvQeDvx3Rdo1KW3S//XbdOZES88TKU6DUiZMJztS5MJDAvnz+8/oW6bji6/b3S7Li7jbVBYODMGfEG91u1dr5+Ezvz4zINW/w9jy+JkgsqGM+mLd4lO6Ooi36h9V354+gGq1Ism8ZehbFq8gLLlyjPw5X/TqlcfBr32HNkZGezdvJHF0yfTqE2CS78ZSwQl0hLxv3e+4rreXYiJaeKmnn+GJWLjyuWcOnaUyUMHsXJBIqHh5fjkmX60u74PX73wb7IyM6zx/2tiunRj4FuvUq1OPU4cPszqBYkkT53E0A//x/7t2/lj8I+o3Fz2bdvCxB++oWXnrnz30jNUjKrBXyMHc+zgAQ7v2c3s0cOIvbYPg14/e39NHfQtjdt35esn7yeyXnSh58vYT/5Hkw7dmPjlhzTt3IMqdRtw8vAhbn/rU1bNmkrfF//Lng1r2JSSROKoQcwe/iMomDVsIMf372X6j18zdcCXqLw8Y4m4xBS5sFpEngQeA6KsorXAO0qpKdZ2AfoDjwJhwCLgSaXUWoc6FJAN1FNKbXMoHwyUU0r1Lk5ja8d3wjcgiPrtexBaOZLqLfQLVmjlSKo0bIGvfyC12nTimhr1APD29cUvIIi67bsTWimSqBZttHylSOokdMXXP5Da8Z24pqaWDwsNxr9MCH2e7094lShCrYzOZcuFc8tL/8W/TDC9n3yeoFC9aFqlxRMQHMLdr/2PClWjKGutgwgtV744p2MwuKVCpQhOHnf34LZHROj36luEhuuHafP4dgSHhnHfcy8SEVWD8pUjAAgJK8vT735MQJlgYrp0o3q9aAB8/PzwDypDVMOmlIuoSv04He2kXERVmne5Fp+AIKLbdaFyHX2/lPL1wy8wiKjGzSkbEUntGH1/lY2IpFGnnvgFBNIgoTOVa+t8JN5+vvgFBtGwY3cX+Vqx7fD1D6Re285UqlXfof5gojv2JCwikpottXxYRCQR9Rvh6x9InTadqFDzbHt8/AOJ7tSTRp16Ur5qDQCCr7mGucMGsG7en2xbupAzx48S3b4bddt0xC+oDI069SS0YiVysrIIuaYiZSMiqRvfAV+n9vv4+OAXGETjztcSHhFJ7VjdnvBKkTTrci1+AYE0cpQv7Y9fYBAtu19P0y69qBrdiLzcXHIz05g9cghfP3EvOdnZxF57A9f1e5bPH7nDo9/7fPANCKJy/SbWeGiNn5UiqZvQHb/AMoXGw1K+fvgFBFG9ZTuX8bZuu662/V86MIgGHXoQVjmSGtbvG1Y5kqqNmtv+vr6BQTTq1NPleoiMbuLS/95+vvgGlqFJvnzsWfkazeNs5UsHBtGk87WEV46kbquz8i27XUvpgECaduhKFStfTmhYCHm5uayYN4t6MXEcttYW1ahTx9aybLiyqVzpGo4dO3G5m3FJWZWcRMWqUQAc2LWD6NjWHN63l+iYOJq21QpyxapRtL32ekoHliG2czeq1dfjv6+vL/5BZajVqBnXRFaj6+13A1CtfjR/jR1JQJkQ/hw1lBGfvE9Ug2hqRDfGNyCQejHxXBNZjXqx8WxatpjA4BCiW7ejdGDh+8vHT48Pzbtc6/J8qRvTWo+f7TtTpU7++OBbMN5Wrl2PNrfco9tfow5zRwzg1NEjbFu+mF3rVtGsay+ad7+ecR8WjmJouPgU6c4kIjcAWcBmdITK+4AXgRZKqVUi8hLwOnA/sBF4E2gL1FVKnbbqUEAGMFEpdYdD3YMpphIhIqr/tBTWzppKfN87SJk8nqrRjQHYtXYVMb1vYvbwH4m74RZ2rVsNQNUGjVg+7Tc63H4fCyeNp5olv3PtKhJuvIUZQwbQ9sbb2LF2FQDRLVqcjarkgDtztjvztDtzttsZJw9m/4s7k32+5e5m0aKDL14gL3cmZHcmYU+joniCp5Yedy4N7szfxeX3CeMZM2wIn4ycYLs9NcvVZeBkpn10CjtZ0FlNy4SEsWX1SgBqNWrCX+NG0emeR0iaOJYajXTozm2rV9C2zy3MHDWcFt16sXOdvl+qNWjM/IljaH3bQyyZMp7IBvr+2r1O34+JY4bQomcfdq/X92Nk/Uak/D6Wzvc87HL/Nu5xI4kjfyLmupsLyS+eNonYG+9ixdQJRNTT8ns3rKJx9xtZMGYQzXrdzL4NWr5yvUasmfUHLa67jZXTfqVyvUYA7NuwmibdbyT5l0FEd+zJ0klj2Jg4E6UUkQ2bknD34/zy5tP4BQbR81+vc2Drelr06kvSyJ9o0fsW9lr1V2/YmMWTxtL+rodZMnlCwfnu27SOFj1vYM7wH4m9/paC9teIbkzy77/Q+e5HWORwvge3bqRFt97MGPIDrW+4mT0b1gPw7b8euOjuTO0ffo62tz/EyulO/dPjRpb+PoqGnXsX6s/lU8aRcOdDLJ86gSr1dfv3rF9Fq+tuYt4I199rxfRJtLvtXhZPLnw9NL+2L/NG/kjMdbewx5KvUr8Rq/7S43lx5VfOnELrvncW6v/8623uiML9H1m/Ecv+mEDHOx8s3P8b19D6+ptcxv/6TZsyZ/wYej34GPN+HUvNRnoGO+v0SZrYWig8C9nqziXUk1CxF8KafS48dn+yw51LlDvchZt1Z9HwDrAvl2qFvo4cOZFfJ05j7C/f24ofy3F1ZzqSZf8MyXTjhuTuGeUuClOmm3J38nbPNHfPuZPHj5Obk83mVSsAqN24KTPGjKTPI/34a9xoajdpBsDmlcvpfPPtTB0xlDa9ris0/s/8ZRS9H3qMORN+oVZjPf5vWbWCjn1vZdKwwbTqeR0bFi9k2+oVrJ4/j5OHD3PHK/05tGsnq+bNwtvHh1Y9r6f9zXcwbchA4q+/ueD+iopuzLxfx9Ll7odInjSOqGh9f+1Yu5LY3jfx17CBxPe5lZ1r9f1bLboRi6dNpu1NdxW6f3etXUVs75uYNXwgsb37snvdGry8vanaoBGvdmlp3JkuMUW+GSqlnB0KXxORfkBrEVkNPAN8oJQaDyAi9wGHgDuBHxz2+xr4j4h8opRaej6NPbZ3N7s3rCEjLZUNCxMLyjcsTKRxx+5sSJ5L7ZZxBfHeA0NC2bIshbjrb2Z98ln59cmJxHa/ljVJc6kb05qNi3X84QqVK9kqEQbDpaZRk6a89vwzF/UYJ48cJu3UKdYuWgBAmdBQVsybTXzfO1mzYF6B3JoF82jZtSc716+mWoNGBfdLYHAoa+fPpfl1t7Fx0dn7a+OiRBp17MG2FYuJatyCrdb9GBAcyobkubS56Q6X+7duQjc2LpxHjeatCvI7BASHsmftSpp078OWlKQC+S0pSdRt140ti+YR1SyWHcu1vH9wCAc2rSUrLZVti+cXyG9bPJ/6Cd3YmpJIVNNWqDxF7fhOBJevQOKwb1k3ZzphlarQuNv1HNi6ni0pSUR36M7mRfOo3rwV2636Q8LC2JA8j7g+dxQ6311rVxCd0IUNyXOp2SKu4HxDypZl/YK5tOl7Z6HzPbhtE9FtO7IhOVHP3i1Z+Hd+Ro/YtjiRmOtvt+2fPWtXEFG/caH+3LJoHq363O7S/0079bD9vbYtTyGm900u10N0h25sSJ5HzeZxbF16Vn7vhjVkpKbayHe3ld+9bjXNu7vKN+7U3aX/A4JD2ZQyn9Z9bivU/9uXL6JZlx4u43+58uGsTJxD59vuYtX8uQXyOWmptkqE4cqmWbNo3uz/6eVuxiUjMyOdI/v2sipZ39tlQsNYOvcvut1xD8sT5xTILU+cQ3zP3mxZs4KajRoX5AMKCgll2dxZdLn9LlY4yK9InENc92vZtnolNRo2ZttqraQ80P89fnrzJaYO+oHdG9fTrGNXouPbsT5lAa16Xsf6hfOp3Tz27PMiJJQNKUm07Xs76xzex9YlJ9KkY3fWzZ9LnZZxBeNhYEgIu9atJqOn6/tek449WL9gLrVbxLF1uc7/FRDs6p5muPh4tLBaRLyBW4ChQAsgFdgKxCqlFjvITQGOKKXus74ra79bgXClVGerfDDnsESIyKNoNyms4xkMBsPVyk6lVNTFqtwahw0Gg+Fq5aKOoQZXiuWjIiKNgGSgNHAGuFEptVpE8ld9HnTa5SAQYVPVq8A6EemhlJpW1HGVUgOAAcVpo8FgMBjcY8z8BoPBYLiQFDde6EagKRAHfAcMEZGGDtudZ7jEpgyl1BZgIPCBiLsQCwaDwWAwGAwGg+FKplgv8kqpLKXUFqXUEqXUK8AK4FnggCVS0WmXa3C1TuTzNlATuOs82mswGAwGg8FgMBguM+drDfAC/IDtaEWia/4GESkNtAMW2O2olDoEfAL8z6rDYDAYDAaDwWAwlCCKVCJE5AMRaSciUSLSSETeBzoAI5Relf0F8LKI9LVcnAaj102MPEe1n6LXV/T5uydgMBgMBoPBYDAYLi3FWVhdERhu/T0JrAJ6KqWmW9s/AvyBbzibbK5bfo4IO5RSZ0TkbeDbv9F2g8FgMBgMBoPBcBnwKMSrwWAwGAwGg8FgMJgISQaDwWAwGAwGg8EjjBJhMBgMBoPBYDAYPMIoEQaDwWAwGAwGg8EjjBJhMBgMBoPBYDAYPMIoEQaDwWAwGAwGg8EjjBJhMBgMBoPBYDAYPMIoEQaDwWAwGAwGg8EjjBJhMBgMBoPBYDAYPMIoEQaDwWAwGAwGg8EjjBJhMBgMBoPBYDAYPMIoEQaDwWAwGAwGg8EjjBJhMBgMBoPBYDAYPMIoEf9ARGSOiMy5DMd9S0RUMeTmiEiSTXllEflGRLaLSKaIHBKRCSISe3FafP6ISJSIKBG5/zIce4eIDD7H9kpW29602bbe2tbAqTzaKn/K+t7B+p7/SReRdSLypoj4X/CTMhgMBoPBcEVhlAhDiUBEmgArgJ7Ah0A34F9AKLBARO65jM0rUSil9gNbgATHchEpD9QD0py3OXyf51T+NNAa6AVMAvoDP1zgJhsMBoPBYLjCMEqE4YpHRHyAccBJIEYp9b1Saq5SagzQBfgNGCgidc+j7h0i8tYFbXDJYB7Q2urbfBLQffwL9krEMWC1U/l6pdRCpdQspdRLwFDgHhEpe5HabTAYDAaD4QrAKBFXISLSRER+FZGjlpvJRhF5pYh96lr7nLD2WSgiPZxkBovIDpt9XdyjRKSZiCSKSIaI7BWRNwA5z1PqC9QCXlVKHXXcoJTKQ1skvIFnzrP+80JEHhGRZVZ/HReRuSISX8Q+d4vISqtfjojIMBGp5CSjnBUbd+5RIvJvSxHKEJElItKumM2fCwQALRzKEoAF1jZnJaIdkKSUKsodbbH1t1Yx22EwGAwGg6EEYpSIqwxrfUAyUBN4Fu1m8hlQ5Rz7VAaSgCbAU8CtwAlgioj0PI82lANmAeWA+4AngR7Ag57WZdEZyAWm2G1USu0DlgKdzrN+jxGRT4ABwDJ0f92Nnt2veo59HgWGAevRitHLQHdgrogEnUcbHgK+AGYDfYDBwCggrBi757slOSoLCUCi9YkQkRrWcWoCEbi6MtlR3fp7ohiyBoPBYDAYSiilLncDDBecT4CjQJxSKs0qm1XEPs+hXzxbK6W2AIjIH8A64F1gqodteBYIBLorpXZZ9f0J7PSwnnwigcMO52PHDqDxuSoREUFbLJzxEhHHe0EppXLPUU8t9Dl+rpR6zmGTrZJj7eMN/A+Yo5S63aF8A/ql/UHgq3O136k+L+AtYLpS6gGH8sPA6KL2V0rtEJFdaMXhIxEJQfffv5RSW0Vkv7VtG2cVjbk2VeX3XQB6nUo/YIVSalNxz8VgMBgMBkPJw1giriJEJABoA4wo4oXbmQRgYb4CAWC9RI8CmopIsIdNaW3Vt8uhvlT0wtvzoThuUMWRaQ9kO32qAW84lf1VRD1d0PfOgGIcM5+6wDXACMdCpVQSWrlq70FdoC1LVdDrFxwZD+QUs455QBtLIWmLPvd8d6QkzioPCcBpYLlNHdOt/U4CYzlrFTEYDAaDwXAVYywRVxdh6JfbPR7uVxb7F8QD6JfzMOCUB/VVAtbYlB/0sF357Aa6iEjAOZSjapbcuVgKxDiV/Q5MprBCcLqIesKtv570c/5C4/022w44bC8u+esoCvWpUipHRI7ayNsxD+2G1RitKKQopTKtbYnAv63/E4AFbqwzTwIpQDqww1IWDQaDwWAwXOUYS8TVxXEgD+2/7gnHgIo25RUBZW0HyAB8beTCnb7vByrYyNmVFYe/0G5Ivew2Wms6WlCE25ZS6rRSaonjB8gC9jmVbyyiPUesv570c34fuutnxxf/TFz72a6PwalPLdciZ1l3OK6LyF8PkU8iUFNEYoAa2LsyAWyy+mytUSAMBoPBYPjnYJSIqwhrlj4JuNvDhF9zgTgRicovsHz4bwOWK6XyZ+Z3AhWshdP5cjXRrjqOJFv1RTrIBQLXedAmRyYAW4H3nEOHWq44X6GVpy/Ps35PmWkd71EP9tmIthrc7lhoRXOqRuGX9J1AQ6f9nRWoPWjLy61O5TdRTAujpSwdQC96b0FhJWIV2vr0uvW9OIuqDQaDwWAw/EMwSsTVx/PomehkEblHRDqKyEMi8vU59vkcHU3nTxG5U0R6o9cv1AFec5Abi7ZMjBCR7iJyFzpHwxGb+lKBGSJym4j0AWagXV48RimVBdyCdqtaLCKPi0iCiNyCfqHvAzymlNpwPvWfR3u2os/xWREZICK9RaSniPQXkdvc7JMLvIl2yxouIj2s6EoTgM3Azw7io4FeIvKaiHS2wr3e5VRfHvA20F1EfrZ+jyeBT/HM9SwRrUR4o8O7Ota/AK34pXN2rYTBYDAYDAaDUSKuNpRSi9GLq3cDXwN/AC9wDv99K0RqW2At8B06sVtZoJdSapqD3BbgZrQbz0TgRXRkp01O9R1Bh2U9AgwBvgGmAYP+xnktB5qiF/K+jFYevkW/MLdTSg0+37rPsz3PA08AcejFzCOAjsCuc+wzALgHaIRWvj4C/gTaK6XOOIi+D/wfOtzuRKC+tZ9zfT+hc2N0sup7AG3pOO7BqcxFr3tZqZRyVj4SrW2LLEXOYDAYDAaDAQApOneUwWAwGAwGg8FgMJzFWCIMBoPBYDAYDAaDRxglwmAwGAwGg8FgMHiEUSIMBoPBYDAYDAaDRxglwmAwGAwGg8FgMHiEUSIMRSIiUSKiROT+y3DsHSIyuAiZ/Pa5+zR1kHUszxGR7VaI1CoX/WQ8wGrfW5fhuHNEZM45tg8uoq/zPx2c9rvfKk+52OdgMJwvIvK1iExy+J4/tjxsI9tNRKaKyFERyRCRTSLyoYiEXYB23GEdN8GpvIJVftBmnyetbQ2t72853ZMnRCRFRO68AO27X9zf+ycc5Do4bUsXkXUi8qaHuYycjz+nmONQlNN++X3yi5t6bxGRfaLzGl0QrJDexWlrWxGp5VSWKyL7RWSYiHiaRNZguOgUKynVlYyICLAC+EwpNaSY+3wDlFZKPXRRG2e41LwP/G5Tvsnp+2DgB/T13xSdbyFeRJoqpc4rl8U/iP8B3zt8fxh4CB0iONehfJ3TfvdZf2NEpL5Sav3Fa6LBE5zHUOsF6iegKzrU8wNAeaCHUqrz5WvpxUV04szHgPhiyL4KvIsOwfwwOiN9C+Al4CYR6aiU2v03mpOffDKBwokeE4A04BoRqeeUGycBnfl+rVNd+fdmWeARdJ6f0kqp8w657cAtuIYPz7GRexqdayYA6A70B2oB957ncZ8Agh2+vwHEANc7ye3P/8e6zvNDZV8vImFKKedw2OPQ+XyeQ491F4L+6JDd+TwG3A+0dpJbC1Sw/n8HmAL4WXJvAvVEpLVSyq5/DYbLg1KqRH/QWZV3AT4e7BMFZAC1Lnf7L3Bf7ADeugj1RqGTzN1/mc5pcDHb93Ax6lPAO05l91nlfT1s25yi2vY3zltdjN+ymOc0xwP5t6y2ljqHTDV0hu8pluwHl/q8zOecv2GhMRSdsDIVnf08Dq1AlEHnH+lwudt7Efvha2CxU5nL2ILOB5MHfG5TR3W0QjG7iGPdrx+/55TZCsywaeMkYAvwqNO2fcCvDt9d7k30xMlmYNXfbNv9Vt3nfIYCHSy5Lk7lP1vlZd3sl9/vxbre0BNDe4qQSbDqzB+HHncj9zRwGPC9SNfZO+76F61YuTxr0YqIAlpejDaZj/mc7+dqcGd6GhimlMou7g5KqR1AEtDvYjWqpCEij4jIMsvcfFxE5orIOWfkRORuEVlpmfKPWCbXSk4yLm454sY9SkT+Ldp9KUNElohIuwt1fkWQn4251iU6HiJyo4jMF5EzInLKcjNwnkVz3qeHiCRbv9FJEZkoInWdZGzdv9z8DreLyAYRyRSRtSJy44U4NxvuRSetex1YBNwtIlfD2HO14DyG1gM2KqXGK6UWKqUOK6VOo5Mq/uuytfIiIiJ+wN3AyGKIv4hWFF5x3qCU2g58AHQQkVZ/s1lzgdYi4ugxkIBOAplk/Q+AiNQGKlHYauGC0rPYy7mEY50bLvmYi54sykFbTvfh3goyBggH+lyidhWHZdbfqpe1FQaDEyX6QS4itdCm53FO5Q9bL0WZIrJTRF602X08cJd5mQER+QQYgB6obkU/TOdxjgFLRB4FhgHrgb7oLNLdgbkiEnQebXgI+AKYjR68BwOjAE/8i71EpJTTx7sY+1W3/p44p9QFQkT+BUwADqEfbLcAv6Jn39zt0wM9g3YGPXPcD2gIJJ2Pr6yIdEG/MG1G/34fA18Cdc+133lyL7BG6azjQ9EZz69at5iShPMYKiI70C9ZzfL9sh3ExwO9RaTsJW/oxScOCEW/oLvFeqFvD/yplMpwI5bvUtnpb7ZpHhAENLeOHYq+5xOtj+N6iQSHfYqiOhdurPO2GXOL80y91GOuP3AzME0pdQAYgVbQ6jjLKqUOol1ge1yKthWTKOvv1svZCIPBmZK+JqIz2uy+Mr9ARF4A3gM+QrtmtAD+JyJpSilHv8QFaP/DRo77lxQs/067F2Qvp5krpZTKtZHLr6cW8CzaNP+cw6Yp59jHG+0vOkcpdbtD+Qb0w+1B4KtinYjezwttep+ulHrAofwwMLq49aDXOfzgVJaKfhA7HVJKcXZNxCdoP+PJRbTT+X4Rh7ryKaq/g9HX569Kqb4Om6af69hoE/g2oKc1m4iIJKMfdv9B+/B6wtvABuAGpVSeVd96YCGw0cO63CIibdCzjfmK/Gjgc7Ty9OeFOo7hvHEeQ29EX2s10GshHFkA+ADtgN8uVQMvEXFod5FVRciFA/5oN0t35G+LzC+wxkxxkPGyyp3HlFylVL7ilq8QJAAp6H7PBJai1z5EikiUZVlPAE6h17Y4460fF5RFTz60RE8Y/J225bMBV6YAvZ3K8p9LAUA3qx0rlFKbrGN5UXhSM//Z5u3Ujrz88cpD+qLXUAy1vg8BXkBPcLxuI78cfU1cLvL7y89qxyvAGKVUiXtXMVzdlPRZ+BbAeoeXoGC07+A7SqnXlFJ/KqU+AD4EXnealV6LXmwWe6kbfYFoD2Q7faqhF5g5lv1VRD1d0NfBAA+OXRe4Bj2bU4BSKgnYabXNE6pYH+eIGeOxX6TnjnfQi+scP3YuUa+i+yYdSLb+v1Yptc9dxaKjfDj3dwL6IeRYVtRMUTxaqSl2f1sLXZujHyIF/WG5TszHw/627oMYYJzjA1kptYhzvxydD/eh/cdHWMc4hvbpvlFEylzgYxk8p9AYalmLDgOplivTwnxBpdRJ9NqJkjpmnovKwCmlVFYRclLEdnf8ReFx4ier3HlMKbiXlVLb0IuW860MCcAipVSW9fJ9yGnbfDcTGBlW3QfRY98XaMvxebfNgRtxHXOfsZGbbtVxEhjLWYtzPm86HWuLVT7TqfxNm7qLw31oq8fvAEqptWhl7B5rQs6Zw+hrwi0i4myFOd9rw46f0Od7Bt0HezgbnMJguGIo6ZaIisARh++tgUBgrNPsxSz0y3UV9EsuSqkc0aHoKl6itl5olqIHbEd+R8+mO76gni6innDrr3OEjXOR786w32bbAYftxSV/HUWhsIXWb3TUg3p2KqWWFENuEPAdWkHZrZQqzjH24drfP1jlbzuUZRZRz/n0dxj65cVdf1fzoC6AcugZZZcwkW7KzgsRKY12j0sE0ix3DNCuWzeh3Qt+vlDHM5wXzmNoURyh5I6Z56I0Rd+7oM8/nXO4Hjpsc4zO9Bh6cXo+vdETXs5jirMVcB7Q03pBTaCwxTIJSBCRWdYxna2w+cShJ8yOA7ts1g+eb9tAuylusSl35km0NSUd2KGUSnXaPoDCluBK6OfZ4+hnXT5uJ3rpVeCFAAAgAElEQVTcYbl7dkZPZPjL2dCy49FW4Q5opcaRdLTF6VzMBdo4fH8DPZF1IXgb3R+BnHVf/Rp49ALVbzBcEEq6ElEa7YaSTznrr3OIu3wisZQIi0yrjhKHtdCx0AuziGQB+4r5Ip1P/gtEBMV3Yzlm/bV7majo1K5MwNdJJtzpe/7LcQXHQksRdJa9EOz3sI+wZiid+/s0cPRv9PeaYu5zHO1q4a6/HZWgDJz628aH/Qh6lqsCrlSg8D3yd+gDhKBnMJ1DKYKeWTNKxOXFeQwtihI7ZhbBUYqx/sqa2JgHdBUdJtVuXUR+gIRZDvsVGlvFyuVQjLFjHnAnWhFoTmHXm0R0qNN8C8Fc7FmqzhEW9G+0zRM2nas+ywpcoCDI2fwOGy9AO+5BW9vv4WyIV0fuw1WJKEvRyvVDFFa+9p5vA23Y4XDecy0vi4dF5Hul1LJz7WgwXEpKujvTMfRiOMfvoGdSnE2sMbiufQh12Oefyky0u4knMxwb0TPWtzsWio7mVI3CD7Od6MWAjvRy+r4HPWt3q1P5TZR8RdeZBWgTdbH725q1Wwrc4uiSJyLV0O5RRfV3If9ky+VhMXCz4yJIK5pMVHHbVQzuQ59rZ3RYTMfPMPQs6oU8nsFznMfQorhax8wNgI8UL+nkx+jJjfecN4hIdXSuiHmWe+DfJf/efhltjUx22JYE1EaPm2k4TXIYCrgXvZ7MeQzqiF6XdZO4JperThGTakqpjUqpJQ4fO0vxheIltALf/yIew2DwmJL+graRwglbktFmyMpKKbcLgwFEpDx6kZdzIrJ/FEqprSLyOfCc5aP+O2fXimxQSo2x2SdXRN4EfhCR4cBw9Mz6u+hoP46zy6PR61FeQy/abQfc4VRfnoi8DfwoIj9b+9RCLyY75cHp1BARu8Vwmyxf/MuOUuq0iLwCfC0i49Em9tPoBd4ZSqmv3ez6BnrB4mQR+Ra9ruJttI/xpw5yo4FB1m86GWiCjunuTH9gBjBRRH5A5wJ4G+0e9bcRHeq3K/CzUmqWzfYjnJ0ZvFBJnQye4zyGusVSOKtydY6Z+YuYYynC1VAp9Zc1/v3XUoKHoi1tzdEv+yexn/H2GKXUBhE5BFyHtiiccdi8HK2kX4fOS1HsMOcXkKYiUs6mfMm5rB+XChGJBeoDryul5thsD0KPU33RExv513kMOgDEFYFSaq+IfA88Izopqt0CeoPhklPSLRHzgaqWQoBS6gQ6ys+XIvKOiHQTHVv/aRH51WnflmgXkQWXtMVXIEqp59Fm8Ti0n+gI9CzNrnPsMwD9oGyEjtTyEXpWp73Tg+59dLbOp9DZXetj84BVSv2EXpDXyarvAbSlw84Nxh2voBVJ58/fDbV4QbGihN2CXqMzAt3nNwPbz7HPNLQFJxS9AP17dHjdtk4LwoegFYS+6AXM3dGLH53rmwnchV4kPwEdqeQZLlxkprvREVZss+IqpdagfaTPN2Ot4cJQaAwtgrpo5XX+xW3SpceKcJSCfiEvjvz/gJ5on/Wf0Qr5E2iFoqVSyu3YeR7MQ1shCoWftSyKyda24oR2vRiMxX7M9cS6dTHJD+wwxM32qWg3KsdFy+3QkZw8iQx4KXgfHUntjcvdEIMhH3GN2FZyEBFftD/9M0qpYQ7ld6PDljZA+4hvQke2+cxB5kugsVKq46VttcFgMFwZ2I2hopMVNlRKtXSSfRadbK6mTajPEo/o5JdfApWUUp6sEzFcRYjIQHQmbvNuYDAUQZGWCNEZcJXNZ4qDzBMisl10puGl4pRp2KEO5/K3RKS4i0tdsBa7DsfJN18pNVwp1UIp5a+UClNKtXJSILzR/vY/YTAYDP9Q7MZQpdT9zgqExa3AoKtRgbAYhl4c+8Tlbojh8mBFcrobeO1yt8VgKAkUx50pBh1uLf/THO0G9AuAiNyGnr15D2iGdg+aKiLO2Y4z0PkaLjQfAx3EJvPkObgFvXbiSjNXGgwGw6WmyDHUWnRfD+2aeFViuQc9iGfRqgxXF9XQVrl/vJuzwVAcilQilFKHlVIH8j/AtejFrmMtkeeAwUqpgUqp9Uqpf6HN4/2cqhoANBORvlxAlFJ70KHWKhUl64AAD10JC78MBoPhclLMMbQscJ+17uyqxUqw9+3lbofh8qCUWqCUcpdvw2AwOOHRmggr4c1W4A+l1FOWP20acIdSaqyD3Ddon9r21vcd6Bmsa4AbgGgr3vZbwM1KKeeQlAaDwWAwGAwGg+EKxdMQr13R8ZN/tL6XQ0dgcc5yexDoYrP/+8DD1uf7og4mIo9ixdMPLxvS4uixkx4212AwGEoMO5VSURer8qhq1dTOXRcyaJDBYDBcUZzXGCoiXYCFTpElDcXAUyXiEWCxTYxiZ3OG2JShlDouIu8D/UVkmPN2G/kBaDcoRESpIx9AqTIucskp27jhzh8YO/gB2repXXijl3Oy5PzyANcyb5uyc9bhZ19+Nh8YAPv3H6Vu9AP0vbEdPbrH0q1rS8qWDebkyTOsXbuDxAWpTJkyhVWrVtGrVy9SU1OpXLky73zpalUv651kf8yc0/blnnpsuTsnd/V70jdu+nfJ8Ra25ek59m3PycuzLd9ypHBKiby8PLatXMrUcePZkjidMuUrUbt9T+ok9CSofEXWbnZVSo8csldUg0Ps2+7t7W1bXr6cfVJfb297D8JS3mJbHlDavv7Sfq7lwf72t3NYgGflof4+tuVl/OyvjRA35bHl3NxPZwbblK23FVW5WbbleZnptuXeQXZJuIHgZoW+rl6zk3c/HMdfs1fw5CPt6dWtEY0bRuDnZ5171lGXKnJObLOtOv2wfYLv7F32qUlUlv11Xe7eVdXsG39h2LlrF5nHD6K8Xe/ZxPnzuePu+/hl1HDi4wqnWlHertdDjhtP2Mxce8u2m8u72OzevZs2rWK4oU8funTtRsdOnQgLC+PEiRNsWL+e+UlJTJ8+jQ3r19OjR09OnDxBjeo1+PiTT1zq8nJ9NAEgeW7GSmU/3iAeRkjPy/VMXlw7TXnZ37PZbn6P3Dz7c3VTTFp24XPNy8tj8aJkxo0dy4zJv1GlajWuvfFmelzXhwqVKrP9uOt9mJFj319l3YwrAT72Y1wZmzEOINfNz1HKXpwzmW528AAfNxdwKS/7ch835TY/6TnlfW2OW8bX/rf2yc20P2a2myU+bp6j+Ng/u3J8gwp9X7lyJR9/9CHzk5Lo1+9xunXrRsPoaHx99fgiOa7t8U51HVcB5KR9eqLc44fs5b3sf2zfuBs9HkN7yDUqlFKE44uIeF3FgSMuCsVWIkQk3xXpSYfiI+jEZBWdxK/B1TqRz9fonAHPFb+Z5yYupjrvvNaL3rcPYOGM54iu78nyiItPpUrhrFz6A1OnL2HkqL94rN9nBAT4cfp0GvXrV6NVqy689NJLdO7cmdKlS9O7d286dOhwuZtdIsnNyWHzshRWzp7Bsr+mUTowkGptenLzJ8MIjYi63M0zXGaWLN3COx+MZdGSzTz3r+sY+MXNlClj/9D8J9E2Pp5XX3qRPjffStLsv6hTu3bRO11CIiMjmZu0gL9mzmDUyBH868kn8Pf3Jy0tjTp16xITE8OLL75EQvv2+Pn5ccN119E2oV3RFRtcyM7OZtGC+cyYOoVpUyYREhpKjxv6MvqPmURWq365m2e4zCxOSeHDDz9k+fJl/PuZZxj4w/cEBjon/C4ZiEitcHy4gYos5gTxhOWhJ8ENxcQTS8T96LTrBRGNlFJZIrIU7eY01kG2KzqBlgtKqQwr2+fXWBkiz4ejx87w19yN/Dl7A3/O3kBWdg59ezehdOkrMwl39eqVeKJfH57o14fMzCwOHjxOlSrl8fLyAu8OBXIjR45k1apVdO3a1c18mcGZtDOnWTxnFtN+n8iaxNmUi4ikSYeu/Ov/BhNRuy5r9qVe7iYaLjPzF6znnQ/HsmbtLl587kZGDX0Of38/yHI313H1c+ToUWbPmctfs+cwc9YsVJ7ihuuuw9fXjTXyMlO9Rg0ee7wfjz3ej4yMDA4fPkxERAReXl6Fnvojhg9n69YttG/f4XI1tcRx6tQpZs38k0mTJzN75p9EVa9B1x7XMmzsr9StV58z2X9/Nt9QsklKSuLDDz9g86ZNPPfcfxg+YgSlS5fGS3loYbtCEJGAa/Dd3JaylMabeMoymYP0kYpqojpQLEVCRBKA54EWQGXgAaXU4HPIR2GfVLanlVC2xFGsN25rQfXDwGillLNfy2fAMBFJQWcyfRzdmeda8zAM+A86nN5WTxu9Zt0+Grd5D6UUnRLqMHbIw7RsGoG4sxVeYfj5+VK1qna7yMrKZtGSRGbOnMlff/3Fpk2bmDVrFmFhYRzLvswNvULJzc3l8L49LJ4zi/nT/2BNykIatIihTptO9H36ZcIqXlmWKMPlQSnFrMTtvPN5Ijv3ZfDy832Z+MsrZ12W/sEsX7GS+PYdUUrRpVMnxo4cQdMmjUvMGFq6dGkiIyMByMzMZElKCnPmzGbOnDls37aNP6ZNJzg4+DK38solNzeXPbt389fMP5k6ZTIpKYto1SqOzj168Wr//1GpcuXL3UTDFYBSipmz5/DBx5+x7+Ahnn/hRe64444Cl6WSiohIHQJTK+FHefSkiTdCZ8oxjUOISAWlVHFmmIKANehM9UM9aEIPYKXDd3vf1xJAcaftOwC10UlYCqGUGiMi4cDr6BCBa4BrlVL2jsJ6nzwReQn4w+MWAw0bVGbdoteZMn0Nk6evodP1X9Iuria9u0fTq1s01aqWPZ9qLym5ubk8+vinjB03lzp16tO5c2fefPNN2rZtS0CAG1/yfwh5eXkcObifHdu3s3/3Tg7s3lXw2b97J4f27aVMSChN49vR/ZY7eP3bHwkKDnFZE2H4Z5KXp5g0fRPvfZnIydOZvPJ0W+68/258fK5MK+XloFnTJixbtICp02fwx7TpdOt1HW3jW9Ozezd6dO9GVesF/UomJyeHJ/v1Y9Lvv1GnTh06dOzEa6+9Tlzr1vj7+1/u5l1W8vLyOHBgP9u27WDXrp3s3rWLXTt3smvXTnbt2sXePXsoGx5O23YJ3H3vffw0ZBjBwcEuayIM/0zy8vL4ffIffPjZF6RnZPDis/+m7x33UKrU1TGGtqNs3mGyqEfhNbZBlCKOMFZw6oCI+BSVBkAp9QfWe6yIDPagCUetlAklnv9n77zDo6i6OPzO1vQeEkgFQif03nsH6b0qiIgo1UaR3osVRFCRItJBpAgiCNJ77yWEJAQSSEjfdr8/grTMxARTCN++z5NHuXt35uzuzJ177j3ndzIl8ZqbSJIkxL0JsonVMbFJ7Ngbzpbtp9i28wwe7o6UDfanSGEvihYLpGhQAYoV9cHZ+Zm4PbnEX6UkYUWjFDK5JIUbTXqa8zN69EwOHDzO2jXf4u5RRrb7xbi024ReCom2buaN8udMvKZgi4LtFvlEVmwUJhUyvwfAiYTGadoquD0fe56YmMjq1av5YsFCLpw+iRAi9c9iwdXDExfvAnj4+OHp4/vcf5298qOzSTtJOB8hH7YUFSOfcCaHUuKzj5t8iEeAu3w8vZ+Lg2y7UlK4EgkG+d/DVWaS5KiwOmSjMPBrFZLClWwMttst205KuHx7gvy1Z3yUtn9SqPyGpM7zxXSrVGzypY3ZN5ksrN4eybS529Fq1Iwe2Zy2rcqhVqsQcZdkj5MUKbezDMlXQ9O0KSVEi2T530iyydx44tH7DEKIbNsKkCRJpNwPBU1aux7GxLBjz362/f47O3f+Qb58+ShduhRBhQtTuGgxigQVIahIEZydnQEwKGS3KuRVKwYZKz195BJKAdTP7JR8+uknnD17lqVLl+Hm5ipvj1IGsQyKiakKyf1KSc6KKCSDKmGUeR7pDM8HAsTHJ7Bmw0Z+WLqc02fPPxlDLRYLnh7u+AUE4u8fQEBgAP7+AfgHpP63UKA/NjZpxy6Dwg+YopAsLYdaIUlYr/CbahXmaZJRXjxBThgAQGjkx2hjNk5xjArfl0HhutMpfDdK35ncfaAyJssfI05+4dyik89XELbOadqMRiO/rNvInNmzsLOz48MPP6Jlq1aoVCrUCveH+pH8XFiKiUh7ziT5Z7QlUUm4RUG8QOEZpa/T7V/HUEmSynmhP9kKLzQKI9MJYjlKzBQhxJj0jvXCceOB9zIYzhQK2ABXgXlCiLUZPc+rxmvhVro429K5fVU6t6+K2Wzh1JkQLl4O5+r1SLZsO868a5u5ei2CYUNaM+bjTrm+Irlu3VaWr9jA0SObcXeXf/i9zphMJiZMmMD8+fOpUaMG/Yd/RLW6DVCr1UiShEqtRqPRcCJcfnBSGrit/P9y63YMbfqswdnFiVmTOtC0Yck8E5rzKuDq4kLnTh3p3KkjZrOZU6dPc+nyZa5du862rVv58uo1bt68wdChwxgxcmTmlYmymDVrVrNp40b2/b0fV9f/vzHUaDQyYeoMFi9ZRs3qVflk5HDq1a6Zmh8iSagfj6FJWvlFHiUnzcr/L9dv3KBj5654eHoyc9ZsGjRo8LqOoVWKYq/oQAAE48hRYrpIktTsmebvHiuG/hfiSc2h2A+YgDbAKkmS+gghlv/HY+cKr4UT8SxqtYqK5QtSsfxjFYnHK+VhYdEMGDyfqnU+Yuni9ykdXDRX7Ltw4QrvDPqUbVt/Il8+j1yxITeJjo6ma9euSJLEqVOn8PPzk91xsWIloxw+EUa7fmv5eEgN3h/SPrfNyfOo1WoqVqhAxQoVADCrUnNI7twJZdCgQWzZ8hvffPsdxYoXzxX7zpw5w8gRI9j82xbc3F790NWs5n5UFD3ffBu93obj+/fgU8CaA2blv7H/wEG69+zF6E8+5q2Bg3LbnGxHI0no0nGQJCGB4K4QIksl3oQQUcCcZ5qOSZLkAXwI5EknIneXk3IQHx93tmwYw7tvN6N+s3HMnL0GsznnJ6/vDh5DzZqVCA7OnQdwbnL27FmqVKlC2bJl2bp165PESCtWXpa1my/SqudqFs5qzvv9K+e2Oa81vr5+/PrrZnr37kOLpk345qsvsWQyPC8rGPrB+9SpU4fiueTE5Canz56jZoNmVK5YgQ2/LLM6EFb+M7+sXk2Xbt1ZtHABbw/on9vm5AgaKTW0LL2/HOQwqTnHeZL/GycCQJIk+vdrzNG/Z/H7zhPYOrfD1aszfoV7Uzz4bSpVfZc/d5/MVhu+XTAVk8lEqdKNuHcvKlvP9aoghGDHxrU0aNCAiRMnMnv27NcmQctK7iCEYPpXBxj22U52rOpG6ya5s7P4/4YkSfQfMIA/du9h65YteHu4UdDfl1LFi1K1YgUa1q3FwQP7s9WGr7+ZT1xcPFUqV+LBgzwrapIphBCsXrWKFu06M3XCWCZ/Nkax0KUVKxlBCMGUadMZN34i27f8RpPGafMYX1fUUvoORA47EeWAtAkkeYTXZiYnhCA6Op77UY8oWiS/YoIsQGBAPnb9Po2UFCMJCckkJCTzMCaeWvVHkc/TJVvtLF48iJkzPqV+g644Oson374u3Lh0ke3rV7NjwxpUKjXbt2+nYkX56tQ5icVsJvnRQxIf3EOt0eIa8PKLAEIIbl88x5Htm4m5F4ne1g69nT353FzQ29jSsmdfHJzTJrBZeXkMRjODh2/h5Lm7HNrSF5/8VinPrEAIQVRUNNHR0RQtWiS1ho0CBQsV4rdt2zEYDCQmJBCfkEDMwwc0b9IYD0/PbLWzZMmSTJw0ifbt2ubZIlcZ5cL586xZs5p1a9eit7Fh24Y1lAkuldtmYTabibp/n4iIcPR6PSVKvrxNQghOnDzJ2nXruRsZiYO9A/b2djjY6rG1sWHgW/1e+2dlTpOSksLAIW9z9epV9u7ehbeXV26blKNopPQdBSmD+haSJDkAQY//qQL8JUkqBzwQQtyWJGkaUEUI0fBx/z6AETgJWIDWpBZw/uglP0quk6ecCEvSfVT655UyBn+8na27rhFxLwE7Wx329nr8fFz5/utelCiWPzV1RQ6tGr1OQq+zxc3Vlt17TlK+bEFKl/ACs0KZ+DTHUEjosyioAT1eOJo9+zveG9wHW9v0K+WWcMzESlNKjHy7gnqSogqTTmFCJhT6xxx+7p83Q2L4ZdN5Vq5/kwcxyXRuU5R1X1WhYpl8YP4RS8iPaQ5Rwr2q7KFLFFbQKlew/axPI9n2JKORexHhTHxvACHXrvLg/j0cXVzwyu9DzINofAMCeWvoKOo0aY7mmdU9Q0oKu7b8yqaVy7gjQbVataleqzZlK1Qk5OZN1q9ayZRVv2A0GmjRsQt1q1QlKTGBhIR4khISmD9tAjYIBn8y7skx1QoTs6L2mVz5SFydtk2pcJqSSp2C8pPp4VXZ9uTEWNn2hNNX5I8T/lC23bZy2qq3Wjf5iafW0f25fz+MTaHzkN+xt9Wwe2VrHOxNmJOerkaLOPlk/JSHCu1Xw2Tb5ZSYJFt5VRiVQrtQUDBSUnnKCVSGBIR43q5BIz7mjz37iIi8h4O9PbZ2dgT4+/Pt119StGgR5EKHJUlCkiRsbGywsbHBzd2d3bv+oEqVqpQqXixNfyWRJCU1IKX+5sfhU3PnzeXtdwYhabQYzBbF/nKqN4pJxQoKREpqQEpIFqX7TV5VRxP1vELY9dthrNryB7/8+juxCYl0blKHXyZ9QPlihbHEhyNOpVU3UzvKL35l1sXSucmHR9lr9YTcCaf/iDFcvRHCvehoXJ2dKODtxf2oBxQpFMiod9+icd2aoHsqUZ6cnMKmbTv4ee0GVBottapXo1b1qpQvG8y1GzdZvW4jq9ZvRAhBlw7taFS3FgkJicQnJJCYmMjoCZORVCpGvD/4yTFVyfJS3kJGdQxAr6SiJTIeiqek/KRVyx/bwaxQ4FQhgloVLz+2InMtWezdZTpCsou/bHvKC/fYg+hoevfog7u7O2s2b8fWzo7YZ07joHC5SyaFeY3S9W6bdi4hybQBqBWuO0nhNxIGeeWujKKWQJtOToTIeNHqSsCzsoUTHv/9RGqB5vxA4RfeMwYIIPVquAK8mVeTqiGPOREvkpRk5MdVpzm5sz/+QSWxtdVhsVhY+MM+6jSfw9BBDfhweNt01ZiMRhMTp/zC4iU7Wbfy4xyxOyz8Lncj7xMZeR8vr+xdtcsOhBCER8Rw4lQIJ46e4PSFe9yPTiTqQSJR0Ul0bFWcrybXo1YVH1TPPMRzS1Mp6m4Eg9u1oHmnboz+fAEeXt5odToc9XpMJhPb16/h84ljmfvZp/QfOpKgEqXYuOInNq9eSfHgsrTv1RcPOxsO7t/HqCHvcu3KZZxcXGjbsTNTv/2BMpWqpFGxEEKw8eelNGrdNpc+9evHtVuxtO2/lSZ1/Zn1afV0dxuzGiEE92OMXAhN4uLtJC6EJnMxNImHcSZaVHGlSx13Sgfa5jk1k7j4eFau28ixP7dToHAxbGxsMJvNLFy0mPqNmzL0/SF8MGJkuuGHBoOBqZMn8cvPK/h51aocsTs8LJxHsY+Iun8/23c+sgMhBGHhEZw8c47TB/dy5vI1oh/Gcv9BDA9iH9GxWX2+/nQwNcqUSHdHKKe4E3GXJl3epH+PTnw/dwrenh7odFqQVBiNRlZt2saHk2ahnjqHEe8NokihQJauWsuaTVsoV7okvbp0RGtjx76Dh/h59Vqu3biBq4sLHdu2YemiBVQsXy7NvWOxWPhh6XJaNmuSS5/69ePq1St079SRVm3a8Om4CTl6bQkhuHs/inOXr3Pu8jXOXb7G+SvXefjoEW2bNqDHGy0oUyJnUgPU/7ITQQZ3IoQQe1BWsEYI0feFf/9EqoPx2pCnnYjQ8Edo1CruRSVQLDjVfVapVAzqX5eWTYMZOHQFa+qO54f5/alQLjDN+69cDaNH3znk83Th5KHP8fbOGanAzb/+wPjx8yhfoTmLF82kRcs+OXLelyE52cjps6GcuxjBuYthnLtwhzPn7mCxWKhYPpAKJZ3o+kZJvPM54OKsp0QRD7RaNcKksBKTw1gsFt7r2BqVSoWXjw9hITcxm0zkK+ADej0ajYZWnbvRslNXDvy5k+8/n03Y7Vu80bUna/cewS8wddXcQyfxRsdOAMTFxWFnZ4darSYyWX5pyWgwoNPpWTBzCqNnfYGnl3y9AysZY8feUPoO38W4oZV4p2fpHD13ZKyRdxbe4eztZEr621LCz5aKQXb0qu+OvY2KTYdj6TnrGvY2KrrWdWdQSy+0mtyf+GWEkNAwdFotUdHRFCqVujOqVqt5952BtGjejMHvD2Xdpl9ZsGABZcuWTfP+y5cu0f/Nvvj6+bHvwCG8vPLliN3rNm5i8sQJ1KlZna/mL6B+w1c3njs5OZnTZ89x/vw5zl+8xPmLlzl34SIA5cuWoWIRX7q1aoyXhxuuTo6UKByARqPBEqewu5zDmEwmmnbtj62NDV6eHtwICcVkMuGb3xudXo9Wq6Vnxzb06NCa33fvY9a3PxIeEUn3Tu04tONXAvx8ARBaGzq2awNAXFw8dna2qXkdCnLBSUlJ2NjYMHXmHGZPm0S+POgsvkrs/H07QwYNZMz4ifTs3SdTNVT+K+GR9+nxwaecv3Kd0sWCCC4WRLUKZejfrT22NnrWbNlJ2wFDcXFypGf7lnzQr3u25vzoVGCbjsyxOvvK9bx25Klic+aQ91Dpn8aXCyFYtekCoybuok7N4syc2B6fAq7Pvb589SlGjl5JxfKB9OleizYtKmBjo+W7nw4zZsJyJoztzqC3m7/cCmKmw5meT/78669D9O4zjFat3mD27Nn/rcpq/JLM2aIUzqR+uhV99vwdOvRcgJ2djrKl/Shd0pfSJX0oXdIHXx+31O9MoaCYnBMhTEbZviqFcCZsMhnOlJQ2nMlisbBh5TJCrl7hblgokXfucDcslPsR4bi4ufPxtDm06NjlSX+lcCMPnfz1oeREACQnJTF/xiTWL19Aq08AACAASURBVP2RYROm0r5n3+fCpZ4lV8KZFL5HpXAmU26EMzl7MnfRaeYtPs3PXzWmTlWFa+IxwiT/mV42nGn/pQQGLgylV11XRnXxlQ2PkdQqLBbB4cvxjFgUwthuvjSv7JLpcKacKDZnDLuE0D4dZ4QQ/Lx2A6MnTad+/fpMnjie/N7ez73+08rVjBk9mkqVK9OzRw9atGyJpNGx+LuFTJ86lXHjx9O7b7/UGi8K1mc2nEkp5OjF59Xev/YwaODbtG7zBuMmTEpTQC0z4Uwqg0IYayZrYjwbznTq9Bm69X0LJ0dHgksWp2SJ4pQqUYzSJYpTIL83kiSlCWf6BzknwqzgWCiFM2UWSSasxGw2s3zzTq7euEVIWDihYXcJDY8gPPIeHm6ufDFpDO1aPHXinr2+nkVoFcJ30/l+ExMTmTR9Nst/WcW0iZ/Ro0snVAphNUrhTGRjOJNSwUGVIXOLaKqk/x7OZNDJhy4nmyx8MXc2i79byA9Ll1OlajVAuRCjg07+GaVJkQ8jU8Xfl22XjKm/0679R+g7YiyDenXm40H9FHc/LBYL+46eZPCYqcweM4JmdWtkOpxJU6JORorNvd3D1mthHb3yPWMQFobEXv07qyVeX0fy9E6EJEl0bVuKVo2LMG3+WYKrT6Jl02B6dalKg7rF0GjU9OpWk/ZtKrHxt+N8v3Qvg4b9RFAhL8wWib1/TKNE8dyTGa1btxqnT22nfYf3WbhwIUOHDs01W17kpxX7GTlmDfOmdaFn1+rKFa5fcVQqFS06d+fW1ctcv3Ceu2Gh3L0TSsTtEM4ePczZ40eecyKyEhtbW4aPn4p/wcKMHTwAV3cPGrd6I1vO9TqSlGym//hdXLr+kAMb2uPvo5Dfk01sOf6IUUvD+bq/Dw2CHZHS2f4Of2Dk0KV44pMsXIuQj31/FZEkiR6d2tOmeROmfbWIClWq0bJ5c7p17UK9OrVRq9X07t2b9u3bs2nTJr7//nvef/99AgIDkSSJ3//YRVCR3FMnrFO3Hn8fOESPbl35efky3uw/INdseRYhBEuWrWDMhMl8Pmsandq3A4XK1686arWa3p3e4MKV65y/fJXQsAhuh0cQEhrOgWMnOXrq7HNORFZiZ2fHtInjCPD3461BQ8jn6UnTOtWz5VyvIwkJCbzzziBCbt1k5+695C+Q/iJMVrNmyw6GT5rDkjmTaFizSrp9QyMi2X/sFPGJSVy9GUKzujWyza5/S6zOxrWc14487UT8g4O9jinj2vL+Ow1Ytf4YYyZvInTQQ7p1rMyI91vjU8CNHl1q0KNLDcLCH3Dg8DXeaFs/NaYzl3FxcaZDhw6cPXs2t015wvGTt/h4/Hr2bB1FqRI+uW1OlrBw2iT+2rYZs8mEnYMj9Vu9wazvl1G+Ws1sO2f8o0d8MWkc2zesYfrCJdRv3irbzvW6ERqRSJcRBylexIM9q9tiZ5vz92rEQyONyzrQIFjZeQmLMjBvUyQbDz6gbXU3vhkcSI0SOevsZAWODg5Mnjie9wYPYs3adYz9bDx370bSpVNH3hs6jPz589OjRw969OhB6O3bHDx8lJatW6PV5v4Y6urmRotWrbh65XJum/KEQ0eOMnnGLHZt20zxonlWAv45xkz/nK1/7sVsNuPs5Ei75o1YMX8ONSqXz7ZzxsTGMnbiVDZv3cayxd/SuEE9UErwtfIcISEhdOvSmVLBZdi8fUeaXbqc4E7EPd5oXC9dByIkLIJp33zP+u1/0qVVE36aO4lalcplq10aFVYnIovIU05EYsQ11Hp5vQmtw13cgXfbO/Ju+0ZcvhHDj2uuUL76xyycXIOW9VPjMj2BNyqD+v6ONEIJkkb+gSgpKDBIeoUYTZ38diM28itRQQFRrF97EFI2P/+CSmYLNSWtMgcApjj5dqVQFoX+puiz3L95h1JBDhRzv4Pp3p3Hh5EPRTI8UtjKlPnO9G4KqyBmBdsN0fLtCpSO/1DeFo09uxaVJCEhiMMnw9l36Db7Dv/NsJ6rKOTvTJ9OpRg+8LH0rFohpExB5cpN93zVcSEEN27eZ+dfN5k8Yx3NGpfn8vHpuLs7AJtApbDlnqDwHVgUVChMMlvLCt+XJUV+q9wYL6+xr3WQrwIs4uT7O1YqI9uuFKagyxcs05gqMWg2W/hh6V+MnfwHI99vzoj36sqGGoq4S7LHToq+I9tuCJEP9ZJ08ve22s2efH4Gju6NQeOdGkL5bHhSWFQK89aEsX5vNL1qOXNocmHcHR8fKyEJC8phS+YHuZgvFHkTtb38taxKjsVXB8O6t2JY91ZcvHqD739ZT/Uqlfhx3jSa1Et1uAvZQcEmNSAlGl6YzwmtQtiHRn4Co1cIEzEq5CoaFCJQihYJYt+e3crKS88gWZQkcuR3WyWF0BRJIXROHR9F7O3LBBcpSGl3LUTfAsAcLT92J984L9tujE97Xq2TvLqNSJa3UeMlr9gjKTh/ppvnZNvVrvlYP+ND4hOHcPjsJf4+cY6/T56nU/8hFPYrQN+2TXmvW+ouq9pW/hktdPLtFtvnJbCFEFy/FcKO/UeZOWceLZo148ShA7i6poafmPXycq8Whd1yg0JYoVw0j1z42z82yaFTGOMS1PI22mnl+yuFIsmRZJK3xZCS+jlNJhMrly1hzvQpvDd0JH3eHoRJkohXunleQKOS72dro3DtKamXCQtuAUVY+usOTO6BwPNqS7dD7zBj7ues3/grA/r04Nzhfbi7PQ0RN6OsdCYZ/6s6k3UnIqvIU05EZihWyIXpH1WhVX0fOg/Zw8nNbfB0y3lPPCOUDS7IqTM3uXI1jKJFcn/l/0FsSp5JDM0M9vY6GtQKpEGtQHb+dYMJs/8i7G48vvn/mwb5rZAodu+7xO69l9nz92WMRjP16wbz85Kh1KlVMousf70RQvD7H2cZNeYX3Fzt+W3NMCpVKASWDMotZyHXI5KZsuYmhy/EMbZPwHOvhT92Htb+FUWvJl4c+bYcrsk5b2NOUKJIIWaPHUmrxvXo+d6HnP5jE26ur2bNkzJlynLs+HFu3rxJwYJpc25ymoexcehegV2arMbBzpaGVcvToEo5fj9wjMmLVhL1MAaffAoLZxlACMHN26Hs3X+IPQcO8df+QwghqF27Nit++pHqVdMPg7GSihCCXTu2M+WzMXh6ebF8zUZKlymLKQcTqP/h8pUrjBs/kWMnTzJlwmfPvRZ6J4wZcz9n3YZNvNW3F2ePHcTDKWfrvfxTsVqJ18GJkCRJJnEyQ3wohLiV0c550olITDLxx6FI6lfJh6N9+gN1jQr56N6mEB/PPMb302vlkIWZw9vblUmf9aBrr1kc/GsWen3uPXxi4wyMnnWEOaNf37jTyPvx9Hl/MxGR8QT4OvHtsjNs232LAF9HAvw8CPBzJsDXGb8CTuheSDITQnD7Tgx/HbjBnv032L0/hMTEFOrXLk692sUYPaolRYO8kJSS7q2k4fS5cEZN+ImQ21HMnNSFNi0r5IpU6t2HBmatieDXQw8Z3MGH+cOLYGeT+vunGCxMWRrC0t8j6dk4H0e+LY+nS+p9as47KRBPiE9IZNfB4zSsXhEHe7t0+9atXoX2LZrw6fR5fDtjfM4YmEl8fX358MOPeLNvH3b8sStXw6wexMQyds585k/6JNdsyG7C7kUxYMI87kY9JLCAFwtWbWbL3sME5PciIMCPgALeBPh44euVL03YsBCCkLAI9h4+xp6Dx9hz6DgGo5E6NapSr2Z1Rg8fQlDBQIRd9hZ+fZ04e/oU48Z8yr27dxkzcQoNGjfNlTE0LDycKdNn8uvm3xj+wRCWLF74RDAmOTmZzyZOZumKlbzZpxdnjh7A0+PxTr4xZwdRlUqFOp2FUoXNmLxGR1KL2slnxKdFAmoD04FbGT1J3nQiks1Mmn+Bvp8coWlNbzo29aN1M3vs7eQfHOPeK0u51pvYc/gu9aq+mlKbg95uzp97ztCu81SW/zgcN7ecj6t+8DCRfiP30LSOH20aB+b4+XMKL08Hwk9/QFL8I26HxRES9vi/dx6xe38IIXdiCbkTS8S9eNxdbQnwdcbf1x2zxcLBo7cxmS3UqV6QejULMXLoG5Qolj/P1QfIbYQQnDobzleL9rNl50XGfdyet/vVS7emS3ZxJ8rAN5vvsnpvNN3re3D4i9J45H+6MnY9LIk3p1/G10PHoQXl8HLNXPGxV5GEpGQ+nfMtIeF3aVG3Op1bNKR5sybYKSjETRw1hDIN3mD/0RPUrFwhh63NGO8OHszevX/Rs0d3Fn63CBeXnJ+ERkU/4K0Rn9G+WQNa1M++fKvcxtfLk9AdP5OYYiA08j63w+8REhHJ7Yh7/HnwOKERkYSE3yXiXjQers4E+Hjj51MAo8nEoRNnEAJqV6lA3WoVGTn0fYoFFUpbayeXPlteQQjBmVOnWLRwPnv+3MWwDz+hW6++6dZ0yS5Cbt/m8y+/ZtWatbzZtzdnTxzD1eVp+NOVq1fp2a8/RQoX4szRA7ku1ytpJNQKKlQAastr8zwfJIQ4kpGOkiRpgEyrP+RJJ8LDVc/+nxsy64dLzFx8iU1/huM48QTN6/nSqUUhmtbxxdbm6UdzsNfSuqE/uw6Ev7JOhCRJrFw6ko/H/ESFasNYveJDqlSViR3PBuLiU/h84UG+WHSYdk38mfVptRw5b25ja6ulWJAbxYKeyQF4JifCbLYQfjee22GxhISn3lszP2tOwQC3pw+8F3IirCgjhOD81RjWL9rO6k2nMZks9OpcgStHPsTZIzDH7bkalswXmyLYeiSGHg08+HtOKfK7Pe8gbD/8gMFzr/JxT3/eap7vtXEWvTzcOL7xB6YuWMqMRctZ9/senBxn0KJBbTq3bkbTujXR659+F85OjrRoVJdd+w6+sk6EJEksW76C0Z9+Qp1aNVm6bDnlymdf0u+zxD56xOfffs+CH5bSpWUjpo16L0fOm9vY2dpQLNCPYoFPVQ5Vz+REmEwmIu5HExJ2l9v3Y5EkmDV6BAE+TxdeXsyJsKKMEIJzZ8+waf06Nm1YD0Cnrt04eOwUeoVcp+zk0qVLzJ01k63bttOvTy9OHDmIt5fXY2NTl/M3bf6NwR8MZ/zY0fTv0/OVGEPVWjUaG+Xpr0YpbypvMQGQTxKUx/z4PQqJt/LkSScCQKdVMXpgSdo18mXQhOMkJlso4GXP/OUXGPDJPhpUL0CNil5UK+tOkUAnVm+5yd5fWuS22emi1WqYM+MtalYvQav2kxg3ugeDB7XJtpsuKcnIgiVHmfHV3zSuW5hDW/sT6PHfEpZeJ9RqFX4+Tvj5OFFTIbHayr9z8VoMa7ffYs22EJKSTHTuUImfF3anYjnfXHmgnL6RwLwNdzlwIY7+zfJx/KtgXB3TDoWXQhIZPPcqqyaUpFJxR8W6D3kVG72eiUMH0LFZffp/Og2D2YJ3Pk8+X7yMt0aMpWGtatSoVI7qlStQ0N+X9Vt2cGTbmtw2O110Oh2zZs+hevUatG37BuPGjaPfm29l23WWmJjE/B9+Yt78xTRtWJcD2zdRxCP98LD/JzQaDX75vfDL76WYWG3l37lw/jzr169j3bp1GFIMtGnXnsVLlhJc9mmlb6WaK9nBsWPHmD1rFocOHeLdgQM4f+rEk8T3Zzlz9hyDPxjO5vVrKF+urGLdh5xGpZZQ65TDmdS5kEeS1QghJmSyvyDVicgUecqJ+HZ1CM3r+VPI72kibMnCTvz5Yz2+2xDG1PmnGNSjJN9Nrc3+45EcOB7JT+uucOlGLK3q+1LYP29MBNu3rUGZ4EA6dZ/Fvr/PsXjhMBwds/7BVLnpd/j7OLNrXR9Kl0hdPTA9yozjasWKMr/8doOZ350j5pGBDs0CWDSlBlXKeqD3UlBzygFOXU+g05SrDGvvzdfvBuJgq7yl/eb0y4x/M5BKxfPGuJER5q/aTIvGdSnk91TAoUzxIA6sXsgXKzcz45vvea9fd36YM4l9h49z8Phpvv9lA1du3KRDiyYE+OaszvzL0r5DB0oHB9OrRw8OHjjI519+ib191k9iKzVsQbGgwuzcsJKSxR5LucZHZfl5rPz/IYRg5c8/M2/eXOLj4mjXvgOLFi+mZNmKubqaf/jQITp37sxHH33EDz/+iIOC4pQQgu593mTW9CmUL5e22n1uImlU6YczvRYbETlDnnIiTvx5i1kLL+Ggk6jkq6WIh5ogdzVBbhqapKRQsbGKqZvPsPSnU3zZQM9wNzVOnex5lOyGRpVE9IrtT44lDGmvEl2QQtXcQPl2lYO8PKFKLZ+boSQTJ2RkzLyA7TML8OGXV6lRpSe75lfARq9GbSf/IFTrM1ft2qZAeaqU9yXAz4XSJZ9OKMxJ8lKjiZfkK1PbFisk2651TKvWobZRmIyZFdRtlHIjTfKVkCWn0vL91QrnTZT5TIoVvhXa5aRWAVIyWT3aKC/DajHKn9ck8zsp/XaGyHvyx1CoKK204m5TJlC23Tbw+aKeCQkpvPfheg4ej+Dbbz6mTu3Sz1UpPZPYMM0xyuh2yR6bmEOyzQl35CVejeEKssCPpT9nr49gVOcCvN3y8Za7wuqdOTYJnQocMGOOTd2dM96SlzO2xMrv3iU/kpdFTomXb88Jjh4+zJSFS3Gxs6Va8UCK+uSjmE8+ivp4MrCEC20mvc2on37j55WrWTG8O51bl0f9Ziti4hPQaTSYrxxPPZCCHKrGQyFc1EFevUfo5McttULVY30mqkeX9nXnwNZ1vP/xWFo0bsDeLevR6XRglv/+VclKMtkKVXNtHKlcrgyligVRKijwyXEtsfJOhOHaGdl2JRlWTQGZ3BsFGXK1az55Gx3lwy2V1llVXvI1LcwKIUdyUptmBclPparPCWb5CbGSWq9SpIlZ4XdSWqGXE+dRynZSkmZVkgu2V5ifpijYEpP8/HES4uMZM2oY586cYuLMeVSqVv3JGBpvlP+cGgW1IYvCvMNGIbE4UeH4cY8lYidMmcbQj8bQse+bxAswK+QPqCUteltbdE7uJEipypi2Cqv/ksIulSpF6Z78bzsFKrUKtTYdJ+L1E6cEQJKk74QQb2fpMZUmtq8akiSJiM+8MacYOR9p5sxdE9eizVyLTv1vRJwFPweJQs4qbsRayO+gYnETG5x8FDSrX3EnAp7qzPcYe47iAXaM7V8oS52IK9ejqNlyIdePjsDJMfUmT7krX/QuW50InUKSlY38w1XJiUBS8ImzwolQqtitFOZkVggLy2Enwq7CBvnzWckRbgxOO/lSciJK/JSIyEZtQUmSRMLqGViA0zfDOXUjjMvh97h85x5Xwu5x9+EjCnq5USS/Bxfv3KNoAU9Wj+qF2lNGdjqbnQih4ESITDgRkKpLL4SgXc83qVyhHKNHfJClTsSFK9do3LEXVw7twt7u8W7x3euy/VMuHZNtV67lkH1OhBIZreXwD3JOhFLdgCxzIhSmLErRPJlyImROmtPyo1aeJ+Vh2gU5KUW+LorOu9C/jqGSJL39YbEiC9sWyK/YJ9lspsHe/X8LIWordsqDSJJ0WwihMLF6OfLUTgSASpII9tYQ7P286ffvJHLrkeBmrIUbsa9G3F1WMfuDItR86xjt6uejbHDWDWj+Ps5IkkT43bgnToQVK1Zeb1QqFeUL+1K+sO9z7UmJiVyLiOJK+H0uh91Hq1ZeqctLSJLEVzOnULVRS9q3bkGJwoFZduxAXx9MZjN370VRODBLn81WrFjJJlTq1zecSZIkJeslskH0LM85EUroNRLF3CSKub1++1D5PfSMG1CQd6ZdYvVcJ/y8M7froMR3S49SraIfxYvkrtyalewnZltaucmsCmdyKNrkyf9fuXaP5p0Xcf3EaLAvLttfNpzJLnPhTPE35VXrlMKZroYl0XL0JU4sKPN8HoTCKuU/30G/eTdoUdmFTrXcMhXOVGBa3ouLt9VpCQ7IT3CA8gpdXsXPpwBjRw7lzfeGs+b7b/BNZxUyMyxYsoJ6NapaHYj/AxKT0t7nitXPFUgR8vOTZ8OZLl04z+C3erPr4HHMmYgUUQpnMits3SiFMyn1v3DhAj07tGHf8bPYPCMFbauRP+8/9vTo0oku3brTpm07bJXCwmQ+p61d9gkUqNTS6xzOFAGUF0KkeWBJkhSa1SfLU1/Vl/viiU95vXYZMkqflvl5o44HNXvtY/aSa6TIhGNlhsREA9O/3MvEj9JO6KxYeVkC/Ny4Ex6D+RVUMhLA2ZuZqy59/FoCFYNeH7Wd2Rt3k5CcaSnw14KB/XrRrGF9Kjdqw5z5izAY/tv3EBcfz9xvv2fcyPezyEIrVsDPP4A7obcVw59zE4vFzPlz8rk9cgghOH7sKBUqVspGqzKPSqNCrVP+Uyk4O3mEX4FiCq9tV2h/afLUTsQPRxKp6aumgk+e/oFfCkmSGNU7kK6tC/LRvAsEt9+Dl5v+8WsgPU66UqslurX0p3/HQmjSqci4cOlRqlfyp1xw3lBbsZI30Os1eLo7cCc8hgCnf++fUxTxsWXRsEL0mXmNVWOKUj7o38MC7z40EpNgxs9DPpY7L/L1lr9pVK445QrJ5Dm85qhUKj77aDg9OrRmxNjJfPP9T+R7XDFXkqQn8pMajZreHVrzVpd2qNMJ6fp2yc/Ur1mNUsXkk5GtWHkZ7B0csLe3535kJO7/1Fx4BShWoiSzv17IwN7dWLJqA6XL/Lvi0p3QUIxGE975X63dTZVWlX6dCFPu17J4WYQQ76bz2oCsPl+eciJcbSV0ksAiox6Qr3VJ2fdIuqcf0WwWqB8nTmk902oaJx66LHuM6A2nZdv19vJfX0qCQvKsAoZE+f5JsWlXyq7d1dMHaOgtkWJJeRLgpkIggCQjLP7mDJ9/cZq3AnVoLWk/p9Ei+OLWPWaVl/i729jnXnN0ln9o+rUvJdsuzPI7Isa4tGEl5mT5ZCito/yKoCn6gmy7EkpJyErnFea037uklv9NJZXCraKUdKmQLI9CYqik0G5KkE+4Nj9I+5lMkfJ9ARL3X03TZlRI8E2Ok293iZf/fo2hz4fu+DmbObNhNT495RWqgnVpF0MenZZf3Uo+ESLbfvtP+faoR/K/k1lI6IBBvtDu0wt09lfTuoAae43876fXWHiQIiioF5R48yQNvOANHwhyzNzD5cud8SSZBclmSHr8p5Ikmnur8LXL+cUQFwc77BwckGSEGLSBJeTf9EwStdlsRq1Wo1IobGV+KB/yZQ6/Jduuds1cKKVKIaFbCUti2mTpwOgI1g5uzcXQKiSmpI49QggsyYkIAXFJKcxYupyF3/3ArD4tKEHa3zzRYGTu16tZN7A9D1Z8/dxrZqP8ve9WWX41Vu0sn3Qu2aZ1dCUbB5meYHaUT6yWlNRtFJKfJYP8WKlJlh9b5BLdhVZ+504pid5BwRZU8knkZgXhkiST/L3skE49gBeRS6x+Yo5CQr4cZgXbDQo2Gl8IIfL1D+DmrVsUkAm7U7JRyXSDQniSq8LYpyQ8IFlMdG9aC9vZ0+nTsQ2jPxrBO2/1Qy0U7kkzOKsMFA0qSJniQXTu0I5+vXpSqqTMOJNO/Ygff/iB+IRE4hMSiE9IJCExAb1Gzdu9ulKkUKDi+9LjX3MiVK/eLtCrSp5yIgwmgU4h7i89TGbBjJ9D+WFbJNtmlKaoX9bkFOQmL05A1NLTi76Ms4qDD8x8ec1AAX0MjTwd0EgSBovAYBFciE+mhDMUyeSEyIqVjBCQT0/IvVczZKaqu5qZZSXmXzOxK9LCiGIqijvJ3wdueokFlSXCEgU77sL7xwVjSglqeD7fP8ksuBkPZ2PhXAycf2a+demRBRu1hK0aHDTgoYfoFPjojJEyzio6+6spaJ9zzkSK0YROm/lh32g0MW7+TyzZtIO9S+ZSrIR8vkteQZIkSvo/ryRlTng64a5fuhBrD56j71drqOabj6F1yqNVq0gwmEg0GNl68SY1CvlQ3FveAbBi5b/g6x9I6O1bUKN6bpuShnZtWlG8aBGGjPiI5StXM//z2ZQvK1/7p0B+b/bt3MaVa9f5Zc06mrZpz4/fzadxg/rP9YuPT+D8xYscPnacw0ePcfjI8SevHT5+Egd7e+zt7XBxdsK3gDd3IyKo80Y3GtWtycdDBmZ6N1BSq1ClMw6+xDTzlUWSpEXZsQPxD3nKiQh0VXMl2kyQe8ZXo2LiTfSYfAmdRsWwjj50n3SJP+YG4/ka5xJLkkQNdw0VXNR8f13FdyEP0UigU0noVBJ6lYrPyrxGd4mVVwr/fDpCIhWkcl8BfO1UTAnWMuOSiWW3LEwpk/544mMn0a8QVHMXfHgKWhQQPDRAWBLcSYQEE/jbQSlnqO4BAwpD1wOp7x1WLO0Qa7SoaJFfzadnjQw/aWRFNR12CsmJWU0hbw8u3o6goHfGpT+jHsbSfvhEnOztGN67Ax2GTWD/mkU4O8qvir8OSJJEpxrBNK9QlMk/bqH9ks3oNRrsdRpstVqcbHRM79Agt8208pri6x/Andvyu62vAiWKF2Pnbxvo3Ksf0+d8zqqlP6Tbv2hQYcZ98iEN69ejS69+9OrelcjIe9y4dZPrN24RFx9P0aDCVK1cieZNGjN+9CeUrpTqQC2cNyPN8SRTCm/36krjzn2o2aoL4Wf2Y2eb8cVhlUaNWqc8/U1nQyovkq2Jr3nKiajmr+XQHSMtiiqVhHkek1nw1oyrlAiwY8bbBVGrJcKjDbw54wobvnZLN2fgdcBGLdHY04HGnmkf9gUd5MMOrFj5rwR66dl1SqEIXwZ4lGBCq5Gw1WefxOj5R4JzsRa+qZjxc5R2kZhbQbD3HpR3hVY+4GsLbvpUZyIsEe4mw2/hT9+z974FfzsJOzUYLKl/h6NNbAgzU8FVxWeltDnmQADUDi7C3+eu0aJKcIb6G00mun00jUolizB7xNuoVCpuR9yn58iJbJw/Ld2cgdcBBxs9HzeszMcNK6d5rtlUeQAAIABJREFUTef4+iTcW3m18AsI5MQReWW6jPAoNhadXo+NTfZJt+/Z9zdHjh3nwJ87MvyemtWrsWHVCrZs+526tWvSr3cPChcqhJenO1ev3+DmrRBCbofy49IVT96zbvNWihcJwtHBnuSUFJKTU9i+Yyeff7eEFo3qMWbY4Ew5EJCBnYhMHe3/mzzlRNTw1zJqW8ZXOCcsC8UiYPpjBwJg4psBdBl/kfenn+frT0ujep32raxYeQWoXcqRcUvvYDJZMuWoCyH4ZUckYxZcx9/bhvWzypAdgYcPDYJZl4wMLarBK5PP2OJOEsWd4Eqc4HAU/HwLzsSAoxZ87SC/DTyrwLznnoWQBEGKBXQq0KrA307FtGAt/jkYxvQPtUsX4ePv12e4/8i5i7G10TFr+IAnFXPnjhxIqw/GM2TiPL4ZPwJJso6hVqxkJdVq1eaLGVOwWCxP7ruMIITg5xXLGD9mDIWDgli9bgM2jlmvcBEecZd+Awfz48Jv8MmkXHLlihWoXLECJ0+dZuefu5n9xVccOnwUV1cXggoXIsDPjwC/pzVsVq7bxMUrV0lOTkGv12Gj1xNcoih7NqygWJB8sdt/Q1KrUenk81YgNW8tw8eSpHeBUUB+4DwwVAixT6HvEqCPzEuJQog8WdUwTzkRwd4aQmPNbLyYQrCXhkAXFWoFJ+CX3VFsPRLDrnnBaJ7Zm9KoJX76tBidJl1h1NyLzB5RwvoQtGIlC/H11OProePA8UjqVM3YA+ZaaCLD5l0hNt7E6unBrP/zHq2HnWZVbzfcHbJmtTvFLLgSJ1geYqKRl5pKbmrg5aSSR5+Gsi7QvAB8VBI89M+PIQuvpeYojSslH86UW1QqGsDlO3dZt+8EZQr5UMjbE7WCKPr3G39n1+FT7F/6+XM7DlqthnXfTKVpv6GMnP41sz9+zzqGWrGShQQWCsLV3Z2Tx45SsUrVDL3n8uVLjBz6AYmJiazZsImVK5bTrk0rfl6/EVdXtyyxKzExkSPHT/DZpGkMfKsvDerWeeljdezRm8YN6tOvZw+++2oeXvmeFwcYO2kqAGuXLEzzXsn038JlVWoV6nR2IjL6xJEkqQvwBfAu8Pfj/26TJKmkEOK2zFs+AD5+oW0/sDeDp3zlyFNOhN7ZhskN7dl82cDMv5OITRF80dyeRoV1xP55BYBbMWZWnjew9qKRle3sSd56ngiZY031Subd32MYdDyEIcUkJEniapT89nSJAsmy7c755fsrqS0Zk+UnLIkP5W+Ih8lpw7ZsNPLHiDPI/5TOenmlhbA4eduLO8vb8ujgTdn2pJNy9wmondLKYqoc5Jd9VbYKKwIKkxvJRj6cTSTI/06Kx5FptyQpJARnsu6BJUn+excG+WtDzpbU/vK/tzkhrZ2GpNS+F6PM3Iq14G3/dGL326FYHiYLSrqrCHJJPZfSdRcVK2+L4+1bsu0ObuFp2mrZm5gzchsJhdP+tlcePFX2MVkEf0Yn8veDJOq729PE1Y7Dn4dRQAicoy10nBlJL9+0CmOQ8aSmBwYzqyNiCU824qXXUNTejjJ29py9//ITXxvpIfnUdqgNes7fk+uRqkx1Ico5zStatZLyR/bnkTgVL8e8EQNYve8oY5f9xqOERH6aMIym1StgjosB4GpoBIs3/8nPO/ez64sx2MWEYYx5/jjqmAeseac1racv5ZMH4Yx9nB8QHyYfJungo/B7mRTuN03GQlb/QRjk732RlFZtSCicM+mefPFFSWEl2Kgw3jj4yn9WS3yMbLswKajh2MioM2nlx0opOu09CPIKT8BzilvPoVA8Tc4WQFblSVJQySNJQeFJo/CZFBR71ApKeTqFdqGkrCfn+D5Wmzp59hy3QkLxyf80+f73LZt48OAhFcqVpXjRoNTuMgp/AGqFSa5GK7+36iSjutWhdUt2/bqaZlVLP29i8vO1bpKSkpn+xTcs+mkFY4e+wzu9OqNWq6kzehAfjIvhs4E9+Xnm6LQnVbjuTNF307RdC4vk7S9WcPrydUoXKUizmpX5pEM9VCGnkBRCGiXbtApu4pnrxT9/Pro2rU3DmuVAMkOs3EwNVHIKYwq2ZxRJrU4/nCnj4kzDgSVCiEWP/z1EkqRmwCDgkxc7CyFigSc3giRJNYFCQK8Mn/EVI085EQAdS+npWCp1gno83MSATXG8V9VCPj0sP2fgYpSZDsW1bOjkgL+ziqRY+UHRQSvxZRV497DAVg0DrFLfVl4DTkeaeOu3RCp4q4lMfDoSfnHSyPloC9Nq6p44EdlJywA1fa8aGPbIQmNvNXU91dg/jv0XQvDIZOFWkont9xLw0qsZEuiOyzMVRCVJoomnA7NvRBGWbMTHRnnr+d84H5+Mq1bNm36uL6XuJkdZJxvWRMRSz90erSThZ6ulwH+wMSfp27oRfVs3AuDA6Yt0+WQmY/t3wc1Oz6Jfd3H+Zii9m9dl34IJBHp7YnkkXwXc1d6WjaN60nzaEmx1Wka2rp2TH8OKlWzh4JFjdOgzgGqVKxIe8XRC/dmUGZw6c46l333zxInITnp07UKLNm3Zf/Aw/Xr1oEuHdjg5pU7MhRCE343kwJFjjJs6m7LBJTm+fTU+3k/rSkiSxNSPh1KsVnPOXr1JcJGCL23Lhn3HKRLgw7Zvp2FvmzV5Ft3faE7PDz7h08H90Wg11KxUnjIlimbJsf8NtU6NxlZ5oUKdgcxqSZJ0QEVg9gsv7QBqZNCUAcB5IcSBDPZ/GcKy8dh5z4l4looFNGzo5sSATfHYaaBHaR3NC9uhz2CiootO4qsqMOiQwEEDleSlz61YyRPciDHz9tZEpjewpVHB1AltoW9SFz2EEAwM1tA2KGdueV8Hie8q6TkdY2FHpJllt0yUc1WRYIKrj2uI+NhoaOllT2lHvWyIj1YlUdfNnl1R8fT2dX1pW0KTjBR30GeZAwFQ2cWWAFstv9+P52aigaaeDnnGiXiWGmVL8Oe3U+j8yQzcHOwY0KYhb9SqhD6deOFn8XCyZ/NHvWk2dQnOdjZ0Kx6YvQZbsZKNXLh8hU59B/LjN/No2qAeALp8AUBqjZRxH4+kS4e2OWJLkSJBXD59lD92/8WPy1YwZsJkGjWoy8PoaE6fv4iERLngksyZPI4WjRvIrtg7PFZUm7xwOatmj5U5S8Y4evkmXd9olmUOBMA7PTtTu0pFPp3xJfuPnWTWmBE55kT8+06EAPCWJOnYM83fCSG+e+bfHqRGPr1YECkSaPSvNkiSM9AJ+DSDZr8UQohsXd3J004EQICLmh19nBVDhf4Nd33qjkT/gwLha6KyW57/Sqz8H5JkFPTbnMDwqjZPHIhnKeyionGAhkMRZiRSd/LtDYKC2VgrRCVJlHdVU95VTaxRcCTajKtOQhgdcdKoFOPoUywWbiQaKWavo7KLLX89SCA0yYifUtjbvxCaZKSxx3+TIzULwdUEA44a1ZNdkXx6Db18XfjqZjT506l++qpTxL8AJ1d8gUUm9CcjeLs4snFUT5pM/gEPoLHVkbCSB4mLj6dNt75MHz/6iQPxLBXLlaV544bs3vs3kiShUqnI7+lO0cIvl9ybEdRqNU0bNaBpowZE3rvH1t93UsDDlbKlS+Kdz1NxDI2LT+CvQ8do0aA273Ruzbxl6zl9+TplixXOtA1CCI5eusGc0f+tNozRaGLb7oP4FfCmXMliAJQqWphN339B2aYdKfu4LSf4V3WmVCfibgYn4C8GP0kybXL0JNUJWZaBvtmCJEkuQgj5OMsMkneffFmIt63E7Irw3uEUXHUSQVmUyGnFSk6x64YRfyc1XUrKb9H+cdvMlYcWnHQSAniYLJAsglX1c+Zad9ZKNPZOHW6uPJA/Z5TBxJ7oBM7HpZBiEYws5IGbTk09d3v+iIqnn1/mdyPiTGaSLQL3dKqTpke8ycLfDxI48SgZF42aB0YT3Qq4UNg+9Xs2WAT3DSby6/PeLkRWEujpys/vd6XTnBWs6NuSMj7yFZStWHlV+e33XZQqXpSendvLvr56wyaOnzqNq4sLQgjuR0VjZ2vDoZ2/5Yh9Xvny0a9XDyRDomKfy9dvMv3rxfy6cw+P4uIJObyT/LY2jOjTiYkLlrHu8/GZPu+d+w8xmy0EFvD6984yREZFM++HlSzbsJUA3wLcuH2H1fNnU7tKBQBiH8Vx6044pXMgROwfVGo16nR2WzP4tIgiVZnD+4X2fKTdnZBjALBOCPEgY6d7eSRJGgQ4CiFmPv53OeA3IL8kSaeAN4QQd17m2FY53McUd5YYUFDPvKvJ3EvOXBKtFSu5zZYrBloEKQ+Kx7vbsrGNLUub2bCsmQ0tCmqo4pm7ijpGi+BUbDJ/P0hi5/14FoY8xE2rZkigG1qVhO3juNTKzrY8NJo5/UghcT4d7iSZ8LPVZkqy7x/MQrA8LIZ4s4W3/Fx5N9CN7gVcWBkew/UEAxYhuJVkIL+NFq1VKppKhX2Y2bYu/ZZt406MTDKkFSuvMOs2b6VDm5aKrz+4fZVje/9g569r+WPzOtq2ak792jVz0MK0JCUls3rjb3yzeAnjZn9NvY59KVa4IEe3rEKv0+HslLoDO7BTS85fv8XGP/dn+hzHLt+kcvGCL6XAZjSaaDdwFA9jH/HnigXsX7+UZZ9PpfO7I9l35AQWi4V9R09SqUwpdBkMocwK/glnUvzT/Pv6uhDCABwHGr/wUmMg3RwHSZKqAGWBRen1y0KGAM8Wb/oSCAd6kOoHTH/ZA+epnQhhtiiGLSVEKygc3ZdX4rgVm1ZtwkNtRxXneL65ZuQt/6ernkqSjL4x8isCnp7y/ZNi5W2JTZG/eeIMadvVkvwumaNOXiXCy05BWcpB3lESQt4HV1LyUSus8EoP035Wna3yCorsMRQmZqYU+WtAayt/OSv1l0NY5L9fs0mhXUE9Sel7UTq+xaSgRKJwHK3N0/Yko2D3TQOfVrRXvD+SHz1Vs7AIwY6bZt4ppCJeJoIl0Sj/PT5MTqu4BXAzNPPy1hYh+DnsEXFmCwX0GuzUKnr6OBNgp2N1eCylHfTYPlas0qgkOud3ZsmdhwTaanHWZnxX4Xx8MgVfMgxqV1QCOpVEe2+nJ05IIXsd3X1cWHonBoNFoJaggbvy5082p7X1JSMvswTh5IlaQQ0HBRUikZz2IjEny49lTQr7crZcUT7ZsIcl3Zo+aVdSPjI8kg+hsvMtINuuFHKlZI8xIUm2XQ6dk/zvaOOeVmELQOMk366EosKRglKSkuKUbN8U+b6WBAVnTkGhSuUov9sn4uQjHiQZ2yVd5uLmldSylJSl5M4JKH6Pkq18nQSL/mmIY1x8PLv37ee7L+cgJAU1PyEgNcwFs9nMr1u38830iWCWUQqyyD+PVcnyClXSvWvy7TL3qjk2+okN3UZNIyYunjJFAnGz1bFuwhCqlChMr3ET6NGoOvqwy5gMyWiBxcN60XXS51TycsDbzVn22ACqF773Xw+doVaF0srXo9LvnZLI6Nnf4uHixIKxHyBJEpIhgcZVglk+exyt+71HQlIyep2WicMGKsu2yigxSWYFVbcMImlUqNKpWK1SUAaTYS6wTJKkI6RKtb4DFAC+BZAkaSmAEKL3C+97G7gK/JUpw18ef+DyY5s8gZpAQyHEHkmSDMDXL3vgPOVEZDdCCG4mGSnqkDl5QStWcpMEo0AjSVyPseBmm/4EWwjBtNMWHDRQRk45NYc4EZvMI5OFt/1d0bzgLBosAq1K4laigUC71HvR11ZLdVc71kY8op+fS4Z2FsKSjVyONzCikPtL2bj/QSLDC7mnOVchOx3jing+zi2x7kA8ixCCwyF3aVEiMLdNsWIlw8TFJ6DVarl89TrVKldMt6/FYmHQsA/J7+1FtUrlc8jCtHy/cQexcQnsXDAZrUaD5RlHLz4xGb1Wy6Hz16haJLVwW7UShenbtCbvfrGMdeMHk5GR68iFa+w9dYFvRvbPtH1CCL5cto7bu9ekGScb1ajMw+O/pzoWkgTqnA0HVanUqJQWUwCVOWMar0KIVZIkuQNjSC02dw5oIYQIedzF/8X3SJLkCHQFJgohMi4m+99IAf6Z2NYHEoF/CuI9AF56NmANZ3qGm4lGbiQYCExH+suKlVcNDzsVXza14/0/k7keo7yCIoTgi/MWLscKPq+mTjN5z0luJBqo7GIra0NjTweMFsF3tx8S/8wOTT13e5ItFo7Fpl1dFkJwK9HA7SQjDwwmUiwWtkTG0djTHhuFGhzpYRECoxA4KVTcVv3z8LPyHH9dD+NE2D0q+r1c/LQVK7lBAW8vfvp6Dp369OfaDfmaSJA6zowaO5Er126wZsni54ow5jR/nThH//ZN0cqE3kx8qyMx8Qk0HDqFB3FPd+8+7d6Kuw9iWfHHoTTvEULw99krHLlwjZvh94hPTGbkV0uZMKALDnaZV2VKMRiRJAlPN/n5qUqlLK6R7ajVoNGm/5dBhBDzhRCBQgi9EKKiEGLvM6/VE0LUe6F/nBDC4Z/8hBziCDBYkqRSwPvAdiHEP3vihUgNbXoprDsRz+Brq6WJpwPLw2Lw1Gmo5WZHUXurQ2Hl1aeWn4b6/mqORJgprFAHYtUNwbJrgv7FJP6MEJS0hXw2uTOIayQJi8wiTJzJzLI7McSZLVR3tcUkBCdjk7iVZORqQgoq4GhMElX+x955h0dRdWH8N1vTezYBQu9IFWmiIAjSEQEBkV4CghQRpIPYQEHpCEG6IKBYwAIoKl2KSO+9s5teNmXL/f7YkGSzM5DwgQjs+zx5YO7cuVP2zp177nnPewKckyUeTExjoykZP42KZKudFJudML2GZ/zlkzvdDVYBeZAKv2/4/mbi3Ss9AqhZJIy36j1Nj682U9YQSGTtStQvWehhX5YbbtwVTRrWp9EL9dj5115KlZDPqTDj8yjmfbGEMW8P4dsNP9HouVoUDH84BrOHTofN5sqNvB4dR4eJszDFJzGo3UskmVPZuPcIO46eYfP+Y/h46lm8cTtdmzlnm162aQfvL/ue8JBAouMTuRWbwNNlS9Clyb0phKampeOh//fmTwMnTs17ZY0WSa/8bZAUaN2PMN4G1gNHgCtArxz7OuKgYt0T3EZEDuhUEvWCvXk2yIsjiWlsNiWz2QT9S+op6vXYdSo3HjP46yUuJtjp+pOZZiW0dC7vvJpS2l+ib1mJJAtsvSFYkiiIqqFC/2/OljOhkRwT9ZxItdlZfCWeqv4evBDszVdX45lzMYZinjqKe+moGeDJz7eSuJJmIcFiy4qNSLTY+MmYRM/CgU5J6YQQ97zSpZXAU60izmIj6A7c2fuBZKudPfF55+7/l+Gl0zLwuSr0qV2R9cfO8cFve/jkDzWzXnuJCgVCHvblueHGHREYEMCps+do2LItXTq+Sq+urzntr1qpIqOHDSY2Lp5DR48x8/Modv28Dr1ePl7sQUKv05Ke4RwvEJ2QRIt3PqFXixcY0r4pHSfOot7QKdStWJrnKpYmskV9hn2+mn/OXuZWXAJhgY64nsvGGMZ98TUbp75DpXKOzLu3mTb3OoYG+Pmg02q4etNERLhCxvr7BGNMLPNXfZvn+pJKrRgTAiBp/i2W0b8DIcRxoFQm9So2F41qOOCapjyPcBsRMtBIEtX8Panq58E/iWlMO51EI4OOFuG6h0oBccONO8FXKzHzQAadyml4b1c6NcOdDd/qIRLVQxxlQghG/GVn/lnBkLL/fp/20qi4ke78AfzZmESEh4YXg72RJAl/rZoqOg0tDD5ZcQnBOg1JNjs/3EokQKMmQwiupVmpFeDlktX6/3GVS5JEMU8tF1MtD8SISLba8cmkSvloVNQK8HxsDAkAvUbNq1XK0L5yadYcPE37Bd/Sr141BtavjuYe6GVuuPFvwM/Xh8mfzSKyZ1feGPYO9Z+r47S/wfN1sxSZhBB07N6HCVM+4+OJo//1aw329+XQaWfq1Yh5q3iucllGvNYSgIIhgZSNqM2HvdqiyhROKFnQQExiMoNmLqdQSBApaensP3WBN19pTMXiEVlt/b9UI0mSqPt0JXYeOELH5g3/r7bkYIyJxRAcBIAhOIj+ndvm3ZBQ382IeDwVOoUQMTJlR/6fNt1GxB0gSRJP+3tSJ9TOkoupDDmUQYSnighPFYU81VSzCkr5kiVF6YYbDxoJ6YLp+9M5ESdIyRBIEgx6Rk/zUlqei1BTwEfPgVs2WpbUUDJAuV9KksSwshJ99tqpFSyoHfLv9uG6gV7MvBDD6eR0yvg4VvGKe+nYm2Mi/VyQF6uvJzLvUiwtDb6k2wVnUtLpXMifc2YLWklCp5Io56OnvM/9WQlMtdm5YM7gvNnClVQLQflQgsorvr+ZyJ74VGoFeNIm3KEc0ybc77EyIm5DkiQ6VStLw0qleOvr35i/9R/KFQimXHgw5cOCqVA0nEoRBrz+RXlHN55sxMTFM37qHA6ePENiUjJarZZxwwbRpvlLNHmxAWVLl2LLn9vo0bkjJYsXU2xHkiTmT/uQZxq15KUG9Xix3r8r9zq088s802Uo7ffX5YVnKgPwfOWyrP1jT1adtzo0o9sH83hh2CdM69+Rm7EJ7Dx6hqUje7P1yFm8PXR4eehpUbsKLepUvS/XFZuQyI4DR9l64BgHjp2mUpn7n4xv4MSpzF/1Lf07t2XupBEAzJ00Iu9GhEoDmjtQrR4zT8SDhPTvBYf/f5AkSVwZFkSKgtSoVUE30aIg73nN5Loadi5ePqutr9Yh15ZgsXMt1c7VNBvXUm3cTLdhTLfTpqCWpuEadJleCi+tvLybXi1v3fp4ypdbLa6/jU3IT/a0KiWJUPlVP59g+UCpnNKhOaH3lv/Iq73k7VCVzKTOniz/2wkFmVQlZJjln6+ShK5KIThWTlbVriDlqtLIP3eNwvPSKcjNKkEfqBC4lsNA3XQyjVEbEmhW3oNXKnviq5e4lWRn4sZECvip+aCBJ8UD1Yz7LYWjt6w0K6PjvT8csronenujzuVFS43P4G+TnZF/WVnTWEtwZnxEfKz872Gzyz8DtUr+mcWmyg/St9+zgwlp7IlPo1/RACx2FXYh+PCsiSHFgvHLnLzbheBQYhqbTMmk2gXdIwIo4ZU/nq0901txOiWdcykZeKlVhOs1FPDQUM5HjzpzxW3djQQOJ6VTxENLCS8dJby0RHhqs/YrIcgjg0SLHT9tdj/rd9Ahabqihq9T3QSLnTcPZgc6fv+8ikCdo/36W2wIofCC3wdIkiSslw8jZeTPWBEW1/fWel0++DTj6nn5Nmx2hBAYE1M4dtXIiWtGjl81cfzqLa7GJvJW82fpVf9p9JlZZJWyyUoKXgyVksykPe9ji6SXb0NJslTlL6/6pVhfSbJU6dplFGvkfos7QuH+FSVhkxWS1yrI/2J3HUOFRUGyVeH5qrzkJVhVvvIBuUIt//7bvYPk62uzz/v9hp8YOnIs7V5uRfv2r+Lr68P16zcYMXosxYoWYfqnUylerBgDBg3h9JkztG7ZgndGjwXAHHPTNZDaksaWrdvpO2gY+/7cTHCQQyJXSa5UUpB+FSqF/i4jZSrl6ANffvsja37cxIbFs5FsGVitVkKqN+bsH98RkhnQbEtP5cv1mxg3fSFJKWZ+WjiVZ6tVUpT5lYPNZmP/sdNs3LGXP/ceIiTQj8plSlKlbAlaNKib9Vx6jP6IH7bspHaVCtSv9TT1a1TlmYrl0Ga+z5JOPg5BaPUYo2MwhGS/U5oiDsPIcuWoU11jdAyFqtXP2r56ZE/WcboCpe46hkqSFDl3RN8FfV5upFjHnJZOYKNuO/KYsfqJhtsTkQ/4a1X4a1VU8HM8Nn+9hctmO8suZnAm2c7bZf59XqQbjz+uJdgY/3MCp4xW5r0aQJ1i2f2sXBj8+kYIC3en0GhJPBu6+DOxgRdrj6ZzKjp7AvHyt6ksae5BqJfzZKB6qIr2JdS0/sVClRCJ9iXUPH1vscj5Rqhe46S+pJIk/DVqVlyLp6SXIw6ilLeOav6ePOXrwUVzBjfSrGTYBaW9dXec3Gdkei2OJaVzOiUdb7WKMt566gd7k24X3Ei3stmUzPGkdCI8tWTYBadTMhhbKjRrMSCvWHXFzNaYdOoH6+lc2DngO8Fixz+HceGvVfFyIYkfrgleLiRlGRBPAiRJIszfhzB/Hxo+5VidFHY7R6/cYtzaLRy8dJMFvVs/5Kt043HExctXGDZqHGfOnWPV4iierV0ToXEYF09VqMDees8zY/Ycqtd6ll1b/2D6tE9YvnIVJ06cyGqjzguN+Om7rwkNcY7tebH+83Tp2J5yz9Tl2Vo1iOzZlZYN/525Z5kSxTDFZCc81mg0RIQbeDnybRrUeYZ6NavRsEZlurVpRtvG9dn5zxH2HT5BYrKZxjUr31FdKtmcyuad+/jh911s2rmPsOBAmjxXg5F9OpGQlMLh0+cZNX0hG7b+RbXypUlMMbNt32FubP/OEVCtlM9DBm+O/YD5K9bSv2sH5nw4zmlfbuPCEBJMv+6dWbBsFf26d3bal1dIag3SHTwRj1tMxIOE2xORA3fzROSGv97B6U61CfofSGVqJQ8MHiq3JwK3J+J+eCIsNsHCvWbm7EimTy1vBjzng4dW/jqW7UthxZ4UNnTxR5/jWgt94qBADqmuY/1ZC8tbeBLm7XgeqfHZzysuXbDHaOejAzZW1FbhL3Oe++2JSLXZmXw2lkHFAgjQOupm2AWXUzO4YLawLz6VF0K88VRJXEuzcjAxlRJeOuItduItNqr6e/CMvycGvSarveNJ6RxPTuecOYMIDy0VfPWU99YTKJO0z5hu5a94M0KAHajgo6dsPmlRyVY7H541ZW1PfcofP60qyxMB8GKolh7Fsn/fIn5m4jKEiwHxuHsiZMszV7LjzWlUHTWXXZP6UjDQz+2JALcn4j54IjIyMpgetZQZc+czZEA/hg7snxUEfduIuI25ny/gq7XGYPPiAAAgAElEQVRr+X3zRnS67HN4ZF7H6OHD+OGnn9n4wzrCDAbHTkv2czRFx7Bl6zbeHvsux3f+RoC/633db09ETFw85Ru2Yc/6lZQo6AheTjGnsvufI2zbe4CFq79n4pu98Pb04O9jJ/nqx99oWLs6569e59pNE51bvkifds0pXdQRCxETn8D6P3bxw++72LrvELUql6fNi3VpXq8WRQq4qlAdPXOBL9b9jM1mx2qz0a7JCzSqk5lnQzYRoesKlTE6lgK1shNTXj/wB4aQ4CxPBEC/rh2Z89H47Oel8XAxLiDvnoh5Y95c0LdtU8U65rQ0/J9r7/ZE5AFuT8R9gKdaomGohu+uW+lWVIuXm97rxv+Jm0k2XvsyjgJ+an6ODKFYkPKrGmu2M2ljEhu7ORsQOdGpvAaLXTBmWzqLmrkO5IF6iaaF1ewzCtZcEkSWejBzWZsQJFvtqCRH8ld/jYrDSRnUC3J8tHUqiVLeekp564mz2NgZa6aQh4aCHloiiwRlGQzGdCv/JKYSdTmWuoFeJFntHExMo4SXjqd89bQr4IfXXQJ4DXoNrcPkJzBKyBkQDY6g6PrB+ixPRE5K021sMVl4pZDOySPxJHkg8oIALw861K7IjF92M77tC/grGBFuuJFXXL56jRadulOieHF2btlI8aIueb+yYDSZGD/pPfb/tcvJgMiJAf36kJ6RwcChw/lm1XKX/aEhwXRq9wpb/tzOzKjFTBwx9L7dS05YLBbiEpLQajXYbHbCQoL4buMW3u7VCQBvL08a1a1Jo7o1OXvpKtOXrKZahTJUq1CGrSvnUra44zkcP3WGFes383zXIQzt1o6rN02s/vkPGtauRocmL7D0w5EE+MkvrN5GxdLFmTFmcL6u3xgdiyEk2+AzhATRv2uHLE+EnGdhwYo1TBg2wMUjcc9Qqe+cC0Kdv4XNRwWSJJUFCgEuFr0Q4ud7adM9Ut8ntCyg4dPTGfTen0qgDvqV1FA72K1C4sa9QS05aExrugdh8L2zW/iU0UJBfxWlgtVEp9gJ8VaRahHsvZqtflTnSzPVw1QU83fukzFpIisWAqBPeTUdNll4tYjrSnl+kWIVHE20IwToVLDmioWzyQJPdTp2AXq1RDU/PS8Ee2KXcWZ0KOiv2LZBr6FJqC81/b340ZhEqE7N0BLB+GkenBSzXEA0QOfCXrQM95A1IMDhifBX2OdGNga+VIveUd9RZtgMCgT68fHrTWlSpfTDviw3HlGo1Wpu3DTy+88/EBJ85wnn4SNHKVmiOCWKF8NoMmEIDcVsNrNzd3ZStsKlK1CrxjNUrlTR6VijKRpDaDbFafTbQ6j7UksG9elBUOA9JwIGIC4+gW1/7UMI8NDrmDhtNoePnyLAzwe7XeDl6UHXtq0Y0ut1wHXiu2rGB4reqwolizL5rb70ad+C4Z98zlOli3N0/WLCQ+RjS+4HBk6YwvyV6+j/ejvmvjcqq3zOh+OY8NYbioZBv64d/z+jIRck7V3yRCh43R9VSJJUCfgKKA+yycoFcE8fT7cRcZ8QrFfxUSUPbEJwwWxh8gkr+nIaqgW6Jw9u5B+hPmraV/ZkxtZkPmrpOpmOTrYR4uN45ysV0HI9wc7ITcl8eSidblX1VAzTMGOXM23l71t2WpfOfuU/PGBl7Tk7HUqqGPu0o7yAl8SL4RIrLggG34P0a4JFsMMk2GoUHIm3UdZXhU4F6XaoGqBmciUNFxJ8OZGUjgAq+DqoBXJGRF4QqFPTNeLuH+rcHoT81s+Zy2FPfCqNQnyc9isZEHOqersNiDyiaEgAv43pidVmZ9e5q/T6fB3L33yV58oVe9iX5sYjiEIFwnn15RZ8/Nkspn44yWX/bWMB4OmqVbl46TKDhr7FwkVLiOzTmwrly/HZzFlOx+zZt58+3btlbQ96ZwxRS1YQ2bMrsz/5CIASxYrSptlLfDJ7PlMmjCK/MEXHsGHTb3z740b++vsf6lSviodejzktjdYvNWTP9yuQJIkNv21Fq9XQtH6mKpRM4rm8oGThgnw3+/271jPGxGEIDsxzu7nrG2PimL9yHQDzV65j4uDIXB4JeSPh2j9b76sBAcBd80Q8dp6IxYAFaAmcBfIeVX8XPFJGhCXdhlCYbXgFyXOZlepLkisv2FcnzwdNSJfvbGaL/OMr4wMvF4Sd0YLyOVaRDQHyHVOtICPp4es6+dApxCDoveXLPQvIuyPVob6y5VI+aQQqhYzAItXiWpaWv35rT5Wvr1aIrdB6pMiW2xTiHORiIjQy3HkATYB8/1IHyfOcNWHyE1u5WBElmLefZs3vJiwBPsx5K3tF9u0551j0k5FeTUKZ1q8YF66kotKY+PKQ47ksP5hOk6o6xr5WiIFRV7KO6/G8PwM6O3itpkQraxc6+Otrz9mZ0MVAaKZR8l5ECi8ujKWGzotnIrSUDFY7aFJKvHab4/luu5hB5PfJ1CuupfuzOhqV1uGjd+3DTydlkL0Y4viN7Tb530itMAG3WexEm+2E5AoUt2a4XuO7O9P46qyVjqXVTKjp/C5fj84gSO9sLE0+bOebi4J2RWFUpez2T1pg3SVoVxTalMuW29bqZfrMQcc/L1YR5F4h9AlW8LBsiZUvv4+QLOlgc303AVkOPiD7sdUY5LNQK/HYbTHyuYzsSa5jrhZ48ZkA3mxhZPOxi9SvViG7fW+FcUsprkCursIKpMpPfgVW8pNPkif08u8+knyfVbKT7RqFMUHIvG9KMYxydVHm4KvSkuTra+X7gFIMhbC69iWVl/xvpBRDYveQr2/1lq8vdPLPXcg89xSLYNHnUSSY05n3+fys8qFDhrBwYRR9IyOZOXMml2+ZEEKwcNESAKK+WESjRo157/0P6NG9e9Zxffv25fXefbEBRqORqCUrHPWXrGDshEkYMmMlJrz/ITVrP0vJCpWpVaMGpUuXcsRiKLx7Uubv98vmX+nWpx8vvdiQ7t27sWrll/j4OH/D7Zm/afP2jkR49zrdlTLMLl4UxwlcWxw0aoIjkLnba8yZPNFpn9F4y2WS/+aY91mwYg39unVizkcTAAj1DXEKiA4pXJzbvVYojD0AIUVKkbt3545nyTcklUPmVQl32vdoojzQTgix6X437F4ie0Dw1UgoxP+64cZdYYrPYM3vjoDdLzcbMWUGQZviM1j0k2NCtniTifPXU+n28Vk+7l2Ung0dA3nPhsHEp9gwJWZ3wOMfl2Bq5+zAuFA/DT3qOD5OPer4ZBkQAMHeKqY09WHHxQze+C6B8tNM1Ps8hr8uyxt10Sl2rHbBu7+bmdnCh6iXfXm5vJ60B9j/J2xLpdayZCZsc14MiEm1u2x/ddJxIWvO2IhJy56EvbfXQuNNdiYfzj4mNl3wzUVHnXWXHNu3MaqSik2NJSfDwo0HhyBfLxJSHr/cGW78OzAajaxeswaAZcuWYTQas8oXLowCYGFUFKdPn+a1Tp2YPXs2fftGAtC3byRxcbGYTNmiCRcvXWLmrGzPhMFgILJvHwAi+/bJMiAAwsPCmDn9M377bQuvd+tOWKHCVK1eg7/27pW/VpMJi8XCiDHjWbEoipVLvqD9K20wpz64/j9o5HgiKtZg0MjxTuXG6BiX7QXLVgGwYPlXTvvfHD2JQtXq8+aY953rr1iTWX+1U/05k9/l2uHdzJn87v2+nfxBUiNUmjv8PTha7EPCXkA5KOj/gPtr+IDgrZFIUVhddcON3DDFO0/QQ/y1lCjoWG3p3SKc0ABHsF9ogI7eLcIB6PFSKGOXXqFBFT86Nwxhao9CnJhTgak9CvF5/yJEbY7Oai/Uz3Vl5eO2wRydGMHHbZ1XkUb/kkSvbxIJ9lKxtX8wJ0eEciPJRtuViYzemOxcd2MyVebG0XF1IkGeEi+Vcqwojd6cTOVZsS71AaLN+csGmrt+tNnOymOOFb2VxyxZ+ydsS+XZVWbe3Zm9ahrsqeK1co5771hanRX/EZMmWHPGseL2zUWRZSwE6SXaF3PUaVcUFy9F7m03Hhz8vDxINMuvgLvhRm7cNhJuIzQ0lOLFiwEOo+D2JN9gMGQZC71792b422/TqlUrOnbqxIyZM7lw8RIzZs5kydJlfDptWlZ7OY2E25g5YwaXLpxn5owZTuWDh77Fa126EhoawqED+7l17QqXr1zhhcbNGDxsuHPdYcMpXLoCL7V6haJFCtOk0YsADHr7HYqUKudSHxxGR76eTa76RpOJBUu/BGDB0i8xmhzfikEjxxNRqRaDRk3Ivu9MSVWAft1ey/I6GKNjWLD8K0cbK9ZkGQuGkGD6de2YWb+Ti5fivlOT7gUqFajVd/57vBAJREqS9LokSQUlSfLK/XevDT9SEq/nB/qTnizvDtT7KLhhFehMSUZXCz8hXn5yk186E1hZednC1VTBhArZruoiIQr0HAXKhpw0qZvOpCwVa41+NOlMDnrSTXq3COfTN0sC8OXmW8z99jprJ5WncFi269ZuF+w5nsTyn66z+UACtcr5sGR4SbQaFfbkdOJTrCz/M5af9ydy5kY6CebHjtv5SOFEd9exWUleufBnsQ9c4tV2bh8oJMJSojPJUWVEmvy7Zk9VeAfzQWcCMKdnMHbFz1yLTWDtO9l0kkeZzqQE8R+iMwlzgnx5PuhMSlzz/NKZ7PmgMw0e+hZRXywism+frAn9F4sWsXDhF6z9Zh2FCxfObtduZ9euXSxduoTNmzbx/PPPs3zFCjQaDUJATEwMS5YsZsP69Zw7d464uDiX87nx7yE95ppLmRKdycM/OG8Sr1PeXdC3SwfFOubUVPxLV39sJF4lSQoAFgJtleoIIdyB1Q8bNiHYHm3lm6sZFPeW6FnM/XifZJgSLIT6O39QTfEZWV6F29u36UmLfrrJqC6F0agl3pl3npoVfFn9u4lCIXrCgrTsPJLI13+Y8PZQ0f65IH7rWIiiYc4TkH1nzXz0zU2WDi5Gw0o+FOzlnO3TDTf+y7DabKzc+jcfrP2V6iUL82GXZg/7ktx4iJDj7BuNJgyGUKftqC8WARC18AvGjhkDwIh3RvL8c8/x1apVFIqIwGAwsG3bVr5euxY/f386dezIxAkTKFK0qFP7u3bu5MMPPmD1mrU0bNhQNt+DG484VHeJiZAeu7nbl0AdYBpPcmD1fxFCCKIzBMcSbay/noFWJVHQU+JIgp2hBzPoXERDuwh34ognDcMXXmLxZhO9XgplWt+iTmU5PQ636Um3PRGhATrsdsGK8eW4eCONa9EZ/HkwnhsxGVQr7cOqieWpWNwLkSbvkWtU2ZfmT/szeOEVIkJ0NHvaj4J+KiICNbz2rD/BOWIflDw6toTULKnYX8+kM3ZjEpv7BGG1OMpuI8ZsZ/YuM18fTWNzjwAK5pKijUkTTvXBQX9a9k8aXSrqeP+F7BVhu03IBkpP3JHGl0cy6FJJxwcNslf1bRb5lddbCVaCPV1Xgq0KARppSfLP0Z4PuSjZwGqUvaNuOEMIwSVTHFuPnmX6D1vx0usoUzCUP46cofqwE3zYpTmDWj4WC4Ju5AODho8iavEyInt1Z/a0Kc5lfXoza8Z0AAyGUCL79M7yRBgMBux2O6tXreLipYtcuXadLVt+48aNGzzzzDN8s+5bKlasiFLC+5atWtG48UtE9u1D4cJFaNWqFRERERQuXJjuPXoQGJitOCQpJPOThD3L2Pn+h/WMHjeOPTt3kGZOzlKEAgetaMrUT/l63bfs37mV8DDnhG63omOc6gMMfuttohYvJbJXD2Z/+rHTvpyKU1nP8e2RsvWlDLPstRuNRlnKkZJXC6VyOY+cwsRdKbBa3CGr9P+FzJgIJdxp3yOKBkBfIcSq+93wI0VnMn1eBkkn/+PaEuQDkFLOySueqNR5Zw3knmicirWz54aN/det/BNtxy6gcrBEXLogJg06lVJTOkBi5G4rX76oJcLHcS4PP/kXQqOQVdqrgKvbVqNAQ1KHyK+WaAvLu+JVCi5nSenlyaeL3m5xdX8LpQFXYTS3KQSV2RV+a6XM10q0KLm+pPJUcMUrqCpJnjpMsRmEBuXwLsRmULLltqztcz/WA3AqO/9zA0JzKIrdupFIaKBM/7iLIpIc7HaBMc7CR8svsfyXm/h5qXm2sj9T3ihJsQLZbmCh8FwyTmdTT67EWWkz7yY9nvWld/ui7D2VzI7jyWw7lsS5G2m0ezaIcQPLYAhyvXa1pzxtJEkdjiHEmebz5vtH+HzRNt7oXY95n3XO3qENwWhMwGDIpWikVZB1tcrTNEg+Ll+ulr/GtCu7XMoyoo0yNe+QcV0pu7JCH/N7/vcHn7H64kGEOp+UxXR5ipIsFGg1uWlLh06f54+9h9h98Ci7D58AoFbFstyIjiMmIZEB7ZtRpkhBekyaxe7FH1Mk3DExupMsoxzUMhQaRXUfBXqS3VNeTUuJhqSUUVkojXMKBqtWyEzOlJS1FKA0UVSlK6gzWRXGSoXzyk22hFbhuSg9d62Hy+TXaDJRuEx2PobLZ08CUKRUueyy82ecjzEaXSbQjhMoUL3kaHqZ3zm73c7NW7eY8N4HfLlqNQEB/jxfty6ffjKFIjmoUXIZpQGkHO/MhUtXaPByB4YN6Ev3zh3ZtXc/W3f+xR/bd3L2/EVef/UVxo0ZRWiI67da7vmmqT0xGY2E5orRGDx4MMsXf0G3Xn34aFp2jIZNCKJNJkJyPRuzwkKMTmFuFOQhv1iiUxjn1DaZRSqlDPJKRoSS0plC4LOXp2ee6ExzP52yoE+31xXrmM2pBBYt8zjRmY4BY4UQ39/vtu86M5Qk6V1JkkSuv5s59kuZda5LkpQqSdKfkiQ9lasNIUlShiRJJXKVL5Uk6cf7dzsPFqlWwQd/pdNncxrnEuzUKyixtIGWn5trsNoh2EPiu6ZamhdV8e4+K+Oqa7IMCDcefZjiXD8Yb009ScmW23hr6smsstAgHb1fiQCg9ysRhAbpnMr6tC3sZEAA8gbEPcKcbmd81Hn2n0xk0/QqnF9Xh9XvPeVkQOSE1SY4fTWVnUcT2XUskb0X0th3MY25fybw0owbvF7Lh0NXM6j4xhFmb7iFh07ig66FOLOwMp/1LSJrQNwJuQ0IY7SZzxc5DKzPF23DaEp0rp/bgHDjkUVKahoDP5pN60ETOHP5Kq3q1+LPhR9zfN18klPTKFIglENr5tCuYR36T/6c+aPfyDIg3Hj0cTuANycGvT2SwmUqMujtkVllhtBQInv3BCCyd08MoaHOZX16uxgMsgbEPSI5OZkRo8Zy9Ohxtv62kWsXzvH1VyudDIicsFgsnDh1mm07d7Fj11/s2ruf3fv+ZsrMuTzbrA0Dendj6649FKtci+nzovD28uKzD97lxsl/mPXxB7IGxJ2Q24AwGY0sX/wFAMsXf0G0yXnBI7cB8cRDUoFac4e/vIcHSJI0QJKkC5IkpUmS9LckSXc0PCRJqp9ZL02SpPOSJPX/v+/n7hgBjJUkqdj9bjivS1KngBdybOc0J98B3gZ6ZNabAPwqSVJZIURSrmM+BF6714t9mDgSbeOdbelUCFbx4yue+OulrCDvSftt6NUwpbYGtQSj91hpWkRFowi3+NWjCFO8hdAA55WRYTPPsGj9DXq3LsBnQxw5G0xxGSz67ioAi767ypjeJbI8EtNHlHPavl02tm9pFwPifuLkpRS6v3+CGuX92DKrKp6ZVBurTfDRskt8/YeR1xqH4aFVcfxcEievpHLuWhrhQVrCg3QIwJaSgV0ICvhr+HlQOELA4p03Ob2wMh4KXrP/B4YQL97oXS/LE2EIdXOQH0fsOXKSnuOnUbNSOQ59M58AXx9E5sp3z4nTCfL3Zem7byFJ0G3iDLq3bEir52s85Kt2415gjI5xocQMemcsC5Z+Sb8eXZj9yYeOeqZoohYvBSBq8VLGjxqeZQzM+mwa40aPdDIOZn02jXFjx9xXgyE3jhw9xmvdevJCvef589d5eHh4gKTCYrEwYdJ7fPvDerp27oxWq+H4sWMcP3mKM+fOU6hgAQqEhSGEwG6zYrfbKVyoILt++Z4Us5n5S77k5qmDjnwR9xmhBgPdevXJ8kSEhLoqSbmRAyr1fckTIUlSR2AmMADYkfnvL5IkVRBCXJapXxz4GUfyty7Ac8A8SZJMQoh1+byL/GASDonX05IkXQRcFC2EEDXvpeG8GhFWIYSLvIbk4KEMBabcfgCSJHUHjEBnYEGO6rOBtyVJmiaE+PteLjav2HTMzLFr6cSZ7UTfSiXdlpnaSnK4XlQSBHupCPeRCPNREe6tIszb8X+9GpIywJhi51aKnVvJgsPXM1h/zsrYWnpalHB+ZAej7Wy/Yee7plq0Konlp20YU2H6s4+dRNhjB7nA57fnX2DxL0Z6NTPwaf/ijnrxFhatvwHAovU3GN2tKKGBOkIDHd6FRd9dzfI45ETubUfZgzMg1m4xMnr+OSb2Ko7Faqft6KOEB+soFu7BX8cS8dSrWDiqLN/+GY1eK9Gwmj8DXy5AmcIeeOXg9eekMwF89ms8rat4PxAD4jbmfdaZd0e3dBsQ/xH8sHELR06eJjY+gbiYGNIzLEiSg3qoUqlQq1SEBgVSKCyUAmEhFAoLpVCYgYKGIPQ6HYnJKVy7aeK60cR1YzQH/jnMmk1bmTVqAO0aOS/Ubf37CNsOHOXQmjloNGo+WfYNsYnJjOja5iHdvRt5hTE61inrMMCbY95jwfLVTonGjNExTpKi40e8hSE0BENoCJG9emRx9vPiXXiQBsTylasYM/5dPnr/XZKTk2neph2FChSgWPFibN++A39/fxZHzeebdd/h6enBS40a8tagAZQtXQovr2wPq5SLAjjx4894tXWLB2JA3MZH02YwbOQYtwGRBwhJdb9iIoYBS4UQCzO3B0mS1BR4AxgtU78/cF0IMShz+4QkSbWA4cCDNCKOZv7dd+T1SZWQJOkajojuPcAYIcR5oDgQDmy+XVEIkSpJ0jbgWZyNiL04HtInwIv34dpdIIRg2qZ4vvk7mVee9qFQoIZSGg16jUMZ72qSneMmG756CZUkuJYkOHjTxs0UOzeT7ZhSBEigUUG4twqDt4owHwmDTuLb1p6E5woStdoFHx6w8XYVNb5aiZPxdmYdcThpmvxooX5BFQOeUlPQ201p+q9hxNJrLPk9hp6NQ5jW25GDxZRgYfEvDjfw4l+MjOoUQWiAltAALb1bF8jyROSkHsl5HB4GhBDMXXcNLw8187+7RpC/lmGdChOfbOXSzTTavhBK75YFUKkkaj/loAcpxUQApFrs/Ho8lXX/pLDrXBrr+oUp1r1fcBsQDx9CCMZ/PJPvfvmN9i2bUKRQQaqWKY6HXocQggtXrnPoxBm8/HyQJLh47Tq7/znCDWM0126ZuGGMRpIkdFoNBcNCKGgIpYAhhIhgf/Z/NZcCoc4TzgyLhUGfzGfasD74eHmy//gZ3p2/CpVKonjrfrR6vgYTIzsRYfgPaMu74YSBE6Ywf+U6+nd5lTnvOxSRjNGxLFi+GnAkGpswbCCGkGBH7oAeXbI8ETkVl2Z/+rGTB+JhwW63M3POPHx8fJg+aw7hYWGMGj6M2Lg4Lly8zOuvdaJ3zx6oVCrq1qkDKMdEgINX/+PmLXz17Q/s3LOPLd+vfuD34DYg8ghJ5fBGKCEPyeYkSdIB1XEoHuXEZhzzXznUIcd8ORObgO6SJGmFEPkLesojhBA9H0S7kDcjYg8OqtJJwACMA3Zlxj2EZ9a5leuYW0AhmbbGAMclSWoqhNh4txNLkhSJI0nGXWGzC8Z8G8Pfl9LZMLgghkylmJRz2cyr/r+ksPm8FR8dhHiqMJntVAhV06K0jlfL6/DWQboVPLXOk34lBZfVZ+0E6qFpYYdxseGinaaFVbxZUc3hGMH4fVa6l1UBEmarwJwmCPJwGxT/NkyJVqdka6ZEK0t+dyTGWfJrNCPbFyDUX0uov5ZezQxZnoiclKbPhpTO8kDkxsM2IMCxQvzn3KpsP5RAarqdl2oGKgas30aTkcd4sZo/kS3DCfDRYLMJth9JZM2GaDYeS6VyhI521byZ0ykEXw83Ne9xh9VqZcDo9zhy4jRbv1tBSJBDhSZnYHXTHoP5dcceAv39CPL341ZMLNUqlKFjy8Z0b9sCb089aekZeHk6x98o5YOYuWo9xQqE0eaF2gAs/3ELXZo3YEKfV9l24BhvTo1iWJeXAUg2p5JhTyU4wG1s/tvI7XEwRscyf6Vj4XT+l18zYUh/DCFBGEKC6NetU5YnIielafYnH2Z5IHLjYRsQACqVin07t/Hntu1YrVYav9gwewyVCfAVQvB8o6a0bNqE/n17EeDvj9Vq5Y9tO1i9eg0/bv6NGtWq0KntyyyfNx1fH/mcTW48BOTNExEuSdL+HMVRQoioHNshgBr5+W8jhabDgd9k6msy27tx12v/jyHf6kySJPkA54EpwF/ATqCIEOJKjjpLgAJCiKaZ2wJ4VQjxjSRJc4G6wNM4eGEhQoiWeTivSN7TDHsulYhLN1JZvfEGX/10ncJhHqyYUB6/HInX0m4kEp9iJdBHg1oFGw8k8t7q6wT6aKj3lA/eHmoOnjfz59EkOtQLZljbAhhy8eHl1H1uxFqoP/YUGwYVoJTBeRJpT05jxX4zk39NpGSIhlpFdXx9MJVUG1Qp6kHr6n68XMOPYF/HdXpUKi57z7oA11UFtU4hseBdJoy5oVJoRyipTWgUlEvS5CcHdhmVD0lJaUFBPUMukRGAUJKUk8Gg9/YStfo0kZ3KMHti7ezySX9ll0/IQQWUVBhjUjEEO6v22BSSayldi7DJl9vTlZSlFOrLJO27X2g0/Ch2Ibh4PY1GNQPZfjCBsCAdnVoU4dUmhSgQ6jwR1HjJBzhrvBUS63lHyJ84oJZL0a83q8hWTbPKPxcfnbzhduSGfGKokiHyH/ASOeQac6K8doNroVW+r5Oe+xuSCYu8MpRyMv0AACAASURBVJzSO6aKmPHA1ZkyjJdcZBPPX7zEqjXf8OWaryldsiRfLf0CH5/s9z3DnEx8QiLBQYGoVCp++Gkj4z6YTLghlPp16+Dt5cneAwfZuvMvunZoxztDBhKaWyJSRt3n0pVr1G7yMrvXr6JE0Vx9xW5n3vLVTPx0HhXKlKTO01VYvm49aekZPFO1Mm1bNKV96+YEBTr6nlBQULLqXH93m8I3Lx+qvo6283lAhoKimo8CTVCjcu0KipKiCuOQZJEfb5QUi+QwaPhoopYsJ7J3T2Z/+kl2+dvvELVoCZG9ezLrsxyLsSq1rNSopJTkMJ+QZJT/7ti+0jdN7hnYFZ6LwnOv3uI1tFotF65c5aXn6/DH7n1EhIfR+ZUWdGjZhHBDLoNJpfANVEieZvdyHZ/StfLf4rg0+WtUUv9SwjGTvKJX0QD5awzxVEh0q3Htvx4Kyk9Kv52S9KuSWqSnl1ee1Jlmz56zoFfv3op1zGYzoSHBd1RnkiSpIHANqCeE2J6jfCLwmhCinMwxp4EVQoj3c5TVB/7EMWeWz8p5D5AkaTCwWgghLyuofMwqIYSrAoIC8i2GK4RIzpSLKg3closKB67kqGbA1Tq7jUnAOUBZXysP2HcsgYnzznDiQgptXwxj4ahyhAXpmLX2Kr/uiyM2yUJ8kpXUdBs+HmpC/TVM7hZBs+r+NK7qx89/J7D1SBLf7o4nLtlKUYOOqF+M6LUSk7rKKzDcRqLZxqAvrtCtjq+LAXEbXZ/xomNVT3ZcSGfH+QxWdAmiQpUQ/jiWwtT1Jk7fSGfK6wX+n0fgRi4YY9Iw5MgGbIxJI2r1aQCiVp9m/JtVsoyD2RNrM35gZaf6t5HbgHhcIIRw8k7UrxaAWi3RtVk4G3fH8E6XopQp4oXG362G9CRg1197Gf/+R5w8fYYO7V5h5eIoQoKDmfLpdH79/U9iY+OIjY8jLS0dH29vChYIY/rk92nTshmtXmrA9z9vYsvWHfy5YzeJSckULRzBzAWL8PL2YtKo4Xc8d1x8An2GvsOgXq+7GhCZGNCtE707tmXLrj38uXsfvyz/nJJlK7D5z+28/+kszl28xMcT5WjHbtwrcid3M5qiiVqyHICoRUsYP2pElnEw+9NPXAKfb+O/4Fl4EMg9hjZ4tgYBfr50frkZP/+xg/GDIylTomie6DBuPDzYEYqLCaC80JAL0TgEg8Jzld9p/ntTob4ViMnLSfOB6cBuHDHKd4UkSerMY3bguLc8Id9GhCRJHkA54A/gAo6H0hjYl2P/8zgkpVwghDBKkjQNeB/HDeYbO/+Jo+vYw3w4qAxtXwxj79F4Zq6+xLZDCXRoaGDqmyUxBOoI9NPgneKwqjceSGT44is8VcSTBQOL0rpmAK1rOlaxrsVksP+sGTQqqpeSt/Jv48ilVHrNucQLT/ky7CX5nA23odNINCztQcPSjomqVqeiWVUf3l93izplvDlyOY1KReStezfujNwGg5PHIdOzYAj2ILJTmazy3MaBnAHxuMCcZmPD7liOXTBz/JKZ4xdSiEu2UrKgJ2WLeFKusBcWm2D7wXjG9SxGv1fk2IduPK74fet2uvbpz6eT3+eVVi3YtWcfUz6dwY5df/F6p1eZNW0KYWEGggIC8fV0LJT88NNGIocMp0a1KiyZPY32rVvQvnULAC5ducreAwdRqdXUfLraHc994NBRXoscRIvGDRk5oNcd6+r1Opo3eJ7mDRwLgna9J62bNmL0+1N4tuYzHD5+ksoVXBb83LgL5DJBZ3kcenZj9rTJAI7A557dsjwRD1JW9b+G5BQz32/6ncMnT3P05BmOnDxDXEISZUsUpXyp4pQvXQK7XbBl517GDerLm907PexLdiOPsNnBcodcS3fadxtCiAxJkv7GMf/9OseuxigHSe8GcitGNAb2P4B4CAmYLEmSvEtcvn6+cVcjInPCvwG4jMNiGg94A8uEEEKSpBk49GdPAqdxxEwkA3fKjPcpjuj1NsCW/Fzwn/tj6TnhCHNHV+BGdDr1eu7BLqBvy3DmDi+Dr5fzLdnMjudSq4w3JcP1GBMs5DYyCwXrKBSsU0xkdxvHLqfS9L2zvP9aAXo1CsEWrZDY6g44eiWdMzcyGLb8OjY7nJ1VNt9tPOnIbTC4eBxyeBhmT6jp5IF4UrDzaCLvLrlEn5bh9G4exlPFvQny1XD2WiqnrqRy6nIq56+lEeD72GXmdOMu2PTb7/QeMJiFc2dy+cpVatZvjFqt5o2+vVkyf64TlQmATGpi3do1KVm8GLeMJpcxtGjhCIoWjrhrUsoDh45Sr/WrzJ48iZ6dO6CyyFMn7oT9Bw9z7uJlIoeNQgjBzeP77+3r94QiK+tzDmPByeOwZDnjR76dZWTMnjaZ8WNGPdYGgxy27PiLcVNn079LBwZ260ilsqUI9Pfj1PlLnDh7nhNnL3DhyjUC/O68mOjGfw92AXeyE/JgQ9zGZ8AKSZL24qD29wcKAvMBJElaDiCE6JZZfz7wZua8eQEOan8PHkzqg204Yjby8+JuA/I1sc3LDCIC+ApH0IcJRxxEbSHEpcz9nwCewFwgEEcg9ku5ckQ4IZMSNQmYl5+L/XW3ib7vHuHtbsUYNu0kT5f345O3ylKveiAiRVkl4cA5Mz1nXqBN7QDGdSiIVoarlxeUCNdTobAHUb/G0PPFe1MLKVtQz7ZJJShbUE+9iec5eiWN2lXvqaknArnjE4wxqbIGg7PHwdnD8KQZEACFQvT4eWl4u4MzVaRqKR+qlnLwxJUyJ7vx+OKnzVuIHDqCEUMHMWDocGrXeIbZn07h+WfrIN2BgrF773669B1A51fbMnHUcLT3GGdftnQJypcpxZxFy+nZucM9tVHlqfIc+ONnypcuScXnGnPs1BkqPn1PEudPBHJ6HRx5GZYBzsaCk8ehZzcXL8WTZkAARBQMJzjAn1EDezvFRDxTuQLPVK7wEK/Mjf8X94nOhBBijSRJwTgWzwvgkFFtnmN+XCRX/QuSJDXHQRt6A7gODH4QOSKEEC/c7zblcNdPgRCikxCioBBCJ4QoJIRoJ4Q4nmO/EEK8K4QoIITwEELUF0IczdWGJIT4JlfZ55nldw2qvo2+kw7TvXUhPl1+kWnDyrJqShXqPxN0VxWa2T/eomuDYCZ1LnTPBgTAm1FXSE2381nPQnc9pxziU2xIQIUID9QqiZZP+/LldoVgTTcYNGk3EXXXMGhSNuvNEOxJZKcyAE4Gw+wJNbmyvb1zkPQTjKLhem7EZDBo5lm+2RpNdMKDC9B249FBv6Hv0KPLa0ydMZt5M6axetkX1Kv77F3Hs6mz5vJGn568P24UGs29e6+6DngLu10wZ8p793R8bFw8KpWKiuXKoFarebl5E5asXHvP1/O4Y9DwURQuW4lBw0cBmfSkXt0BXIyF2dMmc+XkoSzvxJOOkkUiOH/lGv1GTWLtj5uJjpUXbXDj0YPd7qA0Kf0pxdfLQQgxTwhRTAihF0JUF0Jsy7HvhdyTeSHEViHE05n1iwsh5t+3G3sIyLc608OCJEni9RaF2LLHxMrJVajxlHPwpz1ZPrrfZkpi/i9GTl1LZ3qfOwdMK9GZbqsz9Z5ziWsxFgoEaVGrQGO1olFJqFWOjpeYZicxzY4lw071CC31SuqpWVSHp1bix2OpDN+QiL+Xmj8mlsDfS40p0UqdsWc58G1DDDJJyJ5kdSZjTCqFan2ZtX11Z8csj4KwW11iIu4IJYqFnDqHQt1HUZ3p/PVUfvs7nj/+SWDn0USKhetpXTeYwW0LotOqFD0RSoHVbnWmR1+dqUuHdvy+fSfrVi7l6aq5nrnSe2LNYNqseVy5dp2ZH3/gqKqkkKbURqY6U7se/YmOjSXcEIpGo0GnktBo1GjUaqw2GwlJySQkJmGxWqnzdBUaPV+butWr4uGhZ836jbwx9gNCg4PY99sGfLy9uX7zFtUaNOfYgb0EBwW5nPZJVmcymkwUKVE6a/vKqSPZHgmjUVZqVRFq+fdNyP3eCh6tR1Gd6fT5S2z8cwdbdvzF9r0HKFWsMO2bN2ZYny53NqaVvHpudSbZuv+2OtPkz2Yu6NxdOR4r1WymXOGwO6ozueHAI0WI3n8qjZ0/9qBEUddJiz1dYZJX2k6r0FgW9PgJvzq1s1bc5Ca0SlKjt938i6um8+df17Ba7VisdtKTE7BaBRarHbVawt9Hh5+PFr1fMDv2XaPPgr8pXNCXNk1KsXLHCdaueov2XedS+PXhaLUaNAlmpPfeQV+hH94FXQf0E2bX/qtWGITKKCW0syqEnFjkJ0RShsKEyC7/kqs08nxQlSQziAr5QQ6VDqMpCUNodlsFg+CNnqf5fMle3uhZk0JlKjsdEiHnXRcKExubQt+Q+RjZMuQn+XaFD5eSVKLVLH9O681E+WYUEr/ZUxTOa3M9r76i86S9VEktpUr6MbC3Lxarnb+PxzNtyTlajDvFkg+qUbZMMdmmVVr5j4U6sKL8tWjlJyNHLK/IX3qi67UHe8p/6DQK/V2rlv9IN6i0R7Ycqzy78khGa9nyg6nNXMq8FAyXMkFXFc55QrZYsinFAcxQKL9/+PvIcX7+9Q8KFylCcq59MnNWACStxPPNWtOjaxdSPR00ToW5ACqFxYzbE/fZXyxl184dWK02LBYLWNKwWCxYrTbUahX+/v74+fmRJtTs3rmTV/q+RYmSJXmhQUPW//A9s75YzuDIXsT4FCFerSbeW4NNSJxNURPn6fr7ZCS7vj9qhRvVKpTrFW7WQyPfN5XqKxkLWoVnKftGKEye7Bq9wzAwZC88hRSIILJvX6IWLiSyb19CCpfk9psXXDQAhdE4X5BkDDLFybySDK3CgouULv/OqswKC1ep8mOu3SzfjpCpL3k6T9BLesDAprV4s/mzWKxW9h49zUdLvmb9L5tZPmkYxUsUk21bEcHyAhZCI5/J2q51peIqBf0qTtAV+qkSJbFRUfkFF6WFg0R73tc9zFYlg0Z+bPVUGP9VMpLR+YFd3Nm4yq/h9STjkTIidv3YiyD//C/UlS8ViF0ITpyNY88/tzDFpjHyjep3Pe7X7VeIiUvjtTYO9Y8Afz1tmpTI2m9JlFfBknzCmLX4HzIsdsypVnb/fZ39v7zOzqMZPFurFFqt47EvXLqVpo0qUlDGgHhcYTQlYwh1HqQGDP+Gzxfv4o1ezzJvWvus8nmfvMy7I150qe9G/qHVqKhdOYivPwtk3pqLNOi1kx+ivKlR5cnjOj/J2PL77+i985+srWLFSiQnJXH+3Dm2bf0Tc0oKgwYPvutxmzZtIiUlmZdfaQtAUFAQLVtlG246u7zxHG22Mn/uHGw2G/Hx8Rw5cpgtf25n42+/U6N2HdSZRuTKpYtp3KwFwSFPTj/ObSwADBkyhIVRUfSNjGTmzJlZ5TNnzmTs2LEu9d3IP7QaDXWrVmDD9PHM+Go9z/V+hw3zPuTp8qXvfrAb/yncx8DqJx6PVBraoMB7C5CVJIkOLUsx5uO/GPHhLsZ+8hfLvjmJTWY19zYOn4jh1Tc2sWbD2XyfLy3dStEIP15pWooeHSrw6+r2hAZ7cfV6LPv+vkDkoKV8Mv1nps/dzNuDmt7TPT2KGDDie8LKf8CAEd9nlRlNyXy+eBcAny/ehdHkvGrkNiDuLyRJYmCn4nw+rjJt39jC8bPumJwnCQEB8tSzu0GlUvFKu/aMGzOaiRPGM2b0KL5euxb7HcjD//zzD11e78y36/IfM5ielkaRosVo1qIlXbv14OtvfyAoOJgbN67zz/69jB0+lPmzprNs4Xz6DBh0T/f0KGLIkCEULVaMIUOGZJUZjUYWRjkS6S6MisJodJaFdxsQ9xcqlYphr7dhzsj+vDxoAqcvKXgi3fjPwi4cgdV3+nMjb3ikYiLErQlgl6d3KNKZMukmZy7EU7ftOiRJxYt1I/jp94tIksRTpYNQqSTS0q2UKRHAylmNuWUy8+wr39K6cTF2H7jJng0dZdtW8kTogwrK34RfJc6cvcmGXw5x42Y8lZ6KoFvnuuBZTLb6w6AzkU86EworieSiMxlNyYSVm5S1fevEuCwDYcA762U9EdgUsq0q4QHSmazmBIVTyrtVLYny3Px/k850G2pfecrZ11uTmPDZ3/y+qjlFC2Ubaw+cziQz8bQrjEP5pTOV91Do7/mkM8ldoyKdySt/dCYU6EyS5ysPPCbCnJpKqkV+4q9IZ8qkKJ08cYIWTV8CoP4LL7Bp40ZUKhVly5VDpVKRnpZGhaee4osvFnHj+nXq169Hq1atOHToEJt+k/9dlDwRKUKeC52QbuP82TNs2fQL0SYj5StWok37jqQq0CQyZN6Th0Vn0iqVK9GZclHDjEYjxYoWzdq+dPFiloEweOhQWU+EHN1Iru17RX7oTJKCnO9/mc6UVa4Q47B043Y+XLCSP5ZMo3B4How1JTqTXn6Mtnm7qkCabfK/nVKMjpJoghKdyUOl0I4inUn+XZVrP78sIU+Fi1SiM3n4+OUpJmLiJzMWvNqlp2KdVLOZGqUKuGMi8oBHyhPx/6B08QCavVAMjVrizIV4NGoVZYoHUL50IIUKeHPqfDydWpUiLd1Ku/4b6dquDO++VYPEpAxe7v0j5y/LTyLzfR2lwhk2qAlTP+zoMCAeUxhNzoxrQ6gPb/SsDcAbPWs7eRjmTWvPrVOTnA0INx44Xn+5JG/1rkiznpuIjb8/QY9uPL4oV748z9erj0ar5dzZc6jVakqXLk358uUJDw/n7NmztG//KmazmQ4dXqVPn76MGTuOW7du8fprnbh06dLdT5IHlChVmr4DBzP63Q9o015+gedxgJxHIbJvXwAi+/Z18jDMnDmTi5cuORkQbjx49GzThAGdWtH8jTEkJMkbMW789+CgM93BEyEfkfTYQJIkb0mS3pMk6ZgkSQmZf8ckSXpfkqR8JT55YowIgGXTX2T94hY8XdHBn9VqVezcf4O/D5soVzKQMZ/soVCNZRSL8GXCkBr4++lZ+3kTdv99kyETt92l9ScTuY0FyKQtlZvEgOHfOpXPm9qGWyfGMW9q7oSNOAVVu/Hv4c1uFQgJ1HPgWJ6z3D90JCcmsnbJQjZ+9w2Xz5/jUfGm3gmPyj0sXfElX61ZS+UqlZEkCY1Wy66dOzl86BBlypRhzOhRlCxRnHLlyzPinXcIDg5m5aqv2L5tG2NGjXzYl/+fRG5jARy0pWJFizrRlsBhLFy6eFHWWHDTlh4OhnV/FS9PDw6fPv+wLyXPSIiPZ8niRfzw/XdcvHDhkRl/7oT83IPNLrDYlP+sj39QxEpAD7wChGX+vYIjwn1lfhp6tOhMlt9AXUahgrx86+H4bHe5ECLLtWeMiebX774hzWwmKNRAkMFAQGgYQQYDfoFBJCfEs+TTj9n8zVd06D+Ydn36o/NwpnkoyU+mZCgnvpODKVm+fqiPK31Cp0Dj8PeQp6B4KsjQlfKXl3gNkuRpB8abRgwGZz71gEFz+TzqJ97o14p5cxwfO6MxjrBCr2bVuXVpSfZxKnkFCiwK+tuSQty/EuVKSfVGgYol0mJcyqxmebqRLd3VWAKwpMi71q3X5Mtt0Qp0JgWJ17tlUc8JXXl5Gp1vicqy5VJgNQAq1hzHqsX9qFzR8Q7tMMt7hBLS5KlVFpu8zkvpYPmEjE/53nApi7XKv79B6h1Z/09JSeWDD5cRtXADDepXJCEhhd9+P8SEMZ2YNKGzo5JaSQJZQXIxw7UPABxOb+VSFqdw/0rjgJJSUW4IIVg8+T3WzJv5wOlMN+KTMSvQmZROnPN7ensMFQIS4uP46ft1pKWlERpqIMQQhn9wKCGhYfgHBpIQF8e8z6bw83df03PgUDr1jESndx4DktLl+06ywvug9G1PTJOnNxh8XMccLwWKhL9enpbhqcA38lFoR6dAW4qLNhGaa6L/1tAhfLFwIb379OXTGQ7DwGQ0UjqH6s+5CxezjlNS5lGiSimpzOjU8teu1GWVaFFy1CVJYaxUojmp0hToRgmuxhWAPVFBOtmi8N1VkMW1J8uM0Qq0JU1YEdlydaBjQbJck058P+9jypV00M3sPvIUT5tvmGy5RS3/bZRNa6WgCCiUpHVz/HZJSUlMnjKFZcuW0aB+PUzR0WzbvoMPJr3L8GFDZY/Pbkihz1jkKcDJatd4RqWxRymySolimPsdE0IwbvRIFsybmyc608iPPlvQpnN3xTppqWYalC/82NKZJEk6JYQom999cnik1JnuBJvNxtSpUzl16hSXL1/m8uXLJCYmkpqegdVqwZKRwf/YO8voKJIuDD+dTNydoAlOkF0kCe5BFncW18Xd3T3Y4ou7s7g7wWVxdwkQd52Z/n5MSAjTHRIIEr55zplzkurq6hqr6Vv33vcq4+NZuvsQHuUqYm5pRYO2HZON4ff+PeePHuLCsSNcPnWMSnUbsvb0Fcwl9Md/Bfz9/LR+1Pz8gnF0TK5N3b3nXBYt2UO3v2qxcF6PhH4hLPpnHwCLluxh7Og2ODra4OhoQ7cudRL619AyPHT8fLz3C8XJMe2KPd+bgwcvsm//ea5cWoprVhOu33hKnYYT8fTIS826YylTqgCtWtXExSXTj55qmrh96QInd+/4fMdvjFKpZMm8OTx/8hjfN6/xffOaiIhw4uPiiY/XrJ9KpZKNuw9RzKMkVtY2tGjXKdkYvm/fcfLIAc4cP8L5MyeoVb8Ju09fxsLmF11D/f1wcHD8bNuAfn1ZsWwpnTp3ZvZHxsKypUsBWL5sKUOHj8DB0REHR0c6durM8mVL6di5s9YarePn431AME720jVnfib2HzjAyRMnOHfuHC5ZMnH5ylVat+9Agfz5qNeoCaVLluTP5k3Jni3lmlo/G2dOneTwwYOp7v/BEyFHSsd+ESIEQaguiuKhjxsFQagBpCku75cKZ5ozZw6WlpYMHTqUPXv28N9//9FzxFisrG0pVMydf3YdxL1shcT+KpWKm5cusGTqeNp7laNlmWL4HNxH8XIVWHXiAgOnz8HG4deUDhzYqzv5szoxsFf3ZG1OWZrQvWeSq9zPL5hFSzSFtxb9sw8/P83ujaOjNd3+qgVAty51khkeC+f34f2LlSyc2+V7PBUdX4FSqSIkNBp7u58/nMzW1hIrK3NcXTUeF1cXJ/T19WjZbiZ/1CjB7bsv6Tdw0Q+eZerZungeC0YOYc6QvhSvUPlHT0fjEVk8Hxs7O7r1HcDyDVvZe9yH3oOHYWVtw+8lPFj77z6Ke5ZMPEepVHLl4nlmTR5P/arlqFvBndPHDlGmYhV2nbjIiMne2Nr9mhLWQwb0pVCenAwZ0DdZW96crgzol9Tm7+/HimUaY2HZ0qX4J4QvOTg60ikhx6Fjp+TGwsw5c3ny7HmiwaHj5yUmNpaY2DisLTPAGmpjg5W1NTmyazwruXLmRKlU0alrN2pWr8b1GzcYPnL0D55l6pkzcwZDBw5gUP9+VKnqlerzVKJIvFqd4uMXpw0wUhCEV4IgnBcE4ZwgCK+AEYC8i0aCDG9EiKLI4cOnqVSpEubm5rRu3RovLy/u37+Pl5cX+7ZuZOy8xaw6cBzP8pUQBIH3b16zePJY6hTOxYzBfVHFK+k1bjJ77j5j4or11GnVDgdnGYWlDEiQv5/W/yuXaG62Vi5ZhL+fH/5+SW2LluzBz08TYvTBswDQ7a9ayTwLC+f14P2brYmhTB+j80BkDPwDwrG1MUNfJrzhZ+LipbvkzZO0Q2ZlZca+naOZMbk9vbrXZtSwZpw9d4dr1x79wFmmnt2rlmFgZEiPCdPoM3XWD5uHKIqcPHqYFvX+wMrahvqNm1G2QiXu371Dywa1ObDrX6bPW8z6nfvxLF0WgLdvXjNjwhjKFMnD+GEDUavVjJg4jVM3nzDrnzU0/LM1Dk4ZyyOUEgH+/lr/r1q+DIBVy5fh7++Hv79fYtuKZUvxT1h3HRwc6dBJYyx0+sSzMHvOXB49fZ4YyvQxOg9ExuB9QDCOdjayKkg/E5cvXyZvnqS6Fra2NuzYspGpkybS9a/ODB08kNNnfLh1+/YPnGXqEEWRfxYvwsTUBO85c5kywzvV534uJ+JX90SIongnIVSrONAD6AWUEEWxnCiKt9IyVoYNZ/LzC2Dz5j2sWr2VmJhYRowYS9OmTVEoFMTHx9OkSRN2795N5pKVE7/c79+8ZvaY4Zw9dpjqjZuxeM8RsudK+kIpM0h+iBzBAf7YfFJ0afrgvmxfuZRG7TszeLqmIq6tgyPtu3Rj5ZJFtO/SLfHH6kOblGdh7Mg/JQ2DT0OfdGQs3vuF/bBQphMnzjFv/iru3n1EoxbtadvpL+xT8PyVKlmQhYv+JSIiig+h7gXdslPQLXvi3316NaC4ZzdCA3dhaSkt1/gzEPj+HVEREXQeOf6H3XwE+Pmx599t7Ni0AZVaRY++A6lZtz76+vpER0XRr2tHlm3YSqmEzRcA39evmDZuFOdOn6B+kz/Zsu8oOVxzJY4Zl8F/fAMD/LUK140e3I/1K5fTsn1Hxk+fDYC9gwPtOnZi1fJltOvYKTF86UNbh06dk4U0zZw9h5EjRkgaBjpjIWPzPjAIJ7sf8zt47NhxFv/zD48ePaRly1a079ABO5lcNABPT0969upFVFQUZkaa278ihQtTpHBhAH4rUoQO7dviXqosQe99MTWVyTH7CXj96hUAo8dNSPMaqhIhPgW92ZSO/UqIougHSCcfpZKff/vxI3x9A1i6dAN/1GpL3nwVuXjpOpMmDubWzSO0aNECRUISsUKhQK1W4+XllZAEKLJvy0aaVSxJjtx52H/9Af0neyczIDISIQH+Wm2zh/anQeHczB7aP7EtOMCf7Ss1bvTtK5cm80h4z1vI/dfv8Z63MFmbzrPw/8Xtu69xzmT13a+7YMFqWrTsRZ3aVVm5wpuXz5/hUTAvLRvUZf2qFZLnVKhQlMqViuFVvT+XouwydgAAIABJREFUr0h7G+rVKQ3A/gOXvtnc04P7/10lf9Hi392A8H3zhg2rV9CuSX2qlirOnZs3GDJmPHtPnKV2g0aJlaANjYxQqVSUrVApcQ3dsWk99b3Kk7eAG8ev3Gb4hKnJDIiMRLDEGjphWH8qFMnNhGFJa2hggD/rVy4HYP3K5ck8EtNmzuH2o6dMmzknWdvDp8+YOTup7QM6Y+HX5PbDp2RylL9x/xaIosjf8+bTuUsX6tety6KFC3n46BGFCxWiaZMmrFu3TvK8KlWq4OHhQZ26dbl+44Zkn/p1NZEHh44c+WbzTw+uXL5ECXePL1pDlWo1sUqV7CNO+WuHMwmCkP+jv/UFQRgiCMKuBIlXaZUeubEykjqTpbUNJSpWoZRXDUpXq4GJWVL2f2BUcmWeNr/lpf3oCRjbOXNy02rePXtC+0mzyeGmsbhDorXVPN6ESKs7hEVIK3/IKV9EREori7hklrbqFbFhmNtoL0I2ptqOoj3eYzi8YTXVWrSl8/gpAIQGBtDJM0mBZ9N/97FO2E1bNHIwu1Yvp17bjvT7KGRCrmidoVy7jCqUnAJNEWuJwlzRMpVrY15Kt8sVxBOl1TZkFXiU0moh6nhttRC1RAE6AFWMdK6RSq7IoUxMpVpOoURfWhlG30QTZ6tWi2ze/5L56x5iY2WI229FyJ/XGdccDujr6yGKImrDwujp6ZEzZ3Zy5syeeEMoV/Ts8YuclClThq1bt1K+fHnJPh9zKUBa/UquUJxfZPLXJjoykk1zvbl++jhqtcjE1ZvInMMFADsTE0KCArl06gSTB/Zmw8nzZM6WQ6vAm0qlYse6VcyfMITqXiWYOaMLdnZJRtDNiHI8unOb7k3r0nnAUJp2+AuAV2Eyqlsy75OUspScCpVc4Ts5lbbnwcHM7d+TLLly07RX0g1ro1zO31ydydrGhnKVqlK5+h9U8qqBqVmSt+bT3beiLo5MmDkfOycn1i9bzJtXL5g0dzH5ChYmPFZ6jXsvozTnFyndLhd7/CZIWvGlcGZpr5kQFYK1nbYXy8pYew39e+wQNq9eTrO2HRk1RbMmBgb4U6FI7sQ+V+49TfSKjR7cjzUrltGmQycmeycZB3LFuuRI682O1PjGMipMenEyuZAyBcLQkw5CEGXa5RBUEu+rUvq9lpujILOGSo4NqCOlv8uCzPdQMNTcE6lUKtbtPsz8tVuxs7EmX4GC5MudC5cc2dATNGuoSmGsWUNdXXFxyZG4hgpK6d+F+4+eULVWPbatX01JD/fEdtHARLK/KKNwJKd8pP5EMy0sLIzJEydw5OgR9PX02b59W2J+g6BWEhAQyPGTJ+ndrz//Xb6IcybtkEKVSsXK1WuZMGkSNatVZeqEsdh8VMleNDDh+o0bNGjUhNGjRtK+bRvNtVXSr69cdWcrI+3+sTI35/IF8WRUx1Qq2rRuRbHixRkwYGBiu5mpSarUmTqNnLqkSuNWsn1io6NpVyrPr6zOdE0UxWIJf08E3IDlQCNAKYriX6keKyMZEWd9Q5ArifWpEbHrnwU8uX0Tv7dvyf17Cep274+BUZKB9bMYEcf+HseNvZtwr9+COgPHJzumiAnBwjYpKTE8KIDhVUsk/r/s4k2sEpIWV48bwd61K6nduj09JyfFBhorFJJhTjojIuMYEUfPvWPknJsYGugxsltBAJ6GZeP+w7c8e+GPWi2ipycgKOxQKpU8fvwCP78A8ufPjZmZCcFBfoSGRaKvr4+BgT6GBgoMDQ3wfRvO2LFj6datm+S1P0XKiFCr1Ty+d4cbF85x6/JFDIyMyJ4zN9ly5sLUOTPOLq4YGZtw4+xp5g/tT6GSZWjSqSsu+Qpg8JGBYGeS9KM7slsHipTwpGnHLrJVojPF7qFXn/kolSrWrx2e2H4zQrPmv37+lO5N6mJsYkrNRk0p4lUTx6zaiiPf24iIi42lf4eWhAUGMGTJKiysk8IgvocR8fhdMGqZ78mnRsQ/c725f+cWfu/eUbxUGbr2G5wo0fozGRErpwzn6Na11Grelh5jpiU7po4ITrb2BQf4U9u9QOL/p24+TgxfmjpiAOtWLqNV+05MnDE7sY9CTyDA3w/7TxSXdEZExjAiMDDiwOkLDPdejIWZKaN6tkelUnHvXRj3Hz3mxcvXiKKInp4e6BugVCl5/OQJgYFB5MubB2NjY0JDQggLC0dfXw+FgQGGBgYYGhri+/YtE8eMpF2rFskumRYjQqVScefuPc6dO8fFS5cwNjIid5485M6Vi5y585AzZ05MTEw4evQoPXt0p0rlynT56y8KFnTDwCDpd+PjitKt23WgcqWKiQaAFGGB/vQeOARDQ0OWLkjKyfkw90ePHlGvUWOsLK1o2qQxNeo3IUvWrNrz/85GRHR0NG1atyYiIpyNmzZj/ZEBlFojov2IqUsqNWwp2yc2OprOZfP+ykbEf6IoFv3wN1BGFMUoQRAUwH+iKBZO7VgZKidCYWBAbLz0Df2n1PtLI0UaHCWziP4ERAUHcmPvJgAu79xApY59Ej0Se7xHc3nnBso2aUWzYRMBsLC1p1qLtomeCKuPVE96TvamVf8hiR6Ij/nUgNCRMXjrH0OXidd4+TaS8b2LUL9qlsTF1ti1hvYJZhUT/wwPj+Du3UfExsZhYxGIlZUZarWauDglcXFK4uOVKEzKUahQoS+aW6Dfe6b078mNi+exsrXjt5KlKVa2PGqVildPn3DrykWePXrI+1cvsbS1BUGgx2RvilesgpmEYXDn2hUcnDPj6JyZCtVrsWvDGpp2lFf3srQ0Y8G83uQv1J7z5+9SqpRbsuNZXXLy74UbXD13hoPbt7CidlWqNm1By/6DMTKW/oH/Hvy7ZgVR4eGMWbMFAyOZuinfEIVCkeq8hb/6aHb45G4SfgZCgwI4unUtAPs2raZlz4GJHokF44awb9NqGrRqz8AJMwDNWtisbcdET8TH+Q8TZ8ym7+Dhknk5nxoQOjIGr9750X7EDN4FBDFpQBfqVSmXuIZWs9HeVFAbJxmpYWFh3Lv/gLj4OGwtTLG0tECtFomLiyM+Lp64+DiMjIxxK5Bfa5zU8MbXl549e3H+wgUcHR0pU7o0lSpWJC4ujkePH3P+3DkePX7MixcvsLOzQ19fn/kLFlKtSiXJ8S5dvkL27NnI5OREzRrV2blrd4pGhJWVJfNmTqewR2muXb9Bsd9/S3Y8T5483Lx2ldNnfNiybRvTy5aibYeODBgyDKMfsHZ9YMmSxcTHx7Nr9x4MZTaZPodKLaaowBQvU4vjF8JAEIRsaFIaRFEUo9D8oRQEQWaXVpoMZUT8apja2PFb7eaJnogPBkREcCCXd24AwGfrOv7o0jfRI9F5/BSa9hmQzID4gJQBoSPjEh2r4uqdINZ7l6JKqbQp3VhYmOPpqSkmJxfOhEGqNxu0OH/sMMr4eDb5XMHGUbqAkl9kJCqlEn/f11jZOWBipp3oHBEayj+TxnBw41o69BtEjxHjKFm5KtOHDWD3hjU0/6QOwceYm5sweUIHevWdz7HD07GySl7cSF9fH49yFfEoV5EGvQewePRQulctR932najS+E/Mrb5vLkh8XBxr58+m//ylP8SA+BWxsrWnapPWiZ6IDwZESKA/+zatBuDfdSvp2Gdw4mbKqCmz6D5gmFYCNZBiYr+OjEdUdCxX7zxg1+JpVPAomqZzLS0t8UwIUZILZ5ILQ0oNBw4cQF9fnxv/XcMpk7NkHzUCSqWSly9f4uTkhJmZmZYnPigoiGHDR7Bu/XpGDBvCiKFDqO7lxdDhI9m4eQt/NmsqOwdLSwvGDB9Cn0FD2b9jKxYWyddQhUJB5UoVqVypIgOGj2bwgH6UL+lOpy5dafZnSyy/8xoaExPDvL//5t+du77YgIAEidcUNlP+DypWmwOnSKgxKghCZlEUfQVBsADS9OQzVGL1r0iV3mMYvOdislAmcxs73Otr3KNlm7RKFtIESBoQOn49cmY1Y/XUkvSacPVHT0WLJ/fuUKxMOew+I+Opr1CQKbuLpAEBMHtIP0IC/Bnz92Ie3tYoy1lYWvHPrkMsnjaRJd5TSCnkslXLqni458O9VA9u3nwq28/a3oGhC5czYPYCHl7/j45lizN/+EDev3qRimebPty4eB5jE1NyF/n9u13z/4H2wyazwedWslAmazsHajXXyJ03aNVeyxsrZUDo+PXI55qNVdNH0mPszB89FS1u37lD+fLlcXKS3oT5gEKhIGfOnBoDQoIu3boTERnBvDmzuXVLI81qZ2fLgb27GDV2PHP+npfiGtq25Z8UcitAmao1uHvvvmw/p0zOrFq3kTnzF3LpwgWKF3ZjyIB+vHopE478DThz5gz2Dg4UKVLk851T4IMn4nvWiRAEwUgQhHmCIAQIghApCMJuQRC048OSn/NcEARR4rHva+YiiqKLKIo5RVF0TXj4JhxSAQ3TMpbOiPgGxIQFSbZHBQdKtkslVdcZOJ7JR68khjLp+P8kZzZz9GSSy34kKpUqWU7Dl+D74jnXzpxg1OKVFCtdlge3ktRCXPPmY9WBExzYsZX+7VoQIZMYraenx8L5fRg9ojVVqg9i98a1KV7Tzd2TQfOWsPjYWaxs7RhQtzrXTh3/queRWop4lCQ+LpY7l85/l+tlZCJDpNfK0KAAyXappOoeY6ax9/K9xFAmHf+f5MqW5adcQ9UqFYaG0rlwqeX+/ftcuniR1StXUqZUSW7cSpL4L+jmxokjB1m7fiMd/upCRIR0bqC+vj6L5s5iQO8eeNVpyKYtW2SvJwgCpcqUZemqNZy5eAULCwuqVyjLmVMnvup5pJayZcsSHBTE5Utfp76nVIvEKdUpPr4Bc9AkLv8JlAMsgb2CIJfMCYA74PzRoxgaT4H8m/QViKIYJYris7Sck6HCmY5fvIRVVlfJY37h0rkSrwKk3ZBvX77FyNI2WVuozBiRETHERwRjYJ5cC9rSSju2+t6m6bw+swPXSo35vc3QxPbra6by7MQ28lZrSsnOI5KdI7fAOVrYEB2f3HUZESsdrharlE5ENDGQ/nwqZBKo5ZJEjRXSHxULuRtJ1UmJNml1H5Thks1irExitczcBX2ZuehLx8DrSbTrGUi/jgpTabetKBM7Kci5uWXmgkK62mlURBg2dvcwdqmW/ICBhOSuKLOrblBNsvlWqPTnPSha+jUwS0jiE0WRmKgowoKD0BME2aR7ueT94ITxFdY2iAi8eP2K53dvY+3kzNPg4KSOJqaM37KLpeNGUqdMMYYsWIarmyaH45GQPH7XptJvjN3wB1O6tsd71FAQRaztHRi9bA1ZJGRIbRydaD1wGEXKVmBq1/Y06NKD+p27J9VDCNf+TMbJJFY/8pf+/Ep9V0u26sb2xQvIVsRd4oxvz5Mnj8mdO7f0QZn0sZAo7c/J+4g4QgIDsP7EKxocI/2ZilGqCA8OwMImeX8zifVp/fSRnNy+jqpN2tBxxOTE9uWThjN16xrJBGpHM+nwMDMb7aKhpmnMiJbbxY2RiRyWG10ur1puOsYSBSBlk5PjZNZWtfQkRQOZcDq5dUtP+jsuKiTGkUnOVitk1mdD6R12QS4p3FzGiySzFgc+DsDS2haVVebP9pdL5pYbW65diJdeQ/USkshFUSQ6NJjgt6/QD/eTva5Ugraon/T65sxkQ2xsLMG+z7l3+ybZMjsnu3Z2Jzt8Du+h7+ARlClfkU2rluFWIF/CJJO/121b/knRIkVo3q4DgwYPQRRFMjk5sXXtcnK65MDMJPn9Uq7sWZgyaSJeXlVp26oVAwYNonvPXonHo+O1X5u02nL66uTribmRgqGDBjJn5gw2rVudtsE+QqVO2VBIbyNCEAQroCPQXhTFIwltrYEXQFXgkNR5oigm06IWBKEjEAZs/cr55AMmAL7AeGA1UAm4A3QURTHV1QYzlCfCyCR9Cp+cXTKR/X2qcX3NVK1jceHaXoRnu2ZzbXJDnu2anWL/uPAgXp/ZoTnnxDZiEzwSsWFBPDuxDYCHh7cQHSq9y6ZDx6dYWBgTEipzg/ADiAgPY3inNtz97yp1WrT9qrEMDA0pXqkqW/6eyb7Vy6naXFtyz8jYhJ5TZtK8z0BGtmzMhtnTiYuR3hhwyVeAxUd8WHT4NLN3HSIiNIQjWzamOAc3d0+mbN3Neu8phAZI73KnJ24VqvHw6iUOrFxMWOC3v96nmJqmTwG+JROH0aFiEZZMHKZ1LEzCW7DVezSj6niy1Xt0iv3DggI4uV2jcX9065pEz4MmgXoNoEmgDgnUrvOgQ4cUFhbmhIRKezJ/BCGhYTTr1J07Dx7SummjrxrL2NiYalUqMmHaTBYtW0HHttprqKmpKf/Mn83APj2pWqcBU7xnExsrrRJYpHBB/vM5zpXTRzmxfyf+AQFs3LojxTmULVeevQcPMmrEcIKDpKMw0pMG9etz/NQp5s5fSEDgl91LxSlFouNUso+YuDTlFqeG4oABcPhDgyiKr4B7QOnUDCBodrg6Aus+JEJ/BcuBE8A74CywE3AApgGL0zJQhjIi7DJn+eoxokMCuX9wM5D8Rh/gwZYZ+IyoxYMtSe7vuPAg/C7uBsDv4m7iI5J2Su9tms6poX9wb9N0AAwtbMlaThNO5lqpcaKnw8jSFtdKjQHIW60pJlbftzCNjoxLnlyOqNRqTvk8+GFziImK4v71q+xat4o2lctgaW3NioMnyeoi7RVMC3/2H0JsTDQv7t+lTK06sv0q1m/MnH3HePHgHr1qVGCt9xT2rl7O41vJCyYZGBpi6+iEraMjxStUZu/aFcwe1Idn9+7Ijh0WFES2PPmw/g5JtSYWlgxctgHfxw8ZWqsCy0cO4Oj6VZzf++83vzaAo4RufFoJDvDn0GbNLuChzasJ+cgYWjt1BP2qF2ft1CRva1hQAGd3rgfg7M71hAcn9V8/fSQDapZg/fSRAFja2lOxkeZGqGqTNlgl5INpEqg1SjMfJ1Dr0PE5CuTJRURkBBeuXPthc4iMjOTy1WusWL8ZT686ZHZy4vSereTI9vX3NJPHjiQ4JIQHjx7ToE4t2X5tWjTj/IlDXPnvBiXKV2Hc5GksWrqCm7eSr41GRkZkcnLE2ckJr0oV+HvRUrr1G8ydO/JrqL+fH0WLFcPG1la2T3phb2/Hnh1buXHrFgWLlqBrzz4s+mcpm7fJSMhL8MET8ZlwpkyCIFz56JHq2gkSZEKTb/DpDsv7hGOpwQtwBZZ9xTw+YCaK4iJRFKcCpqIoLhdFMVoUxR1AmnaaMlQ4U3pgYm1H/hrNuH9wc7Ib/diwIN74aCzuNz47cK3ZEUMLWwwtbHH0rIvfxd04etZNDGmKjwhO9Dq8PrODXLU6YWhhS4HmgynSuKtWqNTvbYZSomV3nQGhI00YGCjo0Kosew/epELZfN/12td8TjFzcF8C3r4la67c5HUrRK+xE6lUq95Xj+377Amn/t1GfGwM9y9fRKVUcuXYEcrUlh/bIXMWhi1eyX9nTvLg2hVePLzPpr9n0mfGXNwreyXra2xqRv+Z8+gwfAwH1q9mbLs/yeKaiwZ/dadEparJdMnfv35Jttx5v/i5hAX48+zmVXwf3cfWOSuOLjkxNjPHyD4zhglysmq1Gp8Ny3h4/iRiXDQxkZGIajU+/24hIiQYQ+M0FQn9odjYO1C9WVsObV5N9WZtE0OaQgKTvAgnt6+j3l/9sLS1x9LWnjL1W3J253rK1G+ZGNIUHpy8f51OfbG0tafl4Ik07zEw0YD4QMcRk+nQZ5DOgNCRJoyMjGjdtDH7j56gZIli3/Xah4+doM+gobx99568uXNRKF8evCeMok71ql899r0Hj9i0bQfRMTGcu3CZ2Ng4Dhw+Sv0UDIkc2bKxff0qDh09zuVr17l99x6TpnuzcslCvCpXTNbXwsKc5Qvn8t7Pn2Wr11G3Tm0KuLnRp09fvLySr7cvnr8gX74vk7oFePfuLRcvXOTO7Vu4uLqSJ09ezM3Nye+aDZOEGkIqlQrvWbM5euw4EeHhRERGoFarWbV2HfVq10qTWlO8SpStWaE5rgZ497k6EQmF2kak1AdNmJDsEKReDakzcFkUxeup7J8SgiAIeQErwEQQBDdRFO8KgpAFjcck1fzfGREAZbqMJGfNjslu9I0sbclStiFvfHaQpWxDDC2SjrnW60fWKu2S5UQYmNuQtVxDXp/ZQdZyyft/akB8QGdA6PgSjIwUxMamrj5KeiGKItuWLqJ2y7Y06dIThUKRmBORHoT4+7Nn+RLqdu5KL+95mFtZMb5tM7LkzoNLfrcUzy1ariLFy2vW5aqNmzO+Yyuy5clLmRq1qde+s6ZoVALWdvb82XsADbr05Oz+PSyfOIbDm9bTbcJUbBOUpYLfv8PGMe11APauWcGOfxYSFhKMS+FiZMlXgAcXfTi7bR0v7tygdNN21Oo7kvBAf3ZMHkpsZASVO/YmWyY7jM3MeX7nJrsWzqbnnH/QVyi4dGBPmufwo+gycgrNug1IlhNhbafxIpzcvo6KjVph+ZER0GTgeGp07J0sJ8LCRr7/pwZE0jV0BoSOtGNoaEBYmHTu0rdCrVbz96IldOvcge6dO6JQKGQL630Jvm/fMm/JMvp278LaZQsxNjahXrOW5MuTmwL5U95wql61MtW9NIZMy2ZNaNyyLYULFqB+ndp07dA62SaLk6MDIwb1o9/QUWzfvp2BA/pTpEgRvGfOSlSWevfuLU5f4OVcvHABixctJCwsDA9PTwoVLMTxo0dZvvQfrl65Qv++fZg8cQK+b9/SuUtX4uLiGTZkMFbmplhYmHPh0mVm/z2fDWtWoq+vz9YdqfPoqhISq+WIT31OxBxg3Wf6vARKAvqAPfBxLKYjcPpzFxEEwRGoB/RI7cQ+wwg04UwqoAngLQiCDZAHGJCWgf4vjQiQvtHP13RQogfiUz5NqgYo0HxwogdCh45vxaFjd+jeqeJ3u55KpWL2kH4EB/hTt00HFDJJ9V9D/hIe2Dg64lntD1zdCqEnCDTp2Z9Ns6czdMmqVI+Tr2hxlp+9ys1zPqyfORWFQkGdth2T9Xl27y6zB/fBOYcrlRs15eXDB/SqWYm+M+bye8Uq2Dg68fTOLZkrJCGKItN7d8HU3IIek2aQNVduIkJDaDRoLCX+qJ+s75P/LrF6RF8y5yvIgXlTiAwJwtE1N3tnjQdVPPFxsUSFh9Fp0iz0v8Hr+z34NKkaoPXQSYkeiE/5NKkaoOXgiYkeCB06vhVHTp5mYA/54pXpjUqlomvv/kRGRNKhdatvsoZWLFcGGysrmtSvS4H8eUHQY2CfXoyf6s3GVUtTPU7pkh48unmF46fOMG7yNIwMFXRonbwC9/Wbt+kxaAS5cuemdZs23L59G09PD5YuXUaFylXIlMmZs2fPfPZaarWa9m1a45QpE9NmeJM3Xz5CQkKYM3ceDRolzw85deIEfXr1oECB/AwdNoLAoCDcChSg34CBxMbGEhsbQ2hYOKuXLUFfrlq5DEq1SJxK3lBQpnDsY0RRDEA7REkLQRCuAvFoQpI2JLRlBQoA51JxqXZALLApVRP7DKIo7gMSY+kEQfABfgdei6L4Pi1jZcxfrzQQHRKIiXXqPQBpNQh0BoSOb0lYWDQXrzxl96ae3+2a/0waw6snj5m5eSem5tKqUV+Lnp4eOfIVwO/1q0TFJVMLC9l6EilhbGKKR5VqOGd3YVCjWtw4d4YuYybhkDmLZjdwWH88qlTDLpMzD2/8x3WfU5StVZcNc735vWIV3Nw9WTV5HKunjqd5n4GyAg7RERGc3b8Hl/xuzB82gHK161OzRRvWjuqHhZ09+TzLJvbNVdSD3O5lOLp0DgbGJrgW86Rmz2EYGBmR2dYchaERhsbGmFtrb078bAQH+Kep6n1aDQKdAaHjWxIUHMKtu/epWqHs5zunE4NGjObVmzfs3b5Jtr7D16Kvr09BtwI8f/VKY0QAVpYWWJibf+ZMbczMzKjzRw1csmejau0GHD1xCu9J48jsnAmVSkX3foOp16gx9vYOXLl8mVMnT1G/Xn2mTZ1ChcpVKFO2LOPHjmb82DEMHjoMY5nwzNCQEA7s30cBNzcG9u9Hnbp1adWqNe3btsbRyYkyZZPeowqVKlHS04NJU6ZhambGb7/9xsTxYzExNsFQoYeRkSFmpmbY2EgoFX6Gz3kilOmsziSKYqggCMuBGYIg+AGBwCzgJnD0Qz9BEO4D80VRnP9RmwB0AjaJovhF7jRBEFJ272vm+EUFqTKUEXH+cQgBb/0wttK+cQ/w9dPyLtxYO5XnJ7eRpWxD8jUdlOxYaLC2ZrKJqbTsnZ6+tC6ZnOpbtIwMq77MOMEK6fz2SIlx3oVKS8GZGEpb4qaG0mObG0n3l2s3kpmjvZm0ZOkVPLXaSthVlOyLYqdks2AqI0AgyiknyLXL7FJIyTMLaftKCHoycZgpSj9LIPOcLl28Qb68WTH9VJ5QX+JGV5SWRLwXLj12dLx2iFRIYAD7N6xl58Ub2H9y4xijlB7/ZWioZPsDP2ld8ge+mvc1IEbgyuMAgp0DMVAI/Hf7OTF6lhy5m6S4YW4i/X5IfpUEO7quOcjp1QuYPHgQTcbP4+6JA7x4/Jgmk5dgYmlFprK1yVSiIuuH96BSm27c8o0APVu6rNrHtnH98R01mtr9x+Jooa1ektnKjIIeJSlfrxE3z51hy6K5mJpbUHvoNMxy/ca7sOTfzSrdhhE4sgfG5hY0HDULRUKV6oIuP85wUIvw/M17yWJrL3zfYvtJ+4yRA9mxbiV1W7Sjz7jpie2mMtLRWS2lbx5iZH6UJVRMAdCT0UOVu66hzNoqNUysMm3VaNVpK+CaZgxldC+lXjEThfQNqZGMTKoo8zqq1Gl7TmnpLatuLfM8BRkJXTnZUzn5VOKk2y9dvoxb3twYKwT4eEwJCVm9KGlZcdFI+vVVm2p/l99OOHJBAAAgAElEQVT7+bF+42bun9yNpTIMPlKGElTSYamijCyupMSrIuk7ZmxsQky8GlFhjCCqeecXgHNm52Qyu6K+dBiqKCGJXrC4ptbEhAkTGDJ+GqtWr2bTxo28fveeth06YWVlRYvWbahRqxbtWrdi+KjRxKlEsrrk5MTZi3Tp2I5xY8cybtIUFBLvt7ODHR4eHrRv147DR44wb85sLC0tWfjPMn4vXgLlJ5/LWbNm06RpU5ycnFixfDlGCWuorPxvKlGq1MQp5RWY0tuISKAfGiHtzYAJcAxoI4rJfvzzoQl5+piKaMKMtKW3Us9tPv81TuNNi4YMpc50euEEtv1VmUvLJiVrv7RsEgf7VePG2iTJ1tiwIJ6f1MiqvvHZISndqkPHz8ztOy9o3XEug/rW/3zndOLf1SuoXLse9p+pRJ0eKAwMUcUl3axHBvlhapv23ISPMbW2pUrXQfg+uM2za+fJUdSTvKUrM6u5FzePaop85vUsx4BNRyjXsnPieeY2dlTvMYRbR/YQ+Oq57Pi12nZi45wZ/Nl3EBPWbWPY4pUUrl4fhWHyDQhRrWb9oI5YOmai8di5iQbEj2bM4H5UKJKbCcP6J2ufMKw/tUrkZ8bIgYltQQH+7Fi3EoDdG1YRrJNV1ZHBuHHnHp0HjGBAt46f75xOLFm2kmZ1amBv++03C4yMjYn5SK7V9907nL9Sgc3BwYEpU6Zw9uxZzvr4ULFSJapWqYJ70d/YvUuz4Veteg2uXL9Bt+5JIfqOTk6MmTCJjevWpljFulu3boyfMIFxY8eyb+9eNm7YQNPmfyYaCB9QqVTUrl2bPLlzs2b1aq3jX4NSrUmsTumR3oiiGCOKYi9RFO1EUTQVRbFOgszrx30EURTHftJ2IqH9ayrsVQIqf/JoDPwDPEeTb/FFZCgj4u4BjTTrwyNbiQnVGAUxoUE8PKKpu/H8ZJJkq5GlLS4VNbKqnyZK69CREViy7DBdO1WnWZPv54a/dv4Mv7lre5G+BfqGxoS9e8Xraz5s7d2IJ2cOYJYOibMGRsbU6D2Kfd6jMTQxpe7QKVTp1Ifrh3cn9rF0cNLKRXDO40ZhrzqcWPm3bIGxktVqUrXJn4xo3oDYGJkdUUDQ0yNrwd95c/cGga+ff/VzSi82rFoOwObVywkM0BgFgQH+bF6tad+xbiVBCe229g40bNUegLot2mGjS2rWkcFYsmodvTq2pn5Nr893TidO+5zFs2jh73ItY2Mjnj57zr4DB3EvW5Gdu/finJDs/DWYmZkxY8YMevXqhY2NDUuXLaPvgIFs35pU4yxz5ixauQi/Fy1Gnfr18Z46WXYNbdSwIU2bNqVa9erExckU90MT8lqiRAnOX7jAkydPvvo5fUycUp1ynYj4dK8T8UMRRfGUxONfURS7ARuBpl86doYyItxqNgMgr1eTxJAmYytb8no1AcClYuNkIU2/tR5K2Un7tEKZdOjICLx87U+RQjm+6zU7DRzOomkTCQsJ/nznr6RAzeY89TnIqb9H4N6qFxX7TCRHiQrpMnYez/KIopp7Jw9yfvNyLv67gewFf//sedW6DyHw1XP2//O35HG1Ws3+tSspVLI0hkYpy7JW7zmcwl512Tq6V4r9vict2ml2ZJu17ZgY0mRn70CzhGT0hq3aJwtpGjTRm20X7iQLZdKhI6Pw6rUvhQt8X2nskUMHM3rmAsLCpcM505OeXbuweu16evTpz7hRw1m68G+8qqSkKJp6atWuTUREBHt272bWzJmsXbWKEh4enz1v/ORp3Ll9i7/nzJI8rlQqWbZsGZUqVsQgBcU/QRCYO3cu9evVo02bNl/8PKT4kBPxmToR/y+c4Cs8ERkqJ6J891G4NeiilRPh0WkEOf/oLKm4pPNA6MioKPT1efnq+4aQiKJITGQkj+7cpniZFCWyvxrbHHmoP2sryphorNK50Nu904cxsbLBwNiEq7s3U7P7IPKV/vyPq6GxCS2mLmFZl0ZkyVuA3ytVS3ZcT0+PAXMXMatvd07s2EKlhvIbOKIo8uzaBdwbfE0oa/oybvpsuvQfppUTMWrKLNr0GqSVEwHoPBA6Miz6Cn1evnn7Xa8pCAJhEZHcffSUksWKfNNrFSlciMtnTxEdE0Mmh/QVKNi2bRtZs2ZFFEXWrVvH8FGjqV6j5mfPMzMzY83GLdSsWhE3t4J4Va+R7LhCoWDVypV06tyZrdu20aRxY9mxRFHk1OnTdOmSvspaapUaVQqGQkrHfkFqAdLJQKkgQxkRgGRSNcjXZtChI6MyblRzylYZzv5D15g3qxN583x9ddOUuHTqOKO7tmfa8rXf3ID4gKGJGYYmqVcviYuKICYiHAsb28Q8BFEUiQoJItz/LdEB7wh594Z7pw9TrFYTji6ZQc0+oylULvW7cxZ2DvzlvYgFvdqTs0gxLD+RMi1ariLj127Bu083fPbuosKg6ZLP4d6pQ8SEh1C8TrNUX/t7IJVUDUgaEDp0ZGTGDumPV8M/2XvkOHMnjiKXS/Zver2DR47SuXtvtizy/uYGxAcsLS2xtLSUV3r5hLCwMMLCw7F3ypyYZyCKIv7+/rx+/ZoXr17x6uVLtm/fToeOHRk1ahSLlyyhdLnUe4kzZ8nCyjXraP1nM85fvoatXXKFzOrVq7N71y7ad+jA1i1bWLh8Faam2mIhm7dsITYmJt09EaIook5BxjWlYxkRQRC2SDQbAvnRJG0P/9KxM5QR8eRlBBERMZLHwkOklXwiZfrHS8S8KWXi4FRq6Q+UnJqTiYm0Yo+1rbT0WpSdnOKGdrSZIKO2YWIso84k1y6jemOskB5fTp3pnYl0TKO5kbYr93mItOvSzFD6htVUxtVpIqO5bSijFS2n9GIg0V9fT/p55jWTHiOtBMnUjLOVeKqFisOjhxXo1388/+57zZAhdROP3YvIrNU/MFo6Rj9eJe1WV3zyXLevWs5fw8dRqFxFQmO11YmCZcY3knk/stlIh/vceKatUhcQJK22YWGefOzTs4fx7tZF4mOi0DcwxMDUgtjwEBRGxpjYOmFq50zQ45uIoppzO7di7OhKXKaiXLovHZ4l931SqbJg7lKEzZsOkNVTs5P2QV0t5MV9ogLe8lvfxZyZ2gWD45ewz19ca4yoaAj19+P8kSNkd08yYjJby6iOfQfiVKKs2pC+zGsh1a4vs06Exkq/j3JqQHKKPTLNsggyamhSYdnxMjcI8TLrvFomtlsOufsPuXEMZJSlpNYtY5l1WO51NJBpl1LOARnVszSOLze2sczdhtznTk9GsQgJVSEAQU/7t+j3IoW5c2of/UZPZs/hY/Tt3Dapv8RNt9pYWtJaTg1I7+mVZP8vnTeH6b3bUbW0O6i17ydUEmpOAKLMddVG2u0hcWm7wTX/ZJ1v36U7586eJSIiAiNjYywtLQkMCMDMzJwsWbOQLVt2zp87h1qtYvnyFRQtVpxSZcvL5jjIzcatmAeFixbj6MnT/FFXEy2jVGve6xvX/+Otry+7Dx2lbg0v7ty6hbundi5evJ4hL1+/Zvv+w1Txqp7Ybqz4IiGhpDmrQJWCSltKxzIoUjtEMcAZoL8oivu/dOAMZUTo0PH/hoODHeXKunP58s1vdo2IsFCu+ZzmyukT9J8qHcf6MyCq1by/c5kqIxdjliUfyugI4iLDMbKwQWGskUKMCvLj8PCmFKjXCYWhMVk9qn7x9ezzFSfg3pVEI+IDQU/vcH31ZBTGZoiiGrWMbGN294qYDJvHce8BhL9/Q8HaP09Ykw4d/y84OdhT2r0Y9x8//WbXCAmP4Pil65y6epMV49NU8Pe7olQqOXP6NIePHCV3fjfCQkMJDQ3F3sEh0RPw5vUrKpQpzaChwzA3M6d+gwZffL2Spcty3ifJiPjA5YsXGDl0MGbm5qhUKuLipTcj/6hTDwcHR7p2bEOfAYNp06GzZL+0olarUaXgbUjpWEZEFMUUXfGCIBiIoiizxZkyOiNCh46fnPDwSExNU07i/VJWzJjM5sXzKeTuQe+J07C2//6Fv9QqJe+unyboyU3MnV2wcS2EhbOLdkdBIEdJL45N7IJd3qK4VqiP829l0FMkuXHeXD5GpsKlyFuj5VfPy7loBR7sWUah5v1RGGt+YAMf3yTs9WMASvWZRXxUODa55JVYHPIWodakNewe1Izs7hWxcMr61fPSoUNH2oiIjMTMRLqm0dcyct4qFmzeTZnfC7JgeC9sLL9Ngc6UiI+P5+ihg1y7eoW8+fJTrEQJcuXOo9VPEAQaNmpE9WpelC5bjtZt2lHFyytZRe1d/+6geo0a9Oj59YIQNWrXpWHNqowYNxHjhNf/4vlzPHxwH1EU2bh1BwH+/vxetJjsGO4lS7Fj32FqValA1Wo1yZz169dQUS2iTiHvIaVjvwoJRewqAX8CDdCuT5EqdEaEDh0/OTdu3iVL5kwcPHiSMmVKsHv3EVZtOYFr3nzkdStMyYqVsXNIe32FPetWcWTHFjZfvPlNjAf/N685tHYF969cQlSrEUU1hsYmZPZqi3X23EQF+fH66imentyFsU0mHAuW5P3Ns9xYM4Vq0/fw9NhmHHLmxrWMJplPEAQ8Oo2gaKt+PPE5xIP9a7i2cjKZipTCwc2d7CWrY5u7MA8Prk+X+ZvaZ8Y+f3Fent1NzirNAXh77STBz+5Suv887PL+jp6+gvjP/OCYOzjjVqslV9bNpdKAGekyNx06dKSem3cfkCenC4dP+lDavSjb9x1m7+HjFMiTk8L58lC5rOcX1XVYsGk3u06c4/HeVdhZW6b7vJ8/f86ChQu5cOECarUaUa3GyNSMvoOGkCdvPt699eXg/n1s2bCO7C6ulCtfgcMH9jFi8AB8Lv/H8n8WUeL332nQsCGgqXI9b/4CJk+Zypat25jlPZ3+fXtRpaoXZcuVp37DRpRw92D1ypXpMn+XnLkoWsKdHVs20qJtBwD27dnNvbt32bR9J8XdPdDX15cNl/tADhdX2nboxNSJY/l78bKvnpdaLabobVDLhDb+CgiC4InGcGgKOAFxaPIjvgidEaFDx09OQEAwFy9e59z5q1y9egtX12y06jWM1y+esWvjWtYsmMOmE+e1znt0+yavnz1F0NNDPyG/RK1SoVap8H/ry/q53szbdfCzBoRKpcL3+VOePn9GwFtfAnzfEPDuLUHv3xEVHk5MVCTRERFER0YQGxNNwRKeGJmacv3saco3aErrYWNQGBgg6Onh/+YVK6ZMJj46EmMrWxzzF6Py8EUobF0AiIsIxffKUY6NaEx8VBiRxSskGhEfMDA2xbV8PVzL1yP87Qv87l7m5bn93Nm+GLvchbHN6ZY+LzyQu1orLi0YhJGlPdk8q5KjfD1enNmNQ4ES6OmnfvksVLcN23vV5cGRbRi/zo5aqcTA2Bi3UuXRk8nl0aFDR/oQEBTMjTv3OXX+Etdu3iW3aw4G/NWGJy9esXLLThas3sip7au1zvvv5m2evnyFob4eBgm79SqVCpVazYvXvniv2MyplTM/a0AolUqevHzNq6BIXvu+5bXvO177vuWtnx9hYeGER8UQHhFBeHg4sbFxlPL0wNjYiNNnz9O2bVumTZuGoYEBenp63H70hOED+xMVFYm9gyOly5Zj88495MtfAAC/9+8pWiAP5T2KExoaQoOGDRONiA9YWFjQum07Wrdtx8OHD/A5fZqNG9YxbfIkihYrRtHi8p6BtNK5e296dW6Pja0d9evVo0XrNuzcsY2y5Sto1ZlIiW69+1HBsyib16/F0cEOZXw8pqamVKpSFT2ZXEY51Cq1bA4sgPoXqxMhCEIhNIZDc8AFCAb+BTYB1oBU4nXqxpZLlvnZEARB9Fpw4ZdMrLbLwInVljLjmBtpX9fOTC6xWvr1+n9PrAZAfIUoionve1RUNIaGBjyK0aiMqFQq6rgXZvTs+eTxKAVASGAAiyeO4cKxwxQq4UFcXBwqpSYxUE9fX7Pzo1DwZ/feFCwurfutVqu5eeEcx3fv4PS+3Rgam2CfOQv2zpmxz5wZu0yZsXVywszSCitLK0zMzTExM0dfoeDmOR/CgoMoWrMOpubarv2917RlayMiNfMT1WpenNlJdNB73lw+Qo3xKzCx1jZyYiWSC/0fXOPeruUUqNsR+3xFkx1TqaTXOfnE6qT+/vevcHvTLBRGJjgXLc/jg+v4rdVgsnpq5F/lPBH2NsnXh9fXznB3/wbsLE3Q09cn+P1b1CoVzYaOI3dRd7r+lgNRFNPngyaBIAjinbehqGTW/Jh46ecRlYYf1HiZBOr0Sqw2NZD+jpsZpiWxWnouusTqb51YnfrEfQA9UfpzJyi1RR8A9GKlBSSEuMjka2h0NIYGBhgkvJRKpZICFeqwas5kSpUuA4BfQCDDJ07n6CkfPIr9jjI+jviENVSRsIYaKBQM/PMPSrjl1b6mtSMqlYrTl66xbd8R/j10AnMzE7JlzUrWzM5kcc5EtizOODs5YmVpgbmtI+bm5lhaWKCnJ3DytA8hoWE0a9UWC4vka+jnEquVSiUb1q7m1cuXHD6wj4MHD+EgIaEdJ/E98DlzmrmzvBk2YhQl3N1TvM4HYmS+Tx+Pf+bEcSaMGoaNtTVVq9dgwdw5zJq3gD9q1wHkP18xnyQ4Hzm4n9XLl2JkaIBCoeDVq5foCXpMme6Nu6cn9pZmn11DBUH4K3O1nktsf6sh20cdH8PdOY19RFH8PjKF3wBBEHKiMRr+BAoCYcAuNIbDEVEUlQn96gE7RFH8ot2sDGVEmDZegfKVdIKpYCR9gy7GSyvKSPaXUFMAEKNDpcewki4vL5hI70pkyyNdOMzaVsaIMNK+s5Sz3E1MpW+sTSRu5gEMZX50TYykf6RMZIwFM5nxTQ20xzGRuaaphLEE0oYIgKWMzIecESFnpEj1tzKSNgylDI6UiFVKq3nI3UgoZW5ggmOkjeCPx/HZv4clY4czaulq7JycGdKsHsUrVKbNwOGYWVrKGmNyc3n57Ckz+nYnMiyUivUbUb5WPTK75iRcQrEJIDgqbc81MFLbkjp/JyjZ/2cmtcOtSW9sckvviPm+kZa1VsZLz0VhIP2ZiY6Sfk7qT256RbWKyEdniPV/gaCvj2X+8hg7ugJgIHNjK8eHjQ1RFIl46EPgmVUY2ecg6vm1b25EHLz/nleh0mui3A26lGEgd3Mqcz9BaKy09WwlscaB/I21s7n091N+7trfq/BY6XVe7vMqZxjJqTzJIbeZkRbSaizIbf7IvV4GMpso5jK/C8b62u3mMuu5ocx7Kmd0yCHI/E7LKSjJjvORMbJl+78MHzOBbasW42BvR9X6zaldvSqjB/fF0sJC2hoF0JN+HR+9CaBjl65ERkXRrEljGtavT05XF5D5DIgySlSixPhSN/8Ayk8+pxVKezJzzjyKuUtvFMmNI4fEWw3IG82fblYolUq2bNrIk4cPMDAwoE6jpuTJlx+Q3zT41Ij4QGCUZj0RRZEju7exZPp4chcoxPkTR1JlRDhX6b7EpkhKRkQs9+c3yehGhBqNeNY2NIbDflEUtTLYv9aI0IUz6dCRwSn7Rx0C372lbx3NzniFug3oNn5qqs8PDQri4c3rPH94j+f373Hu8AGa9uhLg05d0+wmTi/0FQYEPbqOda6ist6C74mgp491oSrJ2tTKeIQ0hDRpjSkIWOQrh1lOdyIenSPq+bWvnaYOHTq+gKaNGvDa9y2eXpqd8TbNG+M9YVSqzw8IDOLajVvcuf+AO/cfsv/IcYYNHkS3Lp1/2BpqZGTMuXM+FC3h/lOsoQqFgsZ/Jleoi42NTaxV8SUIgkC1ek0oW6UGpw7t4/yJI6k6Ty1+Jifi11BnegHkAMoAvgmPS+l9kR/z6dahQ0e6cuXkMfIVLU5Bj5LcOOfDhrneqFQqRFEkOiqSWIkaD/FxcWycP4e25YqzccFs3r18QYFiJZi18wCN/ur+w378AH5rP4bnJ7YS+vzuD5tDSoiimmcre/L634nEhwWgjA4nNugNcaH+iKq07YjqGRhj6Vb5G81Uhw4dqeHQkaOULFGMsiXdOXj0BNP/XqRJZhZFIiOjiInR9lrGxsYydc58CpWuxMwFi3n1xpdS7sU5dewIPbp1+aFr6MJ/lrHw77ncuX3rh80hJVQqFTXKuNOzQ2v83r0jJDiIZ08e89b3DfHxaVMbNTW3oGaj5qnur1aJqJTqFB8ZHVEUXdEYEP+iCWk6LwjCM0EQpgqCkG5JLzpPhA4dGZxHN6/z/P5dVpy5goGREQHv3jK911/sXvEPMVFRIICAQI68+Sjk7kmewr8BsGnBXDJlz8GCfcfJ4uKaOF6c6scnlZk5ZkXQV2Bobv2jpyJJ9Ou7xIe+Iz70Hff+1uyuGVo7o1bFoQwPRNA3wCRTLnK2moqewbeR59WhQ0f6cOHSZZ69eMndc8cwMDDg1RtfWnXpzZzFy4iIjARAT9DDLV8eSrkX47dCBRHVaqbPX0K+PLm4cGQvLtmzJY6nNk5/paa0kjtPHgRBwM7u+8t2p4YLPqfx93vH0QOvOLR3FwDZXVyIiY7B7/07TExNyV+wCMs270yUh00vRPX/R8VqURTPozEe+gJV0BgTfwGDBEF4iibM6auqn+qMCB06MjCiKLJyyniadu+DQYJb2D6TM1M27STY7z3m1tbYWloRGxPDw5vXuXP1EldPnyQ+LpaOQ0dRpkatn8LV/SmquBjiwoIxtnX60VORxMgxJ5mq9SA24CVxgS+IeHoN9PSwzOlJ5MvbxAa8JOrNfdRxMTojQoeOnxhRFBk+ZgJD+vfBICF/LFuWzBzftZm37/2wtbbG1MSY6OgYrt28xfnL1zh66gxxcfFMHzeSWtWqfOYKP4bwsDAiIyPJ5Oz8o6ciSZFixRkzxZtH9+/x6MFdfE6ewMDAkDIVKnPB5zTPnjzmv8sXiImJTncjQq1WJYqNSB5Pozf5Z0cURTVwBDgiCEJX4A80BkU/wBT44uRonRGhQ0cG5vSefwkLDuKPVu2Stevr62PvnDnxfyNjYwp7lKSwR8nEtrSqznwvVHEx3Fg9Cdu8RdMko/o90TcyxbqIJgfFwECfqDf3iXh2HX0Tc8yyF0bf2BwjG2cUZj+nJ0WHDh0a1m3aQkxsLO1atQBVUsiSvr4+WTMn3ICLIiYmxpTxdKeM50eqRTKJ1T+ayMhI+vbqQZly5X/KTSIACwtLmrRsA2gSq69eusilcz5YWVvjUboMlpZWOGfPibWNbbpfW1SrUCulq2QDKR7L6CQkV+8EdgqCYAbUR6Pi9EX8nL/QMiifXQGV9JurDg+QbBfkvuRS7TIKT4K9i2S7sYT0JICtvXTFSoWMIoZcuxRySjDRMgo5csjJUqrV0h8JfRlphrQoa8ipnETHSY8RIaOiEiszdznVJlkkVJvkbqzl1JbkVJWi09hfLoRITllJXxCIDA9j+cQxTFy2BlszM4xlpG+j5JSiZK4pp8L02F9a1eeZTHtUtPR1wyO02+PjNa+7Kj6WS96dMcvkwu9/TSdYRrpZToUpLEx6LnKqNnLSo5Hh2uPISUBbWJmCURYU+bMAmi0dJRCnUhPup63sFhb6Vd7jr+JNeEwKCkqpX0OsjKQ/a3JqQFkMpb0xcipBFjLKbPJyzdLtUqq1cn1DY9Km2hQRl7awv7QqKEm9T7FpDLMwUkqPLfOxx8pI7nsi3V+tpz2QnEysHHLfQfktDunnFCfKSIjLSMsCBAeHMHLcJLZv2YSekSmiUkYqWCGT/CujFCWnwiSr8iSDVHe511cv4UBkZCS1q1WhcJHfWLpsWdrfD5k5yijuIveJlHpfP1WQSuoLbkU9cCuaXEkqXq0mTuLD97UbYOr4OFSx0r8V8GsbER8jimIk/K+9O4+Toyr3P/55uiezJSHbJIQ9iUACWZFAAAGJGsIqqywXriCKIsimgD9FEe7VCyIqIiqLCogiXPUKSADBQEDDmkAAWcISkgAJWck6yWz9/P6o6pleqmamk5npnpnv+/WqV3edOufUU6dravp0VZ3iD+G0RbpVJ0JEAis+XMqPLrmA/aZ+hvH77Nd2gW4i1VDPxmWL2OfiX5Esr4RWDvQiIlvq/Q8+4NzzL+Too45k74/v1XaBbmLzpk0sWLCAfzw+i8rKytjnovRmbZ2J8F7SiegIGp1JpBvZtHEjd914PWdM3Y9Re4zl4v+5rtghdag+1f0ZtOtezP3Fxbx619W95hchEekaGzZs4Nprr2XKAQex98f34tqrf1DskDrUkJoa9t57MscfewwXX3hBwSMd9QapVCNNjfWtTtI+6kSIdAMb16/j9zf8mFOmTOD1F+dy84yZnHP5lVRWVxc7tA437owrGDntdDYuW8zyOQ8VOxwR6QHWrFnDNddcw55jx/LyK6/w5OMz+d53Lqeqg2/aLQW/ue02zr/gAl599VX+9+67ih1OyfGm4ExE7BRz2bzk0+VMIiVu/svzuOw/TmDyJ6dy/Z8fYOSYPUiW6M1yHaGi/2CGTTiYigFDef6G89nw3nxqJk5lm1GTSJRFX/csIhLn+eef5/gTTmD69Ok8+sgjjB49GuvBXxS3HT6cI448iiE1Qznx+OOY8/zzHHPc8XziwIOaR6DqzbypkVRDK5cz9eB9o6OpEyFSwpYsepdvff5kvnHt9Rx8xNHFDqdLDdhlD/a65E6Wz32Y9x69jU0rFjNw9BQqh+zAhiULqRiyE1Xb7071DnuSrOzboetO1dfSuOItGle+A+4kB2wPfYeT6D8cK8u/IV9EStNbb73FSSedxM033cQRRxxR7HC61JQpU3hmzgvc9fs7+cF/XcWCd97hM4ceyi67jOCtt99mt9FjmPTxyUzedwr9t+nYZ1usXfMRc597lpfnvQDArruNZuddd2fEqF2pqCzusNeeamz9nogmXQLWXupEiJSo+ro6Ljn1eD5/0aW9rgOR1qffQMlLd4kAACAASURBVHb45Cns8MlTqF+3io9ef4q6j5bR72P7ULdqMSuf/QubPvwh/UZMYsDYqTBsPJbcul/aat9+ijVP3Epy4I6UDRmFJZLUL3qOxjUfkNqwgrLtx1N94PmY6WpQkVJWW1vLMcceyxVXXNHrOhBpw4Zty0Vfv4SLvn4JS5cu5eEHZ7Dkgw/41LTpvDn/DX55w0/490svcfDUT3Hc507m4E9Po6IiZjSqdrrvL3/iqm9fxug9xzFh0sdJJhPMuO+vvPXmG7y/eBGfOvRwfnzzbUV7oneqqYlUY3xHoTM6EWb2ZYJnM+wFDABGuvvCNsqcCdwWsajK3Td3dIxbolt1IqxqAFQNiF4WVybmF8qy6vzhXAcOih7ideCg6DqGbTcoMr0yZnjCZIFjrUUNZ1heHjPUakzdiZhhBVMxQ61VV0XvEoP6R38xixtWtbJP/nrjhmeMS4+qA6AqZljIvuXRsfSNGMoVoG/Ead24WOLG2o4bai6q7taURRxM5770IoMGDeYrX7sob9nuffPjmfdR9NCs5TEH6tW10UONvrsqekSk9z+KPmat3xB9wK3dFD0m4OaIoXs3b44bhralfcv6Dmbo5KOA7GFSmzZvYP382ayacz91K26gZsrxbHvgqVn1xP2zqqtrid09xdIHf8amD15j+2O+Q+V2u+fEksKbGlh671X4K3dRseN4+n5sCpaMG3Y5evurqqP/QW+ITO1Y1X2SVFRGt0XcMLhRw7BW94muo3/M0K/lMcenygKHjo4bIrI+ZgSaPhGfe/+K6Lz9Y44ftTFD+1aUFTbEa2XMUK4VMW0QpeAhXmPqjhtat2/M/5d+MZ93v4j8cUPWJuK+mHn0NlmBX+QqUvnHkOeeepLtth3KF087Ceo3Zi9syD+eWUwsiQ0romOM+yIa8//CYx486X2i78tIlOff8xY33GxTIvp/TpO17O87bL8dX/zSlwDY1NiS/tFHq5lx3738+lc3cumF5/HV8y/iqxdcnFVP3P9Az/ibTKVSfP3cL/PKSy/ymz/+mQmTPp6dF6irq+O0Y4/g6ssvZd8DDuTQI48mmYj+24saohni97H28lRTqzdPd9KZiGrgEeA+4KcFlKsFPpaZUCodCOhmnQiR3uSZJx5jnwMPLnYYJS9Z2Y+BE6czcOJ0fONK3vrtBQwYcyCVNTsVVM/af8+kbuVCRp75cxo9+kuWJfswbPpFrJnzV9a/+girZ99Bec0IyvoPo3zwjvQfd2j8s2lEpEvNnPUkB33igGKHUfIGDRrM6WeexelnnsWCBQs4etohHH70MYwYOaqgeu6+83YWLVzAjMf+RXnMJUsVFRX87JbbuPXGn/H7397KNVd9l933GMsOO+3MrqPHcNJ/fqHTz1CkGlt/TkRndCLc/XoAM5tceFH/sMMD6iDqRIiUoIaGBu79wx3c+n8zih1Kt1I+cFtq9jmG5f/6Izsfe1lBZVc982eGH3ouifJKqIv/J1LWr4aaQ84GoH71ezSsWUrj+hWsf20mDWuWUDFsV9xT1G+uwxJllG+3J8l+0Q+mFJHOUVdXx+/v/l8eeeC+YofSrewyYiSfP+tsbvzpdVx3wy8LKvurG37KT35xM5VVVa0+EG6HnXbmyh/+GHfnzTdeZ8GCBXzw3mLu+d1tLFqwgD3GTyDV1MSm+gbKy8vZe/9PMHz7Hbd209KWNK1bgg3aNTZDat0HAJVmNicj+RZ3v6WjgihAlZktApLAPOC77v5iEeKIpE6ESAl64qEH2GHnEYwZN6HYoXQ7Nfscwxu/PIulM39N9Y5j6bvTnpT3i770MFNFzc40xDz5Pk754J0oHxyc8ageuQ9rnvkjtYtewBJJmprAGzez7rk7SVYOoGKnvajYZR8SNaPy7qeo//D1gtYrIq2794EH2WPMaMbsvluxQ+l2vnjOuRy8zySGDKlh8pT9mLzvFAYPafuHkN1Hj2HpkiXtXo+ZMXqPPRm5+x4ATD30MH7+o6v552OPkkyWQSJB7caNXHfltxm67XAO/PShTJ1+JB8bNynvbMXzs59o72pngJFa9SaJIbvnLfT6DTQtmQNwlLsva/fGdI75wFnAS0B/4EJgtplNdPe3ihpZSJ0IkRL0xMMzOOz4zxU7jG4pWdmXUaddzbr5T7Nq7t947/7rqBy6CwPHHMCA0Z+gYsgOkeX6jprMxgVzGDju01u03j7bDGPooRc2z2+qDa659VSKhpXvULf4Bdb96xZSdRso32UyFSMPgFQDm159mMZV727ROkUk2gMPPcJJxx1T7DC6pUGDBnPXX+7n0Ycf5LZbb+bCc85mzJ5jOezIo5l+5FGxlzkd8plDmTXzET57/IlbtN6ddhnJtTe2/Ni/uTG4KaKpqYl/z5vLk48+zPe+fh7r16/jk9OPZNpnT2DTxo3c89ubePuNV9u1Dnd3M+ubqlu7karBJKpbOkeeaqJp0RMkd9qPxjdntNmBMLPvA5e3kW2qu89qV3D5sT4NPJ2xvqcIzkacD1ywJXV2tDY7EWZ2HvAVYESY9CrwfXefES434HvAl4FBwLPAee7+akYdDjQAY9x9QUb67UCNux/VERsj0lPsMGIky5e2/xcdyVa17Siqtg3+0aWaGqhd9Apr58/mrTu+QVlVfwZPmk7N5KMIzhBDqn4z6159LO9m6o5giQTlw3ajfNhu9J98MnUffUD9oufY8PRtYEbVntPZZuqFrLzzzA5ft0hvNXLEzixZWrKXkpe88RMnMX7iJCC4NOypfz7JwzPu59jDPk3N0GGccvrnOe2Ms+hTEdz7sGH9eu798z3s3wn38SWTSSbuvS8T996X8//fFbzxxhvMevhvXPvtr5Ms68NJZ57NNTf/jkPGRP9AlMvda81s16bFs9+2XadjZcE2pD54Fhs4ksY3Z7R3FJzrgd+3kWdxO+tqk7s3hZdYlczpNfNWrlsDMLNjgHrgLYInXJ8BXAbs7e4vm9k3ge8AZxKcerkCOBAY7e7rwzoc2Azc6+6nZtR9O+3sRJiZ7/HNGWwzIPoJvalU9G38/beJzt+3Or//FDeqUlVldHqfmBEC4kZhihlwhJgBRyLzV5RHx1JZFl153CgGFXGjbcS0QdwoTHHpUaMNJWNuloq7djKqDogfQak6ZkSkqrL2x1gdM5JT1GhIADQ8Ep3euD46PRnzhGnLbvf7//Y0v7rlAR56MHoQh1c37JeX1hTzN7Bo7drI9I82RY9OsWRN9ChPi1dHDwixZm10PXX17R9JpqExOm/USE4A9THpmzfHxLI5uMfBPcXG915nxbN/YeN7rzH8wM/Rb4cxLH74JqqG7cLI4y7FCrypL1XgiDkNMaP9vPz9w3D3TnuKoJn5y0vWUBU3ek7MmqNG+KmKOd7EjUCU8OhtjhsNx2OGz20kOj1zpJlMdRH7VcxATrHHobj8TTH5EzFjBcYNwhT3gbf+nzlb3P+QPjEfatxAgVUx/xfiRuNKNOYfKyx3FKTm9OgbWZO1H0Wmp9avjkwn5jjnOaPt/GXmbP7w0Cz+ev1VMfXk75P1C6J/zbaq6BEak4OGRqYnqqOfuZAYEH1JUKo8enQmL89fb+wIT8no/11xIz/VxRy2amOGRMo8KzD3uWf57U03Mm/uHM7+2gWMHT+RH3z324yftBffv+56EolE5P4bt6/HHP5jR11riNkH9tpxUEHH0LJR0zy18nWSoz6Df/QOqXVL8DULEt7WF+OtEN5Y/TztGOI1oqwBc4CX3P2sTgivYG2eiXD33LuSLjezrwL7m9krwEXANe7+FwAzOwNYDvwHcHNGuZ8D3zCz69x9bodEL9JDTZr4MV6c906xw+hxzBL023ks/XYey6Zl77J89l0sf+Y+tp/6n9TsdWjBHQgRKU0Tdx/FZdf/tthh9DjJZJJ99z+Affc/gNdeeZkbfvxD7vzNLVx46bc45sSTi/bshy3RuOBRSw6f6E2L/wV1a/Half06qwNhZsOB4UD6dPeeZjYQWOzuq8M8M4Hn3P1b4fz3gGcIfsTfhuASpgnAVzsjxi3R5pmIrMxmSeBzwO+AvYGNwDvAvu7+fEa+GcBKdz8jnPew3EnAEHf/dJh+O62ciQgfzvHlcHbvgrZMRKR7WeXunTaMU3gcFhHpqQo+hobfa68BbnX3NzsnLDCzKwku/c/1BXe/PcyzEJjl7meG8z8FjifofKwFXgSuDO+VKAnt6kSY2XiCmzsqCZ6JdJq7zzCzA4DZwC7uvjgj/2+BHdx9ejif7kTMA14DPuvuD3eneyLMbI67Fzq+r2wltXtxqN27Xk9v856+faVK7V4caveupzbveu097zQfmATsB/wKuMPMxmUsz+2JWEQa7v42cCtwjeWOcSgiIiIiIt1Cu77Iu3u9u7/t7nPCa7XmARcD6aEPhucUGQbEDY91FcEjvE/bgnhFRERERKTItvRsQAKoAN4l6EhMSy8ws0rgIOCpqILuvhy4DvjvsI7uohhPKhS1e7Go3bteT2/znr59pUrtXhxq966nNu9i7Rni9RpgBvAewRPz/gP4JnCkuz8UDvF6OcEQr28SDPd6MPlDvH7O3f8czvcD3gYGADO7wz0RIiIiIiISaM8Tq4cTPEwjfXf4y8Dh7v73cPm1QBXwC1oeNndougMRxd03mNlVwC+3InYRERERESmCgoZ4FRERERER0QhJIiIiIiJSkF7XiTCz7czsDjNbYWabzew1M/tkxnIzsyvNbImZbTKzWWY2NmP5M2Z2a06d/2lmbmbfyEn/gZktppczs/PM7GUzWxdOT5vZkRnL1eYlwszONbN3w7+NuWZ2ULFj6q62dr8P83jMdE7Xb1FzTDqGdjEdQ7sPHUM7Tk89hvYkvaoTYcEjxmcTPMfiSGAP4HxgeUa2y4BvhOn7hMseNbP+4fLHgKk5VR8CLI5Jf7zDNqD7ep/gZvyPA5MJ2vBeM5sQLleblwAzOxn4GfA/wF4EI6w9ZGY7FzWw7mtr9/u0s4HtcqY7Oj36CDqGFo2Ood2AjqEdrscdQ3scd+81E8Ef9uxWlhuwFLg8I60KWA98JZyfRvAgvZ0y8iwAziG48TwZpvUF6oEzir3dpTgBq4GvqM1LZyIYFOHWnLS3gKuLHVtPmQrZ78M0B04sdtwZ8egYWiKTjqGlN+kY2iVt3K2PoT1t6lVnIoBjgWfN7B4zW25m88zsa2Zm4fKRBKNQPZIu4O6bgCeBA8Kk2QQH2akAZrYLsAPwO2ADsHeY70CgD/pFJ4uZJc3sFKAfwa80avMSYGblBO34SM6iR2j5HGQLbeF+X4p0DC0yHUNLk46hnasHHUN7lN7WiRgFnEvwC8x0gtOO1wDnhcvTT97Ofdr2svQyd68FnqPlFPBU4Lkw/Ymc9HfcXdeWAmY23sw2AHXATcBx7v4KavNSUQMkaeVzkMJtzX6f4U4z25Azje/cyGPpGFokOoaWPB1DO0EPPIb2KL2tE5EAXnD3b7n7i+5+G3ADLf8A03LHvbWctMfJPujOCt/Pykl/rGPC7hHmA5OA/YBfAXeY2biM5Wrz0tDW5yCF2dr9HuDSsI7MaX6nRNs2HUOLR8fQ7kHH0I7V046hPUpv60QsBV7LSXsdSN/09GH4mtuLHUZ2b/cxYBczG0FwE9qsMP0J4BNmNpjgRiCdEg65e727v+3uc9z9W8A84GLU5qViJdBE25+DFKAD9nuAD8M6Mqf6Tg49jo6hRaJjaMnTMbQT9MBjaI/S2zoRs4HROWm7A4vC9+8S7JjT0gvNrBI4iOAavLSngc3Alwh24KcA3H0+wU09Xyd4GrgOxvESQAVq85IQHlDnkvE5hKaR/TnI1il0vy81OoaWDh1DS4iOoV2mux9De5Zi39ndlRPBEGANwOXArsDnCEamOC8jzzeBdcDxwDjgbmAJ0D+nrsfCfP/MSb87TH+t2NtbKhPBNdMHASOA8cDVQAo4XG1eOhNwMsHNl18iGLrzZwQ3Xe5S7Ni649QR+z3Bafn0l77MqV+RtknH0G66L6nNu+Rz0jG0Y9uzxx1De9pU9AC6fIODsc1fIvhF5k3gAsAylhtwJcFp+80Ep3rHRdTz3XDn/O+c9HPC9BuLva2lMgG3E/xSWUcwjvM/gOlq89KbCG6aXRh+VnOBg4sdU3edOmK/D/frqOn7RdwuHUO74b6kNu+yz0rH0I5ryx55DO1Jk4WNLCIiIiIi0i697Z4IERERERHZSupEiIiIiIhIQdSJEBERERGRgqgTISIiIiIiBVEnQkRERERECqJOhIiIiIiIFESdCBERERERKYg6ESIiIiIiUpCyYgcgpc/MhgGjih2HiIhICVsPvO7uqWIHItIV9MRqyWNmQ5PDpyz3TSvwzash0Qcr7w+WPnFl6Yw5r4mW963laXVZWLa1ZWG65eZJn1hLJNLb0by45X12mfRswiwvzRLhfLhOS6TfZdTXnKeljOXWk7fucH2R9WSUbcmeVz79kpOUtw1Z68jOElkP5Mbekp73keSuM2O2uV1j8iQsuly4pow85JfLSElEbGdmWrreRE6evM8mY71x7Z6ZJ7a9MvJn58gum/eZtmNdlcngTWXu+WPfQPDdBSD87tJ8XM+cz12W8+qpjLSYevCYuuPqyUzLLJNqKdacJ+d/kXvzMs9bhzfPet66PHs2K+bsZZllPCaO5u+D6fSUZ2xedhlPZdSfmT+z2swyqey4WsrH19MSZmY8rSxLb19sE+TEF5GWWdY9r4LYPHm7WnP1nh9relkqu0iQ1bI2J70w1XIUymgey4ndmovkLcveXBzLeh+XNzeeVLiO2qYUy+ubGNInyajqcv62fP0E4FV1KqSnUidCMLOa5PD9VgSdhlVBp6GqBqsailUOxhLJIGP61bLns5aHX+Bz82S95paLyhu7zkRzen5c4Ym1sj5h1kS42Eg2vw9fw2+a6flkIkEi/JKWyMmbzMjbvCyvfH6eZDI7T1Q8yWQQe7IsXNbcqch+n7msuYnNItPy8qRjS3+xT2R/OU0krHlZS/nsMpaZJ7e+nDJJy36fXV9+nua0nO1MZrTB1uRJJKw5jvTnVJaz7kRGW5rlL8vN09prc3kouB6LyJPeV2rKg/nBfcjm74EvCt83hq9N+a+tLUuXTb8nYllzPRFp7V5XQ/Caamz5cp4KXnO/rLunIpblzKe8lWUZ8+llzd808+v1VG496S/24bY0helNqYz3nr8snG9573nLcutpjrWVPFu3Lm/e9pbmye64eKqlo+E5y1IZZXOX5b9G1x20aUv9UXUDpBqDN+kv5k1uLe9T2V/em9ya82a+z84bUU/Ol//msqmIevLmg3yZyxpSLT17d2dVQxMLautZUNvAsrpGasqTjKwu52/L1o8n6FToi5f0CLqcqRcysyHJ7fZb6bXBmQarqsHr12L9tidRM77ly7mIiIi0m5lRU15GTXkZ+w4MOhUr64NOxYT+Fa8sr29i/DaVjKou5/5l68cSXP6kToV0S+pE9AJmNji53X6rfNNKfNOqoNNQtybsNIzDEtoNREREOpqZMbSijKEVZUwZVI27syLsVIzvX/HqivomJoSdivuWrd8TeEOdCuku9O2xBzKzQcnt9l/tm1YEnYbKIfjmNVjf4SSGjFWnQUREpAjMjGEVZQyrKGO/sFOxPOxUjOtf8drK+iYmhp2Ke5etHwO8qU6FlCp9m+xBkkP2cN/4YdhpWI1Vq9MgIiJSqsyMbSvK2LaijP0HVZPK6FSM7Vfxxor6RiZuU8nL6+tGu/ubxY5XJJOeE9GDWFkVlFXjqQa8sRYaa6Fxc97oFyIiIlJ66lPOmoYm1jQ0sa4xRVUywaA+SYDaYscmkks/UfcgjcteMAAzS3j9uvFeMWheauUreMNGrGIAiXDEJfr0zRtaUkRERLpWXVOKdzc18G5tPQs3NWDAiKo+/HN17eHAbHdf31YdIsWiTkQPFI5J/RLhcPRmlvT6teO9YuCLqZUv4w21YadiKFY9FMqq1akQERHpZHVNKRZmdBqcoNPwrzWbj0ylUv9y93XFjlGkvdSJ6AXcvQmYR3anYqJXDJibWvFS2KkYSKI6fDZEn77FDVhERKQHqEulWFTbwIKw05ByGFHdh1HV5Tyxunagu68tdowiW0qdiF4o7FS8QHanYpJXbDMntXwe3rgp7FQMDTsV1cUNWEREpBuoTzmLNgUPmltYW0+Twy5VzZ2GQe6+Jp339iLGKdIR9MRqyWNmZcBeiZpxz3ntCrxxc3DTdvMlT82PN85+xZoX5eXJnE8/nZe26osp37yuVtaR8WrWsq6WrNnzlhG7tSRmxRmEnn3Zl1l+vZazLLfe4MUiy2dtOrlxkD/f3JbZspswN+ZW8uYkZq4zcv0Z77I2NydPXgytxJH3WWXVk50nM67cPJlx5ZfPTrCItPx1525xZuz5n0NsW8bkz60vd73hA6vpkzccxibwTeF7z371zPnWloWvUWl5ZVpblrOuuPo8P0/ef6KsPM2JObOZpXLXmZ/HY+qLitVz83hGWc/J4xH15qblzLt7fhxRZTLzx9WXs80teTPzkJMn+03W4tx1Zm5WbgVRmx6TJzs5t53DZam8VWZscvZfTPbmWWQ8UWXzm7ClbEs5y9uu5nXllEvPb0o5Te7sUlXOqOo+3PnB2sHu/hEiPZQ6EdKmsFNxMfCHYsfSjZyG2qtQarPCqL0KpzYrjNqrMCe6+w3FDkKkq6gTIe1iZnPcfXKx4+gu1F6FU5sVRu1VOLVZYdRehVF7SW+j50SIiIiIiEhB1IkQEREREZGCqBMh7XVLsQPoZtRehVObFUbtVTi1WWHUXoVRe0mvonsiRERERESkIDoTISIiIiIiBVEnQkRERERECqJOhEQysy+b2eNmtsbM3MxGtKPMmWHe3Kmy8yMuri1pr7DcCWb2mpnVha/HdW6kpcHMKszs52a20sw2mtn9ZrZjG2WujNi3PuyqmLuamZ1rZu+a2WYzm2tmB7WR/5Nhvs1mtsDMzumqWEtBIe1lZofEHKvGdGXMxWJmB4d/cx+E231mO8qMN7MnzGxTWO4Ky32KZA9WaJuZ2YiYfeywLgpZpNOpEyFxqoFHgCsLLFcLbJc5ufvmjg2tJBXcXma2P3APwcOcJoWvfzKzKZ0RYIm5HjgBOBU4CNgGeMDMkm2Um0/2/jW+M4MsFjM7GfgZ8D/AXsBTwENmtnNM/pHAg2G+vYCrgZ+b2QldE3FxFdpeGcaSvT+91ZlxlpB+wL+BC4FNbeTFzLYBHgWWAfsAFwCXAl/vxBhLTUFtluEwsvexxzo+NJHi0I3V0iozmww8D4x094Vt5D0TuNHd+3VBaCWpwPa6Bxjs7tMy0v4BrHD3Uzs10CIyswHACuAL7v6HMG0nYBFwuLv/PabclQRPhB3XVbEWi5k9C7zs7mdnpL0F/NndvxWR/4fA8e6+W0bar4Gx7r5/V8RcTFvQXocAjwND3X1llwVagsxsA/A1d7+9lTxfBX4IbOvum8K07wBfBXb0XvZFop1tNgJ4F9jH3ed0TWQiXUtnIqSjVZnZIjN738weMLO9ih1QCduf4OxFpr8DBxQhlq60N9CHjG139/eA12l720eFlxO8a2Z3m9moToyzKMysnKCNcveNR4hvn7h9abKZ9enYCEvLFrZX2hwzW2pmM81saqcE2DPsD/wz3YEI/R3YHhhRlIi6j/8zs+VmNtvMTix2MCIdSZ0I6UjzgbOAYwguU9kMzDaz3Vot1XsNJ7g8INOyML0nGw40Abm/ALe17c8CZwKHA2eHeZ8ysyGdEGMx1QBJCts34valsrC+nmxL2mspwa/oJwDHExy7ZprZwZ0VZDcXt3+ll0m+DcAlwEnAEcBM4B4zO72oUYl0oLJiByBdx8y+D1zeRrap7j5rS+p396eBpzPW9xQwDzif4BrabqWz2yuUexmARaR1C+1tr9aqoJVtd/eHctb3DLAAOAP4STvD7E4K3Tei8kel91Ttbi93n0/QcUh7Orz85BLgyc4Irgfo7ftXQcLL5H6ckTTHzGqAy4DfFycqkY6lTkTvcj1tH7wWd9TK3L3JzOYA3fVMRGe314fk/4o3jPxf/LqL9rbXfgS/HNcQ3BuRNowCvsC5+wYze5Xuu3/FWUlwpqaQfSNuX2oEVnVodKVnS9oryrPAKR0VVA8Tt39B9z1eFcOzwBeKHYRIR1EnohcJfxnpspsIw+H/JgAvddU6O1IXtNfTwDTgRxlp0whGlul22tteZjYXaCDY1rvCtB2BPShg2y0YOngMwQ2yPYa714dtNA34U8aiacBfYoo9DRybkzYNmOPuDR0fZenYwvaKMongMifJ9zTwQzOrzBhtbxqwBFhYtKi6H+1j0qOoEyGRzGw4wS9Pu4dJe5rZQGCxu68O88wEnkuPfmJm3wOeIRgmcRuCS5gmEFx73KNtSXsRDEn5pJl9C/grcBzB5T4HdmnwXczd15rZb4Afmdlygl/KfwK8DPwjnc/M3iAY7evGcP464G8EZzOGAd8F+gJ3dO0WdImfAHea2XPAbOAcgptYbwIws98BuPvnw/w3AV8zs+uBm4FPENw/0mNH+cpRUHuZ2UUEX35fBcqB0wk6Yb1lSNx+wK7hbALY2cwmAavdfbGZXQ3s6+6fDvPcBXwPuD28bHF34P8BV/WWkZkKbTMzO4Pgx5IXgRRwNHAe8M0uD16ks7i7Jk15E8HzDjxiOjMjz0Lg9oz5nxIM01kHLCcYvWP/Ym9LqbZXmHYi8AZQTzA60fHF3pYuaq9K4OcEHYhags7BTjl5HLgyY/5ugl8+64EPCH5l3rPY29KJbXRuuM/UAXOBgzOWzQJm5eT/JPBCmP9d4Jxib0OpthfBdelvE4z3vxr4J3BEsbehC9vqkJjj1e3h8tuBhTllxhNcbriZ4Nf07xEOE98bpkLbjOBerdeAjcA6YA5werG3Q5Omjpz0P5Y8XwAABUZJREFUnAgRERERESmIhngVEREREZGCqBMhIiIiIiIFUSdCREREREQKok6EiIiIiIgURJ0IEREREREpiDoRIiIiIiJSEHUiRERERESkIOpEiIiIiIhIQdSJEBERERGRgqgTISIiHcrMfmVmH5iZFzsWERHpHOauY7yIiHQcMzsYmA986O5W7HhERKTj6UyEiPRqFnjXzNzMdi12PK0xs1lhnG5mFxU7njju/qS7L4taZmZXZmzDn7s6NhER6RjqRIhIb7c/MAJw4JTihtIujxPEfHexA9lCvyaI/8ViByIiIluurNgBiIgU2anAEmB2+P77xQ2nTavd/ZlirdzM/gXsGLFoprt/sa3y7v4+8L6Zrevw4EREpMvoTISI9FpmlgQ+B/wJ+COwp5lNyMkzK/eyGzM7JLwcZ1zXRRvPzG43szlmdqSZvWZmtWY2w8wGm9muZva4mW0M80xoo66xZvawma0Oy7xuZuell7v7ge4+ImJqswMhIiI9hzoRItKbfQrYFrgHeBBYR3A2ojvaGfgv4DvAl4EDgFsILnu6GziR4Ozz3WbW2s3O9wNNwOnAZ4GfA/07L2wREemOdDmTiPRmpwKLgWfc3c3sPuAUM/u2d7+h6wYD+7v7OwDhGYdLgTPc/XdhmgEzgDHA67kVmFkNMAo41t1fCZNnFhqImf0aOCx8/z7wsLt/qeAtEhGRkqUzESLSK5lZBXAc8L8ZHYa7CW6y3q9YcW2FhekOROjt8PWxiLQdYupYDbwH3GRmJ5vZsC0JxN2/5O47uruFr+pAiIj0MOpEiEhvdTgwkOBSprRHCb5IF3RJU3gvwktmNs/MnjKzPTKWLQzvU5gXTntmLBtnZi+Y2Vtmdr+Zbc1lQ2ty5usj0tNplVEVuHsKOBT4EPgt8KGZ/dPM9tqKuEREpAdSJ0JEeqtTgQXuPied4O4NwF+Bk8KbrgE2A+U5ZQfnzN8KnOLuk4DfE9ybkOkId58UTq9lpN8EfMfddwPeAC7bqi3qAO7+hrufQNDB+gxBh2OGmen/hYiINNM/BRHpdcysH3AU2Wch0u4muNl6ajj/PsE9BJmm5cyngG3C9wOApe2IYVtgpLs/GCb9BjihzeC7iLs3uPtjwE+A7Qg6FSIiIoBurBaR3ukYoBrYYGbH5ixLAnUEZyr+QXBm4otm9lOCm5KnAtNzypwOPGBmm4Fa4BM5y+8Nb2p+ALgyPOOxI0EHJW0xsNPWbtjWCG/Gvo6gc7UAGAR8E3jJ3VcXMzYRESkt6kSISG+UvufhB63kOd7MznX3GWb2beBc4EvAfcBF4StmVkbwRftT7v6KmZ0N3E5wpgPgQHd/Pzz7cSdwCXA1YARPyS4lHwLLgMuB7Qnup3icYPtERESaWfcbxVBEpHSY2WTgF+4+JZyvBla4e9+IvEcBX3H3o81sODDX3XcIl40G7nX3PXLLZZSfBawCTgaauuEwtIT3ViQIho5d4e4nFjkkERHZAronQkRk67wP7GZm6UuRDgNeAzCzvma2Tfi+jOCeh5cB3P1DYKGZHRGW+yLwf+1Y3/FAA3Bhh21B17qCIP6Dix2IiIhsOZ2JEBHZSmb2BYLLlBqBjcA57v6ymY0i6BgkCO61eBq4wN1rw3ITgDuAfsB84DR3X9vKekbT8vToxe6+vJM2qdOY2fYEl0oBrHb3BcWMR0REtow6ESIiIiIiUhBdziQiIiIiIgVRJ0JERERERAqiToSIiIiIiBREnQgRERERESmIOhEiIiIiIlIQdSJERERERKQg6kSIiIiIiEhB1IkQEREREZGC/H9fYc2MJNd4hQAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 720x576 with 8 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "response_plot = ['cloud WP', 'cloud EP',\n",
+    "                 'cloud IO', 'cloud TA']\n",
+    "\n",
+    "du850_plot = np.array([du850_djf_shift[response_all.index(r),\n",
+    "                                       latind_sout:latind_nort+1,\n",
+    "                                       lonind_west:lonind_east+1] \\\n",
+    "                       for r in response_plot])\n",
+    "mask_plot = np.array([du850_mask_shift[response_sel.index(r),\n",
+    "                                       latind_sout:latind_nort+1,\n",
+    "                                       lonind_west:lonind_east+1] \\\n",
+    "                      for r in response_plot])\n",
+    "vlim = 1.5\n",
+    "# box around region with jet exit strengthening\n",
+    "lonwest = -4; loneast = 26; latsout = 52; latnort = 62\n",
+    "\n",
+    "# plot\n",
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(3, 2, figsize=(10, 8),#figsize(10),\n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "ax = ax.reshape(-1)\n",
+    "labs = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)']\n",
+    "for r in range(ax.shape[0]): # loop over responses\n",
+    "    ax[r].coastlines(rasterized=True)\n",
+    "    ax[r].set_aspect('auto')\n",
+    "    ax[r].tick_params(labelsize=14)\n",
+    "    # extended North Atlantic region\n",
+    "    ax[r].set_extent([-70, 30, 30, 70], ccrs.PlateCarree())\n",
+    "    # set xticks and yticks for latitudes and longitudes\n",
+    "    # xaxis: longitudes\n",
+    "    if r > 3: # last row\n",
+    "        ax[r].set_xticks([-60, -30, 0, 30], crs=ccrs.PlateCarree())\n",
+    "        lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                            degree_symbol='',\n",
+    "                                            dateline_direction_label=True)\n",
+    "        ax[r].xaxis.set_major_formatter(lon_formatter)\n",
+    "        del lon_formatter\n",
+    "    # yaxis: latitudes\n",
+    "    if r in [0, 2, 4, 6]:\n",
+    "        ax[r].set_yticks([30, 50, 70], crs=ccrs.PlateCarree())\n",
+    "        lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "        ax[r].yaxis.set_major_formatter(lat_formatter)\n",
+    "        del lat_formatter\n",
+    "    # draw box around region, for which we determine the area-mean response\n",
+    "    # left vertical line\n",
+    "    ax[r].plot([lonwest, lonwest], [latsout, latnort],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # right vertical line\n",
+    "    ax[r].plot([loneast, loneast], [latsout, latnort],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # upper horizontal line\n",
+    "    ax[r].plot([loneast, lonwest], [latnort, latnort],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # lower horizontal line\n",
+    "    ax[r].plot([lonwest, loneast], [latsout, latsout],\n",
+    "               linewidth=2, color='k', transform=ccrs.PlateCarree())\n",
+    "    # jet latitude in control run\n",
+    "    ax[r].plot(lons_plot, jetlat_nh_plot, marker='x',\n",
+    "               color='k', linestyle='none', markeredgewidth=2,\n",
+    "               markersize=2, transform=ccrs.PlateCarree())\n",
+    "    # plot different effects\n",
+    "    if r in range(len(response_plot)):\n",
+    "        cf0 = ax[r].pcolormesh(lons_plot, lats_plot,\n",
+    "                               du850_plot[r, :, :],\n",
+    "                               vmin=-vlim, vmax=vlim, cmap=mymap2,\n",
+    "                               rasterized=True,\n",
+    "                               transform=ccrs.PlateCarree())\n",
+    "        # stippling for significance\n",
+    "        ax[r].pcolor(lons_plot, lats_plot,\n",
+    "                     np.ma.masked_values(1*mask_plot[r, :, :], 0),\n",
+    "                     hatch='.....', alpha=0.,\n",
+    "                     rasterized=True,\n",
+    "                     transform=ccrs.PlateCarree())    \n",
+    "        ax[r].set_title(response_plot[r], fontsize=16)\n",
+    "    # a), b) etc for subplots\n",
+    "    ax[r].text(0.01, 1.02, labs[r], va='bottom', ha='left',\n",
+    "                      rotation_mode='anchor', fontsize=15,\n",
+    "                      transform=ax[r].transAxes)\n",
+    "del r\n",
+    "\n",
+    "# IO + WP + EP + TA\n",
+    "ax[4].pcolormesh(lons_shift, lats,\n",
+    "                 (du850_djf_shift[response_all.index('cloud IO'), :, :] + \\\n",
+    "                  du850_djf_shift[response_all.index('cloud WP'), :, :] + \\\n",
+    "                  du850_djf_shift[response_all.index('cloud EP'), :, :] + \\\n",
+    "                  du850_djf_shift[response_all.index('cloud TA'), :, :]),\n",
+    "                 vmin=-vlim, vmax=vlim, cmap=mymap2,\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[4].set_title('cloud IO + cloud WP \\n+ cloud EP + cloud TA', fontsize=16)\n",
+    "cf2 = ax[5].pcolormesh(lons_shift, lats,\n",
+    "                 (du850_djf_shift[response_all.index('cloud IO'), :, :] + \\\n",
+    "                  du850_djf_shift[response_all.index('cloud WP'), :, :] + \\\n",
+    "                  du850_djf_shift[response_all.index('cloud EP'), :, :] + \\\n",
+    "                  du850_djf_shift[response_all.index('cloud TA'), :, :]) - \\\n",
+    "                 du850_djf_shift[response_all.index('cloud TR'), :, :],\n",
+    "                 vmin=-1.5, vmax=1.5, cmap='RdBu_r',\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[5].set_title('(IO+WP+EP+TA) - TR', fontsize=16)\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# colorbar for response\n",
+    "fig.subplots_adjust(bottom=0.07)#(right=0.8)\n",
+    "cbar_ax = fig.add_axes([0.165, 0.0, 0.7, 0.02]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf0, cax=cbar_ax, orientation='horizontal', extend='both')\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf0\n",
+    "\n",
+    "# colorbar for differences\n",
+    "clevs = [-1.5, -0.7, 0, 0.7, 1.5]\n",
+    "cbar_ax = fig.add_axes([0.98, 0.07, 0.013, 0.23]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf2, cax=cbar_ax, orientation='vertical', extend='both', ticks=clevs)\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf2, clevs\n",
+    "\n",
+    "fig.savefig('figure6a_6f.pdf', dpi=200, bbox_inches='tight')\n",
+    "\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj\n",
+    "del response_plot, du850_plot, mask_plot\n",
+    "del vlim, lonwest, loneast, latsout, latnort"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/figure6a_6f.pdf b/pythonscripts/figure6a_6f.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..da8616b8970f5d3e276957680cd610ca7d1d12a1
GIT binary patch
literal 329392
zcmY!laB<T$)HC5yU2{ia^)4<$1p|frq%1BQ8wLG<#Prl+1tSFmg&+m}kjjEo1%2nl
zlEj?+bOk#*uGG8~kU|S24Xza>?!hIAC8-J~5KV6Rc_j+Q5OzRfNl9u^o`NZe%cUPs
zl%E`&TA~oGpdaAkrl22^T2Z2)@0pvJp6UdpouRa+Lac&*a7JQEW?s628AN-8e^ORz
za*2XDh>PSLLjxrDIOgT$mlP{RgY-M+=ar=9l@u#jf^=}{yBFn`7ASzc=^U(}?~+=U
znVcHr?xdg}te_uKl$cjskXV$Oms|<+IYhmk9hbguYD#9JQ+|a)v;xR7a|=T~Q%gf5
zQw1|4BRyjSV-PbI6naIec_pym3ra1{FD*(=Emi;pSP&O9JV8N><a&_XK!FN!mRn{{
zNotXTzFSUWNvca~a(+sxg1%2`UV2G}f*~lHf<PLJONvqxbGa(!yq)9SFXJk7{QY0e
zR~ae3miPOW#o~^5?UvZ^fw4Ft_i)l#iH*~)$JhUlyn1)4<V?w%ho@AvvYaTgR@YMc
zBsz0{$E<0WcQ?<en|b65U%j2Ly^sB)_vVx5>^m|)p3j`={~qff3hB~IH~qMt`%QoO
zl{Kw?^7)f<KEAJ)=d+ieSHov2|KY~;_U6FNoG;Uly|j#YxU~IU@#@~ZzGJNO<*r>j
z_xibC@v_I;R{ktAT|cR^^WDic)dlHQpN`)C|L@nYx7*|G=El`q{INUu+H!_wX+)Oo
z>de4h89mw4<L>+V@0)a4e82B~l}g3*wSAvXFMi8@<!9q*o)@A2UhMRkY|Q?n&wsAq
zmBhZ@d-g}q)LGfo8ruGxJ!i?xxIZ-?POjqJeDx5A@?PiHvkxol{`-0J%cHwr-W*Nb
zIQ49&*yg^2?$d9djQU-+X4B>m2U*sZ26W5b-oDwlC{KO<uXS@Z(wEOEtx%BsID6v#
z<y8mfc<=Qq7My&~L|DlxvpMXR@Bd2cy>ssQXZ^DNS7S9L+hwK&_v(wa^Z%6{I&iai
z@$nfNFRq=u{+{o?k9G9*3u3-8ZT6ezo5o*kK6^#feSzh_vx${E{`$Ay-*{)*UaLgg
zDDg!e+Gku0tu?n^c5>PK=0-ion;V-q%x&fl(>s0fjF(G<$RU1}qi>Qo+*_z#sIe+J
zL{TE2ebNt|InxB^^-sBXfN?F$l`6qDJ{DcWX@*B8vInf5GdVD`=a55K5{HbNV^;pL
ztc%*|J(mtU8f^X?#*u26oxIgdLv(F-mPz6Vv2KS)8@QG8pXQh_E&S%ht6Io6BjYOT
zGv6;!-ZDoQ$8l;L-Dcu+{Gv#LpvP)uwelq)k2YUBruouMxWUh|d1`N~!KU@kJ|{_L
z9t}zSyD)xv@#M==H33PHy3T<<_DUU_i}vv9-`kiqEyz`I?Ulz{g*GP3p7XKh(%Vt%
zvgXZ;IZ~NN`+6OhTL>KE_Ez3-<iQcvZ(lWw-id9xP~Tc<dZXp>&Z1+h9xN$*{Gw`Q
zElc^@DGnzj-iOLCy8T?C-`QlSw82C2*h1dtlMXH0w!=JDVEqw8k^b=2JQf@GOsX@9
z_<o^ES+Kpf;M#)>xszErd5XOUPsyFkTH$MWIr+x1LJN-08-1tWur6;a<~aPJ^2tG4
zF>^M?yIdBQ274ZF=vB5<k~vkVvg1m4kJ!J%GZow1%Rh;JSJWxIv#LEy)M*(HqxhS`
zmR_|PsYUubGPXQ=W`4R<H}OU1#Z$ZQe|`9Iw{w#I%*rVoZ(8Kd9=30MskftHL%<G)
zmnF5H>EVwig!k7~eZAS~;@7|P%Zw5&-I-7AX3E)E&5*0A{eAnm`Q_8kmp||OamT5o
z(B%vBnsaG;UyFoP<ms_7vVZKUT$H@oRDAJ;D}NI<#ci3@RpUE(%JlxZ>N(TbTJ!Jt
z+PLMKRBScF>>Cf#V&;3BS(=-j$cX>E!{YHB0};N>&$4$-xcu<zu?3c_XB%%GY;5A+
zJ9q8HT8Am(%t_&!_-6NL?0j3In(gqW%Zy=SVFQ!W@@Y&-;oI0;{B&7e()ctKin25n
zitY(Hq_}V@7)@dku$;>xF!SZ2h7)TK2?<F477^I#C+P5|>srH!9bSwRFM2Uf6kOV{
z<9Od%#)*<TTpc|ctS))Sg&dx2nbvT^bCUHJKE>5+E_oXT9PS*fW9{f!E+VjVhZEyQ
z{b**T<<l3)T-N96sLse`NQ&Rac4S=+Z%2%bTEmHXQY^c^Mcm<acyh>$(Iu}o_C+>t
z$C~vl0+L%r1a@+GGfdnIiV^{V|MC(gjLNST6l4~}di)7z7g~Eju*=YUpNZnfn|l>L
z^6cEvbpE28c9rxmubiyz*{zzEJMYeUxg$60-pX&QY}UQWTWo%x@koekuAKne)^II(
z{gr#glq=SSPTTwbidLcY!Ic45Tz+p2&;63ay0$ZIZLRf%zKVTUU4FM-&uRPYRAl%5
zuG1!ih;zpz*Q7~iyxqED-&}U~heChr0>1j+7Fl*#RAaU6s|AIf+u~Nbz0K!;9X)g7
z28_ZY?yIN?D^uso8z0rz1&SXo4c}x}BoSB?{Ko5A!CleZ1E!A|TC@FhTVJos;k`a5
zitG9rnSdS7t_1CPwnw$#Y=_W}G!@R6Vk^!V<IAoOXGOQF#u$Ioj47V0RB%^x?Za7x
zQxBOgo_fes+3R6dzijkjQ{xDcb&`Qx*YEVH7M#u0eK>2f%AbwSCssY26|KXvu6#rM
zLDR>Yt=W3(0(QJReXZc^OI3+8U%C%{m5Y)txI2CA!(H0ZhfT%XIb$|2XJfo(D^||D
zZs!Ky2eYE%#eYQ|Hhrz#nC+(9nyq(8Xh)j9)Y=`Dm0!O`{is;~YW2hyOAh`!rpxvH
zyy%+v^406}rd1q~jh(Ds5xMc#>h=F4-fmrTNH=~0zvHyn40G}13s?4rznwa1y@+mz
zSa;5Q!JAbrri-GUUblVlB;>dDgC}=xI4rI`n;&}YP~)1Pv-F-+RO~g(@N+CqC@WYH
zU6(7kXx|Kh-IGf1q_~_cU9KG|oD{yrv7?81ih$+TDFVAUnJN}#X(}2OJ8(`6_U4@U
zd76NdvKPn1i7G88UaGX5@DW#a$rGK{a^lAFmJ_920!iUp)Lf2*dUf=Kd3E$?s2;H`
z%kk|vlMv{X;-aZoWIatlY57(a7r#j{i^@47O%;o}TLm8RebaVIv02)3;;5)sNA1m7
z0+xGQp3bNXbh_i5-7N5Xlc{1^YPQppM+S;6->xWJ*?Rm@o`910HcrK&*RP%8vz=0E
zRa;K1SlV*JHNvUmjq74j^Y?*ud*wLquK#mu$q{p(pP|(|gL2qK<7@u4Yi$seEjzyH
zp4)z|(=3ACuZ5=GK0CYX_OyF*PpuE&_$|HnrK9Q8Q_{<3y(;wOKN_$`w}IpJj91IP
z&iJ1iWs|cixbbr5^wh>+tN!k#%7^!E?R)dUXu_%YD~($feR(z2(-T57pWm@CT6{rX
zbMdmjf=ee}J99sEt+Me-pYocAbG|%_T&@>$!*XhCx9GK%T<pfxn?vXQewuq^_D#>I
z%5zb_%`QDz5fL))x9GbZ?x#<G)g+gm{(31{P-DG|$Cs0#JGL*}$un=WZN-VM)did`
zVjEpHUs~6r$CxLu_R>3M-h9?Ohf1#1$UdGu_4SwCmJiMzteEgJPBHqC4=3052%8ms
z&)4j<@Vz*74S&Adlsh|jPb!_YNc)yYumRr%6V~O^mTB(VR646E*!!}`85yXEMZV{(
zCPCFqF1JZbG%e<;_#X5T_YE#sy}>8g;9KUbrq?2#!6mM*O;{gm`34(AWzK36T$<Ts
zTb46-Spr-4GEIrVS<4=j>39YgM4dKaRrmDBYo8FhTyw`!r%NK%H`ZSg=~-^#d+?~}
ztYt4wU(4k3)A!Uc_`4{x%XW*|C6U^jR=yXfuDvW0Bcqnd_3etni~YwR<t@?NvBCF}
z$emxiE?l?rJ^0J(l1NX~tYr_BbUcGMi1&uw*|TRttti+2aM9?M6Y}QoFqd%onOyfM
zcYT-c!N`kxTh{jY-{112Z~FN?(`;?$`Rxy~+4{AkgEK1L`1r!oH_sx^zx<ef{`{<W
z)4$#bGG`6U<D6TQvH6StZcF())1K{J_1I*x;UC-NUk%AY@|usI>P9vm-==uNz4^eq
zV?X(|3zD~%EX-f4?5xJZ&?WcWzTgD&C6Ba6cPxCKFR)jd75H!QR;G8Gu1%a7(l#yo
z$&07<r>ed%zx))!t^eZFof`*k-POrw{eGzIT8-*!%M0;KpPx0%=R1Blr##*^!*K83
z883HF`s#VSV-j~(_@=a9>oS^OO0sKQF3!@tT%MY}?D>_TW$DivjBJ-rGqQcIn^@&G
z#lTkCbH=>Oo-^jn)I0U%j+V~Mc^my_&U-DA_-kFp*)Kh-r@WM0JLRQh;HfXwZ*I(b
zIrHEmpYt6-%bu6%Bv$!lpZqdM<={M7r?9hM?j$Mt>~H?t^-|Jb^Kx-vt5I$IwzMig
z{e}6<;-|d)e&JTauYEaZzr^00^>U|$&y0DtrX1?;H|~)3Ip3Ol=nFWuX1$Dz=e%s3
zrFpqnaGHT_^~H>%XRG&A6{sHDbHAG1cisP;hrb>>a&w)3sKLKi7sKQ2>wf<ExcPa1
ze9gaCn_s3?ea!9C=ivR^l@su&KfXbY=T`cWHIG@p`Mi#p)vN!<F2`%l-MYUK%i=YT
z*&aOM^Zl*j-*+})JzF+r9P^BQ`C@CD)*PSkLt8D4BTUTqMDNS|^U{dP{ob+}^Vt$3
z^G`eISWVi0^m<iw+l|?K_1TY}?Wzg<>cwfEIn`S=+)=Rb<$M#rzpWB+_a{#06WCNx
zq*Hao=xKq)*$;}fGrubO-n=#Ot#HVK?eFV;{d-()zxRJZ@%Pui`{ny)Kl{?uWFny%
z!%_3F=H3}=`M-ey5C8wR)R%i>^DVZ(+ec^4`B{<Ar(R#Zpv<av?e(YUy4(Brl<m9K
zUtXF0wrb{^jS9DRJbQL--uitL|8#i9b2V5<$0Tay%iS<~nJpr7PP6y+?#0h^PX0_#
zcb8sssdeX`%7k-WQ{pzoamo1YGEvWbKP&Lrx(vCQ++y43aA<A3(Rk&~&hndw4*E)K
zCsit|*5=<WJSvm2C~W1lr9zjc2AsIOS}*!d{g=W>%fhnE`yG$(p0(Jx=XtTv(G_}!
z5(UdPb01=e75$JD+qms}b7^?x8s5gsK~;YigzeXgpR|wNxLTu7Z!crXm5+x%G0W@^
z<K$+Ux?KK_uDwISfuouy{!CoAj{mi?gu&|uj+am6W!~7`6_ENnb?bNYtzWc$Kd$7~
zlRiIh`-4v}ZGNR_*VX*jKK3_)KVrVf?ZrP{FfS9aSS{+;z`6Rwnv+av&id+UC-{7d
z*nduzo1HCphTC*~`oprboyLa_d^{bhx5uiYQB@)HoMmudL0g2#<=X7*&<KmLNS(H&
zKbJUZ#w_qtzMMU+vm{&f`Ljz&Z}0wiwSnjGtatHkN~u{Ho9qkTTbk7zoRLu9dg}16
zAD@io%oEGJpZR8w!r@XqzS*yZ%x{ROt<kSJKdbV&qe8J$&K!5672SOC`xk$=aQm9+
zo^~()>|ApO^Z&XAw!f|BzWQ^vht*g*(6{)SjS1Vc1CuO#OU-0-t8X4U|5o&O<M!nX
zygNTX32{%Fb!xWB%6s~Psg^?1{}g_xm+h{X?S8ZIhq|p$fsWii_WDdVL(upGwDSuc
zi2!$sLA_^V3nMd-G>B~i>Y{@fgu2ug7AW0m)1KYD2Mjn|s+a8${9)1Xy)$Uy-`fJw
zdONBw2|u?yaKet?{lyX86z7M_Dm*P0+69_K<y&p@DBiy(#aLYQukoGQ*0;|ZQcOIb
zC|-P8^fXel%5M5C={k_BP#tXo>d6!1K66VH_xYaP&3izBhvmXNO&g{M|Lp=-ZK#))
zR&q+Vf9Yp+kWci^qYV-n<vXH2E)ASf`)a1pq<~^umk483tCl74zfKz*o^j*Ew)fk^
z-ihCnmXXBbEYPSAG0rkUb(ZlalTd?z4O<w5+NM3@dgeBbOS3J;!LDQKX;$IWjGK8H
zOd>M*d|dg$r5KjF@I1j{F=(`i7>mtKQNqKtccb6|0}kfuWeF^&8HK-{TzcsDcFrFe
zOT=YPJb89--lmcbzR%geJYVAb*(q?sDuW9pX|;tJPx!+4#N#r&)_1))@A#g5<}2}8
zSe#^nG^B)YRL02A2-QsimVC^H9B=-1{d7=i&NX;{QzQ1@{Wiv>5r$FE4%NvDAOA3k
zHJ<5y*Y+M!>9nr*5vy9S@a4#^(3`WmqAlj&MedEAbH(PIHZ$+MBAVjil9>{n_d=-4
z%ys#b_rAs6=1;#Z@w}WHB{`!?vZ#zj(D`HnXVxw;--s=?qW^>ES#^D{J<g|Ha_8aY
z$?{)q52xF;d+$B^ZN<$_mtFcNCS0E7&FO1$^WypwBIj((mP|OO;20Fsl$|=^?aS$l
znS~4tx9d2Rg)f?;ntA-vf8%){e=;)O4qk~Ra6rR(#Kf1O8ES;N_FD@vEAlv3`z=&%
zs6S9?Ho0qWz4U2oPbr-qRr^KSR^Lt?PEI~`EPKmF^+RIsf~<I#uk2ahwLCp`!RbV!
z;QW}gF$t?SoXGRr_)DT@;iosxTGofolQ=Zphm+S}s`bwHufGE4Osi4Z&E52BO7E#d
z2JV->JNWp{Uf$aHr(eG^%Q0Z)v)=4!Q{A&ggH6(BXhm~3eQjJ|we%PB<^Mj*_uAk2
zV%vblx1iBSVti|4WR8*)Tqk(<F)Io<f1h*6eZjwid3~E+-Kn?Mv$~kGK~>|r@lIyp
z>W?RUrsVBO*<pP~bpAt0gW?}vGjfjjyzq-rp0ZBlVaR-rzSH;iyj;*(?Q(AMJl4po
z=XkRi(<eP^dfTM;yhqgh+{v|WPtSf?d|hB)X1V<J%Jy#_kMA80*>}$J>bc!r9GTpa
zSGVk&kRx)EFWX+r_x8Ed0vjLXNQJ$SxyP|Pyj<N|qHg~u165&r{=2^dYhuk8zZOYX
z4_C`RU-`oGW&GDui}{ZhYQ7NP`1Xv-_xR<(lU4>-r@znqyL`v--~1Eu!Yr|b6=-Od
zn6NT4K?y2jW0MerfD5KfLTPPkm_^7LpEC_Q$-%)Y(-<e18JRX;7LZ)PSit5|FU6qg
zFXD&A9iRbMV%%YYT9n!L?go`8&Y%({x$c_X&X9Bea&zRLv)Qt!CpJj0UdPCPj<2re
z+P;^{nzOFBZ|Kl7a;<!~R%7<H(vVXsF{keQoP4O@$^)5Q`>)<A+;!w)^!I<4J7s5L
zaUijyzQzWqA!R$sdeUJ79_Q-0P2wkdeoTJyIYoWy_kVBgj829%cy=;q=$Fpiw9G~!
zQ;qZg#fJ}*te=+On0NNffvqn3!lyOQFVsGA$Mxr?nZ3I<Ssh(<*kEq-mlbom+k7X_
zdamUyxt)97;jNv|r_~<eH#b?qUfSz@i1+T*j7YAt1*QM3_qyLKH?<L;9rEgmc)xg{
z=(C@S{)^gQdOfPK(NK)3HgFRYdJ=rmp>K1{+D~y#-}tsmZ93$b<@tQGy3LK!Du2B^
z@v{Q_DLX@c_yxXsd%<|$8!t{<p=}Q%-ql*q+W1mxw#A#e_ioot^{mTKtUD2|{#rHR
zPOzG*P>SESh`jEr^WH7gSXSItEUED7W>;I#v!w9V^*q-3I{G(tPE0w&ZREDxcb-MX
ziMrldUn-|QulUQD^SRg>GvG~$Z5tRFqvhs6&mtB@p55QIzcj8qr2S!@-`SO)|7YtM
zd-{nbWE*BSHtJS%DqcHqrcr-qjqeMS8grxDAFOW575MMayEFZCQ~IH42f{<9m+#e&
zz3EX~-oC0XEv0(1$Jq%}r&@h=GEuvsC}^u}bTUk*xOs`@+MuWVG@={yUQONRXWct#
zfwIWM{3*&0Uy6E_`Q}KizGAgtA;;-$dL33XRTh;c7G`~%rl>T(G}-j{k8VGuvg42c
ztuc5Vs50qNI{V#1wZ*>EVwo*>R<7C*re)b-7kBYk%d3)AjmdkiZ~G#g`C#X__=oIv
zwg3Aie(k(xf9ze15|&USy2WCMny<H+1Q-NtFbKY2YGM{*u*oFMz}z^%!|(|cS7XG^
z7=w*62B*&m9WgR7cTRdaOVTNIVuZruq8$lr&kvkA{m_e<;o}xDWh~Aiwxwc*8i&RZ
z=a_^;oMUDX2z5@AVevto4LN+`KC&&TY)KN5vlKR-X*kxX`jBUWq-DY7q8*nQ&NYi(
z#^MxW+b%}N1}H&e8t9pK*nnrxYthe*43G5oA9wVB`+vRcCC-F|4DUH-1*N40D>@IJ
zcYJaz`dZJdAG1%!e%x&%D#y9KNj;DyuC4ker(V9q^uHEoYCgn8Sx%PnH&PJ4`Q?Ml
ziG=A6FAltsx{^3MQ~g(4%lSSJQ|U;*c<&3|s|7UtZ`Lj6_S&-c)%mxZ^|rjt_P4nC
zcBT4Me}#F`o0z8ehWm&mOMY>As(18@<EqWA^IASFs^Q!8bA_T%?4mi1>TK+b9jrGz
z-!{K9ymdio>HKZI3#Bw={r{Vpn0hKb5mudZ^U{v!AOGf6|NX<fEF^e7mf#|~U4>Se
zn)+LBVpimNZP}_fL9!<|;r!;AA^P9*=cjDq75eA#>5GfITHLb}9BXcV+$JX3A^Afr
z_~Uxpw})F^+3slPc>2g`Mxx3b)7Lv@FMoV=f9zA^YX^7p?n{~`&a%y5^4F<HXPz!Q
z7$K!z=(kBa`MOI^a_sAuBG&|cG?*3VzBN!iAtS0;yJ>NcrIp{4&gV(1j_U1ypICcv
znc<>CGU2TL7g7SI*}hj>AS?dm{?*?5o+jOKOhywE66dNsI~VEq<7&41@xX2+L-i$+
zPmBaF%~_YkwUG0ul{J@^DC_iB#i#Dt{m+Pv_Qeub#5S{xOwgKH0lRyh4S8PMvWjyg
z{MD(RSMD+O_I_J0w}Mv1DEmoKLNhuJc=K$WlK;rv&C!;7zj*5-<0I$ATOH4}EOD6g
zRZ?JPMcXa6yccB!=k^>n?y+PNKN?lA?DEWSF*lyfVOJM8mpkQSkJB#C5YfVr`Gr0o
zS8Y1qd%bb#)|}0kC%#eaZSnS0RhwQHto473X0+CeTdu+zJf1X8_BDB^WA8jE>CA#D
zf!__b_I)YbG||2E!pWO+EOlqze7F3qPYr*B+RVVGnsc8U*{QGm9OGB}ZnNygCySPb
z{+{#q-o$C2l(ybpc=cttYT(S?tIH?su=(FJ|KmUAz6FusnQ7EcmMO8#He*ZF7QAhc
zcOI)D$L;f)I~<mN@GY9R^4`0<_0hA>gskGyXWnKwWjfDFRr^<yI*fhlz81wk3jDM;
zCoBD#;yXRFWj`W{;&-*(D7rW+X`{c)N&ORBLLwH1-CgYbu~kEupF#IQBkRL`GXFn{
zuQ+&pLu=9D>J+8~uPb>D$DA)pdPF)3CjOo%`eI4I`kaUFH59_HtZ7|XlGMRFjX`tY
zYTnKnD{d}mZ<#u2mF%UDJxe}BAB^ox42X`t%~FweLEz@SiM@ixZ!by~Mha%z+rC^J
zXtXs@lHWJI=Hp$XpwAaYUo5$F;_fNu^z%;Y2`bM#XFM-ZemL*8Be&s~!u8YqbH2~e
z44e3Y)%p}8^WMMrCiR}LexTD6bNh{t`iF~|%VmVu?vqRU+iaiXJv-*OcDt*{iai<}
zb=Mt*3u_{deotBKQoe=pnzHcK3{?Rhp+o218holaR(bQD=$2<+Trw8B$X)3ZwAI*j
z^ywVY4a@(mIlED29=}?3{+9kJXU?o>5xr7YwPM@(WZ5g_^M3#O!>Grw5KH&el-RbV
zp|LSaN$cD1D0J9>gZX`3>%4}IjGyO~RC)cY*PUSYj`eL%!^AcN4x1#N*9NM4s(wEV
zUE*C}*7s9Y($$6|i~Ejv2&;Q?*W4dB?k;?@^wCQZ-|p9f#h14%DKQV!%H2En#E%2D
z^Y6)rZc~}tBp3avMem}@Cs(H88zBbgUmf%I?qB})<~{i|JLBtEGB>d;R3j7AI?Ok4
zcdm;e&+GdlF%KACXIIYS4vPJj?|hPD!Xbr)`kKpC#l9W$=6T2-&A;!-#8BsYIeWu5
z#yYkqpIotjw)13&$Uf0kvu6Z|Cq4X|!LmoJL|;k!6#M=DRG#8<-ybX%n4X|!lCUP<
zQ%(Hp9^;floeTR8JI)S~DEAf7Stokd_{7^V^G#Np6>=(6g&!SbaACPAKH+S_;+~CD
zCmb!3TfsGnH7eoyOX<MwChaNLI7=2?JF@G{gVoQ!m6<#1e|oTDS4Az)Ywrz*UM#KF
zsafYFf98vib-AbV-Ve)!1=ILhgJ#a1IMvEFsdl@=|M{ufKYpJ)|M@Sss78zymhdCC
z0d0z!yN%6^Lkt28Hij4&nFSh{nJ^^@w~9FHE#QC+S2(OH+OgnNal$H4o&S=P_W-8d
zX2iB3(aL3GqwS#9kO`wuo0uBcvoto)K*=<LFg<Y}9riO!7pE0)Da~VJm|x4Y6^o_B
zHo=Tc(Q1Q<-jkRWI9$HZYf^6b^TcN6tk9zWZ%t<Sn3YXm@wdfGd6|&TbCF7ezb8JO
zP1*KxtIX=Ty-Zz7B4?gxeTitiI#=`2nXN8cziu=ty7N-D`4R8)b#p>C?Fc+(waQA=
zV%hUkzgE5bvqR_9KIL{J)|_jWd}aktw<Y!nFFqSq-u~NV!t%*07e6YSkn^K?^09rV
zu8QvPGyDBYRf4^#ZXu`7C*K97Z4Qs0X;u|+e*0Ls`?JG_?Rz+v<ZwJWA<)C;xZ7`C
zec|gr_x@WQp8Nb3Pk3MXM{A$#-H-JRPj>BWaD69o<+H8$+Sfd??@!K5F1lRn{5)pE
z>AQ~0&i|2r{hdFcE3E@dI3l+loghnkbPWxR3>9=u%#0Nb%`Ht742_J9LF<R`4g46J
zbLj_{CY6AfNV(+~<-!&X!B#2R*>OQ@q>4F@jZ6%J4a`hKPdqg;H)GmdbU;VBSXqHv
zr8~hf<uU_fJQo)hmlEByG(_to2J9AeHspA1%gX)aT+Lha^QV`d{+FvVXNi-UlhBk|
zJ}0NNTb-J;M$=!`&O51nPy5rn6f;#VSN+KwRKH)~`dHifOyv9BtJ5|+n@rEJtm8J;
zS|u%e+1qSZftK*D1$Pb`|KiOpVGe7T+Ze5IVM)UEZ3;!l`6YM`&J^xe;_>oj`@gp6
zd(fTtwlevPI;NC-Soibkm(%BU_xRcNx$N5evn#uBnH85yfm_z6u9C!~n@%_{xyoW{
z%bdNHVcor|pXM3vC6WzqggYObER}Koe{IL{*Uar*L0_;053x;23)F_UD}0nUfu&9@
zZNA3T&Gpg>UUv%ocUAAO5;6+Dm)O?MGLJ{6E%+nb%*6?&JKTbL=e}9IAuqnP@mW>y
z>aX9~wfxJ<3T@Axmc-^RVw-J-XeGO?|4v?JNVCo2K$TAP=a>nvHq}d?atq>6a`-qg
z)%`eEOcK-NK1(6}O#2_1QjHO8rtV)_x)LKE<V|AYZ`Sb&pQjtgGx3&FtjCXQ0{7PX
zq%5*oFKAt$F20!EE<`#~uFApMMKp4q=i!K}VX;|rH!#U;I(Mkl_RK1lrx(?;HRS_B
zoc5OdpI?3JH#bAR{%b5@PHdyf5N(XuwBMT#H1hY|vQ^(8sIH|zZq>SF-|w3xMsad-
z-_}1U);zJt+b7}8jO2%^A^vOaRFwO7d0Gmr3@~T$&+y?f&bg%e;Z(_eqj}ML=7ha!
z^7DA|a*dhPqMo$4!xw|kan1gB`i@Fgs@qIvqt_wZg*R<VV135A)#khLyA?4nTH5EH
z+VH~9aM7JKH>tY+x4-;jsx~r6#^O6-TNr4bGd9~2U=UznV!%Ght<7QD#7?I!MR5;?
zBWIpAaXxE^WOI;OWWl~ptzDa!;n)jaH7phr+ZaHb5OD3?2%4~90S#C27#ajj>3VZt
zD(9rhfAzUv-aqoN@G$n3n96&fvH#Ms`pIWH8JEt!VX-ntIJNud+vKc0FLkEmu3Elh
zKI46+w2v~+u{ev^I@Z`2wUX5hvg}ha<T?G9t1f}z^{0>X<b1CD{$Ju5%F4Pb=d{g}
zqQfq#bvhGn2WCII?v}RT(1-P_&$PbxxP8K^Bm0DF%*kno(p_|(7#^`X()9lJ4@tS7
zYtEe9%zjM&=6A`kH!C?$J00sb-f~#0@37X1jR~)nR#jI7FFCwY<;LUg|8_@<#hb+T
zDQ6te|M`5ia>c$SuD5K{Zf}X^pO)!9Rb*Q8+st#PpLoC42|xb$r^3y9qSj7X;SGxn
z%8ym*^%>=+x@0G&H!nGM^xLx={YzP5UmQzaV!`xtrq&^5uUThu7AgEY@ltWQk-)Nb
zFTK>a2a1-zIvKNh=bpKqM$zA0yUvQ7dwpo;*YX)gtIt|jP7_}0=lVmkdK(Mx+{dqO
zX3uPO+irPKTeZfltg7hK-dU0SCs%rSh+f{s<+u2Ri1&?YKW25!x^(6Ahx^mNOV<Bq
zG=5aWh#4v7#5O+6P$##Hjm?5VLorN3%a*la8DiBr)2O4&Jz<)Ro-=o{L2gpcl7zG*
zwv<Q(Lxo+J7>a%fO~m3BV%sFfhNz8L(;)96XG4zL`-2M_&&}9hJFjF@*1P>{Thz5T
z=sGy*=|^7juDhaod+FgP;qu>AH#*t%znyg^=;(K`%_8S@*Snt=+^);T5-4o@!$@6J
z>B{*lFRUsOr`s{F7x2>*t6-nZz_$Kje8m*M<^$H!M)w3KPm~f+IXKI^+t*`?t>+)@
zr(c&$H7Ti6(=Ps5U9?gpYw<}AQH6+|H`teGYs#qz+je?vD%xuv)^Tq__@v|Ms%nw~
zchxrfZaMJy&eSa}GiNxlK8t9$TC#c9FBzYR#~WHcY9)$YZT6jKy0Rs0OJ8!z;fn8v
zd^%g(4hsd$uAR!cYI^_WJDkeP+<nX59@-Rb_FmCt@lRu&DF=^hs4%wsC97~<+Rz}_
zXt{So*WPE`mSP7wQs>Un;mOTV-Cfn!df>vG%}W!HU7vUT^FMai=<3B-Vgb2DgRjYg
z775^DtKqPSvmS%g6s9*=3?{Y#Vr-0>)=Yye*WGpCd0opDtI$w(cFuFwm38m#w@r!X
za^4cwHLFi-YUa;W#ZcYJdi&pc=5|Vd`hJqDQ+QIi>aC?b69azQw1(_YKfPz)wK;+c
z-cz|IPo8vKmHQvh^m}?T&y%z5`<2UWs}e$cT7(!+iwG~yj<ni+cvkNpn`Mmlj|7X>
zMQoQz7WLrWRd`GEz4PbF6H*FkGp2QM#fEi?)j57#;J&u@dqhZt!o{~To&`O<0TUa_
z8gF^<SZ)^Ey+Z$2<dhklC2zZx-Yq&H<auUJQmoZ4e!CK#75mK|pI+bR^~*y$+visK
zV$aMoN|V=3cg;7?ueIIb@LBIvecV|E$KY!knKc(y%}v&rC7Ie<E;EbA<hV@x8DX1t
zW1%TuYBlQOz14PUOtk0YU05G4x435xTRvm)#rfO1n8iQdOk6LM(0b|UtS7Y&TEbNc
zzy4qUQTgu=v&^=J5G+wcY~#n!9Cbw2cY-gUlcGTL_c@Ei4HkZ8?*E(-^YZWZvJXEW
zHGT0`bY6a#S=RlLn|s^27Zn>$8uIPoHd2f0{XD<twMrl7E79D8yS7-rJF8=;t|P3R
zkUizjY<H0#4`*;YHof_DSX{zoN%o9<)A^;7>*{u2j=i$9^!sIHt~n?A0(hhgSZ`dm
z<+~$v?)@ya{UMr?vn{6Zhlo$ybd$4n#nPnd!J!#FkHT!<cgMZ`$$0Ra^=~YGMs8S9
z&~i63B&p?YW*B5(Y!-ClsS(R2ogR^*9X^RXGh+Crw>B{bv`%cD*|c+_s>iWQOs9;D
z&6!U*hCC@)%E*wM#9xHP2gEj?j0{oRtfm2{d7TY8cBgZRtq@^qOqmz9xAcE@?gi^a
z!T(MXC#G;zt~_~8^QE_)l@I?mz5N@NxYw4dzBx5ZVV?H;g)=v8ym;eLLV=W8T!WZ-
z!i&saDbtdNP0RGAIyD|u{V=npwED$9f60n0v?*nq`4jvYAN{X8{7(1D!bzV`&6EBq
zJ?HHQ>&<x&)w9Z!E*6OzUD<4MT!KT`RnDf;by>lq&DYAWnh0G<<Mx}zxX#bMhmRpa
zDK4_%%{muL?@N74=jZP^{+-`}A$SXB&=?~(ft(VHQ^DIv^j%W362nS^6Z47{^qn&j
zi$FU_iWQ7O4U-@)eb>C?eDDSl8yhZtm&~-ZRM7T~RM74ZV<QFq;)2BFR0R_Q1%2?o
zj-1rA5-77MGd-h3!NgcWzaXcySi!_pK|iCiAR{$TLBAliC^J7r!NfvAzbdsTpG!YK
zFIB<RP(i;WqbN01!PHnmKP|H?RYAWvvqC|?IJFF<DHUv<nW=)lqk@^Gg1)PQxv_%2
zr-HeKg1(=EzQ2NgfP#e)mwu3fg^7ZGh=PT=f_}JyrJ;g;Qc+@Zc4`UOZI;GxKE#2R
z<_h|W3i?S3`pF9VDGK_j3i@dZh6WZ2`Z-+sxeA7ch6?)m3WkQJ3i`zghKA+}`lSl7
zT+nSM@W8RN<I;D_EGjMm1)zd~f<7o{3FV*syb_nx;^d;tf|C3q1!GXlIEV|Z(>JlC
zC=<L9M$f<i)BrG0Fo3gS74&@)p*9(rnkwk~CFZ7rw%Wj=5h?3|b{84Ldd(m=Dd>l1
zrj%q9D;R_F33#gubeRv>e%O4jV{tNQlZ~a3C1`I_fd?e;4M4U)WOR*;&A@wT(u)<0
zjUcWj!oTQFRnYe=NzBPicFar9NmVf5()UfQ06S2@(AdOCK|i=8H8%_to*<7vLKP{<
z^dsO7Lu{M^dko}{XazF^18QI{a?LR|v`{cHFjO!xGf=QFwoouLHsi81HBd0OFi<cu
zH&rmUGyr2$1Bg6Gy|J000+=>72dT%0xy+2s!1Bh%<_aJTvIB-qjSUqH4L|{4VWMDW
zVWwbaX`x_lZlGXhY@}dnZmM7o!lp(FMwX^rMwX@uW~OEerl#f!7G}l@<|Y;j<`(7(
zW(LL(8YFLQs$gbls9<hvq+n)YqF`xZsbFRS5d+a+&lsC?foPB;K%N3&GectqGh<T)
zQ&W)LAoZpS#->JKF*9Qm1tW6{Fg7)}1k;x0CJG>NGeaXTkUkJLF*H;#H8NBH%_D&1
zOf8KREDS9aKr|Q|nZg4C6euA3!I1_EAOizXfO3KCG&Qt<1PaJuFbqy<U|S3f6bubO
zK?DvqQ+V0|#|Owd2<9@iG*AHP28S<#VPvRa0ye_P7_8M4<SIi*bb^ur$Ysdb*w~y4
zq#K06Mwyr!Dwr7>fzt{o9e@QvvLFod6UY=02JvAgfgERQV88_uhZ$gLW~l(fpo9R5
zFKieb)|Q}z35pLm2B!y5nt)+&T7jksP`W_IAa{ZJ#zx?@0ZJbr3`#3z2ButQ#s&)D
zGyqBmXxP%i2$C)gA?d;lO2g6wj0OdYnXw5Mm^L&52NH}8vLDPghNc@R4N4cFSOw9s
zpvn+bCV*=-5CgPq(GgT{fj42gDuCAu27&4m6Hrq>2vnz-fZFCkpsK|L)D#Q?)i5TY
z22zlMevpC*xB%tS4^c1ym)xM*#spNu27xLR6L9qjs#n0PA%ftw4!9OF1(oSRT(Fu6
zQWKd%ElvhifM92(D40SmPE|04S_~<P!830`psETyWfQ~&sW45U_CqULQ>Y_y6u`sj
zK??f03T9xdL3NrL)O(=H*9>eA7g8l|2DJ}dtwS7W2KF($`Zj}l8(h7cL2WJu)y)P9
zL0r&k8{Cx+g4E>ZP^%$r26L!)A$7hv)G?(B=1`}AS_TT{5G#>NcjPsLh6>;&4RS38
z(hQGZL&!c<M??kU3g1bqpPZ-wZno<?8o`tq!fHxPWuV!vRLIU;P{2T~K)4I!P7Fa%
z06_(jT3NcenR%tf3T9CMBbr~jrFoeK#+D`u<{&FTiP2EO5Uh$z-_y`Q!3g9zu&|+m
z5nPFpf)U7au(+{;5i}k=4NVk`pwaJXXsTcg4ttO}W(vk&GZpkb4b2sd;bvMW7{kmo
zQZR%@ho`ZEAxwpdf+5%<E`3i^1w)YEKz5ob7{aVHS1<w%oPb0v6pX+YD(HJ!Di}fS
z^EFT~1Y5zS?`x=F2z8yWk%AG_HeX`}BdEE)CJM$-!+cE@j3EjT!EFvw1`ArJ%#z}O
z)FS8n+=Bc(P_xBCLEkw)C%-5d+&G19LUu1otmM*%Z1@dGEXpm0#5zb_v4SC3M`><e
zv4RDtaT!pQnv$6eYL-EI3Hn(3{Lt2ivAF?!2eCOcFyPY`;GNg7_9ATF0@4TrTZKG@
z@%FMIUz3A~>&5kn@p=8ZJB?NxJalX|=e)~?l4|RBZqIGF^7lIPgHIuBrc)h#Qv-q}
zuZ%KB!(lWL4EM|seQoB<<DV<4{?%1Ke9ZsFe#Q@V;rN>RM|>AwS>%G6Hqc2>Xaxl>
zgFuC&p@BJg0Wp{jDuh7{P|Jt75;Mr%31@+6Otk_NS`7sICKhKafXnqDqz){&_=Hu<
zgo@8Qr&p)Gtd#pu9{cUy^Es=6R<6FCmGmNG!i5VaW(S)EI+&W|p8ETCC{A#6P+06(
zozQeZV&*Ylk<)=|5>~FaihX|N=Jc&b9Gq9B_MF`uy*uW?{rob%^V|28{=K&Odjfy`
z$Jx)nPO6mAHso`jVt=?Wa?zhn>jLd;pX~Y*xW8%hta(d~%QB691OM$+kKEU1f9}(3
z&C~mtoGVT|=k46nw0Vl$p-ubG)YWjmRGd?Ib(y@|$MbwQpZ&l7`NtZ+he0#-jIw9Q
z>+Sbj7I*N{TtC6}t3$We%y`=VzWw(9%4zF=6nZS}Kfl@6?)XFZ#DCp7^?z(mhhH^t
z|F}bok>P`X*FFvg2lsduh6RiDnHVly6lY|3@uHi7q2!Az1B2BsB?boBT0w?}K3vM4
z-Tzq~dEMK8rr$@dGR@MMX&U?IF4L&rdei0Ss;ci71)kdPvUUCWWy0!Ld)03SUO!xa
z@>6yh$8(AD$T|*w%d_EEyW>-Tmd<~Ae6~(}=<)NL|Gd;Y&A)%QPi=GI?5EoHuf80!
zIQ(IG;GdhHCOqB#FmmmxuM+%~cVm9VMIAc+mgi;Y53T!4zi{5Io%GcF{@G8V^7iMm
z9DX^~nEkOhb-nwxPW(@9?Y$RfZ{JjN?mG#-BJ6n{P@LXR`%@TM7r*<{?;_Ll|8MO6
zu>0A^t*@URHgNfA%=d8b>-j0n(`u*1_ecKYd98Wc{{L*9{~uoK#Fy^b-}~ut+H~Iy
z>mu#UdxEFkw>znJW8ciDtFu14O_R^x^rvY0)77tL#J;#yKk4ao@kqPv^A4&1`jkI8
z@zg!O(}vb9i5=HZJ}vQRcUd;uzT<e#zS&Q==coTPjG3}3i%-1qsp6UT@2@84CWVFu
z@5q>Ac(iqInJpVb!*xm{8y+lke`d|wfA&Xa&0DGGnc&ncerxjo{Cca{s;<{()lMx>
ze<|^7^{Qw5oBnkFpYybTd*r`=`I~D(b$@Hr{dsl$;j{OP|42?de0b^di0R2w;=euA
zTYGcw^mqQDYnSJokkXTSoF@Ksb=Ivo_n%KIIzBx%ySFs)MA+}dKVkaQyCvE+?C#t2
zetN07YSqh=`+3;!r2ITPJMv$TW}D{e_SadVS10L7J+wBreWF=yvwBtAhr)=*r8;G&
z;vCk;-ezWauyqkx2_5ctwESTF|KsBMHE-n)PsvTNeOkP4`qTFEML&+8zpnAWz{c&T
zanE6ar_)WXTUJ@k`NTc($MgPeA7}inKl|yl-Rb__8vFMBFu7fK_20M28umOl**84>
zpmZwy>aLXU$2RTf{>&fvkLPt}=cmI{=3XtW|ERv}P^{JAq7!;Y1oVtvYu4OZ)mG@o
z-tzH-z@hYqJ(`zRZ>asXS0g_3aLHue8-Ek0-T(Jnr@rm!VFUU5)f<0$PV=9AUcin!
zwDi=pM>}Gc-ag;{qYhuz#^qyN1;yONy}$kAe;?m**37`Z^SR7_SCRj3e)!qAKDwzU
z_vzzj(^LDm$}ajNxm(2gkH%^HKh8Es53fHY`A_SV{_l2!dQgm8$}ak|%RcSr@0{PE
zTWhAueyxhyR8zqb8rojtp=8^V*k#YgAAWO}dCqeKd)J?<R(;So_B!Y43_1I*PobgC
z+q@4?nY;9gz&rm?-rzb#q0eV8cjxV2_00aq<eUTV_#a#PeGHP!`)?+<X`bE&d3{N}
z>g146-iMDjw7q_{>HMdkBKycM2eAZJdc^$y?d$(0-$|2}DE~O;rO4qaPpAJ)-5wu$
zd3R*p-`zU<ZBl-&vbvl4^RRg2KZ$3nU%e9#{PX2e<rI6H|2DV({mq@Se%0gj{b!f`
z(6MfLy8U73>ZtF>b?T!Q|M~Q^cFOuy5345gTIfdBowB>em-uguW}8mEtX|d5kJjdq
z{|fh%`1`NltXURWH{+R({S$F386%&Yw;%SzN<I5<FJklYbcxNItJ+NOEZzL<#IhM>
z{fla9-k*KADBRRXJdUNUVtNpD0|Q*e7+>G<H%vOB|Ko(m&NKG&evVK1`O|aS`c+@W
zBkO+et?0U<X!Gie&RhGFpQfAV<}dnFWwRu>r+;&G>D}l3&Kb2E&wqNT$9q}e>FTVX
zTGrl&%g$}9pD$bFEB;?%Pg^k0a?`m<HG8^0y=;x!*Yzkgv@~kbk6#wIm%jYCSR+2T
zOgS`^SA3uOvWg=`^7|fKdMkhU`0^~y`xjsCHIIvR{kcl&x$hKv+dJ_kzYoiZFHby`
z*Oz!E?|tFqwG!zc{t~PQvBW>v%h)nYaqsSM+vf)9KhKuT{QIN+TCL5K50%sG|C!BG
z+B$F3pO0p@|0vqEe62X~>GdRE1HQnTT~$+Z_pfSu!+f=5u5aP3`|dwiMeVEV`1JZ;
z#l@P?wZGroi+;aZJum8z^kdN*Dcv_J_WGtvtTT_S<9dJ9e4fkCRZ?wlI;EGr(culQ
znWmRJW7Bs3suSrvk^K+3wd)pSOB`OzvHtd_N3LcIvhJp}8=kwlXrtcEZ|xu6hJ`*h
zdmVMzta{OP)i(^Gm%mw^`c2(3W9Kwb7MZb$*T?+l9Ql-=hx<4EdA2+9-^1|8eXFL`
zPP<<(<u4d@UG?<*KJi<VH}hVe^R)fV<#STc&KJopU4D0QNz>C`6L>xHdsO!sUaHQ#
zX<t+P;;NL{Z4LW#vvYn2Z~I%kY{p~FpqIkoj|*<T-Ouz;Z*DP1vPH_tc`sgC)kKG`
zT^>BmJ}p@1c!A*Qqpu@&_#OLsTKd?AJ)u{p?A;Kz|G6+j!}U&FjUQ4X9p02W7js;H
z-?#q6*|`Zfj~C1RGm#Uryqos(u=xEsKV?rli^N}7z5Pe=c3tS&<;hdzmsy_X7yqAO
z*b_W$zFA;h?B<%#v*!MrH4m+xa8Dw1tKRaQ1Cx9=>fKZfxmv|l{_;?p=I)8BvLp^4
zPdxW->6gOQ#`AW35QuYk{?W3o{q&pT-j|Li*2(xAwrqbr%Qo-w$JIH%e{yTY9zS+g
z@6>h4e&;I1vi$U)##x77>d6Vs%zLDmeC>P9e#)ANsG)Q&X14kMZ~cYkA1$Z18|**-
z>9Oy$`+Mg;UHz&;`e=J%*Qd)eaz&wQ+jZ=7HvQRg_EV_onM6Bl@0WVK>342F)Z=~q
za?#IKpjKe#lK$wY;(Al#b{Kzqe(Ci+%jFuflkR&@pLXxw%e}R`PJf#EKB(&9CD-+z
zmX=ltJv%I(bah9qw#<iSo%&y(LZ>}G{pXi8%d`*Ztub7``~&AF>Spr8yZ)SC|Nrsa
z?(>zuJZJ1b|LL^zH2cFZ^-lYnN7mV<{#+%sJ+f}b;XhNJo|i7V_;!9_nEqSSJ4?e0
z7Cx?i|2y&Dr|uiSPM`MwSf2QA#?#BI1Aewf)XjT(dFj83*-u}8%5VR9a%p?bwmN~Q
z^L^#reirxGcRZ4}kH0J_*Z1(P?5yK&c5hDY<$pLoHr@ZuW?zeglj2_#T%>Y221?R%
zAEw94#r^wTVCDMQ{PGmPnS7Pm)=Pq8ZvEe9@Afk_cJUvnXREX1<91Y@vC~@89uWF?
zLhO!`u9DxG`&P9ToRAdPD?Qe_<IA_pikbg*=mh@bNxvgKF?XNezNXv1FJ0pPyZ+vd
zR^gf%PgiGEp7`{A|A|kB%}$43Et&ju{lC&_^7l@D3f=n8sH?v0%(5T9cON!y-}mm4
z_iIVtXQiLNT|LTwkjjmI`@diQJ>5UObnllbj}2l<e*eC#c}o7XbKGG?{l4Sio=^PG
zNMHRgX+8E)F~6MlH&vH%eqOFB{ZWfgan7TjSgSVoT8{Y_N~Y`8J`TMqV#k+mbFtXs
zsM?%IJ?ptH3I9&n-u>x)eR|)g^#_ih-(3Cv?rZ!0=MkH?JIm%j)(o0$zUasC@BhtC
z*|+E)F<#<bm}P$ad)BUuJzLMpZBL)AQO9?mx=q_Z+x_3g{i~K~%lNZt-ODK;-_Adz
zdFieEbk$SgS8dX4t<NqGU$|;nfrr&m$=xN#_6l0Ih`;OMo_o(bv+k^aU{%=V#ddlh
z_4Zn%1k3o{6q&wnqSpSs=9g1HhknhlZV&be{FilZTYTv4g09yE;Eu!o|8su`Wc@Ta
zJ^$T4%g>t%XFol^A+6g-_jg6t7ma89i+;Fof2jDR`+#Q5_qc;f#<4rt_B0)*ax8<p
zzispDs{Vhv|NHVw`Rwqz_+yDXGXC+bPnf>UaP_~}yWD=No(Zqhw{7`Z^1Hm<dCK}#
z&wuBf=sqm;RK72A-zvW4r{i{%{7&bwd>prH%a_jEKGV;JU(Gu=@5S=##Z&4x-FExA
zYS*mInq`T0Uyof4wR-aRwf$+fo`;cApPb|RBmb5BKRa`}tljxfQ{|6-JF8<~KjG<W
zyIp6)emnmtt0+9P?vTvBg4M68Hg|sd{*e3i$2{?;t6$x9Pc-&aXJB|RUj%Q59kn#Z
z*{=sHJA8hhP0j3&j}4YM-`h89(Vxw}R?PR`EWRB)WxxHA?<enmthlHd*K)glUqAoD
z)4y}NcK;Q6y1(kgI;T)una!Gg%XR84)&}ld^+|C0)|ro7HD!zTo)p`-+INrlOOgKa
z$bY-9e>_yR_hehn@|@}O-jxOZ^PdN5h^_iMJ+iJseV)?Pcb7hW*4h8x<aGE|sde6;
zC!c<{I_r<4$p6>()4abwoFe-v_MelFeEZ``x_8s3Z2Z#sjk-nn=ik@sziqA8;lIf?
zt=8tb-5jO)ipKBsY#gudIQ!|ajK5*5`^W9;>m;83|Lt6Hb(P;~p{M<c{~lKKd@BDP
zJZ1f=!<oIG_>X^>;1BAY%JIDnJ;Aqg)wKc-tHWt>n;3r{e{gpW@61Dz&ptkye`dO=
z_1c$@!$QBeJ5TZNuL2DQm2Rn-!OuDUnxc*O?(LgvLV53>|MYwRnNQ1i>%@ni?qB@l
zxBtDf+wAuUAGP1rd;j9}x|+B-kHqi1{ro)e9(Bt-aE^Gk>+kCIe;=1j2e(_+wO4qg
z+-Ui!IWOr>>d&7iQ$L5AraI4iYuEFsf7^exQ{h)Zqg*y=^Wz@<5vjMDb?l9R*=2#J
z{6F<_r<tD8_ul4xdRFfKRa!Q$&I&xc{I>n)s;WJw#TxI<iQNHCAaCcsyCgXe)G#++
zzkcx_d0XD;?^L6YtXg#~d7AydR2x^V+V;NNI`(HG_pNH{-}I;I)Teg+O*K!~zkKY!
z`OlBd8vpM3mgR?s`r7wAlD9uU?a^JsJ=<6F6_@2xxzqde!|eTaKi`*Hx;?&L+W9=@
zlVWG$y|kZ-dS?&s=>(1PJY7Ez)Kz^O9a(4V`tiGb?Tp<0uNFVN@A|V);*zG`-oJ0B
z@XkE`W=-BQo%qn%1=IOvo1W6op0<8f>dCe<!QYPD&Ds1XuW$Z~k`sB8pI(+;xk@f~
zv+J|8$xr25f3B)3D;9owfA7D~IZcOSr`fmuG;Uk-+d$s_;?}hHcch*f*r)zH)vsjR
zVtnq>(xvH{XXdr8TJ_Q1?PK}#*Ezp$uSp9DJ^S9ZkjmA@{r`XeSNwecb&K2M_RNmw
zb2d$~TJrO(*{S}|pmbr78tk+CwNAZ_%g<G_^5T{_>%HCkdcMog{#WgRb#j}fA7{;5
zToW3b-xv5VZF206zb{3eu734ygUipyny2R{%4~8?5Z05rK3nrn-L&<qaxGNO#y|gl
zZ*lIn6MrsVE|3KcErefvsdsw+jr5;??Nfd#?z`}u=j1l|_!m)!T_0TfxytHZ+Rrb?
zDp;?5khO|y{TVxL{VL7Xj2}fVPu7Y5*h)kZvM)D2=K7oOQvcu2==R&Fca#6z(x0oM
zt`~HDNdI;%_}k|C(5=htZ&vI&|H=E`@4nN{BK1c9)K2+7JpXU0y>P{`2`2OZS7a`=
zuc$gEvhoXO?4duIJKuaeFEL5pY0n9n!;0~3_Gcmwf8SIS8v5&T>&vrJ{~p|Vdf)En
zxAQ-CUcUZ5diIZS75zV}r#<I*zc>8D>S^Nt7oPo*K0EvDtYiNf*W3_u#xkrA8Yu^j
z;G0?)!-w@PK$D~(LE?w?iJk~GHdoLmZ6XvjbqYO7*#bKMOWZ^#+CdO+=hl{ll+JoS
ze~DJe#e*D262z4SoP!$jtrrW*Y)@T&wY17Dz;lY<oMXbf{w^+0|Gvh0^K+iN$+zFl
zIks){wtR`VmwSy~H>DkW<HD&cts3NL(wi@PFmpE3XC;;wDtmld5|j$Q_j7sPeP3G{
zq_Q%4>aV(gf95^^`M2(SxouH#yq#*%!Vt3%cGsq>yi=8ef}*AS&c8eMN^|3`4?lOA
zD(`ic{IDd`COE$|K;_2*Q)QL4Cnl-7W!G=@D6L<;(PfjAmDR1so9%Lb)U8?fx909_
z<-HquZr<xF-ZJ}H#rau+k9cp2Uwby4HAo;<W0OXdLL%q6H!n1Jj-;R16A}CH=dO7Z
z??tqg%sk%xzE@8qvgE`p!AWUn?2;rzm8P~8rffSA+!iQ4|LyTl(MhGH&tEHnOz*t*
zP^NU5Wz<?p#h1t4gm$~SOj|QcS83m;qWT)KO;e7)`t$s?m#*Z8=gU6&?Co}SS-1Tp
zhhj^LP-L*Hi;B9ti_5aKNMq|auiA`eN9R1-wV?R@6>e)br#(+47oXGLR8>&0wPXLe
z41Gb)?Z?w^d=THb%i!AF^WUPDHSFpr&eu8ZeX3E|D9=XN@RVwL!SizmWi-u|Wc@p?
zlpRSePjU`kv+i5X-1;Tk!<KA&{6AuuL2r288u^!JCGYGkzK}1cpKf5T$?n%Nm3z<S
zTDjN7a=&x7?0sy@uDJ5_2hrH6XGLSLYOH^;%B|8hJhj+0{HV6oq<1`bc{l8KUT{Bl
z!|SbfWv#mw6zj+TQ*4>=<(T=dP0>wzl{US&CA{3V#{8^xMn_BD{3;I@uY9YrAeHKy
zP3IqNz88GB^ryM+OWAdw=dPb!#A2-Q-&>GVB!$1j<6h7Db6qK-Pv(`K=kQGZC42wK
z#(L%##%r|wzwjzJsY%b@nkSZ-@zyBpWQekmAyd)(i=xx_3U^8z+_5HqMV`g)s~-6Q
z?~HfF8TB8x&-IWpK4pD(FL#~(r_3Gh-%d@JZEclp-V|Q-Xj5`)t1R<`(j)0}C!9TG
z<#cIU;J?@}Ymc>`J8^rbCBJ!Bj;`g8y^Al2&i(z%<D27+IcsZ~UzPb9e>eLta!k2J
zz==aqxc6q&2j&fOEHZC64o7bE6^sAQeV(spLJH%x=CloRYZ$E$C7G!0d6^gZqW<h_
zW|b#Rl5cOXNU;6E9KrvrNmjAvSPRnz4VE*HUDN$u1PV<OnlXRtKJN4J;RlSb2uKOf
zE8VUkacz4b=gg8ByzEQOt}$C%A1Zhj{7Oe&MbL>uF)gNt^YJu6qn$6q*RW5Wu(zf3
z=!M_<7IKP{=eixO+Hg20u;a_jH9T9D&d<>0n)oZqKwDtawwMX!iCffKHm0;J;q}X3
z?6?29wDE1;$cplpC*w};%guZ~EBR8@*(<-6_ZI*D_vFp}_Y*Vjz3H2{rux>y{Xb*A
zmHn*$Z0~=v@4-r5ed*`hM31D(v-tmgwRFdu$Mfe-lKmL@Ew_H(htK-%&;FJ#uhxys
z(cPHyGF^C|xxxFh;g6y?3f;}Md$xZ)VACEyyL`{GQb%)p0VfVg_BZQaq}68Mx14xW
zyD3&_)01iQ^j-dFuj@GNmA^GDSxNuC(Y(rg`)8z`RGab0?z?S7(WLugLgINFXNlgq
z&+zN=#&bIkoP1GW*B!B`^BH3*e~-3W9j{97&TBb=1{W4x_;7y0-?tIzbMogNwt1g+
zVp-4e!d*q%H?glZ+rQY;Na(lq-C)t~L(8W-m1V4XZIKO9<#}SC)axFt%2RSJ=Y4(%
zc~m9*FTZ%yRcv$9&20e_($CG4d_7-t=X+}j*>maB_cY&h5w5yb%U=|&vp>$8L$O6*
zl2?Q5!h1JoTnNxqx^}<NS7L+FpG)WN2~4l8e`B0=V2||LY{etI8<h7v&+*AHo#t_E
za`HTZwLH4hEYE!2XUNCClHqgS<~6MXf`xU`S5pEb6sFJ6<!TK+Bi5R5aEACM1|Qyb
zZsut^_pTHqoH1T?V2`m*w&D@digPP&zWaZBhWe4`v)`UFKL4!H!h?0jcH@`lYdv=*
zZ&R*uH`MM43VFj8A^9$(hwo%X;Q^ccrKP$p0#0guYq&RR^yIqb_9a~M<-OULEqSV<
zx^YM0<%M2?|J&yEKkGj8e?@w8{E|-rHDTO0mnP5Mc*Cl_^4@jb$flIDIwyoDCOA3<
zxP0PD`{h!Tce8%K|B?M0zdsh5IH|wd{Fm!H>mn7q-3KpaA6tG_P~vM;n^D~rmpxD2
z4DA2No#ii|;Um;+Z9c<Ch;5cimh~&0nKScud~xe3I+@wF=IFvai`^%?dzH1spTv6P
z@7d&b!N>8^yzaKWv7t);tR4qXKE2xONP1E8TDh9lT(yaZ_ioJDuWG#c!qV$2K6i&W
zY&*9w&*JfZ*CWY7CY~>zwKtd=FFrppVcLm@LQWpP4EXxJFSqCvZr8YTsrJ&{KO1ze
z@7(^JTd=<K>umMnyGhUEZs$x?RX!5@Z*Nkdfl}AcgTL4WuKblfW5N2mPkVoO^Jl&Y
zBPW}sP8&5!YM0EAw<~#R8g??|aomhTv1@yo_nI2q^O{jEeQsi7dC29aGnV?xMY@}2
z$zFe@*Cy$o94q)muHoaYgnN}1$B(=|e4=%NWxcqpT)}pYCpLS}-u)wxRrIcQM_@`e
zL!Cf@!0S&<&+fUOn|0i}<@3G%Vo)K}l44@F!TisayDEa~{_aewTTyp$(oD^Qm$@rM
zCMKOYC3D?q%Ehk^d!F_mymz5ntTkwZ%@yru?f=}o)1FD|?Ol6J=;SS)$ZqGm1!b$n
zrQJh}p3B9`-H^6(?shVakn7WW*8ZZzn=L{AmR8!V<C|w6o-_AT!hH_OL^+%LHm&Ca
zoIjk|9J%@K`|T-d({|WCwl#`=qIp7U>hpcaa^rGj6qOtHKCGI3CM7Il*$nw<ArZ#H
z!7)|I+qiC5#v0WqxpF9`7)@I6^I*vH{Q}XhO_GY5XZw@yA6~odr(53Ej{WN{s~KN4
zb$oVsm+ggUp2rW%o78oS1t#4x(Y)4Nb##%z52lpzq`Pu2YGsZ^^L=(J;H$HkH!J1b
z+;@SKc(j>wxl=ZMN<Lb3VP%9!m^svxH8bS>qMj+J@D^;8V==XEs+T##73IdEIC<ik
zpZh%6*RX%SEn<D>Qt~^o)_|EwVIQXUUOQkgrIe>)yLC%X)1Qs|8B^BXK4{+Hv8+%!
zg8!PeltkO6*gm$lh;7oF8Lqr-xhHn?&xNnc<K7EyY%Sl_Zpm=1x#sMt0;Ry}!wM<K
zg-q<fJgM62enjkFtcj0)1ixMVfs+Rerkq^t$JQ2ct#)Vk(}xe;CVoHsY|XNhcmEiC
z7hV0a4;;xo1)Fz7^P6djwSGv}JJ#}Qfk%OE3ggi~8%|CVgak-#m+Qj4a+`wISo7@7
z7WsVGZcg(OwHov68QUy(GtGZLd6Fjc=dv%gR-r22w`Tqqn=V^_cGk>SR{c)j7_a2c
z&U-hP@$uQ#%3gyr4}bf|esVuQH@4#S%FFS8qNe#y_P%%L_5XdAvu8<9-&=C#b*$=4
z*Sit9-vv)NJ<i|VzANqN&i50u_uLDal=!53_tynMo0WC0>u`0KZf?@lzWnOl#bdJ#
z180L`yU8G$|Bu<sUw;oBxgq8@`{qn}4o{_N@$O|N1_#zFTVJ((eyRH3^@+YWt&aXl
zFwuI}?w9T6VHC-At(muvt!?3&a~BT?oG#l9D;Qi2?OmiqKOYwJcALa_->p<-Y7V!F
z>4Yx_id@5=rX)0ITP?TRvuN{`P={@PhV}<U=Wbnhd6wX$m^0<Pf6QjST>rhn*UWHR
z>&3LPXY5WKp0z(}FB<$@es?YV=^|0<LvO>i#afT<iaa<)_tL98n}t2k|6f{tS7j#W
zeFmkJHK0VuKbMzhV~%Z#_QrRzFV;4G3_G;vc0r%QncE9y$oII$<!7ZGu)eFTajp6B
zELlbQO=fGfo9;0i#7UpA=6^2HQ0bqQZTI@?yfn5yyEA4mzuytf@8tVVtaYtx?Xx$$
zYff{|s+PCRmU}O7u6ln`oyF&t-9Hs?RUUdBs|sp;%yd|$A=Y|pzP4EFEAhG2*@u;a
z-d(yKps93p!qlDp;Ws}l*!1k{te=U!X>}2tdsR=#<;?pb>>4y9W{bvxuM6&7JYX=z
z)JjSs>1N*adtu3)DY<QHTn+8FY}0tw&L30td$sGT`z>$WBd&ArU9VaFVdC}WhN>s-
zRF^y#>(c2G^N46_m6dH})ST9oQB$_XK!ID~b;tQ-w^PbW58o6yk*0P*dID=ufy+wk
z6}{JaBNv*z_c_5d&1%xgCy$Iz1-!cb&OT(`Z@H3}rdlpq$`ht0-i>=v>vfa)p4a)D
zO|Ey=vY$42?bw=R%aNJJdVd8kkMqq^ue-6gDwf`o*^xGX)4umTUrhv@JlZBNc&JdJ
zc&)i}tL}<t?4@TPPnhV#c9zw&>+6ExjT&q6n$EPBRxj8tacuJ+t4(Qj8DVGmO9NBS
ze%}=-ck8f{>V&^iuRYS5pEdQ1yms816ev-{xXF5B9{(3RzQ?-lmC6?F^3Q7H4DBV>
zJ3MRO74~K?_pxf3zVD@TnmyF+znpeuld{jWo)obRy%m9L*ynb+CYB1P*sZzEy!WWV
zyr*5~3Uv!ypGSy?UaMI@`{}_NNaK0xm&tBHy)3-!2e~)O`K-xxG__xmE!W;7;B?IA
zSzY{;+>YH}6Y6Fs*+x{IxmzWm6?}$k-=>S8VrGu>yVCNQl|A8AtBu&#S!V56|Nhxs
zPy0fZ)(6rKHOw77Q&(nau3#uWSmi$ZV8Ax-jdE{}=`fU9FWm0BQKRIl_Otfz*s5sr
zZj+p*H<fE%x8B<>`uQ;9djDjv2|LSoZN3<^LH-Qu&pxx}g>PEYY!BoJY)a<*!gnI>
zC8uWT^vuU+o7Onb{yrnA?#0JnCd*i6{w@!^_HFZ~!!P1@`#!mDytuyBhp%?h?x*U7
zHxKT&REwS9`rk_L_owu0I{V&Ta6Py8Z}#@iJ=62g&8t6My2rn$+~$?lz4hF;=2UP0
z^JLAN89%35{+7J<w*6jxz_$ha55E5F!J*hPp@;1(>r=DHJ(&rMlL9&Hmqqel%euz=
z;_i}}@>wFEouArkW$P7gwh3W(Wt#B!LXf+Wl!<uFk_i57nqsZrs!n)qd}r`wUEmr1
z-zJ|ApYHm3@W!e&KXuJdJJ)YL!LLv){kkLNldYBKkr@ILSdE-lTXRJUUfb&UUPfX)
z$FsLbEH6|U_(p#&Ir_(dySh7Zk7dE0`U938Y0c+#l_y^)lMlW2hx<&yS?vYo;(hK$
z(p&gjayC_5c37I`9<eTxU+i@nYjD`It9KXoh8unal`o3PN6u<J*nU!Ivz&^p_r9Ns
z(<b^n&CU?m07{&;H`Yh+f4DwTw^Ve(+F%{753f&L+vRt3k-)n4H7u{qobp>YvDZkO
zZvH7H#qy4!_#hi7lEaoq@FSIm8#N%M;q-fbQ4?=foygj-PP|IF>*qsVa4a7z-}Ts2
zwb;=rO~u(T{$l9On2VvB*P8!!ePvkxLI-MZfouBO*C9Gw%HbuUW)OTo>{~;4$&st5
zZWnYqapT0D_uV?*8sANRcda>fXP4~5Z>vRLA56NtCgGG=W~uqSfMdI3BR^ZrkoR!=
zoKpOGveH7`vuDdYr<j`m4?Zy~xAU}Au2FETZOZhdyJjz9`5xEGKD+yF$FzlSLXU6d
zNsXRr8lK#iy^p!dJXX8tZm|E~CrK0E+kL%KzSpk(NcM%84-=DYe_XhEK;ZN>=WRl-
z?={|&lE_y*vzzz1!)wRpq&kBrk<W+KZ~P87xVO1rkAGF|wV+8n`!3JzFidp#cB*i#
z9$Jy?@cN)<?pbw_&(7xG+!FUN7wp-**DhPrlkI=(maR`7eDCuLFM0Qxf9}NX#l`dP
zrJa?_lR4?+d+kg}_?7f?_YUmZvtZ}<iJPB&<a@a1yY<>s4eQS>m!sM?t<Nuy|GfKQ
z^SkW2`dK@_Z|&b}mkTPv6_tGgb-1?LUthznuXU}tX!^Z2FG0<=HD_w~oN8mAYP$aV
z8UAdO&xgHU=pOvY(WxxX%amce;`$o)-mb3++r9Ha10810*A_*HL`92yKFr?by6~6p
ziMp23y%&B<^*#TZ>FsIsUGA=>35Q7Y&Ic>fQfI7-<Tr4Beeev+S$<acDZ83)RotB*
zn)UfyOOO3Fr$-Cl{%gwl-g0E3?xQ@Zh-H$TS|Z+#9-Ae5n!g^1DW7f@x6+J#-OcvW
z76GSYQ(1hO4_?_U2QGHSrwA6wnTTJ}xYq1<bkT-goJR83-ZtJ#k~shA^@&+O7v3z?
zb&d>){Jb}B8vEz<%EvdwSJhtg$ZEu0@Ulno&kH}pe@uJA&xPwmtKT<$lxu(dck1<Y
zUDcC!tnW^Wde&5OhQqPgu{X)~MTid9>e&jP6Yt8s&~5vu6JFAn-KcGKeAkLi&#Le0
z@ITYur4@HkQ2I=LBl{Me1y_FxN&BDw6Loir;rgFVMot`(=|(?(D{&`C&A7izf^(W&
z@ph4xQzEkuT14=lDJ_r5Jjvmy_H*(lUInK~Cvy|@BHm{hOPngxyw-eo#=@@&>R+~L
zh_$Y(I{N3sDplo^3X9*D%(i5B)&y$xIc=6pXuH;&%sETG%E{|)>a-peW^luA2De?k
z!$!Fii{D*qes_9qb+KHYNTvK5c2iLGzw`F>U9;t%l}8&nfr>z%M`?xI<#IxFxE>xi
zd3`YIY!$=a*(RTzdz0!`==ePPC#ZA@Pl3l#y?5nI#`hO{7ew%<Wt6ono*<eSEB)nM
z<HxRqdwz4289w`6zIJA|yUNZhn&)k-r>3tc6+Gb-Q7%&zzN0^#C*yqW?5WT9xv%?J
z73|qIQUBewX0Nk-8)7!g>0CR@wQP;g>fP?r`Nv#x#S~j6a30E$`fxj?Gm?MOJb26Q
z+8XxXqOTeMS#4Unj%ibAmn&nP?9Hg_nP)jX)w~bJY&du^&0xw^P-yDy6<i!sG)pl%
zP={-x+tEK8j!v4GGC}LUUR>1w!yW(E-cQxt_4CYp+fTPIsPmt+k174(|7er>I>Yq)
zGT-laoZr1l|ATADA#vU(Z*6Cl9zI!Ix!>@U_zdHjV$*9YH=1^@*S36l$9lr{?-|#=
zE<YRjuI~Cru`f^O6v@7C)8Awu{oYq;<r${43IZEbS_FhQ)(gk}tKz?v0_qsEuKe7^
zF@x>U{GHOA>t1}U*xRy1<_DYi?oZ#mH(%#gQ+eue`M`dSYt7I1#u+F+_ncY2>!OK3
zP!CJ-9teMb_XU%J2ll(8`I+P^_9lU1RUqk6ze)1}t86!p&gB8d9D7nua(D^`J(Zj5
zZ_MG--1DA6kV)qP50jv`8;9Y<<&rG#wxzWQIGwPVEd2YM;y3nw{o87vkEVi4k)cDR
zOnUseigBjTH*@{}cLX$lY<Ae*5ffUqC;kZg&CVY>%a6}Gdi`&^lDFH5C(rgvxy?QC
zM!79eF(^}_ceCp&1#6-CwHcF-UYFgH*5Z@*uUsXG<*D7`)uo#~oU_AEYt77ZNIR1L
z)hx2+?&@hhD$P0T#V4HnA|_VGb0Y3#<cI2s{)cThh3|V)a2k;npD6BLZv`9Vb54Kq
z_RgGHY7^J0K6~@<*p8gvQQ2bg=KF6?0u8pcOz2c`SBbbApsDom)~yX4puy?Kn|#e?
zu3UF)r};F|s*;ozmG1oRknh{2yj523UA)-V+pG85zgIhQ;;X0WG_Fy$tG=mbe6@A2
z-H|g5-(T3Ms6a-Z#mY)V*p_&3E#iK>>D-|PosRQN8+Sd-x#jVm=|ykqo=O)rYx5oU
z&Zca0=I=kYDed{ah_c@6?H(RN5u38Mb^JJe`md5v_0>l|)|^o@zIylZ9qH3)D!&Uj
z6kC=^TUsh98JT*!sARvIVZ7hh?ZlF2%MKpAs`Srlv8|3!p82((u3^q$;`2>!rF<-%
zd#z`}$+O(n<$TXPb_%{+A-eKy$CfGH=M+-hYOaC8J$GY@isT2s?aNbC6_thg<TWgc
zV(Yf2+^;+y`gVEhv)b(<F1$N`?UVlfXj6X6n#h{F@#_lS?Om#nbz-{toXUdjE}xy=
z+S{nf$J>5=`@E<4qP<!AdOO+avUN9R9lai#oxt|_-e29%QQvqg_MT2D68@cD^+Nya
zf{q9AUl?bfS*KSy^S@ISr{a;~3fJd{CPi266Zp7(M-phn@O05`ots?=F=fB6UON-A
z{l?DgX3<No-mP$wd|#G&*6#4)wW>3j_V`|Y`A5x9r`tj7(5}Z9b|)RW&(Nin{cq*<
zY9BT01dAUR&b0{4U)!FedJQ^evq3lKuw|1$e)Hp~woPIum;$~_um4_Abin%VxrT=i
zcBHwVXkWwox@*CAhMwze+gd9vjx(I84l*{K(~u+Zim!U_@yX2pVxRCx@HzRKskKzR
zb_|?vS<Q?zg0rplw=6Hu#y4k#{jw!b?b~;^_N?yzXJ6HXK_!HbO8v@6{<x4e>`(Rf
zf~G)tB4_@tn99q)t6x0s{iSGG5zcjuIbK5FC#NXgzlya@aOZgT{{u_6?~hvY%lE{;
z?(4H{EFaifx&M;MWpln+a<-}gTTku!Y#%jC{*3cB-?h)%l<)W=<(}4UGnM7`-ko|(
zH|xJtO+KlzJYut4h{m<%3EuBl-Bfy1Y^Zi4?Yd@ZdFJD(-~uy9ax<h`_R&oH#eENz
zZD~%&rb<RCiHnNGsZ26`{mIf&Np&}0&WFx5S^4p*k8Xds9jiL+jYG}0tDx~7=P;Ji
zn-_NbOXi0!1_k~1DW>=3>i1X{>&;i)z`p0Vi_jv^jdE9R&lGsHSzKYa@au05?;ji7
zE1F^6RQx0H-gDXOMpO1O&6Ix?weh>2#QWKC^QUfU_`jZUQlgW`@tz46KRli>f7PjD
z$)T!`*1z6z(x=pS!p{wP{9nWlSJ=(?z64}t8mRdR?kIkddYd@0d#{DC%Gtu7uWc<9
zuQeN{uKMX1YrK}HWkN{9eeqs~XH7qIyS^s8G%SDZxWdO!`^PD_>;#EZMSMH2-z{8f
z6!&uNDVZJ5_KFx!a5>R#o<7U?0q+8%HMhC<npf9`c~lij&)~jheT%1UQ*77Q1oN~E
z+Z&vFb-P>_u8uRb-}CCy?Ol;e5`|OFC&%i4sk{Dq^CYnke%}q)55!CWw?zCht}&mv
zP*tGQc#rX>wyomQcSgB;A}5q)e4h8^*P11)ps|HG1M!-F4N0~W-0!YszdPOf`!kz6
z8lUQJ%(-f^Gg{<XUi|C4x*7N1-ue9tR0w*1K6BImz@H0O4bR{Cts;5^RKa+v=ZTfS
zKInFIkwBf#X1O)3IuGpP-m0Db6R>!Oyw?A~$l}h~PZwI9(5{=L;M?^zVRlkr#`^X(
zBCq+J-%ClX7kPGf`Aqq^urvI}!cx!X?~IiDwc2&vcaZz`xSKa6+0IyaQ?Sn|tfe&f
zf;Iaw?WRiW!ajyG*2vwjmvQq&CdGl8De8;g{u7_^a8~yoJ8hM{C&bHNJ7Vi}rF~{r
zY?<&R$xQr5?xrJa*gemyo%rK$BI98GlY3FQpZ`YHY`d@4y}tS!e3-a)kJaLfwR^74
z)!X|vabkgOifY7m!76XCH4$9Tns`CI<28O8<=&LN?3H*r=`v4bcT!*nXrM}0Z?EiD
zrLA8lTuq48{}NVN8+M85-pewTscYC*P7!?6^R#Q7*G9QF;cM6{T+>&sZpfLN6xg6`
zl^wf0DNthPqSc#rE?WIaR94dZ*>1MF**b==9WQO>G_n_PI>B;yJ8%0*`?q<v5z|)R
z5X{>jwGq<#%9$8e{+Kg$&+VzEub;6y2{q<3eB@Oy3Y#VJ`e6Gx(3qs$rl}F%`Mz8`
zP@$c8FW16d;8||K8Gg6!q`Dt0)&IGUJ?59`WxMxM&T*rh%=I@MKPPNWL>`X@m1ohP
zIgkFi(7QKK;(g0?byeL5_gxRmR2;usC6HCLT_Z>Lm2rB0LTucHJHI(1_(2^X?Pu-A
z{yS#NFN(kaZr`)=gMShtKg+*Z44N_Xh+_QKI6wPZv$*JM$DQ8!&PzK)oWq{k#ibr@
z?)sUyH?1yW@l5$JC;fWkCY2*f8~CqeUuy<UW!+x7{c40#<ZN);aIJ3F&xg!M7X|!P
zOR+z+EAB<?%de51+<&s|rtj>ZyEE(N$$$H-c3QvBzPzpG(SP~h%Oi|~WBvA7zRujR
zUizF~<+VAf^FRMOp*!bi<o%VxO8<W~-}(Q2>W}{`-#(HIW_xD#{cql?6Ia5Q&z-Sb
z`@+unuE$38n@zjdzc!gu4HhfNn{8=)=XmzJ*JbkSKVO!4e(%1o=*(MXx8|@u>I?6x
zN#9rXZc8TrlDn@rPm;S~xB0in=4Ja=+t~9YzTa#S_v*6)+l_ZWEi!60{LT8$_cr^_
zB^F+$r*>z8<|n<qp*6*pBlGv7Xnuv=ek*ssb~-1m*s_EzPLd@^_VcV}xk&zFNp%6&
zeU7nSUjN3bZtMN^5-eJZ)ts-p7JhG!lmD*K@c3=Ww*=&2sOu9=KQ~w1TXbsH^vb=*
zC$~gRyw&%$%ke;ku#x?hw+;8~WZp||VED85`f*#X1pZf|-G?4<Pq^DzTD{<Vp+vsr
zn_8CV9}e$1pZ)x;=+ixKzf|?BvoG5o_)~Si?aCC}6I=HB^ZSIeh5E(6{jSZ{=yf9Q
z(5|ExzU#GjY0buptzOGKtGxPIEcDtL?Oh)aYeze*N{%bOp#1t^#2Nlqvp5x1L_gfD
z+q(aa*3;}im!gG@IbsA&6})S^eosk`t~yi8@05CK--~O^Cm^NkQ`R}=MrA+PCJ2KD
zz{GB^|7LDge^UPRKgmt$3*TAaxXtx=Y2%AGd8zzS<)A(WdXKH_o|)sf8K9c+#J0a#
z_0v92|FiK;&<VTtT^irM9jHj(V^=WOCYAq?y2)$Cv<zE|X%6oj-b|f0A*g(&**%>T
zR(tL}IoWvr+v>kRkIU|V(x1v&`Hqdz`~7{nW}UB`wreB!p9Ge_cKrVI++NU(@*e(c
z&9l_XyAR!Yn|=2z|L5IPKbL9F+5W%u+Ur;~Q1iY*K!h{Qez63L)@#vb2hNoH$96G%
zSr^E|v{jM++o8D=HnAi6fYP>Bm%b!z)Y!(QTOG5y+QT|ONH^&2|4B&#2KRz_n0P0A
zO}yKD;rFs6ffqaOG=F}0P9~NA)@w!Wqq`1Y*v)oKyVdr_^RJ4_S@&Pb5smsLmD0WO
z-S!K=%MI>by~*t==Bhtw0}Hpc6&Ld+2d+gR0q#eey%lCNl^VxZaWCR_edc)Wae(=p
zrT2XI<Sb9No-f<FhU4|E1?7A_;Vr*G2D6{4-<{R=d@ajsKF9Z|2KQ_v=bG-dKlr?T
zeqyZU7q=<T+ud%wE>2FY`;_}VPQEDW!;EihqE44(JbxR%@VlPGdIuMmX?GUae*8a|
zg_lV&bx-KhcaMLbUheznoB9dYS+a>c(`+N=ELfZ5D%7u6J5!HS(qYX_qqXm<a&4SW
z-0+NScHo+{;A_IC*_uJkAGd|7%)42)_5VIl{N`|{sPdH_zPY!{alzS1OBFUe1C4;y
z%iatMXS}(~<VN!qW$ADKV$X(c^tQ~`&wBp$_5@qCZSimSzxktDuXCH}rf@)b+g^Ds
zw#NV2GnKzO9Cn<WWP9W7p8AbzBsWdFa=%&RNz{$szNhMU%j#=AUn_0ACDg?6eg1#@
z)u*BqG1nA<SLuM34_O+Rz}FOk4}Sm&62GR1*sa2pEhz$RVGdHzhinxFuY4kUt1$Wk
zqq`TUE!Nu3c4342{{Py~V}8ir7F(pEwJGJ?YM!q3r~QJCYOzeZ_x`(f$COKdDt5iu
zvvl9a8*iU$TmGo+k2&)x-s0)+d9zs=)_uEwSA0Xhmf*Bjr`qkO-Uzzyd++w`NcYcI
zzsr8xFf+_&S@E2K;fBD1dB0z6ySu7*b99~izW1Hi@4Wea@2d?n!%l{;cTyq^&-8cq
z+Nb#MoFTvOy=&@)rRT41k7Rg|b#ezcgFsZn&z)0(_FdSwX`@~BJJES{XYJ!p9(;fM
z!7RpxW~MXeugc8dsHLVQ{d}7IIc>|Qzw=6dKP<HbIq&WNyQ~cS0tt0_Pfxs*TRxxX
z(!bwzPuD#^6(h^AMP&UvW`+dKINR$dHKi5(zVCRwvuL&`LloEMy1df4Q+vPOEMEWN
zOZLB?UVL@;*{<_2$cQWe={P+9+x<_M-<;cIct0}o&9^si!o$vIh5wIdco1ZM=KR{W
zKYac-Unp`j1gt#%S77d(O@d0?3>T7Z*%=)6?t8WKWmxjZB|Ud{PvAez#1OJ+zbJ#k
zwtdf@Gcf$P#`}D#&o=+v6}fqTWE8XSi7>1vIsYf7(Ea(ledm(4v!^pMWbL@m#UOCo
z_G^s#d|`PdZiWqO7ysOuI@Q=-&x~&pE5nM1dxRJoZsg6F@2&atH}j{nj8l8hpJQTp
zvn#PKuT;go`TVy28LSK|u3Y@J^JeV)TzNyd(~9lnA8r5LKY!2t_w(P|+o|1tXq#l-
zl)Xco-=TW>+WFdiKd1ICPnTbOusC#n?W@T(yUf-LGMwSL#K5pocJKXNx7I}E+<aG-
zX}02OjnC}otBg*!`Rm`=xqjkxriQ7LzdP%=FZ)@zaigQzu4(75D$hSq9s5g)@xZ0b
zuX8Tj>OB&fT3~aY!Q>g(^?s|LFEh2>tzF%9S1Lt$*Xy0PP6QqPE!lAFO+G6_$JxJO
z3=KEV{jcdb6)f@WnD(agGfHwk$6QUH|8Y&++Oyd#4BpSrpZ7iNUwHlAyL)>tZ!X+g
zzfSHO%eM!Mu5&Pi-2s{Lc2(886Yow4Z|*O@{@KTNy&yxl_40Yqe8$qwejB5kb6m=8
z!*@q+tF&jnaL;)g9|Hr=>lc4wyfot%&ovJ#v$mDKqI>@8=J}V*@+x~79=!N-$7a_P
zcD*a+aZ`G;A4l%}Uir@J?@PJc{)b#|ddDx$U%&I7?)gyun|${lGJL(0uexf_i<8gS
zeLCjPdU^BauUTEE|NY-@pYm6Y#i=-slffb9mF2v}lY@(#Qu;f7{4f2){UPVwcA*HZ
zT7k&a#~C-P{>Bt<UK8K!P*OLMk>SX<=kK^1<aL*acI_7VeC(HOpZ_VjnM-%So^?B&
z(P?vC--l_7fBe~TLu2>q!`bh??PPk<Ue$MCpHxryT=&y;ODAXZeT-rJ;$X|(b1pVq
z!Ro6_qwnDl?-F9(m_=<13cr3whg)Fo-?a=38)wdEX6QIusp_(|*5YUx)E$r4Sc^Jj
zJbPZzlo_J;uHeqyT^3Q_Iy(N}-#t&eVcL~q28N9*pI7uL&);c>5I4J0?6Os6l6l+n
zr0o|s+3)x}OFEqq>h)*O7le6f#yie84=bDeR+n2~`cKOr8B(9@Wg9nYacD`W{yxLh
zl2*s}P1Jw)gxV}I1(~lh;1IhZ{&5QL&H0-d9!A)+Z=H7frJ0oW?vvl9v37XdvNH(W
zp1)h4VVBwZDd*G6r}h3k=XG;OWJAH4`OW>)L=S+1N7|NKU{)1h->WB6cyD%ZV)z?;
zo{{0mvU$z@W!FP|WxLc<PuMAN3$&ty#fLzzdi4$4{ddohhFHdN_K!@?%wzu^y*qK&
zcG9N6O$--j&S!R;9$xzXd-c^B=iiF%o;$;|oa2hIJ^OE~pK~fABO8>y%H-UXNSYo$
zOI}<$HMRaUQ%Dgw89aNQ;O?avpFMwl&8nO!Q~zpl2ORz*Q?o@X#(r&9ylGh3<f(Ua
zSyrUf@%5cbk4#DJPiK6!@;L)TQt<hMfr9?KC%m=i4mkhI@`mAE<>-G)p6Gt<-Lxq_
zl`#ucASZpUj0ZXY|AUj|ntIZoBc~;qN8bFk#(rC4)wS~nr}gr7p4LCx-`%@u)BaRO
zt(DIc;*VU`OPN2HH6jQaGP;+gmOWZ2y!-U*l+^Vnn4Ung=O0jfoYPJeIc==4jeo|C
zyeU(szEyesPw32<^M<=Jb2Q$W+_{^tp{-q=FE#`0lHl_PUw=(pzHrT&oDQ7@^O6-l
zb8M8+GHdHiGLMYBS-0uHkxEr?0!-G?Tw2pwdN1OpZ&=v3Z#o~0?2iXbQ+BM&aH?Ir
zW=#%%WI|e9pJVOU@H)F<1#N9<Rc_?~h+~rj6#Wt>Or2^wuT?O@{&>W)+a{~G*CI>;
z`N`!wC@Z-IdHsz4zy9d`Uq|m2SAtyNx9OR3LfT&$=9%nmPd9Ab7`X0+Z&=v2`8o!H
z=MTP~+A9#xE3s+QrtfKt(6s1gu6s~(UfYJ<R_<Y8-|p!cYy_3^W}iXX!E${|W6u0G
z15o;&I(4rtx6hgLhAT32ZrpVaf1{?YecM@V1~d{4SFC?`U8MZp$y2A=P8{O6Qp}TU
zsRgPhH*MOqH??u*XD<eZBxC#I3xd3UPI`69Ei&>Z-(~}&&&54SzuwND-xiRw24rG&
z^0gnV#-EEnRLNTNI)WVps>V8eZQ0j{p9z*oNlk6+{94SDwR6t9+b~1GKB<4Vk0C?-
zzU}s$Gyi|-mrb5J^{qO$&zkwk8K(u4>SA(0F{{gc=1MWotJRK4S0ls1zIDB^dHwBQ
z_`Qh#zKH^_EEyVZTq)+s`XyZdo&PU5I@2N-w4vmoo}{Q6TVIcS`B@w8f>K4G*pHb%
zE#1s}wU5p%-(CGZB{fz56jOX4Bp#cuzdn4<Ix_O+?o9{6uN3p7$QeviK7LFi2;|e-
zI^6KABjN3(8D9n}t|w2Ox>tj{=I9?8=14w?p9?ub*<e$6O0W9|<If<cpKPeP<`@>X
zEmiEsvU$u59lo~57bwkpprCD?BX%S0uT1jHypL<{eXC4P1*L{=u*D1v8~^V7&9or<
z^Q5;m*Aj0=+*z!yU2VV}aPpVsj|@wp^WdD5yNSW|m8He2b;2^BoU>v%#CUf3w|dF5
ztVH}1Crq`S!MY;7UYo%o2h;{gDvsl<nR4kq=bN{|>d%gy%G<PQcci(0L)EkA38zgq
ziIr=<dlx!o>Ru)839$01_GoO^rcLH)jMJ_ZZ%9q<h^@;6N6lYd?tqifjMFTuxwPhP
z)xM0qn*zhWt=4hi{apOvVphRf|G64wSj!Ph{~hk1_5XhVJ(r)M^6~Qh@BPo$ecjK%
zaI0YdR`=6Y?@I6QooB<%P~u^GeeslQ>raP7y)_Ffv!21quxk;>lV^YJtXunTS6!CQ
zJ<+{NtG}=}*xkH;Yh~(EQ+qu#vvW)gdjroOeWt?7-~cL}XIHHY-raq58Q<!>qsNLj
zGdSey6tOdOoQ0MpFE73lx&JoUHEy>2^MWcdh8Mj*ch>nn4Jj0V^)Bv8_a+91c4$>o
z6@I7nR;3t2hNtcI^}Rw_KbQV2-1za14#Ne-=TjLNj-=JC%hp_46YsRobm69t9%2kH
zru_sZ(le0M1&(}n27%dCd<+U^;5-0L!{CYxT(p8~g;9kAA3UJaDM3eb>Ccb9|Hhe~
z(>;3Z;wFZvXU;R4M~B&bew?&e$6;a>-;T54t*2Lge!Q9CD>RKX-1gx<S~k5~bhoV?
zcYyxSql^p!v%slfPB@dv)Jy;KxO3#6Y`kmXbnUG0f_XnJAJhf22H)Y`wOhSpi;jaI
zB*F5%a4j@np>sg*tIUNfF<W&`Pwx#{b|ZI!j)N*RrSWCxE}gRe*Li8}-L}@?s{6u~
zZ;o<bdzDidwPwy|&b$0(^IPRKXr2A}r$E81ryKwMy?^@kL%B!Wmsg9}`#xNGGko%O
zjtaKd&mWj*uB~4%P4wRKX}{beZ)$HkzznWDi}#EAnccs->d&5UHPc+fwmDvt|NKGa
zoAZI0)12QNOFIUt)ulH(WW2K6aV?AGZ<fQ<skswa<)GP)Z=KOv|ERS=T4twC-J8KG
zcVJQkL&FVlZg{pw$l~m)CD;B~biQR)OG&+*-k5G+&#peZ?aW=>mZN!~GN*9|G)y0)
z#NR!p^)6`2)V+q>E=%S$d+WGg_*u9yFznkgoew<cv>Cy<d5+G~Df%|+bEZtqoyI!v
z$RC-SDPqt2b=nW_S-LMU%q(Nurvp<`7k^}(WoXa-`_oOn$eR~8z5MK{ao{b~o`m=#
z!Rjfg)u)-RZ`{Y2r91s{t_i68s;v>ra05jQw4JB_{am`vwBFmd8B$Z(&ohN@uH&<d
z>hl4miZyHAEZ4cvP{r35)teH}o3m*X|2d|!;IIrnf6#sR>iT7TM}=iTwPG4di>9&v
z(j(@h+x-i`jlENS6H5QHgB%*YEO6D1$NA;j^Vh7=xzGkJI^Jl%`!RXy)KYg*tA+EL
zb)^qq{p1a{{>_8P2U*uvGl2>tzOp4#KAArF$@JlrTjWi{%?FmAIe*Z7wV|f{!G$+K
zt(>w6Iu{y#T3Tq$-#B6FRMsd^Gv&y#dCiNJ=E*2(-&Wu@N&YMIW=5W(Zhg=vaKZo?
z0uC&2^%S4^vGLK-*y`eByX3$(YTDKzVj0JNS>D*RF+Lw$HU@^3eb6Z|{VMY&y4NS3
zH)PYMO$V-m^{;%MaC(cxii)Pg@2nIfBO@2^{*Gn@wKqWJ<7ck~?>dvi-x7Im_ioyh
zoYuH{=KSXVvhVMFWxK5Zfy3_Knz}#t-k0C|bgItlbKa)gk@d@&7{q@*uX`PCdVJNa
ziFeOkD_<smR9r7V=5A)!r+HJR>ej9Nlp8;vRZ8Pde(XPobD%2JeUnY}k?%|1G(<j-
zyu;4I(D8OYcr3tc&8EO_tKH;u9#sdG9nkrpQa}Conz~z`K~<)-u1(y6?@Qi1h}=Kr
zf#<e!+9&@XTK&H~_4Q_mSpks`80Xl7It5|2+h_Iu&nk-BW_NnCYmNUYzNxHo59X_i
zTvqw>%6%`I71NF|F&qiI@%>BGnrUbMAJQ(HeD|zT(^Vah=kGluBOe%Yy?#DzKkKvO
zN8N5JN6yoQx{T-b=a$!#SD)MT6(SZU#&H&0E&mNZ@2jm<c0E*N_sMJNmD@T%rYM+z
zL%A5#VBGfQ*MH9+Z_mEH-Mh&)#dmAl=Bl^9YT{kb{EBQy3-bE==S}|{-Sg*tW4o=F
zlzsO+d2hy3!(CPJu4kCemVDi8pK}e|Q{MJ!=OezAUYoY3RL=0b7cRKjA$jhfH~h2z
z=GSd`v+<+9`0kTsQ&p#FykFfBxuB7+{u}!ltMx1l3fun2tq=FojBlL|YO3xv^bVN2
zf4x##<FsEtZ_1nf_RrpDxouzIw{JR*rT_MI&0wAN@>P2MlQ;Ii6+d|uIL9fT`ZjH8
zz2N<D!OaKuD*e0HG4-!K2iu`{SjOK#Lt3DrHWPCr3y?I3ZDEXb$gR^LI^5I(dK4^i
zd-}{!@BMx=H+4p^yLiL%b&uW!bXgx=yJKqvcPoGScCjc8Jyx%UBD#JPgJifwG)1m2
zI(m1m>-C7~PyW`a-1Ob#X?An(#JhXnfBrCGuhDatXXnn$RCbaGexxhoDf@hb>`a!k
zXXl+U{jh;6;;BRJ9N&c-uQPP~+Fe|g{(6#;#x5fU-G|Gcm+I);j8Czw|8e{DzoH}w
zhP^)XPyYRCxb@lD{^A98eyZ=wpECr=zngvZ=B_0IUhBg%?LN)k&%fryOO2IRn-jWs
zFJ8iVk;||Ad}d9EmgS!%%erkpG|uV^KHiz~dVTGxIdYS3-`urCL@SS(<A&WXN4Mi#
z>%`gi@3!=bsbtXm7joLU+~w5eq=(9970Sx9DqmVE_Q^!gb!p4{@4{SA8N!(UdQ#Gg
zjqDHZzTokja92l2%p##^mE$bg6)yuBqpP2vz4&1EQuV)ECqIdveA>%Nq>;Jr($UBz
znY(RcK8MT<xpZ^a5{V^M?F=>hd|%7_%ndQPTlmN(`+o_ivJyY9_BzYk?8mJ9#MLJ(
zyxXS0Fz?)o2OH9(yWF!r=^wb<xN^=?$7{VaOg(RO#@sdk^{VQ|=i1HD$7fx?=FHo^
z>QTTazB}Ta2VVc2Z<RM~-lM|opYjL(&f_yKmv|Igf2%&Lfwynko4DFbADch_s+)E4
zLB`qwr#W8&Z%D6v^W(qCdC~u(yta?_$2qFqxgF2E<K{_C`CTDpH|!N>y|+!O=S<HK
zXrEN~VfE&z8`$N(KF`v%IWK17#duBj`oYb=V;j8J&NVDQaXI&`_S-3MU#&TR*}{=o
z_(>(#@5%QArv0nW{%a!t^{MBns51*IzE`spESqU;_sz_Fi|w1Iug(>kt)J6Uebuo1
zVNlWMh7)(|^IMMXetf}P-a2}wh}$eheTF`>l5>mS_NLVuESu786S;I!{C`n~4=Rzl
z7rd4p&zfWXW5deiWk1%3Pni5g`5wcc;M0*@XD-)#PpoDaFPO%)@yY9b&z9zWin??2
z)QQ$9o2%My@^1;d;yPc`+t7V->LmFCeW(1cEIja_-b8xwogX{58S}=Kir>BXZNvBI
zUzUf8FQ4<UT)kC(>y!Dn6L<A?tq#^w{aZfu$q8FyiGciHM{ag4`CD|8`z-&#d}sA^
z%hh}rG6X)I|M1DP`oG7iz^!*r9Iei8f0e(@U0yQk!p*LwE?jz??2E#!j~2*1pQ$x9
z``)5iDlG!9E?58C*Lm1<Rp}LHm-*HuKVp^~c2%FWMb$>dbCQa==c%{_35`swJdfL*
z=G#<$`f<_FUOjXAB2Cj>lXnXUYNy#2Zd2Qs@_t+7>&PD^Z(F{JUa|}-yLWwqf~J(H
zw(j2sPpAC1u{N7>r@lF*axpUG9-n}T^7PFj2H&q%U(30tlvYq%`u^YE>hJPy77p_7
zldm3~cz&_0f@hdf$*bs#KO%liR`;I=vUl#|=geFiJ+>aNRcrY$d;5j^l~xfJ;X5in
zS5>tce7#&9UAO(aep+Vz$2Fg<t+^*ku8g|Rm)RnqXuYLxMi!I2edQ;&m$7;dlRuia
z3an52EA}SG_sry7IkPXW_S@Gv^RLX06Z<~>a*CMac<|`O9Y;RK?_XkZ-uKy#|6Ct7
z%-_CQbYol3RO`PR{_S^A*s$Any7*P)1*>ImZ)cvjpNU0J>wS)^$fHSl<^_w3Cw)3R
z&90vD&6fL8M%TS(<Zr+B*6Ew_ftPZAT+AUGJocRyxN3hgmpwI#c~5@!@@sqj4s|Yh
zDiQOK)8$*?HZd->l|O|3NLxgAw|ux7osb;1d&^#ixE)>dH<gxfu+C4BNu0IhrxA<X
zF1Ih!&ZgYw+LM*oK5e(NOQ`jhZ1X$m4C$XOqIp?^J?^i37*dwLdSbv5zkdh3ZchH^
zk^dkjsA&KBJ^T?*w=5Cln)V@rC&%Yhyx+XN2QKS#J@wFDy|>U_z~-K7ll$Z4Uurv~
z)>xG6P?7w{sHXl_-~E;FlDl=hb$>s+TFHF-x?bkYA7R1094zz7{c61X7K94yS^YXk
zSHx%1e<_!;;%#D`%MJu8r`wj+Nk*OBXCRfK?(F^TSgufkXJ>Jl@2Wj)_pQ!db7H%*
zOYi=U*C%$)_P?K<bV<qh^rf7W)gQL%=-!;nbJw3ideWIEW~~>kMBa&)ZWA+lJh4z>
z&GhAK&m3&oxg%Di^mgvUhF8_$bHAp)u}MnUer^6$op6irT`Jp^XICr{Jiz(;jp<Fs
z?{`|){860S>i=}2rI^^s%adw9WbO0YtWx`DC-ah}S|Pjtif>cZ^H_VDWu5AivxghY
zE}b*|_=h**@u#}(ncnr+lHV-ae{O$A8~4*SI~NPZOniQD-Ye5phc<0V;lK0x|FXhe
z^_vgOi)^@C6#lE|K)?3)*y|kCKlje`o$OPXHKoEVT3W<>-`k0o53QQxu&nt2OZeQh
z7ZbKg*Ek2-M|}*5V6A;R@t*j$6PG8w@woczCxgI-O%r4H`fJ}cf2YQH`SG{OA+mfc
zu3i@_Jt19uWbM04-x>DIyT9-EgTUZtf40><f4JGa;r^SI>#_qsh`E%MY!mw!WOpp%
z$E!!{q7SUCknMQYE~wDIea-FI6-wUTMZsmW)OZU{9MgYmBdPg(`ENEQx&OOU-<^<U
z5Zo_%dB5ALJs#nr?d_|p#V5Cfr1q&jpZ=d~aryzVjFkA^*bb@uhp|E$rPulU{+sLw
zy;>vZ#IfFU;(~eUhRTiK^|NLu_kVaL5TWz$v`k0&Iw8|pWpfsIa!Bvo+<dq8{pmf;
zuf5g3<^A$Bd%I=%ky9QHd)Ll-H|fp&Or~3Mu>qOYw_fjmH@li`3GdU`NnC$Cc-|g*
z*e4q<bMNV{GZ9xq+gM~zJK8I!-28kXnVbLcrSJx2qn**B9E}t9=^3p&cPrz`vg(bO
z&8{Ad`;-$FvE)d$MXC(%tmo7D8II5LbgI~LLylEo*RpxDPki`!<+0(mz7w&szBbIa
z4jTPl{Z_~$xl#Gs&q;T<w#w}PIc-@-@`+t)owa$fj;SAFck=Tyht2YAdTpj6qttdf
zjcY}X_z&&bF=th$%<(;*Tb;DQ#Omu-=O)&!Uk5COTf>d}s#pv5p6BsZY`$EZJTLp6
zsr!3Qm)afuFOSqk2cKy%Jj<4_^v}wa&88B&{^V?U==JmK9T(LrKEh{97dyN5G1{&5
ziJhBnUvOB<ddbu!v21&O`5Y6=J-j>S`OEtKJwHtjpL_o&`QDQJ-Iga#E`CtFBjs1(
zo4e7|Ij4mi_pC16C2qd^_zxDp>63!p!&U#QCTw~0d4bRD<lkXOrj{<Abv1rbq{V%y
z*&pOxH3M|bZe1*X{h#rM(D%f9x5Q^?Z@yoA`uhQ!<JQ5u#j|Y-PrrRJqu=Dmll6B`
zS(Ldx{>yR0bZ7bFM=O2jlxCN*b=<mkNNuSb(?t6nf4&7STKQS5$%l`%bI~E^wY{0o
zuY6m&h4I+Ewc9eYI%VEZJ}^J?6?emXhw{UVfBs{u*)1vOyPvD#rbS|r&V*|Dg1u|r
zyp3A)>%DmLrEKQ|6C-82cOS2xekY_S^x@mqx1aZA2dgeWxH)o_ZSsn<eTHA(F`7@V
zT(Z(cgG+A8w7oa&9zOV<JwNLhTmPBAeoPyT8+ohyd6?Eo?2Pi7dym;}|BJo-{_;%G
zZy%m`WTql>sNL$ErH9l~<7=()an_q6>(Xb&-&q!K?l(uO&hnz4>B{A<%~f?pejA?d
zmARo`ee9>n>c-EkKJ#@f{^_}>-k557KB|HDCr|&g8yp9YD$Z(O`CLSl<)-%h(3#l>
z>fBvR(r$6Cc$YW#%l=2_wpXU>+^%_WUix3{ve)0=_}9#Ss?Xp*TWz1BxaxJygk^8;
z$8LOm!0Gek+)UFe-W8us^%)hDdvjvvzwcq{xOMYZw1_SH9IYt@f*&Vj@qIXFcz4Yq
z<%F)4QzsaIJQ2V9^9<E$r3x+g<ipO5Ur(A`44W!0pjID}bemrw=VI>?>mL6WhVOOn
z8$al}&0BS|J%-^xc`S!Z@8;Ld`#19YY+KHt8#KS*L+RG%d!{VD6z-h<zw#RUl}!<P
zTyxo$ow_*b^hI5ndEt|Ghi38>T)r`5wg1bL<q74BT2dlcFjeed(e`l3hA%v8XZ~Kd
z*LI;@V{e(5Vo7kmc-OHrmx?c~a{m6s$M9g$8-~gnX%>~^J!Nvmjgvp+r<t)_n<@Y2
zv)?Y(1CLy~G;ROuGVrTO9y`3Vew&@hv>UbG9<F`Vv^TZGCtSyWuWaA!#?>2cJ%1x+
z`E81JEK6K@iQsZ6%ac_c5lQW<mTgU3fAhTd`9B2=Ur*)>>EGOZ)9tMB*E0#u`8_;u
zWgbrWIm2Q1e;q650`+R{jjY?B?~?oW?0OsP)1O~ceuT2>ls44QIIQ`bL+SU;#ZN;X
z+87jTUEgEiQ2R)FXAw)<i@E?_fp2>sZ|~=8xVw1S@8<5K7SHAvg_y_kSQ#vgd(>-m
zDO|tdwUO)1U1GUS4}0fwZJf_Ad9TLvIR*+TZgIit!an!juV<LEVZP%<p6*oc17_#1
zuZ#F|X!WrZcXu6_cH*+Vx%p$~EZLvsj0+b}3X3aw?P1HiBVoOgOYp+lJBuyTTA3Ca
z7oX7I@J7j$#oDU*c6q}0nE3ln?A50|1oGzd+*?w-JY@dXlvkTtLW*(>KKK{uq`bZM
zQ**<$JZpow2@5}Ne6zoWVd3VtPb}k}3$D<*u{^i9hSC03^f8W%<a|j^H?1qRM`IbD
zsXcj@^w)eZTg6p9$tYWwyW9?64665Tjp<&TF#X}i9D8==#NxNpA1MBfvUq=EYb586
z%=ddAZTzrwuB!^$%6D}Q-?xSFPw4s*xn7p@YPXQ-!;-+R_bfM*cRyY<jmN%?AwT=I
z{Anv)4vzm<*R2zZGf$jg%X;MCTdzmkl^-QD?zq)fq7$^ap0TFwrr4b54cDdSF8p+O
zp5RHtSFV#~zOUN*=-Hn3eauaD7ry^FWAv3-V539aZ1<Q~4hxbeD^BIx`n_hIn@N`V
zt%+t!UZgfW2;Alp{^b3>DDhgUJ^3M~&v&QZYP_<Tsd2jP8<WjN?|(^j%vqm*|AdL9
zKu5%s^KW7|Z9JuTPU6=W*81wQrk?)9F4^1uGW)Z4dq3EEx7%&o`gzv-BwA}?!|X2I
z6RJwc>3xzBDq^+R{R4}2rK^YUdZsnkx35_KSCOG3MycC$^QUj|I&G2Z)%<<DNz=9+
z*#E6s&U^NQDX;C`?KkOa>fBME@$|^MuUs=<*;QKoT~;i`X>GG_nrw|?Ov^5DhO0)^
zzN=QrGT%r~c>endpTJh1Wyk-<J^1H8f5!U^+lP(GvDb}l+a$|2Px#u>!1OIEhHVd*
z`3uXJ-<A25c&lgsI=YhAo<A!tZ1&H?n=f6LF4=tK!(#g@g^J~dH#PS$C*(_7o5ojZ
zAE;+DEn3?6P++gqw!IVNX63*7rc%7yI8R;1?%*mp-q)!o&ZKrF9rRqhr>Ed_@Z!TO
zj#fW%sbGt_yEo(6MuE5S6V=tOmv8+bTX|8+_DTP_>jAau2mWqj^Z)7--FUia+S#>B
zPv0-f-Se_Za_QoZl7hMS@*AVSZJ4}NTAV@q&4mqrCm2o7w@mqV?Q_0?+LISo+D`6a
z@O^b{wsXUD+qcPICP>LMR@fdWu#5Z4`C;{*%grJ7M^&cpG&yxe!jkvjgwUivTmCXA
zZrVL}iPSH#9dlg{O9hK(U#b3-^)}?w$F}v_s=?mwJS(Ht@gM4Q<KJ#3&Jb6Veq+z=
z6&W8UFZ{Pu@TvY$JB9PS-N_-6jQdaN8OwFWvQ9fS>+-41=ZhV-UQ*N)d)pEH?v?MP
z`nMJ9pJg*KR_s4uXMJd%Z65QT*SRKXsrUH*XuE&)PPTDtW!B2|yBqAxb8q@}?kj!%
z8|GH276jU*r*7~2&S)k&eXT3&?uS2rYV|(ea=+{R8{?$qlAm}U6h%K?x#D+S!2b+&
z>5`4Y4d*u)hMTahO>XWwuEV}t#l|#j(F;j7MkC%km!^j^mQA0&+>+J$(Zv_$zM``m
zuAY6f#d2ci9qWe2zK^0dsUQ5^_HCk8OM&zc#v7BC|2Q&xmf+jJ>jJk1b1N=6{a{Yg
z-uZW!>n1*qy!Juoz{M2F+^KsC)^B$aUL(Kd9e4FxzbCUkGA3+aIp0~>bk(o2N!l#}
zj~3e=XwSdn`ckvJwCvI5;#*tVKl>HEKevI^VrGW=rdREZ=ghtO{9c{p+J1}Mgq6|B
ztTuJ~+s-T8hZ(Q7`TNX0^PYS0)5)d>jx5`D<)v)F!c77}KMi-+ChIDxJ-Q{+Y@#A`
zPwkR@iP(X!)4b%13$@N&W)W%mck|l3-@@9B9ZQ#S8&=M5jx~CAw^iEs_3@cs(_;Bn
zh^L7-ajbM%KXp4}#Uq#cC0XYkY!wajW4apH=gyfhGy0&|o-{^*f8p%bJC!puMSNfQ
z6sz6(_`&0xizY+OjeEx{tinE9eOT4}?%@2jN54Eaf3sa;OVgU_#@f!6ySDJ}I=!r~
zsaB&vtmDpA*JYC`o<*_=pPd)Om;6-3?BSLuW9dD+Do&*T{CbS*{Cnqy=4E#s<}}{6
z5Vi3*vOJ#qord$w?8{aRO72z)pS~>iU^?5ql0*OLTI(rWAKxlB+-EiYntw)g*zLN1
zvJMTh+8wvN{+f4kzp<I-Vj~``vr>$KU)$R0O3jaxhhFYa=(wYFceS6@@;=j|74q+9
z-rZhS=2`PoWZDT`9YGN;Go2IJ%DoR}J@z`Oal>n(_klFwtsYO+!zC1_g~>mCFx7U=
z?3wm&zn)%Kz3Rrkw)ZQiURDhG)@9n6pmE3Zhlk$W(ziD9nsdI%E9}{y>~mmq!nC8@
z+YXhNO@0@<>gx^D=e$iiZnu1AyxlS1HzcrC?A+~7!5#fl2V^JD4*xV+x5eP}!Ud@h
zd*|*wxzvW2?X3L=pUbDO-3p(UJEc=a>*4*DFC1MbR`fRYlr;SPW_s`VC*d>w&nKNV
zIHb61$?6-Kr>4n%<MQ>Dm@GVb(>k3!g*7L$SXZxL?3Pi{`pmBM*!yvy*V)}FQc_bZ
z_T(Sl&~k5&?7peNlB|*^S*vALvXpeXzb}#vxXZX}hnnft7BvIDWlDQ|?gjq#l+>JZ
zyKmx@d;Kqd)H}5wy!TQ(c1CN#Vz;Juf27$?ujy&3xubN(aM{Yh4OaKM@7R5~^l#M;
z9m#pj+QI>)E3It2&uPw^WL15@aOsivj(^TIsV45u5&E3sQRL^Ix}NDDbMCd@3}3dk
z+i`u`aDj2_mKFi0H_h!I{n)BcNd97CIq}XrDcz=xg-Lw%&9d;^iWzr4Ur@<xYfe5@
zp1PlR`{UU>x@<oeSun<(zBX&|iLGo2Kabzsly-KKYVk53N#hic`FgRpOr}*`R6MGB
ze`_Z1V_9X*_sTnD`n^B7UioyC^-rlnQ~9Q?&n#ZW9A<gwy=m6&g=%-o@7CPqatdjf
z$|n^1fpyNd9jx=Lx@H%7eR()@&RI*Y{)NX*mN9;iPFbe?wq1@dG~l3{(Lq7?lUg6e
z_@avfRxq-s-u^nV<-_Tk`yYSaf1>dHyQ`|F$D|2K|5i`(>&U)8$DpwAtMQ}4j~eZ-
zS0ph1n>o*7jYa;?#WRnbwEKQ$-uoSn9ShdJ?pystK#fyy+N&r_%UMONMdx2=wcIdy
z<T}T=dUn@7PwnLLQ;&mKLsw<EbFQw_SlcnjO!>~4mv`8`xfPF`=6${H=<SeIXI}Dr
zu(CUU<BH-z%hjQ$AAH*VaDE(%(=jQ3wp9lvKZ!2Tn7M&hCL&|sHQ@*IZua=*eGSVh
zl8RrOy-;vv!Sq(~#gErS9}<&zs^Z6be9aYaDFL~gM^9zXZL7XtexO;O=PpN?bG^Fe
zk_6q&3mpH1pLDx5e{sXtXUYjd+wV%Uw#?Ktp1keejM#kNn`{h=!X#MgQ<`e8Wll{r
z7I^qeZpzH(?#$I+#b-}_u=CNkhp%|r?(vC6JW~-!IJsZ(_5yDKvGfCzyUJo~BF$S?
zu74k~JLMVw;os$XH#bDhWV#vjbfzfNifgY!r~9vd))lH1TElQad-{A6uE1{^0zYrR
zNqt==V^#h5<8A|)*y=b%MicLljy$J=*H5|UY!P|*XzSetvnxfiYznU3H|#9>^UW_O
zN2%3mn>;h)w&T~B_O#sUx>9`U0S8A$xyV0nro6X7x6|E}cbw7e6nW#|8Sy@2=FMwD
z{gd0T#|vEZSfcm$=?2%|@7$06S#;(4w68jeX1zYgHokA%ZkQ)jyw<br;Wjpl_<)pZ
zp4XF|0_tyRKD_0x{N(K6)yvB@SALA0f2H8oL#OEnZBIXLyB;s_@6dypZ+EBHIG>)U
zIB)NKM*ZZfNbMQ2>-8o#?u>Kl*mTg~l-1w4KIe{^o)$eh)z33(YDvXWZTIdsYztE#
z?>v_6?(>~%*QU4A>v*}3n4jBGzK{Py`WjZ1?pfU*UtVGh$u-rFZrtTsb6s0QrQz~}
z2Twh224wGv-fQ;Z+nHS_W9`poUf8?j&D8(qHNP6Hj`bZ6nmwDLKKz1xg=naa<%d(P
z2MX@WKYrM3>t(CGq~h9*fZeCpF5zJmd-?uQQMR5*$!+i8y@y|@{=dU@vA5v8pN{M;
zi}+nRmE6<Ug=|h-?#<BNqtyG{xwu<tlYQe>!@Uu=nD{4EZH-_JU(#*bEzbM&e4%xG
z(o@gb4>$ELPX89R`J9`e{PM>VAyJ2Yyx&&IHGi(!wPY{L^)tWrX=|uVIdjow%c(8X
z^1@6$tZ-0zTALi*R<+WjU$i`_I_SpR+SA8Me$_l^a<+4;eG_DSxLlD_anoMm|Djti
z{8;4pC{*;X42S&R+3_(s5*ep|2L^0ta^`j2`QtC!QE~3i+zZQu&r8|(^lW*hZgVu;
zdd=QlPo7xqlDzZwa``;F%3pmmif4LF(TX$*t#GNRsHkxHadhvD9sk+1xYJJ770TLm
z{WzfMp1LB$!?GrK<(-LrHMbi#Y-G(leELzRz_hoKHj^!!{g?zQe@)jH4!f7FSTq0r
z9gkS+Q!WW%E6WR1IN$hbtLWM_d4G&~WM{&0BR-;I&h>|-FDvxSyQ6P17hGcFK2=|k
zkTbXC|BKs9Kji1%U+#6s?9=|%orU?D@A?00%xmN_DrWSVl5lPDCD#X~?w%Zqn_}C_
zIZr-+7g>8m&;CL0&Zs%dZZN0{DQLI#7|uKT&u!}BrMto(HmrQ{c$Iv@?n!Ih9OI5f
zu9KejFkEy)$aBFNKW*-8H9hMx)wA8%bpN-4*<Gjo8ufETQa!HqUH+aG>*4nLtc)@5
zPF5R(*r=6d8aW<Ck<Ubg`mcQ2{cS5()*q+6MblT_-u3>4VA0MA)3;5T>X7x9X~(+f
zI@3Q2m2CEPDt_DW>EHUqZA(|YQ}bTCH0SI7ySzHr`2vEbhAw0{f99=&Iaj-A*Z-hX
z$!or)|N8WBvcg@JjOjkP-roby8h-BnT_G-Dbt!=<R9x<c*^IRe^VYtOKlLm=k9UV|
zxA__qwj1*UIVNs<@5<m;VzU27mLMzlq^9Q^n&x~l*~+aQy>;4rM!)Yp*$2K!$T7V!
z<XdLPW1A~fF!x1^XyG{lrZwkOTTbM;@^rgexg7ZVCsmA%iRIk(oP(LGo8qVBP1}?q
z$otvt%<s=%F0(u4=l|bbeAVhfOx4a==l7_|JUF~b>zDl+ldHet8EgKDKffNvEq60X
z&SQPw^{&jmRpAW>-v63+#C~I^aMsVJWA?9|-dCJ9FAY7+-zl<U!jct&T%S$$mwF00
zb?97wxNOcmhsgFA_6M)bXSNC`g-^aX``rr0E8IRiZ_72<nQe*F7o2*@mhE?T`@17E
z9a{uk-!r$Y+psFA);=L4NmWZl*6YV1wZE#qw~RlyJo`|&^3|t=h7YC2-}ZOToDygD
zc7Dj=ZF@Wy=gdu%no!&7HhmFizLWR1<U4=V=6yM4Si}7)tW#{|1eX)PMfhH>zp|JA
zK(@7rpx^!9J@;1WKRR?OKWpaZ^#94hkCwchu%cnos@c!j1az7&`kzWY9QE3rW9t)^
zl@oeSl<?}kwtl?xKPO|^sb`UC^YlObd$2|?RYz~ns#_rjuT>j6-zZ5w^m!DuK{iu&
zPho<XE$eed*(Ud2omZDU6^Oc=_bJFUci#0w%<-pIzSOV3J;6#-UuIKi@1eCkF^jU)
zlTxQA?CC%F_Q)(V(Me2KAI?44^&~xjKi{(E<wEZNbFHhNUD>bR|33SfMk<$2&4DPz
z7J;b`Tet3<9Cg@a_K_tot3>o(N0+x9VwgQ^LhG6B4_8duZq8~TUG?(6?WH5fA{RLY
zu2GBqzL??Pto>z&%){<kFh@n{yRF*fGCBUoq<Q}@i>*lbC$>BA1Mix^ZD%LhUJ73H
zW$)WhE0TVNZSh)LTY84EOC(Nqjo>ofun@+YHD9LMvpp;3l%ANmVp-MoyVrl+_4)L$
zIar2!b=x78bdInBmC)Wz0qGUIb<eN)zKSvJ7I5;&d$;)OrNcM++x{_>A9q{G{o@Yb
z<h8r5+Rj*ht?T4x9)*-p-IYhQ_vVG&colP}==0R5mBlmv{5)!Lu<TivTi+A)1OHri
zvAH=Pxb$k0`3tX%sl95qw4BQ$e_Zx5eCOV9dGBRz#g;nr*Y7rTEiC*YwkU^7Il!aH
zqrY>TjOv`wqp`m`^X(Gv?W#X#&%;udD&Q1y`E%ermh#IH7d_;E-1Djwe&E{EyfDr@
zn(u2)K(ybIp8^veYzS>#;-G4g@Uu(L;B?%jrAs%8O^d(ND)2Mz6|dI3=ZOnN*Xp$2
zx^{B)TBoJunVsPUPmfD}p0=jOdx`1an|eFmH??~Oq!&F)f06#P>#W(5;4M?-O=NxE
zR==;PR&4Pom-IV+>wR~-)8q>2lONh%RLm`I6>v(a<rDtGKczzS@=4i!>ayN>qBn%@
zubpsYf}B9^9GB}8`t2U1XFu4q^$Tm;RgGz;$99>^%Dr4|EK&35YveykvuIVnTdeN9
zx}B<VS=Nyu>Dr~+n2R6kKlcpZV6FOa+0nPN=9DK+o!cVb*O18Oo+drhcxmkh)p>81
zI0?2yKVNo*=bmK0<Vq>?b<umBUMgMN_2X8f{~}J^2R0wM%APOwIGravbNzwZ>ZNn;
z38vo+<&!JBCco#?4@aBDXTny?+Phiqidz`!@&AxTy7t0^aH~~`EjKs6Ja@qO^vmT!
ze!d?J`-E+|SNQey*xun|vfFgUE4Csxb<0bUA7{c;-};;HSpKBf`x(!Xngc1ToIf1P
zt4=-ayCdN0<tvA;c=PVz<BR^Vy?lSl6NR+Kn+f*nFIpab6S`(uxNp@1fn$xQN(>f0
z=lifdn59P`Nu#7od-FRV`x|oA3YUw2-1@QVM&5O9y~x*6TSZRYUbA%X$1luH&%_G0
z$#Ipr&SEw9nOhLee(<XA+==asYD{ya@7q{d^knSis-G!!z}A`B<D2%Y@7w$S@65Qg
zU>k3ob8I&2x~a-CQDt^F7qW%SUS$z2$Xcyrt8n7VLsfx$2l|StkMWwV6lOc}rpdc?
z*ZMv3pDwBz6!cEmCUt~6XKU1hGV#09w6>}6Joqu)tL<3I8A$`fmr}exa-t23?<_F8
z_V(v3uj3XsQ?=?D9=KL1-Z{l{XNB)g>5M1IH{_b+S&u(4-C%e6rCq_r2`AqO-)Fk>
zc74c7k8N+-eVkIvt0u+u%IfvqPL1AW+GAo7@XGeh+V8(Vz6x!7|K(~|AB%y;y*a1F
zZ*fk1_E_s|RnMHCvw6b~Zw>I3yZTf;bbd60zHa!p5RY9sjs16@t;m;rb~&^5ZLUwL
z*X|#y&CQF-wSEZsEfI9ex$eblXRt8uRa4@E_%lwo7^8*M3L3t~9rZh~_NQRO)Q?wI
zhIuT~Y46Hz*nW(=Kr?sWrqX>fLcUvUk2Sb`n0#-3rQD%b9w&~6+&|t)#JN6pv=;ob
zeA?WHYg6YNY@X6Km-E^+!H_%bHrY>dOhw)t)Y-x6(DBk@x%`91oXoc5mAMbz%zvwP
z=hBe}InDDnUcMe;cOdX?{La4%e3@8x{e1NL78~2j^Xv&5gH{<!8VM>a`ps!9R{OB<
zmfpS|(TDeM$p0;?SaNprt(yyW#5o5nes$~h?2Ex^`mxorW@-_S{FJkoa)0`m_+a7P
zCIyi>#{v{~EIb}~Bjs0<lj8^bn@6kcE|!bgam#MiH+B^?2@x-t`qNV8+V(s9{VI|^
zzMng3#VNBpZ0!xd=Fi_fWxHAP^d|2~i<9n(&HYtxzjXVz>NhNPSC5!fB<3Bw%=_ol
z$#w3wrVkC1z0)n0->$jGbSH0B<z7a<(2lb|oHPC~ra${2$M9Ns@rGoLMJr2vzr3}t
z&j`K~7wFDarux_@HcjiDshAVT#CK0_8ZEMPnfdk8WV3^UKc|~)emF@_dg1TV3zk)>
zQM?<rw+Jj!{_$Lx_c;IS`%hP&&kEC+X5Q#u@!m?fzeTXVF+2Rg-`(Fg`cM7fo$Yob
z>_@=CpC;Ao?El`H5ncXg-p6-S8E4LqEV}Eju`=(F$X)sPL%lQ3e$-mtu%dFN{ipu9
z9%>S?{LB)QZyb|pnzH}qimlTRm);M$vgppo`->kKrTk>(i28T>$HKk0w*3<4_~Z8b
zv>j)CbiwYm%hfh5dh;rzN69ID@04>6Ii5-@9~U3^u9dT4pXK>o!tQ1#lSRHp{@$>z
z-8S~_VuwYcWeRdfZ~NS;a%UB=y6d_(Oytq0tJw+r^SZCEy<YubQQGu19r8B!jF-pX
zowF=?^76y7KZP&kG)&rcee%QNy}_AkZA>=XzdfJ2{k)m)sR!ll&%dn^dAw?hTkz4B
zo<gq^H!jiopKS2J-pSK(j>?J6tQ;?ve$Pz>jWDGPId!mIyyaeZV5j}DYaPX#ue1I*
zoMe;gG-K)Xx~wH1{UY|2HiWL^vVDDSM;qhB`&s_A-0LUh@L!&k9LKULWM=pVb2(>w
zhTXkc|F7<0+p|)$ML_o)>+yeH>c@8Oui*HQkQyFYeQQR<<aP-jyVt+OF4w1o$6s-?
zpK->-vO1gH@ZS3Ow@RNiUT3Jeki)v<Q{$$OCKFhGREX{g*mQEI%~gHo_twW}mR0a^
z_jxW<d75kS;`(2Ih98FKrrK`ZcJi^2pUm%<tXcKzGXGs&=D750O1Qm5>5A^33mTjb
z`(<4Tnm;?lclWw8H#2UCT6{hKPBz+H-i(9O_s|;y(a)<M1f@hSW2-aXy72eJ`GqE_
zvx+7+NEYsjTzc}jvP0PP+t;dgez^Nfp6hDg68F-_;Xn5?azuq*KhmK#b$(5#c}J<?
zoma2dm{(4@pYfRI)xr8xr_M~BSha_F-I3TFPDLBPL)R?g?_WO<BOIUgs>*&<rTYB&
zv4s`Or++#0`m*7F7Df?qCy&-!d5jlI_8y<iEq&)@T>80WU;SOCYpY})XS@nFocpHy
z=9E&cOR3>!q814_zZ7=3P`+$0$Fc*$!fAW{9Z;IAy@=N!%I>b&A(_L<a-ruOKKE_z
zV`2EPXMOnDr?X10pN!izwX?iiG~cxL#hVq6mPz}~wF}-hr_x^UOJI>C!>*e`V(T6x
zT>2}-nsYMyS5B?zMYZEQ;<A36y`sORh3h_#TAzB)pM@@x>W^>8Sl_NTR+%c`wB+3m
zf7XJ19Rf}%lFK)qbC;FKcowVbz9)WRP*=cijnesy{AVoxr+zoIHYyFAX}Ea(MB`PP
z_sM@Tw_5f#RlnT#m(jI16U(pYDy-NYQc%a?aN^oI&78$$Om8y7?`Ur25q<Pf)Wyf>
z^`Gg_jh3H@JZ0`w8+^Rm<?;LzEKTz)y=rdl$u)au7RBn{TP$w=wRTf(%w>zKrb};q
zZ|K%?*!r}4%5+8LY72)K_1eFz*V^<pNv@09!r<S+_w3wVv+&%E)J0ueyprYEGuc+V
zx0W;h)|u{qS^cgTgOk`2pYJz4cU69=*US+quibU1?sIyzl%Is^-qwh+%~#vF+yrMF
z{i4ZTA*MY;yLq`;T8OjBiuw(iTvx8mH-9WFm!PKIXTJK$`VXEv{kuGzVt$;t|L~Bg
z&V$1B3s(G^zjL!{ey42w(LbTt)z28}|1*GK{r^YyT{F}6e3|}L*#71=lh1j7_UjvS
zE4FCq%zdzK{`~p#|38p%`cb-V<DBAcT>sl{mbn)x=N>jcmGP|Ti?N4weoHjN`lR_M
zs|}ub8<#)rS2^*ka-PTKw8QLw)3zR+{K~EHUffi@Nv2EhACSE6moVwkhdRdjGi<9J
z^tor3b0qfvNlvoiH2ZxZhNXM0$ozeWuL<=2KNc@tE@x5s@!H<bU3syarUt!Mahy`e
z9CmeUc!7lTnP;B`oO~L~c3uDakYDkRk?5KW3rgR=Uw+PXeuG`UM#SU`XExu~^VL}N
z|CRm}6R}T*f>XY%Sm!!x`--y`9vqo#?>)Qzr9%7D(GR9J-S)Q2w@5c^-(UMq^!-*Y
zGlL_)^1Ti^_87fCW6t4}d`LsTVQZ@SUB1IR=UYwPY~xVN`a@^UdX<iev-1pY+_ch=
zm~^l|<ML6zEZ3KBr>BM&-+X0ef9-~GNcndEw?8^(KAn2K_Qk?Am)<&fOT5mJ72)}L
z<GxSjo;~Xm)6T?)9=!ictLp6iV^X~LXZd~jt1IKHw{O=v*VrFNK_)-=sGno_HT%0A
zcYD(E;&<&2Vm*bg&pfvFg81U=ahFoo8AjUKcFVtdB6$00(Uj)YbJrXXHpoBh^xS{=
z{)5hc+roDRKM1~YW$Lp+{Xb9rBvM{oiTQDO+cA+fPm*uE$&nTLVkmw468|Bd<Fk6i
zA9kLtw4LUlE8O1gCZttwm&B^raw6qouHV6jDb<-)SJPMdO}udR#RK<!1;@iy|JF1}
zy>fru^ot>mad)oFDc#1$wb5hu!vGoU`PF|#84uVrH%IQu<7d=JU);iPV_3L@Z%>dG
z%gy#hw;xQ~JT;&rRb!8-*MFVR8B15*_|qTvYU7?}{>)E?bu)6K=PbA)U3T2|%{Tck
zehvG$K2EB26xnd)W|qd007a%*QZkw*|F#`lTX6Py)!mnyIeI<oDvhOMxxM9%hJ13n
z$huA|ac`Nz*BK5EO6yZs-%s@@=l>?!S$g5b$FGvU$9iJl@-myKGxn!l-?TNp!nd1c
z+tJu*OY7Krg%@pXa<%!rpTS8@v$#+^X+qicACLN2m94M6`qZBmRI#Xjj>U<Z#tVnO
zeN$)dpEc9MQ0$wELp*Euj`B*56=5}h&tLqyxou}v<VBIg&#Rt(-4Y|6YP4*%_>V2?
zCY^SxUm<_s{FK^_6#^HR3N2XQ#Jc2~IU}FW)vCKLOBb-jt@CXRb56^%`sx#&@#tkq
zvE}2Xdl_78toG&IIw1CRQ^a%0so(k>S<7^1K6g1Z$t7d0KzmH?vl#Xt?>pY@c3CQ7
zTC8jH>1u{~&Am0Z#M)NXRDG3ioS++~yZ*F$L!g+|`t|pj`Ok=+58WX8-Jfku?UJ8i
z?`)VlZpCPy)}HY&=cq`Idi?f6@9#06`(LI{U9&4&V^8PVm(RlLe%wn?$m!Z-GrhHh
zSN#q5m0IQJ(-`*5n-kvQ+HybWP|{>A`L|cqR61@Y%;i3@JkiQ|U&xyO)5>SfzJ4<9
zxsGd4%01V+Uku(H`63p%pV_bci;&ZoCV|&~cZtSypTEz%LjTXDBfB<goHlZ}>*BGL
zJ-2S@U&lRB;djqPE#q0jsCbLN<n@NEIH!(_2SPkK6j!-9@ITL5J|W=F@)ZxCuGd|A
z)=90jk~?PAz4F;*Jjw;nCtUJ!nW^*S9`}m%x-Ww~emDBDsBtK^ocPHkW)*1K>N4T8
zz=qquN|qh%XK-}3-FN-Vh6T0Bt2FsIi!MI1-C*&pQvGj-p5xl*oE9rpf;?wk`PTR%
z@K@N0Gi?79<5I2vZTWof@^OCoJG+ZtAKR)uUAbXxWowBrQ(1ky>&wJX6F>4ln7S`J
zCO?VG`+TeTwP)#p1)6u<+?xGm|0*w5b`}#6bK>~EDBkx*jj`4_HuL`3+={0TWgblq
z40~nEy6qMFjkNF0>rM4%JGH#z5#ZAEn-+T@@vnNyHd}^Oxyt`{NG#jl`|Z`)+u!RL
z<(r%jDb*}rF6h)Te@czlr%74Uq?mR~t;r8R7<G2FOn%a@*-n=hoe~c4zbHR3%Z|Nt
z#l0P(g{6OI=yM&rdu^KBBCnaBr~f!>lQ(ly%E?Kp*;Nj_Sq{EWUQf5nzbclewS8TW
z!0{@ZtM*~9mvHEOjN(vSa`)`fdtxen#jNTIyt5vw*6e;G{Ip)<*PDxvkN3;fOZ?ls
zyW;xKM-BN!oD28WKR$L=ntzec{g|(FES6N<KYsLY`|f>NKEhw$oVgb7Ub-?~XB)>N
zkKi4C?TMSsWOj@53LfT}pEmD$@-yz{hrWSFduD&}*e_`DcjAeCI>)wKa9GT9=XiK`
zm3QT7JGSBl)04mW1XcXcT-GirRPp-3tNF|R7k*f_|K36E)E+5mK5<jw-b;xBr`CF&
znpP6@SmDF&<=4v@9oF#w4_Tel_Hy@LRioChpBqgUrQ8UNUor33ub)4E{`|%IP|b7F
z6SY(gi6@U|TIb)}Q+c+!l5O9g;;NR13v0?R1--RbZ24ffezkT{?dNCgomb)yPW<si
zOsU9y=OZVUzdICy7dEkSi|TyI+ap?fbdTNpKdD)YWwW&pOes29$?4RSUHQF-?a(=$
z7jd^@E9(Db-p)_YvnY$-{e`!-pyu(LhqAB5e6tsAwNKW1bB6K3Rw;+ONAJCNa&%iI
zbFt>~tEq)vmeCHYc1Aot`v1VMnj@O6PW%VV`?l7)u37r+$sRpb6K{RZ;+f~Ar=Lp6
zjLBijH@)0?i(&om>L-7{DS6$yyu@u|{Jn!KPd)QXpJAr5_u|4Jdt0^#e;>^{6?A7t
z(fS9GccxwzKCF6kcjmR!)jod(c4fx-HBC7AvQ=PZ-vMdq&zH3<WZ&!0p7mZ=_+a^>
zdyll=f1hr8c}}mci2M8<S9n`y7gkTWa*w|w>VD=EvD_^YSKPAytWrP7`L=xW|MQiz
zRw>O^+|%?d;u&YKmL~tMlmi?M{FjSC8S}>L4N?wU_s{;wuw23A*1Gm91-F)%ueknT
zyTgYiJxZ_Blgr(h=DZfUU%V>ABJh~m@e+ph;^rR&;+$(6j~lPnURpZIN_4CCm&(e$
z(SKL2Tw7VULN|NIl&0vvR}V5&Uz)K~;V=I|hc7Qz@&<L^3BJd)M<(5HRm`pYReMgK
zpLL|}ec0X0XYJ>oU%j+si%Rco{lL@84IF3Joon_yI%n-9?Vy}j!Do*fYpKo7S+yti
zb=}qKBVSS%ms)ld>0SBJ+$KLaz_|9jHbY&jj>#>tc{4k{p1zQ|``r87vkiY|Mfl4v
zwMn1!%zwqC{CUS-{3)w5O_daweumj}rXKUO%rlNtr_1jC=5*fqZK==BBTAq1Gy7TJ
zOPjJMbhM_$9|~XQzchQhDvMu;m{ZEzo$5j#rhnJfw3znKAgV*=^53TGW`RsGJ{O-b
zJA9e<ZDp&#q1~q=9~G!wYn#3Ma+iBm`m@=&+y2zvNdC8Q+PBkgyC%=9YvKO1N1XL}
z01F?d;+nz<zB6kC8DnIZMXs(h37u?U_~+@@<lEtYjCS4s|Ehi$Z-D;w_(st;Td%p_
zKE2QI@~SJ=GBvtq)xSnC{T2QyCnD49ezGjME+gD+x^aA!S4GxxttYp(bT-A#I$OE&
z-nEPd?Y+hlF_&J52^btnP*V_<H+XluF80+-!{{ZEyfGRXbGb6@1?DLJJ1r8^EYsVz
zcHas^6`|Vi>*rgA`zRmr%6O4;G-mp@iyQ7ab0}Wo-N7iZb!FI`!288F*b~-&T`RVq
zPiNCM3lIH>hoRLm_Nm(*eoFcE@xkmJ++1H5+a5nVr7ujtsU-AZR=J|f#>z&9^=eNI
zD`T&EaBSWszJ<T(fnS(*q1ZbX=4<yCK2Q<M{yp{8xoMnhqxz%kBlW$0&DlJ)IJ9bI
z;?CIx`TzJC{+AhSK7Z#BztXPA+gbGwmVN!Gn_3!wIcjx&V1bbI!@CPDZMBcCIe3SA
ztHjUWI~5wd&xM?6m1NK<I&Jhv(cwlHSDN1EIgB=&^x`)QIOQ-Oi=OYdl(*shtpd5I
z+U};wGsM(i?iFz2(7d01-!J&pj~OW(2H~$HnLhle-kkaE(>#`K>6`Z5y~N)beC?+&
zx8ff09H|f|A$7&nv~~}#FRhK|t|?|3%KW&Qt99U?*t7O|=kGaQ*=`o8c4-~^wi_$X
z@nobv*5&G3wor4vCF|!N)@2pznd|iP9&T#Ps>q6tEAI6yTGjh&ON*%4y+sc)xDJM;
zzn;)CL5=aTu{`TmR&`CqBek=O%(xX@=1L#<ZMV&eA)Q0z(3ZyFgQ*`vKJH28OV6H|
z@`F<%@_|^(F=OA`tlL<p)C+OGT3Yx@==k~br*e*bt>h?3eU|=A$z0?M<G!_@*zSe&
zK0mZRafz?4c>{mwn!P*D%sjofB#>d}Ax^J_C;KMx?cEahM6msMNZ6*L<IOD+f0B}=
z3b)@}T(M54%3o&V$?{{5%LF%?7+6_pSv`xNQhlsP(m3_Z48!DCtJ(SYcJ1AE_kCtd
z#kG%Ho~>79KJsIJPK`1bpIYhJW4&4#If-@dd~a*srj*9aesM2;^@EB(+IlYq1(!_<
zp1C|dMqGw@-TBN_nHQ4Vo*f8$+uIttCpgA$GQ-VVy4Tg3INvSYaWrzl%bbK}(|K*)
z3wHYYR>v9LKfL9urE=dkai!Oe5BmRY2rPeYnVl`FZ6Uq#L__XBhS#F@`I|kWZ*v&d
z?pZqLyH(U*Rj~*&XQ{_uJGZyDw=aJ-e|dX*yLzLPUB#7*J3BV1v<SFf&evC1v_IM;
zsZC<RS?TaMeNTc7E?wKc=z-21ZQeJEM;7-zpS!l>G}FbuYjztYo0O-D&iyR&;niz{
zis0yuy$f!yi%wd-(DmTWE&MGjCVE{HGZsiWC4W{$ePM&>^vLW&ttvT-&CC|F!#VmD
z;xd<iyLpIX)4_i4gQ6N0VmIdN{^Jf-(O-L?MVkL_%Y=QumpXEP7T>AMx9!wH-&fL1
zfuH@DPVZ?I2u+@zDx5Iys+Z;tj(L}_76eAlnfXNdwf<Tr_m<yG5B64;-^(mGKI_=8
ztV5F(7OfX>>X>MFk|SuZV`^%_)+X(XFHB{&#>99k#@%`6xHFdFjY<0Uw`?p?mv4lu
z-S~0oHPa$~nK$!dITWi7r$v4VEihPGlh{6Kr`ANC_Q?WY|K6Ul<omHJJq#P3RZgq>
zaj3L@{+@sBdLQ59F<d>F$-R9~<BvZ9A~BO!9sIC6iOEwY@-S!P?v+so+g<l+AL(7L
z_d#sYgU2je=2kzwJ>%?_$(`Y$2Q^K)8g8EYSMn%=**|gN@2IoWKDFBayRoPE|HtBR
ze{&%xj)@Q1WTK{BSa{;^<@u&7L*{EcM^0MW%XQ2ux>M!c@&ZelxOHC+PH=YOc({-K
zUD`a3c$El;i_1do!}jc%Y*gF8crHvSQ#rQTmf?p?)Q*2;If>u(oHz{G|8#ZzD~Qo_
zoKPgm`Kk=0$e5#}ZskhX!m5JCO-JqZYIzs!;!<>p?^vbp5~@(NtMidCmu9o1z|WnV
zr+Qqf__vO&;wwYL3fpdf*2C>?P8@;uT)(&!T~4PT_*`~M%A!?iZG%8@<^_>8iymw-
zXGr{Sd*Q5DtyFl<t>QE5>kPt+J#VcPJmB^G)yfAZceWo|e=baE<>RXlB^b>4*%>B2
zG+e#e){5V4J*&fp;He=6O7m~e3-YwPqZRJ0wy|^RGxlS=lGdxfCQgpJ%kETV74FLV
z{NmXfPKD~nSO2oP#Q%SM+e+_A;7#>~=F8sJI$qv>X#SkL8%r)7Sf3?wMem4~9P^d^
z+L0@Q^pp=+h8_EIc;0cluh(~Xr7l=*dU5u%6*e1c?+VTAx#xB7YSx2{qb@6#PS`S&
zwREn6+4GS4hWhZ>YZ3>AC)k~pD+x`0yY$^k<CN2X3nvCW?T)T;S~6RP>rVDdEq_7Q
z<r~DjEaI}}3N*|$Z56o35G=F4Nz-cOhAXG<6oqAezB^~_^Y~wEN24qf8h5@n-WvN=
z?1OaHvbY{6uZIj4ikI)#bo|;o<yomhig@bu-gS?@sFY0&72D-AjhFw>V<`&;zFE6s
zwCta`m^fUCx&4V>Tg7>u(8HFSXHqiO*S_R??lLXh;Xq$Lmvx+|?XN>to8^x!m=U-1
z+s^vWr+x;z^Jl&~@U~w%Vdl!WT5IEzU!)z~?&Y}W*-qgl-<V_BW`}6iaId-guVJy2
zrQ=Kqwu2d))mJmIPwROZv%Ep=@%rfB(G2ZbQnBL39S84L&R3t@%hl@gaNVOO;Ui}4
zp1ZEsALQnc*!0xa;5g?g4n?c=uV?T5$9S6i2=fKyXZ+j$$Ff`GrC45)KJu;R?VZNR
zgQX`JtLG?eGy1cvdhSm-hjPU`QHP4uHI!YhX}pd2wP?ys?`13p=HIekvVI-YoSX!M
z{b#JBB#(&r1d4@OI=;!+yU}L~N5g(qMHj~BC6$V^vaOCEW_)JE{$!RU&k8Fp#g+;C
zcCZvI+vq62dSBq>Q0M=0F(>Z*(o)ftI#_btyR@36%Kqpv#_yjw6kTo!{5U9S?QMVP
z-D-8~S>DZ)>Ju#lwr*M>;MB3|KjWPIMeA3DFE8HZ=;Il=B*7>B$F+|^-3OBYPEn4#
zW#7gWJomy`KBv0P>fP&mm=1|&6_<PDH*}x<y7i3RJ@yB0MN(ClC3GcTxG48_S(aJ0
zPu}Kq+jp;`g}(gYoAK~N-ZQa|e#wQF`z*NyY>c0s^~kE>jj`OM$IZUuj<e)Z5g%h_
zsT22B-2T6fg>mBRGt-V_^W^*Hwf$%LGA(vtg$C<wUs?a#nfWFT2SjSwHz?%2jKA_m
zbiu7S_m2yM431}M=$6l3x&27agLy9>Wd53^yWz%_kIe^kc8YfO$1TgUtuToc=Q%L-
zp(L;0o@beF<X_e^Go_1e*xbhDIji2`UCmF+^GxsS|KH#8ok72TRsN|JbM+;@vIwhR
zV_2ISrV&@yY}Mv&R37o1`@rRwsXgoKPW+y6eXBg<e+@%ju4yNJG-=E<o<FUQ$uZZq
zMPOxhJgdT^BR_U9rW|femwn{3`I2nYiT@{82kwbcj#|HLSxC)~z_a_N|KDV#W;Z9h
zB`bdEtfg%a{+)^mJSg<8{<v7^)Xwuv4=XL-$_MRztHmI8Ow?9e%0g6q?(*+t0hVQ{
z)8fvm?zMlPt+u;ycJ$13$1B-PYS%yVeXt}c+($Fy*YB4fQ}3JVX1w0;Mfk_59j#F>
zkKaAt$o=csQJdH>n}%>T6YZb;2WIVYYqzaq-#6WV<&VsS9d0Z;?3Xv*%$VxDp&(^C
zo2r_N<B{)v{3-zjJgw%hdUzAV&HdkfsGPj)Y*fw1)Ya>w{;w~s?7sH2OyF*Sndzl-
zmyg8!6<xmQXWojOSAEO2H%{Pmvk%#BdBEhj@8P2V=@DK^zg`q{H_p7Blw%#!wK*f$
zV_wR9dCrz3sjG8yC*Pj-NyLfc`x@6(HBmcbPAdH@PW7FC%D1CPu_({;dM$@Q#h=|f
z{J+=z`WN!6qV6&KpPZ5qDfXNd&lc2$y_5X$GP>ar_x5b51%GoE*M}@J4ra?dUe9o^
z_VLt}QQu$I-|aKHdtGULe3eW>iH?;HSJ>@;!T(lVezey3_tn$c73sTJ9d2|qsog%^
z9eMo!n$L?nb&_gI3=S;LOwA2DS2m0N;Aa0Xd`JFwRy;p9TiySj%|-8XH~n>4uOD1|
zeaRiCmUA<II#wUp9MCD0>A<^y?fs*r-ZSG4Wn09X-w`X!Q_Z@*ZmG7ANY(#;dw+j_
zzt^2ZQEH8b#*zJd-_73nF^F~I_2XxDu6%stT-Y&oYh8ck76Ehf+^U4`rfrw=J7-(m
z|Frd<;L)TN3;M5QRTV0RXshktR4}o6p;4;WbWOdVzkmP!{nNdws;aWG3Jfc&Y~QB7
zTP`oYzH4jNb(4wA>K{P%X7h<C<$Q74{B!;?AA#EN8J5%E#pPXmvEk#zGx4Q457b%&
z+SzBl-c|JBBQyWU^zR1NUI8ArYO1&rc8BgPyd(UxWnG!a_7B{)MoSAP9&3K~ZfClM
zwXIzGE%lZOTYjGlO>DopZTDf*;Cmk|+5dA3Se@xh+vB<+WaX3<3Dah2J-F{LtNccY
zVW0K>^>Vu(eAl^^^I{Qm|5XOX_}RbKn(dUo7Q&&}a$DNzOqBKAf8CnFc|QN%%QG*3
zJ1s@K+``f8oiyv`Ev&~ZG6W}T&EkLkYr4_TEB>LYo_<e$q&7oP={eg2{j;w_KTM8{
z%|5i-C+*zQzoEPjCvUpFYGdh{miRZ9H#vPekZiu^#|gttS_kCK?mfD8od3bZXY1Pz
z7;QG*-@D;Tj{KTZ{*H)b{=;?G5)Pehf3BgyG4Y$s9RqW=6W-+#dADWd+!^kRFZi1N
zpYO-%7`>i9i66q<jMZIdMQSy0+ot+2HIx)Pd3TwUk@9h7_teERd3$qrIYyN*UrUSU
z*}B!;%I(npXV)B>8`z(onIp33gN{AJ{h7<umT{{0+6T%Xub=63YMIBDM2CfUEjTQ5
zcP*5>5YbUr#hNO`deFDn_)c1#z_r6Q)tObXECFk^Gbc+;(`3*Web3ukQP6J8Cs@*|
zF?*WpCDsh(mKDq58#X<Xt_VDQMwV5N;k51<&ZVzjD=~Z(ljQAVPux(mR#U}))1kO_
z4l9<IxjX+A?|7ru;<5Nq(wmEi_!Y8d%zQU1i?iTlQiDSu=RSuCHFe>k4@&PWdgZ0&
z%39lXpsJnY7K2%9Aa9eQ6Nh4+@Ve=f6pnKyv|HxiS-0@P|JI{rmwPLi`Jdi?_)GZM
zQOk<RdspW>2`%qh`N5;wfd7o|SD#OuGGa~~{_=~yhTF+qZgf{$oX{eW`kwJ~)t6V7
z^A9YzmDaYWMEv0b)$2a9HROB~WY!zrv(Bh@QS|&E`R9dzW3pnO^Lo`Kzg^OWooYlk
z>#kiqQ{RQh>~gD7PVd(nzpkD!{dxb;@0UeiH{Va__-I&A;>N-nzD&2Lpk)r*dfvw}
zkDsUe?%Q5_;m8Z0f5r#Wj9Zs1eV;T}dHT$c`fFr4-%Ql}o)~!}z2=O<+l@|L%N5UT
z*e~+^WL8Dy9E$@+p^57SSg*EewzLX3Rh(s$tIK<K?9t!f-{0Qd{M+Ts^3*jO^q8jI
zT+$c0B)vttz3la$P!W+9fkhlSn|4pQ<KFPsGH17Em0ODT_Dq9oM^3J1YB)RX((2S3
z$qT1*UgY$<xvW2O+M%uaJZ}vPleUWnncT~Icgs3&@ki-^-mQ_RVjdi`UQ{&GD)I%(
zhs2JZkNBN@So3DTzw!C$=_MB=6l!8)_l71!t0wj}*)31zK7Nb6e`Quhp!GlQ-ji!q
zHg3B5C359)>jyz|ObV^4m|E8B<o{YzuCTD^>Y-^?a~L1o^VnQBg-dhJ`3LKM3My_)
zS^NF${sZ=$T-Fn3&1E_xw&Cn9nSl6Pn~QEuC{x?^Na{@pv&{ebE6c;VwyC(N8c&(|
zoVy_R%a(_>`+jWM(W9%a!o4K<!co4r%huhfy;kS@^4g0)&bgESo$oK$yi~XK$Cp*-
zX04FRdQ`ITCL@FY{(kE$)5evYS5BI&w7S=S*J;Am)Yc~s!ZY;CXS-g%AA0o9vw2eD
z>f4#}%@tkx>>1xh&1kRWsa~QhaM~dF`DNZctO9#B%(%$8_tN`oiZkOfQ>AwneBH*p
ze7$|8eB-6lB4>hb@v&xq&#ceecU<ht>WK{Vzh1l;sQ<5;QGml*x34Ad=4rEcyLgIk
z*9ASk%kU>RLb*2UPOQb}iqPMAtNVX_YZK({e&UrKvFMv+n@*;E#-Tl1!?v%P5OhL5
zIxt2rs8z7E@au>3Md~INKc{?i|Gm#y(SC-&e_r86Nmifv+S?3R5_<Q^Uy;8S)_m&Q
z(evtuzWko}>o8~RS>KnlJ>DL?V9vjOjt%F&v~8zEgRCNbe(0%8vieZHNNNVtL@l@6
zQ;J8@wXU3fygymyz}HMuAHO$7_5VdGZrg3UEYGTK<?`%jdFfp34^eNX1VpdUd93!}
z$a2-ssaI}<Z=0!=xNLz!i@?{!#d~zqEHal#ti3AI7X5CgiC(~B#RVCEw)b2~xly0G
z%f0FgCqvn>iuo~asjZ2no0f&!MqJ*%X7>l3>&fqS&23MviaeZt;LMGJ##0}(eE;NX
zE%6XL6)R?S+H&!lkDL!!UX&eLV*jvBboU<B<8woq9gmq_;jRh26w5I&-CE#=|L$YA
znZ(|_eVO*}fo6-q*~Sm=+IBzEeYilyW!6uIVEeWAm!$4qSIfpPZTwQHCim{_V2{Eb
zKLr$DXDJ;Q{a`9SGf8)ELg%~EUC{w2SM4tP_DlSmlpdS?r}hQH#a80w*`K8>mVG=m
zYX#>Kv)<eB8;&}2C|bE6Fg>g=t>pZI)hon|r(Sv7ne)(u>txTY4c_OzeY(?jy|d5N
zPkvQ+<<IgB+x`R`n||Ts0}mg;#r)cz)-w5dIB{IO6~ig1*fN7*!?jor#aBO?{9T(j
zpMCh3N7Uum%hcSpAwh~q4X<D85IJ4*hav97gFglA|7TqPeel(dXVV^7hw0b*8CUFn
zyK<TMoU_+nsG5j6btDOxojP;sj5SlKicYz(Q%4fN!i|Ep+c_InUvD%muAgU;cH@Cv
z?Cq^NLGdeBtW4;;?Q-(z1@)E*=ME}c9{RXmAo~78sfX9{Idd3ytbHxMQr<~iag({^
z|8Rpl+7>R>!lk=8Vpb(=VtvUPxOY)Pqe{yOGd>QpA1y^cov-L0SM<8~b&b=eqtU4W
z0+t)Ew6_0zlJP?4$d@(WZMOY8mc!1dw3Yd^h{dYh<#YJ=>{~Yb`qJ5}+g`j>TdQTf
zFy2~}<rh243Wj^qX{R$KD;Az)<=9vkAFY`Bne)WURU5qZnx7h8xGA*f;TGNPVn4ny
z<p?`*1nM-MnDO%Q@p6W|mo}cOV%gbdWG!Hl5stmO>*=+<^1YKQcGTC1*Q~z1Xo{29
zvh8}IQ*=a{pU?XkpT_z-NvOQL|E$~o8OndPSE#oLoPOxE=Cu2@;1{>u_S7|=U6waJ
zZ}C5mKkx6%wcef||7)kyots%Nr++xqB)+++$&T0gKuk(KQ-n^m*hJZlD?3)-es}H;
zx881U#b?Zni<6&KuiRc7mfsh_F(WtYs5xU=RL0&m`8%PX%CsXqHy7Mcj$cu7EublN
zRqjU4lKqdbZR6kmZu)|L0i~~30v=TQ$6lY*^>X=@j}<&MNsqoA((+cC-FBe9Y}Mr@
z6aHj~aayO`@sj1<f9lGWR}s&9)-T+>cKdbK{W4A*6U%pUS)|_js(IW^BIDH&jx*((
z_dF~(vCQNom*y<?4UzLwrwBN4=*wRzO7)25dfFloG}UNjebf1zef73E7xrlFl{R?X
z9VA;e^Nxx{>&rEEP904b3*yAAS2=kpn8r*smUPs-nIrFXra8-L$v@#M53lX6J2L5T
z`0oEYEjtp*!f)TcA2Vrg;DPdG`B~yz`9c$pyC}K_`K0C7d_SGW&M<o>-|^3B_G?X-
zsVl6l<*!)eIr)X?x!U6JQnpg=V0Ev3E!WfXw7yF$VzXQkw82Tp{aerSsUa<=r$jCD
zGuczk;V6CX=W1c0)4H;4H=Q^XwGLZtp6=V2AiR~e-KFX0lCDU8MtfBU&DJUI{5O+L
z(+(BR^qFQlpLvgte#?{%A-C5m1PJ}VU1S=v{#=609kaumEm{}e4f$~G5MTRor!RkW
zL`BXRGe(`doiwX`TiRMf|7&*(7y0EZd|`b<Eh{T+j#v^)(ER4lg|B*Z*|yG1ohjhd
zadd;)!Bv_|RK%K2ntCeDU^9Q3<^9USNU$+K`ay`*cW;5x@^F4{@n=<Rt9!*G=dEt2
zOiOk@y_#dw6uTHlM|b`mD%q<tzf0awR19l6A#(1v&m#Gl&T{(=F&&*VH-BN?aQ4i$
z86`oU9~UO5%7vfVaawIcPj$onn8h<H^M8b<)ban%e}C@r>{XZ8`s_0=DOFEACAW?7
zbkN2{PHRu_bTc=1^z<#@*wOg-1J{m4I!w)%_ATJhn7!U7b;XuNZw&ZWHz-FRXJzG*
zO{s32w#^|j>VVoq^Lmxs%O<&bmuD|I{qvQ)Z`HfK{=ZH>omc(N^8Dqy#kUV8Xx@5b
zsXeDGz9^St$&~*7l~d~P9+>pyp}^crySMwXWfxxk{pW4=j&QpxKUO5EEfKFhcjvj*
zhGS>vCa&Ggdj65f(aGl-EY_Xhe|q-=C;!-QPxdZ27TA10=EK#6#^#=ecM?_IFMsIF
z?7q!;a_xW46!EkCLa#MDo8Q0U(-6JjJ-z<A<C4(h@})PzS7%sWeLaKE`qG-GZE7=T
z&XfdW$F$8ibIi<jXH-v8DDD+1jym19#`#iDURRvV`|m&QxS1|rS5jL)<HUKksmr1-
z>XpdxTuOG=e{KHJd2#=pClj?kT#T_;_cidgUBSxIwD&*T;z~|^nw&1U!DV^XPOqyU
zEPSpc+gl$v&n?Y=aO$D-Yps7@Kkt<;iLbhseYT%DeaE$E`P#Q1&g8jGoV-LdGpEPV
zS0c<yb<>)c+uk0^S@NU&$zsJfQ=?~<zBB$Zb;i;8K9$?bcP!rXnZbg?VbQaOUkCR%
z<>#=Ri23xwQ*T$Mod)~4%D_`@D_3P5+@5;BJ9AF_sRP#4Oi6eCC28~gtNGk>Fn8<x
zucbLM8efie{CS<cZTGkGc@1}-dkL-yIyzT*YfrU7e?%eY4*%%|CebYMci%sAdBx%G
zZ9DVR{eTRMOC=nBY0P&DZrkNZ-zk}&=@;0=@o(yrO*#28>F?(iUbr6mAXbOL;**>6
z_3!p=hD-0=4C&DQa_sPgpw;i2jNb`==$IjP==#$q4;KWzyBl~cG)?}-aap1H-%e`P
z9^T8n|6fIjdAYFE>ofa#5+d*J|L}QbcZB!<IeQEB#Iv96U13*qZW~X+hK_}ag~b<~
z`VKV&$-A$d)pjU4^+t`!ojb-$SFii5___7p`MTqGFMf0}=iHRdbDQzN%^7BX@85k=
zYi|5=SCiFa&f^8D%cs?d1eKh5z91y+y```Cs*gWD?DqPu@FG#VM<<&jalP)JACvdj
z{`&qSwX>V+T`3R0PU*U)nF>mm9(hhLd7PW{M)Xm6&o1NlF7-TS)9u<kJWjs;q{n_P
zcjjM@ld?{S%~f?{f<@G4FZ5j9_?@NGW4g$JS$k?ODX%rXmwb0_@EwQwWpBkS=lg8i
z`R!fY;p=?N8@~T^yI3DNgXOiW()7riuXgQR`9G_g^}BZTy*v%2q%$hlyA8HE+aK@e
z&(`*@;-7PU<FSUI&ZW*$6ZU;MnR%^A|F@&>O0%dXj!7%oZF?3z;|t{fw{Txa$HM1q
z*FB{(x%d6~Ha&+y?_BAc{eO5>zT9GIn5`4pd(84w=To2c>P5TDv+uAS5If$#?DCD6
zZr)wO{O_v^RhFL040s_u?@QXBx@yL!E2XxrtrpmK_0nOJE3dD-KmT4QYFpj$@9yWH
zTJ)v<t@4@u@HgYSbMJ0xE^^*|`}UT+uW5dc2G;XV#UHK_kC1u4D|U7Aj^|VL&oQO+
zuK&6J!>VKa?{!{i_>?`#ox^k4BqwR#x%KZ}X|7!8zI4N^=UFGG+TJgJ6Y71$O81(U
z(4B3;%L|WnpDpIv+AR@wcT)DrtxuwkWSB_yx=p_L<Mz5DlV3F-f16z~oIQKy*|TTP
zW{KVR@H-z{v-3e{w<WWy%Ilb4`*!>n*>k&gdB=%PwW~+O=7!w47`5+H(gu$z58Ld^
zJwo=Is~11(o>Qs)aao6nZK_Xp;>SHFzi@7<joqMmLnMc5-!`A^p^v<lUVgZ;LqU-9
zrJ?b@1us(eoHky*YxCTy$$say7v7ECS9QLobm<GWY2C~D-rW0=dgo5Lodwr{eFxXQ
zb~&_rn?_OX8>Sj_4Y54F!oO2DPb)NQ2#vBU7j)db#v#aDaN^Yu?!2?F_?7?4xVH0^
zny+TB^@EUu8e0=HX5B9CdGjJ^8^7$ngDaJC&P~*v?<f7U{oMY{fV(S=Q(ssVzTT9P
zyH`6or^f#<%Yn;lmX*ab@K<Jp%=sqGu&*cQ^1syF$MT;_7TUW%^Z0GC{FR~BtUrtA
z^PJbt5!?8HapG&k+0D()P0mfuN7A<5%n6%)Htl!+?Rk-N8JmB#baX6{vn>AgW#;AO
z`Y$(0WFLr{c=5B1+3P=-KE8~Te}6EN_2s%**^#ra-Obs0<9~HQ4evzxV{blvyWn;8
zvg|smqQoyd_}1jDEcHJ8`CH$km;8&q%q`k_MV|XckMd{h#<#ZH^^VNp5V-GhWpS3P
z^kJ(V*P>liw50p8{EIIp=pMLfd2!eItQfwiw(F-?oojhIzxLP1JvXD?osKE_&w1kC
z$MC<+L0ZdS#UJeTtd(+2J81Rxvm;vy!^gWdhJ_WXCSMQceNFjwn$<y7J7CMIZEOtE
zIajMDN#53DGpaFZFXNr^-)HgH=g~Q-QI8gc=pLMZ`@R3Z^-p)MUFf>M(7S#I--d0C
z&!5Fba(ap`IG3|k>E!{@r4hP8vWFSE?}TqUBW_je|8Mff)#rcaNbG*kyJJPNV9xnj
z`(9r^tQmUY{-^oOvKiq{#)mf)_oZ!{GBvoSa^ud|;wL^nXSkQ<!SVU=$0=INTU)iW
zudVxk{FuxMxu~4Y9djAfuN~*>{Zjd9%dYedKMjk^tQ&e9m+rS%y=HlrTmFocb18xo
z`Ql5~NZwBl{QD~r1R|@;>f<MHE&g_8qua!*>qUH{UT}wJoz~13+gkC`b>eKt?Yi=H
zHaa>wI%lR#n>A}zRod3uIo4f|dfm)Vtjqtu(arI`V8b2T&2rf~N=XtmVn2@NTRxUP
zpjI#Iy~Itd=VouW^WNp_LX204)SfAcvo_T^{`K^+PT$x2?(oLUf3sg__r-OQ!nLdV
zFE8J^MD~ZK^8c$9rn{XlI#15Yvk-0Kop1VoeRA8MeZ`-nWZjO)7XJE`Td;Y>rSy4i
z)Bl!lQS%F4ayedT;)G{`ebf1;?OD1@KiFhuXt0>|({+B8y6=}id2&=pOjP#n(p?>M
zWTJ~c3eVjtYWZsa;-%YOiCi>XlpHKLkxl;UI$<fPR}r_0l4k#36ri;}u3%qXr>@UJ
z-ZQ#?=QMsS-f?%oyU4@~zvF*gSh_uC+MM{VM*(j+Y~)`kbiJrPx}N!`-?b-m<EQ)o
z-BO&}v+D557YR0RzI`q|rF?kD><vl=$M=;UDenLF=FX~l`J4Q-LW53c-%w(fZRwWc
zJfOuJtR=eCDT29}Nw&HBnLWeg)3?8d2JX2kf2m~Ei*?h@BnwIt7Ay`B*&AZdr<&Hq
z)o`*vN9ls2MpxXb|M8YOk|qxGn-+Ej$w{!yYq)bsZQ943(d#BHJ$8QTDa9J)1WC~s
z23=kZTNeeb<jFdJf_2-p-P$udY`8K#t<C+ygIT6>t$nsS^T2=muzT-Ly0|Q9OAbA7
z!-0K~#=X_nio!cS_O;8%Gk!jFGn*k(tGqWT@ap_B&V<(8R*p~G9!?9rCz2LE<<o+T
zXL1gFi#+bY{^;b~39IzdyjW8zep@9(#?(w)@+nz#Nl(yZ$*ElFN(IUD?1L^$zdLuQ
z!?j2M{+(`GpkY-ZHskJ%;@zJX{w`zK6wVW>`g01`;`yS-SgkrPb;KmeU)i1~eK%&w
z%jD#$YZudxCocT;#yylXB&OtMoU>ic&ZJPyl^1_cWc)T|Kl>|FVL?81)wk9Q7V?yA
z%({Pfskiv%CGviDH9rcXj{eHlcp7)xCnAn9JXcbFM(LUYy}sA4*{ZF7N$h>U?DIUm
zx4qSm6{m9hUGzTuc*EYP1&crQDJESikGX61x0UsN<eTNkr}|e{Pc%|cxyE+js;o7)
zk>01pQYS)6HVM?}rN1`yUb^h>npJi8Z?IH1&bspbz1CCTz$0}JJ{(H7mU3NEw|(Mf
z^Lb1Pe*ZJ3u6ik9eyY0Cdu@;HV?E}Aj2g{X=Op6)ixwRh-^X%o*YBCD4LqJROx0SY
z`G%*2$7<ETAG2Z@%(8UbucW9KT<}#|xcp&I%H!Kt5*7xf`5)Nb*ykAkHU5wI0i)ct
z&EF23{eIW>p_vL(K~aa*`6))T`1kXd@a)RAd?>W7z}MIP(9HY0{)fKs{H<|fp7`&U
z)iWn|eQ)YZTrK-Tq2_^Z#HyvSH&|Z;-qF8(d~L+s@G#9>|D-bpQw1D9y2alRdLdD>
z@EdDRuIZNFEJ9v+7tMDj<izt@Y2AxpujeV@u`?8$R*_d~9`n(p{_>UNCtp%`pJQ73
zGkWE0OI82VkK2sbu4(K$B>rm7nsjdaXDhGH*lG0HH`jX4(w_$;i|T47T+A?<)uXof
z<C|l`sk}ieg_07379@X|xP5EMhj)!zXMN9zcp4O|`E&36m5~u$>Q{|U=8C*fs9BOH
zc1>|!RkP#El<fJjWzkye^lCr)IGgJ>r>~G({K&v0&aU3*g5!@<Q&uV!C0$<^dve<&
zX<b>hy<5YtntV6BvBvE8|2wz!wLDx}Y*&ZxF7b_4bE_2G5M=qbjh#uh`FzW~qL_TW
z_3{@N>~Qn95MQCccEfTZy<7YrKgTO`>%}cxpT02coCe>*2{E13W?O$9uPeS=Cw60B
z<<_aU&9>k2&^vAD^ZmHY7Wqd<-sCwdDQ!Q0n$4zfw??R|N8ZhSNumxOSF*J)zg>Rt
zpXS^<e<p8|_A=ajW9_!b->m$$l;8e-kKsVNXyw%AMeF4^Ouf#t+=}a!Q1y{IDVf<<
z&!&F8Df@h3_)Y$cC0E3}|8;nrv-y90dibgJ7B8e;Nc>rR_lL@HpOu{FG@Yzc4(Qdo
zJ$}u5KZDug>#kEj7h6d4*7KF{)Fszt&K7-eXvv??I)7x|T-7w}?=X?t{dazS&{m@<
zhvXVs8~YB<&y(GEjV;A@+kG?FxvllDr)~8Lyt9hAnpw7aeyjdg#_7x2yt-K)9FJy}
zoe=c$?;%tDNf$$Ma;HZ$o<6;f`F>_>;98BiXvVipvd#auc5Y@WsGG8@GpHtCDdd)9
zm}=(U8&2=4UrqD**xsJtwji0KCrmk--HK&t7e~8qW8cD}U;2xKbIZ6=^HPdSic%AE
zK`ijW$tKW)lZ}kb3=LtThA>g;UuR}!sh}TFl$w&6T#{d;U}&IVXUC=QmYGwMTBM-w
zmXlbL>XMqApOUJe?~$6Bo>8J;Y;K^S?~|IBUXr0;VX9!DfVj>Kbm(&smp<y*$_n}+
zl?AB^`Vsy~S*gh-3i{!hDIl$AXDh$Gdvn$!i*0NHO8cw+hxhGU(4}^;dCke_OHtv^
zOI)S+o&H_?@%i`f-#cDBfByV&{YeWB`FroPj{g4ncf+cBmM`1GH{92J;;?H<)YHR3
zQ_t8-{(tuU`}fD&{{8u*Q+oZ;X^rm!^Jj2`O#gQ*W@pvO^OaGOueJ8ipKi3M{iwqc
zmj$htcex(@6m&&T!zipIChL1%PMP&0b=R6Cr3)t<zb*>98FH&%$LQLnb?iTXx=8i*
zx4b&yvS8w#Ws-80kHzoT_NS_xFJGl?FU6y>@q_kl2R6@*0hw`s(%yM@eveLHC#EeR
z+_+5TsFu;^MP^6&;#zmq%xHb?s*$G5B<s;78hfJK=y>d_KEtoP5A~9iF0?O+xLX;w
z#q0EiB{g~KYD{-Mx_V`vx<2kYmKrUdx15QwYLdw8Q}f?Hy5^pIH!yFxrr?Y7NnNr}
zp1Xct(0rlmaPK<4iU7XGE|sHsen#`JHErn8Ub_5H;|4E<fayzaL}p1Zd?3-qYml+z
z5sRj(K!#(`o}*9gQqM+h{~W3q`=9d@m*Rzv>-T%Rjwwj(x-y@4x91ggO|3cy_DPT4
zzB&`BS!rB(>1B(npJ`X8m(+#%szr}h*dLE9%Q^0+`(~x6u&9;-M{d_blNe$3_pHkV
z-Uy1_e5`I^Ana+l;9j;yl#W6Fh7)RAwG1SGPd-}mf7WfUW15K*efL=(NHJS&S{lXj
z{rORK*OY!sy__I}hLbC<DRoa0pTFc-zLfaSWnrvpi=(*p!s2Q=dg_J6em>x4@^Ra0
z)?!~i|G@IIN}oP|zFa@M>$YyiNtxi)Op^oG_A15vesnrBimUpW=uf4Oiwqbh2d?E+
z$&0Ir_;s5l;$LzKzk%e{TM<srk1l_6MdJS@p`WbVjQr(i^lz}3Q}9@Pzozs4{rmF{
zHGOM)tHpERLd#LXzs27<RV;Nqx#TZz*m?g;PVv!Af7s;0pYHh)CsH-7;d%O6<Apc2
zXWOY&Tow9u{qa?<SL<GhNC}FyPcyDF+<WbHB;T{RRR!->N6%cgjHhxx&*}FMKNqi;
zTYl|*L~6rA&hEv#ukD-h{r8Ug#u>Xg&efK73kYvcJ-+_Us~3-jg=hc0_VQgraANdd
z&+Ey59-a699C@QS{A_Xj-K?N_%Vw4M|14LuHC<M7t^9EP-FT*bzkM7c<~X0-^FxdA
ze(T~`=fzDPK9c!WuHPf#uH5?*e%v%DQTSP-cYj1g3e&xd$Jt&j+kfp-dFG$e_T2^-
zdi6G*NbNi4w9r>{UujU<T=i!c^Y*ixDNoF}7ju8zHMxa(;fMG9xUt`KE8D#77DYb$
zDi}r0{#Vqz%rXrOIse61+<ua{<n;1umwhhZ)q8UE&8gK@J0mwMtgF0Qc;?GidGD|P
z*0^cg?BR=kEf_7@=vWzTd#gu%=XbfZXGfP$s;~aaalAchxq@EZ&%0CVui8%0x~1za
zSsz;xU*?u_;L+kY?wL0%C%RUCTzOmY$~^yf&ep1i7nL&>eii1t*Y^DMIR}yJ?pNg(
zvA1{46PMRje*Dr=<Vg8y-urJ3lsubZ^5xeiW0v<X+&9k_cyjOBo%>6@vi{ihy(;pb
zU}Vy`;qCuDyR)OGbJX1I^!Zt{Wk2Wk^0p`Im)x~7wfi=GUBp@uxq|vrJKGm`+Y4>v
z+CQiBWW!PS^|K4!&*F5oULUe@S$kZcM#t^?G9IrWnY&H5wW`d8yO?f1w-tJ5C;s+*
z(Vi2zk6sC}?>_YAud4i~YXWg|Hdx5C-jP+{3w<%KtoFk9RU70Vyu8NIIh#>V-d%Hv
zlIh)oocY49&K`Uevani8cfXWlVEvb44_}>?Ua{}T+b?g}Ci?OJE6}?-Z?bK`{zaUs
zPWLlpuHN61$et2@uKU0Jx^qw8JvmzP?rMja%xfJ@q23KY)?VXQz17q$ul2<}-%57s
zkI$F2Rxt&8$-n;dH(mLf*&(HcFPihzD}rjWri#b&t*V$Pc;Z7`e$1&p=MW3$J(dw&
z^Yz~He5uW!CmwIMd~-*SLubz$i3y^QIlUun0)n3NOc9y?>*>+u@2AGQ922_}Dps;9
z%vs~*^Ow8N=&BrL_EtT*{9fh9#ElLMdN+LLy1&-u;_N_=E_Sa=_ZE15e7P-5gL~GN
z2kVv<OkXClQz@<>&AhqmkL|9zn>;_hJQsKRV!Hk@6&~5*`n0JRvoC&mdAg$~waMY~
zxksKKU#_s<^?df#irsE^Zj`e*eOOnue0I-?1tkvh8apkG@7`E!aPgs)>9;KjwpVRW
z-M$m`U+#yV!9^+4hpT2X`Ib(4w0q8;A6Js@&n|qQY@+noyfrs+`*v;Z92S%K1uIu<
z5UxD6^{l^@w)GmWXS(+~PW*Tjwqa#vU&yhJ%#Ku+cR^2|`ACY%YkrQk(h*8~<gHvZ
zN&do<liia}i6+h!dwJA*{gMi;QX`kkriY&#EqkW7kA2z9Np2dyoF%%~Hv3)8Dwz8(
zw>t4t&f<x8U){g9O#g_yifck)=lj=3S0Cw${j9wwU0;9OB-=;n@0(5ZzHM~6zhw!>
z8Xq5@kXnJ~T)Od=-JhrO3)R=Y;M#7{x3iu>auvrKPamJ_iy{*zs!ZNL<MYASJFBEs
zw)#j)nrbs~3kmCIepwcwqGKo5U%%e?Jy(BpNlvN2<&=qmo0T?5ZH_S7Qt^GQ!G+gL
z554uSOw_(}@ytZ2=R3F>T&5j8d0FGe+RHnB+&I&%|8#QmH@;0FD*V}f8&da)Y~V=F
z-(*@9tn-y=)y>p3=>-<TF2|PE-D5mGYr(F4-n*|K3DRFMf6vA?{rlzaGv&^`P_0`T
zUvVI7Pbjx(t^1nKOuy#H$EG@8eXn_``2G=2p1*tA>?#|W4<#+Urr%K-=TL9=@Be-C
zo9ut}?uRC6yxsESCW8ZK;>LAi+w<lg|9Jjjz4x2!w(8m~>Hq&cS+B(<(9*f^>96)_
zo$(Itl^<ubSQ@V6R?rbGT3BYjA!YWY#+cLH_l2gPPUKKhc5qnrh^O3jVr2Z>rIm%3
zr<8XEYSc08$^IJ`v9R-F@jmWu>B2{+1=Kkm%<pkuJ=t9&WoWc7BZlQ!L8*W2w~`9|
zH5<4V?>Vt^{`~nHwuasiW^Ty*^YiEVyXj5})t6^9O`jZDf0c29?vL5oBLDN_d*-vf
z$keZH)lymL$JQ`okIpI6neu04zI_v0zvFg=tCTon#jklAY+f6g-<8;ZqVv#M#rs!t
z4}Yr`Y_PpsCJ~vq>Gb1|KY|T;4K{YQE;)LFJyoKC|F8Md**g@Se=Dtg^>2&DpCI2q
zb6F}rdGENRJF)N-r=q=l@|7umQa68pdLp{h_16E!qbpypx>3UzDw9?EA^x|`R=&?%
zb#}*E?nTJVU;gm7!FH{cA0I26;xSmQp#OsNj)bIkUBEB(xJgA-ik}u;{~yHXRrzS~
z{=G+-zAW6edPSc3^`-qQK54G~y`%s9hktu+n0yir`}Y0XdhP_-Pf4Y+L67e(kNMjX
z&F1)S-M*UqxSUx>I@f<Vy<h@E@nrGn7s8U}_AeeNd&PA;HD>hV|6zGw^>^@kubuk)
zq_toC=Vg>=-E-sIQiJgC!K+MUw#n7}Ec{b_?XqXi^11m|R`)kee;HWHG-2&|?<Gmw
ze*TUAxH48a)&9Wqsn@yg@}%d#KluGW*9NKeN6U8gw&_=P_{P^?{Jq$J{sc~5h7U`;
zceVcWTzqPl_13i76q)D$Z|8s4oY?8_k;2m8-m}Nz<}x|+w4V9%=O5{ReScj|O;YUd
z#hdl*{{CZP5Z$|fw|a%_{oDKNHywNE`+V9bpWjc9dJ9k7XZ>4UV=+U(qR*=fjQ9C`
zv)cDPN{PqMcMtRSv*nhy_7epe-p%?{^kL!SeSMF6%1&1=E1j*rp0~2*|Ld}5l}+;l
z=0Batps?ngvxIQ+@q+b_EfPN#9-nr(wd}U|{P3WsCEoKUgt;-icw7;<xiJ2?;I7(W
zmwoehzwMrFv~G#loa?7J4xF+wF<iE$!TQ4M9~PJH)ZG$Xwl}^gw|=@e=ilegmxnFd
z{*{}-WYhP3|L(b~{CoZ5xjlQmv5Q^zv-SU8OmW<*`S*%$*~<%tyc;^E*d}M|#_ZYA
z^S$(mZhDZP&&LzRLOa*J6}@bCj{k}fpToRE7Di927ao1Reo3MFl{*usH`cix+0)40
zbxrdA9qF{-qtc2-Og?M&yv@2c-RbDQ-CFHj7EJmNG~ar5hAz~57&Sfb^3qx_Kjka7
ztP1{9`_4t)=XmOCT)LZa@zx2vB4YE8y|UeJ!(wn^lh4I2O@>y#+f4hUW5sgpc1)3q
z-oMG&bxVNy<ctNO62;4USR~~YjF^0sm4E6=h{fO1wGS$iDhxXyw_1gzGxYenwaY(m
zsr+_-^Sfy8`P%FbDTf|~?*Ff8<MA_7M6U6;ET@+9zey(R-)GIaFWkS|pRHka%TcX&
zQas|%b#3x~Kia(^eB*BU2P*@ne@qH=YiQ)?-kOtlGyMCxoNdCak$r|aXR2B<<F%*E
z7jNFsXMVsW>#bz;_aDqJ_k=!p7VlR-S-AH8mWBC#=YAZ`c$DwYa$sdo>Y_}o)cn22
znKb`QdOX`Kk8z%&zMYF(17qyk6`^nLE;(|fxjy=Pird7B%Y6UTKCPXtqHp(SAEQL%
zRI5MVeScn@Hg#guqcb&oU;F6Y-Lf(4Rh?AbpGUj<H}*L5i!eMmT&-FkwRidZh|{~Z
zwr6kso`33J*W&YAXJ~=#aD4J~(j?oHd-&pv(m0m(Bz^f;dn<Zb)r%7r(Q$vwu6<^R
zm=LvVxmaRh>dS12T(@Ik%R_J5JQj~XQ_I*O^gh{P^K|W3pFi#WE?QrD@br=SZjAMg
zzB9z-74uCP^tDwwXY_5?@|&q!@^XJ!9n0MN|7wqguo%|Ye@VWP&g`(w;`f!Kfpz{y
z|2!`TCN8WKS`z>4<1!1w)34@K8ip`3Eile+3|5VPImgWKUeW*ey^-PewrLtR28s1s
z?oVMjX!>^RmV;lGy_vnoQu{$g?kl^!m+C~nm?XxrDC~2a=oH~|@!`BJeLc6@tY+)#
z|JurE(DiDfQ$)^_X}4dr%AK0?Sp5D{o^1>XC5Mu%=bG16*2X+~UUfnC%rx=uZ8yDo
z85pn5l2+8&HhI&{yC37je(tc9E0N#)^yu+=*XIhRb|U%>2KSVck8TZDIiclud3M}m
z*E42yAD>nnz4*8@mf_B7SKYO@_P_ekS6boL+T9*}vE^;|d%jyz^4q4dbv)mDEX@1<
ziv^8l)@pM07xrqNKjpwO`T5c1m*uij1r?SZIWa>bmF0rV&AmUrzhn2X_I`47dGjq7
zUM7KSOSP&#>u-&WD>Bsy+c|&n`sEh2JEJu8_vQE<zkGq?fYK@DibwT#|GYTl-}89g
zT>gB+w>8s~tDQ5hSAJl4eZh0qTa#U~XQ~S4ryEs%e!24Ur9D6XGM*@i**b6C?eBMU
z79Zc-b;NqYr*zHQYn7FS3!ZNZ>5Q_~w~N)f{7&M)ygj^@_x^`2-ms%GkNetl$;b~u
z<#+CdG#*)Z`-lIN2U?Hj*Kk&TjKBP!hbd$2wR1A^A2+_3^Q}MT?*r!*H;(-Hn_lg<
z|9p4MGsDV{`a#MLZIdQuY2Lkjll{M%(Y36kJAY2+f4}$e>}7BJrC*wCYaJ(v`)g=3
z9KRHQveQ~{d!K?*vKRNerD69n_HGGno5|XLXzt1G>9MlMc@0({`7{0F`dR<N%qMKD
ziu?0Vefqyd(NgK1-}!b#1y)WJ|E%eGVAH2bk6sGq_4KH^OP{;C=ZD_jwI8?cjJg~h
zm3?*IW4CvrUPlcpH%_^~@<7(9!;kJ2dR<Fdxx3)Y9n(tBxSH~<iaQ_0>S{`CRZG)#
zja#$$ZjN1pMV9K(z07IftDnt1wrOq8)=!V_+2@;lTK}t`U3mWGlij5mJJ_Cu*=pv=
zZFc2Oy;r!2-?YX1{hA|fH+t$G?pmq$w_$ppO`+iqm$)^~aV%=rlyvIkw}o9<Et>dz
z-O11Ewp<jeSGE2!&3@TbceN#x#aBlzpT>CYqK0Oj{Lg!3r}jGg#>|`^lNr|>U!`;T
zjravn?{`j=KRfe_1+n_McO$0lxE}M|S@+%VnR4G_q`f5O?1?z*uKRi80)_)Dhr%*?
zi|$>p|M&e--FdsG&HLAET4HwhMEBX3%h}W}tozj!X2^H<NJZ7N&|5vLZ8lB0BC$4S
zjZfT~ms_Su{#veeKzH8PtY0$sUj6oEU$b4C@8+KGuf7E(AE@59qa(ig;>|*#8P2;;
z%D?=$?yi>Z@uV`|tGPdVievekcO055K07)$Qa?ehHz~MEsCR;RwybgV)Y$^Bx+Koc
z-|e4Jw}1csr?Uka@2pEY8d|&X*(;?ZE9d_YvAp$L)OCl|v7|pq>dyQN*rtgtf9EwP
z<hBOqSDB+X@=_%YC+2)gvM*c}+hDUbDYz{4hVjRm^^>kWyxiNMu2w17pj`KQ-yI81
zH=ieQpOhHHr<iY6_1n{7;QUiTdwT@au}wxTsr$GY{ysT-NjB+`_t(iHVx7)$EDt=6
zN`w@xP*h6he0^77=D!REy%jT(`}n`!6|Z?5ragDMtFTz7+ixX?-CAZ<sWMuh9&O$K
ze`V1Yi|eejpSUt?yUNvlzuRxQyjD?4j>}^u#+UtU3C@)|x2>K2Sn9o8<?~4HkyqrL
zJvaKL7$w5DXC7h>of_(Q)kM5aLI0aUz*qJU89QH{{kV|r)?JsQ=YpOb-4>#8pkSZ&
zy2qU-pBirbYQKK<T_)#+dcyZkcCVEQ(a2&+u&7kbTsEU(!Kuo=qK#`j<JP?264txn
zq^N`SP1D=QXLUPYnYL`_2Byl5%X;+x_ntn_lw)<n<mVUpF#DO)XIkaH5k6bcGL?&~
zUb%|pfWR)*Z4H@Uoxklke8{xzf!?R2zOK0(@9Yn3@5$O$Tsliml6}?}-s&&z%eBsT
zoR>P-AleWtFPODsmhs0HRaZAf{dp^bJojd?c&jtSh_0>8dtalsSO3cY9@qLW>%Qdw
zi<7DO6RXV8%`n|%_T!-Ktc+}nY73)}oxl0mLPLisW>X~p{fNqGEv}_@izkbl$E;oA
z7w#sJ_k{Pr-cN@feU4w+vN=k(^<tF6Lcz+9`k{5_=Kb62#ggFf8C3IsKYttZ)Z5nb
zSFJZs692z`&!k&_s%<YabgsH`nEijU=piNUN#gSTRopAMx*2Y2wH@V={JMFg+nUAh
zaXkBWm3qp5`M7kY7ekQDmBYPSmtN%ypJhC=HZ(5h3-5Wk$U8}qI=Sr(Prn^XIw_|A
zDt*Oj&$vBHV|8zBieP`7c_oJ7IM;XPoY=Fk?2=5setxv${vz+Mr<Yz8`~Gk31CD@o
z(Xmn48?1Sj7sc7cc7Awe|KBd^u1(Za?|HQo=F9(n%`j)j-gz?HWm&RT&J^c9oOH}x
zW!tN*cD>&JMH|Z5KSyO<z4xAd{q3&8uMGw(vMM(^N8I^+;X3=*pO?~j7TeuOkZL#{
zmX#B-ba{`mxbQ>gxqBj1b<)yTo|x>>cm7mWFT;DQewQ;hc86{~Gpp;^`K>Sh+r}9_
z|E6E;IZu11iK&Rgwom(Hry6vhKG`ih$@k}x>3rJN_cuv4SaCmC^=4Q2RBr$4pOU<K
zR{!AVz8w1erdcKX$p!zIcD%~EyLwq`x#wf?_1~D%T^5~PsN!qhyld696NfJE)K@#s
zU~)Cl&CKVSjsCLo-_xGYKKqqJ`N?uI`Ms5~vwsV7^f6rBdwpY)l8p7wNh;?uR?21g
z?ca4*Z6C`|##@QKoDCaeW))|C<<uygBJLl4@}%6kieHW||Np7DRCsE6yzP&@i65s4
zGjuE{xYZ?pZ$hrQzFhm!D9?{S8ot-fe>^AXvJa0y<YGokE&m-U)qfs2M&xYiI{WO!
zW9j2l?re(XWpHqit}Hax3e6Aj`E%z`a$lVq|KwPPvXu1?*kZoU6gS_Ww)VI4<1c@h
z1i~IwKP*`t`e4=mPmh-7hpe?RcZuNHdh1YiasCQn<_=F=&enhP#V;RDI;tOcX2Xmf
zfu-`>@AEPw6#jp9H1D+JK5kQ=53zGLa4;0?uFv!AGOs(e^5LOHdYK7=v#pOa$=;C^
zW7eB1wYk0~_`q)V3r(gO56jelyX*f8<=M2r|J1vVZhOrH-#SZYd0(;net+Lo-2cos
z_hMyq^8CDZsV8hqTMABpl09&GZtow%?XK@E>kMn{-(B9b<GVS-WY0BALpuX5&OiIV
zbS0;r`LCZpE8{&szOpZ8Ze;!Y@A;4OZL{}qOuTEeS2?Xe>p+y-Z>0l`d#j?4a)kad
zy?^xktCcTnJ>n0XsE}=NS#R}W@v|)~{2?Fz|9cU=&+onbt<9nD*NGkJN;FJR);RDs
zs4BT(^}pPBp0Br8XPUo`wbq}`bHUE`d_X_{gSgq%yQ0c@y#7?OcuUWY{}g?0$>u2!
zZ|is85pJ-VZMtff@TR|<a$^1ezegS4fA?c>#eBEgulJdByi;1Dwq3vca%J=#&f7&Z
zE7<GqZLw2ru<YmwaP9ag6TW}1<a3)lLEK_XSXVsV?G{>jNLBIEqs8C&_Z_MYeq^y%
z_uzSX1rF|OPM!7V{-+c;m)pv$F<-KY+2gxm=B<*<9V(~9m&N{mRDMQi55u)3|JrT7
zpD(Xm^<(MYTWaZSoClOHxob1NU-aZ?RM4SCS2zw#o+TgT^0L1!^UGD=m>|VlcNrE~
z?Y&eGy5rkX@7r@k>H^yR85N|y{*TpBv01m^^WymUXIieOs@5_TEWWI3-16f@U0q$%
zv!m0~8MQjgUnT}7vNr4zy8qz3{bwb<7e6x=JwLkq@v~!J9;s?FImqw&r1qhz<NK4N
zZ*sjiHQ(J4y@%mIfuD3n&LxTazl~ST5nudwhJ~HHt1!c_9~IB*a^@$R_h#71xzF7r
zp{2HLPEQaAL+u;g>OcS3*@ct#Y*Lm;{*%;o<jkrYj2|8?6*%}&`cB&Y?Z5y2eLF?`
z^7e#XA!>SCv$b*=Y?{7y>Sk~Dow$3BUAI-`$7&I$W1Lg{i}ftk7z%cOD*duU>uFy2
ziSFss!fs6#dUM2uVa72>;l<aETg;oeN<+WRtIJ4<!KGkjt@_gXOIi1}SL}Z{v(j*H
z^v)&BQ9djUJNGI*{@7&AFC4$?#_q$@KR;UfXZqgxU8TZ|3szdZmX*u7q-eBl+6{?0
zv&6GmEj$Go^0s`RxAw;K-xEK3In8VAv6Z!1HhIsCy@mH*?~jYhzr3!N;ljC>*?X^P
z-7LD7vh8!y|HkH<w$~XPy1W_Jz5Ax6wx;LZ`aKob|4cf2K6DksioBa{>mP@|J(zov
zuW$BZe&fE+wRS>I^=H4kTk56H5@md$c8;h2+`jwUrpKLP|NrFG^JlVJAOGysD%?EP
z-78M#zwCx`jk8@0#S*Dseg;);JX%%Os_U-mE-V?nVuE<KEnBn=v(K8q?|JPT{e|}z
zzA_VD=HB(?@sqjzY0Gx$)hgRP-+ia_zHNTPMiW_%iaRr=Toh8&vAetbL{j3+n>I}|
zO)A&fbw4Y=DW}UYd1k^Xj|1QRD(BZN4rJVVOWd4)MtQ_!d9GBOCb`KyZj#rT4s7iC
zWs|Uj=hG|A{2XiBsP2WSj(w8bBu)42*^?J!#qiwf|EK)vM(=B1fAu*px_(P(+!^bf
zhtrg@Pvza2D$ZyjxbS!Wm&7b*m7{xS-%--H%W^q(_Hm8G_A^^1)SiFp%Fs7sN|dW-
za>V?pZkMj_@4kGbqUJ!C`#k59ywk-QEt2l;F48UXIr@B3(TYH&$KMTK%hhD4zCCjL
zw>vX~?iDXx-^HP)?AH`A$$LKuv3&E4%j^CB)3Xk4EO0q8Kk7N-fhm5oXGw&dns-tE
zZkOZQ!*bu>>&LYj3vJ%RaiG)mcJi}nf-|ICkCl0T`TjjTt43>oP^Dl)vC`u^eT%RD
zo?rV%|Df_?=d3j@aV!m6r<^f*DJi-1Sk$Td_b0m<4zTuax|_CarS#*v|C@itKkw^#
zZ?x{qd8=}Eh94i~=H2`MzQ=XLYL{bn!r9+~9v@k_Vnb))%biadmSk@^d7Nv}-CcV>
z@4V%IH&6Hbmpj*zroQJmzoK<gAxFI#KO@7M1u3Pk_dYw|R(pANRL!+Dhb6s>Hhk=6
zxDasQN#ORsYhv%0Jc{QtEGa7aq{Lui7-k%La^*Lfb2m<`slC9iXRGj7oY6xlS0Jw7
z?Xhp66AkC8{@!qP{jQfChhLtqym$BVK8^#a%%-#NDpf?(m{`x;+vdiqwrT!<nLoXI
zI2<Mg6soT|`#tY`-PNMj<yEI&wQW^;`Do|22WJ0xLYf$NgrBUEDYiZ#Iq`ka<+2M$
z-c0>oDEsTOvi%ONb-nR({*^HVbnp3brMUC}-z>XpQ>sJDcch$5oPMg?zq2(mj^#lU
zYy1lR>9>-T?#+3wy64>5l#fSO%U7*=BCNgaSi{lZk0(x*S@MFzF^`?Wnd67k+q5rf
zM{j@5TkQ9wi=97c&+BPhw3?0nYud9g_^i*o7J203y$h|pna6vVg+{%cb;`SReSK&x
z=b3)yQ{4;&zE5sUd|v4)|8ni&)PMi})uqh(B)0E;_D_q7700jVxqW*%(f-}xk8`)r
z<71dJqhjXN?_2Bmm|QLk-}vp{dNz6cnm3o79v+$d{qY{_zrXkYQwTZ5rm#bSc~4c=
zuGt>x%lqH2>t4H6;o>vaW&W=-!}omei`lf~;<F>)+;(SX$FnG0E#NhNn#R?w`EJ*)
zvu^8`e+l}2cWdpQzVhv#V)mZ5{n)HENu2S7VR=qfl&+55-Rj=C-w*A4t$v{}<xKRe
zJ*T$5xm!~y$YACpDdxVj<-JOY-GOywpR)HJPv|}o@!~<oGk4|#%QX)_iukt7Z~2$V
z>ryAbXW01v`SD<@-L6xPTlASGq#T^7rym@b|2j8ZYUh?|Uk`3LvA2HH&rVTsqdPVg
zyB}Y#YWk$aAj3Ih=BzH`)tZK{mcFU4)ig4zeboB!>!tXxJpz@24F81G4L;uBDyZat
z5!AP5HUF=#FQ2Lhd>878XL)dElVH}?V@EgGwHeDTS=XG{cRyK4zxL6+#PxDozb&e*
zc(z~N$8n%@>7hqK;?^7YIySy{e6>!Vx%70z{GE}Xlo;H@=4tLZH<d4OefY0e*XmzR
zPS6r-5X)B0lUp9RaH=@tj)Zp{TXP;iIzM~&`KKowKW3ZwFHJg^Eh71Qf;i)it0fmi
z9eYG$?&WS<=c>2#s&eu-r~Bb2yBSnE|46C%|6x0tzkK5AUrq}T-exsdPX0Q1ia6tg
z_=A%j)9V!XT+x!~^$KZMSJh`a@ZVQnQn;PLjjwz5`4yjkobKVzvNB)#_46cg#suBt
z+TrZ-Oh0Z&h22(Eo7OLqQyV^8E<TQ>VLyw%cW6z_;|tUGOuxM<KIH33)lzAf*=^50
z`(`pkTx<HgI6N-Dh+}zg_uBd450B4Xr!;T*SKkZ!I2iuV%HQ(n&ad{P@B2@@nEGxT
zho9>$aYl<vYd60y>y@fo@j7|uoL8%#r_6D?=N_(;FYEN#{%SwR0iSPb!hinw+<Rp3
z{VMD98~4QaN4`7o%zX8q?5iv8oa$!S@W|sVU)8gn=la*2TJlEBc(?T53C4AT4Z{2X
z@BHmz75Ust^JAQ!-qC&ic3)mSUF+&IU7XQF)kE;IgX-tx(vQ#oOWPa0>Ss$Rb>?s8
zew~nXYNOzC{^=_&t^Zp)XP4~dPf85l#zh<Z%gnDSSO4OBDysbW$>!S(E8czellsNG
z>712g`O2-IDnB^XmpabBeC@~~?wl<T_I&JSh%u--|KRrmLo4n5pD!LtYWug_BV6<C
zuf>cH;)Rb)%(*KS^E_kzy^;(6s|9YExyw(>*yz*0hvR_O7sq_7b7D6?zB6Gnoh5ZA
za&1A_ce|Q7p+6nmDg_%(CGlBwSBBjbGCp-Mb=s0SUj%;sYTnzwJKK4`TiV_48Ru3r
zEtq&&ZPyf$OaHGL2S=PaQ7M0Y_H+^R+uZB#o$Q%m?Xtke_GI+BMM)c{i!<(6aBatm
zdHM6*jNP=oUTVBIa97V?<uWz$JiGfmef@WTeYv;3oA)n+A*k14?T=#{BI<VUy8Gdu
zrB3Rk;~h`mZZy{0d{k!2YOi0Xw(2uYcy)>U{g!sCzpNqUuQJv;+uoI6@>{>OX662Q
zi@B5fQarX-{$tlY!dSmurnjuO<~3tS+U9EQzpfFrg^#_p_I-MntG%m4QPp<RTJh=o
zzAQW_eEO;*E92)!m&@v_KJ4Z{;PYuxs%YrFa@)_ZGpj?{k6*w2CFN1S)!mS#hU<56
z6)$Pq@teU%d1<F=RD{mV0Gr<EUBT@$-h5hHvvu(+F6G60I2^*4Z&Y^Lee3j#=2u!$
zCcEyY?wC}3Vg5hk*Q+Kmw3OaCFR@De)3JLu8lD{GS$><rZS(FmRc9`<CL|diuc(zM
zx#nv9>5-C|_r9;<j4yNxb$3NOb<Q~P$ZYztEBiPO*eZSb#x`fVz%`$0tw}Goe%rB!
z<A7~m<Zb<ri+|5K7U9IJJNMY@b!_`*eo|uizGJC(RFICMQJA^c>a}|~4)Es9{3KL%
z;faIWNpok3j16mk>M`7TQ>@<E-}ue6O@i-Bl3d5`>mCPKS)RBuR9Vk`IccN#(R*3?
zlavfYZys53Tgm;C5<~f|nv=QfUQB#<Y^F)U^kuU*oakmKDP6f<_m<nG3-?!F2>Wlf
zWU@Hpj<cCn-u>mbL?pd`onI)O{HS{mhlBmwdo_vX3)^h(AKmnXJL!)SgYk=PBHbl7
zJX+e;?Of_}byw>i4u&}wQl!29&(_yxy3kxY@3`oyh1s$T_bJ!EvtwkKCj83v#KyB5
zUU04hjoqBhTp%?iFJs;oeWnZ3=Do<QC_6n#oH4`W^dpm&qf<|IGnjn*{CTl?vD%{l
zr=GYnyfXGo;**o~f3}+;;BuVylqZIa&Vkca^_c>WJJv5vV08ZdQI>7Nge4Z{=f&T4
zGd!8B6852L%CbE=-oKR?ELD!CN*>*zP$}4ut>U_7$`+}=7a2kn^mN`$RhZhMnHkUW
zfQi@JW^P|<h(Vf?KGTF#2TbjjoN1_>Hu)v@`Oi$xcdt{g6l_q561y2}mtS>c)0Dca
z%5ituK`o*~N}6JveXY|ikC@g?5NEVd)G4~U=HSL_TvH6!ziaq;ks-$T&g#B@_qb0!
zJFxHa1JQy*Uq4!&-@9t(H&+I~J^TOfF<qfod+AK<w{r#`*O>kP84<4v8aO+oboWTi
z;^j%Vw9m{nza-Dg&?2zGd%OSTgg;v=w&*hzxcpW!-&MOV^lPfJ@Zy3k?`Q4dII!;J
z^@uc%^1m6GA^$!{`M>}B?PWikLgxk#7JK{eCZ(Z&F02kds{Et)J0}B!OsDbLrLB`Z
zuiedvXGyp%a8^!dMZIwH>;Bs||GtZVIJU9>lM=)861U>@_wV1oT6e%^e~D!H-J~7M
zf9f&h7+h}6usT1r@3ZI%p(&fs|Nr^&lM;ip&SGbWPU}xwf9#kceI{i`iQ@Y6SLJyb
z&L}*Xc6sZQ);*X1R~6joZ_bEkc@R8jp2d%Xl}p!dcyTN<{><dM_4n52eU3lb%}^ut
z*Yu>4Rm$<qecY|Kw?O7DtMuK}v1i*B@8feGcNdsi*sZ_y!<8YSV!7=q`Tt){{+!)a
zbN=-qfBg^ZqpjQ{*cRx$?e=*Pq+<22UAUe*NG~joC82rG2_HS(Bb!4ae3sZtG0eDA
zsQzYkd)4RtT;2R{yBXeGJaS@9luzHx+w*t(GcYVzegFRbDGC}o`(E_3F@$~TY5uh!
z_(V6ufn9b%i<j*1jALO4Q&*GwEq`PuLl|h8AlfoQ(84^>dO|}30~0flJcwgq23=f8
z{4zrKqQpureaI5PfW)HQVg-<1=lq=fqGAO@1%2oIoYLI9Vg(Dz))AUR*AbQ`m4Fuu
zdgdmkr*aXwa`3ic7n7ri>%~`YJ~30YO9J0{CilKQawOZk((jo8-_ZlD^Y=V0lXA$s
z`<v0gcB-RqYCy2$l@K;ltjw)XH-6_%D0^M|Ui`qDm>zsekqyxHTM=34boM9*vLIFq
zAPP1=YMCXfeua1oraGPtlgiq5DWKTU3BL~@76eOPS!1y<?I@?IxH3-9!j*zU<7}63
zR@fX8EC^vUjm}(g)61EL{w6hGgC(!zEM1tU%}YanlNzwTsR5g(w#`~=LPC6#>hIA6
zg(p)Zr*qr^YaP><-1GVC*X6g*=hr`cT>pSO{>HC^>V7}+|DRU3W1Q5Tm<}pQ(MnoS
z(FH184GoP=K+<3~=>=_&yA#fG)|hJLtOc~3^-V0!RsdHAWUtr0bNgJ%^SNRl{@)6@
zy1jJw?UXl#$BaAOwiqY|HVB(3rwAH0Is5Ho&1>;~z$9?oV~#6V$`Z>53=0$IXk1X5
z5NISRb9-;$_wB1!Z52zu!1t(k-l-{n7yhYBzgu<h>%Q#&HK9SJr@QMT*S|jh>c*~z
zFM?g#YNr48o#tP@Gd}(2s#nJh{#QrV{oJfG-~VID|F|jtUzBxyVz2nEVqMrD<{ow8
z;lD3G%}%|4ZaFt8ZkopbmuG#a{6Bd)JaFHtf47g{6bUcCxz*%b?3DZGZz`@@_4S7P
zPsQlKuMhP?uHMv&zGRW|Gjtb!X!`4%uFIii?(Nk9{pTLJe}Ab}oi(TR=jqZtOY-e`
z;tN*3{QYsl!)A?thtGct{3o5?qJQD(^2mLw%Ir^ky4}C&&%e}Z>sP(B>S`}%W?<N#
z_{EihA&L^>*sEjb|DT_dyTHEt`J1+i6Sc<oQ-3PjcpYYs-1q9_)k%DvHg@&;vY$$(
zKb2p5sisa**Z%CM*ge-L^2fIvU-2q$fB&cL!Da6M&rjE1Tod~DOJte#pML+mMSt$*
z^?eGxS{_*^v57H1Hbwk(er%g~`PFc}Yk~i)Y`i|p*c;}R-Q2oGa`SoRbJsq~)*7Wb
zx7kGp-A@%i);xK#MtrFF>NmH3-0k+AQh%l1{#1Bq?0==x{L3Tjz8ahk|MTMCv7h~$
z-!9+1=dZ@;@HpvZuXXmfJk^zd^qJBSL4@Y7sA>AuybKI?;*+n2tT#WFcfxGLo5z-y
z74Ob?`nz;m{4$;ThLWzo-!DnZ<sV{v*}0DY(4UWI>t*;~*1hL={los>lbf+q>UZ8<
z7QBb6{m+}9rBnX@2;H;f?v%f0E4Q87cWsA-=lZKv?-R@HYo01qXT;=fdi(yl<*D$i
zd8g#0err~*>vR6|^wLW$Yr*`v>FzIcwsw6AHT`xoZcg9L+fUA3zO3>8$CLg=HKA9}
z`fvKPIvo-+R|{r7y<Gm~+hm>i(9h>L|IwSH6nm*;>eJO(=iXgV-Lv?4rub9-8Hc`K
zWMJ6xqMI7Tm#sSS-=r8AcI@BvbaMU2o&R54zsYvY{E_AJ-8%PqBkN}N&0haU<Lhi4
z`<S$!tD^SKe0q6tRgM31{zZQlhuR#Sy!y@h#h|=Xwe_~^&+~`ghF?9tKJV}!vs3Sv
z{op^b`>xE>-}|~heU{PB6z8){Sg)ME`p4`!=6=VM*F35JeJb^b!0M{x$+|C#Cfk1Z
zJ6<te|Ju#Cn%4*2Z?b&u-~8w8`OP(<x;JH|qW8=4d&U=BE}gdjbbnAq!t&Ssk2U*p
zZl<eO-Am1Hx4csqsv8_uS0m5M;LyE~gIa`l{OM1r>lqmuerK<Fdwl)>>Y3jz{&@LL
zYwo7_xh_9TJn!x}^(pqBVs`y|yXn2(7s+q_^K7n8eCYFf-7foA`^BHy*L>t(R1<pl
z?dI%E`}2YS%<lX<y*qcx`c-$Q{B68m9y?|KJ-@(xtHPYkTz7H**0kmhE!}rg@4dO-
zrq~-jH{X_RI<+l6bopw<Q}H>Q{ya?+e!BWq(cZpK;)(yF^V5E=T6MdA^3(XbDNmQb
z*13P&eXHO8c~8UZmAn3bc$%Mnd;PCtH|0~A-_^+-eV#6#c6<G;`28oA-MH)aQ?Eu*
z&-+intn%`kBER3fHSpi95g&TmtUB@T?t9D(2lg(~XJWWOF>y&B9(Xa!?mp*Aj*vfo
zy8MylZpG95>47!-enn2XA73x_boHuVdR_XzV{KeBW_}CYCw)C~-*49`>sLK|ay)R~
z{y$Mu{y%&9StCBQ^k<pKfByOZ&T8zRyG*0rsO`Jc)h&Mi4@fWm68(I2!SAiJH>s{|
zd-Kinb7<+VQ+#i-PJDW8P;Zo$zHpV_Va1n|F2$}}l^^rZ)hywAvrhe2ozvl0-(A+(
z|5v5!{C5AvHTx?Co~~Xs?aji#*{?PJ^%~x(3$^{5D008<*ZswR-s*2EFA4SaUw?@4
zVX;xoi4y03cXKRM<|fU2rcuvu-<_EX;RO!xOV>Bm+{|WRc<}GlviW~LU;n>Xr+8bV
z<(cram(5PUf4Aw+UEeA4exTC&>tn4`=YPjeiGNl*WxdrC7nfa$J?&p^PRNs3^rzyR
z!m04ky&vD|)PMV`@o(|!{nAhK%Wk#?hW`HGviv8r-r_IbT^rB4eTfx67x4N+l++>B
zwTIr?+x3?(d}e>{)9>lW&xT*EnftW-{Gqq$>)TdU=s&ytJh1Lo+U`50AH&Q3zEU~$
zeto>l&%3KX=!E!Q4-c&S|NLg)TzhW)C97U$Zd>y3Vx`$Z0lO*ZHg66Ky=zsYxNdX1
z&o1uJt4pir`Y|vZ$QP*<WM~kh9x?6X^#9587JvM_#dmqkx7|4oJC@|dq~4C-^fo-S
zH1hnrHpNr=pY2Y`Cvbk>Wu4GxCw-;&wZ{B+PNAjc_UGBoTo3&7_p1BNZ|3Qd`&PAG
z*17*T{`-&kU7FTjS5vn;pZ(~pwymW+X4jJ0I&q;}eIo7lggxFI_H$Cu&q>dAi{IqA
zozwMG&$_tySJ~<L-%i`@{`O5j&h_W2sJu;@yGp-Jcqt#}@{_r(#Q8^GTsr^KlIi?2
z7CnkRG5t!ry53v{hKBnZzmymlbg4rmU*}){zdG_+M$Pt~pK}uTaeKerWB=~k>RkmM
z=4%$$$Uo!1DF4^L^@m37zo0)?e}1$%6&|X4x$yJv=g05Xg}$A4)LALE&i#D(!-ksm
z!5=&M<fT?J`+Z?_R=WK4V*8oxku}o#nfLCc{ERJI>-X@Rc1@$4Qq8(Pe!WYQ)6A!7
z+%JvY_E+_GUFg@<zEk|~+ihgdIxMj7LEE1|8L!!G=fxQrGA>e&klcOs<m><Mes6H(
zTU~Oh@>Xl`nZTOJO@A0KY3@qw`BYmM(yzDIVAZa~xx5nR4*!XqwtiLJ<fpqI?)dpK
zb=v;<(`skT@0-28#`Ck;ow^-Me(If;H#j=UHhj9~ou{j2ZGL`l&*^Vf=caFYb9lSw
z4(?cSyYH83)=Br-yWV&G`S6R;sqZgWFI*+PxjgCDxnBP-jK6X`ueO>l=<m-eO*HOQ
zXJB|>-bu}>=xQybV32zK=JopjyQ7!oF#n$Za*DH6%FWcDd8K#WhU@OWo#QaSw(oZD
z^PAuJFYre0yMHA3%WEC`xU`>nXFkO@eEAmn&3*nO?i+Qx#6O#zxu5#8rYp66>eJ;p
z)2G+|nJ{yCf%vjFM|6v8-Y%_<JuP!=dd~0T=DGQcYW8={pZs^m-VM79tJkg5lXLyK
z>ecyrb?FV2)@Sz5e!4o#;`FE8>F)Rbeb%XO_`+IsLgePtSHCkTY~3Q-a$wf6SLXA7
z_otpRGido)t#SA1s&)33??nDuoesbHDsh^;{$b8GgZQgYo%?e4S-$(W{I$;hH~pLY
zuAjMWP+$H=bK2j~Y4aZ~HhI5kZ^XCV8uq!Hh3Dq&U-j&6uG!H|DL-Q?5<_%vE61;M
z{`1pyyWHX$`@Fi+7p8}QncV)Tb~^m(2Fw0Wk1KzysDGTF{&N+7`G1pB{<|$tt$+68
z>W4RGyJgQEdvj>VjTG@?k3Z{ya+E#q=lW?+f7_q<6zacjQ#<vOe)f((cj|qv-(>q$
zYm;s+W4_-f@*l&?K&f+mv)8Y(lex71v1ZWAPLKXqGSB#DB<(u+>2vHf`vW!7&o*0^
z+&j8^gU|7~N%vZJ$C$n^kF1*=EAiRvPV4L(+fdW}r@mF)Oxu3DXmjtUP}BNp_X|6(
zUf(x~Px5}<jHmwk^`$RN?;5!M{MvlK>r-fGdi?26;`O$t`TIB5Tn!Ijt?^%@JN)f_
zalRE+o%+|${F?9bQ9az->afXv>8I`g$`8Fgem33yeBiz3RB61THGzAs^3MO=UpF~d
z;cR&5{&S!9Z#lHT<aEiMx7R<GKV$$U_@}{lQhvVtwc{sq+nMcwH8VFY-u0$DaNnwF
zsePY5$CimrtCWAbI*V)hjPjd-bH9Jwy8TXydQ#m~U&H$;>UlShxtH$bUB9%ZD+H86
zb}e~lQezr2chA?W8uoTS?&dU^|MwI5fAMYkrnljD-)zc$ng8{_;p~Lp>XG|i1%7YN
zIpF*2McvG&tFw0Sd`^$7`@dJi?yP*u?e$fKvu(eZ6@OcCzx^k3+m9M5SB)EYJ^cK?
zaAxj;_~XUjX6x*Kv-!^lN0Itnr_JI+`@=p?IP-4z#|c06PWxYvth<@^lX;oP=a+in
zS8HY;-F|b@v)FA*DyxN`uFl%E_td9{BA-Jm#8y3<{YETm+e2Af-N=1eGoR_q*UOy#
z^zzq`(Ct!-YyKaLoMzuUKk4yp{>6We#{cy*JNR__rkbbxy^7Xe`~TGa3B9-f%%{-M
zsl1g%U%xN@1IaMH_s@UI<h58}wr0QV(fTj1?rPZU-*kSq-Jjp$qI#fJ?4|D8Z{CK5
zuHSYu`!2Q9PRZ$i_y0#pzo@sDg^V10ejPjIzHjgp`vW)9ZL3Xr0{{IztrH)*^?%%q
zddX+=(|@j-wGPxbOZu;LI{a*TIJjkGa5wEXq&=JUOJ{acUE$=X@ps*Ru3A;u*Y0xY
z_S#ih7VqK@#qRoBWBd1|*6fEDE2r7-?)enD)vA8RQ+@eV;TW59pF&MrsyCi0dwBAl
zy!+4Nv+KpdP14q{DZl#{{kdBw|8(`L_q!H9YyZ<X?@;?0yEDsg+b4)$68?BG^xKO1
zx?*uq2Vt^pN)7eu9dK{T+g@KwnStTI|Kt93|L?v2|8BRQ)c*O;OHS?n>pSJXU+|Q8
ze&;Fkr>mZlH&C(llHb?S|0?ZId*Hv1H_vb4{3W0AbJZ=|)1SP{7G>``_bI+X)w(dY
zVz+G4iDfVJ{VqvP)7%&Hes<nmTa#U1E3VXpeqFv=!+y@Z^q*fdr>tM~YIAnxz5K<0
zK7Fxw|G7%)UX8tU!N2p1ems79KkatBS>(P|Vf7M6=kGr;uX_Hy6#YBQb9!z*oqMfk
zmDI1_Uk_gU!D_S1`T0-hXBTfqPT3#-oPnX?w_7|5!va@IiKX$=o}P|lW?=Y!{l}ko
z@2*SkpS`T)MBTjpS@ZkvH~e1L{V92VZC|xfU*Nt~W`_ly+TYnP{B-}%2YWT*L$B7F
zpVq&vV}E>l-u^e26lYrQ`L^o^^S`_p_n%K4%R-)O+Pegowd*C?-K`6~Izje^-kIgM
z-?xWu`@5>HROp#`WL>e;)74oK^HYOcu4m2tUpH<2s>vUAmV8~mxn{oX)hOFDkZR|c
zRm~N7h1#{t-@jnCTj~}6I@7Lp`SPEuZne38y&5~M{<BHli6!b(9ZvWR@4x)JTL1Ir
z>;M1Wl-0k{TyA-KeVg8?@3GVD9d<40J}dClKYTT4nCNxsl>0n4C!IU|HvDS%`AvH(
zLhhecyHPjk>FTWSnKSCej!w^=asU0In$WYmZ|8Jnp88b$hb3ZJj)#@&E^hXSX>V3u
zDZOcK{5MPZ>FQPSb7e}qz(KRhx>8+wLzVIA{Cj6Vg_?reKRu89m)m!IsxK72Z&&_1
z$K#ja`8vM)J3{5-<K2Iji1V$G%*>TIwBE1$@<n@#+dbdky}t7$YFD{61JydjkPhDY
z&#)ndKkN7JsQi2XcV^!)|H|7kyL9$TZsvD9u6TO>nnSEly=P6Y4nOt%vBXpU8?Ezw
zf~Wk?_&QhP|G%T>7uSSdea9YI_uEtC{k3}4)9>Tmey)1;e0R=)649g6@8)j%yQ=b5
zYOv359sBg3t5$tD{~-0`yz09KE<fu^g+RfSyQpS+-3;FiT%SX?R%xG}zi0N-cK%H@
zS0}H2Y!{VZep{n{@9B4~tEzUMU3R1G{MF2J>)x)q)$Y8mJhE>3_crFXJN7pNtzy&p
zXF9h`Z+pL(YK{7r(^G$Ly3W9G;IC=jr=st__W#zCwtt>mEV0S*SY6+z*`ePSzPxMq
zZ^GA{+V@`H>}-TT|NmdFUi0Io^~(wQb`|>47i!H<zdyg}PXVZw-3RK(2JVsGe)HSv
zHqDqzCBjFiXU@;vpB1^O-R*iRe`B7+;+nPhPkjnCZM%N#N7}Ub)}O1Q>a9<g-+cS+
ziB_G4t=;*1YW2TtcJEnVzB^vF>g?&<n%^<4&UxR1r`-4Z7<kwJ=G)EO%Pk(fHJ16g
z`occ$)&6;+X7df=oNwLxWJ&F@sM9~P`{JLe%3VtRX?eEYd)D*{@nx2$@4wy5xLWbf
z^Huv!x2<W{JoUa^@l^O#5xE<G=g2Ls@boW_{CBZn8gIm=#lKuV@;_Ee`y0-YEA7&=
zUll7JFFmtv?$hJuk2H^&AO4d%E&gxfwDna*Q}159T=V7jL;Ke4U&>BRD-nNoxjo{k
z{(`q6`yPBMFZtDUd#U%S`#X<sliV!+Li|IY-`e&ckN1~&+7T{LpHBb%Nc_WY4{r<i
zS@RFgpY8QI{(#8u56{=|%}5gecjOx5e(h;|p7rYsPfee4OD{i_dDoZgeEdIV9w_mc
zW&gna&?Uv=e`PnVdTf7U+J{@S56Ayo^QYb5vgWh?O*L1KPOQK3iQy&xiKXFjzZy?X
z_<t;J7xz#8|3@D!F8QM>8~uyP_JO*}WwptEg$|QFr+?YcP*5qe7c@bGHh%+}5&_NG
zm>C;cfTTfe3(LVYQ4X3~haR|NX#kzTA#0+1ZgojW>a6wmmuRi*V#%1$!0E)K!g}LY
zu69X8?)i<oOPB2y6*%M@^5RtCwCrW!>+LQte|~1g<+T-=B}N_F7F<wT^qBRH<Ic`I
z3puu5=wdm_t+<fOiNSM6TX&1cT>DiXS^vL1T{}1A>b=mfcK^@3x?i<F|NY;(`G@_k
zu1gp8jSGCJRusNwhL6iU*KQjZlQ`wzD^nf9+De^F9Nx!=e3h)S56`zfbkim8ZkOWh
zhEhF=-y1&G%yW(8%!@1vl3KGbz%it7p;d&J<UfZ4^BtE~n;N;^H9E0sgI`Az<AvW>
zSJ^qg7k|Ch-6H$ZwOq~=(}?dZJ+b*V^X(_(mI_a9JaceLxN%EHhOb=ZiC7U1k)0lM
zQ=P8`FJGrCyl4Ucm-QESEO*Y{CABut<n^^?>1duv<?@~dSABiBxcXR|zYF>DvGt1z
z=<>0N3ybDlJt0zB-<BhLjWh6qY}NmXtIl8et+n?nNBZv_rPXqq_9xzDk=T8+V&756
z=~sPy__&t+nb5JK#EVhT@_28tP~bkdWh;surmbHkyojO7KI&@vi@z>=zrJ{}%kZ<P
z&(5i<PxmBOvp5R)JmjejnljnZWy(Zn7njJn=UX&h_{@L2C68@p^juDx?zt{crK3)D
z&gpKh<DYn3KIV;rR(|K1Z!F^0%9|$z#6~~MkbkYBmA^CNYpN<MzvagBb*b~SO*fse
zntw22fBT8ef}4`k?nW(>IRE_q(o-!O9DR$|Ok<6X-joq@K|I1`i^c=)zGZ8st(|yN
zF1{cp#mqS5`n29GdF#GSQQN|zY9l=l&MCa{ykXP%QmM$4yRRqo9^B<?P{wwqoL|nI
z;dsHJ!uvsUyAKHedmQ?D{=bOyCbP~Ld)KVr+VWmvuT*(YT(7m;`eU+-!{13*A9MD5
zvpN3e^Qc~*%Hu2S!zz!zxVj_xOV%Ajy9Ar~+h9e$kDvTI^fp4x#WDSt%<@v>6EUxR
z1XvCh$xNv)KPRXp^{rg}yr88U-#TuguaYaziImQqU^@5su7%s@?DKf?WA~xMj*GJY
zpQ~irY~p&6`9<wV#?oakK6hNUdM$Wv-Q^Q8l{2SztcdPEeP1Z`N$E}x!N_j6Wh+i+
zT$GhQ^(4PJqvNu0n8i2cGnXb-FJS-4S#ii~19NaQ@72?tVIk%$%LDu_Jm=n(`6}*A
zOu%;4kn7VzxAtG1rGMjtT-wVMOfL?)ytq31*I(|`Y?DnVcB!3t@>4x}!p?pv_IlSZ
zOP5dlcG0|X(V_#YLFu{^=3ZHO`Rpe{Z}+T)>~$|f<*r{&+jf3J?8aY{Se2CAoqhlF
z%V#gujoq|ttzuMY(T{_|R|@uc%+-8VRypP78{S)`xi^o!oUl~6{&(2TX5|a3o%dgT
z8?TXF>z8hOC~`r-RL&*^jwXeYc_&?-RQg?45j;1q?aa{|3SvcU-SN@ITdx^S*t|4h
z{k+sQ(#AVWU*}((%H`FxbjrhcCb#y)jLHm#&xe&0nkCrGI;_qme3TE1-!A%wq1bKd
z#-qv+ch5waPm}K18{inCXuo1B>&z#L<rg^(tazMGH_M;luRX|S$dMz!eo^3IkfhF~
z33X~cvU*ZJmA_~1QajPL@tyQ){YV9+Mair#-L)TV)9vcM-(<Nzu`hLBeD2eI@pF^E
zmPQ}c{!shL>)q}@VaIlDY>nP77#6?D!NrBu<%vw@CANcUsWGvckJeqVOIUwpo5+i+
z1-&|(`eL`=VTqfoz|k~S<${!An84wE7N$nuwrgB^uHta{lfm@^e*|LQsO%Eo6glT$
zl4#n?6As6A1s;vC`4hT}Z9>4eX;#8-8kQ9%tzXuvr1aS_?5LzpSn{;KJv_D&oO`R>
z_t!6c!yC)&p^<&ar!Fm%JA^;C+f>QW<u>!nVy*`(UWN%&{7?z4*H1s$eNg*%{fD>p
zHD0EFf3Gxly}L7dYUERyx4X8zxsg0!DPtdd-JQ$wOB5fs&&^(RrvAsz39ieh+TOSy
zdvo=J$-Dk?r(R!kDYC!d+H0Sy!p~P;s;#?ceNg-L=e~dU4~Kns;F#=??J_IU@yxfQ
zC$DBkm|t4Eyh(vW%7SZF=bZApTmEwe9*ihw7MyzT;tiiCGS$xNn-<2z?l;*n{iMRO
z@Z;wVZA%SnuSJ+2>^mVGR+!B2?LlvaePZd{tJ8Hdgy%R}9t=OIV#xVcDEgq2p>&V%
z<O5C{1<#7)Z3wl={#vTuAirSlV+{#wEz9Ur>flh5N)cYWFU4`P&n@@+EbCaaU1Vpe
zur<UkV(bwvO_-zM!hKYA>OrNinU2El&5_Yv?JHliMy>@}_UOj;wv4L_HhWDz61By<
zq*z;5<g#S5Yx6!vl_|1+Z@kj(w@;5=$UghPv`<Fq-jP3dEUZnvdcgQp4#=q-O$r=N
zU5iqCCGr#AL>SKO@H!)<BNv*w(qHXc|K_E8PTUN7_NqVjiQ*!oY`u^N7q+;)F*PU)
zVfWTdmP`qqb1=y|Ez=?X&Hc$2njc<ReRYm*>c(}9DpO3OYEL$)&Ab??u}SfD=Cy=E
zk<BItT5C1i<aiq5Op9#ap86WOLH(0i*N%(Kzs(iz<uCqm=#{rv$%RdBPm0s{+asHg
z8iY<`o3V9i&$Cx*MxRe^mTyv6V(eF})+v#a`PsR5$G4E|yDZY5rcKUxH7hx|b56eL
zTTMl+o0q>#YtDGJ@kCDa<>+%KauQao(=Fc8Un=Bldu_p-^PQjH&b-^(ai_8}PwCaP
z>z5NtrIQ-9*Dr5AanV@6CbxD2`*-c?3t#5!(mxgVHY}A}%3jjN<i+G;tbU75YWMqu
zrD$Gs`~6ty#_qS->n5`v4-7laWZ>E3w)=?OhJZ6HkB?|<2nbm;^AP8@uAf@XuAe?j
zM3{eDG<UIFkL=Vrx=a0XG|QfRzq9LYgU*}38%}+jc<TOa&-Fpl#;>>C@C@0v@aXD-
ze#?$i(Mp?b!|x_PT%&Ty{aL8>c|EP?#gA(Kd4*2<<J0hZFMqW`=*{K_+^_a&REKuY
zOkj5_e!VTW`0kW?SM@^-ixM|@)E${N$?e20&ZfBq8B*$>PD^ZVUwmfCL8aFn4{OfF
zzuCTlbK~OTZBr&$Ejw3u?9yuCLkFZPca&~^!>PT(oAst&_>OHK4eJkOt+_f~LqPE9
zA*r7`OD~)Gy*YY@wKV#GQ{YiaoqNeVVk<wSJpTURme_-@`<QKKaO|xL24(E&VeyL`
zTuPYNT>L%fshY7Bw<~vw`dKNRPcwJDUi&VF$Aa;?*n!t;TjhQ%46lsw*N?32WD>ln
z8L_zLT+!nTCVn#dm(0sje50MWaPx?5wroCn?By}G?n6_<wy*naa(HX#(?ehF4&Dgj
z`#Wvp(wb>p=GRW1w~Sc)E8h5Z+E-3)P-0#_)5m4rbDkbq(LAN^m(_U1xGkHHdau&?
zxl?f6_7<yb?@BY?Tusjd0!i0$rP2-to%*29IQfXd7H^Y=)<=Q{emu<FuCnPHB37K5
zH2?U6D)VH1JGNwZ)pYMnKj&yKp%2x0clWjEOtyKVXT_-2>6kJ7Lv!mQeF=58#@0s)
zvovGY98_Xu5O$Z}QvAg<+xzDHwrx{V8ltyXozbb1c3rCFU026{{kPYf`)-Oi8tb23
zd)uI;tn~au##xbzX{j-HD@vz*DQSIODsWl*+BBn>shnmC(~lG>b9_^7+{Rzb#$C4N
zuHkL*pY>Io2L)gMee>kimHp1z>P6>3jjQiYX5P!!=|-p8#8>Wxv{qO){VR-YnDOY)
zYmLV2!}s^C+wiOBa`X1Y^_B_ir_PAo9+md~*VePF)uy>@f;0IyX`O4?aI0e9w5e>#
z%-tPgx{W!zu4W$%Zn<tKzb;oL=6!M4{KBdaEN`|3Zn%E$Na^gOYi=8zE1KN7JVBk=
zW7Q4)pr=+rtuAluQ|B(*$$)6GgvLg1J5{moQ&scEQ`T<zLiY@-7H?j9LN?i{V)n*6
zQ$X%m|MA|}V5eO9Uy<!+l*^9i#6P**-}0d2Yh77UY2i*DM**b*5ffp{_q$dKZ{u2<
zqY++yTQhCn?%f8@CN4;|?ViSyRJC;5QjSi=bJJ$$Y`Jse8K?G&-(80Nf0i#@Eh5V7
zW1pz1!uE7u6z}hR#dWu3BDVAU*e8lYis>VUoV~)}V)~58<O3}mCK@Z&EXZcyOusGp
z`GkAedXe+|A8z#>`WlwR-*RNZo$T8Q|4kq73O&5*r^V^BQ74Qt<!gm^i22BrX3UXb
z5bI(y2)@$Dxp0E9qDk?x372~+pRBm5ee`nE^=k)i2DKbX$XT`W_?nAro-VUb>8s7|
z2;;R{ZBn?#wb;>o`=vC4xrPxYFQgruB42;5Vw+HK?Ra{Q+|9Il(}y?1ES~!&cvnj1
zYC0tayjy*ldCKqiig&U@H{=yto<6&4xq>i@qd?0N_tP;3_YT~+XxMyo@v+a9&x)T-
ztZ&z`zF2GIuNKFi?p=B0(q&)ifBf68pILWX`%cZRXH9$Aj`h7t&`i~7Uejf)m}5Tg
z{QlDkZ(6w)b(K!|du@@bkz@RxKJ|yU+75r+m-tn3Is4|s^}OwSzwxZQEiZBUEZ@1J
z$2x0ley8#UPEXyL{_Aat>@9!Qo71`Y;~I5VyGFXdUa9gssJd)v?V4*fQ`7r1Qzn+i
zTYWuVH`Dpb(f_?hr?*zEt<bZby4%#_+|=JIk5tZ#v-<q5a1rywn^UKs+f!|%WS#L<
zayiS-?dI#3Ox$T1d+lxUzhLICb3ebGV0}Km=Y-UC?eDj~%1ge#tH0a%8viT3`wYpO
z6YO^H>3y`~;Ee}+T_)E~_}hH7Tl2=0`G(cyAIqLe_EZ<<NPgyF`)|hOTkL3;{;gn!
zX~YU&j#Ik~=LDwAa8u*RTK9O3$>OBkojcoCdml;VZo1(3+HJYf+WYJpukPHbX<E=8
z`c3Mt&Yy2($-+**Z{J>Qq8RhUhhyq4wh0B_M3dztMK`Mo2Jzm|e?D{XxAYTrt)<@&
z-VnDqeYWgO(_@X*sf;rO+!mK6^Un}SYvN24nIWKMDSW6Vmf6GNw|0u(ira}_gSg6A
zzh8|?Tc6wfM&(*9Pjc;?r)lgdiSOIz>c}OX6tL=^`z@1g>s`YtUSE#4<vsUa_;85t
zmHI!c%JiK?>Fa%$<h9FtniMz0pEIuJeJ`;*>y9Bv=IgV=)^7PfwpgXyeG&5P5yCUg
zJ_0Q}9$hdIKXR{SLaQ3f3hBSG$3%?Y_?3b}<F{V&(w)}Vrb+wD2CMr=aB8;6&fjp!
zMEuQBp0(1^2dV;&&J?(J`GnHzY0^Dw<NUTfl0A_YwRc97?@r%x{?^T`6MP$XeJ^-p
zGb5kr&E@Zwr+w2(%$T?2%`wS#I+6bBSJCIEj$#|C3|VIv&AdIia)NBbE-9I6foGo&
z+ns%`W6tMWeDI@EZL<5dEv7EJ540G}Hdf4;lV@>%)uYEfnoG*dQ^P*4y}DZS#^mh%
zhWB=_W}6q7_Ig2{bYJbPjd!m6pSAH$#9bjr0T#y>CX+i)e3nUfs<^d;Gf^?!siJeU
zu1>-l9?uWw#1$2No_@Ra`%Ij6^BR`d7mAFpRqQ*dy)02oXDQErAp=Do=VC|Z8$5D}
zJ{+ZUI1?AHV^o<_dt!$Bkt5nI6+O4Jt!M7t#=A*>L!NBU*TQMD^%YO6@bB#QW9f=9
znei#BO@Mdp$;FOO^tfEo{@HwTNvm}(&Aqwc+eWz}aaKO9=btBdTgLl_Kdo_2*mv-Y
z?1@ba_3pnqDw=c1^RBJPxvIiy-c5Bgp1RtbO}Uz^mcLkF((LCu_m<7Onax=t?aC-<
z>3-~1OTe+Kz0aS`J~Gq&(XJw=PakUY*55t<W~)m?9*bj#^|lSlB`0i@I9!(X8X9iD
zW3kgJx0rF?-q=)&9iYZMXX4b4HBY~?B~Q)I*Y}^beLHt2<G0g!Y44}yC+e81T1?w~
z=StBu>D=OjalW%1U7mr9i#2BR)~7B#c;kT5B3EyP*?C`Yag{NCJAM1iz1*MqC)^zG
z&bBBMJ7X^N?IonD$T3fLGMT9$a5MYA=4+F)tQGKn>#A3`HiaJhJoUPCPv||vs;7N{
z0Sv!W%{P~y-fl2$wvf!}$h@qp#{=Z1=Onqmm{92=(BUJUoRqh-u&8wIeiui9o<eXH
z(Y2K`5v_g@&N=$s-=O;Ka^GXsy5GPx#0lXrr=rO`{t>Lp1N=UO8YucWB_9eiP&~sX
zd`QJWG3SX7hy05u$wN2Gj@f*gc(q&mM$3JJV>4b^fwJQo$=9nA*Yt0`v!+#NGN>n-
zeXu2<{a6cQf>Q>Au#@Zz0WM2nC*yQ3%d<1w`=a*lX!3n=QZi#!gm$mdYFObfS=sAi
z`PY~)PUY0=+J_HBPwDJ=R-qjDasLJGtuBx2DmOe5+F2L==i%>(H#bi|`8B`w)S5>@
z)nb1(TLoV!y}!=dY|7nxE3CJDIQ+en&2Q<?uP){HDqma`JN57Qzt?6Fdv7_#yeQn4
zTl?E~Mcn5){%v|m-=gksJyxCjCFAeLR{4GYCNIiQ<=pdIG{-6EuleO^bM0GZg8I2j
zl=kxIaLrO{F`Bz;+nd10KW#o+em=3k_?cj(b9z_P@6<(ZVmr;B8CGBaY_t8kLGatH
zHw+FPSQH?uv$Q95LTI5{%iCk0f0j#vJGC46HXYyKC&H@9^=^9enYidvZ({$mPvC9e
zm0s{hKEdv?|M!*i#P}LP1;H1SY$uCTS4;~&n>vLpStT4aiAVTYpOQH5vb>mB<rLR|
z=La{o8pOZ95p#3xw|eQL7HeJ$&-NC7!}f0a-7|5wWxsC^Ea^VmnyP-FWx*Qh!;-FT
zh0g>98<%M8cy=dl_KC<$x6)fh${bFg1mbVEUwhAd=BD%(BSqJjQ%aTXB6;+<&azhf
z%o5NmQfu*w)poY{-L=vDPJ3jJUhD=*)gAl=>vNxcyH%OC{^9N0^+(@sjX(PARMjHG
zMD*etq!Uzp{}wrZ%KC2bWT89K$qD;)5_$|9x1Nc+&34ms&2NcgcIn@wO6*RmZ<>D7
znMZ*s(0#4+$CFmRY_qt(%`j1n`I7bL^_#0ZlCP|Vy29p{LWDo(JLaphi>Kerem-+=
zTX|3L&b?xbt=$$?+_sB}k<HG(aH>UQY4Ek)A1O@=H#pzEFWUURe=DaVw=YM4`LEqQ
znkhHt_EfsKC}?u6v)q3D-Ko?yCgtU~iju|N{y)Wa?0(4~jk~`b4t_6>Rm#tNSh{=V
z@BJdKDc|ocJCpbGk<3|{;9q;MPO;BFa)186u2cUiPM<e-O;OfcwfV%Z`WLIL+CJ?l
z7uDXpzTYwS+R{F~#S<K49Hsso=y?Bjw@>+f(?!?oUK#yVSN5CRapIiGL5@51&EGTL
zpIjZe{^7Ce>((h9M!zLq<;@IA*mM2P+G$(*juol3d@otcv(U$GkB4wkp?nS3Z&lH)
zo^11<%x*GPd}4g8<#lq2T+`W~(~Q&SZ2HCX_Vm{)|5k5*x-kBb?tXKl>Ja7bHPtr{
zO%@mOV0+hGxFNnOvZe_<jB|wFKuzb#87}>mMvA%x5>jS&Tt5BQjjd{ET-dj<A|_(R
zsg^AZtY=xY9kknV`jv4Hv*E9vjoK0te2a1qva+?U)6#C9AeOSIGg;wHvxKK<kYM@q
z`)-O$SYt07X}s1ud##<bG;>*t(YZwiadSB{8MAK)usCj*axOyT$>gObP4}gn#Fq9P
zWxjWB-8$}wT2`l|f(Ldpn183vxSF03f6PdX|9)1iwzEcb(pOQA&V}6Xn*9^^`)vQk
z^Vng{JTWyT!!nL%6ZR(d1s!|DSl;t$SHsrl`YK%P@0fQchfG-b!(K|GS5_~0X3ejO
zZXc?h1y~M>1nxWh@Y??H*#ayJnR_1dNWb(}wox^`@Jd){l1SwtFL`+h>vvmzwX~=#
zWsiziYvMeX{Z;Z<qlW!Sd6s2u#vg696;pRMZR=-FV6e;s%ly}SeJ%Bt)S^(;c6l2|
zUemw!HQrC!o!T>W_wH(!gO0QH-U;vDI%z-iK4(y!EAXc2(3J~!Uu_ngG=*nNZ4WcE
zht%vx7akd21UX}hjLE?ouCf{JYwZqO2s};ix#`v2Zf(9VU3H00ABVLM!&`%QiyRiT
zUro<Y_3A!;evO^1qUT9BVIS2SiE<l$@#wlHW_7&ePirx8PW*j>ow*}N*HPe6+q9LA
z0#*#!O`h>~jLGdalk`h^a<=TVIKVRb*!(B;Ovn1>N7XtxO}fOqR{whg=QF$2=MDH=
zeo8<6l)wA!;%m3h2j*%2%(H&Is`q^)XPM&V@2<x#%-{Mi<=4AEd;2d=Hm|EYzS!=$
zTWZ-CcEOv!q^I8WU#Ic<p6#TMl@s*d+g2^@T=DY2_3G~~?^dTRDh-R@q@W_TVauCK
zrrTRK%SK(B-jSn~mice{3<ZI@sE3zM+?hBtTKV#-;FKl>j=9RG?oa2;^tzaNX<Kp3
z*)}7w{>1WE{d*Jti!OSTue;a5al@R*UGI-^rB9zxo{`&{qjYU*RBdNdf+2tVTbbYk
z=PpiLd;Nsc>wB$l>NmVQ9u}X(G-3HM7Uin;w=%y$vZ7fj6HE6ht`5A)=`_punD3Ky
z5q0`o_b1m@x~6>F<|Y>Tog+nW&FRgrF0p`PujNL;*Es#0=M|}&th%>U_{>{8G4rZx
zTGNDUF<Xmcw(isEG$>;^c;n&u1(zPgn{GO>>%771tgotS3_p7U4GwXZ^{r!r7UUBa
z8ZMLXJG=3h5bMFL2fJUy{<`nqzDaf$h}>>?dfP89)`MAx%KBDco9@Z_O6Ss}Km$kR
z%d5K2fO<A2>R+tyoH^6+U+}fgpWh<sFX}bxZXZfp5-R@dW4Cfz|0?Zsk#Y^<Nj|^d
ztDf$hlYj8N*6EMtQzk3SZZB0eC|mil=Be&;&{*=*38Ke$vv->x`^Vu_wOK<TGbJ-?
zb7qTi`jW(Cnbcf{*KTJmHstM*3XqDMrgtcrW$N({pf1a4#o6-j<yhwT{}r_Au9-An
zDdX>k`|l#x2<~hY5TDY<y9Ye@4r*b;hU%{(Y&`n4@1k~jkCTl-=8X-mV%bxU7aV;o
z(4=rf`sWSfnVP#6Z@$L6`DVYrVd?%esn5E9W-s1f&(yETVfdu}@MW)`KSD0YRb0yC
zN&d*OFE8igi$B6)`A7C}o?qPuQle*2c&GnbuV}*E8LZcOPiDNa;1T0DzhQUnwX}oN
z&8!nK0p(iHe1GuH>;5~z|I_4|F$RTK7L+d5k1&@yuq&|rSf6sj#~m!&`qOHeJv6Mj
zBe}20c2x>jJ=%GL|L1O<nJ;VaHmk2#xa@y>|JF;>^dc``6I!cfDKqiwnYr84jAsAS
z&3!p(>6t^x&NuTx!K-cj<+xo%lT_BHZLj*y&f3<N@%Lne`N9v8Hf^Bx1xJ%W<E3SW
z6OD63oXr?t#~6G|Joo6MS@O3EmQ5Bl={(2(2EXZ7SYqyV*lqH(PGzHLrbymvwv5Tw
zrO!X-e{<cmp=Fcr1Y5!PaxBk}{^OYIYM1PjcVJhe8sC<@F9rr>Pp<MPYPGEiT)s}%
zI>YAvg~t;rAKhzyf8-yBlh@_d@%!Uk`kLzgu2bB#EPg)|dx~(M%uk*9FM5^T?<t(R
zU-;xi#TmQqGieUn7+;@Ccw_bW=RJ#}0OjsA(fl`O+%SJR@7J%pwH^P0;{S^;vfF*X
z_pe~f6gC}6VaeHUcIh_?TrwYJoX&gt>eP&%ZJD6F>?9@l>#fI$h!uZqJvEB6Qld&X
zp59V-d(n#G;?JB-dsn2ck+#znc2C(Bn0q(iie<qYk;gx8-MhE0`i^W*<&(PA)mj{0
zuOwa{L!Ky-vSupaQJ49y3yQ7kxrY5R+jlJwQ<(omowv-W?8eD&iX3wnP1~6FV~dZ>
z#G7tgOPvFk?@F#YP_b{DwcFjt?-I@^7aiBQ!E<ieL!TW-4<Eg{bLUSMM}egNKl{#H
zo3SPD$#g?8e)pN4x81)9F3ZbcKcn1~pnhOZ;L!;4Z;}$$O~<)9=C!}ck1%IEmS;9E
zzwpB((1>qt>zXsKrg1e1ndGcVTqEr}V`1rG_T=n>ecPvs^|!TVZEpW0@w${(Vd0zD
z6Jk+!gS994e|pO!Wft+8EiL1&#nIlit!vE7dz_xdR5^zwm-?@D_@}qoG~rxE?YSGf
z1U0TeM+HwWK9jbtd6(?YQyXW`H=L6ndh%htiCOEHcgxPq`*ZEpJgz2C8e1ZA-soEI
z%qX?K6L0#nUbihgnjF~qu|{;gM9)`&i%%@)RH`iG-NN~4K_t`6dR^AjP50;S-~a#r
znPvBVEJXgCKW}{Rd_bBizgvp)bX(VYncD^jeit5V<Kem|DD!RC{`Zr<y{V8dUAE$P
zVYg9r_Oeayu9+v~e6~IHGh^|m9o6{<lfUeLH#_^=yv6bY7xPZ-{dmXpIA3Df!MpQn
z-v_S_cl5~RJDmP-Y7g)3hr-W_zg*8r_#nm-{gJC?{q9MXo1HgI{pnZH&3n&Hkz*Uv
zS;?PLGY?HNj8X1hBYiT`X3HAsz#Dd7HhU(06ku@_=;4v}>pe54RQcn~lc&X7EQ}{?
z%nLCT<F6M@zI$N%_SLV{9L@M&dnLRHdi?WL^b_54O?xXObtIJ!&iUB4&R2QP-h&b5
zvkaVHA7hh<ZvMQN>v-&`8SdLo*{206_;W|QY>5xKb@GN{{5r00=?ckrS9~(M)~j`F
zS7Uk4s$HHF&K}++B(eKSh273%kvAO^6A!PPICFEJik)%g&n5+qj}CS5(;P0$Df}ao
ze7C@`tZ#STtA<i#uG{T(%M#@TS*#WPBRHM*OkCc2S>&gRedCqc24yjeYOlOVd{yNb
z)?8Yfn8SP~y#2T>)A1cgX1TM-{oJk7m?O2uBz@1GgBKnJUao)o_}I1H#`GySqt?8h
zxmw2hZ}hQ8AElGK-KT3C8-NDGSR4hE0%z&PrLB?HJ7e+sSa;9S#YuX}cV}c6n5Eop
z$YCl!$G`fSaLW#qiSoMm1M>xE@-F77S5T_9iMc+__NJYgz=!k;1y5@lub%qpmAJ2q
zyBk!`sWorBdNAlz1gwO5T;s$(;k?9RwPv>9xU&L_7MfN*Q7pfBy-_JVCCugBA_tc+
zk#*UpyKWz6V{+A#S};fd!iqWPnLqQceYt94=GCpKHz$03a7@hkT1RP<K>UN>x6aRe
z-*Wu%_g%sdcHgV{@$b9xv$K3<71FH=M<kaDCYPMak$RY85^g?mrv7~Ew!?3J-d%MH
zR8yuLOFG=<_RQx;;ZuHN#dS|4Z|H-jyw4ZsJI&`xjyIT>U$_BOK=2&Xx_>Wj-N$cb
zyq`TziyX7rbnR8BK+tR(=HExJP1BKj-khU<?dsthUXOn^?Xx<z>!Vdl@`gO&p1F*l
z?=~OjJzzMe;ErV2dZ!?z`A=pa^Sj2ov6f?{>%7Lli;k`?JYF#$G*kV!FEHP3Pjblh
zpFGF35JSROWA$Xh-$}IoNZOd_tX!=2XUEN7Zv|N#H}L$dohdoRt!JY7u~W+g&w0H%
z6KyV1`ZM*6p-igUdHvrUX-xv*PdK$#hbwqaJTGzk<=pz(MDbG^Z!Rx4Xx=3fH~+r$
zrukdKe!B_wehS@w&+na}ysq@at}}Hm?*vaPZL&UGntSv7?c;jUW`|tugU)Tw=`Y%M
zJ8@s&zV)CO)n-dx9i6ZKop(ZN!rk+UISkK*J2shoYr9sLdHTuzO=bVKzH2^E-dST^
z{;MO8=ZwXN^%JgsJu7k1p=5{2;(XcIT`?t}pH4gRMj>`rO|eUvNzC<WvYGPLpU+N@
zelekF-|Y3_=fc@P%j)f2Gtu?hQ^}sQFQVP2>p5JLeJz#n=Bveghb!728k6#Mz6##u
zxOwh`&p*9vb|3M*+g{$%ce=Si_}I1HRWTC3St88)8WJC0$d`QW_PY4ju|9VH0Oth(
z^*P|dF`H94&#YG5W_-Tqr{oNO1uOQw>;Ic>&I_Br0aP?{7(Tu)@%q?hwqt#+a!OL%
zk(}429=Kuj_@~<XifcC>J)C)RhWnj*lT5k5`Nmglr%qV9!P2=Sa(iZy_r+wp<hvG2
zvM+O_+nq2=zI)tY+og(q38kAi9zDGO4rIL8U!hv!Rb5B&|6?=UpGEEUDtqw#&aPU{
znKj3594kDwOwhn2CnKfS;C1$)8xI#9oU(oX%Iu~!60fBaa^h#?3&?F}=zG}oxNLjX
z)Evg`d0#<xvVNZXp>Xkb3mrAB2*#V*5#QZD?eBG(C#JRtJb6+xef{x%3FTw_mfmbp
z<}$}VPxU)#K5u=(se->7L37+EBW>D_9&lT9;$2VR=E<{SlB!I7Koj~ZJWF35np^O?
zZSv~NzjVD0omFmnS?c}e<xNS0*pOGZ^_^}mpJ2IQ9n0})2B0GE(Zz4y%Jy2-RPSDu
zCzSGe1K;^d&2#DksZQ^+cb0Dc)$*1_!YuBxQK3s(x1uy>X>q}uni=^j5$5+Unm4p;
zGMD)5A)My7;x+@QLJWVn!~3HIQy}M;I>~kHw}PHbuHk)?a(Tn#x6bcs7P(g~WuBp@
z_4TcII4rm9)(5Zoc-$9Q%k#8wb;)_vDGy~ABReGHj$zeIkUMf)KV4=mKeSfbZ{4}8
zKa)%BgniaWFY@;nxWxanHd1=&@g^76^5-&&iyr=eonkyO`OAb`-*RTSEnBfWZ^^re
zw{Lz_E<1Pj%=gpMGm`IARd0DNlxk)%;X~<0`B**Uy+yJ|eK?f;BTfp3T~zdsD4mnu
zls8K%XGNUfmPNZ1En173?BZR*R!-D>RWqTswbVT^XX(e9gKhp_&Z*AX%Xaf`#CE1*
z=bC=1Juc)wY<Q>OPHWiuNwPm|x94RmPWJzF`-SWdm)|Q2KZLu)S4n~9R5Y}@PIQ?V
zt=+ZlP4*e7Me@?8Y<yz%Ph@Rar{9y?@blG&9qtb#ra#z`z9vpJ`oP-g`V&vyZ!&B9
zbMVH!3wPIMGjOJ+vuSO<pLkboL*AY}2MhMi`ll^#Zr0CZlbj=W^OAA6W!bOoZJ(#g
z{NqjDV6pk+tJF=5%fA`C-u6y&<5KX%_$sDvZPUNJ6<_!!_1Lb5hk7>W?Ku%)qxH<_
z*~Ct^<ZvIgMM)>r3ZDPjAfaQ@aBu&iwX?UTXX_uhx549no#3gO3B1j_ju*a}Y;eC|
zgWH-k9XW9^<7X2wYYnDAyDxR@+w(q2CR-=upI}|=Y!)TAkL|Ow;0=YY3pWCJj!Q6H
z>u@{Ab?NGoN|(}ewmUW+onYE^(8-to#r?oHnzw@1*d<ys-q#H?$}gL+J#dNk&I{G{
z+d)}=ZNM$*W5sSg7Y#ROwrsu_bJu0^Gr`cghaq)E==ygLtFo?Eay3n8+whI;cdDUz
z|Av`=63aw4E-mR$?b(~S9khzz;qBX@u&RUq{=IeUK1=q5?%TUJ=JDINQqLw%)9g72
z&XE`I?8+67?vfMjDP0_OpF!wU&4jl{cU4J5XWGPH2tPi<J+3{6=UQ&lM&pEi)gN{+
z9!oGh{3>)4^Zw`8a@kWpdG1pzGs?N4DeUvrf1X(0;s-YmZ&|;t^!0qb3(p>$-2cb4
zV(GJI*X(P&Oz(dB+dprKt$BImFQqi|r!FZ+|4zMG|F(4(o5b$YzK1n;KQV)rSLynt
znn}OTd$~;J_wwLVKeImWIA6D{TyNo;ugxy{-u>BnLFZSNKe@{Ca@k6ItLiyM?<H#&
z+bivUIms&cO6|9`9|hO_SO2>atYY{6ptQ5^4PKZ1Fg(G+tYen5A@a;w<(z42Z!X_)
zSu>i;diRYW7R8qnt=(d6j`F&MRJkV`Pb_}J`+L2BXiuqoigJEPdQ@p(x@xJ<-F|<`
z^V8#x$s7($`}Aj1f5Nna4}bdR8{0kKT@*U=W%7(@bN=mlg|B@-eV$;GnA)wr=7Uw4
z@wMK&t9lgKpY0a^9e!-hY@5WZg>npwo4IxQ-#7hCw7H=mwqWC9Spydzmh2<5dn%Vy
z@g~b<9^yHF6VeEOxP$wn1gARl`tJ(KcW<mXCBb%}=6&M(=Lc(qAMAMlc;^CLSG$wf
zpDIbnMqT)Hf&C0W;|52T3pWC}+c@kals{Q$du;an-0^CTe_?XA;_Kd0PW6muRr(k0
ztX7|rICrSVw4$f^%&w<kbN=aFURu9+-Cw0CyjF=hcUPQh-RR#?`j{g^neXqkjd@$_
z(sSfEMPBuTyN2R3+`;Ynf^)OyZ@iPxc>QC1#kqpLwPwl33Iw0sZu?t3D{?z%dVgAn
z87HW1pCIT}eHd%)HO;X9Ov)MMclNVP`d6Hnd^OK2;Pvg7hrc9T<T<zNVC|p4l(M_W
zUd{8in60*L$_mEn!-}8|)Mv+SlCSOBHcmbEnRWGS$<HT>nm3ATb!gc&zDZp1Te0u2
zbn=E7vp<ANbUkm{Hf8CYQss8bLw^mvanH$@{c`X4+S}77oJ{Ze)!?g~ka6R}iC+oV
zuD5JF?AolEZy$V}CDQPk>46*j4DKt~<S{01crouo=#Ca!jkaRDgI}lA9^pFn?eNb}
zXVyjUy%Ds?{hnK5^Y*|y4bPkIbN=4(zGY|sk7EaKv|8Mkd2yBflUbL<qAlisCTvbw
zP<nV_@bzg=rO$^Or0)24gGs5V?}?7w;iLrRz?AZ18}?qDczEu8jdyb_qdof~qq%nH
z9S#8v?YmkC=iN;>s~oj|y~mD9m4`EI?91KHS?+u7Cb^gW%W0)kugn*evjtvXv}m1(
z>on=qxpisvYWb25CJEjDQ`s-J{Qa#iU>Wz#JuUiAaEA={tMX|AQ{SwKf1ohyQU3|H
z#4w)HnFeKxKh~&Pn}bG}>J25L_aAUH5!@6R5zcabH$(M=iVffOCBG*)F4cPceaXd|
zuh#5R-%7gb)wkz?W}$z5>kfd<DIL>ctq@&TuJR>;?_0jzmjsnBuVjze2vsy2_M0R=
zYuUwXu#N5c>CL-V+H5@&S3UdYZr%U9H#JsN3m-q1bS+m>jyYFzmH(%sDuTA1FB;dh
zo0V-}pz%6nowokO;&q_fPJC0ORcY=`tusLlvITqjUN~}oThCI}FmIdI`n>;6kyGzg
zwQSzLqjWaQO`A2|O|yG$o{77C_RE4A?={!ghJBAYBpI2$!J{fE?`{IG*t&D_&8H`^
zG`}uTzccMp<>w9sj=4tyFZev!^Lm+tv`$-5>0iF+%BzNlFYF2wPN_O7sdH@C47<&*
z&EEJ;&i*+ybgl{GoZ^p+&u-P-5=jQdmR9tsjZBM<+P(9ft5#8zs`L4ZxAyldr)5rG
z)0np8o^aUSwRxKU`J4SC=BCf<iI)AZzNRTyL;Z(VgoxV0$VBZK0%^^hi9$03%!<@n
z($~hVp0U8h@5ceBkD{|Q`<m7+nq(MZQnLtDJ+5~wv%j{sVdLh6eJ3mKD6Nh@Wh{2C
z(k|V5Wpa+@ZH4S(yRsx+Kfac$n=*4t|31zbZn0J?6Kx&_VJGGp0<R9V1e};DFbiZs
zLe9b;Qk&T(vvs@i2VdvjB(>&scG2CgsI_^T=NT=YXYZV6Hgn6;E6LX~%I^Mheg<8z
zc8slC_wF69*#}FGwOm+`oyw8!ZojQ+V^ZU%TjzK};@-dCz&`uHu8*JClAB%sPwkhU
z?anqY@!Hz-bsu-F?EAe;^q6aL4exWAfUlD4&i-7oQTOQ=hSYBY*Fq2OI{Wlm?%m*N
zw}U_fn2N_TW^x~sju5d*+fZS`>dSFi@^u@x@wr_emC`rNI6cE%t>|?a&rOy!-c9-e
z?h`-8%|8C+z-OCuZ^PYr>kB?-&gT9m6(O>!dFhmmJm3{FvYSO1)=D2<z}}zye_jfY
z*lNq>qe;hXE*)8WTL{!TX}{|GbY<$dTS3d%|M4qG^Oc@|aKrvU&EW?-tap^2?m3q>
zfj82Bvs%ky%?u|CuIte(wi<`_i8%AKIjoo3Ij_t#Q!a3AG=E->k<FiDUlvGTpYE1+
z*T!PogvjlSD|ogn&8T0$ZEE%EgYy-mkJtKt59FF9VCQvkd!R}q+xAmmZfh*av)-Kd
zu|nF_gpJ!!G2`Rr88=N1-ON~*x5)D|$L_pWR=+RL?y0t#`1<pTi1oK^V`6Khl{gNC
zCgp8N*!<-0S=Ti$ef*O*<elvBeBH*o>8RhLPrSNMrS@lcpZFH@H#chMvG=!5UEQC(
zdj)7c-B0b%NU2W~Knv!szWSy=<tNXvU$!pudMAiJ-W7SbiLaqLS9$yObFaVYPx&jk
zDL(OTt-&|eyt~_y#bn$gb-53;7)bSURv&0F5cc6%e4r)Z<V=BQtJm;ko{%{=E$Fy}
z4pNI@|Mp$1vJb>BtY)2~o2r}aeG@vF_G?G!ZN|tOzZ1*5owStq_S=@d!nrD9Z_)9L
z1n-qs-`>A!?e-V68VS_2Hg|m|vG+`z_4?cU1KP@af=%B^fQE2?9lzTrDR}f?%Yig0
zwr-Q9#<sl&cd06?t(D$(g2k~zyN_k2z@`f=45j;T<R=R2Fjs|wTwGV9b&Rch@pIih
zzxXcw-t#eTxAydnv+u}epYCmsHa|UYL({G+6W-2Pviqrj#LqQ(j_e-C)Yq7tWvw<W
zcDyULK`x|Ft>wE!vul>k&5TKc7gn2FHXoHbmT>XN+S&Za>e5QNtsHbWUpIU8U4M#h
zLk`oGz3s`+TD*AL>@zQN*mNh%g{-Mqx4r7^ng`jC1<{k)xUcS-duUfm%gck2>-3Qq
zSQLJ?Jl*SjIi_Hb$NfbUOmlfJ>KQ1WdFI0*y<A#ahbug4Z<$zuR8{GV?L7w<eYH$(
zc3p7c$u8UA>{9+S#R-!?#=YKra|gRt^eL+qx7(8Er|Fn~-Jf>t?5k;@3fl>?9?wGf
z&}B7W4sJ`~L*A=&cqRRM3Lixt^D&$pz1_a(^|YP?U(Y@GcI$V~&BZ*Mgw{BpJ{tk*
zk<Ms~+%U!HkGDj#t1I%l3oUQwX9e4)q#a9Wd?pxrSABvlPwD;5pyctpV6XSiz1t>l
zT$<DThI>skdvYzf16o}Cf9|?wc7Kud_*eUXz7e-{vGgwX|Ni?%>4s@an|km1f4?s|
zu~t1~`H7+)BlVPUv*f!!@~%Ir+i?Bo`t}w7d#*{lpYuO=e!tJgZ$_5)Z5^0p*G~Wc
z`OVMEum08M-3Y$!_`fi98vp0oxZBxVA4#}(+SM=du1<5F`r*NCk>3yQyv!HV{_dvu
zX6xtsiQnS;ves+9mh#uwthDBL+TNlZ?d|XV9n!Ae*3g>yKD__$fmc_zHJ#hn`^ajw
zz5?4FhU?MYwg>i3<H=vFp`i5qM8s@?Q#*Ejyi;Q<ym8Ss<|@+|<?c6AkL^;mUt`Gj
z?X*VT`n&Sk(Oywec`OIN-8j^@Aa#R>wUa%AQM$KhU3a_K+?(O=SZ)OQ%yQpymi5QC
zvZ)Ur#GObhRBHjRy;!~Z%VY652N!v5uV0wccr{#rIWMV7pr-d`_U@T`qxZFLyffuN
z#JQs2(`#pM+nKPw(e<FXjC-WriB%TDhq8_(Yz&&ZR8iTY`KWZyK_yYU>3{2c43Cvh
zxS5@AT)qA2enn~4()>p^A`R|)SiA$T2NBOyPi|89tGwy@yq<06Pg(gEGu{I)Qv&6{
zRlBz3fS07a()s(Nb-H0hh#^~d$X>`q%hy+B#?{+vxRZBk9^5$R>9VlzG3)Lb-Z}#D
zu*m#6mrQR@-`y_h-=<nKZWEdOOmOpbeU7F`8P>Bd=XNLMI!T<mdiR)w4%a5Vs2ifE
z8{&4(u*+T({fYVd?6VTd$He3lzTNVlos{F9sB6Bec$)f}oEDqJsf+Ng7%^b$e$X4X
zew*lmwU304C42-g>TZxQkXu*I`z^uf&GeshbeHzs%!XI4I_BAmr<c@z@qG|wpm=4W
zVIso}0jUEm0qklmPUl(<Na^JK*i!MwF}k(gFyc#-4(DGctyvGMekby0CGL+o9T_mo
z=T^`w!)%l6oiF)kCf}D@6xw`F%a<ejV$6lJYqv=Hr2BC2{$iW3;ozgn<Yw2i3xmV-
zx3ea!53|d=l`!#(%)3>4?tS&&D)oNrf%h}^KC8J@v3{=Hf-`c5c4=)`dgiH)`RfmJ
zSRDme6klF667MnJpph|4;8e-0TbtY^n~&C<ODIf#WUU<G=x?;GV$F;d6J4*JP5!p-
zd1c=E#AA_paSxweHWPnix<LcJUYs-0I(fs5qmnvuzAu8fr+xJAIlB0l!shGKjH<8y
zXG}S~@SUX0Z}wwFo12aMQ}~wcnWgCBoc-y9GiU<%gzGCE=}q&jN_X81T(+)pw*S8-
zAK_hx?FuB{Y4@&?4!_P3DR`x_AV=|xIYVEyNPpw=oax&GWlSZc_e{_DlpMBx-vo(c
z2KNow%hey=*3dCl)OdZYz-{8bk8!aF<x+%_r#<|3%jKMxvDUR|v#WRPve@b+z@qR>
zjm0dPS1jrqo1$#T&eFqdkw4zPJ*L+3ZToijOs5?uW(sJPuH||7Mmtn(39D`5{+y$=
z3#zKEw_gXXxx0VwpZ1#F{Kxhkh|I%V;~BGcKZsWhUMbviCB-DdeA~l&63o9-8PmNZ
zPruokJ7MmTUH#zYMsFJ4{Ac!h8yyPTa)-Jj54^_>v<uJB*wWk-BoF48le{I5c1J2A
z@5nP$Fi;3m&<}<jsR-IQNcNG6ckfoM){tPkFk|`m`qML+)1$Rn3_m_+zHT*>=jq$L
zD8Vj=_Uo@rc@96GfBp5>3Y$xlejO6qd|>9IEwwkVZGQK#pzrw}&9q)ov8$U}Yf~DX
zTXTPJ>P>4Dwpss=iGhJ*ZP}h3Gd|z{!m;3}PQhBS_tKlDr!)%NJm<}?nyc$mI+@i^
zc-7m}Ws_O?Of%{j7({gDyYnBOpr`7`t-acG7DRU23|7An&pnzdm3_QlanC+IE2Z^v
z&s#l@+tYJxx#v7CuQU9cyZ+zik_oJSVoTnhE}O>M_rOM$fx)Zpc(<dUTY(bu9hV8)
z^lwLsSsW^=|5B3~xNyU!sKt>FOcvhSm(v~jfaTm}Mur7Xo_|c6T@W?nUD)KiQ(E7#
z<~MKpn|e3lq0DLD^!xMk6lR}wTHltKv50ru3|5XsW%XYkz1#L9{^s6I7bc6{PUwzo
zSZwLft|0Td+d<>})!mmO5(9OkHKI=(TFa8toSVw%w9#IQp+V^UVnzmypT!?Cf0i__
z+^}iZn>|Nt^!8>g<u#jLdYR!-h26iqvp4Pj9QOUi$!qBgs}F)r=CJ8!V_5K{e9w=w
z>*8+y(kWTfX?7z?>_OCd_mA65|6llG6|J#*R_knz+icNim|P&f|5q<(%j3LD%sRFs
zHd5pFI)Pte`$2Bsap%*qDf3t+>aJO%_WMId=RMxT7hI%s47mkd-u`>>#r*NFdgpC+
z+_sq;L8>igeJ){O&{!#}zpaAFwL5ahwGZJ@Kh~+NJ_>e0M!lHa+4ljNp0x|#>~`wV
zud~iF<i23?{3QcJz^CWmAG~?DXQjd4wNcybvSa*&mz_P=KjH0)uR0Ek=k-5w+w-&i
znfLTfqA8~%GdymTU5ON1z`6f-tXTOLUvrC_zjRoxyMT?;gBVxyCpvnv?b*cAo4q-;
zVzUJH$Znm@nlb(FMFxf`6>_``4kynmm)p4fJkU`DcZ|tvI|h@tJ9q8RUo+vZs7Cbs
z)@Lj^?y+f%k3QQ-F*HoN^)aa|e8HP{ksZs9mR(5_Q`q$UPoLS|b7IR<UT?n8@&Mx4
zHHX+37Nq>Nsgh_bDJ_eNi1hsyYntKo0i<Jr>;L<w@5%CS+;KBh?3CE5T&))Usrpw=
z9Zq`1oqD>J!L;qBVvPKqE&V6{ozq{oUoyWcdDGODIoDKJrfbAZo^9vMe)D?#<MuFa
z?bVVxOwqN*X%<SaVad1qeuMd6C!K0PvAzpQ(HGbntvib6$Gq#GCwF!VxAy9jbu(Mv
zAKf|caXKSYSHb*}d3+2Es`mXiR~;)^VyUl_KY!v~^K6;(`)=iOKTp|ep)e)m`^o2f
zzJ0NZj;Ju+)SmV*nQ{H|4Ur8BO!w5Yzq{+({a!YE&70$qH(V#Y-r1?+pnYzSzm-2b
zL&K!!uU5_7=u{TI?ajr=A3-Z#TULlEbToYT{0&OZAHhLs&+a*;Jj}m!>eZC}XAXUT
z6m$OLW(G%|!vb&Ze$MIIWStuJ{q%`>lUtRy+z{hC#ndA7*6wAc2?K-b{>Mk(_|5d%
z^gQJuhwe7kT!9_U7T-^%{|r83Z?gBC*r|8(T4iJFY}wC4^nk+#nz*+a#)?EnYTPcL
zw(sbEHAXI{yX$|Q)YDpOy?Qgq9luXs+CJm@l5GAJ+jo?<ymG#M_S(CCKlfQv9dEwd
z{6+VKDd&bz;o1!CNN@rRvX1N7yg1q{YT7>5oobBRvKH~@s#>3s_dB1xT=i?~rrPwE
z(SNdq7ARc#yK43taJKkq+~QMy>J0bgz*TS7ZmQe5qgnC0`#a^B$qdo0ubiXL+ljk!
zf9CgHzqxf&`RPmB1Fowa2s`-u!m~~1%T3Mhu1w9Jx-{Pxq?+}mv-DYLP(QxE`PG|q
zudaS|-ei8}()I@+O$&craNBHV$iNWr2pnei{ddY<e`0%6v@qv><S(($vr67Fe!Ud!
zKF4m$-8aRh`_Duu?mq4I?OEh6u~)NLZfI4=-wOM-{EsIi!?#T{{zUTx#H|mvO7Y}=
zz4^`3vOPO~80J*jsN61}HgAdjuQx{nB6n1ay@>1n`#^Tn`O4mxrP~aC_n*9{%gqqK
zYmffqyR%BcDed&<lD0$-`Txs7VO@QS=|Ei68}|2eYInc+ayRMHET@}#o0lzOyy3d|
z?}NFU_kZqw>G3(x_gh#b!;gpw`+UlRuiY;PmAmD8c2wNjQ5wGOP3<Oz4;vL~XTDkX
zrYP{11@lf&R@=5*hvCiAqjew7Mb4IBV9@wkc_z$sney4n#9gP|zRind_;F_U%(d>p
ze;@E}K41A3<XF|}!#WH#FF)<`Da+mlDycW;OWB_IHkY+w@0J_<_Y@)dYu@VDmyU7W
zjJ>(Z{5;g{leZ!j(wo=r-Ltt$Yt0(9+mY8oOc=P6r(X<+SNk3L%~CYA{M4Fv(<kmt
z6k~W6_2zVnd8#e6h@Np*GuRX4$r;%j^(Wt*QajE5=pX0HuX7f@xx0zM;CfQLTJ+4V
zos0|(lm3G%yLGuf;;vz0r$ElzDfZjwX6{Ybr6uX5+cs>Pl~W(d05NCQ+Pm^|`%JW(
zH{DHVOjvhxpU<|K`;}G<3{$T3i9dexVp{Js)&{WlqQ8m%3aa9)byw<7d27whP^|kc
zb<^xkkUH+XfYDt|V|^d@m7BJo`gN75q4j7?$e(>a-!{J~4%}h@sY<H1>oA<zdSm*@
zu(bK_vvQ;~PTbQ%Gw0`z?`y1fZ>}mmIqOaBro;A^-P>oDt1`r-e*G5{8L`4_U)~D+
z$$xdSg_#)`ROh)fGX#A4oLXmRYHPbSX37=uQ)Sakt9c97X8di+Nj005{9OEazT>Xb
zYPwVQMvFB}W_>T7@_O@gP!au0q~M0*;&T%EY2`0YoMI|iA@-Z~=C3z1%cS-F-WU7}
z<IcB^_T6?`hoR8r1xS<Qjfo5l4kzcGUo5U(xlbDudBI{0r(0ivBn4}%_gnn2HctKb
z?b4)QPB-&5EnCO9&h*~o$6vTNMXx@(@%*18E30W!dw)s`F)ZHpYf5$6;{tF}|J@@V
zeWz8gy2R{Oj1@z1?pMw4XO3-r{_n+4t4^oHRMVUDHZjELh3r>|p5J=_94&upX3n3M
zyKM2}%EYqM{W;$w_xCcyXh-c=h@RP-w*9Z(<=u1lzdfY3AjkBk-e!h!gZ=*JmbOm4
z%5^h#-#Pc$wWscGaxAf6Hu+QiZGPSE%ZEO`UEVr9{rB&k3}13j$a?&_vD^Qmbpa>1
z;JWm@qVUgG?cL3_U(GiML^8};7QcXB)~=t8A;G=&oIVr7hUxj|FL!3{v$BYFjM@47
z?<XAwUd!eF7aa>a`JRi1moMxGx8DjkF_^gQcSyIA0qI%%yH9-c?yF7dj2TUJjps@%
z;^u7M0?J(#VhwFe%HKQx7O|K-bu$CQloE^mJ0|>Xo}HPPy7ls=pXSUC+~-~fKQNI!
zr|(y9|LbG<gRk%Wi?4~yoB#IxbEXU158dytdvkaBfs<A9;?K+rxDY1R!1qEtBli4b
zR|bZC*FRTmJStpllfm$!zpn9G?4CNq-^+Wy{jGMt`LqFIMV<h|TdU>%jh7{+gW4Iz
z|LiSw@2>r0{n~8{gUP}R2bUUm+{{`Xx#P&x*W%pO`<}^fGUaLbajN~L-+FE99anYc
zy!`c7@BSPk1_s8tWn9v89{>8N#K15y)-p~;JSD|nazhw%Ls{sz)L)KKiS?i=3Y>zA
z4pv%C{v;niUtS|YNTlJxvU{s)Ec|wEu;WhOl~7l>=Uw>s`p_`uh7Fr)XVy)425FM8
zK6b57mu-kX`L5xg4)^pOIdz5i7?xeX>BP{HpB=wUeu?6?Nem1DMQ7`#zmdPWMu(+g
zhSqPRzY1q}Ce&?w_M^e|vjHcUL&4PAn^}oFXYoz+j@fU2>wYBr0^`}gjQ%QojIE3_
zXV~k-ZoB^a>Y{yX`*prNY5JISb|cfX+l;feNjT-&IzG$0na}l*CCrJTU`ip!))yI<
z4xP%XO;<Dm1-I9lc$S3v?zwv|Z@#tC;P)4^wbyE|t>N|EQCDxm5If7w<MYCx#CVTw
zw|qAV%=xIqkpBA_%go)WicDb5J>rZO=Xb>DS8urW%4^^5R7F1RTt)^B!~Gl#4xOJ%
z7%W_Vewn#)!=|YFksRm#C^7s#{f;B<uK1j_*J{Nc8OO0OEI3jj*zh;CoaMCBVvu1c
zYeY;zb-t4ZxV$>@N9n-xOMkfz8>DdO&#MhzyX?cNH|F_E{>^`J%>26O$C>dgKaMQA
zU0oh>D$DfdzfI+vzgCx?e;@Svj6TyF<?2OUYu@nwjQe`LLXe?B=&@@<?Uss3-ES;!
z?*6#<RsYv+26?IZn{?kTnhL7i-=|&v{_5QQ6=gp+GBN~wD*h_YaA8Kt?DVq7=?iD&
ztiLJkcTh)7P<wy4$?;#V4eQUiOF#?t^2gOz4IjHU@S7G+>VBhobN9}lxA!x{!pF`;
z?^smqq^WDwZkK<{Gpk*naZy(MITJ&``9Dew465fYGyZV-`CuxjBEPx&=C8fGo|msI
zeJ0Mh&-7c<&AVGy|8`6LeePcG`_T10;*1O$A8n*w1pNG%RGYXk>ebh(+CLdV+upyq
z`y=k_@jprh+@IyLtLExXnflkL+I;=~ONU%fmd0z&F9w%k&%_(=Ey;d+x%J!B)=isc
zZ@QrUx!WPX?dD9`Zn@gaT&|Hf*G9%_?KRrZamU-rTSa?!wU|}%9#BkvR4UN#R&R^;
z51BZ1?MbI}oox(Nn<L!J;?M2a8W2_%ELN2YR=58>Q;Ejir&jtt>7ARdrli`Rb4p(m
z&ytsT@3KFr4YVmfZK3_KZioD)IV+U3x$hc4Q@{(~Zy{4a3%Ig2ft2un163GFb)ZOl
z{*qzuO!*}-b_`2nG_-e{zMd$%*C>u<-=-U?zpD0LnlvkGclze|tSH@Rjo-D~o(a$U
z@ZL{;mkQYIg!<<)=96VtfXdaf^G@b#;#tZzuiSs;o!Qi>e~q|h4ps=>xVfi%eq1_t
zYU=(oOwTvGVq$0z`rLgWuPxCdd~K-MsZ)7p?HV@Eh-cYnl*<?U<^KCV*~qnO+R^bV
zxSNY-#Iy8GIwy4U)Vq1CehJ_Z_^4DcMa(~WVy+(doCCjH6U-ksA37SlbW=cBS$5ce
z*5w!PF)(O+{Law0e#!2b=dCYw0=Lat^X7Qu1D0$0OxCl%e*vYbHE*UzK9D)qeIPH&
zrq^}bW}N~SXliP_+q3#q*!5|tt52S)o5|Xj3@)9Xff7dHJiZuxTdO5CGdy+%gl)U4
zBQW`=>y8_*?w#N0RCavDnjHT~1)ayPJ9_Md8q_5852c#fHlKbcF?H(RL@|r`AC+Qq
z?gjgSBdIpMal@SD%nS~lKV5eO?P@8MXq$EDRMw_VZ_^qr&gdUXeJ1;4ce1<K+>F$P
zYjV0H{|dIG)(I~1NRLTLeLs_Rks&lz7iD}*5stj6yvf1jn*O1wZHYJ8jvp^u4Qec=
z-agAzD51{;&1X-(w=ZjbnHL;+^V}u}pKJPujy~J_4AiOBzFjWHar%$a6rEq&uD_o8
ztt|85?#0hG-8{c<l49f!4ejd5IwkLC+dW;d=BFzIgIACE!fQWfhkcte;p$4k$jF;l
zbqu&})Y&pIFf2F%&TZdzABaAD-?-)SWBXI>ohMG6$~#qck9F}+z6}a*um4e6BXRr8
zD@BEyS(`xl<A6rgZ&RpW!g8wIzMWm?9~l{$py&77G_FPK^D$#kNp<Q}-5gf8i?`N;
zI|PRNIkejnJ;XV}#ZG||57XiZkijB4x6bTd%pSJ-<f&8Z(i#H~e9NvA+~!&TdeYRX
zw#M8&=W?2lbu%zbk<dS6R_JFwVd~y=F^Rc1+1AFlh(6Z&yJ%?$%(#HJ*FlBZr1`7&
zGjwEsw7#}Q#^P_UZnSS$SXuD3Kde2^E>}9<TK}~>AoX4msGf<8yxG4Q;*}QB*;bof
zQzIj9@^3nz0rCZ;01oTvwhRjo10||cd8e2bXS}`sFN1->>kKG@9@)rhXv(_<=uMeA
z_3kXNPk*|uFx@uuP2c9LwdtESZCV|fAhO}F6i9K>9*)~7<#SG+IyG+^t6Tau$H%T3
zGtCz|6`u;5Jay{bDXeacx8VVmzf`-vJ<;Pj$Mq19<SbS<!CUKpx>jW8sJ~2P`P#Z^
z)26RizqlJzUH=_(qwcK!p)TLcaxe39Hf`Dzy&2*D`{j+I(f%49&;O^UrrKujJF?8x
zbbIXT4+o_!pI3kFxKg(^zUA-P_ZM5iY54n@O}hi^@BezkDeku7yR>mOINLtIxM6nr
z{*7n3H~X`1Iv<mgnm;48d|}<bgX?<(-kV2Vs}sL*^U959zJ>pO#nwjNoSkmjo}H}t
z;5Y9K)3}z;I#Dl|&0f4_jZXB|AD{QWx|Q+q@4T6&aV!mXl^4#(^@u;@c^q3^`2L*O
zsZ;mNPG5|Xj{bjFY=1a=>RV8s0g^J$U2dFvHk?<yPj|%{HSOy8Yo5pMmfpYJv2Ne}
z6#l(tO#ALPM1JnxupAQVpcHC;rikyl+g`E#;qEEDpc23^uEn-?^Jf3BuxZ9S&0cN&
zvG<mF_8yM*+2(s*mTn6O`}QodO#Ibz=|8tPzSb>HoeRz4H_jUHyp(!aQdpR}aLpUr
z&2RLsoHzfmRq)l{W2f}AdN22Of7${Xs9J2H>yy50ezoxRC2MlF=(u-${ya6;D!Te#
zlGUX(`S&*EwVH4I;h0|k4%9~5Sg>o?tR3@GtxsQz**kmP^Hchh@^k)5p3OJ<%w@RV
z^XBDE;3id&b=;bn78C#4aZd%Q{(bJ!cCq!IHy>|0{O949J!Mfr@t}dLeIl=_rtOWM
zCe2mnduraaty}mQ8YbC0pZNLc_!a}%rKhf?_ny8PzB|`(TeD7W_QzRMY^{FBi0DFx
z57wn6>I<$*zj-_DWpwxTC2u%yKHn`hJ5OxW*GLPe?p()hJ9T`TVkU1|4hfNypFh5j
z{F;>Lwaq{^dOmoxB1QUa5qoYdNC_myK7(>com_pmY2W2u=-AhfdnK8%b+)JP8NALb
zWB)8)@+Uj!+ZIG$e48Ej@2u^*C(0%)&DV{ayvaQs++$o)wr9rOROQ{(Vp^t!wx_?%
zg~%RHo&Q<t^6Q+$pYoG+)4}5+H~BVwS$i})=-Z1mUr#eIOo0rQt}F9_4g`TlENjyr
z&J|mqe$#pL|NqbbpF9?Mb<2`{0cF#5N;3D{nw`;Hn|?R_MAnz8X|`6st@qF9Gm*cV
za{i=~e^gF$`RPN}x^d?>-A@50jFayx3P0u~U0%#}vlu+W`QYxR4}RU(H@`8z`BZ4y
z&r6HI-5&kT7xq5L-SA##&*ev7b*eM2O-ct1yvl73?S1J{95>_Lrir$C*)smeXJs^h
zKY8em!ENjNAcX<nEZ5tDhuNUk$EHDCzIgN2-;2fP*IxE@|MpntPS^yq8?|EhGCx*L
zv(<xj+r1->adl_ibh>$W^M(1_ZY3O#tXO{Zb>z1fYmmkQKdiVHX)78QHu<j+cdXPZ
z|JM~UciDcQgLu+CeSUCY+43{5>Ld}~yAyUJJLuc3H~yB#TE*<wUVlCH-;C$2%Xk@n
zZQB|@!|T=N-L-4KJT2d|V@HWutjVU2n+1-P+)dMeaBB6gqh=BR>n<NE-n3=K#cc|=
zW4=ZH6Zy=a`u@|Vg_|xcZM*g0nof?;pQ>qZEg*jQXYZdb(N>b1yld0KO#$By>69$n
zX|^J<XqMRRrkvF`U6)>;9lEg_RA8y6FSLKW^q!Y=&Gf5IH;;aJZ?UTEc2myco3}pi
zx;!y0HQ?J8@Nn>ozeP=I>(X!j+w^ZAHv@y}*2hPW9-iWRJ`5DUpwPdiub%O!YT8@<
z-|4DH_LP;K^-W#)rZw`#83UdELXLZErapd`lcFc&nm}F1qj-6)(dR=YQ?#VDvR{BB
zaCPL5xH+#QzlGg=z9=K{-$GESV&){a>q>z1oms8EP4VY9$)<xw40atndF;HC{}xAy
ztvAF{qR$`=Y#rsAos;NgRwq_<DM|W@houuJ+a5)Zxbu(SuR2z^%TRZv{*+wR>@3Lz
zx`*Ffd6H4vm2>~*^H+5<H#(I~@6BP4WRMct<3I7O>1*(a*w)8K-{?u-%-h6Zvar+6
zb=&?o#c|11b9Ht8CvWOaW6bcoVduK-I%L=`(ym{wO)>WE46(4V$+=404%&~tYi^27
z`~Uy^?zh*v3sM*6Xv2)RfM=B7=a>Y7yKB30x^MnxSSZE5fGagG1#KD$G%*93IWjXb
zGXhD2*p@~l&mz(121H9^=rj^J2Rpu*n_3ZaT&m%D4oi9aqjkD^tXxx=#JO0bmK@ET
z$fPSW{ZUZY_JB1<@9y0pQeMt0$K=wP{(Y}~nfXoMGV|RhBRz}mJ%73Pre$&3zSQ$`
zX8wF8te6!1Lv@aq`0^WlJdNAZ^q;*bRN%Vtz@c)E@4<!B89Q#>R-L>#)l*U=@<n&w
zht2h6I(j$vpT3m;Fd*yqcVS=kA1A*|joHh;dTV@L7xU9Xt)2B&tPRg1-piburrH`%
z<T~Y>;_lsx@<aXIzeZh@FRQXxWv;ldf&1>KW14z~4_1_Q*jBRj%Bc4VpZs-L@ol)>
z|I_a0rl~FssN2iNamR2|V%qVtn9s~>%8Mh)k23DC`nvhWMBS(V?#uIUc|YAfSlhe2
zv*d-)HOnRMH)u08NGo?+MNboPp8A&Iy?c70(|z7U37w}B@A`hb+_&PuT3hZXE3TLS
z`}lpA>!-gb=X*FkX$|I^eAIJE-d01FhW5#)ETgAQIlR1@@gC2~2Xo%dc0DA|cZ2y=
z!Ftn&OdC6Ftd^_^YsycYbl9bk?dASBNsa^EGec#+_s_dD(axUh!=vY0&P`G{U9@1n
z^X@Y@3%^GH<*2SqD4Q+u^;S~Gi-15GuX*#T4>43&?_c+L8o#F8%9oi9>bAj_%j?gd
zSDPEmoKs$Me$}eQ{c`^{UtfN#`^hT#j)GgSkL~kFb(?c_UpUh=)3WkyCYl_fuTL|4
z-(?YSQoK2&?7%$!TlZ}r6;!5s2(&M<`_R9+bpv}|Y1#`D8~tbIWtXH)Qy+bM>)Rmx
zR%ZFbZpHHBqWY!Y+h%W`y{x>6MeW2#hCb_0U(OjW$=>O+-EN=V#;#4`#VT@l-!aGh
zIVJh}v;O**ZZ}?s&V4KwXUV?(lym+;-SicaZ#~z&FK^3QYu(4E@hB%TNMdFE7bc6V
zM=aNGJ06w#YsM$NPia%V{_MCZ{vfq3y<16pY1_O@3?CAUm#;Y|rnYoq*#Ykc=dW|V
zPVm2YF6H6x`m#pji#D>;ZLj;T-5#4<t-&00E-QEW-OF{W!?|ax?N8mXdUEBH=muNU
zxf;%m_jYf2E%DB0{d1AK-F;E@_b&As+&^nStzhCxQ$Y{QRoi5({@=f?_^Y{V_T<%?
zR@Lp3i@g{QO!GP?rs8|~r~g*|rvGi{&KZThT{Bf7<^P3K=PodwY@f0?Yqnzj+nu60
z6*t!X%U{5~Ml?w7=YI~yE34-wMGB`cn{dkX_oiiD9Euj(tIwOt=mkCvUfJ^N(89y%
zhh*=SDtQJUi=Cw6IVmLQn^P;7s8&i&jpVDRPoIAMal=~ObNV7p!!?uJ1q4qow=LSH
zVwm!JL)i2D&oyUfe4A=)wduXg`3Lgt-!z2f&woCyl34y-PvY9Ts&z~DfAL*avnP(1
z<@}lFI*e!jetBm)yEZcH|H0n}|NiEGXU|pKVDpasb*J%HC7BD8*DT4uzc}j6rVq>G
z{P*nHv!}-7+yoCt|FeN-TLk_U|1Y_xb?6fJwt&rPygWHV6=n6O?|-XHO5+o`H#Pp|
zPT`#^?|k0<#i`@M+ly^882$I`xu>!CG;4;zu6Y87(yui+q<bgLyYe)O_xJN3uU}j}
zzwywwx9_bxeq7lXd&18<_fLbiz1BnK7{03^4a;jUTSN<FpNQD`cSh**KMf1!eY+D^
zBgC}#?Tvl11;1q#GBzfuJ#AWYljY9qR~s~#ixjSYXZm(CpMU0CP94uE|LkeC2U_Ll
zJYidrFfr!2!(IE6vh1l5JU>deTy`k1W_Uh%nybsrc7dz<nR_LIc%JT2Sg~^RQV)**
z)vP&ZGpBD`erWcR)Xg`HIPP65-X_AOmMOw;Udtl7t7T%T>4$AwWux+#Czigwu<mX^
zFSDL_$u<ctwU?r-;-4*|yI4MdjZWD5=blFY!>pjL{%M8Q8_Z@_6{?rsNn^S_sp!e(
zIky|8ukC)~rT)4tMOwh<pz9p>$IFl82JnY%OVRV(_4dG*CApJyORq=^*M6ugdHba?
zceU6y&zjZq{?;~LzdQL@^Kbk557}>WG(~(SeOGe%TCz=~^V#CsjcdPpow|^9?WUlE
zxn$HP^GgN1cXXcR7>f9O`dG~2!FO@R(r?|@-`Ui>n|9rLt^cg3d9`U9XB+rToA$=@
z7hikh+Ea=%voD!&>^XHTUf=WKyp7v)0-s*`E%fq{lt8V>gNy5Sy*huP&SU<$wbJ#!
z3OC-7j0ttCzU0rFUThi7l^yt0FYBq;OO6^v|M`CtciQOQWdDBbG&4iRwL^@1m+Hmr
zejC0`_OiP>({;f&pDPy3T~h3O=O2sNu03~?mKpKx?wPUu>zmIWJL0a+vOaa7wlZ#(
zod3bn!$(%XI&)p>?*8b6^BM<M-I+S;`>YS=?`6Md_#l_4ChmF6;_18IX{<-S=2ySh
z5<Ds6*mn1TNcj9iOHJMOPpFzD`rPqzLW9lTdiLrknVw}!P8o0cSjQA@vN1bgN>O<d
z|KtUdh2j@i?)w>jb}j4uqc={i$ol`3x#4{L+udJetrD*-GPUNLyO(p##^pQK9d!>^
z+_Zc1(vImuzvhQMuC2UY`ru&t$Ge|01rB~%Qa5Rx!=AgAt(Sz~F$?V4xOFbCuJ`_n
z|Ct2imYbcG+~&#bqNAN0@^Z5Mm&n2oQCBx_QCZS;c?)AS)3oDVEc<x&ZCZas&*f?O
zgYf$|gO2#STi7m*U;XN*ZHs{1;lmBAVvm_Cd_oQ@Ra)uuE3R8A{pn2TD!0k`?y;;2
zMdj|hSBrM<Z?f(__V2=%$1=N8{WrEIGVIQJy*lN$=j#jKzU<L!Rk6GMKI=Z?>_>Z;
zZT@olM6uoIe6Tv9BIH!v+v;im-)&!dH-%&RM|KIht<$VHZMG*|k9ovY5VY*Y+)8GJ
zFY4l!Q_o#W_;73YtQV=XpLv|m`SyOxiQ*k1)rk|lXWxH&C0tAK&a4~`c8=)F0jihG
zW$IO;t_$uwe#Lr$<eE+UZ|F6C>1Ol0ss3qJ$cmpQO3jtGzTfmUUajnOfmDy2TIhcM
z1FznsS-ltKnW&ul`N7Hp;UDJPW6r8hk?D2Msms}7YGr*uQLCjXuHfnsZSBJco->qJ
z`PMNW_$j~mtcPtj-`%I}&m#0M+h61=XfeCO>amw6Li_)oxohwFcb{jGdOzj<xwX?~
z>^z`6<;KP>TyNQHZq3XxeXjQ)ZmP={@!2Nz4EeK9-&mAeG3|fZsdLXS{-2d7UcTl>
z@*n+J8Id#p7P}W*{&M=p=Fh%+1MG~GS0{$5o{{6f+r%w@T66L0N#Au09KV$Yv`sZk
z)_(MBmSB9Hng8lvd(EvL^1CWt_#=F}+UM0P_MHCTM*lzYZg5E3{ao$d0jJ~A!MjDX
zf4**uo_O*9l7q{im92hogX8qO?Tz*7e=e+;vU2_UtTLI7TQ@JM{r^=b)iGzzpYk-*
zI7g4_o3nLS-~I3@<@uES(=Y!$w4IfIVOgooP3uNJNx9_=|Nm{Ax9(0f!+-gnso^ih
z80_NJ*2r@|xxsj6txomsX)E?TX*w90cVOd8Sug8@{d<=job=?<HhZ?ME2rK5@nHG0
zD~@LCmu25&d$)7hvoO0|?T0USZ8E=YD8cmX+ZxH}hZ9%+4rJg{+YsB&$avuF`DD@h
zx4aeSjUuW;cCx?O)UMclMVm#b-SVB`^tx;QiGtU|`2TO3u=$+H(!%RW?0&ra<McPK
zT_z>XsN;2xahuIErvE3`efQWaup{iwm!nLF^BFnAem{+3+OTs%Vdk}`3^B4RWW)0o
zD=99SKKDwasy@?kt{clgTBO`y$at4O_rkU<#>E90Cqvd{zSqq5v$?AM(sJStv(xh!
z<F@+LIO}<RTYSLgX8mrZ=?$vSa<?wozaa9^?Db`Q9J1o4rFZ?C#?i3CHaEEYka{C`
zk;U#A$BMhy{&3w~TkCx49_zB5v%=R_|MTB3Ygb>cQN(hj^tCukj^DD&H`U_=KJI;U
zcH4*cfbO`6`v<1Dlq`7li;d&{ty31a3%A+b3VHl*HM67b#dZ4s&d)noQeC!Sd9ne^
zj$74nr{Y#VJ#TC_r;_u8kr|f^Yud?+lTKgMV~IOGZ=%mE9-9qI=IWaM5|i-@QJ<OS
z#`HsXRq`HBP1Bz<%M?G~xF^`qeTdJxT(QLa{c61@y)$>7zM;zgUUEg!p{FxaL+yVt
z|4q#}d9`3R)12w{E*ZY3C)dA=U(eiGuApgoI(qftIVm}t7G-UC#H_QqI!r87WBc2?
z?H={#K3%%~(BpdV6#4b%b0;a!OK3Gduv<?rDMVR)<~N4ZZwmqfIsX~|em^yP**DXQ
zXVZ^-e{-*5s@eX#t^ba#I`ZZI74MSAAB!g!>|QMy?X<!>vcUWM;?ke>wSg+3f6OBs
zcVz}12r_<V?KvyxyTYpdw)f=n8uyr8&g*-5kYRcKMD4PSUwpr>FbMA7bv!;YZCm4A
zXW6orgWujAHv80LyTt#lWKBj6v*e=-reB%fUGuJSUUz&t;|IHM3n%-$VV*4A`DQ;m
z^TN$ft~NZED-e9J=C4Rs+6+G4w|Cvm!+q)=2IhX?+nenD<mO9Vq13Lq<-!7HZu259
zZuKw?W4``2^^cj5&zho5f4?zu%ua64ShX~LwW3R1?8?+Cs|1!W4DR*1uLGvO-TQ22
z-Ny>Ug>4-{or;YI9tv$b^-RhmSDtzH8?k+xRdu>!r<E272z*;USLb;49d?;H;cFPr
zY$=zoU9frYZx0JrYrRXqeASQC`fGhVJZm~bzO}0J+V&NtY#07ytzSPa*^foWNbj_f
zp#aDH^!;<(U;b-*-M6*p1V8`Vw<b5`_iZf}?_6{(kKw=7wtL|_etYdrK4{PPp{v-!
z)tpi0*Ac(7%jIP`_L$$=kRm6};G(l3dzZ*}Z-XQAWREyn@oK-hb3Ek7v2(F1GB3N6
z8SD<{T2I%zkh*hvUQ6u_^EG?swiK&Hrn@q1pLHu!>GO-nye&Rvf6~vJ9Fy;eNy)E`
z3FST5=bIm-!(nx6YkSwj1b6mtM*?5iIJ}UEzS1LK8nfuT9j~Rqre&Yc8ohN`)mV36
z_Pnx7RjY5=GAt64dbii;-z#>Pf3YX*Vx^4ED;|?*D``+L7Q47<!aKb)8<Kx_KGwfm
zz`1K@`o9g|Og|rct~ufP?xXxA+gs%RZ7rL0>Qk0&&}?^y6E4+nRqgh3Y&aRPcwX9*
zYK5#$9nGuSIWr^gUXq#f($wO{y?n`-O^f+{$?tfwi$8gBM4Z7xetv!F>uVhYgN2^w
zZ4Y>!=W*lW#?r})@5Onaz1)yCbMGPla4Uv_Ewd6MU%qy@vT4z$FB>E)K2@uJW?n06
zQ=W5g@t5+%b$3ltavwHpzusZnedWDX*~x|M505SO{ru_6ulv92A|1t>kMB*If3?44
zx>8^N`u9%Hk~RgGC?81txz}{-lo;-Ut(^~r)l0eAzH;5viM_p=vBF^Go|(_1Zax3N
zdQJV|x8fTbPxxcsUf!~2#iuJ7<|X&mz2113js4CI+yCDW%a_bo^7s2?Q<<)_W%H%Q
zpVD|gENQ-Y%I2`tgJpBHmc07)LwEb}Sz(+aysD=TPK>Hz;(xPngRk`y+cmyX>Yg+0
z^FChw())Z*r|*l8_oa5uYMyguN!CU+j*82t?Y#I`-m7caZZECBP1~M9?BwrHpJb#L
z{=d7f*T~epuj%ZjZxZ%r|0=wx-s#?)K0o}xW0hCeX6*X${O)mG+cmLXcG36uuX>%Q
z_w?ZAn_UcVR(uKAYQg-#_R5XRE>Z%FjBiukuX}TIhWL}E3tN-o-!cC`aWCCQWFLdh
z^sl9lu07>k5ShB)x#swSQ?YA1yO%GV#Mpn#`!B<X*o^u5ukSr%JMj44#yb&4Z&=RV
zKJ0fX*TG=H#g#4R|0R9ddq=M6aq{n_zqofO&fmD{%h%k7wd-a_yD3V2Z|mOrkpJ&=
z^R4H5=KeZ<oWXow_g;~y+ZZpu-QuHB#PLDW>dB(A1#|zbEcsHlAynqF-tiA_**UVb
z{iA~>do%oA>m|ALLCBp~x);(maz@>~<JT@M*<QswCr|FXNfF17zvu1taw#r(_wPU-
z(^0p$%Y0kD?{=@77RI6I=OnzlG`lm%ym4pIALr|qj0HwJ+tq#8R=he>%j@vrSJ*eJ
zxhD)y@+aI+SNrz2bg=`Ued*>Wce!dLo+x_t?p%6ZIDW?EZLD`nCI#u;^?DGqh<A_H
zd)6H}`mr0DVpe3GtK@VzvCOQ@dY*@=HOqw@Bgq8w^Vu^r;^S+5CHrdL^2V%JZP73<
z`F&fWx8vx6$ZsyM1ljg=cGRi22s~zdx2^E2ORwfUF5@lhN)vD2x_z1Jk-tJx=S$xG
zzv~MEjx|UWl!qO*=-zndv&n%+Yn(U~Mc?m=uwK5mY|%@<qwWW$xXhjQqcJ@EczamD
z2F~xEQVkt*W#394)XbN7xcThQjXW*lMaQ(*9vtqA+xS=_WG~B}-oEN7OJ6QgHh;?B
zmCrnLJEObs<kC#-FB5%bSbu-GSg7#nzTT&l@~sDSW@LSPBr`)NJzd#9LwEI#odph)
zo7h%sZlBN8n4Eg%{;Px~jT1lU2>NwSJ*XXN)vTgCYhUw<i+mq!&PqCY_-zjN&aO~@
z&si~T+v&x<WlrnXNZ)>!Jl9YCJ=+84%t&i*k@@>P<|IGg?|G!i@aQ8$*^02!g0X+u
zHtWX3@hU%g7Zm#Q`ennDu@`M_TJOG|zEkDmkBNW(PR&)EZ*SuD<L%Z5`-F|uG$TA0
zZa%;_^OAbBTDHK$X-!Y21U$~}uT5Mg6}vodzqF|FwGXy?OPbm^ma8u?eZXEZiDU0&
z!3p-0=QR0j`O?g>`-nmB>53Wo8xL{)xSF@OdRmrc&Cf_>_3py5*JsL>C{I)WRguA9
zF5<ec`%@>I+{u}CH<@Ps>DW^9CrXFQ-a0#BiOtvgKgs`t-)h`Wy1y@HafHUKSDgEz
zcRl6t_F-L}!S~<tly{PfPUrGdLGEYuUuxA^*Bw6R#rN`bRNJ9mme~bj;g8ebzbNM7
zT;lX7ctwQwuJRR+i|h4-JR9!z3&)6lKW$*O(0qMcU=i111!c(x_Uxsm9AU?!GkI@l
zvegSM2oib7X%nlV{9Ci5sb|mQnaNgOpQU{NJU?K4aO&YhH)h^{7<ZTD?oPqBQ#w6O
zH8Bp4CDy;M+n{;RYm#}LW<>C`Z;BhV7$eQ?+RRVd*tktfTRbzxZBsF8)RE|w3~#2d
zJ-%n=q&a_cPIfyu)X#o;kB|9{Vt<p(AHH~tC5v@G><Orudh5i?Ura1&TT`b*=f^+T
z)$1vxb=cebiCgG|?t2$5E6S$s<m!Lq-ESiMWOE-o$E3BU?i2s!H%xWilzw`eY4)@;
zGmTTv%uuZTRg$SI$^1UV=Tq$LV;^QGSDmU9&pSGq>4(LWO)-brw#jlRx@@~9<KF8%
zL!qYgX8p{r4>mvBw)yc*Y52<b>eXWPf}4*rXH*-+6@B~B@V&_FxyGHkFUF?lnCc9T
z=jXQW>zf*I&@3p^;`xewU3*%Br-dYnK3I~o%E+@r{AZl%*%K|6Y}2QyD0(_w`agfg
z9M2AG``KMvLLbhmh*dfB&`9gXf$p08v%70f`n-I6^XSfZ+t0@3Z*=Z>uy%F7%gKu~
zRgUb=>6cmTP|9GbUa!x&v2;TC9PQcr1eyO8>~Y{SD_FGc#D{}{b3<)rdAj({Ps!Up
z<*$RQV#|lP?Z3D_noiZq-u0zziIwT^)HhZK?`(<M!c*q^Lz6x9Jj24rN$z%9?DtMu
z%6e@|P_-}+%e~ruKzQ@T2O(R<Gq<a3*Qqq|YTf_$vr|gU-vfst99OIGimwq}lU)$P
zpZ(g3J5)UX!OQE%>bzbjE||;`v|-xE3wIjtE}bdBm}4d{ZWFp%_n||J<ibnWWOwQ2
zWeLazYWD=~syM{?dWqL|rj9k~Z>JYXNiKJ1YCk0<GWFVn#WQMmSj9d}Z!e2@#UWsF
zpsCjR+PvpJyv8d%+AGBuFW+$6I!u3#VP3)eK3(Z+8sQq%uVVJIGS2E{JK1$dxguez
z$J2KVAN;1Bng4C+l{$s2lRd4gx69iUKR$UoKxS@roFZe*G!5~)EefR-%yYIsx%O-y
zn^Mxb<#)Nv-<ak;m;TG}`M&+Sjh(`cYm#dj%Z{elS#y4z+sv)F<h`@PipOy~CbFEl
zwRF8)@)_&n%LGF`7+4c_FaCYzlX-&SoOQpWIQ|DM(Ysu8;LhIfizoLl-1+nT_tZ1D
zgwrK{v3=-{bMS4;e=O=2#Sx>cXmr0d*YjYA<=6F!yXt!%nD?)re=qj@O(xAF-O()9
zW$wMysmQ9lR}jxFc;2+_ea`;9$<mQ!A4^{Uk>J^;*_)8KXA=*r*b*_PDPP(-ubq6K
zQe?8`ujj@)l2aChdbYQ-SXs3nye=RZ&!q6Z^x|RdAHS}>+`C^x=)TS3tZMcI_Z~Kt
zT9xuglb5b!v&#OTv!>1L<JIs04+i#wjEw%gnsOPvrK^7n-J2V2yzun$oxO2PLElcT
zW&igrdGDN!alApFS2O%xEh#pyv0~A|say?)zxbIIkHlrZ5)CrpKJaQvVvwffnxM;Z
zn~iqw*eGRGy0z@^v-dl{I@%xJYrnC=;qjlBo1SV%ZTqyG_tsoy3%S#mE3_ic9i0AC
zE~jsv%F?GFbbh8sg%;SXU2}6!hGun>d*^w#-6DCnSBRay_UC)>!)Jac7g^rd_;w?g
zsXj96daizq@dVYck~_5Lhc`4e^_48#v(0Pkw6r3X4|^(<e!tF(ZmC-7@!WNLl3UP=
zy??viOEd2L?q}9d>fQJ{Ub5fNlVjq+^KYlAo}QNJeB}2ke;%%)`8ry8SNtbU`@^Mo
zwoh!)wV6Lwo6d`O;pp|MFz*OooY3iiZi$%ewW#RbKYpD5q8|6%|8C{4E2q_u9WV@D
zc`4OvIVV3iH#avw_x@ep$&dbhPEd>tcJEk~9ux9GGNvS?#jACSv-uC(dtN)QGYUTb
z9M3%e)5mLO{>$1w>OAVX$?x!F=ghT2&nygh>vU7{_#;fuv?PaZ3@`Aqd>%SsrcBnm
z<BNL&{=VRs(N=ZY*8Rcmpkd`wBkPAvyi!w=3rb4<w%mSc%FJP5xIX>s4$qp;ds>bb
z?ys1+y}-q=D15@q{|7#~tvn?8AU52SL(ynH<NhCfyL}$Ul|J}Z-jJ^-o%c)HXW4>n
z(@HMx-hM#uSoo4C@dqs{H7e)-I2d>IaJ*w2Tf{l(X?am18+_z9DIeyn$a?J@QTWAi
zE|=Y*WiC$-3(Ypr@ZNoL_g2ZxGZPH*Q{NQJR-{!)M(GM{(^{z;tmMnSZGCWvG~XHH
z@|(NX)=8M@lpT7~5+var$hq$e)4OZknjYm+bz9c9SMB0FTK-(%wiA23uJ^j7Yv%vm
zBO0-^-aI7c3*&>SJB43ZDQ*bc81Gg2<+|)qyQ+^W0sA?ubiyBpC+4wUp8hG9?U0-F
z+1SvBJ98iY|Hlxw=5_G7wB$QnA2!TeYd+ISYC+@wO<anX%51q0y!3l!9v|Ow_|lRD
z%QXt>Z++(;(wn~e>qUm=)yK{@uRL2^r}0hjrr(S7VD|KdK21HU!M_<_f8tc!q;3|Q
zv07k9^p-0*_6-YIr%kRk?Qf~<GkYIWpf}(BK$GKU^Ld}D-v0geZspw5)0o3kPdiTe
zI6t7_!BSIR`86h?)iDhBN;*Do3EgBkEq7JHJJo<KUC$f&op;Nt8f-jyZS`KpwdYS<
zjr(XdX=~u&lGGVXRkYaLUe8elMO<79dr=fq>bqjrhUon%;!Yhgy>09Eu4PNuxY9CZ
zb}rww(8N?H)!@G${LD+$t@4W&-eySD&WbRuvdT<INvaO<uoC&$Cfl}bb7tSc(@sX;
zgEH$F9DcOj|F*9$ZpytsS5ofwKitae?)5h(Hc@KgSN*pY|5g62`Z%G|{(IfVvZptN
zf9PF|)lv~GvTF!#JHO?)Uxj?Vp22L->rYz_uG4??Y16;bv#!r?@a&Jc|3S;+1ZT8~
z==DE8+dL%uHY~Ygro-g!P;qEer>2VKrTB*EHvNRFUOxiP=KOUDtU4C`;P1o8x!Msv
z*<tsVwM2gB^iG+y<w{_Te+>6FWnH%WlltC;9+dR3ey}sq#qT9Q$M*QBi1WwJevYnq
z=xw?6xrcPZhONG7tlDcP_G;cZbz<6vAf>W0&SS~)Hk%T1)=bFJ;IC`@`2C1PLdxgH
z&-`(F3jV#B8LaOAXZ!xCi(5|Gf0B!C5pbGv@j>!h-`wO4x`#?$ePcJhV|3-+ABN_f
zEGIFexMt%n&t$FyC!Mp7_QLGx_xL8N<hD0UDa8EF)aBXy>6qcRm4aI5zFvK0&D(a<
zXhp8GaM8z$-p=7!ttqE-P1-u!HXn8I?GAeFY%{mKL5B7J#hY_p#K?HBtV~b+amY5{
z%B?)3Z+m$TEEab={Dv{nZ{z*HDjdtK7bmm22Z{Ab*ZF<s`J=x^_WnvYGfxi1m3Qje
zE`FQ7_*`^@dva67679&;x1ZJbKApRD)n1u?2B+|=!J?IE24{+*WxJ#E{)sPrveV~Z
zPxJg9E~C&>d4Ep4oBUWs({7im!vp(L70pTByB0lqn6W0PM7*(n?HjjS%yZsP_2f|G
zX}@XCcUnTKecpm?Cwm<fUlt1MsP8&0aL#ylB$H=v{oKv3?ics}X=ILU5qQdzGo`&D
zJm&K89W~s^Yv1H6{BYTC#M5?jPKA@;?a3=YC?3pP&E?s6so+vkZ<xXTxV_$+lTCDr
z@3so;oG0O<mG}Q(kapBeX5Tfh*JrVq^!<!@B6(-tkKc2CddDq1nKb*wr-io?7GGWF
z6qL-vvmqvV<<;{W-tt`IGdTPEx4IR#qRXt!1(weYb_FOLsqdKZZRgg+P-EMsm2Ir9
z^IZ9h+UI*7pJ2)~$=A!DRXB$Ibf87?{>ROG<F?2)JlyJ)*8eSChF72G`uf<1xi%ZC
zTP1jRuYKhg#h>0AJEgng<=2(=5t^H2XYjC#y#ABo<5-dNafjM#-iZ9==j^%q-mb8@
zsBmkmfRjgbVz>=|!oGw>UXkk-JvRQJFS1%E^sw9ft1CjbRV2+lE#%nAp_EhnA<QG{
z2~VTFj?FR2bB)vYI{B?{Tzaf_ddu^<yuN)!70x!DN#PN>KR!-g{8==rb&I^3bu<U-
z?n^<ro{rO>Y3$i{ecD2$J>6@IESNI<`g;oH{|ebf*c7hg+85^Ma(L~{r<QZpKU_H}
z&}`;q(a-r6{dYgy%UgN9`tXMvsis>r=kgz$qSJI)Y|?eF<w^6u&rDZ}ICb-#%#!vE
zCl6W{ipZQ}IHNkHB%0r`^V983C-|3%HNV@s{MUhhGn&5eCuY2fGK@Z1R&e~*jO@(^
zwwzyK9JrUM>3L+X;<5=QlKlQYQ@!h*Gi-l<y?wH!x%jTM`)`(oh6Q=2V}j2XKfW9N
z?DMSe<$d|{?Dys0{^g(RaeK=NK{p+<;Ht?|7jjlU&2bcY(^(?Bm6Nr@gj;F$t&R7$
z70&ftm90Eo??SE4jm(dCPc)?`Sv%>Qe-giuUE01{apTXFH%=4n?HT6$i|V{EqsNj*
zt>=C{+r6AvqvVkJX4hs|-t_CXxR`n>+cv0X6Nlo|cUz;%Q~oe6lem_}r`X@LNS1v~
z|C|k``!+i+pICZCyTSdhh^fb>RP86iO4V!3U(THI@==Y_-M_w<C5}mpihOQUF8y!$
zFY;;pwtZJiWjQl?CYh(#^4@Ln2wrgN|1O@H+itLZKHPf2LGI#H_0Z|B8S<m7qXk&4
zH}ahFn0%GL=dqyK?oVpBuAb5R_UdcWOzWrLn~Eh{1Xh>sZIh9^tq^-pfuTA1`PB{T
ziPMDUuGy|t#uT*pFGKd63cGa)?*AJ6#ToZ)+}pae<maiYnHSZWd~K~uqJ^JH)SM|4
z&r1<?>UiF8f1RS~7ULHR20m#Qh5qPR3(i<7Amg=ROW%S+d=I8RVw<cplVLj}hv{Et
z{>JBJ8zR<=EPf{7l(LV9f2-eZ?S=V0>+U_?xNvjXH}eacjj~?nIm_PqXa~95C#;;b
z%2?8fL*dhJ<_|ZXlwK9Qp|RgG+jECV@x47<^TaRxyU8VXJY@A!winmd-rvA!EWU0J
zleMtUsi+OX3^q4UeAoZ*hC97`p@Ow-!-cd}^@-D8a{a7b*!|MG)1mbGg@_*pHS2#H
z=W-l${t{?$$-c?CZC3Sto5H9~)9m~>LsF$LeQ!L_m^oKlYvbBUCO5UO{rz-%Ui0zq
zS5z}|IT=fjYJ4!<{xFl-@l&*VNVu@%Ta`OP>t0XqJl)tHpSgU^{)Z(qPt0%>yJmFo
zZ)I8I+s;Wh6h&;-{9X2{I{Mgl&D?{#d=8d++J~>LPnw_cJ#i&}{2CRz@WqDmuSzuM
zO#J_S9>?}C`?4?XoKcW3DVE*f{Ipd-_knX@VEL5;akA0o>tZ*$>|@#Y(AHkI)PO~3
zj?}S<D}L?ktX$m^A8UI@_53AKoeLj2AAZWtE(v(3z0rSt&xsEL$4=^XKTn;p@c#!(
zo33lVHAOrD`X?ryW*2%JzfwMtVY1Ne8O{^zvW!xWF1_$#^7s9*Urb^Ts>~E)R`g!h
zD|cb9Z@2P+_Jh0BtL0_3EofLR*cw&my?ayQimxx198LV8^Q-I2SK$NyjoxgCyZJEg
z_w|Rq_FbX-k1_t`sNVPLw@T`i*I|3U&gk8~nBh=bO8@?SP1zT|uon3IU*RcxkKy{(
zvRAD44s71Lx%&F)<X<c0c>SMj-||a()r<dfTy4|%SGuz>?lGLpV5?WTEB6cYgTEK;
z_pP557C*-;d->Oz)bC23mtWh5wq9g(c(C4!<B^Kvxlo4-{cQWgp6xd|FzJmGN1%4h
z_fz~9`(It(RXES%`{WH97u-?uHQ=~=S=>rG_RQuG=Cf-vkL~^TL|Z~|rTy`DocWX9
za9p04Tcu%e>SmJ0k^bm>`-J*6jX__PKCEjLaH=V^GI*x>*Y;d;q=i7mrZw4$maV@e
ztzP_p$8|5edaBu*9iR5R=b3xbXY$_Fc|wQFYp?U|e_ze&u%gWDbH$_+SJKuw?sLt$
zr?skf`tnPb2i8~5Ir#XRJ_BFI|7oADy|+z&FU)&jjfLs$*CmtFQ)4X38vgy-pPfCs
ze)GzB*5=00r}s}J-#v5uwEm6%GyK+gPtJO|Wr3v>&klz4@9*yIOFdk7Lw)`Zzm&B+
zSqiMbC%yDH-Eb&m*^4{*N!7v2RvIwP5Krg(S#f5fL5FCXR-uVmfRWeT@AVhXF1fgz
z?ddiqfjys!g^g#0<b6r~t8(qA#ex{`=A(;^i*}yyH{CIF$@IM^<zC*te&FqSpV(m8
zhWf`ghwhqgIB}$T?yh$?H2yp_&eB<+c)(%r!@$}X^B5YuoH$lqxSnm&5a#+LXH%hx
zY3SOQ{96~l`1gMPG0Rh*ZKP~Zn4MBvQ*6oF^>8Y8@FxKQn=@M`-!Q01b?UwD$$Q%8
z*Smkr!cQi@m5)e?c@*|iqvr0r@6J)v&t0z#4vk-Mw|wr)mFBxY<!thhZfoyed}>DB
z;pHbMSXQsAVeJy}(Gxyke(m|4fC7t5wKnG4XIHRiyDc<)dFw~6$Qq-i6&fOr3u+9f
z7qKqVlV6<^c_!=q-3MEoI415o`%a@__0m=WrOz9tGq}k9)2yGvHd*&wT!7WTEUt44
zjwv5FJ;%;wv$&5*?aSF78HukBHAM(A3AyUZOGvEtF+Uaee%=Kmwdc9-9IrP{hzt5R
zvynmZ_O2xxeq=E}OsGD(?xJcXhhXrTw#g?dXT5$_x4r&>ckt7nhks5uG3BwGrT4X*
zTWZrMu(=#seM2~idH(a;?&jUeRr;a(Sz|g`OroQg_SRb7oUF;A@aEDbyKB#GhZTq{
z*Uf5R&;D`o&Q|Ydn|ROqhD-{}e4u=H=bg`wq#GB1TsFHy?QHz5#T!^PFV~c<sFSUY
zHQZig7<Jh5Ggrg5W87{h7o@pu-I?QDd6;8kUB-(-{WyzqHGj|fzMKkNGqNrVtvG6Z
zuXp>kXQ$3t#I5}lc$7;%Tw|TkqhrtWW$*25Vhu4r)lv0-=I*EmD=j31ukJdv?#;h{
zb^q$>Km_aZ&Y!iu_f4xCW_<4U4XUX7S9&_fiDMz3ul^C+`1ttv{c=BBI9_ZzysXUS
z+NtHuxx1BjPTcm6d&j&Js=J%clo)VX%X7aJWi;$M(kqc{wPCx!PG^qO*?U<s_eH(T
zzp>_B$nGkO@X1qp_pA>1!x|H+v}BjaJN|{cZmzzqV3o6Cw*JHZTGNY*70;}B|KB7c
zFZKJ&TWhXIm9V^z*#7rGXZLnFpNsliyXx0QJX7s>q`zR^=GFj%N7XknzdbT|vF!hD
zsT?7vsVf7H{#v`6f0oJZJu4mi7+&{0y}R%Bs;zf8BIYtpZTglhu%&bx50_ho-R23c
zi3<-tyuSWp+LP{O))mo(F<a#tzI)GJ*0q0K)7P5(zxqobDEyjf{_HhZ;zi{T79yKA
zd1ji&{9BuBQ#ehEIbY1A<gG-9=fwPkj?Jk725P<Lvy{}<hj2E(`^7J*oZDeL`ME8_
zEB4#!<v))2l$CFnzTkdy>FvfguSqe}mHYc=eyOmWfAG%>|5U{jduFMa@x~w3;JrV4
z%Qtb`2Qft(ua@erI$)E2dO<?VD}^^^U$<1tGzS|_`*lh0!)CkQd8-08FVxm!V@|uY
zJiX#^*G~P(tVa{Kg4~g0vB#*g!%{j<QtS0)8Af^Ov-?6@_ut`Y_KlszGCMch=b%^7
zfjp4G9=#eSUwva=FbJCVdR>~|Hr-5K<b1<1wXV<YLJMWAZnOJaJj{_4;W_c=NXZKS
z^Z8B-!q*&%x%c77wZ)H^6JGtO5<RnJqbh4Q=fk$mt^pm6w-}Z`l6bP}m0k`1pWH3c
zr~lkt#?N4ye7&#z`X1AbuU9j@e><Vi(~%>vLe{2qn*f*LABMV(cbA;@ujM)r*u44C
zoxR_)jq};gZ+=_hoyG6&Bl4f!{<hvar#~rkCHdAAZIj@-IEAxueXkc6-~NTNzS*-S
zeF{sr8s5CGo16EzYU7W(2j6!*UHf2P?54owB|*HOnD2cH?)w$nW^(=Eej!6<_2~D)
zQODQW%J%%tZD;U*er5C3yLW42BsN&*X{DTJpYTD%gX>wr`)8~zeu0}xcL~In7-p?|
z^C!Eaeb?La%+C#T-$}b~oc~&O%jUg*6Ax^jrdF2v_u-5p1zq!1W#x=#PuW%Xt(|Ro
z;@4td*4;tJ752{SyS>;)Dtc>k`Tda7$;ro>6$MgWX{_te5Akc*!zDIhRy?bPQG9yo
zV$Ekcog!PF{9kqd{cAtF-b=h2#V^|%8XxwU&Dc><RCD&qzO(ix)9$)V`86w$txQ&O
zdE3ELM>^ID%$~D$Sv=#8B7<i~GjExN9*o@aboIrw2X7+3>dtugtR~mwX=~2*Q;|zc
zItr~+6kDqM%?|_@pDY&5aSh$}yo>!-{L_ET3}2`HnmO-4Ogi_n1nZsFeK8w;&&vN|
zu{!%|tbIei&l2;Me;Q&N9e#xT44%8x<I*+huj}Xk6W?hQ&b()Cj6+9ei@lNbKmUVA
zPwsV|?x>p8U8?n0%h4c|L$M{~OMB_AniI39Z0(T|nN#Vw--gHf=kIXKDn@aurD9H7
z+6!ENP7GQ3UCN=jGR^q)vqe6|rViPPQ(tZU*7~mTLuB~zb3w~^maN;gVXED2w(CBs
zEk8JG_pR=CKHyVf$Qtf$8pM0AI67KdGCJ!s*N(vDuhs6#xLtS`ucgr$nW}i)tYLQd
zE|JTci`W?VdpdDU{A#EZe9m){+Rbkazt{4A2~W`%FuL;C{VfN#-G^-5qY93C`)ZhV
zOgj{9m?ZQ$6<coC?MOIg8+-8R%6}pz$vj&p%<TPkT`u*u@13&uFDD=8e}8{(?dM-t
zwHF>(=j1e}y}|ZymWHyA-6egtds0&8x2Rif{G#%~({X3sB;iZv1s^0!Nc+8#7u&UA
ziGb6Jt~%4KyS*J2?00PPRXGDgI1g%?Z<S-*%_F=#?OR{p@?d}GDK9w$xb*yv^&a3n
zY`pGFG^2@iyWVbroPwTjzk1JG$NxXD;K7B0{WB$71d>#EN+(@8DSZB9){hU(7msD@
z<y`zX^{FLKaa#me=hMgR2TTr|#!o%oaPWiDqhq@Q<3&vu-rA8^TeI_t>z`ljq081p
zZcaNrOYlO*|H}d||Grw<f9sHMYFN0)BcJ8&ZK+ewuWs_T7kA>wbe1mMvQVvXlD0+j
zyZWVK|6<F!Ha+&TumAMp<mBUwf77Zs?(3;ne>tzt!k>R{PvvLFB`>Q_-xWyDvJAVU
z(wOyQZuzSn-8pX)pM2gN{fzJZl?5qnGk#@uUCH}?`irUidsn9?9?8!+wtv3(`slg`
z(P0<$)od^6G3$wmMgG4s+ggZaj;2D(hm3nGCq2DzTlk^+@e?zbe27R*YmpSLcz&Tv
zGkBW(j+fa16{~~R9IHC4`_^f3gg{F{eNtuW0#(Cp%&&uXf3M^}vZppZ>S^=Lb%(vL
zY<q6xEf!IA;d1V;`4=jF{`&Q6-}kS)E<v7?mQ1=N&RO?zo_hSgnxAKuCvewn%}rWS
z7<jIF=F#-ytpbN0x7Z~-o69TxPA#a8)&0|g83KXU-cy8?QckVuY3&x#i&?Vaeueg@
zuATK47luYD_SNLoOHP)!dCn;!NB`RUL#6^{d3E2p-W}TPa5n#!e{}7aeR;2?f4w;J
zE3$e2>Tspz&TG@$({Ie=I3S%HC8rux7xZW{^RAcKQ+3O}1by9U$50U|-*2&W!hf?L
z$2V@9C$@N{?cen0Mz=2WYZl*h>phjW(M10mtNq(M;gP(1exEch-@jR-(0{U&>#~Z&
zm76!NzU2EubsKw4=SP0V57B>SCIyPlHah>XwAJFMc<=U<_sfs=Ri#MvM_-8k{ak?K
zukK`lL!aX-;*UMb<yzP7zWLcR_tOd==4T|lnOuE<mEn-t)(|7Lqf3ufR|Ht(Rj%IN
zP?g+%@b%VwjVrTXM=U%d!SuXz`M*lDGnb`mb(&8|-P+`%tR5a7qIj~wjzK;x!+Cbv
zi#_qY3oP&Wa()z=zUBVA;KQnuZ}EPYTi-B2Gt%{1+u`kP%rWm|?pJHo8_c?KP}W9?
zalUJ>O-psY{DYfs{HKb#1}$Im?W(ld`iAt+UvJ%+HJx2^--W`!tAEu69&E7Ozi^8(
zGsD-N_xE{d7xh;1KCnHvsjF=D$}f7!TO0q@Ouv6=y?y-IzdnY=-j_ViCl*Qwtn`ig
zmNKbVQ#**w^|<}DRn2w1^X3OV*A3sE`u*U3U8$w~%cj?cSuhA5KYsP>g^x@Q3zqVR
z8Gkq@v)!Whwy)x@k6ZUWms{KUa`yYDf9<&XQZ28Xw)LIe^7rl^|EakSF-Bi6xb5PJ
zS{2G3I;Z~2t>V894EMfX@i%QvyMJZ16o1bQHiJVon_tR1vtOQmsdn!><~b`hTTa}`
zbe9lNd><ZEpd*{ONZ{tN{oIk?mkJr&5c&Ft!Q{8~5>Y3P^WW4v4<D6~&0F`aTTUV-
zGHKgQqwNn@{G1*&E3NmdxN%>L^`{zf*5?z%&v7WOF`VE#vqq5Vj?}8VtDng(=VcfB
z_UTyt?P)&p7hlh2Gri8V#^6q)=!;E{cIHjtHNT$Ip1`4zI+w#ZAt7mBQ`6x>?Vo3V
z6u#ARv3_z-%_~r2*78h=H>-6x6<b28YgG=My*INr&a-qqV`Fn~7*o(kxy5W>-rP9Q
zb4%%~(}O6^*DfAk`#!w+7#>`}TVx`!;Y(AV^TK`m|8Do2dYSX1`j&!i3F}UW3vRd?
z%%OOxuAWsPt9Y-)=6%)i_77%!mHG}^yLU~EJ(E4#Hmmo=>WnY3^LUcKOCPtp`snNX
zMB|l<MOy^!yBw<GS9F>9avy`;WS`^QD+IVEhAqGH^OU^P?nvDui95tu{v>>r<?>6~
zl^2ouE?@5UuBRtLr}IonF`uhDXZ5FCku^o)tB&n9VR&ve(=z?vA$Fx?b$e59^#^q^
z+PcLem;d`jui58%&{L=JyZf`6cvGuYeX9yCAM`%Y!f>Z}S%RKVx~Wd-=_~*39Da0V
zrLEf8d-*`|>&tW2F{wq*f3b?Q;rlIzIBhPi@br*3Q<|cd)bQ5NThy}2^yGJ`h!wxg
z1RmVv*qr#SNS5i}R!7^wKXL^JTTGW^+N9<FS-D2#TjSO38Wx@J6E<v4^@#ez@n@wJ
zXTgrCKUY5Ad|klwj@nt5S*i!*q>oBwf8&Whn7V?q-ZHvP#kD@6?fCrzw>F8bDh)iW
z{d!aNi^BKM`Oj<%oTr~Kw|BdS#jHCUuHQ6LQEg)gHhRb07I}v+wz>IPvcQZ*$3zdT
zU%!^^K<2$gVMdKREP^=lt(INTkmF1cF?hE)Tj1WkqN86wtn}5L&cQnErkO#jfKyLc
znDV;wr46q)|69J~*e14wlveQv((#jK=Na5vHf^=@jH{0~J^7fu_seqj$R>`nsT;R7
zUH%!CUG9HmWBlsq^=^I(JvtQ4%~A#Y|B2t%Jnnw}=uW9^CTn+v`RP=Oi;7B$ex5%?
zvv`@$Orz9uQ=T1L*sP!YYFotAz>ev2`!np%N~kRB+4Qkn!(zr2)BPC{uDg$OSQKR(
zKV7kEd5+27ef>?F!*t%{EjlMvugiRErolnOC*S1bvlhp$JeJLU?q%K?@y7j=*iAVn
ze0|-z>ww6@y;F_-xNA%~Z)90&teH0R!nI|~?)uG^Puz85%f#c>-b$bK5}eaJ_}-MW
zOwsA}Y&m3WwvYYBoTE1<?a;gQiqGkcWRB*uz4P3D9}T)~Gt*XUNm+UMcY`1PEE$|7
ztN$GpzZ&Ai@o{5Sbm2ltv(4vi3<H*b(f@GcZEd4K^!~1<%>kirE_!!7zdyHRn}Qy9
zM%}h`X|n?2PVCY-Q6^LI{V{vR^?(lFfWY#^wzXYitm&68iC;;cvO+gaL8a_R!sa*3
z-p8+1t@*oLuSRIc2FV>U9vm-q>vmZivk6RVU}j)VpY-4U!HlA&v{~lQe3~DB;{K!5
z^1^oeHcjV1*-LBq_eWfwaYa+$N^w7f_GJ#mQ-}QSE^Yj<{i>7Z4vxI!s|A<M{zh~i
zWYg|8D)3vejFIu#<g0y6>DNrY$ueYh{PGlX>ezSjAjh5gO+xWHoI%f7=LGt#6z(h$
zU6sr7V8Kq_TjmZern|QbTBSagj(v2yx8Tk17$=U4a%HELH#8+{KI8p8^+agr67xAM
zUq6U{So~5d)QMqDq}dW#gYv8Egs)$(Tk?C4oI~-i?K`F89BX%~gcWGW|31v-$~wuy
zh((ai|FU`016EtD<6oDb`!1v;yzSoUjVG*s8NA(8bZDl_N?9iEsqy-SIxWXHT&Z1n
zt>x{fQ=-ykZ~ni(v$gnai-6OTy&UTQJzj(?S!MT=En#zgZxi=L6CpM0=nfS>*B!qZ
z_e{4rKI5_z$HH4Y{zW`Z6>EO$20W?1%B}hP`I0l`8iuCArz3ChHhiD>b9LU)C1US1
zTLdO6Y*_PxBYll!Sg^;uFU-5FqC1xOhCBQXnr-pu&-vEVQ*|OfDY<+VaO&t=@Nd4r
zQxgGGZ^LiC8+%$;te>OnGU-_ELa7I5nRy+q?5k97QrIz5!08H4JEIfF#V3Lvb}in-
z?zhmR-f4!fT@cqsO@oJ~4mXbe{&jVc|KzU!udQnO_;oJzt+|ry)L44Tz<c3}FwJAu
zoyQ)}c4oL^`$MjS<MNC4+ll<Oy_pQBG`v?{*=W0DQjN#dEEVCuktb*FD~vtn_mXe%
z(zNo13wGy30}oc#BrCE`m|OV&oz{x{^>PvCU820wKgK%c`&@q7Q<l?eZ@WGD;t#vE
z*`gQE#)|SWt<h7M-ofSBw=bc#h{e+L`{eL5(e<lWtC(iy_kLeyY4`H(zPOh<8?UwQ
z{2#`wzSjIpxJR8&!!o}YX1{NgGd%ydb4h5^?i1bnd_}H>m3mJ$te)3&^i)mEtxILv
zXICgZ@RUyVp0+5GW2)@^?5z$Bd%vnE+AuELeJuEf6_@v7pHq=bOaITDeQs}syu{*%
z8z$T`OJ2QyZ)1bv%ClDkJS20P`yZ`WHQ(=eB`daVVfcjTDKQqS+AcTWnA*L?Bqi(~
zfA8uC9cIhAdPC}7T=ZyIvHy(P<^T`PIc(}b_VbwD;B6~#PWiyZRL;A>NN~;E7Yxy7
z@&tCf^lP1c&AxqooJHxE00Rd1M_h9^UcGO%``CuHsc*D4IZb*XxX<s!*5-3sP8^D@
z!T~i4-!X=nmp2()ENSda)1Su9r!RB$<>o`Twoh91wY1^!*QBf6^Nu{YxM$flmN~&5
z-)bK830JLUzx=g+eWUn?htI#-9dJ_TP;SZCysUiPt?GuE&tB&=@4G0!L@b=auQqSb
zLX#OszJ1kyC^g%cb@^nzKFfu-FKux9Uw&*hLv70hsY6lf9Lg?ifBRnd-dxi;(|vz?
zeX0DCG;zjrW@b|EJKJBVZ)`7~>gl7{rnKQ8=iPrP2Gcv0-aqK@;+V+XXZiGRe7v>A
zyniWqIZtK?ab#>!^joU-oI%gTbkf#ST5o5%+_*Qt`*w6(>k?PrAD2Jw_1fOUBzdj!
zeW(YAqRpR#S;lQQIc`*cElKA$p8okPALF91tjAm-HoOHpcP?D;F4tdk@{A_Ss3zf}
z&L^$c+Z5exO698<HqSLUQ|6$#S-e}1gI!5X{Az6-Q%rWIM(VbQ=Na$)e-<OUvT5}t
z?z#=`yXW;T?>DOFQ;%hyylt~><4!*Lv`OZ5X(m5z*4c0h7^y!y%_8`tH}S2{XD5cd
zZvknBte1Nje@=aVDf~54!wTN5XLx7adXR7Q_O8K!QyO1C1#*0wspWsUEM3LnL4MoA
z&3iu@t@-lP*kSYMV%LQ$68iQ#lv!U3(O%47pkLM{ZR5+Kc%&#IaaE1=28X=HM~iKH
zx`SU_E2vapFmIPkKT&z+_6+{a=S=edG}6*JMJJieUbx_lZ<;mVk99fL|9Bg|Uujzw
z7G(K1A?VkRr`!#GM%*I$#SiL_sm{E$rh@xG_e=TX^OocZOn$WDnC*iN-7~DTcWAtn
zYdo`TjjEi3hdaNb%c^tJ89FRX?eg|*k#C$n_wk#yOK;j%^nLOY(N9;Leeie^GhgQU
zy-d@tm<x)1(|K{^+ngnB7v{$v&2~R%I??P<W##NO&$-vHes%kQNwe9}Cz~w3hD=s&
z;4Yjrvw98VuanxrHcPmU8?=6jeVb&SaoT*@efxGtYtHHWndTU;pA+H{SF`8u%g+7m
zrn*Vl4(}!kXe1j=<a%6g!@5p--GZX}?Jwkh%-pbDe;;!~?HktBuk;goluJ2Hd%kxt
z^#A{H=uBHs$J`AW5zEhe^YXTzh@bn;W5ELnu60+ety^R7TRhzD=KJsZm($O5qqb%J
zEq(2ksdM+oQnub2sbg36XD8Ra>lLmnu${r<c=rRFfR*O8#0@5bGam0qjpz$Lwo>KF
z@%CvOO-_WnzAoDldGg*N%^hr!=`D<kGu&$HZyza3wQUtRq?>(FYwN1Im}L=-HaCry
zgmDIH1)NiUIjfwZ$&aV|ciDS}%RcuW-+QfVU|#moA)#28y?67aeg%W|j*e!VL$_YJ
ze*EG^pWr>l!EBjrzZmy52c@sMmHBDfZNX*7qn@nw?*D6YEcMj|jvE=jPwB+(u8dCm
zmNnsig}{=T3mZSgch8cMx_RY}+2yEbl7cHvAJu!ij&0t*xQmRhkG1{#u&T?^@lS2l
zvy;=!^Y`tUwSVfJJDN<}{e<m>l>YRutlP!Ze`u-KQf8A||82ad=q6{Lt=Jp3LHDkw
z>gy}(f+M~wetGzpo&TNv2S*M?yVxkFj?Z_`^e&w|zbmQ#OpLUlt4x-NHJ`)lr;;rK
zkM8{{{qA!|NqO$Hot>-C#!F1mSbmzT&BJ&3G~uSF$@8OEJPF&8vvbo^ua$rP*8KhR
z=a8+9jjfHX&DQ^)KmA@FR{rdx=Ul6;n~&@A@B07X;9o6!Z>5?uYcz_@`TzTVF;AZ|
z=a--2#iZ~zmwa?@*FRKi5m2w1ExoH~!f(&4jjwm}m%VXR%nbf2ap0ZBY2DxzLO<Kq
z?fBmuckt8wCu*+t?`^ZM-}P9``a&{TD%Z1IA(oGCM(%Iv9r;=sPT%ewH*xsEVZG|(
zvV&f#!Hb$AwcMGW+ZFqyt22JMZM!C{r|I_IjLGw#zpGxu#vz;XDl)e~ea}__CytZd
z9X!u&P3xO|_WhLi)7cLk{nR<>E>mPP$LZwt$3!PFo^9ylyXCT@RcOz*<Db+*rB`}w
zl`y$9<$lt)r!M}9pLHs?gj{-%uXiqZR%TYmj7hh{I@c!4{7IcZO>`3bD&7yvI+A~B
zan8=!<NE50*a3IzZCOm(XDmItR5x5&b8p`-U4^9BT<bjnMn8l?J^rPMP7+-Czxj7x
z=hy3O$8MChXYoJyFH*w2DK6_q`XQ?b4n>!D3O}yDF$`Vh8ORV`ePZ5@Bn_SEyM0?z
z+@?kMb-5WcM%^kqK1X|l;rWt`McNsnY|qc`72dV-VP>eYc&o;b+tv*KZ+>FC^5KJ9
zaL_d|(MgJ|P8;Jy=SysB&dt7jz9G%2#K1!%_&C4ZjO?ey@*Mv!{#j&D`n;H77H^T3
zQ_&&oZm|q5E~k!wb=FJdqnQP~k8h1jdYVvMlDJd+LG1Z6vOoP8SL?3jT&=^+d_(QA
z#cf9Cr`f)Wm6N3Y6??c_A5_zg&)xA@t>pv9<2;|t#@h?zGTqKTG?d<vS;#m&_lLB?
zmae5%W`SYN@iFJki+8)XPVtnx@oqxjzecWYSKf0?ZV_;baY;6?PqpQEW18ro)FQCR
zSAb>f#v6IJ7}r18d9p!~Gs)7YGq}RN(`9LbgJkf#iQf{qOtvhoGqlid5m<FR;RX9+
zvoPlK*)w;pe&U-@cm19Hmp6Bp@0)2GHEVJ~(6)p?*2A19rFRSbU$pF%){=m%!#eFH
zCJa_LN)DUm?px-z;r@?9&+`?ECd^cva_&Is>wM!j|DEv-_jz_6yO|^Wvu@#LpS9X5
z?6YQe?M-3N+Hdf!xM#lMt&05U1*L1WEBhI5KYrKNBH-k)_weHOn_9-tx<j2C4;%4r
zRw_^`lZ;4}S~bCG1?T5C_q($yMD}RP)VngDI#loUr1Md!Of&!YlLs#ApS=^YC4Ifz
z{qomFGM^JAPwVryhMILI&$C{U++VRr^tpJe#3v`2>4G;;ZWOl=OaGoE`BHDzw!Fn(
zyabZ}eV4nDrnx8T)><*QnF6{GyK+CxNL9P@?`VX)@b&U&Mb*Vz&u8vky!%Qm=PXXM
z??#+EzDxC<Oz8i~&v>x;>@CwS!2`*knX9#WwuCAeUt!{i|G)F#&qLdvJq_~clxcZa
z_SV7Fi}#+{OYyBK7JNrk{&cl|nQLC4>^H;0_ASGq@L86U#h(?O%yR3p*DmOHOPjjd
zwKc^pw<61IQRJeNLEGO4J}79q<F~}^c!St8z4Up@8Q1;U{bl>Vw?1?Huijk5W^wo4
zl|4ZMW$G>}##3f}6npUR!F{&!?2jvj;sO=TsuwJmo#h+5@$;9x`V1F(JXh!!e%|g9
zVp6~J)X|L6B$?D*0*fA8`Ocv4c4X_-^~{@vH6~};+`iLk=`>+$YU>jR*&puj%(&O?
z5f=S>X78H(YUY(8P8~U`8RtcC?0$Cbd!yZogX@>ATmJW<mBWceMjQ1?8sc+=JdFM>
zI$@OY?$g=d{_*vn^mtOIXwFzVL00Hm-bLHIy5s*}{mo=j;`=8f`1R8x<pu_eghI8D
zRQ>B49?w4zF?ssZs@o<EzxNwx$uY)9>-M@|{U;rl@ougBwG|cbzPM@q^6EEC%e*aL
zKX>n?SJOm;xNe@&k`U^NW(W)q<I9|+zi_!5`<KOAKD*~9Wc@McVS6@XW0sbYwLn7i
z!fnZRGrqeTt7LCJdA#S)!7L{K*S{xLy-?o}FyH;UpIq~SABW~@EeQykxgpj=Wolyb
zA}I;BiCJ!W=agOUdThw~uiYY$#Bkv4{p{Iuz8ih3=h^dK#`r~f^i#zNh1YWbKH%CV
zwpm4H`QBNHmId3&UiKSh^J|7#p6GE?<P731J8?VdR&&~<i&4IIrg86fZh1G+{vf;d
zo2kDtmEY_)-78S?`VZd?@!BtCLTfnu41BCt&0F*C^Tyc)`qwM3y?Wce*gbOY@dI}x
z=I`7jb?-Rm`}GSHS_B@I|A@QBW-QmPAkAx=v|0R%m2jr2&6Y=N79RN!ETv#lcB1jm
z+EcqY6^qs}+x=NG`}MTuRvm%Ny4f?LI22zoPqgjXe@eU{NY&-lOR0pavsJy(Ti$+g
zzTc>PY;NEmOVKlmwo0ew><()>QN_n}rgB+?w{^3RYv#HcC%+4|%gpURWSA^}KE_U<
zrpRykrM$E849mA(zM0@1_W6?3jhC7&0`cvKVjl}|tdw`i5B#WBSh@B|T)4qm^#YG`
z--_Z|zfTpu?Uhx3&$WIA`_;93^zSCWNDL90yWrR1Q~hEL;;M=*8BCYYni&ZsY~C&4
zbmar%d?~l^*Ukr~cy#m_pV}3nxx}d}S?J5OjXU>jKN#J%Luz_w$G>XrC)>a6YZEY7
z7Sl6pvD}Z`OD}J)f3oiN(#sF(Sso^zIieWI>MXIQP}r&CP`Sbv>BX<T8F!S5Mi^JW
z`Z2Nj*Vh+UzO7dKD*8WzwK&E}IsMAr#UGsdE@UoOjEb!|Htm4TX$H9$r3&-5FPtuL
zQ>yol5QD#0-TLTGFZD+0w6qhyGj_Ee7Md!c^g2P|%!wz4tNB-?%d>2)<#iC9#GALU
z?O?W$uW3czZ0VVjeGXsro@?4&yFa6nzhT#!Z<h-!mfv1JwT|n(-plKynakW7)24ae
z{`v8Pcee+}htJ>pnLeD)DcRe3|LU^k3TKY}n8c+yEonpOv1iu~@^3QvqW?no&Qgwb
zH;c0W%|Cab&XYrtt93!&w&pX{ybm_kC4}zc;W4`Ept(cg){3vU*SZHM?Ki*k>23o9
zd+Nskk6$(1!cVi;I*8bPVqv_?RmEFXb|d@t+01!P!HO+EnDdUU`DP@0@Pq0DJHBr-
z_WT!`BA|Qj&fe<p=dMbIK9brX^1aDiY|RW&5uTN@66R~%lxFD7{(1P;jDRDe37x&=
z+naaGId!abxbWh|=jS2WJF_+%KFxZ@Je9@lgwM`CFS`#rX7nm)E{Tw0Ih^=2W~niY
zz_j3b%ceEm>)Y4)askV<34V_CiY?D)@E>?R?_&JMmWLCky)p|>es@<Xe#z3F;IGUN
zXHDAVbI{9<zjd!sTjhKH`qNjg{E>LvlgGK?`YJBRpREE)*Z*idXnOgl>E^VVH)no5
z`p4k(M@GLCvszzAMZW8a%X{iB<@GOI<CA-~DawgsWl`&v#S5mM{jT38dn+-hh&#b8
zI8csnri_n0<76NH&3hgego@d&a`HN$d#c3jSxb;WjnD(1v`Ly596CZ)Hw3))wNE<n
zNOtqXKmOA8S6TA%6Q-Qh{%cU~S|iHxURdC`i=ykNiD$0;xFmVIJm8rGZ#s9H<*MLi
zvn5rgWiYQd;#6!2VEu6Fj@oL`v_Dy0_H7Er<x_X^XB8jp6&2~3VEZWZCWlh4mu2F-
zEWrom@=n+0e)XN8zkLh07>8nu2Jh`NVbW|1uRap{&cXcIQPlW7+cOmhjn*md(GqI;
z-H#vEI4Qq8vglPZ!~9oH9W85}_BR;tUrhQtHR1Bc@+}^x4_N1Yxx)V--K=7oz^a!5
zS!TUko1A!>A4FG1`;;EPw!-w;$vv8V*E@AZYFK}}sIFyg*DT%3cmDr_s5v#s-i?7`
z*IF(odN;WSdwBXZml>J=)UG&rb=sG+1;&!<YZ4`6PN~doTEV`%I&#&Fw~9F(whQh&
zW9~jXPi0z{%9embslgtOTN<s4UP-iO$&_()OjWqVCO9Fsq+$2RdF<1;3?4q!;bs0d
z!%}SWx6l8-y|dY~QmgjC56{b6QZ+?1vN^N4n+%jwZ~U@oXq}kqawJehyQ|^BndYg9
zlJ$Je4ig0(#Ufo;Zc0vcElUv$WE5Q1^JcY|`7Ni77noZ0PJaLHeoM{w@-wrYp0}RW
zJm^=m{eEYAZBg}m+wXI}r_TCp=ymVF^9WA<RN0VP?hS5hH`YAg!*SX*!RX7@`(+Fg
z^K`zw^R}Gusp;(MV~qm(*Im6&m6%K_FZvjuzV5WnOaJCVCril(_c(2j{^pVo^=bU_
z=={v;dyM-w6{bsk(6$Nxlk2%DQ<LHP)t|ff$Q%7yeQEOJ8mSUVo5GLliaptcY7cEX
z85UA`Exr9L=Skmf%=}&90)NG2biVd?uI_%}A$saZ`^5e%m&G5HwZ4Sz-|q2l>9ekY
z-A><3JiT|%oHlJ*nX&JSuT^{F<dgQD|8vLUx_`}&?n!+;&cVz%KF>TPew<k}p<%|?
zYw!6*AN2?)df!`qOsB%Pw=b?;GV9CYJ3i8tOU_I?*R&+b`HSigwppUJ?u!MTIu4{<
z>N1_joD(qNT;L?GFYWcKFP_g^>bWtrn8~P1F7oB_a^1S$t$80=*NfWo)m*n?zS{9S
z{MnZeqK}wn9+mpNhkH)evywlPzH=0t-QDJyVCMNw_UDSs2Wvj?zx<GL<%Z<xY5uYw
zpD6!KUl&)v*^t}C{EAV#d(THzhhMjz>wmi7_IbJS!)eS*b5!z|o(^7oXw!R%?Nb`J
zn=sgI`q}&T!>L=$o7=a9)m>q?d2(GTe@}{?<E>Xq&x)QX*7M%^B(zTT@JTtTz297|
z9z46MQ2gNaJTtyVF}F#lVy^#;)|ljf@wtl1jCJn0eG+VM8NGD2YkRu>yi=MNG$rkg
z<mLN+R_EzO+DSinUN3g~guVDZ&Ej<7M8}EdRgN(U?^!>ph90|m&QyKjWEJZutDUEE
ztQfYN^Oc{~`g>fgZgY-Ld30^~?CE?7H-7qDJZ#N*DsIN!Z?*44-yN~fx_8~Y;d;x3
zE7~s~PJeHCRXy5!>b1=RkB>Y%+$d})xUNzlI=RI0>5Cn{W?75ad45VYT#1}^|IT|4
zHs+6pJ{mu&694&muW!99{wUOEmQrZiWu0Z*tbd+f{jjOF;NKMPi|5(`vfoTvdfF~}
zXVu$Z=j~1PS6(Uk`)1!!jlX7!Eg3dPR@wP}p5emK*Yh%<V8Qp+#i{)ZO^=9w*}$};
zvfy8FnI6aYY1;~XC+XxgZ&=1`o!u(XKbMtfy4hZ9jgW`3?!S4Si}SYYZLyirGk-=A
z7yJHFv4$HLd3X24)$r^STy%F;Ox=ciF}KTu`53<Q`Q@s#2+U$Bcpz3d-O}7~$)-<B
z-twfZnj+!9>PcOz$b)OYrmH`lVgDvvq_##%^}seG{l070u55pMX?K0BV#|d;7eiw2
zI^CMo+rIuDtHR^Qe|YxsCRBfqWw^28bY%IR%FE06)2<3S<v*Fld{}6&rcIM+xPzx>
z?^0GzewCFWSG#Kt`S0EPt9}{NDb?xUH{JNA@+bUch_Y|M?z+WE)7IQCeDP%JlqTcp
z4|f-?ZTlns;NPOW{n^*QO$=M8JL~`7b(S-f*Ngcj=cTR_Pb*&Ax6JuV8%x6(O;feQ
zDNF75ri!O0xcw`B`_aJtpxW2>V$=3&+?vX~d%BkK-LndX-;dw8wl|w2vBqA_o#Xz7
zZ*SFq-Onvr?y>vY;Z;wcJ$d%*$uo|%*TPp{{gt&<u)q7qx|K^y;+*eCtj}L_-CQr%
zF7Z=S>dR;0ipA{Qibg?sN7n5~sN0^rM!-qs3YW;2Kl_&S&2s7gDE`PiId+!nlyAz@
z6K;4Z2C1(#<4|l`|9ffsjagq3Q!iCNdXYAF{kibxtE+cBoWg89b&vDv756h+1$MoA
zzutWL@rbO_<oMcUN3Skvwa#6;TRWuq#krnG(ogR8*_Y?se>PQq@ArqU41R8r`q%m1
zUR!g6<ILg%FISv&SZR7#s(upt2LF@iV|&uv_&!_~cH-E`7Z<j{b83rH`IJ>*eABe{
z8Yr)P=6ZhC!A`S&Lphge8)|!3yuJA>Epj^lx><I+>MJt-YE2Ul?*DVY@qD$$?p>FB
zqVKzZ7Be{Jclbi7o5Y$G=N}!~$8zJI;g+)+sgLE83MR%Me`~lb(5v#OhUTW1mLISC
zf7)M{5~#1ZDgEuGmw!s?tn3pFo=EakvNa$4;N7)0ceVXjC;NKEmK}wLhK8DkhMKab
zPOoYmI<}|Z%)Mr3RoZp&V(ph1(s4gZUu$!jb!5z&p8e~3a#5+`Iam3jlIxSczhvS6
zRGjE?hq+99oywBRpJogvx#hyknJx)^H4>kG=K0mvtm(@Ney{D$*ddjWEW9%$DkzIN
z#a^{V;9>cLTbH}^n_lIxc*I_bUHWEun)ZU;TeY_Wav!yoYTL)!+;3E=x|`Iv=D((d
z*+dn^mJh#$ik5xLzGBAvP1~R6lDXuK8^K?leK<BA%eqx#`Na5<+JaMGH$D+9k!CPB
zkhpa9``Rcywo9_IH5-y`TXrr>7iB$r)@+yQ&(4sInc=hE`JcPK<$l=W_vVSAIbsLy
zC3y#iY+|ch#Za2|H)WZd=gv0Pm&ReYP6i5Fe9d?`dE=V>J98v{cj}zbSnAU9>y>}~
zskyr+@43))=()pmFYW0|Di<b%oU2I9?pgGwoiD4LQ%>uw*V4AN8<sXoe^;-Z`-}g?
zt!=f>->o-#c<_YK`GB?j3`gGodoZ<Ndb}3vKPJ<dy~3N9xhedex@rELrvdwxT-d>|
zF=dZ{Q%i1*PQp#$&)Mwk*E#w4&e?o(e$#x&?W&sZ1<sA?QGrE)%kQq$$`kXy^UP?m
z$)Oj)*`-&OK6vopLBjqiQ=U9|vSe)@kHe}rS@%_~>t&P^3NKcM?mYh7R$i$^V3y-Y
zhdU1CXEnH3OgAZLKPhKER-bOW@=er}-PSQ5=Qw?G3)Z>r$9qo4tktmYe&5;l#yOJj
zq=T!^SY<Erw$1x^`PtHW)}@O-T=l8{?y4A?ba4C0?6kU@Mc<AaUJR_YGFyA^*Vd=v
zI(Bux@BUoyqjJWReS2A>eJ1+NR%p5Ka`%({G7-O~ecI;}l#(_fLO8wd=jkI&>-FN}
zG_%TkJ6;5Za!fSI+ib0F)xueLwYGY<=&gNs7r&Le%B|?~;mxYhrlzJ(n`4%~DT@~g
zdMe5&xwJnqJNw#Y^YYKUr?_4`xM$0ym{nF?yYK4NO~#h{RW#?n*Az7hUa4m!%VfLh
z`F|0a_?evP`|cZhKWm>HBEV}ub^B~?-x9f+r!#A>%h>(7dE$fE*3-A&yR14OmF8sb
z&z^X+o>g^v@bo2I>9#tbOL)Sh{&MWmmk;rr>Z<Z5?3~b16VEoCnN#Cdnf%c^^m-oO
zp;Hwe8rf|Oo?6@g*f+_ajy|~{?v)77)Fnj=|A!jv_`h<B?7r<g^uyh~raGUNZ8(@V
zDd&6?+xaRhHqRi(t25dUlrLR-^UD;wg2zY7tJ9;^m8LD>T6$`R%Y$DNie^fNPtTiG
z^U>d*UCFbLd(I55Cp8adYWjTJJE`J6$Dgpc$CFj6o7DcZZHV=}s@H$<$NJJG2D??J
zvX`c(FdWmbd;ikmO=ju@b>o#uvkK%-MCUHHsoJ?&tgh~KFK3yGr)+ZLoTa)pvTaIh
z<rrpav!6;&4{H6Sv|-1_<%<JW-L7NUw2fCg-B?$3Wy(ZLgR_?%r?~D;{mx)eW4&#s
z057}i_pnS$pSibQeNkS`;uTg`ZxNs)AG&eX6c!gd;|=o!oH{-?`nCu>y3{Fr{QMJ(
zi^*R<oSSQHE^4kHx2NKxQ_<01xgJmBHmBT(WDIA>R<_#_WFmh2u&utPu5a?%%lvGo
z=Na{{uc~f1!>Yb=={Z%4Fh_SGliYij=k_`qyX#s_jF0?x@0K0kpMw{C&oV#w_q{#n
zZ2PUBQLo%}Dwp#=EOM1|U6EzA>d)>yJFiW#F)XcHZgfv%s~uxZtkt5u>jf5-9XVlH
zy^iri>z<vHt`xF47yBPyAT<Bo{8_Ie<LAY+wF}uLZ&Ju#weH01P-~vOyoay!`hN=B
zs(9_P;ffRW7oO!X><f(ITluc;LDBO^_bd3`m1ae(-=mv0RcisG!THOEE3`A7C^oD;
z6_w4$#GQL@x*oei<_w#2D(YvO9Ov~pmj0^0!<1@l6yJ2k{^q~1ucwy<PPnoEYqs*_
zIbMC2=QQt{$9IVJUW=~Rt*btb_S3(dy>Q+v-*%4ugBiabx6M4vbcH+MlTv-l;(2`s
zMVTf!o~(NRbHmy%ViT92P5xbUA+YGkbAhKXC1R3vayH#xwYG81va(wlyZdYM?@m-v
zp7OL@wcmZELo-Y4EW6v619v!0&Hn28yZBpFZ-k!M-j!>d>udM3DkU%aaP?PK?bfLH
z+*kMJ&*csJ#Pz?azS@dST#`NhM(!0hK8^Q9YeP$yo-VFF>0>|1c3-E&n^=R;kkI^u
z8q*_w%Dyr;uZosSinMP%qpK`+E90fLZ=9jmPqtdkvKuS!L>2nZ&~5RssQU6E()ncX
zv^|RR?ycN$+U;)*Pn*r<daFN{he9MD|G1Vry?Yz?PycdurfFKsnJ*l_Y`DW`>uT2L
zvu*QlSl#DPY>{A)x8BnprN7S8`0b-ZJ@zyF<4o^)Ij@^D@zc-4TfJ;HF3kEbc|UDt
zAJb!gVdva!E2sI+F%~bsweIp~_g}(dUp@#rb%=d7YGhIWHAPEwzRx2Y+2-z-R=szp
zBw6vCJJxdBVjiD^wEFjpMSlbrzjT;=bKh|@<pXM0uf=$a-b?(@)ZeUD^ULybqnP>r
z_Rxt3uW5eR@_BcLK~=ur!w!#Y>bY~@2d**^J0v`>@1X6We}!jCIPT0znyIAn#p=i^
z<NQ@=SKiq)yncTraH;*uO%i<d-%EJ%F2Crl-N{hCOl)0a-aH2TmE~sZ&7VEkr)c&2
zt;%{KzHA%WW@}d0+>^{kNj~mj$1N<B&)ZDO{`tJ<*k!{Vk*CiWHJ<tYs$)W^n??Nj
z%Z#2=?`3}4lV|GwId$iOyQSY7jlIG{yeAzFb9VPX{-Eycv{`H{`TbKb3#eX~=2o_m
zZB{ploaFq@{nIp`qV{<kPFyyuXsb(^vD|sW9+zZ`M=vF`mj7qJBAR2vm5OnevN817
zWFsRp151!R=rCnN3#h1#je@>YW=U~CYLRn(Zb5!tYF>$gg@V3weolT-a6w{ns)D{t
zYFTD-YLL4Vm%dACa(+r`Kw?pDu>wddSXr@xF<3)sZeFp11?Ym!fTGlt%;b{%A_YSO
z1v@(~eYeb<lGGvveYc#%l2nKx3i=+YnduoN3dZIJ3i>{&dFdq?3YI1c1`6;iIl)Ih
zlYb@W&26`Kh_MEoIPw4gr<LqNT@4#kOYcp3R<mpSA;Y|s%7y2?&!0d4w&(ZXf8Xv;
z$!RfPpT70c&p&%2uI^|0^*d}syyg>!T~nf-o(-CM=6%oppFe+ATCe^7yLRPfv3R$g
z?LUsVEZFr${n@Fj-gW0LpNa^d`g!FAV^u@JjE5WY0yo--ZsqRk5q&%TR=&E~ZrO`d
zmFx@!Gg6jU1+LD~dh0GGshxGD^Un^Y-ec}grAbN``j*UCerSjD#Epx(CVqUYb)uVP
zdc=>ZaSG0H>T>>;pJOwgZ#^+<^--=PE(<h0H+G%blkqE;{k&7my^42Lf?b`F4(yYX
zT-84<I#W1xSF+Dt#TZu~mR}P@R$HIzUY@ilTcCH!`KL!*7D#(;oVa&SM$E+>d#<&f
zUg^*<Pvz*cPtSK-e7zV^K853m%K~H1jm>}dypU~htgtCwxS3gQit_@cZq2gd2|syk
zxK8f~s?w6-Sk1yz>e)4S={7;GzJ(QxY`t5e4doVad43dH{(FjPcI>&ePP_gIKM{3W
zAlSd3TeR2Fq-3Rie!NQH{3R=XFv@y#O<!%CzVyk-Ctk~i#VoIAsA**$P*pjq@alZw
zG}+r9mx+~ycy@7#3bZVd@H%W-_-S4o*Fp0`O7|nGd1iDjkqCHiDxxbk!#yHp@)8c8
zW4})(?W#MQtNM6CVs}o_dxpt3*Ic`jDHt<fT;AsAK0&dYOTt*y9#@J-PTBM0f#45M
zf0OxFRvkzQ$v$}WRJZxWkMW0;^6w}dsA)O+qb`0g^LshhCu?8W{9AwN@S_&j1fx}3
z16#7=YpmvY%9fqiE>ixu#DHOP;96dlytqA)zivx~{8_r0ZAMR4uFk^GkDSZ0dg?Pe
z|1d?*T+M&RJwoQ(`qkwRW*B|>{Q0qp&WpPJ+}$9H1Y2jn-}G{Wie`<^VeRN;&rQSE
zocUZ8F!l4JY|9ssOlIk!{%7u*$_www;{0u573~-sI@d|r%BO9bah>7bYp)~up2e*y
zc(*uu=CWlxmHT;4pHIAZC~j-raV=&Z-w2tzJHH*>bN~2X?jv_xL8@A2%+R&2OAU9Q
zefpr?o1EOa@Axc4wq2cHVtY*g-utuZiRWWY&)1f$_S`uu>r(!y_pQMzKYn;^C;jjB
zKcRy6#*B%De5RitZDy$v>nr2!<x(<CwRtIex3)5{`t$m4*-H+oosnIxw{gP>7MsQ2
zd9V1^uY3Cb%8%E4>4^)3W0NKxmYLh?G+V3Y)siz-{%027t>c{W{?G-Ropy8A+B(f$
z*H-!Q+uti!q$=(uoi^P0kx47(U*XS7SF;wanD=tFUY&}*k>2?=?K79{o_nJE=G5@7
zIos15V?M8VJmcjydGD|P*0^cg*qBGZ7K#>abgYcJd#gu%=Qo+OXGhy7?YG_C`qy`D
zuz<MzpS)A~rQ%Dw%1#Fzix<Cp_FM-~#Ga{tHF&MnH)-hGmE3N+_4#0B#&Q+4T`amK
zJCr8wuD$!F$2DTl+iOu<-D2I(cW?JP+fpeVn7=P7_eUE0GUMY*7G6JlPQYey{#ie#
z3B}Q$|LQ&E?VWu)Ft$#336HNr&Tsqm>#Ejzv*eX21>5Dn^*{8KdDiFfOL=pp^6yVy
z7qM34T|wO`%l5_H_Cg!E_Rs0`l>f5!y629v4?Y)Xhp!5`?5yuDa^$JK^|7VPq;EB?
z4-HA;bZvZd`H{dw8}YsOQ|l+*K5|vH>>k(Wx0CmrjCQUloF&@6c!D+ak%e4;m&M9|
z*{ZdN|HFr?9G&{ickcHEdAMfndRS5Gw?du0JGiy(a>mcA99_Q_o12B_-*fnSG=I5x
zW#oj6FAw;ihrG4C$@*1$RzS<q@T>FH64_J2&vpOL4}V@%{wc}od6r9dU+K3TwJ99T
zFBh%+>d?9E!K2w+e=pAFb636he(fSHgQZ_Ko|`W(y>Z*cH69vuyS511XxeQ#)$MN`
zy5|H(O2t}pztrQ3T5}ZV$><#QpI*kc>;CNLN0*;{siUMEpj24-|G^pw|A<46`X+Iu
zFIe*9g1)|8&ALBIM%x~&*|hBNQz@s&g1;VYN}BH?v^4F$oa;94W@XB4nH&Bi>uKk`
zo}>#7m)%dEl>Buh?iyFB<7BZpS4GZUnxYhbB>UW(G?$6*7oXOhEh4|}%~qM(Z%ICf
zF4#R!50l(0=DU7h&xr^%4in$h@8|rBlfM62Tx}QGyM6W3wY%?kw&t(mKR-!Oa>~Lk
zYcIcZKI&!qJ|z}@y|%g${$Hh^=H{(scdHkhk<mM=;F?e4vRz`b7aq^MF=x+@kiUD)
zAJ03U;d0EM>-HwS`3cK62wpJxyF^!H-W<*AX7(@EyxE{NV|j(L(&Nihw(Es%>7K+T
zVaU6&=RoMHIddZCTO4n`ed+aOt>!v4i{*u9qOvZZy{_yaUuhY%Q)vyKY@73B5&orq
zZ5g}LX6(6f?#|Kj_H|-W7vv8`?6G<gu$Jxm%lX^X)y|tq-CX-GH}{v*AGaVDvFBGE
zHMPpluKzH{cJB?ZZw2%7<Chd}>=$h__Ubxt>c|n7tL%mAE_|B0*&_ZY$H(jXQ^j}B
z{LMaLVb_6KM~;-}F8jSkKrCPNefiBwoACVRCDSyO7pJ)<I3_*P?42jl-E#Ey+i%Y;
zUN1ZL{MxK@lN8UVObpztv_Wcfgwd9YZ)*)Myk2?erFUh5_MMA9lclEbifud^DW>kf
zSpBF~Z};}Idwzu2S-!aKX7gBihO&{=e=eOvH)iMb&J*#rZ8*nka;94H%op{-7-5%V
zOY812o}RT}*FLY^$BzW@FR=d{t933Qa9O)?RcHJwak&jr{#TuR=L^2JX}I^?J-l-E
ztLGvwcltkKY1<d){NCmOU*g7q*X&2E_!sQ`TCytT`0`HwM>1`CUta$?#C%OrXWHuz
zB@s^;zf?cJFZ6qs;*{UE^`U_c3O+o#*X_6X{9(9tx_iFLiO#*fN;7s`VCHdejahM*
zQ>W7Rq{F$VNBuibKQ&;PD5#(iTG+OF(TO$v=PvEpk$KAasD_9=L)_Lny)_q({CNFJ
zR$-dh=cm!qN$QM#A1`ljdG1vDN$I^?Pmh0AM1o!N)x#G{D)iPAG(K_dyZiq826N{d
zvdjsNo6VyC?D}8&b)LY9?U_CYPoG><uE}t-$$qEX$NJw%e@q<w?{5lU;Utum&d_o4
z@S>Q>KQEqnczgFz?R~j>lzO`vY-;=>=9SKzo!1lp<iPp!{%fn(<VkP4-_1~S`7N(<
z_a6Qa;YUpl9MKY+B&IAsC6VFYmwL^+M|dS~iF<~AU+((Q*Yu+;=Z6Q=3wC-dJ)R=$
z^e#X7$`n7TpJkt)i0*W~^}q4x%GaxI)G&m~WNrQ5c!Jwu+56}Pdw$$t|9<$+swKy^
z_i7j)So7p)lv;OB>23YsviJYY+Fz`CB#|ipB6;}~^|-2~tPw4*)-Bp~H)i?1MW?oJ
zdH49<{ll+6CtW__A93^h+GDN>vY(PlWrH4X&$s+7I-RHK&#qsewpMP;6jI-JXttvw
z<1;n=Z5Pyy^6D<03!h>ma5|kyChtS-pQLZw=S?k&yCbdrqQ0G>$0;u7dB}{_zjZ^U
z_@epu)!hDP`ue5Hw#(<tW#{_eJpE;b72}C(&lQ6VZ~ytTy5jn|oy%$q)vrj;-L@&O
zmW5&Qg(EjS&hHWYY`bguuf_Tm^<VypR%I{$dg%Dl9oHC2F6=DSTFP&g894iH@0<vq
zkAL1w{GE0<ZnyCCiq<VgOb2w`ekZlK&eDEmT=emFc={Td>&O4~mFC8uv8!0y!%)!q
z()w?e+{J@Z?bm&8Tg07N7ybLuO^f=(KkN+(dT$D57x`4K;5)<dxk~u_0oKRj@_gUl
zZ{A#gYQ8DMhQ-%DX{W!fdAXziu|=Zc`&rj==h=K$yLa7xdv?;9eNIu5j1hO9X3xlx
zdRHi;u5)i)#nY07>nlGlJoQd2PI01O!_-o4tKYI09^3UX@2j+Up!e4LM0dVX-x9Bn
zQrml&9Cq^g_Gm5^Wv`OC9#yq$BFE)>{+8eCrU%D9{{DM!*uhV)#2GSDK3CS>uKFML
z=lI9J>*t>5nRtHD&-8uXrxx5g&i=_QW?GEm<#>i`g*Wa@*!aL;_PMg2IMe@XuBZAm
z<tq7<uHTg2^p)2pz}teMlI!t_HRoGjEtc?>Dt9_7TPgJ-+~th$j>Q>sKj!P#-uszi
zIZ-en>1l5GW;+qBZ+Am)h8z&AU~b(oB|<do|M}9FX0f-Hr<gm<4QBWh^76%;ublz+
zOoGcp;<prt8SH;2z54r~F9HV?P8)UhFiiH8*=+Hm<ZhJT(qq^9-vkKiUOA^Cl_7d;
zj;6BXGFjK(smu=BdY)`gh^P@=sB3nmx#Gy49|lJ@oGyO-(kAEK-}CWDcTd?Vowz)k
zaf5%vnSg(1bnTN@&;9IXb$q$aPwz`M@2^_ySI-N7&%=<;*&P~VDxr5SxZ=*Yqv47D
zkG_9&-^WoZ;V+iTBGIuS;`B4^->>G)JX^L%;k02}Z{&7^x7n?qJ|_uW`^YxKE$;2y
zdEv|ItxD=bA3RfEZhx}V&i~d0b@lW=NhTlT{aFqy>`7gesrB@3)ppjPACcDTxp$as
zoa6R%_Aqb<Y%HHFBwYS)+q-i;N``U#Rds47yUq9KGq_z&IurT-sMWK{f*DR{YkK$d
zYp(6Tc<RH4$KvsOdsAhq7BDd6-_!c}SIX{h@76u5igxMM{EPdvSMz<iOzpa(A(bE1
zjF^1ZUbH?LHrdcwBUNPa^Y@3hr><)6>)HJD=xil!gQkD6`SV!$bq_r{b?Lgnt)8B>
zWvjPU9@Bp(@uG_1z|*+n4Qcw}SDrtteyjZNP1E#F`zWS=+h!W;v)No^C|S1g!R3Fe
zyMoiW=l;5WZu)}Hm+jxbVC&To{^rgs5YsLp_}sR%aLWA2J@%PaS~^$!o4y>rQ?KcF
zW|LKVT!=3N&yuPo9HPo;pDZ@E`}Rzq^FMq3*Yy3hJ5r1i>$hy+5Qw=v>n8Uy^Hh5o
z^ZOke_ZyVXkIUT8RW-{%pGhEov4^70vKIw@QSNTJ&U4RB6aRaQLBjQ`hoX*|P?lhh
zp5gN!N5eInbs2WJ9Nn0AD9L(m{I5@cb{%<Ny3l%tu72I>swHj>KQ^iF<LG|7WY3#-
z9}d6WaiR9iH1YiU?sI-wdo<%15>00LX*-4$R%Ax;`>1r>Jf?5=cD=<e`;FWU*;`jE
z4gH<|cK$}b>njRA7HG}dQ2X(!U-aX%tCuo9s$9GA>Lu}8nG4SLbykXpNOmNA+Vi8}
zhVxn-rXy2k7zi!yVVI?{+kAh@x!tNoO3_OCc5kkzWeGHF@C&`zKG`7TNBg<9qgv04
zzihCm-5I5!Z<pJ*_SyxG4IMA#-?pDpu6VRRukP#0^X_F=XY=bDzO9*Fd%x|%y5fh7
z*EUvI=@eGHDofj&VjmQ{zTwX?D~+?=^W__Oeuut(_PgW0-GxQvMPKC37j>p9JWZZG
zea9*8YPMZ^-cwgx{ru?gN~5<uj5U+LJM~@PpCuw@zkkKMY3>szvig@Eubr(m;YO+S
z|E@POu7Bq0E9(C<{Ci%Z;o7;dC7N%eOIJr$ZcGw>{QUSn$-g%GMKgXsIa=@0%OL5+
zR=>Q&KRy4?<P$R{vVOl`U-+X}eBP5Ob)Pra@5}tvq@phu5XSIrsr@A3`!08?Qg)u0
zF^ScG>nFF@OV=8m(Wwx5=M!i1_KiheL!|1n{XP4$tk&FFy>#{Sqv!1{zqW^7$$fI~
z=7X%IPaWgVgx@&DYq0K<`^!YpTb4#?`B^UMpC7IMvhCRO(^qHByA;L!@U3~#`T(tO
zC%c#a@na1OUVT?}>AxIvjf|(~7ERjo<5iAx(e9P+ti8CdZr9cEh+DJxZjN1p#j5WY
zo^E}#g?r7-*;3wX_xyN!Ub@#|?Z3wdk328=lq4&)u5ss9iPNF?{)Mb&&EERab@{x=
zPTq}@e-D)g$NpmT&#iovRM532qF2o=A*`3}U--|ZvD+^f&z)uS-a~q?>Glu2drMCz
z-tF~wj$4y9H;OI7eYfT!(cP(9ZpTWky1n{L^iM85ZgjSe@$bGW_GeeBtRx)R-&SS5
zKDOyd`PtHYS034|e_3~a>%x|UC%doixoVWp&BfrOkkfii<2mo&$N!`6yuZ18&*ziN
zUaJPq-E(73T~-3q+g0l`L?2)9?P;%$TY7fKDOGRJ-ixP>oqBR~7GL(vh4rhLw0Cd#
zRdr?c%i@aF`}3_5_Qn>jIIz|IyRIpl&GYWb;@ZNJj9OLKR@mPDbI8n4&Mw|BSNGiE
z7hhYB-_(vfsdskmwl(4glil8yz5E<|YwfG;`d3_DYN;z;5j30=AO8NppSrrbQ}J#r
z1v|S$!@su9THP(M{9S$M&0DVpT`jDREwbM=dBa|52J1&xVml{iNvkfL=iGT~t&XzV
zB;U9<>V8|fCp`Zoc*A!8-{PrTI4ZRd*=<m$6l}27t$WS)>+#ORzcSv&tzcGt;>zHs
zk)P&0r$R9C<E^=C?j&(aoIWKm?WZ2Ym&xYd<sF^+SIdJURQN!8MUw+gE^F)PQC(B+
zobqciqs79czMJ>2q{n|~HTJX8?^e?h>iy=*uy56k7gIN`Jkfpq-=EOb?7}{7vy<Hn
zIjcp*?8WE$-4A(k;zq|YSEftycc-dKGzLxy4{ME%SiUXhxrgNRJvaKL7$vT+bX))T
zRbG8CbLiC2Tk*cdi5#Dj_?biN8MaSbeNUwAs70aI(Q`phj&2LlI8b1xz3y-4$)|=J
zzs|pYHLr1DKs)F9Cr87|v_wpq4Cd^aU=r+e$Na)Nr#69n|M_QDMqT~MzDP6Qe)Wzw
zep7R=g%;kbnEKX%{g!z4sTC>uF?C`I!6&`=-fC@`X_dQ2ebz$`ZBdbbV&$9-iY4AT
z)4$ZtpLEwmV*ghWvy<JHT6|??{}}C3LpIM{efi4?iwjHgf4J3`tcqf;Ix~aK;)~eA
zw$+xx<q<(CBA*^LYE8Ye+09^=<byRCZ;S7LJD%dMw#@$5>Mz#+qh<E|jaKI9W?1er
z`*F~ARz|i(wT02g&fg496l|!Sef3#u;_4+*(*-5x?%AQZc#@U0*i~5u>raOsJzgKA
zb)!qSb(zg(rpk}<s-_{oo`)(i+@Es&@cfk<UHQ+aMTG1%)~@_m-+O4$Ef$5qsZ|xv
z?ZZCi)`z_J@rm1W_tjT5j&6pVT5U&pUZvl-sI1Qxe|J}k$Jc)gXFg_{@Zz?`dpFU{
zsmo8k-q$(%%-YbnoRaqR^=mIAMe5|XGd$h*H$%VjX!kG4S6P$9^)th}x9ME_S0Oc3
z{6OEK?~L2lC6~%?ob{`+@XqcRA%8dhfBf}>$`buw3<vh*m9AV`91-?(PsEN338%Df
zmVVBdI@_jN`TOqguNh=^?3pLCU6v(l<xFwwHC}VCuex4k?)O)lVSU-Ntyfm<-K@TB
z$(85Rk4L^(5EZxQiKtrs-d(kMw|Ww<SnJPVd$4V)lyvAz&BKjHTq=Uq_2Yi;+kIlP
z$G7s6RlN-Bt@>STtiSyE?4Ka$`uKU&m;dk9&nW(RHfGXuFFs#h)(LC(<h!e$c~tZ%
zsXZmw?&H!-ceiihD>gIyI=!wsbmxZxJ^f`zc68N8%vfi2e%s009&BI54@9QFjx*KW
z<0ZAfVw<>yvQRFcYUVGa6`Qkqb!_JRPAcMY2$oGtIh@k>IjL%Ue&xQKG5rQkby**;
z&OW~NXC2c)!3DdnTZQ?w)Uum<KI)nFs`1%}Yi}(-KD~AG{`}ty;+S{LonO3CsWqqi
zZFhU_*R4*spO^7nKmO|SH?bw#oqj7F(A{a&^Fdi&?eo^!!vA%r=l%FpYX4~O6l0Hw
zKiky#wHy=jdg}~U+dQ1|_S@098*XHX&JGBU&a0cp#PDb9L~--QL0{R99(k{O=h=(u
zqV6dR8J$kX9ptrmZL6PmFKz8_=f_|E@EzY`mmu4D_3p#fVU3&ro$OxzZbjMVe(k(H
z(*ic?eB9f?U~^>Ufy99S&yRlL2>N)eTT;xKb<^qdYz!NA*jH|RUexBlu#IzHm#`Qk
zgWmVoWq}cUo@fX0h>Nw~PHeFG{yVmpefka~O}3aU`?UW*mNlgFFJR5SaOf%DJ^8&q
z)=H!}&Y!YfS+8zsgXzzwJhdi~HP&BuKfe21w#w>LT<_kW;f($Y4&2jq?laoN-Z>#}
z@bQa`%;&Nb>Az#nnK?80C~TY-rt0K+`|riP&35y)#@*wxTX^j+<BP{%IkyJ0ORZoQ
z{rl^WfA{@_=`wY3Z-m7fkN*9$_2+sm&lOJ}@ttL@4!InzZ}nyk|Bc!F1#26p?QCfL
zbAMmO$+sdYOhqf+|K;hvIh!fM_f$sygEjV##TWnmmUX@8+nu843w2eQxA1>AzV(!O
z$AxD%@(xQbJhDD|!<LUbYyMm9=f13e#OgVV!r^BN+)UL|ev9hr%=`7e^>%-7`J0~W
z`(*brX<rd#>2OYIi86cUUVcsYUCUZEq4Nj+y1tHOn$diMBUEM&zd_$2!QScN0#S^N
zdLJ$4T#RtD&^~1wY<^yJpSfz^;mblb{~4Pi3Vxcc$e8i%XwLNQI@4}c_BNj4Q@9(g
zy;#l7LiGY~u;Goj$8`>JC-}aqKT-U*X8Nmh+fL4OWZKa2<)YVt)i*ySc|}Z-Vyp=G
z?A+z>_agt>yt_x{Prc~J!BF~gYTM>RPmi|0T50&Vcafn#2ZQL=>eo8fbG{X_&XxbG
z;}+VK{Htnhmp((t_MdL=um6AjQ~KuLI{sPW^W|7qsF-qfGZaicqW<G?vfL3yTRq<|
zdwy)Ve`iMA9u-%H7l&gOaoXrVGOaZHy;b$*!Mr=+dl(KB@X7DKlv1<)`ii2sp0c0c
zzq<#qG}zsnw=;kJ`HDaB!by)RyaP%<C9Rk-W0SF$BEy%$A7}p7e7*JdY393$vIiv|
ziwCQug&pN<Q0H%5y=U*a>i?7VE^n=?tFwA~^h>zGTrJ_{w@jy+F>oYp_MNy|Ca&A6
z@?)`x(>*>_H!DNIhMXj?l(fTNrWb9~esVO}Tf27hq*s@``+GPT4!$)p-1m2~-b-%V
zb2Wi+JX1xcsxWjs2>I<-^?wO_ZTfn38)N-t{0=&jt2ES@4&0eHv9SK&+}S5?9NlhQ
zW2GN9b5+m`5m9jl4Uy-(=dAT#3P?tK=kWNQ?cT~XX9)*`_^)qs*6z5Mc=TfXvcT_K
zif8hDO8VCQ`;*<vwY3Zv{Jg&1dLwJ+eQx%dvbZ<)1qJDCAxHBW8&c<T6_m!W4^nL|
zT3G+-QRsS)n}6b#ay7h~miy&a{grofroDNv!}6Cwvi1Dm%8Fmg{qqga?Y8;-`H87E
z(*@r-l5%rv?Q+fg_x=)Tit_(?<nQw}M~?R7ZIAw3_k3>b#WfrT?SXFd^{0wQuSpNT
zS2Sg>>CA<#T$LNInSOX@*U)MD>R#?giwJd{Yq@GZ{UR@KpS&$UapSt+@*}@%rmsG?
z`!%n@v}MeU-+#*+M=7-&ZO;~u)X_1XJ^hl;ESvQ8uAeu*k=13GJTu{x$ARa5mGkQs
z2QqHGC2np$WBbj(WA-gm3puNNjEZ6zpG^py&(1U5QO-70>h`zo*OD?K7eCArRZc#3
zZQ7*i*L}U%A4EKl|MxcN*;fC(^Iq<JG?DF0_x$J|Di3Q;<=vSo&S)W!_;&Nf_LaO7
zMfT5qB3Ah^OxY+e@A=sssmog56zl0TZ8*N<ik6qu;a_V^ChhwdJ4fx<U*51gpJcrJ
zcI@FeAm^<*J$quZR^0R{zP&<{_S+-NA3JMjs!tPVyrHZ=E&Iy+XuaBqtldc$)H}ER
z=-MbU?|FP^Ia|ZcCHqfJ-6&F4Y_7$&)ol0u{rf8<&v~5rq{P5}EvNsX@8T0T^g93j
z`Qy>c|I}SepQ*qnWzL!O_bI1T-$_a?Jr?l9m0?mx&t(nCQ`dBjuHE`n{M-6q;jb$Z
zb)QdlGpNk`-RQN;?QG*(<;S0+*{Z|?l_lMOWzXHr%&@1D*MI$g>tw+<S`#;(KQb$S
zW#OZMkQ+xT)^8GJSSDT;IOE5nxx4az7jK)t>u%J$mpj)U)w(aZE|6RGu|QpJ9uvci
zP%rDGM_;DTtGzrss^<Ed!;;=b8$Nb3T(~gh<m1rY`(7UL?=vbX%J`(jU}6|%9C~uy
zH<@!cPOPcDkbkLt#lD|+6Ve$HO5Yy)78;()aR0IYJ+rSr_P4s<eS6htcDup$FWg_2
z*BYjAvMDTEI&Y=qqxPe2)}Pld3~cOt^Y8k(^e^tr6I4R(aAtqrd3$sG)|ju)4zw?u
zxG_v6R`L3?y>Fk{1#q%Gh*EuBcqUgp-Nnw^_qL<(=J0#hQ+4<&%QjEcj}cvdXyYD^
z1DxKr0sCL>v`S$2t!G;@XSLSHb*IwAb?$YxM#ix`XknFK;lKP=a?-px+kf(^cI(gk
zd#P6SeuSYZo6fz^XFOBCZ$914Fh}4+<E^tV&UQ_Ie%Ed82~l&oB^B3oGeg-@qx{(!
z`b^JSb>E1WT)sgucmKsLUfQw2l`G%<48J=4K+Ww1dpH=LyY$Ic+D(_+bHDnF!@oa&
za`bNg*cC2$dr$9VsoQ5y*xmVbyYhzp=WCZ48<>UlH-Fl7?Yv(@#xCaj|5k3Od^2fk
zZIs5G9iMm24R4?S|2gx*ATx%8tdb9|22Z^{pQW(k=Q^t!QQShgatXh-%qu(k`}Q>N
zX(qSk+_?85_tq_OMi0}N!#+D_9!lz3-Iurd;%mjdS8B_0->-jscdbqM`(pn;i@Kh;
zG8CPWoh=u}-OYbpF8O)+!<eta8TLlcbW7u&M(mqgQz^(`<|8TQZrO5PrR2x4{jW~0
z|7y(^?Q+b?I@;J?ilMJ}(w0kKXEM%xTm0(F+uwHPQYW{6?tN*-uaf$Bt6sp=-V@yn
zDv?>sy3JGVS!_Oh5h=A;oATM;%=y*Yn=4ls*)Bc&`t(<K<^%H@X0BXmv3ZtI`hg`a
zzrS?fsA71!(pK|N%2DQt;*1aE3z>wsS24Z|>B}+KGgw-?<&@%eTb92U8Dyf(oYr33
zA#p8w{cFEhw_e)ad%w%}&$0a3wyS@gxX4$$d5b<%LBh%nJFXn`dvp8Ev$@}IehJw)
z<Lk^5`ua>8(odzP3au?(;{0RVorGhn{|i~yXp1$x5iR~!y4&`tD}&z*YbV{?J1Xi6
zzwUc;Gjidsi#AicvXjiadTLK}Gt{I;&J^XD62(_qXL}~{>i4zLY*WP<J%oN5`po;m
z+clq0`p+u)!0zksLhsy4OIcGV^u(3n$Kp&QiE}Lb1+rwF);3+t*pb+-t*Xy-;QzAz
z9_yQrp0EGgADj1Cs#LB%@@e;@^UEtIi8ChXwrhvG^L1}uo48drDXH5btbF_ZZyVmZ
zP636?!OKCSzMEast-GIH`Mc=B#EqF5>-HS7U@(p>sQYs2wJ+bp4TT%Oe%1Q3D}Qx|
z_}k#$(V@SU82%XE&p5jCD}VR=_`+>xa@PG2u3xlk566M<`TfTf!%ELxUh%L!Z&&P^
zPo9CZcSmL4D((LKVfQaF#u+EKpJe&|`-$?bXLh?D2u;3xVSlvQ`!yT3Pu;`8pxt-n
z&4SE%)u*H9>PJrXyxCtXr}XtzKih)?uQ%0bM?CjvFRMILrK`TY>{+gh``1s`9-TSS
z&9FphNk`^_Nk4gt*E=^pc6a-GkzvidPt#Uu?loPwbpDfT>$N(U1@14qyKurMB?fQf
zqK*A!>Sdd}r_KFr=UjR8ghYuHA48(;d{1Y4$6b3xQX;p8+40N0IN#^ulj*BtdCZOb
zob-N<1DuP$^Z4zlOR0I9ZWk4Crl5kO_4thy=JE9=41WwAWi&6QAN^!`Yq|N`FaO`Q
zY<so(RY>IP=e>J44rqOG%)fPB?B>UJ25hFYr0ztnEeQK=v*&H-PY1V3!G=>wd=}k1
z!*2>1pE{Q~ZONQ30zdy8*uH*u!P&QBkM=BBnx~ySWie9%N4syy+V;=SXKLz9+rQRA
z-z{gG_&nRml7{6S+2u2;^gEA=`p*TGSzDuYs_bf|&PuG+Sh{%6VVSvmRtklt*}l)I
z+_&e)TVvfTr&j)2%;;hIXv-t+!%071zA8KPyM4nHPq~lH|CXICoT>Y4!JN=b;p=Jz
z8$y=LRkYh)dC9+ESFn3_?yHxpWC|*D+O5O(wNB|>qJ94%x9mB+{tHKT<mYe6eiF>@
zU^4q|^h^FjV%^fqU(d{$WmT%6YCCB<%MQoo8|TZ02pH(w<$PbxZvUI%jEa6_Sm4vj
z>z4cD?kVoB-{V{U>{Igj;H8G^cX1UjX|wpv;G?{>Q#C3=XJ&v+ulKHC_SoFzHCq?I
z;!<9`hr=PfedFTu(QZOVW8_{4HM?zJ%@bZ!_UrQd!mz0<39{A`3m0tIaf>-5?o7cC
zsRJ4N-fs9>!muOaO!}(@oAo$ScU=0Edsn_vu;HH2^+mg%L~5&T+HrQN;a7L&f?kfj
zdl{drwwNBN4qNeh=QmL8ZK@YD$1?xn$D_Qv4)_+F-z@bf<y1FA%;QOVnVuV4PDI?*
zSi9|$5`*{-mF=yvCYBQdKb;j|lhV=FXDVo%do(gir_c66v*o_PT>+1^<EQVt@68&U
z!(eqfdXx3thfRI=_f2;WOI)LR%e&`Wq(6IucCOtMv+yq-<qv(Nc6eQ$zTreSL&?;6
zOv2MMZCry=EY3Sc|1I-S*Jmo2dHBmTx%X#M6LntNx9jzE`hQYl_`9Y0)7$>YDI%OJ
z-kpejEY3K?ar@GUC5PRVOiIq`7Oo1b|D?oF;4nE?<FEg|Jsb}F*DB@0SG27wZQ12s
z7rU34K}Y>c^Mu;ji5Ep<KtnaNE<2cN+`V9v5zn$f*Y@J&g16ID^_ebAn07Riqg#8j
zIAexu{xct!|5HzPGh8X(f4}u8=Z+Mc8Sj}KeD6msRO#oG=-Q=IDcE3D_Dh?UTjJJT
zTOJ2R&%(TQ`nSXxPpEsYc~Gh8TNyd+n=3<+N7reiu0qF8N({?qUfE<Z`F{9fd#Q%v
zJpnWP&j&43@$vkv#GsxL@#tZJ&f+FR;Yz`V5Vmz6)l%8cES}>NUm?eCalg<OR9#%$
zbi(}U=Vk6X-Y?y4A6?u#QJm32O=nWl#0L=-Gn{1}OIHduFdtG%KPx4Zz1BhU^NX?*
z-3&4_>YhmY=JLIf-e_E2KmYu?EV<`9f<O`#wf`!!0%CtHnYmg-&%)}UP{=1GhUymA
zU7b7K{Eu!if9Ldl|GImO3=Oy6mi_+u`jza@_`Ayv=GRy3zu&xn_U+%X3=I+cdRh0}
z*MBFT`|It*+n>I=Gk=&mQ_rO!bV63hzt6LT*6;njMW1PcON2_(>RA%nb(!}<K4#wz
z>y2k&aOyTbyR=oYt}`>9B_a9);}4zH_1@91*WbSL?>TS9!&7~qlo*b;WiTZs+1uN%
z{@Y-=o8d=r_rrOglo+JLs?Ch2oh?6R@^_bGy^(GHlQ)0sa}uvSW?!)Kgm?9ZHAl=p
zZT+!phW?C`1+N_D-CtcR$S}jPGCC@vQt|zV_;Rz~`#wFbc`nl6G%Z$TO|Wimt84ie
zX~n-Wd*yCDi$B@Tu&4VnFT1r>%JIy1t%u}tD+L>PFWaa^y2M4_TA6#UP<ak-U;kpW
zIza}Bdx`z8Zts_C+aEcd!y|s#^ZCJ6?h$MY^xk&+JP1*__5X0^`=%+)Q^gr?DCiqa
z4(9%-BPu5RvY(AXZTo%B-)|P)`xBn{aapZkL%xZj(Q2{D$<MyMekIGm@Z#0;=jy5)
zT;2Y^7Be=8+CExf_d?{862pdd+plP7=1mf3Y`EIl`THL;?;(jq&>F$wlA_eaTo4Pi
zS`fS{55zDuFfcKOi<*+WhS0qzu@dJZLPM%8A~b_8A}mcRsVqoU(D%$uOi$&~4*_!`
z{FAa$lS>rz!!uJ#GQjH<?d-Uq9<G@4_Oc;glY@xs#r27Sd9!MFXs<YU=-6t`d6x|(
z)z<Iap4)Kc?{($}pF-G7r#kwk1_Vo98D)-!!)PKH?wKL_+RT~9KUY-!tE+zanE#9Y
zj34U4@iq02`25r?CV`4XXbF;<mjWs&EkR`vh+$}84qtU`WI%F>NuO2M=FkGuH?cTd
z!4g!ilfCNt&e=Yd@G7|n`bI{pcXhoH^t>n$!RA=ud|*cOg+mSNeajb4EsLsrIoFW;
z-Jb1@j9VnU=P|xjv`pE&O56DHaqFG4H`xE;)$(FJ`}xhP5A!Sp3;kU7O?CLbVc*~W
zuj>xyzRi`0kN7v^>HLFMN1eaz>*8I$<=pRQ(~GCwPpF&yl;1qjuKv!k-3I^PFaBYE
z{mqBaukEL$o<2|Q{1iN+en-rrno!^DGS1_P9iQ3_;zQT>-4wQ!;|r`ithqF}rfRb9
z$CH{}`I~AapB<j=^GoQqfr{<Ym%h{1uX<{DI)BHjD;4t3;?sYA5xO*MV`A5pwqUOI
zl=Jos4E0%GTp1Xwekn09$kqxnH1zG`U~q7cXJJ^dSf7dE!bNdLh8Hio85l}%DKlQf
zU;q1`{;@X<k8ADHEnH{W-%0x^p7Fy*{!`?%`2TjN_3NiUU7b}o`{{D?NV~fdr!7y1
zU;S7*jbFY!|Jwfvvio06{&+gaq3Y`A<Z0_`7V?`%{(E-$!;kuzPgmD{-r)9A-%er^
z=d^;WTJasFeamk|@A^K?ds_T*o&AnA;h#f2#H-%dT>bT>bc%f3-%2ybUoPSIOxE2`
z`}sw6o8zy{N&D3KcTYFGPn=hX_VNAyUw`l4agxvA-tl6&Lz-=m_Z`3gpkVj=kL~9_
zE6#sgAZLI6sr}pPKaXG6_Q!|5o&xfEUES=btFtP3K0i08Klv%tw0-#$yM@wmMk}2y
zjvBw&TcWru|GRD7)BeL&?`O*&)7hWsQ8oS2@wHjCzpPH{-;A}|^GoAY_|x*2Q~W1-
z*%x1K_4t0Tjc>xf@0T<$eF`hw`ROm&F^J3Ca})o@*MGgIe{456Zl4>T>5u#;Fz?bs
zwbS8OADW$BK7GP7^N8m<`{#VO>@R<_*KnD6WL<ORf6cfBCHXdg^=$qHi^Q*w+_&nQ
zYK@H3Va2*d?X#~}&pG*j<HNnv_nCaF>tCAR!yEV4b=rLS$C}4V79I}m=%242v&+z|
zBR{9gEAuRe^#QimQ=WdWm#NuLVzR{LDR3e`xAEEW?{ypJY-Wzx*Y{lJ{pLSbsXrgT
z)~WwxaXS2J!Q`j>+av4dZmxM+t~pm}Z_6sHmU2zgd#OKppBwMxT+Z?R8{6R>`E||m
zd!6ept=@m)(`nT%{=?xnKd#QI>S%wH3(CyLKm53^v;Uybz9~+xcP(*lQ~cAVa`*Q3
z{bxRfmj2R^6T11~mEY2>iZzQ?f9n6bBdtZg<0X6EQ~wgJ*w!w4S!#Q?Z+-nWMnCzZ
z&etqY^CwT6FTeTE<@cLvLTfHx@~&vqi$Ci8sI_|b)BO6GPtDgHGQ4x|{DupM4NtER
zp207Fp7)Y>#J!ZChkd85m&!Y&c)nozw>p14|46&->%6DUzr1%>+Rs&`5}O#W7mM8g
z#CpcEX6wEGw{`4~^gHW5OwY*Tn*ZX|_VQnoPR2{^_P);`9q08h_A5<N>%aB)e;+M6
z$2Z~G>a42CPoKAI?2DVf=ug4#z$xojS?xRb>9EAJ{>XolOQr{ew%?XL_gMC&X79sQ
zxdQrM{*{-`J^W|NQ}Y?1vSZ36?{%xbPI`Lz`@Oc{Th(2>)%u`x@VY#(CU*LpAE8@Q
zoG)p%DgNhrHi0+t+|9?E^>*7|JYCZJN%~#TE`i6Z`4`nxc^&>J@^p2UME)Vhha%GR
zUKDh^7bjGf;!U(@C9~x<gMHt-<^TSe+?H(f{Gr+D^~ECcem5U(=kV9u|3vfj^<}Lc
zOQvr~?b@wlfA4*<+<TApzX~Qly?lJ_r&c+;^PgVlZ~kNKGtrLkwCd^be=hpZb?oia
zexCBz-1hzBXYU<<Q$^&>?p(bv;oZ`b<PhEd|Hje<C-yy!e6DI;ceUv3x}>?A)k`EE
z>91-ttbTts|9;AG`?S4@Gam8ZNj&o|t7>|i^S?}?cdFDbdGr50+Z(@T`rYR-%XRGS
z+kS43tdrPW6WaSd@?U}Qv%`<W>%7h@?A@4YxA)1%Zk_nh!|8#4W@nfESU>Ms&Vg<d
zxlQ)g_IoAEtR|nevutI)w*UO6hi<o${s(()FV~7|{dxVPjQ0=5?Q_1{)`hNp=$*i6
zFK|9S_2;Tt_gp@fR&{(jZTY9?+}hWhKC@WM?_bsSX0KJt&sA1)@;294F)}dJ2jQwD
zNr_lQmD~39VgCK!N3B}fEshoI^?#gj!Ych|V$X7kyiI>9=0ELUzquw<Ht(_G#D|}2
zPNWC^*}wOsSYFgLjs5Ggr`$I<D&$uv(WbFK@r3c5pjVR1JeHPg-j&GQw`!gB`@QKC
z^u9<u>u>+@yYI`CZ|CwQj9Pxy7uR=v3jOM7mGrN4+Wvora~5QAwa4r~`)T_6#XqcU
zQ;x5XTAn>E{_%9TR|aX?Z+}zPZa@o?w$j-8YmC$MA1hwZ-~6Y5=X3Hj`S+V^LV4%6
z|2)6wN50%6*O}8*PsKmCJmvrJ<LWHV?blRomR^~Y|20wKo5ke%FFf_@j-H<8y*}x%
zlZ#o-l9KA>!Ats|vq{gpa7D33=G(da3Y*KCak88J=YLrm{#*Y}+vDZ8zrHK!`Xs-<
zO7!XKSBrP=*7$#v{o%bC^>d%f|JOSme)TDTWF4p+*&b>4oXWoa|LgCU;$!{oI|}PQ
z9u#=Ge`nh9|F1IpKAql`Cj7+tS!(Ae|KL3u&n<Vq@}6=3fk6uQ+-K%GF<D&V?`GKZ
zt^Beo{z0sleEXLl(?PANRKEAGHvQIGB5wHa<=?mS_Zga1v>ku`FRka(`uzMwe~zz@
zbN#vM*9W!PNjK^hFHJv|dFI`#^>u|kpG^N-oesZR#JRlU%%|t~Q-9WU+3zjqVPN1S
zt0jmQqwu^i_u>9O4?oWTEmL=Bi%w)+Y`N9s`VyHojsFFE-F_Z7hz~8Um_F@;o-F^z
z`C`cyPXz8=HTlo9boGWrk6HWA6;D~e>hzqqdr!;69hww(=w10&$-en{?=SE8{kVAE
zx7w37v72kEPM&{oncx5Ag!-=sYp4AGadmY`*Oj*)C7#ZI82aaZT>s66r>Ax7Yvw(@
zen0K!s;K2U`(qA0KED3ltj)iu9It);pZ~l&|9Y3(<K?NI%lGWDe{5e_$LF7USar#{
z%kP5E+}w55BIW1pWDCcuhIhQ%6|I+lobY$+WV!n0^c&vQ`R|Ws*KnSmr29oEucz|+
zY^nFXUxfM|#;sjtC{tK{hV9PWV>wNCzWWDH@sBrpsTzK@;)K{Qe*2ike++Hvo>pt#
zT`hgD`nhKGj*@ErpPIGBXScmpU%vm0TExCHpQO*^Z~jws?vwLB7x{SiLMoTbf1cm}
z`|<Al<*A*=;-6X0{UpWr^Pi3D&(Eg2TRu;Dx;l#|`&((;;y>-%lg%8j8rm!`JkeKQ
z-SdBoh1|El*-s2ou5Va#Q!D2K)AAY9bnM%Ip4whs#aaBLVOjt4(^Kp&eqXLrZ+uLD
zree*be}CTTovN=W7Jh1OllOAM?Z<|v_FK+hToW35`1~DvJ6qSEUu+|P9=bc<FYsUJ
zjP<K5_jqSc_I!V7ecXS$Q{ka&_w#;^{JhdsFWIzC@aTWnJ&}wIH+uI`wQc$FV^!_<
z=arF*KK5VNocrmcQTxv~Q`UW!dOF?obokXoiA8@h&wP5Wx%-Lku{Zv$nVs)1ZAsyt
zJL_;T*LT;@tCQlt-s5Y}(Ql2;KOO7kpUL^0WBaROkNXVLORDv2Gjn#dJXVbEe1Gn_
zhJE|`N4)Fbm7MtUE!XO(_vE@|;a9i&`v?A$y59EMzx`ghabKX_-PJE`f2IA>kqHdF
zIbr?0P5c)$<6nGH{qX7D5e9}mD&%+j&@y}9^USL6&*k-sP3mS%FFEyj3UA~!(^K=0
zDcaPD+*jJ$61B;D#h-P{er|WJ@%k9L-{$ALb9dw(+u!he+2Fjb;Nj)qP}BC;H8S7-
z8ke4wf9YH?eV*ekftPVsPy9<>S*6cc`~Ud2dEme1**`LW9DSQ>rDCM}QCoSh_jH5*
zUk{s}3cq^yti;pH-WI(#KdyeICR0>xlXl!brT={Wf5o^LU#8rP+uVBlL*ws*XMLx9
zr*6~p`1|?G<{Q_=%}e%pVzoZ7E^_mqHpS}rqR_d=6i>;w>BNiPU%Izf|9$`5FYEGd
zRY(2{xT)Fd?;m>AcgOc{Wj1g38DDBWC%?VogaD{E)_c2m@B76iS7+JV{r_-xw#NTo
z-=_FY{Pp9V-l^r~Uw<!uzo;hEcFyLo3Hun1Ip49$J9NEv*WTj>`yYP1X`oV6ZnMm}
zFL;}P{(EI{hKA`bB=q9Zq7z<rgS$)Mmgn;yUk`u1J6~S^wEgv!fA;IVmU_Crc$&Tc
zN7ebq6lH~eekeP`{<hjn`c3WhV;}nG9u}DIU&VR+!yL0a3qK0X3!2mazwJ&zva)l<
zAKvGa`EFYO=LvqZH!IXs_jlc_oExjlmj_STFS$AVW9q!cHKDd~>+NNKN!I=Rr6>D|
zzrLpDll`2{tNrXRYu{hD{dnzuZtIr!S6A(_PhCDG@BQ*jP_sqgoh@|>wc<bD3ah?9
z&x~92(f{%+znwZaC)^GW%Q~*ub^WcO-r1KE`16lz*grG<_ioF3k>kA2MZCoIwk9sj
zKlWzbyhDH3+7s{J-tzt9{KT%uig7Q}cf7hHFfXX;tn|AeE0w*gPtU3~@$vqa85;V$
zvhS09j9%cs-OE9B-TQlf_Oey(RnylM|B;m4*6?GBna6UE?^(ZoZhP4KQ6R7P3v>42
z^pamQUsJb5(r5p#@{H7zzlndBThIKz`>=t_Py5}{i~ro!JRN?uef!M`CiTY0mYc|Z
zTl??$-2V8VPRq?=4(09;cqsx(?7FYt`Da)iHI6BL6@Nf;X?6Z#>BsT+|Ni*A==;^n
zGEe38rt8%2b^E!hs@Tr`=l%NsB2VS@y{D{Sm3gvliFEQ|=?7Nn&d)w9T3+IC^{wXZ
zb;T9ohaYWz+B=cYQ-7h>zSYYOt*P9T0H=4$x|;f$@6Rt=ys=HSI{Ma7d+T@e<Z1S@
z^;Tc@-A*=pl6J=LWkpBzAB&W7)47iX<mwMk*!wxTF1-G0cSZglll_$ui~sD=c`0&w
zmhZ%8^AEPYm9=cmZ&>x~OWODF!dKt(muvhl*y-}~{ki9{{qaBV?dG=kHOpBdzp1+~
z_m|K4IHu2&?p{5tXt(sUX`Q}nU-Gw?26B(4N8CzTS6udomwT=q-#&afc&_~Sqv=1^
z>wWuo-~3Yj?fK8L|9eM#4)th%Gq=7?bKXNCxn<(t?e{Nv_s8?c|HQ-hI&v!3$9?{O
z>0aKUy(0hn!>#}KM@cXF|M7I2@u~m$GtacGojdR1zt<af|GBI(FX_G1hKH(?`+nSC
zU@9(xWr!Fw>IxbnHZ?IoOsZLsJVZ>xNi{PI#K|0%&@p1NCe`NF7fkuO_x=6f-8n2F
zEgddL*Q%WE|F>&9?~!lwtS(m_pJ|oA>!{$g<7COZGka~HZ@G4E<||9N{^j4ptY-#p
z37YF|yL|5*v0~jOH4#CV=?q$IJ6^7ISNL<HNrj2AspZ%Pwt2sgAKP&LdF8jCDVuj!
zmYKi5KL7pC8oT@F>+IvdzJ7M|JM#p`eas4XZb+~NT)rbvvRl@PYeMeS4<#;(W#vMo
za%*|>wmWmNufNUvL?DsH`C`Tj4&%T}cBkLwacDYRo67W>Cs{V2>XN~<U3d8uSx=-e
z{CkyU-*D+xWnQ^6hhj@lOA<drMHeFj<NVco1%f($T$7YdRJfD4<}>rxjmz)kbxde_
z?58Z0%ObT{aIsY5jdSul?+R#&{P49?Ou6!)cjAOM#y{S=|9PlY_uG*}@u!pHU+&$X
z*1d~65O4bYg6M*Z18>VXG;OkY9zVIde95Z2dF>OJmh4=6d4=mn!A=RsH4)FstXp`3
zJnlbv&tLvn;n(7Y0bhjpcHQMwZ1vc%FjKRwu2ZsTr?eA?VvE3}>_2J;H!9z_5c9aq
zzC}dt|GWn`E?&5v=2N&^(TPoS&U=Y|Rg1DSdHM%kwo5B5d9Y)`gByX#66)P|!M>>O
z?310kb*bKVh_}znS~KZ=cl0=D^yT;I2-^q$r`>)l5Y)h9S@x!fHQ?;>R?l@0%6B*N
ze0ts(Jb!N6#<vPpymRE9msz(6fL()^n2@t+&F*T+2l2)K?w@MdRByfi7{5;T#;leJ
z6OCR>N_1J&8$Q=KZc|3fgo%$>ZOk^!b>onf{JJqh_Cb7lNz3}GwOgZ1olbN}e&Nvl
z#?YY7!SLaB2I#2wyhqFpr}F2$XZ;ge%ooe(wYq68gVy_3ei!WaJ}R2u^2E@)Q7ZZO
z$)JR}iuZh{EQozvHoN7Cp|3-6^ya|sBxNDPrijFnZKjN8bLVzS#k0Ac==dnd@U6YN
zP~h*y0F5e6_KUWk88+D8nY%(V@4KgmoG?oh@9Jqx9OlRF*WVMV|6durDC|id=;(Y7
z#UrkE`-RPpzwbP2%5dm>q^Z*hkCz>8);23lZvB#KXxnGDSZH3Ku2`>tQP7@+873hu
zGc_{jv!2P*ca%7IA+y_!L(*_tefPces~n2TN4F<5@*glwRb?nhzG=#^XQ6(@Qa298
zmM2DX|LS@sym`ny-?gIu<GkCo0zo?}>e>FBDL(Ypj6*YFPoBAh$3tPZL$dt4?y@Sj
z^6met&>}GDc*URlhqIaU${jr%h3gM>2~4tmbWW~i!kULKKOERGcbi;G%EW{5g+ky+
zOzPLSXm}ueU8ZC=zY~}E|4-r@Yp$i~zUkvUep_(fJ@b!y{R`9^#A3?b-<yVSjbwLQ
z81BS1OZm{%-5wUT|L?tJ<2+gYE9YLo#1~wjl($Q(sJyRCkYfnBHjU{+c=&I|Dc968
z?8K{;TLhfiI)9$saWt$~V3OR|jS+vZn(xZ*+5fcGWA?MM>Xs+=jW^EC-N>-2*JF!d
z#vKX6Rl-~Mm+rQADw-}*WB+Dd>mDtkNtUmYH(Je>PL|E@X-VPvyj|XLH7J~R95VPn
zXV05iehgE~OTRPyTV>h4j$vu&!PT?+_cN=i`2J`SRlM2e&n;|})b`W&-^`ip4Syfz
z$+*;;h;$t*5V*@3RbIARC52~$-aonT%a-o=weR~fmfrhMguwwcG>MamOpFW;8;?J=
z<Iwc@H(P#1|It^B|E(4)zbUhB5m8vZTCn5o9ZBv5w>n&;@8%unTYsBZU=n9VsESH8
z&pnCP70D_pt3TZ4cRFTfw_RF6#TS;@-m(4(oorXMThWQD_qD&&v7iOV4E&}sz3xc^
zmpVV%F5bMxVzRwdYO98slK-x|6GZDK`+u4<`Nh0Sh8yzljyZmDcQywJ|ErfgS$uB0
z|NSpF7|MG1ZT_)+sQSsi`_8)#a0&B7>@!1)wDe(ytXa}cdE1>m7&q+_n%9@H<#4mt
z;<f7!zAbz6pu9)rKBuxomz%TejLu2lBJ;|fJ>Go|sQ;go;939wW99+xzkmHRI2ri`
zIM|pQmTO2nnf|P0h0mI~><m-4E@k+0_3EGFZ30dnc8Bh76qw|@=g`sQUAK7!g9^?F
z>dC#@E?>#8|D?Jl$NH|86v6ccA3^1P&VhV;4#kxR_y3%DC+Shp<nH5h$_~Hn<Iptu
zcka!j#3xT4@7Fx^UcxiaaN%ozeg^(OE3;q4YOK4r@2_>9`4q+<{*osR&*;f5)Z6}B
zamj-pMZwMj9A+lEtO9vCPt1R|2sm~8PI*21PrlB+w+}>F#P0VBAMpL3dhg@@h^_s4
zaaZ@f-JG>-NA)RPsgun6e!X2{+@I~eKk?$ax#hQidON(ZzgKXpVfy_i>W9V46Ea?8
z8$Vjd6Wtyoxh_kV^Ol(OS&{A67EP>4DEu_@_*Sunci)s9k5ur!Z&>x1k7x63Z?;%T
zueKP;M^O_`u1qZZt<qh6`0AYi!L+2N3rsgN=cLS7Fypp`<^9P?&nDk}XHoy5!<<Fp
zJoD0^=;;e&w_fxq6zq2U)cAj1&9lO{4HwjQ-7S<0%zAuJ!L+_<+Z8wCqq>{2RQNg6
z=U2w;zP?J($%8NP*Wae)7N%#{A5Gm_I>|A}hCOA6$nVx_=g9VrdV$gMY=@j)dtBkW
zozYqN|N7g0kG9UrylR;=xz+4{y6?U-uivpPYKQrnF1H?+TxaDA8e1|JeVf%gP2&5e
z+wv26_zk!3<ukr7$-Us${5yFT+$mo(6L&}7E!g_-n(|KnW#<_?jVqGZY~E>j?dBbc
z*ExATW>HBp`8_|Ipmsd&HB3G8zg^nL_j7h(WbWLQ2_oki6<e10Y?~*hw|3JmbC0(d
zrmns<_xYMxn(uZC>qwnsPMfAWw=!n-f7NccHum`&lnQ^egnr|Yn41f#ftG`7piJ&0
z*F|C`N`lIc*|I&xE_WteQ`u6OSMOq^6V|a)^yJTdI%)qzw_BfMiu|SazpEtw#lDv2
z&Ra_}G(>zaRIxo?q?G5eTVu=lO_wcB8vISlGqk)v`^cH|yY3c>NqqZ1-S>yr%T|ek
z({Em%m-=vSpX}bC*^?JY%8Qu(|6>%zRyF?y+n<lSn*Ueu%?<iJn`Q0#gR5pfT379y
zm2_ACe$LC*9sV1>-aLJy?$43O@0sdf<kxNpKPO%-_r~@4?fS}0gLll^t<_otoKARD
zs=m8-H3rr!o3mglcW!5ow$M&~>+9U+>$Y7KdMsCZBA17mqxX~8#Kgk6rFkh6?sio>
zZ@!>+Vu!oyyRf6YO26`g*eC4xw$C|l%i-ozsd?`uH$F~#eTQp)V%>2I*TVcA2M=ys
zyrfpFVD^PwlaKIb%3EKbefQ}E>FXYPMhSDJC71aBy!~jileN<0Rjzq1KckmkocQJa
z<-)aR6|YCIPYK(-H~mOo^qOMjW}5{&%zw0)>3ZIo5cV+UeEi?NPj-H0NLc5bw^iPu
zu&lhLr>D@YSh;0Fpt7zwf9U4lwk?`^7L!ap{E}t~)*qVEaC2qi;(~mQ@EDsUev91|
zB{HFR6t1~WdVXwcvD4!(MIwgV|34_Rw`?iMx}kALI*jXkTkEBZiR%k0KX5;94;L}#
zc<j3HXX+iZiKop!JyDUf+`i$qY%i0hjqaSj>gH%E#h)z*8*=h{O3lpOcHgm@Exp+E
z-JA<Q_+$GHNiSy3+*z?AYND99%t<K~b;GkA|IJidmYg@JkKgu2D*Zd#eW%T3zZPxo
zb`M=}dgHwPS~V(}c^iZe-1$Gpru^JOZHJEzVP-u`j_*jlwsWFI&7rQ8wv9hquCgT@
zo)?~cIzXoS^VtZ2)5*ub<uI7Nv7EL-_Repu53lYeZ+xoJmwQ`G+bQ==MANlRxzRc^
z7R;6Ik-k({Yiizc>&C|WvtP5i?!B?i{zgV;p|niV_M=TJas}rnxBtj-{8<@2)i$HB
zI^<{Pjmy4`g>eZn3I=>1`nXw+9ns#jr@g_s_!m?Ah5M0V*D5*NnQY^2SY&2hp1h*g
zXt`|0{JX*#?)A@mB<C7#VXqR};-7Zr#hxh(ezHGq+mak!tiRCqg7MXu_mfs!w|p!n
zt!wx$t^JPV-02tI3D1AL=SR-;C(plXRu>$68~Ic{$^Y>Dqw5$pp112}3{RS0Yo_+@
z>pofL8-{fWPo)pMeyYB&UTp5$%jULb4YH4!`_(hH=WWaCEUZ41_V#(S%bj<e&+feS
zx4Krn_s?Q^mDj54eCJKD`F`a4`9+`qh@ZLTf8O$%wET~!v(Hr<EWP<Q@u~VVTitsP
z%j`idWl!1Y=RMCS?aJiI>gQPNQTQ=Kr+D4<4Q_=WS5*2H%5km_teSRC*+1)?vVWw>
zB&+Wc&kfl&mY%yY>56Z1z-_%P?XGuhX70YaGw#0F(W8eWR$KI!yb-?@Blx}Jgst-H
z(2i2`6Q(CPB64QlmN=6AdQM?f;l~-ZUKy8NV<MhS>!@-~y6ZWs`#8(dN|lnBCv7f!
zUp^|9nV3DLv-JF_xDy;4QP0f8HvZlHZr_vq){gA=9BaLf_)52K5A4{%?KE5MkyzKA
z{U@q6J%2mR)Z<meeK$j~jiu*yTtB!mS&ktjW1V!+XU#(ItySGyOvU(iPv2n{-aR}2
zqQ|S2wblL{ijj`xcO`1i&VN|-GW(C=S&oOZy9C(|$=)`--fMTXbg^4Tc52Mb6S41O
z*4vd?Wa<~@uAY3_!}dXaScbRgbHT^qr{rV`t3xWgD*f-5?v@SDV3As^pS4apTJ(Ca
z*u-kbYtgCe#BV0V9^UgV+q1eeJKyTbyB^knz1|ttb6&eD|DIwS@%r0}Pr@6Qzu$Sc
zUwTH3ebL>G%GZA@e=GR!V}5K`$~x)VuGen87p|S!VKi~~y`6EjZwfBO9qBcUoU_MJ
zFK~{#-F`#0*y-lSCMMpyys<KwWz&O46B(iY`Ig)QY8-iN`*_nT{mlQMqT_uD>J40H
zOP#acwiVx*`+Q2({kaR)6yD!Z-I?tgb*E>s*WT{wZuN0H+m?sie6BywWABQ(b)R_c
z5>5Z8uQ{@-_|Cjoz6Y0|eREnRs@_%A{p8;B$Jzot9!EHmT9F!5b?J*|K8h2&^;s!z
z=b2pLuT4pJ!(K~0E1lgErt<inz|Qa8Rr($0H%7197_#Q~qD}0%HFXjnGK+t^t`gm^
z_3E$NyT40vYWm(h>TPqn=xx#Q4&D&{;wF7o#5^?PxNFSrGjGMd>UEY@ugRWqeXqur
z89lT0iu${%jvsxlF*#dC?6qImHw7Ct9c>Yw+`PRj!)%ma$xf}Vx0If*y!%JaT)ng}
zDy927vQ@9o+N!Q+y}M%0kIqNC8sjz2DF>HXTKDgX`?fLiw$`Jl*3T!N9e3TUxAEOa
z_PO5^{_Os8yYYF0k$JLzmuR)<@fp7LXHKyzf?7nvjtVz6copBhv0z8u6i`hwd7U(W
z_B!d+qR%I~&y8_A#2~iph0UdywQml-f02;beq(j~ve(l-rEdKGbW@z&KbN(P884z&
z@66k?en*}O_uHnP>X0XSp)od#-fNvxesBE*)N8w=x+U#s<&xa_o7nR&9X!OgGko^t
zQtzMX8^7nDuDmm&)qi5@p3Mz6-wK;v@73&jeT<iHr|R3y4Yyma%{>$Nr1)*}(aI&K
z6|aZQwmGw7$t{&`w}hLk-)*@YbmX4@)Xx&nxI>D%mOAuqjQxE(Np4?n(&h{ELjN7h
zahYOk;l|D_{UmNH$i?MJ@54`5RsQ&H#NhDs?=0_QMMr%Pt8dBl+Ix%ZdDXvH?=|)0
zicQn|Gc~RHSJ+;^aPSb{#&GUSrQS1Fob45G%Gpr7>qGyp!)>o@gwEJL7p(jH(UPxP
z>O{fbM|<v+MlbKa_T-)TqqlFrn&szjKfSfOx;p7j;L)Sb`}W?ID)-B<J6f5tf6a5@
z*ZY>fab%w_##VFdPEcLc4eeJ`Pwzc{eD$uimydd%ysQ7{mfOO$B8A+k@8SZ_>tCyN
zEtabcER^fa72e71vUlpEVwnlqceJnl?cKzFal-A*ry2L$x+CYc^^r{A`^uf)uctpQ
zP7$xq7LjA#c=z}(KPGkiH}_<lFIN5A6l#2Q>KxPTTF*yqTRhKwwX=CV;kBW_?YrL-
zFWuR3?WJipv(h^MC*Mw0F(=*K7q&Egd-`*>dDYc6*UjTK*V+`H-5GXf@5A8J`?kbc
z+`ZhY?b}}PiECG!ZH}hll-uU1<<rX#M#d-Y-KTlnb#L6x@9~+Er%b;at%#kcWFo%J
zGwF57#aVa$IzbwPWjo8vkAZrcmr9lS`ed6SoVjOvH=cWTEF!%)IpkYH&OM2vaxvT9
zba&mj%s*x4)YE&Xr~96JJJ)Kb8(+eA-In;jX-bztRrVR%=M(q*`Tt={;CKJ@E9a#Y
zmt6SB=<wA1y!JcZ@1oYbQ+|le+Im@B^n07b^km!m&>tO}KOc@cTbXj}(3LsvSLQwM
z-=2}&@A<c2Ui5j_=S+{M^?tjv>fe;7wvuc$hr0YDmL90Rb?03m*PTUY*G5(!%IZCF
zcgdNv5>tB%mvLs~Wna4^-KVuqdbi6v*2wqQ5A99N4KnX_%-#EF*T+@Pc}F;sj_NJk
zyLd-M$-Cfh3F}>@n`@$H-<I`iTzTt`lGE>iV{?Ue>Yln&bl~%;YETdE>K*BG8tbH=
z%M|TSmt*MTe0yw3o>cQKlcS}JuP9y*v$j67V@XuMt8}x^g>PQPGd?Zf^?mu0Ycn6+
z+2x*^Ec5ZL#DTt#%-W*g+oH{_cjvv~oV|5^e&8MHZT2tUJPQ1Gk$+CCxtf1Lf#lDB
zktOr~H%0zl`N&2HQoZKRzH&^V@$0EO+vb+&J=p6#^S1i-*<0IF?nFOYW4r%sW!~j@
zskv)GWd@gI^z!cKlXk}++3MaBwq!@eignW2CeJ567kNJMgVfUWmo}f4JhS;UWfME^
z_P#?EMSL6CeW%r4G<^S(Tl1W+ZT9(PuWcr==FHXGrc%DYBl~viw+$V$)r+@lt&@&6
zc|LJ#*JqF8bqmjm7WQ}CG2Rr{8d2W7iM@9FZd+?}f$9zCH|c97`9~kQqvf)<eoFO!
z`>8wk&Rh4{<JresR<U!g$r$=^=I-j?K7B_haJ|PGYtQ1lGZt9%xAb-2nXtk<wx&<H
zsMl!YyU4SmD(3ShNXOQ!itcK1e>N}VS=sKG<hF?K-+HY3Q{?vbHsvq&VBN?*UHA7Q
zrEgyvjLc8p))3P!uC|YTK2ay(bxGm+=H%lx3@a|gm@iqjGf(I0E8R=iA}rp-J-QX6
zo3}6Q{VtxI`g@As5_XoxhXmPVuguD{?iX<SByzVj`HSh*(&Q_q*3Tzy?7SSe(!Nge
zZ{)HMCpWoDaLCvF=C51u@3Q}E#{cqceC>@N9yYqHz3%4S6Rou6{^=c%>h$k&_Q~Ib
zuHP#-@pp^d2Ycl$s^`A)@voUQ>-h8Uj30jejbpIee_na(#^ZNy-MP1t`Hz16y1j4M
zU)lXNajcG?efzRgwA$majyqFN-SoY8dcn78y=h&)y>8vU#$n<Xf8~z!Hm!Bix=P=h
z)@=9MVV>jhYMJ4Ry~}pw?Rhz2x3QSRSG|RA17d8HelKxbb7$?@x8G0Q`Ic4O&GGiU
z(Yuxtxq;`_t@<055o+{q^~-m&Ufw@Z_J3=+_h#kkRf;=H<BEREv@{kRFFRYh*uU`Z
z3c*`ZlIpSM*R=KIHXa5wHKOOnxV>Wdzu75z(T)m<{a!Z@Ch-()H{1R_XUmZtwzuwt
zW%U_qySy_#bu)BphuHLgy@C?4=Dj^T^Lm=x-kkipbLone=agF}%sHO^dWOM&?~}12
zpm9u->%1#7-|?2u3w~8w-n8jh?csN->qIjPAN%bzoDk#w=4$!5CD!I&*DPH%RW|g|
zzg6m{&nNO&?D@dCI>pw0^0#|pO0R^&lH7D}-En)!slD-C-qPp%Yom7Euu}VT?x5?!
zwVWAsks0T^cRV%P?t6v1t2Em5`9!s&l}9R^pWM@bwO7IJc;3!qK^x!QU$TE^YrFrM
z7s|PL(pz`#)hQD1tlB^E`Fquk$C5U_lY07QTW(;Lo$l5x|4m+PE%n(ESR6J(Ys+J$
zb+OONx~rxi*=0Mc`mpQKN)@ZvCvu`+`?}8us$I9xxwcnPc=@IaJLas4_F8YYeYQ(p
z`-<|Ab%ic#3PaXJFZx=p7<zsBmi!*O=;JMtwkKmn%s}mNSTn+ra5G|_%!iMsZDnN5
z+>EwMrq6w@CYx+#TX(ZE?|A)+FXkVn6rVqyw;42!d?G@fgGD+lbDgxb$o1Z$g}M_9
zFYSGpc(yco>!V#CS4=+bA#vc4$XxeXtCza1sR^8YTYu`#zdp00r(QUfI>#oPd+zI(
zw=PG;{9@DRb#T5Pb++_z?a|W3ks0DCcNQy^uYUAMur|E#ZpD2?^IH!cpXx0%)z*{C
z{T)=cL84jb!n19WGo#zhws%~(H?8ouOI~+TS?F8Sg=Z%h#`~9FM{Q%wl0K5_^x6-U
zwrkhy$SbjYaw}_cyQFyzd$-|9*WCX)>!g+5MXV~Gt+jP_`+RGgw`(q(N{y+%b^F-%
zK$Ti)){Tqy^)3pXdHeX{|7Kji*@6G`;*8Ceqr(GDc^mQ%GRZe&eh+7GIQqBqmXfrt
z;W_Osv!_&jufMu;Uj9Mblf~K$4_@=_<gQ^@#&wo^frW`AgIaqRV@2NHtCLr->Pl@a
zu$^%4&c0=5->S{tX*qA}%5z^!-pc9bJ=?Cv_#rgx7lY5QFiD0fmYH!Y1)Vna%}s8)
z?{<1!aPuphr02UP-jY&LPC1~fdi{LVv$^iCk~dbJ&c6|rYZ83NZQ)e)&f*$y<D~sg
zRmA;!dA-)^Ci6RHvrS?=axebcvulgazGY6$dukLu&-C=|+fz5+-WdI|ve$Xt#&i5S
zg153H)vMdq3Lo;Gm3#=jrIJ;FXsO8WthM82T0i4r^sPJpTxZ|bRx01O;`<((`u|$j
zX3Sso*`uWQ(&x;TC+BVNyu-Zd-u{l#y*r<-nQ;3ZFUyIwk<WG|pLsrOt+3PTXDu57
zGoE@rk^y(!k1cuaHtBg?9cXN+^2*0!Ga@nF+-sPr|LE8Z9lv`Lx`o~?+oF!0oag?c
zWkTUvk8bWuN0rSz3g2Jd`Sd~L=^boN9@C(Wg>zh>#)2-iv9KJ`Sf~ay7F>3jZ;@V?
zQ_yI*QvT)6yq=7_zC8I?k(akr?^|<ZrS0llGb#_gI=;AGg?obG&z7tEyYKuqnLhi!
z?)40&S+{4Ies5dcRee|w)Uo=#wICs4_LZrL0nzJsnD2QtLE5k>VxxCPZ=U>xrU$og
z-TBvVw7mnAg6*ahE{CSz_||Pc$NmOBv0H9&%w^XRse8-^{uQi$)>7bBm~XLsr-qF1
zt=?I;51AaDx-g`4&V+NyAj1-xww<5#`dIGDb8n|yu?jAc3*36rDf{}lTbxHLRj#OB
z`+(Y5Fh^=EtlZ&N^MyJ6d)rB2k>j18;|;R=<4S(Fh%teh2PW5hUw2L2SzEL_vfAU=
zUe$BAKHm;1S2ncnuSvT0<mO$&$~~6fJ<mRUwjMIgV!h3e<9wzc2dIl)9DO0i{91+|
z@A=GkyxCLcF)!Y+lC|f?Z?)XK{g<A7Yceu_DY1Co)^yYD{r{JK*%MLBr73(%X>I!Z
z%fjk*Zyk^F|9)S=QSqYhpM2PX&tFoc&x(X=ZrLwZ7(aREf9ETQ`_Iq+zmffE_pSU`
z9-Vz(Z!9XRXt_3TMd{6qWjp*^%$$$ZCX4hvkT~#dk41)S)Et}ac;Ui&?P7V6ulw|_
z>0bQxS=;u%!|$Aa&bRwd?U3(`*)Fr^XZ*B3DLz&er{^gveQ#K^J#5YETemel>Ws|p
zyCwETYi=n|z4KQ|95(UE5D*#7b)bHIZ(7&t4Hw@$YBQOC#iLH?+3px?_U<j47tY%n
zvXwRJ&R?&+nYX0u7W!WPb^63PVJDNA0;dQ0fuAIn|NND^C9wRPhp#m2^N9tIZr`44
zrS?VBkHgd{TKn-Smv{G@pD34G&u{*9qq^($F}e0T5w>gc^W(v_dHR&itFr`k^^~?4
z9j#Oe(|&Er)O%6f^n2UdE@7wc6MGe2uNCs+`2XNrp`!AmcT4i54wu}$@fuvEm%3!s
zPb*Z1rnl`*t0xr-PW(M(Mfv)e$2%epf0=bKrYK8cXaDUysh^8y=Jk}Glo9?VqTV94
zaP8E>RHf<W$NoIYdtMwMUwz)qyXW@f3DT=K?=*~(Ne=6{gXAp1^qq!!)4w(Z7DX=*
zc0c&QBz}Ld*{gGMD>D~Av~l7%sb?4cyy<6r&>bGFpi-v|JIp8iaXItdI(<s<hr67o
zZU&r>S~csLP0-J9+m)96OWqe9R$t@c^?`HsM4QB;%UeCUK4d<eXrudPYpK(Yz+xXr
z#d-J9F2z^8J8EN2bnKY3>ag4TM-sw&J)e|yRJlKuau>PId$v-gMlp1`z|G?RY1J+n
zcGc=Faz_mpK8f1=t>szEhsnhyP8u9Rr8j15@-Dt>k$r8OR-fT)Iq~$h+OE$heq{Ey
z{9g0M?CIvWqUV(T_iH}7CuqCd*2IZJQ6;y@VMF57XZJQZ7CJrP4)vJRE_%IpzU9ut
zEsP<YYh#X0?Y`3rD%Uf0-)#(u&C{_pXW*^P?)9p$T6B?*U#oZ9KDGr5*XssW-*@xw
zsZJ|#^C+5kU(MFJaINx7NvSJJPSw%J-U{#31vQ1Px0v}K`)fb(cW_|-yqM(vh{M+0
zGw#|6B2C+K&$t^mX@#%gEepZ$N8buO`wFyPN_J%*&oSA(Los*Nl{~q+cOSNFcG8|+
z7_0PMEbx8VPPdg2%Fg+VAG}WSoa0*~-Fo)6Mnj^7;uO8>a|GOKXQ`O~^zV9oEavP{
z=UsUbGRZ0HUhP_#`FX3w*7Q*2mXx_YmWl#QCpHV7VZ7d(_{UCl_v>5Mid(Y$IHX&T
z<$pS<@MzDLjCIoT9B0)Zol4Ey`DoY2zGvSyT4(AP`tI9%S7^IS#_H5LZ+`w~{-4@y
zfMu-+X!QkXt%!w*r8!6%#5OV{d94WTwi6;P6)`k0fUXts1@9*WEomWpKjGceWv?|v
zSRE!#{r^ApyMt_O<b&iV?JO&@rd)V)`(u})I)}%uyLrL^lY*kyJiIb9`=uEZ4D8eE
z882+vsT6a)wO@)cA>@@S1B22l*NVK)Yi=%1XV7!q%Q10*Nz8wBQ56Pe@49o03<4YW
zariHp^69hQ&&26T$_zXQeks{(S^59jK_PRg0EV99zm)cz-lW8k9IVg8AP}g3Xtzx>
zTSCq^{X@c^A3yu*aWY!Yl<5G&m2L(Gm%8)+m?Yxs$|`CdQtrOkF3ylK;cs`%^<5@B
z=LD^jco@zG=@)JJ^X~QLeL@Ti+NuN@8ak>bK0b3>*nGA~cQ1p3^&A5R28ATh0`iXE
zB|oOk$}Z^=f6c()yK&!%>t|gbUM{}C=f&(W8*JH??wYymXBjS-epO<R4DUUC{HPnl
z0?l`q89^pYT<@*<G(EDbm%*WVjsB<D*^540G_@-3E>~tSIq^%${dUNNFiFM*h2Zd+
z=g!O^uyG#;gM-Unsu3z{?RVbIyKJ)bi`V0OIt&c4JEG(7h?H&geI6Uhz)<zD(u9Fw
z;_j-#>ysb(ru)xiWN4d`xBd1XjmqE;PkX1{eYKf^VT=CChYSoHf7aPYo?D~ino`HK
z>qc&V*hDUd3*GaVu8N*selYQQ(suDp3=AcTR`P$(^;+iLW@M0P{$0Yr&@tup(aQS7
zkH_XLkLJIBl8NDh)bquR3>_76ybKOc-br{Bi2BuRJjWf$z_6=e`#uZtGXL{N;=A9T
zVq&<!eIBIp&eiVSa$@5C4$KS&GY<WFwChu}ot{~p88?GN^PT0)3=S#P_l{PIFfd%J
zo5mEll!L+H+|LYfa)S}}N2Bu@7!sb@$uck~m8UPd+Q-0<a|5&+FQxkVB2_mAhHGm;
zscK_AC@Flt$iU!Y)6d4BFlpKT;}<ml{?ED9rOd$4egE<Q>9Y@&{QMG_oVvYq@g#AE
z2f=mHf2td1YZZk5-F}jZ;lnbq@A`SG4#&3UScmE}9FXu^E#CclmgCm&H(@hb86Ko=
z`^Cs0VEMVS#7pyj-VF1wvg#`w3<s?JqT_2mvy}LnGcepMKldwXUsHvT7(>I}C>wcR
z1_$eNE5+?AlKb4xGcd%LKKuFNXW*x2+$W^9ciU#MFg%b2r?sM6_xsO<3taF0$@wB_
zyL+Uo0mFgibIR_euKav$X=1^Roj2ARaWfn^9c3f`_u%a^28N2@?ypJ=3~w`5$IbaJ
zE0%wza+m7HP0|buyDg-c7#x<Y{p!lV5Vbgtg+XD_C^2-xz)pGTl%Q3aOY~os?VkJB
zlz}037WcuO(;~!MD^FkY=m#bA_qV3BiHWeo<M!Ux%4=^feolB3&%$7rymzi)-V%Lq
ziL^hxo{_=f__W2kuSHkv*?6Nj4wP&5WYqFi{oHZG<NB3uh6Cj*rK*?15=h*a65~gA
z4$eDz&k~e!kAT+Z3x0pez@YD?`PBTG&(iD?HUFj6X|;k36?bC<^ZXpdrC&}5m%z_2
zGF)i?bMsvqqkg{48^I56%RaxTOgQJx>>&T`-_yOGcaOEN5NBlQ0J-3=r{>e;o?X2k
z?7k{7d`Vo%+AYuWU-aIRIF^QaBKhkY*9U>JbD%zxgTEPj=-lY13?OsrpB=w2TmI2e
zw~F~-8~49wVyG>MH&5SKFUVjOyvOjkW9B~hy&MdW157{hf&<`{D}%(rJ)sxdT=yLW
z7b@34PT1j}KFcedUqoMdMUIR$cY)yS>a1Jy=XXbLHkVJV{rEF*(@y7)?{~-Ravv!9
z_Q%Hea&GF+^_7d0Ci(|L+;y$$Ias=Y^;yI^=e-uWVxODcA{$m4+8=%bDx{LGiEj_`
z`q}q*&&Ex+J#KP7m^5qF{D&gf#Q(2vk&BJqAh~*KuXEbo&<5_T+&VMSVy@TS|MzTO
zRJK*;far|*iOV3-@n`w*+1YoVF?_InmOkU={vDxr6egL6l}T&9Udt2{9Q@gMj*}n*
zgTs^WZ}b;%o(_BTXZzmL<hrQ0O_2@V6<fG0ObzT0AAA$PM|vZuQiC{eN!*(2kJobL
z6*K&hE7rNb5M)!)t$#-=?jO4par5omH*d?j>o;nb?M^GRdQ#1DVMp=vbc=b2BDLty
z=ND)9GO*hePJ64Gy;b_f^?TCAYUiiFbdP@B{aHh6o>X;JnNQgp9S8k0r9I2nf+FhL
zmI(cCKfd2h?LW!%<xtFV55Lvo(<g40b2?a{RW@1Hi2K6Uy`NRKoaba_U{Ff8>-W=q
zYF+>N*r~it%BhUI!tDL!ez+cd?H3&%!$0ZIqp82#ZhqXv@b{Lr|E%vX4q3kL{+S=U
zX%j<ib^5%PV_Pfiq!=2?<^=11tC-yV#xSzMZ?Cbx)8lhC^09YzO*9WHn=GrzePQdb
z%1dwD#rFg=GIacr`@g^DOZ4?!hW4@1Z`7<KuI1}H?7uftePQA9x#f{;XR0h%pC9eI
zo6>%UsU-Kk4d>h6v0|m4ZZG__z3AQ#zi$)&m`(c?e<)@5xxBi!cK>WEYpyXdZ+Y`{
zBY(3csCwpk`SPtmo$Hd|r_V2bmfrPaU;VGR=~JiH+H-F?@S}C6FdGAd%b!|t1_q^8
z-`&A4xf*^1F+@h*oW9v%c9U?$#~bY*@2u57_x|_t_B~y9Q&LmoPcYeX9kb&(`59D8
zmVbS;ZtIuj+u2T>I>p3n{B397p<j=F$?mU-$(b^B>R&gpjP{S*lfgB4?)lwMZkK9H
zr-IDzbNKw~_`k+@5g9GtrL&p3dZ&WSe!W@j$HKzh$My-HU9sr%#rJ=nsc38et`oDE
z{*l`lR1OGqzB($GuRd|AtS0xI(?42o-u?OF(YNkXZjq5U#W&Ucarph}I7suJos0|}
zB7Bv;{CxS(dVj7ojEuaQpZ>RxJ=jcUp9$M+*}UUtEH`MpiI3Sod0KyW@1{+gmZvn{
zWK7<m>3+^~!?wNaciZiJsiUo3T_83iHkT*v?bl08U<d46E&e=~+yA?s$nKM;PRUJU
zO$(Q94zJ$3<uEvdgBxK#%i|qt4%p>QnL5?hi2DqmM6<7D+PTcnTZ`9y`t|6KoYuTW
zRaMix!ot3-j!Y;!Ao1q(@#iuT;3kdAD)H{+E3{6YIyG-L$Y^)@ImHPdH}A2$_I}a>
z+2A*7+S=6-Vl!eZdFtMOHT!qSvO9MzsL8r4(@XPdbPPDzZrbFY)_BwW*n{KyPw-nM
zoNGLK*IL;=A^yIGwsy78HDksZn*={DHN0`Fz`K6>T^WPt2X5W1oF2PB;>rGlCr+J`
zn+dWQ?579c-{><iaJ8O(TedpVINSHBRs8Su-<#t<&%PPHugdOiUTxv^^3=<bVPW4M
z==409QCPBj`t}^D?|a*9tL7A+DGi@Cjj8_g+0)Y6;J}*MI#I@;ukYfIJr|Rw74P(C
zXJ|Na_utXf%Ljs7o-JPiPG0?I4pjtsvG*)q&$sB<^WM76%l3)=(Ye3y>-Ma_AKf<2
zUbE&+Vx+`XgU2flRxbXov%LFX-Ir(4TVGqNYin2MiMf3`SXeSc?s>1=W*OyG;*1On
zV)V~dvzl46b%7$8J^f*jon0T_g$H{KQ>H0HY8gmEj`nI!ep~5XyLio-H|(3|aT=^*
zK6cSiYL0o;`J!FBzaITL`^%S@AeaN<_CH>6vvTo$9o-K$QVpMZ10;Dq2t5F|gb%&9
zRyR*gO}&5qkO!NDd+Zr$+q6u_#M;8Yu`zafW~WY_nm4Jn`^OIpD~HXWk0nI%K^m5~
zKkNO3rex*K2HX6O2R{Dnw)|!%+me_0d&@uTo`eMAy69KZuQwaa`?>bsxgS%f{>|C;
zozuoje(ry>fdB7Lor*KAj=p(2Vt(uD%=$N{PhCr|2G<BmfqQpEp1-kmkD|6Vca2wn
za(q~sO8N7}-TgPf8M4v;W#OCCr`US;7SHDcwdmi@^nSY|=k^)x*GcA)kvI29Z#ez(
zad_Cb+c)b(zv-`wfB30zV_;a=w?MIqc#vt|0=H$~{=Mt<<k{yoZQ69;w3OujO`Ddd
z-v-%!&inwgbwx_U_V2NKE%wh_zJApW->@*TA5-Lx?^}~oyZxO7xUvUFL*}n&)7boD
zYivCAw6$lOGwIK858j^~A7*y$+dtz)d-hrE-}dO`yyfXNDXFPYNB12E>kQl*VIvvh
z2{-tSN8PmW9d#=Yp4KayJauaA72Xvkzd#`tXSQ@pUDVvLPshIQmn^Y1dJU>FmF$DV
zKA)2do#ns#Bq&$2UH&mgS-bk~n_r((Pkw22i@f=GbJ+1jmAB_DH*K1J_TJp`liH^o
z;+BH*>94DgL5k<D0he>24#&KAxmKr7&6~#xlgin3H}CVL$KUKzz$G33X{P4PnsXDU
z?#;Q@$;iN<wEwmLw7tFFf;;cMonihgbk&+Snvo02XMgQJ_FN|N=IYe?Y3Hy1Kl1Bw
zZ<2ZBP2tT4B&uc>r=;r7=soA2|L<$8{f5+3{u4~%7f*m3auec^DX)+IjQpBb9I-Jl
z?As9?gFVZh$wb~foi-QLIe7%>xvlLxSonI+(tUwp-@GGNKQ@^34P@WxwD;G<pD$bf
zJhkg?N^{Ox`y02e-w79!@OfO^x8}{&P5Uc*`n{J<-SFtvjnj8i8rS{YDiBq+ecz7P
z>;)gE^yc`AHT1eYOOK4a`Dl6TXT8^Qpa#Ir@=Xj!s^;8IO>IA8Wyk>Tcd6cY47#bY
zd$nMLLx1t^HE#~wH2JG*miG(Pbxdg%W9WLuxq0`_*syO(H(%^~x91X%)#-h6SQV~4
zzN4pY9dzw}IU|FD(ADnQ?kjfBTXE`II%CIIi|waR^-bApEx-4k-KOn<W#P&UjdIV+
zB5yWs26uFVEJTdgZgY4xHErYUH<xu7Hi9L)Q@DSNU*9_&R295Wff~a%^X|Rte>DXD
zzfUbsWxSD*Qa5etRNcB)cCrlT(!cX<d9yBVPW$W2j?r(_qUXb0Rd5Ya4|ra_pY*sY
zIr-_zH))&2d>L=ds81>Rve_qW+uWSW+QN6?HkzNmtnm$wWQchEF@5HmH!mZ>T~?Q`
zNgtQ^EOpz&u;JR{^G1<3FK@Q@eqXBdL%r*+)On@@QT_I(Q&RoUSb=(4Pts>Cn-a9|
zwqgF7H`hYM7_L?QiB!|Bt}FXnS=X^^-^PPF3~Rpr09o4lrvBl(xe}n^C)C5P48a3F
z`AJz^CZ-04AbAkm(17&uDH`r&Lb_$x(7*^fKt;}GrZ;obD?*M+H9TL!xbXYEDXT(W
zu2Asp@(>hQ((N%(uYmC-mxr+65^+XHhpP7;?_CudrU*ExJ2+L{t$p8r*SE}k_w2h*
zay*OfRoBXuotrZ=e{=e|Gc}(@6?;~SGiKir61_cf{(_k|yXAVPvoM^N)#%^+@!bYh
zt_JJLr>vr<eR2F|I6e8|r>yTSX*=KEPrWP=p>cEn{0cS){>$Muv-RrN{(KiKqtPGy
zF>9xp2*ZELP}!f#OOlIx`7YU{OkDn~MCauS`>NX(GhQBu-(mY^#p`)1EWBS&ZDep^
zaZEnm`Pk)-wC?4ar_(>bwkoll*mu%iStQ_o#KrAh%bl&?t!n$&_j;X~!-He<ScSXp
zoZ_>U;C1+MjBn<9p~r763g@(jq~GIaXqsmJsbHJI%hp51$_+O}m(IOVE}t;ta8>dB
zm9awce|OGX9<t@;hpFO+OjsAz*FMyBNwj!rkT|C$B=wgw!=Y<izZ7jVc-c0odvW6n
z)}wPT|NVYod*ADI1?%_U&pH<Bu^~^q>;Ix@Gg}0lN*d?OsCNrbSmn2m*Wt=F{mTcJ
zyw#c#Da!70M)Qdd<DF|wzl`0#z4-WWiuXrmp8InbYaMydGu>I)z3Wkgjr95N><W4D
z{cp~RsmTTw?v>)0IqkaVU-7qF?HCf87h9jZpL=(6dv)5k74stZZ^;q3nE91={@Ta!
zvpi#J*UaBs_pZcqYc4~haIw|W?>TFq{a-%Y->#^O<(SBa;zJeX9IpGV1(+Sq{QK8B
zSJ!9PqIYo(4S_f3T-fe@w{!WH_Tq!L*{2ltUY@mP`opMO(Vm`D)nl&xS=oH8_GOQ}
z^<O1Z8?Fx}9mZlFTeoG3@)s^wzg8;hTlDVR@rM&HZ(Ck=X!FDTx+vcBd))eLmw0~n
zIP1@B^Je-*&Aay3_C(g_zts|Uf40nc{ffo~-{<Idu1R^jA*}e*nWvmnW0Utzs4K`W
z=6sOnpT76@w#>R;zxSJ-e4xVl<-;25e-S;`*1bti=T?>udYAS0TPEM_WPU!4S2=~3
zWaVOO7;5%;<zzh3xHJ3A-u0F14sWXsHhB5#+u|n|Vik84zluC-q+Z*+TKVa(2i@<V
zzumL$ci6$#);mu%DauY<*sp)!={CP@v6D~L)rYM9x5H#-+vb*^Hc{5A_1;Z5?x}R5
zWy<EP+ll*Cd-NFO{@!yjd{<yIbALTo!LC+gv6r2{&is3su4|%huK)d=rO2a#Mwgr2
zk*yV#PfiHdAOAkrXvrG6Nh+R`W~)5a4cz3?DWu9XwcYR^|6e(oU0supc%OeFW1+HL
z;L(FE!g`;tm#_YMS@dkR`Lho#eex-#8P9L#9sb6(GC+Gm`H%V;YR~R1Otmjr7wxfe
zQ@PO3<?RePE8pcf_Gtcj`>o(^@TWgNHvQjPdEU@UaC>fna<}uYNy6LRq?3gD*Zppv
z-v9bnVq$8E<<v*}-I)rr=d4(@%^)*n&HYcCCvnPu++SUOnX~$|aamVI^y7Vdt0&H6
zvaQ~)-69}<FQaYxtc3mT{D0@Io})XXNyB>A>UIG`?et%k(L$R&Quj;jee|Te<@#qQ
zYk%XjS69rwy`B5!%AKlW3JGbF>E4SbbTAe=+|XJ6>dab|>aXk7*6sZucHsKD<>5=4
z64uySPms?{kU4OWuj|o;uLb{kIp#cRFp%4%_*7Pc@72w3#=a+un71uk7wdCu>VeNI
z-&;iUu?nZ$WIa>1=9?dz*L=3Ts~dt}U%FqQUHaFTYcBIL?PVQ$o)cFK+&+CXNQL>k
z;6;J&i)+K&|2IFlA}Y1^Tye*X7de_DKA#Q-b7Z~9(VTSr_w>fqqHix035#yo<h=Xa
z;&L9FHIG0_E@{csoVJYadh*E9P%O#q^gC(gp9ejk?@(6ZU(b5LzN>w+w-Rsg;g?tb
zJP!HHcy8L{+jft+K5R%{wei=9a;6!pb56zx^|u~~U-@$G+!;N_R~oc_+`PM5{d<1g
z)`Vj%?^7eppGL1@I(Nmd(z|cLE#;0^FG03W%9S^;yt-$@*}(7fCYlCLk$GMx%Fpyl
z&1g$X`7W13muH=u=5$cyXug9_dAheE^UQjivX|c;AE<b2TUuusHFcJK+ry$QDd9_Y
zX*XVGouk{{<e9an!TjqS-PSo3Pj!N}-SXeyKJS^)UZr&{HoiBxSDxx=XYh_au=I{f
zp6P9qb-^1`?B0j$Px6wBcR3K7?()P>ZqnAi+w2QkZDPN*?|+hc(r?Pl6`f2n7tags
z-6{IxfLrXAkkq#NKfjc|{M=jb|JFbLdF7@54UgC52Txu2q+Pb{T+H|Lb2rT34b$y9
z)v(^CEb!g;g{yRQZ?-N{HobWF(YM>CTpOmWty%mo`B}d0cMCC#ySIMr&wa_cU3m9)
z*^;RZDSZcuB{v)koi6$DOvTdw+^pX=B;EX|-7{hN=Whib^QJvfzhACyT0dF%@7pS#
z;F|au7Y%ma)&3Z)92))M(a~uOuYPe0nD}s(z>C7)$9!k*uKBxev3TCk{hdm&sS#%i
zIV7Hc@_xFB(?0LRTk`||R6Zw8;Zq8lCmFSiVcp8aGZ#NQ$S_QAyKVU;MDYF(d56D`
zPOV#N&M>dfWRCS`zP;<#3U8{<+1umPVe_|dHKRq|7rqGQ+&9`AxdT6mxzs+*(VVo*
z`p(blcPI3CPo;<|owrgbX*ep{eMMd7--P9#PYKNNp0_OJu(JQkS97;zGX1+FmH*wh
z^q{ps!ISeZn{Qp!d#2eU5Y+vc;o#-R{a!Xvd7X?M7nYq={B`9_?XGeM!NuS9G;y3w
z$zK@TYQ^~Bm9ur(gr#Bc4Y#Jw(0nevY;Vp_7K_Y-E#~+A9<1{@SbsnGpm6xc_fxvI
z|IIvq_`;8wN8dm9`WD~$WH;;g-sET3@2z56G<~Y5Q%8~UJm!LLx8J;*%AQxVZ2N{e
z35R;Ou&&v>`-<M7>46{a@BWr~`}5wu;4&MA2ltKyY39C_d2-?ZoLWPH)N5HAk9sF;
z%uy8H&%yFlXZicsyI!@He=kV?U3>BK{U;Tzs-E*+KM2<;th||ev7sva@4a+}3d7BN
zzIA=cJ1<(!_+K*AhieB{)NTK`@I!CiAFTLe8M7ow*KO@yvD^*8cAsOrwt2(_-Z9n6
zDv;libE)Z6HKV|XN-ryuMJEIwWc^&CeXCo?wEAzAj$&})g|)`j*K~iZT$tQ+@!2k}
zey>@3LNcoM1Z<49H{Uc*=fb9GJ45&Cukn5wsJmAAHeW*P8@<SR!A!zz;WvIhb^aw2
z#(d;m#{3%XlSKk%XI_|pnYXrS$I4FWwcq47M2ju%uej6Z?);?O?}AWe=%1`rWxfmt
zPVcqfs{1a$^3Hi??OoTj6ECq?{yve;VBYq0^U|}d2UefcTVLXBxHP{pYsZ`Wn<s>=
zmnqMFyyM#YjJQ-+x2zEV{OQ;I)9P>jX^ige^~%1-kayiwr$k<uTkvnn|D@2ollEnk
z7v12Ou1OMRyYcv~aFkflpUIKF*Z05r`0}eU+m<y`4hOXH?A`V+?ylR$CHYMawrXJu
zGrQ9A6<-A3oSpkcDCzsT7g0Aego87$1v7}LZoXS{`pSW@#i`xbmq<K#vc2lp6Cw3R
z?{5XU=S<`|3Q~66)qmui(>^cSY{^95$*nyVd3}c_2+a4@{KqYRhoyzLD2|EkxAI?q
zUOUZeo)VAE!dUx#es}CJj}zsZcrtF`H4APRKQpg|VIP?sp8R?yW!rH@mn9_ljmY+u
zN4*mo7f;$z`HxAUIQQ<1X{vMPu26{os^50*X3@vgLk_oReG0p6!+LJt{7-E$BJcM%
z<Zfc`Ik{K-Mt)uJ>%GF0-Y<K4?J?_z70nNYpWA&9V>q84E~0eZ?ZEju$->WXnewdE
zTvHzgANch>_Oz^V@JqM7YHMw3!h2-|6E^F!C8;e9^j`fayrFZ`e);TQ%~gArru|-e
zre5XtnurGvL!7-sSN{5QogrrK50;4B@Zf#_1PxC0$sW1<LG=hviRD*^ZCtv)e1Ctg
z;MusTr?;xS;s42tlTHWz7i~F}fA5k#Tb!h}#+Q@VzG~!n2FgF>V<^a6u~6*L>a$^M
z-6J1N*UYlde05mLx?HiP;I|`df7Z?Y%Gn=(tT;WxwK`8_j;hP)q@5QZDe_fiTS~m#
z9kE0If7TAOf?GExs5SP)mbo}~`Ttou?RN-6;qP4%^DLiB7BE`m#4*hL(6;&8JLi-e
ztZ#}H%{gCAS@`Sm*{k=AwnSwJ3z#bMu9Gm<VdlGWP;0%QjPdTy6BZuHMW1uxPVpb)
z=DB#IqJ8bpD*=w7bvgd*8JzPzoO)MV;*s_8ZN{DElE<%~{<$}Q+T^1vj@3GF6sYLB
zebldDn~~bT-Tj(H-i)175)TNU75E*oOnv#EDebeERn%vc${TO`x{19uCU0|4_Fv(*
z2Ep<17f#+-WM~<(lVQ)RXGPZjk}H0SDDA$n{B3taQP-IZ{|ygJt18+z=dN9p5X**B
z4?8DJZ@jyC7jHw}w|9rbmQ1=k{pfS)nhn2Z8)-_(N2VQTJRO@6s3RS;UZW!Btl!%I
zNk%N|!|%H@+<wAeI(y+;#s?D@AD-I7w7Z&%x70!Yq*DFvozp{iZGAldWLf2hcON)*
zq+YkNJ-6sv=7S}7b6Rd4)_H7nK3|^c&4zyK{a2JFlze7yyw$6p(6slr1moMccilIg
zyjF6mu-DLI(fr#|My7vWrtk=un(02P(b_4PFmdm`sJ6uQiPIBjJ~yvp*!{+|nk(>)
z{Ef#qme#sj<mPW)V5s*_Jg7#}Va?e}VdHD_OJZKHE(|C;tSqkZ{7uG#GH+|s_xJuP
z3S4&Ff97#^e1q*buL_kG0j1Z%8R_TwgdRT3|KHPiIhA`~D*vgqU95}5Z%>ms`}*-m
zcjc|!XLozs`!`4NuV2{c;81Tp*T+M59rK#2|2J2E*}=cz{5|#6@dtvB&#-y9V!hJ2
zdGDS&P2pr#|FtPn?fm^Lg_>=;vyIO0O6GUXaG&x1lU|wql@hj~-M<~4gjC!1Z0%=$
zbNPDyj`H2y1q=G-?(%WC#asOLUN__91MzkDud^7%w27AG*r)1T<CzvdecK<aEpOR(
zPM$N_Cac$OL3iEL@9y8Xym}q<TI7IKb?x4wXhuDg3))4mYuF!5(8>Sv$avq@74LN=
z8(%S7T5Xc*f4t#npZ2_)ALi#A6iHd$zfjcU#@X8L<0bz#bevqf%Ds1Db*Z42+}eM;
zT9Q>u6;#a`{v@w|zTrcVXu<Nm|D3}g2pkZc`DM#(#j<#RZuWzVA1+GXJEdz+<NG()
zs*F3z9tx~pRIz#A<!f`R))>j;Zmc^V_W#Ci&zlvWkI9@>lfU%yxNYq3v(}jf%FC3W
zugQ2|U;Wm!_^%A7&HL<x$geNGAI$$%^wm(T;l<q8GnTI^?zS)%eNB^H>u7t@Pucpv
zw?x+bWvNFuyZn9kc)I+q>^Bc33kpxqSy(&m=ZdZK=l{RDyhKVa(W!#Bl9}bp_R0N0
z3vVuT_`uJ$TKfFU1DBV5`l?iV-7UB4&ZUcAtX?H^OjB;0#QTR!W{bN<{C55KhwfeZ
z65{nUyG+8c{`pn~q0c4B_BSV+?Gg(*s#*6fq-xJ@6{(JYM++{8Jkr_Ve($;df495q
z#rA#V4(1crPH0?XtJZltL)2zs>}8FuJGk}~guQ5-GI8&t^uNphmqzWL(zE+V^zx+4
z>K4wA_f&lU)K_cTYOM`t4CL;8l(C(=X~z51?P~dx1ze0v-ahYqr1Y)S>C9LEIEOiB
z4tBnp&t?(nc+E|=FTJzsF5A`OkUMP81JnNSGKBnon^OAmVP3<8mu@S=_lPm^zbWLJ
zn{3(OB`p2x?W$*N*$LZkCtP2gKUw4l`wgwdm36(%4AW;X{mQA}`{CV;dd7hH5()E{
z^aOntW>{b6@ug)gi`lJ{9{VmbKe+WjENj~T{As419fyBN%53*vF7|N-*N;<6d28ym
z53DUaB~e`K)pMo7qNu7v#?C>l;QuGBhW`tWcsJ!Me2U&}t2(nj(DBZeH@g3?yl788
z_wQ5dGt*D~p6LwiA0ic8zD|5Bz5n-esSmH`O?$j-sbE)Ky`S-sbM^V_m0$4eeb02~
zU7}NNq$!ux?UnJ0EdpC>816q)N}m1ID!GZh{@eNx=64n+*YEgInc&;yKY?4nk9FQx
z|8BQencYs!{@HSSy#H$_uD83>X2ZDS#<eTXb3Zq(nYGVNP0n(Cr{RHRhny<PBP8Dk
zu4vo$>1(!h+-C-P>COA4F57ce7%RPf%^hU<lP#lo<KN%Swz6Eym}D|@iaMWc6Fzr(
zhG^@Bx3xm*`?TwMIAk9wwg^<({r}l=?8NV>!p4cEJgpl<cE)&J6fiouQS3aInex}G
zHaT{W-wN)qYOE35aCS~_ZGFY$lqw%-h6l%bez|!EudHS$Si0=n;_$VJv*){8Uaj8$
zhBv{{>z@Aen5)K7ij6tajQ?imd=EHbAHAtAo;mr+n;hSUG+T*1l@XsO{qkyz@n-mX
zh=q0ela#G<zH2=Q;rbS`_Q9M*Q6;&n?y^s_RFF?z7qIB8wx0Ci+(^@uJX5tfmv0_&
zjk|5}bM-1KUFW;m2b`}PPMEN-(<g8W)AsDPPB+mQ-pm4?J*6GnKd5v|MlTUos4iHu
zC-&N2HOBwU`@iM~1PIC9Z$D_V)7qPH>*J0}{h!<GIgh7Ic6BT(%40rft+LN&n?jOz
z#EyFm?`|Cwzr8oAfByEn*SsIOe)xGc+3k>Y_@$G+&BiC~eGC5cUrMoAzQyrv`+=O}
zGMoP}XzPakV6VEdy7>I2weEilzv=$6@U6{n@+nVD_>}*i@Ap$-H^(q7m&4N4tY-|B
zK4*ta^XGhZu=e*e#z~*9zyJN(&i<{2cjA%S%9Z>JPnxrSsNpHn$`DOi!W~l*vSiZ3
z4Q8EM?F*+XyL?=Cr|{9Q)#lPFv6mZlJUvhBdSuvgYM!s3queV?y$wFgp0AjE>wY~)
z-OFnp8oxJ-+?cN0JpYM^o1<ITAwKp}Qvoy8$d?<8Z31Fi%|4u}kqYYGBYix&n(b(i
z2j@G(m~tQgxPHZ#9^b1U#IkcdUX;^xxHI?An#8TlO-<S=v#VRIj%7TEzA-aJ^`+?g
z%Nu!}8x=U@=k}-;TZ-n37`t76s-RLlF-iIQg1|{r?=|k_n{YHWQ;6Zu^&`)IUpt&(
z-LY6f*jr|+pcVh~Ng++8O`e;+O8onD@Th)D_F2OxGuAVi-Q1D0W`UYQcP&fMgyxG0
z?{l6?o!Zk-Kk1YHOlGrmMnmp~{W)tbyR?=!eh4(vmHyxM{;g_%6HiG=MAOf%#tr73
z?a#N&c^xiqFS<T8`)uNluRIJ&_t;oj_f>xW73y%{w7C8}`|7Id9XI#i{hbxJW75VM
zO@^k48yD~5YV{R+D`Km>Q$M}mzfvi^xKHVM&Egx^r2hTB;`8^b!JUOnS~oo6EFP@b
z_sac{mbci((8TsRTF1=qOx|e99#s1L?f-Xoc2>W?S9_nG|BsyAm-;UeygBAG->;rC
zi{ZMj?Lvi?35RyP-f(W#(F60v9`V<)-ubn##b&OjlS|5{l^XuZ=a%34W98&>evaJ4
z7pLaO9$hihZ-U3cs=SbnlS|4%(%=3o6K1^szjfy6rRScAI(1C0&*R&)$k6<~PF00$
zymW4eV^HzItcxm=%6&Ijx96R2beHW>|81ldr_JRio~~|TurYDD!Gn&Q50otT+cG+Q
zN$dXTz9)<K<_Co{756`-Y?#QU(9FBhXSNMbMn-OI`oz*So`NeHHs7^oGFxigXuL1;
z`d@enw}7qX;+tHmbvt-JoQhfT{m|Qb%iK9#?(PRPn3+4?guS=4UA98;!q?4>)9>;h
zIeU3~M2&f$!_hZ~uS#;=mA#dCy8VD{@h>CAmXNpCr>nI`w%t1XuWpTW;6uA~{@m!@
z72lQ!{@t}LGiG_xURegm$wjJH&T~CqBee2EAw%BIf0wnkeqxR5ePf>VXpL)qo^{2u
zDu$l&Z6REq7p2s!wz<EbpWJwLTFEcVbJBdq--UXA|En^KGC%Zg?aO%8k8h`%t!TU;
z$>}-spYk=Sr_r0k1<b#xz42pxxZe1mK%PnS{;k1rjI2Lbu&kE3`~0^$L$}@(OFah%
zRz;&}|7%|SsVz@_B)@XQ;^636wmbBGyXzFF*D>g^Y3DE<XYPO171a1)v+n&vks@~&
zm>*G!yPNkur%_~*%4*|Fb9>sSPc!Cvx`Sc;zsfb&>ND@h-d(@x=?m+x>zNmRyme@O
zg4d)?HOz0$=(c2tq(9gAyD9MR?s;!#*T-xvS(vjj;Zvx9Q^$3iqLS&oS656jx^TWw
zF|ndG{=V7j_{l1{>$BvUcFdY^f0Mu*uUE_XlM}YMS=(_aU0%<>vdMO5$E|~o3|)Jg
zHhNw=RVWrW|Nraba`K`kHcF@Bc80EZV->#H5pt8YVD;X8g(qW^CK-It{v}j*`CoJt
zm%r?sxG2Ti4UB8fZ_kWl&bOVnJaN6~LU!9zl6qRj;o0B+?veeU)x3AF?dGJ4ZlOFU
zj+5Ha`;tumv3+=(wxcDAZJPhVJ^F_q{s>)h-P2<Ejk{VW{Ox~SJhh7T+RATBV{ZTD
z{_)&z*DSld_uv0sK7WNX^2g@|9Y6Noer$Iv@!2kwk9U{sKM?Let>#}rK%aSMQxjwB
z2BR<S(f1V|#CUyHsAn`ZoxD!Wzm4DhEtii(xZytca6cJ~^!@ukHdI@xeEgs>sU<62
zq(y4Z=}^A5x!-s>S5DBg%#L-L-IZ?Q|9NSQ=k=`)FB2pZO5fT9`@iC`RqE6Kx$twl
z>!ax{k*mu8SN@j$Z+%^Vj>V4R%k!Om=k@#)N=?lA<-@y{xBFGw!TV(#%IhYalT7Vh
zp8HI4<AGIdj0L*+leV6n{8DPo_ItaZHl(%ey=As1Y*UDd_JX~Ux#c?(gv*3^l@hm3
zzI0z}N$jaZol9PA`M~_nL}1Y$;~kL-H)~TPS-0nQH2&7V^Z)VeO()B&Uh}!c#n`Rb
z*O}02`R>58Bac@`^62;-Z`>mC=5TJvwBSn7U(y}(COC2^dfB&GKbt%uQo(<AyxtMV
z9lAR?%$FP3B{y>1-S*Z^cCoiB{~^<0J>}d-55iMtXr4HIe%j*8yZL$8`lej0)A=cI
z?#3?xu@{?uO#4>&K5KD?Z|<8@6S#!U?qAkWTx|71bhr8al}+KQKKDLPy(KkUu+_xl
z=rs8!{qgrwG(tX3F3WvV<h-7B_nG*$Rg4u^brWMmKR2JxdA+dDul3>P75jY6>n1NM
zagN$_<=y57Y#;3JmY=Xc#;<T@j?Uf<&u+vhp1l~!d&JJFI_3RB?SE11$Cenai0Hm;
zyy(|#!#C%Q+*x&uFKBOT_1@;2wx7B1dHVKkA7}V<R25kLeA)KpLlmdZM*$~~ujWS>
zY-R?W$a%|nz`$}>sE4nK=LRo-hizY?xf?sK%FmRrTr1CL-h0Pp>FNuomhtH=%A2OM
z{^y-S0mHDq;-pNS4ffIJ6t^>8`5hG<a=oA7*U1a3owOE3X}pQq^gD~;d{Res<?APj
z4;p`#Z|oJZ<~~rb%rjMCr*s~(QoY9#=X}=i+?i*LjumLnT(q^G^G^QHlU)mTpS+%v
z^+JZ1Uzvev*=!!RrRP~>-rimHAjOOIfLXa>%ZY#u6=j|sJnav5&N&&Vb)KK8<L;d+
zu^ftb?&W^Jtk)a;iBb5j$MgkjdDmWVv!A3L`E6(6t(Ct&KQUXlc;2y=CqKf&ST0RW
zYdAIS{fY^vPQK?>|I!>^ozu9$>r>gJm8b0)e)zxn`+H@;-9=wq)h8EUOE0+FHu<)q
zW>j71l_T5-VpIfPYrgjWV57}1wB)Bir1sHRttCR6;@IT>28U)^wp^dOfAOWu@h|d!
zH}(I&cDcvT#fsl-$BTcg@=F}_Uamg9+qq-f!95p#C%^u>DKA?=;pEh%PPY!c7O=U*
z|4i*{(~K!|m1Z8^{8mo%z~Q%(Z%x^-<#QIB-8KKTeJ;xiIx1H0n6pVN=lE-lKhupC
z`?g*=l*OU5KHfm;%D2;(gGxSJ@Sk*UuGZYvzH4SPk8@2=O*Yz}Z*U^}kXQ6<4@1lR
zgNEV!ZL1X6MHMb3l->}R_!77JVfVHFTl3z|y1F`S-H*Mi7Pp+dl39NuM6pG{_rbQU
zj_OedWM=Q0n5EB~xcuMeyW(v(uC(Y(so=~Ojb2@HKxJ`@ob1&G#|x4>UJ7_F;h(;b
z^<IYEoK1EjXH%q~*($o+d!Ns=!99P*S~lw(m&r@qTE6P7<61dm_JaJ`v(+yh`MBll
z#Rrr9`!<%F&b7T-lea>C(pjV53tP6{t=Muyh+9A^(cnx?XUVBcYqv`6D|0)})%V19
zv90gC0)-EMc6r8TO|5x;Hz@VgwBM3yH{$y~eP=xMuj8ukoJ)o;@~^H9QqW%;Tb6p+
zWu4W}(rLdQRvlh5!T8WkPQ?}po{hb8FK=x+JcGfRm+Msdn$!&59sF<h>t~Dc$h@3(
zQ`j%N`<3I4(1}mIqfOk*9DZ?E*zH{-;Pirjvwq^LwMwUt#Blii^qkw|U2MB@icaLB
z%AEbYRXhEd)y_q4|38Uq-83PmDXq4<vb`U!G0i@<&fwgscU6uBdm0zsGnmbOHfK__
z-JR`+m2c+U6p5L*so+>q@3svm^6vKg-1wb)R;T4e8S^9IOQ|2Xp0iKc7h1TbRbWvK
z%Ztj!tNiV?cdPk-)NPT^TF%;hzJ^gxLy_x}(c?)yCpQX3-B|ryZkOV+DzkIG91l10
zzf)Zk{(4o1uho>~Hui+rJF9)n6FTc0|F#_A{(nnt=Nyq>OOvCsn-2dJ*V!GO%CB%I
zj*(^d@q>%r&A+NQ*Za4YJZt``7ojtlwj0gd6Waf<;Kr_hVh4E-KND)3DSUZyf8*s-
z3nQhLsodERaqzcF&c@*9mG=+TG#}4ic=7VPQr2f`SG^2gX@!0LuIRESJtXYQ?)O#Y
zzc=}Q);d>xrrUMFsyAEiiN5jAd=Slj-S|!Wb+O5Zmo+T4DxY2P>fqE_zoMsnU!=fk
z`&}s_Ew)~HZD+*uifw8vm%=?}_iW7A{9>bI(^~$bd}-0EEfSV~UfUa{Yu{Gu*{k^B
z#-gjquA+)R*S;>8^jV}+EQ3!!NXjqr;MR$0jy*fm&%fpG_;DgGmcLoP=k&fS6(M^5
z0uMJlJ-~4(Q6e?9eY4E$hqtVj+};pyQfS(-iPM~0GKK9j=iRkQXc0)#DDeu3*zo<E
zhsBhDfG=wsKi!>i{$b<RQ!`sNKRa#akDGX4@B1k(2AR^|&lcQ!GIhSg*VeyQ@Az$d
zPiwu2_>!qmGbuo+v`xEhs!{%~^0MQfG7s-ESsC<2Z_DOwhp#5A*G=Qfc*p!9&C6?X
zpT-UoNjc%1RW&LX4)^{2*0j&f^(hm>k6`ti?Tf$Lec6|o!)<f^z@(o$uHHI$c3q{8
zs;M=Lz}`C%|5r|!wxi)z%S*@d1NpyJ*u|TzOp!m_a?aq!h9x`H?wz~M<kX?#TW7PZ
zkiQ}|CG%%zV{+fEU#<`AJZ{xq(F}<c=H9S<VNuSsG)tD7Ee8J@|NB-<x_<NN@qBh=
zUM{XX&8zRvtGZ@Z{yJXo$inu0duzn(B_2g?2zq?Zd70krx+|9~TLkNy&j>a@S$v{r
zJHvBrt7rjM>y46KUH{gXOSLVK5SjR4N_1Dz{G2E$$)C@5G5&ul?DS{R>udSG?>EV>
z2v~gS^wuo`ek%DzvRU3q#_f|!UpOmN^-Q|0le>vY%ZDXT@>bN&RQ<rE2gUF6%;!&B
z`u0Mu@Zl*uk>?xh0~K2;xC@F4pD%La@GZ#O*SY>0$DzrR8k?kYJhpA&JMj2)^Z`rp
zD;G4D%!z+!z;NDYefYFPtkx=-YuPso*`?Yr>6<iH+V`9ju2+1Xov{5~u-X47{vL7*
zZA#zv`X76#)giM?;>B`DHO3E@V~Z!U8{Kc5|K$C)W%nKkCV4u|xw?;Sa?H{Ug<ao{
zpS@N3+Pvlvqs6Q@?H?3&RQ)+@Ro)<6<W?G1z}v>SD(+I1MZzwpuMr`iqJ1m&U$me0
z&s_0i1f%Ks$8&Ry;@Y);&6==b(#dy)dusdDQV#wOSE#vXzID>n80Ukj1*fA{<n*?!
z-F@}4-ux=366=fdPG@rWyEX6sv#m^4(ZFuQ`Ggy*e}5NDm~ZCtBxlDpkNPP~6~ug{
zYj5jLU;2;vta$B);;83dUR#b`={$bI;VyG^#O90Vem`*)4phF?B-;ABQ1Y^l>IS)Q
zug$z9<y0di#jJUc{GH~_anZrI#P#FbSFW4Y|K~fL*SG(zva@@oQ@rj@=01LfIXs(m
zLXPeaPRh@dx$idfT9EYn_zSbe7uBCqX%Uc{=M>WxfA)Up8{LwLvD0Gwza9$t+BA8W
zqIzi+%O1%G6CY2M`8V~JAln9oqrH|*dwSb+tfl8~Yz}vR`_z4P0>91iqYb}qT)Vp8
zU)uN(|A*XldyAOGq5}?;wmcBp)O}gRspQ;gx&Mw$eV419EDA2WrMf>{e`{ZM%-%Ce
zcR9LkZMSaBel5XUpnb9E%dPswj1^bBE#16LL-umrS-1G_6I)%j8*4VcT`kM%UjO?3
zh6yvD7nshO^nd!jb?FDJS?#Xw4oT5v$X|Qb{dHvhFVlt##@+jWYbb{F9k;#9k*yRy
zE2sTY;JUw64YzaW=yo=Rrp%IJFSLKX*6x%%v(x_X0!|(4ZkgAeIJ)(*wTNFy@iz7k
zliw^)+y9F7oLuf4$qnBs*TgOtd$(6LBHp!WeO~`fThV?4+0btcHBWO4Mb<1h%KV_J
zwApB7G(*AK9swsF9-j)2<XvjJ_O9b{`rf}z_qB)g^63s$0x|P`bpGQzvi9}C|EhbB
zd|t79<`IY5hsWi&|IYmPH)wNF$^OS(>t>sM{^<F`-*Qb^Wmg_+lDewb!#Twpqr~mq
zwSIW+kN<8Lz`UYbEh}-+w>?=qd$^C+Rn7XjO{(=w=X@Tuc}m>>qeE{02{`@b=c(&b
zJMXP|z3ODt+`otab;})`|M}UOUzMl0EY#-jIOlA|cXsl+We<F8+*=s`PcbjlJTClW
zex2j8uD92jYJ0T3WdBu7yCkfgY;{25?tbGl->$FJoc6LUbf0A)!~b5xmlD$!pMGZW
zR>f@Rw#M*!`MpPzm46;7Rmy#^U~_7~h7;}P4bx+NeK{|s31{(U>ZzS&U3%$$9)tZ)
zv0nLx`S+wYx_lS?&bU@_O8V55iMtjqvb%EiMCSg0|IHg`oh%LBzUNR!jQ=C{n+HRd
zgl%cqy<Vnsz33aac~cvz8Z-Hi?Gu<0(W`!zscq(-#Qjfi6m3(KZM)d!+PZ%i<J48(
zV~Y%>6q3?9=N)I@i2Ygkr$N*D)toe*y-^o0J&6oz^OC=^;`2rI-q~h8Mp;=}i3O_+
zVm#OHsQt~hBjoUxt6UQkyxetsk7g*YTrBqEbo%$;K-Ub%#hZ9J&s{LwFD~NLF-f?F
z@rU(t0jG+RJu7y;GG89|tMlI!(-|vj&WSl4G<kZC;UM!_o8Eio56dTqFX?p14Gu4h
zo*jNh>eN1uJ<NC3#H!qjGv8CO$3kA8pHc3r@J#m1Egjd@EDhy082@0MR=+@^afizH
zhSIdh%2U5RUA9v`PkIKAa5(S0B|naTI}yFii%s!XyTgjYNt@)3#KxQcSiHvV=)Jv6
zj$1$S9=Q5G_HL_do!5#6i~0NAv@bfw^!>hY{?FA$#m>cBU+!qSwMF({nZy*PPAi!`
zp9~}(<Xp3C@K3t`;7-~iVX?pN#;4!rPtlvdS=6fa+%}izhFs@TIo6ohZ{1(0c8+D!
z$}_3btC-GD7F-%!z2cU#<MDrN5$WBbZNFz&B!%zx=#XjeFZuo}R6D%td@#qx&CWfG
zt;098d_TNr%I@rUSy#1_oSUBd{S>vl$Huysw@UhpnZ}AoQXhBE)XXlnHmvE(O`4K>
zf88oABPAoFO^ezCSlQUv*g%WV-du3KamDXwf4S|pwa-o3!jIMoZg8G?Hm3XHhD&c;
z`#Jsy+5PQRe0C`$BtSUfu!u_NoHvW_uQ8h)q+Stn`d64piAh((Sy0?G<TxIgW>Ec=
z<w&|uA-|DK%En__-zv-wxM=U5zUpsH_~kk0m(H%!Z%PiSfAwYVS@&lfD^@p2O1ZwU
z=G5H5G&y16&2HnbXG*gVs`c9}&8qp8dOz^;^qf0$ZzM&ySBe^5OL;c=)t^OyyNiGQ
z7P@70^qJ{XpU@tu*xs0hE}}-|AH(;uynMWN`>PpT*Vo*TI>YYp_56V&^Gvuj6IMK8
ze_V8?A^uEE7O&Ra;N=#HbG{w4kz99h+C0-q93FxE9kv(TH%3gDy<S)DyoN>dpNTEc
zjVhPMbi}Rsm9z2A#$9Jm8A?enziV6-V!oWCa5snj%y$uru3LOl{;qtGQ)I_JIj!gB
zzvkYL$L+R0@C;ln{Z?9dy=q{*PWmP<@g39Z-tfqJGS7IIBPqf&VcP-DVE^5>&34Q)
z5KP^}SiZ*RqE5?+`(J*GK6f&Cd?w||L!bTyoo6p;ML32=JOOEW!QQC$d_|$a68U=@
z9@y@fczfBlrHjtC%{O|i{F(X9#+8Pw*_Fo^IrcX_UMax2);IQtPwy>*{A$Dc9W(BR
z#Co4GecLz3eu{<a?j^M+mWp>o9%MCmeLLv!+Bg#i-KF<blr3)rdOTUJ(-N_0P1c(>
z_Bn;yc(|%`8nZk9hIIAr;>$5Js3=`+`<Txm^|sZ7xX*W73Ry)JySVP#rOfBsK1a93
ziAh%Bj>R&+cl*>CcC34T@afl=O1>{-%5J^j_}lq1#PGLh>gKs0r2a_7-Y{ehUvMP)
zugx?kj)!*(m%Fjor!BZQv*_z|Dec~5=PvHqC-(A8j(WQ6!TKLxZ!xa?YpYNdW|q#q
zXu;vnJZ~-sKdLr~U3{{zpnA^2^&dqPvYubx7WLjMem~nfHNMBs9xlGYaI>{7o$=b#
zf^9NfoF(iX)g@Jj*Bs1U{d~Qtzj3nd+}Nu(m_PoN$jGSv?c6ZopxUAZ-x@!^yfpvj
zzAJW2AN>0(z16?|joG-WP|#{}$M)0GGprWMac|dtwxKlP%%$_6m%Fc<{vpxmN$3Wb
zr*j$1pJymnu-+`&vNAz`37his{QWWl_D2?()hDKHep1M(@a0<LQ{nx2G1qQYF#n7@
z@V)c)tN&bPs_|K^M|On2+RuBS{`l%2@y35yC5keQre$5Iee=lHx+?NSRJ5X3{juuL
z?@d-e+o~q;xiK&@SY9EZk|jmidod@wiDYhEOdw;-&tJ{%8;;#9(!Al<J3mZzr}RvN
z3#+0^ulwv+y?phVds*xF4^&BqPUT9|xR&`(H1^-^>E4SQXOxzz7_wb8zPxdfXw3XI
zuS)`J^&`Y@EDlMj;dtc3yL?_Z^Me@K)8?8Hu6>Nsa<A`Io;T-TeN~Zdp09>NOU5#_
zRr59<4farbfB)K>)!TVjC0uQ~SnOhP!L{Rz@3J`;o}{^!?%OO>;=ng6!#Hcjdfiu1
zK|+g?W!8Kba_T5=PS^w1eD{!I()$knHKkmui)AbBeVqI<J$dW;JJFwSN8I?W8R5U|
zKEokC|GZVE_us8*y86zEW8zP%obY=oD<}7OH)bzgyKa6l=YoH>zpvjCe71Yj>YE>w
zG6i=(3tqo%+Z=)Rx*z6#;UB(odFs4hE#~B*t<`0H_v*Jdu?OS!?B3ZWaGKp+ZHh-5
zqo?uo^#KcO*tSY-janPF`lrfzf$-mPBDJjo<$dz@ACGMOv@F%;*iok^3VVOPGEP|d
z>~jH!;oCXu9=xg%<Po&};(g0@uW`g;yDzIQWS;u=+iI@|(?VyP77b3jw9T;^D(#oj
z8@+!iYi_nbb2Vq`>Z7whiiZ@G?x|z_ce#Jb%tSed3tzT9Hv4fzO)8!tM^C9mAX(&b
zb>+lgZOyOTn_HIKAAc@#wuZf~tSg2~bIA+IguQiIizkWq9uK+kQ}pmGkyCR_tIx$$
zeiGFPSu*3=f#*_FO1dtbJ0_*OCi+{<&Z2bIE3?kDXC=ki@NTW}ZWPsR*>V5voVuIU
z*KLxtvL?yu{0)m)B|ST5q39g9&0BZ6p4s5~L_Y4<#QV(l`wcEW>z7fgIx+M8?g}o&
zr2OAMe*E|``(FP3@?eeQ$;)2s`F-cE`6?G~28A#Cm9y*Qez>kxV*4fhz3Hmmd+W-Z
z^UMz@9X{;!Qo`rjpUt{0(d!ok6-eHx4{DAteQ2r_@mqo=hV@;jsFR3{<xc0y?vuCb
zTNL?(OiUHen(RGg=J55+qrTSU>Tgop3x2n%7k)gdA0=UWO|-`J<woxPjp2;eyCu>C
zLJCU5n0FU>>Ash;VXTjSs-|(ZvcoF&<$K``Tavy+Tnpy-Xl7tw@WD4hBX5$5XWpdf
zz7;omSh>aZa!#&OOZz<GdYh`{yC=fB-#8UpZae16EMBo!`g_ZAmkL()&uY^J&i`9+
zFN9;-|5?xHPEx(E8EKI*$F%b3snVB!`UH+k-H1OH()L|1pgz51!MB?audm2oD;aY=
z`qaO;$8z>MH|joS{^<((`{vTQqrz3&S4=YhSopc=#}DSirlpJ=Kd&&xyEy9Y`*8i=
zCG|(VEyhuae*+6{r1pj_*=XD9J@ttV>&3Ud-r`5~Mb`f}Trlkz^U1{pXSXr$&yHQZ
zp;h_atE@vNA5FB6F<jhSd_DSukay%ukr;vR&u%|D@ZY=GTcLmbZ0Y?8o4?vDVG59a
zvyf$h!LkkfEh_UK<V&tOk$k>3H#SD(d-unkJZjAKQ$?J1tZnOfWz@Ci0S6bae9pb%
zVv8Ro*Q#$;ZT%PhSg|;B#Z8;0moql~`(U*3{sa>~g_5@uo`!Gj>T8f+`}6ZxcKNmc
zRzBKaZQ`8Gcf{oCl**D<%YOJQXFbMv=k?N);m^K(d}Pk><6p$JlSMm~g5I_sd=P!=
z%GN!_$qf7T@@8i7{&+0ra3*SUq|=v^|HbUgv`#N#^5fT5Yq|1B?1*g0r0}J6c31XP
z{bf%PdH;XS%_Dnf#Yc0_n>-^a`8~s*>~oLSJc(*hUtKLCyy)Anh=$AYQQNHIm{$vl
z=3V@w^!&KYmE5oYBq#Wp?#*O7ACT0~Wb<FV;X|pej@-hf!JEEVtor#`=eoD)gpC2M
zRk>BY8Owv!Lv0sGihZA6b}GK&Rd&PfX`kL)X<u+ec<PsbN2GW0-n$tumtoSc-n-nU
zHRPyV#r|`7XZxkLulE*`w79JLuJ?KibHSGMFvXS==1DiF)vvSdyU^RZTK;90*}di3
zUuNE~<a3Dse75SY$?Ve2cW%@(?(ds4!EQzwzk<WP^-CT^v>i-PT$LAAoHt<;vw`c=
z-wbzT!(%uUmqgXOC7-$VLp8RoUtO;M;%=kkIh$Gg53_z=uC=uN`}J3vOTD}w+V9-g
z+hn|g#ky5MY5k^e=Du4U6fz2BJvkJOzFmlna<|=ESaZ88GWpk+9b7HFmrgr8xclV!
z=UvK~n-8)|?Q6++ERdKsW8L)K5sIY~HfC)<7y7vLcb-1y#?|QsTFb9R@3`b>yjJA@
zPtyalUtaC1P}k_V^LszzJ2Uegy49!S!*pku{){$$o|gAG<inD6rAifhRoo)emPjpm
zG{66Dfi|DR+uhY^=V#q)5qRymaku&DcEtjt)dEf)z1vnY=+)0Xxg+RZt5(jb7t^Zs
z3l4;&Sp;us-tT%)f3jd}?7@Q-CGizn63KG%Gj{VHvy8Tw{&cc|#jHq<iKPwC1ae|!
zCoh-znxt^<)#v_O{SLMVZ&|oMVwkgs)5Lq%s;1(Z>!c$thF|ZI+4{<9#=QvZXE_gJ
zrXCY4I1t@Y^x27FUY~h!MA%O~vpuWr`WqY6!ngy2z8mXq{Uye#zLE38ebcp<t8YCv
zSQ&9S@w6W+qt`q4Vw3)+yOMXKGtag6mm3sM(x{c@%)cFV_YL1^sk-D_%qz|veVF{$
zmg`)i*cP7{Ezt~vgoA3qoVP?>R%hIJcJ%|J!;wi|&sL@W6yA~J{I0>jsnPW2<aH|)
zpZ`0(ziwV^42!DFvelnuzm#p`S=n8-@x%7?{)h+v3_dr$zQ3PUXM?7B=0xTLT+&B>
z`re$e)9!4-s?Dh$p(S0-rSm2?Jl54=`Tf^M#>wi|wJ*>4bAmm&6kA?oyzGcRXsW^e
zdakZ>)}q;5|4!`SnvowUSs}e{>c*8%%gY!y8m~F4yj(foMDf(5i$_ncc;;8Sdg}3)
z^Ww51W_{*Zv48uT1@=s$IaxpFCOq({yzLsrl$^8Q``|(wwtIi>s@EP1-y-?o`y)Gn
zn|hsH|C<}lw%*}6WEEAtWm^5&`ya3USQ@g&r$k}hgQ%YC^LG8v%Ul11&7X_&<Lg~_
zS&zI9OP{<V@@M?U-^J0h&OMnvf8xQyjfJ=VA3u8R=+4yh^K9L}y}7wLeOK9wpctpS
zQPEu7g^y<cp5-sSUxZog)(=+^8K0NOe5JCk9FMUp`4Q4H`DkJ8jBk+=cT8W3=Qezq
zW1v5KmfXA(Ovf9xNB^FF$*=T&)|&s{v-8(*)pea*`TB8S_8Y^s@ooDjy}u|_`+N0+
z5IOCvb!@i}y-cl3shq)B=bg<tF_E(%Nhs&~-AchVTONfM7|ophzev`>)U#55mg}sK
z_KIeu{hJnLP2ZZ-maA#aWpd)d!-o%7{ycyA@ZrOg6L|BNR{2Uj6>{PT<uto4mUOS9
z?(>liJ7@jovi(vM?b6vkD@)_T3V&Ngzp~0VIgT-63Cl_~4L=_gwX7~%Unj?r`JYK?
zH|IvyRT=Ajf{hL>F}id7nB#)4+sa?^hWuT-wn|dR_4|gYG4;&*>W>{d%->Q_?Yp3C
zOFEy5Tj5sU)GJ@v#criYPU++Ledg7w%L`TuEGqqPG|lNS@9wnNU;Eko8}^$qw}0kP
z)Kbei&2}hjb!$+8U{M}hnWo@spP;k9R?R<PrpU(3f9AN_EAIbMmm{Q21%C6)c&XST
zz?`_^S=Vm;8CxU53L=-}D?jjmT_(?!_OZq-=HkwTlV%$eWmuvv-_VcJP2O?Mq{w*9
zy4QLw0&gEIka?tKG0T6^19R0QnOr{w%NXlj8)nAnrZzFGu?*AR@#DZxYyCy%UI>ZE
zvv5TG{5oM}`GS=(LfRHnt`!;_yy>*0tZQWjx81wH4_{uWQZuS}a%oAw_N1O|+Oqy0
zKP#Op<(CCjC9IZ>+jU^u^UCMXABDylW?egY%!#A$`zhavhRMfzB#qn7?^J6MnD<+{
zOWH2J^VRgp%3kx%N12}0X%X0%`(5RE9jkc44H?B<f1c)O2AQ9II7iCQuQo5`@Wyx!
z#U-jAHvLF3@GHwUm7LB0?$VA)SI=GLT6a98!}r_!^$INl@9I{RGky5-;T3lv=i;0t
z0!}=QFRUI}-$=OkFiNpkS+}jDf6}_;3G)mcPG~bYh1Y*`ynSBEbQhn`q!xj*p%+{`
z+#DSAT^G)dE4<H;uWcRO72<nsGK1Fr>kNBlSm#`|?Rc%*BJjTbfQVv?iH(fKdX<|#
z>nmg%#8v0$x~_7|+M+4;;OJ3-yIF>NT(4b{-!A`y!7Mv%!y;+Mul#<~LJmfz*l};3
ztLu`r{K1do42H|k9btNPLH*&ahh>(Vx3!sYca*G}z~#53GkERZ;$?#ObNj=7U+Jtp
zTEm^KA8y6+VREo*NP*Ja$7`R;_}`WNQ1E)k`54W}J(9wGODfZUY2STORs8wHF3bO~
z|E)B88g%e!)`OHuJC})G(mDJ<dwI#5Z$D4AZ2y<Cyd$CMm}bPa)E`;rcHEnPU1Qe4
z1y`zLBt9(Io3wXg-%P%9CvHE!`dID2<H-wWB~H7|X*6SjBg?kC3YBTwUN}Cv_SI0p
zMyYwJ7gy$7`v<khzegREe~`wn|1gX#VQ==Hm#<r!mnQHAeM>spC8`~!v3UCOclAz3
z{u-Q)`FiT?{xwQ1Ss$N-f141dcy&U2$MnAUUuP#d&6&5+UAN`eyW290ZcSy1{oA*<
zaF0yel$)=0%VzGLk@?APzJO2Rsg%DmZ^Lbv6a0-1&Cyz-t0(-NWp&HS1;xM1g9`&w
z_OQOv-aIRHTgCLfFPYiT=)J9a&A(>GhXoDlbyCf%s!fHjPF>YwDY$%PrRvRBBCT5v
z3(vD$c>Vo?>EGtheBgO*=B?%C7ueiWf4*c=Zrv&R*je#N?SJ=vIs2+FDolzlTTiOC
z2=Ld%h^I#wx<7t))->w!iTZEvsuT1RMT7YBe$LsLAmZP8!L_^7=4;@?!=Wx`F7>bC
zn7BE4Q;bWH&tA6U{$jE>y*WO6$}jQ0p!G0$>RSf>{f0cR7npb6oq0Q?bIl@!76GMl
zr$15dLC)t}_q#A0$WZ*m)28Yt;MTEb;Rh|gjuqMKy3)V1SFJ48%44j!a{K_hRkHP4
zzn%_T<{S^%6%(#ip0~U>@z>!qKltU39;oD3JYv1!B<G=wHP0G1#B<GFIbq>@=7xu}
z{NMlQ{qV%P**4~&Jo6M!pMxsAU*yZ%6=Rug!yDuZ8{cy(x@?OGiIvsw6-a)V^`o2f
z8Q<GI?RJb77ej=cI)v(1Ha>6WX$$JzYIsUzSwfrNNBs=<PkcXK)$1+m_4?1fVt?5l
zizM+WhSf>abA1>NFy@vqzLfh=G^1{j^7+1WhDT;5!D@!A!aNs`yqz-tQtj=T{CB2&
zY|T`!-G0B(u599Qp&*9FG`5-UpSLD5+<v@PK$Sy!Vf~{ArjIxeyv{tyxp46WxfyJ}
zPx7~(x-$E~=T6o$p)a`hExUBj)0<&-QPatT)*G&e><lTs=gn~SS69{2hd*9~uPR`D
z;Fho2J-^8^?1p02+S^-x9KLOuCeyMs+2G`rR^J0QJ6XND&Z#9on>uSn=O?i(Hw-FE
z80t9X@3^})SGhZ1-yjfN;9GWjw!b5XqERl>mF35Bf*9xg+_hq**ZZSFS5F>Uyi+(s
zZ?l7^k$&KrpzT@0`iufwclK^H?T}~u_`mMCO2Oro?k~CY`mfuD7(FjNUoRJ8|3utL
zWcEKchWnzj!qOpUSp3w>c50OfGi9IF4xALj@b~hIGi#@1o!fiGeZOI$*V|^ji8HR4
z^IX|1I<>vYRqW)PM(++Te#MaGH$VLQ)|U2i#tq*a)$9jexv+=qJntNlT$$?C)MI$(
z((fJN((m7%^0@q}=ktP%e{{C+S1eF5^VJvm^Yz0gL0#{ga}qb}yQpp}^)+MNb>32n
zvHwe1)g|}I{qBdEg}V<w+ur!$<FTmbHSP+#=GHi=`pQPE{4S_a6du1>>hNNNExBtK
z&6~^As2VA&u%L;1!dLfPlj#}r&j#-bseXPpXzA%`+W+fXyQXSK)v?+2wZ7Zb`Oqvt
z`Izcs2IiT54Vv%y&mU|&p#1o4<gwfZuTmH7oBQD&YwcIN&nbo8`P^Sk9sL5C&rg}L
z@g>XpM#dS(^RItd7g{3CzFnqrb9MC*`zx;Thh%O(srYWea9&L9Tb$%F-mSAc?tFgS
zaL{e3Ts?#Rv&p_jr$u(L1RnjuwMuQF{u@Dg_w?rOiVE!;k}DtADwM@_zKUI*^R3g&
z_DV?kwmh4Pk97;o+C54#9&{hyw|)Ko2Ip<d3%{>0eDmCnmrL5VE6-V}Vd?x?AraHs
z9;ZcB=i9eP+<)>-TcG?w_Gh+Fp8|gxw!FwToqX-2xOVi8fQ5%zA3e+8Fh7Dz&!u_h
z)m8!N<5_Q~+IUUT4nHToHO+Ccn)A)?y6Yt6uWZn&kF}YZUHd0c_H2x3;s1AgtIOZ-
zy>#TH#@<iLigI<uSI*RypIY&0=IhMJ{EdI27aL{1@ps}7+?@aSU4iiS6CR&^XSUXR
z&tIagwIp2YEvrSACd<r_HAhceovzGSy5RlM=H2`<wxthWo!!kpe;-$0$LFo8kKE^7
z+kF1G+AOvEaeuOdrq4R8)Oi1_dhOq%P7Bu599*$lMQg3WS^kC%u4QK*Pf!;*cd|BN
z#e_DEZC<=F*=eme8-H7?7BA6wcfh(k@8z+plfT|K{r~Rz-SS?yIq%iQ^70v8pNW%U
zJnmD&zVh0gbcXY9G7C&u%e0mSa;2@5VEa)%{in}O9(5Dvm)9ocsg^Jw+8olYxL^Lu
z<yA~|#-bY+|JhePtMZ!h42R9u2Y9|e<enUUM_PxI@!BollN0{x8mjpQi->^sU^C04
zmOYU4z4P<t+Rrm~O!>I?n)0+Ye{NivdeZRYy`$2)GjDBgV}I6kOXM#1o)?cYpA~Wa
zWSn+;d1~vH#_z5>-Yrn+ecycc*B1YG40o>8WbpSGga=#kB%h6YBgkSSn}2POJ!?u`
z>#8ZTw?aLvpVTwBpZQ&I@?>~Ia+E^9sKcA+E3>99*&;9_IWIdRkahE!bsF4n89E~W
zPkdAM-r3Rf$LfTcM(Y#XoU3NB>E`ZEzTs*ST*!LmQq8nujP*0C)qU9gW}Nj@G`+Wu
zX~(y<dmc*do#$|L$!g6d`L9+Kobf!Lr!lQW*EWm!@7*H`d*4Rni^>=kSE=)MwTgc|
zyFI+-mUhE|&Z1Xey&LyWY7bN7ymKX{z{CA|$JX4PWdi$zovt*ueoS4f^w5jb*!)T*
z&#FK%tCKh0$~b%o`6<$uH+|vaoVA)u0*ekXwwILf<V3Bx+Q>f7spCz7+QKb)3M^ZV
zioNeOA1LcK3%z>n2xI?Q*W%4{{U639y<KXwSMx=%k>slVDH{d7ZUogg_(gweFxcC^
z?N4pOG|9Dley2RBOVSpoy%#CPES_S$Z$h6`)Z^?M?-Y)%b$a!Hc`wJ_vQ)bpPujx7
z%Rtvda{o$J`knS*%g*8l&+-+r4z$Z(&%dyu)AIegM|B&#%u<teE2f<|+4}!Y)|I6b
zPGztJ%U-%zAzj*&=ihlst0jZOok!23Iq5;EvGI1%{WBi88JzH$drGii>GYV#IodVJ
zF>JCaS+R<`7tYPOKkdwvy^OXwyB?SK#w9A(WR@&_=A6(q^YBI<Zebqf|LMzK_Azj$
z-m<ycxb|48pXclq4>p-JYx2EV<}J}Oee26<Z6CG^{7mBTC~=vVtzNKb&P?gq=jPcK
z|JtINZIFIj!{zqp8Jx!H*6-GHm`<DU-0OyUE6b_FQM=0@?UmV)`S|tS$EJy*M>Hlc
ze|D+EqGM*#Ns)V>%@bzaJk9)YQSPT1PyKJ)JaggEEzinykr<Kuo5}&I%l_~tEIsQc
ze!B53|G_0QAGFsstZ&`Wy}04_v)_LN)oy7`ki5nC!~aV7i9Zv3mu(Zh#Ad#5Vr}&c
zLB5A4I}QXt(qw4&iT^rJiaEzjS}jZEz~hU{Y8YAs<j!|$r~I09c1M3b<APh4uYJ40
z!}YTHT*1A%*&HhiHrq4KPf3+OZ}Wxo!o53BKmBJ|DE++e->%B5N9?ZU)#fp}=&jFr
z6c)&K=2^sc+4E-AAq=~3)!uz|xTtdK!DR_8w@YWAtyrrZeRtn}d486Jol93_PFwMJ
zhQQ}Csi5sYE=1=?&)#vTV!70Vh}lQ-R`otLo1|y;u(ByH_}VnlOH6MchVQ(6#ya!+
z;UDRGIy)<;8~JrJ`$c{@b8@GK+ilM^o~4g=7vE$0!Do0+{c98B$tkB8)^Bq@<`=)A
z>h;3Sc8Q#eeF6=%Bmy6{Ma+B=VcME=MYhm(cj4n>3!j_azyI|3jpye#XFqP#+hQVT
zB&rjzz@gEqw{_L!wBYNTOXOq1I0Sbk&6{8M@rdW5sb9U1*_7I?iGJ~I>gsSgY2RQ~
zGwIZcH%b-D-`(-*aAi&QI^Z^Q_7{%E2ba6qubiHGhV5LIdh3jjrHdD&Px^W{+&L!y
zvLff5S@H}Wa_jBY*BN+B&t}~IX>a(w&iPBOEIj`%CQi`4D~d(!O#DOrcTO#~cQ%S%
zV%T~1$#!o>(}d!#FyCUvA8(Ub75BAi7)ze{QV`GClKb~oiOIw7(_NUZe?9b2mPuQO
z*OvW#pS-&uC$pFIi5rjAAJp}S@vfS#J?Cs}$I`x{j!=)<D-F4yw!PTM`D^)#R;>^D
zEBiO^=2SewR57JQBX9fCStp-;VOP_CK2wl=)y<DlGwM4xA3BgVrOeIN`gb?eCF{4#
z-`Ul_7Bq<BP;|NZ`M@?7``JN-EZW(wte1V*AMe<sseCxBW7}DME5ZM2D)T>BvAR#5
zC%JUm>Nv(dCUHyC)=u!`P_)~@^~3Cn*t-oc+8<wBzFDP3z_xLPyq!_O<jnP)tDc%^
zF#Rx$pICl>b=2;E%ja)@zsY}JabD||wi5Z!I7{g>Tlg29wTy~7EwJ}$_`&qBW7i7S
z|K7Ylu}xXg#V`KRzu1fW)7;Kq3_MWe>(IPXEZF~i^UO&CPO})^81pnvu;!T6wW!_m
zO!m=7&Ie7V9*oKOl``?EhD*(?65G>HdY{JqX@8n<)7ZH2(7}Wm@&W0K<f}_VehME@
zQ*054KPa)ew}#gsl0(tuy2OsOjQCHyKfdyr8J-YQofjBz;nQRvb@!-E^BV&si@fit
zDt<j8x53IiD8Ax`<9VSa%VvFeeappkw$WGatG_0NwTM6C`L@@I;jYFSc@F>8ui~fu
zV|;K@^ue2Vy063ZW?4TzzEPR&YvwAM$(l1BYGv)@`PCwjWX^JR(!#l~U5@<!t+g@i
zchgQ;_C;l{u6%hnJ#oi}b;cP}`=$DxOYm{G2pqaBe<LUA{kv~%D+~_=D7F;*=c~v}
zI1p;Z^&?x`z)v!q>)HcB<?JOpv_9Orb#<<*-h#gRmiP}heo5co%Pz2H?jN>8rMVL(
zq$NHm4q5(6a}zg*(OZMP68ofBWA;_NyyV@GahUfy!`0P#w;k`EpQgWLLZ7Dg`<Y)}
zO?ma9REGVo=BD;ppUv*PyqR&ZI6|jIU{QiW&5GRt$_x)WzrBfiCBjf*bk)iBhN_y{
z9P@kwzK9@;^MxIOO?(;=p6rod&$lL3DEoi7$Gl*+1J~iQ+j-~Yn^sK{aQegcT<B5k
z)K9Ez$Lh~)cHCWKa_p_)#+^$88?{1Xa$Zc+7p`B(^xr8XS-4zFW5$EO;?M4Wn|v_j
zX42O;9v3RET<EXPl3n~@gGx&T@137Yb&)gv3+=1=cQw_(`184zhhkCn&+Ybj-I8;4
zbmUNUnHpXYx-Um$=6wO>$y%w&P6ytH8QeRz+t{ul%&Fs!G~>CNCEDjd%-nZK*;(Pk
zy3X6H9p?P(I5>4)^Zr~zACXIjSDPOs73o&_UXTwvedS7)#^S%}_QDHqOj>07BVEv`
zW7cuTYctB$tohI{8T_PGtS$1LdBNp1-P@X)1j8S0=?N^j`!1@!W{!yWf=L2SPfn?*
zHMjndTQ-sJu*}*0QTJF@&0P1bbLRD?+d%;{uk>&P%H2q``@glRi7_tg-N~OjrnI*g
z%~klzX4+ctJF@rx=O;aPgC?%n60P1}f6(XD(ldb<&Rt>MzI1`nVi%dEZ1Sqc3z|x&
zT)8QI(xt8ag7>m*X$Nkdku=Ym`toOPeu7EN)fM7*ozKqS-rL48xvFQ6zd`l&^n(H^
zdOJ2YH8FlIU9Gh<gU!+Cr{Olnyt!;wk1AM9>yf<ld6r&Q5v##VH{BM2OIa0pN-yeO
zUq7P0#n0#F?FD{wnw=aK4P&>4xqSMl{zo@BIQ9_3Av@uqdEbTHk8f-W``{&Hx;$@R
zzNSZI+vEb%i<@rh3OTXOcyD&QtYWgvLXk_d$!BuBCi%|`Pf(f_vPq+wci!xaQ4x;&
ztP6s)<ar%pKY#u7;}Bo6vFA$_mxy0VlM~A~xdwaq|H*r!I;lwQfa=a$r%VzfKR&s?
zm*<`66h217?aL#g3a8a`+e?W*v*615ypKzDafhk+vUo?w`3DO;;#PmUXSl)rn%HFT
zWdcrJ-DV#)_yjq6%wDmew{YS0sDx!ZO&^ENm|G+%dWrcSf2!$vA-T^D&PMZ!mN)Qi
z2uk_1Im_3E$w`>ie%dm|=f3iaCXLU#;<q%FZfRXm+MK20y>r5hnD)k<dP4iE*iA$p
zZ+X_^`QiV!cQ$&fih7xU7;|fAaUDv~T=C%B$<~~M1>V}<O-xLun@sn4e>}S?R%`mJ
z!$;5P?YzDA%vzJ_Q)VkI>r7jxxTAr)TY8~F*McUl7d+{8-}{YqnAxA5IWyDJ;B(zu
z{u!0$tLMEuJhS-RZ@cG}qPH7Pi>5zcUf^(1sFBlkddh*OUH^NEgJc*O=1fT2yGO%8
zyYy$sX3afuRn^Z<-F5FS@O~QJpcHu8@~W-=jHh>OIS=%n6OEhCdSt`bo01!6xrsA4
zRBQgqTH@{(e)+7*ldali?~i@3e9XpTy87|InEBtGue+;HpXM9mbh}aXQB{_vO~&J0
z4>~VMuRNghS}A=__i1lymUn-34Nt~thfI&q33;^aNK>Z6w)U5C9UU*2EDpAuo5nve
z?BP+{hIyjO31<wW7EN9Hoyl=owCBr`qt4p)PY>K;P2SX1KUZbj>d*tT-Sl~O3Vc1d
z*`<Verl{2QyNn8px_B;R73H4_kq_^T^1RSnt-q@@tf}tE=bDLn-!5g;m`KU@@*CwX
zTfTg`J%ixhSI(JdJ3Ic}(%80sv3wB!V$F_~vQ|7xcGy;zglzm(_pjrJYuCcH?8~Em
zGD<vu$oNOo(R{I1<(~UxPFlO)b}=lQ`}g;CfA%Y4HPIbx9mZ7;A5XgcSb5>M{AY~c
zBYm0Nw&WChxo{S}-Dn}_kned&Fqiei;tP{+`dZ#G`~CC1w}#QI7scM}KQ1lvXT81M
zlZ}h{%w6usYeIhRNDF0mF8i43WV}Q>SK*W!L(G+g>7UmBXa8~M&ADkz^Ck8gFj_qQ
z|Ikskk2C*5!upb#7kdt8^Zv;?`_1?V_iE$#AKs!91?S()e)dJMX5X4j6NU$V6+3$l
zS!)>m|2TVERmv2Z^<C%w|FL5`z_5tzu9o!Eg7d44xMwDw+OR1srbF(;zsjB$LbuZb
zzx7^VWZ1MwoGT^oXZzC6mtP5=lH(HR4c&ECn6pRgpXHqb@35~jzf&HFNS{x4`MKy!
z&CE^7>EBn~3KI!o(Aj1t==As68cX@}bN|15zA$m~={apR_S&&?q$1p1LY}8S4lD}Y
zKR1e@V#~I2&j*urw4U4&?$EYNQ({!eeJ}IysIB*+eIcG#L)tX;xjvNVUZ2qM<7-op
z@_vbnVQ+f;KU*IV)82nU`pmw-X9=ffA6p)}>VDTFh6m@u?;h8+p2GXbZ3*Yul|L9Z
zr==+|G<g3gOVL$YbnE-aBY!kRJ}wn+NN#Xe+SK@)Df3agp=5fQutgllyY=Ve<Yq^I
z+WxO(`|Ovxoi>vil0)ksa~FTjx;M#w)}QJ2TIQQ;@}5nX{(k&EJHy|7ihs^dvfp6)
zU^Wv&%+YE+*AG$7@|lmXy7*e$*`ToGyVvRkSN655-%~RCx%bZm&chs88DGTb?K3;}
zf!*5q$hLLuji(=lRhDLd{Z+l$dHUMB``%X^`uawlq2PHt<5sKpPZ$#3&sgZ}#J2b5
z{`~o+sm+|akrzK#KA4wSt8(y{?N_&2>GO;ZpA4S<d35ynna5SqcQg)XR%Tv3+S<MK
z`G<fPZBy>9H9ThXPO~%U{I+awmo1f5dYZFKIe29J%%flR+^Xa+yPR1XH8;#%YiiWe
zpp~Jk>YO#ze^iC;z5ea%*Uw)+fBq_LCpQ0@(js;HwH}(aD^Hg<y12MTZhXyOpt`=y
z+RtUm`&Uj^%y&(y-B~{GW`D=I%s(gW*Pc4B^X77^i=lCHXUDB27p|Ha>^(W_<d)pk
z-BE8Bh3yt`c^a`H_?YDvKG{z^f~K?gybgJ(JU8&bjZM8F!SW6siASG1b!qNiXHy-X
zF<brSO3vfobNe4%ex6?+_3oCBZGq4FZ}*<Eh3sNJ5oI8K;Lj?%)2r1P7}{OxN|N&e
z88&Q{6ug-Dpfvbx=Ze6atM9U3j`*jP-1qLlQKRd&2h&;m4PUf}ZrZ!)^QRu8w<VeC
z+gknQFRsr{C|*Bl=WDCx`aOc?es^MH*LDO4-*J2CyX>#_uj9-W;UV*xq}3TKJ}uqt
zWE=Lx;%Us{|FYuo#w95?|4FJZwzxU--ktOxuAi^EDBTiy`{>cDN3R}v#RwiRbd@<?
z`20L)-kq0oAJ)0J{EC)*`4WU8=LA?Ams&4cB)Zur_PA!dpMUNC6Nh3~sQ<q`+he_o
zl2+E7+$!d$Ec=yY|F8dE?Xu;wvNv0tgt{nGio`Y3%-O68j(?bE*{)|`*b<nmy5^w2
z%j-r{Gkfof7JFSg<C)QBHa|=nn$ElOo-^VR)O_4v{kEecDut<1zH8sp6?<Ly9lqbT
z*vKEy^^H5h^{K_hs2m&d>PH_M_sY+#b<tM8$2wt~^3jsuHbtdNDhxN@vuOOi)L{JR
zGt>P2913Yox?GX248A!R)=sgR_L8APVor*Ll2TTM6ocGThUrIqI|V1cJ|6YprOxds
z^KSBbgtXjmyCv76I#a!8b5_Bm{q{SfPHu8>3t8J<^UZq^pF@+%)+&}aY-M5pwK}@4
zExLSJqHRwS@8J)dedo-+^4NT?wvOEG_#DqeQ#Bql#Bgp2eeZPV_{P>;$=gvuM*LgW
zpIWl-+{dGDw}{tmdnz2RxYJ>pi)xhXO|HB9-~P$adK|My&UyBXDMe3r$(?u+mT7#p
zis3<!l2f~V_`{8<ove3Q-^^fnf0}VehGU{$*~t?fCX4m{8uWIoIDdYYn!DZabEj|L
zzJ2=kZ$}@WuuSEv?D17Xs%QS4)+_(B((BZQ#}^K<dnskrXN9iX4g$Z*($dn>+~(Y?
zV>IYn_mBAnkLJhTeu?LyvA4hUJN!GO`@-bRET7Gj)C+F-?N(Bn?vs#ZbE-4v+q>{@
z-HnAg#f`j2?N=ZE^7Q`=Ik`XYHyxe*g~9A*euXW^kAr#Ei?1^*s0d;A_s(ukUeKu<
zDW|OL)x28jZ*jO+U2U@4+d0*imX?;^XP3Pc3Q3bNEX-0hotKmNMeNs)?A>qIem#0=
zVt<eSw!pu~dZqIp)vx{XQd(}eezFVa<qLh6ntT5JSo~x8509eSh2GQGofi_c<%?aq
zddJ$cTU2&s?cW=ld2w;=?r$}zdiQm2{gRWDoA<~1r~4am*2g=niZoUjWd>aQ@^sz$
z?_zUBlzPt!>G~)4RXIN1e=q)B(agIu421%YF?@c)x2TD4J7cBMJ^tx(iL5g{t$kIU
zHvcwqYx#ct;!}sUcLJvve_6h(<cVoy+1;c~cIM{a9rN<?<`p>Rw;4_k=ljrh$8pMH
z9_E5$;qMG2+?4DWB;9nLd9|Nq!%SPnlNMbGwsKs$%aoMoyEM!``>tHVeW4ZmAMbYx
zr)KioywENe;87Mm%JiV7bauEbZ;f_250CQH1IY|WreE4P`IrC1%-QN2B#+&*2`^?i
z^ptP$BHNse2FDCF)Ki&vT#A2Z!Lo;a&ize!Un|TQ4qeIUa!hA<a(-*1Cu4R+*3T>4
z+^5-$eM%Qd&0}D=z54Z@_e%dB&OUuLH>NG|NKn5oTLVj_&<vNt{7ah-8z%JJDKzMD
z&8jVsWq8CE`hEAjc?VLfr(I8!SlQ#n-mrM@>feTLF76G?riy-ThGuLGe0#LYB^G^Q
zXz-rD!Kl;c?4@Y-H*ZzSMUr}-hFAH={o$IuBrU5)T%Pg%)dkrGUk#iSKc0F2`>Ik9
z>$mT#%PxlRZjh*C{d2XWjDK>Hp#ASmL8BeBn>t=xbUg1@+WGFtv7>X(ZC-U+ZLU>m
z)kY0fO-oD5xw<zGd3YDIS_CrBzx8S6j^#_*r1dLba!;G*^k@4Wt;-i58_#~mn|IdF
zy(i?=F(%J#5!q+>Uh(~WX;+Z!UQx2{;SY~l_wO{-i3sz0Z@7O-r+CfZtk+pjdM^Lq
zI+3AOE-)?F{{D;(kDF<4URlU8Joq6}yx+K{jJcxX#p#2-9X3tsE${c9Q=h4`#c@wh
zu$N09`_AME9*0jJXJEK>_wbp>4N6b+8hG7KFWPBqUo?^L*DS-W2Scjk9Om3H^jPt8
zj|+pty{wJLBlq$$ylV@oNtP?P9DM14M7k)G&O~cAPfaVmlPnFPO1Iy$3A|MP(DusT
z;kU*23)(?$$1RpFZ8-3~;_R}j<j27_g5feRbRS%Fd3e#~{_j5;C!U!z-LT+DW<AP!
z;GF4>w~w+DT4$7%UTT;)b??p3KYn^|XJoi@HhK0THI~gAYmW&XbXar8@P^Z3CXuel
z!aBi%6{nJqr{3CoY2)93%%<cyXVMb(+%ddyBq(9#%doXuF3j?>&a<$ralaG$Z;IN!
zcO2Gl4Ud{guKQlg{j~3p*u0;+%NEv8TN!2?cHz~_MZZ>GU-NT;<`k>Il|d^*v!+HZ
z-Bmj0>gn_&Gq`W$pS1lQrT1*{SB7m}?*dCNSuA{A_~gl}sNIb#-9j=iY@cAwAzism
z;HUoVsuj0X`M)2ruekfj@RWDNmC%gpqbg-bPe}0eEc(m*gzr#Tn4fx8#j7VLZyXOb
z>5}k@O>!xhH1RnoTKK1)<JI}|o9_1C5{-SgX!pNaUdMGMmv6rRMeB)a_+y)YC5Pum
zUt4_X^VQ!DGnQHhu(clhxckKa`!kFpl~zs2PUt^p!1m5z7PI)OkMku9Zx<v^-&;4K
z;8>{egDs}NGfe8#=bu~OJ@3?cnJe=PWgXU;&Nb>g((4QguW3pNZ@!EFVEKLA+TC0r
zqfjm*<*r>8Z^Y^T&#(FWR?BbrqsTDl)An`##~M|fUTc-}Y<vDQ&&6*3>i@r|d@{b;
z`=9Ms#9sE$@2U073|wCs3KrOFdmNf_gQ;YSHQVk2=`D)w_V?$=#C_waP-EQ@<=<ti
zVbvD<n174u+a)jh3nhwWOg}p}?0W9C@7vX-f~wya*>yUsnjcafz*0ZCFn6AETC35u
z7pg|fuQ_VO#mrz~@KpZ!_{@8zg2g-6C>r*im$uL<=lQnug*Y?A$;F`|`fC_G_$OE^
z9ecP``TWgEA|kbZOb%WdY7ISMMeT<z_GujWd2Ej8-oDS9Gj=^S-BKnVytsui|Fmo~
zkH~s?R)L#Q?<^#if7m9<>1G;z{zKLtKk3H-QH+5_#~;l2$G?d^SqgMka&bvfYGN*k
z1vxbtbT%=FWn^S#U<MO5f{EJLDCj$7mJ|o17CGnV7Ubup=9MT|DCj%q=j0a!7bGU9
zD(JhUmSrZV((bM=l%tf5p+_nEg6{f)ocSEYr5}uPva*7HNM%8)f_{X5QdVkmiGqH3
zW=cthf`yr-f}I@~Gyp2*yuEvS*D4D!wt&0$>;8vt(_gbmmzBrTaB@%K)xFuB931<N
zm;ZkJamU<}{rBzvsU|DeRM@W)?SKCL<f?yS7w+F{{d>-pZ;AKL)in{X)IOU(Htj$D
z`0<8&@4qkYi>i^lZhK^UMdEH*#+QD!hST@%ee&EU^w_RdGUvZ^-#eM4kfd~>X<Ao_
z<=3Oj-)kwC?&W*`@#rfZ18qaWj3*DiJ({*@<rdkWk2|bS-Mn>l-*eB*EA~RGgoPW+
zRF2w+{*vwL5e@a}l~;F)Q?W1<%<u}*nRs7r@9`Vch1NSymz9yNIi{q>wAQoh>8H<&
z@``=;#veT1ZuK;(d{c*;4~x|Vk!;K9;z#?uUnHM0IpVT_-*e--`;{Ma+)AXJ1V8Sa
zlR2*;?^N`Y8zoc3?>=qcR{3j==B`3!#;Qpov$bZ`Z+ui2(3;OZU0AsBoXu}54XO8!
zWLy?FOI+VHMXW&7bK~qqKTCwf6&AAcXIg2$<bKV?@@kTZwf8E)F13phpC*;v@|EHb
z@C({=<fU2a+{t?BeGHdkjU4Wka%@r1jMLc9zo@cIFY$_T=Pp&(>GBt5Ih}m^swZ+|
zMXdb&<2M<fIPaeEB8mCeWRd0-Hpe3Se=J*b<xpdk=fzT17X{6>OIdz0qQ_sgxPE(a
znb{}p{kCUqWmDG`Ys}I#n7!eIny285o+T2Oj~3^xHd}rnccSmRRR>afUh-(4lG4?i
zXnRO$c1>!-$%=cfVygQ0M7+x~I-kwntz{s&ed`0Jr$^O8Czl^mx_>9M@#K!RN5%E@
z?}<qLfBO3{`~GDOCwHvvRZ5DhnIx6J&tp%aA;aXtXlai-dn$~7Z@+M6zsT&ylN{a2
zoO8wJ`}}?Dz11R7a7NGVTLu4O_A>9^*(TFydiVd=kMGy9CuHPhD@!fdSCO#t<-Xpj
zaV@IR%btsDHcBiEs9&A`u~PGk<zM;tL6`0q>g<aR7E;ctw4YSi7yXFW>%VZ?(_3;;
zX|;wAye<?^zyIuCNw@b;Gt0;FMs+fA6+El|Oey6xFi9*dS^m0vd0vfecJKRV`&gd;
zD|sy-{5d6k{hQl?W&5X>M%g@=vB9FTxYF?bxAOhw?^P|o*H*ss-!5gi(dB3P!;q{$
zKg(wG-WT=X_})(VLSiA`)ZhAc`c3b<7soEV*y@q8eBO7xyUCJw6TZb2)wrMfmspc^
ze^rh^)90RlnNyrg)_p2pC0^P7>$8&TyFk5VM`y<ETX`toF==+u;*PL;zIQ|qb=d6L
zxAcC>BH7h#l^?g&$E=cRbv^Xxa*%wP$kUsLBz;0&uM95#^#58c_Y>D+PiKBLxg4=w
zxYF?Vv(Uf0B0oFDd=738TK(h6nz=!HT`sPe?C`ZBJ&c9zX=Z8m<%q(!hG))n`>U?E
z-QD`wSGPzp%5RtY)59FM&U#ALZ#zBpeQD3>(rWGBfl_5YDS>f&zUrEIdHe6{eJhgY
zlD=@)wbRGl-^D-eJ6@nvzi`*euhAyAxXOP16~ABl<B!uNYxl*in=c+=eD5$dJS&A`
zp4WCWcExkD3h8M_maY6)ZC%J0X0mVoR+gCc9p%U7{oW)z^Y!Oz{}f{GE!_F9s$uK1
zg?DG4GW@F>_Ta~q&&??ro#m4_cLa2vOn!0gwL*+_y3@r|+Ok2(-=<w(xZi`bd>7{$
zVafb`?^zx<?J2e75bP_y_)Cvn^}uy|x%wqy+8Jw~J<us|2$JdRmU&dbU7I!QiPPOL
zT5H&URM_y@1+9Is<3Xs0^}CY8nYIB|`vUy=#GZ@oT7J!u<45iK&2=SSGdHMM?Bc4o
z@_YN|iPY>fKI&K2XE+Ipecuwjd)=?yDH^Z#S8Tcaq4?oB_d|ZqBYIa{+@*7nv%5uT
zp>nLrRymD>&B1ejJ=*@*uk?KV{y&GAnJuq|e*d&n{gh`{%c3<m{I;yzX}<MTxBv0C
zSH4%Tex+uxx@YU=yv2XrriygBMdYM(EctQ8On=`SQ8pL11xJ4Kro7PGlW48G(PDob
z-;_JWY+hadb3Z-0oR%db8C?((d12+xok|-v2u$?sVxQ*K<sbX`(d3DH9F#xiADO19
zzVFBV#oSY6<}BoYlN!2$vuZK>lNHMfrYsZr>87J>)OF(iVvbGO>x5-)aKGx_@;Pw#
zRjt3i5iu83W51@lv@K@*b>Nie$Cn!VW^)(&ZF+gQvDH^suGdJZd6EeKmW&3uj|b#h
zJNfKSiB?AygnYL!D$c%TSoJ>ZWJR#JT%k|!->iin9{8AXUVORd$EBpZvkUu^O_n|Q
z|12pwc*4cfb>@pEitu}M-T(CYk@rKz4<h+4DK#@ct@d8XXL-rg&EcT<+}$yiJ@dYH
ze%@Ui{VUe=cR|FN?X8jeH-pn&Sv#4l23}g~8Zqh7MlIIso%8psY*zHU>u_F9s&eDp
z&h>Zax46EF`g!}v4jtJqlb6hRbmYNJx4XNxx^Fl8>-xuczf3}*X8)U`@7qhc*IoY3
zXl;AbE6&?DN&n<YzC4-NE^eNJ5i@7ZSX6cS&zHoH)3)#PPPG5nUp_^A_e^V3udV}|
zjvR5(wJOxR<TJ~D=I6K{7eZ||X(}&X!m-BF$LD&+j`K>1AIo<C{cO29<<<1(*K|q+
zE~iYqxIiqyG%2ag&fChj=7x67l_|v!9`&X5t*+VhhP&WQ!gHHmxysif;`#S0KgRyN
z@bau~#W8ln<DD1&i$=8UGruWit2wQT;p&`F!^Jm#*PQ&~Zn=h2>2Z+#`-aq))sxrW
zO-@?Le&PNXK`r~!JFD-Cz5jkU(6m_o&JV8R>Wmj|vDm+PTySSot=i5{Up7cO&RO`N
z?cc;LA>9lcL=ra!yk36$g8%v8e>H#pAK$-e`;N*&?IhOlzv+iVkKHY9;6IcUtIK!S
zYWd^$_v(MxvCKPiWJ##(jQ(l6ivG&;vdeyO`yLr@^Wn#(yzMXiI|UVV&fjr*%lANO
zdD`}UGn8s~$+Ue4TrvAcxzGWJJ6*;xQ{B>POT?ZY^$nI&V|&EK@*wv0^Fv&B7x`^*
z-`pe^y|n#?C&R9fF)RGyo?Pyj_|dgcaK_=ArlmJ8Kis+D5a%TEpKt5-xBoS2xogNE
zW|Do=DK6#k0_B-$f2T1`(EWEfo1^~v%vp1S&8pwKMZdot%g``CO?LC0$-k6#e@naB
zbJON+9K(UhrtYhZYi;&l{X6UGu47Y<HSXMd|LL7aMqeV8(<fg3a@<SzPsn$r%#X_F
zO?eKq{|i0Vxq8N}#h#&trqi}(`2U&9vS6CG(&H)qE9$En_Swz0;_ZD?TmMOKr|YZ#
z2Oiydz3N5{gXt@ot1n_teNPGg_3o~H+rhXBOE>9i?^5>ZpH_Ze_gra1hXVf#&KL<v
z?R^(ln)^=QR2}#!sik&7|0k!#t63vjZpXTo&fe*_*L7`q=B-P$d)lu*Ke}w<{0*D-
zZ|~|pVD;qaE2|}aT?e<+ho9IxcaMesHor$MVgF1ECNdOH7LR@rka4GavApS?rsGL>
z4R#s&y-42UeJ}di&Lw;2XIRzSGO#J>Z@XMycI<n3XRx8C&-v+RmtTHvBN+e9#8yv&
zVbj;jjvT)ilV!!^^SjF5{=e<>b945qZuZ2$_gkiFS~AxdJd9Pg{p{xHux7Wq{H58?
z^iOo#Yj-OtGuUKK%3D}}$)mGp<<fmp&SmHL6n5r|eY+*QV~X*Tl~N4znw}i}{nzg7
z<{ztO6mAQNxpBO3{Zq52s`vj*dvhwXv-*!=%5Sslsay=qm9`VpW5X8TR=2WFj9C~Q
z{d;Hr-%pQLTId@w9oTBdeEdcK<BZySdht2G?o>>V{@qo6O!ATeF9YNAJ<?waWz==T
z<QXrQe0*`cI&RO_JxZI;PdLGG;E~?^!zq^w`X2{$E_(D~x?S1x_%#s<x}BeA3yX)|
zP-l2>`reJ(7v+yHJoKnh%vdLEV|4tVY1?0ip1Yv2T#_N`ML?3z%&z=3#|xjBwm0)s
z`<Ex}@jiB7MU?oohx!Z`Jbo=X`%(V*;jN$h9@$rZ{B8APT2bnjh?CZ-_Zen5C%G@v
z5*F8g_eR<J)8mMUoaY*UQce7~ulsvU@+OOe^44XV^E|uT9!z@VcjkEE6Sf!phWrm2
zuNZy$n7?D*>3@9X9gH5~al2=I-5Id`?Ya#n(w`$`ir1U*hD+IBe5>%@S|&xyo#D~y
zOBXC(J1;yn<4Tw4j*Rn<9=c8Fxms1XYj)Oz%$bW~mobP~<rUrC^S0kKW_wpKZ<Vk7
z&5LqJ4nI8_egD}_C(FaLl+OIz_rR7ZAxX0Q>r{CbQTI7hWVQrMEIhL3hl$Jf(|3RF
z;?H?k`~0P<`+N(L2Jys?YqZYaX_)M^KC@%<1pC}euXjsjS<Y4DvtrOcl(h3pm*-bz
z(d9=h@@hZE-taF>+V_rM(9Z2or!%94>SMWg+xDBsp0sjT%Q>^_=!*4IXDi13T*zs#
zqNgVK((e<O70-Xn>=FoKes*+^WHD3SgynPobzgjOn!}*+TH?gb@BZ(qa%U?pxNyvN
zhVhf5(HnU99Jn9bWw#e=smV>3zCKZ6J-e;l<R?dGzZOj}Nt}I8%=`|s$sxY^x7w$?
zO5T$1@~>iggI(KxiQh~Hlly1a{OnSzIURRe_r&M#pYBb5&-ctvUT=}lRPp?YdXWsP
zvbU(+Y&xg+chV-I&gbt>e@~aMb(?<k)1&Ph&#@m+`enYiQfyBMf48=`yxcxX$>_IX
zxu3tp*BHh~F?`#?-94R0Wyd$c`ZB$RN91)G>u>wa5YJcSH({8oDOTg18D<x!{^18_
z_1hbl73ckPe)DAe&)bU`JC->om$Y~;S*#g<Pw7^o%<3IK{!Kspcg9R({awBcJ&RoR
zKR=W^HvNRfoAb=SHy^1ud0=|>{I84E-_L)R(_d$PN0V_z+~qLu?jw1tB0PUu8kWuv
z%iPaZHOoMMR|7*^@at>3I?F6deUjuHcsu8wohIJu+Mu{)#%ZUB9F@lgQ6;%X#oyv<
zreC_r)bKCr`>*on>z5Yavi@D>SHiyes`z)kS;5}RnJ>5>Ro}~Y$}LE2clH0rd++tm
zJLEij!@i0S&7o@r6=r>(UG^>F)|8S*&*m$tKG`a_uH;PS+vG!gDt?=4|9veVo5Emd
zIxFRP?*A!|UtC)hr=inknjTkE8RyCV)NQ(ygUR{X+r$=T%Zg-dp8V+M@pYT!kLUaq
zH<#7PT@tVCpdtVL$>wg^`L`^pH${Jz{~!8k*`Xwj$=Aj2%U+QZm0~>PwZ~Qd&so*e
zy*;mUBGweyxbt^kjt}R4dUW~TD=Qu{Gwi#{+ig6x!aat~>bB6^i}%01dh&WsMMLQf
z>tD{l1b;}f^P5eropUvhY1W>aUza~#-Sguh<B8&L*M8j<ySb>e=!@9-qE7b*f6oW~
zOM9>X`O~9_=c-R5&L)1{^CRTrbg=`cKD8~cu_=*ewXXa)txUk^-?QKS_5au`>MB!~
zs~OC1+w-Gew2qC@B-E(#UbXtCGE?b^hKrBv_@3@PHEJ2>?we1J{+}SlXmsW6%4;T9
zJA1Zz^~|o{`SMnCOwlp_*c-+1-k%-`igO+CpS}Im9=9`(?X7Qo(o}kUQ?5&Oah#sz
zp3toM9~T$+e|ltj>^Q@oC#6rkDnl=C^Yiu&Ki_>{-}39Bs9D!`_W!S_`joWq%ls=0
zpEY-~v-R|-MoatM<9N|*f3G^Uy*V<wY{_G#?_A+W4J$WZd1}9$!D@AA`OnJ#d$f$6
z<rXO1to#`3rd)b-@vPe1lqaWm>bJR^Ui&`iZqVi3%-ySRJAMEBZ{|HOi@#YpjIwLG
zx0Oeoo*tzApL1gP;bY=!`byK@uuKcxYaO2WcV*bmtb=)3%cY_(8`qv}@jCwL+1EW;
zn}a8bzrJvhaYn>qm(aTBYwkVTd7}US8|C{e6sF%*tNZgw<muUW-4n!DM?TSG)>#_+
zcI~zEZ+1;AoGbsoHci!My<OTBO?5kK#=kqO*q<%&W-(~|ky!Y7t7>_I;F4*_AAc+~
z*#H0O-Op?8zW+X@>Hf!M83!w-XW3chP5=IiwL|Th?b~Y6gHdV{Zkr{~TAOR<|2zBL
zPRH(KV8N%P=+`E>48_^yzq`tkWooZ=Kc2hZsQANcfvMtcrSdYZ-(Jk}3iDx7h~6#t
zB=P<2>d#zr@A`d<@d)kvd~l7q)LiGl_&2#t*LV{g!|(3a>&%|$-E&`dzL!gdT&;+d
z@*AQ1PmZ1ndNxs9vQg2c&(}7#?(#Wn?quBp@!a|!3v74kik2owiEd7Q^h8s9*;S73
zZ-4JMiu=9y|NH+!4=)>veLd>8&)xs`E~byX;Ym3q*>5W^>&>kFP+@OdenL(EoAI4o
z@dt-n_m}?OpMU25&*Q%Z68UFN+QV^RqS*dY_P-zRB>Eg{>W(yKsT6DwK6N^$lUZL$
zXVb3fQ&+E#zFV?6;9P|`!>^O8b&kpZm}G0P^v~Lb%$0%-%A&~uo_}@fQglRW_DPE^
zx0PxT)_OK$zO%WVQplW(W@`_x-r!;Ks+-}>s)#SAZe00(pG8vRb474!v!k8(n~CC#
zH_CD&?)*Oea`DthN{pHPYzwAN$}xA*TVvEw-Qj=g(UYTfcLW<6r-+F6=a(O!9rY({
z<qi*@Pf7gU_y09KeA0S!N_A{vM33<Dth+aC6(pMW+?XcKXfS89`MOUtZv1*$x^;Gf
z#+BnO<)4zAr<F223z#&)>s<x&U0wEDp(g~AzJB?+<bJely}~T5ubX!@+dJLW$`)l6
z6_@Pzm6R&^*5aMu0TZda7u2%XZS*raEEuMx@kjTa2*byzJeBKy$JKs&81ePsV>uQU
zb^WweSMT5a$o^wmVgK72Yg<vt>SehZj@4f{pGtnLwhUp|R~ol|XDi>~V+*A#Keq4s
zyYFirn}v4N2df+NgZp{<8Q2!t{yK3p@!av)8Lh4joB7@yo_@!5wTVgSP2m@wwT02g
zq?nf<Qers1sF!<ZmXKG6L)@JShJ}Z3Zg_Ezu|PpzXWp!ZYr>WmY}#3uFnP}p`O5g;
zn+q@avOI9Om;dJZ>bUi}wn=HmI=l87Ygc~!zp4J5-2NkXSrh`-{{C>!K5XN5`@Hu)
zK5={QuG*%?(alh))ppeF&f&<g{d*+J1gA{WyZT7ML9}}NqsR9@U+;6QtS|pw|Lj_U
z-Q0}*KhOE~6_+*JyZh{(%}`@KTZI3OZ&`JAG5a*}NcYLVlK$^ZW?Fad`(E$ry&D*R
z1niJYczt_~=A{VVzk4j+ZC{ac@JBH7M;7;nUAyl3Ek4V|SsQY$yET5v>P=}6!)<>*
zUA~NqIpXrY+D|`EyeJlz-7dludgV;_-1Mb(p_f+gR_}c3%ur|bZdFCW_jB5AQ%qDv
z-?8<qj*5G;zvZO+>UW{Nf|~EEFR)5CoSmJrcz2aoXpm0}f9a>BsT*d@U0P-4Ij6L2
zq4?sr4O2`1J)OUit;gCpTkDnm^`whuHe5Ebo9Z)hvTgT_+rkc=^JS;0xLQn`DIVQE
zd&;>ETWg(tBG>*mEl+IFjI~~C?(-lf?$6Jur{4)~`gthh<*J&0Z?*o4-`&G-&Z_!%
z>GIZc&%fg5#a<Z)U3_-N=;>+O(2&%P(~c~jvV8+1gC?JxUXoJIuesuvXV-EopS!nV
zD#yx=M|aEjvzsiDTCnnad-n{E<8@oy)wd~xpEr4GEc@q<$F6_Dtg`Q$e@h(*{`GgK
zm$abHYYqKnS6-c79Q{z?^)luBrY&JR&NAL9$`-a&FK>x_`|Rjr`P^3K_@H}w$;zci
zZ!Ybxp7V5hW2woj$&deWF3)*>w0T2>t)|+({Pe;@kIr7{IdJHSYez!zp3`v|*|zr+
zpKPdjIQM9Uc!TZn)hUcyYn~lFn;-RmNkr=Atw(MOH%wi6r&rY@<Dq@!$1BrU-F@-6
zOM1Q1tsL(6u@dIb*Rnh~>ML~Wuf6`V_M=_*_s&Q(yi#&=x;!sKLgD`>N6#5cz1zDo
zhlN4l?ETw6pZ=5L6cT$JA|{+UiA_v!ZMndj$4#3a{l9O0@5)NU+sDmWZK@b_Mf6@X
zO!>XBZcBc03+JxjfA?lGg*{F;F1cK`Xpa1Q+4rmOEj0Y~T-|qlA)8GDgKmsbE&GR}
zr-u{`r@OwpS#MZ7Z^M+-iY6I{hB7_LxtuX~G*uE>*Zi-TKIv&Olbl0?-K=%~+<SIc
zRJfnnAzaY0<(JX{#^j_0E6;z_+ZVNc8vDZ#@2-DV44vQdX16griC&-nJ!zVRwCDU+
zpVHq36bdF>b}(LiP~+c9eYf9Aro0o^_m=;=a`W?||98%3Ea!jVG&_5jmWflR{q~B?
z$B(Pywwpf;trdQ)w@7$HyQ+hXX6?Sll6vRXqu1h}Z7}bCyt!ZxOV|oy4uK<S_vJ#}
zPJDj;O4cKG|B^qwX0z2#nMdn=d{$b2xoSGYGX+^EQTuDmJ&QM7e)v@Kv@Q1oA^E$K
zQzaCgr>ytAYxDi%LOwIOCy(D7O6xj^KAX}YbbY(~_Oi;<jYl5GSO4Go`5yz1*4{pb
z8tG-WyQVoxtF_(mY-sE$`rpp6=!&>>ZDz2PLXQGt#KH5e{0+8&pOSRnuid`9YW0q6
z1|R>F7MqQ$KKkz8t~oc{NtTx(%HSL8xvtQ78@YRdJD$$}&vbz6&VT(S{5KXf^_Ab8
zGkt$SwtUQbh6`tpCtUviU*#Zs`TqOO&yFtNJFlZsy7K1jS+7MIUU^kE$?I32-a0Q`
zy(F&YXJnpFe9-y=ZU%?0&0FP+Wmvyhbq0QV^gHxwQdO3xAj2-px;L+c%v!!*4zbst
z7SAGDpD6RbX9)+x-92)<@1JcuFYxo1IRA^&wJIyDDh+S(v!2#tb`Y?4pIa9$6C5S`
zQq!xtWap7HuQoA1IO?p}^jLjIUGMa28@brekADALcXgq`-YqY)m>-C(_s#LGGHm<w
zImYB<_f75hQ~8U}-BV*I*ttvCV6xKFjPMiPFV(jiXlki49WdeZ>RHuaXk#227}qmR
z<fse7jyo%V`JK8T7Av9uvF?oV=cGAHUNA8=Y^bwa7C-UhV}1KYOHSN4`>fDzuDJix
z{comzKjOlWvG(v5Q%y_#+AmGZ>q|ScE0@dt+S9pye|+c+kys4|5u@$#?WX62f=}Fh
zJ0+*fw==$7{_D|0R`;t7cW(H4^D84mYn|OS^Vx0sDG$5_c2{mJ?%uG3gTXho$M!@W
zOZ|5{otskAfBVPn$&&c=?Dwu!3@h?(CSCowxa|FgDO>L5ulp4Kui$$3N1^)s>F2^G
z+bXazaIO8k=I2fB4Yze}O12(z+d296%=^sy*Y_L>F4~}ds*9mm;_31FwT=?bC*HjX
z-P;~9_4MHb)5Wx&9CcG((r5XdAvrT}VwU+v@AmS}1&@4`-?mw%=LDy$d41(%Zruyr
zvrGm{=gBgf&lg-SwX)^t@*e)U!e0wNmAUFp-a3c({!-=zMrAK%8}k}W;B4z*sd+cW
z{Fd3Q%q71{rnaU!39p)RdZyg&!v{;V7?%}lT|444tx(SP=5h5x$E{+qr<HOpD;21I
z`m{^XjX~w5*@~r^r}q3=d0p2z{LhlLpOfyTEj`9_^Jr|PV1v9~zS^t>-yc4`YwK+i
z<+$-w=GLAMnm3RCIbPMkprdyv#<JVy>*_5p!zB;ZY?zo)EHCG8nHM{=T$R!GS|q!I
z)Z`gcR?pk{`dgTf<<W`WJ;!ga+5K_h)HyC+T^U|1_sYtgenTi;$g;Y2J^SY^6>B$c
zaCdnT%;&)3)zc~^`kZU-tDo2N{*>-s?S1`Nd8_!t`Kzp%5440;Z~C<MZjEPWF>~n6
zPsev3ne%>S>nDFLeWnkyPgu<CS#|I6$BgN3rE<T0T;FUSrEWTHf;eMB=JC!~zx(a~
zEw#yit9r4^(=SU$MW5+F6xZg!#ahYjs!e^TdxhPPO}V$?_&=YT5{8E4_nwdb*3XyK
z30mrMJva2^-YXg+Z+|}D@nQzkfsHeoYuW|gUU>WV{LPyJ)qJz=iPSWdnW%1#{de;Y
z3&Vz{NjKMmM6cvEe4Da!g$n!Y{TvLutUhw0uhZYQt%{MB%+9Tp`lQ6L#VFvJ#?7m4
zmD+_5%FcH^^YN429$~A+z@Z(bzURTMuWwgB+N~Y^^XJ=b1;v-;+AqgHuXKO!|7$)I
zgJx6v(db^zFthC|6U$vR|FZY=vngEtvUIwZn`Hj&buu@0UAU2ZK6%~_C;P<@%U;a?
z6v1%e5SRaD8}{=LPPnhkl-+W7jz#+OwllYjo(PA(%efdH$D%NG&yP#RO$V;sntN@T
zyXJboY5UG9o{Qaiq*z6tso+o(|CQ;%sxuY&{N@X4X&zr27Pz6{^yavGPh&m)hu!37
zc%YhgWk=SXlb<tW_W%AnFaChly?>wYC(oP6-0M_e_SKcaZ^l-J&%wLxitoCt?%(#p
zHnL)t-kv?&!FTW7OUwV3-2AGWq2QJPqv751&UH&3O#ip+e&(~U`jzkhRb5T<d-Y-A
zxvcOnzV|<Uzxm(J>yr}0AA|1>^RFNO$x#sQdhGh{`&@iq<CMQHID0vL?%KQmc&2|+
zVvw1cw(Dh&Ys|Xd9!cvDf%9xUdd1Dmm+vY4=G1YV{qu9P@AsnOSQM_BoYcIlF**Nw
z(VTm?_P+dFFS75ed!fnGetpZ?_LsBn`8fEVzdPUUHfus&@$qHLuO51Ixpn@>kL$nJ
z&v_7j>SM{f`|LLB1tPKokDsldF3y;6cuHd7l>QHMTZCS>rcd2|@7dm?=jAqD4BGT9
zgW*T+lqIGco5h~I{}Gyg>EN{7YxdDggRLUf>Mn6<Xa8nmn2@w`rntJCz}zA^ZuPAz
zRcn9FoKzH>v^sCMXa=9kzRdQgr?<K@ADB4vP*RtL?!wB<%+H}O)i)ll_>fm0`Em1!
zZiWx?g-pVt?gy4UKXKMjW2=gp{Pgz@cl#IoS7O+&E4?sGTd!@Z-Si)h%MS<tmC`;J
zH_!0%Q%%`pX)E=aJ{%58EL_QNy>UujN4j(9Wx>m$+pj%x?*ny`G?!2H+;UD`_E6mF
zFLAHm-qW#}oqI>~eZ-=ROD5gjH}8`YgZdfSg<*Pn%gz)^L@w6;e5<dg@I*Jmn^_f6
zl5zJYCw&koj#-**<(K+d)<4rwvwVB!zNfAXlQ_CROKx0Nu_|%<Dc9(Ynmdn9U*VrJ
zMV#@0{O7eXKHN9O-4<)Fat4e1U#7oUuI51hf01tiImdqe-fy+%v99(6)4xA2{z^I7
z&9EW+l+fdYXRh{}-~FzA^}FZGf?2=5*!67Q$`48}?oU>PoYq)+B!H_w=yllRWeY9q
zHx)4~+y3mw3sd{A8vD-sJ=b*N*6-h|so4GPW%lW7<%|tsZZi6NHof0)W1;Haf`BXc
zt~_%6ePy3(TpUZn_3w)}zFg6iy;b{<!S<dLJ8qiAX5T37?*5klRhMZ))9>0(a=yj&
zyM6>6x*TfDZYF(jb&krL>t1mz4?L#2C)fPa*><6dZRRrDZ+?4!w@UxKmv)!eF0-HQ
zLHmQvt3$S5X_vkJ)IRy%`pIwRuKf2j>q@Lktzd)7`Q^8s@@M`q3pjFrO-i`FNm%~%
zY2u6#a|P}=Jq%nMw6}ZxDfibGM1$g38vaYK2r`|p%>An7?zdC^Yr7p=aJYbh<Mme`
zsb8F%!mmsIa&8UE<_P?-&?Ei$oj*DnVs!`HHcyv+&vbxOcni-ttNN6J(6o0wVq(T6
z^ZfRRy}ihw^TcAkkAS<^m&l0sKlOs;UNwKa-^{)Km&d05cRis|OP{(jge~N)y6hOF
zIrG5>3%0WtS3eBP&nUk8IKbBER5wFN*+ZRE?7u|L@A5pOaeV&98pd7okAF!2m^16a
z50SFQX-=P%7-pKy|8ig1#6GU{<Yki+c_D>bPjb!vO}ldVQ{3-cjc!}dJS_RqQ0m=N
zyexr1YUS0_tDav@U$CLVMr_AngSkEBXDntc?^^8q<ivdI%Bvdhqul*#1sg(?`Ly@h
z=zP<Emil7<k58ZLW$F(IuHSy!&)58r)f-h+x38`YL367f{C%@y+CPR>)+Jl6ExQ*h
z#9CK3?bEA-#lIdseSh`P`FJ%!ub$(4Wu9>?4_eMXTl<AQ@$1Q6|CK*Z?A{g@BC%Cl
z?Q5CvyDydNyMoGoPuli%^YvF{)m0xB^B?f>n;OB?c2vyp<CUJ;g;JMqzx8Q3KTmNn
z!+rNkP`ZAhZm1vDpL+Fr#Ou%d7JhlpDOIC-z&7+&{cA0mt96sb8DG3f=jaHF-nGQn
zY=PtD+o5f*`zr6u)6-|VaJ6uzR!GE_iU+$DpKa|-TjTvAqwGw^Z>|Ghn9Od}N|#)5
zwf^)-$!vYiXMLs%(T`$EE}rUg64Jgghts=Oupyfzb5-}880U-ig{J=_{Vx1udmtp<
zr_5>n-ZN$T`YFas&$`}V{#E>ykKw>Jx8kJvuWTj%Xx<Bc<WctN&in5tjtAEYHgLxn
zJyHGWYb(j0F?F5Bl^llSPh1)F3Jh+TEj|^rY0{?W4<Z+vEIbw-7x3o#+3P3S7Hr<5
zx%;vzTY&!op0ukgRUZ^hXFs!?`M^}O`Nf^W@7`=w;$FS;{_QY^-g3qTtH1cQ=+3Ke
z+hDMI+2PbH;*2}aoPRNG##^40M2l9}FXx`PGW^Q?(!jHu$y7!|{$=Tgt-GGMGFZJd
z7VXZsan9lE2EnVn{iP?n84l#9#q}(Et~o)R@rC0piSQLp*R7mt-Fy1k7HkjTcj|k|
zf66zGWdSqmDo4(48_+0>uI|Ol1@ERU-N)hJtkr#4KrCEMpXtJ>@`x#x$5el<_laX!
zu<!R@JsrOTnvXsIyE0_mTJ7X1CwxJ)H1d-YL#fP`a4s=}ExX?vFtn;1-D$ahg+9{+
z|49)CAAdBsky`kwo8gHCpMad6@a678$4^QO%Qdz2&OP{kHKU*HflT(1k8dkOckrYw
z-N$i&lgr!Y@0*J+4$bJ?!{MNnII+C5Iboi7XI#JYWN}6hC7n&n3%-2WAs%#!UH<#!
zy_3ZmfA~hIxc=N??Hm)%{VW;Oj%#r}H_J5e>a2F7H|%$kYfKoP^L$^ic>i_RPh1i2
zr=LB4W$VvXr<b0ww0eEy*{g1bKOg>ae7Uk<mtqxTn!oba?=SWKyDUG^%^)Kv_EPPc
zjIF4;jBNRY9p5q-6j}mjm1IBN(^%KDQlF_HWr4fY<jxI~0=^!Mb2iymKUtjdhH2hs
zN#mWb+`SjSwqM^+^>({|wF!e~i>uO(`|bLrbEUN8j?7<O&cN`%qa{(V_uIpd6)Jf@
zZ>6l<$8lg=pqBiaW%ZpKzuvCRum60zJnP^)Pz2XW?`55E(N?a1Y2ASu|B89*j^;c+
zT+YO>fK@rRW7+3jQwsMng*Fv^`)7YYHjX8sIkSZ0g@WbQ9bS)XxV5f@`PWXk{yVFm
zjiF6k{r1)g|2nhQp8dN~_Nyy{-O<d>X8z?`xuVan$$gBTU~ZRIz2a=geEEiDZuLH!
zn(Pi1_PuwiEZ(+<<3O9G+~hTjkH#2(7QMB3`m~Gnf(#OIk627z7N7O8tUbRnv+Cbw
zzOyWek`1q}h)dqR=~43MR^)!x+3uOi|2{<8+cT&>ab5P&*y5kehlkn=Y^4}x+&u4g
z<N5ygx{As=_pXRD-dKF(#FVOYCyaaT!{0M7IN0|eS2kqj>ej!tn6crh&E^MjYXgJ+
zDCjdWbpLvHOG7hnk~m|-)y~f2|JYyHS)T_j>?=lF`3G7`2U_`OX=w&u_-ANfqF|r^
z5+#1+pL<baC6~TSYI1%`YCvL9Zm|MLuQO<cV6lQBc&%V*ZeB5X{hfY5QEEzNa!G!X
zf}sIuHJ-j(W==_Jk%GQkPGU(a#1I92kJQZcj1mQ7l%;>B(4~K+NhRRreV)0A>8V`$
z#I5zaZP>-+DB^nY)iH+xXT960I~00Nw+Rcc*L`X^^RR^ovv}R7X}2>OmX^L}Kky}l
z&2*}xZ)!lW<Q449X~*yBH{4wNeQ!L&=3+x9d`giFSYxp;?I@?IxH1k?k(9!io2RzT
zT5ED8rU$oMU`ip5)%IHvS?F~3C<g%_z;tbX)G|v{odgS}I-U)a%G!1*fOh^q+a;V8
zHirZYLfA~BGgsX7a;BlbNe$Rw$tyWa7p7_R5+C0r`+GD&!ICi~@#D(0BnK?+1ogJS
zvd{3`_3QKV?Dzj|?f>7XUz7NneZIxR{eSi6|6p0`me_->tOb=_pi<S)(AWed4`LgU
zUewZQk+m7Lq=hcB2Dy{$Mb>wGyH#J#lzX7AbnfJtQ|~72I-NUfVrWLV0*_mQfrOM!
z2G2k3e~SNPH-8J0UeA&|!8}efdFR3pH+WQ6y8Eo&b$8{t^~FkutOJ)C`WMS<ZVI|o
z`gYTf`xW<p?E5UE)&BLH`qyP2_x!uEws@NS`E8NM<r8LnQrvCuzgcJhzu0N(SACuF
z^m43({mD<E^J7!5A1jPp^k>()z&eRGjrh=Hixj@{M9%VspB7Jfw%<}_QB7!ValQQ0
z%X{tar(S<`Q{?_d|MQ!kU&@nN{AcoCyHoQYJnqg}KmTpq(c&fNmws7Tvggz%^*s*L
zck9gG_dxEzq`P^`_dE#t&A;hS&D^K{7Thnlnza8Eo+fgS@1`;vL&JWPUrG!NvbBN?
z4SoAK7#!T=Sr`^9)@Ne4a8aC*;l+z?28NO^t_%!TxRgm=yFGu;SN_M9I~q0T8_Q41
zt>6Cko4>)I2eIoP$V<-4w>$c2v(9|ErEkk0J~e;6?Dl?Zxyy==4RWlG+Q-DZ|2#Fl
zq}amc=i^N-KUY<4y6^t;v_ZXHD*wj2693cY@kL&H6Xkn8>Z$r89UHIUx+$0Tdh}mn
zmbtq2?cvP<q4IN6t3T#&$$wRkIPCtkX#Ugw@W?v8&!JoIr2Z`JTYh84dE&f4*r&$V
zcI|s@%E0iUg7>xg|Bq|yCC+c+?Roxl&gE@CU%F0<|F3sC{OS+SY4LSp{u8C@1fI>$
z-`r<@rhfC=Z`Up5CdI9L88|mS?WgdO?T7mp|9I`Z?dPhhZRbDP|NkZN^myV4wH33D
z<?grq`9df9(sT2hdf`{^8cG+%O!NJ$exs&omFb^7$sFsKelfCo7<D(dX6?KUORm(N
zlJip6c{$(yuZ?uUADuJtsXw3Uoxbj=zs6_Z-vZBl{cNN~Bi=AbUsGCpJ)42y!AGfU
ztM}Laj$f9;ynFe_Ij3u<$)A6uxy`J_J=5m=r^~6+><?C*`E-1B?zN9?>^ELt`J2D#
z&&Sgs-e32`f6Y4c<5q{7)=hf)eE-Q$m-{!@Ts@t?DZV+Mzg?&POy2z6m3^N=OJk;K
z)XTm*#5v9WFTc26*>2y@&x3zttpF#ELWxV7LDBPH+?A-``1A1h`l-AYfBJRo<I{h#
zZ)oH1{W5o+|HI!Icv34~Z=$9Bo~`TNSMf41*u?F&s{4A)eogVV#@GKv&s)w*2Zgo&
z^xMzm4^*9LZ&A<NdH&Pm$Z6|qJXe11f2{a&5?_4U&(H5ufBtQc+_$Pt^YnYW-beFe
zkEZ8x>R&(nXZ_+oUmtD{+_!3)L4Em|vWIo&`hs@-T@_{a&-Y);Tlwj^(@V^b-Y@Sx
zEC9;&dN-GDk$)WPvA(xt`sJF?x69usPJR|2^XIune5mNX!jHv9XXh)_K40c-wa~1k
zMxK|9Jd7(;&aG>^8~uO7xtnZy`@Xx!oc(|Q{n`)FcmG;-t-t^0ea`RD!xO%~d0H^t
zZ^F~n*B&dLI{)1~^4~M9Q{kaU-CvrWnqT{TzT3}Lv*zuQe|nt1eu{6wx4>!h^)}ap
z_Re?t`2SmK*<0V_Kh{t7=mh?gcy|0xS;V!{%bJ(|)XiE{^VHpRs@$SgR<j=o3tB$Z
zczfvd*Cg?MzE0{gSN~T}zq|1NlarG*>MP5{p00j%^r`+P#?Pm9>OZg6i4T2UJHx*1
z=Z2p=AGb=G&%7dZt*7hzt>*;GF<fELhpSX9+y9^cbnUjr+2Jpzy#5<HC7!Q5ux{V}
z&QF(bPS%JIef-ZxRw%N+z2ZdCog~%$#<rDG{gKl(?B0C~tmF6`YC5mpTzW&B``3Tn
zI`*+?KUYcp4;J}<v3%3%-%sD}@B9>Ms(-U{-l0Dh=L7ex(vsP9`|o1)#B6)tz`EG$
z8u6jt7AaEZ|DV>I^90uMeBNCneo66V=kJG?b^cq`6<rtqezUXgV_aFtYrE>CkkHur
znNRumpZxT>blUo;{Qq{R_<z4|5pLn1DJ*x_xlH%y&$mBo$S(iU!Yz62>)mn83=I9(
zH~c$XU-4T0UA=Jc{P+2nG^g**IZ?EO_j7q*-Ho@4YeIW}ck9UeZ9G>zW&Nts*h`8N
z6Fcm?{P^GOu)baLJJfVe?F`--dfU(TKL=%@HyTHSdmeuCpON(4<jz0!NW1U9HoW~d
z|LF8r^AAtjx8uBBPsPW36MO?gPoF<j^Q~;fQ@hjakL$#TX8+jYKiwog_2;Tt>o?cz
zy8cpcj)Ltf{)8EF;rkv5Q?aagy=xD&f;j&F^ZWaMDlPB0J-%M)w>)Ng@|5^@d5iwk
z%zxTm*!3yY^qu}D&1Dr`S9VyRX5+c(ep>yFQ_Yk^!iMwe%}<4g@;;1vGcWDuOQX{u
zpMQ#7ad!RQ3QzB{_G<!hxA_(BJ{9)+vg2di^6Obot8L$G`ZH^<)T&j}eiw9oXf=&b
z|0%pg-Rf?uN&P92hn?1mo*R3YTO^7<a{s>gG1baNaGT&*Y3%*4QVa|gd&)kay`KMX
zkKFsk9}mBK)4yw;eN*C`ZS#^W@3{ReJll7v<YU~F^{W!^r2f>j_EMko;^iApvxNV5
z3z|;r#D_Xp<n}zjo%f&R^_-{exzj!_`)PH0`R)yEx9b^RZk_(_6X&rHe6gF{Yp-%n
zFSj_#x&8dL@;mP`r`2}|%i2xxn;>`frR$Er&m;c{M#Ud>p0=O&^H14bhWFi>iEh52
zC0{J9oXyh9H*f#<@O#}Kv)8+p1nafm*07&v-}&kC(dxi|EwK^Llc&hHt(o5c`!hJ#
zE1jO7?!I!FL44@tr`vuep8CX}a3l4n>Fx=BGnKZU19??lW@$)O$n@Ph^@sGI6;~)d
zdz;_>rO&(n6=(UEYy6FmL#N3<b}#q6$*uSG(}(w$6yxvSarwFXL)2c|I?1Q2vt-&d
z{@?xl#$}H0&DJgR_lZAU{pxY|^OqA&Z2r4!_WDmhl^7Uo$#2e~g~#rXe@@P}U;o)q
z%Kk}k-|x>g0SOX^glvv2wY2qG`SQ)l?d|u>V(RpzH~d$alQ8}1>Z}=$6r-b`>&$=W
zwCiu-?dpZARvn79csMO?`(D|sT|Mnf)RSJnmEV6aO*Y?S`j)SXtJo`<mIN;;kC_$!
zIo8kr2<LX^4Do%!#}%uy=J<aM{B`vD?R$>$aWO7GHP`dT-&r5{@90zgLz45_e^Re;
z2X5_3u5K&e%f`SUxBl*zfA-a{<*y}gYb@=1E^~hK9|PNUHKAwCBkR7G+^z}jogP_N
zCFDQRYklupNL%wq)Tu|NZw@iu_MXoWYWl1^AZ73UvfrVm@$El9a88J;2;F+e?PDol
z|D{bSKUbBWe7B?Y>@tb(4_7bDviNNvz2PhG_TLI}llBRe&v*OyQ?1VL-SRhma_w&p
zeh>G5bos-2yFcr1HmL5FwcCBR@0H21`)BJ)rpYe7e*AghzngYl^ACN$NT`jD7O7Yg
zIa(Mb?)~-JK7;vjs!hswlR1xc<|*C&S80>-!*NEvoWEez&$Cib<M(X;`=0ak`9ptV
zXY4=!N!`cLC$Vn&Q~3ime_t$%I4nGU-qusoOZISm-rxJ^b<LS=@mtTduU&rQR@IrZ
z#9bBobCYW9Yqrd*pY!zoZ<DV7e_pNM^fp}fndPbfFAo1{{dz;DUW)(buRs|)!?=6@
zZ|D3Dz5e}Xaen0H@?RE5-hatFvoG;mtqDaP7qmb*T=jeM_J4`H&X{fZZ8G=MQ}gU8
z`>o{`|A914{3rMo?!3P|nCGy-)AHnRs}CI)51z7qRr*Ii8@t!5b?j}<e>y%t?dK}1
zxYnQR!CkG@Sv$Eue~<h(MfI-R$I^4tww$}^yz<(ch2f#1_bz^XwmjDEiH`J#x%D%j
z>hA+(9A1BytP_2gUjLljEB48H{~kM+pI-vwe_pn$yE6a79q!r3>i=uioM`!Xl>On}
zfUj28`TP$*&wlgmBPhR9(0xM-g~w5sq1E??*}uP@oo~P2((Up4zQ}#6-aWTGC4c?v
zZRh-m!+(UH`5W}!e7<9MqQ`QJ*_-a!w*@cR9q_ZWg5hP{o5PELJvv$6`Kk1W(dqE3
z4_E8d`+N?M+_!4lZi9Mh|A|qXo?qIf7g#58=r*WQSS6)@=uhRe`SVhKu9~HH_|IjX
z`fq{L)~{0hvnRPq@MygJeD|N}zcu1QLtn4f`1k48@4$Zo`wHZje+jhFzbQNST0@EL
zRQ;EXelfqCzECYi9IJ%aZvQ`jy*k@oe!8kuz5V%@Q(lU^ew@AKuz}0ZyEAJ0s?B@@
z_pN$&NZ7D#_k?#vPv^%jch@`{zE50!Zfo^kxy^q#+dka#`209>TK$|u-pL*Puk=pO
zF9<pQSx0{Ui-O<kJ`;ESF12~`=P}f0N1v|Ni2r$7EB4a$?b`$YJ=^iqIg@Mt>X)~l
zw<x~6t$6pJ%(WS-Zndxfn)>_MW`F-XZm$^_9-ME+)kMYHaYv8&P4M1MeC^-c=Jorm
z^)CJ}i4QHdcqC|c>vQb4ojJ4i-#9-1cig-3z&feTn#U45K82Q=`ObdkKjGcc=jO+A
zn$+$49-TiImwJ2ss*jru>gPRu{#qwK^mFL6_;;XgV#;=Z-iKRf&1+pHb?#8jjwL12
z{bwZclqddAoVI?|$H^N1lEm*79{#NH@ALY@>TaP|WtNsdT>Sf20mz=1P1C;|)!RSK
z>E&W;TQB|uk8;H`^FQ?YwcG4U=3+Roco7L>7HD2aEf3RUu6>PN&&belJp23i`1|{R
zex82)_}b+*XCj^N`a4gNZ`Y}B0)@t#qju4kem@5l1GoPQJ-xj6SBkv8=HJjKjCG|q
zt33DbIrl04%|3Zh|D^i-X2!$*oBvcyd%8M{V|{NapSs6qeuX<vzX*h0E!mm-uSMAQ
zuSM5>yOi1gAF0(b)rh=1BL4lRthxTpt>uTDbK*9+ms=fe7Z(rQw`$$H_xo+Xv?cH0
zHgErM>O^iVb6d^tmy_fcoRoR?<`eY_MWhDa`u&#setzClTOBhkr!SR5ox|SvZvRV`
z*}M0}Us5c#NU~3@u0657r@MCBvhU}<1=gLcziK&q8K|&N55M{K@8RY1(}aE2Z>kCP
z)!+Q5X#UgdkGH4)JD|DEEJZvn^y<6JY4Ya}|51;utCpX8wEt23{d3W4o|N+yZ~OaL
z$bMIT|IMd!{U*FS#3}c{va<S4nf|j4)8<^5()ZB2$~^bq*Y|f7qbI#zOw?Ev-gpQ1
z{*BkY-W|upz|emqZ{;d;t;Z%UkC&gdU+6R4r0-@!t(Bu)ip(R;pz`CYr}SSxbJyJ3
zwtu(I&-Yd@C%l>Q?6!aT&lXL)-Ln?|IWB&FaZRZ0?RMvD;gNMeZ-aUw+pcfD(|+3?
zGzzr4VEWVc4?0gSaX)@){_*XHk4HtG)>qbce0uq|%)UK+ZPvYtF5!8TkE_<s&iS|T
za^ww@Pr}om_80#uTH$PQ^sZs`i92$SHcz-_PTiI+xDjyE_i(iR{P&yKEc*^`Z@;%~
z{wBrDI`g#M8`fk`S--0A#I%w_A}dQgGyk1;u9;#MbzJ$|>)V#{lb+h|tB`v-|Lx{K
zn%BZ_=hfFq@<$#PHk@}nIOomR#Lt>_m2=M;>U&SwKY#P)0*>wVheTf9e!_UqZlz|8
zdw6Io`?qHT_Q(HSS?c?erM^+$g@J(yHCKXT2kgL~fA`J!cmKEP|NXzB|64W)Pn%NJ
zpc(XX(xt^#`XBX{J74<4{AX^*+Vxk3%M@)d_J4@l%kTe1@t?4&`i)=x7j14<{Qi0W
ze&k{M<|(&B&5r8*uU3fu&pNT>xB8mr`XBjc=j#7=uAg09quuq_zJu{mHE3WQeUcJ1
z6b%|IH#IZ20Lg>ch6d(?X_C^wL_yytH7~s+L&4C%0y=a~)+FWJ`U07!wg2yzZ{KuI
zLOLm_<J|ol?Ay+9%t~Qs<jJ%0oLnL#9jr6+)S~37StXa=ml&m-vY&b3eT7Zqu9f>Z
z+Y&A<IaoMbZDU)PRYXFf%?|Nsjidt###|Fyo?0iL6Ps4wxIu^e;ahpD`DOOs-`H7s
zmRCQo-v6)W{PW7P_dEOD`^&$_Njpq@v|IPfKF*k0@0*bf=68Nv<an_Es_O3_bFMG<
z;ZSTzc`%!oK|`CF;mo&8BPWkAmPU^|Iff0#E?#sy@MEcDf5c|C0~s6BS|+@SU@}op
zN|Qb1cKf#b>45KbIu~=!CZ(=0)|LD}S8)A@>RKk_#{5Z=iYn4M*2h*P9gjFKtE_nW
zxHyZ#`Vx!u76B(cf2O$k2SPqxz5C^ytHKtw87u*xryf*15b=0Y@0?G+rf_N+O`Da*
zEg)rZw$!0Hldq*gEIUklQ`q|RGbSWG{uXhD=Mkgv&8@;2Z@p%HPu`Y!cHS$mS+8|(
z_V2Yz4%#I0cIqGQhXs$Astk9mVgHewBJe&zCGl*Z8{5U~lVVl1$CjjM-ugeiHsJ3)
zbAQE~+cU1W8NQhxyzQgvg0+_>?JY~adF<}Aob>6CU=eWo)Fsbhw$+TG!^GU3;mUS1
z*0nc-7<jMs2=veR^0+QsSAN%{yLK*OyyxHkVJMe8VCQZ2`z!y4^bP67*1D0EM#h`3
z&9r;IF?`SM_7jJ=zva9L{quNLqwD|grSY@*pP8R|b+&na<-_?pHy7s5Hn%IRczAC4
z$L-%$@_+dCpFeX^NXW=|O7!}f>yN+r`^c*5c~zn8-q0BL`ml+SugiAzyuHP_<)2&1
z{t2b;yEoqdRCSi)q}cDj_tlTsKD7NbZ^It{KeG<+ee8X+@T~2#wizd0rQE%p^yd1W
zI76pRYFqyCF|3G`XA)Sk+IUSQD}!^2Vs_Zt6KhJp@9Nph%&=<i@l~4_?G^UmP*gEb
z$-HqPebxQtH(oVewqsK~dQ>{>uv@p}dXa0r4&8svr#zQ_ny;aL%&ozrX1>zqt6wep
zO`~}p)J@-*X2TTo^y@6aNwWD7ywYhpA7^aHTVwY2T5s**OS=pWw@GIB<!n8FT}M~$
znX!_w%iZXrH+z%zt*_Xd*0SWpC#i!eywa^x1cPMuB%0=&kWCKRnB1dPRvdV=@8ZUF
z$1C3~m0kSXa7VI=tJ}0T-rBHrtGWGtOSA|$d9|GUzwb=iWsWPic%{|tE=8E1>Pt<#
zwyQetT7=E2{i{r?Z)}dU+wRfDYnSNik@xWOp%$N+o^dDTw@R5+85TuFnOC)zI;V-w
z+SR)2r&x#1LhE+{deeI+=*;-?|Flk9@7)899d~zae43hg*W>Ea&3k7X8E4<UBz!Kp
zJXhlIzwGs!()(+aUiIm1>%Uv0IQ_L7haxE1-!ut&*5kgmt+(ykvZBnp85^R_w`m(i
z-wi&Oe0+26x#VbRh7c_yr>+j|hu!Kzh4NWv);&~Ppm{U(TEyn}jJ}7bt+5I%*L=Ob
zM^-F(cEhrVZ@bQfZ9iR^Gd+?y-X|?JPG3rqZ^e2;HbEYBp@&5}hnx0EH?I1@<g(_b
z(}Gp!C+T`#jXl*DaqOF}1IyEIKYu;D^?Y~Wne9B`-8s`%L@ONs#GATg#|+i?obyG#
zw_NY2J|z06?$eBCa+`Oa|M;&&>vf@AHeXA_{F7@kbWbiRIeBQq!V_7grP-yQuV(it
zo>g8bvz}eCWkOOi+Znl=smH!NS6;HBV~2$G88PMv^-b!gV*H!W*6usDSgPASrTv&q
zQq8H?uF5Lf(^mV)T+>n8<kx#t`P-u3HH-Ck^!S=EpS5=RCL9_5@arPMM+cV76Vp@a
zX3v#>V&wQvVsRHZA)Hy^ou2#dv#H$G2phGsp1`e@E!J*9IcFMfD(^ls<6jLZ8HgNL
zSKDNeqp?XV_HLK)te;_L3+>xX`guNu&t9_QfpA#MlUe@WuibWU$jcGD)?1bM=7zSe
zoMYneihCCsCY`c!Q9G+#KOs52dT&OH#e%v?e{I~#er@>7bT7|8?tAru$KJoi_vN1D
zW0sA7J@dppQ1JSkj>wL+vc5KN=FL}pt+L0z>C{Lov#%GqdAu^t(n+nmYW`Ql569-$
z{rR9NBfazM+IqReuf6}D*Z&r=x&9~1di~WiPV_B*wdSVb_A~$2EPL1H{O<GKudWmK
zPJKRAxkbQ<Lo?UzZPJ^7DDy1YSC?)ce)rjR+peBmE~bO;U!76j^UJZT`>EcsKE2Is
z`<}a8Te-2Kq;$u5ar*~GWji=CZYgi#-PGsLJ=y8#!_36YM-#5~{?t3hms%DRJpIa9
zbB#>}ZnBE5M|1VQPv-ubD{{SZZ$?YXQJuLroukaPWL{m0-1@ub*j}r}9$U}Z97?z6
zP;Bui%Kjbjx9@0}_?%OQ9GY@9mv$8fB;P$zQN8=vqltCZyOU%4kJ%LMKeH#!*lAPp
zzAbq&BG-D4x0EJtH7I*CS&ZNLhTS$RDTkn&(9EB6;kB#s5k~R%?uwB%8NU^#%i3k$
zwOFw+FXfHI;&)>GUqJcZJy~vNeA+x+F~wlD?c4f`Vq*)mjw`eX1a+|p?9nq|dhjaS
zPL8=|{?1P_4cgbv*s(46<$s=sv2pkGud^LqNKZSXziIOGE2S^j{MqrkrZH46IbEK)
z;PiaUKH2ksmbrU-bnrb5_I+D(sB6MZ=ghk=rp?@v_eT6$FDQZjT%)x4+S?Mz+gpV*
z{`Q`zQ+)ly$4)ck&t8d`Ys`NPjXL6bR1Q5n!kUt{SjqZr!1EcQ8Lz}%J&RV@<l-i)
z$m*qlsBQ|)FNFOB)j*X>b3lp3<;~4$)327k%z3YN{pYP|^9tm4XCIdM7GFKpw)%;1
z;P;a=u4j9K%8{a(mlza2DbFo^95}bsx##Y>nd@I_KHvEG<~E(P%Dg{g&73wJSktJ#
z&pE<;)zVUB%{9{Zg|GEyCBAuaJ;J7KyEQ1d^?EB+)QtE2Xcf__a}nT~FLbR}_0ldu
z@oT-Uhjwjrk+AOb=yu<^q4vzxnNI7j&2Sexu`$crNRjn`14l+@XZ0b`8fjKVV|R{*
z!tLjFP0S5jy*hgJ?DclupFK3ny<IpImpnK*5ta=_w7gy)^N;P3oqq3L-syQ)B5aP_
zzHR)vZ&%OO{d?~ov^lhW`{YBenRj1=&9qn(>60>7s@wgI>-V2-@dc8zGuUR8cf3)D
zBwN+PzXLtQ_@x|9JZ-$ROR>Bs@MxdmsvCxBSC(!z`~Fj^e^<}e_Y#Y<K68}!ESUgt
z!G)`i*7Axi6NFR+q?mf9&aZy1BoHO+!?fb(sRsfHYj$QzMNVCpcU1Ch&FW`6<dp+v
z&lC)r@qts@si=3S+~%{(TT2(mMVa4fEluv;kavYU`FLFBM-Hyr$3OS6O$fQR(6IlH
zW8c%?8XgNDx$C<LUFUf1wtq`rjQ$#F&&0bg#E<nIz4WNi@rGSn$+8KXr9PinAmgpb
zs2RevcX#79Rry<MrS&~uAKSCw?yilV5$1iI$?iePA7>bEyLpmf(y4XbJ7>Gc2|k<H
zn_szi3Mlt0PS@3XeJn~mx&6|vz}ErO&&id|*WVPHF86cYIh#YP<(DJ`Mw#!5?U9X5
z<E=U0xh6RI<BL}X^Y!Zvq`oN-zOcnTMLI=xzL;8TSA6c>2{X6kohdgg)7boY)~+Ra
z`y3~>8o%Pu4EbTk<y6#nYFFSw<7$uBZmrI-R;$bApWhLlF0%64O!pse*cDr*m>DPB
zJz*4#$on2qJPSUiCf?=nczw*Vw^aG@+qY8P?!Vr??JKpF`h4QA(dQ~f&O)UR4;<!i
z-1&R1{@+)RPOabn=OXX!kNwHA-R$=a&9;|EZ|a`g&HhU#GUI*4-KB3{YpWmoCOP}|
z?)^FQ*Ps8tBX{4%d0w|`wr!06b@k}f`1dj!)AyU$TmRY|@qpvslG^A`U)cZ6{=e7q
zM(){NKaWKREs)SY^>Fv+50`G&YQ!6g$+0=j_g}+tpgjFR`pIeYA_Mcz^7UR{YMh*u
zV_8$qc1G%U&C?IJpa1@|pmtxPVf@do<oVmv4@~^e!0?BUp`g&3VWMErf+c0JROfc}
zT5k`iCKB$^D(mShwUv}qbnU&i%kXjJ&UJbon?aS~Nx^_9bFD1XH2%!H79S@b;|eM}
zQ)>5k-fYul6I#DiO<1%vV%~;Z5577H8l_IT)|)re^YyX1#Jex9MA%F^uVs{d*Khj9
zSnI}X`#)DL<d~^dx3$zc?b5EoTSsp!Jfme&%3b<7_VHIQL8DM6uh+*qH*DUxIOlQR
zgN6-xIh8l>KH8W8ElV!UaAIoT8>i*Oq1ZAZXepz^6L+iE#}-??Zj;y@YaD+W(g2w$
zsp#4j$sAwPz9BEf`?Xt8g!w-8HPTlP-MF}ZV+Busxk<y4O|eR!tLAddG$LGVh|PQm
za$0KF^IVY@5p6|=V|T4yyKReHyDo2S-o9UFdIX#}3Kjad@jv%Tl~X*@`BEbJ&rj>K
z-WqGAKfQe`d9AlpsX8e6qd<QC`8C$FW(qD!>RxvJ-jy$TkK>>IpY!@m#3IQIzawX?
zru1&x-al>Oy6A~FUnMEME?ME7uD|QN`7b9ow~k59v*LblT~_YCf7bWlb3b0c3>K-J
zD)`8y@at5p1xQ+2%ZeL|UT!rv-TV4zpW%AA<8*orw^{M8s}pc4@=-8hk<hkZzA-Ol
zcIeAjVRJ5?2`{^MI8?E<=f(7;?WTLbJ)JBWxli+o`kK6t3A!GJ1#4eSpRw-xxzv=(
z<1zg=pItt*D^P!}^xH#6HoD%heAT)!dHt3Ome#kAE8Uqrw0;ZoUuzO!&UV?Kb5$aF
z*DvEuHIGq>79SbU#OG*5%f>(JSv9%%y6bkjr7y6YIq~Uihxd64a!<CGy*}oBX_ujX
zhIwJmuOoTSE!28sJ$sKPpSzK!&g`L8{oUuEc(Vxe`|di=Kh4Xo_q;z1iWbG2i#Fx0
zDK#wHV#csSByz2DtX1`m+I=Uko#_z}UH$N0w*B=lc~92;nZNncu8VJz-n=l%eo*ZP
zF1f?of7g6umXuWV;>)ahyM5NZ-u35xYyQ4^jd$i*p_?`0$?Zng>sETFrL?TL_~n*O
ztpB{z|24z+SQ`cLuaTCl+|HCCCz;8nRk!>^PHBI4&T4)QZno15@s$P=3`_?Tewr9N
zg={%J@65LAOmcI!Knf`q7qk1#!s<&;Zk=H3$)U(_<yx<fu3XC#?&|-dhxsFe^7FUf
z7G%0KqaYwcM5{IOVE0-*O<$%*+h^bZ_^U;&F|vKr#oR-E1^p&!G9qHF$6F#F`mMKT
z)0Et&mm~i*ZvKRMSLR1cS#z9}T?xwVpbiMQ2skCHd{X}Cj%1bv+wxK}KPsri-}t>=
z0+K`=GJRI8xH`j@Y3sK)8oIJ7{xQ|(vb){CY4mcw)e~baR$#GF+>{$v&l6-+QkD1d
zgxpfYh0$qG7v=3YD0}naSMr2O4<}p~>woicx0LXun=4NEowjoN)Cv;e)ad0@KXgv4
zbyM%|MrOh4Z->kG{!>^IV)4g*OND?Fhhn9gfF1Xl-MTg3m<0Bv{^JyGjLtg}nQ%|G
zJ9g9eR5y=(0=AVOo!9$!fE0r(6?zbILNj7+=Eh6QF!h+4?=2SOSj(x#c%|m3<?2gU
zYrpNiQ>*6GHOaA9fo01KNXOsQp*i!U7MoA;TvciBt80ZzU%rXo`_H9CL~7#_P{j-z
z1Ypg0yD8;s+NSK~s<&sa@=ib4xzW1u+B*4)znvT>rT?9rsw?TD?<NEt576QKW0-XE
zm*I{z$0zCfU0u4FTR6G8!QQQ{==VkrO$D`||2I_@o4sSZrFH-JGfkD>VsCGK;rw=9
zbM}e8ue!IkCgv!4FMGA-X7#l<KVI+r8v_nGmH#GN%vc)}g0q<$PCa|pVY-@CKrph|
zwAw;hx#h-(g~#4V<uT1_+kHmr$2@P9N7vSDX4|*pgirQ0MPnzgHqW@^IjyM?7s{0b
zu5M=#WO)wix=n1oyXmo!a*M~C?=$9axSwqHJ>_2cw)@?6zG*EJc${9pXK0x9Rgs}_
zm(}4}p$rBtVw=*gN=hoW2uupE+04k0n##~{b6;k9>Q4J~r><`EGh)mcGP1cWJz~aj
zoGy>1>0C%UrabLU%_=>mSC=H`i>bMMa67Zc`DRA-?+nRTXCfXMF0f2I88&;P%VyQv
z(^q+?A3Jg*ZGq*-3D@U$OxTmSrt<5I`mdgkUtQ~7IBRnFoI2j^=jH!>S$+J^>hnKz
zZayqt-*>1+mvMgQ#qfTf`Rr`><mQ|>7H4Z@lW>;lap}u9kB;16OnC72<KtU>iT3a2
z_3w$33KEEke0pK>^i79dKLj5YW6r3lG|9UCkhS4hV0PJuOY8Jk-7s_$1&=0Woc*S0
z6n$6so-U`RidJg=iMZc=*V8Q`d2UbbRA8vwnzU?lQS4on{OOY?9ay{mhGvTZ%apRd
zuBhId$^qHu{c4tMY?>llJoo&L=g)e21Qa&M8&$9U5NIcO^<C1N84K0dxZM4C1}uJW
zifsssjY5yCp>YTMuGBESSKn^y%ANF^Evk}iXAJ2HoH@b4$T0uSbmdL$T=Mnn4a!=U
zZcJ7Y<WqNZExWbwoZ;#VS9HN@E^l2w?Q2DC-DJfDTZ-p!SW8=<GJD6yhu-Kvae{-<
z==anA?*&1z=~U#$+;E~lrbpJ-QQ^mm6Q^Wf>80K_{cLLc)TYd4x8i?qN3MylWvVr%
zuKn_ZMZFnZcN>(2cz3&B%KIqsZ{CKA5boRV`!_SD*xX)sBB#{6YOlc(gB6qZ7VdsA
zJ-@29t?EyQf`pxFkF58Sqsn?`<hWapCU<VAm6^ykp(v4c=4#{C56`c#Fcdg`I~H_N
zU%slgZE}JF%a$WYY#(w}>VJ6Rv%fcK{^P$dLyj$P<z#rEc2j!O^?wIn8_!_@Rrh+w
z`ZQCw?%K6=*Ux9qA0M84DBbMAz3i!S^JEm46wF}kKK{knd7>bb&!ToN`N#W@@wqmf
zSh(@OQNyv%&!rh3FYh`N7OuZZ-ulYY&Ej{SXZxh2UHtrfal^+m72n?6Fy59k@jAEr
zr<VH$e;AnD4zT}Va&t(V=)CQo#e`Q2(~YV$rvCLyVGP`Ea@%;#8Jo7hJIbt&t8RAR
zuC)2;QI~5k1E!ygE194Fg?0MI&a?%U?I+C6KKSm@C3R7M|FtjgUg*1Si@Nf+dYk%(
z$hl9|9=9)BWq+`Bo*<J*Sp3cB!BOUQuae#vMDrxfJpt;_oPqW}dfgjN@J%c{?h({c
zR~dYHckgf0X|q?pmAI>8eq#08!<MrrRkjE?d~++fwRhUrkEWkDMsl9CY`h?lu;$O4
z%^Q=w5M7asGs?@-v)#D5^yggqa%;N(uJ5x>6-`!sv}5y<r^^E7Z+LZahWo$NwEbE^
zTXL>_y=CdUey_%+_|#giPdnP58lL$&BiBxMjr7+`=Pv5?$VRsuT^x7A?weP)d%z9p
zdEj;&UvK4;tui(7OC)}7+nk$b^ZNRiTiQye@6A{1|2@f~O@6P0XN>Y0uD_Sg74F@j
ztJ2!IFg`+3%sconYhu2{rI}9Wvd$<UFaA(FF)3x=Ifvq)?4=vi->21b7436<B++>9
zuEXs~{BN)IPG6Fn7<VD>&5bXecOMn{+_0N;j%~unoSe;*8C9mniWi&r@A>4&x6dG`
zMdx25sQt0~`>mU=-`?ErmtM{FX-Bo3AgE{W)Fn5yG<j|J#>HD19hRPejD1K|9}b&a
z`DC}!?5Xcdm0G)AOrM`!Wxgr$diKqE4z1^k7H`Wd*)3tc3smk3M=n41=;GCfcJY52
zPTzQ_wji_rgxs8s`kf+{i{k56zr6e7v(oO^E4H)Va>lIReCG#xbLG`DX^}_^_IPnk
zFPHsiE`NQp;KZRtd6C=H4VG=bBl6+4#+y>ZiGN-7_UQ-pK%!n(c2>H<yVKuTly?1o
z<Z!h1DnmeRJZr;&S63Msu4@`a&y7!+U%0|MefzHS;t@}cwn;JMg{FA#|DnmyIBOQe
zkEnw}$L{HGopq15#`${owtc^@h);jD>FKPWtBUutv<Nul-aWDQt@GF44AJ1h4^<Ba
zhsGP(GMlg5zAY`fKYMe^%kA6EweH=!x1yrDdhw(3+-o_=1G6)If8SO*dXm3%Z<*ia
zZ2yio`6YY5?O0ZRmT%_FQVr?5YCas_J(3SOCI(jc%n%LZPCjlomosto;;D*LZIz9j
zuk2Mlo>n`(IY!QAh2b%kxJ#h4W3Br-PCPl;>h#(7uG4m<1weZ0C7Mg-eNo(-+_P(z
z0BDpB(qnfMt@mBrCA%0jK6I~O{~3|_{Zp9id$OwD&RKT-N#94t*!8ySHs2{Z!E-=l
zt@Pznr%Fqss++ZxRXg6kYTy1%YI={rq+q7WW{Nk~N^kx4=7_tLw#Q5p#g1LodDmt*
zt=hlJus?t$Xw!|~sZXa$X`fv+bK4!4U#6w5zgt4*uGxKVcmB+ZQ$F^ITmAahUX93m
zbW45B6txy;?<)|}`?89XJhpkRUh?iTrnUP8Z|bMSwqB1n`^a%ozj`jO!sDA}6Yr|O
znm0AMUhmm%|1U4=U+b9v^PDMQv_^WldVZk9c}Vw6S0GYpao-e;Mf`SGzCK}^C@WT4
zTl7ZIFh1r>X6v~k;ec5Jel2r#xl*Oenc0=T<(xkKPORUx+I;7^>)XDx91|&e8~W{y
zV4|F7ozb(e+kN*qN+s7lzqdQrye8rNw~k%mPj0xIPMf{Be!XFT#a^ct0jCpNG8qJZ
zPCVE0Va174ch7R2y<Mu-vV6|*zVzFhO!`fpl;89?_@QCl^?%Wqv$ra(o>IE$`n4VB
zuV2^|nDUQ(^~35nw|4gb4EX!t#HaR#_G$e#71}lZXGJ5on*Oeyc=uVr^m7WEirROT
zJQJ66xvN~HlfQAg#^=~yUlboKd@7$^wKg!teoE<m@nmV!y|X9&oF1;Y<JF-#p-*>Y
z{*3)Rjk)~X?(9m{rq$0PHb00xy?V{fNgsEWY%5915p7!iEGBXOdarZl?~Os_{!5#0
z>z;;k)cK{gUB7SkvCS}ceQ0)7?!FWMVy=aDZv1Srw|aVf+R<NTUGq=sJOG7E;<5W~
z8)L8iT`lo@&pXMUp6!7x3=-wnB^lt&CAYgJo1$XxM%}IXIxCq)L{igr--6d$_h0)G
z)w*te>iW<f=f$Jq=S~!KD)Mu@A((c+#>s1{POqVH-cG}k(yZdfn(FGdhY6q(f2P2#
zJI}LiUKw5c_pOZmbH~S(FYBY1XbArOv}{?q^!IEX^QlE^&J`7Vq{{`)=H3;n!)3Uc
zFV%2j=_?-&aNo4)^bHr|3wxYX>?fAiMC}L>{QD`}_kG{Lpp@0Fck54W^zZulPOSFV
zoO4B!A9CrMBp(Vf4yqCfT7UEPlxIvk;a!l$dULn#Jb%67O6r>0;}W5>-FGDGM7r$X
zv-0KLV}GSi`!1DPz4?yJDNyaFAz*!oXNJ4S%1KKN(~jwyx2?<jB|lN%k)HynH=BN|
zC1C05=t4K+`>QN(&U9znT))|Nr_PT<n!f96e=ezBe|FE)v}s%JeBjg$x+8K}IP6)~
z8MFCfYAscnJ{jU_ExLzV0`z@2s!P>cp3AP~S-HkJS?*`E%<1oeQ#9^h19f9f_kQa-
z(UuZBT|)YDWL})mOh^sm!}0ghjDo!eiYl#~3*%=9h`sjVaJC9Q5!qXr641AF!UC6>
z>y0nWxe}H6=4Rl`)GxF0_PHu?e|g7tYg$c)x#Av`v#g(+%4Q!_>*Z8jxv}Dm<n1>p
zsXJ2gJ9gfdh7O(m%@xj%_`~eGUh;nV`>mU=-`<>ma+lx5Z2PN`dEac5jGQ<Wm%Ip^
z$$f2Cgvb=NmZ<h!CEqsuu9>*j>hp>6(q|K^48N_~vrg%xG_2#BvU%P0lx3Um{F$9+
zcV$NGVPA*K1)wPyn~5F211_&UkyCoUbIs+2dUMgo-rv<4PTMv2^c2vb#M))$kI#3%
zDGU65zUa+=;m@JnkN?G8-hKEVQeWV3r^^nRnKyMNo-JQde5Nn^)udfN*<8i0$(FCX
ze%GO>W!d#-FRO|IQW68jCnk$`|6C`2+*YqYP_M80=bqk2xrX1e<II^)^3I(Vr+s95
zU`3kKhU<4%8+V1IXDgrl;mg0%W{23j+7IEo?nT&Mo;G{`m8(z7961!H&nOgbG7J7|
zr(j*(Y^FS2J2J|gOTl~Z-n(~O3_gDQ<~d8?+-o0>-!h<hc2CaVasRB5P(Q<-N%b?8
zs&m(`yM8XS%6H%1zu+q6T+wC4P5)WvuHoFsm714=z6t;|s}7p^H@7rFY@dVesRQjc
z9_TwtP}TrgLe~I5x6gqVE0Dc??(W^P*;WE<0SQn4##`<!a0*fBPnGUb`L@q8PI%uR
z)8(@i+~)4zzhAu~W#03zUw;{I7P~xu(VibObr=dJ-0b3Ja7eKHExf?~v(57Df9Gkv
zo5#w~_w1ii=(C^C-BT}be0ucM>9Uhd4Dt{DDZM}So@w4BRtCOB@hl7qi{hWe&R+X)
zd0AKa872nykAIZ>cjvO?*A;1X?@niISo~6)k)fkz?qALe?9WS?52RMsO%z``_s*|f
z5jJ|<3^fgP6PM2|P3rR#Wbj)EH7|4fayEH8>xeyXm?Iey;-4*MWa!wjpM$~SNTpTC
z%;)o?FMeb+FD(47!|;J|`Pc5*k=OUAYlvy<PqtN>z1wu+Pm$s{8;#Y4EDih?iT1m?
zFGr-j-fSJE9u@R@wwdc$C5D<~oPQq$pROr%3M;#!!*F52<!7;%+!Xh=hwO3q78J>_
zKyw}gGlN3WxzF7{9~Vw_y}5BSgG005j{P&XarFALoUXHYooCKq^5W0uU7vRcZ`#D*
zV14erI3q*G&7Xghl+|~hFq^^35LIyNbNB52=*TIu*4zvxCt4U87$#o+_xFXSWbKLf
zeoK$m><TOUp~G;Y@AABOpWQ8AOE+p%Z`EPAFs1n1>$;yw5KGU^?`LCJkgEQrdwcp7
zIlGl%dwj~?=rCMR_<WIp!R3uRGlRg*w>EQsxJ=y|Q91LCM<m07?DzNL_k3kP%6YSW
z@%l~SCzu%aZU*f@N||4`(LzyMo11~>!QDE;4B1QOYu9(X-dvr^*wAO;&(6?rg75dm
z&o<9L3;bN;oEliRM2Eqkq5Qr6GF_*-MP3_0<}*Z=uV+kPm_MWc+<U*1r<fS_7R=*g
zV3_FtrQ3EMlk)GGIt&-~$v#{BS^a9)`E{XUsqUwk7?>ey*6+O+Xs0+^?DOv6qo-5a
z&oD8>R)7C_G(p0w_VTY?5mWX?i7~u5VfR_jcHR>uuu0a>U+zh2n0t+J9}B|+<9lz#
z^K;!lx=d}C_1u4RR{4!v&t+<!wb#WkEGP#jksJMN3<{s#Ra*Tt)c$x-yD+e9!<yaK
z84Mbd-|OGI)$yq0?P1AiaIorw1Ma8G{)jp2rcPyL*tH>g|Bf=w%-sT8_+V}`p2)!9
zkaGU-i^_SQHQV=qd=CoU`1kkX=hUC~@r-WS6BIv1R_*mQQ-+?z`M<k=%Bn?1mP;}w
z@SMBM$e^&vfB%igo_d?y)8D!?ACUMqr+?pD`@DOJaclPYfP(gd{_~d%3<5uAP1@P=
zM=vl+r*Ge>Q*4p@dl?QeOe<L$A1~f*8F_P-4#S15w<@Ra^DCP8R+XD!%lS$x1_qaD
z?fx_F>S@edp``u0NQ~h{YbOf>gVHxpM)^~|rKo1nsi-x3e8S3@7=CT{*`Hlgc<SrJ
zHLKU;%wc7yO1GC{XgCqSKVnYNS`}?>hMugMho0I);$Z69^Gpn~h2S`y5BB=Zwwkzw
zn>0YFCVBUP=gSv~bWfdrGS24pJ5vUp1!Z<t`wxfwH%v)oY^bvYr6G@8h_~OSGd6rX
z`+c67wq1Q#<dj_dYHhi{g^Uf1kd#*cz2%eU^(`~*Cr+BW_9PQSZ1l2%1*XW3_&K}$
z<wp~-o8LAwIJ}>;oSDHPWoF%cW9@lepFRkhMBcREX83Zh#)N@E@HZ$c>|1szQ1jzM
z&BDO2GTmL(ybR0{a_4s4)6?)faq84QkiQc_{`Sb-A2Dab)Ty<`+zeatJ;T3$E!{X{
zGQ<gx7~d^#d%oCi<pgnU{mD~V8LGZ-UU%PGD|PdSaIw@>_2^3s23`AqcmIrC^y|Bl
z_HP4LhLTsW-}pBei{>*vJ9_H$J5k1lb${>1zX7@Zd<tWO_U&`-_rD3qgUYA3O56+r
z(A=Oo(;Hk2JbJM@XMf~=Ed~bDX<H6QfTH~-<0b}%jkoIUcdefslQRD-6T_Y0+xkol
z1-_>bx8KMU7x7P?D67EDAYlB3fx+QOoe2ZO#Q%Qzeg4UjpvWnk$jZ>6dpTb^aL&3~
zi)8KFnPLnJCjEWUeaViAVd}qMM<12ss)F*tfvLK|H>{TAN5zYGZ?a8eWRNRDiuuT{
zKZ4s&Eqc=#$#BEF|Mh~YA31Kn&#aU32A2fwn;Aaz-F|fGz157me{WWl*;&1R@!G!a
zP5LH=4b$bWJ9a-S1V`GEZSikDip*G@%9x;UyRKR6?Bg@vzy0p^X9y8X^*_UOAg(Hg
z{rSzC`oBNhvN9-qicg;Bud?*$p2gF1wN`&+e^C2(UGwCn9}G^5oD*IOaj0$z;{#dU
zHL1H(ZeG8?$6NXG`%Ua1)2|&|4N17EzwW-#_uF7!!{@N=uMR^<R+;W*zImrn(n>~^
z%^EpzunVj&9bQ)*!!B!3KH=%ZoQrRp9=S})365l_h~NKu!PO5I;9Pa(TldjUm7B{D
zzI*om{rj)~a=HIko!=M9upsX5=k95@ydf@lTldB0{LjaWDmQ-GB)pm7K=zvbIe*H-
zE#<=2>(854dRc@a?!%#9*=P4Q?f>0<l=GXHZ5m_4^@xJ?$H2M!->;)?%kIy$V`k{x
z{2=b^x4`{7zwp0&a`e<`zcWk>>o@+}lxV`j&~W1Vl|M6YpL@;LaK0eU+|~Qn<qiAv
z#EQ>?%(B`2uZVT)=Zk)47#m)1_%{g>u}>d<X5Y@;rGDLHHY-D1@?X_-J1K^Sj=vcU
z3`+m!Zjtmqw;pCmW!c}YKjIp}Qs5AH0jkGGBvDiQ&-vWvn(B{#|L$EW(w)8Zbxsr`
z!;2F$zl&d<rd<K5yxwSVGhA5w`TJsX*{i|4Vf~Q|4g2QY2d#eJWc>T+ZROh8?7zE?
z8g61>u$@(E$-uw@u7E5b+RP2DQ}M0w@Qul_2bm!JPXAuj%68+UM^FDc%fwJ}3Y@ov
ze;r-^Exmj43FdT0hN$9Oe~)hI2Ibl06h;QCr#7+-3`)<>?0%xGF!gBSCI*JR77za=
zot<bhn{D-`8%5V@V;B|$KR@rjzxbCA*kLtytLDCc|9;QQlilC*mh7Fgw~xPO{@p_?
z3S0GTFR#n~{>*6gdC@<hBJ7Lg&0jhUOUh#UCGLIudGt&9#08*wP<`{i_pAyZW`6BZ
z%rs(P=&126PpkNx^f8eYltCu^I#YGz!?Z8U6Ki92o~7JA&*YHx{cDHz3S0l>$0uj6
zo5tEO<!i^@IraaP7z$XTkG)B){BgKs_X3Mj{o5g83{3J7{Ss4uf|4XS-Tf)QlxAbO
zA5?t)Ex5Kei6Q9atAaaKDPMOsrT+S>tncS!JEwh8u01!y%DdN<+Yq%|%PN)Ibz%%b
z*6ZAP@@F2h|N6!E_3Na-ZLK;COYC;a85%(9-<$pOo?F(xGp(Psb(2PQk{Ck}$N~4h
zowuGpM;~OXtUkAc`=|Z4yN{kaEtl3@e&b5ix3q0rSqt|S7X;OQe3-iR^TnU}ic=kL
zKHSV;^4eNZL|cD%_?;Jpy3z@<HeX(sg3Hufb%md^j|7(|r5-=W<gn`a)|`gY4;R*#
z`<XAly!x|OZ6K&wx1=iOv|AMWXLqgg|8b_@&!{ml`2Jkq+M~YklV0ezpve7E3>!A?
z6u<f}YFqv`&Gx#zr<awyPhJjf#VK5U9A$RKs^ZJ_-FJ3BTA4rL&C*Q_6J8bSO4rHW
z`Cbi4D5t;d4v(F)rf!F`e)T~e29S+xaqRs+;v|z87!;B~b>xZbAyV7>*f%_0^yWq+
zgU8n$)Ar8H&2`*UJE^^H{j~PaM%%f&g3UIGpNIHk2FM@R!3p(N-A0R4Wo>Q-Y1?(F
z%xjw4>-KtA9sRW{qQ`#58`n*jP0sHBbZS|}ds}9M9=YqA%r}31{a{&;&c6A!zh2K>
zwsL2>86!i+sWN-3{18xRr=&7UM3ldt_$K@2{Qq~Px8G~g?%uR1xJX;NA@J_MTlqD%
zlWOgMm)9G<H(8#wX%l}iL(i&@Up>D4UGuqwfuZBi*KS+C4X3xw*(%RlAlSR!ebf8&
z?Vm5cZ02y>_{k_Tl7Y=E{l7)rV~_=rki;-+(sHTKe#W|D?(wOq&1>$vF|1qg_p8UZ
zvu`HF?FALCn>Lw7GO%5{Sf%p2Xj_?G)#rQjU$Ld6GVbV;yRLlmM-|wZNIAR2vfT?T
zrs{%PXAK{}?2tQoEyY)bfk9v+xFtSsmHO)INl#NZZ4zd1-u-v${nH@x$|Ajwdd_VB
zY;^t1wLOQg**$+?Z2#pklffRj>y9^<Z~C@4-q1na<iK<WhMHrb=G&B&D%#u!QcE|=
zo!mD$_EGu7eVMhfI;T!uOJ|hu?|(fpC-oY*I;s1%_<7~I`MGE03s>u$I>l5V`xX=y
zY3AZjCtp1Za)$W%UDdn>d-Sd;-!$L6_4CEb<&lz8rm{W=s*34PdHi}VsP(mETl}3I
z9lNdPHMF@8l!Cl;?D~0l`)(@h1FKu{{VDg)Sowo`67{+%cAAsLKI?^sZByeuu)^&7
zBB}WPl=yRcvoE>*S_bOuXh+XyO|Y?D=e}v`&8PQ7{dK=>+QbkOCjNTj8*4~(L@v9(
z_tm46uZP_)q@+I9VL1Fc$#zn$dN!iciVx1bV<mT>uY1#`_vwrlN9V|#xpQTgLUmqQ
zrG<X+?ggOKxI160;j-ygy%T1Wwt_-`$+mbMzndpcy_?OtK(KcW_om*I>0i3OmTr`&
zH;BBscN4>$6$eWlzkPuuqMYyGz$-fgYFVAKi)MLH@)oS8{$FwaohspVI;T$Un^wAA
z`a#UvwIH+pGtNG{2YgH#`q%`hw+|YdFt)TX1&v*R*oKA%gK38X@-b?LhS1Roa&{=Z
znOj~X>@L=je)r|x=@+b9;+)<yI&rgjylAP~!obMXa>4mM<0JtmUKXZ>-~C?fEjPHE
za3Ddt-1Gil#go%=Jg2=0HN5x!U0r)xdiuOIbLY-9U(X>p`_#b=2bKLc%1W~4o{9Ui
zV)qIDi02NKb9((>e_hCMXMW73o10YlFV)oR3CZS{_vg<#`Y-kxU-Q$vZ|~J-z58H)
zIow9-&#U!+-xbSh^ap?ZQ{$?@a6T=3(i~l%PYQo;Y`@j6^XJK)d@ie3{r6Oa#H>Du
z=P~WhJ~r1jxNhT@-fySb9lVcsK6bg2rC-T=;Puh1GC${epG%o1!%<LNxt}YJ@9mCW
zsbyB{c3)z6Z(cWBdzpupNkX{=L*i_!B|BTxnjar26bpK4d7hCY=H89VHxH?ZZ#vJ#
z7_z#{dg1$X2Qu2fs;#}Q+qwSSir1=7vrJNMzEsF{Jkhp3h<jq-Vb^xf$2wlVl?)Cq
zeudeco2GhmLVBWwz|JiTig&$d=P8RRzqxzeW!>K9`!CBE+Wg)d>ZRBsur^`a<CH?C
zpqU%5Gj`nh=9`tyJ-J3>gNYDF{EX|7Odk80b7gNXuD;5dZgNriO!@H_{)@}oJ}=y<
z>{_TJSNhzR#bNLN+bJ9L$|Sqi1~JN~Ju3+MzjN2RO4bc$FUqF>OuM>SeRq24`jjtD
z=im2R?Op6zD3Ez;9p8n0;eGrkp5-J?5>CCA-EhEj=G;rwuhKr}y?8eH_}4i~jyXnm
z%MMkPb6Ea*)5V~W^`Bw++NepYQ@1hg`Fl}PKmWUyz1&sVbFBIDA$LsuvV-Qd+@3i{
zxAl#Os{8zl|5h^p|Mx3-?#kFHQq>G`b?<w03wHKe9c}(~<;bi)TT27~wrlJM^yhCr
zIzh5OYV-T-|JVG*O^c@5ml`={6|g*bc|gSP<v%_KNAG<lQ*|r4*e;)2+4x}7xoIw8
zL0jV%+U7hzb%bl(#yAf<kF$P^HgBH3RbjlAQUA+*ze!=^XQ_Uz#r&E6OF1(h<Rqpz
zp9)xao$u}SAX%9?_isK@vA%OVmTkw~qm}Ld^1i0szc`mQ|MlG4nMoXqpZM+wt+;$3
zX69v`USrpZonM|t@z31<wd-FrYyOKDTHI|ZE#cp-8NzSxw2qwM)cpPR75V9E;ic0I
zc%4eq)4Z)yN+)p?P288W`u(%qoqyz*=js2v6M1^-6Q8a|e};40O4@2O=JYzwYCAhC
z(?9Rtn|mAI?>)>a^z(eW$fK_do7v^9_PuwRbj^8^isz&|OV0fK^z`&}`*^Fxrvv-t
zZL2CCG#&H2q?&%|tMsH$j>3vligR?k<hFM`K9_la_o~B>_ph69ZQ<PIdswRNe4E%_
zO0vfvHVORB|L0@!a;cqj_6B)wOPTjYE}_~qom*(OjI9~#>-m$WAD`Bn6MM>VmVYMi
z9p9?w?m=%&9~Qb_Kiqu!SlPOn?vk;7s^9MjIP85F{Jb;4aq64c&)sRQNp_#Uyu0h$
z{zmtFdGXP9E%Uc`yU(P&ytR3SfYY4%weks#`}*Z<s}>e*OW<1c;6&a$CzrLe>dxPs
zG-G+dYr%S%uicfl`kOz0+PLmiPzlrZC3k*#G;A;SvWOOHwfNG(;`ID!;WnAD3EOJg
zH?H>I&s-66f1d2qukG{S-fWb8A<0?rBU{`eHKe2UwuwT4S5Q!>_snW`X71pdYuiPh
zC;DHyb+kg4>CbZUvTZV4Y92cUf2hX(5smGxX>X{We{*GNCacYfjOEAPI&VupP;*q|
zqUy;ywkv<<>bf!&NK0_NdigC<_G|kDqq5AKaUm645AV*=ZEf=OvTb^xc5a$dqKGAH
zjDCLmv}`v=cIz$K_Ev2NKc6}`&FP>@FY`msOI4ZD5A2MX79Bg8Ur@<>ZuykGp}!v*
zN?W|tX)j|v{U!9^&n15zPua&3qoKR~`mw?Xk<V3<zfR1w|FAo0(u+wu&a?g7I)C0d
z!3y61##al(zw61~-(2`~k)%EE>KQ-6jQ=fSI(OZx#=CF97w3*wuX8j-d?saa8yKJ5
zv*B#u$F!X6MKwlSqH5S3xFw@DS?AgvSUn5uG)w)4Rogc&oxnJMWBd8LRYC%Swr8Gv
z^jz~_pl;Gq)oP{Cf1(!iMR>R-DbKfSJ>Yh3nv<W+<>z`)btW<sms_r1{-7t})V2lP
zOnXjQHYz`IUv*(s;?_&7o0j=3d&oD7_3&bqDLTiajC;<0m}+BN*0}c5mK1fazKg%M
zx9}GpF@7^`Z49UM?~CqC>?Q~G-^bf++`hUtr8tyr)x#~Xk8k^O?tA3zgO|hQcgf0p
z&0qIpHTT5uv&EGnzb~1tQ1tdLQ+zIvTVno|@wXeJU+|i^=M%Zj=2i)@&dJT*dp5Gs
zP_5?9ITiKGBHvjLu!YB_xfmb3|3RGVP3qCrB}P4ymw#3(xD<Nba^^3YYi<(uh6cNB
zf1liFYjMqB=k?<)YtJtK9RDL<GVG*+Vrbv{lJ^a@$?E5$cjet)XlyRGpHn?DHNs~z
z^N*WPr*>B+)!lh;dwrwx$7hF6{O?*Z=hK%uj;NEDC!JaHa*r`rgSYbMo7<P?Y)`6V
z{O@f&Esm+e^j5{YGZqgPtvl8J*Z!)nX3L2iuP3~d70?#?A@m|6zB9Jt&UD39yEiZG
zn7^&y|NNiIR#&xWxpnZ=Gc9!1T^F%ro#O__dFQyDSHwQ=WO*=gWx~<2|1FFK<xO`@
zjc2YuINLdU8Gl~%TVZ|0mI+dF3>@=h*Iq37UsKDHF<G5Spt9&$S#H3R)5`XpSLf}P
zf7r*X`OrmcPeXa>+Z&FnylmaBPDtEndiTekRSWeCmQDHjYvw=3n$N2Hk`-Gt1UU6$
zkM0XTb-CzJ+5H7CI-kBg^XXgsnY2AD{-2I&t=SOA>#|luvqhkFnGNfMoc%m`OMk7c
z&DyYGPR1kI0BN(^v035^Q#ouj(&lfo?W#8|{9Mc1@P5gn&fK>G5|Z^x=dEu%QTWX4
z0`ENL)2Y>wW?$LGtZLtDiDvx%eDAu%gZ(Sol*N9(Jb$=Y*!xRU_hE)@*I$=~XrIgZ
z+wFhqdg{yE2RC&t7j}ssy#8(S^{ErwvLCeksl2}Qj&IxgT`4kGpT1e(V%fHf^^;Cm
z;MeE_TfLTL{XWCU^u(ulTCRA(;m*Q<pwKsVzXN=h9r|wW|1N5GMbYCOk?Y?&-U@z@
z{>yb{>7=^aj;!d{5&C=AoV7Fl&bNb0IyQc-F7rw=hV0bxlST5s)zS)D=lw4BIKMZG
z;p#a)&h0tpxfd!YM;`d)6WCalcE{~>4D+|>rEj)Nt*n=D;VEsJc4BkNZ_ns=$5pgy
z_NIHy{=*kq;nm(~Iyd{d`OYGbzjuWjq7UcZ+IfzFY1htG_rmNx#WU7T`CFZ4yP#I$
z%JzRhSC%TSZBjZeu=bT^M&(}?yJed1n9FA$)6%UL+!20!$A#PsmKOeLwKh|B=={IY
z+aF`UX0Mdw=W|v2a%;Np^wk@6zx;jO#{TE`9!A|$X$I2{ZvMP1e)TPlX;)tI7A$D!
zN!q3K^`66oKWrOJ=QU@YKcn|F>Fh++<#vn-sZ6)eZt>uKqmdHx>Zh|s!K(F*c9!2A
zA9S(q^=SGyk8@9HipuJ=i>o(I*nGOpq~sdc>9^|xdN}ue%wP2XP~<g+g@<J}KP%<C
zq#$}{YV3b)-r&ag+{xGPy!s=^v5IB6gLXAf#|)|0|B{X~D*ek`XZ$JSJKu~{_4liO
zoo`6(^Lq5mPEz63tzCw?ToylVf=>l4{QBVL|2egi#uvV+?YpYh-}qTRyiUuxW*YPE
zRQ{>6>x>I-{P|^bw92DmSJcYG#t$mpAFH2R`#p4RRd$@E=aOhvo6YeTcJxR$R`;De
zF!QUzhMiloXDa>_S#|yG^3>n&SA3kjaO;)NrVD1hii!_3E1Ji)?4;bUHE(JYx|XUs
zq)W{1;0yBaWSHk?9=Fyb^?BCX_3L`8S=MY%-=ev)+Q4T+GW*3V6@07S$NJe$Se7!`
zE;vk<lRZ+VZgm{{vC|hPoen(9@ATAu?F&IZ#<Myh9(NP@-*|?|vu<ZB_*tENS@XQU
z*$bOfOx8Dl9$dpA{q}aVfRl%F=!ZkCdkpW||9;kf)Oy{qIjSpCIn{4GkmIY$wwxs=
z_+iJKH)rd(=A2IdwyFHLZ{ma>!vBxmUd&+fd$-i`m!~g0S1CBNhr#Hf;8D@)?}|3&
z5ph-4^J<U1>Tft*bVT^fF1C(2e+1V_*orf`Keg`?3w_uVxwbhxer?ystB;O+pObnZ
zlfmh_nd!G|O`BEAnVA^wD;|0GddIQ@=hrQ%ogDY#`1RLE_exElpvu28`aHvf{r!er
z_0tX?(EoNK{<Uo1&OeoLd*!p+BVuQ|IX?XOo$*7qx_|Yy4Z<m#zL@*FPmgw+8vQxK
z{#@RlU%fJh{9bbGO#4bJ^Cz$bd=qr}w#EOp`+<~O>F4L|W4QfPD#?jMaY<J9J%%;K
z6)A5k6TTOO-97O2P{7l-KcY+CEOK96E$)A%XWpad8VR96r;aD+1|1LhusPh~r>7dP
zgKf19%Z<!S4-5h;Oz$)9$xx_1JWZ0}{;l2paS6-A6O~Th$@&&KweIZ>y?m$Ho)=#+
z7Mx#KSvAMC_3(kn-8VT*TaRu$ZL{kx`;FM6cClp~4IJ$5doy`1zq#vfUvPJY#7b!&
zi#1=fqo+)`U7OW!FU9EM_d}xC?rALVhC^}jXIKB%w#bNicJZm)fw<pK&z{{W-e>VG
zU?oG$hU5FLO>q3sJ9oE-$WC#_75le*wOc<cnLm?V!#&nkCBn($cd<ml`rf(oJht=k
zGlYsCHu~;Y&hYJacB@v4fYMXv7ee)>l7+i-|MxT|r*iL0<>%7vWmz;$bmL3C^XHGf
zxqjQ(?#JS-r{`{0mplLeCv!gg?bj)b9=bO0w$+z?&(C9)*;4*u`T2)ilT8(-F1~Q1
z-2LOp>IsTpcGP<OpDx8QJOA{uGmB60SKGgEoALgW9_PLDJB@-qM>`zxsdg1yy+QuL
zf`xU5*B<t5ILybPx1X_Yd%b=e54(M})^QuZ16I>(ub;ojH_cq!{Jiw1)YdZ}PrVGx
z{GnI-WwpBY?&q8LxA-mmqu8+j?bB1iFY+6_dwKrdxfE{B(06U(;=gk)|B9+vQq1O9
zYH77eYP;=*+kMY%gb!RVy}Yojt5AcLW9QcA+b_yyKQXOrdly%C<C{b5(dXIwbRTS5
z-*;qEy6AzAtID$MelOB^@bG#Yf9x|^hW}S5KhOUqzT(^WEgLjsIIh20+h?G5+gl=U
z`?c(qfj3`2pVVyATkRiN{AS~=j13E`N=mLiiR<ll-Mwyku0`JY>btJ{x9;Vx-=gf(
zu_gFW!|!iFRZC`nVEiDTvE}~izcLmV9oFf!GYD*5y?W>M-M=fV?LMnzviNMC%o=iR
zxxp<v-_u>k)wf#x-%;}Zt-<4q$6kN_e@^z&=j*F~X}-VuYoDwABSEzmcl+I1wwru;
zS?qeuH)R#euV?%J?9<=arQdd~I3yUo-!RucJkZzUO+|fK8dt#;IZ4r_Vdf7uFrP6@
zbv_lf^6duJXgyW|@%_Djb9<N1zoKFI&rZPbw4Yah&Hfg~K<?hZPm1MP`A+=)lNz`7
z|J6fg+l-%H+rkib;#Tq=kNd6%SGQCznU%fmVdR6g$<5s-TyIVC{q6Vn^?vnROP9Pl
zq<{a(?-TAbG>pQe|KE@E>K9ra;_&2BgyXM$70jzHZra~9+phCw?*F@1=MGk>s~?G3
z|4rmd@{_BLHDwYHw)~0n<U9I!@+?{QYo#G~*q#R#Tv25(VSl@&d)+412Z!H8=*RY3
z9uTgcGht~g%Yutmf^2L59m?R<iEXeddvV2R=68nODLsAxW$Xt+CB<)Zl_}r<@cGvE
zf1L-vMOJ$7@-eaWbboHqW!ZM)Wyg+ZvJZ~&@88e*;O?jM$&U=KHGcN1Fu8jy>p^FX
z*euuU%y(XYFsy2-$$28V>TAK1GXd7J8+LEC<Ni>SaYyywbpgu@dHuW3pVtaF@Av;_
z(b_tTS8wjD-_jRnJx7#xSEIcP-=xRV^`DkYRb0BfQC*0OQ{njn;aiGjbuM<+r4Mg@
zRXebEp4y&8-Yqw7#xK63`oPos;oX|8c9Mq|Z~c3EYSVGQDy!nZ>^UAK7XRLGD>a5U
z+q)@$?eEU{+n?#Lq1Ue`QvbF^@$Y-X15dv#yCR*Lcd+PZ+9o$OIm_G$m)Fkcn7HWc
zCF!c#4z{*a*Vgt{oMU)5%`-;%u5-ip#rAczjza3i^PQvqzWlne^W3_m#)}NcXU&lD
zx>U7e(g%khg$gOr`)dllxZg87xm9o}x*S^;%$MD}hk5P{&ecz=IlN<-b}(?vOu8Pj
zmCNWtX!iS>>ZV%b4a@mkWS{x4?RHu)XR-!^dHU7v(nWe(zca6U`E|xTQTFxqVi%*2
z)#WZbz?u-5v`J64DD-?rt3=RxmL29hd-i_Kv5(qR7tb{L>6<tH_HU~UDn4&WW91EB
z@lq_K!9Gc3&ZNnq_wDvGJr_3YHE&qmm348eW-WKb%Z8es%zKNB>W{_p%AL$Q`7|u=
zOyOSFtRGwJ)k@baxW6OBhTo=Kk-4)^(ZKfMcJJlA!o6BMq=MEPaFliY{#9^VGP<n!
zjrR5)*|1;2hbPx^{|nb&u5#x$`yrd1*4`|s$^ldTf4q%95cyQ+R;lN1z8xvEvn!Z9
ze{%JzUiC_?NNSJK&U<R*f3xJULZ`T6dU&tg8pRV+C)M{idUM+QPSA5!mRuS*Vd|&v
zjqx(YXN)BNZHq``|8qWWZna3BUCm9-<jwCDzrE67tcY!$$hm*7uFPbA3D!tW5w7>L
zQ?{M^Z8>FI#9}6!&F>qgZ@TivH2u2s+~+|_%I{8lrJ5$T3fFAEZTmwa*{W7#OOy6b
z*(>4qf5^XHYj8nu(Grcz@0M>B&o?b}i4QYo?^B5goT1#a;Y^X&Vg-58gq6*^KGm>@
zK3W;f7pL;<j)v#tQ{q*sU!MImaQ90TNl{UjDF_I^n;5=l>Ncyx%tu2rSl$cISf*6Y
zqIk|rYOR2LkOIHV<;lNoJM5i4uz4);j1Nj<{WE>T*WZ&|WVdVHn0ea8QqARvdEuhs
z*^dO}Cj}khntAdGf8t}I4JqfuJvVI9E{-*8PCj&M&X!|ViqbNr4LW+>YsC*Rdt27~
zZst+D=_tcGbH?Kpy%!XBOtIVNbvAKXj&0iy`#le2?w@IyTsDpCM%Lp^8z*#q?{eM8
zZ7d-4yd+Wg=e$EJf5<FQbBw-O#ZsXho!z(SilD+9_1S&A;RhnBPcBwqjz8dX{7c9e
zQJJpv^Beh}a5op+4R@W9v(}R5rL?`mm%qEq8T0S&t9<+Z|Es6o`^C?{?=iCez_qI4
zx!18Iu8o?Ut7WfTUH(3y-F0#G_VOPmGe1{NFE`ru%;3_wu*9a{&ys@wGTK{)IkDdM
zU_CB-HGFEqjReou2o}B*mZ#=@ayoWR#$#oD{@s1W&)@B>{w{A*^Wyi5i;va)uN=^u
z>~{C(q6+!<ec=aJ?s>HH@UK<EZ2u!JSZrr__b=o^4XbqJS?8O#ip)~`7$#o!by4`w
zt7Z`=#~N+H+s9pV#YE^{iFx*#>Cagi)PF~ca$eCb-PSZeEdS23?Ee!dKhul7s{Zc!
zj|04`T_?YJP^_#S^n3Y%?!JxczxPaJu{1lmu<7g?=IXY~ovy1L9?ZD;K<VW!`AZBg
zdAg}9MbCFJU%&TXp!)tJbDeEm!AC2zSyz|-Uz>fCZ??kKCmatd)_l0rox=BIK>~YS
z+j-d=v3;cuS4@H>6}LQ*EaZJK*YfZqnYHPE#H~g9=b76}z4f<Qd#`xc{}pWszum+p
zH8({woL%46{qBxn%>+Y^9Zj(>SpUl0N?iQ=z+(L~;S=oU{yg-=;PWb*io42xJGk~1
z{yH$tbpJW2|F!$it(6Ybj;&R8crZnW?W<|bX0IhVzZokgu*|!5{yhVu{TE5Iyl0O>
z|G%@Ye5&eGye)w1<3)xvi*4@nKMEeG^8UTx%5jAQ3OsGU)xTDqwUe`LwT-yE-znz(
zU!m1k9Zt-7b5T|NV#Ma;m9N=faf&}o5aOtR`?c2KSW8Ohe?8XcK?45@OXj=sF^H}G
z`sMJM-4UA|xy$bLbyP0t^U2M;c69NB_Y)5s&M-Y8lOej_<nWaT;qFgrS-Eq5ik(wB
z?$xX)_U)ISdOG(K0sVPduR~cj8HzCJsD+5H{NLQ*+~51D=6?L${d=COY`m(^ka)37
zKsPaO&!!sQH>b5)R>;i^Not?=_WIw|YNn^fPtG)xv^G%DmHT|{V(hhm#@61M0#4Rv
z7JW~+zU|Dv_~g@vgE#^c#SeVlb&*xlG^XeKGJ_c_Y@=T=PW<LEciDmh7MUED>0d4X
z$mFjzaaVZoX4lEPS<g)Dl)R#MRra&(d~~B@$}N_H_tJ;2|4ude7~z^y&sG28_AK^)
zWnSt_C+vx2+q!1m8|7xkDZd#law?xLUmJer#%yKhpZe`*ZWnpZ_MLp-ay?&u*a2S-
z#mc2;XD$B|FZH01|8d!K=i=_#iunz~7po-t{}y;|+#Nb${yBr&r&i6JzM4<<UVo<2
zkJSGCvlN3i&eMK3+e(qUR!~4{Z~5of^3nM>rP3mE$~A3F1D2)iVLzVYW4(C60@cM`
z>|tjEg1(y{SbC&tpE={yualPx#D(s^|4A(^#?{tlPtu=;o4e(X$`$1AGnbQ_B%t&;
zyKvv6)@|%MA`eaVBt%5)=LNpW7tCv};NrSguwb7?^3j*M8{@ON6<c=Pdk~sbb-G$}
zu|(!q&e*p1S>YEopDCZaTlMG1#mC}VcbA5^dW+}>+PJz@R8&;BR2+GFzsdJbJ#VSi
z=e5^^kDe@vRutHFdX})Wqa%mm0V)6J`JEFF?20=7FpO#OOism?4_3_4Yy02sjI{RO
zd)MsIW|qj$dM$cs+Z%q~pS5B3k2lOY8<MWCSdhS7`M{~BRO$}1oQcq)2gy68s~@ag
z8pFe%d*jwzhWnv=y;Urp<V7pI`7^)y^{fqyp0%Q7$7~B$Nwck<l9Iq>RBX4;f+6xc
z!^FwK9EwNO`45^qIx-uZ&9AiLI+W|Fu*GQNM@eJ0SKD*9zdEvOO0o1Ev#oRf*a+1H
zUlP$gak_un;>)|g*0KKyclvJlJ$6UV>)m$Q?MJVd^zZg{TvgwqpZn(2j3oQK9g9Pq
z+{(-}%CdKOvcC6KpOUq<sq&P8ci)tZI7Rm_pN?s}ue=psmw71P%yCMSv)H<M3{3la
zCBrS>IauGW(vV&>Kd>%8;c~C6(9}E+_fw~A#pBqHy>|C|_WnI%i>X=h;p<W}CcVfL
zog}k1#No>2%e(pC?Ec`9K2<k7N#Uj4D#x^*>%o4#Okt9d=B7>3+axdevR`@reA~90
zRePA`OjdPjJf4&=b-IAls(n^6501KgzI|HmfQ03)P!F#wJm!TeyIt2^OJ{mmf7Ns&
zPtGTS9nt4^1Xu~WGs^M1FGy|5(F$sJ{^4SIu5)Rkl*JsyxBu5M6)fm=)t~-vM;M<Y
zD|^5z**E`6e;*BJ+2{PU{`C*L2QzaPZZDQ$eejRpvZu@VN+iEaPrq=$V!J!rQjLoL
zA9&2t_3dc!gTU9b_V54dyQVd9wn4=w#s_cLR2cuM<NxBD($3}CwdZ`o_T>Uj6;IF1
zjuSdmY`sTQ@P4jYK+(HshO5)`ZCV7JPTj9M6t=eXXrgeS<C5fr?(pEu8xsOfUh?U`
z<a<|E=vK=-ty?zl)UBc?zfY98V7Sp%OGVb`Ud!gTiOF}aIc!ipy^!U>-MH7&{?`=s
zvmRgc^?v@Y8CSMmZQN}(=gzm5M9%4JW`r56QrW{P`!io~&yV2Oue>fRZYo=}JH$h2
zi4A8t?^m`<P8{pAx79Ui8vNY(aGU;%{jIiVEWgONt-EHvM<h$lN$=(9&Aaa}GL)Zq
zJgX)vYW?)7b<O2otDdDa9XI=6Y{e$WziQgIm#@3mYBi|eR;!D=aA{_Q?vDK02|cS<
z2(3Kuf#Z4EqbLuD`MVz`?pe2(OP;k`amAX%g9$maJaSZ?H!S?RrsHV|Lsi7>lq}Qf
zIikw0nu{Idgs$Db<+8}LSkh0s&fsL@AA!Urp6{7@G_KX0cvPDGKWcN<)2^qd#X`%b
z7}&+X<+$Q@X$9ZDYkp~4ADYkJHBn2a?!4XM=evb_wyorhJn@z1U#L^I3bWghO*8UW
zGF>^wp58B`)EQD)$nava=-aLL!m?U;KhG0Ty1YP}LB>QPt$X1@Uf&b0GZkLP#)wWb
zNI!VthhprTj2edPvI_3ACT`y{_vIwf(AMK&zY=qqRv-Sh%REY+QQ*_Tj2W@6s?%*}
z`kI6tWJoVr^T6X%qD-5nufT_YcW!mgUHwcyU_-#fMMsZWs_e*Fc$;D2YUdAEr@q+|
zW&3}MLiY4n&8-tx`+fI{HocHABlUuX;+(kxP91Rzw#itzD84k-`PR0i;CI%{-g6tw
z97}h12bwcj+_LQzIhYz7=*qD@tLs$eMTwg;?lb<6RBaVFR4~J|xzfx_N8H}IW9N*&
zT=JaD7j8Jpb?@MwZTH#s7X1Eae>Q&e^B9pk8hR}!c-_BTe|AVU`&!T1#8p%8Zf&2i
z{!6YD&*qgEj)`qdJ(4T?<7C?DWe>WZs8+o*a8{1U-2RUJ$dPY%XNGZ1d}X6^Dc+~>
zu+{$wnPEpSiaB*KIbP6xmVDL0;>yzW|BCi^7^N4-ooqi}U*O9b_`%SarEW`1vf`Gl
z;qTvmY4-VCG-<cMp||lBGM{%$?{@hcxu>_{4$Et$){42!rfsVquDUoa?#|}G63LTd
zFE5DXbMZY-sj)9urS5V|+b{htN5r+S-C3?iulzdLohBsy+86jip)75m#h2FLYhTT|
z-$`Z*CAZBKzC4+~t=mgxLjR069}Xn3zOUVI+i&jj@9n8>UDF~r&MW&a{GqyL?Vh%*
zu&?2KN=e6APTpK!fBxLtXj9$ydl(oknHH|PTot~-zVeE}jYFmVXFu%QGS_N8_wL^B
z%Ayb5Or1l$5AuI(Jt4L^VQuN(uiMp<=01+(^`5KS+!VVpXY-3~QcjQVORDxb1-2Y3
zo3n>uPux|#V_R0K@7W}gwxB>IF>F_SU%@=3i%eS;6gEDbA{sO2;{v1Q3nz;?x8z>T
z%2}|TlQ-$J2g9|a9UFMfqNC2{Hg<-USsdIbxo+(fCY^AT9(l`4OdSS~z0I!X$r(6t
zT;$%@8$4s}?_~lOnE?;-FFG!;v*{1FUz8m7XwQW=&9|!$ly3+=vs*-_?RHjiS=VBR
z<l{NZV;9uF*|g}tUhWT}S;wY$tnGOF^XcE~doSOf<|}(?W#G;`;S0OB%IYyjGcB^}
zsG81j&-e7x97mBiozHDUmR(Ev`&Q=vQd^$h(2xhL4F6x*RfWoK{9E~IbHbZIo2w@#
z{hV{v>qF?eN*&d!_gMvY8U;G`iN?%1oN!3;zxIQhU*vyn$&R>Y#}=lWIHl0@TsuR{
z6H%unYs~*8XfQBt)X`lnvHNL6e)3MvqSJ~y{!EDxW8AQQqfo(*#i`s+E-ZU&^d#j>
zb57vj2?=)XAKh4I<{#+I@BdLdcj3>T;J`NJmvbD~ifm8V;{NT@*Zp!PKfj-C&n=LS
z%zJxqmhcI?pSlNJ#bYjMojByBp|<PydqY0Qi>D7<JQFnKH%qYjw2Aq*K7TM+E|4_o
z-n&;PXW1R~c3EiXm1Zb>PSr>KI=7pOTf*;2tNzz2WbOHS(NAQO5ck4Q1rO>J7bj`H
zRZo4r<(**;U(0l(;_Rd!JkO+Rd<sS4L<F2V#2L2Nzh7e-GM~{v<Cz|>ASaJVq|7$;
zh$!|4_kM8|T#R#L;POi~l3_Tof6>X;pC4q+`LMrpIg?J`&nH`j?`7OQX?Cz>M$DPa
zIEMDG^MmgB{%BFzt9D@PTh_g5D-@EZ6xDnaG-7JVynZ(GOYORYGCz0ga<(U%)f6ju
zn4hqgEDbji3An!I;*ZnkYTJA7GA<Wd({qz&on2ta9>zI(&vFb!QkL^O)NkbZXB@k*
z#KL6K-e`aO!^tm&FGPPo&l9*ObE$m&y!3~Q7OJV(JnVlE@FV`v(^4M0%U1-ptq3=*
zwsg|4VACw^TO|5=+nbQ^?<(7wL)|a(I-Skk&(=8q&$hC&iWXM4UTrUMvEQ_fnZ0E5
zIhGy4cMGN*wLH0Po?F|tXg%+(*0=P3WgOq)m-==?P<R1DUUS@Q`5Vc%Y6Gn9Uq9<Q
zGvGzeJGo5$oQd&s|Fg?n*8gwwuE}m?T;Jh_Do-&*mr&7FUW;CLscu&5k-4xpcC*z-
zwO~W%ZDrm0LdScKsCrt4i~jWsy!$IXMmjahJ4?he&p_YB*I%_o;9Z=P%;py-r#>z{
z)8uD&>6cW?$}E2IFS|Hjo^C(zTQP3s`;!mjS4t-`Xbat)p?o5w{6W5Y(w`m7ZW@do
zlZE6CA8uGYJN&Ov>6HuB2a@-ie#nf-P285nsQ78N`qgU!%jyGn#~PKSefg;<v12o{
z-|Yp3r!Ow_eRw142vheLWuMZjThG_6O*U~lb-U!qs_t8Fdi8&49MAA<3rcVN{j0>z
z?(w0<+@CE1PE)uWlevGHpU6#Hq1*U5j7@QC<5o7dJ&PA?J-Ae+K8wLg$Nfgv!Ntd>
zbTcR}ua^(db}rdC+id0TS68ka^St!#?&1^EwXYu7`|aE`mxEe+>bqFZ$~0eff4JA-
zg@(RjOUB~r$Mrild|Upl@UK$vy|$a1_%~~^HEw1<c8(|Fp~baz!Nn!_Kb#A2J)~UA
zv~QbdMaxUgosvE~IW>34@xEi&-lO|-Ntu4bY}HnQMb}@?XgATy>-hC)qQIv7lF~@`
zTLR52muw%LYN=|o7Fc=rUg5{rF?Uw`UtIl5-%oP?&&F@_-*5HSdAZ4ZSKckJtIi)h
zEZ3A(7Oi0p34WZ>cKKZR>&MSMZf1R*xA*hDYfo(79lTWV_ObM?sAGlKjw*Q7C^IPe
z|H(1=m@>b<I+ORa^V!`mFNH_#ytnrKvR=dK%cADH@+aPH+G)Jp_n+vwI-a(7m-43b
zEMJh&@%w<ogC&~$%dYSzG$l5cpVa@)vadTfFl*~CNrmihEz1ld|L6D5mw$CtWc63C
zE}zTJjPLr-roVc(MfTcjpIQ1o>+-%Vd!MnPB1dul4!<RWGUeNNxWrc02v+=F>&beX
z%i_K4YM)t5JpIw(T0h=ORV4Zr6}{Hr(&u5~dh+ti?r$F3wg@;?Op%lqu?^!Z?-s34
zh<+a{c<bcX`+0?rn3h*c)IR>$pQt75w2RLu{a4t8$voaB2jrLanp-&+EVNj9sUo50
zr1U>i!?UV$at%)IP;vj=9k8|LylVO(hC|Pvz26eQIyWZNyy}3+pMNdaY@faDnx=Ms
z(w<XO)`zThoBONx_2~(^w^Uzbmb%!m9#<~?$i8k?p{Cv+#(jpRi97}eub2d|#hv{A
zM66Fmr%bEO-tm2+*w<(|#g-GsQPxLu&+4=Yyo-Nj<1=4p#q1grCe1kEr;FCz<6`Y+
zIOu%VruUwB!p@i8ha0Pw>E$%Me>%zUNxe{cR?JfAr1ERL`U~_Yuln~(uHvG@k{8wd
z4X-C_*T`f$X3ykUt$kv9MEHb>rw`bt-EW+K=h*d_1zSx&EM56&l2lx@^qjLgax=N7
ze-(VxU9Ofh<#y&3^RU`*?QLJ@`7ghIfUUkETX~J`ntv51<QP}v|FhkdC}fo2sTR{I
zt$C^;|NgA=<&}40wk_QH!C6TqYv=Q(e1!u?OM)AA7sl>0nh`ni*^Sk6pYW-i*D&G!
z!Zr79*V2967lpUY+JEcloIYoc`5eVJ+qza(&So$!G=F;`Lws>^J$KHgrK;N(PF!(q
zmj{bfdw<FHSx@bCgD-h=Y+N5YW3hGkhL-EicNV=7Ee`L#BX~Rc++?mbXa2nVyZih5
zdwc7@|BGG7n^ehvxqR&_onwAxwI^j-Z*5t*f|Hw@n^*gx?v?jUOicGo{k2=Fj>P0-
zEw8v6+n@9Lr}E*=PqrW25Poz1PBG@hy*Imq82%Z)fAUn~^4&ABts#57^P4$TkHwkg
zeDi<1Z;|Srg1sHLJR4pe++ZEKZf5Lsk@Xj5ls~%9d-2_=OWcngmz~Uiw=UJ-?x}Z6
zH%%^?r*3}!e#HxMiIqRy-yga7fPH!DOy64}{9#7(c1j)A{i)YyY;awd)!Nobbk&Uw
zvF|4a*T?QZyhpI&pU0KZH7|Ex`ttjhVp*DtW9-C53f?x0MHjn;EBi8NZQgt-<wxZI
z_Y0>Pvq>4Ty^DCb-`dw&{hzr-|J1iy5v?anEV=xis{gopW~p0N^Wx{W8!y|<IR02C
z=Y626-1@a$4X+aR%Y>P&O3;04P|vXVfs7H0VB#-NeF28YU*u~JRiu5Lw<|(|p}+j>
zo3NXA1h<xmq-kcVy>(E29jvTn(P7fRpl>C&rvBk=FKUA_D?$&1m`*O??GBtAV>VZK
zh3K8B_8pB)0-*_wn^OY}(nRN&iq3KU#r<wc_rDjFay4tWyPv)EVfRw?(!yzJvsXPR
z<v;WEQmBWBYvNRp`bEYpq9&z@94yj#M>gGQu)gVY)uemM?u!!+r@e7!lRjb?I$>&#
z7;lw`On>D4X;rIkJUd|d?(kKgZDj_mvu10YlVA|d$@M;{Rr6p4$hZS*@=q^c&%226
z#g8YdbGBYh&9*-BO+eVG!}8RsV|6Xb*E0MLa-M0tT{yL2XIm^wnPjT}M6JIy!a3)|
zf6j0a=05B+u|;cn$~VQcE~fo+bz7Wxd=(evtl9MCzT72-JDr`pS~jo$FXEkhI8Iu2
zq4sRP-<vf3Rxq+wet7YltM-N=Yq-Mm?87$GoH!m{eiok_Fl+PuqbtN+Up}|e?p=88
z^`}+=rzQVgnYkZNyWTS0)9TWS)k<4;u)3Vxel#lj;JO|1EsNQ_YQF!f&nkWY{h0J~
zKS@@XH*ZpBHwAL6eC++8D(1KD_RSZJ8JV<?IQJ$q{6Es$zT|<)Eru2I=iV~-z1wVR
zamb9trn~Ab*9X1n4LKNax$98H3)U7M^Fp!fg6q^QQkOMZYQ15zxLA7cQfF;+O5rvW
zuBa%X_64H6zM6vjo7?B7ZTMP|-IO@bp81m9M)yzWp7@>gWhj64N~xkY;Ei)^%dGq7
z|9}6p`h}v{&ZToD)uXrnXRy0-YkSV0?Y&)*s~JvyV5#c~es%9Kf0=4bM(d6pQ(yh<
zXRFxtHTBE-Ougb&O~D`ZB9?!Cp=!PD`?-vLehUQ-OX@#3rL$VB#`NlnB=@Q{#he_Q
zuI-9fj0?K@w{W`I;<K;00~x}rr|xE#7Ck&`iTh2?)BJZhdnGeW*X+ucu`vrMUz%z5
zoa=zvWVKi>v&pOP{we<TXM27<KWm6|mRFL%tm~0;b!R&<dH!4;m7ktJca=qcL5Uvs
z`&+{PE{p{Ww>_OLvPQ}G{?`7l@AriNuZv&nYO!b53~!FWXxEg-74O3fe7j;86$);b
zr>^0Wd0=P2@j}_<RF!aFM)BrFmiK)*trXa|%Dr^E@%8>Lkx4BXf{e3kTLhH)?R|>3
zRd8`WS*^fv-+0lat<!o$&oi&z9rFLD%aV7EJ2wCD=B~D9ef@FXLPjS(|GY(;FJua{
zzP4=@IP_fSP3Sq#NosN24YO6(tec<LC>1d)Q2yAJ^3>}oQ*{rn>ohpEMpO65MnUn#
zUsz?Y?daaWYh{bTrAJ<ezGrW>tq$KHK0jxL&XM?9`y*34jxl-$i|B{0YUyX|70Y@e
z@Tls(@S=W!NB1@^cAsw%cCTOZ`$Iv2k9!Z+g!=QI-a7xc(~ISPLOzOxCe_>z_wr6X
z9B;GJ-bXs__GXveo&WD$O}Fk+ENNLTU}<va{7adc_F<o7S=ULmRespVy+3pNZq>uQ
zO}{l&RBh_m<RsV@e4oQ8V6yw`i>=|xk9+hPwmlVg>TvA(xOb1o-6jX)!y5Ll`U_&L
zPt>f_GPIwhVcEwpo453PrQea6JI?9KU$ZD*W%BY;`k6VV)#vV1mR?-x=j6GZ<896w
zOOZ0~*@nT#wq#tE%W`nOa$4L`ESNdv=i03T{kvt1b+ii(yT`tpCE(Pt^M2>+sfUF1
zwl-~E@wwb=p_JuxpTk}DUu$2yme!fI=A6o+w)fJPjz)7V+*SMc*Votkq$YoV_F440
zPx}V1XIt);y?Q5II)|0v!^3k6uU=-`x^mX>6K8JeR{zwm>i=JRJUd}$p^{9d`k5>L
zHXF7a_jO(R;M0!Yu)~{Q9V$*}cxPBqD_9W{$uY6?#gT8Sx^C6doQq{uGJ>3>@~fui
zwj6tZXq&2i*?YURi_eVxLoXg(AALM)jj7G$U%S&kHgErDy?a^r?Zr*rn<Z{ccQx6Q
z_=P2B>#IB7t7_OMtu&pwRCMw0Lv>Ca2O1h0wlgw1dgM(~+36Y7_Ce#l%+8{xo2Hx!
z*_!&m`|+eJ=AS#Z&2ABJy0xm<zw6HCy6S>OOTr6u{6BGg%yRuG=F~CO*!ao$c!m1L
z7{|%aA|{5f2{_)@+G-Jg^PQ5K>7M_LNzXs!ZTT*G=V!LZ*(*x9AAiNV{oVBQjq%ol
zTekh(UbuJG)YD?u3)0+5l$P$hwTq!;OGj|v!P3lM4&S}!_sQwq3!AeeO}fNwwWw#q
z_vh|@x0(g6YL>mc@<OmQ`RReITQPF)EVZ}3y1zg4>78YZF1^wab=`5zd{=>nz*dFV
z>7U~hG_~h8aX-5DVZKJiy_0i(E{vZ3Y~$O?pz>RbnJ&ou3gdJToSh@Cu*7rDqhvSj
zqN_XO!c@)*I(ZylR4m!UU?wK!<gwqWrPNQDYn}79_ieN8Ykz6I9m^B9ZQj{yS#vMy
z)z4q!vucgXf7^;|rOx{X4g9a!{w^yOYTh2a_UGr)#_C-;Z(a4@{q^BcJdzTy^~$uJ
z^;dlh8-GejFg>{KUhSh5`unLVLw}v$yyGd;CTi)`u>1S`+K@I!kk97ryLZ7W?{CUx
zSoQVlBkR)BFXYX4G^eu^R8=r4x-@Gqu=`@KYT-C(`I>K6f7cXv1?EgD6aHT2$$NCK
zs@_ibdn`LL_3mWfdn)zd=q$OPEh~0d2|dVhKb=`P?LeDF>*_80PqZ4|{u;eExp_*e
z>!o9FP2aG8*w5i`<CmD%p(Q((yxQW=EU@j8!qtZIzDcIh-+t_y8#gz^%Un-R@AVAh
z<1OI={`2OZl4>eGs;g)AY*SrxdEGPHxAuNlr+>b!VKIw0VCSQ>xA`mYT{q4BQ?6ot
z=amjW+k=SnB~Ba@D^I+a=8vtElJ$976<d2Y%G&P5sXX0R7P1K|ex}{kpRqUQNBidk
zo6qGrX&HYMbLd!e-{auHFKvNNQ{q-X`y-Ibp3wDZ`xfIX6>m9fTc18WlI9#&o4Wp0
zGQVWp|Fb!pBflLE{p|Jc&wbttuQk1OT9$vR5odiKAi&3^=#nO!EzYXwvNGJ^!KGP~
z1e_|$ZI(*g3F@ztzy0a?n!ws!b6A~@|2lGK;-Y&`CRfeY+I*08m3{My^J|0?b$a}-
zlm`@8+?!waD#Ff6Yw;8B9WyQZxSTpR<v++`e;cpyeMvaO`?T;=leOIHUwm6@|6#+_
ziEf6zlO?sq&d#}T{LIdoCO)kCuOrl(ekWh4e7t_y11XQnS-nx!vDJ$n?=DX3U-hy@
zpx%Kwo%`9Y5S|9(m#qR$tF}6_7Hkclvt#4S=PMhgUOOJ(vtQC;&fQbDd=uJF+zR7-
z@#fc#`p>5~mKU0dod144o<Df5?wr#>rUHITM4gtrsugwEx^LOZjUkpi8>&15-Z2^+
zeRV@=_QNNpN$TOD1&+sFv4=gGYO36>Z!eo-aP6FBv_<$*Hv<`8U6+NH?-}F#3^rHl
z)-g-p3*|kmxM1d0rzaQQfBd)Uml&)1My85g#kb6tmK;wEdgs<$|NFge!=&FAc}krh
zIB0EOwwuA?XYbC*NBk58a%%VVl^zgyy)=Vqft`5Y`mf(LEZRR_u*+LHWvk!**8e7@
zdn`N~-4ZugyMEox@UVW?*|7PK${%C}zP`Oyj3H-()wa}GZ>NiGIit|mB=q9M)t6k&
zb9J3BEy}dW`J5-uXCpQ7X3kcn>5Zw^Za#Q@Vx#Pj+ir!+oTR1m0}D*HCd}KM>JhZ1
zr^Po;xiMH*hvj#!2+P9Q-0WQ+V-u$Kelpo!a%AlTsV8l@=cXxYUNqzS_brl1XY+$r
z%_FQkGG{Y8-}7y#nz!@>>oSk;jRr^gj~y-Seh`?d%CLKD&Elr3FUy&db>y3K+qKNL
z&UwxIA)d*p`E29KZTFWx2zbZv-t4RPk|*;wvzh*x`CG}QtY`Tn28qnz)251hy0_Xp
zEweYjdinZU*^|~sXWTw2xy-t>a?6&zKiBSQ665@M`;lzrk>A(cAFYi1vCbmq{Iq4Z
z@1Kh<zPBPIknR7}OH2Ky>&5Q+@-isqc72#=@b)|Vf3{d${k-hk<@tAyeuy-y<z;Q3
zyg%{quU$TN)4$38@b65_=6q((!E*mc@oz8w&Mmp!SM~c?`ve=K*+j1T#?L*(aG_mE
zZ`s4v?KjgzV_3g;*~|1?_%}me$|_o7dYZ>}4U6>Nr4NOE99p()@B2u(v;&h<O<O+9
z;h!VN`uj_{T;r^5b%LzRCv3Xd<IUi+eTB96J&(u7IXC{z&aP39&K29wvt{K+ov*bv
zHa0fA|J0dEGqTKbCPZ>5njCF1yCU@HyQA#%PDA_b_ou&@xO&Vh-&QBenm%!9-T7Zm
zbN>EXxS6#uvZ3`_X3Ax^Licm??w*omcG_RXCb+jHg0)J2i=mg>43)Oq8$3APJjgMO
z5i@aKbCp@HxyI<*oHEf56|O8c>$O_Gv;@rkxn#TiD<-3|B@Y<1?y>*da?(gcQZQ|=
z>E-?l?i?R~mjBe<Y4?5it#hlct@_RMe+_eAs<@L#!{1%ncM}(1b<*6yk$IhgU1aH0
z&sCA}TZP^TFPbhjFWn$|rSYAu%Qha%a`?*=@j$ahz&4@hTUUv!&yncRf>NvchTbk)
z52eCtj@CLh?`@q|l@;#HQhnhvcbegv?r)#9e(avsF5pzdr=Bt~{NTY5?nZl&<OwcD
zLS;<SO$(;Jl=}IHagC?Xw91R~E^m)-n|t~9%^b#x&6|!dIB71D{&I=eVviZ`aug?7
zMJoSf;J4Y`^#6jD+OeQp*$g6{4!4i;9ZQkevtGw~lEzyTgF`o+R7$Tk%KJ>%mc@Sf
z*G7B4d0$V<XPd2CsnH^EsFwXs<h%>QPkUsqXD@blsa0KmhO2K0|Aospom2|54y%gJ
zne|0y8t?IXCl1AD4h|0mFPJTSTWv0NW#z-=Ub9xKoXH5#_S@0vw2SqY!i&20uz7sl
zlBthd1r~|BTosK?>`q!bH)mp+bBoYK!$2OkroW6FKUcf%ycTb=qFipqJGGV-(yV)1
zR&cR=2`&peDY{+sgX2m0xe`HgEDsi%{hs~*(82n9Y-br1TQp=CidzL1)e96HY%8{C
z?dR%W`@u|+%YfB3Xl?04hJVi&DW7huow+NZ*X-~61AcFLrX`ymP*L|@^+2bl?|@J`
z_rxnFzcuSOyn6DHqk;eY7td+yT&*qq83K$9)WTO;U%h4h*L{&_LH@4T<U`>)^WPP9
z#xiW4tGTerI8!uN_j!d@?v)QIr*}Nt8FPYdX_!;~pOjDDe_wFzsLXhKXJV}M>qXDg
zBiAsU3z_ci(yHPvpFVe{=Y09T%GbMl1igCsIrm?Gz4~Ty_0|=0uHWFgo$jLW;fZwW
z&KW&FIcHffjPB3ZWBws~b?GsK=@NGjhHxL-CarRQirDA99`Uv;P43#2k0zORAK+Z|
zN9jA`yDwkF@>&_T?KqYhG*w~4jISE8_x4nNes=ch<CjmLuKe3C@Tybz?3HO=raxCL
z5}1{0zjsUX1}@L`9H%`+HS1%!xC+yLnQaxA_4|Brr&hXgd2Q8?t&g7?Je#~X^9W<H
z_}*jh_J~P@A7+d(inPyteSbdF27AUtKT$iqf6ViLWS=~nA+apHlBL+WB93L<napX&
zJ}#2DAlNtStHS?V1qrULd%o8{ljds3j|om#`K9CVtv$<Qa$h;El4VsdobI6h<(4Sh
zi+`FcKb|-8`~HQ^Dpc_Lsi0L~&NsBPhx@#_xgsLVlSA>;AMOu3(%)1hT%0WNu$oPL
z+u|Kuo^1}V?>tRi*68@})ZPM3uB(T*r5=c@b11j0u-doJeO{%aRky}ukK+dvWD{1_
zGtB#D>L;IJ(0MohMo8zHMG7qfhuq&Uei-2;vE#$@Dn^6Aj-I^<y}~Vmhn~ys>10tl
z<MyQNeZg^sQooP;O%Hr#bnDJtA9hM*Swffp9AVj&+&W$V0yKHnRdFhAI_Rg)q3mM%
z_5nxiht8Q?^X|T9`m^M3NJ=kTh2;$o+xcJB?Nfz<4Lnm1AHQ2ThlN@AYgwS<(-wh4
z);v|#j#7p!>uM@&HM?h?w)<brQ}B!1lS8p+Z3y!}=iauUouYyuOWU4Z)X#9A#QTRQ
zG{16F=Kp%73->=h>i8OPZH<<}R|ES7=dY!vdd&H5ON>@Ly!cF_p(@!JWT&Hl?j66M
zniqD@{VB}Ue|*{8FH0pYRN22NJDrhn+ie~r$g;s$ZA~Ue;$j|u85=fxwhHsZcZz})
zcN!nd>DYWEAnQ@+gRf6wo@s4qOJ6og$a8bUw@=(DGi3^ngzOBdJIBp%_Sh%3rT>0N
zg=tkuJqX($;^cVHguBPg<CDT)k=lyg>t?-dow0>GZN{z*LJ?})9X?*<T6R?Tto^fT
z-+12l3%Nbr_v3g?fwTzMo2)fAn6zi4+n$*F>_D~Yft7~Yiy6*+JCnXD=wQL3U9&1o
z{;LTx&KEjml93yuH1+RC6NZV=w~m>8+3V+XZRsBN#@$|P7+Jk5VpwNRx0?B%`E1J^
zr;eD(TLRPN*1ixikH1y%Am@$@U!=ZcKyIaK*L39xmmef|rFoY;k30S=r6>Bg&z8%Z
zub2u%tXLx|s$;}mX<Wb=_{FZ})nnh^C707wQ~c&s-IHdxcJ!jelHdG?a!wb_jIeR4
z$oWuMz2Y2G;grnMV~KyeHD8N8SSiG;vvWe~vqpROEgDG|GY^Z*Rn$6o?x5O{7bdR{
zuzy%B608y`TdpDV$47@xI*$2}+R?D4C3jd?^?l+LwV!{es=1%x;qHIwVaYp~-RdGu
z*FT@WzHzFT!=)6bRU56sPn?jRy{u&2l>G?{54m=W>PN0BnRzKw_g;jd%&${wZCAXt
zk6qofQLo~CYnNKyhZn!4DlVE%YdVrWH`)Je&A-NlZ1X=x-?|hO^lksv`W)T|_is7b
zw)S)M+ttl@{_&h-?5Wq^-v{l|c^O>gW`E`8{Db+MPJTRT#}M~dusr3vS^DdFbzv$7
zT45`H3nlC_eR=t*!fDP9Bc5sDhH|wJ!!LR&ZA;m@I)!Up)0JOl3w~`)_?fSkw?itg
zYDMO|+@IC&Z~o4|daGYho+-|*w&3@xVvBd8_2L^pXxLXo-LI-lvh50*pOEnMx!Q3z
zJ&W{ZTMtDm>U?{m?#p<Ey?R!F?Fqlmc7ddd6p8)T5$}?A7Ck#NHTd)EEa}7I8Y;f4
z&j0Y?*jV``_pST)nxkE!-mPxC7hHT0x@5{x)5n{;w*B;6z9MLGn(5lR&Nu#6m%qQe
z`}O+T3!nZ6`gf%7{WfFg`y|VWm(QQsTG@PbSALQ>-)v1z#YNx#?KKs=n73x(yJ=e<
zxqj~c_SQvFGq^_kK%uu~@6tQ->-YbO(OAG)QBe24Z*P0w{GBC#-z|Q={(k!^x#`;r
z(sPW=<`)_noimXvNxXaHT<EWQhH10>Tg^H5nU?DwmhSk?+vU59-Qk7NZnqpCaR%|T
zQ7bewp2VzT%iFf$(Br$h^^H88oBU4vK3)2EN7cr<2hVGt=j@ji&1SxF;?UdBgv~d*
z|32v9e7K}*^E}2qo1QCv)wq%Fd3oW4Gn${|D(+oQdt2LdW3jAP`M(!Y0ro3wx$5i+
z9?oOmwfCM-u=eFcx8<$~IB`6DcAkCnw!?DQ7j8bOoo6b(pZ(v)*^?BP+GiaNc0Fj5
z+Ym4FB=ezI%db0g^nGpL-a9&r|99z5P4VRQ7av}{cl7i_>&<J;Tb@6Aqh6H5c&}u8
ztY@-lbK>0EsIVUvAME(H8(S`0|A+0|k87W9mNuy0;`eRbm^OXe?FZ?_*O&0+H%u3P
zyRq_99oy2k7uFp*?tCn|;E<tVcJzUi+wTgZ*D#hcWZY-I<de|3^TIM$rNo6dUuwN(
zW4L;3*QWNE*R0V`^MW5LE6<nLDe>^PzxC#e=>wKI`uiEaWS>ktu>aXTPJ71X$@6C&
z4X9qs_2Ah5C%o5R)XA?pacj{bcaNPO$?Z<NH_CP0E^(H8V9kG#x$Q-_mD|CMJj+&l
z?>+RemsL0QU8g=HlltkMF6S8k^##gls-!yYcsQZXuQB&m``HhB1r{-_>Cwv;;Q>wh
zYW-+Ro6~xkZ9U&{M!Pc;{2yw_w##kWy6nTmN36$XFJ06#5Wjy?W&WXJdBv9gE^Wi5
zqJI=$Xd7=&xxx2lV+G6Kmzz8uq}D~NZ1mu*kow+m&{QZ{V+YsGgx$_oQGBYoEAPuL
z<4|nb;kM+UO2iAX4Hs^IvCUh2<-?Jpe>3;&Z#gXbbB|iNMD*kAo39m)u64S!V1{E$
z+-@V;SGR)p>&OT=alDk0nDu8_9P=DwbIGgKtP`DAU0)Nsz0SG#UaV#QVYZu7dQ(mI
z^d^fRb3S?{PO&Y^;Jl(N@8-bc8nzBoJvjnd{UqaGi1NLUnzd8+`bP=#Cc(5<BHT^c
zwNIn2u5D}FczVHXpS9XGJSH2bEOv3@ifQ<Nv*b9>+PH`3clhVrtUmB&N1;QDfK$b}
zKEocF{Ip|P>lnjMn4CG~AY;$8B4yPoC!?j)mddDpx@abFDA&6*oVAQ=qTQ75g*gW<
z<uUlpHr~0yy!cvAroDe0TZvKd(wm$K%X}ZraIJExc#|vlUgU4P6VLnzqtfZz^Wz(K
zr{?ZH`Brn{)1wTNmp{AI;L$NF(X;)bA+tpCx1#bC>w`Z;zttqxWIS84$Cyj6tG(;?
zw{u@2UMOw2mbSS2=Ye&*15RBz>Q&yT{;VwBse|!=^XJ0sx`vnAxKi5G7|yFbHP-lb
z^327ZPDW34wrt4ff7`6EXZl-b%jNnE>OS#bCB^x2PN%<n_m4sUSekKd=qFd@@D*X1
zPl_4N?puE*M^to@t?t8Ff0Nw3Ev5c4-ti3h_EF@oJag=sSiL>s9Cr=sL;9CJee5?S
z==*90L2d0ByUfL9d^$Xqef*KMn(KkXX*u0&k@Kr&#AqIIvdUe4hc|Q8*QkOYybP;_
zUwOyen=bG<xbMn4*OCxs;dsYYn>~38_T=6<zHinYw@a4p_T3kAPu<#d=(vNhW%Aya
zCk)DF=YKI4zoy(MZNI*7;(<!;d6t>aU0+xQ9`9VI+#)dFho7P1PwgAtsA`FM1`B&W
z<``z2xe_0icdPtWRKXdI&EMU^6;Dq5zwpQJ*FRR@JTm`o>Hmt#x3{)3pU>I1|Ex*x
z{nH}5{ysYOPE3t`zRb<d>F48Cc3vnkU3uO6=h<@ARslurXZMYD{?#pevEg1w?c|g-
z-y*->Dc6hJ^(7*?M)CWv2*=uQ|E6mOs~z3rrDztJ(0<0(>z_c)tM84aLQ*!b8uEey
zd{;>%`A$gKuDal5e$}PPQg0YKX60mD*?l17g7)Nc@wfkupPdn@b>scJ)~OezrvCb8
z8158*x6MQK^!z5zng=V+_)crM+j(h)4`af=rA1C#+E++@yr=M&sU_!arq!&1i>`_X
z*1j@SjaDfClT`8L_BXXEk)u2-<hO+1J-*^$;dil8ZPC+n&&77^>?`UB^{ATCu=mrp
z7yG!{R9Ces6>Jaa?a6cEFcgkECcn{n)^b_K^i{L=%t;JV$q;i}t>oVz+9<)6b-TyP
zczdp%X8dc<+vo38F!_i$aRffFPbfe0%Ank0VIP;|x(Qb#w9BQ^&hJ;ynt1TCUqc-8
z`$7i4qxl<DYWKZSb#QniyeVX95SOCMO5+2Q)pi})D)zVFPE|>vuv5qSh82Zddvx~9
z%3`kd*lW*Vyy=-%z@C_^w|Zx7f4jqVUvXY*f1maQ_jBL&{BK=R)|s<p`N3D(pOp=4
zosS+`duoaGG0DCbftC4-cJ10ze^un2vs1&>sNBaHFB0}GT)81Y$jReyqw}#cnap^{
z?1{<Zg`7cG<hYh;@+^OvqklB7BV*o;uuH9<lzttqS&_GJonqv@BW9^HmxeEik&J%A
zu)&){(BEZk8N+53#g+_dw(UK0Z(1GbewXjdv&o_}T|}hhkHY1X6Z@{TD{M)8bbF_Z
z%a{G;4ObOetPXx&&)Xz2Jxs7Ja{BR%>Q(RFFYFU=5@|7ypKW=q=rZ3zPbUt=Rll0|
z2Tsw-RA<mX&zN4G6Se!#^`FLSeLw3G-luu}DrGgEGr|1(uPTmd%BIg(zBqH*Nrrv%
z#@)%vZ<&<JUf$h(r|+=8lIzs}e=A*imm7a?6?NixSjK)MFKy``nXeorY=7U~Z76r^
zKIU)7F#8`{U0C0I(KU`-(@cY60xR^rYYrV|^E$xJ5>cN#Z#IMCF2*a&?_M>vT;Xlm
zUHv8Tz~+3Gre8B<)QT58cX)7V=jZ2t8A6VIWUX3puk^QcGe;R0m)J?=_cOl;<yLGz
zvRV3zaEHjTQt5YJRv7=6TqEYhG4Um@i+=p+Jq#bNTQA-E?Xb_LWnBdxJpK3bTK@`H
zhtDv6Y!@)oG&wB5VA;$yzn-62$Z~peca8Cr3xAE7-)w*TtS7%zu)e-c+wkK$yPd2@
zSeQNcA2PVInDJ7q$<8AW%(J#?y*hkt{o`3y>2}Nu&*n__RQwtAWM$>{zbpoB+ahdV
zCz;5pp5bBR=4qHbNg&Da!v^OsZ2Ffu=SluJ@x*BRD`|fF$PC-_x)tebuLUdK3_ir4
zcWQd?q1*gheO66*YRI@>`hbb_`)_+V<GB?tt!1;2mtAyj^~!~!oxA0i*>3D^ST_6S
zv2NQ&aj$vetlFBNrPiI0u-w3%GiBvU)d0O^R~@(AyT|h961Squ&%X@PKJ5JZyRP?W
ze)73cVqWUVG4UGzyOZK`A|56`XPGnoVw~fyoV81<|D0*fa^je%I8}mkTl$*2Qg2PK
zzc328T(Z_HEspz=&4n4A_4D~}XrF%;tSI?F>|n5^{PaB^yw-7K1}|JEaLGSwp569)
zUzFQy4qkLV{Z>W9DE74W37=&#nQ|GsX6?(|AocFnwEb?1KPUO-=c@?6D^F<f$?a|K
z&D<OIV#-U-8*g}9qNBbpdU8Ix`1o;V#Y0QteSfhFBs^Q!man*C>RTmE6?d(J>o=K2
zNH?8Tf3>;u*nz#u3oQSOol`qdcJi-DkFXQRMESDWt5tOyud5v^csxDg#D&@ayNcA-
zCaA_oadFR5sB4~U6e+uvmxUu+*=5-zPA;xc`6gSJou1O~BDjLy?c~op7HhV@b;81D
zyM4c!w`iqxbA=h)II~RU;gb4=R~MXiY%Kn;E2=5~d;zbX7wZ<ib7E(vU%uZ`TX^hp
zT*rn7Qp#=z9<p>Vn=ogFV*P>3?;lQ!$*t^-3Nv_Ee!ls5<<T^SSLbxRKW8_Z8)%m$
zzKT6iuzCAa9=F_NhoaULFMkWg^`Vu^3oMkfyE%`3Hcf1GQU0JU7=PsctUxujg#M)m
z^q*bpS)J(lC^f``uj1~+@{=#@WG$Xa{rouVP}RfA)2sAv@H;&|<8!J1fa_(>NvjS=
zAJvaKXeH%%;r{*5shW>UZpj{aziny8cIoVeJ0%twr}waDO8z(|YZ|-AVY5N*onP<7
z7tZG~()zQ1uXTU-s+h+N|K>=tMIK?j$i#T|!?ojg1GI7sx85<@u5>oQd-Ii;b!m4C
zI<xgsXXU14Mm=*q@cOEkp{eTh0LPdD=a?Xtn=GQP+al|}_Zu@GE=YTJrmCTG|F`2h
z?=7FtwEJ9iZqM`D`NvIjSQ%ut`<r(&hXgN;yME$lnY>-`({0S68b$RBB%}`N{A{zC
z#JYNi?L4*zZttVk@8_M9^!22~#y{ov*te{9$+_y&X<hqfqw>XBIi8+BGH=fL*nId_
zRki)EKeOfkZutG@@2b?q)tRyz-0sX{n%dNC)@Av<)vfp(!{^-YIfc4;ck9@W-AMLd
zJU4XVu2VG&Ma)C(>bQ4Y4tlb#kD+O&$ZfGj3$Ar<WDwi9JGF<k?bgaoC40;Ydq2yp
zxVzQM_}d=?eWT#-AzxztEp<5iq>TA;**;+pmzNsruHN{Z&TxD7EgAdAR#r@gWjA~m
zS8EjIJ=9yz6_a^$;dkxeMd7*k>J^?%Ug^AR>w}JtDu$YwiytpK{f(C)>}tisa0ZXq
z3%b0iTceAOuO4W1&*_<8s3<43<VK>oe&%LpOMm->wGX7F8*aL<|GVjd>&Mr@wIOV&
z%kHnWvdwB?EBPhLcvMH7Q8{Xvs^%h=owi#wL>neAU#ZXdsHJGHZ9rpm9Mk&QQ+QZj
z*q86;5&3-A=L65(cP0Th4_;bqu&zt{lK126-h<Ka7#O&8{$<^MCe1J_cD;#FO>Lto
zXS3L=E}s{BxRz|4`KOw-k30Xuk9vouqwR??AqpE#PkXEWss5wC-qwu_t%7yN`|9f(
z_Fo8{{hyDQ;Z98Egk6uh5-KG(I;iG_#U>Ob28XFLR?IxHeEP;fzV$kjH&2js>+jw9
zC@z4}b>rhdXSZ)@T9Ypmf9cz^drO&`KRJG0&&1HTZ>hcW;}xOJb7wbn?m8~tDYd9Z
z*5YiQpYb9W#!%ClJM|ti8F%@-EE4~5=-T^PH6PY|zxO}<${yB>+|OUA&iwTM!=`%*
zwK{?m-TP-9ZrfD1QIw(J|M7pJ&*xkWQ!V0UKKJU}jM)qist&a;({D^Y-jm{+D&hRm
z!QHi8%*Ev&C&Rkjc%xmDZzz6f&`DU`JNHcbulrSVSEiWN=loodtHrQm=bxD;o>qTq
z{Ohu>_;a>?!ne6)UGm&EfA328D=E45O%&w5JZY6aLpyW3tBOk{+ljSvg{CHE?PmBB
z%H>=1<+0$^uT5IzUB7<)n8Pw@t>l-0AKNm|m!DgZTF&!MXa3Bs6@SkO*XY!{d}x+l
z+wk_Fwl~9q+_iHH7p~rVxbfy>5tq8D8XFcp-XAlU)pa8C)SsW`yF~N0`$)J=m>%_C
zdfslcmwNv-ypC+k<2(?0_}278Hcs=p=ZNl2@{KukFgTp+6yt+uyA<cyny+L?_<m#J
z;dVYrn+^ZD?`N%QJ{cJ^b)quMj-_k+O?*EDyVTUiurf@KpL|vzVyfn|!!gXqvY-3v
zn#_%fSiV<isngSyOXnG#y<#d?F6weUNdBdd%a%$n!NP;FR^@#YM7L<JzqsyaL4NAe
zpvaYLRCeC+)tkQi<kMQW%X14RXD^oC%E!gU!^Oq(Nw{YBB0<5>ygyFsZ@HYmy3oaC
zRnwJH>(J2kW%iCPA#U?r4%ZtNtvS~3U*Fkru44P*zURL68IGI71eTt&a&Zx<37z(L
z!l^rKF52mrwtdaxGH;zddr^)1K2i4680YsdCNjE+SR{ITeeHT!@gVoF+a^wP#U-1z
zU;JC-Uo&r({uW=?hxaqv%Z~j&<v(A)!^}eR6nkIozGCm@lRNquHG1YPV-%bHOUGY@
ziJ`CK_Y*d$T($;Xeqq5}_9It>zwTZ7eP>tt^@&?ceQX7}VlMs86|M@|&@UO^d8SqO
z{FUrwr+m7i?H*rk^e?SEvHq3brsoq%uLr4j&1O}-KjqW9?*^h9E`7Nwab2JFfJ)%+
zHEZLg8csbuYq5Qz(s9k@*MICUT)5wiOS}L4jv0GvH6QK2b$nm<{bwDI$}~jYah11P
zue_?YHEL<t>Z{LL(jAHx3a;Oxs&wf|T54)~YHIq^m2U-tUL=-Bedar}<x$(YGt%LS
z%O)Cr`q(Y6z~t`IVix(#{DIQ#l~exgPggH+*?)Fd($j^K;$Lhgte+b!IEnYcpW<b=
zUvt{CGX(tm=T`i=SNDVHhKmnZ@2U}-`tqF5v}L^fwmb`x45e?UA9=*b(0aGCqsh3j
zdb8_##lrYCYzuDL9(?yQ{TlPR8S|v~JgfK=U;oZ?M)t>2d2=;(hq67U&iXyxS@W3g
z$O$V|e-J8&I&)Szu3eZR=)RC#(3Z1o59Il7thN2Avz8^{-J)rUCA0ppGN_t2c0bDN
z6r7mkX1SoJ=uFl*i34pqEBr3iStq<*?{tjS^jZ7SiJHp}wAiG)xO2mJD#JP3XA3Hl
z8t%XO?R{QRPR!P}H*v*F$F~L!Q)d43`ebOoblR(9JYl!iH>_*qU<h|jt=laAexvN%
zN{eHxe|NvKyI^<lkDrxoP|4dV>B-gB1`8Nl59qd+CNX9&{CDJV=keqizsa`)=33W3
ze3WWB;rjIq<NH^o7+&?P<yN+`s(R-fVD{kkgX9;Pk&F+To|ZbC+!@(6qbjG!_|^|L
z!Hb(W{^S4i@uT=Y-9LZ+ME$sHTV=6**TkGVM)r$}H}i9)RBhU?!+Up|se32uy#n<`
z?tE+gzJLDw`E&94vu979Jn6UXIB!{-qLR}2nv5+wFGRgvXSw!O)|o5s{>*=!=gHu8
zulU;eT7QL`p6yCXH$@ZNxOm?1O6_eryCCUJvXsE`YMt&N>AIU<-`4)Bd0A!JP_b~U
zd|%@7D-)Gk86B?rOgQ!G&V#Gjr+X8^dwMkP$qVRSw7sZfX>xn_h7Bt=Y}l}(bo~bd
zex>(zHGY4(gTGtpulVLNeNOq7Jx2aYZy&h7+arHcT|ps1Sy1rk6shRi!^wMl1XJ^}
zf4wdFdfB<Xq~GtI!uNF#AMTA37M!XZ_3%ve21UQOsn_M--Cdcyyi7)L;{RPi>(kE8
z%DgPHqTE`aYuUr9EkdHpmK(Evd-3%ScT%_Qjg#NYwEUAf*I(FpT8Kw)`u?Ia0Uzfh
zZ<)nBWnFap(=1CB;?IA3B^Ner_P(=sbbQUM4s{r4O*68d;w9VKD4sm)!bSs6zPrz4
zcOBN&GrvD8(IsP&a-QQp<HA6x2Vb0n+7B9(Z4%mgS<dT>wcG)*ZBCOiHFm8E2s`d4
zb=IG0#__uM2E460oHMjb1=!M<%Ht<lakOm|e>dO3ZEcaOkTh4$1S__-jnnz61KG9N
zD(@ZE-DWW<Q(~4*_@NC)islMLv+uS$9MRZ)hP9wHLslkLf^$yy&xfx)OASog1pB26
zSR8ILrLS`nJL_$&dhgbjgFM0PC)$=W9k{kFh&}0uP2I<{rPI3Stz7?P@i~SAJH?mq
z9ocb=k-z*_Zh%U2;w#>xKX@1{3=ciz+?0Do_(Y1j@iIH9LSBYGo>lD1+?)=N7VP@B
zy&*A6av|e{8_VUs7%np4ZRlCS_f;vP?PBFFnH$NjRwkJ)AEw^Zue)~o*sPB{k8Nc0
znWbM{T<K_6VsF1}{{FHJ>=XA~K44a=_sdFLKzZ$g!;M?2JAz&r=v*p$u^~Oh#pV0|
z51gMBwLCoiEX!^$i~ZH!+S;mQYin!!ch@mJN24CU&zlcytlE)vI{(hLRcHR}>Cvx_
zs^;RnHDT%Y#lMgLH!eT2_)W=?8{Nkp9~5b?T)d(0y7%jRCi87NzxR6Fw%60!u<VnN
z`7^%#m2unR;(za5x7I7+)!Ls9j(68{rcK%7Eg&c;ZuIQ5vM57?a<H!N>Z?h{4b`3V
zdpMq~@Vv3Zzkc@-f1{sw7(W{6X|lf1EafS?^yaJ!FM~#T&!<fZn;9(`lCq|_etsdd
zaf6IR!gB^m@v9N7#X-jt+#8E8F))1JCw}|9&3@Jb?M2_DFE{R~s!~0B#qe*#)u7`E
z@pJ7@GBwD%nDsMm&~|vho2MQS8MNoWW;NUK9ZOoDacf_(-jsfQnxm$kWkCFbl1(2n
zl2+T)iKzVhDPUGOY2#5r1&>z}G73@=%FALGb03&}>|V_$hg&zL85n%8E$o%|e{nR;
z-{{&4ra2R>*xWPXcv7VW-!5uUnOy5`w{k&M&VOTT*W){;y>HMAI{rX_yYc;*?Ob}T
zyH?LM^Hr~rnm^}!x$)!BdftuEw|e|8OW#vv{Jx~`kYLUFpBm2VW@nog>aLxwkyU^1
zU@p7Q@;4qulXsuI`=rRca$d35AEU4Lwph(vb4pK)@&2sbE6fJ5Z~W)y<e%k?U23hy
zep^WKvDA)|1&gmZT6lC<ui!8b7Yv@(U;XHLAnU!hg~s#klq-6!-xO6|{53{N_JwY#
zK;Nb(&Wk2JS+Zntxv$ABgK59s3hzCgw>TwhYuA7Ne%`7H9Ubpfa&DLIPqTiXe=J%~
z|FT0aBa51?i9lWJpO<d6uTJlCD;DZ!nigHna5MRHe-;Bn>i)j`h2MWI_}sA7I#o)l
zm8+8XM_u-Zp0nm##LKpu@d(c=e7bsDZd2sx6FZU^8ng<d6a)oL=S^Z<aAewCBi_zv
zNuwow2RH68Tff%osQ(82yHc7VTHg&6p6#2(`R?!j(@*nb|64AM{IKaZL&2dE$Gl@x
zmpBCTPtT89^>TG#`OnX1@2y<RdoOz?BhTia9GgCz*JEZl70R$7pTpbZP)H<mi??iZ
zu!+=`FzeRGFS38xE^w8aaP!WKG_eO(^-~U(Zz+v^v(bLp!5Mb~((5=T*zavRUt9X{
z>#B|4pQ$&jDf?!{bp3Pp>w5i!?$jBx=CNG!l5G|)j9u){eBh|ZzWG1pnTu|D%ZOaQ
zV0!Jrj4Or~;@6)uFvLhbcbix2-LS`fNnc0i2fYP%o}P;Sc8{N7y8SLbh4sx>E*kL0
z%Utk$B{ApyO_w?qm#wER+1T(T@8oarSeZQG(B*2zH!12y$0UC-YcJ_@l-g^TYPw4D
zIR}H#(!Pa>zwGUGCStpj34D$)=&WNSBU2+I*ulp}W+b0`9OUlArSFoOoS%{!kXV#k
ztN^;t$vHnKzo=NjSV7-8Kc_S|uUNst%u+!=peQvZGr1(cNWsuR!Oo6L-z_tzB(+FE
z-z_JxBo$(ag1$#;W_m`6g0Z=Qg1%2`UV2G}f}x=i^w?v_rA*-SnaRJD>E^UY7GkUc
zCqn=KKYfuu#C_re$7@ftGv6<Nx8{Jv%?S41^YiD=Kkj<|`RB*+Mtq0bzXz?2n0H@%
z^{;4$`fBrU*5;NI^q#K#l(@3}jJ@RgpFe;8)VTKi^Ujc!N2eFwcdqF)-*#MZ!n>f}
zoo^ni+CR@sU9;M&a@qYadSc9i!i{2ILYAD)jIa5bm%3!#{YSR@B4b(8RMnVzWo+VX
zg3P9VQ?8$~Bk0^Uy>EN<ycU0)c%e!DuY>ZWq<LJA`CN~6X)Qa}&#kC0H0PSj0!`12
zE_L-^<cj0H{)okv6@>igarI$|nk;hq>2ue^&t_HaZ|?85dKy>0vBS-W#cF~`_ReYI
zNBg2Bl24f&aaq9cxpCd+Jr$<PyLc9M{J3+@$lt+#QWCd&<;CE-jM>xAPhBL<FR)<w
zr;X7v8d3EdA5{jl=5ucs7H&LurB+ttY<VHCl7T``^-VAC9o<WA_+G5C>Xe>vp~-93
zKb_AkEQ*?C({8z~=+_k49e*KYZDvrO(*i5ck7Cn*PhmZNd*;uhs(+uK*v;Q4rgBvJ
zX}{x^bLVu=RH+4SpYh@wbJXR4qTN=-VLe%|9`Bwbsvv*ssEfJuh51V)T%KB<Q!Sm!
zU4P0?SH|Flz>Ll%5?+T*3qNJ)n;(=*oM?OO3&Z4_)oUsj++F%wsw<4^jGE4-<NgH+
zYLk+D%-8Q+yUIK9hSF@C(8iN9E=z_@v5mT;RNdlg_VX0O<iPu`VygOfCez+r5I$?}
zADUn!mwk}+RJVSV?>)}$n$IDuYL7RH-JieP|H0*Fx}R$7e!mZ7yqHrbXcOAFuyPHr
zV$APH`gbq$uU)&R(3oNJ#|UYUJ9~a?__h7Qng2ik^7^<%$aufl^CM}qWBjV4oZSaf
zY_7F^K7Uue;NA1*=^qbvug|~usC9$F+S3Q7v>X-Woggm%yL{5qeKRLXSLc1pPf0!W
zXu+%}N1tyFHvfKn_nOO0&u^P9y)1pB)L*1ban+RcDIe8+d?IAR(>8GL5H7hPwWw>S
z{oO}F`+V2^*uHu{f4<IPE&J5F%sglL7ha6bi{JC*LG|Cl|I&waJ!+DY=Dm3n`pM#y
zwD&H*es&pQG4%pn{b#oStV;a#zs7u%m7X;tV$q-3b(*I0_TBw0|3_}~Bh|Q9Cy%Z9
z;&^`Hryoc6&fN1>N-BJZ;8n@TyGq_Z+g<wllmy%6?~@*@2Yusz?EO6KX@kHWuF{f)
zfn6`6PTzml|8k1GU;S0pZj-|PB4gcipFa7D)^Q6hpJU#Y@pSHkcLHupKK+{ZZ$f8S
z81Lst$@^ngO*y2L_%U@QzjfEAoQGU$t3qF2iT$(x>jkFDiG?dS$ED4BU8bm?X1{0E
zee>*l9ocoS0<ui)c4kcv$zPOV;<2D=&t@&A=AdZXTP0z4qT6Oxeq8!wYj}S_%?j5%
z7wNh$OMV(Om3c=Wk2k4)nlAge=)T>lx+!gQg(Ihk%hyUvEnO;p|5zE9@uJlMv9I4g
zR_<T_=}5B0#Qgzxul&-L%3Zwv&&TffRyB2sFXvv$NL=uB{`G}Z!?RL2vX;8fcIx=d
zaw1Z4V`kPJn?C8n$w@0!AJn<-G5&sM`rH$D=J$VVE%@E=?ALF`u$cC5&z~QUt?>Cd
zrTg>iUY^%EyWYB~s$IRXI9&10?lh;1=d^2slJ8Btp18+@(|;G|8evKKeeYQwx7Czr
zws1U+*|Puiy*$15|117X)O)+2v}%i~Yz!-(N7v!P$<7*rPG{cE5_4M79@qMpq5rej
z+6Oxx#CljCdStb1=bD9Cd}7Z9cP$T7WcjmC{HuGu%({EK9KV_E@akOpd2@w@_W8K)
z+Oq;$j+U<#fAzmCJTUxR_kUUQKT$hAPZYnbxmwWl)^t^i#EAiaZu|>d?ZhcJN9&7w
zzSqko`~DtgX5MLX=jXSr>Zd%rS{6laoSWfYoS!vSJic%K`}66mulXh<y+7Z3#O?UT
zy2V~yF3LJ)MlL}$nX|>~-?F+-6x5hFQ8t;&I-~RG&#y%bp3F232&#EGMZCUN|DdkX
zwgn-P7p{KYnU^kWs3fg-;mekgpqiI+#pQqR-o_x(^<N>ba*_Gsj{mm1!pmmAzQ9@?
zt$l@M@kQpKRhm;SO;NJ%NOf@&{8=q>aF*xCr|06lvuABl;E~-dab(S+)J+-BnV0i~
z+DwrBq2|%0@Ba6q?dLfk%X&3#By*)l>aIH0GtumwgVF>M{wXZ`G7mj^yrXvG;XjqV
ziMkqBZN1X+eA(UJ-_<oza-OYuAtXG)V)D`trz<~(ch}~#=^knLva7Cm^IFXlZ>+vc
zU-al=S2>#hv+`s3!{_1M=1NBYHeJ%WZ}r6EyM&=<7yBvh^lMVjYYL)&1)J`+@Ttj6
zycYd!l4kvri&36aO0osRKD_PB4_9^bkNLdJuWiQ{hP_cHpOUPF@9$pT;`%D;=j|gq
za%4-qf_w@SKjkb=y!&f$^z46X|CViMjfnA@y7$ND4SCJ4za$^f)897fdhldBucA$#
zc$4Oy(9mSk78VW;c|U8uosQk7Yp?ZW)c<|#vs%1+rnRY8*MUt(j=1Qu73y7jGj;!r
z&v8EtLTol^DlcBbvBuNK=X%Dj^IW>!`v2?BY0dm~{dLB+!(Ex1PGkgeZ;&!Hbe^v}
zS55C5m%QmysU15P&wQpg|5-D`k_|e3ZEmJVm25BSm*(yE-dMZo+uFjjg^E4(tYV6q
zY1tvcI-!hLV?qrVZ~Xps(o1j4HJnP1gY4foq)Jv#UK?w=F@*Jt&di02eiraK-~Z@5
z-{yek)~tog);7F0F|0e+uXjJV)VSeXY=^LfRVi=nCkFPGqfTqJJ4&?{*vtR_|NQ@^
z{vDOY(~k$tTJ>);V}sM7q*&dqyt$`8p1)WBLyt+aX$DvLUltAz|Ja@XLJxnQxqnS*
z!Th(~>~;ILSnK|py{xnFjxqa<#piUdtYZ-0X|nrmx8|kiyA4|U+je!<t26Q(S!{7Q
zHZ$egs?8eud9yankm#@$XeeL%x>dBzHTFe+8msa*FaE+w3?+->R`|s|x!f`F<Md;$
z34Gz-ucY=@E##`4SbYAu@tez9Z#o$_bclw%ohE+M;Dyh!$o)$hQo7?Sc^}R%ou>AD
z(%Fl<FMj*|O@!gWl{LlFsxR$3v2JguS#p_wwHU*Pr1KMBy;{HgaLTu7oG1RhyUJCz
z?+?S9pX>HWZ8g#hlKi_dn0xuFdn&rK)bAc<sJU<|V&cDypiuu_^L;W3cKcgSf9>xv
zY|okcdwcG;@0)j8XQsUWJ-Ph!+6@(q4e7C>vqb~u9}KizALZufYrof_((u-u=vCG`
zrs~I*PyW^DdZK&l9SKS8eHWLS`%W*a3jDNa{Sm8E(o%PI4=CBZ(^_@=Z0Sqgti9fs
z=e>JuTvO+x@T%V0toKjL)W3VL?%-JC9Jgkj^Q#pSKEL@}?^vIl{W<BiieEwNeHL?0
z1M|v_t$e(_)%hit+QI|WukkLH{@h~sYw_oMM(1_^{&l(h^EIP^K;_1{s}t9~+daix
zW}95i&%!^quU&pwJhwx?dZwH?55vu0Axg8ke@)4$__+GVm4DW0r{>?iystt)tk*Ak
zrdoOf|8{?mxuNIx6#nkZsJ^uOS^kOc<+|NU$_#s6Ov+nWf61e>XQgkg>9RL5a~(e2
z$+?joUeI~>f|4?W&7mhpXI}Hzm+f-r>as^s!A_U^iwlzePnmNn^k(>qi*gSc4s86s
ztNPTd9k<nY?MjGQ=<RN8zdi45_tVX%p6_;Nd~l;zHt+7Wxi2-N*q^<f?W;b`;rh3u
z<;$Oc-)Qh8`O<t-hJpvX&E7nI;Cp;+-{Y2}uZ$CB<;nf6$d9ktl9P01pHq}1W5k`e
z*)wva)>-jQ)zI>*f0<nV_h{GtG_Oa0o*i-(J;%xLW0U#!vM;YJLLzJ~B()yZD!VPd
z|LNSSsoEx|QrQ~BtV|4-^@Pc+w(8sSykJ7+`<Hq>@n>du$G<*iG)<5}%5(m8q5W2J
z>*kk>)IU8s#c``<xm&kn=*Rbg3|XEsCqhymJ~|q^cGLS=^^=_<a-M4xrIz?_&->kL
zyqUAXElW4pX0n*<LDgPs!_|*Z$X<|75_`~iMQzvP`vtb!|H`iGVDt#TS7w^MH(>kw
zbsI9x(qd&kuQB7jZc?|<+x)%toy3>#Pdw#z*rg>qcXJq5=(8nZIgQ<6;{4{#DQoV1
zKJCoVtaDoAtr_cr3x(5PKTED(^Kw^c%&QC8QK{~$JK9fo_wT#AxwU9n&z6WXb>}VC
zq76BcC-V<(__6v?&*Vu?+@XT~GsNTDB+7Q~j{DwtcJuz)%99%|Z)LDh(}@dRdTwn|
z%cSX_ja&?$>3e?u9m_jauwA2sq3)^eN$0IOclGujT~g(Ebf>`MZTkDTe`~hI9|}le
zk%)48&@nl1(axnQN-lFao^N;_^gHSXzfnzGO-B#IVJ-gd=__PE$;2<?_-LDO=2Wzy
z`UCdLlal)-&XzYyo#rr@b1iY=>Usam|D-QW@?~LfHG9Wv;~ZDBBa%_fATQQ>&XgGy
zA8zeZH|{!8VVm*OXOg&l`q{?}F2dVh=N3wet~g!3@<LFQ{9@6U_T}>(eC1~^u%B<-
zbB^V~)5nVcFSOounEL2d%>TCDNcQaI{NjPjPIdE76imqK{iYIq;p*D>AU8w3=>N;k
z?Ed?2t8tj%*=geYdrNH@#4hgl^@#njx+)?jvTFACw3M9EsI6y>>po6@d5K}e^4N$y
zsY(a;hW@!)?*Hea(1-13TPi;aZd$<j!YBFQ_9=N!AJ;PVXWyuPKJQ-K@8xq2yj7o>
z{_kG~!=jfLBxMr?UuK-zzP%%?XQ7n%W$x#@ldbkyeqMB(<$y+1kCFU3qkXP!8~1a4
z+tT@QTBrW^YhM?uzYi|{=DuJ0-6RH|^_lCJ`X-rAHEFAre^rtA%5LwaI?*pCiE$;&
zj7P3(1aWk0{+jOjdezO)yxc>3I1Y3~xo{aS>gq|#iT!k|&1!b;pGV($rx@K}YWTOR
z|Cf2i-ihZPuDPgWI%US%+QRqCG;dnTHn?eh^WyIAeG@z7tWe!PPa8hx8Eb1l7XD}s
zjaGIr35}8rzSP-X-!{eja@DR&hSRt9bAEpGI4AVi{rZy0j7P3yOqA{a>)p3Fy8D|`
zqTw3L&yUt$pIdU_&WkYSj%QylTvIMt-^_OF&60|(w@SZ0o{{_K(X!^Xy*=4198Vw5
ztSR06*qc4wzbyaX`TJh?LLzulKYcq|&Ys&VCB=BitHwqC&sp8uy*;n9BGv@WTiky1
z<@?pGpB|l#%ewNB@qm(E>+D^Lh0E0L32tvZx6P&g%l5rxpGx&?98yZ__kO=QFVAba
z_@jh~@G{Hn-JBVpo?Q+;UjF$}EAxcsuNHsZt-s0j{gW5A^PUQMD?B|P^lQ!MPmdz5
zKmBXmSNbe`?L6`LOYbv}vKA=hSDkWSdRya0<iw8?r?Tpo9)Ejwq2HTbvX8oAq7KwZ
zeR{M%?1v=Fg^-hvD&IGsxV`meMpDkLBRkTYisq@kNt-PGU&)jyWrcOn+RRnLlG&z)
zdH<d+tLEPMq$_^c#^?K{KRK$LC(;l+yZ_W4zcY{Rtt~#ODkXbyzgrr1ui3lI`(s$<
z?;iQq>Ph134ei+;gx_;mHznNk?Q4?>8>`~})SX-^e(lnhxxat(FIU%p=KbH3*I@pn
z^n?Q^B8s*=j5*uAynfI3ReY_H*`-S!yS)>A*OmM!Y31#DKgN=<)pwtM`B@pBa>n|B
z!=}%VcK7(b>RLLhHh;#73F$lk#;%Iasw__^EUkXwH-G-iy)BpD9}~N9a9_r8?TYC!
zD?iN_kj%Z2x3>M;(Wq;Y8-*jnx*x`rK4152?#ZUZSM)@ytCs0U2E2?|oS?41Y_j-k
zgA0r^A{M)Z{(G|K-s7F;`v33ozqP_%cenqaA5S$;?Y=9ns2{fZTrgXN`|fSqyX-e>
zFFRIR_vd@$RD-==1I-Hy>fhNlT1sBz@JZ;{5b^JmTYJ=<^XJdIC)WKxz5BZE#~Qm}
zsXu-EuH4UdhkQ0H*j*E%?_iQRKeKn4oS#8&n(?gicVYMb%zj@SQ8RJzgC|F~U3+<p
z;n}r!A4T6DwD`43{J462>eC1Jm9%!2b)Gc6^>(Aq-;1VG-^^ff*jA=|;;`Lz^WAyI
z=gg{gmuNk$+3>2@?|Hx${cmQD@7Xpi*gY?H`;o0De0${8!z$(pzFOShc8p{B5%Zf%
z*RoFk%9M6##a+GHHGbRKHb4Hp_wT~kIKGQ^g2@xbtvBW>7%VDNTzqO;$?UATPu{Lx
zGIfirT>kDwOpmnwUYzUl?k>X(<2##I2MWEqBRfCnS#{@!2R27tHl6JL%k%vP>yLuR
z9B=-;|Gn2MYJTyF8^P8e_dA(Y3N|R~*1hKY^?0Xq{kp*SM^yBg3LGnqqaV#U!7;N)
zU)x-2Qr;5l#K?NVhB~Ds2fT%Zqffb&_1=@Rnjp^jV#$)fZ;mafJiWm+abmz1cjkg6
zv3-_vcYWMzRyyIP+2O5|oD|=7GrU<PA!f|?^{=^O)2;Kfwb-xh@F@7C#Blo^Z+CUQ
zq>9ltWgVdj|6Z)qImn^2^hxLTbC-+e`k&hI<Y=9ZU_;{+6TN9`ENrhW-t=o;qm+23
zXWW~_HOJ*0;v&x6JF54WqwrD4TK3&sO^PSFb1MZH4)6T+K&!uVZG2q#QTE-LdOc2Y
zIVZOH9gy)73OXsAzhL=Ohvi(7dC{k{@?M?~d&=(;y!5Zm?}yudzFR0ab*mJssh*L*
z+wQ5UUmjPuF)W<2=E;Q@jb@SMy|s%Z`!)nQKFlwi&d{+w<y7(A@2`saj<52U3l|ia
zvuDQ2M-}PQ86G$vGv4-j^OvBMH#4^_Wc_<ld`kL}_i=LloDKQHZ?4}-yk$|MtUqss
z^}FZ@mK|DAAFM3qdxy4ZH8j5Hw<{{0_4%VfTB6{CRn5;o==xvOlJyNe$5M4^-wxg6
z{zmUa!G`3E&sy(n<xq7|(9b&&vEyM@#FsY=78At9^w$Q2tzKHNX=`1=<UK#8?^*x%
zs>KUMrUC_PoqhYaeeIcfcEgL0=hi$q`hSYeLcX|1nM@N_Tq~}4FTeVRwS0fMnwq|y
zTxhj$i)(|8=;0*gc@K3~$H(zlFJF`5vDJbj;OM=@KYo1wv$r_l-u=6u=kGL)@mIf<
zzi)N-;~3iqFMBfmg&Xq2CqHW3do)izciw?dO0P36?YmL`c1G0uh>zU=YrU!$Z(ytl
zmk^VGE5CV~N3!YH+v3OnicQUtm~SrVU%;|rcW+qs#jw^EJFV^dVs#V!%2V=1+}{6M
z6(6O=li*u@{$zOXh3A@9dBGeZfyV2n^owiWto&?}9cMK;IaEsAJf3^Qf@`z?rShBf
zY%4Xrvoz{=(tlkayEf)~S0yKY+Q;s^f$>I-hgq!f<5zk-_m8+t3sTp=xBGtVdA-in
z>+-%NZIj)w>D>N5##QY$Gb4io>r1+QjSuTx{t>jv<y>ar%@&abty;~GZMz~P)8gJ(
zUQ2neTg4agC-la@@EL8kYZ;90>|SH;^B^kD=I^Q0evX?piCaoSQ~$nwz`KGWc-OBt
zUzfC&dp;IlZ+0c!WzpHGsi(GAuUc^}O;@ux{?=L<mIIDYmDCO``@E-O<?Zb%Pv7`P
zcTSLs-t+ro&4ELIcn@s+e#+ISC0YIN#ZKE3SDAf(da*BO_bh+^=KcHP4>8OYp7nOu
zUnw`4%04|hW!tY$FTyNJm%ThQTVb!LTrorcoo$`-x~&hbDf|5BWB;~8o%)*j)63^{
zHMJZ)e%<(8^1`BqPTy_3Iy_m`e;zqTteGcrKVCF_LEM}TKOX))l4H-yP_kj7`1eCe
zufOss^9c8psr7qEN-4~G9J{F@%I@={XXa}UpSrP7=~lZ%I@5+tQ<iUJ;ne*zRb0Pz
z<*l=J>nc8IEn2(ngI!DDbdv*y{GJ-$<KukzyG8d`8y-$t@pMzZJ}*N;;s0kx&uL4&
z+q*J{g+bt~egEs*e@%r{bdF_4`YiF5ig4L-(Q!kc^eoZ;)$c33mmhm0e_v$77lx>e
zUHZ%u9;N)xh(CH;{Dq$-yKm2dS#RPQYE9xbp1;`pc<Y4H7d?KQ^_}avA{rQU?`*1J
z|M2>p+rJsNmA=dDpRv#HMrPcd-_i{;?-*GN@2I@~tU)*B@AKVLa^?$fU|{@}vBh5Z
z!`o*sWep$u9nidVOPrA}=G7d=b-(7kf3*5*MkL4ds-T|hj2>IQ-!PFCSoP!czxrSG
zEAQPmOjvzSSLpDfM@&CHeEz)IQtuA4FxTJP`y}2z55HXZYWKDH6LI2yzt}8}wQG>h
zefM(JLP4)Tl}Eg#<?nyqwV(U_uc?vc!m|6PGV;AKHMv)0WYB28@KDn0xaMV^TaG+i
z{Pud`#+F@8422y%0jKAGw$Id2eHZext-aPqg>B#S+1Hk{7_jeOv9N3MUxvpTG9?w&
z$3C55+Hv%Ffg7`=qVtsXzIScDe_VL%?U}7ox(=dZYg&cAe|Il_@cjR`f7#DJGfIS1
zSu=geo$>EQ&i(zG?r&yDJW^p~GdlHIUa8~Kz8f#RXJ2AWWaB)*<uko4C-75}?)$yl
zs}l`V_0t%hDH}P>i&*>7cmH<H=5VK}Yz(?Helvw1J=MK`75nkM{XhS@8FI5Ubj^Ba
zb-FS9r1s~BEOXy~+BG?A>9H?-8RZ5HTRs@x{PKAJs(R&WyZMfvADzDEab!>PpIg?m
zW{Wbs@>+AyH=O@<DXa7Iqw&kn_P&gMB`U|r;8D1Bt$Pa3i|<NqC%ZMBJ-zajJp~zd
zS*|Pd^_D;MJ2h*PIQRSJuKfmm=UswW8uIMKw*Ah~s*2}}WUbxZ&l0Mx@Ai9P!tGRs
zj>kK0{mm;hX|$cC@%Q4>OUA3M`5VMdo!FPJo+5Mo!7<Z&@18$jo*h@S|K3(Mk*-b#
z1DVAV&X#+{d_O%ZG|IL*Yx#QygN~C==bCp+XO?(qzU8Vk{JTg@&DFP)!JxNU&24Re
z;U1&Vz_^}iB1c^qBu=>N+1%I@E_(ld_005VM=d-r^0F{2jFC0lwsYkd_bDQhyKm||
zKV7-;R9D;bdNnmBhiu1bYdz=hUGObGcYEjdQzDa_n``!LFwoo;$e<yjqH=e|;d$xd
z+5e9`o+8ub+Zo?J`P<R1w>7PM&%fhm&?t#o>wY`&=#l9PWuKFt%O!dWGR)c~vd8SW
z$g<yZwGl-odEdk1_GC+adiHzQYK9egH;=7)ysB({gx9Zk=H)-N*Wc+)+H=%+?^5&k
zpJeW5v2*LE?h$8@i7x(-^ho2tt6+|-tDoEq%_jXTweat1o&MxOh>14SnZzmb|F^0o
z@+ej>2>&XW6q?6Babqi2<;IIVE0fpR9*Br4d2hCg`x<Ar=xom0zQyM(mYs;WzO?)H
zo)@`inGBZBV`jW;?ayz<;rVkjr^(ykbvK^QDEG0QyfudR{@LYcm)iuyWHvPV7^JEs
z><zw`c{^k2#8=98+_O1#R|M%j7Wy(HC51DuAv31S)Npd@oGSI*HA2t(w@E~aJ(;n{
zb=#gjc|leTp1XXrGG`g(um8F$^+nhGEv0d1tk<k<Hcl~rcdDCV&W^q81x***xATA3
zxtJliNNaki^JCSUsdby=6&Sj^H-w#2+FCc&?ypwx41PYLT+oEr@weKa*QqQxzUvi(
zOS0hPqN~Q`cQ1BnPPZr$e*Dq!wOmbxs(9dUC5A7-s#~{s=e*Qk`PFgN_bcyZi$88V
zcBtrI@M{}}89~3o*7ZF7S+guhy7t4TTj?bwUeo{l`6ILDNaX9-V^alZJ#}U9)48p3
zc>P(HFzwr0E#5pfFtvM?dRcKweNd%fL$T81luvC-%d&IURYa`Z$W<xWprZ76O`q`9
z@ACD3yeseB%HA_Y>hT0|Mvp~KbKM>;eRIt)_VtPP`Gq!HHa@Cu{q%97vE9r0o!;yW
z7T@Nn-24CiYUzg6CKpR@hZgCZ`pI;0{brvR+Q)R@i`3c!+nX|6x0l<6hdbwN&n!*K
z%l;B4xGs=eb#?5&n>H*A8=59vU3=T~;?lgVJ2_3?rtDmy!Y;j^gMpXTM^5zi`CGoB
zp8Y+{Uz_{A<5(KP*iOl)F2ALbA3JMD?7z6$dm4S-;u_aFxEKy~nQ`dvC`<mm>WAE^
zu)5maxp(fA9C`TVdu80qzn=et87d@K+<YT;@bII>$C$KdAHTBEdeIcS+P@bWR5(S;
zmAd7{`bFoxic86vC6z5(|1_g|&*pE%3#=s?s;90wZn(X9j^NHIv)pc%Wj~6El{R{R
zVxoS`&ebO);#d@>?)kC$IaA}>t-IIwdcXYgpw+XaBRgF0qtwZ6hL{Zrt-oGpP4@Zo
z>7}u=>e4$|rd(ojmDg_X-ZTI2e68n<41c;LO)ohg{v5g4@@46Y$L0E!#~(l5|IhZB
zsO1F>mh{Quj1OXV8y0uph`ILr_kX?FQtQ{Y&Df*nR~GTdV!<8`hUu<;a+3QFhuu{>
zw%7cxpYi_xlfJ*(zy8)4Pg%Pwp>NYtmdpSA{i=TYq&*xA>d)rA`24%jj_FS9#E;+a
z%Ja^Wer#?MR#^J%cjk^M;*1YYm}GxS&3ROmpK`{cvH#i0<|{WWjpB5F9$7v4NB{Ew
zFTbpP>dJ8AYRT)J4SkoRcbnJ#?LV~rUxtkD&&Sd0o@GXzjpkhOa_i>(+zczzVslf@
zXC;1odhGm<&-L&BTR8rH_tD_&<(UrEQn{~o{CxjOi6Li(kxt(y!F`hhlByqu9^bqD
z?l*}ueLZ(y^s_Y-FIHJw!l=$IZ~emY-@FMS+WAwbU%Gd4j-2JwwZit9KU=4XGkR<a
zN&j+3c+us%x6NZWsrkjlzda~quiLdKjK8S;?dh-X%m*f3J(M(O-i0HR{5ikB6fZ1x
zNOYZkZpjCI?K*)<L56=q>IQ*@Y-g6r+|)Bt`(`wKzQf)A1@=-6#i!j?T$K_(>=p0*
zXTk3umv$WMT0OmffBxOys}A4MdE3n}Cqhd{?`xv^wsP6~%~!4lgckDoPJR4FcJ0xA
z8Bn(=SWkO$#$11^mc4N=_ujj`m$lIB_m1Fu8(kK=s_w3}ed@}fH^bU#?VTMF**gy|
z<ICIc_Bmu0UrJ8N6R{_*3}umFX{_%(3)cu--v4p;lA0);Q+IP0=7X~7p+_}s8Nq)p
z)Nen~_1+>c1r%-ZpWnvp+2Lkiv?;&Gjdzi((&9ZF4F6}^87<>y<hi|QPi61C|JNVN
z%74u3xt6Y>&vYQFFMOTfe7l<Idv$-$dUbhf%*TvUem#Ar1My1kOQU9`b)VZcx8|$)
zs@n>;OiZ5Zhw&Zwa&3<M-e=3@j()%T(#Ct&hi^Bcg*LsIv#&3wUYsE#^~ldd+PCkd
zuP@!FFY|EM_AM0`Ew{d(I9;6a#@AR=v$>%K>&tlU&*&-}<@L3#F@3x1sPAffsRm)q
z=#PF0Pv`P8pW^VhT^~NRBkZ-hSNonH{$G`u4ixl6<}A##{^Fiq^4xoyW!|T0%{B6y
z-!aC6x{^viUTIy`{hD~Z^!I{}@4r=kr>v^qDa9*(aUX}nr0}(6)vCPr*}8tr*1dUE
zT5A6JQ_Or%T^YjES+)m6tO|{K|7i86i)N40?w$aJMm<~BN-2-aL37_sdir$F*=PT|
zCSLrL!LaV<+R1I}9K~jSsa+fu+|lIky36Xh+ET}jPmIlGJ<H$6%^>b`!Pw&UuZagk
zBX=4{MVu-4CCFu;yjbayJnsRgzR#yv3YWOd7d;*S-Y7Lt{>y*4I~7;cC)M(#ueqeH
ztIxE7tM<a|zR6zSJ~Tg;Fgd=W&3*66v!$mOR)OMl#hYWHQ}}(h)p{qnS^n#JDt$rq
z+d8>D7flX+T>8t&%<;_6l?)kAww(TC(sU>2{TUIl)8?m6cX!S{`98}q?Z}-6pJU_v
z>Xq+)($w0w@|!DzSL`YIzwPUJMa25Ge|&m&AejCAj>-wE&t`Tee^rxvd?Wa1>Vc=O
z3_-mXYkz#(5D}Ddmut`eXQ$WypJ-9?>38eI+_t-7(XR2Km%`WCOErW{*V=P=+LA9^
zE8bnX7}Z`??k!^RSLdns->q>vAJ%=(dT4U@-qnrs?(X_?-BC&0mf>Pf-(|1$9ML*?
zbJitIEzge*OuVvg#+B$L9gfR4E}!#FH~8SXd#i6h)^DC}$6&nk$`K(0ooyYR)5G3$
zUz>Sv^WL(KBSA|I*YElSimnTxUc%mABf=tXrp`a_Gd1V`#TMr?J^#cEjHaFG`2U?_
z@f16TVhdizi?^mFtrNI%f5FSQdWU(B+r0CiF3$Mk)sC53ArV_DAMBoSdIP)pHQkae
zYpS*svnEtATEE%HYxR1OY-OR~?DBnI#Tj4d7V7TGINRkUq<tfX)BCp)!*`BLq2iW1
z+mik~YO2%UwTI(?ZQdOBNgF>{G{4&>bSHl$oBkR5^7#x5IoVs(zAe2t`C#_Pc|z%%
zCO`jK<EH2TwwvM3gK3)jo%yTMY!-y?S`@IFQD(9@<Bo#|Q*QT!O`9}#%GKuZ-b<}g
z@s-U<`xE!+nK8_Ls(W*;o?*i(M&pRk<<l}|OUQ1X$H!29Yt0iO@jEw@-Nja%t`TS0
z<t6WOL+R?wLx<MP@|%8fAIE`Qzs1o>+l(i+J`^!qRIaAabiscy*Qb&Li<WpeJT>0S
z*B3T@4~K*L-Dyb^`J^RR*ygyDK2DDPq{L8g?o{{1FMC)%DKXf3NI&MfdSPo{z<t5b
ziy2?&hPa;C*!WFhp=_mK!!wfrUayEJuJtAixi35CwPkMy6^tfJQVXRHJv#Nol_6>)
z-y<KF|5HzPGhF#zW7m3=b4SV^iTxZ7zEKO+(llOedg99P%EF_oiIwN=OKTnnMbE;#
zb^5o&8BeHtu6gkM`Ei5hqnYt63dai@0(SbG(KyBms!^9k78a`QU+-3L!f^dft7~Us
z>i+W9+X-H`#2I%u92U}Ft}Jy|!g!)Mqlc=_C%r<UGq2SQUlnG2QeyCIas4K8Zl2tC
zH?N-$9@p(E|D?q5yu~$WivDinBeh!-?52q`S}5uiU0u_;>YCM*MEeJFpBFRkNZYZh
z?_XX1q_dTmm#@@*mh*awrrl<}oOQK=4Z`n37eqC`YLj5yQ8`I7-Sqgc;7>{n?k%pn
zI(NGHmj&6_UU7)m_<NDTf#d$(8-`a;RWkpTxV(?!z{JK?CThVO6W2eo6q$EGVD9_-
zTlAS21n=Ivb7RqOi&Q_KmIZ$t<5&`=A9Gz)Y1jT<YOhJCO$Rt>9hk^*IYw&k;q&MH
zA5DDkJMES@;|(*f)9kBX-am5V*V}#l`+vUOy(O_66qV22-ZQ3@2<x}*U77MGt^4Y^
zc6k;C2kysuBFEQQz4w-Ut{tGNF@4Ve;wHz%3|kVGaWl%QEEg-!oRjZ(blX*L`6u6N
zzq&Is9PXa{Hp=6_%hqqt{#o>Wb7inQ`m(c`e|pp{t#xZ{A8l92uRHTCWVWEaJ%ev=
zobRS4yMu*&@0}{kx9#CL&}O;H^V-FvwKIQ8-TK`0`26|)kKGIhJ_v~~@Qlw+JN2|$
zPxtcY>vkr>EvXEvF7G?>Vx8Nf$JfvO()GBrIx3DOp?S{<6TjxiFI)KI8UJ2nIB>?#
zIx+tLzU{3&8-85a$8kW;x95yjZO$U=|4+}~RcBzhaP|Coe=h+MvHF+&Yz$#vx|)A2
z2tLuxaA22R(BdUKJmXjx!qnB|e#@^;vtb9V{3|XgN=?iKvGS9$xD3H-?LaI`OG`_H
zs4>Y)1Ko=fD{-z3G^F0zKojWNz|y3W%7Rn{eb3y)^i(eW5HKggKPf9UxkN!fJTs*v
z1H2B=&W;P}<%&6PFK^^M<RHR&kbe=o*Mk2+9GMKAS_;SbWDYd37~hO6zvf+5K6j?&
zy=Nys?WuhD*8YY3j34U4;db_g<@aZ>?8*55mhr>q5H{1Pj=re@!ID=-nWNz_nh1t<
zW_VjLZ>DAJy#0FTXN%wa*Zi-sv)-ui>1Sbi!TY(hLFFa1a7oQe0hOYLhM@8Z!ZI)e
z$%EKN79<y^bXsX`3N1~cE3HArKG`d+??kRoeOW8^;s34AcFt$7Zae+%NZBK`W6lOl
ztgRBROs<YhDgkzE@eR`NCj4N#qo^k+6r`fJgF#)vRmCxI$_=i0m$%){E8n^L)s>aT
zZz^^5loq~fh<k2%sgUPSUHR@WYrd{~82i5J+q73Dhd0+pu9ub%H(#}X$3uaZ|32nx
z*Li<Btz*yi`Q^uuP;+i`$-71Svc8<YdiLL=kDFt8PriHKTUUSO?I!12@nI$>Hk|)9
zzw3Qe9oNS@=lC_}+^hfc>GSWzU*hN2fBP7F<9qFt`rki~CUUHM6<%Ml^?mc7>;Jx7
zeJF7DUDdxgS10fk7VVPhZQ5-h)w}D1n|+M|fBTC?ipLgv@n>3|KbK^8`jdM1M~##B
zW7B?0=M<$Ic78g(IkL)Q`9rn%iVbtrgcq;-m&^P5#e`R{q%Y2{wa8g~_xtS7GMmuH
zllfDn=hSR-JGd+S_V?A3N^^cIRhx#qJ-=T%_UhHm<yjnjncx3z_7dB;N^0B9tpEE%
z53kU<=M!_T?$jsyM#a1$568$gCCkE(rhZgwzOzX>=IR%bx?j)YLd5Eg7Hx_M4UAl~
zYKu--Xo%Qqt*oNZLgU|@JcZ59yWT2ZS~m4rJ(Kev7Cuew?$E->HPU~1zFbz*>JE*J
zT(j%sZQZ@AJi(gp9eBIlnStS7{xW?gh6{_xBaBwoeQvCOk$#hJS^p<P|IL3g<enW4
z-qDyR^GrSQU;5^ncQ1cU$ldT`YDowC-~2S`n0oEg%gYzuPy4wlYR}B4hj)H&7q3^p
zU4J#cenZEn<D1{O)&ITOtq~u(`>?>%{T~;<)~GMs+WpD?^An9z;aAn~*>rxAubrUl
zW&hh?cXsI4XM5jF_*OfgZ{n_7Y5o`fJ~cWu|J<hI>4u!wudaG&5p8m5^{<_a@ArKQ
z4V_)S`OoE?xp($*eUIN-_55~V-M1fy1M5B>TfV3!^y(u|5&3!luWRhD`c*b1zW(!E
zjrh>RW%Hk2zxnu@Zr<LXKWYUT8pNnaOndj?ZvC%c&oBPT+t&Pa_Qx5E7wg#X73VL!
zz3ltun*Ap~J>I^lCbaZt?~dH*|J6<}4_|pd?PsCI$5pGO(|@kccm0@HKlSbYtQ+qa
z{dw_FKb2W$Udqp|{3GFE_4=pQm)+Eyf9`qUzE#H-znT4caisXu`Rn)t|FK;Pu6S)>
z-8y^6zw*es-zKN|f9u45jJZ3%*7$V%eD|NLcKv#spW?iyTI}ic`p?3F`&KREmvjGl
zbFcX&#h}A>y9;M;{=VstdA-2X_FS9qyPoQt?%%9lW$`6&->1zVek(CB=>DQIarfx^
zzrSA3KmPe~#_yLW_m-Tf+u!}^@lB&s<&!g~$@?#=2`&A6{3hGx_Q<-A#*zD0wbf3O
zKfC$Qv%5O+p})Iz=FfB5@&E7Y_vydaOC8#|tM+T%l>G<q%(kx(dV2i3{cK)?+9^+q
z58r(6_A_siu2*S9>d#eD>D@lQew+X3>|ZsxAXE12rkY<BVWIMIH~y~H*<UMn^!M4y
zZU0x@ecG*IZ(Aww)ckzCz|+-PdpMStPyc($xcYJN&3~)2zAe<bAMgJ0;iK%E|5k^+
zueCmvfA3$Sl}k#A&_0LNZO-yf`TaM)w9Ppzo^kcz(a<U1e^WW!CZGQQ!+m|d+_v8t
zzr)|Jy`=cQ=8MHC{@cz|=KuZkSi}Br#kBRSE}pbG-M>7rPNGdCKGb>s-5p=t`ujKS
z4hwz!)99|srixFk8ubyeOPpis-$n=4{S3F0e7bx&|Kgg^Uh(BO+1g+0%=f*zYSpdz
zt{>l>OW*vr|8VfWbMK-;L-+5z`{!TiwDqgbUe>Ws@h^FMZgWlO{?q5G<n0Py3h%1@
zwOAuQ^mqB@omMixH1_}ab9`}4sIL9LqdCow<2xS3@B6p==D*c;_P>L+9Xx%%`%(D)
z|52bI-+g{F@3Giv_9^f09Im`mQ+B`7{?zw}0<Xh&Ys81nKAj`HpS%JLXSsK2@9*<+
zd;jgc|MlWG_x*p0KTg=}Ic2`xKJlmP>)*c){P!sP{GyuBv;CWcZ^XR4tQd6rbxz0C
zpJu1(U+=A)vVK*exy#S|Idk29#{azWJMiC^cNV9@ug?De#26Hon~yJ)KHhFJOK;Ji
zFJBy|+y`Yp=@;d*HR>bcU4K3lu+O_|QN3t);I#FM(c!DJUL4;1Vw3*=*ct0r{S7rU
z=hNRLy}f?c+xqW&#RK=PDx1DrWB<MrpT66D2HElDY<u9pFWm7R;G7bE_2~RM%Tw$B
zf7l)PuX_K~r>kGxT>YlgnkRNjd=GzMon7br7hhUu?7Gp`9dvcwc`-(62O~IqFYW!V
zZ};oh^S?K>Zq;qKTjIR#-1fkKpMI*Hs{ed5aLWHLlS`+pU$tBQWZR9n_ly7Vu6y-0
zvTW+PYnwIpzka-4O#HUz6#M%r?Ozfm`Ywt85mDBuwg2MfqZX(7-=6^`NI$X2I?J<c
z635MVMW>kO?ckcf<HLkqe?)$TnoWOoVY%~?Usv@`@!!swxbtAB)V7<uN_L!D_o{5_
z+xp^}v5QV!KbijgW~kNN)bfR^{Nz&l&zIL-aQ&IT$D;RB>Ef&N_Lp=Q#z-%Ftaxg+
z7z4wW7u{4NeA=A<|9XD+mq2d)*P6+EmEZoEovMHS$Kq7||3@09-v8QRQvc>@>6H3E
z7Sc(j^I{jRvbyiH_|H+Z)BU>@PlaE7nIr$yzGO?^r*i*a^72(@4SE*WgvQQKy<BZ`
zy6wfeN7A;@X~p_idv}#g{;L*kvh4K9weSA3wb{+S*Iqm0{;}l~&Mo~S@~igSkB~Z#
z%dXS>@7tM2sOzua^yjPI?A7V7E6p6P-hQ8=Z}G!EO8${}%#Q;<LG_;+h@ehQIPK)W
zr_a8gpS}8TE`McFy3Et}`P%~j9jy|3`g>pZr_j=UC);k=o?Z8<#-{UAXzBkS0#E(Z
zuLu4!I1-*|^=k2-ifOggmX$j?K3#S-`?xBr&ZhU%<Hc`|_4+*v+_&o2>9hU(d(&>D
z2|s3QtLyj_e*Su3oykcxxBchU;zGavek0;G`Ay-BC&l^Odc+$~{Hgo)BP6u<v8#g7
z{xj2l>HXiCY;(44g?Qw@3HyERiZ*q9(hs|N`}u8sP^I&>%3kH~)9MW;p541>qL*)9
ztiGCY87mFyzsYx>efaf!q5Pt^{c>k6D_&OIl_&btKV5(EpPy+`PglRHGVlEK`me>Q
z{e|y8Ja(2hnV06Q<F|P|*XG4<rmW7Yo0Gfg&k4^d^7eMUpYEF2wO)Dg&gc~X>R78I
z8}2Qe?eZ&h&;O54)lT_~hX?-Ka6YW3?!NoaRkO})I-XvnAN~Cpf8XMoP+z+e{ZsvZ
zkCy(}wzPO9zxt&&S+Y-8zsj>X^7!+cx54cd?|9okv|7Ad^e29I$NU#|HcLL5RL_<v
z`xtsFf3xqm*R@mP<5Ro~<*&_<o^fuoYi6C0`OL}f<%{>+7iVP1xJW(X<-Pym`Lz!|
z=LqH2Tf{GQj;sCcIz_&BcS*;IUrE#RHtp;&@6>sB=8~`4<~6_MYoA!${{Q&0MttaF
z_wq%5zMORrtTUPE_A_tF*|+w$)$XZWe1Gkwnsa@}r`YMXcI}~mT)sb4GRWB+{386e
z#(ce`P}8Wi;>;4G{!e#}>J|mR{POPl$2+T?<&U->7T_;D-BzHNyZ>X{l=*vp8k`Eh
z`sDCUE6X^&#eY6I&+qvZYP#$H&Yb4VZ6(*g#7$ej>aXjx{eR>m>*mB>{c8PR_jdi&
zZ#VlF)$H=SW>FV?^mUvS0|UeVcxncfUj6^~`~U5<f3xWA@6*0kPagj5E}86MKHKGI
z-B#ar3!Bq^3-`yk|9t8G-u>sQsG4`efpul?do}Fm$-4erwQ60rxo6KIXDPmqz3<eH
z2kwjCf9BKgKNEJnvA$>UC9-b*T82>5FTYDB`&66~o%e~i&0@{^MSpnpE*6|HduhHp
z=l|^=6Mlu-nAhFvnRZ#jerL7$Y5CNjt7ggE@BXy-aepfFo!?7!;=j(n_xq^E{(I@g
zFH_9AKZSmsDnHNl=ltptp{Mqh_SMhps(#6X8t!)0)>ocoPP@PN#HXLu7vEE_a7L8#
zC5JE9|7)y&asA@Azt6N}izI$&+%Jt>+56pI%Khi6TYIa-o<8TFm%@DKXUw$qtDYWT
z{3Cq*ehCo0`e^j=*lh>@c}LcLH#(g^KketLSLTUzv!Cv+cz3nn#HYoP)9lx5`oqif
zTc`en*v!P~x=Ep>H`3Dg?zijzbhu9Z>FTWSuXIkmzh5o-v^~@!eD$x@9}dZFT3Ye%
zX20vtk1sQ)tY39=ulb@s8M`_@J^nqv_fu%-W%s~8+Pmvzp7Ph0iLY8E-=<;Dd7tlc
z;huN3Rf79uzljI_(Y{?T@-)97v_I`;(4T7;zi(#z7Jv3rXz7l=M|JTm3=3STM=X^t
z`~Q>qzd@b$orAMqPKdAD+574G?${~!`JJcSm*orGx9ZyO+9~^Qr7f>vejlIaY-2am
z_2<nBnWw8?y-N~&I(@R|l>a|>y9fSr{JvBpKJ;q4dES)RtGD7)ey)-_yZO&Mozvwv
zV^^%YWq0;d`)i&1`HOyRsGIk8e^&iptyA)5(*x_uzZ#tizxt2;rdoUYO--KLIfAQK
z<xM-^d*sb!|3!aZs@u=!yLk7%)0F>nU*GTe^!#<{l=XjDzpQNMU;HQCuU_Km>Q_hY
zs@K{}{P#0+*rgGA)gt=sYVP=m+c_71e0nCI_Ite*_j9)>W4BoGr}+n{o%~An|NnRO
z_5Af^yEA@2zkdDYg!JpbHU1Y(mA%9tm$&%O>eD&@LrY(@Yt&axo%`wdd>PlDt9F%}
z^nUu@uNL_4aCutbzEytDKWprtk<xA=mwLY}Epgwfw8w>0<V$0x{QtA}$Es_u?x+9!
z`hC-%cd66XuX;G)>FzhHuKhFW`o7zD+y7N{+xtGXf4$nzzjxk!P=NokJN5ndn>Fr_
zbB?Z9_3@L*DSf+-{F@m2>P=6--#_c=>a1VcAJsbl|I?{c{O0`4?B~T$v*~^5AC*2A
z?CkmE{!k$QY`ylW@T=4H_e(szU-?z*l>DLNZ-e>e-F~jRCA+D#NNQj0x^0o4SFU<L
zcfNZiO&X#`KW}Z`eBC}i_uIv9_PcH@b>8<mNA_v_o;xl-KYy68PH*$$m8-1Frw9If
zk|FeT{@i>}>(VWDO1#hJKTn^5x_X=AU4K3;k$I}V_|5HeC3D{HUnMsA&9S-X(rz-e
z|DW`9^{axpPrr)?*4)^0=39K|!`>Ii9)?P#_utky6Mi*g*4e8kFW%L#=c%2te$_he
z{b!b^+ghIe6lz*M<>~V8oBn*bTkwDXw5O~070uf#8@FatXQ9npx1XzKwZ6V&QFG_q
zq2Lv(K9_#;^O=4vzihw6)74o<yL`+$zZ@2LdVlYUYgbp@lG{}N!u<aEwjBqpf1SKr
zNrRr{{lC{vU$>8sd%yUtzTW1V(Ab!_i~jt)nK~t2?(E_}8FyTNu9Ettv;UUNqCXb)
zOE!Ck{at^^x$1q5^wZT@meTG&7e|(HsejJ-pSf?<vxlLzC3|{4)d%bsdAj;lzRjPj
zIn5{Y-9Em1VRgGcl=o)LDzDEEdtX12j=igLPvzF%jA{9k=ew%x%ij4haGLz4?I*+a
z9|cFe-L(Du-=j*W)_?!V{jvJ_^T2<v?N7yZ#MhhGEm}VL4Qt7!Gjj9){1wwb`to*q
zxx}JB(#vOS#E1I7OUrNn9+&$5&P$DbYx?~+y?p!Km4PAZ3-t)K`~U7eeLY`a|N6ym
z;`-|^E3QAJShm}F%Ki4A&Y-4Nl-$|Pe~QGOzPGgiHE{oausC%-{bqRUy4Q<pLUqL-
zYt&D9Hhr?j{uxJ>8_Z7$f4TRm*{S(w^y_P0H1GRdB=xjEJ-+9Y`{kVfp<Cyqm?xQ?
z%lo1+r}}ci|4>u8RP$eJA6Mwz-6p<U=fA?f^Pz{W1OKd^?!V~I=c`($-t&EYY|NSe
z<=KS2zTjk4`Qyi)%6h@4|9`v%4ZfX^d$ah@OV2W{*|~qt$+jt;lIM%Gt39~%_xe>I
zEu@pSpI>)r@$X38m8;ahZ~FI)+TjL{f?bR6|G2)s{@(u2Pji0%^t5`iA^Pq+fxn7f
z{Hs6b{13f*mp}dI)43Y|pDnL5I~9I)FZ=PpI=lI9KR<#hkE}|Qlb=54bllWAt^fSv
z_Qg+)tXm&{5b0a?Q?WI@*5q`X1*iYQRqu2*tv2C)e(7UQ+3MfxSMB~>Ic5Gc=Ot#p
zYp1+#S3LFpx814mt2e7;pI&zMlJ(u}y5^JfExAqGPaaJZe!BYAn_p%5Up}vnow9z_
z{lAmN1MTK|z5n+hb(`bWy6Le?Pntwe3A=u?_x10JJpW}k7a8(?HZLfhX?u~{HEimp
z`rrI^ANbpIx75~u)REmJ-Mg9h(w{#nUFH3DpsKL&ec+V(4=+qk`7e8@c|T+F36uN(
zUscshyMNmM=3DKQ_rE=@j#SL4T{x>}S4qc}b@Ge;WX+bn1S#!=?{!#r|8Pr5+g#FJ
zcVgYEwE1V>*3OSzv?}WECxP3}HH-U~UDmLFw`u4087ab#t@gNtUTsgW-FVaGXa3&(
zU7td~mhCwCRm=Ky_vs&6Z_92z{_sl4y7jM~-IDP2n-q^d465O{es%SSDXX*gpMG}l
z<=w>^_n&v4S^fF7#(Qd~DYd(w-m(9Cc)s>e;jWq!d4)1h)!o$t|K0m*GGEp|bnnNB
zzXR(G<=uaN{K0nJ)cDmV#k9>oRv%Td>At9O`uksjr~T6=Ys80s_g^0P@0^l!l3{Ot
zN!8;^e|Y&aEzd6d{!wSQ*YVAf)8?m@ul=<8O6$+M6VI~lzR*#c9QemY|B!RlYm41p
z^(EUnKW+Xa5*HKi{&V~M^^5*|KYuN7-zq)5^1y#pr5&GM`%YWG>T8w!)8Ec!d-)$;
ziv5{gC33F!tlDnw%LNx#uljdk`D~Z4>mPgL<jzvR0|oA2%&hs8|NqqM`S0)8c5QqA
z+fMe=7eBKjA1|t$(tq|?V}DG_&sDShHqEn@D-W!ja&+~oUy7%fJD*Aa7#iiX$?)03
z(7FDb|9Dy$u6lJ&X?AsHol)2R4ZVkbe<{wEG`Cn1IQ{O6#V<`x>8o$A3l)E;xVKcs
z&VKj(bDu)D?mzMAaZc=7y*imoivONmz2EierAt*+sp!+yubx(kKjnY;TQ{~nU!ivP
z68#ISW}V%no*|~Uw)?2gsqm{+dwW04{@^x$j^3i0r9Wfl`|Z1vSKjdne?EJ9{`=9x
zZ~u$GE9tQNBh0#e?)p`Vf236_?Yi!}Sh@U4kIdU}a_#fa(zP7so}XVH*>O{C``-U0
zlW*_4Xl~J3(vfR3z3*_%(fDWW1uyp<bm3~BQM$UK<4EtnZ^2eB+Z<=DU-d=hll```
z*N65uf0=C2{$)a5b?o2z!~a>1zwE!xm714=KG6u8x&uuvnj0V{8VwCeKhud`3pdQ6
zQ;p;-+;}s$bWX@sxdZ3#s!gBtj!n~3Z~~iV;4T-IkN}4X9~OEn-Xg@LG)d?Zhlldr
zyL+z$aZBeMKlA;sq4Dm^)|;!<r|rG}{oeDlbE@B2?oWNU^ZA_nKU)Qkm4qLbm>lH(
z$=GCL&DIwegb(DO6F&abBUJ4^yFyYb_sOe=mT=ox|B-Fzo2|`u?Ne#R^xDRSeD7WR
z^B3%H^;X?yz4qtjbgN*6=|O2{N*R*O%1*t=ioC=gXS*(&{YLlN#j~Ck1g&pw)Sr80
zx`0zjoBgL5V%|^p+b{q5`0;{X;irX)u5KCsp0v!J|7&;Dw2~(O`@0z?wl6E!d30s!
zVU2+A1##u?ndi)mIPSe(CwcY#EyX`}PF$+L=-e}#!Wg%EjqZ#A@^8LRTb=5upCa)=
z;K2v>xRckXN@jAY)V$g9u0}ueSn!Ko_gGs#Xk7gEd#ZSnsq6Cn+KMiI7OzbbV_d)O
zs}5zDBNcSv>ZT>qM*Ov08-CYL|DyMotx(=#t@Zow^>*uHCF8B6m)>qY_Et8?heOfD
zdd54G$QY+@a?y_&cKmVX3_m@o?!*6wst4@1#;7(N&*~`4djGR(EvH||=LrS17mr7l
zOiy#pPVah@(#3a6od3YxPSF@$Z!4weKLQ-~uIuXl^?jZBza3l=PoLD;X7^h!4ZC~G
zWMj5#t#8)5<16lkgf@ia{&789{q$pxRM)k8l}~0$F|G)kQttUaXs2WJVblH9A=ctw
z=36!wdM*pzaGZ6Lh1~qK{kE6>1mB<gb6@-FrJnvGb3}QM=xe>~I#*mCz3A`FoxieI
zpIIkxkY)Yb4?8BTUOHiZPVDuT%zrEW{{}eDJUYj7<Ne1CGj_VhTqu9I(u()U=lyoN
z511IwJPfQ<Z3!#cDp3?%aX{{Dm`<7d{y*!))aC}JWikm^9ya~|&YZF1p6QxRyLIBa
z>i?As2;4q!wdq9Hmva$s6RSUT@kLHrzg|II^!kd%>yu+j6)IzruWwFvFcjxZaCoOz
zpW(msvDNM<G0BhlM$a3co#*<ob>a5aOFhf4+~E<hvD$rF<;1V6-!k6L%X#(toIU4t
z<>J*dZxv@9GUG4lcAOuzDePClg)_a+OVUNt>((sEIXb8JN&)|Y&w_e!4k<Z%9ajJ4
zh`g&jef5$RA7hlA&+L1jy|ZM?X@_ZDxoqcd6nqQ4<f%}&dtXqG^_>1I&nyl+&W}lK
z%KhUtRcl*bXta<M$Jfr>+xm}dIzP?PRbWZ~_SRbJ?Voc`m5Kv-EqT2{`<dRoy(#%j
zY33#4d9v<dLQZ$)?oqmSb<v9xSCf4^p6&fzP<K5ma_;S&-xV!>ZhS3vPV?C7!)wpS
zv$nUi?d|L6ImB@FFSGZtnyCFAQS)bB*0QV3V~%<CD9yg1{O`)}((@-SJ9oR){Mj~t
za@9QE{<Av{?yz=MXG>~&b?{*7<0?~)RVyrGJeTFmG0w?&Y;||%RNsn?VQZy-snk7w
zxHfwGHa3f>dGk)Y-1)68d$;>cMg0%gU{8*ZMj^(#uC%b;*<Ww}pm5J>)!-A~u1<(?
z>ZrB<`@HFHe{M>iY0|}m%RTj<zfk0>lMm@`+t>Hjsf^3Fj&H(-olBRmb`3OGmTGVy
zZTif+xBafIigo*68nijoI^xbm+r3{I#4I*3vtKY0d2sK07jL_?kpt_hshKCrJgQ#r
zjdVCNz0dmP$6NfzW#w<U_$`^3)e(LBO6;3dkuM+Su;zFb%T@C-HN^5+znjVEfBD*!
z37NVZ6t}NF8erf)E%$(b=7+!2Qxye%btW&{yiOqgxT3CgSCY8n-{z!a52uOjVfeT=
zR@e1Zh9E~yQOml$MIv9y9d`FE{-|9s*KbkwQp;6rP9DzT-V=j1{byy_I(={KOC=c}
z@5@al7L0k*O1DaIrDaNUmS6tVf7y;BLbJN$1jB;_)1A?!5|YyxZ{NETz?mtN*&)@p
z%XiOS5ns8T;x#%)UN0A%2!>!ny(vi7YiA{Ii-7jN`Z=$r&2e1Vd$o0jiQCgGOOZ1V
zOn2`WSY3U5M^xVx#jhNuMrvFqXa0#jx$V|BF@c$C%Qo*iuehjr_0j+X?`v}p?AWs9
z_XdZ?tBr}AzYee2AhY%t4_D*+CmAO<K9QAV|9<I0V*0K{CsI3pAGsQIqV>u2%^p8z
z@kW==WOsj(c}bf=>*VDrhcCD>-qSw(=B-50-dL6C_oY9m`74^vJE(o#g}Y26d*Nyu
z-O@(cPg|ZS7?uBa7iO(!E8e5AX@<)=@3uF!-&ZmS9b(F#XZ_{<F4f{$RxSqHm)45h
z(R!MtIqA4^`P8ua{jodV{^{j3`?>o`|MQ(TWr3F>GgQ32`3`P>JIjONonOuEg|a_I
z*4?eUFh%rtev9z_GkxoX?lb;cVtV*Oh+;1T->$bt&c~-8mwWLy!2I>Cg3}T+H2k0U
zKJ3}8SGs4G-nA7qOzGE3mh{|wHm5$%!e`qx<IDG>oB8GE-SM&)^?PLf;M}JD+vRPF
z9|v}*NyS>7`m46*Kf|=$do^<uOE0aLp3m^g^5ik4lX4wi%Qh^rUO3rC_hgUz+?})B
z|37VF>-(C2vMMIOruF_0eTfG*+}o~I#H}^Uh--b-U2Oea+==77T7A|WH6EqL-%m8Q
zNZ*rib=Z`0o4cpz`u7r{xe8zYd}~eKpYhdCuK$yI1N+&v_b>i1%$c(M^Cf|__jX4<
zR{RK`y^8a_*uFiji|@`emTzlmS2sKJ@4kBP=`=y7lz-0@5A@o3>c23WJYV8WY5DXz
z!{;-<$p+j%VR7v-=f;=Mp6t0{+A-17Iboj6SL+jrF&4a0s<oeGWH@!UCOvy-Ez2=2
zb9xZ3MQqf(Z9)CvNBz^^+Lr6PSnoc*Cjb2pbBAO9A55J%>FVy|stxMOe_92Uvg3WV
z4yFg6e)`hj^&GGKN6{BAeUS~|-)0e$WxntmH%HZZ$KLc6zg~WcZFD%)mp3!$_6<e@
zi8V*RGoIIp(hb|g@@DE;(Py_SI{w`GYP`??>b}o@F0XyXIsex^>d|nn+pV}{mFLDQ
zkL(*ZXtKW2?`G+^f5pvu!KONcmjOHin>Q}LDUeZopffTw_LRC|!Cl64Df5=z>W!=q
zeqZYLW7D#gx6CTqK3~}2@=BU*&H3zg+m1hw=$LBk<+xS)K-%=yCK0D6E52WqPoMn7
z{-fh|zqfIpmlmshy33bndM0kwR=do@HBY0R+s*b@IaftQiQa3OU#k;Sz4*f{&Nq{7
zzs>yeQgd%Z%0c$$ewTCP=J~9j^y%aR5f;hxC)yiWIo_q-%4oDbpjxS`V04y!p4w*7
z5+2Fb-)C*~))%_^)>L`clcHyPv~pR}uANH%w>I?G_lSlIm1R#YZ*#;{hRglDGgGFz
z;eKlU{FJD5wGv6^bfvG^>{n^|P*K0o?Rw46-BZ>*ENWxA-Mh^#=(+fTb&K3ety!3j
zQ~MRZCkhyxj%<8slJd$T@$%dyC!I=5k52e??z&{i#WMNw^8c4U*3O=47{~PN@5@W;
z)|I{EHTLmi_`3exMAg%UA$zz##-F;EGgJG(+up}kQw%pae#qW$$>;EQzsR=V-xwA0
zx+eazyY8h>RLHz{d(JgghlI%@Wy!sJtQ$_BGZ9)NH^JgSoa~I->-|=hZ`V|Q%*w-Q
zwfp7rkkwo6S#sMH#7!y)zo5r7?{?9aZ27r|74Os-O_}qzk10{}?mW-Aa*X~}61v_|
z_G}yy>y2Yq7V}4_@9v-J*3xJwV0|N!QF=+;Muv&Y#rQL4onJajyx*yGSKas9*Svr6
z@t+R5yXyJ|jR*SSd1bQQ$15JJc{5X`HjO!4$GT~n1<%yrJ5|d#4G#n=hfe>$<~oDS
zU!&Oq_k=?}>{@<U?j)CZ<J@yMx28ui%KTr^V(psvas7o&_s?td+j}&;HZloMk{7sg
z_v^0c_6eojAEv)quG8wzaC)t7HrwIwl`j_jNORb`efq*rR>{}rYBkK*de@KHU1sK|
z6Zvc_e+%a<J0toa{Cn`>RE?`YHXC{;cT7zF;yu50!nZ>wZ@I0^ULd9QTlz_JxIpsT
z0MAul#n*Vn%9}GR3fpdE^ZbncpRO`R;s1M^nO~N**~{K;7I5nDdnoYEFD$k)yHv(1
z`|(Wi&RG(XW}W%-oy?MhzdvdY;K)>~-YhEgVBX7<OZiql`|^82)?)SfisdHKA1t@>
z9NQf7^}6_hv#(ZW+g1K~xM1;b0lEDQ;ioM2$lv~X+JjNZ(6i0W_@4;>nu3Wz$0vFy
zUn$tS<PY!m2IHGLu~Y0U7S7BnTk=aFrmFm%H$z^pS<dO*XD@mB{Wuu+;mE_<Err|L
z&l?As@0quL=BLuxT9!{DI8FC+-^tT)_I~GfEcAey`;%*DIG5|hOqwNonP=m@PZl?R
zZ24);*5DkPl6hXQuj#OVrCodGyQRV}Dx$=nKm6Ht@amHfB4>9?bx1$I!|d@q;E9aE
zF~h9Y+A1?@|142+XVCjLF?j#G`_=oUI{qJg$$4$sGB^J$<#<Pb_wR}NGiUex_fL2F
zS#^EIua&{`D!*{E@-2CKphaw@Jj+9Q%M~9h6V9F7^H8zj^xIVVTdi()So|z*ht-K#
z*tlIW-_#m3LHz#reYclcn{?Y6Sv~b$q;<SudfJ-Dm+V-luX@;bxaQjKLoAaI{bFZW
zS5|c5%S+=x*7I{~*4&f~$~ur_e0Yw*q~Nafr;PR4e^2<-=S6E=DfVPIFv<L*jn(NR
z8VS>r&nUG_h>CBk@8Np=mVL*)qlve^mggT#ayQMJm$l*S#rF>;K3E~zu9Gs0cgc~P
zI~~5eO350UOP$c4cKYM5PnH5UM*?rpxYf?UCOPHmP40rlvz7ffd}?bdUYwuG(H6(|
zE_qJl`Bl3ozHL`%*jsi?`qcHW-=l9`O*`{XF;AZPaNUw=;f*_H_RTtRDwoOPro;X<
z-|`xwZDne_?#QpRyzaEf*u|>s`n>0oJ91T$_s>6c;9knwN~^Q`*WErZD-r$QH$<mP
ztD5nemDbPrgRWW+(yafMUfFHUnD@P82iJwqDm^77>TQ1*#btiZsd&>Mo3~nG2A{)~
zjaMh{&k8*#_SbzKU-9}Z_lP?WIeYKuH+1QU#4KX#v)20H@J;jLfyw$`jt8HWWhk#c
zX?X0<@2LKBU;4T-+SR6-DLyux@%F&C_5;T5DoK;uFS3~_9DHtmUhdXHw>)nBRvG#8
z`<ASgtj`G&F1N~<K2=9}QA4$??3cVV21+a(vMb-;oSw*dVDG(8M?#}G{nM^*T(tNP
z>%Y=>v-c<Q)V$bmZS}FnKWqh?6isCea^Idzmk=sV{w}}RZe_g5OY`YoHAe3jU1K(V
z_~gm6{0)bf`MrF&VDGZ<_s1RHlrT^3`!v1rckR=zSTpVhcVnHlFK0g8cv<!SpTNz#
zj=AakI4{dw+1B%8YSyLnKbx2tKejFQ{rcj?s*``CO=UKEiYtYdR%LmoyD$_<@`Y9X
zsI3$a&^Pp0t@O38X$9jaO_iGC+4U!?C$F9*pYc}V!p{ARx5&+SKVfg=Rpx?Ye`Vry
z9!0M3+dh%IET;Pi&#GeMsOT-ZwZ<R*e_=Ra#ja_)iKm+BgFkEYr8TP?PCrd~yYiCc
z-SuVJNv_7szPH%yPu@!2l=4H^Li>N&hC5aYO1w{W3>;5Ietn#uw$6U8#8c}h_vNLn
z55--Zd*asL`4KWJzML?%lSuHlJ^biZdBe}5)f4x$sUB6>V|Fa0`=0UEyll+}n=?3a
zwex2mowllhJ=0p!tL>8S@1FU0m+!IuSz+CBCe|z~=i2*{qMoP)5A-KCR5b_o*ku;T
zw3L=Ow5#$ntT37VvfEz5>Ya!BndktkX<pkKRvNjTJNG?W=0nZ{>591D&n9j>Y~^cn
z<UoA3^|RWbU*|0p>N-#EDv&9-WXQ;9vyX$B&);Ir%!}vxG-j2o<%=mf_%Y~O>4Aq#
zMq8&9XNd^>*>4_p^Do=O?;l@rFw8r<^7#VI-LI@n1x#<7OwHj=SasO!9qV?cgY!kD
z7JX!Y`tDPms407<^uu8HuUWjA0Wy0g9OX8A{lY*Y>5%j~tqS1}xtpDY&%Zoc<G%Ff
z#8>ZGIOhJC_Hyf@^)j=oBVP%z$Y|(y@m*i(e5kB9Z_?5wvmC@VpWdtGcqJeF*Xp#v
z7gYgc<ML0TqA^|m-Akp;&kyIGZE<GJ%BzMA>B?tbo~`vioc2>J@7bnx&wp`u{MTG8
zpt|3FO>oDGIE#a#M};i^vz9Hp)VjD-VZw*qIXjI-WSYY_yB?JK`ts2;zB4IbO&uKS
zKWiQNS>S$*l|Ou$sma`hv+lDpMR6&%_^-{sZhw_$3&+jozqfmi^J`UvSeyEK2rh_w
z+2EnWwdvB6iD`egteNT@?iU$%@aa1-wNu{&bkjxn8m>#*o7Wvomyl;)b6w2)Xw{kB
zE6TQQ-JsYz&-u@TD?X2|$81?2vVnPhXO=?E)Aqh^>Jogbb>BJuYr0reR^~H%#>-1j
z%$D-7mEHX7uw&lhm}`gDZH+%)FAy=a>ujX{k8ry}5gEsW&IkUL`JFiaLuPC0{#EA+
zVy-Q>O}{Sccx!F=ovXZ)?N+WcR++HNp1p5(|JRk*Qyz3rx&OZQe(&9rA}s=oo_c#o
zJnU)y=J;Xz)75g}3tG?ER$Y^+4${y5{djLNyNRX-=fv85Qf?>iL}tC<NL*=Q@mf8a
zEr-?pfvsr8gjHv^ul-@y<`uSXdwVcn#IC3BtP1~5y|HAW+mD(1-AaFO$yr(@?zGkM
zn_72OUqDMG-uIxXh%H}ES;!nl=U)fYvaj3fH5Kmi+4({1X4Q>F%Iggd%w2TidBrrX
z_p=Y`85{}OFmcg(g?G}=-~63?-=>BoT~^zB-LBf@`MVdN4&QrcVeL&%_ljwsw#Ob5
zUvVbwL|B3C-G}oIU)Im~sT1isql7QTEXce&zLjrr*u37Jch6e(<+$CNG%Lnn=b_GO
z;l;xH1Wn53g|B^{>v67g8E;I%to_aHmz~R_mpe!-xv`|s=*;9`306r>zSncFgqq)&
z9wYnGWQT%n%j^sM@1&laZl7o~@rcH^(05(iyEdPDdGfKAiO;rcYy}ZD1>2854lwHU
z&@~oLJE_y#RC7oDhNbM*cIA`VW^x~I9W?a2JJZPU!-iU}FZMqdcLtTnzdK$3;Qf@o
zzMDcpR`zeon{@I{r*Ax<_q+JQ8DC+?)tB_U=WZ3;#U(vC)Vzkp{`9rSt;)N@ET3+P
zb@O`9^5~5(N0h}h4&!%KT<;F`f7lpowMv*(d(vh3e>%%e7|c_$&w6^u+cU^*+njyV
zLjH-zr8N&Ust#;F_i|;X&Kdt_4{x#;xgHb<TGKCZ@RQ1kQni`;<lpHY`Rc*KapCX%
z*RIhU3)~m(zW2~|?v}k_9-O6p9XpxlUJkv@J1^-Mhj)LMfKx?F8t0Ti`M0tj3u@L{
z_Fvj<aQvK+*sJrQ%Z$v`?Q@F5;_qHLSutU1yKhn1k4e@=X3tHQlwB7N$=dqSpnHCr
z*}uZZ2&GH+rp#UUq2uAI%T~W-B$8cOFR?z_UNYtUdEF-MO<SKzsqp*z>*wdo$M5gs
zZ(Kfq#?71OnogdZ?sHHsPvE7E`$NS8t>wCL>x7sEwykJf8x|I{%tlq~dgi@<m)GzA
z{jqkky>n2Z)zV43<Yyi`&T!o4&Dzhd!Yef-?#_{YaKtD4e{geE<Iw=K)a7hUA3mhN
zp0?gH+V4i`zi*cdnq9A66mxrgMw;)oR>aP|%kSQ^U;RVPVef?ukFz1?PTiSbnNV3Y
zaembE#^<&=e)H$`PH$npb0&SI)6+Wd{8?A|4%{qbo174KBX@Dce78fj-{%X?y363i
z_DX-(XBWY@`#2dzO?cYZoqKaWyTD?@eXppeJ+a$VXUM1RjPk!FzD_!5qyGDN%boeB
zPu)-Nk-oP-eYagW<GNSuCr+`k=T6eREX2UKtKLd!{=)T*-twk-x8HW>yZismz1i0N
zp?mexAdf!24||KNb#};gNT=qSN9Y{Lm{BQ~`Q_@T+nvmBew^u3ldA78OJ{ud#aBw3
zzhjfC;o;lijZ6I#_PwodIelXHkqWl{jV5okcko_)z@Ps8rV+!6<h5=S8Fozc=Xe;s
z?dpQa+xaT3Z!30`o!Bkb)_3I*$AO0~)sIsH%quf@xjR;v2WqqZy8ShMM@PB8G~Xu0
zbz&ZhkwpjMmY4rhb&0BH7Uyl4&Hdf}!u9+kGIK8;+?DBZakGO{Qpm}BADlOBs#(y)
zy|h)pR?)8VzKr>S#jo`zyYaocyE64}Rw`FYv2lC|Yq3Y-ozk-TQx_}lTyo0w{p;TK
zD^AZ|{(b$_JFnIs*kkd)b^4JeA+r_sr&<mvo!v2qP5-HX-^v9FM_3=teRJt)y|kE0
z^y(M23O}yA>fHP4srjA5sXF23eGDGlF<#U-VPe%rpQY|DYQntd{<Gy=$x^c|Kk(Gt
z_UNi6?;9MS)C&FhGHvH<RSc{6W_FdA|Jonzt&$eCe_x6-JX}8g@B70+p6lD+Ojc_6
z@UiWt&OfHt`}F7CepvKq$C)x_v*pS9L9FeDSH3Ciu1jWqw!|*zMFPi0^Sf!w+!mL!
z&z75TG{&mr)uXfQ=MN__E?O=*KegV^s8UVsu=ZZpq?Z8^Uydy|4lA%zeK;f6RQfKH
z*^+MoFZWjbxG+!p)0WwlT8fz|E9GSWWna6tTW#Bx!eZaAnoARwZ(X+A(MkDlQ`$#^
z<6Bp1irn+iTfFV*5!LTpXD|Qpe^u1H|LYC8$6@#5y7OPQU7Y;a``DMP2p{X2X)7+3
z9{RQVqk!xulLx<Ah4+gZ7VrMjQlLFK|7(UsLd2Co*5Ij$%M{FoADm9nuKdEw)>k9Q
zYaN_y@_wf@->r2uaf@XW!^OU6WWBrj{nJJ}rLgGD@~3}u{4?11U)Z!~W27A`>+Kb6
z){|C${+6h)V|{yu2<Pu0v9mrLic1PVoZ*XZJuOh3QuJEHecL}Fp>=EiyleiG#<uu<
zphcFIVSQtDYI9(P@&q}-^lP>T6L}^-Y82hsDzNBXw#5{s((T7@{|&Qa3T3u_cav#p
z(52~pNxOJsFStFPY_MPT!-+X_-zNB6o5;nrGL^4nTiM>9u@B0G-)@gucydXeVSD-6
zh0$9$!{3~mY$q$F8h@H=ZCFgt<uAV%O{=S1`EtF&t(u~qi4N~WzOI_!b~5r<0@FwB
zfS0*D&0h8<Y<;@AGMu^a@g%+-t60^`xl)~Os^8L7Ey|bQE%Nkl(9}gi&HhXMm%XiH
zz4*3N_1@d>Oe=IPm3_7p`99=b=E$;V-^To(`Nq%x?*0Dfu*Zb+j}KbUxbCZC^GEKl
zQzJ85pH^+|_uH3@WFK6emT3CcHaD9oI>pmxcCG!2c26gcz=}h`4L3whbwj76IW-kC
zz0lktIQ5WEf67nyb=RgdGcG<O`6$eaZ_k@li|nfVn@?Vg?LTa=!O6?7`ZIIC)k(w5
z-#V<%Dl51Bac3<^pJAGxlWBM4<lNfugJ(5=v7Gx~Zp_pq)bJzSydmLc%nNN>#(>=1
zY>TTNt;^IHynW^!KcC}qe^GzA$oC+PTOT44{@-qOpLc8CDUZjO`VU-WXlUW}oh<oD
z?zDncskKw9iQ78q0;S0Ulj?uo>Rly%TB}m0(L<7%^GC^zm24HiiamWB%a_hG{=S!K
z$HfC%c3qcUk?;OFbWPr$HNmgq6&!nY6TeMf*zU&vDWl}ylh;*$b>Hvb(6oE<OO`tq
z<_9d16u2I8&#$YemgB&`ys!Hsi{hS}N`77(>D@oC;6h*Oo#_S^N1Hrz-({w3oTqzT
z>=pasdmk6(ra!tDt+2vn)$R}v<%;}vb=R-n``AOZjB29~Y(Cmn(Oi3fa=rRgllZHz
zm&HnbJ9;wx;TE^Hi;3pSU*{MH`yITu?RWprx9zjNOfHr*ZIL*n^>X?b_Fq;@*4rF5
zeYh|rJe)5-P1h)>+#=_9O4-yOS6Ypx);yXcf57B+sD;kq3t=A2J`Fe6ezC@0HMkSF
z*Yo}PpKm`)o$TX0|2pCGB-7QijLS|Z{-_9Vn_9MQLYDvE3t{S?uEbu7oqMZH<j(v>
z_8hz9FKB1%j1dZcHbpzsNO}RA=|ySzlh<V1`672}g}(iI@6i2LfmMa8kM7ue&B*&j
zV62e(+sR7)=kKM~$*#IyBdVx(>w1e!NPoyDn<e~h2mOEDf9=-zt8roZRn6xelk$Iv
zKA0)s#BpBxLu2pv-WLD2FOID~`;4Wbvda4s>xCPAYEK?HZ(V%t8CTv>Pv`2JYu2BU
z@sBTRl8Kx9FO=~^$mhMvbG8(wZ<AcZVrjbQ%ai2`W-k5Ob~98c=pDxdE;c78<M5I-
z4}7`~u>O6|dWAu8d05}ui)((e>qc$O+sv@cBChXFJEO&<1Es!=$5k`ZFR#56?3BCp
z_lIj1Q*3{(4B?-8&*1dSEkAF~h<{MJ^vP<?C7JtL1KC)8-M>~`ci6w@UR?3=DFGkt
zJ|sA4`dh5i{UtH)`L?I`oHiW4R=14lqjXdyr{b6PNa-1g>rZ@ouv1X(<TUw^gSM7z
z(}E1LKJY$Y`uLFE&+z<vxespaTzyz^!_IbrpObCumag4!bDC)~`;3g_a(Rb426r!9
zl}-zuJN56aDLv{B_Xyd&>s=-gvn_71q)vIn_qjsF_61h^1rAl~pSc`+Mwn&(%?l??
zGLoaqf5uBlbbbjq_~+Kw*;_N~C39w($vV!fHoBFny+gTq@<~DMBQh^uthgtA{N=G3
zRgrFrEn7I6CN=G;WqEkAz2@_dl<YQ>^R*j7>&xCO^pbgE{zfF$?bK?AV>#Ek@{Uh@
z;xwu1zQ5iahf|f$P2bEh_%V6fR<EpGFPIH~Eeq=Y8f+i2NPW)Mwfh4<+_>=1K6A$3
zoXuA@U1ndWZ76j=;nTw4myrjGx89YTYBu?&V2<I21raGzS~asBJ~d_-vER!26yex<
z>c*x2d*kb78vSd3*le{-&n7nO#7Cp8fr27;W_JmszkL%P#bH?H#=c>uXMxUQM^EV+
z*#<YS1Ph1XtkQm*+b3jn#Fkh0+44iV?uxz}1QzM2|C*HMP?ODG8f(&KvG_+|T)#tY
zNy^bBlQau%u5!$Mm@zp_$51NjmiCgzD;KK8Tzs<sX2rVZfbPvlGXkP}?WRhx%{s~T
zuQzS7iP^>j-;<1X9u7ZPB5ge<X@2&K$rgFP<rho{`*@f2ysi&hv+OfQ<rV?wGe`SZ
z+dkD=kRA|YD7JO##*cC=shewVHr!vZt5(U1@jgpJc(CfS@3VcEB~P1_`i)Iy#@jF2
z#%B9|E~}5$x$xmd!is|ngq=9n&;J)|_jmXCsH-}&PCi!ovU%&_rQc>)TlM}s$RJ+5
zt3Iu~HDtnHR>fzhtXF=Sp7-hUaTAfGyx#ujdUt2rmj8~dw#i#;W@Grz?qrXp)VdpQ
zo^R#jS{jt*KB4k~ZNq{0o7CgO70(v2O`XZ={kdYt_2sdL%ezhqt-mnkoxz0-Dz_^c
zlDs(;mn@q9r;z!<$K=JS*+(tDY_zpGxqrf=iXVJOHy<u+=!pE578~qg{f60?`DMwY
z;x+RgOvtl7V9?y;<NomB6?L8|r@lx3^r%<Ky}tTst=O{ZYp?J7KVxS$e@tykwUFvY
zNw3q&yZ-Fi9>}}mU(w9D)0>)aa<IB|3mfy4vju;hSJbX?;PwIjU-xUv4|f|KGCtj)
zkh}fk@#S0IF=!=yUE^QZvRc#HN$%yfi!Z(ZiLtV5_20M5DJq3?%Ik>?)x3x6#Mazf
z@>u-7Z`_8%Vf-T2nQV{0?yJgexuE65A;=}LHQ#4(j}ym6u`g36hCcFKF>w>$>qC>K
zbib}B`u9O7Vrk3PD&?81-V8f3%%YZWIeX$*nA)quSC-_<omL1+K3u_)ws*G0MzJoI
zYcKZwjM;Ga>`{sP67QCL2veU}t^DCiU>XD0x)d9R?6{~)FP_)&{eAj=+cd`;D+&cx
zho<nDp6Cm)5UH4JoZsp7-t6Co*GfC4Buzf-oZ!yn7_Lyt%{Fa`(X<^+(ncZ)lT6Mh
zP5UY)kbAetUNxn=t*!IEp1N#}XnS<$-O4xZyMN7^@MD$cyF#H7ua9T_l>VDNxOm|E
z-C*fe3H<YJa!sude}4IjxP;m*r#VY^ye)pP=a1WK=Le3DqO14J+x)`PW5(LrGy7WG
zW52pb8oevHmcdvYRJVQd1iQ;i?pJQgK9+78BlOYTk?q#JDzTLpFZ^FuIjQ^Dk?*2M
zof9W4jW&w$JvPh0wc^k6<$WLOTcf5YFFVEj;3|W@qDyN;#tXx*H}2`K{`aHw5`VLO
z{=7r7i^9Jq-aho8<kitKi`H^=*+qBm8g1;(xhW+&=V<imug_Y=ZB-RpPE2+0*t_A{
zr}dGR*91Rub?<5GFNtqEtakS~kG&gH_-xMm-9;^XFZLNUl&;J>!|Ad0*IC;I;v3&5
zX{XLvs=DNyqr-!z$-A%V{<D>_2#BkGy6)@N8v+$N`@43E+gx30a$11HbEhWPI))p&
zG%SycJMUQ?Zs2)rX7-A_mXArf|F;NFi#v6_<ivb+Ws^zrE1zc-isY!>S9=gz{&x1p
z2UZII(tDMkx*vGYJWFKLhihMMFuzW%U+ne!tJ^h^j78;d?+P;<QG0x3rc0yU>%$7)
z4sBZK`}I(RhkB{<o7JB(3*0_vTuXbB*-*cFN0bQb><Lw^46nb+9TY2X{5^{yAWHg9
zNAc=oB`cFwy*lxq>(>drOF1i+{<aai^(y}Ji+>W)my;^4&#wuLcl}heT(8FC^%m<x
zB_40rF@IdwVX!ViKVP0DPGXtrX#+d48-Jz=IL%rrF8zPzO7H8(4=lBOdw){sGQ%oK
z1NMX8^4Q`I&pgJevq@1T<)7W_t=WgdSBJ;@UZ~l#S~BdC=ZlGL?laidpO-tp8ScGs
zg3e5}<IMFlmlWu27LQPD5qPxryZ!u)Z?~zf3ZC+EcJabzANT&5+r$6%`i0={k&D;w
z|D1k)(JxaYo}0hcZnY>#b)R=>)nmWj>g&NA55J#VZv1Uun<4Y>`is9WzkirCOFqTv
zvGKbVKeV}uE`DPy*xou*yN;jd@q^#f^36YSxR{%-d-3^i=2?!M>>AalC5;ProsZo1
z!l=~FqbK_5=c~dBiP`L%mzT<!*6&+5_ej_`gBdC9FV@P*iuqnz`K4*=x@nFFwOs!*
zCLN!7_Uw1<I|g=tzTD;6n0DsnpJ-oOZt*AFauMw3RM&DEo6arpm|PH5oG@=`cthR_
zmh-DqO;jt*f4<%L>{jc?_fqS%xz&#9Obd((fAm`>R4|--VS?oRiGc^?KJN>acj{Rw
zb-vp6NNvipT@(Cn&+0lVW^-Qhb%>FP#9xL}Y1t+@S9whjEL%3&WMA5KcQw`rXRqYB
zaxkoFc0RMqPAu#G&gk>!?cUoz@V<SBZ?}E&6b+kqK8If)n0)S8xjJk7!SJ+Gd&8Xf
z+}s+*y+h~zmjL;B((QV2yp6kNW~B2fwxmxM4P@Y)Y_dEtG~AV0VDnc0UmvT^$U3i>
zwB?ZR$-PVgXE!B0eOoDDHcPfX?zG~<rkUKA3N3T<irJj>7jNRdB`8*$<@hKuXWDr_
zra3x_OZdMr3T)ey{HyB4zZS#3uBGcHSotxl-`iNS)k&jYho$u69p*IKxw8(LN(Sjx
zrU^M+sbJ7bUVcVUpt9s#`qbVt7G3{k_#X=EGqRk`pZ6}wE|g`*_R5&*)aqwtEQc~q
zbMMh(tjT?O%aD6z$dbbsY(<5x{&@S|HvL`eA*u8KHhwsy;<hJb^`4)BF^{*UP1=3;
z{2ICEzUi~e`ojIIh0m$o(>Qi8f7*J!jWXv9oMp_<#%FSD&*3|t<|I6KpPU}E``gaA
zxs`?md*(i#BzCL$vi#RIvG-TT7)};&IwRM!**biK+qvH}le_IVmTdiIxY0yYFn-_3
zn@-M7PR?MM^+)~R7J-N#``H#<H~M|##GOsGTYtP*@#4h`{!LtpA&LhTO>J5P_V;yc
zUp?2X_nQ3H_0P?@`zO6kTah@;X!cI=;I%*dejI(79`;Mv*~jUBR;B#ASvU4YAKZU@
zS;pQpbMdoUoQiGEJ8tjR+pWC!%7^aNtpNrK`6d(9%0fHmG#xScd?|QwV45Mvb2)3K
z#wTy~#tJVpG4lER-+fE^gG&oq^CSYSbuW0YeXp|Q0pFQzVqY`OOfJ{1<ETD$E$`yn
z*YeBsZ*BO0=d8T$y-?}6+e==ax}4vCtm^yCKWg`!DpF6zE^#@vy@V?&t+A7FPLsE$
zi2IDATQritK60()zJKG!v!om8hcA8+=zaKjape2m?S~%uK8!AYStJs3O5V+}=IaX4
z)#V!7jCaah_WWVr^0IW2cV>tq>z&zQug`8!DN#P7@+qLeP&H(ai9C<y`{WsGe?JmG
zn>;%-+?Rpl&R_5Q-*wpe?=WiL3*3_U>9XC=lG|K<$KEr}=w*CfEWxL$#hraX_qJ|@
zn!2W^+<GH<?=6-#9@d3smxOxn8atQmN;8Ww&h9s1ms6iv{=>fU@HTdaHI@ng6l3S8
zZZ52}(RU87P7U4A`YOzqS0v^@yFl>8JFRg7(ZTPlTc>Zhz3!y@soNP3nxsF>-Pt|=
zuxIMd7Xn^VEcW3Aw$o~&UA{^r-(Q!N_@UqS_*o|o#br&F@^5s`FYMc!t9ipk@5Zw%
zNs%ufY!VJ`SH15%BR}L@9Lt(b<^OIjEY3AcNs{6;oF(?LO?llkN5}q)A1;_|ZjArk
zyRqO(!S-pp-*1a}kZWDdp>pHQ0UZ(F7*6Zxpbfm|?XvWCM{%^OyjmF`d3@>DoIMsi
z4?631ZA!W?cg>}1cTT$0%b<b-J|DR(o$|G3IA#?}-gus6C?a(7<An%DjnLT(3%}Rf
ztqusv^vq?scf45o_ICZxa)O+jeNL}Ftj+yyA=k=BbN4btbE(D$AGGwC{h(oAVQ{Cs
z>B6grrkffYsL$aj_`6){TU6$i-Ap#dvB_TTYf>fzdRQI}U(q=E{q88fR+U>!7q@@Y
zo%_MHo9my__XCd^j^w_aa&bkHtWJyk2ET9z+v7b8uO2VZzT3)EV8beQg!%hE35z}M
zi;KFhZk_#M=|1_>*}bKI4(gwMnm3cX{cZW@`P>Juo|*Fd&NNfARZRj;9oy56Fsx5o
zd$B^`u1Q^})(*D$`eN_){EEt75-SsUqvq_H^2P<l(a-9xugw#jy**7;c|mt(;biXu
z2g?c5rt0`EYh!*m`@H(U8BZtg_db~UBRu2d(UzsZ^J0JBjCo?N`}OOwMOGh<>^iR#
zes!^Wi{$UBX*ao!EVKE&xyi6~_c`0;OdWQTJOW>Wms@X$uIyiGduzSrF9XN?6*o(A
z)Yi5<t_q$X^6j<n#{-$(lB-1D9A15E!G8J7`iVRCH#7Qu{~~PrU~6k=XVdP-p(#uC
z_FhW9{pG{Y#gpG`=lUA8&{C!1Pv@gRHRiapYH#|l=<4g8dwo$$Bx(9}5vM)EzFQt0
zn;CX;Z}{igaWnsJ%q^_GZRfIhlm4%lkF0O8KYA*0oA<Y<PVl#$Z}KKd?{}pAbGlN=
z+y0qD(PiE55AB=cd=_7+X1eoh@8-3fGF>^0Np7OAH~(q;*4S~!@QrM$++^l{#)}O6
zVZ0UYi#M&8XZ&r<sn~Ko&LYw5>XfG2%Do;9%XxFwy|>j7x)Hi*s@e|rjqS&-dHbiQ
z@Y$}{+OTA$fcY``x;5GvdrX^e{4Ja!;PmHCgiXHu>l61xWn90d=C=G;f7|%9>88E0
z3+Jql>Wx|(w)*Opbt*?TAIzTlUeV>u$7XhaH*5bJ=5x;-Jdm@OdE=~$8)6^-zApLb
z^)3&+)+>Rw3^Nww_l7=xuubgN(fVVr_AYy0(_{E*=gpQAs~^?Hrv6n@zZuTd==;@c
zkKUoQv-U+FuZ#U*6}=<-a&<(-&&Ilw3oIUF-S3K3%iFiuOfrGtc@~G_5e8MZ)-xuR
zJZsDf!ljs=o3N|J9Z%S~=%+__N+hq$b@R{P;`5DGIPsnRy{c~Ns;k-8R>dxl``gx=
zovF4@IpOIB>${I9u63DuYO2=0*nKfGFD>;F(+^XyJUokMKa*k`V=!0C;&n@ZT8O<{
zwti1;K9^`7!~P!}_s=iq%ZSu#7FhHuHlb>_a@5&}E05kcJDvZJHA-TgMR-)XqU77-
zyXO`^Juy?+y)1dEw*EX8Ha0dkJ5C-$pF2vaC+FMO|NA39MKCFT{c*PGX=!5I{#=SJ
z74O{_zLJ|4by0MV|9Mu)Bd_mCFWF{na_+1@Gt=!~9T)un3rc5yJy-Pf)YRWur_Ia7
zl6ogU@d^GCIx{x)wQ%Y42d`c_TU}jwz4FACssHcxT$t+4ZzMJItb)hphBHzO{e9<5
z&ZVq>@U4egZ;D9%d&3GAKe4SZpY54`IX8(V+ke-Wy=tb883i9!KPa$K@%$Wr^00n<
zW6ib0Gw1*NvMaIi{?kd1HZOJJPz?KWLF8`y@9&kWt&vemDzgRDpNGGHuX&^~zDQI*
zY)yrnVp?y9_rG&G^5yxD6wgVduL=DygZGTi+{+0TS7#I%DHfdW*Db1kw))<-|3_4J
zuWx&`|JtE-@1qT$&hC3JYACsP@xu*iWv`co|KF9=KX=*>Gq>NnS+`u*e0P7_!C!}W
zf1RblP-=d>YdYJ<NM0Uuy}!QZc5*pC_RTzYTt9dv+g<lFzfvQ%vn|zikJc1)ZgSfn
zqQaBleb#QbaDyt}q_~5MPb5l2JN_J;B)&Xk`xei@xt02iJIn)5I;QzNi=B`#EAiu&
zgI#~_b?w@gyKafBf$!%+lY&+I1f0&WY@HOX*{isBdqUsSKj&%_HXmHI;m;BVhPZ#<
z=569Nf4DYSAXVy~V-%Ob-lSuV1#ca!e|PG(|9ty!W7(qW|6kYY$vJU+<n?6CUVS}m
zQ`lb49`+kcyUoKBURd_F<&<XcJ}j`D`4i7hcE$HIcZXzJA83q{ORfG>Wg+z7=8Tl-
z&m!fVtM7`xedxGMq9gX&F@KK0JZqcT*F8EJCq2ttRryseM~(CUz28?DR>jWOa9_Oa
zN9nD33@lMr%km3^9voQleNXFq^>l`$>HCuRp3K~ExZ<Efrr7-T;blL3Uzba7*)a3d
zDev1UJ*svL53X4CE_!msyfRjIvb56P@4MYHD=sKVZph!a{q@$hOIBZgD8?XY-4_0N
z&1N&kgy~zqhaP1~^6~eovHzuQIP3J{dJ}uE508S3{uy%lrQ1(=SLytF^*zb#Mcjb`
zi(d3^XRNST*(2aov0c`%^5L();_{hu=bDRLz4rNCdH8RB$xWF7r)P3DtX!lb*sm;h
zDU9>}HE-vJjzCG*Y3E)qVqi-7H(6xPDgF;TKfI|Bj5`x{hVM*Z!t}JRsB0&jITSzj
z)inuTOcn~=akT1xYC&b!(KKVd*4tvmu|Ky&7zEFrZy5YL_k+VWd-sE^SDH+nI9}fU
zKK1DSNUr;gSAJKei8*n++#6cBi&5nFlT!=Nb}#p>;k%PR{Y%rNQ*~Sag>G8B=1l5>
znYl_mEuAa>Xp7A8y;h#Bk}JOF5J%7>o`_{PYAgQiRa+L)cJDbui1aR#H8C2C^J0FU
z_hI-p<?{a1i$6`M?|XM|Pu8kTFFD@1hZGMT%ULG(JwUqsO>jZ{o>OIWHmEW@cz7<}
zZvA9u4#jN_so|%e?weA>vfV`UPM2>jtANQ#m7eIIdma7++>ZV_mpMjvdX1}Mi-2$9
z^ba-5SG;|zy`$@v^RzjgX14-tZrgu<eKg_t=ZWVuezUB5D(qBY^4p!aVAb-SYo}Z>
z<O?x-pVd8wDeQ&}Z;o!xO&KpI-RS&)0@1@l?O{JYws!YPNo@Z2I_u$`sa)qD2IVPk
z;@ic!tD!UP#CQ1(H?D<cvpT;KH|sxX^YPaF%x!DSHFk9IHoQ8vOa8XlcL663&G^TR
zpZRRA|Ebv?qdRAIkR`{t=R!~Gx!Ehe)aG%2m9lMad1&@N&ph(_2kFal4buybeXACU
zIlTVD^(!eB;d}M#?$$1x{`sgUcL;Y|@Xga%i;lj_Pd|C-Wbqa$x!V)Z>|4$CsBTN-
z(&!iOUgzEq`?kZWNvQDJUCET|zk?k+%AFt1sBacfNSgQb4AahXX6yT#mOq^p-uQCc
z_314FNs1;LmJ73rUtl}7GpfzR_3rfo4ex%79lv{L#&lX`u{6D6|9#F$ONJ@zrl!CC
zQ}&X2tpi2jrzcFy5Mcam)XTIj+PAX)-ntoQoj4|zrZH`}xbCJuN1)4D<L+fjT<;v!
zEYe?ggdA*93*4andj5f$*YnhmD@dNMR=&53|4wG&evj;h^Z%A>T1<Vuz{+&xLLto?
zYDo#v@9rMxNHKYryl{K0?)JtTf!qANB;D2LHikFv?pi-{_U3@aTl;TWZrPL+I8{a{
z>GFoNqOLjTx1PMRrq*Z8R_(hH-`FD`S+}SjQCInEe(>;p``P>V@84hF*8RKb%PX<F
zKl(c2zwHm7mA`v-SKjKkzpX{)^tgXs=DSs{L;u^`o4-$Ny|lynPpqv#oa%hZL)udk
zejj4<F*18;{^ZUSwOupUb*lY4RrU6|TS4H*Sq1f<zD7u`_-n|&^s+~{nbF=<i#uD7
z-p;eVk^XCn_LWZpmj(7#S12kjd8oBxuRvKw{uDhewdI*CEAK3*Kg4)w_wFbWbGKhL
z`<7dLObqyBdh|K>(HER$rg1yhuAe@A`u1n__u}H>?zObGwzamlwswA>omHZlxO9<N
zxzMBg?_~c8-2cC3r~d85XAD`J-v03xiD@lAyKKIQc+$`7g6pOo$z?Q)=vtTVk!Ycm
zem=j{lKF_~E}ovx0`-o$Z>K)o;Bao9h>Y*Fr3Z9XTh^*3w5{E}_O;57(>FGMR}pRb
zC&{$_HkYEUT2OZP)6Wv6l9JXz1x$AjE9P}<nr+sf)o?a6-O*anWoy{YwL7D>#m3)0
zbydY{J{zBI$l<S>oH~RycvmlF&)FEM!D_znN#+Cd)EP6Eu6-LCeaJ{L%Keb!X|V%q
zugGj(x^dS;hd-JL$zh5uFPN20!<T&iu<vb<<_=D~;Kq;ZrYW7BtT^SxoA{Lnf;_Yo
zU0Mq&61|g)w`93}{XWb2tf)bxu<cgCIbm^~nG@v>n6DF4I%~{5jbXduy+dy1-)kLm
zyC1sUto_~;`oSl?ajSfQynN*L)b)=qxaxI^&N=0<VEO7+kJnS$6?VKalv}suRQj@}
z`+*EOyz1Jino}$kX1_jX-pJln8!DBmqq3!NtH8VVTJO!wUtKH2E+*eSspZs>o_;=7
zv<?g=ddqVwwrttc&avl4P{__1OrAEYw*K9)=vnf8`{088P0|Wy<rI=;$ro*v$egWL
zAhJk|pU=$b(G8szfg}}|u(>J4UtEK`cxM@JtN-0~YMsv6M;nC>z4?4Mz~In#*23G2
zNpkORF1Nq5j8oCYdcj-?mi-#q`%1dMmsKomIqokyxiNi~LCy90oI7<#9@OpCXRQCp
zp}5NJ(08XTjCz{0ew270Q~t1E!Rn<Rm!ItA7ASNVzWe*e^|kdk*#EpyY&r2?BFw|7
z;yioA%==dtY3=C95q}uv7w$cA*~v@q7p1A~p0*<@q+ZwNb68%TR9}`&WY%29LsNb3
zzMQ(JJYmx6R*%OXTc;mq*mI*i`0?JNcZZBc8NQb$%GlO39*Wgk+QgkXbB0Td;?pNG
zRkwRK-^gAo7x!e|dZw^lAug=qmn7SEu6o~exjF9b%u74BShsqvm{KFUxx(b`gb5aV
z9?8wS_3L=c`mN~~>+bJmlPd|l^6}*~#}A#^ReJkX4CQYqZ#Q&Wnb7@x87o)My<It{
zw%?VSdVZn(yd~$pH(vk0`E081!(J6r_hl;=p0j5#yjAdb)thw_4o)dLKXK>L@_xou
z_dlPwv&LywlHih(iBq_^WLP+6&TxN{&028CR;)L5Uenjlk9%6V#P#OfKY!f%qrKh5
z#X4@&Kjq)r*({KB{=(@Z?^P3)olrhf{QSGsk6J~h^nZeSM=rlTXzB93w9c1#-HN&T
z?TSDDoz^}Vx$DKv<ZsJ1JEoP$$e2gRullpUnUmpql!o-CFXuEvzPVaYZq+on=l(g+
z>%p22fB576{B`BLZr4BmaAmjSjNP-P6ByRpo2`9w|Dpd{*V+r=U4>H*F~=B8?R4~v
zGnah0?Y+QT;p(GH9pCIau>H`b1sy_8E9C5}etdYi`1r)akA)v^?*DtozoR44xHrk$
zb86I<6^kp2@80|P{-8vA*P01p6F%)oI;g?as<Gg&MD5y|lcm0`H$tsf3*>*7ddig9
zq7nG|!(yNL{Gx|8$@W~&T`~WQ>Gv%f3PnYFhod|vM_l>Fs4Anf)=BEH{I?woZkH$a
zy(`|T(GYoP^);Ru@0k)?K2-Cm$1}aUCieP@9sB8$_#)pvmPN}Xm%Nywm06xtkR4X+
zTD*S2Vv|2loAP$QT<-Ob<IYKy7LAu$zdNjMvA(u{AGJck^cK5;>u25LO9~XKmNl|(
z$v?mOl*+P%X;lV?S?|gjahx(~`%&e@F_BqGdWVCQp~$?+8x}RSo(@`_%)rlH!Kv8t
zf5&x)Gdj%-ES1OYg4GOJxl0-Z&%NKO!17|X@at^ee__rc!q2;vuQ@LLGmY<<t<@an
z9e3SVi`eoVIj6fIe(9}G5e>%7Q$2kS^2A$fJuf-t7RI-GbKBx|iOcTfOS_ntci4ng
zdbBKk+%qXTk2&V$s>`-s0{a(ih~r)PHnE{)Yw46?L)Ohb?fg&jP1Dz(4J_C+yMHOy
z{X>$)=eM4>7s!rQiIdc1_<c66BKrU*!?~Iz>9d7e8&%!k`7#^~=90d@X2F7|<<*<F
z-Ew-LvDWP2%M9*s)%T_^+`p5XyK(0x?kPNPAE;lx<a2kMI>U<Zrsgx2H0@aa{q17$
z16TEpEhAi7x133va69;3veALfN5vVEre8IczP(GXWk$5|JN7yIQs!{UONl;xvCWF9
zq5E*Jve}*M*2llcbFq|$OzYwbo1oY9l;gdo(&MTG&s=`Rz55+m1vX}<m|o8EZd|&I
zdCwu^9m%>|o0TnCeig3^$vdLhyZ-axlcK)a@xDb>d4B|MthsSpJ0ex(&ZO-}_ozF5
z-TKXY;!4F?OBZKKO^p$6JQ1jt^*-qP!%o$yyOKZj8AULk+qHV4WlCc0=6OuZ1G1m3
z>)G76A?}pRG`|nOvkv~Z)5`w8<ce2s)UgkT?6&^?FURpvcXF3e?Y38(1t+&``o19H
zfn)mP_ALiYIkxFf%+ac34|`e5`rz0XwrT$?|2Kz;7I`eX=9@5o(H9T(ikeRh4L@Gb
zuKTxT+I|72PanQ~`uO$qi}b(8HYI*&t|_Yd5U}}-QP4y0rTR{S#$Suic{21#<)1H_
z+r*(hZ&u}>ycyG*f7CjAMXub>+wh`Vt3&RITwNhopIcVl!3)C9OZ|TRN%?-pZtJFq
z9mcnPBh+tKso$PIOYi#(wNwe#_?df`|KW4EdvJxx>AH@;M<V%@XPPzcs<~9Y^71-^
z)#g1j7X2>S^_;i8bLj)WklD99I5rlit=p7(dfG?R_~!?wuKsv)bNcy-w!6z~Vq(Au
zM0B2d6eRomvv>OX$<`0b7HoW8ce<6e#bU$1Lr<?SD-W^MFWX|GE9TT8W_-FUeQ9sf
zil1vUwU2a{X7^bhTyOmU+A1eg2mQ?AP3vV>*8ODq`C0tLe1qrDS=_yrJ<t=Gf5nxf
zu&m`-z}3wKH#eo8PIKX1;n<rm`C8C7{wl|Y_4}Q^zPh$rp+z9DJn#Ol+Sg?h$~L6_
ze;TZKs9n!U-qg7&M8Pb5$xpGp=34~qCH15C{(Ga@BGCUYuGsILg^XLs%`k^O@3v_F
z?BaSkb$i-T#`4_}_hdXOrRqN)-+2Aj*W`=?XRG_?wY$7Xa(6Y`ve>x)Q~bYDdF4ZX
z>!q&mP5Wl%-w-=Zl#$zqe~FN$pm$H_tGKM)e#M(=Uq`pElQFh!ZP+e*v)SpE+GYOr
zjSCvZ&dv~;$Yq`%wm9XS%4D^Z*2&xMuy&<x-KqaSfBT+Gd}~@R@8_Ab^K06kj}@<T
zQ&(P<5{uen!Fp|$=DAzR)iwtr-P!*C6!UxPw{MnH)zTNv3PnwCl~ql1uJSBh@%Qnp
ztWwQ5)hM1>n_tiKvOe+8boynb=Wpsw1=)<;J|B6caOT&YpuA6W;@^Zj-<k2`zOv?#
z_naEWGn-PYn6=NSMwT+jP5h8`dPCH*{@wXI`P={Q`@do5;>eZm0y>v!?y;@a*>+F-
zT%=Lw`byCq5yq@Wx1H>7yjZYI^d3hM%YnT1y-#^HIiug&N@{JCe$e#HJH8_`f9100
zl`nE%E_#22<w1eC`=6!v7!!{D@OD(3xM_XD%;GcEw+>qTe)r)|yorGOoV1dP|J+%d
z-F`T61j;Av+wfz0$X<>QIW>&lqCr0XH#DmkbLESbCe4}ZnWPgjr}NC`i;@*Le(A4R
z^z+?bkr@e@Dr;G$rER$~&Hw*u2F};gr+)i=+`;!XB{%RP?~>R@U1tvFuw<LLFPjp2
z@XVQ{h)L?(OeB9CZi>2>ZdP!yNIa;yl#^ll?o*Nrw~E}Tj9D>(Z=#UJ<0*Z5LizU}
z@0Cj9Qk-=_zccmzip16XTcvlo9C%$87NukHPx8RpxKEa^D(<p|yGRCl1gDgS85})4
zq37X7#r)Nk6C*i3iv5`$a?6r0FMMNx_s;ACCE3m=mY*(cF#a?*wxs!T*Zr=h(ykfy
z=cmr+4LC9HSNuWHlwTvuYujVJPHR?J8m(vIi!Qx0P3kZEALZGydycyrn1zZZEjyF9
zmMe3%)`#7}R<qKVAKN`sujZxch43s9Yu+_ya{j5kd~H#2PpACeA69PhtqI?C?(uJn
zzMI)Pt>ALX>JxRlpXIii&uKHbsVUprD)#NlcRsZ<;T(ayi+dNp&v~#*HT*>szcBB%
zxTqq%+*M6mpZU7JakpZb+r$0#+H$Qu7q>LOpL5aw-2X{ITW%Z+>Ro%>>BpTHUdOKs
zTs?g#cW0Rz-{v2EVy}2uC9<ZQOv_}`?m2xR=7xOh7q9HQ-;Qs*QpvLFRoUH3Y+~FK
zO`8fPKTTZ8eZYu2^N`K{dz(@(x0Tk*GltfF4qfu_yrJwK%_GlE9gp1#c8ZyB!S`V9
zN)B(Cd!5Js3n`p9_ae9M;hs~9zYa28&X%lWkE_Y@-Kk#7T$BHD)p`GdTXvN?n;6q1
zpZX;C`s8Zw5lm@S?tAxmt?U8E-D_uGb2zfaTg+)y89zJU6!UV=!_N=!p60yUerWwS
zu9U{}4ByHxUoY1&d>*%8LR}?8sO)X$y$%8X8}3j3G}nW{Z|44}1YLpun_XwG>SSQQ
z9sMF~7jx>HX(w#zPCsUh`}^w7gA%UHj>Zq`nP-33FpOe7KYQ7edyDoTWvJDO{r7;c
zp#IVIx38y}EWUBxKv(3!!}2s{EfHgj*M7Q{ZTFcH{Fd%|TBL2cK-A|$Ekmj7rBBhl
z`yxw>m>%q(@@qrrPG1kb?r`It?yD<>*U!HAGWA`(timsT<6@uMnZ@fozlOhH`Yl`)
zer}rRJ&s=oOm^P>^46~Syz$-O<#Mx~T4#TW)VRicaq7L<KQd->7ipRPb?4o%d+Elt
z$JN_D3J3RuEKFT)*X-^)b9>F@$4f47ohn(Da3oW4)5*Kf*65ece;2!N&(XT#CvEqS
z+E>52xOInsQ;7#xT*jfb%Tl|ZoSm)y-a7T~cN6=(qM5eUUOX@6hMMG7WnU|5t|)75
zt;pDI5j4~4{nPz*@Ba8c-jEk5E<M+7{=Rv}>3**r_lsOoKAO1ojIWpDf$rM<-&STG
z6w<QndzIGu)Yjpu&dpylzd7${J-kt;`5nWa7mMuG|K)Ao8-DDU^7faDm|X8#l^5Ke
z^<OnBM(dtae}Tt_^E=%Y?|u-=nY{Dl_Qd#An`UGr@#J&ls2<7S(3|&$SMoc<^<`H~
zcbk3vQ(%7}%=YUqz6$M1!zE(-=NR#AVf}J7?wus7qHufN#jU>0S*f4WXU>sW<l=a+
z<I|>oqfD`y*{j4}9b785_j9VKQ$<cAx7gROohdh#Zj6n|`WLb8liGvQ{YT#3WEIN!
z5dPE2dQDv3&vkJJpZ$-nHnx~|Wb-?j)s34y6BRzY39WuIHNfD!hJ;df^Cg~u>E5xz
z<$<sNr2NT$wdV8MN7hePNIjUg(R9xe&5Zvd77<a=I}TT+9d4V|5#HQ5!*%{tKdA|m
z-e3PPTfk{c1(VJf;YsDs=KSoQx;CcR@XWS{{=pv8V+`i|svfO4!_KyJ(?t2NMkl9m
zw@<pJ^}6Eq<*yIbI@AC532b;*@4Kn{O+Az0{md`*mk*rE%a^FpY!R?K-B{Tsb=b*p
z#j36|+zb_BQfsGgS2kLoTR+EX*Wx9vue+u^+$wTqrP&ePrntJ#uG@Amo7%5@@WRxp
zHDw%kVsEcIX`9d|;MC#2c5UYD)fd>LCmv(E%`1GbhX1+L9n-sO52{GFhIo|MsIPzB
z{r&!g3(8;L-gy}M=(%p0$~rmb=l3t(E}Gh<s2F6;rItQ#q0+)00jH4W*VBT|RogQM
zlnOd=Tr}o8C;jGYjb66eI^(R0vd@=R9<JV=AG7z%_nVj5H25xYiCLsQE;{4(ufZZ)
zFfZq+ktb)I-{MU_=UjizC1Bv3o}=`(NpoKQ_c^sDToLb#qoh|K*B22|oBiaJs1wIS
zQO`3q9zP;D6kYruOmp0GB`WK|38jRUM(ad!4k~w98<~a2xNd1RN&Z$S75b>>%Z%mQ
z?nl_NJZSv3V4bkdm6|WVqIh@zyVg2?O_}75)PEhhs#|`_KDxFhYVR)#hPLNtf;<1_
zi5bM6T(mMl_-MlBp0j5sY5#wlc)?d>9_O5`kI&utTXy^~i(-pF<opBfySU|#Gqhwp
z4*&T_f;($-*qOBnQ;%<2^7mTg;t!TVdlzXp2$pdyov<!b_w_Q{XqLcFH^kpE&b_3_
zpR@J-GowNmaY3gJ&H|mx$zkR!5_5lS{bM*I?_JsZ=`LyCqLy5gi~Du3#Bpw+^a`D}
zr{MtxD(^*K=*1TwPMl|>o9k<IuHtyqGo#Nw*Q0vZGMA~olsRqxWa_-LX_gO|i?^R|
z_isHByQgB~qGwY+-|Tlf<DRCcp)q6O1K)}iP2=5vE9{#toebaHy4CZcbo5R6St`*2
zR|K6z?73G=SD(lJOfn{Leb}>%4)f)E*RVe<)iH~EVAK+6Fe@a$VA%`X9rO20TyVCe
zwLT>)t1>9!@4j2cN!2g-#rL)f$lYaXm?3|5c5rP0@2(k|)3-V9P+h*;r~JXrrNIoW
ztjT-_WF>vyFS&fdVc9mZro3B{ywjAlqmI08dM9zA{Dk%ar&G7Zb_HiC8@*}b;6D6D
zHesXCBCmsPdqP-l)!fNuUixrfjN#+-Y$vI2d{sNXM|pkva5X?M*6Fk1ZBv7jZ`UdA
z?z-{)Ozepbmme8S7Gt#5ZCM!{V6aFaXVT`qXV$M#UAnb@rNK?-Sxc@iUH%~U1NWPY
zJe4m+9jCGVm#IiBV@a#z*?#7}GOt&|Zqc*xApr(YY<I3bVc*(r^fIW5d3P9d;(@0k
zGXK-+7I3G<T<Xg1|8BP<OD#0GSNnjSceyD?Q^&P$r<Y9Nd&zV-H8<c^ZsPo8d%5JR
z467QI(%)_~vxu2>iBZmDQNsH9{D=C*vQzgnTKm4)zGV7>UssF%Emcb2cwEj^QPx<-
z>h$fTjUHFhzFTT8xES2=%i!qtbSs|gOPCHaL~w?Le-b@os`q6FpZ;1_8Tl722^+cc
zSvEfn=6of=&Hf}y`+OJk$`daQMC119hA|!am+Pzgqi)X32|r!eJ1<FXJ`-~=!20PX
z%_YkF+V?-n-B`F`_nyal=LtuLUTF>2?N(o0_MUa)dnxf}7A%}%cb|wI*mULeiV1Qj
zesVqWdaT+K_OonlOONidIs6H8KiKg9owVMXd)|yAsb7CfM`YT$1%#Te50*L+s<`)~
zDof8_hjokP@4Fr_`x#`mylel0wLgUPZWPqLsTJt^vw!bzzWh~jj~V`@nJg_a^qM)f
zDWqkZqVodQ)LjA7I(n3x0|PbV0w%01xVS1LL`2;AL(`k+wvGeL(?hq2=x#kK78S<6
zc$sR$T*>>tk9&GwnxmrrdCAN7i_a$)RUM0-Kj&F_-Q!wO)9qfu40oz#F0T%r6tcCh
zEpg4HzkCco4q7^&%w{~&ZLg`c;_~Huo%q<cBv)tE3;rh*eLq)R-?%4$Md9R^-Iih}
zjCN{D9_!JY&Uk0G;fo0myr%S)AM0fK9KG-3<)4?^+}%wk2x#82ld^uldT-{@(A9_b
zEu4Cw|IoQB+!hBn?>t$>aNO4{o#C=<_nei%Dr=9+6<%uTEj;l2oJD`Z=T+Au!^A?;
zpRWJ*>9N!lj<w3udcE$=>1XyTyqWS?bHSC9&I&!#XS3{i+4DJvmCfR@%^}(6CzY4(
zD=GOqX?E!QGuIxi$>cS-km3A(uJ*6fof_h-YS!C**gh=$k(<2iTgS!aA4?{@j}_Uu
z{hH@rub3W5!`y@Ev-#%k4V$p1_UL}M?^%k<i}V=E=g&-WFx3`|NZRsHpy5$(a#PU)
zle@d`SuxmK?`>m$yw|Cb+0Wwa<O5aebB?h&H{@5=Z(xgvTH_lpuWl1wFHvwN!+Fm>
z%~i)_=iOB`HaWn`{k2T;SjQ7HJ<F=TX~El9@_f3n!`)`WgVURBm+)+7e$ur6n1y)Y
zyZj&fF0Ne_mTvj}AM=z0_sh<%PkE)($rUbZ<v6|nKMTW(KWpE=_W94a;LnvU7oOQ9
zw4PP}z3y4lo9&Iw&Eav3=RV2{%zHIwnpv>=7PfDeMSnbW85UHm{^=vx_d)X8w+^#C
z%vE>w85t(UuQL>=<FvZ{e0~YD(R*G8^V&aabs2t5TJm{{fw8;EZtmV>Q}Y?Sl6QDA
zvd{ja#agm|@Ac!Rw({SP$FnzBtB3DRm~}kds-oDEVM@*Y>mSVa@WfW%USD!XVg6O0
z+Ro1FI&vEi{A|51k-t?!BKWV`iEBAsxm=CDe9IHw{5bPr;(5F8e|B&Rw@cdi|Ln8P
zx!}IPsly{E`Dp55$#h1B$l^n*^S5k2`?V{=<j?})410!*&HJ84-pf3oFD{YuyLHB{
z4D}21YL>dVFy4Pr@YmtclDwwfd{Svl?mu@a<S59NU3rjpYUMAtmphy|8D7l|p8j?(
z*8_2-`J9<*Q=h5c-5<orz_soCD@8>mu6^CRx4A3s=5Toxzn^c;i(~U$?g!{hIOcX%
zLb0gf>&zV+6Js9lyZW_hOXO+R+8UAn%tq3;N+Ub}X`c9Ry7<u<hB6!5)PJXP?}(g!
zV;PfQBeFp^;aMny=(58hUz1noU4C5KxgyY#>n%ry+J>nAMmt!_SwfCXTgIUO>0e%1
z%)F0jjaMH#DsWC+=JIlO{p7k0b!$=%yJ)@1wPNk;-&46-t<kX&gznTY+5h&|)Vq&*
z!=;5T{#=`CHP>(X<;0$YL36t1uI_KFmYnJr-n8?!<+Sw%>AOGvtzs7t{JY2C>sS4k
z#@4I4*`Be7e(`=7x4v@XGR_r(e@__h68zZzvaD>n;jvjFLKA<*wAc$?T<K{!DQ&J*
z>AO2q&y`-2e7pR`<K^o@!dGcuRhfJ;)o5mnT6LP))bIY=DykwkZwO0FTzlxytk0<@
zPV#+MT%@f1Ej->^Xtuzqy<YLVKgMxxezD}$^yF=`cLt^G-@)FI5gp?GYD%J^M&0}~
zO1}~v?F0k+MXZ!l=6<Vp4>}|zzw?f}-giyku-k=!%knBxFVERm_ryA*((U4%S7}K?
z33C=_dWfB0;^>gRFf6iLGI~;x>7MqfcTW6^tv_^%_t;kBl?V4v^O3))e&@%=3<id;
zzs$88wu*g<Jh}WC(}wLkGCZsrE~zrQxa{XX%_td|`N2EYHt%}sOsnh}AG`WDyxn8o
z-MZ`j**N=U#&<qGn|VZE?A(k$ZzkNEn8>>$?tjO2zgJz;IHQYYCWKA7@M>bv1NYPC
zyZ05g3T&~P)vvTp;=oqTphcNX+6ik6e(m2FZSQwHs;5WbQV*ZV-_`$mlddiL<+7ab
z=MRk<5j(C+SzDskx~;yN_5TLvzQxY-Wj||t_Y8ja^y%}bPoIm1e27~Xx3sT(w<f2?
zr|k@0HTR-6>nP~GyEH*a+j{2ZjE6jyfps(c<Ab#_51Kb`WZPeU*d*)S{DT)=rgDC?
z>CfajoX<63+5BbKbz~hLsvMl@uKcZVv*S7aw^@%<oKA-^+H*^q6ug+NqO|eX?32e>
zq9$=(XAtR0k5B0d=<0TGGgex3>}5mQ(g&$>lfu0i6sjZB)9deSWAIz!pB(moa(Q?D
zvskPDbI&>_HhvUk@Y|E0?CZSjU6q2o#s3NXtV<cfcSqfiUw_k%VW)ga>B0CfvJDrO
zo=@t$!OgH|ZARO}i{H2!x~}YRc)iRt{;cFumJeIA)t;*})l4<CJsm85Blg&h1*Lr7
zYZmov*{45IDeKLqBRLG_XO=%HJtOx(`TM$K+uD;}d??tMoRG!8|L&dGung14+B1vR
zKELwIu6eHFx~_D-hQ)clW?KDek?a!JXT{&Wz3o!c^?S9}?|aSui@n~ZXLeG@wBTN!
zl6To}5m&uGwGwTA{<CRajamLj^7Gv4u5vGi1&`h=t31D@@T0E4Vx|h=T|3<t8!_15
zy!iOh&$m&>oPD?#o_*ZuVfD87{=1d>?<SaWaB^nK6urLgb9mwt$JMul@78>e=sU)%
zs5+JHzE0`k(l2V)l@~31{w$V@larHkV*LKHx3{)3&6^U&ldOK9$zgu*;@7MUUb&&0
z1Gd&*RH!|Ac3O18<%C(yOn0IJ-KrR8)UJItXVdvwxw@0Jh6eZEiYA0#eZAnUseSgX
zE9>vgu`7KT%dotKf0^Yf?GJlz>$&Y^oD#qC=j_EI8>W3|*eW6ESo2(HZ~WJ1=YA+}
zex=zx#cS!NANyX+2vEul|GRhToZWFRLR^k-RX$aA`{;_Mj+*G=^`GxsugJc)$hF(m
zrOqXixi89Q(%sY^h0V7wES&PHJYw&!d;Kc8ixw~5`7`)OUfo9N<}QU(h4-%pCChbp
z^*neMxi#vt>JG;Z{#Oq_mptvhsm{}_<HP<xC3i3Byb-u!eC2w0nbO@{K|#T_vz_h+
z-K}!{lq)YPDH*E#`HuOTC)|%&b~pMT?K|l5Sw<mXiuQcd8iU~ZrqdT~<od0b%u<oY
zA6p-A;FH$&S2J%+x^(CI)ua{YZ(B|ED)n9(v@&E>keUC)!lqx-8w-=z11}#bQdr-8
zBha8{@*io7H;HTIeyTJ0ap*rfWH9e-BUgx>Mw!5|Km1HT+C+=f_Ow1x5YR6ZFg?R|
zrR>?6L<xQq#vQMoDS3wNJ#tFIFixdJ_D<aU^Sc6cH`%`NoS67Vr9YVQ#<NQK7s?Ll
z8<PckrmjfPd9lAb$aa_QciHd0z9OgUHMZ{FA71Xd?na|QkF!-CYs1!sNyiT^-)R^8
zF*%9-kO5ysMmwK_m;T1b29Mp}=~=(6?2T*_Tyfrx;m2>)@?}>ybZ+tfukOB-*}qGc
z<M0hvqXz~IG4oXyn9N(@#(470>7JFnNs|~Jyvp`FoAqAklF5VDzt_G$ZXlQDz}oO;
z<<_KMmoyl5#VXt8UYL`p^SVab!hGK}oki1iG?^PV*#^(<kmWkeQ5MhmAy{|k@s19s
zXQBl^YyHmbo8O_aVeWI*^K!D1%DsMN3obLiUAs!1Yrf;*_TtVx#@|fe$g1l8wf*_!
zWz6wuVW+HY{uG$|UW=bOGu$TMW!}oCe<n3>Z(aXU^{wdq%sKnt9-9{~eY<+wg7W@<
z!L^GvZJsUO+qXuPf2Ge`1#gyh+Xbz;es7sy%+>I$|H$cIzZVyMFRr`BZ~S$I-Sb6>
zvN>Omueo~M;-t)jbIwWZiTj@|mj9@}=)&^p|AKfJcI?etu-3TrwdxCon490ODKj$O
zO}6(qbE)9Fq<8R9i<6QG8*Ug{v_Dz+G-kcW!J^r(8p?dx3(jodS)^3-Wl^p}q<eb%
zi7UR1QGYbcc+M$HZ+XYZprGvcqE@YXxzLJ=(_enS_f|Ojnf>L=TMrELqZ{9tr)`&F
z5aYO0FWRtq?hn5yj4@umKX)xPUYz`DN$P=!jmZVuCcIQ<oVr2F<YI%_y!}i`%ZnHs
zPCoj5W0KD?#pMk7f0Fl#Md+m1|BOsnwo~43M_|x8W`?gv4`++}zKQ<bW-ZZwLGXw7
z8;O{OYuUCpvAz*!UlKLP;?j#^-_ra0-npu~9>1a+AN3<RZgs8xi<4_^<}T=;S}XU*
z!tm>~eR(stu1fvBVWZhHuLQ@0Oz){T0(Us=)`=|q5u07T_akfW44o$>yix7#_8(c6
z_DndHQZzG0ZTd;BbyhMe!RmXsYShbk^fochNH1N!yy0qC`KloM(-m&vX@?l(-IY>a
zv3Xi4__2y!uXf;GdNs56>*)#ldvdP_H%sN^&p$JNd%Z%op;6V}zRT+`Cb2)%l2)Ja
z?);J^D&3t=zu7y+w)CIs@0yxn8uc#z%bT;R9+sQ64L2XlV)*%}b=&dN6)SZQuxv~&
znE7q$o$tQ)uDyJAT<cN8&TnxGKK}4^y`y@r{>Eto)xax-8-Atr%$qM&|C#?pRcl@R
z($KRT{pY1GYw)#xu!4E|1lRrR*I$g>kj3$Rf|_g<N5ipGjXrY)IaIo3o3mN%_kGz=
zcQ@i0yY0_;Q#UOXG+LMD_<E-MR)&T}>yuR&*T*w7#H`P4H#R%%xbnNd+@$Xn`o8ze
z{v-vQ^*h+WlQ7}%^bDg?eRJv8o46Q?9v#uFJzKFv)`5LvazXdD&3*;F#~*!l%YON%
zpV4di5^esPykgCAeR;`ef9rQjNb7t!aO>i_OJA1OiZV3Zy}N4rRePR0MYn{m9q44=
zBKkVwX7;fg0S}ZnCKoJT@O=9n#)iGNJHCJAXILe7ZjTc~^n_zqt_WFZl<~ZK`rXZr
z;Z5}n52@MgcRpS@CEas<g2<u`>wJS&e2<c2cr(91>VUmrQv2bG{ml;C8<PvH@4wvn
zD{;&Gmh&6aC8}##ctow)1b^%+5_R|`u<>!itCqq;pOY)Zk8U}VIdA&6*&n@R8)TD?
zKbZTEzp?9C0Jig)LFXNV&Sy3<GP5)QDFAaU6$}(W3>zB-eW%Ql;(*j5=ltA){Jhk>
z5(NwJHQD(^!3BxQsS5fosb!hTsX^{eT>37l$@wX%0f|Mq#R?#;&iOg{Ma2rnU=5|Y
zdBxznuJr?oQd2UMOY(~p3=I_Q?6~yZGIL5&ixl+TauQ2YA%-aEd!%NjXOt)yn;R(T
z`=sWjmt-gy8iKB<4N}k#hTa4VI!Bu9n_%zWoVM6Pj5WYI{O^B#cl#Yymr@Nld}BPT
z?Mu^J4HsKn`|;=J&&rrDHFo#^=N}WhQDwin)c@u2uUQ{OFWh_=yZ5ObyO8QME%|Gj
zDgRFXICK8|`QMqfcJp7)S>O2N?k|CuQ@v|lm@dUu#p*@xdE#!nwWl=Ha{f#6y|0f(
z9C2A-r7QZfYZaU8u`a%Mw=N6M4xIWT$&kfRFyrBloWNB%Pq(<&FHYPw@&4^!rB&;f
z9e%q!My*L$xY5lkD?Kc1)`xA+@4h@2w*C0S<E<0KJN<oFZcP;N4p|{6A{l++T;F}a
zeS172l9Vn?SrVbQ-}csr+so?SKhRnqB;K9TbC$_!f=KqxY2ruw{@u%easB81s&46N
zE;30<7uuIZga^f$m<9?woxJ+6?h%&-(w-Yz7w=ioAwMfMcE{YEXB+0J94+g5cDe8y
z^QSEZ`umL=|Lyr5b^3g_o`X!=^df6R!5ytjZn)3=cu~)@-fC)5_bX#t#*_^X-szs7
z^;cPTxNSFxT5S|`N|qx;UGv_fTQzrIZBhELA|S9^@JpW40@n5WrJt^UuVj7i(28`S
zuXDUk%5s>fYTjFSvZ|po<^hk|{bwP&m%ONBwwf%`ykdg*|IIs_#HX&V^NM)laCF9t
zYfO3Snr%Ur`v2~(^E!U3#dV)$?VUTi2O{=~W_xYkz2#K5_5G9yrHqLa^Uv6_`MCN2
zZTR){=-l^VSLdWvFPbAGH%ZAr*3)o}_2);{+fOh~?arx8X*j8IO{sg5xV)8ijiSz`
zr6H_pi&b@ZI8=T-+Wlefh7;3*L}&CQ>F%>He}7>4-RLFH&m1mXQ+Y+E!fw7-Xo6AK
zR>hXp@qd;s`uI@uQLj4FjGm-ig~HE|4!^notK?HXM9IdMbKU$C15;c~jSXZI3oZWN
z*~_dRSAPDK?aw)lQ#FGcfBxXLS@hy-cXa2;%pH%dQrCR3@;PE_``&xn(`WJ_Uw$23
z+bo?u*UQ5H`V<}J*z2!r+N?6!r{AawU*ixV6J8hR!<laTzIo^2M|a$}@5t!C<PhW+
z+j8Z_Pu9KJZsnHxaaup-ov*&N`)<>b?K$VWoGNd={vKTU-1vQHxS`s;&}mMhhaR!4
zdwR6z(fafKzn9kSt3KAIrZ!EZ{*wMwkK^&*|Ha=okErXMu61F?ybTuZ+501t&*d5a
zb(rvyzo6<Re_waC!ef)Pa;}`|H!kUKWS`IZV#AC_xBJfreER(8Bm3_&Qaetp7dwAj
zW0P|mch#yVnjZeWf=Q3oE5<1n95|hQeZg9vwVxh+d#_*n;nlg2`xPeMvTq!?9=B@G
zSaB+P`LCl{wgH}TDH(?zdH-C0LE-sZr?@lPd!j;2*6n=Kc|yW*>M!;1x07Dw&-E5J
zT)#Yds`nb(S&o&_wzo{e?%14no`23nRQTR0^GBzS*L7#siTAC(d*$iJ^xYx0hdcHx
zm%Dynwlj8}{l6WX|Lpm3Y3HJgy*~<sqAu-|@jWK0sT1@l=7_0ukVMoI_EodB_Pa9s
zJ%~@QDVf^$T#`9MY>#04oL;dgcVVLykG^g&=1Tl{apQlV|Hajnd^fbtI)|GtI&!D0
znBVt6jrqitU%qY-o>Ts1@n6p!d!37)&0_S`mb!1gbb-w?P2KD3+GW<dzIz=!_t1nH
zd)nmo`W@O^tR}M7F!bM|t4tAo!Va9OcV(Eqea$@h*30DGN%!fK1s=M_C;DE}QvJH%
za`>^tRoi$3=Q-$|%$_~(<)&SkormxK$fyx=GOdq|wy(N={`~oaihuttf1GTcS8Mmz
zBIc3##||<6Zn3Fqe6BCdeZy6DhPVDYy8rg7>(gI+tDCFr)$`2ekB;1g4LklG&+O~l
zxI_AWX#O2;Ytx*wdw!HJ4(u<>o3-TfPe-FgVy`zHNuR;JkfS?#YuvtrzZ1hV`tMoI
zUHRwh`|a{JHh0<|TfE)+DX(e1|0Jc088b80>+1KYRero)SWsg(`$`^@aJ9b4y0qhs
zTr!Ch146X73EOM#+j6#h|GrS3jvj|?J#Qo;KU~we_GJ0##zRTzQ<nU=q^Z9zCd+S8
zi^91qwzGZSzLw`Aj(HjXojS!>dEV`Hl^>rb|C2q*wj#A7sN!s+HBU;%^A~QarRyHg
zyM24pEXGy37OOSqEY)PyZ(See>T)Cf+7iZJ4xX06dwQ%&o&PGmU9sENG{9SR>z%LM
zj&3PBlO8oro&4x@U|f!sVrz;s%e!5yrn<XRUEECE7i78w)mVCE{+)h7?%kK8PuA2u
zKI5|{^X$i~MMl-x7jF7AF57izvT<bX+oyYetUkKSym{V{hB-HMpQkt$?vmeezr!ua
zMnN<0>GPxUt;gT%-fP+!Y9BGJp}e+eNp;T*m7~m0)zhzie_y%&;Fl)T_a!H~d(Tvz
zj(ch|VV#ZpuB{xWTRt3Lb>v0oeGAXUK2hhz%no|3Ph1<b-Ym77p*&Fa@Pad(^<F_f
zg^3|Wiwo;tiAT@=r*`jC7Q5K><?c6MXzkNkwtntTvu@wG<g*{cPjt(!5tdYSO-M~j
zTC_{Q`{m(B%K5d^59!&--(O+4tN*3);w2n9-abB8770IBx*9igbBg>I9&OLbo98{X
zSmx6^Noj+c;m1j0`rV>gV)66(S1o_}bgScQnIk5VDJCmeBYJ1dSa|Vt(!^6ok8A7i
zTYc5$?>^b`GLy?L$1?d?6fVBh4wc+-^+oDNzlfTg&yUt?Jx<sr9VjhwTqe=`e|UnR
zTELlW8aH&mGOe-{FLx9B^Y_FTb*p8ZN{@s3wKwQ&)xCM^D$}~q{WENxQorxnv9R5^
zD*o<Lx$p#E;Xm8<2ky>lT^i?bzNfE^eP3_M%-<@02`^^Hi7Fdtdu|MPz5Vuu{PW)X
z&Mgm~Cu{FhBlO(hov;17dCW2bVyCyR3y65m`sMlU`X4{n&-=|XeTRMHPmb=VtFG7N
z%IY{8&8!#t|1K!s)$Pm0$zOk-nREJY+2ePX2h6*+I{76mys~G9cI_@128I4LlNUxS
z%v`qZX+&V$onO-wmfMtnp80s0eBpe?jN{b{?_B@az4gUEi)n(plXx~xW+=J*bMFSH
zbD8tRCGSRL=CrnpMKoUO33%da_qI%nW46@ccM=Y|T)Tv1Cw=F-%y7E<jYNsXpEdrP
z3^yO`-_!Qtyj8Go(aCpC6EC{yYqBy}n7;UMHsFf>r>h5V*)ulJ+QiTx{`qfc`oi>c
zS8LB?-A!I~ta0bs3)<^ezCFGA>!b$Z_+|FO^3q$c%oSOAwBKgCA%pxLDXm|h3!FTI
z&5gvCx#@B<%(>;Kb?3|1kAL=;#TQPmuWtA!H~Wppwms@9@25pC`6nMSXVbc_WxSV<
zzuy<VF6!57i`wt=<PRs@?c4JCE#JPX>o0e5=p5qSHSMl=z~X;j-tK$x>bsiP&Al3x
zhKKAfxL0PCY-i{WxDy((`rM;e-?ZzzFHd{-*p_Fa`0t(sr73Tohdou=(04oj!sJX@
z$><vI30pVhpX+8%KiF)z_fz@-U#2s@aXAb9v+n#|w7OL3C0BLX+`PBNd%TZ@r*YqK
zo$}8sXz^^88MF7?@cVyL(te++(^Ai>t#|EP?@!77&a?0T;;YqS8~+|HdfCh{A+h}C
zZNB?LtEQ>^6|Fg6)o}mOx3YOl>V6+tyUvdJkP?IHuCHzScRrn;9ku(*>)SaK6>lx}
z&u-w&U}zBcy`=laU#c@Sp|d(@-~Vv-32(Nzo9A+zd;R+*CnLkE9ZSC&<yRCwS{KI^
zUg_NX-)$q`{)9{Y$9b$7K5zu=w}@XH|3rD$YV~_BJ$K~pIsLfcdD-vwwq1)D4EE;M
zNd7IAG0?eZ9i_Z=+2-iKNykKkPIE9k+p}8LFJg_gmsNiDbiVribsK-JZ{MT6WSSs@
zl{crn^1eRzIVGyL`n7*fzdv|wmrwoYq}`nzT+UxQ#3dNqN;Z5udBN0T@s@~dw^skk
zzPcxWqwCY+soEmTnIsvkUVj$yiB!#>a^<T~<=Ka~+YMt&6ZgH#pKK*p|KxG}C%>-B
zJ&Y08VmCAAJ@4q7pEECi-(TN9i#c9wHnLRhddeH>`6uC*S!{koWbCWjt%q(ej4ciE
z+WP3D`=dD@b`>X?o5uWobp0HAW$xv*k85sJi!?-WNl#o>W4a}S<D5s=?)kmNhuEbq
z+s4fEe7mM9D*ncErQWN>Obx3~Rm+_H6}RGcLAa3Ec6t7ybL?E4y0a2z?=sl2^6(qG
z%H4uL|1eEh=k@(dWIR{st5hvBX1CQzJ=^S;XMJUO^Y~W64{!gX6|O57Io?IzlzVbj
z_~6TxCuX1AdFqe)_W3^_etM+*y6K*3`llrvf0<p}8fK<Ud8NIdL+hMyP|+nP*JFa8
zA1S*n^D0cVn;U=sTb=cXeRHF_A2Jl|);g(wZuZt@E&V(5@^kk|KGk~Se=e?e<;+R7
zKTMB!vOfrq^ORea_PXq)soGk0QI<}Y=6n2we$TFXbpL!KB+1w|?PFihpQybTb)EB?
zW4ccye%zWb$vnwP_QZ$EkBUZ2JgaSV;vT)7@cf67Ye$b^a#-T}I~MGpDs2AktY+8x
zaZ{&>??6FRyQ`7KLrFfrTc0hnY-7(=OmEOJ;5D#Ktu|loZLt3{*T1Pnm)LCWCqFsb
z{#!J`BysjVG4ngzCWrWzAAf!PyKLVdmopdS{=QzESal~Vo?+Xzz5OPM;nVj{i=Oa3
zf6MoO@Bh`zx$#ixR7hoE_Kw$#2O1}tzOE=Q<(juTy=dk4{8Kxoy<I<dqu<4x%EB+N
z88>wN^Uc4<x_@1nk55cU!P$~|anJWk2S&XO%l-T%{?AeuhKBs8mZSasF@F;}tCg=`
z&G+xoV4QrWrSfCq8*T=!|F)f`t;eUP9G}1USE=Y-xy?ak55CPkV;o&=!tk*)qo>cH
zv&7`->1Y@0-i2D?m;KLm<bE%H=6aOnfJW38Bl&l!HQhaz=M`;yC#7Bces|rMC$(AU
zzP%_v94plD(lmGL7LPaUqD(b4gDbyhPW`re!E(;ei=;UcEZ%nIB^JKEWcl;k@rC!c
ztt-kFes;7xPoZJPwx`8Y|17i*;+9;#u~am9#g<)7H-G8Z&A#a|kx{_+Yux`sNy?#O
zwVB^b^-9<`U)7fjnf+UrNx=80`Q8mTJdT~x+g&TOx3%3Y`tPI1AK1^nzAvi8P`F3@
z*3IP1?ML_hh&bwa;`EFQyFW<xmp3m{JJa32`KaDfw}z_`(q@MXOR@vwHFVlc)8lF^
z|GiW;Wjb;t!z_Q|$4PfHJGqP>UG;uYb<{BW|It`>Z|RqQi~?S9%eNm%Sa`<&OD^B(
z$4i;&|9=WUIi0I};hC8IKOROaZ|!nxI3c9HROmJ96{C5lW_;N5X9`#MLES0h@q9sx
zcMB)jDX+UKed^=sjT?jtGeX<4dXqZ8y;ys<JL{ZmgXY)Bd3g#i(;t{H%jRhPwmC1m
zhiz*{TusgUmWi8;)EG49No&r}5)^ki)|H;Hdu7-2;E0~go!?&YFQ05$_owi;Et5p_
zDHR>|qc68bgnhfGv3KUz$EW<}oKUyh!aUi0`|{IqZ&v)8$H22H<<p+;TQ2J9doAir
zS4j0*oIkz#)RFl``Thkn*q<ET|78oqiQw&ja!md|DtoNEO+NmVq=&ut$L5feZ%bYt
zoA*0zlKB3j=?qIOR-~W$eR_)Ni%l=HLpFAOylob|?S53{guNSg=Q@0P#JYTY-(*f5
zRa?z@bz0RXZf*xxcYVw%E<UB{wR6qdt*f8={rtW2WcSQZUY-q^Q=T+mR@zd^eg08u
zMcnrzJy&i#uL+ZEDEif%I<fk(bmhj5-<%NvYd4fewR~HXs&oH=gIC*Tnfg}=+-r9)
zlGBjiYWw}~1gE$)4wu<B^zAy^7k>JDmv76bN8WL9IzMwx?p*s@*opsW$)_Y)U-!?9
zE*BQ@Zh!K<Y^~Tl*4xXp`Res%vf2FQF<+HAP5ko7?$Q-WENa&@0;f)&Q)<n+Hh9u=
z+04b2tGLx)Ti!dQsT?VMvis_aB$j0&W;*ZkmZt>YUh5k(<NDg0f7SLrPH?k*dL&$Z
z!PV=`IV!b`stp@%nO?aToA)C*+v@>`o!-IBf|^)ULqi?@P~X>o3|PZ1<Z*SpTAF&4
z*DrF?e7$!utLrwpPCv3bdKv52ZeHKW7YwJfLOMck<|JLc!o_#axtr_poAdA1iN+QF
zzOuA#qtSLdgWj^cn^x!Ve8+bD@7DQ(v-0hCu^wOE@9{S&-|8BJ@~+iyb}hYTP?Vc`
zSGN0u-LDlHJsZ4pPIgb-d;i7py;aq31s#^1*tl{zM{C*7Ln;TgeHXvwmw$4!EohVS
z0S&EV%f72rZMZ4zeNG{A=fz*8ha|&KcF(O5u@$Ua%QS~eX!a#jtte~pThpJd^pkn>
zW~no0<;M9ByJ8#o&Hr6{`+slw-*fw|@`41GFjopTDC^d}=KJ;dXR_GgviObOdQaRw
zDKUso3E!;Bx2I!*X8Go#-I-_hzjfZ->#S5M*ifgm<bZe3s_^Wytim-M#@fG&zw<F{
zSXXxXcxZ|DcGtv-0Z&{R`tEEs`TTAFJ!#4MyIc7Sl;2)ts3{GP`15ymzrX8@o;S(t
ztCmDe?PghCC)iLc`ug*x&jBl<j@h-iG6n7DaG2C16FlSXvi>&xZW%S_$>P5Ql^B>c
zGZk(1-uaoE24w!+w>tC{Yp9;k<UKbIJEY1VP&U_DHl_6VY_0oF=3BYS^f}rT^v#y*
zFdUl{m{oeB(lP0g_u>r_uOuGM-E-r@b|%+OhMv^zCf+gX8<rgDj*P0amj3&lW!KL7
zq$bU!|G$*{Ys^>`GA~s;@8jw_S#J~nD7VJH64%}xb<S;uH_w7;uUKz6F0?9nxN@~n
zvS8RNjml54ObR<LE3M13oEEsKOwVIAzub2v1&d0<__guvdW;9!A51LVU9I|f-(J=Z
z|LQNSPZ<ku+r}6&ZulB!#+I|oSLU_xg)a^TK5;gI+wX7Rz;WTw-nSP!|G#VwXJDQv
z-XBx@raxMP>7NT5hu*D<>G{8lSGG(Sk?h;ELw~X0!>ovqI0l&xGrc7r%=a73UwE?H
z+UVKMeNybAG7Rj$T8@hCy=4C{`{6f5j>?b0Zi=N+Vx`e69@E9e{Jn4On%fk#OYxw|
zlcW1rO$oT&&(Y1$nKkwB{eK&~@_#R`NKdMNcdt<+YisSCvMiQ_@S_`U^aY%lRdrqe
zne7eV`R6Asso451z>#^w>*&Cm7?=CjY)}8*7JYwaZDQP-AG6nAJM*J+_muB9=6{<S
zIE&%Ut+zKm*VwK1iz}X^EP80d+N)I!kGCC8TYmn_w2V}-1MBk>KfWqsi*k}`3*KK>
z*t+D$iY+(xd}2+|E{X^#J~>P4`O!mOTctOr-Cb_`(P7^Cu&=urj4fY$xV&6McDokK
zsueTEtNom(8uILXbS`DP3-brX{8O*()>_St*Aocay5~maxl8?lnYQxRd!}Wq_F$H|
zG57Z_*Mt9lbw$06ouu@7#boi-El1xdO#S!g{v!pQckede>pd{b>bs+jUL(K8oXCL8
z|2tpV);H_FnD^sz`S#?bdn^L%_n92JE_>cQ;$ksvrg*f!Sn!XW?bWMR^K_qEwuR|L
zK+qqpiid@!`t$6HD(5<Fl4d<s{%q2xeWsyS`dWJ!*6oV=qm}tEHtYXUZ_kgfl6T&o
znzH@(=iXH%NBm+AYvr$tVhDQDd!lXX+~-G^c^3Y5-Mw;S!Re=~>VI#4{Oj*`1$I7z
zrMXjEW^l0k-C8VM-?+6qczT&;t@8Aed0H<@<VCU=_6v2ppZ@OHxp>bEqi;Whg7#eT
z-&j+(#!Wf@9dGycHw+E}s&@tcerU^y|NJP^Z`JIpOzTcarcbv!Wg%?B<ehm@*Zn8w
z^f%9sHgAYX?fCL<UCYVze!;S5t`phMtPPaUYgLcgWPI;wbi^C`r->_S#In*EDmFgQ
zD)}%|y!`MZ-McK0KNyQBbUbF-c`;|-fz3~*NA6y-;`yWXWwHzmkBmK7m3~C;zfnJL
zR(^a{b*Dhqt~dA3G2Dt_Xo&tZTU_|F`&|`rW1VA9wlFZ1|9n1COw9VpRE3EdJ67%P
zU*+Bqsrl}Ko_UD&zrXJ)_6D)7`ovT5jUh@S@*3lcM>T(69F;%8AzZTj&)-MWIU^>_
zKYQV9VBD7<wpr%>={iL}e(k@_-zGJMxj>&g-Z8jbPe!OX@=2cJni|u$Gt>nZ%#C(S
zXZroMyLR4|quD3y>Uh`JXfX(>>iMmn&Ua<&WO4EOW51S1cnUsPby+iWf9W$uqnc-~
z{nr*h_1s~i`D>}n%R`K(tyYwTT;vG7bDuG9C1c*p;MjTJe6LgrCR}$gUVKpF-`e<|
zZwjWo6U%uQpPncFx5R#NtX+fj+imApWV8s?%YD3b>|Kjduh~7{yRIcAl`IwlZ}+k-
z{w@4!VU^u{-^l?_W|S5vD!n&z@UgeImw&oylgOsl74zS3Zuq*_Hj1zB<0Y4#PI>kR
zuKD>I-=Dve^$3mlTJih*srlye|Ld;nF|KjYRi45fxc^7So;UZd?%J#HD`Yp5Pk!_q
zEt`jv5?_gne_87#)Zp#6T!p#sZ2bNmZ+9-z=RVMM#mH%!#@Fs%xm!~*UWBV1-~tO&
zZd`Qa>WlkZ=N)Hn;Bav}A-vS~*U}F=ZR3h9Qw4lhY-V)eu2MZ1y784b_wlkADfYDu
z3=xw*$*=qM{GIHLi5C~l*>SM^mIA|q*^bY*J^ol>Gyi-?<;Ux<*|hSP{QDv9Daf$P
zvi9x1e-2qaFH1|Eo*$k5<<+sv(P#Um8D2aKVm<p=GTVo>f4jDYL)@Rx3hCP2*>~qM
z1Y9p<?QPqqxF>#DSmnkl<)Uuei6V>(X5YX5Zu`Hq{r?}a*6!|K9jvbJ_IqK%(^Q6z
z#}zsUw;lWVc)!_Q^Prw9a<y89+jf0ssQBpiVnIsDLFfI)80zZkl%5^+-hOoHDqnLM
zhKsk3JScl_%UC8qL9Ozm#kA0u0W<z>Io-h^aCUo4l8I0Kd-XrJPri@ZA2CBDRF&y~
z37^tqXVU_S^``@;h+kfxI)90VGSdMEJEh0lzwglN*<NA)d}gI#NKgqsqk~NNZRYap
z<v%+nDJA>g4z9J-m%Go>d3}?O=B`YJ1pyO&@(J&cO?mSmTQq;IqT24;H|v%Z1k|1q
zV|dW8^RLyKl#d@pZ_Yl;Arv#|hsB)h`qNl;d_VQ%kd^Cqc7`d|bKiUrd^tCJM~OiE
z=cNCA&DYA=8p@20$))UX`f4}lOnTg&)SAvE91ilQ!@^|uWbvQ#^enjJc5KhvoN`Z_
z7w>1rU7lTD>6gE?dFOP71?x<$_0_&Ht+BhbC9HNrTu<*3d%m;JO>J(7UhQHimUue7
zeyyW~^9ebjfbVZ(vQwH)+;Ez^C*rABOw`-sTiGSN@12U?-jgRH7Vq`Ub*04_%j9OI
z<k;!+I-V`R=X9PS_|-MR4S`ROuF;>nEcaBa`r19KJW_*o!{>KA6E2Nfz?xvUxL>OC
z=RHmSt-4xytH1xyvGEChKlSuXx!qq+n*KLC;B!e@>~PwtfcJBIHkV|s@S6JZM5%ei
zKHrOrT;k%)HDnu9YG0K`EkASnepT|;$NRTPgxs?-O3Nu`y*YLF^y~d>38uEu43}SP
z^6#^H@JD)XcJyQSrH5LhgO2&lT>0@z>p_1%RR(sZwDp2dueM*!TI)B_?tknAtz(bZ
zhTi#P;^ntv566LtrEX%|gUwHc@VjYF-*M6AxvZ6Y*qu)=yz~}*%V2o1%3$}EUOUOq
z83%7ymPhY89ezYEHnG3s!gQGiju1n!uALkYm(G;BeV5sGd(2;Lwx9~(e=BzxGx%g2
zoUScj7QJFM&!bFp;maR8Rz&@_Z~3G=Rh-d6-N;XEaoGDyd-_|o+>Tv7y6L)SuYTqE
zO?x;PysdddkJm@e+b)&+E&2EItG!$I>FwA9(v_gwdUHkKw(RRq{{9n{yj<q@V2k-H
z%}POrYhUN7-24B1=|zKnubb=qCx3U$nqy%k_Un0RR*4TI!=>8U+m_XAThM&7U|W66
zC)eZB^Uoab+*`Hu-=DfQpXwMH9@eIG-2XpUNKGn~ecAWrIT!i%g~T5#xwV*a!NP`z
zi<1^7?Ov#5?shC{cJHz$yH0mATsY;hadAp`by@lyF1zLa5!3k$9`$@?U=b;vIB7%E
z`lLOvJ9hs0we3afj32JO(^@)<_iCN8K4w4tpA>_IsEv+Ymd}PwyU)%muG%i}O6u#x
z9ann4WiU)y;=gUvjvt91BYrYGe`~)@&Lt@OxAy%T$DeN~xns@n`hrUBg6QlVSKr0C
zUf)*T{t&zA?AvL|@jHrMp8QcN_r#SUXzhjF+OfNBu0-xWJxjvt(UN1OpB{NvWla%h
z+>x+V{MGK&y;DD)_n&WdaoNFNC6A|Xvw8hC_TIUF{!{-lFw`CGkt#1ecRO~|Q|E7o
z43?kX!n3RI?m@}jRXU|rWqjpqj5{u_5j9x;>RR&MM?rZn3M_P&9o5WPvhVx1b=ItD
z56$e&R@4bH=ylKM)BjoS<9zVfq00DQ6VpyTzV*$)ZkznuLtEv{=6yf-Hgb|U<AWo2
zm}~h~E&Jtu?0bIwl%>ax$0bN@sr<ESweo%c$xHWeFu149ot!^gF33u1+l}7Eng8|D
zuJv2|Si9@vw60^T15K^()pB>M9=>`w^bC{0&8)xTw{>mHyQiEkPfpExSTlkB@Lpl}
zrtQ1;?$6!%WJ14q>6vZ6-(D+cRG7M9$DzRc6+QO<zyIrhD*57@)T7mRO+ITe-EKYF
zzK4Th_cEUD#WIJ?IG3I|G5MqGao>lM(mr?2xu@KTn||B)9s6H##s_yaJhPM7|NfU+
zx_Vi2vfZzMcYR{^e_tIjd%-0vTFJoRu`wk1%Ms>9`lX3`z8|<eeZJ+sxan%CIUARi
z9j(kY+7|y*DXX8YLD{(Vs7PUy)8_WtobACDT0f^12h}}}wfd0!Nr~Z)`<w$VM+FUb
zpL}`S{@!ophp+gS$VZt~3N{p<c3W{(OZ>3b{Ltr@+_u%n6mHy?Uszx+v;2jD+35;#
z20tB9vFTPf3T69QEhUzJvU7NnwPKa&>F?RrTa{wxH~x7g&S+uubc<2vHOotiHLE{Z
zOKkm|`@t(ICcB(@%j`AFFWQ~%W{5E;ZwcCIv7*eDFFV)lA5Zu3C$0?pW>rK<-m|@b
zXRp3{-*1sJiRD2X#giXi+m~6w`qY(S5=ZxENhRgFjEx*|+w<4_6DXbi*FBD<q5kW6
zC6lXpnbXe6+gwPubgUF)sId9AtafL%f8X0<zm}CQ4P}bFJYRmT{<J+D4E4V8M=K0|
z-hZ6?rr^egA2)Vu{Ec49oVWR<>SS@o2lh(tOQYOYdih+;ea>C)y(P~yPiofdGd7$D
zrrf*l@OqDa4_ALqb?H9eO*eAcz3k>~Y@MPTZeR1Yn?Ysf`qZ-Q9S09}-)=j~*ZWd8
zOY-#lUDv*^-NSJp{C4=`Bb}>?O+_zj^!M~{x^iQo+nrw*8Dh#d*uD2zW`E#EpYoMh
zTlRgXP4Tx5JwAP4?u_!epn~&L_+x=DkvR{)ock#@JE-Q)%(?oJQ=cz7dN}oO2E)6J
zQ58{dEAm4&3U1r~{kKYW`l|2Sa!R7E=ra|(`#!box3|<bwyqz$O>dTJOGTH6PZVd2
zm@9C{Y3j3EQM0*LpIZ3#*x6mNiceh`eq=A0wW{&UoCj&XYn2!8;W)5JZQa(cWhy&d
z<~@I5yY#Nzmdf%E0c-b85@(F)o>9@QHTPB1kt0HD)nzia)K&^Mw94%FQtwb!y`>wv
z{co41|JTCQd)uqmR~`C&BVnqRTcuz_sLY<J%X{=+?wdPv5+`4O@&%KFhK6rT|1Au%
zZ9dh_a7Da;aR%Si^tnq}njR<X%=!J{3(GQ|f_Z8dZeejpB}#5eG9>+4QE=;7+YH`)
z#;r%AR*S~}y?6Ja$aKHtU(@S$FHVZvI;FViv}{D-RZs_=JIl1_Yt3&Sak2eZ@0Cid
z{QPn0)6f~a^>WSX;%ZdhJkjO$3;PrF_9DX)slt@PmJKt?@7<Hm`mKJ{?tbYlKUp&c
zxf{8E_NK~y>tc?-qR%wp)g|utUsz}UV_NlNQSSF^yH$PCdye_ucY5TuYR)CC>gx5E
z<JHPTr#vfV{&C0SNie^I$!)Q9-j_Ag_ZS^+J1U(WeR^@((aHDUu3_`n(Omv(+KGy<
z>G%G*HO;SONGp0-8(AB)OY3%~xNz_<zOuUP`Eogn|8^F<k@P#9_ebm4^tt;se>`u;
zaM|Nc!+oX6Q_rbS+U@=H{mts?Pk+m*Uf&n~GR;uw>8dUNuT3rg{%?6&$&}6f2W0%5
z9TJ7JO8?$YN#3Qs_wGKu;&~hMW`CY_(c(AP0j|E)E1gVT?p>9VzAW(hmWyz))usHt
zw$<*p!x@%+*A;P_@%!2J9nAVt6UD_hRzE-8&2UGdB0F|P);WbIN0-*vFnv;D_}+0j
zWcgjoqYD=MpZHdHbnSbl16@pfNwTLG91d7i8GrQoJ=>dA_m|q6zhh^p`CMZseYT_`
z^EBiAM}<8*>{24$=Kaw6W5Mu%ZM%w@;l?>(FT2=YscGvo6*T8Jt6ysOtN(LwY5tiX
z7W<XV7xpdP;IuJYK3-h9;oPR>Z~O%7nLaF(RE_mM^HguY;XT#{>$m%!`)P~tv&>(~
z9+hGH=R}1#!!9qLrnhl*hm?Y|tYX~$Dlu%g?91yscuqsiEhMP(-uyir4)(fn6XZ1u
z78owqc~`O|{M)rvlf@Z#xG%mwJLASVhp&l;S6aVXZB;4Q;ODgW|Bh2<x)V!xh<#FG
zu=S93p8WMU_t%~i-3$l9e>HzHn9s)`yCOzr%7zo&zg!t^35hL#cuUv&uM$InUqsBz
zJsb|&=br~ZePqH@842Rm-d=K|<4JYgmw1*1oANyae@NW@J+;(yx{^LqK<|<rea}C?
z+_diSQMLt4o`p&5vD`8DU01}jEa)&`yd1or!=dl-L!CH1VdH1Dj>p`Y3vL$9UBs|a
zg!y6kf;z#5?2^zUwi~4WiZkvw&~!-V$6nhzLX!jcb2zNZjrbxI8R_Ny<+rSoZ=ZJ@
zi$dpy6YD<x>wbLCWBGBrcMEGLfZ9$vMOkwnL=-JqEc2MXQm{ezkW#p4+VK<S5mP@t
zn8;r+{i7a3jPae-egEq6C*4(D?ynqvW?rB6d6^}3f(^pE*Vn92GHkh9_xR~q9)q*5
z+&?KXxVO0e+F^BT*X*vzzJ0q*`o3i_Jg9rQ_UiW4Q$Mr)GF(<C*r3e3_tFfXmXi-x
z^M8{n;gb8>&EVj&{kp}r47-0ne_Gnj;n1vneSU8|ze9?ac&A!j_Scp3%{%3H{$26Z
zl|f+($Ke>Mx6V~rd(4fp`q>ihzYUez@cQQ)+h2>mUa!she|vHHV}T-2?IyK&=k?6(
z`)BU4&kOJ06(}$C_9DZZi060DbXeV=Z*Iq@I`jR{`qtkc-o!8FJ|NIjqPU<dI6eOF
zuIl+sU5#HaHU6nv|1E<dA*Zk@R$0_NX!-iHfA?vA?PjQvD!*#9Y<k?~u)6zvvd)|R
zue@V_>dIip`*&7~;PhD;oAV!A&THk0l{ju&!EkHlW7CsLQlVDo!Y|Gfm#MF-`x4K>
zaBP|#<Js5ym#OU6T+Xp$*O5o}_s>_*VGfx4%hj!1s*^A8&D-?!S}vjKtEY)G-cZyx
z>V5oR$K>8=oZavHvg4k*GL)U@KJ#3`Vqe~;Bd4~pp6q6LGh_X7`#oPIBWxvKGcs*B
zoINS>@1H*^_wLPWia+Mg%y8N=qoK~DOZt^KV}tA4Yo=V?(IDnh&W`2(*frmJD1cTJ
z7MB#ICgy@zpe2Qd;5B?;mVtqVIYQWy<TZ!xMTwO-7abZ>ZPB5Tfr5boXwhM5Qb}b&
zs)D{}Zen^WmwpJC6XBnfm6}|lpdX%@Qj!5);Am&Z1@&{qoVT|PvzP)U+%B3YC2wlb
zQT!d>J@o<Go5@xy)1{=>E1xg6a!nP``*U`CjQuf*`0X1v)z*Gz=KtTQUX%EmRle}h
z{=d5Ng+G7FIK15Oo%z6*5H{1Pj=re@!ID?7Fr)u{t7DpR_hI>a^@f`}B^E9-TCtKR
zORIU-sRj6$VRHgDKWdrPEl5}?%&ePU&S%4<vh>`DvOueOmZ<ubH5Ln>CAAQ63(SJZ
zLZ`D`!X#L5YC)PduW5AV3flQQ?I@?IwjT)=Xf@ATYjP!LDJ}g?YQV1K$=Y@)VDr>A
z;^UiSe~%_8STe?+{YVa2+zG18X8tjW`_sSfzJ0yi{=*0PibLYt;ywtf|G9ntli+{G
zmTS|df{I#bxs;lh0xp5UMH`r9Xl4qM2eFL}NiK=$v-;Zz<S<Y{3|;*Vsxio4{q4D4
z<z}Va1O2u$dxAqt%fBj26nWY!ZuVgA-`j8J{%?5L%D~j57`!dR@9vv-Qt$U#y2$9~
zbht*^J(yiq7TbA#^X^{rM@LHh_RQoIYybOw|62Yng~5jdre8T`DfKACIdsB(eO;@0
z8}(|BZ7f`&Xum9@dEq9-wyckgYnSIt-qyy<Bfh`*b<xeg;eS4CP3$tWY`dHux%p*q
z=u5Hh$KSZ^w?B6LOZj@aMX3)yPLaK&9{zd8oz~ZtKIvcHmi4qn9J*=T`|(ZX{`2yE
z+_R78$j&~rwDjEcM_*PgbIv&wyzeg0#paOE&zsJhS=>wiX&U=#^|RP8X)|-vp8A@)
z4DT|o<sXDXd%xf3)t%{(zfW#b`J+#-%0F6{oVd31|Kp~A3|BSf9&Kv>a^+M~tM9w|
z{Gx}7=XQ9A?_cNt;oQ=57Om=LwRH^XB~v~aC+pNQ&Np0qSurU6&A*jXk6I<m?yj)w
zns4qh&Hk}tRhPF<m6&Jb8u=$vHgAd$oqBYY@xFqS^Ou$|FfjaE@}ir8;S1?RkLbVp
z1ZIX0>Zv#CKX=>z;QwrPYhUiV%Zk$rg`e`Dp7qvV=YX@=`c+=q-^xz0&20Oz;F9jN
zuaD*no1L~h#eZ7y)b_%@PtPTmcfb2*k#>3Qs%`Dtr&~<g|9wN{w7f}n_u31(-ud6;
zDrn0*<CiEt@6)omi)uo7kGE^wUsmvPUU}fYRek@z?2oo+JAY3xMt%Fk=8&J8r~7UH
z_(S69>a42Yw>9?X<u9(;T_^Zddp&RPk8d;Y{ZTu`zrIfP>FQOsd-^}UuHA8^|L6Im
z+1s}KvXx?JkgFA>0x@r6)bAU|85j;+HkGOWd0qbBU9;;KzrFt2U2>xIp6k!UlT2?F
zc0Ahptku$X$=fNi!Kb}zs>FgTW?l+jvFc;N{9J>WKeyi{+NMhDv}@S?f0w`b&#!Nx
zQ`WCiy^~V)&C}}0Qr`K0E2reo&N;fGYyQ%byV<i>Yy5Y%xqbY&#{FlxHpeW|e{MVG
z+!FP}Ec2mePy6@4e>{&5zs_kc5RA@`Py4;zDrdgy&)OeOF`uTtyIa=v>GMC|Df0Jg
zg`c)RwmbEop{-`u*2B(IzE_(tFxdW5q8gFB_VsZ)HU@@y>mL4?|Nn1$egF3Ji{9S;
z`nlwUSxS7?wzIx7?x+6zsdXwmboOS&zK7p;v@do2x$2g$^DfVnbw7%aZkV^}&%@ej
z_Ogp=LVe%Yi9em5UoZN!-~NB(wEF3Di$Zhfr5oqfeDj<#fB&z{DeG4yZtncFe0{y-
z)8+pAdp?DRCYwDz_WHKQ{cVwTd+P+Bp1+|IJLOtp*Qe0Zh)u2uywf*k_K0u1w#jf?
z@V5k;Ih%s_-8^D{Q}<;mm+hQKf0yeoxZLW$aMirr&D_<p_d397?5X~dlF1(?ToTU%
zr^@%=GZ+}EzPM6@IJQks{<j1JL&dIVkI&bCWB;GXv%k<r_Ojw~{kl2127ZAx|Nflc
z^!NVWGoM0pt7V@q_nmg1SN#9I@{H_l2Zipx`1mn*n`4E?+gFj>{;&G__5Gqh5A*+N
zojM=?*W~p74C$w<S3UC;nQ!;k=+yS~`R+egWhK`Ac@^*W^XV^F3n$*=?KvHqy9IOa
zx&HiqTHxvGEUxVy_CNGras`w|Y>KvRTRy?RZP(2d@23KB%Wl7U8vOf%Q0Udw$KOnt
zCdNN;)?w@IZS5td$MtvoPX4xIpKZ#|*9Eb@`hlUb`G?a>tEHbFul;do?WzyQeo`;f
zfwS(s${qXu*59oAtp6``&smGqkGInU>wf;5t@D5Nf3c^lvwnT)E}48nB5slKn(z6G
z|9pD8{<7k<?>7b3|2wU}=+C#CzEjq(dRo!-Y5w2c_0mt5i|a4`Be^+$$FA;Ar#I_w
z{`-FO?yykP+|7!7?-&31^TX;?c&PLy|3kTxZM{KJ@cxi@NT_Mvq8~=7Kie-$Jzf1O
zulnYD@okqU<QeH5_m(+%Kl;$_f)nds73K#1t2+1YkYu>&-A4lR4lOUPnX0wt;^A4k
zU#HG>yejl;br$b(|I_O(73?_wE#6e8UE}?4sw65z(mW>B)?drRz+e-5_+|S4kB9eP
z-@bm)+w1M$Uru;EJAd(?msiUJ|J~K!-}$NB{-4sR@T<>0uiwP`EZ53qm8{(6nu^D_
zUJ5*2{pz3j&0f1bJN?@|?*3KTef{=y{l$L@N~<r{g!0bzopwLY_2)+`yCqV~b@uB8
z{^?nLWf}MR9g4qGmz}*CyL#2awKoMG&*7c$?7W21Un8YGt3t0Xdo!W!>6EAbzcu#f
zty^3Zy7g}C6!~d6nsR&}cUir=@AmWC-SwLp{f_Izm;U-@9$5G9mHwhX2C3aQ3jXSx
zx-QurWL10Y&+|tg+<s6mWzE}I`$n08;eqDt*FVMO!;WR%OR<)CoUd{F@o$a&HgbBi
z>VN$Dtq~vEZhlkq&YvglfpxVfzQzBHl)rDk#CgfK^ZASaTs<uwSXVdi>3M^g)a3z>
zMULKnXn4DR-P_HI*S_aJHuSr>+1&28$*Jwz*MsV}hrJTp!e0tZ6pLH5N^0HabbZ^W
zUn1A8dibkyN_=^F;J&lPQ`WDFx~{Wd=J4P7i+=q0VRgIy>W8oQQ+|Gs-Mi<X*{SfW
znsW+YT1}hh6x#c+q+|NE64o2{(|@i?<eR@&bGKJ+&+_vdTD;4x7#JApgAi$g64tS-
zx5@I%3=IC)3x4h1|EqaFKmT;OO|stu|9x4#zxPx7|Bs(F?oTs46&@PB+4tC4nWycV
z|L&FFiA$AU<89@VbtARiq-D9mz6!~w=OrKg`nKrz`pn5sKfe?{E#I@P{)}72cP;6J
zGxcno=^55?i)w!5^qZewToc-R-mddg?k%^UU%zeEh!4%3JhycA;g<$Hk^8bD`fjov
ze-kO|ce6zLTJV(htIXQ++f{4AK8q^LD#cClyZNu4<8jH&nyVZ3_I=9TeEO5~9=~PA
zSKePFs~v>1<<xWa7PQi<w2=Mxz+UHg4*O*_*`gVneV^&q%RD`vKHuf%)7$r5ey)nT
zzt79OvuFGHOTKMyud4Pv`TqNU?DE+?=j~6oRs5@*lE3@5MtrDgO8koD^Os($oSu8(
zT0u*f{exC#p4XbU>#zR!VJ4k4c`ZZke~G87SIym2nzQF*+MOSdQm4ePe<WGE>ug)b
z?HsEu1$rS@t$YIOBsTq>|MBiofpa?&C$CL*wsO8Ko?&-H>fR3Hv@c6}+kaQgE<M@i
zao+0e^UKS7i>L9Q4xPO{aNnw1bFQ-OcV}j}uvnjo3WV{t{#q6W2AkAk-`V`y$+zR;
zt4<XDw>!mu{rsXoC8e|9*57mcxhhNlzs~9TeSvi|%me@NT<)G8xG#6}>Zs7%>A9O?
z_MiA>|9(+T=vK|$*K;Kn{n?Z@f4|vVk*BLyO?wmR1@_6dG-scik8STAS$^l3<>~xQ
z>6x6%oo~mu{ygQcxR3kwq__LCvVP}ue3)=+!vA}sc}6<zI`aG0X3g33NAkQ|#VP*T
zZ&;&3-}Bw<jgH#(?(X&qtDNUKn*ZKt?H0VPxqH>+NoQMEttvUz`ud6F<>jsYtM4yn
zWO#8=oEn7W?c;V#3=H!&J^b*s{{M&fX8DI@pWF|a$9Izh6zNqSrwvbs_a6V9(_DJ?
z(eB+j|3lyYa-CwIyIFCXSpB95{XdaUN?tOq;`25;a@VZ-+q1%sPobu3yl0$WcD|sd
z<5Os;ZuOqz;2j#FTT28bmTTC}`F8W4e!hiW+D~J@M9%5&z8vJZesa~S0;?m3*cTuB
z(R$<AYK{H(YNVcipAAZl_wCcdOLzVW`m;HIQ~A62x=FED&#!;3QEz+P`}@@?xs%Ra
zFw0$36B;w^j~p+9L;pSwY7yse*nJaZVE8bF_d7qo{J*~iF^k_GSClV0v2Erd#bX8k
zy}PYHm)W}f{GKcPH2(c`jrdUh<!^NOyvr6Z|Kpc`$hYj_+<mhi=O4eUXqIWW$3wR!
zY;_ig{PmKKlK<&EADKPQCt1AR{O6<HY5nCI@u7$R<xY`*AMg6}>%-b9>sNiXvtA;`
zXBcze?dK|~W16Sq?=EppiTh`9chTE<u0NlCOP#Vm{?W_IsKYOX*D=igQ+{^!ht+En
z&!*j(ZCdR<zmV&pYj5oH<0g8?b>{OiFdUdKLZxoU)^8j885tUuXV(=+*#G(cZ^ys;
zi~g@rlrQ4s&Wg(5f5>p$)cWbFs@?I6{_H-SJjGu>Fm!LFjoVNC_ho_q(uC_p|0Zqk
z{FHm@oBdP%`x1GR`Zn;(FD>kN|HZJz!t7ya?6n^gwmqCHacTF2`em|yzjgN4mtXwb
z-=7bvsISMn|GYf={ieV2{DJ#cWu3jY_v_u&IsY^FW&L}#Jg{!hzTQu-?>-N#s|0st
z9#7FdT5M69x9kV&^+Tb`a~B>iI<{H-S^JyTuSsXa8p;pHPFcSvW@-AK^VNsTPUUT(
zW{!%^hBd4Y2Ziom-*b9aZhg$-T{~NNzrOt^^0fZ<JAtSB>*haQ{c1<r^q14`+q(R$
z|GfBl;J#IMd+)jYobCJV>Zk75ZU0y8x}D~H=J5o+iB>u{H<$A)ch=g&85(L{TsHOC
z;omt8rnB=xLr=>by*=aUc>|q~OU`|pAGcJ@-t%$p9uAkb%r5hrajrj~Uf$pF>2+w$
zskdJwp87kRJ-zkJ>U8_>^{Wb;u17uOn(%htsw|tgpL>~{_x=CkwkLAa@oLGu#eceM
z-um6oKRh9K!_Gh4)UUMGZiO`t>;FDG+g^YEu|V#A`=h0wXa9Dd^8f8_o&SFy8=l&K
zcmAT9(7SodH0rm{Ui_!qAU-ty-n&JA-kSZ+`k7Yzas8spjMq-{8}i&N@zB5Y`Ga1_
z)rt!Fr|pMp%?|8J`MGM_$$5Lt;!~M>ZkAZPS6n+Rr6;vKN6<RG<BLd?P2(+zb>0uZ
zWZs^g^FMTI+|rPWQ-|$l&kHrxxw-kG+4ab}uKQ}HF%?_wlm9>LwTrD6d&=)^CVTBq
z^|lSsNAu^eKK1<2q^YV@t*O3k<Y#1PP|wK=l@B|%{kQ3@e{Ua7;rm%}s%^(jpTK|W
z=hrW)sj>+*ZH+(OcUa)*<=}Oz-cI2alnZ?8FaAGa<2C!A=k;zI?q2h8a(JojeYc-?
z%}#Isa&kq~wbS=@$UoR9aY)j()x7G2{dE4*il^n}H!<=h+SxCO+PwX6#ec2a^`W;@
z`@dIx&YUto?yu1){?mq_?#FYT{X5TnD*ooQX4S$}?cmvFiFMLXwd1Gvd7C}vORVDy
zZ&<a9>;A>}hs*P3Z)RV)>QeCsD)#G>v)@8neKj$wUwxlixOR=5-{A>-GxLnjM*jQy
zPvq%z)4Vg6XUGOg*dI6W3AFn=qafy5PV=hAvvN1Z{afr^CG=7;ciESN9rJruTmJS{
zs0}m!dDyCbc8j>CUF)gyO17=5ExYD#_UlWwI%d|z|5)*MedydxKaIB(u<ob=_2?ot
zU#<J|v;Gv@k0+-!_T8zO^>+WN*7UvaHvL)cyr*ROyJI<lR&yRLt&`FFUFNa=;_l>{
zQ2*>5er?^Cw)cNjj6EBfOU>{AkCr^X1#9v>wEy!p-~P{U@%8eH-sYPHTRkZ}EA=W(
zX3-xZu?N?GCvS7S+I?5;RQ|FzBLDv6i9gleFL=DP_f!6N?<wn7eOc`BD?w)Z8<BGc
zd^dZ4Gx|I%@mPL7udlw?WB%T=Gk6QPck{o@;%dK<_A}RF@$(OQa}pyqOIod2&MkZL
zeLJZ3dT1x7{C8jSnR!>gzN*~zzvgJhW0_~0gDsZiA6XT=L!|v<F`uTW9>dgqKGXhm
zZ~L<5vgzZGBJ!8Ee~<k6k&1}~5gtFUzyBuxZ*R-nk6-_N`Tx1#pP_zP@s#^#Z%$uk
ze=pAU=c-+xd~{RqbpK({n1gZZY?<q)-|b%&XRjA%_xHu8cN5<J=b3G2{rbyI@8!{<
zZ>N7a*IKsxhk3iHO}F^&H>>6q9(z4QHuzsj`m`@np-=nW${zFOPUb7Hj{jlw^wyr!
zW)X*7m1Dc~|Nr&2IwX1i+l+m_=ORuxc~{)h-E;n>RPnJMyVluDUf(P16+iW5?rSQJ
z=776a&t{+f^6>ud)oUF69#7!=$?x_@`O{5B+uLUY>#UD1FECAQH)#)lxn-M1d}zDs
z?G)o>;ih&=(r>?UyCXkcWB=^Ue<asEd!zOC5c^}E->G|F{5x;aTH<y;Z?odNL!t{-
zy*s2>_OMrOdh(R@V)wTy$|`M%_Wx*>ZMOLJ4~e7gf3$kv?>pIM(HdTQV%ocHJ5PO!
zziM_pu<p*il;86~1F6#rCqHd}^LE1awycN0(>?NI{+;t(>ian0rlRa;bLTzpjw&-S
zd|2)h&%&_4ohn4S473Gz_W!TbyZQg`o3}Y%=KPD<yEUaBRh>Jw!^?l6Zs5LEZQI;_
znx!l+SfzO?{OaMAu0Q{3TDPj+t_{6<S8cbT_w2(pH9pCy=1Mgohxdj*6*t}1mYnlR
z)3!A_rk($o?~L`UK5ps%bolRYo%)K7PnZ9G58Suv+V=ac(k<PWUQT$sKWoPJn{3(J
zw#e1}+nn=1^zhf*Df8|ADxK;#Kfn1;H>i)f_O<41g__?XyZ*1rJeBw5>NBfT{13S|
zu6oyhGt$0If5#O`@A9g1!4*@@lK&MKemnIQlyzdkB>^_#{|5ba5BCR7`afCiqrmiY
z^FP}6^qY6;2irLP+JE)?`@DaKmwta^{`1>n`n6A*bMp#cO2&rj)*R5EC;!R+S^A&X
z65?gYHc!0S@;}Z$)ce2aLe<~LQ=@+PGcEo7KR(%JZOz<`A5xv?eEjw^{X^65^bch}
z=4ajdR0o<)LZ5B|P2hm0n9NKK;D-$v8X1v1-$bvOe`5+}{@=_kt(kmW`oR0Ofp_jo
z8c0~xoG6gqWmw|ec6h_Vgf<?wKN}v}<rqlpQj~so`0m_CK}+8Ge){`&;u7CWD!#YO
zFMX=pUVH6c_4~V*pX~kqZeFzuN3dP+K@&~Kjm(m~xjON>7H=droXWhkgE3Y89<xG{
zbN2E&!S_0Hx!3NxpWnOH+1~5*2fh7Q4oI|rPjbkAk^L}eqTuo^^}mGDxt;`d{V(Bd
znDI8&Xh+nva^~}X;ib%PzV1(+omw8WzP2%c&Xwr`PFq?`D}}_o-}hUs{`)w2!DQj5
zg^H|g^BEoXt`83jKmDoi!QH=R4o^1DoZDqp`qV(?#p6Biw3uW5+&_MgEp^}7XRn@p
z&`$Q6->~PL@bT0qG6gQo2R1sU#aVInDfq_QHw5eM6<)7x{@CI2(agP-FPE*Eu>Y5c
z$f3m%tKVOb>9`^m`{!e=qS29}%bACEbe*v+Tg|Y;VAF=xsg>y-=1(*aJZ#gu`OoXJ
z<JD`KcPp>Xs_@%xw69DrW<PhYt;wbx0!|&vHk`=Zw4>$B+<$#+53cR_9;<tLxAU=y
z{}^_^-r>cN$?9^wG_8N<u64D-%bz*cRzH0{^Xv3~?6Pw-yC!S?_<B!*LC$aGf)yfj
z-KH7lGj0nj4g4QxdR#V~F?#Nu_32wTs$ZQ|eOs+`<%8^iIdAQrlx@;D=d{Y;+n#TG
zKP8=WKP6BsXQ{@<Jd5{f?4{iypI)y$c<a6Gs?FTL{O6zBa^$;)OnIY9-|^iK=d|DI
z|MhUruX*dHJ&RR(-&5f5wOTX0WZvS(o7{J)-d<a|)_A8=3rj^F)BmJ()12yzN+YCK
z{9SRrKUA#CZ|Q|S8VYHh+VfV`{I_0zaqii_H#bk<W-(|FDPwI3E!!$lG`apj-r8--
zW$&-E#_FE2K32W|D8t0!*v~uTujmPXuMa<YSoN>^l7jW6`i!B*;oM5vK|3$*n%w=s
z-a6H9&%UNPQ{vV#9a^^YmBXioYiE+~UwEV^bf81#?evV?p8=)iTXl>kZM>&r|91Y@
zinwI?aPQCOK0Z|A6)-s%85Y9nc|X6pCC~p`cCGlFmgAGx-TczM>uutRzQjDk7n8k@
zZPI1`zw7Cr=)3bvKR)N5x^~9pm3xIBob`{4(RRD_jJw2Z{e#}S#XG&aKAqoUbVNoj
z`0~=lv1~?DG7U41Ju7BYZ#?o&evL%Ah5X8wfeqsKcQtcv3wgGCaTbHg@?$%mw9Y=u
ze__u2YbJZSt)_Q>k*_f-__b{FdPAqbA3k*Hb%}1^{*X~F_uwGI{UfifI&<d!zo45t
zPxtSluF2*v=2bs<^n6{kg}UT<|9_wAr3EBJWQ3&T5{-7r$^NYU6aKYp$(NayOCQ~R
zt9GDwUEVj=imSiwi~co!^#A^+_x9SaEB2e|{%;P~4A>c4a3@)4L1j(J*Oqy_UAt~h
z|K0b{`h((uo#$hgTW{Z_rt`=1G}}jE9shUtc78r@>wfz4Pql@46-O@aJ<${1ZFknT
zMSzj<*GJJm4;~(F=bwLMN0d=(&tLZ^Voox1xA2E|Cv}#bb=R}~WApE+%;&w+ldW}x
z*_>r>x4wBY_Xm%|-o;y+?PXYhXa0~%NY4#FJ<&qa{*6V|SIxK8zfwHizfF0nx5hKk
z>Rnqtqg=o4gDgi8p-b9gCerpLTP4aS{9XJqt3%?^j;Cvn?=LWH+_@oIxppzz)%#~f
zljF^gBy(-Jtg3eK<icmM4*~?;P3;-)S*<B-pHOD{!QU>tdtpLf$?V3Pnjij7uhSE_
zb=$Cem)U~6CljX0x*pto;E2c%+kM<mEO}q8kJWX(l<|S%#><ZF<tqh#Tw{D|)pzTk
zz`vcVmj)Pk-*gwab?0i3%2c1z4Gnsq{L|GRtl7PT`G(8?h!4fRo7Xxeneet9*Zg@p
z^CQ!ZIl=GJ)-$WyPud;Y{%|wPjrmNyA@?|ct$r})c8j>rr72Tt<I)um&1-E3LohM_
zoBuYAqvB>_PB}mRC2oo?VyoPCMI`B2xmNh;g$ZouGY_}^*qyy&^-~YEx4di5Fgm3c
zbWfgjpJ7p!>VDPZ!Cy69>Rx7Pikz8Lr)^;C`qu8u<m#`N6{bEknEW*4(CYuvGZfst
z`&6HIXjDvk#iY7K=+j*GsY}mrYw~IOeshu!S$locW1Sru{bolVvt606RQ346Zl*u;
zZ@aBO9k$Ga@4iTyqq4H-JcokhaBoF>?S<QIbhkDw{<P(Z!llw5+FT8-=Q`CV9E=N|
zamM!B3Wh5O&%cZLk$-(z=;vq)7lZ9fT{UcU9%pF^9am0o^{?uW-Sqg-+m&XOL23Oe
z9%|E1FTUV4Z<<V_|7m+C#tMt08?BPwH<{W=+oXPNoUORxTIiO)`$}X>CLZ98d~RWR
zcf!Fei>KR8^Vr(<+4pq*Z+mCH;o-E22Hx||Wgp-zzq_T%EMnEy+*-@)3j-UB&+PdS
zlx*Vj&BWkx{5D7TKL7l=XBQk<-uh1VL&Dd#dj9#lf2t^iRsT<7_j;XHagNo@>a@7g
z$tOkunJbbSmv;X0O8?d@^y$k!)_s$ftInL5b>^BC1FK&4i-_h`CGEV&!f(7iyq@vg
zHuHB^Hos)MJEt@^@Hvwc$HU0_&Tq0GlKgsq7`~jm^+EiF^9z}F3rqfIRNMW!+G^f3
zftt+c`Hz2ZT{GqQ<|ly<B9**%Sn((J+sqZeA}}#<-m;V<%AeaOZ+&?8(DkiFU-ER`
z+6CBK{=NQ3ewV4%+(;p%yAJjZ)qfwyUpT66XE^J%+?sdhuV=QFH<a*iJ^e_<a(2^n
zg=-7fzg$ylH~sLAf<1wCqWz2u4_IlZ$=OZ5A`s)*Hm_Aco?-gkw8yVPm%Uz7`}{A{
zmV<2__ikPM__6NNo2G=xIx2Cp`V2q*Px0kYH2Pw}bYS(&r$u#EpVu6`boh<+0--nM
zJFet8J$)_^ao@4`ci0=N-0Q&(o7YEgN^hDQaOJ~yr`-+aVr#{`=Q8(+dFHLJVsmr6
zl5kyn;a=@;bLtNnxb#)M4?oxO==o+@Ct<0Xp1t3gTFz>PWLIi5Wc^;gi*f44kNWM(
zjWcrRp4rE|EaKeFxwl>j@O_tk;PWhS&)XTj=Dhsv%Gb>Nr$z7iGRyoJ|IRC4bvGPd
zqrSmJfhlSK^uonK@3c0Yp87Lx^Obk|pXBUW<oEU0yPLJrY?khsPxrDOI{SRh>MzT!
z{FcpD?&bY*>59y?yFq_;avPkkU9{Lz;QYx0g*SV%U6%(x{CHUV#s1ddt(`Oeric6e
zN|_+fWN*CF_Pd+Hj{HNmsqg9=qd!GC{5Z!Jw|&}HUun<imAAjdvRTjjJ$qmNq|+-u
zzmh+2Nb2XA_xHNb_OozAW=(G^<}LW0TzRB8-RM8_nrVM)AMFnLZr~ChWxT4A(UU{*
zYRrnO#&`d0^bm?Z`-APq_eRf`%k>+amo3~9y_ZSsgq*{Im)r>(i=F2!%Qde%J@>~+
zr{dzb9ly@?`$aijukE@2@P7Tv%Uia*OrKEv=jq?rw|^2Y_4G4}E&aAe{QZ5Vs|GjY
zJKx7LyvzT))H!pp=pz5wXK!8g3+iROf1i6r+RPg5$Z&><t9eBuUWzmSo3FA_I{V2D
zt~+JRCMNu}E@amE@ZwP8*4QP_zgYGf=IiCmos}~+>}K$R&1OX$FSc#rXxq-4n!n9g
zz~zfUwWjxbWrvViD%*6n)-wF~ZW6i8q>kZ3%BH&V$gg}G&Kg=Jt@Ph<=C<wYl75B`
zi|tu1m;dNp-Q)2yyG+Wo{`XRb=84-ZZ?3K4<6}14S+x0e#1eVag3xbs>hE1{uzso&
zr@u!&OKs=ZEy+p^##ej2jeV{!>$9;n*ewvZI8@-?@x=a=lf?%TpSx`S^q1G-e`H~K
z*S(1=eLmMsz9v(<qUpGiNqB|2z>UjacSW~Ps8ik$`AtRm=Ran%C~uG3>~3m{o1LT?
z`M#Tl#r@v)-<?%p^U~9W54QMxlS}(Jb4_88z=S062Gw`V+dk{wTX1}a=);UjyEF`4
zUVWN1McnV2SyvpJ+v&Xb7Z1oMwMA4KdQP2w_*%->!2enfSC*L_dp>99{)_5j!TtpW
zAHGlfuspe1z=`9c6^GI;%Z19(Cu84!ez<x2oUi@SMrq!E<{i<j<hj}7d$*e{U%{nr
zZb_#^Mb1rj?^PyG?Nn~RIGKGRm*Jk?s#KeKr_Wb#{!p!T%u>$0GN-ge-f31&?aQ|{
z(~^9C_()3m8tX~jn7}34dr3g_j;3z?Vfn*XWyGp;f6Omib#wX~=Yo}|=7cl+@HObW
z_4aDb(Gc~FhjIc>KJ>aUCrsYDbo=IsUv64e?oGV)z)U`E`eWr4<<b=slA4!A9xPYg
za9S|T@@4YQyq8gXl^Ism);_gl{+_olEIX}a(=460H;=|m_^)!mMQ_7_y(LU*{g1x7
z`XkysWUBIB*S=7PH&dpFO58R3G?!_ag<Ec^)S2_C^72eOE?$4+Go8h#?DlH55aBuV
zvT7JDY;t1CB_6!6d!t(0JfHtXZ`Gl1y=&+1d8k<XRm|d{Uw6{YA1_#4O3DHr8!uQp
z^U*DKhP={gwHeQ)>tuH%WC=XV*vHtOty*<j%*!!u&+7W!vGo~Z#YIk+rn{u_F*p9b
zbN}(Fx=;U>wYl?oKflB#l-HU4j(Nx5R_A5@>kT&wJa{sPTX(L&*(`>V@)CK^ql@1(
zl=^RF*3Fcf@F!kpH~R)X(|PX8<)ztV3a7lDbL9z>jDhBwjqDHd!rPawTwNn;X0fX9
z^OUCMzI(>JjruZoTsL`G%QpNgyFX+5XQ8=QZ~Rr`n{fJS#kU$hmiqTAE-zWd&als1
zYxOqn2XW=@%bL#olbU6@;crXD{)R@rcga&Go?o?lV&N6<hQ(!d?{-@2>{=O}>n1Pv
z@|&T-B!|bR8?yE-o|3F;#uQ_~WfuN5o?-ubnHsM<vhS?FOJ}nNiptz_-gZ3U-rUo?
zAAVX2BrK0*diJB{U+Levcl$YcgB}YAr<OD3)ZTYI`#e&D`_B869n;tDVSeDK&)#pS
zxa6?G#fx(#jHUCeE-|~^Vrsv8vgTsPM+TR<w+!CCp7u1y^783#FYjpY5)`XW3Q~Ul
zi_fyx#{24lomG5Uc9-=ZHvGTdruEh9Hly6viOy%|Eev;F?S1Z&;Sq}m6Yg?l>K!Oz
z-*#X8-mZMJ7lLkP3XRjZpZ~qBcIzFnvQ?3{&+J;lt-svLbm_`B%QnAr`em4S;IY2U
z5))tJH>Lts=PtZZI-ApQ{O=RXQ&C+1xL-$AZuM_De9rcet|Z%BnQOn;1s@#C3%_(c
z-v4&NE6ZapcW-Xb@%dhL^wIv}l^N52ikB$+)Rx^+f0uGf$#|aaJVwR)))|U#em-?p
zNLx4Y(WWDn4^A>z=4@*fcvR0|Ge7w9rD~<Owd!*cBrnS@s<O;T`5o8D+LsyScS$7w
zM)99j&fk-J+-E<#*=fI=FDJ76$Taa^leqV9D{*5{xPI})B;~1ccDDJ<YfQfd|5g%N
z)OOnRSjz{wwcVPZE8Idq^OqS{yuGug;!;+^ROg=NQ*T>WYkF8en7Kdg`FruVd*s?A
zO{S-BFRWu>T|Vh!cP+zh8G$8U9Ez9tYne9O{xQY+FV}-<d$e}&`@Pt2x?fX%mUM=6
z!nQTGYF@Kg4~YJ}>Us2fmcpf6C;MBCQ{Emnb56^#`Wy5=mi4{lbqmp`+tL#kPBvrj
zSUg28^7tM`iyWc#`~LVQEWI;3=Dgy^z>V+z1eqQDTDHOWnV#^{Vu_YhH7i03R&rHb
z3%VCJw<o`|&9;8t?d@xBYk59Zy8C?g7PHs<`%8K*DZk$m(C}6*ZS$oD4US?LwG&F!
z3?{b<{H`CL<)ifbY;=Itv`g0;D?hF6aa|V~cwqKJ&5WHt-aY#La{evTPp5yD$`~K(
z((Plqk}WI|($Azf#iZPO)5Klu49nHzE@iFN`}-sA&(^Mj>#X_bzN~J%+?txDd-{lh
zLPgK-qmRQ4RDD<5J26yjU9qoOZqKLJR~)V^YS~!%YGq<ykA8XbryM4yU(e-he0G=A
zY$!``eLH{0G1oe!p!pgc6I3-~f5|g7cC0)X`ba~CasIQ_O$-&kqm|un@?E>bC}3oo
zf5`jipTs@QyF{H{G|ic}LV>HU*lW8d_g(XSp3j&z?kSw8pRn}zfhQ^T*D~4mvm`y6
z{WC!H4%d6N(_7}*H)_waJhNuyN5O{c_A@V^tNPDg{baWN+18Dxcku+AJ)z(-F|hrs
zr=-b0J)br6p5{LYFp9O1vS+%Y-F-r7V$<OdIUAnzhSl!c)yh1#y_&&BE~)O(3`YNy
zFKy4RojJxCKL2YzqrctM7J+-A?Ri(yjw_uio$0dlp;kqpd1USnX6d=vD$5e=OXV`I
z`)A*_FsYmWzIeyY!-q8fu_WoZZ`dT?u;J}r->KZ0ZthIhT^aS0xyt9&JD$}y`j&0J
zbzal2_9ri9p0m6+)lG3{MPC^6LutF>EnF1}Ia`02=r*n_D*HBH&+zism$~=MqZs#Z
z=kEBSw@)Wo@jBb0lRL$KXiH{4<tvCV%M_7unpb<EURLIPz=O{cT2Xs$3F)1#DwweK
zu-0B#$1}bA)yh{dGgp~#%bs0tM}O{|=N7y*lY4&W@7!oTvq`|oq=xg=#&Z^WuUM^h
z;-{WF@Z9M8i@?e=oW66evY+SIlex5HLc74sXDc42&$RaD(=}}o_uVr~b=SeXpDlqC
zq}OvwRm7dwjJ@0bDr}v3b2gs^>-l?$hmL6nesu2rz@2@3%loAV@6Sy-alU!4XZ-f6
z-;P(0tk&Go_Q$;;_S{L+`=Z~XcI(Y;>EnBKd-DzT!_(zzTLo=pu0#f%_+b$lxcrxz
zd3{6E;}hS7Lhf6tubBJ%>=85m-iOPQ!`I!+{x)mh<8^lCsh^B9PI_>2c>Jn#nzdZ*
z<V(>z?b|*adH7Piq@+RlTDHgW1>M3bp25rR`e&bObNgE46u)gV-!=80&(1KexNFXK
z(AtkT;>D76HtQS~ySy@KxZT&omEQ7X%e)-r=h7KdugpGv=zS5_Vg==$iPI<V%3@wF
zbo-un`@(6#OA6h09lESirJKg<^fm6$Rgst`k#oB0UrWTIRHCv?cPMan&sKQrry{sA
zRqc?`%%y=7`d_<Px_`gOqo=ZN<v!Ofhh^gL%vVbMu*X~I%TG(E&WWdeeI4umF+P8i
zbR*r{<K>!ysC9h731$=8_bzt1x3&EZ|1CqU=7?`67@0Ir9A;LWvzXzWPK&DX!-`cL
zinld{r}w>&{J$}0t!4Y7+YL7)%XV2m?^Mv*pUe_8q50v14h?C}l|oFjg)hJAofa(B
zpuTDAGo7e=?DI-DW#9a<`m%C?=8dDv4USpbUhQnS+Ntw+TXT-1{gMoM#YJ~dcAPS+
zasT^3`^eh>7LE)5^>eO@>D-z4+ws<lMf!8KmNdnN?9mAOR^k`#yZv{EYkYK7NQ;0|
z)kJHJ*;~23J*=Isa8s&S>FBoPzGhD5JDD?=`K0FgrCB^#v(GN{ph>p(!b6=BR<}+o
z$DO!2=W|AB=+bK$KJ7EJ`Xb}!&Uxr!X*qjE(_EGh7cy&W7dEa83sG3>@HIdE=c7A&
z9yR9V?qoZ8`10k`w{NTa&N8bz@cLfbv^)QsE6+{$IVg8-aal#%28&-z*L7e2^=f5q
zS(lZv`s9Wwdf^*Cna-}cmiu6ZA+ON6Nel0IELxD)@%{zJgPf)ryf>XY!*nF>&N-W)
zcVlw1#45J12%d$(HJ_5#Zhy-2`r6CL*}eBmKc4$6u-NtL%WKOX>rCU`#uZj`{ixTr
zYo(&B<_v3$I?KOyfA$F!oph=s<HeD8T5}oiecQAm`^$>o(E<(gRfE~iZ>kNubHpax
zO3Jq>uHcT_Mys|1#^3qVBHnWe7#%9OIM;N>3@1HdkAr4xPWkEIo?9A7SWHtWE4SG<
zKfjmJ-nidyo4?u{?u+~@XKe3ZH{WhU?%PQ-h241He2eTq&9J>%LZ|-n0n6DbUb`h4
zg5RzG_FYPZ<4(@?1*OyX-S3&X>%sT4;t4BPFAehOd1i2Or|q*y?jwF%mgVRa+)kNM
zDYE8z{nNEO7|W{4jvrd~-FvMcqm7J!eOTV2O{$eXC%q5sa^G-k>%uiTO3#IY?<VI6
zhM!(CL1Jmb+|9ppO4u`!*1GMxU9f+Gz@g<&)SJ`a?~s(=_W0&AK~vo`mO+c18PXq#
zg>)~-d~|6GcWcMIprZv6iPz^pRML_)mr60T-x;OQ>hiI5vfukJ-W}WW>}I~_`=NXD
ze?aaJo4K>DE?jW+<+2By4#MKHdxU-bLZ<E7Sg?4Fz#`cdvv2=k-y!ny^UTThGM6?d
zcki0&EqdaS4ev&$OO<_>dyDV!x9;n_a<cq*LXB(OZL`m>`-N_sJ)J4cyQjB5aPoDw
zukI7Ce`q%od3s*p&4Mk9x!zkGKX~$|-=+A?soYck^9fYs{arFo{<(RW=Q7>U<poZv
zsoyjoI-Ia@&VPLSh>Fl@)5EDZmR|O$%4xj4(x!7`Q+5P%=$u;%w@9tKDR9Cfcy-pz
z9xkJ4*+0L2=}rH`c<B7vp9^zOR!IN%dEC_4p?U1(?rCabSuVGD${)R%W)#zAdy31)
zvF_LHdB$g+yYF9mvOM)2^TKawy8hwcm&fJ{$xU#Lw=Meh>8<;}gMkbeH~R{U)H*6v
zsvVQi7wX>Awsoc5+>K42PqI(XT^;${>O+1J|5Pp4o07Lp(r3R^Pk!V+?b*wZTZ^~d
z51rk&<Ay4$@SP}zzNqY7x*0u2iFGo(r-K$u-`cdh_>`IS>Nlsi_<!E_<n5zPzYfOC
z&aSTi89is=@zc($kJVp&U^{o-z3nx}KT5AZ>X7oFn|-_9+_)sOmdmz_);`&&Db00X
zQhaMyYo+Fc8$ODyA8mR3w@kY7*0f+*xP;86r%SFUS>Jvz<!vU%^w(}T&fec8Zv6dC
z^{)td!P5&Hk9Obun=tp~-?vvgcRbh7P-zV6)LGpku;>Y+!jEkKKx2tMb;FDW0!}?m
z+skI$o!c~H^5xr4e6q@89ZMgdm$y5apLVC>ZTn|V^=Ip(B&J{aCnBO#z`gZriAd%#
zS7zzYoQf`29V{lRlx`1M^?p|Sg3Pqzwy)Qy+H7vDxwz}(hqq<Ht=_X(KNvj>^Lstd
zSj%#*mWE0SR|KzDz<;w34(nA{{9yZbbN7-@t3I8L-_@dB_S92;e$RqyP8^C-|LX$H
zFEI7|xz*)c$!hrQu>?Oeo9gQDRuQjjL2iNRm!D{d`>ng{TzVt#XV$s<jW;wudavH}
zugv<iNbMT)M;0ar^mya0rz~A@<x%Xn?v=aaoxh0x5?XJz+k|1-rocZLPiHx4Epszy
zxo5W{?b{yK*WY6+MA$x6+Em!6uiDufthDlZ^n;d(i@nk<^6qoU^9%eqzoI|qdUeK6
zj&EwZ%eHb#mNO=+D7Kui|HkQXX8yFvcYRoTjVGPg*de;~o|?_1rwuV{^_k@U=bX#`
z)V$asA^!2t<DaXP#J+Og;JrW1|CC`!nCYH3TE~~X-O3U1^6|wV`l1J#-><Dq_BM9>
zI+JIw))IwJwk@mK^IDxMI0RnTb91cJ3IDuQjya=jtMR<7C4YpI8@6)JJI-geB;PPg
zgW<nQ-;{$B4{YrE=|1mPwqajmuTu|;-(A*#{OoxrCQKJ|JfnW?wZ;;?O)-t$Gg|~^
zdR<=?y)`1uGm0Vb>yy_9cAvG+Y6!nv`poTK>i#(!|C=7zdyI2+bqs5Djf+>r-5-(5
zPsBGwHR~pR6Mp#FgJGWkhKCvlAD36!C$g3w|88Joz~%Lkdqvdg+n$XV`5At!ubzAG
z^!b;2)spKBv#l=jox5ddS<88{z%*yo=SI)EGry(QC&XLdKGV3@%;5t2$#+4Dtq*o`
z#!0ho`^WY|tJ+?!*IZ%-H`Bk}|I-iNJ@r^<%a*-QD-+V(w#+oS&w7uWZL^~NTjhNJ
z+srN1?_1iJJv+{|QY6!^CEQf!B_mIvN4#bGeFlf(&*$IIimX0#>rmxw_07g7WtAqm
z&-lzdBW({ydhUk{fgY?i{2Se#3FThpGhv*RbuRMC`l?0er<E|?x^XLQmPFny-S&+y
z>kDsWrE{M=CnbC9Q%Iv$_U)CEZ}&C*o}9i&z_wgk#N@^U#b>^np?h4y9GEi}ZL^!Q
z*4l5*hO(VW->tHraVSb`kL|g?aO2vuUH87Fsh<9sdVW(ko3zb+(bf$YZQcD&wQE$$
z-Q#7OQFAfWxzYXDz0m7(l)cvF>oG2L;>ewq5zRlP?SO;zu8%qUEZGv49(4S<USadL
z<7%^3B&^{66<T1#zOd=w`pozlmh<*KXR)-gzrBu0A>#LM^@5|vil1#w_<iwSweb9`
z?QL#{-|(btFPeP#1+UcX@MBz>Q)9B;Nvx9Gw34Ce+&{~O*^`%@owYsVX4bmkpt=-m
zh65`-<g&S!1e-lSyT^OV+Jh!G;h9@!U-sJCZ7PxWGBjp;cv9sI7Qs;A^~)wKdYLX2
zwBg>1Jo%>vGUcn^nwEQUy}!>o&reTPX~!b%EG9-XRpWDfVc)CTdYD6Q->%?R<Y|v&
zj>uVm;*-K!*81lu_reM!e?N3yEoyULVAh`w^JynSc6vTPXn#IhoaLXcZR-h{_a8Oa
zw%cyY_&octj`Z%;tKGgX{`co@!i?VHuy3zhmRNF`Px(-|a@L%zchU8evJa-Um)^J1
z$a`PDbA!O4V)iwc;?I2J*|%-s#Q6&+=iYr<k(Q!zNlz@SHe|c!>9XewI&6zhdv1#^
zaNrD_FzY3A@S5v0nC`B<?qRi6`D?PzX1m1#PG=eyRLp;@CNQx=C+?-ljcrdR{cB`y
zle2i6^qB3Z@O9hg?~gX@o%mKHNT^yk_<ZF(m&s37NOT6M3Gn&+Sr*+bb#&`QJ1fUE
zi5q5B7MKO@b+g`)d0XHoTb$%`fo}P<ZS8v}%{}*Ed5e?p(Ujni7hVa!+Q`&rxuW=f
z^@igo#M9P!iY+VI{^0qMsE?aXS2%o>FzDqBDt-25rLbGS%&m)Fd(7D<zuXyXHk(Vc
z@4Lg*Yo|&x&5m3t4|r~W=x2|cD(}M?6E{arjR?8AcKfHfX9Jyn?OeX_==zfdw*x%{
z&opId8=4(!{#DFgI@g@1H1e@h|Lz5rw#OV^T8h1kFs(Wx+;q$9p0D%1)^FdqURIo1
z)e&OybES0uRe`Xxm#*eFu9vx5>Teu*@OOr}=jF#-d;AVFWv~6i)}8aFKxW6n@=tZD
zmQ}BgS4;2F&Hfh^-(Gp(MU=mU{km6Av=99J(KP8Hr+F}2$Q6N{)kSGmSGM}Qs6P<o
zllkGoId}f9kG2__k!k6?J!LV+@1DK!<JlamRV(Db7-+njui(1t_<8H=e}2`TpLVr-
z*>t|!6J5&|+CJ;^d%W75;d=GX`n2-alnEa>4WC_MUmI$0w{f}0T%k6nGi9ODTO9tU
zo&WjrjPktj0~WuoUZ^mB=CLDvbK<G@5Bg>rT>iSB`GNf{)n});{2p=4sGNAMw`qCp
zEz=(xJdU-9KV6_(lOHqbqY1;RA}5Z(58X%28RGUD6!K{bCO*+m@O8~PlV%_uaQkb;
z7E3OHjT>54s|FTG+&<{@=791?{!i=qUT)jD(tX=|#|q1*n)f}I{#sL)VKIqM`pPF8
zHtzfDKS%!G_}NTm*SC^wZ#Tcab;QRk)?+JgmcwFS(FGH@elmM?v8g|klt1$?=ff0h
zmznnu9FaayZOt-8SWdF~_v>AubLU;$rMe<eTEn94@ZKe?rzM!0C#!CB*0i$b;rQXS
zF~euBPJ`Clqz5w!r#<~MReI}t<5%_F{~H^a_+D(A_EF{KMzKSyxD}5SH=J-5mP!?H
z>Ih9((W4{Uxy<j9)gJ*fwb+>BlT)YIf0+LDiv^eFl#?60cndDa^yDh$wlMQuFbOxb
z;+!nzIOW=@6n>p`lFKijkY#yu;s3MBOJ(Nb!8Xnn5APYfek(nY?LL!HW5=ZTj5q#V
znq-`^P5r~#KX<2@a!H$N*`3R(U;M_SGLAX0vPfJzd~xDyKkf&9lZ+p|YkTCm_qykn
zYTh-$TY6XaGcs(pSr&a}Q(U}r&!4L162-P{63ZW7e)O!h{pr`Im+T*;ui(5Gac;>Z
z346;6lU((R{<7|o2-BbG_*?W2!}&9;b}QEPKfA{&p>29?!MgN?ze0A*+%xCZvlra@
zkK~rUPw4*lJb6Lfn&65r&C};g_HA0}`F?}m8joLh{hVG2F&yZw-CPw~enGLT>2PM<
zC)XL@8e>=1PWs%ox~+q0{X=%|?LX#}w``odMcC}6x!23M2D?*d*uOU}cxdO;A@uNq
z)32vL{^h=&c6R2U%Ny)Gx4M4%^I>*wV}Uc<PFdf5^^fjr@^ABhH)+X~K(2Kvx8JjU
zK6Kko&WU59?tFpU59CkZPg}|1{=?yEEqCG0Pi%+c{+{1=zm;iwv{&5nCmhv_r4t#f
zC*PeRJYm(Bxz!&^|6DKm8~i=&md1<=-&jBVxpmTZcDN1~li!PE!?=z6#9p(ne{z1#
z1v#cK%S-I)1hz{HS5C`r*vtKJoost@+|*O*9>->u&Zukon0ETX6ya%cr|uTK$X9pX
zI%$61gde<Ic~0lPIt2LNoo#qtz9DN_+1vXeyr<dCHFFZ}CT}~a_w)XW{}L@Rve`0{
z`#;s+n*7pbj>Y4Xmy?|pj>JV8Z_2z^;knd#m*BR_fSV#aK274<{^K3X0Xx-<<Wml>
z{z%<O6nMPhpzed0&nF2u@m#j+6`X#p|9y<+!uq;%)B8R&&15Rff2qiJ+Fh|_!YzB1
zj}0tQd$N3YC9F`Y-0T1T!Ci%?eFnBcr?nfRI-@2CY3$^$$j&)9`Pp)hgzz}U7L%h2
zX8&d{<IKxvi;2Gw7k9cPpVuhiThrcnshOXb{XO}fU;5Cw40XeX1H9SmUp;zibDei}
z^96O*egoZk@jniVrWQZ@wq&jVZ;oGrSWJ%khv@=N9Wq<1eec(~ORurp<=P~cmMwo@
zIyv>vw*5_vzvkc0n3}bEpH|up$61cnZjr_dbq!y&xM|<`*|~L3i$JDU$=r?R9BRCB
zH@1g=7c4k_`P5rY*7=tcREt`gqA$FW`*0%W9`pO#2KOJ7&%czr-<rjc^Ho*9%~ILM
zSfBMObHfb6{ukf!{pB;){}J1!^7qFZs>0PbD=u4dN_hQC^^Nb`cFo+!w)(i-r_R?-
zRtN0YO>;b`#cIa9G5Czu4Yh;KXVg;T>Ydg|7VqjgyKGL|?UU#F#ob+ZNbXnjxt{Px
zG51hr?!6m4@prEBPhGHdtIx84^}mYcv)9MY4LKdMD5kNn`Ayj?j?x!jJve(`U8~^b
zXXTrHUgVyKbB>egyz5c{rDoyrR!ZroGGDf=^i%bnd-40iqGwfy|L<7H_+$IYinZ%+
z-ZlJq>`dnEHC5aV&wgxA^A-NQ{q>Edx5I0H@xRIscIp;6u-!{Uu6)_G)CZyFpLef}
z(N9=1v*^6&f_G`}`gRrg?>o6hi)F^GV|wk+f6aW6;H%i;zISRO!>stN(|$dz=Vw<)
z3%_5k{=0IT!J*BnalQvdQ=-{2#3DVk9&O|<n;m+vQirkkrtvK1qFZ;;cFs3Ac24Rp
zN4MQ}6Th?b7v5&%E!a3^g48=Ug%aoGKASox3e8{-_L=^T>)pY`2TeyO-+h$-ar=VV
z)3-Ug7mH^dW|sVBHScAsfap6$`Png&EECnmzx=vzq-XJkmW+-I^SW98eCvF?$#$pa
zQPTs5bN6ovPg=4|w){c;w9uRL?-_OOO*~-dy)xvR!~7JFkivVv_C9~do^|8ZRb`=j
zX69=ZLN(LtJfl9gl}-9AJ*9|eX-Z0SousY)QF(@CW^M<)PKW=F;!A%adMx;J_0Crx
zG+r8ezI|cw^?vAs96{@MzS{*XZaePFO)M(-rC8YJH&tuOd4(2%)4ww3+}+t^YGik6
zmEOM#m#%)Aesr0|WA2H`QGEv%99VDwOz``4e@)xk<MijU6VDdYoNaw2XK#fDySll#
zxtN_&Yq`L}#!~k}w<W?x=hnKiS!TD(Sbp#F3#|~zwsvLRueo_<wc)uah05~=wVO&5
zTV`|{aytEgwSve0EobZOjhB}dG^c$RIr~PjMS?@{(_GFy&LtrSg~GWPCb(=9Sfo2&
zQnsn$_tI*$#b=y;)F^JdC1`G)y*>BV<Yyle*5)3!oSPN!YWtmIDY{(8N<tbxUEC@D
zzj@|0y}DKZf7)7vt#bQ(j=6r;zMRjE+}qWo_pDZOxgo-Cp8o!B)a$#~_nUqdJY?*=
z?$FWTcHK7bnK>WUYVKg&snoGyhFIzn$2}|leOTO^d#+vBOyc3U>r!@h@d5X3MZ{LN
z{?k<Oxv=|K&SZssY#}`cC+2(?581f!<d^RWb#ssS2zDK3=uf*AwC$DAWzM#pQEaTq
zTrR?sj=q`trf!4J`ibATp7oyfQ`&06p#Sas%jnZhk(~lb#yM+NRk)t?FOJ?DEjp*|
zdoK4r&w14kedcW1z+<!NZa`kno=H!Bs(oG=^6G%M>Xn(wKTg;hr|iG{hyUH|-enf7
ze;%`Y{Aw>aR(AP-7qhs`wd0YqlGZgHmwb`Ceht^Q0I4vLJCvm|J4|O=?qWV7bxUAc
z4X69t&9SFK|G#d%p15accI*SMtb*V&=T8UkgNg|O?|r(9Vs>OMTevAdasAzy;m2p5
z-!tW#p~=SWx~#K3*xO@to0}NLYNLzpG+$L))p_dRhO2R<N7MFZZ#J}FGC^Rmrl97u
zZjeb0f**_$m-)^&lU9D%RA|yG6QA47bY`92+JbftWA4Lu6jz+SadT2rZbeD&(eqcG
zG>!zTsy*CwcJaGQ3=P-YUY_FOw_VdKQhs|=+C3dslR2irdm{QS+~#_gQNd{OG)q(D
z(TS4tCI;I>5?7gNoPEv8b}zZLKYMDczL=@60Ml))IA`aC$U~ouvYgJStPb-qOD$)5
z6B1*2m+d9LMQ(<9#1Hn|jIAHG&X<@e{Ewla{FeK-sLU%nIQE!LzMV6DDvuGD=kg0h
zrUj0iXJ5FPFfDo~8)dt)zWY<;QW@qx#s$B&d$UdMntJ8J#X9ZYZBhv<XP%kp`(WZt
zfiA9-is$cSJh<54c)v9FOJh>$TeX_Z7srKGZSAwSyD;bFhY*YO{j>jvaQr>tv-7!V
zWb$Gy4#k!eW~wqAvv#|^&Yh>wwX7-o!>gSs&#xvlPb~ZE&i%UbzVw0F-M7VS{vSQ=
zntN}SC|A=w&Te}<{&W%H#7NKh`XU2?eSc%_OwU}MxxLBwM98wp`JCF{@9#6+yXdKF
zqG@xC$gJnf&A)HX{Ch+0kgxK+ecM?Bu6p$y;c^psVexzpm%^_v*$oYuZ}Sh-pQ_e*
zdNJ$nMt7~|%=6olH!m%?sBoz-r0Br2j0cl4znHf!dHD6=g3|ty`yE-AwHvx^FL$0-
zIF#d)%KH8I<^x`Tr+mA#ZN=W3&JUySp8vUP-6c7pJ#UuY&_C6Xe)!{W=dY)`S9|X=
ztz_Q#I?KzcM!;*!qhm9JPX1f}&3f<71#@$wU#Hb&gnnb)|L1MryGD)~OLpu&aj;sw
zL_Xuk!T4F}f{Th6=A2V+5t#Y@fYs4_{nntjf(7-F)AyKNJHK79<LA;7;o5&o_+5_N
zd%sHK^9&h}+CvQU@+5*HS8rM`$a376Q?cbZ-;R`PQ#}v9oyd0l!0Q%I3*Cp77AzJa
zs~Yuwr=Iy3|7x#y;#OIyQ!3v#O>_FuYb_;yeEqj`J&!WF4HR1>ZU?c{NIg7pPgKTr
zS?b$Xi+dkuPL)bMRrg@E<Kot3Q(G&HlX!#ov~<{&J~^TJw0nB*w)KswY}=Th9!}W*
z&0(|X3hCV*daX|a|M3~zy)bXVp@Xq&OHV!8GIf{l?VmGP{!EMQ(7Cwh$Bn$@Cal^i
zQH(#N)3U!?u<qV^%!HLm=Lfge4qIDg#T9EE8?Tsi?YO%?rk%6?ZlJnM!hx$%P8=Vn
z3N<^W+0`-p$xT^!S$tjg{S-O&gziN@Jvx^}bI#FE3z(Fc+vF%(lJjxFFH!B#l~I2e
zN0q+1mj7d7S@I@!9ksk5fuLzgqS{mR!=E)@TIw}TBW_Jb;}M?hOFmZ}JopzkPBCV9
zl~pgp=|3f<QFG#?@CMg?hkmclY>uv*;Kvd8PRwBcSH-!{KHOQAKU;LegfqcMo6A36
zoz?MevDfoCH#euAo@Uy3>g(6d>F4L!R{whw+29$~+w=3&)6>(}7fLGrd;Ragi&IzD
zB%KvhY!R5M#<`1C#lL_x{6b<So8Z0jxfy1wrwBN4)bCecd#UTfJ?W$0PVL<sv%l<Z
z<E>9;=T~=qeP1Lb=3OJ0T{bn><H_H}uj^&+Z7h4scX-*~!VlB_G0d6~sHVKxj3smK
z*GqSso*#dHC8TF{kkoy~>)zdy{!7?0iRX4T>le*y<l+;%;JeYPxqh*)uYk-4GX(_}
ze$P)6R8Bfivbpr+?ELG$bShRJPkqevo;&sE^;>7&cK^=oo|ki{z^`)qQk8kn#2+0x
zbjf*di-n<W_QfRE?q{M&CpWA(^4{nEv+iZ{9;Hb>{cYwri%Cak=HU#BT8p19Z@Oh4
zM?Lv?B6w%%|M;*sJH;}7L~-vd{m`Fz*y@Vjtb{Lp4V!P>T-)pTclWcHK9M_98GqeL
z^0#`u@4=R(xf}j{$ol6lvB1U5x8pij!kU*EGuOz=`)}*Zo94`+=(6ik>F%C6w$)F>
zzuw=TGc`<sr}x@P)%Vg3v8KD;_pq8-dDXDGPpEv5s!+7YRsUSS*UV`iSD)`?dhk)C
z+w<JL$V<8GzW-T{?(PYD!hikh=D^G?l42S4Qj9S<DlG#07d#2`D)hK2rlXbfF-!f&
z_GO8VCqLe*X=3!Y3)}XP^F$TTqO(UD=dugz&HLrJH~Q_<dD~>3nX}i&Mr_P#th;N|
zBCtsRBV)GqwXjWLOWF1@TikH?{_3pp7afMc*|+w2hjnk8RD2?qBQxP$(98XdepkL}
z+)RBo(V*eF@aLJUGdynn7MLy`VLoq<v*Ne@ZJDhCs{fk8y`{7b9fE93x30e@tgA9{
z<83+9hP40TUROF>mi)|#)_D+r^3c~=#~J#1S3g$XV?CFpBX)Mj_BZDXR1RMH#KDmG
z+WO2DHNj_ZKRx^A`Xji&e2?=(y#uYhf($VdiI#z1cXx;69*lnb`os$X72kPArMF%r
zzw}(Yo>^ey_upA@SFayslG&7YDo|<GjTXgOwNd}%mfU}^_r|KfK}})Pr+w@XEU>a(
z;Pia;uKceDU7p@HaXu)Y$Mhj5OH#4rLzd;IdT%rNJzpYLx2Lw-)is2lzrBm!sN(mA
zXTggb8mC21{TAU7ty(inzn<I0=Y+zg?Z1tA9!$McKe@?RlI?Jd`|aWnX^CsgFVE2u
zEP8u^!DUVEBh40popm)$oEIlQ3fa+Gy{0a!B6Hu-v|91Q$=$2s-yh?CCUW85jBRJ*
zKe%nPcR$EFrB&96V`Y?W>c{+Pd(0X5zF&D3v1Xf9lzl@|T+ILc+g+0TZJ6hkb=5n1
zs{YEYnEFCPyG$-4c{Yc0LfEH&9IVSHFRa@7W6PXN-cF*r(^9$aG>Rv0nW$I0doJUJ
zocEU&Bpv+nt8i+f7f->GJr85$p0@p|t$BZ~)VL@z1GJp)+Xi2jmr^woOkRq{G^C$A
zfBb)~{DYVGZq~j|5qIh+4KUvL`(7;9{dV?ShG7Mlv>O^SIh#&T`yn3Czin^m`<Dmi
ze(DStapDLR{wF+7^xo#ZwXETRxi3C#7F3hw`hS?4UAJZ9x@l)~HNSDZ6BTmu__}?C
zqqM<Ap0&!1vzs41`OkkNrFho+&=2q988cqps%mapEg@jO<&eLAbd}D5f(^2TTMOQK
zbuKT^-Y+1@7Q<e9z{U8<9p0P`q2(bTMUU`ojJ!O>H0ZnOOwXdF58~FanUrtq`MqUF
zyMU9&&e!~N>OU;~_Ik5W>GQeEzHslD=f1~YUE;w}3-7XPTjw{W^_&g-a*c^OXZj*Z
z21c#C8+H9n*)v$2g<kb;zWU0z`1{h9YwNk3I*QgmC_49j%d`XkOSdd({wlGuX?oh*
zb!RS{iG@tgF-tsMtetax`&1kMW}&qQ?!L_Z+7hCuD0=_E&o}aW*_7&5XKakxCVN2f
zcG9BP(fe3*HtpS~(ju_=fpE1|U;!g<V%zFekH8SlhRcz+Tn{Z43{#uP)$j1RyLQ><
zrF;yx-%MHF{E2m!y=!9k>QoQU8WEo3#=O@L)UDoj`S{zen>sE3YTn*=(f#IoLe{%s
z(vkybKL!<E_W2dX`uPfHtMbg}%&XVjKJuphR@v4$U->?4=>2;vM>}!HU2{!~>Ff(E
z?Uzmz(!8N|D6#(B+XFjX+77R%nD2c%gJI+T8&zATJ!{u2oM_^G*!bw{^JizSy?V?2
zoph*YVUr&Z=f>&-&rUgA{r%k~D{P0#zucJ~vdTs_XV$&^;I_2O^v8AO;%8@O8mFI|
zWcl{$-?nSte{K&Ef3<b-pRN1<-VOT_mv{gE!Uri!+<c{8Kiap~azp)p=jmLJzis$?
zxLx3i!Nsmi+=t%IPOLLBeQEyeQ_r$rGuQQfvnihb?z&V#v}f+qe@|ZRiJ4#iXv!nc
zv|iTUrU!ve@~2z=@RiM(%Bg6yf1BMIg;xi@yS7eXJ9_9aE88+lbq7wx=}Hs4>i(7+
zI8^8#oqa~>(sb=TM_Z@q=d8Gux^~8|y|KOZ7tUQjefsq62lj$8ARr>MX65A_n^al^
z5|`fBd#85f-?`rFot{?KPrmeTUdeS+X;PE*gV3cPr>nN!xS)UI>ZBdI2lh(}tygO~
z!7Bdrjb-(3;f7r&D-%{tk6`L831>SbWmz3mVDeIonLles6wh{6v71$wYUGMe-`IRz
zLbPRF1@A-I7J==Z7bTBX-eW$krookW@_FNeUygz1v)TjA)-PAjKD>A8Z<EPezc8QO
ze&gAWpf45$S&dTfrV2YfX-?jyJ^xT$bZSt6IF~$gnAYJlI<mRzqr}a)FIupyi?r*>
z5jd?HEwx&RX@x(d^=2+bm-HDcc9-zXx~(_0Y4!tCN9O%nRufVlz4gzTH*X_Du<lh&
zNsh#ACT6bd)Bm`x-W<=gdF!@_s}Fa5ie2h*Yvn`taPEnZX7cQ3{_c>hxXt;RHN&=y
z;I6lO|A+DBf8p%<&uC%2%kT3$_XX2qgtRTD#x*>Oo#xY(#nJM6-u=UO!+xGUV}6gF
zVS{Nw`;?6ibDk}IxA;f$mg!xkF<hx48CE-@IKCg=xAf+@XG$8~FSbA0FXhw`{#-xi
z@O2O{&$_Ct*fK%vtMGdNErMJ9R9q+VM{mF8sxN1x&-q<@2XnA{=Z&!H7+u#>%S`9A
zt+?9kyVmL(mtu<q*G1EMAGcjgoZ`<*+kg1nb!wf?Q6=5xf}?rrkrlR%n?)6V{cNnw
z=XJa3q}Y<Nu1()XKVs35skP}JZ!s}?Ssh3*6#H<!?cwgv#f$yjYmFB?w@mPkQgpc~
zFhj$I`9a!Zm*^mmrAuz|pYK+U^FOF$na9*}|MD{@E88cN<;$3hZCV8^<qxFsE83)I
zHu$#2=&ow&K2gE;?qsIQmv<BQeXnH5i@$tCSKQrW-p<qJmTb?rss&B;V|r*CtFy9c
z^@&1f&+-X5tJZZeR1|+`yH@@5(NXa%hIucA4^{fGUFq6*cDI-9UAI_8%M{tF%RQST
zDn#!-eN&v=xK>Xz@L=nfrowfvtlx|LZ(zQ>drFbI{)6w6E9QsfJLlZ_&{bRXZGNgS
z`^z+=`T0zZ>365Dd^30H_R~5JUV6Q!*}tvo&vx<fIQiUjzxnz8+u{DwA6*X{-Q+z!
z`OC{#g_=1>*EDdgoIih3VahC-Re9GKE}k!aeCD1&E8n6Y#wmFlKM6W)4mx?`ub=UC
zRYujK_sksgX8AwK<SV#n>zCVY%lKMuPA0dQR*1&__1pXVxBr_z<Kt?btLJX4s8#pu
zIIOI9LU*N8m(q5Df9KwpIw&i~or{yvIdVGIpQ}r*-fQjrm}?gCe91*JItuF|cfGin
z`7QqWqf0lXijL;gu6%Q%*^r@plEAYN#nM8Fm<`Di+?T&NUTfN^xn%B#vd;~Z*44`G
zKEUf;ndKT?%*>;(rufh)N&DDU-4bF3S8SJMvW6F3HWPQA`BHR!@y81vEMnvD3RmA=
z>NzF)phRNkQ3=hK0Q>qsKR!-A?teHbIVstQ_w{_gj*g$kanj*aPMPG#MbBP;JOBDR
zXF)#ENJZBPw?(<#KKgL%wR0%m=XKCmo_pi+DltW`Z)LtVKMrl}xAnUHIa*QYx$uV_
zSyS$7{C;Af@F`sQ@XQ~cI$7TX#Qo25y=&rEIr>#|=agpAU-M75G5t}qS?$wyRZqZ;
zW4(I8HTea5k6MNL9ZdVHA6d`IxF}6}`3s%Jw>uC1{i&PdXS#O6D@}&_-3xA;3CMrj
zyOd2XUC8N4>D1aI?YmfCud|w#b>$|nLHuv;XN3nHzSt;#-BbSj@+p;N3DZt(xWRh&
zT~pe}{k7e@It84T1Pfn1b4j-^g<+4=-g`kOoI#5mpWpw%q3F_fvC-koqNcXcqJLj}
zW*!mI`M}vzUbp_H=^m3U{VUcM?}=x-s5?i$?}u#GldW4+KWEgkJ#eg#ebf8b;mxH(
zZK0?1`<ZswfOMX@a5&I%`Q>Z>FMJZ7{!MpAH_NNNoJqGVT;x{YQMwiMY1$(DyG%Q-
z-i?kI>Z_^@JghZehUvneSbxbRuC$+gw@%*Ay0$L*(8HSY?upZX9W>21ej4{$aofH>
zOp)r+bBwALtN$l6#Jo#LxbUa#x10HYPJut!ftP2Cij<t$VxGNPw}kV0G^789g!wNj
z+4gN!;MYzS*ASd_@J-9oOzWJ>Sv>t)OlB>S`*`WW_GjlCt(&K8InOmMlKYy|9(C4C
znFFgspED#~zh;{KJHXXBLf81Ib-{@zS##$fyi%v^ecV)$A?E+Wj+0BJTaNvmlgKIX
zVd<mGixOC0s-#TXe$u3#;dNFu*UD#Aq7Fy)UA!tB7R|B7TY~HH-{l`HR@%jRrkYEv
z{qDtQzl7<*%@Sk7Tjv&C6u<V7xlH@pH?A;Art?qkZhroQ-{k(QTRH|Wd&^$_h;6Eh
zJjXOqSg2*2UX6HM=%mmkM?P>Ix&Od<My0!U@rN$9w7cH?&QXdj0{bqT3S9HQSh+{}
z$CubYkJFdFHTTY4!DJmYN2RU&YhAaT^O5wAu9>_4eH8iN{X?VbYdx>c>$F|BPStWY
z*-!Idaimgyo8%v^1A8NRb!+GRKlJ?RChtX;OdrfxyK$#zkcHgbcgzcR?aj^Vmx^o=
znAE;}y1&%@EuAjm`oF}~POH1uu9eVVB_;0telA<_$~BwMbTFQqv8?b!5s%W`iY&FW
zX6H^fzWT8Jee}!)W?8y6f07idrdYEE2NWpqo|CLjTJcDE+Q*{*Z|=!Q-l|C5!Sw&s
zw;3rhE8c$cICS=!xxuA3wyN70ON=#rw+km#&kp`#&2-<s@zlrt-gC>@qxL2S#GLu%
zeRrLej}B}3qCZ#CoI0E@8%@^=ef4+Cv)4BJ>TI>LujNE;PW#%~+u3{ZpR{!Fj!ipa
z@BaI9DKhI>ZN>AMD^I5$e%jh<vG3s}QDfd|JCysPJlt<)ghdJlC>_{wA-&XH@m}7)
z&ogf2J$$2f{aQcEVP27+oq3y=+)DlY{PcAD`Dq{Z4g03}9E{blS-4u|$kg}W6j}u2
zSiPrfg=*PKIWSAr+&iE6_1lE3?QdV}*T1zYJ>}`tv7);C-MyXF*W<<2lrL|ob8@NK
zexYgi=eLty%@I@MSie>F$ecvA)_I?Qb1NSC+*?0ysx@Cbr~IF2mzMII?{4^s1R32-
zb7Ab?6&d;U=_>n*lN%N8{xbaWFn7QDKgL9>?>tIxJr`?Def4>_yjshgc>9Ify*a*e
z%<VeuO!GPC>cnab_~oo*nOnOlPP+Qu`|9>xQp+nj{OwCp__;J^Z&}RL*dW-cK4CJK
zNoLeqmv0sN2`8;%r_K4<owjY~`X1;1*Ov1I#m_L#IQDI}q1t2JoQA23Z?b)8KiZxA
zFy8p6q*b=B{<;ve;y}G$2UVZ$@II*Y^BrSg@Mf!}n|XJgeE;FdGOO6G@QurwpTFC+
z{u=KlX4f-!rarxHdy9kF?%<xS64F|Cla<XSm^Xd9vz+Z}O1tW!FQ1yVI>Uo2(qFRV
z=*+0FwVZIz;Xz-Zsj$?#-+S(7{aD0&{MU?&k{+^g2j<_JZyxp8=^c-`PNs<c9+o>3
z?q3P=4iDI*q7|WdIoIOVl9IzeA2jUUR@M5SamVVvOSzBKC9YgnBE%NG>xHcvo5j_u
zg7qtp^A^1Nx!tL2@eKQ%lD@fF#xwHn%gWtvVKiJ|8utAUw?yK~BGV4pq`>C5cRB}N
z{}<gBqIhyk^Z%6m5XI6!Ri0y3OP5c)aCM(`lw9-k`MQjAAMSmg^dQ{(earm@Ua`6E
zd#d8u0`hZp-dnp`<!3stSRmkDY+63&(nYBaBEpAlT9XqT(+m~v2}etD|4DSzeQ(OU
zBl1{ManM`)WX8O*?Q-$A?LHmUK6)iw(a>qf%PDn!4Yj`)rQTX#D}V6Pj!kx1H)fwb
z#GBi!xTkxn*yo-~wg=bU_kA|*e|;fp+cl9O&A4-1%XYBq@bYiovs_7IwSZD{oAJk`
zxk?WcO}V#=>}S#0AX4khp}5E1o~z($Q9@94Ciiub;&|5APYmkkY1?NjG*-5m?s~md
zwY<Y5;_=lgX2WS$WHQ4UmakoH@#+oZx0BnlruaF1XIaWU^}shSwkccEf)v$_-(0D<
zeyv^Kmb-1*6xM#`*}605eCcZ1u3P-{WcY#rLGH5ii+0(c+2Ag+`bw)i=Q4jk4bHzJ
zk5=-17Fw^$y!b(J^{eVV3P#NWi%jkq%-XeQIpcR7Nxr%Y`*R7}7cME5&5ii6dZF#1
zh-C3E2D+Q0=dYTuDw9ok&PD%ecMT4#vleq=S3II4kyW%bl)>fe_6=EQHtFWgSgC9K
z>M!H58>+pjSqH@~8+~4=BziAY>PBtE9F<kJ3_5NT%)Om&D7f5WP!i7Y?V7`Q?YT+)
z{443Nx9#7abE|;GWLn=QHhXrT+SExM&$FF;wkNtoTt29=CwmXOwCuf36CF0Dw>&>y
ze{I`vXVL1LGJ1B!4GnhJ{AMiOcR;1Px4-fAx0A^euWq>EvhgtA%v)g|qCYZrym(=^
zDUa3fR_@&`GD^?p^cw#)SQaZ#u&C+j?)?mZbkdHBF!S_3oaD~l@PC(N+JuN;mu1^T
zgV@bw1SM~Dyy9<s`R(|F9|{r;+0V=qD*rKr80+2&`O8tTXmV@b($(K)Es8i+9ckil
zfoZ2yh)3y{mc@Kq1V3q5X^Gua)0`L57%3QGxHZ3kyTU5-!t+wE6rUgBKYaKYD$H)Z
zshP&@r|zoq`N@xGYz(JQU-_x9eY4XqjU@_u@|=a+x6E1m@4-@aXU0DDtL<-_rCTDt
zIs1JMUJ^IA;`o_OMzQa;87^v{J!2S}5Ga&t)E!cs+7dS{!QL`D%tN%KiM43^%gZmX
z@6~@~@+x@JkE-dr_Avh2y6CaSxBM6r=3@7IL3{UKVQ9ZKL&~w1&0fV<L)gpw{e|Ke
zFEqKs{(sf5+tM`W+X=3fO`DxkChk7_|EOv}eZ|*Te4jPj*92y7`Sq0BclskIj*lnL
zPm3-76E#I+mb(8t8_`os?q7XW&~#eHE+!>mzRsdJ+x<JWoq5)a2tDe2`^ZBz>zY=<
z>qkdtYfa{s6r25HYTTYlw$)`n*QkgFaqo2erjgFyXx{$p+scVYavXnu*?j0%UslHK
zjN1Ei1rihQ&aOM4+pzsE@Ao|8+-={zqJQts{k6g&uv}l}Z~5OBI}ZF=x-Qv)BjeP~
zYby@zcC)fjDW2^5z~$bP6(P@<Hava0+^L3Jv2(WM@|%oz<^^7V6Log+Pq_wL*GJuE
z&Vt3Ez8QaBYhHGUJ|J-SD&Il@qe_?idTU>WSK8MvGu&{l%}n&3E7xiJQ)=qh>sAWg
z$^91Ec*cn%)Ao*+O>wZ)+QiTU@~&s%^ft?JNK0+Ewa%No{r2=-iJ~9Q_m_S)m)rU;
z%t7aXi(-qw%y7nV?_;6oq*}b*+2nDpY|Ve59w|LVjp3wsj!G=!-_NuEas8S5<H!r!
z7b~P5Ow3%Q>S;YE%8t>mZh`il9NW!_vbj~=b`Ed4;+FD$(a+p>N%dFG2Z@NuaUAP;
zZhjWk4PAK4DI)Fg{AC~fithLwUw>pm-O-p$hQB595@f%|DMT24>QMhZ{dIF<U*W><
zb#l2sH+q&$%v2OG4$Ch3VO*27b0MRZvitg_2fUJ%kH#bhcrTgFeBkr}j?z0$lU}rV
znuv(B2q@XdOx|qU@5*L9U1f4~>V*3>eQ(!gzIR>l^TdjjC3ze+H}1TAeER^GVvE4r
zwQDo&`&^$pDAcmc7=#_<Yn9%buX<<gOkbU~3lv%eniKZ)oUL5T<oo`~_Trf<cFezi
zbK;I)(K`Z<Ce%i1$oQ_v6FK8+AGvh4nD^mYW6P3O0jG)#|9w?liY*!Ptma)3ao=p1
z9iBv*{<y!d=-Z9Px%K~dW}UqA^00_?4J-E>X3MMRiycx8%~s0JY1*-|NJ1!O>(-X*
zmJdG8*|GKZeS`a(uT0<kkDJ--XWs=$&g!4dY11m((=-{r+FZzB{<?)-PBMzAn@j7#
znWThfqje%Vj$99R_N4XvOz!-t^D(Ql_=W>#MY}+DXs_mXsRylk-|D?9R>pp){1$X@
z;{C4=)lbi5moqWDeI)-vrr8R!b-zEKPiBya?)dBT=ElkcPO5AAntY$M?KLtpk6ia>
z`)<WNYmrmB*6+?-Ob_QdBjUs{@g3ulvun;CW;|3fO)_q=660pO{I7|#w`kPuFFjdO
zv@Wzn^TTGLj=+OvQYUt0`pY}`*hNO&;;JmMPitxZb~i?)>Bb}{j*rYSUGm(a@r=Qb
z>U0ZFG@ab=+&F1d<(bP_{P{iJD;mGvWt!#q?c|aV?<PHF`Z96-&c+YBZFJZ6o1d$Y
zzjmwgd&S(VH?$rE)TsS<^qteNphYt!)9AM-8`s3m5gQk|o|(BJ#frmFELcoSLt^r8
ztsl2Vd#-57mFL>r^qLd;ae2kpH~hYn{z;mMIf>Y?Zun<gTlsBa+w!M&iVF;<|J^L)
z646&U^|eil^|43~MbSzB#cU>j^w?$kX8OvNM?da66PvK(>aMgGY};#F1ui`=Z=B)z
zY<mFjx)-9~j(JEcUb<xPc`skS?p!7fjTxJS<@QdmFr975GylYuD>*9`{{9%PExA<p
zVPTLw<N4pO!w<MWTV1=xeyQ2PbZHkeqx$o|56tg!-qO_TA-HFn@#65h57V^^FN&;C
zZ+Y?P|Ca|>mppl>E$!W-$LO<+JK$Q)+LDV$X3gDPvn@&{?NZEx4Xp;HTwH1?)5E*<
zFYVc4T(?2AuFZ1ZrHr|Hww&AE2|wJCcfwxr%B7RnL^x{h-)Y_Q{ozd3(AxVF6>m<o
zeBfHy(Nz>ZaeMo8qnANejP2o!2M_F3(Ya9b-l1NxMd0U}9p5VcF_)kHVHUoFCF0A+
zbw8Puo>tA*SdtfY*dkJT%C>_=GiUvZV?Cgu8U1zJ&dHaYiYuNfekz;2<^G2WXQuQ_
ze^_vcN4MW`v&QP9yFblsQFxxh73T4<CO7WzG@eiF%`usBS@w-9_&oRBE!VgCaONd{
zL~mxm3)M9q8%*{vIGV2Aa!*)KCDNp|yi@bjN|vuZO`D6hPOUu}xH+*kH(7=yRLGk#
zX<JluVOY1x<CT;D8@WW8ojCJG|Nd<k#ZqIQf77-fwOU_L<4`dBLq*G~Wh>Sw?kN4}
z!nD1VA=LKrA)nt4$+L3Q`r;FdH@SvXsGs=4q?79EDO8*EVBMO&>z>Q_-iTb{oXxjI
z{qSm*ymNN@nP;DEkI|L&PMP?`YsH7Y52`jlm%8>H(f+r8uW^6(syB~*NTxYD9$^jk
z6uD&JYGfW$;D1)^``gDsi`vxQJ&V>#dp7CxZTG`lV&b$#7auh>^}TfGl!$?cpgGHA
zx1azQ0g1F{-~Smh8y%K?##fyF&fs&+!~Tb#boM_yJoov|=X0LR#GSBb7SN8_Gc7cS
z?brnig;w{skuL)k_QgE)I~l~V)7YYhVN%4xvu-@<ZbfVi8=_|@%e-c+(W;AzT_3jI
zea+2T-8TOEs^_0PDGh2=eX8HTi(O%z>(1BC4JE-(OC))c<90AQEO@1U_4C46Dn}gl
z1g^RBH8bVMg9`_42`TNY-@fs)`M()6VvDqL)Ys~0`sPj(-#SO_uvIjJ%9PzTax>EB
z7PWaRev~c@36H#%#dga!_|}?B#nZHw24&BAofdXpNu<d2PVqzz-R0$LUMv5JewU;Z
zU~y0CA<y*W9S%Pw_Osj*NRs&{^YDc7Qa|ghwJ+yRnm_HctQMC<Lczkf?^aBI>QW+V
z`BcijSjs_!TO#elbJYjgjBOKB75m+H#W4mxalDxt@Z(VF?!Lc2`#&9;=l{I##g{cx
zI_9x&VqkcA=Vh^l1XE2?L85)boEaClPWsT2{H&M3k0aGIX$OO8!)7L)%d$Tl8xnOC
zL^_`RaTVF{X`Wi;^PGPt1#22Anz`j)h#h{Ul(FMh`|1XhM!q#hF^#)r`sKtf71W$*
zHmb~db6Dv?@w%&<)AZ(DnHZVD@`qchncaAOy|?+oIUoNloax}FeEM0!4g;^0$gB1l
zp-K!2_e)CF`rcr9a4`Mp+r`F>XT|upox4$Q%WH8vJ6CJMxwp?NzU?uv&TaD!IDcxE
z{@-p!hW@heA|4YIH(mc{yhStpNA>D#hK3f7#Y*kdedTVgX%KVx6&xSGcVF>h#xKgA
zr#CPN+rF}CxVCGSG|%;g{iQn}McK0nY+tiF*C+3vw=u(mkMHAsbmWgHzTCK(fq`pL
z^|aW0z3@|v6)X~ApR8iaUmfcS&*A%^?S1mZgQL3-v|N(kqhp(SUxWEZ^4E`lo-woW
zN}45Id9g8{Pj9kLwBeuUMsXW_U0j6n5BF_dc8r-JPp@X(7kRrwQ$m+G{hDgX^p=g`
z?blq<XhBi)hQ?|BM+#ia7;;bE?d>?B?A3hc##Z55)iYj)G=(b_oI91FygfX5{ypy<
zv6B=H3(oFmSYT(6`LfZ3A-y9-`SI!SS^0baF)}C=zu(g*q@>iJvqJa$THT#IQ&RGH
zm>*UA;ca8OUfJSlBr%2MjnA>aFABdpdA(-MT<`vo%VUZxW6*rV`+dxv|J+u{)g3*t
zv8KS`M$?M-B~wH5TwksE$ao;Jzaxa<)u+p$(to@6z1|t;67txvNL$eF=eNsETjlrz
z4;-GNY?-^LP2{$_5l`TgsWyR(c_9`1me&0?FP;2z-z4A3FB6|<?|C-SEGK0BvgzS3
zw@=r}yZ>+XS7oJ|4h>Va_|;dlwnp*jO}1E7@&DT6sJo{dqDz+V%40UK)IR=#F?m<%
zI!~7`-cMRLtj~Cz5;u!y#lP+SyQbG&mN1>1<{o-yPREMFtW_7@B>sH;MlV_7(M)%j
zS5KCic62<tx6A8mJP#jVp8LwPymvQlIydj=sz*to8@rYS%?#0+>bbO5+4Ji6lGelC
zuYa3<`kejb`Sl6e!qZ<ZS6Fm8n}6y#Rmq*}7QPETwN3WBxAZnY6(yy$(t$HNWgh0~
z?)KwXTJ+cVR>1PlqWd%brs*pE%B!;y3_P9U#o6>z?_%=H&tHvp`shtQ$$eftG%2Vp
zTVPvuT{(Zymzb$v3JPDkX<xHw*>PO8Z-FC2vJZcZz0$KcZ<Ef&`5WcOT*(*dF5hbY
zCan0`rjCWNOg!@4P7Eu`&sH$i1RqqMUUEm5!J%lW*yN~>3|!&YRFtgF>a(XjZZgV$
z^^9R#o1xA^{s{rk>W`I+f45DuI=AEA6yaH$c;BnOxxXRfSxe$yD|XX$Yj@9_KfBm#
z^5$FTuW+#KIBwhXiT@<)x3D*c0Y0Hj71OWJcsgNkG5>+RnnsHZZL||~%ztFdT%9kR
zUM}6tKk3J|E8A6`@2xrJZrbsP|MXL?olff%dfnDuTwyBJ`|Q&8Ik&auD=JsNoHpl;
zb-B^IJ12L1_E!wIUbXDfCsCFxvGDFbKC|t*pJ$j^Z~m@4Z?V+ly$O9y9y9gVUuy{I
zeK-64f*%hoOE<n-UG1+_dL@XPOUfu_Zs38?zs!^TnHt`l+|&E`AA5=4-P!WnAHNlR
za9HXAi~RD&BeRyOJlK6{>dN+1Th+t)%qMt~Go>VJCdM-6{SXwaRA;#5EAz8_=fsw$
zOb6D6=C<B5&lTRrv`ur@pIN^j-0#`)IzC$F?4ylK7!Le=%ATXx{ji5+31g-r*C!ip
z4eJ^C>zCh)V>o5{HupouCfNr*neQEbyk}#OJLbvO+|eO*pJ9R5E|xp_CwE_#p2@Ip
zRi?1x#fAx~3vv#hKKVv3IiexI>)lV4<-GH+eVV2`{oP)+2mb`5Uv@HHv#yh3sQj;3
zGr8A5V#x(*rcZ7&vTqt1J)7i}Z)|bpK+Nk?MzROq|Ka)1r1<uY!cA34ztfjR0;9D|
z-u^sh^VRIQ@20uyJ&b%=m)thCDQ7Lp`B5jqQ*@po<fzs4Pw~qx7oC1?$Hs6q-f&{`
ztSC9Id_mbw4A#%KtenWLaP9u5zBlJmKB&}i|F!7oP)U?t9sF-fY~DRPJG;`_qW>Ox
z(hqLbCTlNxqpF@Ka@+ax*=3ccZ_}e^Z0hXLs1NMw2Z2ZLVwVQZJa{<tY{CbZX<RKY
z;@DJ~PiXPZIAyzS$^3r?seffRoS2!WTC~+x`;>=J<M)4NeVV`LulZ}8vo?w2@D3x_
z<+l4x{>5MZw>9(Il}_#=h9m7ae1jD}?7geDIDx@6^VoZtR)=b1+oSqo2UZB35EELf
z@l&z>(aG<&n>TIRylK;>`MkWj4l112+7qAX+&MIJ!v!@H<z0!}Pp*&<3i|On?tW}p
z#N7+mua_H6v<|$J?fyo+`Qe^3Oy_3ZknsF-JZHy>`}TFAJDV>}6*oOtqkWJg@=xui
zT`8Q^D{nWLr@ts(c<78{*0#kd9}a$BC0_b(aTA-Vl}SPPiTdsN56|*mUNKvsa)Pdd
z;0>)6p%*^4iI;DP65(O|!FEGwTU*hU-Aq@+Q=e^4l|OT3`dQYhjaz#THs3q0xw~@P
z4XvJv%zEKnk{VtU5_Ypr3HGw<4o=}{P-3l!&JjG;bAtWdCwrL#2^MCb8;kkMBrfK%
zHgMlLdPTBlmHTA%3mic#;TEf8SvK6=_w}L#kMt(~2>oqr%FCE$-8{46K!Fq+^UQnC
zX5XB8aZQil;m#GmTd%$Q`tQu+*cKl4>Yx+@t<EoVa~RrX^7G3CUg&INyLaOUgTUgf
z%c=iwU)9tvTKCsU_~#-CA75sxZJ#~FqdA%rMH{Ud6V(6DdS13<o1N&7gpI8R5@7-|
ziy0@}@Xe7`yRmBbX}!(Mjoqd${cFciA@Fd6`(l-Yw!ip0+1t8xTMn*}iS1`Nu=jiJ
zWRF0LI7YpVM|%QAUls^4{F|wo5mr50!IC|PTO^vbIni+LJO+>1kMy?j+3jIsXm_vZ
zT-$tbL&vko16x1#&EGP;qeF%J6XSvxA5vzkhNl{^95<J>h*Q00D7*Ff-D^+3|NOhx
zK}qR+THklZhZTOcZ7V9~XZd>GT^*8X9l74Ixzs&jo!pmKB09P|Djxo6EqUD+<~6&$
zWs9?ymzUS9$CXbcLuI}{cBpdR7#h*D<ZsbptLxwSeAkEHyqKk9HSxEJV9cfM@_jt(
zoVu+KUo7lq+$6JCV+QA}z142q8I!)<)j4^*u%cw?nk93;GH0BA_ATPP3>#153^tpW
zD%(0veLl0{UYyI5&#xxU-^9SsU;btDm9^_4)-e{OpZ~o#t7?nn?wa$WwHnuLqB+ub
zC@pVbOv)Bu^ZeiyyXo!j*S8{*YBDMX59}06U3Vgyr}vK=cWCrNRihZ;?@mj));e0;
zsmeLY$PhF4c=_(<X3GUM`gHdHTg$etl1sb);i49++ni6boWF}O9^m@y+u4!9+mN!(
z)mxB%$$!cHTRSJblF&QJlrZUrRLiomAD#;H=kMLv%NB7umeJ6FpCMqwo%@N8mrI5=
zM;wrBX1dP2`p1@HYjz!jucsHD`s2jQu;Q{`&CVZd-|1Xy3DjiT;!%Fgpf$aF!tv!P
z&s7wb9%9;c?|-PR>AUj+9<qnGM#LU;ubi63{9)tIu+mKp_tI{eL~m7Bj4q$PGV1fZ
z`;zv%B&IHoa*LgM-*#i@jV8C1T{iWbGykdQEtYrtBzbOk=l=hvnO_#wPx4F+ni--s
z`JV6QIMu_V6~Y~2(apU-WFqpm1@b3|zZbkK%&WX>-P+f|57Q<eR8U%E-=LS2y+N=y
z^n_{lx(W79X8-5pt?f!U@_6s$9m0aGn`D)p{dZS*Wj$Ww+GOUh7W41z_WN2qSMS@d
zdF0j6w#V+G@8ZDM`z~(le)sRs=L7q^-GX<VjgR6y$n!i!T0n0b+w6-=9Jb%nsGo7~
zM#^H(1MXAjF8H=W_IqjYoj)pDa#oz=-dJ$0U$5<`$NUEqg^vrA-uke7-xpIMG1kKT
zhc%7dVLpm)cbGVuJ3o8&Z&$mC=l=N&8EYk`JPgt3D)h|Z-F9^K`S#;qo*!Gc{@oGL
zTQfK!B5UvE|0;~F{oWp3wWHE!9}~l=xNE&93zQ};DEn8HaLKIu%j@1x-F3&@4!-*6
zB;&clx^917^{;X>h9&1qw^Uj32;St|A{^Zun_={NN#5rfn=da&$lE%<agLkQnFp38
zQR3e^jGZHIC@<#OJl7!PhKQYToem4bpDP=`%=(?EusxY|uFj$2Gl^TX(yJG?C0lUX
zHu5HAZ%{UEbA8TmAh5P^Sr&W4o&d%44^R5urSCA>+PFC>dxQSF$@$C&HU=o2JYk}+
zfA@_p2|s@+x!qA*lCBj}3`hEY@;Wr`3`k@<ob`?IeD~Ue?@p-Sy|nvcA8Y5@)`v_w
zY!$6btR+8ju4D*`OFr1fV{I_ux~7i0i`+KzLmw~I8PAz??111#Qw#O~?6U=h<+xJw
zQi@S;U^X&VFi-#;!)#<^hIH*G>BlhB>Do^d=qb#;iN)CpkmI6*xb%ZdlaQ`sR?sKz
zI_A4Kr#-R|V+~LW|NCFx-9ErK=z-(4C)%0sm%r0FR568Ls=ltiUS9m~pFcH!ypOs4
z_)r)2dfxf>uS5T8FW7%p`gikh8ILJJOKPH*Pxz_+IKQsG{<EL9?M^ozPal?7yT0s-
z*;euMq}`|f&%579u338Or_cVEvHHi9)R?ZS?lYOH+dpZ~4*|*5Ry(r&{d3$x7j+*M
zIO4LP_3<Xxm7msX=-as*tGaZ*JN)v)@9{f*Sk%>+dOf--i+<_L{rIWLyWq6fOVL&R
zti{5@jb&c9KCTdW&oezwv3kp?dnd#9dqnIKVD$Cudiv?LIPd=4SEcOXD+>!Zb{xB*
zvw+!i<FxF`z&9`6|81+A_kZ>F9d^r(D5^2ldUTblK6SnOtZ9YOPOC5KYD{-Mx^!ip
zy1M?kp!53B+Y%p^s!1ZZHKpX=zF~io`7o|7o#}7o_pQ_Bi^n!toN+qz_K3>^u}Mkt
zrN`WNtNeW#a!PmA`7bOJ+=Jd|X8v<EWxx1B%q=_A&1)xf<13vDMcvt-OIKg+I<VNu
zRoCspZq7!rJ^%8i?BCb@rh<F%JkKk|TB_v=7p5$!*sb=OQLU)act*|a;J1?&{pNk)
z6U4K~DelktXIyb1>wak_PGlBMUKGu}W9||Oucv!{l<(G(%@!8BS^R6q&gh1XZ$z`b
zHt*hYs$2Sg%7oI!_nV*Vd`xlUOfaf?#ePL!Kd*jocq~)mL|-}i1fxkw5$4a2if=!`
zsC%*I^9hE@foojFRQ2sj!fq()eDYn%<>TfZRnYk9(PZ(5)`=7Iy+RX=y0-rKcV{p2
ze6#$C^XJc>H<{l#0wS!~vO2yd@ZygTA|H<lGoCq~ohMTG`O)Dw_kWdqsz0P;AbIpw
zgwyk*%a1PqCnovvxAcsj4Hk3i-`#60-oJmpc6nTloxS$_#;KY?jX!_z+AL!H^yu;a
z@=LQ$W`4Y|M@qQR|NQSssXKqNn>tjN?E1dDVA<oUS-)RYM6m7J_WUPL=_RrEvCM}a
z?fCRsJeX_Wyzh;#%-KZW21<FHTG>58YO3D{0WtRSopm3x4qktoH)Hp&vq$cJ_N<u_
z^P0c)ruO@qXQe7@rG@Wu_IQWC;fz@we@5fquRlBDUp?QQo|BQ3)cHyMZ%}8+pVI36
zfv5F92C+(A78ZM6u(r<dSxd*|>wA6c8!mg-7sT9Qo_=cnlup(>&zzUjZ#180+2Xid
zVo{@sy}sQ4#QBlT;y<rGs+4ZM$n$oJ4eQI5hE6^;l8;20*!S!)<Gpq2ik5y|{lD0$
zn>Tnw)I_~XU@!8H-^ChQ`8s5O#9DT(lifVN5j9%>MWvqXi9OL>*{iIp^mvx{ypA5h
zkd^gCSM^r@yLK|;`o3Lf#q2xpn)MvI{c2@Z_0hARZKiB_Ib}Qh)m17HPuyaD-pDsR
z`~J{E(_gg`_1nC!8uy&2eidji+2_g2t6iTSJ$_W@e&Z0!oR+dJ`tFkpUAelaScn&%
zZ4+sG_Vvq(FVQB|YvQa+kGY4xte9umkhXRAhod($7M7YQHfzQ4TQBbT^Lq8{yuazc
z=HH(6xpcdCuh*IU!gmWTd8`t0S+#0y->^KF{hLuQl=uF^oSk(gm%EOA_tn(suk<<{
z`jhjBuG06fEBz8ZeBzw@<J2GCvlKS^{AhoD%%4S9nIimz9XM6*$}oNVntAZ8m&v=6
z?$aj=JamnpBL4rbOYfwp>;%Q&t*IR!Sc*L3Zh!Hae%04o=G`&($CCwC{d|4v*Tva&
z_4WLGFTc+3>wjBf@Uy90@$C;^n?*+tFLGVl=`6Tw`87|DAA7=A#Q)j7wyL%>@BMX4
zrO=+2e{|&fHvIV8e_2L0xzK!H_Qz+vHxDjLi~F<t;s@b}ex7kY&)H9QM6Ee3G+#~J
zNl<KmXwA>ItcHI93vGYh&V2mo^Zk7Lii#cl#|v%J54CgF*?D%kEKXfE_k`!im7Z}m
zmVABo_P$x>jh%bNrNTEqc3|z>;GwZf^mgZbk@>ft9i6_ni*cghiD?sMmAh|db{_rt
zvS`7E8<MJ;cBQAf{in~GtfAPkd6whm$3ek;#?v-l@~KySdZy#~w(Pi?Uo-06H!)^O
zE)t0=e!!O;xVB=!lP5fZZn?X3S4%Fq)wFrmp~zW5AA){lg}SuVruj~K)Hta~twOT&
zRogGuTY=@(Sqr9lW$k<|-qdp<Lggs4w))ZKi}&0papF4J#&M^VJ1eT}bVpA{pTp&j
zB|l20T>7QI(Du&D?vs&sAD{7AlX>>z)gq(n><c%28kg-lG}$<^_U+R>KZ2e%?A<SI
zxcZg3`R%4hCH4jT1uvvDE?e|T!uEd8)Ss0fm%e*t?mYjj#k1YP+?*Hoyq>IlH~GjC
zzmE+|c0Av6J)!F0tXeCzh@ILCBJ*#qp2L1=>T{3nVu>>a{zXicu>B~lo;k(y_02<1
zj+TY33%`8D$#qqV#1zYi{+?Z$dOcow=I{LDa<YES{xLh;dczJo+f#1gA5#r$-=5hT
zne$01yKleK|D$}@I(sH5Z7?!447@x2=$FKg6Swd4P86TtpC7XG#_=x`1A|zmsj4ko
z{clsml3UvK)86d;6F5mN-S%{$&rB&**970BN2<DUV%k@9?Ec!UnzwBEbGEg`0+&-J
zUR)rSV49TF=BD56swFOee$S6}NuR%D2furhk=E7o`p-7z3Y9%UQycF~?frU<v%CNO
zo*zM}GH1TKU12+F=$>`uzi31Yr^segt}^ev4O!=o&Yj2_UvKocvoEvh#EvVExpcg9
zy|<NZZOFc=pVl96(?&n<#lxO^^LAf(%(W)7>HatKtnjrPu5iDwf4n$*ZL4V&OXP(M
z=6ki=62c}WExeY$ec}Ci)8Cw19z0Lh-ls<BxxqVM`*-u0Wdy`dZ(SD<@tpNb`g{97
z|H9ALHhJHff1sx2XwlW|efwl}9F1ny3)z>i+^(ej>&3}mpC{W-|GoFv-Qot@uB}df
z2@9|6*`ZmxOQtPghYdf2?g=Z&U3<?hTbXMaHbs2@Th$Yq=kI=D+xyb}PC7$J&i4OF
zy1VTAQje^YaDJo0aJNLRZIjcv%z5IHcOx=$THD1U9Pi$Iw_w7a6U)!~u_k)2-eAq<
zz#{ufFl+`}L|n?@1&1G|*LpFY5c~hsw59&q%&bY?X2-qUrS~ooVR&$5!C`af!2KuI
z?cL~QID7e2RtB4y@7M1-_4%d2{Jox%o9FM1I(Y6d|ABe$r-v_&I_4VZR)6JG!K!yl
zJapxBw;M9Z|GIAE_s8hh=NZ2~tXPqhrIUX#?#XwV4MzFTi{>gnKL3B~@2=f{qRoF>
znU$;G{4{UEp6I;RliUnbN<(Y*&)a1>>u%B2OYz5F?pD{obpD=f&DV9tE94_u_C%b1
z#=RoC{+HYJbz!b)r{1}q?3U{+owD4moO=Vu(OB25uXNVs?SHi0B=@D=y~FeS8C@K;
z{A@)ppRUUb)nj_S<1ef2%xe=j9^GE@j(6ww$>z_GHgA4#a7Nru;|FSt&(!p{T~Ig8
ztGjsBYNEH^+y7T@T{!>k#p?UvkJf#wb9(tLhk?gEE@!#_?PmwKyR0zrT)%C1?!I@L
z?z1O9{4IWZsXa>rPxb1+E&rw+(qH@gop(L!{owsG<hG|amBv)H+>tn-lqWyIYW2KI
z<s9#*s>^?PD?e^wi%4N<Q1`v0`$axuwuGc``C=Q*SXqZpn<F<~f4637jN;*?j1N5H
z*1TIcV`8D^W^Fb8ZS&2q?8yFq^oaJA+};9)2RFX-*4^#X$c%d96|1#A?|I4nJn8qJ
zEbdrN6lBQzE^F;pFU#Ju|9c;U-`baNuF1_UY&G#=b~s@9o~>5)IA?dM`++C9Z*SG~
zzMr30?w%H}I8m_S=v}+^lgl2)9bYKq`g(FqZA5MVw-<*5)+S0Z{IZylkh<x5;hDMX
zw}yYczUt=c_%&behCZs9!<EADV!g9y@~M!Tg{xlpxyBV&>_~iHf64yW=g-Akmu<M#
zTWaH|%n*?D`RK3Tzkh%HxAtoBy1DbstLIB9&3FAg|J#cxTMLC=&;R~zkGJ*rkK5nh
zmf0&M)4)8vDn7GWYvR5`$6w!HoO)#X25Ym%yH}=OH@j<fPFsXwnRr&?U4<wUmU!PT
z_Il|jbNEe`SwG{nnGoe&9u<G%trBl}7o$gboU6&}>V<iSV?87O{QIo%yk^0>saIzw
zM(@6`>ULt;{5^L&YU&t0!k5|>UYqVTwQ6S9*@lZs$y@$fPA%Gg+_EcsFN41A$?tkj
zyayuqPJR2b{rsKv&6ht<Fqd0;>W}*N`9B}J$=Gkwdl6gY*6Z>@UcrdzjLQ0uezC}1
zD=juGezK(1>c8@{qstZBisEPZKYyBV=1OmOnY1XYfkxuTRa*LY=H=(|@f3=FN?*Ei
z-xZ&ec6)dVFELgKik-fDBToLgQ&05%A41Pl>ZI$$oF@t<WJtb0abo>d>AOZx%ua0W
zkP(~zdzztw=9NaC`Qq|Q$_F-_I{ZlW9^XyABA=EM62@t%PbSY`|MVl`ermwP=d;)q
z0$*?NU{kj_e9%+6ymZ%`k9v%e2~r7Fr@rO+O;4zMF8XIu(Iqxp`^is^w*MAQFyVSN
zBW60!%a6Y{*0&utbF+Vz(O>s7V}{)JYvKu}nn%B;y<hAtd&r`6gWrRXCXMF%>XnbL
z*=zZ{y;~#r>CybdvHT2tBI_cLpT4SDv2NbUrT6x0+9&U0{vNSBW7{5!Utbv_T>h&(
zkNr@zH96_gqNeO+pT9hOI9qV()x4`_{{N4Pd+%rHah>#9Ghf8}*!(Y*KkxnS+W+hA
z<9n}!pB+7Z;yQCfRESuO_ZrQb`rf!%afKf@F7Lcsu)1d1=9{+`Gj^<Z?&&b-EHQa{
zI@-m$_j}yaH~I1#-`1VmvtkBA#LWWz$I&T!WP;mR)>ww0d~x#kl{s%OzHi&D!f^TZ
zovfFxA6A4<o@6w&eE#dzc`KH4eqJ<xD#PKG5hdM%%k}0?-pk)!b$i#TwZ1dN@9%76
zNXjyq-n!w2(}9hb7G8SAmG*l74)e_um6#P~z1sV)^{Cq?z2I+OW78+iYCIFRzak*_
z-F6NK6VdF2BA<Fw*1Xwt^Y}$psarW;yZaBzo1Cxz?#!alr?s_bc67&{H6JwkuJ`!;
zj5wNabC>tlOapzpb7H%vNHK<OKCwoxRMvgF*w@xq3WsMI>)Xld*JzqD9l5e1E+A!3
zN^#NqLpJ4Kg?7Xhp1D?Ec=`AxxA$MNSvXYJUye@N5b!|#Ry60c2erTcot!>NUsTL_
z=FYm0haHu-%Fks;R293}d6`A)gMX@ybVQw(JAe1(`{CSAk1pSP#p3T&wus9e*<ag=
z{uJq~agn(dwEddU+l%+jUZ33R%j~oA^QY#IOXoLUwy4;!^3CTpztk4EetvZMne5C>
zMrsV2b^GpYRaZ(rYW!jE%C6_Z5j~kZzrEmJKH0RcX2)MS#va{Np=r&JzU+<&`(`%j
zlA!k9&DV}koog}Czb1pd<ks)-Z%OV~zq2F+s2c0;U*20*87Smy!>k!B6`FIUPycCx
zy2TmhPmkiOq8L(E|5&~I<t`ni<WrI!_TC?xLr%UedAV-h@3=|g<vYC@g5FG>Hv2GF
zu-(iZY_W2+y>i!A^LxAPy;E9sI{n=m>+jEBJUPnkmoKX>9N|?JwC7j2?`^A4!?5$+
z{d2vq{k(H6SDi<qDPKiD?Uc4E<FddYo_YUrUyIE<diukjcb$^q+s^-7W5n=ui&f3U
z>g4`C5h{nyYc`zAYF&HT<<jP98*7@GR~pTEnx$O&dff{4Q|`IvYwedr)Y{E;V$bGb
z@>%)l{gca24KGzYL@i#uzj@`vZ`1D8{_CHl9r{C9={<XA^y`In8>cN>{F6Z`<6>KM
z5Nl}mlT%H(mqpv{r~5F^t80_KYI3^!<&&dUUy2yiu4x2Loj#|O-FkiSr024ki;r!o
zcGr+TIm;t%jhm>l!O{(hg~isYvwz*Yb)>cO?yS4EFJ;+{UumlEvtoR?|3=F^lLIWb
zOs`yv&HIs@t*ZJVbGnyMZA{bU2S4^?B_&0CN-~u<-*tlH%<{mEVLNV?Ddx|bwCDDt
zbIX^%PLL0i+bB1G&y5RKZ>0`!CAA&B?v|Ch;Noft{<3|pt%aVU?+)rs&7Z&P$<bMT
z-ZPt5vNJSs$CYjMu1F3wOq<i*vv_rd6W_hr%yYkqp6K4&8~TO8=5A=&S5Alf(Hzl7
zBg&5}?djjAEv5WMRQ}1)Q$g44MI{>*UHW`&T{X6x7FXlE=c;w<-v`II91T@#rk+Jf
zIaU6P1TWp#t`NEN;;&Lhe~W{zHD2kWf40jWSmwst8amD3-?a?>*Lgo*g}=WkZS?4`
zQ|T-5-<+SaMHO!MmNx#~|9xHLrFDFg)A(LG#IZc^=)S+J`Cr95gR@5u&YZ}-bK)M3
z1FTQ4=5!_+IxV|%=G5HV^+#QlCWte>NZ)a;O!MmM_53W6!P2XK7k}qt*s$)4M@e$&
zW8J%At*%ai`#BCw?6Q1zY1uyQZ;yJmbzTVLvt1d_l5jmXvGBdIW7Dnov$do{c6t<i
zQewER)wa3ovmbkB&s&aemL;}Q4JwkBY5KQS^Rj+r{Md3L(a5B7qr57U!GuX-mmWWQ
zR}#!Tb=p<&{ee3@d_E<qGmF+UR3;iOU0{7L<fquKm7%MutqoWzH(I7L8cgd6TJ3y}
zTS$1ml<1p<eS-H+cJqps-C^Wdq#}1#M0md0dAECYs{#^4J|zhscXjysPmkf^6VW`~
zYpe2fcT1SJ^D$2p*WMj<>8{0J9f#7Z+*_KRN?#l*-Vt%;QOi`Tyqq<R8EZcqOxYu}
zH9az__QMWw#)Buje`fu)D&b_XOA*;H_w*(2i5m-=6nD)1_JaEq^P}?XGDlesZ2!Kg
z@XoT^jmy}Zl0QA_+%>i1kdg!U_b@%Rf6Mvf7<pXcY>K{a{QvKdjQvE$cS5;)PT%_%
zqxDeLwM|(+?{tRC4k@vz;tcGIdbu_KoLzq=J>%1(ww}su>yJ6IvL9%)OWf$X{!9P=
zs2#N&PH}&x1bWPEbG<9Zc<E{D(aV#z<t<+@CC|fvxANn9E!8XE=W}#3yfhNJk@oWL
zy3;@I{nNNNbH<(@>!Whzm(P`Ayb<!+y*k)QG5ghAaprTk=3k61e4p?C-^G!6L#Dot
zT>FXY;|o>@Cdl%BPCClI^3j<eZ`1s3-)bxCFy-9JZr*2AdA6`GCyGP+;mqjOUm1@7
zy*jndsqgUu!D0qYv%`;4UNatgG3$yxpOl#QE6vaU!hSM+&@GCP`NGQHs`dQnA+N2{
z^AGPz^?lU%=g*c^_gQD0bZnn*w>0BuUZBCES(O{p>nHXko)G=6vRhTEfxj|1E?)Q2
z{P>CA!;iPPh6U*Am(AP!<?rjd`uhBunBaZ4v@S8Qo4Ie_@?+xsc~Yvb72)do_pA@r
z-dlg{(0cE30WtIMk?-9SeE)WT++&&`a!zN(mj5wd&0aj<-lhKU&)qjOW|%V`Ik=r+
z!lNzU7tY`~ZuB|n^~ofz`ESeoOB0JdKbY_sES<C|{2+J#>dKE_CZ2vRQglaW_S#?0
zard?_^Lp;uDt;hTHMX<i%D?XElOA0?UbLC{(Z?tM{)WEnn7gAb^j^$Xh9xJYC-Q1r
zpYQga{OG%Q?y_Ttbf>TW_qO`@*I(Zi*!c{WzSrV36y%$;#eMmIrq$BfeBZSGc4yiC
z`QG>M-#zwLsRQ0gA2WX1X%tQo4?boW-_<$&m*%wd{Z})doZXxFahfax$D(UJX<R`&
zQq1+|JzKIXa_#e52Az-ITymF8Z*oh})ZO(|!~Wr<w|goC#8&f6ymxmt!_>;^>Q5Zo
zjQzW867qU~6=>T$oYebKuX^Fy%pjkeb>@p(Tp4tBaLLv@J9>6Qg}3>^sAxU$6mtd(
zy$RB1pK<@0^2cblsb<@)rPr?RVwfnogh}wv+W0s2{%7w^zZa*}GE49GRY`~0+zbWX
z^`DcH{;in(B&qG_j5%Tq5A^=qTsoB0zDGz!h&R0Sd*D|N1MQ=-cb>Lo9o>Ilc73?l
z$tMrzvf5NL=<<XZ9bR+pdVk!X#vTL5@>9>n_xl`Z`jgX^*Y|1B@%I-CW8dt}ulaZX
zy*-bq2K$3Jv3*U;-o;p`Jlk~Qu2aO%tXqcu3J%uWd(N@sy%Q1IV7jn=Y3!*_mYSz)
z*ex3wWLYFva(3^ibelb+P(8tV{V&%BTlUs%O@ga_yxITaV$~KK&gp8d`$eK-EfONv
zGkw^7!$d}4)sN5r>VMgXT+{ja?f385hB|BwXFq*@{@lHhv-RIK{kC7M*S5_4wJxz_
zde!Y1E9QmkWDo2$yPY0l;?!y1|AcF8o|*cT%q<`DO3t#qcy@_J<iJY%g+^Yl!<tXD
z9zEE4<Ilo773B=a#MWxDw23XM+vk7x_OtDGjEVzJ*~LgnPTuLyz-=&<Wr}q?zd^?#
zzxM6nC*JnH2`pkX`Fe3~pu5`%fu|cYcfGl{Ah`JDCys#bC^rp5pTCcqe9TxbbVRxB
zP&vhXd0pMd-{wo>XEJdAs=KK1U-9Dn&;2DAUo7<PY+Ln?A#8)?)bG00OouxsiECR$
zNM!Zj{LdJsVB|DU<LyO%-}$$vI2tTG$Ht)hVk%4c(No>}SDTZoyi3jqGdZ|EGi~;6
z>g%tw+q*Sr@dgft?@}ds)^h#F&!6|du;)jJs_Cn>Obq5$wQue06-<wP*<-cv^P}Kj
zKc-%eKHD$N@ZwnzYp<svb5-m?#!rvDALec;zrM?walyLBTvEKX&K3K8)_zL*>h?se
zT1k`1!F>JocX9QbukWvLy#Ma;t1BnFFV<;9R7x^DvZ#ArcilqjfZSP+w-=WSC9k&T
zZ&1%~;qyz^w5+RreZ6A${rmSjDnDMzEnJy(nU|eG@WoMyQ`P<rXJ21Z(U&{ENlTXN
zs0+iV4$X-tC;nY}<!jm6cpd+)m)|G!a4<}K>w0)sc3HrSN=vWLNspfD_;e*HF`Rj>
zZ1isLk<!FHM}J$MKhyn^ah-Ee2|uHQO!)7f+;#6i397mto43#Z>(f0IHNq-!r?osU
z)-p4wHu*$PzNdb6_5Q7QweCeZ`|!P*5NsFr&y`_<l848x!1k#+M)&?{-qyS+GFwQ#
z{qwJ*QD19XJum)cWO(YQZe8P2^;}9%_DEjboBM?qew|~u;CJjs^PBJu_u41_Jk!0s
zM}MLS<BQ~*r&cwGzddNF$=P>*qG7)E{oN{ZU%nS-PFvigU2;pW&fvQc!<Eq0@pmJH
z;<sKs&VOYU|E2DY6Tci^__OIWdu8BOr2{f<KcDUoi8v!C6i}|?xOQ!4kM5HGzgc!d
zmFop0mliNSaJcts&Gw!=5wZDR&s<kpoUu%9R!WYYKCk21!n2oj7&gDUEWRP|>CrX%
zbC>0wYE@smXO%~4ux|MLj!TRIlGb0&PGyrg{bI3O(!TOj&bi%Pw_jZj6_Z=G^82aO
zn5JjVJvx_}3?_fsUV6hv^3~qSh0`vv_rI(CvFh5yjY&G^Za)b6^l6vlO9qvfVe2oO
zWZe6A?X}oqZMn>D(ZVSAV?DX+6m}PV|Mcr3!<uEq+zCHZq!^#ye-U$A%3e!U@6IHn
zvQs|2%k_BbinJIl1PrQsHP+j$3Ck|+`ttLAQ;4Bl{@O>=mIoFcdg{v1x5jwWj=3|8
zrQ~uxSnM>*dbw_EYVwNjQ(|1+USzlsnpn1T@AixjW%tfbd-q9nqkH%bWu-5w><Ubw
zJ*`rq=R|jz1SjvVUhsU{>iVM&T=|FWL(AD3ICXy%Jw2SpT{_j#CbTM7E$`=F?X0)|
z1y1#c#IZb>bHZX~Pt;!T&vs&~BqaUCPsgd7PMaXk=%HkE?v+W1Z2cyieA8QRj(_uC
zEuCF^cgho2hDj9*{T6=+GCNiFcGjNz`<0S!o#ULcey@r?(}7+0CLj6zf1ioevp~(;
zUo$`1t;m~WVI=nJd1clXBL;?--<GXiX%v0o_%vx>sr^4=H~-oZ7ry?={Oj{W@98rr
z?CIwze3^ec^rEWUOtJf>h4IHGRjjp@VvypJunQ`3e#kMyE%);Mrt>e2c`F4Oq9irS
zro72o+~qcL<4SLKiNa%*3`|`+Jv<{0h8zBi+p+V{FSA#vGd{WYPHX8b-m7)W`k4K6
zJ6?u4TykRarfLy4?>u|a+~*v-*iLBru8VTK4wJr|3=<Q#*D>2FE;;+2@z!noKlRqu
z@OdBK%e<jaH0t%H((K-~D>AqEo{5u;FE7nIu}9Z^U%}H$lRxg?%y+idieZIET+Q@P
z$7COgY~8))t<vL{$4+mzJhD}L$~>v3t_*q+Z(Dz@JN2by;g^-dxl(KV&FeBx3*W!j
z>ihQpm0SD_4>Z%R>{wkKcgjfXCimez|FZIbH?K=BFW9wC&U@->J$)tz*2Aikn4g~h
zRck%>!G;gs{lPB<RvH@Kh<#N$OIFO@OhcdPz|OMbf36>7w?(-ed#`UBp}uR$u8#_)
zY<sfazN*b`J=(s9gCU&tjEpMZs%5|2kA2UtpR)AW@vwxhu!}b|bmC-x*6ou1q{JXI
zv(#_j`!5?JAC@PloVn51Z?Pl%ZiTn&<EtyG{+xU~dE54_Z#KGrQet>BYo+8bi<wL7
zm+iW2sNES?U$^Jh!{6z<V$XiBwf=i)%HCfVE1svVZ#z+Pt(;Ne>XFU8IkPl%mhJv1
zQUCw_U-{FYU%xdy623e0+1cpG?7-t^>!*t|CLErUSUAP`ho95(L=Ao2t*a+k-#h1?
zVk2u)XZ`jfLqXn@B~$gDB|K#Q+rG-=@3H>R^RHK$Z2a%=Q<0}^Jww6trDDu;ek252
ziSDs0e&4uU-@dqJuijdj8%e%zyFTAa$=QF(^@<$tfmGwC%Y(gTb2KV5GmGz(KV0!7
zI;wqj&ysbe-?RGJ8vb`&D_yfWpnbn(iPd`5+RZP^imhJ;pEn6oeRB2h+{JZ*4aEzM
zT>Q1fn?3dmYz>QBXYuPtaxnYXxzkrU#as294cgCfpmXV=M?vh?>mF+zYcAA!zqKda
zIdrX{)A_eox=L!<KCO;td2nLN<x?tA&pp~Vgg-1d$V$)u;FT1UUCz8^_L}7v?M`<y
z#3(ok1{{60>%Fe|t#c8kH$N#c>{go>mUcN}{fDl)dw2HgyZ8MT+2-9_eZRtU{)rne
zxK4F5sLZs}(aY%Q`SGws!t1N_*1HF$A6jc`wT@R=pXtE<D4i4D>9S##=l2;(ExpY*
zF))sW!K`I%;Ju!&zOTI=f49ro+kTCiB_X_h)vSiF7h5gAZ20~~CFJ{pQ~pt}qgUT$
zUR@{1@Gp76lPPbj*<SAcwj^fz+<d9`i*nx<KX$&a#9*?t?&HQwjr<RPzk1`l=|(QQ
z*FT$NZq4X*bw6H-GkOTEJshUoE%Quf-{GWRF?UqsfBmapf6rjHEbr;}yRLm-yNBbz
zy7%Fa3ofr;a@)paYWEzi{+|9#S8gnHyYuTJLrmEQyZ1iJ><|3tQ@#>w%l=L3pnmSd
zjin`9r>$7$2kMLdTwTcVOJ`d_)$=z;mx;)ir#<%$d%82@V?m_7R73R|v3X(E_oPE}
zTHe0@Yj^VA%vXDLrRR!$?Pi!$z4uaHz31WWjY|L0e9P{39TU6j`oxtXOr2$Wz|x)D
zt}Q#XswiW2;pV(>k4iy?e^M)!WhvOI?})sd=6|7UqTvez8HPhudndcqH<!$NUTM0u
zO@MX3Px$dWOF}fJ$;2+UTzEyFX~VQmX>;Y(msaZe`JA~{b*Rzp_H=Q^9SL7Hl<xU2
zd}N}K>@w~7%ZjQl7yf>KZ*O>Q(t>{8u*|8~<aiITI<MEL6%cE;p0-QMbW+&OoIlZe
zsr<k1SC=jq3Ej`(P|GOZFf)Jc{!b=h7T+Jf<n)nzU{l`v*yM^nQ^7&^&{O4k9XB6X
z2S=>g8ujt&`@1rY)n852>fRre75#8%>6?eT<q1cF)%BSQ9M}Hqw!Lq6xb^7XTf6z@
zy4&wFak4J`v*(9L#-x2uHJ-RK<OLY6FRA|R!qMIOeC>ImdpEC6C{?fjd9UKnzwZ9m
zp*`hy|Nq=9)oS~d!KGMpYmQlbUHyVz-{rEuU)!Dfq~ch{oiDm7c}q@duHCf#yVc*+
zqHx#DUvn!rcpux%FyYniMcM0Lz5e>>WXAnJ0%kh*EVc%mYLt2YHRE9Rsiptzeu;ir
zsjgRO(Bt`6iQ#X|s-%^_i`H&4h}s-p=e6zKpKE@Z`tQE&{V04oGxt|)?(3(?OP;tg
z{PH~0t!otd@V8#|bS<B$HLstztiL($_jeZAq$Q`fYrWlH`t<JJ|B_4XPTgcr;9IV!
z5G9<o-LB@~-P?cjb{N}S%Po#GmP(Ijj5t_m8oHwG#O|o%WT~V%MJ9&JmG2gttgYHo
z%bHMCz0ly$9dms#{yz%(dP$$pfg;xN!?j%jSLZmM==T0u!SckF;ho^}m43U6yByu;
zPk8&cYj(Y0gD9)a5vys}cVv3)d3U%${d4W~e|L7sGi-SN{Q2^WKJC-D$$Ze2bN_I2
z`SDBd+SVWHXJ*JN@J<pIKAkyrUB-gEO}7>^?zs7}#_D|8`A_Hij#-Bb)(7ssc=S&w
zsFb?5Y55yJ!Fr|-3nf)!y}#bL`=w|_Jj(;W+4?&td98V1{PjRbPdVd))khS5{QiAg
z<0@yj&&o`D#;@HBM?!BH8YX97I38i^_|%o*SEk{vZ^_Ecy_Ttk%e9xM=dZP@6l|!@
z$dfzg@HO%9O6ymvK>~hGd;jk^^^|+{;e3_PFBvX0SI%qyCMy<uaOsM87KXBy{HG4r
zSTU3=C@Ks%q~!lei6Pcg+PV1WHPGPAww}o|nwRV_`r6H~<<sZSi&d+nivFK^;>z&q
zw_jI}$G+#D)g}y6->SMkOfGpJe(h>Z*B%ZB(@Br4>gs$R?hz1|Zs1Zm+9_M2TTm;$
zuuiZ+=@5&L|6e7BnJPz3B|q;|_}a}7qo(<3k@91%m}G`^7efWVAIJh_k4Dy3%MZJ3
z?+8r}+|S{#>ivcns+%@V(Y$&8y+CGB%qJxV&lXp+srpZh-}RPMy?HEmi@j2?q4<!}
z@@t%Zs_s^&4C^L{Gg>I>6on?1_0%+nMoQRzV$3tT$J&tHR(<v2{nu(YV~T#66dir@
zGD208&+D%egSuJ#&j8mXj@^Hcot`b3Fl(k4sQJgy{iU#UOR2f2`fQo<OqsVA84mot
z6umk>T>Climt>#6N(}C7RZ9(La!fuPF8{{#g^0~7amI#@y!C}S7i<3f{#{*TAsF;&
zyZ!e%TZV~8^CeSEh3`z>pD*<P$+yMR#2Gz`s(IN@cNv^ndeLsl@?+J?i@#+sY`Yt`
zlyP=lT~+_SjK8Jwx9?Yf$&+!?(`PF1d#d!^>g_l4$={E^eHCafwP2a86oZ7%^EVaA
zA-X4P?Ei=F;J5#qUBW1FXooPj@y2tfmmZnvvnnZJZ;8VC_gCe34{#<<{E?(*8S8y?
z;+2=`uWEx|i8KCKQZ#Xc-qkIkbE2zvELZsJvb1O0L~+I+CSS5Axqjj7E4JYl-DS{M
z{efYN@$u|Qt|`}-#@>3v!tWGU@aON}tM!5m64Ad{OwRwGHR;c?Is2Z!66&tEw|9(S
zTVVCIyXT#WknEis_v@`+2T#}$vvm*00k+DCnKJChdvmt<MAVeWeAd!u+Ta+MVz>OV
zxmwsZU5_}HgxM!fOsP6|!kG6pBNGGn&%b|teHsrv>fXb_p!3|sl&kywndQt3I$4`<
zFIw`$H;#p2nwrAAU-Fgx61mtG4uV$V<tJrv85$TES%MURIYy??^@KJy3i?i&CB*@$
zMb7!T1^IcYc_j)K3i{6ZIr&Aw1&PV23i>XoWtqvT?nQ}}T>37l$@wX%0f|Mq#R?$3
zV0Fa`hF~3~xp~D3h9(9E3i<&>sVSMsCHX}Ph6W0Dc3k>ynK>n?MGE?EIf*5y5K|QN
zJyJ8%GfEVUjTH2KQuESFG87Dr%%DpLQPv7_VP7i<w#&|r3%XjeV$R#Ur}LT(1RO5T
z{P*A9e6^YA#@^#Li?p8SC?t5Vd8fo-oqYFu<4%VEG573(OBlt3cNuw?FxFi)j+(2u
zi$On2b8U}UY{R;rbI$dN#5Tkhd(M?q-NkVE+vZ*7P9=<|j%CW;6^(5OZQk`QuT$?p
z;M_yo^t$y9L`qG)8z&UousQYr@)t}os`37=;t#TZ+H~k0h&56Q6@L&H|Gti)!GE&g
zzifsb-pA&D&w0dMu=b9OvQrJ?x=C|CcL>BcY|eGQ{by1{4dc0sT{-1{Wj?Z6EEB)+
zaM8p^+#AwFuHRjH>8SXEH2pQf(kz|&2j<LN;g{d7xsM@vv!iY<oBlqA+^I9B9g<eu
z#}IvW!nDI6hJBdQE|Gg2A6X-KUldg+9})i%<NoL;gSLjeA}Ad|!z?u~1(G5_;SORM
zS(<~SK}=&<;sM1pajAsJ^`+p5qacx(LlX&feJLn46T7|?Y&B|{@z1;LAi|zt%_qaK
z@d1m+o%X{8EPRJ+C)`jpo71?>jC+Ye{-r+S-emtt@1s9f7@z;|<XyLFR^6;+?^f;k
z`{U=)dwCqG_9DCfuDkNKZ1-jN(5XKQr_Zi2(Ta1r`t<wnfOq$g94sul{<h6dw|z%~
z`H`aQ;=A0dA3u8ZWTA!Sed}T=(Zy{GpY1qWZOZe|k>~f0?flih-*8?p`7B;>ZEcjz
z<+Ez#t$Fcp(yCYUU73H;c9--=PO<Yl@0?Y;uB&Hvzo>k5;M3WY|1Q2QuD?I#+@5*Y
zwLV{dvFp&IRhxcYF!tA-bL;o^g}?P`e%c%T?Rt7X!tU6omCN?rxR-bE@w&1`{)IA!
z?`29Qm+O>1{{KtsyV&mJ!cS-J&3b%{`K-^m@6*m}#X0Rce>XTr=JeusA#bLAPrJMF
z#@ZQk?mstn%PnubX?*I`hSD>;j~dlSK7HT6X}_gZTvSYCTOfCw>s8gB{)KYOKdgPI
zIjyq%%&x>wXYTDfX<Gd_^UNFB)oRyewp;v6Jaa!KbzjZ@*tiQ*{{ET7Hsug20|Ud3
z%y|1+i$6R6URZc{f#VJa1_p+i-<;dGHL*QpVqjpHv*PT9#NSYf^epv~8)_K>dJGH<
z2U>Hat=5Q}aELQ7FeIeDZs(iME7iiyz`$^!qtvPWX){E>$vXinop}~I!VrZIq;&r!
z^R4HHs4Van<CJ{`wdqcCcst)`$L0b?1_p+Ak)ba>)Lc-A0lBB|Y#ZNysCfmu(w*D)
z)_~MlTvjZ(ky|YXa*XcH|35#z4fyerje&t-LD;X;Qit@LMXW%&msh-etRDBL!h0bz
z0|Uc^S$}g*uM;p?(!$5Uz)&#Xk5fEIot0M;EO}?!tpdeRS(v2sIZpAQbeLq!^reSd
zuOvA-d%XY|o4d<p$An!T7bXaSY&oz^PgZY<o*Y!`hCb87tyfmT)SkYj72}aB29^9^
zrQ5>2Qmv_N$_0=&PDOEx2c3o4^5=5VjtN;-86KRnpvW=5E~K~QAJb-`bzGo=0=*mo
zWld1wVS!xTSkSDxF*3ubY!t9nHeB$^#>@h#wy}g3Bq+5Fj+N;~W}uo3>femUx3?UH
zjwo=rT+Dl4pPn|+Rp8(m#(mvOzD#x4l&8IR!k>57^eT6DNq1FE;-0qYwS^_uvC3!f
z`Yvw{E4DxO?k`84>!v4hD(Ck)W$#cqx%f_7y8=fOcJ!kDlf;9Mwt`QlJ&XItqsHsG
z+}kee>DliR)ep3$msG|V$Gh)d94@X>?d4amyY2jMM(=OZr?Ev1$g`lRF*Gv(NrRZi
zprRARpn4HcS;QC{KqCfP!h;e}kOKZ41YG*znJFb13MlbZG3V{<K)=HVA}q4z-y3cp
zocQC_)GF3<jUI>HmvUWF@rz^2Jn)UbL+$eOyU$CruH?xa50P4b_w(E7+dtO+J+)`<
z)>M%K;V{9yZL{}Q&W)J&M(>eQ-t-jKn2B3U4)WwB$8MhPTe$n#kBY)0T~j|Yi%+O8
z@{X%gbUVWyIr+BX+q@%l_@;lWEzy73nY8qN?v%%i?Mqeq*7xb~&(n#Sd;4aZYt0v(
z^SQ3w4L>pj1>}8qJMXx5tWd^d^YQewLRl@jeYuOTe!bhNv%%=C(JI+@Yi@Gwcwdly
z_EzfWSyR8yjo!WHo%PRIrujX;=Jw<!Z!LS})+n#_<)h}YhqcG;^vaeCcPAf?y?gA{
zzRB(l(bhk&IlDJVs9)Dx{dlvM_N+4Zf(&VO5%=urSNsFY-rm@gytZL=arDJ4-28QC
zyVgGVeQr(c?URpoY@2+v@RiB2t*>vK+_XdR=*z9n{R<zutUSYI*mte3^x9snC$;X;
z3+>Fq^o_P}uF}3S*JtfqYdiPSn!F#Ap32=3efl+{a7S5q*lykUio1=AS1V_3jbuFZ
z&w*uu#Wk)y?<3||^?ux!Tv%~`;g0N}XvKa8q2ulhzfS}Qv+!ipUGksb9A#a#>1@}F
z1)uXAD!*|UJeSRBwPiXJ_TbjWZlAStZSAx-HTC-!-aGj?*f!F9U8JCV(ObLOWrcGr
zd*9x=Xz__TH#Tew$B*R}JIj=7J}kV(_fLLt)b2VLfAObb4{oizeWNBKa%Ne<{gwQ7
zH(UzWM^;L&zP={b`tz){KD%E(IQsG9Nxw3I?C_bQX)^MRk4~Q2nw@QC^W)^A_Nk$f
zj_wVWp)YPn^fYf>Tqr-?_~@@4b3VUiKjiiOWRR)Rt-GsF_SbW5zO-Z)Lt)YBl1;li
z`o+&@lpmS4Lv-_dtA1^<9VG{oO0|znoqkPCTA*-y+3WX#2YmDNu0^kV*LTC{yS}CM
zrW8<Cg%&!n#+orGcYt!Oxq%r-8pJe2$;nRn6$;S`x<(*mq+p~Fi?vXM7lg)UNO{XG
zzbF^I!HwKtG7dTM$SB~$qf4eC42xp)oLQY)Wd!&SU1a^ZW6lnS9znKiAUB~o8CLdy
z%bCIEIwRQjs=?_xSd}^`T?bE#gVS|`J7$rZMb7!9c_pBZw0CAou|hPc-)x`|1j@LO
zZE^vL>8Zt_1_-<mFhtf}l$uzQnV;v9Sdyxs;bLWEU}R`uW@KP!VQOk@plx8JZeXCU
z$))cMQkP$(pplzcQjn8hl9QRFV611TXQ-o)QBqQ1rLT{W(917M*W}U<D9TSMO-@DC
zQ;?FTkd&C5otl>d(XWZ*w2GqCG%f=LLt`T@12|AHGc`3fRY+5Siy4|JfMpf(AY#Tw
zW+tY_sA2|&riPYA7-B|7CKzJIpj-?x5N4i%p{cP67IkK(XnG9{46uk9TUubKGcv#s
zGcmHXL{n#IZeU`FCT478g5ef30}Q>!My93)=<YK&w6sJQvox|WMDv@Wk&%f3n!UzG
zre<bnVQOe>VqlEsW<wJT6H|2a%*_le(8Au>$kf6J%??8gb8`bUJ3uMV1TB7zj4Uk7
z(fna-WNK-S<`yFp15<Q=7?~TG8=|Q*HZn6bHb)I-BMT!FOEk9_8yXo}7@(>%HZn6p
z4^v|!V*?|!_%${%0i{|{vNAxVD`PWDH1iA$jZHAcj4Vyi%rh`FF*iYTpMimiu@Sm?
z1|}xxZZ<G5F*8OBdjkU#b5pc9GB7Z)z(|t@riK=1@oQjUYGQ<;*VG(~n1w02KMc$a
z(Bs3vz|7bZEzS)L%*+ii#VkzF;?lst%+dnG4s#<*4F8&&ViB`6z%b9k*c`*Z7N(eC
zYGG-B5%!h_80CwBr6ES1Hn21?!?4%V3_Wid7+6|@hBZNn2$6;i49wB}YiMAEQRWyL
zm|~<2LjyAmw-_3jW0sSKhL&jg!@$tc7(LGz7#f-zVXCu0FP{wzjf^nW8JU=)$B`ju
zlR9dCGcYtYH^fk9Zh+x8BV$91a@@$+5ToogHZs9bXKZc)Y6YW&v$45}F?#wlGcYno
z_piBuDMtD;H!w3qPaEcjmKf>E+``lh-41gLQwwxEER8VZ$kNgjBOh5>nwp^5YiML-
zj9yL}8XK9R+hJ&IWR9K}K;^w5T3RzSwluRqD~k<{Eiv*cs9rEeE3XVqjSbPu7eiBH
zBaC{%+|0lfEq@qVm>Hp$&xRIe#^~{8Xkl(<ftFqjEsf34^ASi4y^ICbJ?Qz@$iU3N
z94(GOV(9q|R7atgr$)w>hUjqw5<|~}MkWR(=y7CZVvbQhgT&C&kde888G6}iWMODv
ziWUYSF$}#Hn0e61!qUhXEzUt=W@zaOR5zNUrBh=gBaF5HNDMvCfa*&F4810X=xqUG
zBNIdP_yE<b=<OF{BU2OfI?C9{%+wGm{go6YX6B?8ae+D;o_T5c3WlH>Q6We{KPW#R
p)O-fDne~G+t5QMDPf(k*xFoTt1l%GuHZn6av*1!yb@g}S0sz2fEsFpE

literal 0
HcmV?d00001

diff --git a/pythonscripts/figure_S1.pdf b/pythonscripts/figure_S1.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..14a71a5ffc14b3dad3282fe8e392e494d512a490
GIT binary patch
literal 84438
zcmY!laB<T$)HC5yU2{ia^)4<$1p|frq%1BQ8wLG<#Prl+1tSFmg&+m}kjjEo1%2nl
zlEj?+bOk#*uGG8~kU|S24Xza>?!hIAC8-J~5KV6Rc_j+Q5OzRfNl9u^o`NZe%cUPs
zl%E`&TA~oGpdaAkrl22^T2Z2)@0pvJp6UdpouRa+Lac&*a7JQEW?s628AN-8e^ORz
za*2XDh>PSLLjxrDIOgT$mlP{RgY-M+=ar=9l@u#jf^=}{yBFn`7ASzc=^U(}?~+=U
znVcHr?xdg}te_uKl$cjskXV$Oms|<+IYhmk9hbguYD#9JQ+|a)v;xR7b7NCIBNI~v
zV{-#N3quQYQ;=-|Ak8JPunS5p&Mz%WPAygdg;o$3G%!Koi{x~W!$2Vla+6zTPDyH!
zg1%c$Vo9n?YI1%`s)D{xYF>IthJqm|j)FiMi%W`96LYyL=DdyY&c9<Ou<v#FhZ%A{
z#Xp`Ix?Nf@ooQw7Gl3@wIdiVOJGCy^`rq%r9&5vvxOmoym@=_&AKtB8v~T7^bN;Ry
zuFh|?h2JpMe}AL=yXF6U$&KYde&6EwlO?^JXZo!Nzsvr|S{}5mOji&-x_<wxXWqp>
zq;BVLcpQ5<;_TduT>Pq*dMBe?FIaU<ExD6%J9qlE0^gU%=hy^qUYmWt%<M!4^Fi}d
zHO;<nKAgSz{qxzI^6&d@JX^LiEy%^6Raq&`+IOz?>}j(9+}@lOt=_-Or|fju2Bo&C
z)eMhs=kRo#p7qh)V(RZ_FIr^(dG(lB|GaeKz}8@u$3c(m5|)}Dj4b=KvvTQ?_xm?Y
z=Kl6=iRTQ<d6Q!*i`=GGG*^h8x6;$e)b06Z_i$$Ao;MeY_B_&={&C8bm`6Kw_qiKP
zZ+xipyIAM^ht`O)J4cF_omo?HYj3ih72B>2%uO*$A$k{Gr5@=?_%G|um@TCHtE#%R
zde_^%Z?E21(Iy}&<alI-#+&Q473cKx&+nU?mv?^u{Hx}Zp2k_tcUm3tKKo8peb?GI
zzhByi-~Y9C_mQ=ttQ)ntdcRm`8}^o}={K!vW@ub?@Z1yEkk`ND=U?99AC@7LzFKNh
zRpDH@)UW@R#2fIPUgN!dosQqF))eP+)81Zv_I~sE&_x=(rSJBubSa*7Rn;`E6y#vv
zxjH3PO`j?7`hS^44v%LrEOVQ3%F5b*ig@>7=8hy0vxxhWf%B@uB5yEi&-^^$v3%Du
z_qVscx9pwL)YGEOmHKq<Wd5jap?Ce?|5DmktZ}OEvhVD=)T!|=e#R|+x2$UJZhMcp
z&&yUSN1b;*V6`L5W&ZxK8Vzgx%)_j$g;R__O7SiH8nnQ0l9aM%<Hi1<$`ccfK1vBW
zot!KCutU)6?Vj5)d%BWT#O>_le||2@OVfO@Q$CU_N!L$Duk1!*Lgb8N95<Iaym`R2
z!e>vLYnKDJi&M69QLfbKpp^$s8|Sc|xAr?$mAG}nFHh#1|EK-+pM9)Dg+HoVa90Q4
z<r`_$rQcU{O)q`Zw5NH;2fge+#h>o%U-fNyx%I?jb2rUv&D^|Nx4B^7J59lp#+o%V
zD@>c44>euAv^?j*H9xO-wK(P=x5D+;z302xRak4*&aB|&yw`Bz^wRZJZ*ukGTpd-5
zvNnD>tN!Nngzr0i*8G0;WybBvo!obFEM`r9ejxPidCz4QLVcTBvTlY%ZvXP^fX3NO
zE4P$Kra=;)V%G5ssbzdw;AxinC{#h`0>6aHnuCvDDopGQcUKm++&0JeYH@z?N2xC1
zBUe8u7|!?AKYTBF!r3Uj)T$-S<#&~J4a<!B=g+IPPL{usIz4}e;6dYC{%?M-RlAsN
zzDX)?%B5>*Toa%7CCr={H~o=AOi$^VZgy3*N$%y37!9XiTjTv+x_{R9H?vYJZ{Odu
zF7l0%;b)ufQ!W$BvN9{y|A=v6+Saq9`0f!E`wro@Zsm<iDl0i!tYwxTndfUgYtO?y
zLUU*3Jqnl@$vdO;?vc$GPkwtSEz*!CzP$dP?EJWUGFzTcFE=k(RN3!eFYDmV)z_lK
zbN*=ew8>m|EM9N8;rU(S^3!79=?}JSIkYlh#=LHE-|0??eZo;uL1FgCN~*TK+&HDD
zc%AN%;LE2c9&fy~uKMrJ&AWpxPdT>Y)n146lZ8bex%z_SM6TV7ZuRGMTU_Y!ASmg?
zqLe2IJ1bau%-J@alh!<_8rpPHFk<bjEv*&2XO4+WPVy1>F(qLY`{|cTwp||Kovh)u
zfl_}Mnp2WG*typ%_?I^QfDcP`>2!@|$IBd7_fD~OxVlZr^i<u-2X~X^i$(WEPdTRQ
zzi3nW5#wV1OFPZ`4vVHJcL?4Hsa-y2>CzWMAN$(8XHB)1mA}k<Sg=0PrDpy1>I=)*
zJ+!?uw*Q<K8Ebx5%xC&BEuWbk9L5%Ep8Fo@`>wU0vF_cqx?9iVPFZX|zxPY7{NF&n
zd$IGB-|aemC~vvMwyrC;MRzO^S;b^{I@IdLQJ=o)yF&gy*V|&BR&3*U_M$*pXJ9MS
z(;e4dCp&JlEWewu!oaK|^v4SpjrM<v-kLAkyuaPpXZbPC{oSL6aF6U`YkOHg)R>Dc
znAH2c>7(}lBpFaVCv9|9<h^Vq*<<!BP`9i5xtS)zb+_i2Jvn<O?r!}waWUhoL&d$@
zEuNkXxh?i+>c0e5w`UhZCvQ6bDRBB$F*bkcc)hs8hwOast-kT=ip04dJ*}xNnZ+-q
zB=RzDxE*p0>y7&LAi8eS$G<nvU;DoKtL>Jre;4pFtX=<8e0jXfR#4jjS~o#k3E(;l
zRJj?NSr~$(L2P4C^$B7Ss`1P%QEEHiv%7f@DDbdcn5SvO^x(f;;HnMv($Y#!$@VY(
ztPb*t-g&e^BBOjq)W@ZPGiqPW6q*!JZ0izXtZLP=B>vZFgTpg!oY?k$d)Pbid(twJ
zAjhD()fiO266GvY6la<CZWKIVz`<O-EP>@Tqwu$rOAr0t&iNx_iMY&(C(jPf+f=f_
z_c{BQ=SzG)I|WWyWpJS+t+p`Z311kWcwC0p`mPt}9pAIhd?h{$i<3Z&Fk+l!ff`b_
zy}Ln9at1jmx$c_X&X9Bea&zRLv)Qt!CpJj0UdPCPj<2re+P;^{nzOFBZ|Kl7a;<!~
zR%7<H(vVXsF{keQoP4O@$^)5Q`>)<A+;!w)^!I<4J7s5LaUiIXM~nlF4NOo1&32OY
zq{9Y0&ee09#8346nEd2(iu%;=|K8deoeXR6>}1f;FP*t*nT<lG8t4Cu4<9C3KP|s8
z@9dcaTV3>pPivlEsD0#)>(5Oydv|TJI=bqx!QALCE9P{!`A(koT+3T>JNLZ9TRWdm
zt3ASRZnA>CwAcF(@7=2zkz8jBO8;B$b-!6|Y9l^7<kc1Ne(^xjXFnDF7q!3idQ@Yh
zp%_zb;3g*YB>193-{zRLpW>Xp@oksdbjUHw^Z90Vn;WH7{(5=hX9f6Ec82`$3w-nT
zg7LmLUYxc<+a5-|tF@lB@uk#ki#K)e-L9SLS(l+$cOqQ<wQ9nhU^Q2v6u)f|dEHm%
zy<4cUthlXMQsLFjuC}0ON#U#Od93qw^l$2%m~w{O$ZfgrJd27Gb-lB`R8D<f@s}~@
zbFnp+fHy&E@8WAUnj4~oyYV)Y0E2)H2Ei9hP0T_JHkpJOm>UOp7(QX*YK+(!W3W-i
z;Pe@xBSt3X&Pgw4NjjxYj8J%7v?GD-`GGU1A9^t}eB2_YjKw*i);%%lz|0(*b4<b^
z&M`9xggU3mu=t?Ph8#X|AK8{vwj>G3SqdA^G#qPGeaJIG(z4)k(T+<D=bA+?V{r<o
zr$CHTjEoIX++rH&nRnQLXU}WV&y5U^^!6Wj^nd$*z3e5<goF(5IcEi>r3EWG51w~?
zaxD5<&#WJ_PsV=SZ6hkjxxGm}kR`6I`X;AdzQpvu7H4Wc#6?+7mhv}J5Wo55gUgA8
z=?*Urypg(+I6G7QS6j>ZJ`YprNWXaR3*M^*H2iPYE$8;yvi8;ax1060yv_EvxcPRa
z`c!{~dC{AgruT;Xh$TyYae1nD^o!%F&8_oVJ}s)@+w^mVqEPIjIgRRU?28?&H$2}q
zzcajbL22pyZM_SnG-dt&o0*t;Dm@WaopbZjj_4o%=2idw!@Mjccs`ck0`;Vb3N9nm
zs5AAq-o&iP^V+giZ-Qh`Zo>J^Geh*h=g&{s#4GgA<I@)xceS`@CpgyJ{J2d_vP1HR
zSn$X7wr>x&yt3WV&hhk-(~LxwIi|07%wGQZ=>FKJ#@7z+=G~VxO`K($!Q`(~kIp<@
zb}&Lpz0hxybn<nVoaEToFGa2i`e-mK&V6g3dO}82vv$+s9!o2~C!NoeRvp#b|30zy
z;4;HShh)N8{V${hOtXEjwm??=%l)gp_dQLz<Cu&lCM3>Pd3G++@5j|__v3-xN`~r7
zB%c@wUYfHmiEAO}Q7daMEm79#uZmCIwfmnD8|{lFtU%p3qQc4qwTf^J*xl=F$n)Bk
zRh%Q?uTJ&6a*wIE_uG286|^cw*-wfRn$dB<n`h&c{73F?j<($U#aka4A2~1H>UgeY
ziNl<)k^(a;+HSe!y(lX<x96~Nk0q1%(WruDmuG&9x$$HUySl)++$kS>oOXGJh!%#-
zFZB7iYSa1N>y1md=4`$^@r`0{i?^q$+Vr|$t^ZpzqqSb#auwd-@uYFGugOCld*?|>
zXBJEe{BE$d?@QsPiSDHrPTrhjsXO!LyX9|vYWO46W(Gdhocr9!PJQL)7{A(gn`JLP
zS+q3t_ng1?CQkdLwDtDFt1rV<184SLT|Qxl&HtYHAOA7;Er<k<6QI?v#CCLzEsanz
zrfraS9;+e8?em&D9F~6YEt<FT-n+Z?(X-Eltm4vV-ex#uI?qZ~`&W}XjD7097R5da
z{IoYGEB%?`J3X^yKO&0aceULpx;QIoqrc2a{S#Y4A{K_-UF`g^RYRDcLH9u;>%)CA
z|38YaICy<SYtiBA6s82PD|rsboG(gxL^=v4{+=lMVoAXIoQLl<6vD5pX<b;7)WJKA
zL37_~-p&~-ZZ2qVnL25e?4^%AOFl#&jO|Peh>pI^QjvB+;O4!Fy@JMXFG?0h3TE5e
zzFZt=v^7wY-#5MH<6Wbm&lg2sEV*>z?kVT=^G@msD$hJ;JTFjwIPbP2x8aw<_0#-w
zzR%DMoA`m%`V=Gc-oN)I^`5VOpwkm``;CwKhl`oZWrWx6lS}&BY@g#jJLb4{yQ|2G
zJsKQ!*BylmYa)(*Pg(3zzJ>9cvhdXmRRJEML+9Qae5yEBdGns=mS<mFG8VhYUFj3F
z)!20O=^W7w%m1u7yHREyzgl(vmi{Sc&a7w=y;4@SV%zy-*(>Gqe*gNzsK>AnOM}UT
z*mj(e32M>d8@M~y#gOOqeUX?446m~*=Wz$ce#>`0$uZ%O!a{w`<*H)ej(PJuWRK?G
z_he$IbG@9s;TvNe+mlbO*gxBOGDKvb=&IQ>0>qOZ{>@<7BUYlXq<xD0et#-Y@wx90
z77I*IP%}wblkce}eszy=%AwAMeTN-qhe(wBis-BpJ!^d8ZJ7BctIY~I6{^CIjxo5f
z+!UX1Heqqk#;FsI7RjyPn#3BFaQ&rpV0V-Dlxv(Ni>@8nb>_k9=ikcAo%KIGSh1_3
zmglwihC?rwR_oNPbCN&v#mBnbQ+e-)Wx|4K{H#GU=T4kzWt&vH-QoZIRP7(XPoDq$
zms?aLMhmkzF(J0WX^NU3jLnQg3<3-`h8P%`1sa%{FeM4Mia6^n;OLlonpOBT<7S6d
zMLQOpDo$7hswH1?@*coqH?b{CGYgcwXl%3{)P68w6lxPw<9e3H#--U7<FIdK=T0X*
zaSxs&rx-W$G;C3w)6@~|Wa2obDMDarnp&EGrv<apbT)>QTST8?aSO4HNDI`qjP04-
zq74QdtQYKp_Xs-GG`xAd@zUSugD%oLYOXTNDoS4A&6924vc|i7a_y_Ct({9wG+YYK
zijnf`S&>=0vNr3%Zs}*<S3B*`o`25Veq1sei^GU*WT6%JSOaOAK$xDmj}H48ri;@G
zxRmCxG0d;!!O~?iA+{-HWQtbFO!S__tia*&eO{At!=EQMGiQYs{eNpR!^f;_`ij3T
zUdqdabe@Y;8vH%+>1@ijms@34&+TREQW81yMC(gL<JGyEkIrm$+4^;(QPG{3vdxcp
zpRbz}vS~-)F{@Qpq87`ZpZc}x-Jcygr}ing8?okGv*a@?c)BgIM|knsu=4ibE)$kd
zUb*;D*@T=Q&6AJqJ9Slbho9N+SE>^1O?3-7eLndvC~b3i{7kc|i1XXW!rh-8Hf-O+
zxg>|<$q9iTKF8gD>*@<%|GD?y>hRp>w|K()%0F8BWbb~gZ+Nn6XM^iIkt?5V#n-;(
zk$r!1W^&QxTIc668&2PKTz3AC{Oj-h0bOYwSRxO(9q0rZx79T?FfvroH8C?*Ff_L`
zQ7|+zHU<sb;%h(~n{(+0mnM~f$HCq5i*jKj!?2-fJ3B6DMOQKBv5|>Euz{Ir=!vIB
z=4MQriw@{07b`1pt8^zgrd(!VjOXIQ;!<LpV1{O>8NhXdx6ok)9_R0KoZLUSv(?Ni
z+2!?q|5`=g%?-;pI<S?iv#i|8DtwVuKi7K~w_P;nxnmVC%<@cyp0JcQge`fTF(s&W
z=h4imB_A`)inY1d3d^SPRZUqexj?{5^xoS=Pl}ekJNMJQ;A{L>_l@u7oIP?N<tblF
z+E>kYHM3;{WACQaUrNrqmR&FUZPkV?YnDE3xqU9ycmd11l`?PtvaT$)YQf@Dq8m_#
zXx+tt-Ga`B9ItIzxu2Y?d24?D^wQJ+a#iLmaWZofnlj7h<dk-+Q<K(c`pepRC$;Zs
zf0~zKrmE$tKY4@d_X}JfYdfEbe7}2j+Gb~y=^2)F+{Rj~q-8IAo6RcF65h4o&SB$U
zytyUJVeN7oqZKYJNw~gEq3Afj1kb^l!re+dUcPMq*A{&by7S&vCVx@Kl#&nYem?zj
z`n>KQKifW+U3-6aWfv~9;&Lf)%lgz+l6Z8}3FjqOSxjx2v$ry=yI1woJj1<2vf+(z
z=VOzlGS2_6?Ku9LxxFjs3zpy^wuNMY+H-O3+0A>vfWrmU-LF$io3Al-bG@{J*PR0Y
zUDZ3Rgp7jkCAPJ*%;V8%3;xJ9b8&*{4!5A*xo;M4$cry+d{z~_`s;UgE&sBzLff;a
zC9$~6l<11y*bJq%@D1?Jb5Z2EUECG(z*9w$@tpJ3(C7bdZ#*3GR;x{--h=<;rck-p
z!AYf^Z$2&coqo!wQgp>r|J(lqd6@G4UpV2oWqZ%uq-R3cjvi96d1|68t$tlczTetk
zI<58Ck>1C1^&}JKi!qu;Pd(dcnQLY4uxo<U_Enqjr3COOy>dFsK3Q+h@{7|uEa$CA
z@G4i^Izc+d?&?D3!l=DmJCnO7=O2-YTzDYyf=}VKc*bihPHu`kq2Sr3c&>JF^%Sn&
z6{jk-MGx^$UMTpr?dk%ysXJR2t$aG^kL)cb1J-Rlr7wBB8dotKysx#qc0Z#^Z)`AT
zWSSCNyPKen-58r~2`~sSFfm}C<ksdeZDOZWm!h}_!;v#jn>e2}M6x+ZEwW%=r`E2`
z%W&)kuNoGMiLKfVO;MX=t`l~GGMP(ps3WJ)298%7k6$eRzf%0C*Oq(+-S+jW!K>ue
zm6qMPp7F(?l5f7RYM9OqwQZB7iloIHy$okm_!+KVynW%!_A9S<tXQ?9G;QkT%+sfi
z)_=|jH=b;J$n=%^2j3Sz=G$yp`67D3dhRK;4qGkedIlKQu1{)QJg2N)X^zALJ4yGM
zn#zSqd0cP4OERSG3*T|<G3#AM^GYnfB(~9DY;1&*CUt`>`&0~hPXFbqOJI2Y>Ek>(
zpDVxrmw1M<vaZTGZS$n)u#0M)&V<{6*^jQfr7bx0Vg2eet?xZ<pRnr4KH(a3a@wJE
z7o8`DM{JHXy}$iKQts!PGbcB*AJf12T{7&=O3u?x$GVNT9M<YPtaV~z!fT~f)fK@@
z4zE<X@wofH-O*z4Cb50W83*)#K3}a|v2Tg%E!(u)TcY`=Wx7ulnb!O^^W5nt-mi7S
zk3asYaPyw1wNqAj!y<$7W0iV+M!Bgj*@@}ROO74=_UuOgQkK{k$5NMAF#VjVb%@z(
z)|s3|3ja>LR9tQ(ux#B+FZJz#qUEnn#%$iXXRfDF^mo^;vm)nSADa2Ke1_5Lv(}Z<
zgqQlc{*bKR#=<-I@vEEJGh5xZTOQO_tuZUBD*Ci{RwVz)l^!0Vmv?dbEj}UQePh~>
zSzWU(T{->X{`BvX_5T@-AJs5oi4<ZROz5pjW3yn;s1%dXvSn>t&)lYgTa|XO_Usv*
zGmSdR+!LnB=s9yI8{{VCEJ;X9VoQlsFjUxeiJ|C+&_pb5A+{Z5Y>1i-OoP0OoDDf{
z?+-3$JU3&1?YxprS?~6*ZBf_WpzGkIryqIAyY7nW?WKpGgv)<d-RNZ3|8~}yprhZ#
zHjA9sUGIKgaJw!SOQ5jr4<mI^r7P#Jys)ZBoNmXwUcgUNtb%<q1KawC@fB12nh#h@
z8{HF}JW)zO<=`yuZeNcnww`~qpMG63)ug0OO}qGKb<s+Zti>leL=_@--e6y%ttqD>
zY}@Ivsc5fxSjW8y;ggQ1tEx!~+*RA?yXC;+J5#r`%$(uG`YfX1YRTqZzhrzO9&c#*
zsFf&owb^%`>B^S0Eq%!;hbz7x^66}CJ1i71yLKw)s_Ffg?{F$FbN4NKduUU%*?UEo
z#XpU8rW`!3p~Beim#o5dX+wixqvhTWU3;H#TZ$d%NS!-NhbK2fb$3-?>wyb%HZM&)
zc75LU&;Qt6qpKHVi3Q|V7`|o}S|or=!G^;k&Uy?|Q<&ahF_`E^lQCMOssA)Diz1Kn
z`;do1pCs*8wqKoh<KOz%2D2QUemE*we>C7&^ZAq6g`*!XE;?-f&+O{z<f%IHyQ+f1
z_+L(F-}6Z{Ak!f5NNc2ztaIYI8K+K6GukfwaGP)Qnw+U2Yn#h#*!Z_CPhHJXw=y^J
zmCi?=L!ogyj`P}2@LpTKH*{aUQ?S8wEPf%jS!8UC+8Z+svRrr9f#-ECSFA!q+1WYI
zSy$G*yWch?p38YlSl6sRv8kCqQx!vXC+qEh>zUgr{ptHju1?`e;i|Wm@=Of)Y110A
zKmGKceb?p)DtJ%jnml>ZaaHbrJk#&#$vjWaw(nOix2;MD?P(EWJS`%;I6Km6_u*N+
ze{7a9+CLI3S{JchCRx;jcUR#p(f7`uD^Ex%q|KPt#T6UYDOTtBae@2V+V2q|5egUI
z%6Jy^^af09C~Lgs!DG2uZ1)QNUy)O0aF)F7R(iMSfRN{zIZ3frzxeG+bXM#)dwhC*
zpVu!B?QEZ0<%>Nt&nQh^H{CVgJipd<hr?&RQ}uCY6&!=FX=K)1ST#3UW0quUYq`uU
z9+TrT?Pr8-+Kq*#e5uu_i}zOBr7_W-k9T2xyxiiRIc)ii#TVyq>tYuFcr$UmOhW6W
zqqCmWI%o-3CH(q-{YT}$Kg=@Q8bYu{4Y5r!BNNo9(G9em#O%m%`nhP8Q}N~Z8&6OC
z{{JP{DaPhDX9X+W!hmD`0@JkbeL4}k<>C985(mo<F1&xLR9ehZK-A-sM2PQ-*gbN4
z*~?_om_9Et)oGS|&1|2{WnNWS;dAWf+fqqWmg?)-{%HY5+Tw*LkFW-p-Z(Myu>Z0i
z?zb`Lc~9&Vyp}4lWcJi!JuS+<ia{O=U#YD$cAUVncy-|7UYVnHFHbAaO$=4e;`trp
zefxT`@Hr_HYq8ZfmP_5k=bS!ylv|tq@1C;<TtlQ*+Xx61?7!{&cg~w9=Jzh`+<f%Q
zkGSGZdkjP)K0ezjJ;8VD4|DxTKWrbr{`rS_#nNao%m6eaw(V$$HdEm{!I#fTQK0$z
zoJHaW3qLdWf6j<``FDHSho6s{zIZD-FF(vI>;A~iz3tqKiVY_X`Sx%dsm1kvp5OCY
zrH}KKXzsyXTdd!m)iG4p5mrvfo^oflyU34+Gq@d_-h4VNF5$8ydq%$L{L;yFb-ORe
zURhfD{jxIGoD+QkJkkZMH!j=q-4QzXewNz)5KYP17E|~`#3ydL$=SMMY0~uI(2Sl(
zVYctP<KF&cJowG}Hx@r5H~lE+dYT!M)b%to3^Fh_3p(-Ch-H&bk4VuDpG2M+F?`co
zn-~LHC$`RP+Bs3x<JcvpQ%1(-%%>bfo)j!)WJpfpFT&yjV%w1BsEsSr9@t#y1rD=_
zg!hxZUBBf!*Z48(%kocObTEo{SCeu<>B>JBm1B2mx=v3%*YvP(RlJ9xo9zna$M=r=
z?~E@H6RO4H9%5U27O1(<v<Es7>VJ@ft-JsG$)#T3@|)jYXjoGIy{XyC@zV}z%{h8`
zH^Zx>`zOy+W7zn`$NBC31lOzGQ6jqWdC3=&wD#HmQc;*z`YF!h%LJi&@<+vGtFgF`
z*oKdhA!^snG~hI^vmwXsbS|+KB20}b^TPI){?E?6V4W!V-znn66pqT3C(miV^tQ9|
z;oqjWf1?uj+EUdwr)DY4(|*5j=BAAoZ#+sUkW!0l5HnABk=ZL{TJo@Inch^V#-pkq
zX4aHezu4z5S&=1KRK_Ccd@_MEYnPaB#1@<R6Z{w-{jWRxPWQ>eNuN*6lm00^=j{jU
z&3O;iv&xh%7Ks{N*=%xLf<xF<&Zg3JS;3>t*UGP&2wh3z_M67I&d<Jwk0C)RF0$dx
zIu}dtOMOe{=kGcGo!@~WcnfCG7$H|~PKm{-;KhOZE~#0GVWq)|dBqC)&KZeCpml-8
z3PzyfHi%2#H7_|IyzI}$hD+ZiGc7F@v?wnXw5HG4NI}22ATc>r!NgQSKcliBBQ;M!
zzaX_JGe1Sa#6m&8DzzwIK|en)RYAX`JYPY-B%>%bRl(F)K|d|CELB0jIJ1IFzc{rF
zq%AcwJ)=ay%u+$$Rl(dsLElfo!dyW=T*1;%K|iS|F*!T6BquekM8VP+&MyLMu{2lE
zPgJn9<kC-8&`(j&PgO89FjdgcR4_C!SJ2N^(9coO&sEURQ_#;>&@WIhG&E7rFH+Di
zR?sg|&@WZcFH_JjSBT|;t_XyC7qrgMEwiY&1Qa9+1`7J1z#>$F<mZ*Rq!uR^Wfqj=
z7bzHl8b(1}V4c2+B}JLw1&ewH2B1R8K*0dcidE3}Nrc*DWNNCQ@0XaH3R)5gix{NB
z2eb;*7&h<)a+897cxFmTMzMkssDTGwl?Yw(0k$7DN#<CboSIjnU}<CtT0>gk0SRvd
zkS!1yT_a;N@N&oWVg+L(h^vY4FS=6|^gT-wb25`1^U`xt6%4raeG@Cd4pcBSHZfAr
z4=zc~4FiQI$Rm(YMG7+g2)M%#3tYh-1NkFb!OXyb8kmb*bBqlw6if^Z6->+w6fBG_
z6wHjxxGYT#6wECQ6pYMG6^tznz}VCPA`en;Y-Xqcrj5-(>hWPNGh;Kbys@#l0tkcb
zfMHW(Lj^+vPykq%D41E8DVSMWD43fYD3}==DVUm@Dwu<?sgZ(_r74$@rKy6MshNVQ
zskwrMnX!VoiG_l>g}H*6fiZ*z$s3z0m>C)>m>U}@m|2)8SXx*rm{~x?Ks4Ah#^zig
z8srF&r$E@u&{)CD*i^yP6l6C@y{Uq+sS#Mr%-BT1$lL;qP0cOAw57R;0!ZA<(1;79
z4}?t&4HZm{3>82#j37BvOCtpfLkk5E4aP>M@PGgX3dnwNq=5p+zyK7WTp&A54J{yn
z0&*A(gHsyV76SuNF#t_7Ag_Uf5277pgaSyrsi6gzsilDeNH;iq5ey?k1rx9lM#kV|
zX9{waAtX9M$pGXsWNd6~&IQs9!eFCJ%ncRH42{5P1(XiJf*@HC2KfnO3J8PvFq1%u
z#nixn3nUIRz|zc80fs>d0Tf@@FgUC&K?xHSA8-s#51=#w!{D?6O%tGWfs8@!0`rZH
zz-a@NK0p|hR?G}cxy+0W6u@Z!ln&6arG*hBT^K^rg&CBFr3n}f3KTPA6D}}qXao)<
z7#n0im~9MAH&7asE<mvgqGLhT8>mbG*Ha({XbGFE0(eDR5UBb9FCq&9RUyWpCR7lp
zmM{i2UV`8i2)IHq1~nLhxL}nGq*5^k4Os*!=qD=}LrPWs6a`~&aSp0rj6oG?kb*v>
z3^j(<l;AoIJQEuPuMNQyi$S2;$OP($Yy}gjBXSf>z*d8*C-78L5SM<Qf(g`?d{7Mv
zUiS~GKTW`Pfa)*s2yhU*ngx$-27zicQ?LbG`o*9M7OW9cvzkIJDbB1=Fok*xQfr$+
zy;h=N3bhnkL4&==1+KGAp%#}afV&Stp!(7bY!j&3G=q8tT+y3BEJBpqAW2xvxEU&d
zn;*#a6G%Nw-q8@U6TlHsHMqj}GUz8KDu9O$^c{_0$_!z3Af__VAY&?IZv@D{P%9Ab
z0(l!l5EKGXL8KOuZf<5?X|aL{NJ|i?u7uUdx}|xU2F8{q3TB|nJV-&`(@?<>94=h?
zo`wbrMsQ(61tYLHNQsex5hzf=%8eC_Kmh<|n<yB8Tnb_vDHwv4aOry*D;UC5m?#*+
z6qqU)LS5r&reFwiHb|Sff+0B86!bkU6b!+U#-;CRsbB=^^dSej8OR)%N1ZZDiUU%M
zobz)F^7BB=0}BOx=lq=fqF`{d4!SABy(qDgOCPcaA|SCSw-^!!Aa%tGhF~3~xp~D3
zMg|57`T<3$DVfQj<`1NOt&er630lh=8XCekRhU721)t#q??i#M%V1M{kj4(!D&*O|
zx92zVHaiF~96VlRF5=jn*LB76>kUoA{FBOClw&^}oLe{j`nLXD`R6k$&%KMc+g@|b
z*5=>e#&}Ja;ErVizKXM)Oj<LzE{ZIowZL}H%6-?9*BrMvf2O$X|EHb$IhMI5prQ;q
zZwXDd;IIHilA$Ghtu8oqfy6)s9dQvC<nDws-i)ahZ_p$d?3-AetpHA5K}hXYa4f>|
zDxp}6_3n>#7hLyw*ZZBHzf>eWw&-e_dW1z$YypdstCLexY}uR04G)&5v>utazd^vI
zNukAMf)hvANoT(~7XJQ1{m0AYzE|GUS+@Jt?&9BRMviM;0&8b$e!cSYU9sQUnd^70
zUfs0aU36za*rk25TGnb<Ossxbr#xrgwRPV+a+0SC-^@NeWrd2;q6tkGOnI~y#B@2`
zSZZKcw8ts&v&$V{dD-yUE+$@=5BY6fmHm9LN}@z-+7}I;!wL$EwAVV?d%m4xuR2S@
z^2Wji)w{SuRum~&2k-_zmDXP#B3{$JXaetwSvQ}3?DU(u{ElbnlaTOjkDK1SowDHY
ziqk?VGlL9euI`lFYa?+z)6wN&lzPt1;}NH3=f>RVvwD{H_}}(J&$urB@m@Hg>A<~&
zWBFljEY=GZ5>l_9j$?=x6|`K_<pDv@o^R0#vCxg)5GuGaRPbVFs9<2=&i@7iIiW5h
zx2(liD+w)DEQ+|Q$yzjf{hb{VS6ALY?~*3FWrox{*8d)2YqA&@oe6VwQ4e!<Neca(
zuv$qeIn<?CUx~v(R(|Vi#fDGfMmnvJ_5>Ubs%Vs&c8I%a*E;r}mU=s^H~R>CFr2cS
zaH=fn-&W<*H?vOEKk9wq`f}H%CG486e<Zri-KR%9<15^esaJj}e{00PYf}Z|t<Q)p
zZ~0uG^fcb+*B52wCG$O!IcrwSc&pFM)DO-$(|U5Mai)Ho`?5lYQ_2f!9j2aA_D*ap
zUtCnC@+n7yKe6WihFx>t=M*Hre||r8XYIpPJQh|a#nQ49xKF+kJ6(8NV3R^#L9&3G
z&TDb+hpbr<T>41v{?*Z>-MxQ@shFKLbCAucO|DO6roWuMsb{83+gaNSeLD-8ufKZL
zA3M3}=b5_q^D1(}KdZfW%HP4q=VCG8qGRNZLem=lTThQ2-WJ)mbj4#CRr?7SFCSd)
zwxhCL`t;w0Jw{XA!)0c@^liTsk@oKBy@$4k5B95nQruB`A^oSu)bw9_a~Iy5d&KAK
zLUk9*uA@_5+WpO)Iqxgms*O5N+G=-xeDZ158O@@aNrya^EsWP`6<?94xyOMQ$rp|R
z=l>nhJFo5T|51MzZ{#X}?!pCfZzPxJAC~QK+~K%oz9c`ldFYC!+&NBj)VNZd53HT=
zzPsXj&YmZS8O^5&2TscsSX8A|oOFGS)wH=YKi%_~V!ZQaPR^4Oo!*x(dUQ9G=y1Jw
zv2^L3gvgofMw&|u^_`c0ddxqQPo4eItGGSeP8BUy&dY!9-oHU+-8TOgu6b@{)&9#0
z{pa0CNw9kV&O^tyWTCn_o3z){12%hil~ix~brhOnu51vAThO-jLz6=N^XW3v?Ek)D
z{^xorK7FTF%I$?4x8;h2={cBt&#+<M?y_jxi4C?vyk}qh{IE~M;mVa4_W2!ux;m$L
zML891?hMFzvNKU<?h~_lYtF1b>ZW8R;oW{_LE-rnwi4-;<t-N<F5+<x|Nnme$Hmge
zb?m>sF*`kXxoXzh@~4H87pu$;ORq0{{9@_%NV_{zGYr^vG5vUvc07sg%~_w|j$-}<
z^Ebu$E(?E5f+rY|vjt@S{+(%Md}ZrK)r+4Jl@db(XZITg85%BUSmh&De3<P+A%nd9
zilD%A<@}N7@=htXzT9{5=kwD}tE)Lb6egVF|919NzR<4lx`~?dXHvu)zfNp^Z1mkg
z_?6YBPisova@FL1cr$rZ@rIwxr*+=%&4`(^{oY{*y~^3?O!Dt{&f))?gq{QnzVBRp
z?gV>}+(MyAGb5f}`~FlQ_wl9;|NhJ?D7JeRU85xU@8`TV-;!ERK1jZ7H|tPVwO)u+
zr^@Nnw^1L|x)MYsBA*9lb=0umWs*=`zr<PX#|>w$?w9e!LH|Xa_9N#Ou;=&uUOn~D
zu~cyZ+eym>E(AGzn{#TyqkGGqaAvLb2;pRlEs)`UW_v_J^v%w7GB??q16G(E>;G&r
zC%o2Aea(E|);;b5GEE!Jr+(#`ut&eUMewQ6&Alf+>p5jeFFtxKpJAV6`Jx|Djwnfd
zPT!}K6FXDoc<xSAaZ%#W;W%|{p^L+Jp-7+iTU(Qg%f7#}VtHty;I~I{+FTRm>Zt{}
zJemAbe3lJ0R*r|Ku6rR8A^%PK**Cd4Z+CoWs1_1sIX9j4`S0>-m76Z}B&rQqEj$k|
z)Ufuf<=oBmqlryGyyfA~c*QT>OFuA~qG!2|$6;sMr<kwnC>At7`0|HG(%0+#u4xG!
zL0l*E&E*ZwC2VG|wwv(6ERH$9@Nmj`&fS|LMYg1RB}x}9UuV^qzo5P2X87R<H_kT~
zUnxwQ_uPu}E@NEJPG6N3*F%$CExK1tV7_Upvi+&grs9{=6jtZ3uAF{^Klahdq<PCO
z?yGna{CcOn{D~<Sa%EDL-us^oKJ-{6UJ5fuCA{B0X_Jul)WS)gN?g?eR%h~ND<nQ~
zK4T)EbT!UYTy45)qMDes1D{-^Wz@vQyAqjP?3z}kZfvf4{4#fsL5`E@y&LCPHfuTt
zKG+$u;@l)LMxI#fS0y_7cezi+%;wY1*wJ-G@XAW==@v2(d;0oU2?y5YoZE24FFfI2
z?{Vv8Rj$e2LMpuf3!9&QjQ;MjFJDi`sAHYBY45~C#-IcQ%JkrXWnr(cnItK*?vK(@
z=Us1mDi5Xn*`ahsJjr#_3f+)fp4$yIgIJ0#H2krS3DaY-llJ~-;$`M|tSaODoIgi)
zRYoW-Y-^Tp)t%n%y7;iev}YS@KWZsyIWSiD<)|B~MCL9ie<a1)o_*|-(z@;c)ea};
z?mc$iukN0V*W={g=dKTbgiic9anb2X&b1jYcAoP!yK?hh`<;lMqxl!~ryb%(b?4^m
z^?{;kkz(Q1t9gVzm^V7Qx7}o27_es-)3W}P-qLfAx=p!TW7BrbMM&lB=aR60oZA&$
zUG40eW?f4?YU$z1__D0?%5R$|dpA5ZNo~z*{8A>rx+#>eRZZr^F%AW_AJ?}n6}#Tb
zmy>W{irl-?r*C!0s%~d*opR^i+!IrFOnzNkx%tJTnCv|YdsDUvN#{i|V5ZE%<XZIy
z%%=|=f6i5v_*O5l<J`2lwhs>FactB+b6i-{#!RFBjFFM=Iy=*IOBKSxxGLu}CA#O?
zZAz5Oe5dfz#pJZC_WRQtmgKEvu(Z&sPt(p^Dp1z+;=s&i<?78hqIapCJAU}}rz7v2
zrme7kdQ>>^9UHgh)`m6vQ>TB*m+|12UGc!@q<`d-s+04b%rr`7V7kxI_K$4qw8-<V
z(-rRS<Jz?5HdoehE`7nk(%W&YEwavsas{{#?)rJrXHogF0|(U=jQwSn?zqM0>6Pef
zqc7|IQ20bfm$=f(=iD2&|NOkFZ^KNEt{;z*s`!8W*xLQ<<GVE;0)kfZmM3n<E-s$p
z)L@e^$J3;iX`}hvBNYh}6NDKP^<xw5D>lE@Jz+At!@hiNw$)BX)k)>;&eOhP&Ep(#
z)@N=kj}ZI$-o~imz}&`S#=i<>zxvW2Jzj9Rz3z^Q`P&yCL*o~Cv069WC}y*L&U$Lu
z;Z$k;9Z!RA%~auhGr2+iM)NFL+u5gIKGZGT-M8$8=)6MxA3@6u_6l4w$Sv!YZ|8fd
zwQM5O({*?E9{eo3+Lv>?*TdAkoAbNaKiv}%jE!ntvHSe|y-pvW!m|pf+E=KnuD@T&
zl^|K3(j=pI@@gl~EKapHC0*{iB)h&-#j|zS^-f=OD4Fk_<$2%ptCSPxKin74w#iq!
zOWI}U?~5PKwrO7JKhUc@;rm;^6ZQ9}3EdKJJP}_X;5X&Yo@AvJZOS(uFfHqU=fs$w
zw>SUC53vxom&}#vW&SR&WiKacH!4*xy`7zSf6?5I=z>DmMXxa<`QzF1PrekF$QfG~
zXU=FivH0C44^7UxqKoxSOWy_?Y0Nj|Ws>Ss5l>Y&KQ3Cvv;EM^tx3+w$pIaTa;tB*
zc@>uV)+hUlum!AqZ(je?{B*xf)k~L%XyLN|hhG;pBniJV-t%kU9KDCXXC-XSx0z#G
z@+9DBvCNJX`;)TgE-T;e^Ws|)uhXgy3MhE{h@<ZBpV>YtlO-}&YM3Uq|4lu>Sa?!8
zvouNnNNUxROCBn7Q@77qE;>z9f49Kz2QSaI9)I#q`0R?q9S4pdRKK<*byc))V1~2o
z>no<GG9LNWciq@zddaQejl_Hh>1(GhuHN}^ndQbkjN0#CtXwd^(XX?Ii7`;(+hP4J
zjG=oAu@uV|r?t{@<5Ql_+Sp^OuD5Kyg5i<oLk{093ar`6dafs`uW9bRI%$La^Qixu
z5-NKRC-N&4@%p;RE?D<^+U<3Yoe#YO?(uA%ZKQdO;Xkv&rx_bczVEY?s(ajPoA>9z
zx7ca3eI*TjpB_5lw!S<(<z!uUwAMydfiIWdn&mFG=18}i{Bmn_pOw&ynim+2U{Gl%
zP=3qMI_!mv?(LSu)Q|&{FT7Y*SpDdh-h#`52`7{CIZ6)B(z`FbQRnTN&mrGqu1tUJ
zH0SxI*>9uWGg<xkw=ei1Jx^<&xnW{~yq}8PyRX)h%Dyd~{(i%sYxDo7ELnLZ>T2tb
z$&TSko13O`8-+(({@zeO@%AxiPy21fmCa%Y-YE*Q7Ce@ia?CwY?Sa;!_iHekx*g@e
zc+-}hh@O5iR9)VFx{=(Lqb62!8cewYANEW-nI4v5$7;EL&k@&xvL?yo!t`S^^S>u(
zy{YIZRpMJxTb|(OwEx5P=sOkPuUYH3ufDCrzS`RD71#B3-}5&6D26a+dTomdoaeRm
znPARio_GA>Q=@fPx;5%&^v%9~ebX+b-JU1jIV%<I<I7nSTe<m}^!bG`bEmeRzIk{P
z_jK0db32P;clcNqoV?Lty{dS5`I<Yg4@S5AQYz)#xpb)rZ{E%(qbuDm`GF1nd{uf~
zMS;hTrM`c3=J|j7?>#rXu=MvqeP~eM-q^y>93%~5n}G&&Kn&tL{B#<r0S_-JAl71o
z`}kbY88iZY{Ihc^9ejWOK7RkX-de8}Edgwir=(O*b9A;yEYV5s)j3(-aWSQPrl*E*
z@=2-0l>5HCGnFRsXfE9wz5U(Z+-o_db@g}Nz14euXKCKo>c7S3E9ZUwSu?Nt{LcAL
zf7+Z^WLWk;<hTEVBPLf_7;?gGZadd9%JPUi>*{WMJ4fF!`ik}n8QJ+O_dfdXclq-A
zT`|GxstgSsT#Gf2=vlu^+5M`pZq@!@yh7*di_N#JY+u?{cxH!**KD`+7tVZ30%!hG
z*=O<OP}Pe?dDX}4Q*HiFTzBwSa?PFuqq*na{F$w79NFcyo!ckyyvm`EK2JLrwnU|d
ztSZm*T*27e*ZNBT$#Skq`@Xzru)DsjE^Mo=?CN=YtN8v@6hyYpa$D7KwNClEimUjR
zPj!bZ_av?0TY726bH}w4oXbn2^p<OxX1(^wK6{_Xp?r11)I;p-3<+;*Uu0&fYn{C)
zAS(Up{7#c2n~bAnZ(lk1;AAVGR@|;#8|LpRuxNj`aLU5+kNjHFq5NAG@vo|zz5HW2
z`;RY^rk&OM7q@iN-7cG}8@*#C()El);}t`Ux2$4Za@X|Y{OIC%um6V*yj=9DENUIk
z{feeb4Q292|912pKOrZ^dVk7wHGaXQr{6+<rtVLv(JB{{%X<24YT&)le@7x(rnvJh
z$f_%^3jG;eeW2+7$(Pe+d*!vbPFOv4w)4SV;%*^dPuu0R-ha)fAIZm{`z~fm=)K$P
zU(9>e%hjW;b^GGPpqG>HME8Htv8vi)Qt)zZm$NP7ozmc|Wu9VBwoae?^@DAA#HY<y
zzAG1P+x#K+R-N(;6}f4zAMm`Nw^*9j_nS(s$B)uAJH@un`l|Q%NSkNN!*9K7k8El<
zBbQav7?oDE_DM?e&);d~8#^_m^)*d;cV6e$?VtMg#0|HL#xG(loMZQAo|<ox?5~^a
z_P)xuZ2B}^jpZ+-M2%M-ar1k2M4pS`%!b23Nz3vt&Q09F@paLf70!mG%!MKG(UTmn
zE=ibP@_udclh##>8#^}EL{~n1IhDac#q?mH+rqsK*3;LiJrjSGzI@4CA>j@?M$gpW
zD*JSAzYGlFR&7oBDDv-{(VPFG7x;DO`F#w&^&xY%$1E?^tJT-LymWfMAHTb3+m_hA
zX?9Voo;^8gptN`Yo+~dx+DzS^&zTaZ5;0fao54XO_xy_~OZ^r9KGhfHxhWMNHnAY*
zuZZ;bV9~;TQ;HQ_Z=}jE$+)#LVZGe7;*{xPZ<JGBCB+_4oV;zH^Twj`?ww&5TuqaE
z+I4SL>OS7Jy@r1k&+pAPUFi$&zT8u&ux<G%`x{4QNy*t)+-TC?Vrs;9{N$M(yX^O*
zuiTcHb#UHKjpN&w&Y7_@=)-I~gP&VF*QhNpHkc^C<*lS;^S-cS2iw~wJ(s<=HYMXg
z1nZ8%q`NEJ9<Alv%b;-D({J<oFE<tS&%gO<5ctJDMaD+E@|4yz`9&tD-aJyAQk1sP
zltCf#U$?{Uyq_DV<gcH4WzG4`(`<O}#>jsTITm%HJL=&dmmfRd$oP8JE|opC>+_`Y
zH{WEw>I6@=)6W!1pT=#k>-{98IONUE=s)6-*M*~|yjqnxt7^uSiyD(`Tjnc2ei{<L
zLhVGz3t4^7+L=PhtPHbX$|OoPeQZq=N<aUahasXY?%ntGmxN_4wIcI{@2<(snZ}vM
z&{Na(Fl@0%#08C-PwY$$cTcBSGh8U*v6BD%WF|Xf&5F0-ow}xVt4s_PUOzfHBc0bg
z)UaRXg^B$XD+Y$-u!{`Wd8ca$Z}%yedh_MaHZ$$B&lnjJ&V5ld*GtjPSE_t)W|cYD
zUhi28W|YZ&V2NQ^(P^^(m(kOt4Ti5h72j;tUR{{M%5Y#tdbjCDFR>rK$G;u8)oixC
z-}ArpBD2oED4iW&^u9kUy>~qS=w*hA<Ng<z3zS$A?%i$quWoUDm&30oZ>qL=Io+#t
zUbkca7r)te*%%TP{^U#Nba`KSUun0QwV~|jrq@%{5(<u-doX!Zw_@{mGX{g$2aS4D
zOE)imy7c%fu^GW~C%*U{xp=+CKJmWkwhLPd*DO75Q2uyV{A%@6U3<IE_r_NnueWdT
z?ml{n`<>AA7xBvZ-r`CBHRQaTp8S69_UwhDK>FdcKB??{f4A}<UM9`hGV^ru#t)%)
zZ91<C_gtQ`&xE1D@0E{l^r{(R?|BXS{+z0=ZjQ45r8)oP%i!uoe?8w^m^n4{Y0HNH
z7sG8j(w8|JPc_yPGuU#q`M)36(z*kJ`|26%#MZj5z3e(maLz<!?_)NyYZp9QecCj0
zc~ISLHiiV1fXa7=@+!YtY!dx-=N7N&{$wTJM?MLehjM?mPM5fRYTK+W!J5LwQA`JR
zS#+)CU(0{&z@beyBczxa5{i%X-OTseu5XnZ_jZ+`cId-PP7KX<)h|x2F0o_eP)hH$
z5Bw!tGEaPI*WcG~vYv`&|DO6Q<DAda7Q1_%2R?rK{Q8qt8ZYDZKU=339^bFmcD}T@
zI(cGS#o|+C8(nY7oqewr?6l>jPfm4oE~A6?>?9q%?T5I{cjr9rlP`K7>a{cKvHQxP
z`qeA8OCEn~lDIOdXVLvBbGQDqZDe5hzWmd>p0DW})42tYblx<~oN~eQz?NKIi8Y=Y
z;kmy#&+M~P)iy~tG!0wtG;`PSpkL2F=Jhdj9NF-0Q+UbQwsa@`q(6V>ZB=dRx^!Qy
z^uFw4pUsR8uKknT=5hHyt7goIO!O_8b9^(4PWkDz^Ly{Tl5Q21E9hOj%TgrD_}!<n
zi00C+$&2T4KVP~0)7b}X8@3$aWB8-QnDDlgVTWn-E3U=&=5iflI2Za~=kn)Ae`c26
zkL~@f(0JS1@qOFPRTCB{FdR7f^u_1XlkTQ7CS=|HrutAo<j*%#$#V{G&C+*2KKC_0
zJ1~ZsC)Dk|k{ZJg_Qwy-I#0jL&~R4ttB<|S={tW;8zfC>yE9Yl=d6|Ov%V~3xS^l+
zVB?MK9b3M9^5<bl6Mby*YNF|~&w80m(d!r+=D!p8abNjk&En5zq-+^x^JQ#XJ2Brh
zdcKOw9i@Z<k^R~+kGo%$J#H&t%n-k9;q$uvTiL<)$4=?5R{wiq#)jWN_pu$g>MeV;
z+wyV$JBDYj+3RH6-ahM@V{|FH*!0w;tEpdo%ouJQnVeFzc0$Me{(1X9X3mYuGM@Qc
z>&G+E?=oGQE1%7bm$}8yFhl21tNhF`iKK-aS4}TyKcKuc^q5NT)fEj#=e#S}Wu*V*
z<MOOcC-&Z0H}7xg+s7{-<SmPL-golkIl+=QNzY%*Ia=}Zvhjk&ry7gDrhi<vd)iIC
z-_@$NUcVd?cD~(HbxnCrTSPox<(GT6)GuyoZ{<{1Ki=4WQeJ5BMDv%O$9R@4?%!CM
zaDBpam+3hR&PPqp<Xx3hFi*Wf{>1n5pKV*qr&ZW&&8^t~N^)OzRQ7?0))~f(2d3CO
ztlE9T|DaNg<+qEh_fG$__`bb(`-@L8Mj{Lk=A2`=VYfa>Nh>7kkcos-fm){H;X~QK
zImN0A_14XL8Th3Co3`H>hK7TC3Ky{zrI~;FryHejF{vgoRx8(Leb<(gmeYjN`5S6o
zWwfq8>b>E8v-6MHqDEbf!|#6@RrgQ$(N;InI`!vd4hD<b(3<qGajo5alF!&*iGNvU
z_1Q0biBwR)?n5=9;%B$3ls7f6{oBI1Yr~yvqlXLKZY?~%O5y1K;=`*~3cfufzrOq0
ztBS{UPC<{>-srL~(tajUxAy)apHhj#-#&(xsA)L-$*7W#)!~^OslXL3={jlO%D-uU
z?mjS^V(iuYdG))eDQjA%F}6)ywBu4|<~@xLzq!jds)-nAZg+I<5ScmOW0FdB>Jt_Z
zj?%m7rcqONi2PPI4ZFHy(VcS9@WqRMiT%!6<9GGqX{mJ%*(*x^dnRq!eOGmh!eXV;
zqau4QG$g+Iw6WpeIq5ggt_HC8b*<!m5L5UlF)Qq#1%sRSq{UNNW6k*fUvv-7=`s5$
zwAndPT=&k;^p8#Me*#4p9Gy|H?$ey?WPi^LjRoc<&Iaf9{d{dv8+lzsj^T#w@8x&j
zx@23Zsp|$R7HyeW;Xm>IMdue^c)vT(et2za(Y{2(#Er)idV2NdIA_!+8`hm(%(XaI
zYs<b<=KHqJC|_dFu>8w4h9BXX-2Wf*Jo#tt&#jPEHNWacg`IGgTdS_rg}bXZf8ee-
zxzn`TEoH`*J3(380tbIOH!?D<n!>@5@cC?G<Dn`g<MSq+%NO#^z1#XvP;<TUj;0wc
zQ<nVrw2R?~-fHDKxqP#>_xWrJIlK%zrb#kg_F~pFx9AkUKKo<frP{)MW$|Zf<~YmW
zPE49V$4}|~hU@2MY`P@KFh|x_kD1}$C)Nvp&nK;#dFH?#wSDYC2J#mz&gNW_WN_HP
zc;;u(u^kt98Qyg1FeJ$Q-%vB@z`V1)$&0!wTmnzeO*+zE^<LbzaczPH!<sW&85kDd
z_qI*(mifrskk-L2wCRJ!)*6@C7oGopzmI21{-Mm6kb3beFT;iHA=grVUuW2`Krkny
zQ+{Q7r)-?3i;A7kEyjc;31$p8eotJ+u)!d98He+OwW?m#*=)N$K2;CjwV1i+n&%w;
zbHz*yv)9x+eQE6T%+zBsa5wXHO81hhlsN0Y@z0!hB}Eq`Ixk0uR*Ew)v<aV&f5RZK
z?&bB{2lB($-pYCUw#WE(XJgGd?V{Yrx4ql@{>)iYzH;Z4pF6i!&D>hgao1kkjcITA
z{S#YmDcq@*F;)9<_Dfx{XSq?~?UnV?cVnvDR8D!77^N~@z25R*jm5)~uww>CT*Pbl
z7+NkCX5cu%d58Bv-K0B`8<xrKERjmSDj0e4%5I}3(cc2LVI@vFr#Ao0$(keSljEbt
zFvp{&ELGvc%B;lX=v6bm)$BadRotD*68A7SSoL1*hlF$TtZi;q7xX1r5=55kGPq<M
z(+;bT$v@Spck<YtoqP3kCw7RHRwgR>1aR+gW7u^wn<0UtUVvfc(!9%;el^e02r9Fz
zetN^kxbE)CeQ~c^xfnP$6|m2!U}xa8e3lV*D}2rLi8G2aCI|U!Irz%zVcxC`9@#@z
znRki*WjUa@d*|WfziTJW+<b2NS$31(pLTu;j=Od{>*J<>Cj%1x9pYk8-f{M3G9yFL
z(j-1f<G2e}UUQ0f&v^CV%08?8uN>na{CaN0@WXJwrTRyPj_<mqZC6w|f9{*3Ynm$g
z<lRNau!*VLtxB5f5+W<&A1!o=IQt|*=l_Pt9Se58V(l<@p3N8>SE#zXc7^?gzMoUC
ze%w_n#<0Pv{P(#Xp{qrzZy$fNFy`}x;O{z)3~R&BYbCv1H~UBSbc?e2@w1uis?JB~
z_HkXD)yw)Y<LR*%0qah4t<rf?{8^ky!7cvp6!BVxg0F`b|J&uDe_PBUp|`+z!o$;3
zeHMKZc=Jog>*3DBx|J8s#EKW_)x58rc)7V$C3#~^mfr4JRpE!T-k;l*E&2NC<_EJR
zyeG+M+RQ3k_CU>*$$YZA^frSSrMJhIN#5mWXt=8Pf8CArLpx_~y`JcPD0`Lp|1}a8
z^LJ@9Cl}o6sGe_kbcd#5oK;fJg!lLM%-a7VPGz&^1h<8<zLQ#2EEjIf3Ff~3KTDqT
z*29|$Gyk16T;m)5EpNf8t@%}trY>6@W4qwi<@-64-53&Bx7)3MGwa&-*;ierZt&c(
z_Rd|K{T5p|eKG}B|BPGp=f>PqcW0-GZ{EkF8&+r{Cw%;_>^s$|TC2=WFKmu3?w8pr
zAh~M4+luegLMJ{w{@Tg^?7Vy2J&#P5bH_FDF@1fLv9(d(D=cMct_nlhuf3f``5Q9W
zY}T)gPP(@C7W4NA28Y`_`L*6jNJ?K4%aA&E*~jL^Mcw&&bGmhH^@I%H@7Js@PnMF-
z*jF9A?jLvjokjQEECd|lHTAdsyHme2`k7gl#D1qsuP0wl{1cpZDIsT~=SA1|%o}<8
z^;YR$Uv_1+#No{<R@1dAx86MV|4rUkt+3)-ziv6K3cd25(YrR#0W{Eqw(bKovH}|N
zF)=nX1xbV0;PpTt2Jz!SbXoXe4p~~H4_){H8m%IG;m6#IvtDa)xcTm{{2zX9--~%Y
zqAm_DlQ!j@yE*en#NTF)CAQ~2>nxQy9#~f?Kl91mgv(b-#V1Ec1lE^%tXTKUf!`ys
z=VYPG@zP0e*W54MmM}m0Te0R@g%$1(*mJAu9L|51;j-t`T$!{t>#s=L%gYy|*&jEQ
zy*#ZN+T+HsG2+>p7u!Akv-Sn}=byRz`u|xc`PGS^(z<`G-BH~?<%;y}LWet=(e2E4
z<$g`jmOc22z3#zs|2$FiW8z6|W=#(^^zhWI$u8br?mBtWDy0uIPlZJkJe|cU^MhTM
z$Gvy)x!XrI@9-R%zu{H1*+LzOx%?edwYlt{nMxgWcR2Fo2ao=Hz1H4sYR9jryx_X+
z(yw3WDp}a|W7F)90<-+hr-*;jF?%ikXZbGY)stO6zdgU?WRrDS+p1MBx3(SMShers
zx4jFU*OVU1<yx&P9J)|DV*SDEU+X_?I(9aQ|5{hzyqD*d4(YY36;1!;DsLCIS!b5D
zTNtmEch-%!7M9v4E-eyW<a?xY{nJ#9)}QRRj;nl_`|-iVzm@OBN^i{M-FB7tI%~I6
zz-O=C$+D|D7cV#8wrbVU137OUSVN?BPxoxUrqg~l#r<+{q^4$I^WzKmxe_~P?F~1}
z6j!rkxYBxQW^;eG%pA6rUO}NUXEyVdbTl01zqNVOnd3p`vsb-J-1>g=UHg3<VPZ$S
zTr4MC5$>(@xVCDp{Ecac*X>((%=6_L;R2rc<An!AZ*5+@rSEXtX5m@ae@rnod6&pr
zTf}5o^QX$!Gv6>`;aTU%jNcPx_P*PmXyIP6Z>Gh)f_drX&&u9@&JUlwQ}%Xy{R&;R
zHA^pCzUV2*>hiGcvFMVmIe)k3uhiAPa+<Ho$e8WtzHiD7w@juB*JK}gx9vlXME{=%
z+pFPfVLrR29_I2t_r)+*I-c{cN{N2ftXrFos_b#fU&np;VEQ|TAK9<D=e1O2Ewb@Z
zVzoQAsPNrRm#$@1du~6}{&&98Kln-i!{9DIc^$^5bKK^9$ZNcu>-faB_nOj~?>+|Y
z2Qw%0P5S=trt`E*o~yU@eV)Gb{MucGnHt{Tj%H`B4oi?$&e;}ODj_s?Uu8O<>&zCv
z)|n3Jm&CT#c&?4pJ3IO4ucZcCQ#-ESTbsAx#@UIBWS0uwo4Tlu?aYSYi+yiX)7qLI
z>@Q20tSu8%Zk4=TX~s*lb`f1!=J{L7HvetAy4-lJtz4Z@d7AG6-D!t52K%hO$vm+v
zn?pt^ZEmt)->MTDm)Ngv-dV7C_7#DZNiPM@#lEWkcy@`Rcb&t5%@wcX3>M#3vf#dX
z@n_w!(#t77janC-`*1sedquh8#f0F93x6`drd0lU;u&P{y*09}v?<@kJ$6e*|Cepo
z_wVEFTPt;JdsTh!vQ?7~ePV3uxWMJ#<ZV^H(r{x8*X#aS|E#;JjMp2dNgE1;eQ;N2
z`tw8JdE=g=4btxSvJct$FuvURa7&v~|A#3XINTLKrT4X6xvy0&5%<S@p{ws2y{a0s
z-efL+i|2KcDdKO}1uWG1QsL$6yO(iKcaK7|hrPP(J|**ip<g~VPmu0a`6s)?s`|2b
zW!j6zv}dBTHf)F!R-RUAHMi3Jc>*`TK_IWa%dsqt?lqG=tG4VuH06ZbJd+=f!{7Y;
z`t5A!PQxjmmWVR^3=$9y5Wn|L%-?C(#XkPfZ(ctlT=u^C{3jrNUgGu@@yk}MjGt5M
zb4yXJT(f84!dDwz*jDa)bxrXxhfTtl6nii3$^!yNQtmdb_-Dl?*vxh5%2~azo|@R5
zyGrKT_ATyBzIgKBn%+twZ{O?f8(iK?EM1j%>XN|YtDm^#vaA^Um*mUMuevHdZ|4%`
zKf%F1^Uhejx9wjVE|zMsIlNikJ8}IxRn^oEjRqar$}NQv+gR@JFrWFTKkLT#`i?11
zt4?tpUF6JT_t}<vQJ26i!O7wZ_ui&(&J+Ifr*oUTlIKES(=6kQVXLo;Oyh53^xvZC
zq`h}?HGApY9IFZIZ&)Y(V=(8v7F`;m^rzW%YnJ(*ytyxZEO@qtN*k;esfb!LTk#j0
zU`0#vBDL5b<-wXd`6bg9=tXO-+L`YovMYK^)V{tN!_$(b4nZk_ZNCpbTmNCfq6wRA
zbz7gd-MZ(YFLRB{;c4L`*_!IIdFgts_tu1oK6mp`uaz)R&YO7Ov5J41p3atSGq&gX
zd3Qf;sgG!nbh-C?@(ZVmI<C`Gf5^R6l?rs=o;UeWmC>bBJ7;RRIltqYd*SDUXX`^^
z3R%($L)MElt@v0qS?qM@%#hBtt6XXW?pw7!ZNCz>_S^T@|5mVGsZKDu^MKt%;+g5e
z@Xd3k<{7>7y06!|b+VOLip1|_tLI-m>9xgsZ}Fwd@6J|>gSPX0U0>Z4pe}#$b0U9m
zgterf#Algvx@zjPG>^RA62rCFz=XNl*CDvnx&6)NoHS#;+y7qcsR^I0f2n+!_x1yw
zpy&E=b1yZl(w%-tz~THY8;vZc`uLfLZt-X>c%asGd9TPdwtWxJuK2QX&&DcwHH)3v
zC8^!3zTGiteR`}*WZ{=<rgQQPR%cJ(4vw(P2@!qc%&XpWZvT__w?wA#3$}zB$H=#@
z@3<(hQr^0bB``G6eaWm@Yk$>5&C*=sGU4+}(U=31x<syp2TLnnOp2Y~JZoc5a;>$2
z_{tU1&Am&GdU-MGP1iFI$kx^k`{bTnk+x0hKZ8tkHI@UUz-<ChTgA}Q96pg{ZisY3
zCUGlQiJ!<aq+rRhxe@3jdIe%9vcOBwp$)c*Id7*N<UAC>;9TE*yM*nf(7Oj5>mFG>
z;<*=lXg5259M|3@DmI@MTyTnxQ}}uL={Jewzp=0Xmpv~0-<!Pu{?EH5`}x>5M?0`-
zoV=O4AgOK_Z%D(fr(zQry)GR+&X_el+QDt|lZ%_R`2%*}VKQ>?-1Wo4;cXH32?o`d
zj~+8@J*}(2JY`9DKl2s6?F~Eull1KP&=h7&vZ*S23O0#N!&6+IeMM{@qvQgW*czDy
zWjk3@8YY!|EJU*sNulo~_w(y)D6{hT%fFSq8~?0(TEF|_j{nCt-hcn+9e4MoW)V=s
z78;Du_0Hgk03{n^Lo<*phzVZ%4r0)t*-KHP0WZ&2(1$d8!D%~)==IKMNhsEHvW&ZE
z-PF*lr+vQnq;2V$kh0KV+s2K)4Ten|76Og>Z1NoE?)<6$!EIOk*o}p;h4bg51Dlwi
zu<~1MSR=XQX4SNJFW=p=EJ@q9-X`*$q<5!m*Z0^zb0$xnI`!+7uX|NLvu^*cwlGMG
z;{^-TA_a~P4(piAx8D}MJbBLLxn_idlGZzcw=cJ?YT)aNDPL%$ys9U_DLwTF-^vQL
zdvk4Sr>qycsB-#KP`TXF%(N$)R{5RVFWNRSsDw#(=^^2_k%2cnMN%`{yAuSbNY3ow
zDn4$&k;A@cF&ESApPeth1?}*4nbN=F)Y)8zb9^g&zHDBitW~U}^?8bx?Mfx@H8E+D
zr<eKLS*)5AQZCoCDs$QL!hP$-qKtQX6=`WJWyS6k`6iauTlnAU#<ikQkzY#%0tG&F
zYrnn4Foo;QX|5kfSKd5qt=I7MFduK1Yt+V$h>d<c&-1pQcQAO*5Vtc>M`@O(nBdb7
z6J~yHO#J6}RB6%VuF&}`=X+jt3+$N3YW+ZV<K{3OrLbk^Pr7aF$XFKPk|O%TWK*b)
z(xxs~m#~c;9cSz%SA#^e%QU-t_0Rp2ohF#_eGxYcKmSGDM*S5_Bd&NqV08=)?XB0j
zKdX4_ua_scS-1b`wdcK9nU;9?%u~+qYai;#^KLC{m}9GbBk6{fon7U35vv@Tp0zzo
za_40Ie6@31?w);nQl6%VSB1s#{yTHon|Hs?@e4an7nLO(O)|PrZ-3+2e*Ur@ha1>6
z`?t)=eRum<)}hnZmLC46Ubfu4eXZg8PiuYMsLG$>`e$0+ZOy-Rtfqz|_>raXZ8MSh
zD>deCzU40Fnt75{aB}j`i$Xt|UQ9b6?y{X_-+~o)=HB;Ku&{2@`W?Jik;U>-Q@5}1
z#i(}ceBaXF#e4sM;y7w`!l5)&I^{5nciJ*j6@vvv|Mp(1%savzy*}#W-Nv%dN*~?-
z_1!x++q?d1(5|D4ThByf8@A0kSz7sF-@IoJ_T~DN&sg>R`;D0~JX=;yyeEI_*yGx7
z)BXAne9lbU%X{y|+rs0gq@BN%WyQoNWv6XDytwxF(REYb7Jtt-n!bG*vtX#Eea?<E
z;%?z#UpRE@zJ@YBQxK^Csm4{~SmOPFdr>q~yue+dA5B>)7nlwnR$S3ne|(zMMfR83
zVRid{i(lsMIj%XYG3Sj555M@Lv#GiPOtZPAqo+r#Q*F$ga$BZUQ)pYysgy%S>kcc2
zo=lujb7CTI_Ey0oL93=%FMc^C_fzX-MfSKNVI42GJ3l0Kf+RLbn$B=q)a^LwvsS8V
zy=U9XxCzs*-O#z)E;z5c%RSC!{oCV9!{<GXZtk3JZ?UOp*E-)@DedwC@>xGmrfNsu
z76^Rv_|ne$c~53*d|(A7o{l`u8po-V*Z$ng(zIFG!|spo%tEd|A9w%XQdANtyz9{f
z&Z3&ysZZrjJ7&zVU<uXoc(E=u)cN1EF5f@PTc)f@PFvrY)HgpTYto!LmK@23VA~z5
zeS0~Qf-ftlt#Lhec{Yz}>v0FJOCJ*1E;D?4yX5)5hQvAX`wkhd{+E6K>Y?EKn|p5x
zvUm62t7?Dx{mU!ad+B=ePSajI(qeylt9#C*)X9f8X-Y>}p4d9w=6fPblRi7#%}?3g
zKUZ_Iq`PnUeT+Nw*t{1Ry|SA=rutr8ELWX&+4-E0R@n`G`4ZEmx{bcmmA46X#lGvg
z>HT~5t;4g`eK_-L4_&VK$Ygy)JjwRzKUcqGt|`^U%f8Nd|Nawm*=?WmiPJTDdxUFd
z7?rxJ|FB?gUeHi+_&W3cUlZdleYW3|BrShuSNhZK*KfM-w{HAnDSjboL$;rbR>7M)
z2P2%;sMLEukcTG>uf)wu9X@af*8Hi`@0r29xcFL8ippuxiu2X?_oqF5vFh3H9bXyD
zS^T#}bgHxO`F+6XU2~)I^tO&$ircqWe>_>KB;s@RS4a1p=P}QG%r5HB_u0}j=dS^y
z9{;`{hCf~`Z?(Fqq3~0U>km9R2Dm;;vt&BxtW@#-y5T?jps$B6+~Y92sMP89yyE*T
zOFxdXYtMeaS?nJ1uTO*fd#3M+eTjKz-K}dC3rwcunguk<CU{xqn4S|lvDc9A?~;Pa
ze-F2W-w^u0=0U2<{%?<4j(=Xs63-4!H=qolCGb}0hoi{$!%^=xci&U$Jt{jdko(fT
z#TR`#c02qLzqwv^U6EYX?xzKb;R!4cByDG`2<{6qHcz`ewfXgR22qY@&Za4E6z0^(
zhp%J_R-V7faq>(Xr8hmF=d09wU$f!)@8b5j>D9>&M~{iV>$jNBR{S$pNbv9eqLwG&
z$hi+xo`hWacWY@Kw;aFAUT)btF4D0NUU5ELHSM$Sx=9oGExqku9iH|m;I>YMo`22b
zMN>ohKmB+9vDf5T;$1TzhcxSpdC~_b_ZXaN*^s_xmEMu953V_$Sr(k&8~&!@GmrGD
ztuyU1o(mmY|G?>YkH!C25^@6bPn)K1J@RbZt53gfbI-r^v^V<axf7=}=Uj?TiE>*l
z-~Z*V?W3uZSIm~2IT^S*_s)+;>zEEsZv#0LT<{faUJXhWJ@@KF|L@nCaVOGAcJAY#
z{6y(f+Ae24y>VRZC}Cy&A=1Mo_1Kn;r%cyxIX*c_S#YXmiCK?mwxPm*UWHjHYuQCV
zt_?k7na;(v>8A0#4<2eRZ+9->kB^Y%T`ObO|HJ2clx*US`>_X=M0V{h+Y`dGpS8ki
zjiz<d=@)@}b7b|BXTCc3W7lH6Ifc7U<kx)pZXM=lcWVyk<y;F+vqJXWsD*?guMmfv
zV$+-W^~#&q{SW-V$~9unj$%G5hdnDy&ZTOI1eh)f3w5}C`p&YHgRKFHw`R_7RW`rs
z%@=*^4M$XfnPT3I{ZEhH=-B#$X~FZr`-<-N+jHe*K5q6g(kKZyciOaAv0bV*B7P6=
zv!iFZkHyFDIT^kxe`C+n1IzbcKlDJ%Jn5!Gjf0L~#%m9U<V~MBzx!H7`tIvwf)u`>
zPz@3IzVDSKhnzpl)d$;4_ixDNw%=s4WV@;a<23H{-xnC&=RNOa)ALuX{=d;j>OQM=
zOTaeEl1(`oIg7TlMNE)hSw4x`mc4SyGIeVi=M@T#z0$XrT?=O`Z1p_6k#pM|v$XGj
z9#~bM*Vo;2e1B@i-(EX*xv;CV&rQ_)bMwvq*T-#oxpnuQ&H6EIDm!bqcKq6Z3sh@P
z@7QBe|9vlOQ#&HsJxZT_7vebA*AX>+#b4fx1E=<{%a!std@(uuDTjt-6r09%nMZDJ
z+K!60?6>lkvrnn1J#&1W-$710Q`gNCCZ#J(7oEas=3~=5;ef;{E1!)Sk{jM{w0xh*
zvQq8D{p1^Bx#qd=4{U4x$nq_s`S#x1SKGW9kJM+M_!i7l_j7gaUZdTb<@e6iCq2DY
z{M4%7j;kW?a*wmr{Av2pKiP~*cmMmyy^Z&J{hUw5C(Q$q>NcgV-$KtjeyC7dv5L#~
z;)x$l!9TzMR6TK8?`HDrXP=I0a^)s0+J3saZ{LI8!fIE_sxGtX|CHFV=WS11QAvmL
z<84!9Du3NM=Q3rs?)nM=;dxnCS}!L}xB7K({_Zo!PPrDWe_R|X{Nxc+`Me!g0v9(b
zUiA1No^-;Z$?BZ0^7N~JE-x;a&^K{@<P-Ip@&nc7=6w~<*VYKL?o-&Mid2Wa_1g@o
z!+tzIroejJfGPWs6vvFu_gPmze8qHn_0~^Pd^`^A+n4ppXr8H`B_?72u*~}EvJ}lN
z57wk!pQ7{Bgju-bZ9=<dONrBo6`P(Zx}|M!=25>FXR_Q&_kiJ%Y;T!2R(>*SYnx8+
z%)8Zcd9&d1vLm)@B7g0))+_yDVsPY2{_gS`UFY8yA{NW%75=+sYZ3FZQ}o86cQSqo
z6&3K}GHVLQbnyzulJ^NcZ}i!OvTpA-EUr}fE$#lUOx<8l!@;gYCuZnORXTmn;IY?s
z<zCmF(^iFASeZ9&UXwL-L*n<c>6L|i?z3;HI{fR~Blq<0#=2v375hK@ORv#-c}ghX
zW@F*P`u88wo(j4gxUeT<tIWwVZ*H6CpSyE%b+>%sKV`Y$Si#E+RRwJeHyq}=^Yj<j
z@%3n#e6}EmoZ_Otp8NQ}2$=J2;a%;zssCN<_YQ|whd2MxF;n$U^kg`#x>0Z~OS&Yp
zNx-a{JMRP&_^)L0Fm)dZO`e^gx{=v0^L<0@o%}m>2Ez099DHu|wffAy`adSyqgU<g
zQ=e!SVbh-W{kYr}y#tzw=Op(PRx6eri`gR9Qh@3b(e#zuwFTzL1;&MN&N08=*dm}_
znX7c}!1SG4uLn5r-&~#A>U%`~eTIIIlDVq;t#>@4XH4}A@_a9MButsNaPJPzMV!Z1
zK0BAJv8$}S|GUwHKl*!XD%E156K69Ox2%~yUtuSQ`wsz|f8MnP2c@4oTnLy`ZIIH}
z|FLZzr{9B(zPFuCI8yZ64%mYVYj8@t`r)7`hn!fT%u2Z(cQ3N$b7lt%^<8G|pDTEy
zujXb^O3BwYuJ@02D8CarcJbVlSC3t;7#N+}(YQc3vntv;!(`WSWwq^VE7X5J^|5H%
z+;Z*L9H-6ZY5V^i`S6!LfbYlSYM=Ap7up)VXZ4TK`mjRHW6G=VJgV*6Z!#X%ZYuMr
zeN?m1?#We|9^>UY_gxzG;pqv~%m`TP!Q<K}?y{QOFmJ1a@r6?vTXnZtlr*SKojN;b
zb=9LOkG~7eE=cj=<cckynf)u2S9Z?DB?}VINnAR3dHD(>wZzit(!~}nJgZ*qy>W4M
zd3N_>n+)l^H^sl-meyW*Z(aZUikTe$%@t=9|6Pu~AU#X`U`*(So^IPbeeK#SH;q`D
zgl<fdD_v+&p1X3ZLF1H54<&eNe5NWl9^glWU9an2mN<d6U#%<N2ns#FVc@8qzMO4U
z-<<Nbhl?I7dQIaNe|@Lps`-XVa@#)d-N<ookBXMg`9N)VSt~1rPl~67cX&U4_GbTo
zi(Q$wKX}~V%ende*SG%ZPQ9D=+i&=k{{QBqMqb<Vif<Mvl<M5Py|pOt)vfXqPn9=Z
zDwuH6ML(1KTjZC9Hs$)`Kl;ypKV)EXtX`n&)w7_NTDxOSuRJO{bz_EOQ1-oyGm%S~
zMHfC0*|gXEiN?G~4<71QEB-l<{5)uOi|o-~Et`2B+HUPhd%*qLNkPBwr|s0T<{D?G
z#ZC3cwpG=zS%pk{H$8O5nsbW|{0*5JJn#3k*>Ar5XZ-(W4S3Tu+7JV%+YTB|Ft#){
zf{ihln+(>GDbOzcATmd$j?PJU5DCA2{Qu_OIG0&UN*%l*T~gT_T;D__F@EjU?Vo$&
z!jA{qNmo3Q*pCVYz7bfXp>?#0mql=~hQdPEQ+nLq!m8UU?R2=`oI4|SqxHUc+WDPN
zb*#VNGk!kLnuVd8+c4Vkyw>fh3>BB3t@TOQIN0#BK(BxK<E#4V|7x#lX)XKw>*AXk
zJBn)eim&WlV#d($?Pwm)R<%#{FKyG(KfaB!zFKV(G4*$WR`l1ZPY?4nzP@%e$lM)s
zGUbARUiIepId2n#&qYk<obJ5n!@pHwL1zw3H_w%v`gqb$$J(b?)qWk#4_j;hSAOzm
z^U{E|eMS<j;%8HS%`a-`kKeavb<#TDoH_rW-dXQeo_6c-!glBT75iuCuaaEJa-_%h
zy6owvVud$O*6%3}EB}>m{kpY#()MX@KhD{6sq466_VLISSxby=xbK%(vP0zhUGqg6
zGx92=#CZcYsn6dOzw1`i3Y!H}QadiRuTBX(e8a<b)t3i}s;k$Z+7xtc#j*>*57yNr
z#=Y1qD=l`iW_I>=-zls1Xsln%RkpI{?Cr=?qF2%w86Ived>&q%$@~1Ph3YG78SM?r
zLo;TZ$CStHJd(Yk=-Y`)X0=m|j`HM*)>Xxrd)$pXsd2k|i|AGLeY*qqoSfp8C>k9Q
zU3o?1$c)wdd4H*`d2?f;!6wh*&2dQ#xyLs#ZNJhtN4Ih>!-D*c%X=>ED_OJ0?pC#|
zukcdc1%J2AVYkk?;r5%Q&NGvH``$Cr$s7@3=BXE--{n{;;oEbwZu_&3D$}MEOh`~M
zSbb!2YoMy!lr%Q3G~=%ZUuxoRPMx|gjpy^#luzFn-`{&t`{?(te<i_wntwVq3zXIc
zr0HHe7#{7meeSm}OD9gLaJk4Q%v13zYxjfbS#2`^XS&=!yknB<-6y`gTJEmduxj}w
zqr2YxkzbZdCeH1;wuqxyUYe;P^BYHI<?qLf_KLOqetB<;@6R{OL~nD8t~IgtG|HT}
zWkqz=gf4Bq!WaAWTu=N=;cD0$C6cAL`jx<p{KHqKrCY46_+jhnmeFe)Gv!~ca^uTM
zljKE1Cpo@9BJ8{>Wcv#72NMMDx2`+&O<>uvU7s^=F{RxL$!Y)BdTQdN>~7VKQw8s9
ztW$2ye&)%%YD@gFNZohKE-f`Oe|2f^Him?tV>`CUF5kV^B9rIva>KWW;%iRy-`k(F
z<nya)(dWy8@`ZnHxW<(!=5p`Zq?ra)1(TE3*B+bhoyQ`urFEra_x|evDbpriJazX&
z&hEnO{$uGfUjr&HU7Gd#kKx(FCq8_69hULiq$BNFhOqai;5~2iPU@-hmYj&v*Hy4#
zy<M>?YMGSS?4K8tS6+*nb8fy5!^10`%4L0eI~*gkoqmLx{9DYj+9!VH`O}+!o8Awr
zEciBEzHGt7%|_)fnP1HJ-y4{IZ$$_9jA#09PA>Xv{wj02>ejTn>6dh@MGx&R*sQxY
z=><0vLzT$I${)*;&0}>{{)%p~)!h2={7Joc*HpNtroQHVmBhiou~vE`zq)Z~ZvK%a
zE1Ny$-g+_F)$;9;HD*jTFQ5JrEuFXSy<DVd_SA}ndaFV%nC<*^;!c}?vHr=*PvOk2
zZ(lsUHs8Km-|DaL#n`~4TH(htX8zQAo4UY^L8&+)_)YM<m*SElyOoY!zIk}1$kivS
zCuuvo=1u8KJ|B0ke%TGiW@D3YJM_{Dn3|i!>n}1e)SNo^g1O=4o8*Zf>+incJD|L3
zU61Fb-|M`-IIhvK6q~m(uJB-5;_Tx~F8)&PWoB?oKW};Vr|rg1r#^Wej;Yg%Wjyq6
z+l^wCyp*R^JqlA_9IbRn{rT2E%W#I^Td%q6c~*%AyH8?RP<;B$(bFaidF_{W?Y&g~
zHFJa3QQ_^^x%I3oXQsUkZj?E>>BThjK(9o-k|{A|cc;XBws}-|_V@a7Yvu!gV{17N
zEZJdyVeOTbPjjaFzYt<z*ckI5_|l7I>AYQ8GwR;Ymp;dO;Og4XnZIQIq$?ZhCYv*y
zIe8`DF#2_5Wr};ijGUA-$2o!wYbQ*fyU}iq;~#_E?B-U%DHYzk?|hkZ@zKc_KQw)B
zXiYc#uXDTNX|A;7%ET1~laHVK!u`u(c30JL*YD2B>Pz287d828JvUj^Zh71@6W<8!
zb~9Gxgg~2vO+wdRR2h|B4q&=qY_mB?skrjy0`tu+nP&~2wXuuMUU@yp^~`RDIZF3A
z?Jl_&+>k!~jn{i}&FPz8&p&M2ed@l1Q0g>Z)l_)~AwT($%`3Si1iAlQx_aS}FI(@W
z%J4HUcHH{0UdaB=!>umD7j~xKIr(w^&!Q-^e=hI+vb$_PF1fXIlJnJ<&+=y{|5#^z
zY`@U)-yK&1OK0UV31_t0rreTaWzY$_#UIT7oSCs<`WxTHpLcO8Jez7-SkK6i5V7lt
z*epRuO`pm=HUE3(_uV=Z(zNvdMdl4xC**ZU%;uMfvds7!@sO8C_q5gS_)Q<OuLp4j
z?>i}ZJ#KweQSF))T?Oo`iWg@#Y0R%UaPZ0Ilgc^OuY?(2AM>}@y4az?XdRU{#phzd
z7DuM-b0s&qaxy%a=H9!v$4^n_bjf%2&0(DKwv`uu%+J%!Utyl)k#%;l?5SJ^)9!;c
zjz60wen0B`WEH>b`Cq4-qpuv+QuHz?{ImU0=ZPKs{4aL?f6JYk{Etn!nY(Jm=>)Yp
z4asIXNyp9Em;5D|@3wMluA6i}EaraRAzls>Hiiwy+rszNZC~#Eu58x^Zsq+ft4=1c
zRj}W)V4Cq)CT6+t^@syEZcnLr_o!H+WM|c}OGy{~yd!=+Q`I+Y{5t!P#?^VBcZp_~
zJf5&aI+LZrL!Pr?wh8wX1NMsxzwZ!YQ2+UyJ(6AQz3%VD{=&bxgj_DK347J_wcnVb
zz$5ldr1|?!c7~XUnDy6Y?tUFKbAk+igDb;<7UyecU+DNv_K&-LB=K|jx;0(3>g#7Q
zHdII5wYbJ7a4+J0cGjgU@{LXJ`AWCCG<(}Ie0jM2rOuQy>s|i5o)E~e;f>v2zoN+>
z`GWGRgWmjMX0Wc5+tHb=YP9b4#M2BBlFp&|{`Wi*tg{Tnu2k0ff7nxVZ{C$#39<7}
ze$o7zY{u|C>g%%YH}Cz<-nMG@>{Fj-zi>)$oMX*+`PNb1*C+aSnlT6($M?#<^tIAD
z^>lL4<L_skZeJ~K)@C?hJy%6__QY?g&+ZtS3y0o+nbuUi;MKQfhf<G!U$xfNGQ(Bv
z&we|Gf*W`C?yR4tT48?j^<r7|T@Pbse>!m?T{^UgYgWg%qfy)S_kY^N&iBSe!2Dc!
zp;kteb!qafh*v2G)%J@#Pf4F#Ru(78ZNJm4%&#kQxn1+j2d=NCZ;og?Um_%YX}?g#
z2Gd=gyjN={&)>^8z2=kI$$tr#W}Z0d$*cM?U1{fXlUj*jpWxgXc5i;%E`B}v>ajUN
z1^eR9Oa9nrxwdfc{V2u`bz`pluOi*MIKHZ{xijbeuJlQ_KBuHU=-AvH7N!?H?{h-Z
zW;O3?oBr(Z{O7KG_*Ui9ry&y`?foB6&tT@L%053O^TN-pBjr0cPM@_~bMw!aKMq`)
z+pV6j`^x_dH^)ZihO;jxElBupV`|M8QuSZv=a(0|)Sh~K8ahfuNM*1skgjiYF<ZQ<
zt~}@P^Fz<RE$FynY|OUS;_H%~iZAsReR}<k;ljENiK((qeA8p3W`sms3JF%fC@eZX
zkmtAKaqG$6j0f&5Ry_N>Bq_+cTd(#@*F(!Ue)@-1O1~WG`FK!q&6@LPb6XWAw_j&q
zun-OV`g{Mp?j1JoejBmJ%*|e9T0bMaxH_<*@i^1n!cUVoPgPiMSM=q8_ng#}50hPr
zX8tkKmJNSqx}E>1K=nLR>$n>$|DCd*{l)OgMYjw4h0_0ptoeLl)#a&OllZPM3YIz4
z_F8s(eBz#Iv1G%xk9)HB?&#Fqr<F8EefR3iB^~!y7kRI)J3njJsx_)M?vZVKr!H0z
zQJe0u{=S*w%!>!P*S@=#d$X6_a2iuu?0R;Un~`;2cNMEnW1K#J>GLJUj9)kea;|Jy
z?b^+JH!MK*rCsyM?$b|q`rh?AQhzslS-;nrzkF)ilep_ISBOlVcd&nEX{KK8>Gywh
zpKmxk@r^OVfk?eC?;}N4tlt_|ac*yD9Y4d2in&^kc}$rY7A<4`wf%O@^owRqe<rd@
zR6W02c;wIK4IX{3)>%4>8cpBTm^bB9)P`F!2Riq%Bsf|bU)?Go=#b%hgn?n6A@ioc
zrgIcjxUZ-Gp7JhsclX}BNAH3n|DKtma7gnFFT?639>NFg8#RLrpD{KxKQg`dF>&3h
zn^(^+Jv}-4-}U=@POdrEQTgrq<R{C&e&>6Bdv5!5o(uP<zC6j+VWiElCpn!l?8oPu
zTNdxDy_dsqYF=%S_2CxnBi|X0XZpxL|Cg65EwVDYj>~i9-gKsd>)Upk2{ZJ#$}(JQ
zaWC9-QiNeccKqoXXBrkyNDNPIw_u*_&9Fy%zU{JZ+rzaFa~R&({t=xbA>=+MPD|Z0
z;&9AtCw=>k8~zpjI?bHD;cKTL!`&U1a~KNxJSW?pIv{+LAz^Q_NBUKpU01(+s+aC#
zd9k$qT3dWjj`V}Q?WvEpDjxWJQT$M<(qei4^Xv>kSJ%{TEzGuAThX=Pp@`4&OEuyR
zH|D1CJEYfyFftS@`kS(9$A4P^hQAMIPCKAKLo3_<GsFF@7oY1!vM?lhdLCh7n7r!T
zZH66+)h7<AJV@RtCC?So_DrR(?&#Cf-gE2A&nj{s-S~dpy#G2^*}j-fU#mVr>*lLh
z+aFgttzfUYpE_B-ev!$wqKdeM9si`2zXtwqKD(W@RJ)_tXPTJ7W%c(a`e!*AI<7ur
zEobB1Uy*JuxktHm)0%B6?O~_A+C)#yDf4-G{9nxe1h>|iB?7U(KO~m@2;^(XOF6TN
zpYOuM$$!@FI~`?m-HlD@qjluP*8e9s<ao_=*Z#j?_Go)<;E^Ba*B$G8&F~>B&-QjQ
zi;j5dr8Nt=B7eku`=1e@IXkha{KyKo{NN4RZ$FzzOgqrBpOeAeUyz|>_0{iJ?zo&g
zJ8|laDW~UgbJT}jv^e<hOxsU$hK9eFxEpSZXEXdT-Fj7KomF1o^dH{#r#a5_dF(ZQ
z5H!g_rs{XweX#=Z8;lLLk=cEM3?KX^-(5BDV8xP2$p@SEo#ubPNwxdsKWBz%B0Cr?
zHpC{YX>nF>exoCExZ>RN<+tiv<>SKYYjtnNZ9LE3bN!DX&w~eBukG7y5MXsDXV=0m
z!=-PY6efF5%RBn&*ZrQ*Ouo(a|9P1X^j=B%*Bs>2)l|Cv*VU%E1!1rLXyz|^F2ZN1
zYMQ@$DW{B{_&THaDmh<d<o9uuyEcDiIIv|;Yw#S+HLHAuQ>OAWSj@c@U3R0yz2^A~
zYybG&wm*J!ne!i-pYmj>pG>&39Mc1#u#M|?O}uTV>iPcE|Esa>Ih(gFvHW(wDB?yz
zcJMWevs?RKcx<o>^*O`(<(c00v*%8UcSbln=QY_z%=mfr%@v8lKPPN{1TVH_&hyxR
zeZ^__f}Te&<U>B*HG6eD#=!b=_^0<<YKw37Zc6=ic>WhtTYgh6n;FMf{9x1Iec(Rn
z(N~B2`pc3meH$<C^f}yc_r+h|Hxt)Zly`dey}kC$arTkuWz&Pst53T$wc?4qcYNuK
zy}x&^*?xSpY39677NVPOzBXIGGv@C+LyxHkMedbWJ5Tzka`V;c&Ka9a`M3^BXv)T%
zlQA*uv)fwDws@QCM(xlohL;wmlypa2^089;sjU;V=%sIoslyrJHNiHIW7b^yaPrQx
z#lq9ytlA;+;IqfdAO5Rzr!(xnncO`^^ZORx2Vd3+@BG;tf9YD`xs1D?_@#_|LVt-}
zU|pU0u;S0B`#%=VmoB?}oXh`D-SSzVF5L9`@g{ujp35_xJa?2Z)H5{vTl83O?cW_7
z3_F$;@p(=;@^i1&x&7}YCwxmRl-?|6_4ROv<J42{^MBYqmEKq{8Na{$RY*{v7Eck|
zg{sx(UQ}y^Kg_HCdu_dK1B0gcy=(t-56!vneI;f3s~vx?PKi3#e!73=i#;>6b)Wk5
z*&h4ws8j5~f@PT}XS+GNt~?%nw|TnLg)7@9^38Gm?fQ>BZdsB#Xy^!SWC=7@0~%Q}
zF)@L!c>*8T2okihQP3xD%@fg!wkcY@0y||9d|DrP{EO_>D|2seTdcs-wsH0Q|EJEi
zW=FF*aacNBs0p9jr__31VA2b_bDw=Qmrm(>yu<F!eU6<{XQFrOFRTz1{nU4L$E#N|
zPne5jjx(Oydn)6dMPljv+HaTnjtc(hvi>a4Wmr3ViC&5LwEVj(#9W`(=yfEn(9_9V
zD_M5hX-Ce4b1kbTy;3;vFRbxHRkm(e_|5lIuC%_qB2(J^AZ3I8ntgwt#M(YTn{;a9
zzUPd&FXQ(0x%ecnT{G7>vB2t<*Q4nAt1Rss1fKEmJvc2s?U{{#__+#k*I<9cUAI~F
zm)$M3-|c#{*H~;v<$f3aSr?419;rUFc~8i)#T+}gA4n2dyJD}rj@h=gX1fn^w?7V6
zc$rwJ=eoGz?kab!{i%|d)26IsnHbNsrG853we*4?ZkKH1eyz)#c|i4mv&x}c`zQX%
z+WtwXjAzcicXR4K)j!Z)kh0;5?zNxoUYjk~nJjGDwW06v0-g0s_p|DCEZ(~@t<EA@
zBj|C~kt^12`2ydbzMT{NNGw_R%l!8?SJ#UET4x_DrSn?hz>elq6(=93aGNJh@wSf$
zJ#yE_F>^at`?3C)v-EXTKC#O^W0|_QFD8Pse=gT=_W1mo!#iRhREuhHn^@f1lUt|$
z;=ntlvXck<+|o95Uwg}bOa0rA|49PHEmKcq_m-N=IV*DLK99I}g8gN0AcN+{Cr|Ac
zZ<1MiQtMWt`ES<q{hfFCx>Kf4;Fn0=x;f&f>N<XY4LuHrFgxe6_i__>{UR=8KDoTG
zNWFYZYV5>2x8~#t?yEO=@Z);Yf$#M<z7=`)>CBra;rjhwzVELWOhxmaFaKJ<Hp(Dd
zZAVqVOLo(Q1qWYr`ksDb!!7+pVVSpWkgxw*xrA*iLYt*Ned1iPHt@AWN#l!+zth%P
z+56S93yNecWjgqGtLs@t)qTHwrxs>y6@AE{EW$2!T_Z`V!dt!W!};mw`<-Q81<cS}
z>#2H;_x|&y&!$n2Z^oLmi>>>A&E?OQ2+6kwUIy1!O%gwUaq6ue$A*?A&lXIQ*%Fty
zYp%@YYrboG#OBmTh}0`*n*1qxqrqrAUxMun-`Wm;MYV-->#w!#I&x)N>Aa7*H+F95
zShA-3X!~^+&pyo+iTa^JY8A<y>Dxce&6O~aJ8>wSXT8@)>!!PRI(-VC$W#i*`zGAq
z{-z;J`#QVao%d~3x;ZDf)#vZ``#X8Tv6t6Wm!_>;?RsyHQL@0%*2M;GPVb(I+}6|W
zHoZ0Z*2k>17w4?j_}8E@-9cd*f51M)IM$pctw*P1UOPSi|MmUthaB95w@wMrI-EN{
zf#b_zt;D@i0;|{PbyzusY_0k8b^hnhEE%gkpKO;rIVj4tujW8=-h-`O>(mynUuzJh
z;5zeE#?>zWuMae`yTf06*4lEY@mz1%rBB<P+!l+3?)%OVwC%?3o^2t~^S*1YGw|ZB
zl1rJmZH>HIC1(#8$N5RSGXJezp_rAJ`|+`@L&+1>okv4oJQ04a|2%}lcB;+!9q*eO
z{+^xs>-3}j2ZSBVc3z!!pzpf%bBWrPw@l}62fwmnn#2A>g3FNO&W7Bq^UpssIEQ}l
zU170{(dxh8o&?eOBi~-VI`%Gbn)=5jim&W9`~TUx;NxNK?B-eOYneanb}PEEN#m0Q
z<GBpp-SsQpg)~j`UL;e@toHh?_6<WHu1}uItK}A3wA4iuY}`7p$m-u#8;xHo>`7|;
z66PznT{>rf&(f{$h|K>d7JYtphH^GF5<l5a-wHo?Z|UsIr=GWb+IH-U$)qB?ga)k;
z(S|!gKd;3ry2rPy`oo;Z`boe0@4jnuo}H}=+WKW%T#&%~+8eFcj9qsoC)-YaUKtcG
zFEHs+Q^flNeU1-U{k94Qo|n4sd$9hy=$kNw_IDK?vv!?WTD-o>BQN~jb#YyHtu#3g
zqx3Bm-Jd@2?>*%Ded5Xay*!D&&V^qcPc4|}l(eV8YsH3L2mMukFH5YI-hQWe&o!It
zEqMn&xG$ZWARe`m(<aSv;k42{$J6X9_$ORjzWvRL3;X_E^7^!m$!gNx8!PNxzOR^&
z&fdN&YRiA##N2}uHhhRp59F`e8Toa(^V{Zyy*JeTT64Fz`7LSLH&G$$^^w5u+JDya
zN|bKU5IR%d>amwsb;32L|Fz2<xgXZe*?VZlb6)A$%^RZc8TJZX-LyN{dF%4|@-^}e
zZ>*f7H-CKgVA~VZs;XN4mTh~KuPk~}Vzc1B>bK6%51tC^W+hzm&@G(VnAdVP$@h-v
z;z?ykHz)bVa4z1IkhW^Nc)x3h#1W}o+Ok1!uG;QnUC$(<sjkDP@#@{-`?I)&e#@;b
zO*^nIa(T*}SF;u0Tr+y5BUiyw=TKW<cwEF(+OjxtdzjId;KThd<6KwY*n0cQ`!>$p
zwXJb3`Z~$ew;0@tx}hsB@K=3mm2GV9(+1u4{ab||6({_&T%f+$Ir?>`Xm}>4x4DN~
z{TrQYM^bO(UVawOs`BVlc7(;#%N)69(?ZqK|4nY%sOFbyGI?>`-I?ON@pZhb^D^De
z^vI@h?>6m!YIp60v~Se%0C{t+TwiDNO$y6*J8<837s`HAeekt@*Wq{Pe}3Fy<s3b^
z;GdKDF5ldn8+LuM++r$f&#iRg!YW?7qPg69TfUZMSs$tM_scvv=e}ou;!m}SCo(*>
zoQ^zIe;5;F{!{p>=e4)>C$)1vVri^^>VHtX#L&_d-dHh*9X~{TV}(u&w85Lo$eady
zdu1bMvjc<M!(gXfTOtoxZH+ZMoxnHYl5Wyuo&>H!hK~>A?B6qUignpPiTz&Xx3ni%
za{K(hRwdQneoC$1U4B2h^TW&NdPh@B?_FEJiid3aw*T7vfRmFxzc1qKKl(VrW`cKx
z&F%u5-3>+4B5eAOGC$SXSRvERekwBQqlFm%l+8yT73#=oq<7Lp?Fm(zd9fDrVjV2K
zb>z}_?vXFnJRH;ZHhn+e-Fdb9j=f%2|K-*GEG+R43Q<t}8<~M8NkL5TdEy`j@zGD8
zwkl{hBxn*8(pCi}QnK5svEKbMCky+|ta^3)%buz<3+HzQo>}24tO3~($8K>SZeYC;
zepvm#^ncE|HJ|c7oK^R3(B+<#%Mlk*myuiaGIrgGhc;Eqs(%IE{rY90vGTroE5#V~
zKa1VhG&8r>Uae*E)%DovC+qjGh>{jjeUflOLTOd5&oRCBEa{CglUAP8N%fv8z1GY5
zYp-ZW$EiD4rcRF3C|>pV$)*YNkCc8Mx}qvLvGFQb<k~o&l{$CcKhr#&qMWQN7&vE!
z#wY7ddpu0%-~E?pDj76!XSa`9>Ac-{Q!PXDyw$elr6%{p>)OhTy-d<{e|zNEyRO3R
zxszvfoH+Gl$A0nBU3uP~w_P?)j`rKOSN3w&?t^9hN#BFADwaGwCa0P=@z${vWhJfb
z%3qa{i{Hpw9i66>+@Y~PrOCsEwa2|p$G(i;`;%7G#Ll(9`&Y!=cv||(t1eh{T8G2N
z2iN0f=ABp*ak_iwfBy~cHzsR{G39a8?@-bgeZ76nu~S>Lc3<~b>Ds!><1_!>Btb!K
zF~N;VYuE6s-U#7X9*vr-)8(qt#kxsDOi=sU*}v+WP6Tc2`0#T5i638-_jC9;Jou4&
zbk|1iFdd~$|Msr=vuvHNrbyy~T}wGwqk|8}+qXW7UZiC7GAHc7bTjR{^(hXfua<GL
z$lqmB%UAideFJ+@h^1UGbG7l*4f3=5o^<)RFPfIK{p#eCH$~n#i*@?#i{R>x|38WS
zczoU2Pe1qXP5JriX@RDXpPJ2%&jsyI5BtA6wO8hTB-iXXg+&$R{@><sXC}|sc0u{}
z%>>KJ4=&sGS3YQ27qjbChs_M`!dXw1_=CQCxEEJ4S<5CCbvvoq-+H^l_V%;=YMeqj
zX0i|Nihp?Zc~#@KtxAzf`r3chw45AEy#={eMRx^kDBb&RkMqJGVFu}oH7^yrg>ms7
z`QIP&=~VH_!mv*d0{w54Tj%}Qz2o*o<70EToyfd+AYx)g-u9HOekzaG=Kq`e^rijZ
zyFnEn&F!B%-k!AD=N?C{dELb7{r@MhzyI^V@bt&I$rJnSN-iC2xA6$;FrFn+R`v3j
zS=rP7%(m;Re(P*DG>tlu?9=_M{&Vw8nYYiTR(o|$RWIJ5*}m>}!Q($F6CarG{W<mI
zYXQ^R568G8Ew}yh4Pj}1HBCt*WV^^haCB@H7IjQmX{LUdlkelsf38|#=U=+)k!+rM
zVtR4<<^^+$ScSbl@YH-;uwSIl?C69u2c(=XKepbjcWX)RkuM(S;y1(`-^4Mu(|h^1
zi$-5-jx~pB@hy7N?5;C=T5<D}{C$%SvNT0AY<q0uSLW`sCu{NfqJ8Seo;}aMEBf6$
zW$X3pLK8M$6=F92_$-Sr?Y7LCot|p%lav{?Z|^R*W4K+Qp4XMF<dyy1*+%TZ$`=c=
zpa1K8S}bRx>LSnhYTEbgwQP<r%>yA35pXxCrKzaWRbq;3OqdD#_j9W+{`qFYb8X`T
z-UKdwK8aUN^BI||{(XF!pgE_v_0qq0?T>_hUhY>B%d#lH*Po~3{a&%YUOO@3*@Jy2
z{>}F){2+VNn59~GSCOb&<^S&yc5}H3?Oq+_o%}E}=G;+l<GoRL=KZ-k)yBW3hr8oK
zy4Sv|(@vYZtq~4nzmxIj&&ATol94Ritxn#F?t8$yC|~{1m6kJ+P8Walu&=(@dZM^z
z{%8J$OnUOByIMuMzB69cb=6prr|EPs?9@|H#(?Qlf1dno%(MFW;|J|_CG$IW9gtTS
zSXKHkx$_wJ!~N^sG*5d--{*V2ojtIwXvfJ<{O@vgTl+WXS8Vuk)j#ss;X*q@^+_cG
zHgW6ARhJ&pYiRkkX2L37ZH6olleJd2{W3hgSmzZcr$`@P#GCdhMaZD?K+U3c_5#PJ
zOcV2QQ(nL<GLv_%E=O~;c;(l$M{#1u&OD5)N&gcj_HfUPn*rZ!q&CF(ua8`pmTbO*
z!Fhw$*V!vLSm7R+=IhzRb##0C&x_~x+1#4)NweK<@*}<_Aqw?t7TohZUtHsJ$gg;!
zzQVn>&!!(zcHS2}R=Y>H$i7I#qVDU?7^$C+OU@M8PX4&-L!rXd8#1Mw%b%~0+q~!V
z%XII?=G=^{UJKrB)0tGVM}cKOTU@+zoSWEA_pU_aAN>+5t(eu7KjvQzSdp%1ey-<s
zN|Jrzswz`KwR1hUBOZP--NF7r@dKx|pTnI6Z_V`_T}mguMoBrf;gc3Sef;0@^W^8v
zi{};m>^<@_O588!yT^(}b5A|g2|n@5tFPo`z@cLsU-0{H+v&1tcFd!oRbk)1S+Fg+
zZCOyZ=4D5!+U%GJ(<|j`k`vcle3PX)MLV3)i7Q&jp?CSzRc>!}r&)$p#a5ZHE!gsB
zfBu%DN3C~s!upNEle*8;{rtW?-0%Flh<W?=rc~M$bgS4_G8OvgZP=<>*7@=G>vyMl
z)eH`n9h}^_(Vqde`0-7z;5u5};JIAbTKJoIymeSyZ!6oQ%Itqv*GJCVXBW>UzJJn-
zuVwKOaT8Ci%zH04r@UIB{?4y?Qy8|+*6X`h^S|B3BGY@tZ<TyK##4^^64TAvZaG_=
zt6WmSvCnBm_$1~zdxF-;$p}eoIX8Lv26GeR1!A^eYcHJkTH&K6=Fjp?c<)bnG2{Pw
zmnH|x$=FR_vE=4V36}1O#{F#iPfFiA6<+69v;8dpoY<x#`!}mk{+R0~d;IC-X62jd
zS3=~y7gp$lvn{MVN(iq~*A#ireeBrB?)WL;ldMmN7G!zMvHidE%Z!BUjDoTI3cj5_
zDxP#Ap}(!pe~xb9^-v?L3N5u`f936xEnj)>=luMGf7+o?rF%2XuP2rM`@M2X*&!h(
z;rXIQjk#;O>z{nI)wq3y>9<;zmy)}4k+ji5Y26Etb2n}_NL!t1c=Zrx#M5oU-OB6Q
z+zPkx+G)#YZJT)D-}a+^@jOQl%;%qTcE{&{H!du{>QhV&o|yAJjongq<Y4OdIf45p
zDQv!aJ%15WsTwVQ>Zzz=!lT#q|Jt?0ziK_}(@&PTP@^!V;EQyj@}6J(&p-cszj4DG
zbB9Iq&$K4neeJw;oBwF(<!Xjr^>?*LK9yXq<kwrb^w={_k?>hhA04x7|9B<6MnT_B
z-usaQ%hJf1+mdfCyCxOydj0ZeUJa&F@lEID-*AY(E0_I!Y|0nk7q1)l%yZ3AP7+UA
zbEA8`)OL}t{L`CWdY<#xqVM@c_r#1FpEM;tF0}c4Yzmjsrrr0}HAyWuo#t>zhS%?1
zgARXI?hBOMvDS2blpup?ppAS_mc|X^kBX6ZPS5N}6Q9&=XfgfsuZi}7$AV_cmpv8u
zsTpurz5dyu&F}txTyArt?wjOk*Z5P@meoCd7_&oV`xWIym$R2VFDhNPtt<Uw`L-14
z6Vus)^LHFL`L96DpE=W7zoOpX;`hNe3GErm``*hlmA!ZScaP2TW9H>FCBx!~#ar)9
z+@aw!`x#&LkFN*cRc7j>F1OgkyWQm6leEI>y({+Z<@Iqo*j6_uHCf?wTIn{Yk8uk@
zO%71`l<}U)Rp838BOzCBM*N5}E3MhtvTIp|!tU+*KHo0Zmdn`KP8F5=|5IH@zUEi$
zwCMYP=PnJ9tvl2Fa@mF}#TvX;-(oKqoKF&FirQfDie=T>BHkvh9X4j^9uN23;CSIw
ztiOe4!jI2_f4=iQxzztFN%f23<fhG9JpV4Yn#G#Uz9Sc}c+TMF0mX`)+{<6t@wHd?
zT+I6C5o#t9a8zooh2+}#k~=>xQQc_5vE`o9{8f2e9hVGm?RF640ktu}d1R@nZKp_A
ze)FsoJpX^`7j_(esQqC7-rYr4W`9x5u-f;$s@ApqiO1d>(<JzH*k?r@|8e2umWa!)
z<<Gj8JyKv>lH7Av;)SKU$zv9lZ*eE~_BOG`CQm3oQ1w8$BFAsrWkI34aUN=n;gb$c
z^7%T8k27ekNcAVDo<BQ^6@IfnZrjLy+hMc({~Qlz^BrD{@_J{u-%l{^_tL)Y5q_`L
zCr$gIo31%ZxfGzco`WekT<!1e{fCmv{g(Ii??2uA^J4I{jj3-_UsV`x+T-2Pa!_rj
z&ykNh5|6FC7QAA<|L{$TlKZ7zlQ{|(r!>@lSG=;EeW8)0h{99X4^wtBD{5Gri;m^2
zZm)J!yZv$U#ygoCmn{&o7g*CeZSBkCg1ra++-Q?mI^8#Gn|XY2)7G3%|K1)td+mcs
zL0-tN9OlX1I%1jcnOrSE)hxX61`625g*Qs7IMr_bx_0j7J!Lr?-=kU<Gdpw-be_xX
z6N}j_d8jQ~dX5(N2c4<fy`Szhz1TIg=}wcYkjK<*_of~6a(i*9ah0#h*}Exkw%g7&
zweG$VQEgXIK9!m8kCU`m^o_)ucXB64H|8>5oRxi?_qlsULXvgXysU$F4)5V%*?sPS
z)>1#+o6m2oaxPkb&_6UYZmW_EykWLms$*fm9`hp?{|SCBS6XGY?z<!J*SsFVZ@c*S
ziIjCFOc4!}KU%nKg2(xZr<IRC*}{FMEyLNkGxFY>{|^gGY!y3?$?yAi^5%L)?`o6D
z@_h^M1&5ij_@%mT*8Nm)pLN~cyAyxtKKWV^zh|lY?n$Q$_UL}~i|;*Bcj!rx+3ahf
zJ-hBtXSIK~TQ_&x5yAGkJi9X_e|(&}@79a`x2#fbiWRxen26f;T5DS8Ey#52NXZYu
zOJ$#G7Z^IIHySLMqEL6j*lx+g6WWG#9mmDB55@`2YjuC?Q~L3YY_Z{_sZ|S=ihHh`
z%56P7O>cS8(dql{UA`_p>4J?U*ZO#dLcJXdA_Z|i^IkYHw>&%(tE#<3=;bax&hIsx
z>U$=h_g`{MN3C!1?Z+=0z26;J{v~+F!O4PCjK5m6e0wq@XA^sv)X(jEs!r((du2$^
z5ZmW2@3u`<7bTf)*gEgDHj{$(>xwOf<rk;uTT61P`h0$tT<(`~%<+wL8ShoER3@34
z_1PjDZWhW2uNGIluxG~9L)w)eg%>=T9&Bl0*IKyj?TP!(jdy;`(Q4WCZRy|aH6P`<
zZToK(ah&V!d6-t-c-r1_(k<umnqy{i*W{ghukBGkFE6hzt#|E2%XvAEN54Ne-q4WA
zXwg^IpMCk-%@C(_mRtTWUhVi`Ud^gqp1gMA5)L*{@dZk_2g9P?hX^vbh93QI9rIwL
z>1Agbmr4%ztJCdXR&w-+@=x^csLTAxF>{SZVpE3MERi``Jv&c$l<pSLXyWGkGcD-B
z9!nV|{f7K7SLYi(oWB1rJ&c|<xlg-z)_HaFdS@3GwmZ^+Z>m-uP3Zn}(pdA|uXg^{
z!eR^Fw9NSqPCq#oUHktu`z8PPt;=6k7hI|1IB1z8BzSS(c8Lo-PRBW?%}Tm<Z-w-h
zES4A#?het#Ui&+{0zet830Au=C|jf?@+f?<<t{-zwR5&c4%VzWhwsOD$!|V$oAtHS
zb_ouTM}4BKGvwIbOkw)9cIrJIPxVLZUOG7MWGR|>QS7nMfg9q?%InMyd_0ul_#$Yv
z_O{Uc-#6dtKE2V#EF*pU!tZx4ZnWn9y_l@o{9Am!$2o8QoO@TqkNi4nK50$QOGW#C
z=Yw~OS0qJFp4%;ap)Or{9rx7}We<-T{@zn_U0x=~^w4dM@ZKtv^Z_o$vQPYZksiO#
zX0pb7eZO_n56S$fX0sDcc{Hb~kt-^p*hV7#m@H$u$u>))iPl@9AM7#wR@bJ&)YF}1
z&f2o}v(DS9#|%I9zpcyrqiFQvaBk<OsxqBS@!R{#zdo*g$@A&pw2EYd;}7?rn=8y&
zyv*>oWby2YF8m5_7YR;Jm~i$_^-U&sfqNFmE`7A%%R6lBUhr0{#;7nw=kAM(Z?7M^
zvZ*vP?d-FMyVV}Azjsrz<Zg-y^J!DYyxs$MH|`b=k1OB&Y?^}$YfRNV^B<mpQ!lc&
zcNaJsT~Q3l-lP5}@yohD_93$KcJDH>xwOo^xB2O;Q(3+KZCStU*ZhnY;!4d+L7OE7
z4d#FbnM_Q~%s|p0wgu=2DG-DBktg~LJX(N`tN;x?l_r%`7NjcZd*&vlr{X-~9Ccg&
z**WD7!q26T@1M?c;e;F$Ux14s%c_8l?;4|yuI+eqAn@X@tr07)J=&(#XT`mvt4mBY
zW=Fv4M+`24fsv=;Bz?@M745foQh4(25UbG7+J7hSeqQ%{()W8GZO%(G9cb9Ru5-cj
zkB=f4o_&5}BVlClG1r~f*Y~r0@A}F;;hR!w1r|U5;@w^2l93&&HC3>hiDA#AC<75|
zS=-Zjw{BkAZOEIkso3G=Lp@%N<ukU4PqyuyA+&Sdp{+cgQIGXg=FMHb|J8y`yji>M
zi>x&d-4?R9V7l1POhZ+nXs-D`W@u>LyAzwUKBoCvG;6udY|ZdCUO)eLHw>13Y~ZS?
zj6N8%>+3hc!p(7;a=R~|J9q8ey-yYYL!OqTG@onJ+;?!vBAGoC6H^mcw@Y7E6B7I#
zwJEzpLT>8JuZF*W>Akn>kzF7tAY9acX>|nq<dy%nce!0y+T(pG<@%&^Yr}=t-g>RE
zcuvp{_3z2Ex4J)!SruTt+<y0^Kf4`cw&|L-h_2_knZB(~cGJD%YuByW`$9Y{b!*<7
z2O0~fU#dvmo;bBXgO9-=ZkOJpjWLsoH3RD_-|aa5ykd)}bk_Aa{-}S=yH&MoHF(5t
zZ8~YDv2RUL@>g@I536GyeM<g1Eq~(+-!m?|);*Pr57Ybb%%S?|)1$J>?7eRloA@4Z
zQ{=KeV*B#Ql=l`1lM_$7r~hQ=2%Wk1sZgzu$l3fm`O{)g{1Ld;ZFVuv=E{T@zdn4d
zN_=r8dC~1WnS`H$+fJQM(w6X?D0z;f=Hp9`=erKsmPakRd2+|O2Y)8s@Y=_+@m;T|
zGxMDJdDE7&RYheRFPX2&dE4l4gR$~~b#7O}-<%Bl8)fyRGBD-Y$>-wMvwwANyFRhV
z{MpXp&eTQ4>5IN(YDLXh?tPm<{l!I(R_2=G<x{_}u6cDzrdV7%Y<8FHvwo48nXj@K
z4iqemY0CDwCF9qfT0Q%6nCO4qwG~gBtJL_F`u}_{xxQ=D%twh`+<^w(zdN<Q^sq2o
zHm*Fa+54^E?yQAdtdzI5os03`6PgcYKYm+wrrZ4n`?8yc>C2DWJvEnFd7HaohTfmK
z?^a*;Dob6Jqx<(m>BL*rnmhJX>b%|Hvi<DJo7OLOt!L_JeH3{mf5v8)H>};OInNc%
z{6FtFJHz_=8LKV}mn@%XC4OnYU8zK|?d!|kn`bX8mEWPPTpL|3791?=qj$V?iI;A^
zTlC`X8NF>ahqiP*(p}5Qo0y)Z$oZICR@3PEo5(j?9+uDD^Y4B7#@D;FeoJKRb=@;{
z*Ne+vbfeB5PWTuwOK7j_d+&eqE-dUhAMyN%(@yd5-wy8zQbmJ>rU$E5XVy*lw|-p|
z<1wXIMFtzp8_Uk?|A_ft<K(zin8mO3oqUUwNzlcr4OKIK3g5MUswCsjaAWWENrz5b
z9qO;#ly>lkovz5+#6$mfUkbdoWx}+OQ!~OvOZM$d{$F3hY5#_gy`j9s-?L=iw%`A%
zCl!WA`o8eGX?=Y;@8t=)FYPa!{;4|2ac`{P-z)3|)>pQxZ5Kbq7s~BC^{TJsrrVcK
zFOONjuflWYT1##ph6nq<tg3odCn*$by-o05yVMeeY_78}pPH#&<%(Dqd?{%8=C!qc
zA6HM;e{`4efMxL7+gb{D=Ekj?YsJct5a{+YcF*(pCDXsDvT|kH%Ovs~(%JC-e7wQ$
zh+6wZ<-}jU_x!uAa4I!!s-F3pi9w+3@Z7IoOV{Q6V2GPqvflhd(jkVUzc^VAa6eDJ
z*jcsi%FLjxA^~OMS5?03%h<(OVZH41*6ly}?y^n3zD{g<{kKZXSE~9a9VZ=qbY{m{
z`wcJtE`6+)H9h}K*vxZZM2v1ZUOKH}`+Vy0nR|}>5SX#wW0gtvzmLKOuh<wGcI;u}
zTU3@6Ho^41YDj#+HTA1onW}B4?OSwYLqkpBm77z}i;6~XVc4QM_a0ZnZ*AWL>TR1e
zvXxBkd0rFPHT@mC%c&V0CAM5KORneI{Vri**f%Z3)%}c(^1D^rSMD%p@N>C)_DQ(o
z`wM>m4^KII{OnU12D6jwrj`E3uXtEbkDnb=yf{=bzxcorr;CQ2UyoT__q7Xr`=>N*
zX@1#+JzI`nZt=8d>E6qDW?zW%+|nSk^IV3S_L4iU<~;fJ)cBX$l_NW@-<mP&*13?n
z&CWgl)Sn#ZWAG{U%3?G6AG%dCr&3~F#+tjbi-K%ls~6e)$Y0&nt@U#4Be8{{dX1}>
zmWO9qMO~MUFH6*T{7itsK6lTnEh&xHtZNH)%|0;kn)ky}h3w*k=6$U})*;JE4lkO!
z{ensI!FzYRR(;#IP9yZ`mnyxVe|pa?F*nKn_+X>IrNvA2o!f;y+Be>JVp#tBJDb+3
zUwp4iXLw~q-VkS)bEM?iLGR0quOA)Gh}S86$a2*}@O*GJU#e=vo@cB1;upo&GJNoF
zuUqDsqsMSd`qS>S=f1F%O;xG-6FK=)r|aFk%=8)NUsfGAeY{Dr$N#S2MV?vV?h8`?
z{W)`e_leyvRNh_KT4r96#Ws7_*1qGnG;-N9C2mbSTQy;6H{*lzu~(iX$miHOb^H=K
zZ|9nJwNUBDr6<c8BPQ$b@kllZHa&8ypH;K(^1c~N4Vi{teG5fCv>!>HqM?%b;ey<x
z?+Yf2G9FUiGw0-6zs$o)K{+kE<Xh{tuJLSkJ$&e%eGJzD{jMw)-;G!Q+H_ohx2rwn
zj8TM0_>6dqTe{`Tgyva&2-+9id&nok*8Uv3z(%28%=dj*XRSRUtuz1mJ&h#Kn5gr$
z^1<m@0($PJ|H&Owe)dGfXomKTi1Luyx)_GomTnFPvq#SuWbSQa*sx&T%*8WHe?PEg
zcz?LKez9ZV_H}8$HkB+tom}|d_G<n@t6wUD3<icmy4Q4Oe(Ym**uTas<Z#m2Ygc%T
zHmfq|F%+2p+VExB<%<hlzBa0x3cS3})R4^Ow(Je}Us;BN9N*HU>7S4O4nOM_E;f<n
zO~t}<Z+HC<W4KYqwEt?3pVhQ`x35Vtyj!3A>4)irj4J;XUK!I2IU4q!5b1m57qsx-
zgz3VJ7O9ta9g*(4DLw6@AaCMR*9BLvEsA_mvT2VQkDvZwNrw+!&x&{x=O~<U+-iDi
z((hL<Ixp3RHIz^Deyd;b+k!nKcGa1ZKzXsx%B-#_Tez~P9A2{jdyq221*>SsNkNx)
z=UenVf3|_!AklTV#K(_wZ~pyUy<(kL+M7@P)eH;=A4eRE-yJJw<xyH%em4G8u4>u6
z#c9UdSlXLb8tmUv@b>E^uTQ7_HH)Qo39OHc*&1{27DK3Lq~yz+ZeiEB#pg8df7TfC
zJ6!AXbiv=z*Vh*BiZ}M}?-Xp<P?2;ipnLNZ&sq09yR;s%*$Rhl-KcZ!#2x|eX7jt7
z0=GFnbc<B&vHp~3`QKUM*3-~KDHs1ZSiQHdKBM0v&>-h|Y--NRZP(UVw%NZ4;@g=U
zZYJcA$)l=!>{!1=fKbT%bYH_XcJFUKAM6EpMy2Oh8vWE~aPZIIPI%FKW^U8j-q5MC
z?(5a_%(8u0S$_1(-T86z!IA|pp6fqe-BusJMXKT7SNBT^6YYQOdsW)kWW6YV{rP@f
z`*WEownt9BDBihw2g9@H*L5V$$FI4WX1o4NehT;3#NT;m7bMmR_SUIRuhWS?%HFW@
z<~7qpwXLT9m$G`4oabv9Xa%3u>Q+hj(%W`DuQxjU-22C$-cI0rcHztWn~Oqvv#S{t
z@;LcdB(3!F$`upVyM9f!;(Owq%eSX{=eJC6d-N_t)MW7lzSW!mO68k!ObEN^W)idM
z%Ui{}e$o@4T)n&h<@C)Rl36;-I(uikGc4HFzfbMtyIEE-b8|8+ra#@>e3pODKB;Rj
z%pwxhHm+LLma8;rjnedYrz=z*FIN6_F1hINs%e6eUThmR4=8zQh%L!Im0$h)TDXzp
zHN}G2O-Itc&a>Pwbz{NvFZ1UqRjo5Uckf-_p~Zq(O074`oX(v1Gv~kzE{2RkzfUi#
zK7=JjedA-W*}nOv)|-u98!q-6uAKehwsPe`uI-Pq{k`q_|9;+E{;@Tz;6|jx-^KI1
zL{rW-y7qYTot)vuCTcj{v`SBgmm%%=W_BH6A0-_pF0<04bL-Ol{1=|;`6b9;pvHAX
zBJPyUu}#i)7EBv{ZZ2szQ*uw55pgw4ZRrk2-cGrIPgYe^*cRx%<9xtBsZb$moBV;=
zhibtL)2E#gU2$=jtM_eNyT8`AN+#`jDckkrG0T?g-E2k6)YmZ^cx~x%=x!19F=ai^
z{y=Z0jhLEE_8mR<O118?H@$UpXZ`#4@a~ZxFV;kvezon-o11c3?cWsRhK1i54rt}F
zBuo^4<PtsET~0OXQT8V7rB*D_=?4zv&#C&hY9{}-{d@PE(6?D!B+9sD{_^i}+ziX^
zGA-D@sDRa%|M9b0QE36?x^PLMO)7JpnH|^<S}WOfFf5p9&B$=euJXq0po9%7dqU18
zHk^5Jp|YBB!6Gw*4}aDt8P9!Q$M8U94g*8X`Z*3i=cm4@WpG&Xsx+m2<&3y<nyX8H
z+>ubv;NQIDD+`1A!>Pi%7`8k%KVjSD*2v4S!n&$Y@Nm&B$Eo5q+s)=>U!9!7pexM0
zm0^p#w;mHiH&^yfqvL+Fm;#m>Mrw9Eu?vaZ-nv~mwPylbAS1(qYCFvvf)C_$qgJxM
z*gx6&?y=H6o^C5{-&)Y2@XB+JCTn}zDVdtMk9K=6Ffdp!ho$cnXgGWHi`<5(Y_Bt_
zSoU{vWGwz2FvscN)8C>dX^(`S-e;a=yRKU3h;~<XfRvMgd9w6@?>A%3ZYpvzB<x!v
zzw=&VQ$eWN&cy0W=D91i8W%)a@wHv6EzP-?@GA3VZ{$fP9p9e+Uv4fr!^>bc>9oEb
z(;bgbcdYKOm)Fv0p6U^|C|vLRrKo2KC-=>=UjAp@%izujDT}VVb2GfVd69n)gOb{w
zlWLQ)^43qDUJ*M<cn0?m_S8dGb(Rk`<<1zh`Q<V!nEjlML73I&zs$$25B_;~zL;C<
z>$l+Vx7HnIVxm=#^rkOoZrFT)#o<6KgF(eMF5m8l)u%iY_nsFknxvSW8ZYyBk+{FA
z`lj+028)`B+zk8WLZ^4>D9Q!$d9=10%-wMPDr@4k{|>VjRCVM{yvl!JSK(601)&Sv
zw(D8@$os6)&WJoF;VAd{<=yCyoByxM+V-n1y7AuT`0tEAcCKl<cIDK)UFxxOo%M}V
zSe7R(na8N+?z_@(f6pG?GppCUVqH+|csU{<<wv#Fob3LYH^l!2rI%$te)y8f);{r0
zf;H2;%<p%$guPwwdsWYTlWwQs6NZNEPoy)rq+?AtZqv-&dZ{|hDgHb6LcuZ(4hD|P
zeX?hHc)aa(cYI$OKd<yi*!(~>y}}2TdK-SUPqCa=ZI)P{r+qThu5R1x6;EO(+c=rt
zwdyr}cBHo7@R3YlVjc(MfhzybAAujj;@_Wb*JYf%FYUk$^UO(qz4l+<#J<vc`J6Me
z0&4d<O$fGllAY~;@b%H2L$e<2Tlq*gSJQIc#rZ7P?`?>GcIWkiCiPX<eJwkRHd)m@
zoZbA<vZP+>OSnRCr1#7p$EGodte*a<MCjc4TicUwE1Z>l6u)n=X>zpDEji|s%FF-9
zd=TAZz2?R)?rFEf)^)G-N&D5TqwaS58`~rm&rglBOoD~>K6-U{iOe!q-HoqJoVgr&
zc1dk<eY=qV&4;z$cbvX6UFZC_6&61Jp2z;J`EZAoLE@O!5BGKd#d(-Ey*8J-wWsRt
z73-B%F9QoEOwBg@S046l{<7$`FKqtLoEyILZrjD__r+pr)s&U0c8VQUz4o@u_q&QU
zPel81Y2V8kwtD%uMKcAY%in*0$flRZC*tjJSz!GgPL_L1S{Pn_J$HK-!#|JMw6Fg^
za7j+nmi~|t6!w<UbehY_Y`%RHlwYN!+-W&o$#9^jU}<;D+i7neMT=h5*#9fmv+_}q
za>L>iv)9Kp&HOvxr^GH&=IKgS1@~|D5f;q;Q)J~o`%gJ#5-j$=t;IZh$9<tQidCFX
z*GxaA{aDQ8u895i#$$8ylNKMnQXi4+74zPFgF?BRdDPGU41JG^wt|L<P)Cu#<1+b4
zSzIP2M)2iphUO%n;y{=6OBS%>MZxQrz++uO<en5c_wKaU3LLFlL2K<T#b3TE6cA+n
zf9Y@R*(IG(cLN<J9ecgYi9@kP;_=_(-#aGmKCs2)yVjl`W<9Cful2dT>s|1Af<&^6
z`8Oxw?XtR;p5@-Q<U1}`F`etL=BM|3p*O1^%oTsdnt5m5t=3g}m+C&eYApXNV*Fdj
zL|yOlVo7r=!|hKwkDYS6BT&0_dc&%`JHH?P-xDe%x$*n%n=TRdt5q5uYlANKUM!B0
zD2cF+e|NrR;mRA)*GupAT4b*{m-V*h*`3cN_f9d-JGjljf8H*cTn^vU{w2oCdpYFq
zD{-y9^*dDU%Z|qe&&AR`mVH=UC^+pB%k*nUws0hGud-xW;`43C;^ftq|JD}PKaFe&
z-F3gkTOxO<`HQuj;-8Ot$7LsnT-9>B<Em%DrERMx$>VE0xpwNuxgl;ni&As%)*Ihb
z(&^2d=kz$bIgPbEId%KN+mhl(H(T-=mH3`<-SAL@FE{8O^VQV6=W^1sZeL2yf4cOK
z$SJuSHt+J~9k12xzxb>3jcIdCUiZq~0q>5#^}cmiKgh|wapGS0laBX&uIytnziD^s
zrdQCx<i>N}FJ9M7o&REH`Nex)IS(`n4S#>S_io?n?$7f!b_PxD&AoeV<9&Ah^rpSN
zrinq*!dKQle$oBaIYPBV;f?ImAP<g*s#6|?vPXaFNUE3oop5q{)$uEz`Mia1Z@;Vf
zGxF2J7kv_Yl6rn-+2$Sd%HH|EV1I0b{#|E-$B{ikIgb(#bnO&5K6S~XrqbUWyt)Fx
zscI$<N@R9>d=Nf)Z~;e@=dCEAh+8$vsm?X|_Li?5&zHuozm&e3NA}vZm`g$vf@E9&
zu-v=nb@aDs=dxbIBTri2pHjB&@o|_R<8w}W%SH~Fi|dnq`6%A}ckX=R?FF}5Ter0(
z)px1LF9_QlYI)dHbK#Eg*j=0o`sFfPL$#J?y?-ss^w;Y5sq@Lq%WG#hEa2KdD}^yv
zvaIK`qH*8dyQ@OfKmDxFsr>oI@n(~P$ggcD>sPr=)G2xQ(`Pm3lM`VRkN(j(TO*sS
zo?>=-OD6ZRYaH+5O79%oD)C9x>ejX*d%-(L4n?Q;PWTbH(yD0RG9Ojj?4$#mUbxtW
zJhqx98oB!N1((g+g5EQ8eQtW|Q~h1*@QcKrt(P~e#ns142qv^|UEJf*yRP=dfzn&i
zN7CI=Lj5Oa=-l4%bJ>Ru?<JS+OkSg?&nR?dnyl4nS#9mbruED6eg013F)Y0*VDw(^
z-N96EvF7!gZ?>mD<9VX0u)HL!Ut{-_trw;~)b{=9%hQ>E*5{iQU)lO?R)317hlM*R
zwwUEDvDrHHp6Z0@ty^Ayk*s`D6Xdb-PvMXA(KjxoT`cJ~Dqk-ZdjH9~cRi<@!%P-l
z%(}3;<eyrS(vNKJ$<q#8&&lXj;e2&7IO1TfZ_9=hnewP_@3Z7{-~P8PcaD4ZBr>aS
zdirsDz5l7t*YA~9-D%Q#z5MVJU5?YOeX)C#cTJBJjuyA5{UH8iL-aq*Z-3{92H0Qp
zj+hW-p84&=&O=-&zEie)pLDPHdT18Y`q_~yd%yhx^`GSpr>9gop2)Ud9bA^+6!#+I
z#rdAhgyp-OlaJ57AT`mx>HCf^CLbOf>=*s|SNhPb^OJW)6*;UjOtRd^y4w3Z^P1Ij
z{CN)jJuUOfY<-i>);~SZKfn6j+0=ffi*4h&JUOw}cky4n#O*FUoq5Js=kB(6ld~7&
z>q^YeK4<*2DNB3KpQq;O7mQyQ%eD3!hJEr|t=q7HPpMQ;ZI5untxu-{v@H4jQogV(
zJ8SK_;gumzt$?=f&$Du(dJRkZ9Nu&BR89J_tG>9^<(0>$fGU|oR!o!fJ<@ukeO_kl
z@=q>5nV;xa)gZk`@zjs_`xV)8_xLZz9L--_-<KpP)2upo<w^}Bbxuu=zGPqTwvuIv
zYnbo)hj52;`q>K3>Hd9wNrzMP<${<_ui1MxajGtVDyhC<kLUX1Z+e*aDnxMZQcrpi
ztNi?8?v|xpitPJ0_x(G0JL~p>wKpZ6H`^teE*1X1_SVmsj{8R~n1Am(adhv_xwaYk
z57jR*M%Ss`eSH1NsZiS^e}a=LOrO?GJFuseq0ceLS7+asz{^E{ZhmGgp7CbVX{Rk6
zZ=#!WHabRc&YW9)?CqYLPp68{;NrVw#k{-oTF9C?(+||ml5gCmR_N7Zb=~*-5zgGX
zj<0VW`FFP~%{*8`zV1;D+tWvaDUnlx{99LhRZnkvVVLiGNPFi2*1a2azB)yJj(Dfo
zS24w{z-*)1x`k2;^0)rIdBEzS(Vs=DF3bxmz43Ww*9M8qYnqEUN3L42s_|9J@p%oV
zh1{zaT~rB~_`y-r%~ffR-iGfC&(==W;8pnEbAj(mu0!A1G7a%rp%Y@9EVJZqrhhxA
zHRb%<oTfFuf5&HJ+p5}YzfoVQwqR{)$b73Z!D+wkmKCTAELeMVhx=jm1vzp_0@)U-
zx`&vym`Z<hTxa>!Z}sco$ImXmKU`4r(<y$hv3BcT(|%Rvn5^balGD<!8|0roeDU{Y
z69xCp@(V2IH&niEpCBJ{B}QWM_43wN&-kCMwS2Qd;Tgx;Rr_AI9hkD=YIv=|Y4IaM
zs+FPnZCU#SuDN_@>{uyPpKk1TdH=$-@#_8(TlO?-+VbT#3e36Z@9F0jBlqXv>zl^}
z4%wew8U7PXI|WqrgW4&EmZtF2rYvAbP|;$x%Yfu_&<zyyeNyw%OEMHJOh`Hh-9W+4
zjtkl@tC;il{6@|O2LXnI;W|hDMH_7t_U#QVm>|33L9=z;^5j2<|9oY?7u2y#z*ljW
zlSyj^*F}*<nl8aK7N`^6l=Ir|T5Zhplb>Jydt0o|qi4PYOEiHz4vr>scq|!O(5^K}
zQ6!l{BMH))1f?b7Ta#!}HrKabX1ie9$-HlG&b`u(;xwG2a6++xQF;2GhCkQ;urTja
zogP!<F~K{Jv4(R|jm0)m&0BYG-kkZeU*<~e*P_s+Gq(nA|85x=V|Mc0y3D<<Vkd3h
z*3WLq^jJPQ+WP*QC6PD9`Jz4UpX)4S7oV58Yp;Qp=6vsav;U<}`d4+^yK0WwTK(tW
zJLBzis~$RPALHKMez@IK#&y<?<B^*3(|(q$ojF~0irjyOmromes+EloF80>sy*}&R
zbQ3$bJq2HbF5m6`9lmsmTE@ohS;uZYxN6=xfgvM8g+)q?bK#OZyRuHIOjl-|6>q=9
zEI{b8Qr?ICxo>V?k^Xu4zUup{XZuzEu718kYs*yg!*}+sH`AJ3w)dJ%&*CNC$$vgX
zo%r*z_0*!%WtptMUn)v1Wf$DM{i~Okx75~<r5hbqeS5#)#IxE(mj5S;S^Vd`!qZ>=
z{k>)35BV!Rx{r1X7(0ArGe4&<#@X2B>a-wnq5#xMivEA!KaB4?KE1wfjg;&szsvS=
z0TRcje_ubH=|Sy+%Z(kExBPcAF3ga)JJa|>^C{uQqB58B?VH1{JZ<qQ_;o>6*nI7$
zy9*pj9|olra5aQm$gZ2V|Fy`$g6$XG*h+Oz{}lFoURJkoYIui;?wZ(F`EL%ry>(&^
zpPSnL2o(+~glj%+`RkOblNAxN;M>v#U$l4b-E^A6LcDP^J5w3+*Ej#7cYJs|>8Gqo
z?YftIPqMz>$zYv$E9h?eOD(?*3A<)JjkqLnr)fsN$dTVBFV6ZYw=9@r8>MwkYL+OQ
zpyPqFuUeNq^-P+6#FJ^eLSy;_>Ajj0|7$MIymV6U?JD7bBdB50vMA7E<+Mu{XS#|)
zzbJU+EV;CE@6?wa@r+k%D_6bTU7tDecI1ih<Wr$3+jYaY_K2Id{tW6Az8M>z(c|dP
z?6$J`N9>lJYdeCa_-`e}vE97=HF<3=?`1_+xkESAXH65Y`p&g$WmD~)gFE)K{t{4b
z>(jkEk8OrxL-j-P?iPo`N{SaYcyO5L2sy2E@(uXDu+244=V_pz^3_KtBTN0-t<T<G
zoglOA)-RKDx^nC8d8B>+5|n-Vm+^~vI*(6l%>4ep)$Z{ThIK4k8@z0G=Ek!ZU6pBG
z$K{YK^}@){ZJF|ur-DnTTzWfSWoOk#?z8O{i(Zypd-Hegx(zGl?Nr@sY_sdmjqd!X
zu?f5pGvalGn0OH`I(pAZW#>bg#|E$Oh$XEKu3Yv~Q1r!|V}&U^ch0#c=PWy{BX>I4
z`qa{wCR%R0Od522H@I1*|2Ah961^TFf755#r3Z4yr`Rdooqg#;;<D?H7?_{#y!tQy
z-#2&N;>8<3TsF9Wy<+jXV5tMKH(s62(trM7&Yq^&!fUU-Kk<tXiz_?5@==!CTl@Wx
zOax27r>^9m`SH~1pVX1xN_*8g7M*Ynt-oAWuuw3uX_c|BRoLxq-4!l(=gQjddr{)Q
zL_K}~u{|uW67JhveG`^<?T!@Vzqs6>imZZ`Sp6dtzQv?8t4r)YzC$W!S8MgnQ&Lgt
zMt=>@tmJw8*Tw6y+_7KLHUEmce@ywv_VXw_j$i>aCG*8md!xJ4LaJLQ$?-pUpAg~C
z{n5v}H6prg=_ScKGP=xsv89T?GB#a19Me6=Zqt**lgAy_eQbG~!K#0WdwN55V{$d4
z^POnx2RS{Wv!D9dJ~V1CT6j78@#o!3*&>7)Hx|AqS)P13?5lUoo<ocL7c_EO)olc)
z5||4_t~5(53OVb#Kx6Z?1CO*CY*rr04&Qua-5n;LmRA>IBcdXol?4^~{qa)h@)vy5
z(UCgk>eZRz)9$z>#^rWr<xa1f#GklU@c0d#6X(C>d7U#9c(!fDj>Vb%dQ3Y~Pp90C
z&{c1Yw9BsIQh#BP(1(^ZmhQZ;_{OSI0qfW$4T@n(dsjzj-&wFc=<nxN3$@u+5tWJa
z&O~#TWm`z=e<@S`w9RAcmX};}f_5~f9_MH3SGK77B9nJmrTetMWfbH5c`_f_ms_R0
za66Xz`gG8&taMGA`HbAJS=#n$ilW87SC)Q=dfJUGb*cG=vs43ETAy%Cl#pl&nr3Sp
zuCFLOEx>$*iTK>UO;@_R49)e|nposq<b2+{H?k>p-_GWl%roi^7%z0!_E~yxg<SSY
zHnEIVOjR6_*>lbQ7Cn6<x#f=bx1GOshemt7T)_N#zSHzA(zEyO;z&=etGeoV{aRzZ
z=F*ZMcjp|q`k4XES)WS&O3MZw&Hc1G=-Ppjt<m-|Hy(X+^OkCFKK(pkw&Lpe_x(9q
zQyh{O@B3y_k^l0emT=ZQorCw9*z^}nIa^Y8#JbG?6MysC<G%YDXMbj~R$7~oSYtGQ
zj<nqcd-GK<HcE?Y&t?7j=3-HNMUe3xU$kWK<mEf>-kJ}KjLtOgo3rrkdb75sdtb|@
zbZ7>i_0hk7`N2Jgs{a$_I=TK?r?6=^vtrNBMQZ{z%h#GZGw`z<{e4gH)BCc``6Y1)
zwv1aoCG9o)eD-*sKO6Vyvq|$ew!OTOyk?K^Yd4Oc3!z06Eb%?btWmYQ8^8Xlwqri)
z)qNFu^QuiBT*@+z;k=Y4>YkoF$=LX_f>iqV=riKW*U$1UTvqNQeyL=)ALDy(rX_n$
zPP^Tlcd}(|hxkpa%K`4Sm)y0h4ZF{<?%j3q=AP`1caPA@#ebh)M_=q@7wD;WzvlVy
zBxj3}rD}zT))%KW-<lU*_D*KEPyDr_$;{N^+3u~5s+V>?DoIZDeV@>HukzogxG493
z?`8bGwZ6~cKeFeh@eCKIrTUwF%oT3vTixitlG8jvo&%}Sd%8PX;QfMg+t_7V&99hf
zy<Gh0?-a-Ml}EJiMD1tNxwCbJmF&TNOKg|sb5-gz#Buk9o;GpjXDzS~zVbLoF>O(P
z&`wtG)^Y*a(3RC5`41F!l$!76UUAUY-?fJO{QLvlOT8tOzP<5D{_z8~ND0`tZ<na#
zzSp5E7bdu~s{dqvKjUH6gkQ-s@3qd8Ti>U0?NC{6E;E<ZC8Hm2^UYGW1YP|z;ZU6R
zE9S;a?zw%L6R*Bdv9;b_{`$Y!%byIN9<{yVy><AD{Qim6CtCf_y;&Q8R)PimE8e>Q
zrsTnM^UUPko%bw0;&yFyWa*>((&`sdB~`Dvtm2#Rm22cuEBc5xy>qU3#O|E6;dWA5
zlM@W?cDGbcNVp%pO7iLEo$I82zt1elVRij``)!So#IAVr>KDf{_N2bQI=}Q-dd8fR
z-#2-a?|GV-AS#wAt8?@Dmd##xnR7|`<DSaJ6Q+CZ+GfZ-W7U1_hKUA~;>x#qd~eyX
z^QOSRJ$-FwWn^c3V|uc&TB_{Pk)4k}PoGf6W3d0;!H)?C<l+}CJ-acj=JBQ6{Idsl
znBUo|ovrBfNW7cH5mBLnQfq*aUw_3x--e3JqlI72WULC7u|0Ww*2V0aEm{E;-!>S`
z*ni9Z#f@Ja`CiAZ!yo-_oVQ@!GX`t7O7-9qL64_gy8YHB_fy_#$0!M#=M`x;cz^%A
zU0nG1V}o(##c21#Xw8UEC9w}Wj3Y`I)Y7wx^J`he#2R~M#$B0mrmkYM;f^`wsiNP?
zZn-SskvmXxb7rc1Tjed2d2c>U-@a;N>h%k}Ir3c}eXfcvt`7V)BU8Jq*eiFA!DYY0
zCq+J_O;)@iyyv5y^y$Tyf9p@HbdrCT$mn@}CcnlTUsp?0dC&PlJND@(SM~_s{ATck
zasGqo*RM~7J^MRrbKn8(H+#;$|LI}7q$B*te}e$aS6F%+pjJGn$6;h?WDJr9u`OVm
zvIkwq5Hzw*{4z+?UdGuu=?=m-#g6}<%p|y^nPZykozORnG#;$lptY+>R7Ycz(k?Td
z7fA<?HvQhPDB)nJ*lzBwUtwVz7TgdQa9yh5<*w);<S=Vp#IsrtC(ksGCeA(gr>C6T
z`P3)v*}dZPw!#bvF?ZRruB`gTYgWGh)cIRJ!3!+g=IL_(S;qQxR{Dj-)|bCzmSoL~
zXS=ZC%=Q%VxEYHJt0yh`n|aRr#P@4qTc-KkdawCaA*1Bi!lvKeS7)zYyVuIwdE-Ae
z8J*oW6PHHFR?Y}0IMv~H)M@v+H(%UKzf8@&*1PNZC%=2^I?nB_`o8IvfZ2!MCbLtH
z&mS<(D?BUu;?eZU`?AaQ)s_aezh0^yZ@*?I|D@nmU61+nWIgX*xqk4ISkA)}T1O;4
zzHZ%fgfC<j^TMLCE5?uKT~6?}^p7gE*#4;MRQRMHy1U!ATv^qU*D+zi?boa&{tJx~
z;%rV&*!|(Ws`T`o<&!7u-8gA=-t#+4yKXGiIPy^XY@a(XD<i|V+x$;|cxP;DJsmjr
z@yzGWi!*ol_$;>+c0ZBcCo)?;`($92tCQySuq%<vp0MsP^G>Th+<P?KJy`S4BX7H-
zU)g$?zV%*<o;UeJy2(x-zUn2Bb6kJ^@d`3HTEbLs#;{`ke$C3o>hCh%T}$VS5uN(a
zYz_a?OUlVDn$?o_1{-Wr4j=9p&tW{`H}$xJXH3^F?~_*lODs&211Bf;JoqK>V!Hf+
z#<DxCD;dwd2-LWnuxhX6wog|Rum9V1B`fUf<^@L&b3VS`Y|WU!%)m6iH1v%O!-0(@
z3#Q~q=qI&aJ@F#x_c5o<OT3>M^gUYV|8MT0w6(Jnue^P&;^wntc6#euKb|uxv;R#y
zqJJmO=*+Z7?DKl3<VfVpFbFvMs<VGx+tg7fQIIA3H1^8Yj$O?+n2nA_ulAbs-~ICG
zqg-bU^Y={>*=A#%nRrBt;f3&gLr15DZx1itTYa-M$E$K<Cy%hiH^-en8GFx7laQ%C
z?BJ&ADdSzgWC9yIL)Ppc-5Srtr1jqZneTR0<jU$N8#2psC;ZSpY-XUJ-P|-!Mg7ND
zkIa?F{+T-`OclDkv~x@Kih?7(aZcB7J$W9o`2VX6OP-tGAKjlb!<PH4mE{}#ntfaM
zFDkBoKjpJX-_Z#@1-3eRrIRyyizn`Re~9Ug(TiEiN{g4CYxy8@;`^0N)jm<xZ{+L#
ztl#@o>z+inbJNdD%hyQ<J>vQ^N&D{_L#7j5HTUh-g}?0GS>XC;-)oW2OXeSH(_}IH
z=Jhh{<?;zLf@>n=3p8Hnto&%iaObBrpXimpF88&5zxi6$+waQ~y@H)#so|^2Q#PyG
z%W7BgGT6-5S=zax=eFV5r3sQBV~e{v!j5b_)}B@4${xr%GvbxYPaDHeY>W)^f_WIN
z9-F&~Ufnz8;-+;Eb{}hJ{~MLIV9u8(mw(*(w(`*D=+arsmUW)7t~<T*n0p|%$Yvi$
zwq=(z{MHE7&6@79a)tgvlU<SQS6=b^oW8A{F)OJ=;DW}bIj!@Rg_eZKmp;jfG1q$i
zZ*TSU-3$%u_q@I@c4$TL;;^1)Qp^lup6e&wyXs!Wb}GW#XpQ@=n?I-aFn8!=n)~e(
zxny}#+E|C-z`L(&_c1u|M2JgO+UChLe1A0i$m}nZmUHi3wD|Y={Q*xu$uLaHs9(uy
zqs@?@f8Jbr+mDREZ;h_T^>b!QpF1X;oyhonPhrhU&o-{)`1h3}fm~08p870*c|x2u
zc-wWAR^82#dFy$<RLZPwTingaVCAa3LDlW5{gyj#MA&EFZhxP-%5r1ypI+my65EXo
z_idXHzHb7<w7XkUnJq-PR;aGavkjho+*2g*&AhTdQ`41q-g|WDm&TDtb42fQHvIKv
zFJ&;eF<or=J<Bh>aty}zE?nCZ=5hZ4@4ny5JvmCV&oCt9tQ5bve2?M>oAp|+e*bFD
z+^*uL{;c(Qs&&h~O~rC&e?^yOq_DiV`fxKeXwSMg9bf+#A1z~8XJXMfakI4O#l7Lx
z%Q98ZX$610?yNpFZza#ScIJi4uSQJjU;gmh^mMT@mIany<MtZtP5j+#z-p~FY1_?j
zmcmnWR`8f)eKG7>^Y_P7{j9$iW*>bc#C?(RckN#OcQgJR6g!yxLVBC_B;#wVRgT#(
z@Ek8YvMYgW>8|T}|F${h*y>rmo2q(^M{}mt$FmDsHlE#5vom$$foY%SGcYg|rdzcZ
z9dG{X-1nx5Z~giY6{&xX3(M^`{0j{-w%-+3DPFadtDtrvBZK$+fELy(t9%+nW760B
zlV&(@W~1n8yOTYN<@#2d+NT!BBt2t%5pF#*>FCLy;tl#Q6Zfv(qkW_N(qrMHQrFUN
z25-N{*SK5g?G(=sZ+Q>=*!}bQlF&2yEOig^9@*`Wd)_!d|7-c0{gDz^KjmnAJ$d`e
zp$Gd98Eh2@_<fV7;g~d+`Nmb!^Ug`kTY2?k?J-wJ;aaAnLE*Fd%(I2R1+m|l+I4K_
zdHK5SJYFgc3HO*^?oNGODD!XXPxog_1^C4mo_CzFnpx)j3@!GbyDn_Ge`x+{o9>k_
zKfMrf{~feP)&B9Bgoc^Bu7+%K>Cf45*YxNblfZk8CvQF9b1TC6|B*<pHxKx=rqrKb
z=XyhYy=ud^sm(W-!^CGY)cT2d-@EuLbPiwosqMVGzkKwOH#iovf<xLdBX(u&?f8X#
zmt;a;T{*8=$j}h_oFU<KJ>!G0%R5_g7ezl{@cHrS%J~di{Rf_}CQVBX+EJ*vXwoTV
zj~V}qvRL;;TiyL{!*Hf6H{g5J^WR|(Zkrg}%ot|4@7(sITs6#mcG`!j5zh=64&<vl
zy^GypF3n(JQ)p4?6La$4UVEX-Q$)_anYMmTnTDcKE`x!5l|o@p#Iw)8W~ehBSde7q
zE3!0I;-c&HDUR{;>>7^pOWY7q=es5}&D)cg;kCcUcKy{-Pq$r{c=U^F!SRWk_DM(v
z-xT;Q8Nk%=^;po%Si^eF+sk%UJaYKd^gq7lKi`3^`=!eE@o0%L%qZ;NH}BAl^%Ya%
zFCKbZTdB}??q}{wH3ptq$4Ta{LC2EAXRLb|oF>1eLq1MKes9g`tpPtZ3q&lYyY~y#
z%Ep!aaXjkzw9?(UqOa%VO*YL<o6V;j_#)(eLvH?-mt5;tIXyTif8VJ+)a3M+`L_Z;
zb4SjcJ^A$eq&(Z(nynSD()aAVo&NNu_wh5e_0rGJSYH2Km=t9CdGGGKbHuhO-_d&~
zSFN@8Sj{u<WcT95<~w&D{%qJ+xm-$r`BIJZNm4SV?5uUK|1h*M9XNA;@6zXrOP-%r
zWq3Bhbmz-Qx?gwaExXQMU-akX=GbD<sSFqWWf`n$_~gXmwmF|-3~Sjpu}1#7Zu|M0
zJYITdR9g==2=3HbaQE3G^^1QVdTj_ZbE))Mcm8^>u5G1Vo@Du-=~W;1T&TVr>d)}v
za492$0q34Mi(Z}B_H4@C!bI+1mCarvuCHBh{N3`A<$z82`<kpzueN*bny^H-)OG2`
zZ&T+lzJ5~Nc>kuE-A`5Jd>AZ>me<Lpr(a1oGyE+dTDstLuw`P@rl2WTr`~+<K<CWn
z?FR1?vro6243m9++v{cfyt>r#=^C?)T^Kdvj?JGLum9Uj@oj2eS&~-y<!-6+xBXtF
zD>Vb=iv-&ISRK8RKS`IrRD`eYT$@rSujjAj5xzS=U#&fn#^rByd;QWcPbVAhVqmKm
zdVl}yn!i&Y%&p%OkQr;z9NpIRUhsmmNR7hDSytWYcaCZ9sq&t-y2?wW=-Gx#vu4Fj
zi$2`Xw>vBN*XB#NrpUi#dY!gq(|xH7kv&%T-<FiJ{>*DMUHs+s+n^b%a(=~RpF5Tn
z)F!Ovm0ir;wQv5H93F;qJ-0nC-8{7R;AO`xt9bd(oSgCX*x9Rn><j{`?P_oTODu7`
zA*Z+d<+@iFr?u4>M@@a7=W_Mfg(dRL2VO`&Wk@Jg-<j=l%pl_4sZY6gbLSlk3Ea`M
zY%T*sqMbphRE*dBBeHXDiEgk`k2o3h|A^wXDLO$1vjaaJ`ls=B&N?mq+qrxRNnX_q
zq2ig^$E}$BKZR#A9udFHys~KNA`L<9`gG&Ne2Yx9x4Tbzwa$@st}ox7xBLcu``+;P
zJc#rV6Fm5!j@g3a_}bN}*Pr^{2@=w=zc=rN6XSj}<4>pVN>BgE>nYw=+$<iM9Z~$f
zgt_2`G{c=rsRs3O(XU;p_vf1VEPD8-IJkn{;P=^i3HD_{f0G>FMm;@RdVJm<?fDD`
z%2xcYWN^5W#Nd2hEa0ui7u~F{HN9>df-=e`Rizg*IQX(3c(Th_*84a^L+m_5h8<jG
zp6}(}-CL)n{PfUUo2_>iCh|7~Km99EX5-Cp<I5sth8c326QjK5ePU~PCc`}SQDsk*
z-JUvOsVLKJk`2W#1sHD3sIB5;;CaqJaYf>EK87tT|E@arSY+u91<M5w6<*c}G<e#m
zGf2Gmmtr{ZNn9vYLeyCDQFz;}hI_7;HjACUq+Of7Sn$NY3K<3-ZJYgpvOl&N+!H(S
zhFfTB2j|by-JuyPb-b1a>-44mHC%kL(q-Dm*6C{x-?=e)7ejL1!<XMa+|&+wy`xpV
zWlh`B*|&r?@y;*bnzgcXwe|j&ujka~UZ}S9`4Rd%r`0rJ--A<|*VQ>KUYq+Z?BAbe
zbIWNy5w!-MU%y>4degbYMb}p;VRM=Op}R-ex##g7dAg*lJn(XGFT;WsnUk@ca}-V{
zJ2HNmxA|3MQB2Sy5q(2Ped~@JzpgKuk!_^=@9O)IiUz?S{0x6)h85iB`>`x<>MGsb
zd3-S|-_E%_N%9J}^X=s(d$u{K?4EZrBYzR^+)a!ObBew&DClhJEv}in&bxEbb8n7i
z%RkzgND0QsWpc#_+?Hc>(9PCmu=vmt*WLBm<b`2{wyKq0rK?`t=e+Pc1rg~}DtGfR
z)NP){vE}jurUSj<C3c0{iD7z@X_w9~^F0@?%ust<`}|SuNr69K9cZ}3%D}ciZ}ZH6
zmb>ho7L$Lg?poAVYC5yYEAQ*_D)FByO&`1oV>|G0>!<&lTpT~mX0haGKk~FhRd&<v
zXbIute!eTG%Y0=@+8@Gj;MAFGUXvF$uDF!^HK!x|?D^P>Pjt7-@jd2As4{r%-`sbB
zSM&Z&R{rBA8Ox6!+MLy2@T({HS?S(u2ReNGpM<VsUa)fIwRP<AQ-oIM+h+e<rf~kk
zCF$+=k4$Bc5(}Bku&agR-@eNklOrF$EiX=Txj%Q3<*i&x7UP&4+nctmSv_Ch->a>O
z-^<0I<3A--)xGV{wr7{*Vh>z9$Z^A8j+J3W?pm{)kZQsD&(*$x&Yth@#~Mz_*|)Wm
zlcz$5&(V;H`}$0;f7{lafApg4^2L){e<BVu&D;BW>nWWn!o`zB-fpvMS@O?$V&vI1
z3w&Ql+*t9WAoS1j9;GvvcJJ7E?&a-E->qxb|J}DXY!}1NM47W2d{p#I$|OH*6kxb;
zExg6!pWx;HH>BdiB)!Y0=kqKGESThJ)UR@U<tejPiMfhjCPuiGJoeko!hh@5EyYg3
z>RU!4R}S#<N2;E4+w%3UK0D8So0$v$yIf6stJRu!{ZT6W|LNB+*ed@wui(0N`tgo3
zaf?6o@sk~GEdT4De)`jU|J=*7T(ly-tv<f}XN;bj>$@vDNk1BO!%u%VyVJI-e17YZ
z&`Wz~-#;ZWUAydX37?K|_5L3BgFFqB%Rl}$D|^7maCx0()Zt*8!~T^X3=Zb+d%g=M
zY`K{f>+(a%H9I4;M~p3UZ(o<|oGJP#XI}=gT+sTtVG4)H{j$HBkpg$P4?Or%CD_cU
z{QgV0wz>z~w&;GH*8lUk8X_G|_Qrjfc;brMzJ8yXPO%F`I|6^iyD~Cloo0EyBjjP5
zS#`*Yf8K$7ulS<UB18i;{;|8JS?&c5&_E};p*K}qfJQ_>V>Tv6mhkZ#L)hL{8yl)0
z_Dj)}F=#3qG<*Y@G6sz@kw0a8x2jozr){JE`~TDKHcBsMbP_t$|E;>;Z25r?#w{w_
zj#ti8Y!NtAD07|vqX+-Stx9^aJq<k7w+s6YXS3Zqy6m_57aRY$=;(?3qLW_DX)M3D
zNIWH_`W4TlT^`R5rm}H~ot|5JP2BCy{gulN9D??reP$=NaPwxz$7WyRm?!P}Fqi$6
zpXhrR|LNh)-g)zW|No@oX8&Q%{CoGezxTU*?dzm_=IMu?6xdz6`qZ?e`tI`9rhD@(
zw{Mcod%-DlhTrPPxu{~<{a=?Ay$JZ<I`v%Oy0sg!_b5Di(KTt=qnsQ&W}#&_KfMa_
z*mBi!xt`<oJ!c;k9?#9$ynf5>zp2+3YrXYb@j++OSMC2-Z5CWSskDA;zv9%uT<5*d
zvtF#z+PAexX7w{^-TTsh9b0GJT{ic-x!x+RbqQP9;y*6`V^q{zxykL!r^<P|@9xPh
ztlY4*?qYkt>onK$<0n=hJUJ<guX_HR&~q0SP2JXSTIH}XiIrE^f^X&K-Dj15_kDc3
zpnR+SD(O9k!g>C>WuI?JzTp{^xOEj%B-is9EX~`dy?LU#arN3GB^USWJ(n`#SS<VN
zv(8cjTQ}?X+rAxCWe*TpdiG9DjPb$D3#(XGO?t4kIzfs1mf8KI6MGN8+2t5&x@Vqk
zy!(sL?5BSg@9*F9^fi0P!>^N9C9d9C)h>GU<>%FM^LiIA*)yx^x%La6htjWt4(L{F
z^_OHW<PZKa*|G2O<L6hWXzZ|gx9`(Z{n^*KbDAF8KKgw2%*QGBtEa~wC^wdh(9zw;
zUmqOpw8~piQ{(EkY_<6cE3z!l>ZaE@-Beq;>1fp!%buf~mLx^|R`;J>$KtV<Yr_FP
z1ARl2^Wu}#bN)3?IeVIE&WnR3%YHtIn`p2`*>bJ!<)~>BB4vJxHF8Zq%eCK;n~6Ps
z2lIsG{c%4%UHy5hq_}2&j<V_BImhzFrtiDjRHh%Sx1IJu>U-7G{9}c$&sx9#7=AMI
z3}-m^q=i~a@AvsLbnJLP^OH>565oe@0Ttg%HDzzCDm+p&Y2o>`I}3Baw!CY;p0L{O
z!Ry!wx!1mGZ*KW&UF_Q9nW1r}^^aYpug>M7DN(y(%G_Lv-*_u-dD`(i#qH}4v(*v}
zXE_#&?42xOuGPNw_oB9=$GSaky<b&%eG;G4#$eG&0?u>pEj%b|$96CCZPjt#UG3W{
zRLZ+O53H<GWMw(?`F+xjjM>hwD;&Jmi6+iX4mh_eU|-QxX^9;dSv7rDMO3?7^1gLF
zfbputCsrnp-&YFmUp=iqJw)32k>;9<fsfe}>Yngq?yLAWX%bU<H*4-m!D)$0tzC+4
zopYR@y1u?q=C<+5vyaXu9-D5$sOF-=pDd(b_j&5U;D}pFuk~B_e{*`bw@zPk)IDOh
zy{+`2ibu-#s%H4F-;npwU$6aoSJv^(n-9;sv^Bx=+pYzkh93`Y{{Lm#{w1DQS)6!m
zGfv<8KK%+Suen4>s14uBnVk=tBi8JxauJi7KTC(_k*MRV0M~g%FK7OF8nMsdY{2p2
z#gaE0qrG1_eVG-p_JZM+vq2kGPNW{`e^QpXN-h7`0h97=JsB~p1P<0N+<oY`of7{8
z&&l`ej>g61`>$)-dFhkN_Jto7D(F2~)pSlG>-WOnhg6qK$akO2vOUi~_l)tIu&=W<
zIc_l+8Wc}IBq8T2bZf$~U0<*0JYkeu_0Bu9I4^fydD@*Oi{&Bf0%!5uU6XX=%yEB4
zPkX);mg9vNmQL_L@nG+B^~B!+Y>H1+N(xz6R=irqQ~Dt3^!h&nk}h>m_HC89-(0g%
zT4hsz{>JCktuxXt74Lt%_2^N((tGSHU)lIyT>Wpt6y-xx4?bhav`;-!{{ClRa%_%x
zTNVr3=Y$Hyo|uT=Qziz4&z{Mj=xAP?@$7g}PU`(h;vZ&~$DgfQP}REO*@GP~L}q90
zQ@^Wo{>>C|Nd~*!i9+xA3;v0j<~KfJZ_d1`w&&fv$xObpZh7&}xZWlx_B!pxJ=>6(
zE94$arE(>nJ(kAVXMg6eknqtrV!th)sqAt*GG|_JYUWex3rSCmp4GIp&N(V0*ka26
z`B*@8VsNX^k|{d_@-ChGd?d(X_Qh3`N>oZN&1N)S#$B^W{=>(09VZets$H!7{Ohh!
z=<GeVlc#KVhzP!UcJbP&uA={!FdeG0(5hW=@A>1~$JZ4InaSVzJGINCPk}S>ikIT2
ztwMI!q^g2c_pRcZ^((0Oy1+G?E!(ovq^|2MxW(LDaM;G<XhFf(r=DkmgV@fv-}tH5
z^|odXk9@XNO-Xd<rW}WeRZ|xi9erd8(l_fuT1WT4(z8~pPDzGXF1oKQaLtM5*n+aC
z&D~Lt+e!n1I{6dVw(O5y)zy|JuFNEM#!}##SIAeUxqElq$ylf?A&?i*ab((@`ZH2f
zS{L0C$h*<>Oxq-_ra95)qZs3%D4yW?`*bG>Iz@2*Xft2@Ao=XE*R?aw9$Z(T<sGth
zSujVolyXqZt#!dFhYgNj+8}Z+?d0Sb?%kj7#VH0Vf8$HssJ8J!jA-V%{<Gmne$=yw
zWoyk|p>-mzqa%Hiyq@0Nt7qg6@iv_PIiY#Uw`F08WisqK*TS8Z{<Ymn%{#WvEn(w6
z*+=##jjy>xYxuIUc6~D1B5*K><Da5j?fJ0B?8}5=zhG&WfNFYBv&7KS*c2oUVq1{j
zETQG;8i@6VmY`!lK<$#!B+^gUcspfd=HUPam(<CQdpw?<^tyMvd&xJh%%CM6$pOXB
z`i@sCOmGl-|KMHxyLk5I>}Ulxjg#rO6^?$rXy(C~6&|h7=K1Zzn_J9R)@^g(2@n#u
zXI~MU+bFR>MX!!8VD~L1LkG{8KQar-wz4KQOxp3o(&23u_Ynrw!jHubx2}qHBu=um
z+5L@S>uOyA<|#*xo(CJrrqS6wpBNKor0}0#XNzVeqt~NH&xtWn?dIXl+58Ac%AcSA
z{_&2#vD^RO7Vm$azvuh!$@l*<?bG*N1WEy@?N)G*gA#?2r3pwD%mhUPh(Uv9t04u;
zQ7vJIuRxlupj1qJvlaCymbY_#`(-Uf+j6JB{wAL2G$oMbQF5cmk*4|sOr7;-x_GsJ
zFe_Z>@YpcJqod>Gb(Ood`%k4!jJ8{!KVSHM_3pV>f3L9-y}ohvyP500-#EVQyyfmM
z;^7|Jn$I)$KbUhm`g`SuP4Y`*&VBi{^yo`5y?YM4214?0#pe`%{J!+ZS@z7@*_W0d
zitKs%=(D!IdES2(-F46N94^1QUGTN|?%UgPaZ&4gR!{r*_0;cpYtgUU9kOry|LE>D
z_eX?Y(*L!3EAvk#rfRb9z1(s~`j^;C*MgthV!J0i?mSl;9vd)~MM$jo)ZzC_=EOTa
zo&S<8@U7@F{wnRK)%#ny{8BD&F1{G&f2wrNo~D257YvuW2J6Q;N%n|*aGRpMVwzcg
z^i<QgMlb*Wf9^RY;GA{g%e^(-MND6dzY6dC{AT8*J5n}^j@_%=wlEYP%U62ITHF1l
zX`gGA<9(&Q33EKE9)A9kUc5rKnPcZ+4wcg{jQd!ldCo7L^KYy6oqZv%cQG<;xn%V%
z_vhLviYjMLU*A1jPtirHr(pe;`i6%u1>4qsJh<`eC8cBAROL#lFTRi|UaBe)?Hu`2
z_mW%v(#qWvKgp=`JrBQ>+97$^(#D%nUf_4;PL^|qE2bXg*x$KC{EO}-Zg5~^US8*V
z;^U7!f1Fh>7+hSmB19zn*q>&PSnc)4E**Lu-nI4MiSV2IZi}vq_vp{N_u97W@tyAV
zCE3149jVTR-En-M1RcJ<Wwxu>SH1B>!J3BahYeOuUHx3E@Z_VFF-OY#g3X2MV-7o?
zWd5bW=qUPeiacME;Pfdg)sN>Zy<~?5h~O$gV<)-37t8pSCd@6q-@HjriSKXzjtNF=
zjITO&&icDIeZ!p&=3mkio;yZqZmRwKaqFMo6@1qo=zpvdFZ*%3{}Q*r?79ojB!a^9
zu3dRmt>=6>R7iB&i>dssS9$jo%9YLEr17qzk(+fvOwgut2|`T5*DuvCvGM+~<=7R&
znu5%W{05T@PM4XM=A1_jn#+ut+$}QxCAZ6`o^o3m=XUk#!K(27i{hSfz5ly9jxBtZ
zsTovQ{P$a4>s4;Sc^|Vg@9LMWJ#u`*q{~Uyj#f6Qata>XG5d5y;L@nxj88U)CH8tJ
zq|A6Mw1>M{eh%l1*5asx)oprDvrj&;{QWC@vuVZu4SSMy{agPf!?=HybYr(@+=|Hp
zSDBgqs7;Eyu-!xdMf4JJMgP-fx=wxSyRJ%$%-dzu>UhJX^9Il2B^Q2tY%k_5ytZZP
z$M2kN4X)l+&r@&2Zu#@$vwBcs!;<%{n<V+XzIs)7UF)BB;Ssy;Z|M)`DvXZ_>=D=#
zm#Fu;ys@r)!Y-k6dRI;*PIxo@>i>T`HyiwQ&Xv-AuJmwiB$v;Y{_fq^SO1gdKaG@-
z1&i|he+w5eU3@xayV47xK9}srYp335d0l6%Z*tV9AYu;Zti4h5CDT;x8j{ZTN8L3L
z3fHQ<Cp6FFWn8SJPW!QUfnjmIvzX!=`6D`C6z=oR-z9d=`smz^(zm>#p3j*d@8qZP
z?c@5M7Wb2ma<wyGad=%m7y7&X(`*lL7Fv)$5gaT{#%vv&JJk)3Z0y>(#p_j^&AGR!
zYOT9PZB)E@18>)hy>8z6_>m67VoTGTEBKfVSIpVnl|6CwrfnZs8ci(nb)6<Y=9t3D
zx312i^Haf`6Q})KqM!bn@T^;4`C(?W>-`Tn8d_a08#uNoGgvqtv5!LJoD16@sz15s
zVs7_M@W`@fS#tc-jra>^9L;P9J-1`7+Pmp3o5F9)Z{^awk{iDI)-|y;s*R^7Je(Gi
zAC;FRyG}7GPW<-|vnN}le`~!^Z#j90H~XA>lXSAAt99C@v}0^pm6zmyiGhm@r5z7f
zfy=9Rf0kcuea80f+QkFznt9ppFRQ)s^Ks9tT<!h+xkmQ2llxyO>?@UV`TA<gse4u1
ztEMO$-3ixznaI61Ddz3+$CBkwx*hH-?F9uJOK`V9k^Q1>`xV=b_l9Ie9v5u6uQl~!
z&#O}%b#Y&3SK9nPx#HjMbF-QKKL5yDtCKjZXX1-P0$=t&^%wu8#J5#+_0c4mwYG+f
z7MuN8b-FOm<Hyn|AOB7_K2$jEDAzW(w+zPF-=jKIe)y_@Z3Cs<L+x)FXIl#u+5CI|
z-dy>K-Qr_9TBXdh1x&YYINp-y@x_mQ3jgyhyXO=$?rL{CRl26(>Ec}_pL(@2c<Xg^
zrr&>hy}#hx;~hJ^SP!dpZuc^IFz56Bfcz)s6X6Bw13Awn;{Vp?hp*TdxGMkor)^8`
z^Cw2@CQjXy^~Z6^ujl&jV!yxYWtYf|3Ok+6(Z8l$ck0GNl~XLOu6)}6(`)862g$zA
z?5Y-r_t{$KKj$!AZY6YHQ8}Ig8V8_aThK4;Y)j3&9lo5&Vm-H(-F*Ab-u1Jj@>18+
zpH3EQzKV7CeVNdj@uYOBl|&}ni_c7pb|yVZYPq}kz$U5UzdxLkoV8=$94&oZzS8K}
zvAGAGFFkm*$EyDOBlCh+53^2hl~`gAE0Sldc<L$tNNs8F!l#!#qwcLrcv`elynhy3
zW>Lqq?@|B6UX|AvYn(qSHAPtBpmew6SKIefPfP#)wpgcN!?dm`r|wl82>0fRDf_!!
zi8=e>$<<HKh5q}ycg_9-5e8w;Qw1)uL;a*=<MEG2vHW9w%}=TS)oXQkZ)m?_9CB}}
zx^v3%k|cozmtuk*&f)&-na9j=d9z0Ss=!I&y**i5f|jjqI1ts+bbYayVZ>kkyNBhE
zF4{TGWp2v`CFZL}WmmiYpHtY|bKeDAy@0DcOS2{7hEIETtvR>-<Y(6lpA=4-UuN#P
zKHu!hx~PJ$nO9VKQw(2Cs=1J|d+Ag5<Rg(+Pn^ARo2%b!LHB*V>GQd!&zQh`Ha4r%
zN;-LJyVl9=6NH*4-Qi-o63A-&XlL})3G9u~I`zS>tV`W9iuT>?STMU_MXg@cuf1OD
zu0MHQaA5w?qz@BLwN~9$(0sh%_t72F*WET+X5D;!?!u?$iTR7CU7dRKUBi<_Ps8kW
z-&{;8pV2Vu(&qf!f4U#e>hP{yw?5VUSI?C6BV5@Vwx#T|`N;%I(4fLtX1e;`j_OT$
ztFA13RJQfeF~*xV;w7H9r@WHjO-K#h#?M$BSh6xs<wKzJ+x90n9`vfNe)4nb#z|t^
z+2;CJA6U97BX{xA%MVgcp7O}kyt}#W`o!P)$Gh^?3j0+)wJwB~ZXkQU=w9lU*wa6)
z`K+U)AInusfBp@7b2e|ft`@h3!;hEw<Ih>AwP$g!|K79Z;ADoU3%D%R?nGVxP`5SO
zuXb<TYS98+pP#z3@(;^?keV&Ch2vjAaf=K%V)nUK3HsfBI&p$pp$uCL_v)fgR}Lzg
zuTr`tt@+n|tz2G|-OlqKfsg8|uiyKo@pSoouG24f#ncolx4R|l#ZG)~E?t{@{B2ZI
zgORjYB3q8(gMEGm-p1$K67OHBjhwr&<MD(OIu_P~YZ5{$CP;fn?tL-GS@`X#;}Lc{
z&wppH?>+T(tJvEA(pOILe@gSK^FHyP@!5+1NuVY*T7w(Zhy^vSjm*r<K++(#C2U(5
z@hxsT^~k{6i4^pM$?1`uom1)H^ZNhs`{`-3vb0>6IxW%p*`|F*An(*HUGwP3;<vZ=
z-l^W1QXZTA<J7w-C&80p6E#FNw`2ydOj(lZ)vdB`+UMWNv!+=-KQm{g<lngeXDsKR
z|7`Qz*!cXXO1tx)Wf&aX1LH3kf4tgNW|nO%Y*(7*p}_oa&5<pYv$~#7=1p&Wv7h<s
zj4f;b21%H-G>1n%N{pUdF5^1?#>e@8cK2~TpVWQz@C&(~Q}f?VskT0G=HAO|a!2Pa
ze<l;N>A!u~)5PXy+a4V?s+-F>bLQ%vnOBco+OddPYK{D{?X&h=+^&#h^;_nR<i|tn
zd(W^OSrDAsnC&ikF<U)_@9D<sfb9MoKhE^Oy#8<IMOR1R$iyPU^eulvZt2M_e0rP1
z>a6xn)AfCo`TSqsU-pd^d@OQsSH|v!)JxY4pZ^GX`R=pM=G~m3pZq-x>WwGXCLR3R
z5z4LR`FBO4dDMneHm3VmGnHxfT<mszBh>X;w0!09{r8vfT=I}VtyI7JZmaD}?seBc
zeNFe1Jb9<}l#6<v@$8f)?vtV0zZ|)4HZ!PqY3a^scbKYvPkEQ`uWY_&%9nqK{c;!F
zpSfShT3&PaD{-e&?`k9h_Lujp;|-RWaclL}gC@lcFTQ21n{sJW%7it0ZYh_$rE&ki
zvh;FcQ-9QJsrkZs++ypjCWUW0D`8M`e3N_*!}aU)wRM$q{(U&lEp_JuH{Z$sf)P;`
zlN|mZiky<v)_u&-cH#GjKUSU4J-o}vf?wF<|JuuE4PP9qv2*yq;Gq7v;Zb~RvC$MG
zE5X}E{JYAcCVX|+-B__GV=9AkoXwxbGu9p6rYYn2zvbW}Q|6S?U3=^{*WS0y)5w-A
ziVhTS`_OY~8OL^eV-|+FZxnf-&Rr*-d*SI$7TyKAuk@?pkNTMS^zqi$t33`g5t(WC
zH8J$@>y5U4{YsB(4H+HIh~3T6Ui<3V+`K~}SGII-d8GL8Q_h9CbvtcNZJg&&?DbEJ
zbw5Xa{wl`MRo|9bU$C=SXdXL_xqSxL>xu5xJFMDIY<IrAdeOK3%kzp>DwXW`W5fGG
zNIJn|YSgiNLIu-Ac6*x!Z0BubNC-Lg!tGbyLcyYWev|V(cJHnX<rFvH8L@qS?N+4<
zyWT(}#b+Y=OaHacd3v;)!|}r6yh~kjhx*m487#I<TzTMI<^F(_s^@YWvv*n5rvE8c
zjVw93R&@1~uMc{5&%ZNQ>)qcUiQ+F>sxOx`9WzY1c~_Fne1+|XmUD+#gC<Qpq<n?X
zb>$14`i~`2R|T(p)%n%RJjc%ar>uVOGsny7NB>40t(N4Qc69Yo-gotty6f*}Db4ZC
z*S~$KgwN$sW-Y_DpCQTO$3^1eY)iZo#lQA#@-h=Q%UGQ(XL>fEvcTW=jl*h*362a0
z_?=EI;6IS`>mU2ncnN7wUcHN7>lNcBx<2+vIr*!AE&u(GsE^Ns-K%VOgc&{C|48J#
z`_<jqq3a5Mhj!e}e(`kHQd8xJyJ|0Kom=yc;e+Yc0Kc2@|81U!l$#rG*b*qVNp=3g
z)NMbaH1}nEpR|a3@6l~v{vCS3K2dOXB}2y&#a;t{#$`VYHT+@(!as4mT66Mc+Y>M6
zxQOLXAIyIv<8;WkVc*SD{VApi1tQH(0`*?Z4BMtvWid1?dz`mE`}<yBMjwt9o{MF_
z&D*y-gQGn7-@C;hrDx@>@zGf^bvaw^ehEDW33eHC*}c!M?LNU<Jf}TRZzk)a*SW=o
zLi<-ux9?Mqv^koW;Ck~bzn9?*LC2M9lQoOQZcJjh@MvLT(Wl90uC=a=@3>iQCeOA!
z=#6pz`6~~Wp9xu8%M~EKVq>5DC5MIK7nVQk%GmtIZ>oXG-`cp!Bz=aCsC-5T_YD3o
zT49+B+y(b!r#-yfwO#xQzhJ~Kx%GSdIA*NicGw=PUATJd?ub1ieE$AS2OhbEvN%39
zs6PH`t^3m1FAh2IGVHOnwB2}gwO@_)`-0QAr2n^GaxJa-tZ{lOGegUL!O$C8lO0)K
zf4`@frK_4-YMlRa!PfrwFPYb#&VDQ_CI5Q&lrq;PUrLrAmpM7b)qMI%?f_9M%f}Z!
zU5zm9lD}%MP<Ee1Zo#s5;nG`P&kS3B{aUN0<&>Qd64$SsoHo@+S-|4s)?db!tzo`8
zV((-n)pr)}RN8r|M88taA#nGuDVLP*>}BY3UL5r%pV>W^_sYDzivr8azR#Bb{dV5A
zB|?9ff3yF2J2BvsVe~y|N!9It)<oS8m?iUZ&4n$K)OM|#SNSBo`BU5snefle$9q;@
zoH1R(QCsC~aM;PsPE#|N*W~4~GvpnylDhjOfWa_O?TD~A!-0kz&+J)m{5^d>&Nr#n
z$@e+1`Qn*qO@<BUZnV2CS7tHsjGp)T^VA04Ym-0Ei_bQZ%Bksj_kEI;=J|l19W^<P
zcl%GP2ZS2$X<QtBe&6okANGug!oEodM>EfjsQhr`5R<j*<Cb36SYb=iiwp)v%~G*)
z!oDTiS8X><j|h?~vEE!4YB>4omDh$=+bt5N{yEyF_SyN{bEEX<?Ai<sJ9f7$dcKrD
zT)cFX$H#NCO^f&JIDGYm2ZOA+>cw-9UuIaJH22<WT*}~gRPRXt`fWN@@>|2XH|YJD
zDWrFQkEmm|35&X4x2eni#rfQ>uUTKZvu*sV#PHzZLY?lH5C7?IVKn$^`Q^>}I0c65
z>QgG-1?l&2=*ydZO}!Wu`$EU-Oi_Nnoa)t!U7`QpIo*0HyR=aG5C?;xJzvAK&7KUm
zrkbs}81+`Bi}A-E{<1Bf#PW1L%HKONbJh3X-CA=V7jf-kX6V0iV8_nK%Jpmw4BMkj
z%lG^~*?)D3HUpzPL)wp^LkHdj_D_mi6|7cW#=vl?N^t3OCb=052Y&3Bm9==Am3i87
zcj@HnRNI`pWvNqLoaf6hY|t`$qcJI@+V9O`+rNwn?}C?|_3eEUKC{kO_~s+#hK?An
zuj!vvjn*dKGiMO+R2J3u5A#;A(x@#DlYKjFEo*v=%6EzU#;~^^;!5@P*&F6cb-Svu
z8tj_)Zq2TZb<<xQdG`FHo{dCpT!gvBnVP$z2fiLX^HZeFydwQ$cTrGP&?=jfcHNt{
zQy3b){#4QI)QIYg5;7AHn)*DxVB5al`(LyEUKIAy4rH@=KRx|R_PpJS|L;$ioGta$
zHN&>zUuJRk!uMwnScmm)@88S%oOjKt@YSjOFY-N=j=paHsF`!9Jw$~!F-u=r@8?zp
zb?ezC=JUVa``R43qO#yg)l<ncEbpD#*W|~n7CAfP#gzOzpQ@{yr6L2)nn!-wJ^jV!
zl)X*)xw;*5=Cm-!7nm*nab$VI^L#JknT(5nh%FcP<=-zV5US9&_T81un>3deE)y?f
zn&6f;Eq(>(!qSS>&o|w+y`J+oA=E$A<Y?%R?M~s>Tc+GJ*<ATeVBN`&kLzzgEnV{T
z(xfHjDf$ct9?oUh^|NNz48h;EYKN6u3m+!Wdi4BbgXm}TZx+S2+Kc_?Ozu4FGP$4O
z!|NAy4D<Zwf8Dx$f8(B~>y{;%)g;{hkrTUl*|n74lVn-%r7_$R-{qO&C%U!p*8UTB
z)a)GeIL*a-?@IhwwDR@uWv==1U)UH9&$*x7`uD^w-j!@=Q%$TBrkuL#RuO4pqo{o3
z<4?PnrH2aczl*ghlTTu_*!A#KP1~ANNxnCCUi8Z7Ny+k+m>(bd{rfp@kF#fddv&Td
zJ<~lI|KRqQ<tL6+ROWbGmYu>Bd@^*)<q9SSlkD(qev_W)>lZ{;o$um$Ft;-&=s!0@
zY4NGIFQ3H7HO!S)b@nJYbztFBcC9b7fANSFFqLbpH<&Fn=}(00)!i?G|H@Y0z2292
zW}#2ibM4$!+>b&k<1YTr^)xnrQhU81i?{FQrY%K}qvupD*0L<W5UjNL^3Uknu2r-0
zW*j<l`o@&hy3fj)YSzEAKDPgR75sfs(&DQOTmHWO8aH)r_=MI}w#|A^-wQsG43FH`
z<GS%j@r!m=;iN7#M}xn9FZchQlBJNHvv_9d$!l&?4V@&9yO-JQWn*Z`-k1LT&F5ct
zEc2UULnK-zoQ;^($$2rDnW1BqnMB&Q*HW9K{nkBY{v+wh$!zf4=!?_hoRGBTHEDtT
zyEqPgD!yC75OarV0q;qRR#Of2hT26J0$CnN-B7(5Jdt6C(1SC751%`6VTBr>{FmKZ
z>Rf(U_QiS#F?@a=ck4j?d!xDkiYr(i?AdXAtKaH?lJe5vOlhIVKUXYSvg6gn{1<;8
z?AF}cY;*B$?e8giG35`1OdEppSR7to@@y!#J~Z)~+utv(46_oe+h;JkN*~QzyzTFn
zhkSj)S<|omPT&9OPRZNU(irImWB2FVj2R@RNHYGJdGcS$?UVn1e*Zn=jDx)3;cKUJ
zt2r1h1T$B}J(+QHWfeog8x=-}yV~heOO2oHd&jv!!Y0&hg7MxzK6kkqFLw)TKaf;o
zSRh?IfuTXsf6<bDql}O(j0b)ms%Q(ly298caMf#>nr8L)B^y5ZE)WYa+?0R9GFxHK
zf8qR<s;m0N?=m!md|XzP=Hzy<t6lVZFY8>c%{dJ3Ud}LMh&sb_l7ZoC!ApZXGp^(@
zu&qAf_cQ0V|J1D#`$E42-__lyKApMY@x1ywk_UJ`ZBT4*c$u|w+h(iW)vtJ_p1$x~
zWa0vqB=^0STf_?QdmY)m<(Hmj!9%8B>|M_pKTb+rq__G|(>JSxkIRiF-C0xBEICug
zK~T3lr(pH(m9ITchD~kU$eDFu#nYYaJ2D?RPu%>KOTK5Wgwz|qchP?fmYzC0_29wK
zOOxu9R(1wD#lL%gE5h|gq3q&IE6!gHUSBD|U^O}Xd01J~x#&-qAKJby3CUZ>qonEn
zsb-ot=OVUO*WXs<S6822CS9P&E}^c+y5Qr>z;)9ZH@s<H+QmDyJ-e-By{5+WxQbo*
z|C7`1&P~18&=dQD%g2kE;e9iMLdEaRT5D69zvpCjChjch`4IKv|Eu*Dzt+zwVrRG#
z*TbIRJ&Q@9&n{!%!C0RS!mdyB?-u#|wYu`%SMNwj$KsB%N?nHKPQnZ?0uFw=v1e7p
zSC^`@wLXl&z3M+0j_2g0?t0Sm=VUFzwUkJv8@t0()i$-fFAVi6%GL_L<+?=U@!{F4
z)^FX-zB`rKD(^Tyqebn)o!R0!(sG>FB7gK1F8z6C;<me6uAbg@b)NRaux(8rr{}jb
za=d#VGPn1QM78wVS4k~%svUXFQi|DnB@Q*lM*LYNc56fDnHft{6<1wPTetIJ)z-y!
z3^S%|b@}}1_U;qrsyp{GENW$o-=O1W!%}3$GyC&#v;NGDnu_P;)l<%vtyJM>Y;pED
zdTdqI=0htd{)xVvy>4%KwrR8sE5n7lD;CvBk2xjo{QU6ob9;?9LzW)@s{1YT@9s}b
zzG1>tqaJNK!)4N=#go$#&0nWp+wt>?`=+)FyBDo`b^g6g>GDh4DoPf$A5k>y>!0Be
zSvy1Xr9=l?w$71B-d~+0WaW;pIOTLLN6GVJjDPLS^%=Hj^{w^hW-hl+jGsQoe&x;o
zQ`$Xa?e64D7T^Ei)tN66J7IRm%>x@YXB=3(+Ue2Jt4vdG9hW+-Wcsg<`L@!kd+XDF
z1zw)PRCZX~!^r8=bTjMaW}Wt|J-6Mf_a=Y2!MXX#fz4Bz9nU)N4yxo%JH|SBU$?67
z5d)uh-3QNb?>n6KNzM4**Rq|fuOIoVb?bWEpZccv(+_547XFPjOOKyz$kMrX*|*4?
zOGnEr6R+33nEvON^o=j-Hw0DVB{$c^SBV+zInvv8;O&KXPkMfqcDFTm<<0R~ll3h#
zpI2Mr{(C3x#B%NEM~>fwdKnVppIlsclf8^#$EiPBf^6?R`MBc5_A6z4==^hPCCm1m
z`+FBSJv6SmyeR8XB7Zi23f~&F{ZI1@nG;s4>=sG?!Q8qzLq^jhY8m%|#qSo#PG`<O
zKWV|m?5?R9vy;B~X1J*J9e%p$Zq%QQmA3bqEI0l;yK${^PhRTdSKB-N{aW^S-T%8l
zVUgS3k9-Y}jcz%9_|K4jHA)mT1cWw11R8SzjS86<Tf*;RHG&Nr5kEpi!?O&LrtCo{
z<$$K_!E>_UajYP+&oaCSI?K@2H~jzq>BaI!=3ARMI=VD}ue_{wY?iRYk#mLf(tn*V
zl)2vh$JewxTSINS0sFU`>GsDHEtuZFJ7?1p5c*55<=^`MZM{*9*6G>ez8s#hB99Y{
zIE>$1<9N7A(dzT;RbJPgy}JD7ZdmSx-}+`NUU#it{AbOQOAn%p1?FkH*FM}@cj4P^
zo1Tm3Z5HX?J{_;SMl`I0(<re(>Xz5t{(q~aWezFLFt+f}sh5dwvOa$~)ZpHc3s;JJ
z-gQV`3s`1bDxdo_Iix4k_+EL_)m*(>C*2oYG98`#vUg_rgj0?pho4+H-819%wOcuA
z`g80nR-Rv^-6nO?@xa7WcNaa{HnY1ZqmS$CvO~L>?moR0;yqdL(4y$Wy1}bjBIS$(
z7eAgoFaK>=++11b{P@rF_I<L?vI_ow^2wb!e}2czFq!?>OZeFgj@K4^ehdM}qE|Ri
z`Ict#`Lg6CpWgY7#`~xKVfz?S7gO-6MymAS|6k{(?^+vl|AXoBgPZu6VwsF2*Z;G*
zd8kw3`K7$jslQ?rTW&^WZvXW1{DL(r{nmVLJ$mNV&PgFgpUxdw<7cq>Vb6lpyRBJ=
zUfBFAZt84yTe@;jcBS^?Q#t$eG~cW^JZG)>nnQM9B*XgutFs%rM|8f;b}N5uDAHu$
zd3Hw6x9%6G7O(^bojm=&>r~O2ys(RXyKb7>*uQ(!*AwyP)f3j@HIIYt9SvP4erCOh
zU7>Z@JH_4U{4N?&ZY5Gb-x^d-lD;JsJ27VVoV<zq>J47}xV%)}vVLawAO0=6j~WDz
zyyMi|cE0}YGH=-vmGjnr3tYAAst?Ckxz4M+N|V?w39p`Z@~2kL1m_ugw|%x|Jo@Ui
z_}L;KuPb>E*cWv*+Re+{dtu6<zt6*U>Rk&yFg-KwSa2XqQ^1tv%&g{lsX|+}zyIAF
zWu+j|`*6l(DOI25bETKq>yv)|u{d<0^+(RiyCEw@9rKF=j~>Wu|MA6Z^Jm^y)BTtD
zbDy{9i+Z3V^*qXL)qJJAWUI(LzDG(brtFiC9*hdwwK=s;*(ldDn&0Kl<#mEb@4s5H
z?Ag}Y{0&96hCDYc)?_Ji8wyT(^qx(i)N|$9i?4h3AKM`?O<(gfUq@|HNYzcJ9jgit
zTR%UhDL?(<r2njWxBIOQ%AL=M)>-#0F!tlMzp_cYTR2_@ow3OBG@T(4T#?IcE^p?;
zVqfrXWnq(>;I{QICUG?Hy6kb&Sg|ZaRB1<#OTAIkJI-5nHNm+$I?L4`N@hOz@#0=$
z9BXdNfj{daubrNM|LgmO8|Ex?>G<_vnUTovNHqzj-&?#Q)=RxmcAq{+{CGzg&-DKN
zf9>WM1|Ir6VOp*rU*gV53a7pvSs=f!al6*8Sv`C2axHFkda|V?lJmdBZC(3F$L%Z9
zf6O^?M%1iKJ7oz&p1a2$&2M^(@2=K8|5+rwr0-ann|5iI_r{qj4KK75Y*xQwx;`yL
zwT+u~f7_$RJE=JnBjOZwwoEig&iWLPBd+SW;{Q&j`#N?`{w_Dm8`Kt@yKepbf~wzz
z#s%SS=29a39>L%E3{N;-ackT^QP-p2AcXb3i=EP+tJM_;_B9L5_@MTzeB0^JjncCZ
zPi|YWH$6UZ(ln#(GnBrn9{l-fGsh~W*`IB5w@>+F!GBtit4nd=?v!Z(_sX)rADrcU
zUW_Mv&!lUw7rr;}=i%6PE!a<a-#h;<JI#g}Cz+3}-CozNyl<_zUYKFY5w(g*k1eEj
zUY0#A%ghwGFhc#u|Jv3o*NP7*<epV%jXk^RT1}R8L9VrkO>?wX{tvOjFRm+2*`K|C
z?ByR>LB91YS!+K%TKMNe$Eos#7kF1~cHI8Sd*9LYtq*KfQdu|ObDZ0}fP2mYLBn{{
zeY2hZz1P0Dd4X`<gNv81xa!Tl{aP@4_us<Wo$oho-r2yvafY()y+y69R`QDu9o3qr
z=k4MgaoOODoy!WpB`PnOR{6CaWQ(6DKDX^>a*yA(j>8wK=VmY3R_S#7^pdFw;#q9{
z=OPOlHuc@#c(ebUZm;k4JDKtJr@j8>ver~ROIlRXu~~M4htG>$QCt4=CFV9pMSRfN
z5mQ_D{|4v&Jgt05&G+27XI*l)yQq6@*EU{0ZEJGCxz9Zn+00huYS;Tt-j$ylu(q^$
z--N&K+1Q!`swMt)x?G!A>{YmML-gkhPpjI}Iu@MXJ-uy#(r2Z%-wa9DByY{?-Oe!m
z!Ufi1e!d#xEl=mRMlBKkb<}Xe4E1x)+vi!VV{4O~Jze|4)YcOpI(H{!Gj(((es=li
zzHn`&h8B04-q%;3HnL1?j&L>>_Y$c#?f3um*7%G2*`ke$m_Dxe7R*1}a-!Bdd#>n*
z&+l31h^qfEXt`VD7#!i_DQecXEpFT9mO1vuVrAKii)KpI`h3=!W0|m7(2w2j^u2{^
zw{~>Bu<kDA*(_0#&0Zg0YQP@bRU~>OxbUx}WyjQlMJu92ZRT_Ca@p^3W9`=~U8~oa
zB+gcOoNlgkFY4Hi%v*m}FKF?PIeaMEuJ^(<rfE61X4hZ*&>1{&-IE#d<<DG|r^O#$
z<sLP$Ei^svaNgPE%ATV!n{wtIx|=6*YgSus+Ct%rpNfmW>v;V*BHy~7YaaIt7W=eL
zxiZ1eM?5Y5JBnXi7FM!y!HN`{S^M?nZ#+7pxX9!1LF3=%zDM6P{Mq~MPwxDd)d}25
zn|$I-gl^3`^2t+4c=e%qA|J1r%<+D;tYc}_uD|@3lya~fZeeKxJvz_O60yq65_aMR
z@huuU&3S?MLy$S=_4dj^&SnP*)`y{cZZ((x)_32)us4J8wc-+n!o>FDH3Ck2oOUPv
z95$WKas0+_&RHiTjjr7Dzu+PJ{$Bru6Ei=*FXHq+CzLPVx1C!fz4Pef2%CU&LfywV
zRxFsKD%PL;(ZSMNNACEe#-eEvHho8#ceWhA-TL?~)2Ya$j}~J5Q#K!YRH!3|U8ml|
zk7W-lb~iw^KGoS+A=Ax{Rp$iniaoIw_w>M)7W>`aHGR{Y)Sr9*#;>=l`&-vNe>MO4
z^<5XSv|K?U2Wq(*8N(0ZHX?m$lRgbs(1smE!xfYm$#1y&=F1!xY}@@jIeofz*P<LR
zJ{fgGrr!^qtbeln>HQ}&g7p}iVwjX28Cd-U+%L52UQ(I<d+%k-j9srXH?jBVl=^+0
zH*4*^dGlsodlwy=ANu?4>3k>ia>0dJZDDu4o-e%g?b`+K+tu&iDYQ(G4M;tv_Tp>t
zJAwZW^Ro?(n&f=dYL88mEK)uf+uFHhJNw)s`SqJ_yz;I6`zz{J{jck-TjJx^-7`xQ
zp1bqdq<s~?9BxfsR&{&E_N^t`N>$%V{_0o%dY93C?Y8oW&o6!MyI$uBpKosUW5?y0
z%m2FFx@vUK``ud0=ZBtn+^Vy+VW~e*d~aRJmsei)JEV{Oh|+&Mt8?ASgdZC=>`m2Z
z)w*MUETN+O$Ew1+bFQeE+`WBFE<UrmKxfk;tA7QPlYL*6|ImBlzyCe|rG0#d?cWsc
zmAw_ce#>GuS(|wIytQX7x4-><X<x)fTY;_n_XK?V@Ll}Wc0Y%_y00%!-aaOterk2y
zuMLyG-JG~-*VVd;q}hAzcBSX%EvaSMw={?AeC5j1<<GTMr-;hkG`X~<InHun!{nDC
zx9m1$?aPxtFwdMj_i-oZp)V1)KOdjTcryN8oiOjxgzD1)T-&zuKp1K2Qe6ra@59Zz
z16H0@D!Zxoe1F->;+TRT@?|S(`iw8k+TB)MBYSqWShIA`yan|;FY|Zl?!0w)Ma$o#
zzh5nyyY<GZ$S(|e-~FH6ns;Qi@eK##g5H_oFRuHonf$M6=6iup=O^+v{`=*A@oQ}E
zRVH4J6)jS1DJGmhcdfn~HQiC%=9gh~@%GD>&lf$^^kaKIhx;Ik3j=meykF7$aIb*V
z<KMQjf9}>P6i)8s%KsJiQt_$Ap^yBvapBHBixpa$!!wL$eNi~&=kaZMz@$C9E*fxT
z?*8!fsh_gPZ0EK}>*p~c3;sNsc+AaXh4>aBv!cy<)-(QlK7GY+{dE76_xuYS1hpH@
zPha5eWvDbdXDR;3_7Sg|zkK0zyP}$7*JP6H=BT`!ev<De<3g!hTX>wl>TR@demEBq
zjxqNF*cN`D{aKu^X`WqB#fQhyN~?VAUs~_y^z=yOJLeX+U-kHX-nZ|kztYJ&Si0Wa
z%R}G%l;Qeo%*Xdfq`G`LxASNe`+OPRFJ(;H4~tgH|GBx+>%>t-KUPuIR1?#d!r<km
z?7Z_2@71gN`8X_nS>x5iSI;e1FAHr~pZsEbmY;>q#;nCmTU}CGx7~O9D^Vo4O4cRS
z_FH3(t!k0Y<$TGmgWskt6v@e#^g3u_)~3X<@cVUh?>zm5?N^EfQtqo<Z>nl}#l@NW
zO_M!9>vPt|-npl4u6(jkOYPzBs~g_PeS2SieHPQNFAH})h%W7TJ!|IFS*-c9nq<`G
zmKkzSIrsANO1@?Bb#lsLb?aZNXw3F3N_lkob%NU!pOq2K+uSpR-mIO|ox}A}Zf?Pg
zcIG+1550c*F<<xl)c_uN3Jf*azh@zf(}(|-@e}g>l!H}mmuNL-z0UPh_qVk@`tniP
z{r-Z=S5G$^$E=wezE06&`J9+Nm)?5Zouj4BxX9Z!dx6E1?#nmNmd!5i=vQUmQoWWl
znDh6sV!z03QrbL=Jlab3{_wN<e&6;wqxmfTx{A+6=N9A_lrLr8b>8m!YWK+}%8mDy
zTux%pnWy#nwfMK{-@YbOn%?R<Yu>nL1ZGH9yuTlFH(;t_%a(UjEq=>(2~J9OlVmN{
zsh(oC<U(}l!yPiB%CA+TOEcp0A5Le#u0DM^cb(K>PLulCcX+L?l&GlAZ@j*Ff0y6q
zB`j+5+$Lpcg@}6zPy4n+@bXc`tG_O#9`th4;E9}DZ~f=DTkETKbNwx~3uXRqkP<N}
zT`sw*Zds(@)rr#_gt*?Tuh_(*H~&MGrfX!Ruh-%Ktne@dGj>X}8GSgHf6vCh<m=7E
z4LyJCf^F4h*WPc{xn1=?L2ls%zOqwS9ew$^_H1(PklDl-;nJxnd#h*C?+HuP4csf|
zTPiB<)QoWZ`(@!ed#!b5iptxIGI#h~^O2s`sJ?DLSC++hyH!W{EEXp$J+|z4ZRqTU
zeL?$wII=(3!f5Zj@=k1==d$L_h4aK17v1`_iuWiydjzOTr8hrhR@`yw{r-QprC;~S
zGKm-Mm{P2l6Zo6$QO!j5*57Lw*}sL)tx=i#^|AkwyXXD3*vcQviBkR1KJm-DFCl!K
zj~(idZF#TjKc{2viFl6Wp9kIw{CyE<n>Bq&d&;SGMp-6l6Hn)UbUWsCBJK6rO$)Na
z798WB=Qnl#^$lliE-gE%@Im3LPRA^X#ES(FJ=6X^Ie}Wpus;6Oru5<LyZh&bV*T!9
z-454cRtmj;cST*s*C^XPk!R-FOe*`HQSf`4@{#?=R%Sl>{jSLM%iQ9Hmz$scX-r;p
zxn{cM(z82NraP7dnkZ`=zLl`_k>~w&fv<$$%-*#n({GJipYO7Lmp5&+SfQx-WmSE^
zQ?-MfZkqop7wW%Y6*_fv=lS4Hd;3uTUze3@In>pg_dY7rIux-tc<RTkTHjtpKmOE~
z1gd9PZ%4NUZP=6LtZ9<B_s#TGM{dONy}c?uHH&3OEq`|DIj;5T>HP=)EGVdCf9Un-
z>HP!xI_}XQds4)nq&T?*rET72eWNjX)Bb)o#(v@G#sk5e%5T@5OfNI(T%|tEwy5%h
zeaW?}eg+DTTP$w-TGjt`Im{M6_w0MVG^rEv`>$^QbNcwH*Y>t@pG?)Z3jN_cweei`
zTo*q_@1UYhS~ATKn-9Rtm>qi-@-$`t`kGa}bl-KmU7M>#MBYAptY$mE&O~7E+pU*A
zT-LXr{O!q`&MmJmFO0PfNZ<Q@!Zz!Z26_CRK8Gq+@6ob1DV)^#$?F>T-Oz&F?n}>U
zm1}J*?psu|@N}?R;$p2gOWJqTNy|Rk$-FmD(dD9FQhJ3(qT7yrCo(I(N&A;7r10cU
zykGOv!urSWs|K9>QL8uZkyY_2UEaymbavnN`!0x#tr_z8oo(~O<H{D-P5SNg=Kpco
zeI)SQt=XQ1GEWa3+P8XV)%n$rFTY_oHJoJJKPPjx$L6i#e{37}`-kK!Z`u34#M8RQ
zHa+xh@;0N)^;i5JZDdYnXYKel$9%>S(F^y>o84B-UpY1S;MIRM3;oq*n^c!A@o#R;
znwhK3#@J~e`t!>_`?>tW_f*3A`1VD<nsj7I!p2pnZs#vrC;=|2Vd1&3NO|QXw!_tj
z-v9e!ea&_4k{ww^9~k+!giZC&=ucX_`}WH@pG_7ok~}f_j!lrR#>q*X)n}%O1U7|e
zXr5L6CjMCc!{#?`ey7Dg#Pm!%v>{`c+UxVFnV;h_q}$x)Pg3c#mf<~jgm+!<%1h6+
zO)or&i@W=T|9PF&b#v{V5>vW$16EaRJ#W+N|LoT*P2<NwN2l#+`?7ZRTl0%Z<@eQ$
zn_|rm|328Rzu(iuZQ>#0!kz4qX@64YCfA?z%(LOsOW9HLZ3-{Dr`XT;c~7FJE%)`d
zywFnk{ksZ_`hy2KTo#MsPR_ENy=CJzx$lQEdgeSf4-+VD%-}v-#kq0L`YEU5*L~)E
zD#V@iHAK$zQ^v9_u|nn*UL5*oecp9v#LY=+yL|4|Tq#5)w~%YueIt>E@^z8t=BH%0
z2i@Ep`%>PwRpzxt#hcsf9WTzG8^I|m^Zkd)-F=U&mwE3xc`>5=wT0cn4_|(~ch~yp
zz3`k=>*O739|C(>6p|*kuxA9x7#Z#0I-L=@N;6J1F!*WL4y)&38XJGTN}KWF=hSn5
zwu@J>e9c+p{rBhNha1n|s+s1#YM<1<hlX5Qfji2!Ui+Pu9CyY!X5G3ojENd-;7kl^
zHNHxyyxL}zF>h}Etr*kUynH4%dPOdYA9D}SUle%ojK%t>^aUqWt24gzOfi36Uw-as
z|2GC({}ok2Egkp%zX`m&UBoD<yT>5UUvJJ{8M_yieWf4D(;r`6urV~;>e=RYXT38w
zW3KPN^YZeJh%B$ur9M-hGtBZ5FL+mewqW!5bEePhy3Dt?x&L3iS+V7Cgj4cPiMAqm
zA+zF}@>f3Iw(ke`@&DUi|Ks@6AkR4!Md1NK^JP{Ro2`CnH+yweOU%E=%1>wTKRToG
zV~wFnvQY7x`N<B8;^d3B{$Fur(vnj`J8HrL{12;5Jf-4!=CIL*KP{8e&ldmd2)MKP
zxa#$tLTl!%X+Qbl`t@1s6-;B}^}k&F$oBHcdA=D3l9bm^KP+&BX-Bm++u`;WSWWC?
z8n*jRLWTU7+KhR7qc&tqOUheXSK4ykZGP#{D6Y|0#lp#6dS_GT%OmTxmxYC8oW2;N
zv7T$w{i|8FS9ad|U#Bw7Rki25<(J^?ySF`6dh%XpO4a85%eQ1IIUby(zO!oC9+T-J
z6Bd6sTvf3rJ7$)n$iD71b#v{0>1;F5TBgkPBejOZhAC;U{f+!Z(6$sTgC0D0)Ih|M
zW8F*Vq|F_V>zNieY<oEE_(9j-6PYXCNWb2d$0uq0io?xUN{(~8)VZA-^KVM}*q=Qu
zVL2h`Ox+d9Ik&cj^sw5`*kY<A9V2@-G}0{h04Ljq{U=*jW}N?~{9Wnd=DF@KI1T4J
z>!}<SFS+D+lda=##7`fEj2wf*we1P}JCUk~9q%oon;#xuWNH2G$9H~1FK4M8E@zf|
zE1CU!m$2%~ZCmaHKKV5Z4`;de<xkc<@4=dESG;Al?xC=thc6m}9DU3j1w6CWdj<d8
z@w_2wWG(mBEhR;XDftw~DL>0K>-JR&vu8M7uUp0LdU?r#$K}WG7EC>ocF1^nWuYXq
zi%;9l$EhEWa(-Oz_N9Qw^Q85g$x>^}>x5GczxeiSRXx4?d}-g-n<sr|&b7Q<xw^LA
zvwP!>N4E02MNe{<Tf3*9h$}pD=W@=XCoEEb<PVhIds*Jr{9e>I?Z0j9*Pr}-U;m4X
zzBWCArRxpq&Vst$#^weFAZZZW(gHf}GU$d_z<c+|9AW`qqki)C@%_?H)8kxp8Wh4<
z&bPe{;d}B%sjBPOV?WpPZS$VK;SD@;xa}*$ZlwfAL04CY!1GOul*A_7Q{)U4+4%Oi
zyGKKc`AvtW_s{32%uheH`Q({5XN=G5FeD@{(ps@o!uDQDh(qL~V5z+-KD9d@Hg~F}
zOzAkd@s8`X60b+gA8j?!dVBNZ)Qzie>v2!n>NL$c;%1$8WU*)KkNA&qx=~NNrkq(T
ztCAXCr1Mfcy7id$<v6`7Q+4@;t&ZBfc3!XgXZ5<Bt1i6m<r7i&OOKm*@4(I7dDG<I
z>VHpTU6J=dH`&`~;mf*qVUzXy*|wU!2~lq|z3HxEr(HF_AnB@w>`kAPHs@2Roxbh;
zPZupdZ{fVc<lIb?a*eKAKkwN8{*t%8;eXTlTXR18Otvaq*1>)Cvb*8wwL+3^<_xD=
zEobJ=P~Ude`or}zj=iaKwVoNCI&CMuP^UT8$avp`MCs?-JHO5T`&h`;gjq{+i+ECm
z&lahrZaW>txBk9+^kB<O+eJJNzobpdamWcfyUD8hd!AUJo{hHY{!d?yOtD{?cf?X{
zv)S>f4WHIbzWmkw_|y6OVy2uvqF|WgHAiBp^^W7GUZpNDVmPC{MIdlpy~4+x7w-Ly
zP<sDOLTu`}Nyb;bQeUiop&Gf}M%m78_By5tx#X0I9M3BAl8nx7y#1K_ua7i0vr_4T
zQqy(19lerC!i>}Eg<`{%|8bmtIxqgldfncCGU^#eBYdAOea^-dpvI8ElD<S|`+?=T
z$CM0b)+PN>TfVOP^fl8-t7LtO6{c*P!pdf|Jmc7rUp&62xH@D#-_2DiRoeTo{{G*8
z;mJ1_ESh<VNBroIw_1iX{}tOaG1O@a1@2g;;-kW|ea^zVMXG;YG{4oPDcodHYW-7`
z>5zPr<(<mOnMW>EKh)KmBj(O<;pg=2t|5nuDoZ=Ity%q8<7i{?Qpv=<uN++?Ub8io
z?W_E|Bvt6(qnCMI|Nl;(&T#ArYrx+xQ8Sx0mM}2PZ=UjqyWV5_;^VVfY7drwe#(Ek
z@3a-y?!sx^_c;ukH*>V58?|+J{GWS<t-*f%#i?lr-a0D2J$H5agf0Wqg{xHT5^idE
z-`?uK)A5{;+NvoTbA4W_>X}-7KgCzZy8Gy^_lxo^wM!UH`Q8S9`5yCes@weS-I9{d
zGpuxO$j_a;?Y!eBlW9zMMJpR0HS=cc9rx$`rW*1$H|1*kCTG62+L_Z0W=u}M8?oTg
z*_q2W>{OC}&78ViQ%t#xU;YM@RcrDQlYOy`?_MUxan3*Itx*<MH{I>}_C-FKL8m&+
zCd%Zm(#oln(_z@>e#9ha>5fV6{?FIEy?*~kcS}=$ZTGvF%MW%vDNHo>o$AwmWApy2
z0h%`7<QW+j&2c&|x8ui?*HS^ZLOyq;AJ%?;+;{T?&Gpj*Pls0ixjChj^X`L-tJZI^
ztbAYdl`ULudg@kRvrlJMJY82<8XwnPzHp^a_^RV_+t=@}u!&MTobv1=L)Omoh5yt8
zHSPAFn00VNL6Yk8dwX{q`Y|L-UVla8_l)97rL8gc={gJxa$9fAIOiu&R`U7#(n(zE
z|99pv9eUz2;k)@6o1beV+q{-`r2UIEd;4jT0fVXj{k6QT4431pU%$$Vz5SOp$7#cs
z7uCjzDw-RAl)q=V!z=kK=D6#%o0HdwT;l!ozn3F_JGaK~$_uSsOta(sWb<q_*8bU2
zvnyNbcW!x|(B#!}v+pcf&mZ{Y#l=@|XO`@|=@ZQTR^@}M)qcUh=8uc&KAjeQdh8_Y
z5<kaq(FCWvCE7>C|8~vZacY`<GizT)(#gNag88qfIPxq0%J*MaDSG;;NG;C=wuEES
zYnc;L+SoQ&h8>ihX}Id@Ee3|KlRXt5@-A~d)o1C<djIydyv^y%Et#{!7#NZweI{<b
zWwcJ1Vd-t@s4H;{4afRQv;Q0s^C?ebcKEHHIBV7VIjuq7_a0X*pBlCHhR2(Ulcf`x
z84Pr#v{r>!{9gb2-3d;ysa8wwmlfR%-qOYJ?7Bb4U1zCfH>de`RXHu=obSAN)7GcC
zD@EL%yhw`Kws6x5-#7MgG4aXl4#C^+cqn{{jh}yDO6$o<$8IfP*m+BH?uyKS=e2)+
zy;a_-f9*#>?t9_Wtl{A;{Ac_W<INvW-z~&-?VO~dy|(0nm`n!M^z5a1k|DP?-pl6`
z{q}0Q`ixIYxvz<3MM|&XTK4PB^pG!iW`8mX(fX$UbH27;phmk$-mly<-e!mXKZ}q4
z$fEq={`AI!>nE#PonKdd;=B*rmZ#P=yFcv;*3du8wk!0FQ}{YLhJ^Y30m}Qni553&
zotM@yH<k?8P$<iA^}^+!B3^4_9Kw$us&UyRy+Kp?U%iuh|1I~IuELi;GpCd`nzY9U
z`EPT2E$!JV(wufh<3;Lv&qs5V7AJ<?O0W2vqu+CpCr(@GSVUf%SKEc4P3o&{7#}<d
zD=gihzQ=#_sVZTAyOw>ot_5tq)*txOYxk<4KI3~_*;Xy-zGs79x0>cMET~<%WAUE&
zeYa+~&p2m0!6^0B`af-#qU0MM3+ipQW}K4qe82751bu-JzP;NNriuTp*{yL&wjqDY
zj^96H#pm{yxqNRqSrdI_*<GFWRkk<wrOe#P^L0gf(C@8J-Ddv|FJW-WQ8^P^e4KG@
zjYYHT<v-7Ta!ys;y7~I@<3gQ?_mA9mXKn}&yRJ8Jt=fEMBWvE&g~9*a#28*b3S;;+
zJ(D5g){mJ^FQi%CGEcF8E^9h_ib!4C=4P`~&PHMStCyKxkKwdXVP=TQbIv{3v+=4I
z1CREXmaM<5+QQl=Ch;+pa4@WD-xm1(k-?($m5G~srgjA7`7>;&ZI0jElrPK1(6VMl
zaFonii`UzmBrf^IZQZ+RVz{Tsn_FxQ()vkr_d8r!{O6LEGDF8r?dQ)AC`+xMY!gst
z&DJ2gp83~wj%JHn{+@H07Pv2*Gym)^&BII8v$VSN1TREJZjgBUeQ&wA*VW+POdK~f
z?(b?#buF2a-^qKjdei0oCOgD87~EbLSM^p&+CV4YcfNmG$?}#@T_;#9r)e}TJ*}m0
z%y6Mc)iY?r^Y@}Wy`Gx4pN98(hJ-%Zw<z%D;V0oLwqlXrSp=nyl_#AKzq9D$60=r6
z$v7!DRr}u^KRHDjQ@=UAm|yUj=iG`_KVHn;vuCAp{oVeB*2~w*?Yo|qp7undWJ}cU
zha7u)Yd7s)a_Vec)S5?mub=YynVqfpvZ3K??B}h4!M5lASO@M4tlaODnVPnARcmBs
z+O^i`3#T^uU($${Rk5F(IYaD2Ve_$e<t2`ionf1&$0cs#_ijJ8(nHmuU1f6R>DMtb
z+D?L220s`4&Dv?3_A=wV{0h1Iaxc#Ay|6#h^<}QMt!+|o{SBMH##232_!$-iCa^!)
zuAX}Q^b4kfr)N(7_;c8YSx-}OL6Q3BH!-_6B;C7I@;yxNoTwawiPGkDW`={mo-N<@
ztJy|pYQmufip<%<R`rQuchno5`<pFJUuD=aoy%O;X+3A`U40MvQ#qd&ziz)fdD+`q
zg?;+E%EsBN{(NCba0>KaSm3|0;NXp;z8Con76<)Y<F|iOsrH80uajjj>&x9;WA#mL
z9qUrlZMQ^&n&!{qejPch+}v`CGuO3m!LQ7hMLwT=Z&|wS?s&<XKh6?)!R)Rl`4^o(
zC*=R~<Pt%p4|ivZe|>DeUao299y8B-pTA#Pl_Fq#CFacK+4b5^;+7MgCrx9xa-VaN
zp04-dE&cmAI&;coc?^=p+)nrGjhVFO-=m#-Ka??xYghk~`Z<5^f+Vjj<7+RKO1#dk
zKXLxg?j@fO7r5@;wZg(x@SR4B>Q$xBZ1(lD-gYsilouN3OxCQ7k2ADceBW33*wXs_
zs+QZc?uy0zU;F%>P1QbD21A7n6>I*SncS#5J0sL=Y2Wki?*T^yuWeRq`al1SWZlb{
z<*R~UY_R+4vMsi|q|orosf<t+b+uikw_ks$EX~*9U}Jc@S9NiE@$=0*-#_zdKGNYg
zZqnqF%lzQ%dHg<O_A)QEqYEcl$(&GRxRvu**3{(-3y;pd<qrOHL)LZYZ~gjoiVJTN
z<F2J<415>A$DKdSpmd5ql4*xgw$SmJW=oR{?wDLYcHqQ{cSkt<O)Pv%Jug~JRh3-L
z=<|FRbJfb?7hYUZED3t{AxWWmeNDBWlPtt#tS1MZ(tYj{*VW%!wK;M{K<T}mmri=v
z|J%jfaB(9;!sN#c5z{Zs(UytSsd8HEdUMX}1OG4OEqYyW{9<y;!|vDG|88%1?srt(
zUM#`L^}nq&gUvc7gRc+IF4E|n`tpJh+vP{qjcyY!ax-u^GvpR)ch3IL&``Ben4!e8
zSEOJ4|4&gyj=9>p{pZxBTyy^>?%nWq=`ptVV$25w`ji<~=xKfwHLWbtVNeM9XJ&MG
zhPSS|R!gE*hh%U9YxkP{3<(_Hzu1*BwB@@f7lc~MGCCx^S*&EJu{?+G$iC%Y`+o6$
zzr?w~`B#}LgKgTRV#WpDYgg?4btX}lfvZnzdHab49Lr3KcmLRMaOZ|=oQ@0$BHs)8
zMGy38eG6dPvf6b!@7lbH%cD-Px||gJIN3rkReZWBhgi&v@Hxv_8FHr2T{)NG%iiyc
ztgV(`T{%_eyULtf*P{O3O6RN0bmxxnao=&H(c<ZkpS|nS?}uA!et5G+E0TT1nOkRN
zGk<e2Bp4)H>?~g4KJ|HV(a%{%yMps|85QNc9*AGH;M<%nb*Du+s6EL1jPLn1E6vtP
z@i4?ac`s<#pzV3=*YB?RLOG7NKDwyRnyO^&kY@S8Mq!WCv6r)qTs3XFpT^`eC1g3i
znyt$4+H;Fj|4X9>r~Cp>PLWn>GIM=1clK+2b9UVad|}4Shs+r+=>L;sP!rL9(92|W
z@RyR9o`wGxhSspJhtKo&*-K5C75|5sf$iyQCW``o2A`m#{khw8eqBvkn0m`}ku>w<
zKhk9~v3W^W^{Xl@1ROjx7#XzvwNJUU37r3*tEyyGICb4o?ad6O((^^~V#Ve*{cCvE
zyjiQEXkClB_ZA*8e>HQl7vU>|m$N*wfBvNA)SrK$5|6j0YG23>y5+Dy^tfxGnNdpp
zW95U_950q=Mw<4C$=(ze7UPUf63%0ocmL!;hPp>5emoNVDg36d@9RA)?|b&WV!glo
z&c!ZxHnXTWKsq7uplbECs{d7M{g(EXo{Q!-W2pEf>tdf1#BY-||4#hVe<$7t1pf8W
zi0{3@%Mh@Ai_yi)`s*V<FWYu~^Sn;$XZ-Ij{Fc1(Tu&jXRO*PC>yf!94WG4_W~F|A
zTr;WUga1RGt@E$?>1Il_iH6nx45^Lfba?G6IX_5=xqOY4%sp8H>2zM7)0z*@A2}xO
zpF3e^_`7{N2jvbuyY*_#v)q7F&6WMf3tIypFRuK5tE=^RtauBXwt1F48~Zu44*sHt
z7s@tGYg(c7b7Sm=J5s?uUr)EaS#~=6l0ww2KkfYq&-RqI#$|`!6nt#?zh}{$@`y|8
zSijfbt;~4M(x$&H&?1igqUwqA_^4F9SnuuCp3}?uJtwJ1x-ZX*G_fpQF8*a@{B@>;
z)2_GfoZ2j`&+_ksyUqNgU(&7_+Wu`{dp<RB$Cu}yfBm(u`gxFncfQig_1iXTdi`qj
z&rkbuh9mXUFZD-Xy>88X`k(*GeIuLAm)~lguYX<h`Pe4cylG1HqEES7qgqP!`;EMR
zr1{L}n)Y|H_E+`{&i4_!J<E;0s-$Fj3T5<v3tD7n?_3ddSo@%a!-L@O@_Sp@88X5<
z^(2=jM#XJsyP%uR&M<5L-P-wSK7T$i@5>8MJy&$K`+r?4pNylp;-7t!@4x%Aj#1!I
zeqxqppZ)~P?%0s4sp(=4SN5m$BnWE>ub=u(w&>%|n6;Bz?`qGU;F<mIb4mD(Lf1Xh
z)Aqf5U3bT&DDLv1xX#4<#azq1{I54z95Xjud@JbH=STn9cLqdrfyQ^x)(l%hM|w<*
zP0c{kpy3}Q*g|6Bhkxj@^uo{pbifp1?FDF*iu|<~-qRi{@VLI6^QQjvyT;YQA{-0t
zAH3-MwM53}L8Oq=j`Oc~_5Gjoyz>9zKLKZ!Zxx&T%{Jrro}BQxE8HADf4;xhZGYF4
zD~YRC%`U&aLNxUGwJUk6UM-VhUoBYCuOFEF&mrT+#o*nK%&ng<Uwd!C>-;q7W1a8s
zJ+@XYeVn+iPC7q&OR2DM>(lRBY?$A#WZaTk@!Pd!YEl;Gj9HF*N@K6z?cBR8YyG`r
z!k^C^wiAqhw9!f=XIGB$<=v)>GR=1;Gb9=_J>R~{Q1;kwXC}8h20m+M{pvY3D^o;l
zV!zchVQuDRk~go3&3YiX_WLavHT`Sh^V}jHtUr94aZ9M(g6(QPhs3oj&-w<0s?8A!
z)M?teq3>e9?DOqjQ&zhcawi0<@!q<Zl&8jj&?{oCytCAwt<lbh_2l&Vr*FLVWNpvX
zM>`YC-wLm_S)jdcZ&q?y*X-!B3v1*u10p6>yuN&7)5T`(66f7N!nOx}d{8y>UQ{f5
z;4@hpF*~V^elZ<CSr_}gc$;yxX~99^8n@N_Yu(POEaI7W=<T*$Uw7Ww#(ML?<ZGSN
zO2z-g<xT%Ful1zE)^DDFLjM1prC_htaQk|y__x;yUw<_A^>6yf`iaf@x!2DBzV8dU
zR=58Yx|+2j-oyENspZ)WuA?%4QyzYEO{l$h{K}zk@6Qyj@v)YD)N}B)&G~E5za!Ut
z()(_I?f#>`MMs213dNE+gu0e}YBKzy(yTh8qW8cH#wc~+3ypUTWt0j$`__oE6|>i+
z-&i4USUEvG@%N9fMs_jmMX}ejEBX@-L=<`XPnz^lXN$POxulk}g<U7PqR%($OEk9B
zeSP}MYI*O`BLcg`4=?Xma;dq$^VcK!-BYd0g9F4~H9TvPzEq$aQ|TMtvDYT}y`sm#
znTz$Al;;UM&RVL^@j|O+>-EOY%RZ%67o)#zJ|;Qm@p+qR>e)|Z|K496r2gY;eT`Dx
z*5IuPMPL5TD$>87wXdbxF0tGz>chk<E%LUf)n`~Q*(BM%d@av5n;q_7wF1meoV6F$
z-nLUVI?4XyY0J0g)=&TP%C>slwB0r`N*_DjceyIxTKP#jA|U0CD>L`PZG8Wt)EpVu
zgYEYmG5PgS`0a+;q}^-ID)=zOIX1*3RF_}hDST_KndD@%9**oaCX2NM0<M}r-IBGo
z&u;mjP=WB2t4Es@Q&Y{`_D(vxGInBO9#=0zx%Y&c#${cN8cFJ*f4>|I;L_A*iHSJu
z-{EYvCiulh7ae~^=09?Kk6bGF^-)o_>VVgRZKbhy<7S%Ay~e#{yLzp|EvCnc@A@8o
z`M7<1^v<Qci}>?Cw3qFg6!m21<rY>|Q!AgUuj}FiBHG)xUCQ9q{Osmp+`l5-H&OQ4
zEw4mg$442{yspV-&92D)dw-`?MM7Wn${C^a<bLn@(>}HSTNY1w-%iy??FE;@xK6X=
zy(!Hx+SB0w#LA-TlX>RKZ*7|KH=QEfrB6q5YA;>JXj#0qdqdwT^=*zy7tenGbb9aW
z$wCHi|20f(xzE^lS(-H^zka=AWMjjwfc#hg(|VXPUR6aWbU*JCZ=5~xK9j}%rTYH2
zs{(|C?{&QOoh*EQa+}oY4}7aHefSgR7F!}G5WDry6NNvkcGyVO%iUr6rh8zI+@gNp
z)mOJYFkE=z^@IJTp5H>=+65&ZkqP8U*f2jMRLgRY(aMU3ua~l3-}rf4pYL_c`7dd=
zck^U1x7&Io=DI|_m-^t>U{&6gpKM#S^3T=^X@ji0nQE)$nqNDv+4R)>hvuhN<<PCn
zC9|KD1pM5!?mMF=`<j`ao^PF`Lqek~?`8Jw{%gKy9=lGncuT}5h1sQ#9{$~2$-V5j
zNV2HWgZV<dvx?Nhf={gW(wdxTalQ1k=3D~-dj-3|-kR))he^L*P5gHKY4xndhBdR9
z1NCg})@``5C^6~L*5AuQi!RT*wSu8H_<YjT$gn(fyZ`6Pd*8HMWV}B4dhwEl4w1Fq
zxvq;#M7)ZFq?XL<Ns;XO7QJ$9?utJm7Y|Hvm%Y8r=TE}=)jR!oTxB#jZ*$W~S6F2q
zx@zjxy09l!h0HvYZ%m!x@c2?N|8>`8{yoYSo_*XCg+h2YXH*=ScB`u`yZTSry)U1#
zq;*)Q-@3(I+i@&Q%-^k{KG)temvy6e->$2@Hwu<*`{pn$%c^AFluffcx6HrQrFN_#
zbfJIc_f5OHXWYv8?Xz;Xe=e)yW_iCxn;B}RcU<;+<{mYyZGDkwH1TNKGr#8sJ{O8h
z8Pu+M=ZSNgdF!lx|99o}oOeH4ntXH%ubFOJUcPuCTU(-Jh2yQYsuEgl^VT?dO*?(Q
zGgoM(&-J}ir<7%@ZAzV`ljm$UZ>QbF9l`T%&Em96^zsaSdqa;y<CE9?9b8i$i@t7n
zZTEO>=!><R`@X6iRoZIGdqnY8m0|P*^@U1XO(j3)RJ3OA6H)*CsrbfH9Vh23ZK+e9
z(#wCh-F>aLRkZ8Df<B=q3T@^y?{_74?Oc@?>-470;_S3rUCE2Kt>T-)@$K}=MLxN$
z8$;3>AI-hp-uU!#aI~Y3d6a_3`UCbGbt1F0JC^o@dHTowINZ>!^Idqd{RW-v?Q$D_
z7;OFec1vp9k?k!!+~$|m**326*AbkuL@DK+$<L)$Wy@-W{xK${>&bxH9;i(dLvU>m
zYL6IN8e4$m!E6K4H#8Bu{MW?DR6#$WC^aQBxg@_x!O#G7FS)*3W==_Jk%GQkPGU)_
zOKNg{N~(gsM`~tzMu~z2{K|7f1JHU^P}`)Gh%-n*HX-gj_vn0k&5(~lK)~gq<oEr?
zt!b@J=_>zCx7~TtzM)Ic<zwcuAdTyjy<Y0f^qQZsUi`q)pIk*7H${FecU<dnudOr2
zbD9OSn<P6YD2&j<5acRQxFPN%H-asyrh4lR<SX*S57g)cg&%lBm?1ctiEZ40EJg%p
zM&sLA2Xmzzd0gc!v&98|Jm6wlGGAn}P*Bfr&I!>Eyt6ixpOi_nn02*E=Xu)cn&r#=
z^$fW=T9!=RVLg4v-(R&+mz$<&E%FUuop4C==J!1zU6xV8FI6KMrb&mcHTDt?ovJm_
z<4Z<okax%yjR2>Rty60Kee{+xqy~yIx>yQ_F6r{veSPi~p->eU)pbFEj1%U4_g=J+
zBR$Cbsflk_k=k1Ib2n4pNFEoPs=Dm!xyx%~g#-h4+}LbC``%ry4^P$ZIsNPS&-g*~
zK0^)nO!YlCHk-}lt7O}7^)ADiSv%w>34C@gdbP4pc)N$wox5QTXKOYK*sFy8nIMtY
zkbg|<lf3hvf>$1U?oW`<yY>Ckwd`EeVn(y+YHDHqHz&tt&bP2-JhP;;|4>AgS?Zzw
z`1<sv=Zv)XY<oXR#q*w_{r<b<^WPr4`|fn@bd{4+4c|Goh3<H=&wJ97&lkcUe&H^j
zq;gVpv(4W+iTLNo52$#qoBDD4{?F;MkG0O&&QLko{%k7yzRS<|y!o!MlWVfdPmVoL
z`SlLi+uOQ|VM~~x=msTB69XfVG>B<vKzh<7Hg6kRT2hd=!K=K9oOTA;gh-4Qy?3t|
z@-ZlIFdta`|Nmw_xA=sl1<c0NMVOZDIyrZ$sKSzcOq0ZTj=g7<Tk5|4(xY>aYu28c
zq#ME7hdn=oTmlL!Gx%h^5lo2c`5ELB^7AujO+Qk821PBg`59y}A_yZ|-_CH%yK5le
z+%9u-r`x&<+ND#K|Awx=qW!1%gxn_Xpa0*hMT+<~Ff`tCQb^x%p{YUfaM_%Q`agTJ
zw~6`~6h|IRiEewkscGi+w;gxecv%{9SSET3sLW6}=*Fb5NzlRUj<M&OUQZj-XNkt0
zru^2=UcZ!yX7W~QROHZc`J^cJD3q;(rDI1oOGAQ-(DK9wTUxooA`Dx;ZE$M(wxRHb
zY}kt_fstK%cWZq+yK2Io?-TZX4XC_-FHL9V`^O=+IbZLp=I-{MbY*+A+q5g*OK&}y
zbo#1y(O0Qkn@+u2T9o^AllN8C-KSHhCwHt{kzB#yy64oDm8RnHkMnQsuASxcZ?3ov
zf8qM@?wiX`svEv4{Wx`V(B$(^S<nA@W$m+1@y-7F+OM)|_uISIi^oU1^dz12fA~as
zPJC0p`GYstp8T))o&J!&GM|4pD2t(24WI}DB_(4c#0k#O(Ew0Va?UT!D^W01(D%+v
zDOQLERfh%&K?<=7`XQACsS5f5iRr1upc)c-lZl~$IkN7e)Wnj^{5+S$l2io^7b_zJ
zBSQl-BLhPVQ%gfrZ38290|RwUE`4W^y8I#qjoieNf}H%4oXjKzV?9GXLmh>Tl9B=|
zeSL(4UVc%!CYOFdQGQBkaw@8xf|N9cq{QUx)VvgkeoZ8&RTQPBaTzEW8dz`{z=499
zsj0E4LYe|x%+O2$EUS<Q6|*q3v@k#uGc+<aKv!pIWNK`Iq0Y?M98=5`i#l^lG<60B
z24<!hV#c7IPap@v-DhB6WPom-fsvu9A(~!8V`EbzG%+J10~2(6jZ7>|(fwv@Y;KAk
z2F7M47U<@gm|9q(t241MH9~ivshN=}y1k~B2B78>ir>u4OwCQu+-zoP47wTzMV+}h
zro9#hCRpOq7_`eAMX#ZufeE@l3=J%>h#8xphl`<+0cLy{8JeS;XJBLu8c##9*TBfc
z96hWIjLeMD<ITX>05g7#G2_?3*a#!+4UA1KjnTr-z}Ny)%*4nL!(J0Jb9Db2m{?k3
zh?yE1Vfe$;$P81=#1O+Rrl!W2>MStwhk=;^MjA3OGcv;nXERfb^lV^e4r)iDhP}Cg
zA%?x?hL~Y*Zfu4TF6QQD7-3*;iBTRHSQuf3m4&edMxM4XwLs4c29^e(jt{DvEsc#Z
z++t~pSw>izW8^IZOG^Xvus1X?FvActvcyOShQ`Lm=;3T=ZeoZ<%oyD~BO}asGcqwU
zL-((d31-?gGO;j54`(Aw1B^H_vNXUb*NlzLjnM5dHnqeo!%QvB(Zkf(%mgD{nHU;^
z?hinT4--Qpj4&`UwZQP3iG=}1oSRq}Vx$)n3sa1IZfa--+Wv}Suc@KAA$l4zH8aAf
zdrU1%FzOyt3logIWoluGQI4A#Vx|K#LraWwU<Rr_(aIMy3k!@iWM*N3sn^oT5<QO0
zjWP4Ixv`N2db%<<#|&o+0|Sh5*TTR6Bm683j4|>hC_2#7frX&~Mz~lQ8e`gFXo->E
zEQ}0Hkjj^mqQuOc)FLiWi^?-EEnflBObSxa56aI6HLpNzD*fQhs#H+(1k`3JE=epZ
T0k>Ezj0`PJxl~nM{oS|#ijK3>

literal 0
HcmV?d00001

diff --git a/pythonscripts/figure_S1_free_vs_locked_watervapor.ipynb b/pythonscripts/figure_S1_free_vs_locked_watervapor.ipynb
new file mode 100644
index 0000000..6052b14
--- /dev/null
+++ b/pythonscripts/figure_S1_free_vs_locked_watervapor.ipynb
@@ -0,0 +1,392 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Cloud locking vs. cloud and water vapor locking\n",
+    "\n",
+    "This script generates figure S1: total response and cloud impact from ICON simulations with locked clouds and interactive water vapor and from ICON simulations with locked clouds and locked water vapor."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load own colorbar"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mymap, mymap2 = fct.generate_mymap()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated \n",
+    "\n",
+    "* xx_cld: locked clouds, interactive water vapor\n",
+    "* xx_cldvap: locked clouds, locked water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "runs_cld = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "runs_cldvap = ['T1C1W1', 'T2C2W2', 'T1C2W1', 'T1C1W2',\n",
+    "               'T1C2W2', 'T2C1W1', 'T2C2W1', 'T2C1W2']\n",
+    "\n",
+    "response_cld = ['total', 'SST', 'cloud']\n",
+    "response_cldvap = ['total', 'SST', 'cloud', 'water vapor']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read ICON data with locked clouds and interactive water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T2C1\n",
+      "reading T1C2\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "u850_icon_cld = {}\n",
+    "for run in runs_cld:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats = np.array(ncfile.variables['lat'][:].data)\n",
+    "    lons = np.array(ncfile.variables['lon'][:].data)\n",
+    "    levs = np.array(ncfile.variables['lev'][:].data)\n",
+    "    uwind = np.array(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()    \n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "    u850_icon_cld[run] = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "del run, ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read ICON data with locked clouds and locked water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1W1\n",
+      "reading T2C2W2\n",
+      "reading T1C2W1\n",
+      "reading T1C1W2\n",
+      "reading T1C2W2\n",
+      "reading T2C1W1\n",
+      "reading T2C2W1\n",
+      "reading T2C1W2\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../ICON-NWP_lockedcloudsandwatervapor/'\n",
+    "u850_icon = {}\n",
+    "for run in runs_cldvap:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.uwind.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    #lats = np.array(ncfile.variables['lat'][:].data)\n",
+    "    #lons = np.array(ncfile.variables['lon'][:].data)\n",
+    "    levs = np.array(ncfile.variables['lev'][:].data)\n",
+    "    uwind = np.array(ncfile.variables['u'][:].data)\n",
+    "    ncfile.close()    \n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "    u850_icon[run] = uwind[:, levind850, :, :]\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile, ncfile\n",
+    "del run, ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# locked clouds\n",
+    "u850_icon_cld_djf = {}\n",
+    "for run in runs_cld:\n",
+    "    u850_icon_cld_djf[run] = fct.calcMonthlyandSeasonMean(u850_icon_cld[run],\n",
+    "                                                          months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "# locked clouds and locked water vapor\n",
+    "u850_icon_djf = {}\n",
+    "for run in runs_cldvap:\n",
+    "    u850_icon_djf[run] = fct.calcMonthlyandSeasonMean(u850_icon[run],\n",
+    "                                                      months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "del u850_icon_cld, u850_icon"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF responses and decompose the total response into contributions from changes in SST, clouds and water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# locked clouds\n",
+    "du850_icon_cld = np.full((len(response_cld), len(lats),\n",
+    "                          len(lons)), np.nan, dtype=float)\n",
+    "du850_icon_cld[0, :, :], du850_icon_cld[1, :, :], du850_icon_cld[2, :, :] = \\\n",
+    "  fct.calc_impacts_timmean(u850_icon_cld_djf['T1C1'], u850_icon_cld_djf['T2C2'],\n",
+    "                           u850_icon_cld_djf['T1C2'], u850_icon_cld_djf['T2C1'])\n",
+    "\n",
+    "# locked clouds and locked water vapor\n",
+    "du850_icon = np.full((len(response_cldvap), len(lats),\n",
+    "                     len(lons)), np.nan, dtype=float)\n",
+    "du850_icon[0, :, :], du850_icon[1, :, :], du850_icon[2, :, :], \\\n",
+    "du850_icon[3, :, :] = \\\n",
+    "  fct.calc_3impacts_timmean(u850_icon_djf['T1C1W1'], u850_icon_djf['T2C2W2'],\n",
+    "                            u850_icon_djf['T1C2W2'], u850_icon_djf['T2C1W1'],\n",
+    "                            u850_icon_djf['T1C2W1'], u850_icon_djf['T1C1W2'],\n",
+    "                            u850_icon_djf['T2C2W1'], u850_icon_djf['T2C1W2'])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot total response and cloud impact for both simulation setups and add differences between the two setups\n",
+    "\n",
+    "Shift the longitudes from 0deg...360deg to -90deg...270deg for visualization reasons"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAF2CAYAAAC28fR/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydZ3gVRReA30mvBJJQQ++9SAdBepMiFqooIEhTwQ+kWAAFRKSqqBRRlN6LNAHp0nvvJPQSQnq7uXe+H7vx7i6BBEhD9n2efZKZnZmd3Z2ZO3vmnDNCSomJiYmJiYmJiYmJSdrjkNEVMDExMTExMTExMXlRMCffJiYmJiYmJiYmJumEOfk2MTExMTExMTExSSfMybeJiYmJiYmJiYlJOmFOvk1MTExMTExMTEzSCXPybWJiYmJiYmJiYpJOmJPvFwwhxEghxBP7lxRCDBBCvJ4WdUothBAV1fvzTeKcFEKMzIBqmZikOk/bj1NarhDCKbXLNl4jrco3MTExyeyYk+8Xj1+Amk+RbwCQqSffQEVgBPDQ5Bvlnn9J3+qYmJiYmJiYmOhJM+mGSeZESnkduJ7R9QAQQrhKKePS41pSyr3pcR0TExMTExMTk8dhSr5fMIxLvuoS82ghxEdCiCtCiAghxHYhRBlNmkCgANBZTS+FELM15ysIIVYLIR4IIWKEEP8IIeoYrjtbCHFdCFFTCLFbCBEDfKue6yCE2CKEuCeEiBRCHBFCvJtE3Z2EEEOEEKeFELFq+g1CiJJCiK7Ab2rSC5p6FtTc50j1/3ZquHwS11gvhDhquOYwIcRZIUScEOKmEGKiEMLtCR+9iUmaIYTIIoSYqrbPOCHEOSHEx0IIYUiXXQjxkxDimprumhBijhDC9TFlN1P75VQhhIMa5yGEGKeOGfHq388Sz2vyVhJC7FT76w0hxBeASPJCJiYmJi8IpuTbBOBt4BzQH3ABxgOrhBAlpZQJQFtgHXAMGKnmuQcghHgJ2AkcAXoC0UBvYLMQopaU8pDmOj7AQmAC8CkQo8YXBpYC3wA2oC7wixDCXUo5TZN/IfAaMAXYDLipaXMDa4HRwOfAW9il+7eSuN/VQJh634MTI4UQOYFGwFBN2rlAK2AcsBsoBYwCCgJvJFG2iUm6ok541wIvAcOBE8CrwCQgO0pfQwiRDaUN+6L0leNADqANSr9/aBVKCPEOirrWKCnlKDXOCfgLKI3SF04ANYAv1LIHqun8gS3AbeBdtfxPgPyp+wRMTExMnjOklObxAh0ok2epCUvgAuCsiXtTja+liQsE5iZR3t/AGcBFE+eoxq3UxM1Wy2yTTP0cUD4KZwLHNPEN1PwfPSZvVzVN0STOSWCkJjwTZYLuoIkbACQAudVwHTXfO4ayOqvxFTP6fZrHi3lo+zHQUm2PXQ1pfkGZ8Pqr4a8AK1ApuXLVPjgYsAA9DGm6qGnqGuI/A+KBHGp4jBrOr0njCQRrxyDzMA/zMI8X7TDVTkwANkkpLZrwCfXvYyVUQgh34BVgCWBTVTScUJaVN6NIpbUkAGuSKKeYEGKBEOIGyo+9BegBlNAka4Lygz8zxXf1eOYAASiT+kS6AJullInS8mYok4dlifem3t9G9bzx/kxMMoK6KCtGCwzxc1Ek2okG1k2AA1LKIykoczLwJfCmlNJoqNwMCAJ2J9EvnFGk4KjX3SulvJqYUUoZBfyZ4jszMTEx+Q9iqp2YAIQYwonLz8npNfuiSLm/UI+HEEI4SCltavCulNJqOO8FbEJRVxkKXEKZ8PYBumuS+gEhUsoYUoedKNL8LigqMqVQlu3f1qTJgTJ5iXxEGX6pVBcTk2fBF6VvGNVGbmvOg9Jej6WwzI7AKZSPaCM5UGxALEmcS7wOKOpgJ5M4fyeFdTAxMTH5T2JOvk2ehVAUiduPwB9JJdBMvEGRXBupifJDXkdKuSsxMgk/w8GAr6oH/swTcCmlFELMBQYIIfqgTMIjgRWaZPeBWBT1k6S4+az1MDFJBUJQ+oaLlDJeE59L/Xtf/RuMstqTEhqiSLLXCyFaSCm1H6D3gStAu0fkDVT/3gJyJnE+qTgTExOTFwZT7cQkpcQB7toIdQl5J1ABOCylPGg8UlCuh/r3XymaahjWxpBuI4o6S49k6oixno9hDuCF4r+8M7BMShmtOb8BRfrvk9S9SSnNybdJZmA7ylj+liG+M8oqUqKbzY1ANSFEhRSUeQqoBxQDNgghvDXnNgD5gMhH9ItgNd0eoIYQIl9iRiGEJ4oBs4mJickLiyn5Nkkpp4E6QoiWKMvZwVLKQOB/wA7gLyHELBRplz+KCoejlHLoI8pLZDcQDvwohBiBYpD1OYqUzicxkZRyqxBiGTBJ/THfgqJfWhdYK6XcptYRoJ8Q4neUCf1xgzQQTZnnhRD7ULysBKBMxrXntwkhFgBLhRCTgP0okv6CQAtgiJTyfDL3Z2KS1qwHdgHThBDZUSbOLVA+VMdqJsOTgU4oalajUWw7/FE+dHtLKSO0hUopzwgh6gFbUSbgzdQ084BuwN9CiIkoqiwuQBGgNfCa+hE7GegLbFTdfCZ6O0kt1TETExOT5xJT8m2SUoahuCNcDBxAdTkopTwMVEVZiv4eRbr2HVAOZVL+WKSU91BcGTqiuBsci+KlYW4SyTuo130NxV3gr0AZVHeCUspEV4itUCYjB4A8yVQh0fDyBsokw8jbaplvAqvUOn6A4iHG1F01yXBU1a5Xgd+BIShuB19F+TD+TJMuFKiNolo1FEWCPRHFEPpRH6jnUIyqC6BMorOoxtlNUYyf30dxQzoPxZ3g7sSy1El/Q5QP6d9R1NM2oPRbExMTkxcWIWVSargmJiYmJiYmJiYmJqmNKfk2MTExMTExMTExSSfMybeJiYmJiYmJiYlJOmFOvk1MTExMTExMTEzSCXPybWJiYmJiYmJiYpJOmJNvExMTExMTExMTk3TCnHybPDFCiNeEEP/L6HqYmLyomH3Q5HlDCDFSCPFU7tWEEAOEEK+ndp1SEyFERfUefZM4J1Vf95kOIURBtX5d07Dsx22Ol1rX6JpW10gLzMm3ydPwGooPYRMTk4zB7IMmzxu/ADWfMu8AlJ2IMzMVgRHAQ5NvlPv+JX2rY5KZMXe4NMkUCCFcpZRxyafM/AghnIEEaTrRN3mOMPugSVoipbwOXM/oeiSSnu1dSrk3Pa5j8vxgSr7/gwghqqjLMC9r4j5U40Zr4oqpcS3UcHYhxHQhxHkhRLQQ4poQYr4QIkCTZzbKTnYBal4phAjUnPcXQvwshLghhIgTQpwVQrxvqF9XNV9dIcQSIUQosO8R99JOTVs+iXPrhRBHNeEPhBB7hBAhQohQIcReIcSrhjyJS1R9hRCThBB31XtdI4QoaEjrLIQYLYQIFELEq39Hqz/sSZX3rRDiJso22lmTfDkmLwRmHzT7oIkekYTaSWJ/EEJ8JIS4IoSIEEJsF0KU0aQJRNlhtbOmvc/WnK8ghFgthHgghIgRQvwjhKhjuM5sIcR1IURNIcRuIUQM8K16roMQYosQ4p4QIlIIcUQI8W4S9XcSQgwRQpwWQsSq6TcIIUoKReXhNzXpBU09C2ruc6T6/5P0JychxDC1D8cJIW4KISYKIdye4NE/FUKIt4UQx9R7DRZCzBFC5E4iXU8hxGH12T9Q31+tx5TrL4TYJ4Q4I4TIr4l/XR0votWxY4n2vJrGQwjxkxDivvquVgN5U/XG0wsppXn8xw6Uj6oHwHBN3AogGtitieuFsrW0txougbI1/BtAXZTt3A8AgYCbmqYIyvbVd4Ea6lFJPZcFZQv6q0BPoBEwHrACH2qu2xWQwDWUAbAR0OwR9+IGhALfGuJzAhZgoCZuAvAeypbWTYGp6nWaa9IU1Fz7T5RtuLuhbFF/HnDWpJ2vPp+vgCYoS4oWYH4S5d0AVgItgTaAe0a3A/PIuMPsg2YfNI+H2tFIQBripNq2/wJaA28CV4CLgJOappLaNjZo2nsR9dxLQBSwS83bAliN8vFVWXOd2UAEEAR8CNQDqqvnPgX6qu2rkdrWLEBvQ12Xqm1xAtAMRfVrElAfyA6MUu/nTU09XTX3OfIp+tNC9f6Gq3X7UM27LBXfS2L/6aqJe1+NW6g+0x4o4815wEuTboKa7hegldqXRwEdDGX30ITPAXsBP005vdV0v6rXaw+cUduCtybdHCAe+Ex9X+NRxjpd/Z+HI8MrYB5p9GJhFbBV/d8BCAEmqp3bS41fCOx9TBmOQD61YbfVxM8GrieR/gsgFihmiJ8JBGMfTLuqZU5O4b3MRFmudNDEDVAHwtyPyOOAola1EViliU8cDE4byqutxr+nhstqB0xNus/V+PKG8g4DIqPfu3lknsPsg2YfNA/dextJ0pPvC+g/uN5U42tp4gKBuUmU+TfKJM1FE+eoxq3UxM1Wy2yTTB0T2+xM4JgmvoGa/6PH5E3sU0WTOKdrxynpT0AdNd87hrI6q/EVU+m9JPafrprndwd17NKke1n7DICiKB/1k1JQdg+gAnATWAd4aNJ4AWHAr0nkjQcGqOES6vWGGtL9zHM4+TbVTv67bAVqqstTFVGWYL9FkQgkLsnVA7ZoMwkh+qhLTZEoA8FV9VSJFFyzGcrS9RV1ucxJCOGEItXwA0ob0q9I4b3MAQJQBsBEugCbpZS3NHWvrC5d31HrbgEaP6LuS6WUtsSAlPIflMEw0SCorvp3riFfYvgVQ/xKqY4EJiYqZh80+6BJ8mySUlo04RPq3/xJJU5ECOGO0gaWADZNWxfAZuztJ5EEYE0S5RQTQiwQQtxAaa8WlMmits02QZngzUzxXT2elPSnZiiTz2WGvrxRPW+8v38RQjhq8wghnmSuVwLIAczTRkopd6GsHCT2u0YoHyszUlBmXWA7yntpLaWM1pyribJiN89wn9eBs9jvs7p6vcWGshem8L4yFebk+7/LFsAVqIWyLHZMSnkHZXmuvqpTlxNlggAoOqnATygd5HWgGsrSGShLZcmRA6WjWAzHEvW8nyH9LVLGThTJRxe1nqVQlhvnaOqeD0UK4ouyNFcLqIqyVJlU3e88Ii5RtzbRYt1Yx9uG8zwinYmJ2QfNPmiSPCGGcKIRZHLt3RdFSvsFD7f3D4BshknnXSmlVVuAEMIL2IQilR2K8lFcFUX9wVWT1A8IkVLGpPCekiPZ/oTSl12ASMO93dXU6VH8bcgz/Anq9qh+B0rfSzyfeP2UGNG2QJFwT5dSJhjO5VD/bubh91hOc51EfXPjuJHUOJLpMb2d/Hc5gbLM3ABFZy5RurYFaIeibxkP/KPJ0wH4W0o5MDFCCFHoCa55H2Vg6P+I8+cM4RRJqaSUUggxFxgghOiDMmBFopfaNQN8gHZSsaoHFAONRxSb8xFxicYuiT8IuYBLmjS51L/3jdVM7j5MXjjMPojZB03SjFDABvwI/JFUAu3KCkm3j5ooxpx1VMkuoBg6GtIFA75CCPfUmICnsD/dR1Ehq5NEEaCocDyKXoB3CtMa0fY7I7mAg+r/werfAB4eV4x8gbJ6sF4I0Vxd5UoksR93BU4lkTdC/Zv4MZATuKw5n9Q4kukxJd//UdTl1+0oS7510P/wVwLaAvsMyz8eKF+bWrolUXwc4J5E/AagJHBVSnkwiSMiiTwpZQ7Kl/PrKDpvy5KoO9r6CyGKo+iRJsWbWqmIEKI2itX0HjVqu/q3gyFfZ/Xvjie9AZMXC7MPmn3QJNV4qL1LKaNQJMgVgMNJtfcUlJtUm82GYrCrZSOKOsvjNotJlNgn1S+TIrn+lLhi5POIvvzICbWU8lxK0ybBORRpsq7fqR5MCmDvl5tRPn50npQegQVF4LAR2CD03mh2o0ywiz7iPhMn9vvU67UzlG0cH54LTMn3f5stKFIBK8ogBYpRUjjKMvhXhvQbgCFCiE+B/SgSuzeTKPc0ihSgD8pXcKyU8gQwGcVKeacQYjJKJ/ZEmQzUkVIaB7QUI6U8L4TYB3yD8qU9x5BkM4pO3x9CiIkoS1RfoujLJvWR6Q2sFEJMR7FUH4ti+POHer1TQogFwEhVCrIbRUryBbBASnn8ae/F5IXC7INmHzR5dk4DdYQQLVFUH4KllIEoG03tAP4SQsxCkY76o6hwOEophyZT7m6UvvijEGIESl/5HEWq65OYSEq5VQixDJikqldtAZxRVLzWSim3qXUE6CeE+B1lwnlcShmf1IWT609Sym1q+18qhJiEMh7YUAwRWwBDpJTnk7m/J0ZKaRVCDAemq9L5uWr9xqD0z9/UdJfUMeZ/QghvFC8zVhRVubNSykWGci1CiA4ouuTrhRCvSim3SynDhRCfoLyD7MB6FAPMABT98m1SyvlSynNCiPnAV+pH+wEUwUaL1H4G6UJ6WHWaR8YcQCmUpba9hvhVanw9Q7w7iuXwPZQv0TVAIR621PYEFqC4UpNAoOZcNpQJwBWUJfW7KJOOAZo0XXmEVXgy99NPzaezEtecb4dioBGLsnzVAcXKXVu/gmoZfVHcRN1Dcf+2FihkKM8ZGI1iZGJR/45Gb5mfWF6PjH7f5pH5DrMPmn3QPP59TyNJ2tvJaENc4vvsqokrqbbhaPXcbM25UihGd3dRpM/XUSaCLTRpZpOEdyD1XAPgCBCDot700SPq6oTi4u682q/uoXjuKKFJMwLF5aVVrWdBzX2OTOLayfUnBxQVsmNqnwpT//8WRSKeGu/loeetxr+tXisORTVkDkl4NkJxE3hcTRcCbANqGsruoUnviOJCNAqor4lvgWL/Eq6+i4souvelNWk8UMbHEBQ1ndXYvSR1TY3nkV6HUG/IxOSFQCibHlwBekopze1+TUzSGbMPmpiYvOhkqM63UHYrk0kcazVp+gpl56tYIcQh8fDOVYllGONHCiFOpte9mJiYmJiYmJiYmCRHRhtcVkXRC0w8XkJZPlgMIIRoj7Lb29coBkq7UXSFjP4/Y4Fx6VRnExMTExMTExMTk6ciU6mdCCE+Az4B8kgpo1VjhONSyp6aNBdQNmcYpoYDUfQn3wc6SymXq/EjgTellGXT9y5MTExMTExMTExMkiajJd//IoQQwHsoW8hGCyFcgMrYd3NKZCPK5g1argE/AGOT8M9pYmJiYmJiYmJikinITBPVxihW/YkGOP4oVrFJ7WbUKIn8Y1F8cPYApiV3MSHE+6j+KbP5+lZ+EGLcZMvExERDkJSyYFoVnid/AXnr2tXkE5qYvLikaR8smD+fDLqWks0KTUxeSFK1/2WmyXdP4ICU8qgh3qgXI5KIQ0r5QAgxFhghhDD6n30IKeUMYAaAEEKei7Rpz9H7rdYULFqMYd9MAsBqs5/P6eaoK8vX6VoyFwuy/2+L+/ffwMDbDB76M39tOkL1qsUJDLpLyINIOrZ7hfZv1aVFm+GE3l2Cg4O6QGGN1pdrDGPVB52y6sMu/v/+ez5Gv+9FaIx+0y7bY9SR3Jz0zcbZUf88yngbdqW1XeLkyStMm7Ga+Qu20qpVIz4e0IOKFcs8XLjtkiGscZEqDfeneZYAJBj3D9GkjzXsMZAQZriM/lnaLPqyZYJ93xNrvPG565FWqyFsvwdLSKi+Grf19XDK5aMLY7W3O/cC+o0OXbKXIiHByg+/7GXM5G3071GFwf1q4uqqvh+heS+22EfWSTlv04cd7ItiwskTkWtMAdKQW9eucjzUXqfbN67z1stVmLpoJRWq1cBBCF16Y5sr7vGYSYPIpw9bt/3774qVO/l67Fxu3LxPubIFOXT4Anny+PNet+ZERcUSGHSbGdMG2fPajM/N0Aa1C29O3rpTJyKq68IRcfq8D2Lt78jY/4z37+HszONwN/TRhIQEdm/awNJZ07ly/ixtu/WkVZduZMnmS4Lh3btonq2j4bpWQ72cHfSLp9p6ORrOlXFdr6+kRd8XSNCE4/QyF1usPq3Nom/P1nj7+GWLj3tsWsutYF044eYDXdgpn33Xbhmj3+/IvXhBXdjNPz+37kQyYMQ2Dh6/w09j6tGkrtpVDPf/UB8zIBw178zB8NPsnAfhPyBN+2DQtevEhdjH7pmz5/LTjF/Ys3Ujbm5uSEcXXXrpaH/XCYZFdCf09ypshh3F1b2VEhISGD58OPMWLiJ/PqWfnj57lvp169Cz27t8PX4ioz4bwiu1a9qzWvXvRFu2MI7NhncgjON6tH38tUXpfz+Ek76PCVfDbvcO9n5iiwrXnTKWZQu9S3B4JHO3HGDaul0EZPWiX5MatKhUHOL1z8bBRf/uheEeIq7a+4azp75OLlk89Xkd9Xldcwfoz7vZ0wt3fV7HbDl0YTz18wlp3x8Lq4++XOnkqgsnGKYT8VZ7RJxVf9LVUT/mxNv057VDkEU998+O7Xw2qD+lSpdh1DcTyJ0nD0lhKBoPZ/s9OCfo50BC6tuwa9bsqdr/MsXkWwiRA2VHqX6a6GCU2ZNxi9McPCwNT+QH4AMUx/tPTGR4OJv+XMGaxQs4dnAfhYoVf5piUkzBgrlYPG8IoaGRbN1+gqJFclO6dCEcHR0ZPXYBDetXtE+8n0Oio2NYsmQNM2b8SmDQHbp3bc7JE5vIkyepXWtNnpRDx27w/v9W4pPFjd3relG84KN28X5+CLp0gXVLFrJ+2SI8vbMQHvog+UzPQNvX6tC2TS3OnAniwsUbVKlcnDwBOYmPt1CtZh8+G/Z2ml4/rbl1NYjV839nzfw55M5XgNfe6U7d1m1xdnFJPrPJY7HZJNP+OMYX43fTs1M5Zk9uipuLSD5jJsZqtbJt5z8sWrqC1es2UL5saaJjYnBzc0s+81Pg5OTE2K9GMGr4Z2zbuQs3V1cqlS+Lp6cnh44c5fKVQF6qUC5Nrp0eSCnZfvQMs5avZ+PhM7SsVpY/Br1DpexZ/k1jfUx+k8cTcj+YMcM/Y/fOHXw1bgItXm2Z0VVKMZli8o2y4UMciqN8AKSU8UKIQyjqKEs0aRsDy5IqREoZq+7M9AMP776WLBOGD2XBL9OoXPNlVu89Rp58RqcqaUPWrF60bVOT69eD+e6HVSxauoMbN++zZ/ukdLl+amGz2bh5NYjAq/+wYcN25i9YSc2aLzFkcEdaNK+Bk5MjOJgT72clIsrClz8cY9H6a3w7vBnvtK+EECKJlZDnC0t8PO80rUfo/WDe+99g+gwdjnMyEt7UolSpApQsmZ89e04zbsJilizdzit1K/DmG6+ky/VTi7iYGK5dusD18+fYuHwxp48cotmb7ZmyaCVFSikrTXFW8+f+WTl5IYwPRx9GOLqwZfGblCuVHQBpTUgmZ+Zm05ZttGn/NjlzZGfOrOk0blAvXa7r5OREo/r1iIqKYu36DSxZsYptO3Yx/YfJeHt5pUsdUot7D8I4feY8+05fYPa67bg6O9G9YVWm9HqDbF6KgMTyIG2FCv91pJQsWTif0SM+p80b7dj0z368vL2Tz5iJyPDJt2po2QNYKKU06g1MAuYIIfYD/6DspJSHx+t0zwEGAt1RdqtKMcMnTaXpa2+ybM5vtK5RgVr1GtGmUxcqVauJj59f8gU8AydPBVG30TDatqnFqBHv0KB+BWWymgk5dfggJw4dwGazERURTtCFc1w+d5bAi+fJks2X8qULUbtWFY4cXk/+/AEPq5KYPBVSSlZuusagbw7SoEYuTu7oT3Z/z+QzPic4u7iw9vAZ/lq5lJVzZ7NybhFadehMo9avU7JseVzTSPqWyOiv5zH7j794t0tTtmyaRMmS6fPx/aQkWCxsW7+GkHt3kdJG8K1bBF04R9CFcwTfvkWeAoUoXKIkTV5vx9jf5uPm7p7RVf7PEBWdwJjpp5mzKpDhfcvQr3c9HBzSXtotraHJJ0oFmjVuyIn9u/hj/kLe/6A/AXly806njjSs/woFCxdN05XY+Ph46jZuQa5cOWj/Rltm/vgdWX18ICHJ3dkzlFv37rN6214sCQnExVu4eOkKZ65c42zgdSwJVkoVyEO5Ivn5ZWgvqpcuigy7l9FV/s9w4dxZhvyvP9HR0fy2YCnlK72U0VV6KjLc1aAQoj6wBagupdyfxPm+wGAUP+AngY+llDs05wOBqVLKCZq45ijbvp5KiatBIYS8H69/DmGhoaxYsoiVSxdz/MhhPDw9qfhSFUZ8PY5iJUro0t6J1UuSjPqa2rDFIHVyd3bGZrPxTvP6tHyrI53f76s7769ZxvR13KWvuFHf1KgT7VRKFzwTadeDMupjGusVY9Hr1WVxc+Py+XN8+9knXDhxlFatWuHo6Iinpyee+YtSuEQpChUrgVeWLA+Vrb3/ct779HWMMRjZxRl0s7XSXGuUvlyDfp81znBeo99njdWfS4jQ61pbQwx5Iw3P1mKXaFnD9LphWr3spPLGh9nDsRH65xp1X6+Pmqusry7s1aI8AGGRCfT6+hJXrkUw9cta1K2eG0ukQX888tHSFGcff13YyV0vJRBOejUEodFndPDIjcj+GVLKNJtlCCGkcSw6e/Ysv/32Gxs2bODChXMUKRJAk8ZV+XrM+7i6JqM24fDyI0+dCNO/AycHBwIvXqBTo5dZtusgufPadcSNbfkh3XKjPrlN00cNdTgT8fhxQtsH70Tp26OTWo+tq5bz27ej8cuVmwIlSiGEIFv2HHjmKUiuwkXJnrcATs7OOj3u6Hh9+wzIqtfHzO+TRRcumc0uafQVf+vvL/6+PmwzrLbEa/SpDTrd1hi9UXt86F1d2BJin6BYQww2GOH6sOWGvq1rdbNjQvWTNWM4PkYvnb4Ton/HpV+yf9D6tLD/fOw9FUav8Zeo9VJ2xg2uTE5/dxKi9eOIzqbDMC44Z9f3bUdDH3TQ6FQb9Y0dPAJwzDMyzftgRJT9OUfHWdj692YWLVjAgQP7CAsLo3SZsrzXqzetXntdp3sbb9DbdTJ8kCQY9Ha1urae6v8TJ05g185drFq2WFnJU9HqFsPD+uMOMfZ3IB0N8kSDnrrNRS+scIjX9DNDuY63zurCcWcOEhkTx5jFG5mz9QANi+Uni7sLTg4O+MVYKOzjRREfL/zdXAm9om8XkbcidWGfAnbbnhzl9KvBngHZdWEvQ9gpq70dScvjP0yEq/7D28FNr5ronN+uWmvz0v9G2Nz19kc2N52/jGwAACAASURBVH34fqxmjLHo2/p9g61EWKz+2fq42d9TXII+b8GseiFLYluSUvL9xG+ZNf0nPh48jHe698TNWS+gFMnYqCQY2qnF9uj5r4tBXz6vr1eq9r8Ml3xLKbeiGFE+6vxPwE+POV8wibj1jyszJfhkzUrXnr3o2rMXUkquBQWxbvVKWjd6hdmLllG9Vu3kC0khK+f/gSU+nre69Uw+cQZx8cxpurZsRPf+A1m3fIlOB/B4aOaTTPyXiIu30WnoMYoXy8GSHxvi4pI5V0RSm5IlSzJu3DjGjRtHXMwWTp8OZNTo32nWYhArlo0ha9bUWWaUUjJq4Ae8P2iobuKd2VgxazrLZ01j4PjvKV1D7231eujzrXKU2TlxKZK3R55h+te1aVk/b0ZXJ11wcnKicdNmNG7aDIDbwcEcOXiQwf/rz9WgIPp8OOChyc7TEhQUxHdTprB9x85UKzO1iYmz8NY3v5Hdx4v9EwfiHWr/0Lp37HIG1uzF4McpE1m9Yhkbd+wlV+7cGV2dZ+b5teZLR4QQ5C9YkN4fDeDHWb/zzlttWbpgPiH372MxSIifhqljRtK287s4OmbOSdW1y5fo3qYpn4z5lu4fDUwz4xuTh7FaJT2/PImfjzM/flnrhZl4G3F1daFSpeIsWfwV5csV4eW6/Th58jLh4VHYkvEikRyH9uzi8J5/aPFG+1Sqbeqzbv4fLJk+lQmLV1Gxdp2Mrs4LReCtWNp/cYrxHxR5YSbeSeHr60fDJk3586+/Wb54EZ8O+pi7d+4QExPDs66gT5o4kSpVqlKgQJo6dHlq4uLj6Tj+d3Jly8Jv/TuRx88n+UwmqcaieXOY9/tvzFu66j8x8QZz8v3ENGjSlCVr/uK78d9QtXQxArK4Uz2fH/fu3H7qMr/6YTpTvvqC08eOpGJNU4fTRw7R741X6Tf0C9p0yByeH2yPWSr6LyGlZPCUc4SEWZg5oiyOjmZ3dXR05Lsp/enxXkuav/oJAfna4uxan9faDnvqMitUrUGHHr15r02zVKxp6pBgsbB69kz+mDiO8YtWkTNvxuuhSymfebL1vBAcGs8bn56kf7u8tH0le/IZXgDyBASwYt1f3Llzm0Z1alC6UF6K5/Fj1dLFT13mwEEDuXv3LhPGj0/FmqYOt++F0HHgV3i4OjPzw/aZYhy22WwvTB/ctGEd34wawdwlK/4zE2/IBGonmQ0pJX+tXcOFc2cJCrxCk+av0qTFq7o05StVYufh4wBcOHeOVo3r45c9R1LFpYhK1Wths1nJFZA5pCo2m40dG9Yy76fvuR54mT6fjqB91x6pVr7VamXt2j2cv3CNS+fOERefwLCBrSlW1K77lpBgZeeeK5Qr4YO/nydSSnbuucak6Qf4c9Ml3Fyd8PF2xtHRgbPb3sbd7b/XlL/bFc3emzGs+7EKri4ZP+CnF/fv32fNmjVcvnyZ+/fvM2zYMAIMY+6A/u0Y0L8dACO//JWIiKdXu3B2dqZ0hZe4cv7cs1Q7VYkMC2P9gj9Y9esM8hQszLiFywkoVDjVyg8Nvsfxndu4e+0qkbdvkq9IUTr1+QhXjXHmvbt3OXn+ODVrlMbZ2YmYmDjm/L6ZyVPXcv7CLby93YmNjefjfk0Y++VbqVa3zEJUvOTtL07Rtq4/vV4LSD5DGiJj7iafKBU5fuwYu3bvISjwCn7+/nzY/+N/fXMDZPHx4de5inMyKSUvV6lI4aLFnvp6+fMXIEeOHOTLn/Efl4mcvHCF7/5YworNO+ncsjGjW7XEKRVXp89ERHAmIoLQ8DvcjoyhdYn8NCio90998mYwvkJQPI+ij301OJTpy7bz++a9xMRb8PFwIzg8irM/f0q+7NlSrW6ZhUP79zLwwz7MXrCUImns+jm9+e/NWJ4SX9W+ZdeufxjY9306duxI6aKFGdj3fQYMGEDrPgP/1UWLVVVN4mJjGTbkE+q3fp0ww4YZWiyaZXEfV72xk01KDu39B7/sOfHw8tYZWGrrBYA0LMkZxwGj8VfsSl2wlPMhe0CzAYiUktOHd7Jn/2Wu33zAwmUH8fRwYeAHDXnrtbdwdrZA/BTNDembTXlDNTC427JF2PXhbKGS4RP2snrTFRq9nI8yRXITGmalZoPP6dWlMoP7N2L5mpOMmbwVD3dngq49oGLZ3MTEWnjwIIL+Xcswe1wNpISLZ65QrdM/xN65jHRxIO6M3hjOGmx3nmOL0eulJ4Tq31dMhP68Nf7RqgwR9/RGkuHR+onx+Qd6A7awOLvRT8UcekM6D2e99MIvUmlbC07GsfBoLCs6ZkFsPE44YK1j2LjBYNhpi9LXyyGL3rjmzv049p8K5/CZcKpXyEbTWn6P1K900GygIeXFJNOkOgmKcd/wz7/n+InL1K9XCTeXOKpXr8jK5WOpUqWkpoKKMePp06eZMXMDk+ct40xUtX9P59RoRhkNostlMaxSWc8zdtsf1K6UnVLu2/RGvg76/orNYOhpO/Po+4merQuWcjT4YXexe1CKiYljz/5jnDgZyLnzN1i4ZDctWrRgw5+rqVy5ModD9O/WaKyZzaAKpt2Up1qW7fpqhV6l+mujKFo4J+XK5KVQo7ys3/g33V+ZwZRvu1KocmEmfPcnv83dRoG8vgRdu0+9l4uze/9lKpfNxtSR1ahTLQ8RUfF8M3knJw8fIeaiMmmPv2efJCZc0xtnGo2a42/p23PUA41hcri+PxqFfHcNdp93o+33fz3C6O9eb3SWP4u+Hr5uhr5vsRFvlfReF01RL0Ff3zAerFaELQnVDJtzGQxBZby9rTn66K9rs0nOXYth/+lwrt2No1OL3BQJsKeRWmMwg7GmcEsfF61hcYpEtUXz5rRo/RqFihTh7783sWfPXiZN+wUvL/vvRmJ15/06E6uEfCXLERan3P8Dg8FdRLy+D+b0tPcjVycHrFYrW7ZuoecnX3AuTH/vWd30Y5SPwdg6RtOPjIZ/TgbTrywGgzs3jQFmyOFN7DhwlKAbt9my9xBHT5yiZ8OqHPm6D37eHlxcuEWX10GjAhh5U29Q6WhQDyz5pv5X8oKHC0O/W0TrKqUoXKgAlbw8GL90I6uCI5jc/FVu3QthzIx5nLkchBSOeHq4U6xwQfYcPELXDm9ydPuXZPfzJSzsAdWbv8VFrwIUqVEHhyi9UbPNQ78xjtFoMt5T8+wMO+EkvstEYsIerWJ7P1p/zmJQBfQwGEZmc7fPIbIYnlWigeW5s2fo9W4npvw8k0qVq/wr6de+QoOtJk7JyKhioqM5euQQh/bvw8vbm05vd8HDM2mPYRFxz6bOmBzm5NvAxYsXKVWqFOPHj8fR0ZH27dvTunVr9p08w8gpP+Oibk4RGR5O/85v4uvvT5/Pv3yma1Z9+RWKlS5L33ZtWLhsBd5p7K8yPt7CoQOn2bP3NHv2nWb7juN4ezpRu0YR8ubJxrTJnXildpE0MXzZtucG434+zKzxDalbLTcFihTEwUHQrWNFBo3chH/xr6hbsxCzprzBK7ULExsTy987FFeFjSo76tx62WyQLYszF4KiKFvs+fLx+TjWnI9n0p4YFr/pTU6vZ5d47zoVwYCBZ3gQZqFqWR8qFPdi9IyLjPz5Ap90LcQbjTKX7/ULF2/wdqdG9OrVBoDatcvS/NVBTPtpEG+8Ue/fdHv27OG1115j4sSJlK9S7RGlpYwhn3SgWcth5MyRjf790l795P79CHYfOs+evafZvecUBw+dp1zZglSuVJQCBXJw7Ngx8uVLG+PPgZ8uwmKxMuTjFpQolots/rno9k4DNm85zgf/+4UbN0Po3qU+J/ZPICCH4OatUDZtPcOY4W0okdM+683m44ZwgNg4K9ExCXi4/zd+Tqw2yf82xeDqCGPquT/zOCilZOyKe8zafg6/LM5UK+WNn48zjT88Sp2KPnz6bkFKFMg8G2Q9CLlPbGwMQz4fjn/2HPTs8wGfffIxb73ahF/mLiJA3f9CSskP48eyaukifp6/4pmek6OjI4NGjKHv22/x45zFFC+drJOyZ0JKycULFzhyYB/79u3jn927uXv7Ji9XrkCxgnnp2Koxc99tjJtL6rfpyHgL3X5dzWtVS/N+42oUL1MWVxdn3m5Ui++Xb6Jqh774+WRhyHsd6NLqS5xzFeLwidOcPn+RP374liw+9gm1m4s/zs5OBF6/ker1zEgCr1yh/ett+HLMWOo3bPzM5QXfu0vfHl05cuggpUqXpUq16pw4dpQp47+h63s96dv/Yzw80rcPZrirwcyA1s1ZcHAw7dq1QwjBvHnzyJUrF5GRkbTt2IXAi+fp9ckwKtSozYcd2lKxWg2GjJtMTDKbVjxO8p24TbbVamXUx/24dOo4i/9cj6/qV1wv+U5mG/tkJN8A9++H0+jVkdhsgpdrl6VmjdLUebkcBbIbXKw/bit3kcyAJB8t+T5++h7T5p7k/OVQzl0OJTQ8nr7dqjB+hNLBgkMl/n6aL1FNPSwP9BLYuJBbLNl4k08mneHHT8vRKLtBgpVpJN/2l1gxh95Fmoez/jlf9HRj6OZo5rT1olR2Jxyd7D9onnX0y7opkXxvPxFOz+8DmT68DI2q+f778SIdBH/vC6H7iBPsmVODgBwGyalO8i3xrrEh7V0NWjYDsHXbUTp1+Zp+fV7j02GdcXBw4MjRy7RpO4wa1cswbOjb3Lydk65du/LHH3/QvHnzh9z45XSzS1OMku9SXkZ3lucBCAq6Q5MWQ2j3ei1GjVTtG4ySbwej5Psxnn6MbjMdlMF985bjtHtnClUql6RmjdLUrFGK2rXK4u2p6VcuzXVZk5N8G7eIf5zk+/fflrFxyynOXbjN+Yu3cXNzYdn8QdSpXRqLJYHoqBh8fNQfogR9e7WFntSFw25d54NRhzl9OZzFk2uSw8EuAcw8km89j5N826Tk13twJ0oys4UHbs76Ju9dTb/6mJzkW0rJ5wvvsO9iNPNHlSWPv709RVlh0vyr7DkRxvopFZOVfPvUX5bmffB6SCRSSr4d8yVLFy7gx19+o1qNWkgpmf7TVH6aMoG3u/ekS/f3mfTNGI4dPsisBcvwyKZ3U/ekku9E1q9axrgvhjBl1jwqVq0OQFY3vWTUx1Ufjkl4tMs7o8vDLC4OSCkZ8skg/ly1krp161K9enVq1qhBlWwJOqcHUXs36fJeXL5bF36c5FsY9jHPXdXebqLiLfx65QZnb9zjwq1grt0Po2T+3Oye+gUODg5Eefji4eaKs7M6HvgbftcdNOOELYGzFy/TtmtfWjVtwLj+3XT3kJzk2/Ykkm/jHvEakpN8Oxtctubwsv++GCXfd27eoE3zJvTr/zHdevR8yBWh9TFTVuP7Brh39w7t27xKs5at+GjgEJ3DiMDLF/i4Xx/eaN+Bd7vrVWuNku/iObOkav97cRRJU4i/vz+bNm2idu3alClThkGDBhEWFsbUBcsY+s1EFv86k+bli9GgZRuGjf8u1TyUODo6MuK7n8mbLz9LFsxLlTKNhIZG0bDFCJo2qsjRQ9P58YePeLtzIwoUyJkm10uK8qX8afhyPgJye5Evt+JP+HKQ/QdeN/FOAW80yk2j6v58Oe18qtYzIzgYIhm8KZpZrZWJ97MSHm3l3UmXmf2/QjSp4adbNbgdHM/yv29js0kiozPXjof161Xk4N6f+HvLYcqU78avv62jTJlCnD45hxo1StOy9RC6devGn3/+SfPmzZMvMIUUKJCTXdum8P1Pa7h3Lyz5DE/Blm0n6dTtB1YvHszG9eP4csS7NGtaDW/v9JO6dGpXg8IFs5MvwJe8eXwJDo7g9h3FbZqzs5N94p0C3FwdGT2gHLfuxTLvz6vJZ8jESCn56aKVq2E2pjf3wNXp2X9nF+8J459zUSwbWEA38QY4cDqcHUdCSchc3Q8hBEM+H8k3k7+nd7cuvNelA4cPHqB7734sXruR2zdvUuelMgRevsjclWvxz/H09k5Gmrd5g48/+5KfJ45NtTKNDPlkEEcPH2bvwcP8Pns2ffv0oVKlSunmbczTxZlOdSqQx9ebAN8sZPXy4PKte8Spe0n4eHvaJ94poGTRwowY9CE/zJrLxaDnWwJ+7+4d3mzTku7v96Jbj9RxvTygby+atGjJ4M9G6Cbe8fHxrF/zJ4FXLmOJT393yebkOwkcHR356quvOHLkCAkJCZQrV46Zk8bxcsMmzP1rG5vOBNJ78GeprpYhhKBSlarcvJ6MhPsp2br9BNmyejF2VJcM9aUqpeTq9QgOHL9L5Qq5ad20BBHGTW1SQHhUAh0GH+bq7VjW/FA1DWqafhx5IBl10sb0ll5UyJU6S53uLg4kWCUVCtknU1JK/lhzk9rv7iWXnyvHltSmRMHMt0tmQIA/WzZP4sfv+7No8VaKFu/A6dOB/O/jDly+uIgLFy5Qo0aNVL9u9uxZKVggB9dvBCef+CmYNmsTY0Z24OVaJZNPnIbExydw4vR1Lgfe5b13G+Dvl+WpvCccPBVCnbe30OPNQnzSvUTyGTIpNin55bKVC5GSX1p64u6cOuOjm7MD+fxc8PGwT+xCIxLoN+kCH044T7+38rJ+SoXk6xd5K1Xq8yQ0bNyUfw6d4OW69ejXoys9325Pjpy5+GbKVHYfO8Oshcvx9s6SfEFPSJmKL3H7ZtpMIhMSEvj1l5ksXbkKH5+MdBcoeBAZw+HLN3FxduKT9i248+DJP/illEz4aRaDR33LpkW/UqJw5jFYfVLu3b1D+9da8Ua79vT9sH+qlevm7kaZsuV0cUcPH6JFgzrs27ObxSv/pEfvvo/InXaYaifol7wTORhm38Ti7q0bfPhGKz764iuatHmduAS9WkV+L71Ew1e/OZmOEIPNQrBhZ81Dqxcyd+5c1q5dq0Rod8xLMKiGiGS+1A3plyz+i8UrDrHkj/ex3NHvNGmJ0BtqWKP1ebW7OkrDkqJRpcO4FGu9Z1+Sk/H2Z3c/2saIvyJYftbCmPrudC7nSlyU/tnGReqvFWeV7L5tY9M1Gztu2Wie34HBFZ1wdhTERenTalVH4qz6Z2W16X9coxP05y1W/XepNn/pgvrrRD/QfzjkLK4f1F087JNpj9pFdeeklxsT5wUxY8UNZn1RmjpF9Oof8ZfsBmzWe/p3Eh2iv65nLvskOsEm+fGIhZnbQtkzvABZXQWBwRYGLgomPMbKpFe9KZ1To1pifbSajXB0IPeXt9Ne7SRmhS7uVHzLf/+/uGk0PftM4dLZ2YqU2Nj2Y42qJIa+8tiL68tq3XEG7d+oQef2tR9WsTKoYTx03kUjBTSqbgFt231Dl06v8PprNbHd1e8eqd2h1Ran30XVlqBvc9KwG9/jdmw19tfEPiil5HhQLN2nBnEvwsq+z/OR08cJyw17WcYdWRPibdyJsrE5KIENgVbO3bfyVTUn6gcoz/Cq5jU4Cv3YFhL7+F1J4zR90GLT97+IeP1zfimn/j080JRdqqj+up5++j6VpZH+w+euxYFeo08TZ7GxYGx5skTbn338ef2kN+6efmwzPh+fwva+f8/diw9+uY6vtxMzeyuqA2sPhTNk7k1efSkLnzbyxsvNfp8y5tHSN0e//GTvvSfN++CtUI3akGZ932Kx0P/Dfggh+HLSjwDcibTX9360vu4hsfrnYlQ7eKBJbzW4ji3r60SH2uVYvPsk7p5e5PTSt5t4g/qD1vNfIcPura7CoLJw7RR+5esQdV7ZTFtqd/a9G6RLKw3b2stYw66rMfY+5pynoO6ccNG3OcvNQP15Z2XsjYu3MGf9dj6aNIsm1Suy8tshOLgZduH08dOFre5ZOXjsJMvX/sXyDVvw9fVl/vz55M2XjyO39SpVfh76yciNcP1vhrdGp93ZoCpjMeh3xBrUPyI1v+VGg0ofg/exPF76evg46cvatHkz7/fuS88e7zFg8DCdcNC4e6o2p6ezvl25WvT3/9eG9fTqP4gfJoylVbMmxESE89WE75i3ZDnffvkZHdq2/vda0kVvII3U19HVL8BUO0krTp0K5EYSEq8cuQP431djmT5hbJr71mzVqhVHjx5l3759ySd+QpatPkLFcpnDnSHA1VAry89a8HUTnLtv5fdjcey+kcDtKL0P0+gEyaZrVgbvsdBgVTxzz1sp7+fA8mYufFbZ+aFB43nh2r04Wn58lJ1HQ9kxowqvvJQ6rqKuhCTw2m8h7L4Qw99D8pPVw5E5u8NpNukG9Uu6s/7jAN3EO7MgpWT7zpPExT1sVd+mdS0a1KvI9Jlr07wevbo3YNQ3K7BYEpJP/AQEB4eza88ZypXNHBuJCCFYvCeUoPsJlMjlwi87wlm0P4IjtyyEG/Qdb0TY+O1YHB3XRNNqeTTH7tnoWsaZza1d/p14P4+s2xdCnfcOUKtCVtZ+VwnfLKnTL1adiKbByIvULOHJzz3zEhVno8fP1/hyyW1m9M7HuC55dBPvzML9+8GcOHbsoXhnZ2c+GTmWHZs2cPNa2qoXeXp5U6tRMxb9MjXVy16+YTMVSmeeFRonR0dG/7oUm02SxcOd8XNWsmrbHs4GXsOiEfJZrVb+OXSMgV9/R9HqDen20WCcnZyYO28e23fsIG8aGWenNXFxcQweOoze/T5k9q+z+HTokFRZlY+OjuajQYP5YNAwfvv5e1o1a8KRYyeo0rAF127c5NCWdXR8vU2GagD8N8zTU4nVa3YzfOTvtH+rHk26j6R0pcr/nqvX7FW+HzWcnZs2UL3Bs1vfPgovLy/Gjh1L165d2bZtGzlTaV+HZSv38s++S8ya2iV1CkwFKuZ2YmdXby6F2LgcauN8iJW1wVYuh9qItkgK+Tjg4Sg5HSIp7ydonM+RIZWc8HN7PifbicTE2Vi49R5fz7/Ohx3y81H7fDp97KfFYpXM3BvN1H8iGfiKFz1a5MDBQTDlrxDm7wlnTf88FM2pSHoymZopoPiX7z9oFnfuhtH3/WbUe7c6vv72DvDpkA40a/UZH/Rtg5u7+2NKejZaNK3ID9M28r+h8/h+YvdUGaBjY+PpP2gW7d+oTbGieZLPkE4MfzMnHSq6cfGuhYt3LWw9G8OM6zFcCrHi5SIo5ONASIzkfoykUUEneldwoWYeR1zUD17jytTzwtW7cUxadJ2tR8OYO6osNcpnTT5TCrgZZuWLtaGcu5PAvP4FeKmwB+HRVjpOCaJgdhe2f1UU90zssz/oyhXeaNWCsuXK817vfjR7tRVOTso0wdvHh9c7v8vsn7/j068npmk93hv4OX3bNqZ81Vo0b9IoVcq8dOkSn477nrnff5Mq5aUGjo4OHPpjPGcDb3D+2k3OBd3kt1UbOXvlOtfvBlMgVw7y5wvg6Onz5M7hx+tN67N6znRKFy+KEAKLb+b4kH9SpJRs3badYZ99TsECBdi/exd+fn7JZ0wBm7Zspf+gIVSrUpkD2/4iq48P/+zdT/tu7zN59AjavdYy+ULSAXPyrWHYkE74ZPHko49/ZN6Cv6lQvSaden9InaYt8HRxoVjpsty8GpR8Qc/IO++8Q2BgIPXq1WPL5rHkzu2ffKZHEBoaxceDZ7N91ykWz+6Jp6dr8pnSCSEE+bI4ki+LI/XUuES1k4h4yZUwG/dCE6joL/BKJR3MjORWhJX5c67xx6a7VC7uxZLhJXmp8tO/Wy37bybw5fL75PFxYF0PPwr6OuHgIJixNZRlByL586M85PTJ3N3d0dGRnZu/plPXSQz/agEu45bTsl0nOvXqR+mqkmLFAoiMjCUqKjZNJ99CCBbO/oBmbcfxwf9+5YeJ3XBwePoJ06HDl3inx3eUKJaHH6e8n4o1fXZcnR0oE+BKmQD7uGC5EYaUkluRNs5cj8fTGcpld8TRQZDwGC9AmR0pJQdvWvnj63PsPBFO50bZ2fFdeXwDnt1NqcUmmXPKwsyTd+lWw5Opb/niXcADq03SflIgFQq683Wn3KnykZ2WvFSlKivW/UW3Tu3p0/0d8gTkpVvPXrTv3AXcfShWqgxrli5M83rkyJOX4VN/5asPuuPz40xq1Wvw1GXZbDamz5jBmK+/5vMPevBy1UqpWNNnx8/Hm9oVSlK7gqIOlah2Ehdv4dL1WwQ+iKJ8yaLkz6O4hLV5PL+b6cTExLB8yWJmTfsRm83GoIEf06lDh1QRcNy8eYPPPhnI4aPHmfzt1zRv0hgssZw8fYZ2XXsy++fvaVK3VvIFpROZ+9c4HbHZbDg4ONC3TxuKFcvLW53G4eLqxoLpUxk9oC+1GjRiz9bNDBk7IV3qM3z4cBwdHanX4CO2bP6OgIAnF4H/s+csHd+dwqvNXuL4/ol4uUYlnymT4O0iKJ/dkTj35/fHPpGTdxKYtj+GrVcsvNXQlfVjS1M0IPUmj1/uimVTYAKjWvjwainXfweymw8SmLQhhHWD8mb6iXci3t7urFw8lKGfz2Har1uJjoqiX/vXGOpuo1SJ/FSvVgI/v9Q38jKSNasnG1cNpVnb8fQdMIufprz3VBPw0d8s4Yef1zJ5XHc6tq+TocucT4IQgjzejvjmfT7azeOw2iSrzsXz65E4IuIlfdrnZ+qAonh7pI66zJ0oGz3+iiW7u2BNr+wU9rc/s9+3heDkJBjbOfczvXtLyM3kE6USFSu9xLq/t/Nux/ZER0Vy+OABvpvwLcXLlCMiPIzOPfqkSz3KV63JyJ9mM+yDboz5fhov139yCXhwcDBd3nmXqOho/t60ibK+z4+KlKuLM6UL56esT+pIhDOSe/fuMmv6NOb8/hsVK73EuG++pmH9+qk2Hq5auZL+H31I7+5dmfXzVNxV4YyUkv5DPmf4kIE0rv8KWDPPSp1pcIliaFIgjycdWxehbtVcvFTGj5sXL9Hp85NULZ2FYV0LsuNUPBFRFvp1KorNYIjhklXvasnZ2zBRFk+gR2jYBe+bH3Yza+4+9m3qj29WvRGHLSJQF7ZE6J3fjp52iktXI/jtG+VrL/KQ3UdvdYaQwgAAIABJREFU5EG93p6zwZdqfLRe31VrVOhg2EbKYvCjbDX4WtWefxClv47REFLrExsgVmOEZTSKTE7VOzbBXk+jAVdqUtI3XBeu1dbeHtYcj2LomnAGvF2Id1rnJW9pvWcDo6FrxNHjunDk3iv//h964+GPp8vhkp7bLaxu5kw2H/2zWxdkZdn5BH5r7v6Q32SjYWtMnP5hOmiM5VxdoNo6W5obe71c2Z83m+ajajlfyhbzYd70/Xyx4BYT3s1DkVK+bNz/gNrlfKhZNovOABjAOb+vPuxlDwtHwwTS4INWGgxrhGYb7YgYK216b6NCyWxM/qwKDs7GHS/146clym4IKBycqNj2L8YNrEDTl3MRd0M/gYo/8+gJlfH+QoP0BqROhv4aG24wNtb0wZgI/bs2+sE2GkZGaHawjTP0ueSMJjMKra/uVxvZm2mCTTL4uDMXrsUw9N0CNKnhh09xveTTEq638wnfddD+/xH9Owq7pTe6c3R24KdTCQTHwBeVHfHSGHe6ejrTbWUEzYq60L6sK/Ex+vdgHDcTNGFhGK5cchWk2MSzad4H27bvRP3GTSlboRIxrlmY9PlAgi6c4/MpM7gRdIUTB/fSuc/HeHh56Xxqa43vAMJi9WHjWB1lsd+ri6P+Zm+H6X3aHz+4nw3fDqDxx98SULYqFfPpVYQaFrb3dWfDysKFk8do/3prjp+7hLOzM76RBn312/Y9KIS/wR7K6Evfv5AuLOLt43GCu378MWI1lHVHM/7m9Hz8B67RIDVE006iDL+1EXEJhrC+jVkMZWnfi9FI0ttVHzYaukZr3qGbYU6gNcC8FnSF99u34ZX6DXi/34cULVYcL43qlfH+Ig2ra46Gd6r15e3prPhtr1C+HD9M/ZFGlUvp0kbcuETu6k25d3AzXp4e2ML0fd0Wq/lNtRn3NjEYXNbtaBpcpgVLfmyAJcHGN9OOUazhUtp+cpy8OdxY8Ncd9p8O5502BejXqWjyBaUyQwc0pG7Nwkz6aXvyiQ10bFmQzf/cIj4+M2r4/vdZczyKYSsfsPK7KnzUuRBZvVPfyHF1oJWWBRzwTEItp14+J04EWwmOeT5WDz7oXIxDJ0PoNfwguV5exYxN9ymQw4UPZt2gWF53BnXMR82yaS/11uLt6cyqafVY/tdVTl0IfeL8HV8twLod6e8mzkSRen24Nor7YRbWfVeRZrX8U13twyYlfwbaeKuIQ5JSvJbFXVhzPv19CD8tpcqUZdXSRXRs3YwOdSsRej+YkOC7zPt5MjXqN6bnJ1/g4eWVrnXKVaICr/T6gt2zxyNtTzaWlatQgew5cnDowP40qp3J47h5/SpdX3+Vvh8N4NspP1C0WPFUv8bevXtwcnKibt26D53LmsWb+jWqsGLjtlS/7rPy/K8pphIVS/lRsZSyvGOzSU4cOM2RcxEUy+dO9qwZK+35fFBjqjSYzP/61ME3W8o3wMiTw53YOCsPwuPJ6Z92OrImSbP2ZDSDm/pQvnjaTBitUrImyMa0ukl3Yy8XQcP8Tqy9lED758D9a5uGAbRpGABAdEwC+1Yf52hgDBduxencnqU33p7ODOhWiq9/PsmCH55sQ6piBbzYefBeGtXM5HHYJKw7H8/VtdXwcEsbdYOD9yRezoKSWZOe1Lco5sKIrdHcjbKR9TkQdXXr/QHden8AwJELQZw/eYzzJ4/i5Z2RPrGhYNX6HFo6g8CD26hU4PUU5xNCULhIUa5cvkyNWrXTsIYmSXH04H5KlS3Pu++lzoY5STF3zlw6v/32I1VYurdrw4wFy+nStkWa1eFpMCffSeDgIChewJPiBTxp3yRXRleHQgX8eL1lOXr0X8Kcnzvi6Zmyj4EVm65RvYK/OfHOIHJ6OxEWnXZS56PBEi9nKOrz6F91F0dweg5+9I14uDtRrZgH1YopH5tOHhk7VL3fvhjfzT7DH8sv8M7rxVKcb87qIDq0eA6+fP6DODoI/D0EYZEJeKVR+9l4zUbDvElLvQHcnJSPZBdH4DnT8PTLkZOaDZpQs8H/2TvrKCmOtY3/enp8Zt132QUWl+AED06QABGIK0QI8RsnrvdGSEJy40L0C3FyIxAixCDBIcHdlnUdt67vj1l2pnthF4In85yz52xN9VRXT5e8VfU+7zPiWFcFSZLoMXEKC996kj7dO5HZ7MBOocvKSlnwyy88+8LLR7iGMewLaRmZ1FQf/InhgUIIwaeffsKvCxbu9xqT0YD+KKmXHgxixnctbn9sCY/dfvyqJD77nzOYesvH9BrxLDdOGYBOJyG85UgSnNIrm/y8+jsTMz/ZwtXnHf5jnhgODBnxMnuqD2+s6Gi0SpDwheDHPQqDsvdtYW+pUjithR61NMHxid9XldO78/FJLrJZ9cx5fSjn3Pgrvywppl/3sF+/JMBkkjl9eB5mjY/k7mI3S/6s4L3Hex2LKscAZNh1FJX7yUk3N37xX0D/LB3/WRHk/JY64o31DfBCp4LVIJFo1uE/BPcvb8mJLRt+ONCs5yA8NZVMv/ochl94Fbb4RCQJqtLjaJLXlF59+9f7zkfvv8/I0WOIP6Zqlv9cpKVnUlpSdMTKlySJkaNGMeOZZ3j2uef2ec26zdto36r5PvOOJWKES8JEk3OHpfPSbZHg+8ZUdQi4aKKVbFGHpgq61epyil9NltJplZOiEPKqSXRaZbtAQWTV6FtbwEervPy2w48Agt4ggRD8uivIgwMtJFREVnfFXoUH17l4rYe5joQSTVjMi1cThwy6hieGaMJipYZ0pf2uN7h/UqVWqc6pSXtDx98K9a9iZY2HtQ4fH02IPGPKyTmqa0p+VROA1m9VG9EbKxsOg7bd7ee9gmoubpJIrkXtU27QKTy+uYJss55BKXYyTPteaytCUOIL4goJvIqCNyRIMco0s0be853ri4842WvW9U0Y2jHiT6rPiEyYhkw1oUlvV4fb8leXqNLRaqCSRd1eFQ2ZUXGqCV6hssh3/YVqouPu7U5eWRui0icQApSQoNADrqDgsZ4y24oiZLBVzkpKfYKb2oTbtNWgXojFpakNQqkBf2RtiL/KMnVZFpN6HPdFuRlr+5jDr24n2v7sDkT64IneH9/eXck1PWFoXlQf7KmOs170yy5VetHGyHhd5mk8NOsXxQ5KfEEuyEkg2xat+hdkuyvEI+vdjMs2MjzdgFW/73fsDgl2ugSeUPj/gFDonCCTVEtMS8ppwujPjjzh8tuNkX6kVTRsqiH8W6KO1JwaXlGZW00A1hIBd0b1QS2hrqhK3R+1+cVb1rLky1kIJYQQgniTnrVLf6PH4FN5/LH/YDSG27MQgrNO6c5/H7mHAb17ABD842dVWdHqkVplSXTqtr9XlXIvRGLkVFzn05DhNYxZxaQpO7ocg9o+UMxqN0XFqHY1jVZ8dGsIlx7NOyvXBE7QCtJFCxtbNGqRQQ0R0qhVwIzKN2tIs5badu50OOjargWFJWWq06GGqBd7NNoBCSb1e4hWtTQ7iqhxOOg1fBxTJ1/M9RecoT6Fcldx+5Mv8e2CJTxw3SRGdWujyheuSLCEHTt2sKu0kiqXhxqXF1mEOL1Xx7pdc9vZtx/W/hfb+a6F0dD42fxTM9excHkZn7wy6pjEa5UkibO7WDi7S7izesrCA9jq0hDXznXTxiwzNN2AJwQ/lQUYmCbXY3/HcPQQL8s4gkd2x7mZ1cgZmXG8tbuSUWlxdE9UD+TXNk/ktwoPr+ys4ILsRPJtRoQQ1AQVtrr9bHD52ezyYdbpiNfrMMs6zDqJ78r8NLMaGZMeh/0o+a0Y92OY7EWNM8BF01YyYXgWl513bGLd2gwSN3WODJtBX9gAeH+r4JKfQozP8JFukvEqgjmFCnd3OLGN1xMdcXqZEveRO30CGJ1u58tiBy/sqODafBuZUf7lzWwy97Sz8mWhn/vWunmogxWzLBFUBAVehT+rQ6ysCrHNFSLTrMMmS1j0EgYJZu3ycWaOkWHpx48a7coli3jojpt4/u0Pad702LhTZbfqwPibHqpLt06346yp4sV7buKi00dzz7+fAGDT+nX4/QH69+q+v6JiOMKwx8Uh62RqampIOEKnD/FxcXz1wVtMuPQq/li1ihcevguTKbKh8OhNV9CjYxvunvEaC3p34ZGpFwJQ7XSxaNlq5i35k2+W/ElVjZP8rDTibWYSbRZ2l1Tw5Gfzee7KM+nZ6vC39ZjxXYvdJd4G8595az1vfroVm0XPzI82MPmctkepZo2jY5rM/862M+VTN89s9mCVJex6iXNyY6/3WCLOoKPmCBvfAO3jzHgVwXdlrnrGt1XWMTTNRqbZyPt7qkkzyhT5gugkaGox0sZuZGSanUSD2kgs9QV5fkcFFlliXMbRiTCyu2L/MVj9AYXTb1hKToaZu/+7nhFDWpCTceDk4yMJSZI4v4VExySJuxd7CAkwyxI9kyXaHrp+SwyHgDi9jlLPkT3dlSWJ8ZnxzNxVye+Vfk7PUvfBPKvM1BYWXt/u4cF1HgRQ6FFINUl0iJcZnWmgfbwZWYr0QYNOYU6Rn7d2+GlmlTlazlhejxuzZd/9au0fK7lh0gV0O7k3j951K6+8M+u4iVtvj0/klmfeYMVnM7l5ymRsNhv2uAQeuv2G46aO/1RkZGZSVFh4xIxvgPymecz98B3yu/fjpssvomObCCdAlmUmjhzM4F7dOPmsy1mxYSubdxVSVu2gU34TRvQ8iTfvuJJO2UkqLQev08noB1/h0hnvs/q52w57nWPWWS3+2OxCCLHPjrpuaw1Pvr6O3z4cQVV1gNFX/sjowXlkpR8fkz9AvEnimhbqQd9uOLI7PjE0jAS9jCMYwh8S9Y7souENCj7YFGJiq7+2SxoSgl8q3IxM238IsNY2E+dlJxBCEK+XKfAG2O4OsLzay7elLhINOpqYDZhlHb6Qwh8OLwOSrQxK2f9x6eHG6l2+/eY9/c5WUhINvP1IFx56eRM3PbKUD2YcX6I1nZIlbm0VmWBOSq1u4OoYjgYS9TK7HI0b31uqFdZXCsY0+2t9cI83wB5vkCnN97/auqSpieWVQdJM4Ql+TU2I7W6FD3f7cQQFTSw68mqFf0p9Iba7FO5sY6Z13NE7Pdm2cR3tOtffKQ4GAtxz01Rue+DfDB8zjrNHnMLcL2YzatwZR61ujUGSJCZfcwOTr7mh7rMW/l0NfCOGo4GcJrls376NNm0b3rD8+KOPaNeuHUnN2jR43f7w7KszmTBquMrwjkZqUgJzn7ufPzdvp3VeDjuLS/lh4VJ+W7OJmXN+xijr6N4yj2aZKXj9Ab5dto78jGTeu/miIzLPxIzvWggEBaV+mqSrffwURXDtwyu4++qO5GbayM2EKRe059Jb5vP1zFHI8gkYSiKGowKjTiLNqGdNuULX9H1PoHtcght+9lPlE/xZrjA5a/+RE/aHRVXh046T4hr2T823GflgTzXrnD5aWo20sBnpEm8mxShTGQix2xvArwisBpnLc5PINB/d4+5VO7z7XABvLvDw/KztLHi7H5IkcdtlLRg4eRFvfLyFyROPfuz9GE4c5FkMfFDS8OnT97tDPLg0fBpk0cPBLjcVIfii2MHwNBu2Bly0jDqJVnaZh9d7UAR0S9TTPVFmbJaBOL3EVpdgl1tBJ0HHeD1X5euxNKYkdpixafWqfRrfn735EumZ2Yw+YwKSJPHAU//lxsvOp3O3HmQ3yT2qdYzhxEL3k3ux6PffOHXkqH3m+/1+brvlZr6dNw9Jkpg1Zz7JGs5dY9i4ZSuvvzuLFV/PavC6Fk0y+XXlWgZNuYv2zXM5tXt7powbQpvcLDyOapZu3MGuskrSE+K4/7xTGd293RHb4IkZ37U4c2Aava9YRo+2cfz35tbkp4LHG+Lfr64nFBJccXaLumvvurYrIy76msdeWsm0a7odw1rHcDhRHQgREAK7rMMVUnCHBDlmPbpD6HzNrEaWFgX2aXwv3ORm8lwfl7XXc24rmYu/9TNfH2JI+oF1y98q3Syt8lAdDHF5XvIBDRJl/iCXNklUkSkBEgxyvc+ONoqrg5x02xbO6BnHAxPC0UR2FHuZOmMrt09qSW5m+GTHbJJ5b3p/hl78Hb06p9KxdWJDxcZwgkAIQbE/hFWWkJFwhBRkCdKMf32aSjPKeEOCPU6FbLuGBKcInphTwXsrgrxwigEh4JpfAtzTSiHuADhAnpDC3FIn6xw+Mkx6eiRYgIblqwMCQgJmdLbW668JBh1da5uylsTuKD46Qk2vPfkQX856i0n/uosuA4YhhGDpz9/x2cwX+WDuD3V17ty9J5Ouvo6brprEu7O/JqbX9/eAx+1m5/atZOU0weFwUlZaQm7T5sQn/vUxtleffsx44tF95hUXFXHRhReQnJzMb4uXMP2JJ7jv1ht4buZ7B1T2r78v5vFnX2TB4mU8evdtZGekN/qdgtJyrjh9BI9MvVBFuFTcVtrnZdWlha9hV+RDRSzaCWGWd9F/cqnxKry+wMGnq9xM6mPnuR8ddM4x8sBpieRGn+iHBIU1IU59pZyXJybSu4l6cjB3a6pKG3Miq7hAqTrmZahCzZIO7qlUpQMlkXyfSz2wV+xSf9fpUQ+AzoC6XtEDunZwDzVC4o2WoNZKtVf71EabNqqDO6oeAUV9H21kFG3ZviiJ+CMZeaE6EOK57eUYdTpcwfCk71MEt7RIJcnw1++7xeXnvYIq+iRZ6Z9sxSLrqAqEWFXj5dcKNxOz42ltC+9Yb3D6+LbMybXNGvfwDCiCBzeVcFluEk0tBuQDXCB8WexgtzdAhzgTnePNxOsP7NmORrSTTVfa2e0Q3DrfS5tkHTpZ4ouNAS7tbOS6k82qqAeSTuLjtT5eWOLly/PjsWgew941IhWtz1GTM4O7ylXpQIG6z3mKI5GAPFVqVxht1JGqiv2rx5pkdZ7Jrj5JkBsw8LSEbq3ceEgj9axouAXR8vI+TYi76GgmUL//RkdFcge00YjUFdHmHwqWVnmYU+pAImyghoQgx2zgqqYNS3c3htlFNWxz+xmWaqdD7elQoS/I92UuPCGF83MSiKvtBx/uqSbLrGdAcuP738uqPCyr9nBmVjypB7hACCqC6VvL6BAXPnHqc4CiafHZuVzzw9Ij3gffWbKNNUsW8MJdNzDpxtv57otPcFRVMXXag4waearqeqMEV1wwgXYdOvGvu+9T5WlPAPyayBmeQCRd5lYrgDo0kVO00uVJmhO5nPhIOklWzz36nStUaSXK2AqnI9GMhFudJ4KahZRGflyEomTed6pDQSb0UIcXlYzqSDHRUVawqDk1wmDWpNXupCIq+onQaSTgZfXpZ0AjTqa19qLdIRVF4fSxY9m6dQsVFRVYrVZKSkp48ukZXDb58nqRUowi8ltLPnVUKJ0n4nLncrvpOHAMfbp14p7rr6R9q3wc1VXM/30ZNzw4nUvHDefuqy5Ap9Ph8nhpPuIClrz9JLkZYbtJ0kSdEcFIexlz878Z0LUDU88eQ4LdVk8SPvravfhuyR9Mfvh5bjjnNLq3zOWUzrXuMJr3q7jVz2Qdf0Ms2smRQrxZx01DE/AEBHPXenjtghS65YUbs/CrO3VWvMzT4xO49tMqvr8ymQRzbOV/okIRgo8La+iTZGVoqh1FCF7fVUlLq/GQDG+AFjYj1zZLYX65kye3lmHS6fArCs2tRqY0TSIlatJuZTMyu0hhjzdAdiMuH6X+IClGPfkHuVs9Ot3OrxVuvi5x0sRsOGDj+2hAkiRy4yVeOtXClG88dM6Q+e5COykW3T7D8E1ob2LhriAP/uTm30OOH/5FDAePCn+QuaUOrshLJtOkp9QX5OWdFZyeeehk3/EZcWx0+fmuzMncUifukEK8XkeHODNDUm3ooxauPRMtzC6qoX9S/Z1pLUr8QVrZTAdseAPodRLXNEvh/wqqWFDpPmDj+2hBbzDQue8grnn0OT6c8QhnXXYVw8ZPRN6HSIlOp+OJ515h/LD+9B04iN4DBh6DGsdwuPDySy/h9rhZ+edq9Ho9Tz/9NF998QUXXXLpIZVrs1pZ8+0nvPDOhww7/ypSkxPZUVBIj47tePa+Wzitd6fItRYzE4f1452v5zPtsomNlr1u2y5euHNq2PA+QAzr2Yk3772OkTc8xGWjB0aM76OMmPG9D0wbeWBHLENbmRjR2sx985w8M+7oRISI4fBjndOHR1HqyIU/V7jZ6QmQZJCZtacaHTA4xUbafuJkN4Zko8xZWQkMCYQIKII0o6ya2KsDIX6tcNPcaqB7ooUlVR7GZzZsfBf7gqQbD8xwLvUFmV/uItusp3+yjQHJVn6qcJFygN8/2kg0S8wab21wZ3gvHhhk5dR3a/hpR4CBTY+fkGwxHBzmljoZkGwj06QnKAQfFFZj18v8WB4+3bPKOsZm/LXQMZIk0cZuorXNSIE3SJJBVu3MCiHY5g6wuNrD2Iw4FGCHJ9CoG1axL0jPxMbVg4UQrHX6+L3Sw5h0O5lmA4NTbUjlrka/e6zQqc8pDBs2rNHrklNTeXj6s9x107V8/uNC7PZYeJ8TEQ6Hg38/8jDzf/4FvV7PyhUrePiB+xk6fATXXHUFSBJjxozhrAkT/lL5NquFW6+6hKsvnMjazVvp0jq/Lhyg4qzC4/Uxc/Y3FJVVMGncUM658wnuuOQsVfQRLaqdbqocLvIy0xq9f7XTzfMfz2Httl3MvOdaBnfvyCWjB9Gj7bET34lt1x4i7h5uZ9FOP99u2n+khhiOb2xy+ekSb65z3fArgh4JFnLNBtrYjGx2+3GFDj1kYJJBJt2kR5IkFCGoDoT4o8bLjG3lrHf5KPQF6ZFgYVWNF08j9yvxh0g/gMXAsmoPL++sIMkg80uFm40uH47asuP+BmThOJPE48Ot3Pm9mxpfzIXuRIQiBJtdfromhI/bfSFBskGmvd1EK5uRdKPMWseh+19KkkQTi6HO8A4ogjJ/kNnFDj4tqgkvwkMKPRMs/FbpbqS0A+uDQgje2l3FD2Xhxe+7BdV4QwpFvuB+Ra9ONAwcOoI+AwbyxAP3HOuqxPAXsXDBAjp16kyLFmFuW2HhHs44awJ9+/Vj6PARVFdV8ceqVYd8H7vNysmdO9YZ3hVV1Sxbu4ke50zljc/m8u1vy+jaJp/khDi+WrCswbLWb99Nm6Y5DRroAFsLiul43o1s2V1EpcPFnS+E/cn/3LKTjs2bNPjdI4m/R+8/hrAZdUw/LZ5rZtew5Hoj+piozQmHrW4/JydGQsSNiArZ5wspzC5y0OQwRv4QQvBeQTU7PH4SDTIXNklkdlEN2SYDiQaZjnFmfix3MSp9/7tIBd4AJyc0vOvmCSnMLXEyKTeJbLOBFlYj7xZUEafXkW0yHFdh+g4F/fMMDGxm4JlFXu49pfGdyBiOLxT6gtj1ujoXKJtex/k5kdPHJVUemh5mMnBVIMR/azke2SY9p2fG8WFhDfF6mV5JFqZvcTfo/uUKKjiDIZIbcUtb4/BRHVS4rlkyOknCrwie3V5BQBGc2kBoUC0cxXsO6vmONm5/4BHGDuzDqmVL6dy9x7GuTgwHiZ9/+okBA0+pS48aPYZhp46uS//fe+/Qu2+fw3rPV2fN5uZHnyEvM43LzxpFQUk5Lk94kX3XpInc9/L7jO7bDb1u331s+YZtdGjRdJ950bjzhXe5duIobr/4DCprnPSefCcLVq1n7bZddIgZ38ceVRsqVOmgV+18H/BF0lpyU1GxggVB4aoydJKEfZdTlW+OiwzgRquGIKFRX9PyXwPe/d/XnqImV2iHcq2fbCiKe6BoiI9CaWzXUE12i0a2oiY1+D3qZ5L1kbT2eRUNf0FLuPRGES61efW+qyGDRZPDtMSwvWUJIXCFFCRJUZFQ9+bPK3PR1n54F1UbXX7K/UHuaJmGvnZCrgqE8CoKihAMTbUxY1s5fZOsJOxjci/zB9njDdA6p2H3qLUOH00thjoDIt9m5OqmyXgVcci+7EcCjlL17mZ0mwxp2r5e4zLjdYVItErUFIdVX8WySHxfS7Em3rbmVCFUoz61MkaxN3WymvykRVz6/vuNtr9qoSVNHgy0A7f2XtFprbK1TXNtSkhNLAv6I+8hoDlNcGik6n0aEnR0P6v2qQ1XLVlzb3/1hIJIhMmI2n7mDSn8WO5iTPqBG6oHgnmlTnonWhlWawAvr/YQJ+so8wfJrnULmVsaXrjuC4urPHSKOi3bHxZVeRiSYquLmHRaRhxdvUFkCTIPYuc7LiMb1hx5A/ykqAW/1aB+Nq38eDIRiXgPZYR8HjrYfLQIFiK5PaprRWWR+kbpEaOpVZJafEXyq7+rC6hPIaSAur8qDsv+81LUxpnOpiZVSnLkHUghjS5GI8EohD7Svg391OOE7FaTuENWTTvyRhE9DQ2PMVJQ/UzR1wu9hmCpGVM8jYwxeyXiC4tLMJrMKoLmXqLrd999x+aNGxnSswsmf6Te0aRKqVJNOHUv/bHB+5btKmbao28yZ+pZNBES4OGyX3+naWIcy597lXZGAyangxl3/psJnVupvqu3WRBC8MI7X/DAmH6UfjMnUg/Naa7bZOD7RSt5YcIpuNesxB5n5Yd7L2N7SSXJdivWgAslUOv+pdcs8Pdj9B8unPjnzscBvtkjyDBDTcNRpmI4DiFJEuc1sTKrwFEvb53Tx1qHl/GHgfQVjSJfkNZ2Ux3RyyBBvtXIh4U1uEIKNllH53gzP0VFwnEEQ3xf5mRRpZt5pU56JFgwNrIg8CmCOE2kgDSTnlyL4ahJxh8NhIRgzk4FmyHswhDDiYW2diNpJlnV3iG8MP682EELq5H2cQ0bKAeLIl+QdlFx8VtYjezxBfm6JLxx0s5upMwfZKcnsrGwxeVnfpmL5dUefq9y0+8AyJJ+IYiP6muyJJFnMZBjPvAIRScCvv1pAQBu75ENzxbDkcGd997P22++wcaNG1SfFxcXM+VoDiIAAAAgAElEQVSqK3nt9TeIjz98/vy7qxwk2yy0yYhEfRnZKpe3V27g+53hhdpF7fJ5fuVG9kbkE0Lw5qpNvLF0LS8uWo0EDGjR8M61y+snwWrGYowslNIT7JzcKpeWWUdLN3bfaHDpLUnSvX+hTCGEeOgv1ueExA3tJF7dKDj7R8EVreHS5H0rZcZwfKJrgpE3drjY4vKTZzFgqDVq55Y4CAjBrD3VTMyKrwtHdqiQpXAotb1YWu2lyBekU5yJL4odbHL58SrhSXtcRviab0qdOINK3dF83+TGJ35B/dBSf0fIksTMIQb+szzInB0K9/TQ06txDk4MxwkkSaJzvImV1X62u/11RMciX5CVNV7SjTJzSxyMbMAN62AhS7D3YGVvtKNsk54Ug46XdlSwyxNAAdY5/eRZjPhCCrP2VNMp3kyJP0i3BAtZB+CKJgQcOlvk+MfYEUMoLa9g7IVXMnbEEB677VoSDqOxFsORRXZODl27dee7ed9gMVvIzcsD4L//fY7y8nIefOB+xG3/YviQQYflfkZZJhgVFnB7pYMnfl1J37xMVpdV8cLKjexxebDqZXZUO2mWGMe8rQW8v3oLA/JzKHK4mTa4R6N2luD43ZBp7Nzr/r9QpgD+UcZ3glHilo4Sp+cJHlgl2OTx80BfY50RF8PxDZ0koZfgpR3V9E4yc1ZWeNK4umky1UGFXytcfF/mOixhzyBsLO497qvwh/imNsTaF8UOMkx6/pWfwh/VXuaUOlnj8OJVBOudPm7OT8VyECTJdJPMmsNAVDsR0CFZx9tDDXy5Q+HqnwM8IgcY1TIW/eREgVEnsdbpY73Tx+S8JPKtRrLMBu5okYojqPBeQRVt7CaaHybfb7nW3Qvgt0oPQSG4uEkCj20p5+ImibS0GpmxrZw/a7w0sxhY6/TR0mY86Igr6SaZEl/wsNX7eIUsy1xx4TlMOG0kdzzyJAPPnsQXbzxHbnbmsa5aDAcIm83OvXdN45WXXmTZqtWg13H33fdwySWXsmjRIq67+TZW/f4LJlPDSsoHAoMs4/YH6na1b/r6V67v04mgovC/1Vt4cdjJWPR6Rn76PR+t3Ua3rFSeXrSaO/p1ZniH/AO+T5PkeKrdXqo9XhIsh/f07FDRmPF97OKwnIBoGS/xSh+4d7Xg7C+9DMiR6ZKmo3e+TLLl73PMf6LDrwi+KHRT6lewyxLjs6y0shmpCIQwRy2YzLIOs6xjZHocT28to2+S9YAijDSGljYj35c5GRmyExACWZJINcp0jjfxQ5mLk+JMrHB4aWs38VulB7NOYnxG/EEZ3mX+IFvdAUo08en/zpAkibHNZFrES9z4i4fPN/rpnqWnT8hHpxwjJn1sMXy8oMgb5IdSH+6QQrs4E3lmPc0sBop8QVUfTDDIJBhkRqTZmVPi5OqmSYflVLGNzcjiKjctbEZcIYVss54EQzhu/uKqcJ9zh0Jkmg0srHRjkXUHRZAMCcF2d4DKQKhR97ADgfM4J1zuRVJiAi89/iAzXnyVPqdfxNhhA+nTvRO9W+bQMjc7diJ8HOHjD97nl/nfEwj4+ddtd3BS504UFRVSVRXxVzeZTLRs2ZKWLVvy6YezePmNN7n+6qsO+d7ZCXaSbRa+WbuN/skJVHp8dMpMId5k5IXf/+S3PWVU+wP0yEhhZXEFmytrGNY8h0FND3wxV+Xx8uPGHRhkmY2F5fTMzznkeh9OxBQuCSt7LTlNbdhUONQuBlpikepar0aq2+TjjyqFdTUKGxyCzU6Fc/J0nJMnkWBV/95a5TpbknpVKUcRy7TXGkzqOmmJkAazJj+6LA1hTUtUkA5G0llrFGoIbSI63VAeqP0xUIsbKQENUU5DJglp8qMJe3uJnmUewTU/+Mgww5AmOhYXK/xRLnjyZB3T/1Qwy9AvQ6KlCfJskd/z7a2wpkbh7vZ6FKH+7UIa8qq2rUS3j70ktPcLqmhhM3JyopVntpUzITOeJhYD6xw+Pi6qJskgM7Vp8n6l7YUQbPcEWF7toSIQIs9ipGu8mXSTnnd3V7HTE6B9rYrl4dh1OxoKlyvPUu9UR5OchaaZ1FN81ChPBhPMLNgTYlWZwqoKqPEJpo+w0quJAYNF2y/UbV2OculprB9o26+IUudTnOpTB8WpJiZrSc7aZ2wISqME6f1Dq57ZELREV0XTP4MaNUIlqk/uj7S+sFjh7qUhzmsmkWWFNzYJOifDpHy4cAFMbAr5Vh2dEiG+lvTnC8LUZSEm5uoYmqFD+wh2S6SesmaRpVX4LHRa8IYEk5Z6eK27hc0OPS9uc/FI+3iCiuCD3T5+KvcyLsNG76T9G9w+RWGNw8eqGi9GnURTi4FeiVacQYUXd1QQb9DRMc5M13jzPonTB4O0vGwun7fiiPdBX2mEqKyvUZMkFYc6KEG0AmBg+zpVnquglDV7yliwZTdLdxSycONOOqcmcV/vk0g2mzAlRVjAQY+6X9ga8cU1xqld7uLatq77X2dXk9CljmrhH6dJrZbqjJoz3Jr5w69p61r3BUd0EAZNnlXzvrXqkNGqnVqSsfbEXDsFhKKJ6JphQPtdl3ZOFBAMBpn+0D38+sO3XHH9TVRXVfLKs0/xxFPPUFlRwczXXuXcCy6iT89u9O7Tp05gad3KZYwcezorFi8kNSUF2RWlFLxno+o+fk178BQWq9JVm3bx+frtfLlxFzN6d2bGqg0YdDqmntSKLYVVTFu5mi0OFx8N6IVpj3ocTWwaIegWBnx8XVDIkvJKWtjtDG+Xy8DcDD5cv50nFq+hT24Gp7ZswphWeRhkHeZkNbk3uq3JZvU8aUjNUKUtY6bGFC6Pd8iSRNckma5J4UbrCgW4648QWWYdY5sd27r9k7GqNMSNP/o5q5XMlW10SJLEmKYyL6wOcvOiEC/3k5mzW7C4VPBMsWBaex29U8N9bVyOjt/KFS76PcD1raB78qFNpkkGGVetYZNnNvB2QRUd7CZGpccxpWkSv5S7+abUSf9kq8rX3BlUWFbtYXGVB4ME3RIsdIgzs87p4/VdleRZDOz0BLi9ZerfitB1sEg2S4zN1zM2H2wpZr7f6ufyL1wsujyBRiI0xnCEIITgzY0K/7dZYXovmZPiw5bDgAyY8pvg6z0ST/eABaWCz3crPL8JXu6pI94goZMkrmkp88CaEJ/tVni8i4z9EE4yzLJEnF7CERQkG3X4QoKHNzgYlGpkfKadPLOBVQ4fBp1HpQEA4TCfiyo9/OnwhoWxEiyEhGBBpZs/anwIBB3jTYzL+GcLr3XITqVDdipXDujCnhWbeHjxah5bupbH+nc91lX7x6KyvJxbp04CIXj3i29JSQlHYel+ch/OHTOMXxcvw2y2sHzZEt5983UGDx7M0888A0CH9u247JKLaNe5G1OuuJxHb5l6SHXJibdRURtasENyAvcu/pNN1Q4mN23Ka7268caWHby8aRunyvG0MUcWawFF4ceSMj4r2MM2l4sRWRlMatGMbU43//phCQOaZLC0qJxXR/ahZ/PsQ6rjkcRfMr4lSeoB9AKSqB8x5R9HuGwMGWaJCbk6figRjG32zzWIjiU+3Bhkxgo/D/UxMiRPrwrhuKZCcHpTHSlmiQtbht/Pwl0K9/yh8GJPHVkWCaNOYnoXAz+WhPhod/CQje9ci4Gfyt0MToUzs+Ip9QV5t6CKl3dUUBEI0SHOREAInt5aTu8kK90SzHxf5mK900fHOBPnZifQxKyvO8ZtZTPSxmYkKGBIiu0fbXjvC0PzjXTJ8PHDtgBndI7tORxtuAOCaYtDFLnh3cF6MqxS3a65KwCFbhiZDdlWiZOSJDw+if9uVHhkjcJjXcJ97aREiQ/6yDy4VuH7YsH4nENr463idCyrDNE7SeI/HeP5ozrAq9vdzDcHKPOHGJxiYUW1l+/LnJyZGY9fEfxQ7sIdUjg50cq/8lNUC+PmVmMdUbON7e/t432wMMoy13dpy2mfz8cTDHHoXsMxHCzW/rGSGy+/iFPHnsH1d9yLXh8ZB9f8sYI+/fqT36IlLVq24uzzzkfxOhnQvz/vv/8+5513HgAP3ns310y5kk49enHjpeeQnvrXI4a0SUlgS6WDUo+XYbmZ9EhP5qmV67ll+R8oQpBkNDI0M52Ht26jmdHCdem5zKsp5+sdq8m325jQJJtB2ekYakV2+qSl0LNlJkUuD2e1yaNz2r7DhB4vOKhZSJIkC/ApMIJw4GdBJAC0iPosZnxr0D9V4oXNCnevEIzPleiZGjOOjhbcAcH9v/mZPc5M6yT1WtEZECwoUniyZ3gS9YUEshSe6FvGwWYnZEXtlPZP1fHKlhC73Aq51gPzwQ4oAndIsMcbYn6pC0dQocwfpENU+LQ0k55R6XEEFEFzq7EuFODgFBvvFVSzsNLNwGQr41rsm3QpS9JhD8f2d8PpbY088oub5SUhru9rJc0W42EcLczZGWKPC94YKGPSHMEvLYcOiWHDG8KxiYWAi5pLnP2rqCVlhfNkncTYbInXtiqMzznw91cTECgC/lcAS8q8lPgEVQHB8PTwFKiXJLokGJiQbSHVYCTPosegk+ifLLPJ5eO9gmri9DpGpcXRxm7cpztYokEm8TiMn3+8INViolNaEld9v4jRbZtycedWMR/wo4jpD9/LxAsv4/Lr/lUv76vZn3LN1GuQJIlgMEgwGCQtIYGrr76an376qc74BshIT2fcaWN458PPuHnq5Qd0byEExTUuvIEg0+f+xo49ZeyucZFhM2OpXcAmmoxc1i6fdlY73ZITaWqzIkkSpyp23i4v5NLtazjFnsSL3bvS1BZ2PZI16pZdM5Lr3ft4xcFuAd1L2PB+BPgemA9cApQAdwIW4OLDWcG/C+wGiVd6yqx2KNy1UvBKb2hmjw08RwNWg0S3dB07HUo949uqB5MMvhDoJcHYb0NU+sCuB3cQbm6rLkuvkxiSITOvKMTk/IYn/xKfwrfFAeaXuJCksL/d0FQ7AUVQHtAzThM5oa29/n5QnF7m8rwkgorA/DeQgz+WOLOdkWaJMp9uDHDlZzV8ckHCfn3qYzi86Jsp89TKfZN/LTJ1PtzLygVTFwn0ksCmhxZx1DPQuiVJOIOwvkbQNn7/708IweIymLVZsLQCDDrItsD4LD0Ly0P0TpbpnChTUetSqpMkhqabcGqEhFrZTNzWIhWjTjpmJ0qekoLGLzoB8NSAbiwuLuf51ZuQdRIXdmrV+JdiOCzoN2goWzdt3GdealoantoY7XfcchPvvvUmdrsdSZK47/77610/6ZKLuXLK1dw0ZVKD8u4Oj5dZPy/nxS9+pqTGRVBROOfkDpzXsQUfrtnKY8NPxu6KCKQ0j7eTnafm/hgkHZNTc5iQlEGCrCfR1niY3RMBB2t8TwA+EkLcK0nS3vOGAiHED5IkfQ8sAS4lbIifULAmqI8Jk3PVaX0UubFip1rBMqlGndbCV6vSmG6SGGWTWFsl+KUIsvIgJUttcJns6oZntERekT5RQ8ZMVkvX6WzqnU/Jon4GnSVStq4Rx1ctATOaVKnTqGpJms4nyfs/ctWSQhuDipQmtOQRLXlTo54ZpQx2mW0nXy8s5+KLO4TznOG8KmcQ09crSRzeCl9AYPh5K3teakt5sQtPQJCXEv7NFE9kgLir1MvQGcUMybLSPc9IfqJORWITIYWft/i478NKzulqZd54O81q/f+dZXvJIzLgxlOlJhvVVKqfIVol0OlXt40yj/o9aNUHDxcSTEdHPSq1uXoxok+NtG9tWw8WVKnTDvXvqI+LaoNRO619UqBvHzNt79pBtd1OWpyMoZk6KLguehHUGJlYSzh0+qL+1yh2BjRqttpINFrycfS1GmZVdF/eVz0lQ5Ryn5Y0qr22Xl/ffx/VXtsgYTqqnGygy7b1rG6awhl9w7tTe59/yYJKhLuC5mNz+PTrcq4ZrnDbqQmUOxXMBokUe/3d5OvSanhzuZMbeibRrZmZtOxI29HVjns3vLSdxbucXDk2lXf7JWGrJaCHymqI3vsLlqrHb39NpC2FAup25XOq+4KrUq0+WFYT+a21RHytym5DsBrUbSMxJxdWlhzw9/8qxB8/1P2v7fXCqxZBKl24tO5/b7laRbZic7kqXbY+km4OjPXH89GC9bRa7SHJpm7LessOVTq1jdq1ocnADqq0nBTpv1Krk1V5lQa168GeGvX7/LM48u6dmv7o9GnSXnU61ADpWZuXbFe3BWO08FI9wqW6j5k1gmjxURG3GiN65sRHbIJRZ5zNmYN7cfcjj2O1hcfTvZF4PC4XNQ4nAQV+X7iQOfN/pW3L5pSXldEkNxdfUMEcNe/36tuf5KQk7nx0OmeeNoquGWZMxsgzygkpONweul31CCe3a8Ez15zHKSe1rFtIB6squKT2Wl+VWuDOW65WIU1oqlYLjYbe1rAdoyXnWtPV7cGYEDVuxKnJurqEIyvCc7BbabnAT7X/7511jABCiCDwPnDu4ana3xdxetAEAojhCEPWQY2r/s7bA2/vYsIpqWQnG1EE+IMKeyoCpMXr6wxvLbIT9Ew/M4nvN3g465USpn1ZXe+a5391cv+oeO4bGV9neMdwfECnk4g363D5/gnyJ8cPZJ1EjVv9mzs8IR76sIg7z8ysu2ZjkR+TXiInSb9Pwxvg4n4JDGxr5aX5VXS9Zzu/bVAbhoUVfv73eyVzHmrLpUNT6wzvGI4P2CQZ78GE94nhkKGEQkiShNfjUX3+/bw57Ni2lQnnng+ATpbZtHEDCQkJ5LdogdFYfzNNkiReeeZxHE4XU26+k7ZjLql3zTvzFtC7fUtm3XcNAzvFXIy0OFjj20Fkt9xBWLwrmk5aDcSi6jcCsyzh1sYIiuGIweUJ8fDM7dw7uVndZ25fiJe/KOKbJZXcfWFYotZq0tEy08Td7zUeU3d0RyuvnJ/K5L5x2IzqQWVDSYD1xUHGd4yF1TheYTFKMeP7KOK75dXsKPZx3qCIT+aOUj/XvrKLISfZ6d3GhhCCnvlmflzn5stVrgZKA5NB4tbRyXxyXQ7NUw3YzeqpbOa8Us7ql0yiPUauPR5hkiR8sTDHRxXPPfYQ514ymeTUVCDslvXL/O+57/ZbePDxpzCbzXg8HoYMP5U7/3UDbre7wfLatW7J8088wlsvPIPdqp7rFEXhhdnfc82Zw47Y85zoONiRaQvQGkAIEZIkaQ1hV5Q3pPCy5kxgVwPf/0dDCMHcQsGHOwW3t4utAo8Wnp+1g3ibHr0ssb3Qw6xvS3htdgE928bxwT1tSLDpWbfWwcC7N3H+KUlcNSL1gMpdusPHawsdPHOm+ijrjUVuLuphjYm6HIdw+hTuf78UX1CQlRgzzI4GhBDc+9YuhnaJZ1uxD6dH4cWvSvjpzxouGpTMjWPTAXhqTgUzf67irvEpDG57YH6dT86pwOlTaJEZORL3+hXe+q6ULx5oc0SeJ4ZDwza/h+cde2hr+Hv47p4IWLd6FXNmf8yM19+hsGA3S35bwMwXn0NRQtx2z/30HzgYgFGD+pGans5/X30Dq7Xx91NZVc21t93NsD7dVZ/PW7KaOKuZvh1iPv37w8HOPt8BkyRJulEIEQJeBv4rSdIWwlFOmgPTDnMdT3gIIdjmgre2h9joAJMOHloj+OLIuhTFUIu2ze20a2bjpmc2U1DqY3TfFL58tD2tm0RW6/mZJpqlG9lc5OPFb8oI+YNMG5dKRsL+u8gfe/zkpxoY0jrsVyeEYM5aL/9b7eGna9P2+70Yjj68AcH8zT7u+boau0Vme1mQZ7+r4v7xsU54pCEEjOyZwJptbi58YiuKIrj81DSeujSbuCjBo8Htrbz0fSWLNnvYXOgjJ1HPTSMSGzyunr/OzfUjkrCawjvfHr/CPR/sonO+ldY5f5+Tp2DliU+4rAgF+MZVwWxHGYk6Pd95K+ltiqcvCY1/OYZDgsVs5bQJ5/LGi8+xY+sWWrRqzU3T7mPY8OGq/jV42Ah++O4bvpj9KV9//gkXX3Ip/foP2G+5lVXV/LFmHZ8+GaH5bdy+mztf/ZBbzhkdczVpAAdrfP8HeIfauE9CiBckSTIDFxL2AX8VeOJAC5Mk6X7gPs3HxUKIzNp8qTb/SsIxxRcB1wgh1kSVIQhzQ9oKIbZGff4mkCqEOO1A6pLWp4kqHU2cAghVRI5gMruod0a1hCZRS85buSfArBVu5q33oteBUZbIjIfcOJmtVQpNW1mxakiUhhz1QKSLj6w+tSRJWZuOUxPWdAYNAVOOTHQ6fcNxaHUGkyYdKUtnUpPf0GsGT1kz6emiypI0vpdSI01Qiqqn8O//OgCx72gKF3SAC67WfDekOVJTfPze180t989j5vsrALjpnvGkdskKZ/sj14d84SPxfs2Kmfb51yxKP4mFy4v45OutyLKOL94eR4duEe8rJRBpS4lutX94oEZNJhEeNc1JpfCpaZP6TLWIhzE1XZV2/LKy7n/X+lJVnqtcXVY9pcIotyijRQ+rOOJInNhLU4fIb6F9dkuXFqq0bFK3OUlvRFEE7/1vG7PnbeeXZWW0zLPjFjKjB+RS+X0BrXo1J25QSyRNX4hu+9HvDkAE1e1ICWreV3IkX/FrvqshdGlJlNH52jFFp4mEoyU9a/u6Th/hK0iyuixJ13Cfix4ntNfWK0tv0ORHE10j48TTp1C/r2v664gRfn4ZWUL/8W9TXePDajHw4EuTMBhkREj9u0uSDiEEvZfPZ/afxbQItefTr9by5bebGTGoFR98MI6kpNqxU9PXQx61UmNQ0yej31t0vwd1mwTQW9Rjn94W6ZPOVX+q8nzr1Aa0t0RddrSiq6JR7zVl5cKPazjSqFm1ou7/oFf9m3tK1GOVtzxClKverSbJ7VwdHm+qlSDfeipZ6HFQIQKkSgaEgNSQmQL8bK8OkhRS+yC3SVS35fim6vBxtjy1TLg+K7/uf5ddrUpYVqN+X4UOdZ90ByK/eakmz6MZE30atddSR4RQrQ15Z9SQJEs0ZWvzo2HRkCatGjXqzKjfJ09jAyRpiNiW2vu0a9uGx2e8gN2oqWcUKVqW4NFHH+GDkzpw7dSrAWjVsiVDBoVVQnU+NTFZV7ad5GAN2WnJvP7JHGxWM5/M+5nVm7Zx/5QLuGjiaXXGt2RTz1VySmR+NPrUxPQ4nfp59enq9y2ir1fU70iXqNn00vRXoWhcDaPHc81966UPMw7K+BZCOIENms+eAp46hDpsAAZFpaN/zduAmwlHUNlAONTht5IktRFCODTfeQQ4j+ME/1vjYdrXDqb0sfLWWBvfbPUzf0eIZ4aaOf0TN++cZomtCo8zfDlvI9/M38yy766iW4cEVq8vZfceB+mpVlasKub35UVs3l6NJIIEAgofz9nGpImtufbeXzl3XEvemzGMbh1TY+/1OIDfH+LKexaxaVsN15yXz7PTujDhxt+5bXIb0lIsLFtTyRUTWzReUAxHDX5/iHse/4kBvXJ57/kxxNmNzF+wk/4nN8Hp8PL78kJ+X15EZbUPvaxj07ZKCktcyDqJZ175jbPHdeCJ+0aQmXl8i2v8U1AY9PPv6p10NNoYoU9BD7wfKGKSMYfZ/lJ6k4gtJrJ9XGHrli08+vBDPDXjWa68fDKVlZUsXbqU7t27s3nrVhYtXsqqP1cTDAbReyr5cv5CBvTozBNvzGL8kH7cfOlERvTrgTFGpm0UByuy8wbwshBi0X7yTwamCCEmHUSxQSFE0T7KkoAbgf8IIT6p/WxvTPHzCbu87MVzwM2SJD0phFh2EPduFC6fwp7qECWFAUIKSBLorZAVryMnQUavCcsVCAlm/u7ixYUuPrgoiQ6ZBnbudPHaygBfn2vn2UVexrfS0yYlxr4/njDz/RXc858fuOvGU6hx+Ph87iYuv3kuIUXg94fIz4unV9cM2rVMRoT8hEKCH/5vNLc+upin7unDGafmN36TGP4SSip87NnlpMoR3inV6cCeotA020JqorHeYqei2s8ldyzGbJL59q1hmHUBXvt4GykJRiaf1ZxOZ3zLR8/0RW4gpF4MRxc+X5CJl3+Cxxtk0nmd2bK9ipkf/Ml7n65FUQTBoELPzhn06pZFi6YJCAGtmicybkQ+7Qe/Tdn62zFqQyrGcFgQCIUorHaxu7AMTzCIDgmdJGHxBmgSZ6sTSdkLIQQbAm6ertnN2dY0hliS2ODw84avgOH6FCpEABchOhK/nzvGcCywfv06zhw3lvMuuJDMzCxWrVrF5ZMnU1xcjBACm9XCyT26061LZ0wmE1TqeXradewoKEIoCq8/fGtdWUKzmx1DfRzsaHUpYb/vfRrfhH2+LwEOxvjOlySpAPDXljut1n2kOeHIKfP2XiiE8EiS9DPQF7XxvRj4BHgcGHoQ924QK3f7Oee1ElLtMinm8LGM2y/wC6jyKpS7BNkJMs1SDISEYEdFkKLqEG3T9Xw+KZncWkLXzFV+xrYyUOUVfLA+QJd0Hb/sCjIgNzZZHA9Yt7GEyTd+TteTMnn65d9IT7VRVOLg09dPp23LFEwmGbspciAT8rnw+UP83+dbWLi8hHdnDD+Gtf9749HXtvDih7tokm4i0a5HCEG1M4jQ6Sgs9REMCZplW8nNslFa6WP7bhdOT5CLT89n+p3d0et1+F0+nn57E68+0I2bH19FUamXdz7fTnqKmbysGOnreMCjz/zMjwt3kJ5q48W3llFR6SErw8bW36+iqtpLdroJfdRRvSTp2L3HwX3TF3JKr5yY4X2E4PIFOOPVz6hweUkzmzAbZAJBBWcggN8fpNDtId5oIMtowq7XU+j1UujxYkbicnsWPUxhV8idipcagnSU7Tzs2wbAWhy0J66h28dwFHHhuecSH5/AWzNnsmL5MrZs3sykyZO57rrrqKioIC9V4xK7+09+WrKKl2Z9zh2XHzdOBycMDveIZaN+bP6GsIiwQb8eSAfuBhZKktSBSMjCYs13inSqpLkAACAASURBVIEc6mMasFaSpJFCiLmN3ViSpCsJ+5LvE3uqg1z2dhlPT0hmdEdrnc93zuNhsYAEs8SglibGn2Qhwa5H1kGzZD05iXoMUWIaNV6FWWv8fH62nXt/Cvu2NU/U8fBCH9+co6egJkR2nC7mqnAM0bZVGu+/PIE/1hYx7YZTsNmMEIqEOnv7w9WsXlfE3df3IBgUvPT2H/z37bV0apPM568MIymhvjJlDIeOWXMLeX9OIctm9SG11pV42x4PXS8Ni3vkN7Ey+ORUxg3KxBuSSUs20byJnYwUk8pv+9PvCshKNdO3ayrDJv/CpWc04+ufC8lKs3DjJa2pqfKQkfr3IeediLjxqj7oJIVW+cmcf2ZHEJFpJCHexGU3fsnowc05a0xL1mwo58mXlvPFd1u4dGIHHr6t3zGs+dGB8JUd9XuGFIWrP5hHp+w0njhjEN7SsLDV5Nk/sbyoDAnonJbE4CYZNFMMeEIhsi1mssxmyter/cN/CVbSV05kuxLeET2ZRH6jklwsOBQZs6TDIMUUfI8lZr79Nu+9+w6TJl9B6zZtMEUtdj0eDxdcdjP3330n+c2a8fmXXzH9iSeocbr416Vnc/bIQceu4icoJNFIrE1JkvKAZrXJH4GHCe9+a5EM3AVYhBAd/1JlJMkObCVM7PwdWADkCSF2RV0zE8gSQoysTQtgohDiY0mSngf6Ad2ANzhAwqUkSaJ8VjcgrHj42rxSXptbwnUjUzmvXyIlNUFKyn0kWHXIOomr3yompECCVWbNLg9DOifwwrXN9ink8Mxnhazd6uSlK3IIhgQ6ofDSd5VM/6qMdjkmVm730izDxDWnZXD+oBQMOWqVJdkSIS01RIIE0Bk1BExNWjJG7TLoNTsOOg0BU685EjRERYUwqOuIPEiV3OhStylfMLIY0ba3oIYAoVXsipb/1uZpoS0rGHW99r5amWi9ljATRTr7v5ef5/lH7sMen4DP46H/8FO5+Lp/0brDSfusl0mvXtN2sERU4xAadSXjKFVynUOd3874dSRRs0KVV+8dagltgagJUHNfEVATpLwlalW5oCtCQhMhhYRBPyKEOGIrREmShG/thQD8uaGSx19dzU+LivnqtaEkJ5ooKfdRXO6lW4dkvpq/m2nTl9MmPwmXO8COAgePThvM1Mt6RBUYfn9CCLoMeYl/TzuF0UNbEAwqSCLI4IkfsbPAgdkkU1DkZPiAPO65qRddOqhJq0JDqFQ0hEuhaEmUoejMBp9Zq9CqiyIraomMDfZlqN8no4nN2nahJT3rNIvHaJKzto3VS6sPGtfURH4PT0D922n758HgilFD2Lp+LWnZ2Tirqznr8imcfslk4hLD/t3R/dskq5/v5FTN6UboR3Vap/H9l3Ij/3tnq/MqflGnjZpoOdG/j5bUre37mnxf6ZZIll9NQkSfgq3zG0e8D+68axIhReGrddt57qflpFlNTB/YnUqvn+1byvEqIdrY7czYspXFFZXkGE3s8fuwCB3XxWfTVB+ek6oDkXddEPLxlGMXN5ubokdCAAXCx3u+QlJ0BsqEH70kMdyWzNlxaXQZ105Vr5xhvVVpUwc1MTuUEQlnV6VTt8/NlWr3h+2V6t91c1lkk0WrNKlVqdQqXAaj8k0aAmW5Sz1OOL3qvhBN3tQSKi2aU5y2Wepnyo5SrcyJU9sAmRolTatBq5apfkZTlOudQUOAljyROWDbjp2069mf5MQE4uw2MtJSuXXqZMaOGIJOp0PSjoONkLoVW6TfuPV2VZ5fQ0TXPoPDH/ntjBrXQZussR/8Gr0A7QIvqt6Sps9JAXX/NOR2PKz970B2vi8jHHFE1P7dVfunhURYdOeyv1oZIYSzNnZ4K2DvqJeJOnZ4OvV3w/fiAcKxyC/4K/f/fb2Ti6Zv4dRuCTx2QRb/92sVj31eSlaSnvQ4mS0lfi7pn8g3D7RizrIaPl9UhW+rwheLKrnxjEy6tlBHAfljm5sXvizms5vzANDLEiIkcfXwZCb0imf+GhezpqXzv98r+c9Hezh/UCzs2fEAl9PB8hXLqCovp33X7rTv3JVmLVtz1/TnSElLJ6NJbuOFxPCXcNdTK3jv861ce3FbTumZwVnX/ojXGyIz3UJinJFN22t464kBrJhzLu9/vpGPvtpMtcPPHY/MVxvftXjsuQUY9DpGDQn75Ov1OlB0/PzpOSxdVURxqZtTemdz0fVzeX/2hnrGdwzHBkW7d7F62WLscQm069qNtl26MmDUGNp26krn3n2RTbHTpiOBaq+Ps9/5GqvRwKSOLVhXUc2Qj74j0WQgUdLjCYVIM5m4t20bNlormV9dQYHfx+6Qj8U+R53xvRdeofCuu4j++sS6nW0JyJXM3GJuxgbFxcCkeHQS3Fi8mVMssbCDxwOCwSCrV/3J2g0badu6JR3btSUpIZ7/vfMKAD27nFS7jIrhr+JAjO/ZwHbCfeYN4BXgN801AnACS6J3qQ8WtWEL2wLzgW1AETAcWBKVPwC4dV/fF0KUSJL0JPDQPurYIPZU+Jk8Yxv3npfD4o0ubnu3kJvGpPLWNU0wGXQIf5A9lQH6P7iDjAwLlw5N5ay+SXj8CkIv19v1Xr3dzcRHNjL9yqa0a1J/okiL13N2nwR0FpkKZwh/UHDXW7t5fFpivWtjOHq45cKJLPnlR9qe1JnktHRmPHAXjqoq/H4f7bt0Q6fTNboDH8Nfw//9byuffrODp+/qyWOvrEaWJV57tC+n9Myo27F47cONjJz0LUXLJnHrlG7cOqUbNQ4/tsT6C9fHnlvAzFmrmP/x2ft06+rROezZJsT/s3fW4VEcbxz/3F3ucnEhTvDg7l7cpcUKFIcWp0AppVCc4l6KFWvR0gLFiru7OwEihBB3O9vfHwnJ7cabQH9t7/s8eZ7szezszO7OzLsz7/f9GvB9HcPzV5E0rutJm6bF3m9DTcgUvt7PGN2tI5qkRCrUqE18bAyP79wGQaBRu470/XIcIN7VMiH/MHrvWap4OFO8gB3zLtyleRE3DnVqgrOlmoiXkegEgXH3HzD76TNmuBWngqUNw90KExAcg4VkVTFJMLA81h9PhTn15OnnNTOZjPIKazyV5vhrE4kXDGyKektDbXmslCYf/r8LP65cxYzvZ+Pp4U75MqVYumotL175oNXqiIiMolWTlLjfpj6YJ2T7hguCcJeUKL8ymawIsFsQhAf5cfEUQ/kA4EfyivYUkv3GfxEEQZDJZMuA72Qy2RPgGck+4bHA9iyKXQwMAz4BTua0LgOWvsJCJWfG9gD6NXPi2hwvbC3TDGqtXmDq7hCqF1PTvWFa3FELlRyZKr27yYvARLQ6gUpFLRFHT0yPEu7m9GnqxM8nQpgvCCb/778Rfi+8WX/oFOUrVUn9LTToLW/9/ZDLTT6J7xOjv7+Om7MFExff4vsxVenSurCoLzz3iWbemnss/a4Wjkaxbm1tVMiV6fvg1VsBlCzmiIdb9qSuds2L8exFBIdO+ZiM778RiQkJWNnY8Metx6nPXq/X4+f9DKXKtNr9vnHrTQhqMwVh8YlsblOPEvbivnP4bRC+8fEsr1QRUnblFTIZVhnERE4QDAQZNDQ2d0CezW69Uians7UTVxKjeRYWRVU30y7w34WAN28YN3YME0elUeLi4uK5f+cmlcuX+Rtr9u9CrqwJQRBm5JfhnQJPYAfJMbz3AElAHUEQ3jmgLiA5hvhK4AbgDrSUxPiW1jGWZPcTdWZ5MsIt7zjik/QcmVmaKT0LigxvgNOP4nj6RsOWYR5YqLK/bQevRlK+iAX21lmHFAyP0VG/rDWTPnXHWq3gvndslvlNeL9w8yzE5h8Wc/vKRQwpPqpOrm5Uqlk7mzNNyCsSEvWULmbLvQMd6NqmSLqP0Nmr7tLnEy+G9MxeNjwwKIartwJoWKdwtnlf+kYxY1xdxnxRlZMX/NLxA0z4cHBx9+Ctvz/bVi7n7evkTVSFQkGx0mXxLGYK5/m+Ea/RMqFJDdZ3a57O8NYJAgu9vVlWqSJFciA9/lQXjxI5rnJllvn0goAcGGjvTnW1DZcCgvPSBBPyiMKFCrHnj738/sd+4uOT/aCtrCypV7MaVjl47ibkDLne25HJZFYki990At6Nhi9JNp4XCoIQl9m5UgiC0CObdAGYnvKXWZ50n9SCIKwGVue0HgBKMxnbxpfAyyNjm72Eq4qYRANqZc6+VyJidQRFaOk86xlmCJgpZMQlGYiI1VHUWUWnmrY0LGNJl2XJopy3fihPl/oO7DoRRKWSpvBLfxe+W76aQ79uY/ZXo4iLiWb83MU0bf/x312t/wSqV3Bk88IGqDLYSQIoWcSW+MSMVUylkMlkxMQmsXPfQ/b8+QilWXJEoYioRGLjNDStX4iBPSoQEBhLj+F/MnFUTb7/ph6JSXruPQ6lcjnn7C9iQr7DwcmZxTt2c/i3HfRrVh+vcuWZtnI9Lh4ZBbj6D0GIzz5PPuDrRtXpUtErwzQzmYyCajXaHBJn4wU9BgS2JQQhGJLJ83pBIAEDZiS7nFRT2LAoPIQLCVEsd/GikYU9q739GVG9bPYXMOG9YED/flhaWfHz9l8Z8fVEBvX9jNlTJuZupdaEbJFttBNRZpnMETgPlAVCSVO7LAU4A4+BhoIghGdcwv8nZDKZ8MeK+rRqYCQJLpEV1iclUrT9eS5vqkVBT3vRqpyx5HJMnBZbGwti43W88I9FozWgSdKi1RmwsTKjQAFrftr5gmW/JN+6/l1KcuFGEI+OdmbYlEt4FXNg/JA0lwfjCCfpIhxkF4lA6SQ+lmcVxUActUAadcM4YkmsJIqBXjIYJ+qkrHBDpnnzEu1EJ2GjS9npxozysDhpnck0LySz133v3WTbdyNpPWw8Ndt3Tk2TRkYp5SJmaztLVgeM21DcVhy1wtEsa4pEuC6N3BkQL26DXLIyXN5W/C1tHHWmlOq4uGCNJHSZNOKFMXSRyGw/f++RFkKfTaGAoxFpWRId4uip58z74Swndg9EYSExjlPqr9Xq0OsF1CoD/q/DCQmNRaMV0Gj1CIKAo4MVSuLo/vlW7j0MxNXFmlpVPala0Z1JYxrjUXEet08OpbBnio+qQRy1wDgEXnK65GNAYfR8pRGEpFFHFJLwhgqj90aRy76eVcQOCaR9W9oHjft6gqQvx2o0meYFiNPojNLE5QbHiO+dVhLVIEErrpdeq+Hqb5u4c3AnvZb8goNH2i6GVB+peuE0op6LlZj4rpJEPykqiRDhKD9DpsgmkpOTSlwRR8WF1P/D9Q3EacJhcdlacTi+dM/UGHoBmdXH770PPh+Vxo+IDYwSpUf7RzPb+zkVbWxo5+KKNiopo2KI1+txK+KAIAi8iItDazAQExqPVhAwk8mwMzNDX9mNL3adxCAINK9Smge+gRyZNZznb0JYfuQaZ35ZmlqewUX8bidJJORD4tPeOeNIGADBkqgj8ZJ3zPg4Nkn8Lssl0U8Mkvkl0WgSkUrRR0nG6hjJooFxZBVppBRj+XiAMk7i+aWoQ1q6g7n43baRHMuk9p00wpJxNBBpWkIUQSGhfDZsLAXd3di0dA4Ko74kM4r8pLeXSMCbieeTBEEiGW/Ufml0E8ltR3LbMc4utV/NJCcrsxFSM456ptCJI+PIJMfmju752v9y+zEzk2RC5EiSw/01FAShIeABjABKk8Uq9f8zjA3vjCCTyahdwY4vFz7FpvYhgsLSDzy/HvLnoz7nALC2NKNyaXtqVnCkXtUCNKrpTLVyDhTxsEo1vGd+WZEmddyxtFBw90k4fxzzpXsHk+T1/wuKVKrO5yu2cvjHefg/uvd3V+dfD5HhnQFqVfPkxp0AzNymUK/FgnTpgiDwSY8VLFiWHJ6xkKcj1aoUpk6tEnxUvxSNGpSmYnlPXr+J5N7DQAAO/ToIg0EgPkHLtl13KFfKJc3wNuFvhUKpol6vIdTo0pddU0aikxj+JuQ/suMbVbSx4XRYKE2uXuZMdPo1tmCths9e3McvPh6ZTIaXtTVlbW0pb2VDFWtbKljZUMjcgp13n2EQBOoVcWfd6M8IiowhKCKazSev0qNtk/fVPBNyCVdnJw5uWcfrN4HM/3Hd312dfxVy63bSEVgvCMIq4x8FQdADq2UyWVWSiY5f5lP9/q/Qpr4Tszcku4k0G3SRJrWdkQFlitvSrbUnE5Y8QKPJektOLpcRdKkT0bFaPN0sCY6Eq3eC6Tn6NN3aFqWwh8nl5P8JLkVL0HHcdLZPGcOYLQcwt8zaQDTh/cHB3oIKZV25cSeAy9de0rzjMsqWdiMhQcsXA5rg/TKYw8fvU7hQ1mStZo1K8ubhFMzNzXB0sGTc8AYsWHGOA0efsGBa6w/UGhNyippd+vH63g3OrF9M8+ET/+7q/KdR18GBFT4+AMx548Pl2CisU8iWXzgXZPlbPxIMBsKTNBTOwj94ZacmhMQl4GptiZONFXP6deDrDX9grVbTrVWjD9EUE3IICws1W35cTK3WnWnaoC51qlf+u6v0r0BuV75dgdtZpN9KyfOvRLsGziRpBNydzPF5k8DxS8Fs3u9PQqKerxfco1f7wjg5mDNxyT10usyNcFtrJZ5uyQOTu4sly6bU4dHRLqyYVvdDNcWEXKBis7YUq1KTA8u+/7ur8p/HF71rYGttjlqt5OTZJxw4co/f9t4kMVHLVxN/Zem8HuzZf5MjJx5mWoZMJsPdzRZHh+Q+2KRBcQ7v7M+Ty2Pp2Nrka/r/BplMRtuvv+fRqUO8unnp767O34KEhIxdPD40nFXmlLO2xkmZTKK8GhvFmegIfJISORsTQahOQzt7J1a/eEVoUuZ1NjdT4GlnjVIhR6GQM/rjxlxdOp6Tc0dRwN4U6/v/DQXdXVk5dxr9vvyGuPgPwz/4tyO3xncQUDWL9KpkLoDzj4eLo4obW2vTsYkbtpYKtDoBWyszvl/7BJ838UwZWoah3YuxZucLXr7OMe/UhH8AmvQbivf1XIWOzxMEQWDr1j2MGzGUzRvWpUZe+Ttw4vSjv+3aUgzsVYN9W3pTrXJhXF1siYvToFDIaNVpMcM+b8Kgvh9RvqwHsxb8+XdX1YR8hKWdA1XadcPn9pUPds3IyFgmTpzIhAkTOH/+fPYnvEeM/Pr/Z8t/Udly9C7oib3CDMuUVe/niXGsD3nDOLcitLN34nlMLGeCQ7MpyYR/Ej5p0xwzhQIf/4APds27d24zZtQIlixaSEjI3xcFJyw8/2mMuXU7OQAMkclkt4B1Qoo+skwmkwOfAwOBtflbxQ8DC5ciomNBpiAoJI6n3uH4BcSQkGROUpIeaytL1qxqy7d+EbzwCaeIpz2eHrYEhcQyZu4JbtwJ4uqxkVSu4JFWmEjqOevQgyLSFYhJWnIJQSsdwdJBdCgl/BgT9pLiJEQpidy4Ri8mkBhLRUsJWrESskmSNnNSZaI2a3n5rCAlSWYHhdGnpfTct9ES4pgm61js0UERKK1seRulISpOSp4R502yF6cXd0h7LkGJ4uu81os3it7dj9E9OxMWFEThkqX4edhgNFZ21G3aAqUqjcSnlsjY34kQl21plBdlS1GadCgJTBDX+R2RLiw4iJ5fjOCDwEocQlCHJa9eBfL02WtCQqNJStKSlKShZo1KXLjQk8uXHyKTyShSxBVXZyvOnb9P9Y9mU69uWVYsHgDvJNmlMt9mEpKkVPbb+FjaX7OTZpcbkyaz6a8SkuSzeM/U/xMlpObEhMxJzEC6CBQGIY0sJyVAa/VS0pk4PdGo/0pJkPESt7rYJCkxOy1dKSE/SQlsITESMlxCWllSIpWFhRlRUdFYFXAlPE6LXkLSCopJW2VVSgiWBW3E9z1UIz43QFdfdKzV6/F/+YJB7XtSr0VrDmz9mVVr1rL6zxN4lRbvjCRqxWH0fAxpKqtFpR6E6cbrCqJD4+cfb+Tffnj3Tk5e8OFDwKlSWqQT64JRxCZpeBESyauwKGI9VCRp9egNMj5v2YRvCjpz+bk/bnbWFC9RBIVczs8nrrBg1wl+nDyS3m0ap5alcPYUXUdnm8axElTiOS9GLiYcSgl3SVm4diokPusOavHzsTMXj5nGhMsYiay79P2VkjWNIZ0DC1iJydZqySRhZnQsrZOTpfhcVytxup2RoJ95kpgUKw8NEx0LEsVRwTxzt0mpvHo6iXiFkujYOBxc3BFUVkTbptlMsZI5Xypt4qgW30vjRyqViDdLOVy7di1z5s5lxPBhTJs+HblBy5DBg7ErkEa210v4j2rEY5leJn7+CbrMAzyoFOKxXG6kojtw1EDyG7k1vqeSrDi5Cpghk8neRTspTXK0E2+Spej/8dh7+Dk9hh2gZmU3injacu9xKA+ehNCrSwX696pD0cIOFHC0ZPeBh2z+7Tb3Hr2lX/eq3Dg+HCtri+wvYMI/ConRUZhb236w6z28dYMdZ6/y4vlTzh0+yPShA1FbWvDzyUu4uHtkX0A+4ObF81w5fYISZcsTFvzhN7R69p7N+Qv3qVrFiwIF7Nh/4BJ6vYFNG75BJpNRr14FXrwIYO1PB9iy7RiWFubMmNqHHt0bpze4TfjHIyk2GsciJT/ItQL9/ShashTfLF6BXC7n2O7fGNy6CXWaNGPOxm0fpA5ajYYLx4+wY81KBo35mqkjh3yQ675DnEZLuRnrKe5sTwknB+I1Wk4/86OUiwNtK5TAylxFk3LFOP/El5Xr/+DPaw+oX74Ep+Z+SZnqtT5oXU14/xAEgfDIKBzsPoxb0O3bt5k6ZQqDBg5g0eIlrPhxJct/WMHyH1bQtVu3D1KHFy9ecO/uXY4fO5bvZedWZCcMqAHMA8KAmil/ocBcoGZKnn80gkPj2bH3MZXLOXP0124UcLQgPDKBPRu7sHXlxwQFxzJs/D4KVV7Anj8fMmJgbQLuTWDxzLZYSb54Tfh3IDEmErXthxl0NElJaBITUZmbU7lOfRq0bMPsTdsoXqYc18+e/iB1ABjcsSVXz55i5LTZH+ya73D+wiNu3X7Ot+N7sGj+EJ49e03NGqW5f2cDn3Zrwvnz92jUZDR1G4wkMiqWXb9O5v7ttcmGtwn/SiTFRKG2+TB9MDoqArU6eRHlsxFjKFO5KptOXeT6uTNEhIZ8kDrcvHSer/p8Srmq1WjRsdMHueY76PQGNl95gJlCwZb+7WlRtij3AkIY06Q6R0d+ipOVBauPX6Xi+BVM/u04VYoX5O7KieyaNAgvD1OM/H8j4uMTUCjkqNW50i/8y4iMisIyhbQ7b+4cBg0cyHeTJrF37x8fTAht7uzZ9OvTmzU/5b/bV65WvmUy2UZgrSAI3wHfZZBeSyaTDRUEIf/X6D8AIiITWbPlHsvW36Jvt/JsWtaGDdvvc+9RCPdPD8bBXs2K9deZseQC/XtU4+nlsbhKYjyb8O9EYj5P/Nt/WsWuzRtp1uET+gwfjYVRZAC5QoGNvT2vX72kRKUqTF+zMTlBEPiqRycat+uAlc37XYUPDwnGxs6eX46dy7GoRn7g3n0f5i/+g7PnH7J86Qg6d2pI3Qaj6NypIRO+6Ul0dBzduk/n2vUnzJ41iE+7NUalUqaPx23Cvw6JsVGY51MfjIqIYN6kcbx8+oTPx31Lw5ZtRGH2HAo48/rVS/R6PR5Fi/HDHynhK0t4MW3oQH7YdSBf6pEVXj55zKeDhvDtgmXI+TB9UKc3cODWExYevIiThTknR3fHIMC0gxf4fdDHVPBw4obfW0b/fpIS7k7s+PJTKhdxR+ngkH3hJvyjER4ZiaN9/oVhvXzpErNmzsDdzZ1pM2ZQpIjY9depQAG8vb0BGDhgAACxsbFM+PZb9v7xB506d05XZn7jxQtvjh4/Qd169fhiUP6atbklXPYHsgpEXQzo95dr8zdi2Lcn8Kq/kacvwjn9ezcWTm2CVYrvVcWyztjZmjN68jF+2nqbK4eHsmhGG5Ph/Q9FbEQYSbHR2Wc0QpivN1YOeV/RSUxIYN2S+Wz/aRVfTZ/N80cPaF3Ri03LF6XmMTMz44vxk/h2UG8e3LiW+nvFGrVQmJlx/sihPNcjO7x48pgSZctlG/c3P9Gi3XRad5xJpQpFeHT7B7p0/ij1+o0+qkxAQCgNGn2Ji4s9Tx7+Qu9eLZINbxP+cYgIfI1ep80+Ywp0SYlEv/HD0sEp+8zZICToLcO7f4KZwowBo75i8ZQJdK5XlQe3bqTmqVavAa4FPZn2RV9iItPEcL6YMJnr504T/Ob9k868Hz+kRJlyQHpf1feF6t+tZu3J60zu1Iidn3ekmFOysWWjVlHBw4nDD18yYMthJrepy+6vPqNyEfcPUi8T8hcJCQn4vw7I1QrywydPcXXJ+xxoMBg4f+4cvXr2pF//AZQqXYqG9evRs0d3kowi5IwdO5af1q1jzdq1qfW0tramfYcObN265b2vfguCwNMnTyhT9v1EwMq1vHw2sAJyPqL+H8GzeFnuXR9GQQ/H5B+UyYOOrbue3as2cfX+Xqys1Jy/+Av2DmKiTFZqcgAIWagYGl5IypI8EsGIQCBRW5Mq1UVFixWZ4rSRouN4IxKXVJkuK+IUiIkJUmU6aV4pKcs4XUrGlJYlVbE0JtsIUuaNBAoJccNYOczaXIEgCNw6sJNT65Yg6LTYOjnhXrQ4yGSYK+Q4uRekbLUaFHBxJSw0FAQBM5WKpMQEfC4d54cjZ7B3ckynoBeVQUit4IDX6LRa3AoX4WVE8uTtfe8OC4YNxMWzEN9t2o5zQU++qV2PV08e8VWX9rQdNBR1SgivFt17YW5jy4S+3fl28QoatmmPubUNG09cZHSXdqCQ07hDJ5HiWFbqoM/ixEZqKSvxvfKLTXv+BoOBbRvWULxSVQJjY7FUfhgDt1Wv8Szq2AmVuTkBgE9KnWRWBfniy02EBgfRa/AIBoweh4W1pE6yC+kLzA9I+2M2SpPGJGcpiVUbL+5jUiJkgi7tgzBeK1WD5E9FTAAAIABJREFUFJ9rrCSZnJ55n5T2RymJMjfn6vTScUF0KFKns1CJiY+2ajMSoqM4uGQ63lfPYdBp8CxZGrsCTgiCgFqppHiZcpSpWh2tXk9sdBRmSiVKlTk3zp6iWr169GqV7EssVZE1VuLUGQzo9Xp8nz2hgKs7Pin3ThAE/li7kt2rf6Bp50/pO302crmcDU1bsHHBbH7bvBGPsuVRpCjYzt36O2tnTWFQi4b8cuICdg6O1G3aghFTZjG+z6dMW7mO4inGcUZ4LVFXDFWKiZ3SPhiblDZ+3378iLPHDtOgW0/8oqKwVub3VJ0xNk/8nJqligKgsEuOl6+LjCZo8Tb6Hb7Fw2cvOLxtLdUrlkXrmkaQ1kj6SXCChLAvmSPCY9Peb6kqoyBRkZWqFkoJenqjcS8qSXxuUKz4GUiJkca7epZKcT2kREh3GzEhz8ro/dboxB1BulsoJYKqlfJM09IRECXHxv1VrxTvgKoLiHeGJNVCZxC4eeMGQz4fREREBDKZjPIVK2BurgbBgLW1DdVq1KBs2bLEREWRmJiIubk5KnMV06fNYeqMmcSokz+AjdUjFTpJ+8xkxERH4+fni1fJUugMye2NjIigX59e+Pr6suzHlbRp2w6FXMbQEaNo1bwZN27eol695JDLhYuX4NjJU/Tv25c7Dx6zcOlyAFat/5lP2rbi6/Hj+WrCJOyMVuMTJOvJ9irxDbBUitONp0yFXjyPb9+6GQ93V9ws5SAhtuYHsu3RMpmsMFDU6KcyMpnsowyyOgLDSCZd/uPw3TcZb2H06tmU0qU8CQqJp02bOpibm3y6/4mIiwhj//xJxIYF03/FdurWKE/gqxcE+fkik8lwsFQT6OfLrfNniA4Px8bREZlMjlajQZuUyIg5i7B3yvqrPzI0hP0/r+fyscOEB71FpVYTFxNNkTLlKFjci2vHDzNy7hLqtGqbek58bAzFypTDysaG1y+9RdEUPmrbAQsLC1bPmkqD1u0AKFamLN9v3MbqWVP4ac5Mvln8A9UbNs7Xe7Vz/RpC3wQwZtEP+VpudmjXrUeGv8/96Re8Hz7A3EJNtTr1M8xjwv8/Xt2+yp7vx1OmQTO+3nuRkk7m+Dx+QFxUFDK5HCu5HO+H9zm49WdkCgXWdnbotDq0miRkcjmDc8A9uH/tCge3b+bqiaNY2tgQGRqKpa0txctVQCaTEfzan1XHz+OUQloWBIHEhHjqNm/F0olficpSmZszbs4iYqOi2Lt5I/1Gfw1Ar5FjkMnlfNm1A2WqVOO7ZatwyGZsyC0WjhpMx4FD8Kr4YQVN3hnexnC2t+X6xvm8iBOoUbEsnu7/WimPfzX0ej0L5s9n/U9rWbB4CZ906szrN4E8enAfnU6PmUJGREQEN69f58SxYzg6OqBWW6DRJJGUlETHjz+hXfsOWV7DYDCwffMmjh7cz7VrV3FzcyfgtT8lvLyoVKkyN2/coFmL5uzaeyB14SgxMRG1Wk2Dhg25dvVKqvEN4OXlxd5DR6lRsRwjR4+lSNGiqNVqNv/6G9O+m0idKhUZOupLvvzq63zdpX3+3JtvJk/n+P49+VamFLLslu5lMtk0kiOYZLfGLwMMwABBELbkT/U+DGQymSDE7RT/qJT4NhmHAJSJfZP+b1a+E6Ur3+JVgP/yyvejg9u4uusXhm8+jEKpopSreOXMzUa8mi0NtWi88pjZyvfGuTN49eQx3UeMoWz1migUCqLCw3h09w6+Tx9RoU59ShlNpid//5VVk8ez7vgFdvy4FHtnZ0ZMmSUqWw70blSLUdPnULNJc1HatTMnmT1yMJ0HDaH7kJGoLMRRdhyMiDFqZdYr33ciktsgCAKfNqjBoOmzqZhi6FoqlTT1sEcQhPfmgyKTyYRH0ZmHxHu3GvkO5W0l/cQgWfk2jnYijXySm0go+bnyrc9u5Tvt+N+48r1zTE+KVK5Jy2HfAFDWTdwHnY36lfTeSEMrZrby/Wn18rTvO4AmH3fBvXARDAYDL1948+rRA0ICXtOiR2/sUqI1JMbHsfTrLwn292PFvqN0qlSSpb/vp2yVaqnlquRynt2/y1e9urLryl1RH0tKTGTDormc3LubcfMWU7dZS5EBIN0xyq4P3gpPHr+fP3rAiE8/Zt35G6kGirXSjGaeBd57H4w/8GPq8buV73cwK+glOs5q5Ts8u5XvBOOVb/G5UpMkNyvfYfHvb+XbwUL8/D7Uyre1Sjz2qYzuh+TWoJaca1ytV69eUaVSRc6cv0DFSsnzkHHXl95nSVFoJOOE8cp3dFJye69fucyoIYOYNWcujZs2w8bGhoSEBJ4/ecz9e/ewsbWhU+cuqePGwwf36d2zO0OGDcfTsxBLFi3g+MlTIlJnok5g5tTJxMfHM2/RElEdfHx9Gdy/Dx4FCzL9+7kUkviN20vunSC515mtfE+ZPhNtYjzzZ6UF7zN3dM/X/pcTn++9wABgEMkG9jqS43kb/w0AugLF/mmGtwn/DVTv2ANkMgKfP35v13jj84rmXbpToVad1EnTzrEAleo3pMPAIRQrl+au9PT2TX6eP5MiJUvj6/2MQROncnb/Hxz9fYeoTJlMxshps/l+1BCe3hWLy9Zq3IzVf57k5eNH9KpfjeO7f8uzH1zI20AC/HwoV7NOnsoxwQQpWg6bwMNTh99b+ZqkJCJCg+k+7EvcCydPwnK5HPciRanXpj0ffz4US+s0ns7OlcsJDwrC99lTlCoV3yxewaT+PQkKeC0qt1TFytRp0pyvenUh0Ujdz1ytZvjkGYyZvYAfpk1kVJd2+Dx7kud2XD51nKoNG4lcykwwIa8oVqwY/QcOYt/eve/tGj6vXlKzTl06fPwJNinx9S0sLKharRp9+/enU+cuqXk1Gg3du3amdOnSPHn8iA4dO1KsWHGGDRmSTlRuyIiRnDh6hJ9WrxT9XqhwYXYfPEzZcuVp1bghs6ZOJj4u7wKHJ06epFXzpnkuJytka3wLgnBXEIRfBEH4GZgB/JhybPy3WRCEPYKQ1RKvCSb8fVAoVVjY5h9TOzPI5DnjMN88c5KmnT+lXPWavPXzxdHFle9/+ZXVs6Zycu8uUd66zVryzcLlfNOrK2cO7uPOpQvoUlZGPYoUZcZPPzNz/WZ+WTKPw79uzVP9nd3c8SxSjPuX35MPtQn/Wdjks2uGFDKZDIPBgDyHRuv5g3sZMn02ZiolEaEhNGr/Md2HjmJ053YEvRZPZROX/Iirhydf9+7KzQtn8X70IDWtYau2bD17jUbtOjL8kzaEvA3MUzvqNWvJrbOnU/s4QFJuFcZMMCEDuLm5ZZ8pj5DncA589PAhVlbWDBk2HF8fX+RyOat/Wsfbt4GMGDYUvdFun6urG3/8eYSfVq9iycL5nD97htCUkJ+WlpZ8PfE7zl69js+rl4wa+kWeFaFbNG/OwcNH81RGdsgVi0MQhBnvqyJ/Ny5EtcLMSDFQJ1lBNF5RlLpGQNaRM+SyrIy+6jmtIhp95gRKgOhEyRZbUubqdNltPRuycfEwhtTtRHpdjdF1tZK8Wsl2XVZKk9L+JFW5UyolW3tGRJ54SzOSEhKJ1sgIjtYQL3F/Ke4k3uaOSsjq/sSkq1tsRBhPHjyk8EftUPmI9SMTjNr0TuVP51yc23u3oYuLxqN2U+4ERIC1GyNWbWbZsD68DAyhfuce2Fkkv5NF6zdi8OyF7Fy3miB/X+q2ac8wIx/YIhWrMGnVBiZ0/wQ7ZxdqNmku2rqXkkIv+IjfJWPFz+KN23L8jz0UrFIbgAqumaui5SfeEVPfwcxoEJdu4V/TiA0sC2Vt0XFBy7T8jrkMSxtu1K2kiqQ6rdSlSqIOqY/NNE3qyiRNN3Ylycp1C9L316z6s/Tc7Fy/Eo36r9SVSzosSPugOL+4TkJSEgqVKnX8fBUmVtQz7pNxSVm71bySiVe3FHJ4eOE0KrUF9wPCUBiN5dLx6J07motXOfb+vguFypxgg5LQkCgqd+pFVGISwzq2Yvy6rZQpl8bB+GLuYn6ZO5M1C2bjfe8Os7btpnrtNP/U9v0+JyYmlgEtGrLl4i1UkvB7gTHiceOkt/h9949410dtsLR35NzZc5SuWQ+ASq4fJpSfqmiZ1P8Fe7GhpnEsKjoOSkh7JoGx4mcZGCMeb9K9n1nML1L3DnOJOqT0Q0RvVFY6RVbJcZzkWGVUtlJiNMqlriJm4nRj1UorCf87Tis+N0byPsfHZz7PKSV97nmYLpOc6WEuqaPUlcY/PA6VSsX94OTnZUx2tTXP3U5LgpFatV4QMBgMnD5zBjOlktCErOus0QvYeJYgICCAoydP41W2PGEJOkDJ2q2/80Xv7vQbMJD5y1ZikeLqVcDdkx37DjHj23EcOrCf+Ph4zl69kWrsO7u4snb9Rjq0bsn0iROYu3ARSRKbQS2I30t5ghGRUp828Pfq0IL2nw1k/tRvUaneD88vt6EG/7UwM/swbHIT/j5YO7sT4fci+4y5gCAIhPh4s3HkZ1Ro1pbS9Zvl6LxClWsR8dqHsNd+FKtSM/X3giXLMHbdDo5uWsOOOZPxvnsrdau7RrOWTN+2i2LlKnBgw1pePX4oKtOrQiXKVKtBbHTemNnlG7fi0dULLBzUkwcXz/LGzzdP5ZlgAoCNkwsxoUEkxed9W9gYOq2G64f2sXnqeEas/FlkeGeFqq06cnbbeio0aCJarWvd73M+GT6a73t35sRvO/B7/hRBEFAoFAz4bjoT1/5MYnw8R7b/kq6vte/dn7jo6DyTvxr16Me6ccP4fcEM/J88JDwkOE/lmWACgIu7Bz7eT7PPmEtEhocz7asRBPj78nUORdnUFhY0b9eBdT8up3lKQAEASysr1m/7Da1GS4+P23Dp3FmCg5IVlgt6FmLrzl18MWw43s+fcXCfWHDHwsKCz3r3ISIiPN31coMyJUtQqUI5KtRrwqZtv/LUO3/tBjAZ3yb8h1C0TlN8r5/Nl7J0miR2zfiKBR3r8POYflTv8ClNB43J0aQbHxnOg2N7UdvaIwBJcbGidLdiXny7bR96nY4N0yYyuWs7Eo382Mb+sJaBU2fxXa+uLP9mDFFhoalpb/19KZZF+LN3iAh6y/k9O7l18ihvXjxDm7Iy/tb7Cad/XolbkeI8unKBxYN7M7hDixzeFRNMyBwWNnZ4lK6Iz+2r+VKe36N7LB3YlQmNKnNi80+M+HETxSvnbCfx1Z3r+D24g4WNPQmx6XeyGnXpwVerNnLp8AGm9fmUzQvSDAprWzs2XLqNIEC/hjU5sGVT6jb3W39fPIoVw1xCfpbCYDDg8+AuZ3duwfvWNUJf+6UaEXcP7eLp1Qs4unlwevsmlg/+jL6NTRwME/KOj1q24/KZ4/lW3uafVtKhYQ3a1q2MVqtl5dZdWFnbZH8isGf7ZuQyOTKZjIQEMQnewtKSHzf8QvtOXVi2YA4t6tfkjlEc/u49e7Fr30FWLFlMx1bNuXP7Vmqan58v5cqXz/b6cXFx7D98jF92/Mbt+w8IC0/eiYqNi2P8tNkozcyIiY1jyNgJdOyR//I1JuPbhP8MlBaW6LX5o4Toc+cagc8fMmTdH3z9xwXq9xiU43Mj377m1Jr5VGjWgcrN2nBo1cJ0eSxt7eg9dR5z9x6lTI1aTOjQnJM7tyW3Q6WiTd9BrD5+HrWlFaM7tEhdBY8OD8fWwTHD68bFRKNJSmJImyZM69yShxfPcva3rUz5uDnH1yzi9aN7bPyyL3Yu7lRv3oai5SvSfvBIDt599hfukAkmpIfK0hKdJn1c/L+Cszt/oUiFKsw+fp2Jv/5J4XIVc3zuvVNHeHzxNF0mzOTV/Ts8vX45XR6vKtWZumk7yw+d4uKf+5jSqws+Kf3Myd2D0QuX8/3POziycxszhw4gMT6e6IiITPufIAjEx8Zw++I5ulQpzS9TvsL34V32LJ3D1PYf8fbZAy5uXc2FzSspUbUWjXr2B+Crjb9x8OHL3N8gE0yQwMLKCk0GuhR/BXGxMaxdvpBpC5dz/pEP81aux8LCMvsTSe4LP8ybhVwuZ9aiZcyY+DWJCWLXJZlMxqChI/nt4FEW/LCSvt06MXn82FQhno8aN+HQqbP06N2HPp92YceWzQCEh4Vhn9kcGBeHXq9n0uSpFC1ZhpXrN3H8zHk++WwAFRu2JCIyivY9B+IXEEjLJo349JMOlCxRnCfXz+fhTmUMk/Ftwn8GQU/u4eyV/apwdogJC2HvvIm0GDoeezePXG8xu5Usj1JtSfnmHWg1eAy3juzLMv+gGfMYtXQV2xbNSZ38kxITGNGqEVePH0Gv1TLh048JePUSe2dnAn1fpSsj0M+XNiU9uXTsMMVKl6V4pap8Pm85Y9duYeKWPdw9foDVn3cmLjKcSzs3sWv5fBLj42nUrVeu2maCCZlBEAReP7qLR5mcG8mZ4ebRA3jfvErLAcNRW+VeabhU7QZY2tlTsUkrmvcexLVDmUeAsHUswI/HzlO5fiNWTf6GxBS3mZtnTjKqY0u0Gg3XT5/ku/49sHdyIjjgNVpN+o/8X1ctp21JT+wcC2CuVtOi3xD6zlzEN1v20qh7X/bO/IpzG5YRHfSGfSsWcODHhdRo3REPr9IkmgiXJuQDHt6+QekKVfJcjsFgYNLoobRo25EadernOjKPTCaj7kdNqFS9Fj37DsDWzoHbN69nmr9V2w4cu3AV72dPWbvqx9RdonGjRjBz8nc4FijAt+PGsOWXn3F2ccHnVcYfq8VKleXTnr2oUaM6tjY2rF26gK1rV/DsxgVUKhWVG7Xm0vWbHDpxiu++n8e+Q0eZNuGr96L0bHJ0ToFPpNh3Ty8hhOiz4B9KyYlyafDNLPJKyZvSMdY4vm2iNmuSlfTcdESrLOJt66RtyMW7JuXOaCRkMWMCl5RQmSTJKw2Vp9VmfuPTKTomiSttXHaSxkDgk/uU7zKMsEgNoRHir/+7T8UERFcnMUuvfOG0rbR9K5fiWbsVZiXq4h0YR0ysJJ66hKxpTATVpbxIcrUNtx+8wcHeEjMLG256J79/Tg5iFTXbFMIlzqVoN3IiU3t1ZcCCNQS9fE7hchXpOvZbts+bweOrF3nm/Zw2A4Yw/Yt+TNmyizLl0j40QlIkshd9MwbXwkUIePWSkDdvcPIsTJFK1SlbrzHXD+6iz+wVVG3ZnjKuae1NTzB+P3gdKd56NCYeSYlEFhIikZmELPU6WpFpWnYwbq80vrRechyvlZIqjYiOkj4mvY9SEqHxsfS6WeXNDkppZ1ZK74f4WnILI+K5ZFCRTrFSQqYxAVNKxvT3C0iOq2vnRkS8jpAYcdkP/NLcrxxsxSQn45jgeq2WnfOn0WXOT4QJloSFJxJrRPBKlBAsVar0hkG4wYrIiCievY3nbUQciWZWPAtOfv8KGLHnLFVpfbtq1/48uXeXka2bMO/gaXasWMqwOYuxd3JixfgvefHoAQ6Fi1LQqxTf9OrKnO27RZN2eAqheNKAz9AbDNw5eZgGnboD0HrQcG4cO4iFjS3jfj1KnQrimNpS4tz7gjHJ0qAWqyUKcnEdZLK0e15AQpKUxq5OlJLyjcjF0jQp0VFKmpQSLo3zW0tic0vHDXMzcRuMy5bG5pZe1zg2OYj7oDRvgERtWnocZRSPPCZROoZk/aGlMbpfUjulSAGJfoWdeB67fO06nmUr8zIi+V03vj/SNhS1F7tOFbRNm5vOnjjOy5cvWTZvJX5RCURI742kXtKyQ2KSCMeCy89fU9gngsi4BJ7HyUnyiaCEg7gN1qrkZ2pm58KY6fP4dmg/AoJD6d53ICeOHWHPsVPs+30nK5cu4sH9+/QZOIjPunxC4WLFGTxooKgsc5WKPw8fISwsnKjoaE7fekSf8tVR2MD8eXPp038gPXt8ysaf1or67vv49DUZ3yb8JxDp+5ToNz7YFiyRp3L0Oh1+V47TZk7eQvrJlSoMOi1JsVGobHIWArFWx24YDHpObV5L8So1CXjxjKSEBEYuW8uf61dSvnY9FGZmvHp4nz9WL2fiirWp5xYpVQYndw96fDkOj2IlsCpSGvMUoRKtJomgV89pNXgsVVu2z1O7TDAhMzw8sgu30pXyXM6Taxexdy+EW6kK2WfOBAqlCr0u2WBIiI7E0r5ANmeAXKFgxNLVzB/QnauH95MYF8utMycYPncJE1Zv4q2/LwozMyas3kjfamW5c+EcVRs2Sj2/WqOmnNu/h6Ez52HrWACLQiVT06LDQkGAIau2Yevk8pfbZYIJmUGTmMDlo/to1294nss6tHc3rbp+hlJlnn3mTKBQqtCnRGyLjYrA2j5jVxFjeJUux4bf9tOpWT3qNEjuW5fPn2PMhO+wsbOnbds2lPAqyfJVa/miXx/69+ktilbyyccdSUhIoHevnpQoXpyCRdPsgUePH1O3Th3W/Ljivax0S2FyOzHhP4HH+zZQvvNg1HbZd/CsEPTyGXKlOdYuBfNUjlyhJPTxVW5smou5tV32J6SgeptOvHn2iDL1GtGoy2cc/GkFFtY2dB3zbWqUh3YDBnP33GmijRjfMpmML6Z+z/alCyhZqXKq4Q2gSUwkKiQIBzePPLXJBBMyg06TxI3f1tN09PQ8l/Xk2iU8K9XMPmMWkJsp0cTFcHfPRp6eOZQrDYA2A4fy5/rVTNmxn5CA19w+d5oyNWrRuFM3ABQKBV2GjeLYTvEHermatSlRoRJXjh7Cq2Jl0QQf8fYNZkoV6hyS1UwwIbe4deoQdo5O1G6ZtUR8TnDlwjkq1KibfcYsoFAqiQp+w0+TvyQ6PBRru5yF03TzKEjjFm14cOc2O/YdZuakbzAYDHw+bCQlvJI/aBs0aoxHwYKcOH5MdO7kSd/y5+HDyGQyCnl6itK8vV/g4e72wSLfmYxvE/4TSIgMwa5wqTyX41aiNGbmagLv5y1ig2fDT3i250cK121Fpe4jc3ye0tycMnUbcXz9Cq4e2od78ZLp8jh7FqLhJ11YN2Oy6He/588wt7BAZS7eirSytWPgwrXsmj85z+IEJpiQERIiw7CwdcDKMe9CO9VbtOPxyQPoMvCrzils3QthX7Aoj4/uouHn4yhRL+dqdmVq1SX87Rt2LZ1HoM8rCpbwSpenbd+BPL19i+un0iJLyGQy/J49xSYDMliVpq2o1LwtJ9av+GsNMsGEbBAZEkThUuXyZVW3zcedOb7n1zyVUb5hKx6eO4KZSsXQOStRqXMuyNC0VVv+3PMbPy6eT7ESXhn6nE+fM5evv/qK6Og0HZbAwEAiIiJxdEhv6K9bs4rrN29y6kz+RETLDibj24T/BMxtHQl9egeDTpt95iwQGfQGXVICCHkzUgt/1JmmC49Qpk0vnLxyTkDT63TcP3OUyKBAKjduxsfDRmeY79MxE3h0/Sp3LqQNJB0HfIFKbcH2pQvSGdkvbl2lYqOWOVYnM8GE3EBpYYU2MZ5Qn7xHznnj/RSZTI6Qhz4oV5jRZvoaOi/9nXLNOmCZw1U3gEeXLuDg6sbF/buYtH4LRTMI7am2tGLUvCWsmjKBRKMwakNmzePYr1t5dP2KKL8gCLy8dZUKTVpleE1NLkTPTDAhI9g4FMD36UPiYvKmA6HVannl/RyBvL2TrsVKM2bzCQZMWUj1pm1yde6xP/dhaW1NcFAQm3/POGBBw0ZNaNK0KbNnzUr9rXKlSgz54nPGfv0N4eFikStfXz8SExJpUC9vK/o5hcnnOwXPg8VhbhR5sEFyQ4aSEjClpxqTtLIjXWVL5syCDJWuXrkgmEpJkjp95sdZESiTyxYfGxO6pO1RS8gzZhLyl5kRmaRGz2GcXToBuSGJaj1HplPWdLQXP/DwSPGq2vJjyUzsiBOLca/9CYl25XnpkzyI2duLv9hrlxdP5AWs08hIt18ZqaE6qdPdq/gURcWAu5d5fno/Nk6uqCytiA4KICrAl3DfZ+iSEgkJ8Me1RV9uv9EAyXW1lCiU1es/mk3Ll9PLsxLxWgOCINBq6kr2zfiSQJ0FlT/unZr37slD1OvcM0/vfV7hGy4mJRkTBc2VUuKURMlNlfOKSwmY+dnXk0RkKHHe9ORNcbrx+51dcAupCp6UpJZVm9KVLVlwys34JYWU5J0KG2eaDRrN7nG9GbTyV1xLlE6X17gNYZFiQvSmm28B0CXGcnv+NNrM3kZwlACkKPUZ9bE6JcUuJAUk8oPviJXJsM50XD21YTkxocHYOrti0OsJe+1DiO8Lwl/7IlcoKNOwJdEFSnHNJ82YsTAid1p6VcGxiBc7t++ketvORCXoMbiUpfX4OUwf0Jv+Gw5iXSDZvzvyjT/BPt5UrVsHayslKslKnrXZByJcqozUbBVi80DKuzbunwkSSppa0l+zIlEq5NkQLCXvSXiCeGw2VqmUjgtS1UrpHGLcj6Qk0VhJcIBoqUqlUT3D48R1ehkiFpLyDRUfx0amjXVJErKiVEVXYSaul/E3p4W1mJgcGS+uh0Znm/q/W40WGM4e4/vPuzF2wwEAVEb3y91GPBBI78ftwOR4+Kf/2EFwRBQ9ZvyYSiSVEixLO4lVkaXP4VzK/bKyseVtdMahD2Miw9mxaDquLi7YF3AmMiyEAJ8XvPF5QURoMAqFGUvXbca6gCvxqXaF+N6NmzKTupXLMXriVCwsLbFSqpj8/TymT/6OXgM+59c9aYb7lj0HqVKzNlFya6KSwCYXc8pfgWmZy4T/BByLlqZqjxFE+v91pSpDYgyat49xqZ7x6lR+wvvMQRRmSlSWVmjiY3H2Kke17oMx6HRYOblSp/9YlOqsY6oWqVyTwGcPUz+O3j69z8YBbUiMiSIuIkSUt8PIb9j/w3x87t9+b20y4b+NOt36UaxaXUL9/nrM6sgnV7DyKIWtR9H8q1gG0Ot0XNy+DtcSpdHrdMjkMkrXb0rFFh9jYWOHU5ESNOgzNNtyilWpScCTNCXaE6vnc3jJNAwGPQnRaRGW7NzpAiz9AAAgAElEQVQ9+ajrZywf3p+k+PiMijLBhDxBaa6m97QfCPZ78ZfdC3VaDbfOnaB+206YmSmzPyEPeHrzMkF+r3B2L0hMVARObh606d6PwsW8cHR2pVHrDtT9qEmWZTg4FqBYCS+ePErrg9UrluPihXO8fRsoytuzb39eej9n9Q9L3kt7pDAZ3yb8ZyCTyxEM+uwzZoDY27sJ+e1LLIrXQ2XrlC/10Ws1PD+5h6dHdxIT9FqUZunojP+t8yhU5lTvMYzybbpjbmWDVQFXPvvpMGVadM62fBtnV5RqC4JfJssJB3s/QqfVUKxmQ4pUayDKW7JmXTqPm8KeRTPzpW0mmJAR5HI5ep0u+4wS6JMSeLhmJP5H1+FWL/t3P6eIDHrDuc2reXj6MBoj9xC9VoO9uyf3Tx6kaNVaNBk4msotPyYmNIiq7T9l0OrfKeBZNNvyi1auzvPrFwGIiwwnNiwYvVZLjc59sHVJIzjLZDJ6fjsdG3sHzu3ekW/tM8EEY7xbzBb+gvH96PolRrSsSUxkBNUb5Y/qsSAIvLh9mbM7fsL3wU1RmtrKhpA3fgT4vKT9ZwPpNGAYtZu24vmj+yzcuJNv5/+QI//1mrXrcuHsGQCuXL6ElZU1BQt6MmDQF6J8BZyc2bb7AGt+WMbbwDf50r6sYHI7MeE/g5i3/iREhvHi3EH8b10kKSYKl7LVKNO2FygyD5kU/uwW8U9O4NRtGQqLrCOTGPQ64iPDSYiNxqDT4eBeiOO/r+fyHzvQaTQYFOZU/GQAmrgYHh/egZ1nceRmSp4d24mtexFKN+9EkVpNqNlnDCUatuHu72u5s3sDRWs3o1zrrsSGvc1xe2UyGeUat+bhqUPU6V+KK9vWUL/fl9TqPghdBl2/WqsOHFqzBJ/7tynZ9KMcX8cEE3KKsADfVHn5K7u34OBRiNIftaJ0g+ZZnud3ZC3qAh6UG/wDsmx4CZrEROKjo4iPjsLK3h5duJ5tC2fz9OYNBMGAU7FSVGvXFZ8717h34k/KNWnN3SN/8OT8cSLfvqHPwvWorW0Y8cufPDh1iEPLZmGmVFGlTSesHZ0Jf+2T4/YWrlCVxNgY3r58RlhIOD63LtNt9moKVayezp1CJpPR9vMRbJg0ln7DR+ZauMQEE7JDeOBrlCo1l/duRZOUyNMrZyhSrgr1P+mJe7mymZ4XFxPD6qljGTJjCdU+agZAbFLGH9GCIBAbE01sVCRxMdEUKl6S65fPsXHZfMJDgwEo3+wTHD0Kc/vYXmLCgilVqyEbxvWl9sefYaNW0X3sFCrU+YjZu05z8bdNjOnakrLVatJpwDBc3D0IefuGQsVyFja43cefMHXC14waN57dv/1GydKlWbzsB9w9PNLFSXd1d+fjLt3Yumk9M6ZPz1H5fxUm49uE/wwsC7hi61aYVxeOYOnkQeFazXm4fxNqG3uKNu6cTHo6vYfAu5cwyJK7hqDXEfHyPrb1BqUzvHWJcYTcOo5viDdxwf7EBfmjiYngtLUNahtb9FotCTFRlKlVn4EL12Dt4MiFi3d4cmQnFg5ONBo7H0evSgQ/vsXxmV8Q9folnlXSyB6ORUvTcuJSogL9eHL8D/ZN7I9zifK5anPlVp34ZUxvrNwKUbx2YxRKJQqlKp1fISTHMW7YvR87Zn3L9d/KoLa0pO/4SRQonrfY6CaY8A4Fy1RCJpdzdc8WKrXujCAYODD3GwrvOAVKa5LiYrj8y3KigoORmykRDAYMOg2Rzx5Q8cuN6Qzv6IBX+F4+QnywL1Fv/IgO9EPQabG0s8PS1o7o0BBkMhntB3xBnwlTkCsU7Nm6nQenDuFSvCRjth/F3M6Rg4uncWPvdgC0SYmorW2QKxRUatGBCk3b4nvvBmd/WYXv3Wu0GjU5o6ZlCLlcTp1OPdk+eTTtJy0CwNbFPdP8JapUx9LWjqn9e2KuVuNVsTLdh48Gc1Wm55hgQk5hplJRrHJN3ng/JirkLc37DOPB+ePs/XEulVYly7N737/Ngc1rsDBToDAzQ6/TEeDnQ6W6jVIN73cw6PXcv3SaB9cuEOLvQ7C/D+FvAzA3N8fazh612oKQoDc4u7oz7NvplCxXicSEOBbOm0NUcCDVWnemcrMOKBRm3D62l8t7NlO4dNocZ2PvSN+xk+g8aARXTh5m4dfDiI2MwKtszmP816xTD4PBwLdjR9GyRQvWrlqJu0fmYXX7fT6Ezm2a89rnJXq9ngGDPqdR46zdW/4KZFKy3H8RMplMmHnBW/SbiXCZRVouCZfG5MbERLHbR1Z1TF8nCVlGQq7JinBpZSFeRXpXJ/8bp7m/ay3NZmzm9uYFhD6/S7mOg4hPIfXI5QpUNo74RqWRKEuUcsPvxM8EXtiNfckauFeshZVrIaxcCqN2cKF6meRQYoIgEB0cSPESRVLPFREuSb5XgsHAk8Pb8L9xhvazxAaG0ohsE/rqCQadDpeSGQ88UsKldcpx8Kvn7Jo+hnD/V5T6qBXtv1ucTn3RyyVZzUynSeL+meO421ni8/QRR7ZvYfik6cweOxxBEN6b8oBMJhMmnn4q+s1EuMwc0jrniXApwXshXJL+mb3Lu2fGaFyKl8GrWSd2j++DZ+XaOJSqgV6nRSaXI1eYES13R10gLba+u52Wa+tmEvbyEcUatse9dDnsPIpg51GYOuUKpm5HJ8bHYWtmEIX3ExMuk9ubFB/L9glDqNCsHbU79cqw/oIgcP/UYUrUbIB5iqS9tL0iwmXKOykIAjcO7GLf0lloEuLp9v0qStVvlu7cdyqeIa/9iPJ+jMLMjD+3/YxBp6dDr/58P/Lz994HNUGvUo8FpZiAp1OLiaxRRkqi0RJyokbyDmkkBPdQI2KgVLFSqnj5PgmXeqNjKcFQ2qek5/4/Ei7d3KxFx2XdbUXHjpL8KjM5iXExTO/SkLnbDvL6xXPWzZpA12FfUdDFGb1Oh5nSDKVSReFq9VGp01QvL586zo7F07Cyc6Bq07a4Fi6Gc6FiOHkUooJHWn8LDXqLs5MzZso0H/Fzr8KQItj3BT+N7sH3O4/j4JKmtOpilbYrHRMZwcs71/ioVbvk9kiUVS2V0nEw+TgmOprJ47/i4N7dqC0seOn/JtkFzsiWSTB6Ry+dP0d8ZChxcXHM+X4mvfv0Y/HC+fna/0zGN8mDzuD9D0S/Kc2kHS/tf5VZNtue6Vj8af9LjUupASmVpjc2dLXSbcpsNOCFLCzo7M7NqixpsdI2SeupzWCVNbO8UigUGRuiAOYS2Wi1uUSC3Chdamy+g2AwsH/KEPxuXURt50jXVYdQqi3TfVAAJEZHEPLsHn4XDhAfEUa7SYuwdfUQSVtD+ntrYWQ4Su2aOw+ThXBen91JbMAz6o34XpRu/CEj/biQSntLYewPZ6WWo9dqUChVyQaNpI4qifH6rs7+d69x4/cNvLp27r1P/KOPPhb9pjZ63maKrI1tafQP4/lcmiaFtXnm2/vSCVhqCEiNXGPDNTsjNiuDWVpn6QeDFLn5gJBeVwpjI0N6360lfU6ZC9eIOI3YyIhPMdhCA/z5tnUDBEGgdrf+tBo5idik9NwMQRCIeO1D4OM7XN++mhrtOtOs3zCU5uYkGBlC0vZJDTLpR9DdV8lRHI5814uKXYdR1ojEJTWEcjPmSvunhZkBQUhefQSQvpb2lmmGhF3KYoFBr+foxtW8eXKfmyePvvc+6B8Wk3osHTFjNeJfEozujbFcPECMxBiXpkcZSapHJ2Yd/tVYih2ynn+t1eLNfAtl1u+n8Qd+ouQjQHrdwEhxNKbwuLQoHUGStNhsjhONPj40cTGiNCkvSXosN0szoBXmYgl4exexSFMBN/GxvcT4LuWanH7nyO8c+XE6ALO2HqR4ucoUdxQT+rV6gaSkRJ7dv8v1C6fZ/+tmJi5aRdW6DYmW9FdpBBtpn1QbPcPnYckfJsH+PiwZ9inLD15Kp0VhDONnKjW+s5oHAPTaRMzMlKlCOsZjdKgkUkxEynsZGRrEr0tmcf34gXztfybCpQn/acjkchTK5AEpMSqcoMe3SIqJIiY4INUAFwwG7v6+lt0jO/D40HZcvMrSdcFGbF3zTxHSuXJTwp9cIfq1d/aZ/wJkcjlm5mqi3vjw+7A2vLl3hbBXTwj3eYo2IfPoCoUq16LLnJ/eS51MMAFAbWWd2tde3rhIbFgIsWHBxEemKbTGRYTy+zf92f3tIHxuXKDj6Em0HjwGpflfl7eWolSrHtzZsTzfypNCoVRhplJxZdsadk8aQpj/S948uUfkG38M+oz9Z+UKBW2+GMmYH9a/t3qZYIJMnmbQXjl6gKSEBAL8fNAkpX1g3Lh4lu4fVWPF998RHRnJ0u37qVbvo3yTYncqWJhCpcpzZPuGfCkvI6jVFigUCvq3b8r2dSvxffGcx/duEREakuk59k6uDJ3zY77XxeTzbcJ/GvERoQQ8uEHvrVcI933GibkjwSCgUJkjUygoWLkusSGB6LUaOi3/A0sHZ5zs82/Cfwdze2cUKkvkyvwv2xgBdy4SGxzA4WnJTG+7gkWJCvDBoVBxuq/en28DqQkm5BRXD+2j1v/YO+vwKI42gP82F3dCSJAEAgnu7u7u7u5SChRaKFaklOLu7g7F3d0lIbhbQlwuudvvj1ByO4EcEqPf/p6Hh8zN7OyszOy7775Ssx7Vf/mLo0umM61peawcHImOjMTRzYP0uQrge+IAeWo0osnEJZhoNLil+vJseF+KfTqPjy/iicm904d45XODReePYe3o9PElo9Gw8RSt1zzR96+iInL9wGZ+nrqEbAWKMKlvO7pXyotTamdCgoMoXKIMDk6pOX3kACOnL6BgiZhIWVEJnA3ZxMSENO4emJkn7jPw2eOH+Ny8hs/NazDudzJnzcFDX28Alhy5hqPz92fh/RJU4Vvl/5rrO9eStVwNzKyscc1RgFbLTiBJEnq9nqAXj3l54xzOXnnIWqkBJokY1zQ6IpTIwLdYpUrciZ+9ahPs03nw8sZZbu1cSXjAB9s7SVIFb5UkR6/TcWjNMtr9PgFJkqjYeQAVOvUnVKtHF6Xl+c3LvLl3mxqDJ5CxYIlEHUvQi4dYO7km6j4A6v0+nafXznN5ywpe37v98ffoqO/Lvqui8i28vHuD4HevyFeqAqZmZoxevgMAz9Q2BPj7ce74Yd69eU2Hfr+QJu3nnYW/F1mWef34PvkKF0+0fQC4ZcrMgs17uXnlAjP+GPFR8AbQf2fm6q9BFb5V/m/RhoVy4591NJ265uNv/wqgkiThkMEDhwweiT4OnTaSm4t/IV3xOmjME16jZ4iphRXuhcuSqWg58tZrh6mFFeY2dlhYqkuBStJz+fA+bOwdyF60BE/8Yz5x/zsHNWbmZCxYItGFbgD/h3e4vHoqpftOSPR92bumJ3e1BuSuVIsQ/7dY2afC3MpaYfMt8t6IXbSKyrdyZtMiijXs+NEh0lAJ4+iUmuoNmgLf54j9JexdPpvAt2/IU6Jsou5HkiTyFi5K3sJFqdawBVFRWhwcnQgwkn07oVGfuB8Q/Wi+JtqHsb4MER0s49SLXjgGZTHiQ7jg1CI6R4ldGfYtthX3G18UFtHr+2uisESLkVKEsuikZDhO0ckulbXy9nUUnC/SO8Q6o+g+8Yls5V/zKVK2HE0rFyYoQnC2CFPaYPqFxj78nvspnWeu3nyjKD+6/1pRtrCIHVdkpPIhqjExIfLFTUL83mBZfjDXrymT7Ti7xIY3NBOch2xslJ/nzARPb0NnzfAI5fFYWZqCZWp0QGSYjuAwwcnH4BoHBifNg1+8noaOcqJDYZyoBvE4KBrbVsSw3ljEg7gOmAZzzCR+p0mNUDbclzEHSxFxXPEh9i0eo2HZQnCotDRVXiMPISW1k+nT2EKkMmnGjcjaivLrd2+ZuGg23Qb/Sm7X1KS1D/9Y5xemTDktrnWvgpTz1edpyMe/3wt1oqNyWLiyL120Hp9tq0lbshG61HnxfRDrAGdnqzxecX2yFJx1DfcVJZhxi47pdtZmWDvH+I1E6WQCDBz8AgRnPwspadyz7vrHXgMxvbqY9t2wHCBE7PAPUV4D8XgMY0SLa7O5qfKcaqOF66X//BwU55z4vBHnvpV57PUV9+MnHIO4hkYZOBlGCi9HeiOBBAwTTYUHKHM3mFkqI5ZERYTwOQxttQE0plkUZVPhmVEpt/LLjt27u7zxvsqUuQvxSquMjGIunMuXwvkIjIw9xvOP3yvqHvspo7s4Cc8qF/vYsq2lKbIss2/5HAYu3omDYypFWzNhHIZrrOjYK8o84j0r3tNROjOQzHgXGMk7IWKNuOYkNKrDpcr/HSGBAfzdvycXDx+gw7Dfk3s4mDlnQR/yjqAT89FHRRjfQEXlB+fm5Yt0rFqOfMVLUrZGbeMbJDL2GXPz+uJenp/cnNxDUVFJdPR6Pae3LGdkr44MmjANK2ubZB2PJEm458zHpsnDeeR90/gG/wFU4Vvl/4rjO7fSp2pZbB0d+WvbHlzc3JN7SJiYW+NUexTRwW8I8T6W3MNRUUk0wkJCmDjkJ/q2aEj3YSMYNHEKJl+p5U8M0harhWe9PjzcvYDIoLgxiFVU/iu8euDDgn4tuHlsLzM27KJkpWrJPSQAWg//mwzZcrNhzmT0CezMmRJRzU5U/m849c8OVk4ax7D5S8lRqGhyD0eBmXNm7Iq0xP/IVEIfXMA+bzUsXLOiDdRi7vDtTpj6KC2yrMfUysp4YxWVRESWZX7rEWNbuvXsVcxs7YxvlERIGlOc85bD7cU9zo5vRdqiNchQqgGSnQWWqdJgavHt80cbGoyZlQ2qrksluQl695qlQzpSpUN/CtdqSoZMqZN7SB9xSJOWah37smxIJwY3qULVpm0pUa0O2pAg0mXK8s0v6bIsExYchI29g/HGSYgqfKv8X+D/5jXzRw5j+KKVZCtQKLmH80nMXbORscM8Qu6e5P35TWj9n/JcY4aZXSrSFKlF+pL1MbW0Nt4RoA0N4tqK8by7fRZZp8PGxR3HLLnJ0aAnFvZOxjtQUUlgdqxdydOHD1hz+DTmFhaEarXGN0piPKp3wq1EbZ6f2c7lWX0w0WiIDg8hddYCeFZtQbr8pb44KtDrO5c5u3giwS8fI5locM6Sk4xFy5OvQYevHtf7cNXhUuX7kGWZrZN/pXi9VhStkzJDWlpa2zJ2xQ5unT/FwU2rWD3tD+wdnYjSailVrQ5123UnQyaPL+pLlmU2LZjG3rXLCAsNxt7RiUw581OtZSeyF0rciCpfgprhkpjMXoMOeit+Ex0ODTMCinWis5eYPdDQgSlOW2Ehjy8bn7EsdsYy1xk6LBpzOhOJLyW1MWevhEqbLZ4beyFCh52QcMPQOWzn4vnc977NyBnzAHgbpkws4/NGmfb9xjOlk8vZ87GOkN77/lEOMly5rRytFCokm1gHEslO0GKbKuMKS/axDjGyLOPoaEPUW1/Cbu0h6tVtXEo1w7V0MwBsBWe3fx0wI4P9uTitN045ipC1bjc0ZhaEvLjP4yPriY6MIHv9HqRy91RsGyY4Exk6lmm1eg73K5no2fUWXH+i+M3weovXXsygZmOudLY1dCr8GgdDsSw6RYqItYb7MhecFeNzsISvc5o0tm4b9iXuRxQe465BsePOZiNccvmpUH6sLOsM5pWJ8t4uVnIIEydOpFKlSgCceK3M7Pfwfew8evZe6ftw6W6gonzxwiNFOTQ41lEwWnCysrJWrgs2wrwRNWo2tjH1sizj5GyHLjKMt9eP8+TwajQmEgXaDSN11vwAmArrqM2HzJRPLx7j5JyRlO7xO+5FyqMNC8H/wW1Oz/+D3HXbkLVCPWxTKTVxhtk0RcdOB3NT/qyeI9Hn4Lyzjz6W34UonV5FB8RAgxeCZ/7K9VSr/bwD9yf2qyiLz0/xeopZRqMNMm/qhAdMuHAMltbKe9LMwGFWdE7UC33FJxMYQytkgIwwcO7TChmSxWOIilTWmxg8JO2dlF9kXDMonSZLZ3X++Lff88es/qU9hy7ewOxDZBMbg/vXML06wIXnyjn3PEg5Jw/eig0sIK7HYpZvQwdLgDQGc1DcNrVBFk5ZlrG2MMXvxVPO7VrPmZ3ryV2sDO1/nYCVrR2WgsDwr0+zLMssGTuEp/fu0HPcTFzcPHj99BHXzxxjz4p5dBk1hRyFSxBicG+JTsLiMYyrlStB55+q+Vb5v+D21UsUKVM+uYfxVUiShGRigrlrdsxds5PKKoK7S/rjmKssFqk+H2/1wd5lpPIqSM5mAz8+2Bw9cmHTYjC31v7F2b974OCeFbt0WfCq2T7RY4urqEREaLl9+zZFi6Ysc6/4kD7Evje1tCFdsZqkLVqD95d2cHPDdMr/tuSz2+mitJxZ8AeVBk8hba7CAFjaOeJWsDRl+4zh6sb5XN+8mLS5CpA2ZwHyNWivxthXSXSe371JnvwFPwrePwL/zovU6d2p1W0Qldr0YN2YAZzevZnKzTp8drtb509y9+oFxqzejYVVzNfitBkz4+LuQWhQAMsn/IqFpRXpvHJQrFZjshZMek24Knyr/OeJjori9KED9B85LrmH8l1YOKUnVZ6K+F87QLoK7T7b7s214xTqOTnOA93MypYCnUajDQkg5Okdnp3bx7mZA7F38yJKq8U2XRbSFauJZSoXxXbR4Z8PdaWi8iUcOHCRIkWKYGeXcuy8vxZJkshUrgF3ti8k+OUj7NJ5fLKd3/3bmNvafxS8DUmXpyjp8hQl4OkDgp77cmH1bF773EBjbo6sB/dCZchUvBIaK6V2/u1Dn0Q4IpX/J7xPH6ZRrarJPYzvwtLalqqturBp5oR4he/LR/dRuk7jj4K3IfW79KdWux48uHUV7xtXWTq8D7lLVSQ8MgorOwfyVqxDhux5FdskhoVIsgrfkiT1BroDHh9+ugX8IcvyPx/qJWAk0A1IBZwDesuyfMugDxmIAnLIsvzA4PdlgLMsy3US/0hUUjJXT58gYxYvXDO4JfdQvpvUhWrhu/QnQp/cwKVARVwKVcPUShkX1jZdZkLfPMHe3euTfZjbOuKatzTO2Qvz/PwBZFlPlA4CHt7kzPg2OHjkJlOFxqTJU4rQN0+5unB4Uhyayn+YrdtP0KhRo+QexndjojHFs0pzjo3rTNq8pfAoWxvXPCWQDExXHNyzEPLmBfroqM9mxXV0z4KLpxfOnjl5cfMiJiYatBGR+BzcyqkF48haoQ65azbD0S0L947t5vSiiUl1iCr/QaKjtNy9cJzKM6Yk91C+m5xFS6PX6xnRrAqFK1SjQv3mpM2YWdHGzTM7925c/mwfZuYWZC9YnPS5C+OayZOgd68Jj4KANy/ZPHEwpmbmFKjVjLyV6iFJEgcW/Jngx5Hcmu9nwC+ALzHmk+2BbZIkFZZl+TowBPgZ6AD4AL8DByRJyi7LsqHBoA4YB7RMwrGr/CCEBAXinDZtcg8jQbBy8SD3T2sIeXiVIO+jPN63COe8FXCr0BIbmxhhW2NhRfi750b70phbkrFMXSDG5jt9idpkb9yf15cOcv+fJdxeNxmdNgKP6h3x3Tw1UY9L5b9NQEAo6dIlXmrqpCR7nU64l6zFq6vHubFhFpeXTyRLxUZ4VW0OVrYgx2jJwwL8sHWOf91xzOCB44csutFRenLVaEbwmxfcPbiZHb92wszSCjMrG2r+PoctP6uPN5VvQ6/TER0ZgVNqZ+ONUzgmJiaMXLWbR7evcfXwHkZ3bEjG7Lmo2aoLeUvH+JNYWFnz9vkTIz3FkLtkBSDW5rt86548un6eczvWcnzlTDRmZngWTvismynO4VKSJH9gGLAAeAHMkmV53Ic6K+ANMEiW5fkffpOBv4gR0ovJsnzpw+/L+ELNtyRJ8qRz9xW/iY6Bhnb9xhy24jqHffu2lmaGjmPKOmMOXaKjmWF7Y+P4GucvsW18jp/G+jUTjskw+1lYlNLjPzJa6YgSIWQoC46IKT/1uc28IX3puSzWUfK5v9IR58DBu4ry67u+irLGIdYUQxfwUjlowcFS/0Z5LykcLp2MxBUXMpaZGUQmcXJWOtM4pbYjKsQfv8u7eXtuGx6VW2Jias6zU1spPngZlvaxn/jFzKpi1j/RwUunkwl47I21U1rsnVOztlXBRHf22v/MX/Gb4f1qZuTejs+pMj6HQgBXS2XZKT6TSNHhUKe8b9Ab3Av6yM/XfQpDB0VJ8/l2nxyXkI3NxMDBSexLbCsSbaDXELe1LKYoXg9UZswznKN+4bFOkEsnjCHcxIIqHXt//C2OU+XN2Ov/5KEyS6yl4DQZ+F5pChVl4DgV/EaZcdbUVunY6JpOmUHP3EJ5wQ0dwOwclZ+tHRyUDm42VhreP7iFz+4VBDz2pnjHIXjvWYujuyeluw5VtBUdBc1MlWXRCT5aG8krnxukz1UQV3srhpX2TPQ52G/L9Y9l75dKR/IIIeKKoROh6BRp7HkSbeCQKcogouOjRnCqE8+jIWLGZBNx3ROyRJtbxOofHW2VzpjGghIYZtoUM906Co6dolNhuNYww2f8WXPjOi/GmiTlFhws7S2V93LW1LH3b4uyBVizfQ9uBtFCtAZZV2+/Vc4pMcKOrbmQ7dXgkCIEgckv9MsjGYmOjmGCs66dEFjB8Fyam5oQpY3k1ol9HF05G9fM2ShcvRFb/v6N1qNnka2A0sfE3uLz+uZQ4R7WRut5//oF2ogwXDN5MaRC1gSdfykm8KgkSRpJkloAtsBpIDOQFtj/bxtZlsOB40ApYfPzwGZgUtKMVuVHwsXdg/cvniL/BwP3m9k6kbZcG7J3m0Pgo5u8uX6Mgr2mxzFF+VokSSKVR04s7FMZb6yiYoQMmbPw9vHD5B5GgiNJEk6eeSjZdxIF2gzm0qppOLp7UqTtwO/u29TcAre8RTDRfOWLmIrKJ3DL7Mnjh/eNN/zBMDO3oEDlevResAOXjJ7snP0HDV4wK8gAACAASURBVAf+gUeeuD4XX0sq1/S4Zvq0+eb3kuyab0mS8gJnAEsgBGgty/I/kiSVAk4BmWRZfmLQfgmQQZbl6h/KMtAUuArcBurJsrzXmOZbkqRuxNiSA3z/VVJR+W/zWJZlj8Tq/MM8VlFR+TzqHFRRST4SdP4lt803xNhyFwAcgcbAckmSKhjUiwuC9InfkGX5niRJC4GJkiTtF+s/0X4BMaYtKioqyUxifk5XUVExjjoHVVSSjmQ3O5FlWSvL8j1Zli/KsjyMGA32T8CrD01EjxUX4DWfZjTgCbROlMGqqKioqKioqKiofAfJLnx/AhPAAnhIjAD+MTClJEmWQFlibMLjIMvyG2AyMPZDHyoqKioqKioqKiophmQVviVJmihJUllJkjwkScorSdIEoAKwWo4xRp8GDJUkqZEkSXmAZcTYha+Jp9u/ibEfb5C4o1dRUVFRUVFRUVH5OpLb5jstsOrD/4HAdaCmLMv7PtRPAqyA2cQm2akmxPhWIMtyiCRJo4E5iTlwFRUVFRUVFRUVla8l2aOdqKioqKioqKioqPy/kBJtvlVUVFRUVFRUVFT+k6jCt4qKioqKioqKikoSoQrfKioqKioqKioqKkmEKnyrqKioqKioqKioJBGq8K2ioqKioqKioqKSRKjCt4qKioqKioqKikoSoQrfKioqKioqKioqKkmEKnyrqKioqKioqKioJBGq8K2ioqKioqKioqKSRKjCt4qKioqKioqKikoSoQrfKioqKioqKioqKkmEKnyrqKioqKioqKioJBGq8K2ioqKioqKioqKSRKjCt4qKioqKioqKikoSkazCtyRJjyRJkj/x7x+DNr0kSXooSVKEJEmXJEkq+5k+xN9HSZJ0M6mORUVFRUVFRUVFRcUYya35LgqkM/hXCJCBDQCSJDUHpgPjgYLAaWCPJEkZhX4igD+TaMwqKioqKioqKioq30SyCt+yLL+VZfnVv/+AWkAQsPFDk4HAMlmWF8qyfEeW5b7AS6Cn0NUCoKAkSY2SbPAqKioqKioqKioqX0lya74/IkmSBHQGVsmyHCZJkjlQGNgvNN0PlBJ+ewrMBCZIkmSa6INVUVFRUVFRUVFR+QZSkqBaFcgMLPpQdgY0wGuh3Wugyie2nwB0+fBvnrGdSZLUDegGkNrJobCff+C3jVpF5f+Dx7IseyRW5x4eHvLjx48Tq3sVlf8CiTsHM2aUHz99mljdq6j86CTo/EtJwndX4IIsy1eF32WhLH3iN2RZfi9J0gRgpCRJK43tTJblBcSYqyBJkixr932s0+v1VK81jJIlcjJmZNuvPAxA0sSzY93HP729n9JnwFyuXLtP1coFefT4NXe8n1KnVgnatK5C0xZjCPTfhUbzoT9duLIvXZiyrI9Ulk0slGWN9efHaJpTUfSPdleUX4ZHx+5GVp5+E0lSlHPbK28r/yh4/vQpKxYvZMnC+eQtXJT2vQdQtGx5IqKjFW3Fvr8GcRyGWJgqxyS2TWelrHcyEzrQnzT4WzjPeq1QFuoNr5MuWFkXLZTFa2bYl7mzss4sNbIss2LVYYb8toyWTUoydkQT7OysYuplg3GJ+xHL4pgN7lMkDZLrmEwkIo8fP0bWnfhYvnfvGSVL92D/7okULJhVOR5xfACy8j6KF4Ntl686zJjxGzE3N6VAvsxcuOSLNkpHx3bVAHj2/B2LFwyM3TbOtRXmpN5wTopzzM5IufLHP+8EK48vWq9XlMX7OZuNcO9HHzIYkxZZljl56haz5u7k4OErdGxbkX69apHRPY3Rax8v4jEYIn6EFNcrEcP9itczzvUW5pyizsi9IPYlHr9Zqs+3NXUUynYEBIQwbPgStu88w9S/utKsSTkkSYo7DnGdiHM+DI9f2K9ki2TXInHn4NOnRL6P1XXNmLeI9Rs3cWT/HszMzECjXBR1JrFlrU55f0rxrMUA8od1XqvVMmjgALZv20axYsUAuHjxIjlz5qRT5y7MnzeX30eOokLFip/tS2/wyNDplc8P8WliaqIcl6XBfSTpouIfs4nyfg6SzT/+rdUp9xQtjCNEqycsLJS927ewavE8QiO01G7bldK1GnL1pXINeRWoLFuZK/erMTiGrK62ijpzU6Uxg42Zcv6aaZT1Vgb1dubxt7U2U5ajDI45lZXy3rAwVZ5nG2Fcdhax+7IU5p9J2HtFmXjuJdk8Rqa5cu06vQYMws7akll/jiW7V5aYTXXKOSdphfU6PCi2ryihrUZ5PkzzVknQ+ZcihG9JklyA+kBvg5/fEbMapRWauxBXG/4vM4E+xNiKfzVabRT79l9izbojXLjkS6ZMLt/SzReTI4c7B/eO59mzd+w7cAkvz/QUKZoLGxsrpk7bRNkyeWMF7x+Q6Oho9uzZw+x5Czh/9jQNm7Vg2e5DZMmWI7mH9p/gru9zevSZQ2BQGP9s/Z0i+cWp8uPx+rU/GzYeZu26GOHx4aNXMcJ3ItG+TSXatanC6TN38L33kuHDmpMzlyd6vUzZij/Tq3udRNt3UuDnF8iKFXtZsHgvAN271GThrK7Y21sb2VLFGLIss3HjMX4aPJ+6tYtz+9pCHB2skntY34Usy1y9foN1m7awcet2nFKlIjAoCOfUqRNlf+bm5sycPZeJkyazb88eLCwtmDtvPq5p03Ln9m0ePHhAgYIFE2XfScXtmzdYsXQJu7dvomCREvz06ygcchc3eEEJj3d7lc8TEhLK6Al/sm7jZsaP/p22DWoaffFLKaQI4RvoAEQC6/79QZZlrSRJl4gxR9lo0LYqsPlTnciyHCFJ0u/ECOFGtd8i/X6aw/yFuylTOjfXLswiUybXr+3im3Bzc6Zzx+oEBISwcdNx1m88ysVLdzlzYkaS7D8hCQoI4MwtX/bu3cvixYtxd3endZfuLFy9DhsbG4UGXeXbiIyMYtK0PUyfe5DffmlG3151MDXVxNVm/2BotVHkytOW9++DGTa0DUcP/oW5ufgJIuGRJInSpXJRulQuvH2eMXbcGtZvPEbGjGlo3apSou8/IZFlmadPn3Lj6lnWrD3MP3vOUbd2MRbM6UuZ0rljHkzGNNAqRnn46DV9flrM46d+bFz7G6VK5o6pEDXWPxh79h+kYYs2uLqkYdHcOVStkjT3v42NDY2aNCE6OpoTx44yZvQodu7cyfjxE3B0dDTeQQoiMjKSe/fucfnCOdatWsGbVy9p2LIdmw+cIl0GNwBuvPmx1+qUwK59Bxnw62jKly3NlTPHcU6dGinixzmvyS58f3C07AKsk2VZPHNTgJWSJJ0HTgE9gPTEb9O9EvgZ6ATc/5qxTJ/Sk8oVC7J0xX4KFOtL00ZlaNu6EkWLZMPS0tx4B9/BvXsvKF72J8qVzUf7ttXYuO53bG1Tphbl0b273LpyCVmvJyQ4mEd3vXng4819nzuEBAeRK0cOSpUqxe7du8mXLx/+8X/NU/kKDh+7Tc8BK8mRLS2Xz0wjY8Y0yT2kBMPc3Iwb15azctU+li7bzabNR+jYvjqNG5bFM4srJiaJ6x8+beZ2/vx7C82blmfxgp8oXixHou/zW5BlmdNHDvLuzWv0ej1vXjzn7X1vbt++jbe3N7a2tuTKmY56dUoyc3ofnBwtk3vI/xm02iimzNjF5Ok7+LlfXbb+3CpJXhDRhyT+PoCa1apw4sBulq1aS7vOXSlSuBDtWreicsUKOKVJ3C/BOp2OmtWqoNPpaNKkKcN+G46bm1ui7vNbCQwMZMfB40RFR6GNjOTe/Qf4+njje9eH50+fkME9Izlz56X/oF8oX7kq4bofQxv7I/Dk2XN++m003r73WDB7GhXLlTW+UQpEkr/DxjZBBiBJFYHDQHFZls9/or4XMISYOOA3gZ9kWT5uUP8ImCXL8mSD32oCu4Fbsizn+YIxyHL0EcVvz5+/ZcXK/WzYdBRv7yd4eWWgSOHsjBnVEXd3YRH6mgArJmXi/CTLMjVq1KBq1aoMGjTo89sa2h0DRAm2UaLmUyN8Wja034zPHhy4GlhUUS6QyoKnT58yfPhw9uzZQaWKhdBoNNjYWJIxWwWy58xFthw5yeDujn+0cqGJNLDr1gm2q8bQGAg/GayVDzknjXA+vsbuN47NsxG7bYVGS9BuGbO9N7QLjg4UmoYqyiaWgpbHMj0AYWFaevy8iWMnvZkxqQ316xQW7IuBqIDPj0u03TV2zxqeSxMLJOehyLKcaE8QSZJkQ5tvWZY5c/oaS5fvZe++8wQFhZI/nyfVqxVh6JAWaESZOM7xxWOupamgLMtPefLkOYUK1+Lsme14ZY1nMTc2B7VvDMYgvLCLc85EqDewn/aXKyuqnD4Efdq3/yLDhi9Fp4sid053JAnSuqYiV85M5MzhTs4c7qRKZau8n0U/gzj2xMK5MjFYC8QxGsPwnhPtssVzJY5Dsa0RG3/R1l7RVLkOyLJoj6y8eWS9sm8Tm/SxBYvYr59Xrz+hTdclZHR3ZtaUTmTJ7PoJu26DcX3PFwaxX40TkkOHRJ+DEYF+H8uhWh3bt+9g9Zo1nL9wAUdHR/Lmy0e3bt2pXKWKwq5ZMHFW2CVDrI33v5jHmcAwb+5ctm3byp69++I1HRCrJIPrFyw8e0Tba3FbjcEPGqHOP0IntI3Rai+aM5Ol82eTt2AR7Ozt0ZiakiZDJjy8spE5a3bcMmUmVK88vmsvgxRl75exc9JBsJd2sVeuE1nTKO263Qzq01gr52d4tPJejxTKvn7K54295edfHMXzIdqA+4fHatXS2SrHbCnangv25KksY8uOlso6TYTyXBna2s9fuJgx4yfSu3tXBg3oiyVKzZ4ULT63BXlDsNuXNV/+4mzumjlB51+ya75lWT5CjBPl5+rnAHPiqff4xG974uvzS8iQIQ3DhrZm2NDWRERouX37Edu2n6RU2T7s2j6e/Pm9vqd7BRs3buTFixf0798/wfpMaB49ekT58uVp27Ytvj5rcXCIXRD8deILRfK+0P3XiI7W0aLTEqysrbh1fgK2tv99TaYkSZQqlYdSpWLend+99efa9fuMn7iWCxd9WLPiF6ytE+489Os/kv79OuHl5ZFgfSY0y1ccYPioZcyY0osGtfMqBZSvFZJVvgrfe6+p2Xg6f45tTdtW5X4Yu9LvwdrampYtW9CyZQv0ej2+Dx9z4fx5unfrym8jRtC2fccE29fLly+ZMGE8e/ftT7HnNioqij6d2xEdFcWGXftxyxIrA7wXzClDw9XPvQnNgkVLmD57LscO7Carp2fMj5E/7nlOduH7R8DS0pxChbJRqFA28uTJTNUag1mxdBhVqxZOEIfIIUOGMHz48BiP8hTImxfPaVyvKkOGDKF3795xtX8qiYYsy/T4aR3aqGg2LeyBufn/55R1dnagcqVClC2Tly7d/qZi1SFs3TiSdOmcvvthfebMJfbtO8bCBSk3Se6GjccYNmIJh/f9SY4cGX94+/4fiZevAqjeaCpjfqtPu9blk3s4yYKJiQmenp54enpSpGhRGjdswJMnTxn8y1DMzb//xW/yX5MoXrwEOXKkTGd8nU7Hzz27AjB/5TrMzc3Riup+lURjy7YdTPhrMgf3/INX5kQN+pNkpDyDxhROs6YV2bxhNF26/4W5VTXsHGuRxasZb968N77xZ5g0aRJDhgzhxo0bCTjShOHJg/t0b1iTHj16xAjeKknKiHG7uH7rOZuWd/m/FbwNMTc3Y/nSX6hetTBZc3XEzLoWTq6Nadt+4jf3WaBAbtq0bkiNmt8QVjSRkWWZTWvX0G/gXPbuHBcjeKskGYGBYdRsPJ1ObcrQtUO55B5OisDLy4uDhw5z+tQpMrimIV2a1OT0ysyO7du+uc+u3brz4MF9ZsyYnoAjTRiCg4MY2q8ngYHvmbVoeYK8bKh8OcdOnKTfwEFs3bAOzyyZk3s4CYb6NP8Ep07dwNvnCQ8fvqJG9WKUKZNXUV+2bD6ePd6IXq/nxo0HVK0xmNSp7b95f3Xr1qV79+44Ozsbb5wEyLLM1bOnWTlnOpdPn6TLz0MZPDgeW/Rv6f/caR753uX544doI7W06dUPl3TpFW3u3rpBlqzZsbSKcTy9feMGc2dMZc/O7VhZW5PKwQw7O2uOHZmZNE5PSczMRRfYsPUqp/YN/L8wNfmX4OAwjh69woMHT/HzC6J/v8akdoo1c5IkiTGj2jNmVHu02ihGj11FUPC3h+uysrKkevXyPHyUchKMREREsGntauZMm4KpqSm7to0hX74sCdZ/YGAYJ077cv/hWx48fkc2r7R071QhJmrOB4KDw3n87CW5c2VEkiR0Oh1bt59j6sydeN99hoO9DdHROvr1qs2gnxok2NhSChERUTRoNZsyJbz4bXDt5B2MLmmTwN2//4AL127w6NEjnJ2d6dSxo8KQM42LC//s3Ycsy4SHh1OuVEnSpU33zfvLkSMHWbNmxdExlfHGScTL589YvnAem9eupGzFKsxbtgYLy4RbhwNfPsb/kTdR/i8I8XtD9nK1SZ9TGVbx/atnBEhOODrH+JkFB/izbPkadqxbSZRWi4ODPa9evODQ+es4uySuQ2xycO3GTdp06MzKpYsokD9fcg8nQVGFb4Fz525Tv9Fw6tQuRfr0zjRuNpLxf3Sjc2eDeL9SzGcPvT6ayVNn0bhRHTSm8TwYJYOENXLcB/zxY8dwdU2NS5rIuPWSe5z2sX2JCSCEhBeig1c82764f4Gz5+/z7MV71mw4yzu/IAb0qMD2uUOxtbUAP4NP8hbpFds6mb4TyoIpjoWBA5cmG5MmzWXe/FWUK1ecLJntCQgIoVW5ggwb2oa+fRqzZ89Zxo5bzuvX7wkMDKFSxYKEh0dy/cZ9+vSsy58XpqHX63n29CWlKw1DF/4GsPiE46OBQCY6MIltRQeueJJ8yFGCQ0i00u5MF6F0atEbBPo3tVReI0nz6Sm4Yftt/px9hpPb25HGNhgiguNeX/EYouOJiKCxIiwsigtXX3Dh6ktKF3OjZBGDSAJyPLZzUUn04P9wzkf8voBjx69RulQewsIiKFG6Nzu3jlVqfT84Cb54+ZZVaw+zctmvn3eyFJ1LDRPQfGDXzq2ULpkFdHeBu7EVmmyfHONHRCdXQyfL+ByeQXFP6fV6rp/fw43bL/G594bFK89SMG86Zo8tRaWymSHSF/mVb2xX1so5GGdfhjbgwvFrdVZUazgRS0sz8ubOSOYsmdn6zwXmLz3FrOm9yZ8/FbPmbGf6zK1YWpohyzLVqhTmyLFrpHWx5+f+9ShXOidBweFMmb6F/QcvMqhvhQ/nw+ALoLGkMvoI4XRoDf6O33laHxX52TpxPooOlxpLG0VZdMBEF4ZOp6dNj62kcTRh+qgSSOGPYurMBIdo8Rjjc/qWTHnxKogzF57w+FkArRrlJ62r3ae3Ffs1iSeZUQKiN7dGlmUqVK9FyVKl8PT0YvuOnZw4dYapM2djYRH7TPnXmXH7jp1EREZQuGisk76Y7EbIQUOU4Hiv0+nYt28fv4wYFcdpUEyMIzoCBhucqoho5XPNTNjWVPP5vt4FBHPpwnmePX3MqRPHOXroAI1btGbHweO4ZcxEeLRMeHTsgRgmFtIIpm8Z7JVCuoOlcg5mjnpJjz5dKFa6HPm8suCQNTdLZg+jbLkK9B73B35+fkye9CfHjhwlWhdN1qxZ8fTKyt49u6lVpx5r12/EOU0a3vi/p2H1yty5fokqNWqhF1zdLIRncS4XpfOmYRIe0XpPZyQYR5ZUsccoJuBxNFeWTbTKZ6Kho6MsK9vqzWPm56NHj6jfvA1Tpk6lfNUa/Hu2TaIM1g1zcY2N35gjGonb3j6cOX8Rezs7GtevE2vuKzpjmsYjPyUAqvAtcMf7CUUKZ2fpkl+RJIn27WpSp94vePs8ZuKEHh9tvMPDI2jZqg/h4RHM3TT+u/ZZunQR3NzS0rxFL1avmqFY4BIDWZa56/OMM+fucOasN0ePX+fduwBKFffCLYMTv/xUi3rVvdB8wiP9ezl79jLDR0xm3dpZVK1aFjvbGO/67t3q06//NEaPWYqnZwZ+H96B+vXL8N7/Pbv3nAOgWaMRWFjETlp/P39Sp7bjxUt/PLN8u9YlpbHn0D36/rafAxta4pHx+2PcXrz2il6/HuGWzzvy5XKhYB5X5iy7hFt6O4YPKEO1CgmnUU0Ibt9+zIB+jWnfrgYAy5bvpXzlgaxeMYwqlQt/bHf9+gNq1fuVXwY1p1y5/N+1z94961G34Qg8s6SjXdtq39XXlxARoeXSZV/OnPPh9Fkfjp28TZrU1hTKlwH3DI4c2tyeXNljNVkJaV3668i1BAWHsWLhYLJkdsHM2pmBAxqzafMJWrefSHBwOHVrl+T44Slkz5aeO3eesO/AJbp0qkHJIrHKgDRpHLC1scDayhytNvo/YxYlyzI9huzhfWAEu1c3T5B18O85p5i15AJBwRGUKpoRZycbck2ZTrP6eRjWvzyZ3FOOxtfPz4+goCDmzJuPvb09YWHD6NGtKw3q1GLFmrWkMQg5uHDeHObMnM76TVu+KyynRqNh4OChtGramE3bdpA5S+KvSe/evuHqxQtcOH+Os6dPc/PmDXLnzUcWTy8KFCrM6ElTsLd3SPD9hoeFMrh7B2o1akqn3j+RJ3MGJEmiU5du/D1pIsUKF8LczIxeffoybcYsLC0tOXXyBHfu3GHMH3/gmDr2/DukccXWzo7g4P+WD8iLly+pXbcegwf9TOMmTb67v8CgILoNGMKhYydxdUlDyWJFePL0GSPGTqB/r+5069gWc8ukXb+SPdRgSsAw1OCLF++o1/A3MmVMx5LFQ3FwsMXfP4gmzUYQEaFlxG/tKVGyOvUbdMHNLR3Llv5t3AbMiOYbYkIYtWnbH3//ALZtXYSdnW3cbUVHR61S4xw3ZFhcIT44OIw6DX7n0eNXlCqRi5LFc1CubB7yZbdWLp6iQ5eh1krQfMfRyIrjMNDKnbsYypSpC/HxeYCv70McHKzp2aMBI4Z3QJZl7t17hpeXW6wTnaE2KE4q70jmzN/DmAkbWLfiZyqUFhbsH1DzffxSIM26bWH78qZKzTR8k+b73OWX1O2wjaljqtGoVnasPoS1io7Ws2nXHboP3oPPqR6kTRPPC58+GinDlMQPNfhhDu7ceZrO3f5i1O/t6dmjPpIkcfz4FZq1HEuDeqUZMqgZz1/40aT5aGZM7U3zZhXjDy0oar7FUJAfuHPnMTXqDKN/n0YM/OnDgi9qvvVC6oDweExVPqP5PnvOh7pNxpPJ3ZmSxbNTsng2KpTNTXong+snzD85wk9R/h7N98wFJ9m97yo+vi948fI9HplcWb5kMMWL5SA0NIL3AWG4uX2IHy9+XRPGFRzwhtadFxAUHM7mVX1IbW8wF35Azbcsywwcd4ELV1+wf30rbG2Etf0bNN+j/zrC+u23WL+wBXlyun5c296+C2XM5MPcvvuGQ1s6G9V8Sy6JH+4zLDwcWZbp168fR48eZcXKVeTNlw+9Xs8fY/9g1crl9BswkDbt2vP35Ens2r6d9Vu2k9kjfic4UfP9OZYtXsTfkyawbtMW8uaLeaE2rvmOvb4Rgtb8U5pvWZaZPGEci+bNpUjRohQtVpxiJUqQt1AxrKxj51GUoL031HqDUvMdJRyghRBqL0Qbe21DgoJYMGk09+/68Pi+L9HRUeQvUJBN23chSRJvX73A0dERG5uY+1R0KDcMHxihk7l+5TLd2rWiTcfOdOo7MF4H9PAo5fn5Hs234bn9Ls23RjnH3r55TbUaNWjVoiWDBw9CNlGu7Yaa7zjp46OUawpAQGAgtZu3o3D+vAwfOpg0zrHZWi9evkqfQUPp3qk9HdspfX5EzbelnWOCzj/V4VIgfXpnTh2fSbp0qcmeszXjJ6zAxERi/96/6du7MUOGzsXNvTiFCuZh1crpCeZ8YWFhwbq1s7GysmTFik8m8PxuQkLCqVl3ODmyu/PQZylrV/5Cvz71KZDfM8mSiRQvXpDOnVpQvlxxypQpSmBgKGfP3gJiFpmsWd2/KnpFz241qFG1IN16fzYa5Q/D2cuvaNZtCxsWNIoreH8DwSFaarXdypK/q9O6cZ6PgndMXSQXr75Ep9Pz1i9lZTysW7cUp47PZOHifyhVpg/btp+kTOk83LiyEGdne4qV6kPDJiNZtXxYjOCdQOTMmYmTR6cxcsxy/P2DjG/wDZw7f5d6TcezYlE/Lp6axMwpnWnVvCzp0zslyv4+Rc+u1ahWOR8VyuYiTy53fO4+4969FwDY2FjGCt5fgJ2dFcvmdcbH9xUz5x9MrCEnGSMmn+PEuSfsXt0iruD9DazfdpO1W29yZEsH8uZKq1jbHj19z9377/DzT1nzT5IkZs6cybBff6Nundr07tmDe76+DBs+gpVr1nPq5AlyZs3CsSNH2LF3P+4ZE84JuEPnLgwcNISxI39PsD5F/hr/B3t27eTU5ats3LqdIcN+pULFSgrBOzGxtbenY68BFClRmsIlSmNra8v5s2cID49RAGXIkOGj4P0l5CtYiN/H/cnk8WN54HvX+AYpmPfv31O3Xn3q16uXYH5mnfr+TNGC+Zk+caxC8Nbr9Vy7eQt///f4+X97wIxvRRW+P4GFhTmzZv7Ewf1T8fF5imfWFixZspuWLatw7cpSLl/azdSpIxNcYNVoNJQuVYQnT54naL//cvDQFQDmzuqbrJn7nj9/xeEjp9m//zhFimSnS+e6RER8XpP1OcLDI2nfZQbXbjxi/65RCT/QJOTSjTc07Lab5TPqUqF0woRSsjDXEBYRReUySr+BLf94k6fCAkLDorh5tBt5c6Y8R52sWd24eG4ePw9sxrgJq8hbsCtv3wbyx5hO3PdZwfXLC6hapbDxjr4Sd3cXPDK58vTp2wTvG2DKjB38Pqw5Nasn/Ni/FL1e5rb3M3bsvsTN20/p3rUWuXN92z13RWqgqgAAIABJREFU2/s5JSr9QfPGxfhtcB3jG6RQZFlm/KyLbN//gP3rWuHokDCOdXq9TJ4cLrga2NqGhWkZNHIPdVuvpFGd3JzZ08P4+KIDjLZJaJo1b86lK1dxz5iRmtWr07tHN3Llzs2K1Ws5dfYC2/7Zi7NzwmfYLVm6NM+ePUvwfgGio6OZMWUyG3bsSpSxfykhIUHcvHqJo/t3ozHRMHzUWEJDvy2L6dqVyxg+eACL12zAM1v2BB5p0hEYGEiDhg0pW7YsI39PuJcvvV5P+dIlFS++Pr73qFynEavWbWTJ3Bn83Ldngu3vS/lvGOklBJ/IDpknVwaWLxnE3bvPqF5rCG7prKhVowjZMwNR1z7fl/iZW7oT+7eYDENo6+5mzvnzt0B+HPODzuBNVnTuEhHNTITP61Fhr0nnYomJ9vknMvMJwoaJ8PBRfG4VP0UbGVfYvdi/pdt0bGROx0a9efDoHb+P20mjJr8xY0J9+nYrE39mO0mDTqfn9PnHbNp5g807b1G2ZGZO7eqCtXUQhAtmOIYYyzYnmJ3EyZJnkEXNxMIm3rZmDmIGVINILOapFVWyiRVzFh1j1IQ9LJzRnpq1cim3NTAtkiNeKbcVPq9LBp/nZFlm4ZpbWJibEhoejaVlKK/fhtJ3+FFueL9j7axqlCkaY7qgjwyEeD4xip/tEw3hGmhM7WjSpDKNG1di+dKtVK05BN9bC3Gws8TB1kR5TePJeGg0+6UwbzJmdOHu3Sfkz+cBUTeVbbWv4z8GTTyOcVF+aCPDSO9iClF+EKrUUunCPu/YKpkqo/lI4nr1FXG/zYGFE0syb1xxTp57SqefdrF46V6eXOxBOlfbeM0/JMmEoOBIdh16xObd9zhy5hlTRpajQ7PcEHYLnYE5iGQiOpgK2QaFesV9JrSNYzpibvXZehNbYf6Ja665MqrU+4AIug1Yzd37rzmw8xecXQzai+dVWCdl8bO3aeza4B8YzcYdt9D/a76gj+ToqUd0GbiTYgUzcONwB9I4WwNhEA3oY891nDknfb/vx5dg+EnfIjqC9LamjBzYm0HdO9Kx1wBG/zqEGdOmksMjA3oD04EQrXK8YmZJ0QEzvq+bGTK48fzZUyIiIrC0tIyzbbhQNizaCpkURRMVoqMxNTUlS/q0ALwOjV1DRbMS0UQjLEr5bIrUxbMuCrokD0fl8zR1gQIs27SdoMAAdm5cx+gRv3Jg/z6WbdxGVKR47pR96WSZxw/uc/CfHRz4ZzvhYWEs2bwHD6+scZL92Fso5QtDMxMAWwPzEPN4nFEhbtZSw/Mjnvc4z3G9sI4oCiacO3+e9p26ULd2LSb+9RdI0kc/F0kvygQGJ0QvmocqT9bZC5e5dceb6OgokPVER4QzZc4Cps9bxIhBA+jeoXWMIlIXFScLq8knTFgSElXzbcCjR68JCIj79pktmxt/juvA2Anr41yghKZOnVKcPnOT69fvGW/8lew5cIOc2VKOY6KffyhrNl/FObUNb96FsGbTFS5fe05IiHLlio7WcfjEfXoN3kaGvOPpM3Q7zk427N/UlbULW2Nt/WPGXX37LoR6LeawbPUZTh8YTIM6BRKk3xevQqjVbjvLN97i3M6WODtZsXHXXfJXXY2nhwNX9rX+KHinNG7cfIheiIQgSRId2lWlaOGsLFl2INHH0KFtVcb/uQ6dTme88VcQGBjGmfP3yZFC5qBGY8KuA/d48DiA4gXTsXrLbXYduMe9hwFEC7az/gERLN90h3odd+BefAlrt/lQt2pm7p3sGCN4/6AcO+lL/jJ/kCG9I+cODSV9uoQRcvcduU++CnPJ6ObA2vlNiIyMptcvu2nTeytTx1RjzbxGHwTvlEVQUBAPHz2O87uNjTWzZ85g4+bNPH/xIlHH4ODoSPmKlZg/Z1aC971/3z6yZ085iXxsbO1YOHsGer2e9O4ZWbtiKRfOnMLv7VuFrCHLMvd8vJk7ZRJNqpSmQ8OavHzxjAG/jmbTodN4eGVNxqP4dnQ6HRP+nESzFq2YNGE8f/05MUEynGq1Wn6fMJmmHbszafRwmtavg8+9+5SuUZ/jp85yZv9OenZun6wWAKrDJR+cvSJ2MHzkKqbN2kGn9lXo17cpXl4ZPrbRaYPJmb8382f1omIFI/Em42i+Dd4KjWi+AebO3crCxTs5dGA6qRwM2hvTfItOVwYOPIcOX6N1h7+4e3kc9vZW36f5NvtKz3zDfRkcryzLXLn6AG/ft/jce4O371u8fV/j+8CP1KmsyZE1DXa25hw99ZAsmVLRpF4+GtfJQ1bPD5orUYMpOikZkoiab71W2bdJnPBHSs23Tqdny87rDPhtG22bl2TMb3VjI0WIx2Co+Tbi6CljwpL1txj+1xl6ts3Hb/1LYGamYe7ya4yfeY6ti+tSOJ/rJ4/PmObbNPPcRHf2ig7bSY683ZEk6N+nPu07NsDW9sO5jA7m/AUfmrYaj++tRZibid5BCaf5ljGhfOVBlC+bjzEjWysfBt+o+dbpdPTuPwetNpolcz6k5f4OzbeJRcJEYQgKjuTy9Wd4+/rhc98f73v+eN/z49WbULJkciBbZkf83kdw9fZbKpd2p3EtL+pUzoyD/YdzJjy89Emk+TbRmH22Ps65+YTm288/hL9mHGTFuvMsntWWmlXzxNYbrhVxHM8FxzFB8+0fJDF03BH2HX3AkmkNqFLek7AwLY07rcfCXMOyGfVjTVoEh1Njmm+TDKMSfQ4e3PsPteo1pHLFCvTr0YWK5cp8vP9lcxsG/zIUSZKYNHFComm+LU0lHty/T43KFVm7cTNFDEIYAnEySxpqhuPT3r569ZK6NaoxbfoMKleuDCSi5ltA1HwbOjO+fvYE79u3eHDPlwe+d7nne5cHvj7Iskxmr2ykd3Pn5tXLREVFUaVmXSrXqUeBIsXRaDRxlm1xjKLmW3RATSzNt4mg+TaJFOaRiSlXr11n0LDhmJiasWTRAjKk//AlVpjbouZbijZYY6IjhDot5y9dofeQ4aRP68r8qX+S1iUNV2/epl7LDgwfNICu7Q3WdIN5JguhBiVhDpq7ZErQ+aeanRgwdlRrrKzMGT5qFbPm/kOd2iUY0K8RFSsUQKPRUKJYdm7efmJc+P5OevRogM/dp1St/hP7d0/AyenbE/iEh0cyfNQq1m44wcoFnWME7xSCJEkUyu9GofyG8aZ16HR6njwLwOfeW/zfhzJrYl3Sp7WPP6LFD0BAYASL1x9l1qKTpE9rz6p5ralY4ftC5P3Ltdvv6D3iGLIMe1c2oEDuNEgaDUvX3+SveRc5uqkpWTIlfNishESj0XDm+N80av4HfQbMZfiolXTtUpfevRqRKYMN+fNl4f37EAICQnFJY2u8w29EkiQ2rRtBpWpDAD1jRrb9Lm3MXd8XtO86CytLE9Yv655wA00A7O0sqFAqIxVKxTrNyTot4eHR+D58zx3fd9jbmlO+RAasLE3jxsT+wbjl/Ybpi/ezcdtlGtbJz5XjQ3F1/f4wf3q9zLINt/l14mma18/JjSNdcXC0R6/X07DDOlycbVg6vR6mpin7/JUpVYodWzbRsk079uzbT+6cOejboystmjTE0tyGEsWLs2TZskQfRxZPT2bNW0Dr5k1YtXYDRYsX/+a+ZFlmy6aN/DZ0CN279/goeKcU3DJmwi1jrM9FlF5GlmXe+/nx8L4vjx8+okvfgWTPlScm2dUPrDDV6XTs2rOPmfMW8fDxYwb06UXPXr0/hnD+Hvzfv2fE6HH8s/8QE34fRsvGMZGyfB88pE7zdsz4cyyN6iZzsiwDVM03sZrvf9m05RQdu82geLEcvHzlT2BgKHVqFmHjllNcOz8dNzcjmSi/U/MNMQvGoMGzOXz4Igf3TSJ1aoev1nxfueJDy3aTKZA/C7OmdsfZ3uAtMQVovoG4Yd+M2Hwr+EE03/ceBTN94QVWb7lJzSq56N+9LMUKf1hsxa8V36D5HjnlHPNX3+KPwSXp3CI3Jh80FG/fa8ldcTlHNjYld3ZlNI2UqPmWI3cDoNVG0bPvbDZvPU3FCgU5dvwqWb3SkS1rBp48fcuxg5M+EToy4TTf/9a/fRtA5eq/ULtmUcaP7RAjgH+l5nv2vD2MHLeBUb82o1fn4srPnClA8w3ESbBkzOZbOZCUr/mWJTP2HPJl2vyz3Ljzml5dKtC9Yxlc0ny4VuL98JWa73f+4TTqspPISB1zJ9WmcP4PZkUm5qxYf5WZi89xdk9XNCbCHPsKzbesB03GaYk+ByOCYtbqe/fu06h5cwDcM2TgwqUrVChfnlevX9G2TRu6du6UqJrvfzm4fx99enRj+eq1lChZCvg6zXdoUCD9+vTiro8Ps+bOp1RxpRY9JWi+RW20GOLwUzbf//KjaL5D3r5g6ao1zFm4hLQuLvTt1Z36dWpjZmYWJ6Tft2i+9x8+SpfeA2hUpwajhw7C0SFGYSnLMnVbdqBSudIM7NUtbhKeZNR8q8I3MYtO/jwZaNeiOOVKe5E3V3pu3/SlUcc1NK2Xhw4tCrHn8ENCQiMZ+Uv1uAKiKECJZUPiCJfxxJOWZYaO3MreQ3c4sbs/9g5GtH2CIDtiwmHuP3zDmiXdYn6IiI2iog97o2hrYinYOsaXnc+Y8BJfljeRT8TuVvYVj91tfFkZET4J68WHmbLfOA87QehQCBXCBNZYKa+LiUPOj38fOHKHVl2W071TJXp1q0p6D8HeUHyhiniiHEdYbFkfGVfAfPAkiFKNt3JjbzNcXJSC3+ptPizf5M3+VfXRR4vxiMXj/fz5kDQazLMtTfQHf4M6BWneqCjFi2TGI5MzM2dtY9y0oyyd3hhLKyv+OXCHahWzUb1S9rgvKRrhi47hS148mSVjyp+fg+/evqdqk6XUrpqdP36t+okXPuF+NcwGamKKZ4kFTB9biTpVveII11EhytjdJmYGD2gjGmbxHhTvXyk+TZL+y9f8OOYPccwhlONQxswWbfeNHJPhmMXjMxK729Qq9t43sY2N7qPX6+k3/CCHjt7h10F1aNaoKBb2QmQXUcCONLBpjlBG3RBftJFlJsy+yK27/iyfUgVTgwRpksac2m020aROdjq2yBvHOSzOC348Lx+YpkbjNibR52C/Xj2oWb0qBfPnQza3oXPnzgQGBTFzxgwuXr7C6dOnGDP2D1KlSqUQsAU5NY7wLcrahldXFOrE2/PgwYP06daJFes2UahI0TiCvKEwHh6lrDtx5iy/dGnJxpPXsLCwxEyQKIMjY+d6YKTyegRFKO+59+Gff96ERCi3dbBWCpDmwhePwLDYvjKmUj5rxZjZJtLnhXNLoV9RCLYWHCxthHobg33ZCXV2gmmfJNy/hkKyeL0NX8Zev3pF8wZ1yJkrF7369KNI0aKKay4K/aKwHcdkxXBtkEyQZZlCpcoxZsRv1KtSTtE0wN+P9HmK8cb7ErY2NphEibkG4plzwnk39SigxvlODKaMa4y372s691lNKo/BdB24lcL50jN13il8H7zj5z4VYgTvJESSJCaOqkfObGmZseD4V2/fqlkxjp70ITo6YR3HVL6MvQdv0brrMrat+4k/RjYjfbqEz2K3YosPLet6kSZ1XHOimhUycfHaG/wDEtdrO6GoUyMf6zafp1zNSTh7DGDXAR+8PFLTuucGypTw4O+xdWME7yTEObUNBzd3Yv6K89y9H080nc/QulFODh6P68CmkjT0+HkbV6494ezh4bRtWUqRITchkGWZ5Zu86dM+3yczYTasmZUd+xLeeT6xsLG2ZtzEv8iatyCly5TB0sqKe76+zJgxg5atWjFz1mxSpUrabJwVKlVm9Lg/GTF08FcHPMiRryB29g488L6dSKNTiY/Xr17RqHZ1mjZvwZLlK+PY7ycEl69eIzw8gjo148pnjg72lClehD2Hjib4fr8X1eb7A5XKZ6dS+ZgHe1iYlmtXvbl49Tk21uZYJGPaZEmSGDW0JmVrTaNf94pfZbPtmdmFkNBI3r4LJl3apAlVpRLLyvXnGT2sNqVLJo7AqNfLrNxyl83zPv1S6ORoSY0KmVi/05fuLVN+/NfO7crSuV1ZAF69DuTS+atcvPacjG6OhEdEJVv68tRO1vTrWpJxU46yfE7zr9q2QG5XZi65lEgjU4kPnU7P4tUX8H8yCweHxIkscubyKzQmJhQv6PrJ+hYNcjJ47FHevgsjjVPKj8o0avgwIMY21+fxCy5fvkzatGlJ7ZR0SaA+RYMmTZk5bTLHDh+ibMUvt9mWJAnPHLm5f+cWOfMXSsQRqnyKM6dOkDmLJwMHDU60faxYs5Z2rVp81pSpY6tmrFy/hab1Uo69N6jC9yextjanZNGMlCyacJm7vocc2VypXikn/X7ZyILprb5YCNn+z1UK5c+oCt7JhGsae0LD4rFD/07OXH6NpYUpBXJ93gfB0d48Tti4H4G0rg7UrpaD2tU+mOmIvhJJTL+upfAq9jfbdt+iQa0vD623avMtWjbIabyhSoKj0Zjg4mxLaFhkognfa7f70ryu12cf/DbWZshyXLOLlI5GoyFHjhzkyJGDVq1aARCdjBaqGo2GnwYPZdTwoaxYv4UMbu7GNwKCAwO4dPo4A8dOTuQRqnyKNC4uhIWFGm/4jciyzIZNWzl+cM9n2zg62BMd/RWmsEmEanbygVET/knuIcTL7L+aEhAYTvna09i8/Qpbd15l265r7Nh9nVevP+2otWj5Cbq2L/fJOpXE53/snXV4FMcbxz97F/dAPCEEAsEtuLs7xYsVt0JxKRQoXqxQtLi7Fihe3D1IgGBBkhAjLif7++PS5G4TLgSC/Xrf58nzZG9mZ2Z3Z2bfnXm/39fN1ZbXQe8m0X0s8nvZEh2bzInz746I6h8QSWGfL7tq9b64ev3Zl27CO2FrY8aBTV0YNGYfw8bvZ/eBO+w5eJe9f/tz+ERAhq5dIaFx/HM+kA4tDcb3l4KrszWvgz5ddMjKZVzZtPchMbEZf2QHhcRiaiLHIefHGf+i8vOHv/7a0Kzld7Tt0ImmdWuwZcNa/t6/j0MH/uLo3we4f8cvw3OO7t1B+eq1scuRM8N0Az4tnF1cCQkOzjzjB0IQBCpVKM+K1evemef+wwAK+Xx9OuiGle8UPH0WrEu8MZVsI2qTsqQEw3RR0LIQaVHKnpdEVVIla0h2lsDm6YVYuOEha9f8jShqCDoKpZo+D6JYMaUs1Yqk+TO+CEnk6rVHbJnuQ+LTQ5oftYgKxtaSyUhKXkzWJYOhzQQWsug3qVW2VBdXSoTUW0w68pf+pRid/JJ61OnaIepN1yZHaZMvAURplK34SwA4moZy5dlL3QifErUMbUIlgFJCylMlpPUtKSnS1kjNsgkl6Dr0GH8trkjhfLpGtiATeBkUzdZdfng5KMnlYqGdqJP3ZVAs4ZFJRMcqeBujIE8uK4rmt80w76dCWPALSNJyq9ImUUrHnJFETzudKoUWOVWfmgWAUjewlvbzVSWmjc9SueHM2opMXHifVasCEAG1SsWrN4nYWhmzenIJ7MLTxs3yU9E0LmeLOuAqUYAgITQZ2WXBd1ZKQJT0BZlEDSUrnOesRDDNjDQpaqufSMe2XKoCJSlL65JEqQKLlOwlJR9rqxbEpRmqLjkgKDAACmnde+nzl8zXqrg0Y0EtjXInmSfa1HPj6Cknug45zLpZ1bCw1OqngoznT0NJSlKyZOV5urQqgJm2+oTWvVIoVDwLjCYqJpm3MUnExSmoVt4Ne9uU8owzUdjKJiQZpyk5xSbpPj8pEVB7tV8u6N4XMxP9/USuda5U3UNK3tOur/+gnyha0pc1y5eiVqkQRRGlWsTv5nXad+1Bq16DdRSFDmzfRPfh41NVQKTTfmxyWr8Kk+xSGkuUfKwkyiGhMWnzhJudrjuolNgpl2x9OFlK5jMtqNJdvu4PtlrtsDbVnVNMJURrKQ3BRjIHaaudWBpJiI9KCZlcAu25QJCs45qnlJXb3ZU3IcGYS/qOPCltzhVi9UfnlcXrfnjqED9VClb+MpDSLbtT3MOeri0b6uQVlQqCngVw6eZdzh89SJVSuhGktefRt1HRvA4N521MHNGxcRgJArXLl8yWoD8ZwWB8p8DEOHOdyRVrz3Lu0mNWLen1yR6IPshkAoO6FGBQF43/7r8vpFOX3/DD2Mt0beJCzxYeRMcpWbnnFa3re2Bu9m1rY3/LcHWyIDhUjwReNqB2BScmDihEg17n+GO8L81rueukH15RnT82PKRC22PsWVSFssU0BnpsvIJz18I4dDaII2eDiY5JxsXRDBsrY2ysjLlxL5Lv6udiwoAi2Fi/+0WRnTCRhiiWICEhme4DN9CqaUnatMx+4s77wNHelEXj0yKRqhVJqFQiM1YFULXbeRb+4EZ+N1Oi49WsPxLC/EH5vkg7DdDAxcGc18HRmWf8CMwfX55eY89Ro+Pf7FhSB0+3NPWjssUd2b2sHjOW3GTlFn9ObWuOmakRoijy8nUsR8+84NDJQI6fe0kOO1PsbUyxtTFBLpcxcMJZfhtTgfZN8/G1eK3cuePHqOHDWbNuPY5OTl+kDRWrVKVilaqpx/EKNW+CgxjWtweXLpxPdTF58uA+0W8jKFGhyhdppwFgba1ZJImJiUn9P7vhkMOO/X/OotWAMdz2D2DmiH4YGaWZtlMG92Td3sN0HT2Vnq0bM6ZXihuVUsWNew85fO4Kh85e4e7jZ7g7OmBjZYGdtRWvQ8Oxt7Fi0ZgBFMrzfm5OWYHB+E5BZhP08jVnmDrnbyzMTdiy4xId2lT4TC3LHNXLOXF+Sx16jD7P8l2XsLU2IoeNMcunfj1t/C/CxdGc128y0RfPBnRq6okowohZt9IZ3+7O5swYVoIKJRzoOPwCvoXtufMoiqDQRHwL21O/qiub51aiqLeVzgfl4xexVO54HJVK5PefS3/yawB4HfzuFRClUkWzDssQBBg4Yhs1qhbE0eHTTOZZhVwu8HOv/FQobs+Pk2+hUInYmMspms+aCkW+jjb+V+HqZK63X2UHzM2MWD+nGk16HmXJhntMH1lOJ71qOVeqlHWh4+ATNOx2ELlMwO9BBIIAtSp50LSOF3/8WhXnnLpa0PNX36bzkBPkcrOiSkXHT3oN/yIpKQlT04w/tv3v36dVs6YUKlyEMaNGsmL1ms/SpveBk4srq3fsY/rkSfRpVQ9zC0usrG34fuDwLxpC/L8OQRBwdnEhKCjokxnfAMUKeHNq42Ly1m5Nl5YNKFEwzc3E3MyUPu2a0aRGRcq37Yvfwyc8ev4S/6cv8HJzpl6lMkzo15kqJYtgZprGLUpOSqROn7E0HvgLj/evyvY2G4zvFNzwe/3OtMdP3jBm0h4uHBtJRGQ8LToupV6touTM+emi7GUVLg5m7JlbUuc3Y5sPj4xpwMfD3dmC128SUCpVGBm9e1VXoVCxac8D2jfz4UP2KdRqkZU7nzGub+F35mlRxx2ZDJKS1YzuXYgXwYlcuhXGpZvhbPrrOR4u5pQubI+dtTHRcUrW7H5KlxZeTBpY9J1lZjdu+L2mU5uSGab9sewUKpWao3t+ZMT43Qwdu4P1f/7w2dr2Pqhd3oEbc9P8u40cDYb3l4aHiwUX72bu8/0sMJK7D0JpXNfng+p58DSKG/fCWTWreobpgiCwfHp1Nu0LwMvDmpx2Zty4F87Ne6Gs3u7PrGU3KF4wJyUKadwBHz+PYv+JQLYurEuVMq4f1KYPwb17dylVKr0qiEqlYkC/Poz5eRxt23egUvmyHDl8iHr1G3y2tmUGIyMjeo8YT+8R41N/kwadMeDzw93dnefPn+Pjo39sHT5xinx5vfD2yq0337uweud+GteopGN467TD2ZGDS2dw5Y4/gzq1IjE5mfPX/Lj3JJAx81dhYiSnTBEf8ri7kpiUxMEzlzEyknN02bRP4ulgML5TkJikJDgkBhdn3RemKIr0G7KBkYPrkd9b4wfesU0FuvdfyZ4tg76I+4kB3wasLY3J42HFDb9gypZyzzBPaHg87foexM8/jHNXXrN4YtbdKTbufwFAp6b6J61mtdz5adoNBvx6jZKF7KlZ3olOzb3w9rTi+csYrt6J5PWbBMzM5GyYVYFKpT6Pn+m/uOEXlOHvz19EMHXOIS4cHY5cLuPXsY0pWXUGm3dcoUPrL+N+YsC3gfIlHJiz+qLePCfOPKFj350olCq2LGtDrbKWevNLIYoiQ6dcZnTf4rg4vptYaW1lQrM6uWnZ+zBPXkRTv7on5Us607KBNw45zLh1J5TbD8KRywQ83a25caB1hvr9nxK3bt7M0Phes/JPTE3N6PpDd2QyGQsWLqZPz+6cPncBJ+eMZRYNMACgTNlyXLhwgbp162aYrlKpmDBzLqs2bMXe3pbzf+/GNosLh4Gvg5m/djuXd67Qm694gbz4P31OmyGTsLWypEGVMtSrVJofO7YgOSmZK3cf8DwoBAszU3q0rE/nxrU+2c6JwfhOQeO6BSle/XdqVM7LwhnNcXJ3QKlUMXfhEUJCoxkyoE5q3umTWlO57lQWLDnK4P71vmCrDchOvI3W+O/msDMlMiqZiKgk8uay+qgPrKplnTl94VmGxveN2y9p2WkzHVsWZPfKplRqvpVtB57QtnHe9yp7698vWbfvOTfuvWX/kkqpYeX14YpfBDvmV6JaORed34t6W9O4ulvqsfAeZWU37j4IoUiV+XRoWZyfh9ZAAELDYukxaCtD+tciv7fGx9TKyoxta3pRv9UCypTyTP0oNuDbx+uQeHLYmSCXwZuIRGSCgIvjhxughbxtiYxK4HVwNG4uui90URSZv+QfZsw7zKal3yGTCbTvvYM7R9umER31IDZOwfSlt9l3PBArCyP6dcxc1SYmTkFwaDyvLnbGWBLwp2RBPapEn0ntZMyoUWzbupUxY3+mVIqv9NXLl5j32wwOHTmWaohUr1GDTp270LtnD3asVuX1AAAgAElEQVTt3QdfjVe6AR8DpVJJcHAwbm5uJMXHExzyBlcXZ8zNP3wMVq5Shflz52SY9vZtFN169CI+IZFbpw8zefZ8Bo2ZwNpF896r7Ot3HzBv9VYOnbnIyJ7f4+WR+S6R/9MXtGtYk9kj+uoS19Vqqvhq7fSqP+2uiSG8PJqwumLwzwS+jGL+8iucvhjIsH7lmTTnDI45LVj2WyMKeaethogqJU+eR1GxxTYOrGmGb1HdSVNuJtluNrJN+1/CtBeVumonUha/tvKCVJVAysSXKiBIDSiZSdqqjMxY9+WSTsVAJmW2v/vrL10YaZk0nPdHhLPWhywopaSrR6Ke8CY0jjLN9xKfqCQmTomRXEChVHPvUHPy5rLWuddqSahrQab7DasdJvvwmSB6jbvEsK556dHSExNlIlGxSvaeDmXSymfMHuhNi2oaf84D58OZvzmQQ9O1XuJa1Hd1QhobP0mhxrvfXZYPz09NXzsszeQIEv13mXnay10w1viyDZ55l8CgBNrVd6NuJUcc7ExS2vxuJQpBkGHhu/uTh7ZOfjaIW/dC6T3yGA1qemEkl7FozS06fVeIWeOq6RAyRZWShWtusXrbPc7vboOxkW4f0+7fgrFkFUWtO26kIcNVSWljMt14lDx77byaotPKFiRSAzITyZgz0tUuFyRhk3XS9IWLzwDpnmdWztXXjsyUb7TmnHR5Mylr+4HH9Bx9EpVKJFmhRiaD0kUdOLu9Wbr7Lh2/OsoLkvH4w8hTBDyP5pcfS1CrgjOiSsnzV3FMWXIXv4dRbJtfBS93jQth5xHnqVQqB33b50upRzJ3ac1Pm/YHsmz7U+aOLolvYXvNx69WO2SS54sgIzFJhU+dnfT/viB5PW1op/2hrefeCcZOGHlN/+Rj8MHzV5w4doRxo0bw2+w57Ni2jdu3bzF1+gzatv5OJ78qOYkGjRpRr25dRowarZOWnF6yQwfaryaF6t3h4gGUknSpOkpM8rvfA9KyIyUh4xO1YiAYS96X0rD30nRtSEPASyENAy9VQ9GGiWTekIZf1z6Wtkma10h6TZJqjZVp85uQGEObbn04ff4CMbFxyOVykpOTmTdlAgN6dk0XXl5HOkYy5kSt45jYWAqWr0nLetUZ278buVydSQh6zqU7D+k7Yyn1fAszo09bjI2MiI5LwOf7YVybMwQXuxQ7SmJPKKLT+Hltl+6laB4P+reojbuDPYLUbjGVfDQYGXPg3FUGz17BLz3bUTSfF6ULpZDiM1nhNinX3BBe/lPB08OW2RNrU6aEK7MXX2TepLqc2t2ZQj7pt9/z5rZl0ZQadBh4iLh4RQalGfCtQBRF+v1yng7NvHlzuSPRNztRp7Irw3oUIW+uj/PbrV/VlX0LynL2RiTFvjtFtb7XKdTuIttPhLL3t2KphjdA/fI5CHyThP+LzBVSHgcnkdvZjCaVcmKZBUWb2cMKUdzHml6TbnM34NMS0bIKIyMZpYs7c2BdC/YefkzgqxiuHfqe+b/WzFAJZUDX4uTJZcOYmee/QGsNyE68Co5j8KRzHNvYlOg7Pbh/tDX2NqbMG1/xo8v+c0p5+nb04acpV6jY5hD56+2nZpcTWJob8c+6WqmGN0C3VnlZvevpe4Ux938aQ8OqLpQpmuO9dp0AzEzlnNnSiB2HntN52OkPvqZPBRtbW1p814aZc+fzy7ifqVK1Kldv3KJ5i5bp8hoZGbFm9WoWL17C5UuXvkBrDchOrN28jWeBL3hx5yrRgQ+YO3k8JYoWpmfn9h9VrrWVFXf+3oSdjTW+zbpQrX0fXBp0Y/CcFYzq0oo5AzpinKJOYmNpTrOyRdh0+sZ7lX0/8DU9GlXD3eH9ZVsbVy7DnJ9+oNfURSzbdeiDrik7YFj5Jm3lWy+0dIO1NZ+7DTmCtaUR8yelSR8ZVr6/rZXvv0++YPRvl7m0symmJnKWbLzPqN+u0rNtflQqEblcYED7PHh5aHY/srLyDWla3XceRRMVHkspH2tMU/RVRZXI2xgFK/4KwtfHmjNXw0lUqJn6Q0p01XesfO+6+Jb9N2NZOzYtbPy7Vr5fhybxx7aXFPa2pktTDwDyNjzB2bWVcHc2T2nzl1/5Vr/8SfKbnj6XMgbDIxMoXncTm/6oQ9VyaW4zhpXvb2vlu+uwE+TJZc3En8qiUqmp3XEfMXEKqpTRuEfltDXm5wElUvNnZeX7X81+pVLNP5dC8HI1w9szzZ1MEGTcfhDJ6p1P+GVAMSq2O8yGWeUpXSSH3pXvNkMu8H0zL1rW8cjwGrVXvk9fCeHPLY+YMKgk+b1sOHEhiKmLb3Nig5Yu8Vew8h30Nk1/2UyyTGoqWb0VUrbld+3ezaRfJ3Ph4sVU9wTDyrcuvvaV77i4OPIXKc6xPdsoWqgA9x8+okLdJjStXweHHDkQBIF61SvRqE7NtJPfc+UbQB4bCkBoeCTX7vrj625PDhuNnSTGRaNSqdlx6jKvwiKpkCsnvRdv5+a8oZox+o6V75jEJHyGLSB090LkKffsXSvfiUnJrD5wknvPX/P70O7I5XL6Tl9C6UL56N0qhTT8Na18C4Lg+SF/2dW4bwHzJlRjz5Gn/HPh3VEGDfi6cej0Szo198Y0ZXX10bNomtfJhXNOM/Lltmb7wWe8CP54ycCi+W2oUNQ21fBOSFLxz7VISne/ypoDwVzxj6ZTHQe2nQonJkG/v9mDV4kUzJ151Ly9J99QoesllEqRiYsfcuFWJKERSSiUatyczDI9/2tHTntzFk+rQc+R/xh2oL5RqNUih0+/oEdbjbtVeGQSpiZyKvo6kyeXNeZmclZse/jR9RgZyahb2ZV8ua0RBAFRFImISmLc77do3u8Ua3Y/IfxtEt1aerFsy+NMy/N/EkNh78yJYd1GnqX3uAtYWxrRfvBJ4hOU3H30lqI+WQiy9BWjVcuWFC9enF8nTfrSTTHgA3H+4mUK+eSnaCHNYs6d+w+oWbkieXJ7ki+vF/cfPuLkuY/f3XDMaU+DahVTDW+lUsXToFCq/DiZiWt2s/PUFcrlz4WxkZwTfgF6y3oUFE6BXC6phve78PJNOEW/H8qRy7e48/g5U1Zt11zj4+cU9f4wZZXsQGbLI8+Qhld6P/xnIrvY25mxZFp1eo38hwcnO2baEQz4+nDq4mtWTEsLxDD35/KpK2vxCUrG/36D0kWy70UpiiL9f3vIzn/e4OpgypIRBZi8+hkFPS3I42JGrZI2LN4XzKh2GSukAPg9T6BdPdt3pgPEJagYteAR22eWoIKvI3UqOvD96Bt4uZtTLL/N/41ST/N63uzY/4gpf1xj+iiDtv23hruPIrCzNiFXSnAaJwdzDq1NWxHesOcRFX2zN6BLSHgiVTocIyZOQfECdqyeUZHOI87j4mhGn3beFG92GP8n0RTwytjtLCpGwevQRPJ66JebPXT6FVfvhHPrr6aYmBjRfdQ5qnf8m7dRyYzuW/y92yuqvu7w8nPnzaNs2bK0a9+ekiUzlgs14OvFqTNnqFGlUupxm+ZNaNM0bQwePn6KyuWyN97DtqNn6TFlIfZWFnRrWA2Al6ERCILA6Fa1mLjlCLWKvTvA1O3AYAp6Zk6wHP/nFjrUq8Lk3u0JjoqlUvdRXLrzEL+AQIp4f7m14syM719Jb3w3A0oCR4F7aGjOhYHawE3gr2xu42eBOkk3rLfUVULb1US65WltqkYQRE0oarkMUakbplYwSvOtlcklYaAzYdTqbDdLdjzkcl1JrCwRnLLgVpKSQU+S7reW9Jq0y07novIRocsz21rXrivdNm7KuaIoEhgUh6mFmY6rgjplEfW3FbepVdENK9u0FS7BSEI8kYaul4Sf12mnXMbZG5FcvBvN8/1VMFUoiYlX8ehFPOZGICrVjG3rTq3R9+he1xFH27T+IrPStO9laBKXA+JZPsoGVFp1q3Tbse/UG4p7W1KugCWiWkn9ijnY8lsJomKUFMhjo+PXKn262vdLJiWtfCKIEpcOtXZfycTFyMZKjgx16tjTzi0ow3XySt2ipPVquy3IzXTHmEzi2iWX3BvR+v3brG8s6HMDkubVNEzP+JS6RWXmYiZ1G9MDaVk61ySdQ9/hUvbsVRwW5sYolWqM/t2eTyk3IVHJ7D/9GDugJDKjtLEgiu9uo7RNMnTde0RBxq+Lr9OmYW5mjCiNqFKyZvcT8nhYERKWSF4Pc37q5sOEP+6wdV4l3XPVmrLX7n1O0xpuGMkFiWtKWv9Qk8yi9fcZ26cwxjIVqEQWTyjNqcshGBnJqFTaKdUlJl07JZcnGOlRQslGmGu5R0hdGmQqyThRpLlk2cqSkYkipso45PERmEv7hVz3Gai1XCClriFW0lDkprrtkIaftzJJO5a6u8Qk645XMyNd1y9ttxO1pL+aGUv7ts6hjkuH9F6ZGul3B9G+z9I0mSSsu6DStSfQsj9EmZTUKx0XutegEnTtj0S5Zv56+uI1xYoURmWVxkGSJWpsovMXL3Pjzl2q1KyFWtulVvv9mqzrnieLeKHb5CRdV7/4iDCGzVvFyd/HUsJRM8c2mbwcX28PoqNjaF7Kh3l7T7Hz7A1aV9WVvjRxdEIURdaev8O4ri11XE2kBMvIBAX7zl4lcP8qBBMz3FytOblyFvefBDLlRzvsHNKuN51rXxbmwQ+BXstHFMWJoihO+vcPeATkAUqLothAFMWhoigOEUWxPlAO8AY+fn/wG8PanQEUzGtLQqJB0P9bgyAIzP2lCj1GnkyXdvJiEGt2PGLxpI8nfWnjmn8MjSrnxNxUM7itLeTU8rWj7UR/Qt4qyOVoQrMK9vyxNzj1nMgYJSv+DmHP+QhmbntN+xoO2Fjo//iIjlPi4aT7silbxJY6FXLi6fp59YM/JVQqNet2PSK3u9V7EeUM+LrQuFZunBzMmb/aL13a8GkXKVogB20a5cnWOq/eDqdtI6/U43qVXbl8O5x+E68A0KWZF1fvRHLjftqK8xW/CJZvf8LB00Es3vyYAd/ny7SeqFgFnm5pH3BmpnLqV3WjdkUXzM3+f5R+Dx8/iUqtwszs23dl+y9i3C8TWLhoEU+ePNH5PfLtW7r1GcDi32djb2eXbfU9Cw7F1socXx+v1N/aVC7JnD0n2XHhDjKZwLCmVZm662TqnC6KIptO32DjicusPHyemIREGpbXv3sUE5+AvbUVVhZp7zsvN2caVilLmcIZB+P5XMjqsuMoYKEoijelCaIoXgcWAWOyo2HfEn4ZVBI7GxNKNNnLtgNPv3RzDMgiurUuxM17Ydy6H45CKyLaT1MvYWQkY8SMK0S8TdJTQtZgbCToLIruOh3G+TvRNKmYg1nbgyja9zZrj4Wx50Lai3/qllfsORfJ7rMRvAxNpn/TzLWtVf+Rb0G5XMauJXVZuPYuDbsd4sGTzCMaGvD1QCYT6PJdAS7fesNt/7RdCr8HEfy56T5PX8Qw+8/b2VqnsbGASpX2Uv9p6lU8XS0o5mPLdz+eI3ftvwgKTeDgKU3gp/gEJe2GnOfSrXD+3PaY+lVcKFs089VotZSw+X+KBnVqMqhvL6rVb8q4X6eTkJC5YpMBXw/y5M1L2TJlOH78OCEhIam/z1mwiJDQMFau3cD5i5ezrT5juREqrbHxMuwtEzYfokQeN56+iaDK+GV0XriNVxFRPA/VvAeP3HzI5G1HOX7Tnx1nrjO5S9NMA+Co1Oqv1r0yq8a3D/BGT3oI8GU/J74A3J0tWPNbVdbPqcbkRbcYMf3Sf2bS/X+ATCZgZmpE2WY7GTsrbYLZv7wua2dVQy2KzPwz/arch8JYLhCfpLGMX4UlMWrZU3ZPKczbWCVKtci+iQWY0tWD4Mhkzt2N4dDVt+w+H8Hakd6sHZmP3RML4OGYeRCQ/LnMeRD48UTRbwG1KrlxdV9LGtXMRc0OBzh29uWXbpIBWYCVhTG7Dz+lXPNdXLyhefkX9bHn2v5WTPypNAvX3+OqX2i21WdiLCchZQyu2vmEwKB4jqyuxZLNAbRpmItXp5rh7WnFjsMvuHw7nMlL7lGueE5WTCnLnoVVmD+21HvV4+NlzYMn0Zln/MZhamrKiJ8GcvX0MQKePKF+8zaEhoV96WYZkAVYWFry05Ah1G/QAFXKys2oIYM5um8nNatVod9Pw1EqlZmU8n4wNpaTmJTmTtNr0VYGNKxM+6qlOHHnCTO/b8D1mQNJVCjZdu4W5/2fMWnrUaZ1asiqoV04NPVHmlcsoacGDTydHQl7G01s/Nf3MZhV4zsIaCVk8CkhaBztvgOC0531H0ElXydObWrINb8w6nQ6yJzltzl7NZiExOzpsAZkDxQKFfNW3GTAuFNMnHuJpCQVvkUdKOhth1LLB9DDxZIqZZyZM6Yc63YF8PRl9uhiVy5px4GzYUTHKYmIVmJqIqNYHksaV8jBxfuxJCnU7L/0lkqFrfl57QsW/RXMpM65yGljnHnhKQh9m4zf4zj8n/03jG8AY2MZg7oVZesftejy0zF6j/qHNdv98Q+INHwMf2V4+iKa0TMu0Gf0SfYeeYqnhzXFCuTA0jzNFUMQBIoXzEndqh6M/7EUo2deyTa3ourlnNmw50lKW2KpWd4ZL3crShex59j5EF4ExxMemYSxkYxhM29y91EUkwcVzaTUNIiiyC3/SMIik7gbEJX5CZmVp/o2dnPcXF3YvPpPalavQuU6jRj361T2HzpiMMS/Qhw8cIBRI4YzdPAgnj9/jk/+/Pj6+qJSqVLHmbW1FeXK+DKoX2+cnRxZs2FzttTt7mCPhZkpx67dRRRFngSHU7dUAWoX9+FFRBSB4W/Zf82fUnnc2HHBj182H6a0tzvNyxV57zoSk5I5dOE65qYm3H/6IvMTPjOypPMtCMIYYCpwDJgLPEBDyCwEDAVqAeNEUZye/U39dBAEQVQ+7Sf57d3fJVJ9bZWEbJCsENl77AUXboRy6VYoT17EMmVIaXq280FmlAmRSh+JUELgSk/KEvSm61yTXOLzKyVqSI9FPT4M0jRRIvkmjYyVFWiTxSRkEaRkEymE9PfybVQCbXtuAaBZ/YIcP/OYoJBYdqxsww+D9pDL3ZbmDQpSroQ9rs5pSgYTZ53m4eNINixskD7sbCZjSK1FwFWn9JV2g0/RoJo7XZt5UKrlYVZNK0epQvZs3PuU4bNu4+ZkxqUttRHUWu4ukr5yNyCKzQdf8fRVPOWK2tGytiueruYMmOrHnhPB1KngSLsGrjSq6py+L0hJeEa691Zbo1hmbIpx/pWfXedbH9KRMyUk58DXcfx17DkXb4Rw8UYI1lYmrJlTm5JFHPWShyGDyITa9UpJg5Ix+SGEw4wgJT1mWYdf37jJbKxrj5t0BC4J0o19pZ40zfGFqy9p1X0H37cqjFcuW2YvuUz7FoXo36UYxeusZ+LQivgWc6R0cScsUrTqFUnJlKy/mRljK9Gkdp70Y07rmaYjsUufkVpJVEwyuats5uX5jjx6Gkmnoae483cr4uIVDJ58kU1/PWFc/xKM6SsxuLXus0Kh5siZF2w9+AxLcyMq+TrSrpEXoZGJ1P/hOAqlmpZ1PenRxpt8uW0yjQegnZ6uDxo5IPeY9MnHYFLo+xspghYBU1Ampks/c/EqJ85e4OL1W1y+cZvvGtdn9oRR2Fhb6dxHqSZ05hVLiJCmWtGnjXXfa9Eq3Xscr9DtCwnKd49J6TRhIiFVamt3S/W0rY0lJMokycKN1jtRkAo0SIit6e6P1tygNtOVuhQlgg5Jou69UqpFRFFkzm8z2bBuDT369OdtZASb1q9l4Z8reeh/n13bt9GtZ29K+5aiQMFCqW4bt27coGO71ly+fgsrKyud65dJxrpaMm/IVbpum7KEKNZu3sa+v4+ya/lcRk+dg5WlBeN+6sedWzfpMHgcz14Gcf2v9eR30lX10h43YfFKtuw/wvHzVyiSPy8Nq5ajsm8xNv11hB8n/07xAt60qlednm2aYm6WfrdYqguucy8lfckob+lsHX9ZNb4FYB7w4zuyLBJFcVB2NOxzIruNb+m5/k9jaT3gBNOGl6ZF/bzoZjYY33qRjcb3Xf8QWnbdSMPaPsz5tSFGRnJEUWTkpEMcPvGIvzZ0ZPmGa1y79ZqL116wZ1VLqlfSSBHFRMdSvskWVCqRpdNrUL2ClgzgBxjfY+dcx87ahOE/5KPLqEvc8n9Lq7rujOrhw5MXcaza/QwXBzO6N3fF1irlugUZsfFKth1+zerdgYSEJ9KhoTuF8lpx6Fwo1+69pXoZB/afDuHu7uq6q4j/MeNbV9lHzvpdDxg2+SwvLnbDzFz/DoLB+P50xvfyDTf4efpJ1sxvSqPaGo3d0LB4arfdSscWBShV1Il9Rx5z5WYw8YlKLuxrh5WlCaJKydEzgbTtd4iKvi5sW1wfK0ut55RF4xsgT9UtnNzSGGtzOQXr7aRMUQd6titAi7q52LTvMWeuhNCohjtNanqk+Y0KMgKeR7Ny2yM27H2Mt6c1HZt6oVCqWbk9AFdHc5QqES8PK5ZMKqfjb/pfM761ERMbR9+Rv2Bhbs7yOVMMxvcXMr4jo6IZ1L8vr16+ZN3mLeRw1ASxOnfmFB1aNeefC5c5cfQoN65d4dKF87Tr0JFxEzT67QIwYugQ9uzaycDBgxk1YkRakz7A+D578TJjf53Omd3r2LR7P0N+mU7zBrUZ1bMDbk6OzFu1mfC3b+nTsh4+udMCWYmCwLGL1/lz237+uXyTJrWq0LBGJfwfP2Peqs10bFKHQ2cusXLaGGpV0C+P+M0Y36knCYIP0BzIi+aZPAb2iaL4ILsa9jnxqY1vQWbEiq0POHExiM0LaksqNxjfepFNxvf2vX70H7WP2RMb0rW9rnRRm+6bKVHEiXFDq6f+duT4Hbr9dJCrh7rg5mKNqEpGFEX+3OjHjr8ecmRTi7QCPsD43nnoOYs3PuDoqmqo1SJX7kTQ4+cruDmaERAYS+ki9liZG3HkfDAjunnTtr4bs9Y8YeuhV1QulYMerTypVTYn8hSZqqRkFdsOB5GYrKJoPhsqltDVJf8vG9//Xnvt9nv48YfitGjgrbdsg/Gd/cZ3UpKSgWMOcu7yS3avbk2BfDlT54nQsHgKV1/J2d3tKJBPQ2JUq1X0HH6MuPhktixpnCr1Gp+g4Ls+f9O6kTc92hXWamfWje/W/Y9Rt4o7vdv5EBOrYOfhZwyefJHKpZ24diecH77Lz/Hzr1GpRZZMqkCyQs30ZX7cuh9J5xbedG+Tn3yeaZJ5j55Fc+ryG1QqNS3reeKUU1f5479sfAO8CgqhVJ3mvLh+GlMtVRSD8f15jO9HDx/yfYf2lKtQgRmz5mBmZpYqzbht80bWr17JX0eOp34wRkWEUad6VabNnEWjJk1T5WifPnlCrepVuHv3HjlyaMbrhxjfEZFvKVC2KvdO/YWTQ06eBr5k/Mz53L57HxMTY+ITEmlRrwart++jTgVf5o/uz6aD/7Bw0x6sLc3p07Yp7Vs21eykpODg8VMEvg7BxsqC9o3rZEq2/JLG9wdpHYmi+BCYlV2N+C+gRb3cjJ51lYETztGllQ/lSjhmfpIB2YK4uGTa9drKpcN9KVvKQyctOiaRnfvvsm6hxpgWRVETSrdGHooWcOTS9SBaNtJomwqCQLc2hfll1gUeP4/CO7f+IDf/Qq0WUSjU+D2MYMWmO4RFJvHoWTTFC2gMZJlMoHzxnIzvX5jo6GSql3Ugf25NnY+ehNNpzA2mLn/EDy08ubixampIeG2dVVMTOZ2beqSr24A0tGuWnzEzL3DrfhiDupfA3tYgi/a5sGGHH1dvBXHp725YW+lu/x459ZSSRZ1SDe9/x+DMn6vgWXaFjp+3hbkxA7oWY9qCq7rGdyZITlYhkwms2ubPuWtBhIYn4Pcgkq7fafQBrK2M+b6ZNy+C4ihWwI5qZZ2xtzVFVJdk56FAmvY5gbWFERMGl2LnIi/MUmRCtWM+5PeyIb9X5hEv/6twd3WmWKECtOvzE62bNqRT6+Zfukn/KQwfOoRmLVoy+udx6dK2bdpAnwEDUyO/CoKAg4Mj/QcO4tDBAzRq0jQ1b568ealXrz5btmymf/8B711/YmIiCQmJzPhtFi8DnxEeEYGdrQ3GKa64eTw9GDGgB4ePHKd6+dKUKVYIY2MjxnRtxYg5f+JZtyPVyxRn3YwxlCtWEEEQEMx1g1w1rPbtBFn7/xEa/crhYG/GyU2NOHT6FS16H+HcjmbkyZVx9DQDsheWliaU8/UgLDwufZqFCWZmRqhUakRRJH/5BYRFxOPkYM7L1zEsnlFXJ7+pqRHft/Bh5Za7TBtVKV152ggNT2DV1nss23iHVyFxyASBn/sVw97WFJVKZPnUikDaKke7hp6IEn1A71yWHFtegagYJW7OmYeTN+Dd6Nm+MB6ulqzb+YBOg46yf02Tr1aG6v8NNSrnZszU45iapH/lmJoaYZniCnT+ymtqtt2Ova0p1pYmFC3ooDEItPI3qJ6b/mNPcvt+GMULOeit9/qdUBav9WP7wcfEJyjJl9uWUX2Ls353AJN+Kk3T2rlTx5yxsYzxA0tKgnMJtG6YmwqlHLC3McXSMpPdtk8F9ceTNr8GbF46l79PnGba74sBDAb4Z0TVatV49ep1hml29vaoU3aIfhkzig1rV+Pg4EBSYiKDhgxLl79T126MHTWCfv36651Dk5OT2bt3D8uWLOHK1asolUratW1DnepVmb9sBUd2bcbeLm0Rq0ThgpTyzqVThrWlBUvGD2Zo19bk93RPz5v7RpGlqxAE4cR7ZBNFUaydebavG+mi4GlPyJItQZlkO1lqQP0bxaywtyVF8hcm4HkU+44+5ccuhZCb6G5tpHdZ0WqHsdRFRfIikES8RC4x1rS3gqRkxKy4mUghStxKpGVrp2dAgtSB1JVEpr1KJo1AJSFQ6LmGrp3rsWbHPRo2a6zTpviYBMzMTIhIdHvpvMUAACAASURBVCA8AWLjVTy+PYfQsCjiE5LIV8xLU7RWWQMH2lG+9iwqVy1HhbJeOOaU3GdRybmLT2nSYTMtGxdj5/pelC6ZC5VKjRyJXrhaciy576IyDgvAEd0oq5o0ietFukhoaSZLZpFFpVvgMuO0VWGpS8qngmAq2Q3S41YkSO6TTCVRddFOT3FvkAFNGhShft2SOBaeTUScGY4OlmAsCR6h3a8k9QjS5yVt17va8D7Q5+KhzzUkw3Q9Yz0r9WYV2tesVa534TwULHCYg2djaNEkRaYvZQyKxpGER98FS29O33hMn25VGD24BqHhsdjZmiNY5NB53ibAwJ6VGTXzGhNH1qZUMVfMzLT6aEq5w345xI799+jX1ZenExvikNMCUQSZmEiPzmW1mqzHLS5lWzqPTYqRn8Wopfqgz5Uo/dyu/yMjuyB7dS+tDcaSyKAK3flFTE5zNVFL5iIxTldeUUy5bzmA74s4Y9etKYtWr6F9wZzp2iB1BZDZ6uaR53DROdae99SWuueaGeu+E40lZVtovVOlLrjSyJMmcqmrl1YbkyXzj8TzUpC4qop6fN5FU93VXLWJ7jUotJoZm6zb3xQK6TWkpTdv05561Sozfsr0dMGQ1Go14eERqNRw9vQp1m/bhZu7B+FhYRQsVJgEhRrt4KElyldBFGRMmjaDRs1aki9fPokRriIhPp46VSvg7uFB5z4DWbu7EYIgIJfLkQkCDbtqVs1foQsjS937bu+mmUe8Cmhuq1zLxUlQ6N53WYLuR6ogjTYtfUdqPwdp9HGTT7vYldVPiLyQLty8EeCK5t0WBqRfXjRABw72psQnGOQHPyfs7Sx58TI83e8Tp+2keePSeOZy4L7/K9RqNQqlioIFXN9ZlnceR2ZPbsmCZSfp1OcZvbtUYtbkFjp5Zi44wW8Tm9Cra1p0TLlcph192oAvBGNjOXa2ZsTGJWuMbwM+C+ztLHn5KlLnt/j4ZEZN2M3SeR0BSExUEBIag6uLDW6u73brGtSrIkEhMQwYtQ//gDBO7OpOhTKeqemhYXGs2nyDhxcG4Zgj7aUqCBjG4FeAnDbWxCVlX+AyAzKHmZkpKpWK6KgoHeP77OmT+N26xYKlKwFISkoi6u1bKlSqgmdurwzLEgSB335fxNI/5rFxzSosLCw4eem6Tp5d27fiU6AgqzdtI1n1/h+l/xVkSedbFEUvURTzSP5yAZbAz8BbQP9evAFYmhsRG6/IPKMB2YKkJAU/T9rKr+PapP6mVKpYv/kMG7ac47fJHQBwc7WnoI8bg0duyLTMbt9X5OieHxk7tH66r9HHT8O4cOUZ37fRz7Q24MvBysKE2LjkzDMakC04ffYBN/0C6dGlSupvb0Kj6Td0E+VKe1GvtsZ/u1nDYuw5cJt9f9/VW56FhQnzpzXh+omB5M+bExNj3dX7P9dfpVXjQoaPq68UlmYmxCUYjO/PiVnTp9K24/c4OadFR755/RqjhgxmyszZWFhaolKpaN6qNcMHDcg0SmmxkqVYtHIda7buQp2OXC6yatlievTp946zDchqkJ0MIYpiUoq29yU0+t8GvAMH/nnJko0PKOpjn3lmA7IFC5cewsLcBK/cTkRFxbNg8d/kLzGM5av/YefGn3B0tOHhoyA8Cv6Eq4stw35s+F7l3vJ7yaIVp6lcPo9ufcvP0qNTeSwsvpB/qAHvRFKSkpG/HiUyKhFnR6vMTzDgoyGKIkPHbqFdq7JExyQQ8DiEfkPWU6D0RMxMjVk4uz0AsxYcpV6rhQz/sTZVKuTJpFQNFvx5njehsfh4p7llKBQqlqy5yuBe3w756r+Ep0GhDFywnuIS314DPh0e+N9ny4b11G/UmLjYWI4fOcx3TRrQq2snevUbQP1GGnfMJnWqc/zIISZOnZHONSUjxMbEMOWXsZSroLvmev7MKQAqV6uR7dfy/4Ls9lw/C3xTAXY+F14GxzNl0W0OnnpNTjtTfv3jJs3rePKl+Dv/JTg52uLqYk/dplN4+SqCZo1Ls3n1ACqUy5+axyu3Iw45rVAoVOw9cJ3Dx28zoFctcuR4t4F24vRDvL0caNkkLcztybOPWLf1KjdOpSepGPDloFaLnL30kn6jjyCKAjGxSSxbf43xQ6t96ab930MURUqXzM2Z849Ytf4carWaAb1q4X91Is5Oaeog5Ut7IZMJBIdEs2jFWTzc7Pjh+3J6CV3rt9/k19F1sEpRUFEqVYybfpz8eXNQvIjLO8/75qDOnui6XxIx8YlsOHqeyev2kMspJ4cu3ebS/ceUL6Rf+tOAj4dapaJW3XqMGzmc58+ekjdffvr/+BNNW7bC2DjNLatEKV/8bt3E79ZNnj55TIPGTSla/N1h3EOCg7h84RxX/PxTfwsOCmLapF/4oXc/A6FdD7Lb+M6Dhg/zXhAEYSIwQfJziCiKLinpQkp6b8Aezcr6AFEU72qVIaLxwy8oiuITrd/XAA6iKDZ5n7bILSUTtVpCLklKc+SXSRzz05EzU3Rm/R9HsnH3Qw6eeM6LoFhcHC2wszEln5cdt+6HY25prldfGQBjLb9HKcFQSqhMR7DU8yikZUlJk1Lo0/79GN3gzI5lHz8xd+5Rkc7dNatr/8ooSa/XxAzOnFrM2HHLmTb7LwBq1a1JZXcvTQbt/pBC7qtRqxJDf97J2evxXLz8gG07z/LqdTib1v+MZ8EyGTdG+oxkVXSPRV2dXUF8nva/lFSo1H0hp6PNJYeka3NaPRlHH0yrTKu0zPTUswtWEuk47XueWf+U9mc0z3r/wWvs2nuJg4dvYmtrwdu3CmpUK8zL4FuYWrmBVQbhinXIih9BRNZXbkZlfQzhMrP8nwrvUY8MWPbn+NTjtDGoe/3Varuxd4cbDZtPIipKQx3q3K01xsZG6e9VCvG1Vs1SrNt+D59CRdm17wrbd1+iaGEPNq0ZCub/EmkzPjf1EvQ900yJriaSZC0FK6UkJHwm5GpdkrCkv8s+j4ShMuhZ2oFELz05JEjnWNQinyridF0UEt5orj06MZmdfgEcD3jBtZcheNnboFIoKGVvxe0nLzAJeEysoHtfTO10VcCMMyG5ynNotUlCXjRV6Ncf1yY3CippXsmzVugj5kpFBnTbrDbX5S+IWoTaJMnlJat0XTiSE6WxBNLS5VLtcQlJ9N/04sWKsWHzVgS0xh+6BD6FWuTX6TPZunE9Y4YPBSA+Lo5iJUoCYCSxo82MBPJ55cLDIxfbt2wkp4MTB/ft4dzpU/QYMIgWHTqn6qhL9dSfRqb1l6CYJEm5ug4Z9pKgaHns00QqnC1076utra6bmZCsS0EUpORq7eck1Y83/rRStFlVO/F8R1IOoA4wCDiZxTY8AGpoHWuP+JHAMKBbSr5fgKOCIBQQRTFGcs5UoEMW6/5kOHQqkG5Dj9OtTUEWTKzCtTuhrNnuz8HVjSnfYje7ltUzfBV+Aei759euP+DwkascOzybWrV8efYsmIiIaOztrXny+DUXLt4n4PFrBJQoFEqWrTzCD11q0bLdNFo2q8DUiZ2oWaM4Rp+YJW1A5lCpVPw0Yg3H/rlN/151GTO8Bb0G/kmHNpUoVsSTe/dfMuTHxl+6mf9JvGsMqlQqlq04RIliXmxeOxQ3txzcvPWU4sVyo1QouHHzKRevPCIyMhaZoObR42AuX3uCY05rBo1YR+sW5Thx4GcK+jhnWL4BnxdB0XF02XKEvDlt+b5UAYZVK8UP246xpVMjFpy9yZCqpfCwNbh+fW7oeweGhYaydOEfjPllIj36DkSlVPIk4BF58+UnMiKc61evcNfvNkqlEhMjOfv27KJwkSL8Pmsm5StWpmGTZsxdtBQTS4PefWbI6sr3M9KrnfwLAfBHY4BnBUpRFIPTFabpIT8BM0RR3JnyW1fgDdARWKaV/Q9gmCAIs0VRvJbF+vVCpVITFhFPSFA4KpWIIICRXI67ixV2tulX2wDW73zAqOkX2PVnQyqVdiEiIp4WvQ9xYVdL5qy4TbO6uSlXwik7m2nAR2L3njP07T+PKb92x9HRjrNn/fiu7YTUVQJTUyMqlCtEoYK5QFQhiiIHd49j8oztLJzXh3Ztqn7pS/i/RWJiMiEh4byN0qzeywQBc3MTPHM5YJKBbnRiYjKdeywgLDyGC/9Mw87WjHUbT6FWi4wa2pxCvkNZt3yAZkXVgK8CKpWKbj3n8/RZCGNGtkahUDJh8mZ+m7sHZydbQsOiye/tSsXyPjg72aJQqCiQ35WpE9pSpOwoQp8twcwsZTXxY3YnDEgHURSJikvgVVAYCQolMkFAJgjYWZjiYmuVoTH3MDSSrluO0LVMYfpUKIogCHTefJihVUvxNiGJeyERLGhRPYPaDPhSCHz2jNbNGtOkeQsqVKpM6JsQ+nbvwqMH/jg6ORMRFkYJX1+KlSiFqakpyUlKBg4eQmJCAnJjE/5YtjK1LH2RQw3QIKtvn19Jb3yLQATwEDgmZkXoVIO8giC8ApLRuJWMTXEfyQO4AEdSKxLFBEEQTqNRVNE2vi8DO4HfgGzTGL/3IJTqLTXKF045zTAyEkhKUqFQqgkOjcfM1Ajv3LbkzW2DUqnmaWA0TwKjyWFnyvEtzSmUT0OqXLT+Li3qeSGK8MeaO9Sp7M6lm28oX9JggH8NePAgkDbtJlKubCEm/roWW1tLgoLC2bjuZwoW9MTExBgPN63tLVU8KpWKffuvcOrMXVYuzer3pgHvi98XHmDU+E04Odpgb2eJKIokJiaTpFAREhKFi7Mt3nmcyZXLkTdvonjy7A3PA0Np1bw8h/aOw9TUGLVKwYy5e1kwqxsTpmwn8EUYR0/cplABd5yc3i9KqQGfFtNnbmXv/kt45nJkzPh1hIfH4OJixzP/ZQQFR5IvryNWVloxEdRJREbG8euMXVQsly/N8DYgW5GYrKDp+D+4+fgFTtaWWJgYoVKLJCgUxCYkE5ecjJeDPZ45rLE1NyUwIprnYVG8jU9kesNKtCqWDwC/oDAehEayvE1tfGauA+DA/We0LGrw9/5a0Kndd1hYWrBt80bOnz3Dk4AAOnbpxsYdewgJCiKfTwHkWvEgzIwE7t7xY/CA/nTp0fsLtvzbRJaMb1EUJ2Zz/ZfQuJT4A07AOOC8IAhF0BjeACGSc0IA9wzKGgvcEwShgSiKhzKrWBCE3mh8yTNEaFgcTTpvY/aE2nRtVxx1is+3PPdCADzdralcxpWGNb0QRRG5XNAY4p425LA1Tl0NiItXsHjdHU5ubc6PE88CkNPejB+G/8O9Y+2IiU3G2srw4viSyJfPnT/mD+K23xP275tGjhy6W2Y7dp7icUAgQwa3Qq0WWb/+CLN/34utjQUbVv2Eo6PBgPsU2Lv/CrN+/4tHt+fj6aHx330UEIxPSQ2ZtYxvHqpULED1qoWIiEzEydGWvHmc8crthIVF2q7UvgPXsLQwpXbNYtRtOpVG9UuxbtNpjIzkjB/9HYmJyVhaGkLNf0n0+KE+oaER5M/nyoC+jRFIW8NxdrZj6MiVNG7gS+2axQl8Ecq8BXtZu+kMzRr5snR+jy/Y8s8EMT7zPNldpSjS5/f1ONnZELJtDspQzau49bzNHPULwMLEmMo+nlQvlAd3K3NiEpPpmNOW3DltsUtWItcKaLP4wm16lS/KxeeaTe4fK5dgyL7TlHB1IK+dFWbGcp38Bnx+zJjzO5vWraVnv/6ULOWLtjR3dFQU40YOZfDw0Ti7uHD+zCmW/fE7d+/eoU+//rRo3fbLNfwbhSCN6vQlIQiCFfAEmAFcBM4BnqKYxkITBGE14CqKYoOUYxFoI4riDkEQFgGVAV9gFe9JuBQEQRRDpwKQkKBg9eZrzPzjNF3bFmfC8OqEhscTEhKBtZUJQSGxdBl0EHMzI+xsTPHzD6Vd88L8MbU+pqYp3zJaJJ3fl13k7KVn7FjRgrj4ZMyMYeqCS8xfcYOq5d3Zf+wJlcrmYljfijRvWABMJJHMtAk8MilZT180SDIgC+khkqW7KVJiUW6t/3UloiIkkuUhiZIIn1p9TCUhz0j1QaWQaW1pZuYjL5OkS4+1kdlE72CSdu7i3+cyedwYPL3yEBMdRfFSvvw4bCSVqlZDEIR015uVuhQq/edqX0Ncsi4J2FQSZtfdQpeYkkNfYErFEd1jpX41BcGiNaIofjKSgiAIoph8GIBnz4KZNXcHW7ef4u+/plC0iBchIZGEvHmLT343Vqw6zJTpmyhaJA+xsQmEvIlk7uwf6dixblqBKURWURSpUKECo0aNolWrVkRHR2NpEUHJUg0ATeCJ+/cDaN+uGaNG9SN//jzp+rc2pH1d7z3OBNKy9CEsWf84kY4rfchK389qO/S1SVqvtB5997Js2bL4+flRunRp/P396d69O4MHD8bDwyN9ZglpGfVj/Q2Vkrq1n7/6rG6alLicGWFcH9KRSLXGd7pIqqYI5o0++RiM2zINURQ54RfAjO3HUKjU7BnSgWSFksDAEBIUClxsLBm+6yR+r0PJk9OWZ+FReNhaMbtJVfLm1CxEaBMwn0ZG02brUU583xAzuZwklYo7IRH0P3KR0i45ufEmEisTIzr7FqRbmUK4FtN9HsYOuj78MnvdHWO5dgRMc92FE9FMl7wpSqOKah9L3xdSAp70XC1CnjRNLeH9JEncMBKUaeMoHcFScmwqYToaa5EsjaSES0nezDqLdk1qPUP7cUAApUsWJ2dOB9zc3UhKTGLg4MG0btseU1NTnesBUEoKU0iOtZstrddYck3Scy+8SBO/8M6hGyHc3VrXBkofpVT32FKeVrZMQs4UJVFmzWzss3X8ZdnpURAESzREyJZoIl6CxmDeBcwSRfGDI1yKohgrCMJdID+wJ+VnF0B7NnUi/Wr4v5gEPAa+/5D6b9x+TeOO6yhbyp3fxtdh/9GHmOeehp2NGS5OlgSFxDJ+SCVuHO3K+h132f7XA6Jjklm+4SbdO5SkQmndBfmHj8OZufA8+9e1AsDSwgTUSn4ZUpFOrQrx19EnLJ3dnG1779Jv1AGN8W3AF4dSqeTWXb8UH7fSlCxdhqIlSjJ24mScXVwpXKzYl27i/y1mztrKb3O207tHI+b+1ptefX/nvv8LXFzssbO1JDYuke2bf6Zpk0qsWXeYbTtOERISSY9eM3SN7xQsW7aMmJgYWrTQRCC1sbEBMYpbNw9z/PhZQkLCqFu3Kt1+GMbSpRuYM2d8ujIM+PyIioriypUr2NraUrx4ccqUKUPLli3x9vamfv362NnZZV6IAVlGXGIyrWauITwmnt7VfQmNiaPwqIWo1SKOVuYkKZWUzuXConZ1OB/wir1+AdwJCuPqyzfsuP2IkTV1VZ6SlCom/HOVTkW9sUzhWFjIjCjj6sCJDvU59OQVw2qVQRShw+bDVPZy5d2xhQ34XBBFkcDAQPzv36NAgYLkyZsXG1tb1m3cREJCPLVq10HM1LQ3QB+yqnaSAzgDFEITSv5GSpIPGiWSNoIgVBVFMeJDGiMIghlQEPgHeAoEA3WBK1rpVYERGZ0viuIbQRBmA5OBC1mpOyw8jpbdNvLL8Jo8fhZB/9EHGdi9LOH+I7C2MgV1IgFPIyldfy0W5kYM+MGXAT/4EhYeT2KygIeb7hf3g4Awardez7SxtShdIr3ebN7cdgzu6QtGVogiyGQCE2edZOLPrbPSbAOyGSN7deXY/j24u3vg6OTE7Zs3sLaxITw0lOq16yAzbI1+Muzdd55FS/9i/eqRzJ2/k117zjFjandaNK+UuuuxYOEeKlUbwuvArcyY1ovpU3sSGPgGW/v0QauWLl3K9OnTOXHiRLrnJpPJqFs3TeM7IuItZ85e5p9/zlOzVrtPe6EGvBOPHz/mu+++IyAggFKlShETE8PDhw+xsrKiUaNGjB079ks38f8a/f/chXtOOzpW9WXK9qOUzePOsdFdyOeck4TwKBIUSjqv2c+P24+zumMD6hXyIkGhJCjsLa42ujJvSUoVffadxs7MlH6+BdPVZWViTOuCXpjntOV5ZDSxyQqWXLxD2crFMTf5iC0lAz4K69asZvrUKajVagoVLsKjhw9ISEgkOSmJxMQE6tStB4BK31K5AZniQwiXBYGBwDJR1OybCYIgR+M//QcwkfdUPEkxlP8CAtGsaI9HE6p+rSiKovA/9s46Lqrs/ePvO8zQjSBgIDZ2YNfaxdqtq6Jr61prd66dq67dsXZ3dycWqNgFAiI5zMz9/QHCzAVnQMD9fXfn/XrxenHr3HPu3HPvc895ns8jCPOAUYIgPCI+oHM0EAFs0lPsbKAX0AQ4kdqGten+N3ITGWOnn6BZw0L4nemJW9akKSuNRmTGoisUKehMy5+THiRZnCxBSP6guHHnHUqlmtrVcifbJsXZyZJGdQuwZM0No/H9D3Pn2mXW7DtGjYrlANBoNAQ8fsyrF8+Nhncm06X7HHJkd6Zrj7mMG92err71dBRJXr8O4s/Fexk7qn2iX74gCHh4ZE1R53v//v2UKVOGPHkMB3WV8S5O4PNX7N17zGh8/4OEhYURGxtLSEgIpqbx076RkZHcunUrftbCSKZy/I4/TjZWvAoKZU33ppTJrTube+LRCwKCQlnfKUmm00Ihx8Mh+W/zKSqG2+8/Ma12OeQGnp0qjUirYvm4+OId9199xDtPSmFdRn4Ejx8/pkPHTowcPSZx0OPdu7fcuX2b0t5l/uHa/XtIqzXRCFghiuLir4Y3gCiKalEUlxDvZ90kDeVlBzYTr+G9E4gFyotiYmaRGcSnq18EXAfcgDoSjW8dRFGMIN79JE0RVKfOPyP0czSHt3Tir1lNdAxvgCOnAjl7+TWHN7XAzjZliUFtzl5+SXZ3W8xM9fsARkYqadqgIIum1UehkPHg0Tu9+xvJXFyz5WD7ulU8evAAiB8hLeDlRa16qUs5b+T7iYiIwcnJFv/7K+nZ3SeZFODIMatp9HN5Rg43LOcfHBzMw4cPU2V4f/oUysKFExk2tBcnT1387vobST/Zs2fnzZs3rF+/ntDQUACsrKyoXLkyxYoV+4dr9+8nKjaOHnXKc3R892SGt0qtoe/WY6zv5EOxbIaVuu59DEFhIsPegBKNRhRxsjRnZoNKVPN059yjwHS1wUj6yJY9O6dPneT0qZOoVPFJadzc3KlXv4HR3SsDSevId1aSXE1S4ibQKbWFiaLYxsB2kfiR9PF69knmeJTwIbAktfX4yo7V7ShVPOUvbs+cdijj1PEuKKng0ZNgTExkdOizC4UcFHITIqKUfAqJJo+HHW2bFKRSGXdqtF4PgN+ZnrRtWoRN228weXSqknIayQQmzF/ClpV/0aJhHRwdnZg0cw7VamSYeqURPRQskJ2dW8diY5NykiLPXK6oVKnTcI6OjubDhw/cuHGD+vXro1DEKxCFhoYSERFKjeoV6dSpBa9fv6NR466MHzeQESP6EBISxv379ylcOIXMl0YynaxZs7Jx40bWrl3LoEGDqFWrFkuXLiVLliyGD/5X82O0y/v7VKFPg0opbpObyMhmb4OZPHVBpS8/R2Ahl7P42n3kCMhlAnFqDWGxSsxMTKjr6U7DPNlZcPgSO/yecKDzzzQulJuJ524xsGFlwycwkil07NQZtVrNhHFjefvmDb369GXAoMHGpIAZTJrUTgRBeAkcEkWxxze2LwXqi6L4rUyY/y8RBEHcsqoLrZuVTlopiTbXaDQ45h6N/7URuLhI/Eu1Itzj4tQozCwJ/vSFu36vUSrVxCljiItTY21thqNTFtZvuciCJfFqEy2aVuD6zacEPlpK3wHLcHVzYfTIdklly720zqNfZSQ9SgRS1RHpsvb+KgPHJtuu9b+h+81E0sG1pyulU5fSZenDQVspRFpHqRKKVHVEo9Fw/thhxvfrwZi5i6jW4Odv1llaj7RIZknrIT1W+7pnNdf/0nsdqauGot1mS1Pd0af8VpIHqVQhQnKvCYKQ6UoLZwNek9XNPXGdthpGsFLk9OEDrF00n1V7jyS7x75eJ1EUUavVyOVynjx8QPCHd8QplahUcWg0InYODpiamjFpYB/879/DIYszBYoWo2ipMvQcPoZaXrlYd/QM2XPFu4sZ6hfpISPLkt5H2mUbUgHSpwpkCEP9Kj1lRYSHs2L2H5w/epglOw/grHVvSM+j0NIf1v4fkj/rvGwk/Uh672ujR/nGEAaVcaRKKtqKUskwQZBly/Q+GLQgycjSSNKpK8Oj6LvjJJU93WldsgCi1oewqKVLF6fWYGFriUqt4drL9yjVaqIjoolTa5DLZDhYmBFmZUaPlXtRqTWUL+jJs/fBHJrUl9fBoUzZdpxzf01KLE9mrTvaKpjpTmoLplqqI3LJhLeh+1HreStNTS8tSzTVVdYQFUnLcRLlsViJYkl0nO49qK3gIc1HI8mujpVCd4WF1rKpRveZL6gkKjlpSLsimur67IuCjICAADp19qVsubLMmj1Xx/VSu79KFVokgiXJ3s1fYr/9MSnd10RyPcxNvv2bBkfrliuth7Weaym1PaRYWVpkaP9Lq9vJPqCrIAg9BCFJW0cQBFmCbnYXYG9GVe5HomN4p4BMJqO8twd9h+5EcPiNkNDkoi57DtyhTPXpAGRxsqFGNS/q1S7Cz/WL0qxRCerU8KJUiVyJhvfvv9WneZMKZHGy5dWrYLbtukjb1j9leNuMpB2ZTEbVug34c+seJg7ozZOH9//pKv3r0Ta8U6KYdznu3rhKKVc7erVI+WNoRLdOrF0wB4C8XoUo/1NNqtSpT/UGjajp0xjvSlWJjo7C//49AOas+xszM3NkJiacPrSfbB65Eg1vI/8s1ra2DJjwB7WbNGeob7vEKXAjmYeh0U3vHFk5+CCQHBOWc8z/ZbLtQZHRVFi8jRch4chNZFTwdKda3hzUyJOduvlzUjNvdkplc2bntQeo1BqK53Rl/dDOBIdHoNKo2XTqGq1qVsysZJ+lWQAAIABJREFU5hlJI/ny5ePQwQNcu3adJUsW/9PV+VeRVreTscSrjywGJgiC8DhhfQHAGXgCjMu46v3/4ud6hZk0M95wrtVkEXVrFEQQBPLlyUpTn+L0/v1vIiWjj1JkMhmvH8/jU0gERQvn4MXbGPLnc6dkhUHUrlGcPHn0GyBGfiyFSpRiwPgpjOzWifXHz2NmbkzG8k/hmCULHnny8eD2Tc4dO8zgTm3xLFCQ2Oho6rVozduXzzm0429s7PQnPSpb5Sd2XrqFlbUNbjlyEh4awoq5M9i6ahnD/pj9g1pjJLV0GzKSu9eusHL2NHoMG/1PV+c/Tc18OZly7AoAA/aeoXnRvNiamSKKIn0rFmP8sSsERUbz4UskHo7fDpBd0qURgUGh5MvqhLW9DYOb1aL5pGVYm5sxY+CvP6o5RlKBnZ0d69euoVr1GlStWo2iRqndDCHNSXYEQbAFhhEfWOmZsPoZ8brcM0RRDM/QGv4ABEEQxbBFuiuTJTmAN2/D8Co/HVNTOZ9CIsmRzYF3Hz4zbEAd3n8IR6GQsffQPfp0q8HwQfWTpmi0yzLRDeTUSaIDYCLxdzW6naT4f0rLGel2oo0oigzt0h5nVzd+nzor2Xaj20n6EQRBfByhe99I3U4A1i9ZyOLpUwgJ/giAe04Pgj+8Z/H2fYzs4Uvzjl3YvnYls1ZvokS5Ct86l86y9J7Uvm5GtxP9ZKbbiTZB79/RvnoFZq7dTPGyFf5zbidxcRpMzXJleh8MXvh7UvVScDsB8Fm2i/dfInn/JQobMwUmMhk57KzpVb4IM8/cooR7Fj4r41jYshb2FvExUsovusmJHPInXVdTZ0nSHEkSHaPbyT/ndqLNhs1/M2f2LM5fuIi5ubnR7SSdpFk7TRTFcFEUR4miWFgURcuEvyKiKI7+XzS800I2d3tunh5EneoFsLezQK1W45zFmr9WnePMhQCmj2/C2KH1GTN5N48D3v/T1TWSQQiCQM/hYzlzaP8PPe+ZIweZO2EUpw7tM/jRkplcupQmyfxMpUPPvkxZvJw8Bb3Imi07MVFROGRxpm/rJtRu1JSuA4eSp0BBpg8f9E9X1UgG4uzqRtOOXTh35NAPO2d0dAwzZ85k1qxZ+Pn5/bDzpsTQYVP/0fNrs6VTQzp4F8LWTIGtmSkmgsDHiCgGH7jA9PoV6VexOFdevOfvm4/+6aoayUDatm2LUqnk6VMDGWMzkMBnT5k8bgyb168j/PNnwwdkEuHhGW/apjnD5b8WM4m7h2BCdHQsAU/e8up1MNExIrGxcVhZmbNp63zu3XvKo0cv8fDISs6cWVEo5IyZtIbde85x5vQ2vEqX1Sor6SvfP1Iyoiz5Io6N/rZfo0aM0dsEQyNp+rbrG60G3dEjQyPdaUE6gmUqGbWSpcHo1DcaJiVW4j8qbZNSMhL+JeIL1nb2KNVqPsfqji6YS9K8S0evnSwsvrlNWo+v13Jk987cu3EVzwJeLJ89nZUHjuNdsYrOqIC0veYK3aE17bJj4nSH4W6GSH8zZ50ljRifHvpzaAjtW7biRyC9Fi9i1YSFfOJFgD+fgoNQKpXEKWPJV7goa09d5vLJYwC4Zs+Ba46cvH3+nA51quLs5s7szauIiktD/nYtVFr3gvSjx9C9nlGj2YZGkNOy3ZAfr3QEJj2j1zI996d0WdrH9F07mSAQGRmJo7MLSrU62b7memYritrpT9gSotId3Q5Wirx5+YKODeriVawkx/buZNyECRy48SBZXIKh2ShtpM9+0FUV+dYz9uSBvWzdeSTV50kPVnnzJf4vquJQqzW8DArh2bsgImJUxMapUKk1DO7WggHdW3H85kPcHO3I6Z4VF3tbdp27QZ/l2xjfrTV9m9dNvPdkVrozvDKbJNECQa77+2iPKAOg0b1PBOloribpuSGo9bt9JksZLyY9u0VTa91tJrr10pjptiFOq+dEKL89sh1/nm9XSZo+3kIy9G1tKplZjY1I/F+I0VVdFuJ0Zxik10o6mq29XWOma19oLHRnHEzkZvF90N4OGSJvIpKuu3TkW/oIcbbUfUeaabVRmor+68D21s2bGDdqOK3bdWBQv96EBAfRrVcfFJZJ94c00U9WK93zRCabcdCtV2RUUhv0zR7+1rMXGY1e41sQhKr6tn8LURTPfl91/v+w78BVmreZRt48bnjkdOb5iyAePX5Fg/plady0JkWL5qFgQQ8OHbrMjJmbOH7iBk2bVOH2zdU4OBb5p6tvJIMJDwvD1j55FsXM4sKJo2w9d41n/o+4efE8PRrXI2u2HGw4dhYnl6w/pA6P797m0qnjZMuVmw9vXv+Qc2ozuqcvZw4dwDN/QeyzZOHWxfPExEQzcs6feHoVplLteoQGB3F051YObd1MSNBHOvX/nWa+3YyyWP9CwsNCyZW/wA851/Mn/rhly8Hc9X8ztm93ju/bTZ2iefm5dXsmL1r+Q+qgVqu5dfki6xbNo+fg4Yztn/EGgD4iY2LJ3XEUNpbm5Mvmgkaj4ZzfE3I4O1CxUG48s7nSqpo3d5695s9dJ9h2+gp5smVlz5QBlCr8Y34nIz+WsLAwHB0df8i5Lpw/x/DRY+nctRtrVi5n8cIFLJw3l4V/LaVBwx8jx/z+3VueBvhzcO/uDC/bkNvJaeJTvaf27+v+/9OEh0exe+9lvApm5/bVeZT1zk/wp3BWLhvE/t0TCQ+PZOSopWTP2YwZszZRt05Znj/byupVI3FwsDF8AiP/c4SHhWCbQgrzzCAuLg5VXBymZmaUrlSVIqW8mbF6Ey5ublw7f+aH1AGgQ42K7N2wll4jf3wMtb/fXR7euU3XwcOYvmo9ythYcubJy/oTF2jUriMBfvcY1qkNrcqX4NHtW/QeM4ldNx/SvEt3o+H9L+VLaOgP+wCOjoxMDK7u1HcArtmzs/XMFY7v282XHzT9fePieTo3qIGLWzbqNm72Q875FVEU2XH+JkqViuPTBtCn0U88fRdEjwZVuL5gODmdHdh44jJl+kyh9eSl2Fqac3LOcE7OGU7JfPokE438rxIdHT8bamFhYWDPjCEqMgJz8/hzDR05Gp/GTeg3cBD7du/6IecHmDV5Ar80b8TYqTMyvGxDbie+GX7G/8dER8eydsMppkzfTp1aJTl5eDLLVx3lyPGb3Lm+BHd3JzZsPMHvw1fQoH55LpxbTN682f/pahv5AYRn8It/39ZNbF+7iho+jWne+VcUEpcRc0tLgt69xdbBkUXb9wHxLiv927egSu36WNlk7kdeWMgnrGxs2XH1Lj/S2/zNi+es+3Meh3dto++o8TT5xZcuDWpQqlIVug8bgyoujikD+3Dm0H46DxzC2EXLsbI2fvD+F8jID+DIyEjGjRvHw4cP+W34aMqU1w3OtbCy4uP7d4iiSJ6Chdh54SYAbjlyMqp3VxZs3J4h9dDHk4d+tPTtxrh5i5H/oF4oiiKnbj9i6qb9RMcoOTljMDKZjF/nrGP76G5ULpwXv+dv6b5gIwq5nJndW1CtWH5kpkYVqH87ISEhOGTgANS9u3eYPX0aLq6uDBo6nCySwFtLSyvev4/P+N3ntwEAhIaEUMAzB02bt6ROvXoZVpdv8TzwKZt3H6RcpcqMH/674QPSgF7jWxTFtRl6tv/HjBy7gVXrTlDWOx9bN/xOhQrxGe5UKjVlvfPj5ubI+InrWb/pBIcOzKRkyfz/cI2NfC9RkZFoBAGFqf60x9q8fBqAfQZk2dNoNGxbs4Kls6cxaNwUtq1bxZoFc+g6aCgtfbsBoFAo8O3/O8N+/YXpKzeSx6sQACUrxPuIXjlzkho+jdNdF308e/SQ3AW9vqqcZOq5vvJ757ZcOXOKZh192XnxJvZZ4v3Q1So1Veo2JOJzGIM6tMQ9hwd/X7qFjZ0x1fH/Kl8+h2FqZZ3qWYo4pZK3L1/g4JT+PhgZGUnLli2xtramcePGdGnXCo9cnsyYv4hCCTJqFavXwtzCgnH9ejBixjwsLONVqHoOGcnAjq0JCQ7CMYuzvtOkm4AH98mb0PeVP6gPVug7BaVKxcAWdWhbtTQmJjIC3wfjYG1F5cJ5OX3Xn06z1jKx4890qlvZOMv0P4parSYqOgZbq9SPYgcEBOCcQZlm7/vdo03zJgz8fSjPnj2jWjlv6jb0Yfqc+ZiYxg9E9f6tP00a1CVHzpw0b9kaAAdHRypVqcqmDeuoXbduhtTlW4iiSMDjx+Qr6GV45+/AGHCZQKzag1OnLuLlFX+hH36JD/L4Yv6enQemcu3hTL6EhbHi0BUEZxdua808SgOHkgdlJQVIqEVpYELqg6EMhTVKJbX0SQJmZNCkFH0BW9JtUpk+Kdr1NCRxqM+U/nreQzu3MXlwP6KjIsnnVRiPvPkTDUzXbNkoVqY8zlldCfsUjCiKmJqZER0dzZFtW9h67hpWpqbkt9eVZEpJ4u/L5zBEUcTW3oHQhOm65/6PGNaxDXKFnNmbd+KRNz/VGzfj1uULDOncjqYduyBPCBJt37MvVtY2dGtUh5kr11OxRm1kDo5sOH6efq2bYGpujne1Gjr3T7QkwNBKz8dFdivdbS8jkoJIRVFk75YN5CtanGiV6oe9YIuVr8Sw2Quxto3X6f4aMGlmacmfk8fx4c0rfvJpQrcRY0EQiNXqd5klAWhQRlPPeTNShk9KRsoHpqVPSvdNJu+p1WZp8LRcJiM6Koq540awc90qrG1sKVyiFI7OLoiiiImJCfkLF6FY6bJoRA2fw8KQy+WYmZtz9uhhChQpRtGixREEATcL3VeXVGZVFEU+vnuLQxZnnUDHrauXM23k79Ro0IjxS1cjl8up2KIjM8cMY/nKFYyaMS9B4lJg75HjjPqtF51rVeTixYvY2tri1qYVL+/fYXCHFixbtwlyfjuZczJpQQS92x9qxc69e/eWc8cO06B1O2JVKkzTrEv2fUwZ3IPaFUojk8mQWcQ/5xwcQ3gf9gXfZfs5dfk6WxZN56dypUBLmk+TTIbPUrJsprOs0touaAUQAgga3cDrZPJ5cbqBgdpXVXoejbQeZhI5PZOk52CyQE9pYKckWNFE68yWCqlErP7nkUJLLk8hleWTBI0KMbrtF5RaQZXSfm6i+1zXSANM5WY89A+gc8/feOgfQM6cOSlatCjm5uao1RqsbawpXdobr0JefAn3IyYmBjMzM8zMzBg6bBj9BwxEldC0bDZJN3CIRCgiTiMSFxdHcNBHXN3ceRoa/5tFR0UyaXAfbl6+wICxU6jetBVtrBR06zuQtk0acPPWLcqVjReryFvAi8279tGrSyce3r/P6PETAViybjMtGtRm0uTJdO49UDf3hkRq0FUSgCmTxEfbmiVtlwZn7tx1ADs7e2wdnJLJQWYEaU0v3wdoKopirW9sPwrsEEVxaQbV74cgCIIovQ5fje/oqCiunj3Fhw/vqdukBZbW1gaVMfQZskbjW7+6STLNbK39pdsMlaWtLBIZHs6UIf25c+0K05evJU/BQjy6d5tXz54hCAKCIPD6RSC3r14m7NMn7J2ckMlkKJWxKGNiaNmlOw1btQMgm6XuW/Or8R3+OYy9m9Zx6uA+Ht6+hUi88Z2vSDE88ubnwJYN9Bk7iYZtOiQeqxAETExMqFckD8v2HsVTS20A4NT+PayYM50tpy4l/kbnjx1m1uihmJqZM2L2QgqX8iYl9BnfUpUGbeN71/rVbF6+hAW7DmJlY4sgCFTJapPpGsNXgnSzxn5t77uXL/C7eR1zCwsq1qkP/Dj9baPxrX/fZMa31v/S/vjU7y4junfCq1hJRsyajzo2Fr9bNwgPDUUmk6FSxfH43h3u3byOzMQEWzt7VHFxKJWxyGQmTFi4lGweuQC+aXw/8rvLns3rOXlgL2Ehn4iOisIzXwEKFS8JQrwf9dLt+/HMlzRz+TWw8Y8Rg9lx9qqOvryDXKRVq1ZUqlSJAQMGEBIXP3s1Zexo1q5YSp0GPkybtxBb2+QJZaTGtSHd76/vHIBODWtRrGx5eifEW5jKoKhDxuoMSxEEQYy7naSq8tX4Brh48x6PAl9R2bs4+T0TPjjSYXyL6TC+BanxrU66sD/S+NZoGd9SdZMMNb6l7VfqKproHqt7k2mrm4iiyOK1W5gyay4TRg6lc7vWPHgVhN/9+6hVKjQIhIaGcv3aNfz9H+Po6Ii5hQXK2FhiY2Mp6OXFnLnzkhRstPr+V+NbFEUO7N3NgX17OHvyBHK5CSqVmrxeRchfuCi3r17EM19BRkyblzjz7GIpRxRFxg0fTK7ceejT9zedNnwJC6VcyWKcuXQVN3d3IpRq3rx6yeghA/G7e4e+v4+gVccuKV6PZMa39FtFa4W28f3qxQvq1qjK8o3bKVYyPvt5/qy2Gdr/0mp8XwOui6KYYti1IAh/AmVEUSyXQfX7Iegzvr8Sp2eUzWh86/L/0fjesHgBG5cuYtelW1ha6T6AU4P29fmW8f3n5HHcunKJ9r36Ua5aDczMzXkV+Ix7t2/y5IEfZX+qQakKlROPO3NwH5N/68nm05dYPHUCnvkL0nPoKJ2yBVGkQalCTFm8nOLlk6TJNBoNB3duY9aIwXQbOpKmv3RBLvEb/17ju12Nivw6YixlqtWIr8M/bHxD8n5jNL7/94xv37rVKFm+Ir9Pjg9ekkqBavdXQ0nAvmV81yySh7pNmtOwRRsKFS9JbEwM/g/8eHT3Nm9evqBTnwE4JkydK5VKpgzpz+P791iz7xgVPLOy/cxVyhVNmmZ2VMDly5dp27Ytjx8/JkJI6lPhnz8zfsRQrl66yNwly5L5jX+v8R0Y8JiO9Wtw8N4T5Akypv+08R2/QjJsaDS+E///XzC+nwQ+p1DFWlw4ug/vkiUA0Fg5JW5XSapsIrFUpW1Kyfi+df0a3Tq1p//QEdSoXQ8XV1eCPn7k0o3bBDy4h5WNLU3adUp8brx+Ecionh1p16kL9g4OrF+xjJ0HDuvEQMllAqOG/Y6pqRnjJk0hQplkb931u8/gHr6U8C7DgBHjE/v2V77X+J49bSofgj4xZurMxHUZbXyndTIrH3BPz/b7CfsYMfL/ipa+3VCpVQT6Z17ihxdPA2jRqSs/1ffBwtISmUyGR5681GjUlO7Dx1BCy3gO8LvH1IF9yOqejWePH9F3zES2rV7OqQN7dco0MTFh0ISp/N6lg07dZTIZdZq2YPHOA5zav5fWlb25cOxwutsQ9P4dzwMeU6pytXSXZcSINn1HjefskYOZVr5SqeTD2zcMHDeFwiVKIQgC5hYWFCtdhla+3Rg4brLOy3nlvJncuXaFx353MTM3Z/TM+fRo4UPQx4865ZYvXx5vb29atWqFUplkGNna2TF70V/0Gfg7Xdq1olOr5rx++TLd7Th9+ACVatVNNLyNGMkI8nrmomOblhw6djLTzvHs6RPKV6pMm1864+LqCoCziwvlqlanQ8/faNq+c6LhrVKp6N+hOXZ29jx+cJ8GjZpibWPD6KGDk8UZ9e43gB3b/mbLpg066/MVLMSGvUcwt7Dk56plWL5wjk4f/V6OHj5EjboN0l2OPtJqfCsAfWHN5ga2GzHyj2BhaYlzVldU35l4JTWo1epko8/f4szBvTRs3Z5SFSvzOvAZ7jk8mLt+K+P79+LcUd0sfnWbNGfA2Ml0a1Kfq+dOE3DfD03CyGDeQkVYtGM/g6bMYOrgfpzYmz4ZpixZXXFxc+f+9avpKseIESk5PHMTlwEvxm8iiogaTaqN1t2b1jHpz2WYmJgQEhRE8198adymA83q1UpmgG/cuBGALm1b4XfnTqKRLQgCbTt24up9f4oUK07dqhUIDQlJVzPKVq7GtXOnUWvNqEqTgxgx8j3kzuVBXCa/AxWp7H9PHvphIpfTq/8gXjwPRC6Xs2DFGm7fusmE0SN0DPBs2bOzY+8Bpk4cz/pVy3lw7y4REfFBErZ29oycPIPNB09w5fwZxg/pn26RgAqVKnPxbOaqZqf109ofqA3M+cb2OsCPyz2agZx/91nnoR0nmfbUdi0x5GYi/eHTMiUuzYCoD0PnSe4e8+0nuFyW+mlsaR31ZYaKL1v2zX2lSI/VntY2lIVTul37XKYmJkRHRSEoFMkyKaZUL2lZ2r/5/RjdaU8TQSAi/DPPnwQQo1Ily6yYUmBgtvwFObxlA5Hh4XjXqktoTAzuhYowde1mRnRsw+AZ86jWsFGi2021Zi2J0WiYPuJ3QoM+4tO+U6I/KECFmnWYunwdA9o2w94pC6UrVdFpQ5zknr0ToTvVG6FlFFVp0oLje3ZQ0Ds+8MXZUnfqNrOIlFw37foburfT0scM7SvqcTsxVJahLI1pqYc+0uJ2ksw1xICbifZ1l7qOJKuHZFmjp79GRUZhZm6R2O60uMVJn3XablIQ/0y6efUyclNTomJjdZ7l0mO/Xo88XoU5feQgcrkCK3t74tRqegwbjVqjoUHNn1ix+xDF8yRoVgum/LVxK3169aC7b0devwhk45EzeBUrkVABc3yHjiE6Opo6lctx7uY9UOiOQ32I0e2Dz8J1P0S+PmPcCxbCwsqKuzeuUTShD9qY/phRcDFrnsT/1RI3E9FMNwOkRstNI05yJ8RIfRgkaJessHTS2WYqGgi4lLilaLuDiDLd6yTKdd1QpPXUrdO3XagAhLhonWW5Vj3kBlxUkhGn1QZDLp9yXfdB7d9BmrEy2XklfT1SI8Pc1hG1dfwMkHZ2yThJlkpVnPQdqLs9Qmu7IMT3sxu3bhInQqxa/3Pxc4wKW7dcBH14x7GzF3DM7smj4ChAzqSVWxnm24pe/X6j7+gpWJkntD9LTuas38nUof1Z8ddizC0s2Xb0DLKE51c2D08WrtpAq/o1WDBtIgNHjuOLJPOo1PyI1oqkDNUKGq3s05KRPTsycNS4xPIzmrSWuhmoIwjCJEFIcn4TBEEhCMIE4o3vTRlZwR+FcYrv34+zqxsvn2X8t2Hwh/f0b9mIEhUqU61ho1QdU6JiFZ743eX544eUqFglcX3h0mWZuWkHC8YMY8X0Sbx69iRxtL5ui9asPXmRAsVKsHbuDN6+eK5TZvFyFShetny6s1FWqNeQs/v3MLF7Z5743SMiPDxd5RkxAuCUNStB798REx1teOc0IIoi548fYWCHlszfuD3Vz/I6TZqzdOZUqtZtgEnCR4YgCPQbNZ7mHX1pXb0CB/fu4f27eK1hU1NT/liyig2HTxP55Qs71q0iVvIhPmDYCN68eqUzav09NO7gy+D2LVg1ezof3rzOkKl0I0bc3Nx49jTj34GxMTH8MWYEt69dYfj4Kak6xsLKipIVqrF1+UIq1KyfuN7Gzp4Za7fzOvApw7u2wf/BPaIi4weLPPLkY/G2g7Tr8RsBD+5x9bxuMnUraxt++bUnL58Hpqs9uQt44eLqRtOaVTh55BAhwcHpKi8l0mp8zwXOAqOAt4IgnBcE4RzwDhgDnAdmZ2wVjRjJGKr7NOLMoX0ZUpYqLo55I3+nQxVv2lYsRbmfajJw6sxUfSV/CQvj2qlj5CrohcLUjDil7shOgeIlWX7kDC/8/RnQqjE9fWrrvOQnLlvLr8NG07lOVf6cOJrIiCSNsrcvX5C/SFGDdYj8Es75Q/u5c/kCIR8/JBoL714EcnTzeoqUKc/ZA3voWbcqtQrlSuVVMWLk2zg4ZSF/kaJcl7wwv5enDx/Qv11zauTPweSBfZm9dgsVqqcoxJWMh3du8enjR5xcsqJJwVD27TeIqUtWMn/mNCoWL8S8GdMSt9na23Po5kPevn5F/dKFOLhja+Lo+svAQHLnzYdVKoK6Xwc+4+jObTx99IDwsNDE9acP7OHl0ydkz+XJ0mkTaepdGG/3H5PS28i/m0aNGrF///4MK2/7pnW09alN+YKePHviz5od+3BwcjJ8IHDh6AGyeXgiICAz0X1vWtvYMm3lFgqV8GbiwF40r1ySZ48fJm5v0KIdExetZtLwgfT5pRWBTwISt71++QKvVLwDVSoV1y9f5MShA7x59ZKYmPhBAWVsLGv+nINnnrwEfXhP745tqFuhVKralBbSZHyLohhH/Oj2cOA1UBIoBbwChgK1RFE0fqIb+X+Jnb0jUZGRhndMBX7Xr3Ll1HHG/7Waw/6v6D5ibKr1sF898WfW4H7kL1aCkpWrsnb2tGT7ODq7MGnlerZf88PdIxfd61fnZII/t4WVFb6DhrHxzBWCP7ynS92feB34DIjPTGnvmPLDLy4uDmVsLP1aNaZVqULsWbOCvyaOoUWJAmyYOZWXAY8Z1aYpcoUp3j/VILdXYVp078Pl1+nzYTVi5Ct2Do5ER0YY3jEVbF6+GOesrmw5fZnD9wLwrlw11cfu3rCWv1csoefQ0Vw+c5J7N5LHOFSqWYcj5y5x/pYfyxcvpEvbVjxPeMnnzl+AxVt2MXXxShb9MZGx/XqgVCoJDg7CSU8ikri4OG5evoCPdxG6NqzBkZ1bGdqpLTXzZiPg/j12rVnB/NHDyJUvP01+iZdPW3n4NLc/GmefjKQfR0dHIjPoHRgbE8PcKRPo2qc/5+8HsGLLTmxTmfhMFEUWjhvC25fPad9vCEsmjUwWD2Iil+M7cDgbjpyn/5gp9GvflGWzpqKKi0MQBH6q9zO7Tl2mbKUqdG5Sj+MH48UKQg28A0VRZP6s6ZQumJspo4ayac0KfKqUo2U1b6KjIhneoyMP7tykSMlS1GvcFOesrlz1f5G+i5UCafa1SDDAZyT8GTHyP8P9WzcoUKRYussJDw1h+sDe+A4ZSd7CRXXkEFNDgRKlMDU3p0X3PqiVSjpXK0evcSlP1QmCwLglK7l25iTje3WlQLESZMvlSZxSSe8m9bG0tibySzi/NqzBumPnsXNw5OO7t2RxddMp5+PbN9QvmpeFW/dgYWlJmZ9qMHbpGmQyGTfPn2H6wD7s+GshALtXLEHUaLB1cMTnF9/vu0hGjEgQRZFt2BWvAAAgAElEQVQHt27Qf/zUdJd17ughzh45yIbj53Fxc0/z8eWr1+T5E3+adfQlPCyUnetWU7R02RT3dc+WjYu37zNvxjTG9e/Fyj2HkcvlXD13hn7tm5O/UFH2/r2RT8FBjB4zjvfv3sXPJCl0faY3Ll3ElCH92XXxJuGfwxjyxxxqNW4GwOT+vZjcrwdP7seLic0dPRSZiQnlq9fCq3hJ1GmepDZiJDk3rl+nWLH0vwNFUWTckAGUq1yVmvUaIpNq+BlAEARKVKhCqco/UbtpG84d3svD29coVrZSivvXa9aKgsVKMGVIP7K4utG4Xfx7adaE0Zw9fpisbu4M7dUVTVwc9g6OfHj7NsVyqnkXp3ylylSoXBUrK2uWbd6Bs0tWoqOiqFGmGL4/1+TF0wBMTEy4ePIopmZmjJk6M1MSzRkdnRMIitLVzpQGqEXHaUWeGwgmkMY1piWwKi36vGnVETbR8/yWHqutQwpgJtcTNJmG4C9DWt3SZe1gKenksLRDqKSBnlr/K9Vq7t24hu+goSjV6mTnkQbRSkNgtGu9Zs4MvKvVoFazVmhEkRhJAKe0LO17KVIZv6+1gyOBb95ha22JhY1NYhZMM4m/6tfrVbhyNToMGEKXOlWYsn4bL/wfkcXdnc6DR7B08lge3b7Jw/v3aNypK793asPCXQfx8EwKnvoUHATAuD7dyONVmDtXL/H2xXPcc3lSvGIVvEqWJujNa377YzZ1W7fH2cYm8fr+qAyX0uumvWxI9zm5HrfWfSPV4DXQHTUGNHr1nTct6AvATNYvJC83SffU6Z+gGyhpKMBSX5801D+l94Z2f5WGNQe/fUNsbAwuOT2IUanS1H7t9qjVaib278Xk5euwd8kaf5/o8bFOqQ2OLlkJCwkhTq1GrVFjaWOb2E+1938dmVCuwpKOQ8dwtVVjmlQqxbaz11g0bRK9ho3G0dkF/8H3uHbuDPa5C2DvkpV2rVqyYOM2nfO+e/0KgOE9OmNtY8u2lX9Rr2kLAH4dPIx21StiIpez5dx18uTLr+O7bppG4+Z7CbNM+miXBqpK+40yOmmFXKaR7Ct5N+k5p1yj27Y4aaCnTDfgWxpTqH1pDAkHyCWXUbuaJhrdgG+DmTWl27Ux0VW9Ek0kppZ2IyQvZlGSpVKqr66jTS69tyU632h0+8WNq5epUK4MsoS6K7QDVCX1kP7e2r/phbNnuHfrOnuOn8VMLiM6TnfnD5G61+ZNuO7yg3fhRJvacefpWxxefyYqVsXzSIHYV2F4OOr+3hYJH7FyFw86DJ3ErAFdePPhI9UbteLArm1MW7GZE/t2EPD4IefPn6dhqw4M7dIG55x5aNmqtU5ZYaGh7Ph7M6EhIYSEfGL/3n007+ALMjP6DhvLpCH9qFq7PlP/XEGuLDaZFmwJRuPbyH+EF0/8efLwPrkLeBneWQ9qtZpTe3cyd3v6/ObkClNUcUrCQ2OwsXdI1TFNf+2JzMSErYsXkDNffkI+fsTW3oEpa7awcvokSlf5ifI16/Ds0QPWz5/N6HmLE4/NV7goji4udB08HGdXN4YvWo5dwtScRq0mPDSU5t17J450/yiD28h/h6M7tlKgaIl031s3LpzFKasrJSukPEqWGhSmpsTFxU9zh336hJ2jYZ9qhULBij2H6VCnKif27eb1i+c8efiA4Z27Ye/gxMvAJyhMTVm+6xAVc7lw49J5Smsl1apYozbH9+2mx+8jsba1o2SlpEDr2JhY5AoFS/ccIZfE8DZiJCNQKpXs2r2XX7umfzZz745ttP6l83clrPuKiUKBRhX/sRAVHoqlreH3YJ7CxZm0ZifD2zUkt1cxBEHg/ZtX9BszFUtrG2o2bEKegoUZPn0+00cMoEnTZjoJexo2aYpGo6FW3foMGzsRh5xJaWnCw0LJX7gokxcsw9zCMlMNb0h7wKURI/+TLJs+hY6/DUrmjpFWnj68j1yuIGfe9OWSkisUPL17iw0zp2DrkPpgqjqt2uJ37TI1mragSn0fVkybhL2TE4NnJKXrbd2zHxePHiLyS5KfqEwmY+DE6WxcvIAK1WsnGt4AEeHhPHvgh1epMulqkxEj30IZG8uy6ZMYNmtBusu6eOIY5RKyr34vcoUp0ZER7N6whpMH9nzTRzQlOvcbxMq5M9h29ir3b93gzOEDVKpVh7bdegPxhn3nfoPYsW61znHlqlXHM38Bbl+9RMUatXQMbP/78Yl+snnkSle7jBj5Fjt27cbUzJT2bduku6yzp05QuVr1dJUhkyuI/PyJA4smERH6CQvb1PmLZ83uQZGylXj9zJ/pK7fwx5A+aDQafh00kjwFCwNQ/qfaWFnbcO3iOZ1j+w8ZwYkjh3BxdaOAVyGdbTevXCS/VxEsLL//gyItGI1vI/8Jgt69pUgGGJe5C3ghyATuXrmUrnIq+DRhxegh5Cteima9fkv1cRZW1pSvVZeN82dx8/wZ3FN4WefMm49KdRuwaOIYnfVvXgQik8kwkYyq2Tk6MmHVBmYO6J2YvMeIkYwkNDgIW3sH3HJ6pLusKnXrc3zvznQlzMrmkQt7pywsmz6Ztt37UKlW3VQfW61uA14GPmXtn3P58PYN2XN5Jtvnl16/cenUca6eO524ThAEXj8PRKEwTbZ//eatqVynPounjv+e5hgxYpA3b9/iXapUhozo1qxbn707thneUQ95y1TjzpHtfPn0EZ/fxmFqbmH4oASqNGjKyd1/c3D7Jlyz5UiUCv2KIAj0Gj6eySMHE63lUhwWGkpYaChmZslzQU5esIxrF89y9fyZ729UGjAa30b+E1jZ2PDk4f10Z74KC/mEIAh80ZIG+x58uvZi3onLtB04lGJa08+GUKvVXDp6iHfPn5O/WAk6DR6W4n69x03m3JGD3L16OXFd047x6glbV/yV7Do8ve9H6Wo1Mn2qzch/E1MzM2KiotKtQQ8QGhxMdFRkurJlmpqZsXTPETacvEjb7r3TFLR59expsri4smnZYiYvWUmRUt7J9rG1t2f07IVMGNAHZWySv2v/sZPYu2UDj+7dSXaMv99dKtZM/UeAESNpwdbGhoAnT4iN1eOrngrUajVhoaGEhqZPBcu9QDG6/3WAliPnULp+yzQde+XEIcwtLAm4f5dpKzanuE/lWvUpVLQEyxbMSlxXqEhRGjdvxeypE5Mpn4V++kRMdDRFSpZOe2O+A6NjmZH/BF0GD2fUr78QHhZK18HDv7uc+aOHUbNpSyrVbZDuOmXJlv2b2x5cu8K5/btxcc+GpbUN71+94M2zZzx9cI+YqEjevghk9tbdWNnYpni8ta0dPUaMZd2C2czaED9C4ejswqIdBxjYrjmCuTkN23dK3P/Ezq34JBjnRoxkNA5ZnGnTsy/tKnuz8ugZcuUr8F3lREVEMKFfDxbvPoRFOvxNASwsLbHQk711/eL5fPr4ERd3d9QqFS+fPuF5gD/+9++hVqupXKsu1fQ8B2o2bMSmZYs4tncXDVvGT/VXb/AzythYuv5ch52Xb+Po7ALEz0o9vnub8jVS1ik3kDDSiBGDtGvTmr+376Bm3fqcP33yu8vZu2Mbr16+YNPuA+muk02WrJjIU86iGxkexs6/5uDg5IS9kzOfPwXz7sUz3j5/wtvnTzExkTNq1iKy58r9zfKHTfiDBpVK0XPAUMzMzREEgRkLFjN8QF9+69GFqUs3JO57dN8OvCtUwcraJt3tSg1G4zuB9+G6kcyxKt3pd22FE2laZKn6iXRZG2n0tVSBxNB2ffsaUizRLiv5sd8+T/yx2pHtuu2Tdh1D9UrtNkCvjJ+hY7W3Fy9Tjv4T/uD4nh3IBCG5Qo1kWapgEqNSERsTzY0LZ/EdNV5nu7QsO3PdKS3tn/Ajul/b0nvpq6rH0a0biYmKQqZQEPn0CVmz56SCT2NunjuFmaUlLfoMIFauIFZrSk16PXKW8ubBlPG8T0gl/+TubSZ1aYd9FhdeBD7js1binjb9BjF3SH/yFi6Gp8QXLi0KPOkhVo9qjEqiQCJNdSxVKNHug2lVJPlRKeL1lS3tjwrJvqYK/apBJlozGIbUTaTL2sdKHz+G7gV9TktdBg/n8Z3bPH/8iFz5CuhVrImT9IvQhHv1yomj5CzoRa7CRYnVuj+0nxOWCt2rZSJpn1TJKiXVKLVazaKpE+jUbxCB/o8RZDJy5S+Ig0tWnj5+iK2DA50HDiFSMvouVYopVakad25eo0aT5qg0GhaMH8mVU8fRaDR8+PAe6wRfcyf37NRu0oLhvu2Zt2kHFpI2mOt7EWQgLz9/ezYhNpmKU+r7iblEjUf73aSQ/D6met5bAFIxIu39LSTnsZBYONL3iUzUapPGQFZSiWKJjoKJNL28NM29HgUTaYp4Uapuokd1RDCkKqNVL2srS/bt2IpbrryIahWCICBonVst6l4b6TvR1ERAFEXOnDhK67btsLZK+nA1kdgEOWx134HOVrrtj9JSjwuN0r3nviQogt25cpGHNy9TvHIt3t65iY1jFjxLVSA46COm5pZ4FimBU7GKBHxKeqeaSQz5OI05Tu452H3+Grm8imJuIqN/wwo4OGclJiqSex+TEtTVbdqKXZvW8fe6lTTr4JvsHZPRGOeYjfxnMDU1RSlJB51a9q1ejm+54hSrWAVn92wZUh+NRsOVIwe5sH83nz/ppq81NbPgyd3b5Mibnx4Tp9GiT39cc3rg4OLKmusP8PHtbrB8Z/fsCILAm2dPAHj34jlfQkPxLFSEQmXK6exboXY9Ov4+gkVjUnZjMWIkI1CYmX7XtLcyJoaxndsya2AfGnbonGH1+RwawvbVy7l65hRxWj7ksdHR2Nk74nfjGo3a/sLw6XNp2703kV/Cad75V3ZdvUder8IGyy9etnxiRs8vn8MICw7m08cP1G7aAmctVxeZTMaY+fH6+vs2r8+w9hkxoo1CoUCj0aBSSYVADXPrxnUqlirGg/v3qF0v/TO/X3kb8ICr+7fw4fkTnfUyExPCPrxDrVbRpPcwGvccQoWGLXgX6M+gJVvoNWN5qtwk8xQtxaPrFwF4/vg+ClNT5KamVKjXWGc/F7dsLNi4k79mTCL0U8ank5diHPk28p/h9fNAIr984cKxw1w8cYzPoZ8oUaEyjdp1BD2d2P/OLbYumsucfUdxzZnL4HnUajURn8NQq9TYOTmxb+Na9mxYgzImBrm5OU179CUy/DN7Vy3F3MIKUwsL9ixbTP6SpalYtyElqlSjx8Q/8Lt8kc0LZrF14Rwq+zShSqNmhAZ9SHV7BUGgQn0fzu/fQ+vfBrN68liadO9D698GoUghuKVe6/ZsmjeTp/fv4V3aqHxiJON58zzevcLOwZEdq5fh7pGLavV9KFVJf3bK9XOmIVco2HjND1Pz5MFSUmJjYggPC8XSypo4ZSyL/5jI7csX0WjU5C1UhEbtOnHz0nm2r15OmSrVWD1vJpVq1SUs5BOTF63A0tqavdf92Ll+NYN+aY1H3rz4tG6Pk7MLL589TXV7S5SvSND7d7x8+oS3b15x7shBxi1aQeU69ZLtK5fL8R04lJnDB9G2aw+j3KeRDOfFy5dYWVqydcdOoqKiOXzsOGW8venQvh1O7jm/eVxUVBT9evzK78NH0axVawRBIE5PPgRRFImM+MKX8HCyurlz6+pllsyeRnDQR0RRpESdZjjn8ODygR0887tF7pLl2TN/IrU690MhE6jn25eilWsybM1+jq1fwoTWNSlauSbVW/li5+TC5+CPuHrk+eb5tfGu2ZAdi6ZT75ceHN+6DifXbPiOmIJrTk9iJElZsnt48lP9n9m9aQ2FRoxM3UX9TozGt5H/DDb29lhYW7FyznTccuSkTJXq/L1iMebm5tRsEe+TeXrfbq6cOo5MoUBAQKWK49b5M/w6ZlIyw1sZG8ulIwfxv3ubt8+f8TbwGUHv3hAbFYWljS2iKGJqZkaO3HnoM2YS9k5ZuH33NvtWLcPBxYVOw8ZQrGp1Hly9zPj2zQl84Ee2XLkpUaUaAEXKV2RSuR08vXeH41s3MapVI3LmL5imNldv2pKJvm3JVbAQpavXwj6LM2YWlim6S8gVCn7u/Cvzhg6kUPESWFha4TtoKBZZXb/vghsxIiFbLk8+vn3N/LHDaNi6AxpRw9CObdhz+xEW1jbERkezbsFsPgV9jB+lU6tRKpVcOn6EJUfPJjO8g9+/49S+Xbx6EsDrZ095/fwZoUEf0Wg02No7EBsTg1wux6d1eyYvWYmJXM6ezetZNW8GeQsWYt2xc2TP5cmUQX3ZsWYFAMP+mI2ltTVm5ua0/rUnTTp05sLxI6yaN5PAx4/oPWp8qttrYmLCz206MLZ3V8Ytii+/YLHi39y/TJVqCDIZw7t1xNzCkkIlStGqi+FZLiNGUkuhQl7s2rOXt2/f0bdvHw4dOszQYSNYuX4jAI8ePWTpkiVoALmJHJVaxdOAAIqVKEnz1royhaIocv3qZU6fPMWLwKe8ePaU1y9f8DksFHNzC8wtLBAEARO5gr7DRuFVpBjRUVFM+2Mq/jcvUcC7Is2Gz0RhZs7Diyc4unIuLjlzU8+3LwCObtloN2wKDXz7cePEfhYO7ERsVCRunqmX+i1QujwRn0PZvnAaRStU5fjWdbjmTK5Q9JVWvj34rUMzIj99RKNW0+aXzhQvlfFBmEJ61R/+DQiCIC67+1Jn3X/P51v/seZaPqbmEr8qhUTmR59PqaFse1Iyyuf7W766x3fvYPPSP1m45wgrp0/m1N6dtO7Zj9iEKWgTuRx7pyyUrl0vcSRKIZOxZ/Uy/l40H4/8BShesQruuXLj7pkbl2zZcXV2QSaToYqLI/DxQ/IXLpp47MfI5D7fapWKvSuWcO3YEaZv36cjBahtJPtdvYSo0VC4XMU0XY9HN68zd0AvIsLCKF6lGkMXrUhmfNuYmQEQHRXJiR1bsVIoCHjgx/mjhxg+bQ4DOrREFMVMG4oTBEHcE6g7qv/f9vlOfX8EMJU8KLQzpf5Qn+80XLuvDOvYhpKVqlCvVVv6t/iZ7J65KVm5GnHKWGQyE+QKBbmLlSB3oSKJx6gjI5g/eiiXjh+hSv2fyV+kGDly5yF77jzkcM+OuaUlgiAQEvSRuNhY3LUkDqU+3xAvhTjUtx3V6vvQue/AFNujUqnYvXEtNXwaJ+qCS98FKf2GGo2GDYvmsWL2dGKio5iyfB3VfXSnvCHpd3jy8D53L19ALlewY90qXNyz0dq3Gz2a+2R6H7z+8tsqTv+bPt/SsiQZWrX8vAVJdkhBI3HNkC5r80/5fEuqoRAldZRmvJRioiA0NJQChYty/vJVngT4061LF3r27o21nT0qlQqFQoFCYYpP46bY2CYF+F+8eIHxI4cR8eULdXwakyt3Xjxy5yG7Ry6yOGVJTG7z5PEjHN2zYamln33xZVji/199vl89vMOqYV0ZumoPztmT+qu2DRD28T2Prp2jok+rhG26zUnu8x3/u3wJ/cTKCYN5eucGKpWSlecfI5PJdEa+CzlbJ/5/+vA+VOGhREVGsGzRfHr1H8zkMSMytP8ZjW/iHzojTj3Wu4++B42+Fz8kf3FqY2Gqe7NId9VOK23ohZyWZWk66mQPS8nLXdvgTouxLS1buk06tSrX81GQFmNbupwsfXzCfa9SqfithQ+vnweiUatZfepSiklvNKKIMiYG/3t3OPL3Rh7fucWYRSvI7VXIYOpz7XpIt31NK79v1VJeBfjT+4/ZOtsjlEn1NpT2XN89KmiURISFYm3vgGkKGqeWipR/wyvHDrNzyQL8b9/M9Bf/Zv83Ouu008JLm2aoz2kbRWoD0uVpiWWTlpWeODh9/VnaP7+mWP6KtB/p65MGjW09H8SGjtXnGiF9t3zLMA/0f0y76uWxsLLip4aNGTJjHt+6k0ODgvC7cZWlUydQtupP9Bg+Bhs73eQcaQn4hqTg6i51qtJ7zETKVk1KHiI1rqVIt+p7n34JC0WpVOLkkhVBEJLtq30tv17lOKWSv6aMw//OLW5eupDpfXDs4YeJy9J3U7RS9xlqZ5kUFCo1atWS/ulsZaazrH2vZ7HUNUytJeeVGucWim8b2NJtVpJlheTq6U0Rn4FuP6LUGNcysKXXSor02ac9ECF1/ZD2ZUnziZPcsF8N+b8WLmDW9KnEKZVs3rmHipWrJPvw1hD/IfkkwJ8zJ08wf/ZMJs+YQ4OfG6OU3JbSwRFpt9Bo9fD7H+MFAd69eMakX1sya98lnQGojxG6v5H29ZLeo1K09xVFkeiwIEzNLbFMUAnTDmR2sNANcv5qyL97+ZzFE4dx++KZDO1/xoBLI/9p5HI5dg6OBL19w6cP73kR4B/vsx3+OXEfURTZtWoZTYvm5c8xw7C0tmHh7kPklqiCpIcytepx7fhhXj/xz7AytTE1M8cxqxuhH94zrkUDXjzw49PbN4S8f6s3sU652vWYvvNgptTJiBGALK6uxERHExoczKO7t4n8Ek5sdDSxCR+mABHhnxnh2442FUuyc/Vy2vfqx+9/zE5meKcHn7a/8OeE0RlWnhRbB0eyZHVl+/IlTOz9K2HBwbwOfMqXz2HfPEZhakq/CX+wbO+RTKuXESOu7m5ERkSgVCq5fvUKoijyOSxM591w68Z1ypcoSsfWLbl18wYbt+/Bp3HTDMsN4ZItJ24euTm6ZVWGlCdFEATsnV2xsLbhz/6/cHn/NsJDgvn4+gVxym9/hLnlzMWkFX9neH2MPt9G/tN8Dg3h+rkz7H/8kgc3rjGsfQtiY6JRKExx88hFmZ9q8OH1K14/e8qyY+fIlssz2ShjRuCa0wNLa1tkmVC2NndOH+f5/buMbR4f8GXj6MSXkE8Ur1yNUas3GYO8jPxwju3aTg2fJkxasY7ZIwbToJBnop9o0TLlKFq2PEe3b6HsT7XYf/8ZClNTTDOhnxQsUYp9m9ZleLlSju/axoOb1zm2428srKyJjowf+Zu0cgM/peCOYsRIZrN+9SqWr92Ad9lytGriw5zpf2Ail2NlZUXN2nVxcnJiy6YNzJr/J/Ua+gCgymApPhO5HI8ChRGSOdNkLJ/evuLxtQs8vnaBjYCDixuhH98BsPqcHzZ2Dpl6/q8YjW8j/2l2r1tFlXoNsba1o2z1Wuy48xiFwhRBJuPRrRvcOHcGu6KODJu3BHM9CTnSizI2hpAP73Fydcu0cwBUatwCK3sHHlw6z/nd2zC3tOJLyCf8b980Gt5GfjiiKLJ52WIGTPgDmUzGkOlz6T16AuZW1kR+CefamVM8vnubHqMmpOgnnZG8DnyKi1vGyIjqY/jcxVw7c5Jda5bzWks55WVA5sx6GTGijwd+fjwJ8Kd2vfqYmZlx4vxl4uLisLa05HngM44fPcKHDx/Yc/gYefKmPtDxe/jw6jmeRUpm6jkc3bLTY+YKnvvd4sjaRXwJ/ZS4LSYqymh8GzGS2cRER7N12WIWbN+XuM5CKyiksHdZCnuXBTI2sE5KnFLJrL7dKVe3PmYWmWfgA1jZ2VOpUXMqNWpOPd/umJqZY+PohJODXaae14iRlDh/7DAyExMq1qydGNBnZWOLRhSxtrWj+s9NqP5zk0yvx3P/RywYO4KhM+dn+rk8C3rhWdALn/adePXsCXaOTtg7Oun9uJdKohkxklEsWjCXbr36YJYQdB8fYBnv/5zLMze/9ugF6E+glREc2bKa188CKOidsqBARiGTyShSqQZFKtWgerN2xEZFYW3vQHZXF0wyeeZZG6PxnUBsnH4FE23jK1lAj0z/sjbSIEipUacwkQZSCSn+n5qypcvaQVyGArqkrhXa07xpUUsA3cACfcGYqVnWh74sf9L2aESRLYvmUbR0GYoVL/l/7Z13uBTV+fg/7+yt9KaidMQCAl+MXRFBxW6CYo0mJsFCMDGW2H4aQ6KxRGM0xpJo7IkaaxIRRSKWKIio2BAEC4gICshF4Nbd9/fHzO7Ozt27e8vuzi3v53nm2TPnnDnznjNzzrw7c9731DOabMhAE+pb/W8KrHL3bXXDq8Sl89KxaN5cvvjkY658ajYbq1Kt1VNW/Qscm83zhn8/VlPfCHjb7ZNLfH9b3fDqbltqwnnw+6ubzdi0vuGj38NO5nbLXlbDZDLAzO59KHXf77EkU/+DlnksaYqBdLAv+72oAOzYOUNbxv6Xuu+MTdl9d+0W/vaHa5l6wSV0Li2lyLfwRzqPJH6C/bM6xTNOwx5IGkq//9abOfTEU9jt4EP51tefW7K6a7Y/7KWdOjFs5OjEvr/O9Z4LBfoo9WVFchGymoDHr+D96jfALAk8T7qUpd4nm2pSx7VOvufN+spUjxxBA8Sgp5RIwHjRkYb7enBcLwt4PymNJA1Bg/ULElxN0o8G7hPJslqmv6jg7I2gGEFPT5U+XWVzXdPG5m4BA8XF77/HnOef57rrb6Qsi34RlNNfB61LTdxQlXpNqzJ4j+tUHHG/gN18NTc8PJN+fbfJKId/dcxs1AT+MgRXii3rm/zSVR0T8N0vQY93ucYMLo0OR+WWLVx94S944v57OP/Ka8MWh4E7j+CbNat57I/XUFvdvBU4DaMtsXjxYk48cF8GDB7KocccF7Y4DBs5mteen8nzjz0ctiiGkXdUlccefojjJx3F1dffQLfu4X75FBGG7jySv99yHSs/WRqqLIXClG+jQ/Hq7Fkcs/cYKr5Zz0Nz5jJkh52yH5RnuvToyTl/vpulb73BG7PMs4jRfqmurmb69OmMHTuWk6acxQ13P0hRUfgfYA8/6VQmnzGNW6+4hE0VFdkPMIw2yorln3Hq8cdy25/+yD+f/A/HHndC2CIBcM7vbqJbj148fNsNGV12thdM+TY6DK88/yyXn306l994C9fd9QDdeuTOTVlLGbH3fkw+9xIeunY6d156LkvfeoPqysqEJ4TmoqoZXQkaRiE588wzmTdvHm+//TYnnz611Rj5lv+7iQsAACAASURBVJSVcfhJp3LYiacy5cB9eOCPv2ftl6uoWLeOaJYpMNlo6fGGkSvWrVvLpMMnsvd+Y3nupVcZOXp09oMKxHaDhnLa+ZezYuliLjttEi/PeILqqko2+gwim0usFfbB8F85GEYB2LB+Hb/++Vlcd9cD7Ln/AXk1oGwuI/bej2tmvMSrTz3K3y6/gPWrV+FEihi48wjGHnsSux32XYqKS7IXBFRv2cKjN/yWhS/Moq6mmgHDRzJk5BgOnTKNzt3MuNIoPI8//jhz587l7bffpnPnzny0ufX1wam/voqJx53Ifx64h9MP2pdoXZSi4iL2GH8wk8/4KcN3bfwy08vef487fnMZHyx4nR69+7DTmO+w10GHcPjJP2iyXNVmcGm0EFXl4vPOYdLkE/j5eReELU5aunTvwY2PzeaNF2fx3D/v55bLz6W4pJQeW/Vlz4lHcfAJp1HUtfHeSP73xIO8/Pj9rF25nL5DdmD7Xf6PA445hUHDR+WxFo3DVrjEXdnr4v8uTolrigvLoJ1CUQajyZasUhk0kgzmDZ43KFfnkuR/raBBV1ng02/QwMu/clY2o8lM6cE3XS0xaMqGv47P3f1n5s+fzwMPPADAh9+m/hOurE01EAkaZX1TlZyL/U1l6rzsispUY6KgoUZTnpvxa6qq1FZXUxwRlsx/lRf+fg+rP13K0T89lwOO+37aY+Pn2bxxA3/66WlsPWgI3z37Ako7debzRe/x0qMPUt65C5N+fhE9Ay4NM/0ZiakybczgvK+u9+iyVSlxQUMjP0GjrKCxVFEW46lMNGVV1UzH1lu9tQUrwWYyYs5WVlONmqUJcmQ0uAywzz67ccWvfsHhh7srSH60pX9K+qbq5EIXwf5XUZ26CMbmgJGzP3/wvgneC9nGq3gda6qqKC0tZcPXX/HKM//miTtvp++AgUybfg3DRo5KW1acha+9wm/P+jFTLr2CA46exDdff82Sd97izqt+zZRLr2Dckd+jrLw85ZhMfbDEEcZt2yPvffCMR95O7GcyCAbo6jOqDBpnBlce9K+GCdCtNHlsl9LUZ0+ngPF/aeC8vQIrEfrzlxZlbp7g8vN+A8xgWiQWWJo9uIR8SloL9KjAPRRcDTMmqe2xubbhez244mWJTwn4fPlyjjx4PAs/WExZWVm99CxNV8+odJPPEH9DVerzdEPAcUDQSNJvgBlM89ehurISKSpm+ZIPmPPkP5g36z/sc+h3+f65v6I00H+CZT36p6t577U5/PDy6+m3/U58sWwxi+e/wtxnnuCn195O/x2Gpxwb1PmC+tWUPQbltP/Zm2+jQ7BgwQLGjh2bPWMrQUQoKSujOCKMGncQo8YdxKol73PD6d9n1NgJ9MrgD/y5u2+n7+Ch/PDKPyQUqV32O4CBI0Zxz+Xnc+WJh7Pznvuy7dAdmHDyj+jSozB+TY2OS01NDe+/v4R99238m+OwKSkrI+I49O67LZN+chZH/eAnPHnnbdzxm8u44dF/N3hctK6O3593NhfddBt7HjgRgE5dutJvyFA6d+3GPb//HQ/c+Hv+b9+xjNxjLw478ZRCVcnowLyz8C12/c5uCcW7LVBaXk5dNMaQ4aMYMvwaJp91PrdcMo1XZz7JgcemfwkFsHThG7w1ZyaX3vMfOnur4A4ZuSvDRu3K5m8ruPm8H9N30FAG7rgLexxyNIOHF376jSnfRrunrq6OmTNnMn369LBFaRGDRoxij0OPYu6/H+fIM3/WYL43nv0P026+q96b1649e3HOrfey9ovP+XjhAhbMmsHt553J4F1GU1dby7ZDd2D3w46mU2BaSk2VeWAxWsacOXMYNWpnunfvFrYozaaouJjJZ0zjsb/cyqrln7HdoMFp8y1e+Bal5Z0SirefvQ46hD0PnMiiBfP55MMPuO8P17LozTe8t3jC7uMP5Dv7j6/nb3jVis9yXyGjQzFr5kwmHHRw2GK0iO69t+KIH5zFv/52S0bl+43ZT7Pf0SckFG8/J577K7535vksfuNVPvvwPW698Ez2nHg0ddE6OnXtzh6HfI9tBg7JZzWAkA0uReRsEXlXRDZ621wROdKXLiIyXURWiUiliLwoIrsEylARqRGRoYH4e0Xk6ULVxWi9vPna/xgwYABDhuS/Q+WbA47/PjPvvp3bzjuL15/5F7U11fXybDN4KOtWrWywjD79BrDXkccw5eqbGDPhELr32Zre/Qaw+I3XuOyIsdx96S9Y9vYbqCrfrPmSW37a9DmqhuHniSeeYPKxh4ctRospKS3l8O//gF8efzR//tXFLF74Vj3PDP2HDuPrVV80aGgpIuyyx15877QpXHn339lu0BC23q4f3Xv14p7rruLUvUZz/43XsfZLdxrW/DmzmXpE21aajHCpra1l9nPPcuTR3w1blBbzf/uOZ+M3a/ntT47l6fvuoGLd1/Xy9B00lHVfNvwMLOvUmTEHHMKkqRdw3M8vpVuvPvTq248tmzZyw1nHc8PUE5j37FPU1lRTW1PNo3+6Ouf1CPvN90rgYmAp7h+B04CnRGQ3VX0XuAi4APgRsAS4AnheRHZS1W995USB3wEnF1B2o42w7qs1DB48OGwxcsKgEaO4esZLvPvKHP73xCM8dO109pt0PAef8hO6bdUXgK49e7P602WMHl//zZufss5dmPjDM4DkfNNNG75h3r8f4/4rLqS4tJQNX63mgJNO4+O338hvxYx2zZo1azhk4nfCFiMnTLnkCg783mRee24mV079MV269+C7P5zCoSecTFFxMSWlJYgIa1evYpt+AzKWNWzk6MRCOzFVvn/OBXz8wXs8/eC9nHHwfmw7cDDfVmzgstvu4sIT87/Sp9E+qa2pobJyC9tu2/B0xbZCpKiI6/45m0VvzmP+7Bn88tgJjN5nHIedPIV+I8YA0LVHL1Z/9nGjytvr0O8ByTnfk392Ke++8l9eefJB/nnTVRSXltJ/2PAMJTSPVmdwKSLrgUuBvwKrgD+r6u+8tHLgK+CXqvoXL06B63GV9D1V9U0v/l6gj6oe1Yhz6jVzUy9UcDVBv81HcCJ+NgOmTMcGjX2C6WXFyfSyooARZODYbKvg+VenK8lybLDsYFmZ8vYpSa1Dr1T7mJyxPmAPsyZg9BE3wlq08G1+dfbp/POVpAK5JWBguTm4HzDo8htDbQisyBZcAXJThtUis61wmskgN919t+azT3jp0QeZP+NJJp19AcWlpfzr1hu54tFn6NqzVyJvppUY0523Lhrlw3n/Y5vBQ+k7YCCnDe+fd2OvZ1asbXT+bIaQLVkZNVNaU4wVgz2mKWW15LzZaEnbBe/X4AqCKauq+sJ/vOISevTuw2nnJL0sVAXeDK/fsiUR3lKbarAVNJrcUtuw8Zt/5UXIbpheEkjPtNJoPaNZERa89AKP3n4LG79Zzy9+dz2P/vVWunTvwcV/vDUlb7a+HuTbig28M/dV9pxwMN07lbPX1l3z3gcvefqDxH5wnIsE5C3JtGJywOAy037XktR3gN0CBphdA/t9Asabxb5rUh5YCjRorBlc4bKzb9+p2ZySRiz1HiQa2PffC4F+IMFjM+lZwftAUmXWSGr9pbb+186kTA0vjz549J68OHsWAwf0T5se2Zzq0i9W2jl1vyx1OuKWaFLuiurgirOp9Q2u7Ox3SlBRndpWFYHVMYOGkHW+h1lVNMaWbyuY+8wTzLz/L4zYexx7H3Ecd13+M35w+e8ZufcBKccGnVD4y063wOcXHy+hassmth+1G2fslVunA63Gz7eIRETkJKAL8BowBOgLzIrnUdVK4GVg38Dh84HHgd8XRlqjLTFo+2F8/smydunvepvBQznhwis4/2+PMO/pJ3j2njv4xW33pijezcFxHHbZdxx9tks/UBtGUxi0/Q6s+Lj9rVznOA57TjiY3z/yFMdP/Rm/PuOHlHfuwrlX39Disrt278HYw46kpLQ0e2bDyMIO2w9h6bJlYYuRczp17c5BJ/6YKx95nkhRMbf98idMmnYRI/Ya1+Ky+22/E9uPyo+ReOhvvkVkFDAXKAM2Aaeo6gwR2Rd4FRikqit8+e8G+qnqod6+AscDC4FFwHdV9dlsb75F5EzgTG+37ZjgG0Y4rFPVPvkq3OvHhmE0jPVBwwiPnPa/sOd8gzuXewzQA5gM3Cci433pwQFB0sShqstE5E7gWhGZFUxPk/+vuFNbco6ILFDV3fNRdmulo9W5I9Y3n+Xn+nN6R7w+Vt/2jfXB1o3Vt32T6/4X+rQTVa1R1WWqukBVL8V9g30esNrL0jdwyNbAmgaK+w2wPWCOUw3DMAzDMIxWR+jKdxocoBT4FFcBT7hsEJEyYH/cOeH1UNWvgBuAK70yDMMwDMMwDKPVELaf72tFZH8RGSwio0TkGmA88Hd1J6PfBFwiIseKyEjgXtx54f/IUOwfcOePh+mXKS/TWVo5Ha3OVt/WTVuTt6VYfds/ba3ObU3elmL1bd/ktL6hGlx6RpETcKeWVADvAter6nNeugC/Bs4CegKvA2er6vu+MhQ4XlUf88X9FLgNmNEYV4OGYRiGYRiGUQhC93ZiGIZhGIZhGB2F1jjn2zAMwzAMwzDaJaZ8G4ZhGIZhGEaBMOU7CyKyrYjcJyJfi0iViCwSkQN86SIi00VklYhUisiLIrKLL32e53/cX+YPRERF5IJA/O9EZAUhISJni8i7IrLR2+aKyJG+9HZT1+YiItNE5FPvXnhTRPYPW6bm0NJr7eXRBrapOZSzw/Q/Twbrg1mwPphShvXBHGL9r3G0hz4Ydv8z5TsDItIDd5VNAY4EhgM/B77yZbsIuMCL38NLe15EunrpL+AalfoZD6xoIH5OzirQdFYCFwPfAXbHlf0pERntpbenujYZETkRuBm4GtgV1+XlTBEZGKpgzaOl1zrOGcC2ge2+XAjYAfsfWB/MiPVB64N5xvpfFtpRHwy3/6mqbQ1suDfXqxnSBfgSuMwXVw58C5zl7U/EXZFzgC/PJ8BUXA8vES+uM1ADnBZ2vQN1XI/rbabd17URbfE6cGcgbilwTdiyFfpae3EKHJdHeTp8/2vqdWkP9c3SFtYHrQ+22mvS1uvayPZot32wkP3P3nxnZhLwuog8IiJfichCEfmZiMSX4R2C6yYxsZy9qlYCLwP7elGv4nayCQAiMgjoB9yP67N8Ny/fWKCYVvJPWEQiInIS0AX3n227rWtjEJESXPlnBZJmkax/m6SZ17oQdNj+B9YHg1gftD5YSKz/1ae99sEw+p8p35kZCkzD/ed6KO6nlmuBs730vt5vcLn7NfE0Vd0CzCf5yWkCMN+LfykQ/7Gqhj3ndJSIbAKqgTuAY1T1PdphXZtIHyBChvq3NVpyrX08ICKbAtuoHInY4fofWB/MgPVB64N5x/pfRtpVHwyz/5nynRkHeEtVL1XVt1X1HuBPJAeeOEFn6RKIm0Nqp3vRC78YiH8hN2K3iCXAGGBv4HbgPnFXF43TnuraHLLVvy3R0msNcKFXhn9bkiP5OmL/A+uD2bA+mIr1wdxi/S877aUPhtb/TPnOzJfAokDch0DcsGC19xv8J7Q1qf+YXgAGichgXCOLF734l4D9RKQX7qT/0D9BqWqNqi5T1QWqeimwEDiPdljXJrIWiJK9/m2GHFxrgNVeGf6tJkcidrj+B9YHM2B90Ppg3rH+l5F21QfD7H+mfGfmVWCnQNyOwHIv/CnuRZoYTxSRMmB/3HlDceYCVcDpuBfzNQBVXYI7gf98oIjW2RkdoJSOUdcG8TrTm/jq7zGR1Pq3ZZp6rfON9T8X64NYH7Q+GBrW/zw6QB8sXP/Lh8Voe9lw3cvUApcBw4DjcS2Wz/bluRjYCBwLjAQeBlYBXQNlveDleyUQ/7AXv6gV1Pda7+YaDIwCrgFiwOHtra7NbJ8TcY1pTsd1uXUzrhHNoLBlC+Na435+iz9g/FuXHMnYofpfrq5LW6pvM9rH+qD1wVZ9TdpKXVvQRu2iD4bd/0JvgNa+4fo2fQf3n+xHwDmA+NIFmI77ea4K99PSyDTl/Mq7UFcG4qd68X9uBXW9F/eNRjWuT8vZwKHtsa4taKNpwGdeG70JjAtbprCutXct021X5VDODtP/cnVd2lJ9m9lG1geTeawPtrJr0lbq2sJ2avN9MOz+J14BhmEYhmEYhmHkGZvzbRiGYRiGYRgFwpRvwzAMwzAMwygQpnwbhmEYhmEYRoEoCluA9oaIbAvsg7s8qWEYhtFx2QS8DrynqtGwhWkpIjIGOChsOQwjx2wCHlbVikKd0AwuW4CIFAEjna3GvK1V69DqjUhRKVLWGynuAk78w4KTDIvjbgCOkPj44PjifXnEcRrO4y/fFSgRJxLIGymKy+w7vYPjiC9evNP4wiKeDK64ksjv+Krk4EV74WQ5bpwgkgw7ibIdnEjyPMTLEEESYRJlI4KDJOL9eRLlB44VX5nJcuL1FxJRTjKMk/wk5JYXlzEpixM4ZyK/Q0JGxwFJCdeXxfGFE7Iiybb1taPjDwuJdhYkpZ7ia6NkeyXzOPiuhyRlFEipa7Bsx1c2gfPH5eoaEbr4/9LrOu83vjYDoDF3A8AX1pi7nwhH08THx6to4LhoMj2l7HRlRBPxqpooUxPHxWXU+nmIJYpxy/fl8Y5LjqnJ40hax7vHxZJ51H/+mFd4TBN5NCXsO7YxeeLn9MVp8LjG5EnIlayrr4nc+sXz42tq9dfPd2l87ZaMg5i/vVIuhy9/sql98RDz7k23SslwzAsrvrCKr4m8vEhK02qiPEk2kYovPllejGTdYgjRmBtfGVM+r6xldXUdnSIOg8qLeWHd5sOBeaq6gTZC0Y5HaWzNOwA4PbdHnAgSKUIcx30WRIrc8dkpAsdx4x033XGKQLy4SAQRB4kUec8WSTyTHG+QdCJOYuxOxDmO+1j0jok/i0SESETccdQRihw3XJQuznv2OAJFESf113GfZw5CxHHHvIg3NjsiRLzxM+I96xwg4pUb8eQq8vJL/DnlPS8c8IUl8bwS4s8RN49I8pmUeByqIhr1+osisShuR/HivE4lqt64Fs9PcpzVmJs/5oY1Gk35JZYmLlqXOFaj7rEaiybGgljUHStidXVozO3jsbqoGxdN/qbmd381FnNPW+eOlVoX804VIxZ1x5FYXcz9jap3bnxxsUTfj8aUGFAXU2IoMYWoN3TVqRJTpc7bj6H10mJAncIWonzEJgbTibeo2EpV1+a7T5ny3QREpAewt9Nr55lauQ6N1SIl3ZDy3jhlvaGkW0J5AcCJeAdGEmFxkmFXI4sk8zr1w+JEsuZJpjvpzyNFUFTsZUkqvBHHwYl4irUjiXDEl8fx5Yn48jhOUnF3Ig4RX9jxNMdIpH6cExEiifQIkaK4Yu//U5AaTiiiIj7F3qcopoR9iq3jUxwdv5JbP680EI4P4AARIW3YHZz954m3L2nD8QE7XThdnP+c8XYu8p3H8bVLShs1Mpxoj4AMmY4Lnid+TfuUCL3cW81FP/d+l4PWeeGk8uuGGxGPLx7ctKaWkYivhZgb71d4NUXhDsb7wjFNHw/ug8L3p0BjSU0xNd4XTiizdRD1yovGfGFtID7mPmnSxiflyZTe9LJ9SnYMYj4F3a8Iqy8+5svvj693XDPKi9W5csVUiCYU7qTy6z6MJUse9zeq4gsH4mPp8gTy+/LUxurP6Py2LsqKytrEVqvKdqXFDCov5rHVG3cElmkreiCLiES2PywWW/MuRIqJbPN/SKferuLtRHCKSpBIBCcedhzvN+LGF5X40rxjiksSx8afOfGXPZGI4/4WJRVtN5xMc4+RlGOLitznT8QRSoocirzfiOMk4iKSTEvEpfmNiFDsnafYcRLjfLE33hZHvDgRiiNefk/RL3acxDifVNaTCnf8uEhcQffixItzvPHdVcoFB0+xjtUllexYXUI5Fp9iLW5ncPNE6+fXulpPAY+itW5Y62rRNHH+X39arK4WjcbQaIxYbR0ajRGtTcZFvbhkWp2XFk0Tp0Rro8SiSqzG/XXTXQU9VuP+RmtjGfIrtbEYUYWamBJV9YWTcfH9qCq1qmnzA0RRlrKZD/iW7SjjXTZup6pf5qt/2bSTBhBXI9khss1uS2KV66B6A1LWBynvhZT2xOm+PVJUFraYhmEYRhuga1GEXbpG2KWr+9yoiymrqmtZXlnLyK6lH62tiTKiaxmDyot59utN44AFqlpZaDlFRCJDD45J522IrV9KpP9eSFmPQothGAUlgrAzXdiRznzCFraiZNVI6cYHfDtIVVfk+nymfHuISCmwl9N75EtatQ5KuiMlXdBoLU73IUhpD3cqh2EYhmG0kCJHGFhewsDyEsCdUrOhNsbyyhr27lH+8sqqWgZ1KqF/mft2/KFVFf1UdVW+5BERJzJ4QlQ6bUWsYgWRgWOR0m75Op1htEochGF0Zns6sZxK1lKzfGfpwhI276iqS3N1HlO+k4whUvZSbP0inK6DcHoMQ8p6IY41kWEYhpFfRISeJRF6lpQzulsZa2uiLN1cw2vfbGH+hi2M7dnpC5KmI/mge/Tz13B6DcPpuysSKc5+hGG0UwRhMJ3oTjHP8zXD6fIROex/pll6qOrr4r7aHiCdtlqum1YRW/cBAFLaEynvjZT1hqLy1HndhmEYhtECamLKyspallfWsLyyloq6GFuVRBhUXsL62uiewDuvrN9ck08ZVPUbEelGcfnGuqUzcHoOxemzMxIpyedpDaNVspYa3qaCKmLsS09m8FVOpz6Y8u3DM3ZZge/fjYh01qr1ezhFZXNiG1egdZVISRfXo0l5b5uOYhiGYTQaVaWiLsZyT9leWeka//YvL2JQeQmz1m4eqBq3VC64bN/iTvsuxyneUrf0GZzuA3G2GmE2TkaHYA3VvIXrcXBXuvGUrs7L21ZTvrOgqpuBF/EUchFxtKZiR6dT3w9jFZ+i1Rtcl0plvVyFvKw3UlQaqsyGYRhG66BOlS+r6lheWcOKylq+ronSvchhUHkJc7+pnAC84T1nAHgoRFnjeIaeIiIlstWI6rqPn8Ppuh3OVrsgpV3DFs8wcoqifEk1b1NBMQ4rqNxNVd/K5znN1WAOEJFewN5Oz51naNU6NFaDRMqTjpuRVKfUPl/JPufWqWGfD+V08cljspcRPL/fn3QyS2q83+c2afL7p974fUgjPt/ZyQJT/ErHCwz65E6U5z+/v3q+jP6/oqlNIg3E+8uvL6vvlKlhf50DsqScq4Fz+n1u+/Ombes06cHzp8qSbAt/nVLPU19GfPEpcYEyM+UNxsfDJQLFKR+CPGcNWonnAdr99fvCzhavgTy5KCONL+6UkdCfX5OpmkhLZPTlp15Y05SRmkd92X1yaTKP+sIp5aj6qqS+aF98U/IGw/jz+OVKVw0NtJ/vWH/1ggcGRE1JT9ukmtrUfl/gvt+47+7AqRI+uv3nSlbBd0zKcZJyK8TLSLkUgfzxcFXMdXW2XZn7Vvvx1RuHAx9pilP51o+IFEUGHVAb++oDKC4jsY6E56rU3cf7CixefDLdHWsl7hfW9fXtFpz6TJHgcyEZ52X3xmcvjwT8ZntrKzi+cpK+swNuaIm7Wk3+Qmr++Jib+I3H+dIdLzHuqxuS43pibPaFU56BvvIJHC+Jmyuw/gAkx6e4/+/Ezai+vqOp+eLhWAyIu/L0pcUd8Sd883txXj7Xtap77vj6APGxIeHPX/HcrfrGDX8+14F+Sv7UONLk88WB51ecZDpxv/z+cLIZYl6exKauz+9EOlBFlO4Us5TNu6jqogY7Qg4x5TsPeIvvnAf8PWxZQuQUOnb9wdqgo9cfrA06ev2PV9WbwxYiV3h2URfQ9q5pW70P26LcbVHmE1T1pkKe0JTvPCEiC1R197DlCIuOXn+wNujo9QdrA6t/+6t/W6xTW5QZ2qbcJnPjMEtBwzAMwzAMwygQpnwbhmEYhmEYRoEw5Tt//DVsAUKmo9cfrA06ev3B2sDq3/5oi3VqizJD25TbZG4ENufbMAzDMAzDMAqEvfk2DMMwDMMwjAJhyrdhGIZhGIZhFAhTvvOMiNwpIh+LSKWIfC0i/xKR4WHLVShEpJeI3CIii702+FxEbheR3mHLVihE5EwRmSMiG0RERWRw2DLlGxGZJiKfikiViLwpIvuHLVOhEJFxIvJvEfnCu94/ClumQiEil4rIGyKy0Rvv/iMiI8OWq5CIyNki8q7XBhtFZK6IHBm2XM2lueOXiEwWkUUiUu39HpNfSVPOXeo9d9aKyGavP/bPcsx0r37+bXWe5WzSOCkiB3j5qkTkExGZmk/5GpCh0TKLyPg0baoisnMB5W3yeCwio0TkJU9n+UJErhD/inU5wJTv/LMA+BEwHDgUdzGr2SJSHKZQBWQ7oB9wETAKOBUYR+tYRblQdAJmAdNDlqMgiMiJwM3A1cCuwGvATBEZGKpghaML8D7wCxJLfHYYxgO3AfsCBwJ1uONdrzCFKjArgYuB7wC7Ay8AT4nI6FClaj5NHr9EZB/gEdzFVsZ4v4+KyF75EDANNwGTgZOB/YFuwNMiEsly3BJgW982Kl8CNnWcFJEhwDNevl2Ba4BbRGRyvmRMI0Nzx/ZdSG3XpfmUM0CTxmMR6QY8D6wB9gDOAS4Ezs+pVOpbGtS2/G/AaNxVTXcKW5YQ2+AI3FVdu4UtS4Hrvbt37QeHLUue6/k6cGcgbilwTdiyhdAWm4AfhS1HiPXvAkSBo8OWJeR2WA+cFbYcLaxDo8cvXMX7+UDcbOChAsjZHagBTvHFDfCeOYdmOG468H4B27NJ4yRwHbA0EHcXMLcVyzzeu2f6FErGLPJnHY+BnwIbgXJf3OXAF3hOSnKx2ZvvAiIinYEfAyuAz8KVJlS6AdXAlrAFMXKLiJQAu+G+KfMzC/dtqNGx6Ir7hfWbsAUJAxGJiMhJuH9CXgtbngKyjLNYlAAACpBJREFUD/XHgOcozBiwG1DsP7+qfg582IjzD/WmGXwqIg+LyNB8CNjMcbKhNt29EF/SWzi2LxCRL0XkvyIyIS8C5o59gFdU1f+W/Dncr/iDc3USU74LgDdHahPuv67DgYNUtTpksUJBRHoAV+L+e64LWx4j5/QBIrif7PysAfoWXhwjZG4GFgJzwxakkHhzRjfhvmS4AzhGVd8LWaxC0pfwxoC+uF9b1jbx/K/jThE9HDjDy/tanuyTmjNONtSmRV55+aY5Mn+J+yZ5MnAs7rSe/4rIuHwJmQMaaud4Wk4w5bsZiMhVDRgR+LfxvkP+jjs/6gDgI9y5b53CkD1XNKMN4m/+/4P7+eaiMOTOFc2pfwcjuICApIkz2jEiciMwFpisqtGw5SkwS3DnOu8N3A7cJ63I8LRA41dOx4AcyJzx/Ko6U1X/qarvqups4ChcHem05srcCJraRunyp4vPJ42WWVWXqOodqvqmqs5V1WnAs8Av8y1kC8l7OxflqqAOxk3Ag1nyrIgHVLUCqACWisg83E+wk4EH8iZh/mlSG4hIF1xjEYCjVLUqX4IViCbVvwOxFvetU/ANwdbUf5tgtFNE5I/AScAEVf0kbHkKjarWAMu83QUisgdwHjAlPKlSyPf4tZrcjwGNlXlv3De0fYCvA+d/ubEnU9VNIvIBsEMT5WwMzRknG2rTOmBdTqVLT67G9tdxx4bWSkPtDDl8hpny3QxUdS31P2k1FvG20txJVHia0gYi0hWYiVvvw1R1Uz5lKwQtvAfaLapaIyJvAhOBR31JE4HHw5HKKCQicjPuw3W8qi4OW55WgkMrGvMLMH7Nxe3z1/viJtKCee+Nldkbf2q98/3Di+uP63Gs0ecXkTJgZ2BOc+TNRDPHybnApEDcRGCBqtbmWsYgORzbx+BOR2mtzAWuE5Ey30vCicAqcmirZ8p3HhGRYbhvuGfj/gPvD1yCOw/w6RBFKxie4j0L18hyEtDZm34CsN57Q9SuEZG+uP+kd/SiRnhz31eo6vrwJMsbNwIPiMh84FVgKq6xyh2hSlUgvK88w7xdBxgoImNw7/d2/TVERG4FfoDb17/x7n2ATe3hT3djEJFrgRnA57gGp9/H9frQJn19N2b8EpH/AvNV9VIvz83AyyJyKfAkcAwwAXcaUl5R1QoR+RtwvYh8hftW+EbgXdxncbxei4E/q+qfvf0bcKdFrsB90/kroDNwX55EzThOisj9Xn1+6OW/A/iZiNwE/AXYD3eO+sl5kq/FMovIubgK6wdACa6r4Um4elFByDYei8g1wJ6qepCX5x/Ar4F7ReQq3Pv+EuA36rk+yQlhu35pzxuue6OZwFe4ro8+x53/vXPYshWwDcbjzpNKt40PW74CtcH0Bur/o7Bly2Odp+EOutXAm8C4sGUqYN0buufvDVu2AtS9ob4+PWzZCtgG9wLLvXv/K1yFr0EXd619a8z45fX1ewPHHQcs9p59HwLHFlDmMuAWXMV7C65SPSCQJ+W+BB7GfbtZg2uX9DgwIs9yNjhOAi8CLwbyHwC85eX/FJgawv3QaJlxbbuW4frXXg+8AhxRYHkzjsdef/0scMwo3ClKVbhv6X9NDt0MqqpbmGEYhmEYhmEY+ce8nRiGYRiGYRhGgTDl2zAMwzAMwzAKhCnfhmEYhmEYhlEgTPk2DMMwDMMwjAJhyrdhGIZhGIZhFAhTvg3DMAzDMAyjQJjybRiGYRiGYRgFwpRvwzAMwzAMwygQpnwbhtHhEJHbReQLEbFVxgzDMJqAjZ8tx1a4NAyjwyEi44AlwGpVlbDlMQzDaCvY+Nly7M23YbRyxOVTEVERGRa2PJkQkRc9OVVEzg1bnoZQ1ZdVdU26NBGZ7qvDY4WWzTCM3GHjZ+6x8bPlmPJtGK2ffYDBgAInhStKo5iDK/PDYQvSTO7Clf/tsAUxDKPF2PhZWGz8bARFYQtgGEZWTgZWAa964avCFScr61V1XlgnF5H/Af3TJP1XVadkO15VVwIrRWRjzoUzDKPQ2PjZBGz8LAz25tswWjEiEgGOBx4FHgJGiMjoQJ4Xg5/3RGS899lvZOGkbRgRuVdEFojIkSKySES2iMgMEeklIsNEZI6IbPbyjM5S1i4i8qyIrPeO+VBEzo6nq+pYVR2cZsv64DAMo/1g42fasmz8bAWY8m0YrZsDgW2AR4BngI24b2/aIgOB3wKXA2cC+wJ/xf28+jBwHO7XuIdFJJMRz7+BKHAq8F3gFqBr/sQ2DKONYuNnfWz8bAXYtBPDaN2cDKwA5qmqisi/gJNE5P9p23NV1AvYR1U/BvDe0FwInKaq93txAswAdgY+DBYgIn2AocAkVX3Pi/5vUwURkbuAw7zwSuBZVT29yTUyDKM1Y+OnDxs/Ww/25tswWikiUgocA/zT96B4GNd4aO+w5GoBn8UfHB7LvN8X0sT1a6CM9cDnwB0icqKIbN0cQVT1dFXtr6ri/dqDwzDaETZ+psXGz1aCKd+G0Xo5HOiB+8k0zvO4A2iTPp16cwXfEZGFIvKaiAz3pX3mzSNc6G0jfGkjReQtEVkqIv8WkZZ8ntwQ2K9JEx+PK0tXgKrGgEOA1cDdwGoReUVEdm2BXIZhtD9s/Axg42frwZRvw2i9nAx8oqoL4hGqWgs8CZzgGRMBVAElgWN7BfbvBE5S1THAg7hzB/0coapjvG2RL/4O4HJV3QFYDFzUohrlAFVdrKqTcR+sB+M+aGaIiI1nhmHEsfEzDTZ+tg6ssQ2jFSIiXYCjSH1rE+dhXCOiCd7+Stw5fn4mBvZjQDcv3B34shEybAMMUdVnvKi/AZOzCl8gVLVWVV8AbgS2xX2YGIbRwbHxMzs2foaLGVwaRuvke0AnYJOITAqkRYBq3Dc7s3Hf5EwRkT/iGttMAA4NHHMq8LSIVAFbgP0C6U95xjpPA9O9N0T9cR9McVYAA1pasZbgGRndgPtQ/QToCVwMvKOq68OUzTCMVoONn2mw8bP1YMq3YbRO4nMSf5chz7EiMk1VZ4jI/wOmAacD/wLO9X4RkSLcAfZAVX1PRM4A7sV9MwQwVlVXem+LHgB+CVwDCO6qcK2J1cAa4DJgO9z5jnNw62cYhgE2fjaEjZ+tBGl73nYMw2gKIrI7cKuq7uXtdwK+VtXOafIeBZylqkeLSF/gTVXt56XtBDylqsODx/mOfxFYB5wIRNugOy+8uY8Orguur1X1uJBFMgwjJGz8bBo2fjYOm/NtGO2flcAOIhL/5HkYsAhARDqLSDcvXIQ7J/FdAFVdDXwmIkd4x00BnmjE+Y4FaoFf5KwGheUKXPnHhS2IYRihY+Nn07DxsxHYm2/D6ACIyI9xP4fWAZuBqar6rogMxX0gOLhzIecC56jqFu+40cB9QBdgCXCKqlZkOM9OJFdLW6GqX+WpSnlDRLbD/SQLsF5VPwlTHsMwwsXGz8Zj42fjMOXbMAzDMAzDMAqETTsxDMMwDMMwjAJhyrdhGIZhGIZhFAhTvg3DMAzDMAyjQJjybRiGYRiGYRgFwpRvwzAMwzAMwygQpnwbhmEYhmEYRoEw5dswDMMwDMMwCoQp34ZhGIZhGIZRIEz5NgzDMAzDMIwC8f8BkEuRNmqx4rEAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 720x324 with 8 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# shift longitudes\n",
+    "du850_icon_cld_shift, lons_shift = fct.shiftgrid_copy(90., du850_icon_cld,\n",
+    "                                                      lons, start=False)\n",
+    "du850_icon_shift, _ = fct.shiftgrid_copy(90., du850_icon, lons, start=False)\n",
+    "\n",
+    "vlim = 3\n",
+    "vlim_diff = 1\n",
+    "\n",
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(2, 3, figsize=(10, 4.5),\n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "for i in range(ax.shape[0]):\n",
+    "    for k in range(ax.shape[1]):\n",
+    "        ax[i, k].coastlines(rasterized=True)\n",
+    "        ax[i, k].set_aspect('auto')\n",
+    "        ax[i, k].tick_params(labelsize=14)\n",
+    "        # extended North Atlantic region\n",
+    "        ax[i, k].set_extent([-70, 30, 30, 70], ccrs.PlateCarree())\n",
+    "        # set xticks and yticks for longitudes and latitudes\n",
+    "        # xaxis: longitudes\n",
+    "        ax[1, k].set_xticks([-60, -30, 0, 30], crs=ccrs.PlateCarree())\n",
+    "        lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                            degree_symbol='',\n",
+    "                                            dateline_direction_label=True)\n",
+    "        ax[1, k].xaxis.set_major_formatter(lon_formatter)\n",
+    "        del lon_formatter\n",
+    "    del k\n",
+    "    # yaxis: latitudes\n",
+    "    ax[i, 0].set_yticks([30, 50, 70], crs=ccrs.PlateCarree())\n",
+    "    lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "    ax[i, 0].yaxis.set_major_formatter(lat_formatter)\n",
+    "    del lat_formatter\n",
+    "del i\n",
+    "# ICON (locked clouds)\n",
+    "cf = ax[0, 0].pcolormesh(lons_shift, lats,\n",
+    "                         du850_icon_cld_shift[response_cld.index('total'), :, :],\n",
+    "                         vmin=-vlim, vmax=vlim, cmap=mymap2,\n",
+    "                         rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[1, 0].pcolormesh(lons_shift, lats,\n",
+    "                    du850_icon_cld_shift[response_cld.index('cloud'), :, :],\n",
+    "                    vmin=-vlim, vmax=vlim, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# ICON (locked clouds and locked water vapor)\n",
+    "ax[0, 1].pcolormesh(lons_shift, lats,\n",
+    "                    du850_icon_shift[response_cldvap.index('total'), :, :],\n",
+    "                    vmin=-vlim, vmax=vlim, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[1, 1].pcolormesh(lons_shift, lats,\n",
+    "                    du850_icon_shift[response_cldvap.index('cloud'), :, :],\n",
+    "                    vmin=-vlim, vmax=vlim, cmap=mymap2,\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "# difference\n",
+    "cf2 = ax[0, 2].pcolormesh(lons_shift, lats,\n",
+    "                          du850_icon_cld_shift[response_cld.index('total'), :, :] - \\\n",
+    "                          du850_icon_shift[response_cldvap.index('total'), :, :],\n",
+    "                          vmin=-vlim_diff, vmax=vlim_diff, cmap='RdBu_r',\n",
+    "                          rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[1, 2].pcolormesh(lons_shift, lats,\n",
+    "                    du850_icon_cld_shift[response_cld.index('cloud'), :, :] - \\\n",
+    "                    du850_icon_shift[response_cldvap.index('cloud'), :, :],\n",
+    "                    vmin=-vlim_diff, vmax=vlim_diff, cmap='RdBu_r',\n",
+    "                    rasterized=True, transform=ccrs.PlateCarree())\n",
+    "\n",
+    "ax[0, 0].set_title('a) locked clouds', fontsize=16)\n",
+    "ax[0, 1].set_title('b) locked clouds and\\nwater vapor', fontsize=16)\n",
+    "ax[0, 0].set_title('interactive\\nwater vapor', fontsize=16)\n",
+    "ax[0, 1].set_title('locked\\nwater vapor', fontsize=16)\n",
+    "ax[0, 2].set_title('interactive - locked', fontsize=16)#difference (a - b)', fontsize=16)\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# colorbar for response\n",
+    "fig.subplots_adjust(bottom=0.1)\n",
+    "cbar_ax = fig.add_axes([0.066, 0.0, 0.59, 0.027]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf, cax=cbar_ax, orientation='horizontal', extend='both')\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf\n",
+    "cbar_ax = fig.add_axes([0.69, 0.0, 0.277, 0.027]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf2, cax=cbar_ax, orientation='horizontal', extend='both')\n",
+    "cb.set_label('$\\Delta$u$_{850}$ [m s$^{-1}$]', fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf2\n",
+    "\n",
+    "for r, res in enumerate(['total', 'cloud']): # response_cldvap):\n",
+    "    ax[r, 0].text(-0.2, 0.5, res, va='bottom', ha='center',\n",
+    "                  rotation='vertical', rotation_mode='anchor',\n",
+    "                  fontsize=18, transform=ax[r, 0].transAxes)\n",
+    "del r, res\n",
+    "\n",
+    "fig.savefig('figure_S1.pdf', bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj\n",
+    "\n",
+    "del lons_shift, du850_icon_cld_shift, du850_icon_shift, vlim, vlim_diff"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/figure_S2.pdf b/pythonscripts/figure_S2.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..1b0c803427abeb88bd7949b91071a864c2341ddb
GIT binary patch
literal 84431
zcmY!laB<T$)HC5yU2{ia^)4<$1p|frq%1BQ8wLG<#Prl+1tSFmg&+m}kjjEo1%2nl
zlEj?+bOk#*uGG8~kU|S24Xza>?!hIAC8-J~5KV6Rc_j+Q5OzRfNl9u^o`NZe%cUPs
zl%E`&TA~oGpdaAkrl22^T2Z2)@0pvJp6UdpouRa+Lac&*a7JQEW?s628AN-8e^ORz
za*2XDh>PSLLjxrDIOgT$mlP{RgY-M+=ar=9l@u#jf^=}{yBFn`7ASzc=^U(}?~+=U
znVcHr?xdg}te_uKl$cjskXV$Oms|<+IYhmk9hbguYD#9JQ+|a)v;xR76H7BaOH(r=
zQw38qb3Joob5oFY0U+Hau)qsSEzU13N=_|S00mbN7c?|M0gU8!kjp?p3UZWNW==_J
zk%GQkPGU)_OKNg{N~(gsPikIzNrr+UD3XFe8jDMcQWJBzD&`!G^!0!2A+Yy%_?L-0
zP5%BZWZ`X|kR~y$^GM<iXERO#kp%Hg*7fzP3m>h^+y2(VLsErBZ|duvr@zL9Znvyl
zW3f}c$L7#`{ZEtsaMnL>nOyv1?|O+C+t5?eueJ(GtqXhMCGEX-i&PI!yiLf}*wPv%
z#(NL?KCcRD(mMW-Z>go}DT{*YuCTQ#Pq&tab`}J->(37C2{rt*s!g16-r++QQ4%(M
zmjCwr$hVA+nLmHh&FHWEf+{+fix;u92!7Q{^MCTAY4UmfC;bl&MLbq9Ru`Q6WB26Z
zQkBj*DQ~w_YKaB;$=ZnjX}|X1NZCREsU=sQheh1f+_OIZ>dO|H`iCvrMmtx_Y~A*4
zOPf{Vz0D>w!`&zS{o$h4|0E}9@8X3$#e(;pn_JeTs(7<rJQFmtA;wH$!kgShmsRBV
zG1Y}Ao|Lf-^eEjV)snZecv5~?Nwvw|zguE2f8&#V_hFjU?wv>T=j+@ts;vE4ZCS0n
z-F@=wiuY|ys!bbt4{ANMNqu|9rFarEYuar;UlVmtjbn1B`S$77bW97~cS?Kzi>2Iu
zR_rx!^x=2BV8s)%Bfn_L%5!I*9ukcT-l^F6FywZ`el>MYr^7Wa8O|+7GMuNl=t~tF
zE#jRN<RBNTuUo8;=<Vt9EKWgj)1SA8{@)LLX6?an?7Yc?^?bY&oC0;X@=u+;^1$||
zHKwup*Z-drcjVevE33}hE9ZG`MNa0Dq&d5qB&MC!IJQcn^1Pm=Q$Ba1QfcmL@2(4~
z!Rq1fCQT@K@}&IbB+s&0_ol8}v)<clnWnSP$GNdVTo2mv6<uEoOiBp(;_2&Bw5&yB
z?cKi-R`VKT${H4U9em8XZoZ$ujGrZwHV69t4`8)j_EMY8`%ugLQUN=S9aFVLRx(X2
zo%lXnfAvf4opE>c<L5QL55NCC_pfK&ggFm=6h3Oto*W{Q{Ql;zqt(0pUY?0u{ayTS
zh5Kj!%JZ)LA60c+KYsWl`B~a{&&hjS)54hgBRnR3XgHlDc|RrQVjEM}BeT_!De_Li
z0ZI2bAMP|fmew(8Zt2$4OiR6{+-SFF`?l#MvLx;P`rjo-;KGDkISo}`(x(5b-w`E$
z^?!7c!TVSL@8rJH3vNC={rXpC%gFW1&cA-j^X0*(l=J`2^V)=Z>$N6^Y%kq-xF=~%
z*F^hE|D7d{#6`+67_GmSw{RZA4qq1M?;4HYLKxT^Lp<9yL>`Y3*?Ds1Ed%2nhj*-y
z$|{;zJlUAP*k(t1LuW06p-4n;xWg6QznO7UzTe)lB3$|Pffon&E=pRym_aczCbGF@
z&E4R}hQJ%|>O~4x7|9!p9>`j8z-YsZ35?9%>+dgNczQLEEl(`}_0iYHJ7=AnR{q|q
zpm^*1m<cHwvnI#51imp)KdEu---Vb78}F2yVVybq?F?=s(}LP!#y6X48|QY`Hp~sm
z%5u9f*|Dv6YFqlz?zhep__W-s7|(r}?08E?aIgLvj*Z#;UQAX!5+bZ2NfDw-w-)GJ
zF+Nmx=!5mEx+^^wgxYtXlRS9fOuD(b>Zby;vrix9EU|G}yGg-uXH5~`-3<#Srxx>U
z)H?e2gy*h;87KDDOqyrWd2QaJc>*k9d<Uyl8lAuXoYih&d1FnIl-JkO3z>_K__<Z`
zTUM@MPi^&hu%VKHPfTjx(u@n*KRh3X*!3OxoVC5Ti~oJBeTcDC#*KMzOe8JDuU|Rf
zlKeg9fr?LLbw4Y+=4(S^M)3f<8Q;Fg8Z-WQdA6BzZ|#O3wF$cp-EKa4;w|GP#h9GH
z8wGk3c&44TkY0L1{+G{$OS`@{u6dzqt=2T<@2dAL7Y@X2^mWgXTd+8&?^WzeiF1On
zd*2@@xM6doPC?lDwjj^-d%X)bXC0|8sk2vL$Pkd2)WFeds^G-i>0rzHMwOX;{ii@-
z2X8JptNlVAt16>8^yWQ3{nGfSU9`{Pi4R$=jMn^P&nTTe7gS3^3u$P52`;=rrM#hu
zu?a{T#5Ms{Bp?Q%qTj*-rPw#^+0A>vfWxJF*$%-U77gD!gC_pHEfB4@qxzEYbISuK
z?D*YZ9MMg2ez>f{({iC*ph;A|)i#gf{d-c3#YO)b->GeV`>Y|w#Pf;b#ivD2BQ>k+
zrr(mT1Gx&-(I%i8hZy&nTcWtn_v~)o0}4DW7v^c&Fg^Hh7r1Iey|lEFQ?mU_KdXa$
zqIVu`kjN<C5%qCt;EdW=GleDv6x+H)7^_;fEQ$Yh+Tiev8z;8C-yZf({GPOoBo=3Z
z+9t#}%LLU~#+yt+4FWc7VGwGY_KfS9+cYlCwipMyj;W_vg-<hX=4mjA$mH{J<qMZ$
zSn9&_1dGL>HVrWro1$54Y8no)c-b;H6pK?cGWpV;HbjaYb71q3oRi3~<lwC0gsP$)
zml#$)6o|s&1W*%;7$;bmqeO{q-)_MJ1{}`S%Mw^VbGFqMt(^1sc7uK91!pV29h_!7
z=P$lJbgt3d@tv#w2EF_SF2!yY$)DfO9bFVQ^XU3zuCH25Jm;7PzVPezdd~d#3txrZ
zu2R`5EY1Tp^N4YtxhabCOnWzioW~4u-f2eRZzq=?`n{d=N5&FynG;W*9h|qRWP|T>
z_Ak$u_<nW@oUqE^LP=U}Va5}_Fh23P46pTFFU~u@XP@~>d=?fbnISa|@wKmv42@9T
z6ky56Y{>EEZ`V%;mF8T7_ct|S|J`q6TpD2*_3Tictnl#<lUU=K?sskP5tUBsdLOZ>
z^$K5(><Ya(t1H@K4qoKm*g02h&S^9A&MTrR9xj<F(RnX~y3AacKY8z4>}~$^+Y-;q
zxlxicsw9ibSOlF<CU9o$67!ANVk`PTc%D_)_uAup+9h`$UY;!f)%I|@UAy<*qu*BC
z>~z_se`3PrS>Bw!CO0pxKOu6?#%#%ia|(_@F-_U26W+d@zL;6az;L^cLs|HuIjWh*
zFa0;3_wgqq<L%&;SON#skR~R+49!p@%(dTIh*^=xx!P}`azp)rO0&sbd+Vi7TYF0B
z^r+e|(zg0`>Tq)Msbkq&HmV;IdlzKIyL@HO`mW{au?tQo8U^RaoQ+9Xwc$jb-^O1O
zH48tzdDgN%be_ba={}si22-tfwtxK<IA>ao%5LtaS5taV9Wrpg^xeV7clPqu#y|b~
zm06AfGoSTlPn+tVEgEc+K0_;-yXkA=0;{FJm@ohLS-#i)&KKJTEWQOb!-?^&kr8U{
zah>4Z$E+ye{C&<L_XYn7=JjoQb*J81&+1~%233vg#ygpXt3RIbnUc3BWry_{(fJQ0
z4T^tw&B!_8^TIDidCEGGhavMh`cB{5^KwCFwadB1^H?LVp5x78OrP|u>1~tV^Bz(2
zb0^ojJw5wn@pXZHndS1=E8D+$Jid20WZyZ<tLJuiab$8wUfr^9LXOBuzHECf-`nR-
z3v7IlBNg^S<{roH@N#u;iMsut3{-{f`S1P;tcf*W{8}VkJzOpOeB}$zm+@auE#^O3
zsQE&C<J&VT-{Y4DPg)sVo&G-a@A4hTfAdes3$w%$R>XEojE&JMry%c1(T*Iq_XodV
zT9@_jY~`F;SD*a5&GBZ<f<`f+31Su}j(GC~_7)wLuWb5g)wuul)6741_gb$sEm!(`
zU~8uI`{T1r12>o?X`ZqB_E$skc<|%<0xx!Y2&bhO6)8w|{N8F;e{Hsp<sY^snZ>^}
zJgWqBZ`_qCtBIW8cxkfKv^P)MOLaHw;_#gzovkEkxz)(@{PB4Yjpj)xJ6_dM@SMNH
zU$n==Sk5|Kw{pV6idEwJb$ffS8}+Z89?EL8jq_Q8^-Rv?8cG8D7pUy)+@0}Cqc82)
ztlO<^la#*SwVgBP%dY)%Tv+2cAL?8a>XWQGWu$J+>$M>3Da(w+z2903XPJ5J2)_I_
zcH{c{>1v60o^9A1WW;-}ut0zI89|lmyM~Fva_uv|zZ2{^vgc=Pj$q8rGdtBT_y5(n
z<smO}{dtV<%(WU1<ySrF6utiA|DSv3&)ZKhuic0lHKxQi8_Y~l3N&M5lMsV|3#Lp$
zX>DpK)eyM;JL7YvK_@vlSY;aH1T!Pk=F0+-3m6O7T<WD5H2p>Vu(*TR=79xjb!gj*
zsEd;8uG#GjIrlF&NB%jREsJ_$gY@ckjQr>L>RPVtd#S8B>x%n^4m~5+%6DruW?w4}
zIi(VF>dw!}hYGGdklD5W>aD_EM=nNx|981lb|w}F65CKPHb4z2+ey}w4jb?|SI=z{
zKhg7J@{`Xg>Qle}duwNOGOWR~lR-njbmpdIHVT<)oc}LAe3)eYwEV`rvu6%$b<r0-
zt$BW-_K`cTKR3<n-L=W;=&Hj8bEChknA6?nJ9*Y~EpN%~-181^?R-A1_6WbZ$qM$;
zUhhM^cduqda-A(G{cpY3{bsqTjri=4S69UQ#REm3{Z#Z{)c(@zQH_m;VobGxo0!m(
z;EN7@n`72~igWtLw_R$}A;&Dw=bP1SZj@H}>*a}`72r?V8S=v~@Xgx`#{1rQaoP%P
zdl>Pq)_T^)mr}DW-qgK!yLPH)U4~-aiE#DTstI?3)m(*A{I*5pbzhzLZlT7q;<jQ*
zg;zJb+Jc@Xg|DvXvCh}gzo~O#${B7Wx8=U`EGkaa_0IZIIrVwPU&frz#nxB?p4f(x
zkuh398|YcYqR6xRyY`pHm4~!H%=0_D^7H>}9b->Fv4m{H%*ICDicZCA2hKF=@2v5C
zVNzpmbo+zVO}PU99eQ`BpKeM&H0?lm$n^5P`mr}XYRlVK)up9WZ}vDlVd_+?uTCav
zHxvbJm5ok@=@d6F(Oet!be~3agWjvD+x)D1CoNDGd6+*%`Qb}ZuQJ~psnu7k7A)jA
zy-lyfYNpDfvc$rykJA*D=9ea$9{<tpr&M<Q@xL_&uLD&kT}o%aTd20!cUmm7<<81g
z8^W|KJM7{v9&343vZ^t8&-HCzgfk!P{1*R^-LCe3zr?Sd_w0|oi&4T7YQ(nfjEoIX
zGPY@;XWn50o;|NcKQ}Tw(%XOB(f{rL^|F^Z6B07K=bROkmKLn&Jb2#m$+75bJ+pqy
zJ{kLQw~eSA=k_M`K$f_+>YJQ;`4ZFrTAZo*5Eo@RS<2r?LHy>I4=yJXraQbi@J8xN
z;_OWIUu`Yt`#emgBmLsNFL<vO(D1)mx18H+%i34x-)`31@;2Mw;^y0x>Qns{=0$H}
zn%*1kBbF@r#pS8q(JzjxHn+}e`Lw8pZ`02eibAoA<}|9au`hP8-tc_e{Lb*!1*N6)
zxAiWR(v<c8Z)RfZsq{oxb<WL8JEDL5n^*n!5A(8+;Q3gBi`cd%dTnm%Z@r0Gk>|B#
ztKJ03p4^1<n`egTf6t$vvWZvdpU0;!F79e^&rWcxx%qLMm}H0K53%5n>uuj2Zh2+9
zqn+dFBc~aODsxO<@0h*(@zMRUPmQk~+|9c$X_`38HiOAuryiYoy6j+tlzO4xCh6qs
zE;-4uuV0E>6ZFwwR-F6RK=p)-sAlb^#XXi*eos1|C#^cFxBq=&?ZIV+iw?<zv-)31
z37BU4UTuM__?P=vd+&RibjL9nO-x9ftMcqzq~DLL+3v>!yOj*pmq<P_61+5LT@u$q
z&ZAb=Tw0>6(_a;zx@-48BR1L>OIQ)z2sS}$=LPKUbvERAZObaok?>cidS1E5)Z6=Q
zz1#{~6{GAYMG4L5IN;5*aZ3IpcQ;2{?)~DekBpC;7jJbu*RsT6&R0o+nH6of-11(O
z6`b31*to}%N&IM3!LrLUzs1~mGKXDV;9TyMk3CMiJVQhaL*^Iyd|b8ZeDC$frCW10
zU!M3zvA4zBQ&nwxU9i^wEt=6<FK)RCZ}521IN8_ap^m-tq@*(orUZUB*xL7{aMMKh
z(hDbV&au>;dGp=!w>~xe5o$97pK8v1Ze*vv@^g$|?Yqsg7oRLz8v1+A-+L3MeNx(b
zd*RiW;i`c%d#^5^u*2qm&-{=7nEMt)f`_<K`@yC}w~~#GQ8K1)zoXD$0}kf*b*=Ln
zHZp#mS5oEmuU>b8**n&^Jq;7v3^;6(cwQT*?y36yFm#D`fmz>ARY_MHjx6pw;vuZ=
z$z5}Q+_<~&&C*9NMSQzo3l?AAvZTa3P%C%u+!H?z)Xu*rAG%FtZj)T}s}{YBDxX}L
zif@D%oPTx9+q-}H+ne{~)9j3|V@V4{w}MSj3uoWJ-MKD?Jg@JI#5`blon1MPJ1F*B
zzVk_r35OIG>T51n75jF~o97{WH2=OQ6GNTr<?IdL80*-cd~(J9+0K(8BKt&F&7Kh;
zp7ii<2Fo6?5`87@Q|$NqQ+bNdeSff6V0wa@Ny3_ZPc`wYdyG>KbuR2X>^M6_qTE+R
zXPxL-;}dVg%r{wWR>-MP6@GM#!G-0f_=K|wi+eUsop7{BZUxsQ)~JN*FQo&!o3y7~
z<1ATp?Z~b(4^}__R%Y(3|LMVsT@|%Fue~=Mda<-xr)Hg#{FyI4*5#hcdp|4_7EI%3
z4VpQ3;#4c!q}uHc|L3P_|M-3K{O7;iq8c$;Si+Ckma!#jDec?qD0D!9gZcd)CI0}I
z3;#>1F8z;ReT8rD0Y9crG1sOqrdi$w?{*l8W(R1_m@@r9s6h<(t#^w~{WJ3PncH@`
zdOLITrjLcqmpp%eE39Hz{kMwkF8?JNr3g$Hni1PTL~pyh26-19HQ>1YTqH)p_*wen
z&wKpBU;f=bwZQ7G%@-aHP9xh?k7akvrlqtzk@>VVJf-96g!yiLE=L6JYc4#n?$gda
z(~iWP$m{g_xKP%9`ciYFv+FLb+U~yGtlQ00Tlu+yb4yj&i!<*6Z>Jo7U8eZbDp;(&
zK<B?R>!vBCr!=Rq<T~EJq5L9W%tr7I+vaCQn|J!;eck^qntR@LtLTln><*mMiti<`
zF&sI}d5hu5om=<BG&STycXfFlTKg$R-8x{~g;gbc%o`-xB`gyTPg=`&JtLptupR%G
zMQ%sGi7r^7qww$C&9sB}3{QG&P=CheXIp4>bYg+0#W5y_uC<Ruc72q+@kn2MUB|2s
zoTXN&zIzVMyY=X}(`1hKL4`~ol%(@wWnH)C_&?{|Vy`vHIBAL8k&B!YuS_~8C^DVx
z>jkObJ31xT_a1pRZ{J<}LzeSj{}vb9(fj~Q)DYWdHZ(&mN?a%GEM+m|aV`#R6sl;j
zdL?P^zWMKR?#w;+9DY@_RCL&K9xjSK+Io@K{@%7TCVTpf?(}|5J@#Y8MhCwO>=H`C
z;fp=LzU?v&dHL{a(z?ZqV)U()gw9NQyxKvz#%j}X=jhur>#Ww-zfpWI{9jA!d0rx;
z-l}&FKZE2yUg^IX_-fX|el6{6xvX3JId&^e*;X6lmpW%xHT#xB>DuAHYnfL(x5Coh
zHY2wAZHC%|G&b5EU=Xmugi)wXOpWVV8XI_=Zr{qzolbh<9y~`*fyU~#sLpBXh;}k@
zoYE8_ury6AO~BKFS!p^O!^th8PqBnMu`N=x`VXsHrU``UiTmiVpJBQ<t$<5u9vj2_
zTAr;~EG4!<XJ}@KQg66U@D@6(z~lUVj+6Tbcea{&CA+-d?_aCvySZWcMhCWXb(WP|
zS%ojM>gRgz;<k(CJa??(g;}1d&=Z!@hOi}%Go}R9?mU_~wd7-lS+O?vT4C8VzN#sU
zB^L--iQap==t<GCcjtb(7krKX>b~*aoU=y`q&($oN&Bk#u4cAuVC>zL`b)`q*RtzH
zzpdJ^WzEv3Ew|6b8ZTgZw^HWqU)GhyRxMb3N^D!q*a)>yG!5Kcc+`OBwJEFkhq*td
zn)Da1KXrRQuY<K{q7;k6sy!)QJ7Zo=3f*+*iF^Ai5#OJ73CsTQeVy?5h1^ZWUBTC;
zRZDQ3K4P=9FT!_P^$ylXeIDP=ovok0bG*=ITWlcQxa;VBdxy;`2AKsPf+u9JjY{g|
zv(XWY*sOhKt(0cSiO?Ervz_d$MTMI$ESH%jvi(leht!S~_pFWUPp4{r+WnPNqDAys
zhrdW?>+?pwG^LN~%t_VXZYG6?>#q`&yyn@?9>j7fCr`-0#C6lFX6YN@$4%}1-EST|
z>A1h^;14s4nfjiU@vI94`o;h8oxgcv<0NMlkx#W-4|FK!Gzc#Af2%Bzs$k;!{oTwU
zJGIcR_Y7`|GPSG1jrNF7yqVQ@_P=E8O)W0A&`A0DZUt)1o)(`|7IR$=+Io5a?>mn_
zvnMB4VaszwH}nkAy1W6q1)U8!UfZ&AKRH+P*8KeGrKkVps?1s9WacC^WtPv$DeYFL
zCaux*m$mawYTwiTG%v+WRm)X>@&?uK7q~vwc0LpNe)sCM&CVv%Gc4=4jkQ)u%U<?2
zn^mACylcUo!^XdOb4!@R+T}JzD_mHTaDAIX(Q$qWo`W-myOnsneA)i5E&3jG=e?~=
z{-Ta4B_G!PeEQ||dEGsJwtX(U_Wtb3E?j2C<x=35^{J~Q@#v-#&P%ScnA$RDZ)I3_
zuj;3HhI@%*!yDnw$0kc<oc~|jar`xNdsomGEa{ZkmYfA@GIfQ|xFoRDsin==n7X-M
zTEXj1f&Z@R9acg{!S@o|+F9oD=(GiYWShA-!E}dPQ19F~i#O!Omo`4D3SRy7JG+*D
zSy`d&+0&BP+(mSo%-9U2r0@;!&T~=Zxn0~9^T1O@k@1}K)zIhvZf`ss@>Z)&qTYl5
z<)%=%*TG4poo_xZ^__mos8V#rQ~%rl19_P8{$DuZxMh3K+@xnh*Nz@iv3Y8uEUkWB
zN50?MUplSz*pc4HbM+(>=8G|!Mo&H4Xqjte?yzfu)b>@I@1+FrD7|tz%RX6e&hm@X
zJ1pm|Nbo9G+d4ry#_sAu=EA7GTsxDyC+8oLiClOf@q$m`wRpyBD^6~TJfYy(rg*M)
zarG3g-W8`RwM7r{PhKeawe9Kxwy8T?7p;6c>5uF!CIi-OJ*6*syc$<A9K5f!ymmjM
zN^fj1mdGTwA!dlykhS&S$;%As)L0y-(uw{YGvU>ydg)VcK^#gBA19`|ALoimVw&7%
zDWsoi|07eXF@nw1{Yy(%V#I^INlg6BI$q)PbmMp?-g1id_;F3(-ddlOMK<dNtqat}
z7qi=iNJq+5Ias@hMy~Tb9C0-)Hf!z%CYep=4wc%TS;g}7qI$Nbd_aiP-je_Gt8e}0
zX2{onjp;XYVw-S=Xp>x~{oZ__f%)&2t@;K*bu9&QtJW?1e%~xHij$N3w*En}=7~Mt
zJ_&DTBtKLQ@n37FqTIjB(^6n%fH{kQh7XT%&L!0kr%LV{&5PbMC+t;|pU0DzYs{n;
z^`ylez8HLtYxcj>cT}=c-DWZyy$;zfylGPc>oeA^Hs6ikt%!Ni(mwaph8KQ@i|(Yk
zN!9(o{pBB1wUI$G7T*!w3Nl6Qg1AoD2`Z&ribEYag*I@!+Iak8`Tv#TKfSi(Gw8Oj
zR}EezudcN0&h?Bh29<pCeO1GBZm4aWEL9{e=ICWOqr%T{_2TUdXSQE?y<^3y9i?eg
zFK3=Ub+rC-M!4~0+e4<W)Ia#X_%YvR%gPtg3)XW_sdd<DG1oJ|uy%b?<Kj7G^-6Oj
z9@t5`&(u^dOv>YW^Iei5ZD06~V~<(yGMZOn@g=eCA7f)9luWG~WZ9=;$aDHHS6u?b
z>rWr&$@yIQ{lCOBl$CW=&S{$`MTcEf>vSgE4$OXZ-7Rgwp%3d<pJ{#Xar=Z-NA?NV
zn3K~ErMu`nF+5^(r0M<bAChuE*PJ=Inf;jl&F_+7Z&q@ib~@H=yydV~-(js28xvkD
zt*WjFUUGP)%8kd}|Lu+zi#LhwQ_eV`|MU53<%)evTyNQ?-QE(-KP}UJs>rnFx0&Zo
zKk<I86Mp>hPlcQJM6I2&!W$MDlpm|q>odwtb;(XlZ(efj=(lG#`j@iAzBrb;#DeMP
zOszxAUbD{REK>M);-%tpBY|b>UV5o-4-_qbbuwo2&OLKIjiSH1cAXVD_xjMxujMn0
zR-d)5oF=@~&-I67^)?pXxsPAn%%0imw%ziewrY)8Syj=ey|W_uPp<Uv5WT#M%Wv@s
z5$_w*e$48cb?M6K5BH~km#qKKX#A*#5lf^H+Ym%=lp31_8w6}HU=muktPRWHxz3qJ
z9cAtb(`59VxswfYlX8|Mq$RPXL@F36?7GBI^h0PO7Pk=FJ~TE&%?74H-bK!apgER;
z#&a|F*Ul^1l=W`^+7@-~4Z03adis%<yz8#0-d=k6Nx1xX)s0Se{cmTT2|D^+Y_rID
z-SzJ01-I*Ru>=a+{xDJ(Rl0Ki$_uNC#OZd->jnHY#VXh*GqA0H7+*2Pulazrw9!4m
z$rGgnR1VJa?)LSVV(a-w`{~yuQ%y?h)U=C#Ru`=l$y$7pLsTJR=MDBH+M04I!nU0r
zn~L_DhjrYW5I*U6x~iI_z+JVCzFQ7FzB6@8%gh;0tj{7Eu9j@x^-IPl;_-%-k6MXh
zSDSt3nXYU}+tQbua=7CAA)n6Hw!=aJvumevuA1I|`3|S@GI!syw}&=Go4r?bS^U#j
zXUf6j8Y+zKe#t6amo_vAHd^l8(6#p&x24#Dj?}rcba-+zRCibPwH~-IXY<m;W7p?h
z|NM{LHM)8+mRKOR?TQu&#%5ar3>prLIO{P;O<{V2#b9FFVur?O&Hw(>yex`5&hJAW
z3Vo8aTiJef-i?3jUmMJFbo$|_Wc|^AW6kGJW*3frxVY%B`9HI(tCOed$nUBO3gdq{
zp?%LM(SS^Yz$2}ZKC;e<=VqKbG0kYZ^uukw&1-U|hOBKavti@kwmfw;N8QTY#8)~W
zc@Blf?KsYBKf!x#`QFfd^-jSC)3Nx4*oG7Okb-HD<+{5LJg;lHVig+7&dzzxy0Y%w
z{kAFbT+Um<x@Pr>P0jq7su-#}S#SSa&)iPwPv1{+bqY@kSG~2AXJWulo7Ry1>8JPX
zyEaEq!Fwv#<jIqct8)M2nSM`C=6Q0qeZO+KZB;^OPm2)aX%XSY*^ySe56|lTW3!CW
z{*hqOx`^#E$)X;-y9#fKzIXmyc|uAdZN{`NuGp|nu{y_(3*6V%evb%=P`LP3#<QTO
zH(+8zS>r7a9?Q*QyI1J{ikvcov*c~J(z`_mggnp8Ns6`l#cx-lvtqy5<J0T=yncCT
zXZzeLU+kHAMrrc8>8|<a`L(t?96sxvs*gLX;23;OBeUkhs=3J;vm{en%VlQqm>idB
zKO=0@ZY(tAORYv-ytmpejfwVrybJ5&<reqMVasPMzBqqd7qj@sn~CdX5?U`Eo%N*F
zK})zQ;n)A`KPvzIVV2p}5P~IYh;BQYp!TzM11%>pJ93<UE?VVOeEI#x(-Xh{f5~-<
zvANAz!AiF<;F!O_H0^tzPK0iG_<p9u!SaI(@1H7_7PAx(^|&Mv;=3YtkKA7NGMO}{
z&r3{onk8Q|+b46GR~1(H9J~3pRMM2C`g*p1T7Z$Zc;U$-tih!>PRu;)zpRJ*ZOnPz
z6FUX3rAjQBJ@r^mi?Xj`kjKJTYAcN$C$KDD9k{qx=4jo^)5>!bLzT05e#dy<zFsVR
zPRhhuY_*N$QupvVr%xW`)@J{^=j;L35UJHR0zw7*Z#(~;^X7^9y-PbcAN}$pu6WZP
z1JQ_&&$dcW@ZI{uT>sGz+sChe{$XCRG+GQx021AfG)K*+z7u@;oD>C`zt34DZm{q(
zbN}azn3sRImwov8sOgKhqVw{@%(Cu}+}zvFy{Oo5(vWWtw~<<0@8|hFuT}auUy0@(
z+_lB}-B}$&bsb^lgzPDIX1k00csPUGvFXjH!{QPyOR{I=o6awtTvxaIa_p6*rQa_r
zbIm!?7r-N3z<T4dE#DoXbMI%V?GMqEoNY0MKSX@urkk9tE0!ir4-U=fc@$>*zB}&i
zPsW4atbb$r*@D>irI8_OPslXjG_SKE$L@44u@xdrjVbfO_Llz7&b?rrDEQwg;=~k=
z%9SV2X}<Kfv-08Jrni5i68G9t)i<YRDa_M;zi{TJjTdh`N+^(0i)#=wPk52pD`i^p
zuxXjzRHw$Hsvl<7lvcmk=Py~2g|;NdX8r^}#z+6_4!_fVvT)MpQ}d*MO3!)w!FqGv
zL-njOrHe(PMprhQ9GBn_c9pZKbX`{PX!Eu5t0qEM(zyMmF|PBo@8M%eP>PFec(cyM
z()&{1()sy&j(_KOU<lrV88pVo`N=7<I2F8{UEd`&D>1AzI5DqSLEkweu_&M@Ke<@J
z7?gH`xb$7~lJmg})opCJ^j$L3(o#Xo$WuY9(2b20^ot7;lT#H;3>5Ui>&tUe(@LPs
zqRjM+5(N_r1^uejqI?DY{Jc~J{gU#01^tqYqSRCc{j~hjA};;3%(7Gk{o>3D1^wdG
zveY~UQ*#CVyv)2*1v66xeMbc|O9g#b1#@EseNP2*GX;Gg1$|!yeLn?#e+B&j1q&ku
z{UFF1cP<Na1^sXZOLGPNL<RjM1^r|N{S*a#kVOjm=?eN83i_D}h6WZ2`Z)@Qh6W1y
zc?$aZ3i<^KhK42z`b7%*#R~c*3i_oAv0TvQ>~ODxR>`|%78RF(f=9tXK_3)wPLL(@
zx`qZuh6=hSX2uGJ=9VT3hDOH5pat_FB`&GO$wiq3CHX}P#-M5@hzqRKH?gEB6TIAB
z&%glGVK7iIfU{y1^nDVcHW`_kD(L$q=B9!c^ur>FOFy_YsRX=x0kns~7`C7vWTAq7
zcxFmTMzMl1sD=hFsfRAp1ltc=A>>$`oSIjnU}<Ct+5u7Ek(vpLDg%%$5E)$~V>9qt
z{q$l5V<U*GiSRGFQx)_*OA>Q3lO6NYb5a!yxb%G!E5Hs^Ff=wXQqT`BNzDxdg(t`(
zkWfVmGW`g+!w}muz#aqnBU-`Cz<?T<i(GSz4J{N*3=9=a%nTGPj4c$*jLo<#O$`*x
zEesTl%uN-HEe*if)Bqw6Qg3W#r~syo%|Yt%VJ<UcGqAj|vAF^WgY1A|Q)5E~LjzC%
zSePi7S(qu9Sz0KVn;R&Y85=2>nwu(^gRrTQf{~>umyxBZf|;qAf~l#wf`yr}g1L!>
zg1Lpcf|-Faga*kQn<|(Y8Y-9@8!4Dsm?&6USSpxVK*T^a*fYlFTp$|c2#}{h*v!ya
z!OYlH!PFFFH%Psyg0ZO)Sj^1WM8U}10*p<~Ey1*<xrqWu+|1C33#1Q(O$-ecOpOc`
zj4eU>OcYEljT9^lEx<I0ZE9o+4+v18fb0iH8YqAa3_t<O1+vrB&;k-DAcw&)IHiGY
zF)&atGynw=IM__#X$Kr1AnPEQ%hb|90i+uoz6geqp@Iq62qR;#R<NrKA<+p+1|XLq
zV`F1;E|6{z1{-B!Zm3{pXar6xpmYEh1j&Lh$WI_sKp4b_nFMm2seu6(NE~K>rJ1Dy
z41*E^D88^^a9CS{5+*2I;TW7AKxqPo!D$7WCP3)|8H3yf<{KM<(*`JgfG{Ynm>HOI
znHd`>fYSgd9iU-L3nNInFodKFGbjy96EGSSC}zecTwvPJ2pmW-HpqT3+ZdW|pfo65
zfMOLy$AYRlP?-R(vp@{cvU5jJtpwic<*EQ)?;QlHLQFtI7eSzE#01n|4g%FCCZOJG
z5U5fy0ri-IKy`}=xB%tS4^S`xm)xLg#spM<f@>QSaOJ3=AEE$WvK9oYcuYYhc@U`b
zF@@TZq+klRgG)bI!4zsoih?QBj#LFxupJ8eX`ng}>{4)LXbQCkR6i=1LTyS{0MC5}
zap`9$m_cpIQ~*yz1%YZbGq6pdO3e&v6RZve8=S9T2DJ=S4V!_z#HC-LU<S1dQF)s|
zEd+}|>TvLoT@a{_G>6(;tY8lIBNw#JHiy~{s>aQs_Cs0*=1||3fGTgWQy{g!IoJu1
z27x))5nTGE3g%GD!7T=GOAe(DLtgJ}r~q!xAj^X+hR41kWG|c}qIyB>=F?A3Q~)=4
z^&O31$_!!kD5f&d5LPN=cOb|&P%9915-4Ob1VR3T3hH|rDj0&pOF`e$&_KZm8j7BV
zh6+Y-aU%sIXefFb8Y>uqJOfIxh9(L|AX|gD^gRtt6^uZZfyK=fj6imP+2#sH;4lQ4
zZ=qlW4Mk5wO9f+4a~Pz?NWl<nJeR(w5va%n?HW|j_XHKYFeexpDHwy*fW(azjA2eN
zGEp!FJ3&F;(^$a}EX<|vX`)~V6E#&Zgt^O1!4T#wa|J_~t1J`@VUDs?FoL)V5rE*p
zfd!URW=U~CYLRn(Zb5z?sF`A+pzoZYlV21JZfYX7Hgf4h_7Mgo7UdR0q7kI5Siu;q
zp)@xSwAoWXpeQvZGa1wd12^~;^sy|J=hBBZH7pI`yAmy+u>@~zf%kI4QVDFoCZxfo
zfIQ5pF)=x2TaF|%GqW%=^I?O966TtkygQUL95>cvW=a;g2TWyRcz2R@HmKA>U5*2`
z5)=+51|Ufg3mj=62B=7*ZqOJQD4+)p7q-Arz!o^rG=myAu!b{w;25CxwBBBE<ZUou
zU~yE?aMX^{V#wt<z%pCyY)?~lPM&;n&WG*E-x#i`=m;HBQlymFXn)<bnwk4kgi4F6
z6IF;uHSepxv57s|=)uw5vVn4<=H5B1NdXkVpm;YjH-n`G3sB|+i4mU`+=~(`apn_4
zq<msvNMd5Jut4M#aEYLR=$C+V3eLm;E_tB|zhchYnDUq@$FJ4hyW6_7e91};Ume3P
zQE4|J({FJ?kKJ<&%X-b#439+=B`0+n&Z-bj&dFHE)_bh2V-b^-D7To4CKK1CM8|3W
zYU*`TBg>|XKis|legE%2rp3?B%qhM%_xqWd#-G<U{1;%6&aPaV5EK>@G-v%9HK|>*
z7tEcxX49TMHrA?<7fl!&LQhZmqo%z|dQ;w=uQ$$hKbxs~$!lq2W;Da@Gf$j$xgS-K
z%=4CeK7A*D*hak#hTHCl-M-Ku6tsHIx$=p5RmHb2tGAwAWzTTHduG@>;Z~)|*BS2A
zpDplndcCfg;fcGZm&&>0t-rmQzcDsk<Xatd+c7AIU0`vV=k-oizJGBH2Cvp@O`0gw
zki5$*^Vs~j(2z+_!WQo2G59KfIo0sxb5EmLD(ff3Jbzr*qjJ(Dw&`2J%2e4yK}IG$
zDTVi>uc{<|I_CK{TkF*sr}KLEjyc7zPtOZ@rYWcIxgz(Ibb7>xKg)F9Mg~6S`I&4p
zA@qvW56yeYdYj%f2w6^;ab1*Ay#EV})4ZvwbNW}^&wuB?;ruG^PkoL*yS^Udx60h$
zW&QPq)fHZj_wl}l`Px0QA5FsR-n*Lc#O-H%vtw4>)qCL+tJ)7d>|{{-t#EazVcCqO
zPdM~zLZ6=XFH<_dYFDfAzf*0O6E<(+s_bvr``KiE|IthO$$MY(s!z|V>|@qva(LM4
z{aj9<;kv?M&3&)dPye&~fHymzUFfHunQXiJ<=%W}U%8{erl4WXx$_!t-(^Qc7jL{a
z!Kn5A8>N$bN+v~ze%1{4bel5iPfEkYuG3%iWM6;#toSlCK9iwAA!0@LhNdUW{TQm$
zCO%>O)UK?(F!dZ)%l)I9I3!B{WKZ2Xb?fonc?K(cVv?t|i(lT{bt*2tW#xWmhB<a`
z->FJSr{D2C8z^?<sC%{b&fPl;TBaUia`-W4=l^@}=7zmW`gh~?#P5=mTRu6OFTTGe
z`)|T=M}`?i923H>acw=t$`*GiskJ6VfA+;|Ucx`_pI!Ut{w9$bGjpdTiP>2HWf6Fg
z`CD<pSs?}ipSWvbIuTE{#0Nxp{!W;^@y_X0N3XNTG5pm}J}$pe(rsIuQM$A+_xG~A
zmz*ax-O7^l#eP~adlWOVGMuP>*|Z|ha~*s2&iH#3wzAsamoqrE==-czKPR1kv+PBC
z%J#0RsvC7CpW`y#9o^9-`ubgkM4XlAH-$RC+4nXV9zDoyUd7P1w8A!OH)mC1IwM1{
z{9Pr>L|xDHuVKcXz88PEx6OO@<EM2$``ahCUu<bQ`8?CUUtd(>w9GSxA3IkScPD!L
ztFM`7eI_mU#-#jmx2-Fb3ldKG#~I8qxXk7t$bWo-O22;0j_Q){f@}uz)-R(k{T1b5
zWZ3apa<gZi+REC_Rs9d8y-wcARN<esUhOA8!@ZZ684j#fNIAYcjX_1l-!=Gd<<2~R
zSuTqhb#tbQ`6|!P6lbrsE84$w*85E64X>|XQr=|GuzKQbNp|J`SD(x<Fk-o2>6rbX
zcBZt)r@E9MrjwqiFdR5=hSfp8F7E8Li4V>Bb+@g3`R&=<H@#&C+;^Ul(_w5_+4wi^
zvhp%UQx&yS*VsP3es-*!-7I~(v3!ZLk>XP&h8cRl(l0Dbo+@yR&2@VhkA6kXT8G~P
z-!8sp{+zJy<&`-P?>{M-U*S1ZOoEG{fLGg7$3SwS_m_#*_dUEjdls|(<@+6}w`Wa!
z;NJ;nyR@q#C;AyZ;GVR+K5Emch1*JFixeWI_P5r2`Mu<<wSM~lEuVCA7xO&gx%#;1
zdB%e9rz`*b`M64Kao_v=(yNz}6W&EyZqO=`u5a^obJ3o}lhLK<{4V~JX^YFHZOQ*1
zIrKLj|7y8x`UJ^8KB1YPFK)Nw-om52CvxE)qsxL5-dV9f*!r_C)*^8I1C=7Kgnx!7
zkFq!MmQQZ0`YG*X(X6hY!_M&IPqokU9N)HiDwEkGR_dl-=B_urU^MAY%@ae`@cR$e
zXdSY@H2=&s%eC$I)+sEGQP`s9c`Wv!fOhPjM-Mjtj8Hnyz`z!Nce?$Wc^T8c#+qcL
zOVplo`kirTiS_gPwJRlg9+kuvRkquFf9(DL_RdIa{<psi|FFl#xmNSWJXhvqI3by;
z-gf`R0{_BO?LupF5An}oV|cMG>H3{su7A<T`;|QR6;I-Mc3OV6t{HpI=aUy17^L6c
z%Dnhk&C~d8ZV<x;HP3&pn|z)t7;~NI;Oh+vwbzlaIo;&8KYOj$P4Dv6l9qOczaw-!
zXT46EbnlV-s!2yy&ieN2UF7L0Z`cl0{#~kktT$+7@*A=6HlFMdd4?OGC(g@M?2&Vx
zWKt+;9U|VpcW22RQ-(`{&ij)4vdn&jKbw@oy}<PSghkJGamD(zrL*7Y?svZ;u(ULE
zrQ5m1-hb|eFKd6SEjF!CdE3*a>U;KhsOe8(oRq%$iF@5&1=V7csA7p`m&l}zAGymt
zw?C@)D{&G}t9yB&fS>oym1IxLpU%#I&GT9t7Zw);x^MsTCu7naD`WL}HHE*U-if|r
z3M&+y%FD~7(4g}ElRLwQ^sbD**@XqO*NOQXEql0B@rN<P@#eJ*mmVfh;`jXI%zxlv
z@4TP`GbgVSWB)7RS!Ap4?p&~MYV^m-!?LdymQGt|{=oO2?xO$e?`$qJ|NeJ_xyhX8
zC)T$-esb@})7Qu4zc4fG_~`O4%dqRs^AgV{rF!*~&R+5pZ(VP!e^wo3J1@ney5q$=
zi}@<w_2-!u>3sjShk1*QyPlPd58G-99p<#{7wlWOm_^^s*fvc?IQ(blwS9cc?)hw4
zwV%OqUSGBUnIv<~>bc$hS-b03{rJ5-@z2Zaub*=kaQjHy^sp_9XAn3T%I6!A%s=UG
zmX=WG%^QWXZ`S3DZRb+CZfAdUMZd9MyIa1m=I*k|o*T7VbAHX}x{~zPo5Ad@^pnf&
z(^OV78Ju3v<#lqh>Q2_hN4}WU#s{X0XP8&c*JoMn=v=?<o}b%?2^OkrCQa+U9-+>3
zl8K+;K<9$6Yx&z7pIn$cAz-gIFT(*#vpuuFiJ2E^F(gEp<=58T_q3ia)zh?2M|AxL
zzla)lwH*u&XB<SAGS3&QzZhVCa%!*DZM$=t0dEcUJ}X5^6q@|FwaSXe`S_|(wpy|B
zY3xU}bJi7~;!>}8zf)X6b22l-tz*Uk@ea!lZHnG?pD{A+TCq06hSXd73-1^uzG!Hf
zaO=id9`+k<p)z8Je@wc6&&d0&#yKtqjvuCXg2Qi5nRb63BhP1>Mp5(kdlXKlceCzw
z+#2w5{qj<W$}?MDZF+M`lA&!+iHGTeM5adnkiZ?&Kc&x`%JAZr`ySN~dlswDntkdY
zlily?D>_dty%@_wvr4C=?TX?}zkgBv&BN=FwX3^k2hC+Tkjfj)(BS{5(wO1+{uzo4
z*F0}K?`6DUl6U=$P2~2?V)wl3Ox9mLw&TF|&3#@B)|)z1-oKW6+g|@-vZ-zDy<lku
zwqT{xY#|qw{xBxyJ!4@w@O_Cs!~7|o3<k|6SuLu+6nQKs#4m_YSC>?4pU9YEWv<GQ
zFmd_)-EZxu?PNLhL;HK!l|6ph-x$;9e_bP#zE$^&r+UJvLWTmho10FmT{(2&+`lHJ
zw+(Bvl2adQTs{2S?QdeoNi#8-Gy6=#b;A>;y>9uvwXd3Krum7C(}oNc>fb`mRDV6(
z)8@X3vEpC1&YX+2x3pqk=S57occ14(Ldb`$R<GXPQ(1A-zVE;BRGX(<4~*BTY3rK0
zXJ}2E_*>rXh`f?{%sKVu(mgTP+|R%MeYPP?(NX)l+Nxlg&q@)m)vs;7Qu!>1li~0V
z-7*#F{m*kb4tt8_n|+jHVqku(_ws|*rQh)@jMAF6o|~$g5jppjTTo=`zArDnt*v>;
z$xx>5asF$H@-&f)61ECo?!Maek~Q_(`?XsNE8}+Dd%pLpe4gJ~eF-avb-l?qf_pte
zq@=@BJ5_o$ThqgtBuca071kzRTvl0fy}@K{*<-aWIa|%#S1+2hv;W_pqVsI}J?EbZ
z>b|{e{40CX64T<VFI2o|cAfLz{G7}2l>ha2^A2vG?Oe($>Obw~b;Un_J(+E5CcmDT
zqHXN{`gPI-1O1;`&;Gw<co@Zba^;=RpXccb<yzhgKW?!!KlV`k9wVRi9Y?>`3BT+V
z$URwWy5;<=6QX)YSO59-#75Emi_IVP$XN?)j4tyTSpM{?eo$qx;^pnLcE5F}#p_>K
zd&@mhs_x)}Gp%g%-<?@fx^hOP<-CbMpG0>p?@?TQ>#WtJ{l|BdTe9!(dNymvs;5?+
zkJ+>9&PKgkwz&Pxi}=#oPfgWIOe;U8d^lAq8zs3;eK|+NhMsC6mKkmn_ndg(=j(5N
z{LN**{Q4&|*D>6DkaxGkC~=a6qivDLq{P;nshcNHXAb+@W|-mUrdnQh#F{_CZtX+G
zFN=$3^-YLfwdLZ~^fHgRStpESYosRZ?3=q=dD)EfCpkBKZutB={&@a8CpCr_M~ZH<
zv1c$OFWS29{-xOGrDZSY$Ed%zdY_fNtSvLYdtp$C%3}FhmW9?f)BTwnu3g`vm(tr<
zP&v=+(<%?y<suAgrj#~CX0Bv?uqWJnzuGNZi{r7e=PwjgC|>PLTRVH#i4x7rlf2(X
z+}LHeQOf>L(Dr|Oc%MklQ4D+F^zYwER>sp)PN&bkH8bRQ^|!EC_Yc;$8oaOf`et^&
zat+>_|KgeWrB`p(sycsq^IT=_Q`d=)Vt&Ldt!@7-qwX8>`M~M9j9-$s{D==1wmZmg
zTCU(-vcrTypzEsqtk+kom0LGGG%6EQK9zQE;uTX<)8K@Er&U9z{*+$Iknm;Q4Uq+A
z9)8(xuJA5adyyEwe%g}FC;z)J%=;=;72C5Q*k+r<<A(M8tG`|2zVRT|TkuBgbAy<S
z-|IbUZ;Ew4H@(i5=oO#vg!|`0{-Y-rPWzM0u-fc;?5sUY7&xjoZ_{D9<Hdck)Y`Z8
zYW#JP=ufr@30s`^?Unl{RnRTAD1P0FeUBzAESvbMx!w88dx6G_;;X#(?mR4F(4}>K
zSyFAmdb3wwpWSx4rF~WH^1fEyPqWj$uhTjkbW^3H#QdM<trZ7<#hp5qc<JP=Pai^J
z7cQ1Mrm{+=$3N|{pTCO#FQ$UIf7idb5pQ*J)to7%d51d-H_rGU?OPafjKQ|Y)Z!a2
z!x!(X^_lDrcR#1hZ1=w{c<9CBiTgiXu3j;Lv7z9LLlkfG|FtoJQm>u3L(6||yUb>N
zyrui4;6BZ|hDz)1o6DutJvP~z7Jb{Yj-f&SWFUiqjoaC%pyMCgEKbC)$U7@J!CcDD
zhmj#7o@<tIWy<AsuAIX0H5-b)?$Y@xdZ2aB%@%3Z)$bS^9{jq+xKYsEIPuTDGd+i2
zop-L7Zs~h+Yu#62hRfzZ686vA@bN#}>686eSAF&@4D9E#xyh}t#xULYEE{`k)S(s0
z3Y9B7`6siqJhS1+V7Zf3TUR~r{LK%q3Jn_k=I}p0{!`8O+N#cs$_K|5E$c0qvTQ?A
z%I6i#3{jhB{O5cV%foYe=2e5m9u*(Xr%A6ayzyoCg(hRh{4n{;X1t%i&wjk^`RWC{
zo^tu!>u&BhPu>0PKV$xc@|8b%eT^4NuHV$vG&$cf=dZ}0`j7D@;!AA5iN4&E{QK03
zt{bvx$JwWzs@lF&(tAeuCZ}g9Umn^SZWoj0-#jy#G2^dSh{~;Bx0cCX-@%lZslak(
zRSoB7zT+{qBDzVB|N7*G|MF1O_17*mI%7B~aMQc~bkRv(Z=LsX&5@t^xMRg-W?qR6
zG6tXJ9^AUFtg?80rN@!it>=ZE7$tu8W~V;P)vmDgI-}j46nEgH#$#2M*XK5^b`@yh
zI&f;y5}z4H>-NTOi}kp(HTdkOsm1r_t}OFYeIFxwP;1MZS+j10CuyDjyE`K7=EloR
zn^%9o_ob`fgR}o!^O5c0=ha_W?aBXBvHPXIpIyKcv91q?+W5Ton>qiQK2=oxUfj(c
z`uop@+l0q-uU~1EGh5_U`RemO<ZDZ;l3s3Ecx>(as8e3Ic1=INCAaY8GtbCwbFWjP
z{_o~_Rqd^QveRnvtF-N^^IML_2d7%PtXF4KTUK|vcFyIJVvau1NlvqueCSr@HeX&f
zPiKw8^W6-a{35vO0?!9`-Flw#PdH%OjnIFU;m6<Zc4Y67fBUH>V_IV1M-4+}wogtB
z6R!O~7ued_et6%GAmz9<sx$U1G$`5p&HHZK{gXa(bZxy=rY>v!=F}=;p2D?%&yJGg
zc{l2hD}^Rjoj-T?+{4V&?M>E^eW$|yCtECzt8>iCzqcs%I;)kPggEoXX(zhH|Hdpz
zY=}L!%+6DF=Dd8#btil@J5H}Voc}a$x@z&xPiv-ac~KoQ&8Dl<I`*lEZgqIvdG;l?
zHrBt(PX(vg?i4QED_Pskx8-l|nF|YY70yped1MuMzmiLZeKxb-wt2}*3|{SemKtGk
zxACaT|9}0iQ`&SmUaYM2zfkn>px}0oNmYKuR}9`(%`>tp(Dtl)EN-N|Sf~2z_WQ18
zKeg={9;ILZz|W?7zrI4z^0JL^m`2%#^&NVw4Ljp+rqma|-1g3Y>Z?ObYSq=lw}-8L
zKYRDn^nDslxyQa<TC-)%ogTM;vm3-Z>L2r3mB`#UczMx<M@#oyQusY{qkEQH(X>N1
zGL0A>_$=P^;M2p-{v$Qcmn2M#R*5?(A6GfJV2VLuVZqjII_D<Nwz{EhbnZ@8+EJ<A
z|EwW@^spS8V*wg_1C0rqSQ;9_1`5GL^dLdv2MUASop6p5B9Et2G)@SeE(rEbEY4N{
zk7foTt!4m^8sZvXH$WRTjP)#gs=)K*{OjNGH}@7i5?~9Il6(_YY9-O4(Zcqo=G<qS
zxDOwH*6hmVxU1A(Zaq_GzW0~vRj<z-;kV#V64>B&eackkz^H1S^Oxqj39r80;I=Gr
z!|HdtN`7a44X|7Bu;J7O{a%LbltsHj{5Cji=Lwz_@T~ZC_05cx7E(25I-lz)g#BFL
zCUmnY&OcCy<ImZjJD(oWa!H<5IyKY(rP;<e@i%uQ-^mGo^vN&c7{B286zAxLB5rPi
zA1aa>RXHD4HyRq16oj!qyJaT%V(BcgEtAj1hEH|YJv;Tpmp{iRy)<XZusJd(A$R)9
z3zKB{FTeO^(sA#MX=M6yp1gpQeyM4bUhKTZz_>{zb@rsVO?#YgD)zqlv3gz`Q`^=l
z0aIVeZ!hOBh*W(Yd98tU-3PDv%Wf~fk*|2=(p}yClUQ!+#?1D(XY}@3sZ!PR#~Nab
z_nU2KU9l}+aP`*7XGLG^Q1RlvVry-4=%3b+X$+h$JYV^XPS@NKdvo69u$0HQ)oapI
z6qZ|MzK+pQJ#)<T%VNRF#%8|^w?)q?_O<a^t-ab~p2WH*>sF^`c`n_u%x}Y!u<*6z
zSJceZjkxn4g>sm6y8qj(%9$akeD^hD;i9Pv!_sO^4>vCPctT~X!aD!o2aitAzsY%h
z1<RD<UJOZk>s+sLT3%_g-TuNhx9Fu08^6EC=BA0<^3QH`K74&zUfA!(*)q1>m%g~X
zu=SBH(l)<%>3-Crd*UydL*30^E;nt>n$;GXY82APxP97!5YFP}Q>(US2FSKXv`$GZ
zF^&$rdFNHzqwXNz&L0M<p{ClsJ>{!e`lHu;xs)?+n(&-S5ge<2MqfM27gnuz=Fi%v
zXQuuXG}!Y>e_!iEm7n6Pzs@Pu*1Oc;q51QVu>JYT-m==OPQDeZHSn)fn0Btq;X!4G
zt9#ScBLPSL3U2f}ds)$$;nxF3?Z(BsC3h@Y{(fd>;<Nm<t}C@x$=wJs70atKyKQNx
zIY~Na_tUow$Cx#PQhD2^$md*^xl^^`Nlmh?@v0kdxSm{FfB&h0fLwG`Sl;oYKbVqL
zYduoAohv!+H7uRVt8gN|B-{OORXTU_+iC5ry1zx1sK&n6**UF$7pIy*)$hAA*G4Zm
z;%WF{o)6b@W~q<${0+Hs({+^eZ%^f&u)5;q|9aVa&&z9HZODpP$5A$aenZK=`SLOL
zX}9!(H$^`FY%|-kW18)3F1e=0<M(qtPSwxoe&Y4<l9~462fGWGJ}Va9aQpGG+rR!W
z-uU#duypQ}eIng#^&yQfS~HB-dVY4uekb@<_`k7B+By!q4_Q}#-THk=!&hVy*T&F`
zPF(MAuYLEfX3EQ53~lWnXO`S9;kglgd5-Wp?H6t~6Qac<PA<&ze%E2*<95(`<tipC
zVNO=tX%XyZ<&Gbt%@$QMMT$vZtF7Fi;a&b$gQIUx!<Nkz9G_#p<kxkl3H`mT&fd>n
zzfV|=FE%UV4wD7<)m3-Q1R^>bDo&h=zNGwp`>8AYmVMW8iPxwrbJAAreqyvkpd=%P
zdFkoN3rv{ebD5>np4!Zu&AaYp(I=+Yg-X}wC|#WJ`k}SJug)3zuT*|-o7v2;I#b-?
zQGQqzbGBXVkDrTm4xX95__Lndb%nW4W<S0<S<pXsj|7wUy3_Y{%{*&apH%Nz7{jT)
z_-JTOS?~!LmAJK5!m6xsUtVlu%swz#!B+C9QMCYfzRw&RDUTgf1Al*8#KN^nx3lNa
zF25zKxAc_9Pki!w?j(<5;rYkHZC^Z2Slb-*%*9GqSHq|B&&@RFfZaz|y_z!BJM2)8
z=%RDXc};c)4sEPSDz3b7f8#?vn^^Aj-hJ#|VU;fu+3s@HR*Gd*on6oxC}HupVU;J#
z_CCvP6U`&iy(CuelF^ct&_39-<ExCq&pipAryM(9OSJW**S{AjJpcWK&J5*$>jF&^
zc!UrCus-`m`S$Y{-abMHc?6xm=5D`swJpqvyYbo0#)#LS$|tNA56gYQx8=*x7nfe>
z*~$t_{Qi`bUSQmwv-#zT2cNzRe`RgSE&FLEESPZM{<AX%o!hfJu4lv+oXJ<*xx=>O
zYSsOeqdO%IUC%qI)nA>k`DKd3p`QoSANg@_xEzylA$)mW&-d-y8o!sWc>1B}G;4QS
zgJVPR?MT*%D~`4CUw?aA*W2cgz?lz4uUp0M{f^e(^WoR0xQgtnqIs!)&Y|wJe)HW<
z?w{44mS3ZOphq?9@uHXC&P1PxN&VimBYM&AWBOkucfZ-Ek+gcpd*uhc&yRmFY1z3q
zWZ!m)6pw4Wrd1l8^*``C;)Fxh0?)u4an_%o7T-HJ;b!HZqcaRR?oH6kpToXC#rhJX
zQMqrM@dB=cd%kf@ZF{P4L^G%NwC0Ox)o1tr&MAF#`X>*^v4YcA51bG?@M>0lmDbXO
z0k)H}<_BkAT+zjNXV&K@lNPG*mX}#)Dj$}pKmF==)#1bcMA~$29>|al{`qO!jFifG
zHO5JcTz<-0UiRbZsC@P{;t%`3gA&I;4T56GnYz#g3>Kg|7}PW{v@kXXNrTxiL8`YG
zFlQBspMQt0C_tTJ#?d}NZXHNWO^(=>BPq<x%xpO$aq=XgomDd>BqV0++p;BKNqxso
zX$J9~9PJ>#qXiAfLQrrRTYw}%EDO+51`vbzfT7)tEArX|=(-BjupxHF^=2byg98tX
z<Nbft*VI_rlb1K?u*iLSzSHeaJ^zQ9UN%!Jv_9T3et&YNrsS=4``Lf^sLq23hCEt%
zB)D_AkUv5|QfubUtKVNgz>q)^a8@-If0y?an<3V!`Vm3wYe3<R78xKPf<oTV1bl`Y
zm<fv@;$wqm&06Hhuv7pqY=SmxK}m+}X6@aBoQE9*SR5lIc(@KHYALWjxWn>m?&1u-
zzEvF0E^atq8+(1LW5RsfhSbdNu5Bwaa1n2AOKdjZu*fiO|NHW9T-Tnc1zi*q%?-pu
zOs$nU{)Sg4qsH$2Z=3Y<3BGws_%#qGdvp8md3zg0ZTsz0LhiU|-CDFr7a#G6Uy`%_
z1jo+KkS(sR(YT3!F9bxeoa<@<iV9FtF*bmoMQdq*v}}yH6*RQV!$_+pEU~UHA~p}l
zq(@A-zO8P*<`<(&fi4#~#9WfPr3~9|ESBh(P3GQ~Y@(*#xlwhR%h4whNjibay|E!z
zG)^f-bY#5YHPleh@OXdebag$?A)YhlXE;t4&wqaJJOBNAtKV$hx9R(>?6-~w?z8Ni
zyK~Kzh^VNTUq;&>g)X1Uts5=naq9GG@5%Gjr<!IkFiuKK>(_pjUXyE5T6J3gE3fy_
z(|?K%A1XRr#<0%bXsYPcZGMt{H~uVoA@tAtWTnj^uedFH_Sm%soxR3o{byoERZ4zV
zOltBheg=cW+KGp!atElfH~d@pwkp+f|9xqP2Ro-f75j9&Z*z3H2Xn)_c+nHNd!{;_
z6<+;R_3~Wp*>xNYOWW4}a{A3=zB@~1-QjcUOI19tyL~>8dctG2hmgPLz64d}MIPtO
zYx{fDPJUEMV!9c*?3SXU<@%<Scd-vc<2N7uyf=51>XjqM%}dwiJj<Q-s_9DClj8Wz
zZs+ejb2|0;#-b}OPVye78Ewi854@f5{PSFHUxq1C3>VF=RovELIl!m*|6k{tT}?;U
z>b<hv)M@=8;cVWS8)4m7Kk2TI`)|O`_UHRl>2F+#du^iT$;nUUYZsJm<mY~We1C3a
zi8gP>tdOIoFXq_w?J0leDrT**e)s!oX4Yk@q3hjld^-Jf(z;l!(+hqaIQ%{%_u#aR
zF9agp=ejOzd!P2-f}w+ZU-1qGhMHJy^MvhOdusy{Ud+4vQ<aA|b-$xsbFGKleCvIe
zJpUS+easBKJYl<0fV|6!2QMrp)wq3<o2t>7UdD1#`mxRG8@mc-?^>{7;-AIS)=4e8
z6S6c_(%X&Kh^0qtnsIkJ-{(uqK5TonK5DAW#_CI#r_`+0V-^<io%N+MJ}YO!_J3@f
zv_<mwI~-Hw<eBpMsY1Q}aT)8McbBAFPWtiVw`HuaRit@oe&)wLmJOMKb&8D@50Ww_
zrm?r|^T~Q#p;@~m_2$`1e@2d}2M#ezbyWYu<hzaG-2a@%HY=Rk4jettJ$3!g+(|MS
zc0Z0zR!xp(-Mu*B*b&i(0u$MIw6oR9JtrU9RJhrALBN)yVK+)myd%EdH+nE7|KytN
zPRp`yzP)p19a!qBK6y9m_NV&nma#>-`Akcsq5}@}u5);xA)*=`{p9U`j@#3=TeI(9
z{M6z3YzyNhSqzi;V`c3amc3h%?Y@5J-oCr%IkhIK+m{r1@ZS9WZd0;-#rF?qJ6`sE
z){Xt(`OnXge~VMWM5YPyyZt^*e6IUxjaF#VszWDU6n~s~m+70Vb?v*hy*rP~vVC48
z;CxQhX~q#thKeH$3@v?+!;Z-QFLE+(=idEnt;J5yMXQ43CRm&mS$CO@^T6#rzqLI#
zCB3~-Ys~)b6I0arO!t4{>$~+&noQfAqv(0=n&*+CZ<Ujt?^CusqA=elhdsfsQInx&
zYSok5atsEYJv{Y3`=tzD9=N?cSMkS$5@w&po|pEoZ{OLKcJoj9*J_of-`1a2iZ5lj
z_4EExc^P#XW$Vc@93A@>T%8eC^E6#-f@8V<oyWnGyc*}r?Pkor@lW)&(LcG3_qIpP
z+@SV%+kA$}uRUY#GBL=6pZlJ<X!^}81A~dxkz2be<h(yU-dep*?cM*3RkjQ#-Y8oh
z6>fNB<osxRoy|?}GYcgH^G_<g{Cim4U3-6o#PM9gY*DX6XU?1`^=v-swoNNnQG)UP
zChh${pPrKJzW$xjVe?zdRM)9TRoq)9e^eLKm5<!arhTdZkLRc0Nr|8B@9wexcJ7nD
ztVt&4nZh8eon1^Sw;#V>es^1Vkc_qNf1l?6lb*`3a-3&AbW>FMrS&wG*`^2hH>b{A
zEyLoGIydI}^4fPtH<nt~g>e?E{GC4U$L3x(Td~(OHywB9+u|X|DbXjTcyoIG%G?L@
zR2WNkc`WPclFgocI+nM9xj^Ci{=E^Ef7k4-6q}n>{Kuha^Wy5>&`*<H-)9D;UP(Im
z)r;@Ba(e3S%z%HD<{Jxp!^I}Xa7pN?ddAhv%T^UmzQ#G}<MHny7nm6ebQJ7vEaf}C
zp?~ca>o<`B{}#^Jwc-7ZZM&96cpJWE`%qzMUsrh2T>ta6Yjf3~^UhxMmGM>EHr789
z3<h1FOLpo0|8f4*sSVd=Wv*2Yp2g5m@@Q7WO2w%qVizACZhn%#^vuhp`wuRfQ9Sw7
z4~GrcLXUJmVLPkh$i<NC@#&oLq|HZ4B<xNk-mG#q{FI%LajMMkV)U!ztlKO-j}IU0
z;Z{9)c#)5-hx^m1KUb#)%=miwLhl(Sg)jH39lxk$v>2#weZDT}>7ph4JX#`AEBchL
zO@0#f<x{a>;>4S?InwP}5{#FMT1MWi{J^@h$Hz>3!txSx_ZhX1pWU7IPi6n5SdY$g
zg|}AN?$|%&U($UJh8af7cdR*c`DI{KS(2NI<P}+mc(d1aPcQ4T?vH%9d~>^nySaDY
z_l@Si{vB;;EMoao9=}nyS;NX!bh)W&W=#K{fJ<Hm6M8-E9^II~yvXB{lE$<%XLn5z
zsGXgEQ0<eNrkV392Pwx%3%@Wa$UNhztqC}^ZpU1SOnpmdCAS(@@hAp18C6H~y1Ty_
zPByFPS4BHLx_VpmK>d!!cTz0bXV*<Vdf=L5?fS2~wB`TSYWBT+%|5~Ge@pttv`ZCR
z`c{V9F;D!xq*?p^oAj3g-+2RGgi7^K<$nMDRm9C)KRJdc)1?&s*`0MHUfrBlUbbYC
z<U#YVg%3qrY7=Emg>=eQv)-(4-Tq(UXT{GRO=kDahdcTXY$*9BQ}9LeX6(xQ+0)kR
zE!<Ob-Sgmw<E1J)e+#?MJsaNo@!0hH9<R&zy{zx-%gdKN(Wmk~V{Om<n97nu?uvDP
zt9;cHo?YAV%Wh+o!J~o$)5_gWe4QNJ>a6zu`VS@7-4FNa-3|KvQpNhgzQC`g!T)n-
z+CR;+4W3nIwo~POacX+Bzu-x$2Qdt9x9W0zeQaD5cvbp><r<~#%Ih;F@|VQAb&4IY
z3(PK`v;U?9n_sfcsZ(JL3^FInOO2C4Zb|Qo)?wp3dDe&_W1j8l6SWH#CLC0k=D%vc
zwEz6Si$2DxGqx}?JS?huy3N`CT7I+pt(kmPGj!U{&3wWy#BlFosO@SASM6LSh6{?z
zH%oZ_OMkXrh#_Et`H3A5;t#J|VO;+(s5sZA*xAj%b?VjDy&6a7?kNpm^0~V<=l5sV
zfWX>UEie3!cK&~`S)PGGxbpk#H)l>d|E>-B64<*!RbtH^lNj%3M|6v2ie3A2j{28h
z>+<CZ`{yS4p84^4=DtRMW{*jVYgMAA_Mf`oB=*hLW9_}Oy9+rQKHf15yeW4~V#ZU=
z#UDbacirG`I2h2oyHN1$ztn?|u0&tYP5AQslp=f6PLGBZM$e-EzaLHR%$~GOU_tts
zb+<!HPK(cGWss=(tHZ$2U7U8J;hAe~HPeUcqN=$J37Xqqz2h`kvDV`3v*(MLo2}z^
z?OG--%lbe$PyJ_uunTKS>#ZP-P295&?`Lli>(=rQecEl4#27Je=Sv2LwiG6Ynz;#V
z3|GzzzuoY|M#=tv<@ZdT<@O0`4hz4&m72FWbaw8yC?>PdMfH_a+gnw3ir)&6S#fKc
zWb_jjStG`C``H;3pR8+3Ww?@<`(n1><k!31cKYndy356OMfhAv&5^bHL*KnweCcVu
zkZowws_rw^`R~7FC@}n-7F2XAJ4%-+b9?okPr41Aj!*tE+KQbM+ZnpH`{=9K&<*PP
zbDkAVm787CKT|zx){>)!%g#?_GWz6hv|{15>yC1t>rVdeoByfs!CI$F?k#WE_7vXw
z>hr61cm0xEZrKMpm)#88enQmE+M3Zpep{5oTI-M3n@?IzdgyF$Os*j(^j(SIzPQd)
z4dQIuq?!U48iJ?I&AO~-+vUA_-QMQ^zH)*L3*wE!_gBBv|G+Y#_U7)i)Hk!k1Wdyp
z_gE{YhF;&<y?nmr3GV#IOFJDoeueFIes%WzDn0AT<$lv6naw_5YWvLcU|H~*<>odK
z!sU|YZ;SLDl&9bQ_kx#^U45o^-}BA>v70{pl`mbhy0U66SLC_=4LhEg>j&$_nZJKC
zNn*0whCO0)R>U1FU2UGdw>og{x@ilqZ+Ui)O?8jIz0D6NuJB1u68mg--f{S6RjOau
z5);PXy7t7+S>GO;cC6aG_~itn?elVj4|FPf%I>c*+jMuD!Xz`{L-p$ZBC2aXPGsK8
zEUhZ5k@$A~o}Vvu_t=-u$ylL(<XRuwu4TS!@+B63a2DThbh~o*1o;VXR;{u9zxwl|
z*)QLl|D2}TyCJ!8^0F&_^Ce#&ddDmJTgP^?`--ip<#xgkLmH2oecBzmIp^&X6<$^j
zwn)YP{S12|o!&i|#5U#VstcX7-nSb(J%2RG$aeFUIQIED8)ruH-k+p$xMJG!ecl<&
zTgrVOJ-44cCr$Hy<dM~1-%WbexIx3~iSAq(4Xu*oC0VDJ-P;m>HNfre-!NV6^h_1w
z+y|LV^F8+;`!z@9KI4Yj>?PYGef~$D^}KM+-@W_Po7hFm9<JMO$845+d84dByH8Zh
z`WJdHe>Zb8+*ILBt+&0Xc-GH(y;6|3X3aOrt<SDBGpN0uC^7f9$(&@HoqX!?YOBxO
zvyCYUUnpo@o-yP4b@nd*Z)%cvuik2QX2=h^{%2~T+<uOEOwBV^-+Nd*Pj`i4%TdOL
z4Yi#!QfdqOcwWaYFP=W_K=ljOt;>>5Gk$j7sjV5ccunikKSB%&U;X`!<RqevV=ewm
zGkgp5zP3Q_#Ij{;R^0vW;Vqh%)bZ-G)a=q5@0#2B>Mkz&v+BjBCrP`GuWq};(Du+U
z)c5j(?F<ZWOV7;CY%8u?+b1U(we6kQMy-eY>x<G8KG?Fn3`#dn{k1Id)#bGt8c(UL
zo%3gT-nFdeJx*r}4&O73@>YDToV~BJ)04qzderk7-Jio3^S=)3>6N=5px1p#^VVXO
zxewMwecW_&hTP7m*M89+MJxBs@nc|5uaA1ZVV)XGMpRWwG~cU~C4LfRyPieu*t>G7
z#d4waV|#Yp`c|aV(D+l+Ds=nrfZ!8%3^#skdgQ9b8Jm1<zWO|&K+!3j-`g1(dP>er
zlUcW0nPJXm>GP8}EWA4XP-pGe&!_!Dm&%9Tzy9>|3dj5H3@U%0{ge9qJG^aLD4);u
z#Tha3??UxUFYUcvvhtXjZW+5m{7;wj65r;RL|1<Ko<7@cH}6TMsfMM$*T`Kh>Hf!C
zZF9-xsmqJM^W&oRW?wtJhNWD`wovisn%uv0vNFUcZmL}~pNV13<duK2{AvT8zbCDl
zr)pH%vun{G>lU6X9}~{rc%ALme|g623$k5{)sMZK@vZw-&9+%LtECrgO5tIcv9(IQ
z)~9w&FW1pWn=3uJL%DZ~HKzP{tu11-hvA0Iv#mROXDeS|WDU`Ek+f5&&u-v7`;+ZK
zP^rL|{A21Vr5u_*H6DFg9#u(3)0y6C?z;U~Tk&Pw<eyv*Za$atXMfcbo73tTb2VVG
zRFC08#aaCJFSs=G8Inz8cx!V_o)wzaCWPeiO^%&dB`+y_RERIbB(}=&guG79BHj)2
ze@nYAJl?K!^!I+5`I{$*D(h@eTsW`m{QoMC?-Npv#4rAnAGh#{+`Ga+{r~q2|I7bh
zo?!GhYDwL1wY!QxbUriXwDp*ZD%?1sqssTr+5Ba#PN?}7YllxI%;yfC+>`$2_1Rl<
z*9j?}@S2pHm0yvT(%N`aUi9yL_w8E@^-WHm()-}0Z$3%F{cP0~W|Jh&(ra!9o<GXw
zkP;VedOSPUcGuItftD|8Tvnw!9s8NiFo&JbXw$1QmlwJVOY1&fEvo!HX$lv|JKam~
znl=?V6s*!&nel1r^4SOWY&a5pUHa(k_rIg#WlJx_Kl!jqipMJQeo2PrjOnWJrV}m8
z-r1SHO8h5qviY^4xqOJz$93C%mmJ;^v;AJ|J&Dh^JNL|4o@RCC5LdEm|2F5C?$ev+
zzqwwVD|f;0@zam9<U9G|E*9S3k@(O)xMqIp?tqJS?`Os~E^0k}dCR(+{VC^pZf!fi
z-eafu*28Oi4>N8J-nC4BW9p5EQ=C6Ce2MV);gxaIziS-H-9E82bz;i1PwU&mY;Gim
z$^>%d%x8L#;Tk#p(UkVgKDNkp@(WyqHXKpAtLnJ9tJXHR{P-+&i6vWWgyf@nx|_Hd
znp~c^zdw{ZJzhK|e0#~al&$xtZk}!O|I41!cS6Lu-Ji!C+!3^4LBpFJHQ~=&BEAV4
zY;}ETeE3XEwt2Kl^zNfJQ=+DPmH6DApO-7Dwk_?fb&34Hze2HbHoX^aPM+D#es}HF
zRMwYsxy3l$;$r3BcAfOB4qD|j`P7{IE6xPYU|)I1pXuhIwKGmM&pfs8?%hf6LYT~A
zqsnCyX3m>0QfmF>=<8n#t&g>CJa?=q#qwmAw{XcV^&gX5udx|y4FB?-LFQM>(s`b|
ztODMjKJVAf`t)?#cdILL%=dV1+;oooAh$4Zg;>t@qvGi?KVE8{tTs@ZIU&5R^x`XD
z70<hq;%_Z@yf?sS{*^!P9-j`p`010(=c3m>=H1UZSrT^TOMGLA7yjAsx-aeh%e33e
zR(9Xqd#&rsl{G@lvpbeddNSqBnJsPq-?QJHziMjuY{jy9`cFlJ4%d7>zEhWXQoPDD
zkx2fKJjSoT%Nf>M-Ko5H<NtQ2^WTFPB&eQUVWQKRkbVEm$wMluZydSgIc?^qwHqe#
zUY7pPe9cOHFXk{Zc#sV=AZTJ?0Uy-|Z%_mY4uWxH<N-m@maiZMeaJX6c-WHcapc(R
zWp^!jrqulTzkiL*9i8ckjDc(k7w4)U7n8PdSvuu+<-FJ2mhXPc**Tw>cDd%p$wxcp
zKR<bW=X<X|2cA3fFnxQmFaNj3lq>g6Zho}n;t?r3hs6^NHfvYKx6S>qb>&2cUzKnA
zp2<n<3@S-|@3QfxSn^q!zLi%~inh#|QJNu@|M*I_f3WCR2b};bVb}1LC-pC`dAGg%
zn&svg7QZ8lMCYBW4fHqd{rd9YxtzO)n@yR^l|Gj42zizmIwv!~_v)NZrI1z6JGXB5
zqr2kyfpV^?4;>bH{K;D@w$*f^|LqsXk+NA+f2W4eydIEWcpz}kgoIU<v%;4}6+iQ_
zuln&vAaT;mbs4+1hiGRdM{Rl`Iq5*i;y96omt16pR+y&x=6$_TQ+@Z_Q{{!HKNkEk
z`^|i`<4=33!KHP1UlT>A9jwV}d!=i2W{JP_#SctRCvv_h+f|;^^;R&_^WR}#Mk!fG
zL7DAGDlWWqK4Y@r1Iw}#hadkqq4CqalgXzfb6HEe_BytvSJU2AavTyqU&<eR)?o|l
z@%lym2h;8Z9VtA}^XNkUVYV3G-D1<C^DfDXGB0F!ES9eS_V-$jD}g(eUMd!TO6!R{
z>%611x1`fGb7k?zgQ_V%{;GO}8MAGWY4I?QzqM2=O0?`|L{j#*naO#2<yG5^j{E<a
zaQ-t(_X4?#=Nhgk+H0~dlvUijw4?OkW0&_+I%Ri7YcHC|Y2oT;o1Y(Hy}p{^ox&M4
zv-CG}FWq7Kut>dj=JFrUU4BOI+*-79hQo{__RKrgs;c&%`ET;2O))Qn(Qtd)!XL|W
zHYX_iJ6sIdE7Pd&A7VTIe}Dxex7SbR2aGdZ*F^2Pv~c#>#?RlsZWnX0Vkn4L`Jr%?
zX?k8`e8lHQhy2d2+S6HUWWIfVu-Dd9<W%OhxHJ3ri}v3si>|q$xvHw7r~Q}Co354{
zdKa$V)V&hgw4&tj{+AE9`j&}IjGH1Y?D#(~Sn%4rqpMmJ_qP2OiTW!#E8*N(W2d*0
z)6=d-?{+RRp6qa>R3qc&?(5P4=BIbCu79<@;o;ISzo$o{r9LS8o{<mT^Gk74*w2JH
z$CVi8^c>=Q=cltv`<%w%Rex&l-?b>zR5N9qVzGSAfi;hESDow5i4X1-eYI!#mCK*)
zkM6Jbm|6byjkx>91CLIL+c$1s(D%Nv_`S!II#KTbCztMQb+O}6_!T6WWW#00^V+*~
z=la>x-)Ej!`rx2J+Wc166ZHj;Y9r>Gu5R18MUA_Deb_v!uNEan)0WN^^nL7Mzf*J8
z?)m?Y<lLzFXZ}C;Vak=exhW=r4<__XlQzhHa3tAJ!+F8=u(IQBwtpB`^v2G(eJ*^_
zH$|PbT`zfel$PaiusqCn<Z!&qeW+;1a*x_Yy~+!&8}-k;d}x-3TD5}n2kV!eNjbu=
znLmc6UElAduuVo=BP~CRby@Zdm%v#bP7XEV@8^b0mMiSP<eM*YRN%v_L;p?XXL-)4
zVJS;vPd@mi*Zt-yp6rbiJszIXRrOUa>Hbs}-Mjfv-UR*aSu)Q0kLx;KmF$|gJo?q8
z>C^cx)XXdR_I*{<FU18WCb8%4hUnL)xrjAiE(lJL71_al?7e|szN!Y#w+(+vf<7^w
zYyRx8*ZG=Ad~IB}*Yb@PTLtBgWN*35Jhy6pfLF+$x}>~wmNKiBM=bySJv2?A>L8=0
z&F%0dmEWhH+axvh+Lz)rZK=jFbE~9Q^sY|)m6!0&>1J}1FQdNq;sY~#vbTEuk(G8@
z|76{-fJZA=$B8xDZ+sbWT%&kr#2sc|`@_G)TUT;+Ez+F0<Zid8ZO59O-#=MS);wpn
zr$Bvk=Or7ag?rCE2=0BjOYEfF<zj~GtL8c^QSn<U-e{1!*GWy|k@SPtA&S==Z|r<!
zx%;ch13mHXX#Efaxd{8cO}cY5au=P8($~JsaOCxyv^aC4mPv))>I#92QiK0}z1Fc;
zU*FYl{g2EUH9zAdZk!4Dd|7PvrPoPo3R{;R-C1>GqE6+#wZ?I!az9ip#hD&h1isD8
zm36u{`F@q9#)Hq%T|I{rtv7CEVoUmDe&FxA-t`U1VvC$vwwIVL^4(Z{fV)L``;tR<
zON{S%s`**i-&B*^Cf{z^XKS$j*1nJbV+xr*svS&p@969mp89%$_{2SPqT}~I?I;h@
zQhd~R_Tzy#c?-7q**{vv_f@^-*01@it6!6SRdsuZgVkT72U7p9Sty)NwUMY7PB<ZH
zSYY$nEGYcvUWLc$9k;fBsy^GsrDMCS?rKu%PHls|@A$4yH+kD8rla9^rFLqHlFO^(
zU(c35b12iem%ePa|7ph~cOHo4vVDj(uLzoFxiseT6|>XHYFDans~2Ybsz+^HXW;sx
z>!&40EKk#0`O>rXH@20(*#244V#eXM54|15G^&FA8$N3q#VTx*ot)+K;M%Nd+^oN3
zE1$hTe}JVvTO;7vbI)bR|5$F&v2@6cEzZ8G?Q-Q_#b;}K?z_!DEaHx)spP+D{del!
z59ZGN*k~**22d>wY8)6^7@LBmA#9T85Q&|6RzTl_Phf$B5q#UVC1^W1sJ&1MJq`-*
z0!q*!7SJhnjfu&3mMl4P;J|?+2M#!hcRls?=C*w+z0_m5#LGEq40r#sEChKRsv5d*
z1Z*29ED)h$30r$gd^?KxnN<UffFW==0aCz#ma||449=NVw8II`8*&{s5MVgi{r`XJ
zL=!zGK8YU1=9`-91k@MS?tLz~t-k(&UTX%|MUh3CF2Nnk1bh`|IhjyX;PadbrpDQP
zkB?upyY}+fPwD&bV|Lfw_`%SzM;E+e2Q6Meo(08=p&8=P2-q|@@exC8awYxH2&8xc
zt=|B}3wZr6IQ0<Uz(tEC*bx$50YPguoTQly4leUFUi?6Aw)FWq?0??I*f!X55<Z_H
z=6&t@dk5NV#5fZt3JfZu^W&MFRm{@F9b948C5|=Ag2Ee=G>pv6K^Ypvv;-|r0WpYA
z8pP*W%++4_^DJ`b2ejS?lr~TbGn{!AdA%3t42krJkn7j#&ht3uHz~L>3ceAa(r`oi
z*b}Xd(%CvYJ=bWuC7ZkX`tZb=cBx84pV^z`A}H!;FB+}G;Stir%BtAl{9g9n`{N2c
z2F7z3i{F2?J^%fmRr=el-=coM*?T>%`mL?<gZ;e0%5z_xI(6#MDzR(Id&II$oZtHz
z&+aS9UK*||5jJJ3nfnX5<k}OltIwD{nZl*kDw?Lo&|u81`{nbzFtgz93u-YJ>IG{w
zet(sWlMkD|d-+YK155o+Eirh%^@yN@N8QXL|2hrCAHMetTAlDeUH1R?)34@zjZOWf
zyjQp=;8$@CujhIZje;|QOHX#zM0!kWj$iyUNcQ>@t>fELUM@>lQTF^4eMZfD(<zT|
z+fXB`ZwsgRf4&f|l&c(n!gEq_cD7nE-|8vt`|iG2djH7AE}L(Q@9#ckljiKsvtfG1
z{hpaGQ_ci`I#IAMMeOACk1G3r_dHRV6k~O5`|6O^I|7#$*&Qw5{Q2B;Qt!;$Jk|9-
zmwvi>YRT459UHW*!y-%PY+W*?=6(oQ=f<Q@F^VUvQ&xn%olsZR&%g4(slO?l@e6DA
zGTc2o@w-3!+|wGe_almUZmwud+qam-WYMg5YgZO+bXr>b`(vj5lvB}@&*(pxniD2|
zcEStpvezf?^xDstToCGAWuVug;$5fwQ}CqLq@yXRmYVMa4y)`@{=c$uj^IiDBP%PK
zpPc2l@>uv>{>$5Eu9GLt@Yr?jd+f2+g1mfziC@2dVwa6fZ1T0b6s9M;K1^y_o1D-p
z#X^0JbrO44f1Q!Q&~W7V=Ec>XMR7S<WrYVf2Qhp*SJwReUg>4#0@EkI>wm_{&Cc#S
zb>!5!Xx?u<v7Z){6clDWnJCV%q0+ESH{g=aT9&H&fvMXg`MWQQJ^K|NK6U>hmkP$_
zMG<eRo(G+*KEQcjOL@iDLwBv)1NU#)!^AM>*P<Jl*`1Dxz7rA_sQa$^VZhaJ*i)k2
z=HKBvo3|#UCuY2wQn`G&Z(vvBPEoH()=W1HFC1E6%5djR_oW-=9be2Ms+T>t+hMDs
zu#(A#D|?INuIQ@uY;P_}-BkQC^Zjr4b5DOXd7r49BO^C$w}sV}CI5qFH?5d?LUSwc
ztgxQO>$6`S{&m4z?2OJbUzQ8Mx{v70i@yKu{S#GHcjcD`H}85dy_oUxb+wP8_Nofw
zptzGZ{}k5L9mv*xv0>Iu%ZTHjUeq()IIxn-QFeM|=0wHa%fCwAPi%PK^DF9XeeeG}
zOm4Xh9RK&#ezD7+q+>Pz<lfg!x3|wMP(CyL&Ei<+DO&fZ9afoi-1E~WHn)YM42%Zs
zXV|72=T491df8s7lFaDyT$&-FW~Iu@jCcm2N#*Z9n?IGh=lA70`?Sg0jCYhyMjNhv
zuKoLEXls7fU8cP+-!eFq+dS2C-gZ|Z{cg}pxloU~gTGaN>S*q7>i5VKW=JTU!+zmg
z(T+sk+h#_}?@zsmGMvr3|9CIMum5iEN>~+a{r>mr@_JUaK95mNFOxGjU8C~qkQBot
zN9|vR7mhPDq#m>nJNNe4f~-~sh7;@Ne0H53cqjbi>g&eB^MdbjGAQ^=|9v)oUT(zk
zmD#KJRLTA<UBKe-ivPHijQgJ32}>`E^+o%)w%epgi0}8Eq<^@+e!X8I&*sYS?Mwf9
ze)=$Z%Ap5>d1<S(Bu~xjV$c33tM>0@@oAyCA}w~O{f@1ck_ns7%d{c)^z7xwoSzq7
zE0}cW&ZM##_4BtDz6pqb?|M31?aA4b=QDm>Rh{v<Wz7@)GKK^*eH*={?Oj<>e<uj<
zxWd+u`bf?pJ@Q3|zt<ZRt$lvK7-H8?&iViEabNL?cXOkR)=c~O=Dv)`#nY1<4z^ZH
z8AaSz+*y6a>vYtq<3ATm8!;ZZ9n8e_exB@hg|vF!hjr(~#J5)IUYmSJpP6OSlcV}O
z4sK^X%dlaZ=*>T@3<kCtv;MR=I=9u?JW7n}FY0!kzw%$jCdcK?oAa)J%euezXx7~4
z-M3R7?Ops$x-MN*(_Uhe+tUSC*_z&k#<4JLN&C1vNo7}|+TXPy(`Oz_&0%49QT{H&
z^aIQG)hnHy?mhlHb&vSv^Q;s0&HFpq#jlEyp=Pd2*NaJa)?3w?Ni1Y{i16O@DbsLg
zu&-#E*gu`*qf*|cPtP_86f{?!i{d(Ir%=68e_GfFL*+kmlb39?QnNMMkht)p#AChH
z$uf)__q@|Gt_T0BesB4q@munjf(a9UIUVM1{^MD6;QJ?ruhH_Cd8acTxRM}tU0b7X
zql#zt0kuU9Tg3DG&b6Ob>W_{Q*x7acaO=idUVlG%{JRp&e0;_Z?d8gTiEj=vSE?R-
zA|}q@bRu<ilgX!~>Kz4a<sGku{rMf#&7M8~&f;%WHAyTt;6Y>C-!n>|W;o`b{e5Bn
zI$lZZb7_uGU-{1$Po40D;kD%EnLmo%93OnQVN?8b!=Fba(Y;^6sFXARB~w9qqH)ae
zr~Ox_p7`gQmveQ>pGIDWeN}c$3fAuxDtlDob+WQet4~*jFA&|IvW&y}+Ju?|Uz8h4
zd{zE#$#mjvd$v71_!EE7k?EH6P1ih+sI#m&l-|Cmd~zsXVM@@7$=m-q9CiQjsD0;a
zmm7*Q&-17CtoUFv_u$|9K7ri*LSZgj!eTFU<#!6a7xtO-srw+~Z^><z9$fN9f1E<u
zDm@b)&Ny)S@6j6@d)RLLw3(#x{>RB9QR{ggCOpj(ow(7!{&V=@V^7=)cq>1BoSy%R
z(V^sxf$)R;#gPk?_nf@p8YLyPOPXQko&}SqHI;7Y{`vL(SDB?gY6=R!cmoe@zkdCg
zYb?{c=jVP~=>JQ-uxkCeT<xH_&w~2jcQIDf-dkjlC?NUe)z0r5h4*i^GSs;oJY_|4
zr1aD4g8QeOpZKLB|Mj^8?z=^&*#2>uBRGj$-DTElPV*DYRtyd6gP))MbKPa-`L$D+
zm3?PVU}~}5c{-&2FlS0Q!+~vGO{IC0U3z|>f0sS|eh{z!q=P{W9UlV&)QqOG&z^F-
z?s8P@McHGLObvxf>n9|hPS=mQx?Zk%>ZZjL%kE4Kd#n`2A-n0x8bt*W4Yux*Cl7VM
zWO|)aU%vL1QFhq8$xH_VjCyVAGM2|5bU*dCe3EJ6q_4}Gqi1g3YaRM-T1fJ(J)*Cg
zbPiuW%)FhsDs)-H^I1>7dlt3!K6};TZfr6|?_`~!0K<i2H!pm<q{=WaCVca4fopCH
zvp={pGU!Zhl6<(5`9`MUbzQq@$5($}<DJPPb60Vz=AIM(?#{JWKY6*^G{>?<q&MF1
z?TN|ZvETUGnGU?jn8ny|GOvz7BE4@r>w};#%IZuLQoAENvJD@s`E}y@i|Zo$%fi0T
z*uM3NB!hO?Bo+CU>vIn?eN8>EPW!fK@%fs_ug^`l?2u!ya+Te}*f9SDAA_COSB3`8
zl*P4qn;-5oex3JWF{9C`^Jhd2YGyp1V7S)SdUdM!I^U}yvrUpJZ)qGz3O#xD)&u1P
z)(@2*xsD#sxBvPi{JnR>Qg+4z%{D)yq82us+wfg&xqNL=ikRyg#=9%86*Ds2k^6Mx
z%HPOz+gBcQi+et-$@4j<A}^hMij|=t(X@MZ`c|tO=RF@Sv0>P?kMmBJ!i%UC(QD`H
zT(Q~Idt!yRy<Cu5>v^ZBSpEHnIT=-#Uv_6Kco;b8ti{PoJ;F~`9F=FYQ{Oz(_g&~=
zGlRt5XI1~sExMifwXA;c<YgQ6o<2Fwedwk8H3o-S6GTL_vzQmpR`Hg%^!+Z(v*&I9
zXJylxzM1!CX&X&UdfZnvMf!=nsjX&Dz4_$CV+;y95B$&VeDYyh)IEvV_wWABzqMeW
zy8qkR%Zw)5sAkVSbLw_o!GT`mtY<yJ%aZq&f4=v0O=oOMO2)6JtqeYYlKn4A=4X9r
zJ$w9W=+^#i#p3t)LM_#AwVfzd-kdDX&*Kp+sWr>3{@#Qq*S=m2zV0LTK}@GkgWr&o
z?`6W})44l$<;Ht|;J?=0_H~lm%4fx)YqnmxcR5H(eBa04e!hMOE%R$%#-6Ev#@#aE
z$@V+<()Zjd2{FFd%bWH&)$iJ#BHz8YI!xm2f;X4X{`o|>>ifBD{^MN|pLR_6=WkT<
zd*#e+3@r<@`rWo1+Bb=<#ct&p{#UP8+}q^KE*&Jc%+xZXj`QAxuERPHizj{4NwktQ
z{TuS_?8gk>SLUjEY|lfNoMUr!J^6mc-PyO)%w}jbbMG=)>GqwW*#4E(j?=T&H9mRe
z*LU}BxyrJCJbx$7oR}hLU%}h?Ed6xIB-PK{=T{3CdaR%SsQX7i&!VR)Cm$<suX+94
z<{<YA`8Nk|PWyNMXTs!@qRZs-m-k*>Ww88=V`-yb=dH!tP2FGZbzAAX^lJ0j6|L;2
zv-1MqFf`a*<d^u){gPc`ZDMM7`swiFp_kRwR`Y7!tBiPG8hp50RO;il`t7xE6MnSB
zub=X&cw!2pKjVZoi)Wi{UD5P#{@;*^?Mqgk7m}WK#rtAJxHQAB$w&B0@0NaEY{YNB
z=;!UPn;r!TUo>5D>`8^F%Wfy$mwQ+zel_MVidJY?^tsdT)1TWWhu=+)b-!D;uH@4D
z#TFk8W?v}jaxq=P-)C+Y_oeHaLScQv-tfsb&)+dV37q&VWr-lmfe+nHS45Aomf8iW
zuTy83u47jHNqXJ6PuDXYX4kmc?qA|n`EtsdQ-2&!+{j#P_Gb<MZb`@R_?<$lJF6@t
zKE6u1wOX3tz{`}+#giM(9&S_gTCmLK&dsf*=XZ&(vt(WwyL)NJ&ElSJZJYgT?io(Y
zQLfgW$M-=x@L1Nddu;Mo%sns1T{2yKt~h!#^Mkmw&6SHKY-{dRSlYWB&0JS<J<~AM
zq;YfdlsK8|wo9HZR;yp?cXA%D&ki-uS88tj_w#*(_f`IiS|rLkuY67QyXi0QujZ`(
zQTO&up7ivaavRR<m)1SS8T|B-==C?+A-xK#1BzBxhpkLs(^z|Mweg0`lR*qG4E$nx
z?4B>v%DRvfcqr+?>Lm-DZ#`JXYBoQ-r19w8WwY1vG|&0Q@ZiDkv(F~(THoOmbXjmk
z#2MR|-#7HCHgYgVp2=Y_*u7)3W`F4Yz0;RfPx-;oJ!f%V2+Jw`G|ffV^Nr-L8@-se
z*mc5GMuwKUiN~JT-&Jy2p!DPS1xK~HYIA;XiPCnha@FVdlaJM8Rj78cVsdz{v-Ao>
z{5FjVB1)pCI|U<OsO!}frT?3Gn6Y+inCjORzROR$#dL2desSUTFSezh3ZE?3-4S5)
z_xvowPo<02Mo8YhKH<()+ZnEE@5A<mJ@dHayw+iIL^TUTjFynG`?d>axr#I6WtP|E
z-<kd7lh_sUEm8;6o>`gq?E6<$G4XR&e97`BAC|7*U12qWLF;GulLfPmyeZwvz31rV
z=&MIx_4BwKn6O=O&GHomkJq=bck7wFUgfCEcag(v{nr3z&Zv~9i<ipYTa_`<Xr8v4
z>tp#u6X~#-UNb{;&xx;!&#J$@TJBVmhDwec^J``MZ6)fw3<95K{a(CoT9QXyh0$LI
z`5@n8FaGnan^b<|h+s_d$N8min%5lvQu)o|wf(Bk|3BV8{JOX^%3;HN)$_ksYnA8o
zGNgG;{1)(ezsFQ>i<6nUD-T}rJbIL8;r9ivk|g>|3^`73k<OYRBYSo`OW3O$uPy%;
zhQ^1@{T=&we&be-w%=;ZWjlHMTaP#u6uvRvSUWBEz|PruuJzBRF*UqdTed7ef^#vO
zhtDc6rT*EyrW5Xae0}$1S@BMf2}V10YL}#Dwx%>bZ$2`8n)u_z@%@K4{#=qW^WtAa
z&P6jySFH$6T{JnI)#3hA<HxW0+rGXJn)>DT)(Kh1EAQ={ci`TVXeaB_mY3hzpV42D
zQ}j6P!qJ24_UxY=?vj=2dFXDz+px-&v3ZKGT$UW37FA-o_g{BjGxyal3!W9P{v7a$
zx_0kr{yWM3-(Fo>XOvDaN$b;8?6kGXXFIN@9a)fY?L%vAaQ@m;Oh^8&x|30$J@X|`
zzn}lC2a|R8MPvrmZa<_W-thS1y#t$7pEae&coh{+&-q)-z$zQ}&-JWh$Jdbc+t=@Q
zms&nM%(hDI_lDqh<Fuj|e7Y;o_y=75CU38G=j+wgg<Ah~4kcdQ@kiBh)oHew61QfS
zzKT%QHTmc;O_j?_x8A!->HQXt?<*%y$QQ|fl5<sU<E_mGijOmQ)Erw<zv@g!)K{B+
z{zD-$v8$UCqUS_^R|@l*wllvvN%_@_u&b$(>y+>BoH#M&!<UImZml@rA<m}%_-l9D
ztlbf*QonRKS0~F==os$`mEZg0!UBz>0uvo38W@&;ewmq_q}#c(P$jI!dKTwRmQ4?r
zUbXDm=RAp1`baF(Sw()|jp7WQiVPKP)5Y6oFzr*x@A>#H>FfL-|5-RbTDCVWH&Lj1
z`f+x`q$i?*r7eaZj~qMM?6Jvs+Jukx@eiLgI`dC>a%9?UjXqy7n<wYyw)4L?)#~`*
z6m&&i-Bi}+>cL}2*JYRg);s2NH~Y@@vjSH)O*+*sI&<aBova77{s%Zpcf1RHTo-qj
zO<FBoV)>KZ8*ZFi_3GW{FXA(QvgPtC{@>X7cKWM2$7Np2L(iY&+~_~KNO8vWz1yM-
zqk4TiXRh{~xc9ESiJzz0hmxGfH%_fFi9UZz_<&a6bK`o|f8w$pi433tJhYKt(2yBu
zD9^;g7{0ave6})3kofUEqKAGd8Q!x*-XjMdgbX70=!ck_lkRHqYzhAPKmJ?ojIQ<U
zEf+2cb>H=0*~!Z!_4fGl(%9qe3oXu1{`32ld-1w`4JKP8CiI8)<(!vhcHvuEXBJ}-
z{=H<^<1KD0;=dR?)VDwWO{F;K`7XUWmaA-H{O1>I=3em3-(gt1$@u4uGqXQT3AW?d
zY&BcuNkgrXL|Ro`*w4_}Eh&y`4ry(WHp`p%e%|t1+r!qbsM}#I|3T&3vuhV47R;1s
zo%3_|ahLUnY^N0cOtbx#vn%=9qm!%^`>d~VWJ$KEPCGke%bNu;GZ~8ngpzaYZZ-b-
z@K`MFglNtp?c&`Tb8U}=d@N~cd9-$gQpxex*|GXuOFJvCB>nm0y8EQu!51<vCR<iX
zSh$wIdj9Ty3C|-{;jqcYo_`7_-T5y6UhvOBck@6~9esbVWmbE9PHr^Yo0etH_h7!t
z{QSG@ZToKM`aYf3YZa@nvP&+U{qrI5R=?#JcC0oDyY;N#lgpWh8)Y4zUE1u^x%$eZ
znCrVgEf1a9k(jef@Qm)^kJ+2;&P@CGOmvcrep}L+IrVWnL)gj-4D(9+FW28Y7sBgO
zeKP%f%GIrtI9^VD$<*5^9JnFy^0xhLFaEAf;#CzFRS8l(p6iiU`RC4s?OYc9JEfnt
zF1zqV=2MIc$A{^i-$U8;B;<<9_r8=`v0Ko}j_cvRKQXI&br_saaXx!#)A}Ka<%*tS
z?xR0n_qA;Dms;nxJb1d~pHGdmnIBwR<jxwt;*-d9;k88qpEn%II=q;dd;7dcdR{sf
zM#j;HZie!^I2>QQyyI@uf5VxZMOy;(mTA?mmJ)My>DlkPE~_ZXRb|dGv2;b&QiXpG
zZkFeZ6(7&IdDw*6jdR)MXxE%g0`sFjJh{Crs!lt^M2GjN>sH@2&iA+aJmi1Xx6@h8
zQu14W)F!V7H4WKz2QCUJgzT+3Gk;Ik$vs+&&zti_y6ib_SgxdVe2JKf>nc5?sIUd!
z9HaS7eYTg$yRe-25jguUA8X6;TXMY2n|1$g`gAeeF}qY(b?$y?!Dmeixm}`*8Cw@h
z>+ycz(cO7*)s~byZAX48YMs{b>Hoi;@8tB83;XX!+wgDin{oS%Px0~27T537%CsM?
z-Tz-O>(J|6CwA0|<W)X8pwhCwo<sD3W$ZbZqgC^*15P;T?N_*SfAPa>Tca$NIkhAR
zl}?@GaBlxGvGaQ`rMS$gn7zl==)Ktq-bY)+{W~5_$z8Kc{&y<d&uyD-ZH+SI=5M^P
zeQhJJX_MKVIhS`y1_igC&iB-MD|nZscv0FVKd-x)i%*pQt`*Q<=qIBf!t?5`!t#K*
z7L#{A*mpsRU-9Xp9Oi}j4QDq!`%xeD`}Qra!2e>K9p9^5Q}lCA=yr8t=SaHyME&<2
z_FL1{IZgbRmievlV|vj)`DJ$fTBhi?0!KT)`^2u=+m*t$?tpjbT1}qj!>PYT)jzG|
z%UvD3R&aaDyvjgMo5{+Ldc5ja`@Iz}J{>6iZ*EhWbX1&FO?n73TkO9+{rqU-<n+1o
zo|&!iY`Z14*{b2SUsLogt(?C#<)PMwXLe3_{_fyQQ!(GYOQ)_s?ZM2deq6=fLU+e3
z{+;DMI+_Qkea%mQsJ-Q@zvyAHn+(fsrrn=#caaR!-Qd&V){?Ka82*RORP5l}_2Jn4
z(DrFY=jsjkXYemS;CSScSnh_~c@M+p&PcqrU}~wZm+Vxjd5(2Ec@{Fg-VxdnB(VC!
zwcQWT=L&dc>7{6FomgtZWBRN^)#I=3PQe^khPBVT|Id0gA;h3U_oA2Ii_?=?ZT~yo
zsIB~Yc>DGJdifg~<|pxTUR<19_O(36W^(T0MK&G^(;Ry^687ysnrv3C!g0$c{@k_`
zlU+V!&p)^}ywQH@8I4JuOQSqZbsk^6Z~gT2>Yl^vrsmk6nV@DXbl&Oh>CclYKfQ^z
z`kkzQ_3hfpNiOfVeV6uJ@+f!Z_IF9wbQw=tnjC&rlyc#!QT@L};~J-=lk?|uoq5J%
z-nuw%jZ=PUt8#F`dZx!ceY&pvGsWfACp8|s=e7D++UbpouVzpAG)I5i(j>DtTf}sk
zK1WZ=z1tk&Dr0=-;4GGn_b*+|d*|1_@p4p-#GL8>PjzcM-PmLKPx`^_fK_FNuj96d
zC)#Y^cCdPe%3Iqz)#8^7maH(c+-JwZ6X&NaH2>Z&fmZ+g+KxldPqRO=y=TigE4uV)
zOptf{c4xLeTdr^Cn4FJ^?di((X79N*t^VKL#Ov8p-%d*w3cGu)`Q_1oQlnX=1r>8%
z?Brrzm^G=;%yrd-gxsyXfosJN*Z#bAe$C?Nst3=Uj(`2|-{i=Ku)}H-KAyFE(zr@#
zQDdG3XV#B;gC5xn{0sZ-b=V*FpD)fxF%!5OKI2@~W&=xsF2lBHxhS1N23_xv5<w&X
zYm0T;8Sl)xkTdgO{lAz0%!P9~|2`5mJaC`s*sI{yzY#TeihN|&>}{LRyMDsG3&HlT
z@<+<wZ$DDswOYC#OPc^x&w{FdLkj~_kTi%5zHb7=pn97CvqeDk>IFjs(7tSp89$QF
zcQ~xEjGv9cCzEL<$g8NWBZ&DRUmGFj#lg32fy9Up3EItmS|Vn~4Glo6PA~$4OCNGE
z7RG%FXw#oJ4Y?Y?OBS~Nub;ht!-lUH)YftdohW)EGD+!#?h?ao$-P47%FfCqPD%a7
za5&;nGH1W4&9o0ljLlPi_I-D2IxZyVU7_=EV+%IMJSWxEyd8U2KgTYO(D~o$gNRk^
zW_F2VAmg~E<_Jy{oOn~bzklC}Kes;q?b~l1*LEl0N6Y*LwrB%|1SpCOEf9@bm>BWV
zMzcmOO02<F;D8r27=lw5+0EKp8+ltCco-bzYCTT2TqzO_I&i(=%V|!N%MG$?WPTbS
zi%{5bF0SGFB{BR5FHC*^hIL-b?e90W{~WKBG50Clj{B5|4EXU8Kkn~(FmL<v>jgxq
zM(Cpt>lDB2O!igS5(_8-K#9f3(g-9CVj3FIa#<2)iAVGj2SWqUQXR50c}%)Pi2L=r
zckd2eT4FBh=pZ1lF~N~>_rX5HEE9>vhR39meUtoygFP1IJ1x5Ca^*%q^Iq1e897I8
z1ZXw|O}STHzfYcf(}8!Jw4YS}-*a9*?cAK=XLG8bpPOT8+}-fs=*Y5Li&m{#)%9qa
zmQd8;S!oY099}VbV{5XsXY0Bhi%tcui1~iQAtvhOlue7gxp=fr-;6tEu61sUmg&>f
zYQcLyUV6@+U44GT)-!oM51$9FWMyF7zG}&ac{bt<{bHe#nMb$H?rQWuwW%Ss@#~*&
zoL^JDkMHrz&%SGZLig9MzAev;6E17D+UhD!_AqkVE_!zQBinh720uR>XZmzUcv8tl
zHEpj+Cr@AFVsDx$C~2{3v5c$FCmGL4`YOvN@h{hScjZRzwN>*YJ&S%{n>z24uAZ`6
ziTRZ~+=Ut^-=@55>Ys7;xys`pk9GIG?)_>}Io>aywbH|2inw&(9cRhVqP{yfTf!e%
z6}~IqSh?=gmLE$t*z>ddP3VjK!0Txo%eX6wfkFCOQiEIHjrB=q|3-O6Puf|U^<$0s
zgStN#r!ICsEO~F?N)^jRoM$x;ur}>5+<IDg=CPi03=Fo_yC<wLE_%Cu@|na(@+qNH
zwysn7^m8%~w~fr2^%K>f@6?^8k}Nk_@aZPGV9#q4c-91`e&no`I?1b=xipM_(NmRr
znMAG%Ia`zO3;vs=sTR%kY*y5MA>O%%Cri)6+qlG~%C+tI{3+72cusU&xq6PHM>H$p
zn&NEB`Y-KestgBmO3I_R|G2c`$`Ttz#jR`;N({H&?A>3@>=1Cay1ja8`8u)1k4}Wh
z@a(QQWOD3)@yi!$nWr+eNF7iPTKD>0IYVJD({9#k@!Jz`-734BcO_8f5#x)O&%*WZ
z|2SCAz~?hlk|%ZZhLQ-cpoN}wk_;JN%k);xFl{q!4SnX(nCV#c<c$!+=d>H~yJ!Ac
zkRC3pD=l1NQZ?n-;=duQS4exEUVXM9xz$c7`iK>CJ&$`@X!Mly5|3Evm;1Gr)$=u&
ze^c6+99u5?c8&SX#~X`-oxd#C+t799_g)WumX9a-&&7X`sre><JyH67*O$A3*EtX0
zF@J86ZvL51`e1~PVey{}ass>Ob}2UBpE5`F{*>ekUuWj5V|O_1lw$fLc+;FapO-9X
zO4+|oezLdm=LzoX4D?bDzI@nlz<q0*bXD&8Jwl&uKA3p;?ys{i?rsRbzvOY9(!nTk
zfj5)+W!Ect9((tA?Sl3DuNM8^kP*WYU-$C^=d|9x`5v2=bGb2VDsWtw$|P%_{&nxl
z^^-~*Y))Qhi0NZv_@OF#|854$gIJ@F?}YiLU%rr*{K~^YzwHf2iJE8Jt<7m2HS#yB
zum0Zl<e^C@1H)<VIgbr~2e52ToAf6{_hj+Wi7JvYfdPl-dss0wXjHA1Gcc@fTX8LC
z(*}jQ_`QkFO~&6N9V2ERUcq{c;n#Grx1X-vc+++v>er4BBALb&Z&vNtWBhP0W5gc8
z52oqXoD6aLGJju6R2MJ36el^~+M{ai^Y?~-K36&FNNW5x>vcYC&bxE}&Ut|bMpK22
z^`aBF6AailrGLNPwpC}9(4X&fb{FijnE2)2RF!;}_pek}Wp7EA((ccHE$C&WrK4&8
zbMwA+O0H3ScP}zBbchKS)K?X7Z$I&4N&fo%<$>;vE#Hf{9YU_ue>CK-D0(P1>CGJ>
z_g^ucHR(?b{_m5v`!nq!<D6SBHgYtbG@JA!M3dp*+u!w@%Cw`ZYVz;iH4NlQkonCt
zxBTs!8uf_O{p(a1bxx`B&z!@5$^N`Wc(>S(g|pA;m&&F-jj(^{{w?#2VVeqb*suK`
zE~xyOwdno%oJ&osf2KRfY=3%nUE4jI%`S_!Jg#H+{KYiGanhd@@%vly8|52bDyJ>K
zEX7bz`AL7N@8N9<=iXjPu(|o6a#oWmBg2~GVQU^7*flHfz<u*6yfyl56Wc$hS+`8v
z-16u3^yK8YOU+dok=H+%G92KFD-3d1vUpnXE=5(X@4VK;y@}f9)~j1LdMQuVJfk?>
zF8xiL+_HvG;mZY&xnEmnoy)Z4ipWflFrKhGPwsFt=q&OOyQBEIT02enmh=Q2KdFmd
z)egUxEB<i|UdT5+blt9bPcr4I=BxB;r*bK@n|wQb)%}(DKT!q=zqnOT6g8Z$?|6Fu
zvu<hpG42<d9cNz~et7a=waWP_`#t7inv);Y<a04ZbS-+Rq<nUj!buMX#+x~t`U6>i
zm%cV$UO6ddU84ZQg5+hZ!e;N+KJoi>@08+<_q{s=W?2T6UtTXR;rA)mmZ49^a=PT2
zD4k<3g+GQE)k!<P%ID!($M<s~H{T@t-5HNq8NPG}-BZ(4;C&+-aw_}t)raf%J}UU}
za<{kST#rvHFBG3M&D$L|N1$Sk^9AK%#@XvQxD3?i^+cVFWcZ+Mf8_|f<Qy&DDW*Fo
z)NHk^oGc{maN_noM(3S{kM65XpZui%U)$Ylb$bK2Zyd>%xw%JHXj1!$OA8yK1N7q4
zJh?2FtZC)Rh}&bk|LvR4s_i{<x4k;QdFqolg-`FCe(3j2_ScED#<v%ZZ-((&pE)@*
z_{Z<>-S0x4<W?_R_x00--l&BJ|Cr2HZJi!5-FMP=KRMo8=gXb%GnP$`w_l;D@|%%C
z=i0oVk%3#TN#t(Y-{kp@byAI(Syb$6=>vwAu@`Tf+fOp{mi_qhr1kVQ1#ArF=Uyu|
zm7IuL*HF;;Q;IEqo9N!gc~4p!ru#K;KAtb1@u8J7Dk|f9PO)@pi|wV?#iEy;=f_Ev
z8m@XWKmJ+1t&H4~m9jB>34!*$N2MN^7X{=7R)0L1u*v4tk=(ChZ%vOs$=<bk{j(_P
zo>|{-ue$Mi6YGgNGtFK}K8&&riLIV`c*+u;55`qBX^*=0Zp&5w`18oVv)op9I|DZ@
zR?}o-&|T)zC;jN^9<95#Z~I&^i?H0MV#&ww>&R)2L-J?V_O1y%pi<hoZIYVzv-NBY
z6_YnUnO6B;FYabRW9c-0^V>h}_CC-!%bVX7nDQ-};hsfQ_KE7}d?xm#Z><;X$(8F?
zXJ(Mww4mdrb=|-7oz{7uc-GwZ<iEM|r@{Z3n;K8e>tf1@T3=H2+4j2WYUvFL@(WCB
z52sA>kzAirwa$6Ik?7^sd2dQ1t=RlzS@QiDwv-k6luMpWeed{V>Is|L&yif=TUk|R
zEs2de_k3O8y;)ziFPQCKpAo3D-PhoKd1K81S?16R;|&p4*BHEtJ5#>Z_2HM=T82w&
zr|kXokN<Ey<FZsKNyZ<4WLEbu_B_ktjXB6)JY_p?MN#Rhb61*H-Ozl)m!RoCNhMuF
zRN&nTD`|sMRquaVFbLc^pLYG7FS`rFfi-6s3>h>lnH#>WSB_!`I43)+Vv$hQ`qt<2
zJB5>eu<^ft&9(TY>~7z$8)TN%L>8V6xBO#s`T2APr|H@=cfWqdH&-cp#=O%-)33Vq
z=zVz4pW*(UxgqD%)N3D^84`XjyT5J6-$?I6{VNXsDeiprZE5J2$Qski&3C5%xoXDa
zwW8iE{Nz-Dc3+l;RH^whOt|l#pRp;InPK<#lM|a3tkyYeuHagFq`&dWQeo?-la=*W
zsy+U<X8p2Fwcnbfr=MlWd7As___WA-B34h9D&GITmPa`<*i9>PX{-O{J0jb!7{;VV
zY1mIze;f1tOVr;$!Jl2M)43V${5Tk$<M=OH^4Fv%i{HDr@7bbL^;^w0Y}%^GqS(?c
z>JrY+XSUlcl|EUy_35|Z>616JFc|DU68QeV^gM^^nvdc9ue2te_x@J@a$$$B)Tbli
z1#c5=-~Z_CpOO((yCre&ahba4=s7NJty5kyHbp-YTjrb}x&GRQy_`Cc@_szCzI&c?
zX^r`}a;3j=H^0B!lsR6}tZ(aHmi1}~?H4cpZnSCAV#6;<4{NlmcF*>aviKaoqd+0X
zKf~boFZ)oN2_<t==0;b`#a~|%_^EE$smbkIFWO%{<ND-Z*@aZzlb_#M#r0+c8?$VB
zc-Z9W``8fs4Ik8IKQ)_vXzG&e?1jaNz8?b*Kd6n0sBcgCp7_)JWaaTDHgCp=((8A!
zSOv0-H|s0RI-h>CJNC>JZxOS5Y%^Nf&4qU!)GIx>*HqT)XV2>sMfo>>-o8{ScyoX0
z0U5c>-i^!7>(9FN>+IPbd-Ru{a!FGw%ksD(zG}*M)~aJ4HuZ=12WppiyefbD<nrfd
zhi&Y){9p8juX1hba|5F<iyv8Bf0Xg{^{JG5{TTsor>#GC?WDmhmDOpr`<``ww?1pa
z(zMLwLhcJjqpAw)NyW2bLM{lf3I3kC=hk-TDJMOGew_}VyD}`x@xz=g4~3LH(k96<
zY<Rhz>E9IpTTI&u=d9g#u`5x)JVr6LYSl}T(DupQPqL#TXD!)wbiVKWzYAI9_Uz2m
zV9LnY+}zA)F<0w?LuZoDuH`RGTz<SQf7)Ds?j+mQtGgL0G7Ol%a?Clif8W#0Kj)H*
zln*UvJ#KX9>UYtA=|?p7i!1Lk-|u+$KTCpYx$7!Rod>0IZBrU|sh1Z;+1fr6Vpwoo
zK(**>Qoy-K%i{m`?L5W0XOXnj-*fU#4k=33nu+;6;gwth4A(ELS+s5Q;n&h_f0!A#
zf6kuOHEYr7jbGHN=XakvANawqd7agqb6@1<n&+y_p5MjjQKeUHwm)yyr&sKo53T=_
z6|HuH>wQk<$ycAUvXq-#XLg-gQamlD>#lb4QoUm_2kY&^7Rz5;xMWHEAL$9V?0cs4
zCNl>;-Ymjud&MMXNo(?bt%ocOIg@7ZwC`ZqkUPID&E53ZOV9mkTgvX}UA|_Rw?|5A
zmg8=oom~b=^>tHDZP{8ESG(zaH^Vvho;|Dl?7LSc{N22BwUXcx&9?T_p-pnSuWp>N
zeAX+@UTD1PJ43`Dl~`A!<#O60dW-gbzdA9LzqoFtKDSBexrpwsw_ke+$}=^bSiin%
z{>!(LTpiCs*KUut{1{eS=~?o*O80S=@{5g@T<;oI9awXjVZr6Eci-C;)H}*lx+=?R
z72f{t`td7IY0hU~L*@oXNvU_!tEO}Qz4uGQzV7^{wLDc?vsd>#dU{Qdx9Av`pl0`+
zHFsM-X0FnEbG6ynCSCWhX>8${WipQ?CT}WVug~yBQTr&vhpl(^Cg-2K5|Hd%p>|qn
zo@&anS^SmK$=}~Zul}%Vi`R_rb%HUG>uUGKtl$4J<rFVdpj^4{)rd^nyleM5#MAQv
zev55N)UH{&_uo3D!_!VpzBW<oy@N^frFRS)R%w0z<Q-F-FZku3-=5X#;r|=Y6xURi
zx|uMZ5#H(g`QW7_8HLyFj=#@75xn}+@9Kxg%Nv;IZ@;uww>M$iMmv|80aX*(qnG5W
zvLAeyHX~}|oBf>*&-UL{Voi!;3;Xo+o%R;3FQGAMLF~6=ID9G#gYFmgtS!i&_ws(j
zieqBQ+P@hd`}=3li{|y|51u>m&-V|u&K|`Iz19D{#kPo9O<MEh+cU{{w*TvelbTLs
z&)^QdBlko8U%Qy|qrZ8@%h~mL|HcV1B<<XBuHeT0D^oL!Jf*g~I9p4z{$xvB*Qnut
zzbI|vk0oW(_f0jIJ7!V!^wsld>8++e*1EWd6enkE%g_HMv(4$k@tgXqLzj2&{=TG3
z>g2ENmvWqumMjfr$|XL_|EuIoxwK|M&G%-zzo#Cr&)_ZCe0oPpM9!RP(K>Rm!C}dp
z6|JpSF4K4u*|I49MP{GiU$*ZP>o!K|rY2qEP&&9_QwM|29<h6M5f<CrpSSFY{{7hS
znQ8oI_ONZs)n06U|D|$yFze2pFVE&B-?F;>O1g6AtQgI;=PE^}EtvVx&8kwg$p3!T
zk3Q?#-#2OnzswEdOx&<AIdoI%#Eo-TPrq3@oA1QsXQj5Dx6KUqTkMW_zgtSTJZ(XI
z$kY9cO>$rF%W`-dKb5<0UQp-ZSFiuhPJVOwt;_kIPaZ2*h#WYh5S!qcHnqC+*x{aS
zw=BDvCS-p4%yj+rHm`FAHEukcYVzdP&VBg7Lh)DKuM<buZ~ffxc2@k{X)7L>a+!L}
zss85bYwOR@6ZN$4@!67A-($|)Z*FfX-M&UsSY{2QLG=13Wj;37XFlAMoYu5O<Mfe}
zPE(SuSsK2rd=lCIvTm-BXojG5<=dV(v9N{PTqi^=3*EP3#oLod)^hucnyI}y>u=(B
z;pIQgbw{42+V}{UL?m)_K5>lP*t~bI^5-|X$Dds-uK#~*t;zLumi*uT1<rmh7Jm9)
z$&0t?`H2_IzLwpXC-(n!Q(EHonK?FFinRDArhJ`mEEOLe(2=K-&U2Z4fi{~$<eZSd
zHG&NSlj3>azguy=r{?v6-i5!*P4{gQ@$j1<Td{g;<tLrzXCI_4E}OiE@vYORGxzq?
z^gAlA^7v`{?X=U`i&sC#`2JXXBir|r);Ir#%aZ@!guNCCdXkp={$Wn~>foZ+EuRa#
z?|NlSUAAn>@@3Cb?d{jjyveoTTY1v^+lNy#^42WTIvA5Q?_t)A8f#Tk%k@`s9&)%$
zoi%lj+|4~*Rvt3(FYDA_WfrNbq)D#b_91JE*yLGNBAKOY&Yjx6YxesKXIJg*T^Q##
zb6>k?z{7t#w(3+x{*hm|JirSyK!-j?ZwlR4X<~smuoZj_HfSVo5RCRB?NBl_0BxrN
z4d3~KuCIU$Gm<^p8+&ro6Ahj%*3bUe-z;8{(Z;w%U#D!I)vKKj9aAnet$zQ!avlHY
zg8Sb;d}jXk)GmS7vcY3QPw%(a5sN=MF)i)dHnVu*?&kjHn!P_4O=LTg)Te&4_Wt?L
zB6F|(FKcvdboT5ya){mY>9i8H_=imsYIg0s;BCUO$)VNYRY$<$r%89tzQ_un)5($a
zcbeG78rki?-t&F$wm&5B<el)wJ&*ll&a9Ph<6g6T^N)EcZy)aKTIn1%FCyaoKEowz
z_EywLE-~DsoV8I@r%+|uyBe1rN6XW$NwKKk+mfTZ$+MezQp~Q!uXs;|T)&a-Z@Ef9
zmF?+6N4uWP;}+XR=FMn1z3>>zj8Z)zHc=OiD3j8)f7Q6uQeUsURxs<!izU1rJy{yt
zyq_KXc;xa9(=!b&-==8pJa^$^a^UkbE>r#gOz8C!|FlE(uG~J>-))+<SJXMw-=#cz
zY32SX`o*L}^P`V#o)c;GO==o*M)U0RrJ239A?<0$lMnvgu{5E<*6wY4m*0+GofCMk
z`JNK@oVe_XOjzEXM=P$bt7=tTwR-xQ%7qgjFOqa+6HsL9bjXXn(wXo+*Eh59ldeir
zT-?EUrhgx$JfbWv>V|$?tM=wX>9s1!2~+*ne-z_<E;b`6xzgr`uiFG>;i~~kdzQWb
z(bv)Ybb8dQry|vbZ0!Q#rIAt(#d8$J8t<Mvl3j5+X<Kxjz{R|H#zogG)-k&OwJ69w
ze)m*LjnmY2o_{A?F3Gih6Da0h|6<N7i2@gMwl@L!T~D7(EL`osqfWwa|CAzW3%P5X
zoz5f%U&_1DchB*FZqX@So3J_QzT1{2maLZ6^7v%0Cv@lg-io#xi>KdgN-0;Zs=F4a
zk^FP*<5f`=ryuU<WBVXA+eEFbTkMML-Y4(YSnIr9oL0T;j>_ZsCx-;p_Z-V=&wQ&l
zCCecwW#zl~su#^BCwiQ}zQbho{adm-zF*4q7pSpSHJO!c>w0W$B)g-AK$WAPlD$yD
zb(`gHyBm}b%ct#nGCNe4b?$m6w~prIOX^v|Ums*}o)!*QoBaObo%@Fcw?15?eC|)L
z#Is4h-`uQ98<W?x&#O~7Huv0DCh?VS$Byn;6q0shic7}l<^Px#dHp{4u=~X%g_XQ9
z4KIHME||FUqQl;ZjJIb$uetTIM4wgB$-pnNLhyO+@q&$ue4hUM&p+cT|NRT4ZQKP%
z-IsL<6ur9cW4P={@sB008w^7Q?oGI(^xTfK!*um`H>*;ky(eB47&YvD^)SV{O)&07
zbI))63Hd*>a!mg|4z#G{Z%Ur~zHygp+8mQA@l!wg))mU+f4%JBU3GqDM6;yCk7@7s
zo_czw^M`ZeTjfd7&aAT6LPMMjwGZB6;L9s~RW_~TX(8Xk3iZQFG&fIobb2fiT=AXj
zK>bHCJDHi?`z)n`@2GBE!M*BE)T@(%OI6R;DLwhqztZH|2J3|#JDl8aE|`^idrE1!
zeZa-C@`xD=wbeY?!&x5h+kN?(!k%@aQ|iCRYW@DP`|-*EyDyh|9yMI6op@xyKGnI&
z5g{(~o==f6Zz@zQ^!@%)O76O!=xWtck>y7;XUM52M!1|$(D9F3q|yIX(dJ(K>^%QC
zjqIJ}b%JZ}3$DN8{jDxZUVg$V$z`X`Ds<nt8Kd)v<8-+$+vny7dtWVNvHx*wiL`5S
z>D;3cn~ElR@Rx7R-VvHE_RjWPY(%KQ#Me6;ZfbQ*jy#~Nv48c;tHHdJ_SNibIw`f#
zFW70P2cO*<Ybz`6gZ~S|n=K84Ol{XM(9#uY{r3B(Z^?><HpbJ^?f8$jsjK#wdWhz3
z%z7SIDj=Y_aNg_H0$cuwYP|ayy-UEaG>~ge*?Zj(o@w{1a``G47PzeXUvT5;7KiuS
zMHv4n9kb#->BpTVy`*#Df8E$8>vvUKe{=fK6tMh;-int~_1iS3weMN+s7`2e^A?>M
zlk}5pER#55SYLV<{w>;Zw5Gz*q4a_1sfx{6S3Li}U%kbtnqhm{b}{Qe*#i83f~1;i
z{SSBVivH~s_E#X(T2yu`d;T%c?1@S%%eel&v<b_t-Sk^&LUh-&<OwPZ8-nKePJi6-
zp-zeK`|Eglp#wFu)gJpCDHK{QCBH4|yMg5Aom;IZ-1@%qL0mxfa?hVmv6rl+CqG_m
z{NZ9o$N7BF@`deoE)Tn(GJpJJ^{OGd_Su=tCGwx0X2_<i^pqVwapBNvj_sxAG&XU4
zx^%B%P0M!mvOsfr?G3Bu$o+5)zUb@rB5{(+!%C(3i@i7cmMAG?e~Aq_l=*tc4Ng;z
zBYdBh>m6Hekj>Kn{rr;Eu1z)lQCk15PM!Hx_dB;)HrvH%rE3e$eM^{i)+A5z@&pqp
z$@l=dy4oLZ!s)J;BUKN{<VD(u?PQ;+edsUOzht=|^M9ppJKS>X<t+8-%4|0+Hat<*
z4Bg<R^S(mI&+~U}A;ZRXu8-Do_}rJ9^DBRc*^VQ&9p}IFAK71PVvOY+cSv0eY6BQr
z7?^_^4j{G>=@WazP6J~cHbBBU2GEXbP_qDK=Q56U3`VHOFvM)jkz{6O7G`EXtYPZK
z%fZTUTA2y!L?_4+a2UW>br>4J)_)S;P9lCW0|mz~7#e^Up<sjv&czI9JNwTYaxobS
zI9!a}edqtGrlq$dI=Hx%enj5WUdAzb!v5InXL8TJ{!#EnVsoEa-~9;x_ci5zbCY+U
zw~YDsw=rHYNO_5yNACnFMN_A&mMa`9sVOk)a?6`)1?|nC^oZV&1$h}1KZa)T2r_~-
zZi$Z{Vv{Q+r!W{A!WP~@+p(ZzM0`6IEw=6$avcV(S~$Ms%;fc7qTjVvI=m_|J69x-
zR@K<$x>T<C9B*B2{9cCto)Ic7u1-`S=7qDzC5u$w`C`|1Rr|xyqe_Z8LWihAOusKt
zDRD$nk4gtYbn+i=#=2?&908!jVuZA6!O#%e6(T;h5TBbVS+!sYT6{x%Zbn<06rJu6
za{N}^Ik9Q1VuAshi&k)$g@kNqP*YP|q?To(_N`4-ZDY)rV<M*aRI*I6lJb(Ss~o$x
z$VI1fV>pW_x0kr!5>5_okK51xMVw;VeLC{Nv)^@ho}YiW=kvKUzt7Dy{yfc+=^vYi
zuI%ki#mTL18#MHEY63qf+_)q&bKTO&$G4(5-h~<Uu63F<>(8G9jlX!5Jnj_~`*L*U
zX)MfkFiH;nkilS4xG!Lp=7za<#2VE02P~@6GGR~Sym-Fb`pu<JtJXHmoV|M6_WVpn
z6}xLwL{p`Mq*T{yUNfI$K6BBtm217{N`){cKC3Cdx%sg1-fI&$H>yao@*lGaNuSWo
z?#ZaZ=;{93D38M|PTF(c&8v~iCs+EMzdk`_`t-?9R5F*>`y4%Tb@wIDqC3)mrA%9d
zdei5fh^uRzb9q+k3B{K;pBPj&s-&M}+52{u?PAx^uItI41U&cUgn3TMs#o#7%`@lS
z+S7j>XY4Yue|YRlvQ2gOm+LDd{U_NQzOub6k~t-M9fSIN_3j8x;}Z3gLcWLcp3mY{
zpSbGPmXnUrb86bYukm}g)3#0JXS(IVs(1VaA2YSKvoV+`SH3^=@Tc`Uw%iQ<geOmf
zp4Iu*<xWy6OJQ57IP;HEuEpk+E3c%;GR%x=SaV!olX>-4VWyLlAGJ-0RjJIIS0CN_
z|H{0*Z*=TxD*Ab@)L!Tkvz?@3=XdJHiO_fP<$4-2-6dO>ZM^#L@=-B;z2no1OXDt;
zrc^{WZ+jQZl{8<?wl?r$`>WNK+I!d;b_Ctp&aqoveCE^>@3L+Bt@M5`m+uN%H;<!N
zf#HpOsiJ{T_@1ku4YL==9b~;35Iy_HgyW(u0{IJm`yQxTTkluBAb`<dE&XNurZD+!
z_Ifk2-`!<N_`gp6Q#6l7!p}LI%9TEMeZC|8yN!9m@9MfK-wYOQTz~p=n(EJ;hJ}i;
zvUhGp9N&8GMBPPBhxre+?EO<rk6lb;@Zy>;K121bo}9&=6Ps8Zx>*irtuLCjcRfSg
z_H3^tv!q$uzy6$Yr}BpUyb8U*OEzy=|2+Gev#%ualIYVFn$I6?%$#<}GHktAm7=84
zv)+%B{aVZ3JhV=Y&ph%zxtinfiIq>cUORi|@AG$2CbzC1U3s4U@V%I#IU(X3wgh}`
zNqKWXDC<yo(F?X|^ISNR#lACc=qf*zelgYG?c(HG<J%0U(yktx`{BzQ>oOsR-njVU
z7X@x#c#IxJ$;~X9eBbA`^R3D2JFYL%V!3{Lk7tp-XP@bjt4SYL>-&bTxW)78xxq1+
z7aq@Kw?<V?Za18!!nh_am_gu~Y~_TnQy0q!8ChAkbC*_cyeWB+_rp);zibVkroX+G
z;Jvc+CeNw<!r6yXMAxV?G<>VslbXx3`Tg5-*SkWjt>$<tpS<t!>GA6)Kc6u?VgDY%
z@Tt{v@vak$4hoVo2XjT&vdmA-w2wOUEqPKtbHJn}clKmmZ<6$BGAcO!=e?!ivtGL&
zw$15`3nMjlKZ}if#_cfU=FZsS<hAx^Z`}K|dTmY6iAjg9h)lZ6z+m=!-QFiwZL!)d
zpK7z+>Q|piyMJU&7W;!w7hmiRT4~8p>Hb%Ls|3e-Kkl0RquV~(Sam;H`$Onm{cX<+
zcG5=-Y)i71oAqg`%s<*HKO=43eqsG>Yz)>vrDru>V^%s;tM_h7cJ=>9K~=Ag|7zPB
z&UC{rSn`5Yhfj>dr2nfn3o%^KSE>2EefGYt9rJgZK8!GHuU=X5{NB<1-%TfV{>e^r
z?{wc@c>HRA`ODyAk1uZZlx1O9Ybm{9?-||YO{cE6tlGOT^WU^L3_PdRR=${Gx>5S)
z(dBwyFC6|Ha%jh<m-9a?Sbw1Ss-((#Tcw?|YfqoLmfMu~N;=@<<9A11doSBz`M-p%
zA%V}*|I2h~xf|_I+8N$>+MT+0QRnCRx25r63<8Hv7|&s6n6Z85Q_F3u&KdOBe46Gm
zebYLVoz3_5rTklMyxn+lYUIVtqkC7g@m{-oQ{}U|_wO3lNoStKez$rZz_#5nT#|<&
z<M^ETR8z?%S2>G+GTZWgc{Z;uv)0wo^5g<u6$9<*_WO>?X2!EymAt!r^~zmO`y>x{
zh6DVQkD3;ksXzYxdj02n7uXnX%~6$Ko^oNrsY5e9vY%w~UD25Ls%7HJ6no*@KklmE
zmRcF_wCTq`(Y2{L3~N34riUndDVWHoGBQjm`=-Was&hE}$;EJ1#hto5;ZcR|(}O0x
z_LRD@m66A8cj)is*#$QXm7`rJy<s_F=ePKpjR5C!zSHvGd9Hk9a7lj8lDu`jyy8h;
zri2XpqMtbjzifT}(5C3f#s$nN^^6Q*BE8Bd{g-@r^!-olo!!cl8GnQaUi-IfuE)Q`
zNn#8FPt$k!nf4#wty^w<t8RVO+i&xKZTH((WVJ_O){|zlfR#H+t}JX0zW({X!Fm3Q
z6M{-lHq3CUyIkyE7|k$OGC${}^nt4v*;dzh@U30@*F2knr*@+wTalm8NmX;tPwT%g
zlj+;{RqsM)d{@+$?5%9ixftfHu8iBmB+9`PEVZK2y}vqIIDGqx3mSjpn<8H`i@Vz?
z*!!thuDkT;?K!;|MW;Ts?I-@(EZHWrdCLCd{lco%p&ZArOINVwSjM{ij#N3hL&?rJ
zUE*aIt4_=u`KhJdQPVFaMKdxV;n*}eXigG`r(L&6>F&#1GNliBYrlMRoSC#neRHHw
z=bwB2nt}yyS0u0{h}_ILAbut){Fvg!Vz1Y)U;Hz%*fD|U?}kj-v$DS>UnaX<HCS^j
zO>f(U<FT^#@h`&um1n)`UaU7)-uAZGg`3$s)<^l<9Mia#$~2?a`AC;p5C2K7;=4tE
zrbL$e|NG#$Xoqvyq}NfA0y)>xi?V+o{hd7T$%k~^w|ALqUA#6bhNvtS^x)oFC)aSW
zzfb<bPxJlNe`+Sqn08oi{`y}gOZVO4eWD!nx=l8HPJcq^;zZvc%Sy!cH#+(#uk8I1
zJAchmowL19Uq#*S^_(4WSnsNn*E>;$1I}l2it>)Dt(&{Hx71W)=ZiI*LeeejCnFgq
zT=Mibu&-}9oRxi5>FkEPH-ZndGBlk3(UFq#>~VWwZi(bRUhU0SS@y46|Hijt*1?~T
zp1yteGGoOm{csmQRuL)AglA88&Pkaw@p62(b9QgYzkepNumAeYzg_L}M2unnrQ6%q
zY&!mY#tbWI1_kRG2d>Choo+ojZIP(s{I{>JUhTbBq|xf?*-%i;RAAq&T^BjkPi)Qn
z%p7K+ADbpdr5@Zm_bFTW=`BYYJ{YfLVMyd?ZqWO})R1@d_71Lw4e!)H&SK!s%-*mr
z_u;we7qqQ^xE-14&amckkmsjY+uN$6?T+4vSYEd$U|V*@k@=VA37qp>%XlK(ou9eE
z*YLX(^PzRd&QBTsMA&}I7jcW-<<|WuUqA9&!3xXwXL6W7JKq+&f7d)acELlo>U-v9
zVW*c|ym^<Q#PW3SQ|UVgKQ{Qku*`K!J<`}C=*#eVuQtPjv#VCNS2^9vzxywC;^d_N
zcg`Q%TD*O|q|S;a&zCXDpRcWKI<FP%czDs0j-Shtte8)3Wn%l!$-p(K_?6a<x*kin
zZCcZqCY=3o@jA!i$a&i*Mlr;tIG)(`ao3Xe+7BBxT@A?FwYU7oVSPpqNfk4XET%J;
zR|Hy`&+?nJaKFv-cD5gOm0{hA8+yu%i&k}*zfCHZeg8SQ?(Kw=51AUCzj3*=c;2Mz
z4%R`=z0a=38%6iTZJXBlmiGhiX@fnD3=JQyz4m2lD$(4u{K>;lO{w*tn8Vc>UR1oF
z8>ZrZE&P+z1U;3*?G6D94PTSkc=8ub&p-S(jv?XSvqLl4_^MOyc!!?ayI<w>y?V=?
z(<Ul2CS<tDSex9Qk#y>vs#sG&PMPb&yAOgRi@z52`u+SFbZhOF;`?{(N=~@TA3j!l
z)w5XZ7q3Eb+?w_er%r~vf8fn@M#Pu*jQidP=Q?+}@^AfT`bNOw#K!H?5BBI-tV&z^
z^ZWLm$mqqU>ZX<whkeT|JSNTlxpT`w`EJ?u;a|(o#jIC#F<OzfZJqZON9L11jB@_w
zrZ4++*Pu8;-F<S-A>Su+t}}hne`=MKnPR$IZGz3C>=V}*8=jgPt(Y6cn|ATkf{q#W
zpQo8vm7RAjwR>6cK+)6fz4nfOox*P_SJy54WF)hG<974>?UN+S#UyKt>aNQ2OkcF}
zmu2aLUm7Y~*IwSy|IT-ppI+3aCpVgApP8#rotylN{rQQ@%Z~ivd3a8}s>A5{yo29)
zXXzgfUbU_(Hru5qS<+`xbhT!C-L5@TV;Ft3J}#eZ@PX@O-I=@BkKZs7Xstc@t9bS#
z#!9xe?`5@DiwLWAOP<KNweHELH(6T#3<7S3@AEz;Z(`P2e&-4EN2Ay6DkmJ;)`qS-
z$nmjb)x00)7s+HWG|YT^y4qr<d}PwE`L??c{Pk-%Tq)ELYGi%=)-JIvXD-bCn>jDz
z21D7&bxGxA;j<YH@>oM&FSu$nY0KNA#X>VO=kKlFJ6(L5{3Yit9Fa*oT<`a+YImO|
zYcNyRwSUKitg1xkWi<gT+ruX9w!8c;an-K8)K!Z*O_v{5zjs1p?kcJ8;z2e~oKL=Y
z=~JH|8~ckfR^Npsza%`|&ii<cJ;N&FEAzcY8s)CPyY``$O`_A*yK9xp-97wwr^WV2
zpOQb?n`YnayybsOdD)IfZ+3mU9;g_~#Za?Faq=!liK&ryr~S&CDflnq?w3P%w%okt
zv~Tj>D4zuf)BG|HF3sB|(jQ%ZdfvZ{r(W}XJ>Y+}>GHbFxjhB^Ju7U?W?yFBp#Q?+
zeYoM{3IDDxUh%1Exl^P+@56?-S9$+)+lJYgN}Uz<3z0hGbTT605NpdGwKSPmAANNf
z*I!+wB(alMLF%Cuo5yACkMVsb`&9oeel*u0{!lo>_BH1(yLKMruIf0Y;w(4sr2ton
z(ysftYfIC=cj?~OxSuA@FyrIo9Y4PL?alu1!=?6$)j{{?Wph65x_C#6!C}Xr)^GhO
zm(w24x%wa=jcMlhs>tIWT;^i@hP;!tW$jKryYI53VD_@F3=9uHOY<%3Eh%M@GL8DA
zV6M~idKdqNOKnTc=Uo397ugWpkaFEsP|zTuR3PMRP2JA?Bq@)Bi^aJ=IajS}IH$6d
zAz|(!VSD>c2e$C7PM&}5>9&+F^5#d5&UZI3u~*M-J=wXkY`(vqJ*RDcF*l3jwxZ>J
zfAe|D*0$fjs=V80(d9X6VP^ZU^Tsa|;Qp<im=aW#FFT3VcmJtH&F7mL59Gb&H%$6;
zftREBzP?}Hm95X-_DxKGUFe&6csj$qJBKZ6rH?E$V_jStG~Z$JWu2X&^V81?G0d#l
zzAx!2<0j{aqLw8myPmI^FCZlJ;;iY{^3qrB;T4K!uS}^3J+sJKrs7Y2eB@QdFEiuL
zug~SX%p+uW=ev8C;MNq)f7v(w@jrOL>&_9kSL(^m9UJ4~%dRpPJO2$YVl!w_`|;@5
zhx%=Ptdk7yBrpB6`n>D2|Kbx^Tb2dKuGcpFfB1iZ^sIk#+ZVsQf2*UV<P7(v6JMLG
zoYGz|IN6@{Va|=S=jZ&|-PU?{$^HeJQ?0bq^0|Uem}ZJgTP)S>`Fl=ozl>$vbG|3@
z7FXT2jji4m5cH2#cS_l{*xZ(SHjj{{KNIio>I+{M*HwM;aB!WP{{*9r2E_|<6E~)~
z{F&Dxa(n+glL>Z{=7}vAG>(4K-W_Ui=GCLga{FX|S*ga~n1Aj2U$KX=SNtC_T{$qJ
zA^daEr`B8NrXABS&wCj1Bpp<rFL@A{;u(8neap{uZZ5x;z4A8aKOEs$HR;>-+`v1x
z&R*8GTsHqm(6rjWtyh*gFJE*#_UZY4*BH+;7r35@YSx(izItu*ThsafCURX|zU0-{
z>r$tu#PQ{At+UJsQwix<DYcz3;_pnaOOG9^<}En$eJ9`6MORjR?3HZO+qwPYytlgg
z0cnv_U5?+azj4j<gx;<lCmWh3&3W<RM$kdkov(c2KJCr;+kaz8&|8s?%Pb8BPv$b#
z`&|ERYraItxZO?e-O`|~XO)g@KeW+gdva%>=3f3q9_zwHv>xl^7JrI*ez&|#>&%VK
z7wT`i?%i2&;@^w<FDK54aXNKMe&r7l?K`}gUo`ZDdep?=bJG8-0%}7o#5iWj96uQC
z)fHT{Sl-KI+Rk(5R<2ulTy*F9n>$QTzUb&T*S_rK7-5npcJt5tndMXV-n~0t?q|8%
z)jXBEdt^d=ZLLJt#`W!T+M;F_x$ytJz^PZt&piDZ=TKMYaV4lU^KI;$5AKJia`Pum
z+Tz;n$!t=et8~Y{@b#23O-pm-U+0R0UDhizeLi7(HDmIL$GeR@dBwY5Iw@Q&u8Mwm
z>0R)5*^B>+JRg1ATq7Fc5hShk*E-?Yp`UeTS68n3Htm+o>Kz(0To0UzKm2L4=d>@M
z?z%opwcRQC&E~yp+?kgxQu7bY=GnN~Tf*kV?&NbbkMNvca>wjMaaNR&)a+>!ycd3d
zx?{fZ)k!mED_KvvVN#ZNyVU8+-xbF_rMlHJuXlfzdbY;sXt?06@`BChip#ndqy{az
zv^#b4v`;ciovI_BKUu&gxLj_<{Oe0M)GZX#kqPm??7HW}|I|P1rQW%dv5fzM2gyJ~
zdL|Y|#vpkR+X%E^0K_1ENRQ|NV2VccjFAsxFa(c05<dWpHozBqd)jIRo~x0c|L=cO
z`9em#RiH?H!S76~P>v17ijLKB*Gu;-cxZE8^RM16w*x7<Rzm7$9tksDV`}{LJt{;0
z+JuMV?;j}I2n)a1weI2G?=thA|NQxT-_p7F&YOBUsb6G2=27-2^2Qr&b>C&rOLl$F
zWA{9t^@O2zQG{9m)33dW9~7<yxTYSy{zG7zd5US1dFg#41?B5Yo<5&8`Dj-9g4Ee+
zeqHlz|GF?<JHLltz+=C2s;F_rG;NU?^0!xnCmgPNvTXKj!|erMs<dWbU9%$8`lEx&
zbFGGo-WSGUQ8%*=A3St@MYzc}_WSdWGJI@KN{(5##pw5et+pixl)Z%5?k22^O6eEL
zT~^SY)H!i3W9k*%e#f-#&&)2Txt?r4q;SENpMy!^sj2O(S;y6zLL^<;7HRTsjo#ZK
z)M=ubSbbocmwb&vZ$#?Jm&Z7_FAFPpI4#&Eb<+W+4R<8(?RKBj_j<;$?OKWFb$$OH
zS(%#j`%7JQmH+)$uX)+zLU=byY;W7=xqj=NGt;K-P7&qhFMTvcn_t_8zq?6hXQ@R6
zOC)z&rN^}H!bQ{Pr*CN8=zk>ra>}}cUaQ=+Bs*$M?L&;TUx*yAoyPuhs$!zG>ap@w
z_awIEb9|4myPh#OwVS7W%B@RsBFv^P%DF52eVCRn@%v+Fk)kkVy~9Bs-aWo?`_$Jd
zm~l1lOgQY+do`zFuYz~M1-9&c5kh&PkNnmPq%){)e!4vEuxf^F0z<_etyW?2Ki>~e
z@mOH~a0laJlWbQ<>G?a9Hrm*P6clcI>i9=fh-Kf$u%a7o5|TpN3J$>{3xw>~toBx%
zG+ULWX;Lvi=Tt79PZ8avvDa(&rcK>@E?+f0Zsn;*Q;vLLXo!AqlwWgU>w?aEc7~So
z9Rhw#)DrcZlk58+b?XAQvTRqcMux-dL*o1o%#aK8+H4!5mH0IL4M*9cke?GH7<$iJ
z-`JJlQn&h)sQxtnrANXf<XBEM1TFQg=rKtWJ(jp?g4Vee33+xOnGYUro_lZe!;-p`
ziln71w%tE>F38?qv?{;*vyHFI)%lWp7K$&+y|d?RqW<;zE#XRhTjn&bzoS>=e=c@m
zyTKG8uBFpn6`oM~u|f7<uJzBWNA0hcmx!KBzLAqYN9d~6&E+pwygF*}RzUujxKqPK
z7Kz+1vu=on-Bxw>oU==q{o2xmwG;L~eXbR1tJ67q{tr*qYyS!}r%Lat`_&tt*71mG
z!iS`tl_5?KxN`lYUF4XARg_OfSNzoNa;SEWQQG{fd?BZO;ljwUx0Vc{d+wf^IlJ;&
z-@R?(r@mf|y<5IY#w6*Y>J9!Q5~mB^nu=!RiEm0$kjYovb>q=1`?@b08^R80rM;Tz
z{I^SDx=!J1FHaRIugzjC+Ja(}v>!VOf82NOM#!5)!PCw=LKj4yP!WC_^zefn>xPZr
zr$lnR*PYm)>gTe)SYX}MZ{Hp>UtG-?eYVFUI&t3@hq~_D?(3uOHQ%pn)D+-fqB_%Z
z?=z-zbGcd;Ut!;oYsa$toR7JFeJykT(k;#>j{0R;afj_J+P`C-YDB)Y`un@qQ`yzl
z@E;Acl%B#|s5DJyd*7UTL5F{H_~-Gg-uLS7X7iq>Go}Y8<Xt;^ZL&w!)m#<7^%Wda
z{(Qpv?^Cv%(NAkUyH+bQv@PH&3-95HxtspnZ1QkSJIx$2-$Uo+cemF0N;><aI)YRu
zOtNRnS9)|gj#cH^b4?YyiSsU;T6V!RAoWMk%E=22-h98oVYK@D{b#c_DkYWlOfpOQ
z8_)1|XE4_b$@NPWS8QbAsn-yd(3|Zc`bD~YO0q~bL;O^gx((`W`D>-zPxo(bm>W{9
zRMA!S`-_3$in7;DacyCYfv41s-@DYS9uWPps<PX0YxItegs{DTExw5V4*X!e=%xCN
zN1de`UUeSkJam3#QMq3B(H}0eZKp>Z+-sav`ABnCSn&MjIh@lYV{boKi1_(SdUj#q
z=7%R9Olp20=CI6#+3-f10u#&A?Nv9LL*E-SD#+|qO*q+gWR-z!(fQ_+Wvh>*X>Yt)
z;3Z%_Z}QHqmzh+~*qw28S^G=TqdMo9%>0YJ-~Uygcj9@G&MVhCJ=%=n<<}28Yj=J<
z#GSwA>mhFa?RPdl{mI9rQ!MZ!ShfF<@yQUyqs5HYjb95Y{S=%P?52GCelbE%N^Dk!
z)wJ7MuX?rrRcu}_p6oflQnJm#&FW)ijp32ym-hQ@IJ!RLhS8U*=eNoP!avr{n=zfg
zV#BLff4Js42sQKxuWdcfIJ?Dh%j*T}&S|fRaa=Rm@A0&G5y2TM74Mm|V{Y%Me>$U%
z?-BFio71<RWPNHYe)xFksngrmc$|AUZS~2SPi4IrSJkY1u<?`V$q+?Xo&49l&F)W@
zsOxWEvNviCdmhiHBNJV69F}o?UTw1e-utefcP1%LjjmyQB;Uel&<CpE(I$WmL3Jvq
zt~WHdKr{egv-VVP0AN=C#4lJd1TCY$n9x(ee%1hTZ7(r3IbvImBzUy~o`V;_=7WL)
z>EH!J(&xfyH@k_vh2Id=M#BgUoNE=3gQH^3TiC%1-n(p0?f)%#e}dPR3t_CBDVAki
zo`O%rf{$*}6Wr_iCFA;|kA?bGTl!`1zyGoOaq5Y+G80|q+8!`4J!}54<YNSu0~z2)
zG)!Kha+Y^{`B&8Q8sO4!#^ZSQc`nPdzhOV$0j#Xk>)TCXo}xJkMW)@@k}xPJK=Ed1
zVF{83F^xcr13(O_r(h!k%ruODD?LiIfpQio+8}Efz{!j3ChVP!yv+^*u8uu2K}L#O
zV_HQXv<Uqvd0`TKkbj=po%0gO%?IqN8BP;Ac>({q3<%k&@82-~FP!uI4QK!FU1|Om
z+~x3N7$`nYLFbe5$@E3yMbtXR;SYn`KJ054KoI~+7$|EPNKY-a%jL*Rw+%tdb3n-j
zWsMfGxjZ_(V#?KRb^9}4?p2?_)fnL18^S5;c#1Le5hLSL4PTZeoJ|#?He7~RIvPp>
ztAhEDa<HphnZV-2`*N@UE0y<u4OdQ{dD7hToaOoA`M>|ojJ<ZNdTsvpt=H};Kd@(L
z4fWP$m*<XL*|}xMj)=%##fx@siFi8qh2;(5usE*HE5}x7D0==ZEK0T#jA^fk_*?3B
zGsNk7<6F*3Zgz$rTE3|v3tm}BGlcxq3RXOKRYp3QYjJnwimkK4RGDK;u6!)j*m|yF
zUhK@bw$`Wq2CTR?&u`+!Cyi?_tN5;Jc%ANiaq{eYGDZD+rnyaOE^L{ey!qs%rSBM0
ziVmnOSQN}?G<~MF=hKz?J*#g|5Hr%9uj09IQ;zz{TB~0<J5z3JPO|y_>_ge6WdVo&
zce57?drW<8Iw@1-bJ58d`T9xb9+%u#&CQqK&zMr<m#3-n)BW`;qlHeD!rQ;)pWV2^
z^Y81;mlpj=uU0pHwLN4S=T*^dDv{q5{<bZ5tn!GBU^SoAdiAF11onwK+WI>-M|7J#
z$vUfabmHRAKF9XFTotIJW3e``Fd@}*y8rY=-tNiXUju5KJ{?>7{@MLKB}pq~3~qmH
z;IVhy)~5KQkF#~jq!b(TKPQ@kCOv&sH<gh=MCd@$v$frPQZ?7gPfmNZE5mV;_402e
z+h!S_T)h9vtD+;$ZapgvIhwZ4k6sk(Z#+A>YrY>>>$1vx@n@+sZ>IeDaUo*juk1qA
zn~yTTFI#=Z^LF36+_;pM=jzkLw<gZ+6J71oxas#jv!ndGnH(<4JHPvpS5qMMbZPm!
zxiu5m7(NNrY+tftSH6TelkU81(U=S~7sY-a-IZsm_cA=%6Y6mP!IVaZDQUC$L~Pev
z&dpkIdCiX>HnR_Hwq#&(`z<!5M}yyaTh@-p%*(20*vJL(9aw$Z`mg*kx3YJ6aT)WK
zj~ub_d6#?Z=slHdrpC*x8&vt#KgHg8%X8;7%M=dQmCM57({HnV`&ppPATzHcn(?aa
ztho{_8IzaZ{QbD5+wa+I--FL~bl7w2`Uam~`dPi~_^1Dt-%|wdOw&8C;_}(z;stY~
zx#zGwKX~ic<<f-(Zwz+doVq;R>9W%81(kbtg(dR(f6rSteQJ5?%D;1!_ulUN(s+sI
z<+V-hvW={{$8V+nHweG>beE-D>;5BGC)f)m%xj;y`|6!Zg0J^Jxfre&8+d4+#{RJF
zVUGE7x1`r;vESOgfBlya_E&d``jv0k>N02MTbB7h&z<Hr@4mV~?+o*g87k8!EZNDY
zwD9|d>+bvcmghBB|M<$(vNh$?ZaeXKBZ2Z6=R_GQgcu&|`<j*YBOsfR`NZ>=sbALJ
z^jR++t=k|f$e+`2;8d;hj;Tkkta!vdYqB!WHHWN~|7=fe?)IB5Qs^#nGQn`prk(u7
zo}bt!u{L|2o5=Jbh>!h2-P;ETo-s6>dvf@K#J4p`n<dJXGDR+YHTZc!@Bq)G{}Zy`
zRB|!9FL`U;uJ$ZYYx4I0-_jV5Gj8Ji8O~Ptp2?b_Y<12qsn>~RJAM}I`oHl0PnB7x
zE=?)<v}@O%{4=lO)D~`E9kI6Ecjm2SzbeeUcUasO$ygh8o-g18;|)_|pI5Us%>MB3
zkfrrCxd*ons~p}u<Hya{YNB&1CqA_2$xk<&r!rO0d|T=Dizn7;GcmNbe!pbmeS2w)
zk?m97($?>tw=-wHi?ZmEWjV0p#EPpvnzxGFq%^CVukk%znz?*i?oT@l!;f#)zpUO_
zJ7aRYXYZ?hvFXnzdg|P^yL4<(^8Hl(;Q9U+uANzQ$#-!MLxN~*L*dMo+Cj&{uT@%P
zCT{S4Udyoj(#igfKiA!6D!N%BTh=JSu{qg)+bWO$JFo6Ech3xpSg%lN^l*Jws{Rf>
z@0jIl4_~j_Go$oLGv_f|AvJ~xrw!VRqcaz-ZaA6rHB4!ZT4i@W&y!9=-f-py?VnFn
zu5Pwi^*UqTs^r9b$v4Hfo~w6XCUbQkQ*8RXN5^C0GWFTyPDU+VeScc3VM<I-`^PWY
zDknqoa(4)c{^fn?&&R+}Gkdb>KE1|};4EdMm#g$9SN-jk`M=7iTY1YRNAte(C)RDR
zcyfNLa@3DKiRveKr|r>WdR)QH@SyrgxJdJrQpL&(ZrO8l?qxAH7_^17rccQB*)r*1
z<-LSSt2QOPZtGYhdu;i7gM$uolUY^1UWuNlvS0D!{1TyB&%Dbq9!)Hp<Z7?xZZR<p
zSg|;Ld%?0q8-_bSmd?8+`NnwKliu|wORYL}#Fu{wS}yi(orL9kai8G&#nbGkf1Jbk
ziDRzSealC`I%F~#CP(!!)gE8>=(5eEH;a!yklt4H@Qd~2i^XRS-R?elJdYvaRQ|k4
zJ{i0*yo+zV&t^HGXk%YCZ$s~s2<I&f4RwK4TDw~eKfK-fONVKOu|~%G@@<>F&da2~
zi=A{^@kad#yVLsh=KrMremu9j+{0S1sUrXR<IvhkeV&XmkFK+w^I&*eT*AikL@}kP
zHhQATW>JMXRi;AD5?lIJeost^JMm=dcDeWx#&3qr#jmG3yM0pK{E~GBt6M=wV-~{%
zSKSMtuJcyRzu!Ms^@Y3jO4s{OT&s<Kemc(a@0e8e^K~;47adDck=)a+IQvi9|6>!F
z1bIp?s5wt(Et{N_(-$#G$5&Ik`|NYce~J^I7TvzNX2%JYZHx?Gb}l`2ec#3FZM@eH
zPTl$4bD73|A?;e-p3rw!coZ2JmhHQx-*)%2k@EjvD|Uu3>2I6n#dz8H&q3`C4LO01
zisI>~zV{b9?&efE|7F99`BB<dZ+2R)o1C`rqW;CdM?D_Q_?G(gk%?`b(Eb}0OFuol
zbusTSdu`dJ080ybfp>LRW?Y#5#qMR;%#X88-~HZTEFIpa?efv@*IGBXOJCFUs(bI$
z*}Z4;zH)Ej$#V(Hg+UP_exkY?{YsSLSK9Jt7QEUQux{p0X5-o22_~`AR~1HBg!SmH
zjN57!QkSnTzWB_$$B*{Sjq?yXp;ONAVnzZ#!-V5nlQZMx=l?nM)9Ugjro$&385&em
z*eo~9T<vdNyZLHOuui+Q+SV|R_{ry^7$qVfzE(1L8WFkIxU8<_U2w7Z<g3RdD%;Qa
z`c=)`v-Fz#`ME(8H^@9Qe;aqKk@-pw->ZWY_;#@c6t;X8e$!aFo55nwGtWulB{TMi
z7HD1+eqZuTx3uS8(&3ox`d-ycXBWrM2zkSoCM^EwgZ9^zmkk?j_OFq=^Xf-im4UV1
zy8d-m!YcagyVP$j>YwEPKWg*Tln>jLzxJM1*(<JLtYo};+37ix#298h4L$O9EuYqP
zhW2;d3>%X7R~^o)UA&)h6$fW~N%*?6k?&gO`ui=fITgsTY>NBDlrOKXB%g$T>75n+
zZBLGW=_lJ&vPqBk|L0?{o9I4^al+?2ZVdBIzP4s^kl?+wz4y!7T@AK3m#4?r-qM<I
zSzT&j^pz!>znh=2y5*?8H+N#(<4?`ESLZPc*i}u9lw800{6yz(i63nk8cL2QE?ug5
zLG7$G!wHqO>LrI0?7uF5;J!Ot{ofq5XEpaD7Hy9zd&$~cYghSkRr%Lfdp3ytHCpW!
zS>eORq<){Np*Lk-G4s=Fe6QEP`+VS+E<=L+7Qgu?O)Q=EC#pp{FPk5Kcb!|{{eqLP
z%U5syZfRe8E<Ll3Vb`anClppHzVOSNylqOHdSu-r1@7FflV{%FzvzDNgvo+ldFuj|
z_Wtxcp?@`U)6tB$JhlTfE8kE2IZM|>YW{>LZ!=hzf341c9GiEw(9OI4-rD`L%Qf#l
z*`6g^vG}vLvO~j>KPJMr*gO~$uEtMu{FThb>vB5ziDmE#(-$ID$wm2V^`-|O((`60
zsLy|zZ537ZIdH9}Mx@x01zlfw-2MnoRAE=RFMl+L`@ed;dGD94iiIowIb8d1QUASj
zzM0nR2{R_7b8a{O_FuX9w_fh4T}OGZXcY3ii<xM&|HL1jZS8-XUU1K=VcxL8=*~;g
z#-nRe1=j3eGxyEc{#%u7vlx}_{bOUcUweNs$Tn7De)Yem(}J^X0@V^tP8ye(W#4*T
z$?*7R+S)z3uera^Tk&`uxA&#{*H2%vspGLf_Vnk0A5N2`r+rqqS@rCK+Rl0FMHW4|
zdy7@9{72U0K3|`+6YmCYPVud%U3ajd<$G89x5xI|4QHIm`a46V(n#n12^USfM=#ho
z;@E}WUC?=TMX}j`{VTJ$via96K21MXb@ldn_LV1ZpJh&a%ky3FX3gto#iut{9=!bT
zZ}ju9i7RKne!5;h_GQra0IkonCsg=-z8voK(c5F~p5icT*(s)i6P%68_ANgBYUgTJ
zW5$kq1z#7P$rC&2-8^&K-7^UnO&_?)8sEuVea`sEwj+zvwyA%el{z(J<F_Eina7nT
zz2SA}NK0`vsr2J|zux2SWCxX+%X_zm*TkjY3VoQQ`_}hWxz*}~=QdHLHT5sE4Y;cJ
zFK_;EF!;0KliLh#sV~jn9Z5Kwxc2Dgq!Rysrq$W0&P@z6t~_6Vwc)~5waGhex^3sM
zL~t`CywRK&&wl0+Tc+mQ`OBUgm7M<;b#r?iV~?Dz=-tJ>Jd)amkCf)@h<#iqqd1?L
zL1ouG;Va$zN?R?q?+$;F_Q7X;txNwduH(5&7N7WcYoo)p!_tTTEOGXnYyNKSx*sOY
z3``Y)DbA$|kyFYR_)U0lBjqm7<?OTWFXue}eCzXzh>4AC3$NPChqBy#W46ZCJN5o4
zDd8DR2hNGqE|0X`z_oLApwj8D7rZzbUi@Em?8oi@a#jqJ&n3V7o>cYe{>%wNL8q;%
zW{WN?*Zz09Vd*k%uBmO?|8(-b_U?V`z3TGof2!<avEqxWx?e1}++KF!%jxRkSyqPK
zR_le29M;;O_B(Adzu5Nc?(b$t*Sg-B%<yl{qyJ7mC6#-&tu4#B7EtPR?ZJ2Vs}*nk
zde7XyR5yQlxZs1pt3U7m3zBK*O|KI#ZQRg(>&(xM^<57|+sm_9rnVf)`+6xqK5XW%
z&rPNb&mWvWdS~u|Ezg!kvu=N+Ceg$7CN6C5yNS{J*WNV^t^LdV{f8b~>6e#!U)N{X
z@6US4ti+q;te?lT!pp2*T=?yu2fKI}a+Jd)zggZ+bIQ8@EF$RGRhMt|@wR=F=5Lp{
z(iV3owEB4y!}%+%NfIip%_@F*_0_+oHhxYr+wXV!?CmGYtYMR_85x2PuX?}jmaV~?
zlWW!HY`R)~(MYaCbScM#*%K$kmYsfZ-DT7EYoY6$66J0(GwBHZ4!eGPLi3g#l8ZL3
zKGe7AscEj+46_-2Syz9g{>r;1>h?5t{mlzHn+)sKG+weYI5+d9ZOfgL(RL{H%s=kc
z*>2PCb*QPE?Xh)jWMA+@MYC*I^xq@CJsF$YW?tRj)4Qwn&8d|Q;x{{%&*XL6e&UsQ
z{=Ms$JSKi$cWYzA<%BJrj9-KQReuzI|0e&+qsazwjZ<q@uVl$Gcyp{LH-^FI*i?uA
zUfo+bADA59bn=!F2iH{9Tk2~j99q@CE&Wj2W9zJA9sh%Ol<o9o6J?ORtMb-#u5E?}
zljpNyr6?8?tD0~3+g{K6U{v?<{<KH`Kh{eZ8J_<?i_2-TUvX^#pOWUOc2f=``I#oC
z&%8W*;PG;i-0G+~ojrMi6H=$WPI+pb<kYxv$&)%C;qr|AMT#39CWJLh7w|~jcPpxn
zwNVZIf1}u7qhz@o$L2+`c^CHu=YQ9zlZ&$3(d+(7)O%@ZQP{qZ31U;LOKyMHSf}&9
zC~<NI<BjUGbKCyPFPA!(Y5O#9i`Iqx#o?Eax93keFB>`G*2mOe_hK7PZW6RR^=8uT
zud;f%)jxO5jw(NID;gCsO?2iZg^#Nf<)39(m0kHDXkI#5Lq#uD^IIgJT;2Mc_j2B;
z8tVJ*%2X<Td&la^^-zx8av#I97#TR$zCCO!cc8Ag{5rSw`e}}D3^hMWUOeiNb^UwE
zUPqRd3xrnXt+r<S&K9+7>Naif?!|#KwKC++@&C;_y5xNHwCv|*-`;P(;<GSmS#Z*s
z#~oJ=8cw`q(Hj3-CiK+b<0}oedaZKR)ptB~{`Mr}tCk<x_Z_{XDEoii<J^6Lots;|
zt&e|FdKh~@$nw<pn_{umpL*PPFLa60IKh1>S0vN#(;Er<&v$0Hepk!OUv3+dJikr$
zcKpmGT&Zb`Y%V+O->_j-Plm76-+!++X1|nbZSvn!y6b}33je~mGOv(HM`onzDirS!
zntuDx?bGe8YaawJI>V+IVZGv#8>?OIyXWs87yo;b*c&eKjCqgDnc3URPs;s>SYuPF
z5GMR^?_BXTwQG96mHt1>T;L=6`N4&&bAHX<;LYB5JicBm_T%2$KDo0uyyi2=P4Rv&
z9k}u*XW&Jx=9GK^oxEogXZ3&lbfR>7mq%Ln&dEnLJ{^mQe<?kk@7TKbl+(F!_a@I}
z<cL%;mi~Bu2Uo|Jxoj*ly9(StufH_yT~PN`h6N&D7d#4?eeqoI?cFQRH0a%vRkNH@
z{(8d1FQ>u+=Lt?{t(@tYl-+paW~%j4fA#OT1O1;YHT+hz`-<7Ljo*cYAA2Vjr9AmJ
zJ5u%1{Y|g)nHdst-adF|z9Kr}%IO(7E2sY5dgRfgUo(#!5J*2-u_C#8>7C6ww#Pp@
z_D$bEd3JW-!qTG)_%2j0{yg7d@g2Q`XH0gx<Xv53p!xp(2bD7pfAkgJIJ<+!fYE0;
zK;vkjQ9lz4Q^e`KFu_4EMr>iBpzo8KmtK;gU<ken12pId9U}$}PLe%F9P2slu>#N5
z&#(T4m+60+wa9_vEXVEot8)_sJ_yd5W3~RZRosPwdCw;mn%`AU*l0GlQ#kA+Cu4SV
z)z68?XCL!Y`}2U=rX@Y~)b-MhCronV#Xj7A^ZS0)jyR!pJhl9n*$i)=nsIV&h1lZW
zFWPMzCVUd%*t7Z<&x2Y&*GIaBt~xh2Cw@o}eOhyBnf~KzhV#-G+)oD!8*K`?mAtd`
z%)5Qdcv-hC>u31YIxA*xT{-*3MJ%%wgD&!h+CO+c`H)a?Qe$!Y+R);PWjoe+XI~2}
zS)UfX_7^9c)B2q=liYQFbzQx_>%dHn{y#U@$4<#LPF!af-TJR+O6H@9owiKtR^*6h
zWmKpdHgiR|pG~&-a3zSx>qF!PK4&-glng7E3&E2AS&m;xm+53VvOVd5ZHFHN>w=00
z3K1Js^A~eHztFKy#IR$PNl1R-;YmM~>t<hZsOc2`J=5y*<!QB#CoaAvaOi8x?gH=n
zx!tD6x5zX8QkZOUOQ*v@XsJ@%yI+Mb4W3P#>Me2KvNq;IsjHd9%V7UC%vbN5KNNeK
zbZLInwWLao&X+G*P3kfuH?B_9<K)xNt2Hd`o^q$F-}zFmn!0wtnmv#2su|k{1~@K|
z^!~GE6Bomt27&a?<~zkgYZ;PGUYKUs!EjcmVuSkL`Nb{gZ5!fFCtI1;<o=8a_7zxV
zAQLj5Bma|4!gHxc-LGMXrg-z_*;FYjT$B4Gx<jPxb@BmSmswlg+=N8@cF+2}I5y*$
zs+sXY_YXe0_m^cUJagK!ZZ*%AmWZ$0pH~LW+E{h$;N|EJtEJWfk`Gq7CZ+MJEfn19
z^8T7vyul9FHO!fIHGECaZ_D>T5SpY}aol|N7o!;#j(&SLx@}=P7x;0H%C~80dw5o?
z&wpxnRG8ac-!1p^MQcMt;hSmhduPr1we@MhymO&!2d>O{I#100q^er3?DczxisTzl
z@YigAbXMoof~40+3!HC$Tx%`)ruWs=h~tbCmS(%hEcvo*&&Sa6MG1Ry4k&Y6p2G2C
z3j3M&>`R<iKM_4V?RxY+PQ}%~b~(B-3#}0k(QEwS`0o7~AES`@2@73Tv3eGTe+hM7
z;IZ`J@}Kqh7rmE#Qz+{5ZFj|8j-|^uCo}D}QC9qG^(Hi&(Yt5YeEu1$8J{j#VsrR`
z<GZvb^<VqMh0KeRW_+LZ_~((TO(N~TcC9=AVz*S~mJnX`l^vnXr~RjMet6t?=jhp$
z*;4iUbCU(03eA0{!+Uve(vC}~PsMI>IuNl#@k+hj$4!D;>m9z`n)@ia#7F$DY1^CJ
z)7|g2=kP2!WOzianqxZ`OZdXNPNqrnI=!Y<t1|8T^96hVwmZyG;+8W><FI-0i@9!<
z%%^)2HzhqzdDO3*>R71lx;g%t*AtgFVW$%O)#O_Zw}rJ>FzZS*U1k1pr6ro<`6QO^
z>rGoZjtH^+TEO~OjcfDiZK0EQ%+))+*Pi9h+z!iLBev=t-1|T3ws;<?@Ncl5%r3R)
z$3&krEz8_F)kiOx)>W2gcc`m={>J+E^6!#c3(VLaR!zF6aqMDh+Wv?cE}yJ_I@EMq
zvrXFi_F=5f2JTf>%<EsZJ?-W>?#C)T&+bv}PqxDa+<#we6+2v2sU#Y)PsNsf59^M)
zFC5w8OXjzRu4(zD$CjZav-t$8huUi0lgz%J9%k;x3$k0@?-Np8p<VXs{Au+CZ?{f#
zOe;0MCFHHsv-a`Qzp}ISHI9lrI#=$vP1(^$^oysz_J<u;b>iQ?G&$8-w7@t-{MEvb
zUt@M^beDerKY{ze+3+uy0_I80%>J_Ole5g0FEi|xK3^HRW=i9d?Y{y$nIE6@^5Wm_
z5;39QsO7$!!8@18HSaUO%<?-GV>_ecVC@{Hd-=Ohw#`X9IKMeZkUhNRU+?Z}iTBlv
zF~t)e3I04HcVb04tFOJk!-h*zk;;jULT~d`8sqQkl&*06c>UVFwtKC%3N8CD#~fDi
z-mzP;$-n;U8@FkBJrY9I-H)1M{@<^DsJA-)ggV2H8>iJpbsF{->XvbC?_2iGT}kcQ
z1j$1&rc4EbQy)%y@}l?Y^oaIgo~G=^yA|s1OvLq+9z|DhG~cV>&Z*se`_RN_xz>xE
zAD79varB;ke52O5Z2Ek@Mep~|h&I37AIS12?Xt?Dd;T?22d<oYd(vfPN9E3^O>3RC
zf&&ge*lwR_xMTj|)yGe-6_2ZUe?&a4V&~KD9Q|pohkp1s?KgiTzW!&aO#APNRkvp8
zt(m@wX;S8a)t7F6n71*8<;~U$C2x*u{q?o2-Fx%8{}O+Nw{il4(?WYT-a8WdvR>=P
zqHMwAL2MpD;p;cAGOn63DQZLBjXe(cnuAI;MZU)tY*@YRsZ;C2z-?16Xd3@WWc}iB
zZ2wGm8?)0pma1G6;yZcID$!T>LFsdYH4mq?MXZc#c@p<=ai_ofR`J#QA_9^huPvIC
z<6K)PaNl6{#1t{9J%yE`8axN?i}__JL@6Gft8w7U7tbVjp+aWetI4&pEte0*+N~FV
zy;Id8_~B2r_eGE7_x$jliKPtzu9iV<2tx}~_{|K)1|;u(4sv(m(sxNs&QD1VNG!@N
zRsc0Wobz+?i;5MD74)6+b4qjbiWQ7VJ=(z#sRdyOT_}k%ZHQx~1m2?^E>34+*ip;0
z0$X^1ECGdw5&Yx;W0(-gOHP?3#Q~{B&iT0o`FW{%B?=Z`&*c{d7bGU9D(JhUmSrZV
z5*r$%pB#W39;9srM?We6dclE%d>!<HgYO@9UF9?hZg`sT^ulk6<mQ`wSGhm<QD-y%
z{Hxr1j(@iaU;knG?_JBzmu&Rl=x*6S6~f%@vdH;{d8es$^uR~vJ!{#qCJj({gOi3O
zJf|3vaXcD*CfUKqvw+&$D7l5$N%olZn2_VY>dw8pR6SYA%xPnH(m}mx-Lq~)n<RC*
z^<I?d-FVc+H_7M9lVf7*)sp%pk`H%us)>m>209*TYMQ7d+p<)=@}K;)bMv0+eE5A|
z|NBpq&*yHZou4za{NBvXO#kW?H16np;W#{L(V|0ZS{@ZGs<n3BA*p%FD}H*~k>f|7
znxA4y(bG+yzfp5fDF5t>k^5~gl<W2SYEGFh`r<}8Q^CCm`IYC^TQe~p+WbandwIwj
z>9sj;r{B4@#xHS+M&PR47jj)9kDGYUFP>+foB!o>*TbpuvtP+Jn3OP;_{93u>ff#`
zVG4TmO{+VF&%gDZu{kS4!=H7I8$;(a{t#)1-a4;h@BdTlw(~Oh*hl#ponTLxzUbVd
zKWl{pZ>m%}-V2#qFlXO|*V#oYxKCD0+T&Z)bhyD?#gnb;r0g?}g=~ppl0}Uv2jlN*
zc{Dv<vQABO-R&14&*gUgyD>9Z->b=E(~rpGS-O*%nf%^WRX?0CEvihV<H_smsZYLc
zFP|8x_5G*TJej18^PlYH{%7AK_Ue?b>e}pyYq)0^KF#{H^41zQWxL%TlLV)VEPr_D
zLgU7nzxXdrQryzP+IP=?|HW0sevjf^51iv?VCiv5QP2IAxF{qob=T@szx949Zk0Th
z!q9NZ|GeA51@k>WX782rUhjW;h3bu(&s#FYGtFxF7*Fu;t+IETskq0jKX6y^n)PAX
z;b-D&b3R`?Fr(?he95cn2hXfrm~wFPg!}5zvu@1{{oB^2ynJ>@Sjq0~S6BZ0eD1mU
zK9!mC{fqX$sys6JkE>_V@hzX?V+$w8W}T{>oTK(==gQjX!&z5#RnlKEADY24X^+pk
zdnTe;^Nbqw_TOT0*njk;yv`ZjIm^E~&+|RB-0h}MrM=nyC0}KFteF|Q%3j+<*=^i(
z^ze~0f9AY+zWwgoIdf&=znYxSVSMoI1M9-syOu98+rH=e+m+cX@^)?dJJ+CmwWH>~
zc%}oh_cL294Ha8^iE;hvteB0n?w#ILo_J3B!_NOk!LCt%O*aIDKW{y_FjId$<Nu-!
zzr_Szaw=SzbFydq>*q60t0zodIPbM|p7q~FpHA)he;|Fo+jLH&a9MV5XJhs4a{h}R
zKl(bWms9iYEmw981BaDN3{%Y8A8*Wdxi0_fOU<sQ4xDAb+Jq0S+-RVov)#0G#@5x^
zeCO9#S8t0n|90p8OvRNFn{5v7Og;0{c;SqTmp<#dY%vUslhk$CE@A8Jx@!UFE+d8+
z(&hb6*x5a-It%xSKi#c;y7tO(`?~!md(?AkXZ&mk>pqcEVcg8}LD-j(A@_OCzVh;W
zGuCw_x6bDO{k(L|!Zfc}&#xK$E{OGJc(V1m%E`OJd&ItHyi;_zx4K{d<&B0u28KH`
z4lLJs$~S4s4wkdFAznq2C%gNiPtNINh;pgrV0g#Me!WVQ;e^M${pZC)gN)7x2i|Su
zD}2Jn(CkrkL?XHQ)vVin*REdr>nU5E&dYuw?Vq5VL&o+789|?a(hNMW0<T$H)q5JA
zJkepjeTs@D7sCbJy2TBSbK(!CNfsXYzuWWI)TGIi<n)bM_W3?}e2$^P@paVA?B`{s
z8ac7Dzxl3M&#amD#Q(NF+j99i_908ftt$#A>Mi)uF>}xM+Q&W{m%o`|=f@_Y_vy#X
z)ywje9~_%I`E>05)jazvBCdS<=(^!L<D|a->ZS_)kEQOgGZ_5R(f)e#^lz2tZ`FQ&
zejfZRq<RbYx?Dw1d!q#B{ZHrrPMvep(s%B(x|nQEhJuGK2iCrcbGr3=mDtSI?_AQR
zLc%k$*mU+6&w8FXyY|#P6?gMR@}F*U*7-3cq+PVmU+sJDua%5dx97eGNug(JUR_#}
zf5o@;ZO~N1?A=kPTV%r-Z}b}H9ac>WR%19}eDY<(I{uTf^>YOLrUYK>sAK4_e7Sh;
zUIvEj`U6FNE6y5Bcv2Z2+pTr#PS0nzS0S8oyXSrQedUy*k*-nt+!e*flRVvaJDs1b
zGE?qwU2hME?DRiBI_g){^zE5*Z!2H(Q<L3MBKG$>HV6fp>%6+OZdH`Ip3vsg?N2_Q
zx3qls@U3WkZq#ebRokYvDfD#iVpwp(Uj60IQ`fD;pVh8jzpt?Lkp_c++dGaw-#iT0
zzh03(Io7UrR!_>u=e!>ySk_K?Qo+#hq)=;)LgvE8g{GdLbUeHEX+NH_Wd1G*pUbzG
za`F|<Hwey7G*;c+xm{}VU1!NjPLtG<d^QQktkshIvTB3<i}kwJC+0C&{r)GMwq~mL
z-?()d=cSFePGW3e{%m5xRr_p`3a^iK$Jg)|Z_><dB`z4p7*y-8lv@3`a=yxK=3EJn
zS>EO8AO7CB^6>1^<H}bB3?rNuAGp1nYx<T;D*u(|FH2i@$a9*Dma|7)F2{-D=aDjZ
ztgUp?#by<&<a^)xb927crTYabH-FD_dvR#V&#I`eObkx$U1lde^H%xST`p&ckyDM7
zN=uDXI(akO)9Ck~m2V{SSnoa7^4$O4U1jF+wG0N+E>8Np{?I+<r1xRwMcIFgk6$%q
zVEQX^Kzm!H@3Es3pC}YNoIfk*AYJu2qt=Vzi~7!<=}8H%CeEI=H>6uG<bYM#Di3e{
zU!D{0AAFEp|LMxf?*4fnjDE`TO^lAO+y4Hr!PQ%DW{A%EJyXP;ued=Va!OhMlKQ~v
z&U@D#zW0b`O?SWh{f2APj+;7@Uf%bsy1Y32n_&CFhNFx{m$uzMQLM#wbpO2&Y0oQe
z%X`*I>}*JRxz#dPwK|^p@VTX14AwfA?v%9&>H5+X-d*x0#ImP3RsCM;(QkiGw{bT8
zoz&78^=qTL$bn2h(-qT$Wp<xj_5I$VTV)@W@~@wmdg;*eC98ILys)!Xv(c$|`u5Qd
z7qR=Hf^*fbom1^hOlD)K-DuKo60xx;{MMcDNRM~DC(i{+f4<&!ch(lE{^0rp=CTY6
zW1qhjb#xTa?_jao8mfB!(xFttKOR9}Z^!-WpLyXZ(+&Ar<*KT^MR}b2yPmM+M9P))
zol3kTcWu7p<{dTJi%Z&F7w&HI$>(P{|7*3z+Bo;8-N*KeUf_&Yz4a|FEYP2!!QR=!
zj=xf1w|m&!#AlDXCiw*H*=+oj<GW}1jdkz3V;gh#%zMRn!aLM?p?>Ak0B46~hs48=
z6f+&_p0Xv4AwfcPOJe-PW&2`dnigxvOCA)xzquyfPP?0RqqOzwcoE;fSB^eO4%~b6
z)*c=6IOdX|JB{_rQ(7mgl;2u)`)!!zX-BCj>*;oDYF4l<T+YCu%I_R<xkHlkOz6|8
z)*}DgmoprQo_%)z)2UXGFSUA}h&b!i?0N9{j=dM_fhju5KR*f-mL9)%F-4~)`4LB`
zXQ9b49)>f|FUv8sEql+{5MNfO#oi<Tcgu0X24~kFnj5v5O-%UqPW_X*{cB)!)sp!I
z0tudWD#nxliHYC%yHPEAu~FLco6H7LVzTje6ADsU5<aA^I@PUzvXNnq{8`3^n^8y4
zd|i0@+4IUy``Z&L&xcxO^=5k+f4jOO_xaW}rUtQJG%hSJl8dVp<JcK&IGHp0U9o||
zLz@LrTvn^EUN+z;dc3%@a{ufL0t~ZuXGayhy&1Du@2J+NtaI-#ulD7x%3S+lfqQDH
z%uK_(pB@x4+$h+qI9uqf!JM-nN*Lt+sa)@k{_gEBc&xZlDxF1PQu%t7D+T$t<6O5o
znoRxt&-LAArVqm66W6%U|2D%fu2yvNCgtYOeQuMkyQ)R+y_+~Ic(d3(>ok4d^^Pa~
zw4;L}qdm9Dn@ckE9G-r|)adbYxxAYx=d@gl`59hFe7WKCSIm#&-qNmOUaO9`+^yZF
z+po{JNp(&0FTDR>d)aPghtso{ysqJ0&e`j*d|Un56&kPQ(mWU361e{^<IIt%`{HGS
z?as|IKI$WT{7d`RLwXP2uYOu>{m^W4@%nY_DcnideqEI4Qk%19m7{&NZ>Xz#z2mxH
zvBzd;+n@Vg)v3zn{$bLrwD%#rvt@4DY0c#H-zU)<Y$GSIt0&+5TxRKoopa-j^+o=K
z+6wKRe_c`Xt=F67o-Se^JyQ(CV$53Jywjef{6e}Ub3tJ662sL7#&3IPwIut@(4O^~
zsX?@K+v_UF{TW`|Oa(r(54~SoROUZ>j-WT+i~_Z$lv}G8Y?Wo5;o5ukUasknt>5nG
z&Hoi?z@I0=ul@Y~%Bz9RyN{>7id=1A_H_4jiO1!0|8+iD;$B|S%ad<kRQ<;F_s6Ak
zqSx<Xxl<P~J?-DKKkFy$`z$a~pzQt{OZ9pwm4g%OEYEzuYktP#hsDgpj0v3k&rLe~
zL+hmT9^;@}X1>Dj<_FKWExIvHP3#bddA8pUeKk+RFK!B+M$?{z|6#k3X*kg_e(J>b
zw+1hyG&KzubLu7^Tb+O5wD?@@^q94Qw)=e+=_a2K?EbS^(uL1ywxWUjHjA98;xpM7
zh<3}UWC^y0Z@Kj~`uzX!z=?96reXo}J#yQ2?&+-)XZ-7_diK@_hBe3eSQ+*<_nr=9
zIPgCEia_gI@gvM4yZ=Zn-|N&U`Jm=<(59nuKly*Qu9bhPJSkE)Jpcc^6y8@44~dm_
zzMCmE$?o^QwUPBNS&WMohBQa-IGNtxP|m$CzP75iC{*eCTv<kr;-<MvvsU#!m7M*`
z=BC~DBR^ZuNFAJha1BrQ)}7TAp^GfT;{rwB@IU1dofk4&?^q<mhex7sKYtg^DAm|l
zmayYhdSRL3_A0CGpD%aUwixl>73yslo4V}U{eZfFxdvMkiYqf?8|)ZP?3FTA{QoR?
zbKaMV7Pfa!pRYP)w$zw0a@F%6*+Fk?9<Afty6JM>okd!E&iZI-y*k)vc{SUr*6;7i
zmw(PHEX%52=&qk|Dfs8i$e=eDmh0u3oW8uEFD@wLO0#tHs#BXxKR#qPiFf^3Qk=R`
z`#$3@o7Z!cHG`I~mr6Pw-W%t&YC_=KssB}W1lO`}y5}gm^kB?l?iX{aw+2m;eHZS|
zn>9;7h(V@!)z5#g*&p>hz2Gkw7x(KyQ&?M->gwMU^~~?4RlK^nYLow#7H_}5lS5uF
z2wzpUT>Vh9B7@Df`QE30UOs&y%r$4?)e_FG*3iS{Wvh0JbS~b_z#)A3m96Wl%BGdK
zH})ToezEWQg&LjxF?H&WWzT+Z@nW05VApSp+zU~qzi$~l@VS}ZEax?m<L10;_qW{b
z-fp6^;FW^T{?E6gn?t*=+Z35G?2(PiJ)(J9|BR`?vze=E7x&oQj-A!<aHH(vU*)+k
zZ2OD8oR8T5|G>UOuOidAH+fuI5YW%7$gtq@?caBP9^1K$ZPuYDuam!6RV94Tzq;eT
z>$Z2N+oCV;=05Q6?d;R?nf2XECPtj<I&Hwv@O4(+H7|!Y`-XtL>?Ps6jg@S_!^7BO
z6zc<K`%dN(x{&O5*!hCnfkj%{kI(JDB%V=eyIt*9k&w?PCF!M$H52~!{(o{T)52AG
z#)rtuJD3^5ZplQMs`BmSKjT-s`Q(?aPmiiyUMjoKZu#qTk`Cft7XH&2TDNbD|7jvR
zYoZSC8|5wki@(<Yjm=bv+5D6L=9Zt&{)?5^#;U|-{*wRK-gYqOo3q!c(CpSve?8mz
zlWI1v*%Ni2x0*G*ap|XLRo-<x0WUVJIJtlE*8dr-A1wCNxdncCmpyfd{dTpp2LmEL
zB}Ur$@YHA728LBAr!5H9;^k(weB8YzYW4z`3wNK1&rS;befzN6g0J=mzNvowe6?|@
zj_e`nx4*Z)Iz4&iUmNE9vXj0)o^vq14tyLv!|b}~8=n-l^`9SqUZ||kvY;TyWp7yL
zsn(!`BTxKv*Luslvj0|}I%SIKF8RZM=RK9O`px2zVEXRCJP}imv?ZTkg)O|Zr*`?u
zUHWo7nsp_{?~Zi`9ax!uK3&45u;7o*>y3^3?L*SUJ#Y4CURb>KyFsyR<ekTow`}L8
zu?uhZk8fX~!N{=1>apA-!Mh9ZN1k7vB(#j%{e@-g%#+=>B5bN3Jt{e7wChM(hU3al
znMaQP*d}LwIGg9&?z{V9_Siq$_R82nciYryhwa}bP1n1Z_bN#1{8o;WmbS{twN0mY
zx~Sec%%I{ngLB?QPR`1=Mvuj3EO@cB`{BugiA%0NdHl2fO>t$ytgLUp3WGA|uGh*=
zezEPh^dc>-OVytq-uke=E^L0lR=b(GFB0;^bhVAolwPb)jjeH9_~qJpuZ@LA&dpw?
zKh^E~?7fM(-yfBJf3(3yz4p4{M)`XymO7?o=ifQA_IAb6($19jEXN}MFI>}Q*L`(3
zGk5-bx%$->XLqiCFj;QBPfhIN(1#h5mu=`ivuaVzW}y?DHA1x;ZR{^+6+}L;Z#c;D
z{9LnW=c%6bMDt|nTl_Cy{8677*8PpQa-Pcno3AuoTOEoT7{0u+C|D?`bN|ljKTo-=
z8BTlJiSG}%dE`RsI{(wRKCV93Qd&FNGw6|7;)|K?kuRtBPh7IOV8R*wla;&PcEqcA
z`eknE4ss8F-m2^?XSYXYe%_QBk6Uco)0UP`VmR=7vZChwzmlP0TDh#EZ>%kDSZ&Yq
zp1f(tm6jOU*;}GjUv|EXbmjfJe^%DZHD_;CZ!I@FnVl!<{CN6DHd~&c<jciha@iRf
z-gU<E2jpM<yz|!nrVJjb33o1s*YfB|+}yUwK>NfM<4vZXe*0$MIMSEd`=8k}&UzxY
z@nF#QJkX$@iG?Zr=woBpNFWVHgh}0pg)+x(3LPPb%&~*VCdr>;zg_l5fx~y#umAh!
zd^X5^CFtnjU~<zx*4Qm@d(7D{d)B?KP&`sO@65EbPoLWRl}wU<UK)EfM0{?i{F0Cl
zZLis;PL`Efu{rDf!<*^8_Mb&pE){$hdiwO6Rl7Cs)@_h`(5%ez!aps%sxn)7b!o7M
zkapfhw!Qv^zp|J46eJwoJh8*Pc-PC-x*}$dD<yXE{<U%ST<{^{bMfiU&^e;gH?M21
zR^N1S!$(i<x8?hGuMsz094+KOlesHVX*uV1mz1M5`gRYk?z~c}SiPw=M<Qe6(%)83
z0*u4Xs01?YmU?<kmwmtd)(dARPnnZ@cC+5y(}nT9)6!+$N~RVxpZc-?PfMG-f*b$w
z&iw{bi4Ug+%WXBP_sw3BAhC_ZcjdmNd#fEzY3;wrt|&V1g!;>C3s2_Aw(p8Boh*2<
zs(b&eSX)NPm*&$8pFciO%4t8@)1>XK<+B^6B3~a}+wm)rEoNI{y>J2Z70!~|N6I&U
zp1pO;3P!7=_td1WIUHkuq(0I0z#Au3A)Z2>W`3WiQ|6!NEz$WZwy=)ZpMSr$v+BY1
zi#&K|cG@)Gy29Ca$4cP!xkA$)&IP|Ve$rZ!$+VnXO`=x0Ih#-INT*s^mJ9RB`A1C*
zuPqEVTFF^jdy8LhpUrX6jybC)&&`q(dVfPnp=@K5?e<-c@7Mg?eJtaKfI!`}!Y)1a
zgdAbvtY=vn_S~k18p@9((rQ;OnLc%P#>ur$mhR<W^~L|si^p>lUf=m6^Gc;^Hjnwm
zhG_4AEU`ySbv5D^E3X_rXw<dy>Q_~H57Xr_%)OUdIxn5Lo42+s;FxY;m1gJ}ro>X8
z<pQfYS2{;-HJ^Ux%>AkbyH*+OedRx==8WiW=^LlM9h|;m>x!iLVnNwX3jdFY?%B9#
zR$TtYHp`ukI<4XDy_<s$3Y4g1RM&U&_nr^Tb(^Oe)}UFlDyQPRLB|P|v%Mb^pXKWw
z*XmeSK3_{(XYb1cJ1gCem^44^`;nN>ZXow(_RQ4gA0IAUvlG}GIW<1FNWgkwWyErM
zmCwqtm2*<J`}#)(?)$T>w>-*7@>=c!xn0+zLSiGOxIVi}Uw&+%VLJO%<Jt#;4g&W$
z?R8&PrJwxz$Sr)oLHEu2R|30Py=?3^UW-1YX}5OQQg6Y;NQwQX%clociLQTg>H0@|
z`Q7fDy|{gk=x%%4Wvu_pcm6(ht>X;~?v};|#D;oteSK<JJB`b)$xt`p^RKS$S%&Oa
z&T?(vd-DgkU5)UD+mENEe`m9qWl|?|<LGskUrtI=f8162I1_#)-e#U%?QlUj!MWsB
z*MsIYVQ1Ix&F_3AFn|Ao`I}-FwTkUoynRX3Tg8O7_H9=4CVS3bq#Ri4_hapuj+c#h
zemP8$d9`gypU2@8kvjFWOJ5Xo|JL%HmaRAA_JidIPTBbi)wO8})E2+U==?qFs8H8l
z9*YUD6wef2tpBOoWOX-xzKo6Br=My*GP|x^u=uX+w!wujjJ>suBj8Wiy-OCaWLSLO
z^7A=N5tQqAEq?X6oc7`u7k04Sdef&VCYztW&n=NjyEbQ?S&1jhXW7i>em{*8SzaBx
z#~+@cddA%J<WASmpJsf^Yx1m_as3(ROp!CQ{Kf13t?)4T{PxBD%w=ECvc?@dv~Q_>
zjL73+&mAIZ+v;pix;0M@@mX}ZRN@Y&`cl={8@u-|{H(q@G<?yN2jaFb%+eX><{Z?}
zT^yChpY%~$cv?D(RNhqgwI!!TxVLOMwrk@$;g?!#AIKW{ecJnS&fF8ZKDT7nxLPmz
z=5-)5duCk1)_>2AimtnNiFZxM5|@uJcXb&4DxSLHM|sW?Y5(hoTo=D*JfYQJdSb&i
zulP8YS#gqKiDGJg_6xFvzU=2NJC&Iz;A_wmG-EUOQI1tV6K>3tfBfLd=O)$0=3^ZT
zuSb7L)vtT}T;bn3K@)Mm>zT6*{>@GMHSuln7XeSD8JbBvKcgd7PTcm<#BJVOj>%jR
z5=lo2{@2@??_$=iHI&l2yL5Rn({Gt02`9_=bIfFAV~PYev?-|GF<V|UyHms9VSRC!
z$D_AWk3ys5EuKBi?-Gc)*&K0IcH!^$qR*2!;`c6HZS$`2?6Tm-$p*7>gv)O=%zft6
zocZPX@95hMQHR@aAD<qrcjNZl=llMCJ@ENSquNZlecSZ6>wGLwj(GU=8n?d79qZbU
zK701<5x*Bz+8jM+_LVP3547)=t!C*|PJjITu48g%)s1;s+$&cbZC_{2|HZoLO04!T
zKcSCStG{eLaz^^V@h>JVJNJd`iHlOw^Luh)dV7lR*Jja+O!tmI;xXaN3z|~i^{A%u
z*VbBfkKf06SjsLd@&s`Ul$p-i^~5MJbjEHq%efgZ_Z-@?z<k+Lg)1AE_=&Epo)-7{
zz1{6OKce`Ug^PDQU6pX9dO?N2?%Ngr8_xetw4QWG_j-{}(~JXa=S=fv|MfKJ*Wq{J
ztCRcor+)oi6;%C%OM6<*f{k`FVpe~%-s)MV@z3_JjYk##qL&>{{w$m!F7c1iMd#fs
zZ0!b6RSar37+M&^*X9|+jwPUay8*M+K;Q%d<auP!PIHWzLLBqz$Xo6aClE02H9V}Q
zy0me_^v=e{#+TmSryXu^GYGF|osKPNK=y%x#@Gxb3t|}>!8R}xA2PI?Mzur^9Pm0t
z1^r;MrcrNR<ZN)@VRbzJulkxAOZ#y@*2ojbCt9C3ee|!o;e5!Wl}Ca*mkar;&hxVQ
zekS_InJGNE*Y7jeEQ1J5t<d_2q6Q?uGxf}!SHDX?U`QYdESxlxyL@{U*j$hvkksbj
zPfU_t>}x<lj<${zeyo5Y(h?9@yO;O~A$rjRW@069)BtjPSfVy@LFtC<Chnb$yoVJS
zTpiz71y}e@pV`W26kTQH+@-GadL8@UN1i1z#pf6si@!6-c}ItAadoAPIJfcIJ6@ZM
zQOBR}`e*yKc7M0wn@_vmKZ?p%LL5dw32W+Qeov8W636Ehf9IKZa<&JB&V~B-DZB1@
zz7A}O1{4vXylZTLSPenO!XesaW8|KZF=!1BMj1!!YKZ7?hbhO!{{7R{*{ki^)sP_0
z-L=<UFnZ6%*%G~~$7ZK>=w{7wo4opBhDw#`Hx^U3#T$<Zi3;{c1kO@Wkaekgf4?^3
z)}eQsxS!mc{(JA6Gc$|N&AF+W{_M;jrhnQ33GY&LG%pKJpEgx&kI(Wss~+EyQ}eT0
z)OD(B(~~1hT(+&@TI}b>UmSHfN>n1x^ut>L^~sx-|9rY>5!c;7hNQ*3M~^;Tw~|?4
zN~lcaDg7sN92>>9Sr&U=U42<xa(TFhw!k?br$u*r@2>1Gj^57L)@mXx@n7ctdH02k
z3_ceBPf355S#H7nbDuevR?pHvGvO-V(~Jz)uX8V%cKS)twv}78j>K<YyG2gjd~@5k
z73v?hY`!FwYsclG;K`S{)~thFr|Q08vy0J5oiM{Unx6W#@<uHx>MJG)Ps|nNa5DQ@
zsCsgP@>bo8l5gH>tn_;wsZmgW=iI_oYpY$aFf^p9KfA^o`clsL?v^7<&P?BadTX{v
z?tOW?0#9~^07XV4AJwIEb>A`ma6Z9pDRntw!Va6TiAsBlIK$2ERP1|noo!9u;p%;9
z{0WbC&SEROEF9LYTpD*wRm?g67-NEOV8j;*&y#Zv4(wVsJN{?z?6y61DyH!TtPCQ)
zk#@WGoLCa!ANOeg{}4qP8?DocR_Slr_wg?Oeq!|t!9{_hlMKumHuA4?wLPmX5T3NL
z_-a<p+T#y4yqoPj`&-M=j~5cp#T!&#<e8*D@6L~f^XKiHx~A{!&#!`8GbjE`@ZRX8
zt5oF1<S8~`&*`id!#^4)JEkVP7MY31nTJo=?e<P!fk@NVy_;9)We2+6D;H<@JeO7F
zF;hj}Sw3qG@qd5j8=kCurWYLSd-jam-dAA}_ntk-eG(GU({u2&ZqSP<%mO9%W?Xlc
zxhDSdB&VfQOpM1ZfxUKO+l12p9?@f1W*1ZOe@VgC*=I}+GVW-eer%a}(y?15Jn^3x
z8YX17$jV<?{c*na!aLLU1zTHg(Z6KQ`^~dQpP69>TN$g>9^tP!t<$e=6x^{pYtMb>
z6%*K6*lO*oJoS8h-BjPW-<G>;yl>x>xGw8?J2y8QDVmi`xjA#;-o@>2zc#gB`crsq
z`<!YEM%P`7v;>=M8k;{iJWrZ^DgWBzL+w@l4>z03zYuA3{=91H_MaC{R<Rfy+P_gY
zI6O+OZc_1HuOGUr7x%gz_-E+tWX2<RMS7y_$H|`^*7#bjSjGBkAveRWf8RZdQkW#y
zbp`&vcC$WySHk{+zu&F*Stcz?E^Rw#qxDz2-@CBMGlsdLj)|dTZ_T&mzxNs5x~FKL
z@w<_oanrA?9)8=o3T?-ibGshk5WA<~nO0}>BsafY-1<PtCgGjSEqNIkYJBe{vj&Gx
zd}7t>vc}v_aposxPkH7^;%^ww=;Sdw+z{MayV97!N8OoO$zrYFnHOuHSMw^&_1(m*
zVCz09?(W&wXC*k+mtHzo^|B)}Eq+M{<HZ$QC(dELd(qvaeA69ahMue3-FA;(e)Un%
zx8bfi!?daDLEW@l;ubOY_O<0-y8Ku@tm;Zv=ig7~`PqHu+b`-jWSF5d?^fW#<6D~c
zC9_xOPmk05E<fQ;#g|i`+oR*YPK(Z)dh)6=gGI_G&GUJ`Qs(q=$!h=K#D1ap-kZOv
z#n0|O3Ex+p^OW`fiIZ0I>^wrRE=zSwicT<S{}>VBnKL_WJ0rucx%!?Rp56*OzZ7yd
z*HvV{Jh1C!s=$V`^Pli-`f^~)%WQLYwRgYIxz3z6|E9k<!-m$NgygtGlW%0%#m-*3
zc?yRI{{{8~o0~OdI$LGFNu8A7R_&Q}sLKBryA=aV_Fj4AwDPBCj>)KdOyc_#^Zn@V
zN$gq|l_LXVN-F!B6>q7XXL4y~d+=LI@Tr7j5W}2v6I``}<2PzP`X*+=yg~K**&m+w
z*g0c$BGYb8c&y<m&&=(q>-fLs<!rCgm-{QNT8m%C+q#_Dce>unA$0Guc8{WdhSl#q
zCk3jme3YiUWvc+&k2>FPYz%*D7CdRFRPJkBEbYU~y(z0zt9JjpwClHeUc^sX_2Bcf
zlS1b@e4{1^zuEq6a%}PMKH-%Qt}xja@04PAaP+1WXGzufU_04$d(M3ORO`%O5b^c(
z%Ja@A?6gWM+;UZwPyCR(HET87{CjI74OL%BzJ3tpI4|`02To76X{$fGUeZo^#eT{y
zq}cuDA&Ype=;$lSQpQ)O=smh9mr~@Z_H(k=vUi##Q<lrjUFEsRH~juyH>L}fpR-=2
zM@6dqv)XsNQ0~Q|sR9g<t-JV4=2bMQgdeV3u&VUxj^*C7Pk&atR2Y4I`?lwKEt8+j
zPdecLcK!v9NxhPt;X3w8JA;Z9Eq~buhrc>|_WHa^$yE;xQc`l#nxc<4ZR**w=Xc5l
z7lz5JeAs^K$Ig|@>OOnDylAuA;WOGL8+V^vxZ<EKi_GJlc2WFi<2+ZL-ZkM$wwL2J
z?S^vi{i6KK?{iPek@lR_>Ha?D_(pY}=1nK-&2rmSW~wyb6m0mRBc5@uNovM3&EkHB
z2K6QBlRvF9Ve_%zD0uGme*VcvpH<AQJs7pag&FRD;{G~stJLoke|PTL6m%tzRsNDg
zx7w8izeOv%CbbE&FP*UQ$s_-pOMjnZwK<(Gc{%si1Z`vgH#dH)uP(a(r|xKERAxfE
z=HE9llC>=<f8zhmidx^0+kZ@3b~2y3e5TU9m->^gPxq6$o~$vK-GY%h{=<*o)<P%u
z6}6QG+g!<>;C$nS{?s+UCZ*gw_R?*Z)Ov=O>K}LO9O*srdGq$0*$TS5C10f}#9zN<
zSP;(7WB+Zvs^5g3`0p-P^P*W*<}gcqj9M?2Q|5CyG9Y^GiE9Zjes{O`c)nUW@lDI_
z(%r(!>-D+(r?2^Mxb;V&>P`s;g&vvJURxMh^q3Q_{xRld*yH(bO_}!NLq?}1OVw1h
zL+{>-?ykFDruk&;{TOxDlJ*&sk3V54+Lh*})0ww?=h0OPN|ixu4Cf+)6RtV){QZ=^
z-{wkw&;|9%tzB!M?)S82IB>IQ9{0b+A7A8lJe>LccV^-yEsNGkbw&)zS&PK%_Jm(L
zVks#x<>9hb9wJj@HJBMBEBkdSzbO3qDZ$Ej|J~L-8NZ*NT(bE}QuCu#n~wDDsc>c5
zvzMPip~ih)e~#B&m9M2&TjhGJSQsi)|MzcqGE%E9nH{ue;kJ<F>{@xJ*tdK%++^?}
z_i*^P>?>@RW~wrwU+txPg!j*3_1UZ3^jY`UB$Z<Jn=48`ZoYhFY99aDO)EXC3q%<7
z<5u_m(|y8wLa6`LPrV6$86<SW{<@nVdthYh_;~fhyDTsF{_WP6dv3(Q?K!DYJ13MY
z!hMDGKRM3(ZsF@Y{48HHGW@OE&B8D#HZz%VM)+A-{)CuI_ntC5I4!?5gVQGTHtS#g
zOMk?_e%b%xv8Q-&g5LH?e<rVADKbHH_2+~|!uEgn@iSEYDk}f_?yznkLyTOE2@6A{
zYoru|j+Zej!zYi^eP_Qa&aGXf@bBsB?ucXkj0~@)&-q!I)!loUKS*F#p8n5eWr0FT
zdmhH^+<A+Yb5hR-_S^>V$qWy~KP6pWz4Vy?H}m1mTFde$`0xK$_NwB#+v@921x|23
zw2ZF0u6%Y+2P6OMP397R7Cdg)F_GcR`t*tNW|y-<3vAB5;AIG7nfUMXa{1e<4!yS$
zsb3Q}(Xi5XLiDRZpCFs?KS9$~eaj8smNH&Yy*~MRbXJwJ%Y=V-!Y$`M-~Lz5b87HW
z)ql2MtB%S1zx4XrqhC|_-)*?G(ail{#)f;G3~GBfM8r$)%ysR!r}#77p2wW6;d@+-
zTCm*jmp_vx*(APQ_sZqrw1ov(20Nus_+HIiKZEz@9yNvoYj}QDzWE~^#l&&%UFr1m
za)D=Vty|rb>vQIz=k2okZyLr%B~vb~UG${tu;7i~Pyf6MQ8!Xra7n7*&ODQ@-3*_X
znVX(H$Z#$9H0#Q{q47&&e$8ILzApc@gkhQ8)78D*rF?%Esy%u*DJ<q>>W8Q2{fyr2
z`|16pJg2CAiLKRjJ|;_<7k65Y96a`Lf?falRkp|Z{G`vmtT2gpD4+Diai8$s`v-QJ
ziYGt#7U*i9>X#?K%Fm%AH^k=0(>ZE$?iT&Od$f6aO0B`K?Tb~`hS~F}<v&f4otw<(
z(-Tyxcb!Y=m&t+``TwTOyj|lH;>poJ&2&M}DardGrjIVy-}~cIet4&dpTf<}OC}XQ
z;ac9BUOa8bo3wKep3S(&aBj|(88@;IbtxBmhipBnSvJur&O9sb^4Ak~>dbvLSL2lW
z{In)9324>Tf3h^_So%cl-PKQ4{+zp3cV$+y=LW?wl<0?8r1zb=n4uXp!EMsRnj;rJ
zm$3WjT;B0i=;Zb#i%L6tuB#kbBKG-lh)lh>Y_Mjrx1wIIlW+RE#~-$fwSRcZ{7X8q
zNV-INr~Z!1d6%RQq{Uqc=**IdUOnZ_#Ai!`Qr=(xT71ZN?Y2NRv%YHw#3os9=-k_)
z=Y5OeK*8Hbk54_Ab1{x{>)m2g#<r*FBAbf)nIpD3TCNx3h@N>yaav6G{Wy`U-2OgS
zbj~c6y6vx3m}UPaR5xMH+8>j$4~ZshVq5q$YsRGY@8&RNI-EK4yV&{qb<sJU><oWj
z-_KsLLhx1$_sokYWMzVctLH7VSaSRSrt3xqzm>K2CWSTW&e8Vo;pUyj=e??UWm+)9
z0~h1G_AG^-`fD55Tb|d3em=i1GJn2i&6JOGFW&jR>$B;tmE6K*?y45ols)>MhFJ?Q
zo>9-h@Mf2}*kze#uDl#^omo3doz<?T+Vzw&{`<%>-DKxylf*Bx>UfpXS8MjGcPIU9
zQ`@$xeN9ZF`TexCRj-0=8#)V1(>G=AWLWq6MoOlU@3BpV0+B)zn)VyHl%o|bZkn!&
zTlRP5n$vc#z6XBXTI{r~je&37?FARF-Z4vE=YFFgN?F<T(3PrPEiX*dd_T@#Q@g6b
zCRL@u(X;=q>B{BiQ;*i{TCzQEL+an{rJ0*gEn6>`X1CHVzC-y~X6VI#`cnmBuez~q
zZLYtY7FLrSefiI!g>ygMKYV?voMC8E0uRI7owwyg-2P`=+gDYjXTNYN-&T%y@slUT
zUQ@WoH)HxPW&^tl|I^)vEM>|*l%;%7Z|<#XpZw|Z#`LP~w?1v--nu6|i(zib&tS&)
z-Ix9627WDa6|~v<{N3e6wYTn7SpEC+;&kHS62=1`_-^tsth;KhQlb=H@}}zdra$Ep
z#bp^5QOD-|tN2hbd)dz`j@!&1ES8S{8yUJ^`r1|<i7-1shMe{@XJ+0I$zJVLesNz1
z`{`HJg11jEiT^Ch6=};*vis2eD|aUU@japZdT)SnpK|{;huPfKOnNEVbCzvAYP0Fu
zOpowoljiAu)aBmECULGj`k=wvhXLC|etk;H$TwZ%`#31l`pkn*({3%1@!jj_y~2Cm
zHSv3u_a^N+lDtlJF^i<`#f2QVuk2U;aNDFryELKhTNhh@xXF?2f8OggmY$fQ|8K6_
zf!?rP*9#;T&n(Za)lpb|YWmH@s~;!+SLTl5K4kRi{f_is^ABWY+}{7(@A3a1_6!W?
z{;$&rt-O9A=Y;Lzl3N|Y(_LiQrRMhPUoJg;@%(0^mll<7jeR?OUbe5)Z8S&<wtw*Z
z&$Da;nfs9?yAx;JGLG1htar|AL&vY$vh=_phpQ5gD`tzUwW{fF;=Z$1<>}O2mE4Df
zSFh@dPT9kBEr;Rv{oJ;M-&2fUl)rp>@$BDo@l)Tc-mAN)toJyEqrp!2_{&*0<3;YU
zL_L{$B<O<fdWM8oA2vPf_Q^~YP0{|f>*i^$_iA%FHCAfm|Gf5K!uA&@CRtB5{c$W}
z!&j62Z(pbwY5DJ5tiJK><@$`kkb@UqTv#xpTA#7=xWH+H)mwj-UH-lE%ipit_sj`l
z=H0ff>Bg4)=bW`AOO|%--hcU2-pe%~C4au=R$RG?iD6Hn1pB=?&$r(VeH!ex@U+$C
zca<M=xzEUWIbYtJ<gD6xN$+m4b{vcQoDHv1ik%)VE^KC+^YT~nEz6(Ib-eqM5?qhT
z*XOYA^7|We_i@m{eY)MP-^Jyn^||k4#tF@cXgzGqSn*=YcTGQj@9o!48nL7u+Ei2>
z!v2&$q@}ucQf)Htqtusr=jT1&a4>x8Pu|upzFju6;=;7=lz2bcaN~L9!$Y1=*?gkq
zo~Pu*PEdOh`qE-b*ViPaPgXl#9N)-oaB!i4<2R%Ght~E^$hv3wv2*E8*Z+3n;wC)&
zueWYCDS2_N{=lNzvvLQewm+Hczx@8X5S5*t#gm$jeBAY}O#DyMrpuc}y?JA2<gTjU
ze$HqimxliyQQ@M6EDQ>gH&lOS30_F-$iCnB@+IrZME-o!oQL-t`sFrWEM-2)F=?uK
z$bFaV$4x%%luNj~`}3ZM4&Tk44)LYhu}pCIv^vZ@Vyo!x_9(MA_P@)+c_-9o-+f|g
z$snP-Up88((rVrlTZu_$)}Pq1?ecpOPqWvo`;|;&Vs}jz=kw^^B`K%6wqx^@h$ZEQ
zejIvi3bDU6`R4JTSb6C}vzK+5N%^+&Qtxt)%88TWvaYBZ>@?9ewcft!Chv;YXN+u}
z*~>X|cZ++-o+>V0Blp~@RNKe%jINoy&i@tft{VGxXdl?)?4fNHZMlViYKO|FR{xx9
z=gvjgZ+5xAB-S%4%VBkX_Ligd4C{ZXXJHu!1dptN#sN(%%;Dqt#<1CsK`?rZG7Jb>
zxB(glge;IS2JLesd-OQ=_OvHj9KKa&|Nk#K=j@j*<NEG_>P`Q>s}?EcF&+$=f4x*z
zUd7`4<o^aM;sW{i`aL^d85?eS)pfZbm!{|<!Ch{BDF?QE)0%hJYHgVm=gZHzpTpQP
zS97JPdwgECb|ORlg!kt@-<cX0w~XVZ`@&t@JX^dC^<Ho0e5vmGH>&K6jmg>Xg|Bwn
zFY2l)NZGS!^>WTTpYqg9FM1bfcSOkaMqV?Gua<GWtLT{juBDPEma{0}`w4}ENjraR
z4fC_!?jpr3s=C$UT8CEER<Dm~*6S4=j-<J2^|hPM`x&@JX?Ib_wWS*uI^`7{@7Q)x
zpy48u<gzbT6Bngd-!Z*5_aaYXz)`=uVZr=wFP-l#dm2?Gsk`yYo2@}Bzo)EE^jFbg
zpUBp_YwsuJKYkWXonk!kDzYyf!+sj=NRki}PQRra*y0iOK1=nH+M?(*m5xNcevL)x
zY&^#t0$Nt6Zu~7}lRkImj||TRehb`X7!J<!JU%@k_|ML#5zHT7iM^l6BGmcaN6={9
zX-R=MEc}~24&HfqQnxiTu;-k;f91`Z6qh4sUk1Ihn)u^kWfq4>)dQvMjd7|R%MNy*
z7CmY>Ta(#%=Y*4MCq8#MZBv@tt5~lu!1jAhj%Ufk`$c~hIr8oZ9o_k=@|B+W6s3=+
ze^~XLeR^)f+8P1r)6MgeuKZctf9I`$u931pV7}n3f^VI|QO~koSnQsZx$!_qwKmU+
z+!(*(vM-M520UsE%aYqM{X^9%Hv1>{_sq~Mx7xgrNl-lh=P%8R8Y(|lrX7E??na(w
z%WXN%i7_`Tx7yy}o*O4n&^`HXp^sYYp^L04{yU>sHyJcA=ww?(wI5g=e!1whd9vKB
zdiS<smdz#FNBiTHL@o=x{&D@3)O4+x5nYYzUI&>3@`opN{f<sv*!QlT#V}>fT|0$U
ziOsdI6!@$Q*zGs(%sMDy_fU#oevNl!+l8YSg`#U8DK{Sa#>c+%akYFOQ}M&~@mu7z
zjs+dg+8)OKIW4U;UF}_$Jkxz<&F4W;oW5rkJo_Yf$10%eqqh3RTLt$ob^M9j&Rh3k
z^QFI6e{yfyZDPUY9Je=Xf9%|ditsss7Fv@e-7bDuSg?J8LTrIOhtj%PBC*Sr`i;);
z{JgK7y|=w8x_DlNwujI}_Xk(BWL&$}`6;<Plu_3{_qRZ(^Kd3h(t?oSR(8h&ix-rY
zZ#~BI`>q3@x$dR&Jgzp<g}zHg)V36}$i#DQdh|SF#b<$ObIu&QE$$;YF(Od0B0!((
z=j!MGr<|X<YNq|f8O-M%%3PnFd`;m*iR62`FSocpebQG6Yt4#ZwlvMcoqfHc&RVUH
z9Z_G82~O2t_w3ZYz!diR>2LlvUpt-MvC3R|m%T>ChdT$ePae0q{A1UN7Ma<7%M!G2
zsW)Z5xE}P%ab?RK9r1g!w`4Fo-4(F;HK(KLnA+m!?IqpMm(0D&$^HG!rTZ1!=|cZ<
zi)wRApIj-p!h4r*+ajYyBDtaGHh$h{a7<P7PQLk##j5OyPCKtANmof;Z?>^nY1qGf
zU2^3`hP_Wrh2A_@X?b=$^uXTdzxy9ny<1lGbCO~tkKf_ahdUnMRW_(=uPl4rm=Ru>
zCbY$u{gAE4EuNCP*T2NyhF{g?4ti{T@pYTGVcwLe13LS;?;d@xK20v5P;lulgD>Aa
zm_7vctdO@~ShFKfzc>3{?a|F^+)nY|Kc01FoBxvMF6GyAs_ZwGOxYWebv@xxW2?`?
zQ;OE<_jE#=v$xMM4d1Y8sm9&&n}1sd%%5`l8FS#N^ZH*VCfwAGHQc`?Wl`0|g4pN-
zF*7dM%-1+7I^AaaPZw{whpMLTMR6yua|#;joVDcmFDrfI*gG$M7D3gAnSx(`N2@+t
z>2#*qB&pGgy*c)~kw|xRTyyUJ;6k5Cah|sydd;8lV6D0HzO!tfcg^&RJf=Ih$zrYA
z&C6L|p1r7!kL#Kg_cLimQl-J{(h{MlKPDd+eX$Z-x%63URpwNkiz_SIOa&I|{@A1P
zyy?KtIX5mZFuZGI8THUUNmlTuuIsVH%~K<8F<2*k$ZyckUFWf9W`ujjyDt}Y;*YKt
z7w-Sczo)NbYqZi|y<HOTRfL~!x|J}0$IYrYZy(7UET0+Ze@EKm)bBq>B~H3M{#|dU
z7-7Zi(`31|Kf3Y8j5wK^J4FY|J2{S=TlV{KM9s!O?HV<9hFr5nH;Js+>FUO_sJtg`
z#RXd@y~oFX{J%6~xeHIu`E9LdLT5&s|Kky?(cXWZM<;c{SKhfhjP)7hAJiP*SDeUL
z`9sw<;*w?H-_<J47j`q=(O%TL@8>zmqpW|r51x6}Tr99KeD0O9d;7X<53g^&!rT(Z
z`ophYV*8!PlQNq#Vin$8z3t#Lv031y_YuYF^A-F-a$m}>L>V#*C+`r=O1_ev5WnZt
z(pCIPr!R6GVaW4+z30t?{YyRS_A%~dJ9F@muF>*KcGK9_+iqrDo!4_mzPQRQe$VG)
zpL->9*DLj2Njg-ym-j#8pXGs>*cuI>dKlDbFtjj+@3V)Af!Ykt`K5U!3Wf^$-kB-I
z3egIN2H<JmSlFtBfW-9FVg)-pklA2!P?lCW7o{eaWaj6&B$lKqXt-Dz85kKFm>C%u
zT9{fI8)zFCsT&xmYjWv>)#Vo{XyhiA6y)TW<YXo(80#788R{rxl#~=$>FXmT^zw_+
zHM#Tyit<xRlT%Uk6r`jnBqb(ir{<+V^lKtHt)eJ3jmtp6(Ab2_01gz)OihhV719*o
zVxX%JK++0%P%#Tb6H{XakdOgf%+SQxzyMPWv>p|t5J{a0s9lCGW@?0?*Tfv%4g&)N
zGgCBm1_s8KW*A~d1{UaIhL#5CdJRp?G3+ojH84dt&&a^s#1PFqBO?oAb96CdQ;e`O
zvNQr6WP##eV?$#@boUt>8DO~2*xU>w{ERKlF~Zrzzyw3DiJ1ZDFnbhxO)Ly7(Zkuq
z!ra^v%^#*FCWh$hOwCNp(8Ivg+|Ud?49tuyjM2l{%*4_ZU9Xv`krBF>xq*c_hM1A1
zIl6h~#%8AI;b(4XjG2av%+1i%85)^l5i>BuNV~=s816GLv;<w%h7zU*Mg|t>>BYdv
z2qSG67#U-@*}%xe0zK>vjLb~X-E3fFZiyZS2F3;!=x#PJ#!OcR#%364&A`OK2*X|z
zL(IHoVvOlu6LSNMd}(R`y4D6YTuhBI@`8b>85S{1V-vLWXJBS%g5fta6O1@AFf%hk
zPp1av2A~2L)h*^mW*Gi8H!;8zGsX0;xjCl27KRw*pMix5rkgEHG4h*%g{1*{8aJ>s
z#7t|J#wHlyY-x&7UKv<gnxm%|LjyyMI5#vf#V8XE4NNW3^RJ<S1%~?!4UI6$14Bbo
zjBqwIG&jdE&(r`TFBqDdVuY!osVPQ!HZm~BC_9aeEHKiLk+Fd#dR!VAV}^l|u?a?9
zVPs-phMtCuObjeA#4HUl>@YSo!U#WOLsN_}Fg7&Bu-Dko(gHnC8ylH|&PG8=yT(SQ
zCg}OY*xU?s7bB`VOEZje+}P661j7zXON@MOVqk26Zik71B}ScRVql38RwkyF7-3*y
zVPKA)e@!fmP0+*C#KIWUJPUJ-a?-@o7<6$DihoTkjg8UET~iZdOLTip%}k8Z(}t;;
zxdDb=Gjoi*Z)$F6f}zeFv-~qPH^+!KGb0O(GSSS$5~JKTGd04<Z)T?E7-fl>sX0dd
zYi?j+g6=nSBTJ03$=uioBdpAgjWF6d=Ei0idDYy+$N)Xw%uS3y8+cIS!`#vsG-ib&
zW?_ig*0V4)MGlveqQuOc)FLiW%i1$9EnmS9RH`ThDd-2~=YyKr1|W8DW>qSvnF?yV
Y7MCOzm4I8W7KUbK7F?>TuKsRZ0I8Y7umAu6

literal 0
HcmV?d00001

diff --git a/pythonscripts/figure_S2_schematics.ipynb b/pythonscripts/figure_S2_schematics.ipynb
new file mode 100644
index 0000000..486a2fe
--- /dev/null
+++ b/pythonscripts/figure_S2_schematics.ipynb
@@ -0,0 +1,355 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Schematics\n",
+    "\n",
+    "This script generates figure S2: schematic of the regions, for which the cloud impact is determined."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import matplotlib.colors as mcolors\n",
+    "from matplotlib.colors import LinearSegmentedColormap"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Generate colormap with two colors"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# sample the colormaps that you want to use. Use 128 from each so we get 256\n",
+    "# colors in total\n",
+    "colors1 = np.array([166/255, 166/255, 166/255, 1])\n",
+    "colors2 = np.array([178/255, 34/255, 34/255, 1])\n",
+    "\n",
+    "# combine two colors and build a new colormap\n",
+    "colors = np.vstack((colors1, colors2))\n",
+    "mymap = mcolors.LinearSegmentedColormap.from_list('my_colormap', colors)\n",
+    "del colors1, colors2"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Create latitude and longitude vectors"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "lats = np.arange(-90, 91, 1)\n",
+    "lons = np.arange(-180, 180, 1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Define regions for which the cloud impact is determined and generate masks"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# tropics\n",
+    "lat_nort_TR = 30   # northern boundary: 30°N\n",
+    "lat_sout_TR = -30  # southern boundary: 30°S\n",
+    "lon_west_TR = -180 # western boundary: 180°W\n",
+    "lon_east_TR = 180  # eastern boundary: 180°E\n",
+    "\n",
+    "# midlatitudes\n",
+    "lat_nort_ML_NH = 60   # northern boundary in NH: 60°N\n",
+    "lat_sout_ML_NH = 30   # southern boundary in NH: 30°N\n",
+    "lat_nort_ML_SH = -30  # northern boundary in SH: 30°S\n",
+    "lat_sout_ML_SH = -60  # southern boundary in SH: 60°S\n",
+    "lon_west_ML = -180 # western boundary: 180°W\n",
+    "lon_east_ML = 180  # eastern boundary: 180°E\n",
+    "\n",
+    "# tropical Atlantic\n",
+    "lon_west_TA = -70  # western boundary: 70°W\n",
+    "lon_east_TA = 40   # eastern boundary: 40°E\n",
+    "\n",
+    "# Indian Ocean\n",
+    "lon_west_IO = 40  # western boundary: 40°E\n",
+    "lon_east_IO = 120 # eastern boundary: 120°E\n",
+    "\n",
+    "# western tropical Pacific\n",
+    "lon_west_WP = 120  # western boundary: 120°E\n",
+    "lon_east_WP = -150 # eastern boundary: 150°W\n",
+    "\n",
+    "# eastern tropical Pacific\n",
+    "lon_west_EP = -150 # western boundary: 150°W\n",
+    "lon_east_EP = -70  # eastern boundary: 70°W\n",
+    "\n",
+    "# extended North Atlantic\n",
+    "lat_nort_NAe = 60  # northern boundary: 60°N\n",
+    "lat_sout_NAe = 30  # southern boundary: 30°N\n",
+    "lon_west_NAe = -90 # western boundary:  270°E/90°W\n",
+    "lon_east_NAe = 30  # eastern boundary:  30°E\n",
+    "\n",
+    "\n",
+    "# create array with 1 over tropics and 0 everywhere else\n",
+    "# and array with 1 over midlatitudes and 0 everywhere else\n",
+    "mask_lat_TR = np.logical_and(lats >= lat_sout_TR, lats <= lat_nort_TR)\n",
+    "mask_lat_ML = np.logical_or(np.logical_and(lats >= lat_sout_ML_SH, lats <= lat_nort_ML_SH),\n",
+    "                            np.logical_and(lats >= lat_sout_ML_NH, lats <= lat_nort_ML_NH))\n",
+    "mask_lat_PO = np.logical_or(lats <= lat_sout_ML_SH, lats >= lat_nort_ML_NH)\n",
+    "mask_lon = np.logical_and(lons >= lon_west_TR, lons <= lon_east_TR)\n",
+    "mask_TR = np.logical_and(mask_lon[None,:], mask_lat_TR[:,None]) * 1\n",
+    "mask_ML = np.logical_and(mask_lon[None,:], mask_lat_ML[:,None]) * 1\n",
+    "mask_PO = np.logical_and(mask_lon[None,:], mask_lat_PO[:,None]) * 1\n",
+    "del mask_lat_ML, mask_lat_PO, mask_lon\n",
+    "\n",
+    "# create array with 1 over tropical Atlantic and 0 everywhere else\n",
+    "mask_lon_TA = np.logical_and(lons >= lon_west_TA, lons <= lon_east_TA)\n",
+    "mask_TA = np.logical_and(mask_lon_TA[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_TA\n",
+    "\n",
+    "# create array with 1 over Indian Ocean and 0 everywhere else\n",
+    "mask_lon_IO = np.logical_and(lons >= lon_west_IO, lons <= lon_east_IO)\n",
+    "mask_IO = np.logical_and(mask_lon_IO[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_IO\n",
+    "\n",
+    "# create array with 1 over western tropical Pacific and 0 everywhere else\n",
+    "mask_lon_WP = (lons >= lon_west_WP) + (lons <= lon_east_WP) #np.logical_and(lons >= lon_west_WP, lons <= lon_east_WP)\n",
+    "mask_WP = np.logical_and(mask_lon_WP[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_WP\n",
+    "\n",
+    "# create array with 1 over eastern tropical Pacific and 0 everywhere else\n",
+    "mask_lon_EP = np.logical_and(lons >= lon_west_EP, lons <= lon_east_EP)\n",
+    "mask_EP = np.logical_and(mask_lon_EP[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_EP\n",
+    "\n",
+    "# create array with 1 over NAext and 0 everywhere else\n",
+    "mask_lat_NAe = np.logical_and(lats >= lat_sout_NAe, lats <= lat_nort_NAe)\n",
+    "mask_lon_NAe = np.logical_and(lons >= lon_west_NAe, lons <= lon_east_NAe)\n",
+    "mask_NAe = np.logical_and(mask_lon_NAe[None,:], mask_lat_NAe[:,None]) * 1\n",
+    "del mask_lat_NAe, mask_lon_NAe\n",
+    "\n",
+    "# create array with 1 over IOWPEP and 0 everywhere else\n",
+    "mask_lon_IOWPEP = (lons >= lon_west_IO) + (lons <= lon_east_EP)\n",
+    "mask_IOWPEP = np.logical_and(mask_lon_IOWPEP[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_IOWPEP\n",
+    "\n",
+    "# create array with 1 over IOWP and 0 everywhere else\n",
+    "mask_lon_IOWP = (lons >= lon_west_IO) + (lons <= lon_east_WP)\n",
+    "mask_IOWP = np.logical_and(mask_lon_IOWP[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_IOWP\n",
+    "\n",
+    "# create array with 1 over WPEP and 0 everywhere else\n",
+    "mask_lon_WPEP = (lons >= lon_west_WP) + (lons <= lon_east_EP)\n",
+    "mask_WPEP = np.logical_and(mask_lon_WPEP[None,:], mask_lat_TR[:,None]) * 1\n",
+    "del mask_lon_WPEP\n",
+    "\n",
+    "del mask_lat_TR"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot maps"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAI4CAYAAACV/7uiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3hUxdrAf7PZ3eym9x6SgEjviCiCSBEVFC/wWUAFG1guXrFgQbheRAUFvApiR1FBrFhQkSaK0qRI7yUkJJBeNsnuZnfn++OcPW4aCZAE4t3f8+TZnDlz5szZPTPvvO+8846QUuLFixcvXrx4aVrozncFvHjx4sWLFy9njleAe/HixYsXL00QrwD34sWLFy9emiBeAe7FixcvXrw0QbwC3IsXL168eGmCeAW4Fy9evHjx0gTxCvALACGErMNf30aqyzXq/S5qhHuNEkLsFgob6vAdPCmEMFVKK1XLeEQI4VOp/FVCiMcb+jm8ePHi5XzgFeAXBpd5/PVT06ZVSt/aSHVZr94vrSFvogrbfwMvSSUYwd1UfN4jwJJKaR96FPGimjYEWAXMAiZUus10YKIQIqDhnsTL3w0hxLPq4PBgDecPqeef9Uj7QAixuQ5l51S6bo0Q4oszrN/Fah1DKqWPUesVoB5HqfmSz6T8Wu49RL1HvZVZy/0eFUL87HHsfsYiIYS5mvyr1PMfVHNNtf2AECJeCGERQjRvkIdoQPTnuwJeQEq5wf2/x0t22DO9JoQQJimltR7rUgjUet964DogFvhMve9uz5NCiDIgq/J3IIQwqf8e8Ti3WgjREbgDmOmRfSVgBW4F3qn3J/Dyd8YKpAghukspNcEshLgESFLPe/IcUEWgNBAXowx+PwAKPNK/RxnUlqrHUWq+NcCxRqpbvaH2hU8At1d3GhgMfOGRPxq4ErCcyX2klCeEEJ8CU4AxZ1vf80GT1MCFEKFCiFNCiBZ1zD9TCPFaQ9eroRFC3KeOJLsKIdaqQm68ei5aCLFQCJGvmpVXCSE6V7r+pBDieSHEVPX7KxZCLPAcmVZnQhdC6IUQk1XNwyaESBNCvO1xvq8QYp1aXqEQYqsQYmgtjzMa+EFKWVYvXw5sBxI9E1TN/isUwe7lAsezXavvlBRCRJwm/xAhxJ9CiIbox0qA1cAtldJvUdNLPBOllIellLsaoB51RkqZLaXcIKV0nc961CO3AjZgeTXnvqPqb3MTcBjYfxb3eh+4VQgRfhbXnjeapAAHnkbp/A/XMf8MYExTNJHUwKfAlyha7HIhhACWAn2Bf6G8+GZgjRAiqdK1Y4DLgbuAicA/gDdqud8HwDPAxyij3olAIID6wn8H7FHLugn4BAitqTC1vlcB62p/1DrTDDhaTfo6oKcQwr8e7+WlYTijdi2lXAo4gVENVJ/FwE3q++p+b29S0ytQnQldCNFHCLFdCGEVQmwRQlxe2w2FEK2FEIvVQbLbv+Nh9yBFKL4w36nZj6qDnGPqOc1UrJq4d6r5flbTZeV8le59TAgx0+NYqCb4LHVw/iEQVE2dTUKIl9Q629Rnvq5SnhvU76BEVTI2CiGurOXrGA18JauP970YGCyECPRIu4Vqfps68juQR9VBwQVNkzOhCyH8gHuA6+t6jZQyWwixHLgf+Ds4Nc2UUr7lPhBC3Ah0B3pKKTeqaT8Dx4FHUIS6Gz0wxG12F0LYgbeFEM9W13EKITqhdJDjpJRve5z6RP1sA/gDD0opbWraT7XUPwUIA85FY9EJIfSAH3AjysDi5mrybUd55q7A2nO4n5cG5Gzatcr7wEPAR/VeKcV68wZwBcq70xuIRPHNePl0Fwoh4oAfgU3ACCAOWIjyvp6OeBQNciFQDHQG/oMyIH8RxRfmMZSpomFAJoqWWplMlHa7EHiQs/OheQjFrPwCyvMPA16qJt8XQA8Uc/1hlEHOt+r0w5+qpfQL4FWU/tcEdEPpA6pFHXBfCsypIcsaIB+l7X8khGiGMn1wD0pfcEZIKaUQYgMwAHj9TK8/XzQ5AY6idbpQRkxuZ6i3UZy/YoB0lPnOmZVMSd+ivIh/BwH+faXjHkCaW3gDSCmLhBA/onQ+niyrNGf+FfAuSoOqTvPph/J9f1jNOYADKPOBi4UQ84Ff1Xn00xGjfubUku90vKX+uXlRSrmkmnzue8RUc87LhUOFdu1BTyHENKA1sBsYK6Xc4nH+W2COEOIiKeWh+qyQlLJACLEMRStbq34uU9Nru/xhlHYxWEpZCiCEKEGxYp3unqtQnDLdGv9vKEL/XpR3vEgI4TYRb5NSHquhHJsQYod6uKcu/jSeqP3qE8BbUspn1OSfhBArUAYZ7nz9UQRmXynlL2ryciHExcAk4P+ALkCxlNKz7/2hlip0QpFPNQ3yXcDnKL/JR+rnDinl3jr8NjWxHeV7bjI0RRN6b2CLh1lFB5xAGfW1QXlpngburHTdJiBe1HHe/ALnVKXj2GrS3Pkqj3KzPA+klPlAuVpGdYQD+TU5ykkps4BBQACKWT9bCPFtNaZ7T9yOaNVpDnVlGnAJcDWwDHhS7Uwq476HqZpzXi4cKrdrNzNRBEl3lJUJ36vaOgBSyuMo73lt5tizZTEwQgjhi6JJ19VE2wNY4RbeKl/VdpFqjv6PEOIQyrtbDjyP4lDXmApXIkqf8E2l9MrPMAA4Cfyu+sro1XquQvnNQDHlBwvF3+bqOk5n1WWQvxgYKIQI49zM525ygChxDiOAxqYpCvAkFPMQAFLKcinlFCnlH1LKY1LKz4A3UeaBPclQP5Mbp5oNSuVOLhPF47Qy0SjzOp5UyCeECAUMeHynlcgFQsVf3t9VKyPlWinlQJR575uADsCCGmv/V51CTpOnNlKllJullCtQzGjHqN6s6b5H5e/By4VFhXbtwXNSyp9UB7E7UQZiIyvlyaDh2vW3KIPT51Gmir47fXaNGKoOlsuo3UN6BoqJ/G0Uq8QlKINVaNxBqFuAZlVKr3wcoeYtr/T3LKpTqZRyPzAUaI6ieecIIRYJISJPc/9aB/lSyvUov/3TKFr+p6d9otqxoWj9TcYy3RQFuJlKSziE4p29WQiRLYSwoKwHblbpujKP6/9ubASaCSF6uBNU545rUExwnlxTSRgPQzFHbaF6VqG8J7fVVgkpZYmU8msUc3vb02Q9hOJ8lFJbmXVBnXv/N9BFCHF1pdPJ6ueB+riXlwajSrtWWe/+R0ppQdHmKr9bZTRQu5ZSlqA4iE4AvlOP68JJqg6WzSiDgdPxf8AcKeVLUsqV6hI2xxlWuzbc37OxUrqn4+lJ9bOyYlD5OA/FAnpJNX893ZmklN9LKXujWPTuRtHca5rfdpcLtQ/yP0X5bTZKKatzYj0TQgCLlLL8HMtpNJrMSMODHDxeNCHEzcB/UUat64AiFKeNf1S6zm1Kzm6EOjY236II4C+FEE8DhShmRwHMrpTXASwVQryCMkJ+CVhck+evlHKH6n06V3XM+R2lEd4gpbxNCDEMxXz1DYr/QSKKh/vqmiorpbSo83Pd+MsZ7lz5BGXU/zgVl510R1lPXm1QDi8XDBXa9RkSRsO26zcAXxTLXl35A7hLCOHnYUYfVofrzHhonepcdGXPaLv6WZtGXlO+dPWzDX/5El1KRQ/zNBQhPhRlispN5WdYBTyKIvj21VIfd5yJRaoH+mWnyeqe50/h9GvYFwCtgEW13bsOJNPEBvpNUYBvo+Ji+ytQRl9z3Qk1zHO3RzHt7KzmXJNG9aAcgiKs56CMrDegOJakVsr+gcenGcWj9sFabnE3yvzjnSjLyU7xlyPdAZT3aAaKh24WyoDi6VrK/AplmuOxWvLVCSmlQwgxA3hLCNFFSrlNPXUNdZh79HLeqdyu3fREeffcnsnt8XCoVK1JLWjASIVSyjUoXs9nwn9R2tVSIcRsFC/0p/jLElgTK4AH1TnwPLUM30p53MJtnBBiMVAqpayuXzuu3m+0EKIQKFc1+k0oWvNrQojJKAOgiSjKDwBSSqcQ4iVgphAiB8WJbziK0K9c35+AFWr7240yEOgMmKSUTwkhxqEI62UoJu+WKJaGmhxjkVIeFUJkogzyfz5Nvj0oU2h14UYhRGUrzx8efWR3qjpRXthIKZvUH8r8qhMIV4/Hoyy3uBblxZiMooEeq3Tds8Cq813/8/zdnQSmne96qHVJRBlQdWjAe0So9+h+vp/X+1frb1W5XfdF8fXYAwwE2qGYS08B/h7X9VXbv1891uVZIKeWPDnAsx7HHwCbK+XpC+xA0aj/BHpVc90a4AuP42iUQXWR+qwvoXhGSyDAI9+jQCqKRe2YmjammnyjUAbZdtTYRmr6JShWglKUwVMvFE13pkcegRJhLlv9jhei+B9IINkjny/KUrdD6n1Oogjrwer5y1AG/Bko5vujKAN+31q+47mV++zqnrGa6zYDH1RzTXV/Y9Q8Eep3eeX5bgtn8ifUyjcphBDrgY+llK8LIYwoJq5hKC/clygv9l1SymSPa/YD/5ZSnqunYpNFCHESeFf+tSzkvCKEeA+lU7mngcp/FmVt/DUNUb6X+qVSu+6LonkNRXHiaoWi3Y2TUv7hcc1bKO/Qfeehyl4aECFEF5RBRoKU8mRt+c/xXuNQrIEXyyYkFJuqAL8GJShAWymlsw75B6N4KHeUUta3Q0iT4QIU4AkocY6nN0SjEUKMRxnB76nvsr3UP2fRriOBfSgWlnN1YPJyASKE+B5lvXuD9VnqsrHdKBsrfdBQ92kImqQABxBCPAR8I6vO8VaX9yaUZUcba8vrxYuX88cZtuseQIqU8lyXD3m5QBFCtAYGSSlfbcB7xKI43k6vy8DxQqLJCnAvXrx48eLlf5km44UeGRkpc3LOJfKmFy9/e1I9/T6aCt627cVLrVTbtpuMBi6EkIsW1cdSPy9e/p6MHDkSKWWTCQPpxtu2vXg5PTW17aYYic2LFy9evHj5n6fJmNC9XDhIKSktLaWsrIzc3FxycnJwOp2kp6dTUlKC0+lEp9Phcrmw2+0YDAb0ej0GgwGj0YjT6aRTp040b94cm82Gw+FACEFgYCAZGRmYTCacTiebNm0iOzsbp9OJw+EgMzMTu92Oy6VsMped/VfwrcDAQIKDgzEajdx888106NDhfH09Xrw0WZxOJxaLhdLSUk6cOIHT6SQ7O5vc3FxsNhtOpxO9Xo/NpgSLc7dr959Op6Nfv34YjUatrZrNZhwOBzk5OURERLB//36OHDlCXl4eQgiKiorIy8vD4VAWCLnv7yYyMhI/Pz+ioqIYN24cfn617cj6v0OTMqHfdtttFBUVUVBQQFxcHD169CAmxrtLZGNgtVr58MMPWbt2LcnJyRw+XDXyat++fWnRogU+Pj44nU58fHwwGAxkZmby1VdVg6GZzWZMJhN6vR6n00lxcTFxcXFYrVZOnVI2V+vQoQO9e/dGCEF8fDy+vr7odDq2bdvGhx/WGMipCk888QSdOnU6o2d2tw2n00lGRgaFhYW4XC4cDgcGg4GIiAhiYmLQ6U5vyMrOzub1118nNjYWi8VCy5YtueGGG86oLnWhKZvQb7nlFnJycpBS0qZNG7p164avb+UAZF4agoyMDJ588klSUlI4eLD6iMO33norAQEBCCEoLy/HbDYjpWT79u2sW7euSv7AwEB8fX0RQmCxWLT2cuTIES3P2LFj0ev1+Pv7ExUVhY+PD0IIJkyYcEb1//DDD9Hrz0wXlVIihKC0tJRjx45hs9kwGo2UlJQQFBREbGwswcHBtZbz888/s2rVKpKTk8nNzeXWW2+lWbPK23CcOzW17SalgX/8sbKVblhYGGvXrmXx4sW0bdsWo9FIfHw8Q4cOJSCgtr0CvFTGarWyePFigoKCGDp0KDabjXvuuYf27dvTpUsXEhISWL16NRs3KqvwbDYbERERVHY8MpvN9O/fn82bNzN79mxiY2MpLS3FarVqQh3g3nvvpXXr1sTGVtzB1N2o3OTm5hISEoKPj0+VOl9zzTVcc81f8VnsdjsnT55k27ZtfPrpX6uKrrzySsLCwkhOTj6j72T27Nls3rwZk8mE1VrtTqoA/Oc//6Fly5anLSs/P58DBw5w4IASZvno0aNcf/31FZ71f53Fi5X4SmFhYaxatQqATp064evrS/fu3bniisrb2nupC/v372fVqlX06dOH9u3b89lnn/H1119z1VVX0a1bNwoKCpg/fz4ul4uDBw/SunVrjh8/XkEDBrjkkkuIiYlh5EhlI7j4+Hhyc3Mxm//aQ6Z58+Zcc8019OzZs4JAdQ+E3e+70+mkoKCA8PDwauvs6Q8hpcRqtbJu3TocDgcLFiibHHbo0IG4uDiSkpKq7R9qIj8/nwcfVCJHm81m7Ha71i+drh41sWrVKo4cOaINTHr27NkgArwmmpQGPn/+fDZt2kRGRgYFBQX8+uuvVfLdc889+Pr6EhQUREpKylkJdLfpx2g01qpdNTVOnDjB+vXr+e2338jKymLEiBF88cUX2vknnngCl8vFyy//tTNnUFAQRUVamGTMZjM+Pj5YLH/tjDht2jTMZjOPPfaY1mB79uzJhg0bKtz/qaeeIiUlBYPB0CAa1qFDh5gyZQoACxcuPGshuWvXLj766CPS0tKIj4/HYDBw7NixCnleeukl4uPj60UQl5WVUVBQQFlZGRkZGWRkZNCrVy/i4+PrXEZT1sBnzJjBjh07yMvL48SJE+zYsaNCnssvv5wuXbqg0+mIiYmhWbNmZ9RxA9qUjk6nw2isvBFX08bpdLJt2zY2bNjA1q1b0el03HLLLcyfPx+AkJAQpk+fzn33nT5gXWBgIHa7XTORd+3alZtuuom0tDRef/11LZ/ZbKas7K+w7iaTiZdffhmTyYSvr+8Za8S14XK5WLp0KYsXL+a+++6jT58+Z13OokWL+OGHHwAYOnQo33xTccvzwYMH15syKKWkoKCAkpISioqKOHHiBGVlZVx33XV1/o6EENx6663Vtu0mJcAjIyPJycnBx8cHHx8fYmJiiIqK4sorr+THH3+koKCA2NhY0tLSNBPsyy+/fEad4MMPP0xWVsUtbzt06MDOnTvx9fXln//8J926davXZ2sMpJTk5OTwr3/9q075n376aV5//XUKCwsBpWEXFxfX6dqOHTvy5JNPArBv3z6mTp2qnTObzRXMcJ06dWLUqFEEBQXVVNwZ8eabb/Lrr78SEhLCvHnzzrm81atXc/jwYcLCwrj++uvJzMyktLSU6OhowsLCai/gNPz222/8/vvvbN++vdrzo0aNYvDgwactIysri9WrV5OXl8dvv/3WZAW4e57U6XQSEhJCcHAw3bp1IyEhgXnz5tGyZUsMBgN79uzBbrfTsmVL/vOf/9T5HqmpqTz11FMV0twdqMPhIDk5mSeffLLe3sPGxGq1cvDgQV588cVa8/r5+fHMM8/w9NN/7TXk9lepC+6pKJfLxauvvsoff2hRbfHz80NKicPhICoqikGDBtG/f/96G+DefffdADzzzDO0bXu63YrrVt7ixYspLy/n0ksvpU2bNhw8eBCTyURiYuI5DfAcDgfvvvsuGRkZHDp0qNo8r7zyCtHR0actZ8OGDRw4cIC4uDjmz5/f9AX4zJkziYqKQqfTIaWsdgTuqYEBxMXFYTQaCQsLo3nz5uzZs4eCggJCQkKIjo7mH//4BxEREVr+n3/+mU2bNmmdalhYGJdddhkrV67EZrMxYcIELrnkkoZ/4Hpm9+7dPP/88/j7++Pr60tenrLdrqdpW6/XExAQQEFBAZGRkVx33XUsWLAAX19fbUTuRq/Xa04nlcsBGD58OMOHD6+xPi6Xi0OHDrF69Wp27drFQw89xMUXX3zWz1deXs5LL73E7t27AbjrrrsYMGDAWZfXkBQVFVXRhK666iratGlDbGws0dHRmEwm1q5dqwmrvLw8WrduTXl5OZ9//jlbtmzB19dXm8a4//77eeONN5qsAJ87dy5hYWE4HI4aNZMXX3yRnTv/2nQrISEBk8lEcnIywcHBrFy5kpiYGIxGIx07duS6667ThEdRURFff/0127Zt0wb3nTt3xuVysWPHDkJCQnjppZea5BTc2LFjsVgsxMbGkpWVpbVDzzZpMpkwm83k5+dz9913s2LFCo4fPw6AwWCgvPyvLbA9r/Px8cHlcmlWNYPBwLRp00hMTKyxPjabjd9//53ly5cTExPD2LFjz8nx7MiRIzzzzF+RVM9mzrux2LNnD9OmTdOOY2Ji6N27N8nJyURHRxMZGUleXh6bN2/G399fa9stWrTg5MmTvPbaazidTm2aoW/fvvTr148pU6Y0fQFe17WiLpeL/Px8UlNTiYiIwOFwsHfvXkpKSrDZbFx00UUEBgYyZ84ciouLueKKK8jPzweUF33Lli0AREVFac4aJSUllJSU0L17d1q1aqWZ49xaZE3zOZ5s2bKFb7/9loKCAiZPnlxh4FCZoqIi0tLSyMrK4tixYwQFBREREUFYWBjBwcGEh4dr2uzpRrgul4vCwkJeeOEFTpw4wdChQ1m3bl0FD26A1q1b4+vry/bt2wkICMDpdJKcnMzevXu1Bu2+V5s2bTRB2aFDB2JiYujZsydvvfUWWVlZ6PV69Ho9JpOJli1b0rVrV5KSkkhKSqq2rmPGjMFut9O8eXPuv//+M7KYgGJduP/++zUzf13mpc8Wu91OSUkJmzdvxmazUVZWRmRkJO3btz/t7+mJex7Rzeuvv05o6F9bYZ88eZJ33nkHm81Geno6drtdOxccHExhYSHBwcFMnToVnU5HcHAwer2+SZvQ69q2bTabZoYMDAwkLy+PI0eOYLfbkVLSuXNnCgsLee2117j66qs5cuQIQUFBWK1WHA4HBw4cIDw8HB8fH/z9/bFarZSUlGAymejZsyfR0dHYbDZcLhcRERF069atVlO9w+HgjTfeYP369QwePJhRo0bVmNflcnHq1ClSU1PJzs4mJyeHmJgYTCYTLVq0wNfXl9DQUAwGg/u7qbYcKSVOp5PU1FQmT55MbGws7du3Z+XKlXj26eHh4URGRrJvn7JVt8FgoF27dvz5559VyvT396d9+/Zs3LiRrl27kp6ezogRIzCbzcyaNQu9Xq8pT4mJibRo0YJOnTrRokWLah2+POebBw0axO23337GU5Lp6elMnDhRO3733XcbxAvdPdeenp7OgQMHKC8v16Zr6vIOAOzYsYPp06drx926dePRRx+tkGfNmjV8+umndOrUqcoUsHsg9dBDD2nvgtsiVFPb/lsK8LpisVhYvXo1JSUltGrVCr1eT2lpKUajkaSkpCpCuaCggM2bN3PkyBF8fHwwGo0cPHiQQ4cO0b59exwOB/7+/pq5+vjx40RERGh5jUYjxcXF6PV6Jk+eXOWlLyoqYsuWLRw6dIgNGzaQmJhIdHQ0iYmJZGVlcfjwYYqLizUN2mazIYQgKCiIyMhI4uLiSExM5ODBg5SWlpKenq5p2m6ns4CAAPz9/XE6nRWc0FJSUhgxYgQbN27E4XCwe/duzXzuyaWXXsrGjRs1s5tbuOv1em25iN1u5+KLL+aSSy7BZDKxY8cONmzYQGxsLLNmzapSpts64Kauv7N7YLV27Vo++ugjLf3NN9+sV1NocXExa9asYe3atZw6dQq9Xk+XLl0IDg7GZDKxZMkSAHr06EFcXByRkZF06NCBiIgIbDYbWVlZhIeHax3P1q1b+emnn8jIyCA3N5fhw4fz5ZdfEhsbS1JSEocPHyY7O5snnngCIYTWKYwdO5a+fftqc5SBgYEV6vm/IMDrysGDB1m3bh3JycmYzWbMZjOlpaWYTCbat29fpUM+cOAAf/75J/n5+Zr39Jo1ayp4SJvNZnx9ffn9d2XL6OjoaKSUhISEaMsde/Xqxe23316lPvv27SMjI4Nly5ZhtVpJSkoiLCyMqKgojh49yp49ezCbzZSXl5Ofn6+1r5iYGCIiIkhJScHHx4dDhw5htVo1z2lQrGEulwt/f39iYmKqeJKPHTsWl8vFzp07sdlsmvBu1aoV+/fv18owGo0VnNfcgweDwUBQUBDFxcXYbDaGDx9OeHg4OTk57Ny5k4MHD/L444/TpUuXCveVUjJp0iTNd6S2wY0nbg10/PjxWlpCQgIvvfRSna6vK4cPH2bFihVs27YNu91OUFAQXbt2xWg0cuzYMc3iM3DgQEJCQkhJSaFNmzaa9cvlchEWFqYtrfv+++/ZunUrR44cISwsjE6dOvHzzz/Trl074uPjWb58OQDvvPMOs2fPZu/evQQFBTF58mTi4+MpLCzE39+/ioXBK8AbCKfTya5duwAwGo1YLBacTicrVqygRYsWDBw4EIfDgdVq5cSJE/z+++/s3r2b6OhoAgICNPNK8+bN+eGHHzRP+6eeeqrWtcwOh0PTsLOzs0lLSyMtLY2LLrqI4OBgYmNj8ff3x2AwkJaWRnZ2NuHh4VitVlJTUzlw4ABbt24FqGAmDwoKoqSkRNNCPLX1vn370qVLFz7++GMtvXv37rhcLrZu3corr7zCu+++q2nogwYNYvTo0YwaNQopJdHR0Vx55ZW0a9eugpb8/PPPs3v3bi1/TUgpOXDgAAsXLuTIkSOYTCYiIyNp06YN7dq1o3nz5oSGhuJyuSguLsbhcNTJOlLT9/vFF1+wcuVKunXrRv/+/WnevHmVxmWxWMjMzOSnn37C4XAgpWT//v34+vrSoUMHVq9eDUBsbCwOh4OSkhKto3QvV9m3bx9jx45Fp9OxdetWNm3aRIsWLRg9erQ2JfTOO+/g7+9fY329Arx+ycvL4/Dhw9qAt6ysjLy8PJYvX87dd9+t+UC4rQBLly7FarXSrFkzmjVrRps2bejUqRMBAQGa4IqMjOTFF1+sVYt0t8VTp06RnZ3N4cOHsdls2qqb5s2bY7VaMZvN7N27V5t3TktLIz09nd9++42CggKgYtsODg6mqKgInU5HRESENp0Ayvz2pk2b2Lhxo/Z+jh49mgULFhAXF8fEiRN5+OGHtfxTp05FSsm///1vANq2bUufPn3o3LmzNoD21MKnTp3KRRddVOMzW61WVq1axXfffact50pISKBDhw60bt2axMREzXznRUIAACAASURBVDJx6tQpQkJCKnjBnwmZmZm89dZb5OfnM2DAAHr16kVoaGgVi4fbCrps2TKCg4PJzc1l//79DBw4kBUrVmj52rVrp3miu537kpKSyM7Oxmg0ct9995Gamsq3335LSUkJjz76KCtWrGDHjh0kJSXV6r/gFeDnGbvdTlpaGpMnTwaqenbfcMMNfPvttxWuee6552jRokWD1is3N5fc3FxtFF9SUkLHjh0pLy/HYrGQlZWFyWQiIiKCo0eP0r59e+0l37lzp/biBQcHc/nllzNs2DDee+89jh8/TkZGBnfffTf9+/fnk08+4bvvvtPue9FFF1Vwbps1axY7duzg7bffruKdbrVa+fzzzzl8+DCZmZn4+fkxbNgwevbsqTVoz3nlsLAwioqKNI3igQceOONlSJmZmcybN4/AwEDGjRunWUvWrVvH119/TXp6egVTvcViYezYsTWWFxwcTNu2bfnHP/5BXFwcQgjNglEd7iV1d955JzabjdGjRzNo0KDT1vlsBLi6E9N04DogEDgC3C+l/EU9L4B/A2OBUGAj8KCUcrdHGRIoB1pLKY94pH8AREgph9RShybdtnNycti+fTvvvfcesbGxZGZmVjg/YMAAVq5cWSHtgw8+aFBPeCklqamp2O12zWIXFxdHdHQ0paWlZGdnU15ejr+/v+ZQGhkZCShm/nnz5rFu3Tp8fHyIjY1lzJgxOJ1OvvjiC03Df+WVV4iMjOS2224D/hooeGrj5eXljB49mptvvpmhQ4dWqefBgwf5/vvvycjIICcnhzZt2jBy5EhiY2M1c/uSJUv4/PPPATQrn3vO/kytbVJKfvnlFz755BOGDx/OgAED0Ol0lJeX8+6777Jx40aSkpKYMmWK1jZ//fVX3nzzzWrLCwwMRAjB9ddfT58+fQgMDNQCWZ1u+uPEiRNMnDiRwMBApkyZUuu04d9iHfiFjJSSvLw8wsLCqv3htm/fziuvvEK7du3o3LkzeXl5bNu2jZMnT2rne/XqxaZNm7SXc/LkyXU2J58t4eHh1Wqobsc/T0/rDh06IKVk06ZNfP755xU088LCQn788UdsNluFpWPvvfceOp2ugvC+9tpruemmmyrcb/z48Tz//PMsXryYUaNGaVquxWLho48+4uTJk9x0003ExsZW6/3t6XxktVpp06aN5jFeVw/b8vJytm/fzh9//MG2bdsYPnw4V199NUIIMjMz+fHHH7WO2D014nn/2bNn88gjjwCK2bFly5ZMmjQJKWW1c3+nm1dzv0Pvv/9+lfXx9YUQIgT4HfgNGAxkA80Bz2UYE4FHgTHAfmAKsEII0UpK6bkswQk8D9xa7xU9z1itVsrLy6tMWbh5/PHHsdlsDBw4kGbNmrF9+3a2bNlCaGgoeXl5GAyGCuZqgG3btnHppZc2WJ2FEBViHyQlJWn/+/n5VTh2U1paypdffsm6des0jd0dYXHatGm0bdu2gnl+2rRp3HjjjdqxzWarYjk0GAxMnTqVGTNmcPHFF9OmTRvt3KFDh3jttde46qqruPHGG4mOjq5Wo/ZcVx0fH4/L5dKixHk6352OnJwctmzZwi+//ALApEmTaNasGVJKNmzYwOLFi7XVR5V9Wfr06UNOTk6F5bYTJkygW7duZ9yuQfltEhISzmmZq1aWVwM/O/Lz8/n+++/JzMykbdu2rFu3jqNHjzJ16lSaN29OaWkpFouFn3/+mT179pCeno7NZmPIkCEVnJiys7OZO3cuFouF8ePH8/TTT3PFFVeQkpJCt27diIqK0vLa7XY+//xz+vXrR2FhIREREXV2nKoPHA4H8+bNIzU1lSuvvJLevXuzevVqioqKWLFiBc2aNavg2epwOAgMDMRoNFaYb69p1FxQUMBbb70FwNVXX01CQgI///wzy5cvZ+bMmYSEhJy2fi6Xi+PHj1NYWEhpaSmJiYnExcXV2XHmhRdeoLy8nB49etC7d29tUGC32xk3bhyDBg1ixYoVDB06lBtuuEEbHHgOHlwuFwUFBee8xOxsOFMNXAjxAnCllLJXDecFkAHMlVI+r6aZUQT8Y1LKt9Q0CbyMIuh7SCm3qOkf0AQ18G3btrF+/XpsNhsdO3bkvffeAxTfjNLSUvR6Pbt372bt2rUcOnQIi8WC1WplxowZFbyzV65cyddff02fPn3w8/Nj0aJFDBkyhOTkZHr06FFhKubYsWNs2LCBa6+9loyMDFq0aNGoa9VTU1N5+eWXSUxM5IYbbsBsNrNq1Sr27NlDZmYm0dHRGAwG0tPTEULg4+NDYGAgVqtVMxmfbuXJ1q1beeedd7jhhhtISEigdevWjBkzRnNuq02QWSwWLf6HwWCgRYsWdda8T5w4wbPPPkv37t3p0aMHnTp10vqETZs28fbbb9O3b19++OEH3n77bfz8/CguLsZsNlf4DSwWCzqd7ryEcvWa0M8Qm83G5s2bNWcxk8lERkaGJhi+/PJLBg8eTEhICAsXLtSui46Opri4GKvVisFgYMCAAXTr1o2UlJRaA5e4BXtISAi+vr5ce+21JCQkEBYWhsViqbA8DhStT6/X4+vrS0JCAt27d+fyyy/XzMr1zdq1a5k/fz7z5s2rMlIuLy/H5XKxb98+ZsyYwauvvkpYWBg7duxg/vz5JCUlMWjQIObOnUvv3r0ZNWpUtY3WvUzq+PHjHDlyBIfDwUMPPUTnzp3r7TkcDgfZ2dmEhYVV+E2effZZRowYQXx8PGvXrqVPnz6EhITgcDi444476NmzJyEhISxbtqxCeecSWKI+OQsBvgdYBsQDV6EI63eB16WUUgjRHDiMIpT/8LjueyBHSjlaPZbA/wE3AeFSyv5q+gdcgAL8xIkT7N27l6KiIoQQSClJT08nOjqatWvXkpeXx913382qVasqBO8JDw/HYrFgs9lITk5mwIABtGrVSpsSqQnPqabIyEjatWtHq1atiIqKonnz5nz66adV3imj0UhQUBABAQE0b96cfv36kZKS0mDR+5566inatm1bxQHPvZzs1KlTLF26lNzcXCZOnIjNZmPlypUsXryY8ePHc/LkSZYsWcLkyZNrXAGSmprKkiVLyM/P58SJEwQHBzN9+vR67a+Kioqw2WzadAAonuyzZs1i9uzZWrCgvn37IoRg69atzJw5k/Hjx/Pee+9ViUA3f/58TCZTvdXvbBDZ2dz6r395BXhdcLlc/Prrr3zxxRckJiYSHx+vhdOMiIhg2bJlhIeHaya1/fv3a4FkkpKSuOOOO7RlIUKIM/rx8/PzKSoq0uagTpw4USXPZZddxmWXXUbLli0JCgrSNhk4fvw4a9asYd++fRgMBs0btj7XS+7bt4958+YRGxtLjx49aNWqFQkJCRXy7N27l+eee67CPNipU6eYM2cO6enpDBs2jM2bN5OQkMC999572g7JarVis9nqFJO4rkgpee6557RlNW+88YZW/vLly1m8eLEWOjUxMZEXX3yRDRs28OmnnzJ+/Hjy8vL473//CyhR/3Q6HT179jzvjRzOSoC7Y8S+AnwGdAbmAE9KKecKIS5HMbEnSSmPe1w3H4iXUg5Sj90C/E9gD3CDlHLZ6QS4EGIsyrw6QLdvmzc/s4c9C/IdDhbm57OxpIQe/v6EqKZOh5TYpGS/1UqJy0VHs5kDNhslLhdtTSZ+sVi4LzycFr6+pBiNlLhcBPv4oKujMJVScthux18INpaW8m1hITmqYGxmMHC8vBwDcEtoKB3MZi7y9cUpJflOJwVOJ7usVpYVFVHkdOKn0/FwZCSd61kL/Cgvjy8LChgeEkILo5GOZjMBlUzBs7Ky+MVi4dPkZMyqBvtjUREf5OYSZzAwMDCQRfn5TIyOpmMtzmV5Dgf+Oh2+9Rjp8rDNxgS1z7wmMJAHVCHulJLHMzI45BHLYmJUFFcEBDApI4MQHx8eiIxkQW4uy4qLCdTpGBkaSoLRSKezdJKrb244csQrwGtj06ZNLFy4kNDQUEaNGnXatcSLFi0iNTWVsWPHYjQaGTduXBXz+Nlgs9lYtWqV5o0OyvxVVFQUx44dY9KkSRXM6pWx2+0UFhby5ptvIoRg/Pjx9SoALRYLX331FWVlZezcuZOwsDDat29PcHAw3bt3p6ioiI8//phmzZpV8SZ3uVzodDrN4ax///706NGDdu3aNUrIWpfLxR9//MGrr76qpU2aNIl27dppx5UjdoWFhZGXl8fQoUPp3bs3jz32GL169aJFixYVYrFfCJyFALcDm6WUl3ukvQD8Q0rZxkOAN5NSpnnkeR+IlVJeox5L4P+klF8IIV4HegFdgfnUUQNvSAFud7l4OzeX30tKuDowkP8LCakinNw4pOTO1FRGhYVxVUAAPxQV8X5eHm8mJhJ3jppiut3Oh3l5bPDQ8gYHBbG+pISe/v6MCw8/reNTqZTsLCtjTnY2N4eGcn1QUL1q5FtLS9lUWkpWeTn7bTY6ms1c7OtLqI8Pl/n780dpKbOzspidkECyh2nZJaU2mFmQm8uXhYXcFx5OJ7OZ+EaaBsh1OFicn89PHtEiv0xJwaDWS0rJ6zk5LFfPCyBWr+ekw8ELcXFsLS1lZXExncxmhoeE0OwCC7VbkwD3OrGpSCmZO3euFs5x8eLF7N27l8mTJ1dwvHBjs9lo3749+fn5vPjii5jN5iqOWWfDypUrNZP8DTfcQI8ePWh+Bp2b0WgkMjKS7OxsSkpKePbZZ3nmmWfOeilVZQICArjjjjsAxdy9b98+9uzZw6JFiygqKmLJkiV06dKl2u/CLaSDgoKYM2cOK1asYMGCBYSHh/Pwww+f9ZKQuuB0OvnnP/9ZYTATEBDAzJkzefDBB+natSvr16/XlgS6ca+j37BhA9988w1du3blzjvv/LtsaZiJojF7shdwx9s9qX7GAGkeeaKAU1TPf1DM7nVb8NsIHLPbtY57jcXCjrIyDtvtfFONSVoCdim5xM+PbwoL+Tg/nzvCws5ZeEspeSA9HYCLfH0ZFBjIZf7+BPn4MK4OfixCCPyFINTHh2KXi8X5+ZwqL+ee0wj9M6Wrnx9d1fc6x+Hgz7IyjtlsvJ+Xxxinkw/y8pgUHV1BeAMVLBF3hIXR0WxmjcXCB3l53B0ezqAGDk+7tbSUZ0+exM+jHvEGA09mZPB0dDQ6YEVxMas9hLsEMhwOBDDz1CnynU7GRkRwbRMLpesV4CpCCD788EMyMjKwWq3MnDkTUKLrVCfAO3furAUlufnmm7n++uvrpR6DBw+uNf51XWjTpg1r167l8ssvZ/z48fUe3AQUR7UOHTrQoUMHOnbsyGuvvUZcXBwdO3asVRiHh4czaNAghBB88803bN68md69e9dr/TyxWCwUFhbi4+NDaGgo+fn5DB06FKfTyezZs+nduzeHDh2ib9++PPjgg3Tp0gWbzUZubi6RkZH1asW4gPgdaFUp7WIgVf3/KIoQHwj8ASCEMAG9gcerK1BKmSWEmAk8B6xvgDqfMRebTCxJSWG31YpdSqaqKz9ynE4iK00xGYSgvdnM2LQ0ovR6ZsXH07IeNt0RQlAfVgb3QCJCr+eHoiKKXC4ejozEp57nxiP0egYEBkJgIEUuF3+UlqKDWk3KQgi6+PlhFIJDNhvv5+ZytbrUqqHYqTrR6YQA1aL8dHQ0D6anc+/x4yT7+hJvMDBaHVwE+PhgEIKM8nJa+vpqWnpTxGtCrwa73c7dd9+tOXBU58jgcDj44IMP6N27N61aVe4DLwxKSkooKCjg8ceVvjYmJoYHHnjgtMEUzoW9e/eyY8cOrr/++ioa6p49e5g+fboWPz0kJAS73a45jURFRfHYY49VmVOvL5xOJ5s3b8bPz69C0ASTyYTNZuOyyy5jxIgRTXp/+bMwoV8CrAOeBT4FuqA4sT0tpXxdzfMEMAllGdkB4BmgD6AtI/M0oavHAcAhIBhYdb5N6J58X1jI90VFpJeX0zcggEeqmY7aZ7Xym8XCLaGhNZrazydOdc7+rZwcflZ3BBwQEMC9ERHa3HR9Yne5+LGoiBC9nisrxYq3uVx8WVDAYjVojA4I9/HBCeSp/eeYsDCGBgfX+yDDTVZ5ObutVkJ9fJiiDs7cwzKDENwUGsqNDXj/xsA7B15HpJR8+umn7Ny5k6NHj6LT6bSABU2V3bt389Zbb2lLud5///0G2cqzOlwuF1OmTNGiFIFi5u/evTvbt2+npKSkQv7G+I09vYIvuugixowZc0bTFJWRUmorFcrLy0lNTeX48eP07du3yty+O95yeHh4hfjn9cFZBnIZDLyAookfB+YCc6TaMXgEchlHxUAuuzzKqCDA1bT7gXnA9xeKAM9zOJisBllJKy+nX0AAD5/Gn+RCp9TlYmVxMe/m5gLQyteXl89wH4Fz4bjdzj/VaQE3gTodQ4KC+EQV6G7GhYczuIGtWFJKZmdl8YvapzwQEcHl6jTF2WJ3udAJgV4ILE4nf5SWEmcw0Koap9WT5eWUuVzEGQz16pwH3jnwOuFyuViyZAmbN2/m1ltvZdasWbRt27ZJC29Qwvy9+uqr3HvvvcTFxZ3xPsrnQkZGBkeOHGHcuHGEhIQwY8YM7HY769atA2DYsGF89dVXAOckRM+E9u3b88gjj2jz9TXdd8uWLSxatIiJEyfWuPWfxWJh7ty5VfavBiVuvDv0qcVi4ZNPPuG3337Tgk9cCGufpZTfA9+f5rxE0dCfPU2eKh2LlPIN4I1zr2H9kOtwMO3kSXr4+/On2sEPbmLznZXx0+m4ITiYFKORSZmZXF1DoJmGYoU6pzw3IYFfLRY+Kyig2OXik4ICLvPzI1yvZ6kabTKkEfocIQR3R0SQ4uvLVwUFdDabqxXeNpeLuTk5+Ol03Bsejr4GzXx7WZk24DMKgV1Vdnv7+/O4hwDfXlbGgrw8zct9eHAwo+vJ56g2vAIcJYhCeXk53377LUVFRUycOJHPPvsMgF27dvHuu+9yzz33nOdanhtCCMLDwxkzZkyjbsWXkJDAnXfeyU8//VRhTS38tTnHiBEjGqUuhw4dYuPGjfj6+uLn50dYWJi2C92xY8c4duwYDoeDlStXEh0dTW5uLpmZmUyYMIEpU6bQqlWrCnN5UkpmzZqF0+nk3nvv5Z133tHOCSFYv349/fr1Q6fTsWXLFn7++Wd69OjBpk2b6s1nwkvN2F0u9tlslLlcvJGTw7VBQVzh78+Xqnb4aEYGs+PjuaiRrFENhUEIWhiNDGzkAcnwkBDKXK4qWngzvZ67wsOJNhgY2wiBppxS8lNREdkOB2adDpMaxrTM5cIhJRtLSnAAB6xWtpSWckVAAL+oUw+HbTYmRUcTWqlPPFlezuTMTB6PiuLlrCxNeAMcsds5WV5OjOqP8GxmJtcEBWkCvEsjOrj+TwnwsrIyDAaDJsCklMyYMYODBw8SGBhIz549+de//sWmTZs0DRGoNQJYU8DhcJCWltaoc7yZmZksWrSILVu2MGzYMO655x5t3fz58OJ+5ZVXiI6Opk2bNmRnZxMVFcWAAQPYt28fU6dOpVevXlqQl9zc3Aq/+9SpU0lMTGTy5Mn4+/uTm5tLYWEh+/fvZ/To0VitVjp06IDJZKJLly7s2rWL+fPnY7PZGDx4MG3btsXX15cePXqwZ88evvvuOzp27FhhCZuXs6fY6STQQ9s6bLPxTGYmJiEI1+t5KDKSrn5+POYRW8Ffp+PCm+E+c47Z7UQ18v7YK4uLeU0NpfxmYiK7ysoI1evprm5x3Jgctdt5MzeX20JDKXO5KHA6GRocTIRez7u5uawvKaG9yYRA8TxfWlhInMFARnk5B2w2Rh8/zsjQUG4JDcXucpHndPKJOrD30+m4LiiIVLudJKOR1qp2PzYtjY+Tkgjy8eHW0FB+LylhfEQEc3JyePnUKd5p1gxTIyyN/Z8Q4Pn5+axatUoz1Q4cOJCePXuyYMECysrKeOONNyqEzHObONu1a8dDDz1UYwzkpoRer8dgMJCfn9/gwtPlcvHbb79pGwD4+fnRu3dvoqOjG81MXh1JSUlccsklXHXVVVraV199xbJly7j99tu59tprsdvtjBkzhvj4ePr06cPSpUspVk2FaWlp/Pnnn8ybN69CuQsWLKBXr170798fu93O5s2bycrKon379rRu3RpQInBNmDCB6dOn07dvX9asWcPSpUu9Avwc2WO18nFeHrusVlr5+tLdz48Yg4FZWVncERbGiEqDb7fPzwMREQxqYO/oxiJQpyNbdQ5taPIcDu45fhz33Xr6+RFnMJzzMrtzIdTHBx8Ui4DbUc3mcvFQejrBPj48GxNDiq8vXxYU8GtJCSNDQzlot5PhEUd9UX4+cQYDM7OyKpT9WX4+Xfz86B4SwmGbjR+LijDqdAwKDNQcBkeEhLCquJg5qo9RocvFAXUdfUPzPyHA3377bbZv364dr1ixQtsK7oEHHtCEt8vlYseOHWzatAlQ5mT/DsLbTb9+/fjoo4+YOHFigwZOefnll7Xv+0KY53Wza9cuLU69n58fp06d4osvvuDhhx+mU6dOFBYWkpOTQ6tWrQgPD0dKqQlvgNtvv71CgB1Qtlt0b3gCyjtU085n7v3VBw8ezJo1ayoMJLycOdkOB09mZGjHATodC/PzSVCFyTUebTfX4WB7WRmH7HYAOp8HTbGh6Oznxxs5OayzWLi8kpd4fTNG3evgyaioBr9XXTlks+EE0svLaWYwIITg68JCMh0O3khMpNTl4mR5OWE6HbF6Pb46HcfV9wDgqoAAylwu5qoWhbYmE3usVj5JTsZf7SddUtLNbObmahxPdUIQ7ONDvOrctjA/v1GEN9RBgAshHkTxQE1Wk3YD01Tnl0bZbvBcueuuu5g0aRIWi4WIiAjGjRvH888/T9++fVm2bBlt2rRh8+bNHD58mN9++42rr74avV5Pr17V7vHQZBk1ahSTJ0/mu+++q3Zrv/pi+PDhbN++nddee63B7nE2DBkyhK+++kqzxLh57733sFqt6PV6wsLCcDqd7N+/X1tGaDQaefPNNzGZTGRlZfHTTz9p+xR//PHHLFmyhNLSUgICAigoKGDkyJEMGVL1le7UqRNXXHEFU6ZMwdfX97yvLW/qbTtSr+fhyEj+q3a8Pfz9yXU6OWa308ls5veSEmIMBg5YrfxUXIxNSvoEBJDpMX/5d8Bfp+PJ6GhmnDpFktHYKNHPLhThDdBDtSiOrzQXbxKCEUePYhQCH1XIZjocvJ6TQ0fVCe0fQUHcGRGBxelkZKoS/iBGr0eYTNyVmopdSiL1erIcDlxUjO7myf+FhrI4P59P8vNp1Yg+FXXRwNOBJ4CDKMv8RgNfCyG6SSl30AS2G4yMjMTf35/AwEAt+EpQUBBr1qzh4osvZvz48VpeHx8fVq9eTYcOHRpsTfL5Qq/X8+ijj/LUU0+xa9cubrzxxno34W7fvp1PPvmExMTEC8534JprrqG0tJTly5fTqlUrfHx86NixIz179iQyMrKCRjZy5EgSEhJ48MEH8fHx0c7ddtttxMfHM3/+fNLT01mwYAFHjx5l9erV/PrrrwQGBtZotQkKCuKBBx5olGetI02+bSepwurp6Gh6+vuTaDDwdGYm6XY7r6sBPtyYhWBzaSljG8lDuDFpbzbzf6GhPHLiBH0DA7ktNLSCT8C5Ui4li/PzMQvByHpe/niuCCGYERfHjFOnyHM66WI246/T0dPfn0v9/Cos6dpWWsq/T57k8ehogjzSA3x8WJyczD/T0lhtsTAhIoL2UVGUOZ3808NvoqZv9BI/Py45D349Z7UOXAiRBzwFvE0jbDfoLuNczLEWi4WJEycybtw4zVxqtVqZMGGClqdbt27069eP9u3bN9iOXhcCxcXF2gYdY8aMwcfHh549e56zSfGTTz7h119/1XbuupBMlFJKnn76aZKSkrj55ptrXYO9dOlSli1bRnFxMd26dWPUqFEcOXKEefPmIYSgZ8+epKSk0KJFCwoLCyksLMRgMLBo0SJeffXVRvX0d3M268Arc77a9rmsA19VXMxXBQXMio/HKARZDgdriotZ5LEW+drAQEaEhhLm49OkA3qcDiklx+x2FufnoxOCdiYTHcxmbZBztuQ6HDybmUmEXs+9ERHndb67OvZZrTx/6hSjQkNr9Wsocjr5b1YWu6xWzDodt4SG0i8ggFlZWWwoLSXJaKSHnx/JRiNJRiOHbDYCdDpWFheTZDQy6jxsEwz1tA5cCOGDsutQAEoEpxSUOMnL3XmklGVCiF+By4G3PC7fBHwJvAT0P9MHOFcCAgJISEjgyy+/pFOnTgQHBxMcHMywYcPIzc1l3LhxjV2l80ZgYCADBw4kKytLc8iSUnL55Zef9rrc3Fw2btyIwWAgKyuL9evXEx4eTnx8PElJSSxdupQ33nij3kO21gc5OTlkZmbywgsv1GlgMWTIEIYMGUJpaSkffvghTz31FBaLhTvvvJO2bdvyxx9/cPjwYZYtW4a/vz9paWk4nU5uvPHGGoX3Z599RmpqKiNHjiS+EQNu1IWm3LYv9fPj1exsjtnttDaZiDEYuDEkhPWlpYwJC2vUZT3nEyEEKb6+/CsqijtTU/m9pAQBLPbYPawmtpWWcsxuJ0yvVzRtnY4AnY5YgwEpJQlGIxOjoi6oQbmbP0pL6ePvzzV16HeCfHyYEhsLwC51/fYHubmUScni5GR2lZWxvayMXywWDtlsJBoMbLdaCffx4bYahHeOw8G87GzijUbuCgur/+/oNJaUOmngQogOKHGNTYAFGCWl/L4htxtUr6u3LQeluqVcstHIP5t4YJb6oszl4maPtdn/iYmpsbP7pqCAzwoKuMzfnzKXS9vZ6TJ/f3ZarfxQWIgQgnHh4fTx92+U3cXqgpSSr9XwmZf6+XHvWa5LdUrJcbudZKOx2gY69eRJNqthYZekpFSr5d127BhFLhct1HcwyWNryvqg7AVCNwAAIABJREFUplH66bhQ2va5WNdOnTrFhAkTmDZt2nld5XAh4d7nGuDiiy/m0UcfrXZqx2KxMGfOHLKysujUqRMnTpxg9+7dPPzww5SUlLBr1y62b9+OTqdjzpw5GGt4/88Hubm5fPbZZ/z5559MmDBBW/FxphQWFuJwOKrd8MnlcnHbbbcB0KVLFy0stSfHjx/nySefxGQy0b9/f4YNG4bT6cRoNFZY3XQu1GRdq6sGvh9lr+AQYDiwQAjR1+N85VGAqCYNKeUhIcQ7wHQhxPLK56vJ/zaKKc/dUZw1PxYVYZeSWy6wednziVmn45aQEC2O8b9PnuSJqCh6VeOgsig/n+lxcaSoDhqer3EXPz9yHQ5+sVj4LD+f2dnZPBoVVSVu8vngw7w8/igt5eHISNqfg2eoj6rd1MTjUVHaYOjDvDzurKYzmBQTwxMZGRy22/l3ZiZFLhegLGlq6euLn06H1eWi1OWiha9vo6wjpYm3bYfDwZw5c7j++utJSUk522L+dngKswMHDvD444/z6quvVgmhvGPHDsrLy3n55ZertRx17dqVxx9/XLM+wYWxsqSwsJAXXniBjh07Mn369HMKS3w6Z1KdTseoUaNYuHAh+/fv5/jx4zRr1qxCnmbNmjFgwABWrlzJ6tWrWbVqFVarFZ1OxyOPPEJsbCxOpxO73Y5OpyM5Ofms61qlfnXJJKW0SykPSSk3SymfQhltT6DidoOe1LbdYAsaabtBh5R8W1jIwvx8jtntfK0u5fGiMDIsjBdUkxLA7Oxs1v4/e+cdHlWZ9uH7TJ/JpE96I6GFDgIWRESUJiuLIAquXZRFRN1PRQWVBRQRV1GxKzYUlFVwQRQsgCgdYSmBEALpZTLJJJlMb+f7I5PZBAgkkAbkvi4v5NR3hjnnecvz/H4+laIazB4PXjhj5u5doaEkKxSk+rI7u7QBdavDdjvrTCbmxcScV/BuCGpfJjDA6spKtpz0HQJ0U6kY5JNWjar1Xb5TWsrrBgPPFRXxWkkJ75WV8WxRUYvU9l7Iz3ZpaSmvvfYaLpeLtWvXUlxcfPaTLhE0Gg1ffPEFV1xxBQAmk4l58+ZR5tNNr8FgMBATE1Pvsk9QUBB33HEHUVFRJCcnE9lGtONXrFhBUlISd911V5N7CpzMjTfeSJcuXXC5XLzxxht+i+Ha3HnnnUC1WFiNE6PX6+Wjjz5i4cKFLF68mA8//JBFixaxatUqvL7O+/lyrpk2EkBJC9sNvlRczDNnUBJziSK7LRZCZDIMbjdrKispdLnopFQyOTSUD8rKGHABrYftsVoJEQQCpFJimrE0pKdazayoKBbo9TwQHs7HZWVoJRL/dLrB7SZcJquzjlbl8ZDldBIokfCGwcAJX13lcaeTWJkMdyub5LhFkSUGA9N0OsJaKKFsUEAASXI5XuBtg4EBGg2ak0bRT0dF8ZPJhFQQ6KVSkWa386nRyDUBAdzqexF5RLHaSzk3l08SExGg3s/gEUX2WK0cOCnj+jxolWf74MGD9OrVq979JSUlnDhxgrCwMA4dOsTGjRux2+2MGjUKvb66P1GfXn1bo0bsJyIigpSUlGbzJpBIJEybNg2j0YjRaGTgwIG89NJLLFy40B+wjUYjMbU68KIoUlBQgNFoJDAwkNmzZ9e55pAhQ3A6nU02NXwupKWlceDAAV555ZUWmc4XBIHJkyczb948FAoF//73v0/JmZLL5bz77rv88ccfhIeH061bN3744QfWrl3L66+/7u/45OfnM2fOHDIyMpg2bRpqtbre79JoNLJz585TnDBr05A68IVUmx3kAYHA7cBQYIwoiqIgCK8DswVBSOd/doNm4EzzLK8C04BxwK9na0MNB+z2esUKTB4Ps4uKMLrdVHm9JMnlDNZquU6rJUImw0u1oP7Z/GzbEnJB4IvyctLsdiaGhHBrM2ZAXhkQ4F+7PWSzsbKiwh/AY+VyLF4vh2w2eqrVmD0epuTm4hRFAiQSBgUEMESrxSOKrKqspNDtZnp+PglyOTFyOf01Gi73mRu0FJUeDwUuF71a+N/7xdhY7sjJIVWpZEV5OfeGhVX7FNdiRK1kG4PbTaXHQ0qtGQupIHBvWBjZTif35uYiA1adZm3XJYp8U1HBivJyRp9D4mBberaXL1/OE088cdp1yB07dvDxxx9j9s1qDBs2jEmTJjFgwABUKhVXX301NputzeRdnA2JREJZWRmfffYZarWaf/zjHyQlJTXLvRQKBXPnzsXr9SKRSFi5ciVpaWn06dMHgK5du7JmzRpGjhyJXC7nl19+4dtvv8VkMjFmzBj69u1L//79KS4uZt26dWzZsoUtW7YwZMgQJBIJ/fr1o3///i363aenpxMdHe03CmoJunbtytixYzl06BB79+7l6NGjp9hIBwcHM2bMGP/fq6qqiIyMrJPUGx8fz5w5c3juueeYNm0akyZNYuzYsafcT6/X89Zbb2EymZg4cWK97WrIGzUa+ML3ZyVwABgtiuIG3/5FgBp4m/+JPYw4qU60DqIomgVBmEu13WCDmRERwUK9nk9UqlOCwT6bDZvXS4JczmGHg1tDQrimVtKGw+vle5OJbKez3mzCtkYftZo+ajVvGwz8YDI1awAH/IlXY4KDebaoiDdKShgZFESqSsVDOh0v6vUkKxQUu1xcHhDAb2Yzl2k0PFQrKfBKjYYZBQXEymTkuVzkuVzsslp5FwiVSBgXEsLNLZCHEC6Tcb1WS6HLha4FOw5BUinRMhl9fUIiKQoF19VTF77XamVecTETQkJOmRmSCALzoqMp93iYmpeHWxTruCaZPB5eLSnBLYq8HhdHilLJjz7np0bQZp5tjUbD559/Xqess4ZffvmFa665hh9//BGonq6svZar1+v55JNPmDlzZpvL7j8dMpmMm266idGjR3PXXXeRkZHRbAG8hpoAO3ToUD744ANGjhzJsGHDuPLKK9m6dSszZ84kNDSU3Nxcxo8fzxdffMHw4cPrTJlLJBLWrl1LUlISW7ZsAWDz5s1ERETgcrmYNWtWi2hnXHXVVWRlZTX7fU6mZ8+e/PHHH9x0000sWbKEl1566bSJgW63mxUrVrB582YWL158ygg6MTGRpUuX8sMPP5yypAHVMwxLlixh2LBhjBs3DqVSeYp8cw0XlB/4mpQUniwooMrrRaDaxq4m6HhEkeeLilBLJEwODaXjSWuwK8vL+cInUN8S3sNNSc2/UUtmf1Z6PKw3mdhgMhEglTIoIACD202208lDOh0xcjmTs7O5TqslRaFgkG+mo8rjYXFJCf01Gso9HjIdDuLkcrqpVByy2bg8IIDLWmgZY0ZeHlN1umZf/z6ZXKeTpwsLeVin4zWDgQ8TEuq4Hf1hNvNleTkFLhd/1+kYfZba1Ufy83lIp/PnF2w1m3m3tJTBWi1TatkhnksWeltAEATxX//6F0888QRJSUkMGTKE0aNH+/dnZWWxcOFCxo4dyxVXXIHupEqC22+/Hai2pm0pZ7umQhTFFs/qTk9PZ+PGjezdu5fU1FR69erFpk2b6NmzJ+PGjeOnn37im2++4c477/SbPMlkMg4ePMjq1au56aab+P333zGbzQwcOBC1Wk1GRgYTJkxoEXXBjIwM3n//fb8oV0shiiJff/01RUVFBAYGYrFYePTRR/373W43S5cuZcuWLSQlJTF9+vQzdiiPHTvmXyMXBAGLxcLKlSvZunUrjz76qH9JqWYK/6LwAx8ZFMRxh4Ofq6o47nAQLpMRLpMhFQRmR0fzQnExxx2OUwJ4bTu4NJuNHhfQVHprlG0ES6XcFhrKLSEhpNvtbLdYUAgCEVIpbxsMDNVqCZdKcYsi++12PjEa+S4lhcBadZYnM7gFs9J3WCzkuFytkkyXqFAwISSE98rKcIoiR+x2UpRK9lit/GAyYfZ6+Xt4OFcEBDRIVOT6wEC+LC9nfkwMLlHk5ZISZkZGtuj32dyEhIRwww03UFVVxfbt27n88svRarUolUqSk5N58skneemllxg+fHi919i3bx+jRo1CewF9L63xbKemppKamkpVVRX79u3j0KFD9O/fn99//x2Xy4UgCERGRpKXl8f27dspLi7mlltuoVevXv6g0q9fvzrXrE//vzlYunRpqyTTCYLA2LFjWbBgAbt37wbA4XCQnZ3N1q1b2bZtGx06dODNN98krAH14DVVEzt37uTKK69k27ZtpKenM3/+/FPyEurjwlg0qsUNgYFM1em4PjCQJwoLuTc3l1W+MiiNRMIVGo0/oao2V9Qa9T1TVMR2i6XF2nwhIxUEeqjVTNHp+LtOx9NRUYwJDuaQ3U6Zx8PvFgujg4JIPk0ihtnj4cPSUl4tKeGY3d6i7e7hG61aW2mGaUJICE/6XjILS0p4vKCAnVYrV2g0PKTTMUirbbAi2I1BQWTY7ZS53XhFEbkgtNgsRkuh0Wi47777mDZtGnl5ecyYMYN7773X7yHfqVMnQkNDT5tpXiMHnJWVxUMPPYS9hX9rFyqBgYEMGTKEhx56iIkTJzJ//nxUKhVHjx6lpKSEuLg4evfufUqWtyiKZGdns2jRIlasWNHi3/fAgQNRKBRnDGzNhUajYe7cuX4jovvuu4+PPvqIyspKxo4dy4MPPkh4eHiDOmYymYxRo0axdetW/7aEhIQ6wfus12j8R2gb1PjfPhgezqqKCvJdLlIUCv5dUcHfT5piM3s8PF5YyEC1mt2+bN2X9PoLbiq9LSAIAjcEBnJDYCA2r5fbs7OZX1xMtEyG0+slz2cU8VlZGetrOXn9ZjaTrFAQJZOxwyd4Mic6mv7NFIgCpVJuCgpiRl4eL8bGktgKWbO91Gp6q1QcsNsJkko5arez32YjymLhykYk4MgFgZuCg/ncaGSgRoNaEFC1ETGNpkahUOBwOIBq851FixYxYcIE0tLScLlcRJwkwvSf//yHtDS/twput5uDBw8ycODAFm33xUBwcDCTJ09m8uTJHDlyhPnz5wPQuXNnrFYrer2ekJAQnnrqKX9C4X//+19+/PFHevTogcvl4vDhw0Dz1opfe+21LFq0iDfeeIOHH364xWWLpVIpEydOZNOmTQQEBGCxWDh27Bi7d+9Gq9UybNiwBl/rqquuYvXq1aSnp/uXMRrDBRvAd/pG0AESCYvi4rgvNxeFIPBqXFwd7V9RFP0uM3eHhvoDOFQrkZ1NYrCd+lFLJLwUG8vMwkKK3W5u8Y2WtBIJLlHkk8REXtbrCZFKuTc8nFynkxynkxi5nNWVlXxcVka8XF6nJropeUCnI1GhYG5xMR8kJLSKBvbcmBj+tFoJl8lIVCj4tKzsnH5zY4ODuS83l02+F+cyo5G7L0JTjtr1sddddx0ej4elS5cyfPhwFi1aVCd5LS0tja+//pqhQ4eiUqlYv349UJ301h7Az49u3boxcuRINmzYwPLly/0BOT4+nssuu4zbbruN6dOn89JLL2GxWCgtLaWyshKz2Uxubi7fffcdY8eObZbs9IiICObPn8+iRYtYs2YN48ePb/J7nI2QkBCWLFlCbm4u8fHxBAYG1lm3bigqlYqRI0cyf/58/8zGkCFDGpwMeMElsYmiiNHjYb/N5rcR/L+ICFJVKkKl0jrOMwDbzWY+MRp5LCICmygyt9YU3HsJCW1OmP9CxOH1srqiguUVFUiBjgoF/4iMJK7WNNfJU0qVHg/fVFSwwWTinvBwAiUSeqvVTSYrWpt5xcWUu908GhlJh5NG4uVuN7usVordbmJkMoafJaHsfNC7XPxfQQFvxsefU0ndPquVE04nnxmNRMtkfHCSItSFnMS2fPlynE4nVquVhQsXkpubS0pKCo8++igOh+OUF5rb7ebtt9/GbrfzyCOPsHDhQo4dO+bf3xbUwi4GcnJy+Oqrr9i/fz+hoaF0796dhx56CEEQ/KVpJ5OZmcn777+PTqdjwIABxMTE+N3/mpK8vDxefPFFrr76am699dY6nTtRFDl+/DhpaWlYrVauvvrqUxTUmpLVq1eTm5tbJ6mtobjdbr7//nsKCwv5448/uP/++7n++rqWAvVJqV5wAbzQ5eLveXkAjAgMZK/Vigd4Pjr6lMS1r8vL+dFkwujzdV6ZlIQT+KSsDKPHwz+jo9uMru/FxJTcXB7W6eh7lulxryiyyWzmT6vVn+z1QHg4Q+spuzpXvKLIL1VVLDMa6a1Wc8zhwOjxECGTUenxcJlaTaJCwS9VVXRUKin3eHgsIqJJPaOdXi/PFRUxMCCAW86jjE701donKRSnlJ5d6AF82bJl/Pjjj3Tu3Bmj0Uh4eDhut5sXXnihzvGVlZW88sorqFQqDh8+TPfu3XniiSfIz8/n3XffZdKkSe0j8GYgLS2Nd999l7feeuusx5pMJr777jsqKyspKirC4/HwzDPPNLnFsMlk4tNPPyUnJ4fY2FiOHDmCIAhoNBpkMhn9+vVDEAS2bt1Kp06d0Ol03HHHHU06M5CRkcGrr77KCy+8cMoST2PQ6/Vs2rSJkSNHnpJ3cL5a6G2GGJmMu8PC+Mxo5KeqKhSCgFMUOWiz0VGpxO718ofFwn8qK/GKIovj4vi/ggKGaLWopFJUwP3h4Uh9toORMll7EG9C/rRaKXG7G+RFLBEErg8M5HpfwD5it/PPoiIGaDRom7C3LhEERgQFcZlGw26rlVtCQoiSyyl2uYiUyfz3GqzVstVsZr/NxgdlZTx/BtW/xlDudrPYYEAnkzH+PMtsBEFgwkWq5//Xv/6Vo0ePcuzYMTQaDfn5+VitVsxmM1qtlsLCQn7++We2bt3KsGHD6N27N4cPH2batGmoVCo6derE888/jyiKdSQt22ka1q5de4qWen0EBQVx1113AdWdzvfff5+VK1fy4IMPnuXMxhEUFMSMGTM4dOgQ5eXlTJkyBVEUqaioIDEx0R+oO3bsSFFREevWraNHjx7079+/Se6/b98+3n//fR566KHzCt5QrSQ4adKkRp1zwQXwmheYFFhRXk43lYq9Nhs7rVbGhYSwsqKCH00mbgsJYUxwMHJBwCGKrK6sZHUtHfSbg4NZXVnJU5GR9Ndo8FC9nt7OuZPlcDC3uJgxQUGnzIY0hG4qFVJB4K3SUp6IjKwjXNIU6GSyOoplKSe1MVYuZ2JoKFJB4IQvkep82Wax8I7BwKigICaFhp6iytbO/wgKCuLpp59m0aJFeL1eysvLsVqtHDt2jL59+zJ79mySkpJ45plnSE5OpsqXJDlr1iz//9dm+fLlVFZWEhgYeMGotLVVvvrqKw4cOMCbb77Z6HMFQWDEiBE8++yzjBgxgqSkpCYdNAmCcMra88kj/SuvvBKA3377rUkU3FwuFx9++CEZGRk88sgjdO/e/byveS5csL/qscHBpKpUxMnldFYoMLnduEQRlSDQTaXir77gne90Yj1JOD5BLucvvhd5psPBrdnZTM7O5g+zmV+qqvjRZKK8HiMJ7wWy5NAafFlezuUaDVPP0bITYHhgINssFsZnZfFCcTGH7fYW/86P2O10PoP+cEPZajbzXmkp/4yJ4Y6wsCbvkFyMaLVa7rvvPgwGA9OmTQPwZxkHBgbWcR37/vvviYuLqxO8Z8+e7ZcJnTJlCtOmTeOOO+6gsLCQNWvWsH//flwu1yn3FUWxVcqSLgTKy8tZs2YNCxYsOEVEp6EEBQURFRXFrFmzePTRR1mxYgWmxisHnhcVFRUYDIbzdgOz2+28/fbbOBwOXn755VYL3nABroHXxuTx8Eh+PneEhbGyvJyOSiWPRUQwMTubBLmcBIWCPVYrXZRKDtWqVfyqQwcezc9Hf5og3dOXDPen1UqsQsGVGg2jgoL8ZUBPFhZyhUbD7CaaXr2YGHviBHD+SncGtxsZ1bacv5rNBEgkBEokjA4K4q/Bwc0+iv3DbOZTo5F5MTHnnOR4wGZjXnEx82Ji6N4EnYGGcKGvgddm8+bNfP/994wcOZLPP/+cmTNnUlZWxgcffECXLl2IiYnht99+82dKA1x99dUMHjyY9957j8rTuA7ecMMNnDhxgqKiIvr06cMVV1zB5ZdfjiAIvPHGG+zcuZP58+fTsWPHFvncFwo1fusPPvggQ4cOPefriKJIcXExbrebp556CoDQ0FCioqL429/+1uzfu9fr5eWXXyY8PJwpU6ac86zMkiVLqKio4Mknnzyj0UhTctEksZ3McYeDecXFSIAwqZQnoqJQUD2KMng87LRamRIezv8VFPjPeSE6mmNOJ15RRO9201Wp5PvKSrJcLnRSKX/X6eiv0XDQZuN3i4U/rVbGBAXxXWUlVb7RfHelkjkxMe1laLUYe+IEC5rYulMURaq8Xkrcbj4qK8Ps8TAuJIQbmjjR7WTWm0ysqqjgnYSERo+cRVFkRn4+E0JC6tVBbw4upgAO8M0337Bx40ZMJhM333wzY8aMITc3F4PBwJEjRzCbzYwZM4Y5c+b4z1m8eDGbNm1CpVJRUlJCZGQka9euxWaz0a9fP6ZNm4bX6+XPP/9k/fr1/uz27durzdNSUlLo2bNno9ciL2Y2b97M6tWr+de//oW8iRI7a2Y8jEYjhw8f5ssvvyQ5OZkpU6ac8yi/IdhsNl555RV69+7NuHHjGn3+0aNHef3113n11VfRtKCY0kWTxHYyHZVK3o6P55/FxWQ4HEz1ZagDXKfVcm9YGKFSKY/odLh8JWidlUqSlUqUgoDCF4D1bjcKm41BAQG8oNfzRVIS3VQqyjwefjObWebTUQ+XSpkfHc1DBQXclp1NH5WKu8LC6KRUXvLJcHFyOV9XVNBDpWqy70IQBIKkUoKkUl6MiWG7xcKnRmOzB/BRQUFsqqril6oqRjXS6csliuS6XMS3lyieF7fccgupqaksWLCAb7/9lm+//RaAgIAAxo8fz9VXX41er2f8+PFERkYiiiIRERGMHj26jib3ypUreeKJJ/jggw/4/PPPmTp1Kl27dqWsrIxVq1b57RwnTpxIUFCQX8/6sssuY/LkyS3qetUWiYuLw2AwsH//fgYMGNAk1xQEAUEQ0Ol0DBkyhL59+/Lxxx+zbdu207pzNRVqtZp77rmHf/7zn4waNarRI+i8vDxUKlWLBu8zccEHcACt7+X+m9nMMYeDdIeDHKeTTWazX/iiNl/7pFfvDA1loi9d/46wMO4AvvHteygvD4FqKdHaY+xFcXFEyGSs7NCBHRYL75aW8nhhIVcHBPDUBeJH3FwsiY9nZkEBv5rNzRJgpYKAvAVVyAZoNByy2RodwBUSCd2USorcbjo3U9suFXr27Mkrr7zC7t27ycrKIisri9LSUpYtW8bmzZvJq9Vhj4iI4P333wfgnXfe8Scy1YzuTSYTf/zxBzk5OeTl5dGlSxeg2p/78ssvZ9y4cQiCQJ8+fdi8eTOrVq1i48aNda51KdK5c2fmzJnD4sWL6d69e7MEL61Wi9vtbnCW+/mQmJhIYGAgWVlZdOvWrVHnpqamsnLlSlwuV5PNRpwPF0UAB1BKJIwICmJErW1uUcQtiuQ4nXxcVobD62VUUBAflJXxXHQ0fdRqRJ85BMDIwED6q9XckpJCht3OvOJinoyKIlwq5SW9niynkw9LS5kVHY1KImFoYCA91GpmFxay1WLB7PE0afnThYZMEHhAp+MVvZ5rAgJOEdU5Xw7b7bxlMDCzhTpKvdRq1p1jos1NwcF8VV7OkFrGGh5RpMLjaVFf9IuBuLi4U1yd7HY7NpuNrKwsXnvtNSZMmEB6ejqhoaHMmDGDkJAQDAYDTzzxBFOmTEGr1fLhhx+iVqtZsWIFUqmUOXPm8Ntvv/HBBx+wa9cusrOzSU5ORqfTccsttxAcHMxnn33Ge++9x9NPP91Kn75t0LVrV/r27cuaNWuaZXlh6dKlWK1Wrr322ia/9ulITU3lyJEjjQ7g8fHxJCUlsXHjRkaOHOnfXllZiVqt9s/mtBQX9ZtEJgjIBIGuKhUv13oBjAwK4qjDgcHt5q3SUvbbbEioLvmB6iSsbKcTk9fLepOJ/4uI4I34eDyiyMljvwifIpbR7b6kg3cN3VQqUlUqlpeXc28TSn3qXS4W6fXMiIigVwvV955wOM5ZGa6nWk15aWmdbR+WlfGDycQXSUkEtf9WzguVSoVKpSI0NJQvvvjCv91qtXL8+HGqqqqYNWsWAOvWrSM3N5exY8cyadIkDhw4QF5eHunp6QwdOpShQ4fidrtP0dQePnw4Q4YMwV1PRcqlxm233cbMmTMZPHhwk/p+b9iwgSNHjrBgwYIWSQpzu90UFBTQufO5zY91796dct+SKlTP7EybNo2BAwee1s++ObnkMrA8osg/i4uZWVjIA3l57LfZWJaUxHcpKfRQqeisVOIRRWxeL12USn4zm1npm1aXCkK9GdBhvof/N7OZ+3NzT3uMKIoYL4GXweTQUNabTGw1m5usNCfNbidFoeDyFlqP9Ioi/66o4LFzFGdQCAJVXi8eUcTs8fCfykp+8I3md7Y74TUL2dnZTJkyhYULFzJr1iwGDRrE8uXL/fKWNeVlbreblJQU5s+fj16vB6jXEEOpVPrXwKdPn17HOao2LperxcuiWprQ0FCGDh3KRx99RIlv1rIp2L59O3/7299aLKP74MGDSCSSU+RKG4pEIsHie4Zzc3NZsmQJALt3766j5d8SXFIB3Or1cnNWFvtsNr7q0IGliYm8Ex/vH2XdGRaGAPyjoIBNZjPDtFpejIlhg8mEp4GBKEYmw+B2n1JHXuxy8UBeHg/m5uJs4X/kliZBoeC56GhWVlTwj4ICDjeB3aDZ60XXglPPxW43Apyind4Q/jCbmV1YyHVaLW5R5P7cXPZarbzumwUKaR99Nzk7duxg1qxZDBw4kGXLlvHCCy9w7733Av9TuHr99dd58803qaio8Af4+gLy6UhNTeWnn346ZfsPP/zA3XffzapVq5rs87RVbrvtNvr06cNOoQrBAAAgAElEQVSzzz7LBx98gK2WOdS5YrFYCG9BY57Dhw/Tt2/fRifaWiwWVqxYwQ8//MBVV13Fjh07mD17Nh07duT2229vptaemUsmgBf4TCBCpVLejI9HI5EQIZMRX+sF3V2l4uXYWMYHB9NLrWZYYKB/uvbbigrcZwniZo+Hjkolq5OTCT0p2GQ6HFi8Xl6MjfVnvl/M9FSrWRwXx1+Cg5lXVHTeMw+7rdYmLU87GyFSKQ5R5FgjFNlcosgSg4Evy8u5LTSURyIisPg6a89FR2MXRRLkcgZe4lnNTYnL5SI9PZ0VK1YwaNAgpk+fjkQiISUlxT9ylkgkjB07lpdffpnIyEjuu+8+NBoNgwcPZuPGjWRmZp7xHqIoYjabmTFjRp2StRr+/PNP+vTpwx133NEsn7EtIZPJuPnmm3nttdewWCz+pMFzRa/XU1lZ2aRT8mcjNjaWvXv3Nmq0nJeXx7PPPktVVRVz5syhe/fuFBQUMHz4cCZNmkRubi533nlniyv+XdRr4DlOJxurqvjdbMYhivRWq3k9Lu6U4FobqSAwNDCQobW2PRsdzct6PWl2O3PPYLZ+b24uDlE8rcvZYK2WwbUSmi4FJD7v8J9MJordbv8yQ2PZZ7VS4HRyWQsGcI1Ewh1hYSwrL2dudHSDxGPSbDZ+rapieYcOaHwPconbjZfq4P5LVRXDWrAu/GJFFEV2797Nxo0bSU9PJyoqiuHDh/OXv/zljOeFhITUScDq3bs3N998M88//zyPPvooV1xxxWnPy87OZvbs2QwcOJBHHnnklP3PPffc+X2gCxCtVsstt9xyTtKqtfnqq6+45pprWtTTe+jQofz888/s2rXLL7F6NlatWkXnzp3raLkbDAZkMhlWq5W9e/e2Sgfuoh4KzsjP53ezmeeio1mWlMRTUVFnDN71kaJU8np8PPtsNp4rKqr3uNd8U6RLy8rOuc0XIzZRRNnI6Sqn18t2i4U3DQbmFRdzd3h4iycJ3hAYSIXbzZ8NnCbspVbjpdoqtYY9VitDtVpkgsAOi4Whl1gnrjnYs2cPr7/+Ov3792fx4sW8/PLLZw3ep6NmHfThhx/mjTfeIC0t7bTHJScnc8stt7B7924OHz58vs2/aLDb7edU9mU0Glm7di1z584lPT2dCRMmNEPr6kcQBO68806WLVvW4HNSU1M5dOhQnW179uxh+PDh7N27l9TUVIIaWW7aFDQ4gAuCMF0QhAOCIJh8/20XBGFMrf2CIAj/FAShUBAEmyAImwVB6HHSNa4VBOFXQRBKBUGwCoJwXBCELwVBaPJPbva9RN+MjydZqTxv+U21RMKniYnoXS4+qydAJygUrElJ4bl2mVU/HlGkyOUirhE1k8cdDv6el8d3FRV0Uih4KTaWa1sh8Ml9uvqFp9HOPhmj283bvqxzRa3fWjeViv02G28ZDCQqFG2uhOxCe66hWg0rKSmJ4cOHn2K7eC4MGjSIBx98kCVLlnDCJwd8MuPHj2f58uWnmGZcyhQUFBAbG9uoc1atWsXTTz9NYWEhN9xwAwsXLmwVUZQuXbpgtVobtIa/d+9e1q5dS9euXets79GjB2vXrmX16tUNHsk3NY0ZgecDTwGXAQOAjcB3giD09u2fCTwOzAAGAiXAz4IgBAIIgtAdWA8cAK4DegLTgEqgyav3nb716r1NkGRRQ5hMxqtxcayurMR1gUjQtjalbjdBEgmqRqwNfWY0Mj4khJfj4rjRZ1rTWvRWq9ljtZ71uHUmEwdsNj5LTKwTpPuq1fwlOJgwqfScM9qbmQvquYbqpLGcnJwmvebQoUMZM2YMP//8c5Ne92KmuLiYmDMsKZ6MwWBg3bp1vPLKK0ydOpWrr766jmJeSyKVSuncuTP79+8/67FLlixhyJAhTJ8+vc7222+/naCgIG688Uauuuqq5mrqGWnwW1UUxf+IovijKIqZoihmiKI4G6gCrhKq0/keAxaKovitKIqHgLuBQKAmPW8EUCaK4j9EUTwoiuIJURR/EkXxIVEUDU38uQiTyeijVpPvdDbpdQOlUiJlMo43kd3kxc5+m+0U284zYXC7yXU66daKQbs2AzQaDG43P52hRMjq9XLYbmdccPApSzRSQWBscDB3h4cT3QaUm07mQnuuAX/ZTlOWMkH1VHlWVlaTXvNi5tChQ41y9vrvf/9LTExMqwXtkxk5ciTLli07rfFNDRkZGQDcdNNNp6zTR0VFcdddd3H99dcjbc7lvVpLcidzTvN5giBIgYmAFtgGJAPRgL/GQhRFmyAIW4BBwPtAMRAhCMJ1oihuauB9HgTO2QH+9tBQFpeU1OvDXO52k+l0IqN6qrMho0SPT0+9Xee6YRS4XKQ0sBTL6vXyL72eEYGB5+Qn3hyoJBJmRUUxq7CQvmo1kSf9u7tEkddLSgiXShlxgSeotdRz7btXnWdb++yzDW6nlmqfg33z5jHhNBKnHlEk2+lE73YTJ5eTIJc3aAmtymQi0WZrVFsuVURRpDg7mx5ff43Wp1F/JtJsNlbp9SyIjW0z3++1wAmvly+feIInIyNPKSvLdTpZXFjIzMhIIl58sXUaeRYaFcAFQegFbAdUgBm4WRTFg4IgDPIdoj/pFD1QI4H2b2AksFEQhBJgF7AJWFZfT10UxQ+AD3z3Fs0vvNCY5hIvilQ9+CAZ06YRGxtLWVkZXq+X1atXs2fPHgA6duyIzWYjMzOTCRMmEBcXh06no1OnTqe95nfffUeCRALz53Oqyno7J2P7/HOUISGY6zEoqFHAstvtzJ07l5RBg/jL/fdjbkOldmFAp3/9i2+jorjjjjsoLS3F7XaTn5/PunXr0Kam8vdHHsGpUNC08z2N5BxrUVv6uYZTn+3GtnmgRsOaykomhIRg9XoxezxkO52sqqzkiN1OrFxOnFzOcYeDMo+Ht+Lj2WaxcEtIyGnd5cweD9+bTIxphUSkCxU3dfM96uwTRaRUJ4zts1r5V0kJT0RGktDCUqNn47bQUCZlZzPN60UhCJR5PNh8M2ory8uZotMxsI0Yl5yOxo7AjwJ9gRBgAvCZIAhDa+0/+UEUaraJougB7hUE4VlgGHAl8CQwWxCEIaIonj4F9DwoKirCYrGwdu1ajhw5gsuXjNSjRw8WLlxIWFiYv24vMzOT559/3n/ul19+eUqPLC8vj/Xr1/NCAzsSLpeLxx57jMmTJzN48OAm+lQXDl6vl4MHD/oFNU4mNzeXp59+mvj4eARBICkpiSlTprRJV7fExES+++47du7c6ZfWDAkJYfjw4Vx33XUtXv/ZxFxQzzXAUZ9p0WslJWyzWNBKJMgEgVtDQng+OtpfxieKIu+UlvJwfj5QbTk84jRB+qvycjooFA024dnhc8WbHxNDRBtLTGwJDtvtRMhkBNTzu1+o17PLauVKjYY0u50nIyPp2wYDYc3v5B8FBVT5vCzsXi89VCrmxsQ0avmvNTgvP3BBEH4BcoAXgePA5aIo7q61fx1QKori3fWcHwpkAOtEUbznLPc6rWfw2cjNzWX//v0kJyfTo0ePMwaHGmOEsrIyJk6cyM0334zH40EikWCz2ViyZAndu3fnpptuatC9RVFkxowZGI1GRo4cyXXXXUdCQkKbDFDNwaZNm/jpp59YsGDBaT+z1+vl8ccfp6Kigocffph+/fq12UAoiiJHjx5Fo9G02X/D+jyDG0tLPte+48U1KSmNaqNHFNlmsVDu8TAoIOCMKn1uUeT7yko+NhoB+DAhgSi5HI8oIhUEshwOnios5N2EhAZXCRS7XDzoc0JbEBNDjFze5ioMmguvKDKzsJBhgYHcWM+MRanbzX25udwcHMwNgYFtbuRdG6vXyyGbje4qVZv1sxh74kSz+IFLqM40zaJ6LWw4sBtAEAQVcA3VvfHTIopiuSAIRVQvazULiYmJJCYmNujY5ORklixZQkFBAfPmzWPHjh3k5eWhUCiQyWSEh4c3aiQtCAKzZ8/m8ccfZ8OGDWzYsIF33323zSRxNDf79++nd+/epwS7/Px81qxZg8fjwWKxMHXqVPr3799KrWwYgiCQmpra2s1oKdr8cy0VBK5pYGmhTBAYFxLCuJAQviov57GCAmJkMjKdThLlcso8HkYGBTUqAEfL5YwIDOSnqipmFRXRT60+o8jTxYRdFMlwOJh3ms/7g8lEut2O0e0mWiZjYkhImw2KNWgkkhbzWGhqGvyLFQRhIbAOyON/WahDgTGiKIqCILxO9bRZOtW972epXk9b7jt/KtXTdKup7tWrgLuAXsCiJvo8TUJcXBxvvfUWOTk57Nq1i6ysLKKjoxk7dmyj6k5zc3N55513/H8fPXr0JRO8odql5+T6yPXr17Nt2zYyMzP5+9//zq233krUJe6j3ppcSs81wKTQUEYHBXHUbucHkwkJ1YI94xrp9/1dRYXflEYhCNwVFtYMrW2bVHg8aCUS5LU65ka3m7UmE99WVHClRsPY4GB6q9WNKh9tp/E0ZgQeDXzh+7OS6rrP0aIobvDtXwSogbeBUGAnMEIUxSrf/l1UZ66+C8QCVuAYcJcoiv/zA2wjyOVyOnXqxP79+0lLSyMtLY2+ffsS0cBa3tzcXF577TVKSkrQarVcc801l4RWcg1ut5v09HTkcnmdIP75558D8OKLL5KcnNxazWvnf1xSzzVAsFRKf42GF3xOZHtstgYHcI8o8qPJ5J+OD5FIeCY6us1UTbQEB2w2zF4vR+12vz9BpsPBtxUVRMtkPB4ZibI9cDcZwhkqnhocwM+2liVWL6b/0/ff6fbvo7qG9IJi9OjRHD9+HKlU2iAVJqvVynvvvUdGRobfXnDBggXodLrmbmqbosYvt8YwQBRFfv/9dwAef/zx9uDdRrhUn2upIDAnOpovjEZGNTDz/KDNxuKSEmp0+ToqFLwWF9cm8yGak30+YaOaBLAKj4cNVVXEy+XMj4lpD95NjHgGJchLI+viPNBoNMycObPBx2/dupU9e/bQqVMnQkNDmT9/fosK9bcVli5dCuD3Yk5PT+e9995jzJgxbX69u51Lg/4aDf0bkRn9TmkppR4POqmUKeHhjL2ElsNqMHk8bLdauV6r9WdoLy0rY7fVyuK4uEsmka+t0P5tNzHXX389ycnJGI1G+vbte0kGb4CcnBwSExPR+hKNauwCq6qqznRaOz6qqqrYtGkTffv2bXASZjvNy8uxsRx1OAiUSFpV3rc1cfiqlq6rVW6XqlTym9mMt11eukEcdzjYbbUyPjj4vK2lL83o0oxIJJJ6RWAuJaKiovzldjabjXnz5jF48GDuu+8+AJxOJ0ePHkWpVNKlS5fWbGqbJDs7m6+++gpBENoDeBshSCpt06IeLYHN6yVMKqWnrwOz3WLhc6OR56Kj6ezbVuxyket00lGpbB+Rn4b3Sks56nAwVKsluj2At9MW6dq1KytWrEAmk7FmzRoKCgp44IEHUPjqQZcvX85PP1UrdH788ceoLtERTX306tWLc9E9aKed5iReLkchCMwrLuYvwcG85EsErN2xqamPHxUYyENt08CnVXklLu7sBzWQ8xJyaUnOVcilndbB6XRyzz33+P8eGRlJSUkJ11xzDVOnTsVut1NeXk54eHh78G4izlXIRRCEGGAhcCPVpWQngGmiKP7m2y8Ac6jWLq/JRJ9eW2VNEIRrgeeBPoAGKAJ2+K5TvxMM5ybk0k7r8W15OZ/5klSlQI3VxpzoaPprNOhdLkQgUiY7bxvndqqpT8ilPV2wnWZBoVDw+eefM2XKFHr16uWXHy0rK0MikaDRaIiLi2sP3q2MIAghwFaq5VHHAN2otg6tbfXV5ixF22k9JoSGsjQxkVGBgXRSKv1yqm7fYDBKLie6gQYy7Zwf7VPo7TQbMpmMYcOGMWzYsNZuSjv1MxMoEkXxrlrb/J6aJ1uK+rbdTXUQv51qRzK/pWita5yglotZOxcXETJZ+/R4G6B9BN5OO5c244CdgiB8LQhCiSAI/xUE4WHhf8XNp7UUBWosRaGWpWhLNryddi4JziBF2z4Cb6fV8Hq96PV6oqKi2qyJySVACvAQsJjqdfC+wBLfvreoDt7QxJaiJ/uBN9YquJ22jdlsxuVyNUp6up0zUI9V8EURwEVRbBI1JIvFQsAFKmp/oWC1Wlm3bh2rV6/2b5s5cyZ9+/ZtxVZd0kiAPaIoPuP7+z5BEDoD06kO4DU0qaVoQ/3Am+LZdrvduN3u9nyLZiY7O5tPP/2UjIwM/7bT2TK303RcUAE8MzMTALVajcfjwWq1snXrVrZs2ULnzp0ZMmQICoUCg8HA4cOHKS8vp3v37iQkJJCUlITD4eDAgQMolUrcbjcKhQK73U5lZSV2u53t27czbtw44uPjcblceL1eBEEgKiqKbt26tfKnv7BxOp18//33fPPNN/5tt956K3369KFDhw6t17AWxGw2k5mZyY4dOzhx4gR2u53IyEjGjRtHp06dUKlUOJ1Of6ndmSgvL8disWC1Wjly5AiBDfSxPg1FwOGTth0BHvX9f7Hvz2iqDU9qiOSkUbkoigXAMmCZL5hnUB3I7zlbI06cOIHX6yUgIACbzYbBYGDdunUUFBRwzTXX0L17d+x2O1lZWWRlZSEIAn379iUhIQGdTkd2djaFhYVoNBocDgdqtRqj0Yjdbuf48ePk5eXx8MMP4/V6cbvdiKKIXC6nW7duhIeHN/Y7a6cW+fn5fPXVV+zduxeoFm0aM2YM/fr1uySCtyiKFBQUkJ6ezu7duykuLkYmk9GzZ09uvPFGv39GTcw5E16vl+LiYtxuN1VVVezYsYPhw4fXe/wFVUaW4is1sVgsyGQy5HI5vXv3Zvjw4Rw9epTdu3cjiiJhYWGkpqYSEhLCgQMHKC4upqCgAKlUSu/evfF6vchkMhwOB0qlktDQUORyOWq1mj179uByuZDL5UilUrxeL1u2bKFjx4507dqV8PBwtFotDoeDPn36EBYWhrSN2+W1Jna7nfT0dPR6PZ999hkA3bt35/777yfmIrJfdLvd/PrrrwQEBJCcnExERAQHDx4kMzOT/Px8jh49isvlIikpiT59+tCvXz/UajV79+7lt99+w2AwEBERQX5+PiqVitDQUJKTk5k6dar/9+X1etmwYQM7duygsLCQoKAgAgICkMlkSCQSDh8+3OgyMkEQlgMJoiheU2vbfGCCKIrdfWvhhcASURQX+ParqE5ie1IUxffPcO0DQIYoirecpQ1iTSfOarWiVqtRq9WMGDGCTp068euvv1JQUIBKpSI2NpYuXbpgsVhIT08nNzeXyspKoqKi6NixI1arFYVCgc1mIywsDJVKhUajoaqqisOHDyOTyfzfV0ZGBoWFhQwaNIjo6GjCw8Nxu92Eh4fTtWtXNBrNJRGAzpXCwkIsFguffvopWVnVeY/jxo1j/PjxF5UCZVFRETt27KBbt27ExMTgdDo5cOAAubm5nDhxgtzcXIKCgkhMTOTaa68lISEBh8PBjz/+yKFDhxAEAUEQqKioIDg4GK1Wy/jx47n88sv99ygrK+Pbb7/lwIEDSKVSFAoFGo0GhUJBnz59WL58+Wmf7QsqgLdWHbjZbCYjI4P8/HzKysr8cqDp6emYTCa6du1Knz59CAgIQCqVolKpiI6OJi4uDvkZnGQudiorK/noo484cuQIXq+Xm266CUEQ+PXXXxk+fDhjx45tsbbU9GgB9Ho9iYmJVFZWolQqcblclJSUUFRURE5ODkVFRURHR6NWqzl+/DhQ3REB0Gq1fuU4r9dLVVUVubm5FBYW+hX4CgoKqKysJDk5md69exMfH0+XLl3QarX19sAtFgt6vZ64uDgcDgfvvPMOBw4c4NVXX2Xjxo3s2LGDqqoqUlJSuPnmm+natesp1zqXOnBBEAYC26g2K/ka6Ad8BMwSRfFt3zFPAbOpHknXWIoOAbqKolh1BkvRmcCdZ3Mla81nu6CggMzMTPR6PUajEY/HQ1lZGTk5OQiCwIABA+jYsSMymQypVEpgYCAJCQmEh4dfssHd6/WSl5fHM888g0ajwW638+yzz7Jx40YOHTrE7NmziWtCsZKzYTabkUgkFBYWEhgYiEqlwmw2ExQURGlpKQaDgcLCQo4ePYrb7aZbt25kZ2djMpnwer3Y7XYUCgUREREkJCTgdDrxeDyUlpb6j7v88svJzs6mpKQEr9fLwIEDSU5OpkOHDiQmJqJWq0+bxyOKIsXFxXi9XqKiosjKymLOnDl07NiRqVOnsnTpUoqLi7Fardx4441cffXVftnp2tT3bLcH8POkZlr+8OHDOBwOvF4vNpuN/fv343Q6+fTTTxs0Jdqc1LQpICAAt9uNVCo968untLSU//znP/z666/+bffddx8DBw7E7XZjNpsxGAxERkYSGRmJSqXC5XLhdDpRq9Vs3bqVd999F4DY2FgKCwtJSEjg5ZdfxmAw8PTTT/Piiy8SHR1dXxPOG7fbzYkTJ8jMzGT9+vVYrVasVitBQUHY7XZCQ0MpLS0lODiY6OhooqKiiI+PJyoqiuPHj+N2u+nZsydWq9XvWW40Gjly5Ih/dBYYGEhsbCzx8fH+aWxRFLFYLH4d+HPhdl/SSlRUFAkJCUyePJnQ0NAzruOeh5DLGGAB0BXIpXrte4nPiay2kMtU6gq5HPLt70d1qdlg6lqKvi2K4rIG3L9NPtt6vZ59+/aRn5+Px+PB4/FQWVnJwYMHGT16NHfeeWdrNxG73Y5UKkUul/tnDs/G/v37Wbx4MU6n07/t7bff9ucJpKenExoaikajISYmBkEQqKqqQq1WI5VKmT17NtnZ2QAkJCSQn5/PlClTuO6661izZg0HDx5k9uzZzfWRgerBQWZmJv/973/Ztm0bNpsNAJVKhUwmIyAgwN9R1+l0xMXFkZCQgEKhYP/+/XTs2JHg4GAUCgXBwcE4nU6ysrIoKytDpVIhlUr9s2ARERH+d7jT6UQURZTnaB9bUlLCY489hlarRRAE/0g8KCjojDO57QG8BXA6nWzatIk///yT48ePM3HiREaNGtVs97NarchkMkwmE1VVVZjNZgoLCykpKfEHaZlMRmFhITt37jzl/H79+iGRSKioqKBfv37odDpiYmJQq9Vs27aN7777Dqh+KGpeFGq1GplMhtfrRafTYbPZ0Ov1KJVKpFIpZrMZqVRKTEyMfw1So9EQFhbGjTfeyJVXXskff/zBv//9byZMmMANN9zQLN+NxWLhgQceAGDYsGEMGjSI1NRUrFZrncDq9XrbZAZ8aWkpR44cQafTkZqa2qDR3rkG8NbmQni29Xo969ev5+DBg7jdbp588slmG2V6vV7MZjNqtRq9Xo/dbsdoNJKXl4fNZkMURVQqFW63m7Vr1wIQGhrqt/ANDAykR48eGI1GdDodiYmJxMXFERUVhdPp5Nlnn/XfS6FQ4Ha7EQSB4OBg7Ha7fxRbVVVFRUUFQUFBmEwmRFFEo9EQFBRESUmJvwObmJjI3XffjcfjYcuWLaxdu5bPPvusWWYfRVHk0KFDvPTSS0RGRjJkyBCuv/56lEolgiDUCaxt9dlOS0ujvLyc1NTUBttMtwfwZsZisTBr1izi4uIYOnQoqampBDXQZ/hM5OfnExAQgMvl8q+JFBYW8vPPP7Np0yYAQkJCCA4OJiAggJiYGKKiovB6vYiiiMvlQqVSYTQa/S8Fo9FIfHw8HTp0QBRFRFEkIyODyspKiouLcTqdaLVafzbp448/Ts+ePQFO2/P0er1YrVZsNhvh4eFkZWWxZs0aYmNjiYqKoqKigszMTIqLiykrK6N79+5cdtllXHvttee1Vma320lLS/NPWdvtdioqKigoKMBkMhEaGsqdd955yWS4twfw5mHbtm18/PHH3HDDDfTv358OHTqcd3ByOp0UFRUREhLin+Exm81kZWXx9ttv+zvCkZGRqNVqQkNDiY+PR6PRIJFIsNlsyGQyRFGkpKQEuVyOzWbD6XTSr18/ZDIZwcHBHDt2DJPJhF6vp6SkxD+SzMnJAeDTTz/F7Xb7O+C1EUURj8dDRUWFPy9hzZo1FBUVkZiYiEajISsri/z8fEpKSnC5XAwaNIirrrrqvAyKRFGktLSUgwcPYjQaqaqq8ic25uXloVariYqK8o9kLwXqe7YvnkyDVqaoqAiDwYBEIkEul59X8P7ll184ceIE3bp1809D1yYmJoaOHTty//33M3To0CZJorvqqqvO+VyJRIJWq0Wr1eLxeHjuuef8+3r16kVsbCxDhgwhJiaGyMjIM04/GY1GfvrpJzIzM1EqlVxxxRUMGTLEv//gwYOsX7+e4uJiioqK6NKlC507d/YnLAUHBxMTE0NMTEyb7H23c2HhdDo5cuQIVquV48ePM3bs2HMO3l6vl9dee40OHToQHBzMJ598Ume/XC6nY8eODBo0iKFDh5KYmHjev+FevXqd9Zj6lvhqZvBqRok5OTmsXLnSv//aa68lJiaGK664gsjISMLDw8/Y3n379rFz505KSkqIjo5mzJgx/lkMURT5+uuv/blGLpeLAQMGEBUVRWxsLCqVCp1OR3x8PMGXoA97fbQH8PPE6/Xy5ptvcujQIaB6qs1gOK12RYPR6/Vs3ryZzZs3M2LECPR6Penp6TgcDqC6s1BUVESvXr3aXAZ8bb9vnU7HgAEDiI+PJz4+Ho/Hw2OPPUZMTAylpaUolUpefPFFFAoFGzZsYN26dZSWlpKQkECnTp3Iysrivffeo3v37uh0On+m9759+/z3yMjIYPr06f5SjXbaaSqKi4uZPXs2arUagMOHD1NVVYXmHC1FBUFg7969/nKrSZMm8euvv1JWVobX68XlcpGenk5OTg5//etf21wH9PDh6mrDmuS+nj17kpiYSHR0NN9//z27du1CrVaTnp7OPffcw4gRI7Barbz55pscO3YMm81Gv379CAsLY/PmzRgMBqxePekAACAASURBVGbPno0oipjNZtasWVPnfoWFhUyfPr01PuoFQ3sAP0/Ky8vZtWsXUVFRjB07lo4dOxIXF3deAhR/+9vfmDBhgj/xrLarlyAI/qn0tjh9FBISwtKlS9m1a5c/i/P333+noKDAn91ZWVkJVAf4nJwcKisr2b17N6WlpUgkEkpKSigrK0OpVNKhQwfmzp1LWVmZf50uNjaWkJAQgoKCKC8vb3MvunYuDvbv34/NZmPAgAF069aN5OTk8xr9CYLA8uXLqaysRCaTkZaWVqezr1AoUCqVJCYmtrmOOcDo0aPp1asX+/fvx2QysWfPHlatWkVJSQmiKOL1ev3H5ufnk5mZybFjx8jIyMButyOXyzly5AgymYzIyEhsNhv33nuvv5xXp9Oh1WoJCQlBEASio6ObTKTrYqV9DbwJ8Hq97Nu3j7S0NLKysigsLEQqldK5c2ciIiL8pUo1pScVFRW4XC60Wi16vR6LxYJKpSIlJQWdTkdwcLD/xyyTyXC5XGzZsoWlS5eSkpJC3759CQoK8te79uzZk4SEhNb+Gs6Ky+XCbDZTVlZGcXExmZmZ/Pnnn/4RelRUlP/zQ/Uat8lkIiYmhvj4+PZAfRba18CbnsrKSnbs2MGxY8fIycmhpKSEpKQkIiIiiI2NxW63+6d3DQaDP5FTo9FQVFSEw+EgOjqapKQkgoODCQsL81cT1GR3P/PMM5SXlzN48GASEhIICAig5r08ePDgc854bilEUcRms2EymfwlW3v27KGiooIOHToQGxtLREQEOp3On3xns9mwWq306NGDgICA9iB9FtqT2FqYrKwsDAYD+fn5iKKITCajtLQUi8VCTEwM/8/eeYdHVeWP+z3T03tIhYQunQUsIAprXQHBsihiYb9YsCKrP1FRBNu6oiKyIqhrWV3sioVdG8iKK4oIKkVaEkghpJdJMi1zz++Pe2eYJBOSkAJZ7/s88yS3nnNn7jmfcz7tGI1G7HY7KSkpREVFYbfbycnJoaKigoqKCsrKyqirq0MI4fc6ra2tDVrW5Zdf3qUx1TonJroA73x8NvGqqioKCgoICwvD6XRSUlJCWFiYPwFHbW0tvXr1wmKxUFBQQH5+PtXV1ZSXl1NRUYHL5fL7y/hyDARj2bJlunlIR3di62oyMzPJzMxskG2nrfi8yM1ms3+EqigKFRUVKIpCdHT0bzpRjI5OV+PLjNVeFEXB6/U2aL8ul4uKigpCQ0MJDw/XNU46LaIL8BMYIUQTD1GDwaDnbtbR6eYYDIYmAtpqtXZqYiOd7snR/CG6lQr9eNdBR+cE56CUMuN4V6Kt6G1bR6dFgrbtbiPAdXR0dHR0dI6gG1l0dHR0dHS6IboA19HR0dHR6YboAlxHR0dHR6cbogtwHR0dHR2dboguwHV0dHR0dLohugDX0dHR0dHphugCXEdHR0dHpxuiC3AdHR0dHZ1uiC7AdXR0dHR0uiG6ANfR0dHR0emG6AJcR0dHR0enG6ILcB0dHR0dnW6ILsB1dHR0dHS6IboA19HR0dHR6YboAlxHR0dHR6cbogtwHR0dHR2dboguwHV0dHR0dLohugDX0dHR0dHphugCXEdHR0dHpxuiC3AdHR0dHZ1uiC7AdXR0dHR0uiG6ANfR0dHR0emG6AJcR0dHR0enG6ILcB0dHR0dnW6ILsB1dHR0dHS6IboA19HR0dHR6YboAlxHR0dHR6cbogtwHR0dHR2dboguwHV0dHR0dLohugDX0dHR0dHphugCXEdHR0dHpxuiC/BjQAixSAghAz6HhBDvCSH6tPE+s7TrwzuxrhsC6lkvhDgghFglhEjoxDJfEUJs6az7N1NmqBDisBDizIB9BwKe3S2E2C2EuF8IYWl0bZwQYql2vkv7PV8SQvRqdF6qEKJGCNG7q55Lp/MIaMefBTn2rhBiQweWdZcQYkKQ/VIIcUs77iuEEDnaffoGOX6yEGJRkP2LhBClx1puC3Xq9DKFEHcIIb4K2Pb1pbuEEIZG5z4hhDjQzH0Wa9c9FORYiBCiWAgxviPq3BnoAvzYqQJO0z53AiOAdUKIsONaq+B8hVrPCcBTwAzgjU4s7yFgVifePxi3AjlSyv802r8a9dnPAd4EHgAe9R0UQqQAm4FLgb8C5wJ3AycDW4QQg33nSikLgLeAhZ33GDrHgXOFEGM6uYy7UNtfR3MakKH9f3mQ4yejvvNdSXNlvgic196baxOe+cBjQQ6fBFzShtv5vrMZjQ9IKR3ActT+7ISkWwpwIUSMEKKoNTNebfT1TCdUo15K+Z32WQ1cA/QCLuiEso6KECKkhVPKtXp+I6V8BlWAnaUJrw5HSpklpdzRGfcOhjbivhl4KcjhQu3Z/yOlXAS8AswRQgjt+AogGjhVSvmcdt4/gLFABfB6o/u9DMwQQsR1wqP8pmmpXQshRmuzpQxte7IQ4qfGM642Ug78Aixoxz2apRVts73MAGqB7wkihE4kpJT5UsofO+BWMwAX8HmQYxuAe1tzEyHEKKA/sA7o08wg7hXgDCHE0GOqaSfTLQU46g/0LyllVivO/SswqwvUnr4XM8O3QwgxXQixXVPL5gkhHhFCmI52EyHEY9o1NUKIfCHEP4UQSY3OOSCEeFJTB+cD1W2s68/a3/RG9x0ihFgrhLBrn3eClD1MCPGtEMIphNgphLhACLFFCPFKwDlNVOhCiBFCiHVCiDohRIX2XD0CjmdonfN0oar4q7TnX9yKDvr3QCrwfiue/UcgDIjXBMGFwDJtdu1HSlkNPAKMEEKcEXDov6idfrDZjk77aEu7Rkr5CeAFZrajTIk6oL2wpU66De/wTCHEP4QQlcDHmvo2DnhAHDHpTAi4tVEI8agQokRT2T4rhLC2VHEhhBH4I/AR6uB1kBBiWMDxWagzSALK3dDMvcKEEH8TQuzRni9Hq0dko/OkEGJuc/U9WpkiiApdqOarVUKIQq1P2SOEuL2FR78GeF9KKYMcexi1zU5u4R5wZCDwJ8BJ8Fl4HvADcHUr7tfldDsBLoQIBa4F/t6a86WUJagjtRs7s14cEdyHAYQQ56KqW7cCU1Ff6juBv7Vwn0TUDmUScDvQG1ivNdZArgDOBG4CLmtjXXsCCnDQt0Oo9rP/AjbgKlQV+GDUDkho54QCnwEhqC/7w8BS7X7NIlR7+wYgVKv3rVrdvxCN7NHA40ANqkr7dVR19aUtPM9ZwF4pZVkL54H6O7lRhfB4QABrmjnXt98vwLVO4zvg7FaUpdNK2tquA3gZuK2dxb8D7OUos/A2vsNPAHZU4foocBGqye3vHDG7bQ04/w4gBbgSWALcAMxtRb1/D/RANQ29C3hoKITWAk9q//vKvamZe4UCRtTv4A/A/dr93wly7tHq2+oyNe3EBmAaqpr6Au3aZjWDQjVRngJ828wp3wNf0oJGRevTLkMdMOYB/wIua2ay8C0nanuXUnarD2pnXgaIgH0DUUehVaid/yZgaMDxq4H8DqzDIqAUMGmf/qh25mogWTvnO+CrRtfdhTpjSNO2Z6HOAMKbKceIOrOUwBkB+w8AhYCtFXXdALyn1dOKqho+ADzX6LzXgD2AJWBfP62+k7Ttm1GFX2rAOSdr9XslYN8rwJaA7ceASiAyyHUztO0Mbfsfjer1E/BmC8/4OfBOkP0HUDsEE2oHNVl7R97Vjt+tlRl1lHtXBvmuFgEFx7st/C99mmnX5wO7UWdHG1EFpwQyAs7pqe3rewxlLgJKtf9nae96f237XWBDwLlteYc/CFJWKbAoyH4JfN1o3xrgu1bU/yVUM49F214L5DT6Dm9BG3c29+zN3NsEjNPq17Mt9W1tmaiCXwFGtOE3G6vVYXCj/bO0/eGovgYSOEs79gRwoNH5Z2jnTNe2/6htTwhS5iygnlb0t1396XYzcNRZ049S+2aFasf9BvXLPwf4HfAsqvDzsRlIFW30Em+BONQRrwdV8PUGLpNSFmqz5d/RdPT6FqrW47TmbiqE+IOmoq5CfWnytUP9G526TkrpbGVdL9bq6USdZRfRdNZyNvABoAghTJqqPwdVCI7WzhmD+t371c1Sys3a/Y7GycDnUlVLB153ADi90bmN7Vq7gLQW7p+E2kEG48+oz14LfAx8jToQaQ+lQKJPM6HTITRu1+moguELVAfR5ajamQZIKXNR378zGx9rI68DucA9zRxvyzu8to1lt/md11TWF6EOFtza7jdQBxGntrF83z2vEkJsE0LUoLaZb7RDjfueY2mjwfg9sE1K+VMbrvGZ9Jr1ZpdSbkDt5+47yn18vgOfaNufoGpNgvkRlKLKk06L3DlWuqMA74U6+/RxM+oP8Ucp5WYp5V4p5euNXopD2t+MDqxHFapAG4368mZIKf+tHYsHzDQVbL7t2GA3FKoTxUeoQvsqVEHva4y2Zu7VGtZrdT0d1SfgZFT1dyDxqJ6dnkaf3hyxlScBJUHuH2xfIMnN1LeIpt9FZaNtN02fvTE2VFtWMF5HffZhqLOnKVJKX118A5FewS7U7H9RAef5cHFE+6LTMTRu1zeiCtTbpJS7pZRvAyubufYQ7WzbUsp61AHClaJR+KBGW97htrRNOLZ3/g+ozpf/EkJECyGiUbVtLo7BmU0IcRHwD1Tt5R9R+52LtMON63Is9Q1GHA1/89bgK6e59u7jEWCCEGJs4wPa5ORS1IGIRfvurKjmwUuFEOZGl/jKOpZn7FS6YwcUQsMGMhL4JmAUGgxHwLUdRb2UsrlY51JU4ZfYaL/P4aW8mesuQhWGlwXMRIIKF1SNQ2upCKjrfzV73u1CiL9J1f7jq9MHqKEejfGNdg8DA4Icb2lkWkjT7wLU76MjvFLLUTuzYBQd5XfaiPo9XojqidyYqdrfrxvtjwZqpJSetlZUp1kat+uTUNWyge/5pmauddAxbfsl1Fnb/CDH2vIOt6VtHis+IR3MRj1dCDFPSultw/3+CHwvpfTbq0VAToVOogxoErveAr6+M5qmAwk/Usp/CyF+RP09dzU6fA7qhOUijgxSAjmXhloUX9/SXL993OiOM/BSICZguzVqTN8IuaWZYoegNZwfURtFINNRbT7NdUQhgKdRp9UeD9vm8MVozgvYtw4YgqrG3NLoc0A75wdgtBAi1XeREOJkjgxMmuN74DwhRETAdWNQZ03fNHdRG9gDZLb1Iu25PkIdzCQHHhNqrOl9wE9SysYCPAPV6Umn4ziWdu0jlg5o21JKF6q99P9QZ9yBtPcdPtZZahO0d3Myqsp8YqPPn1Hb48SAchFCtFR2CE1ntcfa97S2zHXAyEDP+VawR/vbmvb+CKqm4neN9s9A9R1o/N1NBIppqsHIAMpk65xku5TuKMC3AYMCtrcCpwfxBA1kCOqMeHtnVqwRDwAThRAvCyHOE0Lciepp+YKUMr+Za74AegohnhZCnCWEuB81ZKJD0cp/FbhOUx+B6mAyBFgrhLhUCDFBC4d5JSDk5WXUjvYTIcQ0IcQMVBV1CerApDme0v5+JoSYKoSYiRrytR3Vwa69/Be1IziW9/kmVHPId0KIOUKIM4QQV6EOsmJRPW0bM1orU6fjaNyudwGnNPIzaGLb1YREHxp6dbeHVai20Maq1/a+w7uBSVq7Gh04EDgGpqI6ZS6TUm4I/KBGuZRxRAjt1v7OFUKMEUIE06CB2vecIYRYIIQ4WwjxFGp0x7HQ2jL/gfr9fa61vYlCiP8TQgRL0AKAlDIHVRsyqhX1WAPs5Mhgxve+TAPeavzdad/fW8BULSrCx2ia93o/rnRHAf4ZcJI4kkhjBarn4dvay9JXCDFDCDEi4JrxwEYpZV1XVVJK+TlqrPBoVOep21E9optNmyil/Beq+u4S1Jnhmagj7c7gMdQZwY1a2XtRO8g64Hng38Bi1FH5fu2cOlTPYAfqi74I1bO+kqPEoks1lG8iqhPdG6hOhhuBc1owfbSWD1FnEOPaeqGU8hCqT8D7qF7pX6LaQrcAo6WUOwPPF0LEo3YeHTHw0DlC43a9EnXm87QQYoAQ4lJgTpDrTkV9RztkQKW940uD7G/vO/z/UH111qJqslojgJpjBrBPSvl9kHp6gLeBizVHt42ooV5zUbUIq5q55yrU/mkualvoher1fyy0qkzNCff3qP3jg6h9zl0c8VlqjvdRZ9ZHRdNkPtpo92QgAjXqJhivo8qTKeC3l5/FCdreRUNtbfdACLEJeF1K+ay2PRj1hfGFBmwHrpdaNjAhxB7gASnlm8epyv+zCCEyUdXJ10spXz6O9fgQNVSwvR7mLZVzA2o8f3/ZHRvPCUyQdj0JdebbC9UktQK1g830mXWEEKtQ++pgwl3nfxAhxEjUQVCalPJwJ5d1HuqAKEVKWduZZR0LrRLgmrrnIVSDfyKqumuulPIH7bhAVRlfj2rH+h64OXD2IoSQqGrsgVLK7ID9rwDxUspWzzSFEOcDy4BBLTlqaJ3AEmCY5mmq0w6EEPegjpAPosbg3oPqqT0wMMTmONRrDKpNrZeUsqKTyhCoKrnHpZSvdEYZv2Xa0q618xNQ1bWjNdWqzm8EIcRa1BC0o4WKdUQ5n6I6Uy7qzHKOldaq0H1J6K8BhqK6338Z4Mx0F2p2nltRQ3aKUTMUNbbzeFEdC9qFlPJTVBVWa2IPw4A/6cK7w5Cog7VPUWNzs4DfH0/hDaANJu+ihaxw7SQJ+CfNq9902kEb2zWojkw36cL7N8kddLJTslAzxW3iiP/DCUeLM3DtIezAJVLKDwP2/4hqs7gfdUb2NynlIwHXFAN3SilXafsk6kz4DuBkqSW1P5YZuI6Ojo6Ozm+d1szATahZaBpn/XKgJgbJRJ2Z+LPzSHUZtq9p6sm5GdUZoElGJR0dHR0dHZ3W02IiFymlXXMuuU8IsQM1mccM1Cxh+zmS2i5Y1rFUmnIvsEsIcb6mMmsWIcT1qHZ1IgyGUXblaJFKOjq/eQ5KKTOOdyXaSkJCgiwtbTYzpo6OTjNtu7WZ2K5CzVKUj2rH3ooaShEYIN9YFy+C7ENKuV8I8QLwmBAi2Hqugec+jxrShBBCftS7s1cE1dHpvlyYnd1c1r4TmtLSUlavXn28q6Gjc8JyxRVXBG3brRLgUl2f90yhLuUWqS3Y8RbqYhc+N/4kIC/gskSazwm8GNX5qTOyjOl0IVJKHFKiSMlBt5taRaFeSgxCoEiJW0pMQmDWPlYhiDAa6WEyYTU0b8HxSEm+202Bx4MXqJeSQx4PbinxSolRCAyAUQiMQJTRSILJRKzRSKrFQuhR7q2jo9MyHo8HKSVlZWWUlpbidDpRFAWTyYTLpSZtM5lMmM1mzGYzNpuNqKgo4uPjEUdZ56e6upqCggLKy8sRQlBVVUVFRQX19aqfsdFoxGAwYDAYsFgsxMbGEh8fT3R0NCkpKUe992+NNuVC1+LgaoUQMahe6XdxRIifgxqb58t2Mx41eUGw+xQLIZ5ADU1rLq1oExyKwgG3m/L6etItFtLNZv3H7EL2uVxsdzjwSslrFRXEGo14pMQlJfVS0t9qJdxoxIS6jJoJMAtBvZT86nJR6T0SGWQWgr4WC07tWgFEGo3keTyECMFhrTFHG40MtakZGdMtFsINBoxC8GNdHdscjiZ19HFBZCRVXi+FHg91isKi5GRSzI3XKGgbUkokqgrKBK1+97xSUu31ogAuKQk3GIg0Nl7e/bdNWVkZubm5APTr14/w8PDjXKPfDl6vl/Xr12OxWFi/fj379u0jISGBqqoq6uvrCQ8PJz09HZvNhsFgwO12ExKipp53Op389FPDxcRSUlIICQnB5XIhpSQkJASPx0NZWRkGg4HqajVg5eSTT8ZgMBAWFkZiYiJGoxEhBK+91nyQx8iRI4mKiqK8vJySkhIyMzO5+eab2y0HFEVBCIHX68Vkar1YdLvd1NTUIITA4XCQmJjYpuvbS6tK0oLZDagxl31Rvcn3AC9LKaUQ4mlggRBiN2pSj/tQ1+U+ml7sSdQsYNNQ43db5LIDBwCINxop93qxCMEVMTEkmkz0tFhI1QX6MVPl9WIVAps2c11nt5NoMpFkNhNhMPDv6mpeLldz+cdpwqfc2zBUN85kYn6PHhz2eFh0+DBnR0RQ6vGw3elsILxTzWYGWK2cHRFBiMHgF/JVXi/pFgsORWG/y8V/a2v5v7i4oIL3D5GRbLDbMQmBAKoUhS11dfysCfV/VTeMaqv0etskwP9dXc03NTXEm0wUejzsdgVf/GhFWhpplqNl8YVNtbU8XlzcYN+HmZn6uxrArbfeCkBsbCzl5eUMHDiQM888k7i4ODIyMnSBfowoikJVVRVRUVEYDAYKCwvJyckhKSmJ5ORknE4nCxYsoLJSXRfEarUCUFJyJEKrurqaWbNmkZqaypo1a8jOziYlJYWioiL27NnjP89oNBIZGcm0adPo0aMHVqsVg8GA3W7HbDYTHx9PaWkpP/30E3a7nWuuuQZDEE3ZkCFD2L9/P1arFbfbjd1u54033iAhIYFt27Y1ONdisbRJ6NbV1bFq1SoURcFgMFBaWkpOTvAoxNaYdWbNmtVge8qUKcyY0ebF4I6Z1iZymQ78BTU+sxzVk3yBlLJKO+5L5HIDDRO57Ai4h0Rd8vPdgH03omZXWttSGJkQQi5KSmKd3U6+x0OV19tEgEwMD+fG+HgUwCoERr2DbIKUkv1uN786ndQpCqNCQni+rIw9moB6IT2d3S4XTwYInDSTifz6hmH0jfc9mZpKT7OZDTU1PKs5JPUwmShqdN306GiujA26mmqH4JWS2bm5lHu9vJCeTo9jnHW/XFbGB1VVAIwPC+Og202u58jiY9EGA78LDeX/4uJaNZuu9no54HaTajYTYzRiOMq7WasoVHm9JJpMmNrwDl+YnY2Ustu99EIIedVVV7Ft2zbKysooKyvD7W6YnfTRRx+lR48eGAwGv5DRaYjD4WDHjh0UFRXh8Xg45ZRTuPPOOwEIDw9n1apVzJx5dKtlSkoKNTU1/lny6NGjmTFjBqGhoaxevZqNGzf671dTU9Pg2iVLlpCaGsxvuWOorq5mzpw5nHrqqdx4442Yj6FtO51O/u///s+/PX36dN5+++0G5wwdOpRhw4YxadKkVt3zwIEDeL1eUlNTsdmaX79FSkllZSVSSmLb2AdeccUVQdt2t0mlKoSQkyMjKfB4UFBtpAfdbjyKwsjQUL6vO5Lm3CYETilJMpn4S0oKcW1QabxeXs5PDgcuRSHUYCDeZGKgzYZDUUg0mRgWEkJsF6pIOpoLs7NbPKe/1co1MTH8s6KCXZpgDxECx1HeFasQmISgVosUeC4tjXCjkRUlJWwK+G36W60YAIsQpFosjA4JYXRoaIfNRhccOsR2pxrx2N5ZbqXXy9UHDwKQabFwc3w8L5SVYRGCESEh/DEmpoU7HJ2K+nq2OhxkuVxsqq2lrNGAdGpUFLPj4pq5WkWRkn0uFyX19TxeXNxtBfi4ceOorKzEZDJRXFxMcXExiYmJhIWFsX//fkCdHXo8HhRFYdq0aUyfPr3VZVRXV/PUU08hpcTpdBIbG0tqaioWi4W4uDiio6MZOXJk0Blhd6CsrMyvxTgaEydOZNy4cTz88MOtvrfNZsOptakxY8Zwww03kJ+fz6JFixqc179/f4QQhIWF0atXLyZOnEh8fHybnqM56urquPbaawG4+uqrOf/884/5XlJKvv32W5599llCQ0MZN24cp556Ks899xyxsbFce+21pKW1NpdQcPbv38+vv/5KdnY233/fJGV9qwY71dXV5ObmYrVaeeCBB4K27W4liRI0AWrR1KY9LRbCDAa/2ldKSZbbzZ8LCgA4XF/PmxUVxBiNxJlM9LVayXK5KPd6sQlBitnMqNDQBjP13U4newPVpS4XVV4vv2gv8B+jo7mqE2eQnUWu280t+fnYhCDMYMAiBIX1wZPT7XW52FJXx2mhoexyuQgRAlsLAtyl2cJjDQYmaOrOKKORe5KScCkK+1wuvKgJBQxC4FIUtjkcLC0pYXhICLclJBDSzs5zj9PJTu13uiQ6ut2DgmijkcaRD0s6YIYhpeSvxcV8W9swtXKmxUJvi4VBNhvJZjOxRiPFHg8xJhOKlH6nv29ra9nhcKBwxFQwLiys3fU6nvTv35+kpCRcLpffYSkqKsr/GyqKwsqVK/nmG3XlzjVr1qAoCjabjYyMDGJiYti0aRNhYWFYLBaGDBnSoIOsqKhg794jK8Dm5eWxY8cOvAGDpqVLl9KjR0sr4554rFq1iv/85z+Eh4cTGhpKXV1dk9mxjy1btnDGGWfQq1cv8vLysNls1GkDbKvV6ndOC8QnvIcOHcqgQYOwWCz079+f1atXU1ZWRkFBASaTCYPBgJQSu93OunXrWLt2Lddeey2nn356u56vvr6eTZuOuEqdffbZ7bqfEIJx48YxblzDtY+eeeaZdt0XGg40AhkyZAh9+vQhMzPTr0mqrq4mIiICj8eDxWLB6XTyySefYLfbqa+v56uvviIhIYELL7yw+WfpTjPw1oSReaTk29pa7JrKMtFkol5Kdjqd1CgKFV4vA61WEkwmPq6uZqDVyoVRUZR7vUjUmebfAmJSTagdeZjRSJzRyNkREZxksyEBt5TYhCBGc75oibL6ejbX1SGBs8PDsbQgsHzOTzlut38QEmEwHJNgevTwYb6rq+Pm+Hi+qanhZ2fDvDw2IfBIia87MwAxBgNlzcTeRxkMuDUPdIBJkZH8q7raHzdoE4IJ4eH0t9k4OTS0WTWzW1G4VPNteDI1lb4WyzE935sVFayuUFOgjwwJYUGPHi1+v+2hpL4el6LgUJQ2e73Pzc8nJ0BF/JfkZAbZbP7ndikKa6ureauiosmgqa/Fwn7t2uvj4qhRFE4JDSXTau3WKvTW2BsLCwvZs2cPRUVFuN1uIiIiKC8vJzs7G6fTid1u54wzzqC6upqNGzcyvXuxuAAAIABJREFUf/58cnJyiIyMxOl0Ul9fz5tvHlnPKDQ0lIiICMLCwujbty9jx46lR48euFwuFEUhKirK76zVEjt27GDv3r0MGjSIgQMHtni+0+n0e3enpaURFhZ2VPVrc/jUyjabjZkzZ/Laa681MT8YjcYGA5Xx48f7VeHNkZ6eTl5eHqNGjcJqtfLtt0dW08zIyGD06NH06dOHwYMHN2t/zs7O5r777mPMmDFce+21RES0fQXVxirvW265hbFjG+cH6zg8Hg+lpaV4PB4MBgMpKSmt1srk5uZy9913+7fHjRvHlVdeSVRUlH/foUOHeOWVV8jPz/f7HQAkJydjt9upqalh0qRJxMfH43K5OO+887Barf8bKvSOjgPf6XDwnCasB9lsGDUVcJXXy4VRUfwuJASHlNQqCjWaIP2mpoZ9LhdGIbAIQVF9PT0tFs6JiKBeSsK0H9siBJ/Z7WRYLJgAq8HAfpeLXU4nLil5Ji2NjCDOT3avl11OJ+9XVnLQ7cYgBL0sFg55PFRojTDRZCLOaCTcaPSHUCWZzaSazWRYLH779kG3mzKvl+L6euKNRrLcbuqlJFIIDjVS106JjOTq2FjeqaxksM3G0pISKr1eemizv1pFoU5KBlqt7Ha5/GaK/hYLtZpntVUIyrQBUh+rlX0uFw5F4SeHA4sQTI+J4cKAl9nH+5WVvKI5yAFNZr0tkeVyMU/TugC80rNnh5s5ct1uvrLbyXa7sWvfabjRiFUIvzCem5BAqtlMD5OJmKOUv7K0lC+rq/F1swuTkthcW0ucyUQPk4l9LhcfV1ezJCWFg263f0AZIgQPJydz0OMh2mhkdGhog/v+rwvw1iKl5LXXXuPHH38kMzMTm81GSEgIdXV1VFdXc+utt2K1WqmtrfV/tmzZwk8//URFRQVWqxUhBCUlJfz+97+nR48emEwmbDYbNpuNnTt3UlNT47djRkRE8M477wCqcHv00cYrWKqzSLvdzqeffsqWLVsoKysjIiKCHj16sG/fPjweD9HR0YSGhhITE0NYWBhSSnr06EFCQgKZmZkYjUb279+P0+kkJyeH2tpa7HY7QghKS0sRQhAXF9fEKeuxxx5DURS2b9+OEMLvnDV06FCysrKor69HSomiKA0Efc+e6rICkZGR1NbWYjAY6NOnD0lJSezfv59Dhw5RUFBAfHw88+fPJzExsUG5LpeLP/3pT/7t6667jokTJ9IW7rrrLvLz8/3bHZ0voL6+nq1bt7Jt2zaKi4spKirCZDJhsVgoKChASsngwYOZPHmyP4ytOdt7SUkJjz/+OAUBfdEjjzzCv//9bzIzM0lJSeHpp5/GYDCwatUqrr76av95U6ZM4ZRTTuHnn39mwoQJxDQyz+kCvJMoq6/n7cpKBKrQrlEUvFLylabCuj4ujnptpprvdrNPU+FPiYpiTGgoySYTkUYjRiFYU1nJS5oguyMxkZEhIQ1mrl4pKfd6qZeSsvp6arSY60pNoBx0uznodtPfaiVai4cOMxgwAXkeDz87HAy12XBISbbTyX63m+ZWePGFgkUYDARmwBtitVInJdma0Eo2mahVFKK0ELA/xcbyQWUllYpCksnENbGxjA0LY6rWqUyJjOTsiAjSLRa/g5ZbUfhzQQG5Hg9mIXgvM/Oo37lLUfiwqop9mnnjoNuNQ0oiDQb+FBfHWccw0m+OnQ4HqysqyPd4+H1EBIOsVkIMBgbYbJi1+q+z2/lV0/CU1NdzyOMh3mTi1NBQ0iwWv0PgTfHx5Lrd7HG52KepKpNMJn/I3FCbjQij0a9aTzKZeCQlhdlaeNXbGRl+c1EwdAHesWzZsoUtW7YQHh6O1+vF4XBQXl7Ojh07OPXUU+nTpw8A5eXl5OTksHfvXpKSkrjgggsYMGAA0dHRfkHscx7LyMhgzpw5pKSkNJi5+jQIDoeDiooK6urqEEJw+PBhSktL2b9/Py6Xy6/C7t27N06nE5vNxnfffYfZbKZnz57k5uaSm5vL4cNHVtkMnIELIfD1+X369CErK8t/3pQpU/j4448B1e4tpSQtLY2srCwSEhI477zzeP311wEYMWIE119/PVlZWTz55JMAzJw5kzPPPJOwsDC/Nmnv3r1+W/kNN9zAmWeeedTvPDc3l08//ZTKykoqKio4qPmgpKenc8899xAdHX0Mv2RT6uvrWbt2LV988QWJiYmMHTuW5ORkoqKi/PZvt9vN888/T2xsLDk5OVRVVVFWVkb//v35wx/+wPPPP095eTl9+/bltNNOY9++ffz44494PB6sVisWiwW73Q7AueeeS25uLrt37wbgtttu49dff+WLL76gd+/eLfoktEuACyGSgceAC1AXQ88GbpRS/kc73unLiZ6oArw5pJRBVcFPFhWR5XZj12b6Pu5ISGBNVRVZAeqvNzMyOj0hyTsVFex1uUjROpNdLheLkpPZ5XRSWl9PkceD1WAgxmjkJ4eD2XFxJJhMOBSFz+12/l5WRoTBgFez0b6cns6L5eV8Vl2NB/h9eDi3JybyaXU1K0pLidVCAHuZzSxPT/fX4+5Dh9jldLImM7OJh7aUkl+cTva7XOS73WxzODjJZmN8WBhRRiM9zGYiDQauy8ujwuvl/IgIKrUohSyXi+WtCPVqTL2UvF1RwWd2O3+KjWVceDhmITjk8bDebqdeSqZFRxOtDbBqvF6u0DqbnmYz+ZqzZWOujo1V1eVAjaKQos3W7V6v32Ne0Xw5Ig0G/lxQgF1RSDaZWJ6WdlSzwLEI8BOlbZ+IArw5grXtkpISHn74YcLDwxvMgM1mMzfccAPPPvusX3COHTuWW265pVPrWF1dzbPPPktCQgKRkZFkZ2czdOhQxo4dy65duyguLsbj8WAymVAUBbPZzJQpU1AUBbvdzvLly9m9ezfJyckUFhZyxRVXcPrpp7Nw4UJ/cpcFCxZw0kkn8ec//5ni4mK/Z/ptt93GqaeeCqie8bNnz2bOnDmcccYZTepZV1fHli1bOHToEAcPHiQrK4spU6aQkpJCbGwsycnJ5OTk8NBDD9GvXz/i4+Opr69n+/btDBs2jFtvvRVjG3MqFBUVsWLFCkJDQ5kxYwY9e/ZESskPP/zAnj17SEtLY8KECf7f+IsvvuDll18mJCSEhIQEf76CQAYNGsSZZ55J7969yc3NpUePHn7VeaB5pK6ujuzsbCIjI/3q9ua+m0CaE+At6hmFENHAf4FvgEmoS7j1Rl1tzIdvOdFZqPHhC1GXEx0gpbQHnOdbTrTrAuWOE40b+I91dSw+fJhIrQMONRio0o6FGwwcdLsbCG+Ayw8caLM6ua0050k9ppF6FuD8yEhAnTG/W1nJLs2O7puh13m9vFNVxScBMdgeKbF7vXypjUTLvV76WCzckpDQ4N43x8ezoLCQzXV1nNrIIWt9TQ2vlJUxISKC/jYbl0RHNxHINV6v38SwsbaW/lar36b/r+pqrm+lN6xTUfixro63KyuJNhpZmppKrGZG8P2GPvparZyuOeyFG43MS0hgaUlJg3CzJSkpSKCP1XrU5C+BAzWDEPTTQqUeTk4GIOMYfQOOht62j43Gv8P8+fPJy1OTUDZWI8fGxpKVlUXgROnbb79l/PjxDB8+vNPqGBkZyT333BP0WGPnrUAOHDjAunXr/M9TWFgIqEJs06ZNBOasz8/Pp0ePHhRrGqaamhrOO+88Ro4c6T8nJCSEyy+/nPfff5/Ro0cTGtCvuN1u/+x98ODBTJgwgVtvvbXBOQBbt24FYN++fX5Vv81mY/PmzRQUFPhV/S1RUlLChg0b+PLLL5k6dSrnn3++P079gw8+4NNPjyzNcfrpp/tV5RMmTGDjxo3s37/fL7yHDx/OhRdeSHJyMuHh4Q20KUfzLg8NDWXIkCEoisJdd91F375925XjoDXLiT4KnCmlDPqrayP0Tl9O9ESbgUsp2e50csjjYYjNxh6Xi2UlJSxLTSVT63ylloFsu8PBdoeDX5xOzomI4NaEBKSUFHg8/OJwsLKsDIClKSncd/gwtYpCpMHA7Lg4JjZSB1dotldzB3fmreUru51lJSX0tVr5fXg4K8vKSDaZ/B7tGWYztYpChNGIhAbOWj5WpqcHTaryU10dT5WUcEl0NBdGRiKE4JOqKp4vK+Ph5GSGteBQVFZfz9MlJaRqdciwWDjJZuMkzabZEqvLy/mwqop+VisXREVxmhbeJqXk/sJCahWFLLebM8PDmR0X5599+/C9E4UeD6eFhWEJSIzTFbR1Bn4ite0TaQZeU1PDjh07cDqdDB8+nBUrVuBwOBqoOZ1OJ1u2bGH//v1s2LABt9vNI488QmZmJvX19ezbt4+33nqLvXv30rt3by655BKWLFkCQN++fZk3b14DO6eUkvLycuJaCBvsLJxOJ88//zzfffcdkyZNwmQy8eGHHxIdHU1lZSVms5mTTjqJvLw8YmNjqampoaioYabsQYMGcd999zW5t5SSV155hW3btnHPPfeQrA1Kb7nlFqKiorj//vtbdODbuHEjmzdvJiwsDLPZTN++fRkyZEirvq/q6moef/xxSktLGTNmDJMmTSIpSV2DKzc3lwcffJC4uDjy8vKYN28eo0aNauK4Zrfb2bZtm18zEBMT06WJmI5ZhS6E2AV8irqy2ETUBv0i8KyWha03al7zk6WUPwRctxYolVJeo21L4I/AdCBOSnmWtv8VTlABXuP1Uun14tS8zfM9HkINBlLMZuYfOkSIEKRbLPw3IBzo/IgI6hSFw/X1VHu9GIXg5NBQTrLZiDYaSTSZmnWwujkvjzyPh4nh4fS1WrkgMtIf4lbj9fJMSQnf1dX5Y7IzLBb6W63YhKCnxcKo0NA2xby3lV8cDp4uLuaB5GR6BcyA7V4vPzscJJtMrK+p4ePqau5KTMQkBFvr6vjUbufMsDB6as54Z4SHMzLIDB+gWMvidsjjIcNiwYuqhr+og2xfR2Nufj7XxcUx2GYjz+MhzWzGIAQOReGyAwe4JjaWrXV1FGi2el+Smr8kJzO4ld7KnckxCPATpm13pQBXFIXKykqqq6v9A7RDhw7Rr18/fv31V1auXMnIkSMpKCjwzy4BzjnnHAoKCnC73RQWFjJgwAAGDBhAv379ADUULpjH8oEDB7j33nsBmDZtGiNGjKBfv35+AbBnzx4WL14M4M9WNnz4cBITE4mIiKB3794MGzasU1N0/u1vf8NoNDJ79mwsAW3bF3p38OBBfv31VwoLC7n44ovxeDx89tln7Nu3j1mzZlFaWordbufKK68krJmQxnXr1vH666+jKAq/+93v+OWXX3jyySc7zK7dHPv372flypU8/vjjOJ1OamtrSdA0gN988w0rVqzgjjvu4Mknn2To0KHs3LkTRVFISkrisccea/B9HC+OWYWOqlK7CViKaisbASzXjv2NLlpOFKCmDckH2kNZWRlvv/02P/zwA9HR0f5EBvEJCezY4U8ux+zZs/nhhx8Iz86mpqaG0NBQDOPH0y85mVGRkVgsFoYNG9ZkpBY8QhNOW7OGjMJCYhMTeeG993hBm5lHRkZiNpspq6vDZDJxyumnM2TIEOLj4zl48CBOp5Ntubm8/NNP9OvXj4iICE4++WRGjRrVod9L/tdfU7pyJZsnTkSccop/FCpQXwqAAVu38vETTxD75z/Ts2dPhgCjdu7kkUceIT4khNCICDZXVPB/l13GKaec0qSMUOCvmprsl19+obq6mnHjxlHTgZ3XBx98wDvvvENmZiYPPPCAv4H2/vvfeSUvj9raWgoKCvjDH/7AVVddpSYSWbgQZdIkrho6lLvuugvA791suP12agLs+ceNK65o6xUnTNvuCqSUbN26lTfffJOamhoiNZNQfX09LpeLcs2BtF+/fmRmZrJ3717i4uIoKyvj1FNPJSwsjAsuuICqqiqGDBniFwItERsby9ChQxkwYABbt25lzZo1/mOTJk1i7dq1gOqoNXz4cE455RTKy8spLS2lurqajz76iJdffpn+/fsTGhrKpZde2iA0qSMoKCjg8OHDnHfeefR/8UW/5si33OTvgO8KCshzuZiwZg1CCM4FnggL4+1XX8Wo5dV4ZNMmFiclBY3CmApMSUmhRlHYlJXFRTExpD3xRIc9Q5XXy+LDh9nvcvH/EhMZr6mmByoK1YcP88KcOfxHcy5+Ni2NdIuFg5pJ4KS33+aa2Fhe3b4dgDCDgYzq6i7Na34stGYG7ga2SCnHBux7FLhISnmSEGIsqh2tp5QyL+Ccl4FkKeX52rY/laoQ4llgHOp78RInyCi9rq6Ojz76iPXr13P22WczefLkJvYYt9uNyWTiP//5D2+88QaXXXYZ48ePZ9asWZx11lnMnj273fWoqanhvffe47PPPvPvi4yMpLq6mrvvvpthw4Y1e92uXbsoKytjzZo1TJ48mcmTJ3eoqicrK4tly5bhcrmw2WxMmDCBoUOHEhUV5VdnLVmyhLi4uAYJDSoqKigqKqJ///5kZ2ezcOFC7rzzToYPH95mJ5T2UFtby3XXXefffvzxx/1epy6Xiw0bNvDqq6/6j5911lns2bOHsWPHMm3aNObNm0dRURE9evRg6dKlXVbv1tDcKL05fkttOycnh3/+859UVVVxxRVXMGLEiAbtQkqJy+XCarWyYMECoqKiuOiii6iqqmLp0qU8+uijZGRktKsOUkqys7N56aWX/I5uCQkJ/rzjr776arMhSj7v8h07drBr1y7uuuuudmcLa1y3N998k40bN+KoqmKwzcYZ4eH0t1qJNBqJNBrJd7u5LT+fx1NT6RtgJtztchGnrQb4cFEROxwO/paeTnwr82N0VP0/qqri782Eoxa43fy1uJgDmkkvxmhkYng4a6urWZmeziGPh8WHD+OWkrsSE/2+LV01aWyJ9szAC4Fdjfb9CszV/v+fWE5USukXOKNGjSIiIoK//OUvzJs3r0HeWt9s7ddff2X69OlMnDjRb9tqT3o/H+vWrePvf/+7f3vKlClMnTrVX+7RRoTh4eGcfPLJgJow4MMPPyQvL4/rr7++w0aSffr04ZlnnlGz3mVl8d///pcXXniBvLw8rrjiClavXk10dDSXX355g+tiYmL8Nr8+ffpw3XXX8eabb7J8+XKmT5/O+eef36mNXVEU3njjDdata7huzvLly1mwYAGRkZG4XK4m6j/f+Z988gn/+te/qKmpYcWKFZ2u9usifhNte/fu3Tz44IOA6pBUUFDA1q1bGwy2hRB+TVt+fj6LFy/m0KFDLF26lMzMTNLbqWGRUnL11Vf7w7ni4uKYNWsWI0eOxO12t2gD7tmzJz179mTAgAHk5eVx7733Mm/evAYOY+1BCMGMGTOYMWMG5nvvZWNtLd/V1vJWRQWF9fXclpDAMyUlnBsR0SB/hRCCkwLqflN8PO9UVnJbfj6xRiPze/SgZyeroAvcbpaVlDRZcOif5eXMjI1FSokHNTmVjwqvl/e1tQ7mFRRQ6fVyZng4dzRyQjwROFq/2Jpe/b/AgEb7+gMHtf+7bDnRzkQIwbPPPsu3336Lw+FgzZo12O12NmzYwMUXX9zk/JNOOomNGzfy1ltvkZ6eznPPPdchaq3Ro0eTlJREv3792mV72bhxI263m9zcXBYvXszixYs7NM+zEIK+ffvSt29fQBV0X3/9NampqZx99tn06hV0/Xn/tRMnTmTChAls3ryZZcuWkZqa2qxmoSNwu92sXbuWYcOG8csvvwBw+eWXU1paypw5c7jxxht59dVX6dmzJ2PGjGHEiBG4XC6qq6tJTExkwIABlJeX079//2NaROEE5TfRtvv378/ixYv57rvvsNls/mQgl112WRMPYJvNRq9evVi5ciWbNm1i5syZnHfeee3WEgkhuO+++4iIiCA5OblBp9yWDGwul4ucnBwyMjJYsmRJq2Kr24rVYODsiAjO1hxo5+Xnk6MJx2vj4o66wE6cycSc+HiujYtjYWEhDxQW8vJR+oKOYGNtLbtdLn+SKYBHk5O5t7CQXU4n6RYLP9TVEWc0clVMDAIIMRgora9nWEgIcSYTXin9zsfdidYI8KXAt0KIBcBbwEjgNlR7F125nGhnExMTw6RJk5BS+hMa/Pzzz1x00UVNRkGjR4/mxRdf5JJLLgkq4I+VqKioDhkIvPDCC6xfv56+ffty//33M3v2bCZPnszUqVM7xa4zceJEiouL+emnnxgyZEiT4263m/Xr17Njxw5KS0sZMGAAubm5/kQSP/74I4MGDeo0m1N9fT2DBw8mOTmZrKwsamtrefPNN/0z6X/84x9cf/31fg1GMHzes/9D/CbatsFgoF+/fvTr149vvvnGb4765ZdfgqblnDBhAv/85z95+OGH6d2BjrMDBjQeK7WdtLQ0HnzwQRwOB+vXr2fVqlV8/PHHXH/99fTv378DatmUOxMTWVFaysTwcKxBhHeRx8O7lZUccLsJMxhINpn4urbWH1562OMhqRMHvX2sVgZarYwMCfEL8OWaWWKH00m9lDydmkpEF5rqOpKjmblbm8hlEvAo6mg9F9XBZbnULg5I9tCpy4l2lafqzz//zIsvvkiZ5kTW3MoxzSVrOZFwu9088cQTDZzvXn/99S5ddWnbtm1+M4OPyMhIEhMT/StNgZqSctWqVZ1enzVr1jRYQnDq1KlceumlHWqL93g8XT5Tb6sNHH5bbVtRFJYtW8bhw4fJy8sjJCSkgbkqkO7Qtvft28cDDzzg3546dSqXXXZZu+8bHiQULBheKbnn0KEmquvTw8L4ptFCPYuTkpqNPOko6hSFxYWF/KrVZ6jNxqXR0e0qt7ENXFEUFEXpcue29tjAkVKuBdYe5bgEFmmf5s5pUriU8jngudbUoavYu3cvK1as4OKLL+bVV19lzJgxzQbmn+gNHFSb/b333ktFRQU333wzoMZ8NnbO6yzy8/NZsmQJCQkJ3H///dxxxx14PB5CQ0OpqKggJCQEh8MB4E872Nmcf/75ZGVl8eOPPzJ37tyg3vAAlZWVFBQUMGjQoKP+1uvWrePTTz9l2LBh5Ofns13zZH3++ef9KlqfB/QXX3zBzp07SU9PD5ozu6v5rbRtRVF4+eWXsdvt/hlNoPBrTHdo2/369WP16tV88sknrF69ukEO7q7gqeJidrtc3BAXRw+zmQe1JEff1NZiRHUUK9Vs/tlud6cL8FCDgatiY3mquJgaReHepCT/2hSN2eV0kmAykXAUQVynKCxdupTCwkJOP/10f4rXvn37+n0qQO23fIluCgoKmD17NmeddVaHP18wTmwf+S5ESsmGDRt46623mDNnjj+kpK6uju+//77ZTr67EBMTQ58+fbjyyiu7THgDpKSksHDhQnbs2MFtt93m33/48GF69erF8uXLcTgc2O32TvdGd7vdZGVlYbVamTlzJqmpqWzbto1TTjkFRVGoqanB4/Hw1VdfkZSUxOeff87+/fuJiopi+fLlQUfdb775Jp999hlhYWH8+9//9u/3LdPoE+BbtmzxO0R5vV6qqqqa3Eunc6itrWXFihXU1tYyb948FixYgMlk4qOPPmLmzJlNFo7obgwdOpS0tDTmzZvXpeXelJDAKWFhvFdZ2SRh04KkJEaHhmL3ejlcX09mJzuyFXk8lHm9hBkMPJKSwv2FheS53Qy02XAqCgqw1+nkJ4eD/jYbj2lJaK6Pi2NyEJOlW1G4+uBBhsbFkZ+f32AVu/T09AYamvnz55OUlOQfQNU3s0xzZ/CbF+BffPGFfyWhmJgYFi5cSFVVlV+1tnPnTtxud7cX4PX19Rw4cKDL7bjl5eU8+OCDjBs3jkmTJrF161Yuv/xyhgwZ4l+qMSQkpNXLNraH+fPnU1lZSVJSEnV1dRgMBq688koURWHOnDl4vV68Xi+xsbGUlZX5F6uoqqriuuuuY/LkyUybNs0/0CgrK+Ojjz7i4YcfJiQkhNWrV5OSkkLv3r157733mD9/PnPnzmXEiBGEhoZitVqZMmUKzzzzDFFRUVRXV/tjkXU6lpqaGl566SW+//57QkJCGD9+PDNnzmTFihX+wbkvpWl3F+DZ2dkkJiZ2qdZASslbFRWsqapidlwc39TU0MNk4pLoaHpZLP71DCKMxk63Pee4XMwtKGCA1UqdouCSklijkV4WC5tra3m4qAirEEQbjVR4vYTW1JBqNlPg8fB8WRlf19RwZWxsg0yPH1RVEW8yMXfuXDZt2sTXX3/NxIkTyc/PZ/369eTk5LBo0SIsFgv9+vUjJCQEs9nM9u3bmyzn2pn8ZgR4Tk4Oy5cvZ9CgQYwZM4YBAwbw5Zdfsnr1ahYuXOj3DjUYDOzbtw9QR1pXXnllUKes7oZP6HgC8nR3Jo3X8R07diwjR470r8p0POjZsycXXnhhgyUNt2/fzuzZs+nTpw8LFizA7Xbzpz/9yb/AgQ+Xy8V7773H4MGDee+999i507+Wh9+7eOTIkZSUlPDll19iNpv9Xuyg5nr2Ce/TTjuNTZs28dRTT/lXatI5NhRF4fPPP+f9999n+vTp9OvXD5vNxooVKwgJCWHJkiWEhIT4hbRvla5zzjmHSy655H9iAGW1WnFq6xJ0BWurqlil+QcBTI2KYmoHJ5ZpCwkmEwbgsZQUf+ZKKSV/Ky3lC7udeQkJTAgP55OqKl4oL+ecsDA21BxJp7Xb5eKp4mIeTE7mloClSwGuvvpqevfuTWZmJp9++ikFBQX+5VvdbjcWi4XZs2dzxx13EK+tt/DGG2/Qs2fPTs117+M3IcBXrlzJ119/DagNeP369f4l9m6++WYGDhzoP1dK6U+skJ6eztChQ49LnTsaIQQDBw7kq6++4tJLL+3Usj766CO/yunee+89YQZAO3fuZMKECf5tRVF4+umnueiii7jwwguBI3H+YWFhXHbZZfzwww/+TFkpKSm8+uqr/iUOQc3/fNNNNxEZGengvKj6AAAgAElEQVRXsfvWfvZlavPhm9Gfc845bNq0iXPOOadTn/d/nUC/DlDNGXV1dWRmZpKTk8OLL77oNxdJKXE4HNRqzlVjx479nxDeAJmZmWRnZ1NYWNjpGrYLs9XF5sINBp5NSzvquvddxQ6nkzCDoUGc908OB1/Y7azu1YtwbfLiSzP9O5uNdLOZr2pq2KM5vLmk9C/76+P2hASGP/44loCFhGpqavB6vYSHh/snRZGRkaSnp1NXV8fo0aPZsmULgwcP7uSnVjn+334XMGrUKL8AB7j00kt59913Ofnkk/n6668ZO3asf83d5cuXk5aWhhCiw+MrjzfXX389d999N0OGDGkwaOks7rnnnhNGeIPa0S1ZsoTk5GRiYmIoKyvD4XCQnZ3NI488gsPhoKysjOjoaH799Vfeffddv/f+4sWL6du3Lw899BCghpSlpKRQVFTEe++9h9vtJjo6mm+//ZabbropaAOOjIwkLCyM1157DeC4x5MLIW5G9S7P0HbtBB7WHNu6ZCnR9uBLGbx582ZAdU58//33/XHS27dvZ8SIERQVFfHBBx/w/fff07NnTxISEjot5Op4kJyczLRp01i+fDmLFy/ukvfq9V69miz7e7wYYrNhVxSuyc0lzmgk2mjkR4eDOKORZ0pKqFYU7F4vtVpY20MBgrqf1cpjKSkUejz+2ffc+HieLyvjx7o6Nr/wArGxsRQVFVFQUMDjjz8eNIKnX79+fPHFF5hMJoxGY5d5qf8mBPiYMWOIj4/H7XazaNEikpKS/J1zWlpaA7VuaGgoMTExlJSU/E81clDTNt5666088cQTXHLJJYwfP75dS9kFo7q62q/O8yV5OVGYO3cun3/+Oe+++65/mcS+ffsycOBAUlNTMZlMxMbG4vV6ufPOOxk1ahQ33ngjdrvdv2ThbbfdxksvvcSWLVsoLCxk3rx5ZGVl+bPSgRrJEEyAZ2ZmsmLFCvbv34/ZbO7QGONjJB+YD+xDTVR1DbBGCDFKSvkLJ/hSoiaTiWnTprF582Yuv/xyzj33XHr37s0TTzxBcXExP/zwA8uWLfOfn5mZSU1NDaNGjeoWXuZtYcqUKWRnZ/Poo48ydepUhg8f3uHPuNvppLfFQl+r9YQR3qAu5bs8LY07tIxqPoaEhHBKaCjRRiMmIYg0GslxufhrcTEfZGSQ5XaTarFg1haDeig5mfsLC1lWWso1sbGECEFpSgrvvuuPjkRRlKACfMaMGZx77rkcOnSIlJSULnlu+I0IcIAbb7yRZcuW+dUet99+O3V1dTz//PP+cywWC6eddhpDhw7l5ptvxtoNM/O0xIgRI7jxxhv58ssv+fzzz1m4cCFms7lDBPn27dtZuXIlgwcP9tseTyTeeustfv75Z+655x6GDh2K0+lsNgtWnz59eP/999m+fTtjx46lZ8+eHDp0iLfffhuz2cysWbPo06cPvXv3Zvjw4RQXF7Nv3z5Wr159VM2Nb1nGEwEp5YeNdi3Q4rdPE0JsB24HHpNSvgcghLgGdSnRK4DAgP3lwB1CiCd8S4l2FWlpaUyYMIHc3FysVisDBw7k6quv5vDhw3z++ef+82JjY5kwYQJpaWkdklDlREMIwQ033MBnn33Giy++yDnnnMNpp51GXFxcu6M76qXk1fJyNtjt/DEmhnMbLXF8vCmtr2dxYSHDQ0K4IzERixBICLrkslObhc8vLCTDYuHi6GjCDAY+r67m29paLoqKopfFwujQUCKNRg6fe65fm1NVVXXUmXVcXFyXLwfbqkQuJwIdkezh4YcfJjIyskE40/z588nLy+Ohhx4iMzOzSxOcHG/++te/8vPPPwPwl7/85ajpT0G1IxYVFWH+/+ydd0BV5f/HX+cuLhtkDxHNXe4Z7kwbas40tRyVNtyhZop7/tIoLRuaaaZlapkrVzkyEQUXIIooU2QPGfdyL/fe8/sDuF8RSFBAUF7/wD3jOc8d53ye5/N8Pp+3XE5OTg6BgYFIpVJcXV1xcnJi4cKFTJ8+vUqCN8pLVlYWU6ZM4ZtvvinTwEIURaKjo4mPj2fLli3UqVOHrKwsmjdvjru7u3EGXhisVpjL3r17d95///0S27xx4wbx8fF07NixUgY3D1PIpRBBEKTkS4JuBdoBOVSBlGhhG49yb9+9e5cPPviAVatWGT0ld+7cYebMmbzyyiu89tprFa7eVZ1JSEhg5syZGAwGGjduzMKFCx84G9doNKSmpmJlZcXVefNI0+kwlUhwkcuJz8vjn+xsPnFyqhZr3vfzW0YGt7VappWxjrnKYOCWRkOgSsXBzExamZoSoFLh7ehIsFrNZbWaTL0eK6mUpHtSwhYsWFDi0qNWqyUgIAArK6tKi5l6pEIuTwomJibGIJZCCtc0q4Pma1UzZswYvL29AViyZAm+vr6lPugiIiLYtm0bCQkJRoMll8vp1asXfn5+pKamGgu0VDdiYmL4888/cXV1LbPhFAQBT09PPD096dChAzdv3uT69eu88MILWFlZ8dprryGKIgkJCSiVStauXcuNGzf4559/SjXghRHnYWFhvP3229VCqlAQhBbk1yxXkl8idbAoisEFSmRQCVKiBdetMDnRwnv33kJArq6ubNiwAXNz8yfOXf4gnJ2dGTp0KLt27eLGjRvs37+fAQMGlPg5GAwGjh07xp49e1AoFGRlZaHRaOhhYUGuwcCeu3dRGwzYy2TYVLNSpHpRxD8nhyOZmQwuh7iQmURCC1NTWpiaMsTGhkCViq7m5vSwsKBHgScyTxSJ0WqxWbaM8ePHA/miOCUZ8Fu3brF+/XokEgnz5s2rUg/b43+CVBHh4eGEh4czc+bMItufRsNdiIuLCy1atCA4OBi1Ws2cOXNYtGgRTk5OxY5ds2YNAwcONEZOJycnY2dnZzRCS5YsITU1ld9++43Y2FimTZtWLWIIrly5wvr16+nZsyc+ZSwReT8ymYymTZsWu3kFQTBG/Y4ZM8bYfkBAAB06dCjWzvjx49m2bRsnT57k2rVr2NnZERoayvr16x9nLnIY+TrgNsBQ4EdBEHres/9+F51QwjZEUbwpCMJGYJUgCEfv31/C8RuADWCcxT8027dv59lnn6VRo0ZFtld0fEdNolevXsb6Fjt27CApKamIvG8hly9f5ujRo8yZMwdPT09ycnLQaDRGBca4uDgWLVpEosHAxyYmZGVlFSuL/DjQ6XR8++23xMXFMWLSJDp16kT2g08rhhQorPBx//mFT0FPT0+ioqLYt28fffv2LTZJadKkCfXq1SM6OpqlS5fSrl07Lly4QK9evRg/fnylDtSfCn9xXFwcX375Jba2tkbxjFry8fb25tVXXwXyXZErV640ptEVkpeXR2ZmJs8//zwSiQSJRIKTk1ORH+abb75JcnIyarWa7Ozs/yzAX1VkZmby5ZdfMnnyZEaNGlWp3oEGDRowaNAgzMzM+Prrr0lMLK622adPH+Nn5urqSmhovpLnpEmTmDRpErNmzWLq1Km8++677NixA0PBel1lIoqiVhTFm6IoBoqi+AlwGZhBUSnRe3mQlOgzVJGUqCiKHDlyhEuXLpGYmGjMua8FbGxs+Oyzz4wTlOPHj/PLL78U+02lpKRQt25do9a5ubl5EflkNzc3unXrhlqtJjMzs5gH83Fx/Phxbt++jY+PT6UX2VqwYAH29vZIJBI2bNhglIQtRCKRMGvW/8T5CvUdTpw4wfjx4/H29mb69Ol8+OGHTJ48uYj+w6NSowz4yZMnH3iMRqNBFEVUKhW///67MbWiZcuWxMbG1qjAtPj4+Eovy6dQKBg1ahStW7cGoF69eixcuJCke1ItkpKScHR0LDVv9tixY8bZpyAIyGQy3N3dK7XfZWHDhg107dq1UmVK72XIkCGo1WqsrKxYvnx5id/d2rVrcXV1RSKR8P7779O5c2dMTEwYMmQI06ZNY/78+SxfvpxLly7x8ccfl+n7z8vL49q1axX1NiSACUWlRIEiUqJ+JZ0oimISUCglWq4b7f5BYwltoynI2Y2KimLTpk3Mnz+f06dPI5PJSElJqTEzboPBQFxcXKUPcl1cXFi+fLnx9c2bN/n222+LHJOQkFBqtohWq2Xu3LkcPpy/ImJubk7z5s0rr8NlJDk5mZ07dzJhwgTMzc0r/XpKpZIBAwagUqmIjIxkz549xY6pU6cOEyZMwNPTkxYtWjB16lTc3NxwcHDggw8+YM6cOSxdupThw4ezYMEC/vrrrzJdOzU1laioqFL31ygX+saNG2nVqlWJ7kaDwcAvv/xiLLohCALPPPMMXbp0YcyYMQiCQG5uLl27dq3qbj80oaGhnDp1iuzsbKZPn24M0KloJBIJs2fP5tq1azRq1Igvv/ySP/74g4kT85cozczMyMzMJD09HVtbW3Q6HatXryY4OBhXV1djdSvID9QCmDBhAkOHDqVTp06YmppWeXRmSkoKFy9eZP369VV2TZlMho+PD0uXLsXBwYErV67Qrl27IsdYWFiwZs0a4+sWLVoQFBREVlZWkUHPkiVLGD9+PAsWLMDKyoo5c+aUeM1CRaqHKUoiCMIq8oVMYgFL8qPLewL9qlpKdMeOHUyaNKnEINKEhAS+/PJLIiMjgfyHZePGjRk8eDBt2rTB39/fWDinJlCoTR8QEICXlxcjR46stL67ubmxYcMGkpOTcXNzY9y4cbz88svGFEYbGxsiIozp+1y9epWNGzeSlJTEq6++WsR4FC5DXrp0iZkzZ2JpaYm9vX2Vf+4nTpzA09PTWBipKujduzchISEkJCRw7tw5Xn755WIDxl69ehWp8qjT6fj666+xtrbGwcEByA9y1ev1bNy4kUOHDvH666/TuXPnYtcrFN/5+++/eeWVV0rtV42KQn/ppZc4efIk3333XbG1a39/f7Zv346LiwshISG8/vrrDB482LjfYDBw4sQJ6tSpQ5s2baq6+w9NVlYWS5YsIS4ujqqSUz127BibN282RpSbmJjwyy+/cPXqVZ5//nliY2O5desWKpUKDw8PPv74Y+O5SUlJTJ8+vcR2+/XrR7t27aqkiIwoiqxYsYJhw4ZVadqQwWDgnXfeYciQIezfvx8fH59SB17Z2dksX74cGxsbZs2aVcx43b17l3PnzrFlyxa2b99eJAhJFEUOHz7Mnj17eP311+nTp0+5o9ALIsV7ke8mvwsEAatFUTxSsL/SpUQL2zAxMeGll17ijTfeKLZ/+fLlODo6cuLECSB/IH/vzCs5ORl/f3+8vLyqfKD4KAQFBbFq1aoKkwEtCxMnTqRRo0aMHDkSd3d3srOzmTdvHq1bt8be3p5///2X1q1bs3//fubPn18kIOunn34qIthTiJeXF/b29vTv379KvCChoaEcPHiwiNu6KvDz8+Pw4cO4uLiQnJzM/PnzSw2QvHr1KsuXL8fb27vYIB7yJzo7d+6kfv36xcpLZ2dn4+vri1qtZvr06Tg5OT0ZUehjxowhLCyMXbt2YW5uzqBBg4z7mjRpgsFgwNnZmaZNm9KvX78i5164cIFNmzYhkUjYtm1bVXf9obG0tGTu3LlVWuv4xRdfxMbGhn379rF161a6detGhw4dyM7O5uzZs3Tq1Ilhw4YxdepUevfuTUJCAk5OTgiCYKy13rp1a27evEl2djZKpRJ3d3eOHTuGUqmsEgMuCAJ6vR6VSlXp17oXiUTCmDFj+O233xgyZAifffYZq1evLjLgTElJ4ciRIxw7dowmTZrw3nvvlTjztLa2pk+fPuzbt4/ExEScnfOXowvFdu7cucPy5cuNo/vyIoriuAfsrzIp0YULF7J48WIsLS155plnivxGOnfuzKFDh+jbty/NmjUr5jZds2YNsbGxKBQKXnrppfJc9rHSsmVLlixZUmmetZL44osv2Lt3L8uXL8fDw4NOnToxceJEfvrpJ9RqNQMHDjSmRNapU6eI4E7h3yFDhvD7778D+TN4QRA4dOgQnTt3rhIDbmNjU6SccVXRtm1bjh8/jq2tLbGxsfz+++8MHTq0yDEXLlzg77//Jjg4mDfffJO2bduW2Fbjxo3p16+f0WMM+YPyoKAgvvvuO7p06cLIkSMfmNZcowy4IAjUrVuX48ePo1ar6d69uzHgwtbWlpkzZ+Lr68t7771XbIZ+6dIlIP/LV6vV1a7IyH9R1RHKgiDQoUMHOnToQEREBP7+/qxfvx69Xo9OpyMzM9MYMHTw4EEOHjyIi4sLy5Ytw83Nrco8Bf9FZGQk169fZ9q0aVV+7V69ehEYGEhwcDDJyclcv36dli1bkpSUxLFjxzh58iTt2rVj1qxZD6yZLAgCrVu35ujRo4wZMwadTsfUqVPp1KkTy5YtqzFu4wdRaJR//fVXmjVrxieffGLc98ILL5CVlcU///zDmDFjip0bGxsL/C/+pSaljVV1tUIzMzNGjhzJsGHDOH/+PAEBAYSEhODo6EhISAhdunQxLlUsXLiQzMxMPvzwQ7p27crAgQMZOHAgQDE9hXtr0lc2e/furXJVRchfC3/nnXdYuHAh7u7u7N27l6FDh6LT6QgODubUqVNcvHiRt956i/Hjxz9wYN2kSRO+/fZboqKi8PT05OzZs2zatIkxY8aUuYx3jXKh32sYfH19iYqKIiUlhWXLlhnXdPbu3UtmZiZvvfVWkfODg4NZuXIlkL9WuXr16hLTpWr5b7Kysvj+++8JCQlBrVbTrVs3evXqxddff826deuKHR8ZGUleXh4NGjSo0rznqKgo5s6dW8z1XFXk5eWxa9cuDhw4YCzPm5aWRufOnenQoUO5Sl1mZmYyffp0vvvuO6RSKePGjePbb78tFlX/KIVcHif33tsZGRl4e3uj1Wpp3Lgx3t7exvc5bdo0Zs+ejZtb0TR0b29vY2lcLy8vPvzww6eqIFNFceXKFbZt20Z6ejoqlYpFixZx6NAhGjZsWMyjqdfrCQoKMhZxqko+//xzTExM+PDDD6v0uoXEx8ezatUqkpOTad26NREREZibm9OtW7cik8qy8Mcff5Cens748eM5efIkwcHBTJkypdhxT4QL/V4aNmxIYGAgdnZ2rFq1iokTJ+Lm5salS5eKVQITRZH9+/cbc/V0Oh0zZsyoFjPFmoalpSUzZsxAq9Vy8uRJtmzZwuXLl4uNiP39/Tlw4ECRAJnBgwfj5OREUFAQubm5jBo1qtLqBterV4+6deuyZs0apk6dWuXZB3K5nFGjRnHgwAFUKhXu7u4olUpOnDhBSEhIkRrdD8LKyopnn32WgwcP0rJlSxQKRY3yIJWHQg8Z5A+0v/jiC959911u3LhBTk5OsUFLTExMkc/Cz8+PF154oVpES9c0WrVqRatWrUhNTeXrr79m0aJF2NjYFHED63Q6Nm/ejL+/v/F7atWqFW3btsVgMPDvv//i7u7Oe++9V2n9fOWVV/i///s/Tp48WURdsKpwcXHB29ubOXPmEBYWRoMGDcjIyGDnzp1YW1sXCWR7EF5eXvj4+NC/f3+Cg4PL7VmoscPUwjSnwrxZX19fY8DAgAEDihz79ttvExISUmTNHCiWz1dL2VEoFPTt25eRI0eSlZXFjRs3+OSTTxg1ahSffPIJ69atK+IGeuedd8jIyODYsWP4+flx8eJF9uzZU2nfgSAILF26FLlcXi5jWdF89dVX9OrVixYtWjB06FAGDBjwUDEAI0aM4M8//8THxweVSkVgYGAl9Pbxc69HcMaMGUgkEqZPn87evXuZPXt2keWkhIQE5syZQ0RERJFc4Cf1s6kq7OzsmD9/PpDvEfnhhx+YOXMmo0aNYu3atYSFhTFu3DgARo8ejaurK1evXuXMmTPcunWLU6dOFRm4VzRNmzZl4cKF7Nixg4CAgAefUAl4eHgwbdo0vLy8aN++PR988AH29vbFvEMPwtHRkS5duvDFF19w9uxZ9u7dW65c+xo7Ay98k6tXr2bZsmV8+OGHuLi4FEstSEpKwsrKiilTphgDrO7d9zjWUp4kBgwYQKtWrVi8eLExsESn0zF9+nQ6duxIq1atkEql2NnZ0bt3b+N5YWFhbN26lWXLljFjxgzkcnmFzyoVCgVTpkxh2rRp7Ny5kyFDhpToxk9PTyc5ORlbW9uHDggrjcL8UMhPH/rhhx+K1OIvK+7u7vTo0YPIyEhCQ0PZuXNnidXeajr3GvD9+/czefJkjh8/Tp8+fYr9Ps6ePUv9+vVZunRpkXznw4cPl7hWXkv52LZtG/v27WPnzp3cuXMHyA/SnDt3Lra2tjg5OdGwYcNiyxV79uxhxYoVjBgxgk6dOmFhYVHhSxqenp5MmDCBrVu3YmpqWqJscWG+faFGfEVX3ezUqZNx4BgQEIC5uXmxaoBloX///qxdu5YmTZoQFhbGhQsX6N69e5nOrXFr4CkpKXz88cc0b94cMzMzTp8+jbW1NcuXLy+29hAWFsb69etJSUkB8mdDly5dYtOmTQD8+OOPj12T+UkiLi4OCwsL5s2bx/Tp0x8YoJOdnc3GjRsJDAxELpfTqFEj3n777QofVCUnJ7N161aSkpJ47bXXiIiIIC0tDXt7e8LDw4mLi8PFxYU7d+4wduxYNBoNvXr1emQVp/v56aefSE9PfygDXohGo2HZsmU0bdq0WPpJTV8DP3ToELt376Zfv37s3r0bU1NTOnToUKy2vMFgYPfu3Rw5cgS1Ws2AAQNo06YN58+f5/Dhw3Tq1OmxBC8+qRgMBm7evElmZia7d+9m1apVDzwnJCSEjRs3kp6ejkKhoHfv3owYMaLCDXlAQABbtmyhXbt21K9fn2vXriEIAmZmZvj7+2NqaopUKsXKyoo+ffpgYWFRorF/FDIzM/Hx8WHChAmPJGZy6dIltm3bxsSJE4ulvpZ2b9c4A67VavH29iY1NRVLS0v0ej02NjYMGjTIWKRFrVazb98+jh8/zsSJE9m6dStyuZzVq1cjCIKxupVUKq1REas1gUJlqJkzZ5aaQnE/oiii0+nYv38/p0+fxtfXt8K/F1EU8fPz48yZMzRq1AhHR0cSExOpW7cubdq0QSaT4e/vz+HDh7lx4wa9evUyzpwr4toHDhzgxIkTxlSpyqCmG/Br164ZxYWcnZ2xsrIiOjramP4piiLh4eHs3buX7OxsBg0axOrVq3nvvfeMyzW5ubmYmJjU3teVwB9//MGuXbvYvn17mc8RRZG0tDRWr15Nt27digXDVQQ5OTn89ttvpKenG6supqen06lTJ9zc3NDr9Xz33XdERkYSFxfH0qVLK6wITGZmJqtXr+bZZ58tsYZBRfHEBLEpFAo+//xzPv/8cy5fvoyJiQl37tzhn3/+oWvXrpw8eZINGzbQvHlz5syZQ/369dm4cSM6nY7Zs2djYmJCcnIyAwcOZNu2bSxevPih3B61FCczM5OPPvqIevXqlatYjiAIyOVyBg8ezJ9//snp06fL7EIqzzW6dOlCly5dSj2mc+fOdO7cmZMnT1bY2lpKSgobNmwgOzubuXPnVprxfhJo1qwZy5YtY9myZWRnZ5OUlITBYODKlSu0adOGefPmERUVxZAhQ+jXr59xSSwmJoYZM2ZgZmZGVlYW5ubmREdH1wapViCXLl1i586dRYo2lQVBELCzs2Ps2LEsXbqU3r17V3jqo7m5+X8umUilUmPEuo+PT4XVzPf392fr1q107969ygrx3E+NDGKTyWRMmTIFGxsbxo8fj7m5ufHBGBsby4svvsjcuXOpX78+arUatVrN3bt3iYuLIyIiokjZyuDgYN5//32WLl1KTEwM6enppKamPs63V2PZt28fLi4uZdIfLglBELC1teXbb7/l448/5sSJE2i12kro6X8TGhpaIYO61NRUFi9eTPPmzVm6dCn29vYV0LsnmwYNGvDuu+9iampqlLp1dXVFFEXu3LljrK5namrK5cuXATh06BCJiYlERkZSr14945LZ5s2bef/999m0aRMGg4Hbt28b66nXUnZyc3P59ttveeutt4pl+JSVwviFt99+m82bNxtLLlclKpWKmJiYCpl9//333/zyyy989NFHvPHGG4/N41PjZuCFKJVKZs2axapVqxg7dixff/019evXp2/fvsyYMQNTU1NcXV25ffs2bm5uRWr6fvHFF/j7+/PMM89w4sQJY2GShQsXIpPJjDKRLVu2pEOHDtStWxdBELh9+zbz5s0zrsHXUpSTJ0+iUqkeaYT96aef4ufnR3Z2Nn/++ScbN27Ey8sLa2trevbsSd26dSuwxyVja2tLWFgYeXl5Dx0jkZycbEwPuT8ropb/xsvLi7CwME6fPk3Lli1ZvHgxPj4+vPTSS/j6+tK7d2/q16/Pzp076dmzp1HkyMHBgVGjRvHnn39y6dIlLly4QGZmJn///bexKqBGo6F58+a0b9+eVq1aGQf++/fv59ixY6xZs+aplhguibS0NLKysoyVAB8GT09PfvjhBw4dOoRUKmXRokW4uLjQvHlznJycePHFFyu9KJFEIsHKyorQ0NAS64+XlUOHDrF3714WLFhQaWmwZaVGzsAL8fT0ZOjQoezYsYNOnToRFBSEo6MjkydPJiMjg1OnTnHw4MFiblO1Ws2JEyfIzc0lNTWVjh07AvkBQk2bNmXx4sUMHTqU7OxsVq9ezdq1a4mPj+fy5cvk5eWxbNkyjh8/Xi0kM6sTKpWK11577ZHaKHR1v/TSS/j4+LBgwQJatGiBqakpy5cv5+effzZW3qosXn/9dRQKBV999dVDf8fbt2+nc+fOtcb7IRk5ciRpaWmYmJggk8mIjY2lf//+dOvWjZiYGNatW0daWppRRQ/yB03JyckEBgaSlpZGWlqaMesgOjqaQYMGsXLlSlq3bs25c+fw9vbGz8+P0NBQAgMDSUlJYcWKFY9ldlidKUzZfVRjpVQqGTx4MK+99hrLly/n7bffpm7duty8eRMfHx+OHj1aqQp/KjcAACAASURBVB43pVLJzJkz2bp1q7EyZ3lJSUlh9+7dfPzxx4/deEMNnoEX0qdPHxwdHfH19SUvL48333yTli1bYmlpydChQ2nUqBEKhYK0tDTCwsKIiIhAqVTy+eefF2ln/fr1BAUFYWlpybp161i5ciUtW7akf//+fPLJJ0Z3HuSXEfz+++85efIk/fr1o3379hUesVxTqcjZi7W1NdbW1sa86W7durF3716+++47li1bVmHXuZ/CJZrp06cTEhJS7shSrVbL+fPnWb16dSX18MlHqVTyySefsHPnTgICAli7di2enp7Y2tpSt25dVq5ciYODA5mZmbi5uaHT6XB1daVly5Z8883/yrCLosjo0aPp378/v//+OwqFgp49e9K9e3fOnj3LV199ZTxWIpHg5ubGokWLePnll3nhhReqhSzu46ZQT6AiJyz169cH4Nlnn6Vv376cP3+e3377DblcXq5CKOXF09OTt99+m61bt9KqVatyR8VfuHABFxcXY/+rgv9yz9e4KPTSiI6OZtu2bVy9evWBbXXp0oUzZ87w7rvv8sILLwD5P86srCwOHDjAgQMHaNmyJRYWFvj5/U/6uF+/fsbZWXBwMDt37uTWrVuYmZkxYsQI+vTpU9olnwru3LnDkiVLmDlzZqXVeL59+zYrV66sEpnQnTt3cvfu3YeKRp8xYwZjxoypUuW7mh6FXhqFGSX3atRDvhRrcHAwDg4OJCcn06JFC6Kjo8nMzOSbb77B2toayI9SNjExMQY6DRgwgDNnzpCWlmZs66OPPqJ9+/bk5eWxd+9e/Pz8SEhIwMLCgnXr1j0xNecfBlEU2bt3L4GBgSxZsqTSytRu3boVCwsLhgwZUintF2IwGJg8eTIzZ840luAuK9evX2ft2rVFBolVwRMThV4a9erVY968eUC+KzwxMZGMjAxycnIICAjA398fgDZt2nDmzBmcnZ2NKQdXr15FIpHQrFkz+vfvT6dOnbh+/Tr//PMP3t7e6HQ61q5dy8GDB0lNTWXq1Km0aNGCFi1aEBoayrJly/j555/p0aPHU71+5urqyhtvvMHPP//8n1J7D0t6ejpr166tMsUpd3d3goKCHurcbt26cezYsRolXVtdee2114xLM+np6aSnp3Pnzh1EUUSr1RIWFoaHhwdRUVFkZWXRr18/Y4rpX3/9RZcuXZBKpXz66aeoVCqOHDmCo6Mjq1atYuPGjQQEBODr68uqVavw8PBg2LBhDBs2jM8++4wLFy6wZ88eRo4c+Zg/hceHIAgMHDiQixcv4ufnZ0zXrUj8/Pzw8/Nj0aJFFd72/UgkElxdXYmOji63AW/YsCEKhYLAwEDat29fST0sO0+MAb8XExMTPDw8jDJ9zz//PJMmTUKlUiGXy1GpVNja2iIIAsePH+f77783nmtqasqmTZvIyMggNjaWmJgYBg8ezIYNGwgPDy8WyNG8eXO+//579uzZU5t7Sr7hOnz4MGfOnKnQG12r1bJ+/Xratm37yOvsZcXOzo7ExMSHOrdHjx4cO3asyLaAgAD27NnDkiVLqlTY5UnC1tYWW1tb44O3W7duRqndnJwcLC0tkcvlxliVmzdv8uOPPwLw5ptv8uqrr7Jjxw6uX79OXl4e06dPJyEhgejo6GJrmt7e3pw9e/aJrTtfHgRBYPTo0Xz55Ze0bt26QmVDw8PD2bJlC/Pnz3+kQLnyUKdOnYe6t2UyGV26dCEqKspowEVR5NNPP6V169ZVLmdbo4PYyoNUKsXS0hKlUklQUBCjR49m8uTJfP/990yePJktW7bQsGFD4w8oMTGROnXqsGvXLi5fvoyFhQVt2rQpsUqYmZkZo0ePRi6XExERwd9//13Vb6/aIJVKef3119mxYwd3796tsHYDAgJQqVQMHz68wtp8ED/99BPjx49/qHMtLCzIysrCYDAA+QpGn3/+OVFRUVy7dq0iu/nUo1QqUSqVWFlZsWrVKkaPHs24cePIyMgw1owAjEa/UON6/vz5qNVqXFxc6Ny5c4mDqueff94YKHfw4EGj6tnTSJMmTahXrx6//fab8XddEezYsYNhw4ZVSYYJYLwHHzbAtLDeAOQb7127dnHlyhV+/PHHKg9sfmoMOOSvfcyaNYsNGzYwbdo0Bg8ezLhx4/Dy8kKhUNCuXTvi4+PZsWMHUVFRRqnMQvH6shAfH8+WLVuKFQsoVPHx8fF5LLnNVUnbtm3p2rUrs2bNYteuXeUqzl8aWq0WDw+PKgsWTEtLIykpyZihUB4yMjL4/fffjcIGX3zxBXPmzDEOBgprxtdSccTFxTF27FiSk5NZvnw5/fv3Z8aMGTg5OWFmZkaDBg3YtGkTZ86cISMjgxkzZqDX68tVsOfo0aNs3ry52PbY2Fjeffddfv3114p8S9WSsWPHcuvWLXx8fLhw4UKFtKnRaPD09KyQtspCYGAgnTt3NmrQlxVRFAkLC+Ps2bNGF/yUKVMICAgwegUrcmBTFp4qP9758+eJi4tj0KBBRdSLChk4cCBeXl788ssvREZGMmzYMGxsbHjvvfe4efNmmQKzvLy8MDMzK+ZiOnHiBMeOHePll19+4tfJBUHgjTfeoGfPnvzyyy/Mnz+fFStWPFIg0NWrVyus/GFZEAQBvV5PTk6OMRiqLAQEBLBp0ybatm3LrFmzSE1NJTAwkO+//5709HTMzMx45ZVXKrHnTx8Gg8FoWL29vfH09CwSJWxpacnSpUsJCAhg9+7ddOjQgSZNmjB8+HD+/vtvnn/++TLdkwsXLizRq7RixQokEskTKS5zP46OjixevJjAwEA2bdpEdHT0IwWdZWdnExcXV6XR/oIglNs7qNVq2bx5M9euXePll1+mT58+7Ny5k+eee4733nuPn3/+mVdffbXKs5GeeAN+48YN/v33X4KDg8nOzsbHx+c/i7A4ODgUE5sYOXIkixcvZsSIEfTv37/Uc1etWoWZmRmTJk0qFqnZs2dPGjduTL169R7tDdUgnJ2dmT59OnPnzuX27dsPHZmemJhIUFBQlZYrtLW1pVu3bvzxxx+MHTu2TOfcuHGDr776innz5tG4cWMgvza8wWBAr9fj5+dnDKiq5dHQ6XQcP36c4OBgrl27hoeHB5s3by5V910QBDp27FjEo9KpUycuXLjApEmTWLhwYalGpLCA0+zZs3n22WeL7V+6dClSqbSI1OmTjCAIdOjQAVtbWzZt2vRIBvz48eM0a9asmM57ZfLyyy/j7e1NbGxsmd32mzdvJjk5mRUrVhj7qlAo0Gq1iKLI2bNnmT17dmV2u0SeaBf6qFGjWLRoEba2tnz44Yd88803D1VBrW/fvixevJiff/6ZI0eOlHrcs88+i7+/P+vWrSu2Ty6XP1XGuxBBEJDJZA/lWirMIPD19aVXr14VLvX5IAYNGsTZs2eLVPH7L5ydncnLy8PJycm47ejRo3Ts2BEzMzP+/fffIhrptTwcN2/eZMyYMVy6dIk2bdqwcuVK5s+fX6rxLg0zMzNmzpyJl5cXs2fPJjk5ucTjHB0dycvLY/ny5SXGL9jb2z81xvte5HI5er3+oc69ffs2+/fv5/fff+ett96q4J79N+bm5gwePLhI8PKDsLOzQ6PRFBloHD58mN69exMaGoqVlZUxaLoqeWJn4IXFB9atW1chNagbNGjAW2+9xY8//oizs3OJNYEHDBhAp06djGpnteSvGyUkJBQxag9CpVLx008/ERAQQKNGjWjTpg1Dhw6txF6WjI2NDa1atSIyMvKBa3QGg4GwsDCAIm53JycnwsLC8PPzQxTFKi0A8aRy48YNbG1tyy2sURqjR48mODiY9evXM3PmzGLLXwqFgu3btxMWFlb7/d1DfHx8ue5ryM+j3rZtG2lpaTRr1oypU6dWuHxwWejVqxfbt29Hr9c/0COWmZlJVFSUMduhEFdXV+Lj47ly5cojlWZ9FJ5YA16oVBQdHV1hIhKvvPIK9evXZ82aNWzYsKHEggaOjo4Vcq0nhczMTARBKNc68ubNmxEEAV9fX6ysrCqxdw/mmWee4fr16w+sDnXkyBG2bdvG5MmTi6QjtW3bltOnT/PHH38wevTo2lTDCmDbtm0V2p5CoTDe03v37i2msw75nqTCioC15HPnzh1joGZZyMzMZM2aNUycOJG2bds+1lRKhUKBq6srN2/eLKa9fT/z58/Hzs6Ojz76qMj2/v37s23bNtzc3OjZs2cl9rZ0nlgXeuEoujDcv6Jo2rQpEonkqU4nKQ9RUVHlyu3U6XTExMTQo0ePx268Adq1a8elS5eIiIgo9RhRFImOjua1117Dy8uryD4LCwvmzZvH6tWrn4ogp6pg0qRJAMVmRI+CRCKhXbt2hIeHV1ibTzrlvbfj4uKwtLSkY8eO1aIOQufOndm1a9d/ekxzcnLIyMhg0qRJxTwF7du354svvmDWrFmP7Vn1xBpwqVTKpEmTjEpFpVEYYFRWRFFEIpFUix9gTeDGjRvlijv4+eefsbKyeuCouKoo1DL+5ptvjF6d+zl8+DDh4eHGsry1VC5dunShWbNmnD9//j+P0+l05c7LfVj1uaeR8tzb2dnZrF+/vtLLpJaHAQMGIAgChw4dKnG/Vqtl+fLlvPDCC9jZ2VVx78rGE22F2rVrx9atW0lKSjK6tkVRJCAggJCQECIiIoiOjkYul9OgQQOGDx+Ovb09Mpms1BHVtWvXkEgk5V77eVpRqVTUqVOnTMdu3bqVK1eusGjRomo1QPLy8uLIkSMcPXqUfv36GbdrtVoOHDjA8ePHmT9/fpUH2T3N9OzZk3///Zfu3bsbt2VmZnLq1CmioqIICwsjPT0de3t7mjZtyoQJE7hz506pgUYGg4Fz587VusnLiCiKqNXqMlVkS01NZdmyZXTv3p1u3bpVQe/KhlQq5Z133uGjjz6id+/eRQLUEhMTWb9+PXXr1jXW0K+OVJ+nZCWQmZlJVlYW165d48CBA4SFhWEwGFCr1fTt25fnn3+ehg0bolKp+P333411eN3c3EpUksrOzmbdunVlFrfQ6/Xs37+fHj16PJVRqpAf6FJa/nZiYiIrVqygb9++pKSkEBQUxNKlS6s0paQsCIKAm5sbO3bsIDExkbCwMDQaDUlJSbRp04YlS5aUeZBSS8Vw+/ZtgoOD8ff358SJE2RkZJCenk6TJk1o3bo1w4YNw9nZmejoaBYvXszp06eBfL35ktLFTp48SWxsbJlTBmNiYrhx4wa9evV6KtMCU1JSUCgUpebPHzx4kICAAHr27Mnhw4fp0qULw4YNq+JePpjCid2vv/5Kamoq8fHxZGdno9PpGDRoEP369avWcStPtAG3tbVlxIgRnDp1Ck9PTyZMmIBEIsHZ2bmIkbC2tmb8+PE4ODjw888/ExcXZ0xRuZcDBw7Qtm1b2rVrV+Y+7Ny5k507d7Jo0SJjbvDTQqGH4/7gj0IsLS1JTk5m+/bt9OrVCx8fn2pnvAt54403EEWROnXqMGHCBGQyGdbW1k/twOxx0717d9LS0vj777/x8vLC09MTuVyOm5tbkQeup6cnvr6+LFu2jPj4eGbPns0PP/xQpKiQTqdj9+7dfPTRR1haWpbp+nfv3uWHH37ghx9+YMuWLU98cab72bt3Lz179izVU2ZhYcGNGzeQSCT06tWLvn37VnEPy4ZEImHKlCmEhITw/PPPU7duXfR6Pe7u7jViOeWJkROtSPz9/fnpp5/o1q0b4eHh1KlTh8zMTIKDg1m5cmW58rnj4uKYNWuW8fW3335bLYKzqoIvvvgCS0tL3nnnnSLbc3JyCA8PJycnh3379tG2bdsqLdLypPKkyolWFDqdDl9fX/R6PY0bN+avv/6iR48enDlzBmtr63JrzPv6+hIYGAjku/QnTpxYGd2udqjVat55550SU3RjYmJITU0lISGB7du38+mnnxYTiaml/DzxcqIVSefOnbGysiIkJASdTkdiYiJNmzZl/Pjx5Yq6zM3NZf/+/UD+SK+kEqtPMjqdrlilo5iYGE6fPs3Bgwfp1KkTL7zwAr17935MPazlaUImkzFlyhTOnTtHREQE1tbW3Lx5kxEjRpRbGjIyMrJIgZ/yylLWZAqDOe/1Vuh0OiIiIli+fDkSiQQvLy/mz59fa7wrmVoDXgrNmzenefPmbNy4kRMnThhroZfVgOt0OtavX28s+K9UKlm3bl2JueNPIqIocvHixWLlU+fMmQPAhAkTHphbXUstFY2pqSk9e/bEy8uLcePGARAaGkp5PABxcXHMmzfP+Hr06NG8+OKLFd3VasuNGzeAfNGewmDeoKAg1qxZA1Rc8axaHkytAX8AAwYM4NSpUxgMBho1avTA40VR5NSpU+zbt4+EhAQAZsyYQdu2bZ+qYJfC/Pu//vqLQYMGAZCeng7k16CuNd61PE4UCgXDhg1j9+7dxWJdSiMrK4tff/21SGrq+vXrn7o4CD8/PyA/CNXJyQlRFLl9+zYA8+bNqzXeVUitAX8Azs7ObNiwAYVCUabUpjNnzrBhwwbatWtHTk4O06ZNo1mzZtU6krEyKHzITZ8+HfhfLICXlxeTJ09+jD2rpZZ8Bg8eTN++fcu8rPV///d/RERE0LBhQ2xsbBg3btxTZ7x1Oh0XL17Ew8ODZs2aAfkR3Pv27WPWrFklir3UUnnUGvAyUJ7I6CZNmjBo0CDS0tKYPXt2lUpgVid27doFYHShF0b91pSgyceNKIqkpKRgbW391EU4VxWCIJQrJmXw4MFcvnwZCwsLBgwYUG0zJiqTu3fvotVq6dmzpzFKu/AzNDU1fZxdqzEYDAYSExMrpAZ8rQGvYBwcHBg+fPjj7sZjp169eowcORLI/8EeOHAANzc3Bg4caDxGFEVjZbtainLhwgV8fX155ZVXqlytqZaSadeuXblSSJ9EsrKycHZ25uWXXwbyPWunT5/mxRdfLBLvYjAYEAThqfM8loXZs2dz584dVq9eXa5a8iVRa8BrqRTs7e05ffo0TZs25ejRoxw5coRly5YZK2EdO3aMzZs3AxTLy60FWrZsyYIFC55KCdpaqi8uLi4kJCQQEhJCgwYNWLJkCVlZWaxcudI4EB81ahSQr7tdnauYPS5mz56NSqWqkAj9chlwQRBcgFXAq4AlEAF8IIriqYL9ArAQmAjYAueASaIoXr2njR7AAqAVYAbEA/4F7WQ+6huqpXrw5ptvMnXqVP755x8gv8b07t27GThwIE2aNMHd3Z3evXvTsmXLWuNdAgqForasZy3VDhMTE3r06MGKFSuA/PRYuVzOoUOH8PLywtbWliFDhmAwGIqUua3lf1SkYmWZfZeCINgAZwAB6Ac0A6YASfccNhvwLtjeoWDfMUEQLAvaaA4cBoKAXsBzwAfAXcDkEd9LLdUIe3t7VqxYgYlJ/tcql8u5fPkyixcvxmAw0KxZM955551aha5aaqlhTJw4kaFDhwL5rvK8vDy2b9/OiRMnABg2bBjDhw8vV82MWh6O8szAZwPxoije6xOJLPynYPY9HVgliuJvBdvGkm/ERwHfAX2BVFEUZ9zTRgRw9OG6X0t1xtPTk82bN6PX64mNjcXe3h4zM7PaNe9aaqnBCILA0KFDGTp0KJmZmWRkZODq6lqtBIieFsrzJB0EnBME4VdBEJIEQbgsCMJk4X9RCvUBZ+4xxqIoqoF/gEKR5ATAQRCE2iTgpwipVIqnpycWFha1xruWWp4grKys8PDwqDXej4nyfOoNgA+Bz8lfB28NfFmw7yvyjTdA4n3nJQKFoXa7gJeA44IgJAHngRPAT6IoJt9/QUEQJpK/ng6AhY9PObpbSy211FJLLU8u5THgEiBQFMVPCl5fEgShETCJfANeyP2JvkLhNlEU9cB4QRB8gBeAzsAsYJ4gCN3vDXYrOH4DsAHyBQ/K0ddaqjGJeXnsu3uX/Zn5MYurXF1pXhvIVkstNRqdTsf169fZtWsX4eHh2Nra8tVXX9WmklUi5THg8UDofduuAdMK/k8o+OsMxN5zjCP3zcpFUYwDfgJ+KjDmN8g35OPK0R9EUeSCWs3xrCyamJjQ29ISuSCQqNMRolaTptfTwtSUegoFNlIpelEkXKPBRBDQASaCgNpg4K5ej1oU2ZmezlQHBzwUCvJEEb0oIhUEzCQSZLU/wkfmlkbDjvR0zqlUxm09LSzwqAGyfRWFThQ5l5PDTa2WXIMBZ5mMV6ysUDzC0kKERoPFE7Y0kZ2dzV9//cWdO3fo2rUrzZs3Jzc3l8jISCIjIxEEgdatW+Ps7IxcLufu3bskJCRgbm6ORqPB1NSU1NRUNBoN4eHhxMTEMG3aNGPQlSiKKBQKTE1Naw3MI6LT6fj333/ZvHmzUejE1NSU4cOHP1WfbWpqKoGBgSQkJCCTyWjVqhXPPffcQ7dnMBi4cuUKrVu3LvWYMsuJCoLwM1BXFMVu92xbCgwVRbF5wVr4HeBLURRXFOxXkh/ENksUxe/+o+0g4IYoiqUqvguCIFoXPKRMJRL0gMpgwF4q5SUrK67n5uKvUiECdlIpzyqV2MhkXFapSNDpMBEEtKKIvUyGQRSRCQIaUUQpCNjKZCgEgQy9nhitFq0oohAEpIAByDIYGG1rS3OlEgeZDAuJhNyCtmp5MAZR5IpazcKEBOO2mY6OdH/ClNkS8vJQSiTYFNS81xoMRGi1xGi1hObmkqTTEabRUF+hoL2ZGWYSCedzcril1dLUxIRnTEwI12iwkUqxlUppaGJC1/s+o1itFv+cHM6qVGTr9eQYDGQZDEjI/63WVDlRGxsbDAYD5ubmqNVqcnNzad++PQ0aNODEiRPExcWhVCpxdXWlcePGqFQqrl27Rnp6OlZWVsa8WpVKhUKhQK1WY2dnh4mJCUqlksjISFJTU5FKpcjlcgRBIDMzEwcHB0aMGIGzszN2dnbodDrMzc1rUxvLQGEhpnXr1nH+/HkAnJycWLBgwRNVYlav13P79m3c3NyMa/3p6enExMRw69YtYmNjiYyMJD093agprtFoOHz4MNbW1jRp0gSJREJSUhIODg5YWlrSo0cPoxAM5BvrixcvcunSJa5du4ZOpyMrKwuNRkPfvn05evRoifd2eQx4B8APWAT8CrQBvgfmiqK4vuCYj4F55M+kbwA+QHegiSiKWYIgvEf+2vke4BagBMaQH+H+liiK2/7j+uKPBUVAsg0G5IKAXBCwlUqRPGCUZxBFUvV6ZIDtQxhd/5wcLqhUxOblkazTcbegLXuZDEeZjBamprQzM8OiYKZuIgiYPGEzooflj4wMfkhLw1Umo6lSSaRWS7pez1wnJ5pWo4ekKIqk6PXc0miIz8vDRS7HTCIhXKNBBHINBkTAUiKhuVKZbyyBTL2eKK2WKK2WK2o1BlHEWirFTS4nKDeXunI5dRUKmimV2EulNFMqsbhP1CZZp+N6bi6xWi0eCgUaUeSvrCyu5uayycOD+Lw8/HJyyNDrCVGr6WFhQUdzcxxkMswlEpQFv//Xo6JqrAEvdLXm5ORgamqKQqEoIldZGrm5uWRmZmJtbW1MWSwrKpWKv/76i1u3bpGUlERqaip6vR5BEKhbty4ODg60b9+eZ555BplMhlQqrc2iKECv1/PJJ5+Qnp6OVqtl4MCBHDhwgGbNmjFt2rRqVf43Ly+PO3fucOPGDXQ6Hc2aNSMyMpKsrCwMBgO5ubkoFArs7e3x8PBAq9Wi1+tJSUkhKiqK0NBQMjIy0Ov1uLi4oNFoSE1NxdPTE09PT+rVq4e7uzuurq5F3rdOpyM2NpbQ0FAMBgPOzs4kJSWxfft2WrZsycyZM/nzzz9JSEggJiYGURTp3Lkzbdq0QaFQYGZmhrm5OXl5eYwbN+7RDDiAIAj9gBVAEyCG/LXvL8WCRu4p5PIeRQu5hBTsb0N+qllXwBVQAeHAelEUf3rAtcV91UhzVy+KRGq1JOblEahScTU3l9wCt7vaYMBcKqWRiQlznZxqpPtdL4qEqtV8l5qKvVSKmVTKUBsbnil4SOpEEZ0ooizlYRaam4vPnTvogG7m5pzOyaGDqSnzXVw4l5PDF8nJbPLwwKySH4aiKBKv0/F7Rga3NBqyDAbSdDoamZiQWTBzFYEknQ5ziQQPhQJnmYxwjYY8UaS1qSnZBgMuBW7+VJ2OkNxczCUSBMBSKsVdLqeeQkFbU1MUEgkJeXlEabW0NTV9qAEjwGsREQD0tbTkXE4OQ2xsqCOTGb1ApZ1TUw14eeQ8K5usrCxu375NVFQUly5dIi4uDp1Oh16vR6vVYmVlxfDhw2tsoRK1Ws2vv/5KdHQ0lpaW2Nra8tZbbxlnlyqVCqVSWepA5ZdffmH//v0AtGrVipCQEObMmUPTpk1Zt24dlpaWvPvuu5X+PnQ6HcHBwezfv9+oR+7o6IiZmZlxIJiRkWEs/1q3bl0UCgVBQUE0aNDAqDNgbW2NVqs1emmUSiVSqRRbW1vq16+Pu7s7rVq1Ms66DQYDbdq0eaiBXGxsLB9//DH29vYolUpsbW3p2LEjderUoUWLFqVG848aNarEe7tcTxdRFA8CB/9jv0j+DH1RKfsvAWPLc83qilQQaGhiQkMTE7rc4+a8U2DQf8/IIEOnoyqfpgZRJEmnI1GnM36xCkEgQqtlfUoKlhIJdSQSonU6TAWBMXXqIBcE0vR6OpqZ4SiTGWeH/+bk8FlSfo2emIJ1rRitFqVEQp4okmMwkKTT4SiT4SyTYSuTGWexFhIJ1lIpCkFAJ4r45eQggNFYNzQxwVIi4d/sbPpaWVXa5/F1cjKHs7KoI5XS3cKCd+zsSNTpeMbEhEy9HluplDS9HkuJBFe5vNTBSHl5psAd/ijMdnTkYGYmZhIJ39StW2zWXkvlYWlpSbNmzWjWrBmvvPIKkO/ivHr1KhcvXuTIkSNVnjal1Wq5ffs2ubm5iKKIiYkJer2eTZs2cfv2bXr06MGpyzgJcgAAIABJREFUU6eA/JrtnTp1IjU1FQcHBzw8PHB1dTUaHG9vbzIyMoq0HxsbS05ODiYmJty8eRMrKyvMzMxwd3fH0tKShIQE5HI5VlZWpKamGs+7evUqgiCg0+kA6NatG76+vowdO9YodlLR5OTkMGHCBAAaNGjAq6++ilwuR6lUIpfLkUgkmJubk5ycjLu7O7a2thUi5WxnZ4ednd0jteHk5ISXlxcGg4G2bdvSpUuXR4oTKNcM/HFS3Wbg96MXRb5NScEvJ4cOZma0NDWlh4UF0kqafV/LzeXzpCQcZTIyDQYy9XqyDQYsJRKc5XL0Bd+rThSRCwIxeXnoRREziYR0vR4bqZTWBepBBuB6bi4Zej0KQcBcIiFVryevoI337OywlUrRk79sIBMEEEVcFQru6vXE5eWRVbAe6yCTkSeKXM3NxUIiob5CgQik6HSkF8QYhGk0NFUqed/ODsdHvMk1BgOJBW3nGgyk6/XEarXcKlh37mNpyRQHh0e6Rk2hdgZeOcTGxrJ+/XpEUaRt27ZGt3ploNPp2L17N+fOncPBwYHExEQ0Gg1qtRpnZ2fMzc0RBIHc3FxkMhk5OTmkpKRgbm6OSqVCq9XStGlTrK2tsba2Jjw8nKysLFJTU7GzsyMvL6+I8V65ciWxsbGYmZlRp04dcnNzcSi4X7KyskhKSiIjIwOlUom5uTnx8fEkJyfj7OyMi4sLqamp5OTkkJycTGhoKHq9nq5duzJ06NBHDmDLyMggLS2NrKws1Go1ycnJxMbGEhQURGZmJitXrnxqtAIqZAZeS+nE5eVxJCuLGQ4OtDMzw+oRRnzxeXmk6nR4KBS8FxtLjsFAXbkcC4kEE4mE21otKXo9DRQK+ltbYyeTYSuVYi6RYPoIs0hRFPMNoShiJZGgEUXu6vXUUyhKHYiYF8xe72VybKxx1q4oiFN4TqnEVS6nj6Ul3o6Opc4oRVEkTKPhem4uSomEtqamRYx8mk7HeZWK+Lw8IrRawnNzqSOTYSOVopRIsC1Yf+5gZkZjpbLSXfS1PPmcOHECQRAYN24cTZo0eWjDJIoi169fx8TEhNzcXJYtW4aTkxMSiQRnZ2eysrKIi4tDq9XSt29fnnvuOZydnTE1NcXS0vKRZpF6vZ6kpCQUCgUmJiZkZ2cjCAJOTk6lGkE7Ozs8PT2Nr3Nycvjss8+Mry0tLXFxceGZZ57B3d2dbt260ahRo1I/n+zsbEJDQ0lMTMTZ2ZlWrVoVWTO+fv064eHhJCQkEB4eTkZGBvb29lhaWqJUKrG3t6d58+b069cPDw+PpyrCvTRqZ+AVgH9ODr+mp3NLqwXyU6M+eoSC9d5xcYRrNAA8b2bG2XvSrgA85HJamprS18oKz2oULAL5a8TjY2KMr9e6uVFPoUAiCGgNBi6q1dhIpSTqdGTp9bxqZYVEEIgrmJn/nZVFgk5Ha1NTIjQabmm1bK9XD8uCh9fapCT+zs42tt/QxISVLi61QYPUzsArGp1Ox+bNm7l06ZJx1rpixYoiRq08iKLI6NGjja9dXFyIj483vpbL5Tz33HM0atSIfv36VZoL+mH57bff+O233wDo2LEjEydONGqiR0dHo1KpkMlkXL16leeee46GDRsiiiJBQUHExMTw559/4u7ujrW1NX5+fnTt2pUPP/wQyF8iGDduXJHrjR07lpdeeqlK32N1pbQZeK0Bf0SSdTreiYmhoYkJr9vY0MrU9JFnfXmiSIBKRYZOR0tTUz68fbvE40bb2jKimqVriKJIoFrNX5mZJOv1pOp0aEWRunI5AnCtYGBSyK569ZBIJHx0+zbRBbN2KfmBZRYSCQ4yGQ0UCjIMBnQFefzZBkORNnzd3Gj4iGvOTwK1Brxi2blzJ3/88QeDBg2iY8eO1K1b95HXUpOTkwkJCUEqlWJqasrnn39e4nFr1qypELnJiiQ7O5vjx48bXdjJyclYWVnh7OxsdJ8X0qdPH8aPH8/NmzdZsGCBcbtEIkEmk2FpaUn9+vWRyWRoNBo0Gg2hoUXLjJiZmbFx48bamTa1BrxSidBoOJSZyRW1mrt6PW4KBQ0UCpoqlTjJZCgLctAdZDKkgmA0apZSKfF5eWQbDJgKAo1MTLArOOZeLqhU7MrIIDQ3l2YmJvSytOQ5pRIrqRQJ+XnxlbXWXhFkFqx9Z+r1pOv1JOl03MnLI1KrRSOKqArWzu0L8p/tZDJMBIFcUSRDr8etIMpbJghYS6XUkUqxlEqRV+P3/DioNeAVi0aj4cKFC/zzzz/cvHkTU1NTnJyceO6553BwcMDV1ZXc3FyUSiUODg4kJycjkUjIzs7GzMyM+Ph4NBoNzs7O1KtXr1jRGK1Wy6FDh/j1118B6N27N23atDEatsK0teqKwWAgMTGRxMRE41p8SkoKcXFxxMTEIJPJyMvLw8XFBWtra+rUqYNVQdCqSqVCpVLx/+ydd3gUVdfAf3fTeyWNQAKBUKT3WACVpjQpoqAiNuyKoiKor1hQULG9CgryCgiifKiIoCAgiGCkiZQgECAhHdJITzbJ3u+PmR12Nx0SSHR+z7NPsndm7tyZnTvn3nPOPadTp064urri7OyMt7c3Xl5e+lK9SqgXAa6mBX0NGIMSYe0A8KSUcq+6vcHygTdmAW5Jfnk5SaWlHCgq4lxpKQlq1Cd7IUgvKyPXZCLUwQF7IchVhZO3nR35JhMnS0o4r3pFN3NwwEO1aRepHt/J6gzVlps9PXnI3/8yX+mlY5KSM0YjoY6OujCuB3QB3nCYTCbS09NJSkri0KFD5OTkkJycrEV+O3fuHK6urjg5OWnLmMLCwnB0dCQlJYXExERMJhM+Pj74+vri4uKCvb09eXl5HDt2rMrzvvXWW4SGhl7GK60fcnNzKSoqIiAgQJ9B1wP15cT2GdAFZSlYEnAnsEUI0VENj2rOBz4FOI4iqDcLIcyBXMz5wD9BWQ9eALRByXT2j9CButvZ0d7OrsogJVLKah/ocnXWmV5WRoHJRJHJhIvBgKvBgFFdY55VXo5JSnzt7PBWVcxNEYMQtNJV3zpNAIPBQGBgIIGBgfTs2bPCdvNEqLq+XVJSQlZWFtnZ2RQVFVFWVoaHhwcGg4GSkhIKCwvJzs7G1dUVb29v/Pz8mqTwBiVLmWcDLhHVUai1ABdCuADjUEKnbleLZwshRgIPCyFeQs8HXiM1jUbthMDP3h4/PUyrjk6ToTazTCcnJ4KDgwkODr4MLdL5N1AXKWGP4l9UbFNehBJZrdJ84EIIcz7wT7HIBy6l3FbTCW3TiZqjU+no6FTKmSvdgItl0qRJV7oJOjqNmUr7dq0FuKoCjwZeFEIcQRHGE4Eo4CQNkA/cMp2ojo7OP5OmaLf/JyOE2Cel7HWl29EYaOz3oq6ufnehBO5KAkqAJ4BVQLnFPtXmA5dS3gOEAs+gxFN/FjgmhLiqzq3X0dHR0dH5l1InAS6lPCWlHAC4o6QW7QM4AHFY5wO3pNJ84FLKL6SUjwIdUQYFz15E+3V0dHR0dP6VXNRiOyllgZQyVQjhg6IS/54LQnyweT81H/h1KGlIq6orG2Up2T8rObSOjo5O00Q3W16gUd+Luq4DH4oi9I+hLP96G0WVfq2UsrQh84Hr6Ojo6OjoXKCua5W8gDdRbNhZwDfAC1JKc4SRtwAX4GMuBHIZIqXMU7fvQfFIX4h1PvDJuvDW0dHR0dGpPU0mlKqOjo6Ojo7OBfSAszo6Ojo6Ok0QXYDr6Ojo/AMRQngIId4XQpwRQhQJIX4XQvS22C6EELOFECnq9u2Wy3mFEH8IIRbb1HmXEEIKIabblM8RQiTQyBFCPCqEOCSEyFU/0UKI4Rbbq70n6j6yis9Dl/t6dAGuo6Oj88/kM5RVQncDnVGiZG4RQpgDa5lzVzwO9EYJe71ZTVoF8AtwvU2dA1Hid1RWXmN0zUZAEjAD6AH0QrnGtUKILur2mu6JmQeAYJvPsgZvvQ26DVxHR0fnH4aauyIPJXfF9xbl+4GfgJeAFOAjKeUci2POAc9IKT8VQgxGEfotpZSJ6j6nUZyV5wG+UspyIYQbkA08IKW87ELsUhFCZAEzUZaMVXtP1DIJ3CqlXHOFmqyhz8B1dHR0/nlcVO4KwJy7AmAXYESdbQshwlDCYi8H8gFzWrZrUQJ6NYUZuIYQwk4IcTtKDJLfqd09aVToAlxHR0fnH4a6dNecu6K5KqzuRMldEUz1uSuC1DoKUZb+mtXl1wN71PJfbcpPSSkbvQ0cQAjRWQiRjxLD5BNgjJTyMLW4JxZ8IYTIt/l0btiWV0QX4Do6Ojr/TC4pd4XKNqwF9Xb1/+025b/UU5svB8dRAor1Q4lJskwI0clie033BJTQ391sPscbpLXVoAtwHR0dnX8g9ZS74hcgTAgRjuKotl0t/xW4Rgjhi+IQ1mTU51JKo5TypJRyn5RyJvAX8BR1yOcBpKl1WH6MDdz0CugCXEdHR+cfzCXmrohGsaPfjyLYflfrPI7iJPc0ir29yQjwSjAATlxkPo8rSV1Dqero6OjoNAGqyF1xHPhcSimFEO8DLwghjnEhd0U+8KW5DilliRAiGkX9vkd16jKzQy3/W0qZRhNACDEX2AAkAh7AJBTNwvDa3hMVbyGE7Uw9X0qZ35Dtt0UX4Do6Ojr/TC41d4UZsx18u035duA2mpb9OwhYof7NAQ4BN0kpN6nba3tPFlOROSgC/7KhrwPX0dHR0dFpgug2cB0dHR0dnSaILsB1dHR0dHSaILoA19HR0dHRaYLoAlxHR0dHR6cJogtwHR0dHR2dJoguwHV0dHR0dJogugDX0dHR0dFpgugCXEdHR0dHpwmiC3AdHR0dHZ0miC7AdXR0dHR0miC6ANfR0dHR0WmC6AJcR0dHR0enCaILcB0dHR0dnSbIv16ACyHuE0JIIUSoTfk8tfxOm/LBavnV9diGCUKIKfVV36UihNiuXqMUQpQJIU4JId4TQnjW83mmqOdwtyjrIIT4TQhRoG4LV9uzpp7O+YMQ4mX1/9eEEIVCCAebfb5Wz32tTfkDanmI+r3a+yQUDgsh7qqPtuvUD0KI2Ra/m+3nzpprqPV5HNVzdauvOi8FtS9ZXmueEGKfEGJCA5yrQp9V+0+c2le2W7RnRD2cr7kQIl8I0dqirKrf+KTFPrbPQooQ4hshRITFPh8LIZZcahsbAj0fOPyu/r0aWG1RfjVQqP5dYVNeAuyvxzZMAPyBpfVY56WyDZiF8oz0Bl4DWgDj6/EcG4AolPts5m3AGxgFFACpwCNAaYWj64gQoi9KXuO71aLfUfL3dgf2WOxq+dvvtCmPl1KmWJRVeZ+klFII8RbwshBilZSy7FKvQafeyAGGVVJ+spKyi8UReBmIB/6qx3ovlWeAXYAncA/wtRCiUEq5vh7PYdVnhRBBwELgI+D/gGyUvh0FHKuH870I/CClPG1TPh+wHfwX23y3fBZao/ThrUKIq6SUBSjvpGNCiDellPX5fFw6Usom90FJtH4WiKjl/u8AH1axTQCZwPsWZQ4oL/CFwF82+28Cdtbz9awBttdTXQJwvsQ6tgNrbMpeBCTQrIF/25PAuw1U90pgpcV3b8AETLMoC1WvcyGw1ub448CKutwnwBnIA0Y25H37J3xs+zVwDXAIMKr3ujOQDLhd4nlmAxmX4Xrc1WdhSj3V53KJx4er7RlhUWZQn+sNDXwvrlXP3aUB6vZU39eDbcol8FhdnwWLtt5qUbYFmN/Qz0xdP01VhT4L+FFKeaqW+88DpliqV8xI5deJRpldmemOIggXAJ2FEB4AQggD0JcLs3bU8tGqKqpYCJEmhHjLUi0rhAgVQqwWQpwTQhSpqtbX1G1LgXHAAAs1zuw61D1bCJEhhLhWCLEXZXR5qxBioFrXQCHE/6nqpdNCiEdqec9sMWscwtXzThZC7BRCZAkhsoUQ24QQvWwPEkL0V7flCyFyVNVZd3WbpkI3q9OACOAptXy7ul9l6rguQlGHn1fr3iOEGFxV49XfcAwWo3Ep5XngKNa//dXAaWAtyuzAfLwfEInNb1/TfZJSFgM/ApNrOE6nYr/+ADiI8kyMlVIeBv4Anr4cjRFCzFVNIPlCiCQhxEp1Jmm5zyghxH6hmHyyhRC7hRAD1M156t/PLfp2uHqcs9qXE4UQJUKIg0KIm23qjhdCzBdCvCSESAJy1fKl6jthsBDikHrunUKIq+p6jVJKE4p2wNwuNyHER0KI40IxL8WpKmQr85kQwk4IMVMIcUJtf5L6LjNv1/qs+j77Td10UL0PU0QVKnShqNoPq++8s0KINUIIr2ouYwJQBPxS1+uvAqs+rPINcIcqAxoNjaoxtUEI4QrcD9TaJiGlTAd+Bh6uYpffgW5CCBf1exTKj3gEOI8itAGuArxQ1E/m9kwAvkVRwY4CXgGmAm9a1L8cRa06FbgJmAM4qdteQ1HDHlDPGwV8Voe6AVyBZepxw7BWBy9GeQmOQZnFfCyE6FPFfaiOcPVvmsX35cCtwCQgCdghrG1QA4GtKKq0u4HbUDpy80rqN6vT0oAv1f8rHWwIIdqj/AbBwEPqtX2Hco+r4mrAhYoC+HesBXgUyoBuN9BMCNHG4niw+O2rIFz9m2ZR9jtwoxBC1HDsv5Yq+nUb4BcpZaKUMkst+xx4WAhxyeY/IYS97cdmlwDgDWA4MA1FvfqLEMJOPT4CZUD4CzASuANYD/iqx9+g/n2dC307VS1bA0xR6x8J7AXWiYr28knAAJS+cJtFeUsU1e4cYKLa1tUX+YyFc+F5dQXsgBdQ3lUvqdfxfzbHfIryPloNjACmA25V1P8Z8Kj6/x0o92FDZTsKIV5U6/4VuAXlnZ2Dos2oihuBPVLK8kq2GSr5nWuSe+HqX9s+HIiiBWo8XGkVwEWoS8ajqLyFRVlHlAciDzgHrAKCbI6bDCRVUedAFJVJf/X718Db6v8bgP+o/z+ItXpUAGeAz23quxdlROinfs+nGhUqlajQ61D3bLVNo6u4plctyhyAdGBuDfd4O8qI0x5loHEdioDea3nfLfY3qPseM98rtTwa2FfZMer2KWob3S3K4oF3KmnPGovvq9T21FqliDK7S6+mDS3V77uBR9X/Y4DJ6v9vosyADHW9Txa/Rdsr3X8a6weLfs0FVa/lZ4q6nyOKlmnQJZxrdiX1mz/hVRxjhzLwtHxPjAcyqzlPpSp0FIEjgQE25TuA/7P4Ho8i8J1t9lsKlFk+TyjCTgLtq2mP+b6OUp9ZX+A5qlE1q/tdY9NH2qvfn6jmXLZ91twHOlXSnhHqd28UVXidTGjACdT3tU15Vb/xUptnIUO9TnsULds2lL4ebHMfyoAHrnRfsfw0uRk4yktyv1TvqhAiGOXBPwL0AQahdJx1NiOtPUBzYeFdaLOtjAuzrKtRhA8oKjvL8lipzOhB+bFboox8LUfxv6DYPjup+/0FvKmqjVrW8jprWzcoD+VPVdTzs7aTlKVALIqdtybGosyci1Hubzxwh8V97yCE+E4IcRYoV/dtp7YbIYQbiuZimfmYeuQG4GspZVEdjglC6ai2mGfUVwshnFHMJ1X99n9IReVoSbX3ScV83iB0qsKyXyeiaFcKUWa+wSiDaqSURpT+NKCKempLDorToe1Hc1AUQtwkhPhdCJGD8n5IUjdFqn8PA15CiGVCiCHqM18bBqHM7nbZ9O2tgK0ZaqtUzDC2xEspYy2+H1X/1qZvf4/yzGaiaAfeRfH5AEAIcZcQ4oAQIl/dz+zIab7u69W/S2txrroQhaIl+7yOx1XVt0HRUtj+xrNt9vFDuc5SFH+A1sBtUkqztgSpOKCep5H14abohR7GBTUUKCqWg1LKGeYCIcRkIAulM5jVyeaOGQ5Y2c6llIVCiL9QXuKhKJ3A/BKPBqargwFbr2R/9e+PVbTVrNK9DUXV9R7gLYQ4CEyXUm6t5jprWzdAtvpiq4zzNt+NKAOAmvgFmIHy4jojpcw2b1DtyT+jOBw9jaIpKEZRlZnr9kGZTVn+VvWF30XU64yyesAKKWWsECId5bdNQrk/h9TN0cAT6su1F/BWJfVWeZ8sMJ+3Nvf934rWr6WiCk0Tik9EjpQyzWbfFKztkxdDmZRyX1UbhRC9gXUoppm5KJo9iTKoc1bbeVwIMRp4HqWflgohvgOetBjkV4Y/iiCobGWFrRr4bBV1VNavoXbP2FMo77E8IM7y3SGEGINiGluIorXKQhlAfWdRtx9QIKXMrcW56oKf+rde+rZKQnW/s0oOyqBKogysUqqYdJTQyPpwUxTgLlg/1D2B/upo0ZYILghw82zNpZL9QLFxTOLCUiHzQ7Qb8EAZ8bdBcYgzY7bLTUWxYdsSByClTEZxojOgaAlmo2gIWkopM6toT63qVqnvGS4og4KqHvwolEHOYCmltgTExtEkG8XDO7gB2pZ5EfVmoajoKsPsxJgE7JUXlntFo9jjBqDYBiuzf1d3n8yYz5tV7V7/bmz7dXUUUXU/ri/GoJibbrPQOoXZ7iSl3ABsUJ/94cD7wH+B26upOwvFm/6WWrSjIfr2yWqe2VuB3VJKzf/EwinPTCbgJoTwrGchbn4XBlP1jLoyquvbtaHawZwF3jSyPtwUVegZKLM7MwYUO3U3m09bFIcSM2bHkqpGxrtQRsZ3c2H2jZQyD8UW+oxaZOkEdRylI4ZLKfdV8rESzlJKk5TyDxTnD1eUWQdUPiuuU92XGfPLUxv1CiWwTbj5u1TWT+4GJjeA89ZWYIKq8q4tx4EQIYRTJdt2AV1RRuHRFuVHUWYpT6PMjHZfXHMJRxnMNK41pI0L235dHb5U3Y/rCxeg1GYmdkdVO0spc6SUX6LMVDuqxVXNireizMDzK+vb9dT+i8WFirNZ2+s2e3vX98qKaJTB2d11PO440Kqe22KFEKIZyjv7REOep640xRn4ARTHIzN/oiwjOKPaeKuiE4rK6nAV282zq5uAJ222RQMPoMwq/zYXSilNQojpwBfqMoufUDpta5TR9XgUx7FNKGqpEyjOTtNRVDXmuo4Bo4UQt6DMAlOklCk11S2ltAyAcjn5A8Uxb7FQApWEomgVkm32ex5l/eRPQohFKIFZooB98tKCRryC4ii2QwgxH2Xk3h3Foeh/VRyzC+W36IziWGfJ7yh9YRDK7AlQlhgKIXajPBMH1cHcxdALiJFS5lzk8f8GbPt1dXRCWZ1xKdgLIfpVUp6oasw2A9OEEO8DP6BoaGyjMj6I8jxvRFHrt0WZwS4HxV4vhIhDGWweQTEzHVLr3gRsFkLMQ5kgeKJMPJyllDMv8douhc0oK1VeQBmw3ozidKehmg4WAfOFEAEovh/eKO+k6jQP1SKlPC+U5bVzhBCOKGYJJxTNxivq71IZu1Ac8yojvJLfWUop6zoY74WiDalpGenl5Up70dX1g/ICLueCF3YIin3qWxSnqdYoL+JFgIfFcbNRHEKqq/sMyo/Uy6Z8ilpeabADlBf8bygCKhfFyeZ1LngnL0YZJRaizDTWA50tjvdHGblnqeeZXZu6La6rQlAKKvH6VMu3YxN8pJJja7PPMBTHwSKUl9LNlR2Hon7eoV77eRQPz24297VOXuhqWReUDp6nfnYDN9bQ5sPAS5WUm21oEptANVzwWP74Yu6Tut9B4OUr3Xca88e2X6tl+VT04A5H0WaEXcK5zL9pZZ8XLfZ7DsWhrgBlINoWC49tLiyHSkERznEoJjYnizqGqP2jGAsvd5T3wisoWhkjyoB+IzDc4tgKfUEtX4oyCLa9L5pHdxXXXZt97FACX51Ded98g/JetTpO3W8WSswEI8rE43OL7VZ9g1p4oVuUP4ii/SpR78tqwLOaNvdSn4mWNuVV/cZlNs9CjUF9UGISbLvS/cT2I9TGNSmEENEoEbE+Vr+3RVnmcyPKyzgBxclqulQdNIQQx1Feol9dmVbrXGmEEE8B90kpO9W4c/2dsx3KDKuNlDL+cp23KVJJv85HEZZLLfaZibL8qrIwqDr/UlQn5JVSyrcboG47lMnd81LKFTXtfzlpqgJ8GMqIqKOsfPG+7f7DUZYTdJF6POp/Leoyn9Moy7y2XKZzfoKiFp1yOc7XlKmpX6v+C7HARCllTQF1dP5FCCFuRXnHt6nvd7wQ4naUgFsdGpv8aIo2cKSUG4UQH6PYXs/U4hA34J7GdvN1Li9SygIhxN1UHTGqXlGd9+JQAs/o1EAt+nUYMEcX3jqVsAbFfNqc2smEuiBQNHeNTn40yRm4jo6Ojo7Ov52muIxMR0dHR0fnX0+TUaE3a9ZMZmTUZW2/js6/jjNSyvAr3Yi6ovdtHZ0aqbRvNxkVuhBCfvnll1e6GTo6jZZJkyYhpWxyGc/0vq2jUz1V9e0mMwPXaRqYTCZMJhNCCKSUGI1G7O3tsbe3x2Cou8XGaDRSXl5OeXk5qampGI1GTCYTBoMBg8GAnZ0dBoMBLy8vfHx8sLfXH2kdnYbAZDJRXl6OnZ0dRqMSZM7e3h47OzvqGmxRSklxcTFCCHJycsjOzqasTPERM/dtg8GAo6Mjvr6+eHh41Pkc/waa5NuutLQUBweHK92Mfx1SSkpKSsjJyWHLli04ODiQkZFBRkYGJpOJpKQkioqKMBgMSpABIbC3t6esrIzycutVQW3btqVnz54UFxdTXl6OEAJ3d3dSUlJwcXFh165d5OYqYZadnJwQQhASEoKTkxMGg4GkpCRycioPbNamTRvGjRtHfn4+JpMJZ2dnunbtiqOjY4PfI52Lxzz40wdhl5/y8nKMRiMHDhwgOTkZo9FIcnIyZWVlZGRkkJmZSVlZGQaDAZPJhIODA0IISktLMZmsE/QNHjwYb29vSkpKkFLi4uJCaWkpmZmZuLi4sGnTJkDp1wCurq4EBARoA4GYmJgq2/nAAw/g4eFBQUEBDg4OBAQE0KZNm4a7MY2cJqVCN/9vMBjw9/dTyAG4AAAgAElEQVSnb9++DBo0CA8PD5ydG1WSmCaP0WjUOinA8ePHeeWVVwCws7OrIJABRo0axYQJEwBIT0/HZDKRnp7OsWPHWLt2bYX9R4wYgbOzsybk8/LyCAkJobi4mPXr15OXl8ezzz5L9+7dKxyblpbGzJkztYFCSUlVyYgUHn/8caKiomp9/ampqZw6dUobpOzatYv4+Hh8fHxwdXXVBikvvPACXl5e1dYVExPDnDlzrMpWrlxZ7zOKpqxCN//v6OhIREQEAwYMoGfPnri4uFyU5kancsrKyhBCYGdnp5V9/vnnbN68udrj3n77bUJCQigoKKCoqIi8vDzS09PZvXs3f/zxh9W+Xbt2pVWrVjg6OmIwGMjLy8PR0RE/Pz9SUlL48UclweKyZcsqnYh9++23fPPNNzg7O2sauOpYvnx5rQd9JpOJI0eOkJWVhb29PcnJyfz0008YjUZatmxJaWkpTk5OREREcN9999VY31NPPcXZsxdy8Nx1113cdNNNtWpLXfhHqNBbtGhBYmIinp6epKen88MPP/DDDz9o21988UU6duxYTQ06oMykz507R0lJCX5+fmzfvp2VK1cCsHDhQuLi4njrrQuZM/v27cvu3RdCB3t7e+Pu7s6ZMxeWW4aHh9O1a1dKSkqYN28eJ04oMf/NI3YzLi4ufPbZZzUKr5EjR1a7PSgoiM8/rzxt8N13301paSkjRozg2muvJSgoqM6z74ULF3LypJJ7pGfPnmRmKrljsrOzyc6+kDG0sLCwRgEeGhpKeHg4ubm59OjRg06dOunqQBtcXV0pKirC1dWVv//+m7//1lIOEBQUxPz58/V7VguKi4vJysqivLycgIAA3njjDWJjY+natSszZsxg8mTr/COenp6apguge/fuxMfHWz3jvXv31oTvs88+C4CHhwd5edapAR555BGuvfbaGtt45513Vrt97NixjB07tkJ5fn4+U6dOBeCZZ54hLCwMX1/fOj0XOTk5zJ07V/vev39/zRyQkJBgda7aMHHiRD744APat29P+/bt6dXLNp17w9KkZuDPP/88ycnJFBQUUFBQwL59+zh//jz29vbaDKx169Y4OTnh4eFB27ZtGTJkSJ3U7XFxccTGxlJWVoa7uzvNmjUjNDQUADc3tyY/G3jnnXf4888/te+tW7cmNTWVoiIl22qHDh3o168fe/bsQQjB8ePHcXZ2pqioSLNR2dnZ4eHhwfnzF1ISd+vWDScnJ03Qjxo1ii5duvD6669bnX/8+PHY29vj4OBAcHAwkZGRuLq61tv1rVy5kg0bNmj/X+xLv7S0lN27d7NgwQJAsfUNHz6c77//HoCQkBDeeeedS25vXl4e8fHxJCQkkJycTFxcnDYwuueeexg8eHCt6iksLOT+++9vsjPwxx9/nPT0dEpKSkhKSuKvv/7SbK5mOnTogBCCoKAgoqKiuOqqq2p9DpPJRHR0NLm5uQgh8PX1pXnz5ri7u+Pk5NTkNXg5OTk8/PDDVmU9evSw6us33XQTrq6u2vOWk5ODo6OjlbCyFcz29vZ06dKFEydOaPs99dRTxMXFVdCq3X777QghcHNzIzw8nFatWtXboKuoqEibEY8dO5bx48dfdF3p6en873//4+DBg3h6euLm5kabNm347bffAGVw0KNHj0tqr8lkIjU1lYSEBJKSkkhISCA2NlYbLH3wwQc0a9asxnrMvgL33XdfpX27SQnw9u3bExQUpKl2Q0NDCQwMpHPnzhiNRlJTU4mLi2PRokXacQ899BChoaH4+fnh5eWlOUw4OTnh6+ur2WHMTJo0qcK53dzcKCgoAGDo0KHcfXdds91deXJycli4cCFpaWmUlpbi7+9PbGxslfs//PDD7Nmzh/379wPKrNtSYFeFj48PU6ZMoVevXgghKCsrY9++fZw6dUpzgDEYDJSUlHD48GHOnTvHAw88QP/+/S/5Gk0mE0uWLGHbtm0MHjyYe+65p17qTE5OxtnZuVYdrrYcO3aMd999t9KRvqurKxEREUycOJHw8PAK27Ozs0lKSsJkMrF161b27duHq6srhYWFTVaAd+3alaCgIEpKSvD398fb25uuXbvi5+dHfn4+p06dYteuXezcuRMABwcHZs2ahbOzM82bN8fe3p7ExESEEDg5OeHv728lPCozY9jy7rvvEhQU1KDX2hDs37+fH3/8kWPHjtG8eXOMRiPnzp2rcv+3335bm0nXhR49ejBlyhT8/f0ByMjIYP/+/aSmpmrObCaTiby8PHbu3EnLli2ZNm0aAQEBF31tZkpLS7X37ueff17hvX0xFBYWkpKSQsuWLevVP2bt2rWsXr260m2hoaF06NCBO+64o8I5pZTExcWRm5tLeXk58+fPBxSZs2nTpqYvwGuz1CQ9PZ3XXnuNgoICjEYjrVq1oqysjPj4eHx9fTXbh5+fH2fPnuX++++ne/fumhoFYPXq1URHK2mhfXx86Nq1q+YMNWrUKHx9fas6fY2YBw91mXWa7byXgvmhGjlyJMnJyVYjc4CAgAAcHBxITr6Qsa93797s3bu30vpcXV0pLy/XNB+2At7f35/HHnuMoKAgPD09q7yukydP8vLLL3P11VfzyCOPXLSGIykpieeee077/vbbb9O8efOLqquhse3gI0aMICoqirCwMO36k5KS+OSTT8jLyyMyMpI///yTq6++Gm9vb7755hsAOnfuzPHjxxkyZAi33347d955Z5MV4LXp21u3bmXZsmUIIfDw8ND6c15eHu7u7mRnZxMSEkJhYSHnz5/ns88+IyMjA09PT4qLi8nMzOS9996jsFDJwtulSxf8/PwoLy8nPDycIUOGXPTzV1ZWxvnz5/Hx8bGyL1eHOaPUpWj1LAXbHXfcwbfffqtp00DRloWGhlqZu6677jpttlkZzs7OFBcXA4pPgoODgzaBAcVJbfjw4Xh6elapuSguLmbr1q2sXLmSmTNn0rlz54u+xoULF2rt9fT05KOPPmqUjo55eXl8+OGHmhNeUFAQo0ePplu3bpqZzWQy8dNPP/HLL0pK9RYtWhATE8Po0aOJi4sjOjqa9u3b4+DgwOHDh3nrrbcIDQ2t0gb+jxPgVVFYWEhRURGlpaUEBARgMBj49ttvWbNmDe7u7jg4OGBnZ0dhYSGFhYV06dKFG2+8keLiYoqKiigoKODMmTMcPHiQ4OBgbYmUk5MTUVFR9OnTh7KyMtzc3Mzt5fDhw3h4eGBvb4+joyM7duxgx44dlJaW8vrrr9O6detK25qbm8v27duJj4/n3LlzJCQk4O7ujpubGz4+PoSEhODr64ubmxt2dnZ4enoSEBBAs2bNcHJyIj8/n+LiYhITE8nKyiI7O5tTp05x8OBBbaZmS//+/enVqxf/93//x80338yyZcto0aIFCQkJmEwmSkuVVOvu7u4UFBSYU+wxcOBApJRERERw+vRp/vrrLyIiIvD29mbr1q04OzvTokULwsLCGDZsGCEhIRXOPX/+fG2mHxUVxeOPP16n3zY7O5tHH31U+/7JJ59UOWi4WEwmE7GxsZw5c4a8vDz27dtHSUkJRUVF5OTk0KNHD6ZOnVqr8z744INWasrXX39dWzbj7+/P4cOH+eCDD7jnnns4cuSI1SBq7Nix7Nq1i+7du1ewZzZlJ7aL7dtSSnJycigtLcXe3h4fHx+MRiNTpkzB3d1dW87o4uJCbm4uJSUlPPLII9jZ2VFSUqKZ4/bv38/58+cJCAigpKQEk8mEt7c348ePx8PDAzs7O1xcXHBwcCAxMZHs7Gzc3d0BpU/MmjULUDyrq/LNAMUZdN++fZw5c4b09HQyMjIICgqisLCQ7t274+rqio+PD25ubkgpCQwMxN/fX7P1ZmVlUVxcTFxcHAUFBWRlZfHDDz9ogwAXFxcrYQswZcoUcnNzSU1NxdXVlQMHDuDg4EB2djZGo1E71mQy0alTJ44cOYLBYKBTp05ERkYSFBTE//3f/+Hg4EB4eDgFBQUcOHAAd3d3IiMjadeuHTfddFMFoVpQUMADDzygfX/jjTcq1ShVx9KlS/n555+17w0RLyA/P5+jR4+Snp5OUlISJ06coLS0lOLiYvLz83nsscfo27dvjQOzEydOMHv2bO2Zs7e3Z9GiRSQkJODl5YWfnx9z584lNTWVadOm8fLLL2vHuru7M2jQINauXVvpffrXC/CqyMnJobCwkODg4FrtX1JSQmJiInZ2djg6OhIbG8vy5cu1QUBBQQHl5eVaJ+rcuTPl5eUUFRWRmpqKj48PDg4O3HPPPbRt29Zq9H3w4EHmzZuHEIKoqCi6dOlCYGAgLVq0ID09ndTUVE29kpWVRUFBAWVlZeTk5JCRkUFWVhb+/v5kZWXh7OxMSEgIrq6uCCFIS0sjISGBwMBASktLyc/Pt9I6uLi4EBwcbOXIYbZ5W2Lu4HBh+Ud8fLzmSd6xY0eOHj0KKDPLAQMGkJ2dzRtvvAHArFmz6NChg1VnsLXf1eZ3jo+PJy4ujry8PA4dOqSdE+rmlVoThYWFbNu2jS1btuDo6Ejbtm1xcXGhR48eeHl54eTkxLRp0ygvL8fZ2Vlb2tKpUyd69eqFwWBg6dKltG/fnptuuonExERiY2NZs2YNHh4ehIaGUlJSwunTpwHr2U9UVBTjx49n+vTpQM2qw3+jAK8Ks+nDz8+v1tqujIwMTUNmMBj4/vvv+f333wkMDNT6sPmvvb09kZGRAGRmZpKdnY2LiwvdunVjwoQJ+Pj4WNU9Z84cYmJicHV1ZcSIEYSFheHn50dAQABxcXGkpKRQVlamOaEVFhZq/da8TNOsonZ0dKR169YUFxfj6OioDfBatmypeURbrspo06aN5jVuZ2enDcZbtWpFXFyctt9VV12lzR7Dw8M5e/YspaWllJWV4e3tTWhoKEeOHMHV1ZU777yTDh06sG3bNtatW0dYWBiPP/54hQH61q1bWbJkCaC8DyozUVpSWlrKX3/9RU5ODllZWVZ29nvvvZdBgwbV6resDWfOnGHTpk3s2bOHyMhIgoOD8fLyokePHjg6OnLu3DneeOMN3N3dKSkpwdPTk1atWtG5c2f69u3Lxo0bSUxMJCoqioiICGJjYzl69Cjbt2+nXbt22NnZae+lZs2aaQNIgP/85z/s2bOHjRs30rdvX5544olqtay6AL+MmEwmjh8/jr+/v5Xd1GQy8d1337Fv3z4yMzPJz8+nefPmBAQEMHnyZH777Te+/fZbAMLCwpgzZ06d1GvFxcWkpKQQGhpao02noKCA1NRU/vOf/wCKytusfZgwYQLx8fFkZmZSVFRESUkJjo6OpKamMn36dLp3787evXv54YcfOH36NF27dqWsrIyYmBhWrlzJp59+yo4dOwBF4M+aNYtly5axadMmPDw8yM/PZ+jQoVYzyHnz5nHw4EHeeeedSmfpZWVlpKWlkZKSwr59+4iJiaFz5854enrSrFkzOnToQGxsLHl5ebRo0ULzdZBSMmbMmIsyQcTGxvLRRx8RERHBsGHDaNu2LSaTSXvptW7dWvt9ioqKmD59Ol5eXgQGBnLq1CkyMzMreOGbZyyHDx/GycmJXr164e3tTW5uLoMGDcLOzo5Tp04RHR1NaGgoJ0+eZPv27QB89tln1QojXYA3PPn5+Zw+fZoOHTpYOcfm5OTwwQcfUF5ervmWtG7dmi5dujB48GBmzpypOTBNnTqVgQMH1um8GRkZlJSU1GgWMplMZGZm8ueff7Js2TLs7e3x9fXVbOK33XYbR44cIScnB4PBQEZGBkajEQ8PD+bOnUteXh5Hjx7lf//7HwBjxozhu+++o0ePHkybNs2qz06bNo2OHTvy2GOPYTQaNY3E008/Tfv27YELzmfjxo1j5MiRlb6X8vPzSUlJ4cyZM2zZsgU3NzeCg4Px9fWlRYsWhIaGEh0djb+/P/b29pSWlhIXF0e/fv3o0KFDne6j+R6tXbuWzZs3M3ToUK6//nq8vLzIzc0lMTGRkJAQqwGYeWLVt29fioqKOHToUIU6nZyc6NatG8HBwaxdu5ZRo0bh5+eHEELz08rPz+fIkSPs3r2bkSNH8uKLLwJw7bXX8sgjj1Tb5n/EMrKmgsFgqPBgxcfH8/7771dwLklOTiY5OZmIiAhNeIMyOvzggw946qmnan1eZ2fnKtXytpg9L+vy4rS0xfv5+dGvXz/NrACKGv7QoUOa8Aa0F5XZm9isOrZdehUVFcXBgwcrHbCcOXOG119/HQ8PD4KCgujYsSOTJ0/WXhigvEAXL14MKJ60rVu35vz585w5c4aMjAxt+UltyM/PZ/369Wzfvp377ruP3r17A8oA6Y033tCWl1m+iB0cHPDz8+PUqVNW9sYRI0ZQVlbGVVddhYeHhxZ0YuLEiVWev23btrRt2xZQXtxDhw5l1KhR9eqtr3NxuLu706VLF6uy1atX88cff5CWlmZVfvr0aU6fPk1CQoLVUq1FixbRpk0bbXVLbTA7jtWEwWCgWbNmDB06lKFDh1a6z+jRo62+W/ZrBwcHfHx8NE3bd999h7+/P926ddNm0mbatGmDk5OTpskzO2RaCj8XFxdat27NiRMnKhXeq1ev5qeffqJ58+aEhoYyYcIEevToYTXg/u9//6v5JLVp0wYpJWfOnGHz5s28+eabhIWF1ereAJw8eZIVK1bg4ODAG2+8obX1yJEjmpYQrNeom++95VJagEGDBhEZGYmjoyPt2rXT3mnmWBi2uLu7069fP/r168f58+e56qqruP766+nXr1+t22+LPgO/BEwmEzk5OXh6epKZmcmPP/7I6NGjrR7gsrIykpOT2bVrF+vXr6dPnz48+eSTpKWlsX//fuLj4/n9998BmDlzJp988om2BjMyMpLZs2dfiUurkrS0ND7//HOOHz9Op06dKjjDdezYkfz8fJydnSkoKCA5OZmwsDAroVaVU8vatWv59ddfefzxx7WByJEjR5g/fz5jxoxh1KhR1bbtq6++Yt26dXh7e2M0GgkNDSUyMpJhw4bVyvEwJiaG9evXc+LECXr37s1tt92m/Zbr169n3bp15Ofn4+XlxR133EGfPn2sXkrFxcWsXLmSv/76i3HjxhEYGHhRM4SLRZ+B1x9Go5GioiK8vLzYuXMnOTk5DB8+3Gof82z8nXfeoaysjNdee43WrVtz6NAhbaZltnHfcsstfPLJJ9qxr776aqOLILZz506WL1+u2dst+ywog+yEhAScnJw4e/YsBQUFNG/eXHN89fT05L///W+FZbslJSW88MILtG7dmvvvv1/rM0uWLGHnzp3MnTuXwMDAKttVXFzMvffeCyhC0Bzsp1u3bgwYMKBGLWVZWRnr1q3jjz/+oKioiNGjR3PDDTdgMBjIz8/nww8/1MyCAwYMYMiQIbRq1cqqjmPHjvHVV18REBBAREQEUVFR9e5nUx26Cr0eMBqNmu1248aNfPfdd0gpcXR01MJ6PvTQQ9jb23P27Fny8/P5/fffcXNzIzIyEnd3d6666iq6du2q1SmlJC8vT1N7ffPNN4wYMYJrrrmmwsjywIEDvP322wwfPpykpCRatWpFREQEzs7OhIaG1hhQ5FI5e/Yss2fP5qabbqJfv34EBARQVlbGmTNnmD9/PiNGjGDbtm0kJyczaNAgysvLOXz4MIWFhYSFhfH3338TFRXFpEmT8PPzq/Qc0dHRLF26lMjISMLCwrSlQdOmTWvQawOYMWMG/fv3Z+DAgZozIlx4gTz22GP88MMPtGjRgr59+5KYmEhJSQnDhg1r8HtfG3QBfnGYQwQ7OTmRkZHB8uXLOXTokLbc0cyMGTO0MKOnTp3i77//pmXLlrRt25by8nJuueUWK61QWVkZ6enpGI1GFi1aRFxcHI899hjdu3fHxcVF289oNPL2228TExPD2LFjSUxMpFOnTgQEBGh+Eg0dBnj9+vVs27aNiRMn0qVLF+2dtnnzZk6dOoWbmxuZmZkkJSXRu3dvjEajtnzRzc2N5ORk7rrrLoYNG1apuaq4uJgFCxaQnp5OYGAgPXv2ZOHChcyePVvzJWgoTpw4wUcffcTjjz9ORESElcDfuHEjX3/9NU8//TRvvvkmzz33nBasycPDg0GDBjWKAEK6Cr0OSCnZs2cPmzZtIjs7m5KSEpydncnKysJoNGrrwmfOnEliYiIrVqzQjl27di3BwcF4enri6OjISy+9VKlN14wQAk9PTzw9PXn33XdxdHTk6NGjrF+/nmbNmuHq6kq/fv04d+4c27ZtA2DDhg20b98ek8nEli1bNMe64OBg+vfvr6lqqxKSF4vZuaRr167a2k57e3siIiK0gCeRkZH85z//Yfjw4ZrD3FdffcWePXu4/vrr2bZtG6dPn2bmzJmVrg+NioqiZcuWpKSkcPjwYYB6X3d/7NgxfvjhBwYMGECfPn208sDAQO2l9dNPP/HAAw/Qq1cvzWv/4MGD3HnnncyZM0dbjwyKM5BlPTqNl/z8fL7//nuOHDlCXl6e5jGclZVlFSJ49uzZLF68WJtdOjg4sGrVKtq0aaP1gUcffbTaADD29vYEBwdrDpdt2rTho48+ApTlQ+Xl5TzyyCOaLRRgy5Yt9OzZk7i4OPbs2aM5n/Xr14+OHTvi6upKly5dar1UrbZs3ryZoKAgevTooQk4Ly8vq4Apb775Jvb29po5Kjs7m5deeomgoCCcnZ354osvOHv2LJMnT64wK3Z2dmbatGnExMSQlZXFnj17GD9+fL0Kb5PJxMaNGzl06BAPPfQQ3t7egNKvCwsLSU9PZ/369aSkpPDKK6/g6uqKs7MzJSUl2NnZMXLkSKsIlKAsuWvMQX70GbgNJ06cYMWKFZSWljJu3DhCQkI0z2AfHx/+/vtvbda8aNEiunfvzm233cbzzz9/UUugqmLDhg18/fXXVtHPysvLmTRpEjfffHOFDmIymdi3bx9//vknmZmZnD17lieffJKIiIh6aQ9csA2bbVbt2rVj4MCBtGjRQmvP+fPnefPNN+nRowe33XYboNi/d+zYQVpaGkOGDGHv3r0sX76cTz/9FA8Pj3prX20oLy/nrrvu0r7Pnz9fW4GQkJDAN998Y7Vsa86cOVqs5EceeYQFCxawZ88eAG3g1lii8+kz8KopLS3l559/Zt26dfTp04eBAwdqKtCysjJcXV2JiYnBw8ODbdu2ceDAAYYNG0ZoaCgff/yxth73UsnOzmblypWa2cySjz/+uIL3Oij+Hdu2bSMhIYFTp07Rtm1bpk6dWq+z8vj4eBYtWkRWVhZhYWH06tWLvn37WqmJ9+/fz3vvvcc777yjBbxJT09n69atNGvWjL59+/Lyyy9rHumXe+a6c+dObSLh7OysOeIB2pp08wqPa6+9lsGDB/Pee+9x3333ERISwsyZMzEajUyYMIERI0ZcVJa1hkJXodeC6dOnk5qaSlRUFGPHjiUtLY2uXbtWuiRpwYIFhIWFMXz4cDZu3Mjy5cuZNm3aJc/Ejh07xquvvmpV9tRTT+Hn50dRUREdO3as1UP19ddfs3HjRqZOnVqnJB41IaUkOTmZoqIiDhw4wK5du7S1pFOmTGHz5s2cPn2au+++m+uuu67SOkpLS5kzZw5paWm0b9+eW2+99bIEXTl27Bjff/+95nQHMGTIEO666y5tRpOens6TTz5Z4djOnTvj4+PDjh07eOGFF7R1940JXYBXTkpKCs888wygOA9GRUWRnp5eqX9CcXExU6dOZcGCBQghePLJJzEajSxYsMBKPV5XpJQsWrSIX3/9VSvr2bMnEydOJDExsdYas/Pnz/PWW29hMpl4/vnntVlmfVBcXMy5c+dIT09nx44dxMTE4Onpib29Pffccw8ff/wxdnZ2vPbaa1Xaf2NiYnjvvfdo1qwZXbt2ZcKECQ0+wDUajWzatImtW7daOQnPmjWLTp06ad9XrFihJVKx5IYbbuCvv/4iICCA22+/ndatWze6QDG6AK8BKSUbNmxg9+7dlJeXk5aWRnFxMVOmTGHIkCEV9v/++++1pAF79uxh0qRJdV4aUhlHjx7lq6++YuTIkXTv3v2iHyTzeksXFxdGjx7NyJEjG2Q0KaUkIyODlStX4uLiwm+//ca4ceMYM2ZMjceePXtWWzrX0JHTzDPvPn36aDNoc5ISDw8P7r77bpYsWcKxY8eQUhIZGakFxGndujVt27bVVKeNNRmJLsArJycnhy+++EKz5Z45c4by8nKWLl1aaTjLJ598kgkTJrB+/Xrc3Ny499576+XZXLJkCaWlpYwaNapas1p1mEPCNm/enMLCQmbMmEHLli0vuW2VYTQaSU9P59lnn+Wee+7h888/r3EpIygajZMnT7Js2TJcXV156aWXGqR9Zn788UdWrFihJbsCJeDR+vXruf322/H19WXFihVkZGRo4bPNTrbdunXD29ub8vJyBg4cWO9mx/pCt4HXgBCCESNGMGLECECJllVcXEx8fHyl+/fq1Ytnn31WW69dX7Oxjh07VpiBXwxz587lrbfeYvLkybz//vvEx8czYcKEeo/1LISgWbNm3HvvvcyZMweTyVTlso7U1FTi4+MxmUz4+fkRGxurLTk7fvx4gwpw8zKeEydOaGFf8/LyCA4OJjo6mjfeeIOePXsyffp0XFxcGqWA1rk4vLy8eOyxxwBFAM6bNw9QTCa2nuBCCHr37s2CBQu45ZZbuOWWW+pNVV2b9JQ10bFjRwYOHIiHhwcnTpzg9ddf56abbmLUqFH1bhd3dHSkefPmPPHEE3z66af4+/tXei9MJpNm2/by8sLe3p7t27eTkJCghYttyP5kjrNgqSExR8r84osvcHFxYfr06bRt27ZRqcXrA30GXgkZGRnMmDFDiylcVeaY06dPExYWVu8dpz6xjXLWq1cvnn766QY5lzlCnO29KiwsZNq0aVaJO1xcXAgPD7dKG36W/IcAACAASURBVDlgwAAefPDBBmmbJeagMWYCAwN58MEHadeuXZPu3PoMvGZWr17NwYMHiYuLw9vbW7OZWlJUVERmZma92Lwbki1btljZeRsynXJubi729vYVZt/79u3j3XfftSoLDQ2tkFDF0tekocjIyOCJJ57QfJbs7e2Jiopi4sSJ9WpquBJU1bcbh/dNIyI/P5958+ZpduN27dpVae9p3bp1oxbeoMw+Vq5cqc1A9u3bVyFWcn1hZ2dXQXhnZWVx//33k5+fz+233w4onuo33HBDhXWmlvbBhsQyPvOjjz7Ke++9R/v27S9aeCcmJrJu3TrNJPDcc88xadKkCjHnCwsL+fnnn1m0aJGW8lTn8rFnzx62bdumPf/mtcW2uLi4NHrhDUogkcWLF2t2XkthXt94enpWEN5r167l3XffxcXFhRtvvBGAvn370rZt2woBq8yBWBoSf39/Jk+erDmqLVq0iIcffviShPfOnTvZsWMHKSkprFu3jkmTJlWaaSw+Pp5Vq1bxv//9jxMnTlz0+eqKrkK3ICUlhffee49u3brRuXNnfvnlF0JCQsjNzW10Dkt1QQjB1VdfzcaNG7nuuuus1jg3NI6OjowfP54OHTpokY5OnDihPeSLFy9m7969JCQkaNHHGhqzTWzVqlXExMRwzTXXWG0/ffo0Pj4+rFq1ip07dzJhwgRuueWWSuvau3cvn3zyCUVFRXz11VdW2yyXn5gTHXh6emrqfNvAIDoNg5SSLVu28M033/Dss8+yYsUKzp07R0lJCWVlZY3OYakuuLm5ceeddzJv3jxmzJhxWc/dvn177rvvPnJyclizZg1wIVrZpEmTuPbaa7VEK1U5tNY3w4YN45prruGFF14gKSnJykRiNon6+PhoES6r8r2RUvLhhx9qcSwssZ20ffTRR+zfv1+LGeDs7Nzga9vNNN0nt55ISkpi06ZNlJWVceDAASZMmECnTp20wCHbtm3j5MmTmt2sqWIymTh79izdunW7rOc1Z2H79ddftTW2UVFR9O7dm27duuHs7Fwvzn+1YcmSJWzduhVvb29cXV05f/48I0eOBOCLL74gNjaW0tJSLQa82Ut59erVpKSkMGzYMKtQtYWFhSxevJhx48Zx7bXX8tprrxEeHk5WVhbHjx9nzpw5TJ06lcDAQC3V6ujRo/niiy+YMGECJpOp0SxB+6chpWTXrl0cOHBAU4m//PLLHDlyhOPHjwPKsi1HR0ctVG5TJS0tjZCQkMs+ySgpKWHJkiW0a9dOK7v11lvp3LkzERERCCGslmw2FJmZmcycOROTyYSrqytOTk7k5OTg6+tLamoqS5cupbS0lKSkJMrKyqwcCJ999lluv/12brjhBisbenR0NHv27GHhwoXs2bOH7du307JlS44ePcratWsRQmg5Fk6dOsWYMWO0AfylhEatK/8aAW40Gtm6dSutWrUiMjISg8Gg5ZAeOnQozZo1Y8SIETRv3pytW7cCSiCGG2+8kcGDB1/h1tcPxcXF1Wazqm8sMw89/PDDXHPNNRQVFV1WDYAlCQkJTJo0iauvvlrL9uTs7MyCBQvYuXMnL730EiUlJbz11lsEBgZaOTDu3LmTnTt38u6775KQkGCVkGbNmjVs27aNnJwcDhw4QEhICH379iU6Oppdu3YxduxYunfvTocOHdi7dy+RkZGsXr2a9PR0K3W+zsWRkpLCH3/8wdChQ3F1dUVKyddff82uXbu44YYb8PHxISoqCmdnZ+bPnw8ogVSGDx9+SXmqGwvmQFOXi7Nnz1rlaHj55ZcpLCzE0dHximgzpJTk5+ezcOFCSkpKKCkpwd3dndjYWL766itatmzJqFGjOH36NKtWrdJSw5p9nL766isOHTrEU089xYYNG8jNzdXydX/66accO3YMFxcX0tLS6Ny5Mx4eHqxZs4brr78eHx8fHn74Yd5++20t8cuLL77I3LlzG2x1gCX/CgG+bds2Vq1aZeVENXToUDZt2sT48eMZO3as1f7mh7Bz5871HgXsSmEwGPDw8CA2NpaePXs26LnMAyMzc+fOpUWLFgghrpjwBiWRSkBAAL6+vlps9FdffRU3Nzf++9//4ufnpwXOcXBw4JVXXmHr1q1Wa0fXrl1rlawFYPDgwXTr1o327dtTXl6u5Rbu06cP3bt31+q74447ePHFF7n77rs5ceJEo12y0lQoLi5m4cKFWuAdsxo3KiqK6OjoSl+iZjvupEmTrEIaN2V8fX017ZFtHPL6ZuXKlZr/xrBhw7Tlolcy0U5WVhYuLi54eHhoIY3T09N5//33eeihh7jmmmuws7PTks0MHjwYZ2dn1qxZo6VPNmdgs7XVR0VFcd999+Hr60t2djaHDx+mvLycKVOmaEF3IiMjad68Od99951mIrtc9+NfIcCTk5OthHd4eDibNm2iRYsWWuIQUKIkWToh9O3b97K3tSG57777+PDDD3nvvfca1Ctz+fLlgOJkU5Wj0JVASsmnn35KYWEhBoOB5ORkjh07xoQJE9i9ezfFxcVkZmbSpUsX/v77bz777DPNS37UqFGMGDGCWbNmafUJIbjuuuuIjIzk/PnzxMXFcfz4cS2Xuy0ZGRnAhYxs9b2k799GaWmpVdS8sWPH8u233xIdHY27u7tVPvudO3eyZcsWTp48iZ2dnZXat6nTsWNHWrduzZIlS3jooYca9Fxm4b1w4cJGEf8flMFDUVERy5Yto0uXLuTm5rJ582Z8fX0xmUxs2LCBgoICcnJyCA8PZ82aNVZOdu+//z4nT57UwtwOGzaMjRs38sgjj2AwGDh37hynTp2iuLiY6667rlJnV0dHR0JDQ2nfvj1btmypdfa4S6XGZWRCiEeBB4FwtSgGeF1KuUHdLoCXgamAD7AbeFRKGWNRhwRKgfZSytMW5UsBfynliBobeolLTZ544gkyMjK44447GDZsGHfddRcRERGUl5cTFRXFqlWrtH2HDBnCzz//zIIFC5r88gNbVq9ezaFDh3jssccaTIAcPXqU119/ncWLF1/RGbctx48fZ8eOHVpMeTOdO3cmJCREy51cXl7Ol19+ybhx4/Dx8aG8vFwzoxw+fJgPPviAwsJCIiMjCQkJ4eTJk5hMJlJSUgAYOXJkpelCpZQcP36c/fv34+DgwNChQ+v1JVjXZWT/hL5tzlHfokULHn74YeLi4li8eDEtW7akX79+xMTEEBOjNDc4OJigoCAMBgPTp0+/qPM1VoqKipg1axbXXXcdN998c4Oo1EtLS5k3bx5FRUXMmTOn3uu/FH766Se++OILqzJnZ2d69eqlrU338PAgPj6enTt38uqrr/Lnn38SFRVFixYtMJlMfPrpp+zevRuj0citt97KiRMnyM/PJykpSXNQW758eaVmgsLCQnbv3k1CQgLh4eEMGDCgXq/vUgK5JAEzgFiUZWd3A2uFED2llIeA54DpwBTgOPAfYLMQop2UMs+innJgDlB1IuQG5Oqrr2b37t0MHToUOzs7Bg8eTH5+PtHR0Va2zsDAQIqLi5k+ffo/TniD4mSSl5fH888/T79+/ep1xJ6bm6tpMKZMmdKohDcoGpaDBw9y880307VrV/Lz8+ncuXOlITK//PJLjh07RlRUFD169AAUP4rs7GzGjRvHb7/9RmRkpGbn37t3Lx999JH20qgMIQTt27enffv2DXeRdaPJ921nZ2cCAgLo378/4eHhuLi40LFjR7y8vCos9wkICCAkJKTSyIpNHRcXF5555hk++eQT1q1bx9NPP12pFuhiiYmJ4eOPP6Z58+ZaMpPGgtFoJCEhAQ8PD+6//34MBgNOTk506NChgsf4gQMH2LlzJ0eOHCEiIkJbm3727FnatGmDh4cHBw8epEuXLowZMwYpJbNnz0YIoa0trwxXV1euv/76Br9WWy4qkIsQIguYCSwCUoCPpJRz1G0uwDngGSnlp2qZBN5GeRn0kVLuV8uXcplm4FJKZs6cSc+ePbn11lsBZURptnEPGjSI/v3707JlywZP3dcYKCoqYubMmTg5OWEwGJg5c2ad8tsajUbS0tIQQmid4LnnnqNLly5MnDjxsjrL1Ybi4mIeffRRZsyYUaslHunp6fz222+kpqby559/MnToUM6cOUNmZibOzs6cPHmSFi1a/D975x6fc/3///v72nVdu3Y+n2wzI2djKOTQiFBIUYQUhUSFHEJFTpESKjlEEUXOhZ+PU4WclcOwDbPNNtuunbdru87X+/fHtvfXbNhmm43dbze3cr2v9/v9ulzX6/18vZ6Hx5O6deuSlZXFzZs3cXNzQxRFZs6cWew1LRYLubm5D6SpfS/KQ8ilOs7t+Ph4Jk+ezJIlS6QOd//++y+LFi0iMDCQTp06ERwc/NiELM6cOcNPP/2E0WjkhRdeKJGs8e2kp6ej0WhQqVS4ublx6dIlVqxYwVtvvXXXxenD5K+//uLo0aNMnDixRJuG8+fPc+nSJS5fvoxcLqdz586sWbOG9u3bc/nyZUwmE3Xq1MHPz4/IyEgEQSA+Pp5hw4bRsWPHYq+p0+mQyWQVZjvKRUpVEAQr4FXAHjgOBALewP6C94iiqBUE4QjQHlh52+mngW3AQqBrCe83ijz33QMjCAK1UlK4uGcPw29T4Vrs64teFGly4wbcuHGPK1QdNHPnPvA1bGxsGDp0qJSVu2HDBsaMGXPX9+v1evbv38/hw4eRy+VS8oeHhwfJyckEBASgVqvp27dvlTPeoihKbuuS1md6eHhIyY3h4eGcO3eOzMxMRo0aJRntxMRErl27Rv369cnNzSU9Pf2eiVFDhw5FFEVGjBjBs88+Wy6frbyoznO7ICExNTVVMuCtWrVi7NixNG/evNI73pUV+9vaij4InUWRw3o9/2m1bNmyhbbHjtHgHi71eIOB9enpROn1uMnlXNLpcJDJsAC5FgsBSiUN5XI679wJO3cWOrc8nkUPglar5cyZMzRq1KjEHr/g4GCCg4MxGAycOHGCc+fO0aZNG8aOHSsZa7VazY0bN+jVqxfLli3jiSeeKLb9MfyfxoMgCCxfvrxUG6GScC+BqRIZcEEQgoATgArQAC+LohgqCEL7/Lck3XFKElCcsPV04IogCD1FUfzf/e4riuIq8nYCBSv9MpOZmcllnY7X8yd7AfWqmLGpTFq3bo27uzspKSn8888/iKLIyJEji11Fzps3D3t7e9599130ej3Xr1/nySefxMfHh7S0NObOnYubmxu///47jo6OdO/evcJ2mqUhIyODOXPmIAhCmSVki3N7F/RwL1gQ5OTk8Msvv0gtU4uTjQwJCeHy5cusX7+emJgY6tevT1xcHK+++upDU/R7FOb2qVOnsLGxKVTfKwhCEYGexwVBEBjp5sa7cXEATLp1i+leXrQrxsBd1+uZmZBAXycnBrm4EGsw0M7Ojl6OjuhEkVCtlu+Sk0kyGtmdmYmdTEaXKrIgOnr0KKtXr6Zdu3aSnkNpUCqVhISEFIlX+/r64uvrK1WQLF26lPDwcL7++mu+//77ItoNvr6+2NraYmdnx6effspLL71ESkoKDRo0KJdKh3t5yUu6A48AggFnoD+wThCEzrff4473C8W8hiiK1wVB+AFYIAjC/juPVxRms5lVq1bRwNoa/wous6hujBs3jqVLl5KSksKxY8cwGo188MEHhX6koigSFRXFN998I5VO3K657ObmRt++fVm1ahWhoaEkJCTg7u7OM888U+mf53ZEUeTzzz+nXbt2UtikoujVqxcnT54kMTGRJUuWMH/+/CIT/Y033pCy8rOzsyUd7suXL0vxW71ej1arJSQkhKZNm1bomPOp1nM7Li6OX3/9lY4dO1Z4CVV1opZCwZuurqxLSwPg86Qk5vr40NzGptD7og0GGqlUDMif1wG3Ld7tBIGnbG3xUSiI0OtZn5aGVhSrhAEPDw9n/fr1zJ49+67Nk8qLxYsXM2HCBIxGIwcOHKBHjx6FjtvZ2TFu3Djmz5+Pvb09W7dulaqbWrVqhY+PD2azGYPBgCAIDBo0qNzKzEokAyWKokEUxeuiKJ4VRXEacB6YACTmv+XO4JInRVfuBcwC6gFDSjvYpKS7XbJ4YmNjOX78OB9//DEajYZ/tVou5hfvVwfM+Z18KpJ69epJEqcA169fZ+HChRgMBum15ORkHB0d75rUl56ezrVr12jYsKEkjFHZim/FsXXrVqytrenfv3+l3G/8+PHk5OSgVqtZtGhRke9OpVJJZWgnT56U2pJGRkZia2uLvb09tWrVIjAwkEWLFrFnz54K//6rytw2Go0lfq/JZOLSpUts376d2bNn4+HhwYEDByQN7OpAQQetikIQBPo7OzPlNrfvl0lJHMrOLvS+eIOBJ+7hhTyv1SIXBJ60scFLocCnCsjO6vV6li9fzmuvvVbhxhvyEpuff/55tFotv/32W6HSxQKCgoLw8/NDo9Gg1WqlxXdCQgIODg64u7sTEBBATk4OM2fOLNIHoqyU9duQAdZAFHkT/TngDIAgCCqgEzC5uBNFUVQLgvAVMIc8112JmT59Oj/88MNd5ScvX77Mli1byM7OxtnZmbCwMIKCgnj55Zfx9vZm2rRpdC/n+ERFsjE9nVyLBYso8rabG4oKkt20t7dn7dq1/Pbbb/Tq1Yvvv/+e3bt3SzFgk8mE2WzGbDYjl8sRRZH9+/cTFhaGp6cnu3fvlq5VIFO5efNmXnjhhTL3PX5QsrKy2LFjB1999VWlyZW6ubkxYMAA9u/fT0REBGq1Gi8vr0LvadasGRs2bJDGlJuby6RJkzAYDIVKz5o2bcrUqVPR6/U4ODjcVQ0wKyuLZcuWSaVS5cBDmdt79uy5q9680Wjkjz/+4OzZswiCgEajIS0tjZCQEObMmcPWrVuxsrKSYuFVHa1Wy/fff48gCDz33HMVqgbX0d4ed7mcyzodbW1teT8ujuY2NnjkG2ITwG2LiWSTiZ0ZGSSZTDRVqfgpfwdfgBWwIyOD3k5OKB5S576DBw/i4OBQqXkkL730EhcvXkShULB///5i5XcXLlxYSB45NDSU+fPn06pVK6k5TteuXVm8eDHTpk1jwIABBAcHU6dOnWLvefLkSX777bd7LlLu+2QTBGGBIAidBEGoIwhCkCAI84HOwC9i3vZgCTBVEIR+giA0A9aSF0u7V1rpIvJibsXP2Lvg7e3Nl19+WeyxiIgIli5dirW1NQkJCXh6evLTTz8xbdo02rZtS0BAAGv8/VFVo3aRA11cqK1QcFSj4e38pLGKQqlUMnToUFxdXfHz82PPnj2S+E2tWrWoU6cOv/76KykpKZw4cUJSMbpw4QLLli3j559/Zt26dVJZ2p9//smkSZMYPHgwH3zwAatWrUKtVlfaLkmpVGJvb1/Ik1AZ9OnTh4yMDEJCQvj8888l0ZbbuX1BsXHjRuRyeRHjVbt2bT766CPCwsL46aefir1XdHQ08+bNQ6vVsmDBglKPtSrN7c2bN3P69Olij/34449cuXKFxMREoqOjGTt2LOvXr2fkyJF4eXkxevRo3n33XUlrv6pjY2PDqFGjEEWR+fPnc+DAgQq9XyOViv7OzvgplZiBP2/7TfZwcGB/djYXtVriDAbWpKaiNpk4nZuLg0zGT7Vr80fduvxUuzZ188//KS2N/lFRvHjjBpMnT+bkyZMkJSVVuLeoACcnp0q7VwEODg50794dR0dHUlNTuVvVxO0L80WLFtG7d+9Cne1kMhnjxo2jb9++bNu2TWr+cjuiKPLHH3/www8/EBISck8xrJJsTbyBDeTFyg4BTwHPi6K4N//4QuBrYBlwFvABut9RJ3rnADXkudtKpTYwffp0oqOjuXjxIpGRkYWOFTRqt7e3x8rKipdeeqlQNnRiYiJvx8YyMja2NLd8qCgEgZ5OTkzx9pZiVJXBwIEDadu2LR988AErVqzg6tWrjBw5ktjYWCZOnMjBgwcZNWoUiYmJBAcH4+LiglwuR6FQSMlbt2dspqSk8PfffzN+/HhWrVpVKZ+hoCNQampqpdyvACsrKzp27EhcXBzNmjXjxx9/LPKwsVgshIWFMX/+fI4dO8aYMWOKFXRp0aIFU6dOxcbGRupgVsA///zD/Pnz6dOnD5999llZ219Wmbk9evRotmzZQlxcHJmZmYWOFfShNhgMPPPMMzRo0KBQZu6WLVuYOHEix48fL80tHyoODg5MnDiRfv36VVrnKoAvatXiiEbDiJs32Z2ZiUomY6SbG1+r1cxMTEQOtMqPz3ayt8ctf6fuJpdTJz/H4Onb4rfx8fFs3bqVCRMmSKqFFU2DBg2KzIfKoGXLlkRHR/P8889z5MgRzp8/X+Q9BSpwH374IfXr1+eVV14p8h65XM7AgQMZNWoUCQkJhY7pdDq+/fZbTp48yfz583nppZfumdV+Xxe6KIrD7nNcBD7L/3O39xTZ9oqiuBxYfr/7346dnR3u7u7SbmP16tVSMsATTzzBK6+8wvbt2/nyyy+LuC4LdJI9q0AMp7S0sLGhxR3JJxVJwQ5h4MCBHDx4kB9++AGtVotMJsPV1ZX+/ftLnY9OnDjBv//+yzPPPMOLL75I/fr1+fLLL7G3t8fOzo7MzExkMhkuLi5kZGRUmkawRqPhypUrxSqiVTSjR49m4sSJNG3alE2bNhEdHU1gYCCiKBIeHs6OHTtISkqiVatWdzXeBVhZWdGgQQPOnj3Ls88+i8Vi4YsvviAyMpKpU6cWapdYWqrS3K5Xrx7x8fFMmTKFDh06MHbsWOlYQbvMtm3bFis89McffwCli6NXFYp7wFckjVUqvvPzI0yvZ09mJhvT03GXy9FaLATb2DDa3Z0N+QlYH8bHYyeTMdrdnbrW1rzr4UEfZ2cCFApEQeCmwYDHF19gsViksGVlcOHChYfS3tnd3Z2xY8eyevVqnnrqKTZs2CDl+uTm5nL27Fl+/PFHGjduzMCBAwkJCbln+K5Ro0asX78ejUYjNV9ZsGABzZo1Y+bMmSUqx6121mzy5MlkZWWxevVqtm3bhiiKDBo0CIVCwXPPPYdareaff/4pMjFatmzJ8ePHiTIY+DQhgc+8vbGqRu70h4GTkxP9+/enX79+3Lp1C7PZTEZGBt9++y1eXl44ODjQvn17vLy8WLt2LS+++CJAof66zs7O0m6pMpXtIiIi0Ol0xfb6rWgKpDqXL8+zYXv37sXFxYXz589jMBjo0KED48ePL/Fi5pVXXuHrr7+mS5cuiKJIaGhoocXro4Cvry8LFiwgNzeX7777jq1bt+Lj40OHDh2wtrZm+vTpjBkzhrS0tLvGulevXo2dnd0j18OgvBEEgSYqFU1UKgwWC9cNBrzkcrZnZPBubCy1lUps8kvRNqSnczInh7rW1ljLZIXKbgOUSnQymbRAryz279//UOY15OWw9OnThx9//BGAQ4cOERERwblz52jYsCFjxoyhTZs2JbqWh4cHTz75JPv376dfv37ExcXRtGnTQp3e7ke1a0bs6OiIn58fzZo1Y+/evfzvf/+TsszNZjM6nU5qE3c7BSshAbig1fJhfHwlj7z6IggCvr6+1K5dm+bNm/P111/z8ssv4+bmxh9//MHNmzepV69eoXPUajU7duxg6NChvP766yxZsoS4uDhycnKIjIzk/PnzFRoPb9myJdbW1hw6dKjS42UAfn5+fPrpp0Ceuzs8PBxnZ2c8PT1JSEgolfGtW7cuKpWK//77T+p09CiWTNWuXZuGDRuSnZ3N9u3bWbZsGdu3b8disZCVlYVcLi/ym9HpdIX6yS9dupS4/PrnGu6PUiajiUqFm1zOSHd3vvT1pYO9PVpR5PuUFOSCQK07fmuncnJYrFbTLyqKwYMHc+TIEVJTU0lLS+PKlStSM6iK4sUXXyQmJob4h/AMFwSBbt26MX78eCCvO1t6ejpNmjRBrVaXup1qp06dOHLkCDqdjvT09FI3Qal2O/ACCgxyQbnNqFGjcHFxwdvbu4ibbefOnWzevJmBTk78lh9fSzQaEUXxnio3NRSPra2tpGY0f/589u3bB8CuXbu4dOkSdevW5fDhw4WMenZ2NjNmzCj0AB4wYMBdM48fFJlMxieffMI333xDTk6O5B2oTFQqFR988AFr1qzBbDbj5eVFQkKC1JWspAiCwJAhQ9i+fTsqlQqTyURqauojKQ0qCILkCl+yZAnTp09n+/bt2NraFhHIMZlMUoJPgSAR5NUIlzEn4LHHW6HgBYWCbvb2vBIdTaLJhINMRqLRyHmdjqdsbNiamSmF9Dw9Pdm0aZOkX1DA3Zp+lAcdOnQgLS2NOXPm8Omnnz6U3Xjr1q158skniYyMRCaT4e/vz5kzZ0pdHti4cWN8fX3Zu3cvW7duJTg4uFAm+/2otga8oG/r1q1bGTNmDAaDAXd3d1555ZVCH95oNLJ582aef/55QkJDJQOuFUVSzWbcq2FMvCrx4Ycfsnr1ao4dOyZ1dIuPj6dVq1YMGzaMM2fOYG1tLTUEycrKQqVSsXHjRrZs2YJcLqd37/vKZZeJevXqMWPGDCZNmkTjxo2pX79+hdznXrRr14527doBedmlc+bMuWtJ2L0IDg5m48aN3MiX+127di1Tp04t17FWBW5/ABYo/C1dupS33367SLy/oKvcokWL2LlzJ0ePHgVgx44ddOvWrfIG/QiilMlY7OvL9Fu3OJWby6ncXAAsosg4Dw9a2djgI5fTfc4cHBwcMJlMGAwG0tLSWLJkCRMnTmTSpEn4+/uX+9hkMhl9+/bFYrGwbt06Pvjgg0pXfbSysiqk7BgXF8fBgwfL1ECmd+/ezJkzB0dHR86fP09oaGiJFdyqnfXKzc1l9+7ddO3alT179nDixAmysrKYPHlyEQlQjUYjZT0nJSVhEEUClUqi8kuLHlYd46OEtbU1Y8eOZdiwYfzwww+0a9eOLVu20LNnT+RyOU8//XShDwWT+QAAIABJREFU9xdkVL755puEhIQwd+5cjh07hp2dHa1atZK6xZUXbm5uvPPOOyxevJgOHTrw8ssvc+PGDcldde3aNU6fPk1SUhJeXl5MmzYNk8lUIb2OT548iUajKfJvUhJkMhlz5swhLS2NSZMmPZQs3Irm8uXLhIWFMWzYMNauXcvs2bMZOXIk8+fPL/LesLAwqZQnISGB2rVrS8cKVLBqeDDqWVuzqU4dIvR6NmdkEGxjwzGNRpJkfdPNDU2+KptcLpeqBb766iu2bt3KzJkz8fb2xsfHh+7du5d7D/YXXniB5ORkpk6dyogRIwgMDCQsLAxBELC1teX48eNcuXKFnJwcevfuzfPPP4/ZbC733JGChcSLL75YpmYmjRs3ZtmyZRw9epRNmzaV6vdbpm5kD4OCjkWZmZm8++67ANSvX5+cnBwUCgUDBgyQtGtFUeT69eusWbOGJ554gtDQUJKTk9kWGIhCELim16MQBOpU065jD7uBwL0QRZEhQ4YwYcKEYsUO7kSj0RAdHY3RaGTXrl3Y29uXWbP8XmRlZbFu3TpOnjxJ3bp18fT0JCkpCX9/fzp16oSfnx+//fabtKsbOXJkubYHvHHjBgsXLmTy5MlF8gVKS3p6OnZ2dkUeFuXRjexhUDC39+3bx7p164C8eLi/vz9Xrlxh2bJl0ntzc3M5fvw427Zt45VXXmHNmjV07tyZUaNGYTQaOX/+PC1atKiWHQXLq5lJRfGPRsMitZoddetKr93rWRQXF0dWVhbx8fH8+uuvjB8/vly0we8kNDSUNWvWkJWVJSmgpaen07ZtW1q3bo0gCMyePZvMzEyUSiWLFy8ut6Q7URTZsGEDUVFRfPzxxw+0+bBYLKSmphabYV8u3ciqAk5OTixatIiZM2dy7do1FAoFRqOREydO0LJlS65fv866detISkqiT58+9O7dm3HjxtGhQwfOXr+Ok5UVETodgUolU1NSmOzpKdU61vBgWCwWFi1ahEqlKrGOt729Pc2aNQPy9NVHjx5NREREua/WHR0def/993n33XfvGpsbMWIEgwYN4vTp0xw/frxcDLjFYmHfvn3s3LmTUaNGPbDxBio147cy6dGjByaTiV9++YWbN28SGxuLKIrcuHGDunXrsmPHDvbt24e7uzsfffSR9D126dKFM2fOYG9vT1RUFPHx8VgsFklJsIYHJ81kYqFazcul8EwV5CE0adIEhULBhg0baNasWbk37gkKCmLx4sVYLJa7Xnvp0qUAfPbZZ1y9erVcKhVSU1NZu3YtaWlpTJs27YE/l0wmK3V5XLW0XD4+PsyaNYtPP/2UwYMHs3r1ail2dvToUezt7fnggw/w8PBAFEXS0tI4efIkx25Tahrp5sYVnY7jGk1e4owo0t3REbtKkt18FPnrr7+4ePEi06dPL5ObqqDucdasWQwaNIiOHTuWu7G6V2JNgRDQnS7ZsmIymViyZAm5ubnMnDnzocnKVid69epFVlYWERERNGjQgN27dyMIAqIosmXLFkaOHCnV1xbkA9yt/3rTpk2lRjEFORg1lB5RFJmVmEgdpZI3yyhX6+fnR3x8PLNmzaJ///40bdq0XJPcBEG4pwFVKpWYzWaSk5PLJcExKiqKhQsX0rVrV95///2H5vGplgYc8oz4oEGDOHjwIIMGDWLjxo1069aNVq1a8eWXX5Kbm0tWVhbXrl3Dzs6ukKTlTG9vfBUKDmVnE2sw8L98ydCLWi3ZFgtGUeQZe3uCbWyoq1RKmerZZjN7s7J4yckJZY2hL8L/+3//j1q1atG4ceMyX2P27NmsXLmSU6dOsWXLFnx9fenTpw9OTk40atSoUtpu3s2NVRoMBgNLly7FZDIxffr0CsvIfRTp378/n3/+OU5OTgiCwN69exk2bBjBwcFcuHCBpk2b4urqypYtW2jTpk0hCda1a9fy119/ERERwaxZs6TX+/bty/Hjx6lTpw5PPvkkwcHBhfqEh4WFkZmZKSUc1vB/xBqNRBkMLPX1RVbGvKHAwEBGjx7NunXr2LFjB1988QV9+/alQYMGeHp6VkomuUajQa/XP/BcDA8P55tvvmHo0KG0b9/+/idUINX6qfLss88SGhpKeHg4Xbp0Ydu2bXz88cd07NiRTz75RNJG7ty5M3///bd0Xh2FguH5kqo3DAZcrKxIN5v5V6uli709zzo4cCInhwVJSViAoS4udHZw4JbBwIb0dDakp/Nz7do41zyUC5GQkPDAWaf+/v7MzY+rhYeHc/z4cU6dOkVycjJGo5G3336bevXqVWgd9JAhQ5g1axaurq5FWgeWlN27d5Odnc0nn3xSY7xLiVKp5J133mH27Nm89tprHDp0iIsXLzJ48GC+/fZbqQYX8mKDBQbcx8eHY8eOSXH02/n999+ZOHEiWVlZnD59mrVr11KvXj1GjhyJh4cHx44d488//+Ty5csMHTq0WsbQKwpjfp5U5gNozVtZWfHMM89ILYZ37NhBRkYG+/btIyYmhjZt2tC7d+8KVVhzcnLizTffZO7cuXz66aeF5J5LisFgYOXKlfTr1++hG2+o5gZcEATGjBnDr7/+yv79+7G2tmb37t00bdqU4OBgGjZsyPXr12nRogWRkZHE5hvtZLOZTXXqoBIEdKKISRT5ISWFq3o91/V65ILA+/nu92t6PZNu3eLHtDQy8n/A9ZVK3rh5k9ddXHjF2bnMq9JHkcGDB5fbtRo1akSjRo2APDfe0aNHWb58OYGBgYUe4uWNm5sbn376KVOnTiU4OLiILO/9MBqNbNu2jfnz59cYgjLi4+PDRx99xIoVK1Cr1fz+++/069ePHj16ULt2bRQKBXq9HhcXl0LZ6CEhIbRt2xZbW1syMjLQ6/VMnTqVRo0asXz5cqZMmUKXLl0wGAzs3LmTcePGFbpvUlISw4YN47PPPqtUjfKqzDW9HqUg0LQc5Zxffvll6f9zc3P5+eefmTJlChMmTChTKVZJ6dq1K9nZ2fz000989NFHpT7/+PHjqFQqunbtWgGjKz3V2oBD3mp92LBhuLm5sXHjxiJdYurWrcvZs2dxc3PDTq3GycoKRJGVKSn0cHSkiSqv58KLTk7cNBrJNpv5MS2NekolXgoFG/NT+jPMZl5wdOQZe3saW1vzlVot7cZb2tjwjrt7EcWix43hw4ezfPlyvvjii3IvwxIEgWeeeYbGjRvzSSVk63p4eNC+fXsOHjzIkCGla29tZWWFg4MD6enp5RJLf1ypU6cOs2bNYsqUKcTExLB48eJCxwu0+rt160Z4eDjPPfcc//zzD1euXGHYsGGSdG/fvn3p1KkT77//Pp999hkzZszgwoUL/Pfff0De99WvXz+6deuGVqtl/vz5fPbZZ0BeG8lXX331sRZ86mBnx7GcHFakpPB+BeyQbW1tGT16NM7OzoSHh1eoAQfo3r07u3btkkpHS4ODgwNZWVlV5vdQ7Q14AX369KFnz56o1WoSExOJjY0lLCwMg8EgCTxAnnZsgShBSH7xv1EUqWttTX2ViktaLX0cHTmRm8sFrZYXHBzwVyg4pNHw/7Ky8JLLaaJSMdnLi8nAhrQ0NmdkMCshgeX+/o/1bvy5554jMTGRrVu38vbbb5f79c1mM9u3b6dJkyblfu3iqFWrFpcuXSr1eTKZjObNm3P58uUKKZt5nLC2tmbp0qVkZmaSnp5OZGQkiYmJnDp1iri4OFJTUzl48CDwf25ZyNMZgDyp1QK1v/79+2MwGFi2bBnp6em88847/Pzzz+Tk5LBlyxY6d+6Mp6cnixcvxmg0MnHiRHbu3ElAQMBjra/uYGXFVC8vxsbGcl2v54kSNNkoLQkJCRw7doxRo0aV+7XvxNbWFldXV+Li4kptwOvXr49erycuLq5KqP09MgYcQKFQ4Ovri6+vL61bty4k03n9+nVyv/sOP6WSMJ2O5xwckOV31HkvXzu5vZ0d7lZWjHR3J8Zg4P24OJrY2NDJzo7Wtrb8lp6O6x3xzNdcXPBXKPg6ORmdKGL7GBtwyNuxTJ48meeee67cd59btmxBrVYzadKkcr3u3QgODmbTpk1lOrdXr158+eWXhUIKSUlJnD9/vsxx9ccZJycnnJycqFOnDoDkFRk9ejRnzpzBx8eH2NhYvL29JcW2Xbt2sXHjRvz9/XF3d6dnz54EBQWRmZnJkSNHaNeuHUFBQRw+fJjDhw8X0sxXKBR89tlnrFixgmvXrj3WBhzATibjNRcXVqem8rmPT7luVDQaDQsXLuSll14iKCio3K57L5o3b86VK1do3bp1qc5zdHSkffv2nD59upABP3LkCP7+/gQGBpb3UO/JI2XA78UTTzxRSG5vXlIS/goF2zMz6WBnx1O2tixPSUEvioxwd+e//F36ErWaRv7+dLS3p2Mxcn1yQSDEwYGQ/IzWbLMZrcWC52PqTndwcJC69cycObPcXE0XL17k77//Zv78+dhUUmvVzZs3l0n2FPJc8Dk5OZLevslkYsqUKRiNRho2bCgZohoeDCsrKylzPCAggD179rBr1y5EUeTs2bMMGDAAZ2dnVq1aJZWSFTTbWL58Oe+99x59+/alb9++Ra7t6urK9OnTpb8X7NgexUYyJeE5Bwd2ZWbyt0bDs7dl8D8oP/zwA40bN660uHJ6ejpHjx4t9N2WBk9Pz0JqaZcuXWLFihV4eHhI9eaVxWNXC7UvK4v34uIwiSJX891BUzw9edbBgRY2NvgqFITpdBhFkRB7e7wVCn5KSyvx9Q9kZzMiNlbK3Lydy1otG9PSMFcT9buy0rVrV/R6PQsWLCAyMrJcrpmRkUFQUFCliZjk5uZy8eLFQsk2peHmzZtS/fKRI0f4+OOPpTrwixcvludQawD0ej0fffQRmzZtwsnJiQsXLjB69GheeuklqawxMTGR7OxsjEYjr732GidPnuTy5cslvseUKVNYvXp1kdctFgtbtmwpVM72KGIlCAx3c2NNaiq/pKWR/QBZ6beTmZlJp06dyuVaJeHMmTMEBweXaRFtMpm4efMmMpkMjUbD2rVr+eabb2jSpAnJycmYTKbyH/A9eKwMeLTBwLKUFJysrJjl48PntWrxta+vtEv8yMuLl5yc+DwpiV/T0+nu4MAcHx9O5+aW+Mfax8mJljY26O/oSnMiJ4fpCQn8k5PDo22+87pwzZkzh9atW/PVV1+xatWqUnfpuZPY2NgKLTG5k6ysLKytrUu9209PT2fevHl8++23jBkzhszMTFasWEH//v2ZNm0akNdNqYbyZePGjcTGxjJ8+HDeeust1q1bJ5UseXl58e2335Kdnc3YsWNRKpX06dOHV155hcOHD5f4HmPGjCnUDa2AWbNmsWPHjkJaE48qT9rastjXlxSTiRE3bz7wYtRkMnHr1q0ylXSVlZSUlFK37QQ4ffo07733HhkZGfTp04cDBw5w48YNZs6cSbNmzfDy8qr0ktFH3oWu1+sJCwsjNDSUc4mJDHVx4dW77OIUgkCP/EzzFJMJ//wSoNY2Nky9dYtxHh40yM9aL47/ZWXhp1Awq5hJHqBU0t/ZmYHOzsgfgzi5XC6ne/fuPP3003z88cfExcWVOSZuMBg4ffo0Y8eOLedR3h1PT0+8vb05cOBAiWPWarWamTNn0q1bN6ZOnYqVlRU6nQ4rKyuaNWvG6dOnad26NW5ubhU8+scDtVrNpUuXCA8P58KFCyxatKhYAwt5pYGjR4/m5ZdfxtbWFkEQePrpp5kxYwarVq3izTfflJQA7yQzM5ODBw/y/PPPF6sw2KVLF3r16kWbNm3K9fNVVTwVCsZ5ehKs0bB169YHyhq/ePEiLi4ulTon2rdvz7x583jhhRdK3MVs79697Nmzh4kTJ0pdDVUqFd7e3vj6+rJixQreeOONihx2sTzSO/AFCxYwfPhwtm3bhlKpZKyHB6/kl5bcCxuZTDLeANO8vOhob8+kW7eIuK2f9Z38mZ3N9IQEtuVnwt5OLYWCN1xdsX7MFNwcHBxwdXUlJyenTOcbDAbWr1+Pr69vpbYDlclkDBkyhN9//13KbL4fer2ezMxMevXqJSnGHT58GB8fH1QqFUeOHCEkJKQih/1YkJGRweDBg/nkk084d+4c9erVY+7cuXc13rfj5eUlKbD5+PiwZMkSrl27xqeffoohv0vhnZhMJrZt28aIESNISkoqcrxz586PjfG+nUClsszzGvIWYD/++COvvvpqOY7q/tSpU4c2bdqUKkFVrVYTEBBQ6Bl08OBB6tevT3x8PKmpqQ+l4qTE1kQQhLGCIFwUBCEr/88JQRB63XZcEAThM0EQbgmCoBUE4W9BEJrecY0QQRAOCYKQIghCriAIkYIg/CIIgmN5fijIE9O4ePEiI0aMYM6cOQwcOJAWNjZlSqoSBIFBLi60srFhZkICaXeJcyyoVYtBLi44PmZG+n6kpqbiWgoNZVEUOXPmDF988QWjRo3i8uXLvPHGG5Vee1mvXj3q1atX4lKygl2EWq2WXjOZTDzxxBNkZGRw8+ZNgoODK2SsZaW6zWvIi2ECfPXVV0ycOJEePXqUObxiZ2fHpEmTiIuL47fffqO47oxubm4sW7aM9u3bP3Ao6FEi2WQq1byGvNyS7du3M2HCBCZOnEirVq0eik79gAEDOHbsWLHfd3HY2NgQl1+tVIAoitStW5eTJ0/Stm1bZA/huV+aO8YBHwGtgCeBP4GdgiAU+E+mABOB94GnADVwQBAEBwBBEJoA/wMuAl2AZsC7QCZQ7oWFWq0WoFyzfWd4e9PHyYmZCQnFfvGyfEP/nGOFPLeqJVqtFo1GU6oH7K5du9i0aRNPP/00K1eu5Ouvv8bb27sCR3l3AgICiImJue/7Lly4wIgRI2jbtm2hpiUtW7bk1KlTTJo0iWeffbYqyqpWq3kN8OeffwL/11v+QSmIkYeFhbF///5i3+Pi4sJ7771Xol3+40KswVCqWmiDwcDMmTNRq9WMGTOGn3/+mbfeeuuhGD5HR0dsbGyK9ajcybfffsuuXbsYMGBAodfbtWvHggUL2L17N507d66gkd6bEj9NRFH8/Y6XPhYE4V3gaUEQQoHxwAJRFLcBCILwJnmTfTCwEugOpIqiOOG2a9wAip8xD0jBgzI5OZm6t/WvfRBkgsBgFxe2ZWSQYTbjUvUexlWOpKQk3NzcSjVJz507x+uvvy71d3+YtGrViiVLltC3b997xstCQ0OlvtS3U6tWLakjWWlFIyqD6javIS8/ISYmRirRKw/c3Nzo2bMnp06dqqnTLyG3jMZSJZ8lJyej1WoZPXp0BY6qZAiCQKtWrTh06NB9lRbPnj3LrFmzitiRAQMG0L59e9zd3VHdIzeqIinT0kcQBCtBEF4D7IHjQCDgzW2TVhRFLXAEKFB8TwQ8BEF48CbLJcDW1pZXX32V48ePl+t1BUHAU6EgpZxKKB51zp8/X+Le4AAnT54kKSmp3BZdD0rdunVp2bJlseVDBVy9epWjR4/eNbvcwcGhShrvO6kO8xrg/fffx8PDg9DQ0HK9rpubW6H63hruzb9abYnntsViYf369VViUV5A//79OXXq1D1/Rz///DPe3t539eT6+flVuPG+1yK1VFtIQRCCgBOACtAAL4uiGCoIQsFkvtMfkQQU9InbAvQA/hQEQQ2cBv4C1ouimHyX+40CyqytFxISwt69e9FoNNjb26PJ73KVm5vLtWvXiIyMJCoqCisrK4KCgujQocN9v4zMzEySP/gAry++QFMT674vmZmZJc4w/ffff6UmA+Wtpf4gDBkyhMmTJ3P27FmefPLJQseuX7/OkiVLGDVqVKkWKlWJyp7X+fcs89yWy+V06dKFEydOFMqAFkWRW7duERMTQ1hYGMnJyXh7e9OmTZsSye9GRETQsGHDsgypXCh4PlUHRFEk/c03SzS3jUYjP/74I3q9nuHDh1fC6EqGi4sLb731FsuXL2fp0qWFBHosFgvbtm3jwoULzJ0796G4+UtCaX3AEUAw4Az0B9YJgtD5tuN3BoaFgtdEUTQDwwVB+AR4FmgHTCbPZfeMKIpFFBVEUVwFrAIQBKHU5dNKpRKNRkNmZibXr18nPDwci8XCvn37CAwMpH79+nTq1Inc3Fx+++03fvnlF3Q6HT169JC0lG/HbDbz5Zdf0rNnzxJ/oQkJCXh7e1cZ8fvKRq/X31W5Kjc3V3oIq9VqVqxYweTJk6vM7rsApVJJ7dq12bJlC3K5nIiICHQ6HQkJCURFRTFy5MhSSzJWMSp1Xuef90Bz28bGhrCwMHJzczl69Cjp6enExsZy7do16tevT9OmTWnVqhVRUVHMnTuXtm3bcurUKVauXFmoD3gBV69e5X//+1+J1bl0Oh1arbbShIWqGnq9HisrK6na4k7Cw8PJzc2lQYMGbNq0ieTkZKZMmVLlDGGzZs3IyMggNDSUjIwMEhIS0Gg0REZGYm9vz4wZMypN+fFu3CvRrlQGXBRFA3A9/69nBUF4CpgAzMt/zRuIve0UT+5YvYuiGA+sB9bnT/qr5E34YaUZS0kwm814eHgwdepU3N3defrpp5HL5UybNk1qU1lAp06dmDRpEjqdjn379tGzZ88ibs+jR48ik8l47bXXSnT/goYI1tbWrFy58rFrLanRaDhz5gz9+/e/6/E1a9YAeUkl7733XpVt4dinTx+++OILtm/fTrNmzXBwcKBWrVq89957Ja4lrapUt3kNeb8XtVrNu+++S/PmzalTpw4NGzbk3XffLfR9tGzZksaNGzNnzhwAZs+ezcKFCwstqEVRZMOGDQwePLjESa8nTpzghx9+YOjQoTz//PPl+tmqA4cPHyYoKOiuHssTJ05w4MABAIKCgvjwww8fuiEsDrlczrPPPsuKFSto3ry55BIv0MmvaguOOxFKmkZf7MmC8CdwCxia/99vRVH8PP+Yirxkl8miKK68xzUuAldFUXzlPvcS72wVWhJEUUSr1aJSqUr0ZSQlJbFz506SkpJ47bXXSEtLw8nJiZs3b7J9+3ZGjx5dqjjO8ePH+e6774A8wYehQ4c+tISHymb16tWkp6czefLkIsdEUUSn0/Hdd9/h4ODAO++889h6KcqLwYMHI4riA/8jVua8zn9vmea2yWTCZDKVaD5ZLBYuXbrEmjVr6NatG82bN+fSpUsEBQWxb98+zp07x3fffVfiB7bFYmH48OEYjUaeeuopgoOD6dKl0tIAHioFrvCZM2cWCTmIoogoiiQnJzNhwgRmz54tNZepoezcbW6XeAcuCMICYA95K3EH8rJQOwO9RFEUBUFYQp7bLJy81fcn5MXTfs0//x3y3HQ7gEjy4m1vAEHAwjJ/svuPu1j1pLvh5eXF8OHD2bx5Mz/99JNUQtSqVSsGDBjwQKpDf/31F0OHDi3z+dUNjUZTbOzx9OnTLFmyBIVCQaNGjR77fssPk+o6ryFv91TSsryCFq/jxo3j999/Z+/evZJAT58+ffjggw9Ktdsym8088cQThIWFcebMGezs7B4bA16w6SvOWzF9+nRiYmJwdnamX79+1KtXr5JH93hRGhe6N7Ah/7+Z5NV9Pi+K4r784wsBG2AZ4AKcArqLolggEHyavMzV5UAtIBe4BrwhiuKGB/wc5YpSqeT1118HYMWKFRw5coT//vuP559//q4xn+LYs2cPv/zyi/T3efPmPTa7b8grB7uzDeN7771HWloaXbp0YcSIETWG++Hz2MxryKsqmDBhAgaDgWHDhgHw999/M2jQoBJfQ6/XM2HCBGkBEBQUxNtvv10Rw62SREVFAYWzo8PDw5k9ezZAza67EilNHfiw+xwXgc/y/xR3/BxQNDOsivP0009z5MgRgBLHcJKSkvjf//7Hvn15z8AOHTrw4osv4u/vX2HjrGrodDop+/Tpp58G8lbuafmd3d5+++0a410FeFzntVKp5Mknn+Ts2bOYS1gSKooi586dY9u2bZLxHjJkCF27di3Vwr66U6CEd/78eUlCtqCRy6uvvlpjvCuRGiWS+9CiRQs+/PBDlEplibKjr127xsyZM6Ws5Hbt2vHOO+9URQWuCiU6OhpASvjTaDR8+eWXODs7lyrWWEMNFcXIkSNp2bJlicNiq1ev5vDhwwQGBmJjY8PIkSOlXuSPE4mJiQBSIvCZM2f4/vvvefXVV8vcfreGsvF4WZUycmft770wGAx4enoSERHBkCFD6NWr1/1PegQpcKd17doVyFNhunbtGn369Kkx3jVUCRwcHEoVt1YqlahUKkkStKzd9aoz6enpnD9/nn79+klStleuXEGv15fqOVlD+VBjwMuZpk2bsmTJkoc9jIdOgwYNePbZZ6W/Z2VlAdRoSZeQ69evM2PGDN58880aac8qwptvvlmsPsTjRE5ODo6OjlLpnMFgQKvVYmNjU27a9I86BXlVS5cuLXMTngJqtkI1VAjK21oNJiYm8sUXXzBp0iRJ9D8sLIzBgwczb948jEbjQxxp1cTJyYmQkJCaLN4aqhQODg5kZWVJMf9169Zx+vRpvvnmG0k98bvvvmPw4MFS7lANhWnevDk9evQolwVPzQ68hgqhd+/eLFiwgL1795KamgrkqdJZLBZkMhk3b94E8spxalzqRfHw8OCdd9552MOooYZCODk50bx5c9566y08PT1Rq9VYWVlhMBiws7MD4OLFiwCPnXBVSWnfvj3t27e//xtLwAMJuVQmZRV7qOHhIIoiS5YskTJW69SpIyW2bdiwocZoVwDlJeRS2dTM7epFUlISEybkNZ+ztrZGr9cD8PLLL/Pqq68+zKE9sjywkEsNNZQGQRCYMGECer2e8PBwIiMj6dChA40aNaox3jXUUI3x8vLi119/Ra1WEx4eTmpqKo6Ojjz11FMPe2iPHTUGvIYKxdramhYtWtCiRYuHPZQaaqihHPH09CxVP/Aayp+arVANNdRQQw01VEPKxvAXAAAgAElEQVRqduA1PBSysrI4e/YsFy5c4PXXX3/gcooaaqjh4SOKItHR0fzzzz8oFAoGDhxYo7hYgVR7A67Vajl79ixPPPFEoRrj1NRU0tPTqV279n2zIUVRRK/Xc+DAAbp06VLt20NWVUwmE8ePH2fFihWFXn/cEl+0Wi2xsbHodDo8PDweuDbeZDI9knkFMTExJCQkEBwcLPUQMBgMqNVqAPz8/O57DYvFQmRkJMnJyeWW+VtDUdLS0ti1a5ckHw3QuHHjhziiykcURVJSUkhMTEQulxMQEFCqRlrFYTQaUSgUdz1erbLQC2qIVSoVZrMZrVbL+fPnCQwMJCYmBm9vbxQKBcnJyeh0OhwdHUlPT8fb25uAgAB0Oh2hoaEolUrMZjNKpRKdTkdWVhYymQyLxYK3tzeurq4YjUapxEmhUDB8+HB8fX1rVpNlJD4+njlz5kiCLiEhIY9NmVRmZiYREREkJycTERFBaGgovr6+2Nracv36dYKDg2ncuDGBgYFERkbi5OSEs7MzXl5euLi4FLqWxWIhLi6Os2fPotFoyM3N5fz58zg5OREbG1tts9C7dOmCKIrY2tqi1WpJTk4mLi4OPz8/YmJiCAwMRKvVEh8fj6OjI3q9Hrlcjr+/P25ubsTExBAfH4+trS0GgwGVSkVaWpr0ADQajTRu3BhRFDEajYiiiMVioUWLFvTp0+eBH7SPM7t37+b2KoJ58+YRGBj4EEdUOVgsFm7evElsbCxRUVGEh4eTlpaGn58fOp0OtVpNly5daNiwITKZDLVajYeHBw4ODtSpU6eIvLZOp+Py5cuEhYVhNBrJzs7m5MmTDBs2jLVr1xY7t6uVAR85ciSiKJKTk4NCoUChUNC0aVO8vb0xGAxEREQA4OLiQq1atZDJZKSlpZGYmEh8fDxyuZygoCAsFgtyuRy9Xo9KpcLJyUky4NeuXcNkMiGXy7GyssJisbB9+3aio6MxGo24urpiZ2eHwWCgefPmuLm50axZM7y9vWuMezFcuXKFvXv3IpPJiIuLIyEhgRYtWjBmzBgcHBwe9vCKoNPpSE1NxcXFBblcjlqtRqlUkpWVhSiK2Nvb4+XlJe14TSYTcXFxxMbGsnv3buzs7AgMDMTHx4f//vuPyMhIzGYzDRs2xMXFhYYNG9K0aVNcXV2BPON+6tQprl27Rnx8PH5+fuj1ehITE4mNjWXlypUIgsD169fJyspi165dGAwGWrdujZubG3Z2djg6OmKxWPj666+rrQF/6623EASBnJwcbG1tUalUtGnTBqVSiVqt5tatW6hUKnx8fHBycsJkMpGUlERsbCwZGRl4eXlRr149cnNzsba2Jjc3Fzc3N6ytrREEgezsbKKjo7GyskKhUCAIAjExMRw4cICkpCRsbGxwc3PDZDLh5uZGgwYN8PT0pEWLFiVuYvQ4IYoiW7ZsITk5mYsXL+Ls7ExsbGyVVg5MSUnBbDbj4eFBVlYWWq0Ws9lMbm4uSqUSFxcXSYwG8vo3REdHc+nSJY4dO0ajRo3w9fXFYDBw/vx5bt26hZubGwEBAfj5+REQEEDLli2lZ8PVq1cJDQ0lLCxM2hympaURGhpK586dGTlyJLGxsSQlJREdHc3evXupXbs2LVu2RKlUYmtri4eHBwqFghkzZlR/A/6wa0VzcnJITU0lKysLQRAICwsjOTmZCxcuoFKpsLOzw8rKCmtra7y9vWnUqBHt27evtoY9OzubqKgoHB0dsba2xsPDo8RNWdLT0zl8+DC///47wcHBnDlzhhdeeIGePXuybds2YmJimD17dqW4fkVR5L///iMqKgqtVkt2djZ+fn5kZ2cjk8kQRRG1Wk1iYqL0MDcYDMhkMmxtbUlPT5c6yaWnp2OxWLBYLIiiiFarxdPTE39/f9q3b48oisTHx3Pz5k2Cg4Np0aIFzs7Opf4NDB48GMhrv7pp0yY8PDxwcXEhODiYDh06FHu9mjrwsmGxWEhPTyc1NRWLxUJKSgoxMTFER0dz48YNPD09pQW9g4OD9F2XxIVfVblx4wZGoxF7e3tUKhVubm4lPjc0NJRTp07x559/0rhxY8LDw1myZAmpqaksX76cF198UeqBUNHk5uZy6NAhaTfs4uKCra0tGo0GW1tbMjIySElJIT4+ntzcXOn5rNVqEQQBGxsbnJ2dMRgMpKSkSFr3ZrMZi8VCYGAgvr6+hISEEBUVRWxsLGazmU6dOlGnTp1St4eOi4tjypQpNGvWjICAAI4ePUq9evVwdXXlhRdeuGs4raYOvByws7OT1IYgT/cc8h4At27dQq/XYzabiY2NZfPmzRw6dIg2bdrcM4ZRGaSmpvLtt9/SqVMndDqdZJyeeeYZZDIZ6enp1KlTp9A5Fy9eZMGCBYVea9SoEUFBQRiNRnJyclCr1Xh5eeHl5SWtXFNTU7GzsyM7O5vNmzcDcOrUKaysrDh//jyDBw9mxIgRTJo0iQsXLtCyZcsK+9yhoaH8+eefxMbGAtCyZUuSk5Px9/cnMzMTZ2dnMjIysLe3p02bNnh7e1OrVi1UKhXJycmYzWa8vb0LXVMURRITE7G1tZUMfEW0kuzQoQPHjh1j27ZtvPXWWwQHB5f7PWrIQyaT4ebmVsiIdezYEcgzEElJSZhMJkwmE2fOnGHnzp2YzeZS9RCvKHbt2kV0dDRdu3blzJkz2NnZUa9ePRo2bCjVZ9++qwRYsmQJp0+fLvRav379MJlMqFQqwsPDcXFxwc7ODl9fXxwdHUlISECpVOLo6Mjvv/9OTEwMkCeJLJPJuHDhAt26dWPs2LF8/fXXdOnSpcIW5xaLhc2bNxMbG8vVq1dp0aIFcrkcGxsbSRXOxcWFlJQUateuTatWrfD19ZUSZaOjo/H29i4SNsnNzUWj0aBSqaTr3b5QLo82qQUhsUuXLmFvb8/nn38ueePKQs0OvBz5999/2bx5M+np6TRt2pQhQ4bg7u5eIffS6XQcOnQImUxGdna29OfWrVskJycjk8kQBAGFQoFWq8VgMAAgl8sxmUxA3oJEFEXkcjlyuRx3d3fphx0dHU14eDiQZ0zMZjOCIEi7cIvFgoeHB7m5uSQmJpKdnU1ubi7u7u5YLBaioqJwcnKiVq1aODo6Si7KzMxMDh8+THx8PJMmTZIWQeWBxWIhMzOT+Ph4oqKi2LhxI5AXkwsICHgkE71up2YHXjHodDp27tzJvn378PT0pF27dvTt27fCfk9RUVGcO3cOW1tbkpKS0Ov1pKamSomPoihibW2NyWSSNg0FcX4AKysr5HI5jo6O5OTkYGdnh5+fH56enhgMBv766y/pXn369OHWrVs4Ozvj6uqKVquVPG7Z2dmo1WoyMjIkD2NaWhrp6en4+vri4uKCi4sLSqUSV1dXrly5wqlTp7C3t2fu3Lnl2kLZYDCQnJxMbGwsp0+f5uTJk7z44ov06NGjSJ7Io8jd5naNAS8nEhISmDhxIuPHj+epp54qN7f5+vXrUSgUiKKInZ0d1tbWxMfH89dff2E2m+ncuTOurq44OTlhZ2dHrVq18PLywmw2A3lZjCqVCq1WK7l9Ia8pwZ2ZvZmZmSQmJqLX67G3t8doNJKQkEDPnj1LtRDZs2cPv/zyCwD16tUjMzMTnU6Hj48PPj4+PPXUUzRp0uSusUWTyURycjIqlarI5BRFkYyMDCluFBoaSlxcHFlZWRgMBhwcHKhVqxYBAQE0adKE5s2bY21tXep/9+pIjQGvGH799VcuXbrE+PHjy024JCEhge3bt+Pj44NWq8Xb21sKWZ05c0ZSNvP29sbGxgYXFxf8/Pyws7NDEAR0Oh1yuVz6f0EQpD4DLi4u0uIiNTVV8iIkJSVJLVGzs7MxGAz07du3xM8qo9HI6NGj0Wq1WFtb4+fnR3x8PE5OTnh6ehIYGEjHjh2l/KPi0Gg0ZGZm4ubmVsT9XJDXkJiYyLVr17h06RJpaWlkZ2cjCAJubm74+/tTt25dgoODi3gNH2VqXOgVSHJyMocPHwby3FPdu3dn2LBhZb7e3LlzuXLlCgCurq6kpaUVOu7n58fAgQPp0KFDiVef90rEUSqV+Pn54efn98A74uzsbMl4Q15TE19f3yIZ/FlZWWRlZeHl5QUgJScePnyY7du3Y29vLz3YZsyYIa3mf/vtN/744w/pOu3bt2fatGk4OTlhbW39yO+ya6hc/v33X27cuEF0dDTjx49n4cKFZY59WywWXn/9dQBq164tNfQpQKFQEBQUxMSJEyW38N24fT7fq+y1IDRQkMPxIBw7dgytVguAXq/njTfewMvLq0hXrbi4ONzd3SUDbTabSUxMZNOmTYSGhuLq6kpGRgYDBw6UEt6MRmOhVq1KpZIRI0bQtGlTHBwcsLKyqra5RBVJjQF/QDIzMxk3bhx169Zl8ODB2NvbP3D942uvvcauXbuIiIhg+PDhrFy5Eo1GIx2Pi4vj119/JTk5meHDhz/oRyhXrK2t6dy5MydPnkSpVLJz5058fX3x9/cnJyeH3bt3F3r/Tz/9hLW1NbNmzeLq1atA3gKlwCV4/fp1Tp48KbkKL1y4UOj848eP07179yKx6hpqeFAOHz7MypUr6d27N23btpUqEMqKIAi8/vrrHD16FCsrK6ZNm8b8+fOl40ajkf/++4///vuPBQsWULt27fL4GOWGr68vdevWJS4uDkdHRzZu3Ejt2rXx8fFhw4YNktcPoHPnzowaNYrExEQ+/PBD6fUGDRqQk5ODTqfj3Llz2NnZodfr0el0he5lMBj4/vvv/z975x0fRdE+8O/kUknvISEQIIYWpAYB6YioKCJWUFTAith+gIgNsaC8iAUUeUVQRMTXgg1BepMm0lvAEAKkkN6TS+5y8/tj79bL5dIgCQT2+/nsJ9nZ2dnZvZ19nnnmmWdYtmyZJrirQDOhXySlpaUsX76cv/76CycnJ1q1akVYWBgRERFcc801eHh4VNkrNBqN6jQGex6NJpOJt956Sx2PjoqKokOHDrRo0YLo6OjLdv6q0WikoKCArKwszp07R2JiIjk5Oaq5Oz8/nyZNmtC1a1eys7M5e/Ysubm55bz5TSYTBQUFhIaGEh4ejk6nw8vLC19fXzw8PPDw8MDHx4fQ0FCtkaOZ0OuahIQEvvnmG+Li4mjWrBkREREEBwfTsWNHAgMDq7RqWYJDWeJR2PsGJCUlMWXKFHW/f//+hIeHExkZyTXXXHPZvtOW2BmpqamcPXuW1NRUNYBJfn4+er2eFi1a0Lx5c3VGRllZGR4eHuq0PoPBgF6vV79hrq6u+Pj4qEOBnp6ehISE1Mma2VcC2hh4PWMymUhJSSE+Pp7k5GQOHTpEenq6OufcMr9UCEFOTo46hSMnJwcXFxcMBgNBQUEEBATg7e1NQEAA7u7uuLm5UVxcTEJCgmqmt+Xhhx/mxhtvbOA7vjhMJhNJSUns3buXsLAwmjVrVqtpahoV0QR4/aDX6zl9+jQJCQkkJiZy+PBhVQHV6/W4uroSEBCgOo9a5rJbFPOysjLCw8Px9vbGz89Pneqk0+nIz89n5cqV5Ofn2732hx9+2OgWDCktLWXfvn3q7JawsDA8PT0vW4WkMaCNgdczDg4O6lgvwL333gtATk6O6umdmZlJQUEBTZs2xdHRkfz8fIKCgnB2dsZgMHDu3Dmys7PVuYvJyckUFxfj5uaGt7c3N998M8XFxWpQD0sQj8bozOHg4EB4eHidjM1paNQnrq6utGvXrtzQmMlkIj09XTUBp6Wl4e7urgbgKCoqIjg4GCEEubm5quXJ4sV9/vx5jEYjnp6eDBgwgJKSErKysoiPjwdQ55vbTgFrDDg7O9OzZ89LXY2rAk2A1zM+Pj7q/7aRx6wbp8X8rqGhcfnj4OCgjod7eHhUCIRibfr19vZulIJY4/KnUZnQL3UdNDQuc85IKSMudSVqi9a2NTSqxW7bbjQCvC4QQjwmpfzsUtfjYrlS7kNDQ6M8ja1tN7b6XmlcbZNmH7vUFagjrpT70NDQKE9ja9uNrb5XFFebANfQ0NDQ0Lgi0AS4hoaGhoZGI+RqE+BXyljNlXIfGhoa5Wlsbbux1feK4qpyYtPQ0NDQ0LhSuNp64BoaGhoaGlcEmgDX0NDQ0NBohDQqAS6E6CeE+FUIkSSEkEKIh62OOQkhZgkhDgkhCoUQKUKIb4QQzW3KcBFCzBNCZJjz/SqEaGZ1PMJctr3tpvqqv/n4l3auuauW9U8RQrxsc86r5rLutElfJoTYejH3pKFxtXMltGshREIl37zfrfJMEEKcFkLohRB7hRB9rY59K4RYZ1NmX3MZ82zSHxVClAghKl8NRqNGNCoBDngAR4BngWKbY02ArsDb5r+3A+HAH0II65CxHwJ3AqOAvoAXsFIIobMp7yagqc22sR7rb2G9zTVvsTleXf03AQNtzhkAnK0kfVMt70FDQ6M8V0K7jrGpX1dAAt8BCCHuBT4CZgJdgB3AaqsO0kbgeiGEcw3rt0tKWdmz0qgpUspGuQEFwMPV5GmP8hJ2NO97A6XA/VZ5wgETMNS8H2E+p3tD1x/4ElhZxTk1qf+jQBHgYt53Me8/ARy1Oi/KfJ/9L/VvqW3adqVsV0q7Bl4GcoAm5v3dwEKbPP8A75j/v8Z83b5WxzcCTwMlQJBVehIw/VL/VlfC1th64LXFsqJAtvlvN8AJWGvJIKU8BxwHejds1SqljxAiTQhxUgixUAhhvZZgTeq/CXADrjPv9wQyga+ASCFEsDl9IEpvoZwpT0NDo15oNO1aKOt+jge+llIWmXvV3azrZ2atpX5Syn9QBPNAcxkuQC9gFfA3Sq8bIUQbIBTN8lcnXLEC3PzSzQF+k1ImmpNDgDIgwyZ7qvmYNVuFEAU2W30vKfQH8CAwGJgE9AA2mhsD1KD+Uso4IJF/zVYDgc1SyiJgL+aGZE7fIaUsqZc70dDQsNDY2vUQoCXwuXk/ANCZ62O3fmaszfy9gAwp5Slgi029i9A6DnXCFSnAzWPeXwM+wNianIJi/rFmNNDZZsuvw2pWQEr5rZTyVynlYSnlb8DNQBtgWDWn2tbfuiENBDab/99slT6Aix/T19DQqIZG2K4fBfZIKQ/YpNt+I+3Vr5cQwrWK+g0EtkspSy+yjhpcgQLcLLyXA9cCg6WUmVaHz6NokgE2pwVRUbtMlFLG2Wymequ4HaSUySha9zXmpJrWfyPQUwjhi2Jy22xO3wIMEEK0A4LRzFgaGg3O5dyuzab924GFVskZKBYCWyulvfq5oJj3B1jVbzvQSggRCvS/mPpplOeKEuBCCCfgfyjCe6CU8rxNlr2AAcVEZDmnGdAOxavyskIIEQCEASnmpJrWfxNKQ5oEpJvNWAB/Aq2A+1GcbfbUZ/01NDQqcpm364dRnM6+tSSYe8t7retnZoh1/aSUCUACioe9qmBIKQvN509AUTA0y18d4Vh9lssHIYQHEGnedQCaCyE6A1lAMvA9ynSI2wAphLBojLlSymIpZa4QYhEwWwiRhuIE8j5wCGWahzX+VudjXU491T8LeB34EaVhRwDvAGnATwA1rb+U8owQ4jTwDPCLVXqhEGKfOX2blNJ4ofeioaGhcKW0a7Pz2iPAt1JK2+HC94GlQoi/UHrUT6A4oy2wybfJfMxawQDFSvAMyjDk3gupn4YdLrUbfG02FLOMtLN9yb/Tv+xtD1uV4QrMQ2kkRcBvQLjV8arKeaQe6+8GrEFp2KXAGXN6uE0ZVdbfKt8ic9njbdLfNadPvtS/p7Zp25WwXSntGmV8WgI9Kjk+AaWHXYIihPvZyTPGXMZSm/SbzOmVTqfTttpv2mImGhoaGhoajZAragxcQ0NDQ0PjakET4BoaGhoaGo0QTYBraGhoaGg0QjQBrqGhoaGh0QjRBLiGhoaGhkYjRBPgGhoaGhoajRBNgGtoaGhoaDRCNAGuoaGhoaHRCNEEuIaGhoaGRiNEE+AaGhoaGhqNEE2Aa2hoaGhoNEI0Aa6hoaGhodEI0QS4hoaGhoZGI+SqFuBCCFmDbUAD1eUm8/Uiq89dq3LfFUIk1iL/bnM9rrdzrL0Q4nXz+sfW6U+Yz6nz9eUb4ppCiPuFEEeFwq4avBMv2pz/tDn9Uztl64QQp4QQd1xsPTU0NDSsuaoFONDLahtkTnvLJn1fA9Vlp/l65xroehUQQrQCeph3R9nJ0h6YDnjYOVZfVHbNFUAvKaXxYgoXQujM5f9HKmvrjqf87x8P/GST9pVNMZZndbetQiGlLAPeA2YIIcTF1FWj/jErixl1VFa0bSfAvD+xLsqvRT2aCyEWCSGShBAlQogEIcRHQoiAhqxHXSKEuFMIEWduvwghBpifbbRNPn8hxAfmey4RQiQLIRYLIVrY5AsTQhSYv4GNhjrvMTUEQghfIBboLaU8VYP8t6II5q5SSpMlXUq5yyqPRUCcsk6vokxXKaW+1pWvBCllLlDtdeuZUYAJ2IoijJ41C6DLDillGpBWB0XdAjQFvjOXe9T6oBCiGEir7J0wfwh6AhuAwcAQYLVNtm+AD4EBwKY6qLNG46UXcLqhLiaE6ABsRmkrL5uv3db8/61CiL5SyuSGqk9dIIRwAGYAs6v6PgkhQoFtgDMwEzgGtABeAP4WQgywtHcpZZIQ4n/Aa8DD9XsHdUdj7YG/BKyqifAGkFKuBMqA+y/kYlbm2q5CiG3mj/rT5mPBQohlQohsIUSREGKDEKKzzfnnhRBvCyHeEEKkCiHyhRBLrM3C9kzoQghHIcSrZk2zRAhxTgjxmdXxEUKIjUKIdCFErhBihxBi4IXco5lRwBbgAyAIRSCp9QO+N++mmOsaW8nzEkKIOUKII0KIQnO9lwghAu08l7eEEC+YNeMsIcRSIYRnddcUdkzoQgh3IcT7Qoiz5ucVL4SYUc09P4TyLhXX9CHZYOl9PwpkYsdyYVbO1gMPXuA1rgqEEL7m9tHaqkdVaS9RCHGrEOKA+YPeKJBS7pJSpjbEtcwWn6+BbBRr1ZdSyi1Syv+iKBI+wPyGqEsdMxhojaIYV8V8lHvsKaX81HzvXwG9UZ7J1zb5vwBGCSH867rC9UWjefEtCCGaAI8Ai2p56hfAMxd5+f8BP6L02taaG8hKlJ7Vsygfbzdgs62JBkWr6w2MQ9EA7wAqjJna8CXwCsqLNsx8nqfV8ZYopuT7gbuBvcA6IUT32t6Y2fTUAfgW+APlBbcWRjtRFCfMdekF3FtJcQ6AH4rV4xZgEoop3PLMrHnQXNZ4lF7BnSjada2uaf6IrzKX85H5um+gKCKV3bMABgI7KstTA0YBf0opT6O8GyOEEG528u0AbriI61wNNKhiXhOsFIkBQojvzWbWeCHEBDt5J5iV1UIhxG8olh3bPOVM6EKIYUKIdUKINCFEnlB8MG60Oed1IUSGEKKL+XiREGK/EKJvNdXvB3QG3pJS5lkfkFImAXOB4UKICKtr+Qsh/iuESBFC6IUQJ4QQz1kddxBCvGjVqTgphHjIpr71eU+gKN1rpZT5lWUw39Nw4CPzvVrfex7wNtBZCNHP6tB2IAu4rwZ1uDyQUjaqDbgLpacjrNKGAScAPYr59z5AAhFWeZqb0yIrKdfDfPxhO8eeMB973CZ9hDn9Oqs0LyAH5cWxpJ0HUgFXq7TxKB+f1ub9m6zrB3Qy7z9Ww+figDIksgWYb5X+LpBYg/NnAgbA37y/CMgFXGyevQRCKnk+jpWUrUPRmCXQw+a5HAccrNIWAAm1vSZwu3n/xlq8S63M5wyuIs8RYEElx9qZz59g3h9o3r/LTt5bzceaXuo2dDluQBMUpbGPeX+A+XkFVHPeRGBPHdbjdSDDat9Sj39QlOkhwGI777Ll/fsUGGpuT+fMaQOs8klgok39nzGfMwR43/xduN6mTkXAIWAscDPKcFsG0KSKe3nVfD3vSo5bvjEPmPfdgMMo36oJKH5Bj6H4h1jO+QQoQOlM3ADMMtf31oa4J/O5ycBUmzTL7xRt3h9j3r+2kjK8zcdfsUn/CfjpUreHmm6NcQy8L7BXmp+2EKI5Si/0E+C/QEeUF6YcUsqzQohUoD8Qd4HX/t1mvwdwTkq52+o6eUKI1UAfm7x/yPJj5iuAz4FugL0exyCU8WhbhykVcy9/JorgCAEsvVtD9bdSgfuAdVLKTPP+chRrwS0oL3WtEEIMR+lRtUNRaixEAX9Z7W+QVn4JKONU44UQwvIb15BBQLKUcm0tzgkx/71Qp6XRKB+mH8z7W1A+LqOs0ixYrhECpFzg9a5kbkF537fbpHcSQsxEadfHUBRaa8fSX4F5QohIKeWFtuuasFxK+RaAEGIzcBswkn/f5ZdR2viT5v015iGjR6oqVEr5seV/sxVpE4olbDzln4Ub8JyUcqM5bwqwH6WX/UclxYcBOVIZwrHHGat8oFjDOqD4Ch0wp220ql8k8CQwVkq5xJy8XgjRFMURdGV935NQxrWboijWVWG5pzP2Dkopc4UQuVb5LBxEGQ5rFDQ6EzqKE4L1B/BJFE/hSVLKE1LKH1B6cfZIBiIu4tq2Y1dN7aRZ8vnZpJVzuJJSZqMI2gpmNjP+QLasxFHOPPb7O4oC8BKKBhqD0uBcK70D+2X1RDHHrxRC+AghfFAaUgb2vdGrK+96FKF/CngAxfRtMVXZ1i3HZr8UxZKgq+Vl/am9YLTUpaSW51m4D+WDVGp+Zl7Ab8AwIYSXTV7LNWr121xFlFPMrXgHeBHoimJ5W2Y9DCOlPIvS3vrXc/1UxVBKaUDpkTcDdSZDF+AXm3NWVFeoEKKZUPxDkgAjyjfhRhRF1xoDijOahWPmv81qfgsVsH3Wg4D9VsLblsEoStZPQvHPcTR/hzagmKMtHuH1eU8Xq3RXRwYQZGeo77KkMfbA3SgvNNuimNCsX8bd2KfYfP6FYvvCp/Dv9DNrglHGUqwpNxYrFE96JyoXOpmAr/YPDEkAACAASURBVKjc2709ilY7UEq52arcJii9wtpgEdKfmDdrbhVCeMoqxpvscCdwVkqpjk0KIdrUsk61JZPKlaHKsPxGPrW9mBAiBog0b9l2stwBLLHat1zD9r3QULBVzC28KqXcBCCEeAP4E6XXZB3b4GIV85pgT9G0KGOBKN9S21kRVc6SMPdOf0Xxa3kNxTJYiH3fjTxZfgZNqVnGVKUQJgE+QggvaTMGbibCKh9UrwQHoCjWlfXomwohkqnfe6qp0m25pxYoZvpymBVsb6t8FkpQfktHLsyS2aA0xh54BuBrtS+oKFgrww9Ir8O67AaaCyEsc6cRigf1TSgfGmtuEkJYv5gjUbTZvZWUvQHl93mgkuMWRUR9kYUQ16D0wmuM+SNyD7AGxRRvvT1svs7t5uyl5r/V9SLdrPJauFBHo5pecwMQKoSojaNYHIqy0/IC6jUK5dnfSMXn9g8VLRcRKPeScAHXuhpwQ/FhscX642uZ7mQrCC5WMb9Y0lF6mrb1qtSB0kwkSs/9aSnlIql4Sf9N3d3LVvPf4ZUcH47y7dxm3q9OCc5Cuc/rUL4ztlsa9X9PNVW6t6HcW2X3bvmmbbVJ9wEKzFaWy57GKMD3o/Q+LRynotDqYbOPWXi2pm4Ds/yKIoB/FEKMMY/7/oGiVNiOwxtRTNTDhBBPoEzV+lZW4nErpTyEMv79sRDiNSHEYCHEPUIIy9QHi7PJR0KIm4UQo1HmH9c46poZy/j5p1LKzTbbEuAk/wojy7SxCUKI64Qyx9Qe64AoIcRsc71ncOGenTW95koUc9wPQojnhRCDzL+JrUVBRUpZgCIgutWmQlZKz29SynW2zw1l1sANovy0ue4oJuILNddf6dgq5hasP6QWRd32u1XXinmtkMpc5AP8KxQsjKzmVHtKeAugQhTEC2SruV6vmjsWKuZx62eBX6SUlnHiDUAXIcS1lZS3EaUH7i2l/NvOVtoA93QaRRGuUumWUiagfJ+fM9+rilCm774CHJBS2grwCJRvXqOgMQrwNUA78e9cvQVAayHEe0KINkKIkcDj5mPWPfOeKC+VrZPMBWM229+Kou3NQ5mCVYLidWrrPPElSo/9S5TIXL+gjN9XxXiUMcCxKMJ5DooHKFLKIhQzrQ5lrG06ismqtsFgRqFo3qsqOb4MuFEIESClPIky3n4fyrSoH+2dIKVcgeIBez9KI7oOxWO/1tTimiaU3+JLYArK83qd6oO9rEDxgK0N/VDMuEsrOf41yu9yj1XaUCqpuwZQUTGvEfWkmF8IM1GsbJ8KIW4UQryNYomrilgUhXuOWbG/D2Ws3dase0GYv09jUBScnUKIB4UQ/YQQj6F8J3KBp6xO+QqlY7BWKHEWBgohxgkh3jWXdwLle/utEGKqWTkfJpQ4Dp830D2VoHSaaqJ0TzDf4y7z/fQTQoxBmZ7qh33rZnfqUEbUO5faDf5CNpQf4Cmr/VtRtCY9ijAdiyK8g63y/JdKpgM1QH3Po8zFvOTPTtsq/DbhKL28jvV4jW4oil1wfV2jsW8oXuZl/DuNcQA208hQekcS6G6VNgDIp5qpR7Wox+vYn0YWbZNvM/CDTdpEFOFVhKIQ30j108hiUDzZi1GGXh5GUUL/rqxOlZVVxT01R5kWmozSez2DEiuhwhQ9lHHwhSiKrx5FID9jdVwAzwFHze90Osrsiwcb6p6AyUCcTVplv5M/irUzwXzvKSgxQVrYKTcAxVLa/1K3h5puwlzxRoVQInR9BLSXdkLpCSGeRXGa8JVSmsymzFiUhn+6YWurRBwDPpdSvtLQ19aoHiHEIpQOS5VTfi6i/K9RpvM0aAzsxoYQYifwtZTyE6HED98EBEopM8zHI1BMqDFSGVdFCPFflN/uiUtSaY0GRwgRDJxFiRmwpw7LfRxFOYiSjUQwNkYTOlLKP1C8pS3TOJ4SQvQQQrQUQoxCMd9+Kf/1cGyJEmyjwYW3RqNgOnCqPqaOmKfWHEeJSqdRNTOAZ4QQOqn4EwiL8AZlXNOcZhHegSiBfmZdovpqXAKkEor2c5Qx/DrB3PafBd5uLMIbaJw9cFuEEB+gjDf6o5iwvgXekIpThYaGRiNBCPEM5R2rqsrbA2gppfxf/ddM43JCCBGC4iP0rj0r7AWU1xQlcFWdlNdQXBECXENDQ0ND42qj0QRyCQwMlBkZ9RV8R0PjiuCMlDLiUleitmhtW0OjWuy27UbTAxdCyG++qW71OA2Nq5fRo0cjpWwUISCt0dq2hkbVVNa2G6UTm4aGhoaGxtVOozGha1w+GAwG0tLSKC4uJiMjg4yMDEwmE4mJiRQWFmI0GtHpdJSVlWEwGHB0dMTJyUlNKywspE+fPrRt2xa9Xo/RaMTBwQEPDw+Sk5Nxc3MjPz+fbdu2YTAYKCsro6ysjOTkZAwGAyaTCYOh8kiHEydOpFevXuj1esrKymjSpAkODpquqqFRHXl5eWRnZ1NUVERSUhJGo1Ft4yUlJZhMJhwdHSkpUQKtOTo64ujoiIODAyUlJTg5OTFs2DCaNGmi5m/SpAkGg4HMzEz8/PzYuXMnGRkZ5Ofn4+DgQG5uLtnZ2RiNRgBKS+37HgcHB/P666/j4eFBUVERTk5OuLi40EjWHakXGpUJvU8fZYXO3NxcQkNDue6662jTps1V/QM2FHl5eXzwwQecOHGCpk2bkpJScc2DwYMH07lzZxwdHTEajargPnHiBN9//32F/KGhobi6uqr58/PzCQsLQ6/XExurRFDt3bs3AwcORAhBaGgoLi4u6HQ6Dh8+zJw5c2pc/+eee44ePSpE2K0SvV6v/j1y5AjFxcU4OTlhNBpxcnLCx8eHdu3a4ezsXGU5SUlJTJkyhcDAQMrKyujUqROPPlr3KxY2ZhN6nz59KC4uRkpJu3bt6N27N76+9iKratQ1x48f580338Tb25vcXPvrlDz22GN4e3vj4OCAwWDAzc2N0tJSduzYwfbt5QOXOTg40KxZM5ydnXFwcCA/Px9nZ2cCAgI4deoUOTnKujBTp07F0dGRJk2aEBQUhE6nQwjBiy++SGqqvUUe7fPVV1/h6FjzvqjJZKKgoIAmTZqQnJzM8ePHcXBwwM3NjcLCQry9vQkJCSEiIqLasn744QdWrFhBixYtyM7O5tlnn6Vdu3Y1rktNqaxtN6oe+J9/KuuD+Pn5ceTIEdasWUNAQAAGg4FWrVoxfvx4/PxsV/HUqI7s7GzmzZuHh4cHEydOJDc3l2effRZXV1diYmLo0KED27Zt48SJE4ASvS84OLhCI/P396dbt26sWbOGJUuWqL1eV9fy65BMmzaNli1b4uHhUWW9TCYTQgi7Clq3bt2wHTfNzs7m9OnTvPfee+p1hw8fTkhICB07dqzVM3nttdeIi1OWl3ZxcVF7HLa89dZbtGrVqsqyLNaC9HQlXPf58+eVKEqa4qli3bb37dvHsmXL8Pb2xsnJiRtuuIHhwytbk0KjKrZv386KFSsYPnw4/fv3Z9asWRw8eJCIiAh69uxJcXExq1YpUZRzc3OJjo4mISGBgoKCcuVER0fj5+fHAw8o0Uc9PDwoLCwkICBAzdOpUyfuvPNOWrduXe27bTKZKrWKffDBBxXSDh8+jNFoZPbs2QAMGjSIFi1aEB4eXivhnZWVxcSJ/8ZT8vX1JTvb3mKCVPi+2OPcuXMAnDmjzHq0fW71TaPqgX/55Zfs2bOH1NRUcnNzWb9+Pbb1v+uuu3BxccHT05NrrrmGpk1rt8Kk0WgkKysLk8mEh4cH7u7uV9SHdv/+/WzevJk9e5QARoMHD2bDhg3q8SeffBJPT0/+85//qGm2mrmfnx9CCDIzM9W0SZMm4erqyttvv62mDRs2jN9//73c9adOnYq/vz+Ojo4EBATUqvHV9P4sjXzZsmUX/NudO3eOn376iV27duHh4YGbmxsFBQUUFxeref773//i6elZRSk1w2QykZqaSk5ODkVFRZw5c4Z//vmHO++8k8jIyBqX05h74O+//z4HDx4kNzeXc+fOsXdv+UX6IiMjue666xBC0LRpU9q2bYubW+0WuCooKKCgoAAHBwd8fX1xcnKqy9u4pJSWlrJq1Sq2b99OUpISdvyuu+7ihx9+AMDHx4eXXnqJ2bNnq4okgJOTk6pgOjo64uPjQ0FBgWp9atWqFXfffTf//PMPK1b8u7x5SEgI58+fV/eFEMycOROdToeHhwfe3t51+t00Go0sWrSILVu28OijjzJw4MALKkdKyebNm1m4cCEA/fv3Z8uWLbi6uqr3fMcdd3DHHXfUybdJr9eTnJxMYWEheXl5xMbGUlpaytixYyt0bKqisrbdqAS4k5MTbm5uqsmyWbNmBAUF0b9/f/bu3cv58+dxc3Nj586dFBUVATBr1izCw8NrfJ2xY8dW6G1FRESQkJAAwOOPP07//v3r5qYakLKyMk6ePMmbb74JKA2uqt9+ypQpLFy4UDV3eXl5kZdnb0nhigwdOpSHHnoIgNTUVJ5//nn1WNOmTdXxsoyMDKKjoxk/fjzBwcEXemvlWLhwIZs2baJZs2bllJALJTY2ltjYWLy9vRkwYIAqBAIDAy+qgZtMJn7++We2b99udzgCqNGHKiEhgV9++YWCggKOHj3aaAW4o6Mjvr6+lJSUEBAQgI+PD127dqVVq1Z8//33eHt7U1hYqCqeLVq04J133qnxNeLi4njttdcqPe7o6MhHH33UKM322dnZHDt2jE8+URbec3NzK6do2vLOO+8wbdo0dd8yhFUTrC1Ov/zyC//7nxJDR6fTERISgslkIj8/H4PBwC233MLIkSPR6XQXemsqJSUljB07FoCZM2fWyLxdFUajkW3btpGenk6PHj1o3rw56enpODs74+Pjc1HKR35+PrNnz+b8+fOV9sjnzZuHv7+/3WOgKBq//vorCQkJtGjRgu+++67xC/DPP/8cNze3Kh9ufHw8r7zyb8hxd3d3HB0d8fPzo1WrVhw7doz09HQCAwMJCAhgzJgxNGvWTM1/8OBBtm3bxo4dOwBF0+zRoweHDh0iPz+fCRMm1MsYR31j6ZmGhYXh6OiomnysCQkJIS8vj6KiInQ6HXfddZfaQG3R6XTqeBgomryUUv0Q9OvXj0ceeaRKIZeZmcm6detYt24dEyZMoFu3Wq3qWY6ioiIeeeTfUOZPP/00vXr1uuDy6hPLmLgFf39/Bg4cSJs2bQgJCcHX1xej0cjKlSspLS2lXbt2nD9/ng4dOlBaWsoXX3zBqVOnVKdAUIYl3nnnnUYrwJcsWVJtj3ju3Lns2vXvYnvu7u64uLjQsmVLfHx82LBhA0FBQbi4uNChQwceeOAB1Uyr1+vZuHEjGzZsUBWm6667Dp1OR3x8PH5+fkyePLlWvaLLBUuno0OHDpw6dUrtSVpwdXXFw8MDvV5PQUEB9913Hz///HOFfBbc3d0pLCxUzzUajeUE/LRp06ockpJScvjwYX777TdKSkqYNGkS3t7eF3x/e/bsKWdWr+2Yd0MhpWTbtm0sWLBATevevTtdu3YlIiKCoKAgmjRpQkJCAn/++Sfu7u60bduWtLQ0oqKiSExM5IMPPsDBwQGTSYkCfscdd9CnTx8mTZrU+AV4beaKlpWVkZiYiK+vL2VlZcTGxlJQUKB+EF1cXHj//fdJSUmhQ4cO5OTkIKXE1dWV+Ph4ANVBSUpJYWEhaWlpNG/enDZt2qie0JZx4ubNm5e7vpQSvV6Pq6urqnBs3bqVn3/+mfPnzzNnzpxKzftSSpKSkkhISCAtLY0zZ87g6elJQEAAXl5eBAQE4Ofnh7u7OzqdjiZNmth9oY1GI0VFRWRkZDB//nySk5MZMGAAu3fvrqChd+7cGR8fHzZv3kxYWBiZmZlERUVx6NAh1bxkGY+Ojo7m0KFDgCKoQ0JC6NmzJ5999hmxsbH4+vri4OBAZmYmkZGRdOvWjRYtWhAdHW23no8//jj5+fkIIXj11Vdp27ZtjX9ny289ZswYdb+qZ3sxmEwmMjMzyc/P5++//6akpAS9Xo+bmxu9e/eudizcwujRo8vt22rjCQkJfPzxxwQGBnL69Olylg+LNSgsLIx33nkHBwcHVUg1ZhN6Tdu2lJL8/HwKCgrw8PAgJyeHU6dOUVpaiqOjo9qW33jjDXr06EF8fDyenp7qbIf09HQiIyNV5ym9Xk9hYSHZ2dl07tyZoKAgSkpKkFLi7+/PgAEDcHFxKVcHg8GAlFK1BBqNRt544w3i4uLo3bt3uTFWW0pLSzl16hRnzpwhPT2djIwMQkJC0Ol0tGnTBhcXF3x9fXF3d8dkMuHp6Wm3w1JUVERpaSlnzpxh1qxZBAQE0LJlS9VCYcHd3Z2OHTty5MgRCgoK8PHxITQ0lGPHjlUo093dnZiYGDZv3kx0dDQmk4kRI0bg7u7Oyy+/jIeHB05OThQXF+Pm5kZkZCSdOnUiKiqqXCfIQl5eHk88oawx065dO1588cVaD1scPny4nKWlJorehVBaWkpGRgZJSUmcOHECg8GAg4MD7u7u3HbbbRXeAXtYD98BtG/fvlxnEuC3337j559/5sYbb+SXX34pd8wyLPHKK68QFRWlOvXBFWJCr+tgDwaDQTW3t2nTBp1OR1FREW5ubgQGBtKkSZNy+S3eyPHx8aqH9cmTJ9m7dy9hYWEYjUbc3d0BpZdVUlKCTqdDp9Op4/JSStzd3ZkyZUqF8dP09HTWrl1LUlISZ86c4ZprriE4OJjmzZuTlpZGfHw8hYWF6HQ6srKy1ClbBoMBX19fmjZtSvPmzTl58iRFRUWkpaWpL6KzszNFRUU4Ozvj7u6Om5sbycnJ6rVDQ0O55ZZb2L9/PwUFBSQnJ5Ofn1/hmfXq1YudO3eq+9amdWtTnLu7O3fffTeBgYEcOXKE1atXA/bHpU+fPs3LL7+s7tfkd7aY6vLy8ti+fTu//vqremzhwoXq71AXpKSksH79erZt24ajoyNubm507doVb29vXFxc+OKLLwCIioqiadOmBAUFER0dTatWrSguLubkyZOEhoYSEhJCWVkZBw4cYOXKler42ODBg/njjz9wcHAgKiqKhIQE9Ho9EyZMICAggDfeeAOAl156iejoaKSUmEymCqbJq0GA15TU1FR27dpFy5YtcXV1xc3NjaKiItzd3QkLC6vwDqampnLw4EGys7NxcXHBwcGBVatWodfr8fX1RafT4ebmhqurK0ePHgVQlXtLJ0Gn09GzZ0/uu+++CvX5888/SUpKYsuWLQQEBNCiRQv8/f0JCgri9OnTnDhxAmdnZwwGgzqNy4JFOOt0OuLi4igpKSEnJ0edtmVtBQsNDa1gXbv33nspKyvj6NGjlJSUqB2Ua665hn/++UfNZztMZmnPQgicnJzU6V0DBw6kQ4cOFBcX8/fff3Pw4EHGjx/P4MGDK9z3nDlzVH+GG264gXHjxlX725WUlFBQUEB2dna5YY8OHTqU+05cLGVlZezfv59169YRGxuLn58f3t7edO3aFWdnZxISEti6dSsAMTEx+Pj40LJlSzp27Ii/vz/x8fGUlJQQHh6Oh4cH+fn5bNiwge3bt1NUVISXlxdubm7ExsYSFhZGaGioqmB98sknLFmyhL/++otWrVoxadIk9T1ycHCo8H5qAryekFKqnohOTk6qUN22bRuRkZH06dOHsrIyiouLSU5OZvPmzezfv18dB77tttto2bIlXbp0YePGjSxevBiACRMmYJk2Vx2lpaVkZmZy7tw5zp07R2RkJN7e3gQHB+Ps7Kw6nOXm5uLt7U1RURFnz54lPj6eNWvWqHW3fAjCwsLIyspCr9fj6elZrlEPHz6cXr16sXz5crUX3r9/fwwGAzt27GDx4sXMmzeP/fv3A3D99dfz1FNP8fzzz5OamoqLiwt9+vShS5cudO3aVS333Xff5dChQzz00EMMHTq0ynvdt28f33zzDXq9Hi8vLwIDA2nfvj2tW7fG09OTpk2bUlRURHZ2NlLKCx4vKy4uZsmSJRw4cID+/fszePBggoKCKuSzfHSXLl2qCtX4+HgyMjLo1KkTBw8eBFB/i4CAANXRqF27dvj4+HDgwAEmT56M0Wjk8OHDrFy5km7dujFgwAB1utznn39eQam0RhPgdUtxcTFJSUm4u7tTVlZGUVERWVlZ7Ny5k1GjRuHj4wMoQ0GnT5/mxx9/JDc3F51OR9OmTYmJiSEmJobg4GAeeOABpJQ4OjoyZ84cAgMDq72+xdqQkZHBqVOnKCkpoX379jg7OxMaGqqaWVNSUiguLiYoKIhz586RlJTE1q1bVb8d66GWZs2aqUMIFsdMC2+99RZHjx5l165dnD6tLNz4zDPPMHfuXMLDw5kxY0Y5AfzKK6/g7u6ujqc3bdqUPn360KdPH/X+LL1wHx8fXn311SotY5mZmaxevZqNGzfi6uqKr68v4eHhREdHExwcrPqdmEwmkpKSCA0NvWDTfFxcHJ988gmenp4MGTKE6667zu500NzcXJKSkvjmm29o2rQp+fn5HDp0iA4dOqiKHKBaLf38/EhOTiYgIICwsDDy8vLw8/Pjnnvu4cyZM2zcuJHY2FimTp3KV199RUpKChEREcycObPK+moC/BJTUFDAoUOH+Pjjj4GKnt033XQTf/zxR7lzJk2adFHjwjWhtLSU3NxctWEUFxer5jCDwUBWVhaurq64u7tz/vx59ZiUkiNHjqhmXIu5ceDAgbz//vskJydTVFTEM888Q8+ePfnqq6/K3V/Hjh3LOdIsWLCAHTt2sGDBggpCKj8/ny+++IL4+HiysrKIjIzkjjvuKDcOl5uby5NPPgkoyoijoyOenp6kpaVVqxTY4+TJk3z66ae0a9eOBx98UB0bXbVqFcuXL6esrKzcWKDtGLwFT09P8vPz6dChA61ateLWW2+tlef6pEmTSElJ4fnnnycmJqbKvJoAvzTExcWxf/9+fvrpJ7tzqW2tVlC9MlYX5OfnU1xcjIuLCzk5OQQEBKiWqdzcXIxGozr32d3dXa2PyWRi/vz57NixAxcXF1q0aMGYMWNISUnhxx9/VKePzp8/Hy8vL3VqmWXs9uWXX6ZDhw7Av8Nbt912G6NGjapQx/379/PLL7+o1sCYmBjuvfdevLy81DxLlixROxpubm6YTCbV0Xju3LnlprJVh8W35I8//mDcuHFqbIji4mLmzJnDsWPH8PHxYe7cuepwn+0YvDVt2rTB2dmZ/v37qz4VNSE5OZnJkyfTrl07nnrqqSqnPwshGDVqlCbA6xOj0UhCQgIRERF2x3n//PNP5s+fT9euXRk4cCApKSns37+fpKQk8vLycHV1ZdiwYaxZs6acVny53XNZWRnr16/nu+++A6gwlt67d2/VAdDCyJEjy01Bueeeexg+fHi5eaAmk4nZs2fj7u7OuHHj1I9JZmYmixcvxmQyMWbMGIKCguw+Xykl999/P6A08rCwMDWS1HPPPUeXLl2qvbeCggJ27tzJnj17SE5O5sEHH1QbeFxcHL/88otqDuzUqRMPPPAAYWFh6vmZmZk8/fTTgGJOb968eY1MhnWFJsDrB4tJ2/q3tmA0Ghk7dixlZWU8/PDD+Pv7c/DgQdU6lZaWxqBBg5BSsmnTJvW8CwksVN9kZmby9ddfs3v3bjw8PCp4UHfr1q3C9L7hw4eXG76y5yGenJzM9OnTGT9+PD179lTT9+7dy8KFC7n33nvp2rUrXl5edsf7//nnH6ZPnw5AeHg4JpNJ9R2YNm1aOWFfGadPn2b37t1s376d8PBwxo8fj7+/PyaTibVr1/Ltt99SWlqKi4sLN954I/fee2+579PatWv58ssvAcXpdOLEibRp06ba69YVWg+8jklMTOSnn35SneDWrl2LwWDg7bffJjg4mJycHHVM5NixY+pY9fDhw7n99tvVcvLy8vjxxx/Jysri1ltvZcaMGQwdOpQ2bdrQoUOHcr21goIC5s2bx9133016ero6NtZQHpl6vZ7Zs2djMpkYPHgwPXv25K+//iI1NZXvv/+ejh07cvjwYQA1wI7BYMDLy0udM+rh4cH7779vN4hLUVERS5YsITk5mUGDBtG8eXP++usvtm/fzn/+858a9Vjy8/PVD26zZs2qDRZjzfTp0/Hx8aFnz550795ddZbR6/WMGzeOUaNGsXbtWoYMGcItt9xCamoqUsoKY6qlpaXVRmerDzQBfvGYTCa2bNnCzp070ev1tG/fnl9//RUhBF9//TWpqak4OTlx6NAhtm3bRkJCAv7+/mRmZvL222+XMxHv37+fjRs3Eh0dTXp6OqtWrWLMmDFERETQpk2bcgJi7969bNu2jXvuuYeEhATatGlT5TSjuub48eN8+OGHdOvWjeHDh+Pk5MSuXbvYvXs3cXFxqvKSlJSEl5cXRqNR9RWwxIMYM2YMN998s93y4+LimDdvHtdddx3NmjWjS5cuPP7449xzzz2MGDGi2voZjUZycnLIysrC2dmZZs2a1fi7d+bMGd566y2GDBlCTEwMLVu2VI9t3bqVJUuWMHLkSJYtW8YXX3yBwWAgIyMDX1/fciZ6yzBEXUyLqy2aAK8lubm5bNu2jezsbNWbPDk5maysLFq2bMnWrVu5//77cXV1ZdGiRdb1xNnZGZ1Oh7OzM8OGDaNbt24EBwdXO7fQ4p1sGY8eOnQozZs3Jzw8nMLCQmbNmlUuf3h4OCkpKeh0OsLCwujevTv9+vXD09MTR0fHOg9As2nTJr744gs+/fRTu05iZWVlxMfHM336dD766CPVi3rBggV4enpy8803M2fOHHr37s0TTzxhtwGaTCb++OMPzp07x5EjR8jLy+Oll16qU223sLCQhIQEmjVrVq6BvvXWW9x8880EBASwZcsWbrzxRkJCQjAYDDz00EN069ZNnZdszSOPPMKgQYPqrH4XiibAa8bx48c5cuSI6qQpm3H5sgAAIABJREFUpeTMmTMEBQWp1qNJkyaxYsUKdSzYgiVyV5cuXRg8eDBRUVHVKokWT2pLu27Xrp0aZKpr164sWLBA9RkB1FklhYWFeHp60rJlSwYNGkT79u1VoVnXTJkyhbZt2zJ+/Hi7x3Nzc/nmm29ITU3l9ddfp6ysjO3bt7NgwQIefvhhMjIyWLlyJVOmTKnU2pWWlsbq1avJyspi//79tGjRgtdff71OBaLFommtIKWkpDBz5kxmz57N7t27ycrK4vbbb8fBwYF9+/bx3nvvMXHiRH766SfVN8XC4sWLL4uphZoAryGWiEarVq2ie/fuhIWFqdOo/P392bx5Mz4+PpSVlXH27FkyMjIYMWIEy5cvp23btkyYMAEvLy9VONWmsZWUlKjep4sXL+bgwYMVAiwMHDiQgQMH0rx5c9Vr1WAwcPbsWdVBLj8/n+7du/PEE0/U6ThbQkICn3/+OVJKunTpoloJrO/REjBj4sSJ9O7dG1BMkIsXLyY5OZk777yT7du3YzKZmDJlSpXPx+KkU5cfLJPJxNSpU9WGaj2Fa/v27SxevFgdFvDy8uLjjz9m27ZtrF69mueee47jx4+rCtuUKVNwdHSkffv2l0Qrt0UT4FVjcUZKTEykT58+qvJmNBopKysjLi6OsrIyfH192blzJ4GBgbRt25Y1a9bw3HPP0aZNG7y8vOzOAKgOi3f70aNHWbVqlRqW2DqU52OPPUaHDh3UMV2DwUBeXh7Hjh1jw4YNnD17lpKSklo5uNaU1atX88MPP9CjRw8iIiLo3LlzheBKFj+Wzz77TFVadu/ezQ8//EBQUBCDBw9mwYIFPPLII9UOD1TmbX0xxMbGqjM2YmJi1ABSUkrmzJnDvn371Lzjx49n0KBBTJ8+ndatW3PnnXeyaNEidu/eTatWrbj99tsJDQ21O2xyKdAEeA34/fffWbZsGTExMYwaNQp/f/9K5xx++eWXFBYW8uijj5KRkcHkyZMZOXIkd91110XVIS8vj6VLl5ZbIKBHjx74+/uTkZHBuHHjqvW8LC0tZf78+WoUNHue0xeKXq9n7dq1FBcXc+DAAQoLC4mOjsbLy4t+/fqRkpLCTz/9RIcOHew6rcC/Dl/dunUjJiaGnj17NojJWa/Xs2XLFpYsWaKm2TqH2UaOs0ylGTp0KNdeey2zZ8/m5ptvpnXr1qqCcrmgCXD7FBUV8c4775CYmMjIkSMZOnSoOjXKFoPBwJNPPsnTTz9Nx44dWbp0KWvWrFEtShfDoUOHWLhwYbkQxPfeey8HDx4kJiamUvOzNadOneL999+nT58+3HfffXUqAOPi4jhy5Ajp6ens2bOH0NBQdUbLgAED2Lp1K99//z0zZ84kNDTUbhm//fYby5cvZ8SIEXTq1KnBxokTExP5+eefy/nfWCsaoPgTrVy5Ut23tO3nnnuOPXv2cPLkSXr27MkNN9xw0b91XXNFLGZSn0gp2bhxIwD79u0jMTGRlJSUSk1COp2O0NBQDh8+zLx584iKiuLOO++86HpYHC1CQ0MZMWIEbdq0qfXL5OzszF9//QUoi3K8+OKLFx160IJlgRBQnNESExM5fvw4K1asQErJb7/9xvXXX8/dd99daRlNmjRh8eLFbN68mQ0bNrB69eoaO6NcKGVlZYwbN65ckJjAwEAWLFhATk4O/fv3Z926deWmhgDqUqcJCQn8/fffDBkyhHvuuadGgR00Lg/S0tI4deoUAMuXL2fdunVkZGTw9ddfV7DuWPYDAwNZsmQJ69atY+LEiRf9QZdSMnfuXIqKihg8eDA9evRQPZitfWKqo7S0lOzsbLZu3UpqaipPPfVUnQU2iYyMVGPvjxkzhhMnTnD27FmWL1+Og4MDy5YtY8aMGZUKb4DbbruNTp06qX4rt912W43GuC+Gv/76iw8//LDc9yMqKorp06fzzDPP4OLiwurVq1m3bl2584xGIwEBAaxcuZLi4mJGjRpVzsmuMaAJcDNCCObMmUNeXh5lZWVqwIDY2Fi7ArxLly7MnDkTJycnxo8fT79+/eqkHkOGDGHIkCEXXc7dd9/N999/zw033MBLL73EjBkziIyMrFONXQhBeHg44eHhREZG8u677xIQEEBUVFSlDiZlZWUIIXB1dSU6Oppz586xadMmDhw4UGfP0B6WuewJCQkEBASQkZFBr1690Ol0fPHFF+zfv5+8vDxuuukmhg0bRtu2bTGZTOTl5eHp6XlJnNI06oaIiAiWLVumLirx+uuvA0rgJFszsU6nIzo6msmTJxMZGamGH75YhBB8/vnnF12OxQHLz8+P2NhYZs2axdNPP31RoUrt4erqSqdOnejUqRNZWVls3boVJyenSteVkFKqwWyaNWtGREQE7u7u/PLLL9x+++31uiCUJRiNJY4FwH333ccbb7zBtGnTVF+Dp59+mmuuuUb1EcrMzCQwMLBRL1almdDtoNfrefTRR1WvQ3uRvUwmEz/99JPqVXk5YlnlatKkSYDS833iiSfo3r17vVwvMTGRo0ePMmjQoHK9AtsVgEBx1HN2dlZjLut0Ol544YVaL/tZU6SUxMXF4ebmxosvvqiOr7u5uaHX67nlllsYNmyYGpyjMaKZ0Ktn9erVbN68mXPnzlWIRWDh3LlzHDhwgKFDh162ipvJZGLx4sWq1bB9+/b1Isgt19q1axdeXl5ER0eXO1ZQUMDChQvLhXB1cnLCz89PnS/et29fxo0bV29Wq4KCAs6cOYObm5saulSn06lRE0eNGkWfPn0ataDWxsBriMlk4vPPP+f8+fNqeL0333yzUa5SZCExMZFly5apEcEWLVpU66UYLxSDwcAjjzxSTjtu2rQpXbp0Yf369Wp4RgsN8RufOnWKV199FYCePXsyevToWgWDsMVgMJCTk0NgYCB5eXkcPnyYs2fPcvfdd1ewRKSnp5OQkKCGyK1LNAFeNSkpKbzzzjs4OzuTnJzM8OHD7YY9bSwYjUb27dvHhx9+CNR+hbaL5fjx4+rqhpZob5GRkcTExLB8+fJyee+//36GDRtW73VatGiRujzypEmT6Nix40UpYTk5OTg7O6uhp7ds2UL79u3p3LlzuXxGo5G4uDj0er0aEbIu0cbAa4DRaGTJkiWcO3eOu+66i9jYWMLDwxu18AYlfOLUqVP5v//7P8LCwhp0/DYjIwODwcDLL7/M2bNnWbp0KSkpKWo4x8cff5yvvvqK4uJirrvuugapU+vWrXnjjTf47rvv1FXp7LFp0yYWLlzI22+/XW7uqDXp6el8+OGHFaYbAYwYMUIV4JmZmSxatIijR4+qyszlMvf5aiApKYn33nuPm2++WXV0utwCqdQWR0dHevTowYwZM5g+fTojR45s0OufPHkSPz8/Jk2axMqVK9m5cydxcXHExcXRr18/wsLCWL58OU5OTg1mpbz//vtp06YNX331FSEhIXaFd3FxMW+++Sbu7u5Mnjy50u+hJfiWvfOtBfjOnTtZvnw5GRkZAAwbNkwNKlXfXPUC3GQycfDgQQwGA6tWrcLT05P/+7//49NPPwWU5UVnzZrF1KlTL3FNLx4hBHfddVe9zCOtjJCQEEaMGMH8+fPV6TKgxA5+8MEH6dixY4Otr75371527NihhoYtKytTLQCHDx/m1KlTGAwG1q9fT1BQkGpye/nll3nmmWfo3r17uR61yWTigw8+wNfXl5deeqlCPONVq1Zx++234+joyNGjRzlw4AB9+/ZVA3Zo1C/5+fkcPHgQvV7P999/z6hRo2jRogVLly4FlFjer732Wq1Xv7vcMBqNtG7dutpQu3VNr169OHHiRIUFRvr168fo0aPx8vLitttuq/d6lJaWsmLFCrKystQFZ0wmE1JKSkpK2Lx5MwaDgVOnTqm+NpY48ZMnT+aFF16oMLZ/9uxZ5s+fz0svvcTSpUvV9S4A/v77bwYMGEDr1q0BJaTssGHD1Ih0DbmM8VUlwNPT02nSpIk6nm00Gpk2bRqlpaX4+vrSq1cvhgwZwvbt2zly5AigRA5r6IZRHxiNRs6fP9+g0yP27NnDp59+il6vZ/To0cTExBAfH09MTMwlWc93yZIltGjRgnbt2lFUVETnzp25/vrr2bVrF3PnzmXYsGGUlZWh1+tJT08vF8Bh7ty5eHh4MHv2bDw8PIiPjycvL4+EhATat2/P4cOHadWqFQ4ODnTt2pX09HR+/PFHdDodI0aM4Nprr8XDw4OoqCiOHTvGd999R3Bw8GW7ZnljwmQykZycXC4i3uHDh/nPf/5DixYt8PX1ZerUqbRq1arcmHf79u3rZcy4oUlOTq4ylnZdYzKZ+Pjjj9W12T/77DP++ecfdbWuhiY5OZlff/2Vxx57DL1eT0lJCQ8++CBubm7897//5fTp03Tt2hUPDw9KSkrYuXMnwcHBpKamkpmZydSpUxk6dCgPPfQQubm5nD9/Xg39nJaWRkhICEIIgoOD6dy5M+vXr+fVV19l/vz5+Pj48OCDD7Jq1SqeeuopPvnkE1555ZUKU9jqi6tCgCcmJrJ69Wo1FnHXrl3p168fn376Kc2bN2fWrFnleqUWv4COHTsyadKky9aRpTY4Ojri7OxMWlpanU0pqwyj0ciKFSv4+eefAWUZwH79+uHl5VXB67chCQkJUVf4srB06VL27t2rBp4pLS3ljz/+ICAggBEjRrB69WpVWy8oKGDPnj3qinEWNmzYwA033MCDDz5IaWkpe/fuJScnh759+6rKn4+PD5MmTWLGjBkMHjyYDRs2sGfPHk2AXwRSSnbv3s13333H+fPn8fPzo0uXLjRr1owlS5bw2GOPlfutAVVxfOqpp7j++usvQa3rHk9PTzVUcX2TmJjICy+8oO7fcccdeHh41GitgfrC3d0dJycn+vbtqwbYKSoq4v/+7/9o27Yt06ZNIygoiN9//x1ADUVtPSd8zZo1BAcH89VXX5Ur+8iRI3Tq1IlWrVqRkJDAwYMH8fPzU2O3gzJzaMOGDXzyySfqecnJyURFRdX3rV8dAvybb77hwIED6v6+ffvUqDx9+/ZVhbdlGdDNmzcDylKPV4LwtjBs2DAWLlzIjBkz6rUHPHPmTGJjY3FzcysXZvZSc/z4cfz9/bn22mtxcnIiOTmZ1atX8/zzzxMeHk5CQoK6BKijoyNnz55VhbejoyNPP/10OU96gLFjxzJw4EBKS0txdXVVVx6z5/GampqKEIJ+/fqxYcOGRj8Ge6nJzMxk7ty56n5UVBQbNmxQfRqsxymTkpLYu3evOh/cslrWlUDnzp1ZunQpGzZssLsmd11iEd6vvPIK7du3r9dr1ZSUlBQMBgNHjhyhXbt2FBcX8/PPP1NcXMy4cePIy8vjxIkTODk50bJlS3Jzc1m/fr16/n333UdmZqYqvC1LAH/22Wc4ODjg7OxMaWkpISEhFRRCC87OznTp0oXWrVvzww8/NIjwhhoIcCHEU8DjQIQ56SjwlpTyd/NxAUwHHgN8gd3AU1LKo1ZlSMAAtJVSxlulfwkESClvrYubqYwJEyYwefJk8vLyiIqKYuzYsUybNo2+ffuyYcMG2rZty59//snp06c5fPgwt9xyC6dPn74iTOfW3HnnncTGxvLtt9+qSwDWB2PHjmXq1Km8//779XaNC+GBBx7gxx9/ZMuWLeXSLcsiWqa/lJWVcfDgQfr164ebmxtBQUG8+eabODo6cu7cOX744Qd10ZMff/xRXaXI0dERg8FQaUS+7t27k5iYyIIFCwgLC7uk1gho/G07ICCAKVOmMHv2bEB5vgUFBRw5coT27duzZ88e3Nzc+Oeff9i1axfu7u5cf/31ZGRkNOrpgrY4OzszZcoU3nrrLVq2bEmrVq3q7VqW0K+Xi/AGxVIaGhpaYa0IIQSTJk3C29tbXV44MzOTFStWMHDgQDZt2qQuwKLX69VAL3l5efTo0YNnnnkGvV5PkyZN1BDXS5YssRs454EHHuC3335j8+bNDaqY16QblghMBf4BHICHgJ+FEN2klIeAF4BJwMPACeA1YJ0Qoo2UMt+qnDLgbcB+fM16xMPDQ10L1xLEwd/fn127dhEaGlrOJASwbds2+vXrV2XEocaIEIJnn32WadOmcfDgQUaOHFmnJlwpJdu2beN///sf1157bZ1PpbhYunTpwvHjx9mzZw/9+/fHYDDQsWNHunfvXiFm/OjRo3F3d+e9994rNwvhhhtuoGnTpsybN48dO3bw6aefkpGRwbp161i5ciV+fn6VBv5o0qQJo0ePVhetuQxo9G3b0tu2hMQNCAjgyJEjFBQU8MUXX5TLq9frEUI0mIdwQ9K8eXMeeughXnvtNbp06aIubVpXFBYWsnTpUvR6PY8//nidlVsXCCG49957WbRoEd7e/8/eeUdHWW19+HmnpZJJJYVUIEiR3jsoRVSKFUQBFfEiRZo0Ba40ARVBBAVUQJRuuygiTYqU0EsINSGQPumZTMu09/sjyXyEBEiHQJ61sli89Uwy5+xz9tn7t5XUrVsXOzs7WrduTf369Qt4w/KLl/Tq1YuhQ4faItAVCgXLli3jq6++4vr16/Tv35///Oc/GI1G3nvvPds1d/Nc1qtXz6a3UZmUKg9cEIR0YDqwGkgAlouiOD/vnAOQDHwgiuKqvGMi8Bm5g0EbURRP5x1fRzFn6WXNFTUYDHzwwQcMHjyYDh06YDKZ0Ol0tj8OwDPPPEOnTp0qdAb7MGA2mzl79iyrVq2if//+SKVSevfuXaaCHKIosnLlSiIjIxkxYsRDF9lrtVqZNGkSbdu2pV+/fvct8nL48GH+/vtvVCoVAQEBDB48mLi4OH744QesVisNGzYkJCSEOnXqoFarSUhIwNXVlV27drF06dJKjfTPpzzywKti3z516hRr165l0aJFODs7YzQa2bNnDxs2bAByi9L06dOH3r17PxSVpSqSrKwstm3bRkpKCiEhITRr1qzMfTEpKYn58+fTuHFjBg0aVKGSx6UhPDyc1atX8+abb9KyZct7XmswGPjpp5+4dOkSmZmZ9OnThx49erBkyRJbZcdmzZrZqkBGRUUhl8s5ffo0TZo0qXBZ2LtRLnnggiBIgVcAZ+AoEAL4ALvzrxFFUS8IwiGgA7DqtttPAL8AnwIVu1FTBPb29vj7+7Nz5046dOiAXC5HqVQyfPhw0tPT76nd/aghk8lo3bo1sbGxNsEFOzu7++6fxcTEcPjwYZsr+fTp03h5eVGrVi0CAwM5cuQIq1evLtcKaOVFYmIimZmZDBw4sFiKTJ06daJTp05YrVa2bt3KqlWriI+PZ/To0Tz55JOcPXuWpKQkdu7ciZOTE3FxcRgMBnr27HlX471y5Uqio6N59913bSkoDwtVuW83bNiQjIwMW+CQQqGgd+/eXL9+neeff96m7/04oFQqGTp0KOPHjyc8PJzt27ezcuXKexpdq9XK4cOHuXXrFu7u7mzYsAEXFxdcXFxsudRPPPEE7777biV+kuJz7tw52rZte1/jDbl24J133gFy4yK2bt3K5MmT0ev1/PDDD8TExHDx4kUSExM5evQo/v7+nDlzBg8Pj7sqWCYlJfHZZ58RHBzM6NGjy33yLqSk3PVcsQy4IAiNgWOAPaABXhBFMVwQhPxyTKo7blEBRfkRPwQuCYLwjCiKfxfjve+Su/9WZiwWC1lZWYVmoxUd9PEw07dvX37++WcgV8HI3t7+rpG5mzZtYv/+/fTs2ZOcnBzi4uJ44403aNy4MZcuXeKXX37B0dGRw4cP07Zt2wLpOc558oYPAqsosjY9nQMaDa+4uFAjT4GtJLwDDFcoUAcFody5E3buLPjlNhhYpFZzRKtl69atvHLiBHYSCZp58wo85+rVq6hUKlasWMGwYcOoU6cOmZmZD1SK92Hp22X5jiTn5AAUUBeUyWSMHz++1M+syigUCkaPHs38+fMBmDlzJrNmzSrSpZ6RkcHChQuxs7OjZcuWtrro77//PllZWZw/f95W/jctLQ1HR8dKU3G8H/Hx8fzwww8kJSWVyn1dq1YtJkyYgNFoxGKxIJPJqF27dgEPrCiKvP7662g0GtatW8eMGTMKfVcdTSYSExPJSkri+/Bwhrq7o7dacZFKcangMsPFXYFfBZoBrsBLwA+CIHS77fydfnihiGOIohgpCMK3wEJBEHbfeb6I61eT68rLd9WVmu3btyOXyytFzq+qIJfLGTZsmK285ooVK9DpdEUWU9m1axeLFi2yBV7dHgQXEBBAQkICe/bsYefOnaxbt67IFJ4HwfLUVOKNRhb4+uJfhowCQRBQ3qMzTqpZkyN5amwrU1MZV0QJ14kTJzJ16lSSkpJYs2YNKXkz6xdffJHatWvj6OhITk4Oer2ehg0bVparskr3bb3VyufJybzwwgsPbU2CB0HdunVtRXtSUlIYO3ZskSvxiIgIlEol06dPL9IzFRoayokTJ8jMzGTs2LHAw6EgmJqayvz58+nduzfjx48vk9fvXplGgiAwZswYli9fTnR0NFeuXOHOdbifXM4gV1c2Z2ZyRqdjv0ZjOzfa05NacjlmUcQkigiCQEsHh3LTZS/WWl8URaMoipGiKJ4SRXE6cA6YAOQnH/rccUtNCs/c85kN1AFKHEmSX4CiJOh0OjZt2sTu3buJjIzkr7/+KvEzHmV69+5ti+KF3Lzov/8uuIBSq9VIpdK7SsqKosgzzzxDo0aNaNKkCUChogcPgpNaLce0WmaV0XgXB5kgMNfXF4B9Gg1/ZGUVuiYgIIDevXsDFIg3+PXXX9m5cyebN2/mr7/+4p9//mH27NnExMRUaJvh4enbJUUURaJycpiZmIhCEPjtt99s8rzV5G6JLVu2rECN8f/+97/Ex8cXuC4lJQU/P7+7GhSFQsGgQYMIDQ0lKCjooaiTLYoiP/zwAy1btqR///4VvmXXoUMHmjRpgtFoZPny5cTfUb8B4NW8sTHLasX9tr69LTOTH9PT2ZaZyV9qNd+mpvJNaio5pbBlRVHaZGAJYAdEk9vRewInAQRBsAc6A5OLulEUxWRBED4H5pLruis2s2fPZvbs2Xc9r9Pp+Pfff3F0dEStVrNjxw7UajUdO3Zk8ODBfPPNN1Wq3uvhw4dxdnZGJpPdNbe4PKhVqxbz5s1j5syZvP/++2zYsAE3NzebNnlGRgY1atQokD6RmJhIVFQUSqWSpUuXotfrgdwZvYuLCykpKWUqEFJWjFYr36SmMtHLC6dKCihr6uBAE3t7MiwWfkxPp41WW6iK3bBhw2jevDmiKNrEIVauXEmdOnVshTWsVis7duxg2rRpfPLJJ8hksruuLs1mMwcOHChUx7wMPJC+fVSrpcMdv6vbuZ6Tw2WDgRoSCZcNBv7OzsZdKmWQmxt/5U2WfPMmUA87BoOBffv24e7uzpNPPlmh2Rqvv/46er2exMREunbtyoIFC/j8889twXyZmZkFXOsWi4VLly6Rnp6Oh4dHIXngdu3akZWV9UAV7E6fPk1MTIzNI1AZDB48mJkzZ6JUKtmUnMwHd6SAygSBbcHBnNDpcJdKqWNnxy61mu/T05nt40OtvAVEitnMlPh4LhsMfODtjYdUivNdPHuxRiN7s7NxvYfnrzh54AuBHUAsUAMYDHQDnhNFURQEYSnwkSAIV4BrwAxy99Lu5WdZDLwHDAD23a8N+ahUKvbu3UuPHj0KnUtLS2P27NlIpVJUKhVPPPEEgwYNol27digUCkRRxMvLq9IS7MsDf39//ve//3H27Fk6d+7M8OHDK+xdtWvXtkXtHj9+nN9//91mwGvVqoXVauXMmTO0bNmSzMxMpk2bhp2dHRKJhAEDBuDv74/RaGTXrl1cuXKFuXPn4ujoiLOzM92NRto4OhJaiRHAWquVVIuFwEoW4pnh48OrN2/SzMGBdevWMXLkyELR/fleCsgdzLOysgooWUkkEp5//nmSkpL48MMPEQTB9re5Hb1ez+bNm/nnn3944YUXOH78eIna+jD17XVpaQTK5UV6Snaq1WzOyCAjr7zvQFdXPvH15cm8vdg2jo6kjRtXZcpFKhQKlEolGzZswGQyMWHChArL2pBIJAWCz1avXs3FixdtAVnNmjVj/fr19OrVC3t7e/78808OHDiASqViwIAB9O3bl+bNmxMbG8vatWsJCwsjLCyMxo0bY7FYaNWqFZ07dy40Ua1IEhIScHNzq1SRrcDAQAYMGMD58+c5o9dzQqulzR2f2U4iofNt8qln9Hrq2dlR87aFj5dMxgI/P2YlJjI2Lo7Bbm4MKsKzGZmTw5LkZOwlEgbeQ7OgOEsTH+AncvfK9gGtgT6iKO7MO/8p8AWwAjgF+AK97sgTLYAoihpy3W0lGtHHjRvHmjVrUKlUhdzp+QpL+W7e/v3706VLF9sfWavVsnz5clavXl2SVz5QgoODGTduHP369ePWrVuV9t5+/fqRnZ3NggULOHHiBBKJhJEjR7J8+XImTpzIxIkT6dGjBxqNhmbNmtk6edu2bXnzzTeB3NKGOp2O5ORktmRmMikhgX43brA+Pb1SPoObTEYPZ2cSbitjWhnYSyQEKRTUVihISkpi9+6it4PNZjP79u1jyZIltgpKtyMIAiNGjGDt2rU2JajbUalUzJ8/n+zsbL744ovSVqJ6aPp2XTs7VqelIYqiTco4nzCtlo55g6UCeMXV1Wa8AS4aDEyaNIkbN25QFZBIJHTq1Illy5Yhk8lsVawqg5dffpnVq1fzww8/oFKpbGlmY8aMYcKECezYscMWA9OzZ09ee+016tevT8+ePW3u+Pr16xMeHs6lS5dYv349U6ZMYfDgwUVW5KsI2rRp80DSAZ988kmSkpJ4w82Nr1JTSTGbi7wuzWzmM5WKs3o9H3l7I79jYukjl7M6MJB3PTxIveMZoihyIDub2YmJPOfiwqd+foUmCrdT5eqBz5o1i6SkJPR6PWvXrrU8vhHjAAAgAElEQVQl1ouiyNKlS9FoNLz77ruFVK62bdvGb7/9dtfVTDUFMRgMHDt2jL1795KWlkbr1q0xGAwkJiYyZswYHB0dGTlyJK1bt8bb25sOHToQHByMwWBg69at1K9f3xat7n7kCI3s7bmk19PYwaFSVuKiKPJeXBzjvLxoUMmdPdVsZlxcHG+PHcvy5ctZunSpzU1psVjYvXs3v/76K3Z2dgwbNuy+in8zZszgtddes8l/7tq1i82bN9OvXz8GDBhgW3lW5XrgX/v7MyouDgdBoK9SyRu3FedIMJmYmpBAfxcXnnFxKeRy7JdnuO+mgFdNQeLj4zl06BD79+/Hy8uLpk2bcubMGVue92+//cavv/5K3759qVGjBk8//TQODg5ER0ezd+9ennrqKS5dukRycjJNmzbFwcGBqKgoevToUSkppBEREaxfv76Q8lpl8OeffxLx228EKxTEGo18fNu2jdpiYXFyMuf1elo6OjLK0xOPe0hWR+Xk8FlyMl/7+yMRBNLNZlampnItJ4eZPj7Uua3Mab8bNx6NeuD9+/cnPj6e3bt3c/HiRVxdXQkODkYQBMaOHcvSpUs5d+6cLVgon3w3Zn4BhMqqPV1Vsbe3p3v37nTv3h2VSsWJEyewWCw4OTmxcOFC2rVrh7u7O87OzqjVaj788EM2btyIvb09Q4cOLfAs57z92fqVaEiPaLUkmEyEVmLt83w8ZTLedHfn+++/x2KxcPnyZTw9PTl37hz//POPTQK0uNs5PXv2ZMuWLcyZM8dWs37mzJk0aNCggj9J5eElk/GGmxtaq5XTOh3tnZzwlMlQSqX4yeUs8vNjQlwcz95j73X79u08/fTTdw22rCaXWrVq8dprr/HKK69w+fJlLl68SI8ePdizZw/Jyck4OTlRs2ZNpFIpf/75JzqdjldffZWQkBBGjBgBUEjHoDK15VevXv3AMg569uzJtd9+4395cRcZZjMRBgMHNRou6PW0c3JiS3AwdsWIuwlRKHCRSPhHo6FHjRqEabWkWiwsqVULt2LWqqh8uagy0rJlS/r160ebNm349NNPbfVaITf3s379+iQkJBS67/Z9xy+//NJWmaaa++Pt7U3fvn0ZMGAAb775Jm+99RY6nY709HT2799PkyZNCnVoq9VKXFwcixYtYmxsLCe02kptc6u8lUDyXdxcFU1PFxdm5OWLfv3113z77bdER0fTvXt3evToUaJYjE6dOpGQkGAr2qBQKB5I2caKxE4i4VU3N95wdyfOZGJCfDxDbt0iPC840lcmw00mK/T3FEWRtnnudLPZzOjRo9HclsZTzd2RyWQ0btyY1157jR49ejB79mwaNGhARkYGycnJWCwW6tSpQ807UiL1ej1nz55l5MiRLF26lIyMjEptd69evTCbzZgfQN+2s7Njpo8Pr+TtSw+LieFPtRoJ0Fep5EVX12IZbwCJIPCsiwsHNRpEUcQCBMjlxTbeUAVX4PnkFyOYMmUKP/74I3FxcQQGBnLw4EFGjx5d4FqVSsWsWbNo06YNJ06cAGDDhg3VOeGlpGnTpjRt2pShQ4cyatQoli9fjoODA1lZWVy/fh1/f39+/PFHLl26RE6eyMY8lQqlVIqPTMbVvGNTatakUwXVzLWXSBjq7s6k+Hhm+vjQ8AHsmQUGBtKlSxcOHTpEdnY2RqORyMhIXFxceOqpp4r9HKlUSv/+/dm8eTONGzdGLpc/EKnWykAuCOTkbet9ULMm85KSeFap5LLBgKMg4HvH4LYsJYXjeUY+n4iIiGoPWymwt7fnmWee4ZlnniE+Pp7Jk3OTDUJCQkhLSyMyMhI/Pz9mzJiBVCrFYDBw4sQJTpw4QVBQEAaDAZUqN8OwInPFO3XqxOnTp/nkk0+YMmVKpe+HC4JAf6WSbZmZOEkk3MjJoZZczjGdDh+5nKASBNd1dHZmW2YmZ/V6fs/Kok0JRXKq3B54Ph9++CE3b95k2LBhdO7cmXfeeQcvLy8+/vjjAi60fCUdgMWLFxdQ7Pn2228rNXryUeTO+sCQWzxGoVCwYMEC1q9fj2t4OK+5uaEym7llNCIA36WlYS8IzPLxIaQC3dxhWi0rUlL4LjCw2DPj8kIzbx6iKBIdHY27uztKpZJvv/2WmjVrllhTWafTMXr0aNuE6Omnny6UlVCV98C356lfWUWRAXnBUD8FBXFap2NJSgpvuLnxkqsr0tsCgk7pdMxJSmKImxvpHTrYvGqhoaH3TDetpnj88ccfNqnlfPz8/GjZsiXPPfcco0ePZuHChQiCQFpaGtnZ2Vy4cIFDhw7Rs2dP3njjjSIrd5UHZrOZL7/8Eh8fn0ovTpOvxKaxWFCZzTahlndjY1nu7497CUs1/61W8/VtgYyL/fwKxQndbQ+8yhlwq9XKzZs3SUpKYvny5UDuwNWtWzccHR0LrUz27dvHxo0bGTlyJA4ODgXyGpcsWfLASzo+CpjNZg4fPszq1attrvQxY8bYfrdFyWQarFZ2qNX8kJ7OQFdXnCUSWjo6VojgylcpKZzT63nfy4umDg5YRBG91YqzVMoto5FjWi2JJhO+cjmvuroiKad0pDulVOPi4pg7dy6LFy/GuRSehxs3bhAbG8uqVavw9vZmyZIlBc5XdQOeabGQbjazIT2dk3o9nlIpM3188JDJCklS6qxW5iQmYhVFpvr48IVSSXh4uO38w6AW9iiQkpLCH3/8wd69e2nQoAFKpZL333//nvfkywVbLBaaN2+Or68vLVq0KHcJ1vxMjLp16/Lmm2/i4uJCTk4OgiAgkUg4e/YsERER6HQ6unfvXm4xI0WNZ2vS0tBarYwthdCNKIr8o9FwNU/fYIynJ71uU8wT5HL6Xr36aBhwlUrFhAkTAOjcuTNRUVEYjUbGjBlTYF/RarWybt06IiIiSE9PJycnh3Xr1iGVSvn111/Jycmp0JrYjzNjxoxh+PDhttzme+lcn9XpOKXTYRJFjmm1vOLmRr8KEIk4pdOxIiUFH7mc6JwcmxaoQ17uZpBCwR9ZWThKJCSaTMzy8aF2GT0DtxtwrVbLnDlz6N27d4nc50Xx77//4uvrW6hIR1U34GvS0vg9KwsfmQyZIOAtk5FqNvNVQECB65NMJmYlJvKEvT0HNRoa2tvz0fffk5iYyKZNm+jbt2+V0nuoKkRERLBs2TJWrVp132vzNSGysrJISEggJiaGmTNnlvuCyWg0smXLFo4dO4a7uzuxsbFA7rZTcHCwrcDJ77//jpeXF15eXowdO/auZUGLw53j2UmtlhWpqSz197+n6Mr9yDCbOaLV0s3ZuUCmxb0MeJXbA/f29mbkyJGsXLmSf//9F7lcjslk4sKFC9SrV4/s7Gz27t3Lzp078ff3Z+7cuUyePJm+ffsCuX/YLl26YG9vz+XLl6lXr16ZymhWU5BDhw6Rnp5e7I7a3NGR5nkBZ88rlUyMj6eTk1OJ3VD3o5WjIysCArig1/OEnR2uUimZFgs1pFJkeSvulg4OnNHrOafX80N6OrPLSdkrPj6eFStW0LBhQ7p3717m53Xu3LkcWvXw8ZqbG7FGI6f1ehSCgMpsxiSKpJnNeMhkXDYY+F9WFie0Wt728CBYoeCgRsMMb2+MJhO+vr688sorNjGnau9a+SGKIj/99FOhgLa7oVAobGMu5Eo0b968mXHjxpVruxQKBUOGDKFbt25kZmbSoEEDBEEgOzvbFicFuUJVqampbNq0iTNnztCmTZsyv9sqiuzNzubH9HRm+PiUyXhDrnbF80UsXsR7aFlUOQMO0KVLFwRBYN26dbRq1YrDhw9z8+ZNIDeV5MSJE7z99ts22dScnBx+/vlnW+UtyK3E9ccffzB69Gjq16+P0WjEx8enyqg5PYxcu3aNlStX8vLLL+Pn51fi+wMVCmTAQpWK6d7eJYrGLA6OEgntbot5uPP5bjIZT9eoQZrZTPydN5eSPXv28PPPP/PSSy/Rs2fP6u/XPXCQSJjm7c18lQqDxYJOFIk1mYgxGnGXSpmekEA7Jye+DQzEQyYjPS8KefCtW5AnIHQ7P/30EzExMXh5eVXHupSR7777jlu3bpVaCKtDhw7MnDmTkydP0qxZs3LfGw8ICCDgNk+N6x3qZfnu861bt5ZLmqHOamWhSoXWamWunx/Blaz4mE+VNOCQG4l4/vx5RFGkSZMmREZGotVqcXd3x83NzTbDunnzpk2nO5/WrVvz7LPP8scff3Dz5k1WrFgB5OpU6/V6TCYTbdu2xd/fv8CeutVqRavVVqh2cVUmP0q6lKpgAAxyc2NNejrDYmKoo1DwnFJJBycnHCsxAO1aTg6NyyGyddeuXezYsYM5c+ZUrwaLiZ1EwkhPTz5MSGCMlxdzkpLIzJNQ9ZXLaePoaBPH2JyRQT2Fgmu3qdR9+umn7Nixg2PHjhXYIvvvf/9LWFgYQUFBtGjRolBVLoPBgEQiqVR5zqpCamoq+/fvL3XsBoCnpydNmjRhyZIlODg40LBhQ15++WUCAgIqLaMiIyODtLS0Aoa+NKgtFhapVPjK5bzn6VkgsLKyqXJ74LdjMBiYPn06vXr14sSJEzg6OjJx4kSGDx+OTCajVq1aXL9+nWbNmnHu3DnbfWvWrGH48OGFJBsBWrRogY+PD6dOncJsNtOyZUueffZZvL29iYyMZNasWfj6+rJ48eIK/8xVjddffx1RFAsFEJW01rPOakUuCGzNyGBLZiYKQUAA+ri4MMTdvZA0YXlzNi/yeZaPD3VLuQ8eptWyTKtl5syZZR4wiktV3wO/nTCtltWpqQxxd2dlaiof1KyJSRRZmJxMTZkMf7mcM3o9/ZVKm6hGp06daNmyJV9++WWR73n55ZeJjo7m0qVLBAUF0aZNG3r27IlUKmXp0qWcOHGCDz74gBYtWlT4Z65KJCUlMXHiREaOHEmXLl3K9CytVovFYmHKlCmIoohWq6VmzZoMGTKkQD2AikAURZYvX05OTg7jxo0rtRdg8fDh2EkkTKpZs8LHonwemSj0O1GpVHz66aekpaXh4+PDiBEj8PHx4caNG6jVas6ePcuLL77IBx98YLtn+vTpaDQapFIp2dnZuLu789dff3H16lXs7OwYMmQIXbp0IS4ujmPHjvH333/Tvn17/vnnH9szXF1dmTdvHu63ST4+7gwePJiPP/64UABRSQ34nVhEkSyLhdVpaUQYDLyoVPLCPQT+y4NjWi2rUlNZFRBQ4vQza15KydDx4yvVGDxKBhzgL7WaDenpZFut9HVx4TU3N9LMZjIsFi7n5KCzWunu5MT424SbvvnmG06fPo2bmxvx8fEolUq2bdtGamoqISEhTJo0iRo1anDx4kX++OMPIFfe9vr160BuCpq7uztjxoypjo3JY9++ffz+++98+eWX5b5aNpvNXL58mVWrVuHs7Mz7779fqu23kryvLOln58+fZ+3ixXzt74+iEr2Cj4yU6p14e3uzYMECFi9eTHh4ODNnzrSdCwgIoH///hiNRt5++22sVit6vZ46deqQnp6Oq6urzSUUFxeHQqGgadOmrFy5ktDQUJRKJXK5HIPBYDPerVq14u2332bUqFGMGTMGX19fXnrpJdq2bfvYd/hGjRqxbt065s6dW66/C6kg4C6TMc3bm3C9ni+SkyvcgLd3cuJvtZq/1Wr6l/BdFnIV4CpDF/pR5lkXF+rb2TE+Pp4/1Gr+UKtt5552duYFV1dijEaGuLnhNHAgMpkMuVxOSEgIwcHBthXdjz/+yMyZM/nss89Yvnw5U6ZMwdHRkaCgIHbt2mUTAnn//fcRBIEvv/ySU6dOUadOHd55550HJtv5sBAaGkp6ejqHDh2iW7du5frsfDW4L774gjVr1hAWFlamLbjivO+NN95g6tSpvPDCCyXuoxkZGYhQqcb7XlT5FXg+VquVixcvcvPmTeLj47l8+fJ9q/y88cYbPPvsswWO7dmzh7Vr11KjRg20Wi0+Pj4YjUbbs+bPn09ISAiiKBIZGcnq1auJj4+nSZMmTJs2rewftApjtVr55JNPaNmypa1yEZR9BX47+7Kz2aFW80WtWuX2zLvxc2Ym0Tk5TC7F/vWMhATaDR1a7gPevXjUVuD5qC0Wjmu1pJjNXMvJ4UxeTEuIQkH0bfvfXl5epKSkALnytXcGMo0ZMwaDwYC9vT3p6ekFlBldXV1t1cFMJhNhYWF88803ACxbtuyB1rZ/GIiJiWHevHl89tlnFVIL3GQysWjRIjp27FgumRr3Y9y4cbz77rsl1nBPTEzkv5Mn811gYKXG5TyyK/B8JBIJTZo0KaB5Drn7Hunp6fz8888YDAY6dOjAb7/9xqhRo/D398dkMjFt2jRkMhnPPfccPj4+bNy40SYl+M477+Dr68u6des4fvw4e/fuZcSIEQiCQGhoKDNmzODLL7/kwoULaLXaxzraVSKRMHToUD755BM6d+5c6oCXu3FSp+PH9HRm+fiU63PvRgsHB37LzCzVvQNcXVm9fXsBA240GlGpVJW2J/6o4CKV0vOOoDPIFQNSmUwsUal4+q23uHr1Ko0bN+b111/HwcGBGzduMGPGDF599VWUSiVz587F1dWVjRs3cvToUcaPH8/Zs2f57LPPyMzMJD4+nqCgIORyOZ07d0YqlfLtt9+ycuVKm67940pgYCAdO3bkl19+4e233y7XZ+fvTTs5OVVaimSTJk2IiIgosQH39fWlob09u9TqAl7ABJMJF4mkUKW8iuaRMeB3QxAEPDw8+M9//mM71rx5c8LCwjAajaxatYrExERq1arFypUrgVwVp0uXLgG5aQcfffTRXfMXlUols2bNwmQyVZhsYFUiMDCQli1bsmXLlkJSn2Uh1mhkSXIyH3l7l1lgpbic0ukILGVUcj07O7Lv8AB98803HD9+nOXLl1fHTpQD9hIJQXZ2LA0MRHNH5TxXV1dbucnr169z9uxZ+vfvz8CBAzl37hwZGRkcOXKEjh073lW1rUOHDrRr1w6r1VqZH+uh5aWXXmLixIl07dq1UPGisvDLL7+QkpLCnDlzyiSwUlyMRiOXLl0qtau+np0d6rzMCIAUs5mRsbE0dXBgbjlpRxSXh8ORX4nodDomT57M119/zYwZM4iNjWXNmjV89tlnPPHEE4SEhGA0GjEajTRo0IArV66wZcuW+z4333jv3r37rsERZrOZmzdvFhn9/igxYMAAjhw5wt9//11uFYOu5+TwpL09jcpZjvFuWESRP7KySiWNmI9Wq8VqtZKcnMzGjRs5fvw4AGfOnCmvZlZzGydPnmTChAls27aNRYsW0bNnTzZu3MjgwYMBbMGVVquVZs2asWLFCuLj753xL5FIbEZl8ODB7Nq1q8jrsrKybIU8HlWcnZ3p06cPq1atIjIystyee/HiRQbmxTBUBmfPnsXNzY2OHTuW6n4LoLVaEUWRszod85KSADiv12Op5LH9sTLgGo2Gd955B5VKxfr16/n+++9ZuXKlLYhl+PDhuLm5MWHCBPbt20eXLl2YN28ehw4dwnQPNZzbadKkCYIgkJWX2pJPbGwso0aNsq3WH2W8vLyYM2cO586dY/z48Rwth/KOmRYLnpXUwSFXrlMhkeBXQq+KKIpsz8piYnw8zz77LAaDgUmTJqFWq/niiy+A3HrM1ZQv+/fvZ8mSJTz99NMsX76cFStWMGTIECC3AMfIkSP5/vvvmTNnDllZWYwfP57u3btz6NChYr+jZ8+eRU6+Nm7cyHvvvcfevXvL7fM8rAwYMIBnn32WpUuXsmjRojKXEhVFkaysrEr1SEVGRvLkk0+W+L709HS+/vpr/szKopeLC3uys/k0OZmeNWrwVl77K9ugPhYG3GKxEBERwffff0/dunVtwSoODg4FBB38/f2ZNGkSo0aN4qmnnqJjx47Url0bJycnNm7cWEgQ5k6SkpJwc3Pjp59+KhTokZqairu7O59++uljIRbh7+/PtGnTGDFiBF+lppJSxpV4mFZL40pafQN4yGRYRJHz9/mb347BamWuSsW/Gg1Tatbk9ddfx2w2o1AoePvtt0lJSSEkJKTciipUk6sffVijYdu2bbz88su8mafI5ubmZlvRCYJAly5dWLx4MW3btuX9999HoVDQqVMnDhw4wOnTp+/5DovFQnx8PG+99RbTp08vdD4tLY3u3bvbVvqPMoIg0K1bN5YsWYKHhwfffvttmZ4XHx9PTk5OhaaO3Unt2rX5999/sdzmBr8fV65c4aOPPsLT05OvAwKoa2dHpsVCV2dnnlcquZqTwyhPz0pXWnykDfi5c+dYtmwZb731FuvXr8fNzY1p06bdM6JUEAQaNWrE888/bxsApk2bRlRUFDNnzrynS/ijjz7irbfe4sqVK4XONW/enIULF+JTSQFYDwtNmzYlUC5HVQavwyGNhmyrleaVaMDtJRLedHfnx/R0zMV0i13NyeGUTscCPz/q2dsjCAK3bt2y5c4ePHiwzEIY1eRub2zNyOD9uDhGxMayJzubwYMH8+KLL94zfdHOzo7evXvbAl0bNGjAf/7zHxYvXmzLCS+K/IDWcePG2cq53s7YsWNtga2PC3K5nGeeeYbk5ORSP0MURX744Qd69OhRqSm47du3R6lUcuDAgWLfs3v3bp588sncgMi8tkbl5CAjN0vivF5P53IO2i0Oj6wBF0XRJvDy1VdfsWjRIoYOHVqq3FwvLy9mzZpFQkIC06dPv2tQy+effw5QIrfc44Amr3RnSVBbLPyVlcXsxEQ+T07mbXd37Cs597KLszMiudHvxaFJ3lZM4m2TlStXrtCuXbvc/bKzZ2nfvn1FNPWx4ohWy08ZGQx2c2NjUBCzfX3p1KlTqZ7VokULpk6dyqZNm2wpZXcSGBjIqFGjSElJ4caNG2Vp+iOFRqMp1XgaHR3Njz/+yMSJE0lPTy+UylsZDBkyhK1btxb7+oYNG3L58uUCxy4aDDxdowZhWi3NHBxwegC54cV+oyAIowVBuCAIgjrv55ggCM/ddl4QBOFjQRASBEHQC4JwQBCERnc8o6sgCPsEQUgVBEEnCEKUIAgbBEEonCNSRnR5g+6ECRPKJW9RJpPx3Xff4ejoeFe3kZubGxs3buTdd98t8/seFcxmMyqzGb8S7F9f0OsZFRtLuMFALxcXVgUE0PoBpOdJBIEn7OxIKIb3INFk4r9JSUjANkOHXHGbM2fOsGTJEkJDQwtpcD9oqlq/Bjin11MjrzBNeQhqNG3alKlTp/L999/bsk/upFOnTmzcuLF6++M24uPjS+T6FkWR77//niVLlqBQKHjnnXeYP3++LQapMgkKCsJkMqEpRnzO/v372bhxYyGp1+YODqxLT2djRsYDWX1DyVbgccBUoAXQCvgH+F0QhPzE6ynAJGAs0BpIBvYIglADQBCEhsDfwAWgO/Ak8B6QBZR7XpAxT+ChKHd2aXF0dOTDDz/k0KFDtudXc2/S0tJwlUpLNNBuzcjgLQ8Ppnp7097JCd8HmJ7XzMGB41rtfTMHdmdnk2mxsCU4GJfbDHiDBg0YMmQIzZo1Y9SoURXd3NJQpfo1/P+WSnnStGlTXnjhhRK5VR93VCoVviVIm0pOTiYsLIxPP/2UgQMH0qhRowdivCE3u6BBgwb3jX+AXCW/V199tVD++whPT5o4ODDa05P2D0h1sdijqiiK/xNFcacoipGiKF4TRfEjIBtoL+Ru/owHFoqi+IsoiheBYUANID+yoxeQJoriBFEUw0VRvCGK4m5RFEeJophSzp8LNzc3OnXqZNM4Li/s7Ozw8fGxlS+t5t6cP3+eeiXI2441GrlpNBJaSbne96O5oyNm4Nc7sgpuJ8ti4axOx/MuLoV00wVBoF27djzzzDMP3eobql6/BlgTGIi9IBBTzpPowMDA6n5dAs6fP0/dunWLff2xY8cICAh4YEb7Tp5//nk2bdpkU+8ritOnTyMIAk899VShGAelVMpLrq60dnJ6YPEPpfI/CYIgFQRhEOAMHAVCAB9gd/41oijqgUNAh7xDSYCXIAjF1skTBOFdQRBOCYJwqjTt7NOnDydOnCgy8MxoNHLz5k3279/PoUOHSEtLK9YzzWYzycnJBAYGlqZJjx0pKSnFFkNJN5v5VKVisJtbqQVUyhu5IDC1Zk1+zcws0mDorFY+ValoZG/P01W8zGxl9eu8d5W6b7tIpXRzduZwEe5PURTJzs7m7Nmz7N69mwsXLhTbW5aQkEBwcHBJm/NYIooiycnJxdaJP378OLt372bMmDEV3LLi06BBA5555hm+++67Ij1sV65cYdWqVUybNu2BZg5Z7xF0XaLEWkEQGgPHAHtAA7wgimK4IAj5nflOJQMVkJ/0ug3oDfwjCEIycALYD/x4t5m6KIqrgdV57y5xhnxQUBB6vZ7ExES8vLyIiYnBarXy+++/ExERQc2aNQkNDUWn07Fy5Uq6d+9OzZo1qV27No0bNy7ymZs2baJ+/foPzSzyYcdsNmPt3RtNv36FzomiiFqtRqlUolarmTlzJp379qXzSy+heYgiep2AeosXs83ZmeHDhxMdHU1OTg4JCQns2rWL+u3bM3D4cPQPSYGDklLZ/RoK923NvHklanNoXpXAfrNnk5KSQsa1a8TGxvLnn3+SmprKE088ga+vL4cOHeLGjRtMnz6dI0eO8Pbbbxc5GGdmZvLnn38ycODAErXjcUUURURRvKv4ilarRaFQIJfLOXr0KBs2bGDSpEkPnQLhs88+y9atW8nOzsZisZCUlIRGoyEyMpKDBw8yZswYQkNDC9xT0u9quXCXFMWSKmNcBZoBrsBLwA+CIHS77fydRlbIPyaKogV4SxCEGcBTQDtgMvCRIAhdRFGMKGFb7otKpUKn07Fx40auX7+Ol5eXLU1swoQJ2N3mpk1OTmb8+PG2/69fv77Ql/PatWscP36chQsXFuv9JpOJYcOGMWjQIPoVYSudOZ0AAB5fSURBVMAedSwWC2fOnGHs2LFFno+NjWXatGnI5XJq1KhB+/btefnllyu5lcWjQYMG/PTTT4SFheHt7Y1UKsXFxYXBgwfTsmXLB928slKl+jXkFte4fv068+fPJyoqCl9fX+RyOUOHDqVZs2YFXJq///47CxYsAMDT07PI79iWLVto0aIF7dq1K9b7jxw5wooVK/jss88eS2Ge8PBwfH1971r74euvv+bs2bPUrVuXpKQkpk2bRu17FKx5UORP5saNG4dUKsXPzw+z2UxoaChz587FqwxKjJVBmaqRCYKwF7gFzAeigDaiKJ687fwOIFUUxWF3ud8NuAbsEEXxzfu8657VyO5GRkYGERERBAcH39fdk5KSYpO87NOnD2+88QY6nQ65XE5mZibLly+nU6dO9OrVq9jvnzNnDleuXKFJkyb06dOHxo0bl3tN3YeVHTt2cOLECWbPnl3keVEUmT9/vm3yFBIS8lDn0iYlJeHg4FAh1ZjKg/KqRlaZ/Trv+hL3bVEUuXLlCllZWTRr1uyeHjGr1cqZM2fYtGkTiYmJLFy4kMDAQDIzM6lRowYXLlxg2bJlfPXVV8UuwJOVlcV7770HwOjRowkKCnpsyo5aLBamTp1Kv3797qproNPpeOeddxg0aBBdu3Z9aPsM5H6eW7duERwc/NCOzXfr22XVppSQG2kaTe5eWE/gJIAgCPZAZ3Jn40UiimKGIAiJ5O65VQj5wWzFwcvLi3HjxpGSksKCBQv4999/bWkGLi4uhISE0KFDh/s8pSBvvfUWU6dO5cKFC1y4cIGVK1c+lMFMFUFkZCQNGzYsdDwqKsrm4bh16xbjxo17KGfnd/IYifA89P1aEIRip3RJJBJatWpFq1at2LNnD//9739xcHAgMzMTFxcXatSowQsvvFCi6nlKpZKuXbty8OBBVqxYQbNmzZgyZUppP06VwmQykZCQQJs2bQqd++WXXwgPD0er1VK7dm169+5dwNP5MCKVSqvE+FMUxTbggiAsBHYAsfx/FGo34DlRFEVBEJaS6za7Qu7sewa5+2kb8+7/D7luut/IndXbA0OBxsCn5fR5ygUvLy8WL15Meno6e/fuJTw8HA8PDwYOHFiiTn7lyhWWLVtm+/9rr7322BhvyE0hu3PytHnzZsLCwtBoNIwbN446deqUSgyimvLhcerXkKtn3r17d2JiYli7di329vaEhISUaItLFEV+/PFHTp3Kjb9zdnZm6NChFdXkh46UlBRcXV0LVF9MTk5m69atHD16lJ49e9K1a9eHekX7qFCSFbgP8FPev1nk5n32EUUxvzzPp4ADsAJwA44DvURRzM47f4LcyNVvAD9AB1wHhoqi+FMZP0e5k1+G1MnJiRs3bnDjxg26d+9eLOECq9VKREQEK1asQK1W4+npSZ8+fejTp08ltPzhwGQyERkZyc8//1xgj3j79u0ALFmyBG9v7wfVvGr+n8eqX0OuKFNwcDC3bt3CbDYTERFRbB1zvV7P//73P/7++28gV1d75MiRj5N3hsuXL5OZmUlERIRNljYuLo6jR48SHBzMkCFDKq2y2ONOsX/L99vLEnM30z/O+ynq/Flyc0irFL169SIxMRGJRFKsCjZZWVksXrwYrVaLWq0GYN68eY/VyhtyK/cANqEHq9XKn3/+CcCCBQuqjfdDwuParyUSCTNmzOB///sfXbt2LdY9J06c4LvvvrMFbrVp06ZA4Ovjwvnz5wHw8PAAcoOFt2/fTvPmzRk9enS18a5Eqn/T90GhUDBixIhiX3/mzBkiIyPx9fWlUaNGTJ8+/bF0I+WXzhw5ciSQu52wefNm+vbtS1BQ0INsWjXVALn1wSdPvutWfiF++eUXW0zMqFGjSq2/XpXJysri7NmzPPfcc7bo+61bt3Lt2jUWLlxYvR1WyVQb8HKmW7duNGnShLS0NOrWrftYGm/IFcpp2bKlLU0jv7MbDIYH2awqQ1paGuvXr6dPnz7Ur1//QTenGmD+/PnExcXh4ODw2HqQTHl1AW4vyhMaGsqxY8ceVJOqHKdOneLIkSOMGDGizBOex9O6VCD5e+f16tV7bI035Ebpdu7cGcitWjRlyhSef/55hg3L9baq1WoOHDhAWFjYfXXGH0dSUlI4efIkCQkJD7op1eSRv3f+uBpvyDXgTk5ONi/aoUOH2LJlC3PnzrWpU167do09e/YQHx//IJv60HLkyBGOHz9eLouZ6hV4NRVCy5YtWbt2LcnJyezfv5/s7GwaNWpkm9T89ttv7NqVGye1Zs2aamW7O6hfvz6l0T2oppqKxMfHB09PT6ZOnUrnzp3ZsmULAHXq1LFd8/HHHwPw3HPP8frrrz+IZj7UjBs3rtyeVSYhl8qktEIu1TwY8lXo8vHz8yMhIYEnnniCmTNnIooiJpMJOzu7h1q8pSpRXkIulU11365a7N+/31ZSWSqVYrFYABg7dizt27cnJycHiURSIM2smtIjCAKvvfZahQi5VFNNkcjlcjZs2MDFixc5deoUUVFRuLu74+vra1uFS28ru1lNNdVUDbp3707btm35999/uXz5MsnJySQnJ+Pq6grw0Au3VDXutciuNuDVVBiCINC4ceO7FoappppqqiaOjo707t2b3r17P+imPNY8vlFW1VRTTTXVVFOFqTbg1TwwDAYDly9fLrJeezXVVFN1UalUxMTEPOhmPPI8Ei50jUaDk5NTmYOhEhIS8PX1rQ6qqkAyMjL46aefCuSNTp8+vdrNXk0hzGYzJpMJBweHMj1Hr9ej1+sfulrUjxoXLlxgyZIl5OTk2I5t2LChejytQKqUAT95MreioYODAxaLBb1ez5EjRzh37hze3t506dIFuVxOSkoKly5dIjMzk4YNGxIQEEBQUBAGg4Hw8HAUCgVmsxmFQkFOTg5ZWVm21WC3bt2oVasWZrMZi8WCRCKhZs2atG/fvvqLWAZ0Oh2bNm1i3759tmOTJ08mODgYNze3B9iyyiEnJ4e0tDSuXr1KWFgY0dHR6PV6atasyYABA2jYsCEeHh6kpKSgVCptAjhFIYoit27dQqPRoNVquXz5MjVq1KjET1P+nD59GqvVipOTE3q9npSUFP7++28yMjJo3rw5DRs2RK/XEx0dTXR0NIIg0Lx5cwICAvDw8ODWrVvEx8fj6OhITk4ODg4OpKenk5OTQ0xMDOnp6bz++uu27AdRFJHL5TRt2tSWv1xN6bhy5Qpr1qwhLi4OgI4dO9KjRw9q1679yI+Zoiii0+m4ceMGV69e5eTJkyQlJSGRSGwlpPMrnanVatzd3e+pD6LX67lx4wZms5ns7GyOHz/Oc889d9frq1QaWcuWLRFFEa1Wi1wuRy6X06RJE7p27cqNGzdsBt7NzY0GDRqgVCoJDw8nKSmJuLg4ZDIZjRs3xmq1IpPJyMnJwd7e3lZZp0aNGoSFhWE2m5HJZEilUqxWK9u3b8fDw4MnnnjCVuDEaDTSpEkTPDw8cHd3f+S/qKUlKyuLM2fOkJmZybZt2wBo3LgxI0eOfKQMt0aj4c8//8TJyYnatWvj5+fH6dOniYyMJC4ujri4OJycnKhXrx5NmzalefPmODg4cPbsWfbv328zShaLBaPRiFwuJyQkhClTpiCXy23f+z/++IOwsDAkEontuyiVSpFIJBw9erTKppE1b94cAK1Wi6OjI/b29vTq1Yvg4GAOHjxIfHw89vb2+Pn5Ua9ePXQ6HZcvXyY2NpbMzEy8vb2pU6cOOp0OOzs7dDodHh4e2Nvb4+joiFar5eLFi0ilUuRyOYIgcP36dSIiImjQoAG+vr54eHhgMpnw9PSkXr16uLu7V0uD3oMrV66QnZ3N1q1bbaItr7/+On369HlkRKxEUeTatWscOXKEBg0a4O/vT05ODufOnSM2NpaoqCg0Gg3+/v4EBQXRtWtXAgMDMRqN/PXXX4SHh5OYmIggCMjlcnQ6HQ4ODgwcOJCnnnoKyK0TcfPmTX7++WeuXbuGv78/CoUCR0dHFAoFDRo04Ntvvy2yb1cpA/6gckXNZjOxsbHExcWRlpaGWq1GEASuXLlCamoqzs7ONG3a1DaY2tnZ4ePjQ506dR67Iib5iKJIXFwca9euJSUlBbVazUsvvYSLiws7d+7kySefZMiQIZXWHo1GQ3JyMjKZjPj4eAIDA1Gr1bZJWnJyMklJSdy8eZPExER8fHxwcHAgKioKyF1Bi6KIs7MzTzzxBKIoYrVayc7OJiYmhuzsbJu8ZFxcHDExMTRv3pwmTZpQq1Ytateufc9VtcViQa1Wo1QqgdyCLxERESxcuJDt27cTFhaGQqGgWbNmvPjii/j5+RUaJKvzwEtOdnY20dHRqFQq0tLSsFqtpKamcuvWLTIyMqhXrx61a9e2TehdXFwICAggODj4sS3aYTAYuHr1KosWLcLV1RW1Ws2CBQs4fPgwBw4cYPLkydStW7fS2hMfH49MJiMmJgZnZ2ccHBzQaDQ4OzuTnp5Oamoq8fHxXLt2DbPZTP369bl58yZqtRpRFDEYDMjlcry8vAgICMBkMmE2m23fAycnJ7p06UJ0dDSxsbFYLBa6dOlCSEgIQUFB+Pj43HMBp9PpsFqtODs7k5iYyKRJk6hbty6DBg1i9erVpKSk4ObmRr9+/WjXrl2RNuNufbvagJcRq9VKVFQUly9fJicnB4vFgsFg4OjRo2g0GtatW3fPgbsyMBqNJCQkEBgYSHZ2NlKpFJlMdk/1s/j4eDZs2MC5c+dsx1588UVat26NyWRCq9WSnJyMt7c33t7eKJVKLBYLmZmZODk5cebMGb777jsAXFxcUKvV+Pr6snjxYtRqNR988AEzZsyoUPelTqfj4sWLREZGcvDgQVsHCg4ORq/X4+rqSlpaGkqlEh8fH7y9vfH398fb25uoqChMJhONGzdGp9PZ5DPT09O5dOkSjo6OSCQSnJ2d8fPzK9SJRVEsk1cmv7yli4sLbdu25bXXXruvWl21AS9fNBoNFy9eJD4+HovFgsViISsri0OHDvH0008zfPjwB91EVCoVCoUCV1dXUlNTqVGjBhKJ5J5jzqFDh1i5cmWBY/PmzcNsNmNvb8+VK1dwc3PDycmJWrVq4ezsbHuPs7MzM2bMsEn8enp6kp6ezrBhw+jZsyf79u3j4MGDzJkzp0I/d3x8PFeuXOHcuXNERUXZvLJubm5IJBIcHR1RqVQEBQXh4eFBrVq1CAwMRC6Xc+HCBWrXro2rqysKhQIXFxdMJhM3btwgLS0Ne3t7ZDIZbm5uhISEFPDC5NvL0vbttLQ0xo4di52dHU5OTgwdOpRWrVrd12Nxt779eE4hyxGJREJoaCihoaGo1Wp27tzJpUuXMJlMvP/++xVqvPPLnGZnZ9t+EhISSE5ORiqV2tw2qamphIeHF7o/JCQEQRDIzMykefPmeHl52Vaep0+fthlvDw8PsrKy+Ouvvzh58iRSqRRRFPH09ESv15OYmIhGo0EURRwdHbFarUgkEmQyme2LWrt2bXr27ElaWhoHDhxAFEVu3LhRIQbcarWSmJhoqzT10ksvMXPmTPz9/Yv9jJCQkCKPK5XKu567nbJuqXz77bdER0fj7u5erBr01ZQ/zs7OtGvXDsjV9965cyfh4eHUqVOHF198scLeazQaSUxMxMHBAZVKhcFgID09ndjYWPR6PaIoYm9vj9ls5tixY1gsFhwcHNDr9UBujFBQUBCpqanUrFmTgIAA/P39qVmzJkajsYDxdnd3Jysri88//xwPDw/0ej0uLi7Y2dmRnZ1NcnIyer0emUyGg4ODbbWqUCiwt7fH2dmZxo0b06JFCyIiIoiKiiIyMhKTyVQhSmwGg4ETJ06wcuVK6tSpw1NPPcXo0aNLJMVcr169Io/nl0e9F2Xt1x4eHnz22WdkZmYSHBxsK01bWqpX4OVE/qqydevWdO3alTp16pSL0tilS5ewt7e3FRFQKBQkJCSwa9cuzp8/j4uLC+7u7ri6uuLk5ISvry/e3t42eUOTyYS9vT1arRa9Xo9UKkWtVttWmvD/+zxZWVkkJSWRk5NDjRo1iImJITExkY8++ohGjRrds52iKNpiCi5fvszmzZupXbs2SqWSjIwMIiMjSUpKQiqV0rp1a1q0aEGLFi1K3SFEUSQlJYXw8HDi4uJsgYiZmZkkJSXh4uJCYGAgffv2JTQ0tFTvqGpUr8Arhn379vHzzz8zYMAAWrRogaenZ5kHcp1Ox/Xr11Eqlej1ery9vdFoNNy4cYPVq1cDubE8vr6+ODg44OrqSkBAAI6OjgiCgMFgQCaTIQiCbUtPr9djtVpp2LAhgiCgVCq5fv06arUalUpFcnKyzfieOXMGpVLJ0qVL77sVYDKZEAQBQRDYvHkzMTExhIaGIpVKbW7ltLQ0fH196dixI61bt8bX17fUvxuTyUR0dDQXL14kLS0NjUaDTqcjNTWVzMxMAgICqF27NoMGDXpsaihUr8ArkHw3ukajYf/+/dSvX/+us7zi8Ouvv3LmzBlatWrF1q1bC5339/enRYsWPPXUU7Ru3bosTbdR1pKVgiDYJhpz584F4Pr163Tq1Al/f386deqEj48Pzs7O9xz84uLi2L59O1FRUdjZ2dGuXTv69u1ru+f48eNs3rwZlUoF5AbENW3alNDQUOzs7FAqlfj6+pZ5ZltNNZA7Mb969SpZWVn8/vvvZcpGsVqtTJo0idDQUPz8/Ar1bblczpNPPsmgQYNo27ZtuVQ9K4nX6W7kr6SvXr3Kjh07AAgPD6d///60atWKgQMH4uXldd/MiQMHDnD06FFSU1Px8fHhxRdftE2urVYrX3/9NeHh4WT/X3t3H9vEeQdw/PuriR2HJG5IQuJCm/AywV66FlpYO0QHVGjVVLa2WzVtExUVRVRF26ROm1QYWqVunaZpU7eiCXVMDIo6xqYKtd1WtROQClAZUGjUFjpGYE2DM+K8EMeJ7Rg/++Mu1+MaIO/2ld9HepT4ufP57mc/fnzPy10iQTAY5O6772bmzJmUlZVRXFxMZWUltbW1eglmF63ARymbzbJhwwaSySQ1NTXE4/FRf8CKiopoamqiqamJ++67j5MnT/L+++87/S8Do5onchDYUA004wFEo1GqqqqoqqqiuLiY9vZ21q5dSygUIp1OEwgE2LJlC6FQiF27drF7924A6urqmDt3LmfOnGHnzp0sXLiQUCjExYsXaWhocCpvsL5IVq5cOSZfVEq5nT17lvXr1zNr1izC4bDTVzpSIkIikWD//v0ArF69mh07dtDf308ul6O/v59jx45x7Ngxp+m+kMRiMcC6h8HAoN2BfuStW7fS0NDglO0HH3yQ+++/n+7ubjZu3EhbWxtg3aVw9uzZHDhwgP7+fh5//HHS6TTJZJKDBw86r5XJZNi/fz+bN2/WGT5XoBX4KCUSCZqbm4lEIixYsIBZs2YRjUZJpVIjbt5ZsWIF9957rzPS+aGHHnKWRSIRKioqqKiouOQWfoWivLyc7du389577xGPx+no6ODQoUO8+OKLdHV1ATgXeqipqaGxsZGuri5Onjzp9Ju3tLQQi8UIBoPU1tbyxBNPUFxc7IwCnjdvHqWlpZSWltLf3+/cREGpsTRwJbFwOMyKFSuor68nk8k4YzyGS0TYsmULuVwOEeH48eOXXPSkpqaGKVOmOAPHCs2SJUu45ZZbOHHihNMsf/z4cVpbW7lw4QKA88P8/PnzHD58mDNnzpDJZJypjo2NjQQCAWfQ3bp16wiHw4RCIebMmUMkEnG6CvWiWlenfeBjpKmpiXfffZempiZisRhtbW1MmzaN6upqQqEQ2WzWmcTf1dVFJpOhrKyM1tZWkskk4XCYmTNnUlVVRXl5OdXV1UyePJni4mJSqRRvvfUW27Zto6ioiEWLFjlnAz09PSxbtow5c+bkOwRDksvl6OzsJBaLcfr0aY4ePcr06dOZNm2ac6/hgalUqVSK7u5uZ5S7ujLtAx976XSat99+m1OnTjkXiwkEAlRXVxONRkmn04RCIaqqqmhrayMQCDhz2WOxGKlUitraWurq6ohEIkyZMoWKigpKSkoIBAIkEgmeeuopuru7mTFjBnPnzqWoqIhkMkkwGOSBBx7wTXdQKpUiHo9z7tw5jhw5QmdnJ/X19c734EBLXDabpa+vj97eXmbPnv2JmTM+nnQa2QRrb2+nvb2dlpYWjDFMmjSJeDxOT08P0WiUSZMmkUgkiEajRCIRZwBLZ2cnXV1dxONxent76evro6SkxBmRmslkPvZaDz/8MMuXL8/DUapCohX4+Mvlcs6gyZaWFiZPnkwqlaKtrY2SkhJCoRDhcJje3l7q6uoIBoO0tLTQ3NxMd3c3HR0ddHZ2kkqlyGazlJWVkcvlLukWctu0aZNeAlbpILaJVllZSWVl5bAGs82fP39I62WzWedSkEqpiXPdddc5Ux+Hev3+4cyCSKVSBINBPStVQ6IV+AQLBALOFK+RulavAKVUoRqLcg1cM9Oi1NBd6UTNV03o+d4HpQrcf40x9fneieHSsq3UVQ1atn1TgSt/E5Ejxpjb870fE+laPOZ80ViriVQonzftaFFKKaV8SCtwpZRSyoe0AlcT5bl870AeXIvHnC8aazWRCuLzpn3gSimllA/pGbhSSinlQ1qBK6WUUj6kFbhSSinlQ1qBqyETkbMiYgZJf3Ot85iInBGRlIgcFZHFrmU7ReR1zzYX29t41pO/RkTSIhIe/yMbGRFZb+/7JleeiMiTInJORPpEZJ+IfNbzvMFiaETk0Yk/isIgIneJyEsi0mLHYpVrWZGI/EJEGkUkKSIxEXlBRG7ybCMkIs+KSNxe7yURme5aXn+F2N8zgYerCpifyrVW4Go4FgBRV5oPGGAXgIh8E/gN8DQwDzgI/MP1RbsHWCQiQdc2lwAfAEs9r7UEeNMY00cBEpE7gDVAo2fRj4AfAN/Fitd54HURKfOst4ZLYxkFto3nPhe4UuAd4PuA9z0vwfqs/cz++zXgRuBVEXFfV/gZ4OvAt4DFQDnwiogEPNu7h4/Hfs9YHozyJ9+Va2OMJk0jSsAGoAsosR8fAn7vWecU8HP7/09hVfiLXcv32IUiDUx15bcAP8n3MV7muCPAaWAZsA/YZOcLEAM2uNYNAwlgrSvPAN/I93EUagJ6gFVXWeczdhxvdr0nGeA7rnVuBHLAl+3H9fZzbs/3MWoqvOTHcq1n4GpERESA1cAOY0yvfVZ9G/CaZ9XXgC8CGGNOYVXMS+1thIA7gb8DR7DOuhGROcANwN5xP5CReQ74qzHGe9Y2A6jFFQNjtSC8gR0DNWbK7b+d9t/bgCIujX0zcAKNvRoa35VrrcDVSC3H+mBvsR9XAQHAe2Pj/2F9+Afs5aPm8juBuDHmNNDgyl8K9AJvjv1uj46IrAFmAxsHWTxwnFeLAcDzItLjSUO7P+U1zv6x+CvgZWPMh3Z2LXARiHtWHyz2bwwS+8j47rUqZH4t13pfSjVSa4DDxpjjnnzvlYHEk7cX+J2IFGNV1Pvs/H3Ab+3/lwIHjDGZsdzh0bJbBp7G6gK40r5dLQYAPwRe9eR9MLo9/OSz+7x3ANcDXx3KU/h47L+N1d/ulhj93ik/8nO51gpcDZuITMUaSLTOlR3HOgPy/iKdyqW/XPcAIeAOrCbz7Xb+AWCmiNwAfAlrMFyhuROrpeEdqwcBsFod7rJHmg6MSq0Fml3P88YAoNUY859x3NdPHLvy/hNwM7DEGNPuWtyK9V5UAW2u/KlYTZ1uH2rslYtvy7U2oauRWIU16GznQIb9y/UoVtO623Ks0egD650FzgJfAb6AfQZujEnaz38MqKEwRwXvxqo8bnWlI1hxuBX4N1ZF4sTAbmlYjCsGavhEpAj4M/B5YKkxptWzylGgn0tjPx34NBp7dWW+Ldd6Bq6GxR689giw0xjjbXb8NVYf0L+wzqgfxRqMttmz3l57WZvd/z2gAfgeVnPm0XHY/VExxnRhjbp3iEgS6DDGvGM/fgbYICInsQr+j7FGVb/g2dz1IuJtregxxvSMy84XOBEpxeqDBOvE4iYRuRXoAM4Bf8GavrMCMK7YXTDG9BljLojIH4Bfish5oB3r89gI/NPzcpWDxP6CKdApi2p8+bpc53voviZ/Jaz+aQMsvMzyx7DOsNNYlfBdg6yz0t7G8578e+z8V/J9nMOIxz7s6Sb2YwGexJp2ksL6UfI5z3PMZdJP8308eYzjksvE5I98NP1rsLTKtY1i4FmsyrsXeBm40bX8Stt5JN8x0FQ4yS/lWu9GppRSSvmQ9oErpZRSPqQVuFJKKeVDWoErpZRSPqQVuFJKKeVDWoErpZRSPqQVuFJKKeVDWoErpZRSPqQVuFJKKeVD/wf1lYX61cb4ugAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 504x576 with 8 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(4, 2, figsize=(7, 8),#figsize(10), \n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "ax = ax.reshape(-1)\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].coastlines(rasterized=True)\n",
+    "    ax[i].set_aspect('auto')\n",
+    "    ax[i].tick_params(labelsize=14)\n",
+    "del i\n",
+    "\n",
+    "# TR\n",
+    "ax[0].pcolormesh(lons, lats, mask_TR, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[0].set_title('Tropics (TR)', fontsize=15)\n",
+    "\n",
+    "# ML\n",
+    "ax[1].pcolormesh(lons, lats, mask_ML, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[1].set_title('Midlatitudes (ML)', fontsize=15)\n",
+    "\n",
+    "# PO\n",
+    "ax[2].pcolormesh(lons, lats, mask_PO, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[2].set_title('Polar Region (PO)', fontsize=15)\n",
+    "\n",
+    "# NAe\n",
+    "ax[3].pcolormesh(lons, lats, mask_NAe, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[3].set_title('North Atlantic (NA)', fontsize=15)\n",
+    "\n",
+    "# WP\n",
+    "ax[4].pcolormesh(lons, lats, mask_WP, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[4].set_title('Western Pacific (WP)', fontsize=15)\n",
+    "\n",
+    "# EP\n",
+    "ax[5].pcolormesh(lons, lats, mask_EP, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[5].set_title('Eastern Pacific (EP)', fontsize=15)\n",
+    "\n",
+    "# TA\n",
+    "ax[6].pcolormesh(lons, lats, mask_TA, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[6].set_title('Tropical Atlantic (TA)', fontsize=15)\n",
+    "\n",
+    "# IO\n",
+    "ax[7].pcolormesh(lons, lats, mask_IO, vmin=0, vmax=1,\n",
+    "                 cmap=LinearSegmentedColormap.from_list(mymap, colors=colors,\n",
+    "                                                        N=2),\n",
+    "                 rasterized=True, transform=ccrs.PlateCarree())\n",
+    "ax[7].set_title('Indian Ocean (IO)', fontsize=15)\n",
+    "\n",
+    "# set xticks and yticks for latitudes and longitudes\n",
+    "# TR\n",
+    "ax[0].set_yticks([lat_sout_TR, lat_nort_TR], crs=ccrs.PlateCarree())\n",
+    "ax[0].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "# ML\n",
+    "ax[1].set_yticks([lat_sout_ML_SH, lat_nort_ML_SH, \n",
+    "                  lat_sout_ML_NH, lat_nort_ML_NH], crs=ccrs.PlateCarree())\n",
+    "ax[1].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "# PO\n",
+    "ax[2].set_yticks([-90, lat_sout_ML_SH, \n",
+    "                  lat_nort_ML_NH, 90], crs=ccrs.PlateCarree())\n",
+    "ax[2].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "# NAe\n",
+    "ax[3].set_yticks([lat_sout_NAe, lat_nort_NAe], crs=ccrs.PlateCarree())\n",
+    "ax[3].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "ax[3].set_xticks([lon_west_NAe, lon_east_NAe], crs=ccrs.PlateCarree())\n",
+    "ax[3].xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='',\n",
+    "                                                   dateline_direction_label=True))\n",
+    "# WP\n",
+    "ax[4].set_yticks([lat_sout_TR, lat_nort_TR], crs=ccrs.PlateCarree())\n",
+    "ax[4].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "ax[4].set_xticks([lon_west_WP, lon_east_WP], crs=ccrs.PlateCarree())\n",
+    "ax[4].xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='',\n",
+    "                                                   dateline_direction_label=True))\n",
+    "# EP\n",
+    "ax[5].set_yticks([lat_sout_TR, lat_nort_TR], crs=ccrs.PlateCarree())\n",
+    "ax[5].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "ax[5].set_xticks([lon_west_EP, lon_east_EP], crs=ccrs.PlateCarree())\n",
+    "ax[5].xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='',\n",
+    "                                                   dateline_direction_label=True))\n",
+    "# TA\n",
+    "ax[6].set_yticks([lat_sout_TR, lat_nort_TR], crs=ccrs.PlateCarree())\n",
+    "ax[6].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "ax[6].set_xticks([lon_west_TA, lon_east_TA], crs=ccrs.PlateCarree())\n",
+    "ax[6].xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='',\n",
+    "                                                   dateline_direction_label=True))\n",
+    "# IO\n",
+    "ax[7].set_yticks([lat_sout_TR, lat_nort_TR], crs=ccrs.PlateCarree())\n",
+    "ax[7].yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n",
+    "ax[7].set_xticks([lon_west_IO, lon_east_IO], crs=ccrs.PlateCarree())\n",
+    "ax[7].xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='',\n",
+    "                                                   dateline_direction_label=True))\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# a), b) etc for subplots\n",
+    "labs = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)', '(g)', '(h)']\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].text(0.0, 1.02, labs[i], va='bottom', ha='left',\n",
+    "               rotation_mode='anchor', fontsize=14,\n",
+    "               transform=ax[i].transAxes)\n",
+    "del i\n",
+    "\n",
+    "fig.savefig('figure_S2.pdf', bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/figure_S3.pdf b/pythonscripts/figure_S3.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..3e4d50759a7ad4f818c0283b2b30ac45ee1841e7
GIT binary patch
literal 172435
zcmY!laB<T$)HC5yU2{ia^)4<$1p|frq%1BQ8wLG<#Prl+1tSFmg&+m}kjjEo1%2nl
zlEj?+bOk#*uGG8~kU|S24Xza>?!hIAC8-J~5KV6Rc_j+Q5OzRfNl9u^o`NZe%cUPs
zl%E`&TA~oGpdaAkrl22^T2Z2)@0pvJp6UdpouRa+Lac&*a7JQEW?s628AN-8e^ORz
za*2XDh>PSLLjxrDIOgT$mlP{RgY-M+=ar=9l@u#jf^=}{yBFn`7ASzc=^U(}?~+=U
znVcHr?xdg}te_uKl$cjskXV$Oms|<+IYhmk9hbguYD#9JQ+|a)v;xR7b3-FNV?$Fj
zBU1$<GXp(iGeaX&kc9yt{UxyA3ra1{FD*(=Emi;pSP&O9JV8N><a&_XK!FN!mRn{{
zNotXTzFSUWNvca~a(+sxg1%2`UV2G}f*~lHf<PLJONvqxbGa(!?AhymS;seM$<FWb
zAN5|cdfw6Zo-i-b*yxh&6d!#7F^-VSQxbX{cn{x~-|v#Pt7=8qjYprIo4=Gl`cYVY
z#Yj(1Fiq<5dHF*>KKt7rJ}>|1|KI25@BjM~`{)1vkLiDYzW!1FU!?7aI`?mjz0V5o
zE;If2G5(dk-|Y{xwj2JtzW>O^uk-(fbNn~{b2R>#=Rb-67vtMEtX*Gge<^<6^X%wr
z7Vk~^*C*dyUR;&`dwSJvllAKpJ*4;l|F&C~{m1tCx3@grwzutX&;R&8^Z%yz{7<-7
z_wVm_`~Q!h$JhURq`#c!i`DjGi@qQ4oqoN~y*WK~-nl>Gr!DgX@BIAy{=Z1^hjxFz
zMP0w-|6TcSVDjJK)Lo^sHhz!UZyqY!^Q>0ReL`67?D*Sz-d~<)7XCjbr|!JKWrwuB
z{kJ|ywOjtnH{EtG%wJo9BfqO`zU5ox^~v+vH~;H=m3wsyQ`5(18QW(jZ~3`3?{h&;
z>6WZ$+qDe}dn|9|K9k6;^?h#hrdoFGEr{;Eve}kyx8o0+@ZXMfU%l<>WiF0Gvlrh@
z>$})@ec!R%(hcvIRRuLVWE8I{i{n22A*!!3;`Q9^_rlJf5`4Et^GfYKiR>!h$2K}&
z&xPc#P7~$mF>~L2R%Y?p^~E#WD_1TKz5ObamF3~ti+RS!GhS!ke$IHV?d!IxC`QMM
z;w`t&7~c99)mAC-dd+oYb<eYV+MgC&xwtC#>lUV_4<OIz&N=+LL;cO>dzG&tg3B_#
z&rII(a_c-{w%>WH)Ib&=&wAdwaN2bn-{*nzcfQX3x<=;VxmnJ4pY?8h^tEj6xxM#F
zL4r(;7eEFkZ~41bK6uZKYsj`FZ~45n@AA%T*1>z%&I@x8xF_@0Y;$X&MEqr=x!$#p
z+IqhpVQLmwUXk)nq@ZeU;aXF9fep7J&aQFLDCMl2ZQB|X_glc+>BxJt84-;FuY@+t
zwLW?~F0+-*TkQsiG4}-P;?DBf)~q&h$u>TTS6QSJ(^#EWc%QiaM)S!}t49~DbObit
z;t19jITY)3FRfqk_{Xijml<EH-vEovb-tJGulW4>9zS-SMG48aTb&Z`s6NU4CSvsO
zx}mJKjQm%(8Bq%b-U)p&tLECd_tD*>jNDoftsvw475lI6^6`z^e>))wWb1*lcM|zh
zahL66wPh5)y3L4exHGeO&+j{$4@CZFTP2jTO23{d%CT5aF@N*&37@m)FK3<>u|aTI
zm`2O)mOW?ZIjvitI=hdv?s%25&)NWva<KRB#6Px_RgT&4s@GtvlOn`*pDN~lWM~r=
z&uLjH%JmRr-0=yYKis;O*?v_3B6d#k{pRHpE@#_4a@&!0Rr>WxQLe`zb;~E5*1q@Z
z{RXaPB;$%|WlwK89K>UG=n7YB!So5+Zw8<EyY*Q8j)SGE?}5V!;@R`zdw$<c^kkDx
z%xZPo0SaToCr10)DsL4kM&^T^0<-r1vf8%hCHEry*9J&Hyb%+3+VbJO;N0d;QI3Ur
zjJJ0N?|EzL`%#L4J$0{OnwUcQGoklp<y<@VpQ~W#U$Nm9hq1PR6V%%4V*Cj)Ue}PV
zwc0nW@K%8)inX7$|9!d5c-(#O#(7Z-4WMzhr>_>F4iW;lv!$2uPM?GvwUv9GS?0Ak
zFG2XWUvc|G)11p~t4~5BgRgSFZL3WDZ_C^r^VXPO3)U7n265i=>sG$EdDuPoqC{lo
zT(cN|BqwV=`DXRlN#OcqRBOLgi0~IoxPt68yFJrbFaNsBa#@S#(450tjh81}*8X?D
zOZ#M1vaR9q9iOKqY@Zpt<7X+~<*wBys+4`!7;qGWQ%cNZ`?=R-^&*jN*t!2%Zd9Qt
zG@Ky*f1YizTr_+lk}{r3p7qJIuCc=P%6zh`=Ca&-trV<x&GImf9!Lt+TVL^c=b@c@
zZm|i2;)iKl@$!n>*&W~a2*VS+_nzB#G#~uCH9hlaXv$u}v@nI1UEtI`Z@sGAfgN3I
z%;Cu_`9yJz@8K<T3TmJsP<-O|8_g$Qte$5c3{63e$8EV$1*rbGoo%PSXX=`52aj;I
z1Wa#udq?x$N2%qR2US6~!c$bmzP{3^0>;SvmYJZGr<lJvdPdtvQGL_XLGRNcna{da
z1)Lw{ma~c_ZP+*~YGD8*^+^8Do>}me0TDZzPrh~iFOcNth|C42cSwL9&+cV6&^eZX
z$hB=U?bk*4A6Pvo7xr0gz){S1{oI_U-u1<^(;|8f9;-^~D}1hdFwb~-!AJRdmut=l
zth>b_tj%*M#_3*~zvA`lM!ui>IM<?NN7HqedAJQxi=M(G_U}<kx8)DF_9E0lO1I_L
z_Z;DTkb#nBr(fT2ytkkM8tR~&toh`ZRa=FJFS2?5ir=qW`5Ui6_F1b<{717oxd#d>
z5z!dz`s#z#`5)m0Cs#oPpKJMsUCEsH>h#O0a=Gg=7gY&u+&OEBF5lWiR;LVJ|77J&
z&tL8Gdc*mzGp_z=a@(-|>7vpb&kvocs&hPi^Y*TbR&R=1(`@%Ic=#rlF;n*2&WO$P
z;x80@+cs$n-|vuZk>~XyEGmP8qK=kK$-j2FSnSl@Ytybd&R=b@`Xy_(LVmZ;>ka3h
z&iVSMscrN2tIJAnJl}N=V)CZTR&R<M(;+7R1(|#aYO=squGbpB);t$CnX`AT$J)bo
zQ|rSvbBj6No3iYh;r!DMuU}enKh4VydA;EL)dgR_G__9Nesopojpv&#KulhB)#^=g
zX$HjPpIM^ULY1T31#IU03p>s=QTFJfP!886B6ql=6u%|k)Nl!KiE)g+$<-+Pbg_Vw
zK;XaVPHmU6kcmzlu17@gWW_3OTRcZ3NkeVj!>}(=$G=^f>cn&Oi0PeG@rv6PAK22j
za7Ig8w4~0FxcS<?ifu`cr1HLQ5V##!!euBTe7!)sr}akv)8zt=f`zQPtvRwcg4?(h
zSp=W%pL)tE#oaVZ)=7|)b^ENyj<*`#trA_G**iqfJLS07Y8?sii8;KsODxHnD->ev
z(=7tG12;m9UA=m3a<x}DM1pmj!0o`pQO5&(oDQ$OB$i~|6$z10-7auD@G4Zt-qss^
zpTas8&e+iwEvR>-?8;84KMG&pnAa2zk%$CI?7L<tGWkNm>hrBP`a?HBoW4+xr7YyI
z6NjVA&wSC{0yhIixD`bN!wa<Uw%+J_6#>!Bn=gAiSdAOv@n@|!`l@bPwIvBj<%RAQ
zxE*K#m3ZHJqmL^JqGPW9k+Lb5AP(WGdwpZxEU3g&{Uc=}*C7tkW^B9Brxgv+p=)rY
zY|3qjj;<!fZHwQDLE=W1XQQm^4gqJwLf-9053Rlh+v=TJUtv)ntj`lDo4T`<<(%`)
z{MN$)*8^vB3ySbR-ybUAoZ~)G4-(K*B$BLGl|q8e^r*n?z->_1>a9zzepL>U2t6in
zJMdIAB%tp|B-x97bz*TnBD$sYxWJ9TJKW%i6;*Ifaqrb{32=!yxK>Cq$-1i+qFeQ3
zX^#I@eTaQ#l1bL5>R(HAd1mYo)pX8rS2ci0L`f#uUt@6w8=HDs;6|V{57^kN`pzlt
zodytNC+zHcyGpbToL)jroO9eS7Kl0<YVvNsl-BWfg&aiUs)cioyQCq+*c*~b)>&N;
zhlHLleY5;i(v0|z1^<@)kz8c8s^>Mwoc2xkUoB94_a`Qc2OK=2F3vgbXQA4Sq>`+=
z`XSm?FA3ZZY~=yR^6IJUlB-Wmgh;qv7PuWaJq8jyRZ>aTTvH$tsaFJU2d;$bSl)J{
zZ&E5GG80XYlwHwt2InWOHLq{1nz!p7AIRVf)1vDCby}{P@p#VbJ@Y=kVlcg$RBY=R
zofX?!yDq5>Tx5B#eZ8SS^vqXqk+t+%>5b!BX*0kD)0JI(zax(FeCC!qcW+wM^+fsC
zGZMjNS<q{%H_nR2XTT*^R_xK5b;)huqQrac>jjsCMT>3sCI~*sU0EvoZDW_@Gf?rP
zyLH`RyD-DU;NlC9E#ZmtQEe%<-JKx##CK(>?B|VrlFOd!OxdlwbzL*aEO3E^Y1Uz|
zi{%b4)8}6EdxPHdxPATt?`J-*-2JbB=eXrD#+S*gMJX9>Z0B;;Ey`FRCROQ{_w=^F
z&z%~(_!f3dX^Q@7cBF1q*D;Q+4(*K7+Z8_)2b#1AxJ>yUwvTt>eD6huElQ8LKstW!
zRFO&smuLH8kC#nxNd|}isqKp2iakw^fJ>1Y=_LE<$P$4j$G`;=NFvlV8Js+y-Y!jW
zN3}z-MM((V4&IF*%fTh%)7t_t%NOb}U;BLH*w>!PPuKJ6{<h+M9Jubw;Tc-Tr)5hX
zaBoXX5xDbAYqMM4(#g-Ch6%+TFPjnxc4y4an6|?EeLGZDQ}49b&bU75^w&9$+a6E$
zwlXqNZhl}E{?e>Kd#;kc>v^GKoA=c*%qmZm*Ev19`Rdot{;zkoeO}w%&vW*K!j7|{
ze0_Jk)X$$@s-9=vUn^()bm}+V*E7E-%WY4rd%aNE+1Q99uXySV<?WYFeh&I_=KYhj
zQ<a_NCqKuPt+Xh*9Te(#@i5Gp(e5B;E`2d`+FzSvr6=uAZj!%k#+!X_>9)k!=ehHi
zd-Kan&YI|0FnhI#+|H?f^QJFKpL4u$#`Mfx?}LsT@qEm&imUo@;zAEk)9sk2Ur($p
z`LsvG_OM;<?V!FHKdp2&&8o<ZezfZE+O}TqvpW=KoDJQ;f5vO^iIYoJ{mhS6e_AXf
z_wmZsW!ty^Ea<PkUiD7iv;>q)4(9ghF)RtwstmhT#>(;M4od^5AbG#p+aRfUtBAs;
zpcBSLvg<y+OP@Kd;-xS9L#sK*4dw?&{?hqv=Xd(|7ntv|f*ruVyZv%X(d^Y<8NnWi
zp3QcoF0Zx$Tz=_oJ-p55aM{~Cht2dq+v%l#-FEh+$j6;mE=^o0Dao>Z=Pk_%(J!A=
zzT8%_;LfwGi%{b(^%c!t{gxSQT%LFSsoZs8LQlf1D&uzDl?u!&-nyJ&`z6g!m)>rh
zSu}g~Q&zCL=xV+rb$OKs!3E#e=MHb4PZRF})o5|~juzW@MrDF6+PU@5m5uVVG7IXC
z9{xFdntaEvJ6_C!7W}FExBhXs^W03TXF-L<|FuuqlkB%&OaLYRm}=eMF+bi~KhApa
zclV<?w_<uNJ=TVNT61Sshr+kwWIj;Zci#SZe$njJH`yUBNftU%m-oF98~~<jj&GLN
z$@eVi*wM7jkdw)N`|kvBP1)-y@N?%)c4rNxbq}u1VA(i-cC7&@BUsIC(Ac{3R{Mmg
zl}{pfZnbiJ^Zc7)$3jp`Vzuy*x;%wL5Fc7OzFE$v1Tpt2CzHLoKqA=OwSEFWch+)1
z%zYJd^xGExM36u3M9o$BR{T3a7F-#GsdxOnW7h&IPYbe3n{J$c>ns7T9>Ee$Fo{*k
z_9lW4|8%u~Hec%}@O5V^hf;yusk-darX3(1jvovDMT1=>k8suVZ;Ie>N0Yd^Q5MAx
zI~H(D0@HFVu1a0GoBy!Iy5h=f_Pw_ak4x|S)Ri6kdH1C3mEP=aX$b;Xo@IGBWi6eQ
z{`8tn=<zV$psQtIC)k<uZkc>aX0G35vHJIg_om6`92c6s+H+Rf8ml+O%Z1PAXINBU
z?qf}qx1RgzCu?s){;iD)Z<0|Z5<s=X>@ppW-#1>ffUAuy$&NSL)6{3gZYU_qIld~{
z?z`2&FLPRp%-==`lvKScS+!hTr)f{-@um&^bNviJZDU_+v6k95B~9SE3AY^}SFJ~K
z)vUR%ZnAbO952)9_<7?s3%LEfCE4-9aX<ALaT^LgEtBOwWLIW&5LEwwEdN&X$`fqI
zf7Z7VTSfdQ3kPub+9>B*i@DY16|HjCP+Gbm_xPb3{;_@%phl;!wHRAnUeO_erjAeB
z-$qFM+<BA}ly1O^&g=StQ$(({*pad=7T`3r<!yw-@0~|ElQh&8E(Do`r05vPBv8`K
zxV_QfTkv#YH&EO8avy7>tgoL0sO`K>mRs3=yM-f%tBOcT)k*i2XRn&HUhz^r?=}Cq
z#hhC)xe?%u6_a%=`R=*D8lgR(rSdbDr|N#~{XJ7oVW0N;pU`qJHv(J^##Ak<JwNlj
z(7DXs{mGi^&t3g?de{DPGdpNupDkXbJ=aD*S6b>w*_K4G`%7+J*4(;t)`o_tl_HTZ
z!!kX0p1s=A3M%To_b<~umb*?(2U5(KUJA%7HceCn74Vb39@%g4*z)_X?^5S>2wC@C
zdbUyKW6I{YuDr71vkDyzX0K-Co;lTR-sCl@_m8FCf23(2JG1|7hk4H92r1!5stLEJ
ze_yD~#wH`dvUO+F25`1Mnf2*q=KXe6&W`UFSMF5YJKN`F|Mup~JJwvEsO$!*-?9!d
z<t+_<vh;=LPrqJs%a_h6x4sp6+j18gZk2m%qj%lZzXwuRUAzei!^=%=jq{~98nh@Z
z`lH(WyIOW~{hQa%eeVh!ugrU0^X~c8XDVQ$uRO~-?3A-~Qu@-%j@~Ol{s%{a<y^k!
zlHs1w`;z3J%bcHd*yh>kyEQt84Ug~rX|?bZw6vDm4K748XJ0V*RxB(AY7aP{d^$&d
z$J(W)X){i1>BiSjv%FWRd;H@*i;qw}vo?VBXjX00{a>kNT^_UgX!i4<Dy_%7rv>x7
z)(bC?fYyJU+~CqP&s*^nJR*LX+8V(l;?mlcpn8Fmd&gA2iPP(ROM7m|^u~gd!k6E*
z65DsqItsQbQ~I{Sx8h`RaLK&Cwz+Wj>O>x}*>$|rdv43!zAzy&^NHobG|Qe}cUss$
zrT_cuua3+(d-Y1&6))xUp6k^t+;Z0~GXqzUr|b?U%~-vX7t|_Rn0w&xjq|)2;Eb_<
z5hMQ>i&?jzc78DURvax24wBmq?HlL+x@FL$^oVN~n+?yOJJ;Gk^=rQL2ZK+=!P0G@
zoB>u8eF0qN|1y8jDCHh39i%<gMmv{T?pR%3Rx_yj$dHB@3-$_F2VrBwkAE}S3Qq1@
zcq=4+?_9aIZ{dt7ZQB_6lkLq>B#`{nn+x_+F0<T`x{TbzKSlYUA7``a`E}<8ID9}Z
ze^(qV?G|7&XFoU)eBl~Ejy(*{_+ZBdOG6#YzEKvcXs^^JiLE<tJppIC%;;YR-->6;
zKvZ37-#GvF6G$NFBv^t}fpf^q`zjq-^Q7N{IhnIr6t`uut=SIl4SdNL`r|NT`TxAG
z=YNZ1gZ?MkcHW5by=2B2mMHtT95R;R+f;hv`M=#+b&kq6ZmS)%dQ<#A7SiLNoFMyc
z=l^w(Q3}rue82BBhMx!31GiNo+H128u1*)%nX@NTXibup)rVK04#2yw0TYB~FJHdi
zN$i)4*{x%Tt=<&-$Ae9)^;<mUhD~gf>BbAkH(%UlbS-iIZWhR(Nwnna4d-K<AkJCa
z6B^+@KLM;KS36nu+seQVvtl=Jd|EbjW8cp^>Jk3uBQ?rzpNe3weJ8YLImiXMscR0~
zm2+ML*Ek@P&mXVb2OhyFjxgK*bJovS98K+)@89B6+_ZS+dM;2SKkxlUjqR0IERCR+
zLuRz3;)cbJ0!|!Cr|Pp)TTb+SbKqFmv7;$kTlq-Y7IsK4IZE>Njd|Z3AU!UK1f*Y`
zo!WAv4@u(QJZTn4hiz?-!0(OD0!kW6>lQ>S@-8-uzpR+RJ=H{g`!|n{HyHwJoHdjd
zF1Rf@zi9S)SAiX%CT-l?c|Eskc$*wR?WRAI*gP*h&JbV$wH%*bGJe0bT-7_`(f?<g
zT7I;@lvq~lov3FEZKUp7=KKKE?ECfCuIF}5Zu^0?C7<?`SW5@wecmd2?T**-6W-fz
z<)6ykw+*7sYyCk(`Hx#n`>rc)K4P!CbZ$a#&+!lM<~(@J)Wh9$vqrc5z#5ZJb3}9t
z#U;O0h{+c(_xbnj%8oSM(-!YO_SnR%mp%fiV&HbYez54yvuqo%V^v>AwwvloZ8Md9
z_>=SUzIny(E=7H-mF;``_pZGmq|%9htXKf5bRy5oM0z=g{o;JIVMp*%`2_ptwf);o
zZkMVpc<f}X$B_ndKB$@Qd2N!B%z3ZRGmYf*wO?EHRNuP#O;>OB<D}X>Wu|rpCd|zX
z%>31r4YYf0)Ll=@o%j3LaANt>uMv-;Z10_0A9?1gcvWmM*v)fp)%5l>=!RUHGi7eh
z{5EAdfA_40yX*cPRqX8So~Ec)8?|ooEO1d9Fnj$(!3|Tr=1naUida_B)azbg_4VCH
z71OoR?{clTb$|Mm`{Td`9-gLKHMu?DD4P=eWs6*KUHshs-xaCx*EweC&sfU%(_&q)
z3AFFB-c$%2(b3ZCN6NMsf|F1{k)(LN^DcwuZr2UhO?%X&y!=yb;J$TyH3=DPY>v76
z)Z7+;`X64qi(-CHJ$9ExlK<3>koaYL0%XoB#_>%1xGP@-($V^CYRCkthl@;a9#dAR
z7dP-+aeeP;q4P%1ch*<s+=Mz+7vfYA(~rBh%HJ-jt=JmTp|e!ARQ7veh5WXpgaeI^
z0khXP3a$WoJkMNp%IzB79#c>^La3^C>!c!(9M}(e_spi;uJN4+PHW(L<>xG=Mo=e3
zlXs;~+s|1N;C%4Qbcs=3bzUz^+R};7mt;O@S<$C<%!=vx!Z-VuGzxFAh>~cG%6ww^
zla+VQf@2p&I6;-{skM#5N!GKJzy{>;&JnnM@c;*?3I4%b$|Bo#-ZBqxYKO>(MM4Hk
z8ikYWzqvxjl6dC`+_)&l393u>n-(~wxCg6127N&0MnN1_=g6GC_Sj`q8zF;9rUgzp
z?$IicQ6C)UzQ6qHz|6DP(>O19DW5;NR&`6)+pNtkpyGYU))uE6_t~kC(WGes9d9!r
z5-+a&a$b4%`VOccPl_a2&oYPj(RW$to8{kpA;U>0MHX4jGKUN&&GJ!Px42MPNki^j
zeYR2SjlN^PkV0s(=8-a!JV@y@%SUnB;zD8Y7~Zv%sN>(ZM1mz+o@w_>+`gCw4Ix#L
zB<ou`5DRq|3f#UZ!U+mgfm!Qql5*U+mBIei&v?LM+PBODoapj+=alALT@jhz4)WNG
zuQm;3@v|0N8_m1fm)mE)&;G({O|$Ehx9H9Zz482=2YBGf?zOU4PG8;WSrIRUZ)VJP
zdcC3l?=*1ZJ~uc+_S?q$Lf|2xT&}f;?aE>fftuvoeHWJAXrJZ{>L`3#rn#l-=N(y2
zP$OP;mcIKnNBL^y*Pv1G_t&~l%{Y5emh+60;(7P~%PvHnNZzk1z+G!2jcN3^XqeHV
zH=g%-gPpcba|_?^3q_#8c9zP^B2mX{-t1@r)m(YAon9{hIdgBq!zY+#l_AWE@L#R!
z0vZIrCc-sw{%xh#0$m=O9B;R4D1Hl$R{^)=Zy(@noPS%%5Y)ch&gR$g=Z;7xXqflH
zdiLpsvsYgf0=KZDgEM4rU(DzPMZksiz7q;(udWmZx7YHXs!zEc!@CgNUTcYq`#I%y
zOztu;uS8pR@ttQcj9o!pxTPy3AII(R@&4KLa1-Csughd~Pw(shIH_>uLr`&0kX5{O
zozk`d&*GpXJikTqnbw`UuzJT@8>!jLRp(8#mp4@e7qCgirfZot1!))sNwr1t6mOl8
z1nL4$xuMgx^OmC_sGIGTBX&4u?QC$XXW{kqLXGV^qs%9Qv$^Tj-zG<|o{zNSmYDv1
zWu{X3syRE8vm@?{zE6UTovgd&3+^WT+A3_6SG+Zk2~>;({n9?A+;vAzq`xh(+qnPd
zk}03&O7pJ!$7Ka6#=}3Wftz=KXK_ky-#H6vmv8n*rMddWofhwnUQgVg{p08R*Vi91
zI~yBtWEF4CQ`#DIa`U9CJx_&f<uVJmURk^P_C{IvUFUa5>3|FUrrR-VXM=+<#rE*-
z%52U32X?OiJ#Y5pM_j2k{g$y|o8_PtQ}}N+aBs-fzxJ5a=hyct*3bKA5TCyOtyOq8
zw4okl(HQ+wr1IqTLaD<tf2V<ahzo!2Q)j8m>pcSMB2IT+6DM-!^lnX~xuTDDSe`5V
z+XOCG4Q8)46j})C0Tun4y*;;M`g&XLj^)jt?w%|8*PXsKbH?Mj&rAP321Or7Ua_g0
z5~wu4wA_4-At>2^yH2akZS*F7`+CCP=+U7CbFLK0XYXM+`!UA6=l!z+*x=o2Rp{Vd
zLE<yp42e^Q6TcqWdT{6a-|p}sw5yOrxJZ3obN?PKk13CTPdKr9u7~}+-@E_9`b$@H
zI>8-2%d$tClJ52GnQ{A3R6_T6tDon7Nn9#kQ#pTqSTMBa4d1K^j<UN^M>MzZoTUp%
z9=&H@?~pG%KmT&kuO0jBXWO5b6=$AUC8uWz4vc`=tFH>JnCdlgYSCo#qxL<&gXS^u
z9X5RPIdI<dY2DB2_T_(q4d<<$297!r+d}!y*R8hepPs9Tv}{Yf+4c15wqx@Z{%xBs
z2kXnORt3l2!t2{7Xl~zm3zB$VKHBaw^X%1qoo7Iumg(#Zrrea1cA6Oe^6^g%t7WP7
z{S}_48g_;m#{Kx5xR3Xv$eyFc50|!phBzH&p1sP)btOjmto!z3Ij3^gr3EYrldAOF
zwRi5KJI}HVTtRKKrSZWUkIlj_Yk{ra&KBMA_fA3=C}RgCZI*bJWpET!c<wMg?DXcj
zSTJOS%2?+}-7CYR;9=(3iHaYJyEVbX%-49hC(f7lfebUB-5~ILr>qFLLv<w0@XS>{
zu&EbT3QiB2z51XCIP{`HM&%hI>{u=r3?A%?vt8M8Ge&nAhpx$`o|bRFR|x#vc~As2
zZ1G_3vEsht89RG-y;;z<cF&ET>%S9aruoa=gtX~md{=|R`;JtO;<w_<S&)G+u(y)H
z4iLDNzYgpd@Yqqbwa$^cJY%o}UR*iiy7KMDQqj(-PV*)%J1Dlu&U~E{Xx7NuG%Yx(
zc<Vu>&7dLE?3=AO&gX6b7b@GQ#diF?!`2N7unR9W7F>CjwFXkaUAH^A;_TH`-H;~1
zT8Sk4?XR48j;fg4xz(lkt$4K_sB3h1?OKVX_5EvifeqU`&$S@0*z`3d>%8m$nf4!S
z+S6;RVvdLDo`jBg#a~$U=cs|Z_=kdhZJFNrDGSsibJnS6MooRa;k@l`aDBzN-;6s^
zzPju+c*IMpTk%cuc|FKbSOgD90z4lw`&bgk?;BgW!TpbwymJL_Co3C#;3~Bdzp*Oj
zc+ERz$mB@WRK*v`$Me8*BaHh^xfA7oXM^>FdMTE_Ane&{2^_y~#6!$Vuk`IadvPQ8
z5hwZcZkNMi+H2q4Yy}OBz5hC))97}xa)GbTm(H9PzxWMFN1naVWlLGt|7=laecOWm
zxkn8^HCgztWwqyzd#o&+aV^oxOFSg+SH!iywY8A?A+5MXn|X7<iO(0eggD<g9+wKP
zB9|@Q#rHZhqz%+(+OB(5;^)r5o#2U)ZA+z+?Mt=5lNMjB?tw;!<_kuzSYr9|+lu)?
zvsZtW+z4tg`sIJr*t&Dp%88(^)ywNA&h0pR)u$I+j_iMyeJpofTGoRwE7!PPQ{@Bm
zicN#TGXs~_8uS#+UOiU|Tr=j$E}wE+=I<5A7}wur$2T0g9A>AoY-`QmHFH)SFP6L>
z@}_+2>`jdeB_%92@04047?rU^a_6d;$8%p>$wj-#d`~^&?s#u{pDo+0=jB)Rz)kOf
z*{fZpH-Ji;ZF6Ok?YCzngX_7NW6cI?k0gqI9ZQYw%hZWyiTkFjXSM9<TyI!`a@!o7
zt6k5}xjsAF^6T-<b^E-}vFGktarEhf!kT@1T%q$9S--*4EK9%eA9<Z0^Sd|F$;RYy
z=hI1(ulW>b-QDqv{RO1`9pif+?6H!pRm-kC%lhdCs>)Tr{IpPBY8HOlJV1M@lJ-*l
zS2x;I<EE)@_nQA$@cqQgiUOVAzw4EJb%l);MePF@u{&q2dd#U=Ztr#~b<c@Q^4pU8
zx@T0_Z{0t8)k|1bz7NjIQ`DYRv`L&dUN`HKzk$wiq4#;k><5kZ{0>>KmICwXWr$Dj
z&RPX3!yy)&3@?;A9K(AHoVS*)opsb8yxR;ibmP;vaembnL-5c|S`p8mI|03*=C*!g
zBunvDyJXP3|CGaOvC-|RXV-;g&J5BCt~<cKSjMad+BEo<4sIHp%B;G#{7dUC&H2@*
zol;M|z57(maI46a%_g!Evp_wO)juUyf)dv0pGlIB{{FOC>iQ{U{fz0Cu5O+8ezFue
zZVP6w{wWD*I;m%#%3b#iV)Cbn-pMmohf0Er&-?oh?l^mORSzg7p1$fa-(T<JG^@Ea
ztJWR;@}~OS_v`QNs?4CxkJU!tx@>9hzn<?Bw+)`S2Fn<&DQulByK0~M(o1gsuz~at
zwydQ=DNFBU@ZR2Zta_>HZz-Adn5N$7e}@Z?xVp@F^tUMzI`VjR1=wEioxFb24{OTn
z_^N-~bHw`V!#&eJmBeHmV?CI&PAxSBRIi*;?oymSQ^vW_)T1op_@?;xI@?nvo_{aS
zfwfK+8-bH!xbWYSW7S_?Up-XNx6<0qz94dXa#Z{GTrpYbNNc1dxVezGu4c+@x!Y4G
zg2wS)e)}`aVD{=r$rU@@X7$(UKJU31(|gKet;wf3U$Sk|?>x&2fu!O1$Ci)H!ao~>
zty(xe*Yv4bxU(skm;2fLNSR3pIQNuPbNlW*dvzHvczoe@K;Opszn}@C4U{03ffGc&
z^eMwn#gok-V|gG&v$ud7mbco9I^JfiJO-*9U)&Gq%bGWPOCxx^`D)bJ6=$#h=mnMg
zUbhz^%>DH>OgO7}Yn?KvU3+P*NMF$G)gPt71y9`86?1OKoP7dL?lD!*YEOtAo@sQ?
zUjL`c+_0P17dQT0+ujEm2)?=?u2_4nmVU0W?XkMNfa4$sWXyhP_^r6v3RI&w-}dR>
zI6wLn*p*J7b2B^sUI^*?tSxu${_BX8GtaWL*t6D6e75*{<Rs(St372`f?9NOy-#~?
z#pJ#RXYMaqI_X!QWmUU_Gq=h8m&b0L_k9J<L<@iVfkJR4I0U!wewFyW(^D2QO|arP
zTve{K?Xfs{X^0c*T%B!SRpx0zCP?d@ZC6$11%ZuTn!BR?#;U@7xB9@9=j)f!Z(GgX
z*Z(rud#pI(+LgEQ{z_)ylS@9cC7gNoqMki%;e_XlGcUDo=>Pj3JmYWf`%B>4#{aV5
z9$D~hD`hixcUy3WYVSOWfVAS0tB@KZTh(Xg+l`^}9j$irdc99<@_oHSXX%-LT6yQz
zT>hQ=Cz?Z6a@NE~q1lUn%TL&8H>=zGxZV6>y8_{WJ)AwiPt3EoEs%R{u;%x-N(To}
zarxlLvk$^6Cbrs5?Dh7Fdiefz&@Ab5g%)j=;T1AJ4|5#;9^4HsCC=sW^)n@iaaG!N
zO;J`_ny>y;dU?f#W2>Kp?c2Id_PL$@@8=tNK}A5L@$AFj8D_LP&FlB}`t|Sfo~O-!
zcI@Mwnl0O(YP~Eu=H7bGp9dP4nbpnO-!p>!H+{mE!%Mij_P8IFO}lq|VTgDw*JXWG
z@Mzk(96o(ksI5i6Vos^MZCl-`HobQ0`S2xA>n0uo`{2y8f?x(vcs~9W`pItd6Q-Ms
z-wE7UUaKc+_CCH9l+X^$e0$Mvp&Do?blv9bW#=A8+HDi`Us@<?G$sFF-t9fPzYS|!
zK7hIu8XGNTq!?ztUc7ThSnShc>!0cp_gznU9;@E?RsEk`fmLyZA;Y{2ho;8g_`Lm9
zruJR2=zm|H-m<&=2-Hz1NGtwf%>b&$3q4nMnQyx?bIY3Od#|sjc0Yev!B{)L2s{@w
z=cY`b-~k<xPc<<?t8TCTe#>lq&HecG|JL|{+t_n%#)yeH=$d@$xugGTzNp7Przbn(
zP8Syi{s;L)Va3_h?7(F0sao38=lLfEYu?>$Z2niVzN6amUh02nSC22A8$1h8wN_4Z
z>&_fq0Z`lEr|2@d70+&7V*+Q<yrX4PZpUmB1830|x%+~P&OF<+#Q{7n6undTsoC_U
ztl*wYtk*)#%{$-dOaPTyoO}0ub=!G1HKP$+c88Y9=X;#XJS}v}-KD+q%<o$@I)?@G
zmtQZxX$wk(js>$1UuFW=7=HU0dTz$FiGka{BAT}=Bt532i@f~3CE0T6Q`4uP>h9=+
zC!03!<S}B1$`rBG%=-3Y_fq%$KiTT$cTYbOIj{Pl?^5tcV8QIu3Xn<mxcz*K&8FM3
zfvbqvUmY5ocb+i>yHnFPZlyxf{q|1|I_t!yWzP1Nzxd&w(Vwf2kAf16z@2BCjzcEx
zUsReen)*EH;~$a#|IXBRnE!h^dmX$3Gu@F5T+SYqTT++5C4YM6v99*OkL=(k8%JKT
zWD0mff6`Z->#a*{_ISJx`@DO~AK@di8gXUoz56623P5wbn~pnx3ZA7U>*HiU6xZ$8
zxbA73n*H%3OooOA4-SB$v#$|cw!U1{uf49c`*v~ppI>?V&z(13cklLV6J7B1*PUlZ
zFb7Na=iYqes_Z%A_3USFcTMBDp5zOy*;03aW5xUB-*f#bm%O`NEaO5q{<MDide0Mf
z$?32@_4H15u&3_UFlubyxyG>p)P2tM^)dK1*_;DBW|ExL)Hr{wBX~~ksd~(#xA9u(
zUg<9@oMYo=EuDPFX#akW`oAsULcuXtFInISXhigsrgC2V<E?7?%byq9POFVC-kn{#
zR%<yAv_Ui7lml$*b<F~eJl~%yZY|SQw~G&2o+-WUOV_trt|g%C!;x1U*{lHWXP@_K
zDV%*;iUr(~NK!qNG~=`s3%K#H)$rhr^Ja43@_YZGV=P~7q$?qMa$maaJe&Fy5(tJy
zKck!va4PJs&iR;@S-<}BQD`G9OzyzilCC{dZm-x?rZIO#`w6qS{N{7DvyMOBbygJW
ziklD<gXA2K%wA)8@1E?^zEr#RT$^)$8Z!RaY|`gf1n1PI+c9Nw;0*MK%Ubx#=bV>d
zyH7t=kp4U`e)<!2&5twsq&Lk;?R>uZ^BsG(O*xQJWW8X1aQ56)sT!PDz2&O|IM+>X
zHB~g5zLeddxYb13_4w``>ts}t6?JR_KD=<`;ju8_NGhILsQ~J+1)Wii;3<~OPXITY
zedfLXddpIM#T~in?QdUOy-Ploby7thn)vQQ65sqp{>Nt1r$S;r_FhPETJg;ah0T{v
z6bJ250GU<k0P4z>Y_?x?=UD-}BRIvbn7RFF#Q7}}{`McA&kRfI+1_`1+8K*3DNvL$
zFE^Y1kRu5+gK~FHzsA;`Iz9r?E1yKZOtE%ac{a7H37n+O+c{6=>P3ry8<$n4eFb^N
zl8eEars$=nYiMvLx8~7D$txe8S2aBRTXR1wd*?yc#>A}^pL1KLP8(8-zudRr%rm2C
z$Bcy&)1Jh>oX_{};f{AU!P}o2K4m)lv(~0Y>o26sd@CkQy8|?5^W~NL!#mG5MLB}T
z1)g3K{yxQY?v_t?Z=30?G=IqMwNcL!79XFd&5BwX5}DbXX7FuuB{#U;vEH`1c=l-l
zHgGq{+duLUU+bq|AB$tpU76SV0-BcGjKQ%VQ}yZevQJZ<c7#vb@j>GB$uzs^s-_QX
z%1R-FK-=6`OQwJtlzO_C4RQ({1GD-*9X`3zq<ZPHKUeZUOgqHZmX@&K$g@o|8PnEH
zNPB$AuxDq*+L)f{KaPJs!~c{256d(OP;?%7wrPfA+R_Q>OTxqTo|{cS$pg+()90-=
z%+lK4@=>hp&idz1KX1`}Tv9hn8|KDireHUI*}N?2&NHLK;J{cq-%<3j+4O^aU<1}l
z3LL95y8&MLlX14e;M?Ydko7_9_sO5j)oYdoN1v5sZ(vrj<QoOh=w8q_9<jqQY}Vjh
zxOYvj#MVsdg;mx8pqb#ka*G1e6{^c_N}m5Z_572^{%@64%nqyU_1in;=DfMp6CyR9
z{CrUwy5!8aH*73toEDyNH?I~ymUF(&;RL8o{1R0im{$Fb*$GskFAne5OWl_4u8;z1
zc-;FQo1RrQ|J2(n5*zy}9{C1cOFhN!WcU3Dw5i}f&A~(G%g3BAub9%0e0#&uaw10l
zENi95#52sFc5nO9zGL^Cn|u$8)qOyfz=I>--mtTraGHO@O@A@tDTMt+t_#nAG=m1V
zkN=(&w5srv`>uVw=U1LgjGAWp>_N3>BB+=sNUJVm0XtGzH|6D@Z*T53gGL?dc1wFq
z)p@;RUG+bSf>rt_TFbugZhQ~wZqB(e?{4*kh!>A<?ht!CRq@%kcOrj1eN$cr=N?Yi
z{AZxErOb6}hkfoH<~2?;PaOWe^yjX1JCB&@@jUV@z4LjW%=ar-LU*st=gk3iQoORy
z+u3!T-g?m{##HisSR>27yiI;5<C5Bz-?{&P-N^-D2PRdQeRND&*q^@GW98f_k9rSY
zPu84j=of6We*gS>@Zt!I&9=LLD1h24AJ^$hwijA{w%a@}ld*K&&zHY8#Xl{6U)v2D
zcsnrj?ajmNGeIr7_{8`S&q9eG3R^FnFfN*TZ0WMzExVt%X2mAo|5DchYCy4Ut>md;
zh+Y{I`LZ<r$j-Mn4=!H_svy=0JM7Wy=kEWM%Wrbfa++e?w`<>>I>E-TJe&OBGI%yN
z{AbxmNuAQLkH>WXGyGhx$;N&B<I4NXK;GfV`h4TN$qmrLn@n+!-YYlt4EIOOzFyoB
zKIKn@*?Z5AW#3<kJz!?$<7v8O!)C_|N~V{N);Ai>KE7vpA}IUq`l%m~_gUhH0%+j-
z(%JgPqS?m}EPn`^s_mNh_iu)A`rlK<_m-Y3j(+}S&htyK<$@bOWP+#Iir!2~Td>+7
zZQs3%&&;JNKTbNux^6La?d98>M<Kr4HHTATW2H`wRLa5$&mN245O193{#&jkOv=@7
zS7~t|$a)h{)5&}LQ--Hz{hj`Y!IQ&<GZvqDX80j<2B`Ovw>NXjZIBnhHR0O&c7!|E
z?S7dUy)1F}tg=^OCv^WYcphFJ+zf6O?l_zLuo>L<d-rgm;hE$emq8Oq&fC|CpURax
zJhu%rN3b&{G<fQZed6bje{XJkZEeH)|F6p|Pz)&SIGeoVGI$QSc9pBe*2*_!Qs64!
z_GivhxpKQ9+FyQo9gy`o;)lZ4Ak9se-d1uy-IgA|pbb2@^z7m36=##VuYhCm`lKgS
z1wq%|AFep^^-|ET|L6aD<e$Bt1gSG`*(`J5-4=9m^QE^!eml=5b6o-3d-s>F=JraT
zMk#P%y@}}rtK{Q~+OW#b`lwTSTaV3=&u{lI)H?uLEShZ80-l9df6U{RD|dSl#06z)
z3+_DIsG9|jE5B!wQ*PNTbA_aWx7Q{X%|5<m1vIK}xxemN{-t8FU0itW8%IHK;>!Cx
zLrf8zF5bRac;}fR)SSF-nNzuPmluJ9?`1moksW7~qahBCmFo^n`+P&p6g-Zt&#dK^
z>wnCZcVo~A<DfN-?>^5yp2DGAAb09sYW#vd&kS|4I;Psq>(A?7uerTaryK0er7u>l
zweA0`_435;_eRrRE&A^63JIgzHq%^rL9rhc_wUK|1&6QdR-JkI^QhVMbj{08tt$5Z
zg*HJ!)<aU$`tX3f&k>5I5Z--IlHuXp30iTK_ni4u?)f|qNKoWXJ+b0!avLO`V(*;O
z*jU*!K`I4Qsmxz1`q->rFbJF?W6t+`-#!;ob!^&?{gIV*(<bqLvp;47Zu1??l~Y~<
z36RHo4y-(z+}v`-Yv~Cudvoby2&u5QUOV63<X#ER`}gkI9Nv(VY?mnexkhaJ&n0P{
z?X_m%mH(~41-D<Woc0nnP!~mUUfAK#dsF>#epgHltUq!ATAuVwkOD3Jdirj`w)k_=
zJ3ZH}%G_<eq83z&3*33O(Fqdgzq?QWwQ}Zt$#3}EIp$nX{AVFZ^=sC@SEv9q#IRRt
zyT$g(H&Y>DfB*gA9cPo*Ln3o;6^rHeN}XvCsp~%*if>Oo8*~`7?Ba`6xN+L&8#;=n
z*F8R8d@Xcp=Go+pR{}t58}^D>%(-nN<_(UjORM?k7SBGOv=W@ks&2*><$aFOfkcS@
zVditWa<`X3LhY&W>78ejSzE!mRX?BiT&|q<3b0h=daiZ-cGK8f4{zx`9b=_?@A-!F
zs~UPCBPGdfS0On?=ZnVnN}gp9w@yFI_uQ=iXb3pgN;Y3ud}rC(E&FaugR@cXzI`&`
zpH;WmG@ROZ@Aqxz#GiB4gBwYAWKYkVyX;tUO|E;4zpj14Mpd)xlfP7%xz2ohGm{Hk
z(#Nf4I+b(YFZh6tNLS4g@zW)B)n%=RKttZ=6L0?c_U1tgsJgp%Tz0n5?aj@?LZF%7
zz3-$oHrqy8D1ufNeT@4M)B0>?tz=*2iRZ81t~&GQ&iRX=abk`2w!h644Z_`x3nP8j
z9G}(Y*<I*j<;)vhC$}MP?i2Z78E^|zeOvl>H3zX@E@tb*!$R3lmF@iY<l5@5(XT7^
zZde4$w4fR|A6x@Jp7iNuh)2UxPZN3em3-MJ)^pwu0=IwW+?;oJHn_#Hqin;^=sMx=
zKT@sQb;GOI<lbk43|8FUtSn;0-D)HMUNx#Re74@->WvYR*FQZxQ+VqBxj!~Pz&(?K
zwCZmyV5=6NKiMsGd$X|!*u(ExeXCw<e`2;PYvR;d$2LZ|g1TY{X1+Zs$JGHEQHk@n
zlH6#!+gZ`*x_j}(^z)1Me0#&wdcaBcyld2pi$CAqJjw~)5_Y{f=~T{nIX_4Xs4B&M
z=Go*2EmxeB&z~suwDaD3<m&xjrPr*t?~pphmjB+{2;934n0@>J=Z2|XQ>W&YhEKUY
zPj(KZ(4Nf5o@~}%8_W!vYbx3NVBwW#8}qZkYiAav*DSYLy8p**y`5(tc%=VPmHT~t
zl_$v2peo=YBr~|4|2;FYZe{Hf{uMp9gS6bd3vX0AYD4>>8w()0EpI>nQ?ve7;Ue(X
z1pjrDXMEqR)4xglPry2>>G2nSe|QM1iv1uZ&-sL&!r8|UL9)lG&R?tYWk2(U-J7=V
z=~+*kM~@7@8%jaDU)A3VvmgszmOkydW#i_@3m#!Suhtnj`}i@=ji8BxyuVdbZrhmo
zfwNvwq}vhUxEQ7B-w&L&n$k97)1#PgwSV>{J_V%`j=awimf&o7I#r%|op|`&A7S%Y
zVyAk-yZQZ7gTc9HkNnbi9~JCRD+Wt{I(9W;kFWgWhVzR<%#6U>Fkq@${N^V=yz^{h
z5hNU{WAEgDS(<n%SFT#)31~9K%9J4>>+=j}Q&10x>u24u{7)18&*jP$L$dhJd&Ruf
zmO7t4sm40BRi5EjTmOC4{P&IEu_u=8m2Vb8vi135TR*TKQ0=;N{_Ss1{|Zi1NtgS)
z*`z4#cOSO_XgOAdGo<oaUzG#00Al~Hujv7K)n)CFAdD+rI^~wlvjA`qI@Qg(|ET!G
zl$$ok0(iGvI#GOS?em_Z*~cYTfy=B-SDAVf<&>AJfmRw=y#>{vZhjtXL%P<KL`4N=
zeZFA<_LJ8={S2PZGxSVB!<+@NbLu|p2Nvgn1R#~qY^77Va+jBa3$&eiQT31C?<&gr
z9HFNOZZ@n<pIbEhco8HSbj{1Wd0tsA;pa+^$X&dZiM4U@ynn7RLMK)#b*4iCqx-62
zs#*V2XnDN(eA1m~hH;SKxBC{^b93IBIZ|;;`=2xOET6Ta|CqN#<L7{HLQ~J?%QY`i
zYkKtX&;A1nt1f=dm;g!NclX&l?mU|e<t;q_e745c$~P0inMd`@FBaaXX8pF1YH*7A
zn$)jFQ?yo<R|iZhw(Z<qW(J*Q@3$2S0!<Iyy|+Fnulk!iB)Id^ncQ;ax*@gM%V+Ps
zR)XwF0CkIM&#aT!TzO`q6u7e=T`G^T<;$zSCwHE0baw);oenQId~Vk72ysA3RgBxp
zw>RZif?Ke^wk!)w`#eM0^n#P}S&!}0%ck72x#j_BO|9mfUOfA_6eM8l8cjnMKffr&
zxnru|)ae)ME<ZE>sbss{tlu!m8PYXYeRAiSp&KL+z5Ty36yDx$7~ZjbaeD3beRW?T
zHSczib3ql!((q=L=iAh)m$ZQf0bhQ*EdX)_xJE40Tp2d|_H7GG&XcT<=J#K<=jHBI
z4O#r?qR`5Rp|2{;^i=o%eEtelxlV*cru#&WbhCb0Xk=>Me|Y7Yp)(}(;$r8|xowl?
z0nXHyvhSYUc{aJN1yoI*j`pvT5zF8Cx%rIkI`M6a_YL2_&p!F*;$dj1Watd>N!(N=
zgb772J<rFre{$2BSGe5v-|a_VjOL%7bVkSidk(nSaWGfT7}}00wm!S^Y;x-raR2r1
znuikGGfywivIh5#!xz@CnkUz89B;M%`>&IyljnTXmD7I@Y4{(Aopa`4hsgipj_Tq)
zUCqxY--z+Q^!kwV%(D+WSU~+pcQd1;&$AB;uACQtfuk&lzw+zSr(Kg@)y=!&TnBRc
zgEP+xBALKF-O1|0%4Y4Sg}@`?d-d|C+?28N29FY#7+WNt`IfPj1w8q@UR6Zdto^c(
zLUFB$_}*1JH8)z;Ov_4H=%2E9_J96lv-a~s2B7Nf`r4{bq0!gQnD68DnLOz`@2~kk
zejoUG=HW_~8YkZC_uh&poO$*k1Y-B~#g(UW_`+4e1MR<J*flp=#!PJhcU4<>jy_tT
zvm7)Q@#@Ag@h_m|B8|eg7q1LDt9_+2=F6(Uv?I?7LYYAG-AdL58*iR{xRT{Ex0v6(
z)1A|eW*-jb1kVJ->7JZ&Q>M=g?4g*u?+YgiujdLs$YatX?`@-f?DsKmE=YAe`?MeD
zidMII6IUmF-u`cocB<L*nL)g3O;*kMViccr<yk?n6F389c%DrP*4tw>?QzHUSHF#>
z&DF9z#Pj^?;R}TeCB-c^?(CT&5UH``=Ly!6CQUna`VBx^1+7H)1Z5RV$|-{ThG(C&
z7R^5Wfdf3illSz|l-n`W+`(gmCD}(7+<CUi#tEGEy(jaenoWNwXas8Vh4;RYSbw;%
za+0^^<u0Z5+MB0^_>1MU*@Z5GrYXMT%8;==%MS)%yFhi<Bz*ysrk!g#6+oK_y_6o;
z%fFr(rStjTt|x5YFLjw8-F-_p^yM@caG#uI`_46;6F}Xymtl53JI|*2wt&jj(`)r~
zpH-f@R}|^@`lc^*+S5o4ynkrv{E32(&88a)f)ng_trPd31>4QJ9dpbDJoNL2D_QNz
z=Nw-aP)_n*|9$(M+cDQ5QeReyJ-G91lN!XQvsJmDnoYNa7_&ESWl>(Sq=+J@A9Cq5
z)7;|Orx!p1>(Ob@c&r}>c&6<3KF6JBAF8*2s=HJA2Ek5-=i8h*KudZ{tk(u*72o7k
z1o!q%%X9^TOaM;@#L4S}?A3tSJA+}P#4{t2CeYr27x~LuvgYY_ftS#~{5)+!FkDlf
zx$u<RF>J12PkpJXKECs8Y9Kgpyz86QLO$mNuz))v=KU$Ba`l>(z{6I*B>fEYif2N+
zQ8e|{GOK;H_Mdsn?y{Ecn}2xkS7^n%)29m(=HGuC<Q2~ph4}jY_ryEjG8$XJT|D#u
z<%e?gf>jqhlghN)^;c`k&6qYX@Pw_1v9{RZm}l<b(XhL5ya9Q|H{~HFyyca6YBv2Z
zBuHa(9)YGP`oU8aFGH3)tUQ}q2XXWCOQNT8_?|1PgmG26S&51mrWN0mQ`~aF!#Id<
z`j6zJbJI1||NQW8tF=2d`(V+A_s_o`@d7v7R-8?(X#tOlY)|4om8<ty8SL$KN!_na
zy(?uc#HyPgM+t<jXFGbJ0kkfA`ddNpbje*kvnjV@wm}oT_6|^jw}V8-ZKsJvvk(8}
z0LN7MRENSmjnkk0-dMKthwYr#0k;m?sU?FGyI-!}XXPVeTA6-&hT)S>hu$zhV!a_%
zZ`-u&ygUDGG9Z1_tl~&{NCJ5K)AXs?^skVh*c<n^Ag_3){M9>N%TIZ)pFU^K?U-lo
zkeJ>43^Y<{4{=PhF25>BmymX=jq=`G?=836&XQLIja(Pm%1S(*YP#;|rqvO4r?#7x
zYwFz=DqoXWp}!nF)<5ND44a3;S<_23G1vaByrLg|C*}I)H+O>SrtWy{^Yh)$An@d&
zz?o-8_D)$#Cq7rPHGX7xCN&Jai||4&|MEM}Hfci~F*{KDsoC^ch|~X`xh1iE=No8x
zNh<-(hlPXl*6I9<yyqlAIkv}3_`IXt`wJ4!HVGaAO=-W_E^m-mEXfH;6|48oE1rGY
z1CpDn72h2fuR5o__3N&WDy=*2gFC(3GY>C;RzUlY7JB{dJM&O>i{5%m`_KOv%T+e+
zoVTRko<Y^DU0M)aU({;d(b#CYrz0x~R1bu=TBU-d!1ci1SJO2%Ti)qt0FAruSRzvW
zYh}rNosadOgMXB83!K0CyR4>86x`uTH*1#{gy>ndL1VM6ln^7RA9wM!Ggr?InL3w-
zGhZ*pe9??rvgg?crB#isRujAZ(u{j<$h>oL01dmwu*E;VdSHtG?(o&6bqqhYIn>K5
zfkzC^<?xj&f$Nqk+tW+VJS$L#R6F7OSyIi~?V)zY{MFcOY10LE=Zjzmzs|Q87p-_E
z`pQMGYHxDVk!J<A;7VrE?1P{R@VTG@sK;4rHCJ<^rA$A#vU>3~Yo^ic!|yr3RnF?J
zhvt7bNIW&2eiaf(u~|<wHty`{%Su@qkh)|(H{WBk_S=x$uvcd_$L5`HCJTU8FTMPJ
z*dVL;raC0qo}JfGH2bt2XfS2o^wml4R*CCYUpJ8ZxFXJLX3(CuzNTXDg^WSr*Zjb2
zdaV$+2%f9;Ok?ZLGm{%YD=2ox9sc(%K4STuXGQ^#<P;su`qXTCD@5(xIi(ugEp4WN
z3%rxPqB>1Gb*31A)+?{QDeP8fX5A#v<)QK7+GqEjXH&}{#obBO?nJ$8CGd(rzq<>j
z+=@Bo;sI{gZJL>M<=G}xXti)w<gwXwT}ZOsD_2{bSA0{55j@JZ_VV1K*{7#LQlOt5
z%amI&%b-RW&je*ZRftosKdwEOs}~F@OZ99o?|AmB$>nDq+sxCdMay0Poc?~Z7dn8L
zS^{y~cF^F{=~o=!nLE4pM=iEm&gp}ccu!SaW}HneZUMJmmrpiHHJg4?&<Rwn9zEG}
z)L^=zAb94b^K8<L(-SzrvwgD{D?c@xt||zgivG(xGvMrIRY;UUIEoO?U8##2+jsIn
z>&?)sM|Pe~^@O;`yjk;9uAa9Nc%_@w-In02Vo4!L3*fX~ci`;PeUO5#=Imm_GpVxR
z+z(zVy6G2qSN4l^;bS}AUVOt2Uc-~Lta$$Ym~A!!ur7w4w_MMH3XA$|`Ie3I-xeEy
z`cAv{>Vt~Y^U%2#PqD{l(_0~PEw)+K7MpkSlt2RHTiW!Z*{9vu!C_T%=aR&;g1rYp
z%TP6D`n0)RuAFxL#N{dZOznG?o#Ox1R$7xj2^81|R-R3*YQEv5de&3lTk=?r-eKt$
z(D-)OtcvdNKUPL5hLO=-OV3yxyCa{!U)~Nn%Usb6uAx&kKF_Xqolrdc^ase)mfrH<
zQ#pE@r4zto)PF&>LYX<ZAdZP+1#g4@tMD~kZu^c`{%k(->dw$Xwf6hG;Ckfmnr@D*
zJKyAiml(V(neH+3Y-(xq1uy0Ep4-)hrreGRgBbRu>f@Q6XH!dq!K;1t&XX(7D~`Mi
znYdlOu?68CZ-33Fr|155&rF@az2sZh@{Pv7{c7aeFGGsOoj&=HdOH2+ksWU@eq#g2
z%J-cMez=JpIxl1|bZoxyJo{rmtMw8<o&SKe;+gjtKqGgB`uw-1e?K>Q%9-T6R^_9P
z_X`=1u^!CUW0qA3`&D80>#tVN?HD#Iu*X|&i@*5x+O#O|&FydBTR+0rDy1%H1~<ii
z|GoG1pY`13>&z>Dc2`x$$n<|UsQ&_MN$`|FT$uL6apzg67H-V~iN4Q0&u`}(-PM2H
z_|183*y#?_SMq_=_VjsYcBJ?(e|2fznPuI|_r8CJ9oQiG6%t72E!qlapI!mkte-UL
zNYaecA?)Bh0$xs+x(e(zZ*%3KQ@OWnR@{P|1(Ba$;(536%)_mlk9c1GmG+BKUlCM!
zT<>?9dG_HpW^f;+e6pgzrx#m;g}G~$r1x?~YHYULQwAx9)6x&mIQwubMBRGvB~xz7
z<XMB;@Lwvs+&kZ1%wex+wVKx*XZEV+hD@F{q>6a8e!-Dv1-Dm%7ZurkojB!&Oq?~i
zium$s)q*q6KHOr2ba_64x;&Tpz*X4Yp7|1+E$2Wj{xaJjskq`T1E>P}xX;s5{Ov*+
zspAt*o$CAJ*pghg-}A?vB^y9V!eX=SthZN=IL$xdHa{xkST^5sS%zn?GSsSKy)-sj
z&M9MveDV0^i_+5NXPy;6tbHsV!P7X!eZ4HCM!G5mN+fR?KoeS*)>d@|%|4y8{8*S)
zXxOhCYKCdW6>k+lWBQlQpKc47eL9PMW2@J!$#(YK%4X9~@+pB@C4c!OkLBu3hD?+0
zy3!b!Rvh^TJh^`9{2@@JB|$QH-dUb0w`0Vt!D*~S+kDZTXGS+6Wkhtd)KjzeVt#Oz
zx*KCHv32K}25^?j%<VS#v^kf*CBVhW5nM8EgT(smP|l}j(+l~*70%tND9!CV*HnX3
zp5|}1?nJ%Wvf%1Ld;0tBXDZ7r9`91n6aT!pD|w$^!21~3K^8e>U>z@0lMk;ro4Sb^
z)P6qo`{c*`e>Z(k<?79b_{r*KS3p+rOvu#lrPFsoU4axxLX6ugI_Gwb8pKaueobHi
z%}Yayy1l1_EVl3LDFZJsd0AGr_|CHrx4<h4p2mHxjLVNY_UWIt{T2y3{=blAQMY2!
ztRWqT=%m1`;+x+UKplsomzwXlw@vy~JO7bn_IY=Ao9Rbu-rrX$gO)?nRRtg+FfA9<
zfpY){?h{pm-b6iSdGPZ7xHkKqTQO{Q;0m(jwlS!psDXI9?6cR-v#AdtIcK}N7N~n+
z2R5PP^U9@no^ATT2p*ETE**9*S5H_T+_bKeG&0O8zR3iwLnd?v&OV(1sY9-ba3<SJ
zGbe)AW!%tdvyEZ~A49RYQP8c{jI9ZDCed~_H;L~zML3i-<j&nc@6u5?`?Lt88qUjK
zps{_YPb1iEkVq7k2S;L_9mka0F=|k!6|V%<E^OeP_NrfgE#Q7?)^08UPCDUpFBPuy
z-s7veF6ebZ8u#0xXOZ73&i%V14KAE4w(dOB2u@X+|AKUycJ|bOyT!XiJV06C2RO+V
zWp=hlU70EEcD|(U-0F{O)NXEH^ZZ|+Gjy`W=o2`>J~cXX>O9-=k5$k29kJIvs+HTj
zd}?xqxY$Q<shXoFEDx?utY+2+W);r_%^05CJgGlI>aa|owS=Q!A!}{VT8@o7-;{wn
z=`YG`7hQQ~blWipw88(4kWSmqo<eX<x^C;K>W3lcc#kIM>2BZudqeKan##4I;GzAd
z+cC#1Ot)WJ`RP)2?75w1Q+puMxZX?aT&`ZS3^=ZSNtzqx70-MOEkbv67T#WL%LnPn
zi(fV9PredawfNf(_dMr)y!X$S#$5lh;{9D$@G^4HYLgR;;I*axovi9+(@pt|K)HRd
z)k=%)JJ%F~W9j8p$CEqHruIUt-o~`h@JwoQGiYG+LjL`PJI^+41P9mB{!q|@nND8t
zit@c())w1$`s6@ND0>o=S1bv2;jAACZ_<UO!I2)f)CiQd%pmD;v&7On%g$D<dJE=$
zsXXmwTXE)Ly6|~}<f;b4e+|j~H)8xJl@(d-x4e@MKK-NGrfJchX9e?CR)SjUas1L6
zn=R+0L(27M!Ju;823oG)t~r&%_gxZP9`1^M*D!(ov*ZKOR~34fBHPa9@y(Z*F>iCg
zyExX~DK}*73{5v(P~UVh{jPWC*@r^R;4vw4ZLwoHeDfv1CRA-@3P>ydafAW1u3%!H
zpVfZLm{^F5ZZ-s`75~@;mbtjPzsczK;;r7`jT2w0l1_G<efWk6v}D6|{cm-z9KLvQ
z2eDrjW>s735xPEd^W-|5TD+PY+)uH+H$5n>_~uS<HBo3;Ec3CZL`=W$Q&7!)FT?j0
zdXIk@E_n*xmzGv6x$DXWuf?Z41BLZ@A6rdR_kO;6b+%sh6}jg#pMQV889MPQ)29b6
zCqzt7zN(wkx5+?u`i|HBk5hYEdd0zuEB$iyg2lm|-d~Xi46=$NcY#YOp<gvCdV^-4
zzQPLbHOH<0Wx0K)Pb?&gL$3I*Je&HG2~@gz*-sWcmaFG24o;uDN}Gc6if8VEq|em_
zjm5JMUxgT9m$zri%@{L7@QTSTZDtZbZ>q34fp)2zZaH}4e48F*w4u!7RIZ*g#5AkY
z1wmQGkw?HwbS~YxneZmv8giOYT{YWdv*`=D!9}Izbd$E7XTlXg2iaN8)zI9!^GrCn
z_wn-cl$pV^Pgg-4P<PCs=XT6BZE%7svCackFyRmnZDUz-=h>z>NZO7Tw|i<f{U;Z=
z8FM$!Qe(U29f)}+!#Twc#<*#M&ruPY;c75_DJOX4Ik+CHgRJM9Z_D@CZ2D48u+#4P
zg-^L1vrG*#47YnuKwk08S>V9=r0o+MaDMYjsJcG+Q@MJ<!r(ysHS-E+%m$+F(%B<3
zie{g_0$n*+b}(ti=_ZIxpj}(35>4RTc{XNt(d^SLEa1VvYX+>z_R<r<%jv!tT}r(2
zEhDe#h?nAd5A$y2Lpgf8MId87Z|_gJ855=n8S~K=5<48TO$`zYJ$p2^?_3iE37zfv
z26@GiOTo^*bn+LdMWF!+(!68lQ*OtEX+peLeb{H`*@sghOXciuOFQN2{T78Jt)2Hk
zgNGZyN$b+>8n&%Av)6-*=SwTkv;@sQT?a8Qu1vS*R?IhT2hb$V7sE@5XPz0AID*GV
zuj?OParWWMCh*YJ^5izd*{3hCE^Kw1H8F2_npdt~w*+|E=C7NdL5@8FcI+o@ouYvA
zn_Yd*t}R)$=Sx&+Q64BYfd>Ge&ua*teOiGHlDz#}LCHG_;@|Wihj+Zas0L|@`#lqB
zxe=pgc;JlarJOICSr3mq+tdzOwKjVq(^IqQwvbh8d+!w&<`qYt16zD)`G)@B*{2Jj
zrXL3_>wU-ruF?MTWJzq_$&(IgMSxbI6yH1xPT)arG9!43Z=Quj+ihdepiCOXMPJKi
z70*7M2kGF%y<cy!Ju`YPbU5Yi+p>KE&k8o3v~~YzSN)eUUKZ3KKCd0*mBXhmtpF-<
ztfYT5^tj8<o)x}Ac;}1HSGt8}A3n+kUT<$_Ev9PL-p&hdvhEez0UD(@gEWYZjx0X&
zEu#-oBI;|)y5;cY%Q!sym7!Oq8x0zrDFlzwKQ6k|xji&`Pt^1HhksqvFTVS^G5^o$
z@2V5QUAviQANGPv<>Oyh|9K|Qx$Mld562*_<>?Q#Qq9`$^MOmgg_p~-G&WoQfi#y-
z1br*r<FokF-Z-<OIbFwH<Mtfa4h&QRt*Exx2vP(Z%0J<>ZT0LVtu~v9=`*$&|5uDV
z{CK17zPFpfdvfR8l;bUjj2>}#cK6lFpL%@prBCYJ;>f6}K{qR6;+?<+<dhpSb&y8>
z6kBckiC+HmPbt4PUH9vFk&MsjU2jj{HVy<WRV|1EwcR%a94`*Mc5wQ^TeI%R98C?0
z<9=qnM)lsKd8Z5ah<|~N48hvrKYIewig&z))D6#V%~Z{%UxoPfdi9$MWl8;6)2q*l
ze4mm$|Fm;^vSeFs%zal&upy4QdaLJ3MT1tHh0S%}dG_H}a97t$|9FU3uHI@{aF*IN
zbt|ZBd<)4^Cx15t%|4yM4o=P6Lm%b;{>tl@tG8GdJa%7I837vle#-zFDk-X0{9n0m
z(w8T@SO0OCv1h`6=yI#nE#ON3^zMX5bB-6ERKIV#esf!p;?||@S|3mSh99N3=@z(@
zeEPTKO;z3W_g|(z>@dHY9j88Bef4~GuM)_DV7~RT;02;pcfSWi8omLZ#g|^6n;$&;
zv;YTqr<~t4wJEn^${fJ8)0a*BpkW?n=rB(!XmRgRXghdKl*aa*I&IL5aA$t;?9<zz
z?aSw8paEjYNJ!Pp7*G#f96TUdw3qwGS^Kk~0rgn$s0nwZ#GCy5do}$N<a3Vf?a}42
z1NEjs>$4#mE}d5E37ma;2c+4XcTQx=?U-Ybf%%f+B2e>G58OO`8ZKeJaGtuo3OHP)
z9;@;E$!Tu^ZB2W>JsMQR=|BeA&QItpoP9b0GRWrVUFDUlSFH-xvrE@gWBblGQz7|(
zo65pF&o+gF$EI3so>$w?nDcq@o^88fYv5AXgPrfad~tiw?9(xv;P{RE>IoWM_JUMo
zyIX?uiY3h;!(eCsbQjG&&B6t)2I`*0_uP(A3xKHGYz^w4O#@rCbh@DEVzcQxMZiVU
z+?-sEt+ung6~X<&m*t8_o*7MJ0xjKLeEXyS%(JN>t>6QhwtqH$YBoJk6jHOTn?L1t
zj9Vz!@IPFO^{#x*356WuRlis-;IY9fNMx?~`F8&t&`3!rD|otQdy>MbT)y>M;J{cH
zpWewm`K`v+uA2`v?-@^zPw)MGVTb(u_;ygD1dR)Ywt~ln?ENj=a`iTAfy?+$mu;mE
z$6N~nS5<$@c#h@j6>EZP&LX``p5mE~j^MT5xAir*@8nqsPB=TiI5fWcI{CTuqCZnl
zJQ4nQ4c7ku&;oJh{q@c(&ZcrgY}-G-EpYZ}0j`Zxz2;4=vj^4ZiXvcN@AX?f=XOk6
z0JNR{_UulOCeR>?x4v-lxm-PO(4vLPxT?F|putHeaB94C_Cb5m?Zu`d;CA}nGqvxI
zJTq#81n}&)QmJOsHAR9zqlS0i_<=f15GTI`&)nRE8gbgIFL3s0F)l~~c<*PqeP<3-
z-Q|OaR-R4eW(Bv#w#T;@%|4w4NdR$2SIxN{6BZ1Pqc29f$yc5k&4T#%c2;lE?9&+#
zb$;JAO}VvYZrD~?u<>6wI)6pp+-x1PNA}LCW#?H^g#SE#mlm<L!99M3zV5{%SIf-~
zGW}6EU%{^(sIujIrvCCJ-`+5NU8*{3$FI0j?kQL2-JQR0kBjK_`)8v%H{RO({_^zc
zD<1u--l`lJR&7-C>ynUfOznE{xSlKXYUl0SQSKX3ZIydD^6kyem&T@@`X1G`j*HfO
zdvoB+Q`J>F{>81&(Ohk7tzTQ&skLtZ^>%iR)wb4p5MKXJCDpCz%a?*(CH{N<j{38o
zH%+<qG<9Ft-KS5!{o4}o@jrOlrXZ~PTg0zVLZLDBg-KQ6JC`gyS+}J7%#Nq_GS{_!
z@8u8%6$b@j)kfjJE(rNL)mr`B82R=l<4fzWwsuc-PR_cPeD3x6DNUby)Y~f31M=iI
zFTM6D&ae|aV6)Qpw_I&ur`o!GZ#J#8PdSy{v4h8US;h3NJx>qD?>TDK_IX#x<wDRb
z?sD5|+1kiXrFDBBJeMulA*Xcw_m|qc+kRHfD1Vc@=TS_$EodhubNbfw{>A$Gfk(ei
z-+XUZ&TonLiKml)tInIV{G*Zeq2-Uj?e=q7a><MJ4KE%w7O1M7)^Tap@e41S&rDgV
zQ?j~d*`9B2QbGicQ*F5S-jfWB`Ya(4dcsBWtmF1|@m|?-j~8*x)O;NIA}!mg@@#Ts
zh@o+=4gY)gl`qd8nsj|iXny1_vp1jj<ek3G)d9+e3KeIQL!pX}e+8|3tg9$IQ+((7
z<1VYeif=Wt>&pIC#+?UE{|oGSwo&7kk#VjPf4KMEirOh^_ao!YdLrFF>dd|WY(CiG
z2eaj}7j@0dd|dhB+AELBv&r5Nv+u?jf)>&Vh92>eJnv+#FX@&oC%uSkrp98+7uRn4
zWS&j7|Kgf<%0+C~*Qo(<pC$N1&-h56ch+-VT0Hx>%!*m_3k#m**~(A3ZnMlm)cEqT
z&lmFJ)Al?wWL`C6rrEsqJlma9uG^?VrE+t9E6*nX`<$9~%SG;!p(kj8iodD-;|FKv
z?mDBnwlb$uD`{Cz`ojBi2P)1cp9lsA(cN8tG}c%4RA{9w>wUiPcIc!}vyL|`PfEL0
zAy>86{o$Tx8}I!D`~B`NVa@fnzkh^)y|P{1vFDo2H(ODoK)2!xYegqsnst23a;LOY
z6=J)#Dg?!SzVS5#>=k=q&12bev*$qq=h+3%%CpJmAx`{tQ^zpw^Nmjsh1=5|r(Cyb
zvw?W?tmf2DvyOK_9J1@~mcY2r5+9%ny)B=b_J2G#eP*U`<q31^lDy9|9*2B3<~tXY
zv}xzr<b>d}=PfLXJ5N3{>p$xQ_W$2AO%m%XebOMF+`pD@#gEJ1j6`*Vj~Y*?uQgg<
z$&;{e^L<H;?CtmGZkl!c%TlGZT@`%0?v@3{eV(xwV(rhbH}5<%Oj-FXU1rYDaEXfx
z`rNgrL41|(z^pZoHv$s6^P5>8oA!S_1$N#K(Kh21j}I0vRRV=f*L2RAH*L0QT>aA0
z^y%AY*`zJc3?o)fm}xYxwQiYN&vlz)S`go_RqOgR>-dtT;ArUT^LNbJbs_ec<Wny>
z|A&t^?DhW$-d}JqOD=huzW!y^qJqqh@8=5Zt@}T*RO^SoS)+7w$(oP9zJxitgHC+h
z^K4_vN^p9y+s~T3HC=vM*R++7BzN?6-T!yE9~6z+kZ62+VcC{vhOrPA*~!Mwxn>il
zEovBiZ1aWJ51#FLwlU(TfpM-D|6V@cbJ=p)Qz5=DWqiKp*~Sov4RNmn&SlG4L#3`t
z9jSbK(rf9X)Lj*PRdWj^S6A|c>^o8(8&bc0vq-9Gf2Nn~nUaq(CB|PC?RjSC4KX9n
zEpEzn8#7HvSez7Sx-{#!3?u~WS~YoIRBUsFD6A_}?zwJLrV*dE%=gK{>$5G+Wy?uV
zfw(GdzFXzl<c1({BLCYHB(c7-#~%{^{m0ptoAy8SbUicWqt24_>YBXE&$REqz51u8
z+4%U3|9_v~uLIpMG{64W<MSUr``bT0FMmnz&*%B}^}j!t7oN61_W$?mFXoBSkDWe9
z?6<uhmVYZQdFIFUhkksX|8RZX_s`=0tMA->Hvj(L^Baz-*53JF->1p<|L0x%Hhb&#
z{Xg~X_y0b8{{Oe#6PjC#>y}QJxo=go+Whazll>n}bE@||TmFBgQ%-J2p;Y{1nQ*q>
z=5Bl6`m=ie_5Qud|7rayjnBHLik2Me{Tux)d&66Qx5#OquD<y?<N3}mBNM}KZ$<Mt
zujOBDIJnJTGP&FSnBCDr?_J?*rv8~Pp&EBCUa;!tJWrl&e@|*WpAnTkeaGRY=3HOb
zUvisyyyE}f<yPnOr)1rp-!*C7^y(}Jx$U{P6Tkm*`MLea`L_A?@^zPX=I^a*vs_x<
zee&M+9q<1&AI&`cVY1cv^CiE9mY;CECi3L`zkZWYi@4%5H*MChG%Pw1_|NYD(VtS6
zdk=0p_wugqzwZC$|6O^?dOmMjUT%Ip{!j70?iq)2<NFlXY4$Cz|0o~cQ`)h7rRn9V
z`+pq&9`955K5F0X`ug1Y%aUcUtE|uYztidX=8`?PquTsi_MfdcT(->rk9hs`|4K^@
z($YFkcHeIQUjHum&h2xhGLKDv{<xV`bjrSW=b!HXzkb{Q`TPH`eEsL||9>5~|KDH#
z_j$!mi@JZW{|o=C{!{-{{r^1EWfgi-%PQ_#TsoOj<-7gtpZ59Buc%CMKc*cWBekT}
zQD*Lj$3Y_BH{|cIP?L*K-Xq#taP?Vx!Apg1>;Hn&<uXgSw*ToYc>T%C+GmewbHV+y
z{tu^pHa#ACp<vnna#?$;J6o3K-_d>D^>E+p`G=PJ&8{ex(C5u8;VOSoaKHP2`jzKJ
z&ivPY=%2PLT6XPD(Tu-0Eozkav_C(rC%d739^c(7y`t|mh2rmcKDIxzurB>&!`a|J
z+w1@TmH+=k{{O$<^Y{Oa|Nr*=|97^LyVl%I2%dRt!}H6oR*6fLzCCIC_<R2UkDu4S
z?@rjo(0BiI{FS{&_S#$zn)}g9;`_V*@8|!2`2GL&`2SbW+y4=qbLLa`@l+k_>vGpu
zyq@?=dD~-Cp3MHAjNR)izDf31?4D>Ael4<apXR+b`QQ8!K}RnhHd>OcF~cUe(o{JA
ze%%2J&3{TKzZA}@KhURf^}CB`@~yMqA5YcE-o|Fockg*fXe0a4>q0LgPA?apJUKe`
zZt<LxZ3*`;%S@H^+tae#Xv+%o=rb;y-a*C3w(NiVK<oL;9hQ1iFMA5!iFu@|Q2O`j
zWXGoyi{7m-d0h2m=l*@lg`ekyE%K~>`fOs2&^N<%Z|kz|_ZpY}I=j+?WslCIdz+5e
zCVL3(XXCy+K`P);-|S7bbvoRam{0%sJ;yR|Dyze-dE#d(KQCWyH-F=@Wb04Q{L9Pt
zZ8#>cm%icEIp57PAM0|@oL{y7?z+lZPi2l9=l?J1U-s7XV%)L%UxuF_pV$#G|J0B2
z_T;Kv;^JRU&U_qSbo{}d`Ogg>OYV5pHv5sH#hlYyo@DO3oBB~{N?ot&`{<WF#`(Xe
z6dW_X-t;Vf<*P?t;qNj#e!F+h_Tqoks*~5he8Jn#N{?=*iahT#mn^m^efD;~--43#
z$#Ql))%X6rT<clR_3@15l#;sY&`+{QwoJQeKUY4OrB8iP>A9@^TYqQ%p0j?PeW_`U
zT%DZe-GJD6YW}V!KWD64HHSMT=JM0beOI?-R@>Mg4L-&nvVPgylMTsdJ%5KaFH<?P
z*Cy0@>08a2w`Ul>UQ)YSZ@J;SC8q^0e+t&(`h5A%(w~L<ul82T$6U7FYjghRskbVb
z+vV?H@2~on=#l>TN_V&E>W>Sel%Dl0x+EyUfA{08KhajQ{O?WwDFsj7QetNDO;PXl
z`nQLzd@eVs_wQ1%le=2T@0;!RBk<D7%r5&p&rjPIE6(+NWG{bveUiLjy8ZR+S^36Z
zcjVSfpN=a#kiXe?j{3SAkM|#o)oP9Xo~mnIcU4DJ{Mg4$2JzN!WHy^EasQ#QI;+$>
zvx9jVD}TqFZK*r_^h2W`&g2q2zxNGy=<O7r{{q*ut~dV6<+i=tmDaicK<NVim!{|M
zeF)Lr@p7GxWa6CboR9A&$&{{jwpsqB;+|)vhh9{1@w`(%<F9YwYyTXz>%fuMZ=)U^
z`<$>R#pmOS_S1noTXpq#UOI`@cNFbg9i#Rr)JX5jvZAKW^qsnIS-9igPVzh<lW+2<
zpSOEc$zp->zAq)YF-fQF)i<2#Res0hyl18D`8M@=%}Fc1o;n;JZgYI@$A5`gmnMj%
zAKy4-{&uhEGe36ezJFV|{gj^5kHQItvX+;NR_|ZEm*rBf_paGF8H*;AY|zoIE%Tju
zxjE!a+Ac2H!sWMS=^S~xGU3Omf7gpt<+^|GoWmaX`%?WeZ{IV_F|C(hluCcvx!3GL
z*Z(~2^bfbfbzFN+Ka>q;HvBg0+x4`!6V_FI%&J+l<C2H?`C1)o-?#UsZ+Lw3dDNXF
za|_n=3Z7i{!Tjaf5}PfLdLKvHhp&kHxI8&U<F|k8K7srNk8bXGlV6(X7S%TA<(V5I
z^Ntut*%&Oh@sAA=p6>XuWR|$9@5Kufx|8d@0z+&%@7n+SvUaMMc3+~@aic%MT+`x;
zmwZjQ`Dd+X_wKkox2AjU`&#y~O8C6(`}6nSX75sXasJ`aw=Z8!pI-g-&c~FU`_{|H
zPf}ew@$r3m-XD|drqpUr@844Er~U8Qj-ww7!+p5782uH?_qz6M*&43h&%D2E+dARn
zD~ajfqa*!P15awKj`X>n^!VG32CL8iBBw_kV=ce4^w}npj^~?He}4Bp`%*8@fA5A&
z>p9a_SDq_r>wf)hbLVWmV}(=e-|^Pp34Sc9FmJtM-mYc-D+_j=EV?CE94TgYf38k$
zU-+_xbC&M2PQ7Q>UmQ87uKdxK+RpYbMvwjGZ(shq@0r5M#QrZ^zAaxj>*SQe{=274
z?rTlacop+_{rsb0rLzC+3+pEtd!IAOZYo}<6ef^aYwYtxBRj|;?~$0$%HQ+VrY_kT
zeAVU9)`r8Mng1XC+s7LJTsetXTKVV}`}!yCz47V`w`Ye%9^?AEi`i8D{v3DPf3^Md
z`=7tN6eJh&xB6qx1o?#Goy&fepWR+It;F$({omiW|LnNnuYTwMjq3}o=2?~=dL#e4
zDo{G(>~U>_yRWTebywDVTh5!!R2#Cp&*guT&h1qvFKqqs-FEV}=bPV6|9yPl_LJ%A
z^B-4!ozHk-bLCU(Wq<s>$2rR1`8hKxwe<6spB4K;zAcvff3D{Kt+#iIjz5sMwqC1z
zQn{a}=1GO!JpYHWYz048{{G(neRrP*-`*Hk{`uj{EZ-C_mcIA?reW=`7Z39)=KtRN
z>(Q>5&buGtp0}572|D(%a*AEHQDbe}-0rr?=l*Fw{H6T!R!nWomXn*VtzKng@%f?g
z=5O!Ywy<h{kAK%zb6tAJ)x=-v&x7Xg{kv-YrHdAP|0Q=`TCSOXYD>k<xpyM%U)|j~
z?cIwv;g!!H|NONh{{D*J|IVxud-ghW<J4#C%J=2nYL2o#xHPx$?SbtT?>;_XUh=m1
z%l>^Y7n{XjDsMiyJna89Gyd4(wc$q>HQQZ}dHzlDd(85a^**0YTtB*Tt9$tMnAcNR
zOGn-+{(fzx(EV98(i?-#+q3@6$zAhl>127u)6b%_bM4b)ZKpr}`Lq1Bw*K`KB~RB|
zZ7rJr?fGd-Z6h6DySjN+FA8RT@!YaaaR=XIy|+QT)z)l&b}c>HZjYt*);~M1m@O;*
zr&s%B@wXMmPVe4l6{pqjv)=r(qAu-v=8|_#CsfzHDbB9iwN0g8<n#GA+w;9Q$^M$&
zo$vjL)hPCD<+bgql|FlYr^gGGy;hmGO>&=RWQm34)@94Hy*}w$+<l%qo#~~sdHj*3
z#yPhp87;H-zdmKf&DHyQ%6v~QJ-^n*>1NF2g?EqLIk@BRt(F?kCyFnl-2T<ho>+aO
zl4sYO<=MucmX@BcoU>!6nREP&HSYgZucyU4eYWQA=Y3}{c$=6@US56nf^Wq4*ms4O
z)1H{=^iTi(^X1C#!tOiY{XTP8QQCKLvCgj}>tm<aJ<^z8{+9Fl$4c|kDeQ8UOM<P-
z?pHP%ZJ*qpHhH$YMzLdL%-j3lgMF=nH?7@Tf8W<M_m*qq`%imbET2`f>e&si&9}}r
zP0?Jmwzs+DTFUw4&8elqE`P6tY%|%eE&AD7JGk%t=Mcm4xx22e=lZ#FS)P{n@@J*X
ztE|^Z@2=VUm*@JV`Ete8Ic3H%oBN`!t=TVQ|GCgsKTm4o{D(n1(`R43lAgEk+`7|e
z3%(YI{nDBFK7a2|wK?MU$G<+k_;}~+qMaw#TuR8=|8Sex6!xPVuUen+DSDZ6;ci;_
zZ_jnRZ3<q!|2{c#`M%kEvi-NsK6B~FBb%y~cmLE(owIXl{GT@$%O`2eU+b^Caxl^S
z<Wm0a#k*e{*vHTLz3oM|&3EJbC)d~1%)eH9>#gfLi_bf+_vPFFTpIk%>QbF=U25db
zTUG08nkVGd?!0%eb;i#1(avjb>wcfhea`>x9p%}tM7qz(KG%A8dhU_;Q)bA;PuX<N
zxBmHp(x7C0ed~Yn#?$A@?=IiBG+TP@@p9kSUy2{aR?g*$dUpALU7f=7dkJs7Qs%t2
zDV4hK+gWe;`Qz`Zd&*ye@9$Kea=i2R)jKEscYLxs<TrJ(dUWlpQo)N>X*<5?Huugw
zr<x`kckSlf{EkAqy7`|=er3w!s$E}fJ7wQyyYk#$tMl)w1kOx~xo&k~{uib5)3?0m
z`117Yq0_c)m;e1)ny-F+<=G2QpC|3hy>|CJPo1X!-XEVMo@TAO;<xtNIflBcS<CIV
zyDh!?@{DE4i{1IHn>fx-|B+?g@^izvvv1bzzWMjWD*X#vg2L1HnZLW+ygpUF?)Ar-
zuh0AP>-MalTwNTZxA2d|>TNa4-+XGdc>26*?!5QQetc@Rp89ra)t>G~UH?CCv-JDK
z-Zrgk|No^l-0r`>Y_;wC)z@Of8Ft*OvEN+rbhF7*yZwjHTyI{dl%2kQcI27=pJzm~
z@0}fa=W92E`)-b1GhJn0#lEc#ntyoj>#C`XSG+yf{_Tj7gY6yH75S-_RWFZxefVK^
z-~01M|6VG;FU@-~=Tz{P*=O&REUd8G{Qt&HA6f0E+3p8_zdZ9NW$tn-{>%R9tF*Is
zD*nEC#@qd;cjd3|n`cgUTXQGX=z3kZO25*pWc~Zf#qX~E^qBaLH_xuMYU7l?11l#-
z|2+9(T7H>)+ezK5x{#^g9@vxyo~_woT6wqnd8G8kuj`aAypPV>oAGICL{;(gW$8Z8
zC%%0V_IsUG|BGXX?#rLdotvktVeT59nrHO=^^Vh<zjv?wJL8U`F7s5sU+c0Dl$7><
z^`HIK^mWv$hj+AN)XX33|I&JA>0;N<AusDx!Y99+wp4aras1zseB)o2cD;MKZnE}W
z&V5_17rj{;eleEsR_^(hRE<lq)<0iGeb2sqr~Bh4`}KS8Y`9xGvp!{i(e+GI@sCS&
zKdrmG{oBzUX0E40^$xuIccJm&l>BR(<@OcNJo{BGLHSCW{H}>j`=0MMeiC*q@?2GQ
z{%YHwwS}@@(%ZdGFFO8y^&6ihPxssZw>RzFl5t(X-{9@_cO`SrPsuLscKq^a-no_c
zCja^pf6XZR%6+a%jTIB8y<?tQWl`>-X0N;C^6u?s&UydTlb^Cb&JFuj`upUUjTJh^
zKU8Yp<>r39yWB3;bp6Mzfj^?--v780aP?#2_uspE-p`nBwd7p6^S+&N_e0<AH(9s+
zK&=0+eVg{3b`$ue`1#N4+jIVZ_;H+X>*tTw<*BERq?lj2HkEUAUgD4C@|mwM)-Ybr
zJfFA3cKX!0;g#E7KI*u1`D=XO+qMTg1+U)~d|STH`9o;DZEpD1v};c}W}Dspa(e$S
zpV;?Vk#;rlJD)$g&UX7Q%dNjVUh^h~J%9eKY_&1d->mO%&Q81i+KMUu^fmSQ#n<|u
zZ1#U$vW>IRX2*%QJNxyDy0?FRdga-=w?!|Elfxp*PHwsts6O#+P)6*V;CXjS8}9R-
z36GUrF<Bvr{h5_#SzPX3M{|Sg;>UJ{K9V;#IDh=JuEkGNg<I3+<lfo;GC?8wZS~W?
z4YuForf&Inru@LV_h&YB=em5Co$;D=djGY1+2#iGzxKXc5`4alVP3!d_I;fHkN1U~
zKKfDe#QRyx*R5~9+p$Z!F@LLlnEN&>`DxKhZ}zX)E%<5O^;dtT9=@)=Rpb74^W!V-
zy>54N{KD<_J-^r-&lV&W`}U`d{qgO^*Jip|-+29J&Z%`>f6M+|FE{^L9#$-MT6<P)
zy!n0}m+D_udp}8WW_w-QI(PlV4U=r&f8V{@;IU8Sqc?7cs{UN_JF+=1^CFA$@>R2^
z28lmQw!6a-8Edy`&uRVXr_!J9ShqTE?%#kPmrT2UZ{7NMdS3#+{g$_<o>v=ef7mYH
z^n7*7^@^oM6?$v;^Ld_iy_)#y=*-(2t)9G6zg;r<e9doHqo-<@Ua#hBEnOC=zVgom
z@w>0jYyW)jk~gzv&-<F(8`Gt3?Z4!o|KpfO`39qxk8aKJPIox>{o1{nnD%q8-${wj
zHMPI~OK3@cY>DWSb>A&~Ur&;}ZvFlKADg^){LijcMb&Bt?dpHNHTUg~ywf-Dw$$0W
z&(8a7Huv(s@}lSI*VcOaZ@q5#`#PVkUuEaq_UP`$^K-l2T;F(Y<(ugJ?V({NGvi<C
zTzGe3U2os!HxZ|nEwY+<H*(MG?u(D}uGRZ{*3Ee7^eycDca~?2)piGSTSLna@y9A{
z+NSPb-YAov$NYWmxjnB=N6u|5`D4|-F#gabzJ)XM8^ojba_pY>Ymxqw^t;b8?TS`t
z%NA{p_;oMVKUP2I?%h|{4nMgxo3GUDa`5%tFLS&_cF+5@YVptAK8hu>Uqdb5-HLx#
z_2g&U{qraNYhGv_w=szQJEygb{o7jGSGyE<l*xbEX@6%;z_oev&2ta7ZWH@?Xig0O
zO8FnJpRP%qdcLKBZSmfHvWfQHB~LECdbR56&$iubHC{aDEb<O~#4u-t=kr<X@A?bR
zDP2<@wg1z@HH)k+_zOQ-=wEkjy4te&Y8IbVx4!+#Q@fn=i)yA^;qT0*nvMR|v0>Nz
zh3EWww2k+p@vEZTy2%;ku~T2p_>-aYdd9x+hifjcJRTbE^FEdJ!`nFZ!`a{Jv(_y6
z&2@eAyLm5;dF}Mw|IA9l?#sJts?lWuB^mkUS1;}tEPwI4@$si)R}X)FcihG5#mVHU
zo8^T|XYvJC2F6yOt93iH)cDKSxjz<#&tCVnE_HIr;og-cnaj@dnJ>Gvd(ZsEyYqH^
z+HL<f?$@6Rt3TZPWA^I>&dE2w6>#F`jyp4wE_qkRM{8f<mHYOqkj1|2MEmv4=lEuC
zbl$gR)4$v61p+7c{j`Z|W{kBfznA;r0x#Pq*0tW;=Jpa7MDxFHOgYA6)wwqRwS979
zzP)nynY}@|SI>&eZ23HQ>2}uxwe?Qz#&288>`N}V=Dy`EvM;*uQ+e+4Ps;3f<7dql
zy8Tqg_TQbEt7})~wJfl$i``qYRqk!+Yi-us%U`kc{Y<lYw~cR+yhTnG<F@T;e-9*H
zzB)hGu)@CJMD4fSZ0;Gq8=K8^Cg*)CWoDVnfByPiV*!oC*8hffC#Fa3tBT9M^HuAl
z?3K%pU+69iE?F)w|0e6oqx<o%_N=cvdU*Hb-<&^p<-fnZPwx87)^FSDS8K2McD7&5
zZn>7Z!0o-;pKiE2^X&1jciz|W%<RAa>*HOetjn&ZKmY96_4PjYsx!M^$o~j*&fAbT
z_v7cqZC~%-iOpN@@ay5hb*Bq%FS=M)G2wk@w(YAZuiE+v^SP$mN7mZcUcK45RyMwL
zdh;@u-F3FR)<;c$emhAwnlp8O`fuNdmnt>pe|sf;c+<z6^_w5;I*?>{`oWs|igMmn
z_Z)Tx>NU?>_jB&~O;1+MxxH@VI_Igy#rY{;9$Lm0%l??Umgo4B$!qdH$6mT)zoW+e
z!L@BG7-#jLe5Urr=Fjh@)hq^Qw#hHp{N*X<v;B5!tn*$iTfT{V!<oXFZ2z;j`Q4iz
z{+8>t*X%ouvuaNF`JMeAaC+a%h??u2*|#^ne%HL%#J>IA_Z=mrTXJt~ZmxW@cW39u
zq90ckSGiBOd$+{w&GL1b_x449iuJe@wCqUU?hNDml|OIVY!wW@{^8kbZ*#uAQTJ^8
zW<J~e*X#PHbyh{IFDos3JNN%p5tI9$o*los&3FCLnWtvVzxg`*mY#k3r_xJeiDka;
zSFL{h{qHB=_sbrivtlsxeZTJg^II>r=2v~4`l@WNSo*Z`xZAaI^S5o!PCjiXch@w1
zpVg8_%e~F5cc(APD?3pibw9f7eAwI*mmJm~we9}=QMr7b{_g$m&jUWcw0Z4wd|7hU
z+&!ghGq3;1vpQI`FYWoK2>;zL&lk<|S6+SD%Dp=Ip82L<yVCRd-|d@twO8loE6ZBt
z)z#-dFW9(F{G{)rb#v?Q&njEHY~RH5{J&0bpOrpy$(`E8E6+D&uI$aZpY<x|Tg>m)
zWmj!Zd$k?*kIVW!>HO_?V(KrSZhkuP#H-ovcc<*V^L%yX71Pq4k>8f@dE;9nmi+DP
zg1(C4;^*ccU%tq<yFKs3KFKSkeLD>!qdzaro))&hU~&GwEsv+kTfhGNdv%=WzMam~
zKmEVb9PIyjVeH3W56(Ppd0AnrWZHFW|IT{8_3P79taIj1wDMecdBt6`{LeNQ|9#xM
z&Go_E&o1+mW_@}+U%fjoX>OGG{_1&89)FI}SNLpm@p?-1+|bYGg>7g4UYEb;&Sw|-
zQ`Zak%u_Et`C{j<=brDpWq*A;W$*uKvr+laWw+yAr#^nYFRo7Uo=s`B+V;gQVr%R6
z?b$!IB(C1}+ReLOJ2g+7Z#;bY#ksAoZ{E9h-)rYG)%h0oE*IGy_nqv&zP99A{^=j7
zy<ID-rJkMF-4OHrQNHApfB&!OZg_oY{>y#0^r~aOynV-Tx4Qnx@wvO1ZzY<G{g*2%
zKd|udoYnQpx8g6{5}W_I>^FDR{O8w0rhok=zU7?fE8WlbX|wYlT;6goYqnn8obA)|
zZ?8H1Cw|}5!^cl=FWd3`ZN0;ceH^;lp4}ThsU2E-_)>oHomcyWukq~;)w_SV-sQ%p
z^Z%E3{VresDd=Q~R($V`BJ)4jHtcj}pDd-m^XC6g^?#=qwMOLeCL8X3QB<*7*z0Z-
zlkJ|o>f5ZJa`-MTt_qz}YIHw_bFS(6@&h^HZ>CI-+$pHPJH#$K_f+1RJDD?m0$gq~
znWe5jJ>kjbYi|7VKQ+VEdiQb1pNh7w^$weMvPNv*l*6whr)SnKS3CW1<y))2e$~@>
zUp^13s=0sBPjk<UKQkp0UIy$v^G^S7#u}bC<#&~{-SVn_T=G5EF8O?F`Lt@eikpFn
zmF^#PMBf)Hm8?8;sm$-YrJ$91-L>+!Y8p!BQnRwYz6n_;eEXNm{jbSe^PD%C=~T{$
zZeMYiY4<0$XR}@}>dteVXBM-wGd3%JJ@=d$rBeUz-1(RK_P5OUJ@4|`3t!f~ex$O!
zai@!M=9dK9e<x>OuzZo6yFPLM?c=2dn_uc=#OnOMnYZrv_vGx?mv_r>&7FJgjOTu_
z@c!rC5580iFa5L4{=Mz|@3T|8@^&r{zjI_w^W<%PyW^u*AAkS*gYC&0oATNHueWA9
zl%JM8&*Ec#(Bk#GFRx91oIL*h=gbWogL{77yE8r9!PPGRS8b;G(H$>t`P9n3wUXbp
z=+%zp-`6!ReIvf}z&nP!3Ae<UXWV5Bt_xZ7@9DmOb?;uxUGLCc^nc6FeR}7UuCY$>
zu4TQl_R{sol{WFeLt^b*b@yLick?@U<kRP-*Ean*_gy<oG(B_u-2L&hg8oc87@;@m
z{q)&iD&8I6R`>sVwMS{o-27R)UT&-1?$MuD`R2m5cXj)iL;CKAzqYE~zdCqZ$csbI
zo&Nv*=Bru1ZRfvt(MGOscU?8SRlYob=cIIBrOS`+&)xU5?ef*G(&(${#?$XTw~7p8
zKXljcehv5h*P++bzgX9X$9nAkc{b+P8tc#UTWc@h4U4bskT2eQ<=5JMRh)j8pKQy$
zsu>!4C#0`Dx;Fjp<2T!ct}XrN|NhtSbz5!re*gJt_vTk0w>fOAR*$JmU$^)EJJF(*
zCiZie|LXenxoEiw^X<=e|9%%OKg<5Uy?W`|<DUZ-{X1iv8X|LI>-@Zv5i?cJ)wbRA
zm7MDN$VTp?_u*H!`rqDs@q4DxrN_~AkG7P%%=cVuv~rH`>TZU8lii;3Y*XmVJGbJD
zsekTLZ}Vfpv#&h*ydimyQ27+;)kn`tPGz;1+VME<y2$SDEA!%C>^k!FN2uMUzb_L?
zW0y%eTJGId_g~U!=GW(Ki@)BeW8t2)=|TAY`gdM-_6O=qgJgAsip?5l{eL~Vv~0>2
zms-a9*A6?L*y;UxFh9%g*8iXNf9mZ6+y3AFZ+Cs&r~jwyKh{70pKfgR`J+wV#XU1>
zE`DA0S$1)LP^s=scdzm{r|<mz`2E5E_ne%6|6HH7?Z<z2`5nKrJbtZT-@PJGt<>b#
z)`@Q~6kgx>e($ST^U(Xdo<3gvtNP5BpS$;`AKx$D*mhR#`Q-Dl#Y;XXmtR)pkYZUF
zt!(;f`?9l>CY_w>(-3YtMcm@n``0EleUV|ycz*<#=KQiMxN5ufmZg^b%-OG&mleC`
zU)I+!;oOn1iB)((DC;fr+deiW<!2@urRIxwHSMhpD+_wOHQC_q&ciW6r_M(*7k`Qm
z<y?|dq$>O%lsEfj{~EW$&u1j3-nwUZW%Gq&RabvhYG-?8KPZ)Ev`=Rg^I4a`v}Kh-
z`Hg97?|=Vq`@~}Ay6x;=o%MHq-<T~I!nyt2^ww`$ueKk2wVchQY+2n)*6BX$QmQVm
zVwhWa#a4Z9(|N;ouPJ+NG?@H&-&vGg37_<~xL?Ek+Si9mx?i1p`*WM5=8T+!ED^^4
zm)+Jm70$5l&;4Y+DKD$414OsDKa81Y|Lf<R?EA0N>x<hB$}P5jTq{&?@`;z)fz?uc
zvbOKT4nLofntH2&|EpO*eDUp|4X2A%KECpFo$7(Q{Ux*Z)oM(f;<GM=Y0s*KYp%c9
zuld#XiO0-M+qu8$WIXt{>-<x1-O7wT?{0-nD_dQ2BwD!qwPyqCWbGOE)^zQk*3)wM
zLw%oRz@pbr4=lL$;OMG9QppA{zl0wDZ~4pt6b6THJrU2pHlh7>RKn{tyWPosQ!}f7
z8@$ljlM(6|nK?!OVBEpyGgMPgHE<t3cc?quRObJy&#V8(IG3N<Xq1~TZ_@Jr@9n7g
zlbnY4Gv4&=yq_wQ|LoU`6a3AuujqMYMxJ_iXsOMgcdpI4B}TjKtO^dMaH~12<_fEA
z-a7x;uD>$HOMGtLZhbZ5f9_g+{za#!hwXYb&-q=r<k8tXewCgp{;8FhDSysX{EDdb
z(e=f#-;-zG%60Nm3pd)Exw*kLTx@;2;hX9+3x!hk`LmXL{w~~=Rjv2k^=Ho%w;!3|
zEB1b?u=3pjN+AnES$Cx+ojjYo{z37XMMkLyT30>HxE}vj%lGrvw^r8|rF@?``_bE<
zTMRX4#++oS2tB+||EvGy&%fo0*ZADN-M-4Pd8zlD%*^GcD@rc%^Ig;TDV2Yr#yVMd
z2E$sd3zauLx3iXU*&UbB4E|QO@J_}0``3Pz)a}^g^Xk=and1GYE$*FJyl>jKXQ8~G
z_g^lHtzA(A4LrBn^fzZ`o1WR#=Kub#-{J3&<lFPB>A~!9(--?XHXYt{`GaLz<V>>%
z&O6KE_pkl>(%hiLvp)X*^BKQmk9|yA_x0!fYrnoE%VZUxiJkIpUj1J!uKdhjy~h>C
z{l9#^&ki^BndPyvdY(1!d`K(@*nZwW_qBH5wq13*R==-?D4qT*ZvWb^bFC)Ve%EH$
zmHe$-l05-pP08K+wdenuezbj7H@$Gr%ywJ#xIL>9|9-!8`KJBreaB_AFMs=%c%$_1
zqfp*%Hr-5y#N`i*A&KPJT=w&;rPO>i_x`@?bJy_rsV#eJS6pBBKiBj1TI=fa;BD3r
zBWI`otlDR?schA5AG6rk0q1k_YD_<T+sGpd$-NIWZcF|)z9wtD#7DBoQMUU3wrkt}
zuhzf!YxN$e0ok?xwr}0Hb&bQz`8;<GzwhpOeAedGs=Cjs*lMra-~TKAb{E9w2CuX}
zZ&{V_%lx}+sjT<%2gQ(L=Ga`;^RrDe?p-K*efsPAw)YU1YJ|Ugy?v|QS(EFb-L<vz
zk%PqRPT$MPCCBf)H|jGlUVHxkwrk7tFZI8+`t{2WBKUd1>R+y_xt`T;Pd2x`_-=-B
z>ZyBrA;<sZKmT<uI^HQZ{rlNF?;vq0_xbMy^R-$#O71=>{kHb(cSxo?y778`c5VAQ
z-QB-VeuAomM2Fd3^-|f|`UlW>yZ-A>es-;tsLjlcuvmu(?Mih~K7!<+>Tj;IMPHPC
z|GDdz=X<D&dS0#EUm1FM<<5ri|3-VQ!71+WhHGDru9o_eU4DG)*YHcw#5qO#``6o1
z_rJa0^#1xa`_=nl-qil?x|(ZR{paBCuj1#IK(m6?v-;@Q+M2(A-Q2cr-+5?!tk_z4
zF^#o4(yVH2E&t<cNXXA>+F6&ruZA~f`*gXdd-wT$+xETcvohl}NU`T=|H2|ZyMBI6
zKe+PvFo*T8%cQ(+&9=DXn_kr^{cW#fOTT2X<hjX$Ns!9s&40PyPtL*W1D;)z;<l`E
z*uTHxcJ)K3g{Ss@|CPHo|7Upoh8fj=p<&2heQ1A0Xmeh*<y+zJ)sVE?wsnjCy)}uK
zGtT`v@_zjtXqu4tD);Q{YN>Pe%X9bta-DP6@bsxIjPh-<-uiJ@7u=tDGshmL|CX?e
zvG>=P0rB_rs^8UKzh1Vwme&hZgfYflT@b%J=553is7<rl@*0<`F+R(V`MzfA^k=_K
z-aaq1lS+Wr6KS#O^>g7>TnO)Vo7iYh_n9Wki%)NV7a0FX{`~Lf%NRkm7So<piNDJ2
z(yY&aw0#yabK7=)U+2u1w}ry)GEBRDYU!E}7k|9Tz5a6bGHCEd9$s~StM>fHKUqJZ
z<=ryH`_F&Z=9OMNvGBf~rvAV6o}0Iv+IK>Y5tb2ue4q1vcm3wuvYVIqNER&A++kX6
zWS`1)qvn<P@^hPda-v>sI=?))!CNidh%xT!hQHO%;|<or$~P0<;~RZajaSCWpM9}u
zLe9kvv9U~lGa6JUYtLj@pQTZGU}yiW>>o0aqW4?Ku4|U}UwhYHd+~ka^5S)?cR#o6
zw_ASxF3fO)*X?y*Hr~mEY1rlF7M?KmU0$ZZwyMY}ZaMd#7hn5oRNBj<2dbbmHa9)}
zx1A;Q>u0z7$$e8at9J)X?|%92_)?qqUyB!aFLRvAwnlHt6@h!ZB6y~HuZv+?bE^I&
zyV$bJAL{!e{g!c81Z=mQ^5*qRt>pgV>-zs>QWst=&CvV0aQDPldh8JfJDWH!tYW%b
zvi)qW`pe=Ig+{UY{9N_X>D#AWdlfP5)69L*@)o}|`y+#EZ_QE+GTJ%mrSEE{FUjj(
z=lCCdKEqk{RGgd$V|U%Oyz6^+WEDkzjX%^`>i9Qs-u~>@D<BQ2Fj1Xd%H@X5Yu+2S
zpPI5aRzqsu)ri%Ta-Z*wpIz7QVR~k_U!9ykdndHP;28Yu+0{Mw{y-zPO77a@6XEXP
zw#2+CzTL7=YMXKV!&$8N&oS$P>%Glwk>+o+xe}K@geJ*XXYcs;r*;+Jy0+G5c1gAW
ztGhkWI9*W5^8KE^!%Jv$Zg$I^+}nI_=VwNTPIH=9y7QCW^V{jyeJ^i?G({NJYFU^V
z#;3Dbv(ASEyFr%Z<JsY+8BWvcau;0xU<pa6hnF$L?OEmMtku7}UZa-JGHBVGw@#rG
z=66<VERSSJP1;Z<`AVYR^7H0+@mb-lpsM}y>@e0RL6g4;RI|=c=9{WfT^W$yQfvK5
zwBYK-Cwo#)xb9D06z+9bYn$y{<rt%#lQ=J=vCecY{@c?84M2&ljqlH{mh!vHP&wP~
z)puw+Y~ilw$DizblWOks?zzwBvg`wU?6kITjrr@#3~M2*%a8lLX2p9&cTg-yY;Aw<
zx|+%CF7wVAareGMV)DxA3|&L>>bZ-wU)ogP{vT!@n_=X;w+Gzta{w2XAJ6J6`6*Yt
z0@Mbo5-RF<yj-!~NaETH$GLJlUdx=`EVy?b3)s;gR<ZRSxo^5*%Vk(deYL4sE?43)
z%~~P+=bT16=k>X}KFM#r$OLhos_w6|)qmMs%^9!ALh@0d`Qh2&rgLUZGPw^bL=sbP
zP2kUc5r63Px~{#i#Cf0P>h@nPD!FU_-lY&!;7kfqm^k;p+K)B=Wy|*bpBp%N@{DLD
zONME)U#jfunKkR+9ifvf1$TVZzolMLv3oYn!>!?Qn$<@A<Y^)aSwCgPAIzBP_U7b@
z@TU`^lx{Ne&0f(mk0<&h-%8a<N)I;7^m=n@0XJ`uw@ToFAmgb=rY268dNS=kBXi%Z
zl}Fa`RIgCX>RiHWk+Vps>e7)dp<-L-+F#rH=H@!#i>DXfKUeci1{{J;x)bj(wx112
z3UB*bps?K~h(pHwa%Zh%*=vWqP8Feuyk(Pr7`<`i-KjdM;=zuYes8?5E{;F4Z+-FF
zb=yM~Qf~#uM^3Ygy4(y(&w_cKPvkA~mI?nhTJf;)iqOgMf-63%WlQJI&9?jcn`i0t
zJ=?FJ%00Bv@2>6UiJ(*`{BYX+L~e+CZ$Il>p*m^zgAJWtFFZw?oxXHUv8(By;=L|L
z>4=bL{Du=giiJy_$u6)`nKb*ss|242=e5#T6({nrhO;Lhk~+4h_4pMb&tQm!aT8S!
zWZye|Xy)#+(q(&X`1$^_%>7nz%d`{fN)>I0E7xQ;-4XJPgvLO(<Qd(GBJ8KnmI%eS
z*`8C}?h>Q~4UGQ|d7VoFz?v?t+y3&z<DSK)-j_G#y|%pG`s(vWzs+iMw!h{DRkKQW
zgglo(47~HVd57wxiie<3JH6q#^pj~Gi`u~Pd)R9AglMHsS#Ubw@iqau;ypxD%p>+k
z(>x}%gVjAg$Ny-W$0`V?Uh(Xamp^ApJp!Az<1@%`MKH(vETdzohl>A^D+g!HXbU_a
zc1CyN9--rBOOoQ--Uc<@5jv??2u@^oemdR}@-%{QLgFQgy;ZIrDKwsYW4hpG(;1OU
zotk|!Gmp&Uxn<3;Qgzbtq?I$h9-Z27wQfSRQl)<1?3YLOT}d_j$#iAAb*e&5?CQEE
zFZ+&V=?R(lT{BMSfRoc9-HBhs!8T_l@vL%I@-$e-cdW&9iDJCqfh$6ut%aZjk?Nyh
zx@?-qv!11CTAkXVzB@}wS4QtN{ha*&T>Gn6ORA%uN7`=+efj{@3TcT}nrQ~MTEy19
z_GPi?i9c&>uKg*|R8PMpoi??ZTP@r`FsoDLnMKwzq1}_%YLBoMd#g-54))ce^xI~C
z=fzZRoWJ{ds$tB|>z_An>RdTjCPHs#QKx~o%IxEY#=SQtuX=jny!xwUg{3uCub*T@
zsw{v1#+#`!7@nrTfFnLAI4(d|=;ZZ{r3Pw?5-;f4dFW33BIgduI<Jg94m+O<wr5*C
z{mt6=hL~)tUtelYEwpWcg^7+lI7}`r@aIa%>r7#_1Z9$-->b?NXGbpGb@junJFlLn
zRn<)km<;vvNk_1sLu{?YO=F8=SvIC*{Ow4Q6<>R~#&-5IkDV!}R1fJ)WKleR#w5xA
z7DxWN->K_<F+Eu0edSe4rQG6o-+xLzJ_t1{(+Ql;uKbY;X?H1Vh>`8#%$C?Tk-x}W
zCH(|AoC5O?8EkhkYKNqDv)e2?RVUd$0jIP06S14B>e2<lE;iC(<Sp`6nSP?kc<zzu
zf!#TV+g*&hAiAb!x9m`z6b{zqeR*-bwcYo%=X&lwwZ8K^Ec#u|Z~yzxO+nS8%MR5^
zu@F_a#Z1qpx-Iup&-ppOe74%=;HD*@QHzDsJh~<>PSe_`{rH{S5#5PC%HY6jTe{gX
zuk(p?B&bNbRAv2oPX33rzE-oBid{GJ-MP22st;PEcwCzZ&ON#wNs-G`|HouHOn-WB
zdhxnU!JW-htUZ7K@to8EY9(=OcPZ)zJ3e!E{&Lmw)9Y5I&U(7~*{xgVhwV<9<$l)H
znHh5u<lZKTdu5+qm)N#8WlhR4)8N<BA8qxuymdY7wuU^YwFt`hu0^0+w)EUVo6T2K
z*$QnxNAB6abxu>d(-zzN9-!*rknY4OD&X=ZYg5p>D{GI3-n%LD`<7DMsi&nn-kEBv
zWnv6=HgyJ^et$p(9J5(F&ey%Gyt8TAvo!m6d%tMCmYy709&!Hdl?P2HMSW&ODxLJ?
zo0ZYhXQFxYvT^)pRn}E+o%KIf|NL)#jpwJ2+C*>)h*FaD;+wtl$hr_)-Rg{B&Ptc!
z-0wwGUo?NN*%x`|3oM&edV!N%Pc@H1UT2CnIKqR}_5XiazT9xDOVKnP(_qgSNiiM1
zovM>|f&=9A1_6%~x)WK{!0|I{-rI<8mAA95Z`vEGv;4uy+`m4O2fz-9t~+jM3Cf;E
zI)5Yry;WwOOcb7aVe<Y7?x|OO?2Tv1m<4ynN?x1ac1OrFXVV=Y^^Z%<Y<5=eDOpoB
zWn1ud_l$i>l@jT<GIwuV)(&crDc$*Gz3*h8@zfhr9bXFwY<4M{BV%%rLw2QZhHr6}
z;rZ;@hO4V@&SyDut>qEe0Z~ewe&7(e5?pM@`@mk6b?3e`T}99DbJ-cJc3wNj3rm>q
zApVN?*lJY8<mnF%kUy<0+RNKjqiXxV-|<oZoEj0p?z3`Iz^%(xe`ouD-6;3}Mu;}J
za$oOiu)XEdJRbAQo;8x<x0-jTPWhIybEe;$(;Il5CPX`R`cDHDp**(@ICiQE{7hL1
zs=+tBE$xVM>hu=_SMIl^Syrk}`H`{_EVcLWglMOk{%xSv0?+N)Tsu_-enEAu<_+}L
z_<S-66pn!xvpOQ3D*eS~WgeN=Q&rl#Q+3LBu*KfhrF-vqo9$TFay~aH)+$_`{gu^^
z^Xy^Z&d?#<g?rQwgDX4LDyKZor?!!xQpre1pRdSU<KxL9P`wcNxorl>4G@=~-rsyj
zh@*BBs1RSea^?A@OZ!f5`&0j`Xw{s#*-=H#pHF^23d&gqTU(0e>zD;{+De+;X}luj
zHOc6Pk7{A+jRN)}Z;iR9Kt_wtUy}Oz-(1zy*9krmhj*+|JEFT#NAone(&Cj>+}^Tj
zi4LeG@>4o8%FSQF8?0%1VWe+Iv{PgdI81t?n%j1&PEkz-2l9>_1B4OBV)Mc3!0w*1
zjp>@=!aM5G;FiMENs4)#PwgO{U9+~~j?k%EBT%ACjp-AAG%euW<fouESiSQ1Q?Gu`
z{S6Mt(+fBiJaiXcQTGNF_icMcn(hdB)q;}hx2G44&wk!_?RlhJ;%mRVtA)06w)V>e
zfU~i;hWn`?P%1UNF12i0Kv#(W*$|`fV{@c^bQkhyf{n_OlU(KORO!DBR7+mj6(}oo
zDs5A#f!dmd*Lq(~2$(i$ZL?t_@8Pm<j(MC*H6y_h^rElfiqNSbqbr~wy>OW;$Xmnn
zB-ozB>rzjq1z15ma9FGr6syJ%O*x*XPo@PpL8ZQZb<E>bHIW1rrA9i*LPg#hiy;x7
zxci^t_7<aA;INmRc8X!A>XgfnFj!$3c1CyM95rwp9lLAa5$$vnnxtRJI%ILC+Dm3F
zo3z8|)m5cu(*nLhtXdrRCn=9J)gIyson)pWZ;jtjt2EgrL_7V28gaXTb*Ji-{}8J-
zJZF3|EnwM{hiO)w`gZ?MUHfbO|KzoUGd8p(UT1qUE#M!-@Wb<5kxV$%4oYhE(9{{Z
z-j@Hy_Fb#q-8ujHR`!O+Wih9xN^f`P)tQlV&}D_{l)vDd<P|)*KK=UdMf3VJcgJrp
zt^F=wYPuq!h*fyuw17{O7ed-6+!}hnKb6+s+9e-cX<Ksd_nL_k^PkRv);0m3AZ~g4
z<^|KOKRfi7y=J=gM_^9Y9*@&P70+~_Er5kj)WN|v@9DP7B~Q|GV_jBHbp0N5zG2_-
z%QD^Pv!Y=s<|ia33q1onqMc4c!)8`&+ZCZxkbIYV;}7=}P$~t7&EX(B#qFTX2Ffau
zpL+RE=qx;=ej3y&Xj^*IDUUN1n$T4;C5*f^-k&rAHFy$#W+9a<)qD<loJZ^;Atki8
zSfIDYS4hc{sA)bS%4w#*7^wEx^6tx>3tr;6XYWq=d&67G-Mgh~(R*mM2C@^Ba}Qj|
z&3eeEIyonA{ZYHcvJpl*Cv_Hpj05HP>EZ2fW4>7xT)cQN@Uqad(%SMH`#=Ni99vtA
z=JSARmrUV*cdgGn7p<&p{8w_)?y?*#jGsZm`0zTj6QEoO4$4{cc9~VJaz0}w9iU_>
zX8)NH(zu8F<P9s^qG<uICLdMPTBv^b*L;Ledb)Qxg7Pmo*FViqiHo$|-!xyxG`KT%
z<w398`_8<cweuC{g|D{3cTH-~zg~9urB<7W&$fg^XF!?$f{Sv=l0DlROg%K_pA0+L
zv7ssJ@w$Ka+)MTBgEm=)ztx%M@0xqwwj0ti<y>kE30SSOoW<T6bHPbpe6LY~>?iro
z!26GDWqUd^B@9iQF3(q)vS>@@ny*&Rg)=WNy7BQ}`KfEF5$!EP{XViiof#5Wb&~Qp
zRplTV>B+8!GeW1VH=XfO{+4oQr{f(V4jXX7PmL)PT`(=+-b9GE%lw_PIG4&s<}4H1
zZS-VY;~Ak-Rz_!hls~4#6p22X=5S-;Qcy$daGtb_?!qm~-M%4C{%yHOTCND4vf6aR
zN3|?9LW=9jw18_9!G+@DX;%~SI8$XI1&5wDN1?aIYfx+O#`HjG6NBw7oBF^7ho)_O
zM0?Am&Kyu%b4BT5D-{9dl<WkTh=Ut=4|PO2X*z-HyFa}=s;i%sw@o+*%4qe<&L>~}
zoa+rP0=mx!Y%2YKP5`Meyw?vd47cWmw6|=k1RE_e?HuP$)hTC_!8O2!HL53c7v{);
zE45>(_Z9LuQ$I(5%gme}P(cP$mu~Q6TEM-2u$Sy+pSbqddiHT}>Ed`(YeJOMNt<c2
zRvuX=qMj%#<aN;y)ZT{_$B%l!E?8_7A+WVYC?Aqy{1#cMOz}$wS7R$|f6s_^`e_2L
zc0%+6Wre&ZgZc|=5^wP7p3q%rGjrbTmnr*rZmWU{yFjqByU$<VSo;6m3W&NpTN`(%
zPN@dVoL;d+)kSyV6=`r)@oH-0s|f*a5GNd7$8$n=;S?!|SC`&W$m3jk1>)5=njAY-
zrv!mb@Q$7muI6<6&_tbIC(h}A-JQe#Y_kSGw4ds=awDj{ntFlH&_j1&j}+LJw%FVW
z(N2=4;0l%}OI=}Wi%=HWqmtXcGZcAiEIbCz%Y~h09nnslreL4;cn3J$5%O9AHt%V^
z$`=XS#vUnfE^WJOk7VBK*A97{sZfXN8M798Yb=JEH`BQTWG~n}o>NB~u7J#gG&C-r
z|M$$flymdGO{e+4ed;&u&n-InzDyiex<Fmzcv1qC#m(DhtyEdJWo^yrJ+IHryEMJ-
zUE?PCH91^o|9{+B4l9k%NP``B>*mj#FPChl{yO^1=xhD9d;h=ed3p%cfZ^EQVw4X~
z$(6?ncQNK@>u=k2g0D8VVBOcxZ|4`vXhAv#Q>q}Le74!C)I($OF;E&}+Ysoxoo(9m
znXgji?&j>&-%-alaRX@b?BTQkuU>GHJG`zG5qS;sitV;Xy30Pjxa-Pa1@=pyK|@b2
zJ76(*dO?{?khjLtV~`4d=lKcIPMXkAkFsyrsX8SX;)c`DcAT%VJeO{(`gzm*Un)6^
zkG=acq3NWUPfHX?11Ld<nC@DoV4t(Si1+G~=Cyr+Ma#ALZJwpymOxm!W2WCD@2iV{
ze<?}z<9xX*x_>24_3gO5D{XJXO8O;`c=fX8dp#jwRS!5rTs<wO9GLF7Y^$H_wAsbc
z#ha(;cc{0sLHk8s)4=H>_0HD59ja4wAkOu^w$tcp?B<eJmsPj_eClZOJlo>?GP{FT
zu*!E+54iF@{OOD0c9un{;1pPSZ}Fd({L#)?oT{fIK;v3QdfQn8y*0v*C4pL5&x20?
z?Qtz%omtn}cYoPp7sj{qcg#7zv<);%AehJb^b|OMT>7#mxL5bol%1FN>wYhp;+FsY
zeJd<kq)393#jJUGdH*c>D{p>VTq611NbSzL_dgq<$zoC}xP6~lRbrKX`*g{nKWBQi
zJ}!P_|F2r9N62g9#vUKxZwV1gw4Y21=<9h3YDgZIJ2N4g$<YX0rtnm!Hmy*dqMW=D
zG|ct({EK<Z4u!J$l>XR$_22`$`J4MTW!1BZ`)o^4IwN#y!o~}r;{ApPOOdyR>#+h*
zr(0@z&~m?PmyYL8F8=v3ifz{{uSxmS&7>3{&SPmx0f*GetWzcDE2o=>>?~hnz3tiJ
zXQ{Ejr%EqdTRP7Z)DQL1U6>;UF6-S`nH1AFRWC<mEEB9YvYUQ<)z7)!$)KKz*V(5t
zKS@;YzO{Pw*4%`3`o5--UhzjmEx}6#9!?9m21(0{i`opf|8ZY-{(Hswvn59H$4sm&
zmbyD}T2<%0y8idv;lkOk4)=ZEZ>(e?VeGA8d)&ad_sHZ`s{eyeht|Zd-}Ls^AMN71
zKU1Fh-7wzY2(7_YUw~uEC~X&8u(yWead6TP+<0zAG?SneI2e08%b1P`d7a;Q!bR~*
za)_1bvS|TzeMiAnS<)(n?JYtjkZ5|Y-am1<jlgQ{y=ROrWY7M@y2ZW<8rzK=vak}b
zBg%=>3S1*?5uaNBhk5plD5sy6;8qXMt!tbsRj14Yhsmi8CMqX%7k-g}6uVEifQsGc
z5XWX{TP&FtAlDDBPwlKhmC8g&rBWEq_Gp@e3Ph%Po)f6EW+Mjbw*TohQCj`1T&f>h
z|Mi}D^>gkAa0co2SKd_m-|q)<tsn)d8T~B~G7s}rWF&1HTjaqB_n7Jng*;BxKN8?}
z{hGx*J5{GZj5~eb!(vlao%$b$WAy^L3%xZ=AvJg6!F3a&opw5ci{2|o)I!=@ikczS
z>$jZNJ3^<FzzwCN&(&`3s#j;fX(b_i&0x*h_B%pe%HS?g>IDJ5Aa9NC6Of2n8P*Zy
z^wJF+Q9RNjPI;V5L4!8Jzm2qVB#ON??yh*AW;Ij)u~4VL_7<VZ;9^#CdRXfY)hRQ;
zKJ-4T0xD1Mp8%DoZH3p_9!(2Kn*_;BVsjnyI8)Uit)MrNEIU=F%uE55TBmpL=p4~q
zcm_1Sk`&+e6x67Nsms`}v;<@XIBpJ$T>-U=Ax1EnS>JhHH&1eX-iy-sn=PQV2%zTZ
zWN>p-a>{eol^{of^Fy`JpP&3T&Uu`w5Uoaf^LYxrH4MQmy6K6!{7<F@Btcxc^g74u
z2?4t%f(yr`d7!3H2c!`<{R?PVzy;z>sV^@T&*&~xQ36NatF55=J#PY7)8lo#M|2n7
zQ2@)Vn!bXMbLpQO;DCR#tL2W6*H1%Gk9Fy?a|^6grksE@J~r$Fb()kQ%^KhHYws?o
z)t>U%*8lpJcd7Xf>lSRA*DnXFGoK!Z)Z)+C3%xb4af;p_0-O9Q!N=wB1~b+oZ;i<i
zJ&DF%pw5F0IJxk6`+-u(6G#bvq^SOk&O#SCaR1|#TTiX^IZOUouP&!rZ?iGV=|1+h
zL<m;ZoB*eC@4E@hoFnJ*M!i~GV);F0!QFS)E$=_yysHH=%p>IW1me$EH=m1%2ByWH
zy024u|Gd%s?|c2u*IC9G+-&L$@YZ+?DIr!pyLl_x=KS}cd(IT^E%*9z=$nqD3N%KA
z>LBIf_j4w?uS;TrPd}Oe{*J@eJ?n&??65m;3YtR%byOZgyg2Pf$+@qFq3R#^ac|yM
zQ~R!5&eg<n1GHOs2$GSN&5V=MIG_HONLx0s!e|X^>m4DE9~;39ma|&V?cSK(FEu}J
zll#3+-gMuCilF!NGE+f;&l&8kasN1Y+$NDzeL|GeOFM8m)8m~DYC?Sn2jo&7p9EPU
zuSej_|FE+5(!Hlw%oglX&}_c8`AyDs-QV-StFM5zDXjV-9l=GFirZT*RYG!;h!EdO
z)hXwoh1N@l6S|ERa^TYLn9hObGeTa^H-fq`DFK(1Ql<qM^|z);ZB##8wRb|a(@h(2
z)34|BC&xQN9M2&>T9uh!e0ui9H$P^bKUjD@W5wb?GgENiY}vE`tA21-WAUaMfz2(O
zDs@aQci67XdiChp>X@k4pN00F3p%$o|HhRApb^U!c;ouY!atibjNCn+Z>-#|%9*t*
zI-2>kYPg<Y8t2ka5oyZ=tAoy;`FUpAw0mCO_w-L}4X(bIYcvm%Dn7}-biV)C*8K9x
znw9+-yfGKnwk@rlzs#mBcKt5X&22Grz6;B>gQ}8=Hj137pJlG^zdU)?mH&L!_x_(-
zp~hb9tugyJxGoKxJY`0-(@RK7?y&|9X#9k5cy`w-Y-e$*0w)^D=`E})RHs}7*V!j$
zbQrnlEG&`hJ|mLke(IfZM0?Ao5+866O(ceWrK-Tv<e8vZyB$;19ds9}$bzfcW35Vx
zS)8gbBf$NzoZq@nrUgvugOq67a-H%xRbN8N>>O|XC({C^L8aE2pU_=cBL^-7j?I-n
zqPwsK$^nhOFe%!C%h;Y%YnjdndA$Hf>682?!jY!?KUeaY1$)N)l>X@wcK-btNcB)-
zH*xLnayv*js#&ktLwDg3d2p(zu>#3hL1Z4U^E#rtumoz;($%0!?lahVpUf|Hu9<fq
z8e$=~Pg`B>;@a|`=FZqRUAO9$_06x6e$e4$Sg`VVA85S;N^jt<hDV7>%Cvx6{i&ez
z_V^s{BM=7?3~i4lL_2XhffFB(w^s8VAuj<)?Gh0r`D9u^+XRTZU!XxFP0*Cak$pYh
zJ3yI65TY*Rkmw?iI&dj(dYSF2;=(=i_wgM&Vgeahdj`%<i5CtjdFU?O0`<5N$m2#3
zk0-xl_t9M#1IZ|>Ca>V*Onm_<bYFRP?o^$!Fd1CYEYM~Sf;USFJ3T=C7Ar_;7_Gqt
zRtM>h{$&9*)*(_RwyFN<(XXcIpQ<?@@BMe(ZQ<*mUcefaMbOqtw92$fefgE4r_$%I
zePwz3x>o=5Lhu3&Q1cbqD9Vwv0ktimDP)_bLmuZ-h}5Sy?EA0(T-RN6Zc}8zD(BD2
z|G!RrKjG!(dMRj!@6<C$>GCr3u5WJ9IkDxYFYWtkGT&Aj{Hu*S3?3<ucB-@od*w%t
zQuO!tIdZ}5$x2f5&aBzV^K-THeEk!t?b}kd<t_fEr7eVNxCzNJ;NI>jXc*rpMe3IC
zmjCE^_kz3gLEX;93*<lQLi<kN!8O3?&3iLvZA*@O?exj!*UV*Geco^HUzvA*Z4Io?
z1ns6D-WCO_wK>2e4@|!V&+~2G^rq%xBD`+}OCOtTK;xG!kaBR!7Os`5Qxw2MeW!M8
z0SyqdD1x(7+tPmyd7MjyAPotfv%*E*8dFbzi-kf>w~lD1l`i0L;F-M`loVArfz$7m
z+YV=R7p6ceY`5h`k-GbXJ9UgNci2j9NtOum)|d=w1FcHCY?hgAemW%h$Eo6k`|DEY
z&nsh}2Aa!0Bjlw58GyNRP2r60LLZ1(r+x@tQ(X8*0Ww4#Bi<3|^wMz}Xfn3vR!Zwm
zkRL#4%KLWu)n$iY>+RcV7yT;xQcZr&@1G|Q!s@sdNULQl7hkcrf)m6gj`<q|H@AFh
z)&WhBNM3u{dPT^KA3Cz*11g4;AR{}E7wrPI#yY{_mRYrJ^SP(ff){1KEuJ0oZ=(K1
zU-iHC$yJ~V3{*`{galM#um`9m00}5a`3VcPSx!w?ggR8g<5N#;@77PB7SQa<onLqC
zIs2c#oom`a-4)O*K__^YAT!A;+|Sy6>Eo%pC!Q|ddV=ZlK}C=Xj;$?0ojTyzp|Z!I
zgf0Y*exsaq@<rYXGax=JEBo>{K<>-c_V-)fy|(l>tyo!eT(6&J{$^%S9gvvCsVW=^
z?kr~A1a%XPCW5;Oi>JjV=W#9-hQxnP5<h5S0@5BfJS^*@`+wrWFShrBji;WOnwY6$
z5bWu6)8+b~_l0MFTKzblX0Y+`-}hTCytp&#{ZIR8+&cE_yRJTMx>dBhKL7ex&t9<i
zIJUQJ>IC;fB!!!LSE^3&0VhMR-M5zAVLP{V<N5Pzw=G$EV&}Qanb*FatUL(zFh~zL
z3M7U9H_uQN@JZ>M>GbBrhTdfzQBF5qz<m^++dDzCL}id!q8%5cj_58tq73emw6%6P
z<Z-&lL53W2?#nNl7Vro<6qqOLp}TO8ayMuO<JgyL23uP$^+D>ltsRWT-WqQqk^212
zpO^jXL17~c2^+0?_CU}mAGmQZ<iqrOLVyvZW&3y?&k^0m0wr)2vTE`IHqNIUH?=qf
zpU6+0(mX?Tiek!wnQo6x-aiqrsjBWdB&$6#o|1ESe{c(=e=&VMsMYTSZVsQ`k<DD_
ztuYf435k2XPQY{8G1dQ|evL3B_SH1m4MCX|Je2MDayMwy#|2yy^30q98sSs{C%cq0
zr@Vc17rH>4H)~ev%xS;Zac`gY^j`7dh>827@6VD!q-Stz*l_hFgRL!}Iw0BTlS}g%
zp;Jl_vm&yYcdAZtg*bGBq{9i_g*uR&do0ykF^_YpASAHtx>tq^pEL&##U4#Jyt%9X
zx%Agk1GQxb!JOrS;NDZfYqwGljb2FqCQw*zMzm8UBo{$SQDyL`=fQOKnY);8I)dkh
zcy6b&?Nps22kq-@Q9Po%@C&4S(5Bnjb_bNJK}FQkwNGE!S69#fT^aW~Ol<y7(d`=`
zbLs(Q6TlUtukYLSGOh=H?)iSb{>sL*eaUi`u%fmMQpGy>|F(;MDN({G>TrHJw3S&l
z0o=;;7n>626dk$$sxIRd$4fh}<)_(J!6p;mKwNXrzj^ar;in=c^RHFg^X`MC>Sjo)
zo_-e8|B;1+V|DD8owgH0SEbMOHsXj7{i{3OXQ#^y)hW^`;1<;D&@VgRl$vh%B=>o8
z*w;GIzq&JGz*9Fakc=e#F+=axHu1yH)h{_*wPBw7|Hu1I122uz69z`UN1C7Cb+>ap
z9lFfo{HKIjeMQO7?|q4UtY-J#E&wzFa!7ZfiZZw&m^JU+*R#e}8p-W{Z?7`3g@wf=
zNU_-bPQ*iZp^P#(iMMSvoDl6~=?1A7PD{7k5jtfEt{9fSeLExid7NhdHk}<$f^4_{
zxO@uM4zhHEG-+;EgHlj3*yrB6>*u)`yUu%Gd8t+-y0-c9u{r1ef{QD`JWf?fNK(pq
z44TY?y5sP-b)XqLs8oi%^^$1;eUP#H$3;y7+gplyAVtl#yWB<I8pk1-$mGRpy%`7>
zd%XgUsv3b4XKF+rXk339#GB4Wc?z3bHuZq3vXxO@29JxTTyNX?eUjkvt!JJ*n|NlL
z^!=LirjR!O!)XE2CW4cL>-m*46=#|4yt3|W(Yv3svJ@M`*FCG*_Fw|EY4Fnn98_CA
z8|&_TUGJ;QYqwo~=l+|&SgrnUx7%$48&d3n^x0R<>oI+qwP91>uRP8VPs{E<vpW1S
zCHEoJEJ;tWSv{xuobL#Ed4hvI^-P$jkM6=LD$Zv^gu>fwRw{00ahjxK7~CN%x%Cxy
zkhg|1WFpJZTh(xL%cqIp&WYsK*TTi#8uE~iyW!~qP*FG$QWT15g2qhxAh~Qo_|*wf
zPB%TkWsA*vr~g0F3l+A5i~-NKO)qWTp(-!|oET57$mTWh){s5vB;0#pV&cMbutspt
zZpzij4Sbxck~6I&gfD_~zCziFYX>?uG$mGk?}&0*=?pH_L!<+Fg-)?=3N=t#lW^mU
z<&$Xvc98toyll4O)|O9=5EpL!BUpU8{)qx?IYNj$&vPkH4fz-M{_Ey@J*&^*69RQ~
zHq>4PwWl2+i7%>xf2HaaeyCH!GiO9QX+p+(da}M4Y-dSof*5|)x$TOO7w4uME~;Nr
zLfBN6O$%_F0In|&`|&-Q7T^Ub1{SwXpApSu=m-v&9&77{C?`!vurGS7O+nK;j$ohj
zREvPxSS;Z5eCdl#<)c);pEJz<PJ3nl%r;?iGZ%R67H298WZqaSShm<(Llu&A6U#y4
zDW4!Aa99pBDRI*ooC2<_Q3`2iIn<uR+ry!q;rH(&zZqzbiyvCaUsYN*E#MnuM(Hry
zp$XAWm5>bEbL)D?PSq*t;2d~*Lk6e}w}F%a|J>$HzWUkvJjCii!xx|e8LI1~z0(<?
zQ^t@sTZ|s4%d!ZPX_T+^C8TkxN=1UYt43K@MW0OzSO$?QojU(pdhz)k6?JoWPTsS%
z=GWJoao5Ct9)$LRJ0XK(A*N529e+74s6XX>%(nl;vtKeNe7)p+Z22>Tpd%X>Ax#{}
zy#6XkraS!To8tDCpk7FUIwhEWrRtPSNX%|HQF}snp%27UZA*7K=W#BT0*Ahl-eRso
zZw*aInoqQDRM_5fX?j)OvdKS<Uj0eP<5aZ*t9x{LdCuMam#0Ij=ki=owF{9k%23o;
zGA+Pu3b+<|yy>98_7<Z>U`PCvmW&KL|Gq~9+y<F7&;I|-gcG_8do;iWY}?x%pz5g;
zoMWHPjF`7f**a!<cd2va-R0rYtiJnxp3!cG28?7NI7#tDSAepiAY@_3jO(Q{qMSGb
zArm_$oi+kGH_e~!b)EhG-m8XvJwpA<U&0zsLW{r-s(d&1+q(^OCRUYCiJkUbc;lwp
zJh>3)T(lx&A<6T|*yGzwzrQlhH2=GL{p4-6GxulezzTn_Dd4{5;-IAhTU&w_LGs45
zGoZmn8L*qYFJI>M{=^$N`F)6=UU|)>+x24JcE+c*e$JIl?U?EG=){g5P0(N@Bn0N!
zWz<RsGM&06Cb@i`{OLV9rwwbTs~v(CY%2r7$-2jTCa5pl3l65#h)XI@rUhg{+;R99
z>x5`0n7XKGEjv}GNTq`NqC2L5?70H5r|qmHD8IRZW70_HJ7}?uDa5;pJ3-TMJE2xZ
z@Hfm<og$eEs%AZ<K3$dd(Oq~%16+u@?PWc3N64!O?2M&PYyN!n-;<ojnTlelF~rbS
z%hw)Q(|zRoonOzt?OS(c&S%dV&)-J+I>RPhAbNtnURl{)!>;jk+qTMsi=KZrSPdJ2
zUw8-N?yh<3rpNC}FwNTc<<2{sRdHMEgTKP6kez|x5-h}acizr@{kwuJ%GEyS2Bq7~
z-zu^8<w5B3fuP0UC|a3y>PV2=?bkdj@}A7r`e?g;cHO;|D`DLuBZwl&(mc@QEf&to
ztdefGo9=P5rv0Ary*BpM>L%OibGD~j^1{X}r6FOyU^DYdRRL*8=;anqa}A$0t$mZ8
z%9+Eb*7Brl-7ncL$EPzrW@k$$D2yj|I=wi)VS*)Sutfvh_`YS3zRtw8$**YI{?*E7
zQ?0-M{=-uOYek)b1PR+xe}^niRX0dOUQY`&Oly1!+&xXa_+>)0(@aQI^31*h8eV~<
z8rCH~zH7r{qE7DI%ldQAZfGxrr3vcSZ;9+Kx(n}UfJdZGWm!cuw*)QD5e1c^ZvTF+
zuLBLN2SS?IIlK%{ra4GV1?Tm{c~LI93v0B&`sQ61TbroYdq_BKuJz8h)z9R0!Q-Nd
z(*m|l1&<=W|1;bE!%qDZItx>@!Q;U5csG~l-N~;1rehtm%&NWqh2Q%>9RIeIg2xXZ
zP7ByH6_VNF43hJH_Oq;i{}D1r?tQ4KGe*dBTU3d<(>~tsf8{4XINCS+ey0A3e}B{u
zDQ<V!v{nbS)NW-JTg@TaB5#%3ryz@2JyScPlx~KBmzDqNP0?Td+<nJX@Osk2lhg&a
zx@=l2174aYwt;D->ZF{fpq2DqoGOi_9xCmpt{t4w(U$nodO~y^dmv=dqTUP60B@D{
zQ=mnQ!UiXPDbMdZc16f@VG($J#FYht#UNRT-Nm+`1^yx61-E;ii`jc0_!1Z(qkkhI
z?_)Hi08(j(I`ePk8QqC8THv*l_jX>We|Gu$jA*5oVc<oFJ-1dg?0j0j2jcF>=lB*(
z^Vl`@FnB4894lx$K$zI<l`89aszaRfI#Z&-t2K?Xl%$K{;gH^b$0YZ7OxmGSU#^*~
zP2IA(cKY5D19?~r*JImM@G9B2Tf_eGr?Rc@+3+QC>FT|w-dw+1lt1r!6tpaaDQjkO
zSKR7yX{`)sm5k))mm)s86LYk^!R@Z622OdMPoQpi^;vvIw9-$AH+W9#w%if&+yPz~
zn;OBz_hg#KF^Ij3ziEP&LdSqze(B4TZ_3*{O<!Hk6WzHj)9TsZo%f*AbQ62D!7FCl
z=E|SYoj64s9A2k#<kvVWb%uZ!m-p;86WHz|v=Y3OS8~!t&Y7x{+@3<VPPCTKh*ruB
zfrRPFO^2@tom>Q3I9I%M)z8QAwe44gJhvBt2JKTX{L}XUc?rCryY20N(3<@1V0SNF
zdV3b@#bW7CVz%ye+x$QOdjYL(K*0fS2~ND$Jrk6YKz4dYma@N|;K4O@ZL^^u@8Y02
zhTC0&RzTdg%~_%do>mgAcPMUmDS}FwUOIe7$a4|I!aKV+@O3V61N9Xz8f1MGdN$1?
zYYI5F4sY@V?Mqk;F>e|_*G|<*(oc7Q_GRq77APxpvZ4sIdN2{ZjAYUm$a2;V&#j(J
z^SA_BL)EFjSWGS{uT#Yq9PUOrr=`GBV8fe_&6*IUWa$siIXthof@0MMtnQNA?BlcC
z!%XA9UOOHtH!o*v@~rg%v8q4eAyG6B?4p%bB`Z(wi7Ea0YR^-@wq^USO7E+=kW}q9
z8=BcY&Osb;_)@UKb{D87$<MZ;KDra9s6&GO&F{7|LY@^x;H6Cw=Qy5B^Efpb?7mR{
z)6e5xHQlVa>2td9I{yI~U5<sYsvl<9%BoY!n&k;zvjYBg-+6G}J@&)xB-vY&XF;Y8
zgicn1Dz=YHUsW<)IeloO_jlPd$HNv+dX@fb-rhIRscnyQ5bIpe-^-tKfxq4FyW#m<
z-py{dPt}vILMyk<Cy;;%`nu)zf-T>lZ<F6CU%0+B@%-i3JXrNMagI7Tv96l;^Jdil
z{z$!LQ%YxEGPZYz)Q@l@jvd*+*O_9p6EeLQ)qY3FGZpO0)Ec#^p`VSXLYF$%>Uii*
z3{iuGQf~k#0B3?jUGm#Jh9Ym3=_kQuP~vCL3DHV7eZXZ9&+OZ6cRpD!fEW?j=-3dc
z^wI~sX1piLt8=C5q_a;z<=?5z-Cz0ZpRombtIUR~{r%fuyUQl14O6Z#u2h|L2Gq=a
zbgF?r+99bk#mF*gnSk{rx%1_@?x(J;60%x-fBD(}H}+-Uzx`MeI^^t`3Q5sy@(Zn=
zl($S;-6)vI`u6Cx=Lgrx-u~5k{}aQdP}kr{-yeH!G=YW+47R!i%>)<Enc@}So&H<&
z@2puCq2Il?=iav0zg4BcBQ^ovDw9tp8c)43mC;;BWtxZFWYsjTPUWXe?WHH)e^3c$
zRzAcvZ~KG#Kd)UnqLf~G@`2Y@?>?Zo)#cM<@M81K^B-U8@b`c6`T1`7CCLkwCzW5`
zv9dp32sXaJTg4s{l<9`Q%zbL|=l8Cux^^e|l<cdwFaJaP^-4cI!G+3}#P6G?)P}5D
zP<?i1-p~4{-7h|8mWF`$mz=IoajET-PFpsy(nu$pGtJIZ#X9riU&Wo_GxYhU%O343
z-yduid%#L%QgO=b1RodYuSK;z8hl$>-<2-CQ{?A<Q!ak*5m2CTY<HQ|2Z`yeAza1Y
zDz72iHug{W^5n}O4r@pO7UE>EWSYmdiQr1&anfpmtuB`!zAg0hU-xc)r296$V=g8p
z`r9|BrBBh0Ud;L_ero-i@^zWE`>Nk0LPkaQAMS&c@YADNSEx=ZeFEB!by8S7fc<u<
z-s?M`CZuTTx1akZdiiDX%*WscY?P9xJ0EC$=%3al>Z_lZUxIADSj<#v2y!;Kik6&u
zr)#I`q!LJR)DaSUMrYy_<>R1Ls`GX<*#Er=+OaeTvdtrIeek~%&u1HM{nKX&DFg28
zWV|BeX;}pBlt%m!TQbe#7-$f;Q~R)7)`Vy!Nq2BeOxdTj##yP-1zab9XM9fbK?=h&
z*(yG|6W=I+bB<eWBtx;ciY+7v6FosDyae@yRrc|C%QfE-^5lmkSzgtDKf-qyZg;uV
z3<>)wHf$?ZC&@lp0bZPMXz^s4N7)2$!E{({w!(IoO;B~yma^?sodh1^dgN_wf4Sz&
zPrnuG@_)`R|Gi_~-CNFFYSExAOG^a7&5K8qCdb^hpWF=DmSg70vr~1F93-GF|6afT
z;w!iHFC*5cu9H;uH~6>xdq1@BSi%l2m_P9t|Nn8^Phq>uCz$Pf8Fs2pQUHx$JUhMO
ziQyUDi9Cwna;WWXR_h(1lL8R$y`5E)rgQ4|<m9`b8h3S7o#sDgZGUx^OoRbw1B$nb
z;|cKoidAW|rkR#cT>kBD|Ic&Dhqig|;<35*{2gR;e!ELh3pi+2{uVx0sdxX_%DK0<
z=K1f<W=?jCg%zeokn|9GKK*dOORa0R9HtFx)>y|azoxGUnYVB$>V#}9DJugNX`Nsb
zCBNu2ToLkAg(U5mEU`z^JhUJt>B=tJb93J7=bNXQT@MY`FMj@X*1XBhr&WXX1k*Z~
z$XJ4V;~MP(LEb8lLEYygQxiS85Xpq6iq9ddQ$+?G_(4~Begs%QndXr-2^^83{dudd
zM4sK{xc}_Usm2$~!s^6iAX`YHl~zJBJkM*;Hl!tL;NUk}6AlXPS)eh6N8XWB`Cd=(
zI5crJXwClB)00vSwys>A9eeJt#kF1GxtX^Y&7Kac2aiGg0$#ulOTav*?=;>KI%xrp
zpVSB@eNbZws;;aB)XbBK1TE|dn&-NKuTw<`Qeo)iN)>slOob-r>!6w*8c>fv?HAbY
z5(Ej*mDjCSIV*8GfpZ7X>tv_AP8AM_al#1!vO=D}3qcKsg<tb`%SK<{`|Njm)M>8?
z)qmF%W&VwZ6^m~n+v*bkmY&d^xCOGO4LmOm+KC2Q|J`QGuDIPr2$Cu!&HCAQs!mdb
z1kP<SGug@|MO*l<eYvdd{!Sw!=xutm1Z;<u5;(<sS2IV4+v;q6z2WKq(~l>c{fuya
zZkK-oS~g7-fu!RDi~iexnCjpIO4yJroofi%NefBXsaJN{g7$HOrul^857aHQ|Ku8e
zMt6U63%Fp@{Hqhv>|#_OBih38sXr>Od!_26pN~ORpjY*Ze;@N_B<FRe`~z?J`{cLe
zmvQ{bV|Ro+|AMznE`8g2jdjcII5CIoiRa>W$@&)^tpEGnMM8Db=VZy5YL5=?h*3DA
zJ8=#qU~UO5K6k(N{haI51H9j<*$Yd;azquR(9nB+;_6@JSI4g&=-ANot+8X1^U5Ov
zZ~pqt$~`UHRJz~pelYm>8H3F(MRnlqO__V&M5ddsGpgS=eeJT!1;Kh<&iZk_;k8va
z!EN=0(>$*A9|kXh%ZmbS%YuZ!Evw^t(NAv7ms>Wk>3vnhwsV4zs`-<((+O}E7nBTX
z2v@r4$T#CfbDoLh&pEd7FRj<v*qpweJoDS_S~fNC=BO2_lVrdx1+UAKf4iniIcT0{
zvw!=3<-B~2w9C+;>rNF&p=6}T$yEq1V$HUGZh5qlMK<`(FE5+_$-4QX=N_NDstl>v
z{<wPumG5~BS`T(U?8>dZ8Tl(d$Dh3&m9}_U`r@mXPq%`UdAyp~BGg$@KQ*r){@+GT
z&o>qSt&^1s4H0uS+d@H0ll!6LcbfZWL_2jtCRBR74V>->b*MlFy?xRQQ>F#TO>9+@
zTBvO5!h2O=p@~v7tMVbPV`q*fWpOSQ1P?`idb8--R=>C1oRw!L{`Lv)Tz9JeqFJbI
zQ39lrY_x#PDY3o1=n9@90<EQ4;yd}Z&CNZ&U-@$NkDc1`X>!)DFKfVk7$?vYFL2Ml
zEjJ&uYEB8%y8D(IF^B2Nv;ZN<sNUjd<%Zi^E_Hy%uOv<Pckfi4;s(k&Z@e=<fffVt
zgXe@2BOLgjOmnE20PdMz^$ciknN*hpO3T-Eq(hopj4FLZdpb10OYWzfgsuyV7A*4C
zczzr_$5mJv+7a#K37O>Q;auB%M#$^uMsQmjyp6!?=SI*pQtFMppy`TF$>33@1wOi<
z72@)cS&*ZJpe22fm4u(xoV9%IyKc(Ux(lintCsivwac~#d-{;>!YPndC%1lHjG2=f
zpY`b7mS^v-+FbQNTE}$w)=${lhoCx$mrcGitW=%y5xiu{%lD#VsfWhI<5$4F@t@(K
zbreu1&pzG=TK@)i<<dCm6?~kkpKgGf&fuYS4O_^XOUH81YRs}ea4;<n`fRwpWm7S9
zxU-ev*|dN%$O4MRn~s1s?G;1Z@O2kxV!##>Qky<-T~l1RL>fFLpLKTyALr9cV2cd2
z{t6U(YfOhM$aU2Ip}4iBC=)yaC3$uAu{%PimV#ZEdL~-gM|WWgWMTb*Uw`dC*$SNj
zExiSgiyqsv?bsC|uVsedeOy<BIFY1uP8<YDZ3OpBBd)1FnHFFKS#P_Px4qOu!}S<=
zY2>ymhTk*St!}H6-MM{h?$^`S<(@Nc_WOtPfX?Ysx&m533^L)Vt$SVm_f5~UUu0GH
zY=3$0+vm%hTR<6$V|z<cCXYF2zv8ve?Fffo`NRHfT7VwJ#=~WvpnYVQz$-_CjAsYP
zg3JY17T`T<_qxF=7GM5l-1NCKPIIpJ-zCqctv~jB7t9Ky6o?gN^BwazQ%``+F<Ma$
zT2`w7j_y+%mRmiU7SIG)FYS9iX8odFZ!ELzPg%L;M%?yVe13N(v<A|c3fV1iZU3Iv
zPcQ9@|8uu`a{lkkbE)V3{|iCNH6brZ=r4Vn`TMcF$gw*@Ub_rIizQPdgg{%zE<t>i
ztNdyzyO#G|qnXw7f_t4;UB6y7?{m2vFKo^FE^rhs&1JuP?)R+kMvTSRFMbRO<G7<+
z^Wf$@XeW?U^)AFS@BV@I6G613-uTR0<gM`%;?Q){i}U}PaXy<CaH$tOWwv-yion*E
zqC7})nYM>%r|Ogv$V!-w(ux_8PMYT6Wgk2@>Ula<r{pJhg6IErcY|hg%)w)!CboCC
zJS&vjnR>tf(z7?Jo7DLi&2MJ_m(n{_1!hBnwBa?+M=uTi<4nS}7kcd{-DBcZozjym
zI8*7(feFXOQl<rH^??^*oo8yY|NAoTjPAlEGLU4cv;F85p;ITp$#Utl3!nw2nb3kn
zo4LqaLlcrc0=b_WZf7}E1op_vaJChWPCL!EaXGR4%s#q;jZ^i)4J`@5Faw=QpwMWB
z<dwve%@d-T0!_e!{9DW|PS5}M&v41K0HI#+62ilA$qreZPcML1$pz&_N3^#XCFjV3
zwyS^30xi%mh6HNhY&X!FbF*{MHRo-)ybY1&LSDTm?_Pbp&-DF)w8tAB|9!t_cIR$a
z)-$4&>+bvAa5RQ5Jdy$zYTnlN^}m8Ifff%Kg5A^OmFjp!=u{6R(_Q$+>Y>|sK>|F4
znRS9^g`?9<L$LR1clEBcobWzrHE2823R&qH(N3KD;E3t*dhK{csG|Z>oJJgOS)n@R
zLlStU|IQPMyh5jvHiBmN7J#!&UKcpq95#F9n8*2a8F+nN&}9=)?y>+cR9gsEcB~Vk
zEYA(JWkeVpMd0<oN9Np+k`N4g@F~LQXyX*&Xja9hKh3w;PUtMWBEo#uM99D9Q1{y3
z<%b~p!JDQoc|Zd5S~92zRe_}Ns?Jvv0;)Q|wluRTgXS$2!QsKv{T{T^m>-gPZaByl
zd284n0aqf4g&QYCJH1o{Ph2c<yg&C4X#D}$ywnIA!za@M>N>!Ky3L0cD{gHO@&qT6
zk1sX1y}SQXaT%x^+H>=E>q^xrvY<02-guP?T~%E8MgUyY)|~5H`@6gh>Y{h-9=Z$P
z2!LxI@RGczHIPCWvLx^G#bV>RXQn6a2JILwvV#=k+g?k7D!juGxBip>t!jn1l_zRC
z&q~!PZeUwaZKwflqB0Qz2Ws2i4Q+RXPANmZdkQ3F1CctF#1_%sa>*GIdfN;@+c97v
z(U}U`feJM}`=sLbmQT)*;%=KWD9JiPLTu4<t7U%@=Da@L_<N_OSMprh8PhXkZ)dZ>
z79K;Dtx7+z{WWNI&lBvE%&Jc-XZK}i=|6mC^Wo;Xvi~x-P1gG>@n}Mq(0M0;7lmED
zY{wr|oL$tu_)EFBf5qwAyEU4zxqV&GF|Sjq;FwwZ>Ll;SvO7n={Qmvbb?@Wn)u-Qn
z-ptG*?z1jI>57n-DmcTZ-uUNvLU&;Z#N%vBwL$xOCq;m_hGs2Pel{)OTqihY4_}LR
z&f`p74lV$hel4=vz3**l)F$q8?6nvDA<d+PZ$uy=+p7%P&K(R1mTB|2cdAaA2X^`C
z4UwQ7dtadH&L)8x77!zibk2f;&-N%d5?3v+ak1`KUiF%H^PKrcA{Wf}`SL>xJeW~C
zwupk3#E5|BAWzxwtZ{boRNn^LR^8(*1S+1bAfXWZ`c~0Xxe!UN@A5JG<^Mdt2i~#H
zvAt!IA2`e<r}s4NP@Pf&b>KG8hUJ%#NKDKH&B|Zv1Q+Co?+Jjav$@~^Fv?H?RcB?;
zbQPI)LU-XANM`jq&Hj2qfE^?oHm~FH&|O#~1fFU;mXmk*iV%k;q`0_J<?5lk@Qx5<
zmgP^o{l82>58Z`Ngdi<P*V&-;AJZYWy>S(PGA*DC8WW5BL8&eP61>+EL90@nA%116
z2bJD&Nua%n;Nx-{e+Wf`M#o~#b*-)VH8U=0wSvop`_I?Rn8j?Vyp7APMYJbUy>q4N
z6yu~7Grb;p_3m>h^-vHw0$#2VWxT@C>8C8X5CoU;OUuD!{DaAEId}I@HUno5NXxS;
z5oBfawcghg{(HRoA@}}uf{)MP75f<c?o9}2a(x&2?B35=)vxppHp{-RTh7J=a;AAA
zc(1{VI*w=40v@$MQkmIS(2S-Z#M|%wDCBXvM1oV}BO~*iqx&c8fZM*m&+rBpD-<6B
z@5W7>4w^cB*8+|u(>TVfij5OEz`o8pyMT=|)#V0giQ4x}v2D-pa|(hz{lkPixLo1v
zL2#pLSGoLE#f2v9;FYg6pIX-bE}zv5DIT}^Ic9ODT7n%AG}oonLj$6RZN7El>wlup
z6F^&B8&A(Q5M|#a4t5#;EnCi+s#BgOfL6kFo}as+^#8e{4WP!;!RLNAcGW-E1D9ry
zwre@q0c`UH6JP(EJ1GGagy2|P=)w#x8NKdq;Nx7%KLfsyL__lc*vV1mtDK#7|H=hb
zl^Oo4|IYdLc3t<8e&g~5pC>Q)_juO2>T|5~j*CJ&+gn!O2WP5Rs;iuxsy~2rfun5;
z`+bmcZ1cqvUjN&hd=K3E2AggD46I6GYG}g>)h+DzL2Cg;Vah;y+K`of*!}zWF6G^~
z!Fn_<uh_uH`PK!T1R&mteGJK$RiBdcINwTbhjcikY)<GdtbGiwQ+T59^XydJl79#6
z(8TNr#qBNMdZY7}3I7iI`eOCp%)41EQ(`C8K2`VIcWB<q$Qa1nTE_hy;8<_|cFQq~
z^R3HvQ0sT;+ZLPWTi5iiKYegt_xbI*<_Evm)|ojif-X7ueL)vArKOqW7u&k{HRJSM
zM~W@KKaRM~wdD1j_n#xZ{UHNxoNt}M?p*pRa@wEzr>~DpFMD$S>z!v+%X7X@`(5?+
z$$_GiQ@vXvovJVBg4P3TM)k$UcieZ6ePH?g^z*!h`+lZr$bZi2XM~*a;+?_13%tS6
z^=w@Ethd{>Ecz>FZU3#8eRy4RwD;kg&+Nb(^$zJSlzjmX5fR(l^YY(Y_Sc@?KIc>Y
zr9hubfq2u?D(168`JuJJ7UsL)&|0K!uQu)Liui1+Z+G}tdmkxn{x$J<+pZ<MPr;_k
zzs-*Z73e`%UwADM;#)8!vSgpNSJ3Ib^Pbn}xL2<_2=mE#uuoP-6-7_<z0PZMs^Z!F
z*saeOOgXRgXBljB=dId2NF7uxzq57jvb}Yzx$}zLb5`FDUcNQX#g|V9vSx3~_d5Zg
zGs=F+?6__lue<B-0u$}ug}TwX;n&P$GWr>z!;Ts6cY=FtThC^47f-LUdsjMZn#~^F
z-g66!YkzuPlahr+^!uIQ@?q=tWoH+iI}^sKTf6ehiKxpKTf?9y#0cH0hC1wXPV&0d
zlb+r3-ghfvZS+DH$nY!YTN`ldNWF0`<b>|RxzE9&+;iKqXNT&R&v(Ex?MB@!uP0p4
zD+Fi0wzp4O?g-sd1)B<4tC}%=2iO%~Z#k5DWVmk!7ZQilo+xZ@DJuadR->F_B1PUA
z(;>;S&VBdV-{1T4z~+H_lyCQK1C<5frrrg=OeBdcutegS-9|pT3vJJWTVz*aSFYgW
zd~0t8-;sVHFA+)4o2>}L&c%Tx{^+FymnX=t13L}86YbmCS@7~BVe;y=pb43+X#veG
z-xl8j6^!de7fY#ZDZT<OOToE%w+%QWLy8FH%i!$3i<SSX;=;R=!EHJ4VEZlGOi+Q<
zeE((U>wkOeFM*V??Z15a+TK4m95TTL<L#H3+Vkq(&EFC#pmgGWdDX00%+<2FqCFhi
zE2N(V$O_$hn*pi<n(t4~eEo0h-HV`FhiSY1<*+~1+ZV5G5^${BuYdX4pX&9C*ER_z
zvev~fTl@QaoIAv$`_AlpcLL7wi8jAoe^d7TD^R_&VQ*G}{n8`fte&x@-+lk`-|@Hm
zQ;zSxFS&iXK%sZe`sDMVLvYyMW;I?By8SW(G`#P1_fq?-2{-n+1cQ!@0Yz13j*p3{
zfzp}-?-!VevVT*Z1q!SBw+r56_q|at0X6FrE=a|D=x&Vdv;`eyQTcYhN$LMP(=xIW
zTp}9p+h=O=z40;udHnw^`^+r9H=bZk54P5CT5r8c{o)nS;U?Grc?Op!_$S4KHeJO1
zR`<QzDBH3O)P_;{{xmPTJb``TO3>KyVY4j`d7W>)O+Y2*)2+>yuKX=dUbGSvmCbUy
zJ0g>Q3-N;1`>))6D}Yz%_S75U2Rk~NuJd^XmnVcT0voYjcFMAM2i8G67-y~Fd$%#R
z6KvI<vVd8;n0E{Lf@+hBw+r69?t9~90!mpAK{m<Wn0n(nXjlftxW{FNN_m}cy}&M7
z3hGnbz+v{cQui`dP!hcM;g)0OE50{gZ$Oh@hgZb*bVMcX7UBh!#-8uGPj4gAd9V21
zqB-v>=ombR^Pm9+>i!%l`wd!xdCeg2yV|2^H}dQcgGQ{6y}jphN9gw3bkH37=^b}x
zcSI-c{>uZN*57tcxX3$ae>^ySw5`o-yCZb_BUqvL)y+B2YtQ};Q@Nra;ZtqN`nEXl
z^=DTOXz`SDeEvhw*6+t<*FmB3%NP_-OJ7}FFQHqVrp^8LGxH9W3D>-}=1=@vw~ccW
zcpfb}>GwY#khPiCGN-0%J-a0wyH59icJwRuIoJMJ%$xUi>y8+sr$UL-Zp_<1Z)T>-
zye)IjpElC{9&4WQWdH5y#p`a*{{GVH6uaE~wdcX(!4Ie1m<RFWrT8DOHe40H@fGU!
z$@4=cpUrw@p0n*vk52LKyKmEtp-XW$&aH0)olzBHTXwqmC&RI@`?Ak}>;6Bq2fk|>
zrozN_*YAYvyXRNdU0%H6=H~yuOKi?FLFPTZbMDViOapBwJjeTF+KqGj=goepvTsZJ
z!N5~j-8Yv_*?cpa*Xcy*i}bd6>C(_v{I<{M3qa>ht#ZE~Hs!16($X~-6{2(9zgyb(
ztbhLH0puJ5PzZrihvc>F<~u^Se}cVpdP5*T$QFoK+1}1*xFU4>dpal=pPIqyFe56-
znzI^wF42oS4q2UVl}*5nf_ImlOFeSV&j)7)aPs)}XQq|J<^SGyZhwtguX8-{`ybKs
zON$nUtBCKvwv^S{t;wQeZS#{uA6gYoZfbF6-L~k*`{mVbF_-TKZ@tNO?v~}YhkMh{
z8;6>zJm0)a{Mv`D#X2W`pE>%+@}7_SyXm*4b38tC^tmO^G0yB28&koYNS<Sz884DJ
zWy_T8&L<l9ML3Ilzt|xBv68R3@Q~E52&eYB9p{TBdW5fiSX*It<QGW)H6PV?Q*TWM
z>jxVK)1PGE=YmuJg`+}NZ(M5T9Zs0Dp-pevg{1SHKWy3$S|swu>MT6$=kfyXlyAu$
z^PCfUHZ)0izi1E^tm11jX!^4|!l`{u$N6G`9>FjSqtYLJmSKC`Vp_7Xh0j`We!8KA
z`l5y1swFqjtbn@~#fsz4Ic(V-B^>|7>MV3UcjUPx$1x6Vh@YI!!~G=h{6&T-xkdCy
zgcJLmjtj*CErL((9~H8C;!-oO8RS~MX%`aJ5e{Lq7M=gxKtg>D*daP;7p6$_9P7;d
z5%os4htVc@V~PIFkMB4A*XexkYrW>qHsd4rD@tyhpP0|rT&N^f*S^Dk`7_ID=QgKl
z6|S#2sl^#Nf8`IG^RreS*?Y-V$m-2<2HXAv5{ayalP)mYAAerSafsv7dnHcYBBg2P
zoDJL}9C_KCCDOHKol6AA$@k|Q<{x@#19txod-gvvzRwjoluzvM{#|_H{KgWwCc{Hq
zyLQ-j&+S<H85G$Uj{dcL^E|?;{h);)Z|t4<hwJ(v5+C;7us-tJ=jf$MaFSB|SG4GG
zUEeZ<rsWUJ!47l&@zjOe#{T#|h|?B*k@-~oWOj2xPe+rU*ZD+y_kES1bok@aB(_a<
z!5d5FnFe=OFYW$ad;{bjaN^rx-~Ly|`?(=F41aIF(HUXY4^A%-_kdF6MKt&5*Y-~M
zI<xEC=QT6E?r7hyw(9skv+Kv_Jv068=-;oh>i9adOYsY`oc9;7TrAJh!*zX1B@#Wt
z7Y&ZYFD$unKCnd&?1~Qe_P;W&FF>w%7`<^Z$OvzU5fDw@UmyV%Aoa#4X3=qQ>TbJ~
zXn$Na3KZWjk~Cz$6{AQ9RDpcH;s(cKpQFFQp#Wh&Lt<Y9vo&rAJoY)d#}brDA!?R`
z#UboTVD^t$$Av!G1#e85XMVZ!_tI~whb)3O#)I9?Wp>0OxG)NwqO{BoSp*w~g2ln?
zkNybuMlU3`D}r6<0A_>DF|<aQBWMN|-zWO9F=GD8A5!3S8B{HlIA>*q1UQaFr4#3@
zJRu5Z$It$#@ZMN-_oGVVxjW*sLKqKO1W!~$m^M)jYTD!Gi1{mTh=NVKbo8dho97n7
zU=zTmLD{iBJxBeH%&Y)~;ftgsnQz5&Iu9qz>1fkaJC<mF9904m9Uuw!R<I6m$hkt;
zFO(v5%9ON@B!i2+gO4`MU+g5q_SnUwL{NwCw<W5C4Y+(kl}Ot7{P_w2unS{Zx)0a&
zaTkIT&;{2G7H^gx5CG=`!=|H*_QzW*AQ?15=2LM<M?1K<XgZo`4|Np@E_v*PaEYeD
z5oJ(b?@1^;aK2Dct_f65a)@=$>EQYZE+;__dA>scl8Zqu<l_0r(IXfppd2Cdp*W_a
zU7<(ezh2W(MUX?lrJhoR%(vo@4oJ8)9Zg7Igs^Y6>#8k9-3KiUd7m0dx^>Q3$-x)-
zJ$HTW{O|Jxau1#IwKlwUB-#FWv;{o5y1F9*{V0UpF;PbDx2D4(u){l^d^m9aqafJf
z$tvy6elG46AZLITS=t=}7hXM2KHTtU6q0K+JjAu{nYi<s^C4$im-~hsvg^F4DEHIy
z(IIew*TYwMqqBn>92<sKN0RN`W55pSxTq-i+tTU~IF^sPNu+B**&uU4mV<J6l1lsW
zI<5&Hz=5M=Df8ivjQm4T32E<ERPp5b3l8>!5`wITlMW}_A2$N~=|`PPd-!J=*@uzF
zQ+I@e_4oCC02KuS%9b|Yic4C+VJLC(;RfN0g5U%WQIt{uN+SUq1&___vIc8_umut9
zqA%5;)D2FnJKx)aQeH?-OX0FR-y!BKX*gb2cHbHl%pDV%<bL0*eGe+06y3Ng-lVVJ
z1Gc!U*Wlcg@OxlifB9Ms7k}}3`wdB`nisFX-#8yv369c>*WYiPzxNZ^f<^1^C)-y)
z1zYSAzyEmMw^LvTb?mF_|NCa@cd##O|MFQsgtO&--_(9@AfdiU@z*cgZ<~=Vj^B-N
z(E7U&2R*QU(*kE#ze$hZ4bH+Z4t~FJeqR|l4lg#p-#EYaEyO|W_mk~^--0-Zf8X)C
zZ(AV_lB;Q-`vK1G|NADp92B|&wm;;4-)wyc3YCRP%00$Uogj{u{R|gZw0dUyZFBM+
zu!BJ9;*=p+z2dIhU~zETE7@NCCcS<;!UOwngVldoRQ=}X#rtnT7ARI-wEeajE@Azq
z1<nR*hWO0&`;GJe@*qCzez!5cABi*n?_G#D#qTED|K1Jprv9$Oem~&s<8|N4ArT%|
z(*O6(`)}Yl*!x26_f2A4(Y_t-3V*SDaKUu2`(5LF*?Zu;w^;nHGRR_<<Q7pE{aql-
zAmJNV(mwY?IgAamxC|V=7#1H!go}Fjc6U$#_rUf0f%AO%{GgWA#qM_#g#YF7ACyRB
zz1aP3<9ykB;PQVF$j6a;Y(WhZ7X4l9b!8RR9EUhQ^~aU;|9SKN8>kc$K($P_>=?qw
zW}oNGE@}o9Npr>jel|}(cYp6cspCb;+0u=z%UaL1z6%gO_l}=oiBm=SzvA{;A4<#_
zJXk-!oAaE{^x^Y7h6!BH?pB_YeYJS%Zd3lwgliXb-zf;oy}M?o#AI1+SKK}GW8U^}
zih^f$70<A~(vtt1nPH{Cz5B%#%E!`=ZMv)BT)0Dh-;)-Xobz*j?>2P1l%QY2SK2<a
zpcbs@SM_>^q?%_oPkK$JwEtdIyvzDZOZ6YH5p$2<U8q*`n3o~w;2!Jp-Oj!i$D|pS
zG*#BWG;XdrKj;6Rz_v#P{xxssw)dRxnY$Ovb2+}Z^~{eO(Z4%5p8U~0Z<$p6Oy;Bf
zu>h%;?dP_?4-h{0m5pI#!aY&Zt#!|AUPFvd-|OtV<0{zb@_AM5vp%eZ`2WrqG1JEZ
z`C$M5d?A~4X!bwGh7gYT=N#V$2(SABHfV17y@hIjUO)`GzQ@_u;v&SLy2|!h9~M9i
zn)6A_^sybppvot*S%=D@2Fbn;5bpa7F-ZU3LbW~5AO^YbarWJD24YZLMf<D|(;)`M
zd|)$ussl0T=Y83%L&0^-4q83s&uhw8aGF;#H-s3xKlk}vfUw;sh@rRdE>x3w0x@*{
zZfD<$;}Apn%DZP3_CgHZ^On!_q4<9W2d$R!=UL?|IG0yI3_AZVKv?c0#GuJ{7pmQP
z2r-C%x9iy-had*MD{Y@u&{EH!AbM!`=e5>XTEzD-I%v%(e;!f3f>Ru7(CT*q!vEew
z4D!CaP;JhAh(YzcT+deQgBWzKq<vOFHPoOb)>m52?}ixUR=$F>y&U4A_IClo_ufGa
zV!pdjE#@x7p!Yjn&;Hm6F=$<J`>cW@s6n%>ue7v74KgWT!TG%mVo>tC0O5UaAqMTf
zvrtXuHpHO#ovvpqwn7Z*D{7xrkO?(tlJ%7qd#FK5<tx^wr$bG$e-|J;?+wJH;yVk~
z?%aTwbbg2H*&iDqCgl~j&nifOn$&51rRDoBh~EUtS8!f0g*Zw2U4U@iYluPGcNV41
zxdt)FeuuN~jy3iS6SyAUwLB>MYVpBckX*?8PC@wGD@ZPUm)}0KAOxJDc73k3zS1%s
zYQv9hD<s9CHoSftApGwoB%kZ$x6dl@gCu}Iclk^o&VuA~%iXfC7AHb&xcpW@*zYC8
zhP=G)nS~xu8w#zjv{?UwWYXr_3+<#9M}MBcktVzMHlNYMj=Z<ZN)w8o-zuBIsa}#T
zFLZE?_5N+nz7-1~q2ZU?JgdkaVztdJzNwWPeSh*YtTebc*LwHAgEK$auHQc`b8gCx
zmuqgW*<*Goa<lZ4$uDo3on4`DZ?67sM?1@Tv6p+e9^9R|N&3m;hc`{nu3)$~S9!PN
zzioGKnx5%kxOTDc?uU76&aF#zTJro(<wpC4e!cYTM#@YP<!*1-ex`VA^EKA$C~tie
zWiNmB@VZ1dmJRC~Hoi4Zlqu5{R<eD5?&cka`G5AVO9e?xh<%-Y=+5g|X(0^n&(+^i
zm_KLlwoEtHkMGVL=lyi@8dRe4j>3GI9qTgPSU;=->(GHnaNXQmXBU+kd$@-qL3ZsP
z`91EztFvbcytE9TpK|@%%nzGyO_LNnvTO4lvlHsZtFvbXGVZb7pW9qhv}xBeNzntl
zjc=QsP?v^EEYEGO`LqEdvH515f;{gUu#N9*w()*Cxi@QeT8O~=a|yQ<=C4@|k+`#!
z_tVMkuON<(x~(wZ2P#nmlGq592>IPuvt>2J+~O-{C)C%k%AFPHxX0Q$x4Fh>6-46m
zC9@Oi(^o;9sGQqevuOoHqWGfO3H5rY1ovCspE-V|zQ$S&<<IBmPVhe$a@k}tQ)T(H
zn`}Q*yrB|vawquD3%PExn5m+C8%V+fDls#6f`1-VqU|RClf|M}A+a01&C%{>K<?!p
zu19wxQ>C9w=7dW4Z*#P>41lJG6zM0E|6YOUaQ?>p^Mx(M-1Pq33I4}|Z<{P`swlsA
zgYD-NE2u<I?gam7!4Q|M14)=eB|38__@_Z7>Td8qS$r94uH-gHyPG}`msloBKbd?S
zD#5$W(N59_;*!b)=_iwSLnRouIod^fLnL;_+fV4<7X-2J+I6;{DOy{>iSc=L?galn
zsKhdmggV3}&nt2#_{Tvd%0Ln-P>IsN4tBddAm&QON<W$0dIge4PH%Oz`{@pmh>Veb
zGPx4!lKop9?JS`ZGoz)SOwNT$Z2rpp^MxeD-1O|+3I1(?kieREjqT?XF{ngF?gam^
zK#1G(KoY`GiPXOicC%a{7XFNoelpn|>XOc_j{mkfUx8%GgSS4+yR#6IDQ|{LKbUNI
zWh*GR&Mn{SXt&b|qFplFenS7W0Ei{)uCo1n!VU?b^hi*QKqcxx60A_$!*VC=f6G$J
zYpm2zTC&P)kGl8@a26{!yUPDyF(cFxcTk|%L*h*`MEXhoZhJ_syt|V3{mGv%qtslg
z&doL5%4j#!F7|W}N5b8oLDEkqKfVk}PMTlaYPMBFQ~VM$j|}V5*7?gMMNdfI2wZRf
zLT2ULSEr`G*4*@_+xoMn_Wv!+H7nVyQ~&0Gnt=>FtJtc~Rygp2dMFIbR~_`b=?Gz;
zUUkq<!kHJ;tow2=lzEO(hZLw;$F6p*ZO-RTDNrAeAup_X?xr3yP%nmITUhg4gMKL%
z(7@Z@wQLrtN~WOkHU6G;Y?e<|O+n2-2ATD|*6CWNpoTBQn)PhfPxW%aj<DIlW}Rvb
z5kIqm&HAZ1gdMYy%{tW<!hW-n%{tM^6x6-D@H<7i;9O6Z0*CSmd5JXMqEnM^DM%<U
zVz5Z(Eju+Q3p8ZM7?HtSc4{evU6ILKc4{4jJtK>^?9_G$dq=i(*|`G{_Kh6gvQsB-
zfjU5pKXQ4?PF;eCOXTyGow^NSTNLn?oq7UcM-=jwoq7vlR}@K?o%;r1&nV_CJM|x8
z&W;k^vQr${VE5c8<t;lU2x0#y<1ITS1z}56@RprYhOjLv?QeK)UUM*E&IY!Gm!>x~
zufJh$E=-bY*nT}>`J2sbpnh({$?FNrYqmhxx34EG=h+HjzrCKYd=8ZTe|zF{oox_t
z!5az7_iW<@jY&2r-$+>QvmGLCdLv=^9VpxVM#A!(9T4%z9f{BXK-t+h5|;Pugy^lk
zk+5857er0}jfCZEpzMV=5|-QShKO&zk+A#>lzntZ;`5k25b^6b5|+Q&12O02jfCYj
zdm-Y#ZzL?|*#}|s-b`3N2g;VenXp`EKSbPcXX5icP`2~UgylX5Am)VLOjv&B07Omt
z&4lGS2O;drn+ePRK-t|l6PEWJf{4%EnfP4hFoeDSX2S9{hau)1yqU1v<_JXm^38<h
zXQ1q-Hxrh}9EFH~znQT74V2BfEAe^FF^IVIt%T(~$06qE-bz?L=Qu>%{#L?rof8mt
z;H`w^d!X#(U5U?qPC~>>ZzU}Ma}uJr{Z@kdoKtL|@sTRyt&Dz_(|B1DS$;ByZ*}yO
zoX!jC)G<_VJ?LjS1ClxCmmWSBITOM@y!D`8<t%B?s29WYtq1*P&W4C{Z#(Gsa}I>9
zzwMx(#XLx6UY5f=r^rqkoSEOfX`5s0APvsUX1UFCKRKC$Gjm;T^V|YgX>exlz0GFv
zw9gEjnPu*<S*A`h183$nci60-PBQ~%W}Cb6Z<gfVN-*$?U^Xb1&PjV(_Ea7;cFLgl
z{&l|9^zz*ozC8W(zkk!Y_jm5B`E!}Cpi=tHl;T~W9y&9KZTff)#H5&eY}QZbBG`%Z
z%)nWG_a5GYQ`WiQEWcxqbkRA>Tm=c`H4HoU@Rpsjz6;K_Aod}fTmcE?H4Dlsr5{Ww
zzvUp{Ho?B2Qu@i1;#&>|ZV`+HmF92e6hmAJvKZMBQ&7Z_)RZIGEtR(vKm&H~Kjj^;
ze7~hpp+}+q!6&m5n$Jr>BjZdDKAGLne7*&og^6S5-LOPaUjpjqvk|8k*)D3C^DjYt
z?qx_4J$*Z2`JBtph|F)ETjVDV8r5RZBZmFHZEi7&dPvfuxn5+qQQ`*T%-NeZ2PLqO
z0}cy&cj9wY^^p7z31}?p!4ZH(oDy@;^zOL~cZ2$w%aAf?`gTUY%H@zUX!>?XKg;Ei
zGHCktgCI7zu`s>-@Hxxnkn#m04k?2mY=n3vlA0OIA!U$WKJ%PUevmRq?|s{xVn0Y3
z1WFvA{16Gnz#mcu#olAHcsdtS2F2WCvwS)SQU-xb3wX&P|7Hmy2j@I{hEWD>d1~ab
zuRqzUu4(q{sk6%(PTx*YpL1CZTs1=2eBde;#NKlm&bFVmTo&980y+DGpEbDX1Ub9V
z&l+5Gf}H)qFB)8Q>g6~8&6rmPFSHI>zl9cByhVpB-$Dy5>9S*%Z^7*XaG_<HYbc?<
zh!Mg@7Dr-R!`a^!SKd;D6+)8lw=}~FA<pMpS`&IYz=aU!^DUrxT5v%^n4Nb+5>@@t
zggG5V>NUH8FrQlH`~wv{@CZ-`=b0oaXoMk)6JYO7OrL{@NSu+4ss?H%C3?XLi=a8{
z&!5W#&z~Q7n!7=mAp7nHV^lTWpt)V*^dg%-7|cO)!@W$nU*ykT<^wl`K!s4na#?Ug
z2vi7JESCj0gg^z1#d2AAAp~b{Kj>$%To>FBn!f$uy?JwyVxG3ynYZi^JUiQi>VJ6F
zJ99So6ffK3BPJz!@6X?#WBL4xn(*aScIVGMJ$uUjZHZof``iLZ$?+oQ9-sBYIiS(`
zYZrFzku5s}$?*$|E3MzSf8OE@8j*kTsq6qJB**_h_cV8+@wrTP(1`rp)3+1V_dtp=
ztLfVh*O~ZRgIaGLdim^gphedEn0tJd59gGDT5lJ2?$L!6L0}77if@6}Nj(2l2FuQE
z=bpZWr%I>=;3SP^0r#AbkTMZ!!8U;&!9a))Ab|q20K7N_j|EAvyb7`a7M0K-vIaFg
zFoOuI1>0bS8O#UZv<3D7G^0Z;0H+~57VwsxLbV{lz|Y4Sj}H>nv0KnRx6lvS2irj1
zULu1icOxv<Lwx|QuZZ-4EG%IzEUt`x(^Gs4ISxQ&JS>R7#Sqj2cqIElvldzqiCI5J
zPNtB`i`Ym;4x*#yP%Qx0phQM8ax$eTh|uyuIU*nQKg(<ft<bsn^lgLiy-e@|qq(PV
zD}o{!wA=<Q4sb^Dw{LHd!;7}r8ac*6eJn(bpE>*Xl)Xfc@MVUWd)M!m=)Esn`0{kT
zk$KPi`RC4pN+SkP$!fWLAewQ!*3aS1I5z92bMinLgdqmh8AK6BbPTa~5~T~y!8?h(
zMW-z9g2#n+?BV@3tq`R%LZBl<`;G&NohkmZOP0Ct2IDEqzXucM%m6pg=-1n%Ru6O3
z9MAwCY7ZYROx`0#0d8-G4>_0}&_o$>*wUELvjN=NM<fC?gPtP{LZ~sjq4^#$M8Wxa
zizBFQaqnqvL-4&!W=9Ffe+Qo4oltx(lNr>u05vd!@4ak;H#VPTHiL@Ay{B(8EZ=jP
z4YX#d@$_wl<#R5xfr>>?D;>m!bftbb&n-dZyt8-itos9=?LY9e_OI{rPkG|A7S=@G
z`~2_n?mdw|?_vxLp^V939fv^<l)Mv`&yfNJDHO4LGIv5S+>>`V6ram%2CYs6d-xo}
z!@(%xNNVmO*uwBY+0FPIHBfk)43)S*fs!wYGSGvF0hE}5t06Kb;p&kGgOJ(OGG}lP
z46XhD=>@K;0;@O~RnD+C2Q5tI!mHuxYBQ3CV$cl2RiD#zpcmZw0S`$RRMu~pjFgFI
z&b~eUKBy(s5OeQqe%18v&z+2?tUvzka`n!_mv`BUD$MW9$^PYZAcv#;$-BHAmdC&J
zHrz~jcjD&Vg5tWD(u|uA-kG?1_rtU^m&$+7;7;R{xyx(veDXd<1@RNoJ9pZz@NECW
z+psg?*@=^P3yS}};AY&ccxPfaNW(>_hC93_&%2=-wo7N76Rc%U(3@ddlviIcIqwC;
zhV0!BpUt@-&Xnf7L-}~w;j=pz<g=V%D|XL&+cvw{;XcO<-e-MtZt<EwuiqzVAbm!5
z=N9R_V}EM4_wP)2c3|OOM&Doa@)=IBesX*FrfpWSO+3R4?!>-1H+jvUmq9gblFmE#
zvPL<<Y=(7Fius*6r+>N~$T28?ax8C$W&3A{pF95^^xZWZVzb_xw%NsI@f<UFANI-I
z;5C1q1vO~Bbl$m(P=n&k@64GEHE37f4oh{YL4_cLW<U(ed)+p>*Z^YCoNK)1&*Pv5
zt&z?<w-ahm1Sl4u2CW0d!Y7D}B5NO~-92T_l-9gcIlT1nS<9)~OlgOAD7%*)KD%=Y
z)Ph%Svx_yLVRVJp{J9_0f)&zv=Vn4J2&gZZyzU7ku&Z}Hd?s@e64=j64ximQ5n|A~
zmu<6)l^_PmT;?@@?gTYxsr?R5cBqRq?-mrldkl$Y?_Cd1?N^y|9OAxqkWqaQqu#w}
zn_VmeF>205Ui0T>P@@*v@9<py5#l+)y9LF1P@|+lZaM}rNF8KQH^d-4kU?S)gJdr7
znm^Zq8Z_U2ho?K#pr3aNit`>p-1K_q!)J4jKnyxweE96n4v0Z{&)a4f3qTB-bB@>i
zxg6A>Ircj|pMQY3=;57$;&l%p2JPPY@R`hEh(YNfgIXa5t$WrsyO;}Nkjz<L^XEcP
zgJ#<A@N9<~bn;F?@w*2QgStU3ItVd{9b`}w#GrRi+h!NDKn$95TK>)w=^v0J8I`xg
zQvXA1!%cyACpO+G*xn-eBTv5g;F-qgosG|I4wy4MVX9PKUgUgsXMH}y8CGL=J&;NN
z?tycO%qjUhOJ0A6nB)gaO79^i%>)I~eMkz>-udv^o_!D}xfdNiD^dIYo1yp_nH>|Q
zGtND(W_Hk<U|ytDA29jdJ!yvGgJ&jkgEZ`gBpG&)hH9vWe(8*Jm!TTu%&*Lu{hjSV
zj6v}eD^PBD4++)6n#XCedmy%LFFc&OE-5}v&_McFY{CD(=j;Fe?5;Qc|L3p${~r7L
z|Hgm+JU;*9^^c$L?f-v#Ztr>W{;B`JxBrS?();!LMxEc)|0?&_=Z5cl9k%W7tgOCQ
z`(>8R|8Mu_seIkPNA>gSmR&zD|L?Pb{QCIQyL@K<%l~irEdKYu&+YqV|GlyOclH05
z&+YYpewx=yaIHEMy*~c+o}AaK7v9)(-)Z8>ch^;_nIo-EUC0R7#+N$vW?)&z<)i?g
zoB4}Qs5$VrpZb4~?djEpZ-PEY#Qn|!i@!O&zIN_4-)nz(lfE#V-tjkTyQ^F#^M=&@
zoFAsSf2#7{>-q0_%Afa)u4Rmy^Qz05lTOufyUJQ${xYp<^Pls!lR7r}?r%9;ZOhZ8
z`P)~-Hhn_vsj3s_9zKm*&wr|Zs=ajmznUrLf4)Y&Pv7uzRlx5b`F@#267^Rk|6lvB
zR3FC>#`<IPf8W`Xd_U)H+y3Y0?^2KCt`FCr+MjUwIPL9=O{YXE|F-{M{)e4)Qh3q*
zCysIdAIhJq4_JJ9pUmS;vd1sS|2f^d@syME#@5)s{PorU+bg41&5Qb19{$rt{<?O^
z>3Y2vwbsXSC!0TY`_cc@{=}Dm_x{HJS^i0W%kL%W$1<;c`uOj7?Z2&i?!Pv9JGtY+
z!Dateet8=I=k@;I$M^rU|NnITzhCqJ{XGBw>HL3*^Oiq;9{>OT;r-M92g`4lv`i~q
zeCD=dXo<_r(h9DpDIpV=n|obd*{8MHPwn_`Q`ukjTz@Nh;(HpWdhK8G@%pxkh~Rlm
zbIWed(O;ijo%_q2Yxf_qH(K82m0jT~p3S*WEpI&4{k_83U-?V^EAy|?8#cYI+Mikx
z&77ls{@|&)w3wxdlIN~}n)>JFN9he|%YHb-rLyErZ9QRlp4FdCyfX6mFVlZFP0SSL
zZnZNAzj|xUpVR9<E?QmlG<y2N5BvY#J^%mfXaDam%O~FnS-xYTPvL&C%FgYn^4GVY
zDf{&4-~Rs}%<I3)|9cz%@6TEL@alCnp8Ce&63wrd%$r^~>HLG^k^x))RAjsVwP=1}
z;`eFSi5U?-wr3Ble479B{*PaUY^Ob^X?+UHf2wW3b|Ui%r&HU;OLfK?epdhV-#^v*
zFTt@q@cg=zhA8i!YR&(5oxk+<(^T2_<$r5AlmE<4xvJZHe(R6Nr)Q^3uvqeQ?S=e(
zJ3ape&Dg7VqknzwES502EKRW$rIO;6moD4<n`B;B<8Obi&#d#n*S&ekfw$izUEXub
zEb88tOV*nrrq<69*Q`IeS^Dd3?yu7WpDmA^67zI@>fGyVr{vG(5iC9s`}FIaC5ykU
zj&UoVS^g*d<ty&ipG&#2fA88hQFW?`Vkm>WW_^G1Thpcc-){QzCAqh7rEiwc1;$-w
z{|hH_u8zNy{(foM;p0zDPhQ`;=6KDOGCMt;m73OOmE76)oGLR@nS}E`?K+iFTe`o{
z-#5s0UqPkY(m#*$E*1TJe>?PFp?v1gO($oE*WFpVvso=RU+>UEji>V8`=*_qtu)_5
z^Z$<QC)pD;qa{S`&i-BW^mWk-rl<Ya<}P~rS?_-257r-^8uFXvKK;2k%Q|FTO@#N?
zIFIn&_oenu`X>IzRGhv!A7|FhpT{{-Ve!SXDa(^=crS0vK7NWL=+ySx#Ri%iD_6c2
zd(1guyZ@=Dyenp&kK3Q3B$n{sY{u>yU2(t9LUsJrLR_0RXesya<hq_T^T)J`x$B;O
z^4lB#P<`H0(Mf*V%y;BZhrU<)-BQS3a!Yi>wA0R)m!6Y<E4ucSP~+#-BK3IzUt{Y|
zPB)#Jc8hoUwA1nLymzSTKHXGTD;oK>Z9|Rlr@rguOYT0HdT&boeXhLSiP|MD@2{SF
z&bH>t{AEk8<(r2rt%*t9^S994BWm9oql_!RKJ}jZmlW;%eamcl-RY5@(_P-BEi2i-
z=W+E8%b6uh_2W;8<e8~eE}C2;5`6aW!o^==?wMI1$@r<m@2@Uk9dffQWuZdw!-|(e
zcM8QT>om61l)Si8;>G<Z{@3!)>UaD361lS76K?YwZGG$XcEw#a`BtB!zh2&&c>mh;
zohkFb@ajE%I{DfR6?6MYE2AB!9?ySuJmbam$vuU(N#-YNEYE&AD{A*v$^H5D?|RKX
zFWbs4E_yn-&gJRHZQTNMmp^TtnECB^Y)Hn=nuU*r^sGx{H@tcsaJsdB&%xP|EPtnR
zf18^kuC-~K)U==1J|^#!^P0VV$)6kdSJ!0L{hOS&gnfGXoOs{QljU~gyxtR<QQWcM
z#QWrX@!uCV&l8kM<SO}ETB+B4;QP`;|F&<sHJkNmmY3YdO<S4QSx&x?nR3NYch1BY
z2KwIfU(eiXEUjCAQhD9^Wpfo@e)%+M;g-5d^ObdT_w^`#tXXR}E4OEVgSyA!n#kL=
zTpEkJZ2kn<-OWy|*3uOIqT_raC~jeyht|>jpAEZ>Qx$cjH<U+Sy!rWYVEm?9t;xG>
z&x<Ku<~etLY0R(sm6O+4zQ0~n`83=5*+0iqPiMZ^bnJe+$IdmeDZalSuS-u+wDeoe
zSNd<A$EmLqODY>nrm9}fm7Raqcb1Ng=$Bs;P91u-)X#AD-p%H9QF{Fa-R2X5_MK*)
z`)EDS>E;<Js=vGT*XTUmq!1PV@%oIdF&u9{PK!Nt{Hw9tHtAB?h9}B3t%dtO%v_qy
zZy!J9*XDKlcfJI@TytCI@?+o0>zew?XY6}YJMCk7{oY6YNB#AG8mX^+wCs4K*aM@i
z*Nb*cdw=|gRQAu0lFxcCy2o$GUFCoMN8gvfmz4WXo`1BddHQtsd-r#(n6NNOH~6y7
z`|IB%=k>;CPh+>;um9_qz1q`FQ!1yk?)$p=tktPKueh%Ldc7oO-^JR<KT7VW&0}xL
z)%h-Y`YGwe@z>V_md5N_ZYTEmyw2M<<$urLTKm9jeW=~B{i|%IXLA^oMQP6avODHa
zP|)er%b((sm0m`wU&xNlyK{c?zA~c_`MSN)Ri9Ni=a*V|zhART`^&z<-qV+>PWwbu
z-`sIST{h$C!M*EBe=gGQH{GLhEO-6lX*KoX)@T35v$@LJuPdr-{Qi1&#{DgwK@%4G
zPWN3Ob#IYcN{3A9rrib6BJDj}cJE<LHB4CSb!?N{>fh|rPnF(wtf^i1d%jrd;^M;^
z+@E)y%?WhaRXOc?-s-p8SE$HxE&ad#lbEV%^1MAM-gmdmUa>ZCxy{TXE_q>BvuWZ#
z_O{>M+}HZ_qnMrADZk?$FArsh-(B=?OHA6*O~o4nJ8t#qTw3qkE+(qEBj0xF+IDVT
zui#VVw$E0!bLeJ;RIa=IaaB8?Zdd53ryujet#wz0olbqD-`wB(>8j_~2{U(m$Z<R#
z6}xQ1uGMCO7r1_3nmk)xzJIMrdhEYHKYkQURpnpw?vU@Es+Vk$o2KNMef%7xcY4~&
zHH^77`^%R9sh!!CQ^%-z{e7K|P4q72TsODnn-*`}DL$odU2b;eX_kdwQtM;y3r(Ks
zl<qcj=IO3mDyJk$&sm%*$(dYsV)wGQQ-7XcCUCJbJk0Lt?X8-=r*>DqRm<%X)r{Zv
zI_6YL&BX8+ws%%vPHcMn-PZGR-|cPN_pZ<AkDPw$lj+rq=l6)Ep8OlPZvFbbZc*#p
z{ZcRF=FeSsC-tD&zQf*DQym}e@V|7%b1sk2r?BhOug|-(_S2G-8*~1;FMe7jP+wc~
zY)RhbgPC>Z>ZSQ_KdzMPJ^M=~h5JLFdj4A$|FjCpov)h?&wJqei>>dr99zHV@|;MG
zDZI<4b>CWa`Yq!b!Fy|tOJ9nT*piZQo%i|gRr<}VdAf`i{jzOa`TtUK&-WO1epTJe
z+vSvY?(Ld(+GeBgL!Gl*7T=zh8+mW5?95Z8Klik4HYr}RVl~50zGD?_<vmvSd#*28
z819tXEx>p4*33J*=j`y?YX3ER;?fgu%r)2T>M7h6$m8CaD!y_5_V2#I_m-^e`I@%<
z!Ly#o_jCFxnpPFx*ml~gzOT4VXWpw#=gvxWue<#1wc;#E=WE7BA4-LfE!tiiEvxyq
zW#RXVVw;j{NtJ6~&1{*iUt$+~eC2HYl+bej&1JhLBuSoFXMW#DJV<Zz-E98Lty|XR
zr<uoc%uZdOZEhaRQ7O2)?DEk?t6#5Nwdr!J-tUxF!{aZVPNnh&@vnSaqWE;Rj`uf<
z*cVa-tF7a$V>8rc-tV2Q_e6i``Ss7vmIV5J`(D^}xizOGRldrXXV<hV%6C3E&CE=>
z_BSXt=tiaszfj9xk>!FnXV$)xe`BK5@5mAUtxW3TdUyS+>ndGVeVN~BnP?GqcUk`F
z(nA5|n|4h!-0qlmJ^GyQvCOW0YO-s?YhR_h{=FIEpK844>Qv90&GMfL<^I{Y_H#X9
z+{15t{>EeGzwVLU)AZji{jRsWM(g7W&&rc;cJ4hqajNCK8KrHqr;QS>2^ZN;iTqoU
z>2LYutSoDFeeBauOJB6@TD||w>UXDQ*XV9H@!k2Fsaj%j_2tlMTTeetx~ROU@*RKK
z7qQ6W)z<H_cD^a!R`DRR<fQuFsJh1??&qbSoV;gqzx&Fq!y9+ozMc5d{ngs9UyjZB
z)?+p0d~g9z=HEb%y|0sVmfKoI$++9Ty?%5GPi)o2r-}B<9isNF|14CSnYu@O>%$H1
z{F76vL$9y<w!wX0{L9nI%S^Anw!0YEzpbQyUGzHJd8#v=7evNcOU`)paDpYvr0}RE
zd4{36k#A0Pt+r;F^lLXy%GNtFOlNm>MxR>poUd`opV)1W{t0-P$81vWYkRnHhx@c&
zYu+eMD5;B#``6;U!1ew6W&bv~Th(8id(YqEP2luPTN$^s+b;h1xFq-b*~EUmzEsbB
zN0z*~)z`B+*)}(?-L`A@%BJ}RH<YvO8t*1K)yjVQUSS%brt|ZAxXtT}ou2znRxP>Q
zS5@+6*0H_wj%=AMcU7gf!d)%*Q=zzLnSL%`!zt}ur;mIQ=4&Xqx%KMWy|&LQ|6cmO
z?A|7i_LEGW_oeG~QqI*cQBGY{aWr0gCZBEl&T|%TE&KW6jJl6TxP9f6`E=r4v0SFx
z{s#qdDd*~+xZYlOIi>vH;`gUEUJ*Ys@BfO$Is1Ry{wzP!tb{jCZinsviAAv|T6gcb
zbndsstLHiA>*JnwRQ4KP3(_-PW+icxc|lRq$93E7HVMg|&dsz~VEEkW*G&EEOQ+h3
zU)ntVwZZ{eo|Ur`cIU;PIXFS@<FUt9uT9w<eo3SX*u5)?oc+?|rTp)}cRQb#+w3rW
zdt$fc>V<kS2c|Vk|GfOmRp#jCjcY!3-1(rtuDx{jBg+{)vyI;LMwhc{FMd;&TXt7;
zjh<TEZ>hegB?8mu-i_dIFSjkTxK{8mAwMnkmB68|cMjh>v+uNq-PPYY)y%8c?fq`k
zdimJOFH>?d4!`%v+^HiG?_Du_Ys|e*-?it|z1sV4)#I9uZMwnt!|WWsU)B8YS@tLT
zhu7C<QOBOVUUvA-)_tY?AM5lV3Pha#Dm}~T$cky}jbg8Kixgk~b*=UHuItxt-r4%<
z;sfur%QyQgqSh%F?%i)*zBYeuu3mN9-t4Q3j|b}3*Zt5vpL#FuVMg5UV70ZWo#hSf
zw-~OK&*A;z6eq@3J;UZpTlv(x!L^+6RqHMGK00<Wj(64L*Sd3UetLSFFWVG(CrjUZ
z=b2Nxj&quCJLI_FT19g9t&5?1Y7EyK{PgYClkeNPk5_-I&k64hZL?z*d;crE^S)YV
zuVdZR#it5VZ|`#FXGmE#<8aE#dFzv9w(q(S<(2;OiP*ZL=vv8|w3}&f%fG+h<!AFK
zbluKbqIWV^oxL&p<|h$-;m*A?V^4qB*kbCu^I`1qwfkpYUHE53m|D59wzta7IoAw#
ztW7L&S9<?V<nWGHAE&HQeSLKLyb8Z6JE!$UUw=>2ef(VO`-<dA)@&E^L*yRsI<9?h
z@f)v4th=wxf3msq?86H8^)3C2<)UvUt2!^gbN=L_cZ+`QmiwdoYUc(0opXP0t^F4A
zE_!<Q?f*BYO)uW#Ykt~3PddJ=?RJ^$jvJ4iWuKJP{o*{{{;7Wx|GMWD-+mNalzkuZ
z{qnOP0o!yxxvctrN>2V%p1;+msx@yuK3sSB!EY;J^W*LA8>i^bz4(5uddcNdpB3L7
zZm;n3`F`ij#zi_0QWE29b-qOeF01>>bp0|<rR2TW%h)ad?KSxNH7|2&<7d73&s~4t
z*&kng^TL$6g7=TtoPV^|I_v+xS>LvAdQ{zeal($3p?TGNUvW;$v%lY-XaDzOob|IQ
zpGv2^RGU+AG9Y|SW3kP-JEg4Z#r`()ri3=sIKB?m>kt37>9|NA^VyAy;#TW^a*_+*
z+2eOwA|`3uzv$j+w_jV`&)%_1*?!vV9mhX}tiR*k)_nH$CDjRXb4%GP7tib7v%Fx^
z^0OZIWxOp;YM(uAU~xS7Wzxml&%!NEtzOpg)9zRH`rORtvHpr@qxFvN*4c6Ip~iX(
z=BLbi&fU5dI8Q3}+S+-!Hy7^-<ewAwb<sJwr@g!OuL|B^eM-8tJ?eNy`IO~P-DS_*
z3B0#rp;GDY2YsK8U1}`V$#k#us=sW}SCv*S|MaEtl(|=`S{B>H*5w87J#4OC`Ah4>
ztNeL~Jm>ARGHSZo_^LP|{G96*-cbKrcIstIW5gDPX8%0JVm4>}jL9~!OIE(Iny_Y*
zS$t_*&sTf(8qxB~>(#Aghr;hnd|#AW;OnuezH)Dp^`+yVuJwJislB}R+&=f@S=X+=
zcX=Lc|IqY~>%A?zE^pHbpSj@a?YW1)PPZy4ckSA{ZQA0QxnHMem-2qCy6zb7T>a#6
zhgtRS6=AVb`?jr=yL8IjY?Zpv74!a>{~>mJH1{cf$~)<_u<l9F8t-YAzxsSjXGTBm
zy}fR>`%KR#yDyzT#e0gaOfP!X>pXAk0QqaydTg`S6g8Q|i|<)mp5hni9W~e5C;io_
z+`ajtKF|GM-51XCu86RD^Y->@t3!Gp4YPQ^7tgGG@`_>l!4-85Ww}A?_8hz9XKQjT
zFmH}}b<=IXy(Jea&wkCjEHi1UX!APfLknm5y)^pu=KZ^#$k>~&x8}~gGSleQ%IWbd
zy#7YM4_{n<am(V(>-WT$N-y>M5$Ja7Mem#|ji2;(hi*?WfBT|(``XfSi<hSy#FQRB
zIwRBiS}KtLpR>ezzax{YHXZi==Mx<%?^}8~o6lkUM!CN~9RgfM7kuoCpDJD!bLi96
z>+_b_uRnbI+KzkiZ@zlnDT*wavGe>#H`(aE?_%%xymxBcdOXcl|K_vB#*=3~yZTJy
z_p_a5`q_Pv>*EhI{$JR<IZy8J)5e;un*wIt`}QdzxchWX$#fQ@V9)<Y_XfNcyJ^?+
zDJazP6Vscc2G5?(P|lqz=+2v{_4F-AOxlr1e^%`bYoqJ$CfVNoV(E4N75AIn7q47D
zJ?*<)yTT1m^V0WEKmF~uvUu}*)6w?3uhy3yFOxKm{%w@<;?mn<)53VxHC2CqtSX;f
zwNzp9kD@(~LYx0|zp;OAz9VbLEz6W6v!~nsIW^(k_phttmCh#FPES1~wJY+Jx#aFJ
z`Ppm3!<+W3`Pla0Li6I4yA>`Z@Z3BY#yxAV;)QIVpO;>hTfXed4pUxh-IF!{WAyd7
z&%5q5pS6|9FwfL3G?@JE2CMolm#r~w(|=|?Hx8RNgHKZTwcht)#{iq{ziXN9>2Y`&
zZ}OEn%<9Pba)Rd%t^N8OUSB`Tg`7!?<o|G`Hu9ds=AG9TM#r_jRyq(P;Ipf8{;SH5
z+5bw{T>ic5cm{jdw?_{1HtFr#-Oc>>@>8peo5a~Su}w96!13*Uk@SB({zda9zOfQG
z`dhMk;esix2{xZEcudtkw^C-}oAtS!ifY?_DGAT}a{9?^{YINljWOR9-|8%pX*j$6
z^`5z{Q<zWuwaPF_SN!FA=J-<~({x2Ck&S1Lm)0*@zF_sORfht@t(9+f2WQWHlsv_E
zdex_634GUlZ><pY(*Hj#$LsSxpUV;Jrq^5uwvaTw`t@8=_0`!zH(O+0d*2PNvoKm=
z^|NC|w{Nm0_rgH2XUQQ;17-AWopw~YKanXson4)KQTXgmIgy!u*N)yci!0BO3fEWu
zE~HoT_VBDyc8%<(4??cF&h_bd|F({O>7{I5Ho55dX>7L_nV+}+D)S-M-}BFv6#g@O
zwm$LCEI(ZLHhwwH@JZ{Xr<3Fa;@{3@Hh%f<u~E_O&qhDJ?|wU4zR)G$gwVO?s+W>Y
z?ygy@SU6$YY4MHW)3Su8)vj9bDf?}t?6FPOd)IA!$~xnDfmBoz|F$F^-s^9wd1Gcj
zHm%nFe*Mk-qWuvD<_@mw_B;wcacy<<z3Y3$HkJ#tzvH_XzH?{u1oq{tzevemd#CVa
zjh|Iscey}Sy{>-Z-bAx<fn94SM;7#z3+#%#y5nNh{=1GDZ|3arUH^{H>0gQd=V$VN
zWnIoT7g+AR?Yq#<{VPv+bJgxhojhCKcI~IX_N1hAD%V(kUvn?H{(t7J%GK<tYx9@y
zT^Lg`v*4&$-ejq%CCu;F?>Te!>5~4Es_WWn#l<V-UVeW)tN$(U(-qYVs%GTrYnUEB
z_;t&hze{*leCpcgbSADa?R>CpN5S{WRcuz*gxSmOR|ba9pRHbOuW9_#F82GnZ*@WZ
z4qc!B_rH5P$0X|Ej)JqUOIA&dt(eYVZB=sgXV>?NOPQY{;||KV^F4Y0_3mBmS-(EX
zq{ME#D>!pkn8rWG^7|R@n7=OGvEEqv^d`5-g)jR~Tyc1;TJh$?_8<QbN0xi;ek2?@
zL$>~-i@dw7nThr9kFjYFPT#v-_TlI^ZGV$F`70QmFZ;6G4$rKUd_TA9_CfLP&t<bu
z-QtV$J#i`Z_TJ|IZ?2fv%5PVFb0zeWmF&~4+TUg0p7D`iY1I_=e{=DzNj+~*OP#r)
z8W8*V>8p$LEWb_vm@gkcef4#j-`$%Yuh<^>?nZq3q@S-itKaAgFXrL#elB&d{_N=;
zZ$I9Me|FuoKe+DD#{bdGj_-c_o3z)p`PbpXT5FBa!>ij=?_6j6Bz1a^c>mMr+PNOb
zzX#dAw5ncL%z5|Q@lU<|8WW%1Gphdf>E0=&v~~TbJEmT3Jaa5uX3tBR*j;Ddzb(3Q
z`dys9*z$%ft4h7{$lpTmldjC$7;`%Dw?Jy#{#@H{Gp9FCT6|Cb_0kI#r`$!}>zvtb
z{PyXF-N%x*g!}p)s^Tu2x@u}jbYVZs-Wk`I<W6_kHBt8`o8NwxTc(aqcb2}`{qqv@
z;t5+f?h<;QeKcjdLzcj;bsWx{SuRa@`ZVhAZPg1pEOFP<j=VWpa#=Cfif!_Ay_xrJ
zf7!LIDfjg9*^3{?+Gmy9srkoNz4+Q`Gv((F>vy-FSV#1q`@TYXf6vy-BK*lwpR2qK
zPo0sm$@(R<Zqw408$;Um?Q#F4<Y(G-;>6YJ>`2CS8>^SdMt<mhzhS`@(G4X>1>a{c
zt-1VrTE+g=_q%kW`y^KWzH~5Dce8zIzRG`#<J?BS`_8Doz91@*cW-6UMYYdgen+*P
zo~(U;Mf|yJfkv*r(`8@s;*!_?luK>8u{^eo>wk97Q<lO#`HfRvXNPR=u|H<^xLNMZ
ziN`noeC?h0_{5EylH0$YD4gzhCz+#FZ}pct>wArPQXf8QPTBdtL%jZ(n^&0Urq4Tb
z?mc7k4!1QDfA{g&>kF(mUu#{z?%U7obdM=~e+xt2UDnmN7A&dg5#O30d&t+c<J{c|
zXH{1o+t}(C@Ob4h`6H4p=NYD5-&1cD>~<@|&#3nQHHj@Rx$+JAy-qJRVe_3@d$1_R
zF!h;e<?HWz*I%!>+4d%BYSgOcvwSzJB30$zl)5UupI(x;=bwr5&J|PNo+xUGSar$z
zb?O}B<_#sA+K%7<uJk?Y#f>WxA8t8oOtsT4opZ&{VD&=h&s)}9eV!WTJnK{TZa0bD
zQkR<TZhBvL&j@p_;@Pxsy$ADVDJw6RgL~SKPS7j4D)n_^f=6Zf)IC{F%ce&q9rlgL
zc2|x~@xONP)N|$c$1Cn8n$DViPcHj8d*tkr?}mO~SMB|JXxVj{^}lRq*xfF9Vz;XQ
z*td_%F8|wc)j{O5&yue{XT0*9U)dDx*->y*U>5tnRmLT^*3I7Vttq2RMzZtT4wHb|
z>a%i5@ux#&4}F&Xz5KY}<x4ktA8=I2^KMB_lI=^GYM6KZVuKa`^quy3_xcKZHTT~s
z+`MKhpKbr&m3;McPbSZsR;V+*;NtVvmoeNE%*r#Z4&(-JpLu#+j859`<JaykJGRN#
zW}D%>XYZsG_N-HMJ+LKP<oYi;XQ_DEtkkSI$z0L8@n5U-cHG!nc~-;Vm&t}ID~ney
z;{FFr6MNYnoD1K1kH1_t{q<{Yo9i!BF8>KEtG)dE*PCLab+-j2-#Sl9ke&2}>93uH
ze)SfK`~?0prKT#uKLxFP`9r?FJjIdZf2K4c?%U&Ys|!v%_}|ya`c0*F>cN!VemrkH
zcOCnCCj6dU@g%!{m$WZDw);}^dS+mW;v)0sc3oNRY`gTXEcN;0sBGI6b!FA>$NZ|N
zF5Z4!I&;%)#kQ&dlMCzQCT=n2w>@;(cwvRhqH{Z!#`IlL7M=O>Nnl&<F3T)UNuzal
z()4AoZ1erx^5Zh2uY>yQ?|MFW<!+v^Ua*q;`GNGH)3bSeKb~=m^~kTZe6}F`)b{VM
zH=UgI@1pah$Y&p_I4=JRKDG4gUOUgr|1X`3e*FIN!m}Yo8)Dr<o?S>=wQW*(dB$SB
zyxQ!#SA`w>(xPoHZTcE7b#m7+me8g4rG9nypI+Y68~h^uaPW8aPZN&cHq-6SkQ9AX
z$X#{6?*HRyTWbnd`%1h%=Un2g>c7RBf1;r8vIn|WQdc@Ryu0poZC-oErqf?fo!Is&
z#Nc(;#rbTvd6(Q;!MAt5)nC3(0gvzg=@Zwg;xj&#F1Oyyt#<bELQZilspX57ZJco0
z)qKwDEjicEcHVS+#h~}O;za!Vr&at$N4=fD`sih8a3wFBH|d16>Ak13JX5QW>n^D&
zdwpxBV6L_5-eX4ng5mnr&%XcYN?!lvicK7!_Ui0wZ<c5GuHE)`0lVp}2L?Q|UKLDR
z`bQ>T`}yK0jkT@uJr_9aXD;6+ac)Vp&C7qk?!MNI@>CEqt9Tnb!$fsG&&%(&-D&S5
zcK6CxmA`Y|wr$m|@VoAr5zk+Sg;pu5SFMkAhz@%z#THeQQulL9CL6!4BhPNmSi=+Z
z3j3C)RY%TSd)?^G=E$2@bvE{fFY4I#e4=C8)$HlJ#4l}j-}|Y%dUII(<bAo-C*&8N
z{+PS-UX-_6?Vr;jpPeE<wf}nC*Ij*i)%1l@OGJJzyYu~ha%s)1eOJ!5?<rlsW07r1
z#oh1O*~ZhY4;pqgonN(c);sao=^nrT=$*e<ClR#Hk|pl?rDsbQu3NvO$mr_T>ASE0
z-JM+*=6v;c)y1o;mo0p~QPyR7yzh$kQmyvHI@5(eo0cz?Gu?eNh}mSB_A>W-o1L4V
zeYeP-`K!uhQKr+QH>;M3-+aIC@ta+m*Jo7+msv|qFUtwek^lIAZ@PMEYM)WpJG1gN
zb91ho*rGrG?*cjXv+E63-tcsKzIc<o<zJPJtNU{;4|N6k?^^!X%PvKo^JdJ6xWt!z
zlG%5Ti85!Yah^3W(l=y`?9`Bmzn;11-iP(k_Tqa^Pbz-dCwz9sdh?9mG5RWRXRJ?D
zKfbHgCe7-HpA?hebGxrA{9kXqWt_aP?N;t@>v?Ch+_d+y+pa5$6_9(l;9l9jd*bV=
zeT6@1SvFpu6><GkEC1{Ac#)mu&XRk-YFpjiz3}mVo{IH9@?Kmj-JS07IZx)5{=MZD
zZL7Uc{N0iF?9J|v*Cro&X~z}j{f+Nl@9teWY^iEH=EN?mJX^L*yd!(TVztwiyY*J{
z)|wXjt=G2Nz4EH<(mm4dTQo9)%x=y)S6;E%tt>ygX4wkk|19TA{{4)9UHo?|-?Q&x
zB?Zw}E7ZKZHl{qgT)-ju=5GB@{=Z%~)P8CnXAJf{@M4nX3z@3ri#D8;k2|VS9BVf#
zMex$&_gmZQcRdl>{H*KFE1wrZff>uMnr`yWP>d~Gx{8m};K|jU&wM8vB!_)|FZ8a^
zE68Bx(Oo$*vn;->=yaI-v|jJyg=}#pg{M^oBJae#S@yVHIa~KN;M8>O)$P3z7apbd
z9pAEbrhndQF#*LDpITlWT<Y7pNPYVHSyL`9^}DEhqek`j$C+VQ?o?kjpBeeZ`Q|d~
zj^~q4xX!;>yX4)aeLnLKo6T2qi`e&FPr^0KXp?$HdFAP_yJ0!uTndvnyQNFi7JBVG
zS-5!JftS1bOe_nRdGhxzSABMErbziZ!P#d1v(K2hZ#*^q)3ocpo3&5=O6IHF+%4@K
z=3^S%b5h!Tdh>PdtCLO|o1a%TN#y^z@wpURXu90wV}6U5UHKBfdi$30V&7E-=_hw@
zem*rUFM8I=ZOfm|da-%h_BFM|C!ZGFe3&zBe<ZWjs;!5faLqAIzrT8O-Wk=`Cs+Sk
zopa)6Oj&mImza#5Z%X<Fnqp5+pEdcMrT><g`t6U7%d1WKHvP511*_<;=FhjHE7f~K
zc7GC$e%=$8b*|WEv*ywD-%GzG*H~_ySylE(nD@kmu>5__hnV)>lHKhxZSyky+SsRR
zip!>)7TWDsb8Mc<(@i_0vXmGmw>$FMWldPGcu6<6S*m7Q_RF+QHZP=C^Q$gnoonjb
ze{bv5Pt&5E!~-||pY6P4Yn`Bx!a4UdL8~gI;~r0)a9Cy6h0;59?h|Gok=V7OUjMpv
z_U2`Ns!!iZ^{koI`$)C<z3A$kKii}>Z!$ao<oNv6J6^y2Y+83uD7Mn_a_u95$YpQ5
zKWLm&z45uiH#SKqR$|R}(OuptN{i3b$<Da3M}7C6imlZ(vqTm~_Aa(teQHVGjSVfj
zJ7-=C-;(m$a;4Aw)2mN^v0iChwtLcv8A}W%>!~jHvQwFUb6d7*PSM2|N1xsZQn{Pi
z_4Vq__Y0UOzpK#Fe=qpR>6GUCsw*px{c)HPSK;$Mm4Df<SHG+Ge#<y?z2Ru#?nK{R
z^S7sItzPzb0#DV&`PE$ZMN6N4N?7gqJgRzTYslY=t2Rb++yBX#%Cmj{D|3BcyFY9b
zS9jlf``<2X@9YO}`&K>urMT|oU!Lpt>+3XAwe25lS#f{kzle)_M0O|toH?cbd;K5%
z`hWTVUfsXDf66EE|5>Ykx9^{>_Al_?{Qs%?n(}R-cWp0kiMShmvTyl*p9@=NY&v%H
zPoef7{qO$WTmMJZ&3aj%P->IK_Bi?K{m_cn{HNbY884D<2|T>z%c7|I{V(=komXTZ
zmiF(%@jnj*{sol2*1f$fd|Q>L#on(`|E47MI@~Myd$a5Ri!M`%Z92^VUq~q)T_*Ta
zY%kwzwX;l{a$E0v^M=e?<HYf*V}F*!CauM$?E%FH=D42nE>=2~RQEl|XX9fZkwgD9
zf>M@Dy<Q!>eGQ+9(ZjW`zfRB!-+EI-bICJ-EWR0=y=ImiiBHLWzI02{>6scw{x00V
zpZ#`t#M~cdzBgVbMsLiXzoGF?Hvg$Nf26*uMOnYJP~$y%d-|tY)1PZ+?^w-VcvkU>
zj6wR;Ma%5B*0E@=y-}#fl~{k}yHs8IUH0Gh9~za8X}QGq&OWCX=b>HJ(`k1@`hK-q
z!)C8Q_m^tiXB3u-TAy=KeAEA$`D*DIE$e%qZsr=byin|`D>brRFZH9ge*TI_0$O}C
zHga6t(4AQ=n|Q(GXrJLl_Ugr46IEMoIXpY$FQ&U`*7dI*oO`FX9$sai5HR(@Eaw%L
z3Fow2w{y&X*SB{{SdOJ|>kj)>B6p|t9baNEroocB`;(si^~IJpPna**TnXh^XTGC~
z`PphC6TZM}v59ZYkM`*Yvj1LmV#3!yI?cDTweP!DmLAh`ntS3Y(}EKXU)uum57dOV
z{kt{Y?xMnCQR{s!vTwSzoSD7)J<YfLYJ2nP*O@G@u>7|>Uh#A9U6<H>MaJnYV{w?~
z?s-M~9;tuQECq+d_0Kb=RqAoB*t&T8-`E^YdsEXhizH{-`LkRDDK`p}oi%r@%lit&
zwKoEf{R)V`ay~hn`}J;~m7C1(c&Gij^mKL9%kaCqufJywlW{uA_*qnPmer$JxmlAF
zyJQm=@qKd@RmwkQclLNh+_Fqfx!;xR^!wS?zxtaI+LX<=@L7Z9YLT;ZcV)(j>Ms?I
zKIfwNu7Ca7&jRUF7wN6@tzU7$JM(CtaUjR<#a<IFtFAmg=XrDA((_+k_VC1fpL?pz
z^B^R#g`QfrJV&bM>C!Dp$7gD^{0&_CqH^av?&;UlWWFxnd*$q6meb$YYU-~Ni7DnV
zWj_<Sbj8WK%YugyhF@%c{CBH<@K2^?&S7Dj-1UM?u9k7~t`91JC9ByNa_tVaBz4KA
zFB156eEKo{BM~h*Rl7GF<qgy>t?9J7Azo^AQF%>Z{jt^i{6D>wtNtl+@AbwWqull1
zOTZpwkX+4ocIM`(52DnUh(@1^kbl#?D*0kg>+iVuzh5h|9WL&!c|UtzW!~-IQD-KD
z6V5R$7k+tjUXkxkQ5zTgd^vb;MbMY;ucuY6y?=Dq>S%}0vaj~{IPHx%v>NWK9Mxcd
zi+vj)A@+FErgf#Pq0<$loR>KkKh3?AJ2UEup5_K<cDopG&G-GkJyXKoSO~Xnu-DTx
zdY&t_F=XH4>1~3q{3pMfV|evr=H8_Tz)m@*<a$~A%+ck~mdt<zaG_`A`J-AP*A?G;
zs&Pe1UE6zNo#ck;=Ytzz@v+2yn(^_Ar$wMqx;LR?v)9D}9@7(5s`G=6&v?<iw~$k_
zT&`+&VA+PxtFBvKPi$Fp>*|yuZm<arJ)!OQw&fMu$QvE)GrHFPYtfwb3$KZmT&}F{
zOSfEh!_<F=!?W=3FZEldT<K4}zh{+bapY^Ct^3vga=m}o40VH7;lxu{WS2mb#K)}<
z<qO3$k4L;=`Dk)n1d`jMPg(fBlD%>=bl%;MLB{Ti)wR9ystX_)oh#7(wb{|lGQl~L
z!nHfhPeu3M3coSwdZ@3a+&0nO-#DdD>^;=<O|&fZ@IjIDUOtclN?Ru*KC#^Qyli>S
z+ACZAb~rry8hi7LdR$)>*S3@EvLjPkBd_Nh#Z13{WzBo8H5M&h%uiNpnRq45ezdYp
zv#e#K)fM5buN_`9t&+Ug@4NRH-xZPF&p5?T{PC8TN?PM|rFN(9N0vh((Z^im-}PRq
zUs2n7Rer-IgS!m3yJCO0@ILvs)lj@JO!MfHMK5Q-qc)4b>6>U+eURg}S&1u*j;^ac
z#8$L^!-Cq@t2W`cCCVQzyRp^(hQqu2RUa827vC@`zN>ch-{Z}Y(#`od|F-oTq+ECO
zCeF_2_Wj+$`!Fui@i$lW=B75?xw>U<h0P{Zx3a#~UZZyPqVqSnJJz0;DGJm4wRq`m
ziEZ)QAcb*F_CapT)l;_LN<6;d?<Qy>jgFQ-5xK<Y*XD}ZYHthRb;WzrtoX#M7q_(@
z-KV*At+3vVpV#A94@8u%`0Rc;j0IK{)uijRgUUaV>t=n4CB{el3<BAIKeG0YJQ2|<
z^XhSJ``YQckg|UIgi`sdV(}-l4>|31)A?U?!o<w8HJWpcWy>t)XF5S9a?fLB*86p7
zmd)vOx*;FhWwJ=R|D}~sT-n*8>X2<xnrrQqqL;$UbKCmWR+@WY<@vrZRf@;7T$&@U
z-jZwCk_1lNfo|Sc_8nR`tKo~RS?4xL0LNFa7EGVIX*Fx)<x`dL8cL4kt@fIKInP%~
z^4a8Qg9G&USHqQ0>#SeB%`dF#ne}V&mmAUi#(n3Hvp@>W?kUs%z1wt!CwVK>x$)BC
z0_jtOlKAf>{?F{zO<yGN{rL5J*+(LmX1w{b%0BurtXTZGRFTgxOz{`@Le<hf@k?E@
z$&2{E9s3@qe;{({n_0UbaqLcsh7<><BARc7-ze{#$lF}1UAk6SZ^F;-_g>E1_#)zq
z;2QTk4`wI1OTKol4YcClx^BVe^=sK~R$d6pnXMjU@L9jsy<;O+WZl%7Nr^eekYx1O
zyPEk(L~Djv=hqH*fn_%g)qW-9*PLF?V7YqA-|HLKyW2Dwz!JnXuM?3=_n3;$_!l*2
z`Xy+AYwojd!uk^t>Sv3}k341%e)B`9bc6oB$DU0+p(nhJ<75(VWG$VhAK3nT(Wwgx
zuZtdq?W&agdVN*alQX;gs(<!A)?yBqsX5B{DO9xk-;+IjRdH_GklZ$Xv)2pV&q4m1
zvMT<+w!OZx?&kNEJ9Qw%ezNGM%(^AYav3v{+-JUM-W!;ve`VjHtcbm8r#UvPg+}U6
zEy4JyfpuF$?=6N`!P){3_U@lnyUWRY*{{8_*WaCx$)D8Kyxt<=m{Q8@x|jWDjy1Cf
zzmX8G-C(}%Vd}i&KmV?~^Ze)Dta}Hx%FUO*ZFTBFVZT1Cpsvj1+iNRlI|I@z`lx%^
z?8%xSlg!^z>%RN0Oa|2pJ7l&>dF_kIezZ~Q%qxRUFV6qV*`6qURoZDU<EBvF*~{c^
zJ+^GqEGyY)c7^|bwM4^4F3UR4t+w-ep#J)(yWZ@HPEc9z-gwj1t&^dZoO|!*%U85F
z<<9aBS+yoD_2WuOv8|8q&$7(jxxXw3T8*BW6_Gms@S@w$VqPhAb@YtIAF6eqx-%~~
zihkh`A`zy#16rI`zAV1`cxQ(uBtw3kdFIz;&!=zs*((2T?Qov_?7Di>E8d0o8h)<g
zIlFb!yN@A9L?G>%Up6Jd+g|hUoyPxg?M<op(rdx)FW3BhwvHWKt%BMQzUqtZv)~1N
z;F2}sdpE7VHb>=k$fLD=wfoa{X|Y@b1;*!4$@lS(mq=>v>GEHh?7ijSycJ4eH{YJt
zdb758r<Bc?_ETcA4XOOUwb+BNuW-%cTlkDYvb)dOy}Pt~xy~|3>qkUZHMvb^&Z&mo
znde@uO}R43cFVs{8>6mtb4BEHd}TWm=9;l=UTEA0g+-##yIiE-bt)xalNZ+fX}R^d
zxbMTwS(~)~cGpfh9~I8z%CQn$`m70>7QadO{-d3}(Ci%A^-pM3&aTrdm-VcfeI|R;
zju6dFA{D-uc&{tXgSFtYJCF6Ln=gYFtk0h^)r21V=RM79*0zhMGoY=;Qx&I|Z0k+_
z`1`a_WWDREGm6JWC)>xr7h4CacGA{3eVHzFO?TeS8PF1|^-6H}R-bFP7j>q7U+VUv
zzu0s3o|tAah$CY*FM09)&hcXDU`YA!YKvWFoA22@p=xigN9Udh7df1sAFW;nZeGpV
z@We;u|BO@mKVtVEONmN+x^1S_&iC7=FY&o~T_tv!();h*_L(euGV2bc&HmbW;y>jH
zX-bLnYjiuglWNr_byZyQQF%96`=M*>(&-ad@&!I#-D0pe{<u+=*|F@cPN0Zsh@9WK
zMXAw5nDh6O?<ZC~I%2a_jC09Mj~nXutBo4I&h*d|@-Uvb!GB+&3Zvxw&L>KZ2ErV_
zA7`KR5O{4oF-`?y-|G*2o9u)=-E1<|gub8rn$mK_D${lD&y-^Aw{lNaT$j21RXlsW
zHmL<%?nch<3{eK#xFq7a;Gvlwyh02TiYNY8uV+c9wM%2?oHEnphH|`D1B=A`&Myj$
zhJqbci`SWNdueq-=Y8JIv%X(1CGQhkcfANw6dBtIpLAqORulN<9?O2}Q^4n|=Szz}
z)}1ub@qT8Mn>#BiqF!jzI%aqn$sL)Trc^lpitr@Y;<kSGPWBtATGLDGXL6?0%v^sz
zV<o%F25?6EJkx_;NW-{ugL{`q<$2T9<u~Iz^iSu#Tj6dSr1sbL?muQoLjB>R!p_+;
z)8U4E=!tB*ltf+G7(OoXpG?!T=3AxYM;*Sbuek%<RQw7u5FD7RBqF=ty`P?TQup}w
zU)<{6w)<;i&u#GL2Df9L)u;uvu$=NydNc9YL;vqLLj2sPy<MC6tb5v|4}aJ0zZ+y<
z15O=he$|{2f;e#Bw!h4C&b!PKI6u>)<?qM2-Wex;_^5Dl_JCZq-@Q&m{h6k(hr(Hx
zLv|~ZPVHE=e|CU>^|bF=!52c*zrOa2NrDv9uZ<^aKq53I>C5vY_kIW2GyRo4x^|Cy
z+V!eTN743x!UJ>8yDXaEFw?Wew#aj3-R`w#)PL_ST(P|Sm66r8+l3vl2u@L)XCmDB
z`-xC6Z~0T@pCx}+&)aqKPodB0*J8|2HT^%Gm{QdQznxHZHEXFl5NiDX&9BLiv-isO
zcqJS?7%rpm*mz=-ih&waVEz#sO}=lMu^t)oFE+ke&o}3*`Sj--<F-$G{J1D5@b2^5
z)q8ob!Xr%_8Ya_^b8N5^)^ujdR1^AkQZ=o9Z~Xd|QPIz0)9y~XyZ?#GmH0I`-WMA~
zO5k5UDoP)h%=EaU9`Aj+C1QT(7d3DSRY^-MJm9bC$Hbt_@-u#KL|tTc<SNluMT>pD
zc6_{Le19(o%r}*OP~R-AODXQX6Zho*tJeI9N|&GPlbxT+w+>W7J*iQfw4CLfi_)w9
z84r&hvRh`w`PSHK!r$vgEsEFDl^VO$&$>La>#U5E`4GHoGQ$B5$A6*{3UfMJ)EOHD
zoBr(o#;R~FU8&a#9Faexc9|ae<+CIRnp?g9F-OerWYGmX`$=`BBg1RsiQkS+OjGil
zf8>n`-w(}?-V6yX3jb%!KgMXkG?SB|N8ri-y)hb~OnwEL$+y-ut~u|rYMR5W&X(Fw
zYrk5i)T#v?V7cU@@@8`W+VhI9KO1uQEI*_2NN(qnDff?Gl{XG)+7vkD>E+cjInyp(
z|J7M|)U-XIxM9wD7o`~oW_q~%{kZi_NXO@y9<0I^psciSx)s|7JK>WFkXX6C=!f8I
z<B5D~;9}&;97TqQK1=dHGV};M`~P>3so$w!uNmOPCS-iw;=ytjJxD-IKL(20%tVMG
z-!GkDxR$PD=mQRyolL*)=BvlZoPH52<8CD!k4W265L;^Ao&*J>We+&CS9W?c9GdCz
z3|a)8j0XkVIaRQGYIF-(lWNs29f1VEjMK*$|CfbLzhJYN`DXq5&95xycZL`?8c*!_
zrTlDj;RgTC*qYxxd};r;=5uYd6FwOWcAn>3*M<VMpp7gHZXBQ1@BJ|;cI%rp>r1$<
z>93p?{rBOH>P?40L3Uuxc^4ySxX*o}+wgIw$8jMJ<Him4`=)3x71{}FMnclp^&nS;
zYtNJ8#QbM^9<ep5d1-!H;JNX{8L9<pLV@)>@xLnVPyF;zspgymDn;*e%>>2hsp*gy
z)t#@HQmb}pAH+lYsnHH|&b!>24i4g=rFYuTSBY$tuiB)&H~!A0>%Mp9miK|{$<21c
zE91dsyXV&p^1my5j_<bNj+}S;$~yV*%6=1tGRtYN4^9AgaIZa2W`ji8C*5wtM>U}2
z15WYlmmUIH#x>&rsPOnS^@~c!$C(}s!eBqHnjn=@J2O1~`d;6?As6%$Z+_1%QiKJI
zkc9uN&Lg#-_U34V(kiPkxD0(YIWqP2?$^AtgZ3=a%kDc|WcXET{ZWaP7C*X}K}G06
zND->F)JJ@i#mdhov+spVeqMKaW%B%czxQ$~!wmPD0S=j<qcV>-?pt!+yZrs}?AUcn
zm)>)mS|d1JETWJ@l>N-lnlqdbhwj@Z0xD^fpox2}3(thlGd*}7TN-!na9=fJ(w*G;
z>8EcyhrL;!J3s4uykOJmtqWCPc4a~A`n2|f$BAD)DjkrV8z1#f`CPh^tIvWnDu?8L
z-ty^;nBS>l2+ha(k_ok!TrAdFKvLxE&&PM>p7WU{F>|@sw62}gW|u|m%zU10IBCN7
znI}brD~#vvh<~-Fa_#~@SEt^psMQzKb`@3LeQgA;F%JDcqtg9x&rH8d`u9)kHCN1^
zS!37;x<u+}HD{W@d*jJQY9G?93isE%4iNinXFM~RDSw&p_tWO@3=EzdPqt7iNRuj@
zU!(oe@>y+K(Q%f0KI-qL-&ZX5yYP92-LcPUR-XH7wA~G#)uwH_1d+^tyV&r(@#I-h
zV^!<Lp48Z>FX!x;>2yc=zV~I8i1{;FOdHJtIe$ON4(3a#O*6W}atn0Zoc>a&rZwk%
zCP|&2wNhp8r?sbf&-^~~WEJNg(8XS+@@I6iPdyD)K4Ny$ZBL4Sq*%`Jxlg}G34xQK
zz`b;}Sl<U{OCHs&>}+@+ntC$iPu=OB-BTCe+^cr<s*jN=zX7<SO{`5by2b*&+-_Cc
z?C+am0{hI?JotS6`sp@pzJ-q*BIeIrV%lgL+*$q9TC>sc^=Hdm-v?(*9@(vwew{jZ
z`StAj>n;b5aw~IB-!y&YcJJ>C+1Ei5Uz*VMic2oa?<THaI=^Mjd7o#q9A>XPviH;0
zg0d68&#0`2_#)n0khyaHOdc~x6rAHJN_AU#TuSx3`^=(mMRAMG=Wdsa0Cf*Q(Y6ty
zr#$7xZ_~Z6-=*GvcXBUJ?E2i>{gr=O4jlqzJ&?aA_dY*cGO2Fo{`tGK^n`tH2fT_f
z(@(X?zR$l3Q~^D#wR^sq6MP+-DI=eQg|TEV6X?La_A}OuKMfgu8$buUfG!g9**BvB
zbhgR;-!jPQB6mmAp7TD}B+k!%sq**J(kGb{zRvV?6^<~Tx+DDE^3T&I{`_@NBXZ&j
z^JVJ}Uwi$0kzMDm1kku2$9v<+{m?|9dtKy7t=;n_5NF)?He-#LKhwt?k_e&&AI$hV
z)3a1K17zgBZGLTg&ik;*LhRdn#I@u5OwTirRK8F6cu(Z~nP+SuF?7!A!}7nWxo3Wz
zS@H~O^y#OdB>u(*628^<`5x7#34MX2%=M~rjeE}f+><{(`(?`CPkU=@K}M^KfHTlO
zW2uB|>1y)>63&J^iu)NQBy{5UnI$4z;KUctUDvwjyieG|1G8Tq`TJ?>j3SVv7)0{^
z=?Bdf^UuF*waH#K>C36>m&z5drK=qbSOB`c>Sxd=$rC@%JQ3$wGSlsjdi?JKh4;pj
zlQh72?hha5v_12lpK*n_HhN{Bz-!~ldroXl)AC$jqq|(?No`t@5-T{*>FX9Lyf&UJ
zqPYQdSzydgnRom<zx@naHzn)dgh(^7qi(fNiyA<Mj>4YvK5<JR4&CeG1@dAq)Qe_e
z&iB&Qtb@S$<mau=pwPIa3JK_~@7X`u8COn+WdG|$yB+SOt9^wkoi<nEvz@W!T(G3~
z)!;?J%eKbc-}74V_>O7*aocO3E_r;Z8Pq6psF;7gaxPQ$GNJEYXP2-FobyRr&Hy?s
z=)QMiOT_${SN!Ig1$$OK&0cT$q&CgS4dS;~aY9Q=qod^<Wwo<q-tO}Iy`-~uRV62A
z(4ldIow4R(uz{zx2N{DxHa`R$MJuyXJSJX$vSNDGWu?ovY_8r{+A(L}>AwZwW-Tc3
z*=T_SIi|Ds-;w?Qx+3S#{1XUCH`OzH1>S$QY@d>THe^!VO0&<e`ReuZSby$Gajm}l
zHQsT5`4=8=&n>MsZIcJ<Ef>`{lh;3;+qmYukJL(VwhoGYR{ttq_UM}PK5{D$fG%td
zsy)+w=1Fwv-jl&ouKxO=H@R-B+UlQ=J{cbFa$aE}a4lVJD$L!>UT*cN?hU^1dRC-Z
z^ZQwGUW;e+|J@<S2e$HIZQ3SJXt2!OzeZfYw$)2Y(3Vl(QKF7ZRg^uxP+`q^A16(4
z85wj{=C?-tmrWw+`*luE`@Y8Wqlw=`zm%er;E{cWJ?Eb<2?Be0X&-a_t@|x)J?DMA
zRyu$O`PnlhrQ@D1S;w>cRee-^G4I)R2mgQHG#OO)g95#BDO2t;q3@@zZ@LId30p%T
zi6+cN0aVs|gKma=Ieon<J1Adtt%M}EwKIgz{63R16Ou3Dt?xANIq$OxD!Ftu_laLM
ze&(VU#=SfI_f6xK-Dqdbxtu9?k<ho3*ZqzvzBZm*c<M4Z>A!slvhyX>&P%;IDYa>z
z{8+)o_Ik<Lpe$4ciQSsFJ~E%|jBhRnC(YB-`Ro;6Pkw%5)6+gvP#GRQ^GLy^HOA9x
zvi^Uqdb?@IUrx_$pvu$R@X&;>Gret}f{U?zlLbXL+ZA^%*8$~VufIiVTbIe5UcE2w
zX`1u52TzmdFB95dsJ<K)s4<T;kAusBxr;N;{5rFAZV|Y2y)Sv);I;Aeic=dwIke_%
z41eYPokxQEz?E&+PU+Vxi)~}$pTyq}U#DEZ+F6TlAE>(7xg{9l)a=B73EyXWTc=hU
z&s`F~@7p%Vd+B;_r#uGLX+Og>*q_xto8)f^E(@&xZJTpqPgdQn>(x@n!z0t;G_|I$
zWqq&+RwMkLk_;-uc7|Pf)e?Gs={&3Zp4&@%H&59u?JHZhenldvcm_GO=F~+st;G2;
zlUMk?o!ui+bvv=yBL4ASt{v%tkV@#+8P)kkTV{IQ(Y~&EyY}>wm$Ren4o<ge%e;8y
z#CJ*Q73M8f%nxgx3He8!^HF{|`S*f^*z4sdl{fh8)@l1TX>yY6_1ONpchWB4PV=Fk
zXH@4F%>fmIp{KuonqqwRaUVz6soz`o+{rTq_m*2g{(lN7j<>Eow&y%Nq^F+gnDBX~
zx6M;%;*l2oWM{l{xeTbFIW>Jzhv0Kiz)w<>D(sJW&9L|CoO`L6-%dVVz@IjGuQ%_x
zUDp}G1A;AIXL?&d1=lm{Y;Tw51U~z2?LRxHZtr>@{q1u(uFE)`ZTw(YoVi>E+z2XF
z%?dkSym|hMg@@8V?O*2t4mghY#?#AAeFU|cu3XmeUAS<fx0d6tx>c6^Pve(;Q@r|E
z1J>?ZI=2X1dzcD8fBoyB^4~wlt4cObozRxKQ#dHh7Cdtc^05sh##fm?I#m>OZ_!7;
z)>X+LRgxcS?a7Z8gqI1Cmf+OCDs8{b%BQlc>_ZI2@1NQ$y8ANEL{PLRTuaw;oVFNL
z<?Q5JmaVotDR%0@9~J$lW0uW*d1_Dn{Mtz%WdhgI^`1^!3{D+Jy{B!~mw#UW%k1sx
z=vY~+5b@>%`|iFr1$T}Q{XVnw4#fG_Lskht+7sr!e3@g_Nxo(Gcw_D@KOe#cE$(+t
ziH4-`D!cYKzweuVuP!Zn|8+_2RQm~>see?O+(9D<3Tw{CoYFlFZq{wRzoTIfhzrg`
zLE>!nujVTp1}iuYDo8(V)%go**zSbp&26_G!IJK?SG3fAnwubS=I5EEw~N5l>2?2p
zpRcBtuU@{1<Dc0r75V7x>N7h3<@3`gshnJ=ebX|mF#N;ODD%y(iT^Jvab7xnFrb!i
zB3FthZ{4$_-g2Sa+m5;2l)tniXqlJd9jWfyzn-L7b?VnDU)?utzwNI&vF$gO?Rj?k
z@&}o!f~7uFopzXt?RW~hz1#cV`{o^{Vmq;Lt_eAxS-bIs?s3qS-<!hf67zap^DOh0
z3ICoXZqx$O^!4D`5~KKAebG1CjxlYDk?!Hl_PAZbz0*`|0>r#9b?)M99fi|{#&d5>
zU!!OH>{^7ww8x-ZzB8j06}KN#+9YFsxwH1<>0GBfQYTORT9T&Ksh!#VT5#(zr%f_u
zft<E4@2;`8ZR8iu){#4{Xxw^Z;+EqkPp(DSKuoC=mwE&@vQp5!BRZKea{e73^^dB$
z-vx@Yb(A1huRES}%RIWFbjttzH!pnLeAm0OX-fL%3(VT7t3(d1-PoZ6@gviDfvv}w
zHpzhQ%l5oIiwWV8s88Ha;1*dfeljB}`D4WVD?X})s=4ke2nUJXXt{MEV#?HP(2et%
zyHgdnA3L-L;>X=)0^8k$AcmjZmCv~O*rSaypbO_;2L1bUBF$&*#)38eIm;&Pn6&W&
zuW`1H)M-QG-W!v*crc$>yRiV`!lGrehFgy<+6Z>x$(z1yD^10EpRSnc^~USg55Xtb
zA}k=`lKFV*glOfLP#5a9@dak<$ed0To_b;OmVLZSK<W;sX>HVwlr}Wn4sr)57Cftb
zoU?jclP$BB3GJRVU9e+^saQWG9;5UGK;FNmZhqOb#?$%&Ls7Ph>ghn^sW+zX>&t(=
zJZ;-_&z;lceor#|wCh%_&SU3RBT=rjYY{Hfn$@HhD#v!c&B<Im`Kjv7^6giC*S$CF
z&DY%kN~u?*xK9+_@KG&$`hDG{*Ag?H@~^MWtrk9hLT-(4xOz)u^23O}nVCoCeVP3%
z+38KF`{}43@jnm${A_tEUn)W~c&R{MZ)<XGk@4Ik(>FH%T+g3#?2Z)o@gmU8@vL{O
z9}C<P6Sv~Karffh&+DeF4C2^+?9fJVWJp@q{r`3()@SX;3LW>eAxYu8W}SC_*1s>|
zf2Q~p+p6h?Jw1@5F|h_B|10cFS;U#dpKG5=ZnaH+d4KD_n^(^-d7A~wOie36;k2RC
z>&3~6`hQ;oug-`{ei$+ThL39D)9=^*_h&C#`cm)c->=VqBtYGKG#Q+YE*(3PC@s~!
zsVLV#ZOy`JOSQYVw%S%bIl5r}U!A*NAsWF81+scsBO&qeO`z!xNG-^3s@d$^&%)$x
ze*O8qZ}!V0`)>5Dv|3ml`;_(Cy<6v_^k&}`>$quB_EYdzpJt3^@X`q!dc3WXYhVAr
z`_y~4Yj5p8>o@Q1|Igi%VRU5eLJRHl;QW2*li~KZN1(LoS>t*8DAP_;k&LH1XZpSI
zzGWwNV(mf?h`LK+kDc>)U85>N<$%$>Wwp}#?i#%gntx=i@zth~Y4f*=K#L%*t)IY7
zUH!acr>RI5#HeEhtZCN*7EDb}lj>BrZ7IE(duYerxOH~lLff_LE^Vmd&|U+Mr#7aw
zHlQRadA_M?qD-#&kDJO@b&Rs^dp-SS756@!aTP?B5=7O;@|VvqZTSB0>)O8y&q=IX
z|MB+(ubEn{1=$LhPX!xKy&-yg$Nru(UH_;3&syYgUjEhMssCTwb3eNrP%)KVrE0;i
zUzx4Z7Xq$K$!`)&WL=wkqpfYx!WikE&WsJ)0;Q$83O|A3=in{3+zgGPliLr@*ua)8
zy>;Qj4wd_C$%mxY<X&lOW9qE|m409iC*(ir8Yrz<u(c=ZLO{rb>?VQ4x@?K93l;{*
z-)B)i#0Ak%0nw0uZeQUlUJJeCzICj3rkH(`vb=SF@)A(qxFf~&;3FsqQ{SwMnErJ|
zwCF2F*Z!rSuGl?uXE}2twowaQcr9d*14m$${O9xi+Q;umbv-Bq7l4}UWP-948jl-;
zN|9wtzwP6@&A4gKU!9%1EQ_CL{X73(Z$^M~qP5&ajiz7HKZ@=@FOrG=y+_OT+tqE2
zSAQp1IW&cw3ejwdat^eXo4xYLx)NK{9qVdtY!SJ-H9ss<Uf=%r>Rob>1kLOEwgQwM
zE`6EOzvb`F)9#_a;|h;YiG9AwX8qRs?~k2ka<v9zYh)b<#m3ZSY3uo~|28;(`uVNm
z`M)o#MXdY2qxGcXRHIO?ht~qG^gRaET;DjP4eylIJS?7i{pe}G8LxLQId;ZwB_!Gp
zl|d56{Asm!6Qy5fdzP+#yHMwS|Mk+ItF}u5Y8DD)@wUFL02gCr&zPQEbGX&F98}!d
z>fB0e$h{o?b47megxsa`brsehH~F?91LTW@EZ(DUD{>YIRZW`C)Vjh{WZUD7;Bs{-
z+fEQ?$4tLR-q);r&a7RyK^7e1pX%g~z&V%R$)A98KCLrH$lNNo$#Hf*Xt9s?Sc~bC
z*8K{3ysd9*ij3!;5q~{pOWx&6{xv(lzs+jqd3)=|yX@L^6Ms2CV-{-9rf1&_x3@t(
zy;1PbuZtU}-Cj4>Vo%JrnY(LOZ$HfZDtI&hv&WD$uaR@S*m&*@aqg;p>x&fcmA&~<
z+WT<9s^#CZr$4r<(w_m2)M)2K>v`ak<7=Ay^X+qA8TAQfmH)XpJ><)2Ua?al8ZA*E
z6|+_zS$E^|gW|q*dzSsq`eRo8y>G+D<&2QBl<iWPjA^iEjOXp%mKCNVJ05TB^m^eL
z^@n@OwSYT)$3fv;`O&5$+PM&7Rf=xc!8=l2x4~&zRohXdI9ns{cp<3l-cq4`V(r2m
z&|qas5ZK<vR1S{glPBGeT>)vj;-gxoswu`Cl&z5iNk&^v2q83G`ZmEikN4<Xi@ar%
ze@xo8QM@Qy;}9euUbjVE-}HX<E${X<a+5C2WBvPKy5V^jXb^MAgQK!YE!l8un^KJp
zsOCR;i?3m)>4Zm*SAyeToqy4_fR6s-YFZ1`J>wToh;&x8<C~SKGH=GL&lR^A=e+fc
z^wxh9c}r+=b<Nb?+icL_6SSKL3cf9WlQ!`3vcCIaCLw%n!d7RN;%to~u*0UWd1-ZK
z?ZOifUk4SnC~gM%+W2yZ?Mv-Dr_YvOubHtlw{vITVYAP+muHE`fa?R^CvPp%mQAdf
zwB@F>At)@Ig?led{I@wKdgmkEr@1Vzwypj4{QR<0|8^e$r3Y}XOE#W*W9k~#jv4T1
z|MLF+H2IS4#k|??;$ppSeTw}ib}oEh)$#B8IwJ9)$PcszyS^u3_2QaWx^HKfzklAa
zZO^{iz1y#E(_KG5K|2Io`@%E+@{@g^O84dDIwWb|yKm~dAuix{w&veMumAo#()x%S
zlKBITrydav{w$dnxy$=};g+`sr9a-(x@<jp5R&s@nKaUSwc=J#atAg4HvTlMj?7tG
zyzPzr`V(JYEYI(04k!dQU{{!mY=>mf*Iy5rnTYg0zMbF`(OhXMr}i~Uf_>8ViT$N_
zmL#te3<nir(askw`ewgW*{5RLqOi5CsSq5|FNLG}ee1TcZhw1v(Yn$#`dgRZk+~lG
z>t(VNcNk0;IG6l6by~kmH*VFr|9h@&oL-ir-~ejhEW8$A0x4Ja?v9Xud;I3MOSgDl
z+|*mXarWo>zvYTOQYQ|6Z1E8+TQIr)&FMAWOK;D*Srt21xBl&p`}QoLOk}XNEvdi;
z<j<GpCvS>h-*WwW(ogf;!-r$H&z=(g>GvCXP{{-;%^p~QT82qgx1_h{P0sYcJ8#y_
zs!dPpH*QsVwT>O?#e-H5$8s?i<<|Ef{0OSG7OLNuefljo-gN!qFY4dEW?2@dSBhWX
z{aEI{{R+QjR*Gk&x(<9i<D>j-$^9+A{T+U;t{2?0RO)%nEe??TIJUPb6@c^M&&kKt
zQ$plkfByJ=-o(s9a(}va%$MimJ$iS|(Py`2R{op)sP4x7`ajmoo=g4yB$fI+i?ikY
zXRGhKo-Tb2joyGez0W}n|7*N&oNKcu7l<8x|2b#(hF5Nni+E#{O=dyMr9yLXJS};<
zx8aUd*KTlOarBE#y8Yr+ymmK>RIOJ(&}q$%y_!%|u<(bI;uR^b-5<eaL-t*sXV(I5
zKrH!tGNx)z`p<%jXA94L@`-zwuFLvZk{8mXTev|QoagJ>AKTc+um1Y|19!RyC`s)w
z6{&a(Zt+~d9N$*U`)ku)uj^Nz{d;}?+SW79{IHfuz6_`lESczY{@b2kIk$s;>HhwE
z!{zDC=eO?t+zxKl-jU+k19te**Osp*|H+6Ck=Jbf8hvg45hrM|a{}UoUss~NpWnZw
zTYSrQ<Mz6n8>hM7EZRH$;zOs8txhXUCp15vIn(V;=hu>38xC#S`exHoKap#5ewbC<
zU=E%BFGm@aZI)dN*wS|#R5aC3jBWX0B69jM<4n0V^?d@La_jq_7UmkLElPxPzzKp7
zhyNK^*+Tn$ZkL>Dwf@dI6q`3;zW&^Qf0{t{J-p^{s~=pK)>f=2dH((rN0#lQj|y4Y
z`tivTbv*nBy=H2$24`zHoJbU&dPDeh@(%Cz@2MaEJbk=z57+eLpN`$mUh>R!mKeA&
zOXFn~s?1m>Se<lJ-rqiAt*__%>sz<g@6hAgu(;!xktJAB7VlBPN>Ejvly&O3W98iZ
z-L2ohX1199+`xZ*w+yIxE070L0&0IGd8*B?Hu$znF>B@HoBy}6@-N*VYjs<#U8GB2
z#A)q910{b@TVLnH^6#&|e_N5YyyT60^u)5C{!&32`vN$&wms?q*Jv+4U*6`jSax2G
zt!dMvJGtD;-x}E-YhZx1KG=-9z=ek=x3Sw5sV<FAH(XS|xJ>ekIdnyeOXCx$Gqbeb
z=KoL0Co`g*1zo{evc%R_{o1#*FR7<^E2U@J!_$&d7dUfy{;pNn-lo(ANm#}Aw%J_x
zW_c^&S<>%0V!t2N|F?ssDot>c`ssC<fAi;5_OCP*33>vlqXN{QTyyZ62#%QKU7KSx
z^j|OCx$-wt`1Ojo@4q9#Dc@)9!U;<Kz9CNjzxLG03hdV7X8&n3<BjC(x%WT+0^0!b
z4ydBdF1LDiEx=_WxG9#oS#AQ{D-kJtS<cRdPT<x|#O)QlysrNtb(`4&hMlG&>QBHq
zC@hQV*|mT<6Tn$M^1S1jwF@m4`sXd1{BzRRNr&!8bqRyLqWYSdvp8GB?*ypHGJTDn
zAVO2_U&$P2=ZE%47JY?SbUE<&6)BHbg=c(}KdNX~$pmF<tT>(w>f5f-kMUW%aE4qz
zD4I99DHv>TOR53~@yRH?rk$oDmm&H48VAd>YXLs}VDG(M$aVWdz>>avP?!ChS(dXi
zBc!diWbX_`cme47n!_oN*YyFoojd7TVEY|V$q8zntLpmk7iDWOL7OrbwkOsu<d6Xu
zF_#{lRoLF<1Svv2yUd%fNO2tm7gtM<&(4k3toAwZT<+l~y}j}2yc1s*6+lX%2~Cie
zM|?xwTCrt;lJ>`c^*z=Q&!~<5_VxLSfMrex&wz}%;G$fjqW^+5Fk6G=c%t#tBU87i
z7@SzUFagq_xO8cm!uGbNQn2@5o-FphAADaf*3|vG-LJ*3_lm7mKM%^Qtp(W{5s>D{
z7Ix_;*8+C*fuk%_bKQh!XGTcNZAtG`hdkbtHx^mTChbVd;(5Fwv~m5u-7D7??^^%*
zmUnpm3UC>}>{`GPNLlo^`?>9cu<3@kX1eOKZ&}9_73FgE$D>A20kZH~zyV0(Q2EQ1
zT}ipyx7se4w(UaZe0f%A$Fb`Mxa>R{XFFg1>eI>3axOBj|JGi&BXa)@STVg35{*&2
z*q>YrI013-|Np;b4HmXBmC7gvyU1+l5x>&Lb}7GxyN5&D;QY4h#rC-yLw}~;X4Jl(
zDjoMLw7T!IAt=0?R+@^`ft#+Ku@~ku^PawOqizfLuKJ2E>>A(<zqRdAiH%usXY9t(
z_3xh^omymZ?@L5^jpXktPe^o$EQh$}{qB05ve^1_dm>+*6R@s+dbhkC<l%?c0v15K
zG)=d&LSAj!dZFXe&DZ?Dex0emR(x}Nxr?+Oq|H@m1!;4A7O&ek{hXa>@=2xN+v0Ek
z@?!)S^<aY_k#kaiLbS6XG;)?qbx7k)c~g<JOu%~5_tOknysmE`{g`Xn?N_9@ZWMw>
zB2?8y*bTEaHbA<AmN6%`|Fumx4(iOd?Rm{qn5~fjP6gthg|;qS*dPP$+3uPye>ru%
z+>dK)iRb1ocHA``TuR(I)!bnB{~mZquU<&t%d-ms4(Gz`9(`Y0wyj1$;P>zI^~-ew
zT5~fr&Kv`qzlO2;%-V$p(#Ox12*npY3o_W+b|?p2hMqi;di;zO*CucaL?!n$<CALv
z6CgEsX7yoE^38!H--BAGZ}HV_pZ#B>zUEir>VG~;&=NZdV$jR|eY{?`4|?7Xjf-0v
zeIbt7%(#5-<7eQO;to@h<j0WS+Y#nx*8+MV7CbKgxxQcf$Q`M!P2lvF+H>vySHaX7
z(ae!%;CT3QRY~_(X6)}nH$Uy%A;T7PZ{O>^d(Ja8ls<aJBAl&p=a{l^>xKR;wTTm=
zoC__%UF0RX5}<Mc(g9y;f9=f8vvT{)j_$Z6>7C6R8S9oL0!~uf+mdR*{_?Eqbjspo
zWd+x7leRq-Ey~uYIRP#Uw>$|tv3B7PMQ}Nyvpi+a+sDmeuL_?|Pb{<C5wHx@^6`-W
z1Zue*5lVTLkn&pUy5qm|TR*KYT>qVq5oC?Q*0x9OGG>9Dwl6>0J!OiVw)|uM*AtVj
zUoGgD+hBk0@DWfOHt|}(j|uH*QXAEmJ=3~gSLyQRtyk4rf9}v#;g{^h_LiD%fY{X~
z_X*U>I;yv2pT_lPX}>;oT>Ggn`#k&h`Rfr}-q2Rf2Z(EP_<rs2;@|mU%f=@~`T9>o
zFIk=betw~t8GA3Z0S5KeFRO`L<#TUaoi3NZn4AB%%I=V1l?Al>ew5!5RM<?~Hc`GP
zTcQ30c;H~mJE=w20{%<@w|6EL?T|~m7Vrh)`dZ!lzirl-*<}Ab{I+NMZvDHG!TzxF
zMD7!)m|psNqhV@veaxSA)e~+XKV!N~^;mB+)Il#G4*zvEt&uM`|H1F3th=W_$!t;O
zdtB5E&BI?NfGdm4otGv=J3n*=SL<Kgqbt4cUa!32`TG2>DYF+I6~3>_Sp4(m2bj4~
zkM5dhr=9ikN$$yqSHpk3FZHRezE_n1DLf|FLu&B20?7q%uVqgBIU&mVp))v5MH~QC
zxQ>qNc#pZ5Ea~lb&f{(6uLQMrK51*5-1^tH<^(vG#XEYgd;8we5nNw>`Fp*-Cd+u)
zwE&+9;6{O`W!;1*XGKSF%8t0emF4W*Xg5FCKyBGU@VHhDxF~>(Yb}7}{!2xw3ftQb
zLHgl8MMa+6`X{&VF{qbyc>RI}=eJ#dpJ)lT?8(!M3VFOso`S1~Nv5m$R+@@T0~e{D
z=VEx%t_1}2fm2wdv+;~*XGcqL*gavDSIpyOeF~{h#cEh~nu_cLXVcT`7bsl+_Wgq_
zxD2XeW!<@LKl@Wi)i3^|WrwNA6i9&^G)Z>JwE!PT7p!tW-y;wQTtL3{YR}EkxO8mm
z!5JNGOSD0Q1{aQjlh7P~AD^`g9i+hx!B3AC3v6#w$_3}elczk7-I4Ox3a*}2lW&@-
zTnkvx>#oMNP<|WVh8s0&Z|Cm)@wGyBY4%m|q+fPMpezPzGUmvb1$)LA+8(dXe`@_Y
z!@T)xDStJy%-7!iYmylSz^b;lJ%W^DCx6!pAUIL3-8)T1(!riNZQuF1uxj7&o8a)c
zv`cvdFK_F4u%{E^{(aqeZAKLHP2;|qnJV*^?A<50wQW&4q~G}Wh`qg`WN@}d#W6@X
zf2zogXy=2*;6U!tG<qGq#d*?gbN`nbTTK(biUznZxZhj`DaWO_=7CGTrQb!RJx}v*
zO^xer&ELk__H<gcd)Gnem|YJf+%BqaWSCm@{r&k4u2uCB@85>r<61voj}tZyn+I;X
z8rsfRw|>7(^7mCYzwMvGBID0*{$A)21Q{tvxdR!Hn-bVG!&Ic;@xo5G7amdbB$iwY
z*wYIhE!t}z!0t4C>DlM==eI9@@4w&jSZf<JgH}NMOYV>7&tKBB6QmzpqR07gKDrig
z08*mYGGxZ*)GZ0Rr~Gx*KbFrG63{LzQyw^iUsl<b_3u5^ekE@Gl5eZ_ye|1uZSlr?
z=AW)_g<kvE@4)I$g*;vrs8c`gW{Bf;y<L&8h=13_Yp+|bNO5fkSEf(D|G9fr@wWQy
z)g}AC{jJnDZZ3WFs>L8%LkCj5?zzua2;zWC^19PCENy+2bIo2GA5y*tn|>2H0FHO>
z>&5rd@A~CVSzQ`=EAjjL9d{S9L&qK%ZNPE(XO`!#ZF1UIwtc%PclxO=J7jpN^2~+f
z_p8C(qL0qkBlK_m`ukok{B6dx`^oEHANJ(~r8|$D32jQX-~Rr8HE%-E-Cr{lzkQ$o
zzwhP7$hEt3&2Jq4#VNh-<w?6(KAkBmL7g9_T5z50dCQJ%rK!k^$17%fJ@UH7VE^n|
zz>0owwu<~*Gb7r0p&i&=J?dZQ%NO$QG!=OT@kvw;-;-+rYamK%d*>hhzAs1dPMn?E
z`>nO+_kR~}`FriXYaKM{b$x{-z1N!m{c58mo|eXi@BH|-qc2lf5;_94(5`RRN|kjg
zOH&=PcwK)%63;eEv7&5^E8wQe^exrwMcE2BA)|roo^1+@ydApp&C{J5xAkwi9ajDJ
z@ef8&+DpjdW&I6l5Pg+!I3vaN_2UK5fXC{{T$ju5-aV~2_sM_#HQm?CC-PcCUB~qm
zGK8L+t%LAV<$nH0aR2>Rx_09APr27%uXn4+Hnr|F6?qHcsm>Ca@%rZcw>gIyp6=dT
zW4-<T>*V(<)703-!2_$zC++6V%setL!X-HRQNhi(_5X67tX!OVzIcjuh703FXb1Y%
zac~E^`<!H@#n<B&cJ6j@Pyg+Et?u_;5IngNkgaj+I4H-9UjDo@;%US&O@-Vi%l`Pk
z`zvD)j(v{pZHpkS3`5)S%G=Y=Ke^Uwcjwg9rz<Y6Sa0~$4O(YsKn6hHJkz|kjXCu8
ziRZ^}E&Trf?$Za*{C^7^yrM6kzn)U=`BHWJ#xF(YQ=W%L->&$6IDK2)#)oiq;Nd;#
z^xfCC>UL}onDbX-#<slFGp@RiE%c$i^pxL_SQOgQ+hHp5=JCW%rx)%~+gO%>f)!i@
zc*a{zhytZB(9r3ZrLFaK50nt;PvJ_&nbK`KdoNA4j5}{ARt*X(PzUA;r0X@Uf${c*
z0ET{WM^5>}t4-0HYBl;ar+(X3y{>xa`R&tT4Fbrt%F=l0_ncRM-H>;mv~~T2vqGWA
zSMk6c`T^ol@%yYROhpbt>N4@-Z`?=in4`;UHaD+6KJBF<8#tqaoC~g~m-L1><?*)u
zf(${MHGpa~5pZw#^o7kj>(irqHp!~wWj~8{`uW=O{&Z<ANVZ$l4#{@2wl-Xmf;O{M
zv%j-FyB6>R(tXa{Sw11!xzP=r?Ut~faLD6rRRK+Uo|(SpfZ3U~3m>S0TZzvmXx#ty
zeF9`w>XK0qsQo-0T=bpXRSud#m;>g_Y+fF7yYYo8xO)AxXqLcswoTK);~pnxH8ow4
z;)(|kX{fB;-L=wGWbYI3EJ#?nXmPei)k$!Pwnszv$l8T3AhuqTTRkD#xzG<XY*(rX
z8p&7$w&*0cuG1Z<t`2bXOI0(AJt$j42{IwaE$y6}p>ggcxaG2@K+k3E!Uhd+oqS2@
z1K0#`h2r_T4%FOn0XKJ&5|dZ(^0Hd}1dpVD^8vNAOCV-z=kWw)D_lJZp6c4O!O&st
z!T@#1P>0X^sww}sZQaV`AKP?)p2o4=vQOjckGnsB4vt?s3F<kEM*lIj%X(wE>z3u)
zZ+!*lL!iA2rn%s_ImzwgbVrH{YMK55?!s)13(%loFg>z%;RFpx1UP74FH^Vz@zs_M
z#wXS`hN!!r4G{|8^k^r;<~F6dHlX?blitsru7HdKjTNcB{ViVvH*U?#>@#Z@dZ>eq
zYn!*LVC5H$f5p{4uV$s~pV9{%BAw_5P6<7luHDPBxEt++cg6i}xV&8sns{5SEJ2eX
zM*BYBYMQcF*Y@wrSdml7+G}%O|NA_*9g^)EW7NT+{i#mYVeP^QNLbaK=iYNZHCy}A
z>Dx!zjvUx?z#r5`U12Kn3X%qHEoJ}}zF?1wZ>TALxsiSA>AJPG{9me9F@y6$wDUqp
zIw-Nd)_Yf%IkEoQ(mb{mRc~58Ja&f-pgPTkq>iYP4p5m1&LNOhC?fA5oLiq6in0|R
zp9Htq);v8lA<9|MUvBn_mU&C=g31R)f4<o(Rn{#zdJmN0Y{02w(l?EUJ5pSg-~^F+
zX4Chlhu^Yho>sZN=8Ng3iEjEL&_QxVe{kS!Stx#^txahrcoNp5dW}=w(~H6K_3uH0
zSEu)PEcx~DLV(8QjZ;srbFKOLLK9qb=IU+k{<1-NZ~tC>);wjg_p%Y&cJe@t-RJ{0
zcE&ubgW=b=ZwWp0^z#OrEpgTH?zboTZ?{_nn{SFx1NVYAwY@al-j*~I5)x7$58sjM
zN(DPzHQNl7)24w#dHTBN@A=a~2^}h#+YB1<FqjOkjx#wGCqz46^nv8OqYE7KcwLPl
zfl>A!R7gNMU)MJ6G@Wn`($R?5F53R5>DvF8<9f4iMM`_S{5xJR?z3W{hFZUeh~wW#
z!S^$woE?3@CEAR6{>A4%AO7|@;#}_P%O_&_p$)308Q|P`(kh6dI9sCw;?#L^QTtv+
zZGW;~tl*BDUlhZyi;L>Lj_14p4-GxM79ap|bfo2ZP$vKqTs?{#rI_~IIv(-!${Ooh
zoi`^I&6!@loedhMi4a9!o=5+Ew11r$<F}rc58F5%mrl9=_-oa@^XA~Wkv!fdhT!gV
zlKjHwx7JU6wsWmU=0Y9+*-!6J|5u>g`iPs=I9sFZq@!@}4MA@X>Grobv^UoLy<dJm
z(B|y|#i{$tFMt{dhLt(Xgmx!6x{K}HVqX>#I)6fr^U2py^HNG<+gW8{jo~&(lH7B~
z_{iFY3Toh7>T|wUcWHf*Oz)@2)4>(HZ%=;x>T#p@`<1ZDsS6xD;@pd*wtqMI9AtgM
z_W0iTJlG6>GH9*J$D?vNwpE$A%=5$~if-wB4T_le_I;i-s13)lolR&aq!5Y{<5+1b
za^lIxPOlf8dmX=j{I&U^YV_Om%vra$?umPDRmB3X->yh;rGQ7FRkK%%J-Zg5015ZZ
zm;9hg1QMi6cwHRxcw2421;wQ4SDJU2ihKg+z0)(MylwQz&3mv_rZhJ4@BZ5XX*-wI
zJxg(1=+o-70;CEu;QXEM$u);llfiw<%!ef%QO=5x9Qx$1Ne3jmt~|1C$<mdeL<zM=
z>^T2UkO`nX=6$PKswi9I88~pJFS+CEv3B7ENSSo$nLTLGbRIZwc+Q^R1kcv0`X@LF
zvo)T)oILww%Dz9{6SUVquP&GZ$qd%t6}PuFEr#ggb_eO|gXE~!KihViinu)m+v|5k
zY1y>^iK$?h=Pp&wab`XlxQ^A$MdZnzql%l`k`_bC=vM|wS-h=o;AAmrTc==AwuZ?m
zaP2pzC){W4!V}QyDo$WRwDZJ3NFFTR0IItnZaCR(;(SMns~6&i_un1wNO3KKaCEnV
zTCrUa<My1eJhFD7h88$6O=>y{nx0$%u8s{&|87{nRsXETy3Oa>w%W&>zIBbM)Dj%Y
zcci$sL(Iy)##5ZFaR+RcxTi%dyD^9dt_bICzao~fKD&N~>{I{tvj^raEw0r6yVLE}
zk*l1E*BmxYRZrvEsGRxJxFgE>U>LY~eZnfNn8nK)Z3&rd{I#TOu1(~-HQ%=6mhYT9
zKU93d3|J+@8VxRJlB%|Swzz(JlghkQ&Fl3)d3L{LjdH%WZu$N~*idZ_B-sDguDd!f
z;G5`X`KS7C?yb~rn13txtvx@q4V1JNoWx(2`^O4Yf0_JR{Ip(P(z(Td<WB#%(O7B(
za&Lgov~<ugRc62GiM0zC=zxRk5)-%LcD7BMz`=DgDu{cfsmRo)pbX-9E1Yl1wSa(W
zkY;7F#e^tl!$|Px$CEXt2d_wRodgePvFb3qs5XjP^yaE;{IL#pXaVQ637m{hdRu`S
zFekxzR8@B#V^Ow(`e|^jv}K8y%i4uAbij>_OOv7$wzfHKvH=YfpNzWQveQ&#62#xv
z4jG?WyKn+%^`21tr8>|WkqHpD-}<AP<LulR1|C8IPoy06hcs=jG&Wq3@|X`E+*8Tj
zB^a2kQF973zaf0m%7HT|Tchd}sL?WYi#&S~hyzZQOQb=~s|s-QYU-Bj!cVRR%$N$!
z8I_Lt9nsE-Vc-fXVuD1LbLD|+$M63JHKP&^Mwhu9&pla~Y__ddq@TAaO;vBo$^eg;
zX>Cc%&s|y=e{1u><JlYc|Nm2-qkMPU)g8<Je%JU}XXCz8{dWf2n#n8uI5xK_Ew=$J
zTG*I)V5?r*9{$^ZK7V<=mDfae^-}X5#&l?_#MKW{*c6{*Uv@3v!4z=*t39@@X3KPc
z|Jhq!XhtnRdt;veUE7lV={bp@hQ|(55esM_{^C8ecHsd{aGV#3B_w6>9`ywm`jd>;
zb*?lOF?$LwmG)oz_ou?^%-V$;G{Lp(rFXKRH8~J{pAH=cjlC=b$E@dVagLp)6CA<%
zPRY0DR(^P27z|zt_22czv|wS5*^n|+{|skgwnok=@G_Nuzptdf-evRkT*cp-{o8nE
zt&Q>cZI&kt^<k?oI7?j0pYk_d(c!0qo|*poYmIi#O`Bj@b~Yr-zFr{!b|ct3myBE#
zx3@ilI_va<);m%jb3TE`TJ5ge$upGy<cU6Ap89%;?eExsowbsZ9-yiNlz`_H-EdL;
zcErun?fEL%?2_wwr+-=LEW9PA-{TG*|K-@)#<U!qBsc!p@Tuy~_u}liGd>-N+WvKe
z>cQ{ZzUCGzYlpTd8-u}#!^C#!^5FGTcYkF&r5j+?|9kV6`49HqKmP^X;Vj73C;*o-
z)A!tGFNAZp{01e$B5(kSORMj>wso#w&f#yn*BaNpQ9iczt^#EI)ZrN<#%<61i|f0d
z{PC+<R9U3Xqn&ogtES0C)dwARn#l#Ks0&Vk*R#|MZhv~UrXLasOTRn*{~?m=1BzF0
zt94V^#pFC*Xn0TB%E@00kD@J&pyFW%EXpr{RuV0TMEUPWjqtEl)l3A<hU7tPTk}<7
zMwD}6Fu2ikMKbkHTU!%k0pJO)IHxO8U9FG^nd6e1p>YJ-yg$zR<XS)nq;mbQbmY|Q
zpK_1DRj7B=Hw`qYoBP@<ARV@P!K9~OYxoNxDIs?|XvhR=NaWqnGiw(LK-&JBcCDTf
z?Q95X>8re5)^tUxs}1amRKAU$a_hZ|igXQ>7Ad^81&y{o0XGUfZ(U0DSi4X{9X$Q{
zW|Kp1hDHh0wd`z9t_8f91TGN%E0us;yXy&P2<`NKj=7(z_O<Il67Raw8*Ob&lOWAv
z?*}b+q_{jFZhfu5dS>my1{H9sEpl6BxV4RG61dnt88r_ykU0Ttp7*s|ObB(qZmoQ*
z^?u9dx3epAQfe)4pI-2O|J~yO46t%`5;$s3&TKk-MT*M{>_1iA*K9@E3Yy@imgwv^
zZ*9}NgKbZ<hTOY$?eIJ4@MDqpVL8AH+)+J}_9(mNZmF)>f?c*t7j<ku-&%Mfb$;h@
zP{LbyEx>2eVbG%TW$8NN8x-!O$4`6v^@iKD>#<Rh$8W`e#)ky*c#o=peLrdQe6HYZ
z4K;|>yGw7K>)6G8XrJe~(&%vSeYg8Qm&z(nn*d!*us{Wx7DE#Acv)4!1|(IT^8OgL
z{kGkrYmZB(c%L}N%)kF+D>Rb@dV(|AjCr4?Y`9nWTWf=;>^80EI{GuWz7sRH+yPm(
zsG@2KUfp#q(HR^fH(XS|sJy++8<ee~aS}A#Gj&NxoyXdRP}?t=-FJrDK53dAXw~i%
zXe#_5`s7+b$RzNzg|f^-*1mVwN^j0Djr{hl@|wT0ZJk>Kw3wYR71A|`+a|OCqys#?
z@*wE<Wan!JTico@fy)rj>Mf24o6IU9Hi1%5cdPV5GZT?1Pi`mpL^z+bQuYCj4S)k@
z(z7VgQm*OXWa2sdX8Ro}k9bHd=SFdZ>a~;LdX0Owqi%+V+DX%c9UV<;SQ9`!1W0J9
z+}#4Ixji8@ck3iYL}ZD3we0|nPk@?rr)7kn-byPBkgtCaaz!&QOVp~@iSbd#@2!7W
zR=n^0o(&TnK*jWg26f(6)xCZHSKl_=R;Ksz`2NHH{(ZiGQu4-;D^gw11o-+52dI2j
z0oNgK&gq7qsmy8THI#jxq`V=w=8b0mysyt~8=)i98z33tSXASF+cg})*&15l)H8KU
z>iG%L&WR9TJaKoeG`)Wql3g;T#S)~YxXi$-iWPJ1WuIIN*Z^H=@mm(ui0uXE3eVle
zird>3K{zL+-W|Flb;24Pcu%iKKf2{7eQ@3N%h|FUf9=07WDlClOS=|uV`4jKy?ye}
ztC3a0q8sj<4zIL~%dX{_^OSo>UE2J|M$Vwtl;X93GZWoGt-sjQzpqAXRR3RJ`*f}@
z^Gdn5W>>(=1`Dz^o}B>KdHXKBztvZ}U3tQ>OGma9eEhT1^Ou)BwC8nH2At|AmGZGa
z0~rY}T`D(vbVNHFx`PwDimQS{7Vl9RaAkcdIOqSDFD_@+H1;U_pAkuNe<Qp@cUe@G
z|Mz>_U+eTA__r_rVRiKWbD*XpXj;DT$%am^H=Vk>wfa9S)w`AX-Sg!tku>SElH6s-
zw2UG^%OTTvk4l4A5M8=5r#3fw_qtaZSwGw7-(4nqd{OvhXUJg3!U|<@p{2vOvc&(}
z*L}B|UwySnf4Sc#cj2Yn&)?VY?mq(Stla}ozKZ{@t=pykb;^QE&1+t7n?29a;Fi8Q
ztf-I%`#GuH|98dSdDm|5pT0Q8?0QzGdu`&=i}NpniYCQ7Qd}0`HsevbTr<i2+xkw|
z-hC>(M&34S{hy-yU)7}{BkpWMec*=EOYPI!KYjgbGi}Pg-19qQSL@2>Pxp^)Gnh8*
zFmy2Z!3j_{nY<?T|BNVSMt5*MwPfi5P}YY=fk^=8N>h=1NJhT(f%nO^fIZMOW%+nQ
zwDU*k=pnB=C>KLDO`FZP({w^1L{r=hi3QgJj!XpS{>+QUpmA7FuuUpwBOS7MTh+ib
zvPp{GD|mTZ)xb?v19qFA+xD}|fH?`di_J_#+#tokt+$|=0XIldbn6bNIVv#`oId_5
z^_+Ztb6=Yvq(a<cs{+a=F5u*n5}OZNqYB|HS$nqmjue+Nr25g`!x5OR(F2(X-u8`q
z+rotwO5h>PNoC%SS-eXGAq8jIROKw*R>4ZpLhhuCt}9r1T?K!tNeG4+99R3fZU1pL
zuv;g5y$c$Al7_f1YMuO(YXLd18Q$&*(awPoH=Nn%x$o`!jgU#zCp{+;vv^zCAc^^T
z)A=H6xqjYb^?LdmYnICInbu?|$pbAFZYY3L+@+*8h3#!g&EWievRe|=o8SefjHUAG
zfp!h2+$XGkW9NPT`;GNi^CoWnqklcQT3($I)sSC@Uev};|NBCb|DF1d{!g3YjvrBm
z3=On3K~0YEZJcQ;BK-usTrgAf`ssV`Sbq2Y*m<Szv4(v{?e-ZG;M|hMyM(PW4Yb})
zctw46A83X%VFGxD(`@tJzQ58_zgfne-zfh*Z~B!WtAMZbH_Xfh6`BHByhm9fT|#aC
zcdPHPeZQ>Ky6&}R|Jqqa7xx|QdmYjD`-Q#?G=s3RfiuXY@4prDcwM0!(f^<&;u4UQ
z7WPMY(Y1gW$i#H!$}&&~+7TT8Gv<ZIdhENg;@ak^*B=y4Gw<M?6;~e1Y!%i99<MFP
zRxmyRo@RJ`YmYhmwQ~{g18<f4{Zv`QeY^TN+trgH>N6so3mxTVYP8fXsTBqlJ*<!(
z{5Mn3*n>DUzRf@jO=2LU>z<Yp6QZ0GAv5D8rllvg+9c<GP24H(^}J%^iR0fd{nLZZ
z$Q3$5y7{e<j(NOKpsO~f>$9vd6%mKDz{HcYxx{xjy!!B_bWha%;@R(Iz(r*iZ!6Rt
zUlc&2{9NE-T=ne*9`G6ua7D9;sZId2VgpiF&Ju39BGn}iQK$a^)ZlIamrc{RaH^hI
z+sFc0%6KWPPa%u9RSKNkjgIU8oVNcs|4uat!N3XImT(khYrr(!28}pCIeRK}j;vkC
zpaf2$lj4LXL^)4%16Qyf*AjgvL|2wvK7PL%w89{%x%x*+^=`*I`!YeXJ3&K@w^eHD
z_sF|N(Keqi`hs^6+5O*?=f79z_63)nvbVOBUrs*o{qMX6@LI2j*8)~RGQA{o(u_#w
zMmO*Tb_%NkXp}(;oR21LJI@Rn|Au&Oj=wNydR`gadeC9u+`4d~gEBame_F?LWbHx+
zNJ)OI_V@MnIiPlz6r@)<#g%cTsYp5`eZ}1odvq;e0mSD2O6N|#{y8lZEOlyz`Nr*q
z-HSH9nX~!pv-q!XrtaeV|5v90)Kpw{Enp3#@T(14Z5_v3KR4N7*Pn-fEZ?s2&jK%%
z3&_^Easu22`=@Y2eD>j$Q_6o{&|SZ|Oyq*)cMs5FGN&D;B3a;O@agxSYghNb*tYv|
zY41*RgOy){A+zAEQjpwXYSs_h6$MF;x4K1&vNf(jg5Y1_rdwVex8pRX^KLMGa=k3(
zse48JJXo!K2cl@+g6Mzy_GG-R{`kDD{?ztod*{A)H-&V^*(UYc7zTI9dY-a#JR`+r
zR&>Edx$KBo@ZZ0Y?K7gBH@bn#^c#=%o|k+6br<*hx*IBY&fn6C-qQ{(b|N5Q{LgjG
z<m;bpp|1M&l;ie=0G5g1xwW#~nmYb#DJz~<uFZab?^?swuW}RPp`F|=MR56cRL)t9
z>HjXB{QdP;Zpp3Pb!Ek}_^;0eAnks(q7HB>KN)2O8q#!z<Q=aTMU`s-43LINWn)lB
zw6h?j6#l|%QTp*x>CLB~e`<c+bISeg=PKL9^E;sK<$xw+wit!2ZA_3Ayq>R*f+|M=
zNMLW>B3zuU(F6&)JqPrUtZn3h<eyDpg`nAG0dW4AG(EO$g{g=mWVR!!OcFHr3#mkl
zStjTIu3iK2e&%L1Pz?cX+PP{g=JC2h+W*i(56bzb({u;asJ!E&{!LZC3p8}81sS@G
zxWSv{?7YzpJod9>t!DEbsV-AUJ(tNV2AU3qEam;V&@b-ncUW6LYzk=57HYWox|SWL
z6Q(@@&(hxt77fhSXaF~+CvOpb2+GlZ;CNoLmJ>960G+zZPGKz0*0=;2be&Tu56Wwh
z393&?-2&U&oFEf-FIQX2Rr7yqJo?z`^|AuzxNC1q<KOF^f=-TibwXUK-v$~QQG<*L
ztO-mwvv%PO$UImT&*g@V7Y{Giy|ih5g7*B(^~JTv4ZvBbAX@{bA(9=e0bKS4Z4y`5
z+@`b$(j3|xz1KcxZsS$4xp)8G`~N~>f)jW-yoeBZw8rcFkBC<{8_O>JGQMW{uIzdI
z>uqm-Tild{P8v7{f@_i`sT&;fc$c_Vf|p24zVmlg{Ov;~(dAXQEZ#@$JHh?fqI@=}
zUk2*;2ZF~wZ)D9jToC$m{cgVeDN5F#&i?wF?5P5-XScR3S_EF?vr$yk{U?|9{rhVd
z*UWwDSiLXG%5P`zwx?B7rT6KtXaKdr7hVepfQ)o3JGM#h6!*9NV%xW@IsW;^`e3;e
zYo}kUmjxB10(rcyuHdwp6dt{k>-)BY%Y*Dn`QGT<c$>Ak_{h7u*RUZM9cb`A(05t8
za0O({c~jGV0g#)(d1&Kwztasj;@;W@?>h0iO22w`zvkVi$tyn={tbj~BWv8F0iJ_2
znzqU*31n}|B7t9tPV1^IPd%^ytyuSs?TY)aUsKqRXIIMSv~#6ui5yz9aE1o|S(7CH
zON$~Ex3?uhl7;7Qw$?jRTwRdp&u!r?%GS_;xNpnD%o8B@fn)QM8o$DJwoQw`?#m3G
zv4WNNsMSw34#6k>-rJk6NOhG$#@61hVLt(yd<54+m-3=PYnRo*CVX1dCa}G25oDs!
z(|dQz9jUG|h_#tYY(d!?x1gP@#<~-08*`xZ27b{FSERbS!Gi)SYxjeS7O|%rK&x18
zf%ou<K}HjA$*4WK77ziMHn5y%1Wp3r>Tk*3GSG@QsBd43IpjTE7y+FW^bT_2>)CNB
zAS7h(gg&c%uZ1_Bh_C;rZE3l2Mx=9KAm1#HBYi1Lk0fRBy1LdT2~RvC+^y%No1t;#
zq^V<rLH+lQw!v98F@JmZy|#XEFUS2^#7mo+7Eryj@LIr%$%oaHHmXM|KAI8bY#7Kl
zyW_|_mAmUFL^=yX3|^8uyYY$?S4Yte7nN@+*|MU`t_3(;Q8yFxw0XI@<lmnSCO&Hy
zR%o>Qx+M8;`n7vTl=H^`h$&y~6*jYNS}0>A*zxzr-WPvuCq>({YR~Rn-|YI{9%Oym
zwE%-Di;oE{l;1C|7;n36b?yHBSsaJ|?b-cigI~;CfjC}PC(9%y{@sRp>;JW_m>#mf
z;ns?eSH;#|>1g}@wH4IEa$394VugQ>(xi$@SFfDuI6BSg?$f)0b~D3XuYdFO^P)RR
z>%T7(hqZ$oEpwEFswaJ$)Obazs|oBOmq~nUL7OKayd&2<w}b|G-wz12I&eL5MRotu
z;~T%U3W2MaD^gs|U@b?k%z0fJUm6{~`Tm{ll0VJ9ZqQFQg{-5FWR48ro5^vcZiY~`
zfNa^ca~r>lC(cf-T%TyF2{Ht<c)sb^l4C*}<+p8E@pkX-dDr;&O<%mnV%^nAJC6Ta
zUUwLr_YAT%SWX2Bcis@}?y36rx$4{UwO@8^`=q7wUf9~M<h{SXa5Fa~t1xJ=`>G_l
z&zd%`X5am3FC)tnuAQy;ztwc&`mZ<Ful9cm?pp?AYXqH26rOlv^0Ktm!W*8p-g-Bw
z_{)ZW+1`7ueR{US*x8o{H1N)`x$V&s8Iy?}vK!-<mALeMQpn=|@XGD}+B>5CYr}H6
z*}C8UoerK+U3e{E4kQI^tX}qIqgVKkjLH1hgLY~7S5A#6Usl5+pUqpoaW-TwHHtYi
z2$Di|f47{G>Y7}1B|_<oa(b_d+O>cQQ<Bw~Hp**$oIWAKSuhA3c28PnD<<(Cb+=4W
z68L>lTx8qs?>p8O*XW(!`{u1;*sq^YH>duM6lew2z)ouyet^XOB-87?D@{dYpKj>%
zc;k7?Tyn{^fRZWDq@CLl$-FZVVmRw8#x&kmH_I#?!CxQsnKsXv=8!ODv6|3E<^M{0
zr&s@!bNt%r>mua;Y=h4IPv19aTxVfC^yj~l7D!4IZ2HOl9H%~I?PGTZr>3NE)+|To
ziGJ%inOc5c=3@fol@f3|QOP~2zvNng%N2Gr!IL&8xu<{@UO=;vwjY;awuam(N8!#J
z6W452M&z0&YlIG*k?LwIy5OQzrt*HeBWUmyV&2Pnjc24zwEl8YW9pR8^iMmoW?_Ja
zd#|dK{U@d+0-M{I7Rs1T?2tX#-47Z!h9p*%%uM~1YXK5dnn7NyycpOK<s29=|Avdo
zM-_bwuE1;!4oK42b3?;r?LrAiKE6~o8Pw}`0Q+##RtetVYz-!ex-}a?+gunR>Z)R{
z%$NVyy3$mH5fW;Xk~kDLw=pdMCnL|3Z4F1Hy6TEfxF~#EoL;6Ay>sLHrTWJD`TKvr
z2#kGy^2@xN;Qpr5+J!IF!39Xpx()T+H;g`S{^C7vb^YcqXQpqBPXUi>T#@pq1Bc0x
zWd+{yOKWEAc~iaS%d7Rv^Vv3VK1;sy2edH#;1MaV+M+WN3MGe?rXEvTw(Zoy3sYzR
zzA<~!#3PsGPk{|OBh^*&Yl)grr}8$h1$&rY-<q-Q<g3s-ceh`iR&ek2jFNY&S-{Qd
z6{aFTo`6zQ=h_Dvwi9>P$la*ixxQ3$?w`YE1vf6XME_4a2C8)vuLazg3=ZAM*XE$@
z1@mOg1Uqd{c7-~hk?N`fyICbWS9aO8fGd!)cG<J{{ilyyk@Bei)dF%yB)5g)=C(ug
zWK5@V{Pj2$)O<v$tFq{fi^8|VRjFS~<Mx%loxt?lB=Yvgn~$gN>-pga?HIS(faB*<
z_37_>r(UnD-e_aiU2)^UjX?X&(@T$(Pl7HpdUO(;_j{)L&xmk-=m*XQOKNqUvv^yr
z!L`NYErDttYa91K%92ZN#)6yM4lRPXhU-}45vi_Duxpev56BpSmQjII?Ut219%~mi
zK(gPZq6Z1wQe8zwz5)to@^u%BnTYIuGE2c>hP{2!sqCL}yPhoQba~@(tA%~ZHHT-D
zz`<4dFtQ=ixzW2%%Dbg*$zPobk<N+U^RKul6{_gZ;tb5z$bvY0O@i8yH47K0f=jwf
zVVt0zwGP<llcw2%MxHi-qsjBuAuEryHeRnDzn29?z{}5bb2s0-+cx98R7ZHr{A_6v
zo$u8PW!RHJMJ#K&bEZn#%ayz3UfX|}-#;m-{{P4GUpNm<yS-t1X5;7L&yNk;rXPEv
z3+gi%Y;_BoW@94EY3unrRbZ=I(`*?N;ZEC^>u06j-}XG`G1L0%S1&uw`uYC3WBpZ7
zUx_t1TV?x6XXA+%ChILL`FT2eE3d)&<fD;CWrZLMUM6;^@t<IE{JUTNNO*s0<gF5)
zpC3<MuKrtD0&1v&v@Zs07vAt;ONo=0d`iCXzo(xMRB62b+6!t3AG{*fnepj@kIEMn
zeM_EzY?Xyz<&)Rk<6d&j!(noBn$kw~%-f2BTirg*1iSoY^49tq56Kjetb3Z!LgmQk
zaSmC3<t{v#IMd~Y$0a)thcy!$)ck!|l*~7^T~OHUc4?-K@njBJ&)xe3wz?gf3HI{F
zod;&k-Z?+}cb$Ih(N6`oZ=&zrlQ_NF{&2xUpVp?CrjyQqjq6y;{NvAxU2BSWZws6@
zFKx@cz5V{6y4q*$!~`||vo22lIh}6hx2xJqeOA0>%v=BW6X&M8$|qYvlN)E&Obk)$
zKcnL0p7YeF^6<@*p;HUuw_TdJoni0ZJ-?!+^y<!W1PvprUGvbG%$~-yP~OtJL1A-U
zf6Au=J_=tB>#h5&<-e>b)nwmto5<;3Gx=BUUi*A?@ZZ0$4uM)6Dc3v{CMT;2EtFrj
zB<8{Ix@q5CpK8ayd&+#*E$n^Lrn!4BPX&$kuo`Ep^q({~?z|w#ZL@3rQ;qObf%y%e
zQcI`jy}uhaG3I*3iCGe$#&kkf?-9ew3^k#uOGnm}E<IY8n|tKnhE)A@>07(6Z7uim
z;Q_Vc4Ys;{ngNanLqoH78@7q={r$ZB+UoVY<TMjOWfCYplfm(M<j5L#`==X~>b`A{
zOBSzwzaN}fgF&uwG@f`vSlBpBaa;HE=QBg*hn?QIcU>_{HmHhc4SxOI1`=#<zU5mB
z>E8~k`X^%=ApXPd{70?%F@IP3fFj_;nu#`Q=Y3R^?BBRX=H35m_ikI>nwosOrQM&l
zTwL<HHYBP(_z`H>*Em~c0@(W#=R93HAyT>1M{cHPOW%#EGlgE8N~65a@4XY&zqY;l
zYv|%yTQz7VVS*$zPcLidGg6+(MJIfe%8szbf4g)#>-N1{EJu!?+w`d`{*-P}@6@6V
zke!5`NuN&mD3z$FzU2|jR_Q#+Y}|OEf6oSEhqd=7&#*C?%prU7G~4g9YbMG-oPFt7
zzu;y!ry1a+`BR)T#P7`Y7<KluE=m5MnkF-BbxWEH4(6Y=N(VOUx$o4E+m`pov~B<K
zIozNf)S#RUQE;*|vGI&lXD8VDlyjSlc<X&jKJgkToR}~ApJ}D3(2FMvXL`Kw6#x8O
zUE49M_lae#lkvnOlh?cq^jJI5K^>fmeR`JK$aT+MylH*(%hy{OS8u#s{N+4oV_wrr
z(@D=E2K-NbBXM@RZC1`ppV@nUMZ{mImjty&6S8_)tRU&;=#77~ro~<4^N5`GH)Frg
z&kEbyf-25DQ1^bC1NP9%={Jiazpt=8Fl}G*j#@3-+Ii_QX|ST81e|nOV$w?Es@6_a
z{K|hiEbn8|FYeg1_n^oOe*N7;z5R?zlKUj4%M2Uc9?h{a6zsTj;uW`3T5pPFWty6x
z)up3<{_b4Z5v82yCpW9JW!{tL5w%`F=RE=EXOFlK!V9i>On{Utwwf>B_pfrhB6YG5
zZ0{0%e_0i?SH)YFug<-5!;AlS>ALp|RG^+bVgdH#r0J7cR+vtD1P+r<-g8seO<B7l
z^V#gX?KA7wEj734+ob?mET?klq_T16g^5dgRF15f_y>}ti<BlYY;-#`TgE`R<L?P?
z52h<pC-cE}A6X{8ZS9}`NBx?Ls^5P9l(v8R^8Z>J{FYfAJR;SZ2QCqmb%R&}vsHG3
zOGx3_J)8Z1{4&o?O4sx_pD1koS7P10X7K4R%dWkD=?hNfDY}Oo&q$rj`*g-d>63DD
zqxh4n9vPD#r+(TXZN?nG>$T~u<zGe4Gi|w=zj|BYgFSIiy`Rdd9|YC5ppttl*rLh%
z<}BEwbna8`Re{@6(qp57k50+E9+bDfut^JAAUMqiN9@TcX~vbNlWsvmrt{@wOWm7m
zbHA+P&c2l}Y5ox<Xs~Po2aDkDumArYar9U_@eHIKy~OldU~Ap^9B^J!(S68kkgc-$
zq_J@4iT))e<}Pa{?ojhT!{TJWMtxh~RE@V!ZzxIk@BS+DzSgqu(#KbGy`V+d5>s$2
zB_*vZ)Czt2|E5&5z1(fRUD-Kz)j);jvTGg*liSmj7OG#nd4GFy?(){{h41$AU)}z$
zu6}2Ka~o)<BPhvV2YbTv+%&!uAe+HS?oD@*b^oFA8yVL(-C3$#bX#HmQj7TH<;IXu
zsO!%L=RlRG+VUT=R92n*EL3@dJNV=G_NC5gy(*^Qv^i<>b3vnQm1W={n7GC^b3&Bz
zNq@dsok!*^;Z;!1>TU4^JAcyjLQo=8dkW6EQF;Q4u6fLv0(SQ_cebbt?=SlQo1bnm
z!A`s9jrm5mr1{`%@S?c$b^QDsu9>Ejem<Eo6Vyo2(O-1U;|0XWl`Fj(qLgR)Lvlr{
z7GqYgiyhdyOGm%h>hc!WUR%1(+4>FlhWH40rWKkGj@y@~L;w8}u{^TI<npV>>uo{B
z*~|Gp^4`t2Z2zqK+*CT}du@`-{}d-sEAr%uOCEQEcV^wb`g_y<`v2B%-rwDSd4HOH
zTG{PGCx6Y2J^Nn!_-W(vnzM&Mt-6A2m5-T^Kqp$*R{d4xsLu6Yv6uJ#x}*O-)yuEn
zcp17+M|q<EJkU0l64Tm;k$X2^-{rX9mCwYoR_C3p3O}g(bZG5Fl@*<!qj<h_Uh4O?
zdwnz5>ec_)xT#O~?(dyh0XYJp*TvBnyd>yKjo!zI-}k!AKJH#yEid~Pwq<-0n<;2N
zuK4B8l>s-S-nUy>Rhrp;kF)!J?)ygAzG}{vS)c>|PT%<Y{WI&;aIWhw*Z*oaQ~WMf
zSO}^B74Jx$gsAYoG@CsrTSWx4mh8w>ySVR$%v<_7e|&o#@geqZ?8W1+p?eo6@qjIz
zzRz&;Ji(7z_Hj%9+-cpa|Jb4vb|i`N#{gmQF<#HTr<|Xfo_X5-+wwp9--1H)x7Y67
zem!jY)?)@Lpi-7&dmVr0EbuvY^82%!_bmOgUrOeq-@BFe4wb1_*Pr{I7Yr-STzo-m
zB9`!T*VwFkHShU0^PRqb`d-dAd;#r^PMouX6LehFlD7++??`cWe*zzdmHbD}I9o+K
zD+#oQ&}{iH%Qqo$s$y!z|DJ!lczcN!sQTpC?#8rO4K(dBX_`6XPSZ)!VDE`v-n{PV
zvR$u=_BrjmqS|);?ys5Q(XHk2%2!%I1Bflr${z#4o&<01tLvWt@rKttNu_HZ4O86J
zxHihy$_Bl^A^%qQa?_&i+1v9QKQ)W}`|boTparseRXlvbI|1~Uau#N*xMYD7mGAja
zl}R&yi{1VGGIjkr=t3=J%OJ2-nYXtmN=tRt&bpQ06XBdKy=~#dIcoRWl9j-Rk=30K
zofVbf64AJoC+dO+*QF~gicNp68Du#sFLVtS?%~kha666V$M*MIww^z=#pUPxohiF>
z!QHJLrjw#g!0D)ZO>N6DdHdzRuU)OGo$6Qr5V{>mWmm=`(7{f%y<bb$E$zSiZ1K5m
zJFB;rpUc)|T4#0t=Jbfgko`a^dqFd`M?|C3Z(e(}SL*TW$lKF>W;1HmU!S)1TOBWC
zs=|$_M-4n3sr_r3;IGufzSp;|*AKp|Zg%`#0H|0L$m?Aq;R_l*U&>$G=e+55d+%De
zO}0tzEnDn9adICO=URB}y``HlX!YUC*XyPg+n#23o*n;xj(CMve$L%#werm7;31zY
zQl3V$KnL`BUi&5Ivv#7!VsH{kS=(~pj+Cb{IEg%sPqD1Djc4u!CxJ`ti~6KK<!*QR
zsiZCYzj~|B?7x<M*Z=+Ed=H*1dU(xa)x{&=bMut+4Ys=-ngrH0X{vkEPSZ)#!GSn^
z%?61xYbTyq0?yq%UslU$U((xH_2N>}@1%9xg!auVv-<+-s<akltC*fFG@g5A`nC`J
z+ZIlouy`ftsIWhE+v03@F1<TX{<cb;eRMsj^>}FQ#5s$>=Kb*!+4)N3Uez@HOIqo&
z`+rPm294Z0t(~}FaVL25l;@29>p$-{SnO8RtLC<hv-*Rz^ygKMcU_aKH|%*8bN%0*
z-wNOXzO-HzX<yJj@)VckTQ!SoC9ZYcJKAI#_f<Bgzpi>UbRzHlN6-wR%DRS_<@T2S
zJVDti4>As^X)RQLoSHlPoNnbit5;`JtP9`Hi@O)t0Sa@)D^i{ovo?TE&<fk4{Op>?
z8Ay12`m{=5yW6BbaCm*vFPgV!-ugt)ViA>nGv-a(uyNj6`yV$Ry?&Z=-~XG!y36O6
zK~FbQu5<?{{gbCeoUTZ5+CXyIH4E-%*F0W9jJ{+R;FQ<vA`eb6s_I|lgR@osL(*$z
z^$Nx9Zb}nuKu7m%ELE+qXOez)%|qxCI1Y{6z8h|KYnlK_jGy(k)^C~`o;#bPdS3B*
z@1WVgr@xJP&u<1Tic=J!Me&W!z_+%=-xjPj^QhVSHUGA0*gwc-xYyrJmUM!4_|2GB
z#d`CiS2wF&&NhoOoqa#z|Hm3Ebo<n==CX+6)%MPlvo;mmtT(F-w<<V#$;#u_vDQ~7
z<!)!Ud;;}2S_86G7(h$Dj)-0^?#or0x=H@Z_U#*IE|-64&UXyllX`f~gAL+?UGwbi
zrMZi<RoF7Yr3ZMgqK6nn^3yx{BWovGK+@q8)jq|%-V`NpARYY@b3FF>(_0y37x!#C
z+Br@A2D7013+TSty7R7}>F2_u({%rReF^G<ob(U|?_WCK@+oQ`o3bxx8|9IGO#l9c
zn4MWWF$ZG7lA{Nl@_LUbgDqH^Z~XJJ@>zq;Zl5NCLwC|NH>RDYLX$ufpO3t6wN;&1
zd;jnxHP9@LQsndf3R%5JRKW%OlX9-3#~t-bdrN;l(tE#Z{sT5p1pq27)xf3Y()(8L
zC-ZB~=v9woPqV!)_5ZWnj-#NK(!*;W84!Q_oUfR<-L89X|MuIrE`ANo`}Vr_`2#2L
zT+*ajp!wiOUA9ZIce%?xsh`!byF@?xmCM_6Z%Xf9$d+z4g;t52e&9;8`{hgiJEv7@
zTI3?4(qpA>e|-RL0$4-B+pOTXUGqlI7t$V4YOX)UR{wr_d|Pe|_)sA?rI}#wP1>9-
z9sK%x#4>QwDAAQKK6m?h_={`%EV6}82rz@%0-(<MGEUGwrx`QOyBbHw>Ia8^-EJ@Q
z_<yM(EKj9@=1vNi>V`JuW~g{%W;Gio@`4VnQQqku3_5|*W4DIlcDF_S;QTe|%a7(O
zQl9pZ%u;W;cAMC4t{e93Romp&7>eb9+RLp4+WwWle*Oj*Dqk#r8ZL+{pH;KQ%&Kp9
zjMMYl-aK>AVkM89$!?GOw>{O$|M+*;ZOLWx|MUI+-Cv)6WY#xL$JrJUw^gsQm0i1D
zH9h>CnO#I6WV47+y$R@qSkd6(Uc2H}8}IzjJHuYznERAB%0F5H)^ZW52PcKo9v8L-
zG@GqWPL}Cz4cpTCywvw|L?QzyR1U43$N))NCAPU4dwCDb&)=POyC7rdcXxA9(3+2y
zNacs_kV-&a@csF-yPmIhU%UPOu|opa3uownTDctC-3~!Q<WhM3mBk9vb8|WM=d(Y`
zG5hn+uliss_=Gx@Uy!oG@_m5M+KDe9#pn{&NJmhaQVH5pH%ZKjW2dQ5Ex33Wm!4W*
z$M-GD?%(^O)A8PwYW>EW_f0)1^2<c?r&P6xpmFOB!Qe|~GuC+D-njA0U*ETqclXub
z+PtG1JbeG~+WVdE!l2UzH@<#TEO`6V<{vBlCas$mY`D%CG_(jB)Q|&bgeCq{=lDk-
z%#*%w``P@ZXW!*KelmZeK6qoi)7ps_AT?Qp`>lDt*|+Ck4O@L}d&=wmUw&Tv{!R>J
zkU(B9i+m;6_1lbji?UUIWPnSETAzOvxzDR)#Qw#<+gKfa`^k&Vy|#CgedHh;`IHYr
zi`!Y}4&9OBv;*e?@9wh=xfv?UGT^Ch|8p*1&{?Mn>714+*F08CXjhZksQhi++UF_T
z&Ff!>+GoF<{od^R-k#9ie`C8rvFWsSqQ^pT?fXU5w!ZG2+_P&QOD=$m;eU=xE-iVU
z?E@*zmwBk(|Mq>xB5+;kGtn#fc6@VJ4d_(X8A?-^ZQHLR3by%xyOu9+J+IcRSqd%_
z>bpW_Mg5b~G%-Ecv4JUDdh5c83=6;pfHqk49{K76J`-;%@9hg7dq4+12}1HtpanSZ
zY&ia;bY5ww=WOZM%Zs-eUf-PiaDDULznYw&nI5OL6Ak8otJXh9nX1pMxIZ~x&1o5j
zb%J!jFUHz!$M@tV<m_&^b>x(U!6sP^&~n~{wB954d@i^smn`XbnsYmfOaAt)JAA&;
zIrDSvwQ6;Wz$YUbWUG8iYXY@OYjuh?+U^(Y5B)xIPu%Xgi$2?3T*&VR>uY>ER%|@?
z$aK5Yo2D**|2bmG$8@V_#^=3Y<<O@zaID%Ut*TivjX(6Z)Q`$d2ZP-WreC^U=k5a<
z(gZa#psFebgFB*?Cz?Yl)Tr&9J57Zujlm5+fsY@)Y?<~g^Ez|kJw>Js;6=&3Ecbjs
zy^mBDiK~Bqghv+?#;^Z0@z*Y$OX)d$GFbu8+`bTWV!*RgBHxX-{xyA<22LZ9%pEhL
zl^dZpbvHTPk>Wf!6Vwgyj*}67bj?HH960JffsRt0s4)jz3O#Xsu8{Y4UMuJntVdqA
zE;9sXt8k@*TN{?^ZO*KjC^3g~R_2j;e@+=z$KAfwmi|`b#rLFt@s?@eWv~mcd2pO_
z0i6JLOlX6>-A$>WY!#+-aI>{iQLQ6dS<qr0=qSh=$CLfLv)qO6r0-1f;y)F%v?}9!
zwJJBXE8tWBE<uy#f3wfNdAq`SHtUAjdvmqykA3olHUwNAfI~%9_XtZ7$Odo(n6;I}
zWh?Hy#rm!4lzQGz&M1W&e}y>{nmxefH{AE#Dl+?<W||5$7=zCE7WTAiWG&8CVK@$o
zV{vbj6`xa0^OrvL*s}EASC{$MVxxbrd<xsFp{!^DjyFTwXvICJpRb+UR32sX<uQBm
z?@lAoXq4g|sZK}`clW-&zf`|c=Jv1bhyN^P?Z5-Tht|S^`AcP2VaD<L%abk?&ta+Q
z>Er@euz7#y^&5kV?WyaQ&AYo*KKK3pwHogh1}(R(xt=SVm9W%jYST(np?>2;;i(sd
zcb87PG<DDUstK32eEVUlx9s0#SkpxYbU4A0se24$kF1?o0EyTetJB}`uFao)IVbOR
z*1EMex1(DU>pvfW_86ofapd_jZ9<gtK?_LXs26R2clX+q-M=C)&6bTY&|7ye^)R%S
zH-IFaH_VB$nLTUgoB3&Oy;xUW)hl`e8rGf1z$vYJ$sC>Lm0zpP`qDwCPS>74eO&Ek
zx^3L?y=$k5-(fcC-}s9Uw0LAjl=4FhVbEcmCue;-d_}7B*i3Nq^;%WznY9x$AYS-l
z=zQ8B?pDRI8P-|+O}TO=;5qz<*F0<>uDR5<TyeYGqe5`vxpdy%V9GY-EzdS@H#N+C
zc;0`4qdg}hw18y<or9yY@5^6~?p&^|j|=Y?Pb!`6_%lgccIL&!;4z<v*WPnlf`j4Y
z%^Tb^L4ocl+<QTAa?u-G-~ao|7+x1$SD5zg?H;}Cmqzx<3mU-vQHU>sJ7Yb$SQ@WL
zaUP!u?pD9QU$e*Z`Yqp;`75^NZ|Qe>t6a+n@^wqJ@<T{|m@)4>tMBWJ{hxM86~&&2
z<u82+JF7&f4^lW>-rQ%{ZT9KQWZo@(H!cenF+t140!X>|<gZmnv@)Y5IC-AjT`jP^
z&i@3&_OL6037{}y@ilRB|7DXDeYJYK=hxaE<E^^a%hp`}wCDR_&{}6uo3{XxaJEd>
zcyi67<2<-{Fj}Nyu-T2N2Hb?a^gAo})z7SzImgeJBrM!>u6Av=$^DHBVQK#ZIMTiE
zFaB<s7q-v%I$QX})6Ut^)4tDOhc*S2YQV9R6wfw)`S!WbpP#&WyeMje(|@A_;FJ|6
z7y1QyuKE}K?Vld4Sh)F{?KivkyZx^9x?K49lnqpk3E3@KC^3H**Q%0Z=l<HuhaCZJ
zBY0V5XZHEpU(2^wrfojk`o;0!cG&sYM}L6N^_etPu4|{M$Ybz1N8bN8)y+%3ZEpSf
zNwL+FACX+w_OD5VZhU(RK1sy;ng`>vYXMUrN2=If%JH$jt$g4cyQ%F{!EIBoKZ`gD
zJ5SUAa*D^Md-gM;oeS;2OQ4<{Z2;|-_zAK3>h@!Iq`E$X&ox=f-kE2=d`Vtuu9tQ6
zhJT6g@6SqZ7KapkZBCFwLr(rW0nz|Hre(e5ACJOy3xAtUjh<K^_Wqk|J2bdYd<CDE
zbo9!XWPw{bSB&^p=U4{iZclg_`Xyf;)Q1NhtNjan`pTvAn>Vaw$rUPmd0b&jsrl<{
zn|-?^z)h4a-qv3gp#9gE+;7|UHOADN<z5TiV)xhXSTS^5LgW=B$fANkXB0w@qp@7P
za7L8#M7w$5{_a*G`Ocl)y4`zjpX7LLd9Fb=TNPATftF+ngPNFcy4R+@{5;RyJMnkq
zg{#wirb$1tJpQN_<VFGbky@9wKk488tG+wd?VFcO_KN?<>&2W_G%is*fBZ|r-)SPu
zQ5OO<kPdYJAqPIt{ZbVtXo<ZoIM|oevV!(JGl7?PUApdnWpU8;=iAQem-TNyvh=rU
znOg5xVQAoWNrFZmzAbGJ{&r#Vwv|Qu=l_loJH0qN*t#^ZqF($Vq>rJo2eK1m&0o$L
z(afD5VDG9dy`_-G>#9?ku}IKr(zImIkv+G-3l~qVZ_vE{?fV7Lc+erKI#!?BZL%D>
z;LRov!w*c!{#~6hIlI|Vkas`RvY6ZVm8XICdTn@JzI*$puGrt{#|!0;f7AJ<lznpB
z>4=BmIjckPBStovT}#O0P0<H0tDCg-I%80_Mh#@y;l7KBXKqINuXx{|Ie)v|s!m8@
z<b2T^vJP?YWYA`o>EMF{URJp^l+KQ~%{9!t-TCPIs>zT}naCbcr|eDF%9qB6)&|#Y
z<5dl>WHvDke;KsrouI!TWc&km*h$Xzx4Ygwy?t=n)GHHaug$exUG*w+^VdbM?D-+N
zysZgx^vTBa-*YRco}0jHxi4qiIi{d@8w=O{w}bZXy5hhQaI|do^z!4SBHPSn|KGL#
z=?(tqlzWoLKW>4l;)(~WQdL(I2+r0x_j2;Al_~2|YWb7$c#m3wqj{2OHE27*b8tHI
z4tt{rI>r>THLx}`xRPsnUg7=yq2aN2uIG6+d=K2k^x87a5ZZLpI0s&iDc+q2IufM@
zvR`js(<2T24WI5_{Pwk%@$0tlYj^G6esk)+CMHPb!Ti#@4>YR0Bv!H`%K4)=cmd;=
zqr%>?+@;&s_dPGZ^fvSN#M7Hgc$y!95>Y_5MjdD<;l@-u<?vmvbW7jvFWYjX^v?5}
zZh7;!mh&7}$_8h|JYH4<u!oZ7PCEbg-&XZ)+e{PQet*HO^6R=SG+dcxfOj)&^!xDn
z*6FERw(zeEUubiB_paWc^^bGj++%M84W%!<7Vu}%V$i<3Z=FTG%4M(k3#Qw>{rqP8
zUxx3s*UtU2xD2g)oEf1f612W>K-gaOZMtmm^<{Z=pKM<FHDqh{ugUg_0!^}lPWx#9
zhu8Eu{53vn7jme9mx}*luRDF{hVJyIU*|mEbn9r?yi-qCzp8tl25nntG(gu2rZYad
z7QiqWyeID4l64C$PJiAsXXfHPA5ZgNc+&Hw>ED93(nqgBCwbMJ1n;3=vK_RI{L3Wp
zcI9j8KYV`f{Fa)%Kk>D&%-<yk?=h-^tBh*_KOkExYp2d`)ynzSZS!>RroFeMUVZv{
zC%<FkDPDNAfiv$C*BqrR-d26^s^d$+4slDP|J*RVd;X^Q#+wK8Z*Sdm>g#7eM)1hn
z!fOFvCV@9F)=oW=w9#VQw}+r3Fb{P3XDC9ttr}GjzpZ<gJpaXAf2+-oCx5+I@&4q;
zSlDrkA0P+yRJol#{_Fi}d8Nyfw#1dn-~YFVKMi!4CCIlG5Z~^5{i^m%c5Pnl_iIfD
zUpw#YO}e5wIr+LMWQZP?r94mn2OYHn$rVfcJ$suwv!-t<`P6Tv829wb!pE0RdE7b*
zNd*qyCV{W|SeE+5H>&;8x!3n{*`NK2TKBYSK0^~|05|Pgz=uiTJ!_e>YZbS)B~1tK
zHheiVLB3nDe^=<AHTlz4rLX6n9)J7t^pMG*#9WZAQ3go@_jWfPzy1Gt|Mvg=VvrM_
zFQ`J2g9?w$y?^%gd;ZpM0e4||UG>04)}_lvzy95=s?4>Q*ZJylQ7-WZ-{od#6uy9L
zm5ki&YOtNH2(oAKWRwH%N>h>D;1%kfwM}*N!nVvwZrju)DZTo4axb)u+XyM+X3X2`
z&%2#h__&4QzE?9pHG!s~LDkQ0aIw(6_Uw<C$-8UbInA+}4_YXtctwgUwg_~E(9*N9
zpd;)jg11gJZ|%KxAz%(<sd-swou8gw?$)%8D{_CV40Ja=xTyRMXn!2Y+zha}-q-H=
zoLSrG1KBh2t7}UCk(FPSzx|wBw5gX>6Lws%$tQ3>^!zNlYswj4-hX+v%j?Ic%dE$u
zM8G?P(s)}XEi;x)tVqhTV>aD>?_&=Cj@<k5uLVjhp^a%S6G$PbY0eXrt#J-Cx_?9T
zchiqM*)Ok^=a+J(-?hE<+!N-sbg<L9UuItS|9L1g+D%8hBwO=p^iRca+xBjUp9nt(
zvPHv|>+CnyFOSW$o-b>gcg=oH`Odqqqt3zRkScRvyHS{$CLNDRoSk;3TIZLACb-S6
z(&p)0=$8F5<oe-R>;5mZQ2+K_{=Z*XfDxzwhM2zJTyLNMinaUC&v+qwdJim4(!skl
zyycJl`&?`Qy7;CCT&lgS`c<22{8?Uk=~Csi!&l!YRzf;OyhkO$<)Ts3gWMGh*6#Tq
zSr~QQG2cC!>#s0NKeT4DfNY%j<#O2n!M(4N8_fM8|HS`~<yhRdsM|*Qa*OSWSt<wb
zNOkE!LQ?k^Pf@nUE=c9R@yb=P%iDWR|3<J}4xSfvecL{J_-V(n;K1~rAG@M4=X&i;
z|4nmE<rch^y7m5({jRJ@Ve?}epe4aBaI8$-^1%4S+Qv7K9S*;IPR7|up1M9gH}-A%
z6%*617q{EK{*eVfQFz(4fD*`-m&mypK5G{~Py+89|K)zpx_<4s^?TcOUro$R4*&Dx
z1h_1EcrBm+vK=B)e&LL0=ZlcT%~O2;CgkzDih~1al2{Gsx)i9B&sEqg1MS2Cm!9>~
zcb=Ts|4gycZW;UQ`AxHH4&Q$~Ax5}`<Ma80zWbiOKj^xT)2&4mG*ZLc$^+h}mjK>U
z$N|n5&iCj2sd~4(wRMVh<{Ht=m-)4G%3XfJN(2GO=8h#fb{=aNIw*h_ykDxSo)FDE
z(*auMPEyX|b!7sVxs%KefL4baJpr9<#&zMd@RYdU_bxkDLdH9IkBWf{i%-?PZ>mFs
zqL=RZZR-GS3v@YwBX24H%qh!rUw*iu^rP@mthHB>j)wf<LTFa$3I}h2QOzzlcy=vd
z52R*@{Qb*tdmGa<NHUAxv`uDF?=PGA$7jj4uYD%z>;PJgqj*K?MEEDrT+9;xlJCNG
zx%MBdtCqZ7ynXAb<ayGdBJRwZg$1hopib1A=Jjt^?wDt`tU&+x&i$vXkND|qt+jRE
ze+HZdSD1>d1$)lx{Hwd~_SX2%e`{Mmz0T{l)c1JqxB2RNy=x_*KH`G7_Gp=TUbpV;
z+_|&PGfrN;$6)#={hml+SnF6D9Jxt5bDjqOt(dC4pZE11b>Z7O0r5}o?@xo}sdeCV
z+P(DI)b006bB-r@+gF|OwQhg1*XX3v=K{!W4P9ZNIfb&LS7cuAy6?SlS8Tvu?X-gx
zW^r5lYXYHd5Lbw8lfJ%I$l`U?2FFFxcR$-pyWjb*nb-f|gcx(hEw87wE>e%64aYTK
zJkN$0g;zN}{-N`2dU$N;h3(AW`Je|VwKYuz2fF8J8&I_s297}0%=c!XeKwGaecO_9
zS@pwzpHCCLTG;nBGV9Irh)dwn%0p`xu7Di#bWG^!r@I0FigzD4SF8Vb#<yjAj^C}@
z7p~Fl1i9O26{Hqk6Q}X)nnT!RaNB3uF{6Upa+7z@d%E*}^z878X@#t%hM<TBtwGQF
z1S*kLbd?x_vNe{0TW6xXbLU+z)jgg%d+Ynf_b%zq{3!Lh=T~g=tCUs3ht@3YP&<Fd
zB+36xaC**{&7y9~+$&<e%N|{=cnBVIDah7X0;v}5c3%~*-{Knd*kym&{Oz%yOZDsK
zKW~DT5sOZOH&6x#yPw`ZT~;#k_^Ii)A04h!v-ROw1v$>;(M<3*oReM|NAE~=r9*;C
z_cCaU+5(6L`(7=bS5SGQtSi0pnw9X?wrl5hwPi`RI~}l^`3lsUm<MT1*!5N0Kh;gr
zj-6jNC28)pyvOtWH&)-hH~ST6u?naHI}c7U-t)~PUb`)Oy=~!(OSLP#J^iGswrxH3
zK6MYQmy`j{PD{_fy1{kf>4t|lKPi8i?kB60J5en;j9nCbrlzx?FF2Ram^J^iLiYc<
zIl7nPe*F^=f~H?r6L9*SwDp8kF(R0}OTWcF4RyM$Qnc?@#;=Z|YFNeO;58XsV%7RR
ze=P9fap?29X<~Qs<PE=`wOm#L8t!bGX)1E@3Frjd4o^wx4Y#9?lx}SHx%G3SGGn2R
z&k<0AV&Sy_m&xFUo2Rv*;?_2%S>Ww3KkN7G^*wLmT|UKneS9H*;(^EO{=HKalNWAb
zsbgjCZcLR<={8|X{_#5{EUbLp3DJ$(DrNcei<f-9wr=_Qjy=Cu?^-|guWoPubG>V7
zzB8h~K6(9VYc7AryQJJpEjvT~_vyt;8!X@1z136rS(xq5T{(w;O$l7%J9WZBqmO*j
zvyHkovI_}>C|z7InR8*pZBa!hl|?`IZ_8%$ja_rL%V1m9$?(+s5yk&mKZzA>&;8xM
z_pR51-v@oqM}OGknxc0t%ymX&>67eB>wh2Lef!(#(yzM~WOCpB#_~A-;`%>7XPz#3
zrc@-Jy;<qZ+Nw{bKmV8aRUS&p^={z|Ro=&R`|xC=uC1K{1|ez}7jBkZEMfgm!BO=Q
zuhmR}uC12*N-j#X_BTr|jJW+m!3iWh+pufvOJ1W8wR;QmLk>$Ez4e7nLTmC1gZvB4
zZyx*RgFW<_&Gv-dy#;KNTEg!y-0TTl^EL%6KKHD|(HnnRIkg1yFPv-%ShF@tKvC%8
zAL$uFU0YXjDS-UHS#ohi^a2Iv)JL*bAgf|I!B&BVyAi^?95CS*Yds$oCamz;!+dko
zlUl`{fBnu@hFyCJ_VhL>&3n^i&&TI}zxcOehis|Mopbk|Uo>ZUtLeY>RkH0@{fyho
zWS5`*y!j}*ZSl-=F)r^O<=$ijM_2Xyg2Mkbcl@s(|9AF`#LxS$HwaIEdBk;z-n}+i
z!>w7GVXbeJ{@wH{US0fdfA<%;PtVi!F3;>f5xa-iT4DRElh;%K>-@b^Z@ax-`oj)0
z$@JiS`P?blzjdd4Pk;I4OsZ9};Lh&tiR@26Y2i)nw)HW)gm2V&|Bab%ZWjGRmt*f;
z_QGdIb9Z*!IePmDbJ6N~HL>^V=NJC`vuCg9<hR|ou0P&cyYk=9-y4jlzdYmmMDL!O
z+yqdXbCR>)e_HR4P5DQ&j}3QLsmD)WpF6{~SUg|2e@66Ik=L8P-)!5pu3viJgDX>>
zAAfr3-<tX1@>MXKjzMhNwlM0H#=T|I2LfhRw4Y1sdGuxiBg@nd^B?#2PFkXOk4;h_
zddrgROVcL`c5R=^st}@dFCjVD?c=t&9XwM#OMcwS&^#NvCs!RB46~|duaC*U{rAJo
z<&(F|ACkIX`u2X&W>{b@6P^&Y^~vf_TjyTPc=ssR8WQ;XPoK*$N&dKPUPI3+;rM3T
z->E->zd!%Yz5UzM!!s1_M_+(?`&^wERQu10X}c<-Q;ytNq#8eYeeNf>VDbFRyd7(!
zK83!lJ(pj)^{?%>?N|4nfBVlSf8D)%?ell~r0Xe_e>D3938tso``;W67SEUF_W<en
zc`v^Gsop&|NT_alvtMKTf0K{r&DgH(PrCDGk^A0+y|(9;Z-060e9SUq@rk=DqAQQw
zS+zW3dj8BroASbMpBk>LQjMSbxARxk>hn)-vs^8GyMOT(TbpD2p6~oGKiQLNmH)7_
zdwVatix}_As+{*lnhPtU^B6!GY+w2Ggq_{npR$3|M$KEzj%RxJrb&aN_tM;h-?=}U
zeZTQd^X|I?vt2(_%=KS>`nH!aEb-}@C*@rYUURy<#BbiN3h6wDtgDmOpZa!UY0snF
z35+~bJIjCEs@rZ-Uij?<#D({t{%Tj%xmPA35NNXK@BYW%KA$;yn~T|LbzhC|H`(-G
z&p*tL|7sQcOZ1%CucEy%=hnae{PSi}+dOFSZ9CMlGt_^hUai9JeIHkySJ|E$WAdhP
zV=ea<-%tDGRUW}ox+ugqU(QNyyDyR<Z@%@!>z!%UcYYiH`*HB`K5J%sSng|sB!Io=
zt7qRm8&kvIk+a{@=<K8pXoTNOlK=<Aro9RQZXdU;V`w{d#Ja>RStNfkC#VcKoCXp%
zYvtgX>RI|C=a|MlHa>VV&fU%c3IVY2H4d=wza4L9pSeH(?|1k6)i-md^Ui-h_ur1E
zu+Tg!2uZ{D)t(jWTKo-p^LMZ2m4Ev}=D>XK4oN)gb48qs#nancW<+fjS$%1H=S|j^
zZ(n!aK7Q!_KL6i;E@j<UYXc`Zo6?VF9t}4Zsm4x@TlRCu_tQ_W+Ml{z&-)_%_K$UT
zK61X_-^ae_JYDig$w)lEnT2Dm)hE-Rm-@_2N<VIMheX(V-nW<U9KEf;2rd-%ZCTCb
z8@oqWC@Je|&>FA(7Ay7LUaz%VvfaDyhw-VeS&ui)d+qw}_hx}QSRPk`X#Dox;QRXi
zbAN@Oe4qF8wrKTz{a=55h2haKkpWx?-k%g+@$OOXWC-u{^tz9o&-Lz^aYEvtK1syR
zeCORm>RP#zZ~S8UvtzF)1Kb`ph&{hPAIyu&neQL-JOARG?dOH!zy8{3$G)fj%Cz}A
zeAM-nN<VJ%>{uD<y;1AFR7v{E?(LpTOTu)2u6mPuFTOEfe(!v_>(`U-##L!8JXU+>
z{{2PWu!Nunbwtg}@2gSWc)8)Z-Z?)`aKW&t=B4`lj8~6xr!Z`E_1>kn*XRGT|2u0h
zmQ}_lY%_ZP&*qNZzn7^$z?DUic>dxRiRi5&t3U0{)sJ`w(gY5L+S}dt|EjOcd<6=L
zm7(7IwD$V`NxWYC+xPmn$dBLb*S-IL`}GHy!=Rya>37XT_N$ri9_8+ZgkJUhf5I8t
z_ho)b-@Nae{k-4nckTTRE647&@j-&L=H>PK74IIs5fThuJuNBpo7ux~$!i%LS8wmQ
z(%o>odV3DIR`_t`=xr6Ir0!`YzTf`V{QB;6JKsJ}e*5<AXKz2>_V)R`>>t;EFFXt>
zns!y(c5%qLI%&Pvd*OP<C2g;6m*veC=<PjOC69<JCU9c<rYqrp{;l}_ZM~lNrkmVe
z-?Fv$_pQ4x{(gT5&k)Ms46(G{D)jzsd%xF}lcoI6m%f!=n_s^2TkpZAU&AgP1&3vk
zc)l~&32<xUR-d;?`NwTLAqB<h@H&o3%k|Eklbir*v3#=5IeF-lX#Q<p4vk+IzGXHG
zC`iwSl!KSp6eqsT*#$1NJfvF~Zr><THVRR@sF*9jl#_g!7nI$dZz-_cI0mh$wm5QZ
z=*=~60JW$xn*|c&-|YrhTQkf#Iup`w^E!06nAG1=U^#JYnY7?Sp-wiCB9LvMw#Fqk
z#RFz$cfsY!5?-f<TvVHxCA5U!PcY-?%-JgFVZ#S1MsDnX`s(nX+v!~EKR+(CTf6*t
zn#Z@f2j$<d-3AE)vu_&L*d(8S4gV~5{_hV^<Ky1BWs!ky8@FwC0F_!fIj1zPT@yYK
zFw+H8$tL9rH-e3Q@BDD_^6UHZkKC&NRr1ze@z1s#cnfYe2e<|IGW(>&(OZ`o5zQ-c
zc=PI(7FhVh*5`_|c1J|3I)Lkgd+If3Kkj-Xzvqj5N=5$GfA5?jsbhD<ZT*D2tCQDz
z-_l~baa`H}+``(In)Kn$(Ho77!K<g$gx=fyvG&;F{}J!?KIiP8P+<4g-tx=L-gHo!
z;P#JQ<11^hEyMGAivH!gkS%ZRH@oh+_W%2x@_Th}{eJ(dym1MfFP7+CGZU1E-uh(q
zq-|RmzI~hqDwU!BKF|R2H>gy;md1Gk+U7{gEkg)jV*v|4jo!cCuUI@epUDSQN8b#a
zB-pjJmqEcrX&$(R%KX10ptGX+Tv|_3?{j5PtnT}E#k*KM+eW?^)PnjIW#qQe?d3#J
z0;xSV+px>@2Op%x@|$tiZi&n9XF!@F-?MZ|H?qAl1bOR8cK)NxS4q8>lR<gt)H;Uw
zul_#$b)zo#@7B22|7-ScTdy&{|DW-a`L>&1baKzz(Q)Od)UxB?%75?K(*JKyz18|y
zRJZ1Q>F=`oe_K5YpG~UMo%CGqnt?628&H#L?mcUF#N#g$K&`V$_wU=Rd;j+HE%9U1
zzgF(t6ZYv{+MMkND!Wg_toc}TW(}w|xaB5eQofPxiy^3y`LtR(e8ZiiGj2g_{CB<b
zw)^dWc7N}FT)O)6>%U(tZ0+nfobZqNaHKU|@7e{sHZj?kU2lSUw`SHxZ`*0zfB9YL
z*8W|2^XHb|59Wn5OILQAZtC9%D&*p;?H!86vs2`YR?ka{-6gs?*R!H>&o4dJ+e@#%
z{PJdgY5c3`*W34N_{DqxwTrJEuv-QyxxYAG$q0*m)c5lH?R}3A{bO^7)|MODzCql~
ze{%!FFPVI%25{k;d6+3dKA#C3*&fnjEZa77GJu-)in$RCZyx(HC^@GF$zEz>Jz#f_
zg#nb{Cz$CleEX=z08SEH5*au2vws6eDX4QHway)sw?Hj|Y!Nw-@(mj`7fTesb_nQn
zY4%fVN#dQU4DMTPb?5VsU87js15QfjJU9OS&HcUZ_rCUH+XPFc`&Q@gzkh4J1*BP$
z#5*$?lu1rcZ@ZNF3d939tE$CM1@B!{{jGMxBM!IP-*>jLuFYqxyZ1X_6FAL3(YrRm
z@=2KO(Oo+6x4zAJ4&p*0J$tszyxkGb&%oWpP5$iL?t5Czy}l**?9Z+D{HC8bd-v!F
ztAC8ktEAo;$zYqNr@hR0mBb6>*}bfI_4&r__{Te=KfbNM;_jAeb8olhXK0i9T7xAx
z9%}MkW<1rq)&X(CoB0p-#J{`!cz3>0;mg^%^S|HUURnR);CV>%H9{Hcmi?dJ^mo23
zK5+YY_<~>0{r-0S{Cfu0#)T>R)azed`3&Tmw5t=>pS&LDn)xot2kN%%`^*=t>^4p4
z16Q~2jrM={U-$9KQ7QfQ8>^N^OnvHY-+8=PJo|tQI7e=K?RHAznt=r<!a;q{i00ei
zXnlWIKk{7?ZyqGnKP{cl^kiqZ>8@UIim9G|UZtQqtGa%{?ym>^>ma3Vk$7^MbP%Y{
zJhA!M`%lgdCZ!wQwnMY9bpORGN2Tr@y8&vG?>&F(eq-MEb=P;+OBda=6MDJZq0bJI
z_IGxh?ts{le|l;DuB+R3^4J#_=cl>c)_eQ;ULUm4yOC`>Bq3|R56OI%#G9K84u|dg
z_@03b-~~5`<8N>2f2McL#vB|MI`O~$>do2}q5Mb!)OGr_wf_+)KIcLTm3{voY&(AJ
z@y6V_cg)4(ezU9m4R3puocF(>1>9&<D&NR<6Kvzs?>pb^Ke0Xc^7l%ud;6p-=e>Xa
z`Q_)EO3-Fo67O+mP-*Y|{&L;nO|`wnckMP;<)7bM+pyz()!z7RU9e<%09N>{)|<6E
z!ubz49e&!nb^&O(f)|o6_nzPOFs{1&zwu7R=f7&g<e#kHp00Zil3XNy^Cp1P<v!^v
ztJha`-}qLR8LysKKPPW%jNI?vOm&Zp=I;1#=IE^h49?wsC9eCvwJ%)Ry;YUzNSN-?
zRW)xLor}e@XS0IqvYYd79Qys_^Vg#4-2I(b{vE%uuDCvFF{pCsJ`uZSt+WBCoLl<+
zr%%AvDd&%W{%N&+`igIV&t>kG-@E<IV|BfXM@m8B*~T1@Dk0wOxB1oEv#0;9{rL2X
z@cQMiziG3+pB@P7;oeGM0;juu+ah(&#(r^=dT0U8k#E8mFTcJtHYQKl_N~$Tnw|Of
z8vk$EGg{Oht9}7)&zK$4xVB96`Drubc=3{33C^<o+l})#Fy<s*=1N)Nv*+-hgKV4n
z&DS!tol>#d^S|%*`gQrjhRM;pga6EZ`F;MxIgqyQ#%*g3fUAamlX?Qz=xT#2?a$w&
zPT1Ys!~`m=4D#1EzIlw0IAFGII=Hd$<*l^D;)rNR2Io{E$he3o3n<eh{@?Smw90P&
z?e&6tAN3!)Vx9i|x}CiFMp#)8CIGI}E`?7r?An;mEEJ-24?MyYt)l=c1+8ZYc5OY#
zqy*~1-{WDrd0bitY{Rp&3KMGg9ApAp0hLeyRj8N}w-vz>ps|{b@=PEL5^n8aJb3)J
zB7>94qo2=vr6<(vk%U^YgYo8ZX>quQt%Zyb8&Vi=96QDe&ia*;SySZmjTt}{GpJ2)
zY#xILs8$D+-M#O@WjDyxrdj<QQ#;H-Dy~J?fJ_0GAIfjQhOCc$bNS9uspNKWpM3pW
zLr{Y2kp;*7H@ke!<lj=Cx6Yfl{Pef2mp)hCl->hxiC<H&2B(NUS7*iExuazh|GmoJ
zD!*3my>6mi7Oyq5J~*=pQZ8?g@tn0QV(}YjuD<ID%GH}7x%!=ziQ?;zH}1#>Tzf70
zY4bnd_v_E|Nx%!5Q+(iZqV`<weS?>G>iNExT3$8hU;nm#&%5)_-|pPU>QM;ovPq>L
z2an{~ow~p8k5&Bd^B(cD_gs4yI{Vg^zt>)U{ddnH6jsH$LCT4z{Sr@)+Z})W5uCA&
z`adcEuCM{uh6eqg+_xFa^@CbmGu(epthJGom(-g4$^cajvU*%>=Gzhzz?JQp#eYuN
z&6>d8<fS6zv-l5(om`rGi-*hS@5^7f*UFdei`gE2)-JSSUw-xPJL_KmbAJ6h*aT8y
zy-MnZ2G*te))l-CYy02+{`YIy>q1-mxZCDT=g;&1e!Jh@1=N0VU7~kQ!x~(ezKO26
z`|b3pZ)Q6GRAT<}zg`@7p{DG|B3Mx{K^EL<{kHw`*SUwxO!mg|nTY-<xm%aKVBf2?
zu^zSi=PrYlE{<g<)>d_u{=CMPV*@W_pJtn>pN(A;SOzYheqMWF?G55V%9o|HzB#X&
z9$o)`&;NT5Qdb8ze}C(BKZqAPc$mby8B$|?m$TI=-`EC;jnx0McJbQI^`D(rU;p;7
zpYF%secS6jYYT1}^?yvB{MfL}V~tdo=*{`d@9$RsVtsk_f4?tk`F8o+-|qbR*TxrC
zLnprhN2Zh8(c5jd{m<XtYJdA{^_l8_ZS!|L=<N20UE^2=c4B3J)!%#4QlIY}g{2#t
zS6_eUEIeN<o;(c_H2c23W%LF4sYf^JlIhFCw|WBBEG%|d;j-vpd5rD6T@lG|z@^5g
zt-D#z#;&<o0S<|o$A3($wK>)YN;=?dcft~$?U)~dv)y02E#LGTe%U@Q+HLwh{r0Oh
z@w?5Kv-a~}gjPJqS}c};YJeQ=lN?8-p1FZiN&VZeZOinoX_y}aH6CkT|BjuvJ7V!2
zuxB^bWNy!#w>#o7jQcYDW5v6q-eO27e_9&f1!@;ufK<7a+8tGl!S`?NeRunN!1?OE
zY&&A)=O5>XB(--*J|&Pm``dV1_})|d^Oz2<j!V6EeNy=S+keVz^POMM@0JDE6CbV|
zm3nauJV>+m%-;XM4wY5@%#qizTX%cKh3B6S`b&aUfg1YHAuWpaxhk&3;@NYg!R5=o
zZP}7%W7ibsLDJSOJ#&-tjmLI^EAXdlz21tu-)^5%d;i3=AOH4TJO1nI=E<7&g){v?
z%{|^?h!gKEv**xz`*h!Fv$u6uUR_b&_;$I}vHqNm&|th~VGb^%mT2EOUU}bm)7_iz
zUjO#)t7*0Ni&-WtK5>`C=R4r}fKBy3Zkh+xe3_g5OZ3gRlp5*tDZii32NyvPS9Y78
z>jgK`ZZG9j70Lb}C7?Ai13Xx-m<g`aroWqDQo6BiiQ(3)li^RbqdhL3IVv^b*qK$z
z@sn$OMa){WtIyV%v7Ni_@)$bIXQ}{cJ^hq=w6Xr&zP;CX+TWWWFd@4GT9mo+HywWr
z9_aYARM6GxTI`;QudDY;#Lk{*-rKnP@x!u96%{Gg%GVEoI)Nr~d^yPuR-i6FsA#WX
zz623I!<&=rAO-G^x9x1q<?&z!RZN!*%s2EhW`YL=q@MNVq@yTt2i40<67v$IAD;o6
zaxSgs5w8hE=L^#f{OYqB7YKc1`~1SRp|>#&JW?RFw=X4qj--H=VEzQR^^Lhb#t>63
zX2VS}sp8E^o+Al%3q%Rr#NNg<h+Fpdy?NZ3rm(_g&q13i-h|`@mP#&4^Xz-$m~Tp?
zv$c2~kzRt+MCIF(>1?3>3|I;C*@+8{I{7lcNZn``KI;Ig6f3_-9XRG-tl*+F3%7}~
zH_yE=Gzd|<mk1iAKh~lQYeSe{;s#~rANNjJo{rtKFb*<a1Ln<H83!2$zb5{}r1WE3
zmEtx~AOC;X>n+!$tM2?Rzj6JSef;`d{cGuab5_02UN66O`aDoUbRuR?V;p4Ma@y&`
z#p3x3Kxy^pt`hZsA8lgauYb$FEB<l&;aiJ$+a<5t-tT(OAChD%9`6AU*j+ll`TX{8
zdU<!ZoISqUc3<A~;`@6NX7AXy@A&j1;FegCc>Wx5@Nm^OyXT)*{$KZaTYBA`{>qql
zU+qe&_SkO~gO=`l1QWp?dbzp&dg<OP={LRaU$6Ln_xAngyWS_&+?;;{Zr&RSuzCB;
z^Uf8C=TDIY^Df;m-OwBO>_EWGkam+Y-kjtqka#|}t}(aA2old=CD3@@&9=?(6b~po
zJ(90ae9L1DSHi!1rm~}|5bv{%*$mRn#~TDXGyd(ne0*D_d+mp<>I<?>df%P*t~J_q
z*Uq{YGK#oF@7@E$BcSpyr}maY>Ho$>Z?Ap`)Yp%{e)?O`|9^@fV{eJVe0eb$?8~3b
zZ0nPy(?3WAfrf1MJ(In3=cu$zAGnPXzqvQ#-6LK(XK)|()7twB7VYddui}CBrmF01
z;?K?ATK|6klFIwv&hF}ad3rBDv_^Z>3)NLupKWhidAB^N%0G15k@wX%^Z$HzP0_hG
z!!RXe?hmP&+!@oK>D}942${6-Em*#@+dK!<$xDjeXZFsiSUmp@ER-2e7a@3y%RXK?
zDsA2dZWh1g)lU^kH<RFi&JXUnm;lL&No<=8k4Xzc3#dI4qd|G=u+iUB=9_vU9A_zh
zwrz$*-~{dQ_}~FEx4cHsI8UaH#iqH8ks$TX@+(q%9{HSb12t66EZ)Ol))vVKntqf$
z!*NvFniZ56K?4W*E+U{D{bA`|!HidrcsraxT^+A@&tn?*4AepS=wbHzu#9()dW(;N
zo0qw|nu{$qPX}kn^>6(S1c~Q=5dsg+?lTMa4;Ih=Ae01(lzWSd|BBB$|JS(X_tVJv
zJljsZ?>&6{g$%S!`G_~p2^>Gyzd3-Sr$VwAH0%O0q8MZ#I8mbUwlqul#_oCO4bG~S
z{g(gl?YB5kES~;L2%HMOnY|U4do?*v{_lG6Pt%WAz52bUeqZ>_+ZRCfNb7RFdk*SH
z#B^WI+GD@=_IJG(Zs%V9+F}1oZN+^5*8B3;CW8AADSG!BGI-Wnb(wk|UUR_gm?bz=
z<9A12xN}tcWed1ry8dmeW3hPt5@CoNzp1z&c)x1r8g|JU_Z|o9t3UALrMl}!H>=l6
z<8G&Z`)Axca}}uA|B;zutvnZ8GMm(K<s>gL1{M2?z4MuFOT1(Omw+FG6Qog;2!kSN
z!ZH8G+@2C9a1}tLDb8?<-W*=(2Pv8BxDt|A2n#3)o}GWpU-_owOBPUSSOT#WQtbW_
zxpB+`9RGOTwF2fY<=+*ngh46UpnpEo4T)Dh91}a9`#)apVCH7UxKQXLTP7|OFP|uL
zvjT?~SV=&7$_k%F&QkWQ-yVjj3xN7+a`vnn46kr<Oze1eU;pK+t}EBKAJ5(<5&ykP
z^H0=k&iC0?ur`Xca4UG!!{icIPO=X)VV_Q(wX33eIk>=`)Rxki%QMdnTtg~GCP+Ik
z0>{I8TP08$?*u1G?|AQH8s~h#mV^3_70ffh#n?afJ$vWrUf%Wp$(tXFbAE+et$qGY
zJLmWO36Oz{(vQdV6~Sv4zR#Jx>rYM0FY}vU`>Lzv{8Blv?Qh2KMep8PUIryb&<r+1
z+8Iz|{AI1*>#sHYwtn9+JMq_x%^Ph$?fl0Z*Z)2J*&k>t!@PkLTyoWREzT9)F>ijY
zT=m|2>(76_wg1@uM_V>S$Lt>QCP1A2zBuyszUJ+@Zl6ncm2{^6{(WWnj?b@u)x3*e
z4I2=-$Djr-x4zh!9{X8XnPWU_{lB+gw`Ox*H;XBV%74Ef)`)}~TK{KH{j|#8M!&08
zr*F-?^slC@_KNk5=gVKhhU)WIKy$;ggP@!u0&1de)r<dquJf7Ry$_mT>-PNq^X~W5
z%Xf}SXS9Md(w@18-)~6OKO3`$G4cdxwD;!yb#Z=oPyD>OEpY$5_~ljVtNuSW^PU9{
zi4tybNc^te?munY^bfbpO>g|lVb1)T^zH8**sxv2;yvId*QW0`*%`LSwtu%>v;Di(
z_KhEp-D`)AXcazdP6o{%p0YW?laM?`9F!0KZ{5x68@tCb4m^i`^LNba*~`MKeRsUy
zZ@la8kppi-{$Kg(`taMo6%BK@`#jfGD*kw^LUHq}6W5<)C(ke`2k}57H&3&_o6g!@
zk-W!n`zy_BPqXy}k>qkE|G%@p04h6rAXWN4b1P8gum#Hd_6=02WaxuKt0p_yY~JpQ
z#e2cN`Ly=#nTmIhdcQ%+VEtari&u_Hzi9>6Bl)~cn-M&_zS9y%rQfoGixI_?1o?B{
zm_Q3$o+&=zD08a@R{@zEk|&NO<h!hJS>!0?#J0`w2Bao&K5@W|ts0USIV5i!OV9^Z
z0E)bd%(o@pKuvsdqRb7Uq<!<=i3@}}***&xHS}JLgVbM6Y?};kaDxUcJe*G)SZ7{f
z(grpk)Q`F+p$9gzm&bjZu@OXAd0S85o`pA0faZow?s304%oz?UrySLVoj$e&f?XV6
zCG2S|o-ZH@o~r+4WaRd-%?<3(_}QhP+Sf!1Qh}811Qo{_BGAG)SNd%1o{fQ!M#HUh
zVJ77t+1wSuQC02yT&KKH&0TRTsKH;Y{9L8<qnkUV<)<H9oSQu7_TJZ9=iQQc{_W(o
z&ztNc?xjLT$AZN3B}|WjdUi_=MkYu%F9w$&;5K$8xM<#2wtUIXZu2M5jH@fTxWaiJ
zSkd}gE3aa4+cQ%Akk*O3!INK}fqM>KENlE=VJmNc*<iJmT%J1bPPc8w7F;}2JIg(s
z*Bvlpa|gF#FHO+i(0ectT)RsZv2HU&Q34K)%oCzFjy=!-2QjgxSivo_n<LBG<aI>)
zjPp7MGdFi|$Y-7~oiz7gpu-B6J&q7dr6jc`znIV#)0oTC2lg*Mce%Mk-DSF|KiwVD
z?U<n5(0lP>hd^h=Ka(e1Dai#Q;BE(+iSv&`L)PSp)Xj5nKQY~wknIHxmw`eC#lgpH
zzz#nBM|!n`S(^={)=?0>am+&v6ds8)>yu44&7J522|sz(ZHAL1!CpD$-k96t5BAEx
z2_FMrB=e*~3R5Y0P$i@Wsf6TNHyApAE1~xZZW{MiD8rWm9TNga4`@)(+=&AeYv7c=
zLmp)9L+|-NK$-PhGdQz?#zOZTv;n!{aQQx$=PSF-r?G=)*-vlZCIw2#(?G>RR_s3W
zw39{R`8xd2lzdeGZ0w$kHqex8u4z*K(d{#MemZq#eY(hvV-m7p>$2~ExOnHN^pa+9
z8N2?jdB(d(KF^O{0nJCO*W}YF{n++d0o1*DlI`zoQu^`OX9ZB5_0%@*>+b&@%x7cw
ze1utYS`LXftKY3yJl{tD8EA^9=Bzj<h0kLL7s&BOo|&&6@jiD1H62e)KQ=Mr)uY~L
z5Z<?GEk<4DZtU<-IUx;l=0biIL${A?SCrtrGe0)C5(`O?62;zqjJG8;n85|vMe_uC
zzbTC1g6!gUjxx4W44}4b<`>=*$1EaUzy(<?^EN|>DISaS511W037H%J!h7QwvWe<Y
z6StozV><;`(k`3|Dac+(H}p0dK?<^3=1qovY~X@yasGiix&FzF;HK9L=?%AeWqM$|
z=oIV6Dd7BV@{27ed4Ue3Ik%7TcfleaNSkOM;|+=bOrQ~<asy?N{2$!l6wh{5>9*t*
zCXf$7^W*mdLP2ex!_)PIGG9IF4S|H<cej5L??60Id)a$`x`EqAwgq5!$N#?8`AqK|
ziwJlPNlktQXuTSP2)LD7^LDb!tX&n#p@!SCG{aPT>ltrLtOVP%<fDFq^kaXpdqIU(
zuRYjP`@S_S*x7CVj|Cj1r~g#9OkC@>39{Dku)M*lubzQxJ}y7~>vdJ#w)KLAD&DgF
z+b6qiRk|%v?*#I|l0e-A`F@aDLb8`uh;8UUJ|8^bpBch^<M?BL@Q9hoD%LlTKdOVq
zTb!k?GJX5_Ll`uurr4Y1y3O!k3n&42ERH&0Cs)q|ZlFPoR0M}P$Vm1Da3kG?1Hc32
zl_A^*jxz^zfV!C`t3*#8`ymV(-&g3(V*Fk4hZD3`bAsE}hFTjG<B?sA#dz&a{OSuP
zfQLv{h&A-HFJMp<`uHa^g!{zt$Nu11cXXe8F8IR<n$nnn9wPh>jG!bA4iPmJGr?;?
zahutdlMFW!<a`!znFkJ?P_Xm=C@zk=@VtV7s~9xfkJ|$6NxdJ{T|gr;+mE$Hyh`E)
zrK_MdUQ+*<zI}8M1x3KaY<`znyCalC!Q+sZu1_-TG7V}4MaPe8dnYZ`yXGMZ9*h1m
zHKix1*B%^VzkYBfi)4pr8ilA`1&vrmB)fv+7`z^V0jva6Aeu5kqV=)Y0Xw<tj-ZqR
z>UC!C0I!w>PghSiKulM!g-_I&#x;R59;hU}rU7668j&mwwq@OZW4DcNIt`#9BJfOj
z2YBKLY;+BHNeFms?;|TDt!-ua_VEXJen+u4%4M73KF9?8VzC2ua`E74tR;cm3G)5=
z;K`axD_A%5ABQY5$-KgJ<2W-9*iw@$#y5*O*;GJbX_F;*@E8L#XuYs~ZxqANiW)}H
zh~fk{-G*8l6yw1T!)?6Mrd~!ixGOKRFoV`bC&+DO`0x?cctP;c9IEko{~vFMJ5*^?
zFS36bm_cit6?>x?erGf>f)*hg^hYuLsAymm1a<t}bQ@}H_BDXQ*kiHS#M~Yvzqj)u
z0+t8tesI7VKvpEQNi@{1`3PBYVtVgTkoe(8$HBv-`}$e}bRNoqjK6<1%S~fi9zVxa
z4-=2Yj0fzly#=pY$TVTNaeS98DA6hQvN8OQ=mk%zfQ<KsFjac(H%(n9-v=>&{l|Wh
zqd|}Lzy8YK8~5(^y^fD%S3VY4Z$8GK;|x)MM#_Fu|J90w6+Vj&ulcA9GZ88b3Rv92
z%(nv`gPpbcSpS=3Q#nv+VUYdjgk2btuq9+F2_(Gf@kCIeF!@;jgJesvKkc*sIGA0j
z0B0|V?d+hEizwTbe@FCzeSb#Eegps83UInw@=^ImL?3&L$C1zHrR*p5Uqv<>rW)j7
zsLxQnV2SVoR=0ZCg*_Go^~Rwd1{GNb*?$h0U8#VY2MR!h7fj1Q!p`Z&ZW~>|%)@K$
zDE~f@;tpyh`kb<D>US-3>2NXmzvd3}%?angM#r+J^(1*d2e0&soZ$X#qe363BmrgQ
zX%Oa&)Up)$*LT2q3RGOYgfJs*`*Yl%yMc;`Gp{T+^_RXo0UC~sv~~Zs@mw#+j2Typ
z;TmxYvu{%@0VkfcuQE5?-OR!HDd@aljZO)8J~jQT%*o?c=Ac?4A?*Cb+BL;6)i>Hu
ztbzD|WZM_Q&AWNr%G@AC?P4OTH6US71^^4|ptu!0p&WFcF^A(WxJHY#b^r7;;5l21
zmx>f5O!7bxa(K-=<=+v=L4{3t1Mfm<a0IV@e!|XZS0kvOHo2<rLGnUrP!_dc{oKRu
z+D>qsZLaEjlROup`r1xNwy5IEaYnMHH4l=_<|+R^@xl$923}b<^|$7M)4->tzGfA#
zk~ANISH2m&esjP~q!8@f@*dZDyCN=Gf~UjIG}&zGUs?>7&^e*}JHiT*tU<!6VD+H%
zW~fsL$q$>EZ%jBM2x{zYKG*jo*;NKq%o@CYbHXm{2*i=+`rahF%7A@}Q}{sGtt!Yu
z#urQ$laF<)m&DgyeSY%mmHzhIfyWQORrzVNNp_($c#!Q$ae}l{IjAM(Jn4L6F2`MP
zQ%Pk$^KF4$;LePv9Vm@~N4zK1@Z~ta0MA+wXG8$ph;Iuo^Mdvn%y?SNAnj!ip4B+{
zeBv99yA7bp4v2l=js=P(GB?^T@Paaf$0tir48xu51xjo86i+^%So@}g8Prlv`zdpv
z?UJmZlHmFIPl^?!oy<X97KM|~516%pVsa0v|J=7Jmmoa#vJc$g_++_(e{LSAJAP1S
zKJ$%$UEn^Jrycty#S&)F0)7<75fg~C3jrrs2sGw$B1alCXi*)CJ8=dg+=z*9HQ+}4
zzVNb-WvYh>YD_tpwd8?&#VCmcH4tCG1CbXwalzb4Ogs=YVhTJeYhS?P-KI%)sWfO@
z3l#73`&-|2fEENok`&$~j1(}HDc0~Lb-=D<7kE|&lB9S+L$Us!EGO_Tlm>TXz*z>1
zuas{K!qfY<g(cuAMU|g2H`@I`#qzxe)qED7u{KMk!Se^djEtN<!oyVg_QmyJr^Y@=
z?RoU_`b1Du&r_6r+roHABGux{ao!Kfd7&~l+8Q94VwJ@Pe%>5#dfk3Z#^c!|&AS3o
zB}=p?fiplkxTlB`VMOHWsVQ>(5IbxB{WL!+ylef}+Mh4~?D*?5X(wp7=H&B<Z&6AK
z5^^n4f+K9iC5Rt!<;ngO_ZQ$fR!|VPU62J2Zs3X<l!6VOC;Q(dFP8>)Sx-M_Fq`rY
zJV>K5pZTW1F7S8?aYdgOy!1pQNl;OQKiv=$h%^fUc+t+E;|(j%L772TLTmD?2}A`V
z+=%`h_m_}_2~O(eDxkF{R4P5;mXKcsAsMj{Uf{oRhR3_$8;!f*`3^|DD?6zQ@zSaE
zglES1;Dwp*9(g_jkA6>TDNB%^1!|!#au&MP2uo9-Et|_rm_aN1CfD$#I78BYjpym5
zE4!C>ID-eHuFG|plz-gv8N3~El1OEO^es#9;F9L217=%_LBnv)K~EZUJ3#H#iuNTZ
zn15doW(T!wYT_sMhsu1EaRM#roTS8`;%way?#*=BY~Xz>1Fm*)o0kDI&wX3a!^hwa
zo6bQ`?Ef#Txb^ev_3YX`dawP1o?QKS{;i6u-6mON^D4nD50InahA`j0a1LA+dQN2D
zws0<_EK=gnakgd$wU&u9Lf|~ih;Iuk`M@m?(MksCN0#80hvuh=Z!(^PTOLbJfb4^m
zVaS%q-DoQV?*;Kd3xY?mAe~s7GY``8aFsjIRsrfEou4mKsUUsJ65R4Y3v{^u+_x=8
z@{~<KxaHAhvw{C?F}NgObAtJXz<Ef^V<P*eg>xY-4`jy?6Nt160eGTn%*}+wJSY$$
zEe~XO;tWK%5fk4cCq|ooaLWTFrX0++fYz_=aYRWZsDWq=4@8m@D{?##G~x(6|I}u{
z;@z%E_M;5A<pGZON^pgX;!aSwz)~Wv#QYJSzvO2<2an5cR^m@^wqXa2psKsdooFlL
z1CLywrNk}^Q04{=M^!+WiZ9<BFjM&mo?2S6nfdnxA#mnCV`bgI>j`mZNg1qVykN8B
z;)+kEU?aK@_XOJf1h2<Z?0j^<>`6AbtPncdn0o@UVoRlq`St}!6U9@6{o6uaaBKcW
zij&4X9Y{qNWj=v7)JiEt>7qjB-2-MJko8)Zb~Wa%fUNFXQp$WgU@0UpUbAgm=mp8y
z*JN*c-9PpiEbj99-hbaqyN-wJeEhN2&O83x>&NMrwqN~NVD0i+F2{W;xSkPMYrTOt
z6ztf>jJq)7*%y_v!_4fsCVQhz3*3BAh$>HzUS$IEWn;$O=C=^HKox^qXb|JTi_RRj
zygOi)0(Lm_#a+z5FHB<t6^<!uts8hFr9koQzvZ1{Sx6?RCCqqn7sx;0k^`rOD6UiV
z2K%_<n(d9_+e|?7EDG6o8FNlt5(Evny1eE~ah?ip(V#mC5|+#tcd_3Ngan|=YrY)k
zY2fxY$cOT`E`gV*tSM#Rpy&;*Bs#Cjo@mqJ1*IF1iop^F&{*%d_BSya9xb3yYFucv
zk`L@H<XA>T3p@-!feuY9ayjnP;7Ni%_oWA@-A}DBz-A#|jx)@4)f;3(kzDr@l<A<!
z3L49(X>b!P4K~(hc!R5rP1kG>^g%L@dQ`cB^r{k2@c~U%P#+>$2uk!w7Q#{~`|XMF
zB=N>M+DZtN0U^l>)U2snRLZ_-p%=Ic!I?@?vW22IJX`SRW`b%Y$7{QoZ%kMUu8~ku
z>7WUN=$E%Yf(t{%%)9gJgKa{8eS7`SDt`Oi{mX9$9=G2<dCR*KWsnGUhLlK<4i<7T
z#0!gCm9^5a(!(Rld;>2enkNuv1SCCzjA(~s@q}x;Kv^6V7yp)&x^G$xiHk|sK=y$%
zFp4F4u+mBqtq?r{D@5JDZG;rQGq&b2NN*}}>2R^BzqG3{XT>E*g9c|Y+XpEU!S+Rh
z%TJIcc3YN$C#pAJ<4tg$#s;o))=I<54zS|E5dx5+yM0M1`?jU9x&su5pnaaDDDK1=
zh;Sp^w<$vk<4M<eVYvo1rkHOAEQNFekrRpRP2@m?R6?LYM5^v;t-~N0(i2%D$f4k(
zN@cC}CTPhqVGGEiCEyk?BvpdP-q7kvXsrQps1&%jntfOB&529UBn5IPq}KvYQcz2<
zCt;9%;BrVY^X|mA@FWGQ=^$f1;3Q=NZX;*jbufd}bdI<j*9WVTLFv6s2hs)Kl9vFh
zjv`;P!K$Ol*LY#I+u#X-wO?{=<UoBJhb`~^-d9;$U30YQc>MG0KR^BQ{I$*M-%i;@
zrTp8Ldx85Mph{Ucv<fuD4Q_U<yaX?!y{CeE3ZQy6dQ}Oi=>%#%+zwg_tqE*z%+r#E
z+H+uA$jgHPGhM)S#Zn}rBdwr~l*Zf}m%uqP@-<(A_cT7x@RNGfcZKRzCGd7f&{B5L
zL@TI7pN3*IC<Wm*y7?`N(Q=?=i=etE8pUX+t7UH>j6V1+<R#o_Rd0UKv=1mic%!Z0
z?U<97;5CHzRB(e8H9**J2g3pcWV9`4{t49L+J<5@Jgl)AEtletZ1fk<2t8_8gN#NF
zYq+c7Vg38CSt!CYOTFqrgC6J(fvdLOpc{&a8F-}2<@is7N4oU3FAAVV8K8P{(o%Ty
zYnqlUXuJ^BXu72*Bv+qAB-O*yz@6a}QQsM=H<f@Ee%N2!#e6epDLZK3gUIv*H@f*P
ziqUeQ-rI?&a)xLWqv4GYM0x_{0%**j21q0#gP|l<Xf7yMKqOUS(i3ttV#{E13I4DQ
z1~U2!XrmOk1qRQ%vNz1#31)As9hkj#!EyQ1-)1kWuzpps16-6WhSXc2U~ba_7nh*K
z0j)g1=@{BU!r2f$2yMnd6=UsvU~6j19%zF#HNPuZuQCCRP&7b#PvE8yP77f@Ik1Hj
zAT^uIYq>Yc(crph!q#^TW+^X0Bd0WNY9hCO=@bU}$5A>c(Bz8L$sFy%jCNrj@e&mV
zZ*FgdG`>MqBBC!2>i9y_75}zN+o40Jmv(`MPFH=|`%m-z^3zY%Gw;6o@w{x(H6j|H
zgvVM4wqJ8mnuXv2kTX%{umO<yTi$s<2SA|BLU8ectF4RL42=Z$UqL-7yKTswjy_O3
z#2-9>Bn7H5Aq`_#Llss6IbYhP3>*Id*$3^Yg4&)~`&yueF<C8mDue($zH#<T8go~|
zdUT)>4anFjeOmDD+o1Ij$(>N7{u4<?K*rQSU2oXnN7`EJCRxas+Wakfu)z;#k^*Ik
zcC>B~bl?c$WN0VHdXp?HNr5{Zkg?Ni1pBe5-5|K9m~T&53a(I5`&tZUDVd;#5^5)#
z#6YB32u$7AdmP$e-}`^|lG6V55z8L;KQFEQm$Eimw*EdJXw;B!!yCDw1aIDf(kQf(
zBbVck+zP_p@YaDhyv=f6!UrT(y}<+7!fUH1*oIoc8y+h!HG?L(K@AT={U_NQ)8IxQ
zEJHDxAGCH%c&+sWT@<6CuI9^u8~r_@8mVhG3DJLQ)0G8vszD8zZ7DB7ooaAHW~moD
zXqy<QlY{60G{1#+06<2|fu?RiB|37iZxW)DgVkvMP0NvuMznWPjE46ukd1~nO8+L#
zM)FM1QhU&mi0BT1tH#kK;@_t3jnvz!0xcZ_4@gs^BS)3=gw(T5LG;)Xy}`2@DQl}6
zY$L5eV-@o=?l$JEyu=JT_>IW)1ULHNHx#4!K^sUx1OB=wMuY1SoJOPeM0DUiTdcVN
zIjItpo{*yvo(m2jjOO2<4$EL5qpLtC?SfnOB%~+X8(#P4_3?wIR}I$g{y%$7Y5l&W
zgO8_wei}C4aMHfDef4?mnRn%3Lm>uht2gLEhe9&%Hs?ZZ@_8)>%Wnx$-xFXd_wp`w
z*igufYkw1A*$^TO9>$n)%@#J+aA3>3gWI4nvaFPUTOuT~1=dzKz+xoxt~@LYk?s&^
z?gTl+dRqx-ber+wF7_Lfma>CRw3&I$_5`%o4t5B1WCG+6Xo5Ca`};6#ECeJB9SZ?D
z1Ug{Rka3qe2bzU^UdyFG$3jp;#2!|hLWCj3DI`R|g*iAxAh8W{2sE~t7nSmFfEK65
zYkxa`3wa3|@?{1&WT_W;PzK}>Sb0TE)ZEVrhLr12hqQyHVTg%H<QU_>JsDEyft=l@
zYs;ZEF~ecYJ4RS}x~!Cc6SO=<bsybQ6jDU0LJB>QLl7}056eWxYpW;dhC(tCG2w@r
zv^PNp|3DGBVJSQ4V1SNmwg;x^$b#k$&u@9>xD6%7z@;z9A&3}54H4*Q2*@GO(GZu{
za<DPM^r-Lf(U8l#h)PkAQV*1(u;#Jf%-^6jASA~4K`U`l-A6dH+vhCJfBX^DgkxV+
z`u@LK=H18I(_a2~TN1tfZvC>`fyeJ}ci!?2Wk3;{c2VnEq{auRuEkOzq87Va@M4!v
z1B%duB(S!6gDlE0C^Kw27n=2PR?Mj5!YPPxVQ8sGOg)6!uE8-b3@uPWQ{-5UZho`!
z5>ge1wOxZ;4?)rqXzU6R*7Y}*p$PMX)}ew%x{yZw_F1DeTfjvfsuFUmW1@lqS_*)I
z0a~1+Cb_{=9nXW5{h$yw%X#Sto7aYx{WNXwR&TIH=>QOFr9*2}P&6XiyNs}c1T_7;
z)C*jYpoTRO**p5>?aLnz2F$ErUsn3Pe)86L=fia_fBd!U&z^rNwcx%DsMrghDhFC1
z4ywPZSAA&*^(jF0mp_UycuodXEC+)c{*Poq71caYi6Q*{z?OIXw?mMH|0b^RS;UO4
z8q}-<s|NKz90NKlz_qcuH$P~`6jU3Vg}!VA34?0m<=|O`7od{%8+g74<Ok45H?)lf
z3S>~r|6XI}UC<zUGw3`MpV$93=thIu;rBp|h&LxM$%A?~peo50TqWIW0I3FdoIdiQ
zda^xt6{tT26`uAFJWT~sedAIyXcrHt-teCWn(%oBsyC`vfrh&GFrs)8)T;osMD{@a
z4(e5uK*JRtfRhm+)d#BS1@l2Q{kN2tjRKt+b<0ZYPb|~21r6dr{mu`Xr$P;GP}vWS
zRvbZ+zil<BIdjAsRQcG3{yG~lGlU%yuJ8c7{of)C;TA+>BAH%)V;M@U@xyB5c{;WN
zN`hxWHS)I*<XD564xS=Haw2Goh}g)4N6)_vzTh@8B#u{Jk_SziK|F+rdbn!Pgc3X<
zTZ1Q*_Ap-DWuFj?5^L<BJ`QTsCseOOjx~1B22#`j=f6D#5mJ4+e-&4_ECM%sCxe>3
zi++Ndz4K6F4ax6VgGAjM9wcSp@(C?BfV%piMieN;%5PhV5}AiVv!7^@X^Rw6ClLwx
z_%u1t(oKb^@9a6JE-{1l#ekaB{!{;fdpV%=jU0dkvi#pf?b>Q9JJ3XIz|H>;pV$BU
zb92AV|3BO7|5*P0vwi;8=kM$N_Rq8b|NXgs{XcKpPv&3$|K9#~zs}dW*VbRZrKedJ
zch+`S?yK(>+hX&!-2U@9_3zL9r|18F`TYF9v%i83>wm5HUV61WYx(ok-}~oRy<h!a
z{@)k#)ArSK|2>-j|If?!_5Z%kpVqtU&a3E~x3l-IS?|Dkyl!$)>}%WCCH1kl|FfR5
z4V?G&%<)~<j^A6*lDyw@r+MqQlH32@%V|uXd1;?Q#ocScwTyoQ9&Nn8Xp4U6yw{&=
z>ehb$tsLMdy!fBx`{|cg?_-ziDR^Tp`Fz*9<+op#tjm8s@4}P&{!@N`y`E}o`zpCC
z;LyhVORk(=v~^$f+VXwRKeN_Pof-80>iX+1<KipWRb_tro?84b^wr|k^TglB${+f_
z=Kqr~pY{E|^2N#j`|BSNzD+N8ZDIYE`tR45-g{ECs{H@&m!*|=Zu#akL^J={Tz@?;
ztMVHA`M;t1pX0u6EV-pozx8kX_4Qx3+QnbLy)=&N>;Dh?xBo9#{e9ZkqS`G5zw3YO
zerq37zxMm_ua&#*%|E}m{-eM3<FZ}$(z}<v{{Jxl-v5Vt;^tp3{FDFv@$+B1cIBPE
z)c^m@i(h8HLjE@`=YOcb{r`q}^?T)h=>I$YP5ze9wW*eCmzVwd^6&rJ{Hg2K@0#&C
zd9CU#WAFdVOLhOhiU0fd{{O4>zn1U+vAX`p@%oSc|38#J|NQIE&+z}rKl#7@zbW7H
z_~hf7D$|Rvcm8!b_%<frMD}_8x7VxJC0TE^-#F*>;%8rKVqZ1y_&Zx{zn!8_|KG;7
z>VH?6*R3p1Jka)7tgQCVYww>=BjqdJ-Zy#kb^C^|vv%HX_FK<s-B*1hyE?2s?zQsX
zzq9|%_{IC?=RG;E>$h_c^*xr`_V4oLw|{oU=7V&7HsA2@=%eO4{hTqi6YJvUuRr&D
z<%eI>wiI8x%&=8_UE|B;-)67ve;vQvz53A|xd*SGhQ)K%|GR$w-=F96>nrwO+j@QH
z*8Qh+Z?BH&4x4{k?(5GD`yO1ie*gdH?*0F6|NoKy|IhRF{{`LVXSL*BTz+zSSKZq6
z-;Q$feA%-3wez1!%l`*9_*%!!FRe@9O0%xmwf^~A^GnC4cv%12V}I>(T5^wO*VmB$
z0;Z>r$uRT1UYT?)cyG^-#)r*izjm$L9&P_m?91(kr=OO-|951<%G+nJq)&ZbdHYuW
zi(|Jx-v0e3@yWKw{Z)6%Zbk8CZ@F7n8@qS!wi$<4=Nymkzn!TaeZTE`bbaitUvYI;
z(=TTG|Ig8`+_f+2mwWF|i~VMA48C3a)>O4l-zfS_qTssMEBCopt-YRm@l|SQ?Y!Li
z*RF{E2%Z1n)#TSA>3jd}n)k~1Q`w)m`GNZVmsj6Yzy536+nVhA<=-DK|Gae{%N2LW
zz438={m;vOe|MkU{CakKRsL%2BKzyozg|9im%8?Q`>D0{3%;#;xH0c|{(iahpT7o9
z-@I?<&Uvq5pL}Cp^uB7feun9db8E#tzGv4atuBA}di}5CxBu%T&U~%8{`l8lxAOMK
z+0B0)yLfH%-c{L6RsV~xmS)_qzA}Bq*1e+p?!|4-y!q<&+n;5boCP!EzsB!7H~n<!
z|Kh8=k45RvepSEvZ2t1Mmf9SxuUFS*?~U`HTof*^{C4)2&&9tt*SG8_`w=+*rTp#3
zDkrj*e{=e5^L2)^O7?U6^XGqE_|157wXFUAxa-fiu)p|KwQc)^*U6I>-}-p^>CSJV
za*r;R{kyfVn`L>%?w@akC;pc!onQ9j(lYtH+aLS8F6TWBjK8;iHs`D}Wi@-h{0<3-
z*fx8;cKPi39sAZD`dPKB<c)#-t>D1gnN@z$%-d$KEWh!**7|?4@0P<~{R8A#Z$Iq6
zxFJyf{M$bH{U7qT-;?`y`{l##hqu<>%lF&<llxiK9=)?wv-khW^|$`ICwTwdSr5PL
z+NS;Yn@Q;X%6r=%KlHv(^`~T|<g)p8_mbjXKd#I+-Di{YeaqH+7ykZb&8Y3zyH0#h
zdfWQDw`BicvrB%tJ^25&^RI8oE%?}YY2U`GE7u>*l9wxZID5_4u<EPZ&%MsJs>_Ub
z2yw8Fd$004*1*ni%j2(wza!TFaJjT^?J9AD?`84b{x%=Ky%xS2HUH$b@^iPJmPLQ8
z%&ob;J@5U3dCzNk<-V%Et~;)Nx#ITnvh_Q1&hLHbJ?EcL;QwWRFF&u^Uty!yfBM^$
z`nB(0Sr^y*z1X+@`s=4R`}gmkb0hBlyZ+O;-o|!&?#HQQKfV1$^+4I5!28iT=Eipa
za{K@O%Gmv7zI{&q;@7WFl=XgH@qPBo%}>8QSld7MU%1r#jCbwpZ$JE)m|Wel<@v$4
zjM4LT^j|NwWq9>?>pq9~<+*hgKf77=PHzuC`KxG8p19%HdnNh#=RW$$uRG=M+rF<X
z@5h1#|7>3sC)K*%>$|?)^y{W~H~Y5lzyI{2xJAv1i+$IpZ$57GI==t9x%%@jn~RqJ
zbGah__#yMk;ObM>+jr~MxP`?BzZUlYRZ^InU-WA7rElfD^OdeWK3^4Ht^e$I^Vur@
zwe^?3_xAHg-~RZ^rex>C`zh9O@3;NEX<DOkH}BuanBR9bYXai>@4xmwkowE>Le-AA
zuXopd?w@k)@$}O_CzjpF%vZ>|etMhPL+$C?IKJ|pO1;;)VqIiyo27kx#ru1G*T1jb
z8}?(@8rzB6^R?nXDBR?m|N8XhJ<CIF|5aQq7l^+7K{eevPCoSfPwz)%d-he|xyOG*
zzxnmY>b0Nd?Dw(HHLvutKYsTe*Vn!>yT`$<)^(Qg>!yp&%fI#T*Q=6U{^xhyo_Z&0
z{rO*)FJI8#wmrZ9dUlx8w#Q#<pK`~uZo6H1<@&PEe^!0WD&L*GKe#n~{<rY;+PCAI
zUat<_>wIncnYVtS|MRAQ(F*Io{@XA9>4!z(@vg6HpWK??b?&Qf*52iL=E3jdrXPQ8
zk}nt4A3y)=JLCL}UE97(f7LzzyP)=I=J&Z}JM41j+^b$cPk()t>)&AgS+8%;{MBOg
z{$y1D_2m~Y@A1vy4OnkI@B7>Qh<N*XZ@)g<DVu-Z>TjyTkCv}XpU31s+x5u0sqD`+
zyS0%Id0njktm(cl-*J$6?eW*qCx71cjNSXIq;%)`+oszeZ@shT{kFqj>%Uw31$5o+
zy>5M{GHg@yjH;cR_HUPZRcagOfBT-3tMs1GwfctTHS@3Y&A+zG==|S`+KqKvS3cd5
z6u2zE{*n7`<wf`F^VYvLz0sBLe*WvE?P~kqnD4)qz2f@on#23E=k#aPKl=5(I_BH<
zgWF%f{xavC{KvP2f2Hrgl25O`d*hz(b@PPVcXjUQ9=_rETlji)SbVDi`{sGKgD+Md
z?>jkXYpmSW1^s_3_I|S5ZusrTgU(==w~{;Wm0p)i_c7bL{Kl_ERqwASCEr?QJN4eR
z*LA+;Y6rG0zx4U*)~7tdnQtqqSAW?z?I!!vTMvKLJ-+ELKe_ttxr*%T!S)v3H|9yb
z)_z>ME9mb0SAMe6X?nMdqkd1=62Gh0@<P?}b>_G4a~{8WCAj*@-S5?h_trK<#xDu0
zxyqNk<!eFh^j+UBACAedEx5A(MryTN-{fOoeI09$?%cmED)HA&x%k_*`|qEdabg|+
zvTys=$4j<peysWvC4b|0>;D-s>yMxRx^J5--{CKB5AE4!8ngYX<mbO%KWyFi{4Re#
zFZ-=jr`;M+-yeSsdQ>&<-nZjx1#h*>ypGeVnGtwD`6~O9r*`$<0`Gslemr`=dcUvk
zHuJx4lP{eA_^a*F7Qg8$A1<C6UakM-R^05v^AxhHJ=T4lTC)3byMM+l=S}M_TGh|_
zoU=ac>(q7iMaFjjRvuq}{TthAS^4>5SNBKg2F;(I_xodMZQQM+wR<%9=UZ;=-*UZb
z;)hrHCjU?L?>kg|tF(G~$ozZP{$_6s-y6TBU+BT5<UK26Uu(P9J}%zpAAfc0<Mm&Q
z_TKw=_jTF7&wu|F?Ww-oxBnIM|DN}8*ME7Hty(XgZ6D`+=l1G<B~MN6U0wG!^z)xP
z`uAV&zQt9$r9a^T*PG9I<!j$_y{dinYu3GY>!yEuwqoC-ef{%qb$?3Ubzt@Rw6Ag-
zV(%UCuY2@1X8zk%|4Lu&&yRh-dU=^9zdT2)$=45$KUwWxc7I7+{#XB)`zc?)CngrY
z5_YaVUSxTH`O!80D!1={FxCCHw{}LreV@6@?ZayKt$v>p_t^T(udF-ocnTtA{=N9_
zzJJE-y3if5ao5$qT>jSSyE~%m`}=Qo$+=e_7+?MNebsc~-|n%`%j#E`zkU8?Vob%B
ztG}IV-`0G&-uUg_hPZ_7+SNAoHd*K2T7D{hJ3nIE<MYQK|C(cWYjyqGumyiPA1vPc
z%l_5vr>Cvzw}kg!XZMVD|C90l(ml7U_15(*;raXbF|V&b_;T^C37;?i^Xf03ck%nh
zxca!||4wE_Y_Gb%+JDLO%g=8<jghyW{_@-5PxrU;r~XR)Un0BPw)v{~<mX!sNB*Ak
z;nF&*W$U-y7S5_Q-SyQ!^U&SbSMP<+k^dX}X!G8QYr;SDzYLyLV7~VK&b+s(k4^8c
zef`?8Hn?!_S^Km1>`b#xSKsTOKmWG6Y{fy_bt$*MmesZw9dA#m=B&N8^xk>7@J(M;
zcg0PPJ^y~K)cW;r-5!Nj>^P9S{{Ppxsr51auW$b<OT4T9{m|81+o*Vz{N<55t+sww
zUH<o@=(@byYp-mdxOwKadkOPjF`cX4x=rVL)yBK_|0Tk=f35iYc~0EsKN0=+Z$+JP
zO0(TptGv_p?2*;CtNsMtulWA>;j3>K*XiirE|>ZEYMbmj|3iPj6qH8yU#~t}8dh;z
zX#02DzpspA?&iHOo&S9MwAlAu+b{n)=&|S3+T;HH+5aaP$9=uF{Qc|V{|{8-zHSqL
zQN??$zkT(+Z+AbY-qrU$9-6<KY1Q>xpXEM(%?pd)n*TSjXyxi}tGZ3=c|`1H=g6z9
ze><z#`d`lbGP&trBA-1!y!Tha>esdPwRTEt{LSAkKL5c?sczTxeG%E>eDBvy|Fy-e
z{@u^Wrm{V;ZFci^q`cL2+k5ePUfca!&!2y_O8+<K%jPd{TbKSj{GDC!vGdXB-ENuk
zCvuM8cF$byT|KSo`u=bKKF3`DZML`P+UM7)4%MFy^@komd;NO%w@1G$_gyQ0_106;
zK2O&0{M+Eg)%D!hv#w@8ao;WbN1{x}`M1jgvHRhh_bsl>i%&UFy>P><w-0Mphs(du
z{rGzF_iuCh=O1bNEPvZw@w(*gcMV@-!|VTXf4pt`;m(2TyHyi!*)3>TfBAv(-EVSl
z_U!*D!M~&I&!%hc*M#L4yj6aXy?fgn`%Agkx14|e`me!y{RQveD;!ooJb!s>*`B!S
zJHL)Qd{ln0b?u4Fxp!W@t=L<&>;A{gRkbE}?v>6}tFQXqvD1!a-sIbRYNyn!%zqtT
zaV@9)_5bgCeEm1Q{ju_1Rei05|Eb$QpTGWUXu0b4&+Wfo+Sxwcp5OZV>e13$u{-AP
zi~C*sYU5ssdvW}KSbksBoB8VY>*8NCB=^0}y{>lto7l1k<$J$Y>^=Vd{oLcBk=AkV
zTc^L>eDQ~D!Qaz!uetx<mmTvtce(v#(Io4b`+L`4|9ADn^RA-ZpJV3z%}S4H*mijN
z^?#B!HHT~dU7a)Yt*1@QgKdxB{+?XNDz(2d?>xiz;{T_96#v~LTeszWZrw8dC9lug
ze_#LPcxbhE@Os7fe;?J<+`qMH`}vk%FCV^sy=~I>zni<Os~22Z{<iejysDZV7vwsY
z|KivGySeW}>G!Ss-mm-q@?Y)u-<!M3e(bxpzux}u=fLCND%RDXu2YoWH$V4%fZp=#
z_{Z+QL)O}b#C^X0_~D;l-xl3t{r>pjx7+6LrvK$CIkIwk#q%=%oqjK0UyjQCvt!@w
zYvRXmr~Wgl)j9M`aBcQ}Ilk_l+o~UB|G%_9PIJyIPV@cF{Pk0+SOetwzMr4|GW)m0
zW25??cK^0b|E3c6->d)cx(_+|{nvkb|11>Gly`|=_q>i@=KG3YT(?VB)%A0gANaO5
z;pzQl{wcRUUXQvje2(kr(%RK~_iOg@cX(Gf|F~s;pR0eq)bp!)4f8KQUK?wDrT$mN
zp8ojv+dtPh3dwDIJL}PxnmD;18tYeIwo89eKlQ_s3wo^Yb_?B_=MuNvJxu1%WN+Jj
z_tyP>p7rqLi#v91YwEw()zpLq$4AM3_1qS}Z_D{&x$XbM?@s-aHBIJf?cc6j3L6hT
zvC)xKNnsJX%(sy#MW^&OQ%arva~GF=(vsgpZ%&#Ry~6zJ&%5RAGD^zlECpw}@tl_9
zad$WybNgVHfz58V8I5mEQ`h`9_<FZi=x<3*k@B9thSLQVTgo>ys!o0NgZ1yqPSek?
z<r?Q^DV$mHdEG^?`^yS6vUZ5yo*i^}pR?i7530HI8V|Cy<?}Tzk~YXm;GI4B-0Jk2
zm41#-t}+!(-`K~Vcwcsz=&gr5H{O(AE|^rlc6F~oZejfn#b9%O^RpWdSeGB#p|hhf
zsXUhP#*<pHoeMU+%E(*sQX_F<Qge%HWR~U573Ruk1kPD0JDAEXi^w}TBOrz4^_Im&
zX@N2!SFbK=UEkx79&o~DTkb{U+w5oRe4eBw^tDdT@9sJvzJBR4miQ*wWtVvOGI*v>
z|E{q1lJB-BC6;qatoJIE>=5cvzIE|wPK@m1d#`^r8ZJ3&@tggrso?By0XC2KZ4$Zt
zA>faSlhv^u`@#<S-e?dy66fS_`2N|2#!r7)id@~b;KxZ_w{*Uv{<+WgDmA?msOs^w
z=RTqQrFoA}*yM+TRdpSV_Iw@r5k}Rk{+(m~SW;f_cgJ&c#k?PDynNyvY((?dX53Hy
z%QI<;Wltyji^Llo!uuJjv@R8HuUj82`8n>g^uqR9ck`<X9~Q4znEUnUUeTK`9-E!+
zcvf2+8@NXQ?bNzM56TLBBl#~Xn>2h4Wu0f-<kD@RW_s(Xsf6^FX>0c$eyh&&`ugnV
z7lx9OI-0XWSB8rItZ_Jf=WEIS*S~J4u{^9^m^c4s!RGgIb#B2;yN@YvTY370!PZl+
zZENP|=x$JTtWzrx?o@gi<gQ+npLuLzRaDT9X_?Vek_|ndrZDczzcl#@|FMvR(e9Ii
z&NqKuY`9H1bf@XGsU|f=DmvG>Ww!hgS|Iq}sU~u*?CcvW1oJ+gGI?~QSR-nR=dw3f
z4nOU4IF@WU;pMf}8@FCl?kaq<rJ*ExyW;sYW0QH=d$q1la9_>dRit8NC^uuqDj^1z
zHPK(XzDF;TO`E<`-O=d79rffn4_9X8%rt-dF~?DAf-9#-=b5u#cV9mvq8rj}X`Fmf
zbH<aUj31uZ-jlezZOsMSFNds(72n+xx#*Pja<Sy?n)!j!1rvYGOul#MLRVVC`Jaov
z3f`ZxxZ=Z}y2n=xgPuS8DtKQjzvAPssfNWX+ut7-|0ZP0Gw*$S==&pChk_i<58RMF
zx;*($;+*MT>uuNbFJ^RJsdi8J_lqYtC#`BS50sPGF2nifI77mZ@Z3<}59d<ONJn1k
zK2YAqvQN)evDa$)A%m4}O!o!<{kV1Wjjed0P@{9cQ=QP_H9On>ehS|GZL&~T$|mif
zH)ls5xc%_2=&YhEPC`3QwDk8yc?gM{9i1Z6dZ2Xwtc$gMP7c<O?v+J2b5%Mqy!~l9
z>3{6eFHiV46faoLeD3>(5()V~v8xo<PBrA+`2T?RhM6jp7FABpv}8JYcfn%jz6<+a
zPS?!;*l3&@HCH9@Qm?nDlR~O?n$?o_Zi8$&meL<#2Y*k94)T<}C)s$u>sDy{<izdn
zf7Tr_xqb5e#KU_wMAg@-CZ|Rvf4_6?`<rbqF4}1-N>Ajj-N$_{EJ<Uxvwexy{FR@#
z)g5LLbbEhjS!_L*kVQAwf;&4r`r>_$iP#@L;lZ^qa^LxNNi9srS7@<&tINbi^4+So
zU;a$QG?M$cW8!O33CrU%_pq2*8U;ix56R=K-%)k`O3|F}-cB#Wl$&+5`D?@8_1}_l
z=89b^xr~i%O5&BHt~>TQK54prR`j`r<AvNNhZ2!()~XBilFm&`H(0iNis03SLi477
zTy%bhoJkR{aiop>rTvL)Ue+=zR-Jg~JU>wKs_)M?FE_gxZx+4r^^4?X<KqT1?p#cN
zw7_?&S;eoOKnCI9{r?Isr?>p?v$%ITeNpmxZ5jPjX(hd}?_L;x(Z2b$f+KrU&!&ry
z4{qq3{eDXbga2g1U2)H}DrfcBi2YLEASJVA*QRCB9c8j?Ca$^mw>E|+iE|Yn-zYoV
zYvQc)$;P7g)*mAH*_(Fu*>8(0kU6pBiRo=;`Blv&7T1=QGRbcAdmFB>PmZglf_crd
zlUL-qQo63)n{kexttBwy?CZr+d~ecE8PAY8-oV4;w{odQ)BE5bTC)TBnJ-z(oLcm+
zH{IcfM$Z(Z#ZPV|6mxuwQM+uYY_ON}bzz->+T?XUCRg889a;Dx&0V1*^Ha5yvCjve
znDzY0+;`Iz6QVyHzOv&%G~1jDR)_i??OMKQ|3|y8UyA&)uX)_I-Rr+qJ?XmO@vZ}g
zb1D~~pSN+T#<r_<vkcoW)l958e`R5`?Tfx!KF%JKQ)cgvusePz@K4a0?`hWIH@lzi
zUbj9%$F^hp%S8%pZwu3m&P4CdeY-^^q~ulOlg~?JO`UI=IP`5fe4&Vw<y@Tc*AI6V
zBuuwC926F^$Gcj)lwDb4iNYg;%^NwDLyEhXEKq;@!soeYj{a=nyA9DV6-4C!?8>;g
zRCaTX`+cWPer=w%dZ+k4Z+x9Qhx_2S*kZm&?n4%<zL(_ZU(prw)V=c7z<6RRt6slZ
z)2+_;L6yxy9XFLG9}lpVp8sU#o?|*Q_A(#SKl}TIs_f+By(^#avpqDZyi}uMef)`M
z*N+twcTT8XDYpAwU}ew0uu#QK%ReP}3))@fV4SSF_=&gS_4ZTB4pGx47WAE(tTW%F
ziD~-V8&N#rA5-T2kX+@o>%<<n|8Ezp>)Z19+x|^L`t!CpKYv_3wW4sz+!HN6w_kah
zu5w%Ro-<ldkz@7$T{V*ynA|ykSN7cVb4!nu-#l|QQn|fceNR(oS%vqTyqB(LE4kK9
z*tlIK`FiS^2!Zdhw>I8-@a0MPzt@+)&a70)eA;|1Iaqd1hPml?9>qhaU9YXWqa4Q}
zRCZPL2WL~Qf?;H38)s|TjNi*9u3LUfL*Ya!`$uC-{jeP#6SEf2De(T=T<z%b%0pIL
zM?NTJL*6v&y(eq~eMB@i^@n;CD8F6U{Ai|G*P@4?T$om<95Qd8cD!%S(&O*Xm2Xpe
zeE4<NZ-;f0&9vTlFWDBAq}yV^Y`@u3?N9N$nxrGA7C318EahA+_D)1k{m{*Rjcs}o
zv%lVb{q@^%0lT>yU4lbIOG@W1*Lq>*9KTqS`%1ve^dlE+UMRTgO=T2Z^RI7-_$}|K
zRM(G8m!%DESQhQB$uX<DclLbf%B)pZNqKhqg)iD?@x1A*-lp-RPK@>G!-9tRv;slb
zTfeu8Ngg~H{bRw&^Rw=?B;7hO@#C#O%jW9#KQdH}-m`LJU+2M^se3=Et(JLeYWaKm
zrwM&5i>B<5<!<9|Kdk-d)KO2{>67msOa5G2&Y8t^?U8nEbF|Dem)-lllJvK@2{vA^
zs$DBt;k2;y*tJ<k;+8HJ{RwNg7%P_diq}4lSbXHj(m7rdg<7GB%t0aB7hHZ2<f6;-
zS<*m7_lzCe)!LQb&(gJTX}-Sj@=2Qctzf4&g4_T59;--O+%`RB<K^N#mUG*UgnE7A
zFTR}6InCYY-h&oZuWU~R9;MX}9O|m-cOA<8TFupZ(xy36?Yp5t%Pej0%o<*iQz@FP
z-ZCFWxa=l*EK}Op=hS$epM8ys%*>O#!Lc#zZr*w?GmO)g9=vcZ*GB!epxc**!&L${
z;+<I`-(EQscX2%Yl>OnU!#AJuRT8TnI{fs}zBK8WKL57!2CDN*4s@-)zNtk2xWfb0
zMC+<vo+HKLtFGpleqNY;`sWVw{|`8r9JlYbx;9TiVfM@^_jYqM9kL2|^{2Y7fxCz6
z(S^f1c=v_;z1=PU;Lz!5U%l%R7XNngx_gv=L)>Y<r&9$qPKRx_(5q`m%g?&DX@2^f
zxgjM7cV^C<`QA!2M!}Imc}{w7!+vFs4GY?zt(z=AW9g&^yFS*baTy&}dGKq#-lX|r
z`<F+QoGF^bY*1(H@mMcr{sh)z-<Ql-vv%Uu(w&EYuTGKJd#S}`V)>?E+k5AW(r&A4
zlY1}j6E}H}UdsNUGdn|~z3vFNT`*bhKcnk)w(#d7_Y!usrFzPe24<3XAF4jzZPdUW
zf3bFMz=PNYVYmGA9*geVv_jVHvFQFy0p7Pwr|3-Ge!S0=zmCg%@mh%*@0imJI$!M8
z>5I;fSoHYWyYq~v+%$K5Pn6hHZS;!ab<X*lN`a5|b^Cap4Q^Dq&R>%IP%>(p{nKxI
zzep*}T5i4Z--kbICm(ENPjM{2oO>{t_sbdcIQx{Z-qz3Na!!-)Y3AHt9WA!`uuDO`
z&!IGn8_f$Z)GTm6b#Ud5uCz0r)e9s(IqjY%wdt>9??fYc{XblG9ETo!VNCGNd8N%1
zl;f}5y2?|0l1bzp)&29l6P@icI3p#iJ{Edft8_-%R!*6IX13m4KmDoZsSBgRbRT$J
zdHHh6CkvrpGwur>DA!D3O<#G;Q2pJKt)g4!{+ro(MfTm7lU_B)6(;F7aabHvcp~!g
ziPRreFMfmDagH3fHgfotyiO2jJ6v!jNx(@<c;6;gUA{8GeXFO7zi}$Cn7!oeVZAAK
zV%m()5~ueu=tSFmSfJOU()ayYptzq?&Qs$S={<E5+V~!}IfO2aytmmocEz-rXSXEr
zl}fTSx^*Qb3+?^!TO?3?ji?ZtdQF6nJBQ-4+DdgjdG6XkLETQ>kGT=IS3VWIAGd1u
zmV5nal9&5s+!-QdCOAE?c`CalBj(Z!g{}#_L6fIeZEaX@GnfBx*vk#utJg$4TBz<F
z>pvw-$2gmx?;)FvA7k<}*`+hr{A{<(DmZDp(1T%prbEl@hE~B$%ZnSE1KUKhCtW*p
z#O2(@4`zHZiiMkbY`?tV>diS7c;4%}!0hbqPvM*H>eL(RtdUqVLxA;Yp5fx>*;&s@
zOg+8SHj7;lx+Zs1x&4*Ld}-F(SLgCN&){ZX?XBsVf7ruGKdql#+Dy~`q~^2NoQHYr
z71~{<E)0$Srg-ao-pMOxqjcY1e7kPShh@3j3wN8yb!+cRU1GC)*AtU%QGV8cJbYEZ
z%FJ{=EUwMC^^;Qdbc+wMdp~>LpS<gR_leKp{!R6(TaDf>n)!BTol2O{vh#+#=l1@c
zH|gr9PoCSp-KuyRHpxo!<P-irnPm!6n@i&6>i_a#W87FIz}UDY%0}Gr$(*Z7g6DZJ
zvl)u)+-{%guP%DJ_;3o>=8rSyNuNt$nWVK)#@vTp$k-qy?_=`ED+^U76f@qi+^g~9
z`A+pmVtdY>G|2A!5dI`@{_BSi^u_kse%DV)PgBUBe_St5NMf}^B6nQ)WVJ&U{LFo3
zFMo+u9@4B_zO=0-#4p0;n9-IC`&#Go3IDuYTD^cn{B~f7`&I`F(P`_lH*U!jw_H>i
z7`$>T%Sx@KmOUHi?w;5BdQ<AmAGZ%5PcV$n-5;m^e&QN6Uf1?Zy$}D*-}_JA%A>?k
zNuIHMQ@-}Io)wvA9r}NE7+oy9a^>rcu5+bRRV6rz48>}W$q8wTU#OLdz0AMvhoGaM
z<AZ;fx)WvJCGKqVZayq|_qc08-8%_>yN7D_JKn65oan#h<fQ%&R+lW7G(>soYz$xU
zVsEOJ+|nsO`?v4*iML5Ty|Cn+(b}|)Q=i^_da6pV`smuWzuRUm_*m5aJtlK+ky7M@
z2F=XG)eG5Du6^<9d}3$4_S}snJw<2B_q<&9eofhuqtb05Dl4?x7XDk=-St1u^<K=6
z6PzWN-mu?&qjv2zpY!|=g0+WLO`Yz0WKLY!y1X{t$h`B;oekf-guipWpJ%x6-hyx6
z7T#N-(-QaS>-igLVb3$#4({C9@O|Nwd*3>a^Q2wd?YS*^=Y~mBLr$GMmEO2aOX0v(
z?zua62SxvUmnwemV#{oX+wSFCW~x3F7B=6t)$sa{%bhh$Yt;*8P1<x}>esSH;h)<c
zx9!@|xpY$6Np`;V1{**AU0>m~N??shq~pq{4QqGkX|G5SGdlloUw`*zHE%=Fr2;i`
zOlR!esQl$TgIfC9)z2QUQJl(lTRU)S>%6j6h7&vArbb0A?BC4tXZs%^`Si}oc~?)?
zq&SDB`@i0BZ^mq&UA&E#OKoqiG_US^di=>L4`WZs^-0q&@6Oh&x^Bmp^ibsS<(fT*
zJ(j-fU$Vh<ZD`4>`TLec$uS!#pFg&!>S~H?_yJ{)>MrJJ3Ad<+ZQAz|cRs!q&uFDQ
zbz^kz9`D4iV*8cmdYeuzlIr}j;aR=5&V?O6!;)AO8wwfur*7Sx{idT~N%EBBhfBGa
z3b5`-YTIMKhl#V|-GOJ5U4Ptb5ffzVJo?_ZqtA|Qi`!fNZ)ZK{+2lFhP$;){wV%6C
z^{toJjyq*D+Y1Bs+;6IMug)rX>0}w6m>K!GqBWLv{mI~fE0%M=sJ?oq&7$(|lj{tH
zwKKl^KdralYPD0zD{<+W+v;WOPrfqMnIf_+Y*X>p2t%*yoH^>Qf~|qkTrpe2zc%ZB
zm{@6$7cgUIYs2ZT?KaIF-?}6-o!0&{eiqku>+YU8OU*sGex3VSqV;FW5@yElyCPM?
z_B!MhSN-bze9SD>y85`#(R-OGrN5Pb#CjVs-Riq;oo*y-DXlD1c_ivc%>DMo2Mko!
zD!;k+?C{Z)%IQW^w|&%moa7TA`YG;F+S^cjMZr1m)$AV3dutW%&moy(Z9L`3)lK}-
z!K*CmBh?C8d2h$xV_mMPZl@;_>H4v~`qd%r!(GR=@_uF!ztvUC)3oPK>mvPUbF?q|
z&5*ip9hl*M=gwl2X&%yIi$vuM&jqEa-YdB?S*ulK(dWl^B(F`Hxy<gFq|66{s2g(Y
zU%zZwquf}UcP=5K;!)A_^`BMLxF#&#e@<)1Ndxis>nHoY`?)gF>AvQ!@cHLhi`VbT
zK6vNmv?VF`pGHk6Kj2d7xZ}^Wg?k#dB&TO>+~cz2pGL>J-@+-mOJ#D8-dev|{Lj7f
zJZ~x+o~8GzYos2^ZJN7AMzGv-`&Z-Xe2M3}nz+Nh9Td86m^=6B)2PVLTfe8TlulCE
zbNe@^`!})8FI=;H97FH?iu__SRdhwuo+HbaKNdQ$bCJiN+tv2!#iqTyuZ7O){`!>v
z_V1dTUdnS1%js`rT(hCQe9Ow9nX_h=RNm4tF8ibUJV0OWNovB5@)grXwyasGwlZ%1
zXK$9nKN~YY3!U{?_$k-Q`nl!is7TYLPZI1LtwSf>+43jn)_<1hsUf=+j6X_z;NI{+
zkHK2P`+2S<^U^+t^3Ml&>T*{+KEbTDgX61OL_)95Q+1}t>5o!RzKykRi;6CC|D}Cx
z(pjzT8n#Ib3*O9`b?W`{18G`wcOIzY3Xr<gwd&v>kqLW$>++r}dg7kD@D%^*1KX!O
z%XHfllK!Rf?o*xHCnolmr^f|cG~w_`zIG|wQqTVTv{{Ab$$j>g9M@bcgjGF5^xleE
z800Etf33WKddk!TuQ%=5ett#DwQ~k{CO7Hc_&YH!?U7`R(b+JGnMcnRO;)zgQ~r1|
z<i}xs{#`kHjY6MBpKg|V=IpxT>A|FZnXaZB`9W`VIJSx1YW=QNAUk`-y1Z5TpP3zJ
z<wrj(FfX`bdSyzSY0ahrj@O|)u3D-aR|L%Q(7Czp>rD%J?(C~<%b)C;^ZQ@Gm4CZz
z8yCc^aciBT@3r#C&)0FqhR)f`uBRVNKb#!w!|_0^s%*C2aoZ154ja6U$=~Gi&%|`C
z$j4^yzqjVvz5Z+e<IL`TK~tDizSixjRyD5u{lJO!f3RnIdtlLZ@2uNVfv$Q-8J`EP
zRKFP4w?odpcK-k7Jk9w3QM;d||LwLuE_~05)tN(@{k(;akH`&f>px#l+t+;mU@UiR
zn{;r~d#}A529eqej{UlBGrK)CY0H<(!5613cm8-`S_PBT){Q%79JzM=@v$$fefwAJ
zK2>h4YnoklGnB2Sc(cLLgTa$rw3aCJym9o`pBnZmsN$=Zm!4*C*s3RbdFS}=Z;#cD
zDm=$^=+4s1f?`V&elMN5GyCAlNo9X7#JAqLnU{2B^}U{J*R|I>ee7X-s9zU!zHO!S
z-+PI!>b^^zH72Q9Zit=s_32~r&Uk~_@kcAzBCiBLdAsUmaQMY5T>8)B=G6aO`Y-MZ
z*UBqj*M0Rrvb8-%%2H)n)IpK(eH~d5XN0U%&&{<tFt<LVZh`$uhl!SF|9(-I771Ja
zesk8{*5@rOtNhaMuG&+su4S<8M6mIXJB&Q8D<6vWTP9}&`X6<!mvc#cXl^S0eWOtC
z*6E8Swoc$&9oF{GZflcg+t1QptTPwhJfxZKy7AJ|PiuEyVRL&pd9lTcw2hn6rngLY
zIy)ymD`VUBkoeHFCARvz?`d{LI&t6sAEfa4Uud`2-Kl;bCN4Yqr8RKLjHO*HHL{|W
zzZcH9UpvF=edNyO*Kb6*)`))ouD*N2%)H*P_Da8|MC+*$QNGVC1Ks%Uw?<C#D`vm2
zVe;$;_VzLCHw)H8nEHA%*t6dcQ14w4E~!}_;Fl<9Zf$!=evNWds$XzsJ>R2~!Kb)1
z`k#AAaQ{eJb|uv2Tu|<fbI*45vmUx~>SanxeM;Bl!h_cP`(%}NEqQuzol6PR3ib7O
zp04%&_D}O$_0yf7XRHwwN>FWOId@~9E9<0xeBzt;cZG4ESuJy9>5&yo#!-jX1m|sd
zkZYMUH@HfG<$f~z#r|oHr`(lax2UWMvHZ-V9>$r!?Ah<2l_qM_GVaRjXH9If4RiXv
zZbAd!xtE~<jkTA*SBWMhJhBp>uw}Q@3#EITgy+<pEm?Ws!tq#P=UI^-eQ%bBuh_e>
zs95vi9;TD84!(Xp;rHUxv(%2U?2li@G|l<nlM^Nqs}tAkw@&O`zIaB)8><y-H`h&&
z%gJ0f{qy24I$yqgQma3m`C{p%H#0gOZl9A~8~gia?frUrecSCnzSRovKYFhG{Pmab
z_W!V`Er0RxS@Uy|5G}=*jHZ@reEshK{dxcI<NJS3#{bFvZ(Pr^K5W|ruDiWk=l%|#
zado{*p;v*o<h92qf4+{d{rTvB*BzFJo>4|(-bb}ITW5MOPH+7>ao#q;|KFr@-{nV!
z%@sav|9J7+uX^@1Kl$hRyjgZ=_w7e5Km32@{ZlXYjVn*F<of-3{y&@gzo+Bt|Nhor
zu5KWZp7i(8<oEl2Ib|I^rSU5A<U5sOE8FKcGAq=I=CsNszv~O0*1_#v{j^_s@9*Oi
z@5Nhae0}Va|2N!X&+p^$|6ZB@ua&<W8*#{=kFR9?pDnfTr>b}B-(<Y|w7mZ5uiyKO
zdTh66&3p6h<EeFTt=Gq>`Zdg*{=e>f___V>wavR6#r!Mk;%;s|8orPJ;xcQN%cq)u
zXT&~TYJcyQ<%->b=R-9AmYlD+weNqA=RGbyr%A%M=BHmNkob`;`2WT2eZP6wl6C&u
zwaXm;XR~;I`j3fP^4c@o&DE?s|DFH;^0eoa2Nwe*n0GjZ_KQqcH?@1&|3CDYH<$RP
zrsKyg{wch@@=eiWtMv)~{nO;dx_wL+{gAi+bF406itEmA_114~&i>B)r*+o%@}#d{
zzqaS^y=X4~$Nn4hwr6kF{V&g!EBbWI{d2u%ak}n=rLv!*?>(RYmR}%uL&&4g4fd1d
zIjTMgSYCJi|7jyz%CqhLrV9V99t%u6lwbGt^pU2g>4pcst=ejH&748xKfjsq57GF4
z;%gW__H(7?r4*MGr6%TrSouj=T!w}U1`1$?shOpr1zgx1Dr{q;pzoHMQ<7SwpzoHG
zSd!|Jnw+1Ks-W+anwMUZp<rR5U}wh#HM3%lY0qxn0|p!})ysAW{;+8H-WfFU?`?r-
zy&ct;gr8d;IAO={{^E#kiu1!|6`qz0?E+1r@~yUc6z|`YVk|ED*Z59t>)U4yDJGsz
z6fZt4dK#%&WjFnnbREc5P%BdNQoydYAkuwC#zv?P474s{HRO0*%N46&{49Tdy779i
zclX^kOioK=<m7yAd!ysXbcsu{PrLFX=cY;4sdw-B5ve(6k9c5Xh--x6+Xs>7vf2(7
zD+fO)QnNdKM*VWqai&$B7U%lrq#1A+_P)-rluet(ZmW2mT{-WK$>~s@%)Qa8u78jE
z7wr1;#ID&-uW8PXS{ePN$F}qIxz{Uo-*PYRd$dg9(!=ET?+Wop<{WiZzjU_F`00j8
zCM?TYKPVecd3E!l>7gU%dszH$UVd3SrR}<1#;$$k`Y%qLZSi?3cFN=E<f+GI7>4W@
zJgf5cul<G1cJ;FiLfo+gm?e<`W^RcRUcP5{^Bz#(VYx6*(}wB6f4jg{8|tN{m7J38
zU;0@c<P*K~XoEyX`HrZMO9N-rzM3gCDWKTaCBj(Ms%1(1uhRyHXWTfk?fv$!cjEV?
zWh613Wn@64vrJH(WxUBG)F5EP76zfVY0tQxxlQBJY>RQQ>zI0)RroaHW}XI<h)g~o
zSH5s5hNUh%Pq0`FOZS8lxG9>&rl#Q#i<d2PL$NqDBa<)fX+xygF$Xpe$vKG(OAgK|
zPN*u{afxB&LxCtPPB0?U?-u4LQDWP-TkwDZhjaC^1eVX7ZM8)!=ls3hV4r!x*~)JR
zry0-ri*FB|YczL!=c>O!FTa6Hv0Fv*=eKi57lq9{x_+7Ks}>W_Ip%>c{JOoKGe7>q
zS7EoSRJIC>^Nfjfp1CQC^Gtg;f}F<;a^7i1;cq9G9{RnV^GC)KahVfOo*kUGsbqui
zbM`OKm-v2m3Y@UY;6h1SZDGa}zA!%VxD2oLT`$f%zGt8LN_-X;Cz%lGBqKw#TpwV`
z$85;)=5N<e2bJbrgZDQzV*lN5V_X_x81?K>oviTj50hBqneKOO?-7+w>v|uts`UzA
zj_eA(Ijbw$Vh&#9-q<-;Y|d#j^Uf=xDIPAFDbaZ^gu2XJmp^&$TkLKA^xG28%ehgK
zGpZzu%2))QPbP3??Gp2i*kUXCKX{&1*Z11veA*><9$ua-|JC+zx?Q{X-lN}E-0XDO
zrGH|=<yqdGz9u&>u0J7i&c<xXgmVgxK`~9)sT1D5oW7V@$iQ&Bjzd}aqB*LW$1nXi
zp7-%5BjfGhl~@ADl*qs_G((Lr*M4guW<?(7YQKfb4fO{q%_ev4t(QJ+?J1?xqiVlM
z+v?k?!^z2~j%9DzsD4Q7U62*;@|8X7yOyWNE;yZN6r3M(HYQ=!h7);y8-GdEEd2E5
zS<Cv+c@l@F`*89aOts$G{`FVjoM|;GySbZQP3b*#$iV&5cLyKe*~?oS|McruW;q7T
zeAb&iZK`{=Xs}8846SJHrmu|)td{;_zWm>3`Cj`wUu+w&_|}X_-x?dE)lfm+lcF6t
zZto9%!L%;x-`UDJv#vh*cbntQngxwwLKDO+P8{*(3G6L8Dqq?3(W-I(>!+E2?C!N*
zX<DxI_rTUn>G#KHnFek!Nzy!H_wBES;_=|e_XS?;^bk%<F)C7!?D)OauKwC=AIm>%
zOEQapX?Ru%=-#+1RaO%@!ST{$scCPXw3q5`*u~*HLpobY(sHYj>G|XH9vaP)P<Fhk
zqu@Dzhrei#hq0V>x^Cr!hZU>D_3QTbUN`DrIX#rsXdCCV1nZfc%Qch)_AgM`*||I8
zl}2CMv01lU+a@V}ziT^Z&X-;L=eV%OaX!?!Ce$Zcb;?NHn%8SV)>D=liF?1b7S1yB
z+7W#DZS2PN_tVu9?>yVEImn3jTw#I!>@$KY)prdOh2`33e19j{b7arY*c`!_oo9Bc
zUGD#@amzzq<ofd%-<fMQ9?GwJ(kXiV$NxX~&Y!oRU|zcsOVkkCb}%+DK`A+GCs|KA
zY{27OJ-12xM9+`OPd=xpPyPPyt)0=yum;ag1`YkvnVXi`C}gT}{=fL}VUqRJ@*DHc
zo;k49MPK-|=J|!%NA9@(+%&Uy*Cwl@s}38?jsCJ?PIsH{<XO+Pyd}4D&pW)e^ZB&e
zBmCwjE7(hWy$|u;y_ylpb+(}Nzx7`Co8_i9;<H0uT@mjW4-|d&Q_+7>`%AA!H8vWG
zG1UfcVnR=XFFN#Xj#>LD&gmQ9cBxH=9J4&1Z&tUtQCj7%mnVK!fInqt$Pd53H*YT(
z?|b9LX)CntVZ^&y>scFLO3k)-Q}^EO+Nqv(8H#l$!qs1^Cfo^Da}`SQ+ZK`6eRbZu
zg&NC>+lnO>Uft|!3wo9mzPg^rI$uZsrp}2eXSj{rmix}Ls5nvAJL^m3)aMm{8FM}t
zTVn}$VjD%~hA81~yv-!QAYg+*@C8#7vk-$#CSeBV#sMCNPnftGBX-6ZY?LuLeMabr
zk%_r;(#u(rPN@?k6do7tNML(@;LPcVUd#+1w}>fYaSpLf4l~sH4eA_|aENov3<9Cf
zX)-K6sIwu5PuxegC6z5nLUNYE#xo7a8dV?iOpvrJxD2Xl&ozr)#&n7?vCRx4V*`|+
zF%9(0J8ZzS=e6kPMutav`;R;Nzx}^n_7Z18LWcL8vx3snf)$+y&pSRj7JaQ}){ogI
zV?XY;5tZZI-lQJL64zFJlT$BWV)|c;Gc_OLqAVv%`5P&S-~95y<wU}ChZhIlNL@*s
zovHq-t>t{5hpBX=U%dAP@6`et{x|EEb9-%B`|AAL&3aqjX8T**e7jP8s=va#=uJ%1
zd&7Oik|n>mJk>k;#c|c<)_E<T7S-@=`nf_;D0b1DMs+s!#SYdRo^PAq8Q!{}v~>Qq
z-i1<{vi|?gOiVqMo(QYXxp`?v^pAh@s{j6BUKSEOA4_l%+c+{ZLXA38f9p-miaf6^
zTlFSL_T(m<-#jx!|9k%Yluf)s|2#f@adB6Rdv=0j&CQS7#3VZ;e~1NtTyOjKaLX&(
z9qk-XA34oPRGDM?ddKYLkB{z;eQJE|;BMZ1Nz=qxwi!(RI`!zx(`5%Eq|^)jHc2O6
zcgabPef?78nxKycv*O&h2C64yL^W$SE$*?j@_W+xJZaTYz5VYKYY#3nTy#h#oYntA
zO29PR_i77d#lPIY+I!#Aq&tquXktR*T$N|%BK>|`&2~Q?*sWx!zC`kgk>I5{>yo$@
zavrs^=F$>no&Ku$)Lpy(8L`p6Si*|fR-BOuTD2RnyVu!}=d~@XI7h-?o$7hz9#e1c
zxAk%>XjP1|pA;oDqvL=#&&DbFkKElHZMpZ0w>~mHa$daE@m$LihdEy*1!h*X-Ezx&
zQC4tn&tc;pOD6H7Q3cB`&-@m1<H;O$b%AraQ$F@M?eYu}Eex4o=<{*art`hm8<%d)
z*?f888^zuhZ%<XV>2<+c|F>vHYrVMTD!jqtN#kT+lZQI?&XbbPESM7b-C%3qm%>dG
z-AgZ=ygA2GcjnD^%isFc@JFc441B6N_qmas`pVBSezos5%U*o4Xldy0Ie+g>oc2j+
z>+OYCUxup&&g{Lqe8LW!|2^|R{$uW25NU@c^oVU_8e5{a=xl?$^H>czZlBlO;jr|B
zZ_&J!_uk#DkDh%dWEGb_^ESgN(|J~^+P|9AVeC`)wJ7#c;HSMgS?SLd-|3kx`w>wT
zzpL#=(ZyLw8~tTY>YvyW60tDs?qcVUts27o47v{*Ss(6``TtRT#lh<vT8j=>r!XaW
zUCDDe=6q4oBhpbY@%Kd07fS-x=RAC`p%8v$P3yvvqz>L`44V5^^LEZyadSa?%hXA$
zWG{W}S@I$JU~Fe%Ky>tNmWs3s0ypnX>=iVAdr`75QZU=z_T}P0qpg9G{J!ZmAMY9k
zeZDCAV#%cwcTYK|pLbGEP<iG#<9UJd!+EzIxedP*uAk<g^L>V9*u)R4)~6Vm_x`;%
zsrP*K1D&3j+i!f-KU~aQE+f2lpIp-4X8RoP*)hkp+g(Lg?9t$;yY47lSQBydd&**$
z@-2+ll!dQms0#219Xj{c;8Vr1%A5B@w><melCjuD?n<Aat;VLKPv?kkSpH|t*^M&u
z_|>ZOxAadrb7n=0=#{dn72D1y%U&s;_xsl$Mm>gwSUPmZL^sh*P>T-Vz}>knhCHwD
zi^M!&c%5B2k2@&#TfXy2jtPep7V2v*R~7qq%$w&Sdo=&PClf=R>*eeX-x%xIo_un}
z{@KoxAtL)kSIwRgAfEK_ZwAXAu@ZeH?NjXc`%`&}&wYQeSYUdBnn}W%d`~s;t9y)7
z4s|Z<JM1_+M55eRL}#7oS>qFL!^}5XZC1#sP!)c3jKPKFruc-j35$C+PMvVHNNxq!
zB-W^e>o27PyPLG9T;nWRbnVElGY?ij|5j%1tpDl3id_}8Jg>bs9D1>|TBl~6ll+-4
zKGx-)%6mU76BbP4XAPP;cj8nl+oam<4*%z;YXA6s^8Dw&+@cyWT39j!v8{MZ)QZZt
z*HP$z0tfT^JxcxoE*JinR9*TXzxoQ_-UEJ2ono#{Ure*S4c_fA63q_KoH1qkflz}O
z?pyB`o%(0w=`*+Oa`krR=1m_9n=g6({#IDUu=;Nm+g<)kGD;CxTu5xo+tADyr7m@y
zu(OoKkjJ?=v{9&{!RnQyz5C|B%egc6+;jL<(NfW2%Xzpc_Gs%xUi*97&Y0}!GrH6J
zHTBq!6&oG=F0e}|35PHC{Q9=bIOOHSt4Zq?FN)E(QW82d>G5g@<r=F^$DN~Z&#bdr
zU;jq&z3_i6t><}(jC!lyIs6Qg|9GYUX5gz?3;VUSv*ogG?dRC7G-X?Dj9==UUDfPc
z4y9{{|E^_T@!SeaFT<GFrmQJy>11qX9AXe)urb8I$Slyn%!DaPxK+eiZvh8vfWl!_
z(T)YDiW63W+AJ?Qc@JO-XJT7(W~dz;W25b$)|?5WP@9+<*RwP>@X*M<m7P1C^u#@Q
zj+_Dwk8Dw$)6@~|Wa2obDMDarnp&EGrv<apbT)>QTST8?aSO3cIkY+st6QcCgz1U<
z=&+w*x;U+XOKBb(!~9yFt(caYAUE2aoboFaq7`%v4U7yGbWO~R6%5TSO%x1`jExmy
z@effNn{(+0mnM}|7NjcZyX6<<D(HuR*%AIpS*gh-D2ep3k%>XDfthLOiKj;9W=xxl
z4(KQsD=ToTbSF5bTxMX5=i<WRQexXn#zv^Q)--T;;ZXyg*QTuEALjm;YSLf4{?zUL
zybji)iBc>MtM;UL?TmRfDRk4JC+_X9M0|hRB`o{H_jSVK7jichcLiUYRxQDC`iRZa
zz6jrG)jL=l^?7_dceZ~1&hbK<ZLxuH<F2Fk?Hx9&7-SZF2%eC=HY%x;&qhZqVzc&{
zwNjcPCqiqi&33Z078P#3uv})A$o4x;A5uF~+_N^WKb@-iY4=x7i5Agk9sVMnt<M|z
z(v&``GbdGlyO|UouD?o9@|tHmdl1W|oID`|6W2|znx$`qA2+r4cfWb?q~rdsgFnnH
zX6k!Z#<MOI=okOTcmC#yjgy>JL_XDSJ<y??(;&Fe|E;n>s)C8@_jfac?9@WL-ZQu<
z%G9n3H`*gU@n%-r+5eKUH?_FfLL=qpyA`N4ds=)>S<H1gXzS(uzwbQ$%$}TFg(bh5
z5ZxFvMC*D6>=tx3<alk%%KhYA&0F*Hr<b1om#Z>oiIbU=(3Dv|C#SSqotm^p(_hxk
zJE?t7`_sG>GgU2D{mC0tzhB_`Sljtb<on&L(>6PsOwX{a<2Ke>B`tf|+iX^Wmhi3x
zcMco>;>|5#4r`a&7_D$&Ny7DQ3Ps2HC3p_b6z*2y@$zN+zqaUm(4F_TGWm--rj&eG
z_w(tO)8}>f_}TWk?ArUYE4y%+6_-naTh^zplEkB%PB<^Q%3^BEoV}G{-My-x<{9oK
zk_~T!J0F`Ym2v)mZO8G~%<Wx4U$CT8Vq04lsL9k7KB}L<Qm2+SUt{X#dT9l(I|cr`
zs&`lk83o@<Y-?wk$D`90{E=<u;snzjZb7|s-z?sc7hl@=tSWf**YE6F{$*u_wr5XE
zVsjU<jRq3~)SjzpkoP7TLyp_uHFr3yI&)lN{_^1buSNfJRo=v%Ss*z<V1{iw&&=R|
zE4<%oYWw_qwK=DA_No2q-}9zuA3Z+pjAB^uJ$2<HLX!T5SB$e*ja>wiTKlrjc{;Gn
zm=$<PjpP01gogdslge`KueO#gnZ9n?>k1=>G|e>|yf>Z;IDBxSN^X7gp7bR}JzK&|
zwT@<3UhGlMd!_f{?PkvA%44@Do|xcx)M|>vTNZ~ECwMopE34aD`<6c`{-HVlwCDWI
zQEQW53r8w6Gg&D-u2{qr8#Hm<e#?8u7fdiUn0QEbV$<ACUEds|h{cWUP42Cy*4P-{
z*m#kFU9`}$&?11dXn|Do>~DQ9EWZBPyhuBz|MbU+YadCiy|wYTiI&{?9QCl@RhwT=
zTUGM^Z1YUxUqT<lemr~r-7uqIvBP4$U$5$_#oHb8UDoYL<NkQytmyeOm9@e%doRme
z{8+`(<-{iXu>J9FORgzxof~WS@c%X_^1kI!Thdze>e-r$O0`#x70hDTpuNfD;HTtn
zCKE45ssC=3^XLCRA-J{&ONt}5Ib&#w+8lJ9uoILaU5Y~;IfXWGyxMsDV)_4-;y=B%
z<TL2DuU8FTC9kfu?9TO!F9wx-^L<srbZ)3^n=Dl%E#~NDIHSVPaP{Kt3um@pdA(!B
zsvV_iQ!i(pK6SMIb4IxFWZOfguhc*IzW6cUX3NSK(F@jdPpNg-YBAR{z_50GQsd$|
zW%WvPBp%pFy3f>9E=<bfdh=b9A#Gpyj$@Bm?=qTKV(}%hO(J8o*(lv0%RUuDp3{H1
z>Jk`UfBHC2&gaVS|0SNGtgNeYPTM>wI_#oar!(PpVD_WyZfOe+eOSNxOzV4(+b66#
zvQN0ioSb$j-9_h#;Srl7P4932kd*tm=FG{>?8o$PewPe;vy$_))3I*jEr+%G4r`s*
znDAO@Rdq%1lEW)iZanV(Z+Em<yh&`Ia>fDupU+n-SL|EjddoKL_LgY=X_@X*MW!{s
z%{+JdiT7)r@Z*nvD%`v$YVDL2-mu7^{8*)4pHXhAOLk&<^O9pnzdgIrzmz5R#j(^S
z7EC{9Y8_(snsp{;k;1<dFBO*?2`pRp(o21NplJE4lQElj?wRXp6#d<`>#WGR*N0|)
zEuUeu`mA;3G~uOwu0JHJx3Tcfef;WX_RLnd?Uo0%Rcp-3s)|1CofXM{a;1ld=;d8p
zev40tc;A@zV^-I!OIJ>RxIg{7Wc`0e<3}}&SR#ekwwtjbYSJ?e@-A{V1dR|EG@hHW
zzjj{9rmT1S*S4r@Z_ssc($kN;<Xv|~_4d-kPr~KDt8R3%>wi1zOwiHqVw*+I>#lb{
zFSuQoizQIl_J@(WsM3}5S6*0EBu=+uUN7LMDOSNgnSpKn!}y9Re$5B0rH$?hPM#<w
zpmK1Qcek&{6kE?f+E2eOnQBr}r>0%}v$|-dNY>($9HI&lJ8!Tr(bkkx5w`90*i^LF
zJgnp1gz!nn(^b_Z1@5YC^xbmc@tvt#T4v60Vtp3TaJ6Lfu3s`f5sx>teAG%5yV~qK
z&va!=+LpfLl*1L@5BYSqwjCA<m|Z)SbJg_z%Xc`Hm%00vy*;!k+U&ie%i^ELI#UiF
z*HB?>_e)mcy0oD|u+ehwhOWKOxGlvFbfnImrNfh(p}M=Oul2x%Ih&Uz9=ks8`saV_
zuF=(tvBUzgtyr{3FgDu~V9;<_#95C)Y6{aEECv(XBsDZftutKvPxG=U@;JW_c_{Qr
z(r#t@)p<Amt$%GW%hBnFqmuPU1CBMHKbc)P`r+cD!{-0YuC7j=sw2OvDkzNq<%IS<
zpF{&P4FZp}M*7G)C!U*e>cljo?a~jo`8Kb~nHsXTxy*)*f7|lZ)f{yza}!_beB?P4
z8n@#(ul)q?wdH$5_tiTE8%)Raiz#wT7vF3<=46KDy1NcM;Mwekva@rZv#zXrcfV~)
zJeTv9u&!BsVpB7JrYeT&PS)H1)-$(L`qTH5T%E#`!c}iA<(U}p)220KfBNY?`>xFq
zRPdh4HF@%+<Eq^Mc&6XelX;$;ZQrk4Zd;WQ+S4M$cv?hwadxED?!&Ws|JW>Jw0|U6
zv@T-1OtPp4@2<jIqVJtQSDuhkNSiUOiz_y)Q>@PM;{x}!wcjH`A`~vZmGLa-=?$3J
zP}X?MgU52S*zOhjzapp1;4FFDt@Liu0U^&bbCP1Me(~Ft=&aap_W1PrKCfRM+Sxw0
z$`^ZPo>7{-Zn|r}d48?!4u{Wrr|RR*DmVsT)5xs3uxf6y#w^Ly)^eFyJSN9w+Rq5v
zv>OXe`BJM<7w@gMOJkxvAMe8Yc)7(rbJ+43i!aXK*2OIT@n+(BnS|C$M`t~$b<h&7
zO8E8v`j5(gf0$*qHH2V^8e*IFMkc7;Fx^1QNz9HMr=N>fITc@izwz|M@Bd$NonmZm
zb5^j@Eets3FECB}-lr3xTOPijDRHp;;KKW-N~Ogt1w=hANrd>Wh}|Q%m%U6Tjp_3e
zQ=MkX*Ua|GT;^4U6+XvqzAcqBWvRZN?VlE4q%B@}@(62i>5UUJ5Bo3c;eH!)p7+E~
z!E31!OJ+|!*3+Wws~F_5@Riz1W5)?Bi&qCO?v*)O_wuyz+{94jES}#n-nXw83!jrR
zu@+lxW4Y8le9q~UN4d4x|L!?^z%@i_wT*yK!T#IMf9Je;Vt((^&do=^{D>>ww8ua+
z;^VWe(i42Q{xH{n^uzY?>z{v^S1gSd!xDhRHpvaqW+i+l`0_a^3N(M8vq;=v;b-Rl
z&lxc<|86h)@bgjA7jH%9<%gMN-5<HRx1D=YvEig4-yUuwwYc8T^Lt*a^l`ot%{{nl
zi}ky+I)>^x!paHRQ|`=m7y0pU2Df9=n@@+uC0v$d&&W5OUpl$2ZujNbD@#kiUsmRt
zbD}SRN4kLZ#${W+J3{B)&r;hTqA5AsVhVqV_{2>&Ia^mOO`0AYn$hzp%=UeE+}odw
z2ftbW#^Pt>b~Xh)S2IJBdah=MK?cTVK_{LXv24=m5h>c?lgKk8hHrXn6JtQ@#MYTj
zJ144o9J|DH%E;K9`IKYGlY*s;49Q9SMOb`*+#;vI2Sz4lBzVCzz&r1#19VXLp}oxF
z^o}dB;(PxuYdaY%a+5Pb`kK69u8q&aFRCZM{L%a9JJB^E>2M0SKrZ`zy)Qa_2Ra0+
zgEsK|>Re~S{bkYNuV;EryDbfs$zL5Mxz%4;OY*z_+?N4;<!%ozYGqliYJPlq&D`CK
zCx1C}_L|n*ZK3Lacb_+&z0@;*+H_CG==sve1G|D2WIJ~5=eoY4(8oen&DKw_Ku2Z6
zx*NwBRZp5}{eI+Y$zxZ=HJf#%c;vCy$up)28Mz9rKDci(|6_~G2Y=0ccvs7>)b;ga
zCZP$*M|kJVeJeb(+P9H&P5RyM4CjAE-hVCM*BD=cCG3f9Gn=ChI+^ys7G7N7FpEfd
zKiS*$TfTFRAG5wJ|MW!%qj+~UDHoKk{Buz`cBiK6^yG6*4+~etdl<Ueu26n_@3{ZY
z_yRGZS}g7%wsmV{h}vy54LHr~Y{;=Yol9(m2vcLqys*8c|Fd&1SSJepcZxVMg`;xi
z$#a@7z3r@g__yip->AgBwp8`asaXp1wBIkBxoP9Y8;=qSq}1XX#LN?3WcEs#mON})
zrZ?58@u=#DnKh-=FZTIMR%D?qxv-f(!H@CL|GLBPbe}Ao^!e00>7UYb-hQy&ocB;Y
zt4!%)k*Lv?%_hesID}p0Y${!s6+GH}t^BHq(3Lc9ziEu?{Oo)97!s7?A{*YUbFuWk
z)VFkg{+{FC`5hR7w_pa1A#zkXB^IZ;<>!?s=)0t5C5Dv-C*~C^=sRa576laLCl@Oi
zg2FL~OW!pwIX@*cFI~aLhD+ZiGc7H(C^auRwOAoq!PrPazqlYVIaR^fTtUAewJ13?
zuSCJbR6#$ZvLGWhPr<}OLBA@sC|^N8KQC25zoa~0LBAxUC^c0<KP|tsNI^d>vn-WM
zzc{l(!PHDaKQ%KwqeMYJFEcMy!OT=a-%-KLTtVMi!OT)Y-&MifSV7-Y!Q4zi-$y~;
zS3%!TLEm3NKS064SV2En!P1aRKdC4&IXkr^CpE1^!O~a(#xDXJYiX{apQvDIsi2>%
zpr4|kpQ>PJV4|R(p`f3sU}#{Wpr4~)XlSUQpRZtOXu_pmq@Z7{pkJb(U#g&ArVz^o
z9fX62hMgUkzFTHdaS15I6bwK^b$KO(ik|$u5|`BC<f6=ilKdhCLr|#|#HA041>eMy
zqD;_`p@E)(0jLr;P(ZL^74&@)p*9(rnkwk~CFZ6g#~V_i1sW?fh7B2lOjghj&rB)F
zC{{2874t!$;X~M}M3DWU<%yt0Wsb$*$g?!ERM2-$EbxHDg#pMGh>Wh0u^D(#WqPrK
zu@S`8MEDoosS5g@C5bti$&PvHIjIT;T>8F=6<`M{7#f=xDd-26q~?Z!!V}~XNT?zO
znSKP^VRqp8Igs<g9s@C=70e6_sDZi2HOJV{LIE`DV`65YU}0>bU}kK_Woc@lU~XZc
zU}SEpU~Fjs#-;`kd60TzGeZS1ZEOxwj}LR18JmISjg8F}Kp12P44WDoDi|7o0>HvV
z!OX%;!OYS^!Q9+H!OYl5!PMMT!5oB5jTDS5O}UILO%=>c%@j;c%@r)nj1|mHEELQw
z%oWTGj3G2g-q=*Z%+OH5+}KFL%)&&$(!x@~%mN|?qQRaqHs=D-AV+{a1;S>A#tLS}
zrV6H}AiF{8O%;qyjlg1N#wH3z<`!UVYHkUpEzM07K;mYGMqD6$AZ%i2s9<Vjr~sNs
z1<9FO8Yx&9S}1^MFg7xU2LvckK=y+p4HQ5I2A}}t0@-P5XaNZnki%dYoYKIy7#JuR
z8i0Zb9BiiWv;&S0kaZBuWol`l0MZQ(Uj)O*P{9Ojgpn~=t0~A;hLGq4B?FMlkg>6`
zITuJb2!o9>F*j5&Gc*FH6;L_=3xZ@p8006ADIg5u!%PA>&eXtw3nUIRz|zc80fs>d
z0Tf@@FgUC&K?xHSA8-s#51=#w!{D?6O%tGWfs8@!0`rZHz-a@NK0p|hR?G}cxy+0W
z6u@Z!ln&6arG*hBT^K^rg&CBFr3n}f3KTPA6D}}qXao)<7#n0im~9MAH&7asE<mvg
zqGLg|AE-<KS7RUsxR6sY1P!wUfhrY4P**<)RIwO>`sP8P$_2c>HwaY07=g;*AW%JH
z1nLn4fvOuLZ~@At@2_A4DmjBdm5&jqN(};4Kt|yD5>&?+LG3`Uj*P&z!K)}pm1G39
zI9UO_;wK1HFBwBEP6gGj1`0v2TG1G4IjF`|08d*7K`T*Xs1q_2jG<0|*1q8Bz#vfl
zW(>9+RK*#Ct>l8#u_jQv@)f`{5kZh@+5~J9Qhg5fY!Rqt2fL_P!31m*q~<n(dKc0X
zFo9ZCqF@5H3RdBR2MvNCZ2(iKy`>7K;K1e5FH<mu`U2csFa;ZrR8@hT1dBvBLj`a{
z2DvH&IT0rBXs7^+YiCD9E#g{H;vQU*SdyxspPZ-w9$?XTG=eEJgjJWA%8;A@av#(R
zMAZXwCx##>JfMO|Z7bc}%)HWK1@JUs5U5&(HM(?5^D+&LElm_mLB0&)Le^87muX}K
zDuX~C1SL^J1w(L<Av+A&KBvr*;(*j5=ltA){5()=%tArmIX@@AC>Y#M(|1WN%S=vn
zFG{Qg*#p`e5s+AvTMP*bkh)?8L$Hq0+`M81V>1H<{eYs>l+0vsg9Y4R#=gM<S}$9`
zw_2D&69RlL(=#_QJr&lDf=y;Z8Yf_j5F0Z*I^SL~<YG|ZVL52~|9`q}OT!Z1EgzO$
zn6k;kWk!VI(u)&sYv{S>sZTJzZy0C)K=_vQk^8$QKVp#C-F}I|qHOKrw@m5<>{w<#
z!EORYjkzJbd;kR}NC=c>hzq?ScPE^IXH2EQgXW!J-^Ai<1yfKAg9;hgv@r2OnbG)m
z=EdAQ4m>XDJDOg5aOa(j*L%6|(xm7DSw@R5?Bz>iJv%>(vm9^#{Xi$3gR@+LPe_?*
z|MRC`-&T2K|9n}RZRWjsWnPYZ_Eul#TS{j=lus@;lj2-(eVVDqGR5d)dG8!2wN*ag
z*d#ey&_Vj^HjmlSz3$n&S;U{~eExOP?S|{Kw<d>f1n({NFyWh>T0T*QhsEI#hY$nL
z8=(_3Rdn{78s&Dg^mN||?s4E?aOO~~S6`?&RY*#mL1~v_^g?GZ3x1I&3{FjZuD_e0
zz+bscDf-fjUz(z)e)3gT_&;rVq1mdv<b&SR=hJE?R<BilYN@z%TBBmP#uLLPcU@Ph
zOFL&Xo=`r!ciI!d>Vhj>XAUYeq&#F~c>L$itfdCl{s;4Rf9g0t`*P>os*>G0U5hH@
z?)^+&pFiCrUS_LK*P<Oy%Q|zm8g(uD;r&fD>HjCKu0=oiD~~+?_WJSjnvi;ju0=bF
zsxB4QSy;WF7^UR;@ywrxcTb&-o;nxA$*K9RWcHJZDKQhvk`z-=<bsl%v4t5d86u}b
z=ls&V5>Phu&P)MyvkXDwtwEr51CTaxKw^4oF;W3w29gJv2TH=uMX8A;nfZAxpwdpm
z#mdOQ$k4#d$iUFj(9Fb4+rUWOz(8G-OCPK*zeqtNH?gE3C%+^oGfBZ%&rr`$M<Ju6
zq`*pFA0eTaUzD!Nr5{j~pHiBfimIm|B~2j-)a}Ykf#}yna#=-DY8n@)F~DU22MT7U
zrpBfUX$o*LP!$c5R>*^h8JZhdf@)$EF*8dub3+A?kO5qsnWedbF@~6hff1${sO|=7
zM$&6xVuGp;ByVPlA!cl8fgxsOfF@>WYHn<a?mlw^BXbP*Ss0q3*=uNKZiz+A1XO>6
z+=S$2BT)MVMa<OP1k{g26EihOx5L!j!rT(oABLtD2B3xqs$L62Q1y%^W@LdLrluAq
zpymUbI#UabaIvt!2m@0~P){4A6%m)FmZqSV7Dy28UsFp9OLRAz85n>XD=6yB3=A#M
z!`{rm!~#7G%nZyi#S9HG(~F_0nK@cmnHgGGV2BwRfEqcdZZR^lKubf0W=19k82&Ia
z#iG~D%naRLBMVTo4%H50BT&;3P0SP{ADJ1OnW4vrnTa80_?Z}+qsOnAiMct3e@zWB
z!^PAH)LKJziz%r83lc)aubHU@X8tuZw8XI2%mmZFW}q$wntA31pmGr;2v09&=7y#i
zac*e|YFeVGGdD28P-kvnX<&dB_T~nb7D!?xMTwa?sYP6%V%9S+Enfj#@CGU92j%C3
m%4=}jI5@K^RlyA0#4IjJEGhvPfrjRWhQ=mbs;aL3Zd?EY0r+SD

literal 0
HcmV?d00001

diff --git a/pythonscripts/figure_S3_cloudcover.ipynb b/pythonscripts/figure_S3_cloudcover.ipynb
new file mode 100644
index 0000000..21b55f5
--- /dev/null
+++ b/pythonscripts/figure_S3_cloudcover.ipynb
@@ -0,0 +1,387 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Cloud cover\n",
+    "\n",
+    "This script generates figure S3: cloud impacts on the cloud cover response in ICON, MPI-ESM and IPSL-CM5A."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated\n",
+    "\n",
+    "* xx_cld: locked clouds, interactive water vapor\n",
+    "* xx_cldvap: locked clouds, locked water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "runs_cld = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "runs_cldvap = ['T1C1W1', 'T2C2W2', 'T1C2W1', 'T1C1W2',\n",
+    "               'T1C2W2', 'T2C1W1', 'T2C2W1', 'T2C1W2']\n",
+    "\n",
+    "response_cld = ['total', 'SST', 'cloud']\n",
+    "response_cldvap = ['total', 'SST', 'cloud', 'water vapor']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal-mean cloud cover (MPI-ESM, IPSL-CM5A with locked clouds and locked water vapor)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1W1\n",
+      "reading T2C2W2\n",
+      "reading T1C2W1\n",
+      "reading T1C1W2\n",
+      "reading T1C2W2\n",
+      "reading T2C1W1\n",
+      "reading T2C2W1\n",
+      "reading T2C1W2\n"
+     ]
+    }
+   ],
+   "source": [
+    "clc_mpi = {}; clc_ipsl = {}\n",
+    "for run in runs_cldvap:\n",
+    "    print('reading ' + run)\n",
+    "    # MPI-ESM\n",
+    "    #print('   MPI-ESM')\n",
+    "    ifile = 'MPI-ESM_' + run + '_3d_mm.clc.nc'\n",
+    "    ncfile = nc.Dataset('../../MPI-ESM/' + ifile, 'r')\n",
+    "    lats_mpi = np.array(ncfile.variables['lat'][:].data)\n",
+    "    levs_mpi = np.array(ncfile.variables['plev'][:].data)\n",
+    "    # multiply with 100 to get cloud cover in %\n",
+    "    clc_mpi[run] = np.nanmean(np.array(ncfile.variables['aclcac'][:].data)*100, axis=3)\n",
+    "    ncfile.close()\n",
+    "    del ifile, ncfile\n",
+    "    \n",
+    "    # IPSL-CM5A\n",
+    "    #print('   IPSL-CM5A')\n",
+    "    ifile = 'IPSL-CM5A_' + run + '_3d_mm.remapcon.clc.nc'\n",
+    "    ncfile = nc.Dataset('../../IPSL-CM5A/' + ifile, 'r')\n",
+    "    lats_ipsl = np.array(ncfile.variables['lat'][:].data)\n",
+    "    levs_ipsl = np.array(ncfile.variables['presnivs'][:].data)\n",
+    "    # multiply with 100 to get cloud cover in %\n",
+    "    clc_ipsl[run] = np.nanmean(np.array(ncfile.variables['rneb'][:].data)*100, axis=3)\n",
+    "    ncfile.close()\n",
+    "    del ifile, ncfile\n",
+    "del run"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal-mean cloud cover (ICON with locked clouds and interactive water vapor)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T2C1\n",
+      "reading T1C2\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "clc_icon = {}\n",
+    "for run in runs_cld:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats_icon = np.array(ncfile.variables['lat'][:].data)\n",
+    "    levs_icon = np.array(ncfile.variables['lev'][:].data)\n",
+    "    clc_icon[run] = np.nanmean(np.array(ncfile.variables['clc'][:].data), axis=3)\n",
+    "    ncfile.close()\n",
+    "    del ifile, ncfile\n",
+    "del run, ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "clc_mpi_djf = {}; clc_ipsl_djf = {}\n",
+    "for run in runs_cldvap:\n",
+    "    clc_mpi_djf[run] = fct.calcMonthlyandSeasonMean(clc_mpi[run],\n",
+    "                                                    months, seasons)[1]['DJF']\n",
+    "    clc_ipsl_djf[run] = fct.calcMonthlyandSeasonMean(clc_ipsl[run],\n",
+    "                                                     months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "clc_icon_djf = {}\n",
+    "for run in runs_cld:\n",
+    "    clc_icon_djf[run] = fct.calcMonthlyandSeasonMean(clc_icon[run],\n",
+    "                                                     months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "del clc_mpi, clc_ipsl, clc_icon"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF responses and decompose the total response into contributions from changes in SST, clouds and water vapor"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "dclc_mpi = np.full((len(response_cldvap), len(levs_mpi), len(lats_mpi)),\n",
+    "                   np.nan, dtype=float)\n",
+    "dclc_ipsl = np.full((len(response_cldvap), len(levs_ipsl), len(lats_ipsl)),\n",
+    "                    np.nan, dtype=float)\n",
+    "\n",
+    "dclc_mpi[0, :, :], dclc_mpi[1, :, :], dclc_mpi[2, :, :], \\\n",
+    "dclc_mpi[3, :, :] = \\\n",
+    "  fct.calc_3impacts_timmean(clc_mpi_djf['T1C1W1'], clc_mpi_djf['T2C2W2'],\n",
+    "                            clc_mpi_djf['T1C2W2'], clc_mpi_djf['T2C1W1'],\n",
+    "                            clc_mpi_djf['T1C2W1'], clc_mpi_djf['T1C1W2'],\n",
+    "                            clc_mpi_djf['T2C2W1'], clc_mpi_djf['T2C1W2'])\n",
+    "dclc_ipsl[0, :, :], dclc_ipsl[1, :, :], dclc_ipsl[2, :, :], \\\n",
+    "dclc_ipsl[3, :, :] = \\\n",
+    "  fct.calc_3impacts_timmean(clc_ipsl_djf['T1C1W1'], clc_ipsl_djf['T2C2W2'],\n",
+    "                            clc_ipsl_djf['T1C2W2'], clc_ipsl_djf['T2C1W1'],\n",
+    "                            clc_ipsl_djf['T1C2W1'], clc_ipsl_djf['T1C1W2'],\n",
+    "                            clc_ipsl_djf['T2C2W1'], clc_ipsl_djf['T2C1W2'])\n",
+    "\n",
+    "dclc_icon = np.full((len(response_cld), len(levs_icon), len(lats_icon)),\n",
+    "                    np.nan, dtype=float)\n",
+    "dclc_icon[0, :, :], dclc_icon[1, :, :], dclc_icon[2, :, :] = \\\n",
+    "  fct.calc_impacts_timmean(clc_icon_djf['T1C1'], clc_icon_djf['T2C2'],\n",
+    "                           clc_icon_djf['T1C2'], clc_icon_djf['T2C1'])\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read zonal-mean tropopause in control simulations"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ipath = '../../tropopause_T1C1_T1C1W1/'\n",
+    "\n",
+    "# ICON\n",
+    "ifile = 'ICON-NWP_AMIP_T1C1_tropopause_DJF_timemean.fillmiss.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "tropo_icon = np.nanmean(ncfile.variables['ptrop'][:], axis=1)\n",
+    "ncfile.close()\n",
+    "del ifile, ncfile\n",
+    "\n",
+    "# MPI-ESM\n",
+    "ifile = 'MPI-ESM_T1C1W1_tropopause_DJF_timemean.fillmiss.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "tropo_mpi = np.nanmean(ncfile.variables['ptrop'][:], axis=1)\n",
+    "ncfile.close()\n",
+    "del ifile, ncfile\n",
+    "\n",
+    "# IPSL-CM5A\n",
+    "ifile = 'IPSL-CM5A_T1C1W1_tropopause_DJF_remapcon_timemean.fillmiss.nc'\n",
+    "ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "tropo_ipsl = np.nanmean(ncfile.variables['ptrop'][:], axis=1)\n",
+    "ncfile.close()\n",
+    "del ifile, ncfile\n",
+    "\n",
+    "del ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot the cloud impact on the zonal-mean cloud cover response"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAEHCAYAAACz/bCKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd5gcxZm43+rJYXPWalda5bSKKwmBQIAAg0nGgMEmGRuc7fOZO8c722dzTucz5ox/xsYBg40BkyySAIukhLJQXmXtSpvjzE7sUL8/umc1u5pdrcQKBOr3eebpma7q7qqerq6vvvq+r4SUEhsbGxsbGxsbGxsbE+W9LoCNjY2NjY2NjY3N6YQtINvY2NjY2NjY2NikYQvINjY2NjY2NjY2NmnYArKNjY2NjY2NjY1NGraAbGNjY2NjY2NjY5OGLSDb2NjY2NjY2NjYpGELyDa9CCE+KYSQQohxafuEEOImIcQyIUS7EEIVQhwWQjwqhLggwzluFEK8IYToEkJEhRBbhRDfFkL4MuSV1udTGdL+IoQ4OOyVtLF5j0hrX1IIMSFD+vlp6RdZ+76ftk9a7WqtEOIT/Y49KIT4ywmWof+nq1/eRUKIpUKIBiFE3Gr3S4UQN6XlGZ12/GcyXC8ghAhb6XefyP2ysXmn9O/ThBAP9nvmW4UQbwohLu133Bgr734hREII0SKEWC2E+GG/fENqd4OUb4oQ4k9CiEPWdbqFEMuFEF8RQnitPCfVxvod1/+TO0B5brbSN55snT5I2AKyzYAIIRzA48CfgYPAp4HFwDcAL7BMCJGTlv+3wCPAPuAm4HLgCeBbwBtCiOwBLvU9IYT7FFXDxuZ0IwzckmH/rVZaJhYCC4BPAEeAv2YaWJ4A11vnS/9clEoUQnwEeA2IA18CLgW+A7QBH85wvoHqdC1gB9u3OZ1o5egzfycggBeEEIsBhBCjgA3ATOAHwIeALwOrgOuGqxBCiOuBjUA18EPgEuDj1nX+C/hsv0NOto39mGPb+kDvmdus7SwhRPXxa/HBxvleF8DmtOZbmC+E66SUT/ZL+6sQ4hJABXOkDnwG+KqU8t60fK8JIV4AVgD3Arf3O8/LmC+GzwK/GvYa2NicfjwF3CyE+K60VmqyZliuBZ4EPpnhmDVSSs3K+zKwE/gq8MeTLMNmKeXeQdK/BmwCrpF9V5P6sxAik2LlKeBWIUSVlPJA2v5bGbhONjbvBUkp5VupH0KIV4E64F+AZZiKoCCwWErZnnbcY0KIfx+OAgghxgMPAS8C16fatsULQoifA/1nmU62je1Pr+8gZRoJXAi8gDkIvg34tyFU5wOLrUG2yYil0b0LeD6DcAyAlPJlKWXU+vkNYDvwfxnyrQP+ANwihBjRL3kd8AzwHSGEf7jKb2NzGvMwMApTK5ziGsCB2dENitWZbgLGHS/vOyAfaJEZllqVUhoZ8q8A9gM3p3ZYHe4FmIKAjc1piZQyBOzmaHvKx5w56cqQN9OzfzL8K6aC8gv9hOPUdVqllCv77T7VbewWTJnw+8BK4CZrFvmMxRaQbQaiBsgFlhwvoyX0TgKezdShWizBFAAWZUj7D6AI+MrJFdXG5n3FIeBN+k6X3go8DfQM8RxVZOjATwCHEMLZ75PeH6wFLhFC3C2EmC6EEEM451/oW6ebgcPA6++gnDY2pxQhhBOo4Gh7WoupQX5MCHGeEMJzCi57EbBOStl4gsedTBv7sRBCs+yblwxiOnErsNNSaD0ElGLO7p6x2AKyzUBUWNtDJ5D34CB5UmkV/ROklNsxbZe/nm7TbGPzAeYh4HohhFcIUYbZYQ6mBUoJtMVCiO9hDmAffwfX34VpHpX+SR8MfxNTi/Qd4G2gSwjxjBDiY4Oc8yFgvBDiLOv3LcBfBhk029i8J6QNCkcCv8YUBlPt6WHgt8BHgTeAkOU4d1fKcW4YqGBofWt/TqSNJTDr8VlMLfO/Ydo7rxJCTE7PKISYj6nketja9RimFv02zmBsG2Sb4WAo2qXj5fkecAPw75gaZRubDzJ/B+4DrsQ0t2jCtH88b4D88bTvSeCXmD4CGbG0Yuno/TrRazA1T+n0aqSllC3AeUKIuZgOevMxhfirhRAXSynv7H9NKeV+IcRKTFMqDZiCKWTY2JxOlGP5zlj0AN/FMg+02snnhBA/xXQ0PxtTwPw5cJsQYr6UMjaUC1kmCul9X/92eEKcSBuztNOfS9u1XAixFNMU8jukmWpgCsIGpoYaKWW3EOIfmO09R0rZfbJlfj9jC8g2A1FvbUedQN7Rg+RJnac+U6LV8P8A/IsQ4t5MeWxsPihIKcNCiGcwNUCjgb9KKY1BLBnOAnSgE6iTUqoDZbTon34Bfadhtx3HSS9VznWYfgJYoaGeAO4QQtwrpdyW4ZCHgB9hmlOtlVLWHu8aNjbvMi2Ygq8E2oF6KaXeP5PlCHcfcJ8l6P4I+DqmE999Q7zWPvr2obcDD2L2g0PpWzNx0m1MSlkvhFgBzE3ts0xIbgBWA+G0EHBPW/s/BjxwkmV9X2ObWNgMxHpMjdKVx8sopTwC1AJXDmKreBVmB//GIKf6IWaj//aJFdXG5n3JQ5gddTXHd7LZIKVcL6XcNwThGMwOMP2z4R2VFJBSdnHUCXfKANkeBwKY4bNs5zyb0xHVaksbpJQHMwnH/bHy/Lf1c6BnPxNX0rcdPmvt/ydQI4QoPYFzpXinbUzQNyzclZiOiedgDsBTn0et9DPWzMIWkG0yIqVMAv8LXCGEuDZTHiHExWmRJ/4HmIoZL7J/vrmYo+6/SikbBrlmA6Y92OeBke+sBjY2pz2vYHZ291t2+MOGJQCkfwaKe5oRIcQxvgIWk6xtRuciS4j+MaY986OZ8tjYnM4IIcoHUPQM+uxnQkq5tV87TIWNuwdTYfT/MkWKEEIUCiHOGeCcJ93GhBCVmILwmrTdtwFRTBOqC/p9HgTOEUKMPZHrfFCwTSxsBuPHwAxMb94HMUe/HZjC67WYtk95AFLKPwghzgZ+KYSYgRmuKgaci+kcsA0zzuTx+AlmPOVFnJwTg43N+wJLK/Xx9+jyM4UQhRn2r7fCTr0ghGjBdNapBXyY9tF3YU7F9g9B1YuU8genoLw2Nu8W3wIWW33eJkxzpemY5hXtwJ/65a8UQmRaQGS1Nbt6DFLKPUKIWzFtft8SQtwP7MHUDJ+L6Vj3AwZoZ0NpY0KI/8VUgq7GXBxlolU3A9NEAyFEMaaPwV+klMsynKMJM77yrZh+QmcUtoBsMyBSSt3yWr8JUwP8IGb4m2ZgObAo3XhfSvlpIcQyTMeARwEXpg3Wz4BfpMVMHuya7UKIX2DGYrSxsTk1/H2A/UWYq+XdjTkI/gZQhjktewBzVunHwxgP1sbmdONhTNnoFkyBMoCpNX4F+KGUsr9z67nWpz/XY9rsZ0RK+XchxA5Mx/TvYUbSiAFbgP/EXDvgnbAdczb2k0AWZrt+FfivNLvlmzDrmnHBISnlLiHEKswFSr5/pkWkEWdYfW1sbGxsbGxsbGwGxbZBtrGxsbGxsbGxsUnDFpBtbGxsbGxsbGxs0rAFZBsbGxsbGxsbG5s0bAHZxsbGxsbGxsbGJg1bQLaxsbGxsbGxsbFJww7zZlFYWChHVVa+18WwsenDxk2b2qSURe91Od4r7HZpMxAybS0HYUVjkgMv1d2bJz2fOMkoTna7tNulzemHUBQ2bNgwbG3TFpAtRo8ezYrly9/rYtjY9MHn95/Ri6XY7dJmIN5LAdlul3a7tDmWwdpfCiHlkPOdKF6fDyHEsLVNW0A+zRjKgzNs1+r3/BlS9i7QbshUHvOLLkG3dhoZjk8V22F9UdKqkfqa2ieEOPq9N+3Yeg/lVmTq9IbCyXaMpxx7/QUbm4wM1r6H0vYzCdQ2NjbDR6Z21b9tvpsyzjvFFpBtbGxsTiMydSBD6XhOhlMhKB5Pi9tfe/tOtbkDXWfYkAbCHrja2JwUmWZ33i8DVFtAtrGxsbGxsbHpx4ma7GRKszEZ8j05jQajtoB8htD7cFoPnzC0Y2wsFIcLQzgA0A0zX0wz83QndFojKgBt0SQAPUm991i/ywyIUhzwAJDlcfSmuRQzzecyXyI+p4LHYX53WVsjNcrsU2arXOkjz5Rpxvv5BZTpBSDsgDI2Nqcdp1FnbXN6cdyZnvS+FsDQj/5O7Uth9bcoytG+oN9WirQ0xXHsvvcjqXuU3s5S3/vJLBk5xXW3BWQbGxubU8BQTSD6D/aElEc7BasDsMapJHRJ3PqR0M08qiF7+5LUJRXLul8IcKT8AyzDf5e1dYij+5zKUd+B/n4BJzooHUyzlv77RE0rhmJmctID56EKwrbAbGNzxmALyDYnhZQSKSXifWRwb2NjY2NjAyc/uEplUy2n9ahq0JM0B05J3dzndEC+1xSvsjE1x45Qo3lg+xH09iYAjFC7uY1FzDIoR2depaVxlpZ2WeoGiss8p+ILmNvcYpzF5WZ6thnZzPDnmb9dfqTDZVXuNNAypw0uezXGVh37zmxbabrWN2/6qdLro6TXLXfYigu2gDwsDKfx+clGZchEn6KktDXpa8OkHrzUdI3iIK6a+9p7ohw5dIh9Bw7Q2dZCW3sHkUgUQ41jqAnT2QaB7vCguQM4swvQc8uZMHUqistNcdDTexmPM2V+4QagNOghJ80EA45qsjIL3Ucr4ni3BPJTOa1zOrysbN53JPThMytynGAzel+bNNnY2NicBLaAbNOLlJId27excd1a9u/fR0lZOYUjKikZOQolt5Sm7ghS12kPRQBBT1KiOzzg8pDnAWfLXur2rcRbWIY6ohLF6UYIgdOh4M3KIVhZgT8r572upo3NKWVIIccsedNIHxBbW8vYAQDLioJwwtS0dMR1drVFkIbB1gONGPEe2rvCJBNxMPRebZPL7QaHi+ysLIqL8nD6g5TnmlqnPK+pVcr3uQi4zYFqwPIh8DkFbkfK7AKrJAKJQIgTE5SPdx/esdAtjV4/hWPPfYKmEIP5BUjj2JiYNu97hvL8Kbrpd4OuIrS4eZxm+uA4fKa2skt3sqq+C4D7X9oNwJYXnkONdONyQL5fkONVyPIKvC7wOAROx9Gwp1KaYVRVHZKaaUIVSYB/3Fn0EOSma2cB8MnZ5ZR21QKg7lwDQHzfTpS6PQC4ikeY28oJ5nnzyjF8Zn8rXT5zq5wika9f+8loU5yywZbGURvslJbYus9CT/amCSstYzxZJc0uO538Ee+kFsdgC8g2ANQfPsLjTz2DbkgWLDyXKbPnsmfHdnZsWoPL5cadU4CGB+H2IoXDfFBlEl+sDV9nB050tJIJlJ91EcnuVvSedrREDCklDgEd9fvY88bzjJk+h6KLPgT9NMg2NjaDE41E2LBqJbW1u+hpawKnB+ENIHDitMRYAwFI037Y0IlLjSNaHC0eod7rw+3Pwh8I4vEHyMnOpqCggPzCYsaMHoXT5Xqvq2hj875FS8TIjR7GpzWTO7ULbyCB4lEJGRqq0HG4DXAY6IrEcEgEVjcqQUqBlOA0wG+ASweP90UKZZI165/AlV2ALziD3EQ7Qgj0aB0KAkN045ROXCj4YiHyFB9V8TwqvGfsIo/Dii0g27Buw0b+8dwLXH311fiycln6/BISSZXpc+aSW1JOa1MDDY0NJLubMRIxPJZdk0fXUN1BItnleEtG4+iso+Gfj+Arq6J84jScXj+GpiLUOBWzzqEo4GbjP5/j6Yd+xy2f/ixutztjeQxp0KOGCSVDhJIhYloPETVCTIuhGkkMqSOlxKk4KPGXcFbJWTgUW+C2+eAgpSSshgmrURJanBUrV7N54xpKqkajV3ow8rIJdbWixRuQQpi2hoqzV6OiSInQVISWxBH04yrOwpHlJ+l24Q26iQqVuNbAoeZaumvb6Xmhk4LSEiZNnUx+UR6aoaJLlaSuoksN1VDRpY60tEEO4cCtuPA5/eR4sin0FjI1fypep/c9vGs27yaifyQGMmj0jnuS08vcrLdOlkZTSfSY+xNhhJoAQLp9hNQe9qtdNEYaeGHnBrbuW43m6SI2KobhPva+pCN1AZZQbJ5cHl0US8gBb8nuXSuP3Zne7YWsbdcSPtk1is+PvhjP+BnmNXPLAI5qlJ3eXtPK3nIJZfCZl/5paVEmjkbqSG2No1rhlEbY0sCjqQg1ZmazbK9lPAqAHosgk6l8yWPL4DRlBuE0ZRDhcoMzbWA/curA5T8JbAE5jZO1JR7q0oknypBWpZHHhkhLrXinGqAPWA8nUjoJh0I8teQ5PnHH59EcXv58/z2MX3gB9d5sXtnxBp2djYRy82gxknQmj6ApBmqsG+E0cLh1/NlJfNkaLqdGvFQiKjRgGYQkolsgDAeK4cDZ4kAYPhKBAnK9Uda+9DaerFy8TklCj6HKGBEtTEQNEVHDSIZ+/8v8ZXxi4k1cM/Ya3I7MQnem+5jxPx5sqmiAPH06hUxvt34RCQYqD/SzEbf5wKIbOs3RJo5EGjgUPsihcB3N0SZaY620x9poj7ejyX4d7USAVeb3bOtzMsTTvjuBQusDvHrwZTg48KECMWDbDLgCXFJxCXdOvYMi3wdEg2VHrThj0QyN3V217Ojew/6ufRyJNtGUaKc50UGPHuuT15EVwJnIw9foJ6h5yTI8yKib7m4H9S2CI60Ch1Qo9DkoDCgUBBQCboHbAaG4pDVi0Bw2aA1LdAlORbJwahFF3hjBc65GeoOMqnudqoDB5TWTaHnlRQCath4kHlfRhcRZ7CPs1nltss6DuYdoib7Bd43JeJWh9Yk2x2ILyB9gNENjS9tmGiJH6Ei00xRtoD3WimqoSCRO4aKx/TDh6jArNq4gpkZhBrwWfhnCQJH1ASiG4Jj+F1BQw27CYRdBrYRiVHqC4zCEl5yAm3A8gRQaqhpFFVH8RiO6EiLmM0gkD+FJdOPTXLgdPrLcWZT4R5DtziHHnU1W7zabXE8WOe4sPA4vfpcHp3CiCNClzs7Obfxt96P876af80jtX/nxOT9hSv6Ud/dG25xaTkJIGZINalq8zWM0ILp2bPzStHP2Doqs2RTp8vba+RmKuS81ONUNiW5I1jSvprZzJ7u7atnctoEetaf3fH6nn1JfEUXeQsbmTaXQ4SffnUNjXQu7D7bwoZqJbKg9jKELLr/gAoQh2H6ghR07dqBrBgWlI8jJK8Dp8SEcgni0h47WZlqbDjOivJyp1dOpGlEMgBLtpKW9k/0H69i+p45JlSNYPHsqHqeTXQdbWLdtH5+79sN4vFm4FRdOTxZO4cThDoDTdL7VBai6SkSP053spiHSyCuHl/H8wed5uf5lvjbjX7lqzFWZB5z9NEspTZHQ1cxxUdP/q5PZl2lg2j/WbCZP+ZS9puLo/a4kwseey+YDg5SSNc1reWLfk6xt3UBUMwXhoMNHubeISl8JNfnVjPAV0dXp4sCmA4ytvpRtL79C2JnP1h2HOBCVhOKy13/A64SzKp2MLXDQHpW09RjUd+qEExJNhxyfoCioMK/SRdAjeGlXkvYIbOouokoNM2fTUph3LTd84tP85b6fMb64g3JpPo9ZqoInbj7DwZgLYi7mdZQzUvPxcM4e9u74BT8f92kqKHtP7uf7HSFt5wMAampq5PIVK3p/n6gDyalYLnWw6/T+zqBB7klG+fPOP/LsgWcIqaHevHmefAp9xXgcHgSCpJ6k/XAL4yqn4BcBDtXuZeTUGqKtbYQbOsiZeA57DkcoaK0nEOqmI+ykPeKmqbkHJ4KRuQ6q8h2sPKASKZ7HBG8TlbkqB0rPY2RZLo0d5sulp9tUWWXpXYzpeAs57zoCm59k2lWfZGKF2XDz/aZQ4XaI3jitqdismfalx3aVUrK2eS3/ve5uNEPjwYv/TLG/+Lj38qQ1yP0PGU4Ncr8y+fz+DVLKmuMW4gNKTU2NXPHmGyd83HspIOsZBOS/1j7M/dvuQyAYEShndnENU/KnMCIwgrHBckp8xSgpJ6BEBCUeYt32PSx5bTVf/uhinl+9mYSq8ekrFrHxSIinX36dyVOmce655+LKKyGimteKa5YJhFU8DzqHdmxm9YrleNxOzj93IbOqSnA5nYh4mEhPiMf+uYZIPMGdV52P1+vj3seXMmvSGM6dX2PVzXe0jqkZmvSFCnpvukJ9uJ4fbfgx61vW8/XZX+f6sR899n/5AAjIrpFTzvh2uerlJQNnMAZpf+mLYaRI+z9OyExjsLwZ/tPe50oaR5811Wx38XgXX91wN2tDtRQofi7wTWBm2M1k8ggc6UFxmM98bvUUGsNxfrOhkRs+cgUPP/0cq0NVxPCS07KGHJ/A6xJohsTvEgQ9gtoWnY31Gmlra2VkVL7CwjEuXtmVJFlomgucP8WJS4tyw22fZJTWyuOPPcZ/fGQBLqeDjmUv0rJpLwDRdrO/dbjMcu6d5uDeCc3oSP7Ds4DFjkocRWZIOEdeMUogy7yoNejNdN8z3S+pme1XJszryWS81yxCJsytEQ0jLfMJNWTKIIlOs+3E20PE2rsBiLWbeWKd5nFqREW3bpK0ovYIq7N3uB04rdB57oD5jnUF3b3fASb/aQlCiGFrmwNqkIUQXzjJcz4mpWw/yWNt3iFvNa3mZxt+QlO0kUXlizm//GIm5E4ix5OLx9HXPnD7li2sq13BDQs+xz8efZj54y9E8xSxcfPfGHnuFzDiUZTaf9CdN571agmNBzcBEO3sASR1nRq1LTqXTHKzW21nd7yEUlcXo5uXoxVfClLi0iLkJNqIuPKIuvMJe4rJObKN/FET6ThYCxXvfGQrhGB+6Xx+ce493LHs03x95b/z+8V/wHmqPHZtbE6AFQ1v8tttv+aC8ov45pz/xOv09oY1dAhw9TelALbuOcjTr63mS1efz2ubdxGOJvjMhxfw2KvrONTWzRdvvo7iibPQdZ23a/dz4MAB2pobCYdDqMkEfn+Q3KJiJk+dRs28+dTMm8+hXVt5c+UqnlnSwLwZU1hUPY6CoJfbLz+Xx15dywNLXudLH7uM6y9eyK8efZbZ06cR8J2YTXFFVgW/Ou//+Maqb/KzjT8jz53DRRWLh+U+2ticKlRD45tb72FdaDffHH0DV2kjcAsnibApfPYQ6c2r6QaPbD7ChxZfwD+WvsLo+Yupe3U1eSLETgl7WnViqsShCBKqpDMmMYaoNzvUYaAbKhdPcrM2FKU16aetYBpjDr1I68E9XHh+DeXl5by2bT+XzBw/6LlmdwW5v72CH+Zs59vKCr4m5/AJyk/6Hp2JDCZB3HcS55PAW4AtIL/LqIbK/2z8Gc8e+AejskZz36L7mZI/axAbZNi4djVz5p9NuLuLugP7OOfD1/LUQw8waeGHaJAGXWueo2nEAqJZIzA62wg4dYp8GllBJ9GkpCls0NojeX57kitnNKFKB4cL5zKifSP5Gx4lx9DRHB5iShC/1kWnbyTNgXHkt6wlZ+GHaN65ATh/2O7BuNxxfG3WXdy97ofs6NjB9MLpw3ZuG5uTQTVUfrLhv5mQO5Fv1fznMYPUTOw5UMcjS9/gc9ddxuZdezjU1M7nLj+bh/65DkMI7rrjJmLxBEuW/IN1a9eSnZtHaWUVlWMn4A5m43K5ScYitDYe4dXnn+E1w+C8Cxdz9sypTJsymY66PazY8DY/fegZzqkez+Vnz+CGC+fxi0eXsmpLLefMrmbKmEpWbdzKxefMPeE6OxUnP1rw39z56p38ast9nF++yB6s2pzWPLj/Cd5s28h3qj7Bx0rPQz28b8C8y/a3kedz0dTcwsRxYzjQ2ohA8po6nyP1r6TlPLnZ5MNdBiv2qSwc38zzLVVIxUlz0Rx2r34Vzq/h8iuu4L57/pd540ce91wlhpd7Omfx07L93KNtoDA6gkv8k06qXGcix3trnSWlXDuUEwkhnEAGt0ObU42Ukh+tu5uldS9y88Rb+eTkO/A4PKiDzHKFurtpbDjCjVOm8vqry5hcPZPmI4fQNZXiqolsf+S3BCefRTRRQk7Hbkbq2xGVcVpiLpo7JAGPYHGZm0MdOmsPaazrGc284AEO6NNoKJiNc8J8Grs1pOKgpzuOw0gyuXMF3Z4ypKLg9HjpaW1ATSZwuT0DF/QEObvsbAC2tm+1BWSb95zVjavoTnbxrTlDE46bW1p58Ilnuf2qi6hvamNd7UG+/NELeeTVtbidDm69bCFrtu5kybLlzKmZy9fu+jc0T1bvSl7pJhaV4ydx3uKL6Ty8n9f++QorX1/GFZddSvXIfK65eBEXz57MI0vf4J7HXuJL117ETR86m3sff5nJ40Zzwdzp3P/Ei1xw1uyUFckJ4XF4uGPqndy14i5ern+FD4+67MRPYnNa44hYejAjLU50uolM74po1pR8yuxCSyL1zLYGwnFsNCKpWscn42lRD45uU/u0qDlNr8USvdcTVrxch9t8iHtXonMfFX20pMpT4iXm6gWc92YdTfyFZDjapwz+olyyp02lIRRj5do6br/uCn7/9+e5/MbbWPnwn1jbUkZSNg56vzLhLzDj9gZLqgDIKi4ip8BPaXgXCSVO9dS5jC3NAplFdM0Gnt28n0BuAdPmL+SvW5r5/B3fIf/QZgCSu81t5LBZjkRXD7F207zhS635tFR18l3jOUp37iE3LNHiprimxTXrvmmo1veUmYNhvVcM3UBaanDDMn3QYlZeVUftMf+jiGbFa08aNCfM9Kb44FE9hpP7/zS85xtMQH6Do4FDhoJhHfOB8GIYLCpFJtvVAW2PMy2v2CeI9hBGmamyCAUsTUyqfIaU/G77b1la9yKfmvJZbp30KZK6JKbJ3mUv1bT5ndTl1q7fyMhxk6kPq2xct4a5H7mFZS//g+wJc3ny6WeJ9bjZvhnGdT6C4oKX9ydpi0jgqPfuxnqNc8e6uHSymxd3bCU40skI7TVWd1fSaNk6te5aT6zTXFazs0BhWtlKdia97HjoCSpHZPP319YjC0cxb7S5PGZFjmnvWOh3E3CnFksQxACvM81GKhVl3aqbYt2PAm8hZf4ytrZttbz+h0Amu+M0+9RMefrkhzQbOmtFwJTGTGSwt7M5Y1h66AXyPHnMLTnruHlj8TgPPPw3rrzoPAxD8uLKDXz12p1UqswAACAASURBVAtZsvJtFEVw20XzePz19Rxo6eZfPnkjBePMAWBzOMHqV1+i+XAdoe5OEvEYbo+XnPxCzjl/MdMnTWDsuPEc3LmF515cyitOhVs/chnFAR+fvfoCHn91DX9+cQWf+8iFLJwxiReWr+fmyy+gpCCPTTv2UDN71knVfWHZOYzLGcuDO//MpZUfQrHbgc1pyCbaaBYxPqNOGDSfqhv8dcMhrlx8Hv9cuY7Z55zP5rdWoI6sJlnfwShfiItnulEUQXvE4LU9aq+j3okgpE5hZD9HKi9I2ykIVoyjef8uxsw+h3nnXsCff/0Ldu/dz6QhDGDdUuGr9ZV8duJOlha0c2M4/8QLdgYyoIAspbxgoLQB8hvACR3zgWc4QwQN0LnUhQ/x8K4/c+moD3PLxNuPSVczGD8lEwk2v7Wc8z96M3V7duLPzcfhcqOGOljXk01Fx162MJciWvG74bmdEl3NcB4dlu1WuWiCiwWjnaw6qFFRLJmd1UAtI2jdtZ5cj8GYUgetPQYH2w3mVEA0qjC13E2Hu4RgRz2ycFSf8xb6jw1L00c47ofSbzBTXVjN5tbNA+YfjBNegWvQk9kCwXDgPpz2X2ZwKBG6qQlJaZX0cFevs0g6wloIQzj7Pl9SS/bm73U2ScaRqjUhZmm+hMfUACvBXJyllWY+K76odPt7nfOSVq/YmehmRcNyPjLm+l4Tg9S4LuV06tATiGQEKSV/e/xJJo6uYMG0sdzz4N+5fvECgtk5bDtwhJ988SYURbB62z5+etedeD1ujFgHAKUeL3W125g1cyazaubi9/uJx2L87ne/xRHrIqib0TKmjypm7K3X8YN7H0CNRyCQC24/58+bxa8efR7Dn8esOTX84fFn0LNLmDN7Njv27WfOvPnWfdBQEuY97nWwS18V65gbrvCpiiv59rZfsnz3UywuOQuhxhFWbFkjEj72nqc0i5ZjZMoZUDgcA2odU+l9cLpQ3Ob/JXwB6//z9zoZylTs1JTCId0ExHq2pMc8Trp8aU6ZtqnIB40XxCGC0sVCrZh0BVB/XtzVSGHQQ152Fp3dIWaOm8Cm1W+iTb+OGdlPM8Yf4oXtKpEknD3ayfxRTlYdGJr2VGDgV5IU6w2Ud7YRd2aR9Ob2yZNVMZ6mrSupmnU2LrebCz98NY89/Qz/dtXZBLzHD+VWqnqoCWXxUkEH1x7KZfgD037wsFv7+5zfb38Al+LiC9VfRgwxFvPq116mfNQYCsvK2fjGS1ROq6H10B58paPwRNvRXH7iho9Jchc7mmUfJbfHCROKHMRUSXNYEk5I3tincnW1m6p8hdXdlSzIqeNsVuMaHyOpCxq6BFNKXcQ12NKgU1Ws4dYNos5sROeOYb8n1QXVvFz3Ms3RJkr8pcN+fhubobCs/mU0qXFJ5YePm/eVN1YSCvdw20c/TGNrM+3dPVSPH8XWPQepKi/B5XTQE4vj9bjxevp2hoqicOUVV/Di0qUsunAxTqeT1197lYA/wJzZs0E72um/snwNsyaPo7y4ACyBs66plVHlJQD4fF7iMVNgHV05kheXvY5hSBTl5LrTi0sW8Jt9j/KHA09xYfF8u1P+INHdApgmENKKRJKKcIChHzWNsAauRthcjlkNhXojGiS6zMGSGjGfUT2exLAGmIZqCpeJkGkyETocpuWgGf1gm7XveNP3buu5vazCDBo+7jLTsW3EeTPxTKohosd5fecSLi87n4L53yXpMAfgMcs+MWJt39q6hXUvPc+Hbv48T736Et4xs/j7ugMYrixq68PEnKOoZAcFRcUUCijM6mZvax7BEg++PLMPyi41t4Ujspg8ypwxHRmQhHeuIXpoKw5vgKzCEkoqqykbPw3pNmdTO2Pmfaxrd9HdE2Hpyo28UTIK8OMrHcfPl+1k7tU3M+E8c5aqwGeKdUWKitLTBoCjpxWA2/b8ky+1PMbWudnM32V27J21pklG5/4uOprN/6rVWtq+RxtYYZTyb0oakoj1n3UPZtf5PmTIKi5hslAI8SkhxBf6f05lIW0ys7tzN6/Uv8z1428k31swpGN2btnEvtodnHfpVXS3t9LV2kzJ2Ek079tJYOR4/KHDxLJH4pYJcuniUKd5nEOB6SMcXD/TQ55fYWSeg6uq3YwrVFB1eH2PyoLRLpzCYFV3JTuYzLP7s1iyP5vl+zT+vjmJlCCQlPg1ut1FePSYGeIpdiKWPMenuqAagC1tW4f1vDY2Q6Ul2syfdv6OKfnTGJszsLe5YRi88M/XWb1+E5/62FU4nU5eW/s2C6on4FAUtu49xPSxprY6EksQ9Ge2Y542bRoVFRX86O4f8n/3/pKDBw5wy223oihHX/FtnV2sfXs7Vyya1+fYgw0tjBphdt4+r4dY3BSQS4oK8Xo8HKo/fNL3wak4+FTVNewM72dl+6aTPo+Nzangt82vEDcSXF0+8OT3kbqDvP78Myy86kZcXi+d9XvJrRhjzp5YSqlOmc365FSm5EUYGYiz5oiTlvggvjWGjqjbTMsrD4OiUHHlnVRc8WkmXXwdo2fMx+MPHHOIEAqMWwC1y5G6OTAomnkeisPB5qVPkEwmjlvf+d7RjHYW8JCoJS6OE3POZmgCshCiBNgKvAk8gBnh4j7gV2mfYUEI8VMhxHYhREgI0SCEeEAIkd8vz61CiH1CiKgQYo0QYk6/9BohxForfZ8Q4ubhKt/pQn24nm+u+gZZrmw+PmFo1avbv5c3lj7LVTfeitcfYPfmdYybPgdNVelqOoKvrApfTyPR7HJKaKaVIjQDCgNw3UwPRUGFJduSvLlP5fU9Ks9vTzK7wsmMEQ7aIpLdrTozshoxEHSRR0Lv+3htbdCYWOIklFRIOv1kqa3IvHJE55FhvTfjcyfgcXjY2m4LyMOF3S6HjmZo/HDd90nqKt+u+d6AMzvt7e088McH2XvgEF/73O3kZAXZufcgtQfquXBuNbphsP3AYarHVgDQE4sTHCDsmhCCj994I//y1X9l8eKL+NwXvkhubl6fPG+u3cRZs6rJDvj77D/UeFRAdjmdGFKiWtq7mdVT2LR1+zu6H5eXnUept5AH9j+BHXd/eLHb5cmzrmcvf2lbznUjL6E651j740gkwrIXlvDMow+z+MpryS8t59DOLXiz8vDnFVkC8tE+rktmsfRwISub86gLHetsCICUZEeO4Fj7OKK7iaLzbyB3xvk4PL6hFbpoNGQVou1bB4BQFGZffgNOj5fHf///aD5SP+jhQgi+nn8x9fTw67K6E1qx9kxkqBrk/wW6gQpMn6T5wGjgP4E9wODW7SeGDtwMFAAzgJFAr2+iEGIh8Bvg80Ae8CTwghAi20rPAV609ucBnwPuF0IsGMYyvqe8ceRNPr3sU/SoPfzi3HvIdh9/zdldWzfz/BOPcPn1N1FYUkZXexv7t29mwqx5tByopbBiDIaawKFGSfryKaORRsoQwMLRgg11Kst2q4TiRxtUV0zy7LYkE0scTChysLFew6eozAg2AZJcj87ckii3zfNw2WQXSR08DuhOOHAYGtmJFktAPnkNVSZcDheT8iaztW3LsJ73DMdul0NgXfNa7nj1Nja3beRfZ36dkcHKY/J0d3fz3LPPcu8v72HsmDF84fabyQoGicRiPPrcS3zi8gvxez3sP9JMfnaQvOwgAJFYnIBv8Igvefn5VE+f3kdzDBBPJFi3ZQcL587ssz+pqjS0dlBprbInhMDn9RC3bLJnVU9l89YdGIMt/HAcXIqLO6uuZUv3bh478srxD7A5Eex2eRJsNFr4dt3fqHAX8LUJt/ZJa21t5Y1X/8mv7/kfdE3j9i9+jaqJ5uqsdbu2UTrVHF8Itw8Z7Tqu34rAINsRpVw7yFx1JcWd2zEmnItRfSnOrLxBj81I1Vz0htrenw6Hk+oLr6Rm4fkseeRBancMPqCd5xvNHXIyr+d2siS/9cSvfyI4HZATgBH5MGEEzBqDOGcy4qKZiMtqEFfMM7cXzUScNRGmVEBJrrmYzGnAUG2QFwH/AqTimAgpZR3wIyGEAvw/4EPDUSAp5bfTfrYKIe4DHknbdyfwlJTyZQAhxP8AXwKuAf4MfBTT0v5n0lRXvCKEeBr4DLB6OMr4XtEQaeTnb9/Lmw1vMiZ7DD9b+D+UByrQjzMI3LxmFWtXvM51t91JYXEZUkpef/4pqhcsIpidS/O+nZSNn0ZD0yHiwVIcagwfMTrJY1IxxFXY25b5JRBTYelOlSumugknJCu7R7Egu55FLEcbqbK/280TmxOUZStcNNHFliMaIwslQbUdVfHicvtQOhv6hOQZDuaW1PDHHX+kK9FFrif3+AfYDIrdLvsSjsXZuKeeva0baWhpp1l2sKtkF23ZbQS0ABcmFpPYGOP1vf/E6/MhkER6Ihw8sJ+mxgZqamr42tfuoiDbj0hGaO/s4oGHHqOmegoTqypATbB1zyGqxx4VsHtiiQE1yMdj3cbNTBhdSX5ONqhHQ1gt37SDKVUVeNxH7Zp9Xi/RWJysYJCSokKysoLsO1jH+Kpjhf2hck35Rbzeuo5f7Psbs/2VTAwcP4arzfF5L9tl8uAuswyJWK+jZcpu2FC13nBrKTvjuLV6WqSpi3CDuS/caG67uszjY7okaDlkB4PmM5laPU2NJOlWTbOA1DYTFxSZMyTnfmUR/pu+TFNbO6/Xx0jGIvy2tpb2/A10qa+hRLxo60bzkSd/jdthrn6X4xVIoK5TZ1uDTvj11fCb1eRWTiZ35GhqtCYawiOI7tyFx+dklAhQFt+HZ7opQOecPQaAkXl+xhS46Ny1ke7dG3F7A+SVllM+6aNMmTiBImv1t4Crb5/nUAS65VgfskKsHbTuTSSp0RJOgK6h42bfkW427G3DsPI7nAreggWE//o3IoFSukqm480xBfCCoNcql7nA3MTZi5jb8GN+z5sU3/1dFhWdT2FbHbHmQ8QSScqbG9AMAzXcjS4laiyOGk+iA1pCs7YquoRkUiOR1FBRyNUkCcVBDEHU6QIBrlgSTywBkTiuaAItEsfoDCOSmhmFyqEgXU70gAdRXoAxfTTxoI/8rjBlDW1UxXpwazqebA+uoLXibiC1dePwnkQcyiEyVAE5F2iVUhpCiBCQvo7vKuAbw16yoywG0lWBM4AHUz+klFIIscnan0rfKPvO5W0EbjnehaQ8GlGtPyJ9OdpUrEcrviN6EqH3W5ZWT/YuYSk080Vh9HT1blMOC73xHC2HGcUX6F0OUik0O5GkP4+H9j/JA3v/hiIcfKH6y1xZdQNOxUlrVCPRL5xbqoHFNYMdG9awa/1KLrrx08hgHk09Sep2bSUciTB5wmwOd4Rpq9vHxAuu5uC+F/GXVOCng3CgmBFleUxBYat3PmUeV2+4tq6D2/rcm1BcsrbRxXnjBCscI9hAKd5IG3u2bCDlFby3zaAsR8flgHyvjkOL0uYsJaurFY/LR1dbE76C0t5ls6E3ghu6NJ0lXGkvj97/RYjeyADp/92MwgUY8vcsP7KKSyov7V2i2pnKqyeP/n+p/0lXeyMipDzze//X9McpdSFLoJeK89gleJ3uox7yqbRMD1f/JW/7fz99edfa5elEc0+CV3fsZXvTBqZVjWDc+NEcGXuY1W2r8Tq83FF1B+flLiYWjtLZ1UU4FKK7uwuHouDz+Tl30SKqqsaQlTJz0BM0Nrfymwf/yuKz57Jo3izQE0gpeXvPQT7zkaOr0EVicfzeE48ZLqVk+eq13HD5RX32h6Mxlq19my/dcHmf/R7PUTtkgDkzpvHW+k3vSEAWQvD9qV/kxtV38c09f+DR6d/m1HVrZzRnZLvsRRG0l+bTPqKQLc0Q+7/fUVpUQEfQxZ7gdvZXbUUKibOuCn1NId2aAwOJqhnENeiOG0TTVnPov76NU6roytHBZENRDWOOLCPhySUSHNG7X3Y3c/CtZfiKyplx5a34cgvItgS5oTrTD4RIRtGdmQfKcW8BB8ZcQX7HTsr3vwxON5ovF8XnB6HQ7VaQmspWoTFCK6GgoJAfrf8BS+qfZmKyioDLgc/rxqMlcDoESjJhRolSddAkDiGQ0loBFPAq4Bc6UkviwoBwAo+hI9ujyOYwTk0nFDbln45kypFPJz7A0oIBh0KRx4HmckJlIY0jCtlVXMWI9i4mhbooRXtXHX2HKiAfAFJrAm8HbgKes35fCXQMc7kAEEJcizkCXpS2OwvT3COdLiB7iOnp5/8M5kiZysqTf/mfSvZHG/jO5h+yM7SXC8vP54sz7qLEX0JsEO/SFJ0tTWxduYyLP/EZgmn2iA6XC6fbg1AUFJz4cgroaqzDXzyS7u0bYeqF+Pe8RSDayiHXeCYmNuF2lNLg0ulQj22Y+X5BdbFOfdiByJWMUw5S4muifLyLpm6DprBBQUAwMsfBrmaNqCoIOBVcRgLD5UfREjjcg2vGXCfoRT8hdzJ5njxWN63kkspLT+hYm8F5t9vlod/d35uWP9kMCejKzu4N29Y7KLEWDNATppYCQE950qcFJPUW5JjnKDY7NCWQ3RsKzJFjOrumQrqlzt/UEWLpxlp21zWyaN4srvnkheyI7OL7G39Kc7SJiyuu4LqxnyXbnYdqGPhzwDMCSjEdXNNDETYnoc0KIWcYBk8++TxzzruIqnkLqAMUFySIE44niY1ZwB5A0yGU3U1D1wE2GWa51VCqTjoeh9kJuRzCuodmikMIwh0RokkN39jZNAiBcJvXfeSR3zJh5nzCI2uoj5v3KRZK0tzWwRFXCeEe8x4UV5/N0td+yoGYm7ygee/8lubLJbVeBQDW4FJoaRJGarBn6OR4Cvhs8Y3cffh+vrD8d0xrmUB3TwzDMHAogoDHRdDrIuj1EHQ7CXpdBFwKfo8Lr9OBy6ngcjhQdA2JGa4yqWokdIOEbhBN6nTFVUIxlVBSJ2FIkqpOQjNIqCqqbuBwOAj4vORmB8nNDpKfm0tpYT7jRo0kK9usm3SZgxDdaz6aCc3AkbqhnhxOV87o/tLrgmmjEJMrOZRIUHSkjcvzoPmSefzt8LNsjm9HoJDTNYbCjpl07IvSqbcTTkhCcUlPUg5pSQIXKppydGinugLUl51DReMKwpGROEMBXNF2ZKyD4gWXkFUxHl+GsKUpDMOgtaWFUHcXVWPH9S5oMijJGLprYJtlw+GirWg6XaUzyJVhHPEQLocOSFwBD8LpYkRRLhPKCrjQ9zH+eOBHbBGb+ei08/loYDIAWsMBDClJtjZiAGooTCISQwJaxFQaqdJsh/FEkqgWRxOCHkMnoTgIBfyERvpJeFz0KA6SXjcxtwvd40J3OpBCIDQdJZbE2dWDq60b9+F2pLVAi1PVKGpsp6yxHaUowMGSQlZWVuBBMj7UxQQZwzucIVkHYKgC8vPAJcDjwN3AP4QQhwEVqOQUaJCFENcDvwWuklJuTEsKA/3fUrnAvrT00RnSjwmVIKX8HfA7gJqamtPOWv2FltX8YPcf8Tq9/OSsu7lo5IXEh/iXaWqSN5c8zsxFl5KV1zfCRemocax+4UnikTDeQBZjz1rM3tWvMPLSW2jc+Ta07Odw2dmMbFzFdvds2pyl5Kv7mJHdTtCpUud00RE10AwozVIoy1HY2OSgPiS4tGAjSeliY2wsdL1NWY7CjJFOOqMG6+tVaipdtMQcxIJlFGtHCPtykULgCg5vx6MIhXklZ7Oy8U00Q8Op2Pqq4eBMapeGlOxtaOWNrfvZ39jGhTXT+MQlCyGYxa/2P8jDex6lxFPKV0q/RrkYR09jJ95S/1HBfQhsfmsFbreb6pr5ffb3hEMEs/rKKHmFRWzfNKSFTftwcG8to8dN6KO5euvN11EUhbMuvKRP3pb6A+QVl+HxHXXk8/r8lFVWsXfXDubW9PHvGhKhcA9vvrWetzZtISvgY9aoKWxwb2Xu9LHcUHI+LkNH1w16eiL0RKKEY0l6ojE6I3HqY3EiCY2EpqHqBqpmYFgdo0sReBwKHqcDr8uBz+Ukx++hqjCL7KAff3YObqcTX1YWHrcTty+Iqjjpicbo6onTGQrTEYqwfusuHnthGW6Xi5KiAgoLCsjPzSGnpJyCggKycvNxWHJ+IBA84fq/G5xJ7bIPfg+ierRpu7q/Cfn8Wqa7Yd2iAv61aCsd+1bgkW6qxQKmu89ldUfcmgHeT2FAUJWvkO1VcDvhhe1J2qODV0siKOnZS1NwIinxKeYr5NDICwnEWnDKJNGCcfgqxpBVMXhkqd07tvHqC0twuVz4AwGeeeIxZtfMY8bsORQWFR+TX08mEC37Ueq3kAxUHP/eCIHmy0fz5xMMmoM+f561EFdJFiVFplLg5+W/5Fsr/40fbPsVT6ljmXJkIp0dURKqjiLMwb1AIqCv9lZ6EYAiPSjBbJzSwOHW8eg6TmcSZyiON5HE3R3DHU8S7YnjTKj0RJMkdMM0q/C50fOyUItz6LpoFtFInLy3tuNKqL2X8Wg6E480Ux3uoqUol31ZOWz0F3FBdwvjObWr9A1J2pJSfivt+4tCiLMxbZh8wCtSyheHs1BCiNsxHQOvlFKu7Jf8NjA7La8AZgJPpaVf0++YWdb+9wWdWoSfNT3HS6EtzMqewE9q/oOC/HFDPj4W6WHZ049SUFpG1dSZx6Q7nE5Kx0ykZd9OKqfPI79yLJ4tb9G9bytMXQwb/oErdypHSs9iypFVNLoq2alVEu7041U0cnr2kOsTuBxQ32Ww6oCKw+/hkjEqHTKXWmMsmhGhuVVnd6tpOuIQcP54F/vbdMYWaTQKHyFHHu5oB1qw5B1PO2ViQdk5vFT3PNs7tjKnePbxD7AZlA9yu9QNg2hCpbs7TlNXDwfbQ2w72ITf62bhtLHcevF8vFm57Oqp4xvL/4uDySOUt5UzP74ArUhlt7aNrs5O2luaKSobQdWkasZMmYnHN7CmZ/vGNWxZu5Lrb//sMc9/JBwi0F9ALiiiq60VKeUJtZdDe2uZOmtu7++mhsOsX72cWz73FTN0VBr1u7dRPvbYJSjHT53Orm1vn5CA3NTSxmtvreftHbXMmTaZr9z+cUpy/MTi3Xzm7R/zm45neD66io8VLeSKwnkUBwtAM+uciqcr07XRFqn4umjJ3uWLe/0XUguLeLwofvNcvQuFuN14XR6y/D5Ki62uz5pDN6SkIxylubWd9rBpE16/dSvt7e20t7cjhEA3DM4+5xwuurjvoOK95r1ql5H9+wGIt4dQrRmblKmgNAyMZCqOsWlmF++07Iw74yRC5v+aCJvblB9NocdJ+Txzsnrs1WZc3+A5pnuTVjKRpCuAqqpM37uXjRvWs7u2linTZ3HWuYvYETJYsf0v/F/380QDHeg9LtrfqKBrWxFbVJW/8+qAdRlf5OCs0S6e39H3eQuWjgZg5LRJzK0uhfj1VDdvZlTzGyw850oqx0+m0O8kx2M+dwFhPptKrBuhmvUWyaNjDcMw2F27n2fXbqGjJ8btCyYxpjgXxe2luauH1XsO8dD9q/B53FSNqkARgrAKrW1tdHR0MGpkJVMuvZSsyvEIodASSdJm2YTUtZna18Od5vZIa4Tmw+bkwEYrLdZuRoxSYz0oLjcBh0p1fpRit4+CkZPYNqKW7RX1BMvn4pdzmF02F4dwM74kyNg8c9A8IssUtgt8Zp2DRhRHyHRPk23m+bXGAyQaze/humYAeo6YDoGhwyGibTHr2UiAGsE4EEIeqGf3pFHUXjaPc2v3URQ033G+PHMmyxVwUxbwMgONVrfKE45S8vNgQoEHDYOkkMS1YxeIeiec1EIhUsr1wPphLYmFEOIrwPeAD0kp12XI8gCwVAjxZ2A58BXACzxtpT8N/EwI8e/AvcC5mI4IF5+K8g4nSanzVPRt/tixkYie5POjruFTFVfg8BYwlMmEaE+Yvdu38PZbKxg3bQbTzlmMLjN3pOXjp7Jr7XIqp89DCMG4sy9h05KHofoymPlhStYvoblwOhv95zE6uYvFnrWEC100JfzsbDKobTk60h6VpzBvtMrhsEK9q4qJyj4qg4dJzvEQ1yQJFfIDguawQWfUIKop5BnttDnLqAw3o2aXDNMd7EtN8XwcwsETex9nZtEMHGKA0Ds2x+X93C6llByOGxyMGrQkJdGWLmKaQVR2kdB0NMNcRtbndpIX9FGUHaBqRBFfuHIcZfnZoDjoTIT57trHeDm+Brfh4lOFt3LbJR+HoBlRqzuhE1UluqZxYG8te7e/zfo3XmHUhClMmTOP0vLKXqE2Eg6xedXrHNyzi4/c+hly8o/VNPWEw/+fvfeOjuM8738/U7ZX7C567wQBkAR7J0UVSrRI9WbZsix3S3bsdOfek/xuTs79XZ8kTmznl9iWY1nd6r2QIsUq9iZ2AiDRe1kA28vM3D9mARAkSIISJUeWvufwgJidnX0xO+/7PuX7fJ8LIshmqw1RkoiEgljtjin97clEgs7WFm6648tjx7ZueJfl163G6XITSZ6jStPfQ9fZBuZde2Fjk+KK6Wx75zUikQiWSxj9AM1tnWz8YA/NbZ0smz+b//uH38E+qr6RjGKVzDxR9w+sb9/B79rf4V/aXubf2l6lzlLCtc7pLHdVkS1eeaRW0zTCsQQj0QQxIYZmTCAAkiWCQZbwekXMsnFS50IUBLxuF163a5xiYdW/21hSp4AERkZ47dVX6OvtveKxfVL4LM/LqSChanT0++keGKbtcCstHd20traSlZ1NXd1sbrv9DvoSEZ498Ds2dL1FxBhGMnoxD93HyafryXXK5KcLSCIMhDS6RlQmq+87O6CwqFjGIDHp62MwO6hcdStDHU3s2/wu9Yf3ccOX1uLKvbAhVWtnD0dOn6GprWNMBaajdwCfy86yafnMLc1BUsYjpZluO7cuqObWlfPp6B/irD+KKAiYvDmk+3xIznQCqu4I9oUudByvDBrT7ENU2Ic5m8ji2MgMTD1ZOMQBEo4dBG37CAgf8n8+wQAAIABJREFUsH5AxikX0ZqsoC1QjE/KIWbPwYyFgAyKksSQCKEG+kkmk8T9/UQTSUIDvQSGQkQVjWBAIqlBXPYioqJmmxDdI9jiIyRiKkErhIwaEbNG3NLCcFov/1lpJisWBEFFMwVIihoJg0DcACFJISJpRESF9eLEiP/fNb5ykb/3o+GiBnLK0/xe6l8R0I3udf4/mqaFL/a+q4CfA0lg87kLmaZp9tTPHanGJI+i86KPAms0TRtJvT4kCMIa4P8A/4iuvPFdTdP+x1bKR7Ukr8dP80TiKL1amGqpgBXRWYiH7Pxq9wbiql4IJssSktGE2WzGYDQjyzKxpEIgMMJATw/hUJCiyiquueUusguKiSZVlItIXKQXlHBg/SuEhgYwOj3YvRlkLriBjj3rYfYtNOddQ0HndjTSOWOq5mCwEHOwhRxziOsqDRglgUBMw2EWCMU09nVJ9IUFVvsOk9RkNodm0HdqN2aDgMWg96ZPs4qsqjBwuM9InTVIr5RN6cgOolnVn8h9tRvsPDT9Wzx6/Ff8075/5G9m/wS74aOpAHySiCkxhhNBgokg4WSEqBIjrsZJXKyF7x8Hn7l5GVU0DvuT7BtKElc1KmwSRRYRr8eCVRZxZmZhkkQMDhdmsxlRFMbbE6c4yKeGOvj1mY3sSB4jISdYbq/jH+Y8gsurZ3RC532mJMsUVlRRWFFFMBik8eghNr/2AvFYFE96JrFohMCwn6qZc7nzoYexXiRlHwyMYHNcaAS7vekMD/RN2UDubG3Cl5mNOWXU9nR10tfTzR1fefCCcw9t2UDVgmWYzBcawCazmYrptbz47FPc9eWvYDVMbGQQjcU4cuQIu/YfYngkwDWL5vHA7TdjNKUM41Txct/gEHsOHeVIQwtDgSCLvPOpNlXSaGnlRLyd/ZFGftrzOra4hcy4h6xEGtlaGllCGjbNjKZCMkW3iCWSxJIK8aRCNKkSjCUQBAGX2YjZZEBKtYVWBYFYPIk/GMZsMlJWkENlSSHTigtwuaZO7bI57Nx9/30ktS/m5ScBDfCnOehyeOgzmAh8OEgooeI9u4Msr4uswlIWLV3KjTku+pJ9HOs/wm+3PMqp4Ek0QSPbWsq6/C+zZbNK5kgjM2dZ6A6oDEU0VBWqs0SWlRrY25KkoW+iFayo0BtQyXGJtAxePhzlzi1m9kM/4Pj+nTzz2/+krLyCktIyXBYDAwODnDp5nEH/MPNqp3Ht/BmYDAYUVSU33YtDVsaK9NVzDORRiKJIfoaH3BIfAEm3XqzfH9UgdjWae2jM8QzjMSfY0JuLZtXpHCZAjOXhCq0hx1BHTDhNxNJGwNzP8VgTR4bGP1tSJayqFZNmwoQRgyYiCRKipoKoodrjJK1xFFElqSRIiCoRIUlEVrhIzA5RAVNcxaCE0YQYIw4JZ1zBKGjImoBJE/AkZPKjJmyCEYsqEhWMnI4I1DlkfLJEXUbdVbg/47hUBPm76M1ANqFzkIuBPwd8wDeu6ijOgaZd7PZNOOcJ4IlLvL4PmH+x1/+noE8J8mr0MC/ET+LXouRG05jdWkadpYS8zDSyphVgs5iQHV5UswNFUQjEFKLRCIFQBEVRUBDILigmbUUGDm86oiheoPQwGURJpnTBSg6+/jS1X7oPW5oPR345dPfDgVeR0xfQlH8d7tZ9zAttplP20iur1IfcbD/bjcUAdpNAIKoRTYLdaeaGkgTDmpNTahloI2PGsUmGuQUyRR6JTfUJ5hXHaTFW41SH0CQDiuWTk2F7YNrXUTWV/z7xG7Z3bOPa/FUsz1nOPO9M7J8QL1nRFPwxPwPxEQZifgYTAQZjfvyxIfzxIf1nzI8/6mcwNkREiVz+on9kfJbmpaZp7BuMs747RrFV4IYMA8Wm8UI52WkkktRIahrBeBJjLMFQPIlfCdOthmgM93Ii2sHxRAt+4wiCJjDfUcmfT7uPafYCEgYbZ5ubaWg8S/9IiGQyicuXSWZhGelZ45XsFqud2gXLmLlwKZFgAH9fD2arDZfHi2USI/RchAIj2J0XGm/p2Tn0dbWTXVgypXvR0lhPUdm4TP3eHVuZu3gpsixPWCda608wPNjHorX3XvRaq9fdzrb1b/LrX/6cmpoa0tLchAMjtLa00NLWTllJISuXLKC2rBhJmkjdiMXjvLPlA/YePsbC2gruv2kFhT47oiiOS4TFY5wNdbDFf4IDwSZOxjs4q403ETJqMh7sOLHgEsw4BBN2wYhVNJAmGciR9SCCShRFiqPIMglNQZEEUJPYBJXheIDNwWZe7ljPyJkwslHEZDFgMMloot7kJYmKoimogKqpxJV4ymHVjRmf2Tele/9p4LM0LydDQoaGCjhUa6a9RCZiCaPIJxDQMAgSBkRkgxnQiEc1IiciqCfGDVhnwsm1vhu5feaXaW4VqN+5icL+LvqcFbyy5Szn17J7rAIrygxk2AU+aJro6HQMqeRN0UAG3RmesXA5SxYvpvHIAdpaW2mKhvB6vaxYOI/a0jwkUUSIn7e+x893qz8e1EScRDiAMjSCaLv8Xlpt78cpJdjan01SExnVxXGrg1QMNmJUokS9xci2ZdTm5SKarZTleEizBegJtxBVu+mPdhNKDjASHyGaCBBPhFE1FSUZRxZELEkBU1zGhIQQk7FoIlIgjj0pIffHMfUnsURF+iUXPb4s6g63ktfpRzLKmJwmNGBXdTm+WIRFgn6/DDYjBluKbmHV10/ZZqZRM7C+IcnaAiP5nmlX9d5eykD+HvALTdN+NHpAEIQHgN8JgvB9TdMu39fwMwY5HkSTUkZTqqT1XGm382XbhKjeT56QHzVVQT+uBznuGY4eUyJB2tRh9gbPsDXeyn6pH1WAoqCHio4K1pgzWD63BE+tzhdM+vRNcEiw0RfWvbdYOI4AGFMzP5xQiKgaEUAa1CeiSdapBAZRwGrQ/2+S9J9mk75xpdsMlF67khNeB9vffIrVa2/l2lkzEWbcRmN9NS8+9yxLly9n5fd+jN/v59SxI7ScPcPpxrOUXjuHBfPmk1lURjQS4cOjR9m7YyvTamdy85o1rH/7TfbtOYKrtACrzY7BbCE7v5Bp1TXc2tzE3u1beODh+3j9D09QWLKCWQumjxXBCIzz0ZKpDTyuaMRTB0fFLEZFCRRNI5a6Fwl1tHhHv5jVIGExCKwrfpDpnjrebXmDjW3v83rTG0iCRIWjiOnOMiosWeRbssiRbKRhxC5ZEOMpblw0hKqpRBMRgokww2qUEWIMKCEG1TCDSoh+JUS/FqE/McKAEmQwEUCdpEORLMh4jE7SjC7STG4K3NNIM3twG504jS7sBhtWgw2zwYZRMiILMnP4k9brv+pIqBrPNg5zNhFgTqVCQA6yQYzSoURpV+MMkUCJqGiiBn5Nj3AEFRRpYmRGRqLMmsNX05ezJn0+WaY0BLOdE03tPLV+Bw6Hi4ryUnJy8xBFkdb2Dg4+/wRpvgxuuHtii2dBELA7XZMavBdDLBqdVBc8t7CEXe+vp7C8CmvapYuARvyDNBz/kNvu/zoAXe1tNDWe5oZ1t46dk0wkOLRrG4f37uSaO76CJF98SxAliS/dchtNZ8/Q095Kf18/LoeN5YsXUlZShDmlbCGcxxtOJJL84rFnyUz38pNv3z/G1xTO4wsKgkCpOZPS7EweSi4FoDc6wJl4H83xfjoTQ3Qlh+lPBuhRhqhXI4TVBAlV0WOok+xIsiBhFGSMooxRNGKSjJiMRuwWM2mCnURcJRqKExyKIKgCFqMJl9mK1WTBandis9gwGS0ISUCBDG8mNoOdLWy55L3/ApdG0KKxdW6S7XUQMwvICZWMrgRVJxV8HhuCBvaKbN1ZcWczOBJiKKQQGo5gVa1My57GDbNuYnrxdEbiGpvefZMD+/dRMmcZm7UZaIJIUr0wCD4Y1njzWJy1tUbK06UJkeTugMq0rCsPmpjMZhYvWw5MzkH+JBAeGaLt9DFaGk4S7O9BttpJIqGGhrBbvYSLFwIXSkI6pBiF5mHe7UgneY4TW21uI0cJ0GWvxm/OIyNbz1BJDn3NEkURnzkbnzmbHIcJTdMwJcMMDw+hBgaJD3UTTySJDw0QSySJDvUTGQ6goaEFwjglcPgHydISBCZwkAcYcMXYN6MCY6KR7GGdry0Ai/q7eT2viIpgHK96YaR9FFV2iYaQypt9Sb57lTt1Chdr/SkIQhg9FbPlnGN29OrWak3TTl7VkfyRMXfuXG3npncvayBHlRidgTbawl10jLTSHRtgMNLPSDxIXEuiqElkRCRNQBZENDSiSpxBNUxXcoQw+hedo1pZHMsk1uwjW7Fyd4kDkyRgzsvHWKGnCSYzkEcJ+dFzDORR/WNpVIloEgN59Kc5JcIuiYxpA/u72njjpefJzMzkltvvxGqzMTI8xNNP/B63O42169aR4XEjxkPE4nH2HT3FgYOHaG5pwWq1kpNfyNwly8nMzuXdl54lHovxtQcfJCLo8jbBlP5hw5H9fLBpA3d/7Zv09/ez/b23+cp3f4RsMFzSQD43IP5RDGQAiwShUJB4eJiTIyc4OfQhp0ZOcCbcSlC5kDFkFGREBFRU4trF01oSAmmSjXSjC5/sxGdyk2504TV78Jo8eI0u0qw+PAYndpMbQRDQRHmiXjJM0EMeewYBs8N9QNO0uRcdwJ845s6dqz23ZLxA1ZGv89VNaQ4MbjdxTaFZjnIq2cexWA8fBLoYMgVIiuNRIKMmIcUNeAUTWbIJu8mKEQmTxYlRlLHavNjMaTgNdjKd+eTasin0VKGl9E5VDRRFYeN773Fg7x7W3HUfpnS9irx5SF/o+8NxhkIx+re8gK1sFtb8SqTUw2o3y5hTD/jo3DSNzkMB7EbdKHWlGiI4jDKRET+vPv0Y+UXFrFqzDjlluMpoHNy7i62bNlBQWER1TS1VVVV43PpGJgj6WA8dOsQbr7/O9dffwMIlSxgYGOC//s9/cPvtd1BdUwPAmbNnefH558nMzmbxqtWkeX1jmuqj19LHqP/HIApja8xoOl8UzpEFZ+JroEfzN7zzJkODg9x9/wNYDSIGdVQOLhVoGA08JCJj0TYhFWUbLdZDVcYLwFIBBy0aRlMUkpqKIkIwHqMnGCcYTSCJBuxWO06rGY/Hg9VsRDDbx+bdmIZ5at5pmkYgmqSnf5CeEb1Yr7vfz8DgICMjAVwuJ36/n3/6X3+PyWTCbHd+7uflf/p0jvxIW4BEihMrpJ5zySiONfgYO2bQ98M9szVerAsRkTVKB9xk9WbyjSEVhwYWrwvf3GqCcYVjjnKOnW7kTFsXecUlRNIKaYzb0UwOAimqgcMso4WHsR9/i9O5N6JKRlpO6kVhnQfWTzp2gwi3zTSyuzlJq1/FXVSDSUxyTdYA8bRc+jLqmFmoy6JOTxmK5V4buU7d4PSlitMsqb1ciAYQY3qwbOz5TUTGC00jEyPGajw6RrFAVfT260azrhZxTnGp6NIzFapFn9udIZUjpxs5evQo/f39VNfUUj69Fl9uIQajkUhSRVGSHNq3jyM7NpFbOxdzpZ4YONurj6G5qQVf8xZOZN1ENKKPLxFTmB14nyPybEKkClpTa5fRpH+HVqcJjzWJfagZT7QbQoNIsoxscWBz2HHbbcgGIw6LEYPRhNNiwqLF9fUoNMTAcJDmtg4iCYXFGUbqkgFEQSCUKtxrGEyw2ZHO7e1nEVObu6ZonHSl0W61cW1764R7KJ7zTMkWmQQCzWYbdz39EoIgXLW5eakIshk433IYdYmm2Dj8s4NAPMDPj/0KREmP/WkqMSVONBlmOJUq7w730B+bKPlsFo14ZQcO0YhJMCBoGnEtSVJTUDQVURAwaiL5kps5UhaVkpfpMQuRboUXO+LMc4ksy5AwSZfNlH1iyCso5FuP/Iit773Lf/z8Z9x+5z1UVFbw7e89zLbN7/OLf/83amqqqZteSUVpMYsXLWLxokUMx/Vq+lBCJZ5I8Oozj+Ow2bj3/q9iMRno6uylq6Odjo5OmupPkkzEufvr38ZkNLLpzVe4+e77ka9AEutKoKoKDcePc/Lgbgb6e4lFIpjMZhx2B6IooCoCRfFSCrUSIlKYISFAQAiCRcNoETCYBMxGGZMkYJdNOCQDHtlCltmOx+TAI1nxGhy4RCuiJCOaUwtLirsqGM1jDUJGi34u2oXmC1wUGhoHnQGiol6UEbFEGBDj9ItJ2kIR2rQRlFS0XlYkciU311mmU4qT9KSNQ41xQkGBB8pd+FIbtpwqrJMzdS1XMaNgbBPSzPqGqIoyCXRj89SpU7y/cSMms5lv/+DPEMx2ekMXRjQEQcReMYdgwwGs+RcqQVwJXGke7v3mw6x/9Tmee+w3rL37yzhdbgRRZP7ipcycPZez9Sc5cewo77z5OjabDY/Hi6oq9PX14fP5+PpDD1FYWMRIMMhjv32Ua6+9luqaGjRNY9vWLWzdspWbb72dqppagvHLcxsj4TBtTY309XRTVTuTjMwLC5POR29PN4cP7OeRH//VBMM5GAqxa+dODh87TiIex2wyUZidTkF6GnmZPixCUleOiMdRNQ1NVRgOhOgfCTEwNII/FGU4GCYS1/nII9E4mgZZbhtuq67xHkn2MBKOMRSKIEsSc6vKWDanhvS0CyP5giDgtNtw2m2UmvS5rFp0IymU1DBKAv/xi5/T1t5BWenU6C1fYCK63QrPLo/SkKNQNWhiXmM+AcXLbbG+sQCOXxF452gPpwcjVFdZWTR7Bivv+jpGk4n1jf1oTRe2XDB1nyTuLUGVLq43fC7mF8p0jai0+nVDTBZUlnq6GJTyiKRfqPoEqULf5rO0tzQR9vdjMpvJ8qZRNa2CLOelzSFV0ybooI9e71jXMO+c7KA/FEMSRZaVZrJseiEpsQhUVaWlu5+jrcf48GQj0USC6dW13HTjTeQUlSBJEtGkNqEngiTJlM2cR27ZNN77w2NYYwrpM8azkAlLGpogYYkPEmW8jkF3FCcPlkpagtyhk3i72gm6ClGL5qA5fJTk6QZ8YZp1TOEi3aavsR6zhCmkG7/SiN5gLNl5ls6hEC/vOsrRMNzh08ac6pxklPRkjOPONGr9A2OfXTHs55QrjQ6bndxQ8KL32IBGefTir39UXE7F4g5BEM61xEfv4l2CICw857imadp/XfXRfYoIJ8M8d/YVNFJaf4KASTRilkw4jU48RjeL0+eQa8kk3+wj35pNnmjDLdsRwkMXUCy0SSgWWjRELKnyTnM7h3vj3JZjpPTKG2N9IpANBtasXUdF5TReeel5yssruOlLN3PDjTeyaMkSjhzYzzsbN/P8q2+wZMkS6urqkGxuNE2jqeE0O97fQJrXx5333sfJ48fY8M5bxOIJcvILcHkzWLHmVoqLClE1jecf+zV1C5eQW1g8JXH2K0Vn8xn2bHwTi8XK3MVLyC0owuOwIRsM2EcbHCQjiGE/AGJMn1haLERgeJiBQJjevkH8oQhDQwGC0Tgj4RitkRjHo8Ok2aJku2zkeWJMz/WS47lAU/8LXCVomsY/lk2MHthUiXTBSoHoZoGaR2+XjC1k42tlJRT69M2qfTDAbw93MzfDyvV1DiRFQdE0jg/G6O7toy8Ux5/sJKmo2OxHsNhsWMxm7E4XRqORmKLR3dNHS0szvvR0Fi1ewvSZdYiiSOASxqQ5u4ThI1uJ+3uweC9vQF4KJrOZW+/9Knu2b+HJX/+S1evuoGp69dhrM+tmM7NuNoKmEhgaZHBgEEmWcLtcpGfohTfxeJzf/+6/mV5dw+IlS1EUhReef46enh6+/8MfYnOmXWoIqIpCU8Npjh3cR3tLE/mFRXh96Tzzu19TWzeH62+6+ZLv3/D2Wyy/5lpsdr0YMR6LsWnLJrZ/sJPaqmncue5L2I0SoXCE1tYW6ls72XLgGPF4HFXVkEQBURRAA4fVhM9pw2s1UpXrwyGDRRIxSCJOmxmrUUYw6EaSIBsQxgouLfQOBdh9uo1/ffJVrplby6qFdRjkK1O1KSgopKW19QsD+Qox6FDZODvBruoEhiR8bY+dnFA+R80u7oz3YUZDAw4INg6GTKzMNHJXVTqOlfqzdWYSqsAo5P6zGAZbCdR8CYYvv5lkO0Xy0yRe+jCVvRBgcVoXg3ETHc4KMicxZP1NJ3nntV0YZZHiiipKy8uJxWL0dneyZdt2bBYzS+qmU1GUh8csE4nFaGptZ+uhU7T1+YknkhRmuJlZlIXVaMAfCHKspYeEonJLdQ4lXjshVWLjqQ5++tY+ZFnCIEkEo3G8LgdV5aXcf8sN5JZNRzPp8+hyjcIsNgd16+5n7yuPY7S7wK43WEIQCLuLcIfb8Zuqxs5XkRAn0coyqhGmh/cSMXtpLb8ZVTZj89guOG+qyHHb+FaNlzeOdPGHPrhLg1SSlwWhQV5xZVMx7MeUygZLwJzebvZnZJHd1MiFpLNPFpczkP/qIsfPbwyiAZ9pAznTmsnOdZenWMAkHOTLIK6otPtDnOjoZ0/7MOUuAw+XWLDJwljv+lGMRBPs3HGIzn4/YWUL2VkZFFTWklZQMak80dVGWUUFP/jxX/Leu2/x7//6L3xp7VpmzprFypUrWLV4Lm0dnWzfe4h//dm/YTCaCIeCuDxe5i9dSWXNDLZtfp/9e/dw/1e+giMrH0EQxigWPV0dbHrrVewOJ/OWrLjMSD4aTh3Yzcl9O1hw3c1Mm16D1ahPKdlw+akliiJOmwWnzUJRWiqKlGoFTjKhp3MVlb5QjK7hMC2DAX637RhJVaMqP5MZhVlMK83HIH0hJ3e1IAoiPz1VTIti4nTCiqaYWWQ3MC/XQWNCZmOTn+uLfVxT5UNKLfA9wRi/PdzNbZVeat36EndyIMbrzUEcBpGKTCMzshyk5+ZhkCQi1jRCmkw4EiUYV4jHE1itdmbPLeS2O+8c67AWv4gizLkQRBFbyQxCZw5j8X78Do6CKLJwxSryi4p5++XnaThxlOtvuhn7OQoXkiSRnp5BenrGhCRFNBrliccfx+v1cuOaNcTjcZ584nFEQeR7338YyWCc8DepioJ/YIDhwQGGBgfo7+6krekMdoeTGfMWsu7u+7CadaNzwdIVPPrLf+W61WvGUujn40xDPQP9fdz71a8BkEgk+N1//waX3caf//ARfM5U1iW1rpZmez8SxQJAuMycy3A7WLd8HkvqqnnxvR38798+x+3XLaG6vPgy38A48gvyOXHkyOVP/JxDETQ6slSaShIcK1E4m6siqrDwtIG1+0xE3OnsznBzW6AbqxFUYKvopFsw8HV7lJKiSzttAIKSwDJ4BlPXEYJVq9GMVi7UlJkISYSlpTI7mxJjUm5z82UUTeDQSDoZ6ecZx5EAje+9TTISYuH1a5k1vRJBECZQLFRV5czJY+zet5/New4xODyCzWwm2+NkaW0p0wuykBMxTnf2c6Ktl+5kEKtB5ObqXEq9jrE1y2QxcfecEu5eVMWQakDVNJwZ2VhMxrHsliKKXImGhclqJ2fxGtq3vYa06D4EWbdtoo5sHP49cK6BLIhjYxmFrCWoDe2k21iIP206zou0t75SiILASif4k7ApYWc1eoDKpSYpDAc55vIyx983dn5uKMjpRJxTHi/TBwcudtlPBBc1kDVN+7SN9T8ZnOkZYk9jJx1DIQZDUeKKSo7TQqnbzA8XFpKmhon5JxrXSVVjU3eUvccbmF9dzuKaMgzphXR0dfP+e+8iGjazcs3tMIUq1cuhr6uD5voTDPR2o2kqdpuV/IIiqqZNw52Whtls5pbb7qBu9hzefP013t+0kWtWLGd2VRn5uTnce085iqLQ2juI3eEgKRpRVZVNb79Ob0cr333kh3jTXHQMBmhpOsPZM2dob2okFomw9LrVzKyb+4l0VD9z9CAn9u5gzf3fwuFO+0QcClkSyUmzk5NmZ05JFrfNKaMvFOdkzwibjjTy1NbDTC/MYnZVKdPLipEmKbT6AleGyrCVA0kna8QIBTkmdg+r/Or0CDlOM9+fk0OWJ5UyV6E7GOM3+9q4uczDjAw7WjzK/p4wbzcFuKvUQYXLiCFV3Can63NJzMi5kGJhtJFIxSumIAozAdaiGnrefQw1GUeUp5b2vRzyCot58OEfs2vzBv7r3/+Z2lmzqampIb+wCNl04Wf09fbyxBNPkF9QwC233Y6qqjz5xONYLBbuufc+JElC0XS95X27d1Jff5rerk6sDidujw9XmoesvALqFi0jM0tv3HBuu3eny4XNZqe7u4uc3NxJx7x103usuuFGZFlGVVVefPZpPB4PX7n7Dr2IMfnp13l7XQ6+c+dNnGhq54UN2zna0Mzt1y/FOAWqV35BIe+89eanMMrPHiImjSPVcLRaoSVfI5YK+mb3C9y418CiEwZ8MZkBq4UP0rO4OdiLU00CMjsMLvyCzF3KIE7xwmxcOBTE39/LUGMzprZOxNAAtuAAMXsWkek3oKb0qi+HGTkSA0FtjFqR5xYp9Um8789kQo84TUPpOEXi9E68tfPJrJlPRrpzcv1sUaSitJhpKboBsTCCIEzkIKsJqvMzqM7XszoTOcgTrycIAl6HTlcQJ5nXVwpreg7WjHxCTYcwlOt85LjViykRRFITKCklJxXxgghyjtLGiOyhw1SG9SrvpYIgcHOaxqNhmTMYyU4dnzU0wKs5RVSNDGJR9OChAMzr6ebdwmJygwFc8Y+rAT11fKRGIV9gcgwGI7zwwVG6h8OsqMhmcWkWPrsZM0lEQUBLRSOVwERqd1dM5ZW2AF6TxN+sKMc3Q3+Qk75iykuLmbFkFVu27+TVJ3/DorX3kJ5b+JHGF4tE+GDz27SeqWf6rDlUzZiFKEkokRCtzU1s3vAOGVlZzFuwiBkzZlBQWMQjP/wzGurr2b1zB6+//ga11dOYv3AxRYWFeH3pAPR0drN947uEQyEe+tZ3CYaCPPnE49TX15NXUER6XiHXrruL/HwLZXqMAAAgAElEQVS94l8QhCu3Oi4Df18PB7es54YvfxOH++IRCEVRiMfjJBIRjIkEmqahRWOYjQY+StxXEAQynFayMtK5praUkaTG0aYO3tt7jBc27+PaebUsmTsT6Yuo8kfGgCYyookUkiDNILDGJ3Gr244xbeL33DIU4bFD7aytzGB2ugVV09jYEmBvT5hvT3eTYdGXO0XV6AnF6A93EUsouALgzcrBl+a+Kik8yWTB6Mki2t2MNa/i8m+YIoxGI9fdtJbFy1ZwYO9uNq5/l57ubvILCigsyCfN4yERj9Pa2kpDQwPXX389S5YuI6mq/OHZZ5Akadw4VhTef/99dmzfRs2MWSxZdQO5+YWo5xSIXm5PLCwppeVs46QG8kB/H/39fUyvqQXgw4P7CQUDPPDA9xHFS6eHp4JIPEHvQIBwLI6maQxFEvQHo/SHoiRVDa/DSk66h4J0NznZpgsc1emlBfz1Q3fx/Ibt/NOvnuGaBTOpLCnBajGjmhRkScY6ykEOhThy+gR9vX0kE0mGhoc/9vj/VDBsVnl7WYJtszXiJvANwJwPBUo7RSp6jbjCwliGIWKR2VFcxOK+bjJMuvHzoWSjVTRzjzKIMcWBTSgqJ/rDHH/pDZraOglF43jSM4gYnWiyiXhODSNyGqrBjMMsT2kvsRqgOkvm1aO6cWWSYVmpgS0NCeKe8bVZVGJkde8jqYUwzl1HVuXUMwzAp5LlvVJkzl5Ow+u/Ry7Qi3MRJcImD47EAEMmnQamChKipoz5CYKmkqe0cNJ8efW/eCRE+2A7I0ODEAsSCgRIxsIkU7RTIwr5mR4q7QJFvnEHyCgKLBdCbNNs3MEAImBXkpQGhznm9jKvt2fsXGcizsz+XnZm57K6pelTo1pckYEsCIIJyEUv4JsATdNOXK1B/bEgNu5B8Omi3Jp04a0RUh7hqDyRMpAin/d1EBzy87P93SzNsfHVWWkYbTKi3QRoiA7duxQy9cp3g6piSqUJh8MxnnjtA+5YPpd5lYXgySPq1s/rThUCdYzEEYtqKVZktr/+PDPvfRg1tSiIojBWIW84T6nCZZLH1StElWee+D25ebn82V/+NU6bFWOqMFBMRGHRHJTQEMdPnmTbB1s4tON9HvnyOuRYkDobzJibx1Cxmf0t/bz45O+RJZGb5k2nvrOfA2c6WT5/FqsWrkAYaeYXv3mWa+bWcv8jD2I1m3TVBgC1H1TQjBY0s+4la7Ieahht6BVTNEKJiRto8hILYELRCCcUDn6wheI5S1GsaXQF9ciU1SCRZtY3/KSicWDnNj7Y9C6ywYAoCCjJJIIoIgoCiWSSLJ+H4ux0inIyKPTa8TptyKkGB2oycY5eayrFG0vVrCYTkEpfWQxG5pthwZws2sIabx87wa6Dx/jGNTPxpevPgWSxQervHqX0nKtmoU2x2OTzgnrVSKkQ4+eKhz9LaKQZhAs2og+7hnn5eBd3VmdRm+lAS8R5r8lP/VCUR2b6cKQ6LrUHEzx1+IyeCfC5Mckyga4R+kb2Eo3G+PHD38abdvkU7+UgWezE/b1XZCAnEwn8vd30RAK4XC6yc/ORxAsdK4fTxcrrVmNcfSPRaJS25iZ6uztpa23DZDJSXFLCXXffjdlsRtNg+7atBIZH+Oa3vz3mqL34wvMMD4/wnUd+RJrHM1akF5sCjWQUpRXT2PTuW9TOqrug619jQz3lFdPGPu/wwQMsW7lKV+NQP3oEKBJP8NL2oxxu7ibdnuIdC+C2mvHZzcwsyECWRAbCcc50DbD5SCOhWIKbF81gyZyZE65lMRl5YN31tHb1snnPYXZ/eIpQJAKCSDyRwOVyI4oig4ODlJWXc/zYMUpLSujs7PrI4/9TQSAe4J9uUGj26IbujGOwbJdAQbeIgJBSsRifo4ogsL2kiNL+AQqjQTCZ6ZJM7Dc4uTPWi0nWzz2dENm4s40su5HZi2dx08qljHhKEQSB9Y39dKSK9NTolTVrmVsgc7pXIRjTn+8FhTLNAwpdIyruVADapo5Q1LSFgCMf45ybECaxAT6LMNicSBnFKJ2nwZpqcGTOwBnrHzeQz4sgZ6hdhAQ7Ieni0pShtnqGTuyhNTxCRnYuLo8PX5qLnPwCMtwObGoEBEgM9dLc1ceTOxtJd1i4p3B8fysmwX406k12pqVqgWqHBng1r4SagX4syjippGLIT7vdwb7MbBb293wCOegLMaUnQBCEHOA3wE2TvYzOQf5ch8jeaRpmVrqVVflT63A1igNNXdTkZzB/WhFwsTpSHUo8ij0j5xJnXBx7P9iG0Wzm5lvvuKiXK8sys6oqmDGtnP98/A9s3X+Ua2vHPWin2ciqyhxWVRey80wXGw7VU5mbzl985Ra8qYr2XR8eIz/Tx3ULZo2rN3wKUJUkFsfkkzkaDrF/4/u0N5/lB3/1E1xuN06jhBzXJ6QQD5NIJOlob6W5pZUTZ1tZv7MPfyA0NgkNkojDJFOYZmNmpo0Kn/2yE7TAY+c7S6exvXWIf39nH9+6cSGFGR/f+Pq8QS0pw2eU4UQr65NOvrOsFuIxRJtulDX7w7x8soGH1ywm1+tEsDmJRyPs+uBt/vyOVaS77GiJBNGkwu+efY/7bljGrPJCFLueAVEcGfjjsGv7Fh599lVu+dq36O4JMZCSVByVURylGIiiMMFBBci2m8YqubvrjzI01MWXbv0+ZosVq0EaMwBGr2GSBTRVxT8wQHvzSRrq6znTWI/P68PjtHF8cJDB4QALq0tZWTcNt6RvXmo4gBbStUK1eBQb4EkmdPkyn66egtqCcFiPviTNdra/v5Uf3Hk9Tv9ZABo6+zhbf4qffP/rmCwqxPpxGVMOq9kwJjk46thqqfXi3IJaQYAFdbX4ezp48anH+e73H0ZNtXKPJDU8vkwOHthPd0g3ZKKqQEdIQe6LjDntRkmPs5gkvbDSYvNidqbkpUZlnJQUDUNV6Onq4NEX/kBFcQH/9Nf3YJY0OL/bpKbfJ0FTIbW5dvX7+a8X3sHpzaCmomTCeQgiBTlZPLh21ZiTqlpcqKpGS/cAqqZRWFKGhMr/+9N/RpYglrr/n2doaAga3HLUyrS9STxtqXT4RdSYjubnYE4kqe7pBZe+L+y2prEsMYRLUwCZJLA+YuTrszMpdpsxpByawMc0hbKdIrluiRcP689SmlUgzy3xwqFxio9JTFId209fVh0BVxE5fyLG8SjEnEqS9TuhRDeQA+YMcgPjncnjohmzEhmLIMskiQmX5hwHm09iy69kxqLllHn14sHJVSwszCov5MZiN8/ta2Bze5AVo6qmAswmwkGTbcxAtioKRaER6p1uZp6jaCEAyzrbeT+vkK1ZuSzp6frEjc6pPgW/BWajd9I7AXx6JJDPAILxJId7w/xkQfblTz4Hqqaxt7GTO+ZPrftLT+NxvJVX3kqxvamRA7u289Xv/GBKKSBRELj3phX87IlXqCvMwOOcWLUqCAJLynJYNmu6/rvbgYZe8btl/1Fuv3bxFY/x40IQRDT1wtTt0T3bOfzBZsqqqrn7oe/ick/e2tdgkCnOy6YkQ+elCvEQmqYR9Q8gCAKxwDB+/xANfQHere/jxaNdLMlzsCzfdclJKggCK6cX4nNY+NU7u7huZjnXLpjxqVfjfpYxEolhNcrU5PkYCEQ41NJLXbbuDA2Fovxu437uX1FHrnc8inm8pYtcn5t01/j3ved0K+U5PmaVT05RWrhkOadP17N/2/vkzV7+kcbq72rnyNb1LL/rQcwW6wWvK8kk9SeP0XDiGE1nGjCbzBSXljK9uoZ777wNu82GGPYjRocZGBph295D/PSpt1i3oIqFlVdOrdp+soWyvExyfGlo6GvOyxt3sO6axZiMHy9TIQgCq1ffSE93D6+9+gprb7tz7LWc/AL6e7pJxOMYjEZMZgvxyIV641NFfeMZnnz2eW656Xrm16bWyylymLPTPXz9lmt59OUN/Djdi28SmbfzIYoCRYW6DKAmiqCqWCwWBAQSyYs3Lfi8wGl08nvrdVAG8cwQRoe+R5h8ejhWdLjHHNiTgzH6PjjC3zx0NzaLmaSnkKNNHcRf+AN1f/ZXiKKIURI4sG8PRSePU3bvgwD4k/oqOTSkf8+SKGBPZQRHu0BajDJui34s3aEbdDab/ly7M+4k2OtnqWE/x2LFeGvSsLqc1CQPMeTK5PYf6w25avNc9O54HW/GbJZep8cAvVb9mvZUkbdFFrGlCr2l5Gix/nijG220gG3UuTTZxrXtnSmN6BSnVk7G0NJ0PvJoC/bRAjrNYNHfCySN+k/NODHbCoxlfyUBjKksjSWVOXYa9d/TbQaK3Pp7S90zWH9sA7dUOjE5XPQG0zn78i5WTnfQGTNg6C/A3n2WQGp/VJRCfD2b8WdYQRDITLOM3V9HSi5TszkRJIlQUqV5SJ/b/ujofZOwGfV5ZrDre6qxpooZ2f384b9/xcqf/H968xFJwBoKseGn/5vCn/0Sk1F/f1p7O79/7DG+8nd/hzTa2l1VENQkcxMJXnr9LTY0tfDVO9ZSlPvx1IIuhanu00uAH2qa9nNN097TNG3r+f8+sRF+BrCvfYganwWb4cr8mb2NnRhlidKsy0cVY6EAwf5uXHmlV/QZA73dbHj5WdbefT/OS3Bzz0eGx83KeTN47v29XKyZzPk40diMIAhUFk5etPNJQhBFNG2igaxpKkf3bGftA99l9a13T2qwXPKagoDJIGOUJWwmAzkuKyvKMvnRkhIenJNPoz/Cz/d10Dpy+Y26Jj+Dv7xtBcfbeviX59Zzpr37isbyecbMggwkUcRrt3Dfokpe3t9Imz/EUCjKbzcfZtn0IqoLMie852BDO3PK8sZ+V1WNLUfPcM2MsvMvPwZBFLlm3Z0cP7CHkYHeKx5nJDjC/refZ87qW3D5Mia8pmkaJw4f4Dc//2cO79tDWUUl3//xX/Ljv/2/uPve+5g9dy5220RH1Ot2cvuKufzontVsOXKGp7ccJKFMvY69NxBh09Gz3Lx4XNt13/EGZElk9vSL34crgSAI3HXPPZxpbKT+1HjvKIPBQHpWNr0dbQAYLVZi0Ss3kIPBIE8/9zzPPP8iX7v3dubVzfhI4yzOzWLlglm8snH7R3o/gNWiR7oTiStL73+e0TYY4Jlth3hg5WxsFt3A0jSNLRs3sGT5NWMdJ1VVZdeObSxf/tEc00mhadRI9fSrafSq+t5n10ZwacP028f30WDzCZKhYYrnXcXP/h8GUZTILK5ksOU0oM9byVeA0t8OgGLzYYmOa0zHDXYU0Yg5dqHu9Chku4tEcOiKxpHm9WGz22ltaR47ZrXZSE9Pp6WlZexYXl4ebpeLQ4cOXXANg8HAvbfdzNrV1/LoMy/y3vbdYxm9q42pGsi9jDcJ+QLnQNU0drUOsjhn8sjkxRCOJXjzYAN3Lay6QER8MvSdOYmvqALxEq1gz4WmaTQcOchrTz7KstXrKCi+MsMa4LqFsxgJR9n6Yf2UPm/9B/u4YVHdH6VQQRRFtPMmyVBPF0azBfd5xsrVQJ7LwjdmZrG8wMXjxwd47MNuWoajl3yP12njkZuXcE3dNH7/1lZ++uRrvL51D4dPn6VvcGjKjsjnDQvKcogrCm6biQKvk7sXVPDbD07xz2/upjY/netnlU84PxJLcKq9hxkl447akZYunFYzxZmXrni3OZzMXb6KI5vfuqLvQ0km2PfmcxTPnE9OycQmIclEgvWvPM/+ndtZe+d93PfQd6ibN/8C3u7FkO118xe3rSCRVPnl+oP4w5d3yBRV5ek99dxUV05mSuUjnkjy5vZ93Hbt0qs6R81mMzfetIZN762fcM8ysnIY7NMdQT2CfGVbiKqq/P6pZzDIBv72L35EecmVFUydjxVzZ9Da2Utb15U7PwAW66iB/EUEeSpoHQjw6y3HuGfpTEqzx9uinzxdz8jwMHVz540da6w/jSzJlJeXT3apK4emUh4+hFFIcEIZdwZLlEZaxOIx+pAQDzP44TZ8C25C/BOjVZyP7LJpDDaP7+WSJwdlsAMA1exEVBPIyvgeNmLJxhHqvOj1ZJuL5EegG1XVzOD4kQ8nHCuvqKSh/vSEY6tXr2bDhg0oFwkKzKyexl98+2scO93Im5u2XfE4poKpGsh/D/yNIAhfdEQ4D6c7B7DIEvmOC9OVmqZNusnGkwrP7TpBbUEG+d6p3dLh7jbScqe2QUTDQXa/8QeO7/uAdfd/g/KamZd/0ySQJYmH1izl3T1HaRu49ERobO0gFApTV/nHEdGfLILc1VRPQdnU6Csf6TMFgbnZDv52QTblHgtPHevlF7ua2d02RCQx+aQWBYF504r5h2/eye0r5yMKInuO1fOLp17m73/5GI+9/Dbrt+1i96GjtHf3THqNzyOGwzEcFj3FOCM/nTvqivnWqlmsnll6gbF3rKmd0mwfNvP4nPzgZDPLa6b2bFbPWUgyEWeg6dSUztc0jROb38Du9lA6Z8mE1xKxGK899VsUJcl93/w+eYVFU7rm+TAaZB68bi4zCtL52eYT7GnuG0szn4+kovLM3gasRpmlVeO0jPf3HaE4J5PivKufkqyprdW7Dp44PnYszetjaLBfH/9HiCDv2L4dVdW487ZbMJs+fj2D0SBz3eI5vLN970d6v8VsQdM0kskvIsiXQlLV2Fjfw6+3HuOe+eXMKBqnHiqKwmtvvs3qL908Qdln5/atLFq2/Ko4boaIn6wzG5C1BPuTNagpEpxbDGDXAnSK45klU/M+HCU1mNLSP/bn/k9HRkEpocEeEil1CcmbqxvImgaCQNTswRr3j50/YsnGfgkD2WBzkQxduaLLtJoZnDx+FPUcSmRFRQWnT080kMvLy3E4nRw8/OH5lxiDx+3iG/fcyu5DR+jpu/oayRd1mQRBeP68QwVAiyAI+4Dz4+qapmn3XO3BfRaw9WQLiws9F0zsJn+EV/Z00B+K4nFYqcjyUFmYQyyR5P0PG/DZzdw6d+oV7oH+bormLr9kER/AcE8HR959gYKqmVx/231jRsVHRbrbwT2r5vPopr18b9k0MidpqxmLJ3ht0w6uWzx3LGX2aUMQL+Qgd5+tZ/H1az7xzzaIAkvzXSzKdXJqOM6BjhHeaejjxuoCFpVkTOqFypJEeX42ZUU6z1GVDPQNDtHS1Udnv58zLW3IX0jDjWEgGOHV/fVMy3RhNxuZkesZ4ziejz0nm5hfkT/2+3AoQmvfMN+6cWo1AqIokj9tBv2dLfhKqi57fvPezcSCI8y9/WsT1oFELMaGFx7Hl5HJ6rW3IXzMuSEIAtfVFDEtzcxLH7bw1vF2Zma7qPZZyXNbkUSRs4PDbKrvwmE18/XF08ayU8PBMJv3H+WvHrjtY43hYhBFkWuvX83mTe/x9Uq925/bm05jKipkMlsZiLRN+XqDg4Ns2rSRHz3yfX1NUa+kRcLFsbiumk27DlLf3E5FUd7l33AOrFYLfar6BcViEsQUjcZgkoa+fo71hyn22vnL1XWk2SYWeu04fBKXy0l55fi8am9tYXCgn5oZk7d5niq0eAT17H6yOhvwZ82iPuhDDY+2H9aoMrTQJJWOFZNKw91II924V3zye8T/BEiyAXduCYMtDYj5VQgWJwgiYnQE1eIiYvJgTfgZsejrZMjkxZCMYowHgAv3fdnmJBkavuLMp9eXPkazqCjTM9uFRUUM9PcTDAaxp7puCoLATTfeyNNPP820ygoc1slbejsddm5YtoiX3tnED6fPvqKxXA6Xyimc71KdSf00TPLa5xLdQ0HaBwJ8rSYDzukD/mFfhNebRrh1ZiHTMlz0a0ZOdvSz9egZrCYjCysLWFKaNWVvOR6LEg8Hsbq9hC7RYtLf1cqH777AnOtvIad0GtIU6RiXQ115AdGhQf5r2wkeWFgxIV2WSCr85pX3yPZ5WDCr+o8i/g96x7VzDeRoKEBo2E/mR9SM/iiQRIGaDAc1GQ66wgovHuviVPcQD147+7Ld9QRBIMObRobP+4XM2yTwB6MEYwneP9HGutkXpwsdaenGHwhTVzpu/BxsbKe2MAvjFbQWdvqyaDl9/LLndZ8+Qn/Taebd/uCE+ZZMxHnvladxe9NZuebWj20cn4tct5Ufrqii1z/M4c5h3mnooy+cIJ5UKfDYqMvzsKQyfwJ1682dh1k0oxKf23lZJ/ujorJqOq++9AJD/kHcaR7SvD6GB1IRZLOFWHTqFIvdu3cxZ85cfN6pNYGYKgyyzH1fWsWTb2zkrx+6B4d96m1zLRYLqqp+UaR3HoaTGr9vCOIziVRnubixxE2az4d4nnE8Egzz7gcHePh73xnb+zRNY9M7b7Dq+hs/lla8Ehggue8NxIwSOirXospmCI3H8TLEIYxCkm4hpQKlqZiadhErmo8oX75JzJ8KPEWV9DUcwZdfpfOQPbnII93ELS6iZg8O/5nxkwWRYUc+zkALZF5IUxQNRgTZqEekzVfWwKxqeg31p06MGciSJFFSWkpDQwN1deNCBKWlpcybM5vHn3yG733zQeSLmEzL5tchisJVpyleqpPeNVf1k/4EsfVkK0sq8zFI4timE1NU3jg7zFdn5lCWpxuShQ4XhT4XQkr7F1Ud09SdCoZ6u7F7M1Kb7OQGcmiwl2PvvkDttbeSU1o56TkfB/PLcjGqCZ7c00BuWhfTczwIpiE2Hz1DYW4W99183ZS41J8UBFGYQLHobz1DRmEJ4h8pCpvjNPPwyuk8taeRRzcd5purZvHpid79aUFVNcLxBPkeB7vPdLGiKg/nJPZmNJ7kpV3H+coNizGcYwzvr2/j5rlXNidc6ZmEB3svueAGB3po2r2JGeu+gsE8XgCqJBPsfO1ZnGkeFt94C4LwyWRV0m3/P3vvHR3HdaX7/k5V54AGGqGRCBKJYM45ShQVqUiFGQfJUfI4jD32hPfWzL3r3vveu3MnB9vjkeU0liVbtpIlK4sKpEiJOWeQBEDkHBpA5zrvj+oG0OhuoEGCIiXiW6sWwToVTlXXqdpn729/28zNlXlsLs3SZd6IyrwRX7DgQlM7J2oa+ZuvPHRF+hGDoihUVs3i3JnTLFu1hozMLAb7vUTCYcw2O4HBsUsBxxCJRNi/bx+Pfe1Prkg/Z5dPZ/m8Kp5+5R2+9kd3pe2osFmtRCKRKQ/yCPSHNJ5s0ViTa2ZtjhlzTmrK4O/f382qBVXkezz0RYfVqeNHiEQiLFh86Z6/iLcT/76XUSvXoBRUorXGV6kVSGaZ6jgdKkGa9bGY4z2PNFoJZ8+45PN+EpE1rZwLO18jK2p/qO5CDM11BD1V+CxuPMH9UT1HfUz0OadT2LKHfrks6fGMdhdBbw9kTcxALqucyWsvvRi3bubMKk6cOBFnIAPcdstmfvpfT/Lkb37HZ7behdWSKD+nqiobVi6d9Aj2lNrUJaLf5+dQbQvrquLDdO/W91PmMlOWlTwccCnoamvCkZ2aNxgc7Ofkm89Ste5WsksmnoyXLhYUufnr2xYxrzibi11ezjS185kNi/jCnTdeNWpFDEJR4jhN3o5WsjyTq6bRHwjjT8EtTgaDovDwykocVhM/efcQwfDkhImvN3j9QYwGlRm5LlaU5fPm0dqEbTq9g/x0235mFuYwc9qwokVbj5eeAR+VhTkTOqfJYkM1mfF7k2dpa+Ewp7e9QPnaW7CP4C9KKdn3xosYzRbW3n7fFTOO00U4ovGbtz9i68Zl2CxXfopWNWs258/q3G1VVXG4XPR2d2J1OPENeMfZW8eZU6dwu93k56fPlY5oGsera/jVy9t4+pV36Ood+1xbNqygp6+fw6fPj7ldDP0DA1yoqSEcjhCcMpCH8HKTn9k2wdqcsZ+tM43tnK9v5rY1S4fWaZrGO6+/yk233Xnp349ImMCRtzFVrkQpSJ7gV6I0EpAmWiO6koVRBvH0nSJQumr8cpGfMqgmMxkF0xlsqtH/n12Eoa8ZpCRs0Cf5xshwpMdndiOQGKKaxqNhcLjwtqRPnYqhqHgaXV2dDAwMT5oXLFzIqZMnCY4qJa0oCl98+HM4HQ7+/t9/hNfbP/pwVwxjcZC/DTwjpUw75Te6z6+llB2T0blrGafrmqnwZOG0mglHf68ef5jdzQN8b8nkqiZ0tzbjyE1t7FXveJW8ynkUVM6b1PMmg1FVWF1ewOryAhTHxGaNVxKjKRb9nW0UlV1+RrQmJfvONbLj+Hna+wbRpK6RuXa6m2W5FgzK2C9YVRF8fu08ntp5jCde/4hHblpGpjX9sO4UoGfQj0lVcNnMrCnP5+9e2ceKaW5Koxzko7XN/OaDI2yaV8qm+fGJeB8cv8DymSUJpYbTgT3bw0BnK64kz3nz6YPYMnPIq5gbt/7kzrfxD/Sz/v6Hr/qkEeDtI+dwZ9hZWjXjYzlfReVMXnz+WV3pQai43Dn0dnWSOa2cgG8QLRKBceQw9+3dzcqVq8Y9V3tXDxcu1tPW2c2+Y2fIcjlZOqeC/kEff//zZ9m0fD6bVy5KGrpXVZX7b1nPU394h7kV0zGPMYz7+/t5/Mc/obmlhaJ8D7Mqr04i8rUG/8YHqf35r/lff/o1TKM1tSPBId1fabRw6lgDq1etwJBTTNhgQQ1rCAEGVcFlUcnyRWUvz55Ai05K3S49AuvO1+/3gkWltFTqE93OwTDhcIi3fvckxuJiFt24nk6ffr7MqIbxaYuBDo+D0gsH6S1bxxJ7LrMLMghcOIQjXMXNm3VPZa5d395mVIa0hGM6w0PFgZCIaNEaMbo4jWrQtbIZrowKQKw6aiyyGStiEw4iIqG4dVIM7y+NUTm8mLbyiGqaMXtejXp4hTJiXfTfiIwV2xFD12OP6jnn2ExQNYuWliaqFixGShe7PpLMyjHidlgId3qYnR3CPUOfnLodJvoyVxGoO8yqDYsRijJUqddhMtBl2sTO3/+aVvys3XwrWc5o0R+DgjXKh1Cj91BdIiUAACAASURBVFDEonFSo6mxGbPJhMusYhQRkBDs78VoNKIoKlJCrKinoppRVTN3b72fPX/91wSECYcxGrFTgonFgiYRY73B/xVIm8AphFCj+5Rcbqeix1OEEB8KIaQQonjE+keEEOeFEINCiD1CiKWj9lsmhNgbbT8vhPj8ZPRnNM43tlI+SjLqvXovK/LtuMyTG9bvbmvGmZPcm9LXXIevp5Npi9dN6jk/aRitYuHtaiMj+/ImKvVtXfzbHz5k56k67lxQyv97xyL+95ZF3DengOOtXv5xdz0XusfnVSqK4HPr5jE9z83fP/cee05eiPN2f5JwNcZlz2AARVFwWc3YzEbuWVLO7w7W0OEdZPupOn638yhfv20VNy+siDOEB/wB9p6p44YxtI/HgsOdx0BXon8gEgrScPgjpi/bGLe++dwpWs6fYs09n0G9RF6jlJKunl4uNrfT0NpBt3eASOTSnpUjDR18eKaeP9686mOTXrTabHgKCqm7oHtmM7Nz6O3qQFFULFY7voGxvT+tLS00NDSwYGFq5Z1wOMJr737Av/z8N5ypqUcIwdf+6E6++4UH2LBsAXdsWMn//ZWHOFffwj//6vfUNCZXg6mcXkRpcT6vvL87jkrj8/upudiAlJKOzk7+40c/Ys7sWRiNBsKRCEsWXHlHxERxNcblrgNHWLlwLibj+LkuHd295Lrjv5eKonD33Xfz7LPPEpygdN5gv5c3fv0zLHYHi266O+XzbfF36uWObcMRpFBTNTnlc5Nufz0gp6CY7hZd3k0IgSEjm3CfrncsMwsQXQ1x2zvL5iMUhYaTBxOO5fYU8tDX/gyAX37/n9j57tv4xykIpGkaL/3hFW7cuAGjcfg9uWffAZYtW5aSi3769GlKSkpwuz++arRjPdkC+D9CiNRK0YnbTya+C8TdaSHEOuA/gfuA7cB3gNeEEJVSyj4hhAt4HfgnYD2wAXhRCHFeSvnRZHbuXEMbK1YN8xp7AxEOtQ3yl0snN38xHArR39OF3Z14XCklDfveY/ryjVeNa3utYKSKRdA3gBYOY3VcmiphKBzm1Q8OsvdUDXcuqWTlzGng60eLyuOUZ9spz7ZzvKGDp463UeW2sGZaJsVOU8pBoCoKd62cw4LSAl7YfYK3D5xiYeV0nA4HwVCYCIL8nCyKC/LJcmdfFS3pNPGxj8uegYCu6/vhSeYXu1kyI48jda18/4195LscfPvOteRlOhKUDj44foEFpUVkOqzIER9gTdNoaO9C9mvkurNSvgTt2R7aziUm6jUe20dm4XTsIyZgvr4ejr73Civv/iwmS3J6VX9fHw011bQ1N6EI/eNkNBiQWoRAwE9fdxctra1ITcNlt6JJycDAIL5giKqiHFbOLGFuXnp66+faenn2wHm+cdsqspwfb8SifOYszlefpqh8Ji53Dh0tulSU1eHE1++FMRLv3n1nG+vWb8A8hqzb7998h9aOTv7qsc+T5Uh+r7MyHHzjwdvZe6Kan//+bRbNKmPrLYmFIO6/ZSM/fPpFXlEFyxbM4eiZ87y/7yjmaPW/Pm8ft95yK2tXrWDfgQMM+tLPHfmY8bGOSykle46c4Htf+Wxanevo7iU7iWGzYOFCDh8+zAtvvMcNq5ZiHfTT0eFFVQSZBhsumyXOixcOhzl15CA739tG5YKlzFyxEd8Yieuu3hp6M2YMuVkjAz1o/n4yCj6+5O1rDW5PPt7uTiLhEKrBiMGZRcjbBdm5yLxylP3PI7UIIpbXIARla2/j5Gu/Jq9sFpaM+O+q2WLhprvuY+ma9Rzc+T6P/8s/sGjJUtasXpWUJvX6G28CsGHdsCRmJBJh/8GDfOPrX0/Z7wMHDrB0ycQrCV8OxjKQdwAqE1Os2AGkRzQbA0KImcA3gPuBkaVUHgVekFK+Fd3uH4Fvob8AfglsRS9o8g9Sdwm8LYR4EXgMmDQDud/np9s7QJHbObTu/fo+lnlsOEyTa6h2tLXizHInFTHvvVgNEnLK5kzqOT+JUBQFGeUHezvb9aTGSzAyu739/OSFt8iyW/ibh7dgi5YTTfYKnptrZ0amhd31PfzqWCthKSnNslHoNDPLk0lJfqJhMj0vi+89dAunGzupbWqjpbMbs9GAUA3sPnKK+je3E9EkZqORlYvnT7j/VxJXa1z2DvoJRT+CH51r5sbZ0/jS6plDMm+xxLSRCIUj7Dh2nm/fE28UtfZ4eeqlnQwGgqgGE5oW4evf+CZYE8sP2915DHS+G7dOahpNJ/Yz9/Y/jlt34p3fU7F0LZlJeO8D3j7e3/4W50+fZHpZBQXFxZiNBjRNQ4tEMBsNmM155C2YR15uLtlmUAO67rgIDDDoD3D0VDWvHzjDW0junVdIabYz4Twx7Knr4NWTTTyyqoppOeOXVZ5sTJs+g3defwUAlzuHcyeOArqBPNifWk+9va2VC+eq2Xr/Aym3OXmmmhNnz/GXf/Jl7EYxZnhVCMHKeTNZMLOUv/3Z71g4u4LykvicEafdyrc+dx+PP/N79p88R1XpNL71lYfx5OZw6kIDNpuNkrIKhBbGbrPR3nHtsQevxrgUQvBnX/oMOVmZ44a4pZR0dPeSk53c87f1/vt56Xe/5olnXiTg8+G2GtEk9AWr8QVCuDKc2CxmglKhs6uLopIZbLjrIfKnzWBwjJwQEfLh7LtITdkdxFJoQ03VGPPLJ1VV5pMGg8GI053DQGcbGZ4ijM5swn2dkA1YHGDPItx+EaNnuO6CzZ1H0exFnN31FstvTz4+M7Nz2HL/Q/T2dHN8/x5++sSPyS8oYOt995Gbl0ckEuG9997jwMGDfO87fxrnKT599izurCw8Hk/Sb63P5+PsmTM8dP/WSb4bY2MsFYsbPsZ+DEHoWS0/B/6SRL3lhcB/xf4jpZRCiEPR9bH2gzI+9fwg8HCKcz2G/jKgpKQE76EPcS6PD5sKc9RDYXEOzULbfRo5WS5MHp1NIkwWLn5Uy93zp6FmRrPIDUbUaL11ka1/NDWbzmXUrCM4jdFjhqN11r2BCB29Okm9czBE9flanDn5uMz6T+WJ1pm3GVVef/cIazfcwPxp0Vrno3hTI/mx0TLymFT9D0VGEFGvmoiMIMXHuFDRSkMY9etXXNkozlFczBHcqCEulTG+Jn3S7RVDQnJEjKdkZri2fGwLCcRqIoym/EY0iS9spDvLSXNrGxVuKwNN+rVHNDn0AjVF+VAieqnhiERV9GszmPXXp8UuOHj0PG5PAV986F7dwPbr8z3V70X16R/3SKfOl4t0t+Ewwga3l7V2K90hSa03yOnWQY43dPGNOXrwxRiTkoqG3RWrnXJFpTwHIMpT00KQ7YT5OXiNDiKaht187ci9Xc1xORAIEYpGB043dXHj7GnJdtP3jRrNvmCIUDhCjive49ra7aW9pw9PlovBUASfP0BPby8ZSQxkv7c3oXJlb3MdJpsDu3vYe+xtbybk91G2eHXCMaTUeP3ZpygoLubL3/krnHb9WTPH+HlCDI1bC7qhIQa7445hs5hZMbOEZZXT2H/iHD/76AzfvXEO7iQsjlavj5ePN/BnmxeS50ydKDzEb7wCyMsvoL2tFSmlzkHu1gX8nVk5dLe1wNzkEz+/z4cEGhrqmV2VXHWktr6BuTMrsFktaUtKWs0mls4u51xdU4KBDLqR/JePbEUaTAgh0KLPwuxZVUjDsCfbYrFecwoWV3Nc5qUweEfDOzCI0WhIqj4A4HA4+MLWLfp/6oc5yKorm2A4Qo81h0F/ALJLCJqcWKxWOgfH/x2sLSfpy5hOxDA8DkJN1VjnTwl0ZXkK8bY3keEpwpDhxtd0bqhNy6sg1Hg2zkAGKFu2gQ+feZy2uvPkTU8tBuDKzGLzbXdwx+23sWvXTr7/gx/gysggHArhdrv51je+jtMR/17eu28/K5YnV8oAOHrkCJWVldhstpTbXAlci7UVvwO0SClfEELMGNXmBEaXbukBMtJsj4OU8gngCYB58+bJX1R7+fbyZFvGw2BQiYzikFqNKv4roFLQVl9DThJliq62Fnq72imffe3x4a4GcvM8nDxxHICcohJ62loIBfxgnFh42eFwoCjKhL3PQgjcJkFmpoECi8JvGy4tFCuEINN+5YyXy8BVGZfLli2TWmYB0IrNasFvdqIt3oISHEBGPVexr7sIBYb+dmTBtKJjHG7zsXRulT6BkxoLsouoWrSM2sZmzBluCvM9KI5sBsP6nm6L/kq0qbDr0HZuvOV2yop0gykiJR8crmXOvAVU5egveE1KTlS3MaOsgjK3/vKOGbwmRXBw70eYDAoPbr0PRVGG2kSUDiIiQUQoGO2//syI4AAiqHPbpV+n9WiD+kRtSa6F3vIcntp7jkeXl2AxqLoHXVHxhyL8Yu9p7lkwHU9mtH9BP0TLwQpzdEJstuv3ymxHixqAMsmENpaMNDRRVUZ8LqI3WsDQZDeWe5fpsKEIgVELUpKbRdDvI88smT9nFrve20am5TZAnxwAROfslJWW8rmHH+HpJ3/Jt7/zZ+Tk5Az3TwJGG0tXb+D7//av3HHvA1hswxP0uL7F+h6btCsGusN7qSwsYyBzRvTccZeBKgT+aJSiPxSlavklECYYkUgJAal3tCFyTSXZXrVxmW4HO7p7ycm6tEiGyaAOGeJBdxEtA+lxlbVQAHPbWZqm3zK0zuDrRoaDqFmTX0nyk4YsTyENF2sBMGZkE/YOM2llXhmhmr3IcJAhBw6gGo3M2nAbx95/lY2f/TqYxjYfVVVlw4aNrF61is7OTkKBADNmzEAghxMXgYGBAc5Wn+OPH0zumdY0je07tnPvvfde+gVfIq6pOIMQogL4c/QwUDJ4gdEjLRPoS7M9JVRVxRtKb8wbVJXwqPrgDouR/sDkeheklLTW15BTPCOh7dSBj5i1eAXqp7x+fLrIyfPQ2a4nVBmMJrILiuloqJ3wcTKcGfT1XR5LyKqC/5OZg5cUV3NcQqxku4bNZsXvT78Qzbrli9i5/2jCerPJSFVpCSXFRRhSFNM5emAvRpOJ8lnDyTxSSmrOnKR0VnyCT1vjRTzTEjmN/f1etm97i7vuu39SFS02luWQ7zTzzx+c52Sbl1BEo83r55f7LlCWk8HK0slV0bkUZLhc9Pb2IBQFd3YOXZ3tFE8vpaOtBd9g6iSesvIKlq9cya5dO5O2Z2dnM6O0lIMHExOGxkJ3dw9ZWZeX3BP7DSe7GMGl4mqPy5Ho9fYnOI1i6OjuJSfz46X6DJ7dRzBrGmHTsKfS2l2LsbDyWs7v+Njgzi+iv60ZAMViR0YiyOikHKMFY950AjWJJZ5zp1eSlV/MyZ1vpX0ui8VCUVERpaWlSe/9gUOHmTN7FlZr8ojXyRMnMBmNzJyZfuXhycI1ZSAD69A5z8eFEB3o4R6Ao0KIbwBHgCFFcaHf7UXR9UT/Hc3iXjyiPSV0Azk9q8ZoUAmP8hY7zUa8/smtsNTX2Y7BYMSWEf9iD/p91J4+TtWiFZN6vk8ynBkZRMJhfNFiBPkzKmirrZ7wcTKcDvq8E/4+xMGiCnyRa+MjOkm4auMSdA+ClGC12gj40/fMz6+qoKOnl6a2ifFGW5oa2fnOW2y6c2vcC72jpQmDwUhmdrzucVtjHZ7iRPGePR9sZ+7CRXjy0ytxnS4UIXhoQTH3zing7ep2/vsbx/nhzjNMz7KzddGMST3XpcLlyqSvV3dOZufm0dnehsFoZNr0UmrPnx1z31Wr13Jg/378KX7rG2+4gbe3bYvTUB0P3d3dl20gi2vMQOYqj8sYGlvb+dv/fJJX3t2VtL2ju+eSPciXglBPG/76UwxOGyHYIaVuIBdcmqLNpw0Z2Xn4+3sJBwNRJQs3DAxTuyxVqwjWHCbsSxxj82+4g7a6czScOzUpfdm7bz8rlycP3Uspeefdd9h0001XZWJzrRnIvwPK0QfxIiBWJP0W4EngJ8BWIcRNQggT+uzZAsRKsrwI2IQQfymEMAkhbkJPRHhivBMrioI/ItOSVDKoyQxkA97A5BrIbfU15E0rTVhff/YEhTMqsNrTy2i/HiCEIDvPQ2ebzg8urpxD0/lTuu7qBJCRcfkeZKPQQ8Ih7Zr5kF4urtq4BIYk8ew2G/5A+h5kVVVZvWgeO/al/70f6O/nuad/yeYt95Cd54lrO3vsEOWz58W9qAf6epBS4nSNmsQGAhw9uJ8Va9anfe6JYq7HyXfWlvE/b5nLf79lPrfNLsSoXhuv9AxXJt6ogZyTm0dXNLpTOWceJ44cHnPfzKwsKioq2b9vX9L2srIyFi5YwG+ffT4tYzUSieD1esnMvDzddkXo1KtryEC+quMSoLOnl8efeYktN65h79GT1DW1JGzT3tVLrvvj0czXIhH6D2/DMWcd0jjskTT6dAqB6rr60ZVrAYqqYnfn0d+h/17GjOw4A1mxuTAWz6bn+IcJ+xrNFpbcupW9b75E2yVEaUeiobGRQZ+PivLk2uLnz5/H7/Mxb97VSVi/Nt6mUUgpB6WUDbEFiI22Fillv5RyJ3q27k/QuVMPAXdIKfui+/egvyQejLb/BPiTdCXe7EaBN40QbiqKxWQbyK31NXhKEg3k2pOHKZ+3aFLP9WlAjqeAjlb9kXFkurG73LTUpVcpKwaLxYIWiRAYVc1nIhBCYFHB/ynxIl/tcalFDRKbzUogEJiQhvT6ZQs4cvoc7V3JK+KNRCQS4cVnnmLuwsXMmh+vwxsOhTh79BCzF8d7OlobLpJXND3Bu3H80H6ml5WTmZVa0myyYDGq14xhHEOMYgHDHmSA2fMW0lBXQ1/v2L/HuvXr+fDDXSmN0S1bttDV083Lr7xKODw2ta23txenw5FSXzVdxHITrhUD+WqPS4C3PtjNqoVz2bB8EffdvJFfv/xWwrexrav7Y/EgSymp2fUGijUD87RZcW3Wrlp8mTOm6BUjYM/OY7BLr5BncLqRA/HJwZbKZQy21NJ/8XTCvu6Caaze8gA7X/oNZ48duuQxsWffflYsS10i+v333uXGGzddtaJLEzqrEGKOEOJhIcRfCyHyo+sqhBCpNYcuA1LKWimliA7+2LonpZRlUkqrlHKFlPLAqH32Rddbo9s9le75nAaFvsE0DGSDgVBSisXkcZCllLTV15JXHG8g9/d04e3qnJQqcZ82ZOfl09HaPPT/4qr51J1O5KCOBSEEzoyMyy5n+SmkWQzh4x6XmqbpYUCDAZPJlFCKdCw47TZuXLmYP7w3/jf/rddfQzWobNx8a0Jb9cmj5BUVkzHK4G1rrCNvFL1CahoHd+9ixdor5z2+1uHKjPcgxwxkk9nMnAWLObJ/75j7l5aWEolEaGxsTNpuMBj42le/QntHB//+Hz9iYAxe87HjJygouHyayzVIsYjDxz0upZScrK5h5UJdZnTpvCoURaGuMd6L3NbZQ37OlZ8o9jScp6+1noyltyQYwua+BvyZqdVvrkfYMrMZ7I0qLTnjKRYAwmjBs+5eOg+8SzBJmfiCGRXccP8jHP5oB689++shemO66B8Y4NChw6xYtjRp+9EjR+js7GTJ0uTto/HMi6/g841fuGsiSCvDSwjhQJeSuR8IR/d7A33G+rfAReAvJrVnVwEOo4J3cHyOo8GgEolEkFIODUSn2Uj/JHqQ+3q69DCIKzNO67H25BGmVc2bSs5LghxPPqcO7x/6f2HlXN7d/R7hUBCs6d8vnYfcT84YBQ3Gg1UR+MPX5of0k4aYQaIoCmazGX8ggG0Cv+cNKxfz//3oSS7UN1M2LdFQ0jSNV19+mXNnz/DwY9/UvRWjqFbH9+9h8dqNCfu2NVykfG58NKep4SIGg5GiJIl71wtcLteQl9idk0tvTzeRSATFYGDR8pU8++TP2XDj5pQFjoQQLFq8mEMHD1JcnCjNBuB0OPjKF7/Asy+8yKuvvspDDz6YsM2Zs9W88847PPbYo5d9TYqi1/W9Vg3kjxvbOxQCGnRkVYFNH4/Zefl0R0xotqwhJRaT0UBQA0tUuUDVQtiiybGKX8/3UHz6ZCrc2zkko6n16fKAalD/Jpu1MEXuGQBYo2WcewMRevxhIuEQ9XvfpWrNZvxRBZfp2XamZ9vRAoP4z/vZsGw2pe5oW6ZlqOKt3ThcXtoYtauHyknH3gMyXnlhXChKotRpTEJ15KsrVtwotq0YsV/sfNqITWRsu1gJbEFMi0WJSrMoUWqfIsSIMtT6fjHpV5NBkON209DeiMdpJqgW0b3/TaryHTpd0abf3yyrG0vnUjqPfMDS+x4CGCo1bTUolLjKWDbz22zf9ga/+c9/4+4td7B0yWKU8CBiIN6WGlLKUQ0gFN5+800WL5yP2+WMu7ealPT29vLiCy/wxa98FaGqRKRESFCVUe8LIUAz0Of1cvTkGR5OISV4qUjXg/wvwBpgM7o0zMjp2WvAbZPaq6sEp1HQl0alJEUIhKLEZe06JpmD3NbUgDu/MGF9/ZnjTJ+9YNLO82lCdl4+ne2tQyF4i91BdkExNSfG5jyORoYzg75J8SB/iqQsriK0SAQhBIqiYDGbJ5SoB2AyGrn/lvX86g/b8I2iUDW3tvH4j39Ma2sLj33jW1iT6Gy2NtYz4O1lemW8Nm8wEKCvu5PsUeP03OmTVMyec12HczNcrqEkPYPBgDPDRU+XniyZl19Apjubo4cOjHUIFi9ewqFDh8ak1AghuOuO2zl58iS1dXVxbSdOnuJXv/ktX/ziFyguSizgMlEIRTdHmDKQAehsbiQ7vyjuOc9wZdDbF5/kbDaZCAQnl344Gge3v43dnUvujESlA62rCVte8XVdHCQZbM4MBr36GDXZnAhFJTyQmKBeumQtTRfO0NeTvKiy0Wjkrrvv4Qtf+jLv7/iAH/34CZpb28Y8d3tHJweOHOXWmzYltEkpefGF51m5ejXF09Lz+tddbKBkWvGkv3PTfWK2Av+XlPI9YHTWUx3wqXCVOI3pUSwgqmQRGWkgGxkMRob4kpeL1sYGsvPjX+qDfd0EfINkF1z+y/7TCLPFgs3uYGDEQF5yw+0c2/UOPZ3pKxlkZDjp9V5eot6niYN8taFJiSDqQbZYJiT1FsPCWRXMLivh16++S3VtA3uPnuKnv3qG//jZr5g3bx5f+PJXkxrHAHvef5ul625EGeW9aG+qJ9tTmBDNOX/6JOWzru/qli5XJr29PUPeVp2H3D7UftPtd/L+26/j86WmRuTn52O327lw4cKY57Jardx15508/9xzRKL817379vPb51/k0S89QllpYh7HpUARIupBnpr4AnS2NCZ8o1wZGfQlGMjGCeV0dPrCnOnycbHXn5a3vqnmHHWnjzN74x1JDaRIVyP2/Cl6xWhYnS58IxSbTG4Pge7WhO2MZgvlC5ZxdPcHYx5vWkkJ3/32t5g/bx4//Ml/8cxLr9PXn0i7CIfDPPPCy9y4fg0OR6Km+NEjR+js6ODGmzanfS0X6+spmZY80nQ5SNdAtgKdKdqcJBrNn0g4DOlRLEBP1AuNSA5RFYHVqDIwSVrIbc0NuPPjf/DW2nPkz6hAJKtSNwUAsj359HQMD3JXTh7zVt/IO7//bdoftoyMy/cgWz/FHOSPG1pEAyFQVQWLxYw/cGlFWO7bvBYhBK/v2M2xsxdYMG82/+1732LD+vUpE7ia6+vo7mhjzqLEKk+tDYn84+6OdoKBAPnX+STWbLEgEASiv9XIRD2A/KJiZs6ex45tY+upLl22jN0fjc8fX7JkCTabjZ07d9LU1MTLr77Gt772KNNLEuX3LhW6B3mKYhFDzIM8EhlJDGSL2UQgkJ6B3B8I8cPDrbxf7+XpYy08cbCJTm9qXmlnWws7X3mWdXc+gMmSfIIb6WrE5pkykEfDYnMQ9PvQIrrNYs7y4O9MNJABqpau5tyJIwz2j+04UlWVDevW8jd//qeYTEZ++ItfMzA4/PtpmuTp517CYbexaf3ahP19Ph8vv/wSDzz4UEqN+mSoq29g+lU0kPcBj6RoewBI1AL5BEKnWKTnndKVLOINLqfFiHcSDGRN02hvbsLtiQ/dttWdo6B0KjlvLOTkFdDTHp8kUrl4JaFQiJaGi2kdw+l04O2fmIG8pzPIxYHh394yxUGeNEipRSkWKhazhcAEpN5Gwmgw8OWtt/HtRx7gKw9sYcXihVgs5pTbh8Nhdm17nWXrN6EmeVm3NtSRVxRvgF04o3uPr/dwrhCCjExXghbySNxwy22cPnGMM6dOpjzOqlWrqK6upq01+Yd75Pnuv/9+tm3bxq+eeoq7t9xBXl7umPtMFIqigrh2k/Q+bnS1NCZEM5MbyGZ8aY7Z5w/XsSTPztcW5vFXa6ZT6bbyL6/vY9vx2gR1jM6Odl56+hcsv+kO8qcnlwnTAoNo/gEsWVPybqMhFAWL3UFoUP/WmVN4kAGsdiflcxZwYv/utI5ts1rZevtm5lZV8MTTz9LZ3cPAoI9f/PZ5+rxePv/Q1qTKFK++9hpz585l+owZaV+HpmnUNzQyPU06xkSQ7lv8v6HrKW4DvorOCr9DCPErdImY/zHpPbsK0JP00jSQDYlSb06zgf7g5RvIPZ3t2OwOzNbhGXEkHKajoZb8MWqgT0FP1Ottjx/kQgjKZs2l5vSJtI5xKRzk7e0BnqzzcXFQfyYsKlMe5EmCJiVCgKpEPcgT5CBfCkKhEK/+9kmsdjuzFiZmUWuRCO3N9QkGcs3ZU5RXzb7i/fskICPDhTeaqJfrKaCtOV6Rwmaz88DnvsAfnv8dba2J+rmgyy6u37CBbdveHvd8eXl53HDDDRQWFrI8RWb85UAoYsqDHIWmaXhKShO0+F0ZiRxki9mEPw0P8rFzdTT1+rhthl7pWlUEm0rdfPf25Vxo6+F/P/EMe/buo6a2lr0f7uS/Hv8PVm7cTOmchSmPqXU1oWYVXvcT1lSwOV1DChWmrDwCXa0pn+/5y9dw+vBewuH0+eR3QGQE0wAAIABJREFUbb6BytLp/MtPnuT/+df/wJ3p4utf+jxGozFh24v19Rw7dozbbr8jyZFSo7W9HYfDgd2ePIJwOUjLhy2l3BkVEf874IfoSXr/C9gNbJZSJld0/4Qhu7iIvoNNCFce0qSLjGuqns0pzXakEr1diopqMuN35BPOzkM4cjBk5eM82YUvqxBTZTkyMAgxzmKMFxXNWBVhP9KgZ1vGjhmOZp5qQHtTA56i4qFsUYDW5jqycvIoytELElij6bYmRWA1xmeoGpVEHlYiNUtBqsZR2yjIaHbw6B0ULTycaRrLxo3dG5MVaUjiiYsNtNHUBqkN3wuiL87ofTAkoY/IMYj3qhAIIYe6XFZSzM63X2Oayxw9vg7bggU89/QvsWy5C6EoGJWh5OChF0IoAqgGrK5Muvv60SyuIbF5YctC+PUXiWrXfwM1S/dQtSt2wqKPh9fM5Fe7z/A/tswnw9JJk9ePdc5sFFP0t45ds8GkZzkDMhhv7AmTBZGRk/J6r0foSVoCoQhMJtMlcZAnAiklv/uvn+DMzOLmex8EkUi/aG9uxJnpxmIb5tBFImHamhspnj45nNdPOrLc2XR36fkAufkFDPT34+3rJcM1rIlbNK2EW++8h6d//hO++iffJC838dlft24df/u3f0tHRzs5OWN7hW+66SYgqkIwyYasrmIx5UEG/V5svO+zCeuTepAt5oTk2NGQUvLaroPcNX8aRjX+nZjjtPLYpkXUaA7eOnCcwcFBzHYHjzz6dUyZOfSMIa8a7mpEzU5Mdp+CDqsjg1A0Mc9gdSBUg56oZ08cZ5k5eWR7Cjl7/EhSylkyKIrgzs0buWPTenq8A2RlunQViyR48+13uPWWW7ClyAVJhbqL9VeEXgFpGsgAUspdwHohhBXIAnqklKkzLD6ByLSY6PYO6LqrY2wXDIXo6enFnVBfXsKYe6aHloaLeIriwwXejhZyCq7MQ/Bpgjsnh2DAz+BAP7YR3o28/AIsVisXzldTPkqNYDTy8wsIhUJUnzvHzNKxOYzd/YM8sf04dy6YzuyCLKo8Lt4900SfP0y+O2NSrul6h9lsQdM0gqEwDU0tVMyaQ9icMVSp0NGhly4WEd2zoZntRDIKouv0CZgIDiJCvrh1ymB3tM2HIzpZdBgtSClpaazny48+itlsxhctQR+Mni8YkUSCgzgzMrBEJ6dGRRDx+TCZzGQ69EmVJSq7ZDYoKGHdQBAxpZuYjJTUEOFgXP+FFh6WeopOsoVB759itSMj+oQr9qYRI/nT0YmXYtENd2G2IKJ/axZdrl4abdF/zcMT9ehEUAqBGG0Axia4UkuUrmJ4Lq1GexSb1+fmZNPb04XZoGBSBYVFRXS1NZMXraqmRifyS5csoberg/fefoPPf/5hvf/EJtdgNZtZvHgxhw8dZvPNNw9PmBXD0N+R6G8T67kQBtTo/Y85H/whbdgREd0wIiVaJMJHO94nt6CQspmzGIj93uHYthJFCPyBIFokQpDLKzjyaYbVaiUcDhMIBokJblmj0oxj4VRtAxFNY06+C9mVPEJUUVLIjEVrAOgK6Q9ZbyB1+pOUkkh7HcalWyZ+IdcJrM4MBkZoHFvcHgJdrZCCnjRv+RoObH+b2UmiamNBURTdOE6BpuYW6hub+MIXvzSh40opOXz0OIvmz5vQfuli3LiDEMIihAgIIe6NdsgnpWz6tBnHACaDgsNqoaGtk3/+xW+prmtIul1d3UUK8j2YzfFe00AwjMWUGDqYKBrqaigqmRG3rreznczsyeXUfRohhCCvoIjWpsaE9UtXrmHfhzvHPYaqqtxz9908/9xz41bpeumj4yyb4WFVWT4Ady+Yzs7zrRxt7GTetClP8GTA6XQQiURo7+iguamJsvKKK3o+IQRZWZn0j0GzURQlQX4sFApiNJmuaN8+Schyu4c8yAB5nnzaU1Ap1q7fwLlz52hubkraPn/+fI4dm1jRn3TgGxzgt7/8GbXnq3nzpefYv2tHym2Dfh+RSATt01NCftIhhEhIck6HYvH27iPcsnKhrhQySdD69WdPcVz5IiWfVFidLoKDwx5/a940+hvOpdx+Wnkl4XCI+gupt7kUvLt9OxvWrUlKvRgLJ0+fobunh2VLrkxl4XENZCmlH2hDLxDyqUdOVgY/fv5NnHYbv3zxDXqTfCTPXbiQtHZ4IBjCbLq8Ah59vT34BvrJLYgPC/V0tuOaMpDTgqegMMFABpi3cDEtTY20tTQn2Sse8+fPJzcvj3e3p/5gdvT2c7q+lU2zhz37WTYzN84swGU1keOcfE7U9Qi73YHBYODkyVPMKJ0x4ZfopcDpdOL1JmqCxqAoaqKBHAhgmjKQh+B2Z9PTPWwg53o8tKdItjObLWzYsJF333k3aXtpaRk9vb10dqYSU5o4pKbxh2efwZ2Ty2e+/BifffSbHD2wlxMH9iTd3u8bRFFVPnz71Unrw6cRrlEGstUydpJe7cV6ur0DLJ6VPNHuUhFpq8GQN1VeeixYnS5CIzzIzrK5DDbXJK2cBzoNc8WGm9izfdukUY26e3o4dfoMa1etnNB+4XCYl/7wCvfeeceEFC8mgnSZ6z8Gvi2EuPJfpquMgpwsphfk8tUH72Td0vk8+fwrCQ/C+fM1VJQlDmZ/MHjZHuQL56qZVhYv5SalpLejjcycqUzcdOApLKa1OdFANhiNrFizjo92vJfWce67917e3/EBg4PJZYbePVLNmjmlWIzxg3NTVSHfvOHKhHyuR9hstiEZtsqqWWNuK6XkyZfe4tTpM5d1zgxnBv1jaGELRUGOMpCDUx7kOLijHuTY+zMvz0N7W2o1ihWrVnHmzGm6uhILEiiKwry5czl+/Nik9W/vRzvx+3xs3nI3iqLgyszivs99kX3bt3F830e899IzHPnw/aHtA75BVNWAyZxa+WQKYLfb6R8YDjA77XZ6+lJHY/YcOMzahbNQJzmRLtLVjJo9RUscCxabg5BvWKtYNVlwFFfQVXM65T6VcxfQ39dLR4po0ERx4PARFi1YgNVqndB++w8cwO12M7sqsTjMZCHdJzITmAfUCiGeFEL8oxDiH0Ysf3/Fevgx474bV/HV+25BEYJb1q0gEAxy6IT+sGiaxqtvvk1XTzelMxJrowSCIcyX6d26UF3NtNL4EHJgcAApZVxC0BRSw1NYRFuKUO2Slas5f/ZMXOg3FdxuN3NmzWLv/v0Jbf2DPg5U13PDgsRwvyIEdvOnfi75scFmsw55CKrGMZDPN7RytraBX//uOVrHqeY0FjIyMoYkypJBKCLRgxwMYjRNGU8xWG02hADfoG4s5Xo8dLS1pqyMZ7VaWbFyJTt2bE/aPm/+Ao4dvXwDWWoa+z7ayYfb3+Xuhz4Tp4GdlZ3D5vv+mPOnjpNbOI1zJw5z9CO9P0G/H0VVMU39xgD0+sP0+sN0+UL0BiL0BiJ4w4IICprBqie2m+1MLy6irrEZQgFEOIgI+RDhACIcQGoRTp2tZn6F/j2VmoYWDumLb0BfutvQutuQXc2ofS2ofS1kmRWyzAo2o4IqBKoQBCIagYiGLxjBF4yg+bzYs7JxWAy4zEZcZiM5Nn1xGBXs0cWsCsyqwIg21K+hJeSLLoN6HsPIJeQfXsJBfdHCeg6Bpumc/RhvXyhI1aQntiuG+JLS+oUPLbFjKoF+ffH3ofj7EMGBof4o4QBKOIAaCWBA0xdFJCym2KLGL6oQOm9fKCA1FEXgMBvItBpxF04j1NNKltVIlkVfMq0GMswqGWYVt81IReVMOhtryLaquNQw5sFOzIOdqL1N0aUZ1duG6m1D6e9A6e9A9XWj+rpRfL3Dy2A3p06cZEH5NJTBbhRfN8awD2PYh0ULYNECmCLRJTSAOtiFOtiF0t/Brg92sGnForjjTTbSNZDvBwJAEFiPrn384KjlUwGjwTDEg1KE4N5bb+QP23bQ0dXFj3/xS2pq6/jun34zgX8M4A+FLsuDrGkaNeerKRnFsezraseVkzcVKkoTWe5sfIMDQx/mkbBYrCxesYod721L61jr1qxm54e7Ez7qR6trqSr2kGGb3NrvU0iEzWZDURQWL15Eds7YvO639hzhjg0ruGvL7fzsyV8RCl1aidvc3Bw6O9pTtitJPMihYBCTccqDPBJZ7my6ozQLi8WK1Wajp6c75fbr12/gwP79SaX8Kisrae9op63t0ic+AM8/8zQnjhzikce+SaY7O6G9uLScex55lHnL13LbH3+JM4f3ce74IYJBP6qiYJzyII8JIUAyHHXNdDkxGgx0dvckbNvc2oaqqnjcqRO4LgVSSqTPi2pzTupxP21QVBVtlFytLaeA3tbkDqYYppeVceH82BUu08GAz0djazsVMyZW0OfCxQZCoTAzy2Zcdh/GQloGspSydJxlcslD1xAqpk+juNDD3//bjygtKeHrX/0STocj6baB4OUZyC0tLZjNFjIy45MK+ro6phL0JgChKOTlF6b0Iq/ecAPVZ07T1FA/7rGml0zDZrNy6mx13Ppj5+pYUFowKf2dwtiwRT2RlRUVY04S61s7aOroZvn82axYugRPXh4f7N57Sef0eDy0jUEHSJakFwwGpigWo5CZ5aZnRLQmNy81DxnA5XLh8XhoaEhMkDYYDKxevZodO1LnBYyHizUXaGlq4OFHv0H2OJJxAHani80PPMyeba8SCgQRqorJPDUpHgtCt5DjMKO4kJr6xPfxiTPVzKmqnHTnjxbwgaqiGKbG41hIRhWzZubgH+gjHEzNGy8tr+TcuepLLtoUw5nzdVRML8ZonBiH+IO9B1m/YglKEknbycSUenYa+KMtt/BnX/8qt918U8qStJqmEQpHME3whx6Jc9XVlFYkhux7pxL0Joy8gsKkPGTQPVmbbrmNN/7w0riJBkII1q1ZzYd7hqW+g6EQ5y42Mackf1L7PIXksNlsaJpkYGBs4ZwPj51l/aLZGA36GL3z9lt5Z/suBpJEEsZDvsczZvU2IdSkHuQpAzkeWW73kAcZIDc/P2VRkBiKioppaEw+dteuXcfhQ4fon2Clyxh2vv8OazZuSvkeT4asXA9rb78Xo8mEIpQpGs14EInFVGYUF1LXkGggnzxTzZyZk69KEx7sQ7FOyWyOB0VRh/T5YxCKQkZuIV1NdSn3c2ZkUFZezqGDBy/r/CeqLzCncmL+1faOLs5eqGX5oiuf55OWgSyE+MZ4y5Xu6NWEw26jqGBsYygQCmM2Gi5rJlxbc4GSGYkPS1/XlMTbRFFUMoOL56tTti9asoxIOMyZk8fHPdbC+fM4X3txKPHkTG0j0/JzsVmmjKGPAwF/gHA4zMDAcDLJjh3bqa8fLh0upeTkhQYWVAyH6jx5eSycN5t3duya8DmdTieapjGQwhBL7kGeMpBHQ5d6G1aeyC8opKVp7PBtUXExDfXJoztOp5P58+fz4a6J/6aN9Rdpb2tlweKJV9mbUTWPxWs3AXIqSW8cCCHiKBagG8gX6uMnPV3d3bS1d1B5BcLkkYE+hHWKXjEeFDVxog/gKaui7cLYic6r16zhow93XbKaxaDfz6lzNcybOTED+aU3tnHT2pVYLVc+kpOuB/mHYyw/iC7XNfzBIObLoFdIKamtqaUkSQ3yvs72KQWLCaJs5iyaGxtSKhEoisLq9RvZ++H4H1qz2czcqpkcjCZrHq2uZUHljMns7hTGwOtvvkkoFGIw6gn2DQ7y+muvsX/PsBxXa2cPmpTkZ2fG7btu1QqOHj854XMKIcjLS02zSKqDHAxOybyNwmgt5PzCIpqTSDCORHFxag8ywKZNm/hg5056xkiiHA1N03jrtVdYu3HTJUtChcMhpJwykMdDsnLc0wrz6fMO0NQ6zOvff/AQi+bNvSISXeGBXpQpA3lc6BSLxGIreWWzaKs5kzKhFqCiopJgKERt3cWU24yF7XsOMXdmOZkZ6f9OZ85doLm1jY2r0qvkd7lIl4OsjF4AN/AZ4AgwZzI7JYTYLITYLYToF0J0CCF+NKLtESHEeSHEoBBijxBi6ah9lwkh9kbbzwshPj+ZfUsFnX986R/Hzo4ODAYVV2ZW3PpQMEDAN4g9IzPFnlNIBqPJRMWsOZw+djjlNrPnzaejvZ3WlvHlapYtXsj+oydpam3naHUt8yoSVUyuB1yNsWm324hEInij3tz9+/ZSWFjE6VMnhz7EJy/UM6esOCGCU+DJIxAMJk0QGg9j8WWFoiBlkkIhU0l6ccjMitdCzsnJxdvXmzQJLwaPx0N3d3dKfmNuXh5r1qzhpd//Pu1+7N+3l1A4xJIVq9Lv/CgEA340TcNouvY4yNfSN1MkoVgYDCqb1i7njfd1h4SUkn0HDrFiycLLOVVKhPp7UOxT38zxkMqDbMvIxGzPoKMxtfGrKArr16/nhZdenjCNzecPsGP/EW5Zn572sZSS/YeO8PRzL3PP7TdfMd3j0bhkDrKUskdK+VvgcXSd5EmBEOIG4Dngn4BsoBj4abRtHfCfwNfRy10/D7wmhMiItruA16Prs4A/AR4XQqyerP6lgj8YuiwPcm1tDdNLSxPW93a248zKRplkjcjrAXMWLubk0UMp21WDgSUrVrJv9/he5JkVZXT19PLDJ3/LQzevIyfz+uO3Xa2xabfbMRqN9Pd70TSNjz7cxT333oPRZBryRp64cJG5pdMS9hVCMLOijDMXUvPpUiFvjES9lB7kKe9iHDKzsujt6Rm6V4qqkpdfQGuKBFrQK1nm5+fTOIYXefNNN9HQ2MihQ6nHN0BnZyeHDh7gjdde5+6tD17We1Q3kCOYzNfWJOia+2YKkobd1y1bTE19I43NLdTUXURRFEqKC5Mc4PIR9nYjbJOrjPFphEjCQY7BU1ZFffXY0bfVa9ZSNbOSH/z8qaRF1VLh/T0HmVsxg1x31rjbXqxv4AePP8H7Oz/kS599gAVzqtI+z+ViMqyuGmAy/d3/B3hcSvmclDIgpfRLKWNM8EeBF6SUb0kpA8A/osvP3Rdt3wr4gH+I7vs28CLw2HgnDYfDfFCTWtZpPFyugkVtbS0zktArutpayMz1XPJxr2dMKy2n39uXsrwtwNIVqzh+5Ag+X/JiIDGoqsrdN2/k4fu2sHTOlS11fA3jqoxNm9WGwWCgu7uHl158AYfDQUnJdGbNnsPpU6fwB4LUNbdRVZJcVWRmeRlnL9RO+GLzPJ6UCWWpDOQpD3I8jEYjVpstriphwSTQLIwmE1945BFe+v3v2b17d1yblJIPduzg7/7u7/jB97/PiePHuXfrVvILUhtjZ04ep752bNmqYMBPJBzBeO2pWFyVcZkKgkQVCwCTycgtG1bz7z/+GU/87BesXrn8ikmXhqc8yGkhmVxlDJ7y2TRUnxyTYyyE4M7bb2Pp/Ln88OdP0d2XurhSDB3dvezYd5jbN44/B3tv+wf89Je/YsXSpXzvm1+jtOTjLfxyWX5qIUQB8OfoRvJlQwhhB1YAbwohDgIlwHHgL6SU+4GFwH/FtpdSSiHEoeh6ov8elPG/6EHg4fHOLaXk7TMtLF8/gNM+XNFFmvS/pcFMRNW9Q0ps9MeEvqVGtz+CzeFAs+h8GqGaEJHg0LEBRDgaVlTU4X0VPZu6qbGR5StWogBmNfrSMKv4ejrJ9+TjNKvRVXqb1ajvbzUomKLrlHA0JBnSZ4RCJnnwY+tGtIlwcGidiOi6sSIQTYjy6w+8FvAhYh//aHawNOuFSzSjFVRD3HFFJAyxd58U8fdLKEN909k6w32VI7eL9S/JANWiBxeC4euP7meKSr9IVNas28Ce99/mjx/+IgCR6LEiEkKaxGx3UlpRyZHDh1myYhUGTd/XOCQfo096VNXIkg03AxAO6uEkxaLfB9WZM3TfpKLfB2kwJrmO6D2PCcWDLio/8rrMTjBecx/gqzo2TSYTqqpisViw2Wx87uEvAFBWXs7uD3fRkG3EbrWkVJCpKJvBq2+mp3s9Ep6CAhrrG+jt6U6gPqlGI6FAACnl0Ec+EgkjrrDs0CcRTmcG3r4+XC7dYPHk59M8TqJeQX4+Tc1jl4QvLi7mm9/8Jv/5+ONkZLiomqUXkTlx/Bh7du/ms5/9LMXFxUPvCn84+Ye+s72NN196HtVgpGLWHFbevCWukmkMQb+fSDh0TRUKuZrjcow+JSTpxbB+xRIWLV5MRBh0udTI5cmEJYMWDqKFAghLcjnWKQwjpmKRzAh2uHNRVJWe9haypidG50bi5o1rUVWV7z/5PN/94oO4zMlVYqSUPPfm+2xavZTsTFeKp0THa2++xZFjJ/jet75BZqZL/1Ymd3ZfMaRlIAsh2kmcE5oAJ+BHn4VOBrLQvdqPArcDp4G/QA8JzYyeb3RmRg8Qi3eP1x4HIcRjRGfKJSUlrChy8Ys/vMs3H7p9XNe61+tl5wc7uPXmzYhIhI8OHmP1kvnpXWUSaJqGMUkVPoPRSDgcTrLHFNJBeeVMjh4aW4pmRnkFDXV1l8VPvA7wsY3N0ePyWH0bvkCQRfd/lczMTE4PwJG+HmrqOunRjBxyzCdo2s+/7m3FU7WIObkOcoL6q81jNeLKtTLg8xH2DeoScP1RVYWAPmEVijo0l1NceiGSiD2bnMx8VqxcyYE9H3HDrXcMGVi+kEZAmDGYTFxsasWZlY3NqOLKzqVtRPU+gzI8cRUhPUIxNBmNQo6oqKUZoxNz84iKmaMNNakN9TXWJtVEr7UWm4yF/IjoxDk2GRualIVF4iRu5OQ9NlkeMZmWoyb2IyuCxYzK2IQ1ooFBgYDfR5bTPjSpN5uMCDRifgAt+mWJaHLo1AaTiUgkgox5GJN9SaWGJzuLmzfdyMH9+5g7WzeQjx89ysb1a5mRnwNhP9KgG7QhISA2eY4aBIoUnDt1nPkLF7Nx8y089bMnqDl2kAVLV+Ad6CYSiZCVnYNBEUQCgyAEec6JlcS9wrhq43JMjGH5OOz2pM/sZCEy2I9qdUwV1koDIkY5SmIgCyEoKK2kpe4CpeMYyACb1q2iv6+HNz7Ywx9tXpN0m9rGVto7u/nqQ3ePeazGpmb2HTjEn3/nWzjsV6+CcLoe5P8g8ZH3Aw3AG1LKzsRdLgkx//wvpJRHAYQQ/wf4S2BNtH00sSgTOD9i/xlJ2vtIAinlE8ATAEuWLJEn2/txZVv5+Uvv8Ll7b8dqSe0pOHbsGO+89z5erxcFiclkZOm8WVzqFEdPbEj0+Fqs1jiZpClMDM6MjLjwbjIUFpewZ9cHH1OPPrH42MbmyHG5bNkyGQmFkJqGyRr/ovT392JxuFAUhVkb7+TwK0+RVVwOufGeI0VRyHA46O0fmDB3fM3atfzg+99n7aabgXiviDu/mK6WRpxZejW2vPxCju7fk+Qo1y+klPT1eXE64zPVBWMbL7oXMj0sXDCfV157nUAggMFg4PTp09yz5Y60+3jm5Aluvu0OLFYrW7Y+wNM//yk5efm89NunCIdCrNpwIyvXrsfnG8RstlyyrNUVwlUbl6HozGYwFCEQ1k2JQFgjGA6DwaBHykYixnUNB4c99LGIY2zSpkXQgvrfoQF9UmkY1CeyMujHENT/jh3ZlVFMl0/fvj+g/9s+ECYcDtPc68Md1r/hhS49KqfFJkZCDE3QDLEAZzg0FPUlOpEdiqhq4aTRV71RSfxbjEjiHVoXnZyNjCCOug9oEYSMVv8cFV1Ei4Axut3ICUYsQh27lyPv+1A0NbppOBZBlRjV4TGYZTURlmAx6P3JsujOOndWFn7fIBZVwawOR60BjFHvv+LrQQT1iHNVYTbvHTwJvr4hbrMwGIf6UFPfxOzyEgxCghYefgtoyvA1ahonjh9j4dwqnCYBIT1iKyLh4Ul7ZDjqfSWRrorF/5RS/q9Ry99LKZ+eROMYKWUvUEsKfwG6YsaS2AqhTxEXRdcT/XfxqP0Wj2hPCUVRyDAbmDWjCJfDxj/+7Dd09aY2rM6cPct999xNY1MztRfr+dIDd05IfH40kmX+ApitNgLj8GOnkBo2m52A3z+mFz43z0N/Xy8+38QLSlwvuJpjs2TRKmyZ2QkeoYC3F7NTN3gdOR7yZy/l/AevJh1HrowMerwDCevHQ05ODgXFxZw6ltjN7IJiOpuHK77l5hfS3jI2deB6g9frxWQyYR6pWSol49jHw9ulAYfdTmlpKcePH+fAgQNkZ2fjcqU3Eerr7aW7s5PppboWa0FhEf8/e28eJld1n/l/zr21r11dve+LWlJrRRISAgQSCCx2MGCwiY1jOyZeYjueJDOOPfE8M79MEi+ZJI4fJ7ZjGzBgG8xiNrMKBEhoQ/sutXrf9+7q2uue3x+3qrqru7q7WrQWpH6fp9Squ56quufe7/me9/u+C5cu54n/+glXb9jIg1/6GkcP7uft118hGAigKIKXnn0qo2OfC5zPfjkZYtEoBvXcqAykhWpKBrhzmBpJ+uck2XaL1UbQn/l90+N0MDA0+fYtXb0U5+VMe5wjJ06dFQOZmSJToxCDEMI8btnHhBB/KYRYOdl+Z4ifAJ8TQiwSQhjQR8JBYBvwc+BuIcRGIYQJnf9sQS8qIP7XJoT4GyGESQixEZ3+8bPpThqNRmkeDLJ51wHuXL+Gq1cu5b+eepFwODJhW03TOHXqFEsXL+arX/5zvv7Q57B8yOp1IQRSm3iPs1htBINzAfKZQlEU7A4HPt/kxQOKqpJfVEx7GnvbOaTgvPTNwGA/VvfEaueQbwiLYzQ5VrziaiKhAEf3bJ+wbZbbeUYBMsDKK65iTxqlE29BCX0do9eM051FNBqdVHv7UkRvTw85Od6UZZmEvTPJIAOsWLGC5194gT88/zx33XlnxvvVnThGVc38lOTGNRs3cc9nPs9lq9fiyfZyz2c+z/HDBwmHQqgGw4WoVHJe+uVkiMWi50yGKy0MRj3TeGFl+i9MSJnMbKeDxWYjOAMJtyynjf5h36SzLK3dfRTnTx1C+UYdAAAgAElEQVQgD/tG6Ozupbri/EupZqpi8Tt0qRgAhBBfB15Br57dLoS4bRbb9EPgl8BmoAedV3WzlHJQSvke8BX0Tj8I3AfcIqUcAl16DrgF+ER8/c+BL0kp35/upIqi4LYY8Ga52HbgONevXUlhrpcn//DihG2bW1pwu9243S7MJhOWWXB0mSyDrF+gZ/Zgn4MOp0svEpoKxSVltLWcmeD5meDAsVM0tk2vv3yB4bz0zcBgHzZ39oTlQd8g5jEBsqKo1Gy4g73vvsnQQH/KtjabFX/wzAqCqmoW4B8ZoWdcdji7oIiB7k5isTi3VwjyCoqmlDC71NDT0403Z9wDUcrpKRbx7TLFsqVL2bhxI9/59repqsrcmaux4TQV1amZKpPZTOW8+cn3NrudT3zmcxSXlWNQDVgsFxQHGc5Tv5wM0WjsvAbIQlEBMUrpmMOkkFKbkqttsdoJzmBm1RqXQAykSSxGYzG6+wcpyJl4Lx+LoyfrmF9dgcFw5jPys4VMA+S1wMtj3v8N8M9SSiu63uJ3ZqtBUsd3pZQFUsosKeV1Usp9Y9Y/KqWsklJapZRrpJQfjNt/V3y5Nb7dYxmel75ABAXYdkB3TLvv5uvYf/gokUjq9PzJEyeYP39+mqOcOSYLkK0224wu0DlMRKKKfioUl5XT0tRwbhoE/NdTL/C7l948Z+ebDZyvvukf6sfqSs0gSykJ+QaxOFPplVa3l5zCEro6UxUQzEYT4cjEm3YmUBSFJStWcXR/ysfBaDLjyMpmsHtUKzmnoJDOjqnVFy4l9PT0kpOTm7JMSqbMWoG+fiZcX5PJxLXXXIPNZptR+5obGigtr5h2O29uHpddfgVCEal0kQsA56tfToZYNIp6PjPIAAZTkj88h8kxVoUnHWaaoBNC6DQL38SYpaN3AK/bOanaUALH6+qpranO+JxnE5kGyF6gA0AIsRQoQjcIAXiKWXbSOx+QUmJWFVq6+4jGYtS3tGM2mcj1emkf56Z1/MQJ5tfUzOr5lUkDZPtcBvlDIpNCvYrqebQ0NZ5TOktkTp0kI6gGI47s1CArHPCjqEbUNLrDVruDEV+qaL3JZCQUOfPve9nKyzl+cB+xcb9ZdkFxKg85v2AugzwGvT09eMdRLEBOS0EWZEbF+DAYGhwkFAqSk5uX0fb6vUFciBnkCwrnnWIBoBpBmwuQp4OcjmJhtRGaYYIuy2Wnf3jiPq1dfRTlTp09Bmjv6qaksGBG5zxbyDRA7mS00vUmoFFKmaiCtQJnt5TwHEBRFPwRDY/TTnFuNtv2HgKgrLiIppbRB97W996jr6+P6urZHeEIoaQNkE1mC9FIJDmNO4eZw+l0T5tBNpstlFVUcerYsXPUKubk+zLEgmtuwl2QKhAfHB7A4kxfiGV1OBkZxwM2mYyEP0SAnJXtxZuXT/2JoynLvYUl9I7hIefkF9E5jX7vpYSenu4JGWQgowzy2eaQNjXWU1pembEcWDAQ0BMpF1gG+UJDNBo9/9PjBuNcBjkTTEN3MluthILBCaZIU8HjsKXNILd291KcN36wnApNSnp6+8nzTh9InwtkGiA/BXxPCPED4H8Aj45ZtwI4OdsNO9eIxWKoCowEgkSiMQ4eryMQClFaXEhTq/7A27ZtK++8s4WvfuUrmGe5UGMyioUQArN1ZkT5OaTC4XIyPDRe6nMiFixawtHDh85Bi3REonMcuTNFYHgohX88FlabA//IuAyy0fShAmSA2uWrOHYgVVM7u6CEvjEZZG9uHn29PXODH/TsVE9vLznjOMiZxL3nIoPcWF9PWRr30skQDASQmjaXQZ4GsVgM9XyqWJAw6poLkKfDdBlkRVExmc0zUtLKck6eQS6eJoPcPziEzWbFfIHYuWcaIH8L+CmwEL1Y7x/GrFuFXsT3kYbBYCASkwTDEepaOykrKuBkQwtlJUU0t7YRi8V4/bXX+Nznv0B29uyPbiYLkEGnWQTmAuQzhiuDIj2AmoWLOH3yBJEz5KrOFHNB1JkjMDwweYDscDDiS5dB/nC/a+WCxbQ2nCYcDCaXuXNyCfiGCcWpOQajEY/XS3dX52SHuWTgGx7GaDBgtaYGlDIDisW5yiCXVWRe0BcMBIjFYnMZ5GkQi14AFIuEksUcpsR0HGTQecgzkUD1uBz0j8sgSylp6+6jJG/q2Kmrp++CyR5D5jrIUSnl/5FS3i6l/DspZXjMurullP989pp4bhCJRFAEmIxGzEYj+V4Px+ubKMzPp7evn0NHjpKdnU1BwdnhxgglvVEIxInygTke8pnC4XRlJL1ls9spLCnh9Mnj56BVcxzkD4Pg8MQCvQTScZDNH5JiAWC2WCgur6Tp1CjNQlFUsvIK6B2jcJFfUDjHQwZ6ensmKljAtNJSMHOZt5kiEAjQ39tHQWFRxvsEg35i0eisqBZdzIjFYuefYqHOUSwyQgZ90WKzE5hBHZTdYqJ/nKRmW88ARoOKyz51EW1nTx/5uVPTMM4lMtVBzhNCVI55L4QQDwkh/lUIcfvZa965Q2LEGwiGMBpUpJQcr2/GYFApyMvlvW3vs+ry1Wft/EKIpMvPeFitcxnkDwNd5m16igXA/IW1nDp+rgLkOYpFJvD1djHUPcrrba87SvvJQ7jG8ZIT0APkcRlko+lDFeklMG/RUuqPpdJwsgtK6BlDs8gvnOMhQ1wD2TsxQJZk5hNyNjPIDadPUVpePiO1hWAgQCQSxmydo1hMhUgkjDFN8ey5hLA4UYJzeuTTIoOZGkVR0WKZPauklLx/6CTl+alBbt/wCAVez7TZ6lA4/KE9JWYTmd4dHgZOAV+Pv//fwLfjy/5CCPFnUsqHZ7115xAJEroQgiGfn/buXkb8AQYGhyjIz2PPgUM8+KefP2vnn4piYZlTsvhQMJst+P1+otEoYhq3w8p5Nex6f9tZb5OiKGialtEU16UO/0AvJ99/gzX3/hndHd3se/MFVt32KYzZ6WdzbHbnhAyy0Wj40BQLgMoFi9jyx+eJhIIYzXom0VtYQuvxg8lt8gsKqTt54kOf66OOnp5JMshw3jPIdSdPUF0zM6nOYCBAOBLBbJ7LIANEYvoz06gIQlH9/+GYIBwKYTCZkWrimRq3VU5YKMciSCW+LFF8nmb2VIsPaINxq+loIITNYGIoFOH9I22oikLRkjX4XPpAuaFXTyIdah7AGbFhG2ymPUsPkvNcetBV4dEzmLExz9qEzbWIBhFhnSolEvbG0TRW0/HPIxM20YqKTHCux9o8T2aDLBRQEhbT8eeRHNMfoon2hOObGCY/ntSS7U/MQCcspw2KAUVR4+v0z2uO+2q7hYrdaCEcVkDTWJRnJxoDLd7r1Hj/VAREI2EsFnPCtTr5N8UeO/49vbF9Lz6fn1uuW4FMzHqbLWRbjfQNDiEiAb19422447ArGu0DQ6i+HmTcopoxdtzJ3+McWU1nGiCvJO6sI/Sr/cvAt6WU3xdC/G/gL9GD6I8sDAYDUuhBi9FgoK13gOy8QhoHgkijFZvNhj0xPRDvWzLeGYQWTV6kiVGr5htI3uATQZmIX6zCHiWW6EgGvePm5eVz6MBBSqrmo8QvzrjlOYXFxRw/uI9Va9ZiivuhW+I+6mahoYTiBPqIfiNJTi2lu3jG+cLr243eLJKd3hTPkpjtyc+qqfEL1mBKPVYaSKFAwkAhIdg+vmON/X/8ZisAlNQgViqGZKdPbJ/cYswUkTHhTx//bmKaZMvmN3n37bcoq6jUg9H4bpocnT5JtEYBHM4sfMNDxDQ9cFXG3rfiTodGo/7dyHgn1RjtsIlrQhrME9qcEK4XUr/GNE1DU4woijK6rcGENFw4I+gLAXnVtbQc2s1AezN2iwmbMwt3fjH+yMSsxqJcB1JqSU5wAiaTcVYy9maLlaKKahqPHWTecn1GyVtYwt7NLyUHO/mFRXS2tV3Qgx+Z6MtnET3dPSxeumTC8lAwiMk49fnD4fC023wYDPT3U7OgdtrtxgZS4VAIRYgU1705pCIWjSKE0Gdk5ezbPR/pGubJA22sWFSDzWLmqSd/x/w166lednnKdmGzC09kLoM8HQyqSmya7HA0HMZomn5G4J29h3l733H+2303YlAVGHO/9ThsE3jJ6WCzms/Y0OlsINMA2Q30xv+/CsgGHo+/34xuX/mRhxAi+UBTFJVoNILJZEKe9XpquHHTJv7lhz+k5uQJSipTNZYXr1jNwQ92cOCDnay+4sqz3paLBaFQiPfeeZuv/uU3cXv0KZ/YNNNJHe2t5BcVn/XAJjvLhc1iRlEyrZO9dOG2GBEyhsflxJZbRNDvo6ujDZtH16+NxH/TiKaxv3OIlQVOEAKDIpIDD1Msos8gaFHCLbpCpTaiF24KVU0O+hIhmbC6UeOjo8QlEx+bsmj5Svbv3MaqeF/0WHMxmy34ejvJKyjEYXNjMBjw9XSSne1BCQygjPTpO4fiWZVEdmjMw0kx6wMvYTAiDXqWUhrN8b/xQZnRksxSJQZSMcWYpGclru6Ea73R5ECR+jmUSDw7FhiMZ32CSLMj/uHinzwWQRpSB+9E9QeWkFry+0yOcYVEoB8/EXSL+Lm7u7sozMvDMKYraQgG+nopKxu1kU0mEsb0uZ6eHrKzvVPO/o7NRCUzSol1sQiMW2Y0WFHiX4zH42F4aCCZJ1CEngkFkDKe3RQAYswYXB/wqHNddlKEw6GzZsV9bDjK86fa+OzKUhau0/ve0g0385Of/AcGownUwuS2EaMTU9SXEcf2UoZQdHlZfQY9/YUdDoemDZBf2baHnYdP8pf33kC2044MpSYozEYDkUg0JUmVDjaz6YIKkDPt6i2MmoHcChyTUrbG37vRfd8vGmiahqIoRMJhPUCOT4WfKfzB8LT7WywW7r73Xl5+7ukJKgqKonDL3ffx7huv0tX5kbMnPm84dPAA5RWVeLIzJ/13tLZQWJSe2zqb8Ga5KC8unH7DOQAQCvgxWW0IRaFk0Qo6ju6dcvvxN2FVVYiN0/IMRDW2tQzx8z2t/GR7PY/uaeZgYweDI0He3rGHN15/ncOHDyPH7Vc2bwE9nW2MjDGfKa2sprG+Lvm+pLSUppYWLlVomkZPT88EiTeYhnoRR29PbxqDkdlDlieb/r6+Ge2jadpcsDUNwqEQJtPsB8iNQclzbSE+f3kZldmjhV45OTlccfM9HHzvDeQYa2lNNaIJI2pkrnZnKiSy/eMNkMYiGtHjoMmw++BRth88zjcfuIMctyPtNooiUFWFyDTZavsFlkHONED+JfB9IcRTwH8nTreIYy1wNO1eH2EoqpLs7JqUZxwgt/QM8N1f/5HX90xf+LVg4UIKi0t5f8tEC+KcvAI2bLqVZ554lFDoohqPnDV8sGsXK2ZYWNnc2EBxadlZatEo1q5YyuVLp5/inYOOcMCPOW4jXLpoBV2njhCLTsYpnthXDQaV6Jgpv7bBAP+6s4WTfQHWFLn4WE0eC3IdvLr3BH//1GZaOroJBoO89OKL7Hhvy7hjGamoqeX0mGK9/OISOlpbk++LS0poHvP+UsPg4CBWqzWt4sNkgfNY9Pb24E1T4DcewWCIhx97gobGphm1z5OdzUB//4z2kVoG8nSXOPRs4+wGyG0hyZNdGp8otlCWNbFAMrekHIfHS6g5NQwJGR0YQ9PLe17qUA3qpAGylJJIePKiy9a2dp559S0eunsTTvvUxasmo2FaJSGr+SMYIEsp/xH4Grrd9NeAH41ZnQ381+w37fxBzyCrOg/ObE4WU80U/T4/P3tlB7evXcy7h06z//T0D8xNt93Ovl076E6TKV6yYhWlFVW88PvfzcjZ5lJEb08P3V2dLFiYeRCqaRpNDacprzr7PvBLF8yjuCAzi9tLHVospvPg4sVRVqcbV0EJDTs2T8juQpwSMS7TZ1ANyezFQCDMf7x/ik1V2Xx2WT7LC5zM89q5otTDX991Ld/77M18+s5N3Hb77XzxoYfYte0dOlpTs8HVi5dx6vCB5PucgkK6OkeVK4pLSmhuuXQD5K7ubnJzJzrohUIh/H4/bnd6ib4Eent78XqnziDHYjEeefwJgsEgv3j40RkFyVkeDwP9M8sgT2eqMId4BnkWTR76I5LfdGnc5lWodkzO/V5y1XUET+5OoSyFDE6M4Tke8nRQDcZJnXp1frKYVO1l5wd7Wb9mZUYW0iaDgXCaupGxsFs+ggEygJTyUSnl16SUv5BjokUp5ZeklI+cneadPyiKQiQ+taDFtDMKSDfvP8WqecWsXzqPL958Jb/dvJstB05OGWw7XW7W33gTL/7+N2mNJDbdfhcjvmHeevONGbfnUsKxY0epXbxkRoL1ne1tOJwuHJNYGM/h/ECnV1iT1fAAC667HX9/N8fefDa9A+W492MpFu1DQUrcNlYWTDIdOCYI8ng8bLzlTl58+rcpxSwllfMY6OlK0iy8ufn09nQntykuKaGltfVDUbM+yuju7iYvb+IAsK+vl2yvd0rufSBuyOFwpP99QA9Wn3rmWZCSL37us9x379089pvM/aqysjwzziBrUpvSlncOs0uxkFLyQleEK1yCWvvU33tOURmK1UGkZ3SQNJdBzgwGg2FS06poZOoCvYamJqrLM6Mkmo0GwtNo/1stJgKh8KSSt+caGQfIQgizEOLLQohfCCFeE0LUxJffL4S4qOaKpZT6DVxKDAYDmhY7owC5d9hPZb4+sirL8/DNe69nx9EGfvX8G1O6qC1btYYsj5etb74yYZ3BYOCeBx5k984dHD920TFbZg39/f3TTuOOR2N9HRVV885Si+ZwpggH/ZgsNo5s25xcZjRbWXzzp/D1tBMc7B23x9QUi15/CK8t8yxX7dLlOJwuDu/ZlVymqgaKK6tpOX1Sb4/JhMvtprenGwCHw4nFbKGnd2ZZyosFk2WQeybRRh4LnV7hnbRQVkrJ888/T0dHB5/99J+gqiqLaxcy7PMRDGZGP7PZ7QTi1tGZQs8gZ7z5JYnZLNI7MKwxEoOrXJl96caCKiKdDcn3IYMTw1yAPC1UdXIOcmQKBYtwJEJHRydlRfkZncdoUKdVElIVBbPRQDA0+wooZ4JMjULmAyeAfwQqgI2AM776GuBvz0bjzjUS2R4pJUJRklwqTTuzDHK/z4/HMVpQkJfl5Jv3Xo+mSX7++FOEwukvAiEEN911D8cPHaD+5LEJ6x1OF/c/8Gl+/+Tv6OubWRbkUsFA/wDurKwZ7dN4+tSs0itONTTR0dUza8e7VBHyj6AajRzbsQVf/2gwrKgqdm8B/v5x33FaioWazCD3joTJtmf+EBdCsGHTLezY8ibh0Oj0X0llDc3xABkgr6CI7o5RmkVpSTHNl2ihXndXN3mTBMjTFd/19kxNr9jzwQecOH6ch77weSwW/XdUFIX8vFw6OjOz+FZVFbPZTCAQmH7jOKR24cr2XSjQKRYfPkA+NhDmlZ4od+QZUmZ0poIpv5JwZ31S2WQug5wZVIOB6CT1HKFgcFJOeX1DIwX5eRnLMZpNBgIZBL4Om4XBDCThzgUynX/+EdAE3A74gLGfcgvwvVlu13lFIlBOVG7GYmeWQe73BfA4UonrRlXlc3fewOOvb+dnv/4dX/zin2FOM0Kz2uzccu+nePHJx3jgi1/D40kN9ioqK7l2/QYefewxvvHQ5+a0OcdhYKCfrCxPxtvHYjFaGhu54xOfmpXz7z9yjEeefI6PXXsVN2+4alaOeakiHPCjxK/vrvpjODxXJ9fZPDn4+7vxVi5MLpNMLKZSVZVoTK8l6PWHqci2z6gNBUUllFZWs/f9d1l1zQ0AlFbPZ+fbr8UF+lXy8gvpnBAgt3L5gvJJjnrxonuSDPJA/0AGBXq9kxboxWIxXn31Ve6//35sNluKpnpBfj4dHV1UlGf2fdvsdvwjI9jsmV0LUmooGT8yLx1ENEkwbhTi9wcwma1ENYkWlygUcaMLEdYlDoUcVQNJ6MZrVp2Tri5cw/PNUU70NPOnD3yCBVUVo0YYioGQswBN09jbPoTZYuX5dxt5Y69u697TOsTqmMrw0eP04sXuNDE/4icSjmCKmwrYjKN/rXGdZnVIH1QpgUFkIJWzLEwJuUUrJCQXk14CCaMQQ4ppCIA0mCYaiiQPKiCu2S+VcdeTFh3VlUxc22NlHRP/V0dNNCYcIyl9GMGg6QPAxBbW+H7SZCIUP7zT6UCEA7jNCpG4DGL856SrrZm8wiJ9eXxhQkLy9S3vsfrKq5EWJzIan7mJy7tpvgFkXI1LBPVzFjmtNDa1MC/HCQljtnhdiYibgshohIVFORw8dJhCS3yb+G+AoiLD+nm0wBjjNMNogD7bCoyZHu8a4B+llANMnL/sBC46vSohRHIkHItGicViM+ITBsMRIjENu2Vi8KsqCp+66za82R5+/suHJ8i6JVBSXsnKtet46fdPpBXzXnftemw2G398Y3OavS9tDAwMkDWDDHJHWwtZ2dnYbDMLnNKhrauHp154hZVLagmGLpyCg48qQoERBAK720Pn6VQ1GLsnF39/98SdxmWdFCFQFYVoTNMpFvaZFxKtve5G9u3YRig+je90Z2Gx2uiJB8X5hYV0jQmQS4qLabkElSzCkQhDw8NkZ08s3BkcGsQ1bYHe5Fnm3bt34cnOpnreRCpUQX4+7RlmkAHsdgcjI77pN4xjjmIxPULBwIey4v7DW9vp6O7lWw/9CQuqKpLL+4eGeev93fzkx//Od//nd/jtj/+JJ//jh4wc35FidNUmiikResAshULUaJ8r1JsGDocT33D676i1sZ7i8soJy7s62unp6WHFqsvT7JUeVfkeTndOP+N9WVUR+063ZXzcs4lMA+QgMNlVXwwMzE5zQAhRIIT4nRCiWwjRL4TYLIRYPmb9g0KIOiGEXwixQwixatz+lwshdsbX1wkhPn2mbTHGpw5isRhCiBllkftH9OzxZFNyiiL45J234rDbefb5Fyc9zuqr12OxWHnn9T9OWCeE4FP338/OD/Zx6nR9xm272BGNRvGPjOB0ZV5s19PZSX5B0aycv6unj+ryUqrLSwldIFyq2cD56puRUBApJSULlzLU00E0PDrosOfk4+tsncglTTOYVRTdzr3fH8ZjTQ2QozGNPv/UeuVZ2V4q5y9k7/ujsm+l1fNpjNOg8guK6GhrSR6jpKiQlrb2S05xxu/3YzQa0977goEg5mlUDgYGBvB4Js7+SCl5a/NbfOxjH0u7X2FBPu0dmevEO10uhgYyf3RdqAWXF9IzMxgIYLHapt8wDXYcOMqR00188f47ktP2pxqa+bdHnuR7P3uM9q5uNt5wI9/5u+/y4F/9L26459OEOxsp6duT7O+dooAcehFxf9SwyYUpPEezmAoOpxPfcPrvqLWxIW2A3FB3igULa2c0c50IkKfrR9WFXvp9fnqGRqbc7lwg0wD5deDbQoixQ38phDCjy769PItt+gm6dNwCIB/YDbwodKwD/gPd6toDPA28LIRwAcTb98f4cg/wJeA/hRAztp8TQiS5N9FoVJ+inaYCcyz6hyfSK8ZDUQSf/MS91J2u54Pdu9O3Q1HY9PH7OHHkEMcPHZiw3ul0cM8dt/L08y8Ri11aD+LJMDg4iMvlmpFL3WB/H1lpMl5nAp8/gM1mxWw2EZyEZ/4RxXnpm4kbqsFgxJHlJTI8moWwZeVgsjsZaj1NKKoRimrI+D6K0Kd1RXiEaNCHpmmI4T5CUQ2rCorTg8/o4OeHB/ifb57g33Y0808vbOepA638+29f4he/epgtW98nGo2iSYnVoHDdx27iyJ4dmMLD5NkNrFl5GU3HD1HkMFJV4MFqMTPUehpb1IdLhMhy2mlrOD3qQmdxgsWJzC7RX4Xz0UqXoJUuIVZYS6ywlkjefKLZZUSzy9AcuWiOXKTJhjTFKQVaVH/FIhCLoIyZ1NOk/oppUn9JSRSFKAoxs4OY2YHmyEFz5BBzFyMNZv2lGPRX3CJdjKEuJLbRjNbkSyZeqlGfVlZUfUpZKLiysnG53dQ1NhKMSYIxiT+qv3ILCmhoaiEQ1YhoENFG2xrVJDEJkUgEoRoIxzQimkxO+w4NDRIIBqiqqtIbFosgIgH9FYtQUpBLa2srRIIQCaKERuIvH0rIh1GAQRHJV1lZGa3NjRgVgVkVqIr+shr0l8uk4jKpZFlUPAbdPErGYniUyfS3zxsuiGcmQDDgx2KZeQY5Eo3x8pbtPHDzBuxWC5qUPP3HN3n0mRe55vLl/P03H+KBO29mwcKFWOOKNtl5BbivvAtzdJi8IX1mKSqMBDHjQA+uIiYHxnDmswSXIhxOV9oM8sjwMKFgAE/ORKpUw+lTVFfPrF4ny27BbDTQNTD176EqCssqCjOSxT3byDSC+BsgFzgF/BqdZvFd4CBQBHxnFts0D3hKStknpQwDvwBKAC/wReAZKeVrUsoQ8AMgBHw8vu/dQAD4vpQyJKV8HXgWeGgmDUhkPhJ6jtFoFHUat5nx6Pf5yXZMP5K2WMz86Wce4KUXnqe7O81UMTof+a5PfYY3XnqOhrpTE9YvW1yLw2Fn2+49GbfvYsZA/8z4x/o+fWR5ZidA9gcCOGw2LGbTxUaxOO990+Hx4htXlFdYu4KOY/uS74VQJmQp/MEQNrORUDSGyaCgCKGbhWw5SkW+h+9/9VP8w5fv5+M334jH7eaaa69lwcJaPti5na1vvZ48jsudxbIVq9i3eycAJWXlBPz+ZN+tqanheN3p5PY1FaWcaDr/N/pzjeXLlnNw/8QB/fwFtRw/emTKfaPRWFp5xs6OTvLz8yedlXM5nRgMBvoyzApXVlXTWJ/5zJvOY5+6Cv884bz3ywRCwTPLIG/ff4TCXC+Vxboiwgubt9La0cW3vvw5Vi5egGGSTKViNNGSvYqc4ZOoUn8+D+LGzSAAYZMTY2QuQJ4KkwXI/b3dZOfmTehvmqbR3FBPZfXMFZ+q8j3UdYFltmcAACAASURBVIxXHZqI5VVF7Ks7//fNTI1CmoHlwH+iq1jUofOOnwJWSSln0//4B8A9QogcIYQFvaO+J6XsibfhgzHtksDe+HLif/fI1KfjnjHrM4ckqecYjUYwzPDmmK5AbzIUFhRw48c28ZvHH5s0CM8vLOaO+z7Ns797jPZxpgVCCO6+7RZeffs9/IE5l72BgQGyPDNTsBjom90Mst1mw2I2XzByNbOE8943HR4vw32pAbIrvySFhyyETqUYeyo9QDYRDEewGlSklDx9oImN8wu5ZdVCjAa9Wn5+VQXXr1vLokWLuGzVah548PMc3LubxtOjA9NFS5dz5OCBpBxk7ZIlHDqgB4MLauZz/OSo5XRNZRknGi8MPt25xLLlyzlwYP8EeklldTU93V0MDQ5Oum8sGkVV0wTIXZ3k500tKVVaXERLa/uU2yRQVFxMf18ffn9mFfOKopyxadRZxnnvlwkEAzPnIEejUV7fupubr1kDwM4DR9l/7BRfuP8ubFa9QKurt5+3t+/mkYd/xcO/+iXvv/Y8gTh/PGR04rPkUyJ1DeQB6SJL6JSBiHEugzwdnJNQLPp6uvGkKZbtbG/D4XLhdDonrJsOVXlZnGqfXtlpflEunQPDDPnPbzwzbYAshDAKIa4GrFLKv5NSXiWlnC+lXCul/I6UcvrhwMywFVCBbnTFjLvRR8GgS8uNv7MOAK4M16dACPGQEGK3EGL32OytPmKSSXvFM6FY9I2TeJsOa6+6CpfLxebXJmofJ1BaWcXNd97DU48/zOC4LElhQT41leV8cOBQ+p0vIcxUwQJgoL+XLM908lM9GemsjvgD2G1WLGYToYsrg3xO+uZk/RLAmZWDbyBVW9hocxD2+5KBixAC4kFyAv6AnkEOhCNYjArHun34w1GurJhaUcHhdHLzx+/jj888SSROlykuLSMSCdMdLwhbtGQZB+MB8ryaeZxubEreK+aVl1Df2nGhZh7PGgoKCrBarDQ3NaYsV1WV+bWLOHp48vtULBZDNUzMGHZ1dpGXP7X7ZElRIY0ZOhiqqkppWRlNDZllkVVVnXEtyjnCee+XCQQDgRlTLHYfOExBbjblxQWEIxH+8Oa7fOHeW7HbrDS0tPH9nz/Ojx59ko7uXpYvv4zVq9egqAae++WPCXc3A9DpXkiZbESV0ZQM8hzFYnrYnemL9AZ6u9PSKxpPn6K8suqMzlVbksvR5q6k5OZkUFWF6gIvdRkE02cTmWSQY8Bm4KybgQjdKusNdM1lN2AD/i/wrhAiHxiOLx+LLCAx/JlufQqklD+TUl4upbx8vCSRlBJjgmIRiU7pNpMOYzPIrT2DNHdPPe0nhOAT93+So4cOcCwN1ziBhYuXsnrt1Tz68C8nqF+sXXUZ73+w70LMcJxTDPTPTMEiHAoRDoexT+HcBfCH555lzwfpueJjkQiQzaaLJ4N8LvvmVP3S6nQRGE59nhsSeuWR0e9aGR8gB4PxDHIUi6rw8rEOblpYlJHGauW8+RSWlPLB9q2A3ldrlyzj8MH9AJRVVDIwMEBvbx92m4383FzqG/UHt91qJcfjprHj0tPDXrFqZdraikWLl3Dk0MFJ94tGo+kpFhlkkFcuX8qO3XvoH8ysMKu8spLGjANkZcYziWcbF0q/TCAY8M+IYhGNRtmybSfXX7ECgG37j1FRXEhhXg479x3iZ795hhuvXs3/+cYX+eTtm7hsxQoWL1nCFRtv4drb7mVo9ysYo35CRhdDuPDKHnzYsRBClRGiRjuGqH9GhjCXGpyTUCz6envweNPxj+soP0NDrWyHFa/Txsm26e+H1UU51GWw3dnEtAGy1EU+T6KT/882soFK4N+llENSyrCU8r/Q27kW2A+sTGws9FTvZfHlxP+uGHfMFWPWZ4TEFG0KxcJoPIMA2UYkGuOfnnyDf332bZ7YvGvKQjq73c4n/uRBXnvhWTpaJzcYWHvNBrKzvbzxamq2uaaygmAwREt75lJHFyMGBvrJSlMFP+n2cf7xdCYAbW1tdHV2TXu8kUAwTrG4qDjIF0TftDrdBHwTgx+TzUEkMJopEkKkPBRHAiFsJj2DLBRBMKqxrCjzQdS6jZvY8d47BAP6dPyipcs5GqdZqKrKoiWLORgP+hbWVHPs1CjNYl5pIXUts8lC+2jg8stXc+jggaQsXgLz5i+gtaUF/0j6KvVYLD3Foquzk/yCqR9D+bk5XHPlFfz+xVfZvu8w//yL3zDsm7wavqS0jLYMpfgURUUoCrFp3MDOMc5bv9z/xycJ+0e/22g4TDQawWyxZNTwzp5e/t/PHiYv18uCylK27jnE69v3cVntPP75l7/lnV17+fTHb0VKyXsfHODNrTt5+63NHD1yhHAoSHHlPKzVl1HeuwOkRo/IJYduJAo+7Ni1YaSioikmYqELw3jiQoTJbCYSjaCNGfhJKelqayEnvyBl276ebtpamqisrklZXtfcxtOvvcsPnn6b//u7N/nPzfvpG0k/27p2YTlvHjg1bSJvQUkeR5o6z2vCL1PV8+8A3xNCHJRSTj70/5CQUvYIIU4AXxFCfAu9mOBB9Gmgg0Av8IoQ4hHgXeDrgAW9qID43+8LIf4G+Dd0/ea7gRtn0o7RAHmUYmEwGNJqEaeDpmkMjgTJclio7+ijIj+br96+jkfe2MXjm3fx6Ts3TbpvYXEJN991L0/9+hfccu8DlKUZqQkhuPPue/j3f/l/LF1cy/wyXZ5MUQRrVy5n254D3F9UMGG/SwUzzSAP9PfhnqZAz+cbZnhoiK6u6QcfYykWwZAuHTZd8H2h40Lpm1aHi+DI8ISbpsnmIBrwgVunyQhFmchBtpgIRKIIIMduSv4mBxra2d9yiK7+IWpra7lsSS1Z5izG5g+8uXnMr13Mjne3cMNNt1BcWko4HKars4P8gkLmz1/A3t272LB+PQvmVfPsS6/A+isAqCjMY8/RUce9SwVOl4uq6moO7N/HqjVrk8tNJhPVNTUcO3KYlavXTNhPL9JLpVj4/SNEo1Fcrqk1lAFuWL+Of/7xT9m29yBup4M33tvOx2/amHbbvPwCujKUhktkkGOxzBMlZxvns1/a3NnU7djM4uvvIKJp9HS24s0rICZ0w4loXH1ETZhiGPUZVWkwsf9EA08+/SzX3biJVWvW8tw77/DB9n1ccd3HeOaNN7jqmnXUnTjJo8+8RE1lGU67HZNBJRqG48e20NTSysob7+C4qRqz/yimut0ca+xlU4WfwQ4Dg9lRHM4gy8s9+JusLPGYyMr1sNCrt8ER6kP16dlJkTC5UAzgzou3UQ/yNUPcHMRoGTXkSGf8Mf53UU0pJjYTMP4YCcTGzAqPM1NhbBuSZiKxpDR3wpAkqUCjqGhjDEWApDlINDqqDjMSkShCYTgSSxqqDPZ1o6gKOWMs302qwruvvcyG664nx23HGh5kxB/g8Wee5lRDC1dW5rLJ7seiCPaeauOHLd3cMNhJqar3F1ue3ner3E7e7FPZ8fxLLCvXn7vGREJLUUHT46w8oRANBWk+fIBClzVlXcIwRGraqJEImQe0mSJTFYv/iV4Ru08I0SSE2BXXTUy+ZrFNd6GPiBvRO/dXgU9IKU9LKd8DvgL8HJ03dR9wi5RyCCBuZHIL8In4+p8DX5JSvj/TRmhSw2gyIaUkFothnAHFYmgkgN1iwqiqnGjtZkFJHhaTkc9tupLeoRH+8Nb2KfevqV3Mnfd/mpd+/wQNp46n3cbhcHDnx+/m6aefSQnc16xYxr7Dxy+oacBzCSnlzDPIfb3TKli0t7WT7fXS1TV9BtkXD5ANBgOKIoheWBmnD4Pz3jdVgwGj2ULYn8orNNkcRMdks4QQaGMeUAkOcjAcQSBwmfUHx3unu3j6/UPUlBZwxzWr8I2M8PPHnuQ73/5bfvWz/+DUidH+d+X669m3ewehUFCnWSxewtF41riqqorT9fVomkZFWQndvb2M+HVXqfKiPBrauy9J6tPqNVewa+eOCcsXLx2lqIxHNBbFMC6D3NnZRW7exIr6dDAYDPzVlz7HN//0fu675Xp27js4KeXC5XYTjUbw+abnqaqKiqIoF+K99bz0y+rV19LbfJr+Nr04rq+jlfzi0mkb29TSxpNPP8uff+FzXH7FlRw5dJAPtm9l9br1vL/lTZYsW8r7771HdXU1V6xdSygUZnhkBE1qFJcU86ef/zzr7nmQA1tewdFzjGPhMioMHYxEBFEJbmMEX9SAORa/HxgthINzGeSpoChKyoxbc30dZZXzUvpb4+k6ujrbufLqdQBomuSR3/4eo6rwP25cwo0LiyizquSZFS6XI6wb7uFdVy7jhwmqgI0ehTf7NbQp7olCCJbmOznYOr25yNlCpgHyYeBF4FHgTeBQfNnY16xASnlUSnmblDJHSumWUq6SUv5hzPpHpZRVUkqrlHKNlPKDcfvvii+3xrd77IzaoUmMJrNeMKKqM+Ig9w76kvzj4/EAGcBkNPDQrVdzqK6JrbumlmQrq6zmzk8+yB+f/h3N9XVpt6ldvBi7w8GuvaMPmiy3i/zcbE6cbky7z8UOfyCAoihYMpzmgzjFYhoFi472NhbW1hIKBgkEApNuF43FiEajWOIujGbTxUOzuFD6ptXhJjSSGvCMp1goQkFq4zjIJiPBcBQNictiYF9rP2+f6uTrt17FVUvns6CskHtvu4m/++ZX+Id//CdWrl7D8888xdEDuoRcVnY2ZZXV7Nu9C4CFS5Ymi80cTidZbjetbW2oqkpVeRmnGnWalNftRNMkA8PnX/j+XKNm/gKGh4boaE9V8lhQu4jmxsa0ChKxuKzmWHR1Ts8/HguDwYAQApfDzlWrLuO1LdvSbieEIK+ggM4MssiqqqKoSsYziecK56tfGkxmqtdsoGGv/t32dbSSX1Qy5T7DvhF++Zvfc989H6e0pJjBgQFefv5ZNtx0K9s2v07tsss4faqOhYsWsTM+sFq5bDErltTicjjYv3cfP/jePzHc2836+z6Pq+MAEVT80kyZK0q7z0C+JchI1IAlpl9bwmghFJz8nj0HEEpq8WlTfR2llak6x2+/8QobbrgpaaD2zvs7iEQi3H/DWsxpimorQiOYtRgnjRPdaRfa9ED5YN/UNTpL850caDt/AXJGGWkp5Z+e5XZccNA0DZPJyLA/pGetDAa0oW4Mw+6kp3zCP14JjaD49R9RRiP09g/gzvLQU7KG1r4XaavYQKfBQOdIGAxQc3MJLzz3CP2OEhbM04uFbUY9+DapClaDPmpbUTsP14MP8vivH+Wvv/E1srLcKH5dNEQZ1Iv+7lheymOvvcaVrmBy2mFpnp0jH+xkSY4J6dADv8SUUXI6SMqkxz2Jv1JDxKcPRXyqJzFtI61uiGd1EtM8KWYCiemdmH7Bi0gQJTCYeqy4l71mdupe9eiatYlzJ4893sNeKPr/pZY8VrLtQhn1pQeGh4aw2myoQmAwCGLxIGk0VBJj/tURGBxgycL5OM0qSnxFIrZKvG9uamTJwvk05+XS2lRPTXW1Po0GCCWMFPpn6+4fxmG3I4xmpNSwWiwER4ZxWQzJ74ZYDBHX9Ux+v/HfJ2HYMIfJYXW6CPuGYYwAhcnqwDfWNliAHPOr+wJBqtxuWvuGiGkSp9nA1vou7lpaitc18QauqirLV6zC683hiUcfpqZ2MarZxJqrr+Wlp3/H2nXXUFpewdDQIIODA1i8HioqK2hoaKA8z0NVRTmnm1pZXluDEIKyghyau3pnRP25GKAoCitWXc72bdu46557k8vNZjNV82r4YOd21q2/LmUfXUotNe/U0zO5/fR0uO6qNfz9j37KpuFhrI6J0lT5BYW0trZSlca+OuWzqIpuVz6DWpSLHfnVtZzY+hqhwAj9Ha3kb0zvcpjAi2++w/LFC1m2ZDFSSp77/e9YvfYqdmx5i5pFSzh6YD9ZWW58Ph8VFZXs2L4dNT4LN7+yjHXXXo/JbObhR39N7drr8OXWUhtqoj5ayMLsUxzpNbEgJ8ixYRcmTQ+KhdFMODCXQZ4KiqKiaaMDv862VtZtHKWCtjTW4xseYtFSXf2vu7ub199+j29++QuocnBClhj0Z+xqXx/vZOUxL5KaHBBCsNGj8HLrCIs9Joxp9geo8FgZCITp94dmpAo2W5jySSyEsKJPv1QA7cCbUsqLvgJMCAFSoigqI75h7HYHTqeToQwzQIVeN69+cCxZiT3+Zm9zZ3P5xtvY8epzVFd8A4NhsssDqufN06dvGxpYedlEaUqL0YhBTZ0IUISCony0Oa8TMBWfawwS1dWNjQ1UVFRktE84EsYcz/imQ3dXF/WnT/PAvXcTDofZ/Pa7DA4O0dPby8rlSylwWZFS0trRxdOvbGb91Vck93W7XQwM+cjzzkx2bg7pkWMz4nI40MIBXBa932hS6g52Q/qgMRAIEYvGiAoT0qAHySFNwVRUTThQD64Q5oWr6WzZTP9ld/K9Ho2tO3Q+YiCom3woSj0VebqqidPi4pE3drJs+TIkbgb6+/EFwqgGAyaTmWgkgkERhP0j2IwKIuwn4BvG7rCDaiTmzCUkVYzeEqK5elYmpsRt7KUkEpPx/+ufMTom853gCQai+vXf64/Q6dMHWqd6dbm7Pt9oFiYU364qTw/6y9xWHCZ9MKbGB8cJ5Q6LQQH0YC8rPn62GfUgEMCoJLiHo4PKRMtEsolK0m42MRhN3HoEoCqC9Rs28C///EMaTp+iqnpecvB582238dMf/4h58xdQWFRM/DSUlpbR0NBIdc18ghH989iyPDQ3NDAUHn2Iq8KCxazP1Bnj+yY4liaLQEb1mRu7JcCVq1fywh+e4U8++cn49nF+p8HEiqVL+OMrr7DxGt08LjnwjXNTRciHiEWwGlXCRgMB3+QazpcaDCYz3rJq6vbvIhwMkJVGNzeB9q4eDh2v49vf/AoAR44ewzc8jMVixWSxUH/yGKUVFfiHh+lob6d2YS033Hgj4aE+ykuK6O/v5w/PPUtZWTlrbr2Prc/+mmDxOjzKUU5HC7AZJYGIwGsO4h9QMGn6gFmY5jLI0yGh8Q2gxWL4hgZxjZFK3fnuFtau24AS7+tvvPoKG66+gpxsD/RO3h+KIkGcWpQ6o53Lxq2rsgqKwypP1A3zWY8HQ5qYRRGC2gI3h9sHWVdz7gPkSSkWQogqdOrEU+hC5I8Bx4UQUw8RLxJIACEYHh7C4XTh8Xjon0LcfiwKs930Dw0TDofxeLLxDUycIiidv5isnHx2bXlj2uOVlJbSPIm2Z+fAMHnjMmBDgSBu2+QB38UMVVVZf+163n7rrYz30TQNRZncU/7Agf2sXLUKq9XCFWtWM+zzceDQYfz+AD/+6S/4zvd/xLf+6d/45ZN/oLK8jA1XjxYkeT1Z9AzMPVBnE2arlWgotUJaqArEb/DDA3rRpRhjNR6JRDEaDESiepGeUATBgB9zBpJU1qJ5BNt0oxChKFgdDobjwvqRSBhjvJi3q6eXvHiWs72rm6L8UYmk3v5+vNmX5iDJZrPx8Xvu5dmnf59CT/Bke7nx5lt5/pmnUqZ3q2tqOD3OMbSsvJLmxsxd78Zj03XrqatvpO70xGPMnz+foeFh2tqnplnYrRZMRhMjI3PB1lgU1CzhyLa38OQXjc4IpsELb2zhhnVXYLNa0DSNl199jWuv38h7WzbjysoiK9tLc2MjvT3dLFxYy/79+2huaiISifKHV99k6+59fPzjdzPiH+Hwe2+w9NqbyG7ZQV20kCpDB20+Azk2jYimIACTFtQLpI2WuQzyNBBjOMjDQ4PYHM5kgq+7s4OOthaWr7wcgPa2NupP13HtlaOJIE1KmvtH2NYXZf9glH5Gn6dLQj6OmNJLqN5X5UQCv9jbRuNAetWLxYVZHG4/PzSLqTjI3wc09KpWG7AY3YHnp+egXRcAdOUB39AQDpcLjycrY21NVVUoyvPS3tZKdo53grFBApdvvI2j+z+gu31qmaHS0lKaW9LLvnUNDJOXlRogD/hDuG2Zc3AvNqxes4bT9fUZFdRBIkCevCs01NdTVaVn/kxGI3/9jb/g8w9+mrvvuJX/9bd/w3//8uf57jf+nL/7+he5fdPGlGN5PR76BjK7buaQGcwWK5HxAbJQkjM1wwO9uLNTp+Mj0YSWeSypUqNFYxhN0w8kLUVVBDsakkV2dqeb4TjFKRwOY4oX83b39JKXq2fQ2jq7KczTA+RIJIpvZIQsd1q/oksCC2sX4XZnsXdPCv2VlZevxmQys2Pb1uSy6nnzOH0qVfUjJzeXYCDI8NCZDTbNZhMb1l3Jrj17J6xTFIU1q1fz/o6JxYRjYbNYMKgqvknk6S5V5JTp1BRXdnptZIDunl6aWju4Zo2uKJcYqGgxjcKiYk4eOUQ0EqW0vIKFC2vZu3cPX/2Lr/HpzzzIHZuu51t/8RAbr17D4088zqc/8yAAoYAPTTWBFHjVIfqDCvM9YbpDJsptfgKqg2jrcRRXLs0njxAJXxy1ILONSDhMJBRK3gs721rIifP9pZS8/cqLrL76WgxGI37/CL957FFuvOlmzGYTsViMrQdO8P+9sp/Hd5+mN6xx3KfxpOql3qzHJRVRP8OKgQZtImHBoAj+pNrJfK+NR/a38+Mdjfzb9ibq+kYHoQvz3DT0j+ALRSbsf7YxFcXiSuCvpJSJO9dRIcSfx/8WSikz8/P8iEJKfYrQNzyE0+nCk5XFngwDZICygjzaWlrwenPwDaQ3G7TYHVy18WbeeukZHnzoq8npi/EoLSmhpbVND+TGrevsH2ZBfiqvccgfwm29NDPIoPMbr7ryKl577TU+9cCfTLu9Fps8QNY0jcbGRj75qQfSrldVFbfTMcqhHrfem53FkcOXntXw2YTZYiHalSogryhqMgMy1N9H1vgAORLBaDQmzXUi4TBmmy0jVQTV5gKpEfb7MNud2JwuRoZ1qTn9uCYGBwcxmYxYLRZGBnoJhsJkZ+k1Cn0Dg2S53Xql+Gx8AR9R3LhpE0/+5gmWXbYymZ0SQnDbXXfzq5/+hDVrVmO1Wikrr6Crs4tAIIAw6gN9oSiUVlTQ3NiQ5EHOFAuqq9iyLX0QfOWVV/LDH/yAW2/aRFN7E4899hihYJCNG9azKW6BbLNaURSFkQytqS8ZKArXfuJzuHLyk+pjMY0kdchgdnDo1AcsWlSL4syBaJBDe3ezYkEVrfu3Umw2MRgL0dPaxPCe/Qx1DCDsFr5XuX7CqcSdV/C3V9wMnQN03rWWPyu38IwIcN0Nt2N8/W2kpYCuFh/VzgG21QmuirzNO8PzWV3i4meP/Iab770PgKvLsijK1wezaiRezCe10bqXeF1LskZEUSfUs2jJzzqxV8uoTFKaVCW17kURAjHJjKUQii5nxmhdihhbn5Nmv4SUW7J98TZrkmShcoKqlaBgRTRJIKov233gEFmFJTSNSFS/n30HDlBetZD+QIz2E/sZGfFx1bpryBJBfvPEwywvz+f6MhsDL/2MR470ERj0c8WJBnICAfYe1JNSfpOZ1265HLmzHVN9B1ppF89ds5ji5/dQZBTkuvXPVrJWl6i9fMU8FhVAr9lIR1jy8vFOviT0JIjBYmKRx8T2gydYX6wH3WNnByf7LmcDU2WQC4HT45bVof/Ol4TIrkhQLFw6xWImmcDSwjxaW1vI9nrxDU4+PbBg2UpMZjN7dqSvsgaw2e047Ha6eya6ynQODJPnTs0gDwZCuC5RikUCG667jqbGRo4cnl5gRdM0FDV9V+hob8flcuGYxmVvMng9HnpnMLCaw/QwpcsgKwoyXmQylMY2PBKNYjQaiERjCAThSDSFXqFEg2S37sQUmpihFEJgdOfi69Vv/iazhVAomLSgVxSFrq4u8nJGs8dF+bnJ4PtSpleMRUVlFTm5uezcnqoglpuXz7z5C9n67juArkBRWlZGQ33q46e0vILmhoYzPn9+Xi6RcITevokzeu6sLGpq5vHu1vf57W9/y7333MN/+/pX2bJ1K8FgnMtssyAE+EbmAuTxyCmpwDSFxfSRo0dZtHABoOtc7zl8nBWL5nO8pZuYpuE1Qr4B/B4nwuNA1qXPv8ntxxFr5oMvCCfbOeyHpcsvo6mhHmm2I60uSs0DnA5kszg3xqlgLstsLXTkXIZzpJ2BlvEhzRxaTx6hpEY3StZiMboaTlJWU0s4FOLtV1/ipjvvRVVVnnvhJZwOB3dcuwp/MMTPDvbiMRu4z+gjZ7yyU88Q8uXdiGsWIS0mlOYezD1D9F9WnaYFOmyqoMZtYl2RjaGIRsPwaMZ4Q4mDt1tHGImcW0fE6WTeLuGEh4QExcLpIisri4GhYbQ0o8V0KCvMpbWlmWxvDr7+9Blk0B++G275ONvf2cxgf3oqBkBpSfEEHrKUku4BX0qALKVk0B+6ZDnICZjNZu67/36eefr3aaWkxkLTYpNykBvq66morDzjdmR7sujtn+MgzybMFivRUOoNWVHHZpB7cY+T7UtykCMREDo1ImGJG/UPU3jqVdRoiPKWzXh7D08oCjW4cxjp1euTTWYLoWCQSDiMyajzj7u7u8nL1YPyRICcQG/fAN4Z6HJfzLjtjrvYsvkNWpqbUpav33gj7299L9lXq+bVTKBZlJZX0NTYcMbnFkJQM6+KU3Xpg6Rrrr6Sl199jQULFrB06VLy8/JYMG8e2/foMpqJDLLZbDrjNlyKCAaDNDU2Mr9Gp2IcPXGKPK+HYCiE2WiguWdAN+8xgmk4AHlZ0DrJs7BzANr6ECurkbtOUBeQVFRV09baiuYpQe08SWPQg9foRyCJSANWJYI92E1b3moatr6S4hh3qUPTYnQ0nKSoeiEAvW2N2LO82J0umk4eobColILiEnp7utl34CD33XM3wVCYH//+NcqcJu6tcTOpHkDPEBxvRbtSP7Z353F8VQX4PBOVZMZCFYL1RXbebh99bhfajVyWtP9PtAAAIABJREFUY+GVRt0SW0rJsb4g77b6CE3hTvxhMV2A/KoQoivxQleyAHhz7PL4uosLcjSD7HS6MBqN2KwWhjPkn+V7PQwP6QoYk3GQE8jy5rL6qmt57flnJjUTKMjPp6urO2XZkM+P0aBiM4+qYISiurOOxTgnFTZv3jyWX3YZTzz26ym1S2NTcJDrG+qprDjzANnldBAKRwiFp9Z7nEPmSMtBVnQZQKnF6GmfqMcaiUZSzH5C4TBmqx0tFqN363MMZ8+ju/wa6ss+ht3fSWnzWxAevUEbs3LxJQNkM+FQKKVAr6e7m1yvHiC3dnZNKNDLmcsgA5Cbl8edd9/Lbx57FJ9vOLncm5PDwtpF7NqhmyhV19Rw6sSJlH2LSkrp7e4m+CEUCeZVVXNykgC5qqKC2265iTtuvz25bP2169iyfRcxTcNmtWA2mbh544YzPv+liJMnTlBWXp7Uht+1dz9rli/iwPE6akvzaO8bpi+qq59Yh0ZgJAgxDfHZjYgrFoAh9d4stx+HRaXgcXBXjsJLzz3LbXfehaFpL9GiJeQYRzArURqHVBZaO/j/2Xvv8DiOK9H3d3ryAIOcARIEGMCckyhSpBIlUlTOyZKDZK/DWt707t7dd5/Xb3ev77O99loOspVtWTlZgSIlUgxKzBRzBsEAImfMYHK9P3oADECAYgRAsH7f1x/Q1VV1qqrnzJyuPnVqd1suOTVb8bkycCanUXtge38Mw4Cksa4Ou9ONM8E0WqtK95FTbM70l+7ezuiYO9Pqj5azYN5c7HYbT7y1kqK8LG4qToqt54ByTyIb8vM4dMMsDi2eiVw1CSwGauMBVG4aKicVSyBE2uYDlE4b9ZUzr9OzXRzzhqkPdP5uLxyayK76AL/fUcfPN9fw/uFmypqD/HRDBQcbel7gd66cykD+N8ytJ3/b7egtfdAhdC7SA0hNTuLzTVt59s0P8AdObfAYhkFuXh5ebytt3pav3J50+uVX4PN52bF1c4/XPZ5EWrrt9lRZ30hWStensUY9e9yFxTcsQcTgnbff7jVPNBrtCG0Vj1KKstJSCs9hBllESE9Joqqu/4KdDzZ6jGIh5ipsX20lntQ0XO6ubkehUKeLBZgzyA63m72b12FxJtCcORaAsC2BowUL8DvTsO1e0TGTbEvO6DCQbXbTxSIUW6AHUF9fT1qquRbgRFUN+dlZHbJr67SLRTxjx09gytTpvPj8cx0+4WAu2Ptyq7mBUm5ePoGAn9qazrkXq9VK/tChHCk9+9fkI0cUc+DgoR4nIkSEqxfM77LJUOGQIaQmedi2ex9ulxPfKTYJ0vTM7j17GDvGfIXv9fnYX3qYKWNGsXN/KcluF0MykqkPQ0MYjEgEKhtgeA7idiBThyM3ze5aodeP+nwPsmga6TaYNHUqG9Z9QSR/PEZzJQqhKuhhTHqEimASebYmfI40Mut3kTdlLuVffkZ9bU0PLb30qK2qICWzc0FeddlBsoaNJNDmo/J4GSNGj6W68gRHyw4zb+4c3l26DI/byR1XzkREONgY4JmQh205OXgCQfK+2E3+57vBEGTRNIhGMbYcJDptBApILDUjxRzP7T0cIJghJsem2NlZ37mw0mU1+MGkdBYOTeSuUSn8aGomD45J4+bhqbxT2njKXfnOll6nGZVS/3bepV1EqNgqvdZYmDeA3KwM9hwoJRqJsG3fIWbMymTn3v2oQBtThpz8A5iXn091ZSWuxCS8TY3g6H0Vu8Vi4bqbb+fNF55l7LixuLqFn/J4PLS0dDWQaxqayErp6hvb6AuQknDpRrDojsVi4f4HH+SXv/g5R44cobCw8KQ8vUWxaGxsIBqNkp7e+wYF0WjUXPB1ihn7sSOG8eWegxRmzTi7Tmi60NsMsopG8VYeJXdo8UllwuH2MG8hrHY7gUAAi9XNjnVrSJ53J1RG4iujJnMyKVWfYDmyFbKuwOZJw9/cSCQcxu504q33Ew6FOmaQ62N+xtFolKqaOnKzO38Aqus6w79pTK66diF1dbW89dor3H7P/YgIw4qKaPP5qKysICMrh7HjxrNv904y5l/VUa5o+AgOHzpIydhxZyU3PS0Ni9XC8fITDCnIP60yV14+mw9Xf8K9N1+Pr+3CzFRdzERUZ+zrKJ1xu22x79Tm2mqmjizEsv8zgs0+nKKwbFpKsKWRyKF62lqiGMEQ4XovtU4nDE2GUBh1uAoMQfmDyGWjIdEJLgckucFhg7Iqfv76fmRaGbgdGMu3IA9dTepHX5J21USyjtYybpKFUFSRNiyHuvoGTmxeQ9rQETz5m8dpCFg45EulvM0JCJlFI5k6NReA+aPMN0AlGebva7LT2rHorr2P7fZYVKmO2OLta37jF+61L9Jrj+l9uLGNrcfMKDhD083f+fwk8zfbZkjH/4XJrpgcs65gRNH+ItQRCxoeURAIhDv+N//G4qpHwRsyCxxvNg3NZr/5QOqyWXBaDb7csonMohJagxGqK8oJRyIoTzpHjh0lJTOXsGHn2LFyikeMxO5KZMeu3fzgjoVgdaA8qby2eT/XF3oobGpA8tPwZZntajrexAfOLBKvn0Tqhv3smlxM09As3GVVuD/bw/Zrp9B8pJaM2MyvK8u0n2w5QyC2lmRmocEru2uYmxPAECHkbcONGVLNkewx96pwJzJ5RCbrag7xYUWI23r8hJ49p7vV9CVJMBjEYrHicDgQFeXe22/mR3/zTa6ZN5v1O/ZxrNHPS2+9zysfrKLankMoezSBwhkECmfQmlJEVnY25ScqSMrI4cD2zTS0eGn2h6jzBSlt8FHa4ON4s5/jzX6qWwO0hITEpBQ+WfUxIoJdhbGrMNaWaqJtLbQ01GLUH8OoP4ZqqubYseNkpHiwpOWYR0EJdRYPqZlZSP5IoqkFRBPSzcOdah7OJKLOJJTTQ7T9cCUTdSWjHJ6OfJHEDCKJGURjh3J6UBa7GURfjI4d7JTFhrI6iNjc5uFKIeJKIepMIpw6BGV3d+STYJt5hNp6rENZHeYqXRU1d82LHUBHfiw2sNg62tLTrnNRpTqeJi2GkOB2MXfePNZ8/HFHvNW2sKI1FKU1FCUSidDcFqItHMUbitIWihKMKMqOHCUrJ4+WoKIlGKUpYqUpYiVocRC0OAhZHPzu6ef5n//n1/zs6Zd5b/0u9tf5qRMPQbuHoCMZZXMxY/IENmzfQ1l5FT5/gKjF3C2vvtXPP/3iKZZ+vo1thyvZfOA4O/YdpKammjafl3BIu2X0hN3pJBL0d5kFNH2QI7RWHiWvsKuBHI1GO7aMD4cjKAWBYICWhgYycguwJib3KCdSMB7r0S2EWxvBMLC7E/A11GAYltiW4z7sdjPUUX1dHWmpKVRV1+BJTOh4nRwOh6lvaCQ9/dRbmV9qGIbBrXfeTcWJE+yNbddtGAaTJk9hy6ZNgDnTvHvb1i471xWPGMmBvbtp6iG2/OkgIiyYN5cPln8IgM/no7aHxc/xjCsZSSAY4vCxEzqCxVlgGAaR2PduaqKT1kCIUCTKsGQHURR1YRhfUUlj+8z98VrE5YAkF9itiMuO8rhQUYVq8poL+LYfhnAEuXW2+Sp/1XYzbEN5HbjtcLwWZRi4LYKImJt+eb04k1JpOFaK35JAQ8jB6IQars04Rprt0nvwaa6toqmmgrySiQBUH9hJ1shxZnjbxjoS4xY6t29F3dzcTIrHfGhYf7SBzAQHE1LsdA8GZABTdx/iRFY6TTnpFG3YS9OsEiJuB/a6ZjJ2HqZyeskpXS2GJTtw2Qz2NH7F23oRHpxWSDAS7RJP/XygHVVPQTgUwuE6eTZ2/KjhvLtyLc88/TTXL1pEJBzml7/5HePHjiE9K4f09HSy8vIYOmI0Hy1fxuh511G+byelr/wGhycVR3IqLk8K0UiEI4FWvI31tDU34PYkk5c/hOEjR3XIamxsZNWKj9i8fSe3LDADc0eiUd75Yif7y2v4/ozOmZRjlTV88Nlmvn7r9Rd+cE4Di7f3xYl9zezZl7Fj+w5effll7rrnHuI3m540bQavv/RnHvzmIyQndRpLWdm5VJQfN2eIe1iYs2bNGiwWC//643+j9PARdu/cwXN/+C0LrrmOBfMuxxY1FTsvK4Or5szgxaWrqG9uxWqxMCQ3i2MV1YwePow2v591Gzdhs9kIhMJUVVXR1tbG3Msvv+DjcjFiGBYMi5UhCVZsdjsVrQFaBKJiEPH7SE7pvIdtYkcZiuzsbL48Vk96dh6BUAhfMEpdi5doOEzLO0/hsGThtSSTavHjDjaQGG7E4U7APXo6Jak2dq19m6yMdIZY/Xz0wbvceMVMVr77OlfPmMDnf/0LxXmZuEPNPPfXd5k1aRwohbJaWbH2C0aPGoXFk06EuN3mYu2zGoKt20atEntAhM5t3RFznUGhx4bKibmPjDBnXZSCjgByp7PjZNxmDuoUYe5EqS55pIdXmPHlu8+iGXE6Zun4Vzquu2wO7rnnbp579lmKhuSRmJnJ5XPn8vh//4rR4ycytGg4aZlZPPv7X3P9TbeSVVBIcmYuRWMm8Ydf/4qxs69g+OTZXd7+1PpO3lXQEfNhDYTDFKVa2Lz3MAGrh5f3NHBg2Uv4va0s+cbfku4xv+t3Vdd3qSvNaWPIvBt58/2XsFktHG7Wi7zOBCNmXAFYDIO0BAd1/jDDkp3sL/dR4haiYuAJBmhuaTMN3Lx0sFmhxQdekChmyACjc7pa1TTBrqPmYrAY6ngdUpCB+nQ3wRumE4zCaI+VL0pLmTBuLDsPH0csFnzWJLLtJwgpC+VtbuakVnAi7AaVw0nW3iBEKcW+9aspmjQLi9WKikapPriLiUvMsKitjfUkppgP9Sr23dLa2orL5cJmtRAMhfnoQDXfnDEMWnt+wLSHwkzfcYAvZpQw7qNNJO4+St2CiWQu20Ta/nIaRhVw3EhgSFvP67pEhCuGJLOmrJ6xKadeGOtx2LhlfP4p9zM4G7SBfEpUj3FSrVYrdy9ZyLLPNjNr1iwsFgsjCodw+MgRqusaOHy4lMNlZcy4bB5XL7qRj1d+xPRFd5J9mZNAcz2B5gYivhbEYiFrWBGJKWkU5ORgs9txRoMEmmv5/JO1HCs9QFlZGTMmjeNfvnEHHreL+tpqnl/+BTYD/v7W+SR6zB/L0hPVPPnOKu657gpGFp7eq8NLCYfDwbe/822efvppXn/1VZbcdmfHF+H8qxditVp55ve/5Z4HHyI3zxy/zKws8oYMZe+uHUyaOq1LfS3NzaxatYrHHnsMu93B8JGjGD5yFLPmXsGLzz7JiaOHsYhi0vjxTBqWzZWzp3H1NNMPr7G1jbIT1eRdn0FGthkHMupIJBKJEMJyym2vNSYWm41QMNDh4hAKBjBsdlQ4RKjbzLuIMH/BlaxZ+RGz587j4xUf0drcTDAcYejCe/lw8zHsDcdJDtcStiZRkziC8NAhTMx103zgS9a9/QIjps/FFfayavlS7r5pMe8uX8HsSebq7K37DvNPD93G8s82oxRcM8/0maysrmXtFxv4+x/+oG8H5yKiqKiI666/nqeeeorv/+AHpKamcuttt/PGy3/hO3/7I269+35279jGmy+9wPCSMVyxcBEzr1xIyaSprHz3DY7s3cXM626hub6WI3u3U19dicVqI2/MFNKGj8Ni6/rDevzQPhprqxhz0zc4/PmHONwJ2J0u9m9dx2VXLABM46G2dA9l29ZjsTtJmH8DKblDSM7OJ9EKh/bv64eRunixWCxdZvYyEpzU+kIMS3aw4pBiUbqF5empzD10mHJ7MqR5oLrJdKlIdJq+AhYBZQOrBRIcYLUg9a2QlYKqa4ZjtdDohWM1MLsEqpsY+ckOEicu5LPaIFNnTqG5uZlAazOpQ0fgPngEJdAUdDAmsYHtLRmMtZ7AevxLgkOm9ONo9Q2lmz6hraWJKQtvRQE1Rw5gdyfiTjVdw1ob68nIG9qRXxCamppITjYnH3YcPEKOx8mQFBf+1p4kmKQ1t5Kz/zhl00tIWL6FYEYSTTNGkbLlANlbD7LxstHkdzOQjzR4yUxw4AQmZSfwcWkdOxuCjO6Hn0VtIJ8CFYtk0ROjigopnty5eCA/L5f8vFwiseDeVbW1vPbKq9gdDgpGT2LDey8TjkRwJqdjT0jCmehBhYPUHi3l+J5tbPe10NrUCNEomVlZ5OYXMHXyJL52/724Ij7CDZUs+2Irqzbt4JqpY7hq/DCM2I5gm/eU8vqq9Txww1WMGz70Uo7Nd0psNjsPPfx1nn7qSV7+83Ncu/hG0mKxay+ffxWpaen8+Zknufn2uxgd83GcNG0Gm9Z9dpKBfPDgQYYXF5Oent4xUwWQlp7BQ49+j9I9O3BY4NU338Z96yJGFnV+2SR7Epg0ejhRpdi0fRfHTlRSUdtA2dFjRCIRHHY7brebOXMu64NRuTix2OxdDOFwMIBhtRO1Bgn3EDFk2rRprFy5ApvNhrelhYysLOoCihOfvovFMZYTjuGAIt3WisdfhWf/AU7s9uIpGsuUa29h9+crKMjL44qrr+X195dy1YwJiAgfrvuS79+1iKOVNXz+5S7+8Rt3YTEMfH4/z7z4GjcuvIrUlBT6NnrnxcWcOXNobGjg6aee4pFvf4cJEyeyc/ce3nnjdRbfdhfjJk5m+MgSVix/n2ce/wXjp89hzNSZXHvP19m9aT0fvvAEKZnZFE+cTv7kywm2tXJ85xZKN64hZ/RkUnPycadkYLg8bFq5lFkLb6Qh6Kfu8F4WP/J3+FtbWPvq00yePgOXO4Ha0r2UbVxD+uQrCDRU8+VbzzByzjWkFhRjaaog9RRrEjQn43Y6KTt+giljTL/evBQ3m6sauW9MBmEFx/xRPP4Ay8aUmOHdjtaCPRZ202GDhJiRbLdCMAw1zVDXjAqEwDCQ9CSYMtw0noNhxGFD5o2jfM8Rlnis+CKKz75YR4LbTe7Y6RzdvBaLJYnjgQRGuBtY35jNrJQqNtiuYGblBsJpQ4HedwW82An6WinduIYpC2/FarMTiirK924nEg4R8vuwOd2Eg0EqSvcTmTARp9PN0bLDtE6ZhM/no8XXRtmJKhraguysbCYvHCWswNrLxHvO3qPUDZ2OZUgmqZ/tpvrmy2gtryXxeC3+aJQj7kTGxOX/47pSrivJYW62A0OEJUMTePFQCwsybExIspIQE+QPR2lqCUBAyEhw4LCe/w1DtIF8KpQ65d7ypyI1NY27v/YNXvnzs0SbG7nyge9RVllNoLmRoLeZqL8VMSwkZWSTNWwE2elpJCankp2aRKrLvC32kJfSw2Xs2r6VrTt2U1KYxz/efR0ZyYmoQBtN3jZe/3wjlY2tfO/2hRTk553P3g9K7A4H33r026xavYanf/84i2++lbETJgMwbuIkUlNTefH5Z3C5HqKwqJhRo8ey7J03qa+rJTOjc+HV0aM9L/gD8CQlMXfePGzRIJkZGTz3wl8YM6KIJJcNq8WKy+UkPSWZNZu2EYnChNEjGT5yFA/ecxeupBRaW1vxtbV1+LFqTsZqtREOdkZACMdmkI2QrUtkhHYsFgtXXnMdqz76kHGTp9La3ER51SEyJ80lf+MnFIVbURj4bR5anNn4CqZQVJxP454NbPv4PUpmLyBYdYTP1qzivluWsHHzJk5U1/HDe5dQUdvAC0vX8M3bF5GcmEA4EuFPb7xHyYhiZk+foh9YT4NFixfT8sorPP/cs3z9G99k0Y038+YrL/HcE4+z6ObbySsYwsKbbqeqopz1n37Cy7//L8bOmsfwSTMZPnE6ltjOfKZbRBZpBcU01tZQufdLyvdsxVtXTSgQILewiLyikdQcKMPuTsRmd2BLczB09AQ2f/Ixc6+7kfKdGxk2cwGSMxyGjiSveBSlny7DYrOj2poZVtz7ZgeXEu27s4Uj0Y4FbO1eOMGIon1Ph0WLF/Or3z5BXlYGMyePZ+F9U/nTy6/z+IEG7rznbjZu+ZKG0BGGpCRCkp1Aiw8LCqvVglIKSU7AZggpeQXYMgsBRUOLj+bGBprqa/G2NMdCmxoIQsjvx6+gbmQ+L26pxhoKY0PwJoVp++AdLM1tJKY0MdFlp2hjGYWzwxQYEX79wxL+6dfreWzxFLzE3kzFZr5FwBEzzJyxTaXaF99ZpHOBXLsrkd0iWNtdQbqN2/BUB2MyzTe/wXD7WpnOa+1uWG2xiRd7rB57zJ8awEnMLz8SQjlj6x1ijlvtO+T5QlEssfj+YzPdcfcsicKHvsWyt17D5qtn7tXXMerue1izYjlbX3+SqfMXMv+mO/nig7d55anfMGn+deQVj+St95YytGQ8P39lOUvuegCyh7Ns5zZqq4KEw26S0zMZtfBmRk+ZQXpSImMTTbcwW1M5G7btYsvErXx3yVx27djFS2kJfGtaNmWSxIe7j3HrgtvMvkUi/HTISHO3QZvZrwnDavj2qAbWbD/AysP1uGxW7OUtNHj9pCcngrTi8/u5ecFsusU7OWe0gdwLCmUq5xn6I0WjUbZu2cKBQ4fIHzacm26/mxdfepHlT/4MV1o2tgQPNlcCDpepIH5fKy0NtdQd3kcw4CcaChAO+GlpaSYUDDJ0yBBGDyvg/3roVtKSEiHgJRAMsWrLPlZtP8i8CSN4+MYrsVmt+of4NLHZbFxx5dWMKBnNn5/+Iy5XAkUjRgJQMGQot999H6+88DyPfv+HuJNSGT95Kts2b+Ka6zp9u4+WHWHKLZNPqtvvb8MZt6PUyBHD+e6Dd3K8oorW5ibCkQgNTS3sPXyMcSOGsWDu5RiGQXmDl3c/WEZFVQ2JiYm43S7GjTu7lfqXAuYMcmcIINPFwoFY/F1mkI8fO8aWzZu45eabGTdxEp+s/pik5BR2bt2EPSGVaDDA/iGLaG3wYRDFkeDE468iue4QJw6vxTN8IqMuv5bdn3/ExImTGT5qNC+/s5RxRQU89uCtfLp5B6s27eDR265j2NA8QuEwz769DMMwuGXRNf0xNBclIsKdd93FCy+8wJ+ff547H3iIex58iA3r1/PXV1/EZrcz64qrKBk/katuvouG2mo+Wf4eB7dvYdo1S4iEQ7TU1+HKK8aVZIbbc6WkUzT7ahxWA6UUzQ31jMg1Z3/DwQBWe+f6kvGzF/DBc4+TV1iMv6WR9MJRHTFYPZl5TL/9G3z+wuNYRVGnQ4SdER6Ph0e//hC/f/Ipduw9wKLrFvL1B+9n67btvP3+MpwOB2OG5hAMh/E2m6tDFCAonKJIdVtxWAS7J4GGUIj6ulqqqqppaW7EZreT4HZjsVpQgTYiEdVhrFqVivObN/9XDhtY/FgrG0hJcHBg8ggmG1Hm2IJU1NTjSUrG5Xbj9Z06LOvFTuHwkTz83cd4/81XeOnp3zP7iquYd90N5JZMYONH73Fg2yZmXH0D9bU1bProHTKyc8kpKKTi6GHGTprOa8/+gSuuv5E7Hn6UYFRoDYSoPl5G6Y4tvPy7XzB11hyWLLy6w11w8thRvL9iDfuOV1OSncLEDBevH2jga/MLeX/HEfaVlTO6yIxdb/Rgcw3LSmXonDGEIlGa2wIEsJKdnIA9LRNcSRwur+JY1fnXS20gfwVnYiCfqKjgpdffwjAMxk2YyI6tm1i7cjnjr72NhOQ0Dh4uI9TWSrjNG9sJTDASnCSkpJGSmIDd4STNk0BGcgIeTxI5SU4Mw8DwNWC01lLd0MSGbbv5bMdBRuZl8A+3LSAzPRWx6tt4NmTn5nHHfQ/y+ot/5r6Hv0Vegamgw0eOYtrM2axe8RGLb7uLkSVjWbvyw45yoVCIqqoqhhR0bkZRXVXJimUfsH/fHqbNnM3i6xZSV1lOZmYG+dmZ5GdnYoTMFfCqPSIHcKyqmg9WfcqRE5XMnT2LmbMvw+v10uZr6/D30pyM1WYnFOzuYmHDsNq6uF5s3rSBnTt20Fhfx+33fY3rl9zEX994jeElYznS4KVh32YKSKEx4sEdaSatuZKA1UMkp5icqZfRuOsL9m88xPh511G1bytHy0q5/9Ybaamr5BfPv0FmShJ/f/9NZKSmUNvYzJ/fWUFKSjIP3LIYw3L+X/kNZgzD4J577+PPf3qet157mdvvvo/J02cyaep0ykoPsnL5UjZ/8Sljp19G0ehxXHnHg5Tu3sH6pW/gTkomMSWdnV+sJiE1ndzRk0gdNhYj9t0oIjiTUrE7TKM4EvRjcXQayM6ERCbOupyP3nyJIVMux7BY8NUcw19XiZGZTeaQYaQVFGHxN2kf5LMgOzuLf/3BI3y26Ut++9RzTJk0kaJhhdx58w3UNzZRVbqPqIpiFcFAxZZ3mqZyIBKlpi1K474y6lp8OJ0unImJ5BQMxTAMLNEwwWCQcChAOBImDNgAazQKkQgSjSIiSChM1O2AcAQViZLY7GXIoXJKbhjDgYiV8vXbyB/a81vBwYg7IYE77n+YHdu2sG7tKrwfvMvoGXO56q6HOL5/Nx+/8Wdyi0Yx/dqbOLZrC7VVJ0hKSaN0/27mXHUdW75Yy/o1K8gpGEZUBHdiEkUl4xg3bRZ7N6/j//z0f3PlVVcxvTgHi8Vg9phCXlq9mf957QQWF6fw840V7DxRz5Wj8lm1cVuHgdwTwXCEptY2QhGFPxTGGwmxu7yGWn8pzf4wQ7IzmDtl7HkfI21ZnYIzmUH+fN16ln74ETcsuYkZM2YQiiqmXHYFu3d8ydK3/4I7ORUjMRWrw4nF7sTu9oBhYLWb8Vv93lb8Pi8RbxNtjTbEMDhMBF9bG/XVFZQdOYq3LcC0UUP40Z3XkOm2fXWjNF/JsOLh3HDL7bz8p2d56NHvkJlh+p7NuWIBv/75T5lVU012Xh5VFSc64iUfP36M7JxsbHY7Sik++/QTVq1cwbwFV7P4lttZ8cF7/Od//Ds52Vm0tfl57OG7SErsunGFUoqP123l4w1fcu28y3jwgfs5XHaEXbt243DYcTpdPW5eojGx2Gx36b4OAAAgAElEQVTdfJCDGI4UxGrrCI+nlGLvnj1845FHWfvxx7zzxmvcfs99ZGRlk5iUhHfXTgquuYvyT9fhCrXgs3ioTRtLVCwURyuoXPMGnuETGTJ8BNtXL2XO3Pm4ExN45Z2lJLkd3LlwHqOH5BAMhVm5YRsfrd/G1bOncOXcORiGod/onAUWi4X7H3iQJ//4R/76xqtcef0SXC43RSNG8cCw4RzYvZOtG9fzxYqljJ4+h6KJMxg6ekJH+eqWNuqOHqR81xZKN31K0cwryR0++qSHlXDAj9Xe1YVp4qy5VBwtI3fMFGpL93Js7Qd4hozg8OFdlK1XZBaNQoW92sUiRvvai1A02uFuEYpN30aVojXm6WQxzN8qS1I+U67KJ3v8LDZt3MCnW3bij224I9EI7kQP1oIxRNJ9+Nt8eL1egn4/0bowdk8KAcNNqycTZViI+CPgV3gcBtmJCShxkpSYhC3gx+lrpam5hbDDQVZBNnmpHhJsQjASpanVR4MvSFNbkMOBEFV2KxUuO6luB1kSYO7wRNLL1lCQbi7UVg7ze1tZHShLe0SZ2PeymOfKsJohSqEjioyoCO1BiyUS+z6ymG4bNouNEalm/vYJ7vbYxXYVRiLmmzGn3ZQd6nDfkM5oNbHtlZXVgT/aNXqM09rukmHpCIUZ7ZBj/u3cHtrg8lkzuXzWTA4dOsTnn37CO2s+pHhUCddcv5iamjq2r15KJBIlPSeXo6UHSErPYv2nq2lra8OemMTBo8cIhiIgBuHwVqzBFkKGk7AzmZdWrOevbbUgQkJKOuljLmNlYgknjlkI2FsITVrEvi83YU0NcsQ1jDSnBacRc93B4ODBg/z1vc3U19eRmJiIzWbD6XTicrlISkpFJRo4EuBoSxuvfbGH74yf09vH9azocwNZRO4BvgdMAtxKKWu369cDvwCKgUPA3ymlPoy7PgJ4ArgMaAB+qZT6Rdx1N/Ab4FbMR9A3gO8rpc54CyTVSxSL7jQ1NvL+sg/50Q++S2p2ewQJ8yaPnTAZf8pQWuqqOFZRSSTgJxL0429pQEWjGA4bhmEgNtNFIuxTeDFjtdoNRYLbTUFuDvPGFZOflYYlZHZDBfSOTueL0eMm4PN6eem5Z3jkez/A5XLjcrm4bO4VrF35Ibfe8wDuhATqamvJzMriaNkRCguHAbB27Vq2btrEI9/9AWnpGYSjilvuupf777sXB2E+XLGS373wOplpqRw5fgJvmx+Fwu10kJrk4e8e+Rpup5PX3vwrhw6XMXPmTEKhEE1NzSR2M6ovJBeTXsLJM8ihYAAj0W7OIMfSa6sqsBgWcnJyufuee/jVr37Flo0buPL6Jbzw5O9IGj6eyi+WUZc0g0aBxEgDBU078firCGcMI+uyG2jcvZ7y+nImLriB3Vs/xelycc/Ni8n1WDl0tIJXPvqM7QeOUJyfzWMP3kZ2RipKP9icEzabjXsf+gbL33uHJ375M0rGjiMjM4viMeMpGT+R/FHjqauuZP3qj9i7eR2T5l+H050AIhhpeWQWlZBZVELVkUMc2bSGg58uY8iEGeRPmdshI9xtBhnAZrez5P5vsH73QQ58uoyhV9+BKz2bVIeVxrI97F2zFKthkJmV3WdjcbHp5amorqpk5/ZtVFRUYHG4sFgtRLxhIiFzYW1DXQ1KKRISPXiSU0jKysftSaIubIBSVNR7ibR4MaJhIILEXChEDAybgcttx+F0YU9KICMtDV9LIw1NzVQ1tpKfmsDQ9CQm5KeTnuAk2e0gyWnrMgkhNhuG0917BwY5w4qHk1dYjM/nZc+ObezcuoUT5ccoKCwmJSOL40dKsTuciGEQjUZQKko0HEZh3h8lHTunoAzzIcEWbAF3MpKYit1hULlzA3V7NjFu0lTufeR7eL1e9ny5ha//4O9Oas/ePXt45eWXuf2uuxk5ahSBNh97d+/i4MGDHDp0iOrqanLy8lEIx46UMW7iyS6P50p/zCA3AL8DXMAf4y+ISDHwJvAo8CpwJ/CWiIxTSpWJiAV4F1gB3ASMBpaJyHGl1Cuxav47lj4a00p9G/gv4G/OtKGnimIRz8cff8zM6dPISDdjnXbH5nCQljeUtsTO7WdtMa/8nETzSTLNZT5lpzitpDjN2Y4ki1lbu4uF5sIxdeZsaqqreOPll7jvoa9jsViYNWcuP//Pn9DW5iM3v4CKE+VkZmVx5MgRJk4yg6tv3bKFRUuWkJbedetMwzAgCtdefRVJdsFmtXLblTPxJLhQYqG1zU9yYgKNAcWvnn6BwsKh/OA736KqrhFEcDldpPXt5hIXjV4CWOx2QsFOH+SORXpWK+HYIr3S/XsZPXasuemO3c5d9z/IM3/4HTff/QAz5sxj4849eIaMZMTOFUSUoDCo8wznaMoUihNaqVn3AZ7iCWQk2NixeilXX7+YSDjM28tWUNfQQHF+LiOHZPP9uxaRm5mOsuq3OucLp9PJzXfcxczKKkoPHqC6soJPV/+akWPHUTx+KjkFQ7nilns5fvgQOz5biSEG3uZGskZNoHjGfESElPwiUvKLUG0tbHzjGVIKR0HaMAAi3XyQ46kp3UtOyURc6aYhLCLkjBzP8Z2bkICXE+XH+2oYYADrZfwb1kCbj9aGOppCbRiGBavVQKIh2rxegq1N7N+7m4Dfz7gJkygZN5Emrw+rzYbdnYTd6SQl0Y0rIQGbYdDS0kxzYwPHK2vwtTThr6sh5PdBqxdXIAix9UFKDETZCdkiWO0ObPZEEhI9FKS4SExwkxz1khLxkpzghEDMva2HBbyarrjdCUydeRlTZ15GQ7OXwwf2snv7Vhpra8jIzaetrY1wKEQ0FCSMlyiGubGXYcWIRoEotrAXFQ1iREIQ9qP8rbRYLYiCUCTMto3r2PT5WkSEgmHFrP3wA1xuN2NHjWTyeDOmxfJly7hi/nzGjDVdJx5/4gnycnMYPXo0ixYvZuPGjaxZvZpINMr0WXMYOxgMZKXUcgARWdDD5YeAzUqpF2LnfxGR78TS/w24AigE/lkp5QO2iMgfgO8Ar4iIC3gAWKKUqorJ+b+Bd0XkR0qpM9su5zT29m5qbGTz5s38898/dkZVawYe1y5ewl+eeZIPl77HohtvxuFwUFg0nEP79pKTl09F+XEmTp7CsWNHueHGG2loaKC+vp5hRcW9hvESEeZMNY3peB/kNHsS5VW1PPHKu1x1+SxKxo7j8SeeIjUtDYvFoK3Nz6SJE/uo5xeZXgI2u4NgoKuBbLfaEaudUGycD+/fw6JFnQsrM7OyufPeB3jtpRdYcse9RLdsxeJ0cyRrDl5vBJ/hIceooaTmY6zNTtKnXUXj7g00Jycx6eob+WzVcrJz87jx2qsYnZtkPgSF9Q/uhSQtI5O0drenq69j+6b1rH3/LcLhEKOmzmbElMvIjm0t7ve1suqNF2iqPM6wqXNIyBkGgNOTzNDJszm65RMmjDDTwgG/6ebWA/VHDjBi3vWEgLb6Kg4e2kFeyQTSCorwVxym9MD+C93tDgayXh5d+w4BXysRpdhWW0VSeiaJHg/R2I5mNrsdp8tNcnIy8xffSmFhIWKY28dEuv20tkd/aAsrgo5knNnJJCTkkgD4Gkx9Djf6scV8BVJiLoaF6W5GZ5hv2oYmmZNNmY7YZjyttRhtTbGBjH1Dxx5i290dIG4zHouNaLsbRfcdWsUw1450S+v4NxzoKsewmAegpKsrj0TDSCTU8T+ANeaGgWHtdNNov2aJtVlBNOadbcS13x4bvPbdY7tE1Ig9wLQvfIvE2TTdp/4MERJiz/j+mPuMNTWRzJnTmTptGg2NTZQe2EtZ6SG8Lic+n49QIEAkEkZhMd1holEz2otIbHY5ioiBqAjRYAQRc1c+073UiWGxUlNbR3Orl+T0TN5+5x3WrtvInMW3MuGqG1j1xgs0pxUTjUSoqalh9E1f50BDDSv/8iqhYICptz6Mt6WJvVs+o9GWxMRRRZxPRJ2GEXghiCn8ivhXRiLyNlCmlHosLu2/gSFKqdtE5DHgYaXU5LjrtwJPK6XSRGQysBVIVUo1xq6nAvXAJKXU9m5teBTz6RtgPLDzAnS1NzKAvpwW7kt5g7lvfS2vRCnV8y/5BUDr5aD+LA3mvvW1PK2XWi8vRlmXgrzzppsDbZGeB2jqltYIjPuK60lx1+mWp/3/JLqhlPojsddWIrJJKTX97Jp95gxmeYO5b30tT0Q29YWcr0Dr5SCQN5j71tfytF4O3nvb1/IGc9/6S975qmugrSZpAbrHtkoBms/gOt3ytP/fjEajORu0Xmo0Aw+tlxrNBWSgGcjbgKnd0qbE0tuvjxKRhF6u7wP83eqYArQBfec4ptEMLrReajQDD62XGs0FpM8NZBGxiIgTzL0cRcQZOwT4EzBdRO4VEZuI3AtMA56PFV8LHAH+U0RcMR+qbwN/AIiFpnkB+ImIZIlIFvAT4E+nsRDoj19x/XwzmOUN5r71tbw+kaX18pKQN5j71tfytF72LYNZ3mDu28UtTynVpwfwMGY4me7HsNj164FdmE+xu4CF3cqPAFYCPuAE8A/drruBZzB9rRqBpwFXX/dTH/q4mA6tl/rQx8A7tF7qQx/9d/RbFAuNRqPRaDQajWYgMtB8kDUajUaj0Wg0mn5FG8gajUaj0Wg0Gk0cg95AFpF0EXleRCpFpElEXowFQ2+//jUROSQiPhFZLyLTupX/GxHZKSLNItIgIptE5O5TyLtGRNaJSKuI1IrI7y6grP8QkcOx/NUi8rqIDL1Q8r6K2IKSn4lIjYi0iMgbIpLx1SXPb99EZIGIKBH5uFudD4hI2SlkntW9O1N55/KZPNu+DTT6Wi9jZfpEN7Vear083b4NNLRear2MS9d62d9O0Bf6AN4H3sAMip4GLAfei12bC3iBhYAD+CegCkiKXb8XqARmYe7M6ALm0W0hRJysBZgLHe6I1ecEpl4IWbEyo4Hk2P9u4L+Azy+UvNMY63/BDA9UjBlP8w3gg7Os61z6tgCIYO4ItSSuzgcwd5463/fujOSd42fyjPs2EI9zHIOz0ZVzub9n+j2g9VLrpdZLrZdaLy9yvex3hbyQB5AARDG3zWxPm4+5CrgQMxzOn+OuCXAUeCh2/jjw6hnI+wL4aS/XzqusXvr6c6CuL+T10oYjwDfjzocTt+K6D/u2AAgDfwfsBiyx9FMp/Lncu9OWdx4+k2fct4F29LVenof7e9a6ovVS66XWS62XvbRB6+UA18vB7mIhcUc77X2eFDs2t19Q5shtjaWDGUfyJhH5dxG5WkRSehVkBmOfCfhFZEvslcNqEWnfYvG8yeom9z4RaQJagR8CP76Q8k7RjmRgaDeZhzB3ZJp4lnWebd/a+Q3mU+UjXyHnXO/dmcg718/kGfVtgNJnegn9o5taL7VenqpvAxStl+dR1le0Q+vlRaCXg9pAVkq1AquBH4tIiohkAv8zdjmJr9irXin1GuYrhLHAi0CdiKwSkfE9iEvFHM9HMGNX5gEfAktjynQ+ZcX38UWlVDKQi6kQO2KXLoi8U5AU+9urzDPlbPsWVz6Ieb9/LCKeU4g6p3t3JvLO9TN5Fn0bcPSxXkI/6KbWy97laL0cmGi91HqJ1ssuDGoDOcYDQADYA2wA/hpLr+Wr96pHKfWeUuo2pVQ2MA5zav89EZFu5dr3tX9WKbU9dkP+N2AD5pxnWSehlKoEnozlT7vQ8nqgvf+nlHk2nE3f4sq+AhzG9E3qjXO+d2co75w+k2coa6DSV3oJ/aibWi+1Xl5kaL08z7J6Qevl6cvrN70c9AayUqpcKXW3UipXKVWEOUB+YB3d9rKPfdAn07lXffe69gK/xPR9Se12rQkow1Sak4qeT1mnwIrps5PXR/Liyzdi+v7EyyzGfJLbfqb19cBZ9w34B0wfpPxe2n5e791pyDtvn8mvkjVQ6Su9jF3vb93UetkzWi8HGFovL5is7uW1Xp6+vP7TS3Uenc4H4gGUYK58NIAZwAHg/4ldm4vpr3M15l73/0DXFZDfAO4EMmLnBZgrKnf1IusfgeOYr2GsmE8qFZhPOOdblgF8H8iKy/9W7MNjPd/yTnOs/wXYBxRhKvprwLKzqOdc+7YACHer8w2ght4XHZzLvTsjeef4mTzjvg3E4xzH4Iw/u+d4f09b3nn47Gq91Hqp9VLrpdbLAaCX/a6QF/rA9JOpwNyL/gDww27XvwaUYu5lvwGYFnftVmBVbDC9QDnwF6CoF1kC/AQzHExjrOzkCyTLAJYC1d3yD78Q8k5zrC2Yq2fbX328SewL5QzrOde+9aQUI4Bgb0pxjvfujOSd42fyjPs2EI9zHIMz/uye4/09bXnn4bOr9VLrpdZLrZdaLweAXkqsgEaj0Wg0Go1Go+ES8EHWaDQajUaj0WjOBG0gazQajUaj0Wg0cWgDWaPRaDQajUajiUMbyBqNRqPRaDQaTRzaQNZoNBqNRqPRaOLQBrJGo9FoNBqNRhOHNpA1Go1Go9FoNJo4tIF8kSEiPxaR2nOs4y4RebiH9OdEZNNX5TsHueNFRInIgvNQ1+pYXUpEHotLTxaRZSKyTkTu71bmx3FlXj/XNmg07Wi97KhL66VmwKD1sqMurZdngTaQL03uAh7uIf3/7ZbeW76BwirgMuDluLRrgJeUUrMxtwaN56lY/q190zyN5ozQeqnRDDy0Xl6iWPu7AZqBg1LqUH+34QypV0qt65a2GnhdRL6LqeAdKKWOA8dFpLmP2qfRnDNaLzWagYfWy8GPnkEeZIjIZSLyjoicEBGviHwZ/+pERJ4Dbgfmx70++XH7tfZXRl+Rb3X3Vy4isiCWZ3xc2ndF5FisHe8Cub20ea6IrBERn4jUiciTIuI5m/4rpeqUUlcqpWYppZ48mzo0mvON1kutl5qBh9ZLrZenQs8gDz4Kgc+AJwA/cDnwrIhElVIvYb4WGgqkAN+NlTneQz2nm69HRORm4LexdrwNzAee6SHf5cDKWJ47gHTgp0Bq7FyjGQxovdRoBh5aLzW9og3kQYZSqsO/SEQEWAsUAI9g+hodEpF6wOjhdUt8PaeV7xT8C7BMKfU3sfPlIpIJfKtbvp8Cnyul7o5rdzmwUkTGK6V2noVsjWZAofVSoxl4aL3UnArtYjHIEJFUEfm1iBwBQrHjUWBUH7bBAkwB/trt0pvd8rkxFwG8KiLW9gP4FLPd0/qivRrNhUbrpUYz8NB6qTkV2kAefDwH3A38DFgIzMB8VePswzZkYr6dqO6W3v08FbAAv6PzyykEBAAbMOTCNlOj6TOeQ+ulRjPQeA6tl5pe0C4WgwgRcQI3AN9XSj0Rl36+H4T8gL1bWlrc/zVAGMjqlqf7eSOggB8DS3uQc+Lsm6jRDAy0Xmo0Aw+tl5qvQhvIgwsH5hNmoD0htrr1JkzFaifI6T0h95bvOHBFt7Rr2/9RSkVE5EvgZsxFB+3cFl9AKeUVkXVAiVLqJ6fRHo3mYkTrpUYz8NB6qTkl2kC+OLGLSE8rVtcAG4H/JWbswijwP4AmICku317gZhG5BVN5Tyilenr67C3fW8A3ReSXwPvAlcB13cr+J/CmiPw+ln8+cH0PMv4Jc4FBFHgdaMFcDXwD8C9Kqf2nHgqNZsCg9VKjGXhovdScHUopfVxEB+brFdXLsQAYAXwMeIGjmAr1Y6A2ro4MTCWsj5X7cSz9OWDTV+WLXftn4Bimgr5A51P3+Lg838f8ovBhvhJa2N7Obn2aBSwDmmPt3g38F5B8inFYDbx+lmN41mX1oY+eDq2XHWW0XupjwBxaLzvKaL08i0NiA6DRXFSIyGqgDnOBRUSdxgc55ltmYMaRrFFK6biRGs15ROulRjPw0Hp5dugoFpqLmdswV/H+8DTz/69Y/u7+YBqN5vyh9VKjGXhovTxD9Ayy5qJEREqA9u01jyqluofE6alMHpAXO61XSpVeqPZpNJciWi81moGH1suzQxvIGo1Go9FoNBpNHNrFQqPRaDQajUajiUMbyBqNRqPRaDQaTRzaQNZoNBqNRqPRaOLQBrJGo9FoNBqNRhOHNpA1Go1Go9FoNJo4tIGs0Wg0Go1Go9HEoQ1kjUaj0Wg0Go0mDm0gazQajUaj0Wg0cVj7uwEazWBHRAQYDszH3LZzAqB36NFoNJquCFALrAXWABuUUoH+bZLmUkXvpKfRnGdiBvEYo+CyXaq1EuVvRBweJCEHIzEbXGkYFpuZ17B0HhYLAEZcmpnH6JIPQCxdz+PLdJbrrLd7mmFI7FwQEQxDkLg0Q7qdG4IYYHaNjvzteTvqiuWNjQNi0LXubrIshnQ52tOsJ6UZJ+WxSNc8J5fpue6e6jFEsJhJGL2kdTmPye45zTzvqMOgY4x6ShMBA0E66uklje5lYuMp9J7WUZ+cVE973aIUqCiiomaCikKPabEjGo2Vi3bmjeWR+HzxadH2c9U1X3vd0Qgqav4FzPNIpLNcNIKKmucqLg/RqJmv47yHenqrN5amYnlUxDzMtK7n0UjPeaLx55HoyeU6zmPtaM8XMct2laXi0hTRiIqru/M8GlVxaWY5FVGxdkY7ynbKipWNtvdFxcp0PY8qRSR2LyMKIkp1/O2edvp5FFFOTjtVGS9hKghQgZ9qgtgRcnCyhaZrgC+UUj40mj5AzyBrNOeIiFiACUb+zK2qtQqcKYgzBZTCkj3JPG+3RjQajUbTKwlYGYGVESQA0EaECgKMx7OiigC54iQHB1/SvBj4TCnV3L8t1gxWtIGs0ZwhImIFphp509ebBnEq4kpFDCtG7jRwJGmDWKPRaM4DLiwU46YYNwABIlQSYCJJS6sIkC0OcnCQi5Pl1KQrper7ucmaQYI2kDWaM8WRHCLQhGqtwsiehLgztEGs0Wg0fYADC4W4KYwZzH4i7KCFVdQC1InIlUqp1f3ZRs3gQBvIGs2ZEmhyA7PEnb4qWrEZFQliuNORxBwkIQexJ/R3CzUajWZQEiJKNUEq8FOBnyCKLOzMI52V1BYopcr7u42awYE2kDWaM0Qp1QasxlzvhIjYo2110w2757No/WeoUBviTsNIyEESc8CeqGeYNRqN5iwIEqUytmivkgBRFFk4yMXBZpqylVLV/d1GzeBEG8gazTmilAoCn9NpMFuVv36ycqZujJavRwVbTR/lhGyMxBxwJKPNZY1GozmZQGxRXgUBKvEjCNkxg/hLmtOUUg393UbNpYEO86bRXGBExADGG/mztqnWKlSguXNGWQSQdtO6MwnpODcvd83T/r90O+/I2yk8rv4e6umQ16XBXQ34LkXOrFxnMemaHN/EuHBm7Vml/cpJ6SfLl45zOWV617q7lenajY529SarM016LNtVfueZ9JCve730IL+nPD09ZEm3f066RT1UICf9Bqi4P6qX9O7X6Az31i29x/p7qjs+TYHqSItPjyujuqf1nEf11CfVc5rq3kcVV/okee3/dq1HKbq2u6e+dDmN63OXtnfWHd/FLm3saFLXcl3q7iVPZxbFSd3uoX+qa7H4ZneptqsYdXIedXKZ+L9WpD1KxfXA50qpFjSafkAbyBpNPyAijyql/tjf7ehP9BjoMWhHj4Meg3b0OGgGCnqraY2mf3i0vxswANBjoMegHT0Oegza0eOgGRBoA1mj0Wg0Go1Go4lDG8gajUaj0Wg0Gk0c2kDWaPoH7WOnxwD0GLSjx0GPQTt6HDQDAr1IT6PRaDQajUajiUPPIGs0Go1Go9FoNHFoA1mj0Wg0Go1Go4lDG8gaTT8hIqtFJCAirXHHkv5uV18jIs+IyDERaRaRith5an+3qy8Rkb8VkfUi4hORg/3dnr5ARO4RkU9i9z3c3+3pL0TkP0TkcGwcqkXkdREZ2t/t6ktE5DkRCXX7Lvxuf7dLc2mjfZA1mn5CRFYDK5RS/97fbelPRGQ8cFgp5RWRFOAJIKqUuq+fm9ZniMgdmJuJjQa+rpQa0c9NuuCIyHVAGuAC/qiUsvZzk/oFERkNVCilmkTEDfw7MFspNaefm9ZniMhzQFgp9a3+botG084l+YWk0WgGDkqpnd2SokBJf7Slv1BKvQ4gIg/3c1P6DKXUcgARWdDPTelXlFJ7406FS/Dzr9EMRLSLhUbTvzwmIvUisktE/llEbP3doP5ARP6HiLQADcAtwH/0c5M0mj5DRO4TkSagFfgh8OP+bVG/cHvsu3C/iPxMRBL7u0GaSxttIGs055mYP506xdHuUvHPwEggE/gm8C3gJ/3V7vPNGYwDSqmfKqU8QDHwC2BQ+OGeyRhoLl2UUi8qpZKBXEzjeEf/tqjPeRzTvSgDuBWYDzzZry3SXPJoH2SN5jwTm/lwniKLTynl66Hc/cBPlVJDLljj+pBzGIeZwJvAUKVU9EK1ry840zGIuVj866Xgg9xOzMVixaXqg9wdEckCSjE///X93Z7+QEQuB1YDiUqpQD83R3OJor+QNJrzjFKqFfNV6ZkSxfRBHBScwzhYgXwgAWg5r43qY85hDDSXLlbMz34ecEkayJjfhTCIvg81Fx/axUKj6QdEJEVElohIophMwXy1+ko/N61PEZEsEflaLHoFIjIK+P+AT5VSF7VxfCaIiFVEnIDNPBVn7HzQIiKWWB/tsXNn7LhkjCIRMUTk+7FZY0SkAPgtUAbsPVXZwUQs5F/7d8BITDerd5RS/v5tmeZSRhvIGk3/YAP+FSgHmjEN4xcx/ZIvJRTwMFAqIl7gI2AncEd/Nqof+FegDfgjph92W+wYzDyI2cflgIXOPhf2Z6P6gcXAztjnfz3gA65RSl1KsaG/Q+d3wIfAOuDr/dskzaWO9kHWaDQajUaj0Wji0DPIGo1Go9FoNBpNHNpA1mg0Go1Go9Fo4tAGskaj0Wg0Go1GE4c2kDUajUaj0Wg0mji0gazRaDQXiNhOeu/1gZz3ROS5Cy2nrxCR1XG7Dc4+x7r+//buPcSqKorj+IKHsTYAAAVxSURBVPeHOqZGRkkGJpH1jxaFiFFQEWUWWEqUGGWJadkLypSi5z897DFEUTkapSEiFIpETSjko4cUlPQwA9HQ0lIxemmWWa7+2Pvi6Thz753phjLz+8Aw3LPPWXvdGZhZd7POPsWnGXa33VHMrJNcIJuZVSFpeC6u1hzuXLqZ+aRHL6+F9KRJSVsl/SjpmeKJkgZJ2iJpYBtx7sxxzMzq5gLZzKy6m0j7VI+QNPRwJ9OVSGqqMrw3InZExH5JA4CXgZnApcBESZcXzn0ReCQidpaDRMQvEbGjoYmbWZfnAtnMrB2S+gDXkgqwVmBKaVySZkjaKGmfpG2SZlWJ11vSs5J2SvpD0keSziuMr5b0Qumaf7VpSOqbj+3Jce6v431UzbOOvKblsZ6luIskvVGY4x5JX0v6XdI6SRNL56+W1CKpWdIuoN5V+SHALxHxWkR8DKwChuaYVwH9gXl1xjIzq8kFsplZ+64GfgY+ABYCN0jqVRh/HHgImAWcDowHtlaJ9xQwAbgRGA6sA5ZJ6kgLQDNwCXAVcHGOc0GNa2rlWSuv14FjgVGVCyT1A8aRfi4Aj5I+QNwODMtzzZU0ppTLREDA+cAN9bxhYCPQN7e7HAeMBL6Q1B94GpgWfuqVmTVQz9qnmJl1W1OBRRERklpJfzPHAkskHQ1MB+6KiMrq5Sbgw7YC5YLyVmBqRLTmY7cAF5GKygdrJZPnnALcGBHL87HJwLYa17SbZz15RcRPkt4GrgOW5RhXAn8Bb+YYdwOjI+L9PL5Z0tk5Rmshpc0RMaPWey3K808CFgB9gAURsVzSXFLrxQBJi4B+wHMRMacj8c3Mylwgm5m1QdJppJXZ2wAi4k9Ji0lF8xLSKmlvYEWdIU8FelFoK4iIvyV9mGPVG6OJQhEeEXskratyTa08681rIfCqpL4RsZdULC+OiD8kjQSOIq06F1dyewFbSvOtrZJruyJiKbC08jq3gJwDzAA2AJOA9aSV5TURUe1nYmZWlQtkM7O2TQU+j4j1hWMLgVWSBpPaBDqicn5brQCVYwfaiFts6ejonPVcU09eAG+RVozHSVpBarcYnccq7XpXAN+WYuwvvf6tRj415Zv75pB+R0OApoh4J4+tBi4ktYmYmXWKe5DNzEryzWiTONhfW/E+qZ1hMvAVsI/UB1yPTcCfQPHmtx7AuTkWwC4O3ZLsrFKM/aSV00qMfsAZVeatlWc9eRER+4DFpJXjCcAO4N3SHCdHxKbS1zdVcuusB4CVEfER6f9YcbGnCejxP8xpZt2IV5DNzA41BjgRWCepXHy+S7qZ7VHgOWCWpH3Ae8DxwIiIaCkHjIjfJLUAT0j6AdhM6g0eCMzOp60EnpU0ltQ2MA0YTG5TyO0UrwBP5l0gvgcepkpBGBG7JbWbZ515VSwE3gFOIfVmHyjM0Qw0S1Ke42hSIX8gIl5qL7+OkjSMVKQPz4c2AH/lvun1pA8CjzRqPjPrnlwgm5kdqrKd27Iq54wC7gN+Iu0QcRKwk3QjWXvuzd/nk3aF+BS4LCK25+PzgDM5uGXZbFLf7YBCjJmkm9GWAnuB5/PramrlWSuviveA70i9ydeUxh7KcWcCLcCvwGekHTIaIhffLwHTI2I3QET8Lul60lZ8/YHHIuKTRs1pZt2TvDOOmZkdSXIf8ZcRcUcDYwYwPiIWNyqmmXVd7kE2M7Mj0c35YSgj/0sQSXMk7WlUUmbWPXgF2czMjiiSBpH2OwbYmm8Q7GysE4Bj8svtEfGfd9Ews67PBbKZmZmZWYFbLMzMzMzMClwgm5mZmZkVuEA2MzMzMytwgWxmZmZmVuAC2czMzMyswAWymZmZmVmBC2QzMzMzs4J/APhAjPuiKxzYAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 720x216 with 4 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "vlim = 5\n",
+    "levs = np.arange(10, 100, 5)\n",
+    "\n",
+    "fig, ax = plt.subplots(1, 3, figsize=(10, 3))#figsize(10))\n",
+    "# cloud cover response\n",
+    "cf0 = ax[0].pcolormesh(lats_icon, levs_icon/100,\n",
+    "                       dclc_icon[response_cld.index('cloud'), :, :],\n",
+    "                       vmin=-vlim, vmax=vlim, cmap='RdBu_r')\n",
+    "ax[1].pcolormesh(lats_mpi, levs_mpi/100,\n",
+    "                    dclc_mpi[response_cldvap.index('cloud'), :, :],\n",
+    "                    vmin=-vlim, vmax=vlim, cmap='RdBu_r')\n",
+    "ax[2].pcolormesh(lats_ipsl, levs_ipsl/100,\n",
+    "                    dclc_ipsl[response_cldvap.index('cloud'), :, :],\n",
+    "                    vmin=-vlim, vmax=vlim, cmap='RdBu_r')\n",
+    "\n",
+    "# cloud cover in control simulation\n",
+    "ax[0].contour(lats_icon, levs_icon/100, clc_icon_djf['T1C1'],\n",
+    "              levels=levs, colors='dimgrey', linewidths=1)\n",
+    "ax[1].contour(lats_mpi, levs_mpi/100, clc_mpi_djf['T1C1W1'],\n",
+    "              levels=levs, colors='dimgrey', linewidths=1)\n",
+    "ax[2].contour(lats_ipsl, levs_ipsl/100, clc_ipsl_djf['T1C1W1'],\n",
+    "              levels=levs, colors='dimgrey', linewidths=1)\n",
+    "\n",
+    "# tropopause in control simulation\n",
+    "ax[0].plot(lats_icon, tropo_icon/100, color='tab:green')\n",
+    "ax[1].plot(lats_mpi, tropo_mpi/100, color='tab:green')\n",
+    "ax[2].plot(lats_ipsl, tropo_ipsl/100, color='tab:green')\n",
+    "\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].tick_params(labelsize=13)\n",
+    "    ax[i].set(xticks=np.arange(-90, 91, 30),\n",
+    "              xticklabels=['90S', '60S', '30S', '0', '30N', '60N' ,'90N'],\n",
+    "              xlim=(-90, 90))\n",
+    "    ax[i].set_yticks(np.arange(0, 1100, 200))\n",
+    "    ax[i].set_ylim(1000, 10)\n",
+    "    ax[i].set_xlabel('Latitude [$^{\\circ}$]', fontsize=15)\n",
+    "del i\n",
+    "ax[0].set_ylabel('Pressure [hPa]', fontsize=15)\n",
+    "\n",
+    "# titles for models\n",
+    "ax[0].set_title('ICON', fontsize=16)\n",
+    "ax[1].set_title('MPI-ESM', fontsize=16)\n",
+    "ax[2].set_title('IPSL-CM5A', fontsize=16)\n",
+    "\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# colorbar\n",
+    "fig.subplots_adjust(bottom=0.24)#(right=0.8)\n",
+    "clevs = np.arange(-vlim, vlim+1, 2)#np.array([-1, -0.5, 0, 0.5, 1])\n",
+    "cbar_ax = fig.add_axes([0.29, -0.03, 0.5, 0.037]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf0, cax=cbar_ax, orientation='horizontal', extend='both',\n",
+    "                  ticks=clevs)\n",
+    "cb.set_label('$\\Delta$cloud cover [%]', fontsize=14, labelpad=1)\n",
+    "cb.ax.tick_params(labelsize=13)\n",
+    "del cbar_ax, cb, cf0, clevs\n",
+    "\n",
+    "fig.savefig('figure_S3.pdf', bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/figure_S4.pdf b/pythonscripts/figure_S4.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..6f61f5b570a17b7790a69d738df0690b63649d20
GIT binary patch
literal 163759
zcmY!laB<T$)HC5yU2{ia^)4<$1p|frq%1BQ8wLG<#Prl+1tSFmg&+m}kjjEo1%2nl
zlEj?+bOk#*uGG8~kU|S24Xza>?!hIAC8-J~5KV6Rc_j+Q5OzRfNl9u^o`NZe%cUPs
zl%E`&TA~oGpdaAkrl22^T2Z2)@0pvJp6UdpouRa+Lac&*a7JQEW?s628AN-8e^ORz
za*2XDh>PSLLjxrDIOgT$mlP{RgY-M+=ar=9l@u#jf^=}{yBFn`7ASzc=^U(}?~+=U
znVcHr?xdg}te_uKl$cjskXV$Oms|<+IYhmk9hbguYD#9JQ+|a)v;xR7b3-FNOH(r=
zQw38~Lp@^yV?!fTkc9yt{UxyA3ra1{FD*(=Emi;pSP&O9JV8N><a&_XK!FN!mRn{{
zNotXTzFSUWNvca~a(+sxg1%2`UV2G}f*~lHf<PLJONvqxbGa(!T#fWC7BLstdw%@|
zLzxLze`R>OYj7M@WhrQ7e#mf4Ab7W0-|2_%pL@=_JMmfa@$BVuxI`-Mu6}tvYwNw&
z_f$WwRsI;N@sam`UB~xF%yo5QDsd0)U-#=g?v-QhALVxZ*3x+MtLx8AG&v;@m$zZZ
z&#(RKeqWkv(>Oc(N6p33FmLHg)oN~%C)~3iR_B-AI+<bl<I9GJ3bsqHb3Z$EJnh=&
zWd~lf_}`EVz3puA=*i8W_r=qn=f~NIreD81)nJ2`<E+-JhqSidK5;W_&K{MIZ+2JA
z4a>A%vw3o9RmAh(rMrGCPMfRw`qzgLD@I8Hg*e{X8>P-A-}|}E*zwp#(de44$G<Py
z+KQ^%Pgc<O+h1~Gg1+`i&!>{?sdLf`f9?F;dG)sYqc5{7>TabT;5suY<%jDA(;Eq~
z%*Hyru8RewT6xl@9gH|Fuw^M*cK)39OFFV<xpSxAnA8=gxr}GYw1lRqKRoZ5TQrx-
zo$!{K!EdA?eM4$-&i=XaVg+-GE)~R|uby*iSI^@Bhf`H%N6x)FmvO-H?z^mQYp=KO
z_sQQKvMj`PN>}N2#pz}#bHA);X36)kvU$N1taJ6l$M5dDbKlB6`XZpnHD$&v+iUI9
z<t%U4?Ek5A@9(bab?TEX4+YsKmL79|d2IHruxDzla_LXFC!d`?TjtC!yJ_iP=GprM
z2s3Rgc1dRP72B1l_<rWHiky{g?jf7)_y1Q5->#u7yoF`ug&Nt~s1?e~n@WzkJ{EuV
z;%8v#mi??!p}DyaS3S(CIP&!5jc-zCquAMJTdps^syV+zb>~X{+y1AItIw5M&&_SM
zbZ!2%qqkp7Nt@=iJU9G}xkPx2^X5r$6EE3W6lrTMW%ih?yYfN;?={m66S$bSa{el>
zb6x7QO2hQp{Zmx|%O|*bHhw;9p%N6}v*B4ph4$-B6%QsXz3N%4I6KXCNl&oRv5C+4
zjxlSjkp1RaaFVTDytAr7yJU)$WPfd7he)T-%BIb#rJo)w`ZrN#`lgFVx<cdj?V4?M
z)pF&IO}FY?*KEF4^}o38y_S#N=@T;yJ<bMt2Q5446*Xy@;qD3hdd+M-mi0|uI+N*F
zjl;B%z@<l}tZIwYQ@d0|zke~g!}V#>BJQr+(kA(GF*(ov+{<q3%9VFYOKg)`zd1N}
z(VO#IUf*HNRoe1?T90<(o6R9Joo6ZWZLrv>a56)-bLQR;Y(Bde7hQT4dwSEYCASh@
zJ2i*Ty#B$&Fzr>ssrh34>IEO%madT6ac~dU^e)TqcX%&(Ea5q3KYh}LWgCswKa`MN
z5@x1aILR&Se6&TMQ1_m!$rcgU56C1o_}rYgOu*fYNx5VBCQDY|PM&91g&Gh2p7c&k
zyXSm%{nicx|JyaZ+M?^$X#eHb^tpMf(SE_HvZawuKb7PUR$gx4y=H1KS4iN(0z>z>
z%xNbQSD7tVD=?7DnR+2S!O256;f~<rpzST&e5LI37_?s($vev}-sZh`{=x;}yHvY$
zW**xcpK9CCTy)9MwC=^dH?hB#vMYXDY^Am~(B#^TgvhV*s&n<rd@?jkIU{Ea&F((f
z9`)hgowb=+9vK3ktXQYMIzRih%9+Z2_igOOjN@iKKhFJkOXi|Sg(}q#8{Q-~Ou9Bv
z>SSDM++!2zxhj4C$~HYeaMp3Q#iYHb_ITYqm%woI<-M*qhC61Sa-ZMp!1K)1Vwp*p
zuSE3`vmUd9OI5aHt~s;X;?0tGq4}ZT7MNW~TJF9pd}es4S;NAjL-~tqrZqlV?qfV7
zeD#r}G=0hVuzjhEsy}eo#+2JTm&H%pRn5Ce+xVZ*&A0P*dznYIefp?zDco*e(J7}Z
zs^@;JFaGEk!{?(RdbURKa;RU-E8XAgjz(3KWSr5uKf7<LTWrObmbH<)JNsQ<KWGZH
z+hrc!&|9gt>yPh+%kQ@C5VFne)ihC6433i&z1tzhU&~>-`=grt49l&#*+04dKhNJ*
z(4$t{@@NWQn5%%^IfL(Y>9+&dyI+zH{j;K|_wvEAmkGN|!cy4}Yg-&J+h6<V?X$PX
zPrp8XyZiL)>^F<6d-vB0_s1+u?!0HdF#Or!h1pkn-S?lq_S>ZEzFkT6`wNSwU&}tm
z?E9j*QuT|?ij2hucAIV0N^0+4;N{4!;oLs8RPDpGtcAI1PhQ<=x4pjMkoD1y$C(9M
zpQR?8y(?br*2S|up-ScO%Ko(G7PEw@mAq#fKV4{;J;UqdmV`2uzT!EX)}CFRAQ-%3
z`>6+~R^Dj(I8U!V%aPS%GC%v*1>O@&6ymh*dt|Q^d25$;R>LdJ>;K6oNsg!G3>uHE
zIH;0kvF54y9+w2Zncpjz&l<0`dGhv-_;V$F*0TpV-zk(`_+2soKEre;nHaGv|9DU3
zJ1o#?GoLT9&hh9BX`4J2sUHfLZf0}U?b4jr_M>7~mFltFy5<jjQU?Av?kjry&3A|s
z_wZYloAWQ~7lVo{<IlwNoHIG^%oF~kU9#`z7q=?~#g&ak+goLp@hb^@m~rlju-M!^
zzqah$vCFdl&-1UYZ#{VDg=j?`J0Poj>-~v<z?Hv?Y(2tuvT}s78@yWhZ+Y#3=r?cW
z_ia=&1vPh|buF~v1FnNXm9?RTg(XND#5M-CZa@rB4ekVKB<LC%7@8^Q8k-s_7@C<G
zC>R=;S%4Y{cq@2wQ!f4B(xeh_tII9FC>Pcafi-;W?6{!rshHy$u#=bBkmt26t2jr(
z-)}aIL9yTRo$pF|BsNSt;x6?{T3@iHJtV>D%EG3(9EYo)91&xAT{AOa_L?re7V&ip
zH}Ox3coU`U?;)wlW$4I#dd;)92e>qBy%xSaadeZbtf2Z=N3rtB3E}*^GlS>q^-s%h
zGjivM?b^b3?tk@>Ps)=@>^%OQtLwcHQt-?_EwLi=_%-d9N9Ps^r@h|CwfSu4^mFOg
z?QOz$AA8Pz!O<oL6jV@`LqpOS)Ix*@T4Hf3xY?-hlA4tmRvMg`SFG!wl#^Ll3Tl65
zBo={Mj>QVb;3g)QzH44`KDc2B3UQarw6s)Evn{n4(&~e>TH$K!>=g9fGK-2!oHG)O
z6b!iZK{gSJru@7Tm(=3qqRfJl{2~QoaC;b{(>JlCC==Wc)H5&uHOUMV4B)I-1%01H
zs7*$urV9FgiMgqumL|HdkRlr7Tw_>FgWRT|AD)>~l2NQ+3^E?v;)4Ym$Q`gib1Y6y
z%_~u`G_nLW(F;6MGt)Cl6bwMNL1c7|jLpDJ$@F3cOEZY;iSRdWCwrD8=42*2=B4MP
zg6#24tN=Sy!O+;$KtVsaBsDh-Bo6YB0yvbBf>1vK?m$F80_;JMf1(x43=F7&xyUug
z*w8}3#K2I&#LPg!!q`H=%-D>}($qk~+`>S?$lO%H*wO%uO${LOAoa#(h6-TX*c_xD
zALcSMHUrBW8=EVDFvt!VHZ?X>Ff;%KfQ5;InT45xnWcq-xw(OYnX!?Asky0wIS88?
zDHvIrav52gDwvs?DVUm?D_EErE0~*DD41KAE0`G=Luin^v8jTYp`n7gv5|tAg^7Zt
zg{6X-1w;%)gFRzx&IO`DjsSTIgv|_%70ir5of?qcAoZpS#->JKF*9Qm1tW6{Fg7)}
z1k;x0CJG>NGeaXTkUkJLF*H;#H8NB%wgl-jQ82YMQm`<z0Mj70sgWr>AV7fvvL762
zpa3#300k%)$WBv33rL`V90tSSlm@oN092-ef(RUJrtq`_jt`J^5X@z2X`leo4Gv!f
z!^lv<1Z;$n1z0QCRfdr01SJEI%aF0Lu{jq=Hwc4`GBGz)Ff%j<rxj2-01JX-K^WvG
zkSQPx;=@b=InLC;fD0rJGr-c!QUQiR2>}#e*f2P(EkOwr6s~X#P7k0o0mI<50!<U3
zbb*XP?gI0TjlgLGls-Thlvd0PEV#^!4HUp>0F(~Uu%#t5T^K^rg&CBFr3n~qW(abd
z2^W|Kv5_#yez3SPG~GaHP`UucDu|8+)fJ#J0bJOF7&bPbPH!q?=)nZk{f3I_<Eu?A
zEI_)Tl}^PR)1KYD2Mjn|s+a8${9)1Xy)$Uy-`fJwdONBw2|u?yaKet?{lyX86z7M_
zDm*P0+69_K<y&p@DBiy(#aLYQukoGQ*0;|ZQcOIbC|-P8^fXel%5M5C={k^Gp;o}$
z2P(6Pai6&*iu-)e?&dw9z{7H3o~8}cga3Act2We2ODj1g+rRX)I>;w_=g|g<jPe~(
zAD0HssC_k4Xi`A2txJTls#VL9_+O_D4$ru8V%z)eVeiE6Ny|uLaTapTfiKuhP@QGG
z$t2VuV8a#$p|)wyxSqL9<I-%4aj@%{dYV=EG~;HT29t<PJ|9=Ua4CkRE<8`LSd3iH
z<FnY@6eT=Ndp8OmFyLUWUY5Xeno;=M$)$&WZ|D4xu|!<v#FJ+S=WQz4;QO5Y%kw3^
zpPd3HtTMPzl2%)o@q{moPdqNeYkk*?^N#P?XTB1jg~dsrRs=CoWMpWB>ZSloK4wFX
zH-Ec+I;b?~8oa-$5&Q3c8{^Ul!>DJ6>STqFf0)D?&vd_QdylAeTG#uCRjpU}a%5NN
z%~@U17IW|-_r}h-VslQLnRi|hP4RHaOo`5WA=G8&y8Ov|-(qj`r{9)%Ue1k@oKYoN
zRK_Ccd@_MEYnPaB#1>o8|H1RDy1v&Q=hH5^^YHRy`LDKz)9u>5_a6PW;%2AIF8vb|
zF3<Aj^fkG8as3IAb2es6CY)1n42o&WPMz@f<@CkOLI#H0bsWmV7tK-4JbvlF@w|^e
z85wT}uf!5K$c<Ti@nvX+8ey*e)<VpRJkHgA3zZw{4^)~>?%G=~ecIYnN~cHFev!7-
zw^N6clTRJX-m+2skl4E*E8gWRd)9X?Pmf)2I?*UNKjv&q!m14?^87ablBiku>CLm2
z^`Y}54o&yr<TaRTy|ex6ufRFeYE*V}H@%wDd+LyZ`=##=KEAV;w>JLi*RRZS44C<>
zH+$Mt_iWK%lk^!{(cDd68y8qD{l$Fwzt8f$_IJM6Hem5BXk?M7q+n!@k`!Dgc=s_Y
z3OIkCbI5(czk+#vn_k_ix7M?|n6p7u<GS%qX5s3OCw!*l?Mc~TeMWTtLrH_;A6_$Z
zj`+Ori&37kPUK<8e2%`;_x8M8&{^$rZt*<U$gAggvl!DSJ!^W~r1!i>)coAZwQf((
zep!57U|(jr{PoKAZyt~D9S+%d&hqNH-CZ1++>uwe?3<7ya*{9GUd#9Pxzhq0ALK}d
zy^y)bu{*q6-CLq=|0e@gVSE0&zXEGw%@@BGNmmb7%RXQE!t-VP*Her6j}~ga5a0Or
zjLP@;<-wCy23M!Q&-}Z5$MN6%6Y|2qog1{04K(aZOjsEkqZPeD-jkvoId1O{e!;XZ
z>)+YRIkT=l`FES+&6)*`VnP$dEKVHp<_YXAIx1h;^wFwu|Ldojf9&qHUTIpc^!LEl
zOzHQ>XPE|WFiFxpWB2W^hT`$y$M*$Z?DP;$OED@^knH%q)vo^9Y#+-%Y)dkWe`$DD
z3FzLqD^*q#Il=MLWT|Oyp0t<hZrH`)J3~5KNz!twk?Hy4^Bx+_lTdcNs-xgJe}}(l
zkB70Gb-HflgohQY#P#d;_FgyYUpYOL)o2^%vjppzoXa(o1okgb+1a@}<CR8V+Ob);
zTiYfneZOlvXU>;h`{%f@#&JH>xhB*nS#`=t-I~{HLDo~28HszpwHD4Y^V$)7`EBgR
z_4m`&67M|QusO(x_grCt{_Hb?D%E!l6NTm4XMBGr*mGph&)6Knn4M>Ks$K5?t8vRi
zUgY}o7~h#|H6F^ZdeSL+{m1`5_s*ZUpI~0Q5lb=#jV}`uHD)F#so2=qB*Y-#f+>?w
zTALbX>3+uNOoL8xaInfW#tCLdrp=cHBo{Ciu({MrF=+aW_+fDev18d5sI`o3?`}|G
z?+hyJlk2Y8?F>2hFE>a2Ih!qudSZk0>UE6#=lJScuI+oNtU2q7`-ToZBiG7zYc*zH
zD-AiN5_9U#&&h`ht~`+0wg2j^!d*u$Mt}czxl?u~rUOlhZ9NzppoWy~B<o3s4S1ZZ
z=QfF-==m}E$>$XHso(#-wKF;y*5KL6prKznbJH>#g-kWh{}&%VOtOAjeq-L*GY7W1
z=nJ3LJik!;$Q{?8n`ZXz+GKTf)nS9V(O*`~>2C9#JnOlZx8!#2d55=lKA%>5gx}m`
z1$$|)_aWZ9S2H5H&K8vZx8Cc1v)t51e0IpIE8_j)fuhfTD*7*Kf9dt8#zsRirrN+w
zOz27QMTfr4F>61?Iep{XF16{9W0vRh&FVHcN~`?!^2E;y@Tcqy`QaD%=IsUJeQ&%t
zZH2ZyjCfaTJ!|7jso559>fXCuJJqu;L$U5excY0=gge1%u0kn(+amJ1ug-h7P-9tf
zTd}0VtD9YILC=!HSJ(4c=j-U-)HyNb47ZWna^HCt6({O?XML%h`n=*VW6tMdYb*gz
zY_rJ77_FcU^ekdg<k|gQ`%B}>L)sta`JG+)`G2;Kv8SI{LbhRMW20_Gr{c8(XBzc)
z*7&|KsWCUY{lV&{T!H@%y*txSH>Dq%b|5@tdih@c*qa`;<?XBL(o(87dz_sxb*j}@
zClj?Bih{PvMkm8`ikp{ct_^y+Pb0cP@72_8e%8H{7AT86%%7tC@TI6%nQxBN>MK?Y
z7IK{4rq^LLQ)N+EVqw<DX^KkoOOs8H|LFEpDm(u8-x`D0fhv<OrL*5HR9oyjEtc7G
zXXUC5VOo|Qc5xSvwY(}>)tJ2J`nE5^nGbe;i+{*&SNp$T;@8f5_Q&4EC}9aTVq0zI
zhN$^^n@NB{zy^ch3#KM!AqJaF!VJuf13V0$FmW|T?2IwkC}VK?jL;Dy6LaUJm$M|D
zQYS_zJTBUi!1nyWnbQxwm>E895mUzE9AevYW~gy!3~`Q0IK(+-27yrLG#M5j)Y*{3
zC+;KLlFF7OAvsH7<C%tIjj9iMCP-QqTrS#iiQ!zc=w&QUA-WA`Y=9Cprh%S$hYfi4
zycYf3$nZ#S|8YnExBu76UgAth$nc(XR!~}6u%h$edB-QmqObML`Z4=t?8n_UqH>(u
zo74kY;@YZja_Z$vO#f?frshLjl;vb8e<KC)n_oV-oJg4N@Z!K5sVj-IGu3~!wVdzs
zFqMw<i}$|Zy;?xS|7P8CZm%tCU!8xuS#QhRY=4WJZ&#{M^;eh|y@_dhZ@7<Gvg8++
zr+P=fIIh~<I<Mu^q8h$UKUXLU#V(rDsLsZ|*ui?k^KJ7x!&?`Wmd@YSyHH9~*8jhm
ziK(a36JgakH!tmo{_$^K_1{0t%R++ZV+k%|TXjZg?Hp5o>rKpxJg+TV^(IL6<R+Zo
zJTpZ9d;a{CO}s+?JU)GKaaW6bc7kKg&5zr}Bs(O3hy{OKZ~OLe%PZR*?Ho@ZIn78^
znPd8T$L!^gkM56sYJBbBZr*)K)5KY}8BG2<_2|sgWd|dq)C>JKNhe=-$w`iV{Zizb
zppOQ#;@r0eswZSbHETC5?y<D;d(!zlY1L7^{qGZN4=yuYbVw$g)&D|Dz%<+UY71n=
zzudptd*9QfJC4a{VnX6vm1pN7{eE1{c0V52tz@XaMDmG|;H5e1lDHOf9<{RO(h_Bz
z{;K%YUAzAovC+O*!iwlNp$S?GIAC|LGkio=r+Qww$JE>VZN1zIS{0-0Cq)U(=s4ib
zvvErPBX>7PTkieht&fb4oEL9(JlC?sVa``cfteL;x7_kxlog!YbJ)1Yl1cn%RKc>#
zGrz^$cru4wUEo~ql#e}5yF5cg3q$4?`g~lq>3r|?#-&?xHea6jMzOcW+f!9-dR?&A
z|1Fx)S}$(73UBau(m2`I<e`qe^Q5FR3#J5qH`v<urEt?k_tFa|Z_csQoq6-!^0z)U
z{1Iw11D|TneQso@zVdU7U+ufivKOB$S{nL$&fj|zr+re|dVAs3m*J{`GkdQtpRmK`
zf6x4n|Csw0M1mItptcfCiEbrYqIRxqgS_)t4LNR~*WBT-^n-8Fyp{Lf-K~$FeI{fT
zmp=10!zt5wR;t>+n$%(JQ}?wf_EF%cy*XLw&lKP3nJxPfQ53(c?MBhXSxFoHWlrj!
z*b)-4FzoJP=Z~!#!u$-n4;on??vwfdQGCV0>l<2&4p*lzC3s!Qb2#RFQPLyQQ84lM
zM9~*Z0@mj|e6OJpeq~MT!jhy8-f0Y)`&RRI&RB7CL3_*8NvmWpee7BCA^Ko!XJSBf
z^lg@kv<m_^?@jC#G=6(gvM^FG+uru&;y|OVfs*{b=`|nk8U=m6DEeZ_r4x5gIj5g@
zQcqBM<~ieef%3z7w;j0+zZ9;Y=AZL@hGy8r53JUw7@7C}y*H`%eDwpJo|xNjeAGW&
z%v>%bymp^l(%)wL9PimN$F<vCMON(5;HbOqC|p<*arAr2VwdtQjMtQfuV$zU@CY3`
z_txN3#j(np_e8fm`{I(Z*hTJ2pP;SArlU{ih;CT^XU*A-GV}P=s`Iz>PdRgDMT_W_
zvZ@u^&L_)WDWCWI*B?ebhJ{#04orz{TN)Z0qm;D1{f<J14LF$J*R{@T*vR;KUP+bL
zzk1yXX75<v_B2dvGvKgE;(2YLx~J;*!_Xz(1!jFeRV7_*II_6!h=;JcCwI;LapUg7
zH%lMA6!GnTEm(Yc%aRiFK&{-pb5Hy@P&@ygeCRfnxlMA>uUhmjs(f-~D!vh7aQ@XX
zZ}0x)Z*Sg{PqQ<=jwN#w+d{QOtu}mn9fb}ka4^5$qvRjpa^ZhT)usROtFQ3wJ>bXG
zDdyVr#Wc&?;N1=*(d+=t8B?Yo2sMb|zV&X=seeYEK6BeHS8r!--t@7s`I6`FZ-rG1
ztN&K9-Q~X|qZEPZLNj8UsA#2+vC(!=oo~V@)F!6J^(>7IG*UB7AWTo(M~D3k)5U28
zTuSrU80OdVY{g<J(akecv@&m^_atTo4wvuqnv@&<Jh7QME41kUTay_+W@Xb?{B7}4
zUM8gTT%^+A?}<-mQ?|X_DzkcSFH@J2$eAZvUm_Z>&eeQ$W~<BAuN#eu?!1(3e#HBH
z-JFn3I|7ect+EoeSoZwXuT}5<?9e&2Pr2QQHRqZopIO1vZHYa?i_eCYxBqsTuzd2$
z#gED+<osx!d~DyTtD-yn%znR8m0)kGTgd72$#+3%o5SO0npH)d-#!-Z{_L<}`yS3E
zIUG+;2=wqd?)F<(U-<gZz5iB+=RUv16W&+;(b^|__hWs-lU+L-T;GXY`D`n`_BD^}
z`;#-1i!RqXKabgP`mW=$^MB-Df9DVAO6$N9j>ru*#9WJ!p@Oc7nX!VQxuuDMp^>pM
zp{YP)bEF9(LNkGnjZ6%J4a`hKPdqg;H)GmdbU;VBSXqHvr8~hf<uU_fJQo)hmlE5S
zGcrW$2?gvHbT;I8ZOh92<Xp{L^Yf>dp8l7sGG~dCnUm0zSw1JHv|F8;v_{ik*3LVr
zeNX$-yc9E4Em!@?8&tnv;QCnG`Ap>d-K*0!JDW_;u&m=Y)><Vkd)eD;R)LoAt_61v
z8~@_XEnyC8m)jVvaA8Tp^=%48$N43A4$c(rR^svUW&6Lj=zGwe_qH<mi#n#1d|3DM
z>6g>zb@%w$_POlZ`?D*%aG4dCOMzR~r>>I3qnl1RFS*KMYRjCxm0{hzs-NZ=?j@29
zZ-hG^n=F-a{(o)9@z>1lT|r;41P`(8OAFL;!WBNuoWN42mNs8w>gIZB1+O~={=2Go
zSP2;g-%D(3XPL*N(-!=ZZRX+x(;aR>y>s6z-jEkx+W4$0c=gxs>{|Y1Wren9PfKER
z7qJaFL$rZh(|&J0(D2-M%T|4Zpt_a<xmD|yeZOy(7{$rSeOv#aSo6dlZ=ZxWGm;;w
zhWM|wQ&H~U<!LFfGQgb0Kf{N|IOme;hf^i@jpjw~nG^P^$<O1-%Qa?Fi+a-H4qpsD
z$2I%k={qV}sctiwjb4Xr7v8iff%O^dR-5m}?^eXTXlb8&YQqaZ!$o(}+@$LM-~RHC
zsoKaO8B3@W+w?LvMr}Ok23hv081kI{%T<@a@cProd2&8ie*Z7=3}t0qm2=wWNzq{!
z)jFLCw*#{uU3W`caOlJO)n{7Yd)z)@)scO|HRj~BL+LI$PYjRP9BF!g`-i05&oyUG
zZe~BGfAhO!*qfD{r=5;<8*e$R)puCy#KwfzN~@|Xf|nd#sdD3S_kX*i#o|q3`;;>d
z=>L4aTDfB164zU{X}7mT^H0lkpDHq~`EBO8(@(r#>x3VF{8QoPJyC0?tnh|K2Ia>p
z_4<r*Q(dwX)0>wZJNoU}jsB%9u`iCLF0o+xIaBKpv)8OMIg1qjop`CZ+(=;Ax|d$+
z+XF?*U!9EEymQZ7PowDXu3cwE&b>Y~^K1DGqt$1vE2jxB^>h6pS-p*gckbg?H?wE9
zx^1^SsI6LKR#sK?Y45B^{*x;`JVY<=;__R3Ld5&Vv>&s&W?i~+`osO{-zDq+Ga5gt
zVZ;(CM7QV+QM-MnLEc5qhM;l3g2r<*_SeoU*_8Ee|JoLH?G3sPPI~&0m%Qt)sNP<B
z_({0@ch!wfcKvT>oe4VnU2L<+dENEy=LNUxa<K#o+x{?87gf4){>lrhip1%5%<BdG
zG{q{|Co{0Ee;8je#jp8*wY1Sa!O0V)1XK>r^6vKam}2YsNBim5B~wjG>eRH0e^wW*
z6v<kAl0#G>V&@I^CEA*DD#Es%9-E5xnum4Vn-D(fc)F^Zq`+OZjlNqBJiaq^OUuj|
zPOQ%&8m^XX-t|kyC*tvjmXBJAVpp4e=b5f-N!!wwoN~D0`yrps*0#e!0kdnTa;}=*
zfB6ol@-lbdvbTpeMVq}>bXok<SZB(?;~FZA?S9EBT$eU92sT>o-O#o78Mmd_fsWL<
zvvhcJGgNn1^|c<jFlY19#ADazUH|-#-8H&;F_u^$x*3KV3C3ny0t^}si#Y2sNKIjS
zgT-KCTSS<{x|ZwiI`F)%<%(5kC_6jnIqS;0clX<-#B(`s3G15GCpI<nXR2bT?qt3F
zZ#{E6r9XW?$<--5DO~l|Ql5zcKW$n=_NSlTv+vp*K?U!rT$3kHI<Ct7k7xQlJ(=gp
z+4lX)<+fD`p*<}^jHg9}7iULW?LIuK_m9moM*ByCMe8EA%Os0>@a`(SCHmg^bL9ys
zg|r#dy0~J)I>qW7KQ3@zTl+mCBtqfhTN%%Sp5B0o4P}kDJa{ZOi|t;a|0{CJ49=3b
z-AeBk9T4(7Gbbt5>KDIViO!1sW{*#=@ALZQp`Gn>t9-F%<{72Q>!!Qro9EZs?r`|5
zcd9<_tb$|kHI2-g3#;ZPYs`{NZ7r9X#ba_@ru~etO}nwslrOa!b@AS6yEG=+^YJdM
zkC$8AGlwmovH0TrZC%XbA8#hEmq}>7bad8}S_duRs)S$vum7n0_lH?#TSEwD)R+_7
z6f`nH9dXwUw4B83$Z`6)Xq8j(<@Xy;PyGJ>CD$p&<~C;qE8W6?WBvluwC{a75xV8!
z`<W64%MUKRf2vek%u+zq<B~*(?~2$xa(mg!WYU;EFEQ0=mVC`@pUh=mRaoJ3?B?52
zNmG{U>)HNk0Y=*5g(r`&2AAGAG4rthvL5cYG3R+t>=e9~DzRkt)MGs@%D#$09t&To
ztu%I=z_NIC;No7HqjfJ&E6+^~RnFr19piobda>|1DHCh4)i#z(-NWacK6#W|oBi*e
zvj<#5q*mJq2o>zV?fiGnn<wV?F74cW^vjR9;!S%DL?b>v+bTW5ck2&x{YO7+AHV+j
zhk3=)XfZ4SNNls#5N!a>cY-gUlcGTL_c@Ei4HkZ8?*E(-^YZWZvJXEWHGT0`bY6a#
zS=RlLn|s^27Zn>$8uIPoHd2f0{XD<twMrl7E79D8yS7-rJF8=;t|P3RkUizjY<H0#
z4`*;YHof_DSX{zoN%o9<)A^;7>*{u2j=i$9^!sIHt~n?A0(hhgSZ`dm<+~$v?)@ya
z{UMr?vn{6Zhlo$ybd$4n#nPnd!J!#FkHT!<cgMZ`$$0Ra^=~YGrcx8s%#fresF`7q
zfw5W8iKj*^n{;|aigx%U^2~_go8H>Q7|=Sgb!OAfiK-sQE-{@lGB#&E<rwm$U@0R*
zauR<L79SAbG(~NEnFgHZbvESKoz5k;LWHR?WnS3c(*N1H7pxNn|2svTn8H!H^5i+q
zm)>?(KK$GC_HR_;UR$dA=F}{OdD`z6&fK)|;*CcM1yX8p4PxdAFEV?jOiLa%Ez_Io
z)Ob|&!_1n}>KFU`B`dPfCTDHtPw-=W^uO-#JKZM>Cw)FOPx`0yoVOpWH|IT6&ni>8
zSR`t6WwXg~2@YXbIh#t?Wd)BmUn{?AB6KB<+ix1<IzRg!K86IPxX6Y#>s&0oFZC^*
zpTFn$cYX(k;4PRzV~ku2IAK{er=Sm7<py0X2P)ZvxR6)Nap|M3mNPa|&@V1XOiooW
zF;vh8?|vu(FC#OtP|&YREy`EW&(BL$&@U;^SI{rXC`wIL&`--REmANwQP3~WtWYpD
z<I;yLJTo&@(05cYvsBP`RWLVJ(Dzg@w@}dcQ_%NU&<{|sFjCMDg6y+UurOE94_B}>
zRM1Z<N=(j9Ey+nuD^ajC=7RAdPOvmr&`(s*Pg2lNR?tsT&<9zqU}#{Wpr50lpQ~VK
zXsDo{uV83ss-R!2U}$KrpkJyG%LUzIfwcOM3wiY)WL+Aeo*CNeKTrcG2(o^Tvekb`
zISRB$4#%oLP$L*+)gQ=y*z6ujtNx6QAg(6Dzv!#}6!cM6`*G<bt@bl9B5$=H$YUUX
zjIQ<ruNH%>@)}+3hiA2)31}^uDRikGHCFo>Q?lC6h|<-5M(~w>pcQ`uyV}nb|7t%A
zBL!1a&}u+>t@Z;|R-nQGw4~cn0ldsF2vnDtfZA|Dp!&oF)UpWz)hQ;R7D5oHYB2$g
z(*%KP7!%OQND!!&F#(k`L0tO53MQbE6SR*}!30!s27&4w6OctgpsEGD7$68#!<a(t
zK(3EW!M35*Nv2SXlR*_Ac#C9;f+^JER0UJ8#R||05j+zTq@bUs03JdQ;)2$kQ2TQf
zz$3jupt{TqYJa|h8Poz$t!oDL8&b7w2DXb!zgWQxY8R*yHiLQ-Qj?oOy$Y$W&7jtS
zYH)CWA_!DZnu9Imf>iP55Id2UWg~5;bTd={H#&k8^xcdUz^nF=>n4yB;jv~2*;?tS
zU;tar?h4-=s-K*w0G_1QcQk@2GsLY7G?M^bQ3>)g)Cz<XLB7Wj1O)?B5X(ja-Gbsw
z1@K;tAkZ3l_=^18%)HWK1v6-LBW*w^&C4_}wlq;N2TLjFdm1Vj!kGpNM&K|62^%UH
z!NrXfjKIOkrSEBItY8ERA5h{oG*K`Dc?8ThRWJg%AIvsWFakLn%r;jrg2tVvp@o7G
zIOag+SSlEUdV(M|Mhb>t;}!HhjTH=Grkf}j!VEW6Foc<HreFv*noHl)T)_}#vW0>n
z*kA>HPfG<Oh`ESx1$z({hEAC!#Q~{B&iT0o`FWtd1{MnX&iOg{MZw@EBVq$Bmp){#
zYCvL9ZZRZwLCT61jKLa8bMwH=fTGlt%;b{%A_YTG!yU9O17o`@mp*i#fT58YeCw+@
z)T8jtG2ku3u+#(F9Rt}mp@2LKWzjoziXrzQ2cFh=)2@z=<_>3e@q-8d|F@PY6<@2M
zvDB$GEB04WJLlH2UnllfPj6Y``L~LZ;R3V0W9Y<Fm*yEgoA^FS^IGSYiy2qSnwQVh
zyLju#*$oDbH_msKs$O5O;c;F2WyO|Vf9GwvZTS4_F0)dG?QZNcQ_daZ*O>ClE7*N|
z!1G||=ElnKZPAy~oTJv}$Vz?ISoQd0#=QxJQ;nzVZ2o!oy^5K^k)*k{yoT}D--T!V
zKXjz%+Q0es2UDD8o%cMw^y<=;s%8c&^{2m=4pcwfqUm}r#+xI!&ER5$`Rt27e=hmF
z;Y{wbh3B`0?=Rc+T5WszoGBLddgacg-|Z99(%xfsAiyCBieDpB@b)GU(;Sp`KnzgP
zOI)107bRBWjC4b!NH;Q3&_|1QP<tFB+7+-yJ2WMuMmwyDj~?wtsPhzWFKpy&2oPX(
z-1<MOo;h7hV%LHbK1Br=lee2@Upw=(=EKL8hTltn=h&3)v3<br!qXukV5pGfaHOGw
zQIJ`QZ6pd5FqOF4-ocV+K=A-dAjXF9L<25{Kw`uvnjm*4oM{HRpr9<xfQvi@{b1k3
z;%o(Q(grmJV7uz@798j)sP=6BQ@67B{vn;q)@MG9T5Q7NEMX!i)hNi*q_g?Nr@tR>
zrcTqBU@mMpSNym%J!+%r-RnZXU+H$)e82KD>EpItZ!dn(;n;NImsRNV&3>Z(a&|Qb
z^4Z%SUe7yNWMO;s<jM7SJECqZ{&^+zk7?gSr5|&c>zZn7L+96I%(wgVHQ*ChKhyl;
z1LC2jpFW({pT9~`+eUB6myfABlg@Ofyt&BqGkoHc?t;kAg|&^m-?(3$3us^5ayPH=
z;(R{4x_x%Xdj9u187var`|X5<#?@+3|Fuhx{G8cox%kwYEk*BYbne=5{aSNA%(S{y
zbRNeauSqwP^XA+?!t>#=cLdA);7%K-)r+In>~T_?tt-^oE!TYHX1IIJHW8+huJDh_
zs>g!QOgOgrMRZrd^S37t*Z+IIDagcT(ci$%bB}K&)CFI@d46%8P(|&<m!*>@3U4-F
z|K)5>(udyfg%e&l{yl#Dtj@f3!e67`OIPW1R0^`4J+2VARQqJj9g#K5RRjMC_8ds*
zS(q{D{*@*5L4i*ldFOMb-8T?1&aOIh`Sg_Ya)#CYAGJ3-d^Yr$Q~UIw4u8)}v-`9A
zYwo?wKT>n1V&2ASuT#HHI=S=K8SOP6Tpmo!Njqzw=DJQZ?d<X6Mzz^0#X1>T7OyV`
zSzTLXySC4st0(f3`vZy8^Cjh_=g+u&PBXh$GspM)f=gU0#gG1)Xzo*!9ImCdbLE`6
z9z*4;Z`{kRD_(6`aHb*PwW#uXmZmCQ)dMT%?e8~D^zC?_U~~6K^7TMNU#}U_>EAjm
z)hhJYhrh|Gnh?Q1m94<G%vjI#tJPNd4|gh#CHV4BKeKLU+0n18dP}`d#^~3aF)HoK
zoP51wl2l@fozk5B&lb;IWG(8=Yfxk=zdJ8vw}hwi)<vR@=e1NnU+mFy3$pooX1nR4
z#EBYwIcbi!8x8zdW}cbWd5%RSu6@(hw7A4pb*7UW7Il5!_og>dBIVwVh{mMsfIVM0
z9#@7n&YtSaP`3ML{vP*2`Rr+uNhf7a#7#Od#c;X7vHJ=0Ei2Ycuh8n4xnsrsU9aUo
zYbc0a-)y|j?~Itxme<cVm)u=ax?C*sHQ%zO>Fu*F?XC%#<=!I^=fbnGQ~L4BGu~-&
zq1{INJ{@XE&`{%g^mDeStNOW1WvU0+7g)|xcwF=JiPzLi(|7ScEePP-yg2UsnRPOb
z+a34MeW@j{eUwYW=tz&ntQp3A<<_^~JzTJ_aLYS~v+J5$)^$tVy6AfRlIfAlc3YFr
zUXxk1QkQ%Flv_zV`>T$~{$N@=b<X`Ixk?;y-e-&+>CL?C67w_p{%uu*8;d(Dr~h1G
z-D~O8+nO@r1?Q4ko>B@^Uu=6OT|9|P>+IpxE2m#76}y(>9nd|EHAm-WV#Y~{qSw2R
zE>JCIy?okfMlj<Q8Kc*NvCDp+TzTV?_RFX_SEUYWT%Kdyl=t~>UiprT_g{FGPG>1%
zxqHb}c!R=Yo+HanM>VBgN?sGkvB9NI^e)?E@6Bw%54w+3xhgypRLe+D3UJ!1F{ix$
zW7dk8)lF9!w;kg0XVH<Je^@Z9EJr0+N!a@LNmb+Q4Z5p@y#km$R(fVKE0j8HTes6d
zDf8G*14&yZpWX{1mD{%mRh|FlrCk|i^nLHz*@2t8U01SruV2P?Xp_XNiTV>BMutC2
zW>|J8Wc~{2|AJ<j6Kw-HwX-+w-tQr<XFpH**<!_z&HU4%S5&h(i(b!MX2Dg*oWs{I
zd&|V~`~eMP|8G63Z{Pknv7z2av&riP+cfU8Z+sliM6SO!OI1DXw6qaV+4&V4)eL6`
zJmy&$-{b1RZ`xBQ@r2{dIeFpAsrjrkwjDF-2rZtR+U4K#wa2}2rOC@~KK8>kOWqtb
z=s0pCfqMzd%$u598FsB>y%0ao{I;$^;Ip^7d3g;*Q$0%BmQ7V>Y|UM@`-!0O#EtI^
zDwBPt1tzWB6f1T9*6~BL6)O6sYdFQ4oWHt5@T`~*`?Pqa7v4*cC1wejzGGPL@Pi{}
znQ?^c8ne$_+BSk7FLup3``SCPz%1-oSILJJ_Ga8Xy8>Rui*{)>?3?dWQqTC{PnC7o
zah>_TPkq+tek##;dreq)S;^-k77;w1>s7N=u2*bkzOr;lq3OLBM{05}?_2TpS`?#q
z@|{fWRWIG=+~I9+<=^~q<KOt?-Icp$d#ovRW#^bOTUGmZify0AL7`PES{7*dKaX^I
zm9}VQ*Y)yKCO?1ei(t5wH~aKyZieUQw?B5D^D2WawaB!6V@bd5o%_r;7E4@ZJMh=G
z;c|^ciqDy(n~@P$T&I<-{N-hSFXvgQ(7H{rlir)(tvhn;?2^muax6@VWz%gIzqMlc
zc`H6oBq+Pna@*asT0K*P6$u`3v0lBhyn)G1+)3B|cJ2=6v|8*Ln09q)l8h*`nw{Bx
zK>>l{c?)jq>gh8+__T?!p!RR>>A4*tGe4w7zc`UHXZD8qc^pR5bLHe1mVAHj&)Rx0
zNTtX*St;@C7nZFjjz2$RAYvDM&|%wc=4lKj+wB<-oSxk|Bi}8DBk9`jg3{|O=M(yU
zuQT5G@;B`^qryU29fgph{|A=7+L_>Epl+|dkg>nP!2Z*%gYUv;SAr@bnHSX)mqjrb
zPILHIZPht}Kh1KPplC+CRZ^gLnovdLt(dsJNk3n4G34bJ*48pUcvN|FUre5uql)L6
zeW|k92}-*T9Q(4Zwt}HRtz}PuV$0c_M$K6*w-%``T_M0_*|MnntsKL>J(e-~d2Ta(
z!lT3=Y~{+e>nK%D)ij^-?zi0JcXz+VUYC87CCDd!Bd_~_@SKB7l;$??vR-QbrB`=p
z>DtVg7qauW6rJ9DJ$iOwy-mm5e`*Vly%ni4oo}3U)I36kNyT&ak(yfDX_LJx{{4|T
zu=)A<<4qQZ@5|VEh1(g=lt>E~*V$wQ%vsWUTstn(i}S#OMeAGjw76!NN^x3Bs*B&Y
zjoZtlX0)t&QI>&ew1Dw?xAm)M>&%Srj9cF0ay4Nguj3vqv2z7~_iA!azV$fqQdwoL
z(0!vN2OlYI4XaV`5O4I{yYZ^yi)Yy@(!_N4{`@iV>amku&#oRmY|HS#@AtxnZ*Si4
z^vu}ov#jXHACLQUnRitD+q2^9H?f+fRktkEd*<xjb;&$asWi`HzEHZ-MHBUmEgJKd
z3a&^Lx~6SD>EpAr9tZxs65M=po@eVrzK>Efoj(>#`@h~(^K#iMert!;I5v+}m)Dn^
zby|Jl>=m&JhcjB=s*RSfy(scJVD;HOpfZk6N8?*dx<!;)_351lx#q11=@8k~wdaqt
z@x&!gVxr%_TR+feXvk69$NnkbaA%F(?)~|Ud+Pp*He6qS{{9}z!zyVk<>#mVd&n;?
zed$o;T1)@?&u35G^XAKk1HWf$i~WCgC%Wi&i1(!fKTc<D6P~ThQmU}P=H#6_e<Tx}
zB4T_`=45@234ONp)5L45nWbF9)m3eF?>qkV^|^am@;jDoovHgFGwq?dr|j+%shh+e
zf6le42|D+~YsO!T4=)c}&1cNob0SKBabeSp<^u;3H<W&wQ&B(vw0hFH>(LEga(zrn
zxoT!g^D+E*_Vsl>!<(}B;t&qu_wxI8v&}fIe*T%w$NPI8zRi30UUk#7CilHLvo7RK
zb6DSZw{f1~?w6a6uQo|$>Yu*BC%}k*vR9h?!}slq56Yy}UwY1V6*y#Qy55)F$LZnZ
zITBXob2N4-an$uMdsbe2i7_qdq{-{OX%{<YbcjxTFh_l9OWF?RhS)&uNT#<PXIUQn
zDT)bvV)poK?_1+%F%5rCsjKt4Eu5ig7X1FN%hfqE3{Sqz^ZLW^;Q4%MhV^l^M|+Re
z?A>)}e!dig_)YyScg4gKUfwx(<jw@!oCRkYb6YrDjC88Q3UyAmZkCxAfAgCL+d7N&
z%8c396QsVIIt6<;Fi1UD6gA6{^P5!1(m#KO9mnTD4Q-c8&o-`FG!vQtg03|OsLxEE
z88hYeo2t_e-5fT7dAee+RU9U!Kk5^&<$v&K6?;MD&1dfdbP}h@EmGa1zdnAxztfC$
z=?rQ!eZCdfRdX@i@NKGMfAH*?_Cq=L%i8)?uWRNDS*uLgnId-YP20|`FJG<O*JZGB
zo%7r`S1qPF%?K?LxSqepLwmE-<z#PxH(P`ZHy`M^)AlsuneCb_T4(o7@n5z#*4ggR
zyT?+@D+S~9eSIxcgZZ*_(zZ%0)~Ubg$<J&5LaqLCP}##(Tus8kf>9f8=9%BtZOH#$
z!1>_Ss*~EvkymSf3MFvmtNoa+KYP0Ve8!6ZcF{*|KL|Ix^b(nO(t`bex$wdHP9HUe
zMTOF?`aPSeBK0h#=F`*Z4X%6tY*b;`_|=t%g;#ifx>blUSL4}&@E2D#*ypX=SnWP}
zm;0F#Q}qg;y|;|o{q+iRj%MyDzOdq(V}`Oa&+4gvLRuEhUTdtX*YM@jQ>NKF<BSeV
zO3lhSwYgzkc2{ZbL$8Z^0rM>5Pj0QM<a}`R>ebE9!x`fCSR8jbqaXjMUEZPJ{*S}U
zc;<?)uU>D@pU*g>W9IGi2`aUG58k}VW(W@#S;cFxG$E#ZuV$=WTEh>Pm~ZdA9p|dK
z6;+j`g($x`GdWEou4%4p+ND{Ea+_bgHhh0}tx5mcQx#Rq{d_q(ZcbrK+B92X#q{OX
zlFN@=bO^QQk?{VyGJL)Uv)hL~GI7ga+H?Ifx3F6SZK=Ne{eJ2B^==2hnY?x0d9F@Q
zNU<qcoOR;elZ!iCUQ9Ds-m0OfSy{@OP+ZFT;QjjbjDP;x$N&F1-^@Veb4BgXPdo=^
zo9|~XDE@41Q0Be%>C~9`{=&JIea7+Y*B8#aCo8pHJSy_HX2Rs+Yaw3G#4OIPG8I2M
zefrVG2I*5v*_SFgo=lmSaqG-&-E+VHF4TV_C*akdslqK9ZsK=lhC|5AeR=+8&0a71
zJ>`I3`MkM*=4qJqw|8Y~z4*IEf4=#ffOGQyE$+?aTHt=zl+R${xu-wX#5mkyMI5&6
ztFSqKdb)C}pyy``mOkUS)icUtn9n)RxPDzcJe)yq-Fn79kN3y?pQ0Ba@Oh!1l7pbv
zLFxKROQGU@`zjb2_V3?y`2SD21CGo2y_P)NT)pV+W|@dZrdb;dKF*lY&gftlf6#c6
zCD+1`*uE=i-`{Om!c*2U$wD|lyxo#%_42sOPugZ}-MErVVX4otw4B}dCNsOPyT`Tb
z<b9XjXT&bnUWhg3ZuqkPzt%^A$%PC_IzM=J?6Ha18nACt;hOyX?iV$Qcm2M6`0!14
zMzYp+Z;tJEj*FczyvphsoblD=_Ver48U888@85mw|30=4_3@?&OVlIS^UVr-e9pW*
z`=7bN{$IoU{p<#Do{S2*kH3i>VDA1abni`D_09ut68-junA>t4Hacv;kg?mgVPF21
z-BT4-w!Sh;w)*}jRPwCY{7?-8RhJc>y@p@US%^MAu<_FCqiZBjt4GW{#{1{5K4W3#
z7mih8Q|2dbof#hSu+!n!<@t4b!FE%;*93f@F=to8y}O6|mHqtA9q`$7#*AgZ*>#%_
zhkIo&Sg*YKJ^wz_iNKv(&dqk+(vg1dtd~P|J^zBgAKe*Z_c6t%9i955SZw9w1?T$j
zKg*t0eO~=?iID8g+m=UHzdcs=Z)1pdi>{xMWV>?i&u_<E7T#)+dYC5gY@^>2cW<Ng
zmm54YH~S_yZfgHu)acn8eL6f_YgW{|ln0BBOzHY{Y>SlbjL^`%;cM3IUTC;<oqEf|
z{Ih1}<<Abu%e{-NQEb?qx$4<*eytUZVGa3m`ukkG`Y+d|J@9|Zt#RpT{>!Rka<?_l
z74koL_)z44fr-;?qp8bkWS>vw6VWp~n{0iLk>MWm{tZVQbK`9o4Yp3b*0H;t-Dk_)
z|38xd=l^GW@Z|kJK8AJc`9pY@%`6rYTBYUt&Su_`PNw&FTV{Q%(a%@x(A|9UY3#!4
z*&k(=+$lP(-y6u+Uh!Qaz}<dU<O&UoFPd_ti|SUN3|e!nqO56VIo}F{g{89-pFLZA
zE3leFo9W#R-iF^sex4Jo1kLV$aF#L=R8W6BahvdmWX}~ErTJA?U!CFNlT7!OvlCmq
z;IiVMRG$s^CVWWTG_#d+?nQ@h8tN~PtdKe|{lImGhO@7)Gn|Xx|4%7;)yyTVhQf-R
z8xPOyvwU_)ao(E!2QtN{Z)mqP<bIjE?(8gy>v3}{=59GA>oxb0c_EL>fm^;oG9e2}
zTZ^@|5+xXxtb1ztWBVVq4{5K1miK;)xxrOb8-MAW-^sT%{~f0?x6g1t6`T7^G^|2t
zLc{(klYaKx6__*4=E0Vb*z*;f>FJLH-44}jvNT-tnI9W>OYQWR%<rGiYlu!M+od?~
zNUmUE#oOO24?lU$cER_h<&4j=8!G?HIsBLZ&-mc<8$a<$Gv^$e7N~Vy<49CY+Z3Mp
zjFEemSuI$+JE8ND!+*s<rI;-r=Ph?&2#Rls(fzve<36{5;Kp4auS~iWF(dMT=+h3N
z2DPPolBVA;d9@-bxL&CA((z!`bPI{SPtH7K`Zgu=;3MO@r@y~_Tl!IZ%8TY%wNXL&
ztKU5Qvr2b==31SyAJS9)dRL2fzyADrk5@`|!|uB$4H#b3{}G&QWjn<?_{)#PDiQY&
zPmY+}W!RBkc`#sx@5l9Watt|f`~NlNKM*KUwbBur@KV~?>~4&S+FPsp5xdn`%x8W~
z<BW6GUb3Oa?$+bhNq&>M?4J~VOXGMk$1>sFd+Umz14|e~*Y3@$Vho>gb5G05y35Nq
zn#m{4KG0*ecc&%uhkv%3hYw8>T~L~~$V(}6bF1q{PK)rQZK?4WwEtDC+Bb2nNLz}k
zP5nIn>GgJEifeW!I@rZATh#v+J9o2O=G~g@a}LQ%#53FuJoxdJPjuh;Q;&bR8BF*2
z+9Uo@+=;{4wPDJ-m$g~lH?tGBzMf!ybGu1=>n4Wm#1NZLI%ze`Kd);1YT3QdXKC}V
z+usxHo-7pk&sERcu<o{k{v__2tYyO0M>7heS)>>l%wpLUa-)kcw4{g?dX`l1NaW9v
zlV;eyJ^t^X;%k34iQRZuu!gtcZpmj+?>+kBS?{jA5?a0^uwxyxuX$i|P`X`cf51Is
zjjaz4sGniwUi*=A+Np;}yVDuW&d)WT+ukTO{i!kg#>*P!-JiGAYL=c4$kFvlwLcn{
zv{Lnxc1Q?c`KzqDb>&f0C;jAmn{jNPX4QGej`~d>pEPYK*nHi^;H}d_&2Q_wKIFYU
zdoS<%UrU+Td(p94Z#&hxU*zp>yjPxS^{VuuO<>K=+l(2%|0UgKT)@12=ZvL~Lz(|%
zzVYi^+;Q&u_xGFksGdAC_x7QqZ#|#!1fAU%ruF4vcg;4wKVO@8`1#p+&F|m8-*49t
zbLj0`NB+iA4w3el>)qn_w=KJN<U#k8ZR_KkCnh~}ZkZi_YF+UHyW(qKk8VlX%6Q<N
z|GuAW3BNYnFk7?r-IAosKYJ9Ohpi01zm)feW#i_J5|1{%j*#KLvgh-)GiPd-HO+7}
zZ8~IW*nM!;1O*$lWr=x@{4@4kPPT5F6+f@p{XGYl_~f4LYgHa^ymR|@%-OVEX}8Y(
zS2UXV>f$!fhdqgM8P(f=Yc2P0zcg`{uHWWW3eVQ>{};Pqp8kY{b^G6zNwn3>6N}f7
zK56YPfB*jcy|uHIZ%G@-Nu9Ye<-?<+?-_sT@3!?mw~Oz9`T97<7w_I54YJMevg?%c
z5vgZvXx(2k@vvo!zL&*;KD9L2oveFqo0{jl)nth<x~V$3W?cTap;qcx(SeHIWCb6q
z%ZI|gPua6e?6c@S{(E}&)AX{$d^JiJ|LH$hX4CIok?k|-+ZLwP*LW9y=ssOnzn8N>
z=Y&M@E&k%*luIW>@?OitWC=|;0xOE*_RQei(<u5(N#gqvmP&?M7e2lJ^y>ZZ@97L>
zyZySOFKhEWINJTcwMHc=v#s~Kj&b~6rVmfgo}Hf4{G|PN^}d2suV-!N-U)PTq@CHk
z^TH#`?X4PuX2#l$d<zVB=TB1)YrVBazFPOmDzVMCCYU+*`mSvdN<O}6X$kA+^nz`Q
z*Viz7ER<mTQp>&IZNL=mn%|Bc(o_B|4xO~_^r!ze@xSHHyUVjrIlIThXtwk6S(17S
zYroI+xs+_UqPed{XrBDs$MZXv@V|E9=ijmSt-<!D<F`Nm`T5@b&>NQ9YKnCMW!2md
zO12x<HLuDR?RGmo-Lt!`E6S+k6^ne^eY3la2SlPygu2Ggn{j#Z&Wdc`#>j664#q4L
z?Q}fAR&R2@E%c>K)xpy_yFdJYs*@XDr=qrTr}vSl^^-(rY&&aWe(SB+fz5Bf-7MvQ
zaQCXm?G10TE(%PZQTu$oZ5TsP+~ueGTejyfXR0{*>f@B9%pX2DB<dC9^?W)gF~i{O
zi_@!Db2Eh3?_jv_<VI#;6Z^~>mAJIOIi9Va(hqeK&lo2pL_Lo75x@6&9rFc0d#l4=
z78?h87V=c-{Wtq!%fWNZVTtoPg&%wy4xD~e(Dg^!MDcX9%!U^lKW@C>zM>+Wr*X#e
z+TLYHUZ1PwSCH44x&HTRUiD{lZ>i;G@ighO|CyWsX~rCIG~$*^xD~15;o_tCJm%)Z
zy88X!&1)V!St9tzygA~4fY+72R>inDJLV0wAJ^0tmU~<+o4EdsFGs;YCdDm}o@C_h
zy0jxp$kXYXqt~8e#z&bwUOot7i*|l=eD|F@GIbM~pN3y&U;FXf>~HmN9A{im6_MQ-
za8~=H&U1&WqQ5Txa2K)FbK-Y#{jn-cZj0jCjSH_QG%kC8{<qwL%4-M8kE*@8F-?4P
zXVh}THlH&aD|x&PAFT4aFP{B6c$(UJr>W9rF?YqX!U861v`s44S1-H!;`57L=?uH%
zGPC&`*^Rk)7J8b*?U-v}wWo-=`&P-P3O$zK$4h&f*gu||@p{Q47LH%)VqZJVZ!b~V
zdogNzqJ+`9U;6}A9SeJIh^Bs<y<+9fz1mXokNHd@H{|hN*-;_2LBY!-wC3{n+54C`
z+})NYY~gpt%Vjs8#O{4@K4+}I?l1bdBKoo7ktb`K9&^v1ctP;foHZL)+PKW95X>#B
zC}d99ZF@gPYPNirkoFy?P5ie^uKrm+=kf1<F(2-%oOkB^rmI!=;u#P8?0(sD_QCoW
zCKt~v<0_fa&NZ###2oRSo`?L74rh{FRKi7bwC7FSW%SqgL)eN<Y8j>5UmN^gnsvFf
za`W-JMY$25RTGR@pk3c3v(}35NXXPM{pEco?`-QdhjfuWmdypL7CXJFveAEVJ;bzA
zM)d4erX73sFkG0l=aE%&hnv&NkeLZxNgA35r%1jp5niZu>7Xvdw%gsOwYLTLs%&1l
zGVQ{*B?i;J2z{8M-QBk@f2Xee1BR?aGT$otgs*%G=Qb}~pj7tsq}Mzaldrbtr#-%E
zx!UfTi#+RB#??O0wf<+lalFN2@9V10aHDUwH>(^|YuxMa8#2@!THV(*UVquq#>sl@
zaypMp>%y6}_UkIswRY^e^CbK9UnMIW^Y6Mda?{#bf2r;JbUBxKnUS#VD~1V6%o==7
zf75Mv`|bAI?tI3aPnWj8lo!&tELE_)r|(iwR>QPX_j!)0RlBs;E>5V*bWGV6%ra|+
z$GX5QU;VaiD@wi9OrxuuYj3Ll%X)M0<l+7QtDhtp3SU)@7m;;((w)CW+M`*+afeE?
z`}wU3LdpCbS4u=TxyuM7$(d|8xI4qXdF7cO)2!C3y+13!wq7Akaek}%$sQl!Z~21h
z+h%k7UR3ffemd)<ph}mHsa^ctkhzOio84BBJ3EgpNo!?km&2x)T6?BIdZWyoUz(pe
zN8O#o$9zu6BRk92FL|9?m6>OxQ(vN(cW_L#@5_S4(%Gwc=Ka;*G^1;Y<XK%m-kIxW
zuc@2={DA4EyrWHvS9(_)iR|#6t?=S{h)+pB$7F_kdpP+xB=>%=-T(3z?~Vn1TQBf9
z9Xa~iV1?ME#wRW>1I>HQ*H4^RwNkkGR^?Bphvu_IJbo-lnaB3avG{_H|H)2WUPJL#
z&D5x{#v&tE>ut4sukyaA@7BzSxv=fUzRrk?#>KlCrz(Gmk1A+goVNM+#kX7b?qgUs
ze?Ldkw=>DdobJ7qV%V<gf1z7h#`4)6=~K-ccNJY``Fr1g1M@ql*SpS2$jhB6{d>x!
z^i`)NTl&8<*_%y2-`Omv_49O2e^Q{<y=nbEM(lSy${iBy=d~s@9pw=a{CxFD9p}$G
zoOgrgHQ(`>bI5c?aL4|xRQ`{ub<gB~F7k0aTbB4#^a1zX>hovrOclDTlH6BuH}dkj
zFIFoAGo+5@b>3Sd<Z~!Qj%n43z^A(k__w@d{?xJap7a~VEpanu3zXMa#XuV93$El$
z-dvS!_biIFG2*=9Ro~_abpy$MWkDv*mP!9-bxmd1{9W_pznMKjvb@X|hEsm6H`*}m
zX63^@tp#na3C`SFcMn?VoC-G1T_EH;*YX1UnV-Sx-Am?Xb|oFkzux$_Yv+oTJu~?h
zEIVM-sG}k67@_98)Arov0;a7;-|TbSm1|s`wQZ$Gb=AZ?U$0LS(<Wc+3QAnM+SKe(
z`>xGgc8wW2M}K`5+I3DZpnhfktH(bzr0(~miJs{A>Uc4GUaADwl-bIf9{ggzyB8j;
zvup7X-n_%mI@yk`PRF)h!tiqBQS1BCOgI0g^)$YXda_nOp--~vi9_}Y!{5&nq9o;x
zoq2X?vf|92zP*VGT4uE+Q9dt1FZ;c1P3-?|!Y1`*4fFG?0C&@F9hskUhMya|tNnQ&
z^kqFvTO6QjeC}3>;H-DjD>P+)?0RueCGGO7zO53A&+o}UD74FMo##x);7Oa!PS3n4
z!f&A06!Ip<?`bE8O3Ct|Xa?Ws52oJ|xUlwwQpwB%BI1&a#R*}M5&9LSX~DbBX8lx4
z7hQBCW{&Cq14eJBJ>otcb$Nbn_?p=qd44t)C%lXNw;Z|RT~S?TJ@Z_oT`G^jvaMnf
zmrmD+yzN}tBw(!O@r32p#N{_T+p>0hoWA!%@RFYOi>so7EPJBv>8^X(vwq8)uL8Z6
zv3dqRd!Dt0M!!DO7%5h+yezIzZJt%OSnYg&SK(EW3j(Wazf|<yjCd&jD8+5p_LXVe
zx6Halxytr+UC5a?@p1oqe)V_9Pb<m<A9LUoKe13KOUbLWY}d`jnM~H!&o;HV_vKAi
z&op+f7Fp)vzrIg2=dZ>G&F>W#LRTDbJnfKT*cmAksjwrFgERl$jcXovVkc&7^89SW
z_5Z<(`FXPw{=ZbZd3yhssMt)W!^`6irn^3T#`Aqgf1cdLnHGJw?qsI?60@E3Y|pGe
zreCxKVv@9k>~C?HB^$*mDze;VYhE=|Mu(mG`>Ke~$5q&EebVkYf8@6IUDw1>>ab@y
zAM2O(!rEznvW(YnI3(Qo^7;&pqifEDsBwvUwA64`-}n?VIag*r&%(;dC$lYC<R`cY
zv3`2IQsZJu_r@8#CUM4##kSp<A%160%EFAb+wZMgc<i0==8mN^YfgzSo2(K0pptDX
zLxAy9pT84hzZzurp47e?<Crlys<e5j%K3R)SE_C{P&lj8$oba6il^^F&71SGP2wp%
zU8%ug6R$fNUQagayL~!1Dc4W^oRrSg-bUjc%Xax4c2dy|F<v2G|GL4|@c-FqGkAsn
z3QfuQu9|=NMx05K)B&Tj&0I;&s^8c*m@m0iE#a^r{Bq`#&0HJqm7PBPi<Olt>03s0
z`o|+3FU}>Fb#LstsBkHrojL27kx0%q*@nc7mN^e~SE)QZV7H`ak7Cui0-;AX<=fUV
zJZvs%c-?s0viha(x3_a|<O^-KtlC&6@LKAQ`ws2;sW-mA_|4n!uZVepqI%qebmN24
z68pWGl4HevC5m^<e)#T#HRI-+X-RK(G`&yljNF}(!I}u|#|7+rePi2)8&B472y8lO
zCH->G``@b{{jX|Vr6iYal{jrduCU%6k99Myg(plr5+?NZp2#z`Y&kFU-OE3ootKb%
zO;yNNfK6CapDFq2ryp#U++Ut9Y)RV@y@3D2E<xU0<GpuF7&gqWlh-;Ww#@xwz5Mwg
z-kfKrF6W+E_%&_G&01rxkQ&vig7f70rdC{b5tx>-NFl*HTc-ZxRDYiRZ<-9=%*s@^
z`y7xyslC8%=F`~{Mxp8-s}=tm&ge}q3)tcqotQ8?k}2t$$BKpN7vnFV+hQ|&-v1?Y
z&;7Mkc@<Tm<YgmX|LWpisr{OM;@PZPZbw=dzFKx}Pw+#T#&bGXa)R|<#(m)H{?UFw
zOs><iK`Jok(d{>)^`}p^DoyoP^JnMozdj}4UDd~5sk^d{?45AtijSPB?y)AW{@=W&
zHDBg8NX_(odgfH_+0=?%mK#3aX*OQ`qqfNAfLd;_((xI541)P*j~I1xgk(<C+~an?
zqjKkhT?ZJ<-X`+*U2tj1xMJwc1ubV(l4DD2f<HZR5Sg97b<^3W9SQkq5&eq~q!!*S
znwRrUJ3BJDv3*}gu-Aq(#mR}B4i~HWLUwFe;uEQI>fyPFw;y@`2rbgT!Vr9xFQq?>
zz2xe=Y0o%cDRi&g&K;Puj=}m<J(rH@#f7Dl7-UUX^M$+#@+h@leMaE=hD#=Sr3R~?
zd~f93tHEvBXYL{6;rz@oXU^3v?jNVOy|7nh$TgoQET{AQRit2uHc!GQA=WbiJ^`0a
zge&(-o|iYZtKjy1d|Eke-qFWTj!fHGD1N!#;f&$eS;dJG6Z%zWZ+W-rs~pRemA*!w
zFS0c1Jlto*y+&Pcz2B41N_%sXUaUGjRem|we96*Dn`Y#<8ko;cnbd7O)yVq%BD>zQ
zT_w#|dF0mz^iRL(V5t1_KeKInyaU@Uv8xJmL^V$y|CK4$v%F6Fb4Sf$PpNZ%`gyN%
zO6MN7oc7%5$$gd5MQ(c^EG?=y-`RF{BhQ98Q$C3a-2IXT>3BFC`nuI?^|Uh^Z(mq<
zA<4jS@_C0jp&Kqqg~k`u#Xry9r6>RB^i`#VwvFeSmNRhAow@$<(MdDkInO<O;PnDA
z$uk$$ELdLUc0_B-_taFedqozLA~|9&nQppvw?n8^LgbeG{|K8)-y0{qS;PDBmY=Y>
z%$bAUr!uzQI?%DxZSl7$>UXb2TG=;!syunGMYQ?g^>iCi0}q}16~26Kr(D{W<r*X{
z(>av9Vz$U9)o@eclmjmv*Dqv~?eDyqv;0M!ujQkQ$tUKsOcH&$M*DHT?G)CuHjU#h
z?2!RqP8~{c`uBH!UaG3(YrZ34br+t`*puw_=|%8#eYX`yxPR_yUU$TH@stI-pD8%$
zs-81avR&@$nA?;f*|g2o-&NYhJ8gNS&dgHIG_lRu%T6~4bzlD3{^8CZsnXL+I+VX`
znU$pdvt;IU!Of9d*f$%Ob6mf+_vAY6{>#a8+ZFz)scwjvvNVy&v}Cn=&9vaxihL?@
zG8u_t8QV6yofQjkp1HZx^oR`is~TGwHl_#H9{PO!7`@TSso%+rB~t9;{;H&To7VGf
z0FO-GD;4M7r)Sw+t2Jpt{F2@og%XWEc2W5k&zfHLR&#%QY2nwx3Gr*D>s&g-bXslO
z5*ypgN%xJ}CR;L@DrIfsj+0I*Of`#h%X|0g$eTA7FaOOxwSXayFSINz?98>)lZry@
z!aDzNg*PuhIbF3s`^#g^hc{hLzW*|fH8Gh*K*Ms^)W*D5OQ*~gw4W{#o%CRLO|!<Y
z8@EiN!&gSIsXSSEGtE-2%5GBYu|Jn<mi%_|bhG3wE1jZg#CB|f#}mnoEZmz9FB5(o
zG2h60-kkPr?baN@f84`^6<*w0E-hB+EU&xho>ZY)*V>tPl`?u%-v#g1uGc<%@`lY4
z-}gnUIi)^Jod{-<?>A`3e7eR>=-BCS$vd?k?#^#SZ=9Vt!CbO0pncD$^yuuSX?r&(
zZ43UNw(&*#dxcLn6F07ifHWE>xahE{IX(Y${_<Rw)1U3Sjo4*Aay%4xy)5-cN?OYo
zZ}X3bxBt*D*m#ZCeYvpi)$0ihmumN)5PRC;m7J<N{qa1exeqy7FSGbFoYUGq@0^TB
z+Q*2?({J88YS#H(_0U3J&lO!Y_xDXWbI;DZxNPZ-Gix^9f3a~xrPjv%9DNxx`;Nc2
zQc8}vGW%`cj6<x3v$M+B&IhbeOcR`wKTSA4(tPUAq#0V_(~{@zWP6m9ol(7Q?$qGA
ziEg<?$E#NHY25kwEO|!yr?MLzRldRva^1m)vakGEwXAjDlp8hg-x%jGyxHyRvv<~v
z{Jfl#KF1BN{dnoh?~`;c(uVWQ%W3a?Px>5icUW|Ja@yCjXF2xio3EVk>9>2`S-EW;
zL)ITVr_QG@#8xbS)|u#?vt94@ccy1DD_`D(Ha520bxXQG`TXLzxz`sR+0-bmo_ak#
zH@*7Y;e_+WnloD``Uu?+IrPl@tJ&u3j~DFL^lUjhOLO!68M!CAC%3<C+~Ye%ahiu|
zSGL00J#V_dB;IvuyyN)yyYFg^MO^(tk0MvOZq$f;E%<a*?qoKG-0O@prd9WEtebS>
zoX)J;h>aR2u3oHsr9O+(@ST|Ctf%XRKmUJ`r~68@e+!ptorK5+&AT-kQiAs@Vmak(
z*UYdG^YbkZp7`gsf$#d8iBebk7yF#zzu{Q4jrV%Og)>I0Cx3RoD|<0*^RAouOnyt|
zo@qL5@SfxCy8PWOou7{#m7jI(U0v6`*{K<CUPu<qNwI5UYU$Qq?tf&?^*ha>NqaM7
z8deksx~K1cw8rk#yqR_)tD=4!W|91SO~~`Pr}AeOp@Y)3iISiAvX{(wb3n&;`pRIf
zrwhZUOkXkE@b{_Jt~@;wnRlONc3p7vIQlW7B+4)HbQZWZ$N2jH8L7U<-3Oy1R&`%n
zqZ5~^e>2kT^W6(9jo0FeTee)ezvR-}H<@>rHE?Em78}+p_4K9-E?_m<+Fs?-?`$<^
z_SLe!dYcR3dq1wNT=RX#5#tNlo_}?CgTxwF&dYf4;|iPT6_=H3?#TVTd2Po1D=)q#
zZ{26LHh<ddWg>aGd0Y9lKCYOq|1<2J@EY}JQnPP{Y<6A5km%H%smA2Aoay*yzT*ki
z8|N#AZFW8XIDcBx^xD9yjFRD#cKKad!Ox>8%=X$wc=Hp>h@zC48I6H6@;T1#yV_ax
z=)B+ab&r30WSt53-D_ie@4%eI4RemooA~0Zk9}6%-YNgirUi6GtSnoz^QBI(RqDMr
z`^z7z+Hsu;x^<l6l`_wph?QUR_9R_4Y=JJ=RFFN+tR#D23irly0V{jXom^%+>*mq8
z#PlwP9Si^1M=#Zg)0$~`e8*Xrzh>LK7X+l5onZ;id#)O=<P*p3Q$IJasM4t6yzowR
zZpEAwv1@^A<j$L!%H5iETy?^eH~+2#+@HKlQtM0B<sHILIg6fNJ`<wY|BZ*mAUj3o
zV{e^l_qkIOx8K~9Y0j$^;#^<M!tu&#oy_J$!(^*lRuLwCn{S#%@CMuWt=`C<<&Zw}
zt#hw|&~oi7bEPCqR8}V6ue7|kn6tlir&Nc!gU!SwE`G0R>$7S++?(4iCgyFDbew70
z<8WacXZNqK6OZiKQo{fl8e;R4`}cakSWVrWm(owZT2A9jS^aU+HEW%-$8UZ)&mgbN
zaOQ|q@SabCHG92GzH{&wTxfR<2u|*~w)pt%%};$IR3@kIW#jUb`}ceQVjELYnbiMp
zb(bcrTo*n0k*eOWXBW3Vl{$XvV!@Vpr~Ok?*36D@Hl7;0>iDO^DL*wWN_uslJJ!~}
z-e*(!WB&ih37col@Qpfp{NwTd<tL9fE!|S<vR`iQ64xZvgSU^&c^Ljt`^w{|$p$}e
z&v7e`gf`UX*!+2_|M=}jsXgi~#xe&V*SS`2Ws{4YP?NQ`VB)gS<ZGUSa~~G--7YMx
zT_mQb`z<+Vo5A~&hxPZ%1P1#YP_t1LvX!#ypH#t8)1!ZE*;{{>{en$@{sb60g4Rk~
zEPA5c@pHYPT=pzGu3dJ|YkpT;`xdGBC;0Gl^{<QB9^^Nvg-1NhXY8AD#`~eg#V<>C
z{C4^weX+Jq`GZN?t#qYlqIS${zWg`m%bd%oz2<|-ga6EaQG)VVmbaTj_d6LHnj4#e
z<U#A&%`Kp!#4m6sepiG!$-5$q5SwA3+jofE6@hvj$lJN;F(JpVAFnT$-cZ8$(zUB0
zf$?b5F)`~bk?J>Y$vTGruHG>HCTG2I(Zw6tR}{1Y12-}(iU<&yc<$1)dyy9ByO-*0
zIH1Qp!)AWX{Wp7q&z+e&*ZS$1nLBy@nXZt|{&4e6%r>d@8$duo-FT`N>w{U5D@CTy
zi2l4|&ZMNk!otEpuRRKJ6E2I)OrE7Acyz|<)oW63%o2XCapHvN)D@y>;)PRpoRwjG
zaERM<pAmE7ti7&DUyKfzPd@8c5grh6=2CpLT)crpu=i>e?;l&12pXSE_~9{CY?o(a
zoZZjf89ug!QC7Pw?um4`yCi<@nE7$(IiKxy+KoAGUlSd|{2V!ZOzydxna|E(-p!wC
z82bLklP8+5S23Rm6Sn@lBR)z<XUYnxFCv*sSFGj~R<aAz%U;g@s$TlGdwK6#<K;Yu
zbPLTIvaQ{6XU6^c{oM0w^#iuU4)%7E5>{FYdf!ruh3)w+tgXFmCd<GOJD=fT?)j{l
z5^2Bsna$*d(ynXvr^>x96a7#jE+-clbNBbF4U1AH+8x&39ll;?<6?V;Bjo}oCY7E$
zvbWx@?)$us4x=BNj%4uo{Q4rh@+iNGQglN{#|tUJrNK+;9e4zNnGY03IG21;6BPWZ
zKizb7S)^^&mtygwTzbV{{wpXgx_w{bn)Pp<1ErT9s7CInOI;%Kl;w`DO5hJ^{mieI
z4h5~Wuy#{eRi0#;^zx=KgJ0YE>u!DT7w%vQ{pz{QjP+$L!ycCx77T{<PdLM7C;qwI
z(Z_t9;lK}>Z5sMEo6foEpV+xAuA#85@A<EP*=zsx7~VDBALe*#+qGF)x8ip`YW4o=
zGSl?*&BQ`iH$lap@AZTiC*8I4Jf6DZ=4QRCPrrN+{l9NJ`=@t2tF`|Z9eDSYdH;k?
zQBj=@$<LQ-)V%(4PtM~atBX=9gND_sr>qRRze|j@1UkJeR$W^bURN2t`@_-bi#lt!
zF=XYsG=@YoFr4{z&g`uBdi&VOC{2rMm-1T0#V)Q>TX{aP6{rPInO&s3{6Y2Eo<}pP
zAAO5WPYaK&E^GVW7x!+hrTVff6F146`R1_7DELJB{zq0$62g-ofB1JSvzWhIrmk&r
z(W*^ZYwW}YrfG<8T6fHLZ+L)a-t3k4<!%K;Y|fdjr_S)SX%_PdrsA*CF-2GEzi3z(
zEn`U7QtbUZ<@C?9Hy6!gbFX1ueZ6AZ(uE6k%^TO=Iy-OqlI@LWHx-t1nQ8Z3Kdo1=
z`xKL%Yg$^$F*)D$hJjmUezHmIT9`6_(cZLKQlF+yl)f~L{lQ)H#14ziOp9*EYjfLo
zzgu_YZTQXAmJENs#kemmGOk&>IwaZg-9JtX`#3LlWq#Q_i54zjGg*D1`>*D{TykW#
z{kG3ux>NsM`^-9rsp9Erqq>l@emh^X_3B&|5}h$EBP$~-Bg3k<;{To*>koO=7p{3D
zDN(p}-Us##r7K-Z!d{EzZi&8mbYH@znyEsMiZ(@rTs&m7D#!iW;X@5~>=v$V*#GFT
z{D=5+|93tA@wNKPEvpY(T&Aq8OKxOX?f=2KQSZLn&zD<f-PrYHUVKY_$xfa|#s`+p
zuVz;!2~Aj}?j5<2_u|#LftNZx>uUC`y1(w{d;N9CV)#GaJ-BkeZjK&9L#pMi?7Qoy
z*>&(_8py`TwP`%xc*R)j&Xl=xHTA`#*yq(=OS)tfs$^7_x;(9zTgj-WSt;Lb3ajzO
zO}Ea~R7{rnc<Ywy^?9Ky^3Q}Pb}deNe0W~huc+tNTavgo3tUxou>U4luE<cq|1A6V
zjOUiVMh7;X)$q9ga%Pikx7|vqDIK3CbHB0M=+?68DPQ>pdBuyGA|D#$`8-cnbf0IC
zyLKmfdi(EdckT8*c`U!Pb>+7955Mjmzp`V2P3QCLlBvg~H@*JSm}qx0vGMq<@^8nF
zJ<XUcr>p36@n?_o^*tq*E}bZz$L+mB?4#})t6hhGADQdJ;P5}XBd&H+QRqX_;<Y_I
zveql_@CE*q@Hwj-9W9l*->ft*F?Bt6pyB!scEL?sW~{9Wj$pWXgMWtb`T2zvO}Fl>
zzjZW%RpIBmHUXLWO=soLP2Uz2>mRvbbNy16DaUrNGP%B;r~1+F1?vP2%Wo~2CVp<O
z#%$YHJC=Ph%T0Uu;n&5922S^WrrO@xnw{Ptkos4MmnS3d`cCr;|BjZsfBYT7+PzMX
z=a}9e&o7U@`S41-(^iR6EIu>!==O8f@0N3Cm?h6UzV-fjo=8zkfduW_H5|6KW$)CP
ztOVAo={HCgC-0xGP^H6gpl8`e)uR~}`aGZKnQn}aE<I2=NqT?r^0@BsjZ2qtlvEa1
z3y3pF*si<bs(&c`;0HbKOE1)w7UjIZ>U{RsnbM6HpIK~Va99~_zsz3HcgpUBCyu8p
z>@GGxzL)JUur}Vgq^pBXL+7f^5`~{1xtufJSk`wcU13aB`t{iGt4Q_oJy-R)Pe#ej
zm?Zltdj6%`el8(jv|ilwQ(Ad;$-9X^40#v|zNI|Bti#Z7Ec=tHl2X65^&IuxUfpKX
z!)|H*3D_#+G%<MJyRF6=lWp>9v;RN7ZKJd*yC97H+jF_4!PCSAD|^+IwCY}UG3u{-
zHbv*M9`C`O6$?tzj{69gT%De=I>Kd3<+n3?`9CGk4i`T2x=bT?yBfoW>evO@D;ZPk
zf4pxM`PCVvF)epzKrr(%wi2Dam*0GOY^Ws0knvjRqGW`vhuEK;4iiOU-cNKtua|kK
z-G%j_vhBJ2$TA0q#+@!9A%Y(7(;~zf0`$4w#;N|Bu{4{%O7Bn9_E``5?nOFk9~E|N
zpE12UV{PG1@zYgXHYrt3oBYk(xR~X1QfJPAtlTt{_nF^LJKO(>xcJ8?fOlz;D8r50
zCpTVg3T!JX&9&!HGfif2_<yg6`IbNTwYM?<&8|G(;C_)$`DDT2$=h}3ugY@zb?K<b
z!+%n1H+k#(yQ!|Xl~7*J7gK4poWbpGyYFn9qAT<E?&X<xAtyIYIWTBheN0w_*TwhE
z7NJa^J1*I^%b8zen17IeqRV%UtKKsv{rGsxN^-XN+cjQ{mX6#E2F!cTZ=89Q^>u_$
z+}dk7yQWRmt)AbeT+Db_au&k{)nx6yC7n~1eHTs0t@Zlx;?{e0{rLDt?w(K5E&fJa
znpA4CdV9Csl%-c$-maf*$*Zii=-<03C1;8^bqh%_9}ZLArp_W~y(7}wYs#q?Zcn~V
z-XZIKpOL}mka9e`_3yiDlpJ<P&SjEq>R7|b;QZ)&{3(yRbBsK#|BeOxY|Qv~>uF!9
zSHPTe*IB(yRNtLF%rrgYar&#^WFCfwww>yM&#V_c7V5k6&NwZe=S@`kqFSR#_vXpO
zMqQrC82Rmyc6hki4t1`l>umo;cX(~xq{n^9)rDQM`)WGl-W3s_CWS}rmH1~<w9QL(
z`d@3whN;52ao#%rRxEdMc`fsE^4wLwHmWZ@_sp|9gwxo0`Fr^^`y1QJ#JcZ44`}La
znQq(q&&DP68aqRR+4b3Of|4EYC2sk<+{?_b-u`U8|D&?t$<9H09}36r{8#X3DZi-S
z?mEUfttrvbTXwr#cdJwV8@Y3P+}{0)(Z?6O+*V?{GIvSoRQE=o^?Sd^eVyjX#Bi@O
z#9wIQ`K~(?8A5jXEppIO_|)y$x5&IZW$Ge>DDLI_zdWvNy0b8w<GJU-Gq;pKX00rE
z6A@MN>Zd^D<^R>X>MMRtm=_t8p|+UesZ+T**And)6Mlv*Pp*2fb+X^H!*7?J+ma?R
zcUkQF%VJAddo}kbyDs^&^nyj>>%W^X?cCxhwW-yNt44oK)c4BE`e_q)_na(Mt1@ZJ
znEv{Nb&1waMbV3&F1<cEnfv0cr`yjti~N`F7n*wKjZSdDGWVY%&9~J%IzA<Dde0&(
zD}QX2?ktv^8viLXe`s0Nx+$N3oz+_YQhd>dKwhoj)EA;kt7=o1NUiPA==_w?ZKlez
zudsjH37O!R=}Mnwr6{E9NsCNXzi!%@BC+~JCwE{+j9{JWtMjj?>^%2&b*M|G%NNgY
zJN(vjpSyZZV&?gGCoaz0GIhn8t(m6ZzxYK)^Ucio`>4E4Q%{!DT*G|XiR}-5o~<!U
zKcuCkB*l^T^2Xl3PdnGX-o5EjTYZO^$BHX66gM`ygm=7Hv14sUx$()*{#=u_tG6DC
zoM+RU_-pcqZ_0DqCTl%==U}P)<(7<}i;G?IlUL7Y=sE8z+PLXs3{%76<5_PX+Mb=&
z@o!y#7tb=u8%{1R4{I42ev0$xO*kH5`8k}q&3f`Ym3v04d;z~?7WwfiZ<U$LWBGq(
z;nD2sEj6E3x9;J*yKHuy<NU+(qM0^(wX_zp+o$>c(MznZ_;vBpF)#gWmIFm^7c_3$
zZd~()u||At;_QDr!hNF>W+u!z5-c$HP%vNf8pa2{3-|x8s8ka$S~w*x);z-a)kGJQ
z6>*$z?*vy}EUUeyp;736;k$m*I`^Opfv-5H9er^yw!=)`qxbie%Iu#_Ut5J43;6bI
z4pjdYQg1seD%^h2S@&ZGzbBoWveR~-i2iE<XTFG?vMKzpBV4vDx+M~9c5T|Z53w!3
zcQHF~u1(<m;?b|P=<g2wYu|O^lh`tPZtP1xZt-!+zx+-6T}~S5T6s15nsmRoemli!
zU+UIfu6GU|IVSOA{ims4kERI*zOGt6*)ICe?+?>{TyJhWnEOR)ktN?m@Atvin}fEb
z?RoREVA;#Be!|5rOpD&-x%7PxXJ**^dQrhY^_8bZyAD}ahaby2r#fkM{<<?|pXMZ3
z<*f-%<KO<Wd)m9b8(wSrDlU3*uE8^lvG?ti{fpY)N+iF#!72Kx_*vzTT{GwZ51;-b
zYE}4Z_Mh9$+oRiVf0Mer`)q`9Y4?5q?KMZVS6Mp!eRz-ef1KGtJ;pV^^uI^=oVv-V
zpufR4A;*eyvG4sjd+W{V`-RUl_SpV4Gc5Z)$;|Bg?$s$7y7yz`I^WuCiv08OM3s8i
zPZI`)cA-OQDFT9($Chx_t=YdLDzI8;&(74l2W4z7^=VG(IrgdL>+kdOk`dQ>R$TtX
zb)G@Vz2TwY-j3HxJ+wk4zb}+*DBITO;_~I=qP=m-B}Pj#_&$hSTgcybYu6UpuiFDy
z3@ra{Dph4acXo<5yLvXmnGMR;yQY^hXJuutGkw!6$H&01!Rf`ZidMG(BSV{%k{i>a
z<Ql%e+ERLUpV5N3L3_J5Nq&F4_CRFcU*l&vKVrT-d3EXI^LH}yoXohE2KO>QG7Z^s
zb6J4t1i@!DT1!J`S{AVB&$v*_RNM9G-rh@Ez6bwrik%aZe(p^2#1aOF&-WIW$IiEW
z{c~xn(B>ts>(8Aq-Zk}9M%JGwjmBrpO0Tppe%`pByKdY2Kki&xw$9o8?BRO;XPQcT
zpWZprYx>i0nb7qwUHjJVsQvrtP_C-$CDy8?CfhUvM5hT0R)(CJF2>HcPUGsvgSLla
z&9Cleo-w83WaPF9mpc||g;`sroZCNP>)Ef%-(J<_OgR$uATO$XMVm`zq6zEKKe2HW
z*y|>Kc=BW3Io|c#dr#{JZsNbsKj+quEsxIUc(>kv^WUMQe&+7Y!Tsyqzf9FnytZP7
z=@g}SnWKq<tX1q&Z8zQb@U(xMt<HAg#jlg4zPYN^3I9&VmY)yN>5X5!B2?b#<*kR=
z2M_kYi|4$(KuI^~dGE2Svc78T>ZETxSIV7WeK_di8fy>9Yl$YsX_IFEaMLhcUCO!S
zj&X2p^)+qgsLZ0Z$F?lDOMf4_MMJqPU!w87oND(}<!9d~FAY7JJafBh{#Ub~Z*D%D
z{5vVwo^A2UM3dfEA6NI4O)ZT(H*ZnvImurP2bNeeGi2Y`)_hv_NEC~e{U$r@?BnZC
zi_V!jJvA<1t?iz_JH8y6{zlFFR_vD_#>eEXvMy$8i5-X)wzbj7$yn*PccI(jKb`t7
zCdgRNG4b5<!SsGS?|}y|L>--$sj?T`ad7!^`ke0KD^E`!czC<CedUqe6W!;9n*}D`
z<=(EbH{_=5+{cmc4$A%dc0MnPLB~~e{rk7NZ7zXJOWjK^?qM@F+~M>#mH*5iLF3~R
z46olzZvAg9VSajsSNKWOJ<a8nf<J}M{w*yGUA-pCVEXkZM-B&<<}G<*zy6Kqq*TL4
zZa1fH3%^jlbg^@Hj%xd*tzYsyW4GsOXB#}<vv^nTl~k9-d9yV<ttyuO>@jS+bff$C
zbIU}rsdkfWFE;hMl&F7DSF&t7{;IWTU(_+X<pqcKuW^1@de5P5>NAU9FPEM@-SQ*$
zDX%a0u1S&K-tAr*GGpJxn-!MUKiOO|Cxv?*ShqiJ-E(I7%>Pd($1^i{b27X#(_Ve3
zMg7yU0AGm{EOq=02{J<Q@@uWW*FR)qXs+enx2hnyf9BH3!Q0NPkPo-JptWqzPOkHv
zA`Q2*Z*HG^e(&F7e{NspR{QJmHM};;+b<wxiT@MR|J4kScUdZ?`If%_$7#jzCoClQ
z>-sfy5qIV>GW55m=DqIdxOHM~b6czA^T|S9_KoUV@-`oQvbq&m`{L(T-FT&ut2FEJ
zbb+!HUatZkUrJ$EzS{SP+MZ?V6Hha&s5q-xdg<L{{R*G0vnQK!#w@qboD<ylqi_dv
zn()N-8&0mi$I|k@xzFsqq_V^3`LXhX_%c(cS<ff<TR9|c^}JMI#j?4D;rdHYaqs`-
zqDrbtSv%Ib3A$ZaXruli_r{J-&n^XX**FFE%L`2GsY-p;ek1jhzD}fi?FrA%_x72G
zuX_LRtwhLOnOf7OE1b{HzBi?J7Eh;DlK$O=R@<JM@vfQda*@AS<0VsOlIqO^canbO
z95&WGpL$iqiba3DbwFrHj0xkLX?eCOdUM>5{tPu0c;0dCW1`XCJ;LSn%Xq~E=Pp=w
zhbhoF>tCyjqGz`WLs;drvo@1bb>)sP5iH`dP~G6W^5BZBs5dQZ?(X;8Rj_MoShoM6
zj=ZOOXI8A)<5~0UikMQ?s<i^82Yu$BvX0++!)keqbxq1Po#-|;7Ms^h4QrWZoZtK9
z&(*+{uiCOc%)5H0%s}wHwyt=jplVHN=F5P@n+cK6{XC9eHsNvDKlf8vU+*ck^Q-h$
z-PfO8Yg4(Ghb#TslpWl+<HVn-vn-X7zrS(r^_%f~UYj{SnX@;_`*7CFu*jp<kri$Q
zVF|*z+k!VleXA3{tyI2n%Zzxjtt<8~*)_ZU+yvEK&(2(pt;`7yw`0h7^P@C=SG26*
zmUZ{1td86)Ec5-O#)97rzy69A9+Q2bz9zZ!>f@4mr)(mX`j;GQkrj<<uJxF&vicW?
zjrr=Z{CE6?az)#+qAu31^-rC{BCsJ#g}K2y#Kq-{&+HEFfA$MECmt2OVlu;YLDkE@
zpR;AJSnl~+I5GOkfhT!u?)=ty@Jfx1VcF3yN=i{@m?ugG{^M=Sym{m_PiW+qb;rUs
z%)HLd^>ISD^o7`f=*_RDm~6E>=HslydzNcY^nn<QvuCCx7RCC<tK2%3w6$c8{VO@a
zo%?${`F>s9Tk`PHc6sUZY75l#u9<B&l6$mg#-lQSDdpx!H%Yb5=In1Vlg#|eJSXY&
zmE_cY6;F7Ve9DVQS#3r~-C+kV#YG}YQD-+)>wZ32XET}AV4n-uI=55j6;~}5lrgFP
zIJ3JmyeEra)luEC_jbS4vm2*%mT?77uG_smgq>mf)u-v<Jc>$>4Edx^-CCz*|No=S
z-}m1bLVmNwWN!YfuQaQ2S*H1Wjlk&0Ce8J})f%5?va7w%j);2Z>NhFWt<<DXNHqTY
zhnue%7?#P!-aS<!mT=K)s%4Vv&OUv?i+NiQeyQk<3>H(ho#rcfrzU06nc(RMS6-T~
z5hbpjH2cs!2`?8V!He0yYo{-lw=`}yu6WMD(6G`-@AAWQGd>tT<63(;gvlVsTySk(
z!Rp^q7j23|x4F%ns`om~(!l(gS9!mL=GEA=AG>0o<=zvQt(@M`p(lLtm(hCp{xv>5
z%a`glzYDm@DLt)FC3N)_ixodkZ+Y1=^M6#?%>D1Dy!&_D>}Ki}w(h5X%QrN(6*Fuo
z_Yu0z^3-%c)2rVtPdC5&Z@Yk#ck%+AE#6ZOCUigjc`T@G;$GHE?Z=j#yt`zVcGJJe
zMLpl2uw_iTvCMaG&6U$%a!xI6|9Y>~Z%O3rc_%k7K4iAN&Ge3U(q;2&qBG5(T=RPE
z`}xY{|8gr*H?&$YG9NCx|7(%AS-#kH(Uhmwl|4LHla^n3u-QN7ZdrGbl+#1giE<Uf
z9~tg^zskmDTkLgu?Y+%!rWnL0NtHIdn`X1NPnpH$>8%~+JC9Ax?e}F^!xwy;?MC3u
zwiUV&W@!u;o&}w<I{bEbL-^Hl-Li%GUh8iZzg%<Z<TW?(`7fq!<=div;%eM|8Rffo
zOA3p;U%08uU6JwF^#0vS#&5+@%7xkWHtJWIW_;LFbs{hIZ7KunwXzsj=La<^yT$e{
zjG7d4?0j61ckJhu4?C1MJkS^0@Nq-U&DCw5|2O-uzOgi86;sBvnq8laX3jgpQ}{*7
z(l`H=^ZGfns%H!KKM}fW9@#aos=*<r*W`-)0~d`=b0@tl{OJ2`uN2>ni;*r<{gw(`
z-0oX5r`oAEwsU8~j+#Z==B;=q_G|Nx@}>3$r~K_Ir@n9(G~RX9X!|R7X;rUt(>&~U
zTeNzvTPQR2_79l}!BdX?ezoh)&qu;WrLMUQ_p74TF)@6*_URD=gWBYj-)D-}XTSD7
zyhwja*niz;wr7Q9Cfs()i})(HyT9Vc!Z|6-r=RTdmsmA(ft2p=(=UX!g){!-GJ23#
zYM!?A!-osMGTzE6t@@+M=f2r1{IXx%ypJW>wl33@n=N;{-I;D2@v}0#bo)X1S38fl
z{|tD#Wtzi(qrLm@z2Xi|iJrT*u{LD;qn8tzxU5($HB&t+KRx~B6<xNxDEh;)hf<pN
zPVd_OXHC9BYsVjx)2r+jzY?(Dx9?HK^8ZsRHc#!Z$va@WcVgY7UN(PkukFHrLQA(V
zJGkjrnaF1eRzJ}ou2mLx9o5hLCHuEe;*87i|JZu%#8!1XvD70mlKdM~PhV5q>e;t^
zvRixBtD`4RUfR0R=u(r8*ZMci>#o1=RyW<!?B*6@5WoGz#XBEW4&?v-oz(tq`I`Cn
z<bo2<K6vwa|1SG~mpn4OYYIEwf0$!X=C0qm=Fy`Bk<?#P%jU(t=3C9DRiRasYIS)n
zbK!fN^YbO5o+bIXh~75axqg+t>c^K(!8zTm#qozYma<=Tz8^7D>_FB-6Ib;Z%Ys|U
zF3tOs|8Rbe(du9AQ|GZHJ$2QNpXEz?TKI)Z*Sx#+U`OqQn$Bq#UmWD>^<`jK_Etnp
zk^RhM+q+xY&!+WT&r&TF&EUUSxBpn&_oPs(<pDo$3u*rT_3x#`+xl6qQ@*5Zo4ut{
z+4{x7ghg)ujY4yNx~;bFPAZl+KgFrn%YVJ_@u8VPXYbDOXT9*T|EqnhyW5({M@;A0
zrz_|h2LGA*FNkN6_4=i2x872#SNnD2hyKlS6}cUJ3RXeygXjI@tcYLUd{ySHnR>pu
zey^IryiZCWmlwx$?7P9S%`xNK=MSs6XU|H1{QZo7Z{DO}JLOCjhHEpHm%du^ulCJ?
zQ0>XpW}ZRZp8bpl?bl4^I{HjbwEEiMF5G+I-UMj|i`pes@_RnYGcX<L`f)Gw_`WOZ
zbvGx@Up+rGeE(j{_z8=c7;e~>F5zcbv0-Y9?_B1-W!LOey(cog*}ItK#)Ka!7ia!&
z;NAH@$mi3GXK#}N7pXDuSZ&M>nk-lO^*@KWQdL@6XU3=L=Q>sX@A@X#*mL-XnWNTx
zAEEsve*YfZgV5r<e@_>)oo&?q^yJ5l<Mxb}d}p(zO2kqH1#^F0`pKYBS!Z!Px3BsA
z$7<D6Zn4%9Df2x!v{_`%1b-?iy3Er%b;q~=(R(I8T(Kd-)v~v!Wyc<i^HQfnt$uTV
zjtnV}IGVu!KI^KEd6ECw`zKz`{@OFswmWoz)akH`0sU5=GA?YnraDF9$@CjFJ=0D;
z_hCL)9XnN|&e$<#pU01)z-YHA;X#M4cF6zITkkg0_sFjKi)8=0JQk8N6+E_S^HRV6
z&jO#@FZ=NOOx@3)c_FvM=CiJx+3$6IM`W1ooi85qm&VsjHOvh=blOz^#Cf4sCWiLd
z2q}-VUdmr%m%0{~aWXdC%im_^)Tpr2_0!u6S2A9<-!{>@GgG&3?yd`YH?}oj;!g<U
z@%ybiEBsM>yZ_r4DYJg*=)4X~vSDoKT7C7pn|$+G-YswSbeIoZdbx2jlm2nTPSwB*
zYv+IJ%uY#IGJC=8?X7*+9`8?{(Ep}o#iO>G8BvlO|K56{v-{Az`!&WtdglaQEm_3L
z5MkA3Hcd~r`29Ya?CHuzVVZv8aY-SOIkuO-u?0pSzGE8eyJtPSo2RMd&0RkpW%T+6
z|5*9(^t-9nTC0w1esd>!eqhtCiFu#SM01^5btLQf51GV^jah5wPxa@ncys&S*<?|J
z($x#!{GWGfJNMQm_GPK55*ew-Z#_|~;o`4cZgcI)wE2|}+ikXOJGx=coJo&T4t9HN
z^a%6xZF<zBW)lC>Ha_BIY_3A8#_hC6pZ3*X*IxCuv3k4m^F3!T{+Bg4aZ1p78`sHj
zwg%phZl^Z#<$d3@Iqr!{(v9kG$B(e*FsF!Z(y!%L_;93d=A{I+Z`(Il?=rh(`gxnO
z(50vsEYGiKuV-iwln!2G7QR(ItD`98>%aKjhaSvdl*)DHns?&O42{=Ox1vNGEN5=n
z65Ft!jroMf<B#3vGxzxXh*+_>mi5N3iY0}9PBjZReyGacm*{QE{LgmoqHVgZ@9(KD
zRc+s=+WXS){+}9;X(n6UWc$kNS36w1>dQQ3@k0NT@7j&{+ID_h@6vjw<4V(&^YTg+
z8dqH1HZIFDym6{>{i0H?r0AVXw_V(xx_p`TcC#JIZ@rCY>7@2`ynS)$(48w!^w&3h
z-@4@JW`hft1G3VRa@UL2oDbeszw@4ngQZ{mZLP(93Uy)rCMNOeucEhm1-zO$FYv$K
z%3OnnBadGE7Mxg^IQ7^@9plGMA51=)CTArk-9Kj<J7H4X1hMa$CaaEZdpDms{ep?$
z)lZJ6C%Wiw%T@XG^X&Jw<1*Ywg_2oZL==uT+x`vyba}y<{YPh?To({?;%=>Pmj0TI
z+MK#bO`GtB>_$^ogPW!ilI!MM^Ii$K{!DZGK~-0~>{I)$e!ca)#PN!?qQEaZ-z&>5
zpE=xcQr>2_zqGydtZgwy-)tCUWY)7Wa4*Tp&d?FL+W!CA+Y2Yfe{N;zkY#N%cp}9R
zxFam?n!9U|_Pgv$$3yO)+!PvEvTUs`gA234YtAk9lc&#}w&VVXCe7~Ei^GK`Po0-I
zYo$j}(V~Li8NUuI?CzLwzVP1Gy4{mA-&$>Rzu#iwcz8=l&%BjwZR_^!oVxW>>Emh3
zJU4O%u2j|8w@a>AHz-8MC$DPq>o$q+8aKCYGLS!imP7Q#3biB0wqEw#(tYyfij~vk
z|EQUTN@$-rqnmhTi`%;;J?xn?cjml3Bf2#-;pYZv!B2{d9v-<mo6XoOVT$S8EkVU!
zeSIF?m#j4it)4Y$@x5~gH_V(jaiWy{^yn$)LLW}owEh_%bN1o`lg>i+=&c6w3?V#U
zjV4|C&)O{T^QXPw4*N>bQjg-2qSVA(5DUEM1GKgR#IP_iGlmI*k68r?62B6J=%WrP
zSqNfbpa4FC7<$wpXuV1h(h2kUk2*wO7IJ&m6D<z6%b(Bw-e2^#d)CQw6%Gy);t%h7
zv(8A)LBQba=bts}o~-@z=g*6MC&Z<{Dwp(ouY3LL<j*Q*wN<U2Tm@&}cgK91v&mO*
zWnuo*-0w_I)0oWXzF%xVpMN?3XSq{St-pN#?|u=ZRjKp6=ni+{YW_dha#Rz~ZgVoJ
zo1y>tICFp0xh2O7T$gZP&vv}!(ZO)#_RPfDK4z0@Hintclq~psQTprxT@JVAmwor-
z%if;(`hLz0yFN>w{f0*0^9nc5;pd$mX`7?*lGA<pB_&lEv!$>5U%&d1`Sp~$$$Zn6
zn==>ro=xDntf)}b%+NIT-=b+OpG{XiPsuhEV14q!nf>k*wauoL(}JT_zB+T;@MTUG
z*~a8@ShVfX*E`*t<G5S`KYAYCsS*EHYncm6=?mF{w)Y{c1Xu666fm<yXL6C~?3#}j
z?>;?t|E%|Gm)4YLhwk5WdRe~qfX|{NrJ$VK3|jl%ew^?yO=Wg!d*7F=B?Wwc>I&Iq
zrte-bUH)N&#Nn4*obfAzUu;_)x#gIxaPHcxS#657E1YEuRg68eFW)+CBjDBQe_eGE
zvsK60j*k5^-XA*q{F1zK#q==tWltSn+*Caj_wlgJVS^==M^0Qgzx=D$+|R4`YdeW|
z%7pZ&r5kv(l>EERV_qjYZ(}aMY1@Un0!R78MFKQe2YlOVf8JxZ(oXX`vmKWd2!+Q_
ztc%HSbG@8V;p>#%IP+tO#?2f4t3}-(Jv-j<?WbbbPvr^PO6rqOKA9=0XmikB;mV_y
z4Qre?Y_U>lR(*BMSem^~(<vk;xW2+Dh&AG#eaX9d^+)c^n6V&Z>sq_d#t)zUomnon
zM&M`rUflyOJJhc?@#ltTrq7GK$G%A4<YScX*Me8)^;a<5y<T7_@0-tPt1PBx!|EJ)
zNtNkho25$7>eAxy7aLYjsEoM#RcP^wu8C$6df&UgNYDRp(UbFX*4FInHnP0?mmWTR
ztZj9RXQulPjgEOD2Fk2Q#J4NoU=E)X7j|m$@kRly9+USLE!IzrTgzE~ulgby*ShGQ
z`)e_q4;gzjb5B3=Z2O_A<I`}<R$N$K_qWof1Kfv_Pji%~UQL~6yGZBT1q*ovT^|K4
zx9t;VrwWwLlKYT-bizXS!fgkx9LfGV+ji;cM?8<%6Q*Z~O=;4+)A%*AKVj`Xzq~&)
zdfvG-Udw%S&$ZX%zR2O8Su+jRKD(n-)qk|E$vA6{m8F!Q`po$cdsuUoS4Xb8+OnC~
z&X=2EPUG6uYV$ul-<IyzG2>D2Ny}>)j(3j4t^O%`RPx~g6&s!P$ra0<-i}aObnmoR
z*N3ni@3neu%lVpf6`kFSBA#qoH^H!k$I{pJ=fboo+sma6&x>uh7e>svx$EX%FK7NF
zg_f^rc?FA37o2{jqr>VU6=`|K=!|f5tz_KqmB%h<y;!q)#etds_Hgd!xt;Vb#lGIK
z=8GiH_C2Zo_3GbwB>Y@^Za*z4bqtT0*i_0|dFZ#)EB#B_4L<2R=1tR;@%gPhCu-xx
zWoi?qcGVszjM}K$Icd#d?^_v@p9#&#OnYl~cKVS=wwb$UzsP>Ksz1>{hU>W26s2jq
zjo4<y=v)7O@ymb5<gl+l6@NdwbZgUH*L2&`SFMqIpWN2vIpcgkJiDs>o%#G!%hRII
zU!@3TwzOr+Z{zs$<-kd%OR^k0Kjr4Ej!#k*kjVS9`^EC6g42ON0**voNL}SO^;_D{
zS3ZuvKmM$-5HA-!d#=W|t6*xLlJ8pH=-FD==2U)5wUsDXlw~<zcE$f2)<0gJyZ2x<
z+tN#mcvuV1x112u+#2-d@56tE1q-BAjLp|*FZ+LjrR=SR^fjYru1yksCaV9=cQ)MD
z{r65T@A4dmz&EoWF1?;u)fV}!XY;IpsK2h^6OBwx7&Gp?KY9Ams(11a-keXKde~&S
z`Ry~kGx}b{h}k`?elWx2T#Zrd+LeFyzf$|5{&l*3!H*B!8n^bAo$YJ=eobIY?AOx)
z{Mk<*>3eNHyJ+Qq>kF^DcB$EY|0-Zn8TgAOP`c*8WRYe37B;hd=iQy<?QC-O>Z^Or
z?OkiF(^SG_ge6ux@*OcddQVHhnZ@gt*D0TtOS7&1?>?DSb<*J3JD#m&C!%UC*=4(*
zE(mvzX;re?UA%A7j!!>Nf9@~YdinF4>)o4urg^?-=nboTDatK*Nan|aq%WT<W=^}R
zJXwHa>V!6L0frLQn4cl<)zu_!yh_`%WT$%Sgq+}iE8{X&non7!zoC7yNO1bShtH~}
z&QDA`@Y8Wq+$Z50!+UHCC!F`-SFaL^P8Pq)XxH|TA<tuWWVprt#Ag4$)`ll{oY`XF
z9K3P<Y{90|j~yR)%T3mWmGAfWlc~61RJq7{rP1l@b7ojF>AYAt-&yf=&d0N*Z;I5m
zMZDdw_}d~lL;QIR^LdWm;;#X*Gdar_wX$$U|Ga(3v6y#ZyLggm(t|~Q8hwe1E6*)C
z&ZPe_^h?&}@Jr{y%^%+=oz{KxaoQ@~8hdXpn`sP}^M2==D@?3hRZ}04^Ma*Nqd}<8
zxL{Va>yuK+d(M2*FCAPuC$6D!{@GdmLCZqRQyX=d*uu`b_b$G4Jz%xIQIUtpYLAK2
zekh%}%c#(@X7RL3i!E4ObRxwwe%=!)KG^n@@y}hx6uIxJUP^*}3!<NY=Gbxl(ev|{
z&X#;%UUhSk$@*(KHV=hohV_QE1#g{IEqr;8-`<;2#xG^38dyxaYnsKj+I_L-;+xtz
zFO17BU;5T{wTjWQO59=g&Akz8k}bH)m+XxDm85lR_q(+wpFas4%E>#sY37l@m!}oe
z+-|Qj-SJ;-**k}SYbq8lSB}vUGJTl6J?QDI^;!jo-jr{f^+hRqPV>epYl%8T@37f6
z{+`^=)MJ+B|5<f#@sTs9!@eusJ}bE<cGJn1FWz>qJY!OttKaudG5AF2ju|^MO4ly+
zeP|H)VAt6XmUm|*1)lkP>~L7S-h~RkXUCprx!x2oEV@{7NB)_;$;*#1BK^#YSN^PK
z_h|oX(<3I#yw+^xr?uvmb9XK<XVOSKbo|aoN8>AM%q&}!Hb<R3sr6dpOl#ullT`~g
zMVhw#<2ZCK^;x5}u4ujaS>dggpFel*S6Y`OZ2IS>ZdR}8*`Ub+X=2yUcN)7Z#%_5n
zSf_c`JU*ATcB``Evp2hH&lKLw_`14FOvo;J&8%B#0**J;H~*cyxqYqQHRH{}?_USa
z4V+=I`s$+EchB`F^ZQO)Xkcp1=ICN7xM+RLgX-OjmmfH9z+<d3x%!~kn-!Ph?fU1}
zr(QEX{3tp)EI3@Mdlu{bv)eE37TW*Y=;EYKd#mOryYsky%<PwpyqQto+GP2BuXUwf
zZPcN6zy2Iuw#04vf@H04OISUQh8>vy`NN$xmh2)%dbQ$S+lBXBpDMYn-ykcZL~Cwv
z7qd&+=}-luGit4i&$#L-he~mMH<vL~G)mbPR<-G%xkI`hSCJ88<A$sLJWExUUYOea
z+M%4?Z?*p7?Y7Ijc26?y<mqD1YdxtgGpWhO={@U;FzGHouZ0~vdU6bl*z-JAZJ9M^
zS1se#t64!}z9%w!Qa_z2o)xD4>`PZr-^yQh{2jM8v9LdD?fuN<>i_6Nap|IEC-~At
za+NQIsjH^niLNrvTs?V`j@0eBTdsN*NoB5{{KO;(PHf^*4V)Bim(Y17t6$#DFXrT$
zuVMjJS9dS+(OLVDKWXV9=Yx@7mK>kOedv3&i204G;EY2j!vi`DzGSrRH^1<%VMXAs
z1@+JV9xRz@xWBzqG&1p;^V%(3iuHA_A682|IBmT7Z6iOg%(?R$*1Y5te&#yG)W`2!
zu@09zXYA_CJ@G301jGC`X=DglZ*N?<yXwKVh4)Vu|F}0(_wGt&-hE1*$6uR>mK?bv
zdbe2ojorHb31<7YudQPex_C3s|6#E9=SMHk-cLv@>IhSgdBlD({j<F5hl&d|?B^y#
ztAG1;AbXFvb<DfJ34FfaFL#8cFWtM$r0Z?&*6ojLH%QqVmgN2Xs-@7r?DLJ=Va*nM
z&DsBWyz-TOv25yvEZt3g74!CP-F3iOYF<$Eo(1n!Iu=UyeLu01Ipue4VQuZF)mn@8
ze*LgV(mA1e?Y_ul_9ZKCB`@2~>GVo*rKS67ZihL0gO{5-K8slUtsy>h&gNMxpX9g2
ze|Qe+%%Jvlz}*K>x5n7O!~`S_VuSCI05PcE*D+GiN4p4s`1>C$pjT}K6LXBak%FBa
z7u2g76MH8)^0g}PxXfSjGx6nL|ISWslLhsP9*!#O)Ka-JpBv6KWMX4z5$M{|e$Rdn
zzfy<IlGnapb*c>-S{M}Wy*6L(buHBM+nmd~*T245dVEdjq`j44M!KgX_n6Fl5aYS1
zZ~46!>(=NR-CBQgP5F&29U3Q#k5w=wSy)ZZ+_rZ5jeW}N#It|)?(>~g{;t%k{K;*$
z6X*Kb{~fWtDARIP;a#ek*Z1b@tP}QjJFny8`M{q0CuK1xBA||k-hTr2JSa*G%`HH(
zAf|;84L2v4V8j%czFTHaNotXTzFSUWNh;*B53E-<SU_(lL5(Rceb9Ah3i=WLNm;4M
zB?|iCnJFb13dZOM?q4wEYA_IBaQymz{aN;;#O1vY8Z@jMMUD#|(o2?mUJ}b@etn;D
zfqs9fUS(GGZ|3>{mjxXTf{jW{t}I;~B7z!9BT_)NyWaLCC}p6f8&Fh$5{t1RJl%lr
zh5?CDJ$r-V5<P>HkZfQVy!e7{Z2+fk;)gQO?)`}M?SHdv<J#2%O$GvbQf-1MAI0AP
z|G!RWQw5_;g3K1)%0FULZY&L6-lbX^|2u6_)EN`aI+2sV)Ld(S{@s4R<zRb_;7=!c
z(}-z5e$Jfa&b@!hqwNj*|G4fedG_9C>hsez6Z`Gr?%%#tx46v4Vq?Yn+z$ai*M4{)
zUimWN-|q)3hAFFT;-5ubx7#yqvcE~iia%jLPQTy(XH(kLr0!aSyyZz3Cr|x($jo@c
z{`OtgArDwK%zQ1fAXLHFZ=Qy}Qgh9lO9ry{^Ae5xKd1hSd9kj1Q_6=c)gqV9PQPFO
z&(b;az}357zfL-t)b1tc%QjQ}f#kL;Kh2EmX06|p{NQ=`qG<EaFJ8Q<x0k7NDmvaj
zX(nf&?2Mb@F$D+fg+wB!g}!MFxxQ(Gi0)nclohGpUC+(F9}?}5wyfv7$>g4mS0`+2
z;9D6vE9bK$$Gg;*9bZeY?z=d}_I;kLR>7_h=1n~tYY*joKE+^a@aRKi!1UYd?QhF9
zo5K%pyWTpZdcJ3n%%^2ZJX2zq9$(>@c36G$ivWk|l20D*DY2P&#-?iL`9JDKTd$iM
z^wnN5%G?yX<hAUkl7p_ik@8hiB0|XzFB)<2UUhyb<l7?0&zxHJb$`2aL&TeNDqG(f
z&zr6%?7A~9?>5U!N4tbOx|||2G7aMY#XNLo__nHcO3bat5^;8)S;cFF0+<x0&1$@N
zua3RTN;6}{lT#V*mn_=GTlH$!?PTVH^jrCJXWl=3;jEl)OxNbmB`0Dm1-&g+IZsMH
zy`r$!;Z9D@$78Mj&OxHgFFlT*S3P;F=d6-!#fgjWzVES}rlgj(O{ax1>Y1_eO;y+a
z8O^Wm%6-meO#5ask?rLXd13a0Eq0HqD+-*#N~IUhQ)$o@*0I-3o_gjp%ff@jlXQ>n
zVe&h=#wPXM?>^nMu*%(24hD%_nCE-%{qYICCz(Ss_C?<I-p-o8_f<#3#%#3@KZEzI
zo$X;%e4$*Z(`SO&{aNj92dcO22~~*8R(~_)`nk4nqnziTX6o;FF!?}t+2m`-HqACZ
zylhcw@Rdi|&z4PCy{XBk!X-B2uKm^zdneB2*m+q@;pUk)3XgQFdu#W<FDZ2otlriu
zF}L{KsyBJFDrY^J(8TpEE#nfO?&A{HP@^<%k+w#5mjp(h+X?+g8V{X4BAn)SXQOJw
z+1uG?)|jjlOATjUeCbR>)l&B}jqaX`CvX4!;M@9puCei-ygj<7MDq9cs9rRm+hG&&
zCuhoe?d1CM$&3}*o?9K$%*2FK7bx{J@lH#*G2_!)&or_0x5<K6W#h_EuFca*ouL+3
zxAonrPuqU1kyy_WyKh13jKk+&mIYi%T9nkgUHgDi)2_U=S7lomU&$ne$691&m7eX<
z-JDyH@+H3E>$O*D_k0(>a5n0#F7;{pcIzrz>~GZx8DftmG)z;LJZ$S<Jage4<7e*k
zn55J$t0*~ZUN-4^Q1fi-y0gpsckQyBcKzNTN71uaxw+G~X=WA+=)|{X-uil}qMAp<
z>C!re1)Ey*o|<%?Xy@6@d8cO4pP;G*f|<cvzS@K|Nv=A`w5)Ht$ASN`Y1`g1v>twP
zWxv3Ao+T-6E<r5o7;dnN*GL(#GZ|01ZERn`&uP4ybMsy!sj{jx2Ikw3W}Dnt5qo#i
zt;35B@4X*<%;t+nA;VvuE|>o4?>v}&E{loJVO#lmne7{{k44juyp|0Uovx%LpDL34
zaGpWEM%<w-*G<+wZe}=TlmAOnNB(Zf?`T2Rvpk*$I{gGU>&bUyiEp$}?^<DWKI7Tk
znQ!guRQzYimrS^_HDe!dOZgR%8y_O><T6O!V~gUMG-dny>cg9Q?b0&uKlix#zxRLm
zjJAvCwv{Rz<a%3G-uA;pdjJ0Qy_s^E!A~~!$aY^}yX-?{+~m)D>{i)po%w8$QN+}h
zIfHSLh<fbB!#pzriuI3}P5U4_>%y63>+NmgYP!}I_*7N3+ws<j@+Z9erW>+E+nbrW
zqGP@2<JYDkvL)YS-t|t7TXx-k>W^!!*HW28w>Pg^WLg<1DbFFnu*})+)QX!s{$8_T
z@;rSzDP_^yNbQGa3r_8w?c}!C_R>TqEvfg;XMC<sdUMlahL4rU!!th2?Obhl_jBv*
zcwjGk%3ZSj__EnCjVd#E#d?&U`tvgi=R}?DJ31vk#MQ9N=bJz8HfPPpw?4(4IM2WR
z!mSAtM3g_y&g!}=GQ(cNHsbC!S*whRd+Wp&FJjI<effM=QG(g475DGU+keT~vShB|
z`7>;<LvLU8ow<F|0ulEaeAzmtF2=JY3l;@91z$H_xYjlI&8r*ik=BvZt`^8{34SCg
z!8mz~);xYOf5!j?2}kjbJ&Pq5gd}!<T+<%CY~`k3*R8_0uQb}ZEPTPU%tt1R1N9z?
zCEiYFoc4}O+q6qpYgu~r!}s@HHY@J_8ujg&;fYPZzAv9&P_*JlbKr%D>DyL+4L01<
z+Z-k45_rX{VaCE>$?B2=GZm^2cydgN{(9=z%Bi^;EAH-i)!i4gGOSo_LQu8T3hC1`
zA3P0a<J)0XW}?Yg?v~LloY|VjoYTu3&a4~%Jkn*~y)?m}UypBhJN`BQ@50Poi6Z^$
zRU6q|EiW0qX*247ZI<KKa-r>;SMw*16Pv!5%h+jTC9dJ{S=b!itCg5I@#{OCPZK*U
zDz8nHxSO5JmhE)p&h1IjJW38n{#`5hc}6_ugXaR1ryH)@uKv73Zc4VDaYr%7UwNbW
zTKk8LjoUuuq^)W>Xvtl()j_2@NGv4#%Kq)MJ9@U?=HEWM<IMlh%d!JzHy_)jt0cA9
z;@^c+8Si(j{37_wrmy6S)#n(=S5D@Cb4))c{Rw`xj<vngdPY>LIKvNxg|XX$50&lq
z5otBy-Lrl5Y%{S)|I>3XpLx1`zJ>E!+i44@m<wu7=6ITG*rU>>Rl0kdJ+Is*M&n@N
zTiw2MZ$vHOVel^9-I=rc$K!tO@c(b~l|F6X|Mx=bp|tADnTtCZru@y@c05hObje)?
z>GUI8?)QkUa%5Q3t11>D#*undWX0}_+*$38cfTLo5;dhcrTon++3$Kq_2Pyn<|RJ+
zUM@3NHo17FdCIXM{+l}c?TTizGw-<@dQoZtYnOE><AJ>sSf2N=Eq0K(u+Gu!dP?-U
zRpnaV?+qoVJv}b}e^vC==8Rv$Vm;?%T57(8I2tW(v}*H==36H4dfOorUIE$Z0cn-W
zO-n>)6fE)L>HqTc{-?K_-rU-IzfyS0OzF#6?{Ynt?X8bxOPo089hXO*ss8+*P26^z
zOH4M4o}E2G$~9%qjP7Tgb9fpmg)`Fh7rcD?t?QP=M>E^q8O`TE|J!H0d9GGz^y{+U
z2fw|P+}zL<w`|+Os-!Yy(FZq~A6(OZG-H|hYGcRshguxfH%PkJ24|n~QrF5^$1A>U
zW~zU3u2bgJus~(OtY>8xN)roz-;h3){j9zIA<F?J_o#0zq2>nOH{VxQ+$asSW@o(Z
z?XhnoH}BgmFB=wK{i7wj!f>1Cgpb>1Et~ZwVbb2GTMoZ%T6!<@R{o8OO*~NxFGqK+
zFb{29e`{x-6?=%m%Xzxzwm8a8-*I=s;Zo7--0a6KKD=Dve)scC`(@jYU-+he)pqx-
zUomn|nHID^+R4c<W!u8#f#y$4SM7adSJrdp>znC+`^qnDI@(yY!_-M5tZ_y2p`1-}
z`B%R$N-CT`FWK|)ny=pr{+B;zXjhf*=QVq1dUi3#^SD)|(SNRV`P!Q7s$D&^a^Cfn
z-_f7%FXI=SSbqEj(?6b;)JZe1>iplu^S!p?p5LoW)k}RuEUTT|(ziW%Y8+p1P`$A|
zsN<|<Kv(;rsW-v`8eWw}2_DfsvS{|K1$M@^6*u2J>^bi<SK|lw#IXI15eK)+FDT7C
zpU|Ck)b!4O-K4&-Ln48X?Mya5{kyk~`Pt92*~eBz2Kbgem^ah+_-(hnFQ4qa=s4YI
z-n%_%Y`bUe6>uwE-+I8)uWD&)(S);0JoCb;H;biM&D&)+uZ!22dHdFTyQ0O|4?MVI
zaOCiT3xdvhN;{4@ta|jjc<BwvEZ;2V{gMrGh1}fx8oYN3l^0AC(zy3|=D`E&E+nzM
zf3IY8FRLa0`@O`!*605`Q7cVN2#V(3Aiu;|-sVsJKgZV*ewHF0W=FnhU%bcA+pmz?
z@Tukb)S`8>)Q-eYU)H>+tCfX6^ZAz9R{ERXMd)=VZ=Sa}lz&~W;>`7z`|GFXz74<n
zBr`4Hna`7hpJQ4B?>`HEx$%PMw_TgA<Q#S~{aJdi<M;b#E*0go=OzifxUfz3(?30>
zd~K)2^LTE1wykCQU$1kU;r@H2O`i(3&sNxWJxt(-*rZiFGK;qHRtNa}2}!>0YWd<R
zr1j;n^RAM+X>#qFq)pk08^o>~8&+?AF;_L0=R#Rh=@Yv-ztxmJ|0!Gj>Q}w%s$G1$
zR!$J<zanw_%#qU5fts!v3s$DyU|gEK(C_i>FB_w-)R&iCQQf%S@9?rJxoLkzx6Pip
z_F?X<dwG*P&KO&McCr4L@#dlVRlola-zzuuKL}KKJ2kH(x;rGiQ0-(|lqq*c&>H@k
zFS3^(IMd*jQ~G`%vrn)3-9@uZJ02XLxH7EmR&(P@x4Ds<^?!sZn_vFY+~H%~C-TgZ
z`JUU71N(ya88B~XN=>#Et9rKmZ|x60rBD3NZF>5cDvsym#2jGG7H=w8)$2bw$6RU6
z@vf4`)9R$v-k<v^->ZJaI{7c-{+0Q!JVm^C*RX4S*EpcuU!9!x%qQ%wZZ~gA(RYjF
z2k&irS9R&$@2Y%xoqPA8tV{P+us@mG!XBA3{rvau?CZNMK6^^CGu>0@bYScK^g21{
zpIp)U^fMPKm|J;#n=LZ78@?#rv^nAB@ub<DGg$;hZk}H+J4G(4dP?G{RKceU`j#BA
zGoJV1(6og4$?rcdKJ^D0H$NYKbA12)%7T!M9Y50kt$X<QYtwIQnYY~Q7MT?PmX-<a
zy2?}9@hCZ{QK+kT{mIIO>|30CgXZ#_IK1uh<0serkIm?OynWtLm)`RXj~Ihb-<+r2
zGj+q4H~)LIZ+?iG7ArJw+Y(tRhh>*<D8383e&Rs>R7-}c+rFh+eXJ`ZZ!N3evQBdM
zy<JMT+a_x$OTL@9@J@BdOwG6}2Fr4$eVpVap}KJ4%Fftg=lU0M1>cue9(v@yS>q_P
z%+t8&xmEgCg4QM+wf*pxGksoP$E3WT^an;a-Z7n9vdr#kv7zzrI2li;wY4)p2`q}8
z#`hsXcFT72Rzu^K5Y>fgE9Q&N=8#(a>}={BwIAHOrtdRjwryIlxX<vziC6sQ%X+`J
zAH6U+_pga`x%yEx#)QNSj=6gFvH9JT3=X%Qdg)`qa-lD@@WJ-#6fWHo%g+Ms`6o}O
z?|abX&(wON^Q&jng!fNfteYjf@Ahn6Gn?I#JMhx7nJcEUcqx4gSaI%3*;d!{&%__E
zyFBCPF4z65k~W{8cXJl=0!D@`(Hoizk}umEZJWJ(t3&X?#)6Ng#;zxwb>?qL=4lh=
zIeXjL{>iJ$8y(UT{I^Yu@$)OT*t^`?Y|SJ+J>6yeI(N=WSI@LuvWK@#Ys&H&7b^37
zxR>ondzSdKH1}hzz5BthZug`W7+G(8XmB-OmUByIuEOu>R!mbKX?Au*3T1U4Vz{~U
z^znFstX-`V2|pj(Za#2kS&ECNLFbIT^wc!9{mlZ~#g#kQuTJ%yR{b@2)y(CZuS5dA
z3M}ZBZrQO%HsKeagZH~B8*JNBjVI?zU6yy)cSWl~rRRQjyz_yX^9ruc{FdpK!nB+1
z<fMwl2c#36eV!jTyU2N#=i8FBml85tpcSad2Db-m53@DyIgyceY2&2L7yO*nKkPD|
zJ#k|dgU_w}-I+Gl^Z8n*%RUt1iG8;5yhwZT<L@(*=IXfZt>9xY_Px!wXs-5s^{Ds&
z?Oy_>KkP4m3rl~nwQ;NGX`g57it2UN{TI$iyQMiHJYgP-@5_ait#6f%bvSP9?e4OO
z-@1^adc`Yw!}Aex*ZPy*@y^((D4@>Fp%YwvZ1$|1Q)bFvE4`Qb<=I8Og6n7ad@g5}
zd)QUXKKkw17W1wX7Wu6Wyc$Uk!WXh17zOZsuj<^sEJ^GtGu!liwu^p>B#ABk*QY*1
zXJ*%w`00xN9~m0EU!PQ%aOD<b-fLI?i<bp%DXLp4r+U3GuJ(LwT<!Ad#j#b9Ub%~w
z^=vA4V7zce?sxtDlZutnfy;KZr>AYx_j`49)0P!q%UJc-Jo>oS?da?S>oSV3XF8ws
zbH8lq&}7gRp?BHv)%^yE8KQi~@sM7>M(p!x;l^bLh2DJ>d0xyL<#7LObe_W9HB-Lu
zymS_Hl$aQrcJ$__58o!VdesPQk^IA?-16#PMT_){$(02j_kO+Hw%4qtL*dPq2R5Jd
zS)99XnQZMAzdh4z^XwMUO{okG%Wf~Z;`8B4lxKEnwVQjhgR#8P=1ljE``vCX=vFta
zYFx^^|I+4oBRi)a1KFr~9yZJyls4DhIN7)Mwy$-X^qkObFPdt;GP<NZOYw4UZ?pNb
z_TkbKv%eYJrd@mdRb}ILHj~d6Hg$IFOwZ$g{OjS7UyrOdXsaYTB`PKvoi#RIA)b(y
zVW#P*!+d!0(N15sI-S(;!WW7wTbSLJrtb0a@9lO@<CVMp_3h#7k7gKdNbvOz+T9vt
zW3pq0wxi3EDId)`J!&PT6Aa@|d~tir`(N<ij@<kFOL<>DJbvr;<n`O$KX%&A+M{8)
zavr<jO7p8cpEk}8%{F|sFjDE=A;mO3SCQUWXc$Y1rhg5}iE{tj`fApx^*vgBODokT
zA5y$8Eiyg1dCmM!H*e-Is5Xu+zH;_L>)wr1uZpg(TDDS~;RVa7lsogg4n=Q1Q7SC_
zdx`6%jZ4A=z8dAQ?09AP)iU(Gg~8iO<EpmyF0rS)M=vw3EuXn|^~|f6+b_Er^6mN{
zcXYy&nH8q|8>h|KS{HNERaWBuhPK1c+dp)2mhP^|_`B}!<1Cj%ce|II0WaLtyLT#u
z%awfi_E<&fv&|NB=c8vNWb@NBryt*&&>S+2En3D*@vY3!*N;3eTzJK1cCEHbc%^iM
z=iFE7*OqO6p=L8nlkX+NTQwUFi{f7G$%)~s9_@O|a{d0+^Y!lc8QD8TzwC1Hd91D;
z!kcj8S>7Fc*~o`t0WVkS-~Mc3TTwmh*v8rv=PN%AW<*wr?fSdz^oHplFMkOwzqDw{
zgVVv+=P~tc-&kTBWOU}Yn4(8od&0r#JJ&6`_rk8YX@b$_f4mEQBDOA^kt=;GFFdF6
z%pTjN?0fYf4eu$=ZbfeD;T&H!c%1vV_2;&R=e-p|f$7I4d^{Vm>DcPynXA-HOrLAS
zUDI8)eC4v2*|`O^IeIIP1$NKWsP|j;_hN{}q#I|vSIuNT&;4x2&SkTsKW>wIevNHa
zyBTZ$Kc}y(-U_E=Kj_q2yA=rb+%#I_7rZuT+X;_*W-W~dXa6WNul<#frm$u~D%bHH
z<};UE^T^p)vi7#~vzT*|hmBR0Ht8JBI&SyJq&IEPMD1fDbDw{FTUIT?^g-?Trn~!o
zDaha6*L|XF&mP8_jmu3XB^tyQKe)Kf_S(Cpp*afIShu`re=Bdf++pTTY1TL2Tb~vD
zwcoO#<HC*Jx5pkH`0?&+kWdd-zg5lahwhfblN!0UdPW<bJj1BQ%f#-+Qyr0Z@7@-P
zXOS+;GPkU{!N+v#+L=8%o6a<M)La$sbClh2fZ;=m`ZhZj|E!D8wtmWNeW|I#|H30v
zQbM@(K;bv3GZXsP-piS+cR(cY)6Ge5H=XsZm})y&-9h=9)c%@h+<HG$9{f5J<Cl^$
zC0unwLXxo6i7lyq+0PvGBOZ6EZ9Q}=pSyqiZ5#VHZ&Tm5USbs8wq8Xk^xwJ9;Wxjn
zx&Cg+cQM84liXZQQOk;x+p8a)*!=IIs_BI?o92_R`_xL09<AK3&>>jC!}xmj>swE*
zovxez(!(IzSLt#U+wshf=SJK1?iVy>f6HKG@K<!rM0Od~uJvXT`R0O|I%}=-=N?F5
zSrYmG+~@0o?#b_-y*@RKXSrwob|&NQH;b&_9$_~q{^Pgt#~B%qm(I`4Z@q8XFVz^{
zrdPczb-h=$mYa`#v$~jfrr+!{B@!VYrR=p#{XAwS-BaBb^(kQa0fBjWI<78R0;{X`
zZ&Tfs&LfzX(EQf>%HobGKeap3c1!QH_`@e)d~))cJuUhNDzE!R<aBrb4;J;3eKR9A
z)AhucKV@10Mt3;&_(s}(TMe!Eo|qJ0GUhmyaxqcQn@7@B`1{nCCIwShRON==+Nir!
zaNoJjKl1NY{*vqo3ap;D>h0VTz6(8}E3Q?<iC$=LOw0SV<gQ6tVxiu&g?%Ppg68|3
z+wOJi(5=#Ki}_Yu4L;g1srFT9kLBXUlOvxtvGMB4&OUg);!0!SrWxB$u6gre&J$;j
zlGOI6DHGzSJ(~9Sb^9}ewB7{Px?Q>Ft)jkHyO@+*?Ba|M)Y|e#v(59snQQgOH_1-k
z@jh+YyOVoz)w4_v88`^WL|6shI?OJUWXT#_8^ZcRW$T}X1qmCgPjNg+IQCXI#;;3J
z^}V}zQmnYoD%Gr0##b(%y0eZ=_UZM_4+Xw6%_>>H;_F1AD*rHp3<sNc@?7R@0dd<q
z&Trq++K?{SzN_i<k$2yvwrhW$-CnkualHde@|#)xAx?}ohp#53DPLB*s#cNV6Lh8q
zGDvdZyU+@i1w~D5QV(A$dU||qx^5b=x$)jNg$<K68V=syHf8UjU0%Pd_jj*({(H~E
zXR;kV-!Fd=TB9Pt6jl3D#?Y^bbqlj`%4W^QRfl%W%M5<L=$g_k{f*M$QX3oI>10$b
z%#SXYUTCJ;`pu-zX}vx-TV80NC%2VMr&W8%|HpyHG?%i)G@RMAKX&b#y=}){eF?RG
zao1QWb9so{k#+3C^^z-HXIjqt(c^nhLnx-u`d8Xad!H9a-yeG&dVXr{!uTh-^G?52
zyfsVPFF$L++=!%wmlr(^F?!)Jxw3%MKA_h#?Or(l<MQ?cuhOj~H-1Y?Ju@}CUsb;0
zm(9DbubcB4^JY6WFPNFQ$ACZ1Vu8qt#Pn{v-n~cm9Asfw<YRs5owt2}<vSjy&}|1(
zSN473-#&Ly+iW)GTYXzsi~deJ^ffN_#KrFYZ~BWxg=Oy)RR7qlqIWj!F@v#v)V>Ez
z+;*%QnbQiHu6ZrAJ3pf#^}k<$@Qp79iITbAxATizT@MG$@mTTI&T-nM#m9EdZH-;7
z^~^VU)%s5tgV^~jbFMUWtbS8c^tWcpa@7?t1G_?!z4mi%(aA`=z4gxSqw&vouFKiY
z)EXx}%g|m?BZ2z>&ylq^qe>=iO-?U+&$efGxH*eS*%7ItKbI<=PM)?i-L5N<zu>_w
zAD_t`Jle%?BX(`wwejk=P?5Rbf_6vFT;bb2TY9Z-T6g6}+vM(d6JN1O?wZ%THmE4R
zr1RZYp@UYJRh~JV*tX&IRIA5()+fozM_kM`&EIZbxX&c*xc6j(js<@d7l>P)sLMPc
z5-xbe@mBc>uSd%i`7hdbN=&j`XytG-=n-4X3$uFb3oP%obh<-C_iVa$*wjGVq-V<C
z722Fhs_SRYo|O^0VrnA0N4*5YJ}!m4GpBiym^SfFj6Zg4$_Agw|6JP2UpDQls@k=8
zt(E+%14eh>Z_+KZPG`Cl_c(`rQlV33h{|~ux0P>Z<(^ryQb^{dBhSPe8=ubj3F);p
z2y!l;yKCK1VU1U6Gau+WtzGeaXILaZzwhpH&gjXjw=n;$@i0C<i(5b}Z53N6L$A@R
z=Vz*XXEx32+P0(OaIVMIcdItZ%5R_ZMtt>@ur$N?so%0+w92MdE0$!4`97F__x)GB
zE4$wP>SSGY^+n?Q^fPa+v8t|{A@=1|-_f5c8EiXkd98D5W-VPf`@zb&=e9lTUHUb(
z`1GeA8)J_L`{elS&T_sfe{U&!<x|dcU!pdsem(H_m_nA2bj!B?dC$!*hh6b|d1>8O
zJ!`Qjq3@NKcd*>)4_NAu`f_Eg^t)V*>!smm1>+ZV{oXX~;_O*x&2RC3I1yRb5xilZ
z{5!+aJ-3wiZd%IY>|nXU!0~?4_n8ONzn@rG{bS~-*?NBLvC|Ugg*V3D@b+lUjj6Vo
zSRR^LI-AF5YVMNOql;EpiEQ2>a&wQvGNVPWTeFTZrES|(^*;6ezSP*&XFgXkmVRA*
z{G^QEvKfI}cO0w=&iZRDS{t8rS!!d~wx5!PoL3u_tR6ML;_Md4h7M~qB+sg@+WL0`
zyNYAD|2cOb$M-CJ?YZ&N58syG-52yL@{6Lhw&mGYJHaD?NA{GzK5@Nk`Mx)1FK*uY
zbmh$ZubrN0h98U`)Ld$wcI6D4HNRQ!?fYf5D>}}6uCje=@pf&rSI9=!jbC?36}~ds
z7Ib07`$@+(*-yW7%&Af6Q_`bX$>o{5Ev{~ot$MrY=7A!8)yWB=yUcjkF3RF{FMRh+
z)R<*!zwvw5ZSvoD=d`JA*)>B#=!<68|3-!v8|!`@)p@+XP||xnFUO3V(Ydco4tY7X
zxNPg+zh-yjE=zB3Mq~Zk8(TMda4$aBpZ_Lk%i8%dJjX9I|DRH$@yomW*0Y&6AKu(j
zFL5L&>0Rr)-8#92OBZTpNXFD=xIfO6J)7{z*h*%`&d?=`GyFx*Uk|-w(k{)wb!2-L
z>!DIj`RS&sPbJ@!{q`a2_{RA^G;;&IZTcTMGWKneuJSn*T|U{;=ko24C9cn$C7*2d
zbq#XxJ#F{m0@wR5#g~7?@$haCoCxV?GuM4E>-d<alw)RGr?qe9lZ7J6k3;Jf9atFS
zwl5KjW)?X2wPSYSt0p_u&w`5&6yID{xcgLkXu!2I%a(sVvO*wtZh-SG=B!70zdygv
z=w|yi_wPl6Yr5}p--~@*r?u<qHk0Txt~*1F*`2qYU1x0b_WQS&5eu%{28y0ram`iR
z_000TZEV|pJ+?}}yl4OHcH;~lj*C2xHBWRm?{JV)Js)<(FV-z8b&mM@>}Pv=mWq^4
z7L+Od&f}1fY*@(rIz6aeQ=*G|N?k@;qB;lHz8<4hhn<%4lx-3(HjWivV{^TB(bc<2
zESL9bOqKl2$JM`R#>B(kM-4A`o~Wyimy>6|Eiq5;i62YKvzJc=PS4u$LGh<k^tM&X
zd1lk@$LU`<bT4%EX*0uVc@|mDOJ+oWJ+k8U(K|kZKmL~${4K1=3Jl-;%TuCV+fLf+
zVqK2)=?UsS%j`}rSW_NzY8MN?_Y)rD?f0`J-U?50pHay!X|-N>#iYfRzZ$OBcRUuj
zf5|86SU2Cr1zmpIR5>&rO?a`eRCeqBqff5gkl;PbVsyMnpCR?x0>_-Qi!&Egm~Ck|
zw|3FBuy(5^CnevHkJz6)jy(1?^Y^6cC-FH2tOxXVJech8@cxH8Z(eb2{JW^TQXqR-
znA(JQ+;#6y&f(u^Tgf52b@HU2j+;HXWok4lrkFpreQn0Ct@fJNSHPHSisXyx4?k>z
zuS+*}OPu{;Qv86oa@Ndyu{$zf>dx7CdwaVg`-xjMz4^wh33j(<KU4}@HqmOy)8zcK
z>wenC>m0jk*JZ0@B{+@g*MlEI={+BwOU|?Fl}$LWCNAdk%53(xTsiwS8&A7A92fCF
zoVl`y$LI{tCiWRK@0B{sUU~bw+Tc%u*&ZKlcHKBNPnk<h<##LY+CQF~`GmnwU}2rt
zx3m{d$8N~Wp4q8YGI8bUtgo}KD^G3O7P)?!@3gzyT9<$DJ0mZ8nQ@c4+K&kB1mg=@
zQ+}BTU2`uyx+ch6#i{V(eq%<~8M`3KoJqBE$_zDY-}b2G(Q!M@8QczUOj{QAeRWT-
zN`R@fc%QDB*5~<wM_;k$L~q%D@Mg}d6;<!fDK6lhR4#Pnh5oGz3*#P|ukf3yb8c<t
z`RM8kI!{}t#nhL?`|$nZe$aD#^{YeuzoheLP7XKt%pGZ^ydr5|*YY!;%F2ss_vN0v
zu}JJ2qt~f31zuL$3f8)4Jq%pM&c1f{`sld_jxKHf_)Oh-naIUM=X>V&)xB6(5~P2t
z>EMI6#})Hmvs8SMoDli@ZehRb*)t`9@#oG+&66|`@QpsUCvW*)300lFoS$!)E}p4<
zL}p2%q55haHQra%X-|YXc5zlMTz_=sZaqbwPY>^&yq^1P%h3nQ#Rpl%Yq%_yb;M^F
zU-l8mKeA42F_T}$vz`NWL9X_TXC@n4-`DXz6n!>~@tJ9H&Y5GM)8~tAj^{laRbMdc
z*xlp&4`%7Vuj1)q3|-kO``nD-*%diw!T*1c9uWCn^>V6ZlEfT_^|jXatWGi0s^6}f
zlaLlGUUwno)5LHgC#45pj!Y{SICs+Lb>Z$?pVpqs`O7|;OQKRo_ydQ9B(MBgiMJQa
zrX=k)<I&^dVDafOS6NxW^E#7ZWs_gIUYZzt^fvkSyDd5_T}P5L|0%X|J)g0&`~IUh
zzqWtNoN5zbIj5vSlcADz*WEpG%9&~JzRBA!Eq=+X)OJmzw!YB*&evrN-_Dq_SoF>N
zcNH0avzB)6+^?FfopPb^33Qs{diJv$o15h?F54)<Iql+^N)i9pZroQ`d5W0QAIliX
zpWpXdt*>@+&b+jF!PPTQF6h$EpWe}7cYaNM$C~Lf-tUcHFxFUfUEn(_m44;W>Gd7?
z@8_6)*)_A#^TUnwRTCa2&epfwec`Z$o^#~g&qceMr%$N6{r-USV*gyV;(pUjhKv_g
zv)?*Q+U5}cc*UB<x)E#<XUekO+-4Xxubt$`$<T3VwrBLFgNh$d6?!bXarV1f)BdYZ
zP8NHqRX&vey~wj(FXO*tshCRguEjOCxeU~Q3iL@n>Ym=J)_le$Pwv7A=R4Ph_MLaw
z-KTn&bBnR){Fxh}IYPs2(khD!XXaWv`2C2ua@8Wm^7Xg#p63=beV%Zg(Nfa&ZqbbE
zvI^3-^+Xo8&fWK>O#DHC-_JQSE`~F1nNzsgzUFnTQ}u1*L&hJT&j0^suQm6*HKlAb
z<Dc*x_CE3d-Ua{aE9%dTW*jdz`m}&MWBtzeM)!7Ro<4K-^vp=-1nKh0GcA{$6sfeH
z`fwHhtplIyPED`>`}(_ym(AxHcdWLYxchLQO<MsU-%QSvOgmNf>R<I{n<-gw_02!S
zGjnvNExNZShkN%DdC`Su%a?bE?SS;43*3y==RZ5W<J6xmiz;_^*}a-zEB~uRj`ia!
zVWxlfe3Psq=WP_=pW69whwWD$%iU-GygkHu@>_1>VYLg~nLnisH+QuBd3kW*#9HOe
z-&&tCTWol7ztg}v<IeHEpb41|PoKAUpY=1N*!^M4GyYX`?9P7XnUmo9^H|C^_Tu-!
z$ELUKiTQV}`i|(niIt*NZ>P+eWcM4Ixb*k`*_8Fn{#Yl+gO-Q2TMo!GocF)@{n-mU
z`?oh|c-Vbzm7dIS{&?f3Zz)NO?`;14;)L9pIhwMEjoW4S&)1UtQD>I<Pr^c${qM6J
znH078Oiwh`D$5r9eo<j9*Ixhg?RHt?|1W1x_*AQL!=7zlaavuRw`}sW9~VDQJol$$
ze@y<II;k+0b^9Pe)G+I(NzHSwXOj<3T->7H?0i=4Mr6g#xY}i>IDatT*&p*$fB*k)
z(aY}a<el+9?MEKxOa6xZ9qvCgrylDL`<OcGXA`&HkK%{_8MU*T`?0M51Ffk8t@X3C
zG&cuHgV+|P3I+-w2Js63i9glajO2x*M(|UuEzF>s8B3E&DhpB-^ugN~xo|BUHA7nD
zTQTQtY<fh9yLjFEcZV+RE)fWrpq8*+!%=7BQN4>d7Ikiv_Pr93)Vnv~{oa~s8At8~
z=CHUr3T(J&ts^_FZlAn&WJ03$li%~y-_PG${_Kop@$++YEsM|1jAZ+-f5G5#Sn_7>
zn^LD#!GLwA%_`Re8*`S11?Jszi|h;zj01sL^X5#MGv~g{)Z|&t9Wg&ndW7CyvNp)+
z_LQ8u$emS@b)7=tp2t}k*0E)*SZQ$L$<65WBYKSU(l$oEOgy?YRcG(lt53VFU%q$|
z5cjP6liC^;;|!VW%UplGjxPV{tKsUl<ByFb=QD>Q*PO!cBl3^6CeO_KThGp=WfE_H
zPFrVH!^XUnEsaaJ3&-3Kof@+9Y0QamvkOcC3-mmG<u29`<OyDQZ;}5@K7ZfY(}n&n
zToktK@BOH{Houd$i;iBK!dZ57>GYi4hPS+VCn+}trBuhY9=u?p$@{|kX=>0T>A%y=
zzc$3J)60{MVEAw~`M~|Zi*~hoIyRVZxZFNneVY90)J4y86Y76VKYuax>t=sHou{JG
zn|6eLcgx(mX|6M)!d~Y+ET-xGpMSoNtY8rooSNwou)s6n(be)P`%VQbW$_CL3dSld
z((&Tp=}}x%$#8@3bmzHvMWsaxo=ytes=7bFxsusC=+V1^FZ}|77au348HLYhTt0VO
z(X7<%_tai(%sa3+NvoT0ujZ=osBJ--`W^m4AA_E@{`B-`un;#q&(Qj>{m~@T5cTLA
zV(DL*1%l)(`5dnOTl9pLZ^o<tJO3^)WiYUu9eb?5Yh6Z<K7-B6t2bB<>|lA^TlXRB
zu=Pi=_WGPD6a8jivwCG^TWvJ)+*kL=Wivjj?z>`Q*7N_Rjo~V@xxuB@d|Uep)|_AF
z-SEKtVhiiP&HqB?JB4kqW_#dz!{hI(7XEK~iU($Ydmqza!^@VsREwu!Q}Xt8f(>DD
zwz^%XPo1{RTC2N$JxAu8pKtD7IG@wwaJQA|=w6;QU-|6Er(WxuKfhj8cFo|tSS!!=
zC1uSOKNxq+hzy%iX}i9{tNYETCGDIH40GpKZ7E23&i3ww(Jj}Pmm-duK3*dHVC6!W
z-oN{{*cK%T70<Q1W0|#Yedxlds`RNksl6`DdJ{rdMIHLq%U=-@vU<(oErsggV&-RV
zpL%SuKy&%I!!q+*R&RUeKcDUR5mCkqkHh_ri|v=#czRdF{GGp7#nq?h`1nMxR^51Y
zm$i0rbdFZ~?Vfl4F3s`G2t4q<yqVX<_35)`DzZ;aHG&rhSe<n;54o)unSHcBN+XET
z{!FN(L(O)UC%MtAcfJIiuUud9-~8Fb*>gl=80z1DSgRqZmnU%}Xsx4a^4p>ZuVw_T
zd=<=}7ao1gb?d!~C7*I%&VO?>H15v*;-$-0wO?K&u~g`e))a^QC(lIUWj(AavzByS
ztI^HX)y>tNzEPg}bja0+n~I@l4sz^z{-XQ9y_-%)CDUhbW6PD9+!XL*!t7Zy=JPLm
zwo#(=*jAGTDjLhri&sCWE4dP!_n}|8n(yn)h0kBDS=9Nd=B#yb^3-ecLEQ{iK3)~8
z9$V~_wXGETY_V*Xdy8#B*`gEYi>}Kon4|0&ywT@ksz~%r1w-8rC3p91J-vTUWT$I1
zOSzqK|Cy_2SQ?i8oK@drAO2I}k*mR5Yj&2^A0lU2nr7Z9lRfY}{Dn+~^t!{R&IR^*
z-#qPq{`r(+DN%d+_WoYkb;jp<ma(~!iLTj=U9<h7r%23Pxzg}yA*bj3c(JcrwTlXp
zM8!AQeff1;<)fx9Tf=nQD<!#WyXG9<e&kTD#<|-Y?S*HHyB7McSfkOLFMn3*v)|?i
zv$uU)-2W#ac6teOh<%Fg3>8L>Z0&E1y2pD<PHFaAO$|S_*|IHQ|A{qAuD3d!UvIrh
zxB9|G<=JXB9{>MTRcn7wkJ!fdc5_n8ZI2pbGq&pQkJfO>=I(nPv&^^CZRM(|zRxF~
zIh<U+nUP`dJcXa%7jJbBd|K4kJF_!by!ZD)t@-z-&2+ncd%Fgo+3SS6rxvoFIyLq5
zlz?MTvNms9{r3dZgPe=yj#I9F5T3l#{>xj5Tv3*LhrcS`*v2s1Zr=KuD|+g09)4W1
zO(4HK)H!*!zWzKLvE`h_YQ9B#{>)#XB^t6leOLR`byJIPY*rR*X_79sxpU`^kKj2|
z6<wZ;i_2DvU-<lU$L1YILHni&vmXxR&KKCb*FIRh&92oYTeU9O{_@^#_wviSZt1V?
z+})>st}kMS4NJo6sJ;Iy?p3F0Y<%dmW!gL@iNf6Z`CfNa8XaaG7E4?F(#rnP!8M$J
z?`~n3&gp#By8QLm*Ier~8X2ruY^6@IG8}V=oUrKk$B+8TyUzM9s&sLw{2tD``IYVV
z?zM8uWu+OW?B-3V628dKYY@V*<?M1{Tg%eq$BK*ge(wAi>|^4Tw=ONe+c@rD9^cou
z;{TSI$Ts-8JeRwCz3Gj9{F&7nGvk>qb1U)jt*9y0a|x09W_6+cM2JZ8-o2W_5)28s
zC!bzE&%p52p~}<6<#*oO!kKr1L)2$Dt)BCwZpE<&{+hx2e`S4M9doPryLJ1__gozw
zepgp~jr^aZ^;LC|yK-lT#slpd(Hhn6Y0@D<8~o+N1!D~Ff4bA#DmO=QQSauuFO@M9
z!uCr}-SzhDoz?6NYvPu_uzG*?!l|Cxny#)TW}iZ%r7|*@9y8z7e!s=)td-Xi9tJDj
zO`UlMU)8z2iuZmx@xn_v*^e)#O#C=!g+<Aob=}g_-}EnA;G?u?*0W2yrS3{I?D!eK
z=hYPXkGEI-Jzn=VJEFgExAe|~t6BEm(0g{5?^Z(K+@m*o0;exOcj@3&^W_G$o+1;4
zBmAx%+dS`SyUaYp-D$2z9dsvztjdqfURgVP{@$}oW?fNR?q{07;PC$7d)*f-x{-U6
zOFumS?Orba-cWp*^o)JEFGGBtvosB#M@xTMrKdkPSu=fivti-u6*|68Q`!sHCkCta
zN<H1Ydi_V;S<8>>D0^wvOg!>?QdnJ8N04k%n}+tczpTQ!D-36d_<ou3Y2EVlWi`9L
zwYNBTSIz7Gp!@r05rfbD)z@##h~DB_k+d;-=RdE!fAW*;Po8sacxV#K@Z!MjR$H4!
z+ZNq*b22=xn#+jQ3ZFZjv{HNjhfik=IKE0<O5MSK?JW0sPoJP`!V4oa%6SZp_p&nF
zHwf?cFaC4C{gb5gv_9wOoGTTNT1Fck;k?3Q_VwG^oqwObx^tHy;fIfD^Y6Q2Qqk4A
zOAntDG3UEI_hpNjJmZ4%JMDRYiKlPTZ>w|p(-HCR#^fK7+rR9ZA-ap{!b7iDMX?L3
zFMrtX{nfC&%`Ae6VL|4;`5Mn{FNQ93@jIVsd~WYo0sSrMey@HTKi2wfd0Bn;-Uq9?
zt=Zq~z4U!<`|ge+*6DA>mrNC$o1#;{m+M7c=kn#3j3%=-GYdbvDpz4HpTOu7H7Qnk
zX^8s|VZpWK!831c%sZZ5nSM4@Fw#rnncBL`a-uf3H&vOrA1%(G)f+I4w>Iie@3JHQ
z3^UGtTAJUvN^Nq}UzZYn>pk<kU**^M@#|_@oa9nnBpp8A&sH{k@|WXo2P}JIq_w}P
zUtDYWZjt=dQe~Al>pV)=$!%fNiF9q-f6?u6)XART=Y9+RRe8kFP^<FU;-hAQ<3kn(
zt-I<MvbEHz<PLW)`+i#Gsgl0QbANdOH>b7N{&AmPUs3nCb&7P9EklCcrT6a6Dq-i=
z=RUKMj+=k-e2u55jo-f=|DO17pSkU(pjzHc$Ls#3X3`H03fp9vW2Y_I8o**ARK&b2
z<i6p1WBHRy6*lOv53>rhaB(-vIxH?<p;vloidy`Mg`7fN#i~_yeJ?z&PprQ*b4&ix
zl`E4jetp~QebRJR&h3Yv_8*z+BKrNV>Lu|R^VY7?vy9)Xu;|eboBh{ap1XTlUEc6f
zHZU;DBj#O+;IqHan4X_GCiKf9aG}l4W<7z6MK8H-3I%eBUf`3}k|;Ua|IIrls8UYw
zr|-lZmprKg`TG}@Uo9@!r{^-M!XSG?SBAj#r3Hr{<n0&!*r5^oX_Mc<qv6t$>l4j3
z&z|(Hyk21I3ZD$)$7jB63<_OeXz{0Z-cgZDGOU}{9BF-dsnYDX{<97HW4&Bllp9*_
zS+{!xM}5!pbz$96ojG$t<(!xD!Y(C!9eP}BT+5|j9{;~YW#y{t5;yjzoJp7wcVzeH
zOA$6(OLpk3)ja#R-#|&}leGR-k>e$DukP)fdiP!^gGF18`+RHrnSvLMuV!)i&*DA!
zyHk>d!DDx3RS%zbnvC(CIWiOeoRGTVrh2*4M&!^Iwpo^HmqaDpUfZml_dZK?-X^ni
zm(QlJUu?H`EAz4`pS>pWyQTQgp0MR_^0|-qn3(3yDP*|3b+g%=yeBqB>;`(F+e6(P
z;yeFX@*Z5O%;2#3htuu#w;3D~JTKh8uWhrzN%N`~SJqYzB`N*M3rgFy^ygel@om|3
zsczQa@)K7xxa_^+n^O(bJlGfYRvS&Se|j(e-{)C}<QX@V*OXjQ@S1S5VA;K|h8L$D
zemrxn=hb74?BSPQMHPxLs9lb=2^3wMtaWh~-=@k5(_#ev>`Hm_ou$F&SM$s5#@byS
zeGl6X9Qu4)DBB_V#<SSlTI@acEAJ*w`c}PiWxnBA<xe|3o_*Q1$~*dq+=+~)v?GVa
zzph=yd!?(x>V%GZ-NXmq%a#fzaaSfEn33x8S;l_tK9@M@75`o*rk+cbc`_q>`N!bS
zUtblA_9}N|+%A~7-6G`UD?WyAAD;_pUC3GV>$PL&#;(4a{9kLo$Fs&UFV~BCR9tx6
zc$SyT%)JbU&y>u%v@T)m^0nJltIxE|x_-*0H`4rX^9|AR!}Hx=r;C=GxzAGFvGd%U
zR~Gkz?moOwc{t(fBDR-L8Gifyn&PJ9(eglGolZ4R%g-r?)-wE9e~ayCdU%R^bX)9h
zyLILFyY(4(?B!?9+fz4l^5S^@uQg}ScCY5%c*jjzW&Xb_3c-al{0=i1Oc66x?(BF`
z5R-OG->5iSCaZ4YY}q4|Z~ji1H~sj=bsG(8@6P+|&K|n*nwF@O))VGMc?^dIYJVAd
z@F|uW>YNg2=yuLlQu<YKb*Jm)n~o;GWlu@yw7KP0ZtLGEG0V-+?DY0;yOaJ-t^E1m
z`z{7H*<0@-Em>D&>+MostnFyBt(}=+hQcoUK)th`N<2So-kjd%_Ub&}o)rD*482$U
zzFx}NH@8%|Vp_L#{kd1?QyKSpAD_Fs_>HxY{CXwcZ4(!Kl-U;1u`q<gFD2mD_pOs}
z#Owcfw>t2P<+Fc%SJPOFcD;RL<jTjfCewZ21y2UHTDSb&W}lCTPZ#Ib-Id-tZ~AL)
z27?Z%=p))PQso^P3oaZuIP1r+ukW}YemQwA?bj^!-}(9z+pAa4pR~<<%JB#eQ-h-y
zdS>l@E`Q!GaBaL3SIP6gD&dtY4d-{f@aR3B==Wj6EH_!Ho2m;>|N6J-lib|8rJGx(
zxMZ3x6MBBfb@}J=lKFdm!@QkNyX2po`<$!s(j9#fv9DWp$!^aVI+b#N-wa`$VujP|
zIVWYmy{)Iue`(#mVil>E!hT<JUasKF+iT;_Gr=n~q3!6J#cCbX#Fe-9IOVm3Sp^oZ
zpH}Vg`VuSuETu&gSYAxgJ9?{Kdc*%?PhU;onzQVQXyU_?w-@5`o#*|E?Yy%}ZPkS;
z!Ps*pf4UxQkDtFJH|Tn}%9f*(Lk?QCJoEQlZ8ArdBlPTB)~T^S{vBkPskLC*OI_Zb
zvR`d~E=seI+><@m{PW$(JO_WB{8G0|<8xY^uKxCWuXg`7yK|ENron`R0zo~gfvSZ+
z6Zt*uS<@!j-FnJt(!69I!vUU~6$w*&4-`0rA3I?b`@U8|_U{*)+cKwjbxvQst>Lap
zJLlULqg{VRg}JV-_-b1BuJ2^~wxBZ`yyE9B+LF8VB4bGm*Y-VHoN1Hf@4sSrF?q|Q
zOwQ!hEEa22l%jUlc5fH?E6q^zXX)bOt2?cmZ(sFF%saAu-JU0TeWz{X=N^>$@om~}
zy@ZqN16lsvTIzgc^_9j@@iUV*?c#kb@^wPfuYgN6+-wPbta`Jy>*p;DOl43vsX1J;
zPVlF&?u|_$U3r-W@uyUuOxrAVS*SIB&!;@0Z_NB_-rb7|cUs21CHr!XZ*{g~(sGmj
z(&*K0OEl#@)BY~fGbufKnd9J9^UohGxHWqBZOE^4_gQf2{n56Jqee<qKfa%L3CcLC
zrTVBjChOpfXQFTFqf-}zz1lM=?rM}{=JU{3lahtLg}%IYti<xU@6)Z}RlY0CV!MC4
zS-s?Hx%4CZrK5Fivw0Rn<Cf>=jhQ7FntUf!C7rr<xMTaJX%CL|C;VX*RP4z;^gEgP
z^%Hw(UWUJNQ?I;nPwAbtbb5H|7lV$K*Mcs0K0BH9HI&6-?=+tmHAY1(Upq{>)y^*2
zRk&r+;ihHYvCFPMzunKwxa{<;B}=}3-CVs~ih0NOZGFWL&m5b5WhP_8TJ2Sr!~_Me
z%4Pg#?AbH@Tj#U}&9!A0wLNzqO1GV$m={&4dXeY<k`;@~l#XA$Y|J1tFI2s>BIW4n
z6<Zm0OkbVT6;=CbQk=k5-r1RT1u^=UrkJHRHO{&Ge!0@3<ZTQLyqvsI!pXl+CoHpZ
z6IU;l*!IL}l7?n&a&N<nU9V5?E8$Y>bd(bgs?p|s5u?=B;qhq4_GK;VvYPLhLaoit
zwZ(s2{GeGx`a?&DifNcnZ>;X#Z)sCM7}`I7ckS#V@dei37xCY`;u+(xb63EAr-`BR
z8|@}qn_Xn~ni5qb++gV;^4X?;)A<RCVgb<+QT%gLt8D(xWl<|;Xt=w2>m~2dmrIxv
z4(m;vsTR3;<%&FOIh9*$7$3j9I&Gul`Y()1R&HFEWuG>kx-7Kl!J$?whTy#i4DL?d
z=5}cP*3x4UH_uGHwug<!<gxIv>1*s&ryO|oaM8_an;zS&4xX{l()F@QK@G2<=gJ~e
zS+&0hEVr)ni`so9n!W!_p6;Z5X214uykc!w%QoZuo*!0EmZT(d&r$D|K360EQGTIy
z@FJ7-!K;6#hy4`Yy1xF!#`b-zAFh^ZcP=p%4*Rn_uj|#7rN({Ba;F_Qez2#1_okP*
zo`G2c@1L}s%bTvheut{vkEYr`Wy;N2rxmyA>`FF1ryl1~+9#rOV~tq5+=CfUbbsHs
zUgWO(Xyb{J%@-;siCq7aIMsT3>OE&!1{1T~`!h|wVmj^Ry@bmyY5hCXJ4c9%<w4=+
z%SR1)c5IBE`Oa+)-{ptjfB*NY-gIcObjSNQ6E$DP1alu3Gn;jGrc}L)m3h~*<qOT)
zi}e{RHkIjcGpueg>g=#vA(-hHYFFNpbigIdWXo&E`QN;x_ABwkE&i9W+uVPb_vwqq
zTlFW4onSooE`i~I^<r(oi&~-rGp7V!v=zI&YaZviN<-sS2X}_OzE$02@nP!}9_x=%
z-5y0gKRw&dU(h~yN$2}M-7`UH5s?Nw=U;z_ciC;xGxzYH!1B(FH>;0ac_6!3d#(HJ
z`oI<LF-miC&eZ3a+{sl;eKX4>tZV&kjhz!W7RFsmIcdq6=;vhJ{CReR{Jg-tDhWgX
zju#?T!4iVCN{f1R!rmV(|HPcOnemy`M33n%!Aa7cH|;LuU(-+5SBsxsbMmfUVWqR|
zIo12VpJrV>v}4NR?cvf40ZCSWZ%NN{agplTysWFt|7ojwT>8&a)&;MA{#o{VTDHrV
z!%x%hPG)Y~<>hoNcGlODSxans?_V|53u*f7ShYAn)Z|-uz{|IHzklDs*l;qhzwUE(
zPk(giKL1q4hI6@EN>&RVdp5q-on0*SeE(%}e-?-OjA=)_+0NHo{PyIU%5hDOGp9I|
zl<Y3Dv&-MtY(KA;!hg$zk0D`M-{X=?vWu04^e>y~iZU>77rOX<)0qjI96#TXJ*m_=
zBjqH&#f}{wCBLeF9(oqaYjytS24k(0(>prW30~}5wMM>A*V}K=)wS_<3ad&=qK*am
zInNQ{U$;LcaQ$U_&wmr&SSwily^z-#X~HJ<I(t`Js!13p!{)?U2}#fXZDS9(Juk}k
z;F%BVo$N|KA5PF~Ja_a>@03Sddh;?D#ZEh>$+cbJ)qIsxoeKgRv^bCP^v?3Xx!3Y9
z&;FmCf7i@>n!ogBQf}~DyOqtsO$@xxns%@*cG(cW-@*83{epQHy^7fHOuqj6@8oxq
z-(H74@(`<=mNs>PknQ5eIlfGjKe(O>JHVA^vUiW(hN*XXF0k9&vrH4Yo`3x6A+|?q
zq0PTO)Cp}qbyxZ7x<<n~-lsWV856e7whB7jKGBP#dXZj2R3u}=<H~zgpRckvHvIZM
z{dRC@4^OsK?6mN##V;zf3qu$G`g-!%d6u=!rzg8EpZ#ynJ+Y|3m+qz2!Ty;NT@0@^
zIp_Q3RIgAt%_kukH-FRYz^6x<tD>*lFU;8S=Bas-dWi3YQ|#rQPXd#r+Kv6UGN;+3
zFrPl}5x#eq!Q1jjrE`0~&yr#=3D&#vZI=`WuiWA59y`M0<-R;H|C3n%H)@rr<9i-K
zYyRIVTuOa=4l#rs2@ksFCvo@u{>Q&_#r9@hnCZTC&61ZUJ7?-ny2$%(mx=F$Pam2?
zr@y-X_pH{z_e}u_7o=~_U(0^<?2D@%f+y#iar>&6rK;o}nKq{*cY)+izwLfrC%tT!
z?0fl*{ouqyQmL|yw<j-2(P-fnO}etV(8TqH>c+NfyoH%j8Be=6U5Y$Ycg){T?Q5dd
zU-_%vuXF-zEIe})XQ{UDdi-9wZ&C7*hxO;SUih8**W_9Fy^DgIY&Mm8$?~3kmr(Z9
z?>h7K<v&kvR-2*_6s!Dde)qeXx=FHk)V;3lwLVz-Y{K#PYqZvXnHKviZk{m5^~pc}
z?ki6<KXJ0VS!s<?a^A^Px&J2LVs>0G!}z)iyShV7!I}JO5mn!)72?<WJ@cj2H@CJF
ze_3}SeeE9gxWeP&JUl{jKc|$q@VwL)73<X2?csjKdpa#}k{qup(;RWr!s<E6+n088
z=glehczS2GY0cHn6PM;3Sv^^DLrZr4Y}L{;s~0`^u`{o$d{vC~l(VN-|4G<({=G-C
z+^WWmv&T*}F&|r8y71Sv>x}x_+o#{$ZvVRG^ThA1SxoBxkM{nHcMf(6&&amfe)oRM
z!|GpqGiSuuOp4G|K3n}td|TnWU1{5I?Ef=?Dep@`{G0aV=l-G6w|P1`R^6WSx4f2_
zp*_#!v|IR{Inl*;J727fFLJlElv^}o%YME&cg@`{x?8O3nSFcfHoMeM&P;pP7K!?b
zms%VNo0N6EZOw-sv2VZ5FZ}5I#9r)X$g#~KDNLU~G_=pVUUTim;hRdbcCS0i?8AS|
z3@mj#v}xz!6T4QjYRS0SoiFaZ#FWk}Xu8D6|9(Z_W%sFdYwj(spC$A|-*#41++>H7
z|N7&Xb>Gpu{OwAym5_G!n#Lmrr$ug<?KEZ=Tfgm3JjcaJob$eXn7X2Q+1lWJ0!K~%
z^1aFT+)(k_wdB$K67G}T+U75F_PX5O`qKJ@|8B`cf#)V3P<iaL#KCpv&xLynLhe4D
zbnN65TjR}-XR8+IPf=q^aQpRM!28$#wyj&9Z4b#@%$<6e$0(Vh#y@+O{;Q=s6Raxl
z*Hwlla6a^3%y7W6C*^<s(fY>YO$lx9W~Tqw+-&&SZs9)7wUx;tPu(L88P@DK&a`0+
z2+UU~S;BcxVutC_m)&Q(d;LQgvaJ{yB-~xT@}K!7{wQ&l^Y^?d)6-rtH9VJ`|Nj5~
z>SOjy;YwVYm0c+}vhKBH{F?khq(|V`z1yY%k2hD&s<>7EQUBl3{XfM2tIVoDKTB!h
z)qG8*|1Z5fTL1TM7HV1W+ql2O!%$lPiR;%>Q*0Ba&Hn$9{i)WmyVla;bG`q>@Z7ll
zf$Qtfna9$!WNy1^UvFM~D(Mv0lRuvej~+;E+dk>nR#%a`Pqrr3Uf#Ub&OWcapjkvN
z_56&0u#Htp-mcNMKR+yH48Ap8`Rm&HRqwX%nigo;wkq*gmQCp2DJ*r7&u0IWov~@r
zCoa{sG3!4xEnBzSLMKw}>8C|GHBOVc5~Iqp*WSLb@$$~`lF<I0?-$9rS?_jH{ru^#
zcJ0lc-roX`i<Gwo-i$rAwkJ9xFl<V+pd*9Dn@OiKjJ}55ihQ`W=KdQlCWgDrxo<X2
zntXZ9rgv?hAN_A+d+L*2{N;r0>Gx*xJ-J-()=Bf$Jih1d_wLd?CG`i+2j@<4VPcq?
zxAxbJdd^KI*Ea99<!A6-|J(1}>(d+GT=}$v%X#J*Uzy<K;O3IIb!)$TiL>cgtfXeI
zy6q=l!QWpO>X(V$7W*dm#@6Ll0%vLS4=#p;mosnNDk;$Uz%TJSBqC{D)WoTkOJkak
zni;%LklJrrvLsJ@_3nM^lRmk8{89V$ZKKrc`jGQoQH9H`0{vFUp3a-67NF=W?0hdL
z{^OHL$$`^%IK>^^H)+?)Y5X~bMSrc<Kjvn9&)oL)lXT0e8Lm|a<I}}bBwvdixhbaV
zUdzY-xNqCO|2GyXZJMw)+j7qQ_`rD+|Cp_kVK|Uwz@d7hbk(g@?!}j~1vQTSIJxO-
zoav8cKCWx~?DvUVn%kUzBXMxWhEIQQ*F0R!bl_P=@YWw@hvlD&v4}32*58p*+gHCR
zt7A{nwYTpXY<BL9RFdrZ?!f*#JbPcs^ZNy9OH(4H_MV--avej%!RX45vtP|iS<#S|
zQuX&yn4Fcqmr_z0x7=kfch~#NdP_Z9qpDiBm4!cerodns>GewV`PQb%_F}JJ#<14N
z^=;7c@zpUp|EV;{d{emjwVD;tx2{bT7o0b1>c5AwnSL)#Ql{Q`k;QO9u4dT*ZJ)kr
z!u&sHUwmM9{rN}rlYCE}-Pr5Cu*hV+it(%DDMH=(2cAsH&YaS`Ht3ID)OwSHWfJSx
z21@&tP203N)4^PjXUmP4rAFJF#a~Z*Hm!W!UcPLXX_KZFa_6pFSDDSecY^zI)#{T*
z&i~S6wr}p;A+gtb?q8GALz{SVWiRij4K6;NIxY1(qeE8Zqr)#|9P!_J%yn98WM;_I
z`=Q2Z*PeaLvn`rzys3M$&?2S9qLMk+O%nKLO!4pi^EM@Z(Sx_AJLTSe-o3HD?@Il#
zF!uQ!9#<aqo4yRLI`DdqdXsL_a!t)Y7v=l~OMKZZs~7)so$LQcW!Kk5icE{=I$wDp
zc`bFpwl=-+rMkt@^K?zle6=&Td!}-{EuBHpaF5aQcc04`-O@vIAOHW6kd(Lk%kRew
z8<JP4F|1iptrsKg<oEhJ+xf@Gn||~PEU9W%tcYa~_!qfbBV5m!iP!AwCX<q_WotUl
zmKHKLR4_cNW%zsf&!06{_C`I|y(v@c+;#r+NyC%V+^0;LP@ZEl*Y1X)+8^&ndpq2g
zT9isZHZ{>wkNlRnQOx@9w5X_GZqwFAXa117z17Fxqw{I#hASpf1vQJkPa9vJRT3l?
ztNb%k<F<8FWZ&~=HC@-Qd-!^k7<q2<KlOIW>OdKpSrcYXoG~Rj;$X%Lo_p?<{zk=I
zH?3Mvi)?S&A}cH?dH2Tk3qAoMZx|OZdb{epwt<oPX%55R3Clh!DaYSEd(&lo>&lhO
zq80{4PMfqUYHDt<_Y<Yp|E10f9y%DLugk;`ntXW9mN)-v-#WAX5fA+4#>|zPmx6X8
z6ljeFXz_=IiMb(28pJk)-F{B|ijW|8CoX-+Az%TCMY+WaAg#{%Ir&A!3dRch&iOf|
zxp~D3#zqt^2m!e(NI^dsawHUJ-3swXLZK}WnR|26n;l%Pb7jB(uebcI_;^>W)CI9-
z2cy?7kF4CXhLMFSr+(l4_fz*wI{*CeZh`5N-*hXsgO0a;QX|{n6?ar+>Grm$H*?ne
z&b;*Sp4RI;mKGh)JQb0P_t);fuYZYsXZ|L)h5y|DtbGxgwL|}V(H-uEt4k}gcTL)m
z=C3Gaf2R9qL-dvYE3Zs>!k=sx(E8?kbjj?X_o-dEO*tw*i?!~$7~Oid)_j&-tkR6`
zjOag`jdyKlZqGD#D|kFFuk1(nL#fTjW$xRpX<2^$lkCon-iz{=mu?JxIdyx+y=;yf
zGZ&rBobG1$d7@UWa>>HpEwheUT?yjP%9fnbd*JTE-8Yvln;fBcD7~<wOIf~kYR7}R
zcpc%ys%yQQ<9L=OJ#bpRQ%OHpYq86ok{99%$>yt$f4F-4=8YR~B0`G1qt<f1k30N=
zU(R^a?seT>zOz>Q?GXF2HA+I&yFbNib*b{QIHj&+#lvTpu%)zo`<lLG3!mi^eZ9sW
z2Yvsx8)8Ra7IlVi41W5mkoVZmwB)I2#yk(&z1E&w%kD3b`Fzie-pG^AMH+6EVvD5D
zHtaW8)6JkJ6|~e_=JI>T7n<q|w^YQWOO($M3cJg7HZeV8snR!nmZ>`W_c%fYX3aUM
z@ciP>Y~y`Dk}K9-vpuchRGzFAvE#th<Y}{VvTEinG`(fVvwR-M-LHB#S-YEUC4%3a
z{cy!Z%kKYy&3k(e?%F)l>vP}1ujf0yeVozq=SK3WDfygAHtN=X+>c`dx`SI%WraMJ
z#!d<izFVPouW9-|-_R>p?AN(gp3-RT(*Gy1tMvT;o}Jo_EdiOasmF}(z4|+GH)qrb
z6M=qa!%HFEmjfR}ylOVw*daJ2wPUl_c`LJ)uN$O03}!#d*mNNJ@~`{G@fV*|Yj`K{
z)wrks?wsxQS#4cFLNI5r=CmcZV{+CBN?1?XeZgPyYO1D&eoe@%w--(QT@J6Vh=>R;
zuMJpvzd)Y#;$)^>32ZwHtZiiTk9DRlHQ?lb;xe1n@r&aO$*weMi4%(r1V8AQCca-#
z$}JXQa*t>48x6Ozmz>rUB=2R5&SL4UP;RqwI^ViOI@eP)U06Tb_Kc~Fg08|p)`ig=
zXICmr?EZ0KamDNd7OS`Hp83hO?#l*c(4p2M)rK;SUoH9kr{43+cr!!Sotx<+Lo;{q
z-<d&X$0YVHJL<l4VtVtv<kj<!NSf|D-Lfid(jT^-`A2Uanzbf4^U!fVJ9lml3+8BX
zSG$AHx21b`C_D;2EEvp^CnNMFbeH9Zn>C-xii&v(PkAhpn3r7m+Uv;qYR(gyYqm!D
zF74j9@o`)<$AyV3Uqn={q#AVTDPEc~oqg5fOOxv4)jVzTHg7m!n7!%uW-i-~Mu9SE
z6A#1rH!cQd#+^wBmOn40zjoivLeXVYHh)*YweFoz%n$d~iUs_?Z7%HkDrvJk`|lH%
z$)~^GF<xLHYR5PIQS9pj52j=+3yJmP`|vLA`<v$41mD71sr!qJylx&(&Mw_jS(vi4
z>Fv5R;;%CeqKw;%g=#K+>Ce^jT=Qhpe3S3)%1=G!Jq+ZjZ9lZ?%94(cHPiP5zA#W}
z^{RX#>0~h}YU_8s+0S;p+E{+7S1+OV(yDhAi&p4%<bBWU-K;Y)v2L1Q%bB(mhsgU%
zmo6XvexhOi(pb5N*S1{J-^ed0k@s`AhB|Zk=0KT_j;#y&{WdpN3C!J7@@(eYA9ee?
z-re6EdGcx8j@QM)rB6ksCQIG5xYD!wLEIJAU8g2}F8dJ5z4UzWPmY-2C+S_CmQwFz
z*xR=@t2~@{`S$ErQA^Xe|Jjh;{w7RYP;Eu$!!z6dJXc_d>wN$E-L*3v3Q@JrtG|5y
z|8lEyS(c~0Xy>v^;^C{?mqiFQ{%%-Sdg`_Gwr!?`HWQy6G7b?je{5K8=q@4scS_%d
z-4VeI|91Y%dtR|X``ngY0*ODi*1p^6Ay`#y<~)Bzm|jibtXwhQzt<a|U9&4;n~<w~
zG(*zkpRi_*p5KFuVFn8x*D|(6RirF#R_2|*di%XCVg8j&Cyn|#TduNv*_D4lc!I(D
z5NoDfRad{TuY8QFOg^4Y;XNzLxcyl`ws_=H{l^-~8)cYf=LEex_-#Y_w$Ho`-o{^z
z?|Yq@;glM}81+Kd_J4@ui|-$ubpEXKbm(}%Ykhy?y!ZFb-yFO0N^a7<y4B&_!U3!c
z&qiinQ$Kd!Zn9dvmq^quS>N-`-r<I&zNr&0#H{~h?tEO@zACm}wt11@mg}9ihkv=a
zS(T_t&lET+z#w&4?%CxR_byx%U($L+u(PP?s=J%X)?Yh?f0n(!DgX8NBEkG)C*?d#
zzpe9iI@n$Dlg&kS-v1`KTRVk>J$3E`eD<jl5?*`uda5wHYvIP{FDgtl&R;rQEB<B6
z?0Vl^{*HAYayMRE=4tWW!CCU-yjP4u7qs0vu1`?sj(8xmuPg5ES1+l`m&>lM6^=?M
zpRH;7eXfq?hKQyaVz=|wa|*S;fA+e1q5kW;(>+$TPU<n<z<1K@W32mhjW1p+gyzJ#
zFkZ=8_|N?PQ@i-~jSd3L(>PbpzHITU=Au?@;@5lM|8EwR@L6(ozrTtLM?kgiQdd?F
zfsHcarylu<%u{!e`{u-9)cO07YM)@=-00=+I2PP0|M_$0Of795>%`}o#&RiI<wuNb
zr5uE}Y>JHQUuN1Ech>&3#A9ANN2&1lCr?KTy!R1X{JBM{c3s}9#Pvs5>pv(reJ*3`
z=1rT^YJKT@-1iHbZ$rLMt9)^(<x}Oi)R_UtE<Qi4;Nd2{%JfFv&PmU&*q)ARD}Jaa
z#>xM^HF{-!>C$PkR`-u&UE)qPJmvAxT1oub%Z<+}EuswU-~Fmd4uAPpHBBvSm-ulx
zx1-CvB0F|(KAfMwOz&>*;);nY=O=x5b&|h!>blS^nvz<#qPM@aTNoXz)3s}N#f?`N
zQjO1_yz^D(tOk!#o2{w%_x_Kw)okZ=Z~7$gf~mTpWX}0RNsSshGhBZj&xtV!k@+f7
zqU*E5=RCjX^s339|NQ@}bgzQ-g-+|jfE>%n^VMc|IIi|u3FaI0oz3|6ul&jLuYE4>
zOzQsid)4b0h)S<-?3Q_N`t7rAb&ZBfclPsrD-VC@&1@{GzjDSvf30gorbnB^&ipQq
zUt+~ET!Qae9WS2od+XuT`QA|b*k1YF{Z-7`bJw_UYJ9i*CttOkjmZb+C6|Kxt&Z_e
zQz>FfTh-=s)y^mOQPaa@Y1_B8>#QW2Pxc;YjXZcaaDIJ_ynH6>>1l_PB5cEgWjY;Q
z?}i7QTlT%<_q)?us&|D*-F(z5?_YG{b@h$u`z4Q5cLjtkJpJy}ALsoFQwog~^+ewN
zU3rz~gJt>ogR6=g)<2A&(!b;Wrz(lH*X}VWAD9>{#eRGHEQJ}*<`}PA=9f3|;K%Tn
z-9BwEZ>1+T=O@fqUNLF1<b;T&YF$c`lrp?N7@ap4_Fk&LwA^%=-Rw!mk~0PRwu{*=
zH*^hfYCHH%X_1%qDc`OKB9gu~4F!GMl~$h5DSGuyb<xzc$xSPq{1)pUntU!$Ywn86
ztCv|VIQ1&z&+6loEE@ci=7h6X38~LtDs1MeWN<i5dSaN>&%=`b%6n&SxpY!~lTJ?g
zB`@`pflH?PO<L>$Cr$)SZgI9dEhuI_)$ZTnqt7Sae5w25Rp|SP$w{%x?_Keqd`pfi
z<>F+y?0G-;-j@)sz3<yusD5AFuyv8X@gEO|-OLq>OP20?a&><Rr{RsgE)&-%zCL&@
zqHV(C`{DmD7d?48F{fhUaZ&jvhc&aSn3(JmH?gffAN%Fp&Srl#muP93*WwNNEz|OC
zL^VFnjXoX```P&8wfsXl_qLxr=BabfQ(3B`+k21p{2g~Pv}E>wJ-hpT)7s--#4gKA
z+Z^s=<$Rd4ec^*Ev-VU}eV)vqpuVD{<tX2xGq2)}Htd+VhnbyYt*o^5J=1I2Z}q;E
zH8?-6Jsj}5W6Sj^RU5Z^i6=4E&F{Tych-~XxSV(Ku@9w|nS6V1L@aIovCI6G^eLlP
zGuIrxRkFn?TX&OB#JOWyu?dP?{u6cYZ73HyazW&H^^+^CDerv?Yu|ocy=v~-sUP-8
zb|1K>RlE5Z)0t%{=V#oO`}ykr44FljSRHHjC_gvjJU3G-mod(DPVg*?Px=)lx8H(#
zGH4wgP~QR6xiK~{L3DI1NM8C*Y)1!U-8-S9t<4eZ-a)Pcb#qYGy({2Y_l~sc-J*By
zl#N0y3Op{%lMjKwrT_ocyt!9PKWjVW^hL_qXjA*WNZk)i+}%5-@F^)N`G5Mj?c#U4
zB|O{LsZRf`uw3idtz8LePkmU6T^-kD);-;16mxstsi(%N@^P&0r<Jnix%vj5^qe26
z7-Jc&xNXL+buzMSfsZRfr(F(QS>W!)`n@l``RJ6uw$m%^o|zO+X<s(MU*_4uomcZ0
zty|4ictG?Ed(73p3w84U?OC;d_RlMOtwL4BkB5D!P0g==!%@Ju*LmJI_s<h^WbXza
zetYQ$gWJ{wZY&WA3LQ{H8X3al(E@fy6R6kelvz?7kXq!NpIeZhmzr0iU;*xb<`)GQ
zBqpaS=)0trWhSQ*zlFgBBPt0UVvLANOW1u(C{c-X3j^A*#TPd6HYJF-1zu>n)+upG
zH=_Ae;0-5lF0cGY^2L6iCxzGU{9JtZdhOhApM4(NE}M8P=K9(9o%wg`Y#+#XNC+4z
zBsm;u=wK9NR$_DE8HoZ9{zYs{jqZDEbG)Mex<~T5*LFdUVr`g73LHzIBxP)33X%me
z4M|T@#1;)k6s0KGx%a-{W3fT5Bz_D8Eq%p0_TRBMm&)aIFhjyIQ9!3?#{d7TpKWNj
zeUr!^xu85i+QRn!L9_0<nkAXxrRl-*D_`iH-sIw?^i$*Hr{(hY|0b0$@c;DfrR^!*
zOa1bnuJ1nawXekL<jXIcXWnqm|K#~3{o6ObU!v?CK_)@>vcLR!vhS~`^{eYwQUrg#
z+`G5A?kM9Tk=`k0Jg@n;e~U<CTD9Sm-1&Q+{aJI_yFNI|nqBm~_vQQT-8<PA@W1#l
z-(uOfi|b$W@>#uDz$$qD&Dknd|EWdA;f8JYcN3aE%>GfCKmX@OyPK1%Ub^pm@w@tW
z;Nz#u`*(-_`trVBe^Gme!G)4p8IIFEF0dUva`jtvKij(3&Z^Ioy?6hgSiY>*YR_V6
z`)3p92R#eB6d2GuGk04Chwc@LQ@whhb3Bti=FJURwd6pTf8QsSF7ta;D*sjnt*g$M
z&fOpK;_!i+{uj5DZ#61$dGXl&Ow9#Hf2X%qx<7mFcoxjh;qCK}VZAE4eD0F<mu&O4
z&1<*%qh#0L^{G^p>(0Z#`}*%{`B}d0Z>VT2>$w@zwP(KbjJ=;`?5w{0WaApyQ-2(;
z#4g`B=X>)e5gYf8UmLgHh&B#9^G9w=7L%RYv0pnsPZEvnx_3&rV0XvN#E{<)H_E9*
zo3`y+mHmF1-?}?%&pdm2E_eGO_x=k^<t+_?E&i^jBdbKtKK-4V&To{lJzQ_{5#P$P
zFAj3+!-75q&KDQb-0-*d$QgFoFDfF(&UhweZ~nT}FXDgG-<8$RR8obXKFqeAP!aM-
z?N+1v9`-wDFa7<qU2XI9y2-(+dsggz{p6rje07F!(LKhX$x%)*yf0Usd3=9ev_ALF
zU{_xuWzKt=TKm#<f>@ZRbH2EF#5wlQ?}@5QL)F65-MRbcKY4p@=a%_N%d{?s$Ho4=
z>mh0;sblr%P5j1FHmeHdoccP|E2B3Q?_H<;d0)kkx!(exd}I%OcJ;_rZ|@7IrUq_S
zE@ZEq_gZuJbMYXzPmD7^ho0ZVY~*sdX0=w%r!yazr~K@g$#3<-b4BcW?)f%6ch23b
z*(4EMyw`8~FX#V#nvd38X1kX4`&?PeK9j?0<*@}<Bsb(d|2nm@e!AK{%a;?Z<K8me
zvY4n{rkP)~C@y2_bd8Vm+%=xsI(!aT@9ntCzr}BL2AgbyfYf%y1DrKE&xInUUOOVI
z^EzUual-0=rPDlSK0gweuU*WvY{q2Ge>SR-sw*>|z1neO)tQOk+-9a8z4UWhWa_Gn
zEt6;V*0|1<x_S3v&b#Yh%=ez*Es|4VJ}~dolPI_OijEFSj&jDq$4m`3Yn!g>dDiuR
zd-?NiS0?V#%GlZN#%q6i#f`2!CC5b!dX*|#iSi#lT1Ky)Z5HMHv50v~<Rwn7EMJ#%
zzDHi}{MPXFV7Tj9O$`=>@E12iSw+l4-neYFtAj-R7Vb4w3l_W#oTt0(a=~{Co!azX
z@532${ZsYsi$6<Oj#VhJ>U}1@hxq|V_UEZZ6#)~?72j*~-WQN_ueoaYnJqkq<+$0j
ziLUZ<T+XfS^bzQEOK1>R&IxJ1`SrzR?&r5wedN1);q+0rGs^u}wLU*66HdM$E#lgH
zB<spYt8ct>4R0(w6T5xJ`5kdfU;8a;EV*8IX1akt<DF|7w}LMSeqEr<e@0V$N1=pQ
zPmHV3YzNlUM=r0qw6ApQ`&WEPlm7>ul5RhKrY>Ra>Yn;z?Q{7*9x$18mfeX@?2oR7
zyZZObyAt-S3d>g7k*)B&W%-<K&(_VJXM1_W$z?8A1D0ubPI;_y@y^mybHXR}Z*Si#
zKk2u`u_G(DUYyq?y7r9gRn1vj8tb+>w^}hTJhf-Ca^$MQb=4yIYpb4dh4Pp^S^nv8
z)!m>jmcZuS%N9%iViQ_;qcHBVk9+U?pP{{H7rM7JPj;W?=+5fwR?(EiH+RacEmnrw
zmVS*TD@;$U(Tn0q@|q)mby=v2)4@G|A9jbX6*KPY<J{29S0&_hUgz8jm-D*+qD}{Y
zJb7-{WBy+rj}kMg<l--`620s8BjU-GTYK7Eve@3ttxofn68T*snEAG3(LBq}|BV^O
z>n5=?JrIxbF7Ue2Wzy33V=kx6`I}R#x1D*kEV&`vz--Zxb(5o)6n{Q%=KW|z=mDz-
zy;CM$OZx5DW%$`jTP~sc%;u=B@II@oru!woRJ9JC;+KB3;Kt1P>#7BfZaKYMG;8g*
zS2OyyJn~7F+~Ff)8uUX(?N%VOVD$CQ*?f0cHY+QJadx$`r{D8`-1Ya%_Q{t&$Xb5>
z;~2R(#Cz&C-$k1)c<VNsRSJDvv#5OC8LLhyTeF~-XU=w*{^t1ccFrq7g{uslReXOA
zdE7E6d(db3Th2oA_vY8<4mGXV<&dzZC{^wu!>{zJnOEk{e)VjTVL<ZaAGI@_o?e}4
zf4}$M{qTzA_HW*s2A(teek(V*Xp=GfnsXs<4z19d)E%?JB7GkJpFPQwqn?1vh0GUh
zn`QrPoB1qW<i1VUr%Ot+=j_;g!nYxvP5YJYX9JJ>)qUrtcXxcTy{Wd4Eqb|wFpuQU
zq^iz@*>P$N2ZH-n@9lnR_4VYVZ(7eT|M2`Pc-3&4IETwdS?hI{rFVbcnJp%LY3)?a
z|8lX>g10tJx_aqPD%1RY{iurRZ`1c4-pP`BZF`A`&03}BPu8`EHP6mCrJoraGSmI-
zQf}YV?D4<qUN|=}>-Pt0x!v7t8PSw$;BzJI!V#GRjchZHyg$r&?dr=^zRls9hpq-%
zJXLLO;Iz7?;uoc>wAT8upw+&Z>C?8%FRDw={;_Y7!EZ5R=Q9>+_nz@w`QR0q{_0eW
zpomvT*(p_J?I4|1XAaBgR%h*CxbS^`rrz)EMnB#yJ>eJFb&Qp}|Nbo#YlUN?hg09p
z+}`&fw0`1^^rv_E-t61IP{mNo_Fq7;`Kxahp?<zeE*I*q)#YWe%-Xr)474U(`~IS_
z|Ggi(OlmuS>h8<hz#JE%Vff(RUE@Nt_^f$_dw&12`Wq*8Oz_LMzuqCMs?v5%@;RH^
zx!dMgcR+a)H{<MWW^Ko>Uzh&8e!cvYnQ!^;Z`>lLy`n0Ocg7mwum`690v6^ryDB&F
z$*-N#)Vj;RFRG_Z>d>3}dIbx_oeg$=3$rrFY_Pd_&v!!mzhzF${0((Ft{-_#*{$Y8
zPqyrP`+M_RmMNC)dmFxM{yW=b6@6{S@$2HDn?usBCa&JTezVv0sg+A&mKM*wx#Y~W
z5TnrWSA`CT9cPBWtuYbYc(UT>wk{?$DW1C_j{m-{_Yu|3jf{!j;=_BeFXMub*2b+%
zcO7^BekeF~or^)>1&(rC%^b<ls;&#?4s<-VlE0jj-DYBY&*FY$n(OJevc*U5w@)rT
zv|#&0qv+FSOD^W9R4mes;;Yr{-N&$s|C0F+ZI-$IvyFq2t7hKO`ekRePW*O4-;AFN
zn&-96`ty1I>j@{KonCGK+q}K%(%;OVvtu0sN;mmEQe2Q8H?2)vX1ZV1uigO7<X!dB
zYj*$7)#Oa`|1|AqiUw1i`qQ$zKcXg?-N=43Gjq}VMwd%mlNS6q*)3g}>}}xukUgAb
z$xH5_1DoU2`eyBEd%H8|wEUIA`yvw*pYA-M_WuWarG=Ju<D+>(nzN%>M8x*HZkWa)
zxyCgx_1xAZ%WKQ`e+vq?6tZh~?0+dNyrEHGOWNP+JT;qTu>zXxva3!jL@rLcZ5C(~
z6Cd$ynbE}S#`8|Flt)fZf9x7@`rrq~CW-D(Jag-BPn>v0J~%AwX0OQQO)B;OtvAh_
zaj<IskA|~+nitpuCOzE{{c@4bv`?pGSSt@$YB(&qU1F8=Z051G7dLF~Z<8+7*}kPD
zdP1U)?FR`__h;*pc(k1jcltc?tQVKtXsq(@;1cylhtnc_5epNX+TOjpbSVE}_9Od6
ziJoV9uGR}ActVr0@4p|(-rr1kJ}>OAo#40V*4fg{>2<H;QcNNwWv<y;Z9i+3`|YWD
z0~cFR#2NOFJ;%k*`WC7$+}E+eIeN0U!k<eHLZ@9mET0|cH^)V%f;FS(#U(X2y(`Y_
z{k__a+BQj=QR$x!U%39La@$(R)op@_$C;Ye9Mp~Ok}N8*We|I(snNA)`ce;&BUt6S
zv-9_}y%J1gQC-aBy5zN+Dci)wD-Lp}dd=lqAjf?D<JZTt=dIW4aa%j_g!G(s=axIv
z{G9gc?{kaBn>tyiiq6C&3YQ$y;x~1SW71+-o4w@V-qjPX1cj$Xt}48)d+Stpn(*=c
zU3-_CYu{#AoD|p__HEalR_5tK{>Exn3YV6(@4e8ub&sCC89PhwtQDtvyI1O2ZAi#)
zQteda(mA$rtN7lWzt4}F^>EGq+&}4?n_>U+d#9&yoKd+FuCStTz001s%vv*j_P1MQ
zE0h%Nm#r|m&bw(Eo1yVmBTk*mckdeSsIiQ<65P2`^uybo{RYfEb@!(?@s>kcCRf7l
zM6xbs&`de0yKVco!wS87);hgjV_~Dq{!HcIoj(0jKH8rDWLD1j@lw09L2&VuqMi*p
zjOW&{>1;mfsWzqfi^k5{#(zfN&xqP-R?E!@2yK|kJLB8S-;>YiUz)r4X}`^$O^060
zbL{@g%owG~u&n8si4K2C=IQs}GIY&0zCL$%b_dVrGH&UOC2#iZ=7?leYfal&t@Zcb
zucdb`AFS10uJ%?Ua!Y>Er(C<`A+OF@8ysBZWwNF7(*^Gpdih6Ho;B?*S$b-^|K`vV
z=_b?HJSCQ*_g2dMkJC#ReEIwSxyN6(=LawQ$UcR`FKy42^6D?`ET<GMJt<P0*r-#z
z=4xMwj|g{w-G^OkJ}!NqI`7D(6y1hz@$Xi+H+k~ic<Oxk|Lu3$x1LYDKA|ZoQaI^y
zx5@Js<JFV*2#8&p6>T6sbwgzOP2t>CHNVe$7)VTEf1z46Q^l!1DD~UCn_9*9^`}(I
z+?{^<%dfLfPv3WW!ov38_V$-WXV!A%>nEO+R-2G!mGlhM5Xt)VRr~l=hn?A7MP5CP
zlcL%jUCzap@7&Wd`~2nudxXS(NijUW>D_R1yZF>e9=6+mS_)5#`c-(diM_?LX%1_J
zO4mlQw+_+|r5;T2I?C1crh0l#W|-&hlUC>V97>V8-#>qe#)mVfc6ZNQE}!&gbLo}Z
z|3yE4DJd;~JwJHaY1fppL$gHn5--~%Z#nsX|N7$&fh>!2Uv|q)6RcTxY0I>A)?b@D
z_LR)+F!>&|aE6D?p>1*kV(ss@yj@~6^~uLM=b2r;mPJ@++HBiqk{r8S<<h;^rI)VO
z{7%e!Y17RZBFlXG+Ws4FqRiedi*d_}eZBhKlv&a5TVzkh&D>w>oGYt;{IZT-eB8O|
z_O2-tU*6u{%J@Ou$zXT>6w7`F$IMB+i?0~7EB>Am*?%iaYqKf)^L_T;=bqVU^7hIi
zBXz}q?4oJ!m6X=!OpkEAcgNASO1n^D?xhu_2Ky&mdEf1RKYOb<TlE%6)sJ}!f*A~F
zq<n>XGxa-ve~?nuTPJe;_mwAMXGB!jR{e2QKk#M!*G+CSU0w9VB?VusxUIkHl3Cif
z-A5$SVP#a^|Jq-kduQKbp5Y_y`L>1K*0~^}plN&iQ$@WhhskPXbI%mty_;&KU!;9T
z?BTr1qJYEYn*z<6;!mcsKCb$xShKuu)~qMjT%OpZ*G!hKI5?-SH&>_s-LZXQ_ZpY%
zc56Jp?T+_T+3wGq)hjpaw>)QvxXt-2_=v|d!I{2GR+#j!ThMZ`|JTV}#n++S?zKA`
z7Ta~7c=~Dkbp80er`K$XC$EpU+}6P7?NFp$^Ye87?^8!+r23RrOSn8S(JH&%8x?!p
zb<-QaPfS^hCJUUrczTcTiiRkQDb9|@zA>LBAJko+BVw$+n`5t0@Zt28y8a8ku6q2}
zJ^OKA)!7-+?1pmg`nt2%uXmZb_}Ri;vXR14POI~{qt`c`4&0u5qGqR#+59i@cKT|C
zO@X(byuO~}#}LIdul?xFUq?*8-Zq%@BKY0=H&bT4Xp{aQ7$4uUAu}RzF<V{4v%ilk
zlP10EX4Q&nZ&@TbtE6$i_PWkRQ9_H>a&3)S|E)RBi%Y;(N}_3L=8P>HHy_$Hi`)45
zf$%2F2SL1Df4Pl6$8C2vy|(+2$iCgO*X+;o9a=VFBBau8xi$ar&evzlKVErp^KG(M
z>Fqg(C!R3793|9ZuQOd|U3YN4VR4D)PoEpjLTyeq(?2`x{2Hph+VE?uRR0B`_0q1A
zC38LJ&J{nqUQ(rZ&zH^1U+&!8+p_rkOyTourk5RkUKJa|<Z(^m&Z<KjwoOWQ*EU(@
z_wPc0TH_<BQsx=%sh7^CeE!X*|CsHiYs~wT_gXpJmUgx^)v8=CuwJu}chSo=R|ADk
zGVOoK#5aYxc}0-;*#${%Suz*Z-oyr`#oMV$&-S|DyNyLcF}6VAics2Z>*Z#1mcM1|
z4)<D-ViI>HuIa3})j^fCY_>C27oGVspSypXQ>7~P-9fi&Z?3?-iT(|p9b2wHotW2f
z&i{hsukhmFpGUTC4@$Y4sk{1CMX9{|w&|t(GE)_l{_TBQ=2z~rvGnW04~hpAD~#JV
z#Txo-OZndsr*@e!V6I)#?%k~No$XF<c62A%CGg~YH#m`dZ=Y}Q_cgOu<nia-@|&}(
z$*6hNWzK(!7Uw5;@%w3AEYJ<JKkjJWa(jOfxKc4mN!-S<kuhDeeCdH@rn@dh^zT#Y
z<9x}V*k`2`*>ib8%3j|CZvV_C$$6`o*=_%sFjwV}CTB&WMB-ebg9n$oS27s?KGe?W
z`gsS>yk3KFy#=}k{0m%;lpKlt@AuTdzvuoY7L(cX518{}lFs{t9^Brt;o@A2tg{ZK
zrynItCT{c1dh=N)wp{A_tkU?nBXTF=A`dLsE6q78Al2vh!Ra<zT|Hl{nAiU3C6D2f
z86GN!YU0xW=rGLn@;J6-|B|g2e#C!X(`IIOW%UeQEvH3iX74geDvkV_B)ZvD@aLWK
z`rk#>$CZDn#Z7uKb*A2#>c0s*dM=F`ydrWkA3_do&zCrNLyV1gzP|tGs_We+-uj&R
zs9$$er~FFiA$P-jYPWt}@nt;sFD+(9;g!EOuWz0ClD*_ifS#+;&c*9u)Xs_RIjq+0
zX?;<;(BJa>#C-o_&L(pv-TL}|$LIa8U7l>ew&cBwi{9lI+u2oCDTPk4^k-3@)5E%V
z%dWfA<V9`4)rncwuAScLytNj=Je4A4T^`xLjy<|*&vd>`-L?7TqB8L}<^f4dR`$<&
zcxO*(&f#+>Bu~#txs#g}{C7*!_G6Z3mIbq|*1UJ$PT+w{#i}OF@a&U|jb~K`U%glm
zv+ZZcnRuT^&(}>}*V*yKxGdM#<yeEvv?&TA?Vd%iRutd+x-Rwevoq`8y^b)^@c#7U
z%$mr8nbK0e%X%5Rh2LJc-}dBbUx-P%xyA<31K&2p1kTERl<9OgS#AI6#Hma9&Zm7=
z|2@el;Ft9O$(2#emjb-E$xmDM=7m~S_SLfALNDG3r&=sb`SLp7Y?J!d_q#rR{eAzK
z=~Df@9eYakKUgWpo;?@7Cu`5{1uKO<J(*@D_EW6O*~d@#?arBN=SHh5HMUjrsl5B)
zb>`R~<1M1qhomQ09;*(Wx%ErrzrwJzDy18plP7$BdehzPQPN-Ti0<_#yLFz4pHSb_
zQtGnkmFsQa?31>iS3U2KT4-draI@FD)@Q-@>)%xi{;YZF`sD5R^It-r)|gsP^tovX
zjsu~r5056Z)E$#*Uj2Iqi>dTA<MMab3<W!9Ex&6fC|G`W`2}15Lu>R|1K;e+m5i6W
z6Z>e&WzMXHIa}1;C9f9cnAE*VN?4Uut)FG;yk)BQ&gJ~L|HN3)a8mtMWB1S}{Z|Tg
zpLE(9?@=#(_51wv?v9#&m%2}UU$4J`+c&FlYdYi9N)LXijyZM?O|GobQ+6)8Z562Q
zb9i~<)n^l*?6%>Ty1e_e<))q*<G#;K=2OdDUzFc_^_RUYIA!5p-5co>eUx2Z{#5QX
zbXmDr>ob>4{re?n0y)13$uXw38FM`dI<Gq8+~HTQrN2*`OmzD`;q?TLJLv+(#~W1y
z&+=K{IJ8J=hx5!t<0k&ir7tw94c2d)(aMzAkYsu}SpQ3%(W?bt7i=i3@=TwaF#qPO
zZ_E$&t~m2yd(!0vU8<)d1aAs6P3Ca8$rWa56POmCHf5977KaU+rm?>@+dcpBS5fl-
zJ^$BR+<SYvYTxbp_qtn`A@19vwtwJp2G13poA=$5cskLQrBdvwj=lThxa(0HpYC*M
zd85pi#{S6kcfO|F57RE6XEp|cHF@8%K5p_e`8czFn^)2icUgw14%7T*Y&)6N<1m}c
z%R{b_XM6N&Wwliee)pajRGU|NCggY+<m}Pe_L-sh)lH?xcTcw}+};;I$GFz=cKNDO
zrkW+U%g)(k-DuHykz!>c!n^S6(%j-lT0znK$}&$+NzGm#kTSFD#ktNU-sU@!jISzn
zpH7`8S)-TZdPT6)$ar5^Q>TjRuFxwY{cle`aotq7*J)z-!k%lYEhVWsnHSbMZ{WV?
z*0ZN<hdb*giIt_#Pu<A7{-xpcsRL3sW-kh_d-ku_d4F(>t#Qh=`(`a{SG$|sK0W&Q
zps%apRM$n7r<da0)+TJ)`gFVg=TA8+qb*~TTc*794R|tBGwjgg>`!-3cKUx47InQb
z;e^}kQ+L-tb#YygUes{$>x!WIfOL+-wVLu*Eg*?n>d<628>UI7py9BJma4R^j-83E
zo!PHub=0#dd$pdlZ4fnmw8rniqaDHpb)|PcExqWnlv~N|MNV0fr0CS->Zk{qKk82J
z&2$#lwLO$jx%fwi`6Po?w+`n#*!DUs>iG4iUzcByGMMmpnc+tR>s#MsS8m)pd(D~(
z2G`^?uaX;2XS(k?YpFVo^OV#L7QwSS`?nNClnGmY{rlsg|JfB9XErk|a=1D1UYFtG
z3GLGuL`<3a`#+bOtzww^AWVBT3xlZXw&`(B@2&Q{Yt*@N>!w-J?suN{x;H<U2F>tI
zO549@r`5m7?in>&?|dx$?`2jb?%loZ>_0X2O|q35bE@9HfA;CR=W4e9+De~K{`>pq
zsfj_{y_)q=CiWhm8dK6%d2F;gTt07h_@1L*9&WrMcJ^qg?ww7s-oDi>tG4LH*S#}t
zH7$7(esDp+#VdWcdR6y%vz&j^&BI~xT+mp)<ig~D#S0kfoac4z{-o;C+F@u=c8;H^
z`Pzw%`*mmZTy1U0WRE!h<67on8M%ssixieWTEwWjsmSg3uS=!hs;4v0ZvMV@R>Cuz
zv}dzd1Z#?&ew`F`)%sz^$rjPm)g=YN()VV&+5~UlecCU=dcaa|v%+eju9BDO3DbYe
zFTcK|x%bzB@MgW`dv7)|uXV`cR&_9bSR2Q`aB`T}g4Xb76SpL$uSnYVZ?)3XwfVxz
z5zf}T7qF?=BrH9v?&^R1!cX-@w=!NxAJyrexr!yuEhOZbOAv=`hVV~?o7%-jGr~Bv
zmKv$O^SBexXmddQ?ke8;-F|m8n<}@P7`T0C&{~pvV^4O5f2B0zGOrt!e=oRSnRzg*
zV79Q|?-~E+J-=Qh);jsTa@T7`Q^gI8$G5NZ_uRw2Rj_zzvO;a%+dJl*eY~w<OHB{w
zmmEFdlcf7ccSA|ooI6tk-gSG;(D<xo>et13%GQ2w&!6H&XFl7#wO_ye@$m#xhEvw(
z7_46`NMHP+Hto0dtpkfY#R6A{uW|7#xWvIM^~271gV#s>Bavno<ImYYu$cI=Hq-EO
zudveB=bE=YY{h3xa$oiDozDMHdu~{W^khj+oBrsRb>Y0gh>7uC*}XOMn6%E`HT`<#
ztJ%p;v4}U<RQ_e^cF+7B=kjmQycZXpZq12#mtk$vklWz5+WYeLTZ$h<(t=aJDcmX6
zX5;v6V^=)sxKWzae;uXR|F?gBQcJQke>VMt^4bQjq5$^U7vDZucIQ2Z)ZR-$Q!17l
zRY&!*FS6m>dg%3T2g_>a+a&=rJx;%0Rh)1?X@1`_5B`Rhpwb3`^EsTSg8r^~W4utY
zTErz{VaU?(sWX3N{h$3y?pMcrd7*FLzE+4G`l0w{`g+^IXV<?h5b!KD5?ooAt?k<T
zsI(}wdUBz7U~KxNLwnz?T~*j3m>_JbyL{2r5*yR)|1aukiq|-Xe1;@p0X<(v*8``V
zGUT03&)Ul-{p!LR4;ka<Cq$IisMMT3*z}h-x+KQJp!WV^`Tci`{}%6>{>E)xz?9F8
z_ihBsofUK4P|NT)urN>5#^>i9k*??EiH@ui%#3^YJc{`!b!oC>!t)<(lU5dU{|Vfd
zyM5bJK8}j)MSPoQTlbmAul)4p=O<hK*^30{-dI$lwcy(Oyi<E5KR>;+(CBvNS`Cw>
zCI1<gij=<1+Bor?%7T*kIiA|AF15=GWt#SC6mZ@Ns-JY?(zNwT7Bh0EOMeazEGn+L
z%@}t5)w6Tg;&|66@hynR+F!OM@u;!$>cB;1N2K+WjGp<wovWX-)UN1?Xl$3uT6-s3
z&(=j3rlfiQxEYd}GOv6^;ga)09d1)ACnt8<Yz}<3y^L+MerqMC)&)pd1$=H;YP5L=
z*QsxoJW`_118e7MvCUF@HgD!4hS(3%&-d<r_jJjGSeaMXo(sQ-$h=Vd@JrTr?^kCS
zOWkeOJd&R;T$AQx`D@A1XEzT7J{Op^?81Sbcf0R>dU#^$f~)KsIsdI{=X6j!)z5ur
z;o+YR>-)QWuWB}J+xmm)xaq5xQ~Ot2XSapzzp5nWo3==$cdz;z{ltznk6!uKFeUG{
z&T)@dOWd!nW%t#CFKxBd>Dp60GC!qP8~)Fmdd~R0hMCk`6Ps&EE9EXuT3Fm@es*)m
zw42{@b)PT0RHkZNw0X5${^g3L!R~R}9gVf!?h4)AzQI#5b90r>=2zRJtpeSvMf8+!
zu3U6z5qGTTyXrzmqrU}rO0Qqkf%dVN-h6XH;$XAr^<A33JUSK`m?oInO?@i4VAs!0
zkLEXS)R^IagZbF8{XgbLd=)*(vrK==vVeVx6L%%OTH*TP()1dBzr}WvPnPbT@p(gM
z(Zxv&5w-?7?G0yzoSIU89X$T$anR~y$FM{*l}iE(EUs;TwN2e>#!939`p|s$ReLgc
zpEZ1XSv~oi#ZpaKmW8sSFSnf)7Cd_9mjcJ+*JcmxBtF_j&)t)8&mj1t;>25NQZ3I9
zPwC6#S`xj%TsUmf?Z`W)PyV`I=gzgL>%@lOtchvQ7F{i!y-mXR;}n-wuAknC+Z3-e
znv$-sf7itCb4t9cOq1?=&-!(2b^G`g`mewBNQ-}?b|gu-xWn;j?q`*jSKD0UCq%TH
z&AV+q_2%nsC(143ALr{|KDpMnIp!s#wbN0Nw!!+)9RJkCPxC&w9<K1{(bIIix?$s-
zsLxC0>^Z8mr8MvJcG;9%%cSk;V%OOZm_M}>+^VsEeX5;cYmwDH)x6Fc<xB488vZL<
z34B|YXKS!g>B%Iwd6B|z->oa0pSDn)b+$&bfzZ=$cEzkFZtrc@9LhN#EbHO&apK=V
zcJ;W83kAccMz(xUTXaVM?(I`Xi~M_-8hlU1Y+o?(o7!SYJy(|}zJ9Bvjx;sjzSw$s
z`_`>K7vhdyU3K8mtP{6fZW>vrWE_a8F>5wjRaiLHV*Bc#YtyfNm;P}+KEbPE70;>@
z0avF+zPpy|yD+V2yOHqQ*so`rt@}3%8RzqE+jGug*IpjC&83H|?>s!9epjv3E;IH)
zSLTA3rgQ#ztYFH`Sv32<%=2AE(;0egg>Edh-P8ZP-F1!8<L<pL=YO5DIVdo^syy^r
zsJZo(ZLSSJOkONFRb&0zsBm+q<0;jX7b9FMpQ}z<KIL<?<Q>Mdez&V~vW#nzlENiy
zG-97Ew$Ihu>-mwT!|CRkZd<hjd{!?!Icz__b>lH#w7c|_^U4#V&+Dwcz8rCgofgb=
z*(crMi+-JNnJGiZgX?Oy1V25UzAa*!`pg$vlk6Tb%c$M=bXhX@`tvg?5;CQy45KBd
zXEnQSmbX4;kSf6cMVl|r>wC$P{dZJCT|)9#o>E!#Gj8);_UCSQ@>CB<d@*a<5y$2^
zTiN~G#9eCI!V~lKSK7VNx+qo>JSRQ(oX@+kv;{HS)6cmn+eyx~<nH~h8DHL8w#%?i
z*fnwa`Lc92uLbL7|5>|sOGfL`1$>X}mp?nbRrS!lEnXaRxwm=Fd_CR!+5JlrYZvXE
zlEKe+kXym*^Xxgx()P38%30d5d7|*&Lvpf9zb#x+;T3X3InD0H0`-L-csBT&ZJk$H
z{zT|!y}^?!iYjqR?6)W8H@nQX%jJ{2^G^6xq|QOJ!kdpKZ{^}r)Yv^?dC_(5LlG;E
zFwTDV?C;u1uh(w5z3gE`;8eFb4*Qe0XY+DxyRgiC(~8)4&L5^SWSWOIl<fO8LEOVV
zf8CiMTUV`}8oKO9821{D;=h-~HI(=goU^ML-lRs!F1B;N<d_(+S;{!yX=CX-^Gkns
znO$1`|IhRFRqv{8KJ*=UpuBS3nSbw`dW+vj?QB`}%4hwjx5An8RPF|d7~i+Fbkc5d
zS+_Uv_1*Qyb{jGq*YnT$$OIjx{q^Pkf4_M@|FtfCa_x8I;yK$6?etar;t|@jU6k?N
zVqb>EMK3kxA6a){*@txgmUS)~M_259v_d;qPifgpv&7cWOI~@W=3Gwx`fcu%%JPty
zGr~=KC%&6f!~W|`=JZSV)~~ki@HY?H@;%o5HnY3Wf~(Wy1dRXx*ck9kHn`#Ut<Q?T
z_IOq=J|Y`C?QE%Q)7yE+@B7}q`t_mPwpXRXYAf#5Nqkt{e!<%3`L~}PbD$$(7mS%j
z@A};RShwNrdVl9UuR9yKzD}5WM(XLaKe6Fly1BWZ4We!es;pPbTU49;`rOYCcPm}&
z{(gPjzW3gidmC2r-dFa!w=rg?=3%)hKP+x_ZIxTJ?!6%Inl`f~s@=s=yBWXz?LPKh
z`{Cj%73Z2yt=VF|=~sM&3EQgg*Zbz}jbB>M;?aNW?w9=xQ{K%A`*Y&wRi(T3p*zjb
zL+ij7GaK)ntgf-Kt<t{7esS5cJ<Fe#zp+|<p>M`Ulk0O;#NOBO?A4wzf90w(rN1<}
zr~3Q9H&?K)JDKBdc{SqMxwNYNVgCf=KUJju(=3UY@IU{{z0Ljmm1M07Kud(QU!P%@
zExEAX=|8(k_s(F@qBGRxs+OQ-UZ8bomS%=VAZak$h~(v}#4mF+CwZA8;-qFvW0Fp4
zHb+{sS~2JC-1Hcc>(`IhZ*EO}xz}8?E5c!7!a+IjH&V$uN5ryw)V5{x+`X|#ZKGON
z&PEn#!z>pajV`4{9TP6hz7#1I;qdBEWt@&eYGdw<CqMt}&o6sEt@z!Ub9ai)?cB`s
zZ~wyF<;R|egocKOc4`;9e(Bp{^xmUi=!5T%s%NnlFPn2pO>V3a>J!_(Xw#xai}r*>
z?=kZ7cAnd4uzzvxxz&E3x5)koy*f+tsc5Lqy6V`!Tca7-a%&tV4{Vy<9O(DLxbU`C
z5J%dBoyJpFHy(NNB5U_;eHYcx&?wQPNqXxKuYbnSaA%SE)2kaU^m-X?+{oT$m%N$#
z6ypJ{uWP3m*xE8PIOm(M?^qhUWZ}H{s}?iguZfLH43h}DTjlL|V5dcQTv~n3wbN&&
zezv*IRlD|25`)KfhnD{p-lZp#jXxSaNSv9Sm}=IT&f4;$uuRPRlram#9>0gZelsp!
zw0nL#kMo0?;_i&Y_kBfsKVLels;++hR&tzc^BYNZMuvBZMq6&a`MX;w&?&=EQ1Iue
zvU#~~^-7zVIyzoF($n%)y|ugGVVKgb>-XCj-*jp@8BI>!+<C&)ZRR(ZT8pz!{yJus
z^HrYbP+auo#c{>(E7Ia0WNy1UKf7l9>uq(NZ_^#2MMp9x+ezJ@s$Lu_dhzA#+pR8>
zt%U_EvmZQOC0j3YNl;Mm=)E7GgX{!jx0ye!aVq(|<(j#Ri;I;}mt1j6UAEcemz(Fm
z*gU^$d%XIhuxhhu%T``KaXzennp(!80$p?2tunJ8eOj^iV&Ct1R;k8Wch~Ug<V9Wi
zW7r=X`(@V`x%fFsXZogmG)YOiRLPL~ieW-7*Oa&aSAAFJXgPOPXMqF1!_26qGZr6H
z*tA<Bq2@TFz^0pzE*;sg$GSynw+DCjw(S${S0;#me5R8jojPr6z^d5y>(0%U$>O`g
zyPLmGJ(%zD#l0$udoS6jt~cA7EYk2^zr(x5vcWb!M0L$e<0{)}HS=aMt|(a`Uvb)h
zzfJIqT#5G~lQ;d>zSrb0>++Dfk;VGawW)JtX6Z<loA#bQ`Y5Y!+2bqzacBCn0)I{1
z*;{S<voPL9dF3I=PXC~|rOTG?o$FJ$Yu1LNw&rT;G5Jx;V?WgXf3s!z`Q#&t<@o_w
zZebU5_s&}L?V-yP<I<3N{d867YYnzrD$hLGYw6<RSU1~0MqTMr|I$+-T5JC7opQoo
zML|n=nYfUkZvK_48=pOWpZU-HtAbM0@+bM{q8v+Xo?T=)JS+MAYCCr8-uo*qt~|a>
z=)d&#cN3F~w~I0}osq4y*=V0Iv+U&suB{@c7yYR`!#B@tOG!z|+V^a2VVNIhHoa(a
z3$@NESshokdZ9^nt@!gT1|MJ7tUTowTm3Ki<dKOs2dXbxhV_fzzOr}v@^w8AQs>6>
z8h!n;*?x&?&y&jc=TpAv)lFTqK2s>5NLgd;J&{&{l5ge{LoUX~Gu0`l&auk+lKhb;
zI6lqvq=nt<dy7_Re`cAq_~88V_`DhphNSx?PyFp;i~Ec;UhKJWSpSMv>}i$A-!;DR
zYwXvBmuu-Z{;TGm^kv2$r+?bF^iJqMo3gy*9?KcaZ`+KjzqWr<J+y?woxiwOCoZh2
z&~CetovyOp)WRa2;+HuAMh}ua>wWW1wcdTkP*AV1<x8-s9#8sxYa{3LDz(15<C!<B
zKh)bEHRbE}S>81_-pa+f3R};#i4cliy)fN?;r#L-sk~{Lk2RzEUnlWjUooj`58vJm
zItuHyIIg>VBXQlaic8rZ&vP9AtbU{Po$0GWxs2aE&KV-pPt?gqKYGpY%DQBI?5m^}
z-6fGL6Q3sp3l)FxTB@==Hp$L)UGLhN(?0QP`RJPRXjl4)J)5h2)W^i$Y|oiz|4w{s
zp0{tyyS&I0jt5oq9IK_bzT%N~QSWC^c=sxu+p6qwh{$=z-|alzOK+5Z_Y=LA<Jx}Z
z*5<prSt5QEA1=$>`O()Wb~$su`}2jVJa%)gJw3JA#mj@OLALoY+s%;W_H|zjW_>f%
zmp`&m=I)(+$Gl2UmmPkP{OF7++pVQJvCXXQQ}>hv1^!=9eAaw#>A{JWoz~NQF0#gK
z?nsmN&_2JVIP;5eQBJi`VCYxrMVj$@JF1meExKS~b-eBF6v-)NJr{p9Gx#rZu;Sbi
z&+Q@b*Wk7wLxM~CF;kJWEh`nCyvw)ODM@WU%ETc2_*tIByH$I*A4{G29MNpMCg#~Z
zq1el+N>=f6p6uS&#FzKC=+eD?3^{g|AI~_{YG3r+xvu|@MbLvaoi5)yrtz#kp`)sl
zJM;CXk}DE@?NSUIzD71I>{Yq@*Cuod>lsEHzBkn#$_!h*c6~aj9L2_PVL|O0E5UEw
zWxw}{%-uFkCQ@jkzfXym+}bopsW`#9w+sxneE%w4inMPC2Zs6xU6j_cl`6Xu;-xFU
z$TZ7n{#2zoOHDr6t9Dq=Dtx}=FvlWo|6mVKVaD_y%gv4AT7wVnlN0Xjc*It?uy)NH
zjWV_9phf<7j&E(1J>9o%){8*%Ww!+`PP3B>PIC`DzHHLWIJ=ed#ta8~mf3H58SQCg
z{={Etk-tRn*=Ms-^!|nia(#YSReHblTCfQ7iqfA&mV&ZLRX+qZ%Vl?7J}m6_PVtnO
zz{J1r7SG-$s}l7^JTS<1<KZInOeTi(*i+luuJU%oO`YmKFD~z*%ZKCc!jHl;7#ogl
zo5JE1lNvhv>f_rU>HXjD&D8AqdU2n3`x)_$OcjO$1^e<tK2F~8Vb=UpXWpLn+u@LW
z|N5HT3ICjQB?^|F&f;tDs6MU3u%lXtclm9RKUVstKM&2X7rZ#9>S#{w``r;4PP5&-
zEvwsfeLuA>I2xNZYuD}bSKF4@?$70#&A2+++^+3NtIpgf{w^=M&ED76nLCsuZi+ta
zX=FY%<ME}sNzBbpU0z?(xL^Oh&-C%z)GJ55<3ipas)%gsXOiHbzp1%r-tEBaRjfDf
zFG~@bvqwbX_vf-qE{4w7B<El40(YWb&emS!&2_K!tfbSD!#r`%au)Ood6l>QH`uVl
zwp3_+@5y(c)qZjpe>ObY+ug12cjxJge}8LxH}wBL%E8F9>tpdQ_jI@Vvi>Q?6GeY+
zT&rcW^~0C5Ypl7X9xUMwc=2T4^iQ9{=kDKpW4YeythZ4!d>_rpJ{xo*_Q8ye!VCg`
zJont(BbZ&zV59ss>qhNoS%xX6izKJCm@1lNEo-*xUYpDCT2uLs@3-JHCD&44-Ad9u
z_q_O@!Y(Z(tFPbOANN>&e6cdYcQwD|<^LHE%C*_9&f2`@oV)k0NBi9SzPM~(vbJdc
z;q#0x<_rwG*p;-nI@=hO<4PE-!%bRG>-q{>+za$SZd#Ee)_#jABK%ie_tmQTs!F#E
zRX!%PyG8af9t?UujrT#_=dbsU@3cQ(l)0SQVDG((E2pJBSNEpo?qgZIeCFYmd!F4)
zJyol@^~vMvne!R;2Dkrzq&i>c=mX(e`^0UI>-+Dk&5h-F@z;Sn>eXa3LBY9mHMepY
zzsviWGINTx?oNr%T_(>0KJ~CM{hFsGRHs}$-QvXl7LEJwZ-z!QFqo_MbiBCL8=ZJv
z(=Sc))Ipwk!jdJLvpu%!W!^G9v%h?Cez)!C6})k0%MRKsIv<~ZZPG@@HDBUlSA5jv
zJ!bZ5>l(4x-b-JjN_w<P_Vdp^chyoX-Y@<w*9~EbJ*8g`q~;l&3gCUSylFyXsr#*?
zyEmu5)>d4{e)r`JNv-Ucg_f(6-OT*1$d~!pc(^g%)zo>cbunQ>-C|Djb0tPUj?Y<o
zchaLj_4TW3uTDLuD>98yjNN_Z8`sm@OJrmH*R0Y$;bT>#`r$&G@*#;uj6u)aeJ{@V
z)Y&X9s45<ObaAe4jN$tUsp|3EnN41<-}=-R#eBcUeXV_K?4!k;f0E{ZkP_^juruxZ
zf!pRC@6J!&JayI6&vWEllzT#SuD%eMSaWZloQuA??!tNR#N=GeHJaz0j4QXg*ehlo
z!pjy=9JOcby6EeYmqOPs<@$6eZt5F`Mfo9`!A>uhX%<cWzECb9GDI--!j{0t9WNHV
zDV5yaYPtB8?DtvsA25d7`##y;)Zt<DuTY(JZ>5|5ldQPY7Obqd4$o@ZtA2Vr+oZ<(
z>L()`Uv3Eel<?d_YeC-WXS4L><fSbIFK*Z#*|&&6xbw-Zbru#$2bZf@t!@y@-10x~
z-n=`iIz2qqo93+8-nHb~qG@VJmt7T-og6>+hR0Lsy(#4vnHip?Jy-kl_e0<}jstI}
zOCO)Nw7q*xv)8#xhU;fpY8?MROKL~-vu&IA#>rVvWqr_OKkc&2)gPZ{UJl)@SNEDh
z!O6$zf9s~(si}u|tgy76AJTKobppFY^iTFX(${_G?E3QhGHXtI`g8a5vKuGWosB87
zY5$`X@A)pfde*IjpN}`V@Auti5FKkM*zohU?wU@QPj&`h6VH3<X5Dv}eRq7tw)wRo
zA8xoF^K6sZz_m6?KjgULBCUy?PF;5UReoOCJHP%81H;7f@1L8(U0m+X(65~Lc+qv<
zkF&~k!&Sa)XJ@#4J!O(l%GwD|3}-IhaCd3axwPQ;)@7DzIh-s188Ox8P2BmyY0>7i
zu5<Gri+S1ASLhi|_;Jz8KuWvAXuo!$@TFG<v#u^KlzmpW?qRw~oMSJ8c4t}e#-~!B
zX3o-$JoH7XQd=db^AJ<?0nOs2J*rnb<TTek{}-&U%pkmaKg0D4TYh&K{uaL>C@A|p
zA?uUANwJ=%*uAgpL2_?5Jhu&awB_dJq7JtW`<2dT)+KDMudjJ`x>YT-=vH{j5yR?^
z9##9`XN?j*6J0_gUsXp2%vA5$EnMBZ?)*MaZ$^Xg4y#Y$VQThkKkW~2D!w1~s@Pz+
zQE|^BuZ<mP3;~Px7P{ZBcXWBZy+&SYMa!OPFVrJ$9$``Jm1~dJ-l|civglRQXKq~;
zW)tlc<pUEdc3BBdG(KNDNmFpDxlH(!==SKJ^AZ`-zJJ?z(8XoS?&7B(%(!1jKl-e8
zV9i!1zkb$u?K=;dH&{-#7r*f2y6TGw_gBn&#jxPwZsYy_^?VFEGpzqj^}3#8HBp*@
z!EMS+Iiu~1cWR}YxBmaE`TJ;Wl-5SS4_kxY`Gp<XcI@t?pVy+#ckjE_R2%kU^^fGw
z$7U6__is;8Uv;geA=Y%=*_}laOd{^;KiNXf<K`Q%@g#3Ae7nqZU7s1N*RC&CsUCkN
z-!yg4x8-A8et%W`-%nmm$}6n)#mVQ`XRo-l@72X6pHvgPzo=-{-%2Q3yFDf#WTwNG
z+RvM>H+4qJoxM7Rb8_-o%Y+K%>sMLwHt-x&dS7sUd*#k4+e0+BHaPZ7`EX)eil(3{
zZ$-6@!S_krKlUy!XKOfWZom8JBh5QcZ`<nJ(w=?Rvg^e2wX<3iYmNKM+7i`UO^fsX
zUtqf^u6wb!W6{z4+-CM`*G_LaDHl9vSwW85{3Yv4qxD%C9$fnP{Pn9o3+vPUZv>7A
z>Kadv@vL0G{95FH@99t0EY|UfUljbbRMB^O*!A-=G1H9AVjWk{b$e2C^Zb3?@|v){
z6Wd-`|6c8Ko~2b#e{!7oQq#y!3=BWsF424tvHpzJ-udrN-Hdtqvn%7&V|LTaeI~oN
zOTMuyp5|Y+bS9T)D(kOP!u-bF$DZr0w>GMFe0lv1(`CP?T{|sryz)7DTlMX^d+xKP
zWvu--mCr1jY;?Z#;P)$w(xcK$>R-K5_<T3v_ZI%wyVY|T60}sWPkwx9^WK$5x&*9)
z7OqS4>x#K*GN0Wd#AKG1F`uKU;{LL!oDZ)5kNo1E|ATF@ZR^*jToeEF{R?dF|CD8P
zNM50oo5xlC@98F=>(@?SUFcWK$dLYxp}{+^CUEJ-`z*6NcYAldm^OFa#yJPWc4()+
z(Xmd>Ir7S_c<RhUD^2g;)2?y)dg#`U{bKXy@Fg(r{hBuKo9StVReLLa?w$KH)kS@x
zO|*U}_xx|OnHx$k1v&qnXJ>EdpDn{~b23&_$i95Tgsa)S49rV%I<qHc8{fA7lsUm@
z!9AI%@(YVTm$FaZ+^jNj#SE$N?^kkbvf{#mvQ?zKuEhEMJ$tEspN+TI>c5L_U%tYy
zefCt>#OmJkptF1nzIWKwdbqee@0{ggV%A@^bk5y_8}_W+b435XT=cxE%?s=5w*Q!=
zzpOp@Rn6Qg6T^z_Pqd5wcy70v+H`l~y-zE{WtUB6`jlV$%&M^2xIwwq){XxWQ$pL>
z?N>|Q?TYa4HIA6K@3yvQ+~3&ZQd!pKY`$$rE-Y<3nBX(bmO<jI&X1>S^)G4|q&Oy?
zy_&3lV%^<5=0z3Km0wp2T;^Q<DDUr_&3(<gMFc<WSu*#~q>{;Hr()CN|NJ;m%y1#o
zJ;Uw0+Ob`-|8f|vGu!7)kuxkx^R0RPbXUNVV3#kG@9+i~iv4S9xO#sZbGJzUU4!Mv
zmfyBIbK%CM^gou?kBYYQOcM$^&si^jU~0eA^7_hFjZ4A|`{Dy<Uz;u`7<x+T_?5JX
zzWd%O2~pO+3}?Mo-d;96KXl{Y9;V&gC6_z$*1t}-f90LIGrLye!O0!RPRd_O{?{{w
zwdOSQ&aKR^_pSNf;lX*m<<*0EOFlZCOi3>@6AZjK*|#|DpG%@qn@423+KHF9SQ|38
zynJxB#<Azh))i?_OeBIPbDk~vlx(0GJz?YOV`onMxM-->QIxs&4{w0&ESD#bYlHsW
zjgUI=cVf&|v%Foua_le4MY7f?zEIwO?H~JoiR`wY;Y-r^dJUGDr%RR3aSSozkodbt
zPp#BKm!VI9^M$Om_L9ZMy(>C2w6Dx|+`X&fMPMlZoTxS5#NMZKvCUYi&O2q+xjW0;
zMK&!8T-D4U`eu#zyan<lz5HT=f+wFY$+zaYcV4Gpr`@(hrS$HKn)7y>Skwy6Kdp(|
z?sQT9=g&*~j9%TnIA>$q?eMiv&K&)vxlQEXWVaW`PCJ%%?Fp{0@Hl+n`Mlij9U4b(
zZr&cql>O%MkL5?Vr{3hhr}|;Npx$Y}A8#URcE9+xP~Q0Xt)2;ra}u1QxLcpa=NNQ9
zbroUTd*`FWTC-OtYSMlD>zE`N{%;fi^W)y+X{-LFw(2Y^O1m_9$>QQY*JbA(V!xms
z?$NpST)%pH`Sit=bG~xgKV8zgWIf{o^N-gTtv<G4vPo}l$GhA&4<<EFy`r)q^3Wyg
zPqXwG8lLXn^_1yYdr<V3J*KHe?;7S-evvvbHT`-o!-5H6LaD*~`1VHY`*PPfZ=QAX
zqVi2MI}@eFC;zOsn{)LLb5Z;L|38i#XyRkym>6;Tmgrh#rA6y<l)j$tpBJX~$jh}N
z%zXE<JpZGf+O|*TMn>$<d});V>+aOj-*L7P?RrL^GmWI>MWY!V9`%{dbXmfGW=5K~
z%aZR$AMfsdZ6=^4V7lByeAVp!@+%VJyY#i{*UgUU_q#81_?dAmlfLE`nNQAqo9%ld
zxnfRo?Au+;xly<yL&WBV)<tC{FMb)LXCYHQyonKJ;4w8?yq|lY@=N2LR_C6%Or2^s
zNm(rY_5HJMhhKDF)7lXnYpt;3`^lXQ=QE!jIh@(PVMa$sZc+BdMY;RdZCqJ$I$Cza
zyy`FmscFsp0$&5q&DAl_Qss`;U$V|r@!6-G$j6#9D<kL5I%!qzcCE~`(bjae(%(-H
z<SwhEEn?iFx?FEpx9j~%cCUN+rV&0aF2(zn9nBT4y~d-Hm0GgaG5KZa&F}ha_UYU1
zZH|~}%f;s6qN3OLcboa;dwux}^ZAcCa5K!1jy3G8Do)&)_1P+F>yu=;ADxCF+hS+_
zjVUtHE%kfd%Fv)Y$?`z>|Es@)E^p;tep1UxOO88ChVQiUB5s$bE`scxa#x<&E^qme
zdr19uQSIkz8yFg{9&LZo5cKQGqRk7Q>YmzKa$@@4?B7q_U%qtIDrCKp^<~~q^`qba
z&3trxHS>k3COtEE{O=IF=f8ZH<<sI-Q@;Lf)JpiL9J$Ej{`n~%_pvri{dXxmM?OVE
zSn&o!a`cUABZe9L9pBd8%46N&vV<?AS~oI!b?o+}9jm@<<$Hbb(>3m|Co)qb@*C1z
zjW_mfx0_PamuspMY^LK|u;|0B^ws&7We!Z1+veG_W6cfj=({;~9ycB-EfwrJ-<zhx
z;V#C&aO{$E=nM&+$r|_j?=bw4I?m+AR(1K~vbpEk&#t{5a&Fp$Yi!$uH}$?UtvG7-
zoc~`PGegD2=}OU(Pqyrt67<{X?DYe-Wsw#Q8LKDrZP2kWKd^h{#8t;X?h>7H_n+C`
zWw#Frm2JscvNG>&Z5r>4!c8;Ht0Q=N8GpZK7guL{ePX9%I9L11KW|&j{)BxwzM8+m
zR($r9<at-iJWqe}XuG+|=*C;&xSW^sc&2CHzE}Hlqj__Fx0%rojqD|IVw_XVF865U
z>}d9XzFCv!fr`|nn*Ksp&hIPMWc-u5U$ZQIRZKPGKHe!tu9vLl*hMlQXu8jECnQVh
zr0m8&d1=QOR#t9SS}c8Jb<EBMm;RnydsxJ*+Idy%UDfFtVF&&!>+IL}zW4Z&zU+%R
zD_dNTX()WVs2`j=Yxmm-JISwiy>E9uxoyAJWaZh?zh}DKi=xDLJvEtod;Sg{h5-FI
z7MZYP@w-~twprXLW?s4P`XSrLJA_U>X^&UB`fIKE`;v-PcV^F;Zu<5eyNAuSW3Evb
zbOMe^7wo<&@HcmT>euaC8RagS$(8I1ee?Te!cSfGzw=GJ5-RVmsdUdfU~~4XSFY&<
z#W{bQ_lV^z$US4DxxK!9&Uw+z;;Y0>xEO3y<Dw@U*{uAsZ_dA&Z6`MAK4`UBt$%e>
zvG3(AlKZu_-i9cjFFLZkG+wf@DRgN<)RoOwjdqu5FLy4ya(ULVZ&`8w`~nO6GI`HP
z{pAw5t)f45s@+<#orbZcubv!U^78bdnWv|V?k}D5YW8EbZEu{X2unA{o;8pA-I#qY
z=BCxMjoqE<TS6Av?fj5sbS5H}FDOm@-IXb~<Qu=X#?<`}duS)k-*7z0e(vl~73aTj
z?tT|oe(znCpW@ry|L?@FDe=vjk}zw7?@HdYSx<O2Y}s*ba&wbxl)fJO;>?ZDw`Yo`
zeyLt-T5QMp;>c~Lc7OAkhd%aI?U}7GE%vL=joKGi-po8Xd&-oEpDD!-m64*c-@`t>
zHovm$4yW~tlb2Sc^Zj}xdU4UM=DJAV?<R#E*Y<ax;MPvu+u6l;F@O5hcNf=O`)3i;
z9$4+Z(I@MDdL>f~^M}3jbS6z&AMbVao&46XOH-7jeMGEI{n_vFUr9||<)_eFF}uAg
zS1UKh6wLE*P5Y6SxZ<3oMdsn{`_tb3DtA3{l5P3nD}tNLzfZ_wdiYKGqC}LsuJ_az
zPp<8Fw{?Qx-nw;bKJNH$m3B#b<@@=;pVb$w+Qz?JN>o$wVU_Siujd-?CEi{+zgW)1
zw`^Zk_Wp{<_1mu3H~eE@C{YReI$PtuuJiwI`HwbAh|Q@rnUhi*xHjm>MJ<L4Hv|=;
z0}j-8-ZVM>@ZGxdP01&f{&Ooc?EMs{xnbht`{$M{S9Prx>C~AvU&!;ry%?*H`ZwJd
zM$IVSdivRS^(uyhFHKKsI+wkYF!?#(c<-v74{{6-L~EYNOQ-y}@@?|&ZO<PCGMu=5
zinT${KfZ12*FF0+^WOcR*30ho!SPh`^?fT%*?#M~?EF73R`b8^Kb1vGHm;oh?B?Ig
zx<C6Le-IA6$ElX}@_hb%%l}7R?H1gh{Xaq{<MIAg|K<NbuK&~j-z019zm2J9|4aM0
zw+c<XZ-2MvSi$l<*+Xm$U-RU@<nD=iR`xS^rHA;`!(S`|-9&!hcK2%QJHc?h^w6A@
zd!s+7e6mci*&Fdx>SfNpzI)39`Q0V%3%-unvG1JO#nW|?u^DE^%(h?IpmP6CQ~2EQ
zQ(x1If9iy#zMS8czc*O&FW-$<A)D{SZQCfdZsx;)&yh0=oqFSD?pLwZGcNKHy7GUu
z=Uv8QDTm@BwzNuK-ygO1$hJLeJZhB03O*-@rtTGKD!lgk*^<f6#Z!-*ziM#8OI!KC
z)mR<9mFu4Es{b6G66BVaXMOPRr8Maa%Oqz0FI{_J)%O$CkG4%XH*?wVYBy8K-Q}BK
z-dVfiMcTKo(-}<E_zGVrnRINwDk^$zA3wu|Si=>cCzq(rc8a*wb>{HZSgY;En+;Bx
zy_q;qyzFz_L@j?OF`IW!kC)0GStC<b8#nb)kc4voH`VXLZPxn*qd%?w^to>RwS>Z+
zwRhj{daB-cxzkHRMC_NA+7?HRiQ7D*EO#(}<NUSox=F6`_TB1-K4&l0EVR3@#YpDT
z@_5cu0dqwEUjHeRnqqqFmco9IBP%l|t+U(tyLzHGvlVYWNAK#?#Y?W_@GZVsmH1dk
zPHe_&(WT`ZjLJpa|E{%bnk|tMEf{_3+V<ZIUiogdFjv-5G~Cg3^vjl=^KbUdNjiJ+
zd|A((nc6-bb+cFe*)?J9@ed1f4S$_p|D?NMeQWBpP~P52ZJlY+DjQ2`=SQztUMeLS
z5F^2B;K#Y5PM_sK{96`IXNJ6MCypK5a(2Ph(>If!OuZhrRQ<Q2_WgSgT(iQG<QRN=
z@7%ho8m{x$>hpB};2yp=Cv#`4nDo^&eNXj&zSsO)zs2w8{W7a$gLeC_hA+R)vx~{H
zZ16u(>~Fi~^P&cZ$1+pyUoX^6|7@hK(;B`zW0vI9l*4Vu{W!K4h3TI;T~%noCnj6J
zL;JS%rL{pHKX=bwFKV@O*^E~ydoqjcPIag1#((*B@a>G8nOw&9R_fWM7Xr<7x_zGo
zwhFq0rX9<Ybc_1(VQFIJlIIqQ;dwPXC-&JXT)KRvJ~*IwvcapUv|0XFkHlI(aZ44r
zy=d;*((jJ?^WW%XxXPYCaA{@o^LuK+^}(NXqOJ9xy87HRwpue)Y4g@er6tN-zOr|1
zcCD>e?m4f0UOQ*ohP3Lkc^&B)-^$%C+x(s$^|Ekkj=0M5CGJ1CXI($BsaX2T*)tKl
zmF#U5pRM0;Y+{|3JL~n0!46S3qgKAJWNKKqTUjXo&pqDqNw$$qM>-4~_ZU4}cl9=7
zO~6#C%NB=I4mzy<^uv3S{fXZx)8@7+{3#5W=I~|y#<ge9YpO5WdiEK=l9JT6OWQ+Y
zK4@9}IrZ(|DUD=d+4$$0k=Z+UT15KYc+1pqwfa)uocV6$FaG(S<qkchVXL+8!91J)
z^OotHy4U|(tiEd9qN9v%moG2+F)g^_7jx;}>(87OgR=PNempbr+OAuffrab4>lqnx
zZt(Q{mhI3mFfcpe6|+9~>?5gNU$3$={4d{eIPT`_7gnXWW-k{E^n7{tdpSdbbQaGa
zhsw^07eDp9x)iv*xNyrg!wseedMEc(p4_z8Ih?zB)uB^a^URhjskp|do;i6=TT6g*
z>Wn3)dq4eEUfo?SE^fX0gGZpxvW0GCQM*<bZu|UNh~IYYrVl5!H0@e?d(Ps27aM=J
zs$RXiG>A>$Xh^gL-|QddIZjDY)1IVXd0=+;)Q7x)sr7Bf*Ic&Gj*IJDxi!>nO68i~
zv<({~Zm-=uGcPbIEwOOptcCNIW#65D{Ka;o=%4(TuGQ&HYiw<uwymsnL&NFk*|Vj)
zi&%DgZp>ZtMgGBmhMys6cR;H-&=z}umQR2dcvzSin}DQ2Y$MRoQ6Pqmje@>YCNXDP
z5q$s=MQc4kcZh>dCj%cqWC>c5Li_<l=4dNFZr@s?#?v;}Ztwr-d2&9lH|01veVg%p
zMeKehCV5Upi}~-rSBthP&OgsynaX?4*6wOSK7;;}4R@Hoe%CY2WBeETb;I@54?hXT
z96NjA(Uq{8Dc`2vtT^(fH^=0wc|h~?{nHO67kw98-YjM8v3K>#^FA9Lcz@eVp7HwO
z-eIyyb^iPB(XZ!-nA~Nthz#*?-PzOlaQEqHosGX@^mqT*KeIHyW6G6OMc+-w=55=(
zgjHMM_>9iouZ@zE{(nr2GUKRba|yUDeQ(Fp1=lOY-mpm82r~Ttl0NhDrN&1Otj@L_
z&5>jiX<c((lBF|0SHJM9)r%!R`0R@sHPh46y={_q>KIhVCvhx#C10)9RHD2!<>RMb
z#$VGjKm1y><M-9G&mOMn|JtUb-r%@v?k#PV7?s}gyVLbG*5yuot7_L|%)L*eaW2Q^
zV~4JU7F=?2l3hQCz4Q3$-o>dZ?GudG$*B6~`Y#J@s4n;s?qlZn?v9b;+yt*}^Gj+Z
z-&LGt<2fF)TmRsPK8a<kd=(mYCf()GeiHVT$D*OL^V>^FdBOSfj}#>wT;Fr2{ATdi
zO-XxQC-wThFWvGZq%UUmzNo7Pw__jO2=l(bQ1Z3$cODJ*fUD96Z|}Xa+an|+Ld3@N
zrR6K$>f)#OtNFdX;_@qR&OOVzB#>hX&*OIGV^?{EuC={2E;2KWGrbUIl71trC;Zs?
z9cONYRqcE9snB?($6Ci3x8-XUugI)dm>lA77ws#xYzb$n{)vxs0va|f;ntJxEr0lj
zwcx&WQ*O5=*FH5rcXO7lR}asX{^!Q0-m-aaNo)N&or=#l;!m1PT2=k~_LrTan@dj>
z9rj$?XXFxCI>%(Hcm2=Y%g<Dnm#2lV^wZod<?|r@;AGQ#bu1Hk8uqVRDc$g4s*q_`
zB3ts$LpPeg#H5(~xGDZld3m~i!QCC|e=E3uEHjw5DlJd++vYXLc6YpAA8~6Pw|QpV
z?l#%tjgm^Q)q)=RM%)S6`}UztxcjZO>l4#z-Fr^d`E0qNugN7~Bc<fz5*p9Ze(jj=
zB?GTQm4oN!cPCt)(xgzST5I_($8d6K&K!r{Nk1pnXg<2)()>nHpYPwrP4X(c1uYYr
zQ=S#Zth2M!yqo0F;$qmahq=wgD|Eh#Onc3VHbed$2l_70Giy1aYkh-1X4AwSS#D>d
z7$e-GJw8S~j%7{{Rlmg@s=8_0`o-Z7mMDJDVex6MFrBr0Rb$S)49=_5j#R$h9W2y3
z*I?(n!}hxTD^zD)UlVE@?WUGxq{_6d;mt%%+iAYr3j^3S7$w#@XQ$Zjc^e{YqZ4BD
za(cI<xclv*rnhG4;$@LLI1a5kHY4dD=MJZ-OFq9hvJ`ndhk5(^(9H9<)0LKGJuynF
z+>%gs_M=Ng+nindEvmbh>i6n<EwKw?>1zCMkt|VY@Zmz*`Mv+Gll4uqqaN^t6?-!m
z)Xo=>+`Ld_b*s(2DXMIbo8Esief;R>ByN+S*f0N%DSlh#U9pL=&ok+S>5M5KHqA`G
z@k(-YG5dL+#^<I|kFTBCmR<QEaqi?FHM{-mSNgv_`B>_2O-ugvh1HvS#NSo2r}1j9
z-#b%0+;Ue)j?MPTJ|-*w1+5fjl=eNk=v>;VC8y2YXB_IQx#q<+(a|&~J>~U7@vCXQ
zYb2Q8&;78+`FM9-j^cE)ce7K>JZ^HH3FLk7A;;v6&4(oERY%z_Nqeq7e&WY5rVsw@
zdl{ByML(G)`Y1u?Tdkwm!bhI6+!6DV9=XpF{l5CLX?cpr#$&x41~Ca5O&+sMZkex<
z)%H1{zqILgnnG<_&#KAaq69quKlt&`<J-N7ZyNQ#|MD+Aq+FqN_*t%uSyqy9OjHC@
zm{7*9rx*PmtoJzox_<kC^YiXryU@R?q4%81g3VmZ**<JmYis>2lv`5h#wug{xZ=lr
zwPpTam1ex&)pMkf$@Ab_^$mpzcQbqrEZqA1NT8_ut~cwS$<_VJp8U2#uCOg+@e}#!
zX}rx}GACs5L|%LQZdvx#;QQ~(GZ)Qw{Tukv=ltoHHQ)AFEPG?Cz;DLzF6m|#pND<S
zg;n}OX$G-&I;%ru1uVWzw0irbYwiP<6Fu@1U&hPib=ez!*eCaQkA=^g=4{~&%zSJ!
zIvQIxJIT!MJ-jmY=nk&y9-k$m_tw-TG8g@4+F{|r?`C#gyh`(k=FiN?bk?Nrt3U3Z
zdxDAE`@`$>OJ&>hv%(z`Z(BIN_KUgoD$#Xiv@)ahgRLBV*6Z`mrf$q<E!@2OWAtf>
z(D;rrnJSLc$Hny$%(i^A6w<Smj=AB#WR=#+ET2|`i8Fqz{ckqo?vvZ6rGKwEkh+TF
z-Lb^&7d}{e{`e4~|7KE2jTzf~-zDXXnIv+wRz3;VvC-^XWjI&Lcvaw+558U9(S82?
zTjNEmbcLf%CT?>`cx-crxqGHi$Q_Qp{Xewhnx%dnlil$8RraE+OADK{3;g#>-VBtB
zzdAkbS!T=D=N0><Hot8%|FrqE()VB07ladU?7Mb5i0{*>mi1~Tm!*pi@~F%dQu_Mz
z!1Kfmp&*F@HAj`&vo;^<|C@!&{_8mZZO@L9AKZdH;xo<9J&yae*17jm>)yGoyy<_B
zT=}4*nO;$N@c50EV=sLR1>1_$#pNp2Yrp!&U?){x`c3kjC*P$eR=FChUB13cRz3V@
z#e3uIlf6}kt>ePYvkzR`=d+!yPdo1W(QOra=@S-ucne<iczRI(Vq<jEmb9QdlT?{H
z98bOHernI9QWuzNSyO+eOUf^g`_cl>jp7k3p4?%|Ctm*%_~ANlp<VmF@4+p-3hgT&
zFInvBs^paEz>=VGYj)w!`$zU<^Gl}(1)j<7QvJTb<izcM<xJ+u1@?zNIUI>!wY1)D
z{`2U+{~rIAKOwz+e#8U=zJT4{zdD0b_p~j#_C9>_xfh-O$qtQ$JgzBDN9(psJX^Q_
z&ykwNKURM+-yBx0=PI>Pb8B~XG5hk&KjE3x(iH(aTk1kWdii}1OWl(QJ<*-LglSK1
z(%mxAhmRva{9mQCI4iBlqdqnHn4xQ8%xfWIx!xZ)SDu!CmB^L5<Km{slCJx?1-Ce3
zRG%&GmVb1R@8BgD0ZxHKGsO>QZ<+Yzz|qxyn{I3^*X{GDX7gtWku}?y{GjUZmzc+i
zEo(!1%{Sj&CAemq(2UDmeW!Wv{>{>SH0P`4gfBarPph!T`$<JvhSbhAI=;X6f!Du{
zv4?Now!N$!8yD|(RsC%7QGUPqYO?$%vXb>a&po$eRiC}ExQy8^^TkU(dhZdLU7Te2
zAyR|8PkX|t`zyl|z3*+_c>3>8m-Wl$MYrwAsl35l9Qn|DQDJ{$$uvcgNvoF4dm&Ks
zrRVUmNE5!>yI+|vZM!aUEkpROgoS|dfs`jE^+{$KKR;A#yRCI}!F`2)=k5sqpTF((
z+06f@Q@agg_%^GvO;~m@N{02wBNa8D$+l(xcTdS&>l0MC%C`CO`d9J|-z?k~@NCsN
z{G(uNy2+vyzk)otbv;i%ns+Zo!E>^q*HV?WURzUAm~Ot3e&)5~%NobGf@(^OR;}-<
z_-&YTU{Z-*-`4~ASt9QO-%gvpU|ZGfwBxsTTe)uJRM)DUwW@x~yqRb0q{4Z#nTw@g
z_=Ji}G2Cz0*?RgAkHqv<-HZqA6@RcroD9Dj?Rxmrag8%sL2nA{c=jv^+I7~i^1;!D
zUn{b+PBH6uUDn{=qv5wWBvxd3;OkdO^R1>zP7W${T>L2gW8?}c55-3*;-NxGR$ga(
zc>IL_{d_P#Vd0}G51Ip>N1H30ZI-@&uf^_kcjdh`Q=T(w3jKL|K`MwX<-g80IcHrR
zcH;-HlJXATmnh#q%j)XOt54=mIF`ZnMqKcOT2@ov=KRdZr~6lDH3-%8U#aX_TFWQ;
z{aftY@82R<`OaARLo@X5guf<E_My^$);%Z?WZ6COudZJ1>A+7H*ylyr?9b0Pc>Y2-
zq*mB$#p1-EH^E!e|1DH~Z>e-@rWJo+serBfjeiGSf<G>la<|vm&Hd~|=BjITa}^w`
zdtaFRyLv==CzI-?In$!m_K78}i<-JY=BBlr!nsl_{WEecUsm-!_+pkK(=8!;=(>(I
zlRWF08x0Fjtj%i9f3)|Bx@r4*&3}*bGfr|mi3{JYV!!uD{+FN!l53xP=Y{?ckga$4
zy~pLAt+amJ{@n>DIaj^weEd@O<{sCAb0J$r&fHvhYg@rX`KxNWa-iN0T4xB<zX0`n
zj1A1qLDC?$5o|fU4YfN%Mi|T9i9e{>5_|)Vf_^Z{>ApA)YBo}^v*Ut#Rb%4RNrrsQ
z20X6vCzw5YA}2@`{r_xWU{I2<&Z^-E!&2v<lWhW9C#UYW_;=s4@Qrl<Q^SVb@|*V^
z1$K&b8~ERw(vTCq=)B10o4ev}ns;P`g)$u7C*Lq-{qk#;z6~EL7!FxvnejAS`0h}+
zW$m`0>%US$U!Jjacwy!6A<p={X|di#ap%h~Do-!6IrDk#_b<gqly}Zez2!f>_3f>M
z^4#wIcQUs|%vJ1OcKJ+Qufii0^QCW6RIg7@k(@p8sQBhL%zmyRrJ#s`dL}h51r$Z#
zzyL7}ElohOAf~06f`I~vL433kzhQx*Q*=S6fd`?-90}(#A94_3b(CgW9#Z0Zsr7b&
zi)IO<;U;4@CpYVZtolE!-qy(9zH!WK+4*#Hnf2;&cb;a}`To52^t${Hc2|}z4iP~O
zr2v-&9S(wxN=zeBV8^{_rIFK1E9>lbKdi9*_(0G8UdlePWuSC}ma0Gz1xi82CKe!B
z5Yq@W<^W<4pQ?x+8KEdqflej|B`V0s2q^6nKQe-TG_!C2lN}R#FBP#WDvAj8TA7Fy
zfB663eBaLuX1g2Rh8N<l+_22`{VF%3i)U|z;G!v^v9_#76(=tFA*k|rw#e5HZ@1rn
z!oaToN#WCnK8`=%X4m}w*7rBRVcq0))%hwsHYZM3ue<a6VE+~ld$B#nwtwO*BA*<8
zlv4S9YPEgEk8iKnzwdQ6p7QCH@4h!e>6f=`-hEfJUgpL|4(nAVpEm96Yv(t(8~uP?
zcon-$!GSmp?MttDr#$@LUiS62#;NG8+^bygSGz`C+d1uHg<9$7wD2qMt<OD>);%U&
z9DLyy|Ix$M6HiuJ#ILWOx6i9lR#m#uPyNd!yQiru`J%Ln<i0(wS?gINzI;XMwA<R-
zM5}*%JFPDr^>g72o3^_-GPYI0_x5f67|ytBgYL{(J)iz6r=&?J$`({VTWxbU>WuR_
zP3xYSZCdT;YYs5Vvvi#h+h}umpF#oOdf@{x&9%F}_a?OWUikDy&gadh>t|{oW=EIL
z66@XLu|4AT332u_lg?DXdY8AHRq0&Tcb_kr&QsOq*7bkB$+UI58{@<ef1*1iDwi@|
zaw{_0Cp^>lY|yOCm5X}3cA86Vja~V=sfvj;^3h63l?!S=#Z}91d|u74j^l)xh8z1;
zwSc>J#mv(8{cGMon)hB{_j=K-bzj%*-z<Ca9e=R6)yj91Z`)+e?vdD}_A+?>%}WWB
zc4k_6W$I4elJigA?lU8MjX=c3GopLy>SB}MujLngd#&hx@asDB)aw6TPga#~J+Q1I
zciDF3y|*Ua2|4=z`$@6at*ajW7XA8Xf2Vp0+tk&QkKWsxypvO@E2q%y*8F!LGL^qb
zIh*CP?-oxwu6Ek)<;_j;!CvV`zke-X{QAnHK>y2ZeCIdb7tvkvuCUs=@vUsN8BY|`
zxxaUOg!-y<+Y5vnpQW(-XTC8=`VrbvoS(=3=0;D8(e9@r4vRl-ipnW<i4&c=sNO1Y
z+P4{+=~er_&OESPH|GwM$add_i`n+p{y4)f^TBb!8jUp^lb9yXF_8WGRL}lSnCGHp
zy=5-H+rm=LJ}sN`w|IY=AJ3K*A8c7|wjAMjck{)<ed-!Z5*0*$XXtdM?Taz{aaHh}
z?mNb_?Hdm&N2#q;3Mycqe@IR0OmAR9X>*w7T-{044*P!Yj1*Jwyy*7X$HnEBg}{vH
zyVgzmx&`W&^K^GAADGEsuv+BvmF$~8igu<&t<yWYH^MhJEj4-m%-t76zCQA6*u#}y
zot75G{UxArO~Lf_u^)n5)XTOdaK>t0{drMo^+pqkWOe=5Z!UQ(_xVwJIwiGYs-vg+
z0tU06NjooREI0PgYqDwDptZa~^GIQPzL}Fl<&8=HPZM<)%h>Vkjj)}#nzcLQ+-=KU
z8w{p#hTaHx<Ugh0z?oC4M5Z53w|mgQ&(u15{Q|M#+lK5HHZNF_d;jv4v%Ai1m)*e`
zzC%hxS1K`!V=Ys~(~Kv1;iqyY3vXs}u?b}myX+<sm9sISZ?lFow*&XY^%obdm@Jl%
zaZ5A9;`W-XgRAT0rp=l#X^VSExQEQjEo%gRFdIA&OV^Bu%C>X=6RuXy5ts2oV|(bf
zrtJ$`d8S5rX7aWN?dIIkwP8o+I&OQO(x<<6)j2Qs*Rh)BvFGaC1<p4kiq{;JoLQl}
z_G!vBC7zX<e4&d(7dWg9e{IZv_-%hj&*Mcm3*YQ6j8S-)9uRcvLg^>vFC9%TCu0RC
zc%C&fU4Bz3Px71dBA>lB`&TcQzEiTv!fCP3<lpPXoH;vUWi1}B?(FDUd?#Yp_PH6k
z0SpV+awHo(jH9#I?oCq-f4*z4lL*&VcT<~#%xxtcC%IfgHH>e6e03x{J5Bc0{8fvd
zJ1tnzYWQu{m6NHu23g%sdHU0?iLIVFUFYsaiT7rzK7o7q-(T}vd3DMEm6}tvxlb{M
z?~@fX35~3hS-o+&E%Vyyx(`9Eexj}}-c3~uQOnmZG)YO=F89mQ&-3cyV>26<d=}mC
zxOL*Idh3FYwAbse9^raiAvBRsZSP%?lg7#(E^hZ;id|#q>0`J7%EAuDzrQueO=RA%
zsb$rV6$RXBFVA_MJ+fEB^ud*`t<Q8`v`)LraVvX?;Iyu1C3f8>OiGikOlMl~QZUlh
zaSqcGKcf(qWZ{d;JS>>^O07FABg-)NP5VoC-mY0<-%fNV^eni$!fK^=t{`hKf9Z;q
z1;$y;4z1Tu2I`AQ-B6KvDfPNkXwCwT+iixy>kV0_DqIWQZQGixctDKP*xvrL5ohYf
zg^b4i${!ojCC<-35>WGZZO0AA2p6-Pzo#{R*77>MC*qxI)0rJHDRIjZU)V}lS2ce7
z<FQ<!=uK^qVbA3A5xQaNyQi$%p3U&D|Lbg(2|gt`4~iLc1Jaf?&RFr6!J@Lsdb#WL
znX$Fbt<p~)Y|Q;+{^rpR!}a&`AMH&FI2vbcZ=bC8HRkrr$m+z_)k4z8g<mjBw8(Ph
zo>{EWH*0Sio7uO=&K+{MQ-iu@mOp#t6zJ3|Qfh4+9J@exKD)@91N!1G-H)HKY8G50
z<t=EeK6Bpo>r;MSUzu$v&p-cX1G61ROPU$$mhEeAeBs@C!shmaCuK}4PdcWGd~FX+
zU)8AVV;tN+>(<N=<6z5`smB6c+CF#QiY#-G6SS(|)|#nwD}w2($J-Z~ljfOBSU2~Z
zRXgLVpH_x{_b?Y7?)$ZN;-T${-!dny4_<yFj{D+=?N0BexL1iz*<j#4OKrMnyqA9V
zH>IQ{k@wU;8pvyMD!kN+?>%ARJtOjezUgM$_Vq@an--<dpY~KvWAi=h%8lDJSoNn1
z2{nCo{UCDZ@tut^&-cXmobL#8e<PQ6PnT&$0gKU<4M&@1I;Jo^bWP;p;5R8q6E>dR
zrGM$^!9c%xa_08dvx>RxD&3Yox>)YLQ))(w8e<gO^xuhg^`f`MJWkFu<DccysjsMb
z<MGme2BObhjHj#K+PO9LBip6^bVDX9&!0Zqja&1VCzXbJbcU)v)9~p|TeslOZ6~dO
zV<w>&n=O1=)J)2tCHRW#6K?SBnEQHahk@}%C#9<@6Sf5Oyh`_QD@(TyNaR`2CU7@>
z-Tnfd9El??%3Iq*vk!15XYn6eEGt}aHRPgDMM2&|t;wM*ll+RVd&$&xEe?thyWbsq
zLoOypH?cRx)3mrRkMCrZk;k&r|MZ_1e~3C-%5Xa6(Dt1ZpBHZI;YyS_wPMqgn(kG9
zSv7+t&#)ah_Hot~_qTS&Z%j14&pWTww7>1}-sHT(<qH-sQG1*BU5G*O#802er|*jE
z-`G3VWA>6wv-k|mymghh{aRK`&Tr|tuCBdhhupR$`aJ&@yOvbWS+QGbe~0(8RUf9^
z|NCb@i}d>N?N!NgtoQyG*#>+54$4#RxwVgLnZ^#?w(3lVGrL#G-G0Q^8*w(K{`~V(
zSO3qdN)%F7<h<eHn{jtGM`ch_?bTqW&WaUP<;6R$zL!{YPHC!yZdjD}RJD6~g>DP;
zqb{YZwW;`QnpSe>%G6DF{ujhHtP`CGsR)=||9vxmcOXz*|I%%t6KkXG8)s}iR4gO@
z?6t+MwcAb`M_rIR8<cX7(duMqvt5^m<$bG{PqQbdeOr4w@4=MwLb-yKl73r%>c_8(
zy{fWxy21voPgXNG+;QossmwZl&nCUf;mVXc&FkB(^>h9u1T~rnl|EIU%6BJxyRJ%C
z)Z{;NZ)(_0oM6jP>vdPLf9CyJ%dUCfo9;2u{{PJB-m7vy{ruve#H4j`?s=t8q3f1q
zF74@fDde&u-{}9hucp^eJwIIeam(y|W}Yja?$K}Y`}?;kP2E-cjFa`WJHB0Mf;E+=
zk0sP-=~%z&`k0#XZ~u%*ZPOzc@kYrqb*R{jDO7M>`RXyLHgZ?OA*YF}7ukg8Y`M0|
zVDUQNU4A8T*JfC*J;Qy$^XycQrw=z>NQ>X6Gb6In`o0f)kH*C#f$5TM_vGt7C`WIN
zYM8ayH+fZS)QuTN4MxTqiTdAdKfTRL@H+qU!pC2M#)_vW#xJ$DH#x;OcaK2!LRVeS
zU0Z^GRoR%_do=&KMF_`}YY&a(3l6Y1D%JnGyldKbH~)1zYb38ql|E0~w&L~s|F-2y
zpFZEuv)cJ@)nU!tSvR@u)-!}V@9Q+n-q;|uwBQo=)q6)<vvfZ#Sdlr^_eEejcM1R9
z)68#0d++{^=$&P0bnrp{kIP+C!jyJfebiI`UKYJ+t7NI~+a}+XC!8-%ow57$KsQ8T
z=@FkLWn1%(oh$o#`sd^`HNQWf5BmRFzH{cyO<$grwTAZ!?oVc17iA>byT^C;vP~D0
zvYGw&ojMR#^?gx$*HbRtg94tKt6GgT`%g$^a(ov2aP(_X%D)`e7<pc0)f^c`DMlUt
zOXr>*GJjgccYgAtG=WJWTe?MlzK%b6<=HRp681mKTb?Oh6?h~1SY>;5+6*ht>m61(
zNB8=?n|aeXXx^952P-XpeXi(AX1K+jE3-_gP$=AVvVoq*pR*ptL0L_2e>!fLc6l;s
zuj#VqS9S6yzc<fGeI~TW$vL%>WuG|5yWc7^tn@zL-k!fTS2j^Jjh~-i$=u4K<{2~J
z4~2jyr>7qk4co4+vxUol<wuv?m8qYWemVK@omhFFme~6F;cN5OcR8wa7yCNeMsY`0
zdqyqzWodL&+4=5v1;5t;%og`&Efg&lzU5?ha#hRUi90WUIMl0m>)oaBnEx|YuL%^@
ziT0i<yWstfK;wJ==3jrgJ^#MTlhkV`3*PPe{ms{9SN;FrRvh=T3wN{c6ucL7Or`j{
z-S)JD+qbAkdlwv>8ar#!zI4l_+lAEp+H}+p=l^U<`K&hk{25Dose~#1zI)~b9(=TT
zuS@dDw^`EmFZKQl3I4RS{ls;bA^gA+hAz&Do>o&Yf0AOm5wX7i%Mv}6x017B476V?
z@R|9}{=eYy!(68EYhM@5&a^&wF>#Scs3)`W?2kS^Z^X(Q+3zq1cE9{{BlBYAiSysr
z9}<Z<=l`|mUzIJh@UlI!l7{=l8#j9y%=63%{Lvy?8_IIS)atI|)XH~hRfkoAj(R19
zAODdqEYit$En|1*Z>gUfC(QQ<(C~Nn^FR5bwC~rqKHj%0bQZXGOey=jarX1)zrH*y
z5}f#dU(CL<TDP2^|C1>=z_>qO<I|Uxq~IQ%-fz5n(j{kxoqp2&bJwgLH*(G{=h``?
z)sOABtLg&N?iF4$oAj3-RET;br2Dep;qafQapqYMxQl-(8Ss`aJ@C<V{l-1-V()J6
zH!)r#rL%PIv7e$wl``=zclNcuT6APhS54uskpIEWtC;TYUGSN8f84}FD@%41towIp
z^^OJG_omwMTsVE$r1M0*>bv<K6X(~RI^*);XM@D&8-c!A+^1)L>Ne6@Z~Ikki|?xT
zNfN#P1eRJ@K4NF=(ejznXz%k}e_~y0oyf8FT#b7Te~aWE=0==OW0<HolSPejifPU7
zIJJ8>B5tf(Y%wcOa{Zb@eN_*&(pRzd!j`4c>7Ue;+Ls?cn!W9wC!5)_nOTc|i)AgF
z&nqo6>kjW^(c99->VmUlHV3#*m{xfC-Cf=NVyE`nNj!W%|NLU>2Itn$v~!CY?XEpN
z{UTyr`d{VQ3-5-uR$jTEDKzod*TacFKU!so-f@1#@5bi0*8A-07msFr&D)a}*IVf#
z!koSGZA8{=?J%>p_sSPOW=VfNyC>12^F)E&S?R}`#+QE^m|Q;JcE9G_T4g~?a2_%U
zc*0-rpsKVnt?|iLUN!NR$IX7Xe}3L2W9B9rf9Ifuse_8Z$DMhLozC|2Oxa+tTZNy`
zBPl$%<AU#o_Qa42ap`~mMC^aKLF8sa_-(eDHMf<O{ETn=L`;u%^|GImpmf-%@x-Z3
z7scNn?c6ivU!`Qg_Vsh!SssV&pZ@dn#=UNv7f$#(^Q!zZvC_O0rW+r-M1KB}T<$RA
zC=+v*XH>+ZOPlj&@w|Jy;0j}&xm(m8KmYI&BLy#}rarF2DMqst<at_8KRRrv^<OT1
z^=zfE=+NdXyKhdmW|;p$f%m?Rz4zZ!cRJ<#KQV7l{<yG(<J70g+f*$|6P9r-3NJ{h
zD2l%OXj=5#H8V?g7uHO<oxbaN{DXp36K{D&-jTXu^Yf3T@Z<w4E`-f<US6a&tt#vJ
zE=Q|4=R4Pqe?0v0;JMH=KY`4N9#ak%|LfmTURY<5UiftRoyE(N7yCW_b23Blr%B&q
ze|68rP7NF-k6f3CZ#sW|f$_QmyYEV$etdBWaV<RV^g`QIWWS7rc-;HR70>pqeJjbp
zV`w1pHF$Dp;C21Rd%MD>`P~!C+H(5FCRs=~U!%yb_@Pf|VRs)h!$-ciQ<OHly!76A
zPta0Cuu`z@dWq8hKXD<8-+WuV(Yf=?6pz5$llU5M?pzUnb<1W(t@F2MZgbVT^4BAw
z*~8`7M*I1$PwMB*%j)Vo>U7t2Q|&EJfrF|7i^CY7O}hK@kLQ=oLR*=yhX3N;Eq+g|
zwNZS#xM;qC%Wtm*Gv8h)=}P#V9(MHlB<^1_)`F79kDojD>1mU5^wOM$1FKBV@I2Mn
zvZ16kv(h4Y@=0x_uVz}4-+1qoQ_&9(+y2(octXT4-I*Z^o_?!jxl%oUf7I=64||vS
ze)C>eWVLmiJ$je(!S|bA7><A5++kDqFQ%?)O2bT3<L@eaUDuwt=98N9VaBnKDoT%^
zPwpr=|9^U{@Ygf%ioaAHGAge6@X|;=e52iFzw~ow4(v5MB{nfkHnTo$xr<U-o0`^=
zdwDzcbRFK=JYCqzQREeyn|{*dm0U>M`>z)_JlHV(Mt_HlQ<U1w!!|PnOfz0So)x@q
z`pd7%!SB3QmTg?@&97N_JwEl>&L=NFrwji4^K<fAMm^m($|`kM3A}mg2AluNwjKZY
zdGU*CaY5tfzh-7Vd%E!0u8lITcN-VhIM^=w%d(}Wmx=H2%FPvSyKleMfwYkiF3?%S
z!mrR5V)?}D#<jhrTTL$B7A@sldC4bb>a7pn>nF08{frg!y`g(<QTPJBi@sl{`MLOQ
z5agex{esUzeTDzQHzJGKr?q{3Su8kl`Eqwxx7R=Uqtw4Cm|j;GU%%B(c~4%5e^~GH
z;QwDrs(s9p_fBNE;e29&)QvYx#r^wbS!FeQOPvi(PrR1DF>Braxp@uhensaBUm5S`
zS^ld(SnEUF?v)RBFMqV)=&{~_MHiG(Geo7%&Ej4oVX*J=&be6uFHd)hE_%_HsyOjo
zO8Kh?Pq=#R8vkbf-dx*|z3QX-#LK}y|NK-rJ>jP6-ltv?f>qyJ7G<(8Vbpj2c>Tr1
z4xZ=kMX$F`*M9I{CwdE8nO^fAg|DG2<QW}y9_QUZJHG#=>k^&a%VH!g`;R6#?_-Oz
ze({7gHAINByDfF~lSc}d?(I8ujmhqK`{q5|Gmh`baLBpoXU-GmD!#on=l_iRPaV0v
znM!6$1k74Cb@?MFhcxS`XSs>;s!Z>%PBQ)ayJpjrXwjn+=j~#=w{Kp@x|z?9N3q3Q
zNB4!qU)kKlKDX%$WB;sQSFIM=SOwI-O_bzK(>65ty0G5d;t+J)@YK<{=R_AZu6wxs
zcA4ajGhz!m#nxAE-}SA?NdL`7QFWn}Y0Hv~FP+?WDre)_=fBrYi+hw}!IJ*>&0M$I
zK(p%&XG)J4_a~Ux+n?TZXL-=7ga2PH&o-GcFMiQCecOGe8!yLP{L}cK`&P7WsGww<
zT)5`8KL_W8wel3t`SEhWisI_qj{>H}*DeuZFP?O`m#5WmgSqQ-qj2B8@D+@k>?CL2
z+;Uw^dY+en|Jf-sGf!Vx<d^e)$p#DNymwpnzpK$RJNb3LuU28qZRy|lKI;Yqq?j@p
z9}eWoj{Ie&E#dd-_{U&hJ6@$vp;cZV?Ski|%6VQtdVpCu=7zT3x6FMR1?%jbW}ouk
zWgVtCDY!1?mQ%?hv&5#3!}&KG{r1^qO%ymWQ@1o@{p=mH%w}w;T5?ACT+YcascX7-
zFS%bQbF{|y_Pqs37g;u0%$Ik)6DfInrO+&<3;Q-W%$ob>1q1Vz<RgyueW9m%{M9@C
z!y*|bdRxjYSdzba>z*>d%IYF@j+e2q1#e~M-0?f3y}%-?W+nGr=SA6~e2`B36fs^d
z)(@ZMegEFs8ytIsz1v*#?YDg<p2;km<_NwD%wF~?eYM)Mm06pO=H<-aknJ?p?e40V
zTl9Ce`|LIRB{$hZ^^vZ(D@V@drFY}jo3GsX{o%`$@B9Bm?3uT4VY2ngD<>Mvr|HB!
z%2=ZIRxEt|a-KFNrNb9)Zl7Ip?&`aRpWOwQG3YHzay@L(dERUG)Kh2VYUa*5y#LW=
z=2>gL?N*eJZn5EzE#%v8@yFJ<TR~ZO=1#M#vF`(HX4<^zdRG|}KkM%vmFFjAXMdaF
zabR!NvD>%yB?L76U$xx!P3wf|-5n**KR=$j^n~EA!~>3;!pigJr=C1hCE;BEwb!}u
zPyK8LEn_diiFFdIDz@Iy&c5RHu|;$F+b3t$TAhu~9Ojq##Bof`jn&K}rq|8AYIRNK
zk!i2qPD`7*Kqpn#^XjH8OaaEFY2Gi}A5QL=GLc6$>Fv>%-KRhORTEJBaLAF>UToJ<
zozj5*ZHb~H)6^HsM%~WROu4!DX`=bMaK5m}nW<^Zck>l0#)Y!o^qG+3dFS-(ytg`=
zJo{uIHP()|#@ju*<4&tM=^I)v$~!Qz&&1fG#q4rtL{n#4-qm|1Tr<BboqMrh*3Bz#
z&zo28W-48{@~L;>!ecWm)hdN1UapLovg~Z^9ag_EN#96`U9Y+dYnFUrS{t>O%i-*%
zISvgbA^Gz)cIv-=;akd??b082v^nR>y%Sjmn;+y`tY5q@|H6e0I_hyUh3YeJDXb~$
z&gGx`OH0sryM)OUiG@6@3C|eX|E)Yx^O$Fgd*rcxp?SY<wl28%^N#JU5*L>eCdYZV
z@}@n0+qRHT>*M@Isf?c*@3-8v`5D7~efIaZr6QN@yabDxraXH2x-uvC()#XJ-+7z;
zY^LAZU=rZuy1};R!r@8oE<U$o7iHQPJY>5$J<(1w?sWD2oTT?cowJWVDOkIPQzUWq
zEFGP*EW18Glns6sa$js#sv0lH!IN4uc;3pFY?AN~`n~4;yE}RdyqPR+>8)AA=hd@0
zw>f3$mDj$<CTcM4l6s)xf10<Hx8W)K)whqB@8ofB=zktpywI6{nuDl?Axk>n8;_M|
zSUuk8b3==+yx(WS{!DqQr|H$b@b%j3A}4vJV&>PcmuKnZP2bu1(9fmo-g$=QFISjc
z`@gUG+vBpgXM?zBWXV+BV4pIvqhrpw=SA<1=H@pkGEH;e^qkYeiN)gbnby`xpZV0v
zPhR}I`ONMMm#<tDe%c_RVP2tCA@X+G5)nh+io=s)%%`1IJEU?s==Gu7i-h9eO`0P(
zLoKE(;NrCljBHB;)$^NT=X>q?ws5OyNs=so<Y(9EzE8|697DH8KbyYORYl0y`%Nu-
zU5;Qt`+PHL%g-kh7Ti3rZT+&BKWir4R<|ouKDn-8+QPX{<eGa<Gb?`Ze*4Pp{MD~q
z^ABB8(_Fmi?}KZbZ`S?T^o7ml-L$Lv@4|8;cc1fcJin1cIfr{gt5~LkSO16k!du?Y
zer<gE(rT%E-cN?vpO-fV2C+;zm!PJRd27<;ElJG**SStHsD1h7m62=Lps3XUIHHna
zLTmEjkbLL=0`DTu>`d1zto!!lPx$%&b%AHLd~sg6edPu3ye%^;zDxBlGX3?tQ&Pe+
zv%ZXNhUKL*Vc%apoF>+=b#YM0ZT3|*;Fh>TfS16tZ6`(lF1LI8<!e|v*Q1Y1J3Q3&
zzkN1Qs8f=8HUD*K%#~x^lO8OV@DXeM8=!3XZm$gg#1G=jU%iZWy=;_YwSP{?dxn+P
zwyXcm-ac(nd1qem#;mmFZ<?&O;kSJg92&E>&y@PHRV@Eqc(&2@@43yhIM>;lZqEEM
zE3QN8X4Xm9>eR}2fiIb&JR~j%e45m%QQNft;a|OtcDf~^Tb52w?tEyPwJP}bHhtbZ
z-i9A-cvKu_T3V&%GoF(VTF`uvb<OocM&rYRFCPASw6LQ_>iDa`;QzTvi9$0J@80FS
zxm0XZjoHqA=HLEI?(?_kx!w^CyTwzGmLz)lYTveHS}xVqWvqX$wjOwO$f9QIOx;6|
zH2BW_-=M(!@iWu+Lfw`p6Bn~T_3b{beK%M>b)WR3UAsb>wZ6%O3VeE?_DjtB*Hewc
z$y#aiV<T^cG4Az}4Xe<~lWk#@E!lN6w!-|gf9=`jZk_&z6`tR|u+MMqb=QUy24~#2
z&VTG6tfIcX{;l9=`L%Lvocl8UQrGlbUQmqKQ<C^qbBn*a#l&@2<iE}A<m$CB4nLGs
zmboHeL-Lja=pg5lZ#-w0Bqc}9tDX3;sxgCo(zk2HAM1<NO+I#92-|$aJyprSJ1Z^w
zW8Kd~xgJ^@l^G77R&tQF2ym{l*E2O)tr_QaH{-zN6J>1k@4Cwz>=HCv-C$-cd0=8&
zcAjE`fNwv`>AAlnsv@6%%~p3!G2>!zNI$f)_0Gy5qlLFNEoJTR@oze`Jgn!XRfm|0
z<$^B<MM~p>cuT&%W%j=2zo<HNrTEkNT-_ff-21lO@{P~$%l`W}$?oD?bL}IAu3D!J
z+JDtt{!|yG>v>XgQS_93D{4ItD+b&!_fAe@o4h{Q{jtx!{~V65w3(FV?kPC`_0%QT
z^>Lf$-jWKO!KHRj?Vv}SR!FT&_cVhON6I8?Cm9>7s&h_@NblJ-)ACr!L50rm4eD(z
z9A%GRR)`s2*Z&eH)?SyQ`RCdFItlwukNS1*p4O<RmGn6HoLF@9=jl>mUAN5TsXqcw
ziXBmseKK3i=Fr8Y@2(F#kFI`nX3w0rQ+^qKn6_|A)2GNgho0FLud)ks$vbzu&hN>G
znfw+H4l|_xpA^@l>phbzE9N_AuEE?cdCnz*(>)hFaxl2{EJ3A7?7`J~@9&(9dv|8t
z^{9TcHf`Sy{>E$nIp>AMKHujXr@(J~AVElUmV{qr+T+WTx6V#k_HD(qF9H5nrYb%2
z$jqIe7p%dnUVU-r|Me%Fr?gouDfusNk)+BeY?q*B!mwe>-R`e}lWa84ofq9dK{rkE
z3S;#BANfD+7Ur(makg1I{QB;%2XbcF*B@JJDBGdVcz!15|I1Imp7CEQotmbVx^;ca
z(y)|*h?9@K8)r>1V1GST_RMwWuV$NdlKC!P6PbFcGp5z^YoK>Ra^&n!C+~We=h{o<
z+g+R@lFKe=-27l8PfcW;!k$ebx-Aa84O?Gp3N4V{cKAa1;@!=wKX`xmdFpwIBdgB?
zv31(T(KFK2x}uD?7r*CQ5X2qvYu1t(CO)p_pN*FWRb?DmpK|C-h|s}*o%YAoa$h^N
z7aw3`uVFcm-F!>5bInORZLiR$tCVxMr-e%0)Vku~5>YB888CU_UZoN{-_!awuM?uq
zys4R1ESgYw>TOp_(TaB+4N+EC0_Gbp?(cucwrbsPU$sL;W?FTntfzNah&rw`iJzAF
zwxZGC{G4<1#oBhAZ18dkf2-lvzi0B~$5TSiFJLuJmj8a3;dk#=<*Eho+*^E1?3Sf%
zQ<~;e#jSC1tHeWxh5rJR%eQ!)IwLC8p4$Di;$T4D`+F+BFJg}Vs|xq(ZOd?!K5{kG
zYumB~4?E_(m|wP3sAx|43)?Qs{OuEhmDla@Nz&c2V3C3Tp*{B__Q#!nn%5L@<aYO>
ziN_Ype07^3{5`AgUQzT>vA{I%TPbHsBA&K!l&+j?S-$r6_xdB8DTWj0c4*bk7Yw}=
z+2VL{$^6yYpHf;t>mA+;1Q@^PxVg4uLf88vHM*&lMaAuD^O`<eTvpl4^UnL_amS|H
zp~5*|`R6J199gz@^WoPF9Z?Lu6Lwhb-rdHgY&?7FQjLH`pBP2@^+R-)9@ghwfAea}
zk2W)}mt_(&_W8%FUOE<Ny^m+<uSfpo9&aR6YMB?wb&4@xzNYH4Y3j_Qf*lh68Imh^
zef(ysck#iN*lEd&nffPb#m+2alzh1PeP;FV2P@oL)RZz`tiE_=n?UK)h`TW{7nvIW
zd-1=@&*~4Vo-)&8HV6B;Gyhz=b4n)t^$26X5G7lcoBk|@=k|o@;W}~KSw306F1ebr
zp<YRIgY&el+_AcwLoM?)=Wo_X*(PDgVCIk-x9^>ci&y`~OfI$i_l;-zRCarHy9ha~
zYo7F};UsjpJon-ouHI+tNA9l>+9aUW>C#_mIa9&?>5}hPqD_jM;-=hOcV_X&cLqL_
zZl2IRv|@wrp`N?!y|+#(ac7%ObZ);Mn_}OzV!Bwgz^U!C+kRds%6Pey!ECppk?UvA
zJ=<T;nYsAd%CDjyxB0qRTu9MN{qv*PI9kHj^xM=0dr$u7Y>HmbE%;6@{@C8_%k6e<
z{a#bHSo3^rr!R-f&ndMZoc3Fa-@f&twt!chG1PebDcy6Eb5Dq~?b+^^%Nb|VS+#t|
z7LK`Pt2!sWop5?(%(SJAueUdNBy96euxeUSd%|Z+dB}HP?jv4VmPJc>A1nxM6+gn7
zf3WkL>wL=<hnu4mrnLr6I@@mAZ_xHCF3-1-dBW_BFX#Ev`gU#Ja5Ak;%kz)^DW8hj
zrA%5TOuI_9_)NKZ?o984-M7`vK1a=4x0vbYCppFq%zQr-3U*&u@6@eTHqFXk?a<x(
zi=HPoiAyXfse5C4+}eDnlKf-28(B+(Z!F2LZMMFqdGZUdp6F^@@tZ=G2BDs-1sn1+
zG8b-<O>12qExKOcKYYR6n|EBY&oRW-O<r|$y2q`pCy%s#+w(SB!T0y%P4i|lzMsap
zMfxGv70&j`Gp8#~=|<m^%GR8Gz4iZ<mOPWqx;p7~`>riM9dEN~rq!k+uljo4hE`v7
z&bw+J7GJw-ckQi&)#rI?w_m7yx5$O7A<gM@xBkTd6{XNUrfwTW=XmT<RW7TIUDbJ{
z!a9GuPV~AiMoEU^d5g7|-ea8Lk+6SK=d8Po)=%#JWs@|y`p9y7gpyzqv^{$vec!Wn
zo_}IEFQ0Ka<({f_=ga2lv9sU2lHIgdwL;5JoqO}lm9DwBXEud@oAl!uAA7dx{@O&5
zF!i!oyNpiOushg`RR6FHx_+fNYvyd3GK<jltXrnrY`XX<#902{kK_5#6FVd}wQ7~A
zWUB4=xqbLABk%m1GkiJ>^)ELCDSy5DGSJ!Y^r7t)0p99!_N{-GzT)WIrZZPB*2~LH
z(@oq{eM|G7-<hM2W8WG2s?B83eaQP<fyMos7r&$i>#g1WlPry2|DV&lxa&RZ+mw4v
zZ@1jZh*SGoYr0p+;Sp!^|C3fGPU|>r?_Bnl*^!lN`Ftg0wvUOw{-<|Z+V<Orb+al(
z<4&{Qik&nq((t8u=CeIMmvmZxm;T5reegNjN$uBtalSvr6<aHgx8%-RQs$l>|9iLg
zwt)AC@BiP|IP-H^d9}j#%Wqe^G)-DQ+xFYl6EQ)mS`(f>?=KU{ZojH|Td>6QDC3=)
zg7atY&b;~KOR1vLgZBDAkE6YJ`u46nRK9H2U8|jjlYcziU1?f%WyVjjUpD1mi!x>&
zoVMWfv<aGfpFH_@B5l%6uITKy-T88m-eAR#=l1Jo{p>yT#oj5yto^REgfHK=L+>nJ
zs<D2wH7(}8^ZwGEWTTBq);?e4?;lwA;lpYD*T2u?Gv-^de&=3xS8d6mUve`J{gwF<
zWj%F$XsYlX<LjPxWB0@+Zg2csD`EX*=Kb!O`<eGlT)T1cP2QfhAM|3r_vyZgUMoAx
zUUx#g)-JC1+3hf=6rcTb*YC_;u068bs;3yYnv4F+zg|&&di_?m@6}$>b~WFljLZG4
z`S<_()jaFwetpdiT<edWv3_uz->J_3hIhpGnv0))uQ_lyfB)YFXa4MN`<`-_`5s%`
z-_Kjt^VwU~vC9-VDA(vje`{})kMENI@bSTa#w%Vs^+0PB(N-{mRt17qD;gRYnj3=T
zK^#j<8m^2r!&uYIrSF!RQ<7SwpzoHGSd!|Jnw+1Ks-W+Ynwg$aqF`u*ILh150JQHE
zw2HAbsid+XRYBh~H!(dG=h9d+1;nyu@LAptA@0|YpT8R$5mEJCp@T`uccb`)6&s~{
z_D-L1qt{eQxY{>o<FRQOSB_+un7v7I78F%n)S=+9e)pHSZ~yBetZs{&od0aMUw?P`
zDa+#b_cGJZoiX|n-!`pzm(=o2U@&KXGyjsQKOL&3xF7ZjK7YtpcV#%Yt=#O;GnbxC
zn+gJ=*~vG(bLX)+M>3`VK2vdg=PljJLtbllT>8W%c6_(m|7ZD~5?RllpPbM-eX-}W
z&&x&6u6Ea)k(d5oBhpbsT0HRLqkEs{JnHg#`>DyOG;j4@Jr|cF=k>J&C+&PV`}?tN
zx}9xon<6V!U0jyE+#2Nc<!f)pi_P7WL^qajnN&nh<!#=XThet}hpS1-)kIIT<J=y@
z*EzM7y>V5~+E+0fUATN!lR?mRN5B(T`)uF9xid?eR?LlEwzKzUfo`!_Yh2K8#qcTf
z7zHO*-8M+9wd`5<O#a_8@6N9KOU2jlX0OR`ke~bJQ<(1U>l)`)i`zaC5)>@0SJ{0c
zZEs%M^P@JWSsCt3`t3Kn{T#!aP6meQ*B4tzT3A$Ht72%ceIub{&EUB5{rzQ(AEpE^
zQ@t=-S@E6ulDk$WbxsNmQ_LL?{)^%juHgUt;AC`#+y2nyst-PQH(cpl?DnfN>%{EM
zD+}TZmDy)JVqpm0nrX1@&)i<;n+%WE{hEK4q2T(#ImSXeO1<h085rD(y5u&9Pggl!
zc8l}O-<1WoGZ~ClD=kiaWl`|$)5AxL__8Wru1vonGS%g6&jw40J63bA*u3fU&7E`U
ziDAF8j)w-vx`e&rAC6uTc>1z>a)*~mM~6^uM_1q3k338Fh&&I<3oYo3O0{&KyRbY@
z)ukj$Mv(Kyo32MUuGin6plE%v>)P6BLhtV!=aru1aa(0=gqPOsymxxJQK7LbuD*9S
zxi#y<jP+ef!l!kGeq3$ryXdmzy^CvLm{lP6+B>J#1O>Y67P$EQrXY{t##!qm--;DD
z@7D=6IHj~}*Btj}o1giVovXe&SK}U6mZ|1)mSbI4vSv*U3kfT#=v%yO->iTAAun%>
z3;N$;p2YsWHTV+CIuUUZ@%a;`gjjba?Vi0++h)6pdtCmMqiP@i^)9)xTrvODyn8#l
zwmjL=wEODU<Nr7t_8;f}_VS|J(W0x#x^)sZWzkv;EV1$bPrEW);AFhFSmycXM(LYO
z3oNuP`5E?wuAV>BG;%}yrv+z)8O%0?YRenTTL^tDnc{i%>x=H?->dm<EqMBB@1ifu
z{-3qZP)@vaLZIVJRPoM3uN5ZuWZUaq=-jF$;PWUq{pEyd>*lRH`?uO(+oW>MoD*x<
zBBR$8hsQsOkDoPl;^b^EkIJOOTa>EqbKal*`uTD{lgwxH5A`k7?o~T;ex~fA>GcVQ
zyE~?T``v%>&%Z;NzbDPmJuQ^<b*l~&SKdAURl#eEzRa6rHB~oki#N-~$M1@+N%P8Y
z+g13<er4~Z_w&A|1YP;MGINpk{K~oFFXhyfy0i)|%-_8Km0arS@_CmHA1nk_fOFo>
zPhF(2H!=2haG~KB>)O9j^QTT;Ju~80v%>0zV6p32#uuCJZk-wF?RI;5>ao_F<%SnM
zA1_mX{(M7gpr__V&MTWrH+Ii1jGJF<S-V5(WBR^)Ul);Qt~Qe^-o13p;{WbvcI|v*
z*4OHc7baW@%KExZkA<Ym?jAPJ-!c2<;`Q-i*&piMT=u@})ZDSq;hgoBFU9$u?*e~5
zWon<d<wsu1U$+DI*2h~5cNKlgoIg)eR($DWtpNTPZohx7?)2&6ep1(SDZ)n0K00GT
z^qU;7XzwkjO`|O=p6s=**!C(j`nbq+SN;0gin}fu=ooK)BpF^16&bxnaN4T<*DA!L
z66(JPi{IZM9`<%EH&5q_sJ4ZR_wF({+vQnfGpj@E_S{0Hhb#B@xfe%Cyzw)N_OZ^p
zueZE%_es@-D^~GDi?6zPDfjE?qn|ICnC4qg)ktwz))Rd}-frF9rRncm-rpA#Tr2l$
zO*r=w7FM=>hr;$wIAE^B?tgyjmY(c~H~Rf%TVzTITe_~j<Ir8c;@guWhu*#q{OVin
z`r!1O^4sD)<_blgOlcC`-sf-ZH2cA5xos{(2p4x_p|{f_u3~LLvA)e&DYl6!kNh`o
z@oV&bcR+cLdeQC@b*udMChAH`mk!6z-~8&NQOwNGIuE|A+ZiX5w6UYZ$LF>Bip6CM
zAN=7sTjl!t>cwlRzx4kw*fRW3wtshMR*uY#9R)}H_jaDBy7SN=`0M+|&0KbhtQ(I`
zUa8!8`@nbG)4^S$5)TD8mRyl6W7iWDJl)`$lAzD^-J*5VrQe%7ZN9(R*?GPrqVmK1
z3i12Gf`a15v#bSg-?X2{eb)M}Q%Ne<gYzBRH{QIVvTy!Nk)q{WJ&w-PcHh&{ae~Vs
z^-A;tfg93QSG;`I{XHPH?oRnq7WN4}(Z??*^{cVSWIyJPsS#4Ij?k7ZyPqi@JUM<r
zM*MO|h6z`~=T@+HH<ZVR`TAMyn-?_q#<C|bK24mPRaMN*AYHXh-ux@;o+BOa3Y1cn
zoL!F8G@aI5v1-|z-Qf%gYNtb@gC^>Py!mr9;oAOhrI#bySj;BQdi_V0!O!Te-U(yt
z32fDOHh(`}$8gDram$^mio3`59@yjVAd(f$D*sPSR!QmFrx|m<Zhp;Ncr<mrzwXvd
zm5L(=w{JXM+S#$=byAYR_DkEWP9?|gm|gyyKlOLgpE|4R8%b`0ZUTZ64~jpJ6J>LE
z3EQib_Kw@;1xMTW%j@*|-}%@Y1%&&w$DTN>y3OUuRk;`a2`tCckE_qwE5w%&HaF$k
za`~N+S;FGUNAK7uf4ge=FQqX(w0Y-0KkMQfnqdZ06Ah1i`f_Q}yovf^{rgxPK0N(3
z_x!uNr>xD-t^RjoMkm`f{WrS1F3jg&)9?6h?c3-uzI;`;brv`Br(dbmi_K|v6PkGa
zed}?L^KS#%ceO@+wNrh*{c^wRO$DjqBq_np9`@6hjs^X>t6HD><WPK2_?0OJcGHtK
zX}A8|nctYr;Jx;B^A6ek`Sbo%y87>Lwd$Rm?-#e>vrb;S%!#byYz@ENt!DE4NjrMY
z`=tN#-z8-eV{?79{I0F-js27^AULu7*)!Ia)kf;(9yaA0x9T*$xoN#h?Z)Q3a*2X<
zNwR{4WuJ}<<*PD0c>iqusWTTAtdQ(u)7jQ17}+QLBzG6@#mhJMFI;>jX3fp`Im~(~
z%;MScqTd=8Hy(WXI^|lyvg7xTM^FE@Qf|VG`4#H3CYIhU-@?AN_m-yRa+We17C8aI
ziP!w~ySW<{y6jtT+qu<{sgTP%nCaV$=?j%#Z#BAnSf(>0a$*0KoVk6>2fp3A$Q~o@
zax<1+)Oy((_Vk}!a~qou$M3lHS}?GE&b-n`RY_B4Cgt~kdpoDjq4elkyZ$GS3d<+$
zSNY`izI?}ar$tkoc`ZKNED?VHajRpyxbVwA9jceC{x4-H_{IIv_u2#L*5D^W?+m_|
zq{#57D<!(!O<4B&;+;2NKW$I5T`$6@YAzq2>*?Z>l^@4&;Oc7gxEM{}$<bX|UuFr3
zeMwgf_|3$--}!Rh-EUK?q-(E#51A}-oJnlY|G@BjOh>-t-M#VXY((qQ6V`j4Kgqpv
zNYEj@_=m{4YYSHd)$F%SaCi9dEYXg8ul<uta>e$~?=6_6efG}Vrk9&mFHNx#cqSpP
zng8nFOzrr-42c!jzd!$^Sj3gl{9(!K0}4re$yZv9^W5aKL$6p`{yFyb*7p2^qLtU3
zRSrD5;5TL88{PYVw^)9v?ae#({=!do`}KAQ>X~^a6niZ+Obc4w$B^_XP;SfCi<?fj
zCtsV{A>)$~H1VE3<CBs=9pTMhTjW0fc%5rm&n%%??zg?#{BL7>v8Yb!WFzIx+6Fha
zbS{;8!y+Vd>LK4AS!?FIw<9Z={&^g<{`t9&B~RMR`#^HXmFROfgOaN*ynL)@+T653
zOvOrY!%j}uu)_MsDK|S`6$r$3rUvotIez4zGsB-%4r#k3UzSGS;M@F4cfl%ows&Wl
z8JLxn9`)>q{=svROVnTMTX}QTWX*a0a?2lVi7;C(Qr+d^vpRKA)ZE95T6T$ERf}71
zxGapJ?W)_&6k8)<&p6$z_4)hensc%~pL#*5ZQAVgyt6T<mf88opJTSmlv-%IA^Fy6
zzmWA77d!W_Z7JB>ui`w7<=FD{qb@czbADM)eEo3sewO8}Vz*eQ%sXN@f0bWX?MJcc
zH&&-_+wya_N}15?jy~2)I%lp;(F*gMarnl+=g+RWd|4vX)Nu2cui_TIU94<fD&{g`
zEb&UxN8i8w!aO-Fx4P`J!nVVUxt*8s&uxGFvb*lt<FbrR87nUf1<%=Aey6e|ZO_(|
zmlk=tq{w_$uGR>785TJ?`P7`<nUjvog_v(FFLH`i>036n?PSJUhgZD}pHgQj95Gs(
zbu{R8+Pi!;mnr@0@6`GG>#%=N^%V|%wtZr@{adrYNpABVY!eoo7^t#l9%G-Erb^N`
z7dGZ5iwuP`o2=ekR66nY;v$Cn-09XYLmuRNr?#I}^md&ut?Y94x8)iow`4hm8&Q`&
z>YCj-_{ER+vq3o5nPbU4lcYL1kNbt(IDhnKVCLV>junp`{%=^2KV_;q@9!g_Maxo{
z*H69vSpMGKDIIN7b=CV8&U}8rvHIB!#siY3pS<t&-ArB`w`-ReL)cM2_jkQdy<VsE
z`m_FtD1Ko5M{Z+Ot&z#+`9Im53b}1oB~LetI5*|-0;k27cpnNZTJ+`8%$`p=2X{vY
ziWlZz3avRVaPfVEc79%^Q^3==_S_qGm<2DtyYlJF#Z$tqc#S(d4*oka+3q02wY9fD
zTDVje2ECm0Z*9y!oq5%lpKQ<XKFG)L>D;-kLT9yR{<as`=-M5n$FS$Bt(!C_<H0Fa
zJ40qwN6)c4E^u+#T4#ACh99@5@nub#7caAK|8sV;sM4&CzkAobk6y9h$ft;FF-mc{
zpVxI(JMa3?(P6S{S7zDAP<5qQcEtgkTDhX67Kv_}+R^c4;=F%3%e+5dc`jvAHg9XB
z!qqDqTlTvxE%jBa*d5udaCxiwyr=6gD!zU);rqt@=e}%y^5yg9#Jzb@n-8v9we%vV
zz;nr)S3WHIqnMMSn9d`4tm<od_OYFoGeuVYaK6QT<R4d9Bdh+q{c2_3Rn`CeboHOV
z*k-BU;Y9PT`&VUOns0LYgPT&ELuQ3-Z`J3^pHDw-@O|Ah$>_Msw*b#Q7yoS+lCu0d
z@4j`%K0~)731JiRbMIKEtPAnfec5(5)VE>L85V*6nQu$4pW%MD<YwU_b-{~Y*n^oR
zOP5}^U;FOa`|0P8$Z*_QQF|}=&~Ej=uUy&kPJJ_8bDG`$$f8`?7)F<==hyH2ml!<P
z<MWh<HwC?_6G}Rw)ZfcYi!HHQajoZQRCra2ca_M8+^Z|%4<0{hUG@Ho>CsIqcrHs?
z#D!g+I42_7d{cGew+BnUp5nY#@o(#&?e8a9+HCYw4{ovLOK*7o^5?_EjhvO4caNlP
z5?7y}yVv07dHIha2QRHU$CPmBuX?C#R>|CrDyvU_aeaI{sV^vK=Iei577e`z4p{Ln
z`Y5b&cf<afMW>D(UcGegy7+H;h0{c?ly4}JdHTZUS(m}v9`Uv9S41;*K9u{CrTKk#
zg5;g<NO84UtDbbunSA5i+*lshw&n=?rMu2<l;ldi%)zxq|JrK#V-|P11Zp>*^i}TN
zWfp$-;Qh6V?`4+X5;(h9(tkp2;x=tT!R`BvT=RIck99ijQ&Mv^<xx;t<jgLiRCK1}
z;o$@ITfTOztz?kfcEvob#Hr$EOVZ28jmgc|%>s<3*{^*yJH5=HZdLCC87(`zxfxtp
zy|38+`aWuWHUHd_lWMwAf?a!VW?AI;x}^LoYwfH%{`mNe-}}Sd88loIe`>39+hz($
zU3j>csk5`g?|j*g@cQ5&_nNrRvCF@Ix#h8cin@~Z{CKCc+W*hmr~O=dHEf|=!|tY6
zs+U3)xi=l{yJH<}(sAp@^r!7_P5;Y;_AZe&xF7#y6N|+O{eI2Rg8MV`ubG^iExPr3
zn!A_TwcP1*Caqf6^IfHE9oOYUFWP^v`tp|h<GRXa@A+;12N}NgZ9n;Zdr{u`&!3|2
zPU|R}Qpx}Bu&UCs^FHkJHos<aHZ99{y<>5EsixJdVlj#B9xKhPYsDMAzs@b4d1IT4
z3)^HP|7$;TUa;HzUbSMCYJ%@+gY|sukD|0z?A0`s{O0{+E_0^z)t54H_iCe_saSWj
zY*8vd?RTX?cjMyqu_{VMx4w8>SU52<^Qx_>lGX1Dr@!~rE1vAQxhP*fJ*@pLTR}|X
zU*DdaqW}I*eH|qne95saiBlqZ*Q1$LdrwuLp1bX(@3m!hNo?M4)SWwC^n3C)?cby4
z;=-@AsMmB_Mm`I3z!J@TF`f3eEIy^H-fr!A_Njw+uE^>o_vZ&E-Ea7&{otKed^@A}
zQO)R*iHckjw-vVNJDIwxp1o*v|LFQ}3Ni6_#2Aj5i+m7#@aEV7r;C#%=5sNqp1)pW
zS}5<tc4GSdH=c9a--Ph~l#%`xC;H)k;||B=$39Cgxu3EA6vv(P6Z)Fgnc-I#Nf)!#
z2QqNAM2lX(|78WUh4D|1oAVA%Wxi^*X!f&JrO)U8XOWrkeeIvF``(3XW54Tv*}TNl
z{HWWv4x@ECHun<>DkW8$JASoY)p*_K>SEm}5-Mgti|?(VgWQC_6;jS-_e1&Pe@$UO
zxqEt9#g0jODX;R`x_Hy|lqLG5*Bre$x1qpYR-NT;gY>P?c2Se1@)NjTeDBgO+j%Ep
z>Eyja%GRaRm;X%rKWpcTXRQ~cEy@?}$$$Q8wa~qaGJd~%>q~phpK;hP`kQcB{(QF7
zqri{9*C$G3ZmQ4ayRQE9X2A|ehU^E2%Mbo6zx(9G>l*E%6{nlx|J|{AAN6nU-`zs)
zw|OQcpG*x{we-me&F8zW?|j4}e!o9Le$B*yP^ryZ4Q+QM8mRu-KKF95QACVJdDzaF
zwvXrKj>^t8{I~nC@YaqM&TiWb9G~sDp}%<Z8kMaZrXPLl-(UZ+&Q|bcpG`=`)j2xe
z)dGSWdro?vI{&e8ruviz0>45R7+EXMyno%xKVgTqtD*kdhkxQ`8%=a|so%3B&Cg{@
z%lbwi2Vwa#S2wQik6T+La(yNXC{NW`>D}<g^^bGcu5I~ThQ>$pT}r+iD=8W2i{(at
zN@KXUrg`~4*2C`oT%BP`)*|XPmm>qCmqa=qX1%^EBc@_SNB1<2wA-TBM0_4zn4rY2
zwCKb9eSYi-UM6K-tPC^Ga`ODxl@`3<t$T%YzvCu*<$Q-1>pt9xd@CX~xAercPZH7h
z_buwNU-PT^@f^kV;X;4siPbzmKJ!5vgM_Et4`~kO2|{09E{Km$pF1zp(S=80zj#FO
zMyci{>K0S}u3BR8qxfg_(W!yCs;-&K^Ml?6sISdFU;ABOAt>MS=jU3^;~82EE2Qtu
zuuXp(`n<#9&fGJ~o929zu2+ftmBU;ka>s6gmd`t-oBSTm*)LXmUyeSZU0l?*<L)aL
z7x!}~wHGU{nW(vRrTDL{((lhID!uAi`*FofhK=QK-g3LRTv;o^U{Gu)Hrso`6&-^j
zzQmoM&+VV~yLFDdj@?RKpCfIjTi0bg)X*=R%>Vesg2biIJ$f25n&1EQGvU~K^<>S-
zw$upY@;PiP_g6JH&HW^=vd~ER(X*4&CwNZZoqwTIPRlH2^8eO7N=F`keL9I*v4-Jz
zgN;HR`-fFl@AMYM=X!D9obWSzTZZP$!r!a`1zSBtqtZ{L7w1gWu4muzd%}+o(Y}d4
zwqJZ@@s;P&uD33iIDC~ZiH7Dq+Z^kDc15~U!>XlI8A3D?n}Vi!Dt@Xk|K<~xAbf2O
z`=eOr8e@@&*Au%YGT$ss6%@S8edG7pv}z?a!6=ug*!1;l!`8(r?F%#EK6Cbcs(R7s
zKOtp{q;{}wd!(%ABT~zkC)Mu4U3@FNBK6&-)ieCBux+1G-kis@#`yOMuS;{+PuTx^
zJ)@A!)G}QqrA2idnM|9TUS>auabj1pns7kv)z=&gKT|pX+D}to&3f|qwn60O&3|8u
zOuVk=cj?gkV{2VpWH)M^jpVZontROR^Cf1VyNknYlox3{7WPY-`?<V7u~*u8`~2*X
zn{NVFc27R~?RVhqH%pfZblFe$X9}*HT(E6%=6{bQ-M!V7ckZX%dlY=)yxxLszUC2A
zYfYaOFXH{zE6f)9d*vCigoUf3mL_kWTkm;GL)&BF-iq+{PTqHww&mQ;&8*Hm8BzOI
zJ^O!e=iXOmleVV&rF5*}X7{LT^>;e>x87?(p-Ny;@zZJRE+ie??tdgC>)yO8owr;}
zeliKpoqy4y@lL@n{aq6$-Sf}6^W(ycD!p6k`t=74Ed&LZdcLu>O#h~-(z#P>*{3_7
z#C;R@6nDt{<a+mhP4mCC9S`EwZg^I`oDt7jI{WVX1#`CgS1wX{_kXVJq6Ll%ebXK*
z{{6Sw#pTG!D5ovO-ASKbZ4&vr<lCn=(JOX$9##I<^J&+VhG3O#k6!uN%T0Q=dc}sB
zy|aIPQ@WlpH>vi~r)UkW4b!~upYqzMwQ^;7sJ6px4Z}vif2`Bfz69Qhxb!f!nPJ)K
zovZHsKE-r)DI*v68dpC5uXd5XJ12V@s?E!jNt?gVV`sDGRTf^hfZrQ;ty=Z9ORsW)
zSHEWe;s45#W>?ZudL`U{P2AKMIQ_(V=~wagEAMh0JW+dXQUuSZl;6kJ-CaM4OEjSS
zbFRp;kH6zmkKR0bee?d(bCV2ChBfUB`scQwYk%4)pG!U&(@kIfpCLS5)GA}4obIbz
z_uH2AhD8M^pD|uN*XU~WPd)p}#M2wv7OQU+Nj=XSF!Nh)l|;Awyp@}dJewY3`yn+=
zYttTmVZR3!N<rx>|4tJ8pYr_4!|1$4yKg<S(v#bhecf)BeQR=7GsEHzSuM-on;-Zd
zx%4cechC2j%K34IUk+aC%N9Q6Rj~HgiR+vmM_O;OSpUzuqF+?^?pxx#H@mFZUYA*z
z))sx?*U}REv-z1{p{MFPzrf7P)yfvi`THzxOkEn8E@%8%cEgHai-O&ft3{b}ehT>2
zENc?mDjs#zqBicI@+p;sk8kHS{_6SFUde5-SGcy*!fnaLw+Dj^Kkkxr_#Nn5mlopO
z#D8V)ruI{1Yxw)(!|t#uZcDYZ*1z`5T>CY@!!FYeoDRO9pKh=EyK#!`f4%wUI}^4`
z8K<1ub}mV}#IHQ$Tl=JFpQr89!%R0`SY}?hdSA&e{+ccqm&Jh^-&icqxiVzzIK1%X
zOIh74vpozo3Hy7OwTN%Fc;fmv;rRY{`G=FP_8Cs-KD)!+#pRoWvAoiyJwICR=b5;?
z6`fJ}!t#jpli4!_)+j1niV@a0`S+Rqw2d>8>r3+=C%>4@c=?O!GnXrV6BZod>#esu
z+{DfG-Q>0WiYpTu{<*ja7sQypKD}S~ne*Itg<5AiIz0Y!+TBWiW9i45zqy{Xzgj@B
zwCclbllsSLt-Lvt=DvzQm#^O0@u;k@vtv%vKhE%XE<T|J-~WZ@!~}QVdq1zTe8s=y
zl}jDsE=xxKkN>FNaAe_o{hF_a+t2(LzmR0!!pP5f^xD_iGyk8^Tv;dn_PD6z|4IK<
zpl5W~%Vw>U|5zXY&)Pup2giZQ{joi48{Bh+WFMdU`sV%Z0%MKiH}~Il*O;6#!>^sY
zp*;PV$ya+5leWjtz90P|7j%us^h!tM5xuKkX_+rx)(93a-~aTjku3N5B_+<2uYBl;
zxva?7q_p^vPO&#{VwvD~tM0?ehN4He_nTFpOudvE?|qlcFMZ?ezq1AUS`RLN7Hque
z$E>-V_>S6XnH6-NU9(1b{p0Mo%wzM8tw}BmE$GfU?ft3cxKhWhvP97(e-En{8GXoE
zJH6QUPKWvh6EA-qw!qtcqM}EqI+<SoD)`V)bLGr3OGa0rujblr*Yy9Ve72LV+3Zvn
zbu_Wpbl(h(mcVNL-DYpOxz;a_=T%hdJ^y>_mnYJ$H(xy$t5Gf5eJSqF@xPHa*0Dbp
zT?y%YXnuX^+UA{04dd4*cRhHzwc*aPz1%l<*q`eveINbD_x|q5p%r~SfxpdK8z<Jr
zcAr{fs=ax${*>&E7RRo=eQVpL)b@IB?Pc{hk#}w{w=CV9F?*@V<f!klqHj-DZ|d9V
z{$S#TSGoMF&Lo-S@>YNUpy|jNJVET|D<9|i0#i4boYgw<aEd8cxcu9@cK^Dg-?rUR
zd{^n~`ftUhf>nVx8pQfpp0TxZ`dt(2J7oUw4&$qj-*a0gy5=z7ZqyJ6;|OwEoGc%1
z;N$+A{iM*7Be(l@Za(_HoyYOb>RS#|)thygFE#WXZAe`$dh2>{G(-0nuScTS=iijf
z6@0ty<?j<t#wSneE3E%u+L0;ByzsZZi%8yi|Ceq@yyWzk8?OmV7k_^+{C?@u`Lz+5
zH@BrN<XpLtN$F8$dYE?D>Iua~J8J{?d^{+BN%~G}P36)<a@Y1v|9mWV>Zagpt4s?w
z=?iClYOQ)ZUEu6ZcbDC)uijqz{<<x-(ZhcBsdt&x(+s6DRj=I?kKO8fru&lio1JfN
zh)>hovuDkg4Tl9&-tAI#v3u_@na4_`%K4(QtE$&!f8C4{doAx&u`_3Plz(1Z6FTeW
zE5YO0Yu6`+NQtgKre&7)G;GGKEEVaO7aj{7{uDk>nKkdu3nAs&TBW3lHdo6-t7@d8
zo>}={)rz^zaZjZ&H8Vf`?bYv3H|sJ<zS_YSwl*eacSOy_GmE*e%0Iran0fx`75u_I
z$t7RnQ)h4clyN^%*xuSJV4CXA<VRbdJxN(D9qFQG*0-7Ox__ruvi0Ws$5q?!Px<tH
zbI;uA`PIe3cR#&Za^pm}{yo#}rXF99-*~0Bzu<4F=f<`CE&KL=>*i-YQu5$K@}c;Y
zeW6eL#NH?^Vw`$XkXN}U?fVw(`tpYo9UX4xH*6PbVYT&m`uxvwiOb8DOl6o*W0mO6
zAhGGi`bAxHew?V+%MHzx=U|qJzZz<C_*2H^Q&lI*%9WC=`tMArOIfk`xw(LB-gf~_
z!N8{Dx*>r}Gfsw_-uG|!PWRJGzv<4Jo5PiNbDv-B0Ye{?x2MB=7k+G6xb2tKNx{I6
zmHPz*FJ61<@;6Ulub9LPiKWNa1aD6*?zvOT)7jB9`_lgiHZ421=_iv<&u?)*qVn8x
zt=+YQ(_E^(i<9E^imh5Up<{>cEsI;Pq;5&g5?OxNCi&j2i+4{s%n0Wz&E5KG`TNt_
zn~g59{@l5<#?_5))uLZJE?&L8)|dPB^@TexcDhALdY)V-w(^|jPFdb9-iHrO-jw}J
z^0EKD%36Ev?H(FB6HPXRMr?IGy)XHm%dtJ)Ucz4^X5EpIjGWc27S)}|Z+iW+fsn|o
z$lED<w)AYe#C=NV!l#_<h4bgnnG_zdAaBX~mq*uLOZ~X;-^0I$FP`y^(qZ=Ymd%}8
z<jB{)d}VUptl0<8_f%irV`b0wpM9lY`9#nX4b&wZkTnsYWg8a8mIfes5ZefLYPSuw
z&!jUpqHF~R=&(G{3J%CQRG^h6#GgZjzMkXmtv6~Mt;V%g|F_%N&M-Usja^VcyzTpn
zyYXs<r-WSQ{H)o3U)yufj~cr(+Lw(|Yc@UZYhSMvk*EE4ueX%$!RNpKnzh?h>*_s_
z()01Y9968nR$95j<$Z6B$<)Argn7$8%Pi2GD8g6pE!efXs%Y*e`Su4f2K^uAi#lHl
zUsa{uI`z-7Lr0|j?`C!Ln%uwpZJtcp{M)k&!aq;+y=1<!IC`1Pl;VcHvFEq(GR!=B
zCU)0N6aC6EHT(ZA&#ZV_bvy3a>ee0I{Nls$hn*~&0_v;U7D!+D{B!S8@j~so$$Shd
z3q#94l_kFCiVsgn{qUuBnfb;upC=!dc9ZwuQ<(Hm@f@>c-<8DO21kCp+8bM_eRW^S
zM$a3!86wixpZe)B|FFoG#8=N=KX89@SlmQ>+eyDka)(3p>f4NNloxodF_y}*h&7yP
zdhM;va*yX<ZiL9J_%0k)9&9(u?WNEQ!JL0ngNuZBRGlf{ZZA&%FPW}?mSc6gu9W-U
z+NVeP4_f%@iv2&;x=LZHK*S~67bU9dd$*r^JEP@SaKW0c0**5eg4JF=jJUGzgqgUm
zbjIh(IXfr*iSxYNaXdNMop*8Dp$pZ4l7;flp4>rOH~H)?a_KO;Y<y+ck39}%f&X-?
zBU~P_ojklzM{kDF!F%zqU-|7~JpAscXOeJGqMz!y?$({HXBgvV3HQ9@)>1CJ(iPcr
z^Q7(E2whtrvv|v-v}OD$Yoi<u^leiY2M4dzS^aU2Z->egv8sJ1_H26a^ZM^+zg+We
zt=ei&@4WgUb*)q~_oC@}d6!;%&oQx-E{qiYzjNCM+2qe&i=LZW*WdmucwYRCu76v#
z_vu?1%q>d_vjX*|t8RCmf7<0lOv~w}^z(aHth|!&_vVx>k3KH?JN4dFF<q^|WpTXP
z6PC@W(lh@4TZY@=^t7cbyVrQ-<~QVfZT7u%O7~z@UF=7tXVIGT;$A;GJLBlo&4s2N
zM`wqy`-WaWu*v<>qXW-&Dn;G>+AXtY^Q!9pJSDv?H}-kFQ@j_%xBQ8;f_|-WPjc;|
z#iF;GFEwxC7u+KmBF5H|J3C_Y@8AA4GIzVIUw{6_+5SRPk9UD&zTY9vg-?yDHXhq*
zDl&i7%8W<$O2@^yIXl!}PHyNroXx_>`e2dNa{JmF@wVTdIfMjEf5n!zn#0CeCzvzp
zdCLnwPxf1%W4JbLSRe5E|IKB7Gw*ypH)r{qS6gx?sl6(_(6!X|VCC!TfTX80+de0M
z_Ajl~cpf}shu5y{B|KN+yBXdv-fj+fEm1c20SjLt`=OZG>rUL?GgpOo9=q2(lj$7~
zozyo@%jjQwvq1LV9TsoT;yD}s1w?O}vY_(uL(AT0oV-kXv)`W8TpgOLocZihYj81l
zo>jL)MD3hiQ*TsvCvu$KKh?8(jl;=`{}zYaOe|Q^_CCM&U$#)BtCX>D)2bgHjD@wa
zdVMzo)6OQzMRiRoxq0Yb?w$p+JK8Ru%_)ehS=G7!{-!yZ9h3WIk|HlDl~tZL-c!<l
zuX0V?v;5Y(yDGn`PTJ?PsxQM+yTDJ+<$UUuFms=Cm**Alux7rOe9YKgzk+*~``r%z
z17(wn=Vk2=?PN(<ev_Sfucgt8pj>6I(EW;bMuw}>?2W7Y_fIH${UlWKebrNe>v?5?
z(qhH7+iLC4u&=)UWX?f_bB7l_6sb^8N~<*u+-tEl$tCT5*0ld6xBlyAef#uk;}My@
z_51WY76sWYy#D|2W6xhleypl}Sy0=1CZuR$e2?tLE9@@kgRkiol&-qc@JVdusj_BC
ztzs3~k}D2h{x}QQ8Bg5%IOc)voeTD+-`qMJXWh-7ZP2V+q{EP-a<TOA<ylAKXBu9Y
zmsiZY``gEHZVBU?Le&PtR~uLy!VZUT_-i_ULFDvfS}#;)s%`jh5M1zwMKfyu?Iz*h
zzDqaFzmS*ss`(tltZ6zmvqSG(Nv)5)^m5L;Sijx_g>P0)_}HJF%I$beWQnA2Tkh`m
z%oE>#FKzv~=j!K2MY?BAxMfa%V}E}4wG^k4$eQ%%IpUq%`(;iT$QrNc%A9u2ME+za
zOTnW{;!e-4ovu%dxnV50(6Cml&9CoD`S0D=J8s2(KjLq~y5T#2+l<!ENt;~GZ~rQ~
z{p{%+`CEU!x4n8%+1htz@$M$&#CKr=;>|q@n-=eL={$MU+Wv0V`@A)^ng7<Qt#0hp
z|MMmNJ(J1YWVQyohvzE<+OyLR8c8oSP|i%sE{=9Ho3?)6(*<kqq@7=ttZ!Rdwq*M2
z!*BkIANr_rSg>C2;$Qb~zkf&yIP88E`frEfge}VwEDpAK6yIa^?f(({x%#`sG9&AT
zU(XNszxqG_dE3|9Z_iIwcY1kV&4Q!JdH$Yt3m9c;q;_WX8gwi?GU-{5Mq0*{D=)5B
z@4jPtIq&c4FXd~0+P5-QU%wc8Ip=S#YQxf<Cxx9KGoO!*)ziJRM`GsPnIiMWb~LpA
zJbPo7#l9u$ryjQ#m^P>Pi-fV}uRrkzkC}d&u)n>Ot3~#8>CKo4;m_(=oeVb`il1~T
zn!5k|w8CnIS^pGTUWYL)dcIn+;{WgVeNTQYKYYYkX|t1U;G;boYBp{Eab_EDK$z9{
z*EhaQTNZR+@21($j&{nWJGV%k6_sQWI4yJJd~kQxKRd>`t|xqE^WQFuWGM2Oe)sia
zU2U;{Rm_3m5pVLZUcX$f{V(>ywkOBkitnsz30D0p{(RB<@7fu9YyIoqp86V}ezs0a
z@{o>+m5?@Tlg3ZCzgPdg3Ay>X%IZ>{RZ7&EjJs0Y_4dq<ZuXU2xg~!=((Q_`eZY#1
zkz#hG2^yR%Qy6>{d@kA-r~NrSwfu7CcAHY|r=}+-tbbg1^z#>=4Npb1vUPPIfBt#J
z{lmWh2mdVi(RotjTz3|W?fQ8!Wiua5x<7s1Dm{bw2RfwpopSAHyp<Z;o16N3tN%&!
z)pbVymR(Q1f6egM%2y`8=9%99Ej4G+=Xli|!^4Z`{tHXj&#Y6LCAQ(rk|Nf1OT@M%
zmNTAP^+<dPciM~pv0aTzriv<jo!ZJgU#m?~&rkJpV4JtEU+h<(sUg-2y!yXh3jAfb
z__fbVHBI@sdsrs-C@i0Lvy#i0d(YY1wog|V_urD4{O`&1zxjzPZ?c@LSTDUK{m1dZ
zuZz<5NEWVF`mx%zz)vYBCROLo^lgvMmY#52xtclkILjT2lUtZPep#iK)k{Ax`lpze
z`2OuY)+y0(_Z=>&pDj4ae|84jR`#^bGuwZfpG(#9e0=_3r?KGIGx0ZDZ?tbdS@FFn
z{IK$cKfk?aO?@%L^v;gsvF+^POnYzLdS&=5^>DDvEi={EoGD*qmYvgdNK|`ybFoyD
z`<~;OEeh){ny>smf7W%2Z5}5MB}<p&rWIDCe!Z!Ao_Y1fi!!q}=5lguyqCRs;q|^P
z|Kg^2UtG>EZnLJjK0(c8*Na>o`xwvQEA4mx=WVS!=M-4H$^KxYhUr4*lHP8%^@eON
z1rKa?i*%ih`*m#3D`V%p=xx*W)O{58Y_VMVd})fmQuCvw`BPTk7x~OpWNjc&FlnFB
z{=NNa?91jQ7p6U^ovfyz{99MABQDBk<L14)Ej^W7Cb!vmU9t~4<5d;^XPWHm=Az5b
z9X!>w74|(aT$<Ny<UD7RpVub4bn97s=MVFol;^3pJG54{v*)n!y^}hcw_c<?m^<Z3
z_@*{B=JzU=T|9dxKhX%f<XI%LbDCev6Gv~Kpi3uNW*QuBpJWoKvSg+FDXGH+OD0XV
zm?QY-zxQvR{4DQPvMn~7v=Xv}L~1J4zSagEZvUF6cyI5O{OV=4mI8lYuepBl%ApH0
zIu)jW7W~KV_<d=*`p#0_O7&niDW?BhnKyTL=_J3;-thA~`&1LhReO)UT5$A&v2*Iq
z@9REfpU=6fe#+=~#U#Csx-$zbJwMN08?#5mu2DGWedt!VV`nc+|2I>7LirqT`^VC@
z!Z&ozaiu?sZ@bIQZCiPMrT^JIl}$?=kMwM~eE8(tPsPU4$_ri`yzb^V`HP#ia>PdF
z%-;(CR?qytq2jnoW>M7F8E^GNe*MYNyY+YK`J}Xr^WLkP1)?u;Y|L|XaelHU=0!FS
zyHXOnlVHRpzWA)~ljQg1>|6G;d;dapL5@As?oD#6^xUz-yDt69y*MWCU&n(UD_cER
zy|qqoPsP88CiRD^vCYB{=3d{<X~*t$i|gr?39_?u9?H*FHed(!a?pE0pne6Y=VNSO
zhB%BDc3e00dqE2N0Y#}PnaL&jMGA%n3U+pcPUbdK(DzBrOE1Y#Ff;(25e(`Bp{!z8
z&<_DGX^-$v%1TWxQP2<1Oex7wFh*L#ZqeHtyql}Vf#-~u0Jo)%&Y%DO);c0CB06`R
z&u7mu%_&+P=3JJP_Nm~Wyo-yA<ipJqZkHc@+_O)8QEvCd2deS9aZ%l868a`ysHu=&
z{XF$zJ*S}@+k#B5j|x+EXf&J(N^hCr5W2L&Dc-ENV9UDyvLAP!_P<iPYu&@cC4EAN
zF8Ut7nAW)F`f|g@S5cp5J#)#McX8o$GcCETx&l1We>W$cFMk`kZfmEHguSrN&c*MO
z=W$;@VUTj({K%1-!#cj9*XK$7F8_MZY1zIxb_Fem{PXS4?tZ;wUxnHX@B9Dw|6k1S
z#1^lhumZ)akrDjlZbJjod$;aIiIrUXF5tZd0f|Mq#R{M_;hdk7UsSAMsG#qhpHrHf
zSFB)cMEWVq$WaSQaTrmHbAtlf!O9mlayA4AusUx2pH$DDt|hT+!3m$Df{V%DZ&tjj
zs6HUyAt7L>kmPWrp@UJ7S&7YsXCw+dh}fKVHs&0={Cuh6_;RM%r)<t)OE;j10Hqsa
zLsO76h-m~m5+B3>MZFVsZ!M!N)qorZN;Tj?5lHeTepCc45yg7<KQWusH!ag~wz7y&
z@1X^T24ctl{hx2*E^pJ#wrtOdkEgD_T4fu+!@9qsBPjLuyr`p!6DMgHc^tFW_;fgb
z|K3agy**x@6D|AlY1#MZKm9stHgiQkcz3w!eOCO6-Ql5cKm7JNDt}?4u%E@l=mYJ$
zGoIPIu-61<TxTit43A}ZerB5``P9BfEs9M~?{nL7_AT$^?Gnmcej99VVP0Ikp7Czz
zdA-BB8a(}HCY`v{@M7KRz2^K=7FKg?o>q7>UM=DJj`VuAWq;lDI1ab3kFQrhyC?G5
zTh_j*_G`SEf}Z@>llFe{Xg0eZV-(w?2D_ffjj1Jnj1Fu$UR58@R=4}?#kgk?4=<<N
zJ!~mwl8@V8XRCB@n@U?c-`gV5{S)IQ4>NXGMXR4LUeYCfwe&Z`URTllS^IX~o*gBg
zH_cmZ(t`B3_t9*R4Giy`RL_uoyq9&4!<qK$^?$P$Cj~A3B$j+=*Z;EFuQqUV7Bn1c
z47lECCV6$YO7}x^-@?CJWXn94&EotXD-`He)D>MNX8d`tMoRH6{_aiFPRE+(vaPHB
z`ta-Y_(wwD8xuml$f`fP=yaQXN@dTKeeZprw`onglfCJSnsNTBc{|#B?_|dv%8yY~
z)!O{5w0!*)tAu4T-7~gGNa`LDxRa9^b^lJsLcLT!i-#@cjGY<%tipHhWGweJj!s&u
zt+e0YrO&)hU;Nf*^-q68+)j%ulH4f9x$B;}>E`9zOItU-ee1Yei!V-PVOM*je*B8t
zZ*DGIWL90Kuhbj5(emP_W&3g%D^#!MOcxP<bt?DOq^-hB!xppanXf#qT<Ku8OyzXl
z={<8VWgTU`ksEclH<)QM*W<hp)~|8`_48ya6E^uw@tJM8dFl6Qo|8_ko2TXyW?Zau
z<l8r$9i9(Gs_)#6Yfk$yZRI^}zB`jjlTS*V_I=-X<-l*=8xpN=cKu;WoEm;W()eVP
zVCF<i##!tN-jYepht}K;2`wm|mGfq+gnIp~Ge(=_BtB;zI@te}b?rgj1GDr~&p-HN
zV7$E{Y{@JJ*_~VN*}P%czJT{nK3DXGdmF!&|2m^S=YyX^<}<OS4>gN96@sp@Wlz+&
zv-axmQ~Phd@Z|i!WSj74o#CYyC%iZ8{^EN#@Ulp3NXaYB>`Y<xn>-2gg{0OrUNfz}
zk?~>XHGwlZ2Axj@lhrpq`(Lox)p&dPq02KHZ+<Tey~FgZWzW$s-S<P!oKfbTA|eo$
zBQ(?5h-Y=Id&ozFt15o44>Vh*D@hw{zFRLk*&ta?Xv>6$zjw_G+T?xa>ZUE4!av0$
zVyzed<V#Taea%iFfVpGi2DZs!6-_5*E%P-LU3^EV$TKt{Z|RO1Gn;=k@0(q37XQ$D
z@)IU5pOwaQEtUpXEP1Mb=S$jQmun^cl^Kzor;XBhH8b}t<NTPFo_0Q)i;KDSIK$+F
zF|q%?yG&`Dce?yb(~Z*yXD)jhR5oL)`Dqv3j+2t1lOwjUaGtQ#E!2N-Z(3$oX!A`G
z1tv9F%~?`yUhWL}=0=;@`m236o=KJz<`KEpk@;Kmc5STf=H=&W4spI`$ujimo3rPx
z*%`IVeq1>UVzWPq>K*Ps61<jCCGLUJky(}#&IYvYUX<^3VN$3)SBmkBN3NN{^W&~*
zC7k&gUe*>Wx7(ol?3=#}ULL)2W_$G2sR`E@nEI!$STsFxL1B+x@x!bT$4tN5%vZ%j
zs*eBWzO#VmUJgs1lz?1x=F~bhFFi|k8M*UrIqH!;U2%OSOIWR{W^4((-p3Kpd2Rz!
z*+*GkUAYBv%s<m5Hu>(8c)~5p_D%b<nZ(1{Z4csB+;6I!C_JTd#!Sf#ZQ(w99DY>$
zNelKqKD77G?EgBC%XVKp%XN0^nP3M)&C<gTE`ODbtxg_LxF7AJT_V3GZ&}burM(Bw
zEW6PBf7!i@b`x|oGcMPj+Arju5U*ZTGGpf1g4v$ha{sqG`xq~K_WU4&d8UM(%a!=<
zE0cXD&snnZ<-#T|3kFTWi))U>WIwyTHYqLF|7Bw1x(P`<7f!mE^p)(@tN)Z={(F9D
z!Io0bu44&F4JE$UYh<2A|1~&stw`;r<AdD0vuakA8gX9IO+9sqZSh%9xqM%sB`vL1
zBUEEa&0d}joC=i=ubb{Edi!)qJ!13qRx_JrV;mf<Vzqjs<l8GhSeEJi=WpV9qc$}&
za!ZLi_uag0OD7*Zll*et8}t3lXU}*|{6ArS^MnakW-)h)U(mU6mH#of;Kj?AFWtL5
zxwpk-`_Zn`|Br9X3KdgZG{x(|VyXGlp7dM(R;wthcA8VNmT|@#sb=>#PmDj?2nV|B
z-<-qHqw@8bliIeKit`!Gzs||>@ww9&l63FdjZ<!^t(BLa&1_q!zUW@bk974eA?sYV
zMgO|vuAgC$kl2%^+_+u+bjJLd&+~HCHXHtD61pN#Gg+whX;+G*Uhs8>&G~U`X=Of3
z-`FeeJAdW-&8rEKT!-SWuRYx$WEj{Mc`5e$jGX~4W#YaYPw3`UIYiw$RP*xXW24iv
zZit>=^-re#MZ1g3`C@h5{t)-gTUT7W5o9}Oj?=WpU8Nbv_b4shw#vlyMcS9t9PQl3
zpKX1Y8`G}sefDpgMC707qa2Q+#`)}L)~r=7IK}9CGtrP~*Y5=08FLtIjb_fwbcidm
zh31k=moL9+5Dffp5t5|REq`sV&WecS$sf)>@x5jz8TG}OGtkXx!PM|y*-DFEZ=HVi
zz$T5$UFN(J#fbtL&q6QVk4cx)b@B`0x$0(l!8^Al`?{crmc)%+XO4bxVBkD|ziHy5
zos*w6KHWE4Pf7DCi*R;UTIc%oZng<QFJ5JQZjjP&D_7e#DR|Z^l{q)>-zd5=-Sg<y
zEt)>9Gp`pNzQB8!S@7%3EF){f-sY>kdvs6xeEsBX>m#(Icv41@ZHw}3!QU0Kof$H_
znLF7M(ssOg_I#DwEw9SP@@NHhx#y3bv(LHuX!?f&r_)pSn^{D2&serq(<v<`IPZ%|
zsN|6;zaH>D5ad@DPTE+{;!|8U{kc~di|dE;>w{e<qy_1urEN|XN_p_mb>_@Q!|vt@
zSHCjrRvr7K)41KS?zFf6dk=<Oh68KnNy{GZiBMbG{@Q5MhQc{*Q?8`NdT*U((cfx#
z{l(;eo1QFAOzacyp19e$WwXZH<<ED%KAX1SWW@OyHYwYzd|j@@vrEosnOF6~W4eAu
z)@Hfgalvypis!j4-0OH9bZle4vfy4Gaiv-Fw02*65@)=gZ~B45OWIhEc(*~D6P<Sx
z&%aSxl=wnFSws4ufm$lp3)AWciYM*U+@|pQ8gMN+eL6caXwjY{k<HKdv*|506Lb9S
z(Y|P#%aigzxrWJt(FO{W0%y*CCa%CA%l+y6JXNK=t0tu~lxDp0_$;(5ZJFqv@B^CX
zo~5v7Z)R$CpY3e0FUmN6{ptC~k3aoXrK<j))o!!+`U?Wp9R^a`@8slHHoof+Ur-e>
zV+nuu`J^Dzvx0Rh@7cF(=1xl2`}TInP6e3@cXs6cT>EZO=br11>z5aa&0t*eVb=45
zzveA$ooRc&u_le}NMoE4w{5`$13sr0Mt9h@Ywf?vVEnsEb<y;X2Yu3BUrA=rWsT}k
ztn}+UIm5CuD@4X8fqUWXf79N0u_YuQu*f)i+2C!$wnH-*?q2k|Vz}91ZR2&8KMAi^
zPs#ZCZu!xD9hx2KzT%&AW=a*mnDz4UO#Ld(`iPCn7ej9L_jTx5>FQJpExIYUXy5ri
zKDL6kwa4C+a!b!v>(sp2$aAOieCigByK7(VadH$rd8>2z#<yj!k7&!>p75!^a^-TF
z6B9ausyuB4&xU<t4Vk=LCslbvhk%&Dv-^2<ZlC>%V}0VISWR9;uCS8`pHTO~<b>cX
zuKA6TR`=ug?A^FOMU=~QR;J;yW4dW|l6o6NR3ikE`cy3^3+z}pFOzw3A=?2zi-&U^
zq>g*A{dnIR6&{wN$I}yUsK0Qh+uplLQ7md((yy6hJhRx4w2h}rDvNclkCNEs^ZSJ&
zxh2e}`&KzWeChuBS(=zX|BRnkLXO_MCD*%8^tABHP_yJmh8ul4a#D09&zui!+mg!I
z<7T?R%YW%?AFi!SmG4JZ_|7~Qy!-oxlV@gc(5^{MTJ*9ngxxmHuk%WybV9@@=}AmC
zelgcP)lNuD|GjZ}`ja^0uB=^!^Eym;lkV@RUnbXKJ)_|AT7%YwX=#&94osZpdp~cg
zyDd+wm$;JDI`L2ZK`pU2msd551TD-w|MHpl=d=Y&9`H@+;jBr0*6?ZPx=rlmFPLXO
zy1x3#93{OCCy!a}6JhU&{%|oxC`jymx=Y<xg{NuRsa<iJ>bFzU-o2ce@qBwL<4(bw
z$$7f@O&kGnYK6h4Rebnu7o-LMRp0tQPN!I<p?5-;a_s&jc^j!CT)vkNZ`qS_J%!yi
zE6V=CM}q_n(^=0y&9(c?slG?p<NE8eRZXl9v*xgbWwhN`XXg7Nw(RS=H{J`@*&eAe
z{pfW1*X^6XYHm+C`{YLHvq0-VRdwaD+W&Umt7_k7x2{{(qF8B*eM085_~m^adGp0x
zQu5sNCp26$YO&kV*pa#K*n^{2_Z~{Qcsi|$MId=?cAoBzh)|pC`Ps>8epx34W!!gu
zjEL{h`TBYNPbZ;ik<!x_KHM}xjb(e2x#!vCpN#h|G+FDkuT#yd+f$^aX$!B*>d?#k
z0_LrbjJSAE<+khT_6s40O)dw&UHvk2{{gGn4`nJZckBE-^T(!q$(yY6m!?a+v}6}d
zbi2vqe2eAmUNzkl?gnXwAFJ!uWCosAaP~hxqbH9)w?O*AOa}#%=~0)9pGKSMMy{PD
zZl$tl%C99cX}l)_{$2msd#PcXX8iUIZ`!NMn@$GJE!-={{36+ldF$qiZ7)@Sap}ES
zlBYJKD0cQq#ztuyi|C`%HQrr%cKOz<dlLM5Urz{}I@a}weXII97nWCz?`BQO@0+jL
zWNsNVn|WSpvYPBQo#vEh%hjzF<RVVo`Z4v!l+-J*YU}e4L6z0lvZCIxb1eupjxKb{
zSm(4QQMzQ&Ctiiw<+J_zuX_fr@#fqnZ>;<O)X}|`x8oXT83Y>DvIN(??re<dl{3n{
z62)a0eI>ZpRAs({adGp{m1mrezB+y7OqyEcw+Mc>?u*P{GfMA%T4(uNvclqY+TDj@
z9C5wBmTg<Uq%qbg=;izR`+n&Y7I7Ke@iAjtW^i`4o7uIs4#zHiS*I-Sb^rPFr(7Q<
zF`b*85Z89~aC*e~j$K#fm$09)iTu4Uo2N0vT%9e)Ktnh^$9raLuXDa$go5L>Z#lO-
z+un<>y8CLnT5kF>{fcE9yOL6F#O#rGUi_p#_G8UXl|sc8ELTNe-8x&eq0hX2zw4B`
zUz(RBW7fVb`*<Vwn3hTHEWVz+@PAF$E~?&bOP($+HF<4QnrG*hbffbtcAmIp$LAIq
zZ5Op9chOq)V^bzR(+;b@KBtnyz^ouxxS6lZ-TRd7sddknc3i*Or{HQZY5Q_p_Twzg
z7mVy;a%4VtvTik)tu`q-L+---uYDXdFTD6N)8FFZT?eE62V&%}7cs^J2G5-NATzCk
z%eVR3Mr($TZo#uz&G)Wj<Fk6edu+wdjjQ{9=IxT4_m=mDSADavaHG-nyl>B*tTZz|
zu*q!mjF&3$Z9=d9ztM@|{*dxit>>`nT`N61Ci{t7m!$+$yh*D*7U1A}C*#<{oJSY>
zll@&@er!xxrmW`iqHeBo%!)Njeofybqn^J|GIRTkdYg=tw9D)AwoC5*dGp!KZz~$y
zoXnUdnuRm<CbwOc-N>A?EB=?D=CMb!ADF(%Ocu-8EZ*3BhRb1|lUP^BvA{Lc6&B48
zU37KI&I`dWy7ST`o+x!qu_~UB&~iqSBgU^zT;O5+PVVlPsY^n_I*SF8wK>htt4@s$
zp8Q93k%^^u8AF1SVne1=_pFJjleh{G2LEK=vF3<hNZ!RWXWtcRnpay~UB12Y<#k{7
z8=r45ZM)uav`(D!?OCgsYx51H7p(4_8>#lL%KjH8Ggo89*If)so<S=A#ecr8llXL#
z;TgwHo8Z+q9iGm(EB{9Sh1R`qZa(4b3|V$fYxaWV4Yo;Q_HWnebChc&?@O8%8Bn-s
z$tH$C)t_N2*?tL>EX%Z+`Ap`EuG!|F^>5z3kUH?{fmmY1!nF@X1AH5&idMPYJ+O1W
z-?qn<Dx1<@AG#WyJ1JoE+)H_ezF#e?mQ4*5Gk8A1C`3Nm>}|zF<MYdQeLFQHETKDD
zy}py9`f`%->)E@uZ#?_LRLZ#3(&y@}oc@eQ70oxF-#EjTEOIAsvstD<)gMkbxh+?d
zx=%6d+h`^W>D2F-fA?Ha;{4t7Le_`dTs;`MjDdIAfya{^wrrevcKWXDr~YEzYTnJ~
zH(G`;Zd&GjsQjDJ<}mq&eqYTcZQK)#^%pjtwX2?f;W>j1qgbZm=a<Xw<xiZvsmLr%
zVT)4!v4`37glEW{aDBeqXad__={ApPAJ_X7H66C+d2#RMyX+_Yt8XTlJTntEWHvTC
z5gfQi`BXHMcj5B#$E<sEH@U63v7`Im(&uUHXVz?;Yk3S3zAQnTzMWKYPoHIWQtzsS
zI2#L-aK>77v8qj9mbEU)&M-N&WFxyK_xZr<WkSnM7qrI+F&)|@cP#js`TFZiH>~XX
zxr~RKKi55Qwgj8`%1RYa-)nlGjCy}E{hjoBU(Pl07jY+^21ma)o>6n;U424zux*i@
zqV=|x$nXcTa?LxK8J_h#_gAp`e0jr8yY&`n&u*MC3w-#0QriqkmC0wcJXXkhM;v5W
zCVJ!Whl|YRE>F_Jx}&x|>J<I)?of1~fWvOH3kxKZ!WQyQ&RifAtbdh3M|MHxJnMOr
zdc&<}eYldcamLKO6a6-FpZw1}*Cyh5k~vq{3x*}PlG~IV{~x{}9B6*+rpH;QwA<G-
zX0cx|RFf#Z+^v<S{^YRfspV@XsK$Hh>c+2}`Sa`7soga{J}g{y&1OQ}@2k&#6zMa0
z@=sUG{q#R}THn4aMj92W&2a$=dcO<R7WH2btm9w4`N-_$2QsC-<7PE4Z|7>#eap=D
z-GBbi7U6rGJ7z`R>oGOflw2i0^XjBYZb8Pc`SY2NukF~iPWqKg_Jx{@2d1X%4bA_t
z%Vs^}yH1VXzl&D*hVmTS{8NNYJnZ(z*I70D_w75?dvw?J>+jE4b{xFI@o8e@zP(PL
zM0?%+w=88$-|D`tX0Cf^mfPj$v!2%&gwFFSGy1gY*Fh_0<#Q8fM|R)z6r8mo`_h%O
zYuAQnW_LyV$i=SR)1sey*0n%a@XyX27b>}z^u;|%-Zn?vW-ZT)XHov0GdN09gWo!B
zS+hCTzUZ5dt*3%OZc@mZ&+lCS@1LD6lvc(b`cj|Yv!?#U^7#kPF&MC`ZSl!fSZ;cD
zrZ3AQ{vX#aYYDMm4$z<2v1iWj#}?1@l`87Y`%CT|J)>LY$KTAdKyb%PIT`WOuN{^g
zk_`@0(SG%&V!iY=M+eaj-3^`$Rk5Dj#^(=h_kAU8q@?uf(x&B6{#({9Iqx4HHa%~{
zG@r%_e{Y{>);l<V@9F%^HQoP)y!>kK8yX7Fto(BhOJt_8dB#LX9!uljB`Q|G^l|87
zHM`ARU$dt@;&9@W{Px(xrG778%G>w;S+SGS4Yy?H^Vf3Dy6dyazV?~0Uxj*u-R6}H
zdyg*t<hnZRu~3!)?@O&PpQuNZs$W_p>pv3c+sSu9EqnHct?w=fFkRO%keo7i(~Gxn
zR>j&~W!sRx;>qv%_QIVy8(lX3%gMNUX3gZ!zSmCvH2Swl{lb}qM^5K!r@yRxm-hUs
zjm6Sg^Xh*;Wc?dHck*?v(;=0OQ)ARcet+_PdU$!M{bb*>Ik!H&ojy-ft~hw-&h(`j
z-L^cr)n&T{O{#9)`tI}nnDZ3*r7lfY9UbRY6K_q3y&Nd|snbRL^MTp3FO|5vJpS?F
zgLCZ?VTqIW|9xC`Ja1&_pZPF6j_=#S<NEtfw%Ij3pLxZ0O8WYv+0j4WRweCLbu<0u
zawXH>pJ}oB(QU^97Bg{Myy9T0*ZEuE8{#*)`)}fdg5rh0wmi>PU`ToPI`s4QkGKET
zK3f&8%Jq5AiVG{>#aHvEm8PuCi%wp)>&ntkXV-B^7;<fBh~M{CG3nBVc~=&s`xrc)
zvGbR*U~K)L8}+|jT&C39PY>R!YMi}YASt%!`>{{|En_`Ch0Z;H?+SyaZknt46uG=#
zHDy;$%E_#MX*I2UXUtXi13o+-Kk@yI-+$=qi+|#L=cDDnL>^m{sx)_6>F+iBHnnG1
zTF&RlT(fW@w1fGwUH;Vm0Q=^gsBaS^RNqd!x#a4aml`><;%CojT=wZK&$aW8$D6;|
ze)uw3WJ??qkC5l%9}X_pUo#8F*8f=lwSpyRThGe<Z4YNwRV4qCwBK!{{o#)Gq=gv<
zPEHLUdE5>M+ieIijW)dg+WpbdJqu>~{ti`g>^df6zV?-~x8(BwwLj0!?z&X!I9s=@
zx7vGBYVMQc@`6`+t~#a%+&t@fuIOP|Mta&YofYx7T@Sok#b&nad%!YY!^z$Ty4nx4
z=c=4L-TAq^Mx*dkgRhBws3=>eknm5(x9<AaBNNz@wIdIils=Z)&@l5#n!4t-$1__}
zer~BTE>c`{I{EKhPW`oM!ck_-dp{^tWLc>gHXPG1>d-CI;`wjD^JRzEh3Qwe7r5=Z
z^H2KYwc^D$*SJobRe!5p;qA|P+`AH(b{{R>%J{pw;-&c4rAIg-IBb+|M9q%p6livf
z?orf}|FLKuFOyQC?Tkq^#?DTHi>DW=EUG-RdAG`;9E*%PHTRd#?!Vqzf1;4lEqr;W
zqz~t*6-P=+8~#VH@&37@Z*QrlXV~#boznTxE{gY|=7XQpey-Hp9F}%c`t#`<DNDs{
zitkRIKKsE*kH(tmmzKF?ha6q@jK!2YOWlH5IjlnWUBk<i2F0`74}NlM2VDFV`<<cd
zfKPI-`aHXs^~?6^ma6}_8uHrjeB_DXnaRAdUO%4B%sErM+U%|S+NI3W*R+$v@-7Lh
zOh~wz``0Uqe>;a%-`+^J6Y-3iGjFcl@zQrz?^2&4zP{Tg+=p+LxLw+JGWXQcjss^3
zCL0I5t@dVqUm0h<(q!|SDev?r1epKbwLr*VGiT06vA~IM-+tNg>;JCosfsIuW(HZz
z;!2Xy-!_4b>*C#SdS|Ojw%+=h&-u}D@trLv&*(HyoVom0ci34u-36SL0muDLpSEgZ
zznZY@))AH++fz5@v8lc~t(3JrdRMxFiD85X%kz0(HNQS~aEVm@*mJl`ztdDZE9`pw
zz8XcPQ@c;<>)K5h+b1M=vHXsLpkVF)hld@$&JtW(q$=HP$(odXGV+D<hm_-AZ=7`h
z`fF{f;+MzDH6e5UKkxGnpD9w$*zVmq^OBHG&zp52^NSfjuf2Ww!OF=GSgP`mq;y+t
zQw+a*KkwMVnUIzP+mr_%Q-U6xZ4xmI{b=z___bJI>E_b(m1?J7?pt$CRmtnwskbZb
zWG%k!a(pIg$QLObEY`eF>W8)atxXL-|7I#JI{nql<$AXI*&GRjo6>rppPqJ^QvGYc
zi_4LyU)jAc%O90j)c)mH`t{uYzmv=7KemzIX59>ySe11qUHj?M)e{z&Zr(C!`OC*&
zy<8sm^M_oUw>dxGO<>aGk_of?C04oGXa5$w6n^}G3ICbHol%ee-#VbS)t<*cI`;6i
z&+NPrp%TX=*KRraTI`czcv=?YEyi|U9;cm#4))jnO)J}<!n`ayRPXbY^XHDIHh4~*
zZP*!I?z6<<c;U%~CnW2uqI42}7}=Tsdde-jZz|ij=|#d3yVmE|xw~BcVjIc1VcOKG
zH^j?QPI`P@do;z>;o~Nsj~c&TPwn{k?T3fU_1CUdl2+nNC4+@m=4`%hDAmcl<C)rw
zKDn54*Myj4{~N4~f8=a>_Tan&DVx)s!hEiMN;}JNVb6+2d%cNws=52Qm_IO81kHRR
zethHW)E}YM=b{2PPe^`Jtkoa4qUQ60>`BU3E^_-ta2t19$9fg<r}OzfRXincy3*9)
z@O1r2`Mz@hwC<#_^xt@L;-y7!XLRY2KL=zDneWG~7I@wKL%_py(dn<V*3Q^pE7kep
z`bzF|T2H^7z2Fww#8UlYwytIIUB}`R3z`?KOAb<0PU*<v+~ws0O$;LS&Q6Q}Jj;LN
zlbo~d+>-fM91WK_onSa5dnRY&yh7cWrbknL%(mDR6Q`S$uI@WUNO0*xCHBMLE|jD{
z*l{hZL03F&p5i5cC*#?I0ZPCA{M2{(^3?m<Uhh4-EY7c4vGn|(xf;)IE!w2LefC~6
zYv(xAoAy!h(;{nQ>UYMSYo2v6cICc#^HL6cGwQRPy;ZNsr}NbES#nBSSLX{d-@bPz
z@xsgpD_<Y8F?h}S$LK&@@TM<sD{Wr4G<~wnDmJU$bD8&~=#J|=3<ql*%TuN^CM5Vi
zSeKeo{jB<g-wDnSZyXxS&F$0kWz-5gnK!Q1Ik~QN=FMl?slQU?ckVgS=uxwQLrmZ2
z^ySMAF57QAxWw=Kv-Dg@<IKOcY0uv8KYw3EXRXI`!4o}?9eIo%1eqyE_laL)?Amod
z`$JJpO~kqMbE3Akfe!>e^Avq(2;o@RlddjqIm!4a1LIlVtm_$<<)#T=zVt}%i_L^)
z=8qeiB8=wLH9ifQFLN$<pQP!<#{xXv*Mn!o#4=AlD8wl}Cs|;jr1ryeU(;0ejpzTc
zw981Vy=AacfS0pK@NnQaX+@zkJY`%qYr{Kh=O2#R$e*ca-tc7G6u%h7<;G`a0}@Jn
zm4w1V{ayO|>zD3vidJI$s2CjU-0QhC@#LeK78fqpaWY)>nw0D`U3SizxmP^{wyldP
z4-hN9@e<r~p6gIFHI271ZPwZuhF6v>E^J(xbV|)Zpy#LQ9WCSK32BGV7R=0MyQ8^D
zRgU3rdqzsHdH!`Dm&YBV9wuAeb$820^j$E%8=G0$Y;M9cb>-{IyC2+-M_S&SSbSo>
zU96n_U-hXmS9W!FRes_#Vd%Q`M(e-1K6C0i(M>BC`I>SI?C2<X(|a?i$mz4gmeOdg
zFvTCuTw5DwGVpG7VTp3fEdF5nuXyi?N}1nsGj49#rTbp{{uA4e-mJ0*m*17L$(-?O
z<JLWWdyYF#b5ZEn!St`de1e4G5wpdb9j^~?o%2>$);WR0^X=8M+M)KfRSJvx?fXub
zKKnZR>8;G(i}#Ap7fdx*^>mOdaue`*5j$fBqrv1~2iF=bzVg&{VmjNV*=kz*UKr@8
z=si9u#I*k8l3WeuAIIaEH<<j8?Ou0UI^fKC!8FZ@f8N~YvYvW>-E?Qm)@X$zE@>aj
zj?KKzYT&{6DlmU{xW?`0_G|v15vcOze%<Z(!#P`I^DV7sA8y#%)u}8x-LGonc4%Us
zq47k6<0n$m0t%y&Sxy-<A3yUzaEnr<|M59y8)dH?du;Wz1UzAzry%*!msMcn^=k{h
z-LZ+hxoGCu6`4VfA(7H6)<4qtQn0|KHDboca~t@4;%sNVZk)RDSz>n@zo&-F!r6Ms
zN{cGr9dNzzr9HUfU(52DPeWd9^*s2J_rVJ1`DeT@OMiOyvFdH-i(fy&m0leal+85u
zySQjRbF^leLh^r>d7G@Kyg$8;@0?Syocr3_=BAsU%BnotTc%qqGwG9qa}Vc@mr~BP
zE8CYIU3YDIQN*NMnxW2%8`ZJ}R(_v%>bOv7pk=+l$4@7m0?p@0tYLQeq<O?~T1s^g
zd(2D6_3d9(zh0V=nr2oh%@cQi=2a%vNk<flzp{UIDcKwM>-etK4PA2-AM}dVv){^Q
z_wBpzFp|aYtiw~rG{0BQtllqFetqGT3#n$kW}Td|?%Lg)kCI<^tNn{RdG?pDjMQG;
zf{vc>V|i0%J2f#s{<-7X1kU!Y(f%rH_Enl`pYSdHT%6c(>rBSS&B3Q)PxRXLFbnRj
zsp_bly=KcU%XtPfmhm(tPI%aVJ6CY--t-?Q9x|*;FqFE{Xqa<MeUEo=^Gm}|k9aq2
z6FVF8xBwhKehPoBYR>$BCUoU$)3(50+hW+hN6$%VbNK$sIxYT@On+wD=0$qlGN1X@
zfBhcw?A@egUp-q^oH0Imcj|E~553(VQ-0iA$0~D!<Lj%tc{1Xze=USAepZ%xc;&&~
zyhvv0d74))^MAFrVc*3SamIRe@KF;dsWXQh)A!_^@IL?0X3fll;g3E~ulpxiE7z~O
z$NOwcn*3R#LeF9k#_0F_KWjUE<$7<#EWMXG>skW4Ag}ZE@(I#%@*OK4vtH9R;q!2A
z;NWobR_mX6(7b!5<^PAGvy&Lp?fc}9PdueAcHqoLZdvO~lMHQtIdVvxd3?{;EYD<5
za$ri_yH)pdybZMc_HAAs@$04f8sF;2X~n<%tEVqCxNm57nQPYd=gX~c@AJ%R*1T5a
zWuK~)IBgnN!hzn$(;v%<-+RVie&$M2jpUcJDbFhJEu3j=VC;N<Mtt`%wMA>T9QPOB
z>FDJ>LsCKPnlD4>3|W?Y`;<*y`=p(SU=E$m8@J7TBcu{z35s({x8V@Y%(?gcf0~Z$
z_p`I4Ohg~3{QG=y-kbDGJJPO1c+ZexkgI$Z@Lfu*q3{yRrms(nZa&HQ>5!$<yr5XC
zO29#C_WBvKDyMTN)_s{=&;Hd@A<+CBf6~hQRp)yXk|tzii7?IOQT-fJHqSI;)<n6#
zCuT3$`!nzXW7E4*j@YzfOUaa1p?Sftb8SltdAT>udD@+ucGvM|$a>x6cd>mlW~=RL
zO%ea%V7}(|vyZZDTAqtf8}MBJ`eaMYk>4re8jjo6e7<U6(a_|;@*&F7CSUprzkasj
z+=xjW2QN=!c_w4^D(?SmMg6a5*>_BwrOn~W$g)T{W=U(8!<reV7cM`kHp6$?wdsvo
zmv?#l{P}!mrqcC2Jb%=SefFH*x;wa5rL=qUnw{ZsY2mB<U4Pm{77AV7I_uEYhz4J2
zt+^hHJ{i7d^!cjxNLMgF%y-!yvyVd4D~p@BQ=c*?G4rJuR4PrlvCCj3=e1QQQ#3t$
zOie%E)6u<j;PAPad&=4|=GEDZ3d;|y?~88rKCiuQdid7vI}J0F_oj6@S%LfE<`cGD
zGd=qzLiF_M)aDt>4Vn*1i)?d=XBN%~xL<kdgi*LfUr3(<%TLxx{4sVK&pcf^1>IX6
z51-^e=fi8&SF2unK4wqkJ{}XEWO;klYzby*qsY!_yL{f<{U}?^uyFCRx@X~=y7xW1
z_b^4OQzBX*Nb%J{L-%CiIYw`@$}YcBb5)#|+p&W8oO{B;)9J>atHcC<M)OvlmR@o2
z%(RYAe`bG_{{OiBw8gA%9N`O6XC6Py$PmkSc$@0XOHS)!wel9G9CDnitpECHSAvPj
zF+=0#_54M<=KV{(nV(@|=9T$&+i#<!LLaM>+XZTvZ#8JdB;>Q3eN*J9`SxSw^V95K
z1p*(fXLI139h_rSJU{Nu*B>7k{WkDd*gS7A^@!ix^Yre=^>_OHgg2*21~2nAIO^A(
zW0t?}c5rjrH9zGWY*kY|y7jU?etkVz`SU{+g{8jj6E=3JhfQ8HFG4~)<jRxvGYt<n
z8uo6zv!#o{vT^5hMipy`!k)W~DbN8cm48e|*UmhcxsFp^Y1hiN=_k43x4&K{`(nGK
z)7BTpf7c|O%`Y-bFezj_d%a2gzkbu6#dBhrjib$(v+qp0b@BM&Npt>H&x(BUeEJpk
zgA?4QGBq=>m9eedS94iy`A2=1EAg+NX0KsXY!H&>6!JOkmu!DN#OR@BsX^?fW*e8F
z{MpLeUf!G;=JV^z%3Y$ypEnhLu?hD~zMR%K)6(HA^YOH8n{VG?uQ&49t#NgJmhllI
z_x?4{1cRF#_NQv^b#o13xj(bJd9C5+4J;*z`)bqT_~e2v@=tdE)|L8RG{Hwhr@qqp
z{XeN=!DSmu47Q5h(+o}j(eRzwujs&;*(+|IS!23+PmFku@7CXf*6N>@wYPrLEwN{K
zDwft)d0Sq5GUrZ)jLrpe!Z!~_9@xzo(0aw#CXX?5)?tpTr+#^U-T&b1^Y)9=dPU1!
z7cUbubX=Xi_DtmCr*CS#rl<P)9XK<)BLCZxbqlq-1%E2!{dBYbE+=3Ft(+6Co_YP<
zwma+V(e+~Isw~B~Eq)?dAu8C{=jh`#xuVO;WSg%j*J{C~Z$%bohP{q$I;xOev2Y!8
zOX;nX!TOET8`uNy?J|itza-lDHjDM<qXwLA(qYRSf6TwFrDgS=`TAqc%e!V)G&!FC
z<a@g6TyeOaWQ6^D<LGN=-x(E${d)P*^4G0{#(@pn%@1bVAGl?5;^C#@pEj?<Lf8L1
z6%!(JeutWGZ_b(9f)248UH5WE6-6AL{WdFqdDmWs&3B(9iDYE*9jdpPx@qT>6*87v
zKA4?sZa;IZ@8{pDS+81;)EI@uAA5Mzd_wZZIgR!*etAVkX=xd&V%4{wS+a6f(%Cn$
zZTB|mFx6exV_&wEz0t+Ud)@r9*(cs7bv(HHDZXCP&;4)WUyeE7V;^T`{g9Zk{cOat
zHR?<CK7TX1m6`2&(D25q`lF{x+h;yJ?c?&b`-b0{ON_?VpK|o2t7Q)S_buJlz5Qsn
zT>qW!-pAgPd&{p>Z~5T8W7gCuBH7nZruq9C-8(wpQ1{4&%x|1urX{{C>n&zzf1PRg
zb?#|nhBD9^tVyfWe9xW{a1p$h<T1P6M)gibaD1CY?!BIcOXuyl)w_7@tgU*^Z#cL4
zuc<uVE#4qhw|K9!;?j!EcSR-%Xe<?48MQW#pZV5h-rj@v6f<TYGE4iG^{~=9$BF$|
zuyXpg4rZlKx;~c`Y#2UvzrD)#aDqfs)1uy<yF#2@>i-R%&c5(s?Uu>@0sNhs9W1Z+
z@)QX_npr$^ri__c;`D#FmX^NE-5eM{>rcV)3&-wN-U<B|!SnUT+1Tl7FC;TKo448b
zYOZTF-uruYMD7d^wKuc&Ecl?fuo}|XIPgE|c8`tI%pYl+8Q;9R$EG^x;k#8o_L*JT
zJLT=VB;BlSM~&`tSBpN_sNrm!>9Y3y<-PgyCrx9@H(0So(eUPuy9e^V<UcwT&0)e;
zee2=uDhETE8F!{Ff4l8_nzqn^33)QxnXi2L7OoVxce?GK)lX!fU((7^eRJ#OF9YM*
z@3$oi9dB2d^>ulx7|(a3S9jw-K8WM{a658WXZ8I<3G80`3bUfQEc~H`kx5<8_qK+|
z_mb+O-&)SD7ynx$v4`)}#BSk3`Tj?bZs?BVyK|A1XKT%YfXvFOHBZ(ZiVJI)ANAqk
zSNZ=P-fvc|+j?N#jws%8pTqwie&}UNzTa^msbX>Qv%B|0E4I(9)t`1R`p4}n-$2Vq
z%S7xIj@`FAX(yAG!~ZXY=YLtsKb5;X7thLAnWgMjTV7Z(UHm;GwAo;{=ij&6?{7VL
zKZ$AA?qmDJ|9FNxoiF*$Rl)sQe&vUJqg?rYb+vyN7g{`Q5q`(;pZ!VoCp*xZY4j}?
zpjFEGNm*QmhQ`L`AO&EKftiAV0*FQYs%qjF<C|mbvmkU^fFaU83v&en1<<l;lzkRB
z7vq~F?X;+v^ES3TCdB=E-8(&<+?TRTx;c{GFSvNawCrfyJ&EX?PSa@-alIRl-RQOb
zcF%RAc3?n`31cSHrJJ$S?pfZK_l`_x-2KMuQ{8@>|8MRY8>c@zH@EuP8O!u%MnC2=
zBrlzG<+7Xm<kKfZAFdVy0nsNZYAjDZo<1xuD7c`Zxi#}taHu92=n1K)sb1WC;#h_P
zgWGWp-OYlpvN+yc`Sku(%{AlGx|=G*CrpeEI;4L}FDNv)^ffPoBWKjCS27%z=jH}I
zy3;VXFeb0a!!eQb`nNpQe%7k0s->2*?3dRaEHkpOl)TCG`24)-akU4tq&k*n|9Hft
ztaqe};lfK(hKAMIW~<`O7nqzaNlggLbJUD{(RO4;gf)Nht7$QDlO(ezOkSS1B;Sx%
zf47H+@cC<N9L^qcQh4>`lXFqn60`UjhoXaGR4XT_Gc53B=-!qmesOK=>%NqWYqxLb
z=gT{BS4&XK`(MOq=Ddr)olnpCwT?q|5#QY7atcbP__i`SOqo4(>Zj|KN>T?WEw`Td
zKSP{%X6D8z6GDDm=sy*xJN>Jo(7vCkoc*z`+myxsRXv#1a?ybA^fgUMU$wj&6+2dP
z3Qm*_aB*=t-r3<XVg77C7jK3ef8?A^ZcOgzIHG%FQ`zEsTbD)3hzVqtR?V2_>2h&b
z&W+4jt4=L23Jd#VX0=BoI=q&B{Q}lD4Lz5_kPn^iMw|R{Rs~M_`m;F0FH`PzbwcMl
zJB9}Hm1(Xw_ZGf6>@C0hblB21#<z?N>#dt+>^Z@dSiitiDRcKPh6Dec@(SZZ3LG45
z_i%a`ue6<6zTZ9Z<fh5TvXdn4@7|i;+?8Csd>LEcI)($fYp0#~FmvbRB4y#OGxoJ7
z`g>UyWKFf(`_f_c?&ho_sj}Elv(tDy)HGBN9=MxR>QVD!npfBQ*})Q@7SI0F&=K_a
zRGdVuIzNNN^7T60U0vRxTW0m0`1StbtMX7$=e%pz!`fcuE;`GudouU%Z{I!dPp>*_
zf91}R<!KY|xwzCVbX;$<f4+^H#e;`?m6cUF=k$5M7r1CP_gQlI+gI`VSKn-$k+l9!
z^=ucFI=?N&zq`7Zmh>5S6e+)ObBi;)xO;=iq7CN{`MVtT&sja~s?5JXE0f=@nR!vZ
z!^8I=Ta@r#+i7LRiR_%pmnSk?t&oajejzns&NLU3vrf+@Kblqc{^_Mnr!OsDu3uUD
z-aJ9mx8b<UcSGjgbJPmm932-b{QA50;MS8u%Wh84i!xndV|}wojv?mc`Hs(9<pYmt
zb5+KRIEZ+M&l21_-#J8L*4L86NAk6O7d|!KP44VS`p)<2@cK))N{Sv|I}~L*=SA`S
zsO)u|qLD{dideO-vz#8glCOJr?ff|Lz#p#@79CtR&Fxjf*Q%oaKB1>ACY}#wFDct{
zj_pcGNy%-$O!@dlD-U-3ea@w_(<1iM<;|g7m%?*c`urzr<(VJZH+5g_vcM(#KJ-Nu
zIhF0o3Uu+hxq8LxoC&Z0rS+u-$9?SeWcai>e2&Jet983qf8WgCYPPpa)B4tq+WXZt
z^O;{hT2f+L-fNvSJ=50ZT;qJXx%!&xA3RB6n6=4eTa?|6yGmc?zI|xd6!?7kjQcZn
zR!y^b9B?syZ$VyDSC|@O<1g-YGnX(pT$lORbpNkPWkjc?=<*qJUYT5dHf1`uZ9H$I
zp7Obn|3`}duUHtm<m8bfo$F(D#Vxdwd1RKw{*h4W5PY>IDEFwo$<`|-T8}JWEo<4Y
z^Xj_EeFc;Izbf@(c?I1~4GJy94{W_#<86L<&X1ijF`pQ^-q%lW`L6o#j6o^iM2nM7
z_0RWdY$}nnvcI!(k)~(bfmyt!QD-H->|jcG`R!MpfBKUn=N1Nv)ETW;IIJjR`A~3C
zh5UY*1KTvVaxg4^$sqk-&GYB;fGJ`ht2pcKMQwSuKjZcJWv_2IEuA@a+qS9Qe_yP=
zzLmjY|KUA5CN0_9e5P~<1DmkxwyA+#>9#NSM_13j{h6U5{Y47z-Sx}X?RA?nf7&E3
z5sCS8740hKc4!=)VQ%$>@on#ggl~f4VX7)3J<MT3KV|Y`%{X`_pE$iIi`7qES(xi`
z{NHzh$9-bib{9)tx7Aw8w|Ma@ySj7N#BZ**ad2VX`~7!{t8l8ykNXRwUtOyW->;n2
z+UfFqbwS{xEzxXSSIQq{HdCJcJJGFV{=ChhA5X6ANDch1=lZkq=lwg@?C!kk+JP^d
zm)Y_!W4aKVpZ_M`L}!iaoB2=v7Zv@FG0?tqC`f$vnj1U}(>^BahZ$Ymw7LApuGimY
z-^~2U@O}BRL+-gAizj;@H<=l_N-yfyZTXiBJ96J9-JizLP%C1yc+pm~N52XfR9Dw9
zAB|d8IF(y=-m;3L>pf(?EmPckSnRKuoT66mUYpli7q@(MS+4x)#gs)pJClu9T*+T+
zI_Fd83uWdN!hvo}wy#zByWqxFo7LC;-nnr5_c4hnv1KZY_LsfA@yJmnJ1m{8<<8dW
zQ@Xjm7s@g)oXgqe<nqKeEz-U;dS<rd_q}&TuQI+mIRDEz$GOHo%>Pdi|5CW%^u6yc
zA^WSs#J4<OI)zQ>uA<T_*PoKEoLjupRV#m|m#?ju`S0~zpHIi1J(#Vvn)jK)#mn8#
znTngQU40=i@Avt{gNG#<3V!9ww6?F^qU#;0wM_YUo|NX5oXQ0^^EOC-`L{%IlK0+)
zr}f+gr>@oc-?8wi#LSwvU+#S43ON|5_UFYxiFI~6dSBdGepc|J|GOV|`cEh-RfW&&
z-tA++&amaBe|Hwom#7-sJg@4nv*zp<-urj$>?fW)-oI;^zD^b^RQq(wn)S)zU*Atp
z7QV&)-KmlJ`hsY;jqdsPH-x_r<+cwqlHYsrqM7k(pDhtJPwG?6E&o&o6s8HiR;)Vo
z&|c`XVtq&bm$RFXvrYL>>{fUBP3_HN*56ALQ|)f6XTCgnyoBE}b;Hv?A71SIw11xK
z=HN|Y@!QJGp4wHN-?qmoKz4K5^UmbzZ)`5|((X^VrrL@K_*))TY`1ORcXj>5*(dyc
zTqp0(HFpyK-r?aeeOesf?-^R(=B+%u%C7s5<E1v?$s6V~IHb=kH-3COvwz8bo4E6J
z-1k|p<*zr|q^G?#nRkcsxh;$h`y^)@X!<0r2>f>>T6k7*^1Qr=A8*UK#Y*Ge6@Pp*
zDR22<`SO30qcX2VS@O#q4!G~M=x4iT-fflHn|j>t$DHfs`&znkyW78yE9S>&?Oq-K
zO^uCVOaHR8H-Yzsw7r+Fl3sko<uL=pTGxYzd=jTAKG3?gsB7DPp{*~U>J>XKj(PEC
zO3mVKlY_do(c)~ypQ^4#_GH@r6b=02x~TP1%Dm)m)+YJa>$hg6RJh&wr#EYo_T@S2
zCfV1RGI*cps{O3W5nDO;l4^bE?e0q+U;K(+J-yH9ez7u2U4L_1L-pi!+e2GdUAgt`
z3O_^C#a^lRn?-K13JLCgbF?|vck^85SFXWgp~h#g?LYmcx-9x^W&H`^ms_{qbY1v7
ze{JMF28O90r|*4fGPQ5Y2`;tYB7&W9cYoIX>)5?We}UKOrYeV`Eel@E*uoIGm0gWH
zNN(2E&^HD@t0k@{Nrx%#61_e#_G?va_2h>+zn0xP`>H=?_O`yYFC&eA{Y?3!m^gpK
z+EotUr@EgE_SiXPR>9LF?XmB4W@_*)t2MrBK69z87RT91xh(f=MG|(*E<39maoFs)
zo&RZZIn$HET{ohR^=4e&ma}N5LAPS}%fj1Yz84?AI(%<sA=@I8HJ4rU#lqw47K?U$
zl)ffBo9nz^iur;o+tOP@x&&gk%jNl*<t-2Lekna|tEqp@mW8%~PfqPUC?XvHU*-E#
zgGc-BFWz&C?Zx$c))nH~ogQ2I;_KZQW{D~v&odVkT)OZ6pH7W`Gvr>sS{ATJoHcD<
z*`L{e0vH&i|G#u;->o@)<vk`PE4^^RG|j+MvcEoGHLw%)xmDD-ZnOSxWkKC-EBABd
z?u=3qpQWas*0D@$uKs+dywjl%H1A$-bmp`DX?o=Mvr?t1)BDz(+%;WacPZ!9CCUH2
zwQrYOiFt&W9kaZwulgf@((206=9yE?m|rz5x1IXmEk;s%{)+8e8ooCBC@H;SzaiDT
zqQ1tn@#p93pXy^Ij$cmJ-0NH1U!WbRBDm9&!+2A?UcJ}BBGdJJJ3hp||GD!(!Q3CR
z6ZdY~G41es?Vq1MU;8O05cp@}%xPcKr#0RD^wwVgZ{D%Tl?_qb4evf@eLiQy0w1lH
zVIL)?cidjAzjxo)bsH*Xi!m(u+bC_~=vf@}zg+WYp>{|EyG!*8=i;XYYa3kmEvsRj
zcF};hd8_l2YvK3O^>6QZ{Nv%<nuPpAQ^lu;U0AMcdoPxkqd!8^Q2kbrwn47i`4`6z
z=fpc^GuUp5{+xGVpH=CTUkMuu1eqIN`dtqFA;VA+T2sC{*mmg?cI7GQ5v2-BSvO*~
zzwx*^KeIlygyn&&bG`rfex+Sr%nuA6AA0}0v&LEZyv#?z`}<#p+6XWlTmJWm>Y}!6
zHQ8{^&KhOD;$oN0r!&t_3&_>;V?E$GL9jG{Tc=*3D`!Q5<<Hqqt}ACw(PLP0F-oFh
zkNP4W`8X3nLEDnoXBZ45ZIV209^UJD_S?mOY_s?8bUED7CbQ(<K}I2M+je8eg74R+
z2mG^*kj|@cNeQUm7ByiT7sG<t5ziLSs@$zy{NjbTlKQ)~-R&oGg|C`?Uvbg=!tXE6
z&97b9?Ukfnf9kV(Ysbd$DnB^xt54pwg0|8GyWIk+4VtR#tg9BDIQ*FZpWu7Ty4x?K
z%bA1k3+H;PeKKV-5$f0#`J-a(-+u>w+^e^lYE<{eqq<D5Jn*o#tNN~Ay=puwPtU8?
z+FX0&r?~s}sA+2%_V3!Dd|^hY-Ma%ytZ^J`^I|(XK7Ec~JIAP`BYN_>TT9y)nxEof
zh~X0zl01K-I6YNG&{MZ=p=CjkzU!VS<rmfrT2pGixGO3B(*Ah(=Q^$rtGUnEeVQ9o
z&+p6s=f_;7tzULNeri>9?nu`T$=F{@H(gS#yduM3-W=8$r5WJOyT$V@LxUr?(xNAS
zKkr+yHX_;UL`>e@{PNT33!6oS&R07<3%|VKnJUMjzU?em%G&lv-rZZnXZta`cM(^j
z_nar+#d0TSAH86(#WT`BKP7WgPpYsruY-B%vLydYQ4yCPor&1;$MWr=J6k!|)%LXp
z?YjQ($)OMSCj+$F*Q^M%+_*63-zC{A9C_Rcs)48ULp{T8=gY;__D_0r>5u%jQwh(d
zSBo}JPQ5(a-&W98mf^6W?7kH{y)S&)85H)bddfY&jadiRc;<!(tEbBg=1vL9?(tii
zFKPPx!||sMujjR&m%F=?q4-_-bm6v5Cr?aa4V?b)&eNHJ@49A+h_Pw^Qh9R3M{D7n
z=To1(U7Nl%ZbMw5Y>T(u`+SA$e-EdBz9DIOvB~4Y%15V^K3!ThVY>F-O);-Eg4Eko
z`qOu-Iz+xGXgW0CeVTjDqXN;&{l+HWouYKtr|q?<oxS&$-T%8SF0Z?^a~B0JmKRXH
zdwXxj!&zUe%}%BBWNgw;WmP>9>LU5WWsB<CnC+bF7NxD!nPoV^&AjJr%|w}LY|qZz
z-s?DZ){mS;?wR|S#NOXm@cbNaws_3$`$1s~XD+;(eW7A;znxI7`7RgZr}-P#l+~WK
zTYoC+*E!RawM%01mdYKu>*!MQ!s+lmz2`DJzwm0$vU?u9RPkV%OMLW}I}>*BF)Y|R
zZCbc~!WFjH=UKhIFWT8nc{=@Pm3uw&g0q#XXMQsL=+Cc<IbU^bQ*wgWIfer@5_}A|
ztp6^WXA!)o+(7W@yz=Y=cb=Dq?ECY!==L(}@Wqn9rXOcsyZEO1(&cO3cbsFsb9}v4
z>%pEKhQD7F$M*eYJ6M;^b}~`=vTiXWpVt;<gV$4k$9m>SKG#-SbbIIe?<ZIG>sN-?
z&(o@~Oe;I~LrY}q9Ai<(Y-PWFHo+4UHaVO0GBSLfKK0@n^KVf?v6|USuD(6~Mz-*4
zLh&-2Z>=j&PFH)y5HY3jbyY^x`#zHZr|rI8|Nm(Pa$H>ag<;w<UIv3It>+5=ZeHKE
zHDJ}zGuIz7Wr{J+pZ34F`(|w3?u%NNW`>F_P8Qr-;c@@d_R8(*CqL{q=h`yuo~N~e
zBYW6to2ZpZb(KC#UuH{LzG}^Xa%yIL<^8ogcP|NxNI!M6KTG=WjL1i7so}cQ|4-ex
zkc)k-PN#j~<B+1Ie#!ox`vOz{%f?lNu8Doo*zr}(?&;yWmuKgEKlEn*oJJikv7@<D
z1i4QMop}{qB+hx~O#MDCh8fR_z03Ubf^_d@D>AG(RjskN#iaZp$68($k*N(`H%%wJ
zDD|(DUf{E0w`t%^-5<4GzpuYt6BTq=Iblx6Rj*}SI_Hn=|HiuiC)fQO!GE*Vte03a
zRakAZs=a<NCTa~Y!~W1CvvkyyqAvZos2}?9!)ISX+qSBw@63J|niXjY9gk!e^h{*9
zxb)46!;dSUZ3^PoWiH5!D*d!0=cCPeZ!3rP11D3LOxtW8tTl0t-9>%IcMT@z<1{C+
zXYKyUB*^N!>GJhl^9qC68|)dFH(fJ#(0a3YtK8$VyWZ0!Tkaa2Wj(QS;obfvdoS#A
zwx82AH+osaE}@k|f?ucZXFS!eee{yaveR7YUuPWt+;?fx$EJwHGP{de)1F3G+@D~7
z!R2wnyWiQT_s<knF)lsH`X?&*+MI<<(h0`0I`OvK)Gi$};#&G@_uGGRK3>apPA%){
z_rLOBVk+B#Gm?MbbuZg!ax`Q9q+rqYN4~NeowQ;)e`-TF*BSL)_k^;ho_l$8wq!xa
z3xSO$lWP(Sp2aEtQr)wPY2C|@zYM)MH&%Yiducg+{rPK4tQ2;MO}y}Ih4;Cx;!7fP
zuYTSwm0roMy|=sVchaZ5Zw!_O$31rWu(@feZC^-##HKydMC1w^eOZ=1Ej#GH%HW;h
zf}P)voX*_&$e@f{=W~nIH(7hFs4!Lir)q2NY`?6vxF+q@gc67UMx~4i7GJn6{z>=c
zUeB5^tF(0HtM5H$53RmA*Tw$h=k`F>@5{^*Hz@uve7o}dvop=%*CwtC@_n(3t)lWb
zx4P?Bc80W$=?N0Ercb%u_|NdMV1eEp#mVc+vTav?I=erJJwPngKE-4EgZHmBFIc`x
z-<cPG`*eA1lwvDm#H6`~mxU677U_mne)<1)hSuHR%fBoUuDqsnb<Rr1!cXU4@jcsO
zKi|a7ukXxi(K9T!SRVXMC}wyteQw5P@7W%%XZLPzvQtZK@L!%~J@??mJl<4sPX*qo
zldR6poXlc>+Wxpz%bBL~jcOZ?d&@F>``NFo^or?-ZNA$V#nx=I;!TOQG5a*W*{nD9
zO#PKARR6>E+=h0=!qPpNb9NT;8cA6%|N7*f*L%+156zp^tXGOkRoqv9#r(K3SZUsR
z#YJ-$8HXF+d;e}VD}#@h%;}{qLWO(Q71)*r=Pmd7WM7ux_Ex<sq<z`{XHn`^&)fo}
zcSeOb#;v@+`tL@W7aKpm%w-fjCv;K0WD&c|mf0O<Sq`f|uM)qR-phFPs>`olnNR2M
z_^)u^al`DbN%6h2=ba-~OB_3&cg?J2dF>?Q9b1LgzGrXwZ|Nc{<FJ0FoZAIyB{>U*
zkQv{O``L>4Gcx>J*dcE(e6hQ9Ny+ZYxeo+)>lW-~?%29G`s=Z@o1AQm{5A>SXqf5a
zGR32Dvy6m8?UYtu*VC3J%(kAa4Kp9xRXIM2^WpC5|GV&`*;(d&hhEuDj!HOU_i0h>
z!mU2L<}#&OG0f%Lb7uJ$C8b%8C5<nVx|6r?G8|xS(k#i`th}^S{;};@#siD~GcPLV
zoub5hkYDl5GyknR--^F?mTr3a@6&9Z)s5Fz{lBnPyKZU7DRFtFRd>p+B}Qz&eX%L;
z%))|2&68&KX)il;OnCB{mAN^aKI&hM`Ff@6Z*}VB>(yGvBe^1S=k<5in=vw!HilaZ
ztFs+gd!51f701*mnn%_?o5*Ci|I;Cp)}!Ad>K+7s3pShe?8LX}nXS|2?pk=HIq=S;
z6)J0Hq%m#_3Hoc`di7Y$+aBKa<$1<c3e#J2LZWnKOVhX*9Goq0-=6t&UwHMUEZ+pp
zNQV1+Vtz)pF_=xO*S+X)XPtRK*7wlLI1lf{T*ZIZ;>-;Fb}1(x&RD~{$NOV;cz_ba
zo!=i!4elI&qZ9glF5~f)K^{^XwY#UAM5)YMlYYt0#9OY;{;E}l{u;(L%USKWXxoRm
zGxn^$v5q6-Z1)$r!eq{Z{LJ2(W1_pwXWv`OCOt3Gu{`wD;l|R`9o8{&W&SCjFU_e?
zcj4E4ajD{%^RXQhh209{F2(8fuB`jMwK49Z>2>Z`Pahjj3e(P>x0*Lgcyns>c?O1Q
zl0~_DcWnq0yJ~wTdzILRFA@#RZ+wcjHeQ^+M>A!=&Rn;*k$2{3JzMP<q_yPm^<IOw
z5>Kwa`x{*msuxz~X>?6@wXn)Y+q;VxWEV0m{OHqdy3+Og^)Ks}`df*;owo0fPq=h>
zYsZhM^Rr*hP)X-F;d6hM`oX<ZR}`J;?LN@|JX>Y+aUH9N5!2;QwB7Si&6Zp4z^XM_
zevZz~JeIxp?A5M_-23`r*SBikTN0heZ|%9jaK_!0FUT_TzVn9jx3qKl4D-&UnmrIu
zZ$2@z!1V9>;KxtW%wEKma(&*rM1H5>+=p`OI_3yn`Q6KKn0x&{JN6mvJ)bp9-tV7v
zL1FTW))lw9ZS|}+`TV{iQs-u|SJCG5!AB?Do+T^ir%gDNCHZ@;nqB^j;;(XHU#%Xv
z{1kZdWk&LChh;)M0@v*eV<v_RY4V;~eA2Yj{?rdHR_mVLb(=b;i!Zj}7Asy^cleat
zwvDD<?Ve%2qNQF%&)GiD{_W^>ExLBcA{XYc{sK+jvy09bNVcDL(=7F0VUzK9C0k~O
zmbdVF9fNega33`@#?qgEpQis^bf)KK^?Ls`4?dn1x#(Q#QD5EiQ*T+|H<?pT-5sx{
zFb8twW?WmiX|Z>Oaj>{{sqDpxcOL#YJ=0m-Wp$NVGDDy5zr(#Mr7@3NR?J#{&&oXL
zyx+$)fAYT;SFbzvkDvFOCnLiSliPWx7M@oBdxU>#&fW44f-TErXZ-oQh3j!|6pLW!
z4<nyR*?P-OIz>M4Ze-UF(kfc1D)=-m_=~{Wo1Tw8b00e^@tO5Zec0O7w#mm54{n}P
zbo*miWZD5om($XUQW=MxU#`A)C4_T!@Qh<$73Y75HU83XzK&fv)!q7kyGF+<d7HI4
z1uL8uy_jY7#Y*B6tAEMwpa99eFaI^0AM({Ry6PQT_1?!Y{@2MOA+06uEUx=+-1t!_
zd&+VCgTK>L+y48D?q6_VGw=PUhlFGgtKM4t^r`NVe}9(L%SBzDwtrE|h2xxhm!320
z*sop2Fl~ZL+-~cOQ}+9Q4Pq-h5^j4?ioqo9r;EJeQJv#Df<Enx49zEBbJuG>;%>gY
zv90QY(yL<~q5teP4{i+8pRwV=IfgIam!Df_{{Fwrwo7Z<Ik)u&UCr&h{W3l3OFvgk
zIA6${V^uXDIo+Dtg;L}H>zb~68^QJJ|K+5eJdSw`3w9Z0ow|RO$#jvWX~+NK*x9!Z
zvLEpN(#>?><+7!ZBEP3AOznR(_m{u)&QtmgSN-oCi1(f3&;MR2Niyb_{;I}sr<+ZS
z7!u<{8Lm0AnH)Np{oj7!zV;LKmqZsuDNXt>_a}Ip#7X9<a%=CHI2rjL{dbr5r}+Oz
z@qfDOKmM2b#+|pxZqcHT2g=tZe+!fR#J@Sn&^Aw4uv7YJkJr>+U!+9mnJsq+jyQDr
z;(S}ne#?IgB97nLyEyXO%_Rpe_-tNimie=7=gVheuU7TRu7CS%RaSw8>&^9%^_xGP
zcFew(bG)W!O7dbK=fott%V!(oWp;m_vBrO@v6jK3b7!p1t@*uh%Jk)DwNL8UmFaAH
zy2WqKnkU=O2m2g*wY~6);9XwRD*_pkDo3A-b2p2XY3QBP)eU`{uu(<B%250jYga8p
zxZ<1_6K>{ZKZ)EH-!hH6#!rpGV40cju3OT#IPznEXoS7qdPMhYppW$Q7b=0z&iQyA
zTNYpcwU>|crE_P1QQTIpuI#5#%y$as#=bqnb@@!uyVhm<tMC4poB5^v?!5T=O)>vJ
zP5;gHG4SDYF~P<2xrM)8`r>m^Iq}UKt3OMg&6be(nX5ka#)j~Rk?XxqZTg&39qqDb
zyP@$9{~I13qB5nwN<4mAt~yhbRchb7#4o(8ziQv`{(5EitEVPKy|uMVbeHC}3mFeD
z)}B5&C+%j`Uw%DHMSsuWxihw%ou4}Eb?Pze=vn5Q^OvuF_Bn6PuCRp~{i~Ok&c66$
zg@pOZzOFlhx8tv$z4bY5%^Sr}cWMvclC!?T(sbf}kah>xdT!mSnMPR`wiRUBKW|vH
zN9$mz&2_dDr^<a<7i4LRUbuXb|AV#Fwx6FjI;;*CdzoYTs^mx6h8qsguU%j2`Le94
zasFiG#ZGpGZss4kjI>TMEU-6GU%n+`g2wO7Z!dA=?z?=h^z_74bJxuIYPvkKU$E_Q
zN~Pdytq?9h%^B<GiN!}q|610u+2KUC{C}rO&pt6Ku<bYyvEsP-<};_x)l8q=^l;&v
zjtT!G%1)dQKObMoa3EN|>|)|8{#%L<&b{;b{K$miL6OMB)qTmPN#~!0C~Ga2&t0y6
zqDElD{tf@;Fhp(Xd1(D|g|wALq<Evcifvn<<0i=fnXCwbD^}j$YlB=GC!Xu)@jEY{
zICJ)#fDFwq+b$WEKbf6rYo?L)R)vGpS9B?-#O5;N+ex1;|H^)HV<+F-vf3-tO}}d`
zl)rt?e*5Zq3o~X-KAZ7Ga7$F_ov&@`T>@fUi|vnnSaE?va;a66>I0)z&!r4kZg)h@
zv?z3ye8r|K_a|)f#9tGVN~b3EWvlO2d$d4%9%rdf|D3YivpuC(d34^g9L$&hal&w-
z8H?A8;}_ePtFee*nYQYdp1RrV;>kX|N781#YTqZE8~EhG&UyX}F&drKpETD+^=`YH
z!=*IO%OtwnZkz9{?S6Ih=BVij9Cr_|Xa7HO!`-S4GhR5YeQDgWqM*p+uKlMk*Y+Jf
zJXfTMqp&mXnU`$gvWGg7>^+xXUdf(aw|lw{r%sLU$AkUfOg^0W*5-Ke<BjJB&-L%@
zY+AAAmeGnnsV52FeBa!7R>Qsb{IlAL_dcA@W<2vJlI`N7B{L>`*pbs2wLR7H!av>z
z<pGz^oLcvL#p)~>(Zf%ZzcM^{6v4V`()LuYY4LmQeyoX4*n7%pe>Fpsu1lcf_W7D2
z^2y0dvlHJx%2*o7qjk0`{^ijb<<TjN7BxOPq!Y-qetKPDr-7;K6xDMlDi&@zpRg%o
z`XQcQd^z_wSy=tcD{zb9TO7nvuyV?LW@FpBd+wTF50$)pbd<k&%Jv@*KlS?L%FOz9
zZtIEOt}g#R(WwO{r9FkpAKyo=(Q>U%Ig^vCHtW@_=TZemLP9aUEN(k1vkv9tuKrLl
z(ZEjA*m`#QircArh90c(!kNCtQv<ab9JU5?WQYFocA8nI7kl;#(_%GWA?LG6zFQV?
zTqrU$HrTe|L3Xw{*U?o{QdaAv92UM<|55d;@o)LV{}~0fSA7F5^C&JUN=?iKu|Uf_
z3=KfbDnKj?6I1vy5F^r8fdsib;XIMiSV7+zej+1fi$E-(i$I`f>w(-!{MmYFYeMGU
z-u796tKo9w@4xXoi!au1GLoCHxZ&aMTf2Q11q!fCs@r$}edwOf^UoI-$@V<S*xH)2
z?#IWS?5`~uO`FmetO!ZejC}iZw_9<2eUS4skx6#nH|K1WVc7I!(=P+5qpJ_Uc~mX(
zivQoPmob_<l@IT{aFzYcRh^WC%Cm{by`<9r#ESg<Asf6n^Q_!$(>pba{vQvmX1-FU
z`gcn8sozZMkDrBqdZOnx`{B;kU8@<sHeD-Dk^1<t$bW*ePwubso2~5kV#@#jdv0s}
zhhyT}>It6j{+jWhyYlmYja_xhnM1}|>rU<z-uB0Hk<rqtw-dN0zmu7}eR|vS9Xm~b
ze0%8q@w)mv5wAP0QzfTzFKYcQ;J#E^!ZWiw^U|(0EDH^f>jxFFc0MgNcw|03C&O$?
z(2H|-Qa4OIw%z)-S2$;F=&h3Dx8s+X3!V3`Xk6|a^>@8t<5c5Gk0br3oePS1y~?$|
z|HGP<5jn?A*4H?-XKC)KGv+=~cw^PoR{_j3eoXa0y_zLzPU)G{lM-fJN6t)B6skPP
z_SGuKV;!SgOUdh$_~ln^YRtd!ByhJ~=XzE8;Pv@M)_W#R`nO4X)4T&-Ec!u3hr0`F
zR=m4()@pO9kmudB3ccP%!6A8qEQ`E$@oiJ7NnN<bc%Ha>Sw)4!!M~ML*KX^mKAN5$
zXr9o$V%`$h+7m_Qj#1@@p4|(|GTp#^bor6#N#X`Ool-wLOI?pCz4<k<Yu4sD0ddic
zr&mnQ+&XQ>q(eIoXvTeQ^O!Jga#zapH+E8!JS1wWWSBBdP2F?Dr?<_CU6qt0mo=$!
ziCS_+*IwfVw$UdTp7YJr=v!=L?3A%Jw!rC-zJ&6ccFw5{uCp|CkKW_gXS>$^tFe;5
z;=1j*sIwe*zAulMQoyA9?L(4%wc9+wFordEK6%7Xd(<+=Yi$;*{+%sV8c$~&IP7z1
zn)<4ePdCM^eUfga`z$u#d2cl(HzOf^ZC&sjzoqK~qW-45)ZQfgMMdX`d6U<QA6EtQ
zQf~Ch`RqLRW=+qLPY3cn8c)S6me)GDa+A?7t0xT{fs5zuWZ_ikYIYP_&%7*g`SFc!
z*p_|W5GkK%@!6v(>uYQAq1@kFS~-?U%bj=W)2@y#mr&ed)s$i_ROWxMuFY|;dPNMI
z@vNC2>vuhVs#RN<Y&knI<gN?D%#tZbI3B*<vBv2C#yo}xpMRbyJ0Z#H;c=stC$41Q
z{rna4l7AI*$Ngu2rnBJXzbU2tyagMsIxO2|sWW9qj`FS8<Vy(`_vD>nbe_0d;JZ<A
zblURw<;B}>y?U4>?%T1~<H@|5|Lx`OJ`!G<F-m;bZ<x)`nUPT&ZL2e9QQkcNsWU`W
zVk_I{9`RPL(R+NDd&{e3&Z|~lJstY$&`EbLNvlaqe%T~P&gA}a?8l>ei|6l!QbR6h
z#a$QPIrmzPU_OVD>ThLU-WfrvQ$uX_C1pi_owAG}@N~b{@~e*{%$|Qb)5+Df?ck!M
zn*HocBz2|T{?GEa<2MMekiN1vUh#=$k(=V*zd^ZEZ)*LWviWk}bJHsZr;TphtXpn=
zYZ7aDIp>C|>b*L3Vfvz$o;_P`JliI_VeT_s&&`6zswZCLa?ST)GTyw~_Nu~-g)445
zzqL(pQ<3XEWyT(SYFlLvZ}#bi*`8Vszb8I%eIU$laM8cwFMHDVD8@eP^@X`IDYvzz
zw7pp*%-B<-v;09rz?@&Y4|FFK%)Kk9dUL~iy_SH_tS2;2%x)_vH~ApDz)oOM)21-_
z4gTGnp3EQ36f+GYSxzrpdc#;{`?6{4<Ls7)c}Up#emuw6zu=PXD{23ePr7_ocb7kO
zZ82dxmc*^C+I&7rW2#!ERj)L6#a5yA@9_nEH<$0*J5NnWIPs2X=i@c^UY{;l@sR)H
zkvaP~vR@0I<deT9@@ne*<J-R~USYL6_v76`TffgKYGQ|-7CdKcD4ZdfvS@MU*Q27G
zJ(oU;eE$8n?gN|H%B%StGmd_AuZRpgDQ5f3=^4k>&c~98lb-#*```ZZ(;3Gm9GCH&
zBb^_!_W2jyX&=Jfu75LLy?;{9qhHxf&n5@7HhsU^J(uUL@x7=2YNsZdF-yJT-WbER
zecj>LhiCox{wHtStHZnuZ`L=|8aMoo4ZAgE=_A|zl<k+YFJIA3-@#SkUVpP@W8=dd
zy|-~b`*jkwyy=Wxw|!?}h0F%IAA9`_=JXz#ey@%BvdN#UvOU##=a-f;yneuX>1S-l
z*Ui&UznkX8p1wox`K+yO3d~yD1WkNnsvhjsNbuvFdR<p)T9RSO#ow={KWoT6!ZVw3
zg@yQ!y}DWPwf-t<vu%r=Hu)Uz77*(_7MSDndf)1Xq}M0z-1whqn!oH}0?#w9R^?vS
zXIE{^-ptI7bE?}cBc-d+ofTZO)xapKuGH@Kn>$J(Ir<l`n>rt3jnV0y`$stG!4D3(
z4L)W+-~Rp)^yY*|Qd-5~goA6I+>CwV)1DMKrAwc4o~UJlQQV1pB6=^DEep2DShmyf
zd&qx<&8^#SIOXepTC<;hw<PE6&~1L2_v@?g{<es}TXE%kvwTk+)3iIbeNlIA@YZo%
zUhBkC`|rANP{D7du=5+dbJL=?K2}Y(zvg&LvM)GOF>v7$k*fTgYl^R&pU(6BoAKv)
ztHrb|%9?-H8f4$f*77}E{Z6a);I?1)1&h1yw#%pQd>y&uZKcE=rGlD+$4=Y!CEV2M
za&GES&05_PZu}&ya)*G9seH!vgvS~a-<?`;mGQfDrUJ`>mVI8A1M*)@d>&@G%Icli
z?b`mesq30gD87x=_<sM>U5>>@AInc&Sh9P%j7W&miY-=-PbU1dj<&h}D=PBV@^6#o
zX=|x)OrFlO$al`m-uK~O*S<Zt(5Q?>b;{?-({qm*PnjClKl7`#@7mXo4gV~?-M#48
z-_9R_FKQb(9!=^K|7CYg>-kpCkl%CH&YQWpcaM2z%faVim!#9q|2Ps^say3(J2`CI
ztS5fo*`<3uG>y+}ukQ7exy$XXAM!3KEot>ct-V`r_gvJ}6uIQnwX0#5_Z~fmMz`Ro
z=|%Bp{gjhMq~o=kzkKlinK(~w^3gVfD?c{p3vAXck3700ink=ns5r-7CXUsKGq~o;
z<MfL>TfMyU#lEohZFH-QUwixa^98Hp_e3mO+H%6`(dQ3QM@zQc%A2?E#drJJZ8z`n
zR2L~ntX0jaSJ|{gGHu%y1=jozGdCZaa?g%^zSN{?NoMo<j+$|9`PH@kfOtid_UEO7
z3`V;wq-EFEg<d@59We89%;vT|PnQb*vkQ1F(<-xV*9q4rw$CR#Y;JH4x-%<ewddhN
z<(w@y*bd)nsj6sZ{8Mr0egA{oT=SP(|6(`0+I@yg{L?BE8J_d1ji;h`@7K()S;QxH
zyJU&*CXoZ@pFBOfVq2Cp*U<(E-(z#O+5|n~{p44#d&1Cv;zYHHvGeO!O#NY0!oTu{
zQ}S(%Z~w%DQ(B_x{y*+%v^}u1Tj|k^PeMn#*>}F4p(Fm{v(J~rCns`Vt}0pRx3WYd
zC;34|!=`}Jsd|D>KHh3Kxis-`*k_HYdiOj<qW`-5h{)Ic%$8-NEF8Fce!$Y@Wfz^=
zm@DEI{LX30+Pdh)6p>FW3QwOt`TNysm(3pCPdYm_e!f!TsO5FrdH=UyUu6LQ9*&N{
zZyN)aZ`mdBVfAWV?YFH3TlnvXi|0sX^W=Q?dbl|7_p3#%-v#0X+c#Zx_5L7UE8=}B
zO#Eo(l(l+Ymo?zTiki}c3s(gwZN8SZxcuO=+M{o>S3Z9ja^pkXmJ6Rlxa3=^QevB8
z|JDE6S9|8<q3aSWKGaOFIC(kEYjt(oq801Z4n&tT-l{1T*s9puSDoMg<O<j3f4-MC
zEB~%e(bj#LyY_GA74r|zRyYO9pJifL@tyC-p7!11H<SOKmOQOilwsQNvinGI!xl3S
zeVrfg*WTCA`uySey&Cyc!Mw^#*`>}O#DCr2FZ1aSbG=pm^rfuHy#eWJ?+)mhPhn6H
zRO35;@s)z$+y=gdvbWpJPdrI`I6-Sl?(e<TKlAqlD5oC#(Q-gj#q5vW$|QELrHp(V
zua+(K`!Qi<Ap5q3(hCpdw0iaSdgQMzuiCRdDDz4FokzmkPQ)vpwWzvyV(r!Sw~pks
zS#3M<_`0ab*We>bMcJkOyBsv8DY>`_$sU+r`s4zu%HLfbf>Z21Uu56=D|p4*G<i>n
zyMH!ZTiT`ga_cWohv0%sAHKP0xNBDRU3#Th5&AxR`4buYJ+2P_xa-cFNrO5`=-nj?
z==ykLLjwztJgDnr1nWZ)zi6Jw?vfG4ig{9QCIH{Zrl22;vSMBV`^^MK3U+o}P|s>i
z?44xTeaJziW&hNN9*XU*r$oel{@;J>(4ip34%e2a5&bO@D)Tm<)C@bk=jPq-Y0q14
z=Q4ybELeAVMv4wkEq}*4W*4urPk|*fw#c+>Nm!&I7WLxyL(5A!o2JMl#boVdUwb`H
zCQ@SW>+X2@mASG>C2Muw-uw6>zt6{)dBL{Q+?1awn;DINI8@7MaxqL@D!!UaA!a@E
zg7+n5{Jx)W-GBY()1BuZkH47UzUL;xqE!rm*L9Tcy=UBVyK?{GgZsZ073QA$+gpCs
zv|(HH<wGw`B5sHNiri7VeYgC9`%eEiKMlTZ{Y0ps7ZiC=|EA`pfTGdR02E*#mXVPq
zNE*a6G&F$5IPsC|UPPDc2@FBEWDvh20_|k^3x-?`1_BI@U;p=?<xfgn-us|I!@5!A
zxZt66#V3Pr-<JQ;ti<HX(#0VnsG$_#vY^93uyG^`<Rr^IFNtL{zrN47K)+vh$w8aD
zptOOObii=|N-xHSh++X&RuG?Zh%6Q;yw}1IbPWe6;rJ#NXDdKbIPs$>Xz8fdxBrR7
zq^I8c)56{^<@_PS)O%#XMh%{41~=|+`2XMh%tHR!70%}r(ygmbt-fR(EV+~2>)Ek%
z`9;-krKRjC?CmPkJ(M%$&-aLYeYU>-FO%!%p6k9#|CqJPe5kq2T;6kJy=_J1PyI`q
z=YBCQtu>v0-l8Uzb81}8j<~k9bIWeMG+%CR|NqaSc|T2me!J75{{PngJF{!ceQjTq
zWn4M!`M#X*%;~=SzIh+sy{nse-1>dw%e?<J@$BDiN~NE?(EO+t_n&X$l4ThMcVGWf
zx*Krn(6*g*q8#oUh1X7dyxa8u(c_=Ax4Qm%@$S;IpV^9EbXC6`_g(UBu4%yi-ToJC
z^HtLRRT-XW|CcxaW46r>PusZbSve*BwJqxwbGffu_w~SD^{OS$uPoJbFW9Z_vx_JC
z*#+CTD^oxJTKgrsVLA&3hjsOtJ(vB~x7@4w_vdKbU6ZHZV}H)-F1MJy-h6@WKZWu`
z7hS)doErOS*H2AZ7xA~5&*KG4f9+k;Z}t9V;T1XK`1!f#6iSvaxbHjn!@=EaWuEna
zdv)R7Drf5%Cz=*HW=8G3)ZFrR^EbIWs@vl=SLZG8E-yP4x#V{54vxBO4pvUr-)YM3
z-;ul6Z>RMEk3&5nGd=Cs^X|1cbI-6@?5WY5#8)<dx1Kz$FA}roUxsvf#(MseUH4X3
z*BH;bT=nRl52xVvCvxSY8(p4AO_3|z8Yxk2sB-DvpDT7kb9ZemnKZk@Kg!jhd4oGk
zNRN^I;{(o_K`aJ~{hyd^vG;S=p72oN+Y;ShCq);`&Ztf4pILtE<<x)&Gv`Wgzj)Gd
zu26vdu}8mhKiS^W`_?e)+zum6c1EiL-IBZw)ip)akN>N3&+WI?EI(A#Z>L}`9UHRz
zQH!?6zQvl~9eJ&nT|9BES^L<zhxhL?{C>Upb?()r-RfP<%3jV3nqTdA<U5vHvhc{%
zGv13Pt332zRa)e0DyIE-Ueyf4CAYQ&8T7GldDd@z^VIs#XR~`E`y5y1t}AhWqV?J0
z)n%(A(?hGx-v*g9&D}UDb*J!q^DG(9P=0N}Xxr<$PX&)w<xKg>n!CrY<IGQsq^U0x
zWlER%hD0sV7JTNhEkAWXi?;YLW`|wwE>=69GdLPPzA<B?M*0HHplAQ4O=kUBbzX;8
z&V5bVucFK!i!RIEt9H8(C09NpN;!GUcOmKH9aB}f&NF}6-I?>w3z}qnCRA}gnz4S%
z<ZI@k+>xtSAOBn<;m+{b;)d1APu7o4$<@W4;7!goPb|w75Lu`8e(CL4-&YQ`K|a$e
zjQL)DJTqJHvag-wv8SQ!F>I66bi*FajJ?-+cFDy+0fCQ8{nxMiF^BCPr*PoflbQ_`
zv(D;ny<{rm?RryV^PgAm&Og)%70zrpW`1Ss<t5%0KCA~U<nHK|ZjAIdc(&dCh3ciZ
zb*bz2Pxn^)FugnZRKwu~`9ejdyN}yFeS5#<vePvY&Am&54_=*`9X|7O;;YWC#Sv{T
zJ$}<wMW;ursB!MP!}n#$!&x78YrkV&VB~kW=#gmR6Xz+9`z{tpDu(;muD!ZLZvFQu
zA2V#{rJ5N!9+`FfXR$%MPqWAQSHa;kixnPu9kpP3%xILb)-B#seB$ocbBfGg7roD1
zKc{Zadd+oyA6H(<EEe9Uq#V3n->PPxflY&;LWPjC?K3H%6&p?bZtR+Kwk^8-hS{Hh
z)+NvS*T+rhzL~jv?mxqo26d}l#9kL2{CQ{2t`l=kzuWL`p8vX1S+AAP+H2aLnmp$|
zcI#WqBF-ge=T<&?Xy(6OPfFtW!ZzvHD?1|&1c?~$Fq~L@-Xd&%3~P(cXWz$8H7}XF
zzie!k;QM@BRj#kXDSldGh1S86u%(4tI12cJ*ed5%rfg?u3Ow6pa%zspiYxL9HKwnO
znd#d2^>3)sDWUSd%MA_zpCj(I76)~{d+T9b{X(tf^`hjpMxXE8*j^d;Y*G8IK--La
zTD+#AmwgSa-L}g=XLihxs62UCe)^jo5&Lx3+4Y^j9(9ztw%2H~*UV?}tNl~XRqXwD
z??mn4QwN&XbKjmMcmLtBGmggVWasZFoOpCweAcOre#hLFsf9oDEjqjUZ~5m%r)S%h
zZEX&Tny=++!ys||aY0bx_6S=o^NCktmR8?-bIMJ7;^y+I`TuX*l-}9;y2xeeTJ}?W
zmqf4jFnX%F_ubM>i<jJ9mcGqp+2%`f#_zXW)?QfD%G;^C)F9LBwY2HZvSSso$F~Ux
z?3%Uaph!8ttJyuJl`pRBo%g$J(~ouD3+<)_7p)L2?SCw26zq7<%}@Et+aj^THLuG~
zzm%JMZdT{7!}DLyRS9|0vU2@~tFA0dG-W1LKT1#6KeZw0-8PN)s%y=!w^$u+yYpTB
z%FO1@hUt5E%)4f)GR3Id>d;^F^QvF6)0VG__FL4gr*7m_wc?0`R~63z3*M@u)hApw
z-MIT{`Pyv-0?99o`0}Q#%?vhCKDJVT<?-&o9e3Vp86RDrxAs>=Rr9*-f?IvO4jL<O
zXKS7&YhI*v-a=-}(v!)ns;cbb`Adw8<R)KSHv4wpx{Z%4<Zdlh^;;SCYLRtf$cfO$
zG23IiCb%zh4C#I`(M~s)DR5WPtSO7PEs@=NTT`#dA^Y=Uh5UJpG9T7Vmg4;4p|xF{
zbH;>zm9J|;xcYwON9}MH-SPOztp7_Gf2B#TEj+SH^3&?(@8_(F7d)T$&hWFJ^<E*Z
z>D<$<ssz8DbmDs!M}$}MCv&B^nD;G)cV`{B)RiAJ?|<T~E$j*m9+gh}S30^~iF3&o
zFXr)HZX&7t_sK8j>CRF6H2H4!dTaRx$C{XZy1#8@V2V?J#*EybmtAA^Qf(G}of)X}
z_+iQXJ02{J(V-;_VgGG>&)!whwq2mze{e<a+cmq(jy{^X_@%+!Ep<E{V)l$0&p%u7
zlyaq1If!xxU9Xy)aebMQ@TMhlofG=sF>i4$-zl@4^T5ZAkv2DkU2^+6ss%Q7IxP8;
za6@CNlU;2y_m-5UZ9FsBZX8McYdh&!^wg%#c-=GCg!~PnXXO1}v2J=v_z#zejrCVL
zUaNFhy`7oKP#}`JENUhD=M)jikQq1MW=3(%QDZp&_~RcI7VnIz7(c&v2jXUm)?T=4
z(s%gL3fBc07o8WKS!b-IG~0cXlK9s89WfuisPyoC{hlShw?Vnf;LBI<f_`1!X}6{r
zt?+uut9X6#4hNRC3X%8B51%_EytbV=)1iNEd1>_L=V3WBG#)oNRA1COoii=#u(XVM
z)U~;9^gisrWFq6QzC81&@EZ-@XIh&t#RWb4JaciXg!%Nxn@+?|HrR1$&+#+XZ@+l0
z@L<_8=X7ChvwNE9OSQSj&xI>LRV-2cbmmLP4L@-cHxE54-+!C->|C+YWad+6O;NQe
zD`ys#M$fPC;;z^lE|Bk5FgMCf;P$sIGhXIwmtPTMUNNocndEiZ%~IbTCL0RA*^=8R
z$<AGqu`S5y_-cMTUIw<0=fmoXSaK$u{}dftsQayC75n~}X{@iL5}p^jIF*^`ymz|(
z;`rLkyx_p4JP)NSox=R?I%wwyFgNUFU`U(rw%OqCbPZ#{g;xI6m9qDxR)%$GTg$6D
zCil4(XS~sR_O(2W_3M@?Ri=k_SWazPJ2SL=RojN#b!Wn69iFkXc1apL`)|F5eVv<_
zkGODcerY@Ti1md@+Tn}V`o3TO=$F~;{bx@xlvlp8**s<U%l4MtLPx$DC0&z=ko9}u
zFz<<ioX}g{e^MP!oVmi%N+vqSofKdA<Wb_k8B2XHmpGJV$%>RtG~XQcS=v9_>_lkV
zbn8RHMQ?VgUGMi2+gh1oWi>y4^6a9U1-8X!E2cgy%9Gpbf5!3GERBiTw`;C17L}Z}
zq$x<u({{&VZ*f;YO=YQ#FAbh9JhEcpuSKHqvrYS|rp(z;ZG89gqP;A^fh#Xh;k7JX
zzCwFxEW;eX(+3-V{rh|K{Gx9fzE^_I?w!8>=*utm&zT#(zh{go{o$!vI)9$jzH{kp
zxq)X5n%8HV6|?M$m^nePrcNbr%h~>x%hGwaFF0Htt2N9$-G5v6ie)uZ&hoi&oT8kn
zCxkMDge8t=<^4Oz&AQ{Cgtx2eju){xMss%^+i~3Q*ojxKX6-3u5@FxP_B-jGm8V>1
z1Ve$${J)kH{<$8ol=@UN(d2(+RYTFC&h%{^2a8e`F6RFIWkZ1Y)4*F#n^KdLrA=Jt
zI{&@E*Yo>os@82?okjnS@b%o&VNd>TRUG2AS8x8*Pgf(vH{M*svLd=p(4~Q8?X$k`
z!EdZGV<(EnSRB~&@3$axgC)b}T_L;c9OYds#l_RsTSv`heDHVXR`YnKh1vzWY3ocT
zeLBeSAoFURtX%liX)`R%jgIhTswLj`O<lHda@xctSAKp_T^PMB%=v~~wE36m>RV!$
zssH#rk8{$qcN`)6bEPGxn8(}IUpwO(*EI9?oUiI(Oy0j^*k-&d>*R_^vAT3GBTy=-
z-qq;ov1PCG=eC~+f4<Y|QP33Y$f&BHOEXVDdnd`EqU{tqTdv^hB&&!=X^TJX_$Rb^
z-NcVtJEhh~PrYe&RM*k|ko*pJ<D8%Kc6?!Zy;i$@-RYBi4SKu3Ow2t4uFzI5G>`xH
zNxZvaairM);3yYewgr1ON#A}pZ>N2h)T!cRrt@sAuXZhtS=HAbeg2P)T<%Is4>7y;
zPjBw5_57#w`)ySDu6D1E3EEaM^Te7(%_q*jTDU7^)z<XBrj*;>9GAW(Z^+MkRJ~Z^
z>{R(($IBGA#cceer|f;$<>l{xSK6W_OOH#vFpXssv9bO5VwP(BqT8mIjnA+6?fs-s
zLG#u6g=f?b*<R_jICfd^SE=Bu`z|w^XGC6+NShU6zpCEyi0_1{($3MT%ic8Twja5v
z6n@*G@xqrtjr<K6tR5_i4_oEd301L8F12pDu<eHLC7r3JdyBL6ni<}2&3d``$Trty
z=ccO1YV$rdiM>Amr2Z@QSlh`<zg)X`W(oI`8?`E(Qbnn4g$CPtj~up;lWhpRHMP-Y
zo{@dOd%12~-HKYK;~#gP<c__yw`;M8N7DaADqY%lJ=tnzl`z!oeDG;Y;K{T&C2^+}
zB@1GFo}Gy{yJ`IV%H#06f*yKG8(fOcJM`QXS{&lH?#!-(i<T(uy5{{BT;oY;Rn$yr
z%@j!fxTSHH*3M)4n<`UQ#hjT@omL&ywB2&u(;XA1Wj|S*aQ%+bwn)9K=|vX*`5FG)
zICsNlCf`<(pRG>>8+N|^aK>9}U$13Ry=(K*%EH6)3ku`Ete^YR`OVDrm&NjKhjz8Q
z?Pt-?%kKKHSo^u)lKf@spO<|v&MdH9+Hd>Buvl(pMuV>5=lZkv<L||G7bR|ZXlFh3
z+kTNV%c5dpJhzv!1_m1MY4=S1@}f_<?WZ_H#r1RBUxkVUp7AMFecM0F;q%WW5o!z*
zY+v8yk=iKmH9+_MrggKf%$=-l<9j>!&i0(d{Vmhe#rS6LjGC=~|NFZ8al1UXPi{E$
zme+B|rLC*y@iFu*7ruS@)}mVp=K9vvfvZK!%~hQZKlj_G>F3^@c0eL|)nB#qIe#~=
z4e1ls_nx=%QmL5XN4tslR?p^tU9Bb~8@g})wHmjpaX+t~x+5&U^jb^);&<oPHfR~V
zO4+%tm-()ao_n=y_SV?6$zRSIP4vqwT-{yv!@ZvUvg>y5!qVHa>_1P>U0(3j`^u_M
zyO+J@yZnVAp{9nxz@{#y>-6<AyVKfIoSj_{>Sk%meVb9ad~O`?)bjT-=WG62mo{9p
z=f2CnIrr)`_D$U-8$0h5tyk<(iwJ*zFyXe^3QzsiDe>iwi*w_yIPFT$ix-?!ruL)#
zhm1SJrl*1aYf>(X_3U@LuzuIHYZDV@)JN`m+W(g6UCpn1erYjh%GYgOoaa~(SzdlA
zCA~HF&uo^>iz6ehonyYHd%u0x);LSudehE^6;i7<tqoo8So7<0)%D-s|1Ie}z46b|
z=06_dMKO1q&rV`6*ky6bXzz;Ii!Rtq_x;ta#<s@jwAS&On=VZ&awnwko_%Gj$jqf3
z88em{$u6A{6Zc-BYxR0=Ev;nxZR@Rf&r<QdtlD=^o8{=wSI58JHxn<{V14_I)8NPU
z=dA)+nJP<{JS-`^`=_9x(Bn$)75UPC|3B?}X({>HsWNQ4j`s7aW!J98ZP_dKv&ZF-
z_l8gRqCXY<{W|^elWF?jt>4*xopSHUeoui(EDrt7Q`RkCU^w&q8o^gjgY4BdymPmH
z#mYL(x3(bm|MN{Q`~7v*x3HW#dpTf&kI#)@Y2(wSu?gN!LbilG@jkWk;vv6zM;gtY
z7yaM5Ja6~P^1YeQY}4*#F2C;Nx~<kD<6GIAjo(%FeNVb)y~Q<B*<D!McHYhSxlf9w
zZBf}ZseM^X?iSN+3OB!=;k2L2D3jXzcHjE6n@=`nZZu!NPR7wa<(-nD__<p`IlG^k
zO*gF8jOSil^+0~BPF&eM_3f=0U)Idt`f;E1;azfZs|uo*-DD0}F}>=O(iP>R8uoR|
z-W4eGe!o&1_|BmIOxD?hW$CkH_nG>C(SN#k1=sd<8ZkHLm}$Ng3D`YbW$)~_{_l2r
z2|cwpN&c3!r0&M1RL);p{EnS9id%i}N5az9^;gt#I{QPNa+YSsrpRe-{*d`ry@AQ%
z>TVm?|KDaDy(8<klg0c}!R<XCHZNW7n|w#x_F8sca@uM05DW200r6KV=Xxg@n@DP>
zzOobATRL^;zf)Cgv*b?9_BVRhRnw&0P<A8e)W#m|&?C>QK3njfc)I-XF1LR-pGLj;
z>DzZJ^~|T_$Xm(J=9X2dhQ!3=9=^_UA^eqL$i>pGAB&dU=Y3))Ja<=PcHW}bj$boB
zZPl|}dtBtg6FZh;lNXd8DvQ>wxO`pjOkEAjl=OAWgZkX=<}svKzAHR5_0GRDfBpP^
z&iM7Bc;)K4T|3VGJtdx7Vij{OAh>MKs!J1npRCaQRrs-GN${3Ar<*G)5??!oK4VFH
zu5rJ$BFK?nr*P`cR{2<_fHOQ5eBXRb&s(HS+PP`F&!vugS**fS-$ibEer#qD|G^y7
z*?)f?W@nK1O$fBBWit5lMYtiq?z=VnO!wlnq<LE$RbMsEu)X!VPxYl&NGbo#5@+52
zHEywXyk~+p9}CVa7u>qw>63{qmpjU%UQPNQkaT3-_ZzH=+jLf+`IT1QQLQ7^6QwGt
zfBnUbB!2c?np|OL&7_tD?0hMCoVlT}hM}Nlj@0}&RnI(FV&1=<x9-%RmxtLIzV@A7
zb!I*z!+nOWxu)lh>wbLLpJS}?c<%bNlXC@aAH_{<PRTM|?h?M}#>AYZ$8R5=wDyU?
zWmCsekCU;x#SV-9mfMo9zw6u`TTy7Nl(gRLoZc^>Ka<_)ekIRR|JZ8T$~5s0o6mmk
zS(sC|MItbN>Xkbm-=#m~{E)hS(XWRYaXqdEv;9mN#KJU-@|0hly6(<!AimMx`!d6W
z4OMAtmLFd3&u}kb@|_#U?h4K6NUGjmey97W&;A|%>=mzbK9?~6e*QDhgTz^<l7B>I
z-VErT_DxV(&%H9@f_&VG`0WRC#24@0sj(|^k*@i@j#cHl9{bLmeY!a^+2hkLp<G=L
zj`HG}oTdwBNd8gvo4@Wx^@Mi?52vp_<L~d=eu|4NsKI~!1$XubXJ?yV7rJxu`SIhb
z@?rIwX=;v>w+YNYnee@TX=rA6;LGdhx(=2Y?VSGYyM-^qsmFr%qS#KE9hyAh&y`%S
zqKkj8_lkerf0}WR-qyWyOLj}|voft@eI~j7^>3kFcf4=0$F2QRdu)&JSKEtoRcwAe
zy0xe|&WB(4gTC+OQ#xHLM=MuPKE^NKu$u8VTSM2(=^2s?AMVaJulOy-@c&w~{h!32
zS9j(Kr6-zitY5dlm1#=#GnYv*x)T`{{9=5I{>OI9E|Wa)efi2XXBGCO+9H;nEfaSL
z<$0BO#eBaEZh~nqoK)@iX=c*;>X<FrWh)OnQ(azp%<>%PHy6ciMy0W43p6etyr;B8
zUGC(O-4D;+@#8;T_$bXQGQmmHo#Aqc%Uq*E@#L*N`y|~N?(eN;Px$j;;WRD7;;(1&
z|NWfL_~7Hl!b4www9C)ByglFa)jx~%#>F;Atr$+X$Fg}{xxF**ZY0a*@bhzOTwEvi
zrL|k>-`K;MvwOyo2CWMh85zHR-M-JKtY!|w96$CfjcsD9*dp%PpA}#Ae8;VD2lKRT
z;*(=S`Yj8}K3uGt&Auk~p;LLq20ghIhr>=e{`b89x_46IE@4fR;*(CAuW}hKo6Pb1
z&-CEo{oAtdGB&#Zt^F@|z}(;eeuk^o(n^;pGee>@KY#wRVNc|ra}R^Pa(BiG)g3<R
z{WVa2E7O*mME$>Z#UTfxek<%}e^n^0B7Ad}$7H?NdF;=Pr}ehGG4Ka7HXIi`V9fV3
zCT-EocUE_Aa{qa5BG?^vW1W|R^@Ok0&mOHk`^chT-|NuXDl(n7rev?rUNPmf?6JZb
zVr$oJzrnJ3_M?q1-@n{Q%Ve3A`>u~cPX7N_N9~9G_K)sbGn`&uv*2v#vtQaL*G8SI
z`r{qB?;gj4m&bjCwIgG~^5-op4L{{k86p_k`|{}$xo%J8n{|095?@a1h9#6dzwts$
zZNjwBD;uv{O(_al&M*94*J1wDX7xAgxKIDBcQT5Aj+UO1|My_Wn-hmS4`$8zu=Mcv
zs0A+%O-!j=eE#3tc{h*wedbA+xk#h8bn?!H99(6Sa%W~2W^%p!SXg+G;oiUd^|m&D
z?HzumRLqMM->CGt|0%~!rXTL}@)Ua#KHB@RE&O_<y>Zud0o_TW>+Y7%>D0Jz**i^N
ze2yRUwT;}Gvt+OEE(?Ac8gBk#N|Ob{>#}uI*{aI2Cais;dFLx%Ud-Dv!G=$V`S}k2
zX|&LM^M;kn^Mb(D_d#Dg?2o+-Nh^0{VMv%U?PO=vyxkA(eVXcWdaB#zkMqv12{>ZD
z&HBcCKa08h*r(lpDadf_nn3Wz=ie><b8^I;Rd}}aQc9YZR6CcB_{@(XzZ%jHHH6ii
zPn(}}c3wi|-v3)V5<_3Mm;Qc{{jXW0^Ga-^qrsMvjn4&l#oHS7BwziLEORPOc=Ah!
zDUW~dzmfi`d0vNk=k`0(6f$;p>@g@<?Yt%Iz*%;co>)E8-ILi5O#8kfVLR)S6?gAy
zCSK_Yx*HIrcy!mn2qUkunJ$;MXiUhN#{42pdzGfP;Y6$d`fr}@K9Y5QPhR>lx5ul_
zPpj6PlC^aIirn&M!&sfBd;T$g+-<6&$G5Fr3T|A4JEflNQ}R9Vwc^?AL*duAoOyeD
zY4L70i%k<b*EnSNRNEA5UOgYO!I$-Unw4hUGMgiNvgYd?|8m#kRcvgxZQJze8+tBA
z<;?o8l~!rPqcLOI)BCT*m*>8pG0#e;*hX}px%WqtSr?Y?>bX=Wax8bjls^i+ogd74
zRAx6F()KWIje7cuTU3rWSLnaU|E-%ho#;#b&Nst1-$3n7&%LyR9QWRr{=WP4b5b1V
zHTIUdmsVstnm%^47n~SsusUsP>ZO}eCam9I_Ww9l_biX=$?55{uKd_@O@V#ZzLlqK
z_y7I2%O$Xkca?DHt}>QWKKCnw<G1*$nqE8Fo+)*|DC~sY+@2*1N@lt5k$R${J?)6x
zti;$wzt``cRsQXg;%r9$Aa4=An}tpP>^4V-*+)h@ecN+aBq&b3ZPJooFG{ESUs9g>
zZ07Oe;Q!vUH~O^K+}&yPmP>5QwpUqF*Jdo=x0u-^=K3F#o!K`dpPZgP|F!Vz-9cYn
zxh>aa`J9TGo>L!fymG!>E&GG>_5b(|{QNU_Th3z+*)*|yt8kXg6;tOmzqk8x;no`~
z`#<{m{t=EBEc7G-TRd(Xon5FVm3w#ffrWMMk0xX<i*DprUm3=A^l5~#<I4#e0p+*d
z=3EG2ubsKi>_+B2KkK(&_&pdMN|>W0`rXxLPH?c^`bm&ErRhm+@}17s*Wy*jlp9{^
z2HZ8ZWSQZS{q6aL+UtrFE1QHkTiiV^@lIZmSjzkICCh^nt1K7a+xeao<M)NA$K3v5
z{2|eHLbrUl``fB#g|&^V?)~9Bu-w0*>K9-3gq&oz*>~ot{k-w&Rq-2#Cn>cPz4&YX
z|KLdY_0Ta~>;9{*XKxoMF#q)6+WG3z_vYCqa>v#34QIdXS8;uKF8W;B_BfXH@dt&4
zs(mc3yRQ6Ho3_0D0V7Y4(CJ>mmggTUa{WHYnwFoN{HUq)@Xo}aEbo$kuZ%u>GN&kQ
z$>$dV6?Yx0xKy)t%y!(6woWX9tD*h)$C9i^5fv9+E}y?IldG|Bvi2FZH@aWe?h@uI
zW&WXe{KUEg#d{t%9cxM391y;I*(;|PmtWTJuk9|q^rIxHQ8BW4`>7dg5|@_pv^xqV
z@8VcHImK8&Ln3s-g7S%%QkMEHxwP)0pmffA&Z#>^?bLtz<c4uySg$R1YlY&^Fa}eX
zLuOSM6KvOJ1>83=GK=i@efi_SHr2oSsq>$<u`CaGn6m%+zcuk6m%e?G9khz;<I9%Q
zPZ=I8pTCcpp(gI@Hn+QvCagZTExvKrq}~<w&m~U3^3ja=W?opW<If*ty6)T-rB5Gz
za6EX}e*C|s{FnKj-wyW{tnJe6j?QrG@mp|4?d`ObzE3-5Sv49spEv2vE_rcZY~~wq
zFI|XB?ONFO2<BM+h(f(8vz_T(QW=)(y0363U061K(>wO?a$A$`Iwg1K?C#DxX)pFK
zQrT&pox*5#CghGu?{fBrh3)f9f)X!sJUGm*`BD1o@3*g3*cUBkNQn6VcW&i{?`Nhz
z;GLJY^x>U4%d4t~c9f*Iq?X)$UVPW#^TUrU4}QLVptq_t(4c;;5W|Na=i<2v>08*W
z4j%p@6v@PYXODT)xx#3Vh&HENX<4UaX9qFF*i6V#R+us4&!oE8D|6Epncez&=AUv^
z?7CbgSC_o0C%-UzPLMW<yChzfx%B8M|GCdDN^jymQ}&tT{r&#>f19tJ>DpT#cXh_H
zx!SdxkDY9;N?CI9ZCLZH#&r$*r!1Y^FI1f8b~^0Git4pl=RSw-`SS87&jW)#_om|p
zTGQF)v(HexwtZsSE>-udFN1IW_H~KOmgQah^o~&P<k00&a(b_CFTLfmw*2~9gS5$u
zHlNOTd!%B~D<{wIi$XPSnjPp5Smm|9_I6M2?DDsUEg_B~pH=36WOX?7{N}b<mxNRO
zE;TL}o;Qz=VcxudoCkjX@n^8BsW9U-xXHKX(kDLt2J`%Vt+&qm2Ps`SS$Zk@7O&~A
z%e#^vu6Xt=Q(@gbe{(msrejB0)7BkfSv}F%oomAp6}!v6)`34cKi#T1Qfubr6t(Hv
zg;_n265g5B-+y1C2J7p%3zthStUK|mredFY`OztJnm2yDHfa+7#(swOmmj|~@EL7<
zQq?dop<idU-trl5HFI=RUN+B2%!w~jIlm_T*}Qpoa^v}@pYAYS*T=*W8)ayGQtDT%
z-q}}ig{!|<YR$Tv%Y6NC)aj46er@MJy~?iqo+*F5R_vbAuFai$?^=3v8Ef*d(Rb^M
zlE3Zs)ppZ@3t!KKh-CUXEv@YAI=%l;PPt^2_wwWSUoZEV>3OpxHo(@QDYbefOYj#H
zu~{0QX06Z9l40z*ys={akx-2rds<g_7x0RH6)IhNtX)rLli8ypMuR!)^h<p%m+mzQ
z`R9MB&djUpLA2BC9h;`bghow?%zxl}%4e}#@II}-;mlp{8GDw$=bs+G!|>-D?O1iy
zg+eYmUpgY@<s={Ld;iSUCCjbyrdLqT`E5M2*5qF}wZU%Pk_){7#{~~0%J?s5kKTQ{
z+4^X<>+!N#s~^7G{42?>CO7$M2)p=~(p8DE^<^vuc1)$dMN{A1YTgvRcf-?to!)W_
zo;rMveSRiaXWE*dg||~Xnd*N}DK(z8#L?=3>e3VKlm5*Al9c=D(n<9N>pplt@|hm^
z`tqdu?#gn8==c9`RNVNsSeBW$lqDu`<4J3iS&7weUY*}(R=s>~oTTXgZWT4t@c6j3
zKYg-4C2Tr7@$!ZW#$$E6f9U2kOlK6`bZw4<uSmq!?#b<!Uw&T^?RHpa&y?@8Z(T_`
zJm1H+vg1*ORO8dvX1_Ym%IrC7wB!0p=Q|bm=av-Dy>Lgbz0`KIPdS&*;)z!^`?nqz
z_t|o1^RE*hM6J%w%#%Cg5j`c_^0YI@cIU~f7P?&wldV-WY2S46>(`{lH!s{@x#sI=
z$?N%+{an7&<X3o~F2~ts!-X>Gm-d_3C+UCF-26tloTZ@3hHui;rk^}ky#iBTx3QN>
zKE6^TtvbK!yt9qvg`12krycT{8_;8SViPBG>CdTmYPzyd-Mtv@P+R%Bt^8!0<em=o
zteyKdZ<#IU^6!Z29?L-P?5kfo%dhVZ&=pjlH&t_j>|c+iQ!VP}@ITkR?|gG*i|yIl
zzNd1o-q;oSJ^uPnm*T^>mYj;4P&M`U&pkQ0wN=$D1q;fV?i~HnaQS4$?xK0GkL8^`
z_S!7)c;D62KHFp$+WreTwW)Sa&-=$6r7Pv1p832zNl0n3D!WS8uSYrCW-4}C^&Jb}
zvBF{gu5*`DHJSuM5=t)4yOp!{EuVSs!>s%zXLKQBr9xWg|NpE1V#zxH)743Gcb-Zu
zUOH=S?~aF!$Lh}O?7wx@wQY9I>}B4&w}tkVeol3&D7}7s<*pZ2cPHs{7oYTPUSD!o
z|MVx{hPRXQ{FPgSr&#z#TxQ&FKez6`1>*wqX&lwNr>gL7{TKP$wR4?j+2T*(Et7)y
z*~&J~DZR+Saw2ZY(z=t%wr9RqJo}m)8*`xkPy6Ld9P8Dbk|IxSEf1c#e*W@HPiJvV
zSj4}!^h$ePbXR0Xj<Lh%8s4%T-Ra#e*Gd;X?Xa5t^qA|qH|~bclNe4+wLHbI7?O7D
z!TNQj^%d1jA5K4g@UGEWC!lp_-s?ialDBR7b(w)%US5;pZT!7Jns?F$wZg4$?>(8g
z&F$BWIAyzIra#(dP1!kF$9UVrJR6_Sm48G}cx!bpb;y6YM9HCt^+2)Yovm`6z1`C|
zU;pZqmF{|dUT4k17gq7Mj8_eIh8;gD`c6}GmCW~ww72Xh`z9Hk&eC7H@A&1Fc^rYy
zjpoghN^qL{_|zO(w?`|2-p$;};XAQz*D=HI9!DmxZT+|C-;$jR%Z~3}J!AX)TbpVk
zBNx=iR&0dM0{;2f|9WD({);Q7?~3}ZlhyyNlGC}|HvRObg;Tn3DBaHd=&<|Bi-1#~
zYVT$;eW;Oo!(A(;oU`uOMvtN}!L0{!=JwdmUpejYu0thnTTYc3t(Nv>RJXk*X*@Z-
zEc@d6DRFvVOMc2+e|#~PagAfZ6V{X4RpTc7lfAz6t+UcHLAKsK(fpCmaymRN&)`~k
z@?2y~>K#4xjK}lTHcB;oT5kVSu-f3|^*OJ;P5O4}P}ku<g8p$2TxU&jXPXvydS=oi
z1K+Q#<$I+Ry*BT(&Hl=*c4nG;Otf1<n8ObPNzE-vD~```3iWb(n(Vh%ool)LL@(Wj
z>~2}VJ^!v8JyXb7Gkf*_kO!%;|Mz{74pn34T(>N*Q)h1VtE}}Nv&6oXh4(N2c6fK7
zlcD5|I|3g$PCF$hMOe$%E{J~47XPX3?53rQ&m4SK-IVA(^X|OfDa+n2-*s$pU5KHR
z<fDj~>7KDGuP&^Z{VM<4zpsyv6@3-TN$^wsroA~WQ2sUFlBB0;Z_`r???+|+JyR9?
zNGayE*NTVJOKx&%ZvMT#D%|0#^wro)OA423FWaTr&+7jqO8wjEn!BxG3JbM=@0?nu
zYLI^lIxL~|xq7O`s>nPpqpSCp9D6jAz2->u*Ow}W?j^I5xsw)6%2s1NdTsd&Yf)3)
zzF+4zE|1rGx?=vXQ(w;<v8!D8G+Hum-rjZ{h7N(>zDF-LbGRMZJw0Zl^#&)ioJ&iT
zKVN!x#mHxE_>!Bt*8|1h+wQA;Rvi<5pPB7=s-mo7R>^`(a-lCc`MRE-HIg~P+Ozug
z!A)gNVLJ2A*WB9AF=L0?iy0m>j$SxmAo^?1ird+p5)o{rXJih(iMhJdtD@<t*#`A*
zm&Lseo=bXa&1wB5|D2ge;mq=T8qFRux!dmLNNuh2)#6t&-T8U0S%<&X^2NvX-ukGw
z_6Hu*?mVH?y1|p3;ps<1>3wpk>-Hc2xYN6OagW@#V|U_?hn+h9w|w5~?oSh~ONx#E
zURfMdSs*@X>R%0pvfbx;na$m$vhH8F%z5B*h0S*6*)275!*&V%EX!K4Ipx8YciHl#
zA~TDOwohBg(X{K<?Netrf6w%uUUg@G_w>naVbH<5kS9wuyKL`9CRxSWJC?9Dl&cvn
zc#(KH%-wO*9JO^T*;j8pdQXVoj5T8W^JKZh-FshzPmah*+Op)cPvAz*mOh)}xp|uI
z4C%u5Hyd86={So#J>2cJ!rLNte`@jHcRrVb#Lv0?Fny&R&0P@?t9W(Bfk}LSK7TR2
zda~!w2WK(k-MeaM*sr^}rfl5|x2tn~Pcv5@+PXxQ^I4%|vVlaEVQfF&?ySt6%T{UJ
zD*9UD{9Q;;!Q|TH?1F`hb?kknRL*+B>Ul)o?^NSbyA#RJG*(;+)VTOb(CFq|_oyY;
zZ<c8p7pA?<WZ3-Ldeu@HjdvTDUOLp$vHr+b*Rp+oZtu^1ec~&3&-+Im=3SFBxJ+J|
z-Y%&=ueLbMq}Ql^4!^CVaH{9x*>9DX7_DTOk+#cO<-Z!+9{1kGc}r%@v<ldpanYF7
z%XeXf-E+f(5u0c7eSc@!^O*UI&X%~6gvmugCFdkRro1ir&C)wN@0P4~?VV%O9&CLL
zY1=uumhrCIwQtWcm9#gt6MVM|2BjaXU3rZ;POxt8VP?07y@`!prSEULh+bP5)$qRA
zQ|nq)a%^6c(C2qo&&r==n-a%<&GqQXCzIEmGP6JBp3`Lf{eW0#{rTt5LQGR{W@Z%J
zkMXVOa>|%)%r|qEvF#+W<#)IQ7g<TB)z??;TP5G4wM*dWD_tI;Q>F}QYwlQAPqFMz
z4>E0AZr2%b%WX%_ts<S-b=6w~h2Q$>oVv~t->_@C<&z&zC)*fItll#9T%y^>*QZ*g
zEuRO}$ZULfV*iUWOIbx}1J_wwPQIANF!^cAb?KcYJ5zTlxqIy2P}^-%eEGGTVfB;J
z*lBm0<@i17)Jjiu{@*OS*K^xq-OWc?EU){j>uPUn^4eLrWqIwXJ9~uRFV+0~HTv@z
zSq}Ya%hP|)e)KDS=fSJFNj)ZB*%gwn)xSpZ_WvlBjO{Nq|7Mf^^NjYwdj&`L{D`|B
zSHk{0?BlJJo3<xzJ4(H?TU22e<NLLUyVHqpch!z-H5XroW(b|h>AoDEcQvlq>(*<j
zCwIKEm42)by=8l0ipcEKPX9dWbzj|NW|)#FxgaKkaYm?8$s4{L`*qva`tfYa`L;v-
zKpALB=7t^H?Ta>uR~MANbADoB@0zoz<JL2s`Ifq@4L&^I*bTM`>b=j7ebg2DvUr19
zgNElR*R9)@^L~4MIAV5(Vv=HhK>d2R(#Z33ey_f>)AdQ-6!$4DJns&CJ8(0)voUV3
z#J$;z?YbsdX>Vtr{pyvR%F`UBgoRzZyd}99uH2uuQKiVvmObH~)aRBvGw#`%@~XVu
zEBfZE#7qy#BGsMetrz&mecGTS-YfU&W4Wy-<H}!Z4ZSz~0#j=hJq)WO?mgUJbtmVa
z$C0?Yi*f3Wq5tnKJN0+LGIhgA&C|cJ8ChL?5Rojs^0n;2-2HY>%AYA$PX2iQfZ#+E
z%``u&$oo#`Z(d%q@$Ywq3!Fcn_Q*CsQnT|hmkF9X4vPj`=4~`EGu!!MUS6EL`T4&L
zKlXi!-IViv=OelOQjRZPtUr6X?iHiY+~u9wleB+LF^}3lvCq5EqH@C-M(50giGTcO
zE?WQQyocBy%`IQQoSpvv&w256|Bw1l?w%&J&06qD+Tr|HGyMc!#+KOsaMQ^-*Zt)C
zjo0y>=9*dmUB6G+zrS_C%6FMZ9zBcSZar1p`^b&U->Ux1`m?sTXWjk<i@pgkcD3Yj
z<?X+;<>u??M{jl|<zzm~UvbPbx9>yRgg4LYOzvJkRQGy*ci5Smr&~73)<D;TRegTC
z|Nrit1(PT5QTDBL*Db%`oA5ieaO;J&7Dt`0@3?sL-m9+n1ySa`KfMp;e80~-V{hdz
z^TqMex5BGFKh>|VG_<SRJKOqY-^E|KfoauuLzAm}c8h%N)7-pU^W?kSdj*sKg}>@G
zxEs9azRSaS5Al07KYu<K*L;zmR`>7T%JuSQla=N&Ji1mB|L??l7yU`oUixp#@zL4+
z#eDYB3PCQbyngT!;S00%>;JyaKYKX*!hLy}9m#Tsmi}JzKmVQayJgmHpO(4Tl;8FI
zuW<L*v(L}<_nY!tzuj_~`@(<r11>d>u`SsLt%3(F**7$_G%*D!fN+cz3}|)(h8f0w
z9xi>i%$$<cA_aZ7oWzn;m(=9^lvD+MkJQZcj1mPyBcvNJ3{9YiAE4~#!FdCQ8Pbj(
z&<z;r4k6)}>)we?ySLjzI3S?M)J!D$%8@oVosA0uli%phx*=qGEyHA6!jX(CE=e22
zuiOYY*wrNRQsdIi*jJZM*Vt!pzuC0=jn}7r_kaJnxwrV-Ov~?YY>U&Mov}Rqz@D*3
z)V#J~?L4*Fp=T~Vn>uysw5iiYpDl0eKJqH#TS3P1$k5EIalNNkt^olZ@g+-_hud}K
z_3|<G^mQt%7j@anvh7uBy6&VeXS}^`@8LSByKco5J$;?WpLW>Vu{Eqv(e*7A+te!i
z=7(o(Lvv@2nEj$Hdzw-!x6eDCR9jmsl9l6C+y6IZ&wdxd`x<xezZcx=Zm4^B67R92
zJD24=dBxliEx^#QG~KN32g8D{{B1uY9Ro8(XG**6HQbhGzio50SL|iZWv)lFj<vac
z7JL!rJM(jPFk{xVX_kNHo%8;=sKVDaQ7u0-v-#0Keg=lU^G?2d_1$ULw))2tV|INy
z^#8+;X?NCe9gHgbQC<2#rB(Ltvd0IuD!N=*zx??^FD0R)x0w}IozXwR^=op+vXdt_
zTL=C*;x|j^w3CMM)=yyqR}XDS+_=;HX-m%Us8~JAT-#~6U+tpL9-pk6{yc=|wC4T%
zkA>INm5LaHIyzo(2nup`br*MJa5JpF+vy^FPCzj5BYV%BHM=jU2c15%XLHAv-Ers7
zswy?^vw353_KHftOuMMquUCw6t)#5(@yt(b?=lM6(`i%c>~z*s)<nzo<jISyp{iQ*
z{?CnPWQa?d8TO3t@X7Fl{A=_gCKr12XBCw*OkMB2**@vQJKoIQHmnWtT{lIKc1~QV
zYE&T{aBOninVkl!M6&x|=6X4On3{HDgRIq-a)Yu0R)##+#ZGRsD}!dth{>BM5;$iP
zM?>=5zdIin>{i&mtjF%x?q8eda5Ly!?Ok$@;jr%d;H2^^!Adc?_ZDfbVwUzuxT5>|
z#brG)CI*?ix2H`D4=XZ}JvJr(+q#@-zb`~@`gQ8WKGD?)n{|R293Fh0lHSOBs-(Zf
zsPbw`)(%@1fi<y#Q)-tk_>#T#%&9G}>sT1ptYiM&&-yLb=-s1?vfVr5{T$C&&yie_
zosrnNNc?Z%0-p<|HqT$pP~3j%o@Gqo<p%`<2h9xKdX|;V)72;_i)r5W>hQFW&s;p8
z+ZOc;FHoKo=P0+u^I-P}|F}Dq5@AdXYI#Qwh2Pqh-<Ws&jD_g4h$6>Hf(OiATVFZ4
z_4=py`tQ3fKP(nJogrtl?ECB=p8E2qPHXGximSB!>NlOBG^tSHuKRAzsoCn0N0}Rh
zTW4;*!_@g{e!!pZPvI{4FVmtIEz$2hwb<qR{;J}f8;Vi?JELU;15ce_Y<EdC|6G;#
zI~mP2mFGJ?xp_>zBO)Z}yR1d>$@{42)GN~eXNyERc%E18u<^Y;BZFbW+7*%af;XLZ
z$_?6b#^~40Ck!^Sws+6P*<RK%F`0SigRA7#tuyYW-c<67{I<#Vz)sGjvulsv+AVck
zOhWy|)7Xcp%fy~+TAgH^{cK@hcj3O@n}6ocxuT_C&$hs2%g=(Hw;SH}`7<e>y2Z0}
z(<Y0<af|&T_Wm-oHn(*@9{YFMft#<D8@+$r-o5<wm&xC!Gkp1^`ejZu+s=0a7mD+a
zfB7}#?B$2E@5;}=yQ1LLd(lSbhxU`!&h>YgaCnk2+f9ZG;Y+rjuwL=(+f#u<dGli~
z%sBS4;n5?lzq_Ah{_=^NS5<U#LdCkWoov6~?tYV9A9^(;sdCnhbGFjL$Lfz?e|4<n
zs+Mu~;>?(Xg(fGus$-1Kth}M&mLhK95bu5BVcYVWHJlHgmF1qUdv?@w^VY&c+$(lG
zpW3!z(~ngbqjVPSDKS=lKmXB*LzPEX>1^J$?uZrB?lAM0rpXtcYc=%FPPsd8+wm>?
z3_pf;s=K7_H0#vx={V<E`z3_sMo8LJ#)O;v<y?7(^?x;MiXUNJe_+|$rSWeMwV!_~
zVOe>wY}2)i+ln@R|FC-*H^Z;H`)YzuewWK#d7RB)hQ`k2En!*Ll=s~>J#%RuJ3~ye
zdi0Ag^FO|gTx3+2CKmX^IxuhE`AVflPTpHDZk(QZUOG07{bNF$pVLF11i_1wC);Mp
zG5&Sgm3ud!;qb;CQ!d?kP&-*C<zD00m3vkPZ+W%8)UsAh|HjV%5gSn#7iNC8XZuyP
zJZej)zFV<fcGo-2K>r@~Px%L2<6e8`73{s2(szSZ(7Yz_$pyyGCKFSYPphpw+Rp6d
z-QDeW&z_Op*M0VzRlBDx=1XO|aPLWmSeAj-;f1GOB_5r2->-@>p4Y=8GI3`rGsBFO
z+K0jCT`r%yS2y9dzc|+>FNSMg&+kO9%gNIh|6VTSS|qmCzQBW_;p$Plua&F}TRac;
z?r{0~cE=0GhJCy>Qx|8>i;1gmzGcbH?_}_-(A&-3k0<7-Z^+c5vWfZ^FNwPB3v4a%
zj9j*+(9-4L?6(Qw4lXl!4yY|UbmMs6)u+`ice7Woir4Mi_ssU_j%SyqcF4)y*?T(J
zWv+@rT3gHAGA4!(LP?ij7MK>A#i}WB&HHlI!!){6EuH^;<EKh9-J^9~dF#(fZG4^j
zCAUld^_KsZf|}`xS!cahcP)8kE$yJXbLz<_i?_ElHLbq$D(#Yaf9$IL5pVl5UL^l<
zDY^f?B%|=jG_~(%-)>e@IyIS*p`DjgM0)$dh09V3#pYU7T#Z?or_Ip2PWiX<ckx*f
zwJWWEt=|8rGwWUQd+A$E6JJjE*MGINg(FSUzD#QI{(HaK7wu2_?z*3I$G0a{O&uK?
z%i`oWPWu?nz|engOYRYe^QjM(NZOjtDw?Op^D{HSwEJPxU*U|N9aYAmA=kIYn16b<
zPIOsGrwr2#gQ~pNqw@~WbF-~JxvnZU{%G=J_P3i{O_z0M?s!>n_`I-u+f?x-C;v87
zm49BvC!W>Q+q0{n^nA+1yn{C^b>=td^?!=*dU?m}`={2(<CW?$ET4+@6+Mi2dwp|M
z@g<|}bF*$AoFgotlV6>BKyrWL`~2g4G911(mYplKZ`cQ1k=D}cw=A>F>I-~)izjfy
zgcqAF@7nM@ba$!Qwdd3N6*JEKS-@J<%9s#f7iJTdB(jZ@p+wBK*v#s9y@uV}9q$fL
zV`;C~n!I@8R?n}~b*&FbeXaIqC=h>lc*%uVH+-~P(ylx|%AOl(nEmb1)Y@tG-+mX@
zt`EM*f0yrKyHt>Trs;+fW%;QBx}TR_*=zhJOG~QHB6x<x*C)&~g(~+S%PTQkxm#w!
ze_?J0lfIN^e-~}k3@t1*G-}VVVp!0uFiHQEjye0Sr~g*)UH5f~W!qUO`fP>9mhfdi
zzl*DvoWFU!|KM}i#j|pcmCO?InDWkhi{qR#r3F8Oer(NIdF|rHotpc<tTlYoQ`8nx
zfAJE7LI0a4@9RwG<^SFMZR+ut)3g@s;duLUIY09?%jKEV7oCY>c*Ya^{v@mW@_8jG
zybXONmtC@y4}4`6yx5&+bHjx9^35gl^OgHE+Vh(~&%eKa-O~yM8xQ|A2Tp_+)aIA3
zd^@Yb_TYQDpMt)tX72nG>@wx^q56Z93ZH9*<U4vZsaq&(uKp7;bH=BLI+0_ae|(qP
zFD;#5?&@cl?5US580+&|eSXE=d(11}mi*dsaqp|XX!RRf>#ZIivH7}4VU>hHWdrw@
z*y1U9X+esq%i=BM3Nsq!_)KBDd^GZRVq)gsJ=?@0(rx~DaQ0chc=9~;_LH@He^2}R
zR?_$6V{f}DlN;^c-i`CvB6G|z#oqMm@u_icI?OjLwx3GY;M*+o(Abdoxxdlff6ok)
zEX+dwSq7iFe2e2wZso_Xznqt^ufES`wzn@m<f4k@(wocg+`To|<HOm;=Tm0f+sgVk
zRM5?aXGe6He!Ty-$NIwFof_q{*S+atFnM+Cb``&%;78~3<ASOG)9%EqW}D$5X|8Fb
zzvi#~mS-#sVdtj{$Vx7XT4u$4s^gsIm6k}CDb*AG?7m)6n6>Ndbfzcy*8LsVPSzbX
zwlZ41MZ|1ncBBh;=(+Ibxck8?4pwqqY7Z4;&GFh({Z&Tr=*hfb?!)hy;%{{bOJyE&
ztk3<i;q}FYMYAf@PQUg!wc3`ebbX}3=1pRavjr`D?0lDT_?->%IX!!O>rY)pLBU?u
zoF1DuqM2ta{)hbT<=wmei_4jW$8S&G^cC@RabC@7{3*Vsc=kQ5E4D8)*1xV%eZnlU
zMzhB2$s(m?r5qCLB5Kd=TA-wK%Es<~R9ULwjCJ=m*Ij+1pSOl>$6qzR8S+t2vVB-x
z-j(_vV+zdwvUq~_`O{k8vY8zYW&ZKo9JBOu2t)Jy)TvAAmb1m^E&nTWHB!~*bz;Ce
z_1%*!#4ft{-sOEPI!~-T^XfJE{@-t|vX-UJ;kNnDdvtD5ebLX<l1JrN6%~qKF)sW3
zWvBdS17nXLiVghT)dlA#^xMQWnY_^dIg7F3oyq*wN0}NLx~#3OwGIXv%}8-)%_>(}
zl=ews*5OB&P2-o{JzvgTFiq|61mRf@B{Pp5K6m>4@>-XE<$FJV*__#3`?Bh01%t%#
z`v(-2R*P}6T=*)@cyaR%;WulVRJU$<9e=sH<ChVqa7y^9#+y!y%HKw7y!deb>ioq&
zCi5^TG?pDm_+zYes(z)MlZ#7ZZPjK5iF%{DlHNlWuIr*-tY~Ri8k5jr(`i$7>A3!)
zRi9ZSdX_(Ub$?a;L59V_Pk66x=v-kbzOPaxkDcL#%9STt6+gcpZcKJ`nHy0TUUun0
z{))_ocGr0q`u;9EYP6e0@S@N0<0c8q^%+*!o~p65@GQ$&tvX}!9hERm*346T9;5~T
z;XHr1eR7`P&B|AwdM~V*P;_g)$Cpbo5B8}_<wzA&f3|s_+04({p_`s}n(K>h#Qma$
zu`f<(<i5DnATPhcp8u5I&Oe#YkA9i==lt5hX`8ee6Lxx6Bs^(z+t1(G(dFHAy}DQS
z>9u9+^BVQP*sNhV@UlQ};>$UEuU|hRWLi*kwcTI((j`mY2f|T24VvOI(QYm--;I?1
z-iww=F}Izq`&)h1N29t%A*UIQ;_pl6e0ch0*AofeUn}EYBng(X9$0d@yry!o?56`W
z?~5}um$|qcaz1@8J0;@p=J3@KXV>eL?2vuGa7xxa$=!Pbt1gPaZ!uKg&3GqvqrTbh
z>-Q4o)~=IUb9&`J8)x?1&{GjgbAC!|_yqMdZQQcyDvODcnC5rqS*f$lp5|UGoO&Vu
z<aMX(j_%4D@88D<c?<UkHM`0!O<_79wdxw@EoD{J8LMPYcV3dJTrXy=|2xOVKl6Qy
z;&<z3r+>>$YC5=c($%)dTar7u84YqK8*0bOIGddj-@NUw#`^U|NgIQ{*qxDHnNX*)
zNdCwh$-l{#)pm2=%YL-IP<W!To4sG-;GCyl(|0Y8G40IA{(E)(zc|l#UanW49o5<#
zaG%L%IhR&VRDN)-mA)DG?<M7D<K|Q?YF%T>zb8T~K0x?w$EMfLf7C8c-_KXS@mtnJ
zrffT21D)5#KkMwSE<C+{iqM1*agH0;9j@kgYuikXyy0}t&V2SO*UTBRhKiRLzVqtN
zSasZV(V6}H>tepWefHOSmfArx=I;4F;)A`d?-sQPz7^0}aWV0{v`dF&w-}Go`e_^I
z&R*@H)A3WaDm<irm$&{R>p!}GysM|ZyZim`v8CxuyF9Z*Y`1WBzJ6G2T|NJ1{uZB)
zeBQ6FDg1oBY5$_5vT;{aE_1&Y*POA|#l`*q8^xuupEu|hPKaG8r)E-L=2fc|Is2pY
z?SqxYpZpjaep&t6SIFG_?t`yD_=0!eSN<uy*IldZ!ys;d^@!q?{NG34Ou7AcV{(E=
zECa)NduE2Scm0#*-<tR!j7Ko^kL3o|zAKgSM_=uJ_T4vk4fj|1__aT`&3g7<ZQVON
z<y|b({&$y^PRU#uT))IemA8A@hM#uRbDpkW=NQbu&}@90d4}Mn|1mnu3_kHni@cZW
z^YsVk=!k3V`u%C$^)r7Wc{Se5DK6d3;5N6WV&l34FWR$ImxvW??fdrJ(0P%xY3-IB
zHSzyc%_V<qThYw4RegEvoIHjHr)&OmPi*qHTQEyxxtV6AcTHzfr(c?@<^}V$?3cc2
zc^vFYXy?26$hM4IKgS?*{<XT-GYfX8MI6#LoEa;8%)B$wJjrEk*p15BDmv@8bD4z2
z2+GV{#(#RN@a_V`?ku;18Xe1ec&g^?NL=^(?rpA?GiSR*zPRp?K6E4Q=T>hUz18nJ
zrLt7F?s+92_*Y|p-qbryLGsJ5UfIOCBmDWsfB--5URBWpX-``Z1?+pVQTs!mQp-tu
zkNc6z!rJ-Tx0)(<g@3;m#*i@QS(x0c#LFxG9I|4F2(0lxlW+3+#FDMo*UQCUyS$6x
zuk9j%)FSUGZ0q|?tHtX7ui59kE4p08bsMK?3vcbR0_o4fFB=6f6#e?;_$iaqTP)Yu
zigAbCR>8{SD@~%-vNJ@RUB9$XK`H9`D@ncHgx%koCd@O`Syk+mvn)#c#bfzf_m~bg
zcb*ebk(<3v%}``lzH-ClZmB?f&C}6U4_Db;Q2o&@71Vxownn?h!K3HDGhUmprQsgy
z)qi`hn#C)1%}>o<ayj>j$Iqs{5&=8*vT7x=*V<=3x+g6uWL$9j^KOPe$GD#;zp%KX
ze`(cX&C}UiHVO+myO=~3{#@10yYynsvg1<WTVLFt_HKE;?a%iuKb4d!=WqJ9ef{a_
zs=9pl{w)fhey#75*Mx{&AB?VDKHl4LFXSCZ&Vt8V<rWK1v=a*!*}J}!`RId_%VUHB
z9V-@yxrs+H8@xTi^XdG2_2sIIOG6yF_sA_*U7wzr7N@xAAaCd9&Of`I&hG5nkipL^
zaFKD+{pI!Z6ZU;jzBR*W+rj=-cK-q=%$dmaI3z!Mqqi<|rLO1q6iuO+y4?6pJ~j4R
zp8ZnI`xV*G^7U}u2KC62>zu*6yE~#xpWTqrkts-sSDtk<ex~8ay0{`1mb2Tq%|0ZU
zJV;KT>sg;F_WaoGQ>s@iR?fWgP5bHn&REGn*Hh2#?vLQeHcfjzCBC<Rf;B_4;d^`Y
zc*dN4H(Q=uxL#RxLAWwT>UX!K|L3N>qtoyGyff?ItQXc#ls`Z7i8JeT?r6Mg&~o$N
z(YL!FHtl@)n4v-Pnf?rp+pD4`e~e!!z53yV_sSE`+3t>B_pOiFlp(}l|Jh{2TBooR
z85eZZRx52^U-|Rttusbmj2k?rY`-CuAaq&xnxE9ZuRPsy|C(p6<bB}4zeJ+v+ZB^L
z>g?-G=da1E)e62BoRxLp&h0ZbUe$~&z8hE=;#|M3Tl)BwOH|fg`=C2<0hU*~&wHJ2
z+`4T4@tK~Qllj5|H^06p%rg6FOu4{oj~7KhChKkZyiSbaO`oLmRsAm~46+w}kePRK
zj-;;t{6N;SeN(Is-q`FH?DvI_b+UBZhuJeXuDQ7~RwS97A!EAfoUh^c3O*d_KRf^3
zA<Zp&#2ied+PIe=v%BZv^1F3k-OlxVy%!i6)Ed|OoQgkP&@t=dhpRdfcQ0$c+3~$b
z_vKWn#_uKbOEy10pW*pj=!Dz;GfQ7pn=}92c4zk_&zATO4Qcrcx=OdaT&lM$xcPZD
z`=ZTa4CSg5Gqt0g&bT%vel}erTYV<B!tQPG&gO2m?Rj3sLh8#kY!+r;_;~B}340rp
z1572iUng6%3S>63HZ<qmTb}={j*(&3@B2FS&MyAfC!K2ARn)l9uITFP|4mQgE~L%B
zslU^q{eFB=qs<H#mnm+7-7=C6xi!(Nf4Lg`;*uBQZ&-QRk89DQhdS(D=OeDo(mQun
z$@22jub-a8vAv8?tlW4yXypW-?auvO8vAE-qzTSd`IP_O`5ps<S+he|{Ogj2phuJ5
zMKCtpoN(L4zgk<-&#^{Oeg579C#TsTzww*><QMnJPtz17W3E43Y`*5c!^@DM55|I5
zbHBcOb@6>tQ-Q{2{l*j9qYO6%MPH4yDGHbuHEX}O#R@;EGWp3q@x{Ametsy@`1Jeg
zhn1K37%WyY+WOqy%<#jFQR1=lR?7#n&o4(^?U>BomRXdc)BAk?>HnMBwt8%e3#tz-
zZesIKjf?3ocUgZrQ!>G6s<O0bQS|3l+h1#aE?<4HYQ2)VotK7c!{g7Y3=OL%-F<cD
z)A8wdGiQr!n2^)Z`0%um%8ppKu4)0@mivW~re(jhjih~BE?wHYZ9O{!-`=y66VpyI
zzB_p(SKE_?LHtphp@djgN!P4>x4#ALU75BZU|##80-ujlH>PIYFLM2%J5lPa?LOHJ
zpSWr>l)t+rulyiz+iszu{jZBhjHMg8@0+enci5_VbKCS6<*7@}xaVGd$(THAbwS+1
zP>1@H%YUx&-zSpJ!)|5YEV=SWqgZc(Kz(!#+vjC=JF^+S_~pM+{gBn{pr85s_qj8n
zpU?b{tXk=rx4GTS<k&~qNh{>r?*EKok9flUz<p_n@?!JU=o^Nfibn75uk@B~v2O2N
zT6vQ<v(>zBok!KNBYR$RZOr<8Zm;IY)g}6D47<`8X3f;SE6ipfdu>VhoqHBRr?l5+
zUkv<sy5LiO>~?{TLHTD*gAX3&U)FBI%Wb=2<HMTuOz|;cJ@YNpE@wV}_NSVgOZfE7
z;P1<xOgo*$D6#L!*UY<)-IMo+PPzUve%1xMb#^P==le7UsD5(eJ8h+X!R>)^UY_LE
zcdr(<Ivg@dtekh2?^o={J8K*HrGsazyn6UV3%}F#axaaQN3L(mdNH3TbE>bLkm0NM
z%S^s%>o42>f<<ugAGgi7l;8RKK048M<o-|ZS=%N^7s>2A(c)zxwP)&wtM`^|DLkkf
zduY#14UUgD)_;pkzaw@_`!N@v#-zP51zv%=ORQr4F4D}s*E+38`t!Pjj*I7Hq;40!
z`uK?A%+RuJD&F3z7xc1cO@24?=BL<&^N)9~oiejMF4VwyyX2P|Z7~%?`B#dHk1ZC7
zGWYU6oN_T`S?`IUw8h)c@3i`TL#v`&>-y9Ds~SAtYy0n|-QPWDp74TRzDN4cSFY6R
zI<CpLTh0CX`%3MD9n<8cLMDfvnLBf5*wn>0X4*CVeP&<d_q^7612cDmPVxL2?K+0X
zJC-ctPyQWtD)^(w?{uZl@2fUcRzHf`^(Tb4EiBUi_tE!HF3)M0wwBGy`8Ipg^(JNG
zXZ3OAYMj=SR^0P6_sRS9xws?h>C>})BHlYoR2D7DKJ`rLjF0w@?3+(^3WwJ3*mRY>
z*Xcyh-9-$JZ@Ft8=L^l^QM`4BOVU1@`Dp5wg??HdFA}0kH{SUDvs|uP*-Ex&apI&d
zb)nYDPVBK;SwhSOOU~ZnwGmK%yWi>G-h}F$y@lElJ9bY#(qQ1+xoyhNeWEIp1I&94
zetCBB+qLue0yuxUSN+bN8e(9nK0!%eqtLCR=EaPVT+>;<{yKb;Z~n5r+4$|wlhYmK
zwZAM~5`X`FJS)Qird9v^C(F4M{}0t%!<Ce+wKm)5@!84`-!$Il_V!$A|02$iz;QP;
z>Hal){;+<v*A0D!*KNXG)&-ucnk=li{x0JSIgja6HGj`<?=5-j))u_F!^-z9LjvpC
zu(_{)=QG|ed$c5MR^s#3xixp)zx3~2RQaFP{=sEMh69oR%FfweWfltzuKhIMY}224
z<qUU>WCeK}u7*ed_4@q(+KQ?R{m06qBA2|{_-UcF$^K;$3<unlvYu{k`sckM%)vGC
zsiLL)YQ_xXs+LWfy#M1Deq#>&(qrF|!u}#!@c$y)h)+$n3ySU6Uazb__W!c%Px*iC
z{~y->kpEYmxcP&P=gkQp&pTdTIa8GL+l%jV6GC}>?svPmum(ptOSn&SJZzXUJ&Q|w
zXVtFHd%P^v^QOIw`0_F}uE@&tPwBju8P$#(12<kc6x5u2|9HK5_u`XDT3pS=QH!6S
zbxwXa{hX4|@5g_=jSOeMezqX^=evgfC6{$1`DSiN50gzT(!SEY<*LT|SKH&0W758+
zb{aX!rAYai{W;*N|J|)+;WUTC8pb<!C|TzO&hP4abV@7lc-iX1!k4%XYOkMkVEfd9
ziUPO$b3g9;^e=U@(}hP*7#WhY9$&hB@j%>*dMh>e+yk%vHCcDAn=5>|by2P9`H6QQ
z{9F7*aZQ(=W*URT<~2@M*N-JsetVme9yc*Htmt!T*^T6<|K4v`y<mUm--GS9P0HBv
zcP|r>-<FqXX~=doWmVkN-~cv;gq*j#)?KXlr)QLvrvG)jq5op;`B(UQXMGh|-6DSN
zSzEAid-Ltc<2&B>NS{Bybdy%2ShZo#JkM?4-1*p=ec$a_EaWytPWGx-aO~d4GcHR1
zTaht+x#g4VU%BS)%~>@6%E_;ZeLEXpto4@WR{y<@ZBM$tT4v_dRPoI`TmEWqjgU!R
z{pd$a?Z(5rRX6YM`Qi3SxajR<TkX4bSDtbUeP41_aB3;r+4dREb4zq$s@8=(wD;RM
zr{+#Wlh<_-hB;*$znVXhV%ziY<>hk+lN<OJn$7%FbmgU8a?Q4d_m(>PRQW|e{!sq1
z^J5_A8H?S~ifvPv9rArTSFCcHF->*yW#{e9Vzy;}?-cZeJ__D^i&yGySx`??@2Uf<
zm@ez?cy(vhj0-|vTWj*ZpZR??^&2OHVMF}XrEXr<(t&k}1%YW#cSwZQ+&Ht%_Egu^
zQ|9kjAIK};k5hWrd(Y>_*T0s}rf@Rkl+8?v&1KlF8Fg~`XKBGugPvUb__#0SKMn@%
z)UvLhu;k^E^Tt`%@9o;uH9dCe@uZCt6OS!0I<-OP(9#Hf6Ww)3Jo5Kh>7D(sLGPT0
z?#5F)@4MaJ(mZYFx!Av4;o^>0Ua!fqn{W8mYP)*%vX(DTk0snJk=m$`@ZxvxJ1zU3
zbKlRuoBUB>))Wx~siQ2u*YoV#71jL$ru|iW#@im6bmmFutBmlbvs0FaGd?I4Ei)^A
z^yJwGp1Jb*nWs9;S9Kj<n_&5UTlQ@Ex{pCwJ4<HzOn>)G?Uzln*|$R{rf+AOy>ca&
zhJBB6?cPbsOQPiF<hj28q-^ypTfy@B6^mb~-}G+Ya<{6oWh_``^!42A@?Mo&-!^LZ
z@1M@iVDS6IxmADJ53#>&x^rpH6_<%ZOwruA<uYP|p7W!HJ35vfyEJ$4_jOhEruQOO
zy0Evs*y!;lqpEcJtK|)a7J56jB!4fh`?~EsgIDjK>VTVXe|CNK+4=0R{2!UPIa(Ey
z)z>mzPhR3Yd!ymxIa_skCZBEFG}W3X;oo$z!pfKV@yAs~LtgJ{?p_^#Pk(QvSXdeJ
zvj6LjJ(5^EBaeZhe)}WNd0u>vH|-5vKEEaX<fen{ci2DN(lJ*&6u&dnblKXi`&##Q
zH*ZZ-?cfSBi%mK6YmHfQwt;BsqBq;$D7J}Cy%{<4P}810bJ7=jbq1}8KebKXWK+Ag
z>XJXQv!?4LSv+OvUU@}N$(Z@=qzuEod7Db^-g>=0<oTx!TYJx}k(FVaI(w>$%90cn
zPVLB9R%&m&HP^lmWn8sUTGBZB^~z_z#9G_l{J9d6ZoIG1vvHZjl2qa8lXN|NPm6b6
z>G`r-SDCHm(lwWLiyc^<Rv&yRsv9C{th(Tks;=zZH$jWd!u}L=m%CLJvSe6AOU#Oh
zdX@2d3U{&PEGaA5tqq&rET8xO=C2>@AL_rZn4`*-nwNrpb|YwA1!(Pug^4NR@J36L
zmw^y{cq3)2Kun>lK%j>=f|jcge|RI>qL8_FH$7Ry)pmLJvw!(JzdN3ve(Fbahk}0F
z^Ng&pMQ)A)9=|^Sty}-Zw8l<;YMDjS;;Z7DcRxA)+&uF9&GRp<nO%FER8zO6ZFpsw
zDmXLfSyiX*H>RiwM{K*E247I#zdr79^_G|Xf1hu;ryvp(^gHZTtcl?y#>PX-O}_m&
zEZ%qD)N<;zH-$6am-0NBUw!gk&VKF3d!{?TYv}mB&#<&EZfo<2J&v(+=j2|fYV`T*
zqR*Lf?nBP?{b}rd-!}(Ne_K;~nTxS$<(~A4Qw{Ck?#}by^<3}=x31kTfBTbNA4F>-
zZQ=q1LVmSJOfs8s;X;ywzM;G6jOeum#gjT8bWLBeY0m4QjEANVUKBSf{LI<t6Logo
zhKyrB1^1P*-h7yUW}eKo^F>|hQ(bE>$8J0Q;KP~s+rO*F@_xCRemOYru1Buoy#K~B
zKGD0joxR>wYb^BWo=2OV(3;q*i|UT8w3)o_b$fCt$1JOzH|jQWovFOB{L-s4ZQ4Jp
z=S?&A{BlEj#_76?Z>F5c<69kkZM9L_Z9(JLB5&@zi(h`psD}SDQ^xJ1;ha_ViYl`g
zU#$`Eu}qkG-ja1A??vk?yG}lRBel8j(piPhQX$8^sa1;CRcD*&{Mr2Uy_ZtYlGowu
zkF3@)*>-$$;j@O>(|s-M-fz4l)~HugCYB={=JCiOOZwHq-G*CV9+<ZBSa9Z}Czdvk
z4c9M`y{M7Xrx{nfS2VmqbJf`b$JAQJuv;!cnYxmqbG{$hsd4;e>a8=8VScCIZ8n_R
zwVHFGj)s=)?Cx!=ZIbogt_jPT_gwR^#q9ElnP1O+D9smFzGIc<B;gXz@h9|_p47%e
z`oA_sd|{fJ5nD3j=h{j|?y9Su%t?0{=kGceyp+}O*DtYdF5gARr6M_R&C3*T5#so5
zw&&9Hg%*a>gH~%D<d&bB*JYu8>4Nb3hrL?OHQ!YGx@YvwysX(9wjfb@^HHtf%$)_l
zY96lmGI?RQ#<@fOiHf^9el2+9r)=X<EMYol)|`8>f{aCb@|PW&^l+KnbHR{puJQJB
z1Qy;jNVjl&#rQDF=j1iU><yQ%OYk*cw$5ovH>|5v>CmeESd)L-Fqd&5Q|G+%4*ypD
zFe#V#r`4-)t?$8)hpdmL3tw?RbUfAQVouNJY-#=L&%LGg-0WGfg^e+-u25COWBcPx
zNB^AP)hsvv{PJ?GJ`LOM1MiZ)^nLzYx6tjJ<aynSul5$@g0a`P_qgXA$kX;sS<-!a
zK}xE0hX2`<6$>qI&*7e>RBkwL>GKU=^6tNX@MiO+v$cG_O?x?>%&7T)xLQHYWa$*W
z|I55Hy8qwYaN$(gtax3Y6Gv7)5^7p-JFj?xZ)S>?=;dv~yh7jZlz3eYsoG&5Yx9sp
z(ZO9PWM(xFcRuIz8Syv#pMQ%z)McfmD_yRTe|eVvV`uwiF7@FH4=j>fxn19&edAge
zFW-hV?jEDsQ0AZ*$!t*(-ey<RA9eTLb#1Qod=>rwxpKkP_nv3weHW>G-eu!@MWf;U
zhp4`!>0iy}tL|X>_WQu$WObuCCenr6n>WoB$lM|sY`4>N>nuK@1!p;!Za;a}pu8o=
z{?%E7|27?A>{W~9dtTaRWduKHT9jlS`n^Fk((?c6Ii?mzvt~cPwyLV9V$y<3o99mz
z;i!Ggc&t)ZDPpzgl^vTUt{?Nf7cTJ2Z|B8UWtqdq=NKm%eAUf7^=HkJoN^bpHRms#
zRN8#g?wQaLU!`5UCH^p;+4pi`ljo7&TuL&5GlJ~*nI7Q3XXa=i9Tjyq`RT=yPnTw9
znJxV}>xlJp8OQnASA?y!wST+6d9>eaUV^b0(<42ZKD+A^y{+V8EH<>*SO51E(E2ak
z``YyG?uG7xRfY3QVhd`nR2RSWE#3Q@qeP<k=LNHCQ-f{SYHrrGUmtHJ^uXtx+#P0P
z|BR`1|Lph5pA~y<-L&k|^bi$`Ky}B?+wV{DZ@e#D{%u{oa|_RL;fbliFGCj}ymM4W
za7TWymDBsAv&;U){NH!;_?ynkvlAcKR1|7e>%}L3=BsY$bA8XVr>Jc8?InJX_kLoY
z$y(Pu^_WXoqEL1(gY0|nl68V}c2(z^eVOv@THEt2Y2RJyJ57VHSzKUZth#INGe5&{
zVd#piaCS@e)m7~Yt4eCCH%Ue^3NPE<nz=OpP1eya_T|qTLm$`f{uHdwtis{5xADTB
zW#x;jrOq!cXR=CAJYjq~YC*^^%OeXNme@64zB46xZIt4KhA7_+Mz<_|pR^oo%aaI{
zalSKkhryK2v^e48VaoEWX0O;G`bYWg51m?l1NH2){qxoPbgrrFW_M&=8GCN3n8vqr
zA*&saR9nnSGhcZrP~(($s%kH5^|h#J758=8-FBZ`Fe4<U=*sS;c?Mr4<u?|;nEg26
z7*oudp1FUDmGAvwQch~FDf@io?Uk&Qu%?vFPao|PVYii;Xgrte*Tof1o71$<7K_wx
zeiAe7jf**}>>*QQ-{zgmznoSPyC0@+m3hMZpWK@;7PIP{EPFwfJrk$v$-MmC%Xd(K
zQ~I5psqegq*=rtO7k8Zbzb|FmmdX21cHaN@Fnoo2cSL(iwT0f&i7pRw;_l}6e|0na
z{oi?3=f`=8{h@DJ`tGLG$$#1PEy}CALaxs)zGdpa-_Q50UDw>ZSEf|3{mC9Nr)Gmf
z_6MpR9P_5TvT}4pZ1OwdW8YP8qo*Y^PuxFuj>2RKareTK>nv*-ci4L{n!nikVv$L3
zYEzf|{X=cah1;*bd!D81%&XKs$zq$s-sMdNbHt1i)}5&9bh+@{J9=s8tSI+Svm>1U
zzPUQNkjvvI>ncgD%c;>vMQ<INX}9BW*~_@T==q0P_4yUv^ew!ZmM)N#Z2rn|(>(p1
zpFMf&cTQS=_-pSU%@unY${jmT)U7{WJ9Ev~x0ds*v(J^*39nxEJlTBng)_Iqch&t9
zJ^Qga>HMD^uRr%5^{7cbbHwYsRrt}mOcU9aCr$3Z%C@lRV)xb!d6%>-f9cF$K2yZ5
zzBTX^j9C&PQu?w)ygasJi+7-n_<J2)Kk?!%v+|#}-)5;#$ba@yJ5q*e;j{QZ4KkOX
zZfezCX=3<jYO3(=`(MNuR6T#JU_W!g=S%rp-NU;Dr)G;>wDEq;_t*0At6p{IEAg2>
z3cpz?<wSF7<!<+g|5iTR_i<KdgTT_=N&YRx)2Ew6sczgdqwAW%`AeMhzZO3WJ=(=E
zGsym2<>ieoBC$*L_pG&j$h_|4bhiuaysXEool||nO59n3A5|M1t;ndmJHP6r*Y18h
z!$a$;_ywNLcACR2aG`LIWpUx+OUX@~SF+n`ETVY79^yQ>>ap*RBZvS0-&DU{)tpH@
zjn#aG9e?N4_UO=;k4l9fow7QAB;<;y<H<SOWWUTVD>T$vaI5Xm`3T|qr{br0*NeQ~
z{Nvm8Lvub0%zUo7Nc%JY+=Q(TA7@1E%}C>3d++D1te79GEAK6<Y=~x8d^AT&=;$#)
zIZ4T=HRp}bwHH>b^gMPo?PPh>;^ZF-mF!%uF5hLh{Lje_(XX|}jBB>^TzURvu0zC2
z_3o|nm#2j-IC0X2&2Q=a4sThp+n)30h+nglc9|MBWwyvcO+VfLRiek|EnPq5w2F>)
zzO%!VrNRQQdP=J9{*Ihe>~h?i@rcI787n4h&7Jb+RN7^`>Wvn+)#oo2Hf)tu>nmIN
zHseX8)lc@Dt4lfgGM7%SKk%O+!D(`sm1m#Q+LB2!uB+h0v!#<WH(g<w+2|#G_2cu`
zj1Nz|KfGeY!`o>)UQfBj=TzsD#Jbz2{=4<h!`6az{jYxVeh^u9c8S+@6W734-;Vre
zLN%|7YQA5cHB0LIMY)qJO;f(QFQ^W`c3$J!jg|RpubH2#vp08G+4(C(jm1UR{6V+O
zyMM`Nf1SCq-@x>$E5lSZgTD+F95c$&p0b;CNeep7?wWPyPomlV@(?k9tBs+%82)Jg
z`JP{E^Z(%f*s@KRm>xD<n_T)Rg<F-uN36J|eT9h!2m1y7Ey=gPH0k7t_-UBlEIYQ_
z{NJIUCYMtBv_0+^9ety`;(YNjm#r2Dy>5#de`H?b#(bkKFQloM$xGHuY1`C$FJJ8Q
znm;qpq%LXN&)EwF)A@T3X#HK)yjpWBvyt`oGp~=Q3jNGJc$y{brP?m0g%SA-eLLJH
z)L&m2-0t?qccQXt>7>PdMOU|<`6gW@)&AmH<JMVTvyOzlRBv#5Fk@$KQ$X>gD{~fK
z^8Ha27w*2c_}d+|8Gq#2vTW3_b(lb15KxE7*wD}bBoAU68iFq41F?ud?w;6-5=;$D
zNL@H@prG%QnwMUZp<rkTx}GCQ0qq_P9P8#mR@uRC!iZ>nd)1KdfC3N8!Q21stu%vN
z4mqtn{MJNbyEdcbx}BHyf81&GYv+wSIdKiCMpeR-SZ0SG`mnTvzgGU<{d+%DBhIN@
zvzMLyGx4u*?>Y1C<y>5#&_eHif}95mHw#0MEQn=H`kfO*c0NJg(+?<0P036y$uCkc
zGyrW9z`q3nIV3?h8h}C)+V=#-II(?Ckj;pI&1igk+mWxyK%n)Z`O@c~z1p-Z?Uv|C
z2`;>nB%t|ozpL`xgF@o^ybD?dw#>VkYW7^k^K5ZW(B#KKn-n9p-khHk8g%Q!>aew&
zB8-YB?V0|)Oa58%&nM58dW9FhQeFA_-m#Mp|1JF$-syQs``^BoACq6|d2+F)t6ES0
z)&6X&_=K1DKQI}s_KDfwmF>B2kE!T8hK9LY(jFiFbmu&)?MXg{cGGizYhL&_&nsYW
zc=g2m_q-JLhRHK?zTK7AXJz=1y>=%5Loxmvx0nyi<S{RZ`~IT+i1<Q&2GOW0mDzQ#
z(`0@reP?{I!Ygi*PF4TBJM0b3KOW@=^Ur<r>INu+(W4&}rl3eSGC|zGi8S`$oL`z(
zqF|_?@12=atPl-~G6RJmg;>}<E&++@sl}jJOoiTJVu(C);arrOSdy8a=aN{Gs-WRw
zWn^GvXkcb!U}$M*U|^|jV5DwfpsvZK4_237q@a<TSW=LaUy_rVq+qOPsAs67kWo@n
zV5P5*kkHF7O4sDl4=Bn{DNRmA)l-m?rjV4FoSmAN0@1ID<g|*S)HE&w1w$hPE(17F
zFf%nZHdRPdfQx|&5|Fe)9z@L0%+SEhKmjCV024DXG_kP26tgrkMptKQU}S_TW`aeX
znF*RY0|NsyQw%X<OA8D!BLfUEBV#j6dyOs3(exUcnV6!hGd4FgLsw^FU}BE$7864g
zGcz>v%nVG7EYZb`&5hChW@ch;fo`6Kv9Srdc@}177;d&OH#b5v&(Ofk!T>Ey4Gj$p
zjnVvJXlQ6?j%J6Uv7w12S{N7_n^>TSfuXUfr6Ib#re+q#X#O=cGcYy5h!0~U12lC8
z2F3;khG=1BU}T2w76StlBaFB-Ffz74^RI!Sv57Idd4|SDm|{lepb{RGppnwEi3OV9
zK=xu0GcmzbXKINamj)*0==sRNz{J7~-OUE3hL~YxYHWcPM+OF_W|(4T29{{?YhYkz
zWQ<{lnXx5?o6XG4(ZkBX+`s};%m_WL85o!wWBS9~3?nZXm|J3sSr}o4sfD=-M%u8j
zG{p#0OK@8PCEg4yjWF_-fu$*Cda*P&MoZ%ch6V<p!WzXqLjyyMa4|G6wnPt8Lj!Y+
za>&ro&;mW(8yXs!qsNh<p&6z+BLj^5VQ6Gzieayji3x^zrWkqEz|hnJquekwGr<T0
zBMZztV`O21VXv{dAx7C`Vqjv5o~}#`EX>ivz{J1;BdkmeO)$(eHN;HgriSLAE3#4I
z$jrb5qr5jWHaA2MD>D;AbM!jO%*4<VQ_LKro-sEuGeK8pZenJJo<A&%jg8RLsf8J4
zUa&AXG(gYO7UqVao4!%}W?^n_fF7on7KX;?VQOh%h+Zcf8km`*=U-4AV2I{ELqh{o
z^t53Js^Zb?0M!-fdC<_v$lMfNoskiyy~c(n=wT14Q%um^Vr*)R-aariHZ?|X9~c^&
zTA=4aLlX-_^soYnfvy8Y4pT!@GYe231Vzluz!1GmG&D0XLNBvHb(s;mf6YJz0&2Zw
zXl7_=gp^)NiV`z(Qj54ieKF6xw0s3aP)VZ@q@W*^pATwIg4&S!!I@R5pyn8;jaFQe
XSX2UTp&6PP8kw7Nsj9mAyKw;kq;IP!

literal 0
HcmV?d00001

diff --git a/pythonscripts/figure_S4_streamfunction.ipynb b/pythonscripts/figure_S4_streamfunction.ipynb
new file mode 100644
index 0000000..77e087e
--- /dev/null
+++ b/pythonscripts/figure_S4_streamfunction.ipynb
@@ -0,0 +1,327 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Stationary eddy stream function response\n",
+    "\n",
+    "This script generates figure S4: cloud impacts on stationary eddy stream function response at 300 hPa."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import cartopy.crs as ccrs\n",
+    "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify months and seasons of the year"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', \n",
+    "          'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']\n",
+    "seasons = ['DJF', 'MAM', 'JJA', 'SON']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify simulations that are analyzed and impacts that are calculated (total response, SST impact, global cloud impact, regional cloud impacts)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# simulations with global cloud changes\n",
+    "runs_glo = ['T1C1', 'T2C2', 'T2C1', 'T1C2']\n",
+    "\n",
+    "# simulations with regional cloud changes\n",
+    "runs_reg_TR = ['T1C2TR', 'T1C1TR', 'T2C2TR', 'T2C1TR']\n",
+    "runs_reg_TA = ['T1C2TA', 'T1C1TA', 'T2C2TA', 'T2C1TA']\n",
+    "runs_reg_IO = ['T1C2IO', 'T1C1IO', 'T2C2IO', 'T2C1IO']\n",
+    "runs_reg_WP = ['T1C2WP', 'T1C1WP', 'T2C2WP', 'T2C1WP']\n",
+    "runs_reg_EP = ['T1C2EP', 'T1C1EP', 'T2C2EP', 'T2C1EP']\n",
+    "\n",
+    "runs_reg = runs_reg_TR + runs_reg_TA + runs_reg_IO + runs_reg_WP + runs_reg_EP\n",
+    "runs_all = runs_glo + runs_reg\n",
+    "\n",
+    "# responses\n",
+    "response_all = ['total', 'SST', 'cloud',\n",
+    "                'cloud TR', 'cloud notTR',\n",
+    "                'cloud TA', 'cloud notTA', 'cloud IO', 'cloud notIO',\n",
+    "                'cloud WP', 'cloud notWP', 'cloud EP', 'cloud notEP']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Read stream function at 300 hPa"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "reading T1C1\n",
+      "reading T2C2\n",
+      "reading T2C1\n",
+      "reading T1C2\n",
+      "reading T1C2TR\n",
+      "reading T1C1TR\n",
+      "reading T2C2TR\n",
+      "reading T2C1TR\n",
+      "reading T1C2TA\n",
+      "reading T1C1TA\n",
+      "reading T2C2TA\n",
+      "reading T2C1TA\n",
+      "reading T1C2IO\n",
+      "reading T1C1IO\n",
+      "reading T2C2IO\n",
+      "reading T2C1IO\n",
+      "reading T1C2WP\n",
+      "reading T1C1WP\n",
+      "reading T2C2WP\n",
+      "reading T2C1WP\n",
+      "reading T1C2EP\n",
+      "reading T1C1EP\n",
+      "reading T2C2EP\n",
+      "reading T2C1EP\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../ICON-NWP_lockedclouds/'\n",
+    "sf300 = {}\n",
+    "for run in runs_all:\n",
+    "    print('reading ' + run)\n",
+    "    ifile = 'ICON-NWP_AMIP_' + run + '_3d_mm.streamfct.nc'\n",
+    "    ncfile = nc.Dataset(ipath + ifile, 'r')\n",
+    "    lats = ncfile.variables['lat'][:].data\n",
+    "    lons = ncfile.variables['lon'][:].data\n",
+    "    levs = ncfile.variables['lev'][:].data\n",
+    "    sf = ncfile.variables['sf'][:].data\n",
+    "    ncfile.close()\n",
+    "    del ifile, ncfile\n",
+    "    \n",
+    "    # calculate stationary eddy stream function \n",
+    "    # subtract monthly-mean zonal-mean stream function from monthly-mean\n",
+    "    # lev-lat-lon stream function to get the stationary eddy stream function\n",
+    "    sfstat = sf - np.nanmean(sf, axis=3)[:, :, :, None]\n",
+    "    \n",
+    "    # get stationary stream function at 300 hPa\n",
+    "    levind300 = (np.abs(levs-300e2)).argmin() # index of 300 hPa level\n",
+    "    sf300[run] = sfstat[:, levind300, :, :]\n",
+    "    \n",
+    "    del levs, sf, sfstat, levind300\n",
+    "del run\n",
+    "del ipath"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate DJF mean"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "sf300_djf = {}\n",
+    "for run in runs_all:\n",
+    "    sf300_djf[run] = fct.calcMonthlyandSeasonMean(sf300[run],\n",
+    "                                                  months, seasons)[1]['DJF']\n",
+    "del run\n",
+    "\n",
+    "del sf300"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate response"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "dsf300 = np.full((len(response_all), len(lats), len(lons)),\n",
+    "                 np.nan, dtype=float)\n",
+    "\n",
+    "# total, SST, cloud\n",
+    "dsf300[0, :, :], dsf300[1, :, :], dsf300[2, :, :] = \\\n",
+    "       fct.calc_impacts_timmean(sf300_djf['T1C1'], sf300_djf['T2C2'],\n",
+    "                                sf300_djf['T1C2'], sf300_djf['T2C1'])\n",
+    "# regional cloud impacts\n",
+    "for k in range(int(len(runs_reg)/4)):\n",
+    "    _, _, dsf300[k*2+3, :, :], dsf300[k*2+4, :, :] = \\\n",
+    "          fct.calc_3impacts_timmean(sf300_djf['T1C1'],\n",
+    "                                    sf300_djf['T2C2'],\n",
+    "                                    sf300_djf['T1C2'],\n",
+    "                                    sf300_djf['T2C1'],\n",
+    "                                    sf300_djf[runs_all[4:][k*4]],\n",
+    "                                    sf300_djf[runs_all[4:][k*4+1]],\n",
+    "                                    sf300_djf[runs_all[4:][k*4+2]],\n",
+    "                                    sf300_djf[runs_all[4:][k*4+3]])\n",
+    "del k"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot response of stationary eddy stream function\n",
+    "\n",
+    "Shift the longitudes from 0deg...360deg to -90deg...270deg for visualization reasons."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAIrCAYAAADye29aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3xT5f7H36dJ06TpSveiLW2hbGRPGYKIyhBQFMFxGYKoeHHh1nv16s/tFfdCRRRFURRlKMjeq0IppVBm906a2STn90fSkqZpmxQU8Z7365VXTp51nvPkOd/nc551BFEUkZCQkJCQkJCQkJBw4HexMyAhISEhISEhISHxV0ISyBISEhISEhISEhIuSAJZQkJCQkJCQkJCwgVJIEtISEhISEhISEi4IAlkCQkJCQkJCQkJCRckgSwhISEhISEhISHhgiSQJf4WCIKwQRCEDRfhvE8LgtDsXomCIKwRBCHPg/sCQRBEQRBe9OC3WxCEPS6/TzrDioIg2AVBOCMIwjeCIHS4MFciISEh4eCvbE+d4Ta42EP3z+su4T5x8ysVBGGTIAij/9grkfg78LcWyIIg3CAIQo4gCLKLnReJ/2k2AW0FQUh0cx8CGJzf9QiCEAT0cMZzZQ0wABgMPAn0BTYLghD9R2Ra4u+PU0DsacZfJQhCiSAIl/+Z+ZKQ8ILfcdhD989rbuFKXfxmAQLwsyAII/68rEpcivytBTLwLY6b4ZaLnRGJ/2nqhG69EBYEwQ8YBHwA9BIEQe0SfhAgAza6pVMmiuIOURS3iaK4CEe9jgSm/WE5l/ifRhRFI7AQeOZi50VCwg2d0x66f065hbO4+H0PXAtogXv//CxLXEr8rQWyKIp24DPgnoudF4nzQxCE7oIgfCcIQrkgCEbnyMAjLcTJcMapcsbZ4T605uxBO+khbqMhRkEQegiCsFkQBJMgCPmCIDyB4wGsJXYBJhr2FHcHQoFXARuO3o06hgAisLmFdHc7v9O9yIOERGv5BBgiCELXi50RiQvDJW5PzwtRFLXAUSS7KdECl7RAFgRhgCAIPwiCUCAIgl4QhAOCIEx1C/Yt0FMQhC4XI48S548gCH2B7UAaMB9HD8CrgPuUBdc48cAWHEL0bmAyUAX8JAjC1a3IQySwHkeP7W3AXcBoYHpLcUVRNAM7aSiQhwBHRVE8jUPouvtliaJY0ULSbZ3fVd5cg4REUwiCcJ0gCEecYmWLIAid6vxEUTyDo47eevFyKHGhuNTtqVs6cg+fZkW2IAhyoA2S3ZRoAfnFzsB5kgxsBd7F0UM3CFgkCIJdFMUvAURRzBYEoRIYARy6aDmVOB9eBsqB/qIoGpxu61uIcx+gAQaIongMQBCEn4HDwH+AVT7mYT6gBq5yiloEQfgFcB/Oa4pNwBOCIESJoliKQwTX9RBvdv5GEAQl0Af40EMagtO4+wHtgfcAO/CNj9ciIeFKMg6B9ARgBP4FrBEEoZ0oiiZnmG3AyIuUP4kLy9/BnoKjva/14H4DbjbRaTcBYnHU81jgBR/zLPE/xiXdgyyK4lJRFF8QRfFn4DfgeWARjon4rvyOY0GTxCWGIAiBOAzhEhdj7g1DgB11xhxAFEUb8CVwmSAIIT5mZYAzvdMu6emBH72MXzefuG6x02DOCeQtQD9BEBRAPyCAxgv0AG7G0SCYgYNAPHCDKIr7fLgOCQl3IoFpoiguEUVxOTAGiANudwmTCXR1PsBJXKL8jewpOOpkHw+fdW7hEnDYzVrgDA47+iTwho95lvgf45LuQRYEQYOjt2M8jpugbreKfLegZTieGCUuPTQ4HuTO+hgvHNjvwb0Ixzw3DY6FGt4Sh+cRiGIv42/HYaCHCIKQDURzTiBvBRQ4HuLqplp4EsircBh2G1AgiqK355aQaI4SURS31f0QRfGUIAh7cdTHd53OZTjsaxQOkSFxafJ3sacANaIoNrkDiwslOKaRiDh6zs84xb2ERLNc0gIZx+KR/jhWWB/GcYPeiUMwu2IGpJ6PS5NKHNMIEnyMV4Hnh6JYHIaybn6vCYc4dScChzGtoxCI8RDOk1sjRFE0OEXHECAbh8DNc/pVC4Jw0OlXNze5yEMyFV42CBISvlDShFucy2+z81uyo5c2fwt76iO1kt2UaA2X7BQL51DftcBToii+KYrieudN4Omawjh3A0tcQjiHAbcA0wRBUPkQdSPQXxCElDoH537YNwL7RVHUOZ1PATHORSN14dKADLf0tjvTa+MSTg2M9TFP3XEMYbvvULEFuALH0KOn3mMJiT8KT/toR+MQMXWEOb8lO3oJ8zezpxISfyiXrEDGMU9TxrmeDQRBCAbGeQibgmNbF4lLkwdw9EBsFwThFkEQhguCMEMQhIXNxHkNxyrlXwRBuFkQhDE45re1Bx5zCbcMRw/IEkEQrnLugrICx5Cye3p6YK0gCDcKgnAdsBbHoiZv2YTjnruWxgJ5Mw6BrEYSyBJ/LtGCIAys+yEIQhLQE8f2hHWkAOWiKJYjcanzd7GnwYIg9PfwcRfjEhKt4pIVyKIoVuPYeuhJQRAmCYIwAfgVqHYN53wq7YBjnqfEJYgoirtxLCw5g+OlBT8DD9LMPDpRFAtwLITLAt7Bsao5HLhWFMXVLuGOAdfjGHL8HngIx4rto27pleHYCaUM+BR4C1gNfOzDpWzBMX9YwLNArtueSBLIEn8mZcBip/CZAPyEY4rFJy5heuPYyULiEudvZE+74eiJdv+84kMaEhJNIohii689/8siCEI68D6Olf/lwJtAIHC3KIqRzjATcLwsJNa5SlZCQkJCAseLHYAuwHPA/+HY8m0PMFsUxUPOMHIci7HuF0Xx04uUVQkJCYk/lUtaIHuDIAhfAnpRFGde7LxISEhIXGoIgnAV8DUQL3UySEhI/K9wqe9i0SzOBQDjcQzFSEhISEj4znzgNUkcS0hI/C/xtxbIOF6dOcd1c3MJCQkJCe9w7nSwHceiKgkJCYn/Gf72UywkJCQkJCQkJCQkfOGS3cVCQkJCQkJCQkJC4o/gkplikZKSIp46depiZ0NCQkLir8YpURRTWgok2VAJCQkJj3i0oZfMFAtBEETRdom/Pt1qvdg5+HORXzLPX63G/hcZhPlfq1rnw1+tWvphb2VER90TBAFRFIUWQnttQ32t062te+dTZy9kfb+U750LUZd9TeOPCu/zfXCpV7yLkX5L/JnG8XzOdb75rIvfgg39izUVLXCxK4+Eb/yV/q+/mipy8lex1X+lv8qdC21Hm7vW1pyr1QLXldb8AQrF+Z/HwwXXXU9zQrmp7HpzGc2FaU2653tOb9PwJdyFxJc62VTY5tLw5Necm2sZeBO3LnxTefB4//haEf7oCuJruNaGv1RorVH2Nl5L4bxJx5swLdjQv6ZqaAqT6WLn4Pz4o0TaX1T8/aXwxlD5WI51AsJgMCCTyZDL5ezatYvCwkJ0Oh16vRGbzYbdbicoKAiz2UxNTQ12uw1/fwUKhQK5XIG/vwJ/f38CAgJQq4MICwsjMbENsbFx2Gwtdgw2uDyTycSJE8fIyzvG6dMnqK2tRSaTIQgCx47lkJ9/htraWmprLdhsNmQyGX5+MmQyucuxDIVCQVRUDDEx8cTExBEbG09oqIaOHbuiUql8KqfW4qlB9uTf2nR9pUkh7Esj2JoGs6k45yOQmytcp5/r9bqLZbn8/DWFq7unMN64tTbe+bp543ch8FXwtiRYmzr2xq8loetLuAb3ktWKwWDAz88PhULB7p07KSgsRKvVYjSZsNls2GprCXbaUL3BgNVqRSGXo/D3R6FQoJDJ8JfLCQgIIEitJjQ4mDYJCcTHxiJ4GjVp5o8zmUwcP32a43l55J05g8ViqbehuSdPcrqgAEttLRbLORsq8/NztAEyWf1vhb8/MZGRxEVFERcVRXx0NOFhYXROT0cdGHhpiuc/YvjA16c3b+M09yRX59eCDb20plgUF9f/FkURvcGAOjAQQfBORPzh/FFjT3/0GFhr+Kt1X17oMnLx1+v11NbWIpfLGXHllURERCKTydBqqzl9+jSFhYXY7XbUajXx8QmkpaUTGhpKQIDSaVj90Ol0KJVK1OogZDIZFkstZrOZ2tpatm7dyPHjuY2ycOWV16DRRGIw6DEaDZjNZuru14SENoAfubnZlJQUEhubQHx8G3788ev6+LfcMheVKhC73Y7dbiMpKZWkpFQUigDkcn9kMhk2m439+3fwwguPeFVs/fsPZ8qU2Wi1Veh0Veh01fj7K1CrgwkLC2f8+Gn4+/t7lVYTxe21vze2s7lG35Ob62+ve7Zaq6DOV2FGRwM+TrGorq7/LYoiBouFwDob6kMhuwrmlorEV1HbXHhv/JoK39p0fXXzxs8TvtwDvopb9+Om3JqK60santzqbKhSIWfU6NGEBAUhl8up1mo5e/Ys+QUF9R0JsdHRtEtLIzQkBFVAADI/P/z8/NDV1KBUKAhSq5HJZNTW1mK2WKi1WNi+dy9ZOTm4M2rIEOKio9EbDOj1eswWyzkbGhuLwt+fw8eOkV9URHx0NElxcSxbXf/mbObcdBNBgYHYbTZsNhspCQmkJyU5hLm/iw3Nzua+F19sdH5PXJaRwSMzZlCl01Gl01FdU4NcJiNYrUajVnPLtdeiaIUNvShcyHa3tUa+KXdv0gsPB/4mUyym3nkn369aRXRkJAXFxQiCQJBaTd8ePRg/ejTXjR5NjLPRkJA4H0RR5PX//pcHH3oIm81GSEgIVmdPRx1RUdGUlpYQFhaGIAhotVrMZjNvvvkusbGx9eHcG0pRFDl7tpBly75g+/bNDcSxUqnCZDIC0K/fIKKi4lGrg1CpAvH3V9Q/DJ46lYfdDjffPJOYmHiKivIpKDiDUqli1arlCILAY4+9hEoV2OK1du/eh6KifGprLc7zKDEY9FRWllFTo2XPni3odA5hlZubxb333tRkWomJbenff1iL5/QFvb6GsrICYmPj8fPzIycni/37d7JjxwaCg0Px9/cnJiaOkpIi7HY7kZGRxMbGExkZxfXXT271eV97/XXuu/9+j34VRUVoNJpWp32xmH7XXXy1fDkxUVEUFBUhCAKBgYH06dmTcWPHMmH8eOLi4i52NiX+Jrzzzls88cQj6HQ61Go1drsdo9FY7x8VFUVpaSmhoaH4+fmh1WoJCQ7mrZdfJjEhocknF1EUKS4tZel337Fh69YG4lilVGJ0jjYP7NmTpIQEgtRqAhUKAhQK6lTQyfx8bDYbt0+aRGJkJAUlJZwuLCQkKIhv167FZDbzfw88QGhwcItPO/26deN0YSF6g4FApRKlQoHBZKKsqgptTQ17s7MpKisDoLSykhsfeqjJtBKioxk9cKC3RewVeqORgtJSYiMi8JfLOXT8OHuzs1m7YwdhwcHIZTLiIiMpqajAarMRGRZGfFQUEaGhTBk9utXnff+bb5j9zDMe/Yo2biQmMrLVaf8ZXFI9yF0yMjiUk4NcLue2SZPISE3FUlvLwZwcvvrxRwCm33ADpRUVJMbG0jEtjdFDhtCubduWT/BnTBj35QnpfPx8Cf9HzKm6GBP6mrg+i8XCD6tXU6nVktymDaNGjADAbrcz5sYbWbdhA3dMn06bhASS2rRhzNix7Ny1i5OnTzNz9uwGaZUWF7Nt2zayc3LZvHkjP/30U6PzaTQa9u7NJiYmBoDKykoSEx1Pqf36DeTUqZOUlhajVCrp1q0XkZEx/Pjjsvr433+/hd69BzY5taKlYenz9WuJhQuf5MMPHQavffvu3HjjPSQntycxMY2IiFj8/BrPW23tHEpRFOnSxZFeTEwCVVXl2GxWUlM7UFZWTEVFaYvpFReL9en62rP269rVzL7zTk6ePAlAaGgolw8aRPt27Xjh3/9G3tIcEF+6HFtzXyUlAb71IPfq3p29mZkA3D5lCh07dMBqtZJ15AhfLHPUw+m33kpxSQnJSUlktGvHqBEj6NC5c8PEXArKl95k19++9PT6ksaFdmvqty9urcXbDrHm6nJLvcUthautrWXDhh/RasuJi0tk1KirAZDJRKZPn8yPP37LzJlzSUhoQ1JSG8aMuZYDB/Zz6lQes2bNaJDfotOn2b1nDzm5uWzavJkfVq5sdE1qtZqcHTtIiI8Hq5UavZ7g1FQA+vfsydnCQopKS1H4+9Oza1cSY2NZ+sMP9fHXfv45I/v3bzyyfCEmol+A9vLVzz/n/tcc793pkJLCfVOnkpGSQmpCAvFRUeds6AWqSEK/fgDER0VRqdVitdlon5REeXU1ReXlLca379jR6lH6jZmZ3PGf/3DUuXtOUGAgQ3v2JDUhgVfmz3eMNvo6Cb45N1/jtTAKd0kJZDEnB7vdzsZdu8g8coSzxcWUVlQ4hmmKith7+HCjeG1iY9nx5ZfEe9OzfDGGC87HzRs/b/FVUf1VJvDJ5VRVV7N5925O5+djt9up1un454wZFJSVkTFkSIPghpMnUalU2Gw25PHxHpPs2KED2UeOeDiVHLVajc1mw2KxYLFY6v02bdpOv3796xvzs2fPsGrVD6xY8S2bN/8GwNdfr2L27KlUVlY0Srtv38t59NHX6Nq1F+CdIHD388bfFz9P/hs2fM3ChXfz9tu7iYlJbj6yE1+nobke7969jo8++hfHjx9Cq63k2mun8Z//fMb+/Vt4663H2bNnU6O0Jky4hfnznyIpKRV/f6FRur4OKddPtfBVUXlwE0Wx8ZzI1t577dsDPk6xyM/H7ufH5h07OHDoEGcKCiirqKBKq6W4pIQde/c2ihcbHc3OTZtIatOmoUczjVNzork1orW5NJoT1BciDU/X8UeYOm9Hk32d7tCUGHY91umqOXRoKwUFeYBITU0Vt946D72+kqFDG3Yw5eZWERISikwmEhnpeSFn79592LNndyN3mUxGUFCQRxv6y7ffMnLYMMcPq5WCoiJ+WLOGb378kXWbNwPw/ccf888nn+Tk2bON0u7TrRtvPv00fbt3r0+jRVrbBrUmnjPOj5s2ceuTT7J78WLS3e+pC3k+J5v37+fJ997jwLFjVOl0jL/8cr57/nl2HT7M4++/z6979jSKM2nYMJ6fM4f0xMQLO4XVWx3TjAYSRRGhqSkovuoppwb4WwjkY6tWUV1dzf7sbIxmMza7nciwMI6cOEFmTg6FZWUczsujd+fOtEtK4qPvvquPnxLvGJ4VBIEAf38yUlLonpHBbWPHkpKQ0PSJfRSmNkHgh19/paCkBEttLXKZjDCNhjZxcSQlJNAmLu7cHM3zmSzprV8dviohb5WYr63G+fSguSKX89Xq1dy0YIFH73HDhxMaFMS2AwcQ/PxQBQRw8OhRMlJTmT1lCrExMQzp14+E2Fj2ZWfz79deo6C4mGqdDqPJRFJiIlt37myQZlhYGFqtlr59+rDDza99+wySkpJQqYKIjo7lo4/eqffbsiWb1NR2iKKMEyeOsXHjGh577O5GeX7ooZew2WxYrTZkMgUqlZrExAzS07sQHh7dqJj+6PmVruh0NUybFlz/u2vXETz99K/NR3LS2udIV7+qqgImTXLcp8HBGmw2K3PmPMvYsdPZuXMVixY9R0ZGd6qqyrn55rkMH351o7Q8CY2metFc/dwXFDX4djkuKSzkSG4uOceOkXfyJDqdjpKyMjKzsjh6/Hh98Mv79mXTsnOjBo3S8/Tbk1unToiiiJ+fn9cC+fi2bWh1OvYdOoTBaMRqtxMdGUnO8eMcOHiQgpISDufk0LNbN9qnp/PxkiX18ZPbtKlfrKRQKGifnk73Ll24ZepU0tPSzhWcKx5Ec3NmxGp1jO6sWbOSs2fPYjabEQQZQUFhxMW1ISYmibi4Niici2taEsMtuTWXn9beU39GD3JzD3a+COTNm3/g4YfHezz3sGHXotFEsH//dkBEpQokO/t32rZN59ZbZ5OQkMDAgYNo0yaJo0ezeOaZJygszKeqqhKj0UhycjJbt25tkGZISAh6vZ6Bffuyefv2Bn5pKSmkJiejDgwkNjKSdxcvrvc7/OuvtGvbFrlcTl5eHuu3b2fWo482yvNLzilxNrsdhb8/apWKdikpdGnXjpjIyHNi70L+SV5itlhQ9uhR/7tnx47sXbq05YgXoNcaoKi4mLhx4wAICw6m1mrlXzNmMGvcOLZkZvLQ22/TJyODsupqZo4Zw/jBg307r7c08yRYWlnJkZMnyTl7lrz8fLR6PaVVVfyem8uREyfqg3Zr357M7747/w7GpKRmbeglJZDbJiYSGBBA57Q0IjUa/ASB4ooKOqSkkJGSglwmo3fnzqS5PZUVlZVxurCQoMBANu7dy56sLJavW0eVTsc/p03jtQcfbPrEPrbur3zyCQ88/3yTUcaMGMHKdesauI298kp++Pzz5s8pCeR6tDU1nCwp4YcNG3j63XcZ0K0bbRMSaNemDU++807LCTiZPnkyH730Et/98gsTZ84EID01tX51cn5hYX1YTVgYaWlp7PHQw9YUX3zxI336DCAkJAJoeIlarZ7t2zewe/dWKisr8fdXIJfL8fOTAX5YLLUYDDpOnMhh375N9Oo1jLlzn6VLl0H1afyZAtlqha+//hdfffU0wcERfPJJWfMRXLgQArnuWCYTqaoqRaFQERoa7DF8SyLBNc3zFcjFxcVk9OiBzM8PvcGxkNITsdHRDOzdm9SkJMYMH87Q/v0bBvDyTyouK+Opt94i99QpzlZWcu211/Laa695LZDbJiURqFLRMT2d6MhIZHI5hSUlZKSl0bFdO/z9/bmsSxfap6U1KLDSsjLyTp4kNDycDZs3sy8zk+9WrqSsvJxZ//gH77/5ZsMCrKMVAvnjj9/hwQfnNnkd/foNY+fODQ3c+vQZxocf/lafhiSQm3ezWGooLT3Brl1reeutB+nadQCJiamkpWWwcOETXudv0qSb+PjjL1m/fjUTJjgeStu0aUNAQAClpaVUuywKjQgPJzEhgcyDB71Of/mHHzK4b1+iQkPPOToL2GA0snHnTrbs2UNFdTX+cjn+zh0k/Pz8qLVaqTEYyDlxgo27djGoZ0/+M38+Q/v2vSgCGZz64KWXABCdU51a5AIJ5Dp3URQprapCqVAQolaf37lag1vlrdBq6TBlCrU2G0azGbPLqIIrURoNgy67jPSUFEYNHMiVAwe2SiCXVVTw1KuvkpOXx9myMoYNG8Z777136QtkMTPzvP7A17/4gvmvvNLA7drBg9EbjQQoFAQqlY4J8gMGEKBQIPP357E33yQmPJyQoCAEQaB9cjLjhw2jc4cO5xJxKfxqnY5VmzaxZf9+dh44wB6nMVAGBPDQ7NnMnzmTjXv2sG3PHo44hzweuPNOxl51VaO0fBbKrvg63ueN4PXUyjQVt7m0WqPQXLhqwQLW7tlDu4QEIkJCqDGZKNdqqdbrMTgXZ3RPS0Mul7PXuXjjtmuuISw4GHVgINknT7J2xw6C1WqenTeP6ZMns3HXLsbPnUuERkOgSkXW0aOMHjaM7fv2Ua3VNjh/927dqKyqoqamhoqKCjQaDWFhGiwWC2aziYAAJcXFRbRr14Hg4BCGDh3FXXc9hCCc2x7N294ugKKi0/zyyzKWLn2V4cNvZObMZ1EqA31+XvH2mcedjRsXkZu7i99+e7fe7dNPz99u+NL4NyVkPbl5Cq9Uei+km/KDc2K56OxZ4pIdU0wiIyKYMGYMK37+mU4dOjB0wAAu79+fLu3aER0V5ei1cincirIyDufmEhYSQnREBNFhYehqapDL5ahcTvbThg28+vHHlFVWAo7h6f3Z2QAsfeEFOl9zDR06dMDf39+nKRYt0oyN+WDxYu544IEGbtdceSUGoxGFQkFgYCDxsbFcPXo0yoAAFAoFj/7rX0RGRBASEoKfnx/p7doxdswYunY/15vmWn8rK3X88ssqtm/fzP79e9i9e4czW/7MmfMAd975IDt3bmXPnq0cPZpNVVUFt9wyj5Ejr69Pw1eB7I2bp7ju7i25tYZmnjl8vh+USsf3iy9OZd26L4iNTSYiIg6z2UBVVSl6vRajUQ9AWlongoJCyMx0lP/1199CSEgYoaGhHDuWw2+/rUatVnP//Y8yd+7d7NixjRtuGEtoaChBQUEcOnSI0Vddxc6dO6mqrsZVa3Tr3JlqrRZdTQ0VlZWEBAcTFR6O2WLBZDajUiopLCmhY1oa6sBARg4cyMNz5ji2R6vDhwLOLy5m2apVvPrJJ4y74gr+7/77CXIXhxcCT/eO1cqXK1eycdcu3vvqq3pn0cOuG3Xhm6S17fqFcjtfXMqnpLKSmOuuAyAiNJQJQ4awcts22rVpw7CePbn8ssvompFBdHR0w7UtcjlVWi1Zx44REhpKVHg4sVFR1Oj1+Pn5ERh8bqTzly1beOG99yits6F+fuzPygLgk1deocfIkXTs2BGFQvE3EMg+9N419efabDaKKyooq6pi1+HDhIWGEh4SgsVqRW80snrbNvJLSzFbLNQYDIjAw9Ono9XrsdvtrNu1iy9+/pmTv/xCUlwcP23cSEREBJEaDQUlJURERKAMCODphQtZ8v33yGQy7HY7oigSEhyMJjSU0JAQQoKDCQkJISM9nTm33067jIxzwz++CmMvb5rCs2fJLywkPjaWOPf9IVtSae5uzm+7xUKtyUSAQuF9i+Lrzejity0nh0FPPsm43r1Zfv/9yPz82Jmby/zFi9mRkwOCQGBAACqFgjKtlpToaLRGI7U2G2qlkqIKx/xfuUyG1Wbj4WnT6N+jB9c5dyu488YbiY2M5Km33gJAHRhI14wMDubk0CYhgeGXX843P/zALVOm0KdvX6bccgsADz/8GO3bZ1Bba2f27NsbXULv3gO56qrrGTp0LFZrLUlJHRAEwdtiBqCqqozx46MA+PLLQsLDYxuF91ScvvZ21bnZ7Tbmzg2ittbx0NGx40iGDp1Ljx4TGkdqJr06vO1Jbq0I9rUXrSnR3FIa77zzDnffPZfk5GRmTZ/OE08/zQ0TJ/LEggV06dy5yXvIZrOxdt06pt93H8mJiVRWV3M0L48HZs7k5Q8/BODW666jrLISs9nMuh0OYfLbokVoQkKwWiyoAgIIDQoiISYGunUDfJ+DfHWeDU4AACAASURBVL7Y7XaKSkooLS9n36FDBAUHE6HRUGu1YjAaWbthA6fy8zGbzRhNJgwmE08+9BBanQ673c6WnTtZtHgx2ZmZZGRksHrNGkI0GmJiYjiTX0hoaDgqVSAvvfQ8ixZ91MCGBgc7thMMCgohODiEoKBQkpPTmTp1Dikp5+6pui3zmxO8rmG8MV1WK5SXF1NZeYbQ0DjCwuIbLKZtrWgWRRGbzYJcHtDIr6WmwNuHSdfjY8f2cv/9venV60qee+4nlEp/jh7dx5tvzuf33x1zfZXKQAIDgykvLyI2tg1mswGrtRalMpDS0iIA/P0V1NZamDXrLsaOHc+4caMAmDbtFjp27Mhjjz3qTEtJj+7d+f3QIRLj4xk6aBDf//QTN02YQP8ePbjjgQeo0et5eO5cOqanIwgC/3jgAWxuc/X7duvGDaNHM37ECGqtVjqmpfk2ZUIup7K6mvC+fQEo2LyZOE9rk85ntNbN32azkdCrF8WljgXFA3r14p8zZzLZOdXhvAWvt51QrfFrrVD3ovw+XrWKGS+/TGJUFHeMH8+/Fi1i3KBBPDlrFpe1b99kJbfb7azfu5fbHn2UxJgYtHo9R/LymHfLLbzhnJJz87hxVGm1mGtrWeec4vPLkiVEhYdjtdlQBgQQGhZGYnz832sOcv2QxPk+2bjG97ZH1hmupLycvtOmoa2pISUxEYPRiEqppFqnIz4mhvKqKnR6PSazGW1NDZaTJ0Eup7a2Fp3JRLVWi9ZgcHzrdGzYupWvly/HZDbTvWtXbHa7o1Fxbpyu0WgYNnQojz36KDKZrMnrsdlsnDhxgpCQEDQaDf6CgN1uR7DZEASBWffcw4effVYf5fVnnuHeO+7wqVuloLCQ9du2kZefz+/HjqEzGNifm0tVTQ0xYWF0SkpCbzIRGxrKkM6dsVgsJISHE6fRoJbLCQ8KwmAwEKJS0SYiAj+7h6Frl98Wq5XTFRWYTSb0FgtHS0oIViqZ/803WKyOjeJNViuF1dWM6tSJtS6LNBM0GtpGRqLy9+f/bryR+MhIYkJDeXH1ahRyOfMnTGDRxo08tXgxk4YMIUytxmC1svnQIfYcPkyERgOiSIRGg1qlIr+khHapqbz38stkOLfgeXTBAq4cNYro6GiiYtqgVquxWuXs3LmLo0ezsVhExo69gYKCQg4d2sdHH71Bbu4h1GpHw96xY0/i41MZOHAsHTr0bLFxttms3HBDJHr9uWHLgQOvZ8GCZa22h025mc165s4NauB22WXXMWvWd7hzIToaWtvoW621lJXlUVZ2GpkMdu/+mczMX5HJZBiNNej11SQkpJGff4xZs/7FpEl3olD41adR16PmrUBWKuG226aydOkXREdH07//AH74YQUAn3/yCVOnTPF4D9UajUR16kRiXBzPPfww40aNYvvOnQycOLFRWfzwzjsoAwIoLC3luXff5bv//peOdXN869KFP04gX+g/1M2tsqaGfqNGUVxSQnpqKlqdjtDQUMorKkiIj6eispJqrRZRFCksLMRqtWOzCdTW1lJZqUOn01JRUY1Op6WqSsvWrZtZsWIpNTU1dO7cA5vNjtFocG6XKBAcHEa3boOZPv1J5HL/Jk2d3W7n7Nk8VKpglEoNgqDAbnecWxAEPv10Pj///Hr95Vx//XOMHftIgzSaKsa6Y622iCNH1lNenkdBQSYmk5bCwkz0+nKCgqKIje2KxaInODiatLRhWK0WQkPjCQmJQ6FQExgYgd1uJCBAjUaTXN+z1tRDpdVaS3X1aWw2AzZbLQUFh5xTpO7FZjPj5yfDZqulvLyAPn1Gs3v3uT2Aw8IiSUnJQKkMZN68f9O2bTLR0XF89tl/MRj0PPDAo/z441c8/vh9TJhwA2Fh4Vgsenbt2s6OHTvQaDTI5XLCQkIIDgqioLCQNgkJLFq4kAznzgrzZ81i7BVXEB0RQXxMDMFBQciBfZmZ/O5clD/56qspqahgX1YWb33+OXsPH0YTEoJapaJ3ly60TUjg2iFD6Ou8H5qri3a7ncQhQygsPbcDzughQ1i1aFHzXfXNuTXhZzKZULmtbxoyaBAbf/65cdyWjHJTlcuXp7sm0rCazeSdOcMp59a5a/buZc2ePfgJAnqzmaqaGlJjYjhRUsKCiROZP26cx92KGtHMEOGc117jvZUrCQ8J4YoePfhm40YA3lmwgDkTJ3qMK8pkxA8bRlBgIM/ffz/Xjx7N/pwcetY9bLiw4sMPUanVlJaX869XX2XZe+/RrVOnxnmUBLIHzkMg11FYWcnB48cZ2KPHuaEa11bVNZ4X48NnCgvJOnwYf39/AoOD63daKC8v56qrr6ZPnz5YLBZqamoACA8PJzAwEKPRSM/u3dmfmcnOXbuIjIykqqrK2SthIzAwkLbJyURHRhIVGUl4WBhTxo9nYJ8+yB0WtGGZuHzXGo2s3bYNg17P3sOHeefrr7mqXz/S4uPp1rYtIWo1XZKSaKPRkHXqFEdPnya/vJzCsjJqTCb8BYGz5eUUVVVhMJsp0+lQKxRUGwyU6nTEhYURFxpK54QE+qakoDeb+fXwYc5WVqKQycguKiLauZhAazLROymJ/WfPUuncizg6OJhKg4GU8HB6paQgAF/ubrxy+tlJk5jQty96s5kzOh17jh2jWKslJioKrV7PW84tAgH6denCzkOH6n+rVSrunjaNGVOn0t65wnryhAns2b+fzp07U1FVxbZt2+qHDwVBICAggNraWkJCwqip0VJbW8tHH/1A794jkctV2O129uzZxunTufz663I2b17J7bc/yqxZ/6k/b1N/i15fzcSJYfj5+WF3PmA8/viP9OgxpsE1n49AttttbNv2GYsWTW8Q5rbbFtG37+3Nxm0tvghki8VIZuZKtm79nMzMXwgPjyc6OhkQad++L0OHXo+/vwylUk1ISDC7d//C88/fBkBwcBh9+44gNjaZsDANyckp9Oo1mOTkZARBqD+PyaQjODjQ+YbEc+euE9QVFSV89tmn6HQ1xERHsn37dm6cNAmNRsMQ51aCKUlJREdG0rF9e/r16MFc54LSnxcv5uorrgCrlanz5vHFCofALtyxg8jgYOSuBdDcn3WJCuS676LiYn4/coT+ffoQ4tyw31M4O35ePcefPJnPkSMHEQR//P1VqFSB1NbaqaoqZ9asUaSnd8XPT4ZerwMgODgcpTIQk8lISko3Cgpy+f33jYSERKLXO2yo3W5DoVARHd2W0NAY1OoIgoLC6dPnJtq3H4xc7t8oH3U4RLeN7Oy1GI168vMPsGnTQtq3v5KIiHTi47uhVIYSE9MJjSaZkpIjlJRko9UWUVV1BotFj0zmj1ZbgFZbiMWix2Aox99fhdlcg05XTEhILCEhccTFdSIlpR92u4ns7F+orDyDv38ABQWHCQ6OdLxYS19BenpfTpzYh9Gow263odHEodWWEh2dTEZGLxQKBWvXft7or5s582FuuOFWDIYaSkvPkpm5h4qKIqKjozAYDHzwwcL6sFdcMYL168+ts1GpVMyZMYN7Z88mpWtXAG4cP57dBw7QqV07qrVatu3Zg81pzwRBIEChoNZqJSw4GK3zJSPfvPEGVw8cSKBKhSiK7MjMJOfECX7csIHlv/7KPVOn8oaHhXuNhKvZjKpbtwY29OuFC7nBXWidh0C22WwsW7GCKbNmNQjy5ssvc5ebG/CnC2SzxcJPW7aw5JdfWL1rF7EaDSkxMYiiSM/0dG4cPBi5TEZgQAAhCgWbDx/mRufc6ZDAQEZ060ZKdDThwcEkR0UxqGNH2sbENNjxoqa2FpVC4ejY82Dgy2pqWLx2LeVaLbHh4ew6coRxw4YRo9EwZM4cAJLj4ogOD6dD27b0696du//jaCNXvP0240aMALmcWY88wodfO16QdXbnTqIjIprePs6dv5VAzspq2XhfCOPuii8TwLwd2/WQRnPbIhUXF5OVdYiwsDCCg0MQRRGttgKDwUBAQAAbNvzGp59+QmrbtqxetQrBZsNqtSKXy9FVVnLi5Elyjx5ly7ZtfPDZZxiMRi7v35+J11zDuOHDadumzbnpFi431IsffMCC1x09JkN79eKtf/6Tzs69VxvceJ7GM+u+m3AzWiwUVlRQUF3NgTNn2HfmDDJB4JoOHWgbHo7JZKJTdDQhcjmiKNavNC3U6TBbreSUlxMfHEz7iAiOlpdzoKiIk9XVnKisZH9hIQecC+yUcsfCDblMhkwQKNM75tfFh4VRodejDgjAWFuLnyAwd+xYss6c4Sfn0HYdCdHRnNi0ibOVlbz2wQd8uWIFdVu+jRw5kr379rF+/RYqKysZOnQQJ0/mkZ9f6+xN3sTkyUMBCAhQ0rFjLx5//F3atu0CwNSpvTlyxDF1aPjwyaSnX8aYMXeiVIY1yINr8eXlHWD+fMf8zXbt+vLEE2sICPAcviW3wsIc1qx5nTNnfsdsNqDVFlNTU0pkZCrp6QNp23YgGRnDiYpKa2D8fLXn3tLc7VVamseqVc+wf//3tG3bm0GDptKnzwRCQkIbhXePa7MZ0WqL8PcPIDNzPeXlRRgMFZw5c5T9+7cgl8vp3Xsos2c/TEpKO7p1Ozdf/PrrpzFlynQ2b/6FrKwDHDx4AKPRUL8ASRAcPYxt2rQhMDCQ7Oxsbpo8mWefeIKiggKysrPZtmsXn37xRX2aFTk5aIKCePyFF/jPG28A8N7zz3PHZLcXmzRX0M4eEZ8Ect3bSH0dvm0pbFO09OTjftyCDXVf6NeU+ak7rvMrKSklO/sgQUEhqFShiKJIRUUFJpMeuVzF3r0bWb36EzSaWF5+eR12uwybzYpMJkenq6Gk5CRnzuSSlbWFtWvfx2zW0759f/r2vZ7evccRGZneaO9yqxV++eVNli69B4C2bfszZcp7xMR47un09Z6prTVhMBRSXV1Afn4mZ87sxc8POnW6mqioNOx2E/HxnQgOdmzJJop2FAoZ1dXF2GwGSkuPERoaTXJyBwoLj3Hy5H4qKk5SVHSSY8f2kZu7HwCFIgB/fwUymRw/Pz+qqhx758bExFNdXYFSGYjFYsZms3LnnfM4diyHlSt/aJDX6OhoTv7+OyVFRbz90Ue89+mnhAQHY7fZmHT11azbupV9K1ZQqdVyzfTp7MvKwnLoEP6CwJ5Dh+hz440AKBUKLuvYkbefeIIeHTsCMGL6dNY7dxW64aqr6Na+PXfedBMR7i+hcKlvh44f57Krr8Zms9G9Uyd+/eorIt2nW3hZd4/n5fHam2+y//ffMRqNFJeUUOLcR3zQoEEMHDCA4cOH065dO++2TPN0H3rzhNjcnCGn2+miIv798ccs37SJ7qmpTB0xgkkDB6JRqRqf2y0Nk8VCfkUFaqWS9YcOUVhZSYVeT25hIVuc86mHdOjAQxMn0i05GX8XW3bdgAHcd911rDlwgAN5eRw4fhyd0YjW2R7XlUtidDQhajVZeXlcO3gwbzzyCEWVlRw+fpxtBw6wyGVnsqKdO4mJjeW5N9/kMad4f/mJJ7jfKa69Esh/t32QAe8syYUSyk3dGK0w7vVGXn5uiyL37F6odsfT3q1GnY7fNm4kXK2msKSEZd99x5fOCqcODKRNXByjBg/myXvuQQVs27uXJT/9xCcum7DPv+EGXr377oY3pacbtDk/b29odz9vC0Uu5/V9+8iqrCRKpUKlUBCoUmETRRYfPMjTI0cyqU8fTDIZW44do9bPj4Nnz1JhNqPRaBAEgZkTJ7J47VrOVlRwz+TJJKWnQ5BzykFQENk5Ocx77DGsokhERCQdO3bl7NkzfPLJhwwfPprPP1+FyQQbNqxixoxrCAwM4p//fJnnnpvD7NnPcOutjwNQU1PLsmWvc+DAejp27E9R0Uk2bfoKs9nIk0/+TK9eV7v/jRw8+BtPP30FCxeeIDo6pUERNFdUoihSVVVEWdlJ8vMPk5W1nt9/X8Po0ffSseMwAgICCQmJITQ0Grlc4Sz6WjZvXkRpaR5RUW1JSelPXt5OlMpgKioKyc//HavVwowZSzy+3KQ1otm9PgtCLevWvcqvv77EiBH/ZPDgGURExDUIb7fbqao6SUVFPklJHQkPj2yQVt1846ys7cybN5DAwGBGj76FxMRU4uPbcuJEJu+9928AbrxxDl999W6DPCgUCubNe4Tu3XvQtetlpKQkcezYUbTaCnr37klAQAByufP1zQYDarXacQ+61edTeXko/PyIi41l7gMP8M6iRQBEaDSs//rrc8OA3hSc8+UJPgnk8vKm026uJ6q58C3hSyeDJzdXG+o2J8aOn0eB7M0cZNfLaMr8uLtZLGb2719PYKCGyspitm//kbVrP3JmTY1GE0/37lcyefJT+PuHcOTIDrZuXcKGDR/WpzdkyGymTn3X55Gd5vCiw76Rm7u/+5z8H398h7y8PWg0MSiVSoKCHK8k//nnz5gx4yGuv34qdruFXbs24+dXy5Ejh6iqKiU62jEaMGPGdL777jsOH8zkvnvvJSUxsYHtz83LY96jj2I0GgkPC+OyDh3ILyri/aVLGdCjB9uWLgWrld927uSK6dNR+Pvz1mOPMevpp3lkxgyemzcPcGytunDJEtZu20bvzp0pLC3ly1Wr0BsMLH/7bSa4L4CXy9mZmUn/a67h0NatjgX3LRWSE5soUFxczIkTJ8jOzuG339axZs0q5sy5iyFDRhAYGEhMTCwaTXT9VoQ2m40vvviU3NxcEhLa0K/fIPbt20VgoJqyshIOHjyAXl/DokXL8PcXPFb/Ru25awWvO/bk5gxvralh4ddf85/PP2fu2LHcMWYMiXVvAnXeAKIocrKggLPl5WTExBBdNzLuVgn3nTxJr6eeQunvzz8GDSI1Koq2MTEcLijgyeXLAZgzYgTvuu3W5S+X89CkSfTKyOCytDRSEhI4lp9PaU0NPdq1Q6VWg7NDzGC1olapPFbUs6WlCP7+JMTGsuCFF3jx7bcBCAkOZv2339KrV68G5/V4c9RdUwuvmvZKIAuCEAf8H3ANEAzkAXeKorjR6S8ATwF3ABpgJ3CXKIpZLmmIQC3QQRTFPBf3T4BIURQbjhE3zoMonjrVtMW40D3HdVzAHuS63g934+163NJleDPq435f//bbeuz2Wj7+8H2+cVbgmOhoenTrhgDcP3cuz7z8Mhu3bQNg5aef8tCzz3I4NxdNaCiTRo5k0fff1y+aWP7CC0yo26bKZGp8g7p+exLNnsI1JbKba9maKgRPlr+uYXX9rjt2Eb4Njl2/w8IauImiyNJVq7jjnnuoqakhNDSM7t17MmrURMaPv53AQDX79u1jwYKp2Gx2iorOYDYbueKKKTz22Bf1l3LixBHmzOlYn/XOnYdRVHQcuVzBs89uJyQkqtGlGgxGHnqoM2p1KE89tZHAwJCmywWori7h7bdv5/DhDSiVQcTEtCUmJo0uXYYzYMA4wsJimoy7cuXbfPDBXc7iVBAZ2YaMjIGYTAaCgqJITe3NBx/MBOD992sICHAYVW/rdkuC/ujRdSxffi/h4UnceONbREamOvNyLpxOV8Arr4zEaKxGry+nttbMPfcsYfDgmxtNj9Drq3njjdls2PAVY8bMYuXKDxqcs3fvoYwceT0nThxm1KjrSE3tgE5XTEpKOhERGq9u+To8Nmwu9fmVhQvZvmsXM6dNY+jAgahUKt8EaSvepCdWVzd9T3kzAuRNvlriAnQyuApl9w6HpgSye3Zbeh5w9d+3bxMmk4Gffvqc1asde0OHh8eQltYNudyf6667m2++eaN+Du/jj3/D8uWvcfjwVpTKIAYOnMzWrUsxmx3Tw+666wv69p3SYt7cj93x5OdrG+F+j7i6uf5uzoS6frvHVchd7gGXP0YURZavWME/7r0XXU0NocHB9OjUifFXXMHMG24gSK0m68gRJt93H1abjcLSUnR6PeOGDeP711+v73U8VVJCypVX1l/b4F69yC8uxmqzsePbb4l37jbjeqG1okjXAQOQyeVsXruW8Ph4j6MTdccVFRXcddc/+O23X1CpAklKSiU5OZXBg4czYsQ4YmLimvwfv/9+MQsW3Frvl5SURvfu/bFYzISGaujWrS+PP+6YdnHgQBVRUY1HxNzL2c/q3AqtqfbUpZw37t3LvBdfJDI4mHfuvZf2da+SdwlTWlHByGeeoUSrRWc0ojeb+fD225lx+eWNKmONycTcr75i8a5dTB8wgI/d9rPul5rK1P79ySkqYnSPHlyWnEyBTkd6bCzhYWFNPux6rIBNuTmP3168mLUbNjDrttsYNmgQatftAL3pQXbuitJqgSwIQhiwD9gCvAmUAqlAgSiK2c4wC4DHgduBHOBJYDCQIYqizhlGBEzA96IoTnFJ/xMkgfyHCuTg4AAsFgvXjR/Ps888g1ouRy6X88WXX7J95042bttGgEJBp/bt2blvH9MmTuSeadPIys7msxUr2HPwIMVur6QUnZPq/5cEcm1AAB8vW8Zrn35KSVkZERERHDt+nIyMDDSaSHbsOLcp/rBh1zBw4NU899w9DbIZEKDCbDby7LM/07v3aP773zvZtGkpnTpdTm7ubgIDw/jHP96ka9cRTQ7HWa0O8fjSS1cTG5vOzTf/H0plkMewVVVFfP75g2i1pTz44DJUquAG/i3ZEJ2uhpkz4zCZHHPfhwyZSmhoDBaLhdOnD3LqVCZKZRB9+17PTTe9Wp/n1gpku91OUVEWR4+uY9euT7BYDIwb9yI9eoxvUB5yOVRUnGb37qWsXv1/GAyVJCZ2xWTSMnDgzYwaNZuoqOQm7ey//z2ZjRsdL+uYOHEOZ8/mYjTq+eij3wgIUDbZaXkhBbLHQpAE8l9SII8aFUt5eTH9+o1i3ryXCQwMRi73Z82apRw6tJ19+35DEGSkp/fg4MHNXHHFzYwZM4+zZ4+zbt0ijh3bQ2XluX3V4dxWif9LAtlaU8PipUt56b//pbi0lLCQEPJOnSIpIYG2iYlsdHkB0+Bevbht3DhmPfVUg7wrAwIwmc18+8orTBgxggdee413v/6aYX36cDA3Fz8/P959+mmuGj7cYTOaEFiiKDLxlluICA/n1ddfJygkrEGZ1lX/srJSnn76EU6cOMbixT8QEhLi9X/mqItGRo5Mrd/9Y8yYm4mMjMFms5GT8zs5OZkolSquvPI6nnzyDdRqWZP/izcCWTQaOZyVxfpdu/j0hx+o0Gp5Yc4crh8woOGWkyYTZ8vK+GrTJl5esYKiqiouS06mTKdjSv/+zL78ctKio5usjLd99hmfOf+vf/TvT75WS3lNDRsWLCDIPcOe7uULIJCb/HY/booLIJCfA4aKojioCX8BKADeFEXxP043FVACPCCK4ntONxF4Cbgf6CuK4l6n+yd4K5B92aLoQgjm5iyNuwp1d3MRxU0ZZE/tz7lvKyUlhRQXFxAbm0BcXCIGg54nnriLb775lI0bj5CenuExawaDgezs/WRnH2L//t0cOZLFnj076NixM3v2HGqQxboGXFdaSo+BAzme5+jcX/zOO0ybOJFlP/zA3Y88Qsf0dIJUKnp16MA1Q4bQz/maW2pqGgte50JCTKaGx02F9xTOVTD7+vTgrUBurpc4LKz+22az8fKKFby0ZAmW2lo+WbiQwX37UmQy8fi/nsFkMhEcHM7y5V8C0LPn5VRVlTF58j2sXPkpMlkA0dFJ2O2Olc15efupqCgiICAQrfbcamqAXr0mMG/ecq8uU6stZfHif5KdvYH585eRkTGwwaWfPHmQe+/txpVXTucf/3iBiIjIRml4Y0MAjh7dR1VVKWVlxVRVleDnJyMpqSupqd0JCnL0cjfVQDSlrdzDr1+/kJ9/fgalMoT27YfSo8dNZGSM8LhieufOj/n22wfp0WMSoaFR/PTTczzwwGo6d74ShcLPK40lCEaKi4+Tmtql1WK4JVvd7GuqPf1uzs+dFubPuSMIgijq9U0bHt8MlPf3pTvNPcx6cvO0H58n5eb0s1j9nNmzkp9fRGFhPpGRcSQmJmE0GlmwYB5LlnzI+vWZdO7czWPxm0xGDh3aT25uFvv27SI39xD79+8gNjaRrVvPePybamqMTJnSi7w8x17Vjz32HtdccwebN6/gpZfuJCEhHaUyiHbt+tCr1ygyMga5ndM78d7a6uJafK7H3miXlvoYPLm5xrXb7bzz9us8/3//h9Fo5IP//pcrhg6lvKSEx555BqPJRERoKEu+/x6AQT17UqXVcudNN7Fk5UrkMhlJcXH4+fmh1+vJzsvjVGEhKqWS8qqqBtc4YsAAfv388+YvxnlcrtNz333zWbNmDR999CWXXz6sQRN07Ngxhg5tx3XX3cLDD7+IRtN4a82Wbom64+PHM6msLHZ+SgBo164raWndiY6Oqc+iN+Vc10z5WS0N2s73P/+cJ196icCAAIb26sWNV1zBqH798LNYGrW7X/z6K3d//DETevcmOTycp777jpV3383VnTs7dpjywk6ZRJHcsjK6xp2b8tZihWrqKczT05Unt5ZEtns+PFF3Lc5pME3ZUG+ax+uA1YIgfAUMxyGGPwTeEh3qui0QC6ytiyCKolEQhE3AQOA9l7R2Ad8CLwIjvDh3Q+oK48/Ekwh2P/Ykhr2YXuvJzWAws3Tpe7z//vP4+cmIjIyjtLSAnj0Hs3q1Y6WmUqlCqYyjosJMcXE++/dvJyWlHZWVZaxc+SUbNqykbdv2pKV1pHv3vowZcxsmUw1xcXFUVbnXX6f4UMWwb//xej+ZTGTzjk1MnjWLHpddxuo1awgQRYS6N4XV3ZRK5bnjmhryS0vpOHMmOqOR/DffZNPBg6zJyqJbRAT9k5LoqFYj1tQQolAg8ySa3YVyS62Gp//GG4EcFNR8enX/qULBxGefRWuxsG3JEtqnpIBz8Ud0WBhLlzoMelbWCdq160S/ftegUERy2219sVplHDq0k+eeW0NFRSF6CSXxhQAAIABJREFUvRWbTaSysgy9XodKFcawYXcREBBKTs56Ro6cT1hYYv2lN3dpAOHhUdx77xIyM3/ixRfH0L37lSiVSuLj23PNNbdSUZFNfHwqTz/9UaM0fH3wjo3t2eB3azSW+3W5h1+z5nnuvvsbOnQY0iAN92OAn376N0OHzmb8+Kepqipk1aoXCA2NA0SKik5RXJxNTU0FCoWcbt1GERHRcBEjOHrzU1O7NMpTU2VwXtQl6K2C+aMy4k2j4cnNVzXgTR7k8sbX6Sl/JlPjBrGuMimVDY8B7HYWLVrEc889C0BsbBxnz55l6NArWLbM8RArCAJpaUmA6f/ZO+/4KIr3j7/vckkuhRBSSCF0QgkEQgu9l9BClw5SlSaKBUQBC0hVEUSqIqh0BEWR3pHem5QAIUB6I73e/v6422Rvs7e5KD9/+vt+n9frXrM7Ozc7M7s788zn+cwzJCbGcP78aSpUqERqaio7dmxiz56fqVKlGjVq1KJx42BGjhxOZmYG7u6eeHhYaioHzpwpdDWZmytw7txp3n23NxUrVuO77/ah0zkUcPUtcaeTkmKYNKkuycmxrFjxkLCwy1y69CvlytWmWrVmeHvXJitLQK8v9HgibUa1bk0pnVK/IF4Tm/TPfO/ifwVBYNSowcTEPOPYkSMEBAQUVL6spyc7168H4Mnjx9T096dzs2b4eXjQsF8/bO3sOHP1KntXrSI2MZGc3Fy0Wi0pGRnEJSfj5uLChIED8XRz4/DZs0waNoyKJs8EFsduXaHVwcHBjpUr17Nnz0GGDetLixYdsLMzUih69BjJjRu38fT0Zfr09Wg0WqKji9bTmqU0APb29fD2Bm9v8yJlZFCQr05XqPxKhyq5YiyKs7MdWsk3sXDFCtbPn08Xk69n0tIwITNFFOQ5O3YwsmVL5oeGkvL8OR/s2oWXToeQlkZEQgJ3oqNJyMhAq9HQqVo13EzKpFT0QGCpUsb7KA0q1nyv0sZSAyWl51YgyFLHB3LRWtmvWpOqCjARWIKRhxwEiD5dlmNUjgFiZP+LAcpRVN4Dbms0mi6CIOxTuF4gGo3mFYy8ZqPIFeQXPoopiOweit4mVDqM7Ox8Dh8+wNOnj0lMTCQlJRkbGzscHZ1IT8/g0qXfEQQD3bsPpXz5KowZ0xGAzZuvUr16PfLz83njjZ7s27cNH59KJCZGYzAYaNfOj4yMVNzdfahTpxl37lxEp9MxePBUxo//FHd3c16pWI3oaOtAm5iYJ7Q2uTVLS8/Gw7cc6elpDBo0mKFDh1HBxwu3MmWIioykYbVqALQZP55TV64U5Nlu/nzuPXvGgCZNuJuczMbr17kTHY0NkGsw4O/iQkMPD1729aW1Xm80/ygpymq0C6VKqinIYg+jlIfCzPT3q1e5dP8+x774gmriIhOFe5crV5kpU2aSnAzJybB7dzTh4c9wdi5DcnIGzZq9XFCV4OAxPH16hx9/nEZiYjShoVNp0OBlvv12AA8fnqRNmzfo3fsTtFob1VdcvNaiRXfq1bvJlSuH0WrzuXnzNK++GoS9vT2LFm0V9XnVSby06vL8xeaSh/I4tTWZubk56PUaQIPY7YgKgXhcsWJtDIakAsTp9u293Llzkm7dpqHXS9yAAQMHLmTVqqF4eVWhefNhdOs2jVmz6im2U5kyPqxfH6lYL7mUtEtR6qsVpaQoq/wmL0pKWnl5nFo9ilOUrZ0kyMRgMHDo99959OwZienpJD1/jq2dHc5OTmTl53PqwgUMgkD/Pn2oVaMGHbp3B+DCuXM0aBRMfn4+gwcPYvv2zfj6+pKamkpmZiaBgRVJSUnBy8uLpk2bcfPmDXJycnjzzbdYuHAeviZFy2yrcWOJ1OtnkqiYOPr1M6LEer0tLVt6kZaWRrduvRk58lVcXMri4eFFTEwkdeo0ICdHy8iRnTl79lBBHgsWdCUi4i7NmoWSkvKQLVu2ERFxG43Ghry8HLy8qlGxYgOaNXuZGjXakpNTVClQU5Slx0rvslzZlcYVpyCLcvXqJU6ePMbevcepVr0mOXlgJ1WcTDcrX7EiM99+u6AjiTp7luioKGYvW0bi8+eM6NWr4CajQkO5++QJs778kqcxMbw1ciQje/dmyPTpHDp9mvHDhrF49mxzd18i6KGzKzLMNGnSiZ9+us2ZMwfJzjZw8+Y5+vdviI2NLe+88z2xseb0SEt9nRq1Ry6W0GIxD+lQ5ewMubm5iAZ/0b2gXg92kgxr16hBcmoq5Bk53gdOnuTw5cu83b07ZcWbmCo9PzSUAd98Q2UHB16tX5+ZbdvSbNky8gzy993oDSpz6lTlSkhDuSgpw3+2P7MC4VHzBmYuxnQKOr/5La0olha4KAjCDNP5FY1G4w9MwqggiyLnamgU4hAEIUyj0awFFmg0mgPy67K0a4A1UEDR+NdIdnY2W7d+x7Jli3B1dSMgIIjSpd1wdXUjOzuX1NTnaDQ2jB79Djt2rGXFig+pWNEfb+/yjB07m5SUJD799A3OnTtI6dIerFp1gpUr3yMqKpzvv7+Ch4cvGo0dzs6lRfMAOh0WeasllXLlKvD4cS6xsdGUL1+OpKRE7t27Su/enThy5DCxsbEFaX9au5ajZ85w6soVGtepQ9OaNfH386NNtWr4OznhYGdn1BoBUYNMz8nhbkQExyIjmXDpEkk5Ofg7OmJrMOBrb89Kb2+cLW2M8jdK2dKl8ffxodGECfy6fDkBVavi6uZmlaP0Y8e2kJGRgiCYdzgajQYfn1r07/8p3303jo8+qkx+fg5Nm45l+PAf+O67ISxfHsKYMdsoXdrNQu7m4uHhS6dOw9HroXv3kbz//pr/E4OLkuze/S2ffPIqeXm5AKxefYGaNRsVSdeu3QiWLx9J1arBxMSEkZmZSnp6EvfunWPatMMFbX79+j6++24SISFTad16FFqtDc2aDSU7O42DB7+kYsUgBg+eR1paAi4uZahbt+PfWt//youRnNxcNu7dy8ING3BydKRhQABu7u64ubqSZzDwPDUVjU7HW6+9xnebN/PJokVU9/enSuXKvP7662RnZ/Pmm1M5evQITk5O7N9/hCVLPmXfvt/4/ffzlC9fAXt7e0qXLo2trcbMl/mLEC8vLzIy8oiKiqJsWV+Sk5O5ffsPQkJacunSWWJiogvSrl69k3Pnfufs2UPUrFmf+vVb4+tbmTp12lC2bHWkW8uLE+3s7AzCw+9y9+5Jtmx5g5SUGDw9q6PV2lKqlDd9+67AwaGo5eTvljJl3KlRozYdOzZj8+bt1K/fgLIeLlb1oTsPHCDOtPupVDQaDTWrVGHRW28xeuZMqnbpQm5eHkNDQ3ly/Dgvz5hBh4ED+XHtWjzLKeF0RcXT05uePYeTlQWhoS8zdeqKIgbN/yvZt28zH388muxsY0H27DlDo0ZNi6QbMWAAY6dOZV1AAI8iI0l6/py0zExOXL3KqQ8/RGcaU0/cvcvoH35gQqtWjG/eHNvcXIYGBZGZk8Nnp09Tzc2NZR07kpCZSWl7ezpVrvy31vefItZwkB8DBwVBGCuJGw6sEgTBSaPRVAEeYOQVX5Ck2QPEC4LwsulcAF4SBGGHRqMpa/rPRIxUC+s4yCYvCkrQ+V8BaNTEUr6WaBLp6el8//1qVq78jICAeowf/y4NGrQq2AJVnl5ppnn8+K988MFguncfQ/PmodSt2x6NRsNXX73Brl3L+OGHJ7i6Fv3oi5utljRebtW0txdITX3KzZuX2Lx5BSdOHASgfPnyeHt5ceHiRQA2LlnCkJ49IT7e+INCBVkaZwqFpCQioqN5lJFBXmoqG+LiuJySwpfe3rS3sVHmJ6tVVo1AJ+UdizxjMc7Do4A+IQ93379P/7lzcbC3R9BoaBAYSL+XXqJr6BDKlvWS6/8Fx7duneS991qzZk0iNjZlFBGGmJgHODuXxcnJuIDOYMhnzZpOPH16hQULYtDp7Irlo8mrJ6VYy9Pb6QzqCyVFUZrtK5nPJO2dk2eOtKSm5uLnZ8fq1TuZPn0sycmJdOkygM8+26qIwkRFPeXq1ZMsWDCk4JalSnnQvPkARo36nGvXDrJv31cEBname3cjovHHHyf57LM+eHpW5uHDi4wbt4IuXSYUKa6SYUHNUqdmMbSGrmKGPP5ZOoJU5M+imAUmctFoNEJ2tnEireg2ylqTgKX0St+l9FwNoZaEmXl5fL17N4t/+IEalSoxY8wY2jVvrrzgygJH8eDRo/R76SWGDxtGr5496dSpExqNhhnvvceixYu5c/s2/v7+RctoqWNXS6d0Lq+vpH5PExK4cu0aK7/+mr379wPg4+NDhQoVOXfuLABLlnzDkCGji3VSIHaNmZkCCQlPCQ9/SGZmLhcubOH+/ZO89NIyqlcPUa2CGr2qmGa2au2zeH7u3AFGjgxFr9djMBgICqpP3z69GdSrF97e3oX0Pdl7d+7aNZoOGEDksWP4eHoqWv4ePX2KW+nSlDa5LjPY2dF3wgR+OXCA9Kgo9JKC5WAnZQUWhEpx8nZWMmyWlA2o1oVK14mLw1Pp0gI9e+r44INNLFv2OgkJMQWuRF1dwRGjZxRx4Im6f59TJ08yYNasgnuWcXKiV1AQq0eM4OClS6w9c4ZgX1/ea98esrK48PAhXbdto6qrK+ejoljUqhXvBAUVLbxSJcRQzXKrNhZbS2pX4iVLrAKiWIPei2LqQv/SIr1NQHlBEFpJ4uYA/QRBCJAs0vtSEIR5put6jIv03pEt0ntJEIQdpvMPgFHAGaCUNQpyfr6g2n9J5UUrzMXdIycnh4kTh7B374907dqfCRPeo3bt+ibzsrGNRe5ZcX3w+PHNGDz4XZo0MZqUcnMF7ty5yNtvB9O8+QDeeGMTgmBjsf7FjcHWtI30fX/y5CK7d3/C5cs/maWpXLk2U6bMp2PH9tjY6Hj69BKBgUF4lzW9yNHRhcqwSLKKjjY/hiKKtCAIbH/yhInR0Ux2cGAmoJPQL4Tc3ALVQ4rNyqdNNiISVJyCLIZKCrJIGPP2Jr9MGWxsbEjU6zl7+TLrfv6ZI8dPULq0K/7+dbG1taN8+doMGDCbR49ucvTor5w6tZlSpbx5663fyMiwkfb7gOUONCbmPD/8MJysrBSCgvpRoUJNmjUbjIeHu6KjDXmn6uwMjnpT6ygtlLSG6y0vlNiW4rmKpp5va8vPv/7KwRMnOXr0KHfv3mHmzHnMnfsenp5e7Nx5El9ff8X2iIgIZ/jwIJo27cqhQ1sKilC+fA3s7R1xdy9HSMhoDAYN7u7l+PLLV3B3L8fs2btJSYnH1bVsiWhrSnGW0is1gyUro6IiKj9WOpeLpRsUs8BELhqNRkhPF8zKbFa+F6kgq9XXgkaWl5fHywsWsOngQXq1bs37Y8fSuHZt0OsRTMiXxtbW/H8WZjkdundn7OjRDDZtMAFw4+pV6jZpQu/QULZs2IC91EJlTV0sxSnVUSZXHzzgk2++YYfMN6x/pUosmj6dDs2bY+/iwsVbt6gXEICTu3tB/cTBvzhlTnpNEATOnPmFr78eSevWE+jY8QNE3+by4qrNYaydYFqjIDs7g61tPjY2NuTmJnHp0nm2bPmWI0cO4ezsTP3AQOzt7Kji58e8t97iTlgYP+/fz9Y9e3BxcuLAN99gp9Wqv0+SD/NqWBhDJkwgISmJ/n36UCMggEEDB+Ls4l2k3ZKTzY/Fa9JjeWiN0yaltrUWt3FxMXDjxq88eLCPBw/OEhZ2hcmT57J8+UxcXErz88+nCQ4OKFSQJWNozMOHVBk8mP7NmvHd0aMFZajp5YWdVks5FxfGBgYaNzjS65ly8CB2NjYcDQ0lLjMTTweHws3DlNpZrSMsTrm1hNxYqyBLxh4l13yiWKPnuJg8pP4VBbkxcBr4ENgK1Me4SO89QRC+MqWZDryP0c3bPYwu31pT1M2bVEF2BsKA0sBhaxTk7GzBIkhR0jHHWlHLR3rt6dNw2rQxmiGCg9sSHn4PrdaGESOmsmjRm1So4M+uXfeK/E/pwc6cOYBGjULo2HEMmZlp/Pzzcn78cQHu7uX58MMz6PXOqrPV4sY6NcBHKuL7vnKlO1lZiTg6etC163yqVGmDp6c7Tk5uuLqa65fS0M8P7NISxQYqDMVjC0rzo6wsql+5ggaoptNRzmBgo50dnqbeJ49CxVip+FpZqEOiLEs1STUFWaIYF4QKcc9zHbh58zrXrz/g7t0bLF36Ifv2GXj//a5curSfGTP2UbVqZzQajVmnWlwHKh4nJ1/nzp0jPHp0iujouwwb9hGdOvU1K7ZSVbRpKUV7d+m5koJszepAtZHQpCBHREbSYdw43FxdGdinD2998AFuZcqQmJTEsKFDqRVQl08/XcCqVd/Rtq3xs8/NFbhx4zIXL17k0aMw1q37lFatunLy5F6z4vj5VSUpKY6AgMZkZ2dx794VQkKG0bnzUOrUaV2k2EpVUTp/EUqz0v+sRpPVxNINTCbqkijICQmCxXoouqSz9MKqEc6V0ltRt8i4OMr17g1Aq/r1CY+KwmAw8Prw4Uz77DPcXF1JuHataMEVHt7LEybQqEEDXpswgfT0dNZ+8w0fLliAl6cn5w4cwLV06ZJ3mNa6oxRFcl51yhQexsRQ2tGRBSNG0C4wEA83N9xdXNQhRQvfWY7OCH3JP23RghUfH8mwYVXIy8vFz682en0ZxozZhINDOYtVVpLivgdr9Bklq5Y0zslJ4NatWzy4+wdhYWFMe+898p88YfDEiWz75Rd+WbuWbi1bGikZSu2spCBLCnL70SMOHjnCmUuXuXbtKtOmfUhIyEDFdpPGSRVkJUVZDVW2BmNQag+xL09Njeb779thZ+dI69ZD2bjxLcqU8SIpKYa2bXvTrl1bliz5mBUrVjG4u2kjlPh4rt6+zfmzZwm7d4/F27cTUq8e+8VvxiT+7u5Ep6XRyNubfIOBC1FRDKlWjSH+/rSXriCUmxjUUIbiTJtqcdYqyBK0+K8ad0QRN0/8014sBEG4oNFoegPzgFlAhClcIUm2CHAAvqJwo5DOonJsId80jUbzkSyff634+VXiwQOB5ORUfv/9AL6+VQGBV1/tgoODExER90lPTy0wo6tJq1b92bt3LTVrtmTq1GA8PSvwwQfHqVSp3gtHxq2R114z+kCWftDiJjv/G+Jpa4u7jQ0x+fnMK1WKHSkptMrOZgFGlyr/JNFoNAQG1sPHpx6dO/dh//5f+P77D/nww58YMsQPD48Kf4nT6OdXFz+/utjZvcavvy5gwYJ+tG+fZ9zf/h8q6ZmZhIWHs2vNGs5ev46joyOJSUkAtGzRglFjJtCsWXPat2+Fo6MTDx+msnLlYr79djnNm3fEw8OHGTM+p1ev0eTn55OYmIinZ0UuXTqGk1MZqlevj42NTYk6wv/KP198PT0Rzp0jPTeXA2fOUMHPDztbW7pOmoSjXk9icjLxiYl4uBXPy+/fpw8LP/+cnt27E9SsGb7e3hzYtYvghg3/T16UByskw5wli8ALFBcXNzw8yhMVFUaPHtO5fv0In37amh495lO//oDiM/gbRaPRUKdOHerWrI4gCOzevZsZ8+ez4YsvOH3hAj6enlbxlS1JQK1aBNSqxSQ7PUuWfM7o0YMICwvFwcHxBdbixUpeXiYxMXcYPXoLSUm30Wi0JCUZ/SA0atSOsWOn0KhRc7p3D2YIkJuQwMoNG1iwejWdg4PxcXTk03HjGN20KVqtlpgnT6is13PiwQNKGQw08PFBl2tcE1KsZv8fLFZ9oYIg7AH2qFwXMCLMH6qkKaIlCIKwElhpTRnA8sygOAT5RTxza/PQ60vRoUM/AK5fP0deXj6lSpWmTBkP7ty5TMOGbVT7xbw8aNWqJ59/PprJk+sxbtynhIRMVnx/5WCGEhioZv5R+y7y8qwzCbm6WmYlpKWBn59xMHOrJKm0fNqXlmYGKTgDT2vV4t3oaMoKAutsbQnNyWGiIHAdo5JcTczKFBZdd1v4cucBdiZLia043TdLKKmgWA55AxbzAhgva5g3bxdz5oxh0CBv3N0r4uZWmYyMwjTyZyZKbm4GGRmRCEI+9vZ63Nzc0WptePbsAUeOLOXevSPExhp9VCcnh1GxYg2zZ+DmamoBKb9bDn9IQzn8oQQpWTKbydtKxvUIu3kTgA8//ZQ2TZrw46pVdB1h3Enq3KlTaA0GYmJjcXBwICMjnZCQBsTFxXHgwGl8fCoUKYafnxt5edClSyerrR/WijU6itI3pwaqKDWf6E5Rp7PgYshSZRQgPNGs+GdUBqnHNGn2xrKKZTSa9HV6cxdSZuXU6QqPpWlKaqaSFwRw0uvp07mz0Uz+xx9kZmXh7OyMr5cXF65do2u7dub/Vci/S6tWjHzlFaoFBjJv5kzemTDBmC4tTb2MSi4J1FwXWIuey18cpbpb4iwowIx2JlORmyl09nOUZaFn48Y7rF37Hn5+fjRtuoqlS/uxY8ck4uJuUadOP8qWrWtWDLVxVPq4S6rfS9OLzSWNE/O10+nQANs2bGDspEl416+Pj6cnNUSf+5bENFhlZmXxLDqafIMBvYsLbl5e2Nra8ig8nGUrV3Lo2HEePAgD4O7du9SpU1/1FVBCiZWMcFIEWQ2Vl/cP0jjxcYvliI29D8DevZ9Qp05r5s8/wLvvdgTg5s0zbNrkSGxsNJ6ensTFxdGkfXuePXvG79u2UdXJqcjan9JeXpCWRofq1QsLLCrIlgppDcfMCouiWZwaB0fJJKFT2AioGK73iwROrNpq+p8gIn/OkmnIGsveX2mokv5Xp4Nvv/2cR4/us3fvVurXb86jR3fZseOyGYqs9DCzsiA8/A/s7V3w9CynuCjDUpx4bu2CA0t6oCXTvzUKsp+fMaxUyfgTjwHK6lMgzNhJER5uDMPCCmkXYpyUfpGcTMf0dA5L3M8EAu8CnTG6S1FSkKVUC5HCL4a2Go3ygjw5jUKsjJ+f+bEpTEyzMyuuSKeOjQ3HxsYPGxudYnuL7ZuQEM4ff3zHyZPmu0UBaLW2uLp607Bhf86d20hKitFzSJcuA2jcuC1vvGFciObmajAvgFgg2WJI1d7dkunSkjnM0q6D8oWPzs5M+PRTVm037lrXtH597j58SMVy5XgcGUmN6tX5YtEigoKDsbe3N/MlXlLd48+Ipf9ao6/Kz0tKyTCjX1hr50aiIJte8JJQLO7eFSyWVake8jU2BWXOy1GecSvREkSxRnuQ3Wzlpk2cu36dg6dPE1SrFjfv3+fq3r2UEbeUVfqf6R73HjxAr9dToVw5yzQK8VwNPSgOeZBfsxa5sVYBUVpgIPZZYpypvzK4uhX57MW58rx5fTh3rnAdibd3IJ07zyIgoD8ajUZxna6SFEexUOIei6FSnHhstmYiK4vHT57g6+pqdNUmb28oKOyT+Hi+/+033l+6tEhZbW1t8Spblr69erF91y6iooy7GXbq1JMWLTrQq9dktFqtiZZi/I90Pbn0WHqtJAqyJZ1Sae2IJcriL7+8y5YtCwGoW7cpjx/foXz5SkRFPaGinx9fLVxIkK8vent7zCoj1ewtKQzS91/WtmYVKOl4YIlTo0Kx+Ku7YsqPlc6lEhBgDP/KRiH/enmRMwolUZpJP3v2gM2bV/LGGx+zdesqwsJuUK1aAM+fR+DlVdtiGfPyjO9LUFAts9m2Gugkv2ZpNqzEp5J/5IIgzipzKKp2FqqatqbFMlIFWdQppfkXAZ5quuAmastKGr3YO0g3ItHp2O/iwuXkZNYCa4EbwFCMfgYHmEqqVFowvuR5sjitIJhvVALGj9jS12jhpVEac/PywM2tEvHxxkm6EgCVmytw/vxCTpwwek/Uam1xcfEjOfkRlSq1ICbmJmPH/kilShV56y1/GjYMoXPnUdy9e4SwsEvMmbMNLy+YMGGCsTOUL3y0VkFWQ8iliJZ81LM0U1VomBWvvw65uaz66SfOmvxkf/Taa7Rr3ZradesaKSi5uZCbi1anK/CRqnMuXIChVkw1cE6eRh5n6TFLkS21zrekCrLYfOZ5aAtRZZXOSc3xvbUiPnYlRV+p/HLEr3Ass0PnbOwLCra91evVkeZiviWzwgCPnz3jyx9+4L1XX2XDrl0IgkC9mjUJDw+nTL16RfOS5Vu9YsXCl8cSSiyeq8VZg0ooKc/FKR6y+irOSKSKh/j9urpaRDa0eXl4eJQtcsu8PJgzZwfXr9/g0KGv2bfvK6Kjb/DddwPo02clTZuONyueNfM16eOWvr5KccXlWUTy8qjo41P02UkyEXJzWbZ1K28sWVIQV7NKFe48fEjLRo24fvcuW1asoG6jRvjVqkWzZs344vPPOXTkBNev3+TDD18nLS2HUaPeNivvnxVLxgFLfYACvdai/jh+/HwMhly2bfuc69fPAvDmm8MJDe1AvfLljBQUsZ+XZijNWGw7+U3lZiVLFVNSkJVmOkpxKjxjqecjS+OpNK6kCvJfkf8IBfnvljt3rjNqVEcmTZpJ06ZtAXj2LIJ1636levWiyvF/pXix0WhoBDQCxgBNMarqVzAqyP82Wbq0FLm56VSq1JXu3Tfg6OjJo0c/snfvJHJyMmjZcjwPHpzi5k3j7okZGc/59tsZREc/Ksjj+PFjRgX5Hy4ajYYxPXqQkZvLgbNn6dO5M68MHIi9iwu8IJ+zxcnBg3s4fPg3WrfuSNOmrXn0KIyfftrGiRMHuXPnBgAPHli2phkMBvbs+YGLF49z9+5VPD19CQ0dQbduL/0t5f9PkzsPHtBm+HDeGTOG0PbtAYiKjeXn1aupX/u/feifERsbGypXDmLcuOW0aDGJWbMCsLV1ICLibIGC/G+SCj178jQ2ltb167Nt4UK83N3Ze+ECL8+YQUpaGq8OG8blGzfYvm8fNjY2GAwGPvjoI+7cuVOQx4ULxwsU5H+yaDQaQkJGkJOTyOnTB+jQoQsvvzyB8uUd0CYX9RM+tILXAAAgAElEQVT9vyEH7t9n9/37tKlalbYBAUQkJbHl+nWO3bnDxUfGccmwbx+WenRBENi8YwfHzp7l0pUr+Pj6MmjgQAYMGvG3lP/PyL9aQbYCdDGTFzqzUGg5rdbA1q2r+fzz2cyd+yW9eg0iNvYZer2egIC6ODgIODuro8FKQIcUnFAyicrTW7omR4uNCKeIcKSbQvE8ExDdvEixWSNynJtrRI/i4pyIi3Mx5We8JgIdSiY7nQ7q1DHykh1FqoIa2cvZueBYXOxWVxCojnEP81qSEsqc0hSIFF2WhjZy1Kg4W75cdDrF5JassNJroaF7cHLyxcPDn9TUB5w6NYvIyFOkp8eQnh5DZGThjoRffnmPBg38yc/PJyzsCLVre3Pq1HEGdGpj7BwVfEsrxikhyNKCK5kilCBPU92LvIxK/G6TNCpfng3vvUdKejod3niD7T/9xLC+fYu2swTpEPmvjx48oGv3Hjx69JA5c+YxbdqMYq30oiQnJzN37kds3bqJtm07MmpUX8Xy7d9/2QxkEZ+TIAhs3vwVX3/9CV5e5Wnduif37l3nxIlfsbXV0779S4rcY3kTSYF3tfL+ZRirGBG3mrcWQbZUfunrotcb+wI7vc4clRIzKYFVRhAE1m3fzruffcbiadMY2bcvicnJOOr1BIh+i+X/VRsI1Gy1Shwe6UdrjXvEF+EYV1oPOUInXZ8hWteKyUO0Rri6ulksWoUKtfDza0CfPksoW7ZFQROoFVf+zmRlKb8Xf1qsgQglhdzy0Ue4ubhQq1IlniQkMH7uXM7fvk1cUhJxSUlclyjC144coW6TJsZdGU+fxdnZh5Mnj9K4cY+CZlcCXS3RI6RtJW0PpfHOGopFcQwEvR7q1KlH27bfkp6exrhxXdi583umvj62eKsE8CglhW7z5nEnKoqZ3brxcc+ehW7cpB2fQh6peXnM3bePdWfOEBIYyIDvvgOgtKMjz8UFNsDv69ah8fRURJDXbtzIh3PnUrZsWUJD+2L3x132/PYbuXnQucuIIu1X3JBsDaqsJtZ2s/86BVlJ+fszYu1/i7M8xMVF4+HhRXh4GB9+OIH09FR+/vkEAQG1SEpKZN26L9BoNISHhzF0aA+Sk5OJi0vA1tbWzPWT0haJSgqy1DqipCyL/1dTqMVrubkGChXidFmYBkjpFmBUQUXvCQ6mUI/RcQnExZUx5V/KrB7ScktpSQE1TQqy1MeOqMyJg0F8fBGTkCY3lwSMe5z/daOzRIobvGQ9nRJf1hIVUbwmHnt5NeHq1S84fvwYERH7zW5lb+9MrVptqV69FSEhL+HtXdl0SxtCQjrh620guFFtI29b5M4oLcSzxomnUs8iVTgs9UTF9FzxSUlsvXCBXBsbnEuVwlmvp5SbG4IgkJ+Xh7uDQ0EZcnNzuXfvHs9TU/H28+PI+fOs+vZbMrOzmTBmDLXq1OHRI+MCxVmz3uPgwX1s3LhZZSvgwjItmv8Rmzf/wJFDh6hTpw7ubi6sXLUKLy8vNBoN0SZKyuDBnfj88zV07NgHjUZTYD4WBFiw4DXee28ZL700iWbNSpGVlcGcOd9To0b9Ik1oSZQUS2lzFy68U2LTvzhRX6RnOU6eXn4MgF6LuMBPK86rrFB2YuLj8XRz4/GzZ0yaPZvo+HgOr19P3Zo1SU5JYcn69eQZDIQ/e0a/iROJS0wk8fJlHCxN3qwVaxRrpXIrxRXHWVYbwaUNrtRG8gmomqlb8m3bmRbu6vXaIlZ1GxuB9PQ43N3LodXaFNyqpPp8SUVJCS14jFlWoAySTrRx5cos27WLt5YuZe/582b3cdTraRscTKsGDegfGkq1ihUhKwst0LltazLy7AgKql0w3CitHcvKMt/uWRpK66BEj5amsaQgW6KXi8eCkMjvv2/Fzi4LD49SODg44etbGoPBgCDk4+XlXvDQ8vLyuP/gAYnJyfg4OXHizBlW7d7N89RUxnXtStMqVbhj4l/P/e03frt9m59ffx0/0SOMima/eOdO1pw+zaGPP6ZB7dr4rVvHwm3b0Ov1ODs58SwuDoAeU6ey/OOPGTx0aMGmPga9cfHoKxMn8tFH85k4cRr16lUkMvIpn3++gVq16qlyuJXeSaWJiLUTtJK+s/8qBflPjtUWG1PpmlSk/ZW8YU+e3Mfq1XO4desSrq5u5OfnMW7cVKZOfQedToeNjUC3bi24d+8O/v7+dOvWnaVLv6B06dKkx8Xg5uZmVkipomdnupkYunjoC3g6UrqsqP/IOz+luko/djG9RqOlcI2miL+KynAuhcpyjiwNFCrWekm8MUxNNZY1OtqpiH9eV9dCrnJisjGdm4dH0cVd0t5KVsHTubm4AL4UqvB/SlG2BkZTmZEUty5H7aM9deptbtz4itDQXfTtu5nU1Kdcv76MGjW60KJFb9zcjIOW2FZmSIM12zqpfQCWRE1DsjQbk0teHoIg4Pn22wSWK0fb2rXJiIwkJTOT1OxsbLRamteuTft69QrKOOittzh55QpVypcnMjaWugEBtGvalE9Xr2bWnDl88tFHbNu0iclvvEG/3r05evw49eoF0jQ4mAmvvEKP7t0V63ni1ClWrV3L1TNnqFa1KmRn8/bkyXTr3BlBEKhdty5+FaqRkpLCxInjmT59EmXLzmH37mPY2ZU2VVXDO+8sYtu2VYSGDmfnzluMGdOG+fMnMGPGKnx9/bG1tTNrGqVBVOn9kF4Tj9V4xvLHaGennE5NxPuXdKCwpg+VxtlJb2DhZodPnuSjzz/nwrVrlCldmpzcXF4bMYL3JkwoWOPQfuRIrty6RXkfHwb16MHitWtxcnQkOT0dB/GjUDOrKTWyfFarUkaLYg2EJVVklRReuRT3val9gyoPRKezK/LXiIhLGAz5uLtXJiXFQh2tKJqawmuNowO9HrRZJhRSycmwioI88+uvWbxrF9unTeP7qVOJe/6cz3/+mfZBQfTv2BGdtNOUWgR0OvQm/ryaMmwJERbLbYEGbrHdlOY04rF0+BPL0auXO76+VWjbtgfx8emkp6eSlZWCjY0N9YPq0qdXl4JCjnrjDfYcPkyNypWJjIkhoEIF2gYFsXDTJj7euJGPhg5l57vvMnH1ano3bszx27cJmj2bhlWqMD4khN7BwUalVvZwL9y9y6Ldu7myejW1atQAvZ4JI0bQqm1bDAYDNWvWxL9yZdKA12bN4p0FC5i3Zg3Hjx6llM6RLFOTz5v3JWvWfEHfvuPYvv0sgwe3YebMicyatRwvrxrY2+vN5kXFjadq1H5Lz0x67f8tgvx3SFracw4d2kaFClUJDm5f5PrBgzuYOXME06Z9yoYNh0lMfEL58pXR63VmDR8bG4NWq6VRo8YkJCTw8M4dKleu/Neg7/8K/kA8WOQ6/VPl8eND7NzZySzO17c5Dg5lcHAoQ//+a4FC7wT/VtFoNAwJDia4UiVe79XL4s5Ja3/6iV9On+bQuXP88dtvVCxXDnQ68m1tCercGYAd69fzyRdf8PDxY6pVrcq+Awd4FB5OzRo1KOfrS2jfvjy+f58KFSoQHR3NkePHuXPvHp4eHjyOiCA9PR3/unXp17s34Y8f8ywyksA6dbC1teXi5ct4eHjStGkzHB0dadeuI1u2/MDTpxFUqRJYUJ+RI6cSHf2UwYObMGfOd/z22yPq17dh1qxheHpOY/fuJ3/JT+v/R0lNTWX79u2U8/YmpHXrItf3Hj5MzxEj+GzmTPZ//z1Pnzyhkp9fgWIsSmRMDBqNhiZBQUTFxXHv2DH8K1f+u6rx/1Z8fKqTmhrzl3y0/1/I77du0fLNN83imlSvjruLC+4uLqx54w1j5P8yVenvkO7dx+DrW5XJk2cUAZpcnI3WgQ1r1rBr1y72Hz/O1R9/pEblygVWhIbjxgGwffZsPt26lT8iIqji5cWBa9d4GBND5bJlKe/hQd9Fi/hj6VJq+vkRk5zMiVu3uB4RgYerK/EpKWTn5hIwejR927ThWUICjyIjqVujBvZ2dlz+4w9cXVxoHhyMTqejQ5s2fL9lCw8ePCCogWdBXUaNmkhk5BN69Ahm0aLvOHLkPtWqaZkxYxTz5r3BqVPx/BPV0X9eiVRE6sISSo4gF4ccP3hwjUuXDrF583xSUoybY7Ru3ZeUlERCQobQtm0/RowIJC8vl+nTv6Jv31EIAvj4+Bfcr3CGosHW1pa33prGwYP7uHLpUqH5S8ksZwmBMIUiIuNmUjbcvJ3x8DDOgqWLm8F8Fqo025e2h8gfLkSJpaE4WEkRYoMsnQ2FaLJ5mJzspGjll8e5OavADgowhcgpjsCIIoMRQbbkxUKLuUeLgtDalbhiKCubpXmOHFXJy4vh/v3f+Omn0QVpRo++irt7TfR6e9XFv4ouk+IVuJSW4AulsDjTtJpfSrUl2KZjQRCITUtT9vdrkmU7dvDZtm3MnTSJb2fPxt3Lywxdu2niDybEx3Pkl1+4dvs2v+zdy5LlywG4c/cud+7eBeCrFStYOHcuPlWrAkYPK7kSH5/NmzRhYO/elC5Thg7t2mFjbw9AvkbDhUtXuHTpIoKgQ6vV8tZbH1ClSjUzKoJOp2PmzKXUq+fE8OFNOXUqDScnF9LTU2jevAe5uQI2NsrohJwapYR+KFEZpGIJvbVivwzFvKylqVkLyErl1q2bHDlymAUL5hJvsl/369mTuIQEBvTsyfABA6jbujVp6el8OWcO403+sf2l/GKJ6O3teXfCBHbs3cu9U6dKyPmQiLRzFkVpcYAUUrTWf6b8mpTuUFLOgtK3aq13AOn/iskWcrCxsSMh4S46Xc0i6aT/FcUaRFip71KiDxTs+JmVoUwFk3G842Ji2H/lCsMlHisuzp1L7XLl0NvZFXXPotYfSvomZ2cjBcCSeV8N/VVzP6Y07qpRLOTtJwgCGRmxuLj4IzWwSl3hrV2/no/mz2fOlCms+fBDyjo5FbzngiBw+Z5x595n8fHsnz+fm2Fh/Hr+PJ/t2gXAo9hYvjFtfb78yBGWT5mCd79+RdsNCKpRg8G9euFUujSdWrYsQOcNdnZcuX6d8zdugJ0erVbLm9M/pHr1Gmavf06OlnfeWcj27T8wcGBLzp9PpHz5qjx58oB27XqTmysUu17bGj3uRWOP/yoFOT5euXGK467I0ys1YkzMU6ZMCcLGRsf77x/k44+Nzujr1evHli3vs3DhK5QqVYu4uEjath1G06YvF6E4iC+8wWBg+/aNaLU2nDp1kgb165vfTG3Rh1JlQPErczR9NWLoW8fob83bW1vg7Ut0wfb0aVEWg6srPH2qNV03ugbKzBS5xc6AaHsTwxzMFWMw+pIQFS5bs2uWBv4STe4VHqQfRk8WEzHuee4h5iv7q1Qp1snSaBwc1AcetdUTpgrkKXDO5IPG8+fRLF7sU3B99uxU7O2dFU2S8u1G5XEg8z+rZCJW65mV3iep/Fl7qTTU6UhKT+fQ7dtM79rV/L6mMCMtjTe/+oq3hwxhuJwekZeHjU7HuMGDuX73Lg3r1SM7PZ0t27bh4OBAw6AgDh45AsD1S5co4+pK+5AQfHx98fHxISoqioe3btF/6FDOXbiAkC7ShIrWLz9PS926wdStG1yENipnrTx5EkZWVgabNoWRn+/EwoUHmDy5KU2a9CczU3lXQ0uDoxp7Ry5qE/0/oyBb0qOUlSjLVn2l9PHx8TRoYETeDx88SIdORmtJr+7dWfjFF0yePp0G9erx+MkT+oWGMnbECIsamSAIbN+9m8zsbM7duGHsQ6UrnCWhSEtRBUCUXnfXwqwKXNVZu0hPaVGx0sI9JTqHmg3Ymm/Qgr/xIunFfkphvHNx8aBLl7f5/vuxDB26AxcXb/LyinYV0uKURMED5T6sQMFT8zUqGxcTUlMpO3ZsQdmTv/iC0g6mcSonx/izZvIvVaJNx3auOlPZCvlK0jpL5zqm4hSEagq1NC9Lcxg1v9AZGZkcPfoLEyeOw9fbIFlZbyxAVkICU2fMYHSfPowKCTEvXF4emvx8pvTpw5lbtwj29ycvP58tp05hb2tLcK1a/HbuHABXvv4a77JlaTdlCvN27KBGxYrcffyYB3v2MH7ePA7+/jvCgweFFZC1s1avp2HLltRv275IHyrvu6KinhITE8mePbcoXboMS5bsoH//+nTo0BdbW9tilVu1Ias46sSfNSj8qzYK2bNHeaOQF4UgX778PVu3jkCnsycvLxuAqVNvEhv7Bxs3Gt05zZ0bwbp1g2jWbAjduk0CCl9uSGb69A5kZqZTqpQzb789jzFjupGamo69vX2hOxYlT+TFeRgQRenrlXsW9/YuIK9m6IwI8dOnRffiePrU/FgaRkdDUpKIwokKcjqFCrIoNhRuv2G8l62tcZGenx9Uq2a8UrNmYVinjvE4KMj0r+QIMO2+hrjyWAzDwopsHpKfmUkaMBqjr41NgEAhgqyVhTpJCQtMuNJpuXRzENGzhtpGIaZriWl2RRxEyDepy87O4JVXjPtyL1z4DFdXI+ZdHEAkR1rER1vgtQKUd82TOoiXIzNK/GSpWDM4F3fNdDzs66/ZeOYMLapXZ3i7dviUKcPliAgMBgNrDxygfrVqvNavH9cePyYmMZHU7GwMBgNhz56RlplJWQ8P9h8/DsCyBQuY8u67BcVs16YNP//4I6XKGBeF3rlzh9Zt2xJnWixy48YtkpOT6dOnF0OGDCU4uAlZWTlERDyhU6cu5Odr2L37R5KTU3j99Y9xdXUrMueQr2PMycli2rSOPH58kyZN+mBvX5r9+7/krbd2ExjYvWhbYhkQVFKQLYnaRN/EQinRRiGHD5dsoxBLZbU08O/6cTMjRo5EEIQCFP/isWNERkfTc9AgAB5ducLo116ja8eOvPPaa2ZlTMvKomOvXqSkpmJra8uiuXPpNXAg0dGxuLi4KDqi+LPrAIpD+eTKizYrwzoEubhVR2pizURX2mkoaVimTiNHZ0RHLW2CkZho4JtvRhMfH8mkSfvIySlKE1J63mobf7i6Fu3PRDqAYp+ktIOVbHaanZuLfvx4AB5/8AEVlGaG1iLvsjaSxmXk2RXcXl40a5d4WPv4xFDefna6QmX41cmTWfP997Ro1IiBXbpQtUIFzl++jCAIfLNzJzUqVuSdwYO5du8eMYmJpKSlYRAEHkZF8TwtDe8yZdh38SIAS159lamrVxeUs0WdOvyyeDFlXFxAr+dRdDSNhw4lwfR8rvzyC3lAj9GjeSk0lOAGDdDqdDx89ozOHTpg5+DAjp07SUpJZfbsD3BzK1vsd5ibm8vw4V24ceMiHTv2wsXFjc2bV7Bw4SZCQvoX+a+8ba0BP4sTeV9r8iD5n71RiLXSoMFwHBzcWL++BwEBPQkM7I+7exW8vWvj6nqCr75qTX5+Hp6e/kRF/YHBYODYsa+5fv1X4uOfkJWVQnBwW1q1CqV582DWrVtCYGB97E0m3f/KixMdxg1DugKvAiv+b4tjUezsHBgxYjWHDi0rUI7/E+ST/v3pWb8+OYLA8JWFu8lrtVqcHRy4eO8e765ZQ6cmTSjn6UnpMmXIy89nQI8euLi5EZ+UxBcff0ytNm3QAPlJSVy/eZMjp04xesQISpUq3I2yZs2arFm1igWLFnH16lUCA2vTsGFDDh8+yo4d21m//ltSUlIICmpInz7diI+Pw8fHl6ioSLp1G0Tjxi2LrY+dnZ4FC07x7Nkjrl07SGpqKlOmbCMwsFOx//1PkoEDB+Lp6UmHTp3oGhLCwL59qVm9Og3r1+fCoUM07tgRQRDwr1qVO/fvIwgC6zdt4qfffuNJZCQpqak0bdyYvqGhNG3WjJVr11K1alVcXFyKv/l/pUSi1WoZNWotCxZ0Zt26gQwevBkbm3+eSmCn0/HDyy8z89dflZXj/6cy68036di6NYbsbAZNnlwQr9FocHZw4NbDh7y9fDkhjRvj6+FBrfLlyTcY6NeqFW6OjsQmJ7N0wgRqjBlDZk4O+QcPcis8nENXrzK8c2ejcmySyn5+fDd3Lp988w3X792jfmgoAf7+HNuyhc2//camnTtJSEoiODiYngMGEBsbi6eHB3Hx8XTr1p3OnbsVWx9bW1t++OEwkZERnDixn5SUFBYv3kjr1j3+V9rvRUixX4NGo5mEUQepZIq6BcwVBGGP6boG+AB4BaO/r3PAJEEQbknyEDA6HKgpCMJDSfx6wEMQBKtaSAQV5bOL4ibq1iLIeXlw9eoFAKpWnY2jY0MePzZey8goB8D8+Y3w82tHmTLNGD68qGk1LMyHffs24+DgRO3awcyfv6roTaVmOfkOaEruuSwtp5VPP6Xbj5pQTkdTWN3Pj+pNjQhoYpARWVBDkI2IsxFtjY93NxXNvQgYCZaLIQVdpVtOi3EuuozCuqv57JVNTQ0Y0WEHYDfQBQgAOmCkXYiEFhEPsQNsRJOcFJqVb9eqBH8Uw+1Tsn6C0UR88uR6du9eRlJSDKNGfVoASsuzVQM4CtAXJYhaCc5QgnykBRbTK4kagqwEJSrBiqbjCl5ePH3+nI937aJ/kyYMbdWKJ8+fE5mYSBU/P7oFB+NbrpyR6iLNV3LPGw+NXUWVSpXQ2tkR1KABQcHBABh0dmbfdecufWnWoiuDBvXk2LFDXLp0CUdHHyZP/ojJk41pIiKiWLPGOJXq02cca9fOx94+gPBwZRBLeUfWylSo8ErBvcPCrOPxKiHIlugLlkR+HxFBLomI75Ua11QJ/VIK5Y/fTmfcMvu8yXz7/jvv0KJx44L309f0ATRs3562LVrQpUMHtOI3KBG/ChUYOm4cTk5ONGjQiKVLvy7oFtTARqnhTQ3Nkou1CLJe71jAWXU17VbnXMl4TZuVYV1B5MfFidKDUTNDODsXbNebpdBXS7My/tWWadP2snBhB+bM8aV27c506DCF6tWDzbK3lm/s7KxAo3hqPVosjRMEgR9On+bL48eJSExkfo8eyg9S6QOSplPyeargs93RVEFHV72pLlqLPGNLxbAGQTaj84g3iM4qElcuO5sKWi1zN2+mR9OmvNK9O4+joohMSKC8pyehTZtSztVVeaGl6ab3nz0DwL98ebR2dgRWr06guL+yrC/v1qkTHUNC6D9hAr8cOsTt+/cp4+vLR7NnF6RLeP6cr0xI9NixY/li6VKCTKZgtX5Meq1KlQpUqTKu4Lw4TrEaWvyiOcdyKZZiodFoemG0q9/HqHO8DEwDGgqCcF2j0UwHZgIjgbvAbKAlUEMQhFRTHgLGlVs/CYIwWJL3eqxUkDUajTB8uHlZ1cwdf6VhY2O/JTLyc2rXPoaDg1E51OshJycBZ2cXoqN/4tKlovu31akTSuPGHejadRIVKxrfCD8/8PUwfRByjkN4uDmnQQzlyqK0Y5GKlMwkDaXKn5R2oUQfMMWl6NzMiiilZIhFk1rypW0v7wCktAApQwGMlIsK3qb2kNIpwsKMx2Io1dxlSnOuICB9fLnAA2ArRk7yzxh33LPDtLmIEmdBqY08PIrum610zRTm6BwV5zLXrl3ls8+m8vx5AqNHz6Z9+34FnZg1A7Gzs4LrI+mNlMyU1m59qyYl4QOoaU/AkOXLufjoEWPbt2dK167GhTRqlZc2guk4w2Bg4rvvsv2XX/CvVg2vsmVp2boNEydOwsGhjEmJTWPBgo+5ePE07u5e9Ow5iICApnh6lrfYHGlpMGtWBxo06EWzZlOKNKUYqlFK1cz5ak2r1FzSplQTeRqTv/4SUSzE3QLV+HzWlrlgwBfJTZLG2LJlCx/Mn8/JX3+lrGfhavaExERKOTtz4OhRQocMKVKGHj160qRJKyZMeJ38fOME3dq1cWqmcbW+3xIVRunVVFuioLRuzhoqi5IU5w9b7g5Q6X1Uo07LqSn5+XlERT3g1KlN7Nmzgpkzt1O3bhucnAS0Wm2xfGOz/sqazVTUODJZWdyMiODNH3/kSVISH3TpwsDAQHWPG2oPUM11qDROqX9S+yjUtDk19E6NyCyJG7t4MUdv3mRM+/a80aULjpYs0UplNMVlGwy8tmIFG48epVq5cniVKUOL+vWZ2K8fnj7GtTEZubnM/eYbTl64gIeHBwNCQ2nRtCkVRH6khZc3tGdPmrdoyfTp7yo2h7xpihNLoKW110uaN0CFCsbQUh/6pzjIGo0mEZgBrAEigeWCIHxiuuYAxAJvC4Kw2hQnAIuBt4BgQRAumeLXUwIF2d/fvKx/hW+sJjY2AmlpndDpXPH03AGYdwqCkM+NG35kZ0cTFDSXoKCeeHoG4u1tjpSKoRsm7rFcCZTya6WaqUkjFZKSAPOlcWJVRBQVinposEPGtRVDufInVZqVQtNxZLTxDlIFWQlJVlKUpWgygF1ybGGdi2sH2U0FE6cxD2W+sRZYB6zSaGip1fJFfj6T9Xq+LF9eGWWXE3yVUGWl9K6uZGdno3N1JTklDwcHh4J2CAt7QNeuTXn33Xm89NLL2NmZL/5Q0jftkC0QUtMIlKBNa4mYokhnNVJRKpwahGhhhD9z7x5Dli3jzpIl2EvddlmjICtoGqmCwJ3wcKKioli3/nvCwu7TsWN3GjZsy5kzRzl2bD8zZizh1q1bHDq0g9u3L2Jv74i7uy/VqzfD3t6J8+f3kJHxnMqVm5Kfr+XmzZ94990MMjPNd38sjlJqDRexuL5HremtUaTE84gIY1gSBfn5c0GRM6kkagqyFkOxFe81dCi5eXn8tnVrkYwNBgNVg4IIf/yYme+/T6/eL1G3bj2Lr77SUg3xXO0TUdJT1OqqNje0tKhKTKPEybbms1F75sXMQ1Wfn5IOqrYMQZz07Nu3mQ0b5tO6dXe+/noBAweO4auv1lKqlPEVK+ivSjo7kSHqOXl52BgM5GRlobe1LdjZ7UlsLA0/+YQPunVjbPPmxj6kuIenNoOzZoGxJYuYJSkOlVNq6BKQ5a+Gh9N98WLuLVqEk43CImBLlgXxXBaXnsPYAn8AACAASURBVJvL7adPiUlMZOPhw1y7d4/QNm1o06gR5+/cYdu+fXw1Zw73Hj9m2y+/cOHaNfR6PT5eXjQLDqa0iwu/HjjA8+fPaRAUhFuZMmzYuJGM+HgcRCugtVKcBdOaeAtpLfmRtwSWOhoNQi+Gg6zRaGyAlzC6ODgNVMa4odkBMY0gCJkajeYE0BzjbsCinAd+BBZhtIb/Y8XYWBlkZ1+0cN2G4OAjCMIVKlYciKen8ir2/8rfL6OAnzQavsjPx1WjYWVWFl3S0+leuJKyRPIkNpb1e/fyLCUFTx8fAmvWZM22bRw+fhytVotWq6VOnbo4O7tQr15DWrfujJeXL0OGjP3X+Rh9UXLryRMqeXqaK8d/QUqVKkXjxo0BaNu+B4cO7efcuQssWfIht29fYcGCDTRp0pbatdsyYMAknj/PJDo6ibi4J1y79jupqYmMH7+BBw9uc/z4CqpV60y/fquKuau53LkTRFbWXezsGuLl9Qvi7pH/FcuSk5vLPpMbKblotVoO7NnDuUuXGDhwIILmv+s0/ikSEjKI48d38vXXC3BycubHHzfQpUsXhgzp/6fyi0xI4Nv9+4mIicHL2Zlafn5sPHGCPZcvo9Vo0Gq1BPj64uHkRICvLy/Vr4+royMTW7f+j+1Dbz97Rnl3d5zs7V8Ij8DJwYHGtWoB0LVtWw6eO8f527eZ9/XXnL91i68XLqRd8+a0a92aV4cPJysvj8TUVJ5FRfH7xYvExsWxbuVKHoWH89myZQTWrs2a5ctL5P+9ZceOnD1/nkb16/PL1q14KtCr/mliFYKs0WgCgTOAHkgDhgqCsEej0TQHfgcqCoIQIUm/DignCEKI6VzAqFhfBW4DPQVB2FccgqzRaF7ByG0GaAhJFLoXk0o+8t3cih5LxUbh2A5zLHYScJNSpc4Cyl4F5I4OKlUqRI5F60S1aqANN9GupZ4ZxFBKtwB4+pRcE3IssqSyoMDDsIgkGxRqJ9ZER6HXBjHUm34ADmKnI/F2oUa/KAilKLTYEBKopWC7XCnHSk4XiY62RHguvA7mkJFp5p0veVfFJ1XQgUqQxwQHB7rFxHA+2+iJRANsatyYl8qVw8bk+cAi7cJ0HG0wMHPdOn46fZqhISFUq1aNuLQ0Tpw/z/GzZ1mxeDGvvPoqGltbduzcia29PQsXL6Znz15s3bqFt9+exvChJjaRGsKgwsEDrEeLlcSamboaTKhkI7Ygefn57Pj9d3afO8fRmzfZ8NprdBbdlKjlr0KxkMJ0OaY3WY7wCoJAerpG8RqYI46xsWl89lkp9Hp3srIS6Nr1OhBo9l9L3qcyM90x+k15itGry5eAF0aCj3ynyVzJubxfKm4rafHNlvZLyOKMaQTBaCItCYIsmFA6tR37zEsjoU9IpRgOmyAIvDlzJoeOH+fGWWMfKn/+Bp1dkdfc0rNT2kldDNXoMcV5HRDFGu6oJYOH/Fpx6K81RhmlT6S4OHldlCwZanWXGm/y858zaFBvTpw4VpDuu+XLGdynD7ri3DyYbhKXkMCsjRvZcfo0A1u0oJaPD7EpKfx+9y5Hbt5kybBhvBYSgjY/n12XLgGw9MAB2lavzr6bNxnbqhXj2rQpWmAlsQZBVuvXlBpfKkpIbzEIubw9irO45BsM7Lx6lV9v3mTvrVusGzaMHoGByvWT1tua+qnQ5QQbm8K1IMWYJ7KysnCoWJFSzs6kpqXx+6+/0lxcZyBvK9lxxVat6N6uHVmZmTyJjmbDggX4enkVuUcRsYb7pVJm1THOBCH/VQT5LhAEuAL9gA0ajaat5Lpcy9YoxCEIQphGo1kLLNBoNAfk1xXSr8FI4zAp2Xcp9LUL5oquJWVYmk4a2sripP58FwCXgHUWOxZrOz8tBssKjZIilJZWZMuODIzuzACyJdekdAupaCncZU6spbR2epOiqY+Kwtm0P7vzlSsAaES+oJ9fUeVZSUGWENEKNoaQ1k8+2sXHmyvLYmjJhippeBtRGZZ2CgqEOHdXVwJzczlvqpsAvHz5MseysljQvTuuog9kJV+ipuPJH3+Mh6sr13/6Cd+yZZVHpdxcEAQGmBaPPLx9m30H9jNryhQ+/eJznt68zt6jR3l77Fh6duxYIg6eRbOclNMixql1AEpxJbHlWmHDTcvM5JWlSwmPiiI0OJi1U6fiZA2P4C9IocKjKTJGW1KoUlKcadZsGWfOGHnHJ04MxN//OLa2nqoUC0HIArZg7Ppex8h4bwCEYFwSehyj0rwQKIX5du3SY7CsNMsVVmlfZa4YFyrNPpRYkpNBpyv8Vot7FipKsGKcKb95ixdz+ORJvl2xosjALCrn0u5BjU6htG75ryjIalUpbr6otmbVWmVYKV/x3BpXYEpzSLXyy4/l5ZDmZacTXbJpqFerhpmCPHbqVI4cOMCn48fjXrp0sdSuN9euRafVcmXBAsoXgxb2bdkSgJiMDDaeOsXsAQOYsXkzacDO8+eZHBLCwObNLWegpiBb26+pcaTUxm5r+3KVWUpGTg6Tf/6ZmzEx9Kxdmy9nzMDF2dk6OlxJXzyZaDQaqwm++rw8vl24kFHTpwPw8qRJnPjhB3zKllWnnABbP/6YkNdf5+2BA7HPyyOwRw+6N21K+wYNOHjxIlEJCWz/6CPjuyWvp7wu1sRJxdIYKHIsLIhVI5UgCDmACfbkokajaQxMBT4xxXkDTyR/KQvEWMjuI4wjzFBr7m0uURhVPrnCC8oDjByFkQ8wSrId2IaRCWJj1WxfKvJ3xIAWrSXYQamn0+vRSnYBE0UcSsXXTYmXLKaRzkykirJYXCmqLLKHRKdZjiZfsi5xcdiLs0rpgjU1zw/yRpLOqKUjmxoMJF+MaGnUkPuAlnGKV9aqReunT/ns7Fmux8bSyt+fnx8/JmLfPra8/joubm6qRMK4tDR69eiBb/Xq5nWSigwxeG3wYH7ctYtVa9f+D3vnHV9F0f3/98296QVIQq8hhCYl9N6LFOkgCAgohIcOolIEBKR3UEAQEGnSpCMiRZBeAkjvnRAC6b3cZH9/7N2bzc3u3o3lefT787xe97V3Z2dnzszOnDlz5jNnxKWolSuJiInBIS2N9mXLKnrksLvzS56XLSkJBaUNJn/UtKVEMh7f+fRTvL28OLxoEe4SrCIngE+VdOVXk0vWPqvV92xetV6Tk6FUqeE8e3YWo9GD9HQv7t/vRKlSRzGbnbPFFwS5UlsXOAA0sIT9gIgyWwVIjnkGAKWBwogiMAnRd7gZiEEUkzXJ3mPlSrNEWgryH4B0JSfn/FvbI5t3d+zZw9fffsvyxYtxlMm4VHOmYixd9Si3aossYB8KqhUmkb2FFukaH58zncteN1NStpX2kykpwba2CPkz23TV+JXiZdkDIfsQC0eMoHbRoizctIlLt29Ts3Rpjp49y7tPnvDD2LHkMZmUK9OSSXhMDJ1q1MhUjtUqSUZBHTqw/eJFFh08yOPXr1n800+8iIggyWymu63bFnsFVMsrJ5NCpRU/6apnNVADZyznpevGjTgYDBzp1w8vaRzT4l0Db/xHjB124RxmM/3eeYdT586RkppKiQIF6DBoEMdXrsTNVvbblL120aJcWbIEf8uhL6dmz+bUrVss3LyZ6xZ3Yc1HjqSavz9lChemWN68mNPTSUhLIy09nciEBIrly0efVq0w2ML3cqo865R3+gEk2d9zBh4DrwCrM1CDweCCOIqcUXpREITXwHxgmiWNvwm9Bj4DpgA9LL+J/0uG/qU/QI5GI30qV+ZI794AHL1zhyJ58uDp6krdSZO4YDmGU4nMZjNXb9+mce3aOcrTycmJA998Q8kiRZj70UeMff99AJaOHPn7C/I3p1nffsudJ0/YPG0a7jndrPE/okqVVvLmzSEcHJwRhDSePu1DenqkjjfLkbl9YhjiilaUJcwb8eBzLyAcOAZcRHT+8xxRKd6BeKxNAv8X6U14OJ9MmMDQTz4hqF8/Orz7Lh+PGfO/Zutf+p1kMpno2bo1Ry1+zE/dvImXmxsFcuemzpgxnJYggwokCAIXHz2iieRSTG+eRiN7P/+cgMKFWRgUxKddupCRkcHXQ4f+obL8nWnx2bNcDAlhS9eueMmxMn9j+mrcOC7dvk1cYiKuzs70nDCBNxZoqBaVLFiQ7pbVgi6zZ3P1yRNCo6LoXr8+vl5elCxQgDweHryKjmb76dPsDw7m4v373Hz6lJS0NBbu2MGIpUuJiIn5q4sI6LAgGwyG2cCPiFLeE+gJNAbaCoIgGAyGxcAEg8FwB7iHqFXGI44EarQAGAx0BJR3cSjSNCAIkNwGSZYUR5v/2Dy3tbxIVplfEQexF4gQ6x7ACaCdGMs4SHXCITceKjkfkCMK8kkzaD2nL0VH4xIXB5AFauEk+y8vEWRHPmaQHXaRBNmOW5bDLiQIh6TiJAJuSWKox+PH4rMnT8DXF7MgcNfNjbecnbNabpVMF7azbDWXZBLZCgi5qUPpLGY5KFzBup0XCNu6lbaTJxN85w5zx4/nVUQE78yaxbp582jduHG2mffr0FCcnJwoaivclZbZzGbS09OZtnAhU1dkbvy6dO0a7apWpUOtWvgkJIgYa70WBi1Ssw4ouTRS8jtlG1+PxUWp7GYzv54+zZfbthG8fTvO3t76reFKpBRfqiNTJiTAxWJJNpuVF2TUnsmrw2z2pEqV2Zw925cyZXYREbGN6OggihffYcOGKEsyF3QyEMXaceApYk8ahSiPfkZUin8EPkW0ONvuHmhoeX8I8AlQyvIsncweq2ZJBtsVsLi4OMx66lZG7fv25asZMygubZJQIp3WlYyMDA4fPcrR48d58uwZR44d47133+Xy+fO069IFgP8MHqpoOZauemCcavBGNbaVjGq2C1PytJQMofby1+oqeiy3gpCO2XwbT88K2USebbpKz9UMiva8aVghFMnJEK8wgCnsfcgFhG/YQOeZMzlx+zZzOnemc6VKdF6wgJXvv0/HqlWz8RedkECK2UxAkSK6zOcZGRnM3bqV8TIZWqlUKTo1bkyHhg3J5+eXKd/VKsO2YnKyKqK2aqdm/TWb1RylZw/TkO8XQkKYceIEFwcOxMPZ2X5Z9K78aVlK9daLRn24mkzMGzGCd0aNYv+CBew9fpy+n3/OgVmz7C7lbBk+nIFNmvD41SscjUamtG9P6YIF2R0czK7gYNYeOcKKDz9kwbvvZquPgY0a8dnmzfi2b8+PU6bQxrJ5W3d92FB8fDypqbanA8uy1FFNBYCNlmsMcA1oLQjCz5bncxH1qmVkHhTSUvKBrESCIMQbDIap5PgAtHhgMyK6A7IibJUwxVLYZUQPudeBOoiD1m1Efb8x8A6wBNECBOIAtxODobU1Zy0IklwpVsSQlRBPrPGSsLx21g4NlkwkfLCZzEVZ6ZqhECaHYWTI4mETzyS7T7OJJ09LajYS7tldEHB784bbwCCDAS9BIMlk4hNfXzp4emZXyOSkBCmQSB5fL5xCyYexrWs2y3v5PDw4e/QoF69coXb9+hgMBgpUr06Hrl159fIlbhYckoSNdEwXMKen8+DVK0pJuy4tnT0iMpJFX33F5Rs3iImKolm1alQtW5apK1bg4uREsqWzXb5/n8v37wMQHRFBs9KlGRwYiK/kskdpcqCw9KY4EtquucrDtLz429lRpLVxy7pZSyb4+4wZwydDh1JE7i8zJ+7mlMLkg4zEmwQLANw8pNarb/FLTW76+HQHkjl3rhMNG/7GqVN1yZMnCZNJnCLKqyg6WpQjSUlGS75tyVR8kxHlUgdEpbgDop1AsjTLJ+klEGXLGMRFtJGIcqg+IiTDXrmktA4Dh/DyCmLw4MG66kGiiKgoPp42jR/Wrcv+UGNQPXHiBDNmzuTc+fPUr1cPs9nMb1ev4u7uTvNmzWjfoQOLvlxKQYtv1VGjPmHt2jW0bt1JFR6hBbVXYkuJRRcX7XfkTUmP4q1XGddAFqgq0fK4SUlPuXu3H87OBcnIiKRUqY8pU6azLl1HCZeshNqTrg7m1Eym4hXGHq1TVyz3PhkZ/DJ6NOcfPaJO8eIYDAYKBQXR7MsvCZ01i1zSyZYWhk1OTjiZTNx8/py3AgIyGTKZiI6PZ9HGjQTfuUN0QgL1q1ShafXqjF+xAgcHBzIyRFlz7cEDrlk2tL+Oi6NF3boM7dMn0+AkkQ7oRjbSmsgrNUY9mB01DLJtGjLePty/n6E1a1JC2vuj9sFVJhaqGGQ9OBu9pNQRkpNpU706myZOpOOYMdz69lsqDxxIfFwcHnKohUq9NS1VKtOTgUXmd6xQgRYBAZS/eZOTt2/TtVq1bB2rmKcnG4cM4U10NG2nTGH3Z5/x640b9GvZkkp+frqLtGzbNmatXk1IWBh9+/ZVjfe7/CD/L0jcpLcBUTmuh2iFkRQFRzJtrEabsJXAJkRLz8+Ig0s94GugKMpWaPHq6OigaqWS7/GS62hyF8Mg7m+z9Y3slfxa/PPgQaZHC7mHCxs/wWlRUVgM0lbPFvGy/8k2Vzk+WUlRlvvqkOORba+SNVm6ull+0v8DwEKDgSuCQFVHRw75++NkMCh3TonUlMCcVrStgqxkVZY2Bcl2y0vZBwdfolmz6jx4EEGePJnHl0rZz549lcOHf+b4L0fFo8Itlu9Jc+dy7uJFhvfuzYfjx/N2jRpsmjSJjMhI0eWNJV5kQgLrfvmF0fv3Zyl+u+LFCUlIoKyHB1V9fOhauDDFlRzA29ahkuKrhL9WwobbbEZMNSufEKWEZ1SzVDmZMujapQueHh6sXbIkMxEtLUhLUZa3Fa1t+zKNwNazhZIHCiWYuzxs1iwDffo84OTJyURGXiYwcAteXpVUvSlIYXFxUo9KQux5YYgeMbogwrScLOHS2kyaLH4i4rE2NxHxy+2RVq2yW5DTyZRL0YgeNQ8B/YiMnE6ePHly5MUi4sYNqrZuTYsmTVgyZw5u0tG9svq3nSgtXfoV8+bNZfLkKfz880F++OEHatWqw/r131NCEmqo6xNKeoR0VWouWn6N9bjdzeleKbU5nJISrEVKOpo9C29Y2CEePpxDRMRFvL0r0L37UUwm1yxdVmmxzHZ/sfw+i5XYtkL0Vr6OfnwnLIxyM2cSOnMmBXx8MgtlKfS8gwfZcvo0J+fNE0+ps/xmrlvHz8HBjO7VixHz51OpbFn2rVhBhsVtppRGVHQ0m3btYvi4cVnqtXP79jx9/hz/kiWpXqUKnTt3xt/fX/kjyMleo7RtoGqnBWk9y8mMz2Si7+7dJJvNbO3XL/OZ1oqf0spfTveY2PIhJ62OoNKJvFq35uTixSzduZPj166xefRoqgcEaFvgbf8DkfHxFPz4YzpVqcJ3/fvj4uioujRjNhiYs2cPv965w7WnTwlq2ZJpvXrZnWC8SUxk2datLPn+e2aOHEn3UaPw9vb+c/wg/+8pD7AY6A0UQUR72KO1iGea5ENUjkEcyIpqvHMbmEt6uheCsBjR/fO/ZEttgA4uLlRMS+PXtDQSMjJwUnJq/jekSpWq8MEHg6levRT/+c9ImjRpSfXqtZG2NX722SSuXbtKYNWqNG/WjMSYGG7dusX9x485tGYNUbGxRMTEMM5yGpitP0hvd3ealypFSW9vcjs58UFgIN9fvco+y2YEoyDw/ZMnfHLpErMrVmT906c0ypuXZVWq/GN8fw4fNIg10nFu/1AqWbITwcGzqVVrJY8erefy5d40aHCBzKmiPRKAc0B/RLmyiEylWI0cEWVYKrATEbNsj+4AS4FqwHSgGHny5NwXs3eePJw+cIDStWpRrGhRJknHyGrQsmVLGTt2HGXLliMoaAAAFSpUzKIc29LDhw9YsGAGTk6uTJu2JPPgon8pC+XP3xJ//5YcPFif169Pk5oaZ13F+LtTmXz5GNWkCeWmTWNYkya0eust6pQvb51efdKhA1efPiVw+HBaVq1Kcno6t1+84M7Tp+xfsoT09HSehYayzTLBtpWheXLnplnDhgSULImbqysf9urFrp9+YufevYC452Pbjh2MmTiR6VOmsGX7dmrVqsU3K1fmyD/v/5KG1KrF4tOn/9ds/CFqX68eC7ZvZ9mQIew4dYpeCxdyedEiZU9GCiQIAhceP6bHypX4583LlkGD7L5jMhqZ0LkzE0wmlh44wG+WcVWLLty8SbcJE3i7bl2OffstgeXKgbe35jv/MAU5H6JivAVxqXIY4sHC9ciER8ihFkbEs9X6At8hDl5eiFYeZ1k8bP7PBJLIyFhPcvJIDIZS1hh6V1i0JpClSonLqW4lVJZ1bBJ2BLw0APBKJ+pJJZHbo2xPn5M7uzMpXG0R3A5kzwsXF67lzy8qde7u1rAsV7C/Tqp2hqsSnEIlzNaimGzRO5Sso+DAlCnLef/9kXz77SIGDeqDp6cn3bv3ok6d+jRqVJNt27Zx4cRx9v74IxUqV6bP229TvUIF3DMy6P/FF7i5uFAxVy4RaK5wtFdyeDiPIsXNXwudnambJw/Br15hNBi4FhXFGD8/HASBYmYz9+PiKGI0IoSHizt0bS3H8rqT6lXJGi+ve4tZKcPDK0u92DuKV56kUrLiMwdSDK78dv0mGblFIeNgTlVOWM+yoxLJ+4EtiDQ5GSdL3XjndrHwlt19mLwZKcD96ddvKZs3D+DhwzG0bbuUuLiTXLnSiNatT5KU5GSNJ70n/Y+MvE9y8lFiY3eQlnYBk+ljzObxiD1KUpBtMcjSVR7WDHHbhuSyzdaCnILodvI6Im65Dn/Ii4WLC4VLluT8qVO0bNuWzyZPZvPmzdSqU4/ixf0VX1m9eh2dO7djzZpNLFq0DC+vXHTp8q6mhXXx4rlERERw8OA+evYcRPnylTQXEORk2+aU3pGLkD/Dgmybj70wLb7l93o9VfTqdRJXV4Oi+FOyEquJSydThrIVWMt8r3VUpNK4ZCGDoyOLunZleOPGzD92jP4bNuDs6Ejvhg2pV6YMtcuVY92wYVx49oxdZ8/yVrFi9HrnHaqXK4enjw8j58wBoFa9etkryfI/1cWF+49ELzGlq1SjdmwSp8+dw2g0ciE4mGHDPsFkcsS3QBkePHyIp5cPoWECjo4OCt/DyZK8EyY5/ETK27bRyPE7WsqevDHmJL6LCw7OzlwKDdWGv+XUI5E9129aJMcJ2TZ8lfcXjBjBf2bNYsTy5Xz78cecun6deuPGcXbOHFw1rNQPIiI4eusWOy9e5NT9+4xo3pypXbrYt3TblKV5pUrM2b0bQRAwKLxnNpsZMGsWB8+eZfmkSXRu0UIZBqpA/zCIxUvEpcsjiBvqiiOqapURXbOBNHgYDJkzSAeHA6SnD8DBYQhG48Qs6cr7vCBkIMKsvRHPJ9kJXEWEX0t8iOmaTNq6nNJ5G0qHiDi9spyvIj88xPZI6idPrAdppFncsMkhFomWq3zYlXDD9rxDy1HcyO6dybShSbAKF9l/g2S9ksMdlDCvetcdlSpTSl/j2OdUk8iR7DwRTayhkrxwcRE3iZw7d5iff97FyZO/EhcXS9XAQC5dukRiUhI927Vjzn/+g6e7O2nh4Ti9/TYATcuW5VVsLL4uLgyrX59uxYsrr+WD8gZFuSBSWjbTi7+Wu+ID8d7yP9GcVdFTqiulTUxKn0p+P336UIxGIzNmfGkNU8Q/ag26Wng/OSO2/7W0dxkjicnqPneluUxsbCT9+vkzZMgaSpfuwEcf5ad3740ULNgqS73Fx0NoaCghITu4enUMBQt2w9m5Cm5u7+LoWEgTGpCWJodkyN3HZQBvASuA6mTtsbMRjQEBwBrEyT1IMk4QigE5PCgkIQFcXDh67FeaN29KyZL+CIJA6dJl2bnzx2zvSJ/i2LEjDB36AT169OHzz2dkiyePm5ycTOHCrvTuHcT+/Tv4+efLFClSXNMWYG+fkxaOWUkZ1qMgy/nWG6aHtJBjSn1ECT+shahScuHu5iKDVegBe+cEm6JVeFlhBUHgl4cP2XnpEr/eukVEQgLVS5XiyuPHxCYm0r1ZM+Z9/DG5PT0R3N1xKFsWgGYNGxIaFoa3jw+DBwzgvT59SEs3ZmNXYkNLvtuyBdqILTlkTNcmenv+CLVmXwpK66f79xOdlMSqoKDMZ3pxxtJVSUhrxfu9MBSNyo+LiaFE164sGzWKd+vUoUSfPiwKCqJLrVrZ4odFRLDn0iVGrl9Pl5o1qebnR5caNShmbxOmyjggCAJ+/fuz5qOPaFajRpZnk1evZtnOnZQsWpTDq1eTS8J6S3VVSDSsqsnQf5SC7Ogo4OICRmMG6eniLNLBoSDR0dXJl+8lIGAyOVghEfK2mZ7+mjdvAvD2foCDQ15VCJIgmMnqCWMQoqW6mA1HmbhnV1dxEPbwyK67FCiQHYMsV5QlZdl62p4CBpkXL7KctAfAq1ckWbbX/xEMstTkJJuUZFeXe7hwlpb87Sirf4mCrIKvlRQfSXlRku1askltoHJzyUAQBB799huXrl6lsp8fXh4eTJo1i18vXGBEly5UK1SIqIQEhJgYjImJ+Lq78+TFC97dsYOw/v3JJ+2KVfL3rKWZKjGnhC22nYXJT0SUXy3xYpPFdiqdz6J0uIKSQqAmZwGCg/cxdmx7tm+/S2mLr2i1OpU+aZYTFqXMtSxVSsLalkGlq5LFRcZIhoubNXup/MeOneCLL4bh6enNzZsX6dRpBF27zkIQBEJCwrh0aRenTn1PaOhNihevT8WKIyhRorniGGoPppi9CewjKWkQJtMj0tPFHihO1vMiesWomaXY0iTdspcpxyfppZodSEsTuHjxvDi4+PkTGFiG+/dfYTQaMRgMGBWgUpGREVStWprTp69SuHARa7jtpxEEAV/fTANFv35DCQr6iCJF/LPEt/ep7Sm80r2WMmyvWamVQam56bUg25vDqSnI9vqP1kEhWXDHWjMGvbjkP9IHXVwQBIEnMTEE379PhdKl8fb05IvNaTUvUAAAIABJREFUmzlw7hyjevematWqJCQmkmo0YvLwIG/evIS8eUOnLl24desxPj4lAOW+pVdB1jF/zlKnVn/QCquBmrNfPbMwhTo78ugRLRYs4Ldp06gs97evV+HVE18rDS1SU4bVJk5mM2evXGHovHm4Ojpy/8ULujZsyPKhQxEEgTcREew8c4ZtJ05w5dEj6pUty9BWrWit4AElG2npEJbr4eBges+axaMffsBdtmG0aJs2rJ81iybSiYy2jcECsfg/gkEWyWBwwGSqa60jo7E0iYlLiY0VvVv4+u7HxaUNyAzuRmM+TKa6pKWdwdm5g0baJgShFXDQErIC2IXoBUPnsZf/0j+aDAYD/n5++Pv5WYXg6ilT+OngQXadPMmKXbt4ERFBbGIi33TrRuty5TAmJFDUy4u8rq6g4TYG4FFaGlGpqQSYTFab4D+N6tZtS5kyVXj8+JZVQf4nU40aDdm9+wpLlkzn0qVf2bx5Nq9eveL06a2YTE5UqPA2tWp9SLly7wMCcXF/HqbWZGqHwTAdQTgJNJc9KUqmtfnPJYPBQM2ata33VapU55tvljJx4icAfP/9blq3bpcFy+nt7UO9eo04e/YkXbu+p5l2x47d2b17KwDffbeMXbu+Z+nSLTRs2FL1vX/p/w4ZDAb8ChTAr0ABqzKy7OOPOXLjBtsPHWL17t08Dw0lJi6O+TNn0qZVK7yePsXHx4ciRYqSZAfGHxb2jDdvXlG0aFmcnf+ZUrRp2bLUKVWKWyEhmQryP5jqVKxI8HffMe+77xi3ciVf791LamoqW44fx+jgQIsqVejRoAGHJk0iIyMDpz9xX0KL6tUpV7w4R4ODad+kiTW8aP78pGdkaLypTf8oBblCBfFqOxF6/rwZr18vxGTyIV++AURGjsbV9S7583+EwWDAbIakpKuEh98mTx5fnJyUDXjx8SAIlxA33MQg+kauANxA3GV+g0wfzKlIg1dSkqMlLRdN66UtycNLlSoJWI5rtp3l2JwSB8CrV7haLJOukmnQosylp6VlO4ZazYJsxSNLjTWn3hK03Ikp4Z6UlknUpvRSPjbpppod7C6raWUl3StaYTR2cbcODKR1YCBER/MmNpb527YxcPt2MlJTIT4eP09PDAkJipbjJ6mpbHn1ikdJSaySKdDvGY1MNpkoYjDgYjKRBkSmpJCQlERURgaBDg44OThkLUAOl/a0Vsq0LGxqyAbx6kDNmh1YtOgTEhLSadiwi5qzCWt6Hh6iJdtJWppQgpeoAfn1LA/I7zVMd9LJll4uLuJxrgAlxPb85ZeT2b9/FSEhIVSuXJJ+/fYQG5vOtWtnefToKDt3DiN/fj+mTbsBKK/C6l3FlhfpxYthhIYOp3TpCxiNniQlveL+/WeULVv9T91wJPUd22ps2LA5X3+9BA8PTwYMGMbUqZ9x48YNRo/+zLpp9M6dW9y+fYN+/QZjNisbpMxmuHHjKp079yA8PIxTp45ToUIgN278xvvvv82FC8/In7+o9T0taIMcCqr2+dWavpbxS8tarBdGIZGSbNda1daCk6otfCg5MNA0BtoG6sRbZnlXTwVqCQiVtJvXrk3z2rXBw4OIqCi+3LyZTz77DKPRSK68BSlRwo+0NKMiHOr16xccPPg9ISGPOXhwhTXZmjW70rnzZPLlK4mjozPp6WaSkiKABOLjowkIqISjo7Oii/gs38oinxzkH0Fr2UEirT0VGsuYDiYTnWrVYvyOHRhcXelerx4Ge/hhvc/0erZQI3kHV+psSu3EbMYBGDtwIJuPHePqvXsUK1yYHTNnYkhL4+ytW5y8d49x69fj6ebG07Vr1fOXkw4LMiYTw7p3Z/TSpTSoV488Xl5EJSRw/cEDatWoob5sYy9rfRz+PcgCWcpGCQkuvHjxnGrVVlGs2ADi4/tz8mQzwsJmU7nyJkJC1hAdfYLChcdToEBdUlKy17nZDEbjFczm6kAgsB6ohKgUSxSPiE+WKKulUBAgPl6seL1tW54/QIkSxXBTwuHKQc0grpcrYVwBY3IyRnu7r2yZ0wK/2fOtqyTB1QqoxIf8Xds05O9ark6mVLA5elg+iCqRloJsXfqPV9FeFPjP6+XFnK5dcUhJYdCePdQqWJCb4eGcf/2aWg4OXIuN5X54OM1z58YxNZXA+/fp4OJCaQcHvA0GIgWBmSYTsRkZlE1JwRkoajDwXBCs+HGAvU5OtPP01F4Xtrd+bENqy8dKSdjKSPmn7dx5EgULvsXSpSN59OgOfft+hrRqI49nm66Ti4LYUdJu9GweUiOtQUNj/dopd25+3bCBriNHsnz5dPLnz0+JEiWpUaM277zTggIFcvPy5TPrZF3plHR7bCutgJcp05ujR/fh5LSCihU/5ddfP8NoFChVKgo3t6xeDXKqxNm+q7Ra7uLiQkjIc6ZPX0JQ0Ah69RpIly5N+frrhSxbtpE9e7Zw7NjPDBv2KQ0bNlVVDG/fvkmjRoEUK1acAwdOUKFCcW7c+M0aJzk5VnPznTxMfpXe0QPJ0BumxYNtuX5PmJr+mBNdR02htu2XTlJe9pQ6e4xIjVNFAVJNT36vpoDZVLRPnjxMHTMGT29vPho7llq1anPz5g1OnTpF2bL1uX//Jteu3aZmzeYkJ7sxYEAVKlVqSb58ZShQIIBXr+7TocNUzGYz48ZVxGRyJnfuQsTFvSElJd6az4gRm6lXr0c2NiGzr8rZdpM3Nj1yVUnYqZTZNv4n3bpRunhxRq5ezc3QUKb27ZupoP8RBVmjIUluHLXbvRMmyxhr9YGvJMzlDVH2bO/KlXQdPpzp69aR38cHv4IFqV2hAs3q1CGfry9XHzzIvgFdjSGdCnLXtm3Zf/48X27bxuRhw/h84ULSzGaiU1Lw/J0K8j8Kgzx+vDKvq1cH8ubNVTw9i/L++w8wGkW/t7t31+fNm9P4+w+mcuWFpKWJlaJk9Xn9ehcREZ0tKcZjMLgjCD0Q/ZVKVuQOiJtlJDLaXB0RT9rO/PbyPWxKPpJt9V4lOKlD+OtMAKkcSCoH4MoLo2RCUSIlBdkeIE7LnKFEWiOVGk+2eeoxq7i46DvoQs5XTjBWcnOgbEKS8uYNo7ZtY8WJE9akC7m68iY5GbMg4OvkhCtQ3s2Nn4oWhfh4Po2MZH5MDCm+vjilp4PZLLq6MRgQgBrOzsw2m1kTH08ek4mvCxempmUzgWqDUsIgW/7HmkXMrVLTUXLhaW8MkK7S//Dwe8ya1YN33hlIt26DAO05lZtJhvVTmuTZMqd2+qIeTVFrMqgG8ATSPT1JMpnwcHe3TlSFXLmo1aQJ48Z9RvPmHa1sKynG0r2eDWdSs3v+/BJr1rTDz68h166J8ARPz4IMGvQbHh75shX3iy/Ea04wyAkJgmIXbNu2IefOncTHJy+XLj3F1XJseI8erTh27Gd69fqQ2bO/wsvLzfqObbc/evQw7duLEIrQ0Bi8vLwYOjSI775bTdWqNbh8+SKtW7djy5a92XjTUpTl/7X0Fb3zRb0TDD0Kr1Z8e8+0wnKq/yilZZV5ShVib6VGzy5He0YPLauErL+lOTvz6eTJLFm5EgCj0YS3d16ioyNIS0sjVy5vXF1z4etbmEmTThAfD7t3T2bfvi9YtCgBB4fMNvn06UUyMtLw96/NL7/M49Sp1Tg7u9C37wqqVq1nzVqPtxCH5ER9s9+cGioU6ujh69f0mjmTd5s0YXSvXlnj/UmzKulESz19Qu0zKh0YZb3ahGWkppIYFyfKUEuYkJZGow8/ZFC3bvRs2VK9jrRIoz5uPnpEk969aVG/Pt/v2QOIri2vXbhA4UKFMicJFo8m0uLc/4lNeitXZuVVqtclS5pz7554YnXjxhOpV+8jHBy8efPmBYmJ4bi7BwJZ27h87BUEgbt3p5KamkGePFOJiTGQkfGKmJiCstzqAmfI6uM0q4JsMDgo9f9sJyArOBrI4oRAKb7037qRQGvDl5a5xJaUOpd0rxRm+56c9AjhnOyysOVDzo+eJSQtXvWSkvCTC0mLMhf14gUfb9jAhbt3uWk5AbF2wYK4Go18GhBAq8KFMcTEWONnxMXhYDAoK3qW8j1NSWFzfDxLXrygf/HiTCtTRvQekkMvFqkuIkZPa5OeEhtyC7JEatV95cpxpk17j0GDJtOx4wd4eYmbzZQGI4fkxExG9CjISmZaeTuSM6zEqFqYXmiPpfN998svLNuyhfP79+Pg5WWNL/eUIWdbL1pEXvfHjm3k/PkdNG06gO3bJ+Pr64efXy3atPkkWzE//FC85kRBjokRFAfGfv068dNPuwEYOvRThg4dg4+PLxERrwgNDSEwsFq2KpRXrSAIzJ07i9jYWKZPn4XBYCAyMpKCBX2scZo1a8nRo4dISMjZmKOlKCvF06sM69XvcvpMi36PLmD7356yraTsSM+zKM16NvMpPdNjlldiTq4gy/udpX/FGY18PH48Zy4Ec/PmdQCqVWuM2ZxKx45jqVOnHTExBmv/io3NwMEhK2TItn1GRb3g6tXNHD68mPr136N373l4emq708viGcS2PpSMUL9n3FWom3PXr9NhzBgmDRxI/06dcNWDqVGCZMitxRZFUM0eJJFem5WtSpBFYdYyhlmu2/bsYdrSpVzZtQuT3PqshxE5QxoThm0//sjGH35g2ODBfDR+PNWrVqWkvz+TJ060xpMmC06Whej/U5v0AGJjX3Plyh7c3X3p1WsdkZEvWbKkJk+e/Epw8Go6d95K/vwN8fQsYm3TSpSWFsmTJ+OIitpHenqMZYf4pxgMnjg4TCcjIxcwHFE51n+U4b/0/xfl8fDg28GDITycM1evktvVlQBBoOG2bUSmpmY7/MNBx2EgxZ2dGefjQ/1cuRhw7x6H37zB5OiIi4sLNfLnp3utWlSRLMv/Y6pSpTEzZ25n7dov2LJlKePHL6BBA9EVXmJiIs+ePcHVVaB48eK4CunsO3CAfbt3c/r8eV6EhZGenk6HBg3Y9PHH/B2PlHj44gVj5s3j582b/9JDCBo06E2DBr1JSoojKiqUly/vUrFim78kr8jICPbs2Ym3tw8zZnzJp59OoWnTQC5cOM3WrW+xfPkmmjVrTv78BTTTiYmJYfLkieza9QORkZE4OjoyevSnuLm5MWXKNPLmLcDQoUEcPXoID9tl1X/pX7KQp6cn3yxdSiJuHD58HldXN3LnLseQIS2Ijg7LLkN19MM8eYrQqtWnlC7diHXrPuTWreO4uLjg5ORI2bI1aNOmG2+9VeOvKlKOqHbFiuxduJAv1qxh6ZYtzB89mncs3heSkpN5EhJCOlCiSBFcnJ05cPw4e48f59TFizwLCSE9PZ3WzZqxZeNGXP6G/exZSAjDp05l97JlmcrxX0DvdujAux06kAzExceza98+Zk+f/rvS+p9YkA0GwxDEkz4KIp63OkoQt3BrvSP8/LPIq9kM16//yrhxjfHxKUJ6ehqDBm1gx47JNGw4GA8PH9as6cfUqeKRzkqrJPHxEBZ2iqNHu1K4cAdKlpzL8eP+mM0RlC79AGdnf+ukOTX1MomJN3B2fl/xlDOtCbJ8FVfJY5feE4KVNj+pQX5z0vZysnQpJ62Va6vLITU/klrL5fbMOmqZ2luGUmJczy4ZLUu53NWP3Nopg8N0WrKESnnyMLVly6zP5O8pmXxsGlKKoyO/hoaS4uKCo7s7Z54/55vLl+lZowbzP/gAh3zi4TOKyw6Wa2y8gzVLPYgFJYOs/F7JcGE0Chw5spcZM0ZRqFBR3N1duXjxLIUKFULIyOD5ixc4GAxUqViR7i1b0qRiRYoXLIgQHU2XKVNwcXDASRD4+cYNVr33Hj2qV1e3IOfEWqPWPpQsWtLV8v9ZaipNxo9nTK9e/MdycqIihsSShmS1ycl+Q6X+FxX1GrM5jTx5CmcpihSnaVPx+nstyJcuXaBly1rkz18AszmdxYu/5ZtvFtO+fTf8/cvQt28HHj6MxGg0qnalixcv8O67nWjevCULFiygdu2aPHz4kOvXb1K+fHkrv9euXeXKlcu8/35fq2Lze6yueg1zf8RSa3ufzfqqlIFWZ7EJs4WC2YOX5ISU4DNKbMi7g1VeK1lFtXaX2rMqK2VuK19VztKOjBbr6NUr+PTTnnh5FWbw4HlZtt4oiQJ51Wcfi1O5desEDg6JeHk5c+vWOfbtW0mTJp2YOvVLcuUyZnvP6l9aLvNtM7VnQdbCL9iGmUS/vgdPnGDEjBnk9fYml5cXpy9domC+fBgMBp6FhODg4ECl8uXp3rkzTRs3xq94cTCZ6PnBB5jT03Hz8OTw4UPMn7+Yvn0/UBSXSnsLtRbhlD6ffJjMsjphUx8vnz+naceODOrTh1H9+6tnqqfxqjFny6TJRHh4OElpaRT1E42btvhrexbk/7qCbDAYugMbgSHAKcv1A6C8IAjPNN4T7t7Nip/78cctzJs3gjp1WhMcfIySJSty504wM2ceYsiQQFateoOXl2+2sfXChZ1cvvwDDx8epk2bDfj5teL27R85dKg3rVr9grNzFWv834sG0ILLaoytWZRhJeiWls6nRWptUK1cWjJOfrW3Sp0FbwrKAFito93sMSK/15oxaM1cZAWwPXVOPqlSQkJIWUhJeXlkWMt348wZKrZrx9xBg/j0vfdE5ViOc5AyyMnuQhnfz81mmnzxBQuCgujQunVWRhROE5AUN3lZlGS7RDlVkLMs5TqkcuTIYchIoWnNmnh5eUF8PGazmbiICPLkypUN6xGbmMh3P/6Il8FAQmoqk3fvZl9QEHXy5tU+YEXv5Eqrzai0j3OPHvHu6tV80qYNI3r0UJ6p2rYjBfy8XGnWsRKZhdS6QEnR8c0fgljs37+LTz4ZRKNGLbhw4TQBAWW5ciWYnTsP06RJVW7efJbF57FUhT//vJ/t27dw+PDPrFq1hvbt2/PLL7/QsWN7jhz5hZo1a6KHsu0N+KtIL9ZCa9C210lsSa3t6Z3AK72LOMhrGTb0dAt5skrjTBYjB2Q1BmiB7PUaO+R9REFBTjSJcvjcuTs0a1aOoKApDBgwOYuCbMuOPEutri0fd5OSQhk8uBmDB0+ie/f3VOsjx5ACW4bskcIgniYIHDlxgqTkZJo1aUIuC6zLbDYTm5iIt7d3NkGckJDAt9+tw9HRnbS0VL74YhJr126lZs0mOWozSiyp2ZTUnjmQAWYzly5fpmuPHvwnKIhxH32UM2ucGkN6FGRZXFvFWLq6WeDrfycF+TxwTRCEIFnYfeAHQRDGa7wnSNg1eSHv3LlF9+5taNCgFWFhIRw79iNGowmzOY133vmASZO+tXagFSsmcurUDt68eUHv3vOpVKkFuXKJo0x0dDwjR3rSrNlY6tQZxZ07B8iduzyC4M7t29twdy9C6dJdWLYsL/XrT6NGjYlW3pS+m1bDsaf4KslIvfJdutcK+z3CVI03Jeu2koVcgsY6mROVD9BQ85WlZHLTYhC0NxfacWMnWS6UoLFKbNgqyJK8f/LkAc2aBTBgwBBWfrVAtJrJFWStyYFSWVWU/c2//MKgxYu5u3cvBXx9dXkXyTA5/SlyPJtlTalByScAegZYS5ggCBT9+GN29e9Pjfz5c45/VDIpKRVGacYHPEpI4PPDhzl69y7L+valc/Xq6sqwng5uZ6VDj1XRluxZP2xJUpBt6eHD+3Tu3Ip69RoSFxfHvn07MZlMpKWl0aXLu6xfv9Uad9686Xz//UZCQ18yffoMWrVqTSnLaUeJiYl4erozaNBgpkyZyt69eylfvjxeHm7s2r2bPHny0Of998nt7c2Ezz5j+rRp2ZlUK7ieCrFnidJq9Hq1Bj2CUonsDODZntkLk1YryIp/V1u10GMhVJrwWxVmUvWtBioJSqVM7SjIGbm9efbsGX5+xenRox+ffbYao9FIeHj2g0qVdFUta6ftmHX8+B4mTuzJoUO3KVSomO5FSUX5J1FOZrpysmft0qn8Sf8DAwNYuHA1NWs2UjSK2MaXs6rHgqzVTENDnzFz5mQOHjzAokVL6NGjB6BiaZZfbf/rrIdsjFhIPqG0Td6egvzXgekUyGAwOAHVgEM2jw4h7oLLMZUtW55Dh37j4MEfGDhwDNevp9C+fW9cXNwICKicJe7OnQsZNmw5S5ZcpUWL/5A/f0nrs/h4UXE5enQO06cX5Icf+rN6dR3WrKnEmTPTMZsTiYl5DMCZM1MBcWNKePh1oqMf8U/Z7Pgv/fUUGvqCZs0C6NatJ3PnfvmXYlYL+/oSm5DAsi1buPfkCenpWoeL/3MoKiGBkJgYykubD/+LtPriRWouXkzpfPm4N3myqBz/HyZ//wBOn77K4cM/0a/fQMLDU+nTZwAuLi5UrlwlS9wvv1zE/PmLOXv2EsOGDbcqxyBikQFWrPiaAgXyMXDgAOrXr0ulwEAmT5lCTEwMz58/B2DGzJmAKENv3brFgwcP/pWh/5KVIiIi8PMrTvv23Zg3b6XiyY5/Fvn4FCApKZF1677iwYPbmHM6+fmbUmJiIo8fP6BcuYr/9by3bt1IvXpVKVy4CNev37Uqx/800rE4/6eSL6LLhzCb8DCyHiEFgMFgGAgMlO7dzLHiH+s0Rrx65/Ziw4YN9OvXmd27D7J+/Ro8PNby+PEZSpUaaZ0xlS9fmZcvj9Ox49Qsk5b09HQ2bfqM+vXbU6lSPZYvH5uFj1WrblGoUDnS09PZuBFq1WqPp+dhvvhCdFOSK1c+Speuzbhxe0hMjODmzV9xc8tPmTK1cXbOjt+zB4/QMmbYwzJKcX5vWE6X5ZQ8ZclX9iXLsWQ49fV1w9dXnLY5yV9Ugl1IVylTLTyAnPQURm7ds/ARG+9gZcPWq57cWCJPVskKs3jxEJo06cOwYeu4fh18fY2WeilE7lLipros0BM9y5RKphGTibKOjnzavz9bjxxh+qpVeHl60rhuXXp260b3bt0U68UBcLKpk6xepbPGz0LJObS6yRuqHtdRlvKtO3eOFuXL4+7jY3/5Q4tfe0sisv/pGRksOn2aFWfPcnrUKMoUL65eFqUwqT1J92omFwWBYDuFcrJnSQLrMak5IdtkpWJ4eHiwdu339O3bgy1bdrFkyTLWrPmaEyeOMXbsOGv8wMBATpz4hTZt3s6SjiAITJw4gRbNm9OuXTtGjByZ5fmVS5cIDAy0KsEtW7Tg5PHjNGzWDIACBQpQoXx5Du/bR3R0NMdOnMDXx4e6tWtjVFKc9S7L6l3G1duW/+jSi71lYg1rcZa2JPVlyzMXl0xvBbZkbxFOLl6l/1K8TBHphJsk2LXapr2617MkDowYPpQunTvzzaptQObhpBILcrK3umcvy2LFAujffywnTvzI6tXz8fDwpGbNhnTs2IN33+2luO8oaz5S75VLUacseYo32Xm35VUvWfPXaKYbN26gZs36eHp6qzZneXzVPBRILuKkq8kEGRkZbNiwnK+/XsDevb9SocJbQFZ/05Jd1mSBnWXzt2ybuVaj1QjXcvuql/6rEAuDwVAICAEayjflGQyGycB7giCU1XhXEO7eFW9UhM2WPXuYOHcuv+7ejZOrK2Vq1SKgZEl2bNxIkcKFeRISQkClSiyYNYvyb72FyWSieq1ahIaG0qBRI27evE2FCuVp0aIlGzasB+D48dPUqVOXkJAwgoPPEx+fyK5d2yle3J+YmGg2bFhlZWHChDksXTqLatXqEhr6nKioCKpWrUXDhk1p0aINxYv7ZetscXFx1KhRik6devL553MxGByzKcNK8C+1MOmqtTlIa5+BPR1USdgo4ahBGWKRO7eylzI3ZK6/5Fe1HWV6JKI9LV5yg2YSFfZXr7IrxkoKsr2sZ80qRnT0cxYufEWuXPk1fW0quUFzMim4F7Kj7IeGh5NmNuPi7s6R48fpNWAAXl5eNG3UiEoVKmA0GmnWuDF1a9fGYPG9nC1dPYqG1jOlNLQwiRqS+f7Ll9SbMIHVQ4bQvkYNfRJcL78KYWaDgeaLFxOTlMTWoCBKF5ZtjMvpErj8Pb3xtUZItWeW42lzArFISdGW93v37uHjj0dw5MgJvLy8qFy5HIUKFWL79h34+fnx4sULypUrw9QpU6hUsSKOjo5Ur16d2NhYKlSqxKMHD6hWowb169Vjw8aNAPzy8880adyY8PBwzpw9S2paGpu3bsWvRAkS4uNZsXq1Nf9506YxY/58ateowauwMF69fk2tqlVp0qABbVu0wL9o0awy1GwmKT6e0o0b806zZiyZPFk8eVJPW9OrDGuF2aalRvYUY61nSgqyiv/uVJwUbQxq4sSWRS1YQpZ9FlLCSoBgJUuCWvnkeAeZUAxs2JCrV69y48ZTihYtpojqUAqTz7Ml0kLcyas2Pj6M5OQkvLw8OH36KMOG9cDR0ZGmTVvz1luVMZlM1K7dkLp1GykqzXLKiU5nL46999Sa+osXT3nnnVp88cWXtGz5brbPoYXokxt/5HxoTTocHDLo27c1r16FsHTpFt56q4JiGfSIS6X3crpfQUlBti3n32qTngVikYioDG+XhS8DKgiC0EjjXUE4f149cUtNzlu/nmXbtvH9jBlUCgig1bBhjOrZk67NRQP1ih9+4MTly1y4eRN3FxfuPntGSmoqVcuU4cLatRRq25bXUVHWZMf26cPsoUNZtXcvA2fMoHLp0ly9dw+AQhbPAS9fv7bG37xiBd07dsRgMPDg8WMuXrvGwaNHOXT8OCajkeFBQYweMgSTpTWkCQIt27fnuOWgiQyzmbR00eJo63VD+i9d9UA7lXyy6jmgzN4GRS1ckhbMV+7nWX61DbMKYbUDUfSYRLQGlNy5rYqx3GqsdB6LlKXWPrFMSuHbbyuTnBzNmDFPMZmcNT2aKOylU9y8ad00o+RuQqHsp86cwWg08uz5c27evElaWho/7NlD0cKFWb14MSUl6IKWNffPUJqV4inwq3R/4f59Ok+axPDOnRnoVdQQAAAgAElEQVTbp0/2d3NiObRj2ZqzZw+bT5/m/NSpODuqOJrTYbXIdq9HGbY3Aqo9ryui0nKiIKen25f3y5d9xew5c9i0YQM1atSgQ8eOvN+7N3369AGzmW+/+45fjh/n3PnzeHh4cOfuXVJSUijl78/9W7fwK12aJ0+fWtMb2L8/K5cvZ9PmzfTu14+qgYFc/k08Xc/V1ZWihQtz78EDa/xvv/ySfj17YjAYePTkCReDgzl0/DgHjx1DEASG9OnDmIEDcbKMbukpKbQfOJADx4+L99evZ8Ka9Hz/P1tBtqcd5VRDUNJaNTZ+pFqsl/ZsDHpFp5SNkk7uEB+bmYmUsN6BQ6UsZhcXatSqzcOHD7h37xVubm5ZklRyHJRTe4kShtY27MqVMwCEhoZw+/Z10tLS+OmnXXh7+zJ//rf4+5dWLaaWPcOWP7XwnM6jlfK6evU3goI60KXLBwwZMhmDwaBLNKrxoyW6Nm36io0bl7F//284O7vYVfb1zA/V3tUKywn97Q4KsWzSuyoIwkBZ2D1gh71NenoUZIDNBw8yfulS6gcGcuTCBUb36kX7hg0pU6JE5szP0hJuP37My/BwKgcE4Js7N3M3bGDs0qUEFC3KfQteTjh/Hkwm4hIS8PDyEhsZEJOUhKuLC0eCg1m7bRuCwcCVmzdxd3Nj0/LlVKlY0cqXIAjcvHOHASNH4uPtTe9u3Zi/bBmXr1618l2tShWq16zJjRs3OXLkV1JTs7vl+ldB5m+tIMfE3OObb8owZkwsuXJ5ZqmX/6aCnIUs8dPT01m4dCkz5s/H3c2NuRMm0Kt9++zp/k0UZEwmQiMiaDRiBLMHD6Zz48bq+anlqWP0uh8aSu2JEzk5dao25vn/EwXZgQx27NjBmHHjqFa1KmfPnWPggAF07tyZ8qVLZ7Oe3b9/n6fPnlGxQgXy58/PV8uWMWL0aEr5+/Pg4UMAhBTxAPW4uDg8XFwwGAykp6cTFR6Oh7s7h48dY8OWLaSmpXHtxg0cTSbWL19OrerVrd9JPNDpLgPHjMHZ0ZH+3buzYNUqgq9ds/JSISCAFnXqcPLSJc5t3pwJz/hXQQb+GQry86goipUoQWhoBG5u3ln4/m8qyErdLiMjgzVrljJ//hScnV0YM2Y6Xbt+mC3vv4uCbDZDRMQbundvQlDQODp06P2XKMgvXz6jY8dANm06RrlylVV5/VdBtkMWN28bEN27nQYGAf2BtwRBeKrxniD8+KN6wjZfNiE5mfHr1vHVgQPWsICCBSmQKxd3X76ktr8/Y9u2pUrhwrg6OVnffxEVxc7gYLpXq8bdsDDcnJyobvExCCh27AeRkQQEBfHLnDk0qlmTWZs2sevUKYLXrcvSquJSUoiOjeWdoUO5dvcu3rlyEWnZ2PLj+vW0adaMtTt28OGIEZQuVYpGjRvTuVMn6jV4m6Qk0aqspSArrXJphdlLw/aZssVUnyCSb1TWoyDLIRnZThG0t1PaljEFIZyY7JBtN3R8fHYnE0peLLQGmbS0JBYvdsPPrxXt2m3F2dnLnp6eTUFWOtVJXqcO5tTsZVaTjgr3qYmJHDx0iPHz53Nj1y5R4TGb9W9v1spTDylJXHkl2YSt2bWLKUuX8vDYMZzcMo+VVeUthwrP/nPneHfmTO5/8w2F5SBHrbL/XtIr0fWMBm3EA0RyoiALaps4FcqWnJzMxEmTWPDll9awokWKUKJ4ce7eu0eNatX4dNQoalavbj2aGiA0NJTtu3bRtVMnnjx9ioODA7Xlbt8U8gp59owiFSuyf/Nm2rRowZKVK1mxdi13Tp/O8k58QgIxsbF0GziQs5cvk8/Hh9cREQDsXbqUdxo3ZvuBA3QfM4YyJUpQs3x53mvVihbVqpHt5K4/oiDbluX3TAj1TJTU+ogO10GJ5kxFWUu+2xOd0lUJSmeFhUmyWW/CCppppitEM+7ujtSv35CNG0XvJ/JqlpLX62FICaGi9ExLMZVISj8pKY1Tp44zfvx/OHbsodUyqzUs5bRZaIlJpfe0aOfOzUyfPooTJ55gMrmq8ijnVUsE2T47e/YXgoJacfjwXYoW9csWX+leb/PX+1wtjhb97RRkCzNDgDGIB4XcAD4SBOGEnXcEYdOmrIF2rAJpKSl8d/48P1y5wuWQEMITEgDI6+7OG8t/AF9XV+Y3bsyQw4cJyJ0bfy8vzoaFEZaYyFcNG9KyWDHW37vH19eusaZtW9oHBGSTGImpqbh5e4OHB4YuXQBoU706Izt3pn61agxeuJDvjxzB2cmJauXKceLyZaYNH565VCjrseeuX+eno0f58cgRLl25AkCnTt1YtmwVRmMuQN1Dlu0zvdgtPc/syT6JlGblSgqhPauybXx7HszUOod8XNPCcGvVh5q1XUnIJCen8NNPfREEB1q33mS1uKmNa7b1oWZVlq7ZFGS1wVxeATbXFy9e8FaHDkQfP66tINumoXYPOTeJKI1UCh9XMBqp1qgRk8aNo5Nk8TaZ9CnISuZ+G2C+IAg41K/Pg++/xz9//uzx9dSpEh85IbV3tEYFy6ElOVKQLZZczXxlYenp6azfvJntu3Zx+do1wixwMh9vbyIiI63x3NzcWLV4McPGjCGvry/VAgP55cQJIiIjmTN1Kp3btWPdpk18tWoVKxYsoKv0HWWUmJiImwU2YSxYkIyMDFo1bcqwvn1pXLcuH0+dyurNm3FxdqZqhQqcvHCBCUOGMGnwYJxlRg7MZi7euMHhc+fY8tNPXLfANzo3asQ3Y8fikytX1nLmREG2raM/0kdyOprnUEGWHxCk5BpNLy7ZNkstpVnepZUwo1ouyeT5p6WlMWpUEHFx0WzatIv0dIM1jtZ4p8a77f0fVZDNZnj5MpwaNYrx228xODo6Ko6P9rZg2PKqlL+CzUC3dVkKEwSBLl0a0KvXYDp06JWtLHpJTSEVBIGKFT3YuvVUFs83OVGQ9eRnL0z+TBdm2aIh/60U5N9DBoNBEJYsUX6oJswUBvwXcXH8FhLCm4QEktLTORkSQnF3d/Y9f86t2FicHBxIzcis2PeKFGHzixfW+zNt21InXz5l/IAlbN2pU6SZTDiZTHzxww+ERESQnJrKzY0bKeDjQ7NRo3BzceGMBV7x06pVtGopesSwlURhYWEUKFYMgHbtOvLdd7sAbXiEmvKstDSlphCqPdMSqnosESoHJylu5pOuSkqiltCzzVtOWs1Dq07l8ZV0Ltt009KSWL26Bg0aTKVUqS5WfpRgKFoKspKibFWQ7eFhVCRgbHQ0vSZMoGj+/CwfPVo7/u+VnvYkvnS1rRBZmGRRMpuhSZMGdO/eiwEDBtnN3smUkb0sajtSLWGtBgygbqVKfC5hnZUaiPz/n6lIqYXZFsyWRowAcqggywwDunhReP7y1SuuXL/O6/BwklNSOHXuHPl8fDj/22+cDQ7G2cmJFMntANCnWzfWb7duOeHo1q00rV9fk9fvd+0iITERVxcXpi1ezLOXL0lOTubSwYP4Fy/O2z174mAwcPbyZQB2Ll9OJ4tHDFv+I6Kj8bUc2du4WjWOSRZxe99Lz3dVutfbZ7QElNK9luXBzoxbOkUzpyti8qyVlMqcGCrsFc82r5SUFDp2rMvAgaN47733rfG14IBK/Gopw/YUZFslS1Lww8Pj6d+/L56eXsyfv9bKhx6jkpZiam/BQMu6rJSGPOz999+mYcO3CQoanS1/PU3WnrI6cGBn/P3LMGHCrGzP9CjG8nC94lCpnIqKsVqClgn538IP8t+Binh68k6JEnxQpgxDypdnc4MGzK5alZtt2yJ068aeevVo4OPD6ipVEDp1orCLC+8UKEBox44I770nKscWepOYiP/XXzPv118JT0ggLT2dxJQU+tavz4DmzenTuDEPVq8msFQpJvTqRXk/P7y9vDi9Zg0tatWiXhVxpjVixgxVfvPnz8/69Rvp1asv+/bt5tgxWxfS/9LfkRwdXWnV6msOHx5BUlKk/Rf+S/QmMpIaffpQJF8+Fn/00f+aHd00dOgoli1b/Jel/9WYMczfuJHHL1+qxvmnGBP+aipUoABtW7Tgg/feY3C/fmxaupRFU6dy5scfEcLCOPD99zSsU4dls2cjhIVRtHBhWjdrxvMrVxDCwrIox1HR0ZRt2JBpixbxJiKCtLQ0EpOS6NmpE0G9etG7SxfunjxJverVGTVgAFUrViSXlxfHt2yhbdOmNKpdG4ABn32myq9P7txsmz2bAe3bc/zSJfaePKka91/6+5CzszNz565g6tRPef3a1jPs/46ioqJo3Lg2Xl65mD//6/81O7qpf/+PWLNm0V+W/uefL2LjxhXcu3dLNc4/TYb+syzIU6dmDVSaAmmZ95TMgfYsbkomUOCXmBj6nTzJ87g48bHJRGp6OhmCwJlJk6gTGCjGe/CAZmNFv8ovDx6kYN68WabdgtEoLnErWNXkx9MmJ8PLlyH4+hbEwcFB0SCmZQm1B7Gw9dajhlvT2qhmb2YsFU/HqqCiGzR7bnrUltSUZpxqhjO1suhdhbWt+x9/HEVk5FO6d9+Bg4ODNX+tjYxaFmQvjwxtt3ca+I+wyEi6fv45dcuXZ87AgeoVoYf0mgeUPoyGBTnD5KRoqV+3bhWrVy/m2LGbqqwoGdisy73mVLsdJbBzZ9ZMmkS1cuWy1V/ImzcU79mT/ZMn06p6dX0dICdy5veYcD7/HMihBdmy50EzP72W0j9Ipy5epO/o0Tx69gwAVxcXUtPSSE9P5+j339PUYvU9GxxM3Q4dAHgSHEzxokWz8CMIQiZMSOJRiW+zmZevX5M/Vy7x4Imcdu4/sgogJy0smO1/pbIomW7t+JLM8BCPKVbauCcXJ1oy3JZ9JWtnTotnm55UJHn/nTv3M27dusK6dfuzHBiitVlaCzKhBlmwboTWqPvw6Gi69+lD+QoVWLBwaRY+7I2xerbN2PIp3euxINv7Lvv2bWLBgkmcOvUoW55/tOlKebZtW5dJk+ZQu3aDbJbs8PA3lC1bmA0bttGuXUddEAstXUL+X9WHslYYWI/SU5OhOlj8G5G0g8qW1ASL1tqGVphEltrPEATmPnzIxehoynl7856fH80OHGBmo0b0eustilogEB/s3cu6M2coFxBgFVLBz5/Tq00bUs1mek2ezLo5cygq4QhcXDDYCDr5McDJNoLL27uw1WG62QyRkdG4uXkgfUZ7Qk3KSqnIts9cXPQpvGrOD9SqVP5cLlhsO4s8jiRglHBuSkJPSQ/Ti92yfW6vr9lTkHv2nMPEiQHcu/cdtWt/qJiPHkGhSEqVpAG76D9jBgH58jGzS5fMkVLOkN61Oj3xleLZSnkZVibVbDkyV2Hp9+rVK8yb9zmbNh3LspRq+43k2UjxMrN0wsHyX+2j5s+blzexsZk8W+LFJiRQpEcPSuTPz+jVq0UFWYnsNQbpmZ6RUkmD+DNIrVOq5a2lIOdAWRYEgUXffcepS5cI8PPjw27daNC1K58PH86H3bpRrJB4gM7QyZP5etMmKpUrZ03/0vXrdG7bFk8PD3oOGcLGFSvwkw5xMZmwjmpaHdPyv5CHR5bvExsfj6vRiKNcoP1eUhIuOSVb4ag3vvw9KX9JJphM2Q4UkUeTX9U+tz1lLies2r5vKx5sx6XBg6fyzjvlWbv2awYMGJYtb7WlfzWZr/TMgYzsda/QV4YMH05+b28Wff45JrPou9/k4YYaKXU3+af9vfNUrfhKdfrkyW2mTfuITZuOKL77e5us7Xu+vvmIinpj5UF6np6egr9/PooXL8G4cR/RrVtH3enbynfQOK7a9r9WGGSeNa2Wvy4u/y4UHq78JdUqR48FQGsgMplINxrpfuUKhyIiGBkQwL34eCrs20fDwoUZ37SpGM9TdOe188oVejZpQqzBQG6LEmxwdcXk7s7gXr0YNWUKZVq3JlFSTkymTMXAzl4ipaK8/XYZEhLiOHMmUbVIckpMjMHBwYjJ5GEtrm1HkisWeq0JSjLalm95fFuS6wxKz22VHXk8JauhBqxVUWmWp6mlDyqR0nfJqhM507v3PNavH05GRgQNGgzC1dVT91iqWPd627WNIhYTF8fY1q0xJiUpF9C2Mdg+V4tvL0wJMI6ytVgJs7dp0yrefXcwhQuXtWtRkN5TVJ41Zj2C0UhMfDwRsolDREwMRy9dYuratdR/6y2+GjCAKh99xJNnzyghnWKn1DntWfa1wOzyQtgr6O8hPYqX1gCjV3mW8ZqRkUHfzz5j99GjDH3vPUJCQynbogWB5coxdZhF4bF419h75AgdmjcnLiYGX0sdGwwGTEYjwz78kBETJ1KyalXSo6JEX8e/ZzyQCZvaXbpw+8EDBJm7TWtcBWU1LjERAfByciIb6REoWiTPU66w5+SbqQ0WljSkU8vUWMupsUPtfb3P1Aw38ucGgyNjx85jwoQg4uNj+eCDIeTKlVtRTEmkZBSRSNHaqNbmbcKjo6L4OCgIk9lsnYA4WOJ4eXggnaqnZHSRzVcAdYu92hikRPa+idR0Nm9eQ9euHxIQUElR4cxp2mrGibi4WKKjMyGFUVFR/PrrL8yZM41q1arz3XfrqFjxLe7cuUP5sqW1GbCQk8SnHt0uJ5N/HfT/HQY5J7T8+XNMBw+yIyyMV+3aMa1CBbY2aUJ6v34c7do1W/xLs2aRx8ODKkOGMHD6dG49esTOw4dp07Qp9Wr8P/bOOzyqovvjn91skk0P6YTQQu8dQQFFsGABLICCgoqK/X1VFLsvNuwNsKGCooINQUQQFYFXpPcOAUJCKqS3TbKb+/tjd5Obm7ktCfrTN9/n2WfvnZk7fc6cOefMzAA2rV5NaEgI69ZrHthhGC+88Bnl5WXs379VM1x2diqPPjqMm28OZ/ny1xsl7SYYx+DBE3jssTUkJ+9gxow2fP75PWRmHv3T85FVUECYzor5/yN++20Zl19+/VmJ2+FwsHTVKsbecQdOp5NrPBcK/bZtG1GjR/PhihU8MXEi6197jWVbtgAQ4V15NUEX87/7Dp8ePfhs+XLS167lxQceYOGLL+Lau5et33xTJ/x/P/+cNgkJDLjqKm6ZPp29hw7xzQ8/MGrECPr37s2GlStp3bIlP/36a6Pkb55n/8f67ds1w6Xn5HDJk08SOm4cz3/5ZaOk3QTjuPjisSxe/F+OHTvEuecm8sgjd3LkyME/PR9ZZ84QHhr6p6fbUKxZs4zRoyeelbjLy8tZvXo5U6deS07Oaa6+2k2rt27dREJCBPPmvct9993Phg1bWLVqJQDR0dFnJS+NjX+GBBm0deJeGJXK2GykOxw8eOQI3UJDmT9gAIEyo1ErYA0NrWMg2iEqijmDB/PQ1KnMXbGC86dNo3ePHlw9ebJbGo0f9z/wMK++NZc+A0eq2hEbWb07ndCjx0UsWZJCdHSLOjuQvc/l5S5uvNFtAjJp0iuMGnWfV1gjFPjJV/NKya3TWVcYKFoFy5tCJEHWMndQxiU3vxCp1+XvSsmxN7zczlcev1KqLMqTSBIggiheuaAwPLw7HTosIiPjJD/9NIf//KcfU6e+y/Dhk3SFYPL3KqxYtTIpisDpZPfJk5wuLKRbXJy4o4hEOaLCyzuKEWmxQDKtZU4hEHwTHBxGcvJxWrToUCc7chhWoXr+N/zxBzfdey8t4uIYP3IkU8aMwe65pvizFSt44eabefS669wZKi9n44EDzLv1VkKtVm2Vj5a0WO0oGNGJGWcDou3+WlDLj5Yk2eOWnZPDAy+9RMfWrfl45kxC/P2rw1oBa1Xd3eZtmzfnzUcf5aFbbmHuokWMnDiRzh06MPHqqwGw+Poy49//5s1332XUqFH6Ulq1vg7gcHDekCGkbtpE89BQkNm3yttE8venhedIvZmTJzNj3LiaA1TlMKpREeXN+y6QWquGV4OGZN8Eyajzb0TJYdRNmR+lmyj91q0788Ybn5Kbe4r589/h0ksHMGvW20yZckud+av2eDeQEb3MORwcPnaM4ykp9OnWrbaNiiyTXj7BFl4jqRfNmd5/I8PeTBdXunnTDgoKJSnpGG3a9DQkoTbajrt3b+Ghh6bQrFkkY8ZM4LXX5uPvH4TTCYsWfcbDDz/J448/g83mVhL9/vsG3nrrbSIjI0HrGDY9TVV9JchahRHg77VJb8AA94tZVZZBv1Jg9enTHHM4+DA5mbEJCczypinaWWbkxovw8OojdoqLITU1mSuuGESnTj2YNu0pevUaCmhrMOX9QZIk9uxZT2JiT0JCmgmLpIxj586fKStz0KPHFbWumpQPUNHmAuXGPTV7YzNqOaNaeKMmCPJ41UwsRLdAqZ3haWYzhAgiXkfES23dupp58+7jnXcOCXlP0dF24O52gXbZLYNgaHfI9IULqaqs5PWJE2tnRMvEQq2SvOEN7pSUH9cmrw/RAlG50AP4/feVPP74jaxcmURERLhWUtXvtSZKb8SyRB5+7jk+X7KE1x96iAmjRtUZCHO/+opft21jycMPg8NB8unT9Hv8cZJfeomQgIDanVzE8ArSrI7fiF2JEQLukWib2qR3+HBtR7NmG1qECigrLuaXLVs4mpLC/O+/58JzzuHNhx+uvYlOBL3FmKyR0zMyGHDRRXRo356nn3iC4R6pv/KMXWX0crvF3zdsoHObNkRFRhqyFV+zbRuFeXmMGTRIvSxai0hlJ5VDRDDl+ZHf1KQsoNaYFRz9Jr89VEnfjW4o01sbqfmJsq1Gt9Xon7wr7NjxO7fcMonk5JNim1QznLmalEb2/NRLL3E6O5t3n39evf0FhZHP/yAmBXrD3sgwFdWvF7t2reGxx8axdOkhYmKia4VRi1uPSZ4z52m++eYDpk9/mbFjb6wT37ffzmf58i9ZvHgVNhtkZmZw3nldOXjwGBEREcZNX8wyHWbQ0W3m8c/YpKfczaVFVA0yxZnl5Xx86hTz09JIdzjoGRbGwKgoXuzTh9Ht2oH3hiitw3g1jleocFprDYhmzdqwcuVJVq5cxOTJw3jppe8ZMuRKzdW7/NnlquKBBy4A4M4753DZZXfi51dXmiH/tk+fi4T0Qi45FREzkSbZSH80SkCNSGnNEGZlc2jxH/K9OqJyyuvGDLTmTTm6dRtEbm6a6nyptMn2/ruJrLu9A+W3vmlg+fbtfLV5M+tmzqwpuJEJXm8MaS1UZf9afUa0gFLiggtGMXLkWObOfZKZM2cD2psy/WxVYibUk5irpIRX3n2X3xcs4LwuXepwBpVOJ1+tWUPfli2rZ7G3ly/nlkGDCHG53G4iBlm0ItKyN9azS/4zoFwoGYVMzJedk8Mny5fz4ZIlnMrKolu7dgzq3p2nb7+da0aMwKK8vU+LaMjFh8qB7HGLj47mxI4dfLV0KRdecgmfLVjApOuvB5tfnehqv1s9Ufgx1LN/5LVXX+Vft99OtexYKebzfHzhkCHqRqPKb1UY++p/NSInGvhyePuoKE3Ru9k2NQi54NRMEvKmNSsAkcfhrdJhwwaRlnYKS2V5tQ27rnRGmajMzbvA8vYjuRT6l5Ur+WjRIn779tuaXcCiTibgeEM9E4x3g6R807nWsDdKApR1Kvquf/8LufTSSbz55iM888xHdfzNMuCVlRLz5s1i7tzlDBlySR2Zi8vl4rvvFtOiRRuKi91lff/9uVx11UQCAyNUNolaa5hkUWG0FpJmVxgGO97/tA3ytAMHaL5mDXuLivhq4EBSr7iCjSNG8Fa/foxJSKi+Aa2x4efnz5gxN/HSS0uYMWM0b7/9gOFvfXx8+PDDJEJDI3n33XtYsODRs5LHJpxdOByl+Pr6n7X4yysq2Hn0KB/88AN3zp3LC5Mn09Z7S9zfEA899DK///4Ty5Z9rh9YBz4+Ptx74408+NprQv8NBw5wPDub5zz7DMoqKvh00ybu9hw71oQaPPzqq8ReeCFb9u3jixdfJGXFCrZ8+ilvP/ww144ceRZpqB83jB/PqqVLueGmm7jr3ntNfX/8eDItW7bkwenTuW/69LOSxyacXRQXFxMQEHDWztatqKhg1+7dfDR/PlPvvZenZ8ygY7t2ZyWtPwN33fUce/duYsmSDxscl8ViYfLkB3nllQeF/vv3b+fAgV088sgrgLsuFy36kKlTzY3Tvxp/Lwmyd+WgXF2Y0cPLnncVF3NXmzbM7dFDXSQlUiN7/w1IB7RWgeefP5Znn13Ck09eTbt2fbj44htwuSzChakczZu344svTpOUtJ3IyATdoirdjAhB1OI0K+CqryDMrIYF6gpf5AIokZDPiF2yyHrACzXpr1r7yf2SknbTqlUPoV21XNKiFYcz2L2+DQ6PwGq3U1VVxZKff2b56tUs/fFHWsXFERcVxRsPPsi4ESPqiivkESszoCy0lnTZpNRKTwIlcgsOjmDSpGkcOrSNSZMmCbWZ1TcMFuufHhFstVJQUFBzdKTMr0tYGMVlZVTm5EBgIEu3bKFPfDxtfHzqHo+nIjWqjlMk6RA1rtpAaWxJskHNmi48+dp+4ABTRo9mwbPP1nLX+kZXgixyU37rafRLBg9mxddfc/m4cfTt04epN9+MTbbwVKMTsbGtSUpKYdeunbRoHlV344Iob3plMCJB1lJNycVqWiJFpbhO/q98Fr1rwIxkV0SnRM2nF4fICkWL7Hif9+/dTbdu3dy27FpqKlEk3pN0qH2KlCRJLFu2jJUrv+eHH76jefN4mjeP54Xnn2fixIngvapdXng1eqrw8/OkGR4eWO2lpnwSRaXnpiU8B7DbQ7nmmrvZu3cro0ffWjeASQQEBFFUVCjc1hAb257KykoKCsrw9Q1l7dqVJCS0o3nzznVO86jd7u72qD6TWm0yVGtvvU5nUmVhOLTFYrkbmAa08TjtB56TJGmFx98CPA3cDjQDNgN3S5K0XxbH+cBTQC8gEMgANgF3SpJUqJ9bFcbYqFhdgS0FBUxo2dLYaBRRDlHjKCbmwB/fCZIAACAASURBVHA7Ts+mpLqqfAuXXXYVbdtu56mnJnPixE7uued1XQbZ+22PHv1Vi6mnofD+Gym6twOr3XmvlrZeGbTyprV/Sc1NWQYtTbeanZuWya2RyUNLRSZ/P3BgJwkJfVW1psoyyJl97zfyfDudFUycOIaKijKmTLmZF55/nhbeo8g0zA10Ud+xoRGFvExG+ro3qb59u/Hqq99VWzfVYoiV5VNhkBf+9BOvLlpEWk4O791xh9AwMBbo16IFk+bPp22zZny1bx8fjxlT17TC+69FrI3MXvK61GqXxlKZG12VGMCazZt56s47ayYyrVW4lpsXaitG5UCQ/V927rns+eUXJt9/P9s2b+a9uXOrmRG5klSUfPfufdzJ2BqwYUieV/mzWRMLuc5dHodiUSAkwo20cDXDIIvC1Wf9JVpXGKGxO3bupK/nNlrNxAQJKI9XdTggP7+I2267hpyc00yceCv33fcfWrduVf1pXgHY7W7m1h4eWEN/RHRV1Gc84bw9MtBur2YI5U1sbP6v8TNDkjp06MYPP3yk2gWNtPuqVV8xb96LZGScZPr0t+rk0eEAH58IevUawkMP3UibNp359devmD797VokVLlWrL1Z3l0vVnmmtFZfZ4lBNrxJz2KxjAEqgKO48z0FeBjoJ0nSHovFMgN4ArgJOIybER4CdJIkqchisXQFtgPvAR8DJUB7YCzwtCRJp3XSl6QePdwvWstWwSpRbXK3LF8OgDRuXO3woo1ISs5Jft2Zzi1G1beEeQaXfFOEtyhnzhRy7rmx/PFHLnZ7QK1iisaa2TlOTxChJXDTuldelK5eH9RaVyjzI2fK5fVmxGRTNE+JNumJzMqVzS2a19TKZkQY+MUXk2nffjgDB94szLdycaKl1AgOhgULZnLs2H7mzl2M1WoV7q/zxml1VmhTYaOiH9GzCbcqrJrZUCZRXl5Oq1YJbPvjD1rHxhrrvIrJy3LJJfzn+ut5cvx4rBUV4gtWgIL8fL7asYPTpaWMbt2a7tHR6iszI3WpNXuJJlYjBH/PHsDkJr2TJ90v9ZUyKsph8aicpcOHjS8ItOpC+ezNm4iL8v57nkuqqogbNIiT27cT0bx5rXDyC5hEVaq5qVPUTsq8qjHIIjGZEhoCllorYq0FrjwdjZW/fJOe6CY9oyadamgEsiCcukX074EHptGzZy/uu+cOcYYVfcbLFDud4ir94INX2LZtPW+8sbT6xj4D3a66moW3dWrkR96vqzTs50XQEy6pDcPKykouuqg1H3+8hsTEznXiNcJD9OxpY+LEf3H//S8jST510vSitLSY3377ijNn0hg2bDQdOvQSsllac5vqfhKRm7JiRAVTNqTOJj3DNsiSJC2TJGmlJElJkiQdkSTpcaAIGOyRHv8beFGSpG8lSdqHm4EOAbyH710M5EiSdL8kSXslSTouSdJqSZLu0mOOzxbuadOG/s2a/b+4Hzw4OJSIiGh27970V2elCWcZLpeT1NStREV10A9sEEVF+bRt28V9ecI/FP7+/kyeNIk77rmHYpHoXQelDgdBdjv3XHaZbj2F2e3c1rcvjw0Z4maOmyDEI3fcQdf27XEpN+L9BQgKDKRl8+Zs8Jzu0YR/Lqqqqti2bQvt2zcuDU1M7FzrOut/Gnx9fbnqqlt49tm7KCzM1/9AgYqKCgICgpg8+UHdegoMDObyy29hypQn6dChV32z/JeiXno1i8XiA4wDgoE/gLZAHLDaG0aSpDKLxbIeOBd4H8gEoi0Wy3BJkn6rV269XL8RNaTWUtWzcpvVowf9165lUWoqExMTa8KJpAKiJZloktbQ5Xuv+/Tuag2NslevHB0O6N27FxUV6dUnxJldxRvRQCjjFa0+vf8i9b6WiYURjbuakEl0BI7oW2Ucco2uWj0ZNSuU2yUry64mQRbVs1a7OZ2QlrYJl8sHX9/zOHWqxk/LvEUkDff+//bb26xYsZjnnvuNpCT1cDXx+1XvqNbSzIrKrCUhsorOtdSQDFoB5X1kfiKK5HSCw/3trEce4eZ772XaPffw2SuvuDeBiSR9Crcjx44xZuZMxg0eTKTVWqO+0ZLcGhHNaEkV9dxEanSlit2sCE8PTmeD1PBKPHX//fy4di3zly7l1muuUU/TTP6MSN/kA1QmyuuemEjmyZN1jkazBgdjs9XubaKuWa3alYu65GmJDC7V8iiSfOvVsd6AVIvDCHFSBFfSGKez7hSrpSkUudVHgmzkW+XctmvXTgoKCjn33BGUOqw1bSuQxDoNCCAXL57H119/yKuvrq7eliBKX05TvXNFjclbDV2ttqHVM2fz9k9ZQkIaqAhfHcZmq3O8obybisjUffc9zVNPTeOpp25h9uxvDW+kzcg4wV13jWHo0FHExMTrZbEWqRHlzQvRHC4fj3XO/Rd9rMX8aGVSB6YoosVi6QFsBOxAMXCVJEl7LRbLuZ4gWYpPsoAWnuevgUuANRaLJRvYAvwGLFSTIFsslttx2zS7YebsLS3i5PELttm4o317lqSnM7Fjx9rfeiGYOIvKyzmWnU2ZxUKP+HiC5WGVRNV7xok8/zKC7mWa/Ww2fv55FV/O/5CQcLdtk/L8WOWzqMha4bWYOdGAkh9H43UzqjlS+onSFDGmyjSNmjbI49PiT0TaTK24lIyykXjVeC7vc3p6NjZbHFlZbsIkmgzUNEJK9eO+fV+yatUsHnhgM05nK5KTxeGUcRmZy9XCqftZBW5+4jNKldBrNO/E4HQy77nnGHDFFbw/fz53jB8v7sSy5+MZGVz+1FP8+7LLuOvii2s22miZNuhBb2BpQTlQ5R1AtHO0MaGlglTmR4+bcTgICA7m7ilTWPLTT0wdPx7hVCsgTMWlpRxLT6estJRubdoQoqf5qDtz1gkiSRI/rFvHnEceEa6wrZ669fN8q7T/rJNnUVpGODytFaZZ6HGZRsaSbPzYNPZUyNdpWus5Ld5dK+tm6bjoG69fdvZpoqJiqaiwUlEhjkM0z3j/5c8bNizj3Xef4MUXNxAV1b56H67WHCeyZJHPY3a790jBQPzsDaR/av4eeBlIb7/2s9uq+7Z8vV3z7MusWe9w1VWD+fTTN5g6VXyKljzJ9PQUpk27nKuvvpmpU6ejVBiZaVu1NjVM6vQkN8qITUWuiNZk+MNAbyAcuAb4xGKxXCDzV9oqWLxukiS5gJstFssTwIXAIOAh4HGLxTJMvpmvOjJJ+gD4ANz2c8IDa5UwsvKWhbmtWzde+OYbjlVU0M4bvyyc5OPDH2lp/JCczOGcHJLy8zmWl0diRAR+NhtJZ87QNiqKCX368OioUeB0cio3l4SYGHccIk5CYXQjSRKzv/mGfl26EFJQUD2By5ln77dKiZui8DVhqtOqKavoIH0tIqLk9fWYyupcaBBNedoigmVkjhERdzX7aCN5EuVPGYfDoV0e0UpdzVy1uNiJJAXXORBBi1lV+kmSxPr1N5CVtZkrr/yBiopWZGYaY27V4jdyUIuIUdeyIXOHk0nllJWntWpTWXUEWix89txz9L3uOqZeeSW+Xmqt6KhOl4sFP//Mo59/zn+uvdZ9TFt5eaMQzloQrUyNQC6uU+uYfxaDDOJyaE1EnvxPmTSJZ95+m/0nT9K9TZu68drtbN6zh2Vr1nA0JcX9S02lbfPm2P38OHrqFG1iYxl73nnMvOEGNw09c4YWYWE10i1lvhVMoiRJvL9iBR0SEogODKw7COUcgiff3v7oZSZAoQURtYkRLaYWjC6eRIPQSJo6RNdbPpvNKlz0G+keRmmzyawJ3dTIQ3m5k8DA4DokRCQAUWOQJUnizTdvY8+eX3jwwaUEBLiZY1F8oilcyzS29l4Xq+dbj3TZLhhnIlpnpELkkGWuehEYXCNkk8+Vdrudd975ggsu6MpNN92Ov7+Yt3K5XCxd+hkvvvgQ06bN4KabHqyVlBciybBWFuVF0RMu+RnteGZgcPyailWSpAogyfO6zWKxDADuB573uMUBqbJPYlBIlSVJSgMWAgs9zPIR3IzyTWby0lhYn5XFaYeDUF9fAFKLi1l8/DjpJSWE2e2cKCrix+PHubV3b67t3Jn2UVH0jovDLygIbDbySkv5+eRJJixYQKUkUeJy8fKqVWyfOZO+oslCgDcXL2be99/z1csvN0qZcnJyiPwbn3n7T0dJyWHsdnUVlRKFhYcoLj5ATMxQgoOjcbkq+P33aRQWHmfixH3YzWhW/iGI9yxAT6SnE2qzseXAATbu3k1xWRn+Pj7sP3GCHceO0Sk+nl+ffpqeCQnGKHgTTGPDli2kZWQQGhICQFpmJouWLSM9O5vQwEBS09P5bs0abh07lquGDycxLo4+nTrh77nWO7+oiPU7dzLmySeprKjA12rlmUWLWP/CCwzt1s1QHj748UdeX7KEL59+ulHOXs7JySEyLKzB8TTh7ODYscPExbXQD+hBauox9u7dQZ8+5xMQEIPL5eS99+7l2LHtzJlzAEkK/J8jD1FRbh7h5MnjRETEsXv3FrZv30hRUQF2ewCHD+/3nLbUlo8/XkmPHv0afb3+/x0N1P9gBfyBE7htjC8CtgJYLBY7MBQ38yuEJEl5FoslAzAgGqbm+mYtGJEgy+BTUoKv1cpFP/1EsK8ve86c4eoOHegeFUVBRQVdo6OZOWwYbbxpK+JoFhjI+B496DVjBp1feqna/fwXXuD0W29hly/d5Es4z3tyQQHPzJvH1tmzaR8SApmZYtGcER0WcPDoUbqOHMkF557Llx98QIx3N7fNVqOKkX3vXc1WVd8yVZNFLTsmrVW2Vhblq0T5alx5NqKWOk8kqRTZlWmpyNSko2rCfrXyycvlDaNGRJxOKCvLJzl5Nv37r1EVFCgXyGlpW9i1a4onP82RpEqio4dxwQW/UFxsryUtMSOF1qsPeTgj0mI1N2+5vJJkW/VNVYLC68ETLjYykhtHjaL39dfj7+fHwC5dGNy5M7HNmlFcVMTogQN55447aOtlcrTUJnoQdUa5VE/LTMPM4FBza0zUVwqpEc7Hzw+73c4VU6YQHhrKrv37GXPRRfTs3JnCwkI6tGvHlrvuon0LBUPjqbvw4GBGR0dzont32l1zDVVVbinnsMceo+SnnwjUGlRAWl4ej82fz/rZs+nWtm3tcmqJpzxQajaSk5Np264d5wwcyLeLF9PCK2wwWS91yqrnJ4pDNAiNcnKifuj51ntcmTJJtaGhNq0q1+Yi4Z5wb4IHVYJj+OTPyn+bDQoKivngg9eYP//7OuFVrKzYt28XTz45HoBmzeJwuVx06DCQp59eX80cmxnGBhRdgMqNrTI6WH1UnDwhI1o1EeSZq9aSuMP72e3YqiXZnmzYI7jpptu58spz8PPzp3fvAfTtO5jExPaUlBRz8cVX8MILs0lIaCdMQgkt+3Wt7q8sqvK/1r4AbyRmJMgN4OrNHPP2IrACt4TYezrFDOBySZJWeo55exy3JPgI7iPfhlFzzNs03OYZ3wHHcNsxT8Z9VNyNkiR9ppO+JD2kymtrV5hOZTpdLjamplJWWcm5rVoR7K9xw5lGIxU7nWw4eZKPNmzgp/376dGiBf999NG6Eg1ZHNfNmUO3li15csIEt5ucyxBxbmplkrn9e9Ys3vrMXZ3rvvqKYeeco84VqXBR8iO41IiO/N8MRINAydyKjnSTu5m5116NUVbOO2pMovxfryxqCwuAsrIqtm+/B5erlF69FtSJQ4tfOnLkWfbvf4pLLz2Cn58fQUGtdcui1mX0VKOiOIxsFhS5iW5kl8dRxz5ZbyOcwq2opARrRQVBAQHijip3E3Votc6idVaSmpsXejOD1urPCBPmDePROJk65m3/fnF6RumDClwuF5s2bqS4sJDB/fsTGihjwNSIhaCeSgoL2bh7Nx99+y0/bdhA2xYt2LZwoeZ11be88AKxzZoxy3ubnnwgizqngdXv4489xgsegcfqFSu4aORIfWJnlAswEoeIOOpJKrwQrfIFA1O5x0VvP5lW9/BCfj2zMDKjnLcHyos8KislHntsOunpp3j//S/r5FuLDn/66Wu8//503nvvIFarndjYNsKT84zyospuJDomVHTevrwpam3m8yaqRae8EE1q8ncD9nLeY+/y84txOiE4OFhIukTJGuHhRdkWQdRN5W7eehNufNQaG6KCKP169gTUaaiZkRwHfOb5LwD2AKMkSfrJ4/8yEADMpeaikIslSSry+G/BfaLFu0A8UIr7TOXJesxxNRIS1P3qyyA7ndiAoXLphlmuzxNfMHBJeDiX9OpFVVUV3Z56ils//ZRhnTrRq2VLPly3jkB/f+676CJeXbmSLcePszEpiaRx4+o2uDyf7mWUuCwCtzfvv5/8wkI++f57zh8/nvP69OHwyZNk79jhZtYNMMhWe80h5iITOKP8gVGIaLqan3ysy22+zDDIorQ0qkM4GailpXZEY2bmMU6ceJcJE47h5R/Uxq7V6sRi8aGyspCiomNUVqYQEdGb2NhE/PzqntFpJL96fJnRMmuVXTRRKSFvuzr2yYqxqenmdBISFATeBa3eeDHDwKjtWNJyU3uXQ43p1FqRNYThEqVvNIwWg6x49wHOu+CCGgej9aPwCwoOZmR8PCNHjUKqrKTf5Zcz+fnnGTFoEL27duXTb7+lqqqKh2+9ldcXLGDjzp38sXMn+374oebseWUZlPnVGsgePP/MMxQWFjLn3Xe5+PLLOX/YMHbs3ElORga+HnO8swp5HkWnaRglcl4IBmStPS6ALdhPs+uKohduwDXDoIjyK+t3XroQ6NF0Hs9M5513XmfnzkO15gjxyQhOfHx8KC4uIj39ONnZJ2jdugtt27bD6fStlbRalZqZy/SYRNEBNXWko2r1Z3YRLlIpesMp2j0mKrCaWdZLUp5NZdJG5gMtqKVZ3baeucJP3ljygMpnUeZM0lLDoSVJuknHXwL+4/mJ/HfiPhv5fwJWq5X1M2bw8R9/8NPevTz//fc4q6rIKynh7Z9/5t6RI3lp/HjaxsWREBnZqGlnnD7NJ99/z90TJjB0wACumz6dvt26NYptXhPqj4CAGKxWX+x2fVOhzz/3EvBggoJaEh9/EZde+itW6z/3jM4mNEEOi8XCL198wUeLF/Pzhg3Meu89nE4nuQUFvLtoEXdefz2zHnyQNi1a0CreuE2/EeTk5DDn3Xe5cdIkxl19NaOvuYaOHTr8OcxxE1QRGRmJn58f4eHNdMOec467rQICgoiJSaBv35G89dZabDbfeglxmvC/h0YUTfwJUEqQjUqJtdz0JB1qI8mAe7TdzowxY6rfv968mcUbN9I9IYHckhJOl5YyVLSZTrQCMiJBttl477vv+OD77+nTqRNzv/ySHYcOcfOYMbz99NPGVlE6Kyyltx6hMbrQU4tHpMqSP2tpprTyaFSjXB9pqpqJRUbGTyQkDKJly+DqY3LkecvOPszu3XMJC3PbfN1002GaNetYKx9G86Yn/DOicDFaH0Yk8H8qRBIDufhD7RtvOPm/8lnLTctPT2qs1C3KwxihbUZhtlMowlcJ7paqqWrZGTuyZ1UbVAN1HBEezkOPPFLttOz771mwaBE9u3UjNy+P9OJihnXtWvfbBtTZ/E8+YfbcufTv14+Fn3/OieRkrp8wgffmzNH+0IBkWhN6Yevb7qJ45apomb2qn5F6Mztn6okRle4ahGT9r6vo1asXLVpEUllZK/sAHDlynA8/fIP4eDcN/frr7SQm9q2VjPxEIrl2VKTtUpIFkZ/evFBvDasW3dHy05vclLTRZqu5mt2rTbCJbzkVkVVTZRKE1VLyCed1e82511a74EMjqgCDGf57McjKUyGMMsFGCJce56Y1cepNqp7nkspKlmzdSpuYGH7cvZu0vDyuHjxYO19q+RaU6eMVK3hy3jyaR0Wx99gxAPp07MjbDz2Ej9yu2gDjLbdB1qsOM1UkcjNLU+VZlR8bq6D3deJSfmuU6VP6aUE0oL3vy5f/SkrKfykvX0f79sPrhD9+/Gd27ZoNwPjxH9KtW3u8x8PqrQXN8FVqcZmNw8imPlE4+Xv1JhWtFYbRTqYFNbpQ79nLANTSrO/KrDFWG6JdVQbypXVEpNp7DWoz1TXFEDPUWsWs8PVl6Y8/0qZDB375/XeOnjzJdTfXva69vvhi8WKmP/IIbVq3Ztv27QB06tiRd2fPNi89Nruw0gvXkPbXSleujje7sDA6jxrJhygeRZ9cu3YtW7du5bfVqxg56vLq7Hu79bZta/nkE/dCZubM9+jWrRfebVbyYor2OyrdROtsObSGqlaR1N41PzRD/+oj7VAU1Gqz1TleTc4015dM6skp5OG8UN5FUHuB41ed3+oP/2cZ5IQE4wywHrSWR1oTs94GH42OPGXECN7/9VfWHTzI8awsZl1/vbG8yd0UZS0rL+fbTZv4aNUqjmdmcsWgQSz46Sc+mDGD20aPrjshqsE7Eco2bhjZG6K1ucEM82yEzoqgxvwqi2ZAOKZ5drDRfZJa88PatR8AkJe3jYSE4XXC79/vjnDAgDFMmDBVtSx6z/X1M8sgG11geN3q2CsW62yEq+9YU+swWrRDZULWjaMhK5f6MsgNYZTUGGSVtJWMcf0YZDHMFMMb9vIrJ3D++R+wdt1/OXToEA8+OIMKxenwoni1bnksLy9nydKlfDR/PoePHuWasWOZ9/HHvPnyy/zr7rvrhNdFY4Qzy1wr+7Gav178yj6gxSHWJ59GoMFFvT7bLUDYuHEjF48aBbj3MXhJhb+/exEzZMgIpky5HYvFonrGvvJZr6hKmB2qhtYeIromfzZC68xIhLz/IvqnIOa1mGaBJkmUvBLypIx0fz0S6g0nPyHJqvSszwLNm5ap0E1oECwWCyufeILfdu/m3I4diWngOZvbjh5l/KxZdGrZktsvu4wNBw+y8cAB7rvmGm6+7LJGynUTGgOVlRVYLBYCAkIYOvTaWn75+dl8993LrFnzCY8//iN9+476i3LZhCb8/8eXXy5l7dpf6d9/IAkJzRsU1+49exh3/fW0btWKKTfeyO49e/hlzRrunjaNO2+7rZFy3ITGgMvlwt/fH19fX8ZffXUtv5ycHN5442W++OJT5s//hosvvqZRlUFN+N/E34pBLg2OadD3osVULamWEfGofHWiZmwqd5PD6STc35+rBg5UD2MCjy9YwImsLK4YOJDFv/3GrhMn2D5nDlGxsdrLYI0lr7woWjcFiarIqGbcjLZID0YUCmqLaLM3x5mRDkDtsowa1Q9Jktiw4TR+fn61wjz55MP8/PM3PPjgm4wZcwmiW3eNNKcZN7NSZSNlFx7x5NCR9DammxcilYQonBxGJKvy54ZIf+sZh1Kaq32rpgq0biNVpCNPy+xYNTKOzQj65eQ3ICCEUaPGAu6LEUXC0br9W3xb3n+efZajSUlcPGIES5ctY9OWLWz7739pHh2tncn60m697xpaqfXRLsgrV6u89dVcyOfMBmg/hl5+OeXl5eSnp7svR6rOtx/PPvsEn346n1mz3mTMmLFUVqorhUQCU1HW5G4i6bJRxY6hIuu1uxEJsigOsxJkvXNCFSdgIKAVIqm8Vhb1/EUsmHKeri1xrn3evs3uV1eDZHD8Gj4H+a+GxWKRTp6UdMulxRgYnaNq2UWq3T6hxkGKuEUz6hG1Qgk6a05pKftSUth09ChRoaFcN2IEQd7DBLUOFBScDepVU4rOFdZy0zr3V150reowWhV6DJ4RPkXPNlaNQVYzvzDCLEuSRHi4e9Bu25ZE27btavkfOLCXUaPOo7i4iJwc8+NRjwCbXUTUMYWQPzeEkRXFpcXcaqWvfBa9G4FaRZhhZI2sqmRuVVYrVqu12q/CKbb3VxZJ6daqlfvfzDnI5eWS7mJO5KZFsurL8xnllYwuDo0uAOX9Oy8vj727d7N582bCQkOZOG4cwfLbHbQKoOdXn3CNGX9DKlirAvXiqm9ZddK3x8RQXl7O/l276NqlS60F3e7dh7jkkvM5fTqb/PwqysstdeYerWna7DnI8ixqzTNq0y7UPjfZ6iityYjWJKt1EYFWhvUYZa27FzQmTa9Jph7rI7q8y2w9y9+t1iqsVqtp3k4Zp1dW1RjnIP/lOHNG3U9rPJtnmGQ3fSk/Njv4tRhkvfhEacoKFhkayvndu3N+7951C2OEw7Pbazq47BIO77+RSzvUxrM322Zv49OqBlGbakl4RUX3opYAwsD8YDRN0WC0SFX4+/tzPCmJ+Ph4kElaq6qqWPH9QmKio3h/7hwighU3K5mF0cncocFc6jHGWn5G3dTiEJWhPlyZCPUlEnoTiRaD7Hn2jrMTJ1Jp397N2f7ww3oGDx6qu4ZWqw4vg2wGRi9hk6ejfNZyMwOn0zjza8ZPLZzozN5mISEMGzSIYf371/gZuQ3pbFRIY8WhNVdprY7kfko3o6ucs8ioBwQEsH/nTtp16gTUaDoqKqr45puvsNvtzJ49H5fLorrO1sqmFpThResAtWI2RpNqwkgC8sFmpEL05gNPXN4xJdfQ6LAtqtnVc/fGkZ2dzUUXuU//+vDDnxk8eKRhoZWyjSIixGlWf6ft3YQmNKGhsFgshIeHk5yc7GGQ3aioqKBrr16Ehobyx7p1xCqO/JMkiX379+NwOAgJDqZz585/dtab0Mjw8/PjwgsvprS0hBYtWv7V2WlCE/42CA8L40RycjWDDG675L59e2KxWFm16nfi4mqPKUmSOHJkP+XlDnx9A2jfvtufne0mNDJ8fGycd96lFBXlEx/f+qym9bdikMW35bghWvAaWbhqLI7qB6N6A6NhtCCScHn/ReJUxT2YVTa/WtJh5b8RN4ej7rXP9bU4MVNMA9of4S2zWvGL8qYnxVKmJbTDdTo5d8AA3n7tNTrGxhIVGUlJQQHvLFjAsePHefGxx4j18amjIjlv9Gg2eo6aAsg/p+ycEwAAIABJREFUeJCw0FD1DMlhVGeu56cWrjGkxUbTVHPTQkNUxGpuah1P1OE8fnIVJEBYWCyLFrkvH/UKK/XUu2ZIih6Ki41XRWMLSY0KL41+q+Ynb5JatodGxPR6ovuzpd1oKLQmQ6PfikR+ehJho2JUrThEboJGPe+885j7wTw69+hHTEwMRUVlLFjwIQcPHuCBBx4nLq5lHe3lbbddzvr1K6uj+eWXbEJCog11AVHxGgKtNP1ENMYLNbGoWgINyZzoXd6fVCZIuZcoq42pXAkKiuDtt2vaVH7sm171yd2M4G9lg7x5s3pejfQpowxWrTu/1ewHzqYNstHCaHGESsMnmcFTld19z7EaE+z9z8+v66bFNJvd1OeF1uDRM2MQtZ/oX1QdGlUktBtTugn7jIqKNic3l6guXQDo1rEjGdnZFBYXExIURIvYWJbPm0ebuLhaZf/ljz9ITkvDz9eXAV260KVdbdtlw2goM6zmZ5apMMv91ZeqqunWjC4kve9G7PJ0DNe9amAtW8f6Msjevb5mbJBPnmwYva9PkxiZnOrBL2n6aV6BfDYY5D+DUTYyq2tVjJ6/mW+NxFHfNGVu8o2peXl5xMW5deIdO3YmNzeXvLxcQkPDCAuL4NNPV9KiRbvq8A4HbNu2juPHj+Dn509iYl8SE7vXaka9vTFaMDolq81L8vmmli2yUb5CLeNm+Aq1whi0QZabkCmz2BBaZxY63Ui16ImJ7v9GsUG2WCzNgReBy4AQ4DhwpyRJ6zz+FuBp4HagGbAZuFuSpP2yOM4HngJ6AYFABrDJE0+hVvpaG82VbkbbXu5WTVSNMrcNJYBGxSZqE7ma5EqF05Mzxt5/77OIGTbiJpIge99FvKLeQR+iKtDia7xx6EmIlWdhKled3riMzHeaAhoVziYyNJTkDRsYeu217D9yBIBrL7mEe2+8kXueeYa2558PwNevv861I0YAMLJvX+jbt3Z8RvucVjijDLLITY+Dqy+DbDQ/RqElATMSXiQScTrrNrq8fMo4nE68F2DIh6pSEya3hzdbRWZhdO48m9AcPwJ3vYlO6aamxak3g6zXv+X/Ir+zAa0GM1qBIgIoGgfef72Gq08+BG5ql1QFBDRj795TjB49nCNHDgEwcuQV3HLLdF588WGGDWsPwEsvfcbIkZNwOqF79/Pp3NlNW+XaGjNNa6Roym+05hTRXOiF3R5Yc46v/F85gYk4TlHGRYUwuzAyADfv5D09Qj0qo9GfDRpXHxiuDYvFEg5sAH4HLgdOA4lAtizYw8CDwE3AYdyM8M8Wi6WTJElFFoulK7AKeA/4N1ACtAfGArKr3prQhH8eWickkPL772SdOcPSVavYn5TE9JdeIigggBtHj6ayspIhcoa4CU1oQhOaUI34+BZs2nSEM2dO8+OPyzh0aB8vvfQwFouFMWNupLy8nP79z/+rs9mEfwjMLBceBjIkSZosczvhffBIj/8NvChJ0rcetym4GeiJwPvAxUCOJEn3y+I4Dqw2koHwcE+mDWp61BZKcr/qI91E57XqXROnhfqKZPTUw0ZsCgQSZJG9cX6+uomFyE/kVh8bZC/qs0JX+p8tAZFZhYFXFWjVkrR43GOjoph2ww3qEZuV6hr1MxpnQ6RhIsmtlrjFiORWLX0jIkizIgtR/tWk5Uo3wZ2oVpvbz8/jZrNZDfVdraT/SjSGpLk+Wn6RUM0LoTmFF2ebQCjTEfmpuTUEZ0OCbJTo6vlpTbwCtyrFrWx6UlenE4KDo7n66ltruYnCieLQil/5rAUtkiQiZ6J/sRTZc4pWsKzelPdgeyPRUz8ZyazITU11qwE15YMcIg2a1pRRn2HTmNowM1GNBVZZLJYvgeFAOvAhMFdyGzK3BeKQMbuSJJVZLJb1wLm4GeRMINpisQyXJOk3s5lVmGjWFEJQCs3NGQ7BaGgIx2SWWdYjNFo2BVoMstxIVnG+cbEKM6zGIMsZX7mbGUKkVmStAaQMr1cdRsezVlpaTSofzN44xETNG8YPq9fcQ8Q4Ge0zWgybFvUwQlnkVFvkZraxtOIwylwanaGMMN7KPJkJrze5aO0UFs0Q3o7hcZNf1+pnr1EpG02+MdAQ1eefkb4OPwUYOKvbSF+rL+2XozEY4/o0sGj8Kv3k/dEI96IWn1raZhtS4KdmTmGkqYyerW+kGUVF0JvHjPCPoqqX51/E99ZUr9dkIRA/u6e/K+iJbuHV3rUKpnQzOaHqdS1REbzfidy8MDpMjNA3o/TODFlMBO4C3sBth9wbmO3xm4ObOQbIUnyXBbTwPH8NXAKssVgs2cAW4DdgoSRJp5UJWiyW23HbMwPg51CYKBudSJVuah3pbIwyPTeln1EGWbQ5SMYgVzjdg0vvvGKtM4yNQJQ1L4zOMWrxKuOX/xvdP6X00yNmSuIrJ24ixlhZLnda7kWJlwESRiIicKKMKBOSP2tRDxETrPRXfqesFDl1V0ItbiP5lr+bCW8kfS/MMs9a8YvSkncQZXvIO6eorRSd0Crzq3M7ns1W41YnHwZPNJHByD6OswWj5E/LTXPznReNxSAbgRYTqsy8WrwNEZeJ4hUxw0YZYyPQIs5Kf8W/8jZI+bNZBtloNo2G1VpzaMVvtkrl6SjnGVFTuatZcTtc9S1xOotFtXcjaCCnqealtmBQc1P6GUVjCAIEl9pqht0hSdKjkiTtlCRpPvA2cLcinHKbtMXrJkmSS5Kkm4EEYDqQAjwEHLJYLHUOKJQk6QNJkvpLktTfRD6b0IQmNKEJTWhCE5rQhHrDDD+dARxQuB0E/uV5zvT8xwGpsjAxKKTKkiSlAQuBhRaL5QngCG5G+SbNHOTnm1tGmJFA6UmVjfiBeIVlVCXlfRdJokRuKjbIFU6roSPXzKqQRCdFyLMml6J6342sCM1q6tQkwgYuNNO8BU8ErZvHnE6x1Ly6/IpVv59dUFka4pKc3Fy27dzJj7/9xoJvvmHx7NmMGjq0dmKiTJlxq69EyagEWeRWn/HVEGlyfVAf3Z5IP2hEPVnfNjB6JrZGUmdbgmxEaqz2bOgM44a4mZUWizLfmJJZNRiZZ7T89MTyjQk1lR9icwr5c0OaQ568HIWFuRw4sIPNm1eyfPkHPPHEZwwaNKZO2vVJ12w1GyHDZoXy7ufa84zyGdySZi9qjasGQmk/roQWO6QMo6aE8aK+/aIhXd3MpxuATgq3jsBJz/MJ3EzyRcBWAIvFYgeG4mZ+hZAkKc9isWQAwbo58NoLaMHppLyiApfLRWBAgKHw9XaTodThICktjZ6is2rNjCQ1AmPApsBrVvFnMMNyJlgtLT3iU18GWa2K1IiIUYZaayDJ+VilWkxeFtEV1jX5sMpUY97rzGsfSfX7H3/w+ltv8d0PP9TJQ2BYmNuMpqFMaGNAL86G5NGIerA+6sT6MhqiMEbqVE7xG0Pf1wgwmmRFRQWVlZUEBQWZiscM36Z0czgcHD64n97du+Pe8+2BSK+uR2TM6m+1YLadtPqLUT95Hs32HSPzjfxZRERFYepJiOVmFaJmNDPdqlWFvGn37NnMwoWvs3r1V3XCBgcHCOc2MyRDLy9GocYQirqDGhnRCyN+rs3UNjZpEnVjrTT0ur+W29mGmWp4A/jDYrE8DnwJ9AHuAx4DkCRJslgsbwKPWyyWQ7ilwk8AxcAXABaLZRpu2+XvgGOAHZgM9ABe1suAVFnpPdAZT3w1fpLEyfR05i1ZwodLllBUWsqgHj2YetVVDO7VC4C8wkJSMzNZu20bB48dIzUri5axsVx3ySVEhoXRr0sX4qOjsdhs5BUWsmLdOs7k5xMbEYHVaiW/qIiQoCBCAgNJycwkKzeXSqcTh8PB1kOH2LBnD8/dcQfjRoygorISp8tFWXk5kiRRVVWFn91OeEgIHVq1cuddrXcb5ea8h3Qr7LqMdiR5tCI/JTOstiFPLV2zxM+brtq73spae5VtLLxWHEbKIjpfWbRCrmlOK+XllXzyyQI++uhDdu3aVR3XLytXcuHQoVRVVeHj41M3wfpIYs82zEh6G1qW+pa5nrNepdNJSlYW8374ga2HDpGcmUlhaSkhgYF0bNmSJ6dO5dyePRHe2CFieOrRLk6nE6fLxcvz5zNo7FhGjhxp6nv5xVCSJGG1Wmu9p6ef4tNP57Fw4TwKCwvo23cAN9xwC4MGDXHTwPw80tNPsWHDOg4e3Ed6ehqxsXGMH389kZFR9OvXl4SEBCwWC/n5+axa9SM5OdlER8fg4+NDfn4+ocGBhIWFkZKaSmZmJpWVlZSXlbFj1y7WrV/PEzNmcMN111HpcOByuSgtK0NyOt001GolNCSEju3aufPekEWWF3IOS4/xVBN/6aG+/VEPRrmbhhBW77/JcHrSRS1oMU+iME5nGd99t5BFiz5g//6a20fnzl3OsGGXIUkSkuRTJ46z1SwiGOkqIqZZ1O0aEoeRtZVZWYJefDV5c5KWlsZHH33A1q1bSE4+QWFhAUFBwSQmtufhhx9n6NDzQUBFG0A26+TB5XLxzjuvM2hQT0aNGqUa1tRNehaL5XLgBdyS5BTcm/Nme06xkF8UMo3aF4Xs8/j3wX0U3BAgHigFjuI+CWOhTtqSj48PPlYrVquVispKEmJjKXM4KCsvx1FRQUhgIDeNHs1t11xDm/h4fli/nvnLlnHw+HEkoFlICM2joxncsycDunQhLjKSQ8nJLF27loLiYrYfPEhxaSkBdjsVlZWMHDCAlrGxZOXmUlVVRbOQEApLSigsKaFVXBxxkZH4+friZ7USFRZGt8RE/vPxxxxOScHPZsPXZiPA3x+LxeLOs9PJtgMHCA8J4cMnn6R7p060bt4cu79/ozDIWseriTbkyaW/Wn7yuP6XGWSjzaIWh2jRYbPBiBFDKS8vJzU1lfLycm684Qbi4+J46IEHsFYp1GFNDLL5cApUVVTUYgxrwWajorKSlOxs9pw4wcaDB8kqKOB4RgabDx4kOCCAiSNHcuW559KuRQvCwsIoKinhqzVreHfpUqqqqmiXkMDIAQOICg/nj337yMzJoW18PHGRkYSHhBAbHc3Eyy6rLSVVIC0ri4179vDLpk38vGkTRSUlOF0uCktKkCSJvl26kOdwMHr0aN544w3DN+nZbDYsFgs+Pj6Ul5cTH59ARUU5ZWVlOBxlBAUFM378jUyefBudOnVk9eof+fzz+ezfvxeQCAsLJza2Of37n8PAgecQGxvH8eNJLFu2hMLCAnbv3kFBQQFBQUE4HA4uuOBCEhPbkpWVhdPpJCIiguKiQgoKCkhISCA+Ph4/Pz/8fHyIjIykR5cuPDNrFgcOHcLP1xebzUaA3Y7VQ0MrKyrYumsXdrudT2fPpnuHDrRJSCAgIKBhfaMhWggjaGKQDUuQ69NUN988iuzsdAoL8ykoyOOqq6YQGdmcW255GJsnP2bnoj+DQa5vU+n5NUYcWvmqqqrCYrGo0rCKigpSU1PZu3cvmzZtJD09ndTUFDZu3EhgYCDXXjuBK68cQ7t27QkODqekpJhly5bw/vtzqKyspE2bRC64YCRRUTFs376ZU6dSadu2HbGxcYSEhBMREcX48Teo03EgMzODrVs3sn79r6xdu5rCwgJcLheFhQVIkkSPHr0pKytm+PDhvP/++0Ia+re6arpi1y6qJAmnw4G/nx/J6ekEBwZi9/OrNqfw8/VtUDrFpaWUORyEhYTUjqu+kgNFuDN5ecxetIhdBw+y7+hRTmVlERQQQHxsLM3CwjiYlETHdu24ZPhw2rRuTUSzZgwcOJDY+Pja8dlsdRhjOaOqxdyKjpQxeoOliBnWklw3lEEWuTUWUWiMOUPkp8cgp6ef4sUXH6e0tITJk29h6tTrWbx4Ka+++gK7du1g9OgxPPHEk7Rt21b/OCulm9q7mpsezIgNzDIVKvmXKitrSzcF4Rzl5VSUleFrs2H38alLqBVp5hUVkZqdzc/btvHsp59itViYcMEFhAQEMKRHD4KCgliwciVbDx/meHo6LaKi6NqmDYO7dSMhOprYZs24cOBA/P08tn2Cxq+qquJkRgaHT55kzdat5JeU0KtjRxITEjiZnk5mTg4FJSV8uWoV906axKO33QaAy+XiVFYWxaWlZOfksHTNGj5bvpzz+vRhcO/ejL3wQpqFhmKz2YgIC6uZmLp2rdYuGGWQMzLcGi2n04m/vz8pKckEBQUTFGQnMDAQSZLw9697Z5OZyb2kpITS0lLCwsKw+wkC6fVNHY4pLz+ftz/8kJ1797Lv0CFS09MJ9NDQiPBwDiUl0a51ay4eOpR2CQlEhIfTv0cPmsfEGEvfjF9D0NiMsZbf2WCaRW4yP60TK0TvZuaP7OxMXnzxMQoK8pg48Xbuu+8G3nhjIYsXz2PDhl+55JKruPPOJ2jbtkPdCFTiNeJnJowR1LepRO7yZx8fqRYNFYVzOBxUVFRgt9sICAjAYrFopp2fn09qaipr1/7GzJn/QZIkxl17LeHh4Qw65xwiIyP5eP58tm7bRlJSEvHx8XTp3JnBgweT0LI10dHRjBgxArtCbS2vy8pKiZSUkxw9eoR169aQl5dL587dad++IykpJ8nOzqSgIJ/vv/+W66+fwiOPPAu4aWhGRhrFxcWcOZPN6tU/8PnnH3POOefRt+85XHHFVTRrFomPjw8REZHVNDQiAk0a+rdikKXDh//qbIjRAIJUVVVFbl4eaadPk19QQKvWrTl67Bi//fe/nMrI4ExODhs2baJDhw5cOHw40TGxHgmQH5JkISQklNjYFnTu3JWoqOZYLBbDzK2am9LPC7MS4bNJRLT8GhJeixAZnU/UwlksLjIzU5gz5yUyM0/Rr98gZs9+iZ49e7N69XoAjh49wtdff87nn3/K119/y4B+fWpHZkbkcjYlx/JCKtIpLS0FIDAwkF379pGXk8OQgQPx8fEhJy+PouJiIsLDCfT15WRaGmmZmWRkZHDo+HFOpKayYccOcvLysPn4MO7SS4kMD2fxihWkZGQQHhpKeUUFZZ5FcqUn7eZRUVw9fDjFZWU4ysuRqqqoqKwkKzeXk5mZnM7Pp3VcHF3btmXmbbfh4+PDig0bKC4tZc22bRSXlTFuxAguPuccerRrV2PSoiyryM3I7IXbhCFm8GDO5OXx4axZ3DJuHBt37GDaE0+QV1hISFAQMZGRdO/YkZn/+hdRERHC+q1Gx44AXrMzQwxyTo6kmWWdIgjdRWGEG4Hqy5XoEJ2qigry8vNJy8ggv7CQhObNOXHiBGs2bCAlLY3c/Hz+u2UL7Vq14sJzzyU2OhqrxYKfZ2EVGhxMfGwsXdq1o0VcXM1iy+z40arUxhiLRhpNL8zZZp4RS45Fz2bdwM3MnDqVwnvvvcmhQwcYOnQEb7zxHO3bd2LVqi1YrVaOHz/K0qVfsnDh+3zwwVf06TNYHJkK/kwGWYka5rWMqqoqAgODOHRoL/n5pxk4cAg2m428vByKi4sIC2tGWFgwp06dJCMjjaysDJKSDpGaeoJt2zaSlZWJr68vV155Nc2bx/PNN4tISUkmLCwMp9NJSUkJ/v7+VFZWAhAbG8vYsddQWlpKeXkZkiRRWVlJdnYWKSkpZGZm0rp1azp36sTTTz1FUFAQy5cto7ikhN/WriW/oIBrrrqKSy++mJ49elRL7msVTIb69pPevdtz4sQxXn75baZNu5ft27dy//13kJmZQUhIKNHRMXTs2IVHHnmGmJhYzfr2klg1Gvr3YpBPnhR7qvVWM9IvNfxZK3XBu7cDFRSUsHPnDjZs+C9nzrjNPcrLK5AkicLCAtLSTnHw4D5yc3NYtmw9/fvXnHSgx/CKwinRGMJIs1Ljsw1vmpIkUVJSxC23DOT06XTCw6MICQkjMDCE2NiWPPfcAnzraCWclJeXERQUojdXVL+vXr2cm28eXe32738/Sq9e/XjllZlkZqbz4IOPMH369Orw77//PnPmvM3e3bvVbS3rM/OYhcHGcTqd7Nq7l9nz5vHN8uU4nU7iYmJIy8igU/v2HDl2DKvVSkhwMCFBQWSePo3VYiE2KoqE5s2Ji46mU2Iiia1a0btTJxLi4ih1OJj/zTc4ysu5ZuRIenbuzP6jR2keHU1cdDQWlwuA0rIyDh4/zqrffyciLKzarMnXZiM2KooWMTF0TEjQVMeZroN6MMgAltatAZj77LP8umEDO/fv59G77+bW667TNLkQolUrd5wmGOSCAuP0vjFIn+Ed83p9tQEMNLgXbTt37WL9xo3k5OUhSRLlFe5bVAvy8zmVkcH+I0c4nZPD6kWLuGjYMGP5/jNglkA2ZPVjoi973SRJIr+wmBEjhnPkyBGio6MJCwsjNDSM6OgYFiz4rFor4W0Wl8tFSUkJobKTWPS6wK+/rubqqy+pfr/zzn9x7rnDeO21F0hNPcm0afcyY8ZT1XEtXvwpr7wyky1bjtRe8DYCzgaD7HK5OHx4Dx9//A7ffvsFLpeLmJg4UlNP0q1bDw4dOoCPjw9BQcGEhISSnZ2J1WolOjqGFi0SiI2No337jrRt244ePXrSqlUbKivLWLhwAcXFxYwePZY+ffpy9OhBoqOjiY+Pr6Y55WUlHD58mBU//kizZs0IrJYoe2hofDydOnXSpqFGtewKd7MXJQUFufP88stvs3nzH2zZ8gf/+tfD3HrrXao0VK29mhjkhuL/AYOsxRulpZ1i8+bNfPLJ+2RmZvDllz8RFRUvDP93Z5BXrJjPCy/cQp8+5zNq1BQSE7vzyit30rPnEByOEmJiWjJmzO2EhUVRUlLAoUPbSUzsTnR0fJ24vGn++us3PPbYONU0b7zxASoqHJw5k4kkSURHN2fXrg2kpCTRqVMvfH1txMa2oH37zgQFhRAd3ZyCgjNs3ryO9u274HK56NatJwEBAcyZMwuHo5T9+/fg5+dPUFAwVVUunM5KZs/+gEmTJlbnrbKykrZtW/PWG28wbty4/5cMckFhITfccQfHk5M5kZJCm5YtufqKK5hx3334Wa3sOXCA6MhIWrdsSWlpKTabzT1ROp2cyc3F38+PEKNbyhtavsZWZ9eTQf5u1SpWrVuHy+WiS/v23HHDDQQFBtYvX00Msrqfif6SfuoUm3bs4OPFi0lKTuanL76gdUKCdn7+TDQig/zV0qVMmDqVIYMGccOECZx7zjncdOedDBk8mPLyciKjorj3jjuIjIykuLiY7Tt30qljR1q2aaOazooVK7hi9Oi6/h7cc8+/cDqdZGVl4nS6iItrztatmzl8+CA9e/bGz8+PmJhYOnXqRlBQMHFxzSkoKGDt2l/o3LkrLpeLrl27ExoaxiuvPE9paQn79u3G19eXkJBQXC4XFRUVvPLKbG688RbA3dQul4sBAzrw0ENPc/31U8zVoQ4ai0EuKSnmnnsmc+zYYVJSTtCiRSsuu2ws//73IwQGBrF37y4iIiJp164tpaWl+Pj4VJso5Obm4uPjQ2RkmGr8jTJOjRb2T2KQV636keXLl+FyuWjfviNTp95JSEiIqax58c9ikNPSGhZJY6+sjc4gKuHUOoYeI5uensbnn3/EggXvU1JSzHnnDad//8HceeeD2Gw2Uxr3P0uddOrUCdLTT9K6dQdyc7NJTj5CWVkJDkcZubnZpKQkkZx8mKysNAICgnA6K5GkKsLDo6iqclFYmEdFRQW5udnVcbZv342kpP3V71arlbCwSAoLc7HbA+nQoSfJyYfo3LkPDkcZnTv3ITIyltat3arp3NxsiosLmDPnieo4/vOfD+jefQCrV39DYWEeoaGhxMTEExUVhyRJ5OZm07Jla/r1O48jR/YBLk6cOEJ6eiqlpcVkZaXh4+PDgAHnkZ9/BqvVys6dm8nKyiA6OpauXd32VLGx0YSHNyMmJpYOHRLx9/enoqKUbdu28e6773Do0EFOnz7N8iVL6Ne3r7gxjJpTGGlAE5NwXn4+ew8c4PV33mHZypXcefPNvDJzpvhIsMZgbIx+Wx80dHFtli7UJ5xaHj37Ev4KBrk+4eobXpfJNtuPnE4yMjOZ/9lnvPPRRxQWFTF86FAG9u3LQ3ffjZ9fnfsMzw5MVsTJlBROnDxJ+8REzuTncyQpiZKSEsocDrJPnybp2DGOJCWReuoUQUFBVFZW4nK5iI6Koqqqirz8fMrLy8k+XXNpbfdu3di3vzYNjYyMJC8vD7vdTs+ePTl8+DB9+/ShuKSEvn36EBMbR4cOHbFYLJw5c5qioiIee+zR6jhee+0tLrhgON9++zU5OTmEhITQvHk8cXFxVFVZyM7OokWLBIYMOZ8DB/bhdDo5fjyJ1NQUiouLychwz/PnnTeMM2dO4+Pjw/btW0lLO0VUVDRdu3anU6fOREZGVdPQxMR2+Pv7U1ZWxq5dO5g3710OHtxPRkY6X365lHPOMWdmcbaRn5/PgQP7mDfvXb766gsmTbqRt99+h+DguqfdanWTRluANjS8UejQS9HJJ1r8kF5YPXgVGP8MBjknp2GRmBWJ1MNd62ibhgg6vG7r1v3KrbdO4PLLr2LatH/RqVNXqqrMpakFo+FtNigrK8Nut6uqNaqqqjh27DA//7yc55+fQY8efUlLSyEmJo7ExI4EBYUQEBBIREQUrVu3o127TrRo0YqSkmL8PWry3NwzSJIPoaHhVFW5KCoqxOEow2azIUkSLpcLSZLw8wukXbsu+Pv743K5qlVq6ekpHDiwi4CAII4c2cvp05mcOHEEq9VKREQ0AQFBlJeXkZt7mvXrf+KJJ95g3LhbapVTVHYtN/lzWVkZhw7tRpIkHA4HFot7Q4DT6WTr1k0cOLCX5OTjpKamUlBQQNeuXblh0iSGDhlCjx498FeqBs0wA/UgcoePHuVAUhJZ2dmczsmhuLgYR3k5Z3JySDl1iqPHjlFSWkr3Ll0Y2K8fFw0fziUjRrjNUBqLuT2bttP1Setsc4D1/cYj/mhsBvmvMHlNcc9RAAAgAElEQVSqb/pqYbUYh9/XrWPsuHGMvuIK/nXPPXTv1q2uCv7P6IM2myEaevToUVb/8gv3PfAAvXr2JC09ndjYWDp26EBoaCiBgYFERkaS2LYtnTp1onXr1pSWluLr64uPjw+nT5/GarUSHh7uMcsrpLjUUYeGBgQE0KVLF+x2Oy6XC6vVisVi4dSpU2zfvp2QkBD27dtLZmYmR44cASxERUVXn1hy5sxp1qz5hSefnMldd92jWXQz1VteXs7u3TuraajL5fIIgpxs376Vfft2k5x8gtTUFAoK8unUqTMTJkzk/PMvoFu37u4TTow1R6Pg6NGj7N+/n8zMTHJyzlBUVITD4SAnJ4dTp1I5evQohYWFdOvWjQH9+3PRyJGMGjXKvTCrDy3/M+mlWTRQDWWEYTbqJ4JXeffPYJALCtQDNHQDQz0YXi8aW+ilFe6ZZx7/P/bOOzyKav3jn0k2bTfZNNJ7I4VAEoqIIggiKl2lWBAQReHar1csV6/lJ14rlmu7isq1oqBSRAXpIJ2QEAiEJIT0Rvpukq3z+2M3SxI2ySaE6nyeJ89mzjlz5szMOe9855z3nGHdul9YsuRbvL374Ovrd17ah16vp6SkCKXSHXd3DwRBwNvbVJ/69o2noaEetbqBQYOGYmdnR1lZCXl5ufj4+NG/fxJubkree+/TDntnemO0/FxeB1vfk9pvf/fdl8yf33Z4b/jwEchkMuLi4rnqqquJioogNDQUX19fZDKZ7ROcWoVVVFSw98ABSkpLUbq50S8+nsR+/c784EJL+spK9h88SH5BAYXFxRzJyuJgejoGg4HBAwfi7+dHH29vlG5uODs74+XpSXBQENFRUQQHBXWYb7fo7Rt2sTwozrVrVwvm7o/uCGS1umf2/kJc2t7owbYW98ori/jmm69ZtuwHfHx8CPDz6b7/dw8wGAwUFRWhVCrx8DDZUMEszBMSEqivr6e+vp4hQ4bgIJNRWlZGTk4Offr0ISkpGTc3Nz7++L/Ie+CScyGbxtke++efVzBzZls3OJMNtadv3ziuvno4YWHhhIaG4evra2XOyJlYqxdVVVXs3r2bkpISXF1dSUhIoH///tjZ2Vm1yVVVVezdu5f8/HwKi4rIzMzkYFoaGo2GIYMGmWxonz4olUqcnZzw8vI6bUODg89cwhN6NBpyTjhXL/m94LfV3U7IztJJAtnWNBe5QC4oyGfFiu9QqRp4661XLOFvvfUhc+YssC3js2Du3OmsWrXcsn399eMYOPAKXnvtBQDGjZuCv78/R48exsvLm7CwCOLjExkwIIW+feO6NOqXo0AuKSkmPr6tL+Prr7/DAw880qkHTosx1mg0aDQa00SWDgxnfkEBz730Eit/+YWhgwcTGhJCfUMDqWlp+PTpw7b160+/lJjzMBqNOPv6otPpCAkOxl2pJDgoiMSEBGbedhtJAwZ0eT3al6NHSAL57PKQBHKX6VrHFRUV8d1331JfX88rryyyhL/+2ms8YZ4gey65f/58Pvn0U8v2ddddx5jrruPpZ54BYNLEiQQFBXH4yBG8PD0JCwsjoV9/Bg4cSGxsrNXhd1u5VAVyZWUl4eGm5flaPhL2wguLeOKJZ2yqH1qtlqamJtzd2/rptq8XL7zwPD///BNJSUlERESiUqlIT0/D1dWVbdt24Co/c66Et48P1dXVhISE4O7uTmBAAImJidx+220MTk7uunC9MddCEsht+GsLZLW6bWAvOsnZ+tWf3qiP3c3jt99+4fbbb2Hu3Pvw9u6Dq6sbgYFBeHh4MnjwFXh6ep59obqgtLSUzz//L1u2bCQ1dT92dnZkZp5ELpezadPv7Nu3l/r6ekpKimlqasLPz4/CwgJ27NgOwN1338PHHy+xmndvu4Gc64dBV9WpJb6+vp5//espvv/+G+Lj+xEcHIKHhweBgYFEREQSH59AVFQ03t7unDp1Cj8/H5ycnHB1dUUmk1FeXg7Ad998w2233WbJf8OGDVx/w+nZ3ONuvJF5c+fSrNFQWlpKYVERJ/LyWLVmDWn79p0heNVqNTPuvJOt27ejsvL59q+++IKZd9zR/Qtzrv2CzyW9PYnvbLElT7N1745A1mja2vuLxTWxK87Wy+WPP9Zzyy0TmTXrbvz9/VEoXAkKMtnQK68cgre3d+8VtgPKy8v59NNP2LhxA/v370en05Gbm4e3tze//fYbe/fuob6+nuLiYhobG/Hz86O4uIitW7cCMHXqNL7//odzdg8ulvfL1jQ2NvLcc0/y3XdfERsbT3BwCO7uHgQEBJo7YRKIioqhTx8P1Go1Xl6uODg4oFQqcXBwoKysDIBPPvmc2bPvtuS7c+c2Ro0aadkeM+Z65s9fgFarpayslMLCQvLy8li58md27tjBsGFtfZjVajWzZs/mjw0baGhoOKPcH773Hgvuv/+cTi61Od4WzpUbWU/cWjuK6yR9V/qto0vU0nd0eQhkjcZ6ZA8eUGfzGcwWzpdBufLKQRw8mMrUqdOZMuUWBg4cbPqIRE+XreqE7l7KZ555mtdee7VNWGBgIBUVFbi5uRETE0N0dAzz5t3HiG4sndSTa3sxGniA5mYVBw7sp6KinJqaGoqLizhxIpejRzM5ccK0/JlcrqC6usqyJiWAo6MjMTExrFjxE33Na942NTXxw/ff8dTTT9PQ0IBCobD4XDs5OuIil+Ph7o6Pjw/R0dGoGxvZsWMHlZWV5uUBNQiCgK+vL76+vnh6eODm5oaHhwceHh5otVr+tmABcXFxtp/gpSZoL2a60wDN1v1sBLI1LkQnQGvORQf8DTeMZsuWzUyefDO33jqNgQMHExkZ2enyX+fLF/vNN9/gyScXtgkLCgqivLwchUJBdHQMffvGctddc7juujFndaxLtdmo1WoOHjxAWVkpdXW1FBcXkZd3gmPHMjlxIgcAuVxBTU11Gxsqk8mIiorm229/IDGxP2D6QMaqVT/y5JNPUFtb28aGOjo64uJi+hS6Tx9voqOj0ep0bN++nfLycoxGI1qtaYlVX19ffH188PL0tNhQd6USnU7HfXPmkNivn/WTOVe9xBei0dnaW9TTNL2Qf2dar0VCXR4C2bzuaW/QGwL5fNLQ0MD//reUjRs3cvBgKtXV1cTFxREWFk5wcDA333wLERERuLu74+bm1m2fOq1Wi0qlQqVS4e7ufsaQFHQ88UWn07Fv3z7++dxzbNmyhW1bthATE4O/v7/Nxz/X9+NiezC0tOuWSTMNDQ3U1dVRWVlJeXk5+fknycnJIScnm7S0NAYOHEh2drZ5yDGciIhIAgMDCQwMJCQkFHfzF9ZEgw61Wk19QwMVFRW4u7szftw4AgICsLe3x8HBAblcfl58Li8KLrYbD72nvMzWvTsC2WCwbu8vtc7/nlxCtVrNV1/9j02bNnDw4AFOnTpFbKzJhgYGBjF58s1ERUWjVCpRKpXdbiM6nc5iQ1sEU3f2TU09wL///TK//baWX3/9g4SEfgQEBHT3NDvlYmwOZ4u9/Wkb2tBQT2VlJRUV5Zw8eZITJ3LJzc3m4MFUUlIGcuJELmVlZRYbGhQUREBAACEhoRa/cIPBQGNjI6qGOioqKlAoFEycMIHAwMC2NtQWPdIbvb/ns7fofLmH9XY6G/NqrzMkgdwBl5pAbk9dXR3Hjh2joKCArKxjLF/+A9XV1dTW1uLr64ubmxtVVVVotVoCAwMJCgrG39+fHTu2YzAYcHd3Jysri7i4OJqbm8nOzsbV1RWFQkFNTQ1+fn7065dIQEAAXl5e9OnTh+DAAPz9/XFzc8PNzQ2FQkFjYyOnTplm6n751Vd8/c03ljLGxsbSp08f5C4uNKhUVFdXU1lZyfVjxvD9smVtzuevKpBtobS0lJ07d5KSkkJYWFinvV42L/vzV+Fiu/EgCeReoDcuYX19PVlZxygsLCA7+zg//LCMmhqTDfX29kapdKemphqNRoO/fwBBQcEEBASwa9dONBoNnp6eZGUdIyamr/kjD8dQKBS4urpSW1tLnz4+9OuXiL+/yYZ6e/chKCgIPz9/lEolCoUrrq6uNDY2Ul1dRX19PStWfM8XX3xm8beNiemLj48PLi5yVKoGqqqqqKmpZujQYfz885pun/PF2BzOFlvqQmVlJTt2bKN//ySio8OR2bBTj5YX7G4aSSD3TjpJIPeuQD5bekvQ9bagEUWRo0ePotfr8fLyQiaTUVJSQlFREcXFxfTv3x8fHx9qamqIjY3l6NGjODo6kpKSYhFeBoOB48ePk5mZSUVFBTW1tVRUVFBcXExZeTkqlYqGhgZUKhUKhcL8MFGi0WhoamqisbGRkpIS6jqYVDl92rQzBHJvcKm/9EjYjvQiQI8EsmgwnNN2cjkIMFEUycrKQqvV4OnphaOjo8UvtaSkmLi4eAICAqmqMvVAHz+ehZ2dHSkpAy3Cy2AwkJOTw7FjmZSXl1NTY+ocKCkppqys1NLTrFarcHExLdPm5qZEqzXZ0KamJsrKSqmpqbFaxnHjJvRIIPcm3VkS9HxzNsfssW25UH6BF0ujO5/iurf278KGSgJZ4pxhMBhoaGhAqVSeE3/pc4EksiUuFbrq/WjP2dhQqV1cGLqyoZeTNrrQXNCX7ovlRl6MnMvKdTkJ5I6GByUkJCT+avREIEs2VEJCQsJEVzb0knrvs7f/i0wskpCQkLCdfFsTSjZUQkJC4gys2tBLpgdZQkJCQkJCQkJC4nwgOZZJSEhISEhISEhItEISyBISEhISEhISEhKtkASyhISEhISEhISERCskgSwhISEhISEhISHRCkkgS0hISEhISEhISLRCEsgSEhISEhISEhISrZAEsoSEhISEhISEhEQrJIEsISEhISEhISEh0QpJIEtISEhISEhISEi0QhLIEpctgiBsEQRhywU47guCIHT5iUpz+XZYCQ8UBOEDQRDyBEHQCIJQIQjCT4IgXHFuSiwhISFxmovVdgqCMEcQBNGGvxfa7RchCIJREIRmQRA8z/mJSFwWXLYCWRCEaYIgZAmCYH+hyyIhYSuCICQBacBNwGvAWOAhwAPYKQjCXReweBJ/AQRBSDSLjGsFQXAxv6Bdc6HLJSEBrAWGtfp7wBz+cLvwJe32mwUIgBNw23kpqcQlj+xCF+Ac8iOwCLgLWHphiyIh0TWCIDgAK4A64EpRFKtaxS0HlgOfCoKwVxTFrAtUTIm/EKIoNgmC8B/g/4BrL3BxJP7iiKJYCVS2bAuC4Gz+96goirs72XUWkA70AWYDH52zQkpcNly2PciiKBqBLzH1vklchgiCkCQIws+CIFQJgtBkHjF4uot9Ys371Jr32S0Iwo3t0iwVBOGklX3PGHYUBCFFEITt5qG7YkEQnsPUU9ETbgGigWdai2Ow1OeHAHvg0R7mLyHRE5YCIwRB6H+hCyLRO1yGtrOzcl8DRAL/A74GhgqCENvbx5G4/LjkBbIgCCMEQdgsCIJKEIQ6c0NMMUf/CAwUBCHxQpZRovcx++PuAqKAx4DxwGIguJN9AoEdQBLwIDAdqAXWCoJwUw/K0AfYxOleiQeAG4G53c3LzHWAAdMw4hmIolgCHABG9zB/CYkzEAThb4IgFAqCoBYEYQ0Q0DpeFMVCYB+mXjiJS5zL1HZ2xmxAD3yLSSSDVJclbOCSdrEQBOFa4A9gM6ZGoAauBoKAg6IoHhUEoQaT8Dh8ocopcU54E6jC5IrQaA7b1MU+fwc8gWGiKOYACILwK5CJyR3nt26W4TFAAdwgimKBOb8/gPxu5tNCCFDZ6nyscRIY0MP8JSTaIAjCZOAD4GNgJTAS+NxK0p3AmPNYNIlzx+VoO60iCIILMA1YL4piOVAuCMJ+4C5BEJ4zj8xJSFjlUu9B/jcmv6IbRFH8URTF30VRfE4UxV9apTkESLP/LyMEQZBjehH6pgsx2Z4RwO4WAw8giqIB+A5IFgRB2c2iDDPnV9AqPzWwppv5tGDL8GKvD0FK/KX5J/C7KIoLRFFcJ4riM8DvVtKlA/1b+XxKXIJcxrazI24GlJjcLVv4H6bOiGt7+VgSlxmXrEAWBEEBDAX+J4piZ0tqnQL8z0+pJM4TnpjqblE39/MCSq2El2ESnt1d/icAKLcSbi3MFgoBH/NDrCPCzOkkJM4K8wo/KcCqdlE/WUl+CpP/u8+5LpfEOeVytZ0dMRtQAVsFQfAQBMEDU2+33hwnIdEhl6xAxtQgBaw32tZoAKnX4/KiBjBicqXpDtVYf1nyB0RzPEAz4GglnXe77VLAz0o6a2G2sBGTCBlvLdLsBziIrodDJSRswQeTm11Fu/D222CyoyDZ0kudy9V2noHZXo4BXM3HqzH/5WCq97eaO9okJKxyKQvkloYe0EU6D043XonLAPPQ4A5gptnHzFa2AlcKghDeEmDuRZuByWe9wRycD/iZJ5K0pIsC2s983mXOL6RVOgUwsRtlas1PQC7wiiAIXq0jBEGwA97DVOff7WH+EhKtqcTUk+bbLrz9NpjsKEi29JLmMrad1rgLk8a5DxjV7u9xTD7Qt/bi8SQuMy5ZgWz2V9oDzBIEoTO/zHDg+HkplMT55B+YeiV2CYJwlyAIowRBuMe8ZmtHvI1p5vUfgiDcIQjCBEw+b30x+WK2sBxTr8g3giDcIAjCnZiGoU9ZyU8NrBcEYYYgCFOA9UBTT05IFEUtpgklnsA+QRDmm1dpmQZsAKYA94uieKwn+UtItMbsQ5oGTG4XdYuV5OFAVfvlByUuSS4729kBs4AcURQ/FUVxS+s/TJ0N5UhuFhKdcMkKZDNPYVp25jdBEG4xN8gXzI235Y00DvjzQhZSovcRRXEfpskmhcB/gF+BJ+jEt868TNpw4AimheJXYPKtGy+K4u+t0uUAUzENQ64EFmKaxX28XX6nMK2QcgrTxI8PME1wsrYKgK3ndRBIBtZhqt8bgA+BeuAaURSX9jRvCQkrvALcKAjCR4IgjBUEYRGm5bbaMxjTShYSlziXq+1sjSAIQ4CEjvITRVFvPu4oQRBCe+OYEpcfQufz2y5+BEEYiekrT4MBLXAQeEwUxTRBEG7GNHvV39zjLCEhISHRCkEQHsT0MuYFbAHewfSCNkoUxS2CIMgwTcZ6XBTF/3WYkYSEhMRlxCUvkDtDEITvALUoivde6LJISEhIXIoIgnAD8AMQKHU0SEhI/FW4pD8U0hlm5//JSB9VkJCQkDgbHgPelsSxhITEX4nLViBj+mzm/NYLm0tISEhI2I55pYNdmCZVSUhISPxluKxdLCQkJCQkJCQkJCS6yyXTgxweHi7m5/fqZ9olJCQkLgfyRVEM7yqRZEMlJCQkrGLVhl4yPciCIIgGw/kvqx3G837MHqPXX+gSnD9kl8y7Xa9jvORXZ+wef6Vq3Z7OqrmduRoIgoAoip2tBd+SThQNht4qmkQ3uFTa7F+lrV3qj49LSpdczJiNaEc29JKqJt1tvBdNIzgXVudSsGTn8gacr/O/aCrRadobx4vp4XsxVMuLoQznA0drH/Ttir/KxTnP7ba32mBv3p6/yq3uiM6qgK3Xpjeq0TkXs3/1G302dGFEL76nfyd0Vg+sVeTupu8xtlbQ7lbkS6Xid3Qxz6b8F1qYnuXxRVFEo9FgMBgwGo0oFAq0Wi0qlQqj0YijoyMODg44Ojoik8no/GOQndPaALc8qEVRpLa2Fp1Oh729PYIgkJWVRWFhITqdDp1Oh8FgwN7e3uqfo6Mjfn5+BAYG4uvri8x8Pc5VlTzXVf1SaUrd4ZwL5AvdBi8Seip+e1Lnzucj4mJvE61tqCAYUCgU6HQ6GhvV6PV6HBwccXR0tGpDZbKzf/7LZFBbW4tWq7XY0OzsbAoKCtBqtRYb6mAvdGpDAwIC8PPzOzuxdb5u1oWoFBfSzlxOAllC4kJiNBpJTU2loqKC5uZm6urqKCgsJDMzE3t7e3x8fPh93TpKS0tRq9XIZDLs7e2xs7OjsbERBwcHXF1dsbe3R6PRoNPp0Gq1GDoY9v5y6VKCg4NRq9U0Njai0WgsccHBwdjZ2XH06FFKy8oICgwkJCSEF156ib1792JnZ4dCocDJyQmj0YjBYCAyMpKIiEiLOLe3t8dgMFBRUcG6db9bLUN7PvroU+bOvReNRkNtbS11dXU4Ojri5uaGUqnEwcGhV661hITE5YcoiqSnp3LqVIsNraW0tIijRw9jZ2eHj48fmzato6ysBLVaZdWGKhQmG6rTadFqtZ3a0A8//IyIiEgaG9Wo1WqLDbW3h4CAQBwdHTl6NJOSkmICAgIJCQll8eLX2bZtK4IgoFAocHZ2ttjQ8PBwIiOjcHJysthQo0FPVVUVa3/91aZr8Oarr/L4Y4+h0Wioq6ujrq4OmUyGm5sb7u7ukg29iLikfJCPHy8lPT2VjIx08vPzqKmpJjQ0nCuuuILrr78RpVJpdd/OXlA69fGzNjTS2RtWR3E92aen6XqTnr7ZdXe/nhynN946u8ijqqqKlxct4p1332XSxInY2dmxctUqS3xCfDxhYWHExcWh1WopLi5m3E03MXXqVJRKJfb29pa0Lb21rSkvL2fXrl3cfOutbcIdHBzQ6XRERkYSEhKCq0KBXC7H0dGxxVeKvJMnLWUICAyiuLiYwsJC/vhjvSWf2tp63NzcurwMGRkZJCfbvly4s7MzOp0OQRDQt6uXmzbtZOjQYTbnZQ1bqrper6e6uoqammpUqgZ8ff0pLy9FFEW8vLzx8wvA1dX1rI519OhhVq78gfr6OpKTB1NXV8vJk7mEhUVwzz0PWHrVzzcth20xd93xQS7PyyM1LY30jAxOnDxJdU0NIUFBXDF4MDfedBMeHh7nsujnll68H7b2Gve2+b7YBiPP9rFTW1vDRx+9zvvvv8qYMROQyRz4/fefLfHR0XGEhIQTHR2PwaCjpKSQUaNuYPLkGSiV7p3aUJkMTp2qZO/endx115Q2x3VwcESn0xIUFEJ4eAQKhSsuLnKcnJywszPZ0MLCfAwGA7Gx8YSEBFNaWkJBQQEbNpy2oRUVp/D29j7jvNprg6ysLOISEmy+Li4uLpaeaa1W2yZu05o1jBoxwua8LHTzZhkMBqqqq6mqrqZBpcLP15eKykr0BgPeSiUBfn642WBDO+NYdjbf/vQTtQ0NDE5Opr6hgZy8PEKCgnj4vvt69jLQm3pBLgc6tqGXlEBuvT1z5j0kJiZTV1fD/v272L17B0OHXs3jjz/DqVOVBAWF0K9fvNWHZOtrZe26tan83RG9rcO6iu9OXE/S9ZRzLW67Sm/r2NfZ5gEcyszk1KlTeHl5ERgYSJ8+fbCzs7MM7bkoFJa0V1xxBXfNnMmqVas4np3NqVOnaGxstJrvwYPpDBhgEpx6vZ5//vMZCgoKGD36OgoK8ikvLyc/P599+/YyMCWFzVu2WPZ95OGHGX711fj6BzJ8+HCbzsMaoih26LbR3apWXFzEt99+yahRY3jppefYuPH0A+Sqq4YTHd2XyMgo+vTx55ZbZqBodd1sPYY1RFHkkUfupaSkCJWqgbCwSGprqykszKewMJ/Gxq6/W1FV1XP79txzT/Dhh29ajcvKqsbDw7PLPHraXG2pwr6+pt/uCOTW23ffdRcpKSnUNzSwe88etm7fzhWDB/P8s89SXlFBWGgocbGxbV+yLnO3i94Uxl2lORcm/3wL8ePHj1BZWY67uyd+foF4e/tYbKhOpyMmxsmStl+/FG6/fR7r1v1MXl42VVUVNDVZt6GrV+8lKWkIYBJy77zzPLm5WVx77Q0UFxdQUVFKSUkhBw7sIjl5MNu3b7LsO3v2fIYPH42/vx9XXXWm0Ozq+d8SJooiDg7Wm5XNnWfmsNLSUj7/6ivGjBrF2++/z/crVliSXDV0KLExMUSGhxPg58e0CRM67Oyz6ZjtePDpp8nKzqaxqYnQoCAaVCpOFhVRWFxMvUrV5f7iWax883/vvsu/Fi+2GleWloafj0/bwPP1/G9JczkJ5KIiI8eOHeaTT97kyJF0SkuLqK+vw8VFTkNDvdX9Zs+ex4cfftImrKMGckal70zwdhTXHWHcXRFtS3x3uNBi2JZ0nVmwVoiiSKNWi9FoRKVSERAQgFar5eHHH+e/n39uSddYW4uLi4vJh82KkBsyZAgVFRW0LIcVHBxMUVERAHNmz8bDwwODwUBmZiYbN502yps2bSE+Ph4fHx+LMNXpdHz11VfMm3cPAFOnTuPEiVxSU1Mt+zk4OODs7AxA37592bRpi009n7bQ0/exzuI2bFjHrbfeyIsvvsb8+X+3qRf1bKrszTePYufOLcTGJqBUejB69E1cd91NqNUNPP/84xw6dPpaBgQE4+rqRmxsAlFRsSQkDGDKlBk9P7iZiopyGhrq8PcPw8nJqcN0vSGaWrCl6YSGmn67I5CNKhXHsrJ4/d13SUtPp7CoiNraWuRyOQ0NDVb3mzFjBsu+/faM8PM5OfR8zdrv6px68x5fCIHc1Qtpfb0aURRRqxvw9Q1Ar9fz8suPs3TpfyzpMjJqUSrd0WqNxMTYn5FPTEw/7OzsyMrKAMDHx5/KyjIApkyZiYeHN0ajkby842zfvs6y3+ef/0a/fil4e/tabKher2ft2u/5+99nAjB69ASqqipIT99r2c/e3h4XF5PQCQkJ56eftqNUunfYhjp6/rdP362OtBY60wlmtm/bxoibbuLlZ59l4aOPtu1F7W1NoNcz6Z57WLNhA7FRUfh4eTH6qquYOGYMzRoNT7zyCrtbPY+C/PxwUyiIj44mLiqKfjEx3DFu3FnNkQGorK6mpq6OsNDQjm2ojc96m8NsSX85CeTi4pay6tFomjEYDDg7u5Cbm8mPP37H+++/QWhoOGVlJQAWf6OAgEDmzr0POzs7BEHA2dmJvn1jGTAgiaioMMsxeksgi6JIg3kylkwmQ+7ggJ2dFcMrCeSu03VSuaurq1n926CbTDAAACAASURBVG+s/vVX1q5f32ao6vOPPsJoNHLvAw9Ywry8vHhm4UIW3H8/crmcdevXs2nLFqIiIzlw8CDphw6RX1DA1VddRVFREXv2njbCKSkp+Pn64urqip29PT/88EObIi1Y8DfGjze9+fv4+HD33bPZvXs3AAsXPsnAgYOYNm0aL774Ai+99KLVUy0vr7RM6jP52ilwcXHp8vJ1RG8KZJ1Ox6OP3s/333+NTqdj7tz5vPHGR2ddDls4eTKX1auXs2jR0wDcf/9j7Ny5BUEQePLJ/+P55/9OTk6WJf3s2fN5/XXbytYdbG2azc3NFBfno1Y3oFarqKurISfnKCUlBeTkHGPq1LnccsusTvM6VwJZVJt63fXmcur1elxdXTly5Agrfv6ZRa++SkREBCUlJRiNRkub8vDw4JGHH7ZMVnJ0dCQ6JpakpCQiIiK6Lmw3EUURlUplGVZ3lTuf4aJ0LvirCeS6ulrWr1/NH3+sYePGtTQ3N1niFi36CBcXOX//+2xLmKurGw899BwzZ87H2dmN3bu3sGnTL0RGxpKRcYDjxzPIz89hyJBrKC8v4eDBXZZ94+IG4OsbiIuLAkdHJ9asafvSdcstsxk/fgaurkq8vPrw0kuPWAT0ffctJD4+iYkTb+ezz97g3/9+0ur5ZWSctqHOzg64uMiRm0VQCxdKIBsMBh547DG+XrYMtVrNHdOm8c2SJZ3v31GYrfHmuJOFhSxfu5aF//43AI/ecw87DxygWaPhpUceYfHnn7Ot1fPujkmT+Obtt207fnew8Vmv0WjILy6mvqkJdWMjNXV1HMvJIb+oiKwTJ7htyhTumzXL6r42HfNyFMhXXHENDQ11ZGUdxsnJGTs7O3Q6LT4+fkRFxSKTyRg27Bruuute/P19OHQojbS0A9TVVVNQcBJPTy9EUaSysoyVK3+itraWp59+hpdfXmTdraIHAnnj5s2Mue22Ds/j9SefZMXvv6N0dSUhOhq5kxPXDB7MuJEjz0x8PvyOuyN6z6c7hQ1xcx96iC9a9WwNGTiQ4zk51NVbH01oz7+efpoXn32WT5Yu5X6zkI7t2xeAktJS5HI5lZWVGI2mupGUlER6ejpgalByuRwXZ2f0ej0Gc5oW46zRaBBFkddfe40n/vGPNsc1GAz844knWLV6NXl5eZb8PD09LRNStFotjY2N+Pr6Eh8Xx6y77mLGjBkd9thae7DbMnBhqz1ubm4mISGAurpaAH77bQ8DB15h/QCdHLu7aVpTW1vNwYN7yMrKwMPDgzvuuNf6i2cv01k5dTqRdet+Ij19L1lZGeTmHqWo6GSn+U2cOJNXX/3KpmNbu925uRlkZqah1RYRHR3N9OnTbRbI11x9NfX19RzOzDT7Y5rqmo+PD/FxcTg4ODB06FDuv+8+/Pz8OHQ4k927d9PQUE9OTg7e3t6IokhFRQWrVq3k1KlTPPLIoyxe/HavmaudO/9k1KiO3YtefPEl1q37HScnJxIS+uHm5saQIVcwZcqUM9La0vPcnZ7w8+lacS7Tt6R58cXH+eST00PgAwYMpqAgj9raKpuONW/eEzz11OusXPk1jz9+FwAhIRHI5a5kZ2daeo+NRtMkuoiIWPLyTC+zps4qOc7OphE9UTQiiiJGo8mG6nSmEcGHH36JRx55rs1xjUYjb7zxNL///iMFBbmWcA8PL4sN1el0NDWp8fTsQ0xMPFOn3smtt96Jg4NDt8VwZ+lb6Eow65qaiEhIoLjE1IG3Y8MGrh4ypNN9Og3rKK6T/Wvr69mTlkb60aO4ubgwb/p00zOlN9w/baXdxRPt7Vm1cSO709LIyM7m2IkTnCgo6DSLyTfcwMrPP7ftxlgJy8zOJjUtjaLKSkJCQpg5c+alL5C//norCoWc6Oh45HIF9vYiTU2NKJUKq9epJazld/nyZcyZc3ubdC++8IKl21/u5ER4eDgD4uNNkXo9q9auBUAplyMIAn3Dwwn097fEt0GvZ/POnTz0/POcLCrC0cEBmb09eoOBuvp6jKLI0ldfZeEbb1BRddoAjRsxgrX/+Q82YUtlPVfC1JZ4W9KeZR7/t3gx/3rtNeJiYtBqtSjkcvx8fLCztyc1PR0XFxciw8LYunOn1Szj+/ZF5uDAjFtu4d5Zs3B0cGDDli38e/FiqqqrUSgU9EtIYMXPpyeTDEhM5MTJk6jVpiFIW/jsk08IDw1l6BVXdMsvtwWj0cjJkyf5bOlSflq5Ejs7O778/HMGDRzY4bWx7NvqoW/NfnbDptLc3IxarSIh4bS/2OnRnM7z6IzedDfoaR7dfS60Dnv77Wf59tsPqK+vZdy42zlwYDvl5UX4+gYxePC1REYmEhgYjr9/KP7+oXh7+yOTyTo9ZutyVlQUs2/fJurrTwFgZ2fPihX/5cSJTK67bgrJyVFMmjSJkSNH2iyQt65bh9zNjdi+fXFzczMPp6txtTI5z5pwXL16NTffPLlN2NNPP0tUVDSOjo64uMgJDQ0lOTnFEr927S/o9XqUSiV2dnaEh0cTFBTc4fnv3PknDz20gJMn85DJHHBwkKHXG6irq8VoNPLRR5+yaNGLFtcngKuvvppt23Z0dQnOit4QvhdaHLfEf/rpO7zwwmNER8eh0+lwdnbB19cfOzt7Dh9OxcHBidDQSPbu3WY1n+joeOzs7Lnxxqncdts85HJXtm9fx6efvsGpU+W4uMiJiopn/frTNrRv3/4UF5+ksVGNKNrmMrNo0SeEhESQlDQUV9euJxy3b+dGo5GysnyWL/8fv/76I1qtlvff/5JBg4Z2uF9XYrmj8M5Es0ajQaVS0adl4gAgtlqVqEtj0x2Dbav7Z0/juipHC11dJJmMf3/2Ga9/8QW1DQ1MHTuWfYcPk19Sgl+fPoy+8kr6x8URFhREWGAgoaGh+Pv4mFxSbHzDKSsvZ8PWrVTW1AAmd5yvv/+efampTLjpJmLi4hg/fjxjxoy59AVyerpoVfjaGlZcnM9nn32CQuFCTXUVu/fswcvDAy8vL7RaLWqVij82bULp5oaTkxOi0UhxaSkTx46lvqEBo9FIxrFjeHl4kLFuHXIHh7aToVpVlr2pqYyeOxd10+khq1uuu47+MTG4u7qiVChQuroSGxLCgJiYc3XZTnM+/Xu6ijsLxdOgUjHkhhvIyslh5y+/4O3lRXVNDR/9738sX72apubmNukHDRiAQi4nMS6OQ0ePsmPPnjbxY6+9lleeeYbBY8cCcPP48Rw5dozjubn4+/qi0WoZO3o03//0k2Wfa668kqPZ2cTFxLDD7EYRFBBAVEQEOr2evfv3W3qUW/i/f/6TBffei7eXV4+ugSiKfPfDD9w5dy4Pzp/Pf956q8t71V7gtLafttrDN998mTfeaNt7s25dKnFxKdjC2XQ+nI/5YN3pZW/5ragoYeHC2zh4cDsAo0dPZf/+jUyYcC+33voA/v5hHebd1KTlnXcWkJGxDYXCHYXCnYcf/oAVK95Cp9MwdeojlJScQKfTsGLFu+TlZTB58nzzEKDZfauhhmeeWcKIESb3m267WHSjjbevQ0VFRXzyyX9xdnamouIUBw8ewNXVDW9vb8uox+bNG5HL5Tg7m9wi8vPzGT9+Ig0N9RiNRjIzj+Ds7EJq6lGLSLfm43jwYCoTJoyhtrbGEjZhwiSSk1Nwc1OiVCpxd3cnKiq6jSC3xtnUpd50hThXgrc7aZqaGrn11pGkp+/n+++34OcXSH19LV9//TFr1nxPU1Pbya+JiQNxdpYTHz+AY8cOkZa2B51OZ4kfMGAwb7zxOTfcYJqYPHLkDVRUlHL06CHc3T0xGPSMHj2B1au/s+wzbNgojh49RHR0HPv3/wmAj08A4eHRGI1GDh7cbel1buGBB55l9uyH8fY2vaj3xIPvl19WcP/907jttrt5993PO0zXWZgtx24dv3jxmzz99BNt4vfs2cfgwYMt250uDNCZMbI17Gzy6Gi7ozAbhHFZVRV3vfACG8xuHdOvv571u3czZ/JkHrr9diLCwkw2wYrw1QMPPf88G3bsQOnmhtLVlXdfeokl331H+alTLHzwQU7k56PR6/l46VJ27t3LQ/ffj52dHS2rLlVUVbHkgw9w8/MDLhMXi7MVyK1/LRWyXYVobm6mvqYGjUZDs1qNwsnJ1GNsTnckK4vE0aOZefPNXNG/Py+9/z5e7u708fSkpLwcbw8PnJ2c+NPs+P7bxx9TV1dHQ2Mj9SoVdSoV9Wo1dQ0N1KvV7D50iFB/f4YnJ5MUE4PBaKRJo6GxuRk7QcBTqWR4cjKRwdZ7XGxl+aZNPPbGGxRXVACw7qOPGGttKZmuRJfRSFFZGYeOHUOlVnMgM5PisjKiwsLo17cv9vb2RISE0DciAq0o4u3peebDrwdPK4PBgCiK/GfJEv7+/PMMSkpiwvXXo9Vq+WrFCpqbmzlVXW1Jv+Kzz9i6cydjr70WvV7PsZwckhMTuen224mNjuaHTz/l4Weewc/Xl7tvu41Hn3uOrJwcfH18GDFsGCtWr0Zmb49oPueggAAenT+fqZMmEZ6cDED+4cPo9XpS09O5ZdIky3D/U88/z7fLl5OYkEBcTAzllZVUVlWxaetWBvTrh4ODA9NvvZWByclERkQQGhJi0yQIvV6Pg7u7Zfu26dNZ+PjjpJjLc8a9OkuBvGTJf/jnPx+2hD/88D958smXz0jfeZltS2eNnoiaI0fS+PPPjdjb29PYqKahoY6wsCji45OIjU1EoWg7AbInAnnSpFjy848zdeoCoqKSeO21+aSkjODZZ7+0iOP2eYiiyNKlL7J27WckJAxjzpyXSE/fyjvvzD/j2CNG3IKjozNHjuyitDSP//53F4mJV55xPa4we7icT4Hcmo6uXcv6rhqNBo1Gg7OzM8Gt7Nfx47n07x/NzTdPZfjwkbz22su4ubnh6+tHSUkxnp5eyOVydu409QivXv0bDQ311Neb/hoa6k021Ry2f/9e/Pz8ueqq4aSkDMRoNNLY2EhTUxOCIODh4cHw4VcR08OOiJbzXL16FQ8+OJ/yctOEs59+WsP48RO6vB7t8zIajZSWlnDkyCHq6+s5dOggxcWFhIaG06/fAOzt7QkJCaVv33iamrR4eXmf1Yo0LWla1vJdtuxznnpqPgkJSYwZMwmj0cjKld+gVquoqTll2e+DD75n797tXHPN9YBpxYrExIEsWDAVZ2cXli3bzIsvPoqLi4JZsx5g0aLHOXYsA09Pb4YNG8Wvv5pWarC3l2EwGPD19Wf27IeYNm0OV1wRCMC2bTnIZA6kpu5i7NipFj/zd999gR9++IyYmH5ER8dTVVVJTU0lu3dvJjo6AZnMgfHjpzJgwBBCQiIICQnv8Bq1rtpGo5GQkNO+7BMnTuWBBxaSkjLknAjkzz9fwoIF8yzhCxY8yPvvnzlafDEJ5MO5uazfswc7UaSxuZlalYrIwECSIiJIjIzErbVPdw8F8pA5c9h/9Ch3T5jAyMGDmfPCC1w5YABfLVpEdGjomaLN/P8rH37If5ctIyk+nteeeoq9GRnMeeyxMw5387hxuMjlpKancyw7m42rVzO6tRvr5eiDvGePdYHs7GxdBJsXB7AukPXmCV3WVEMXYYWlpXy9ejUZx45xz6230sfDgzqVikAvL6pqa2lobCTY2xt7e3tiWmbStKZVpWrWaNiZkcHOQ4c4nJuLg0yG3NkZFycnDEYjVXV1fLd+Pe89/jgGgwGV2eh7KZXInZ1p0mhI6duXipoa7n/1VZJjY/F0c8PFyQmtXo+riwuRQUEcy8/nhz/+INDHB3s7O7577TUGWFu3sYOhimO5uTz+73+z4c8/8XJ3Z0B8PEpXVxLj44kMDSXtyBGO5+VxNDub3JMnUcjlODg40KzR4Ofjg0Iux8vTk8amJpRubkRHRBAUFESgvz8JcXEMGTiQBpWKzdu2UVRSgqOjIwfNlVuj0aBSqzl2/Dizb7sNnV7P0aws7M0CNjoigoljxvDMK69QUFx8xin9Y/583njO1Auq0+ksTv9arZbXP/qIz5ctA2BwUhIzb7mFz5Ytw2g0UlBczIihQ1n05JNk5eYyY8ECBvbvT4CfH2s3bAAgNCgInU6Ho6MjChcX+nh7ExMZidFo5Gh2NgMSEhg6cCB3TZvGifx8CoqLEYBlK1eSnZdHVk4OXp6efPnhhwxO6aQXzHwvMo4cYcBVV7WJSt+9mwH9+7e9Z1aEcncE8p49O5g06Zo2acaNu5VPP11hdZ9zQWcPIY1Gw+bNv/HHH2s4fjyTkpIWnzWBsWOnYG9vj1yuQKFwY9u29ezevQWAu+9+mKuuup6goDCUSk88PPzazCLv6hrp9VBZWUxGxl62bfuJsrJ8MjJMPckPPPA+Eyf+jY8++jtNTQ34+ITg4eFHcHAcoaFJ3HmnF8nJY3n22dU4ODjR3Kzmueeu4/jxPQQGxjBx4qNERyeTkHD6/rZeaqr9rW15v+2WQG49rNsaG99GurtyRUd1pKSkhG+//YpDh9K5885ZBAcHU1VVRWBgEDU11dTV1RESEmpyazPPC+gIjUbD7t272L17JxkZh8wrw7ggl8sxGo1UV1exbNm3LFr0Gk5OTqhUDWaff5MQb2pqIimpPyqVinvvnUv//gPw8vLCxcUFnU6HXC4nMjKS3Nw8li41fXjCaDTy5ZffMnDgIJvPOTc3h6effpw//vgdDw9P+vUbgFLpTlxcApGR0Rw5ksHx40fJzs4iNzcbhUKBTOZAc3MTvr7+uLjI8fLypqmpCblcQUREDAEBQfj7BxITE09KyhU0NTWydesmSkoKcXR0IjMzjezsozQ2NqLTacnKOszkyXcgk8k4ciQNJydnDAY9YWFRjBkzgQ8+eI2cnMwzyj5t2t28+aapx7Xla3Z1dTUYjQY+/vh1li//Ar1eT1RULHff/QjffPNf9HodFRWlJCUNYeHCf1NWVsS9904mKiqOuLj+rF27HICgoFD0ej0ymQNyuQJPzz5ERMQgiiLZ2ZnExiaSlDSEqVPnUFJSQEHBCeztZfzyy/ecOJHFiRPHUShcefvtpQwZctUZZW9PQUE2w4a1rVPr1u0jOXnwGWl7OvIgk0Fq6n5GjWrrYzxixGjWrNl4Rt6duXXYYexY8HZmqDpKZ/7VNjWxbtcuVm3eTGZeHvllZQiYXiJuvuYaZPb2yJ2dUTo7sz0jg9/Mvb0PTprE9QMHEu7nh5ebG74eHjhaW8+4kxMsq6pi95EjrNy2jROlpWxPSwNg0UMP8cy99/L0u+9SduoU4SEh+Hh7ExcZyaDkZDySkxmWksLGZctwcXamWa/nxpkz2bprFyGBgTzz6KMk9O3LiGHDLMcUzROLrV7cy0kgb9wothHDLQLYWpg1gdyybYcRWobiWypNc7PNArnNb/v/Owuzhg0t8L3vv2dfZiYebm4oFQpEUaS6vp7G5macHB3ZfOAAuWZ/vDVvv02tSkVTczOODg7Uq9WcKC4mu7CQ4/n55JWUEBEUxGOzZjH9xhvxbvE9tOLTs3rzZibfey8Afby8+Nvs2TyxYAGuCkXnLbrVtlqtpryigkatllNVVSgUCurq6sg5cYKS8nJKSktJS08n/dAhnJ2dGX3ttUSEh9Pc3Ez/xET6x8ebPtGsVnPV0KF8+e23lJWWkpaRwYDERGKjozmem0taejonCwvJLyxs81WlkMBAAv38UKnVqJuaKCopQW8wIJPJaGkNOvO9emLePH7dsoUj2dmW/e3t7ZHZ21OwfTv3PvMMB48coaiszJJ+UGIidz/5JLNuvpnq2lpWbtiAg0zGu889h7+PDwePHOFf77wDwPQJE7hx5EjunDIFR/MnLpNvuon0TNMD6devviIxNpaQoKAOr6nRaOS5V1/llbfeskQd2rOH/omJba+9jQJZFEVSU/eRnp5OU1MjFRXllJWVcfjwQQ4fTsPPL4ChQ69h9Ogbue22ORgM3V/u52xdJVr2F0WRnTu3sWLFN6xZ8yPx8f2ZOHEa/folERwchiiK+PsHQqsPhOr1pv1++OELCgpO4uTkzK5dm6isLKO2thqVqp7ExMEkJw9n0KCRDBp0HTqdlhtvDCIubjCRkYlcc81UEhKGkp+fw/HjaeTmmv727/8NgFGj5mAw6Cgry6WuroLy8hMATJnyLLW1ZRQXH6Gg4BAazemh6w8/rEGh8ODjj2eya9c3ADz22M8MHjzljGvW0UjYuHGm37MSyOfDj8WMLeL6XI1MfPrpR+zbtws3N5NbhiiKVFdX09ioxtnZhR07tnL8+HEAfv55FfX19TQ1NeHo6IhK1UBeXh7Z2dkcOXKYwsJCwsLCePDBh7j99jvw8fHpsDx//LGeCRNuAMDT05N77pnP448/1Wad267Opb6+kcrKchob1VRXV+Hs7EJ9vYq8vGzKykooKyvhyJF0jhxJw8HBkWHDriU8PIqmpmZiY/sTG5uI0Wikrq6GQYNGsGrV11RUlHLkSCp9+yYSFRVPfn4OmZkHKSo6SUlJPq0/AOTjE0BQUCiNjWoaG1WUlRWj1+swTRgWANGS/u67HyE1dSfp6fss+7esHrVvXyHPPvsghw8fpKDANDl57tyHuPrq0SxYMIPp0++mrq6GTZt+Ra1W88Ybn+Dj48/x45m88opp1Yrx429l5MgbmDp1lmW5sKlTr2XXrq0AfPnlWmJj+xEcfHokpz2iKLJ48YssXnx6NaG1a/eSnGxlwpwN90gURQ4fTuXw4VS02iYqK8uprCwjMzOdQ4cO4OPjx5Ahwxk5cix33HEvjo6n24E1M2/TiHdPdIve5KL15/79fPPbb6zYuJHY0FCmjx5NSmQk4QEBiKJIgLc3Du1OWhRFvv7jD44XF6NwcmLToUOUVldTrVJRp1YzMCqK4f36MaJfP65PSUEEQufMIS4khJSoKCZfcw3DExM5UVpKWl4eaTk5pOXmstY8T+juCRPQGgzklZRQXlVl0TPPzZ9PWXU1mTk5pB07hrrVtwcqUlPx8fPjvoUL+fQbkw396oMPmNmySIItGsX8HO7Ihp4/69gL6PWm+tAidFvf+5bzbQmzdm3aVLLWFax15u0zbufT2umbW3eRyc7Mw8oD6+EZMzqNNxqN5BYVERYQcPpNzko6vV7Pmq1b+W7dOn7bvp1/vPkmjU1NTBg1irDAQEL8/blt8mTCgoIACA0M5Lqrr2bjn39yqroaURSpa2zE1d298yd4q3CFszOR3t5nxI2h7QOz9fJm7Wk9/PSPp57qdLjIaDRSW1WFd3Q0AJVVVej1elxcXBAAvcFAeHAwa5cs4Uh2Nj/+/jsqtZrjJ0/y5c8/46lUIrO357n58/nv8uWUVFTw4bPP4uvqyurFiykoLaVJo2FHair3vvgiXu7uLJwzh7lTplBYVsaaTZtobGri3smmiUxl5hnLAHKZjLlPPEF2Tg6v/P3vACx75x2W//orO1NTeefTTzmQkcGY4cMJ8PPjb7NnE9PSe2Y+PzuZjPE33MArb73Fh2+9xbixYwmLjLReL6wI4xYaGxvZvftP3nprEaWlJQwdOhy5XIGPjx9Dhw5jzpx5DBgwECcnJ+rr6ykrK6GpqQGlUkljYyPOzs7U1FRz9OhhFApXUlLa9r50prt6oslOnszjkUcWUFBwklmz7mHHjjSCg0POOC9r2yAwY8Zc9Hqorj5FbW0t06YNIjAwCldXb/Lzs9i3bxvz54/lmmsmMWfOM9TXV7N373r27l3PsmWL8fT0w8HBmfDwFCIikrn22vuora3C3t6JsLArcXSUM3RoCI6OcgoL0xgyZDqOjh6Wsuh0zZw8uYfsbNMnbI1Gd44ePUhu7umllWprm2m/bn9HI2Y9prOL3117Zkv6VsezKo/blcdR1r0VWWxl3rwFzJu3wNohkclMAiAnJ4dQ84Ttjla/MBqN/Prrr3z73Xds3rSR55//F/X19Yy76SbCIyIJDAxk+vQZREVFARASEsjYsTewfv06ampqsLMDlaoWLy9lm+N3dI56PSiVcpTKiDPM3jXXjG6zbTQa0ev12Nk5dprfrFlnDkm3P8f6+lqGDw9Ap9NSW3sKURRxdnbBzs4evV6Hm5s7y5fv5MSJY/z223IaG1WcPJnDmjXf4e7uhaOjI/ff/w/Wrl3OiRPZvPzyf/DzC+CLL36ktLSY+vo6Dh9O429/u5Off/6G+fMfZ/bs+ZSWFrNr1xbUahWzZpk6ZxobT69KpFAoWLjwPrKzj/Dyy6aOh7ffXsKqVT+wd+8OvvjiPQ4dOsBVV12Ln18wd945j759246UCoLA2LGTWLz4Rf71r7e5/vpJhIZGdviot4ZJGjSRlraTJUtepbAwl8GDR+LiosDb24/Y2KGMG3c3ycmDcXJyRqVqoKKihLKyery8PGhqakQud6KhoY5jxzJQKFxISbmiw7btaIvN7GrkOz+fB954g8wTJ7hnwgT2ffwx4QEB1vdtV9kE4K4RI0Cvp0aloraujqSRI4kOCMBHqeR4SQnbs7K46fnnGZOUxMt33klpdTWl1dVsTk9n8U8/EeLjg1EUGRQbS3J0NHPHj6ehsRGtXs8V/fohl8sJDghA6erKgawspo0di1efPpZiaAwG9h46xNZ9+9AZjXj7+HA4O7vNOs5aUey4R6E1Nj6ELqke5HXrxDY9w61/rfUWt0/nKGslkFtaw4UWyLaEdSe+k3T/XbGC+f/3f8RGRDBl9GiiQ0OZ9/zzjBs5kqraWvaYlzBb9u67bN27l4+++QZ7e3sGDRjA3oMHLfnoS0qwb73YdycCubPy2Dpca9P61J2FmX9FUaShthalm1vHIwCt/lep1Tg5Op4W7e3u98GjR7nnhRc4nJODs5MTof7+3HD11cyaPJmkuDg0Wi3/W7mSA5mZuDg58e7XXxMTHs7GpUsJMRum7MJC+o4ZA8CVKSncMXkyby1ZQn5RETtXrWLYlVe2PXeZ3bV4JgAAIABJREFUjIqaGvyio3npn//k2SeeQOhgVm/L9dXpRH78cTmbN28mL+8EBQUnKSkpJjExiRkz7mLOnHmIovU1Zjdv/oOpU8datvv3T7asOSyTOdCv3wB2797B/fc/wqJFb1uGsnpLIGs0Gt57bzH/+c9bPPLIEzz88N9xcHBocys0GgNLlrzPmjWmh69S6cF77/2P+PjEM5prRsYBpkwxifnIyDhOnDh2xjHj4gZx7NgBbrrpHgICIqmsLKZv3yGMHj3HqomwVgXbx1njpZfiKC/PIinpZkaPfozo6Gts6lFqsWe33GL67VYPssHQcYJzLJBtjbdFIJ+N6e3MTLXQkUD+6uuvmTV7NhEREUyfNo2+MTHcM28eo0ePRqvVsmOHyW/6s8++4OjRTN588w0ABg0azIED+y35qNUtPbCdn5MNZqrDuLMZ2OwIURRpbq7Hzc29TXhHj7LGRjUymYNlxKx9umPHjvDoo3eTkXEQJydnAgODGTXqBqZOvYukpEHodDqWL/+KtLR9ODg4smTJe4SEhPHjj5sJCzOtv11cXMjAgSZXxqSkQUyfPpvPP3+f3Nzj/PDDJq6+etQZZWtoqCcuzp0FC55k4cJXzBO42qZpvS2KIhs2rOTPP/+gsPAExcUnKSsrom/f/owffwfTp8+32rkjk8G+fduYOfO0/2tCQjJ5eccRRRF7e3vi45PYv/9P7rzzPt5992OrLlVttEvr39Y9yK2NU6t0Wq2W9776ilc/+4xHZsxg4e234+To2OYEjVot//3lF5Zt2kTRqVO4OTvzxWOPkRIVdUblysjPZ4C5gyfa358c84hqawZGRZGam8uMESMYGBXFycpKUqKimDdpUscCtqPu89YXs126KydOZE9qKhNvvJFH77+f0aNHW0/fHkuvqcnWnFUPsiAIAcCrwDjADTgBLBBFcas5XgCeB+4DPIE9wAOiKB5plYcI6IA4URRPtApfCvQRRfH0bIcOaOk97mxEoVPN2dlTraOK1v6J2EJPBHL7G9a669uW/XqIkJQEQIi/P9cOHszwQYNwcnTkzaVLkbu4oNfp2JOezgN3mIYLRw4diouzM79v20ZldTWNTU2EBQejamykqroaWWAgYl1dx+fVyfB++/+tbZ95ynbtsnc8HdP6Wnbxyi8Igkkctz9wB08XV3t7MBhMf//P3nmHRXV0f/yz1EWQKlWwYUEFxIYae8cSe01ijxp7jbEbY6LG3mOLGqOxxx5Fjb0bjBUbYEN672Xh/v7YXViWu3cX45s37/t7z/Pw3GXu3Jkz7cx3zpw5owoLj45m1+nTRCcksO/sWZLS0vCrUgUzU1OuPXjA49BQrgYFMefzz7ly7x5LfvqpCBv2pUtz+vx5BnXvjpmZGbGxsQzq3p2b9+5x888/eRISQufWrTm9ezdeKi24VuFxcnXlwa1bdOrZkwb+/rQLCCjWR/IpFPh79uxm5sxpTJ06kw4dPsbDoyJly3oUubFPVxvY2xd1/9W5czfatu1AZmYmL18+Jzj4MTdvXmXTptV888232NpaFUtDmwzxTZuQkMBPP+9i3bq11Kzpza1bd4pcSKHmNzIykunTp7F37y7atu1AZOQ7Xr0KIzw8DB8f72Ll8vGpy9On+bRp40l6evGb444ejcHW1pGcnHxycor23bQ0abEh1Z3E/p88uSg4T0szbM74K6QejwbfTKdrTBkq+6Tiae6giWmaNcJMTIq2hT6tq0gSotkX5imxCAfMrKzIzc3F2cmJph99RItmzTA3N2fFihVYWFhgJAhcu3aNL4YPx8nJiYBWLSjrVIbDvx4iMiqK7OwsypcvT0ZGBrGxsVhamqJerORryTdd5RJ7VwL9gN50paiQNxkWFjY609Gu71Kliru3jI6O5MCBn4mNjebYsf0kJyfh5VUTGxtbrl27xIsXT7l16wqTJs3iyZOHfP/910W+t7W14/LlQHr3HoxcLic2Npq+fQdx794d7t8P4sWLp7Rt25nNmw/h5eVdLH+FAiwsrDl3LpihQz/G17chrVp1kxyrgYG/smjRKIYNm42/f0fc3Svh4OCBpaVyPsnOVv6JkZmZQ5H/mzbtwowZHRCEXN68eUZISDD37t1i9+7NzJy5mDJllFfYa2qT1f1fVKWkA5skpaSw6+hR1vzyC55ly3Jj0yaqeHgU0xJHx8Yyd8cONp8+Tce6dYlOTCQsK4uQ16+pXbZssQ7k4+yMsHs33l99RbpIod+sX49HmTLkGxlhpFoYSQ5YQxfRIkLx5tmzOt+Jpa+9+NanotOrQZbJZLbAXeAqsA6IBSoBEYIgPFHF+QqYDQwGngFzgSZANUEQUlVxBCALOCIIQn+N9HdgAECWyWTCoUNCEc2wen4X0xZbWRUPKziYl5VVXIOsGWbI7Geo1DHEmFBfmAadv32bP548YXj37tjpua89PTOTP58+5ZfTp/nh4EH6tG3LvsWLi6SbmJ7O5aAg8vPz6TFhQkH4t5MnM2vCBJ6FhtJr9GgePS2czGdOmsR3X39dyKMW75qg2NBq065CqYWOroVmwSRnaDuK7Q7oUL+8evuW5Xv2sOX4cTo1aoR/jRoo8vKYvVl5jblt6dIoFArSVG79alWpws+zZ7Pl+HHyAXcnJ0zNzHgTFcWavXuxtLBgdN++LN2xo0g+/rVqcevYMYNW2ScCAxk8fDiffvIJ3yz4jtKlSxdhOzw8isGD+/Ho0QO2b99Dy5bti1eqBKmzzMnJoU6d6pibm+Pi4kJMTAzGxsZ4e/vg41MLf/96NG/eHCMjo5LdRqlFL1+9YsPmzVy4fJlnL17QpWNHRo8YQeOmGocFVUw9ffqUMePGcffuXWrW9Obatav06tWPIUOG06xZi2LgVnutGxb2jBs3LvPkyT2mTFlJXFwScrklpqbKCV1MRGimIaaskepOUqRPROg6S6G+SKokGuTsbEH3osUQtaQh7/SRlIzT9U5EtkixJiU/rl27xK1bNxkyZCiOjo7ih6BUvzMyMvjzwQP2Hz7Mmo0bCWjdmlNat2gmp6Rw+fp18vPz6TZgQEH49AkTWDR3LqEvX9Jn2DDuqnboACaMGsWqZct0M6lRXinRZeiCzRClhBjpaypDwwCio9+yadNy9uzZSpMmrfD3b4xMJmPBAqV9sY2NLfn5+aSmKk0qPD2rsn37QXbv/pHc3FzKlnXHzMyc8PA3bNq0GplMxujRk1m/fnmR/Dw9q3L9euHNmlJzz6VLZ5ky5RPatevF2LGLsLa2LRI/KSmO2bP78fRpELNn76Rhw4+L1ZG+ujQxUZoQDhniQ16eAmdnDxITY5DJlL6hq1athY9PXfz9W2JpaVxsnIudsdKFZd5GRLB+2zYu3LzJ45AQOjdtyhc9e9K8Vi1kajCrYjj05UtGrV/P7efPqVW+PJeDg+nZoAEj27ShlZcXxvnSi8aQ6GguPX9O0KtXLO/bl/S8PMxNTCitvv1V1/aXdmH0vSuJplnjndRdAGpS4/f3PqQnk8kWAs0FQWis470MiADWCYLwnSrMAogBpgqCsEkVJgBLgSmAvyAIQarwHfzdADktzfDZT5ck+lAAWSQsMi6OZbt3c+/FCyJiY6lXowYDOnZk16lT/Ky6uOTNyZN4qC4sUSgUGBsbk5eXx+W7d9l9+jSX797lXUwM3p6e+Hh6EpOYSP3q1Zn7+ec6pZ4gCCRlZBAWHo63tzdmpUphVKEC9f382L9xI3JLS1zc3IpWqlaHFASBX389yuHDB1m1aiupqRk8f/6EihW9sLd30AuaxarP0PFR5BAmFG1PbRQjhmx0qGH2njvH2BUr+KJLF5rVqkXL2rUx1dB+RSUk8CI8nGaTJvFRzZosHTWKxmPHMqRDB7afOsXAgADeREejyFfeFPXk1Sua161LrkJBTl4eF27fJlehoEnduqyZPZvavr66XbBouWyJjY1l3ISJvHv3ji+/nIGpqZxKlTxxdS3HvXt3ad68LhERaVhaWurVrElhFbEwg8GwgVrICn5+9OjcmR6dO1O/dm3MxS5XUTHQoEUL2rVpw8yvviL4+XMaNGpEdnYuMplM57A1ZMiLrZelupGha2gpMlDeF5Nn7wuQtfMGHW6mpJDVh1VLlliRILYI16SYmBjWrFnOn38GERn5Dm9vH4YNG8H+/XvYsUPpjSHk+XOlrbBCQV52NkZGRuTn5HD1xg1+OXCAC1euEB4RQY2qVfGtXp2EpCRqVK7MwhkzdJZZEARSUlMJef2amlWqIJfLKV2jBuXc3DixbRtyc3NcVWc8pMr+28WL/LxnD1s3byZXEHj8+DEVKnnh6Oiosx+qn1Ki7n2bTVfzGCqbAwMPM3v2CPr2HUbDhi1o1qwVZmZmBXFiYqKJjQ2nVat6+PnVY9mytbRp04h+/Qayd+9OPvlkEG/fviE3NwcjIyOCgx/RuHFz8vPzyM7O4ebNK2RkZODrW5vlyzdRp059ya6r+TsxMZ6FCyfz8uVzhg2bjalpKdzcKuLkVIGQkCcMGlSDo0cTsbKylaw/XfVpyNiWwohi+KYIplEfXMjKonrz5rRu1Ig+bdrg7+ODXI3vRBSALaZMoX7lyszv04fX4eHUmDYNxfbtGBsZfZhVlS7hpUug6QPI+kCz6qnLvalYEdQe6/6KiUU34LRMJtsHtEQJhrcC6wUluq4IuABn1B8IgpApk8kuAx8BmzTSug0cApYArQ3I+7+GsnJySEhOJik9HTNzcyzlcjLy8rgWHEwpuZy2DRtiY2XF+OXLWbt/P5P692f64MG4OToyatEi2o8dW5BW3erV+fbHH0nLyOBtdDR3goPxcHYmPjmZCq6ufBIQwNQBA6hUtizmJbiKVyaTYWdjQ10bG97Ex1Ne5Qbuzr17LFi1CgHo3b07HVQ2s9p08eJFVqxYzsmTJwAoU8aVtWuXFbjccnJyoUqVGuTl5VOmjDOVKlXH27sufn5N/pYrg9+HQsLDGb9yJefXrMG3QgXROC729rjY2yP8rnTfg4kJL/fuxcXenqPXrjGmZ0/8a9QoGMRh796x8cgRNh46xNdffEHgli0A/HziBBO++45Vc+ZQp15xl0Ni5OjoyM6dP7Ny5WpWrlxGXl4ejx8/xNvbj4iIcGbN+ua9bvH7d5CDvT19unaloer61ZycHMJevcJLxM1X+7ZtWffDDzT098e/USOcnZ1p2NAfCwsLrly5UiRu16692bx5f7E0/kf/WZSdnU1CbCyJiYkYm5pjZWVFWloWV65cRS6X06JFa+zt7ZkzZzorVnzPF1+MZdKkabi6ujFz5hQ6dmxbkJa3tzfLli8nOTmZiIgIbt+5g5urK8nJyZR1c6N/z56MHz4czwoVkGuiQz0gQSaTYWNtTV0fH6JjY7GoVg1QXm27YM0aZDIZXQIC6NpefDfn6s2brN60iYPHjgHg6ubGyjVrALC2tsbR0Qkvr5rk5QmUKeNIxYrV8fGpg59fswIfwv80ioh4y6xZw9m+PZDatZVu8bQX305Ozri5ORMfLxS8f/jwFc7OLly8eJZPPx1CkyaFdrxv375h69YN7NixmbFjJ3P48GkADh7cz5w5k/n666XUrq11fkMH2dk58N1329mxYy27d68gLy+fsLBHVKzoTUJCNJ9+Oh0rq+I3Tf4TycHOjp7t29NM5TI0NzWVF2/fUkOt2NKg9rVrs+TXX2lUpQqtq1bFw8GBevPmYVOqFJc0dowBAmrW5NTo0X9LGf5JZAhArgSMBlaitEP2A9SertehBMcA0VrfRQNaS2UAZgLBMpksQBCE01IZy2SyESjtmpXMmohv4WiS1DtJEhN8+lZMet4npKay7tQp1p8+TWJ6Og6lS2NjaUluXh7pWVkYGxnRxNeX/RcuAMpt+PCYGPxr1uS7L77g2bt3HL98mScvXzK0a1esLCz46cQJGvn64uHsjImxMYM6d6ahjw/3X7zAzMSEBj4++sui/q2hBdWuOPcyZVg/fz5PQkLo160bt+/d4+z163Ts2xcTExNcnJ1xsLfn/sOHREcrJ63WrVvi7u6BqakpNWr4kJOTx8KFG+jatR/GxlaEhT3jxYungDGxsZGEhDxh//7tZGSk06ZNb8qXr4qJiSmOjm74+7cuYMvQbWf1AlkuV9lrib0Um+wkJsA30dGkZWYycdUqDs6di722WYuOPlDB0ZGl+/aRlJamtGHWyKtS2bIsmTCBBt7eDP/2W4JfvSIlLY2g4GDGDxhA+yFDWDZrFoN69ZLs0IUrZSPGjZvCuHFTUCggLS2NixcvYG5uTrNmrYtt/Us0ezHS9V6nY3sRrcOr16+Z//33/H7xImOGDWPa+PGit082b9iQBcuW8VnPnrx4+ZJNO3eSkZnJrMmTmaqxQAx7+ZIzZ85gXbo01atUwdHOjvCwMIaPHs2P25TawYYNP8LIyAhjY1N69epXpCzq5/soPt9XWSpGhsgqsf7/V0hXu+cjYh4j9qFU2IeoHM3OCSQlJfHD9u2s3bSJuLg47O3tsbW1RaFQkJaWhkwm46OPmvDrr0r/3O7uHoSHv6VChYp8991Snj9/xrlzgdy//ycDBgykTJkybNv2I02bNqN8OZWsqlqVRvXqEfz0KflZWTRu0KBoeXSpHrXLrFV+JxMTNs+dy/1nz+jXoQN/PH7M5aAgug0dirmZGXbW1pR1dibo8WPeXrqEAmjaqROODg7Izc3xqlyZ/Oxs1q9cSe/u3bFzdeXZs2c8fPyMvDxjYmKiefz4CYcP7yYxMYGOHfvg5lYNMMXe3oW6ddsik8n+ktmFlGJf87eUcu/Vq3dkZKTz3XeTWbduP2XKOOvMQzONSpXKs3HjOqKjo5DLjYrY5FapUo7vv19My5bNGTiwP69fh5Cbm8u1a1eZMGEqn33WhVmzFjB06EjJbql+Z2RkxMCBExg4cIJK2ZrBrVvnyc83pXbtVgZ1BX2kq5xQWH+aXroK5zNIS3vH8uVzuX37Et2792fevG+QyWRYWZlhpHGWpEXTpizatImobt0Ie/uWTXv3kpqezqQ+fZj7yScFDIfHxXHi9m0szc2p6eaGjZkZr5cvZ/Lu3axS2fU2rFABEyMjTI2NGVCnTnEbMl0FVFeIZoNJjRfNp3Ya+gCfBH2ITS5DTCxygD8EQfhII2wh0F0QhOoymewj4BpQThCEtxpxtgOugiAEqP4XgN6CIByUyWTrgcZAHWAbBppYnDwp6NxuMCTMYBtkQ00sdNR6REICK44fZ9v583Rv2JCp3brh5e6u9DYAxSRITGIikcnJ2FpZ4eToSEJ6Oh0nTSIiLo6Ahg2ZM2IEVcuXp8nQoVy7f5+oM2dwdtAw/P8rk5fU/o8WCs0CLvzxBxZyOfOXL+fi5csAVKpUiZiYGNJUWz1z5ixi4sTpBlWp0ofkHW7e/I2oqFfk5Sm4f/8yHToMoV+/L7G2tnrvbagSey0RmUmE3FzeREezcMcO/nz+HBd7e8o7O1OvalU61K2Lk61uzUJkfDzzfv6ZK48fc3/zZswsLIrVc2hkJD+fPo2boyO9OnfG3taWx2FhtBk4kJGffsrXM2YULZRGu6gBsqEToJr0bZdqvtMOEwVREpJIyM2lSu3atGrWjC2qA4v9e/bkF5Xttmb8xKQkNvz4I0EPH3L41Cks5HIys7KwsLDg5K5dtGzSBIB5S5YQHhXF2mXLKFWqFFFxcXTr14+79+6Rm5vL+HHjWLlqTUHdaNeRPjMKELfCKukxBZHqMNiqQN8OI4B6viuJiUV6uriJhYmJDl+rulCAPoSlD22JMaARFh0Tw8pNm9jy0090Cgjgy6lT8a5Zs0CGatsix8XF8fp1OLa2tjg5OZOSkkKvXp15+TKUNm0CmDVrNj4+NejQIYAzZwJ5FRZW4M5StJz6zi2UZMBpxMsRBH4PCsLSwoIFO3dy7g+lZ4sqHh5ExsUVnGGYM3o030yYUFQOa9gU5qA0nlTvrt+4cZfz508QFvaSrKxc7t+/RsuWffnss5kYG1tL2s5rsShKhppY6Nolj4p6w759y7l37ypOTmVxd/fA27su7dt3xM3NpVh8dRoJCTEsWPANgYGnuXfvAValivtBe/XqFT/v2kUZBwd69OqDo6Mjz58/JyCgHd279+K775YVKZ++8/j6wrTTMBSISclXfXPbp5/6UKtWIw4dUu42tm37MTt2HMPKqrBbGGVlkJqayvq1a7nzxx/8GhiIpYUF6ZmZmBgbc3zRIgIaNIC0NL4/cIAHoaFsGjkSK5mMuNhYuq9fz62wMHLz8hjSoAHb+vQxvIAl0WTpshfR5Y7sPU0sDDGHUeu7/oqJRSSgfbXOE0B9okvt48MFeKsRx4niWmU1zQdCgU8NyL+AtDXIH1KzIpqg5opGTRKqt1cREXx/+DD7rl9nYMuW3F+1Cg9HR70MOtnZ4eToWPD/l2vW0MTXl1UTJihtXU1MyMnMxEgmQ25ujpWWi5YST1RS5RGrVLmc0DdvOHDuHDO+/77I5x936sSw4SNxc3Nj1aq1tGzZlnbtehYIYLF5p6iwkVGxoj8eHv4FaUZGhrF162SmTu3AlCnbKV++spqNAhJrquICSzlQzHSp4cQklla9yGQyyru4sHrcOA6eP4+lhQWvIiI4eeMGkzZsoEG1anxUvTq+FSpgYW5OBWdnqpZXOqk3NTGhatmy7Dp/nqycnKK3Dany8vTw4OtRowrqGaBm1arMHD+e8XPmkJKZySc9elClenVsVP6npS7+MESrIdWtdVRDQZimfVcBoNLRvzMyMrh3/z5xCQnsP3KES4GBNG/fnsjYWARzc2RaLsfsypRh1pQphLx8ybkrV6jn68uF69fJzc0loF8/Zowbx7odO8jPz+f6iROUMjNDyM1l45YtlLa0JOjqVU6dOcPgwYMLeFOf/hbbRJDSzuqSM2IKDimSwoT68lI/dR3Sex/S5rtou2vtvEgl8CEyF3n3NjqapT/8wK4DB+jfqxdBly5RwdNTb0WXKVMGW9tCn6mTJ4/F29uXc+euYm5urlJMK8jLU2BmZkZpTW82mrxJgWFdyEr91DMIX0ZHc+jmTb7cubNIeEDdugxv3x5Pd3dWHjlCSz8/+gQEQFxcUdCgTs/KCjMVKpLLlUC5fv061K9fh6QkJWiOjHzNsmVfMnlyGyZN+pkyZarpLIqUfkXfmkZqytRUJNralmPMmGVcurQfubwUsbGvuXLlLIsWTaV27frUq9eIOnVqY24up0KFcvj5VQfA1FhG1SqV2b49gszkRKyM7IrxU8HFhTlTpxYGZGXgVakCX8+dy5Bhw1AocvjsswG4u1fGzs5Oa7exsD4MmVMM0Z3pqlNDxr0mH3I55ORk8e7dfZKSEjh6dAfbtl1j6NDGRES8IzVVAAoxnZVVKSzlpZg+bRrvXrzgt0uXaO7vz2+XLmFsbEyXGTOYM2gQaw4eJEeh4MqCBVhZWCBkZrL92jXyBYF7M2Zw4tEjpcZYm/7K2JfSxBhKhgpdA5IwlAzJ6RpQTSusKvBa9fslSpDcFrgDIJPJ5EBT4EuxBAVBiJHJZMuABcCNkrH8z6Tn795RTWWjs3TgQBIzMthy5gxfBASw5fffcbWzY0SHDgal9SoykkEdOijBMRD05AmDFyzgUWgob48dw1J9SvRvorJNmxIRE1Pwf+8uXWjUsCHtWrWiZu3a5Kvcrv3www5A/06MPrK1daJCBR8ePrzEyJHeTJq0iXbtBqIpDP5ukpub81lblQ2jQsGkHj2ISUri5qNHXHjwgB/PnOFFRATPIyLIO3WKttOnc+7PP+nbvDl/bNiAdQntgMcNHUqHli3ZuHs3n0+eTNibN4wbMYKvpk/Hyr6M/gT+jZSdnc2S5ctZv3Ejzk5OJKtcAnbt25fxo0Zx9cYNmrVrx94ff6Ssk1ORb7OyskhNSyM1LY2Y+HhACWwA5q9YQe8uXYiJi6NZ165kZGXh6ODAqzdvmDllivLmRW/vD7hi/h/9nfTm3TvK+ysXyt/NmkVWbi5bd+5k5PDh7D10CFNTUyaq/K/qTevNa0aOHFNw29rDhw8YOXIoQUFBhDx/jr29/V+b8EtI3hMn8vhtof6oe4MGNKlZkza1auGrdudoYsKOr5QeHdD0M/8eZGfnRPnyXiQmxjBunB9DhqyiTZvh6Hds9a8jExNTOnVS6sTUwDQjI45Hj25y/fpFfv75R8LD3/Lw4T3y8gT69OnNoUMH6dmjBzevXMHR0bFEbTZ48GCaN2/Oxs1b+OKLEYSGhjJkyAimTJmNXP7PtilWKHI5eHAZJ06sxdbWkbg45YVTY8a0o1evUYSG3qNfv4/YuHEP1atXKPJtVlYWCUlJZGVl8Vp1UVV2jnL3fO62bfRq3Ji4lBTaLVhAamYmztbWvIyNZXK7dtRwdaWGq6v+HZH/J2SIiUV94DrwNbAPqI3ykN5MQRDWq+J8BcxC6ebtOUqXb80o7uattyAIB1X/WwEhgA3wuyEmFuqrprU185paFoNdo0jttxqiMdD8rXpGxMfzR0gIW86exdPFBUEQ+On8eZJV1yPmnDxZAHoLGNcmExO+/+UXwiIiWDl2LF8sX87vd+8yuls3xnTrhq225kObJ108isUT40Fka+PqkyeYmJjgVbMmtmpAI+IuJCOrcMsfim5Taxy01bvdFxPzilGjlD5vp0z5hd27Z9O4cS/69ZuMvb1zicxs1M8iba/O9H1NanSoDFIzMig/ZAgXlizBxNiYRpMmEbp9O44atwGJbhcZsA0VGRtLv8GDCXv1ipCQNwXeGtTsl0SDLLW1rytM7FtdFBISQs2aVTh//gr29vb4+dWkefMWXLp0kQ4dOrJ//wHmz/+awMDTfNK3L9O//JKgO3cYMnIkz168wN7Ojvz8fPZs3sz9x4+JjYmhSqVKnLt8GTtra1o0akRDf38UCgXBz5/TolkzSqmPI6uZ1KrTHIVRsaEsZkYh1k8HjGe0AAAgAElEQVQ1w8TEQUnrvqQaZLEuA9Cli/JZEhOL+HhxN29iPIi6P5MaD9q/xf7XzEAkLCohgbuPH7Npxw7KlSuHqakp23btKlhkZaanI5fL9bpwWr9+LUFBd9i4cStjx37B+fPnGDxoEJMmTsROLUOl5HxJ3Jjoqg+NsBuhoQhAdRcX7LQXy2LbBZpP9R665lNt2qV6pqQp6yMpSfkXGxtJmzbKg1lTp+5i9+5v8PPrQOvW07CzcyuxzNDFrpiJgCE76Lq8TWVmZuLnV47jx09ia2tLgwb1Cb53j7LOzoVMijEsNahUGcTEJdC/f18ePnzE06fvMDExKdKMmuMc9MsHQ6CBFGlt0hZhOyEhnGnTyvHVV4F4eFRizJjK1K/fmTt3TuDr25SNG8+wbdtCLl48RLdu/Zg4cTbv3j1i+PCBPH0ajJ2tLXl5eexevpxnYWG8e/sWL1dXfg8KorSpKS18fWlYqRIy4MHTp7SoVAlLc/OS25Do6wzawkuXGYX6fykTC6ltNY2n1A2y2uz/ZRMLQRDuyGSybsBCYA7wRvXcoBFtCWABrKfwopB2anCsI900mUw2XysdSVLXldQkokklViSJ7Z/qUuuL7FO7OTvTxdmZLo2VHvGiExPZffkytT09eRsXx7u4OCq4uEimgUJB/+bNqTxwICHh4QiCwLEFC6hTpYryYJOmelbXZCQB4vWWXXOvR9UJm1SpogxT3pMq/h0gl5cqkpWh9a8NkO3tK7B06UO+/NKH5OQEZsw4wvz5HXj79gmzZh0CTIs1lRRQUShUZhaaTGnWvdT+oBRp9Y/S1tZsHD+eVl99Rb8WLTAzMSFbcwGqr/OKrO4EY2Ou37zJ5Vu3iI6NJTIykpcv31CuXPn3BmlixdRk4313stTfnTmjtE0fNGgAKSlJTJs2nyVL5gEwY8ZSUlONGTBgLDt37mTG7NkYmVqybt0K5s1bwIABn2KmYQvbql27ggIOGTCgWMEqlCtXvFBQbA9V2f5FL2SQy4uXVXM3W8ykQeysp5qkuk5JFyWGAOT3JX1du7BOjArHzfsmrDlGimdQLMzF3p6OLVvSsWVLMDEhPiGBPQcO4Fq1KukZGYS9eEGN6tWLmIGoTUM0qV+/Pnz11RSioyLIyMzk0IED1PPzU8pQMZBrCEDWREyGpKFR7kY2qpvnUlOVf9p1pH6KIUhdhrAaZGVrXxBFLgcPD1f2739Knz5exMa+ZerUIyxe3JFXrx4xceJvKBRmklYiUiTVN3WwpzMNTZMChQJMTS3YsOFHOnYMoE+fvpiZmZGlDdak5jnNxDTsJ27ducPl69eJjowkPj6O169DqFbNS3QMipFYF37fNaNYnprsy+UQHHwVQRDYsmU4mZlJ9Oo1l4MHvwHg88/XkJ4uo3374Zw9u59ly+Yil1vz00+rGD9+OqNGDcVSlqtMMCmJdqDsu0lJDO7atdhKwMPOrngf01UZUuFSgNdA+2G9+eh7p4NKughU03/UVdO3bgmiCwp9tt3FrmksibbYEA2KJmmE/XTuHL9ev87Fhw8JqFcPuZkZP30panVSjJYfPIiQl8eoTp2w1JzJNfORQkWGvIPinU2qc2ueCFCH2doW03CoD5Co7eGg6JjUXqlrVr02i+rxNHZsFSIjQwBwcirP6NGLaNmyF1ZWpgXsGKK50LuLoGuSKwEKfR0dzY7AQFrVrUtT1S2GBYUR6ahRKSksXL+eoMePiYiKIjsnh6pVq+Ls5EToq1ekpKSoXA+FArBv32/Uq9cQKyu7YmwbqsUQU7joeidGuvJRKCAnJ5vQUOWxhUqVfNm2bTHr1s0uiGNsbELp0jZkZKRhbGxCz54DaNOmE23bdhZtxyKaTKkFoliBNDULKlMgMQxkiPZIn4gwhN4HKOuaR9S3qpZEg/zuXaEbLUP40s6zYPyIjQextinpjKSl7dh/7Bg/7tvHn48e0aJxYwRg/08/FT/wLEJr168nPSODMV98oby8QNfY1qUtFgsTE17qZ0nmD+0yq59SMldTa6z+rd6dUj0zKEVcnDJI85mUBNOn1+Hlyz8BsLEpS5s2C/H17YdCUTguSgqQDTmDpTllaE8fYlOKlRUkJYWzffs2mjZsQKuWLcXrWYPZ2Ph4Fm/YwK1794iMiSEjM5Oqnp44OznxOjyc2Ph4TE1NeR6inEP27z9MkyZNsbRUHnZPSxOXAdrzl6E7oYbIYTHFnhq3KBQ5xMUFIwj5VKrky/XrP7Br1/iCeMbGJpQqZUN2djpGRjK6dBlI69btCQjojq0tWFupME9SUiHjmr81Gde3W2Jop5ACyGLATEwLLPZODPDpEIqaO4WGLPzUG+LvfVHIP4X+0wCyIAj0+O47Gnl58dX27ZiZmpKTm8ut1avx9/IyrNBSo+z/GUAOC7vLmTPrOHt2e5F4+/Y9pHJl738UQC4gMRSiUb9RcXFU7dKF1PR00c9HDhtGtx496N23L76+tahduy7r16/BzMyMnJwczp4Nwte3zj8OIGvHe/HiIT/9tJynT4PIysrk7dtQqlevTcOGLenZ81N8fOpITrD/A8ji7/7bAbIgCHw6dize1asza9EiTExMUCgUXDhxghYtWxZnXIo0+f1/CpDfvHnIsWPruHJlc5HsP//8D1xd6/6jAHKBZwZt0zgtYRcbH49P+/ZEx8aK8jq4b1/69erFgFGjcC9bltYtWrBs9WrMzc3Jzs4mMPAqDRs2/scBZPV7dVhCwlN++20Jr1//QV5eLu/ePaViRR/q129Njx6f4ONTv0g3+R9A/jAAueS66n8jqetKV/1K/Qb0anw/FGVkZdHv+++JTkqiV+PGfLV9O3JTUx5v2ICn2gBeF+lDHoYANn2ISQwgS606NPed1d9q+F7UJjOV8LayEu+smsmpk9ees7TbrlKlOkycuI0RI1bz888zOXZsHQC7d69i1qytBq9liphaaGcmFiY1oekjCbTz9ZYtzF+nLMPimTPp2bEjv12+zNdLlnApMBBHd3eysrL47fQ50tLSePDgPqGhSg1yjurAxapVi9mwYb9oc78PLjGE3mcNZmfng4eHH8ePK9289es3lVGjlhZUR1SUPltyI9Sn9c2sNNqlBIVNTU3l2cvX+Pn5AUbk5+fz5EkwDx484ocfllKjRl0WLtxcTLZoUlZWBqGhQbx8eQ8bGzeqVWuEtbXbewNksTAx4Co2NN+X/qq4EzW50Bwzhso2KVIoyMrOZsDUqYS+fs2iGTOYtWgRRkZGPLl6laqenkXBuFTnlZKXmkJHCiDrW91rxxdLV2xwiMkHKZmrSdqdQe3VwraUTpFerpwPn322id69V3DgwDyuXFFe0Xzlyvd06SIuR8RITFxK9UmpBaAuuV0gr3Uny5L16/lqyRIAvp08md4dO3Lp1i0mL1zI1YMHcXFyIjs7mwt37hAbF0diUhIxqsPm2aprl1etWszBg8dFweqHIEOHg9h0oxnm5uaFp2cDrlxRKog6dx7DqFHrChYTatMadfwchcqDk2agxJxdjDQbV/VMT0/nWVQUvu7umBgbIwgCwdHRPImMZOmpU1R1c2PnmDFFd3e0QFpmXh5/hoUR9PQpbs7O1K9Rg3IeHoVxpDQEIqBZW+mhb01a4nmxZNH/vSRlgyy2UBH166l+iqm6SgJCddR6RHw8Q1etwsrCgitLlpCSorxXPiUjg+dv3lBZ69S+WBqSvIn1BDFtZ0kNzKQAsnpgiWneJYR3KSsrFFb6T00bqhQEKFWqNOPGrebq1YOMGrUUb28RdzRaaWkWvYgrK31SSfN/sYQNRTsigz3oyRM+btOGXzZvxtLenuchIVSoXJnEpCR81RcVqOjs2etYWZUhISGeTp0a0bJlJ8LCntGmTV/S0vTPw3+FxLqi9m+p4aKmxo0n4u8/iqCgo+zcOY5q1T7G17eZpLZf3e3y89M5dOhH7t27w3ffLcHFxRW53AwTFWguNs616NmzZ3Tq3r1ggeHv3xAbG1vOnj1dEMfTs3ox2aL+nZDwkqNHN3HkyCZcXCphamrGkyc3ady4FzNnHvgg9axLoyulQX4fUih0rwMNSVd9AEbvqDZkdtIx7qLj4hg+bx75wPU9e1DHysnJ4eGDB3h5eEB+fvFvpfjQ/P1XNMjaYfpUimIDU5vEEKfmO/V7MT60ymREfoGM01Ut5uaWdOq0lIcPf+Wjj2Zjb1+3gFVDFtqaU4QhxVKzKoK59E5LUm179/Fj2jRuzKH16yktlxPy+jXujo6kpafjp+Ux6vKhQ7i4uZGckkL99u3pGBDA8xcv6NevfzHF24egf0VaLVuOpG3bIdy9e5Jt20ZTt+7HNGtWeCOjZldQy1A1QM5KS+PHvXu5ERTEovHj8XB1FWdWs9E0GiksOprOixfzROUVo4a7O9XLluXQrVsFnzrY2iLT9vWv+v02OZmNR47ww5EjlHd1xVIu59r9+3Ro0oTfNm0qFl9SAMrlRe4A0HzqmoPeV0b/RwNkKU2+kSLHMI2BoaBSD0AWBIFdFy8yZft2RgUEMKt3b8xkMq6prmys6+nJ3RcvePzqFV9266a7kLoEulhZtMslVT59KFQKIKvj61qBSszgVlbWIh8Uj66NS6U6tJmZEaVKWVG9eh0qVaqhO+L7kCESX4qkEI1GRz3+yy+8i4zkxIULfLdiBY8ePxZNbuDAUXh61kEQzHFyqsLjx0KRplWbAnzIVbMm6WoPQ9aTGRlJ5OWBmZkVRkbGyGTmVKjQh/Ll9/L6dRRubuKKsLy8FM6d2wlk0rx5DyIjHzF7ttLt+sGDu9ix4zgff9xZ41s1XFMCZs1mOnDgAP369WHBgoVMmDAZa2s5t2/fLFZOW1t7FAoFJqqP1U0lCAK9e1eia9ehbNhwnl27lnPmzG7q1WtNkybtSqSU0a5HMXyo/f+HBsi60tAHEArkqq4bFNX/GxqmTaqwfWfOMH7pUoZ268bXo0ZhLgicvX0bgFpeXgQ/ecKikBCmjx6tPHAnhvbFyFA+DI0vUQaD47xvQxqI5qSyz8uTYWpaGgeHWlhZ1SqQIVL6D+0sNYGYPhCsfpY0zEydp8giYu+GDURGR3P68mWWb93K7QcPROtheP/+1K1Zk1J2yjMbQnJyoTmgQtobiiFkyLgxNA3t8Z6ZmYxMlo+FRWmMjIyRy8346KPuBAUdIiUlSmf6iYmp7N+/m+zsZLp378HrkOeMnTULgN2//sqBDRvo1bp18Q9FcMKJGzf4+NtvmdOrF3P79MG0Tx+Cw8MJDg8v8ml5Jydy8vMLtdYahSnXujWftmtH4OrV/HjiBJsOHaJl/fp0UDk0kKwwLaGVj5Eo5FE/DWlHg9vFsGj/I23Kyc1l98WL7Lt8mdoVK3IlOJjkjAwCv/6a2pUqATBtxw6WHj5Mj0aN8K1QgTl79gAwqGVLnNSnmv9HJaaIiDCSk+Px8Kjy72blvWn3wYOMmzWLZo0bM/LzzxEEgfGTJ9OpU2eGDBlJ3bpNsba2KSYI/hNIEATWr2/H8+fnMDe3Ijc3EyMjU8zNrRAEAWNjE7p3X1UQ/8qVbVy+/AMZGcnY27vw5s0jqlXzJykpkgMHVrN581latvyYZ8/u06JFOwYP/pg2bTrw2WdDaN++E2rvKdr05s0bJk2awI4dO+nffwAAqanZ7Nu3n+rVa1Ktmh+RkTEsXTqP/fu3cf78SQYOHM/gwePR9LndrNnHZGVlUq1abdzdKwNQt25rOnQY9K+rxP8HlJuby94zZ9gTGEitKlW48fAhUXFxHF+zBn8fHwDmrl/Pgs2bad+kCS0aNGDGcqVZQP+uXang7v7vZP8/mpKTw0lJeYODQ3VU1gb/cXTot98YPn06jevW5ZPOnRnWqxcj586lXZMmjP7sM5o3aICttfW/xnbib6DNm3tw//5h5PLS5ORkYGxsgoWFNYKQj0wm47PP5hfE/e23XRw4sJbk5ARcXFx59uwRtWvXIzExluXLl3H53Dl6dO7M9Tt36BUQQO/Ro2nXpAmDu3fn448+wspIfE8oMiGBUT/8wOYxYxiuOvSQs28fB27coKqrK3WrVSMxNZU5e/ey68IFTv7xB+N79GByr15Fdpl6t2pFelYW9WvU4OK9ewC0rF+f4T17/svq70PQf1TPsbLSrUEuNOYXWUpIHcjTEZaWkYEpYK7uOBrvYpOT8Zs4EWcbG8Z37MjzyEimde1KgJ+f8rY0lUZ59fHjmBgbExQSwrHbt1nQvz9tfH1xtNatVdVLYloMsbIYog3XpJKqp9Tx0tIkNaZqd0xWVsVBjJQGWQoQ5uSkUaqUFXK5qSTbeotkiLpaMzEpTZWeLSFQumzbum8fp8+d49fjxwHY8uOP2NgpfXwOHDoRmUxWYOqYlCS9yyvVnT+0Bln7f7HuVMiHjPj4t3TosB4/P+XlOTk56eTnp2FkZIypaSny80sRFhZJRMQN9u4dR8+ey6lSpQWZmRF4enqxZcsIQkMf0K3bJAYPbkqvXqNQKASOHdsPgKmpJVu2bGT06CHcvRuGo6OTqokUxMS8w8bGlj//fExkZCQPHwZjZXWCN29ec+jQPp4/f4ZCocDLqybt2nWhd+8BdOv2KefP/8a3306kQYPG1KhRr6Ass2at5vPP27Bp01dMnryYxo2bMmxYGzZtmsm8eVvo0eNzg+tRX7sYssP4V+Z7zfMt2mmJ5SNppqanI6ZnZGCcm4vc2LgoEwoFSamp+A0eTGkLCyb36cOL8HDGd+tGx8aNkZubF8iVNb/8gqmJCU9CQjh34wZzvviC9o0bU97Zufh4NGR8aleG5ncfikp6WFFs107zqe0HWeJEsuYhJU0WtMOysrIKxqIaIOubIrTDxKr0Q8kdNRWY9KgyE4yN2XnoEMcCA/n15EkAfli4EHfVTbTDP/lEubOgyaDIYTDtLXpDeRUbl2Lvdf1vSHx1WHLyG/r2XUKXLl8il0N2dgb5+akYGRljbW2BhYUlKSnR3L17gyVLxjFmzByaN+9EamoEXl6VmTNnChcunGXSpKk0adWKEYMGkQ/sOnIEgFKWlmw/coShM2fy4vBh3J2dQS4nLy+P8KgobORyXsTFER4fz4uYGE48eEB4XBz7Ll/mydu35Obl4eXuTteGDenfqhX9W7UiMCiILzdtwt/Li2Yat/GtGDeO1uPHM2H5clZMnYp/zZq0GDGCuRs2sHbmTMZ++ql4Q5RQ2OmKXtJ2KYhXotz/zVSmjA7n9Vk69ml07RdJAOSI+HhmbdvGjnPnsDAzY9+XX5KUnk4bb29cbG35ITCQ5ceO4Ve+PCenTy/KoEaty2Qy7KyssLawwLdiRZ5Nnoy55lXDukgTiImkq3dGUz+1e4DYXtmH2GLUhZTUT1VehUC58NiFFECW6sAODjakpCQgk2UhVwk/DesFKcsGvfaqxUiTMUNQuBgjcjm5ubmYaVwY0rt3Xzw8ymFq7lhwuDgrSynYdXlQUD8NAchiRTRkjtZFhmyNavLh5taChIQoDbfZlqo/yMmBmJi7HD3aFmdnP9q2XYO391BkMhm2tl4IQi537yonv+rVOxEQMJqzZ9cTGvoEC4vSpKWlcOrUwQLegoIe0qRJa8aM6cOJEweK8b58+WLateuItbUNEydOx8fHDxMTE+7cucOZMyc5dmw/xsYmGBkZMWnSXGrW9ClykZmXV0WOHbtF7dqObNu2hKdPC72OzJ8/nAEDBmGqY2wbAlY0yZDu9FcAsroLFjGV0Ga24CkSpu8MhEJBTEICs9atY+vRowAcX7SIhJQUWteqhVuZMmw9fpzlhw5RwcmJi0uXFuVBEIrkaWtpiaOdHVXLleP54cOYqy+EkYk47dA8KSZVWYaCfTUg1bQz1g7T/P99bZDFbAU1wbDWpSBFvFhogWddptDaRZfLbcjOTiYnJx31uFSzoEli8vhD9EN9JFZdubm5BQfAAbp37Eh5d3dc3dxAtQgr0it0AWS53CAz9JKOVbEpQsoaRtd0og739m5GZmZMwWUqVlalMDEpVVCksLBHjB/fCk/P6kyatIgBA0ZgZGSEXF4NS0uBo0eVsrBp0+aMHzuKdatXE/zsGXK5HFlKCkcCAwvyvfviBe5lyzJ43jx+OnGiGF9LDxwg2N8fS3NzpvToQe1KlTAzNSXoxQtO3rnDlM2bMTIywkgmY+Ynn1C/WrUilefu5MTNzZux79CBNfv3k/T77wXvxi1cyOedOyO3tCzeZiKaMiM5BYe2tUlK6aCrzqXoPwogGyUliM/MhgI3CUSREBtLzbFjiU1JYerHHwOQmZPD2qNHOfvoEZWdnTk4YQJjtmxhVJs2rB88WFyDofodn5FBVm4uA1u35sKDB5hrGq+rydAluKabB82OYwhA1uTREMSkB+iJxtNFmhOEGijLC0GyFLtSyp2KFctSo4YfBw+uZuTIrwri61DcFtWE6ZN+JZkhtAuhzYhcjkKhoEy5cgU3gZ0+fYVGjZoUsJGSIn7uRwogS2GVkmiAtIttiPDQt/5Uhifx8OEmevS4pXMn4Ny5YVSs2IOAgC0AqD3dKdMyxcHBk/j4UDIzoXTpygQETCQgYCJnzqzlwAHlNnvv3l9QsaIXY8b0Yfv2cwXg+PTpIDp2rE9+fj6BgXeoWLEyDg6FE6u6nB07dqJjx04G1U1+vhH29g706zcAZ2c5o0dPZMOGVVy7dh9XV/3g+H00x+qn+ncRF2sAiJuWSFGBDBVjVgrNG7BCSklOxmfwYMLj4piocc5i5d69XH/yBJtSpbiyaBEjVq9mUKtWbBs3rph80KSkzEzSsrIY0a4dv16+jLmZmfh409ammhS69NMsii7SKR/EBp+YLzD1/1KD1VCkJeXmTeImvQyVL2NdOF07ewsLB9zdm3P79hJq1foamUxWZJqRUlhIsWuou03Np761TF5eHpUqlScqKgqAc0eP0qp5c2R5ecU/0GRSK2FNjwdSzWdokxmqL5Eqn66w7OxMTpxYyerVFylTRjzdZctG0LhxW1av3g0UrVNTUxm+vn48eHAPY2Oo4O7OhJEjGT9iBFu2bePbFSsAGNa3L7WrVWPg7NkEbthQAI5vbNpE52nTiE9O5s6GDVRydcW+VKlilRJQrx4B9eqJF0qz45mYYKJQ4ObgwMeNGmGVl8e8wYOZv2MHt7duRS4IRXejxXCLxlOtcCtVrGKK12dRWaURBmBvL/KBRlEk3/4/IrmZGS52dkQlJfEiMhIAVzs79owdy+wDB9j4++8M37qVU9OmMXDjRgY2aULDKkVtYAVBYN1vv5GWlcXqkyeZ0Lkziw8d4vbKlf+OIv3XkomJCYsX/0j//s0xN7dQ2Yz+MykyKqoAHG/duoNGjZr8mzn615OZWWkcHHw5f34QPj5TcHNrjaWlGxkZkQhCPg8friQh4SEtWmwhPT2KjIxoIBUQSE19gUyWRvPmk4mK+oM7d35BLs9n8eJ2RfJYvvw4bdoob6e3trZi9uzPMTJSum/LzMxg5syFfPvtdExNTTE1NSM1NZWUlGTc3MoiCBAa+gJbWzscHMoUbslKUHZ2FklJiWRkZHD9+hX69x/EwYN7iIqKBHw/fCX+B5K5qSmuDg68iYnhVXQ0AHZWVuyeOpVlv/7K8sOH6bF4MWfmz+ezFSu4EhxMc2/vYulsPH6c5LQ0Vh8+zNAOHfjhyBFOrV37dxfnv5qMjIxo334ze/c2RxBKUbv2V/9ulnRSXFxcAThev3o1rVu0+Pcy9DeQmZmcGjUasHjxEAYOnEn9+i1wcSlHTEwEgiBw4MA67t+/wfTpy4iLiyYuLpqcnBTy8/OJiAgjKyuFYcNGcu/eHY4c+ZXScjNatW9fJI+DP/xAz44dISsLOwsLhs6bh6OdHbGJiaSkpzNv0CDGr1mDTCbD3NSUtMxMkpKTKevggEwm48W7d9hYWuJoY2OYDM3NJSoxkbz8fC49eEC3Jk3YfuoU4TEx1K9e/V9VlX+J/qMuChEePzZ861/zt6EqN4WCPTdu8Pm2bWTk5GBXqhRBc+dSoUwZVpw5w9T9+4ldtYotly/zLjmZdUOHEpWUxPXQUMITEnibkMDh27dp5OXF1J49iUpMZNiaNbw9eLDwxDUYvkclpq2RUiV+CENVsaWvpjZDewtQV5j2OxE1gvoEsdROpNQqPiTkKT16NGX9+l20bdtepwbZiHzDPZToYkCXCkVCo6W2c5s4cQpr164gPl4w2Ee7Lg2ymGJL35CQChPripphutLVVX1qnp4//5U///weudyJN28Kt+xkMiNMTW1wdW1FXNxt8vIysLBwQS63QRAU2NlVxNKyNBkZ8djYOHDjxla6dVuAl1cd7t8/wx9/HGbevOP4+PgWujIyy+fLL/tw7twhfH39mTZtEc7Ozly6FMj27avJyEgnKysTc3NznJ1dSU9PJSkpkbS0NM6du0qjRoUnqaW0PE+DH3Hw0CFOBwaSmpJCOQ8P1qxYgWf58sU/0kW61GQl0NQWPKtWVdWp4ReFCPfvF01Dkwep3yXYtTt8+zYD168nLSsLK7mcoEWLqOLqyqZz5xi1dSsRGzey7/p1HoaH8+OYMcQkJ3Pt+XPC4+OJTElhz6VLNKpRgymffkpGVhbdZ84k+sYNjI2NRWWN1AUw2iJSrOhiw1jXBpoZWhdXGKpB1pW5NiNimYqVWXUwVZ295h0QYpdbaN8RoY6XmBjGjz82pG3brZQv30Wn9lRMPojd+SBmMi12UYg+c2rtdBct+oavv56HkJcnXacajKr7hdg0aciuna5dMl1Zik2Zmk0qwqKkvLly5Tc2bpyPo6MLFy4cK3gvk8koXdqaxo3b8PjxXVJTk3FycsXGxoa8vDzc3T0oU8ae2NgY3Fyd2bhpE9MmT6ZVo0acuXCBQ8eOsX/jRvzVoFShQMjMZMDMmez+7TdqVanC8jFjcCxViquPHvH93r2kZmSgyMvDxNgYZ1tbMnNyiOOw4+0AACAASURBVE9JIS0ri1Pz5hFQR4e7Va22ehYVxaEbNzj5xx+kZGbiUaYMy4cMobqHh+EDUZ9aXooH7b7j61tQp+91k55MJhsDjAQqqIIeA98KgnBS9V4GzANGAHbALWCMIAiPNdIQgFzASxCEMI3wHUAZQRA66yujTCYThMBAw2d+fZOO9req56CdO9l56xb3Z87Et2zZgmhP4+KoPm8ebWrU4Mrz5/wwaBDXQkP58eLFItnO7NePp2/fkpaTw43Hj5k5eDDTR45UvhQbPfpMFHSVRddeu/p/KYBcUiMrfXtkYlchaccXkaqaAkxqW0uKxTt3rtK3b2eGDBlBp06daNq0GeamQtEPSwqGxcjAwZujKHRBEx+fxN69P/HLLz9RpUp1li3bbTAY1rX20SW037f+/orM0bfuFASBR4+2c/HiMCwt3bGwcCI9PYLSpStSrlwnPDw64uzsh0wmK8hTc00FsXzzTVk+/3wvzZr1KHgP4l0xIeE1HTpUKODxjz/icHV14N27t+TlZWFkJNCgQTUAKleuQkjIC4KDQ/D09CxWZtGzDroKrVkpYk/tihOLb8g32u/aKbXqJQLIKrtgSb6keDXg3eiff+aHixe5PXs29StWLOhQr+PiqDBlCu19fbn45AkrBw7kYUQEP5w6VeT7mYMH8/TVK9Jzcrjx4AEThwxh/uzZypcqkwL1bZ1igPCvYFUpsCOGVaVEo6irUanBqM2A6lmSGyB1vZO6KTI09Da//BKAj89gKlbsRLlyrYppBHUB5JJOB9rv9OGfjIwU9u7dxa5d2ylb1p0DBw7/pSlTu46kFlWaslY7fe160C6LlAmJPvmq+V4QBE6e3MuYMZ/g6loWJycXoqIicHNzJyDgY9q2DaBOnXpFZKiJSeHtwYmRkXhUq8bGlSv5rGvXooUWwQuRkZG4dS6EY1EHDuBsbc27uDjS0tKwNDbG4/PPAXC0sSEhNZW7ixcXwUqSckMsTJ+tivZ7fSsMqYGtTV26AH8NIHcFcoAXKP3DDwKmAXUFQXggk8m+AmYDg4FnwFygCVBNEIRUVRoCkAUcEQShv0baOygJQF6/XncEQxpCn3ACYtPSGHX0KE5WVmzo2bOgYnNlMtZevEg5Z2cszczouHq16Pd1qlVjav/+WNvaUrd6dVzc3cWlgvp/Q0aNJt9SWnApFGWoVlmTpAChIUZneqRfPvp9UBoyn1y5cpnAwJPs2vUzbm5uBB4/joODg+EARF8GOsqiyx9jWpqCw4d38e23U/Dza8Qnn4ynQYNWKBQm790shjS7ZpjUcDBUGa5P9kit2Z49O8bly1MxMjKlffu9lCnjY1AX0+xO2dkvWbiwEjVrdqRWrbbY2Ljg49MEBwf3IkA6IuIRjx7dxMXFmUaN2pOdnYqVlSlWVtZF0jU2Frh69QL29rYcObKPFy+e8OuvRzAyMiqIV8TO15BFpr6F6vuCbE3S1WfHK02LSgSQly83fFLRJENWTap48WlpjD9wAFNjY7YPGVJws1aekRFrz57F1dEReysr2n33nWgSvtWqMe3zz7FxdKSOjw9uXl7kmIhrTMWusxe7NljfBppYcaUAkCEAWRc4kprvxaYsMb51aTZ1lVMfIHz16jqPHx/n/v3dyOU2DBlyltKlXXQCY+36kALIUpphXfWRl5fH4cP7mDlzArVq1WX06Ak0b94aMzPDDmdJDTMxgKxP8aBdB/oWUGJhJVFAAPz++2lmz55Mfn4eO3bsoXbtQi2tFEbU3DF99+YN7tWr06Z5czq2aIGzoyNN6tShXNmyRQr85MkTrt+/T5nSpWnfsCEZyckY5+djo76mT6OSLgUHU8rYmN/u3+fa06ecmjoV43wDd2m1f4v9/1dJCoBrN8LMmcBfAMhiJJPJEoAZwGYgAlgnCMJ3qncWQAwwVRCETaowAVgKTAH8BUEIUoXv4B8GkAESc3JovG4dA+vWZbrabkdjNIQnJODx5ZeYGBvT1MuLulWq0K9pU6pVq4aFtXXRrUBdy2b1//8DyDqzlwoXY1Em5DFk6FBsra1p3bIl58+fp2e3bjTx9//bAHJycjp9+wYgCAKTJi2mXr0mepvgvw0gp6dHs3VrVbp0OYKLS4sCbVRJAbKVFWRmJvHo0V5iYh6QnBzF06cXad9+DO3bf4anZ1WuXTvC0qVDaNKkK2/eBPP2bQheXrWpVas+Tk5u1KvXCAsLS65ePUleXi716jVCLjelc+dmBAe/xdPTvUj+/wPIOqgEABkgJTOTZitX0tXPj/k9ehRNQy4nKikJ15EjMTE2pqGXF/Vr1KBf69bU9PbG3M4OExOTQrlpa/s/gKzF94cGyOqnIAgcOzaG/HwF3t49efHiFDVrdsXTs+XfBpAViiz69+9MWloqc+YsolmzVnq7338bQE5MTKBuXU+2bNlDu3btMTXVr9FXk7ZJYWpqKnsPHODevXtEx8Zy8cYNhvbpw5CuXfGqVInAixfpM2UK3Vu04Pnr1wS/fEntKlXwr1oVVwcHGlWujK2lJcdv3CAnK4v6np7YyuU0mDuXkCVL8FS7XPz/DpBlMpkx0BvYCdQF0oFQlKD3jka8k0CcIAiDVP8Lqu/6AA6CILRWhe+gJAB50iSDeRUlqYrSGqn1N2wgJj2d1/PnF42n6u1rL13iUFAQO8eNo1zFioXvpAyvVN+q7cdKIrTFhKp2EdTbKjqlg9S+o1inlcpUCgSLST+NtPL1X1RbYlJvicfFxeFXvz4O9vY8ePQIIyMjIoODcVL5ySxSTqmZSqMsb9++5e27SKytHXF2duHSpUts3rwOOztHMjOz8Pdvgrm5NVWrehMTE83KlXP45Zc75OcX97UpBXilQLCaShJfHwDQfpZUw6EL+z158it//LGB/v3PiU4yUkBd3ySTlhbKL79M5+XLOygUOeTlKWjVqj9jx67G3FwgOvoNjx5dJTb2FdHR4dy/f42kpHjatetGaOgTgoPvAQKjRk1lxoxZxbpsoT/1orPovuPH+fP+faq5uzO4a1dkauexUi5H9Bk2SjWg1GpCTRs2ACUEyMOH60dp+uSk1DuN361Xr+ZueDiJ6gN2Wg275fJldp4/z44ZM/CsWVP5TsRDQ0qaEXFxyiBNYKx+6rKvBcMAsj6Zq69vSr0zVGMq9vv/2Dvv8CaOrQ+/kmVbbmDc6MZU0wwYTO+E3sF0QifUmIQOoYeaEAKEFjoEQkIndBJK6L33Dqa5AW7Ysi17vz8k2St5tVoD9ya5X87z6NnV7OzMmdmZM785c+aMieTwhBJsYQtkW6aVkBDNrFnlcHb24NmzywDMnfsMHx/zyaRUmaVAs0YD4eEvCA8PJVeunHh6+nD16hmWL/8eDw9vkpJ0BAZWxtPTm0KFiqHTJTJu3GAOHbqO2soBFtbKLofNbIFhqfmqJcmV3caWG8WKB4Dff9/PN99M5dChk7bBsGUiNj54aGgoI2fO5Py1a7xLTEQFtKhZk+UTJiAkJvI8IoKTV67w8OlTXrx+zambN4mIiaFlUBCPX73i7IMH2KnV9K9dmxnNmmVK31pFb7t/n7MvX1LEzY2+JUpkeCFRCqg/BGRLdUSATQa/+tZkqKKhUKVSBQCnAS0QD7QRBOG6SqWqZowSbvFKOJCXzPQVcEulUjUWBGG/gnz7YbBtNtCDB0auP1C425raazQ0K1qUtVevSo/mQEijRoSYbHrE+clIVcuNFdZm8UqEnrTGT228OqAx2q2ZThnTaEQA2pakkMvU8l5O9agQFMseX2stf0syVpyXuzvrli6lntFVX1paGm179OD3LVtwdnZWPMCnoebEiRN8++1szp49Rd68vkRFRaLT6Xj9OhJv75yMGDETQbBnz54N2NnZM2vWKIYOnc+LF0+4efMO+fOXNCuSrW8rVTxTmLgZWjZJa/JQbuCXm/vI8WMi8fzJlE9SUgqPHx/h+PFJFCxYH61Wmg85gCzFh5i8vAozZMhmNBqIirrLs2e3qFq1uREAqXB1LUCNGgUk52xRUc/55JP8LF68lUGDgunQoTcFCuQ2S9/kX1Ot0Zsx1enzz6lctiw/7dhBckoK/Zs0ySiMGBCD+X85408lWuiPTTduSI/aUjJRzoDSWnwTaTQ0LVWKKy9eSKvagM/atuWz3r0NYSJtcZq7wfWSCfhGRZnfi5/ZAsji6perYqVKJ2u6AFtgUUmV2hrGrPFnmYZc3xaXU/y5zNNxZ9SoXxg9ulp6+JIlbZgz5zDOzm4260P8/OLF0yxfPoczZ/4kf34/oqIi0OkSefMmimzZsjNhwlzs7R3YvXsjgiBw7dp5xo6dQ1RUBJcvX8XfPzATj0omDHJzTlvyUm5uKlV2W9rz9Mm3pe9xkRA1HamdrE/j+PHjTJkylqCgylbloVVgbKvwgG+ePGxcsAD0eh48fcrV69dpYTzyWWVvT/68eenk6Skpp6IiI/H+/HM29OlDl5Ur6VuhAoW8vAxx5GalOh3Bu3cTkD070cnJxEdHM9TXNzOPSmYuSjVIJrKGyxSQIg2ySqVyAHwBdyAY+AyoA2QDTgK+giA8E8VfDeQWBKGx8b8AtBcEYYtKpVoEVAfKA6vIiga5Zs2sgTQ5SSQztT/x8iUNf/6Zbxo3JqRmTfN4Ur1BfLUMc3fPOPddtLEEpJd6xG3KROL/coJTrui2xkSrJ2bZIgmGsgyGs6r2lCKLNPp+8QUr16/HwcGB5ORk3Fxd2b1+PbVM39NK+zB51vj666n8/PMaevceRN++nyMIjuh0EBr6iOjoGAoUKIqdnatZEebPH8G7d/F4eOTm5ctHfPbZDKKjI8iXrxT29g6Z2HzfasiiPMxEWRmIbfFgur98eTtr1/bCzS0nzZrNoFSptqhUKpsDj1TeMlY5smHitKS6t1YLzZr5EB0dCcCnnw5l/Pg5qFQqyY1F6RPK+Himz57N1h07mD5kCL2++ooK/v6M6dWLKgULcvLcORKTk2ns728wJ5FDakpBsyWakyrouXNAFjXIuXPbVnUpMZ+SUo+K4l948YI68+YxsXVrRpmOk7W0TxDJRrHWOFZn6CtiMGwJjMX/lWqQ5ar2fZUStjSnUjLXmkYxK8OY3KKd5TPLe7nyie/nzfuSzZvn4+ioJSlJh5OTC3PnbqdmzQaZ8hK/Z0pnyZI5rFy5gB49BtK37xDs7Z0AePbsCVFRb/DzK4KTUzazup8/fyLPnz+lcOHS3LhxjuHDfyAq6hWFC5fCwcHRqozMqkxUqoC0MrezOfyb4jkgsVHTSkb7Dhyga58+eHh4MO3rr+nYsSMqlYo01NIH+8gVVEnhlQJTi05UfMQI7hpd4X5WtSpLO3Y0rKjZcNE099YtVt2/z+wSJehz9SoBLi6M8vOjpqsrp2NjiU1MpJlWa5Ch4k4qNbO10pnFeFZcYyZEkr751PSBEhLSw6VkqKK1bkEQkgVBeCAIwgVBEMYCV4ChQJgxSi6LV3zIrFU20RSgMNBVSd7/bXoWG0uHrVvZ2r49n1ep8lez8y+9Jw3s1YsSxYqRnGxYMg8qW5barVuz/KefFL1//PifTJ06m8GDh+MoOlbN17cQJUsG4uLimumdNm36c/ToVry983Hy5E7atctH377l6dev7Mcp1N+UDhyYzbp1fQkJOci4cXcpVy5YkV/Mv4K2bQvF3t6BkSMXcf78EZYv/0bRe6OHDqVlw4Y07dePxjVr0qhqVXpPmYK2QQPqjh1L00mTmLljB6fu3iUqLg5BEBAEgWS9nnfJyTyLjSXGck37f5RexcTQZtky1vXowcimTf9qdv6l96QWLfpQpEgASUmGdluyZAUGDGjIzz8r80l94sQRxoyZTkjIaJycnNLD8+f3IyCgPG5u2TK9Exzcm5Mn95Mjhzd//rmTxo3z8OmnFWjePAuuFP+BtGDJEj7t25dd27bx4N49OnXq9LeVoddnzSK7kxNz2rXj6suXTLLwQmONhhQvTrcCBWhy9iz1PD1p6uXF4Dt3cDp2jNqXL9Pizh0mh4VxMj6eSL0+Q4YKAu/S0niWmsrbNCsThf8QZUFnZEZqwBF4jAEkNwDOA6hUKi1QExgp9aIgCBEqleo7YCoGs42s0YdokKVINLO6FB5Ox5076RkQQNNffuHTgADWdepkHk/pOo04/fQ1ZfMT5GzR+ypYpbRxOp28BlmrzTDPMPFqyafVWawF2TzGNqsFM5GtihOlUaF0aW4dP86Js2ep2bIlR06epGenToyaPJnnL18yfvRo7C0qLA01er1hFhoa+gQXl+xZ2uTj61uUSZM2MGxYI2rUaEnduu35+utPGT58odIVHcl0bcWTM2OwRlnRFlvmJQ57/vwWe/ZMZtas63h4FPpg7bZUntbesVYGeXGgZfr0Y0yb1pzPP1/EwoUDyZGjOE2aGE5+Eys5XV3VxnvDQD5h2jSmfP89a7dvJ3uvXiycPp2xM2dy+fZtAM49fcqOS5d48OIFupQU9KmpCIKAvZ0dHk5OpKalsbdtWwJdXMwLZbJFETMst9TwIRQdbUjHpOqSq1iljUh0vRYeTudVq+hYqRLBK1bQ+vJlto0da3iuwGA1TeOgeK+jElKyKmtNkyy1Umt5r9TcwJYphmV8KY2zFB9ZtXmVK4NlWK5cARw6dI3r1y/RvHkFLl48RseOPViyZDKxsS/46qsp6coDqb74/PkTcuTIbhYmJx90OnB392P69M0MHlyPChU+oWnTvkye3IGRI1cSH29dEapE7siRLVhhufhh7YBDZ62FGaPU0oVFRvcfPWL8lCmc3rOHkmXLZjIOV0tVri2NsBKSakgK0rAH/hw/ngazZrGwY0eGbNxIyVy56FSypGx2dsDIsmUZff0661+8wMnXl/mlSzPxzh3OGg/TuqrTsT8ujgc6HYlpaegFAQGwV6nwUKlIAXa6uFDZQnOcatQcp5GhOZZCK2pjPHViYnpZ5MjmMKlSqWYBe4BngBvQBYN5RTNBEASVSjUPGKdSqe4A9zC4fIsHNsgkOwcYCLQGDsnEM6PDCQnUzZ493W2QInMKy3tRmD4tjeexsdx4/ZoVt29zPjycaTVqsOzaNQDK+PhIr8eZ0jSFSfEhfmZsfA7GzqM32gpLjYtabeasQFnbFz+zHOPEeYn7gmW/kJ9fiNxhyYFgOcbfBzEpHbAlqHr58iycPp3Px41jza+/snfjRuYvXUrNxo3ZtWMH3qbNeyLWoqNjiIqKpFq1epj2YsmxBRAW9oxdu9Zw5coJOnUaQuHCpfDy8gQgd26vdCGaxTmbIiD7PlhKCQ6T+1R6PUREhDF1al169pyLr28hyfi2lKZS+cu9o2ROZW2wM7V1F5fKVKzYg0WLvqR37x+ZO3cIT58+o3nzENlDDdzdnXjxIpLPPuvFiStXuP74MV06dODPNm3o9MUX7D99msZVq3Lg22/R2NnhkJSEo+kM7fh41p87R61ffqFjiRJ8W7cuHibmxEesmpYpbQmE96SDqanUFQTspB7KoTMrSEyfmsrLxERuhIWx+uJFjj98yJRWrdh06RKCIFC2cGGbaYjD3kcZIKcbkZqYSolyJXJVr8/cb8R5Ss1xlIguSxksTkMqnpStq5x/cGu6IiVDpkYDdeuWZ9Gi5Qwe/BkbN65l69adrFy5jGbNqrJr1x5y586w4zfJAJ1Ox8OH92jcuAliK04pOWL6Hs+evWTfvrVcuvQnLVoMws+vFFptDgDs7T3TAbKUMiAre3ls1YfcZEbqtG9TmFqXAFEKdoeKMnwdF0ettm2ZNnQoJfPmNUxglWCYrAp9W3hI6sOItWumq/G+XLlyfNm6NX3Wr2f9kCF8uWoVoXFxjGrUKOM9CdMxlUbDmy5d6HPiBBeMQLhl3rwcrFWLT8+eZX9UFPXc3dlTtChatRpNUhLa5IyN01sSEqj/5g1t7eyY7eiIj7Es6pQUQBoUi8n0XKmbACV+kNcAdTGYUcQA14DZgiAcMD43HRTSH/ODQm6I0ki3QRaFDQQWA3uU2iADfFehAsONp5/YNLYy3qckJfHr3bs8i4+nVt68hMbFcSkigqXXrhGfkkJ9X19aFS5M77Jlcba3p8POnWy+e5eYYcPIZtL2yPUeW9NKy55ksknWqxXbyslhSjklkFINh2XxpISIVmsAxrdu3WLUqFH07tEDR0dHmjZoYL4cZGt2mxWArGCio4SevHzJ9HnzmDFxIl6enoyYMoUr169zcP9+BHuDFsRU96GhT6hTJ5CrV19i8FpozvbTpw+4efMSOl0Cfn4lSE5OokeP2pL5enr6MHbsd9St2wwvL49M7Ga1eFnV/Noiuc8it7FJp4MJE7oAMHz4Btn41tKwNtjJtXFb74IybVBCQhTbtrVHpUqjRYvv+Omndkyb9jTLXdnd3TgwAknh4RStUYPaQUGsmz1b0kA2+uVLcoSEEJgvHxcHDOBaWBjFNBqcTDu65Ta6GOlSdDT7IyM5X7w4VapUYcyYMYptkAG+zpaNCSbH/uICyZyEqXd2ZvOtWzyMi6OWnx8vdTouh4ez/ORJ3iYk8Enx4jQLDOSzxo1x1WrpvWwZqw8dImrzZjx9fDIq3jJ9CxvkBJ06k6cKqZPgbJ0cJ7Vv0pqzEVsA60OAuhTA0moN3liuXfscf//+ODioKFCgBc7OasW2rlLA2PKZnOy3pUnOtCcFeP70KZOnT2fqhAnkypWLCV9/zZHjxzl++HCGtwmNhjTUhIeHU6RIIZ49C0ejMTAp/gb37z/ixo2LxMUlkDNnEezsNPTpI23S6OLiTrdu3xMU1BInJ8+PMqTI2Ybb2lJk+p9+qqK4MSrZVCRipM+sWbyOiWHH3LkZDGVV6MsNHLY+tOV/WwOCqFzRcXF0GDOGmHfvWPHFF9QbNYrIdeuUn1AjIeuSExIIOHSI0s7ObDVp0y3qNPbdO7I/ekRBOzseurlxIy2NQsnJuKhUoNOl2yHLgeUbGLS+l4KDKVOmDJMmTfp4fpD/ClKpVMLpevVod+YMu+vXp5ynpyKAfDUigrY7dlAoe3Yex8TwMCaGkh4edPT3p2WhQpT28kIj6twAiSkpRCQkUMDT0zqC/H8MkPV6PSePHePbOXPYd+AAri4ubPvlF+rXq2edub8YIFsW5m5oKMUDA4mJjMTVwwvIqHtBEOjQoSmBgZUYMmSKGds7dqxj5swvqVixNgcP7qBcuWr88MN2duxYQ+PGHfHwyMHTp/c5f/4YO3as5fbtK+kslChRhhkzFhnT01O8eGl8fLyyVLy/E0Bu2TIv7dsPp0WLYbLx/44AGcDRUWD8eDWjR99h2bKGVK3am+Dgr9Bo7LMMkJOTk+nZqxcnzp3j4KpVFCtYUHoHWXQ0527epPPatbxNSOBtYiJLGjRgQPHi5vGsDLAP3r2j5blzuNvb02LkSJo0aUJgYKBigHzJzY0m796xy9eXik5OigDyrdevabN7N7nd3Hit03EjPBx/b286VaxIi4AAyhYogMbk+91YuUl2drx68wa/AgXk1XD/TwGyIKQSH3+MW7cW8OzZb6jVDrRosY0SJZqYxf87AWTLinj2/Dm+/v5EvniBl5dXeiKmTdrBwcEULFiIyZNnAxnfYM+eLYwZ8xmVKtXh2LF9+PmVYOHCQ2zduoK6dTug1Xrx+PEDbt06zuHDP/Hw4YX0PPPkKU7PnktRqexISkoib97SODv7/GMBcvEuXejcsCGTBgzIYOgfApABhMRE1HXqcGnRItpPnUqHGjWY1Lw5jvb2WQbIqQkJfHb6NPsjIvgjMJBSpkNKJOr0ytu3dHj7lqi0NN4KAnM0GoYZ87QFkB8BHTGYfLSZPp2GDRtSsWLFfz5AFkJCWH73Lv1+/50z3btTuYDRcF+mAfnNncvIKlWonj8/gcuXA1Atb15Odu9uiCDReJNTUzn98iUeWi0BpuUjKbQoJf2UeLYQSTWxT2TT1crmUTN2P0SAS4FgOYFhCnPQZD4tJzkhAZf8+dHr9YTfuJHhb1iOSSWMWyuEZZhUPLlw431UfDzeBQrQs3t3xk+cTMGCBc1k2ZMnoTRuXI3u3fvTqFEroqNjuHv3NitXzmPQoDHUrduUwEBvFi/eRLNm7SWze/fuHcWKueLi4oqHhydqtR1PnxpOWq9QoSIXLxpch1+8eJm3b9+SL08u/P395dGftQFLaV1aMinxwU2ePKTaolim7dr1K6dO7Wb48PWZ4isB2dbAs9Rg977tX1xcqba+ZUsg1apNJW9ef/bvH0yOHL60bbsiSwDZySmVUaMGs2PHRi5fvoqfadIjPsXC4mSLFL2eqOfPWXr0KHqdjmm1a2euYFEFJqWmMujECXY/e0avYsWYUqECjitXAln0YlG0KOuSk+n+9CkHS5fmE5MPd6kCG9FZmR9+oHOFCrQpXZoS334LQKk8ebgxc6Z5hYpm3Hp7e07euIG7hwdlAwIyx7PIU+wCU87xh1KnIFl1FKKkHYrv5TCGlIm1HLi1t09h0SIfkpKiGTnyKe7uvrJDihRolrNBllKEmB2lblk48b1M54qOicGzSBE6t23LpK++omjhwmYd7XlEFLVq1aBDh660ahXM27fx3Lx5m9WrF9Kx40CaNu1IpUoejB27kubNe0uOd7GxOvr0cUOttsPdPQ+CkMbr108ByJ8/iGfPDOA5JOQCOl0MLi558PYuLqs0Ujp0u7tncslNNlcj7JLq21KAUEqWixjaee4c644cYfO4cRlMZmWZ0dbMTKoRyM2WxCQniEXX6p068WWXLgQVKcLns2eTXatlw7hx1gGyRFiaIDDy4EEWX7/OzXbtKGRSWlobhHQ69IJA5Lt3/BQbS0RSEnNy5JA1aUkRBL5ISmKzXk93rZZpLi44RRo8Gn2QH+S/Dfn58VmRIgiengw7cYKTlSsTm5iIq6NjZofixobZvlw5Nty+Tf1SpSjs4UHebNn4qU2bzI1D1JBnnDnDwsuXeZ2YhRB5gQAAIABJREFUyNuQENylDHhNH8sWyWlMtVrUroZ7Z2O6GlcHyfZuurcFJEwk14+kwuTyNPOfbDG6OKSlcWLLFhzs7fFxczOvF1sqQiWk0WSOLw6Tmv0qmFF7eXkR+eIF8xcupFy5MuTJk4f+/QcTHNwZb29v/Px82bJlLz/++ANt2tSmaNHiFC1anJEjx9O2bSdGjhwEQHBwG6vybO/eHQC8exfP2rW/0LNn+inr6eAYYNWPi1lknLzpX77EThCkEaHpqmQZwVZjkLEHdTCOEBpX50yvirMuUqQka9ZMkWwzSj+xXPOQ0/DZWlWRIqk2Xrz4ZPbv70W1akuoUmUTO3eWYc+eeVSv/qUkQDaNhe7ukJAQy5UrO/nppyk4ODgyb95G0tJ8iTDKf3cvZxzcEzJegHStsj2Q292dCvHxzN28GfLlMy+06Hrwzh2G7t1LCW9vHo0ahYuzs3xB5ShfPrq5ukLu3Iy8e5dLVasSl5yMs7s7dqZ0LdBc66Agtt26RbvatfHPnRsvNzdWh4RklEkCEc7ZsIFv163jTWwsr06cIJe3d0bFi1GdRF+VG++lRIGlbJQKM5g1mKchpeSTa1/W8jeRnJJBCohlPLOnd+8/cHQEPz/f9HimOHIaZKmrFA6SdOOpdPlG6j/g7uhI5LVrLFqzhqDatfHx8mJAr1582rkzOX18yOfjxZ7t25m7aDHNmtWjcOGiFCpUnEGDhtOoUVe+/XYMAA0adLHKxqVLe0lL05OWpqdNm1ls2ZKx998EjgFOnVrNxYuG1blhw5Kws8t8JLXYHl1uiJD6VmbA2HSV8i+YRQ1ySRcXzt+9m+G30BoYVjJQSzUCmeUMkyJEb6Wtp2/YJ8O5gNbLsGE5vT3pdEyYOJHuffsyZ/x4Nq5YQdlGjZi5Zw9ju3bNrFmxAMhxOh17799n0oEDpKWlsbVtWwoVKiQ/szVqljVAbp2OoLdvGff4MeTKZT5YmEiv52hSEl+Gh+Or1fIwf36yiTxTydE/S4O8dSsAJ+7do+bYsUxo1455e/YwrEULJpt8bVoIgLS0NHqtWMGV589Z06ULgfnyWVdJ6XTo9Hqc5s7lm1q1+PbcOQ63a0cZsVZUbkamVCJKST+JNbIEnXVN3ocAZFt9y/QsfQlJbiRRCtKkwpSovi0Zlnqu5JlM4VMEgbNnz7Jw8RL27t1Dnjx5adWqDRUqBHHx4gUSEhIIDu5EpUoGGzlBEPD19UKrdWLKlJmEh4fh4+NFu3YdcDHZrBuzuHbtGkmJ7yhfvjx2goCQkkJcXBw3r16leuXKoNORmpTEi7Awsjs4kN00yZBChKb/cqDZRHq99TqSWk+0MhJbHm4jvi5dOperV08yceKWdBaVLF/beia3gmJrWdxadUiRacyIiTnNzZvtqVbtNnZ2rzh6tDKffHKU/PnLWFYHrq7w7l0U69e34tmzy+TMWYRGjfpRt25Pcud2NYsv1kCZwpw1yWYDa/y7d+SuUoXnmzeT3bSkaCzoqdu3+eXoURbu28eWYcNoW6mSua1/hw5AFjXIvXqBVsvF+HiC1q1jSu3afH/mDP2qVOFb05HQFvJMEAQGrl7N8Vu3WD10KJX8/a0PwhoNer0e+8qVmRoSwqJff2X7smVUKV9ediBPMw7Gtr6/DVer6Vel8UD5CoWcVlJcLFsAWQ7cysUXd1VraUgqNmxNqrNaaIkK0APnr15l8fr17PzjD3L5+NC6aVMqlS/P5bt3iY2NpV3HzpQrVwMwfJ/Klf2Ii4tlxAiDr2NHRw/q1u1AWpqbmZx5/vwG0dHx5MtXnuRkDYmJaaSkJBAaegVf31rodJCSkkZ8/AvUajccHd0lx0I5bbGXV0ZfNVmLuLtn3GfTGsfCrDrglpt0AEtPn+a3GzfY+9lnmRkW/7cGkK01GimzTpNpp8R5DEqxhFQbB7h79wrNmzfi3o0bvA0Lo2Lduuxes4bKJs8WFnUU8+4dLceP59yDBxTx8aF3nTr0CQoim0m+2bKNEtVvUmoq3tu28aBhQ3zs7MwKcS4mhl/CwpgXGsr60qXpki+fQYaaGN+2DfhAP8h/N/L19qZ3/fpExsayYuBAtpy27i1OrVazpls3RnzyCU2XLiXFtBnGCqUa/eyNPnaMYjly4Ggnud/7X/ofInt7e2rUqMGGDb8QFvaGFSvWYGdnx6pVKxAEgZw5c9KlSzATJowhLi6O1NRUAgLKUbp0Gfbv301o6BN27NiGh4crMUZ3NSYqU6YMlStXxt7eHrVajZ2dHe7u7gZwbCQ7Ozt88+Y1gON/CN26dZnvvx9Gixa9/mpWPpiyZ6+Kj09rTp0qzps3p0hJiSYs7HezOMnJ8Vy+vJKVKxszc6YvuXKVYPbst0yffo2mTT/Hycn1vfJ2dXGhW9Om9DCZK4go+JtvcHF05N68eQRXrvxR/aLmcXWlb5kyPI+NZXXLlmy5ft1qXJVKxZKBA5nUqRPNJk8mUc61CxnO+icsWEAeHx/cXN+vbv6lfw5pNBqqVqjAugULeH3nDj8vXoxWq2XVhg2kpKSQN29ePv20C2PHDiUmJgZBEChWrBSlSwdx9OhOXrx4zKlTu2nSJBvR0RFmaefLVxo/vypoNA5GGapBq82Gr2+t9DgqlRo3t/w4Orr/t4v+3nQzLIwBW7bQu1Klv5qVD6ayZcvRvWtXipcpw++HD5OUnMyuP/4wi/MuIYGf9u2j6fjx5OncGV8vL96uXcv1b75haJMmZBP5ys4KOdrZ0c/Pj24XLmCp8O1slGu3q1Wja+7cWZah/zgTC/R6fPPlY2VAAOj16PV6hqxZw8mwMH7ctYsC3t5M+vRT7EVqAZVWS7dGjVhw/DgnXr2irp9fRprimZ5Gg4tGQ1CuXFwIC+P0q1cUX7uWHsWLs7JRI+zUaukpli1zC1Nc00Ah/i/1zDi7cTaGad0dJLUeWdUgW95LaZDTbdT0yVlXW1uW11pYVkwsrJGlOYVYYypnaiGTt1qjwVmrpka1itSoVhHIOBWwb98+DBkSQv78nhQsWJC6detx48Z1Vq1YSt68eQkNDaWo/++4udhnaN5NWUnVny3VllQ8a8+s1a2UtsGSDzFJxDctpWlErgkBfHwMxwF7eeUwW7q0JPFnES+Bi/9bPpNb6ZAy4VCyPG6tuKb0vLwW4uTUndu3+wDw9OkBHB0r8erVRpKSHhIRcRgfn6oEBg6lWrX1eHt78eIFxMSYW0+AvAbZ3d0Bd3eDVwdno3pq3pIlFAoI4C7gX6RIeiG8vb1p37EjRYsVy8z8+5KfH2i15NZqWV68uGEfRFoaXx46xOHwcNafPIl3jhxM7dQJBze39ApSaTR0aNyYRX/8wZGHD2laq5ZVTZe9VkvdKlU4cuYMl27epHSDBrRv3pwNS5eikeqTYNbO5NqTZdux1lVM9a1Ug/y+ylRbslSJllhOGWgrTNacQo6yWmiFmmQAjVZLUJEiBJk2nhqZ+6x7d4aMHk2RIj7kzZuf2rU/4fbt24wZ8w358xfk4cNwWrbcg5ubFqPXLkkTL6nvrWQslPt+tlZpJStaiaCSaqBGcjcq49whQ2MqRbZUuJYTULFJqCgN0ypNvIXiW7ziolReSrXJseO/p1nLbgwb1pe4uDgOnTtHkwcP+HXrVh4+eMDB48cJKl2aEV26sGbGDHxMJl2mzLVaczMKE3MKxsBZjRrhv24dV7RaAnPkSOfZ++pVgsuWpXiuXNL1Z4P+WSYWL15IduJh06fz6NkzfjtyBIDcXl7smTmTQNNZ3zrDzsbao0cztmVLmhQvLr1mp9ORnJrK1ps36bJnD7Xz5uXUy5ekGOsoedAg7E22K1KdIStmF3LPZCSiqZHbWLnJRNYAstUjpqUysLQvtiQlYR9iYmHtubX4Smy4lOQlIkEQuHDxIseOH2fEmDF4enpy8/x5Tp09y+Tp07l68mRGZIt6e/v6Nbfv3KHnqFHcf/KExjVqMLRTJ+qXLWuwoZdCeDaWl9KvctJfqj1JmfbIbDC13EwaHw99+3bBycmZESPm4uLiZpU1a6YQUrLPmhmf3JK5Ek8wtswu0ieG6jgePjTY2Tk6FsXDowPu7hVwcioMRPDu3VHUageCgibIVhtIn6RsbfVz/PgQkpJ0rFj2IyqVitiICAqVLs2FI0fwM7lkM5GpIEb3aVkysVi50hy5GQs+ftMmbj57xo5TpwxJu7vz24wZVKlQIf19QRBoMnQo/dq2pW3Dhpkrz2SylJLC7uPHaTtwIDUqVuTi9eskGj9IwpMnOJlWSqyADNOkVK47yE2GrHWfj2G1ZEly2Eiimq3aCFvGlwPZUumKxVYmgJwVMPyhdktSTFnIHUEQuHT/PseOH2fYqFE4ODhw8eIjLl68ycSJg9i+/YHkkeIAkZExPH16h127+hMWdhU/v4aULDkEb+/GqNV2kjoDS3YknKeYmVOIr5ZmF84akecKKXcrci5VJOq27/bt6PR6FjVoQHYlM0M5exFxYSwZ9/IiQe9gxq4U25KTAxEL1oYUMWyxs0ugaFHDdy5UqDBt27ajasXyFClcmMjQUE4cP45er2eqyXOHLeGvpNPr9Yzeu5cX0dGsa9MGlUqFLiUF37lzOd67N/4mgGxZj8MMHpj+NzbpWRphGyvHM1cu5v70EyP69WP28OH8tGMHrSZMoFeTJozo3JkTN28yfvVqVGlpVC5bFsRnfYsapT41FceZM6mSJw+727en+ebNZtk/TkigmJxxt5QW0xbQtJaOlTRMp+o4aDQ4WHSoNJHFjKKDPHQyYNVaD5G6t6axtSZQlQhaW3Gs5SlFGo1y4W6DVEDFcuWoWK4cQ/v3p0KtWuQqVIhJo0YhpKWRFBOTYZYj+n5dvvySX3btooivLw9CQwHYf+IED548QQWULVyYMgUL8vL1aw5fusS9Fy8AOD9jBkGFC8szldWy2ZoQSAyYpnan1WZsfpk4cQZjx35Oy5bF+fXXg+TPX0IWfEjJOUt5KFYiiIW2qalLaT3kimJLyZ45zI1s2eYTG/sFjo41iY4+TmTkSkDAyakEen0YKpUaP78J6fxYA8jx8RnjlIlXV1fze9O1T59ptGtXkXU//0GdOo3Zv/8oen0a2fIGkGBF6ZF5G5IC8vKStB/29PFhx8aNDAoOZtFXX7Hp998JnjSJnq1aMbJHDy7eu8dX8+aRlJxM9UqVzEdLEaWp1TgGBFC8cGEOr19PvU8/NXt+7949ypaVOHpd1J/FMg5A46rOJK7fB+dlFSBbsiZF7zMvlwPISkC2LZFnGgfSxwCF2jLJ8Uv8LKuVJAXqtFpUQAUfHyoEB/NFt2406tKFgIB8TJ06AwcHNdmzJ6LVOmVKYtGiPhw+vAoPj4K8efMYgCdPficm5il6fQg+PkG4uJQgKek1YWF/EhNzE4C6dU/g5VVdsihSk3A5JaO7u6HXZfPykleQia/WZvJ6PZPr1SNk7178ly3j965dKZMz5/uPVTIzrTSNAzoFnmAsWbQka7bv4lUbrdaZiROXM2VKXypXrs2pU2f4+ed16PV6SpYswdvXr3kbHc3U8ePNM9VqpZG6wg0CE7t2pfLkyWyPiKBthQocvnaNt4mJ+JcrJ68gk6F/FkC2QhGvXwPwxjgl6t66Nfk9PGg5ZAhfr15NPm9vFg0ZQvPSpQ2aOonljJexseSdPh2Ar2vVoravL2W8vLgWFUX1PHk4+fIlex8/pphIff8v/f8mtVrNjg0b8AsIYIrR/VWDDh2oV60aK3/5heevXtG1dWtyenqyae9ekq5fx0GtpnaPHhy7cAHd6dMkJyay4+BB7DUajl6+TGJSEkNbt2bgIsOO7F0XL1K+YMG/5WYBX18/fv55NytWLCI4uDYrVuyhZMmKfzVbH0wuLkPQaqsiCOdwc+uKq2shHBz80GohNLQXTk7+Hz1PN7fsDBw4gSVLZuHi4kr//p0AGDSoBytWrM7specjU6RRdkYZbeg7NGxIrpw5aTtsGDNWrCC3tzcLvvqK1p98gp2VfRmRb97gU7UqALNGjqRmxYoElSnDhWvXqF6xIifPn2ffkSPSAPlf+n9JarWadStWkLtwYSZM+AqArl0bU758Hfbs2UBo6APq1euEu3tBDh9exZIlCSQkOLFyZQtu3drN2LExxMXZcfv2dlQqDc+enSAlJY5ixYZw/nx/AF68+A1Pz6r8Hbdc5cuene2dO7Pi/Hk+Wb+e7e3bUyNPnr+arQ+mtm37UKFCeW7cOEnbtl0oUaIgfn4FcXESGNSvH16enh89TxdHRya3asW3+/eTx92dZvPnAxC8aBGbQkIMJrJZpH+UiUVMjGA2OTLNkFUigX31jz8oU7Ik6HRs3raN01evMr5rVzyyZZPdbTpn715G/PYbj0aPpqCzM7qUFLLPnEmycVNfcU9PUtPSuGdaFgDl6gElRmdSYbbW1JTMipSaQnwMUqp1eF91jYlsmUfIfRcl7yklY1n0ej1Hjh2jYefOmaKUK1GC0kWLMunzzymSNy/o9YS+esXt+/dpVK2adQM6vZ7tp04xauVKtA4ObB8+nCK5cllfb87Keth7mPZIaSTEbPz44w/s2rWDlSu34u6eQ/JzK9EgKzW7sOUbV0ppY40Py3sTWVZfauotQkNrU6LEbVxdvTJVWxatVjK57UpOTmLSpBacO/cH7dsP4uzZP3B1dWPgwDE0bdo+UzM1jaNZMrE4eVJSdjgGBZFsNPw8s2mTYaUN2HX4MH+cOsWEkBC8PT1l++fSTZsYMGECdw8epFjRoqSkpOBTvjzRsbEAlC5enNdv3/Ly0iXzgljeS4VZ6dtpqD9Y7Eh1Qcv79yWlWmW5Z0rEmRIewMKkTqoirBlqW7NbketUUoxYdhZjh9Dr9Zx68IDaJm9UIipSpCR+fmXp3XsiLi7FiY6GN29ecPPmVUqUaGp2kIwlay9e7OXChaGAik8+2Y67ewmrbFj6PLYWZvpvCjOdpGnmG1mJetbCfGDFmTOsPnuWnd264ensLG8nIuWxQsZeJAHnTOYqFq7ZM7Fo2TzE7U7G+ZasY6Tw8AfUr1+Za9dukDdHduv1YcvA3Epn1qem0mbaNHafO8egZs3Yfe4c+by96de0KT0aNMhcj7UMGz2tydB/FEB++tQcINvZpWBvb09Y2HN+XDKf2d99h1qtpm/PnswZPx5XU9lsjKDHbt+m7vTp1ClalJ979iSXiwvPo6PxmzKF7FotMTpduncLwahlBqRBl5I1MilDf1tgWAlAtsYX2Jb2SgCktedSI5TpmhWjVGt8yqEX8f+sAmQl9SZHFh1Vr9fzMjycFr17U7dKFQZ16kSfceOY8cUX1DTZcirt7MZ7ISWF8T/9xIxNm1jUvz/2goBWraZS4cIU8/Y27Mq1BZClgLJUmBKDSYl2moYanU7HkCFfsGnTLwwfPobPPx+Kk5OT1eKlpKRw6tQpzp8/SVjYc5KTU6lTpyXVqjWztj3ALOx9ALKUKaDl+G4iy7FJEFJ48aIWOXJ8iqfnYCVzCMWDhjjM3j6Vd+/eAgkMHlweH5981KrVkv79v870KUwelLIEkO/ezSgUhu9gb2/Py9evWbJuHdMWLACgV/v2zJ04kezZskknZtHezly+TO0uXQgKCGDzkiXkyZmTyNevyV2xIjm9vHgZHp4eVzCaDykmOVmkcPIrNj9T0gUt7y3pfZ/JiVJbc3ZbIjmr+Zu5gQN5gGzr9BXxLi85sCzVSUTALjU1lTCg1ZAhBAUGEjJ8PIMH96VXrzHUrNmQqKgMu2Qx4JMDeCkpApcuTefcuQnUqLEABwctjo4O5MoVRN68JVCpVJL9Um5/gbVn6vhYc0bkALK4/vR6kvV6hq9bx9ozZxhWrx4j69fHxdHR3PRFJAT0qamcefmSE48eERoRQaqdHY0rV6ZNcHAmG+Q30epMANn0XzzBUAqQsyrXDP4I9PTtW59GjZoREjIy/ZnkOQtKAbIl6Q2ufV/HxCDY2VGsTRuKFShArcBAvhs6NHPHKWNw5fm3AsgqlWoQMBLIDdwEvhQE4biNd4SrV4X0Aenw4b306tUMJydnmjRpyZIlyylTpiiLFy9hy5bNRIS94uAWg39WayPou8REvpg3j91nz7Js4ED6LVpEeEwM12bOJMDXF/R6Et69Y/SWLRy4cYONn32WsfFPTEoFeFbVA+8TlhXKquoC84HGkiQ3/MkZ2MtpQKVGrPcpg0xZsjwpkOPNCr8tPvuMxjVqMLhrV9vxpcKMdXT88mWW7N5NUnIy9mo1p+7cwcvNjRWDBlHe2FYzkTWA/D6TMIUrGE+ePGHoyJFcu3GDcWPH4uTkxJ59+7l37y6CIODnV5Ds2XPw22/byJ+/ANWr16FAAT9SUtKYN28GU6fOx97ehTt3rtOiRU98fHJLbtKTA8ji+LbcaVpTgImbpCCk8eRJf1JSXlGixE5UKrVsNdgCz0qV90ePriE+/iUtWw7Azc0jU5xq1QzXLAHkFy/SGT1y4gT1goNxdHSkWf36rFqwgAqffML0ceM4cPgwdx884OSuXeaJWLTXRJ2OEdOmsXnvXpbOmMGomTN58OQJZ3fvplJgoLFudXw1axa7Dx5k7bx5VA0Kkk4vKyTXP7MyuTf9z6KsM5EcoLY111fKmq041viQCpMTl2YnpcppQuXOAJfblCYlT7TazBrQXLkMP+N9xz59KBNUjaFDR0oC5KgoZRt1nz8/w/nzC0hJScTe3pHnz8/g6OhGmzbLKViwsmxfVaIxlQpT6xKUAWQRs89fvGD4mjWcuXePccHBZNdq2Xv5MndeviRVECjo44NXjhxsO3WKPF5e1K1YkUJ584KDA7NWrmTG2LF45s/PjZs3Ce7cA19fX7N6U3KUu7j+xGTZZuTKLg5zcRGYPfsLQkNv8fPPB7Czs5M4MMfoPctYD+mMWFv6sbyXYHbDjh08fPqUAZ9+algBsyyIcRnub7NJT6VSdQTmA4OAE8brPpVKVVIQhFCl6VSuXIt69Zry+PF9IiMjqFGjAg0bNmH58mX88suv5MiRHUEQJP3eRcfFce7KFSauWkWRXLm4u3Ilr1694nV8PB2rVqV0/vzpcZ0dHVlgCW7+pX9JAQmCwNkrV8gjPmjmPalmQAA1ja4N0esRBIHl+/ZRdexYrs+eTTGjR4O/mvz8/Ni+eTN/HDnCsuXLSUlJoWGjJgwaNJi0tDQePXpEZORrhg0biZ9fETOZV7p0WcaNG4qLSzaePHnAhg3L+fXXU7i55frLypOWlsKTJ31JSnpIsWL7UKn+e3aMtWv3NBukPzZVqVCBNk2bcvXmTeLi4ylfrx71a9Vi6Zo17N24Eae8edM1zJYUGxfHuYsXmfrDD/h4enL3yBHexsTw9MULWjdqRJDIzlir1fL95Ml8P3nyf6Yg/9L/LAmCwJkLF1BrP9yXdr58VciXrwpgWhUSuH79J5Yvr0VIyHkKFizzwXl8DMrn6cnG4cM5cv06P/7+O4lJSTQqW5YBDRqg0mh4FB5OeHw8x775xuAWUoRIK5QqRcg33+CSLRuPnzxh4bJl/PnnKZyc8stn+h8kvV7PjBmDuXPnEmvX/mF1D8N/grq0bv1B7//XNcgqleoscE0QhM9EYfeBLYIgjJV5Tzh50tzEwsEhjeXLv2Hz5uU0bNiS7dt/RhDS8PHJxd27t1i4YAGDBw1KnwqdO3aMIydPsnzdOrxz5KBtgwaM6NoVlUrFlWvXCOzWjZvr11Myf36SU1JwMC5fv3z9moR37/DLmZO5O3bQqHx5yuS30uCyqhZQumSoUOthlQdb+UtdRUvoIL+yIZWEmjRpDbLCXalmV8t7qUzlNOpZ1SDLhSnQHAuCQNU2bXgRFsbZrVvJkzOndBmsqZkUmq2MX7OGqw8fsn38eDTiU4TEvH/MVQpx2krbnVJtn/F/msYBQRCoXLkS48ZN4pNPmkuaTGRFMWPNg5ClBtl0TUwUePnyEFevDsfZuSBBQRvQaJwVW/uYrnLKeyVmGtYsXwCaNjVcs6RBfvfOLCwtLY35ixYxd+FCglu1YsOmTQiCgHv27Nx/+JBvpkxh1JdfplfU5WvXOHD4MOs2bcLFyYnWTZowZsgQ1Go1t+7epVStWpw/cICgcuVITk7GwcGw6z88IoLoN28oWqgQc5cto2716pQPCMhgRKlW6GPQ+6pubaWlVO4YKZO3iQ8gKRlta0Vaqrs7a0XL3WCuNbZUPUZFyRu0Ssl5y0YstlUw2c2KNMh1Ro7kzqNHnD1yhAK+viRosklqQpW6ehRfTfT779N5+PBPQkL2oNE4KFpAs9ZnpbSimUwJsnBKnFWSYsTC/kMQBGrUqku/fiHUrdte8lOZ2JFbcZP6fFILAVJa9vv3j7JixXA8PLyZMmUTHh5uknVkWRSzfWa2PqCYxEzKkSmO0Rfz38LEQqVSOQAJQGdBEDaLwhcBpQVBqC3zrrBnjyBpFnn8+A5mzRrIsmUHuHHjDPPmjefNm0g6derF/Pmr0j9I4cK5ady4CYULFWTcsGEG7bKxFSTGxeFsPEAkoHhxrt+5Y5Z/h8aNGdq9O1W7dMHNxYXYU6fe3xBNjpSCjKwuI0o9kwOVNgCyUqAsaecmZ2KhRLpLdYKPAZCthZnClYBbIDkhgWqtWnHx2jVeXb5MLpN2V8ZuymaYlcnEzUePKN25M6cXL6ZKqVLS6YvLIL6+T5hUerYoK33B+B1TUlJw8PMj8tYtvHLmzCQ5k/VqyUHRdFUaJgWQ3759xoYN/Xj9+iH16k3D37+9wa9mFs3hLItleS+WY1IDjimOVBhAly6Ga1YAcmqqubw3gbP9+/fTvWdP/jhwgAsXLjBh0iTCwsJoHxzMxp9/Ti9koZIlqVmtGgULFGDCsGFm2qDk5GQcc+cGoEpQEGcuXDDLq2n9+sz46ivK1asHgBAeLt+nlIBmW5WvtO0pbctK0rA1wcxqXnJ9z+I1Tpk0AAAgAElEQVRq2A9gCJJbpZZKSgxQ0oGyFEAW2zYoNQi2JLlNZrlykebjQ81Rozh1+zaPt2/Hr3x5wzMvL5I1zplYk9tzYNnHxWF6PYSFPWD48KKMHn2IkiXrZaoXy3vT//ed/IoBopn9rYkhOQWSFCMSmSbr1QiCgFar5sKFJ+TIUUDSQsZ0zcoEwzJ7SzZcXSEm5hUbNvTn5csbdOr0NQ0bds1k6y1VV1J1Kjesm0hukilrFmp89HcxsfAC7IBwi/BwoL5lZJVK1Q/oZ/ofHS1diYGBraladR9jxvRi4cI/WbWqGa1b58PfvzphYRnx9Po02rUbTGBgBd4aT0vVGDvbhn2/ERBQhh49ejNixJdmfPTo1o1F8+eTnGywj8mVOzcPUlMZPm4coS9e4ObqSu8uXejZoUPGS0o0oEqA0fvSh6YjBoQa6x5XbWejNiZnSEPtqsnoeaYPKWdnJKdNFachvs+KJvR9wsTCSqICvl+1iviEBHQvX+Jo2mRhLU1rpAQ46PW8NW4erTpoEACfd+xIvaAg6leujJuLi3TaH6IpF8fPCrC34NsW7T16lNKFC+OZkADPn2fq9A5aLR6mMFdjB3fPiGMSilLjjhxAvn37FlOnNqBFi4G0br0TjcZeMfCWG4il/ls2J8t3TXEs0/0Qk4v4eMtPbainevWb0qlTV7p2686hQ8do2Lglvr65qFyliln/SQP69u1LzSpVMhVq+2+/4V+0KF8MGMCg4cPN8u3Ypg3Lvv8+HVDnypmTJ6GhDJ04kafPn+Os1dK9XTv6ffqpMtllCzxnRbZ+yMTVRNbkkJwsknr3Q9IF1FotplMv5cSUtW6ZEW5Iw3Saq1kHklvesCU3FcZbtGMHzyMjSfj9d5wcHc1cszoYefIwXt0lTpq1tmJkWU6dDl6/fgvAN998AkCTJoMICKhL6dINcHTMbsailDZVPJzJgWapSbBWazqh1DkjzD2bWXwzLaoUiSZHJt50Ojh06A8KFixCvny+JCVlzl9KFsnJOjkFmfhZaOh9Fi+uT9Wq3QkJ2YJG44Bp4Uocz/JgYZ0uM2/K55jvZ/pmbQ9yej7vleqHk6XaWiURhiAIy4BlYNB+yCU4fPiPfPNNH77/fjDjx6/lq69+ZMqUvuj1yXTt2g87OzvGj/+e4OAaXL0ajqOjW7p9cmRkBCNHDmHDhs38+OMi6tWrx+HDhwFo1KABa1asAMDFxYXfNm1CSEsjIjKSnfv3p+d//PRp6teowfBJk9h3+DA5vbxo17w51QIDqVGxIjmyZ8/MtKGM/LpnDw2rV8fzXx/L/xM0f9kyUlNTs3zu+/tQjaAghJs32XvkCGeuXcPNyYklW7bQduRIJvTtS4USJShbrBh2ajV5fXz+4/50PxbpU1NJTEriTUwMnqal1/8w7dy5mh9+GEO/ftNp2LCvpOLrf5lmz/6eL78MYdCgfmzYsInVq9fSq1cP7O3tGThgABqNhu9mzaJB06Y8v3cPT0/P9DYeGxtLn5AQfl6+nA2bN1O3Zk2OHDfsu65RpQq/LF+eHnffxo28S0gg4vVrduzbl57/yfPnaV6/PiO//prdhw/jlSMHwY0aUa18eWoGBlqVj4IgsOnAAepVqoS3h8d/uJb+pf8GLTlwgHCjT+7/NPn7V2TPHoELFw5y/foRsmXz5ODBlXz7bXtatRpD0aKVKVCgLGq1Hdmy5UWt/u/Z0H4IpabqSUlJJjIygmzZcv5X8rx8eQN79w6nQYOvaNgw5KMszPyV9I8ysVi61NzEwnJCnZgYz8SJ9fDzK8OXXy7l0qV9LFkyjH79ZlCnTjs0Ghgy5BMuXjyMl1du7O0dCAioTHj4M0JD73P0aBhlyph/0a1bTxIUVI1Nm1YwcuRnFChQiKdPHwHwySeNOHTogFn8MWPG8fnnX/Dq1TO2bdvKhfPnOHP2LOXKlqV29er07t6dgvnyGSLr9byNisLD33DwwIhBg5g9bpy8ps2a9lQuniXZWu81/beY+ibr1ZlYy2o2Wq1Cbxcf08RCSmtjyaCSZwo1SjUbNODEqVO8fPCA3MYlZ0UkV5m2ViIs6q3XyJEk6nTExMVx88EDUvR6srm4MG7gQLq1aiUP3rO66iH3XErtoFCT/NXatWw5cYLtkyZRqkgR84dKv7fUGqBE2JmLF6lZrx7Hjp2gcuXKZhoUObtnay7lTFdL7e/HMMkwXY2npGbJxOL1ayFT+uJ8EhMTadmyIfnzF2DVqjUcOXKYkSOHMmrUaLp3746aNFq0bMnuPXvImTMnjo6OVAoK4s2bN5w4dYqkt29RWaxc7N+6lUb167N+40a69etHiWLFuH3vHgBVg4I4bWGKMWLAAEYMGEDYq1ds2buX81eucPryZQL8/aldsSK92rY1+BQ3UnxsLG7GA0r6t2vHj2NFW1mUrGAoNeuw9fGUyiRrWlRrKjIlaUhodZP1GasoctpAMVkzB3DWJEu7jwgLMw8Tm2KIXb+Zrpb8WjkqufmCBey5cIEnGzZQIGfOjGfWtNYS6ZrKL3c4m5xlw+zZg3j7NoKkpESePLmOXp+Co6MzrVqNpVatPqSmWu9yCpT9kuYXYjElp4W2zEdM4u86a9ZUNmxYzbJl2yhSpJxZmd/HJE1umI6IuMLixeXp3/8YBQvWUOzFx1bZrdWfrXqQI1N803z6b2GDbGTkLHBVEIR+orB7wFZbm/QWLRJsqtx1unfMnx9MVNRTevVawIYNo+nXbzHFilUWreCk8PjxBRwctJw6tY2nT2/QuHF/goIas3LlSLZt+84s70OHBGJjwzl06BeKFSuLSqUiLOwRTk72FC0awKJF43j7Norr189RqlR5mjfvRK9eg3FyckajgdTUd5w9e4KjR/9gw4Y1fP/9Qlq0aM3p08e4cP4Uq9es4enTpwBs3bABBzs7mjdurMxMw1qYkme2hLBFrxQfDiGHX61lYfpvmZVan5w1EwtrGVhb7tNoJO2QlAAVa1mBtN3TvXv3KF6yJJcvXpQ8MUyKD0XHgss9kwOhxntBEDhx/jwhkyaRI1s2qpcvT+/27Slkcltoa81V6aRNijclxmxWyrv22DFG//orJyZONByUIkUfCDTeJSZSqlcvJvftS0/Trmcrm1/StJntH5X4Y/6YoPlDAHJ4uGBjqdIAknv37sTdu7eYM2c+s2fPZOLEr6lTp256/NTUVM6fPY2zszO/7dzJ5cuX6dWtG61atmTS11/ztdhfPCC8e0dUeDjrN26kTKlSqNVqQp8+JTklhWoVKzJ68mSi3rzhzMWLlCtVig4tWvB5r164GRyokhgfz4kLFzh04gQrNm9mzpgxdG7WjKNnznDu6lXW7tzJfeMR7jvmzCE1LY229erJy1Bbz5T0MymSG6BsTews41uLJ6XQMP23aLfJenWmSZxUt7RMRpQErq7goDP6+BXbIpsAsjjMsiPYysDCgW5oXBwFBgzg/IIFBBn91GZ6zxrZ2jEHJJPZJMMWIDQV5erV06xcOQSNRkuRIrWoVq0HXl7FMhVTipTM2W2BSqnPbgtAbtnyK2PGfMHWrUfw9y+ZSf5kBSBb238ZH5/EDz8EUL36UKpXH5iJt6wCZPF7SruJNZID1KbtQX8ngNwRWIfBvdtJYADQByglCMJTmfeEpUsF2cKC4YMZ3LfsY82avsTEvAKgYMFK1KkzEBB48+YJ+fKVIyCgKfb2jmZpXb78Gxs2DKFLl8Xs2TONokWr07Hjd7KNOzr6OT165GfChE14eHjyyy+z8fUtzMiRCzN99BMnfqdPn0aZylChQiWWLVvPvHkzWbduNV9+OZwhnw+kYMGC1gWztR5pSyOiZApmRQibZuVKFDPWkpeqS0mtsukqlbAlv6KeZMmjkiqzReLqkKN372Lw8XFn2bJV9OjRK0t5yqUv98zqTl+JAT45OZnte/ey5/ffeRMdze5VqzLHF0tQJdpfW+Ajqxpki/ARmzZxPyKC3wYMyPrHVNDWN1+6xIjt23kwbRr2Ju2neIC1cTpAmqvBkE1qE4zc5iEp0KykikzsG83OPwggW6YppmPHDjJwYG+eP38GQIUKQfTr1x+NRsOTJ48pG1Capk2b4uTkZMbs/gMH6P/558z/7jt+WLwY/yJFWGI89tWMRIWLDAvDx9+ftYsWUSBPHuYsWYJXjhys+v77TBVy9OxZ6nfvjt6icsoWK8Yv33zDjxs38sOvvzK0SxcGtGlDMUs/4UraaFbiWf63Jeze55llmJQ60nSVUAMnY9gDImWjK1UkKRybfnKc6TAMa8515TbnKeBXl5aGU5MmzAsJYUjHjplXu+S+i8xEQQqUmya8UuDP2oqRXp/Cn3/+xvnz+4iKekJIyKH0+EpFnIlVpZv6rIFKa4DTsnlMnTqRU6dOs2/fH5JiXm6TntyBTab/ly7tZuPGvowd+xSNJgNTfShAthZmmb6YsgKabZ1G+lceFDIKw0EhN4ChgiAcs/GOsHattHAHaXkVGxvBuHH+JCREmz3TarOhM86GS5duQdmy7ShZsjXXrv2Gu7sv9vbuJCa+JSVFj4uLDzlzBpCQ8JKoqDvkzRuAq6uPWSNUqRI4dGgBTZsOxtXVlRkzGnP16gFGjdpE9erNcHd35ty5A+zfvxp7e0ccHOyM9o47cHTUULCgP/7+RQBISUmgf/92PHx4jydPHgIQHNyRYcOGU6FCEPb2hm8oabhvC7V+qKpXpIlVkry1wV0uq0xAWS4h0VWsJVGIFWVJSXVYe++PP/YxbNhAxo2bSqdO3bIMym11cCUKU1n3OHo9kWFh5AsMRPfoUcZpfHLb3+V2VpvIGhjOyqgh8d0jo6Mp8913/N6nDwEmn9JZnaHJ5PU6MRGvhQu52L075QsUMDzLAkDOtERs0txpnDMNKLZAs7Xqlipe9+6Ga1YBMsi3IXFYXNxbAgL8iYyMNHvm6upKvLEAzZo0oXXLlnTq0IGdu3fj4+1Nrly5iIiIAMDd1ZXygYG8evWK23fvUsLfP8P0yFgonU7H/CVLGNCjB9mzZaNT375s3L6dX5cupVmDBrg6OnL4xAlW/PwzdnZ2ODs6suzXX/l17lzctFoK58+Pv9H1pi4piY4jR/LoxQtuPHgAQIuaNRnXrRuVSpZElZpqXqEfGyDLVaw1AZjV+NbAtTWEZQEIrXkusCQphWz6IRjxsdI+w6wJYmvAXqLxHTx7lgEzZjCya1f6t21rnpbcDFPMuJw6XGqia7E6ZO1sFNP/yMg4Bg50Z/58HXZ29jZXjCzJloZVil2lz0z3Ji8Zb16+JLBaNTatW0dlozmS1NgpZU4mNamynDi8fRvDiBHuDB58DF/fmmZltFY+JdpiOZNaMb0vUDYtoP5dvFgAIAjCYmDxfzqfbNl8WLDgLa9fv+L582vo9ck8f36V0NDLREe/4smT09y4sYsbN3ahUtkhCKmZ0ggM7MPt21vR6Qw9pHnz76lZc6hZHEdHZ5o2HZ3+wSMiHpMvX3H27l3MunVjKV68AkeObKJr11F4e+djzZqvqVOnNUOHBtO4cXu+++7n9LScnJzZsGEvYDDN+Prrr/jxxx/YunUj06d/w5gxo/5DtfUvfSxq0KAJ69dvp3XrBlSuXJ38+Qv91Sxlom1791K5fPn/ykbCDyVvV1cK5sjByadPMwDyRyRPJyfyuroSm5T00dP+p1OOHDl4/jyCsLAwbty4TkqKjps3b3Dp4gVehYVx6tQp9uzbx559+/hq4sRMQBqgS4cOHDl2jFfG5fgp48czcay5NZ1Wq2X00KHpaOL+o0cU9vNj+fr1jJk2jYply7J5925CevakRJEiTPz+e9o2akSX4cNpXa8eG+fMyUjL0ZHfjJrnhLg4vl61im9++oldx4/zVffuTO/T5z9VXf/SR6L6lSuzY84c6vTrR63AQEpYO3fgL6SLF7fj51ceO7vMB+n83cjDw4OihQtz8vTpDID8EcnJKTve3sXSFY//K/SXaJDfh1QqlbB1qzSv1ib9ljM3KZu/5OQ01Go1r17dJSEhiT/+GMbjx4coUaIz9eotZdu2Rrx6dZpq1aZRokQ3PDwMU47/Y++846Mo+j/+3svlckkujVQSSiD0LkWK1EgXFRBUFEXwUfSHBURFEQWxIOojimLBLiIqKAKiAkqTKuCD9NBrSKghpOeS/f1xt8lmM7u3dwn6+JjP65XXbWZnZ74zO/Odz/c7szN2O1gsxRw7toZatZoTHBwlNFqPHVvH5s1ziYmpy803j8disZCSsoZXXhnJ6dNHAIiMjGPlytMlz6ktpeLiYrp1q0dGxgUyMy+xadM+6tdvKLSsFHi9ubYIOlN7Wg+yUdLeeGm1ZfG0eb52Gy9fvHBa+TzNfnrj+AF4883prF+/innzfiwhot448c3G03MoiZatyLLMxKefZu7XX/PDV1/RrH591z2Rt9isB9mXMD3odObHv/+eE5cuMe+mm7xL1yhMlcZXBw8ydutW9g4dSnhAgHgNo567RuuNUnuSNffU6x+Npi5FTnzt7w03uH698SCfOqXvQTbTrsr0S7cgxQUFWCwWDhw8SE5ODpNfeIFF33/PoOuv55PZsxly++2sWLmSp594glF33kmi4qUH5MJC1qxbR5NGjYjRGj/u9Ddu2cK8+fOJiY5m4pgxWCwWNmzaxF2PPsqBI0dK6qB4165yzyptvuWtt3Ls9Gkys7PZOWcOzerWrVi79Va/mnVxmQkzUlQePMhK2yy2BwmPF9Yrhl6yNgr0E/FGwarjq+p+5gcf8O3PP7Ny5kzXDjyevpRVpy9yX+rUR5k1JO57mVmWch7kjAzXEs533pnKDz/MZvz4JUREtC4Rw8yBG6IqMfLUG0xS6d4rc9S1W5Ap06bxn507WfTZZ+UyVy810ZbFU5jyu3HjYubNu5vHHttNSEiMbvn0XovolemNbUazudowdb1r73nyIP+tCPLSpbJpsmOk30R9WN2QL13KByQKC23k5Z3Hzy8Af39Xi1MquKjoEps3T+SPP1yO8KSk6wgNjaGw8DLXXfcGMTGuxS35+aeZODGe8PB43nzzBBaLBbvdRXzz8tI5cWI7Dkc4bdq4rDpRA7JaISPjDBMnjmbKlNeoVauO4SxbmSUL2rPNRZWlhqfpPjfMfPSmx028IZrqAVl0YImnfRvV/2tl8pUgmyXNhYWFXH99B26//V7uuGM0ejBSnEYwK5uaKL/86qt8PX8+P371FdFRUcafcYvCRFamUXxfpqUF8f44cYKeH33E2QkTjPM3SKPctUYRNPrpJxZ07kyz8HBX5ak0eEFREc9t385DnTsTHRxsPKIZDLrq+U+j9Y8ivqGtWvd5G14R5EOHZN12a6bNlzG6DOq/oKAAWZYJCA7mwoULWK1WQjWbjmZlZTF52jRee+stAPr37k1sTAyXLl1ixrRp1HJ7Dc9fuEBUnTqEhIRw4eBBrFYrOJ0UFxdzJi2NP3buJDgoiM5XXVVeNgVOJxcvXGDUs8/y8pgx1FevSzbbbo0I8p8NPcWjt7RAexhHeHi5AzdEqyP0stDLStS2FIheizpumUMz3IIUXbpE16FDGXLttYwbMUJ8YIn6pBB1BnpftunsnKGto2JHqJAgz5v3Fl99NZunnlpORERcmXuiQzj0xiVR/9JbxSVSI4qoRmqnhCBnZXFg715a9etHtnIImsCoEi3B8bSLj7qczz/fmqFD36V27atRw253bTu3bNlz9Ot3HxER1U1/kGc2TA9GXbSue3L3v2qJha9w60XT46G3DgDlWpYDVPciKSqCvLws0tPXEBKSREhIEt980wCHowZt2jxLYmJ/MjMPsXfvO5w8uYarr34Km81FkLdu/YJ69bqRlXWO1au/pF27YTidEmDB4ahOy5autXhqEqc0HCXMagWHI4aZMxditbrCPX3MW9JgRBa66H8lnrr3qq818cvQY/d9WzmdXRpLm5RQVswfu2rG4WPE5bTXWjlEjhkjOUTlkiR/Xn99LgMGtKFZs3Y0b97a0Lo1E66Xl1FZlJvPTp3KB598wrqlS4kODzcmr3phgrbgtSfOS1zMyWHg3Lk83aOHWBaR3EbtWf28Kqy63U56djbN3DsnKCgqKOD+DRv46MABdpw+zaIBA8qyBGWUUEYlpeEpdawOy8srGdEsDte9ILsda7jrIyolKUV8kXNMtFbULJTXYWZgEcEmaFei92tT9tvOy6Oa+zjXnAsXWLNxI7Vq16ZR/fo0ad+e8LAwpjz5JP369uXosWN8+OmnLP/lFx575BFq1akDwNdLlnB127YUFxfzyYIF3D1iBJLVigWIq1WLOOVLG6M2Z7USERPDwlmzxJaztx2zIsTYrKFoJh8jS0c9kIjeUQmhCiqXldHsm+gbPDM6STTcqMVUDs1wOIIICncF+gFzZs+mRZcudGjXjo6Ky0+bsJFxrx1QTeokC+Bwf4CrRJs162U+/ngGs2evJTQ0TjdL9ditB73h14wKFd1TF1e5DnInfDk3l+tGjmTyWNUhaIJElPHXarWY0hHaOGFh1bl8Ob3cfVmW+eqrh1iz5h0OH97ApEkr9BM1AV/1l7fd9m9FkP8qnDz5PatWXU9gYHWKi53k55/Fbo/muutWY7OFYLVCTExbNm58lKuuuo/Y2FaqpyWiourRtOn1fPjh7WzfvoiHHvqqUuSaNm0SwcEOHnnkiUpJrwqVj3r1GjF06Eiee24cb7wxl5o1a/xlsvy0YgVzPviA2jVr/nWeLx/w8datXFOrFg916nRF5bb7+XFawz6dxcU8v3MnHx04wNoBA+j6/fdkFRTg8GShVqEMlq9eTZ9bbqFaRARWq5WMS5fw9/dnx/r1hLs99le3bcvUadO47eab6XB1qQdKkiSS6tShyzXXcM+YMSxeupRFX3xRKevnX/j4Y/Lz8ph6xx0VTqsKVwZ1ExO5/7bbeOTFF/ly8mRq+/91a37Xrv2JadM+pFat+iXe4r8D5i5YQPOGDXn8vvuuaD7+/nYyM0+XCSsuLuKXX/7NmjXvMGnSep5//hqysi5it//3H4z2tyLIiqHjjYWlvjYyIEVT9OfOHWbTprs5e3Y1nTv/QnR0Mrm5J0lL+5GQkMbk5ISQk1NqxTRs+AC7dr3MuXMnaN9+InFxHUlN3UtkZCKtWo2jWbMhvPBCIufOzcLhEJ8OpniIoazXUuTgOHz4AN9//w233DKchARj4jV33jymTZ/OhLFjuWPIEP1KUpuyIm+hGbifs6iubZp7ZdJVJ2/gCrWUXIuXd5ixso08yCJ4qgIz1vUzz7zC669PpW/fFvTtO4gRI/6PFi3a6D7vCwcUTTlp1yAXFxVh1duxohI8vR69yqJ42gII8Nnvv/PvAQM8uwtEbhhPL9Bup7C4mO9PnGDrxYu85Z6mT8vL4/716/n5zBk6RkVx+PrrWXzapfjTz53D4T7iu8wSC6PyqWUUvCyr3VYm6EpB71XoTVtq7QBlVkj3PEZNBsdPneKexx5j+Zo1/DhvHn2Tkzmdns7SFSuoX7++ixyr8K9Ro3hh+nR633ADkyZNokuXLuzdv5/EpCTue+ABBg4ZQnyNGqRmZpKQkKCvzI0GhNLCcOLMGd779lvu6tOHuvHx+m0YWLBxI5MWLOCRXr24t3NnvRow/xLNDFqi+EYQeZBFfVAFW5QrvsNRoqWF7cSMmEZqRD2kqMXV7syQlwfh4a4WFuoOfH7iRF58801ajxjBgHbt+L/rr+fqsDDjLeAEswjl7qkFEUwbWtzCKXVjsRQTGuqPepLJWxUq8hxXZPmAqPmXPOuW+7P585n48MOgmR3TZipaxmhGlRcVOdmx4ycOHFhL377PAZCRcY5vv72PlJQV1KzZmsmT93PsmGuzsnPnThMeHiFMSyuaGRiNo6LJQ7ND3N+KICsktiLfCxndUxNkWZb55Zee5OQcIT5+OIGBye6ppRpER98DlK43Ul5OfPwEEhPHceDATH78cRh2exyZmfu46659ZGZacDhq06LFCBYunMqgQTPLPKtArTBEL1jdad5++3NCQkLx95fKdSyFHMmFhXRJTmbT5s0UFRXRtH59cwvNRMJ5C0/rKRSYJRQlQTZhvZnJSp3llSIjWsUWEhLI009PY8yYR5kz511GjbqRJk2a8/rrHxAfnyDUV56qRPurHRMtFJd5z5mZmezas4eWyvvXWo3ueGV+RZkaaR29Z83cE+XlxrmcHOpER5dvm0Yk2ERYYX4+z23dyjt795LocPB1jx4kuQnbqwcOkFtURErfvlS325EkiT/On+f+evVIstnEo5E2H5HVrY6v7egq6Okl9a8v0OMMojjqqVqtqDZBvxSV4/oRI9ixdy8D+/alb9eu4HRSPTaWfw0fLsx87EMPMebBB3nn3XcZMXIkkZGRHDhwgM2bd5Cb70dYRAL33HM/Tz39LG+//YFLF7iNixKDUO1lECl91fz3rEmTQJaxKERLEF/OzaXvjBn8vGcPxbJMs+ho8Uswo5Qqw5I3uidiWHpf32niBUVFoTV9jLYr01sfL1Ityj1tlag//hN1Vbv73QaEhfHspEmMHTqU2R99xM0vvEBSVBSfjB5NLT1FbtTY1XWj/CprRxSBsrJKHTzh4eTk5LBjxzY6dGhNQNnjE8rJr85G+zrUYgk4ufB8E6O9gPXqW40z585Tp1kz17Ivgw8azXIqJYmcnCIWLZrG8uVvEhqawPDhnxMV5TqMZO3amVy+fJ5x43YTG5uAJEmsWfMGnTuPIC6uia5u0daVmW5ldM/ssCNMz/dH/3wo6/FEndKbbyxE+kVJo7i4iMuXM0hJmYrFEkTXrjn4+QUK01dQ1uNiIzb2UWrUGMO5cyupVq0+Tmd1MjJczyQljWDFituJimpPp063oH0F6g4l6khqBAb6M3Pm+2KLU1HuhYWEhYTQtWNHFn/2GY7gYLE2M0uAtBVnhIowUJEyc/cki71UcZnTJPYAACAASURBVKrrSOvtMtMWtNdmOp8na1/PAxAfH8mECU/x0EOP8OSTD3P//bexbNkaoRy+EuQyH2WqlP/cOXPoec01hLj/N6wQI4g0l+hdmXE7iOILXsCgFi24Z/58fh4zBlOT6nrkWZXv1rQ0RixdSu2QEH67+WbqKAeEuOvM38+PZhERxIeEuIKLivjh9GnW9O7tmRiabXgCaKOJdrioCEFW0jYzWIu4fwnsFmyijyVwfYCccekS0996i9y8PDJTUlwn4hlZsapf2WnhvvsfZvgdo1mzZhU1aiQSE1O7JJshQ0Zw++3X8/HHnzJkyG0EBrqm3JU1rFZ7UOlsk2iQUOXlZ7Xy7hNPKCdAlK0kVeU4bDY61qnD96NGER4Y6LOxJ2Q2Onnqhmnv6+VptAxIpKiAILeBqLcmHspWo6i9isZnPYjUg9pJpKShtLWI2Fgm3HEH4269lfGvvMJNb7zBlvHj9VmoJxixP3Wbycpi/hdf0KF9e2omRJCZVUpkPb0K7W4NRhxCtA+yKMyIKDud5XfD6d17EKP+dR/ff7+W4OAgTR2AU2CEiz7EU18fO/YHb789AocjigcfXEdoaP0y8Z1OfyIiGmO11iA7G4qKCtm+fTH33beYrCxx8xSRZZEq1xtj9YYikbFmBrozZf8kZGYe5o8/XmDjxjtZuDCa5cvrkpNzjKuvXomfX6BPafr5BRIbex0hIQ3KhCckdKdfv7f5/ffZPPFEIBcvnvIq3aKiIpKSJIYM6UF6eprH+BaLhaXffsvKRYtc5LgKfzkCAwOZPPkF9uzZ5TlyJeDoiRO8NGsWo5SlNX8zvDF4MBdzc1mwfXulpFdUXEy7OXMY36YNS6+/njphYeXihPr7szezdE/Pz48epXVEBA0FcasAx0+cYNqMGdz10EPENG1KYtu27N63j9ULFrjIsQ+w2+306dOPhg0blwlv27Y9M2d+xNdfzyEhIZBDhw56nbaUlET7W2/lVHq657iSxDf33ce68eNd5LgKfzls/v5Mu+02dp048afkdyo1lanTp3P3qFF/Sn6Vjaeemo4sy3z99eeVkp4syzzzzNVcc83dPPzwcmJi6peLExAQwrlze0v+37VrPpGRdalZs1W5uP+t+Nt5kEXeYk9TPXoGeGrqMn75pS82WzVq1bqd0NB21Ks3CX//BiVp6W3R4mk6RW3xlY0rERc3kBtuuJFVq27nlVe6cuutn9K6dedyaYiMYT8/Px56aDIzZz5LkybVmTPnOwYPvrGMHKK9Sr1yoyr/m5mvqMj8hRHUeQtMb4t70FWvmxN5wLQienLM6Dl8PHmLjfZtFKUdHm4nNzdXaEV78iRr0y+z77Vm37vLWVk8PHEiQ3r35sYuXUobtRmvrhFEprpo1sHsTISBd9ECzBw6lCEffECThASaanctEJVB+3JVcvhZrVxfvz7r09MZ1apVuWf3XLjAxO3b2X7jjWC3I8sybx44wCvt2nl3FqrRdIKmnHpdUzMRUOa3IjD7Sgybgt3C2rVr6NWrOxEREdx28820atWKCePH0zgpST8jg7pQbx9p1Fe7dRtAt24DeOyxe+jfvxtvvz2Xbt26u8RSzTBZlP6lcYdPf/xxJrz8MjWSk5n33HPc2qlTeXnN6Euzs2QiZS4KM3LJmtHbonRFeerpdndcm9uTHB5euu2X8ojiIVQnrdZjWq+zkRimneaO8ucRBzgcFBQVUWyzlawVFr4XM/1SBLcg2Tk5jHviCfr06MGtQ4aA01nSvvTKZeQRFo1LovhGSyy0/6uv1emW6gyJxx9/g9Gjr6NWrRY0bXqV0PusGT4APQ+yRMuWg0hJ2cDVVz9Ybju7jIzDLF8+jmHDNpfc+/XXmXTv/mQ577YR7HaxKtdC9GrNjOue8LciyIquMNrRxRu9sn37VAD69TuAxVLNVBqepo0MlhVqING9+3usWHEbs2Z14YUXzpZ8uGc0XWC1wpgxUxg06DamTHmA/PzCcg2nGEv5qQHRtLM5QcVxzZJsXyGSUcAmSz+iCNLlIp6UsFkxROmLuJGeHGoiu2PPLho2aFC6JEIFm+ohm+qdlqShQNBQcy9eZPN//sPc+fP5bft29h4+TJ+OHXni9tvFc/RGA6z2WhtH2570rDtvpj1FhpnVSudmzbirc2fm/P47LymbV3pDkDXXXevX54Pffis/T2q1kp+dTe3QUJrUrg1+fmw7dYqsoiJ6NmgAylpV9UilXIsWDxo1GlXjMSLIejqosmH0evTyfOWVlwHYtWs/8XHVzM2rV0A2bbLPPPMGly5lMHhwD3buTCMmJraMrEF2cdt8fMwYhiQnM+b55ykq1tla0oNRU+5/IyKmjqd9kZ4cEWaUlycSrGa1elCn65bN4ibKoQ5HCSkUFU9NirUOCpEeVosqElfvfasf2H/uHPXi47EEBUGBwX7/RqxV0Ffz8vPZsncvc9esYdOuXew9eJDunTox8/nnSw0IuxWnVdmWDl2oszLjZNM7SMPIBhdB1GTq1m3H0KFjmDv3Yx5//CqPdploaZeaLCckdGfVqudLtqEuuzyjgMDA6litLcjIgJycPWRmniAmZoBXBFkEdRcyIs/qa53VYJ7zMiuUJEljgNFAojtoN/C8LMtL3fclYDJwLxABbAbGyLK8W5VGN+AZoCUQBJwGNgH3y7Ls8YxCI1JjpIdE6QBkZR3gmmtWYLFU82iUa/PRk0Wkt/S2Y7TbQ7jppiWsXj2RadOac8stX9C6dQ+hLtN2iPj4Bnz22fIyearzsVo1HhRRAdVeFbNs0ajQ3no6POWlzdNggLDg2k/W9YilTBIiA0pPTG32ov89kWEhMdbI/Z8tW2jRpIlntuNOpMTg0XuPeXl8NH8+E199ldrx8Qzq3p37Jk4kLjKS6g6H6xQqtWYy08iNiIGI+OpViFlirJenG43i4vhx9+7yI4gXRPns5ct8vmkTL6xaxU0tW5YnyHY7V4WH42+18vnx4zSPiWHStm2Mat0aS4Tqq2sjwis6kEC0oFDZnN9qI08zaBgR5MqwO83YsupXrPda9u3by9y5C3E4oihwgtV90ECZtfB6ggtInYViYf/V5q88GhgYxOzZ85kxYyo9erTgjTc+o2/fPiX3SwxLQdusW6cOP374YVnXmKgjG3k9PFnQIsGNBiZtP/D0sr0dhLSMVi9/7XSFw4HN3YarqWbvjA61E82+itSdAVct3+5U/W37iRO0rFdP/KWfSO+oWabOl3BzV6zgsXffJSEmhht79eL9ESOIj42leu3aLh2qEUX9K9p1Ki+vvGievpEX2M+GH+lpIXqNSnitWo3ZsWNOmSX3ohl4ve+L8/IgJ+c827bNZf3656hRo2c5guzqr42w2aLZtesjIiM7sG/fs9Spcxc5OX4o9qiZlVei4V9EW9S/ZshvpRNk4CQwATiAa7weAXwnSVIbWZZ3AI8D44G7gBRcRHiFJEkNZVm+LElSE+An4F1gLJAN1AMGAoJvQq888vPPsn59LwYN+mtPE+ze/UUaNerBl1/eQsuWqXj3Wqrwd8T2nTu5qkWLSkvvi8WLeendd1n24Ye0bNRIrOH+5ujdtCmPfP012fn5BIs+IzeB+s8+S/Pq1Zk3YgS9GjYEHe/hW9ddx9TVqzmbk8MN9evz0NVXC+P903H8+BFuv30Qly79tTp03Lhn6NixO3ffPZDdu1NxOOyeH6rC3xr/OXCAq+qXX/vqKxauXcukDz5g8YwZtG3SRHNm8//G51pt2yYzbdq9XL6cQWBguOcHBHj33dbY7ZEMGPAJMTF9dOO1avU6u3dPZv/+f1Oz5g00bfqYr2L/ZTDNxGRZXqQJekqSpPuBjpIk7cRFel+SZfkbAEmSRgBngNuA94DewHlZlsep0jgMLDctrI5XT89JoZ3qEXllAgKihY4wEG9zpP5f5N43svBEhr0SlpjYi/z8y5w7d5Lg4MQy8dUWk5Hlo7ZUSy1O97SY3Vb6ZbfKW2bKlSQSWP1r9Imor+4vkRfGwIOsDlO+eFb2gBQ5O72dMdBea0UThZU75luV0YGDB+nTvbv35FXHg7xr1y5uSk6mZY0apW4cvTk9URqi+U1Rgzby0JidZhaVxQTiIyJom5jIR2vX8mC/fubdKe5fWZbJLSxk1siRtFAfNSyI36dDB/q0basvr5GnUe01Fp0bq/FeGR1HWxFvsQh6nlhPk0MKRN94+Pn5lXikSr1fytZrAnjISNFTiidZraaMukvnzl3x8/PjyJGDNG/erEyyNr22qfyK3IAiGfUGIT3lb+RBFm0RYYSyLjrP8Y0GIfWgouxXKnI9KjIK2q3N4SjxJitrldXT8GY8yKJZCtFWZ6I2c+DUKdo1aVL2AfWgr9Vt6l9tBg4Hu1NTubFHD9q2bl16T+TOpexaeQWiZqT2/poZCkXNyOw2bwpEn5goYeHhUbRo0Y1Fi2YzcODjgL7XX7Tk1PV3id69vyIuroNh/NDQHnTs2KNE3oKCshMXZmZf1e3FiO+J6IjR5I5Z+OSqlCTJDxgKOIANQB0gDhXZlWU5V5KktUAnXAQ5DYiWJKmHLMurfMlXqUAj/armfqI1UFDaWAYN2suSJW3Jzd1FSEgz3bTU12ZJuahxe1qv2qjRAFJSlpOQcG85OcwMECLeWzYv5cMChTSXbzDCo55FgogUrVY4UU9VPyuCmalFPU2rkU1Zn2yzWrE5yio2PY6tFcNIRFG8Mh/M6ZR9b0oKO3bvpqvilTRTRwZGx549e5i/bBkvjRkjXkZhRjOLCu8LOzM7zewj3hg+nL6vvkq4w8EdytHTJrSfMz+f5xcsoGZUlGtpS7kIXr4DBd4S5PDwkuucPFdb1JvOFGWlzsYXmBkgvNGvy5YdZvDgFmzZso127doI8rNhs1vFiXioc1uJsKVkxNM3Hj179ufXX3/mqquaiSO4hCr7K3IUiJiN9hltWkYEWTSCq/fb1UtDb72dGQvKSFGB+cFEkUO0hKhk603Xb5DDUbLUjfCydVTgtJgax9RVb7O6x6OssuzryMmTbNi1iw+fflpcTtEgqEAwKB+4cIEvli9n4ujRZfusJl6B0z1+6HzjJLKfzKgR7TPaouj1fVFTsFrF9avcHzPm3zz6aG8CAsLp168s1zBaYlFQUMSGDa9gtQYTFta+HCk2Ux+ehiWtHKLyiUiwERdT44oSZEmSmgMbATuQBQySZXmnJEnuT4DR7pmTDiS4r+cDfYCVkiSdAX4DVgFzZFk+ayZ/0SEwCkSNUGQBKb8ua6oRzZrdS2rqZ7Rp87JwMb3RAnujhi6yIEXOJOVeQIDM0aNrGTToOUPDX9RIFKgbi56jQy+s9NoiCFM+zrCVGxcszgJ9l4H602ejnuQtRGTRSCOoBh7FO2WzWks+gPO616jT1xZBJFuZ+E7STp+mdo0ahAcHGxJfYZim/s5cuED/Bx/kidtuY3DHjsbGjAI9K9MIIgvRCEYE2df6BhrHx/P9uHEkT59OuwYNaJSQUD6SpmHLsszot9/myOnT/Pzii94zTE8kRDt6Ga1BdjhKiLHo63CRntFzfPoChTeY5ap6RVfs4qioOgwb9hBffvkJjRu3ERJplP2Jle8iPLUhTQGN+KYWGzas5sEHHzZXV+pI2jZh1hgSsRizBFnrpc3IMN7CQDuA6ckpglnDVW/QFJVdLa+Ru1PtqFCItFFdAWRpyqcp+5kzZ4iLjCRKOfhCxCC1Okv0vu12LmZm0n/sWMaMGMHtN98s/F5AIcaiYUybnRbeqD+RjSQKU3/XohiSynimyKqFIl+9evV4440fueeezrRo0YHIyBYedYwsy6xc+TBpaX9w001rS04wNOIcovQqorvMGO5qOUT2kbf5e7uwJgVoBXQA3gE+lSRJbaprF6JJSpgsy0WyLI8EagCPAseBx4B9kiQ1FWUmSdK9kiRtlSRpq5dymkbTpv9iz56Pyc+/aBgvKyuFM2e+59ix1/jjj6Fs2XIVW7c2IiXlLlJT36KgIK1CcqSn7wVk4uIaVSidKvz34/CxYyTVrl3hdH5Yv552I0dy94AB3HfjjeWPXf0fRfOaNXl52DD6TptGsd4OBG6cycjgxilT2Hv8ON89/TSJsbF/kpT/HNx440h++mke584Z7ym8f/9+fvjhB15/4w1uHTaM1u3b06h5c+4YOZI33nyTU6e82xNeiyNHDpOZeYkWLVpWKJ0q/Pfj8KlTJImMYy+xYtMm2g4fzpA+fRh7993/GB1au3ZDHnjgTZ58si9OZ6Fh3Jyc8yxcOJTU1E0MGLCYsLCkP0nKvx5e8WlZlguAg+5/t0qS1A4YB7zgDosD1Dt3x6DxKsuyfAqYA8yRJGkSsB8XUb5LkN9sYDaAJEmyGceP2pIw+npUuS4uDqW4OB9//7OEhrq+Ur9wIZ2cnDT8/MLIyDjCpk334nRmExraFIejPomJNxAU1ARZtnHu3CrS0xdz6NCDdO36OxaLna1bB9Olyyrs9jjhEgutB/nUqd/5+OP+DBgw1eN6I2051eUya6V5mobQwmiqx263YXdUA8AWrkyHqY7sFO0VY8Z9JRLAUwG1L9rIm6CXjqe0zcBomsPpxObnR05ubvm4Oh7kwsJCigoKsAcElKSxfNMmRkydyheTJ9OrdWvf69TsvYqY/kYmvQKje+r7bnSpV49jZ89SVFCAxWKhuLiYA2lpZOXlEeDvz97UVDalpPDZypXc07cvU+64A5u/v3lZvYmn7bBqD5TGg1zgtBjORnlyVquz8wVGxTPK28hbJssOZBmOH0/D4XAZINnZZzh7No3IyFDOnz/B+PH3kJmZQZMmzUlKSuLantfx8NjHCA62s2bNan7++WfGPvooGzduJiIigsGDB7J06Y/UqlXLVDn27NlN//69eOqpyQQH+5WEl9lBRi8RkXfUbDzB1gvqZVyipEq+TVCv71V+lfXARtMLogWfCsy6MUVh6v9F6WpnA9XPGLk71f3DjCfb0xSq04nN6SQnJ6f8Mj6RfrdacRYVUQgEBgSUeJDXbNvGrRMnMuell+jfv7/Q8y3yHCv/G3k0jcTxIKqwisq1Y9G4oZodVWZtRLIpv23bdub8+dPY7QVYrf4UFxeTlnaI3NxMCgvtnDy5j+PHf+O33z6hVavhDB48F6czoIxsRkshRGU1moQx6z03gsizX5HhrAKjHuDyQAcAR3CtMe4FbAGQJMkOdMFFfoWQZfmiJEmnca1l9ghvBgbRoKMmzMqL3bZtPgUFlzl9eilnz65l166vOHVqCyEhNcjLy8Df30G7do/QoMFoJMlSLs26dZvjdD5ESsrb/PprO2S5CIAzZz6lRYsJZWZzBN8F4O/v5Ouvh3PLLa/SseNwXYJsdmBLSzvOgw/2Yty41+nYsS9FRVK5eL52bHVZRDNqylGvDkcoAEFxDjFB1m6E6IkheDNHZVQob+9XFlT5yLLMO599xkN33WVMalVhb33+OY+8+irtmzUjuU0bsnNy+PLnn/lq8mSSFXJshll5gq+axFPeFSHGShwNya4XGQlA9+eeI8LhYNPBgwTb7UQEB3M5L49qISH0b9OGDS+9RP34eNf+xWY0p9F9TyOa0fS4O47e2kWzIlQG9NLUhpuZ0gRYuXIRly6dZ/XqZezYsY1Vq+azc+cGYmNrkJOTSWBgMLfeeh/33PMgfn5+5aru9tubMWLEA8yd+wmdOnVAll0TkW+//R5TprzgUebi4mJGjbqDKc88w7333gueDkoyKrzVStrZs3QbNoxXnnqKAddei8VmK42jecfF7mUjeXmUO65XnX3ZMrueEToWlEHCiCBr9+hSZ6S91oM3RFrvGU+6WsRszBJkAzlkWWbW/Pncce21+kxV8/zHP/3Eva+9RuuGDendvj35xcV8vnQpX/z73/Tp0kVfXg3M9gmzMCq68iv8rsVIEKtV9aF62S0T1WjQoAYAjz/elcjIGuzevQF//0BCQqqRnX2ZwMBwmjfvzyOPrCYurrFwOzijIVy07MKkjWnapvJ2ePJWn0qKMvIYUZJeApbi8hCH4NqdYgJwnSzLP0qSNAF4CpcneD8wCegKKNu8jca1PGMhcAjXOuY7cW0Pd4csy597yF9etKisrGb7sujFKdcFBcWkpKxm/fq55Ofn0rhxHxo3HkhgYJihs1Orb2VZZteuOeze/S6nT28EoFu3GXTqNFa3QTgcsHz5C6SkrOXpp5eVlEnUILRl1rNMc3Oz6dnTpWRvvfVRhg+fQmBgsG4DFtWXKF3lfxF59+QhV4dZ8nLEXyR56wE1EtaoAv9KWK18t3QpU15/nW3ff4+fn9vT5aFxZWRmUqd/fzIuX2byv/6FRZa5s18/EqOjyz5ndO3OXySTkby60MvHSHN6u5DfSBarlSynk/lbt2K1WLi2cWPilfrw5JXy1KG0aXhyceisuVR7kNWeKCOHoDfe5f79Xb+SJCHLsse5YUmS5PR0uVz62nxEM21G8YuLi9mzZx2rVs0hLy+Lq67qybXXDiYkJEJXZyi/2rAlS75g7tz32bhxNQATJ77I+PFP6nZpqxVef30G3323kDWrVrmmyPWUv15FatphXl4egQ0bAvB/I0bw0rPPEhISYrgm1WjTGDU8EYTSj9J0TmfQhnkamLSCmCXSZrwo3vRfBWb6mfpaEH/59u089OGH7Hr9dax+fvp6TZXG5ZwcGo0cSeq5c0z+17/AauWOAQNIUraJE3yQJ/Ige9qRw0zRjdq/aCm7xVngvVWtSaTYahMufc/NzeG77+aTmyvToUMvgoISSuIYlVmkK7y1n4ydbcZhIiKtLbooT+29ai4bVVeHesMc4oDP3b+XgB1AP1mWl7nvvwwEArMoPSiktyzLl933f8O1o8U7QDyQg2tP5Ts9keMrCYvFQuPGydSpk1whS1CSJBo3vpPmze+kuLiIixdT+PLLjtSo0ZrExE5YLFYuXDiMLBeTkFCPU6e2k57+G0uXvsRjj5ne6c4jAgODWbYsgz59wvnyy1dZt24xw4Y9SUbGeQYOHF9p+VTBe5xOT2fQvffy3fvvl5JjEwgPDeW9iRO55ckneeLOO7FrifU/FA67nZGdO//VYvzjYbFYaNasK61adS0J83UZyKBBtzFo0G0UFxdz4sRB+vVrT5s27ejevTtWq5Xjx4+Rl5dHkyYN2bVrJ1u2bOL555/jq6/mV9r6UbvdzuU9e4hu3Zq3P/2UhT/9xEvPPMPp8+d5fOLEf8w61f9GnL98mT7PPce8ceNc5NgkQoKCmD1hAgMee4xHhg0jNCrqCkr590FgYBCDBo0oZ4NVwQXTBFmW5bs83JeBKe4/0f3/4DpcpEIw6ww0cpaJnAlWa/kw9U4x3nlf/YiJacKgQbNZvvxeLlw4QmxsY1JT/wCgceOepKWl0Lx5LwYPnkSjRm09Th94M/Pl5xdIu3Z9CAoKxeGI5JVXRgLQp88jSJJkyqmihloe0XpnrTWntlC15887HEEEhWsiiuZu1IUzY5qK4C2BrAzCadDw/GQZi8VC327dPOZ597PPkl9QQHZ2NodOnuTUmTMse+ut0nXI2rxEYWY6i6/edXWHUXcs9bUv0HvOKC9tnmbdCN561EXPihfml/xq16PqTZboNfG/wgby9nWKplTVO5dpX50nh7zr2kJCQgNeeeVjnnzyYY4cOUDDhk3YtculQ3v27MPu3Tvp3bsP48c/SmetoeRtBWreuz04mN7duwNQp04dRowZA8BDj07Ez89SzrvmiwdZ1A6UZWp29zI1i6h9qbdcMzMr402Y6Frvnkj/iJ5Vhxv1OROzgNZC1wdlNzRvLm54qjQeeOstzl++TL7TyeHTpzl+5gyLp08nNDy8UmYXfVV16vja7PWqyHSCOrDg+l5IBL0x3IwH2ROX8ORFVv+vp0q1alWPI+mhIsOS763jL4JR49KD6IUYvUyjMLMzVFYrJCffQnLyLchyHseO/Y6/vz9Hj26lqCiXpKTJ1K5dn6io2HIy+jp+O52QlnaUjRu/Z8uWZcTGJtKt2zCiomrw0EOflKxHNhqsjWA8oJk3MPJK1iq7Npe3hdvLM2+zLN5smBEqIw0Rq9Dg2PHjxEVHU1xYCALvR0FBAbsOHCCpVi0++vZbJtx9N+2aNaNmXBytGzTAqm64evmbkb8Cg4JhXfky5SpK1wwbEzEvBXoEuaIGg14HEM0BIp7WFDVnvTD1r/a6IvCUjq/2p7ocImeEke4QDX52O1x77UD69BlIUVE+O3f+TnCwlT/++J3c3CzGj59E48ZJ1KxZ3S2BwY4mXlTeiVOnWPLLLyz+6SeiIiNp3aYNsTExfPLxxyUzP968Q08w2hPYbrdh0R6Cob7WfonuSRBf4mlhxDY8sRGzfVvn3vG0NGLDwnAWFIBymqYqfqHTyY6jR0mqUYNZS5bwwMCBdLvqKmpER9OmZUv8K6L7Kggju8IwzBvvmF4YpVuWKUTZk5PL6MNEXwmyEX8TLS/R2zVQjyNV9uv9WxFkkfJV4C2ZNNuHjYxhs7Ba7URHd2LevIksWDCN0NBIMjPP07XrzTz11FflZPX1JZ8+fYQHH+zIxYuujUPS04/yyy+f8fLLvxIeXseU4vZ0zxuCrKdvtWew2+0W7HYXWS7ZI9VosZc6QW9cXJ7CPKXjLTSy/bRqFTWrV6ewsJBAwRz0+998wwNTpgDQomFDnrjvPsJDQ8vKJSLJlcF4DAalcvmbTVOJ502d+sIIRbKZdTGYURJGI4nAxaH+cMvI02jG+1jZBFn7OjzxJb2m5kkuozBtFUJZ+1jrHHVVcQBt23Zk5sznmD79GapVi+TixQv07Xsd33+/RL/ARkIJhDyZmkqnG2/k5OnTAJw7f563Z8/m1xUraNC8OQUmyL63MOp6TqfqwBQRQ/DWg+xLPL17okKY7e/e6ix3+st37yYuLEx3e8fPV69m1JtvAtCkdm0m33knUcrWjl5+Gm2z5gAAIABJREFU+SU6Le9KwYgo23xsV2USUUEpldKurA5LObWu1w+9aR7eqn7RaxGRYT3/hyg9PZiV63/jgPG/CQYPnkBwcDi33TYFgISEyjlHvqAgnx9//IRHHulO374jqVGjAS1adOell37h7bd3ERdXp1LyqULFMPvrr9m8fTsvvfee8H71mJiS6z8WLy4lx1WoQhUAGD16HJGRUTz22CRkWaZu3XqVkm5BQQGff/MN3YYM4ZYbbqBpw4Z0ateOn7/9lr2//06D+pWjq6tQMczZuJE/jh9nynffCe9XV766AnZ9+CFRYWF/lmhV+B/E39KDrIXRbKs2npmwishinFcYzz77NQsXvsXw4RO5/fbx5Y6Q9wbZ2bl89NFUvvnmLZo370SPHkOZN+8lAGbN+h27PdjQ8WiEinir1FMyZiw9dV7K9I9F8S7l5ZU3ZT0J6u3Uni/xFIhMb0EasixzMs11mEzP9u3LNdidKSnM+Ogjnrz/fp558EFxuto8fZXZbHxfvNXexKtoI9OrB7OdyahOTXqZ1K4WtedY+a1MD3JlQPHqeOsBqozXaabZenp1wcEOPvhgAe+//xpjx07g0Ud9+PBYlXF+fj4vvvkmM95/n7YtWjDkuut4bfZsnE4n5/fto1pEhEso9wuylcwWlPct6Tl19eLp/WqvdR8E4yUW6vJW9OWKoNYPnrzKRve8GJj/OOE6ZqFn0/Jni+05cYJXv/uOsTfeyIt3342kt++52b6tI7oZqJ/zZmwXVUcxFv3TJ/UGVC9m/CxWa8nad/VjolWP6rFdHV+vOXkzfOi1f7OTgXqoiA79WxFkEeFSYETEjBSR3vPewJtZ3F69etGrVy+v8xS95KlTR7N06RxmzFiC01nI9OljmDXrF1q1Si7XkNX5GfFNo7xF0z9qGHFFEWkWyaagDFHWW5+sJ6jZXllR9iGyzNQaTnVv3tKlxEZG8uWMGXRt166MDK99+ilPz5hB786deWTUKNeHeOo8PEFvy4CKWkSisqh/K7r0xZPVZmaAFYV5UhJGg6LeYljlV7CnoYgYg+tbKrME2WjqsjKh5OUrQfbEw7Qw+4rNwmqFrl27kZzs+tC1TNP3ge0//PTTvDd3Lt++/TZWq5Uxkyez6N136d+rV3nhVS+qdJ9ZW4kc2vOJPE0xm7XJhA+aJUq6ifwFMCu3zv2F//kP4UFBLHzoIbq4t+FT8M5PP/HIp5/S+6qrmDBkiOtAEG0aXtaDkQ1hlhCqw8yoRNH9MmKLrEwjZ4pRwiooBNxqLTX8RLaXqI0rv6IuZ9J/VE5so1cmMj6MwozeiSf8l/Qcc/C1bxmNi6K0vCXQ3hBkX6DXAa+99nr8/CRmznyMsLBIJk16h86dk8vwFjUZFq0pMkuSFRgpdb04Whg1WO2v8LtbEfM2Gs09ZWoGnkiXSAO478mFhdw+YQIAcRERWIqLwVKqiCyyTE5uLplZWUSppgiF+Va2dWfmZaiv9RqXniyVPTibKb8nD5GaBOt8YCe8J9grVf0hntH+xup73nz8or2uKPQIsqfdNSpTLrNNwoy+tlp1ThkzSZD7du5MXk4Ok157jbCQEF574gn6d+miP/2l6e8KsbBZrdgc7jah2rnEjKEjIgPKtdeHRIgSNmtgegtP6Ro5D4zS0JFv8LvvAhAeFISfpawHX5IkCpxOzly6RJxWh4rkMUMKBI8avUe9vqHHX0VxRHm4qs1VXotIRrMM3Oida9qz1WqplGZjpgl4St9MnXty3pkx5oXymItWhf9G9OkzlD59hlbqAFqFK4Na1aszafRoGtYpvx68bbNmhAQHk19Q8BdIVoU/E/n5uXz88bMEB4eRnHw34eExnh+qwhXDwN69GZic/FeLUQUTaBgby/8lJ9OiZs1y91rXrUt4UBB5BQXIskzVTtX/uygoKGDmzCkEBTkYNOguYmPjr1hefzuC7ItxZGZm1ZN7v7K9ykbw1qmn/RV5hkVTgGqvspHDxVPZRY455X8vDfXy6Yvet2ju0sjdpRffDDyZvqJK0ljyktXK+YwMBvfoUXrIgNOJLMu88sknvPrRR3z04ovcdN11+mmp/69sL7K2LOr/tXWp5CM64lXPhSLyPmsh8n4Y1a3oWaNOrLeHkLbxejrCSbPeWG8ZhfKrPfDsxInDLFgwHYD4+Na0atXHo6e2MqGcUmzURYy2pFPgTfcxchoa6Ri99NS/uh5Wkx5k4f964erCaJWp1VoSVsarXNK+TBaw5CWYUPSewvT+V8KuRCMzm6YPeV/IyWFQ69ZYNN7j15cu5aXFi3l95EiGX3stUlER+Pvr6y4P+ZvZvUKvOZl17psRR+xpNvAke4KJaXPtvu0VgdFkghqe7mnrITX1JO+9Nw2AOnWacO21Az3K+4/xIHsit6J46jCjNMyQZr3/PYXrwduZMbMQzX77um2LEYzqTT1Lbbbulfhlpk3NjuZXYhdzUUGNwtTpqu41S0ritTlzeGHcuJKwC5cuMeHVV1n4zjsM7N27XIOb9cknPPDUUwCEh4VxYscOHHqbQHpjrZklBEbMTUUIypAGLYEQxfPlveiVRR1WmQRZ3XjVR8+6F/3kCZZMmFlbXKNGUz777CJWqw0/vyD9cl4haJdYeLs/swJPusHEbK5XutIwrtl2a6YwZtueqJ2bGVS012bKYnRtlgyLnvOmv3tTpxW1qtRxVXXVtHp1Xl++nH8PH14Slp2Xx7jPPmPu2LHc1qULqE85tFr5+IcfGDXdZZAGBgRw6qefiDB5zKM3ZFd7rzLGddHWh6VpuUm81Vb+Az5PHUtzX20QePu6TRNNg7J7Elf7TFxcXVavzsBqtRIYGOxxmaiZpqmHvxVBVvSNGYKlF6b8miFu2vsieXxBWYvQ8z1PYUYQyaj2GpvhLp7SNyLIIv5h5KyzWd3E2NutACqLIKsLpve/WbavwtOjRjHo8cf54ocfmD52LNv37+eVjz8G4MW333YRZHX6VitbduwAICAggJtuuIHAkJDSzfG1eboh8n5oi2m1ik9UKueV0BtEoSwZVitmrZJ2OstPU4hYmZ6wRqioBSwiyOr/teuNseA08fW2p4E1LCxcN562KBUxkkWo6Ed6CnyRy4x95Ml2M02UvR3dzRTIaHQ3qx+0197kaSSvL/fM1EdFCLIZ2URQ14/qxU/s14/rZ81i/rZtTBs6lMPnzjHVvd3b8wsWuAiypm5/378fAH+rlaG9e+MICdF3bFQCzBJovXt6qkvb/ss2sZKdjcvc80YOs7aSUf+s6Gv3Jl5gYJhu/MqQQ0HVPshVqMKfgOuuuYbrOnfmaGoqtzz+ONM++ICbevdm55IlnEhLo3qHDtwzYQL7Dh4seeaTmTORz58nLzWVD956q+QUrypUoQpV+KehV5MmDGnThhMXLjD8vfd45ptv6NeiBXtfe43svDxiRo7kX2+8wa6jR0ueeXPsWOTNmylYv55Pn38ef72t36pQBQEkWZbNR5ak6sBLQH8gBDgM3C/L8hr3fQmYDNwLRACbgTGyLO9WpdENeAZoCQQBp4FN7nQyDfKWv/lG1jXUzXiEvTxIx2ujX23pGcGT1WPGAjKy2Mw6SyrDqSKqI0+bBIjCguwCz7HyWxl7ZVWGB9lsozFoeGczM/lsyRI++O47Tp89S3S1amRcvsy5CxcAWDFvHj2Tk8255d0opvwXx95aynpt3aI9vldUp97O04s2ivXkQjQrvPK/t+/KYAG96GQ8dVFEYcr/ZqtIgTfFv/lm168kSciy7PG7JEmS5EWLZF3dURkeZDOvwuxsksHmIWVnnMzOJunNMHlTQKOCaq/NhhnB7GDhqRGZLbOvXmVRGkbyeILB7NCFvDzmbNjA+2vWkHrxIhEOB9n5+aRnZACwZPJkBnTtKu7Tyq+J7wvUQ4qoiZmtDjNF9GUiQntPlK5ZmOUcemF6zcpXj7oRPD1ntvkDKBO3ejrUdFVKkhQOrAfWAdcBZ4G6wBlVtMeB8cBdQAouIrxCkqSGsixfliSpCfAT8C4wFsgG6gEDAdXcsRgOh36D8JKnmCLDRg3N11kyvXBfCLJemDcNz0wZ1emZGRd8IciGCznNLrHwloCJKqoy5ra1laSkZbUSXa0a40eMYPzo0RQVFZFy/Dh+NhsN6tZFCgwsfd6AIGuXUVTGmOR0li+6639LmewtannKRjTPsrRLLoyuzcAsWRHFE1nW7l9loDTLlbTVoYbR3rgVKbovUMtn1LdFzxiVUS8PI11rBkZEXZiwL41fdK0N06s4b/O6EnJ6q+sqgwF5CvMVHoyIag4HD/fuzcM33EBxcTEpZ84gWa00TEgo1aGi9HxtgFcInmwfX+0sUfFEYWbJqyc5zaTnSzxf4ldELhG8aSmPA6dlWb5TFXZEuXB7j8cCL8my/I07bAQuAn0b8B7QGzgvy/I4VRqHgeVmBAgPr3yry1tirMCXxmB2YPTWKPe1UYg4jl48ozA9J5xZgmxxFugrZG9MdTOWiKeC+RJHHc8Lbebn50eT+vX1D/rwgMpUXOq2YAwVYXYTyDIfiRi9F28btlGY2VHALFPzcRBVR/P2UDN1mDeoyPiu/jBXnZZaLhF/MyuzWVtFkcXXspTKaim/TlBkDKmJqXGCZf9Xh4ngKU2RZWFG6XrqB38WQfYkkxYiI8Lbl+ypX6quLUDjxESP8XTzMJBN9KrMFkX0us3E93TPV4LsCyqbbCrw1j4UdWUzcX1tfmp4swZ5ILBZkqSvJEk6I0nSdkmSHpBK9q2iDhCHiuzKspwLrAU6uYPSgGhJknr4LnIVqlCFKlShClWoQhWqcOXgDbeuC/wfMAPXOuRWwJvue2/hIscA6Zrn0oEE9/V8oA+wUpKkM8BvwCpgjizLZ7UZSpJ0L671zABERWmEN+kw8vaerzDrwKwsb7Gvnii1BedNufXqT+QZUv43WhvucSs39a9RIbQCVQbMTDt4E+bpnsl4Znap8AV6XkUzEG45pE7Y2w5QUei1BW/cmx6SFnlefXXcmUVlNHGlafmqY4zCfXHgG3mVzZTX6aR0r2EjBe/tnpae3Ge+zGAYhVUWKjofbYSKeIL18quMRuMpzCgvgatXfZqcrzzBSIearXYjnWzkofZWRm9k0oPZGSWzEzNGeVSk+3g9tnmRtgXYKsvyk+7//yNJUn1gDC6CrED71Z+khMmyXASMlCRpEpAMdAAeA56SJKmr+mM+d/zZwGxwfWDicOgUwocGYYTKJhx6YRUZLD3BiD8aNTRPdWSWN4L+LlolaZiZK/E0z2UksKg3eKpoPY3oDZEVFdpMfB1mcODAAf7YvZsePXoQERnt87jmrWI2q0DLxi+7ZlmXNOslXNkdQYFZ0qwqjGLAlW6jJO5XerbclZqirAgUnmjGvvRFViOd4qvNaXophjqS0XoXsxZNZRJIbwcfI4Xt6QWaia+9r/zvDQvxNr6Z9ETX6v/1iK+HhnTo+HF+T0mhe/v2RMcITq8UvHeL1Yrd7ur72nNh9JqTEYEVvRYjMUThZmwOT/B2PPAmTW/iXWldWBnl9KZVnwb2aML2Ag+7r9Pcv3HACVWcGDReZVmWTwFzgDlusrwfF1G+y0gAH5dqmoK33lTlmcqMZwZmdaSZNESymdXxnox85VfEEXV3RtDLVCuU6FhAIy+QNy+gMgmy2Xuq68LCQlauWMFXCxfy8aeflhFl+vSXefTRx0yJX1lGnl57EN3Ta5OK17vkvVfGYFpZMBp53GGK3DZVWTxxD23yZkTQQ2VWl17zFsnhLd/zpB+M7nnbzdQoaV+eBDZjyfzVVo2vRNYofmXKpYanQdPXhutL41GFO51OVm/bxvxffmH2N9+UeXzKgw8yeexY47pRHQ6gtCm7vewHu2YJsva++lf9GisTvnAZLf4MFe1tM/U2fqV4nL2Iux5oqAlrABxzXx/BRZJ7AVsAJEmyA11wkV8hZFm+KEnSaUDHP+wdDh7cz/vvz+LcubP07NmXG28cQlBQ6YlVsiyzc+cf7N+/l5MnT1CjRk0GDBiEXcC+CwoKyMnJISwsrOR/m82GJElkZ2eTmpqO01lIfn4+69ev4bXXprF48S80bNi4MopShX8Qzp0/z9wFC3j3ww/Zl5ICQFxcHPfecw91EhPp1LkrSUlJf7GUVZBlmZSUFLZs2cKxY0fJyMgkJCSE+vUbcMMNQ7D+SeT/4MH9NGpUo4xuqyykph5m4cJZnDuXSrt2venefShBQaXqWZZlDh3axeHDuzh79hSRkXF06zYYh6O8LIWFheTkZBMSEub+vwA/P5cOzc3NISMjjcLCQmS5gG3bNjBz5mQ++2wZTZq0rPRyVeF/GxcuXeKL5ct5b+FCdh06BEBEaChjhg2jbs2adGrThgZ16vzFUlYB4OjRA+zY8RsnTx4hM/MSQUEOatWqR+/eQ7HZxAdZVTZOnDhIkyZxOPSWJuDFPsiSJLUDNgBTgK+Aq4APgImyLM9yx5kAPIXLE7wfmAR0BZRt3kbjWru8EDgE2IE7ce2QcYcsy58b5C/feecorFYrFouF/Px8atSoSW5uLnl5ueTm5nL06BH27NnF8OGjSEqqz+LF3/Dbbxtp0qQZABkZFzl16iQREdVo3bodMTGx7N+/j40bfyUgwE6rVm1ISqpPYGAQx44dYdWq5UiSRH5+Pn5+fjidTiRJIjjYQW5uDjExsfj72/D3txEZGUV4eDXWr19N/fqNKCgooKjISW5uLiAjyzJWqz8Wi4Vhw+5izJjxFBWV37rUkwPDzFS3t/dEMOsh0pvx0t5Tfm3WYnOmt/Krt7+xmWnSisw/GU3jicLMutQFaUybMYOXXnuNwMBA0tPT8ff3p7CwkIvnzxMe7jp1TXQcqBrerlTw5LT3BE/tQxRmaubA0xyjr/CWuFqtFBcXs3ffPtLT0zl85Ahr1q3j6LFj7N+/n+7de5CUlERYWBiXL1/mu+8WUljoZPDgIdStm0Ryck+ioqJYt24D6elpJCbWIS6uOmFh4QQGBgoNci2Ki4vZuvU3Vq5cQVZWFoWFhZw7dxan08mCBV9Sp04dpk6dyh133GF6H+QbbxyFxeKHJPmRn59HbGxNCgvzyc/PJS8vh/T0E6Sk/E7//iNISmrG6tUL2b59LUlJzbBYLGRmXuTMmZMEB4fSvHl7oqLiOHHiIFu2rMJmC6Bx49YkJjYgODiYU6eOsW7dMiRJoqAgD4vFj6Ii13t0OELJyckmOtqlQ202G9WqRVKtWhTr16+ifv1GFBYWunVoDrLs0qE2m+ugh9tuG85jjz2BxVJ+nWiZdmZ2OU9luPrNwBcl7Y3cZt2YntI1Iy9ceVelGUVjtfLaF1/w7AcfEGS3k3b+PAE2G/kFBZxZtap0SYUvs4GieO5fRSd761U2O1RVRnO7Eg5+b1BcXMyRIymcOZNKaupxfvttNampx9m/fycdOiRTu3Y9QkLCycnJYuXKxeTmZtOv383UqFGXTp16Eh4eyx9/bCIt7QQ1ayYRFRVHaGgEdnsgAQGlOlSvrmRZZvfurWzcuJysrEwKC51kZLh06LJl86hZsyZTpkzh7rvvFupQbw8KuQ54EZcn+Tiutcdvyu5EVAeFjKbsQSG73PevwrUVXGcgHsgBDgCzZFme4yFv+a23ZlNUVERRUREBAQEcO3aU4GAHdrudoKAgQkPDuOGGQdhstpIKS0s7zcGD+5FlmfDwCOLiqhMdXXYNUnZ2NtnZWWzfvo2jRw+Tm5tLXFx1evXqR7VqkeTm5pKfX4TD4SAvL4/LlzOJjIzCYin/wdSpU6c5evSQmzj7Y7cHIkkSkiRRWFjI8uVLmDbtKYKCgmnYsCk1ayYSG1uduLh4wsIiSEnZS926DejevQ/x8TXL5XGl9bg3U6fK/2YIsnDQMqNFKlvhG8GXgnpbIbg67eoNG8jOyeHa7t2p37IlUyZN4uHx46mRkMB7775Lt27dkCRJ+FGeAm+VakXsBbP3TJMVvbCKEGQTGv/kqVO8/Oab+Fut3HzTTYSGhFC/Xj0A1vz6K1u2bWPn7t0cO3mSXbt3ExUZSUJCAnGxsfTq1YuYmBiSk5MJcoSWSbewsJBVq9aybt1a9u9PYfXqlWRkZNCiRUvq1KnLsWPHSE9P49Il12EG8+cv4Zprughl/P33rTz77CQ2b95AXFx1BgwYSFhYOP7+/kRFRSNJEp07d+XChVP4+/vTvn170wT5mWdmU1xcjNNZSEBAIKmpRwgMdBAQYMduDyIoyEHPnjdhswWUVOm5c+kcObIPWZYJCQknOro6sbExKBsYWa2Qk5NNTk42+/b9zrFjh8jPzyY6Oo7k5H5ERkaTl5eHJDkJDi7VobGx5XWo1Qrp6WkcPnwQm82Gn58VhyMQi8VSokNXrlzBk0+OJygoiCZNmlK7diJxcdWpXj2eatWqceDAPurWTaJ3794kJiZisVjKG2dQMSvSDLxty2Y7tFk96KveNCMr+MawKoOVWa3Issyv27dzMTOTPh060GL4cMYMHcpLn3yCv9XKR1Onknz11a725Y2OVl8bre0R3FMf2CQavhSYuae91kK0osYTKosQnz2bxnvvTUeWZfr3v5mwsAhq166Hn58fmzevYceOLezfv5OTJ4+yf/8uwsIiiI+vRUREFF269KFatWg6dkwmMLCsDnU6nWzd+itbtqzh6NH9bNq0koyM89Sv35zExAakph7j3Lk0MjMvUlxczBtvfEvHjj2FMu7b9wevvz6R7dvXEx4eRXLyIMLCIvHz86NaNZfuatXqGiIjzyLLMp06dao4Qf4rIUmSnJ1dMVl90XcVJRx6cS5evMD+/bs5efIYZ8+mcfr0KTIzM0hIqMWRIwfYsGEV58+fJTQ0nPbtu3DNNcl07nwtkZHRSJKlZKlHYGCQkKj7Cl8IstE9odfQyOuhDlP/egoTPesJ3rA/vYJ6q3yBt2fP5sVXX6VaRATFxcUEBQfzy4oVpKWl8eFHH/HdokV0aN+e2e+9VzLdZESUwbu2fSWqB7zw3AnCiwsKOHbiBEeOHWPd5s2cO38em83G0BtuIDIsjC8XLuT4qVNEhIeTn59P2pkzFBQW4m+1ElGtGtVjYxk8YABZ2dnk5eUhyzKFTifp589z9Phxtm3fzomTJzl45Aj3jxqFn58fS5cvJys7m8uXLxMUFIQjOJiePXpwVcuWJNatS5PGjYmOjhYW2pNHXxQuyzJvvjmDJ58cz+jRY3jttbfciv7fLF/+I9nZWZw5k052dhbPP/8yAwYMJDIyUpw4oKyu8OYkvZQU8zq0MnWBXpiZe3rIyMhgz55dHD/uMj5SU09x6VIGCQk1OH78CKtXryQ9PZ3w8HDat+9IcnJPkpOvJTo6BovFQkCAywgICws2rUOFRNsI3g4g3np1r7QH+b8UHy9ZwsR33iEuKorCwkKsViurZ8/mwqVLfLhoEd+tXk3z+vX55LnnsAcHl0/ALEH2Jkyl+0X6wdtX4O0EhyzLnDx5jBMnjrBt2wbOnk3D399G376DiY2NZ/HieZw8eZTw8HAKCws5c+a0e8mTldDQCKKj4+jX7yZyc3PIz88rMaTPnz/DyZPH2LVrGydPHufYsQPccss92O1BrFy5hOzsLC5fzsDhCMVmC+Caa3rRtGlrEhJqU79+E6KiYg3lNtvslHhz577Fiy8+yODBo3juuQ+RZZnPP5/JypWLyM3N5sKFM1y+nMHDD79Inz5DiYiIKpeW8soaNHD96unQKoJcgWeutDfX6XRy8eJ5li9fzLZtG9m8+VcuXbqILBdTUFCALMsUFOQTHR1HgwZNaNy4BaNHjyc2trrPef5TCfLiX36h0OkkPDSU0OBgQsLCCA4MpGZ8fLm4vhDkw0eO8MasWWzbvp0Nmzbx3qxZ3HbrrbTp0IFTqaks+/FHOnVybReenZ3NTUOGEBERwbwvvgD+PgR59erVvP/BBxQWFNCkcWO+/PprcnNzSe7WDT8/P06npXE5K4uoyEjCQ0NJOXCAU6dPk5aeTnRkJHUTE2nVrBk14uPJyc3l4y++IDc3l5sGDKBl06bs2ruX+Lg4ateoQUBAAIWFhVzIzGTv/v38tHIl1cJdSxgkScLfaiU2NpaE6tVpe9VVJNaqRX33sgh1QY4eO0Z2djaNGjbEz89Pv4CVQJAdDtdzR4+eYevWzUyc+CiRkVFMnDiFkJAQoqNjiI9PMLUO759OkI2gpOd0Orlw4QI//PA9mzZtYN26Xzl//pxbdxYAkJ+fT0xMDI0bN6Z58xaMHTuOmjVrCtOtIsj6WLpuHbn5+USEhhISFERocDCBAQHUru77eKTG8bQ0XvviC/6zfz8bduzg1bFjuXfwYNqPGMHhkydZ8vrr9GjXDoC8oiJuefxxABbNmlU+sf9igvzbb+v59NN3yc3No1GjZixe/BXZ2Vl07NgDf38b6empZGdfJjy8GhERURw6tI+0tFOcPZtGeHg1atdOolGjFtSokUheXi4LFnxCdvZlevceSLNmrTl8eC+RkTHUqlUHmy0Ap7OQCxcucvhwCitXLiUsLILAwCBAwmq1EhUVS1xcAs2btyE+vg61a9cjLCyijNypqce5fPkS9eo1KdWhJuEtQW7a1KXqfv75OIcO7eGVV8YTEBDIww+/gMMRSrVqMcTGJpTMgonwP0mQ8/PLyloZBq+vs2wV4WWVicLCQtLSTjF9+lMsXPgF33yzhg4dulZ42sXsAGc0KHo1vS7SHpp7x0+eZM/+/bRu0oSYqChycnNJOXSI+NhYHMHBFBQUEOFes2sWG7Zs4e5HH2XfwYPC+2u++45Au520M2eQLRaqx8ayZsMGtu/cSbcuXbBarSRUr06jJk0IcTgICwvjwoUL/LZ1K42aNKGoqIjExER+WraMG266qUzaAQEBFBcXExUZybBhw/j3q6+W3Dtz7gINGtRj7dp1NGvWzKsyeYKois22F+073bKTo0uHAAAgAElEQVR1K2t//fX/2Tvv+Kiq9P+/77SUSWbSeyeN3lHEwoII0hRRcW3YdtWfq2tZ61p33a/uquyuhbWsDRd7Q8SGUqQjJRFCEkJI73Um0zLt/v6YyZCElJmQgMH7fr3yysw55545995zn/u5z3nOueQXFrJz1y7a2tp46N578VOp2L13LyOSkznnrLP4ad8+lAoFcbGxBAcE8HNeHnK5nDGZmSTExhITFdX7hLPeLqyBKq6BdO5eyngjlDvnXXzxhaxf/w0KhYKsrJE8+eQ/mDNnridcwRs6mtGhoX0RyMXF4gnZBl9tQG9pA2UwbGz39thsNmpqqnnqqb+watUbfP75N8yZM7ff7Xz9nQ56FdknEmLR+Xsfwre6qorc/Hwmjh5NTGgoZouF/OJi4qKi0AQFYTEaCfPFhtrt7MnL45o//5mCkpIei3z38suEajTUNjbicDqJjYhgx88/s+vAAWZOmYJKqSQ6PJzRI0YQFBhISHAwutZWtufmMjI1FYfTSXJsLJv37uWC227rUre/SoXd4SA6PJzFM2ey8s9/9uTpDQZS58/nu5dfZvKoUYPv/RlgWvfY5f3797Fp02YKC/P56addNDU1cs89fyYoKIg9e3YRH5/IuefOYc+enSgUCmJi4ggO1lBQkIfT6WTUqLHExSUQFhaDuidvuRecqCPQl3InWteddy7j668/RC6Xk5KSyT33PM2sWYu6hHx5S1qa6/9pKZC9ZaCeXl9F8MkUyGVlR/ngg9fZv383e/fuJC4ugVde+YDRo8f1WH4wPDrepnkb7yfabJhMJuobGjhSXOzyJlZXo1arsbW3e8Sjw+GgpbWVb77/nj3793u2/9211/LaqlVd6pw7axZRERG06HTszcnhzClTWHrxxZjNZiaOG0d0VBTxcXGelUjyCgo4Y9YsACLDw7n8kktoMxj49ocf0Ov1aLVa4mJiiImJQRRF6hsaSEpM5LyzzyY3Lw+Hw8HhoiIqKisxGAxYrVaUSiXp6ek0NjYik8lobW0lMTGR6qoqEASSkpLRarXExMSQkJDAuHHjueSSSwgICEAURb777jvy8w/x2GOP8uKLK7nmmmt6P1GDSJ/esR7O3//eeYdrbrqJ7Kws7rj1ViaPG8fkCRNcHoRTefH40tkH+oTYj1juTk/eZF9EcU8MRCBXVZ2YQPYmz5t8X/C1a3hbvqamnLfeepX9+/ewe/d2IiKiePPND5g4cXK/2w7VMfQ6VtqdJooiZrOZ+poajhw9yuEjR6ioqEAdGIjNbsfhcBAZEYHTZqNFp2Pjtm1s3bXLU83/W76cld2Wk5x73nlEhoWhNxjYe+AAE0eP5reLF2MwmZg0ZgzRISHEx8Qgk8kwmkwUlZYycdEiAMJCQlh24YVY2tv5ZssWWvV6NMHBxEVFERMRgSAI1DU2Eh8dzezp08ktKMDucHCkrIzymhrajEbarVZUSiUZyck0NDcjl8tp1ulIio2ltqEBu8NBSnw82qAgosPDSYyNZWxGBkvnzEEdGIgoivywcyd5R47wxMqVPHXXXdx8+eUDOzHe2AdvPc09fP9s7VouufRSkpOTufdPf2LipClMmTKFzqvhDMQZN1BT+0sTyn3hrQ3t61R3DBCfFgLZ4ei5rYNhQAfrfj5UnaPjJDc01HP33Tfx00/buOKK65k8+UzOOWc2Wm1Iv09QgyGI+8rrTWA1NjZyznnnYTabyRgxgvqGBg4XFWGxWAgICCAiIoIRaWlkpqeTlJCA0WhEpVIhk8lobGpCLpMREhKCw+GgtbWVVp0Ou92ORqOhqakJo9GIRqNh9syZxMfFUdfUhFarZdyYMXy2Zg07du1CrVbz84ED1NXX09bW5pkVr1araWpq8rT1mquuYtUbb/h2MDgmjjrq1miOTUCoqamhvr6e8PBooqOjPeepoqKCvLyDlJQcpbKygvLyMnbv3kVwcDAzZpzDnDlzWbBg4YCE1IA8wp2wWCw01NRgMBiwtLfT2NhIeUUFRYcPk19YyIG8PJpbWgjVavn2s8/ITE8fnAtrsDjZ3mVv8+g/XMZbOsJmfRHITU0929ATEbSn2kPs6zYtLc388Y83sW3bJq64YjlTp07nvPPOJyQktMdrbbA8xwPNk+FEp9Mx45xzMBgMrodvtw01m80EBAQQHh5OWmoqWRkZJCUkYDabUSgUKBQKGhobkQEhWi2iKNKq09HS0oLd4UCj0dDc3IzBYCBIrWbWOeeQlJBAfUMDQUFBjB89mi+/+44ft20jOCiInw8doq6hAV1bG+ASKeqAAJpaWjztXXj++ax9++0B35gNRiMOpxNtcLAnq66xkdqGBiLDwoiNOjZBtKq2lgOFhZS4BXZZdTU/HTiAn0rFeVOnMnv6dJbMmeMqP9QnspsotlgsNDY10ea2oU06HRVVVRQVF5N/+DAHDh2isamJ4KAgvvn8c0Z74+V24+vkbV/TT4a+OZG6Bmpzum8XFub6LwnkfsoPF4H8xBP3snv3Nj766Pteh6RPlkC+5JIlZGVlERYWhl6vx9Cm54xp05DL5VTX1HD48GH27d/P7t27Adizeze1VVXExMSQmZFBUFDQ8TekoRhD7YZer0cmk6FWqz2/bzKZqK+vJzExsecYqgGKnq+//pqFC+d7vkdGRhIYGIjdbsdisTBx4mRSUlJJSkoiISGR8eMnMHr0mAF7Fzs82Eqld9tbTAYqKyvJy8sjJzeX79av59ChQ1gsFiIiIggOcq0SExYWRmJCAumpqYzKzmbMqFGkJyd3PVaSQO4/D0kg98XJEMhPP/0Y3333JV98sbnPNVA7GEpdtXz5VURHxxAdHYPRqEev1zNlylSUSiV1dbUcPnyY/fv3sWvXLkRRZPvWrTQ3NxMdEUFmRgbBwcHe2dATnTDTLa/NYHAteeqeLA5gNpupa2wkITbW5QEdJNf/xh07mHX11Z7v4aGhBAUGYnc4MFssTB4zhpS4OJLj4kiIiWHCyJGMzcw8fuKllyeyw4YKSmXvhTrVZTabqayp4VBxMTl5eazfvJmDBQWYzGYiwsLQBAfj5+dHeFgYCfHxpKelMTIzkzFjx5KRnt7FWywJZO+QBHI3BEEQRYfD65vLQIYghsKuDCb19bXk5u7m6qsv8qR9++1Opkw547iy3nQgXwz5ypUv8uCD9zJnzgWMHj2aSy5Zyty5c2hxew4WL76I2Jho8g4dIjwsjKSkJNLT05kwfjzjx48nODi495nip+JK6QVfxEt/zTaZTFx22RK+//47T9rUqWfw1lvvoVAoiIyM8sykPxE2bdrA888/y65dOzAYDCgUCkaOHMX119/EzTff6inX+VDdeOMNrFv3JXq9nvj4eDIzMhg9ejRzzj+fadOmERISguBw9L2zvk4o8iXvRBiM8e/+8k/0AjuRsh24rydfBLJO19XeD/Ll4xWnYq5GB/X1deTm7uPSS489tK5bt4mzzz7vhOvu71iuWvUmt9/+e+bNm0929kguumgJV111OeXl5QAsWLCI+PgEDh066HogTUwkPT2dcePGM2HCBDQaTe9L1nVmMMfCT+T6HQSB3N7ezuW33MIX3x2zoZlpaXyzejVyuZyo8HDXmuIn2Km27N7Nc6+9xsYdOzCZzSjkcrLT07nu8sv540039bjNbQ89xMfr1qFrayMuOpqMtDTGZGcz+5xzOHPyZEJDQnoW2QOxKwO0RT3dz4bKTJ/K67onvLFtHQO9p41A7okTmeF/Mq//gdLe3s7vf/9btmzZ6J6BL9DS0oRCoeSttz5k5szZx20zWBqhg/feW811113dJS0/v5B9+/axffs2Nm7cgNG9ZJZOp8PpdBIQEMCIESOIi43lD7fdxsKFC737sRPkRDx0vpzT/sqWl5cxcmQKCoWC6667iZSUNCZPPpOEhCTi4uK7eA6sViv/+c+/GTEiA5VKhZ+fP+vXf83hw/k8+uj/MWbMsdjylpYGPv/8Y+rqatm2bQvl5aU8+OBjzJ59AX5+fhQVFfL555/w/PPPceBAIZkdU3XdOJ1ONBp/bDYbkZGRtLW1YXG/XjUgIIADubnH3trnjSthqD3HnbcbTEU3mK7Bk1Fv9/IDEMgnuhLQyWAo7KrNZuOWW5azfv3XaLVaBEFGc7NrjsDrr7/HnDkXAkP3wKBQwJo1n3H55Zd0Sd+z52cKC/PZsWM7GzZ877ahLk+yw+HA39/fZUPj4rnxxpu49NJLu2zv86oaHQxVYPcgDwHU1tURO2oUADdfdx2pSUlMnzqVpIQE4mNjUXYIUHe89YqXXyY9NRU/lQp/Pz/Wb95M7qFD/PX++5k8/tjbGZtbWvjwiy+ora9n+08/UVhczGP33MO8WbMI8Pen6OhRPl23jr+/+CI5GzYwfvTo49oWnp1Nc0sLkeHhGEwm90vBQC6Xc2DLFkZmdX/xcDcGI5B/AIJ6IN7n/vIGo/xQ0ddh7G8loNNCIHfGG3E03J6IYmI0tLW18cEHnzNv3gJ8eZ3tYA1FgCve7OjRo7S2thIeHk5KSgovvfQid9xxO+AKH4iKiiIyMpLk5BSOHi1my5YtANx9111dVmk4EQZjiHooL/au2tHOhx+uZsuWjZ4XRVRXV9Lc3ERaWjppaenExyditVp5881Xeqzviy9+4LzzZnm+/+c//+aBB+70fE9MTMJsNqPX65DL5URGRhEfn8jIkaNZtOhicnP309jYADhpb2+nqamR0tISDh8uxGAwAC6jrlKpMJvN/Pe/b3D99df7PGGo3zRv8n5JDIZaGkqx7J6ld7oJ5KEgOzuZiopyVq36gMWLlxwTVr0wVEJZFEVKS0tpbm4iNDSMtLQ0Vq9+hxtuuBaA8PBwoqOjiYiIIDU1jdLSEjZv3gzAjTfexKuvvtZn/QMWzB0MxrU5yNe3w+Hg/Y8+4vuNG6mtraVVp6OyupqGxkZGpKaSMWIEifHxALz46qs91vHlhx+yYO6xlUleffNNbr7zmA3tiNvWtbUhEwSiIiNJiItjdFYWlyxaRO7Bg9Q1NOB0upZYbWxuprS8nIKiIto62VA/Pz9MJhMvPPMMf/j9709sxwf7gXyAormD4SqQ+0ISyD0w3ARyWVkpmzb9wKuvruTIkcOMGzeB0aPHkp09iuTkFOLiEhgzZmyPsbODKZB7ori4mEceeZgff9xMTU0NAO+//yHNzc3Ex0aTkZFBRkaGT6K+P4aTQO4Nk8lEUVEhJSXF1NRUYTC0odO1Ul5eRmNjAzU1VVRVVaDRhDBz5mxmz55LcXERR48e4ejRI5SUFGMwtBEWFk50dAyhoWGel8eYTEb0ej0NDfVoNBrmzVtITEwsSqUcpVJJZGQkERGRREdHExISSnBwMFqt+rhYRkkgSwL5dKGiopxNmzbw2msrKSzMZ+zY8V1saGxsPGPHjvPYqZMZelJeXs4jjzzI1q0/UllZCcA776ymra2N6GiXDc3MzOxX1MPpKZB7q9tisVBYVMSRo0eprK6mzWBAp9dTXlFBfUMDVTU1lFdWog0OZuY557Bg7lyKS0ooKi7myNGjHC0tRafXEx4aSkxUFGGhocdsqNmMvq2N+oYG1Go1i+bOJS4mBrlcjkIuJzIigsjwcKKjoggLCSE4KMg1p8WLc+Q1kkAeck4vgdzePiDLdSoE1VDR3NxMbm4OBw8eoKAgn4qKco4cKQLwLB82duw4goKCaW5uwmq1EhsbR0JCAnFxMWzdugWHw4FWq6WwsJDs7GwsFgs5OTm0tbVhNBoICQllwgTXZLHY2FjCwsKIiIggNLTnWd4d3Hbb/+Pll//DpEmTSElJZfr06Wg0WrRaLf7+/p7XxUZERDBt2rSTdchO6NwN9nn3tj6FwuU5qaysYM2aT/nxx42MHz+R9PRMRoxIJyUljYiInl933lNdJ1rG1yXgvMobSLlfCqcy1KODYSqQT0Xcc2daW1vJydlPXt5B8vMPUVFRTnHxEex2O8nJKWi1WsaMGYtGo6WlpZn29nZiYmJJSEggJiaWnTu3097eTkhIKIWFBWRkZOJwOMjJ2UdbWxsGgwGtVsvEicfb0LCwsD5t6H333ctzzz3LhAkTSE5OYcaMGWi1IWg0Go8NlclkhIaGMn369B7rOGGR3B+n8lr18bedTieVVVV8vnYt6zdsYPzYsWSmp5ORnk5aSgqRkZHevUVxoPs81J19COc5DFQ3DXX3GMz6Ty+B7IUHeTAZrNnmQ43D4WD//v20tLTQ2trKTz/txm63ExYWhlKppLq6msrKSqqrqxgzZiyRkZG0tLSQlZVFfn4+KpWKqVOnodVqUavVNDQ0kJubw6FDh2hoqKelpYW6ujpsNhsxMTEEBwcTFBREYKAas9lEU1MTer0egKamJtrb271o88nrd6fKnp+EBTlOWf0DugmfqqeNoeBUqzwYkEAe6Fryv1QG6zQ4nU5ycnJobm6mtbWVPXt+or29nfDwcFQqFTU1NVRUVFBdXUV29kji4uJobGwkOzubgoIC5HI5U6dOIzQ01LN0ZIcNra+vo7m5mfr6erfYjkGj0fRoQwVB8NjQ/u7NvdnQIRfIg8FweyAervzCRm4780voAv2tJS8J5GHKqRDvBoOBuro6DAaDx1OiVqsJDw9Ho9HQ3t6O2WzGZDKh0+moqamhpaWZsLBwT3xyeHg4MTExg7J6g8Qvj2Fxcz5dGMAkvZP5YCpxPEajkdraWgwGg+evYx1jjUaD1WrFbDa74mHdNrQjXrnDhkZERBAbHelavUFC4iQxXByGvtDfUpmSQB6mnI6dVWL4Iwnkk4gkkH+1SNeZxMnmdNQc/QnkX8A4ofcIPb3AQUJCQuLXTZm3BeXyE3u9tYSEhMRpSI82dNh4kCUkJCQkJCQkJCROBqefz1xCQkJCQkJCQkLiBJAEsoSEhISEhISEhEQnJIEsISEhISEhISEh0QlJIEtISEhISEhISEh0QhLIEhISEhISEhISEp2QBLKEhISEhISEhIREJySBLCEhISEhISEhIdEJSSBLSEhISEhISEhIdEISyBISEhISEhISEhKdkASyxGmHIAibBEHYdAp+93FBEHp9NaUgCNcJgiB68fe4u3xpt/RWQRDWC4Jw9knbKQkJCQkv+KXaXQmJgXJaC2RBEC4TBKFQEAT5qW6LhASwDpje6e82d/od3dL/22mbb91pM4A/AiOArwRBSDkpLZY47REE4VFBEKoEQXAKgvClIAhNgiBoT3W7JCQkJE4lp7VABj4BBOCaU90QCQlRFBtEUdzZ8Qcccmfld04XRbGy02aN7rTtoii+jasvBwNXnOz2S5x+CIIwBXgCeJFjD2E5wF2nsl0SEhISp5rTWiCLougEVgG3n+q2SAwegiCMFwThM7eny+weJXiwn22y3Nu0urfZKQjCvG5l3hIEobSHbY8bOhQEYaIgCFsEQbC4vW+P4HoYG2r2uf8nnYTfkjj9yXb/f0kUxR2iKBYDbwK3CIKgOIXtkvgF4qvtPY3srsSvkGEvkAVBOFsQhM2CIJjcF+1rgiAEdyryCTBJEIQxp6qNEoOHIAjTgB24Qg3uAhYAK4CEPraJA7YC44E/AJcDrcA6QRAuHEAbIoANQASwHFeoxDzgBl/rGgAp7v/FJ+G3JE5jBEF4C3jH/VXnjnOfCXwBhAFzT1HTJH6B+Gp7TzO7K/ErZFh7CARBmAH8AHwOXAqEA08Doe7viKKYLwhCCzAbOHiKmioxeDwLNAFniqJocqdt6Gebu3H1iemiKB4BEAThK1whDn8DvvaxDXcBamCuKIrl7vrWA2U+1uMNgtuTJwPSgf8ARcAbQ/BbEr8u/gpUAA8DswAzcEgURb0gCHnA+bji5iUkwHfbO5ztroTEsPcgPw1sF0VxmSiKX4mi+A6uGM2l3TzGPwPTTkkLJQYNQRACccVJru5koL3hXGBnh5EGEEXRAbwHTBAEQeNjU6a76yvvVJ8RWOtjPd5wJWAD2oE8YAywSBTFliH4LYlfEe5wio6RiJ/cse569/dcJJsp4WaAtnc4210JieErkN0X7HTgQ0EQFB1/uIZ0bMDkTsUbgZhT0EyJwSUUV5+t7K9gN8KAmh7Sa3HFr4X6WF8sUNdDek9pJ8rXwFTgLOBOIAD4VBAE/yH4LQmJDiSbKdGZgdje4Wx3JSSGr0DGdXHJgZW4BHHHXzugBBI7lW0HJEEx/GkBnEC8j9s10/PNPgYQ3fkAFkDVQ7nwbt9rgOgeyvWUdqI0i6K4xz2B6t/A/wNGIU08lRhaJJsp0ZmB2N7hbHclJIa1QG7FdZE9hsvD1v2vc4xmCMcuRolhintobytwtSAIAT5suhk4s/Pawe61sZcB+0VRbHMnlwHR7skgHeVGAFnd6tvhri+xUzk1sMiHNg2Ut3GtZHGvexRFQmIokGymhIcB2t7Tye5K/AoZtgLZHXu0E8hye9i6/1V3Kp4CHD4lDZUYbP6Ey7OwQxCEawRB+I0gCDcKgvBCH9v8E9cD1XpBEK4UBGEhrri1TODPncp9hOuha7UgCHMFQbgKWINruLl7fUbgO0EQlgmCcDHwHa5JTkOKKIoi8CgQCdw61L8n8aslBclmSnTFV9t72thdiV8nw1Ygu7kPuFQQhHcEQbhIEIRZgut1vh8JgpAJnifMbGDbKW2pxKAgiuJPuCaLVAAvAF8B99JHbJz7YelsXJPc/gN8jCs+boEoit90KncE1+on8bhWRrkP10zsw93qa8S1KkojLo/uS8A3nKSVJURRXAdsB/7koyddQsJbpiDZTIlO+Gp7Tze7K/HrQ3A5pIYvgiCcgetNUGfhikkuw3XRPCGKok4QhCW4XhYS4/Y6S0hISEgAgiBch+vFIMGiKBrcaROBvUCaKIqlp651EhISEqeOYS+Q+0MQhPcAoyiKN53qtkhISEj80hEE4SlgqiiK55/qtkhISEicKk5rgewO5i8ExnVei1FCQkJC4njcIWllwKWiKG46xc2RkJCQOGUM9xjk/kgAbpHEsYSEhIRXJAF/kcSxhITEr53T2oMsISEhISEhISEh4SunuwdZQkJCQkJCQkJCwicUp7oB3pKSkiKWlZWd6mZISEhI/NIoE0Uxpb9Ckg2VkJCQ6JEebeiwCbEQBEFsbx/attrtQ1r9sEUxwMcob7eT4ey7gDcnpr8yvp7c4dQZfD1B3pYf5HLOQRiwGk6nZahRuV/OKwgCoigK/ZUXBEE0Gnu2oUN1XKXz1ZXBuqT6yu8rr09b29PJ6usEDobNHUgHOVmdaqA3Pl+2HexyvpYdSPlODIZN72CwTqsv9QS630Xbmw2VQiwkJH6FiKKIw+FguDwgS0hISPySkGzo6c+wCbE4GXR/kBqMJ5qhfNg90bq9fXDs6XcG06vsRNa7Z8Nbr8ZgeT98OKgOh4PKigoOFRUhl8uJDAvjm82bqamvp81oxGyx4HA4cDqdBKnVtFutGIxGnE4nKj8/lAoFKpUKlVKJSqnEz8+PoMBAtBoNkeHhXDx3LmGhoV1/tNsBNJlM1DU0EBsdjb+/P0fKy/nmhx84UlJCSVkZNrsduUKBIAgUFhVRUVWFzWbDbrd3PDUjk8mQy+UIgusBWhRF5HI54eHhREdFER0VRUhICG1tbfz9739n1KhRXdrQnxfBl3463DyOJ+JkGo6czIGYX7r9HQiD5RnurZxCcWyfeyqjUBy7Vk/Ym9z5+wDtr8PhoLqujoOFhchkMqIjIvh20yaq6+rQGwwuG+p04nA4CFarsdpsGEwm7Hb7Mdspl3s++6lUqAMC0AYHExkayuLZs4kMC+u9HQoFZouFmvp6YqOiCPD3p7SyknUbN1JcXs7R8nKsNpvHPhaVllJeXY3VCxsqk8mICA112dDISEI0GtoMBv5y//1MHDu2zzb1eiyHwuDY7QOut9/R3x7o7X4xkCb4qk18tQfDKsTC4RARRZHq6mrKyspobm4mNTWV7Oxs5HL5Cf/GUBn/kz26P5DtB3NUpmfD3Ht+jxdZX8a3tzxfRK+XafWNjXz41VckxsaikMtZ+LvfAaAODMRssRAdHs6YzEwcDgcllZXMP+88RiQloQ0KIsDfH7lMhqBQ0GY0EuDnR5BajVwmo91qxWa3Y7XZ+MPjj6Nrazvut9OTk7Ha7RhNJkxmM+1WqycvITYWmUxGbUMDkeHh1DU0EKLRUN/Y6Cnzv5dfJkSrxSkIOBwO0lJSSEtJQRUYiFKpdBl3uZwfNmxgzvz5PR+7bowYMYI5cy6gpaWVlpYW9HodoijS2NiISuXHV19tICoqqs/D3M8hHxIGo387nU4MBgPBwcGeG+FA6j7RtnUgc99nfAmxaG932dCamhrKy8tobGwmISGJ7OyRKLo1ZKhH170tN1h1ncoHNW/OcX8CuK/8ju+9lekp32N3fbW1PgrjpoYG3lu7lsTYWJQKBQtucr2zq8OGRoaFMTYzE9Hp5GhlJXNnzCAzORltcDABfn4e4WkwmfBXqQgKDEQul2O1WLDabFhtNu7/17+obmg4rilpCQk4nE6MZjPGbjY0LioKlVJJdX09kaGh1DU1oQ0OpqG52VPmzaeeIjIsDKfTicPpJCUpiRFJSfipVCgUCmQyGaJczo69e5mxdOnxx6IHoiIiWLpwIa1tbbTqdOj0epxOJ00tLQiCwMYvvyQuNnbgcTTe5J8oA7xAerOhvTKA/fAm7KOj+f2FqQ0rgdz5+xnTphGi1XK0pIS6+nrmz5vHVVdcwcIFC7yrcBDjJk/EMJ+K8Fpv8dWo95TWmyGHbsK4J+Pb/Xt/BnoQPRxWq5UZV1/Nnrw8ABaddx4VNTUcOHIE3ILTT6XqYnA7yFuzhlHp6V3SRFHEbrdTVl9PXWMjZdXVvLduHT/+9BN6g8FTLiEmhrTERHILCvhm1SqiIyIIUqsJDA7GT6XyiNqS8nIAUpOSUPj743A4qG9ooL6lhR82b6a+oYEnn3iiq+jp4dkTni4AACAASURBVC7Z0b+rqqqwWp34+fmhUCjQ6/XU19fR2NhCXt4BHn74PhYvXkJe3kGKi4t6PW4bNuQwevR4bw9zv323uLiQ0tIi6uqqSUpKw2QyUlJSxJYt69my5TtPuVGjxmM0tuFwOAgMVKNS+REcrOHjjzd13+XjDkdPKBRw22038L//vdljfmlpPZGRkV7XN5By0I+Hxq2QfRHIMpkMp9NV57Rp0wgNDaO0tITq6mouuGAey5b9lsWLL/bcvHw9dwM914OZN5QDTCfKidjLvkRwf3k9OiX6sqc92VIfHRV2u51Zy5ezZc8eAOafey61jY3kFhQgCAJ2hwN/lQpLDzZ0/7vvMiEr67h0u91OeW0tNY2NVNTV8f6337Jp7150nWxobEQEGUlJ7Cso4OuXXiIuKoqggADUAQHHbKgoUlZTg0MQSEtIQKFQuGxoczMNOh0bd+2ioraW/7v3XlQdKqrzQe2MO626thaHIKBSKlEqlbQZDNQ1N9Pc2krhkSPc+dBDLJw3j4qqKnIPHDi+Hje7t21j6pQpfRoKX2J/i4qKOHz4MNXV1SQlJWGz2Th8uJDNmzfx5ZdfesqNGzcOo9GI3W5HrVbj7++PUqlk5/btxyrz8aK554EHWPHCCz0WrywqIj4uzuv98DAQ8d/bNv3Y0GElkJ995hl2797Nl+vWkZaaSnJSEhEREVgsFj746CMAoqKiqK+vRyaTERsby/MrVnDJxRcfX6EkkPvldBDIpZWVLLn1Vmrr65kxeTLvr1iBQqHAbrejHD3aUzQjOZlzp0zh5ssuY/2OHezNyyO3sJDymhps7no3vf46giBQUVvL1pwcXv7wQ8/2YzMyGJOezqj0dO6/8UaUSiUAjS0tRJ59tqdcdEQEgQEBKOVyYiIjEQSBzbt3e/KLN24kLSnJuztlf3leuJk6929vRMR///saf/zj7wF45JGnWLz4UpKSUjxCfDCFiCiKpKS42peRMQq1Ogh//wCyssZSVVXGxo1f43D0XoFSqaS01HXzHYhArqmpJjd3HytX/ovs7FGkpqYyfvxEYmJiycw8/uY9HATyv//1L7bv2MmXX64lOTmZ5OQUIiMjsVqtvP/+ewDExsZSU1PjChuKjOLpp1dw2WVXHFefJJB9ZzgK5KrqapZccw0VVVVMnTCBj199FZVKhdNqRZ6a6ik3IimJc6dN46alS9mRk8O2ffvIKyqipLLSY0O/e+01/FQqqmpq2JGTwwvvv+/ZPj0piamjR5OZnMyDy5fj5xameoMB7XnnecpFhYYSFBiIQqEgJjwcpVzODz/95Mk/9PHHjExNHfobmK/l3Z/f//hjfnvjjQD85ZFHWLZ0KWmpqS4b6k0cDb4JZLncZRqysrIIDQ1FpVIxZsxYqqurWbfuS2w2W5/bO92hJIDPF01dXR37cnJY8cILjMzOJikhgSmTJhEdFcXI7Gyv96ELkkA+HkEQRLG9Hex2LBYL+QUFVNXU0NDQgE6v57sffuDr71wepQ4B1MELzzzDFUuXYjabEQQBf7Wa8PDwwXPx+9iRh9qAD4ZxH8gIjjfGvV9R7GOaUa9nw44dbN61i7LKShxOJ4VHj7LhjTc4WlnJWVdd1aVNlV9/Tbw7BEA5bRp2d2xbm9HoKbNk5kw+27Spy3ajUlNRKZXY7HbXEHVjIy2dwiK+/fe/ueDMMz07um7LFq5+5BFaO5Ux7NhB5kUXUV1fT3dSExIo2rDBFSrk612xn7TufXAAziAAmpubeOGFf7By5T/44IMfOPPMWb3W4Wtab3lNTfW8//6LrF//ISUlhQB89tnPbNnyNatW/ZOJE2ewfv0nXbaZNm0m77238bi6B/rM4Wta9zxRFKmtraW6ugqj0cjUqZMIDg7ucRuf4kLdAsIXgSy2twPQ3t5OQWEhFRUVNDY10draypbt2/n0s8/cbe9qQ//xj2dYvvw6jw2Vy/2IiIjoYkMHW6x6kzaUg0lDZUeHSgR3/O8p7bh+1ckImPR6Nm3dyqYff+RoSQlOp5P8oiK+++ADGhsamDR3bpdNS3/8keT4eLDbiT7rLOqbmggKDMRgMnnK/PbCC3nv66+7bDcyNRV/lcpjQ+tbWmhoafHkf/L001zym994vq/ftYurHnusSxndDz8w/aabOFRSQnciQ0Op/uYbuocKDclJ6C+tl3pbWlp4/oUXePyJJ1i7dh3zu4W29ddPvcnr/vNNTU288sqLfPrph+TnHwJg585ctmzZwD//+QyTJ0/lu+++od1tG8DlTc7dv7//Hx2qC6cboihS39BAZVUVBouFCePGodVqB15hx3npx4YOK4H8+sqV6Fpb2Zebi9lsxuF0EhkeTkFREYePHMFkMhEfG8v1V15JRloaDz35JAVFRYSGhNDS2kp8bCyiKGJyG/m05GT+8uCDzJ8zx/cG9XJnbGxt5S9PP01NbS02mw2FQkFIaCiJCQlERUZy/uzZ6I1GVCoV4eHhhIeH4+fn16cn7wQiBXwq0xlfBPKQCOP+ytjtPPb88/zlpZd6bF9EaCjhGg0qpZLIkBBqGhrId68BO/eMM4iPjOSa889n5sSJrNuxg4UPPACAn1JJu83GqKQkDrnDGDpQ+/tjtFgYERdHcXU1AEq5HJvDgVKhwE+pxF+lQhsURHFVFQABfn6YfvzRczBEuZzC0lJG9jCqseA3v3FN6sPl/VQHBpKVkcGY7GwunD2b4KCg3u+A3cRwXyK4t7y++p1OZ2DSpGOi7vrr7+VPf/rHceV86Z++9slnnrmV/PzdtLebCQ4O4b77/kNGxjiam6vIzd2G0+kkJiaJESOyCA2NAE74fuZVnt1up7i4iLy8AxQVFXDkSCEFBYf4+eecHvcjOjqa8vLaHuvqNx6/E9WNjVitVlJTU70WyK+/+CL6tjb25eZiMpmwOxxERURQeOQIhUVFmMxmoqOiuPHaa8nMyOCpZ59lz759hISE0NraSnx8PKIoYjabXR7+5GQee/RRLu7Wn/sbmeie3vlzU1Mr//jHE9TUVGG1WpHJ5Gg0IcTHJxIaGsWMGb/BaLQgl8sJCQlDo4nEz89vQM/ZfbWjr/b2hTcPTZ0/+yp4eyvXW/kuArmbEVjx4ovc8+c/99jWiLAwwrRaVEolEaGhNLe28nOh6yH1/OnTSYqO5op585gzfTo/bN/O+bfeCoBKqcRqs5EeH88Rtx3soCMsbUR8vMdGKhUKbHY7Crkcf5UKf5UKjVrNUbeNBRA3bz72WS6npLqaEZdfflybF8yYgcPpxCmKKBUK1AEBZKSkMGbECC48+2y0wcE9u9R7O3B9HfAeynW2vx10fG5vbycszN+TfuONt7Jixcpey/dEX3nePAc8/PDdbN26Eau1neDgYP75z5eYOHEyTU11bNmyGafTSWJiEtnZGcRERfT+431dRN40thsOh4Oi4mIO5OdTUFREYVERhw4fJvfgQU9IWGdUKhXtPcSc+0qtyYTJZGLEiBHDXyBff/XVBPj7MyYriwi3B7iuvp7stDSy0tNRKBSEh4a6hrc7nRxRFHE6nZRWVHDdXXfR1NxM/pEjALz0179y6zXXeOdN7kwvVvBfr7/OXY8+2utmV152Ge+6w0E6CAkJoaWu7rh6+7rYBkM0+4q3o0t9iYweh/b6E8rd0nbv28dHX32F3W7n58JCQoKDiQsPJz4qigdffNHr/Xn4yiv56/Ll7C4o4Mqnn6a4poa4sDAQBFKiotien+8pOzYlhSa9Hp3RiLHTk3Zf1H72GdGdZ1B3M6qtbW3sOnSIVpMJlVKJQqVCLpcj8/PD6nTSZjBQWFLC6+++S5vBwIN33sm9d92FIijoWH24+okXh82bZ44udE9bseIeVq9eAcCuXeIJ28j++qi3/c3bPG/TvKkfoK1Nz5Yt33H99ZcRHR2DXC6nurqrIEhPz2DMmHGMGzeBuLgE4uLiOeusM7t4kHvazw5B43Q60TU1ASCXy9mydSsLlyxBJpMRGhrKAw88wL333uu1QL7+yisJ8PNjVGYmkeHhyOVyaurqyEpPZ2RGBkqFgtCQkK5xl7hEidPppLq2lqtvuYWGxkbyDx8G4Jm//pV7br+9qw3t60B2Su9pdOO//32V2267udf9WLBgCevWfXZcenGx6KnDm+uh829605f7SocTE8Yd3/vSYf2V657n738srbtAztm7l/+9+y6CILAvJwetRkN8ZCSJMTHc//TTve9IN+6+8kqe++MfyTl0iMsffZSiigoiQ0LwV6mI1GrZV3RsvsKYlBQadDrM7e3oO3mb+6Jk1SpSoqO77nynz3qjkV2HDtFsNKJUKFAqFMhlMmRKJTZRpM1opLCigre++ILG1lbuv+EGHrjlFlQdC+D292TRy4HuzeZ20FvaihVP8NxzjwNQVna89jqR+7a39s+bvB4dWj010Ftl3wsGg4EffvyRi6+5htCQEIKDgiivrOxSJj0tjbGjRjFh3DgS4+OJj43ljClTvPYgO51OdDodAHJRZNfevVxw6aXI5XI0Gg133303jzzyyPAXyKJ7Jwd6Z/74yy+57OauhjdEo6FVr8fPz48APz/ioqNZMGsWfioVoijytxdfJESjQeOedZmZmsoVixZxQ7ehew8KBTV1dWzevp0HnnySsk4n+/8efZTfXnopMpmMqpoamvV6FHI5Z06bhjY83LN9B5JApsc7229++1s27d7NjUuXEh4cjMliobymhk179qB3h0pog4JQyGREhISQmZDA5KwsTBYLOJ18v2+fx3DfPH8+T91wA3e/8gpvrV/fpa0XTJzIxgMHSIqMpLimxpP+m3HjKK6poVGvx+QWy0lRUbQaDLTbbAQFBNCk13vKa9Rqfn7jDZITErwzwv7+XdIcDgc5+fk89OSTtOh0vLxyJZMmTjwpArmlpZU771xETs5WT/q8eVfxxBP/+1UL5G+/Xcu11y4GYPHiSzEY2igszOPaa29ixozzmDx5GoGBgT3uw7Ztm9ixYxsajZaoqCiWLLmIPXv2EBQUxPjxrgmOMpy8tHIld919N4GBga5JTXY7BvdkpJriYqJTUxEEwbcQi6amgRkH946s/eYbFnezfSFaLa06HSqVisCAAGKio1l44YX4+/ujUCh4/G9/Q6vVotFokMlkpKelcekll3DzrbciCl1XH+poWl1dHRs3buLJJx+jqKjQk3///Y+zbNm1gIKamkoaG5sRRRmTJp2JWh3qqUMSyH0L5EuXLeOTzz/n6mXLiIuKwmyxUFFRwabt22l12y51YCBKhYKosDAy3PHBJrMZmSDw/a5d7DnkGq6/Ys4cXrn3Xu576SVeWbOmS1vPnzSJzbm5JEVHe0bdAGaOG0dpXR0NOh1GiwWAZLcNNVuthKjV1Hfc74FAPz9yVq4kIyWl74Pay0FyOBwcOHqUR154gaqGBv7z179yxoQJJ0Ugt7Xp+d3vLmfjxm89+RdeuISXX/6U7vyaBPLX33/P/GXLALjsooswmkzkHDjAjVdfzXnnnMOZU6eiVqt73Hbrjh1s3roVjUZDVEQEi+fP5+e8PBRyOZMnTvSUe33VKm69+24CAgKQddhQt0Yozckhady4Pm3o8BLIbk/KgC1ct5NZWFJCeEgIYVotVpsNo9nMt1u3UlFbS7vVisVqJSokhGsXLUJvseB0Ovn0+++599lnWfvSS5w9aRJ/e/VVwrRaIkJCqG5qIiI0FD+Vij/85S+0W62cMX48RosFg9GIf0AARqMRvcFAm8FAgL8/WRkZ3Lx8OWfPmEF2ZiaCUonV6cRkMiFTqVyeJpmiT4Pfy+51obm5iR07NlJRUYpGE8K8eRej0UT0adS70/0CFEWRwsJD1NVVkZo6grS0EV3K9XTB9hpq0Zea6/R51aefsvzee7lq4UKevOMOrGYzb69dy79Xr8ZoNgMQ6O/P4nPO4f3167lu/nxa9HryS0uZkJ7Oh+7Y4vPGjmVnQQGPXXklZ6SnM/uRRwC4Y/580qKjufNN1+oFSrkclUJBqFrNwkmTWDBpEktXrODWOXO45+KLeWvjRjYePMhDl1xCVnw8TpmMyffcQ5Nej0wQCPT3x2K14q9S8ZuJEzl/2jSUCgWXzJpFdHi468B0vpN1/O+e5u+P0+lE7l4X+YP33uP8C+YREhKC3Q7ue8xADmmvaZWVR1i2LMNzuhYs+D3XXfcXwsKifRLD3tjNwRDDHX1Sr29GpZJjNhsxm3XExaUQEHC8WPW2/u5pt99+DZ9++j9uvPGPXHDBfJYtm8vttz/An/70mFsU9lxPcfERVq36L++/v4orr7yW8vIyPv74fdRqNcZOMfCBgYG0t7fjcDgAOHzwIBkZGccfSLcXzCeBXFfn202te363A1NUUkKIRkNYSAg2mw2TxcL6LVsora6m3Wqlvb2dkNBQbrzySvRtbTidTr7auJHbH3iA9157jfnz5vF/zz1HsFZLdFQUVdXVhEdEEBgYyD33309raytTp07DbDZjMLShUvljNpvQ6XQYDG34+weQnDyCa665hQkTziYjYzQOh4DZbMViMeNwCKjVwVitA/P4dcZgaOHAgY3U1h5FrdYybdpFhIRE0Rf99TlRFKmqKqChoYKYmBRSUzO7lPNRt/Wa12FOZDj56KOPuPyKK7j0oov4+xNP4LTZ+N9HH/HcypWeBzA/lYqlc+fy7tq1LF+yBL1OR15xMROzsvjAPddn1uTJbD9wgLsvv5wF06Yx4447APj9/PmMTUnh9pWu8AGlXI6fUokmMJCFU6Zw8ZlnctH//R+/mzOH+xYv5qMdO1jz0088vHQpIxMSEASB6Q89RFVTEzJBQO3nh9lmw0+pZObYsZw/aRIqpZIlZ51FbIcN9fJAiKKIbMwYAN59/nnmzprlWmu+tyeLToIYutpZb/pTSUkJM2emedLnz1/Gfff9k8jIWDrjrbb01g760mc6f5bhRBRFWhoakMlkmEwmWpuaSE5KQu3nd3yDBviwfetdd/HyG29w07XXcvWyZcxcsIC7bruNvz3yCAEBAb0+bZaUlvL622/z37feYvlVV1FVXc3qDz5ApVJh7bQaSmBgIFarlY55FAe3bWN050mBHe12z0c6fQRyb66AE7V+Xt7xrTYbT69ezervv+dIVRVXzplDhFaLzmgkLiqKJp2ONpOJMK2WdpuNVx57rMee6XQ6MTqdbNq1i4/WrmX7nj1UVFVht9tRKBQEBATgcDgwm82MHTuOb7/9Ebvdjk5nQBAEgoPDUCj8aW9vRy73o7GxnvXr1xIUpCE4OBSlMgCr1YpaHURiYhqPPHIr33zzsWc//vGPt1i6dHmfx7xzHxVFkW+++ZjNm7+lrOwoBQU/YzIZiYyMISUljcOHD9Ha2uK6IYaEcvbZM7HbrcTHJxATE0tQkJqwsDAsFiPBwRrS09NJjI8lNjYWP7ncc6wd7e3o9XpUKhX7f/6ZgoIC2s1mDEYjR44eZfaMGWzevp0jpaVs27uXUI2GtMREFpxzDg/+61897se7jzzCb2fOBGB7Xh4yQeDMzEx2HjzIBQ8/THpsLONTU0kJD8dis7E+Nxc/pZKimhrOTE9naloahyoreX/nTtY/8ABz3EOQ540cyW9GjsTudBLk709kcDBpsbEgl1PV3IzOYmFiWhpj0tIwtbfz4ldfUVxbi0wQ+Hz7dsI1GtLi47lo9mz+cMUVKDoMs79/jwLZ4XBwy5/+xH/feKPL/lVU6AgM1HTpshbL8d2+P+Pe+XNtbSnLlx+boQ6QnX0Wf//7ti7bnQi9iVDvPb02DhzYSXn5IWprXfHi27Z9RWVlMYIgEBCgRq0OprTUFQqQmprFihXvMWbMeGSygS9W//bbL7FmzbscPLiP0NAwamtdnrF77nmcu+9+jKqqcpqaGoiKiiQ8PJKAgABE0UZMjIolS5bx+ONPkZKSSlHRIaZMGd2l7iVLLuHNN9/C39+fhoYG1q75jMuWLCEiIuL4k6ZxnXOfBHJVlW+2cQhOtB145vXXWbVmDUWlpVw6bx4JcXE0ueeJNOv16PR6omJiaGlt5c1XX0UICAC6ChVRFGlqMrJt2xbWrPmA3bu3U1VVht1uRyaTExAQiNPpxGIxkZIyin//ezOCIKOtrQ0QCAwMcwvudgTBj7a2Jnbu/JyAgGB3XgB2uw2FIpDo6DRWr76fTZuOLft3003/Yc6cW7zdbURRZM+ez9m372tqa49SVvYzZnMbISFRxMWlU1FRgF7fiM1mJShIy8SJs3A4rERFxRMREYtarUajCcNmMxMQoCYpKYO4uHgiI2PRav09vymTOdHrdQQG+pGXl0NxcT42mwmr1crhw4eYNet8du3cSmFhIdt37EATHExacjILL7iAh558ssd9efXRR/ndRRcBsDs3l3arlXPGjiXn4EFm3n03KdHRTBwxgsTISESHg2/27UMpk1FaX8/4lBTOysqisKqK1Vu28NUDDzDfbUPPSE9n3oQJOJ1OAv38iNJqSY2KQi4IVDQ10WoyMSE5mTGpqVjtdlauX09BZSVKuZzPdu0iNCiI1JgYFp11FncsWYLK3U96czKIosidTz3F82+/3WX/WsrKCImI8JTr6Gs9OR46+l9/UqO2tpLZsxO7/E5q6kg+/vjQcdv1h68PRH1o/S5i2G63s3PbNg7l5VFWXo4gCHz7/fcUHD7scvAEBqIJCuJwcTEA8bGxrHn7bSaOHXu8De3Py9Hp++tvv83rb79N7oEDhIWFUekeaf/jH/7Av557jsrKSmrr6oiMiCAyMpLAwEDXw42/P4sXLuTZp58mIyODI0eOkDG6qw29YPZsPvrf/wgICKCpqYnP16xhyaJFREdFHX/STiuB3OH9GKhLrL/xNm9EcqcT3uEZ7PGRrKee2VkAdfzvVM5sNqPSaJC7hxWsdhkWi4WkpBh0Oh1qdRDBwRrXE15Lk2cSYFLSCIqLCwCYO3cpOl0rFosZpVKJwaCnqqoEh8PBqFFTACezZl3CRRfdgFod1KsgUChcF/i//vUwQUFBHDy4F52uheuuu52UlHSys8cRHKwhODgQpVLAarViMLRht9soLDxAW5sOhUJJXV0V9fW1WCwmmpoaUavVtLXpKC4+QnV1FXV1dSQnJzN1yhSMRiMbN21CEAQsFgtjR49m7KhR2Nrb0RsMTJkwgQ8++4yyigqMJhMhWi3ZaWkcLinBT6UiISaG3Px8rN2Wrbnj8svJTkrCaDazNz+fgvJyWg0GtIGBjElJYfWGDQCEBgXR0mk9TQC1nx9jExN55/e/J+O++zxp2bGxnJ2ZiZ9CwTNff01IQADtdjsmq5VQtZpR8fHEhIaSX1XFocpKLps+nZsXLuTMMWNQ+/tjUyiobGjg9uefZ9327Zw1fjzb3n33+H7R7b/R4SA0PLzL0jzvvfcl557rWv+7JwPe3cj3LJ5tGI0mWlvraGysZe/eL1mz5pkux2LFinyio31bmsfXYb/+0uRykdzcHXz11WrWr/+I2NhkRo4cT1xcMqIoMm7cNGbOvMBjvBUKaGioY8qUGABSUzPQ61uJjU1Eqw0lISGFqVPPZurUs0lOHuFZI3XNmveIjU0gIiKalJR05HI5drsrnq2s7Aj5+bl88snbJCamMn78FEwmAw6Hg7Y2HStWuOYgxMYm0NzcQFRULJMmncGaNR8AcO21v+PZZ/+Dn5+ca6+9jDVrXA+ue/bkMXbsqC773mdI0okI5L7u+B30Zid7+t4Xvbm9FAosDgf+fn79jp50vw6cCleMtMFwrH9bLGCxWHA4lNhsck+azWZlyZI0Ghqq8PdXo1ZrEUWRtrZm7HYrcrmCiIhkamuPADB16hJMJj1WqxmFQonJ1EZjYwl2u43k5EkIAkyceDHnnns9anVIn7ur09Xx/vsP4OenpqwsB52ulgsv/COxsRmkpY0jMFCLn1+gO37bhtWqx+l0UFaWi8mkQ6VS0tJSTXNzLVarEZ2uCT+/AKxWA+XlRTQ0VNHYWEtsbCJjxkzDZrOwc+cGQKS93UJW1lhGjx6LKDppaWnijDPO4PPPP6G8vBS9Xo9Go2HUyJEcKS5GLpORFBfHocOHMXaLEf79ZZcxMT0dg8nE/oIC8ktKaG1rI8jfn7Fpabz7ww+Aqy8qZDJs7tEPgECViuz4eD6++27Sbr8dAD+FglEJCZydmUmQSsXf161D28mGagMCGJ2QQGxICEfq6sgtL2fhpEncsXAh00eNIiggALsgUNnYyP1vvcWHP/5IdlIS+e+8c6yf9HLftTqdhI4bh8k94gjw4bvvsnTZbwHfbWgHZrMNo9FMc3MddXW17Nr1LW+++bcuZd5+O5eUlHHH9Zne+k/H9+42sT950T2tsx0RzWZ2793L6vff54PPPyc+NpaJo0eTkpSE6HAwacwYLpw169jL1+x2mltbCXeHf2WNGEFjczNJcXGEhYaSnJDAjKlTOXv6dDLS0hCUSkRR5MMvviA6KoqY6GjSMzPpWMbO6XRy9OhRcg4eZPW77xIZGcnZM2agazPidDrQ6/U8+qhrRDcxMZGGhgaioqKYOvUMPvnENX/r2muX8+qrr6FUKrnuuuW8884qAHL27fOEqXnlLHXPEZIEcn953T/3ltbXU9IJCuTuaVb7sRjktjYbSqXS0xybTcRqdSKTydi5cyubNn1FYmIGl156Q4+70dDQyM6d61m16jmOHs1HLpczbdosxo8/kwkTphMQoCY6Ot4z9KNQwEcfvc7DD98EwBlnnMeTT75y3PqvvXv3ej80ndOcTid5eXnk7NuDXC7nwjlzCA8P7/lcdWC3Y25rw9/fH8HhQBRFKisqKC0vp6yqikOFhTz1+uuAK9xC7Q5PsDsc6NxD2ZfPnElxVRU5xcWIQHx4OCPj46nX6cgpKSEiOJhG9xJt52Zns/H++5HJZHy2Zw8/Fhayt7SUPaWlZMXEMDE5mTfcb4ca9eCD5FdXI65eXyNguAAAIABJREFUDQoFa/fuZfE/XKs9ZCckUFBZyaePPsqS2bMBuO+VV3jGLYyjwsOZkJXFXTfdRFp6OiNSUjwPS537TFVNHQkJcUyZMo1Fi5Zw6633egSBL8bd6XTy7bfv8OGHf6ey8jAqlT8hITFotdEkJY0hK+ss0tPPIiYm3asXR/TEYAlkuVxk/foPefHFB/Hz82f+/KtYtOhKEhJSvep/nSkvP0pzcyN6fStHjx5m795t7N69BVEUeeihZ5g37xKysgI85dXqIG644U62bv2Bw4cPEBoaQXb2eL7/3hVvOXHimQQEBBIXl4i/fwCbNn3DPff8lcsvvxqHw0FpaTH792/nxx+/55NPVgNQUqIjNDSYP//5Hl566Z8APPvs8/x/9s47LKqje/yfXRZYYOmIoCCKWFCxYi+xxRJNjBqxxZbEJBoTTWKNvcWeYtREo0ajxlhjjb2G2FBRLIAFUUDpIJ1l4f7+2MJlubssyfv+3vf9vu95nn3u3rlz5545M3PmzDlnznysEyD+WwRkycb+GwKy/iqdVoSVlYLiYi2pioq0m7dLSuTcv3+F69cP4+bmR/fu7xvyiKuak5PO/ftnOHZsJQkJ9wAZgYGdCQhoS5067bG1dcDZ2RtPz+qGd//8cwfr1r0NQEBAGz78cCO+vg1NksWS8SAig4GHPnsWyb17N7CyktGlSy/c3auUIZ+UYFVclFuGhybExBD76BFP4+KIjIxksW7Ds9LWFkd7+1IeqlMihHTtSuzz59x88IASQcDbzY2Gfn6kZGYSHhODq4MDGTp+2zoggD8XLsSqpISj4eEcj4gg6vlzzt2/T3M/P2p7erJz/HgAOixezJ8PHmh5KHDm7l26L1kCQL1q1Yh+/pxfPv+coV21YSbn7dzJ/O3bAaji4kLj2rX5dNgw6tSqhX/16qWbmkWVT8nJwbNhQ5o1bkz/119n+owZWNk5lGlvS3ioIAgcPbqTjRuXEBMTiY2NEje3qri5VaVWrQY0btyeBg3aUaNGXYt56D9TQP7t4EGmTp+OXC5n2MCBDBs4kDq1a5se5ybSYuPiSElPJzM3l4cxMfx5/TqhYWGo1Wq+nDWLEYMHYy3eXAnMnzWLk2fPEnHnDq6urjRp3JjDuoNKWrdujb29PdWr++Do6Mjx48eYNm0GY8aMNQjUV65c4ty5M2zfrhWGU1LScHV1Zc6c2Xz5pXYhsmjhQmZ+8UVZvP+rBGRTtmNzdmRLHTQtmQTMzb5Gm6sMacaCsXjAGg9epdLA/KUYvjktoLk+DhAf/5ivv55Et24h+PjU5v79ML7+ehIA1arV5PnzWAB27QqnsDCfs2f38ezZI86eLd144e3tS2hoafgzS4XhyuY3GxbOVIcXESc2Pp6EhARy8/Oxs7bGXi5Ho9FwNSKCfp064VelChQUUKhWU6xWcyc2lozMTFxtbJDL5TTz9eVSdDRKKyta+vtrmZvoW9n5+aw5e5bQhw+5FRdHbU9PEl++JCEjg+l9+zK7Xz9QKLgVG8vMPXvwcXdH5eDAV4cO8eu0aQzu0QOAzKIiBsycSZFGQ4/27anq7s7cH34gMSWF3T/8wKBBg7TfFPWPS1du0L59Ky5cuEHTps3NCASlpMnPzyUq6i4vXsTw/HksT55EcufOOdzcqjFixArq1OlASUn5TaEpKc9ZtaobBQXZ1KnTEX//Njx5chWl0omXL18QF3ebtLSnLFnyiGrVaku2rTnzoJQsZJzvxYsYFiz4iMTEeL788nuCg9trNVWifpOY+JyLF4+TmJhAvXoN6dWrD7YSPnNnz55g0KBeANSr1wA/v9r4+tYkIyON/fu1C5WAgPo8ehSFm5sH6enao7ubNWvD5MlLCAxsgrOzq6E8QRDMRsAxN9m1a1ePx4+17h9vvz2GRYtWUaWKazkaSYbogr/mg6wXkM0xFEscLaX4pfi5FAGkiGGuA4j5pTHv1F3VGjl6o4/+WlBQ9r8eLakqV1RN4/9paU/ZtesTmjR5Ey+v+iQk3GHHDu3Gb0/P2iQna03Rs2ZdQyaTcfXqr6SkPCY8/IChDDs7J77/PhNr67JN9lcsKuaeiUlrjsw2ClH/EjGQZ/HxxMfGao94lsmw11llLt28Sd+OHfH38DDw0JKiIu49fUpKejpudnbI5XKa+voS9ugRFBfTtm5dZCKtMhoNuYWFrDtzhovR0dyMjaW2pydJWVnEp6fzSc+eLBmiPZzmbnw803/9FU9nZ7xcXVny229snTiRkToemlNURP+FC8lXq+nesiW+np7M/+kn4pKS2LJ4MaN05Yh56L2YGBq1bMmFc+fo1KlTGXcK8VXcV/Lz84iMvEt8fAxxcbHExERx/fo5nJ09+OSTFQQFvWLQuor7UUZGMlOmdCcrK41GjdrTsGF7oqOvoVSqyMxM5vHjWyQmxrJ1630CAgLL9AfjtjK3dhSnyTXqUgSAZ48e8cm0aUQ/fszaRYvo0r59aXvo8iSlpvL7mTPEJyZS39+fvh07YqcvXPSBi2FhvPK2dtFXv3ZtAvz8qOnry8ucHLbt08akr1+nDlEPH2JtbW2wdga3aMGSL7+kafNg3Nzcyij7/qoCplu3Nly/fhWAwYOHs3z5N3h5lQ3x+XeUDBYJyDKZzBtYCrwGOAIxwDhBEC7onsuAucD7gCtwFfhIEIR7ojIEoAioLwhCjCh9C+AhCELfCnAoLyBXpDKQygfS3PLvCMjmerJYCJa6GqcpleQVlN0QUFH1KhKQ16yZSEZGEunpiUREXEAmk+Ht7U9WVipBQe3p2LEfGzbMwsbGlpcvU9m48QpbtizizJm9ODq60L37QMLDQ8nKSic9PYWePd9i3brSUHWV0eCZU8BXpixTcT0lCWGqL5hLMzOLvsjMJDkri3WnT7MnLIycwkKKiovxdnZmSKtW9AsOpkPduuy5cYOhRmHnhnXuzKaJE1HqhJv4rCx89UKwDtxcXBg3ciRzPv0UG90A1vePEoUNOTkaZs2axrZtP3H+/B1cXaubFZAjI+8wbVpXPDz88PLyp0qVWri716ZBgy64uwfoIiRIk+/ata3s2DHagFubNu9Sq1Y7NJo8VCpnbGzsWb/+LQDWrs3GxUVVpq1MTc76q/HaUZw/PT2JTZu+4+eff+CTT6YwYcJn2NlZG3DRl3f27Bl69+5Ot27dCQ39g8LCQr79djUTJnxchq56jU9Y2DU6dmzDwIEh7Nu3u0yeZcvW0L79K0RGRtKsWTu8vatLMvB/hCY9Kiqcp09j6N69Jw4O5emmp0u5RaO+Yf/qJr2KVlTmxogl480UVFZbLKVI0F9dtK4NJUr7cgJyTk55AdmUkkF/b/zM+P+BA9NJSXlMXl4aDx5oD6GpUiWArKxEAgI60ahRH06c+BKZTMbLl4lMm3aZixe/588/N2Nr60Bw8GCePLlKTk4aWVmJNGzYg88+OyFJFuO0ygrIluz5FaeViXahF6wsV8uXJ6YFE1NSWhrJWVn8eOEC2/78kzy1GrVGQ1UnJ0LatuXNFi3oVL8+RyMieHPlSsTQr00bdk6dip3OupacnY3PkCGG0/oAXJ2ceG/wYBZ8+ilKfTgwsRLKxoaZs2bxw/r1XLlyE2/vWma7f3T0A8aO7YSHRzWqVfPH29sfLy9/mjXrgq9vXQMP1YP4f2jofhYuHGi479XrXerXb0NxcSEqlQp7e0dmz9Y+P3kyDXd3t3LtYsLjrix/ELedrhKpycms3bKF7zZvZuKIEUwdOxZbve+wCMnLN2/SbswYurVqxZU7d8jNz2fpRx8xbeTI0oroOp4gCNyMjKTNiBH079aNPSdKo3MArJw3jx6vvEJ0bCyt2ralhq8vgpUVMpmMEoWN2SlWin7mxLCoqLs8fBhJ9+49cXR0KvNMaryUWQzC3z8oRCaTuQA3gVBgDZAC+APPBUGI1OWZBswCRgPRwBygA1BPEIRsXR4BKAAOCIIwVFT+FiorIFs6eKW4pP5qiRpB/N9Su4eUttgEcy/zzAzDF1clN7eYgoI8bG0dTW4gMO5Qixf349q1Q3TtOopx49Zjb6/VrMXEXCcyMpTbty9ga6vk7NnSYz9XrTpCYGATTpz4lcOHfyIm5n6ZMqOjhXJkEJPGGKTSKvPcVF6p/+UGwd9ZVInubzx4wPy9ezl37x4+bm74ubtz4s4dPJ2c8K9ShSu6jQwALvb27P7kE2bu3o2niwv2NjYkvnxJkSBwJSqKcX37MuGNN3hj/nweJyTQOCCAxwkJNA8M5ODGjbjqzVNGwoIaGwNqn376CbduhTFnzhpq1WpRrip5eSX8+edv7Ny5hKCgbgwduqxc1c1ZJEBrvj1/fjFnzmj9ap2cquPoWJXiYjVpaY9xd6+Fn18w7du/T8OG7c16EUkYS8qlxcTcIzT0HOfOneHixfO8NXAgc2bMwNfbuwxyarWa3Xv3snP/fk6cPUtxcTHOTk680asXb4eE0Ll9+3KxfMXjdeU337B52zYio6LYs2sXMbFPsbOzY+zY8cjl8goNVRUxcFNQGSFIfzUWbgwT4V85SS8trWwHMKd2lcpXkQnLHDHMVc5ch5Hgk+L7PE2pu4X+KsVD9VXJyyuhsDAXmczRbFX0oNHA9u3DCQ//hSZNBjFkyM/Y22txjI8PJyYmlMePzyOXK7h5s3TB9f77v1GzZmuuX9/JtWs/Ex9/uww51q8v5aHmSGTJ1PN3BGSp6cuwGJMi4N/Q3NyKjWXR/v0cv3ULX3d3alWpwrHbt1EplTStUYNQXWxtPZybP59p27dTxckJe6WSxMxMSoA/791jRI8eTB06lFFLl3IzOpoG/v4kpqXh5+3N6a1bcfPyKq0YlGE2evfFKVOmc+HCaRYuXEPDhm3KVEVreRO4ePEQW7YsoUGDVnz88eoyVTL3Xw9WVgJ7965i48YpALi7V8PVtSqCUEx8/EO8vPwIDGxBv35jadfuFYsUCYZ20qjLtUHU3bucu3iRM1eucObyZfp16cK8996jpm5Dmh5JTUEBe86fZ+eZMxy/do0ijQZnBwf6tGnD29260bVZM8Nx30C5jvfd7t1sPHSIiIcP+WX5chJSU1FYWfHx2LFaTboJ1yipNZX+vrL81dKxYUw3g4xQwVHTloglU4EXgiCIlhIYznnUaY8nAUsFQdinSxsFJAPDgPWi974DPpfJZCsFQbhhwbf/a+HevTuEhd0iKek5AQFNaNasB+HhoUydOoTU1Bds3XobH5/yzv5an94/uXfvInFx93jw4BopKdoT5J48uY2NTanZuW7dYBo0CGbgwEmAhkaN2vHkSQSXL/+Oi4sHVav6EBNzj7S0RD78cC4qlYqGDYNp0KC5WdwFQSAlJQlPT69/KE3+VZCUkcHoVauIio+nTZ063Fu2jBoeHrzMyiL86VMuP3pEvlptEJAXDRjArP37ORoeTlhMDNZWVlTVTezFgsCrzZrx5MUL+s6Zw5PERAAidAfX9GrfHlcLA6DPm/c1v/66mbFj+zJmzAyGDfsYKB3jT55EsGjRW3z88VY6dhzOX/GmksvldO06m65dZ1NUVEBBQTK5uckoFHKqVQvExsauUosbc/Dee0MIC7vEq6/24M03B7D1p024uLhICl5TZs/m2vXrfDx2LG8PGsSw99/n8Y0buIsPZjEDkydNYvLkyQYuKhVz/H/wnw2PH9/n1q2bpKY+x9s7kKZN+xAVdYUVK4aTnBzL/PlXCAhoXe49QRB48uQKjx6d58WLezx9eo2MjFgA4uKuY2NTanb28WmGj08zunb9mJKSEurU6Ux8/C3u3j2Mvb0rzs7epKQ8Ii0tlj59ZmNrq6JmzZb4+jYr911jHF6+TMLD4/8GD03LzuadNWsIf/KEdnXrcnvJEmpXrUp2fj43Y2O5/PAhmuJig4C8MCSE2bt3s/fyZa49fKiNx+zsjFwuR63R8Grz5qRkZvLmzJmG+Mr3Y7SG6fEhIbi5lN88KQWzZ39JQEA93n9/ICNHTmTs2MkgOrwmLu4hU6e+yfTpG+nde6TpgsyATCZj0KDJDBo0GbW6kJycZDIzk7Gygtq1A1EqpeOl/xUYM3EiJ8+do0f79vTt3JkNc+ZoaSGWPnUwa9MmTt+4wScDBvBOz570nzuXB1u34unqaqL0svBxSAgfDxumvRGrsq2sTL/0HwaWNMubwHGZTLYL6AI8BzYCawWt+rkW4AWc1L8gCEK+TCa7CLSjrIB8DdgHLAe6VR5bhfSSWgyWmtwtWb5UtHQxXupJaVCk8um/rds8Jg6XEhFxj1mzZnPjxlVat+6Mp6c369ePIi0t2ZCnSZNOpKfnEht7itTUeCIjL+HpWYuMjGTCwn5DqXSkSZPXqF+/B336zKJatXoUFRViba3VjElrrhT06fOxAUW1OoeZM0dw4cJvODu7ExzcHWtrOQ0aNMHeXjp4t1xewsmTh3j33f4AHDt2nZUr5xIWFkrbtq/QokUb6tZtgCCUUKVKVWrVCsTFpTS4f0UgzmNOa61U6iMYaFe/CqVN6YrRUpOhrsCcjAzaT53K0M6dOThzJjaiUxqdFQo6OznROSiIwqIiBrRuTWDVqhTJZKTl5zOodWs2nj/Po9WrKSwqQiOTIdjYsO3sWdb9/jupL1+y9tNPade8OU+eP8fPz49bUVEUFhZia6zekaCDIFgxePBYGjfuxkcf9WPjxsVYWyvx8alL584jiYy8TlBQV4KDR5KfX7G5WcrDqOznlVhb18DFpYbWz01ePo+UUcUSDyMbRQm3bl3jxL69NNAfBlBQAImJkmPz4vnz+FevTseaNZHr3B9+3byZRgEBPH3xgsiYGNJfvqRQo2FYnz70eOUVs/4Lch29bQyqhlKfRHHdpGhUGaG6PE3LphmzCj0ZxGk2f2c2VSqlP2gKWVN+CabM6+J3jcFSDbK+U0i9q9do6u8LCrCxVxi0/gAxMdGsWDGHmzcv0qxZF9zdvfn1169JT080FFe7dkuKiyE8/CSpqS94+PASrq6+5OSkc+fOAeRyG+rX70utWl3p1Gk6np6BFBerUSjKutro0dCSVE6nTuN0X1iPWp3Ptm3vcPv2bygUNtSv3x0rKwXVqwehVJaepCgGQRCIiDjGV19po9LMm3eJY8dWERFxisDAjtSp0xY/v4bI5QLOzlWoWTMQJyf3MmUYsbAy/VbMVozTxH1Zz0NtxKd2WurrYdQf8nNz6TBrFn2Dg9k9eTK21qVuUo4KBa8EBfFKUBBqjYa+LVtSv0YNBEEgs6CAt9q356dz54jesIGSkhLUgoDc2ppfzp7luwMHSM7IYNXEiXRr354nCQn4Vq/Orago8jUa7IwHk+5eGx1Km1RSImfw4DG0bNmdMWPeYOPGldja2uHjU5vevUfx8OFdGjVqS/fu76DRmHajMAfivmJjY4unpy+enr4Wu76IFbH2Sol5TKTlv3b9Ooe++YYW/v6lH8/MlOShf9y8ibeTEx1r1cJFt19jx5EjtPD352lKClEvXpCanU1hURFvtWtH37ZtyzOoshNv2QpXwBylxC1LWYkxWGKNKwP6/m0j8UxcbsWfxh8YD3yN1g+5KVpNMGhdLvRL3CSj95KA6pSHL4D7MpmslyAIx819WCaTvY/Wr1mHraJiCpj6D9KUNtc6pgRePUh1CKN8MZmZrL96ladpaaQXFpKZm4uNUhtZIU+j4cqdO2g0Gnp260arFi1YqIt4EB+fR2GhHQkJTwkLu0xaWjI9egzn0qWjPHp0m1Wr3kUuV+Dr24jatdvy9Okt5HIbJk06gpdXozIbh7Txs+0pKaGMgCzhf2+oglpdwPHj2wHo1m0Ay5d/xIMHETg6OtOv3whcXd2oUaM2UVG3mD59IUqlHb6+pStHJydnhg59FSsrBcuWfQ9ARMQNtm//ESsrK5KSXhg2QoWEjKZ37xD8/esaNopZ0mTGzSGaM8vca+Ugue6/1m/TxkVZfoLPySnXpy5dv05BURF1/PywdnEBmUzSLcdWoaBpQID2v0bDV2+/zR8PH6KwsiLi6VN6NGli4H7z336b+aNHs3TXLvZfvEjj+vVR2tjQb+JEPN3c2HL0KLvWr8db4ohVjcQ6ztvbn61bI0hOjic7u5j79y9x/vw+ZDJbxoz5qZzlXLzz31juMUVfc0NNKr+YuTs4CFy/fpGSkkwCAgLx8dEehqBSgTwny4BU88BATh08SGBICHGJiXy3bRt/3LrF95Mm0UzE8AvVaoa1a8cXW7cyolUr+rVuzYl583h/3TqeJpcuJPWQ/OIFPerVk7Yp6wUAo45mo1SiUVSsVZZiEeZkQ6l8Us+MheKy+bV4SUdyrgD0M7Dxxyuy5RsjYUoBYalyAcriYea9ZxkZ/LB9O08SE0nPzycjOxtrW1tUDg4UFBdzOSyMoqIiOnXqStu2HVi2bAEAly/nUFLiQHJyPFFRt0hPT6RTp+GEh5/g+fNofvxxNFZW1lSt2oAaNdqSlHSf4uISRo3aj6dnk3KbL+Vy09YSqXFRVKTmyhVt3ORWrYaza9cnvHhxH5lMRufO47C1dcDLqz7PnoXTr988VCpHRo8ubVWl0pHly1/D2tqG0aO/xdbWnsePwzhzZiNWVlZkZiYRHx+Jg4ML3bqN4pVXhlC9ej1sba3K4CFuRrFQLJVm3AxivmnjYqTgkeCXUh+7ERlJWk4ODfz9sXZwKF1Z6/Pr/tuIeCgKBSvffZcr0dEobWy4+egRb7RpY+i/s0aPZtZ77/Ht7t3sv3iRFo0b42Bnx8BPP8XDxYWNv/3G7k2b8K0uEkEMeJUm6dHw9PRl796bJCbGU1BQwp07VzlxYjdyuTVffLHNENXkrwhuppQ5phQLUiS1tRUIDQ0lKy2F2rVr08BXF1/ZyA2qed26nLpwgWYeHrxIS2Pt/v2cuXWL1e+9R2s/PwPiRRoNg5o3Z9ru3VwND2dwixac/vxzJvzyC1GiU2P18DAujr5BQeVlHjGDMq6MBIGk+GVF7uuVcbEwBVI6UvjHCMhy4LogCDN09+EymawO8BFaAVkPxgZcmUQagiA8kslkPwJLZTLZSePnRnk3ABtA58NsrP0QN5ZUwxlPAuI8ldXCSLWS8SwmErIjUlNZFhrKiZgY3u3YkX5NmuDm6YmzgwNFSiW5BQXIHR3p0LkzB0+d4lJkJHK5nCVLltK2bU9++OEbdu/+haSkBIYM+Zjly48xYkQQOTmZ7N//EkFwKtfYlsxNYnKYI4OLiwc3bpT1kUtJieHrr6dTWJjDqVPniYq6C4Cjo5ITJ44Y3p0790t69uxLYGDDMtrxYcOGlunwRUUCd++Gs337RkaO7EVCwlPkcjmentX48cdT+PvXN8mQpIQLU8JcQYFU95AbhGW5+AUjDVXzFi0YGxLCkp07iUtLI9DPDz83NxrWrInSlNSjS0/NzkZpbc2Zu3e1ArIR4h+89hp5Gg3D586lmocH306dSr8uXVi0dSstX3uN3zZtomWHDpKfML4WFspwdvbFygratatJgwbDJDcv6elhbm+NGKQEXuP8Usxd7Pa3bNkETp48QFKS1hS6ZfNmRo0apdVs6JHKzOSzwYMZNXMm01eupECtxsPJidSsLN6YNo07ixbh4uAABQXsvHSJHadPs3/sWF738UGIjycmKooGHh48TU6mT1AQe8aPJy0nB5Wzs/a9xMTyDs/mNJUKBXoLhBTtK9q6YHxvrp+aA6k+r79WxNyloERhg1whwS9NzU6mVNtSzypazRqD1MAU4XH/2TOWnTjBkbt3Gf3qq7weHIyblxcuKhUalYqcvDxkjo60f/VVTpw6xcmzochkMmbMWE6jRp3Zu3c9Bw5sITk5ntde+5DPPtvHrFkdyc5O5YcfUrC29jCgYYGcXqGwY/zM1dWZrVvLToEvX8axY8dkioqyePDgHEePfgmAnZ2S27ePGfKFhCykRYvX8fcPKhPTu0uXkDLlCYLA06d3OHlyI/Pm9SUp6QkymQwXFy8WLTpBzZpBkkKXqeYzbkrxvV6rXIZvWuCX3LBhQyYMGsTXBw7wJDmZpgEB+Lq50ahmTeykzPEi4qdnZ2OrUHD61i1eb91a60Amej6mZ08ycnMZM2cOHi4uLJ00iZBevVj+88+06tWLvRs20L5LF6NypQeOdvO6LwUF4O3tR6dOIZIaTal7S6CyIof4valTp7Br168kJCQAsGHlSsaOGFHOHDgpJIThs2czb9MmCouKcHd0JC07mz4LFhC1aBEejo6g0fDb9ev8ePYsO8eMYUD9+gg5OcQmJBDg5kbUixd0qF2bkxMmkJabi4OTE6463mtSMBYtdMxNJGIFj5SSxlJZxhzLkQLjb0rJ9VJgySa9p8ApQRDeE6WNAH4QBMFBJpP5A4+BVoIghInyHAVSBUEYpbsXgEGCIOyVyWSeunfGo3W1sGyTXmGhdOBLcZrUphNzKjQpqcHcpCE104mkh6vp6Sy+coWwpCQ+bduWD7t3x0l/Qo/eL0p81f/X5SlRObFw4Qq2bdvI1KkraN36FWQyZ3JyYPXqz9iz51t27nyBQuFZaQFZyjoitZNZf2+clpeXwuXLxzh2bB+nTh0ylNu37wA8PDzZsuUH7O3tOXLkPC1atJTEwdwqURAECguL+e23LSxfPpVx4+YwbNikMu8a/7dEQJaqZ5kNKeLdvyY2dt6/f59Pli3DQakk9vlzYl68oGfz5gxq25Z29evjq/fbMiL+3WfPCJoyhZQff8TDzU1a4pTY2PnOF1/w065d3AoNpUlQkEGYyyuQk5mpzSbu3sZpYtnznyEgi5Wv4n1Txl3cwaGI4GAb5s79hvj4aDZt+p7X+/bl0MGD5QRkPZKPoqNp9tFHKK2tSc3Kwt/TExc7O/Z/8gnfHT/OkYgIFvbty6DmWl/43TduMO/33+ndoAGH797lxxEjeKVBg7IIKxTSArIZ/w81ZTd/SXWPf4SAbM4oJtb0ldtsIFf4AAAgAElEQVRoopvnK7NJr7hYQF6QV57/Se1sM7XbTX9fmQ1aYqhgYN7MzGTx6dOExsbySdeujO/TB1e9JtCIX4p5aFaBliCZmfD992vYseMbPvhgGcHB3ZDJXMjJgR07ZnLgwDK++uoRjo41K412ZQRkKYEoPz+N27ePcf36AcLC9hnSmzd/HQ+Pmpw8+R1WVtbMnXueevXaSfYbcyAIAiUlxVy8uJNNmyYxYMAUhg2bblGfk+prUvOBuQ1iJl3XgEePHjFu1SrslUqeJiby+MULujZuzJAOHWhbrx419RYzI83Ng4QE6o0fz9OffqJGtWoWD5JPlyzhm40buXHhAs2bNjU8E290tnQPoiX9QwrMjW0phYIUnR0cBFQqrfLsxbOnrP7+ezq2acPFgwelQ7bk5BAXF0fDceNwcXAgLjUV/ypVUFpbc+LTT/n25EmO37vHlO7dGdm6NWg0HL57l89++43+jRvzW0QEa4cMoUdgYFlETCEMpkMxGk0SeQVySdrrr5WVZYzvTdFbqj+DIQzy34pi8QvgKwhCR1HaQmCgIAgNdJv0ngPfCYLwpe65Eu0mvSmCIKzXpRkEZN39XGAMcBlwtERALi4WtIPSkt3WUgJyRcKzOamhAkafnJ9P1V9/BWBpp068Vr8+DjY2+NeqRWxBAUpra7z0Jg4zAjIuLjRu2oIvv/yKxo21K9/nz3PZsmU169d/wbhxXzFw4CRyc2WVGrwVdRxzAuTmzUtZtWoGYnB2dmHUqA+YNm06Hh66CBw6f2pTilX9VcrcIa6LPhTXxx/3pXbthixevAdX1yqVHjRSCwF9HvF4NggcqKX7kf5e1D9e5uSw7ehRzoaHc/HePYqLiykRBIJ8fQldsIAfz5xh9bFjJKSnM/n115nx5pvIrK2lmbsxY1EqSczLY/WmTWzdtw9XFxfqBwYybepU6gW2lpIpDf/FV6l8xlUxZ8oypRHWX40FZHF3zst7wq5dXxMefhq1Op+4uFj69evP7du3yMnOYum8eYzu0wcr3WEsYsSTExKoO3kyQdWqEarbvKiHQQ0bkl9URKC7O+riYlyVSlZcvkyHGjU4rt8wYqpjSwnDxhK9qFJ6AVlMv78rE4r/VySsGD8zrpI+AmBlBOTCQkHrjy/Vvy3hk5ZGvbBEkjAamBkFBbh9p/Xem9e9OwNatcLO2pqAunWJy89HLpdTvbYu1raEgKxWaDWbmZnQq1d7PvzwC4KDtb68aWn57N27gQ0bJjFs2GL695+OWl0aTtNcG1q6CDcnIB879i0bN04q81ypdKBXrw8ZPHiGwY/YHA+VAnNkjokJZ/783nh7BzBlym7c3av9ZUGiQiVDge7kPTNKhjKELiggOy+PHSdPcvrmTS7evUuRRoNcLsfHzY3bX33F9gsXWPrbbzzPyODjPn2YN3So1u3FQuRSCgu1PHTvXhxVKurVq8fkiRNp07mrWQFZnPZXrbR6qKjvmFuIZGY+Y8OGbzh//jgajZrHjx/Tt3dv7kVGkpWVxaLp03mvXz8UEovdzKQkan74IU39/LgQGVkGp4GNG5NfVERQ1arkFxXhbm/PN6GhNKhaldBx40ozWkJncyFrRfy1RGd1MLfmtpSXilEzvpfil6bSwHDS9N+KYvE1cEkmk80EdgHNgE/Q+hIjCIIgk8m+AWbKZLIo4AHakG85wC9myl0FjEO7CfCMBXiQkwNKpQ02+snMnC+UKf+oyuS3lHMqFFjb2DA0IICskhIWXb7MVze0QTqCfX35PSoKwHAykKRUIuolbdu25fbtq7Rq1YU//jjLjz+uJSkpiUmTljFgwCdYWckQ84m/KiCb006JB+rDh+HUqFGL994bR//+A/D3r13KGCkBvQa2RAMlgMT39RuLbJQKQ4gdsa+wuC6PH0cyYkQbAKpU8WXo0EasXHmSmjWblCObFIibT18XKctQOYFQpTM/izOKVdUiAjq7uDBh4EAm9OlDcXExL9PTiX7+nM5z5pCfl0d8Sgp34+JIWrcOT2dnKC7W/owJbkKl7uXpyZczZjB3zhwio6O5eOMGPXv3ZvjwMcyYsaoM3qa08iYUOSbXglJ0lLKAm8qvh7i4KD76qBFDhnzKihVbGDCgNR07duXgwd/o2rUrcz7+mImzZvEgPJyPX38dH09PclNTWX/sGGH37vEoIYGXeXm0qFqVtKwsIpOTaeXtzZ2UFE49ekS7atVwEgQKNBruJSTwY9eu9PD1LZVkzTFy/XP9MzMVMkdTqUm0IuFKf2+JgCzur6bGuV5ArgxolXNyw6bEMg+MQUpKk+KXYrckKWQtGawKBQpra0Y0acLLoiJWXrzI2itXkMtkNPXz48RdrTtXie4oeqnOrPeRVSrltGrVlsjIq3To0Ifr1y/yyy/fExf3hPfeW0z//lNQKOSS/KEiVCujuRL/T0i4jaenL/37j6NLl7fw8Qkod1CIFir2LDc13qG0PyYlPeHTT7UWlqZNezNxYmOmT/+dgIBWJnFUKsvyZH2a/l5qSOm/q1IZuauZAtEHHJ2c+LBvXz7s1UvLQ7OyeJaSQrNPPyU7O5vE9HTuxcUR//33VHdzg8LCsoiba0CNhirOziz87DNmT55M5MOHXL51iz4DBjB8+HBWfbWmzGFDpsalJYKwuTxiZbix1VNcFePpID4+lp496/D22+NYvfpnevZsyauv9uLIsWO0bNmS7Rs28MnUqURFRfHZ0KHUqFaNfI2GDQcOcDU8nEfx8bzMy6NRtWpk5OQQERdHyxo1uJeYyOkHD2hbowb2VlbYymTcSUhgde/e9AwIkK5MZVcDEtK+uRjl4giSleGlptLMoW1pVQzlV5RBEIQwmUz2JvAlMBt4pruuE2VbDtgBayk9KKSHPgayiXJzZDLZfKNyzIJeg2PsC2XjoSxPdaWyLOPWp5l6plCUbzHxCNE/04NRy7kqFPzSuzcolaTm5aFycqJEEPBfs4bAqlV5kJJCemYmbipVWeYugcewQQOYMGkS1av7MG3a57zxRgiLF6+jSpWqFitrjAejcVX1ZDC1shILyHv27AJ0sQMLCoA8yDGjEjb+oFHB4kgBUuT096/PiBGfsW3bVzRo0Ia6ddvy7rtNGTlyMYMHf1EZxb4hj55WUnuyxPntTY04qXQdIlaAm6MjbevVY3CbNry5ahWLBg5k7alTJKal4ak/0U2KuYvTxbOT7r+tUknTBg2oXqsWLxISWLpiBRMnLsRed0iEGBXjq5SPl/5qTkAWo1kZwVgP2dlpWo16STFffvk5rVq15Y8/zgIwb+ZMOtavz+GffqJ5z54s37yZ9MOHeX/lSnIKChjavDneQUF4ODjQ1NkZWY8ehoH/srAQe8Dayqpi7ieFeGVUvQoFBWYUpH/Hq0AqTWps6suSWrcDVKtW/jsVQWkX02rHbVRmGIQppYH+3liaqqwVzogYjgoFP4eEgFJJel4edioVcpmMOgsWULtqVRIyMniekEB1D49SAknwUCeVimHDQnjnneEEBTVhypQP6NNnMNOmraRq1eqSWkFL+nVF2kBTzwDWrNksWY4pMNe9pTSb4qbQaMDTsyYDB85m376FeHrWJSRkOTNntuaNN2YxcOBCyXoVFJjuh6YWEcZ4qlQ2pYsv44dSnVmHsJWVFW6Ojrg5OvL+q6/Sb8UKlgwdSnVXV+KTk6muXw2KyxD3AWMQ9U8blYom9erh4+tLYmIi85cvZ87c+Xh4eJgdZ+YWruL/FfUdU93eFJ/VaODFizQ0Gg1qtcDcuZMJCmrOqVPHAZg7dwntXunIkYMHadWuHd9u3kzajRtMXL6cF6mpvN2lC6MdHHB3dKS5h0fpgjInh6yCApToFFaWatSMEZeqhDi/qNMYK8NMHeIjrrsplKRkmsqCWDy0BCz6lCAIR4GjZp4LwDzdz1SecstlQRC+B763BIf/JPCwtweFgkPR0TgrlTx/+ZJG3t4cuHmTdzp1qvD9jh06oFarWbBgLjt27KZ581cMneq/AeRyOZMnr+KNN0ZhZ+eNnV0Vbt48w44dc7l8+QCtW/ejb9/JWFuXP0r4Xw0b3n2Xr48eJWTtWoa0bk2Qr69Wc1wBXI+O5vazZ2Tm5KB0dKRm7dpYyeU8Sk7m2w0beJ6YSF6e1oyZlpaMvX3Nf3JN/jrY2trTrdsgiouLeeedT/HwUBISojV1jx03jhYNG5KUkkJqRgbWCgW+ISH0btqU/VOmYJefX94nRAfOtraVVwH8D/4jwc3eHmxsOB0VhcLKipTsbBr4+PDbn38yoV+/Ct9v0aIlKpUjs2dP4ocfdtK69av/VTxUJpMRErKANm1CsLf3QKXyIjLyHEeOLCUi4hhNm/alT5/pZWI6/7vAd+++y7eHDzN09Wp6NWlCS30Emwrg1qNH3HjyhJe5udiqVPj5+aGwsuJJSgqrN2/mWUICefn5AKSlpeGhd9P5NwRra1t69QpBJpMxcuQEqlb1YOBArcvl+PHv0rF9OxITE4lLSMBKLqdGx450b92aA998g0otckPV81IdOIlXOv+DCsGio6b/HUAmkwm3bwuSTuziNEO8W6mNeBXp+f9qPCwTmtJZ585RCHx7+TLNfHy4n5jIvXnzqFGjhjaPqROiVCrUajUKFxftDmaVqtxKzJzmqiJrqZQGWUqTXO7YUSm1pDn1i5QNSaIB8wrkJl0d9c2yceM09uxZbijOysqazp3fIyRkOUqlyqRGWH+1xIdWpQInldEJUhVtWLJEpShFE911d3g4YzdsIEsn/IohuGFDAuvXp5avL+u2bSM1LQ0ANzd3HBwcOXjwDg4OKlJTITVV+46eH6amlvdLlqqKOVOWKbrprxbsOcXDA3bv/oYZMz6lU4cO2NjYcPrsWap5eZGXm8snAwYwZ9QorDIySpE1Zu6VUXmD9E4XMcL6Snh4SCMM5GFv1q/7H+2DbO6Zqfzt2mmvlfFBTkgQyrSreNyXG++mNkQbP6toH4c5Px6piouQWnz8OIm5ufx8+TJ1vb25Fx9PxOrVBNSpo81jZnOQWq1GoVLpDpeQS7IuY7QsbTsptCuTXwyVNXyYYjtg2k++oACOHFnA4cNzDd+SyxW0bj2KwYNXYWenPZzIuF9IWRQrcjs1xOqV4qGW+nuZsthKEPfArVu8t3YtaVlZGEPz+vUJrFePOn5+fLdtG2k6PuPk5ISjoyM3btzB1dW1wn3+lbUcWWJFklK6isem+Hr48AZmzfqANm06Ymdnz7lzJ6hWzYec7JeMGzWKxV98gZVO+Ccz0/zGE0sdqqXMCKYmBDHz1/sdq5wk5yBLNMjmwBxPNKX4NiXn1NVGHP1bPsj/NpCZadpvtrTd9O4XTiJTvhmJWsp/TsqMaGxONNWauuf7IiNZf/Mme4YOZWVoKLkFBczq0QNFUZG0SUgPOuZgA/oAxqBSGeqi9+V1ciklRAkVxw4Wo244RlSc2cAdJDizORtIRZOeOXuI7plCYSM50YjhvfeWMXDgAq5c2c+WLZPJzHzOmTPfo1R68MYbC8wyJLE5RWogic0u+oWIxYcxVNaUrys3raCAoAULePHyJQAf9+pFZGIip2/dYvO0aTxMTmbMG2+QqtHQbtAg2gQH8/HYsdx5+JCIO/d58CCSdevmM2PGigqtYVJgbDKUym+u+Spj5ho/fhLR0ZFs2bIBAE8PD4798guNqlRBrp/UpGy55sKwVdTgUgKyxIpIbWNDfFISObm5NG7Y0LCZpMCEMFxUJJCfn4Nc7mhAw5z3lVRaZSyXUmmWmgelQLuPoxQfsYlZqTRyuzDH/8TPxANJSpIwbjMLecbhO3f49tw5dr//PmvOnuVlbi5z33oLm+Lisis8Y1N7QQFkZmp5qK5/2SiVpWPaQEgTnd4UjuYkoIIK8kt9QwdivGyMcCtR2JRjw1LjUjyOTY3Nvn3n0KXLDCIiDnDgwGQyM59x+fImrK0d6dfva723QxkUzZFDKp9WwNPF6bZEeqkIpNw0dJCRm0vrOXN4qDuNdFzv3sSlp3Pk6lV+nDKFJykpvN2rFxpbWxr370/DOnX4ZNQo7sXE8CA2llsREcyfP4s1a9ZWiJYUS7dEV2ROcQPlu66UgKxSQe/e73P/fiS//PINoN0kv3XrQdq0aYrKRvcRvRRq6qOmVlV/U0AuKioiPiODlxkZNBVFXDIVGKegAPLyssvwUP3VkjV0Re4XUn23IvnC5Dcrl/1fCzk5ZStbUcfUM3x7lYXV1BcstsWZWqqIl5DijyoU/HTrFnMvXOD3oUPx0YX/upeURCsfH6rp4wkag5gLGo8QsS+gxNZMg3isuzcZHtVcz7JkOWwpBxDfS3EAo28olJYFdLW2tqVjx6HUqdOTCROqEBw8GJXKR7IppNARp4lRk5y3TbW7GCqikZl29vj8cwB2vfMOIa+8AsDlZ8+4ePcu7yxbhp2tLUf/+IOHcXF8PHQoKnd3Hj96xN59paGhiooKDN3A3FxkyTMxmJMzpXYGmyONXmaaOnUxHTq0Ye/ePSQ9T6BK9epaX8WSkvL0k0AoPT0dTUkJnhU5kUsgXlxSwqxDh9h95Qpdmjbl9S5dSEhJYePvvxN+756hGKG4WFJbnJ0tEBf3gJ9/Xk5ExHnS0uLRaNT07z+bN99cUK7OFWlBLOmr5trKEi2LKTCWaSW/rz+JUmlfXsgRv2C8f8LUxmhTArIUP9Hl3XnjBp8fPMiBDz6gobc3AA+TkmhUtSo1VCrpnT1SQrmlnV4PlRWMK0qXopu5gWk00OQKhUE5olCZjsstRVKpalpZWdOs2SDq1OnJnDlVCAoaiItLLcN7phZjYoFQ3JzmpgsDthWt+sxJNMaFisDtfe0ZYls++IBRPXoAcOvZM07dvMnYFSuwtbbm9NWrXIuM5JMhQ3Bwdib++XN2HyoNUVpYkK9TGJXfHCle70l1scr60Ep1Bal1pzGv1a8BQ0LmULduU86d28/z54+xtq5CXp4cG128R0PwAuMCddeMlBQKi4rwMg5yYGocit4tKSlhwb59bD93jo5BQbzWuTNZubms27+fmyIeWqLRkF+gpaVYQM7PF4iLe8TWrSsIDz9PUlIsGk0R/ft/zttvryxPrArA3DC0ZOo2p6MUw3+UgPzvDql5eUw4dYpbSUkcHjyYJl5e3NOZxQcHBVHDxYX4zEx8vLz+xZj+Z4NK5YaXV3169pxKlSpN/9Xo/CUo+uorFFZWFMlkrDtzho9+/rnM8/zCQiJ0Ic4+HzkSv8aNAdiyZQtZGhuio6Nwd6///x3vvwru7h6MGTOG0aNH07dXD06ePcuo114zmT81O5vi7GyqOjnxx+PHdFq9GoB2NWpwcswYHOSWnSMX9fw5w374AYW1NfNGjWLk0qVsOnasXL64p08l3xcEgalTXyMmJoKOHYfSq9dH7N27EI1GTXp6gkU4/A8sh4y8PCbu38+lJ0849MEHBPv5EaPzH3qreXNqe3oSl5aGr/iUyf9BpUGpdMLbuzFt206gZs12/2p0/hIUbd6MlVxOsVzOlrNnGbN2bZnnhUVFXNOFOPsoJIS6DRsCsP6rryi2syPqwQPqNv3PmT8cHV15/fVR9O07ki++eItz544QGDjOZP60jAyKXr7Ey8ODsMhIWr33HgDNa9fm7JIlOEsd0iIBj1+8YNiqVRQWFzN/zBjeXrSILcePl8sX8+hRudMn9TB9+lvcuXOJzp1D6Nt3PLt3LyUjI4m0tHiLcPhXwX+UgGy80JFS1ElrxHRmc1O7a6U+ZJzP2CYJZOfmcjQ6mmaenvzx9Clzzp5lWKNG/PTGG9jZ2XE5Lo6FFy7Qp1490vLyCFiyRPve8uWobG1NaxjN2dT+jrnKXF0tSbdUdSXGy5w6o5KgL0qtzict7SkuLrUkn/8jyGLy45akm9Oy6yDu5UvG7dvHpdhYfN3ccHNwID03F4CBbdrQuWVLWtWvT3CrVlo/dF1fkKlUODpaExwcZPA7lvIlt1SDbMr9RH+1RIMsVdVLl05w5MhG5HINzs4OODiocHNzRBAE7kZFUadRI0OcqNj4eH7//Xcyc3LwcnDgXFgYR8PCKFSrebNlS6b16oW1lRXVXFy49OwZ7osX8/PIkbzZokVZVxgxcioVRRoNkzdtwtHJiUMrV+Ls5UWNOnUYMXs2/Xv2pFnLlkQ9fcaGDeupUbMm7703gTFjplO1ajWDBlkQ4Nq143z44Tf07j2RcePqk5ubybx5l/H1bVSeACboYWm+f0rfNfEtU//FLkf6aBdyS906LNHOivhebnExR+/epYmXF5djY5l19CgDmjTh9tSpODg4cP3pUxYdP06PBg3IVasJnKGNx566di3u+ohAUv4iUvhYoJU0aRUy944pMNU3pUzX4qsYRP4wem2+fj4Tf8Ic2aXHqZq0tMe4u/tXuu9VxGMM5ehJZalpRfwBE5YFcfqLnBzGbd7MH9HReLu6UtXFhSSdCejNdu3o0qIFrQIDaRkcjJVIGJTJZCiUSho1bkyJjVIbmVQj7YFgbhuTOU8FSzXIUvTTvxsRcYaLFzdQUlKISqVCqXTA2dkZQSjh3r1w+vcfbzDaJCTEcf78ETIy0vGp4sbFCxc4dOIE6sJCenTsyJKPPsJaocDT1ZWbjx/jEhLCLzNnMqBDB2zFR38bIVhcXMy0nTuRW1tzdu1a3KpWpXa9egyaMoV+r75KcHAwMU+fsm7LFmrXqcM774xlwoTZVKtW1rL7xx+HGDt2HkOHzuTDD9uQkZHEV1+FUrNmEPogT1LeAVJ0k6LzP4tv/kcJyHpBwJx50KzJR1kBN7FEytBotCbbEydY/ccftPT15UFKCm18fdkdEkIH3WEggiDw2vbtZBYUIJfJaOvnR90qVehcuzaSaywxwlJ2F6nKWtIrLHHq+StgDg9zEpY4TZfP0vlHX+zjx1dwdfXB0dHZ7OLIXDNWJFQafArNTZgVTaYmoKi4mCHbtnEtLo6EBQuo5u5Oak4OJ2Ji6Fy/PtVr1Cj18Sop0f4qKL8iK6Zx3c2BOJ8lbvzGdBcEgSlTetG582B69BiCXJ5Hbm42Gk02VlZWLFnyFU2bdwCFmuLiYvq8/z7VPT1p3qgRUVFRNGnUCHdPT77dtYurT56w6ORJzixcyCc//kg9Hx/CHj9m3dWrfLh7N+90786SMWOwNhY8lEpOhIZy5vZt4k6cwNnXlzS1mpjsbIYNG0ZRURFqK1tGjvyMzz5bwt69Bzl6dCddugSwb18Ujo41dH1LxuzZB/n223fw9+/A8uW3Wb9+LPPmtaVt26EMGbIKlcpbkg7iNHN9XKrNzLmy/N1hW9HiRuq+vP+uhCOz+CWpTiYqsKSkhAVHj7Li+HGC/fx4mJxMsJ8f2959ly716hnyvf7DDyTq/Ig71qlDbU9PugQGorCxMT1zmpppzS1yLXH/kEoTgzkJSGrgSL1vpnzjvSamijD+pN5EL4bY2HBsbVW4unqVe98YXf3V+CBKKZdUyc2ef2UPSwVzdJFGw+gNGzh79y6x33+Pny7e77Fbt+jQoIF2I7weKb0EJoG41MZlKTcrcwKyBR5DklWqaGx//XUv6tfvQefO7yKT5VJQkENxcRZyuRVjxy4mKKgrOTkgl5cwfHh/nJ1VtGzZlkePHtCwYUO8qlVj2ddfcz8mhunr1nF60yamrlpF/Vq1CI+OZsOxY4z79ltG9urF8vHjUdralkPwfFgYv/3xBwnHjuFWvToZhYVEv3jB8LfeokijocjKio8mTGDeilX89tsxdu78mbZt63Dy5G2qV69rqM/q1b8zfXoIwcHd+OGHUFas+IDPPutAhw5v8tFHq/H09DVu6XJgyVC2VJdo8WLQsmz/HqDv75XRllkMuhcEQeBiRARrDh2ibpUqLBowAE1xsXYCRru5atHx4/wSFsaViRMJ8vaWbDmZQoGzUklmQQHvt25Nyxo1GN66NbZSyJoCSzXdlX0mNXmYyiP+byrNnCQmxXF1aSU67ZT4fHZzxeuL8PdvSFbWC8l5WQqNik7BFF8NzN3ScAWWaEV0iIzfs4fvr1wp80hlawsKBR4uLgzXhwA0R1OFotJoSBUlNUdLCWfmBGRTKMpkMvr2/QAPj+p06jRQks7JyXlMmzaW338/ROPGjdm9fTsuLi5QUEBRRgYuzZpha23Nvu++4+DJk7y5dClKW1uyi4rIyMnhwr17dGvZklUHDjB+zBj8vbw4HBrKnHXryFer8alWjT/CwlCr1VTp3Bl3d3c0Gg2vvtqDwMCm2DsqOHToGJ99NgkPj6oUFwsUFalxcnJDrZaVoWlw8BuMG7eeL75oS+fOo5k4cSt//LGNy5d3cvnyTnbsUKNQWFs8HKW0Hmaa+x8qIBvzUHMgljP1wpm8IsR0//+MjGTN/v1Uc3Nj1ZgxFGk0WOvKTddoWHXkCGtOneLPuXNpWrOmSQ2Wo50diVlZjOrUiY6BgQxt3x573ZgpVxFLpH6pZ6YEN6ndl5UY72UGkDmBUCq/xCrVEoW21CdVqvLkqlevAdnZL3B2FigulhmeSfFOPRrmItno02xQl5cmpVSylZUqdXm+2LGDJfv3l8nu6OoKSiWuSiXD+vY1jzCAiwtZOdr+LI7+IxVxwTgYhFijLGEQKQd/RTjTl9ux4wSsre1o0mSAZFWyswtYtmwcZ8/uo3btQNav34OHRxVUKrCzLcbZ1RVra2t+3rCBM6dP89Znn2Ell+NgZ0f6y5ecv3mTTsHBfLd3L2OHDCGoTh2OhYayYP16UjIyqFm9OmF371JSUoJ3z564u7pSpNHw6iuv0KxpU2xsbDhz8SKTv/gCD48qgEzHQ12wtbUq0xe7d3+VFSu2MX58Z3r1CmHJki0cObKZ0NADhIYe4Nq1fGxtzWtuLO3/FYkrlYH/KAH5nwklJSWs3bOHU2Fh3IuJIebFCwDWnzxJWk4O73XsyBd9+uA/fTpd6tbl+LhxBGY4DBIAACAASURBVJnxJRYEgRy1mu/69ePLc+f4ftCgvzez/Q8MYGWlwMbGnkePLuPj0/ZfjU6FcObBA+adPEnokycAbB48mFHBwVrXif+DfaKoSE14+BneffdLk3kWLZpObGwM0ZGReHt7I9O5lwAoFApDvNIHT58y5/33mTV6NJciIpixbh2P4+MBOBMWRlBAAGPmz+fk2rW8MXEiAINfe41dv/8OQKe2bXn/7bfp0acP1s6uODk5lZm/MzM1PHkSjVptjVwux93dH7lcXm7Sa9OmP7a29pw+/SNjxnxNQEBrHj26ymef7UWhsOZ/oOV5P+zbx6lr17gZFcVTXXSBn0+eJDUri+GdOrF8xAiqjx1L+3r1OD1jhlY4NlNeflER68aMYerOnWz56KP/TzX57wAnp6pERZ2jTp2u/2pUKoQL9+6xaO9eTkdEALDhww95p0cPrevE/0EeWlJSTHT0Kbp1m2oyz5Ytc3n4MIKjR+/h5eWDq2upbVomk5Gbm0tJSQmR0dHMmDiRaWPHcu3WLWYuW8bjZ88AuHj9Ok3q1WPs/Pmc/fFHXtONsX5du3LwrPZwpw7BwYx56y3e6NkTa5UKZyenMhqn4uJi7t5/iEZjhVwux8vLHysrq3I8tHPnPri5VeHQoW188cV3dOjQm9DQYyxZsqNC4fhfBf9RPcuU9qMyStkyL4muiampfPKNNoTKzhkzGLpkCQ1r1ODEjBmMXreOjX/8QZeGDXktKIj4jAxqentTxnlGBy9evkQA5hw+jJ+bG6tCQ/myf3/pZXxFyx1T98ZgicNTRWDum1Ia4X+ABllqRShVhPEzLy83hg9fzNq1bzFt2lFq1mwqWYaUedCs9kOTZ5lNzVx4HCM6PklLo/v69QA09PLizvTp2o0MEhoiSdulxNWcEsYcLcWfNLfyNudGYcZTxtC0anUBCQmPKCzMR6MpQqPRCpB6vG/fvsamTd+xdOlaVE4+ZOdqNw0BlCgUqEtK2LBmDdfDwmjaoQOp1tY0ee01nB0didRtXHy1Y0dO7NyJWq1m8PjxTFizhgb16nE/Opq58+aRVVzMiVOnOHMx1CDw5uRoNUZlY8Yq8PZuWGGY5WfPosjNfcmiRadwdrZnwYLDTJrUEldXx7+slTWmv1QZf0UDZQ6MI+eZ8/UTPzc8MzPu03NyGL9cG6t858KFDJ09m1rVqnFu5UomrV3LjosX6dWmDf3btyfy2TNqBQSAs3O5byampwOw4NdfcXZ0ZPXp0yz/4ANtjGpL+KUpFZMp876UdUgcTUhqnFuiSRaD1HiXYkoSfgzmYuAbFy81LqWq4uLiyDvvrGDjxmHMmnWYOnVamuQB+qvFMY9NhROrKHiwVIWA52lpdJ4zBwAfDw+ebttWVrlgytRlhHCJSstjxNriijTI5pThlvBcqTRzU6eehxYVFZGYeA/IR6EoMizC9fliYm6ya9dyJk5cgbe3bxk8MjMLyLUuZMOGzVy9dJFW7drxsrCQxh07YqdUEq3joW2aNePP/fspKSlh+MSJjF2yhHYtWnDpxg3mfv45tg4O7D58mHMHD6LQI2vUQUqQI7OSExjYoBzvNLZSPnv2lMTEeHbsOErNmk5s3Lid115rg4+PAz4+VAiWumJKwV/lof9RB4U8fmwaV+MKS8lmhsEsjgAu6vnR9+7x8cqVhN6+TX5hIQA3vvoKpbU1I77+mpsxMbxYv57pv/xCDTc3Frz1FqDVdGTn5/MsLY02c+dSIgiMe/VVhnfoQMd588jevr38gNZf/47d1JxP3V8FS0ZvRWlmnon96KSsmeYsncaWuj17vuHQoQ2sWXMFBwcnQ7nGE4SUi4WLi84cCBUfBiL+qDjNlGQq+i8IAvIPPwSgcP360o2iUszdnP+HTppXK53+MnM3NyeZWsuYE5DNdeeffprB9u1LAWjf/jU8PLxJSHhESUkJMTH36dr1dapXr8GdO1dJTU0mNzeb4uJi0tKSKSkpQSaTUVxcTGFhIbNmzuTo778THh4OwOTPP2fZ0qXaMQUkp6bTqFEDUlJSAHj8+AVqtYxRowZQUFBAkybBFBQUkZAQR4cOPSkulnPq1B4iIq6we/djqlf3r3C+FgSBrVtnc+7cLoqLNTg6uvDgwS3Wrj1LmzZdytFBD+aEYfG9ORnPVJr+gLHKHBRSWCiYdK+VwtO4ToaDmEyMh0fR0Xy6ZAlnr1wxWAFCN23C082N0fPmcen2bWKPHGHpTz+hsrdnxaRJhu9l5+byPCOD1m+/TaFazdiQEN596y3aDh5M+u3bKMWdVIykMVTkU2xsG5diQKbcAUwtjqVWPlILXRcXs6Z/fT61LkiaKd5orv3+H3vnHR5V0f3xzya7m00hvQKpQEhC6L2FDtIMVQFRQOkoIkUQkQ4CUhUURYooIr0XQYogXZFepCOQAKGkkLq79/fH7iZ3N/fe3aCv5f2953n2uWXvnTkzd+bMme85c8aR/yzHdes+Z/nyj1i+/Dh+fr6SstPCvuXcyg3NUTkpxZgcSXQglTkUZtbevejc3a2fkxJeIhlqqUuxjLSVlykphX2QHdX1xawquaLJAQpy97Zvn8KqVWMAqFKlGUFBESQl/YYgCNy4cY46dVoRGVmG8+eP8ujRfZ49S8NgMPD48UOMRoNFLpCVlcWwIUP46dAhjp04AcCbffowd8qU/MWLqWlpxNSqRfL9+wD8fuECOp2Ozj168OTpU6pWroyTWs2NW7do3qwZGq0La9as4ciRw5w6dYHY2Nj8elByIZs8aQLffvstWdnZ+Hp7c+rMGbauXk3rFi0c14DtCVgLSSySsfXjtwRDkpOhdhVklUo1COgHRJhvnQcmm7efRmWK6zEO6Av4AMeAQYIgnBelIQB5QIwgCNdF95cB/oIgtFFkwpzGo0dCkepQbnB3ys4svDzV3LFnL1/OsFmzmD1kCJ0SEgj18wPg14sXqdK/PytGj2bBpk3Ui4+nf9u2vL9kCSvNpgiAGf37UzIgAJydWbptG1qtlq3mEFUOjYxy9LwSUemeFElpO47AhrbvYmqMjmRrz01QbjwTBIEPPxzKTz99z5w564iOjjGtUJaQlZZzK6XY0Z2ebBkpQl3ee/yYz3bvZvuvv/LLzJnKdSoh3PN3JTJvYCEl3KU2n7MHeEsJ5qIIdzlks+CenrS0xzx9mkznzhXzn3FycsJoNBIaWoqEhFbUr98cf/9gvL29MBj0BAWVwMPDlaysTDw93QkP1zB37hK6du2F0Wjk3LlTlCtXEUEoWJWu18Pdu7dZt+4bZs16P//+4cP3uXTpPKdPHyEtLY2wsBhmzRpCRkZq/jOLFv1CdHQVbElKBpvqQ8/t29cwGDIoUSKcwEB/xUlE/qY8jmo3FhJ9BItQt21+bqYmUSQFWcjJAbVaMk1H/PmsyiOjuX3+9df0HzWK6e+/z8utWhFudqO4fPUqMQ0a8N2nn/LZ119TIS6O4YMH88HUqSxftSo/38kTJhAVGYngrOGbb74mKyuLbdv2ylaVLUnyrc+VFiSWa6UQBvaUZlvG7E1+bU1XomNmtjVabE/sPO+QIk5r6tT32LJlLd98s54qVeKtZKhTtnmHT6mQDnLKsJTvti2zSkCMzb3klBS+3LiRFdu2cXHHDoeEl1GtLSTepRRk8X/ijTst/zmi6yvJUPHYU1QFWaMxkJb2iNzcJ3TrFpOfn0XxLVkyirp1W9CkSUsCAkLw8fHCYDAQGhqMl5cHz55lEBDgSUCAOzNmfMRbgwYiCAKnfvmF8vHxJlRYVIi7d+/y7cqVvDtyZP7tpKT7nD9/nhMnjvPw4SPi48szYsQ7PDKHrwXYvXs/CQkNpGWEbZ/Lzsbw7BnXbt8m/fFjwkJCCLAIMiWkzB4p6S1i673tx/D1Fdfpc+2kdwcYCVzBFE27B7BRpVJVFQThDPAuMAzoCVwGxgK7VSpVWUEQ0kXpGIApQFcH8vzbKCwkBHdXV4r7+5tibZo/UAl/f0qXKMG3e/bQumZN7qWkENW9u9W7bjodM1etolLp0nh6eNC0enXeaNfu7yjG/wtSqVSMHj2HyZPfplevRqjVavr0GUnPnm/KxmP8q+jJs2cM+eYbtp48SYuKFflq4MC/lZ+/mp49S2Pjxi9Zu/YzRoyYQ8uWXXn8+AEPHtwjLCyCyEhTpAI51FWj8eLcuRPmtDJITX2Kh0cxKlQwKbO2cjMoqDgDBrxH2bLl2bBhOXq9AVdXd2rWbETNmo3Q6yEtLYMvv5xE6dIVSEzszfz5IwkNLUtRSK1WExVVVnKR4//IRCFBQXh5ehLg50e4yHYaFBBAdFQUy9asoUWDBtx/9IjwihWt3tVoNCxYuJBysbF4evtQr149Xnvtjb+6CP+vaOzYDzEajXTo0AKVCt5+exjDhr2Tb6H5uygtI4Ohc+eyYe9emtauzbdm953/L5SVlcH33y9jy5ZPGTBgKomJvXn6NJmUlCRCQkpQunQ5RczKy8ubixfPkZ2dTWZmJk+fPqVYsWJUlon9HBQUxPBhw6hQvjxfLllKdnY2Op2ORo0a0aiRSYZmZWUxY8aHlC5dhv79B/Huu0OpUKGiZHpy5OzsTHRkJJg3AHJ4146/gZ7LxUKlUj0G3gO+AO4B8wVBmGL+zxV4AAwXBOFz8z0B+AiTIl1DEIRfzPeXUQQE2WAQ7M6oxaRoHlQwsx06dowOb73F1oULqR4XVyjdPUeP0vQNk9BWOzujNxjo36ULcdHR1K1Rgyrly8vPlsVHR0nORiaHRMmhy47CL5aj1KxLAiazoFFKrrm2ydtmZSGrbbBtSIx62RbVaDRy5MiPvPPOQMaM+YDGjRuTknSXuNhY1Hq99DJkKUREDhmSggxsz83Xi374gfe++opO9eoxpls3SloEgZw0U0CQM0W7ElmOtuiHnGeI0vdw1O25qAgygMFgoF278sTHV6dr10FUqFCjMAMyfIlJEAS2bFnO6tWfceXKGUBFxYq1GTFiDpGR5dHr4fbtK4wb9wqXLv2Ch4c3TZt2IS6uJtHRNfD1DaZYMRNa9+TJA4xGZ7y8/DAYDPTqFcObb35CnTovWPEurh8pM7MtIKglV7odWY5ScsaRDiLOXM4f3Q76YUsqlUoQ7t+Xtfo4EkZMcpt6Cfr5l19olZjIhnXrqFu3LmDdfw8fPkSjRvWs3unevQ9lypSnfPmaVKxYQ9E7QoqUQEk5FyIwjwu2UKGcNUkKVVZiyNanWAJBtliHirLMQclqkT/O2etgNv8bMzP56dAh3ho9msE9evBis2bcvX2bcqVLozEYlP0MxPUgZYqwZVzJgqZWs3zbNoZPmUKbpk0ZP2wYYebwqZJuexLbcUuJdzFa7Mg9ezJUyVIpNg7IdV8546tabZJ9vXpVIzw8mu7d36J69TpWz9nyIJUGgLOzwLp13/H5559w9uwpAKpXr8XUqTOpXNkENty+fYsePbry88/H8PT0ol27zlStWpuqVWsSGBiEj49JzqSkPESlUuHn54+Tk5F69Srx/vvjSUzsYN3upPqLuFLl1vnIWXKK0vnl3Jrk/P7NG3A9t4uF1cMqlTPQGVgOVAWeAdcwKb0nRM9tA1IEQehhvhbM770E+AmC0MR8fxlFUJCFR4+sKsDWTGh7biFFRUxG4WzduTNZmZns3bRJkp8m7dqx9+BBtq5eTYsWLQrMFQ64GUjxK6Uz2+VbSZlTUvAcsdXJaUc2de/ougspGSlp/ixKYrak13Pw6FG69OtHnapVWbttG2WjoriwaRNOmSJToeWo5EYhlac53yfZ2Zy4ehWNVku20UiVUqXw8vJCq1Zz/MYNOo0bx+65c4mNibHmV86p16ZD5+qdZF2h5ZRhKd1MVC1WWUqNSXKCXEoxFh+laM+eLXzyyUQ2bjxhlb9UP1Bqurb8Z2Sksn37UpYte5+oqArExzfk+vVTCIKR8eO3c+vWJQ4dWsPFi4e4f/8GT5/ex98/FJ3OnXv3fiMzMw13d2+0WhdcXYuxfPlvaDSqQmW2LbuHh0npT0q6QlTJQDw8PBxfyeNoG5OrYLHzp43bDdHRQBEV5MuX5duhxMe1VZqLMgd//fWX+P3322zZclTy3TfeaMP+/duYOXMN9eu3Q61Wy8qTP0NBllNUpNq+lRuelNbliIJsZ/IrVozlkrdNzjZZSb9gR8zUCqDL8XPnePGdd2hStSrf7t5NyYAAbixejNqiKzxvWxZVdKogcPz8edSurmQLApXi4vAJDESr1XL2+nVadO7M7i1bKF+tmqmu7Iw3St4wjshQuW5cFF1fznvG9luJu55cVR06tIfJk99m166z+TLKUVLSJdLS0li9egXjxw8nJiaeOnUacOXKZVJTn7BmzT6uXr3K1q2rOHHiELduXePx4wcEBhbH09Oba9cukp6ehpubO35+AWRmPuPq1WScnJzQ6UQKskylGo1GLp89S0lXV4q5uUn7BToSGlCp0FKdQ/xhbI+NTRFc/oiLBSqVqjxwBNABGUB7QRDOqlQqyx6V921euQ+UkEhqNHBBpVK9IAjCTgfy7YvJt9lElorKb03aQn85ApiaGqZF8GvN97SoRWZTnYcnu/ftw+jtK5nG5h3fk5ycQmhoKLl6LJ6t6Iu4oEKOP/ERxJ3KKZ/f/I1PbCXG85gs5KayNveUfBcdkZVWHUlJkVBCJKTIzEj94GB6Nm/OVPPWzbfu3GHaRx8xOjHROl2xVJXKR61GEAQ2nj3L/D17uJuaSoCXFxXCwvh01y4AEsqXR6PR8Mtvv5Gdm0t8VBRT3nwTlbMzkbGxBSv0FdASo1pbUGSRD5ycwmuvqkTs55OSTi61CEcJQZZK30IWE9zJk/vx9PREp1Mem8Vtx57Ppenci+bNh1Cv3utcv36Skyd3Ahq6dJlMVpYzvr7laNu2HG3bmvgzGPTcunWGjIxHVKjQkDt3zjBqVD2GDv2K8+cP8uxZGv7+XoXqxrY+PDzAxaWgwOcPHCDOstWxGNJX8tG0p+FJdRS5/yzpPw9Z3pUSMuZzS9QER+fgFrL9Xi4u3pw8uSa/emzTmDhxLQ8fPiA4OMxqIamMa3OhPGzJ0TZv2/al0tXp3KTxdEuCtmORFMlkalGMHZ07SfGdv+DcdkGCWHg4Co7YVHQNb2/ebNqUD1avNiWdns74RYuYbHEXlEpXpj0JgsC2M2eYt2kTtx89Isjfn9jISL4wxzJOqFULrU7HL6dOkZ2TQ5nSpZk9Zx4CKoIjy/H4qf3xRk6OyMlJKcVXTOI2IwUuWP5zJDKSTGCS/KNU88nJyeH06b14e3tahW4Tl1nu2pZs60qr9aRLlwG0adOdM2d+5eDBXeTlGXn33TlkZTkTFFSWN94YS48epucNBgPXr5/l8eMH1K7dgHv3rtGmTWXGjp3FyZNHSUl5gq+vH3o9aKW6gogB55o182+fnDaNygEBpgt7g5sjML6FsrOl+6jUZNcBckhBxuRbXAnwBjoCX6lUqoai/21haJXEPQRBuKpSqRYB01Qq1S57mQqC8AUmNw4LCv2XUGpqKg8e3CcxUd5/2NXVldBQ+7u//I/+eprwxhtcunWL9T/+SHZuLu8vX87t5GSmduuGr8axmLWHr12jx7Jl6DQaJiQmUiY0lIeZmRy4eJFuCQn0ad6chtWrg1rN7fv38fDxod+MGez7+WeqlSvH7K++YvTgwf/hkv5zKDk5iRkzJrJ//y6io+OYM2fZfywvNzdP4uMbEhPTUPE5Z2c1UVEmM6JaDZGRlcjLy2bSJNNkqUaNptSv38KhPNu2TaRsVAQx4eG069mTKYMH075Zs39XnMy/kDIzn/H779dp2LC17DMuLjqCg8P+Qq7+R47S6PbtuZyUxDcHD5KRnc2ULVtIevKEaZ06EeDq6lAaP1+7Rvf581E5OTGhe3dio6N5mJPDodOn6dqmDb06dKBZixbg4cGdu3dx9fbmnREj2LRpIw0aNGbmzA8ZOXLyf7ik/xx6+PAB06ZNYN++3YSHR7Jo0Yr/WF4eHsWoUSOBGjUSFJVsZ2dnYmNNPstqNZQqFUteXi59+nQEoEaNGrz4YieH8uzavDm+Li7UDg+nw6xZfNi+PR2qVkVr/9W/jZ7XB/kH4BamRXcOu1gIgrBWpVIFmt8ZCDShKC4WOTnkolWcETrqCiVn2jD5J7YlICCIDz+ci6dn4TidtunLWassx6LM+uR4U7KIFkJk7cEwchnbXkvZ1xVcLJSSzTdd6iV8NuVMK3J8y6EgorJO37KFUd99l/93ULFilPT25qsuXSgXHCydrqjyW3z5JYkVKjCgWTPTgj85G60IHli1cyfjFi7k44kT6ffee6g1Gm7fuUOfnj2Zb4lgIXKjsBSzKJZcOVBSCgyXAyWl0A85BNm2CUjRqVNn6dmzOw0aNCIx8WVq1Kht1/xpOTqCICshmbbnFpJqzmo13LhxiuHDK1O9emuuXDnOnDnfEx1duVDZxdG43HRGbty4QetWrSgTHk6ZiAiOnzzJ/UePqBUXx3LzpiTXv/iCyKAgZf85KdRNfK7UxmzhKXOctyK5WNy6ZW3mN1vh7HmDKCG4tveMRiPDhnXCxUXHu+8uwNPTRzINqfQdbRNSZA9BlnIHthyl7klumeyok7AlI7F7gfmeuM5tj1IiybavOmWkSYeysRwdtVpIyVXRvU/272fwmjX514EeHoR4erKsSxcqlbAxEEtA9e3mz6d+XBxDX33VJEPtQKyZ2U5s376FESOGMHPmEvr3f4nAwOJcuXKe1q27MGvWctmx1tF2ZLl2BKiU6qoSnjJW3dMRBDm/XYkyuHjpEq/16UO1KlXo1rUr9erWRWUGc8Rumo7IP7n/HLEGOaKbXL9+ibZtY6lXrxkXL55i2bIt1KlT03pdBhRaMHPn/n1aDxhAsJcXlaOiOH7hArcfPaJeVBRfHTliqochQ4gJCHDcB1lJWZLyfbH9QObda/+Qi4UEOQEuwA0gGWgGnDBnpAPqAyOkXhQE4YFKpZoJTMLktuEw3U7Wyi5kKGodSrnXOjkZmTRpMBkZWcTFhbJhw1YSE1+xetdewyzqQC7Fo5RiI5WXrNJiT4FUekecqK0ZUafLv2fZctZNJ7+4xwljQboZDjqAOTJqKPV68/nIypV5qUQJph84wOcnThDi5obWaKTdokVsaNeOeIt5R1w+UedKffaMYk5OqAyGwgWT8dt8uU0bfjxzhm6DB+Pr7U2TBg3YsWcPvn5++WlLBf1Xas9S47DUd7fdAMKWTfFRSmiL71nHulXuWEajkY4d2jKob1+GjRyJoHKW5buQh5SEflgUcqQ521JoaCVeffVDjh/fxOuvT2fYsJYsXXoOnc6/0PuWNIw4ER5ZimMHDuBp3j3z6Lp16PV63jRvYAAQM2gQ4YGBRJcoQVhgIHk5OTzLyiLPYOBxejqlgoKY89pruEtNPOVmM1Ijsb81r0Wh3OAwkw6VXFBOUFYopEjOz1EQBObMGcHDh0nUqfMC+/dvpFWrXlbpSQ3Mjs7tlXiS4s3Rtib1nEOklJidBKXGIFsxrNOZNzACSBYpwZYg6OJg6GDfB1nON0qC3oqPp11oKB8dOsQnx47h5+qKl0ZD+yVLWN+lC5VDQuR9sIDUrCyKubvnK3pyLidimdi4cVteeOEAvXt3wNXVjapVE0hNfYqvb5BsG7D3CSxZWapFynVMTg+zbRdSiq9Y97KcW22g8lTG5cU8iAuCQMeXX6Zrmza8//bbOGm1YFlvhWmstcTPt7hVKi1YF7cjC9lTlB1xUbWIqcDAGIYPn8eWLct49905vPZaG7ZvP0NUVIi5bkwTQDdvb6uKLunvz4mNG3EpX55dJ0+yb+5cXF1ceHvevPw8Ks6fT5ifH9GBgYT7+aHX68nIzjbJ0GfPCPP1ZV779njaDnhKCrIUyGA52iFH4iBPA7YBvwPFgG6Ywr61FgRhh0qlGgm8jynM22/AGCAByA/zJkaQzdcewFXAC9jjKIJ87JhgNUEu6loBKVdQtdqEeBw9upklS8ZTrJg3JUtGsXnzUl58sSeTJi2V5MfRmaztuT0e5b6v7ZgqDu2n6NMrNQI+r6auBL1LkbjnSa0os+ecb5uGOF0HJUBGbi711q7ltDlu44fVqzPzzBnGV63KoAoVCu9q5+FBdl4evtOn83DsWNzNkQIkFRUbTTM9I4OktDQ2799PnerVuXD9On0GD+bnI0eoWqWKlb9xUdEMJcuIeLJkrx3JFcVJn1v4GyhNqtRq9EDbnj3Jyslh77p1OLm5FepsuXon2bI42kzlgFhHgTJxvQBotUbGj0/A29sfT08fzp07yOTJ6yhduqIi8uPhAd99s4Qe5gg2wUFBBPv7827v3rw1cSINa9Sgcmws5SMjuXXvHi5qNe5aLRq1Gl93dz5dv55HaWlM6duXehUrFllBFsfChvwgFkVCkK9dE6xW7DvyqcVsybEsCAJHjmxn8eJxaDRaSpeuyIYNC2nUqBOTJ6/Jz8P2KNUmlL6/I7zJGXukUGLLf7bf2k0nEdlCCWaU08qVTH9KslMsNy0fS6wUyynIRfHZlDKzSLGi15OwciUnzFuHT2/UiBlHjzKqbl2G1atXYGGD/PZqMBop1q8fd5cuxccS6k+sQYqQPHHs54yMDG7fTmL37m2UK1eZu3fvMHRod1asOEi1avUk2ZQDpuTkgj0gS1wdUt3RcrQtilN2pnSIIbnM1GqMTk50eu897qWk8NPixailBnspjV6iI0opzUrWOkcNI1JN3NlZYOzYNuTmZhIREcexY9uYNWst5cpVU+xXWnJZtWIFXV5/HTCFhPT19GTsW28xaNw4EipXpkKZMlQpU4ZbycloVCo8XFzQODvj6+nJ4m3buH3/PpN79aJR5crSbVhKWbL5gJZdFe1tFOLIfDkY+MZ8TAXOAC0FQfje/P8MwBVYQMFGIc1tYiBbkSAIGSqVagLwqQP5ncO8tQAAIABJREFU51PNmirmzDlMVFTtorwGQHb2M7Ky0vH2DsJoFLhx4wK7dn3F6dP7uH//NkFBYfTpM56EhEReeaU8AK+9NrTI+fx/oMdPnnDol19o1rAhGlfX/N14/onkodXya+fOfHb2LIMOHaJZiRJ0jooicdcuMgwGRlUpvElEckYGXjod7lp57yhBEBCMRjAaeZyaSkjTpuhtpGzNatXo+OKLlChe/E8v1z+BFq9cyd3kZE7+8MPfHjO1KOTk5MRrr83hgw9qM2jQfKKjqzFzZl8WLjxm993XunenbevWPE5KQqPREOLhgcZgoHaVKuw5eJDhM2YwokcPRvfuXWgkrh0fz9c7d1J/4EA+7N+fUb16PRf/RqOR+/eTOXz4JG6WIPsOUqlSKj7/fJ9d/20pys7OJCfnKb6+IRiNAjdvXmbXruWcPLmH5ORb+PmF8Prr79OoUUf69DGFdnvllXeLnM//B0pLS2PfwYM0b94crVb7j5ahOrWaY927s/TcOd7YuZO6JUvyS69etFu3jvS8PCaYIwGIKSU9HY1ajY+UactMgiCAIGA0GklNTSU2NoL09DSrZypWrEGLFh0oXvy/01f9m507OXftGufWrEGtNGH6h5FKpeKNN6YzYEBF6tdvR3x8NcaO7cW6dWftvvtyx4680LQpD2/fRqvVElysGFqtltpxcfxw8CDvzpvHgA4dmNivX6GZe73y5flm504aDx/O6G7dmNKv33PxLwgCycnJnD79KxqFdUl2v4ggCD3t/C8A480/uWcKaeaCIHwGfGYvfzF16zaOL74YxdCh+3ByKoxMickysdLrc9m5czJ79y7g2bPHAGg0Lvj6Fqd8+ca0azeCuLh6BAUVR6NR8ewZjBq1nAsXjhEQUD5/QmhL9hBkqefkeATHfD1t/88/d2T6XJRpsy1zNvcynz7l21Wr6DFwIHqDgd5duzJjzJiCDq4Ej4oRkaLu6WkPnpepfJVez8CwMPqULInGrMhtSEggetMmBpYujaenZ8Hz2dkEazS4ODuz/7ffaGiOk2ipvzO3bjHwq684efUqWTk5tKxbl5E9eqDX6xk7aBDZgkBqZiabduzg2M8/cwxYt3kzMTExfPjhdJo1a2t3ExNx1VtIwoJZ6B3xUQkxs0LHUuzsiiVnz1SrGTllCjOHD0ctfs/GnqnV6dB6WPtdix+xzVKtVnbPsJBSv7JnUdLrITi4OtOnn2fEiBjmzj3PkiWjuHz5N0qVii7Em4XfjAzQ6bSgCiIk2hTFQlADaiMRERGUfPIEgyBQIi4OIiIK9Tl3oH9sLLeys3lv/nzu6/Vs2rWLL2fPpnGjRtaZiRD4fDDKDBb27/8KO3Z8R6lSpRgp2vXKEXr99YnMmjWS8eMP4eysdkiGGgx6tm6dxo4dc0lPN1litFodPj5BVKzYmPbth1ChQgLBwSVQqVTk5sKwYYs4eXIvZcpUlwVdpZAuOcuAgiGj0LkcIC8Fvln+K+Qp4Ki8RPS8I+4LGRmgVpOVksLKr7/mzbfeIjU1lde6dGHO+PFoLLJBLC9t95YXI8i2iKW44YpJCmlTsgbaPK/S63k9NpZXo6PRmJX5Te3aEf755wyqWpVAcefS6/F1cSHQ05Mdx4/T0qJAm/+7ePUq/ceP5+dTp8jMyqJ+/QSmTJlOenoa77wzCkFwJiUlhb17t3P69HFOnz7O99+vJzy8FKNHf0Tz5olWE3Ixqw4MB5L/SVWVWi3vt67VZxbU+VU7llCFxjvm008Z0r492mfPCjKyFTwSclXKHG5xe1SL4kKLSWootlw/j9uqh0c8c+b8xttvl+bjj8/y++/XOXToPGXLlstnsfC6Fq1Jhrp4EljeFORArwY9UCIiigiDAcPHHxNcvjzExxdiRAf0rliRhzodo6dOJatYMTZ//z3zJk+mdbNmsp3fdofKAd16s3r1YkqVKsXbb79duIBmeq5Fen8HqVQqYdmybKZOfYGkpIu8994FXFxMNkYl4b506UsYDJm0bTuBlSsHcuPGcUqVqsXUqUfynxO/4yg9j4LsqBlcarGU1L18Z3glpdJRRdOWSTmGReep6el8tWEDQ6dNw2AwkHb8OMXc3aXt4EoBJ6WiuivZ18Uk9yHknjHTqYwMKu/ezf4mTUgIDS0wE5ores316wz+/nuOvfkmYT4+JlOgqyt9vvwSby8vPnztNeqOHk3bhg2Z+uabkvbac9euUb6G9SYZrq6uZGVlERVVmujoGBISWtC9+wCcnZ0VTcpS7Uh8rbQoqVA7sSfIlRq06Pu/v3Qp569fZ+OcOcqMyPh6iN0vxKw5YgKUuyfHtkwRGDbMi/feO861a3tZt+59+vRZSO3aL0myLddf1Wo4fvwgL73UgFmzltCjR8/85+Ws2Pv27eXEiWPs3buHunUTGDFibD7v4qPYI2n//r18/vlYkpNvM2vWfrp3L/oivRUrcpk2rS03bpzkvfdO4eFR3Co/2/rR6WDx4h6kpt6jc+fprFz5Npcv/0RoaDkWLjwnWTYxKXXPorjT2JKScisX01tO2bHqK1b+9wruXvZkp9S1BKWlp/P1+vWMmD6drJwcHh04gK+Xl30FWSq8m+VoD/iwHJXu2ZJEA7mSnk70smXs6tKFpjExhWTolitX6L1kCYemTqV0SAh4e5Ol0/HmjBmg1TL7/fdp2bs3VatV45NZs6zC31myu3DhErVrx1qx4ucXwKNHDwkNDScmphwNGjSlT5+3/hACK3413x1AvIGM1JjlyN7UIC9DdTomb93KwQsX+H7ixILMpVAzKWFkuZZo7FIbTDkSW19pOJAitRrGji1B//5bSEo6zdq1w+jSZQ516/aQnJTKyVWA69dP0rlzVcaP/4xXX+1fqDpsVZPDhw9y+PBBjh79iXLlKjBhwjQrfqVwuoMHf+Kzz8Zw8+ZvzJmzl1dfjQH+/EV6fwvl5LjQv/8uPvmkCVu2fECbNgvsvvPgwW9UqtSJzMwcbtw4jkqlonHjNwtNssWVf+rUdr78si8GQy4LFiTh5OSsqLDYAzblJuo6nXzfsX3e9l1T55VoCZZrR4S7o/C2jAD1UqkY3KED95OSSH70CHVeXmHl3JHpqpJvn5y244ASrFTOSjod31WvTu+jRwk9e5ZmwcG8HheHObotncPCuFm5MrGzZhHl7U2mwUBSejr1Spdm5muvsXTnTs7duMEPH39s4l1cR+b8bt+6lZ/f7m3baNWuHVlZWYApDNbOnVvZuXMrFy6c4ZtvFhEUFMKvv/6OWl24vVlI7rNYCXUwa1YSdW+5dgQysDPQJlapwokzZwoGCnvoh41motXpUHvIu7FYspdTvOTYLcoEo2rVXixa1J0ePdbQu3dVFi9+EXf3SoSFRRcap6TGrtzcdDZt+pilS8fRrl1/atbsydWrBfnYIv+W9yMjGxMZ2RiDwYdffz2M2b1TsiunpeWwatUs1q79mAED5lOpUiJqtWPhCm0pI0NDr15bWbiwDevXj6ZDh2WS9WIhvR4ePLhO6dK1MRpVXL78EwAtWw6xQv3FvAP8+utePvmkB9nZGXzxxX0rVMtek3Ow+eUfHZ3IyPnk63QOruNQkpdS/9uDLPV6PIFBiYk8fvCAq7dvo83JKazNKKHEf4Ysl9JAHChLGVdX1rVsyeDvvyfg4EFahIfTq0oVipsXQLcNDeWDJk2oNGwYEX5+ZBsM3Hv6lFply/LV+PGsXrmSIz//zKpPPoGUFJzMcsFNpwOz1enp07v52a5fv42+fXuSkvIQMFk2du/ezu7d27ly5RxffbUEHx8f7t1LRicVlFdp0BY3vKcSbcCR3ZnkGrTCxKldhQr88Ouv1gq1FFpsq7BYnrGDBkhhVbZFEq/rsreLoFRWMTE9WLr0dTp1WkP37vtZsaIprq7VKF68nKKub/lPpcpk585P+O6792nW7HWqV+8vKUNtm2lgYH06daqPi8ty9u/fzM2bhctsOWZk5LF+/cesWjWDPn3mULFiRzQaF9l6s9C/SkEGcHbWkJi4gCVLXqB27aHs3z+ZypV7EBXVUPL53r23MX++aSHB+++fxMPDj8BAeX8mQRBYtKg3jRv3Y/368dy6dZrIyMJ+qv+jApoyaNDfzcJz0cslS/JiSAgbHz7kh/v3iVm/nvohIdQNCaF9TAzDq1alZVwcm3/7jfaVK1OqVCm0ajV4e/PL9evUL1cOP09PHj55QjGNBp2LdYerUrEi3Tp3JunhQ0qWLMnOnbs4cuQo6enpXL9+k5deegU3N088PHxwcdFRpkyMFZL8T6c7Dx+SmZPzd7Pxh6h165n88MN41qzpR79+39OixQfMm1ePCRMu4u3tJ/mOIAh8//1STpzYycmTuwgNjWb69B3Urt2syPnXr/8Cn3wyDqPRWMiPW6/Xc/Hiad5+uwVxcbWZM+cYgYHhkhb0opCzs5rExPnMn1+DRo1usm/fZMqX70xsrHRM6H791vLRR/XQaHRMnvwzxYoF2I1fvHBhXxISurNhwzR+++0ocXEJf4zp/3L6oE8f+6aPfyB1KF2a1pGRbLp5kz2//065L7+kTmgo9cLCaFe1KgPr1KFppUqsO3mSdnXqULpsWVw0GvD25uTly1SJi6N4UBAPHz3Cw9kZV5sYy+XLV6B799e4efMmJUqE8t13Gzh06CCZmc+4du0KXbu+io+PF76+fnh4eFCqVKTZp/TfYRm/8+QJ6X+0Q//NVK/eJFxc3Nm69Q169DhA06bTWLIkgbffPo+PT7Dse4cOfc3p09s5d+57AgLCGTVqE3XrysdNl6M6dVowffpg9Hp9ISuCXq/nypXzDBvWkvDwcsyceZiQkFIO77X0r3KxmDdPIDsbrl49yKJFCbi6+lCqVFMyMh7Qp89+q+fFE+TU1BusWtUPrVZH//6bZd0q9Hp49uwxQ4f6UapUXfLysnnnnQNotW5Wz0idS13b5uGo2U8qWIKtWVByK1Ql9OM5TOiS96T+t5BtWnJosaOIphyPch9BCkpUSsOmLE+NRnY+ecKPDx6w9d49UvPyKKbV4qHRoNFoWNGtGxWLFyevWDG0AwcCoNVocHZyQqVS0aVpUz6fMAG1baxFCQjS4o8rxbaYpMAHyz2reJpF8UGw1xYcQKWe6fW0/egjGpcvz5guXQqYcxTOA6uGLd5215FtYKW8corqTWQhgyGPL76IpkyZtjRqNJa5cyNJTFxItWrWIR6zs1O4ceMHTp5cy40bx0hMnEBUVBUiIuJxdlYXGaSznL/xRmXatRtI27Z9rPgdNiyB+/dv0bx5fzp0eK/QZzQvBC+Si8X06QJ6Pdy6dYIvvqiBTudF6dIv8OTJDQYOPFaIV8unysz8na+/HoBen8277+5Go1HJAo+5udm8+qorZcrUJjv7GSNHHsTV1dNhpF+pHzgqQ4vqYuGULbEVfVHhbSkqivVLnL6Ui4XS9uZSacjJcMtRySXhOaH9NKORnQ8ecCApiS23bvEkJwd3rRZvFxcEJye+6d2bahERCF5eOJnlhkWGolLRsVkzFs+ejdayLkTOHm/La1HkmdR/cv4+ckLGXp5SZPMNsoxGOi5aROXwcKZYZKicX4JSB5BYbGJxsRA3HbnQ2XLuF3JDsu05gNFoYOPGOEJCGlGz5gTWrKlM1aofUK3aAKui5OU94fbt3Vy+vJGbN/fQrNkUwsKqEhwcj7u7RtLK7ohcHTasDgkJL9Ox49tWn2P8+Be4descjRv3oVOnseTkqKzK1Ne8T7OcDP1XKcizZgn5bdBgyMNoNKDXZ/HRRxGMGHGLBw8u4ObmR0BA2UL932DQM3lyGG+9tZ/ixaMl89DrTejQkCHWSE7v3rspU6Zp/jNS78mRmA8l3zep8FJS96z2O3ckdrCjJnQFM5BVh3XEz0vKrmNP6Eg9Z8ujPROZXBqOmiRF5RPc3XmYm4u/ry8qYEVSEu8cPkxCWBjVIiOpHRaGm68v5WJjcdfpuJ6eTqnevUnZvBk/SxB92w+pZC+y5UNpEJUqi9KESGnSIVUfSvfM/O4+e5bm06ZxZd48SptjA0tKMzmBD9Lhd3Rukms4paInyfnUyX1upX6amfmQo0cncOXKWvT6TOLje9G8+VySkn4mLe0aly9v4ObNvYSF1SU8PIGKFV/Gy6uEohLsqGX77t3LjBpVk4ULb+Lu7p3P78CBYYwevRd//9JWZbGUzTxHK5KCPGGCkJ+W0ajHYMhDEAzMnVuCYcOu8vjxddzcihEUFFdoXDYaDYweXYbBgzcQFVVRcY7co4cLessEDhgwYBsxMa2snnFU33RUhiopyHJKM5h99Is6ifwjVFQFuShx46VIDhGS4ksOZHBUY7L5WA9ycvDz8cHZyYk19+8z6KefqFuyJFUjIqgTHo67nx/lYmPx0Om4q9dT8pVXuL1+PaFly+anYXWUGoPkZJeczJeTjY6CSlL5FoXM/B+8fp2E6dM5O2UK8aVLFy6fVJmlFGUJhSFTb3Jdc0RBFv8nBUAoTWjFlJv7mAsXJnH79goEwUiJEi9St+5iHj8+SXr6NX7/fQPJyXsICqpF8eIJlC37EsWKhSnOAxytjocPbzB2bBVmzryEu7vFURJGjizLgAFrCQ4uX6gsAEPNgcr+K3yQLWSqIA16vQaNRkeZMi348cepHDz4EQAJCcNp2nQsanUx0fNqQkOrkpR0XlJBLpANKmrVGsDRo5/h5RVKaurvLF3amgYNPqBBgzFWz0ulIeZR6tyxslm/Z/X+H0EulJRg23uOwl9Keev1YvhNPl17PshS6copw7bnlmcsz4kRF6k6MvdCVXY2gQDmCWR3X1+adejAnnv3+OnePVacOMH5R4/oWqUK3/bowd3794kODsYvL69gMY3tRECnQ3BxYfW2bdxLSSG2dGmaNGhQEGbGFoqzLYMt344qvLYk/gb26tlGMbZQs8qVaRwfz6HLlwsUZKk8xVLV1iFX4h0nQGdGky3yXq+3PrdlzfYoVTyFLAHQagNISJhPZGR7Nm5sysmTH3P16hYEwUBgYGXCw1tQo8YknJy05OamIggl8gcVuW7iKPrh7l6WUqVqc+DARurX7wlAbq4BZ2cXnjx5Iln2P0qmvNVYhoC4uPb89NMMDhyYCUBCwhBathyHr29BQH0nJ2eioqqRlHSe6OjCCrKYr6ZNh7Bz5wx8fcN5/PgWn3+eSOPGI3nhhUkYDKr85x0pi5IoKsqaJllxVpT6VJJ7jshXKZJq1BaZIacc2fqp2mscjnQIORTVwo+U5U8JbNHpTDL0yRMAOnt707BFC35ITubwvXu888svnHn0iBbR0ex84w3up6VR3Nub0Lw8uHPHlIaEFU5wdmbD7t1cvXWLSrGxNKhRAxfbkJxSkw0pkMZRZdi2bOLzogzwoufrV6hAmypVOHj9OvExMQX/KX0rC0mNhSJ+dOa1HQ61fztFUJofWl/7EhMzh4CADhw+nMCNG0t58OAgBkM23t6VCQxsTtmyY3Fx8SAn5yEGg2nTIjE/SuC50j1X10jKlGnEjz+uIyHBhBwIgoCTk5aUlMf5saqLKkP/lQqyLQUFxbNnzzgiIhJo0mQMR44sYN26vrRqNQl//9Lk5GRw9OgSbtw4xIsvTldMa//+Wfj4RFC37hAOHZqLk5MWgyGXvXs/oHz5bvj6Rv1Fpfof/dMoyM2NbqVL062SaW/6szk51Fi0iBaffUbLKlUorrA7z6b9+/ls/Xqu373LFctqAiC0eHEG9uhB+ZgY4suVI+XxYy5eucLREycIDgyk7yuvEPgHdk77T1K/pk3p+emn/HztGrNee83kn/0vp9DQJpQs2Yg7d/YRH98PFxdf0tOvcfnydxw/PoWMjLt4e5emT58rf2q+7duPZ86ctsTGNsLfP5yHD2+QkfGIiIhqSG3m+GdTUFA8O3eOIDS0Bq1aTeHo0S9YufJ1Onb8kODgsuTkZHL48FdcuLCPtm1HKaa1a9cCXFzcadlyFDt2TMPJSYPRmMcPP0yhUqUuBATE/+cL9D/6R1KATkfXiAi6mmXlJYOBut98Q+0FC+hZvz4lFWTojkOH+GTNGq7fucPlGzfy75cICqJ/ly5UKVeOmKgo0p8949ylSxz+5RdKBAXRs0WL/IWD/zTq06QJXebN4/TvvzO3Vy90/wUy1M+vPiEhHUlKWkdo6BtotX5kZ9/k3r11XLkynaysO+h0QXTunPyn5tuy5Vjmz29GTEwzAgPLkJqaxIMHV4iKqv/caf7rvobY+mxpS5a1LfHx7YiLa0ZUVE3Wr3+TDz8sQ+PGwzlzZgPFi1dg8OA9lCwZJzlbyssT2LJlJPv3f0Tlyq/QuvVMfv31azIzH+U/k5n5EE/PwgryH7G0ODIJtUpfaQZrC6WIX7bHpBT6oQR/KZHUlFOMeNjyqTR7lzP7Wd4Ve9sroa6OoB9S9hzLe97eBe+ahXh5Dw+WtWpFl02b2HXpEgCfrF5NYp06rDx8mBO3b/N227b4+PnRbtgwFr/7LmUjI+k3Ywbnb9zg7KpV3Hn0iA8XL2bf/v0cOXOGZ1lZBPv7c+/BAwBiQ0Lo2Ly5smnPntnPUaTDEZOy6PqlRo1IqFSJzjNm0H72bL4bPpxiSuiHg34P2nxLoWObYDjSxKWAFrlqS0zczcGDI7hyZS0+PrF4ekZRqdJ7eHvHcOXKCtLSrlkBfBaSMoxIedRIdaugoJrUqvU6W7fOomPHGYwZE4OHhz+nTu0mNra5Q/XgCMk1AYsMLVeuDXFxTSlVqjbr17/FuHExNGv2DufO7SAoqDSjRm2jdOkqsqJgzZpJrF07lgoVWvPGG8s5eHAJGRkPABUgkJn52C4vtv9LIcJKq+L/kI6hlIi9e38mRGdBTk3Btwvfs5xLuVg4ijzaIqxiHqVCHSjZ4aVcPCR8Y/OhPPOkP8bbm28bNeKFbds4umIFALO+/pqXGzRgzc8/c+DGDQa3akXJsDBaDR7MF8OHE9OlC+9/8QUHT5/m52XLeJqVxaQvv+TgsWMcO3eOtGfPiChenBt3TREwSnh60qNVK2V3QylS+n6ODt526MV69bgZH0/X2bNpO306a0ePxkspXTmEX/y8Wo2Tue51OhOS7OFR+BXx55Eapm1JysApJ0srVlyNq+v73Lu3Fg+PWFxdIwkPH4G3dyz372/gyZPjUsB3IT70+sL9W2yYFh99fCpRq9ab7Nw5gw4dFjB5cjwajRunT28nNtZ6s2ZHdbZ/lQ/yvHnWvFoKOWyYyWTn6urD2LHXcHPzQa2Gb7/ty6FDi+jd+zuqV39ZsR1v3z6HdeuGkpDwFomJHwOwcuXr/PxzwVbTUVGN6dFjT6F37ekkMlGuZH2QHfGzc9LnyrsZFNXkbsuw5agk8KVISply1DdWjk+5NKQEuK3zqjiYviNOVuIySn0EiW1SBS8vNt+6xcwLF/jp7l10ajV5RiMqQG80Eu7nR0pGBmM6dGBUly6g0/Ht3r1sPXGCFaNHoxLt4qMHDEYjLlot569fZ/ySJWw9dIhJffow5KWXKBTn01ENw9HnpepeqR2Zz7Nzc+nx0UdEBAQw3bJyzBG+pGJvSTjh56rdCrlhSn1upXHbUXdCJd09OzuT1avL0qzZegICqlsVxfbccu2ogmwqxx1mz66MVuvGkye3AXB39+Ott34gNLQStvQ8PsjTpwuSvI4Z401WVio6nSeTJl3B0zMQtRrWrh3Kjh1zGDRoOQkJr0qabC31tGPHYubP703Dhr3o3XsxKpWKL78cyL59BftBRUbWYsiQI/nXjugnSgqynG9xUdaKOmF0bGIuxZyFJOy+RpyKpIep1WZeQDqcmL0QY7Z8W0h8LeVzKxVSTmlzEvPRkJVlibAu6aViqSGL84Ozq2shBRlvb/D3Z0dyMjNu3mR/UhLuGg2Zej1qJyfyDAZCfX15lJHBuy++yLhevUCnY92BA6z88UdWTZyIsyh6kMFgQG8w4OLkxMWbN5n81Ves2buX8T17MqJzZzQWLcyRlWcg31nlFGTbduHIZAXIzcuj7+zZFHNz45O33pJ/R4ovJRlqru+0DCdZH2SpsNpS29FLyVBxUZTkqoVUqhz274+jUqWlBAUlFCqKI+4USjI0I+MBn34aj1brzpMnNwFwdfXl9de3ExZWE1t6910LX/8Fi/QWLJDm9cCBz1i/fih5ednExbWgTZuxlCpVB5VKj9Gox9XV1HDkJmQ5Oc/48ss+lCpVn4YNB6DXQ0rKdcaNK1XoecsAY4+kPqaScBfrYVL3pNLIF6ZFFZJiJh0QAJY93qWSEddpPj+OKsPPqyBLLVx5+rTw7lL2dp4ypyvuA/m73FkKJrVSUqwomwW9wdOTzTducPDRI+YcM0UDmNWpEzvOnWNBz55Eh4RIj9zivGwoNy+Pk9ev8/Ynn+Ci0bB12jTcXFxArbZWlu2dP+9Ex1ENUq/nyp07NBg8mITy5Zn6xhtEBQbKp2HOX3B2Jik1lbspKejVauIjIykWFCSNPJnP0zIKAuArKchF3QdFCpixvXfo0EjS0m7TrNlK2aoTFU/2UygJ/JSUC/z2227Cw2uzcuVrhISUo2TJSrRo8UGhz/Y8CvKsWYIk+nvs2FK++24QublZxMU1ITHxA+LjG6DRGNDrc3F3N4XfkgsmkJubzaxZ/QgLq0Ri4jvo9fDkSRK9exfeZn3x4sIy1BaRsj2XU27tKcNSA63UpKWQ7LI9l2IKMKq1+Y864tYqRUq6jtWul/ZmgJaMlLQX8fNKMtRytAToTk7OP89LTzclYf5BgYJsACybZtsqyDowhXiDAgXZ3x/MaxiMfn5svXuXA5mZzPrlFwA+69aNVSdO8EnfvsSHhVnLYanGaPP98vR6fr14kWELFpCbl8fOadMoptUi5OUVKMtyJNUApT5WURFkqTz1em7eu0f9fv2oGRfHlL59KRseXvC8HJ9qNcmpqfz+4AF6Z2fiIiPVdW35AAAgAElEQVTxCggoPFZ5eOTLTqVFepbPLrUwWtzGpYoiNazb/nfx4njS0k5Rt+5GcREKnTuK00n99+jRFa5c2UKZMs349tu2RETUx9OzBC1aTCv0qewpyEX8sv8cunfvHJs3j8bfP4rY2BZMmHCD0aNDCA6OYeHCDrRsOZrmzQfj7KxcxEuXfmTFirfx8irOypUD2bVrOkOHHsbXN4IhQw6h1fry8ce1yM5OpUmT9/6i0v2P/m3k7ORE+1KlaF+1KpMSE9Gq1Wi8vNh+7hw/Xr5sUpCLSFqNhlrlyrF24kTGLVlCQGIiuXl5uLq4ULF0abo2a8bA9u0LI8t/A5UpWZILS5awYNMmqg8cSL9WrRjdtSta4OD581y+cwfBYCAqOBhvT0++O3CAzceOkZGdTXhQEEYgNSODY99+i39ICA8ePSLA3d3uttx/Fd28uZ3Ll7+hU6eT/9F8goPjCA6Ow2DQ4+VVnKSkszRoMPg/ktf9+7+xYcNw/PwiiYtrwowZtxk+vCTBwdF89llXXnjhbTp3Homzs6tiOufPH2bBgrfx8PDjhx+GsmHDR0ydeoSAgDDGjTuEh0cwEyfWJD09hcaNB/xHyvI/+veTk0rFiyVL8mJwMBPatEHj5IQ2OJjt586x59w5k4JcRNKo1dSIjWX1hAlMWLKE4M6dyc3LQ6fVUiEigpfq1mVwmzYmZflvpojixTm/ciWfr1tHnf796dW6NWN79cLV2Zmffv2VS7//jsFoJDI4GH8vL1bv38+mI0d4kp5OREgIKicnHj55wtHvviPEw4OHjx7h5+lZKL7630UPH+7lxo2FNGv2y380Hz+/Mvj5DcXJyYi/fyy3bx8mMXHhc6X1tyDIKpVqIDACCAHOA0MEQTho5x3h888LeE1Kusj48XH4+0eg1+dSt24v7t27QHh4FWrV6sYHH8SxbJlpKiM18xAEgS1b5rB58yxefXUm1au3Y8CAUDIyHjF//kOKFfPPn7jl5WXz9Ok9AgKiiuyyJIUgi8FJKURECi1WMj04jH5IMGdBh5UQNKUk5cwilmtJlFsqM9tMpGA+qRXV4qmvLeohvpZAkA15eQAWDgHysXJni2Im5T8ngSBb3ROdN/7oIypGRDDn1VelQ57JCWaJ+1k5ORgMBlQaDUfPn2fi0qVk5eSw77PPcC9WrHC6jiDIcmYV23NH4dfsbJIePWL4ggVsOWIypceFhlIpKgqjwcD15GRS0tJoW60aLyckUC4qyqQEq9WMWryYFfv2kZWby6PUVAa8/DLzx4zBydOzsNsFWkkAzHJd1NBvSu3/8uXv2bixOx07biI4uE6hKnKEioqSiJ+V++95EOR58woQ5IcPrzFmTGl8fEqgUqmoXbsLT57cIygogubNBzFoUCgbN+Yoxnhev/5Tli2bTN++H9K4cRe6dy/L/fu3+Prre/j6hohkaC737/9OcHBhq5xU2eTqRwoZdiRihZyp1kJOVlJAmsSWNCWvL6XIYVKkhCCLxwg3ncj9Qi7kmlyjdlSGihFjKIgmkZycf55llpuZQJa5DHnmo5ECGWqpXp3oaO7FqHx8TCfBwVCyZMG55Wg59/enzezZlAgJ4fO33pJGkKVIxlKZnZNDXk4OzkYjxy9fZsrKlTxMTeXHmTPxcne3TsPe4FZUy5wUj7bnZr4fPH7Mu3Pnsn7fPlQqFWVDQ6lcpgwqQeB6UhL3nzyhdc2avNyoERWio/Nl6MQlS/h882byDAYePn5Mz86dWTRtmik2v7neHA0BpxQbWYZt2Xu//76PffteolGj1YSENJKtEin5p/SMo6iy3Kf6x4V5U6lULwPzgIHAT+bjDpVKFScIwm1771sKGxkZy7Rpl/j881fx9Azg1q1jPH58h/Pnv6dYsWIYjQaSk08TEVEQjigvL5dnz56wefNs9u37mmLFfJkz5ygBAaEcOrQJQdDz9dcPcXMzKT0F7VeHj49pcV529jN0Ovd8XqR4E5Occmu5diSsidwgWWCWNIsks7nPCWNhU6CEm4RexgPCcu2oedC2XGLne53OyXxuWnCl1kko9EouIeJRRry6wLaixc+JF7NYnpdQTJ0teYgmifm15MhILBW0WqQgrzx9mn2XLjG0U6eCkU5upJcjUb24inhvUqsW9atWpdU77/Dlli28/dprhconm5dUQ7WXvyODrvk6pEQJVowdy5P0dIxZWfi5uUk+B4BlJz61mg+7daNbQgKePj4IgkDzUaPYsXMnrZs3L9QGtDodvuY697AJaSTntqlkjZZSkLOzc9m3by4//DCLPn02EhZWR7EabKvMUbJnybf9/4+AXRaZo1ZDaGgpZs++ysKFPdDp3Ll79xxJSVc5eXIz7u5eqNVarl//mdjYWiJdJI/U1Eds2PAZW7cuxs3Ng0WLfqJEiSgOHdpFaupDNm26h7d3SD7vJv61+PiYlGNHZaijTbkoft4goQyLK1iicsUggtzcXqp9FTVymFot/Xz+giUPEx86nSda29h/SnZtOQXZNk6hWIaKZaflmYKBtHAhHCAnRC5sCv6yYuBh/eXLbDt9mjUvv2y6J4UqSXUWceWLyqfz8EBn/q9hzZrUrVqVdu+/z6c7dvBez57WDDsqQx2VqzKuFYWOej2BHh4smzqVeenp5GVn42/ZYVDqeZEM/aBrVzrUq4e7tzdqZ2daDBnCxg0b6NS+ff47bub6Vvu75RdNamhTkqGO4iW5uXpOnJjPTz9NpWPH1ZQoUaAcK8lJR2WolGx05F1HZehfjiCrVKpjwBlBEPqI7l0B1gqCIOvDoFKphMWLC/vPPXv2lC+/fINnz55QuXJrDh78mjt3LmAw5FG7djvGjNmQ//zo0S04e/YAfn4hTJ++ndDQ6HzzgyAINGzoREhIFEOGLGTLls8ICYnCyyuINWtmUK9eJzp2HMbrr5ehZs1WTJ26LZ8HpT6jhFzY62P2Zk9FIXGjUUI4nmeh7/NOsuXOxddWC2ikhLsS+iHhP2f1ntIiPQXF12qhiS2C7O+P4O7OV3v30uvjj/nmvfd4pU2bgrQdUVaVEFwbOnrmDLVffZVLO3ZQNirKvuYAkhMM8QTKQlaKhAxaDChrCfbQLgvZ1IfBYEDdoQOXFy8munRpxx34MaHLtuN8URQYQRDYu3cVy5aNpkSJGHr1mk9QUJQSaC5bLEf6kLj4Utdyfeh5EOTPPxcKNY2srHQWLepLSspNEhK6sWfPUm7fPoden0fVqs2YMWNX/vPvvdeOY8e+x8cnkLlztxIVFYezs8nrVBAEqlVzwsvLl48+Ws/KlfMICYnExyeQ1as/pkaNZvTrN4kXXwyjSpUEFi360WFlWK4pq9UyE24L/YlQv3jRnSNNX24JhlyWcoCJoyCKVBEs14UseWIZKra0WRBjy9ESkvLOnfxzISkJMCHIFkDRslhP7IMs9j0GcFeprFFiMKHHFgRZfCxZku/27qXrlCksHDOGfn36FK4QqXUc1jNc6zJLfRjg10uXqPLKK5xavZqKZcvaH9Dl/lP6CGLexNfPK1ftNShz/toWLTi+aBGVKlSQjghgPlp23rO3jsMRwwWYZMHhwxtYu3YUvr5hvPTSpwQFRSvqFXJggxIAYTsHsq0Gm+oo9Bn/UQiySqXSAlWBmTZ/7QLqPE+a7u7evPPOaoYOjcNo1DN79il++uk75szpSp06Ha2ePXfuICtW3MXHxweNxrourlw5hUajJSgonJEjC4dVSkh4CYPB9DWOHduOwWDg+vUznD9/CFdXN2rUaEFISInnKcL/6L+Mjv/2G70+/phtU6fSqmbhlbN/JiWbB7eh06ZRv1o1mtWvT6W4OJz/CMz4D6Ab5jB3EUFBdp78cyk3N4e5c3tz9eop3nxzGeXKJRRZx/q3katrMYYMWcGIEZVJS0vh449/4ciRTUyZ0p6EBGsZeurUQdasuULx4iUK+YffvHkZjUZLqVLx9O3bsFA+TZu+jNFoUtROnjyA0Wjk0qUznD59GBcXLXXqNCfsOfxM/0f/fXT+5k26TpnCxrlzSWwkb5L/M+iheSOTd+fMIaFqVZrXq0fl2Fj+CWs7/gjdefiQPL2e6L+4T+n1eSxdOpDLl3+iW7dPiY1t+q+VoX91C/DHNMG8b3P/PtDU9mGVStUX6Gu5tgXbCmYFzkyatJtx45pTokQoTZt2Y/36ySxb9i7167fGw8Pk75SQ0J6PPurKvHk70GoLhHtWViYffvgKL700ACcnZ06d2mfFx6+/GtBqnRAEgfj46nTpMoArV3YwaFBbADw9vVm/fiY//HCegwd3sn//ToKCAnnxxU6UKhWNq6vKil+HfYalGpX4nhLsZCYLMig2PYgn27YTbyVytJGLXSwcRcPlzchOqNUWE7rp6BYs4dpgD6q3TBktaIk4rrE4cymk0vK8bYgif//C9zw86DN+PK+3a0erjh0L8+GIWU6qXcggBm1atWKXry/zv/mG92bN4ustW0h+8ICX2rVjyrhx+Pj4oLKY58z55Oqd0DvgGylyOMn/BpajVmcs7FMj9m0Q8680zZeBEzYePkzD+Hi0BoN0zGqx7VnseoPJ/UJrPvcM1uWX2R6CnJJynw8/HEBeXg6rVh1Do3ErlKUUciKHINuLnGFbBXJVpARUPQ9Jy1AnJk7cwdixLxASEkrLlr3ZtKkuCxcOo2nTjnh4mNp306YdmDixOwsX7kan0+SnkZuby5gxXWjfvge+voGcPHnAKs9Ll3JxdTU9X6NGPdq168a1a/vo0sUk9v39A/jii4lcvnyLAwf2sG3bFoIC/ejYoQOxkZGoLLulZCi4Eshd26sIOdTY5n8ntTp/Mxy1h5Ps42KyaZqS319JDorbl+W57GzltiCVvsUNz+Lq5uHhhpsowkE+k0pQvflcZX7GPTkZXZbJC9mSpdgH2YIg5/sbiyJWWPkdR0QUutfnzTfp3KoVia++arpn5jVXLwqdZ+MPa2LTLKd02gI3FCVEFmjSvDk/LF/OolWrGDN/Pt/t3s2dpCQ6tm7NtA8+wNfHByeLm5iofqTW7yg3PYsMLeBVbU7OybItu3hQFpOtDJVqNOKjWs3mH3+kRtmyuOblWctQifpwM5fLzd9UZ97e0vLSnsX56dMUZs16i/T0hyxadAKNxkO2jpRkoz03OEctc5aqel7Z+Ze6WKhUquLAXSBBvChPpVKNA7oKghCj8K6wYoUgWVjLvatXf2X06Oa8//5KatRowpQp3Tl8eCsLFuwhNrYaTk45NG4cTK1aTYiKikaj0VKzZgJ5ebmMHdufQ4euEh6uoVKlapw69TMAFy8mExgYxM8/H2P27MkEBQWzfPmXAHzwwSQmTfogn8eWLVtx8+YNevXsye83b7Ju4/+xd95hUhTNH//M3t7ecokDDjhykCBRomQRFFCCKCpRFCWJiAKKBAVRVDC8ioIBBBRFwRwQFVRAcs45R8lwwHFc2Lv5/bE7u72zPb2ziK/6/qjnuWf2ema6q3u6q79dVV39LZfS07m1SRNa33ILTW+8ketKlw76qmdPn6ZA7doAHFi0iFLFJFpomwI86BlJmmxAW5lMwk3u4Ux6VmxYkR3QIJpHDNmXGO9bbKhCFInuF5Iwb0FkByBbbMgzrtWbN2fz1q0c3L3bqxFTLFysSBoyz/hfIh1ycnLQNA2Hy8XRY8co7jvtL1++fFSvXp2oqChuuukWHnqoL3FxBSyFlPm3nTWHP55sRnqAT9mOOTFekFgnc6HAhfR0Go4axW01azKuRw+cRqxTmZ3ZTkwvyeSf63T5iz116hwVKhSnS5cHeO65l8mTJyGENVnTq8zoVhOKHdAsI/M3MNzOI3GxmD5dt1xLut1w4MBWBg++mREjptO4cWvGjevJb799wTvv/ETNmo1wOLJo3rwUNWrUp1y5irhcMdSr1wi3Ow+9e9/N1q0nKFrUyQ031Gb9+tUA7NhxkBIlSrJ58zqee24UZcqU5p133gbguZEjeXbMGD+PbW+7jZ27dtGza1eOHz/Ol3PmcP7iRW6pV482N91E05o1KVeyZAAwezykpaeT4NMy7v7sM8oZQMuqAWUNqlq4ytJMnV+2AJOFWjdZ922zKLsnI6sFmEqGGqIr0ZkeujlPvJrTxAC64lg2CjEXIAJkEShLQHOz9u1ZuHAhK1bsoHz5ilLxJ5Id+eRyCm4mEoWDYd1wuFwcO36colWq+NhP8svQxo2b0qdPPxITC4V1M7DDo6w7+cGyzN8hguDE6ZmZNBk+nAYVK/JG//5EX4VYica8JevX58+nUbt2MVq3vpenn36NvHmTbIFb2bcN5wYaRm8UQlbjKpyb2n8bILvwui510XX9CyH9baCqrutNFe/qc+cGB7mXCY9Nm35nxIh76dp1EPfd9xgDBrSlT5+naNr0dtxu2Lx5LVu2rGHbtrW43XmYPftLjh37g3vu6cSMGTNp374Nc+f+5M+3Qf36LPv9d36ZO5eWd9zB/V278uuCBfxx7BiNGzSgTs2ajH/nHf/zLw4dykOdO5OSPz8AJ44c4ccFC5i3dCkLV6+m5vXX8+Gzz1Iof37weDh84gSvzpjBhM8/B+DUnDnExceTx+xfZWd0RagREVfjMqBsx91JJFXx4v8yAa5aVcrKMeNXMciEK+OC94cImM0+y3ZP0pMVIAp+4TALgD/+OEOdOtfzwAP9GDz4uRAztF0NoTktSMNgY/l8KTOTPPnycfLkSTZs2012djaff/458+b9yLBh47jhhsaUKnUdOTmarWztTEDx8cJOexVADifcfb9PX7hAlzfeICY6mq+GD/fGUA0HYFT3LHZ46bpO1z59iHG5+HDSpNBKy/6/wjEUDjSbmkBKBht33OG9RgKQ58xRKxkAtm1bzhNP3EmnTo/Qq9cgBg/uQseOD3HbbXfjdsPWrRvZtGkVmzevJjY2lh9++IbDhw/RqtXt/Pjjj9x77z18/fVX/nLLX3cdu9atY9GiRTRt144enTrx6+LFHPnjD6pXqkS7W27hxYkT/c+P6tePPvfeS7ECBQA4dewYPy1ZwtyVK1m4bh2VSpXioyefpGiBAuDxcOT4cSbMmcMrX3/tff6jj8gTE0OcOcpBpP3FTh+SgAzDn1P81rJYspEsiqzIDgCx0lrLtlkYhrBEZ7r3hwiYzXs7Tp8OHdMi0+YCxD0bQpQK43e6MxGAw4cv0LhxRdq1607//i+jaZpSJoE9322DDZdTcjCMhNLT03EnJXH69GnWb9xGdnY2X375NXPmfMPQoS9RvXpTSpa8jtzcwPe+UoAsOxTMhQCUzUGJVQJF+ODn0tLo/tZbZHo8fP/ss+TxxdEPaTRVmh2Z63bTs39/0tLS+Oyzz/x1NivlzGyKVxnwtUpTabLtkMF2x47e6z8CIPsYWQls1HW9j5C2C/gq3CY9OwDZ6YSDB3cyadIz7NmziRMnjtC8eTtuvPFmunR5AKczmpMnD1OuXCkcDge67t2RGxMThcvl4NVXx/HMM8N54IEeTJ/+IQB6ZqZyBjt25Aj1W7Xivrvv5vCRI8z+9VfefeEFOt9xR9AXzr58mf5jx/LTkiXcXKsWM376KSjLp3v0YOPu3fywdCkHvv2WUkbs3GsAOSSPfypA3rfvKJUqFWft2oOkpIT6fv23ALLYSFk+015GBqxatZyXXnqejRvX0qlTLwYOfMlWtn8HQAbI9ni47YUXaFWrFk916PCXAOTFy5fTrW9fNi1eTJIPlAU9J/v/fxggO51w+PBeJk8exZYtKzlz5gSNG7ekQYPmdOvWg5gYN8ePH6J8+VK+Tc4ecnNzcbuduFwOJkx4i4EDH6f7fffx8YwZAOjnzyuR28njx2l47710aNmSU6dP8938+fzniSd48M47gxrIc+kSg999ly9//51batRgxvz5QXV8on17jp49y6zFi9k7aRJlDSBmrqyq8qq0awD5LwfI+/adplq1gvzwww6KFKkYVBdzHQz6KwCymHGWJ7CJbf36NYwdO5oNG1bTpk0Xhg4d72+CfxpABq91sf0rr1CnQgVGd+v2lwDkNdu20faee9i6fj0FhH0j1wByhOQL8/Yx3vBuS4GHgZ5AFV3XDyre0zdu1C2xnyztm29m8Oij3UPyioqKIiEhgSFPPsmNtWpxU5MmuHJzyc3KIjc3l61bt1L1+uu5cO4cTqeTBPGwcoOE/48eP07xRo3Y8sMPVClThlemTmXip59y8OefvaZAjzf+4sLVq4l2Onnzs8+YvWwZvVq3Zt3u3TSpVo1RXbqQPzGRdbt3U/vRR4l2OskbG8sttWrxYp8+XGecqhNuwjeuNgG1MfDtAuRwgsr8fzgBb843nJ+omcT5SSbwjavL4xP4ooCxA5CFqwE0ZZERjLT09Ez697+NI0f2MGHCQooXvy7sJ5PJphD3BXEXeoQA2TjtSwx7un37Lrp1a8Jvvx1H0zRL07+N7JWHDToy0iMT7pJZZuGGDbR56SWOTJ5MPiNjgwnxKqar0kwddPWWLdzYrRtbv/uOyuXKyfOUNYA5X4mZUjxpzVxlVR+3I+hr1fJeIwHIhgy10zxOJ/z445c8+OC9IXlFRUURFxfHE4MHU79mTZo2aUJMVBS5WVnous7WLVuoVKECly5cQMvJIW9iohK5nTp7lkLNmrF2xgxqlS/PpK+/Zujbb3P2p59w5HoBTVZ2NgtXr0bTND6YN4+ZixbRq1kz1h84QL3rruO5e+4hOSGBrUeOUHXoUOJiYvDk5HBnnTo8d/fdVDQ2K/3FANm/aPY4Qrq8lTv9lZIMZNhx9RFJZFvEsuI1JQUcqWe9/4jHrakAssxNzZehoVAQPeOMrM6f9zB8eDv27dvAmDHzKVGiUlDW5s8i8xCwSjPe87tbGGTxEYzxa5bzqalw4MBh7rmnOj/8cAqn0xmRaDauMiWDWYbGOrOsjw21KVCW79rFLWPGcOC99yhkKAFUfd382/yc6ZnN+/ZR/a67WPv119S64YbweZnLNzdIGAWESikRyTe48Ubv9R8DkH3MPAI8hfegkC3AIF3XF4V5Rz9/PjxANoemOnjwIJ9++imbtmwhLS2NZStXkpGZSXp6elD+Xdq0YeYcb+g2Z1QUHp+PW68OHahbpQqPvPQSOTk5jH/qKR7v1k1dP18HyRMTw8DOnbmpenW6jB5NSr58xOXJw+nUVAolJZEvPp53Hn2U64oWDQJplzMz2X/8OF8vXcrI6dP9+W6bPp1K4gQeiUbEwmfTLABk2OVqAGQV3hDzlU0odgCFTNjIhI5sgWzmRbyqfKFUg/H7719n4cLpvPzyKvLkifGXbebDrnD3a5AjkcIm9YSh2UpNhdWrN9C//518991+P0BWLZJsZG8Z0jTWKfGpM642V2aNRoyg96230qN582AmxKs5PRwJz+W5/XY2T5lCOWMhapdknT2cZsYGkFYp1o0sE70Kt4gAsiFDZU0mjQ/s8XDk6FE+nTmTjVu2cOHCBVasWUPapUtkmDrHQ3ffzbSvvK4VcXnycMm3gatzy5a0atCAh8eOJTMrixf79WOEOeasmVdf9JcYl4sBHTrQrEoVeo8fjzs6muTERI6dPUux/PlxO5289+CDVBRlKHA5K4sjZ88ya8UKRn3zjT993YsvUtOQoWLlr1TJoBq0kvBZVgo/M4lp4WSn+SqToXaMN1aLXpBvtxAjLYo8WoEXmTFJFQVy0aJ3WbjwTZ55Zh2xsdYxe63kqizN4NXgVxrKUiTfg+bvmJoKW7fuonfvm5g16w8cDq8PunmbhZX23uDHrgwN2msjMhJBPLYWY8dyV506PNKiRTAjdgGyrBICFbr7bua++io1K1e2l4csTxVuCYNlwLSJ08Y06fOE/WcB5CshTdN0/cwZS1OsckYxXS+eP8+p06e5nJnJhu3bqVKmDJ/MncvW/fv5aeVKAKqWKUPTGjXYd+wYP61YAUDXFi34z6BBpMhWYAIdPn4cj8dDdHQ0o99+m10HD5IQG8tHzzxDvoQEHnn1VWYvW8YfvqXz0M6dGde7NyHkdHrzueUWL09ly7JqypRgPyIZH+G0H8JVpuEyrn8WINsFyiqALJ7yo5IJYh52m8PMm1XXkv1vVS+xrMmT76Bs2Xrcc8/TgFzLLTtrRHwuCBgb1wjNg+ZZb/HSjXTrdje9ez/B3Xf3B6wnL3O/kNU9nHD3bwIyhLxsdgyjEWn3/PM0vP56hht+BeH6v0Hh0IePBkyezNEzZ/hy6NDA0ayq9lUNBFlnEJ+RaSEtBL7l5AV+6R4JQNZPnJDzbyU3LWRo2oULnDx1iszsbNZt307FEiX4fvFilm/bxoING8jJzaVSyZI0rVGDk6mpfL3Iq//o2KwZ/3nkEYoXKhTaLsL16MmTZPqOVR89eTI7DhwgT0wM04cMoVC+fAyaMIHPFy/m2FmvVrNPixZM6tVLWm9d13F07gxA2UKF2Pzaa8Qamz4typem2QXIwkDOdXuBnd3DFlRkFyjLxrHqpDTzcBPLEqsrA5yqIafS/KnqLA6Rb7/tRIEC5WnX7gVALi+t0lQaZNuRpHwVM1vhVq7cQq9eHbj77t7ceecQwPr0OdXcYeZN8NoL2tsYIkNVx4ZagOZOb75JhZQUxtwdHLox7ARpk5768EO2HjrEd08/jTMqSv6Qzfa2vVBVKSBk8tVMYWRo5K3wP0AJcXEk+ARkFZ/ZrUZZ70l5F9PTmb10KWWLFqV+lSrMWriQu5o25cHWrXGaJryVmzdTv0cP6lSpwtAHH6RQ/vykZ2TQskED/yT73ogRRNerR7smTSiQN6837Ykn6Ny8Ocu3bmX8F19w9uJFS16dTieHv/iC+Rs38sALL7Bq2zaa1qz5l7TLNbq61LXrBMaMqUP9+ndSvHiVv5sdANavX89dd93G6NETuOOOziFR2f6p9Mw993DHuHEBgHyV6cX77qP8ww+z8+hRKpUoIX1m9x9/UK5IkZCNl23IPqoAACAASURBVP8fKT42lnhfxJ1KvugDdXya2UuXL/PDihUUS06mcc2afPX779xauza92rYl2jRRbdi9m5q9elG5dGlG9+xJ4YIFSUtPp1X9+v4DSN598klibr6ZRtWqUdg3oY3v04d7GjViyebNvP3jj1wyThOTkKZpHH33XZbu3EnH8eNZvH07rXxRXq7RP5tat36DiRNrUKPGXZQoUfvvZgeAHTu20blzMwYNeo077njAj1X/6TSyfXvqP/98KEC+SvRs585c/8gjbNy/n9pmK42P9hw7RtnChQNKiH84/bsAshFexkxWmg4rLYnCNp4AdK1b1/tPWhqd69cPfse3Ohk1dSovfPABAEUKFmTqt9+ycvNmzp0/z7zp02nRuDEAM3/5hbwJCfyyahUbjx71ntQD3NysGTc3acLwhx8O5cM0iRSPj+f+smW5/667FI0jqadVunB1+Muy12FlCrFINcjm52XaX9mmFnFRLHPJsmO6FMuMhKwWrRKlkfC7FK1bv8z48R0ZOnQ5BQsm+p+XfW4xr5BQPyonK6uVuOn+0qVL6fjQQ7wzcQJt7+gcVLaYjahJstIGie+qhlwwOXz18/oGOJzO0LjJIvky06OieP/XX6ntW8SGkErrYVObnOhwULpgQc6dPQsFC4a089Ldu2k8bhyvdOjAkFatwmtCzGWrBoVMg6xS0xlXwz4YCRkbrGS8q2So3XtOJ3FAJ2MRn5rK3b4wlv53fPy/NHMmo3wytFSRInzw44+s2bGDU+fO8e2ECbT3udN8M28eMS4Xa3buZMX+/dSvVg3cbho3akTjevUYdt991nXyUdH4eO4tWRK9RQt72nPxt0p4yUh43tBUut2h8tWu5liSrSVlZMg1pmYLnahpVh0uam4C1W+DrOolk3kyLWrwfuiiNGv2Jh9/3JmHH16J05lfuSFPJoeN5/x+x1bzv+JDOHwF7Ni2iXs6duTFF1+jdesHQuprtrSJaebsnc7APYN/q+cETgBINBpI7JMKWapnZzNpwQLqlikTroDw6TImPR7igHKFC3Pu9OnAJkyhcdYeOECdMWN4rk0bRrVuHX7+MvNgx2oo88GRaZUNCiND/10A2WqpZgWGVcJdfM5Mpsnp7IUL3Dt2LIs3beLGypVpXqcOY6ZNY8mnn9Kodm3/8+1792bX/v00v/128Gk/Tly6RMf27XE6nbTq35+pr71Gm1tvtebbiiT1W7luHYULFAicNiZKM5VpOULJHA53qPYKmp+3mmPMAEwEX2aALFZP5YoRzrRnV4AbdVQJcvPVoBtueIiVKyfx88+v0L37C9L8Q/yNxXjCdgCyFRmF+N4d/uyzDO3dm47Nm+ONtgjO5NigR8VsZQsX8bvIwLNZVqs8BOLjY9XLMl/GsxcvZtWePSx7+eXws7Mq3SJ/g/LHx3Py3LlA5XzttvXQIRqPG8djTZrw+rx5PFmrVlAc3ohWW7IBoALIMkdP41q9uv1yDVKpu64GQDbI5Hpw/tIlurzxBr+uX0/N8uVp17AhI6dO5bfJk2ler57/+a5DhrBiwwZat2sHvgNuTmRmcmfr1qQUKkTbIUN4f9w47jJkqN3BbVGHNbt2kS86musKFpQ/K/4Wv52q7hJh5/K3hyMki3BkRykhsirKRIPMQEwGmmUb5lRiR9dz8R4uLZL5f5GiMA6ijo42FsuhstPYGGjwWaZMF7ZsmcT8+S9w332vSwGyzMUiKO4xQIai74ok+5a+PEY9/TSP9OjBww918R+vLX5uO91OVoxMhopTQOjc6m2/WKPCVuTL+Lc1a5i3dSurnn9eLR/tLgbNTPrISobuO3qUOi+9xOMNG/L6r78ysmbNYBkqXs3l2OUXrCdqWaexQf8ugGxGTwaptCCRkKmxcx0ONhw6RJMBA2hasyaLJ01i3YEDPP/uu4zo359GPt9gY1TuOniQPPHxfLXgd9q3vxtN0zifnYvujuOJYU8Tk5SPtg88QE52ttfEEG6SEeskQSPtHnuMU+fOkb12rdf9Q5FH+uXLLF++nCIFC1K5atVAPX3PGicQ2Wkec1NZ9T2n02LjT0Yon8YJVa54t+/dQHgY47PLDs0TqyzTiIA3PTs721eSIdZyhd8G5WAI8AAZ7RKNpnl5EwW6bDFuHp9dukzi/ffv4sSJ9XTrNoyqVRvjdmshdfG3b4bH2kFQpt41M2B13+OhevHiQeGZjNOmCiUnEzhtK8C/8dtoS5lcDKdFMrMe3He8AF0FlD+cP5/+d91FfMGCwTO2DDmomJKRj9G0jAz2HD9OjKaBx0NuVhaz165l7vbtfL52LW/feSdl8+ThrcWL2b53L5WNzmilNrIi2YpBTDPP9Glp1ruNroSM2dbOpHMlZKqbHhXFlmPHaDx4MPWqVGH+W2+x89gxnp00iUE9etC8TRvv87467j12DHdcHJ8tXsq993ZB0zTOZmvgjuWxYaNwJualQ9++ZKWlER0dLe9gVn765lV1Whr3v/oq2w8dInPWLFxGfsazpu94OSuLFfv3UyAhgeqGNcMsnKzIl5f3lMcI2lfKv2Q+MOSn0+kH487kgEw3r7dPnw6VoTJfZV2/ZORAQF6KstT4nWO6imTI1GgMeZqdHQfAuXNxpKXFhVRF9MkFaNPmbWbObM/EiVvo1Gk4VaveTHx8QIaah4aLrMCpi3Y309ggPTub6qVKwfHjftlZNCXJV7bDX75hqJEpeFX7OUSSdUXzdwQHbtEiZy7URx8uWkS/1q3JW6iQmgFZHirmhHuX09PZdewYMcbYz85mzrp1zNu5k0/XreP1Vq2omZTEm8uWsXb7duoYu4xVYzWcTJfxLdtpKtvoY4P+fQBZVrFwjWhn6SbpED1ee42Pf/qJfImJ/OiL51kvPp5+jz4K8fEhGzB+/W0zP/zwLaNHj2H48Kd56KGBfPDBB7z55qdER5dgyJDXmTv3V96cMJ1u3XridLoIHOHrK1oAJUEbCSQAaf2331K8aVM27tpFbXHnqKl+X82fz0MvvMCFS5d4f9QoKl9/fSAvX2GOeKePjwBIsjOHSiMuqEKSWQknE/IyjkEVj7w02lkWlUIk8/PZ2Rl4BTzAZd81m4DAVwl14+pG170arXPnDIEeLVX8mefKEiVqMHLkdrZsmc4bbzyEy+WmX7+RtGrVMaidg763WSKGW/iF6fe6rrPr4EHKJCV5Zz+J1M7va/P40l7Bdfp0qKyxGyUvEisBmICyKZOlW7fy5pNPepmw0FxcKW07fJj3f/2Vz5cupX3t2txWuTJ4PExdsICh33zDkzffzLIePahQoABDfXHLK7hcwSeIReLbE1zpQJrx2zzOxc50hZN6EJkXFnY1RnY0yCL56tN/4kTe/eYbnE4nc2fORNM0GsfH0/PRRyEpKSR04hdfLmPOnNm8/PKLjBgxku7dBzFjxvuMGvUuaWkpPPTQWH7+eQEvvTaNBx8cgNvt8vedeJ9V1+HJsheSxePh93feoVDbtqw+cIBGlSpZ1u/7jRvp/fHHnLx4kfEdO1LdMM2KPlN2tJIy7WQ4LaZdGWrk6eMpIENjQ5QH4SJQGOcDBOTmJQKyUwWaVbLU7fsT883G0F2kpsb5+A2tcvHiVejffxuHD89gypRH0DSNPn1G0Lr1fUHzgT8Oe1qGtZIhknFkenbXnj2UTUiQxtbPn5zsl52i3DS08uZDB8XPqJpPZd9HlKXG7/h4nwyVCOKl27czsmdPr3peFmpDBZANkskHt5tdhw8z+bvv+GzRIm6tWpUOdeoA8Ony5TwyaxZDmjRhcbduVEpO5vlffwWgekxMaINEovyx4k2cgFUL5nALWh/9Ozyl/wZasnkzn//2G++OGsX22bNtvRMdHU27dvfy889rGTnyDZYtm0/Xrn2pW7eR/5mHHx7CjBnvc+nSJUVO9qhYSgr6zp3B4NhEOTk53DN8OBcuXWLdrFn0+osc9K+RmqKj3bRo0ZcPP9xJz55jefnlx/jPf578r5X/84oVJMbGUlII4v5voXIlSvDFb79d1TyzPR7Gfv45TUeNIjFPHuYNG8Y7Dz7o34C36sABht9yCyNuvZUKvqg18w8fZk7r1jj/JRtM/m5atWMHH/74IxOGDePgTz/Z2tzodDpp1eouvv56JSNHvsu6dYtp06Yr9evf4n+mZ88hfP75VNLSrDc326WC+fKhz53rBccWpOs67d95h5MXL7L0qad4/JZbLJ+9Rn8dOZ0umjR5iPfe20afPuN5662hjBvX/79W/u9r1+LJyaFCydADoP7pdF2JEny5cOFVzTMnJ4f/fP45jR5/HLfLxZyhQ5nWr19Ahh48yBONG/NMs2ZU8vnN/HbkCF/cdBMuqygX/zD6d2mQDZKpqVRpZpKsTo6cOcOuw4eZvXAhe44eZdm6dXw+aRJ3dOjgfcC3nBM1Hmm+lWFoaDQnFSq05umnW3vzPhJgp2rV9iQkfEnNmqXo2vUxBgx4mqioKOkK0tDmut0uXD4Nb25uLkNHjaJ1kyY0q23a1SvRMEQBp7//Hj0qiuTk5GAnJ0m7GdoYmQVbJJnyKyQkmai1satBNjLzrXLj4xP9ZjZZ2CLjXmqq9crbq6EwNBuGy4dd86BLci/KV81opa+erOq5uQ7q1m3L1KlL6du3GWPGvCYpk9D+bGTidsvNT+b3hDbOycxk0nff0aNlS6/fl7jjX9Qk+xrV5WvUosnJJCUFAvqLVyvFqR1FhEEypZtLYhKYMWECddq2pV2rVpQ3AH4YlyJpYT7SdZ3GgweTN08elr/0EuWKFAmpTMNSpfhk1SqGNGgAGRksP3qU0+nptEpICI2RFYmGykqDLLpsmPOwo8mxSzKVlXGVfTxzmQpz6B8nT7Lr8GF+WLiQXYcOsWztWqZPnMi9XbsChFjc0k7L9w14mzGKwoVb0q9fSzwe2LkzwEZKyu3kzz+T+vVL06FDPx55ZDROp1PY2OUiPt47bmOTBW2SsIlp+Kuv0qxqVVo2aGDtJuOrl5aZydmxY8nOyaFQnjzBTqHhNOpmjZVZ/lo9L+HDlgZZsjstMdlNUlLA5xeCw4nJQqNdvCgDMIbsNGRhFgFNsFmTLFK06T0Idrvwao7tRrKMjta48caWfPrpajp2vAGn8+2AJTF0Mo7MwmMm37O56em8N2sWD7RogSM9HS5cCLXCpaX5ZWdJ3ya1pCRX0BwlPi4LASfOp+IQtbLMie8HLHMuPx/GCx9OnEitVq24o21bqvmizyhV2bLCTP+3GDSIHI+HRW+8QaXChQP5+eaXhmXL8tavvzKqeXPIyGDjqVPsOX+eO/Llsz5hVWXtl/Fhbhi3O5Cf0QYyWWpThv77ALI446p2Karsvb7/L1y4wCdffsk3c+awduNGSpcqRctbbuGh9u15v0ED8icX5YJhrjeBYbvB10Mpkaee+o6jR3fTp08FsrIcdO/+NHnyhPpTiXNmfLzP9cHt5rUJE3htwgTqVq/O7Pffp7AZVJgEaIG4uGCmZA6kvjxku65VLktut8mlwnyNFCCb7jmczoAJVXLqs/ENDOwvY8PjcZOdbQbBOcgBsZEWfoUrA8OyKsvkUFJSCqmpp4KeN9rcJYJgg1ThL8IwN3HWLM5cuMDATp0CwFLGuFlgpab6zbTGtWhK4NAR2eJARla4yzI8penBMpUr81S/fvQdM4YfJ03CbcQBv8KJLzc3l73HjjH5kUcoJ4lYkZqezvDZsxnZuLF/UI9fs4aBlSoRlWVaBIqCQAZkZHUzu4mI31s2Y8oa7s+SDCCbBY9Mrork8ZCWlsYnn33G97Nns3zFCkqWLEmLFi3pcmsb3nivPvnyFeWQaeOXLJ65ar0RynYsXbp8SYsW+xk9+jpSU7Po3v1l8uXzytDgWLIGMIwlNilQhwkffcS49HSqVqjA3Ndfp6jZxUVcgAH5YmPVbg9WZH5OtoFCfFYFhlUy1My/UQffPSNyjHjIh3lTXGpqIC3DdzDGxYu+uYMcAiDYUBpkE6pcMO05CSGZMiLHsnqqNUfRoimkpp7B4cj1K5PwEPqCmUzf1pIERqZ8/z37/viDyf36BSZ6M6iUdOjE5GQSS3sb+EJa8GEjYpx5M3vmq5UMtZoCjCOejegbxStU4JnBg+n7/PP8+uGHxObJo/bJDqMh03WdXYcPM65PHypdd13wws/pJC0jgyHffMNjvgN/AN5Yt45HK1XClZsLuZLjvsXBL/KhIplsVLnhquSZLHtbT/3TSCXcJWnm88CN/nBXzy7Mnz+P//znPT6YMQ9Ni/bfz/LAgQPWoEsmyMMtgMRvGRNTnpdf3sLQoVWZM2c6U6fuBoL9a0Xlg/FufLybS5cuM3r4UF596y1enTKF1wYODG0jWccygyJRUJgcQ53u2JBmttIQKhvJDB6sZj2r1arHI/W5l2mVVYq806e9gj472wC+LgKaDVGTbAbI4jWwYc+KbVlVRSxl1OXkyeMkJRUOUkYZlJQUiyvZNOHZXUl7POi6zrKlS1m1bBmrN27k5wUL+G7SJGLF7eFWKN7MsOi0CAH/xvj4wA7qZEHo+PgwjzkrtkMC9nvkLz352GMsWLmSt2bO5KmHHw5ufDugQujrUVFRPNa+PSM/+YQOkpji6w4fJiEmhkd8vnQnL1xg3sGDTK5ZE4wTOMV2k62EVJVXzW5m8Cx2GhVytEuqVYxJpZiFK4wSzsWjjz7C7NmfMXr0RF5+5VscjsDJnOfPw4kT8nFgXM1p4Vy6g2VSGQYN2sXrr5dnwYKPmTDhmD+vANDzXr0H1nh5S0xK4uyJE4wZNYoX3niDMR9/zLuPPRZamAhqjf9VE7asH8omfDv9VgZeVP1KZQmIj8edlGj8BOQn44lKhkBR3nwvG+7HQLBMNGSoIRvNG59FcgnP5RHyCFZGqKosDrejR4+TlJRMZqbm5ztW7CCy76ci4b6u66zcvJkV69axdudOZi9ZwpfPPkuC70Q/24sZYQ5M9DV+YrK3wXNTXMqhrFLmhmx+FygXR+h9p5NH+/dn/vLlvPLRR4weOlTdx8y/Tf9rwBPduzNiyhTuM2LTC7J2yx9/oAODmzYFh4NUj4dv9+5lT8eOoeHoZN8lUn9xcUyZFy7iQj/Cjc7/r53pDhzYx5Qps+jRo693R/R/mYoXr8LMmZfJyLjI+PE9uXzZ3qkNbrebV8aMIXvvXl59+um/mMtr9FfQvn0bKVPmCsJ0KejYsWMMeOIJylapQq8BA9h78CBVKlRg1ddf08SI7f0vpaioKG5v3pwDhw//6bxOpaaycufO0NPUfFS/TBnOpKdz5MIFAD7cvp22pUuT1xU+0sv/N9q7dydjx06he/f+uP6G9ilQoByvv56FwxHNpEndSU8/b+s9l8vFmGHDyD56lHdGjvyLubxGfwXt2bOJcuWqX9WDe06eOcOgceMod/vt3D9qFLsOH6ZiyZIsnzCBW80ujf8ycjgctGnZkgOHDv3pvM6kprJkwwbi8+SR3q9VtizZOTnsOXMGgBnbtnFLyZIkXw3r13+RbGuQNU3rD/QFSvuStgIv6Lo+x3dfA54F+gD5gJVAf13Xtwp5NAVGATcAscAxYAXQT9f1C/a5VqjVRe2HyXxnXoXu27eHSZMmUbduJ6l7hNWCXsxDds/8W8W+2+1m3LjdzJo1gGefbcsrryyUPi9aY8Frhnca6gDDp1RmkzGvpsxksVR3eLJwu10ht8xNL90xLjvRI5wG2Wz6EJ43wukYLgiyI41l30/WPVJT3T4W3f5QQ8Gh36xcLAIhiowYnqIpVxz3MiWCt8wAT1u2rKNYsZqcPh24L0aKMOrqdKrjFBu0a9c2One+lQ4duvLxjJ+4/vqKJCb6XDaM+hkFiEGjVU7FotnMeE5mtZH4TBimPZdKDRKOTIOoQc2avPPBB+i6jib2GTuaHN+1x9ixfDZ/Pu0bNOCVwYOlPMW6XHSrWZO6U6eSHBvLybQ0frvzTnkdIq1TODJ3Grc7Mh/ncGR8Z5VWzVenDIvjx43XMjJg27YNTJ06kRtv7BmkMJUpUSO1wqmqGeydEk3//tv57bfBjB3bklGjVuDxaNZ5CJpk/9czgyyxf6lM0eZ3xKtIKvkXzj/LjhVJnP/MaRkZfhlgyHSZi4WVTyzA6dNuzp0za3/jCES0kMlQM8k0znEYkS1EcaKSoUYf3LRpLWXK1AoKymN829ikJGtNvQXt2b2bZp06cVerVnw/bRqVihfHYXapEkmWZpQhDhRzmu/qcLuJNQNGmfuHqt9J5KvDnC5Q/bp1eeG118h1OPwyOohvGYgxXR99/nkmf/YZ7Zs3Z+Yrr0jlsAu4v0kTGr33HkUSEzl67hxzu3eHmBhrba7MVGROD0cy0GYlaGxQJNL9CDAU2I33GzwAfKtpWm1d1zcBTwFPAD2AnXiB8C+aplXUdf2ipmmVgZ+B94CBeEdWOeBOQK7KMZMh2FWCQiHcxUFm/F69egHHj4e3MkQwB4f8DucqGh2dQM+eU3nggRguXLiI250Qkq/5u7riJWYDWbtY2yflPgJCoUZcRTH0W4hJXNX5rPweZCYQKx6F542QeOI+FJUfvjhnyDZKZGRE+1iLDsnDTGJTyUK6ySycMuFu0IEDu6hRowNHjshDNNqZa0V+p0yZQcOG99K582vk5sK+fWK+3nZLTi4E+ILLm/uOeeOZUYBZkFj4OPr/VznQmd+TVVDhdlC3XDlyPB5WrVpFPZk2xwZYnf7zz3zz3HPc2bhxcP1MY2hCp04MqFeP05cuUT8xEYemBR81JoIn8yRnclcK4dGOk6FB4QRNpGSMV/EkFzFd4N/pjJXONRAMVPbs2eCXoTKAbMV+ODCs+pzm+dPhiKNt2/cYMyYvf/xxnOjoIkHPSfMygHJKSmhfDie77JBVP1c1iB2fE5FkAEuxEjFkgSgTZdmbm8MbHdI7D6SmJvhYTODyZXHTMwRv0pMpGwyjtZcPTYsOkeUixpfJUCNs2u7du6hU6WZ/3xOfi4934Hb7Qq6ZInrJ+oKDXGZNmsTtbdrw1ptvBgo3y0RZ/5B1YrECVs9ZbsLAOl8b2EclY6qWLUtiXByLFizg5qZNrfOQle/r/x98/TXTXnqJ+9q3D66LKa9X+vShb9Om/JGaSqOCBb1nP5w+bU+e/ZkxF4nfY7js7Jar6/p3pqSnNU3rBzTQNG0zXtA7Ttf1rwA0TXsAOAl0BSYBLYEzuq4PEvLYB8yzywNwRROG1YJixIgvmTZtKKdPX8LpjJMu3GS/zWwYJC7+7LgZit/S5YqiXLkbWbNmDi1bdg6pXqhiyRHY8W+O6SfTIMuYkmkBFYwH+TXZAciye7JGlW1SkqwODO2HLNRhOOGu2jBrRzEnm+tkim8ZkDbIKDMjI5XduxfTqNFzQeE0VesWg2TNl5PjYefO3ZQufSN79gTyMgNvY2JJSYklOcUbqsi/21lkROYkqhLWMtAs+192T5VmalQNGHb//XQeOJBfJk2inNXR07KygB0HDhDrdnP7TTeByyUHtwJVKF2aCqA+fQ5CwWY4ZCern0wbb1ytFrFXQmaLjhWPQGyy27852IzbDJk0bNiPTJ7cl7Nnz+Nw5LXVXcKBYdUeG1l6oBk1SpS4kZ07f6JYsYdC+Lb+LA7ifYtHhyhY7FRGRVaVtxI8VqpTGR9W48xKlvp+uwWZoALIouyE4PVzMHY3+ofbl4fbthw1yrGjeBCbIzUVMjPT2Lx5PvXrD+T48dDABTIdgEoUaZrOxk27KFu2PBc8AaudO8V3CIcRoUm2wzRSC4NBooVOJMX3CwF2Yl8IJ08MGfrww9z/6KP8/MknVK5QwbphJH1s39696LrOXe3ahfY18/Px8VxXsSLXQWDykeE3UxlB9ZSZNVRkNQHLxpUNuiIfZE3TojRN6wzEA8uAMkAKAtjVdf0ysAho6Es6DhTUNK3ZlZT5V1DDhh0oXLgsv/76/t/NCgC5uTnExib+3Wxco7+YTp3aTGJicQoWtI69apd0XWf69O6kpZ2mceNeV4G7fzb1uusuBnbpQqenniIzS7UhKJh+WLSIxn36MH7QIGKu+RJfNapR4zZKlqzJggVv/92sAF4ZamgOr9H/Lp05sxO3Oy/Fi4duso2UdF1nyJDeHDy4j/vvf/gqcPfPpm533cUzAwbQqV8/LgfvvlTSL7//zo1t2vDy008TZ2xW/B8n2xpkAE3TqgHL8ToNpQF36bq+WdM0AwSfML1yAvAF3eMLoBUwX9O0k8AqYAHwsa7rpyzK64PXpzmYFFpGY9XgdrvMSUGWT+8iQ6NFi558882rtGw5ADuhvdLSzrJv3wpOnNhNZuZlypSpT/HiNxAXl8+ft5msFEviYic7+yL796+jbt1WSiurqBExzGUumQZZ5XYhri4tNFe5OCQacsnuWBWF0/aLWm6VBtn32+UMhKCzUp6L2cqUQSpFtl2yYcmX5mv8f+7cPuLiigXxZc5XZgAw/jfSsrIu8fvvQzh2bDfduy/m1Kk8nDvnvSfTIIuRPwylaIpPQ5K/dHwg0VjtW8XhMjMiY84uRWAeNH4/1q4dv69dyyOjRzN11CjrvHy/v5o3j37PP88Pb75J/WrVgi0XZiFxJXybtR6qvi7jU+ZTo4rQY7cDysi8gzwMJfk0qzKlpzdN4+abe/HllyO45ZYnMdygVOMrO/scR4+u4uTJnWRnX6Zo0TqkpNQkT578UoW5rEuI9wzS9UwOHFhC7dpzpJ/TSmkUPH14J353fCzOJPnzELCm+cNpyeSiTHDL3CjM74hXUctoNk+q3jOn+cp0JQVkqD8IjRDcxixXRS2zHX/xKzFu2DE6iWkZGXDixF7i4oqRmuot0yymVMNG7E+ZmZeZNOlp1q5dw8cfLyMnJ95/bkGwgdVwTfGeoOhOyo8jIz3AkHG90glGpi1WWRHEziwzW4eRI71vv53flyzhoQED+HTCBDQjSIHFQJs9dy49v/KdrwAAIABJREFUBw3iq/ffp6kRO9yKZJrbpKTQNIPEMiPVyptJ1nnEulvxYJWd/ZIBr29xDSAJuBuYrmnazcJ93fS8ZqTpup4DPKhp2jNAc6A+MASvq8ZN4mY+f2a6PhmYDKBpmu7/8GaBIRFErninf6OTccscPg3g1ls78sEHgzlzZhdFilQKuZ+VlcFPP73OunWzOXhwA1FR0ZQtW5eiRSvjdLr46qvBHDy4npSUiowevZGoqGhWr/6MevXuJuQYaYt5Pz39Iu+/35vGje8mLi5K2kfN4yLYJOlzPUjyDl6HJ8ueGcPpJNc0oXnCuAob/sgusfOZmVKBHbudXSEw3G6X9FsadKV7a8y/rZ6RsSn+b5ZlZnfCvHkT0PVMv4VKJfOsrtnZaXz9dW2Sk+vSqtUvXLqUJ4hP1d4ukUf/XJ3sIDnZ239iS0s286kC1qqEu92JIhxAFmY5DXi5d28qdOvGe4MHEy0RfnpUFFv27OHladNYsXkzcyZOpK5xxLrMnm8ltK34EK9WAaGtxp4dk6hMuEcYokhKMtlp8G52FXG7/Rt5knxhwmRjqnHjtsyaNYjTp7eQklIrqDjv81ksWfIGW7d+z7FjG9A0B8WL16VgwcpER7uZP38ox49vJCGhCMOH78TtdrN+/efUqHEHLlceafOYq5OZmc7UqQ9Tq9btFC4cK21ig+xiDPM9kTwes/HVIeHNJbiF+YB3srBp1uxbFbTbTKigKuC4GQhZgWdTpePjY6X1MgNkFRg2/7ZDMuWP6rfVNT4+EY9vspK5y6nWnMYQzMy8zPDhN1K8eCWef/430tPjSU+Xr1vFT2T8bxzt7P+2SYIrhh2ZaHVP5fMnG7cy2RVGjmjAuJ49KdmhA+8fO0Z8YmLI87qus2PvXl6dMoUFy5fzzaRJNKpZUz1RmcksX93uAFiW8agCyCosI/tfNafYlKERAWRd17OAPb5/12iaVhcYBLzoS0sBxDhMhTBplXVdPwp8DHzsA8u78ALlHmEZMMIX2NSoSDZX+rMx6LvvJnHmzB/kzx9HVFQmS5Z8yYIFn3L27B/ExeXl7NljJCYWpHPn0VSoUA+nM56oqODyzpw5wZgxTXn99VvIyLjIoUObSEr6ntq12wWxZzVQ33lnELm5WQwdOs3Sb9/cN2QCy4tZMpg/fzbt2t1JdHQ0Tslizv+/Yv+HlfD09yuf4He5CVXjyhpaRaoKS1QXsfFO/wQlFmGlyLMq0up7yFgKB5CV4NPktvbbb/OoXLk+xYuH18xkZMCBA3PZuPE9KlbsTlJSVTIyLrFwYXeKFWtF/fpv4XTKv5950jDjH6u6GPFik5ILBXwyVf7JKg2KbHWiEvxWZNL0FvPx9dH335M3MZFlW7awfNs20i5fJsblYsPu3RQrWJAH2rZl0ogRxMnCEckaQnbimdhwZgQh89OWTSBimZECZDsgyC4Zu/tlMlSGXnz8G9Yb0SfZqNrcuR9x/PheChaMx+3OYvXqb1i06GNSU/8gJiaRCxdOEBOTwG23jaZMmYbExITK0MzMs4wf35R3370Zh0Nj//6VuN0zaNiwm7IJDLbHjx9KZuYZRo36iLx51U1gXiOYMUZ2dhYLF35Ho0Z34HLFKPGM2FSqzyp2G8Pyl5Tk1c67RFOP2ewjLlJVG4yMQsUdbopVQWySG098MMh3Oq33dlgNT1lXtCs7zaypZKhZxCxaNI8KFeqTnGwNrMVFz65dC1mw4HXq17+fUqWqkZubyZQpPShTph69e08hKip0vSKKAFm/k6wnhQVRQDnmNL0bBKKtKipWJlxjyT6SuQ9IKlPId9zzhzNnUqxIEZb6ZOiFS5dwx8SwYdcuUpKTua9NGzZ+9pk3jrOdGMYqfmQTtnhPptVR5WeVl9Vvqwnegv6EpAW8PswxwH68PsYtgNUAmqa5gSZ4wa+UdF0/p2naMby+zH8L1azZjJYtu/PAA+XJyfFQpcpN3HyzdxBdupSKyxVPmTK1iI4ONR0alDdvYZ57bgWvv96eQ4c2AfDKK3fw+uvbKVbsemX569cvZPnyH/jkk93Exib86fqcOHGM7t07ArBy5SZq1Kj2p/O8RlePjh/fw6pVX/LCC9ttvxMVFcO+fd+yb9+3JCSUAhxUrTqI668f8Ncx+g+nWLebdwcOZNrPP+OOieHW2rV5qW9fkhISSMvMpEhKCtcVL35VY6ReIzlVq9aE2257kIEDbyA7O4sKFRpSv/4DlChxA+fPX8DpjKNYsRpER1trbeLi8vPEE8uZPPlOdu78DYBJk+6jZMkbKFeuqrL8LVuWM3/+TD75ZDcJCfn+dH1SU08zbJhXhn744WrKl6/zp/O8RlePzp49zIoV0xkxYpPtd6Kj87Bp02w2bZpNgQKlAJ1bbx1Au3ZP/HWM/sMpJjqaaQMGMHX+fJzR0bSoU4cxvXuTzydDUwoXplyJEgH3i/+HpOm62SvC4kFNGwfMwashTsAbnWIo0EbX9Z80TRsKPI1XE7wLeAa4CTDCvPXF657xDbAXrx/z/XjDw3XXdX1GmPJ1feNGuepPYobMdYaeAiVq0sxpmZk5ZGZ6QjQGBtlVel24cJojR3awaNFMVq36jmnT9uN2B05eE6+6nkX//jfRqdPjtGnTJSQv1SLHShEFsHTpPLp2bQXAsGEv0avXQC5ePE/+/ClBfNtV7oXTiMS6ff53Mi2jLICquYFVJhDRYiA4xuX6zFp2T+Ay10UWwMPtDmjKlCt1WYbC1XBbMVf99OnLPPjgbdSp04xu3Ub776nCEBrXdeu+4KuvOjJkyGUgGGiI2iuRLSvLvMw/WdzVLjuO1m8WVu3itgqNFYmZwmDefLWbZr4ny9cOyfqpzJYrq9+VaJCtVFUyW7Fxbejd+qFpGrquh10JaJqm6999F94EK+kUxngTh7h5uJ8/n0N6uofo6Jiwrupic4jkdEJGxlmOHt3BqlWfsXjxLD744AB58+aRNo+uZ/Pooy1p0+Y+OnToGVLnK3UHWLVqIQMGePeTd+nyNF27PsOJE+dISPCGj5PJGvsaZO9vcZwZ/7s8Pr9WMU65uaFl5kO7hUq01VmegFXArubYXJRq6In/m323ZWXJrGpG1c+dy2LQoDaUK1eL++57OSK+t26dw1tvtWXixPMkJCSG8BaJiBF/y7b02Njmg9stiY4hujqFk7XG/1YuHCKp5thwH9JKKxsJqTTeKlkabt41/x+Ob/N7HToA1jI0EoD8IdAMrxvFeWAT8Kqu63N9942DQvoSfFDIFt/9mnhDwTUGigLpeGMqv63r+sc2ytf1Eycse63Zl9ZqLlPdszt/m8lK4I8adQ/79m2mWrWGlCt3Ax9+OAa3O5YBA8bx8cevsm/fVgoVKsaMGasoXLiQvcIEUvXV//xnOJMnjyM2Np70dO9g2rAhF03TbANkc/5W7pBm2evfvGC1ycsOgpVN3LIFkSDkZfhEla1fOKlcBCJ1ZBaFjSlW0a7jJ6lYsTyHD5/H4fAKaFkTpaXBhg2rycpKJzU1lZMn97JkyceULn0jnTtPsi0Pzb9V+77CzKH+axBQVvklh3O7MMiu8LMze8meD5dmVbbVitiOiVNWv3AzsR0XCzO/Jb2h+iICyFu3hudB6BQGeFKthVShE8HesBH/F6v+4ov3s23bcmrUaETFijX46KNX8HiyGTlyAlOnvsbOnRspWDCFb75ZTpEixS3LDOceYf6dkQHTpr3A9OkjcbvjyMjwHogxaVIWTme0pX+/SOKnE0WB1eZZ2SLVkZFuL/yiSCoZGi7N9EGkmxBlvhCyydXOeLcCbibZmeWLm7x9+1Fq1CjOunVniYrKF9Ic4nXXrrVkZFwiPT2VEyf2sWTJJxQrVon+/adLLUt21tSRDmPVFgK3W1AuiYNJBZDNA9GuW5uqMir5Y05T5WEnTUZWPjKy+2Y+7M4LVuVXrgxcBYD8d5OmaXpmpm7ZlpHMW1ZtbwcQh1tAifdzc3PZsmUVe/ZsYsuW1RQsWIjU1LPs3buNXr2eonnz23G5wkfas+LLKn337q20bVuVtm270aJFRx5/vD1duw7k8cffCHpP5t8fqQZZIsv8/8e6c+Uzq2oWjRQcqRyIRbAj6wQqMGfXF0rk07jK0CdwPD2d4vXrc2bPHvIWLQp4Bb9MHlapolG4cAnKlr2BQoVKcMMNLahf/w6ys6Nsy0MZa+amUinqZZO5X6Db1SBboSaxAuLvcLOUXWFttx/J3lWVbwWcrf7/swBZwrcftPhERyQAOSdHLu/DYR3VZ7XbD81kZ2jrus727WvYu3cDmzatIX/+Aly8eJ4dOzbx8MNP0KZNO2JiQqMP2QHIKpy3Z89eOnUqR8OGd9C69QCeeaYFt97aly5d3gPkOEVGkchL8WROWVqQ4sEOQhfJDmgIB2Jkmj+7WkAVj6oVvKlBzubmUqRiRQ7u309svFeGWuHHRo008uZNpmLFeiQnF+eGG26lQYM70fVAPSPprzKWzezbUUbIZK5SqRROg6yaEOyuTu0AzXDA1K71SyVrVWSXD0larkVE43AyNEIOr1Ek5HA4qF69PrVq1adjxz5MmfIS7733Eg0b3sro0f3YsaMPAwc+c9XK83g8DBlyHz/++Blly1bihx8+YdWqhYwb9yktWnS5YmFwja4Off/rr3S8807yJsrjtC5aNI9nnx1AmTLeVe2UKctJTPRGSTRkYHa29NVrdI3+J0nTNKpXr8uNN9alS5feTJv2BhMnjuWmm27lmWceY/PmNTz77AtXrbzc3Fyef74ns2d/SKlSlVm27Ht27lzL449PpWHDhyKNkneNrjLNmTeP1rffTkpKChck32LdukWMGdOL0qWrAPDWW8tISSkP2MOM1+gaifSvAshGfEKVdsCcLiMrBWAk5hTzb9n/5nybN2/KG2/A/ff34Kmn+nPo0Lag8IAqPsMpqS5evMBzzz3O8eOHaNWqA3Pnfs3NN7fj9tu7cdttna7IOiyri1lh4HYHfpt3QHtjbfqO+0z2nUiUlBS5dtZM4jOy0AzmD/FnNMgq06FIqpW0r2G++Oorfl2zhmZVqtD7gQcA7w72/L77DsdZ9u3bxb59u1i0aCfXXVdMqTAI13x2lPKqIAZhF/h2NABipxE1+lb3rPKPVNtgfu9KNCIRN4hNfiQaYUvtpsJi7fOwiIh27JCny2SoXSuciuw2sawfylwkW7VqwnPPQY8e9zF8+FB279pIott0YIzwnWS+rjKFW0YGXLqUxtixQ9i3bzO3396Fn36aSePG7WjcuCMtWtwXZPwyX8WuLLaNSrlnDlVpJZICSlQjnFhswNXJrvbQzseVVUxMt+urGIlPPkSkQf7+yy/59pdfmPDccwx4/HEAElOSSPed6BcTc55Dh3Zz6NBuvv12O2XKlFdui5CxZXcKMouDjIzgCBhW1VSWE24uVDEXqQZZvGfH4mYnnIw5TaY+t5OHhC9jLIvVC+n+EoW6+bdIPg8LS/pXAWTxzHUzmdNVc5nVvHul86ddIN22dQMe7tuXRx65n9jYWIY/+ViocLdg1GwiMDrJ1q1bmDBhPHPmfEu1ajVxOjXmzv2a775bSY0aNwYJBxU+MZPYCcX3zGkyoSD2f7M50e0WYoMaoJlc9ewlMmUnTXbPLkA28xGpi4VYWbGRgF/XrPEmX74cfBiHr5E2r1hGSqFCvDZ2LI0aVfDfBnlUMbtuvipWrwbmU2asaitxlvlvqnVUixmbpjq7i9eQtAgXqqpudyUAecuWq/fN7cypsjlSlA+q+dO/YVYYlw0qlmVQv3706vUQ7pgYhvbq5Z0YLJhzCIwYsdsDMdy912179vGf/7zB999/TeXKN5A/f15++mkmH320gHr1bg5ag1vNB+FOZTdIBc5kE7+4ZyvY9Sk4nJhxhLSDXOsVQLjCVMgjHBiO1MVCnEhkQMwCIH/5yy/eeqalBTRmaWnE+jRNB/avJzk5mTFjXqFOnYpomtwrwcyGlbuhlViSre1lU4BqbFtmbKZwINfO4iecfJVVQlaW1X3ZylYWkldIM/aNBXUdYS+/cU8lE+2sD62aCP4HAXI4ihS0iv9HsmAS7/k3MAQJEblQeGfkSF7q35+8CQk4HI7AIJdVQvjfYWLO5XQy45NPGDRsGMOHDeOZEUt49LHHKVeuMi+++DI1a9ZF09T9XQTNAoshJHY0WbuZgbHYRuLJRsY1VGHgIBA30obADyfNVGBYJfCtJgGr/GUkSk5BSp5JSyMuJoZ7GjTgrmrVgoJurt64kX5jx7Juxw7WfPUVterVg7QLACT68hDjapoFvth3zexbsWsHJMne8/u/hltlqrQTdpb24j3ZbGS+byY7gDfMADeD4QwLDaJVt7iSuSsS4X4ltGePfQWBLE3WnEbTiffDbQg1/vf714obZtPUC9fXe/ViZIcO5I2Px5Gba1uGyr7xp99+S98RIxj62GMs+eEHhr74IomJiTy/4Hdq1myCpgXGWWqqesOV3TMOZGPU/LyodAi1zMnlqvfqIHAaoDfN4ckKWaxbdiyrPRhW+zNUoNkuSFMBZKGsC5cvE+92c3f9+nSsWjWgZPB42LB+PX1HjWL15s0smT2bhs2akeX0upSq3GJEGRrJ2As3buxW08jPFS5DO0IgHEqMlOzIVZmZR7bL2wDF7lhb7tQq5Y8MNKvGnN3pRkbhd4hdo6tKmqaRL29eLzj+k7R0xQouXLjApzNn0qRpUxISEnj77Xdo2LDxtfiv/yDSdZ3kxx/nUmYmL3fvTlJcXND9t2bNYufBg0x76SVqVanyN3F5ja7Rv4fyJSZeFRm6bO1a0i5dYtY333Bz+/bk5OTw/rvvctNNN12Tof8wyvvkk6RlZPBC164UNJ0G8+7MmWzcsYNJr75Kw7p1/yYOr9H/Gv2rNMiG0s2gcJoOlTVA9p5MK2BWOgSZ/cyaDqvVc6RLGpV6W2Bo6pgxTHr2Wdbu3En+fPkoX7kyZF4Gt447KTgWr9OpPknNrAW2Ytdqt7b4rsqCLdMoWbW99xrQiLiMCAqiGjWcVtl8L1Lth0rjEo5872pOJ8nx8ZxOS8OVkxPSiK/06sV3Cxfy4PDh9GjZUpqVK97bgPHxoT6VkiKDNCIyCqeAMK5W1gGXqP4wq72smFL19XDMyrTQsnEiXs1pdjso3rCBdjUXKsOFOS07W+fUqSM4ndEkJBT2h1206rp/RvshI0PZakcjrGieIOW7QbJxbBU+EHyazVTJjn2ZasnKsmP+LTJjvkoqM7FvX8b378/6/ftJjI+nYrVqcO4cZGd7Tw4j2HpjxyPHruuTuUoyLaaYh53ICPIoGS6//AgqXCUEzKo8u75d4QaEmWTj0kL1XiZ/fvafPYvr0iWIEiKXeDy88OCDfDtvHn2efJJet92G5vHg8ofPiw0p3qwJls2J4aZuWf+387zYT/zyNF7SkWQF2TFJyRhQCQ+Vplj8bRWmA8LH2vaF6Us9bR2QQxasw0qrfPLkUUAjT54ilqFrr4YM/VcBZPNkLTN3iKSaP1VgWPzmQYAYAgLdrj1ABroMCve1VLOXj2EnUK9UKW+aYXKKj/cfEZwY7/ZlEZm2ReZ+ocKgVmzL/JLtmGHl94zjpWMDJn4ZYpfZ1OwiwkhMUjKQJr7ru6frOqnp6Vx8803iY2KCytl34AD93n+fW2vVYkz//oH+YmHbdrpjbZv0rNiyIjuLH4Pi4x1ekHwlJJtMVUDZru1SlWYFkE2dUbUR5Eosyua0/fu3M3Cg10owcOBX1K3bQSnAVd32Suj0aXlTiONStt6RfWqVZVwWpkx6oJDdmK+RAGSryd1CyDjdbuqWKOFNM2SoIMtdPv/W5OTQsSfrSjLXJzsmYFGciMPCTr8KBwaMhbV/zMpWvzKSFXqlANlcMXOlxW8lWSmcuXSJEyNHUsjl8imovA198OxZBkybRt0KFXhx4EC0zEzT9zPc1AIHosgwuazKqgWOQWJedp8DL/uBKgvfR6aViETo/xkBoQJJak2W1MUi3RN6aJYsrLdxtRM59MSJ/UybVhaAm276mOuuu0/aTQ36U81x5a/+PRSJcshqsWMFhs1pLrKCATGoHWZkMX7DCQyDZGg/nKZL5tRn5GXk57sXGx+PzKPGqjOJ7WcHW1rlKVs1i2waV6O5ZDu7ZWUYm1Qc4sQtm9mNdDsALJLnjP9tADHN6aRYvnzM3rqVLk2b+u+lXb7MdX37MujeexnXty+uhISgPI4eP86Xn31GVlYWCQUK0Ld3b9sKA1maSlB4PKFuf1bPGWRo1mJF7YfZTCEbnOIEYJ6BxFlGJFU72yUbz4cDIXbSVGAoIaEUXbu+gcuVhwoVWl3x2vlKyQAHqiEikhUgtJgP5afDGREXTgunw0HwjChLs6OKDddXVJO7KDdN8lKWn4OANvJKya6SQTYd2F3Hy8Cf8ZzLHWbSjJQiQe+y9yIos2hCArO3baNnSoo/LcvjoXTv3vRv355X+/YlT4ECQTwcP3GCL2bMIDMzEx03vXv3B4tT/GRYP1KArKqOWW8jij/j6oqXgBNx0lSBZzFj2aLRqs3DASgbi0yZ6SILVwhssloTW90T1kHCtyhKrVrjcThiyJ+/fUh0GTvznd1u968DyNfoGv0bqWPt2rw+bx4eh4P7Gjdm0/79PP7BBwDsP3YMl+S8+yb33MP+w4f9/3ft3Bl3Ysx/jedrdPXJ7Y6jVauBwF8Hgq/RNfpfpI5VqjBpxQo0t5se9euz8+hRHvvkEwC2HjxInphQ2dimSxfWbdzo//+ee7oQFZX8X+P5Gl19ioqKoWJFb4i/v1qG/qsAsmEGVC2AIrUGyDTI/lNtxOWL3VPDzGmypalBVl/XXEHR7CLTEqu0HwLF+u9bu1uIWcoWleE0xnZIpqG0o72UW059mmSnJ7htgh8KTRM7iMzUKFNzGyRTkYv/SxpubJcuOB98kPvfe4/733sPgEJJSdzVpAkrt2/no/nzaVS3LqWLFiXK10HX/PIL6Q4Hubm5FL2uPA6Hw9IgIdNiRqrIseOHLtdQK1xfRDuieZDKNCPhGJZ1AtUzV5Gs+r9V8XaHt5X2Nlz+V0KGDLUjE0WlkJ1jyEV3CulRyTLbqiwtEg2yFdnxVQj3vmgL96UZvqKG3BGNVqpxKeu2dmWpHdFv18oRUkerNLva5XCdXfWucU82eUtkxujbb+f5YcNY/ckn9PzkEzRNI39cHPc0asTibdv44LffaNK4MWWKFyfKN6H/9uOPnLmcQ25uLgkJJXA4HKSmyqdplQXIPC/JpgArDbJVU8pEo9PpCMzT4eYeK5LJUtm7VpYWc2XCfBf/1SRAMiShD2XeUlfDYyfc0JZN03YoIlGraVoRYBzQGkgA9gH9dF3/3XdfA54F+gD5gJVAf13Xtwp5NAVGATcAscAxYIUvnwuq8pOS5IJGFPiyNDuTgctpcSyyzLXCuNoR5HaRikgyk3Q4ISPyEcZk4nTGKh8Da0xpRx6KpMI4dqxy4QR+wHQoMCyzH8ucKGUCQzURhwNsxv+SxowCsr//nrd+/JEnfAC5bLFi1K5WjV3HjvHAc88BMGnsWPo89BD4DhBJ8m1QlHVJVReTVSHcN1NN5qrnxavU7UI2G5kZl81K5oKsyM7YsEkqC6Ns0QjWizsZaBJ/RzrvXQ3cn5wcHiCrjhpXAeT4+DB+xiowHC7WUyRIxeq+SsjI3lMIHiMcpaq/yFiyu8hSUaRY1Aq4RUx2zfCq9rWj3bLojBrg+eAD3l2yhAFTp6LrOqWLFKF6pUocSE3loZdeAmD8c8/x+JNPkuuOJTElllzJ+syObutK1mUGic/LvCKMq9QjzbfB3qU6RUz2DcTMZAoeFXqUfUeVW6cMcPlIdjhPpGvScF3MvGg0l6cqw8Su+nl7j4GmaUnAUmAJ0AY4BZQFTgqPPQU8AfQAduIFwr9omlZR1/WLmqZVBn4G3gMGApeAcsCdQFjbcbLPMiJrRBVAlo2/kM13aRnBKMS4Jxs1xvVK0dyV0JVKOEnZ4Tqf8biqs6q0GSr27YIvVVXE3wFQ58Ch0iDLGDFLLnEhYhek2QTI3n+dDO7dm8G9e7Pz2DG27tnDiq1baXfbbQwtX54ChQvTslkzSEoKCaJu9yS9cOxakfi9ZXnIcIm6qzt8VY/1b5IJYdyuZSTSyqhWfmYylWFowJ1Oh7T7mLuWKAZUCz/xfSs8pqqO6v9IqHjxgBYZ1HswxDQzGBbBsx8Up6XBcZs7b4yrHblq/i1SOESoEnaqvmET8YZb+KhINd7CgWyre2Ka7X5ip41kg0D23JVMCHYAsu8aFR/Po/ffz6P338+ec+fYsmcPy3fs4JZmzRjw8MPkL1KElrfcQpYzljSF4UKm2/qzCxcZqfqHON2YhwZAkgiUVX1X5rOsEs4yspOvKDhsTuh2MYSKzAoIVRcLN4b+MoCMF/we03X9fiFtv/HDpz0eCIzTdf0rX9oDeAF0V2AS0BI4o+v6ICGPfcC8CPi4RtfoX08Vy5ShYpkydGjXLlQQXaNrdI2u0TVSUrkSJShXogR3tmsXsjtUcT7tNbpGtikSgHwn8LOmaZ8BzYA/gCnA27qu60AZIAUB7Oq6flnTtEVAQ7wA+ThQUNO0ZrquL4iUWcM86Gc+Qg2y/7Qmj0d+WpNqG6tdTYeZIlX3hNN+yFbZ5ns2NWjhlCoqvGZXQW5XwariQ7XqE8t2mdtBxoioCjWr/Kxs4nYqJ/tt1+/HlJblcfiP3LRruFCxGSmp8pApf2XvBrtdeLXJhmtPkEZZZQq0q/2QkZ2OJ2Pc/7hL6tJuJ+hGOA2yRZGWdDU1yOXK2e6Gllpl8MlSv+tEGJc0lZuaXRu2TFNpvif+b8c8LHO2Ft9TaNDMR+JG8i2tvl84RfafEf3+vMPNVZGo98JZgFSkkolOpyyYc+BqJ95uqnW0BLtTt8im+X8rJbqdsSqTAaq9N/Gqop6eAAAgAElEQVTxLv9R2iHfJz4+9CzyK9EgqyqjGkMSmWqcLCyzwqmmUVEc2FWG/xnMYYciEbVlgUeAN/D6IdcAJvjuTcQLjgFOmN47ARTz/f4CaAXM1zTtJLAKWAB8rOv6KXOBmqb1wevPDKhdLMxpQUcUZ5h6ocdj3x/SaoOdSCpdfrhZ0s7XDCclVaYQc0cOUwVVkeJ9q30A4fK3KstqvKkmlLCFiRUwjzwR2dgRIqpvJivTXL7xv+w7+tKyPIE4nVa4wa4FU8aaVXWs2FaRlfuF+V2R30DVA4DZf/hLOIBsxXgkpKqYKV8HgQWXEUPc41HXzy4YvhpY/0qpdGn77oVut+kIaAi4UIRz2gyneDD+t2v2vVLQZQcgW/mSSJ43xqiqi4rsmIe71ZpQVRWZGFGJfgV2sS7EnLHsWTu2bruI024FZUBZ8q3SM7zfJZwrmpltFWsqfYlV1SKZv0Q+VDLU+6zhspYICPGsMzJCzyKX4ZZIBZDVhK1amUmyUOmqzFgi3JaUP7OosT0mzHnZewzwzhlrdF0f7vt/vaZp5YH+eAGyQbrpPc1I03U9B3hQ07RngOZAfWAI8LSmaTeJm/l8z08GJgNomqabF1HGSiW4p9mYaK2WJZF45Fu1sLlHRIpiwo0ysWPKwJZxlfUIi04su4rZi666RnXs+g+Zy7Eq04oPK/kpy9fYHOCQjQKVptIgWWXsLFGtmLJR0VynK0QoWAkKFUsq1swAVQb0wpGd7yxz4RYnGZlGNgCWfZue3K7gcW0u/EqRplWlZY1jumf0J5fTicv3mGwjil0WI2E7XFeLlKx8kF3O3NBOd1qBMqwQiCrNLqo0/1Z12HDyMlJUqVLFWhRvVaTV85FML1ci+mVs+3/LyrSDYmRo0a4MVclGsXwZEFN8q1xhA7PK0iZjR1U9sSp2qifLV0yT/TbnJ17TJNaJ0GZw+a8uWdSLSACyqqHCVUaBL6zGhKztr4RtK7ILn+xQJMerHQO2mdK283/tnXd8HcW1+L9HvfduWchN7rKNi4wJGAcSahIDDoTwkpAQHjySwPslvBRaEhLyIA9ICC0hlBAeBHhJ6GBCsY0x4N6x5Sbb6r13Xc3vj13J11dX0r3Sla9kn+/ncz97d2Z29szM7tkzZ2ZnIcv+X2Zv01zSpODiVTbGFBtjnjXGfA+YAXRjGcqKcspjjKG+vo4nn/wDK1YsYdIkYepU4bnnHvG3aIqiKKMeYwxNTQ289NJjXHfd58jLE5YuFV544T5/i6aMIbzxRawDprqE5QBH7P8FWEbyF4CNACISBpzFAMavMaZWREqBgRfxxemLTG0DdC+6uti6cydVlZUsmTuXyIiIfnu+FdXVxEVEWB9pGGgSkDtcekuFVVW8vHEj/37uuYSFhAxvGMNdmDuPSH+uVXduhH68x/31rIKC+i7yMBRHniceME89yB44dPo/kWshhuvac3eO/s7pJqx3qNbJ01FeXsVf/vInfvvbX9DlIsvXvnYDn//8l4clmquzdCh4W0X9eZV75HCVyWpvD7zKAwkzlHZ0l4e7a6bH89/VRWlpKQ2NjUTHxZGenk6w/bGXEKf67fbAB+HpIEUPvXXhlX/DIi3NPt7dEIXT/x179lBaVMSS3FyiIyP79SBX1tURExpKaI8O9WS0zh1BQZQ2NPDi5s38e14eESEhnhVoKB5kd+5XD0fcnE/rLqv+RHM34uZJuw9WPHdF6c+73O/Jjh/S6RvWs++tzvRUN3rafvZ+71Q0N3OKq6pqePHFJ3joobtobW0+7vSXXHIdS5de3m+7DFRkb1WKJ88qd9eCs750l9b1trXa+3h9GRYWQlCc5V13O8o+kACDMVCbepDc2VMv4qC8vJTa2noiI6NISEjHdX1xb0TrOd9A95CHM06PHev5qfkd8LGI3Aa8CMwDbgJuBTDGGBH5PdZ0ib3APuB2oAl4HkBErseau/wycBAIA74JzAZ+O5gAaz/4gKCgIAK6u2nv6CArLY2W1lZa29pobW6m4OhR/vjXv1JYWkr2uHHszM9nxfnnc0ZuLgC1tbUUVVSwasMG9hQUEBYSgoiwfOlSEqKimD9lClMyM4kICqKgtJRXP/6Yqro6UuPjCQDqmpqIDg8nOiKCwspKympq6HQ4aO/s5GBZGQ0tLby7ezdfWriQzq4uOh0OWjs6MMZgjCE4KIi4yEguzstjnOuE6t4W8VAjDmZVejn32N0MhMEM46EyRJvSbZjz/jHDoZ9EnsYNhQGEG2hdyK4u2LlzF7/97S9ZufI1OjqOvX+9bVsV0dGJfdJ7Irqz8ekq1nDacCDl7SnOHS9PhrqsMh//EAig2zcF8pCmpiY2bNpEwZEj/Pnpp9m+cycJ8fHExsbS0NhITU0Nt/30p1y5YgXjxo0jPDzcOrC7m+7uboIGeGI6G9THGtraGGMoKiqiqamJzq4uKisr6Wpv554HHmDxkiV85zvf8aoc695/l0Ag0Bja2tvJSkujrb2d1vp6WpqbKSwp4Y/PP8+BI0eYkpXF9vx8lp9zDp+bOZOAgABq6+oorqpi9ZYt7Dp82HIGAF9ZtIjEiAhOz8oiJz2dyKAgjlRV8ermzVTU15MSHU1gQAB1ra1EBQcTGx5OYW0tpfX1dDocdHR1cai6mrrWVlYeOMBlc+bQ6XDQ5XDQ0tmJEcEAwYGBxISFcdGcOWQlJBxfp4NZkAMYXZ5OUhzMIHbeOg+ND/USHeyB74nqDwpyeUG9P8H7E6AHX3hCXP8P8mzr0Z29t0U/72fs3r2Xhx66i3fe+ScdHe0EBFjHrVxZTHx8xnHpnY3QgYzh4UyVGqg6BtOhrmrNndHsnMbdM/zYuY7pzaCw4zudXjkd+iuMm33XNuuhpaWFTz9dz5EjR/nrXx9n586txMTEERsbR1NTIzU1Vdxww09Yvvxq0tMzCQsLp6sLAgMNDofjmA4dRAzXejbGUFtbQkNDA2DpUGO6uP/++8jNnc11113XbzHFWoDCM0TkYuA3WJ7ko1hzjx+yV7Fw/lDI9Rz/oZBddvw8rKXgPgdkAC3AfqyVMJ4d5NxmyaJFOLq6cHR3ExoSwuGjR4mKjCQsNJTw0FDiYmK44aqruOiccwgWoaSkhGdfe429Bw9igPioKNKTkjhjxgwWzphBaEgIxaWlvLFuHfWNjWzOz+dQaSmtbW2kJybypUWLGJ+cTHltLd3GEB8VRUNLCw0tLYxPTiY9IcGalxgcTFJMDClxcTzy+uvkFxUREhREcFAQ4SEhSGAgAnQ6HPztgw8orqri+5deyqyJE8keN470xETGJScTFxXFnqIissePJyoiYnBrcSAt6YHSAe+UwkgYx56Eedpp7WMgu2OoroB+cOch9LSjbozB4RCWLJnJvHmLePvtV0hMTOHHP/5vcnJmMmnS1P4GP/rk72lYfwxFLw6knNyFDbff119Yn3Yf4GlmjGHrtm0EBwcza+ZMLJV1jNLSUnbv2cORwkK279zJJ+vXU15ZSV1dHbmzZ5OclMTXv/Y1LrrgAiIjI3uPW79hAw89+ihr162jpqaGvIULSUxM5NMNG6ioqGB8Zibp6enExcaSmpLCfffeS0xMTF85gY6ODv75j3/w0Sef8N6qVdTV1REbG0twUBDJSUkIsGDePGpbWsjNzeWmm27CGCNuM3NCRMySvDy6HQ46OzoIDwujwNahocHBRIaHExURwfWXXcYlZ59NaEAAZeXlPLdyJbv27cMAcRERpCckkJeTQ152NmEhIZRVVfHaxo3UNzay5dAhDlZU0NzWRlpsLJfMnUt2fDwVjY10ORwkREbS2NZGfWsrmfHxZMTF2XO7g0iMjCQtNpbHVq3iM/vz60GBgYQHBxMQGIiI0Olw8M+NGzlUUcGNX/wis7OyyE5LIz0+nozkZBKiothbVsb45GRiIiIGnlPszngezKDu0aFBx3u63M2fdP3vbt8VT2xKd0VwDu8Jc+s9HEyReCLoUBX2IAVwNqz6ey65xvXo0OXLF5GZOYEtW9YREBDIj350P9nZM5kwYfqAzzZP22o4utPTfkJ/Yf11enq23oa5k8OjZ6cT2+3Pd8/KndurQ3vqoby8nN27d1FQcIRdu3awYcMnlJaW0NBQz/Tps0lISOYrX7mS88//EpGRUb3Hbd26haeffpD169dQU1PF7NkLSUpKZfv29VRUlJKRkUVychqxsfEkJCRx++33ERsb77acnZ2drFz5Cp98spYPP3yfqqpK4uMTCAoKJCUlBYD5p59OY1MTOTk53HLLLW51qFcGsj8REWOqqz2/yge7yzzNwxc4XYkOh4OP9uxhy7597Coo4EhFBWXV1RRXVVHX2EhWWhq1jY3MnzaNCZmZJMTGctbChSxdsIC4mBg1kPtJD2PHQF6//mOuvfYqmpub+eY3/52//OWPvPrqWt599y0ef/wBQkPD+dWvHmHZsgtPSQO5tPQINTXVhIeHMG3aDEJCAiguLqKw8CgZGWk0NjZQVVVOe3s7wcHBJMbHkpaWRnZ2dp/COBwOiouL2bxpE0XFxbz7wQfs2LWL7u5uIiMjiYmO5szFi4mKiuLpZ5+luaWFObNnk52VxYxp0zgjL49x48eTkJBAbGysR3XU0NDAR+vWUVdfz5zcXLJPO42jR49SXlHBgYMHufXOO7ni8st5+MEHASgoKGDtunU0NTVRXlHBWytXEh4WxvJLLuGMvDwWL1pkPYRcG8k2sEXEYwPZ1Ne7t+acLxh3r5C7Sz9QHkPxSrnSz8XW3d3NuoMH2XzoELsKCzlSXU1ZXR3FNTXUNTeTmZREXVMTcydOZFJmJokxMZwxezbLFi4kwVWHghrI7oQb5Qby9u2buP76K6ivr+Xqq2/kuece5S9/eZ+NGz/iySfvJSgomB/+8PcsW7b8lDSQy8uLqKws79WhoaGBVFSUcOTIYVJSUmlpaaaiopT29naCgoJIjI8lNTWViRMn9pG/u7ubkpISNm/eTGFREatWrWLjpk0EBAQQGhpKXFwceXmLiYtL4JlnnqKhoYHc3DlkZp7GtGkzyMs7g/T0LGJj44iKiuu3np3D6+oa2bx5HXV11UydOpvTTptMSclRqqrKKSw8xP3338bSpRdw331PAVBefpSPP15Ne3szNTUVvP/+SgIChC996TIWL17MWWediYj0vTfskYb+dOjYMpDLy4dnIDun8aUi72EwbTZQnFNYQ1sbn2zdSlFlJVW1tbz2/vvszM9n2qRJJCcmEhAQQEhoKBIQQEx0NBlpacyYOpU5c+YwY9o0xJ4L2V/+nn4K0lf9A2f6sze9DXfF2x5wfwx1zuhgYd3d3Xz22S42b97MP/7xPFOnzuLiiy/j61+/iIyMLN5441OioqIxxvDhh6v4/vev5Cc/+R9WrLimT17eKvKR6OiA+8u6o6OdLVs+xJhOZs/O4+23/5emplry8pYREBBIVVUZra0NJCQkEx8fR0HBXsrKiqmsLOXAgb0cPVpAc3MTqanptLa2EBERQXx8PPn5e5g0aQo7dmzjtNOyGT8+i7CwUDo7O6mtraGgoICsrCyam5tpbW3FGENnZyfV1dUkJCSwYP58srOzmTFjBt++5hqCg4PZuW0bTU1NfLB6NY2NjVyxYgUL5s/vHZ71qNBeVKwxpvdrj2vee495c+fy8GOP8cCDD3L+uecSHR1NSnIys2bM4PLlyy05BmpQe4qBVwZyj5PBneXhqdHsGuep0eWKp4bWEHplTR0dfLJzJ0fLy6mur+eNdevYtm8fOaedRmpSEgEihIRaH2/t1aFTppA7fTqzpk61dKin1giW3hipvoG7MNf4AYfLPW0X57CBrvOhtJu972743VP/lTGGvXt3sX37Ft544yXS0sazYsW3+eY3v0BCQgovvbSJmJg4jDFs3LiOH/7wMm644S5WrLjBoyL7woHgCYNVlTEdbN26lq6uNmbPzuPdd1+ktracvLxlhIWFUFlZSmtrI3FxCSQnJ7F//x4nHZrP0aOHaGysJyMjk7a2VoKCgkhNTWP37p1MmZLDzp07yMgYx4QJEwgNtXRoXV0tBQUFZGZm0traSmtrK93d3b06ND4+ntNPn8+ECROYNm0a//Zv3yY8PJxdu3bS1NTEmjWrqKmpY/nyy1m0aDEBAQFeO248reNJkyxV98wzb5OXdzZ//euj/OlPv+Wss84jJiaGlJQUcnKms2LFFQQGBh7Xwehzn9hTxE4OA7m42DsD2ZOw/vYHw5uu/UDdfQ+Pa21tZcuOHdQ2NtLd3U1HRwcmIID6hgaKiotZvXYta9au5eWXXmL5V77S51yeeDr7C/MFnhq6nqbzFRUVFaxbt44VKy5zG19WVkN8vDWM01M3R48e4cCB/Zx55lmIWJ0RZ6PKXR0+++wT/Od/HpvrdOaZn2fy5Gm8++7rdHS0c+mlV3P77Q/0xm/c+Ck33LCcVasOEhFxbCh/KG020h2duroaDh3aw86dn/DSS38mLi6B0NBQ1q9fQ1bWJM4++4vs2LGR4OBgUlPTiYyMZs+eHQQFBTJt2mwyMjJJS0tj8uSpTJw4gays0wgMDCQw0LB27RpaW1tZtmwpERERdHd3ExAQ0Oc6aWtrY9OmTSQmJhIeHk6gGIKDg0lOTu59eW7E8aCixTbKvrZiBZ9s2MDiRYu49ZZbyJ09230eAzW4PVToMwPZnTE8kCvPVZ7RokP7SdfW3s7W3bupamjAGEOHwwFAfWMjReXlfLR+Pe99+CHPPfooX7/ySs9lc7ePZ53twXDb8fdFj9hd2BCH96qrq/nwo4+47Ior+qYFiooqSE5OPu60R44UsXfvZyxevLT3/uzu7t94Bnjllee5+eare/fnzMlj1qwFrFr1Ju3tbZx33nLuvPOx3uPy87dz3XWf5803DxEdHTssPejpsZ48v9xdTs3NtRw8uIcdO9bz978/QXh4JJGRUXzyySrS0zO54ILlbNnyqW3sphMTE8PevbsxpptZs3LJyMgkPT2NyZNzmDBhIpMmZRMYGIgxhnXrPqKlpZGzzz6bqKgouru7EZE+08va29vZtGkT8fHxRERE2B7XIOLjkwnp56VZTzsdvvDU99BjIH/5y19j+/YNzJgxhx/+8HZyc0/vtw/bx3Pco+MirJcZTw4D+Yi9YIYvan04ytx1f6QNZDfHGmM4cPgwGzZs4NP163n5lVf4+tev5pe/vItQ+yHsjKfFHY4SGY5xGxRkvQhVXFxMVFQUHR0ddHd3k5SURHd3NzU1Ndx77z08+eQTACxatIif/vRWLrtseW8eU6dO4/bbf05ycgr19XVs2bKZhQvzuOiii+no6Dj24pQT7777Ly655HwAwsPDiYiIoKGhgZCQECIjo8jJmUp1dTVlZaUYY0hLS6esrJTx409j797dOBwOUlIs4y4qKpq0tHSqqqpYu/Z9pk+fjcPhYObMOYwbdxrr1q2iuLiQQ4fyCQgIpKuri6ioaHJzF/DTn95Dbu4CwGrbmpo6LrhgJjfd9Auuuurf+8jtii+MYG+V+5EjBzn77MkAzJ27iNzc+Vx44WWcdda5BAeL22P6O89Ato2nsvXgk9GEEXqalpaWsm7dOtra25mek8P8efMGPmYgPZZhvXzkcwN5qE4GTxmCR9hj/etuv58wYwwHCwrYtGMHH2/YwCtvvsnlX/4yd99xBxH2g7Pf/Nzhy979EN2ZzfX1FJWUEBkRQZfDQVdXF8m2Dq2tq+ORJ5/kgUcfBWD2zJnc/+tf88VLL+09/rSsLO656y6Sk5JoaGxk8/btzJs7l+Vf/jLtDsdx9dLTAfjoo49YuvQsAMLCwoiMjKKhoZ7g4BAiIyPJyZlGbW0NZWWlOBwOUlPTKS8vJStrAvn5u+nq6iIpKYVJk6YTGRlFSko69fX1fPjhSqZNy8XhcDBlyiyysiaxfv1qSkqOUlCQb3spu4iMjGL69HncfPNvmD17CXBsmbcrr5zH1VffzNVX3zykZvCmST0dBXXeLy8/yqJFpwEwd+4CcnPnc8kly/n85893q0MHymtAvefp6IBNf507T9SUuzBP1Ian6qS2toL169fS1tbKlCk5zJ+/aEBTKijIjee4Z6sGspu4/sIGYpQYyMYYXn71VR5+7DH25udz+rx5nHvuuSzOyyPvjDP7Fd+fBnJ3dzfPPfcshw8XMHnyFCoqKti/fx+trS20tLRQWVnBoUMHqampYdy4cTQ3NxNirzBSXV1NQEAA8fHxtLW1U1tbQ0dHByJCSEgI7e3t9FzDOTlTmT07l4qKcqKjY5g9O5fXX3+VQ4cOIiJMmjSZlJRUpkzJAaCysoKWlhZWrnyrV9Yf/OCH3H33b1mzZhV1dbVER8eQnp5BUlIaxhgqKspJTU0jKSkZh8NBVxccOnSA4uJCmpubKCkpIiAgiCVLzqG8vJSAgAA2b/6U8vJSkpLSmDp1FhMmTCExMZmYmFiMCaS5uYnS0iKKi4+wbdt6nn32UZqaGjn77Av45S8fITnZdWlx37bbYO3XQ2dnJyUlh9i//zPy83fxz3/+lcOHD/Dooy9x8cVf9caZN+C5T2YDud94NZCP7Z8AA/m1t9/mkSefZPvu3Zw+Zw7nnXMOC08/nbOWLBn02H4ZQQPZGMPzL77I/oMHmZydTVV1NfsOHKC5pYXW1lYqqqo4WFBAVXU149LTaWlpITg4mMDAQKpsHRoXG0tnZyc1tbW09+jQ4GDa7ZWWACZPmsS8OXOoqKwkKjKS3Nxc3lq5kvx9+wCYNGkSaWlp5EyZAhJAZWUlzc3NvP32MR36rW9dy8MPP86HH66mpqaaiIho0tIySE1Nw+EQKirKiI9PJTk5pVeHHjlyiKNHj9Lc3Eh5eQnd3XDGGZ+noqKUwMBAtm7dQFlZEYmJKUycOIsJE6YSH59EdHQcgYGBtLa2UFZWSGHhEXbv3shLLz1GQ0MNeXnncdttj5KamjmkZvC1gdzZ2UlpaQEHDuwhP38Xb7zxAnv37uKhh57hiiu+eVx6b02IU8VA9tbcOnUM5IMHjw/09EEzXGPYXZg31oAPlfuf/vQn7nvgAe644+dcccUVboc+fP1s7+9+WrNmNRkZ46ylrhoaaGpqZObMWQQHB1NbW8v+/fvYunULb7/9Jm+//SY33vgDyspKSU1NY8qUHKKjowkPDycpKZmJEycxfvz4ged/DkH27u5uGhsbCQkJIT9/LxUV5Rw4sI+AgACSkpKJjIykqamVqqpKioqOsnz5V5k3b75HeXtyoxcUHOCRR+4hJiaOiIhIurq6CQy0vMdbt35Kfv5OmpoaSU/PJD19PDNmzOXSS/+NadPmDbEWjuGNcg8MNBQWHubDD99l377dVFaWU1NTRXNzI+3tbdTWVlNdXUl6eiY5OTOYMWMW8+Yt5OyzP09sbFy/5xzKqK07hm30DuWmGIlepbdPh4EuvCzrG00+MZDdncsXxjB4Zjl4qhOHeoE58dcXXuDnd93FL+64gyu/+lXC3K3Z5osepwd5rP34Y1KSk0mIj6ehoYGGxkZmTJtGaGAg9Q0N7DtwgC07dvDu6tX84/XXueGaa6iqqSE1OZmcSZOI6dGhCQlMzM4mKzOTwMDAvicaxjPNGENtfSNhYWHs3buXkpJy9u/fh4gQH59EVFQUbW1tVFVVcvRoIRde+CUWLTrD40tssBkhxcVHePTRu4mMjCYiIqp3ya/Ozi527drIvn3baWqqJzU1k5SUTKZNm8uFF36dWbMW9lPrg1fFUMIDAw3FxUdZu/Zd9u3bRVVVOTU1lTQ3N9LW1kZ9fQ1VVRWkp48jJ2c606bNYsECS4empCT0ydut8esL+8bTAg1wHw00fWikzDJnPLl0B52XD4O+6Dy2DWRnfOHN8CRuqIp8sPQDhDlfjI8//jh33nk7d975c5KSkrn44osJDY3sc4yvOXDgAB9//BGxsXFMnz6DKVOm9H4mGCA725rwX1RUiMPhIDg4mEmTJjNnzlxmz55DamoqX/3qlX3mPQ0FX9stnqQbaq/3D3/4Dffee1vvflhYONdf/18EBgYxefJ0Fiw4k+Tk1H47Bq75u7tkOjs7WbXqLTZsWEtFRSnR0TFMnjyD889fTkbGeLfHrFv3HmvW/IvCwiOUlBSyb99nREREcsYZS5k/fyHJyakkJiYTFRVNWFgYSUkJpKWlHzefdzi3Tg8jsvKIL4490RfZUIbUh2MgD5S3r41hb6wMX/SoBjGQn332Wf7fj37Ez++8k5TkZC688EJrSbjBGEobOYUXHDnCmnXriI2JYXpODlOnTCGgZz18YEJWFmFhYRwpLKTbGIICA5k8YQJzZs5k7syZpCQlceXy5Z4bwO7iPHx+uRpAgxmynvSzvE3fw7PPPsg99/zncWHXX38nAQGBZGdP5fTTzyIpKW1YzhXoYt26d9i4cTWVlaVEREQxefJ0zj33K2RmZvemcq6yjRtXs3r12xQXWzr04ME9hIaGsWjRWSxYkEdSUipJScnExsYQGhpKQkIiqanphIcH98nLrbfTXYUMVln9hTnjiefE2x6DF2lGbG4+eOfKhpPMQO6ZYuFLfGkgexPmQZzzhfTyyy/z+ON/or29jTVr1vSG/+53v+emm6z5Vb7oSPbHd77zTZ577vilqv/2t//jqaeeYPPmjWRkjCM+Ph6Hw0FiYhIJCQmEh0cwYcJEpk+fwZIlZxIdHT2kc3tbruEYvL7MY9++fSxbNpWgoCBWrLiG2tpqrrvuhyxc+LnBMwfy83dRUlLImWee22ekoK2tjYqKUjZuXMuDD95FUlIK5557MRkZ42lubmTHjs289dY/+PTTw8TFHb9WpDWX2rq2xo0bT0xMLBkZmURGRnHeeRdy9dXfOS69M8MJ83gIcCBG2uAdzjEn0uMMQzeQhyqLM4M9KH3Re/L0XB7y5ptv8sijj9LS2nqcDv31r37Fbbfeau14awR7kf7mn/2MP8wyfRAAACAASURBVDz++HFhf3/ySZ58/nk2bN1KWnIyiQkJOBwOkhISiI+LIyI8nImnncb0KVM4c9EiYnvWzvbWUPHQmePOMHb97+2gw3AGKYqLi/jiF8cDcOml19LQUMuVV95IXt65fRO7oaBgL4WFB8nLO5fQ0ONHCjo62qmsLGX79o95/PG7iImJ58wzzyczcyItLU3k52/lzTdf4N13D5CWlton75ycIBwOBxkZ44mOjiUtLYOYmBjOOutcvvUta+UMb6cDQD8Gsi8M4+Hij6lGQ8Gbh/cgKwGpgTwGDOSbb76Jhx9+iGeeeZbMzEyio6MZN24cCQkJxxlOI3l/GGNYs2Y1q1d/QG1tLQB3330PR44c5r777iU4OJiQkFBKSoppbW0lMzOTQ4cO8tFHawE477wv8uab7wzp3GPVQG5r62Llyn/y7LOPsW3beqKioomJiSMlJYOsrIlMmTKD7OzJpKePp7q6gm9960K3+dxzz5+56qrv9u4///zj/Oxn1/fuL1t2EXPnLqCqqoKKilJKSgo5evQQ9fV1rF27j6ioaKqqKggI6Ka9vZ2amiqefvoRPv10Lc3NTX3O97Of/YpbbrldDWQ1kPtnjBnIP7v1Vu65916eeuIJJkyYQFRUFOPGjSMxMfH4zucIGsgAaz/5hPfWrKG6poZuh4Pf3HorldXV3HX//QQFBREeFkZxaSktra1kZmRQcPQoaz7+GIAFc+ey8R1bh54iBnJHRzcffPAy//d/f2TbtnWEh0cRHW3p0IyMCUyaNIOsrCmkpY2nvb2Va645q28mwI9//CBXX31T7/7rrz/L7bd/s3d/yZIvMmfOYmpqKqmqKqWsrJDi4gLq6mp47bUdpKamUlVVZi991kFNTRUvvvgnPvlkFU1NjX3O9x//8SN+8Yv71ED2B6esgVxcPLSDR2pIYSTi6KukbrvtVp5//jm6u7u5+OJLmD9/AbNnz2b69OluvbIjfZ848/TTT3LDDd89Luyyy1ZQXFxEamoakydPITd3Dl/4wvkkOQ0nesNot1M8Sdfe3k59fS0NDXWUlBRx5MhB9u//jMOHD1JWVkxTUyPV1RW9LyhGRkYRH59IUlIK3/veTznnnPMpLDzM4cMH2LZtA2vXvk9lZRnNzY00NTXR1dXZuyxPREQksbHxpKamU1h4mPr6WlJTMwgMDCQ4OJikpGQSE5NJSUklNjaeqKhoYmPjSEiIIy0tg2nTZvTOyxzxaRS+6Il4m264x/jq+OGee6gv6bljOA81Xz44R+jh+qtf/5onn3qKzs5OLrn4YhYuOKZDj/ui4UhMhRkk3UuvvMKV1157XNjlX/oSxaWlpCYnM3niRHJnzOCCc88lxV4urRcfOngGWgp0KNMjvDWGBzeWO2hoqKWxsY7y8iIKCw9x8OBnHDlygPLyIpqbG6mtraSlpYng4BBbDyaSkJDMt799C0uXXkJZWSFHjuxn9+5NfPLJe1RWltLc3EhLS2OvDg0MDCI8PJKYmFhSUjIoKyuipqaS1NRxBAUFEhgYREJCMklJySQnpxIXl0BUVDTx8XG9nuQZM2b0rprkzUxMr6dYeBM2WvC3Ae3MSTXForz8+MDRotQ9TeulvK4Ka+fOnXzwwfts2bKFXbt2kp+fT0REBJmZmVx22eVkZ08gNjaW3NxcoqOjqa6uprOzk/T0dKKi4hARCgsLAYiNjWXfvnymTMmhvb2dHTu209RkGVtxcfHMmTOXzMxMj+cMt7a2cv311/Lii3/j7rvvYfr0mSxefAaxsbG4+4b6UPDFPT9SxravjnU4HFRXV1FYeJiCggMUFOznrbdeZt++z0hNTWfixBwmTJjMaadNJCMjg7S0DDIzs4iJiUVEcDgctLQ021+bqyAqKoYFC/KOa0dfO/88jR+WoTwSvRlfH3uizzGUdZDr6z3P/0ToV18fOwifffYZ773/Pps3b2bX7t3s3buXsLAwxmVkcOlXvsLkSZOIjYlh9qxZxMXFUV1dTXtHB+lpacTHxyMiFBUV0d3dTXx8PHvz85k8aRKO9na27dhBY1MTTU1NxMbGMjc3l/Fe6ND29nZuuuUWHn/qKe664w5yZ83izMWLrc+Me7qW9xBuUG+/BuouzBMbzRs7bji3iMPhoLa2muLiwxw5cpAjR/bz7ruvkp+/g6SkVLKzc8jOnkJW1kRSU8eRnJxORkYWCQlxvTq0tbWFpqYGqqsrCA+PJC/vjD7t6ImDwNtBaI8dDL42lE9Vg/qkMpC9Ue7u8EVFDyUPH5zXnRLr7u6mqqqK/Px8XnrpRWpra6mrq2Pjxg10dXWRkJBAcHAwJSUlOBwO0tLSqKurIyQkhNraWnJycjh06BBBQUGcfvrpxMTEEhkZSWVlJdu3b6O9vZ3U1DQSEhJITExi3Djrgw5RUdFERUURGRlJS0sLNTXVNDQ0sHHjBlatep/BrqnAwEBaWkbuhhype91fOqS7u5u6uloSEhK9Om64l91Ijah5vCLFiezNjGReI8VQPjXd3DyyMo0m75AHGGOoqqpi/4EDvPDSS9T06NDNm2lvbyfRnsZWUlpqORvS0qirryc0NJTq6mqm5uRwqKCAwMBA5s2dS3xcHJGRkVRXV7Ntxw6am5tJT7N0aFJiIpnjxpGWlkZM9PE6tLqmhoaGBrZs3cq/3nsPY8ygetTYHzrxBE9fjBqqg/xETWsbKtba8tUkJno3iumLQY+RGGj263S14R57ohmoIk+qZd7UQB4yDQ0NFBcX985hNsYgInR2Hhuad6arC6qrq6moqKCurpaKigpKSoopLy+jqamp19scGRlJQkIiMTExtLe302Kvy1lfX0dZWSk1NTWEhYURHR1DUlIScXHxLF16DitWuP/qki842QzkoaIG8jAYC42tBvIJpbGxkaKiIjIyMoiNje3VoV32teJupKympoaKigpqamuprKykuKSE0jJbhzY309TURHh4OIkJCcTExNDR0XFMhzY0UFpWRnV1taVDo6JISkoiMSmJJWecwdVXX93nfP1xqhvIQ0UN5BE49kRzyhjI7e3+FsM9o+Sh4IvlU0YLY+n+O1kZ6cvaJx/0GIyT+UKyXy7zykAerTr0RDBK9PRwGUk9f6r1MX2Nv3xwzvhcr57MDTmIDh1TBrLDMTZkVRRFGWl6ln31xkBWHaooimIxmA4dU13qwMDhf2RCURTlJMPj9S9VhyqKovTBrQ4dMx7kE42IbDLGLPC3HL5GyzX2OFnLpuU6uTlZ60HLNfY4Wcum5RpZTp5Jq4qiKIqiKIriA9RAVhRFURRFURQn1EDun8f9LcAIoeUae5ysZdNyndycrPWg5Rp7nKxl03KNIDoHWVEURVEURVGcUA+yoiiKoiiKojihBrKiKIqiKIqiOHFSGsgicraIvCYixSJiROQap7hgEblXRHaISLOIlIrI8yKS5ZJHqIg8JCJVdrrXRCTTKT7bztvd74ITVR47PsqWtUhEWkUkX0T+n5flKRWR21yOucM+3+Uu4c+JyIcjXTYftpVfyuamrOki8oyIVIpIm4h8JiJLneJFRH4hIiV2O64WkZlO8Z+KyJ9d8vyGXY4fuYTfLSJHR6IcvkBEbhSRArseNovIWf6WaSCG23Z2mv70xQ0nvkQDozpUdehoKJubsqoOtVEdOvI69KQ0kIEoYBdwM9DqEhcBnA7cbW+/AowHVoqI84dTfg9cDlwFnAXEAG+ISKBLfhcA6S6/D3xZGAYuD8ADwMXAN4DpWGW7R0S+4ZRmsPKsApa55HsOcLSf8FVDK0ofTkRb+atsvYhIHLAOEKy2mg78AKhwSvZj4Ed2+EI77l0RibbjP+hH3hNWDl8gIlcCDwK/AeYBHwNvuz60Rws+arserqOvvnhmJOUfIqpDVYeOhrL1ojr0GKpDT5AONcac1D+gCbhmkDQzAAPMtvdjgQ7gaqc044Fu4Hx7P9s+ZoG/y4OlHH/pErYGeNiL8lwHtACh9n6ovX8DsNvpuBy73EvHUFuNhrL9Blg3QLwApcBtTmHhQCNwvb3/BVu+8U5pDtnlqAcC7bBIu06+dSKvTS/qYj3wZ5ew/cB/+1u2kWo7O8wAK/xdniGUX3Xo2NEzqkNVh/pdvpFoOzvshOrQk9WD7C0x9rbW3s4HgoF/9SQwxhQCe4AlJ1Y0j/gI+JKIjAcQkSXAXGClHe9JeVZhXZB59v5ioBr4KzBZRFLt8GVYXopPR6owgzCUthoNZVsOrBeRF0WkQkS2icj3RaTn278TgDSXcrQCHzqVYx2W0l4GICKnAePscjRh1QXA57DqZNR5P0QkBEvOf7lE/YvReW+Bb9ruZEd16OjQM56gOlR16IlmTOrQU95Ati+2+4HXjTFFdnAa4ACqXJKX23HOfCgiTS6/2JGVug83AduAoyLSieX5+Ikx5g07ftDyGGMOAEUcG2ZaBqw2xrQAm7GGm3rCPzbGtI9MUfpnqG01Sso2EbgRy1txPtbw2D3A95zK0SO3M87laAE2cHw5Ntjha1zCDxpjRuP8uSQgkAHKOQoZdts58awbfTF7hOQ+IagOHVV6ZkBUh6oO9RNjUoee0gayPQfrf4E44NueHILl4nfm61ieBudfow/F9IQfAGcCX8bqWf4/4D4Z/EUX1/I4zzNbBqy2/692Cj8H388PHBQftJW/yxYAbDHG/MwYs9UY8zTwB44piB5cr6+hlGMZfmgjLxmsnKMJX7UdwH/RV1/k+17kE4Pq0FGnZ/pFdWgvqkNPPGNSh56yBrKtLP4G5ALnGmOqnaLLsHpoSS6HpdC3h1NkjDng8useMcFdEJFw4L+BHxtjXjfG7DDGPAy8ANxiJ/O0PB8Ai0UkHmsobbUdvgY4R0SmA6mc4GEnH7WVv8tWCnzmErYH6HmposzeuvaW3ZXjNBHJxnoYrbbD1wBnikgC1ss4o25o0KYKy1s1WDlHE75qO4AyN/qiw7finhhUhwKjT8+4RXWo6lA/MyZ16ClpIItIMPAilrJYZowpc0myGejEmtDfc0wm1puXH58oOT0k2P45XMIdHGtfT8uzCuvlix8BlcaYg3b4R1hDJFdjzdPa6Nsi9I8P28rfZVsHTHUJywGO2P8LsJSEcznCsN4ody7HJ0Ab8F0sZfIxgDEmH8vr9kMgiFGq3G1Fthmnctp8gdF3b/Xgq7Y7aVAdOmr1TB9Uh6oOHQWMTR16ot4GPJE/rGVvelzvLcCd9v8srAv/FaAYq5eY5vQLd8rjMTvNeVjLqKzCmqPW85ZrNpbr/3yXPI7LZ6TLY8evxnoL+xysye7XYL0o8QNPy+OU7hDQADzrEv6pHf7WWGsrf5XN5RwLsR5CtwGTga9ivTX9Pac0P7HluAyYheXBKgGiXfL6wE631iX8BTv8M3/fg4PUxZVYL8p8F+sh/CDWg/U0f8s2km1n64ueh7LzL8rfZXRTZtWhqkP9XraRuA/tdKpDT6y8Y1KH+r3iRqgxzrEr0vX3F44pZXe/a5zyCAMewnpTtwV4neOXhhkon++eqPLY8WnA07aCawX2Yg0NiqflcUr3pJ33tS7h99jht4y1tvJX2dyc/2JgO5b3Yh/Wi0HObSTAL7CGo9qwhvxmucnnDlveX7mE32CHP+zve9CDurgROAy0Y3lDzva3TCPddgNcy7/2d/nclHfE78tB8lEdOorayl9lG4n70E6nOvTEyzvmdKjYJ1UURVEURVEUhVN0DrKiKIqiKIqi9IcayIqiKIqiKIrihBrIiqIoiqIoiuKEGsiKoiiKoiiK4oQayIqiKIqiKIrihBrIiqIoiqIoiuKEGsiKoiiKoiiK4oQayIqiKIqiKIrihBrIiqIoiqIoiuKEGsiKoiiKoiiK4kSQvwVQxiYiEgBMAU4HwvwsjqIoiqKMZvYBW4wxrf4WRPEMMcb4WwZlDCAiccAimPoO1ABtQBQQi9XPEjtlAMcGJsRlGzBAGnf73qRxd07XuKGkCehHfte0/aUR+i+HuzQDlXm4aQYvR4D9NzDQjgk4fhsY6D7MNe1AcQPl7cnxvspnoLy9Ketw5fBVnfeECbZOdzisbXf3sa27MNe07sI8iesJHyjvocjhrYzeyDHcfAY7fph13vN0Ni7/AboHiHO37fYgjbu8+8sHl7huD+TwJM1gZe0vzVDP0V9Zncs5FDlc67wKKMHSthlAJvBPmAQUGDXERiVqICt9EJFAYDrk7oRaoAEIBOKAePsX7nJUj5EVaP9w2ga47LtL4y7tUNJ4crxz2pFOcyLO4Wkad+1wbCsSQJA9pjTQdrhpTsQ5TmU5Anoey11dfbfuwrxJM9zjVQ6v0vQ8n7s5Zmy52w4U118a2xQ/zvjzJB93x3l6vKOf43wt60DHjbSs7uKcaccylIvsXy3WEzUTeB+WAZuMMU1uDlVOMDrFQkFEkoA8mPKGdbvGANFYKiLb3tfp6oqiKIoyHEKBCfYPLCO8DigEFsGqEmCcCOnAeOAVmAbsUy/ziUcN5FMMEQkCcmH25mPe4USsPmwc1m0b6kcJFUVRFOXUQDg2Lptrh3UCpVge5hmwtxqYIkImsBrOB9YbY+r9IO4phRrIpwAiMg0m7bH6qTH2D2AilqdYvcOKoiiKMhoIBrLsXw/1WAbzGfBOMZAhQhrWm/IvGiN9c1GGi1pGpwZR1kt1HUAI1vzhcKzFJ/QSUBRFUZTRTCTWK/GxWG6tLiyjudmfQp3kqAf5FMAYswl7CQMRSYMJpdZKFAexBnNiODbIox5lRVEURfEXBmvyYyGW17gYyyBOx3qZbzfMAvZUGOPuPUDFR6iBfIphjCnj2Hpf9pzkhlkQvxUOYd2WwRybkxyPLnOsKIqiKCNDJ8evbFGN5SnOBD6FLwAbdc7xiUcN5FMcY0wXsI3jjeZEqM6DKW/CYaypGVEc8zLHol5mRVEURfEOg/V6fI8xXGyH93iH98BUYH+5rlrhd3QdZGVQ7HWRp0HuLutFv3osA7nHy+y8xu5AH+9wXofXkw90uK7b68mHQgaSYyhpnD++4SrHQB/oGG1yBDL4h0ICej824bp1/kDFcNOciHMMRw5fpfGXHL3rILt+oMLhOBbmuvU0TX9xnqQZLXL4sjwjfI6BPn7h7kMhrh+yGCjNQB+9GCifgT6sMdgHPk5UGtcyMkCa/vIZ6IMj3tZHN9aHQgqxnqC67vHYQA1kZUjYX9ZbCMwHzgQ2+1eiMcV8tL68QevLe7TOvEPryzu0vrzDYNnEvwEO65rGYwM1kJVhIyKbjDEL/C3HWEHryzu0vrxH68w7tL68Q+vLe7TOxh46kVRRFEVRFEVRnFADWVEURVEURVGcUANZ8QWP+1uAMYbWl3dofXmP1pl3aH15h9aX92idjTF0DrKiKIqiKIqiOKEeZEVRFEVRFEVxQg1kRVEURVEURXFCDWTFp4jIIhF5V0SaRKRRRD4WkSR/yzWaEYuVImJEZIW/5RmNiEiCiDwkIntFpFVECkXkMeurj0oPInKjiBSISJuIbBaRs/wt02hFRH4mIhtFpEFEKkXkdRGZ5W+5xgoicqutsx72tyyjFRFJF5Fn7OurTUQ+E5Gl/pZL8Qw1kBWfISJ5wL+A1cBirMXk78P61LzSPz8CHP4WYpSTAYwDfgzMBv4NOBv4mz+FGk2IyJXAg1gfI5gHfAy8LSJZfhVs9HIO8CiwBPg80AW8JyIJ/hRqLCAii4HrgB3+lmW0Yn9Max3WJ0wvBqYDPwAq/CmX4jn6kp7iM0TkY2CVMeY2f8syVhCRBcDLWJ2JcuCrxpi/+1eqsYGIXAS8AcQZYxr8LY+/EZH1wA5jzHVOYfuBvxtjfuY/ycYGIhIF1APLjTGv+1ue0YqIxAJbsAzkO4Fdxpjv+1eq0YeI/AZYaow509+yKENDPciKTxCRFOAMoFREPhKRchFZKyLn+lu20YqIRGN5QK83xqhXwXtigHagxd+C+BsRCcHqZP3LJepfWB5SZXCisZ6Jtf4WZJTzOFan6wN/CzLKWQ6sF5EXRaRCRLaJyPdFRPwtmOIZaiArvmKivf0l8BRwAbAWeEdE5vhNqtHNH4GVxpi3/C3IWMMevvwV8GdjTJe/5RkFJAGBWKMQzpQDaSdenDHJg8A24BN/CzJaEZHrgMnAHf6WZQwwEbgROAScj3V93QN8z59CKZ6jBrIyICLya/tFjIF+53DsWvqTMeYpY8xWY8ytwAbgBr8V4ATjaX2JyDeAOcB/+Vtmf+LF9eV8TCTwOlCMNSdZOYbrnDlxE6a4ICIPAJ8DLjfG6PsAbhCRqVjz2682xnT4W54xQACwxRjzM/t5+DTwB9RAHjME+VsAZdTze+B/B0lzFEi1/3/mErcHOJVeEvK0vq4BZgBNLiNuL4rIJ8aYz42MeKMOT+sL6J0n2uNxv8QY0zZSgo0xqrBe9HT1FqfQ16usOCEivwO+BiwzxhzytzyjmDOwRip2OemsQOBsEbkBiDTGtPtLuFFIKe6fhzf7QRZlCKiBrAyIMaYK6+E7ICJyGCgBprpE5QA7fS/Z6MSL+roNa4UPZ3YCtwCvjoBooxJP6wt652y/jeUVvcAY0zSSso0ljDEdIrIZ+ALwf05RXwD+4R+pRj8i8iCWcXyOMWavv+UZ5bwCbHIJexrYj+VZVq/y8azD/fPwiB9kUYaAGsiKTzDGGBH5H+CXIrID2ApcgbXcm77h7IIxphhrikAvtlemUL1YfbGN439hvZi3HIi0p1oA1OiQLwAPAM+KyAash/MNWMvj/dGvUo1SROQR4BtY11OtiPR435u089UXY0wdUOccJiLNWPffLv9INar5HfCx7Qx5EWvpxZuAW/0qleIxaiArPsMY83v7bfr7gURgN3ChMWa7fyVTTgLmY3W2APa5xC3DWnv7lMYY86L94ZTbgXRgF3CRMUY9Vu650d6+7xL+S+AXJ1YU5WTDGLNRRJZjedfvwJoqdgfW2tvKGEDXQVYURVEURVEUJ3QVC0VRFEVRFEVxQg1kRVEURVEURXFCDWRFURRFURRFcUINZEVRFEVRFEVxQg1kRVEURVEURXFCDWRFURRFURRFcUINZEVRFEVRFEVxQg1kRVEURVEURXFCDWRFURRFURRFcUINZEVRlJMUEYkUkb+ISL6I7BWRGwc/akjnGS8i74vIHhHZLSK/FREZiXM5nfMxESkWEf0crKIoPkcNZEVRlJOX+4F9xpipwHTgHyN0ni7gJ8aY6cA8IA+4bITO1cPfgNNH+ByKopyiqIGsKMpJg1gUiIgRkcn+lmcgRGS1LacRkf90Cp8sIn8Ske0i4hCR1f0cP8P22raISImI3CUigU7x0cBy4H8AjEX5SJTFGFNqjNlk/+8AdgDjR+JcTuf8sL/yiMgvnOr27yMph6IoJydqICuKcjJxBpANGOBr/hXFI1ZhyfyCU9hM4CJgn/3rg4jEA+9hlfMrwF3Aj4BfOiWbCFQCD4rIFhF5VUSyfSy/O9kSsQzzd0b6XAPwBFa9bvWjDIqijGHUQFYU5WTiKqAE+Lv9f7RTY4z51BhT5hT2ujFmvDHmq8Dufo67AQgHLjPGvGuM+SOWcfxDEYmx0wQDs4BXjTGnA68Cz4xMMSxEJBSr7n9vjNkzzLw+EpHDbn5PDnasMabIGPMp0DAcGRRFOXVRA1lRlJMCe3rBV4H/w5qfOkNEcl3SzLKH3efY+++JyJ/t/yvsKQ0RJ1p2Z4wx3R4kuxB4xxjjbAC+gGU0L7X3C4F6Y8w7TvHzB8rUfqFvk4hcLCKf2dM33hSRBHvqxyoRabbTuNZtIPAcsNUYc/9gBRCRmSKyUkRq7Dz3iMj3euKNMZ8zxmS7+V07WN6KoijDRQ1kRVFOFj4PpAIvAm9heQ9dvci5QCewx2l/u9P/A8aYlpEXddhMA/Y6BxhjjgItdhz2/NwdIrLQTvIFYKcHeWdhTdm4Hfh3YAnwOJaB/QKwAggCXnBZqeJPQCPWVA9PeA1wAP8GfBl4CIj28FhFUZQRJcjfAiiKoviIq4CjwKfGGCMirwJfE5FbjTE9S4HNAfYYYzpEJB1I5piBPMfp/2gnHqhzE15rx/VwA/CEiETZ6b/jQd4JwBnGmIMAtqf4v4BvGWP+aocJ8CaWMb5HRM4ErgV2AVttu/kpY8wf3J1ARJKw5kgvN8b0GO3veyCbcx5PABfY/4uAlcaY73qTh6IoSn+ogawoypjHnvt6KfCEkzH8AvANYDHwiR02B9jm9B+sFRfA8iA/MfLS+gx36/+Kc7gx5jMsD7A3HO4xjm0O2NsP3ISNw+pwrLPP7Sk1WFNA/igifwBWGWMqvBFSjWFFUUYSnWKhKMrJwIVAHNb0ih7exTLEnKdZOHuJ5wAFxph6+8W27J44EVljL7O2Q0T+3vPimz2HeYuI7BeR1+yl1BgsbgSoxSqvK7G49yx7g+vxHW7Ce8LChnICe571F4Ey4CmgTETWisi8oeSnKIria9RAVhTlZOAq4FDPWrwAxphO4GXgChEJtA3WNCzPJRw//3iZvd1gb79sjJljjMnFmrbxX3b4H4HbjTFTsOYA/9hJhoHifM1e7LnGPYjIeCASl7nJoxVjzF5jzOVYhv55WMb2myKizyVFUfyOKiJFUcY09vzaSzjee9zDC1gv7i0Dej6ikWFv5wDb7dUXbgHe6xnmN8bU23kHYBmdRkRSgQnGmLfs458ELrfT9Rs3QrwNnO/ipb4SaAXWjOB5fY4xptMY8wHwAJCOe8+4oijKCUXnICuKMtb5ChABNInIcpe4QKAduMoY8579Vbq7RSQN6Pn88qdYc2nPcT5QRN4CFmKtRfwjO32RU5KjHPtaXOYAcV5hLzN3kb07DogRkRX2/lv2Kht/BG4C/iki92K98PYL4AGXpd9GJfaLf/dhdWoOYb1Y+BNguzGmxp+yKYqigBrIiqKMfXrmGN89QJrLRORG4GIsQ+wKLP03DvgH8IgxptH5EmOWXwAAAZFJREFUAGPMRbZ3+b+BG7FeUnP3Yhy4vBw3TFKw1nJ2pmd/AtZLdLUici7wMPA61vzg32EZyWOBMqAcuA3Lo1+H9VXBn/hTKEVRlB7k2AvfiqIopwYi8m3gQSDWDKIERWQmlqfzPGCzMWacHT4VeMUYM932SLuNGyDf1UA11tQIx2ByKJ5jT40JwFo6rtIYs2KQQxRFUY5D5yArinIqMhfY6c4oFZF4e05xD5cDu+zPQR8WkZ7pD9cC/wQYKG4QLsP6cMnNQyuG0g93YtXr2f4WRFGUsYl6kBVFOeWwvbd7jDH/4SZuIvASEII1dWIP8ANjTLk9d/YZIArIB652eqGv37h+ZJjKsS/HHfV2HWClf0Qkg2MvY9YYYw75Ux5FUcYeaiAriqIoiqIoihM6xUJRFEVRFEVRnFADWVEURVEURVGcUANZURRFURRFUZxQA1lRFEVRFEVRnFADWVEURVEURVGcUANZURRFURRFUZxQA1lRFEVRFEVRnFADWVEURVEURVGcUANZURRFURRFUZz4//rlBArbrkvnAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 720x504 with 7 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# shift longitudes\n",
+    "dsf300_shift, lons_shift = fct.shiftgrid_copy(90., dsf300, lons, start=False)\n",
+    "\n",
+    "response_plot = ['cloud WP', 'cloud EP',\n",
+    "                 'cloud IO', 'cloud TA',\n",
+    "                 'cloud TR', 'cloud']\n",
+    "\n",
+    "proj = ccrs.PlateCarree(central_longitude=-90)\n",
+    "fig, ax = plt.subplots(3, 2, figsize=(10, 7),\n",
+    "                       subplot_kw=dict(projection=proj))\n",
+    "ax = ax.reshape(-1)    \n",
+    "for r in range(ax.shape[0]): # loop over responses\n",
+    "    ax[r].coastlines(rasterized=True)\n",
+    "    ax[r].set_aspect('auto')\n",
+    "    ax[r].tick_params(labelsize=14)\n",
+    "    # set xticks and yticks for latitudes and longitudes\n",
+    "    # xaxis: longitudes\n",
+    "    if r > 3: # last row\n",
+    "        ax[r].set_xticks([-120, -60, 0, 60, 120, 180], crs=ccrs.PlateCarree())\n",
+    "        lon_formatter = LongitudeFormatter(#zero_direction_label=True,\n",
+    "                                            degree_symbol='',\n",
+    "                                            dateline_direction_label=True)\n",
+    "        ax[r].xaxis.set_major_formatter(lon_formatter)\n",
+    "        del lon_formatter\n",
+    "    # yaxis: latitudes\n",
+    "    if r in [0, 2, 4]:\n",
+    "        ax[r].set_yticks([-90, -60, -30, 0, 30, 60, 90], crs=ccrs.PlateCarree())\n",
+    "        lat_formatter = LatitudeFormatter(degree_symbol='')\n",
+    "        ax[r].yaxis.set_major_formatter(lat_formatter)\n",
+    "        del lat_formatter\n",
+    "    # cloud impacts\n",
+    "    cf0 = ax[r].pcolormesh(lons_shift, lats,\n",
+    "                           dsf300_shift[response_all.index(response_plot[r]), :, :]/1e6,\n",
+    "                           vmin=-6, vmax=6, cmap='seismic',\n",
+    "                           rasterized=True,\n",
+    "                           transform=ccrs.PlateCarree())\n",
+    "    ax[r].set_title(response_plot[r], fontsize=16)\n",
+    "del r\n",
+    "fig.canvas.draw()\n",
+    "fig.tight_layout()\n",
+    "\n",
+    "# colorbar for response\n",
+    "fig.subplots_adjust(bottom=0.08)#(right=0.8)\n",
+    "cbar_ax = fig.add_axes([0.174, 0.0, 0.7, 0.02]) # left,bottom,width,height\n",
+    "cb = fig.colorbar(cf0, cax=cbar_ax, orientation='horizontal', extend='both')\n",
+    "cb.set_label('$\\Delta \\psi_{300}$ [10$^6$ m$^{2}$ s$^{-1}$]',\n",
+    "             fontsize=15, labelpad=5)\n",
+    "cb.ax.tick_params(labelsize=14)\n",
+    "del cbar_ax, cb, cf0\n",
+    "\n",
+    "# a), b) etc for subplots\n",
+    "labs = ['a)', 'b)', 'c)', 'd)', 'e)', 'f)']\n",
+    "for i in range(ax.shape[0]):\n",
+    "    ax[i].text(0.01, 1.02, labs[i], va='bottom', ha='left',\n",
+    "               rotation_mode='anchor', fontsize=15,\n",
+    "               transform=ax[i].transAxes)\n",
+    "del i, labs\n",
+    "\n",
+    "fig.savefig('figure_S4.pdf', bbox_inches='tight')\n",
+    "plt.show(fig)\n",
+    "plt.close(fig)\n",
+    "del fig, ax, proj\n",
+    "del response_plot, dsf300_shift, lons_shift"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/pythonscripts/helper_functions.py b/pythonscripts/helper_functions.py
new file mode 100644
index 0000000..edbfb7a
--- /dev/null
+++ b/pythonscripts/helper_functions.py
@@ -0,0 +1,587 @@
+import numpy as np
+import numpy.ma as ma
+import matplotlib.colors as mcolors
+import pandas as pd
+import netCDF4 as nc
+from scipy.optimize import curve_fit
+
+# create new colormap based on ncl colormap BlueYellowRed.rgb
+def generate_mymap():
+    cmap_name='BlueYellowRed'
+    colortab=pd.read_csv(cmap_name + '.rgb',
+                         delim_whitespace=True, skiprows=2)
+    colortab=colortab.values[:,0:3]/255
+    colortab_new = np.full((colortab.shape[0], 4), np.nan, dtype=float)
+    colortab_new[:, 0:3] = colortab
+    colortab_new[:,3] = 1
+    mymap = mcolors.LinearSegmentedColormap.from_list(cmap_name, colortab_new, N=254)
+    del colortab_new
+    # create another colormap with white space at 3 center points of colormap
+    colortab_new2 = np.full((colortab.shape[0]+2, 4), np.nan, dtype=float)
+    colortab_new2[0:126, 0:3] = colortab[0:126, :]
+    colortab_new2[126:129, 0:3] = np.array([[1, 1, 1], [1,1,1], [1,1,1]]) # change center of colorbar to white
+    colortab_new2[129:, 0:3] = colortab[127:, :]
+    colortab_new2[:,3] = 1
+    mymap2 = mcolors.LinearSegmentedColormap.from_list(cmap_name, colortab_new2, N=254)
+    del colortab_new2
+    del colortab, cmap_name
+    
+    return mymap, mymap2
+
+######################################################################
+######################################################################
+# calculate monthly mean and seasonal mean data
+def calcMonthlyandSeasonMean(data, months, seasons):
+    """ Calculate the monthly mean and season mean of a given time series.
+    
+    Use a time series of monthly means of a variable to calculate the mean
+    over all Januarys, Februarys etc. and for the seasons for the whole
+    time series.
+    
+    Args:
+        data: numpy ndarray with monthly data.
+        months: List with abbreviations for all 12 months.
+        seasons: List with abbreviations for the 4 seasons.
+
+    Returns:
+        monthly_mean: Mean over all months for whole time series.
+        season_mean: Mean over seasons for whole time series.
+    """
+    
+    # dictionary to be able to identify which month belongs to which season
+    seasons_dict = {'DJF': ['Dec', 'Jan', 'Feb'],
+                    'MAM': ['Mar', 'Apr', 'May'],
+                    'JJA': ['Jun', 'Jul', 'Aug'],
+                    'SON': ['Sep', 'Oct', 'Nov']
+                    }
+
+    monthly_data = {}
+    monthly_mean = {}
+    for n, month in enumerate(months):
+        monthly_data[month] = data[n::12, :]
+            # mean over every twelth month for every n -> one mean for all 
+            # 12 months
+        monthly_mean[month] = np.nanmean(monthly_data[month], axis=0)
+
+    # the season mean considers all DJF months, even JF at beginning of time
+    # series and D at its end
+    season_mean = {}
+    for season in seasons:
+        season_mean[season] = np.nanmean([ monthly_mean[month] for month in \
+                                           seasons_dict[season] ], axis=0)
+
+    return monthly_mean, season_mean
+
+######################################################################
+######################################################################
+# jet latitude and jet strength
+def func_fit_quadratic(x, p0, p1, p2):
+    return p0+p1*x+p2*x**2
+
+def get_eddyjetlatint(u, lat):
+    # calculate latitude of eddy-driven jet 
+    # make sure that lat is ordered from SP to NP; otherwise
+    # np.arange does not work to create latint
+    if lat[0] > lat[1]:
+        lat = lat[::-1]
+        u = u[::-1]
+
+    # Southern hemisphere
+    # search for jet between 25S and 70S
+    indlat_sh = np.squeeze(np.array(np.where((lat<-25.0) & (lat>-70.0))))
+    # find index of maximum value of u within the defined latitude range
+    maxlat = np.argmax(u[indlat_sh]) + indlat_sh[0]
+    # do quadratic fit around the maximum
+    # interpolate latitude and u-wind for a more precise result
+    latint=np.arange(lat[maxlat-1], lat[maxlat+1], 0.01)
+    uint = np.interp(latint, lat[indlat_sh], u[indlat_sh])
+    p,_ = curve_fit(func_fit_quadratic, latint, uint)
+    ufit = func_fit_quadratic(latint, p[0], p[1], p[2])
+    jetlat_sh = latint[np.argmax(ufit)]
+    # get strength of jet (maximum of u850 at jet latitude)
+    jetint_sh = ufit[np.argmax(ufit)] 
+
+    # delete variables that are not returned by the function, so that you can
+    # use the same names for the northern hemisphere
+    del indlat_sh, maxlat, latint, uint, p, ufit
+
+    # Northern hemisphere
+    # search for jet between 25N and 70N
+    indlat_nh = np.squeeze(np.array(np.where((lat>25.0) & (lat<70.0))))
+    # find index of maximum value of u within the defined latitude range
+    maxlat = np.argmax(u[indlat_nh]) + indlat_nh[0]
+    # do a quadratic fit around the maximum
+    # interpolate latitude and u-wind for a more precise result
+    latint=np.arange(lat[maxlat-1], lat[maxlat+1], 0.01)
+    uint = np.interp(latint, lat[indlat_nh], u[indlat_nh])
+    p,_ = curve_fit(func_fit_quadratic, latint, uint)
+    ufit = func_fit_quadratic(latint, p[0], p[1], p[2])
+    jetlat_nh = latint[np.argmax(ufit)]
+
+    # get strength of jet (maximum of u850 at jet latitude)
+    jetint_nh = ufit[np.argmax(ufit)] # = ufit.max()
+
+    del indlat_nh, maxlat, latint, uint, p, ufit
+   
+    return jetlat_sh, jetint_sh, jetlat_nh, jetint_nh
+
+# same function as above, but only for northern hemisphere
+def get_eddyjetlatint_NH(u, lat):
+    # calculate latitude of eddy-driven jet
+    # make sure that lat is ordered from SP to NP; otherwise
+    # np.arange does not work to create latint
+    if lat[0] > lat[1]:
+        lat = lat[::-1]
+        u = u[::-1]
+    # Northern hemisphere
+    # search for jet between 25N and 70N
+    indlat_nh = np.squeeze(np.array(np.where((lat>25.0) & (lat<70.0))))
+    # find index of maximum value of u within the defined latitude range
+    maxlat = np.argmax(u[indlat_nh]) + indlat_nh[0]
+    # do a quadratic fit around the maximum
+    # interpolate latitude and u-wind for a more precise result
+    latint=np.arange(lat[maxlat-1], lat[maxlat+1], 0.01)
+    uint = np.interp(latint, lat[indlat_nh], u[indlat_nh])
+    p,_ = curve_fit(func_fit_quadratic, latint, uint)
+    ufit = func_fit_quadratic(latint, p[0], p[1], p[2])
+    jetlat_nh = latint[np.argmax(ufit)]
+
+    # get strength of jet (maximum of u850 at jet latitude)
+    jetint_nh = ufit[np.argmax(ufit)] # = ufit.max()
+   
+    return jetlat_nh, jetint_nh
+
+######################################################################
+######################################################################
+# adapt function for detection of jet latitude and jet strength in 
+# Northern Hemisphere so that it can treat NaN's.
+def get_eddyjetlatint_NH_nan(u, lat, lo):
+    # calculate latitude of eddy-driven jet 
+    # make sure that lat is ordered from SP to NP; otherwise
+    # np.arange does not work to create latint
+    if lat[0] > lat[1]:
+        lat = lat[::-1]
+        u = u[::-1]
+    # Northern Hemisphere
+    if lo > 0 and lo < 40: # avoid diagnosing the jet in the Mediterranean sea
+                           # and Black Sea
+        indlat_nh = np.squeeze(np.array(np.where((lat>45.0) & (lat<62.0))))
+    else:
+        indlat_nh = np.squeeze(np.array(np.where((lat>25.0) & (lat<62.0))))
+    # find index of maximum value of u within the defined latitude range
+    maxlat = np.nanargmax(u[indlat_nh]) + indlat_nh[0]
+    # do a quadratic fit around the maximum
+    # interpolate latitude and u-wind for a more precise result
+    try:
+        latint=np.arange(lat[maxlat-1], lat[maxlat+1], 0.01)
+        uint = np.interp(latint, lat[indlat_nh], u[indlat_nh])
+        p,_ = curve_fit(func_fit_quadratic, latint, uint)
+        ufit = func_fit_quadratic(latint, p[0], p[1], p[2])
+        jetlat_nh = latint[np.nanargmax(ufit)]
+
+        # get strength of jet (maximum of u850 at jet latitude)
+        jetint_nh = ufit[np.nanargmax(ufit)] # = ufit.max()
+        
+    except ValueError:
+        print("Value error in function get_eddyjetlatint_NH_nan!\n" + \
+              " Set jetlat and jetint to NaN for longitude " + str(lo))
+        jetlat_nh = np.nan
+        jetint_nh = np.nan
+       
+    return jetlat_nh, jetint_nh
+
+######################################################################
+######################################################################
+# get total response, SST impact and cloud impact from cloud locking
+# simulations
+def calc_impacts_timmean(var_T1C1, var_T2C2, var_T1C2, var_T2C1):
+    """ Decompose climate warming response of a given variable into total
+        response, SST impact and cloud impact.
+    
+    Calculate the global warming response of a time-mean variable based on 
+    cloud-locking method. Decompose
+    the (total) response into a contribution of changes in cloud-radiative
+    properties and a contribution of changes in SSTs (SST increase). You need
+    four simulations. SST and clouds are taken either from control climate 
+    (T1, C1) or from global warming simulation (T2, C2).
+        
+    Args:
+        var_T1C1: lat-lon array with time-mean data of T1C1 simulation.
+        var_T2C2: lat-lon array with time-mean data of T2C2 simulation.
+        var_T1C2: lat-lon array with time-mean data of T1C2 simulation.
+        var_T2C1: lat-lon array with time-mean data of T2C1 simulation.
+
+    Returns:
+        tot: total response of variable to global warming.
+        sst: SST impact on global warming response.
+        cld: cloud impact on global warming response.
+    """
+    # calculate climate change response of time mean variable
+    # total response of circulation
+    tot = var_T2C2 - var_T1C1
+    # response to SST increase (mean over both climates)
+    sst = np.nanmean(np.array([(var_T2C1 - var_T1C1),
+                               (var_T2C2 - var_T1C2)]), axis=0)
+    # response to clouds (mean over both climates)
+    cld = np.nanmean(np.array([(var_T1C2 - var_T1C1),
+                               (var_T2C2 - var_T2C1)]), axis=0)
+    return tot, sst, cld
+
+
+######################################################################
+######################################################################
+# get total response, SST impact, cloud impact and water vapor impact
+# from cloud- and water vapor-locking simulations
+def calc_3impacts_timmean(var_T1C1W1, var_T2C2W2, var_T1C2W2, var_T2C1W1,
+                          var_T1C2W1, var_T1C1W2, var_T2C2W1, var_T2C1W2):
+    """ Decompose climate warming response of a given variable into total
+        response, SST impact, cloud-radiative impact and water vapor (or clouds
+        in different region) radiative impact.
+    
+    Calculate the global warming response of a time-mean variable based on 
+    cloud-locking method. Decompose the (total) response into a contribution
+    of changes in cloud-radiative properties, changes in water vapor (or 
+    clouds in a different region) and changes in SSTs (SST increase). You need
+    eight simulations. SST, clouds and water vapor (clouds in different region)
+    are taken either from control climate (T1, C1, W1) or from global warming
+    simulation (T2, C2, W2).
+        
+    Args:
+        var_T1C1W1: lat-lon array with time-mean data of T1C1W1 simulation.
+        var_T2C2W2: lat-lon array with time-mean data of T2C2W2 simulation.
+        var_T1C2W2: lat-lon array with time-mean data of T1C2W2 simulation.
+        var_T2C1W1: lat-lon array with time-mean data of T2C1W1 simulation.
+        var_T1C2W1: lat-lon array with time-mean data of T1C2W1 simulation.
+        var_T1C1W2: lat-lon array with time-mean data of T1C1W2 simulation.
+        var_T2C2W1: lat-lon array with time-mean data of T2C2W1 simulation.
+        var_T2C1W2: lat-lon array with time-mean data of T2C1W2 simulation.
+
+    Returns:
+        tot: total response of variable to global warming.
+        sst: SST impact on global warming response.
+        cld: cloud-radiative impact on global warming response.
+        vap: water vapor radiative impact or impact from clouds in a different
+             region than in cld on global warming response.
+    """
+    # calculate climate change response of time mean variable
+    # total response of circulation
+    tot = var_T2C2W2 - var_T1C1W1
+    # response to SST increase (mean over both climates)
+    sst = np.nanmean(np.array([(var_T2C1W1 - var_T1C1W1),
+                               (var_T2C2W2 - var_T1C2W2)]), axis=0)
+    # response to clouds (mean over both climates)
+    cld = np.nanmean(np.array([(var_T1C2W1 - var_T1C1W1),
+                               (var_T1C2W2 - var_T1C1W2),
+                               (var_T2C2W1 - var_T2C1W1),
+                               (var_T2C2W2 - var_T2C1W2)]), axis=0)
+    # response in water vapor or clouds in a different region than in cld
+    # (mean over both climates)
+    vap = np.nanmean(np.array([(var_T1C1W2 - var_T1C1W1),
+                               (var_T1C2W2 - var_T1C2W1),
+                               (var_T2C1W2 - var_T2C1W1),
+                               (var_T2C2W2 - var_T2C2W1)]), axis=0)
+    
+    return tot, sst, cld, vap
+
+######################################################################
+######################################################################
+# copy of basemap function shiftgrid, because basemap could not be installed
+def shiftgrid_copy(lon0,datain,lonsin,start=True,cyclic=360.0):
+    if np.fabs(lonsin[-1]-lonsin[0]-cyclic) > 1.e-4:
+        # Use all data instead of raise ValueError, 'cyclic point not included'
+        start_idx = 0
+    else:
+        # If cyclic, remove the duplicate point
+        start_idx = 1
+    if lon0 < lonsin[0] or lon0 > lonsin[-1]:
+        raise ValueError('lon0 outside of range of lonsin')
+    i0 = np.argmin(np.fabs(lonsin-lon0))
+    i0_shift = len(lonsin)-i0
+    if ma.isMA(datain):
+        dataout  = ma.zeros(datain.shape,datain.dtype)
+    else:
+        dataout  = np.zeros(datain.shape,datain.dtype)
+    if ma.isMA(lonsin):
+        lonsout = ma.zeros(lonsin.shape,lonsin.dtype)
+    else:
+        lonsout = np.zeros(lonsin.shape,lonsin.dtype)
+    if start:
+        lonsout[0:i0_shift] = lonsin[i0:]
+    else:
+        lonsout[0:i0_shift] = lonsin[i0:]-cyclic
+    dataout[...,0:i0_shift] = datain[...,i0:]
+    if start:
+        lonsout[i0_shift:] = lonsin[start_idx:i0+start_idx]+cyclic
+    else:
+        lonsout[i0_shift:] = lonsin[start_idx:i0+start_idx]
+    dataout[...,i0_shift:] = datain[...,start_idx:i0+start_idx]
+    return dataout,lonsout
+
+
+######################################################################
+######################################################################
+# calcualte the zonal mean over a given region
+def calcBoxZonalmean(var, lats, lons, lonwest, loneast):
+    """ Calculate the zonal-mean of a given variable for a 
+    region specified by lonwest and loneast.
+
+    Calculate the zonal-mean of a given variable for a region
+    specified by lonwest and loneast.
+
+    Args:
+        var: lat-lon array.
+        lats: array with latitudes.
+        lons: array with longitudes.
+        lonwest: western longitude.
+        loneast: eastern longitude.
+
+    Returns:
+        var_zm: time-mean zonal-mean variable for the given region.
+    """
+
+    # check that longitudes range from 0 to 360
+    if lons.min() < 0:
+        print('longitudes range from ' + str(lons.min()) + ' to ' + \
+              str(lons.max()))
+        print('Leave function calcOceanbasinMean')
+        return
+
+    if lonwest >= 0: # keep lons from 0 to 360
+        # index of lonwest and loneast in longitude vector
+        lonind_west = (np.abs(lons-lonwest)).argmin()
+        lonind_east = (np.abs(lons-loneast)).argmin()
+
+        var_zm = np.nanmean(var[:, lonind_west:lonind_east+1], axis=1)
+        del lonind_west, lonind_east
+        
+    elif lonwest < 0: # shift longitudes from 0...360 deg lon to -180...180 deg
+        var1, lons1 = shiftgrid_copy(180., var, lons, start=False)
+        lonind_west = (np.abs(lons1-lonwest)).argmin()
+        lonind_east = (np.abs(lons1-loneast)).argmin()
+        
+        var_zm = np.nanmean(var1[:, lonind_west:lonind_east+1], axis=1)
+        del lonind_west, lonind_east
+        
+    return var_zm
+
+######################################################################
+######################################################################
+
+# calculate vertical means based on level indices
+def get_verticalmean_overp_tropo(data, plev, tropoind1, tropoind2):
+    # input data must have shape: levs, lats, lons
+    
+    # levels must go from TOA to surface
+    if plev[0] > plev[1]:
+        print('change order of levels to go from TOA to surface')
+        plev = plev[::-1]
+        data = data[::-1, :, :]
+    
+    nlev  = plev.size
+    dplev = np.full(nlev, np.nan, dtype=float)
+    dplev[1:nlev-1] = 0.5*(np.abs(plev[2:nlev]-plev[0:nlev-2]))
+    dplev[0] = np.abs(plev[1]-plev[0])
+    dplev[nlev-1] = np.abs(plev[nlev-1]-plev[nlev-2])
+        
+    out = np.full(data[0,:,:].shape, np.nan, dtype=float)
+    for la in range(data[0,:,0].shape[0]): # latitudes
+        for lo in range(data[0,0,:].shape[0]): # longitudes
+            out[la,lo] = np.nansum(data[tropoind1[la,lo]:tropoind2[la,lo]+1,
+                                        la, lo] * \
+                                   dplev[tropoind1[la,lo]:tropoind2[la,lo]+1],
+                                   axis=0) / \
+                         np.nansum(dplev[tropoind1[la,lo]:tropoind2[la,lo]+1])
+        del lo
+    del la
+    return out
+
+
+######################################################################
+######################################################################
+# read a specified variable for a certain pressure level
+def read_var_onelevel(ifile, var, varlev, level, printmessages=False):
+    ncfile = nc.Dataset(ifile, 'r')
+    lats = ncfile.variables['lat'][:].data
+    lons = ncfile.variables['lon'][:].data
+    levs = ncfile.variables[varlev][:].data
+    var_nc = ncfile.variables[var][:].data
+    ncfile.close()
+    del ncfile
+    
+    # shift longitudes, so that they range from 0 to 360 and not from -180 to 180
+    if lons.min() < 0 or lons.max() < 190:
+        if printmessages:
+            print('      shift longitudes')
+        var_nc, lons = obm.shiftgrid_copy(0., var_nc, lons, start=False)
+        lons = lons + 360
+
+    # check that latitudes are from south to north
+    if lats[0] > lats[1]:
+        if printmessages:
+            print('      shift latitudes')
+        lats = lats[::-1]
+        var_nc = var_nc[:, :, ::-1, :]
+
+    # get variable for specified pressure level
+    levind = (np.abs(levs-level*1e2)).argmin() # index of level
+    var_lev = var_nc[:, levind, :, :]
+    del levs, var_nc, levind
+
+    return var_lev, lats, lons
+
+##############################################################################
+##############################################################################
+# read zonal wind at 850hPa from file that contains only this variable
+#def read_u850(ifile, var, printmessages=False):
+#    ncfile = nc.Dataset(ifile, 'r')
+#    lats = ncfile.variables['lat'][:].data
+#    lons = ncfile.variables['lon'][:].data
+#    var_nc = np.squeeze(ncfile.variables[var][:].data)
+#    ncfile.close()
+#    del ncfile
+#    
+#    # Set high values to NaN's.
+#    var_nc[var_nc > 1000] = np.nan
+#    if printmessages:
+#        print('     ', np.nanmax(var_nc), np.nanmin(var_nc),
+#              " contains NaN's:", np.isnan(var_nc).any())
+#    
+#    # check latitudes and longitudes
+#    # longitudes should range from 0 to 360 and not from -180 to 180
+#    if lons.min() < 0 or lons.max() < 190:
+#        if printmessages:
+#            print('      shift longitudes')
+#        var_nc, lons = obm.shiftgrid_copy(0., var_nc, lons, start=False)
+#        lons = lons + 360
+#
+#    # latitudes should be from south to north
+#    if lats[0] > lats[1]:
+#        if printmessages:
+#            print('      shift latitudes')
+#        lats = lats[::-1]
+#        var_nc = var_nc[:, ::-1, :]
+#
+#    return var_nc, lats, lons
+
+
+##############################################################################
+##############################################################################
+# horizontal interpolation of the data
+
+# this is a copy of the mpl_toolkits.basemap.interp function
+def interp_copy(datain,xin,yin,xout,yout,checkbounds=False,masked=False,order=1):
+    # xin and yin must be monotonically increasing.
+    if xin[-1]-xin[0] < 0 or yin[-1]-yin[0] < 0:
+        raise ValueError('xin and yin must be increasing!')
+    if xout.shape != yout.shape:
+        raise ValueError('xout and yout must have same shape!')
+    # check that xout,yout are
+    # within region defined by xin,yin.
+    if checkbounds:
+        if xout.min() < xin.min() or \
+           xout.max() > xin.max() or \
+           yout.min() < yin.min() or \
+           yout.max() > yin.max():
+            raise ValueError('yout or xout outside range of yin or xin')
+    # compute grid coordinates of output grid.
+    delx = xin[1:]-xin[0:-1]
+    dely = yin[1:]-yin[0:-1]
+    if max(delx)-min(delx) < 1.e-4 and max(dely)-min(dely) < 1.e-4:
+        # regular input grid.
+        xcoords = (len(xin)-1)*(xout-xin[0])/(xin[-1]-xin[0])
+        ycoords = (len(yin)-1)*(yout-yin[0])/(yin[-1]-yin[0])
+    else:
+        # irregular (but still rectilinear) input grid.
+        xoutflat = xout.flatten(); youtflat = yout.flatten()
+        ix = (np.searchsorted(xin,xoutflat)-1).tolist()
+        iy = (np.searchsorted(yin,youtflat)-1).tolist()
+        xoutflat = xoutflat.tolist(); xin = xin.tolist()
+        youtflat = youtflat.tolist(); yin = yin.tolist()
+        xcoords = []; ycoords = []
+        for n,i in enumerate(ix):
+            if i < 0:
+                xcoords.append(-1) # outside of range on xin (lower end)
+            elif i >= len(xin)-1:
+                xcoords.append(len(xin)) # outside range on upper end.
+            else:
+                xcoords.append(float(i)+(xoutflat[n]-xin[i])/(xin[i+1]-xin[i]))
+        for m,j in enumerate(iy):
+            if j < 0:
+                ycoords.append(-1) # outside of range of yin (on lower end)
+            elif j >= len(yin)-1:
+                ycoords.append(len(yin)) # outside range on upper end
+            else:
+                ycoords.append(float(j)+(youtflat[m]-yin[j])/(yin[j+1]-yin[j]))
+        xcoords = np.reshape(xcoords,xout.shape)
+        ycoords = np.reshape(ycoords,yout.shape)
+    # data outside range xin,yin will be clipped to
+    # values on boundary.
+    if masked:
+        xmask = np.logical_or(np.less(xcoords,0),np.greater(xcoords,len(xin)-1))
+        ymask = np.logical_or(np.less(ycoords,0),np.greater(ycoords,len(yin)-1))
+        xymask = np.logical_or(xmask,ymask)
+    xcoords = np.clip(xcoords,0,len(xin)-1)
+    ycoords = np.clip(ycoords,0,len(yin)-1)
+    # interpolate to output grid using bilinear interpolation.
+    if order == 1:
+        xi = xcoords.astype(np.int32)
+        yi = ycoords.astype(np.int32)
+        xip1 = xi+1
+        yip1 = yi+1
+        xip1 = np.clip(xip1,0,len(xin)-1)
+        yip1 = np.clip(yip1,0,len(yin)-1)
+        delx = xcoords-xi.astype(np.float32)
+        dely = ycoords-yi.astype(np.float32)
+        dataout = (1.-delx)*(1.-dely)*datain[yi,xi] + \
+                  delx*dely*datain[yip1,xip1] + \
+                  (1.-delx)*dely*datain[yip1,xi] + \
+                  delx*(1.-dely)*datain[yi,xip1]
+    elif order == 0:
+        xcoordsi = np.around(xcoords).astype(np.int32)
+        ycoordsi = np.around(ycoords).astype(np.int32)
+        dataout = datain[ycoordsi,xcoordsi]
+    elif order == 3:
+        try:
+            from scipy.ndimage import map_coordinates
+        except ImportError:
+            raise ValueError('scipy.ndimage must be installed if order=3')
+        coords = [ycoords,xcoords]
+        dataout = map_coordinates(datain,coords,order=3,mode='nearest')
+    else:
+        raise ValueError('order keyword must be 0, 1 or 3')
+    if masked:
+        newmask = ma.mask_or(ma.getmask(dataout), xymask)
+        dataout = ma.masked_array(dataout, mask=newmask)
+        if not isinstance(masked, bool):
+            dataout = dataout.filled(masked)
+    return dataout
+
+def interpolate2d(datao, lato, lono, lati, loni):
+    # datao is input of assumed dimension (ntim, nlato, nlono)
+    # lato, lono is old input grid
+    # o means "old"
+    
+    # dimensions of time
+    ntim = datao.shape[0]
+    
+    # dimensions of new latitude and longitude
+    nlati = lati.size
+    nloni = loni.size
+    
+    # lato, lono must be increasing
+    if (not(np.all(np.diff(lato)>0))):
+        raise ValueError()    
+    if (not(np.all(np.diff(lono)>0))):
+        raise ValueError()
+
+    # prepare interpolated data array
+    datai = np.full((ntim, nlati, nloni), np.nan, dtype=float)
+    
+    # interpolate lat-lon dimension
+    x, y = np.meshgrid(loni, lati)
+    for t in range(ntim):
+        datai[t,:,:] = interp_copy(datao[t,:,:], lono, lato, x, y,
+                                   checkbounds=False, masked=False, order=1)
+    del t
+    
+    return datai
\ No newline at end of file
diff --git a/pythonscripts/interpolate_cmip5_data_to_common_grid.ipynb b/pythonscripts/interpolate_cmip5_data_to_common_grid.ipynb
new file mode 100644
index 0000000..fb47236
--- /dev/null
+++ b/pythonscripts/interpolate_cmip5_data_to_common_grid.ipynb
@@ -0,0 +1,444 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Interpolate the CMIP5 data to a common grid\n",
+    "\n",
+    "Interpolate the zonal wind at 850 hPa coupled and atmosphere CMIP5 models (historical, RCP8.5, amip, amip4K, amipFuture to a common grid with 96 grid points in latitude and 192 grid points in longitude.\n",
+    "\n",
+    "Save the interpolated data as .npy files."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Load libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import netCDF4 as nc\n",
+    "import glob\n",
+    "\n",
+    "import helper_functions as fct"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Specify CMIP5 models and simulations that are analyzed"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# models\n",
+    "models_amip = ['bcc-csm1-1', 'CanAM4', 'CCSM4', 'CNRM-CM5', 'HadGEM2-A',\n",
+    "               'IPSL-CM5A-LR', 'IPSL-CM5B-LR', 'MIROC5', 'MPI-ESM-LR',\n",
+    "               'MPI-ESM-MR', 'MRI-CGCM3']\n",
+    "models_cmip = ['ACCESS1-0', 'ACCESS1-3', 'bcc-csm1-1-m', 'bcc-csm1-1',\n",
+    "               'BNU-ESM', 'CanESM2', 'CCSM4', 'CESM1-BGC',\n",
+    "               'CESM1-CAM5', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS',\n",
+    "               'CNRM-CM5', 'CSIRO-Mk3-6-0', 'EC-EARTH', 'FGOALS-g2',\n",
+    "               'FIO-ESM', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M',\n",
+    "               'GISS-E2-H', 'GISS-E2-R', 'HadGEM2-AO', 'HadGEM2-CC',\n",
+    "               'HadGEM2-ES', 'inmcm4', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR',\n",
+    "               'IPSL-CM5B-LR', 'MIROC5', 'MIROC-ESM-CHEM', 'MIROC-ESM',\n",
+    "               'MPI-ESM-LR', 'MPI-ESM-MR', 'MRI-CGCM3', 'NorESM1-ME',\n",
+    "               'NorESM1-M']\n",
+    "\n",
+    "# simulations\n",
+    "runs_cmip = ['historical', 'rcp85']\n",
+    "runs_amip = ['amip', 'amip4K', 'amipFuture']\n",
+    "\n",
+    "# time period of simulation\n",
+    "timeint_cmip = ['197501-200412', '207001-209912']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Generate latitude and logitude arrays on which the data will be interpolated"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "lats = np.arange(-89.0625, 90, 1.875)\n",
+    "lons = np.arange(0, 360, 1.875)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Interpolate data from coupled models"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "ACCESS1-0\n",
+      "   historical\n",
+      "   rcp85\n",
+      "ACCESS1-3\n",
+      "   historical\n",
+      "   rcp85\n",
+      "bcc-csm1-1-m\n",
+      "   historical\n",
+      "   rcp85\n",
+      "bcc-csm1-1\n",
+      "   historical\n",
+      "   rcp85\n",
+      "BNU-ESM\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CanESM2\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CCSM4\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CESM1-BGC\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CESM1-CAM5\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CMCC-CESM\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CMCC-CM\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CMCC-CMS\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CNRM-CM5\n",
+      "   historical\n",
+      "   rcp85\n",
+      "CSIRO-Mk3-6-0\n",
+      "   historical\n",
+      "   rcp85\n",
+      "EC-EARTH\n",
+      "   historical\n",
+      "   rcp85\n",
+      "FGOALS-g2\n",
+      "   historical\n",
+      "   rcp85\n",
+      "FIO-ESM\n",
+      "   historical\n",
+      "   rcp85\n",
+      "GFDL-CM3\n",
+      "   historical\n",
+      "   rcp85\n",
+      "GFDL-ESM2G\n",
+      "   historical\n",
+      "   rcp85\n",
+      "GFDL-ESM2M\n",
+      "   historical\n",
+      "   rcp85\n",
+      "GISS-E2-H\n",
+      "   historical\n",
+      "   rcp85\n",
+      "GISS-E2-R\n",
+      "   historical\n",
+      "   rcp85\n",
+      "HadGEM2-AO\n",
+      "   historical\n",
+      "   rcp85\n",
+      "HadGEM2-CC\n",
+      "   historical\n",
+      "   rcp85\n",
+      "HadGEM2-ES\n",
+      "   historical\n",
+      "   rcp85\n",
+      "inmcm4\n",
+      "   historical\n",
+      "   rcp85\n",
+      "IPSL-CM5A-LR\n",
+      "   historical\n",
+      "   rcp85\n",
+      "IPSL-CM5A-MR\n",
+      "   historical\n",
+      "   rcp85\n",
+      "IPSL-CM5B-LR\n",
+      "   historical\n",
+      "   rcp85\n",
+      "MIROC5\n",
+      "   historical\n",
+      "   rcp85\n",
+      "MIROC-ESM-CHEM\n",
+      "   historical\n",
+      "   rcp85\n",
+      "MIROC-ESM\n",
+      "   historical\n",
+      "   rcp85\n",
+      "MPI-ESM-LR\n",
+      "   historical\n",
+      "   rcp85\n",
+      "MPI-ESM-MR\n",
+      "   historical\n",
+      "   rcp85\n",
+      "MRI-CGCM3\n",
+      "   historical\n",
+      "   rcp85\n",
+      "NorESM1-ME\n",
+      "   historical\n",
+      "   rcp85\n",
+      "NorESM1-M\n",
+      "   historical\n",
+      "   rcp85\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../cmip5/'\n",
+    "for model in models_cmip:\n",
+    "    print(model)\n",
+    "    for r, run in enumerate(runs_cmip):\n",
+    "        print('  ', run)\n",
+    "        # 1) read data of shape (time,lev,lat,lon)\n",
+    "        # uwind\n",
+    "        ifile = glob.glob(ipath + run + '/ua_Amon_' + model + \\\n",
+    "                          '*' + timeint_cmip[r] +'.absTime.nc')[0]\n",
+    "        ncfile = nc.Dataset(ifile, 'r')\n",
+    "        lats_cmip = ncfile.variables['lat'][:].data\n",
+    "        lons_cmip = ncfile.variables['lon'][:].data\n",
+    "        levs_cmip = ncfile.variables['plev'][:].data\n",
+    "        uwind = ncfile.variables['ua'][:].data\n",
+    "        ncfile.close()\n",
+    "        \n",
+    "        # get zonal wind at 850 hPa\n",
+    "        levind850 = (np.abs(levs_cmip-85000)).argmin() # index of 850hPa level\n",
+    "        u850_cmip = uwind[:, levind850, :, :]\n",
+    "        \n",
+    "        # In some models, orography is masked with very high values.\n",
+    "        # Set these values to NaN's.\n",
+    "        u850_cmip[u850_cmip > 1000] = np.nan\n",
+    "\n",
+    "        del levs_cmip, uwind, levind850\n",
+    "        del ifile, ncfile\n",
+    "        \n",
+    "        # 2) interpolate data to new grid\n",
+    "        u850_int = fct.interpolate2d(u850_cmip, lats_cmip,\n",
+    "                                     lons_cmip, lats, lons)\n",
+    "        \n",
+    "        # 3) save data to npy file\n",
+    "        np.save(ipath + model + '_u850_' + run + '.npy', u850_int)\n",
+    "        \n",
+    "        del lats_cmip, lons_cmip, u850_cmip, u850_int\n",
+    "    del r, run\n",
+    "del model"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Interpolate data from atmosphere models"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "bcc-csm1-1\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "CanAM4\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "CCSM4\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "CNRM-CM5\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "HadGEM2-A\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "IPSL-CM5A-LR\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "IPSL-CM5B-LR\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "MIROC5\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "MPI-ESM-LR\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "MPI-ESM-MR\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n",
+      "MRI-CGCM3\n",
+      "   amip\n",
+      "   amip4K\n",
+      "   amipFuture\n"
+     ]
+    }
+   ],
+   "source": [
+    "ipath = '../../cmip5/'\n",
+    "for model in models_amip:\n",
+    "    print(model)\n",
+    "    print('   amip')\n",
+    "    # amip\n",
+    "    ifile_amip = glob.glob(ipath + 'amip/ua_Amon_' + model + \\\n",
+    "                           '*197901-200812*.nc')[0]\n",
+    "    ncfile = nc.Dataset(ifile_amip, 'r')\n",
+    "    lats_amip = ncfile.variables['lat'][:].data\n",
+    "    lons_amip = ncfile.variables['lon'][:].data\n",
+    "    levs = ncfile.variables['plev'][:].data\n",
+    "    uwind = ncfile.variables['ua'][:].data\n",
+    "    ncfile.close()\n",
+    "\n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "    u850_amip = uwind[:, levind850, :, :]\n",
+    "\n",
+    "    # In some models, orography is masked with very high values.\n",
+    "    # Set these values to NaN's.\n",
+    "    u850_amip[u850_amip > 100] = np.nan\n",
+    "\n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile_amip, ncfile\n",
+    "\n",
+    "    # interpolate data to new grid\n",
+    "    u850_amip_int = fct.interpolate2d(u850_amip, lats_amip,\n",
+    "                                      lons_amip, lats, lons)\n",
+    "\n",
+    "    # save data to npy file\n",
+    "    np.save(ipath + model + '_u850_amip.npy', u850_amip_int)\n",
+    "\n",
+    "    del u850_amip, u850_amip_int\n",
+    "\n",
+    "    ##########################################################################\n",
+    "    # amip4K\n",
+    "    print('   amip4K')\n",
+    "    ifile_amip4k = glob.glob(ipath + 'amip4K/ua_Amon_' + model + \\\n",
+    "                             '*197901-200812*.nc')[0]  \n",
+    "    ncfile = nc.Dataset(ifile_amip4k, 'r')\n",
+    "    levs = ncfile.variables['plev'][:].data\n",
+    "    uwind = ncfile.variables['ua'][:].data\n",
+    "    ncfile.close()\n",
+    "    \n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # index of 850 hPa level\n",
+    "    u850_amip4k = uwind[:, levind850, :, :]\n",
+    "    \n",
+    "    # In some models, orography is masked with very high values.\n",
+    "    # Set these values to NaN's.\n",
+    "    u850_amip4k[u850_amip4k > 100] = np.nan\n",
+    "    \n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile_amip4k, ncfile\n",
+    "    \n",
+    "    # interpolate data to new grid\n",
+    "    u850_amip4k_int = fct.interpolate2d(u850_amip4k, lats_amip,\n",
+    "                                        lons_amip, lats, lons)\n",
+    "\n",
+    "    # save data to npy file\n",
+    "    np.save(ipath + model + '_u850_amip4k.npy', u850_amip4k_int)\n",
+    "\n",
+    "    del u850_amip4k, u850_amip4k_int\n",
+    "    \n",
+    "    ##########################################################################\n",
+    "    # amipFuture simulations\n",
+    "    print('   amipFuture')\n",
+    "    ifile_amipfut = glob.glob(ipath + 'amipFuture/ua_Amon_' + model +\\\n",
+    "                              '*197901-200812*.nc')[0]    \n",
+    "    ncfile = nc.Dataset(ifile_amipfut, 'r')\n",
+    "    levs = ncfile.variables['plev'][:].data\n",
+    "    uwind = ncfile.variables['ua'][:].data\n",
+    "    ncfile.close()\n",
+    "    # get zonal wind at 850 hPa\n",
+    "    levind850 = (np.abs(levs-85000)).argmin() # find index of 850 hPa level\n",
+    "    u850_amipfut = uwind[:, levind850, :, :]\n",
+    "    \n",
+    "    # In some models, orography is masked with very high values.\n",
+    "    # Set these values to NaN's.\n",
+    "    u850_amipfut[u850_amipfut > 100] = np.nan\n",
+    "    \n",
+    "    del levs, uwind, levind850\n",
+    "    del ifile_amipfut, ncfile\n",
+    "    \n",
+    "    # interpolate data to new grid\n",
+    "    u850_amipfut_int = fct.interpolate2d(u850_amipfut, lats_amip,\n",
+    "                                         lons_amip, lats, lons)\n",
+    "\n",
+    "    # save data to npy file\n",
+    "    np.save(ipath + model + '_u850_amipfut.npy', u850_amipfut_int)\n",
+    "\n",
+    "    del u850_amipfut, u850_amipfut_int\n",
+    "    \n",
+    "    del lats_amip, lons_amip\n",
+    "del model\n",
+    "del ipath"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 bleeding edge (using the module anaconda3/bleeding_edge)",
+   "language": "python",
+   "name": "anaconda3_bleeding"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/runscripts_ICON/exp.nanw0005.run b/runscripts_ICON/exp.nanw0005.run
new file mode 100755
index 0000000..7d1523c
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0005.run
@@ -0,0 +1,762 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0005.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0005/LOG.exp.nanw0005.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0005/LOG.exp.nanw0005.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=03:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0005.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0005"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/work/bm0834/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2010-01-01T00:00:00Z" #"2000-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2025-01-01T00:00:00Z" #"2010-01-01T00:00:00Z"   #"2000-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/work/bm0834/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .false.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+!&fixvar_nml
+! lfixvar_record  = .true.
+!/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','t_seasfc'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2026}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0006.run b/runscripts_ICON/exp.nanw0006.run
new file mode 100755
index 0000000..a9e17b9
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0006.run
@@ -0,0 +1,762 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0006.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0006/LOG.exp.nanw0006.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0006/LOG.exp.nanw0006.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=03:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0006.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0006"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/work/bm0834/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2010-01-01T00:00:00Z" #"2000-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2025-01-01T00:00:00Z" #"2010-01-01T00:00:00Z"   #"2000-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/work/bm0834/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .false.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+!&fixvar_nml
+! lfixvar_record  = .true.
+!/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','t_seasfc'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2026}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0007.run b/runscripts_ICON/exp.nanw0007.run
new file mode 100755
index 0000000..05410c8
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0007.run
@@ -0,0 +1,778 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0007.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0007/LOG.exp.nanw0007.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0007/LOG.exp.nanw0007.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=03:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0007.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0007"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+bindir="/work/bm0834/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="1999-02-01T00:00:00Z" #"2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+ICONDIR=/work/bm0834/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0008.run b/runscripts_ICON/exp.nanw0008.run
new file mode 100755
index 0000000..6363a42
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0008.run
@@ -0,0 +1,778 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0008.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0008/LOG.exp.nanw0008.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0008/LOG.exp.nanw0008.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=03:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0008.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0008"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+bindir="/work/bm0834/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+ICONDIR=/work/bm0834/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0006'
+ fixvar_apply_c_yoffset = 1
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0006_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0006_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0006_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0009.run b/runscripts_ICON/exp.nanw0009.run
new file mode 100755
index 0000000..4cf1ca0
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0009.run
@@ -0,0 +1,778 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0009.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0009/LOG.exp.nanw0009.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0009/LOG.exp.nanw0009.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=03:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0009.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0009"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+bindir="/work/bm0834/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+ICONDIR=/work/bm0834/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0006'
+ fixvar_apply_c_yoffset = 1
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0006_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0006_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0006_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0010.run b/runscripts_ICON/exp.nanw0010.run
new file mode 100755
index 0000000..2089d51
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0010.run
@@ -0,0 +1,778 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0010.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0010/LOG.exp.nanw0010.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0010/LOG.exp.nanw0010.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=03:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0010.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0010"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+bindir="/work/bm0834/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+ICONDIR=/work/bm0834/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0015.run b/runscripts_ICON/exp.nanw0015.run
new file mode 100755
index 0000000..efbc877
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0015.run
@@ -0,0 +1,781 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0015.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0015/LOG.exp.nanw0015.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0015/LOG.exp.nanw0015.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=00:30:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0015.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0015"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1988-01-01T00:00:00Z" #"2008-01-01T00:00:00Z" #"2007-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"
+end_date="1988-02-01T00:00:00Z" #"2010-01-01T00:00:00Z" #"2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .true.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_q_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 12
+ fixvar_apply_q_yoffset = 13
+
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0016.run b/runscripts_ICON/exp.nanw0016.run
new file mode 100755
index 0000000..8e1a6b1
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0016.run
@@ -0,0 +1,792 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0016.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0016/LOG.exp.nanw0016.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0016/LOG.exp.nanw0016.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=03:30:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0016.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0016"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"
+end_date="2010-01-01T00:00:00Z" #"2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .true.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_q_expid = 'nanw0006'
+ fixvar_apply_c_yoffset = -6
+ fixvar_apply_q_yoffset = -5
+
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0006_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0006_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0006_201001.nc
+
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0017.run b/runscripts_ICON/exp.nanw0017.run
new file mode 100755
index 0000000..7b3e37c
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0017.run
@@ -0,0 +1,791 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0017.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0017/LOG.exp.nanw0017.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0017/LOG.exp.nanw0017.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=03:30:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0017.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0017"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"
+end_date="2010-01-01T00:00:00Z" #"2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .true.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0006'
+ fixvar_apply_q_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = -6
+ fixvar_apply_q_yoffset = -5
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0006_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0006_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0006_201001.nc
+
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0018.run b/runscripts_ICON/exp.nanw0018.run
new file mode 100755
index 0000000..0b5950b
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0018.run
@@ -0,0 +1,781 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0018.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0018/LOG.exp.nanw0018.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0018/LOG.exp.nanw0018.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=03:30:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0018.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0018"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2009-01-01T00:00:00Z" #"2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"
+end_date="2010-01-01T00:00:00Z" #"2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.0250001
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .true.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0006'
+ fixvar_apply_q_expid = 'nanw0006'
+ fixvar_apply_c_yoffset = -6
+ fixvar_apply_q_yoffset = -5
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0006_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0006_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0006_201001.nc
+
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0019.run b/runscripts_ICON/exp.nanw0019.run
new file mode 100755
index 0000000..26500b8
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0019.run
@@ -0,0 +1,780 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0019.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0019/LOG.exp.nanw0019.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0019/LOG.exp.nanw0019.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0019.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0019"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"
+end_date="2010-01-01T00:00:00Z" #"2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .true.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_q_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = -6
+ fixvar_apply_q_yoffset = -5
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0020.run b/runscripts_ICON/exp.nanw0020.run
new file mode 100755
index 0000000..df90803
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0020.run
@@ -0,0 +1,791 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0020.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0020/LOG.exp.nanw0020.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0020/LOG.exp.nanw0020.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0020.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0020"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1993-01-01T00:00:00Z" #"1988-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"
+end_date="2010-01-01T00:00:00Z" #"2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .true.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_q_expid = 'nanw0006'
+ fixvar_apply_c_yoffset = -6 !3 !12 !21
+ fixvar_apply_q_yoffset = -5 !4 !13 !22
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0006_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0006_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0006_201001.nc
+
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0021.run b/runscripts_ICON/exp.nanw0021.run
new file mode 100755
index 0000000..62a4dbd
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0021.run
@@ -0,0 +1,791 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0021.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0021/LOG.exp.nanw0021.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0021/LOG.exp.nanw0021.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0021.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0021"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2007-01-01T00:00:00Z" #"2006-01-01T00:00:00Z" #"2003-01-01T00:00:00Z" #"1998-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"
+end_date="2010-01-01T00:00:00Z" #"2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .true.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0006'
+ fixvar_apply_q_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = -6 !3 !12 !21
+ fixvar_apply_q_yoffset = -5 !4 !13 !22
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0006_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0006_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0006_201001.nc
+
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0022.run b/runscripts_ICON/exp.nanw0022.run
new file mode 100755
index 0000000..078d844
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0022.run
@@ -0,0 +1,781 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0022.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0022/LOG.exp.nanw0022.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0022/LOG.exp.nanw0022.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0022.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0022"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2006-01-01T00:00:00Z" #""1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"
+end_date="2010-01-01T00:00:00Z" #"2006-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1988-01-01T00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .true.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0006'
+ fixvar_apply_q_expid = 'nanw0006'
+ fixvar_apply_c_yoffset = -6 !3 !12 !21
+ fixvar_apply_q_yoffset = -5 !4 !13 !22
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+ p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0006_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0006_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0006_201001.nc
+
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0023.run b/runscripts_ICON/exp.nanw0023.run
new file mode 100755
index 0000000..4334cda
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0023.run
@@ -0,0 +1,844 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0023.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0023/LOG.exp.nanw0023.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0023/LOG.exp.nanw0023.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=05:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0023.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0023"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/work/bm0834/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc"
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2009-01-01T00:00:00Z"
+end_date="2014-01-01T00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/work/bm0834/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+ lprp    = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = -9
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+&prp_nml
+ lprp_c        = .true.
+ prp_c_expid   = 'nanw0006'
+ prp_c_yoffset = -9
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+!&output_nml
+! filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT1H"                    !"${output_interval}"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+! output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr'
+! remap            = 1
+! reg_lon_def      = ${reg_lon_def_reg}
+! reg_lat_def      = ${reg_lat_def_reg}
+!/
+!&output_nml
+! filetype         =  4
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "${output_interval}"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+! include_last     =  .false.
+! output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+! filename_format  = "<output_filename>_PL_<datetime2>"
+! pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv'!,'lwflxall','lwflxclr','swflxall','swflxclr'
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+! remap            = 1
+! reg_lon_def      = ${reg_lon_def_reg}
+! reg_lat_def      = ${reg_lat_def_reg}
+!/
+! Output for PRP
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll_prp'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'dR_c_trad_toa','dR_c_srad_toa','dR_c_trad_sfc','dR_c_srad_sfc'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_prp'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'dR_c_trad','dR_c_srad','dQ_c_trad','dQ_c_srad'
+ p_levels         = 50,100,200,300,500,700,1000,1500,2100,2800,3500,4500,6000,7500,9000,11000,13000,15500,18000,20000,23000,25000,30000,37000,45000,50000,55000,60000,68000,75000,82000,85000,87000,90000,92000,95000,97000,98000,99000,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_prp'         ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres','dR_c_trad','dR_c_srad','dQ_c_trad','dQ_c_srad'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2016}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0005/nanw0005-fixvarfields_ML_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+# link prp input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}0${mon}01T000000Z.nc prp_nanw0006_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_${year}${mon}01T000000Z.nc prp_nanw0006_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0006/nanw0006-fixvarfields_ML_20100101T000000Z.nc prp_nanw0006_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0031.run b/runscripts_ICON/exp.nanw0031.run
new file mode 100755
index 0000000..bb4645d
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0031.run
@@ -0,0 +1,796 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0031.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0031/LOG.exp.nanw0031.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0031/LOG.exp.nanw0031.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0031.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0031"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1985-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0031_fixvar_input/fixvarfields_TROP4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0031_fixvar_input/fixvarfields_TROP4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0031_fixvar_input/fixvarfields_TROP4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0032.run b/runscripts_ICON/exp.nanw0032.run
new file mode 100755
index 0000000..db22277
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0032.run
@@ -0,0 +1,796 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0032.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0032/LOG.exp.nanw0032.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0032/LOG.exp.nanw0032.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0032.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0032"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1988-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+# use Aiko'S icon bnary for the time being
+ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0032_fixvar_input/fixvarfields_TROPCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0032_fixvar_input/fixvarfields_TROPCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0032_fixvar_input/fixvarfields_TROPCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0033.run b/runscripts_ICON/exp.nanw0033.run
new file mode 100755
index 0000000..2788ca5
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0033.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0033.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0033/LOG.exp.nanw0033.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0033/LOG.exp.nanw0033.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0033.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0033"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2001-07-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2001-12-01T00:00:00Z" #"2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0033_fixvar_input/fixvarfields_TROP4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0033_fixvar_input/fixvarfields_TROP4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0033_fixvar_input/fixvarfields_TROP4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0034.run b/runscripts_ICON/exp.nanw0034.run
new file mode 100755
index 0000000..96eb445
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0034.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0034.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0034/LOG.exp.nanw0034.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0034/LOG.exp.nanw0034.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0034.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0034"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0034_fixvar_input/fixvarfields_TROPCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0034_fixvar_input/fixvarfields_TROPCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0034_fixvar_input/fixvarfields_TROPCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0044.run b/runscripts_ICON/exp.nanw0044.run
new file mode 100755
index 0000000..6e41458
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0044.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0044.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0044/LOG.exp.nanw0044.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0044/LOG.exp.nanw0044.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0044.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0044"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0044_fixvar_input/fixvarfields_ML4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0044_fixvar_input/fixvarfields_ML4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0044_fixvar_input/fixvarfields_ML4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0045.run b/runscripts_ICON/exp.nanw0045.run
new file mode 100755
index 0000000..7a776ba
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0045.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0045.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0045/LOG.exp.nanw0045.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0045/LOG.exp.nanw0045.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0045.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0045"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1998-01-01T00:00:00Z" #"1997-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1998-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0045_fixvar_input/fixvarfields_MLCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0045_fixvar_input/fixvarfields_MLCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0045_fixvar_input/fixvarfields_MLCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0046.run b/runscripts_ICON/exp.nanw0046.run
new file mode 100755
index 0000000..75a61d9
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0046.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0046.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0046/LOG.exp.nanw0046.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0046/LOG.exp.nanw0046.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0046.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0046"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0044_fixvar_input/fixvarfields_ML4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0044_fixvar_input/fixvarfields_ML4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0044_fixvar_input/fixvarfields_ML4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0047.run b/runscripts_ICON/exp.nanw0047.run
new file mode 100755
index 0000000..09878fe
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0047.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0047.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0047/LOG.exp.nanw0047.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0047/LOG.exp.nanw0047.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0047.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0047"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1996-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0045_fixvar_input/fixvarfields_MLCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0045_fixvar_input/fixvarfields_MLCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0045_fixvar_input/fixvarfields_MLCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0048.run b/runscripts_ICON/exp.nanw0048.run
new file mode 100755
index 0000000..7159ad0
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0048.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0048.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0048/LOG.exp.nanw0048.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0048/LOG.exp.nanw0048.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0048.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0048"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2005-01-01T00:00:00Z" #"2004-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"2005-01-01T00:00:00Z" #"2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0048_fixvar_input/fixvarfields_PO4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0048_fixvar_input/fixvarfields_PO4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0048_fixvar_input/fixvarfields_PO4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0049.run b/runscripts_ICON/exp.nanw0049.run
new file mode 100755
index 0000000..d0c2830
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0049.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0049.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0049/LOG.exp.nanw0049.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0049/LOG.exp.nanw0049.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0049.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0049"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0049_fixvar_input/fixvarfields_POCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0049_fixvar_input/fixvarfields_POCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0049_fixvar_input/fixvarfields_POCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0050.run b/runscripts_ICON/exp.nanw0050.run
new file mode 100755
index 0000000..1d4b842
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0050.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0050.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0050/LOG.exp.nanw0050.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0050/LOG.exp.nanw0050.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0050.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0050"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1998-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0048_fixvar_input/fixvarfields_PO4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0048_fixvar_input/fixvarfields_PO4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0048_fixvar_input/fixvarfields_PO4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0051.run b/runscripts_ICON/exp.nanw0051.run
new file mode 100755
index 0000000..a50078b
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0051.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0051.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0051/LOG.exp.nanw0051.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0051/LOG.exp.nanw0051.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0051.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0051"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0049_fixvar_input/fixvarfields_POCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0049_fixvar_input/fixvarfields_POCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0049_fixvar_input/fixvarfields_POCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0052.run b/runscripts_ICON/exp.nanw0052.run
new file mode 100755
index 0000000..9ae9880
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0052.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0052.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0052/LOG.exp.nanw0052.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0052/LOG.exp.nanw0052.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0052.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0052"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0052_fixvar_input/fixvarfields_NAext4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0052_fixvar_input/fixvarfields_NAext4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0052_fixvar_input/fixvarfields_NAext4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0053.run b/runscripts_ICON/exp.nanw0053.run
new file mode 100755
index 0000000..da3ffcc
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0053.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0053.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0053/LOG.exp.nanw0053.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0053/LOG.exp.nanw0053.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0053.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0053"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2006-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0053_fixvar_input/fixvarfields_NAextCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0053_fixvar_input/fixvarfields_NAextCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0053_fixvar_input/fixvarfields_NAextCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0054.run b/runscripts_ICON/exp.nanw0054.run
new file mode 100755
index 0000000..c78b1dd
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0054.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0054.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0054/LOG.exp.nanw0054.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0054/LOG.exp.nanw0054.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0054.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0054"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0052_fixvar_input/fixvarfields_NAext4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0052_fixvar_input/fixvarfields_NAext4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0052_fixvar_input/fixvarfields_NAext4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0055.run b/runscripts_ICON/exp.nanw0055.run
new file mode 100755
index 0000000..99fbe57
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0055.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0055.run
+#SBATCH --partition=compute,compute2
+#SBATCH --workdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0055/LOG.exp.nanw0055.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0055/LOG.exp.nanw0055.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0055.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0055"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0053_fixvar_input/fixvarfields_NAextCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0053_fixvar_input/fixvarfields_NAextCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0053_fixvar_input/fixvarfields_NAextCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0056.run b/runscripts_ICON/exp.nanw0056.run
new file mode 100755
index 0000000..52f4190
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0056.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0056.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0056/LOG.exp.nanw0056.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0056/LOG.exp.nanw0056.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0056.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0056"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0056_fixvar_input/fixvarfields_TAAF4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0056_fixvar_input/fixvarfields_TAAF4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0056_fixvar_input/fixvarfields_TAAF4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0057.run b/runscripts_ICON/exp.nanw0057.run
new file mode 100755
index 0000000..4db0f67
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0057.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0057.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0057/LOG.exp.nanw0057.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0057/LOG.exp.nanw0057.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0057.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0057"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0057_fixvar_input/fixvarfields_TAAFCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0057_fixvar_input/fixvarfields_TAAFCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0057_fixvar_input/fixvarfields_TAAFCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0058.run b/runscripts_ICON/exp.nanw0058.run
new file mode 100755
index 0000000..aa290d3
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0058.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0058.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0058/LOG.exp.nanw0058.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0058/LOG.exp.nanw0058.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0058.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0058"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0056_fixvar_input/fixvarfields_TAAF4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0056_fixvar_input/fixvarfields_TAAF4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0056_fixvar_input/fixvarfields_TAAF4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0059.run b/runscripts_ICON/exp.nanw0059.run
new file mode 100755
index 0000000..f442943
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0059.run
@@ -0,0 +1,798 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0059.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0059/LOG.exp.nanw0059.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0059/LOG.exp.nanw0059.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0059.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0059"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1993-01-01T00:00:00Z" #"1992-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1993-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0057_fixvar_input/fixvarfields_TAAFCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0057_fixvar_input/fixvarfields_TAAFCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0057_fixvar_input/fixvarfields_TAAFCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0060.run b/runscripts_ICON/exp.nanw0060.run
new file mode 100755
index 0000000..f0cdef2
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0060.run
@@ -0,0 +1,800 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0060.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0060/LOG.exp.nanw0060.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0060/LOG.exp.nanw0060.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+#SBATCH --mail-user=b380490
+#SBATCH --mail-type=BEGIN,END,FAIL
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0060.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0060"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1993-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0060_fixvar_input/fixvarfields_IO4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0060_fixvar_input/fixvarfields_IO4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0060_fixvar_input/fixvarfields_IO4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0061.run b/runscripts_ICON/exp.nanw0061.run
new file mode 100755
index 0000000..e374cec
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0061.run
@@ -0,0 +1,800 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0061.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0061/LOG.exp.nanw0061.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0061/LOG.exp.nanw0061.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+#SBATCH --mail-user=b380490
+#SBATCH --mail-type=BEGIN,END,FAIL
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0061.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0061"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1986-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0061_fixvar_input/fixvarfields_IOCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0061_fixvar_input/fixvarfields_IOCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0061_fixvar_input/fixvarfields_IOCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0062.run b/runscripts_ICON/exp.nanw0062.run
new file mode 100755
index 0000000..d15004c
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0062.run
@@ -0,0 +1,800 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0062.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0062/LOG.exp.nanw0062.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0062/LOG.exp.nanw0062.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+#SBATCH --mail-user=b380490
+#SBATCH --mail-type=BEGIN,END,FAIL
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0062.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0062"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1993-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0060_fixvar_input/fixvarfields_IO4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0060_fixvar_input/fixvarfields_IO4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0060_fixvar_input/fixvarfields_IO4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0063.run b/runscripts_ICON/exp.nanw0063.run
new file mode 100755
index 0000000..ad3d91f
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0063.run
@@ -0,0 +1,800 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0063.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0063/LOG.exp.nanw0063.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0063/LOG.exp.nanw0063.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+#SBATCH --mail-user=b380490
+#SBATCH --mail-type=BEGIN,END,FAIL
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0063.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0063"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1986-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0061_fixvar_input/fixvarfields_IOCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0061_fixvar_input/fixvarfields_IOCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0061_fixvar_input/fixvarfields_IOCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0064.run b/runscripts_ICON/exp.nanw0064.run
new file mode 100755
index 0000000..0788a2f
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0064.run
@@ -0,0 +1,800 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0064.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0064/LOG.exp.nanw0064.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0064/LOG.exp.nanw0064.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+#SBATCH --mail-user=b380490
+#SBATCH --mail-type=BEGIN,END,FAIL
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0064.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0064"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="2007-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1986-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0064_fixvar_input/fixvarfields_WP4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0064_fixvar_input/fixvarfields_WP4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0064_fixvar_input/fixvarfields_WP4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0065.run b/runscripts_ICON/exp.nanw0065.run
new file mode 100755
index 0000000..6f824f2
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0065.run
@@ -0,0 +1,800 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0065.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0065/LOG.exp.nanw0065.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0065/LOG.exp.nanw0065.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+#SBATCH --mail-user=b380490
+#SBATCH --mail-type=BEGIN,END,FAIL
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0065.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0065"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1986-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0065_fixvar_input/fixvarfields_WPCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0065_fixvar_input/fixvarfields_WPCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0065_fixvar_input/fixvarfields_WPCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0066.run b/runscripts_ICON/exp.nanw0066.run
new file mode 100755
index 0000000..a820728
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0066.run
@@ -0,0 +1,800 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0066.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0066/LOG.exp.nanw0066.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0066/LOG.exp.nanw0066.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+#SBATCH --mail-user=b380490
+#SBATCH --mail-type=BEGIN,END,FAIL
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0066.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0066"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1986-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0064_fixvar_input/fixvarfields_WP4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0064_fixvar_input/fixvarfields_WP4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0064_fixvar_input/fixvarfields_WP4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0067.run b/runscripts_ICON/exp.nanw0067.run
new file mode 100755
index 0000000..4929f1a
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0067.run
@@ -0,0 +1,800 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0067.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0067/LOG.exp.nanw0067.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0067/LOG.exp.nanw0067.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+#SBATCH --mail-user=b380490
+#SBATCH --mail-type=BEGIN,END,FAIL
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0067.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0067"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1986-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0065_fixvar_input/fixvarfields_WPCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0065_fixvar_input/fixvarfields_WPCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0065_fixvar_input/fixvarfields_WPCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0068.run b/runscripts_ICON/exp.nanw0068.run
new file mode 100755
index 0000000..47b3417
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0068.run
@@ -0,0 +1,800 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0068.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0068/LOG.exp.nanw0068.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0068/LOG.exp.nanw0068.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+#SBATCH --mail-user=b380490
+#SBATCH --mail-type=BEGIN,END,FAIL
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0068.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0068"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1986-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0068_fixvar_input/fixvarfields_EP4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0068_fixvar_input/fixvarfields_EP4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0068_fixvar_input/fixvarfields_EP4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0069.run b/runscripts_ICON/exp.nanw0069.run
new file mode 100755
index 0000000..40d8221
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0069.run
@@ -0,0 +1,800 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0069.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0069/LOG.exp.nanw0069.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0069/LOG.exp.nanw0069.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+#SBATCH --mail-user=b380490
+#SBATCH --mail-type=BEGIN,END,FAIL
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0069.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0069"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1993-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0069_fixvar_input/fixvarfields_EPCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0069_fixvar_input/fixvarfields_EPCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0069_fixvar_input/fixvarfields_EPCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0070.run b/runscripts_ICON/exp.nanw0070.run
new file mode 100755
index 0000000..2255c2b
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0070.run
@@ -0,0 +1,800 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0070.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0070/LOG.exp.nanw0070.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0070/LOG.exp.nanw0070.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+#SBATCH --mail-user=b380490
+#SBATCH --mail-type=BEGIN,END,FAIL
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0070.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0070"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1986-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0068_fixvar_input/fixvarfields_EP4K_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0068_fixvar_input/fixvarfields_EP4K_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0068_fixvar_input/fixvarfields_EP4K_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/exp.nanw0071.run b/runscripts_ICON/exp.nanw0071.run
new file mode 100755
index 0000000..238d0f8
--- /dev/null
+++ b/runscripts_ICON/exp.nanw0071.run
@@ -0,0 +1,800 @@
+#!/bin/ksh
+#=============================================================================
+# =====================================
+# mistral batch job parameters
+#-----------------------------------------------------------------------------
+#SBATCH --account=bb1018
+#SBATCH --job-name=exp.nanw0071.run
+#SBATCH --partition=compute,compute2
+#SBATCH --chdir=/work/bb1018/b380490/icon-2.1.00/run
+#SBATCH --nodes=8
+#SBATCH --threads-per-core=2
+#SBATCH --output=/pf/b/b380490/RUN/icon-2.1.00/nanw0071/LOG.exp.nanw0071.run.%j.o
+#SBATCH --error=/pf/b/b380490/RUN/icon-2.1.00/nanw0071/LOG.exp.nanw0071.run.%j.o
+#SBATCH --exclusive
+#SBATCH --time=04:00:00
+#SBATCH --mail-user=b380490
+#SBATCH --mail-type=BEGIN,END,FAIL
+
+#=============================================================================
+#
+# ICON run script. Created by ./config/make_target_runscript
+# target machine is bullx
+# target use_compiler is intel
+# with mpi=yes
+# with openmp=yes
+# memory_model=large
+# submit with sbatch -N ${SLURM_JOB_NUM_NODES:-1}
+# 
+#=============================================================================
+set -x
+. /work/bb1018/b380490/icon-2.1.00/run/add_run_routines
+#-----------------------------------------------------------------------------
+# target parameters
+# ----------------------------
+site="dkrz.de"
+target="bullx"
+compiler="intel"
+loadmodule="intel/16.0 ncl/6.2.1-gccsys cdo/default svn/1.8.13  fca/2.5.2431 mxm/3.4.3082 bullxmpi_mlx/bullxmpi_mlx-1.2.9.2"
+with_mpi="yes"
+with_openmp="yes"
+job_name="exp.nanw0071.run"
+submit="sbatch -N ${SLURM_JOB_NUM_NODES:-1}"
+#-----------------------------------------------------------------------------
+# openmp environment variables
+# ----------------------------
+export OMP_NUM_THREADS=4
+export ICON_THREADS=4
+export OMP_SCHEDULE=dynamic,1
+export OMP_DYNAMIC="false"
+export OMP_STACKSIZE=200M
+#-----------------------------------------------------------------------------
+# MPI variables
+# ----------------------------
+mpi_root=/opt/mpi/bullxmpi_mlx/1.2.9.2
+no_of_nodes=${SLURM_JOB_NUM_NODES:=1}
+mpi_procs_pernode=$((${SLURM_JOB_CPUS_PER_NODE%%\(*} / 2 / OMP_NUM_THREADS))
+((mpi_total_procs=no_of_nodes * mpi_procs_pernode))
+START="srun --cpu-freq=HighM1 --kill-on-bad-exit=1 --nodes=${SLURM_JOB_NUM_NODES:-1} --cpu_bind=verbose,cores --distribution=block:block --ntasks=$((no_of_nodes * mpi_procs_pernode)) --ntasks-per-node=${mpi_procs_pernode} --cpus-per-task=$((2 * OMP_NUM_THREADS)) --propagate=STACK"
+#-----------------------------------------------------------------------------
+# load ../setting if exists  
+if [ -a ../setting ]
+then
+  echo "Load Setting"
+  . ../setting
+fi
+#-----------------------------------------------------------------------------
+export EXPNAME="nanw0071"
+basedir="/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME}"
+#bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/build/x86_64-unknown-linux-gnu/bin"   # binaries
+bindir="/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/build/x86_64-unknown-linux-gnu/bin"   # binaries
+# use Aiko'S icon binary for the time being
+#bindir="/pf/b/b380459/icon-hdcp2s6-2.1.00/build/x86_64-unknown-linux-gnu/bin"  # binaries
+
+#BUILDDIR=build/x86_64-unknown-linux-gnu
+#-----------------------------------------------------------------------------
+#=============================================================================
+# load profile
+if [ -a  /etc/profile ] ; then
+. /etc/profile
+#=============================================================================
+#=============================================================================
+# load modules
+module purge
+module load "$loadmodule"
+module list
+#=============================================================================
+fi
+#=============================================================================
+export LD_LIBRARY_PATH=/sw/rhel6-x64/netcdf/netcdf_c-4.3.2-parallel-bullxmpi-intel14/lib:$LD_LIBRARY_PATH
+#=============================================================================
+nproma=16
+cdo="cdo"
+cdo_diff="cdo diffn"
+icon_data_rootFolder="/pool/data/ICON"
+icon_data_poolFolder="/pool/data/ICON"
+icon_data_buildbotFolder="/pool/data/ICON/buildbot_data"
+icon_data_buildbotFolder_aes="/pool/data/ICON/buildbot_data/aes"
+icon_data_buildbotFolder_oes="/pool/data/ICON/buildbot_data/oes"
+export KMP_AFFINITY="verbose,granularity=core,compact,1,1"
+export KMP_LIBRARY="turnaround"
+export KMP_KMP_SETTINGS="1"
+export OMP_WAIT_POLICY="active"
+export OMPI_MCA_pml="cm"
+export OMPI_MCA_mtl="mxm"
+export OMPI_MCA_coll="^ghc,fca"   # Feb 14, 2019
+export MXM_RDMA_PORTS="mlx5_0:1"
+export OMPI_MCA_coll_fca_enable="1"
+export OMPI_MCA_coll_fca_priority="95"
+export MALLOC_TRIM_THRESHOLD_="-1"
+ulimit -s 2097152
+
+# this can not be done in use_mpi_startrun since it depends on the
+# environment at time of script execution
+#case " $loadmodule " in
+#  *\ mxm\ *)
+#    START+=" --export=$(env | sed '/()=/d;/=/{;s/=.*//;b;};d' | tr '\n' ',')LD_PRELOAD=${LD_PRELOAD+$LD_PRELOAD:}${MXM_HOME}/lib/libmxm.so"
+#    ;;
+#esac
+#!/bin/ksh
+#=============================================================================
+#
+# recommended Namelist settings for pre-operational runs (except for output_nml 
+# which may be adapted according to personal needs)
+#
+# Date: 2013.10.01  Guenther Zangl, Daniel Reinert
+#
+#=============================================================================
+#=============================================================================
+#
+# This section of the run script containes the specifications of the experiment.
+# The specifications are passed by namelist to the program.
+# For a complete list see Namelist_overview.pdf
+#
+# EXPNAME and NPROMA must be defined in as environment variables or must 
+# they must be substituted with appropriate values.
+#
+# DWD, 2010-08-31
+#
+#-----------------------------------------------------------------------------
+#
+# Basic specifications of the simulation
+# --------------------------------------
+#
+# These variables are set in the header section of the completed run script:
+#
+# EXPNAME = experiment name
+# NPROMA  = array blocking length / inner loop length
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+# The following values must be set here as shell variables so that they can be used
+# also in the executing section of the completed run script
+#-----------------------------------------------------------------------------
+# the namelist filename
+atmo_namelist=NAMELIST_${EXPNAME}
+#
+#-----------------------------------------------------------------------------
+# global timing
+start_date="1999-01-01T00:00:00Z" #"1993-01-01T00:00:00Z" #"1989-01-01T00:00:00Z" #"1979-01-01T00:00:00Z"		# "mydate_nmlT00:00:00Z"
+end_date="2009-01-01T00:00:00Z" #"1999-01-01T00:00:00Z" #"1989-01-01T00:00:00Z"   		# "mydate_nmlT00:00:00Z"
+
+# restart intervals
+checkpoint_interval="P6M"
+restart_interval="P1Y"
+
+# output intervals
+output_interval="PT6H"
+file_interval="P1M"
+
+# regular  grid: nlat=96, nlon=192, npts=18432, dlat=1.875 deg, dlon=1.875 deg
+reg_lat_def_reg=-89.0625,1.875,89.0625
+reg_lon_def_reg=0.,1.875,358.125
+
+#
+#-----------------------------------------------------------------------------
+# model timing
+dtime=720  # 360 sec for R2B6, 120 sec for R3B7
+
+#
+#-----------------------------------------------------------------------------
+# model parameters
+model_equations=3             # equation system
+#                     1=hydrost. atm. T
+#                     1=hydrost. atm. theta dp
+#                     3=non-hydrost. atm.,
+#                     0=shallow water model
+#                    -1=hydrost. ocean
+#-----------------------------------------------------------------------------
+# the grid parameters
+atmo_dyn_grids="iconR2B04_DOM01.nc"
+#-----------------------------------------------------------------------------
+
+# directories definition
+#
+#ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_prp/			# ${ICON_BASE_PATH}
+ICONDIR=/work/bb1018/b380490/icon-hdcp2s6-2.1.00_aiko_20190319/
+# use Aiko'S icon bnary for the time being
+#ICONDIR=/pf/b/b380459/icon-hdcp2s6-2.1.00/			# ${ICON_BASE_PATH}
+RUNSCRIPTDIR=/pf/b/b380490/RUN/icon-2.1.00/${EXPNAME}		# ${ICONDIR}/run
+
+# experiment directory, with plenty of space, create if new
+EXPDIR=/scratch/b/b380490/experiments/icon-2.1.00/${EXPNAME} 	# ${ICONDIR}/experiments/${EXPNAME}
+if [ ! -d ${EXPDIR} ] ;  then
+  mkdir -p ${EXPDIR}
+fi
+#
+ls -ld ${EXPDIR}
+if [ ! -d ${EXPDIR} ] ;  then
+    mkdir ${EXPDIR}
+fi
+ls -ld ${EXPDIR}
+check_error $? "${EXPDIR} does not exist?"
+
+cd ${EXPDIR}
+
+#-----------------------------------------------------------------------------
+#
+# write ICON namelist parameters
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+#
+# ------------------------
+# reconstrcuct the grid parameters in namelist form
+dynamics_grid_filename=""
+for gridfile in ${atmo_dyn_grids}; do
+  dynamics_grid_filename="${dynamics_grid_filename} '${gridfile}',"
+done
+
+# ------------------------
+
+cat > ${atmo_namelist} << EOF
+&parallel_nml
+ nproma         = 8  ! optimal setting 8 for CRAY; use 16 or 24 for IBM
+ p_test_run     = .false.
+ l_test_openmp  = .false.
+ l_log_checks   = .false.
+ num_io_procs   = 1   ! asynchronous output for values >= 1
+ itype_comm     = 1
+ iorder_sendrecv = 3  ! best value for CRAY (slightly faster than option 1)
+/
+&grid_nml
+ dynamics_grid_filename  = ${dynamics_grid_filename} !"iconR2B04_DOM01.nc"
+ radiation_grid_filename = ""
+ dynamics_parent_grid_id = 0
+ lredgrid_phys           = .false.
+/
+&initicon_nml
+ init_mode   = 2           ! operation mode 2: IFS
+ zpbl1       = 500. 
+ zpbl2       = 1000. 
+ l_sst_in    = .true.		 ! Jennifer
+/
+&run_nml
+ num_lev        = 47           ! 60
+ dtime          = ${dtime}     ! timestep in seconds
+ ldynamics      = .TRUE.       ! dynamics
+ ltransport     = .true.
+ iforcing       = 3            ! NWP forcing
+ ltestcase      = .false.      ! false: run with real data
+ msg_level      = 7            ! print maximum wind speeds every 5 time steps
+ ltimer         = .false.      ! set .TRUE. for timer output
+ timers_level   = 1            ! can be increased up to 10 for detailed timer output
+ output         = "nml"
+/
+&nwp_phy_nml
+ inwp_gscp       = 1
+ inwp_convection = 1
+ inwp_radiation  = 1
+ inwp_cldcover   = 1
+ inwp_turb       = 1
+ inwp_satad      = 1
+ inwp_sso        = 1
+ inwp_gwd        = 1
+ inwp_surface    = 1
+ icapdcycl       = 3 ! apply CAPE modification to improve diurnalcycle over tropical land (optimizes NWP scores)
+ latm_above_top  = .false.  ! the second entry refers to the nested domain (if present)
+ efdt_min_raylfric = 7200.
+ ldetrain_conv_prec = .false. ! ** new for v2.0.15 **; set .true. to activate detrainment of rain and snow; should be used in R3B08 EU-nest only (not for R2B07)!
+ itype_z0         = 2
+ icpl_aero_conv   = 1
+ icpl_aero_gscp   = 1
+ icpl_o3_tp       = 1
+ ! resolution-dependent settings - please choose the appropriate one
+ ! dt_rad    = 2160. (R2B6) / 1440. (R3B7) ** should be an integer multiple of dt_conv **
+ ! dt_conv   = 720. (R2B6) / 360. (R3B7) / 180. (R3B8 - EU-nest)
+ ! dt_sso    = 1440. (R2B6) / 720. (R3B7)
+ ! dt_gwd    = 1440. (R2B6) / 720. (R3B7)
+ lfixvar = .true.
+/
+&nwp_tuning_nml
+ tune_zceff_min = 0.075 ! ** resolution-independent since rev. 25646 **
+ itune_albedo   = 1     ! somewhat reduced albedo (w.r.t. MODIS data) over Sahara in order to reduce cold bias
+/
+&turbdiff_nml
+ tkhmin  = 0.75  ! new default since rev. 16527
+ tkmmin  = 0.75  !           " 
+ pat_len = 750.
+ c_diff  = 0.2
+ rat_sea = 7.5  ! ** new value since for v2.0.15; previously 8.0 **
+ ltkesso = .true.
+ frcsmot = 0.2      ! these 2 switches together apply vertical smoothing of the TKE source terms
+ imode_frcsmot = 2  ! in the tropics (only), which reduces the moist bias in the tropical lower troposphere
+ ! use horizontal shear production terms with 1/SQRT(Ri) scaling to prevent unwanted side effects:
+ itype_sher = 3    
+ ltkeshs    = .true.
+ a_hshr     = 2.0
+ icldm_turb = 1     ! ** new recommendation for v2.0.15 in conjunction with evaporation fix for grid-scale rain **
+/
+&lnd_nml
+ ntiles         = 3      !!! operational since March 2015
+ nlev_snow      = 3      !!! effective only if lmulti_snow = .true.
+ lmulti_snow    = .false. !!! for the time being, until numerical stability issues and coupling with snow analysis are solved
+ itype_heatcond = 2
+ idiag_snowfrac = 20      !! ** operational since 1.12.15 **
+ lsnowtile      = .true.  !! ** operational since 1.12.15 **
+ lseaice        = .true.
+ llake          = .true.
+ frlake_thrhld  = 0.5
+ itype_lndtbl   = 3  ! minimizes moist/cold bias in lower tropical troposphere
+ itype_root     = 2
+ sstice_mode    = 4  			         ! Jennifer
+ sst_td_filename = "SST_<year>_<month>_iconR2B04-grid.nc"      ! Jennifer
+ ci_td_filename  = "CI_<year>_<month>_iconR2B04-grid.nc"        ! Jennifer
+/
+&radiation_nml
+ irad_o3       = 7
+ irad_aero     = 6
+ albedo_type   = 2 ! Modis albedo
+ vmr_co2       = 390.e-06 ! values representative for 2012
+ vmr_ch4       = 1800.e-09
+ vmr_n2o       = 322.0e-09
+ vmr_o2        = 0.20946
+ vmr_cfc11     = 240.e-12
+ vmr_cfc12     = 532.e-12
+/
+&nonhydrostatic_nml
+ iadv_rhotheta  = 2
+ ivctype        = 2
+ itime_scheme   = 4
+ exner_expol    = 0.333
+ vwind_offctr   = 0.2
+ damp_height    = 44000.
+ rayleigh_coeff = 1.0   ! R3B7: 1.0 for forecasts, 5.0 in assimilation cycle; 0.5/2.5 for R2B6 (i.e. ensemble) runs
+ lhdiff_rcf     = .true.
+ divdamp_order  = 24    ! setting for forecast runs; use '2' for assimilation cycle
+ divdamp_type   = 32    ! ** new setting for assimilation and forecast runs **
+ divdamp_fac    = 0.004 ! use 0.032 in conjunction with divdamp_order = 2 in assimilation cycle
+ divdamp_trans_start  = 12500.  ! use 2500. in assimilation cycle
+ divdamp_trans_end    = 17500.  ! use 5000. in assimilation cycle
+ l_open_ubc     = .false.
+ igradp_method  = 3
+ l_zdiffu_t     = .true.
+ thslp_zdiffu   = 0.02
+ thhgtd_zdiffu  = 125.
+ htop_moist_proc= 22500.
+ hbot_qvsubstep = 19000. ! use 22500. with R2B6
+/
+&sleve_nml
+ min_lay_thckn   = 20.
+ max_lay_thckn   = 400.   ! maximum layer thickness below htop_thcknlimit
+ htop_thcknlimit = 14000. ! this implies that the upcoming COSMO-EU nest will have 60 levels
+ top_height      = 75000.
+ stretch_fac     = 0.9
+ decay_scale_1   = 4000.
+ decay_scale_2   = 2500.
+ decay_exp       = 1.2
+ flat_height     = 16000.
+/
+&dynamics_nml
+ iequations     = 3
+ idiv_method    = 1
+ divavg_cntrwgt = 0.50
+ lcoriolis      = .TRUE.
+/
+&transport_nml
+ ivadv_tracer  = 3,3,3,3,3
+ itype_hlimit  = 3,4,4,4,4
+ ihadv_tracer  = 52,2,2,2,2
+ iadv_tke      = 0
+/
+&diffusion_nml
+ hdiff_order      = 5
+ itype_vn_diffu   = 1
+ itype_t_diffu    = 2
+ hdiff_efdt_ratio = 24.0
+ hdiff_smag_fac   = 0.025
+ lhdiff_vn        = .TRUE.
+ lhdiff_temp      = .TRUE.
+/
+&interpol_nml
+ nudge_zone_width  = 8
+ lsq_high_ord      = 3
+ l_intp_c2l        = .true.
+ l_mono_c2l        = .true.
+ support_baryctr_intp = .false.
+/
+&extpar_nml
+ itopo          = 1
+ n_iter_smooth_topo = 1        ! 
+ hgtdiff_max_smooth_topo = 0.  ! ** should be changed to 750.,750 with next Extpar update! **
+/
+&io_nml
+ itype_pres_msl = 5  ! New extrapolation method to circumvent Ninjo problem with surface inversions
+ itype_rh       = 1  ! RH w.r.t. water
+/
+&fixvar_nml
+ lfixvar_record       = .false. !.true.
+ lfixvar_apply        = .true.
+ lfixvar_apply_q      = .false.
+ lfixvar_apply_c      = .true.
+ lfixvar_apply_xcdnc  = .false.
+ fixvar_apply_c_expid = 'nanw0005'
+ fixvar_apply_c_yoffset = 1 !11 !21
+ fixvar_read_dt = 2160.0        ! 36 min
+/
+!&output_nml
+! filetype         =  4                      ! output format: 2=GRIB2, 4=NETCDFv2
+! output_start     = "${start_date}"
+! output_end       = "${end_date}"
+! output_interval  = "PT36M"
+! file_interval    = "${file_interval}"
+! include_last     = .false.
+! output_filename  = '${EXPNAME}-fixvarfields' ! file name base
+! filename_format  = "<output_filename>_ML_<datetime2>"
+! ml_varlist       = 'xtom','xqm_vap','xqm_liq','xqm_ice','xcld_frc'!,'xcdnc'
+! remap            = 0
+!/
+! OUTPUT: Regular grid, model levels, all domains
+&output_nml
+ filetype         =  4                        ! output format: 2=GRIB2, 4=NETCDFv2
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ output_filename  = '${EXPNAME}-2d_ll'           ! file name base
+ filename_format  = "<output_filename>_ML_<datetime2>"
+ ml_varlist       = 'pres_msl','pres_sfc','t_2m','t_g','tot_prec','tqv','tqc','tqi','clct','clcl','clcm','clch','shfl_s','lhfl_s','qhfl_s','sod_t','sob_t','sou_s','sob_s','thb_t','thu_s','thb_s','swsfcclr','swtoaclr','lwsfcclr','lwtoaclr','tqv_dia','tqc_dia','tqi_dia'
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'u','v','w','temp','rh','qv','qc','qi','clc','geopot','pv','tot_qv_dia','tot_qc_dia','tot_qi_dia'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+! p_levels         = 1000,2000,3000,5000,7000,10000,15000,20000,25000,30000,40000,50000,60000,70000,85000,92500,100000
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+&output_nml
+ filetype         =  4
+ output_start     = "${start_date}"
+ output_end       = "${end_date}"
+ output_interval  = "PT1H"                    !"${output_interval}"
+ file_interval    = "${file_interval}"
+ include_last     = .false.
+ mode             =  2  ! 1: forecast mode (relative t-axis), 2: climate mode (absolute t-axis)
+ include_last     =  .false.
+ output_filename  = '${EXPNAME}-3d_ll_heatingrates'         ! file name base
+ filename_format  = "<output_filename>_PL_<datetime2>"
+ pl_varlist       = 'lwflxall','lwflxclr','swflxall','swflxclr','ddt_temp_radsw','ddt_temp_radlw','ddt_temp_radswcs','ddt_temp_radlwcs'
+ p_levels         = 100000,99000,98000,97000,95000,92500,90000,87000,85000,82000,75000,70000,68000,60000,53000,50000,45000,40000,37000,30000,25000,20000,18000,15000,13000,11000,10000,9000,7500,7000,6000,5000,4500,3500,3000,2800,2100,2000,1500,1000,700,500,300,200,100,50
+ remap            = 1
+ reg_lon_def      = ${reg_lon_def_reg}
+ reg_lat_def      = ${reg_lat_def_reg}
+/
+EOF
+
+#!/bin/ksh
+#=============================================================================
+#
+# This section of the run script prepares and starts the model integration. 
+#
+# bindir and START must be defined as environment variables or
+# they must be substituted with appropriate values.
+#
+# Marco Giorgetta, MPI-M, 2010-04-21
+#
+#-----------------------------------------------------------------------------
+#
+# directories definition
+# this part is shifted up
+#
+#-----------------------------------------------------------------------------
+# set up the model lists if they do not exist
+# this works for subngle model runs
+# for coupled runs the lists should be declared explicilty
+if [ x$namelist_list = x ]; then
+#  minrank_list=(        0           )
+#  maxrank_list=(     65535          )
+#  incrank_list=(        1           )
+  minrank_list[0]=0
+  maxrank_list[0]=65535
+  incrank_list[0]=1
+  if [ x$atmo_namelist != x ]; then
+    # this is the atmo model
+    namelist_list[0]="$atmo_namelist"
+    modelname_list[0]="atmo"
+    modeltype_list[0]=1
+    run_atmo="true"
+  elif [ x$ocean_namelist != x ]; then
+    # this is the ocean model
+    namelist_list[0]="$ocean_namelist"
+    modelname_list[0]="ocean"
+    modeltype_list[0]=2
+  elif [ x$testbed_namelist != x ]; then
+    # this is the testbed model
+    namelist_list[0]="$testbed_namelist"
+    modelname_list[0]="testbed"
+    modeltype_list[0]=99
+  else
+    check_error 1 "No namelist is defined"
+  fi 
+fi
+
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# set some default values and derive some run parameteres
+restart=${restart:=".false."}
+restartSemaphoreFilename='isRestartRun.sem'
+#AUTOMATIC_RESTART_SETUP:
+if [ -f ${restartSemaphoreFilename} ]; then
+  restart=.true.
+  #  do not delete switch-file, to enable restart after unintended abort
+  #[[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+#END AUTOMATIC_RESTART_SETUP
+#
+# wait 5min to let GPFS finish the write operations
+if [ "x$restart" != 'x.false.' -a "x$submit" != 'x' ]; then
+  if [ x$(df -T ${EXPDIR} | cut -d ' ' -f 2) = gpfs ]; then
+    sleep 10;
+  fi
+fi
+# fill some checks
+
+run_atmo=${run_atmo="false"}
+if [ x$atmo_namelist != x ]; then
+  run_atmo="true"
+fi
+run_jsbach=${run_jsbach="false"}
+run_ocean=${run_ocean="false"}
+
+#-----------------------------------------------------------------------------
+
+# link grid, extpar, init and rrtm files
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/grids/icon_grid_0010_R02B04_G.nc iconR2B04_DOM01.nc
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/icon_extpar_0010_R02B04_G.nc extpar_iconR2B04_DOM01.nc
+
+ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/ifs2icon_R2B04_DOM01.nc ifs2icon_R2B04_DOM01.nc
+
+for year in {1970..2010}; do
+for mon in 1 2 3 4 5 6 7 8 9; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_0${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon0${mon}.ymonmean.remapdis.nc  CI_${year}_0${mon}_iconR2B04-grid.nc
+done
+for mon in 10 11 12; do 
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sst_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.SST4K.nc  SST_${year}_${mon}_iconR2B04-grid.nc
+   ln -sf /work/bb1018/b380490/inputdata/icon-2.1.00/realistic/bc_sic_1979_2008_icongrid_0010_R02B04_mon${mon}.ymonmean.remapdis.nc  CI_${year}_${mon}_iconR2B04-grid.nc
+done
+done
+
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_lw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/rrtmg_sw.nc              ./
+ln -sf /work/bb1018/b380490/icon-2.1.00/data/ECHAM6_CldOptProps.nc    ./
+
+# link fixvar input fields
+for year in {2000..2009}; do
+for mon in 1 2 3 4 5 6 7 8 9; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0069_fixvar_input/fixvarfields_EPCTL_${year}0${mon}01T000000Z.nc fixvar_nanw0005_${year}0${mon}.nc
+done
+for mon in 10 11 12; do
+   ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0069_fixvar_input/fixvarfields_EPCTL_${year}${mon}01T000000Z.nc fixvar_nanw0005_${year}${mon}.nc
+done
+done
+ln -sf /scratch/b/b380490/experiments/icon-2.1.00/nanw0069_fixvar_input/fixvarfields_EPCTL_20100101T000000Z.nc fixvar_nanw0005_201001.nc
+
+#-----------------------------------------------------------------------------
+# print_required_files
+copy_required_files
+link_required_files
+
+
+#-----------------------------------------------------------------------------
+# get restart files
+
+if  [ x$restart_atmo_from != "x" ] ; then
+  rm -f restart_atm_DOM01.nc
+#  ln -s ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} ${EXPDIR}/restart_atm_DOM01.nc
+  cp ${ICONDIR}/experiments/${restart_from_folder}/${restart_atmo_from} cp_restart_atm.nc
+  ln -s cp_restart_atm.nc restart_atm_DOM01.nc
+  restart=".true."
+fi
+#-----------------------------------------------------------------------------
+
+#-----------------------------------------------------------------------------
+#
+# create ICON master namelist
+# ------------------------
+# For a complete list see Namelist_overview and Namelist_overview.pdf
+
+#-----------------------------------------------------------------------------
+# create master_namelist
+master_namelist=icon_master.namelist
+if [ x$end_date = x ]; then
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&time_nml
+ ini_datetime_string = "$start_date"
+ dt_restart          = $dt_restart
+ is_relative_time    = .false.
+/
+EOF
+else
+if [ x$calendar = x ]; then
+  calendar='proleptic gregorian'
+  calendar_type=1
+else
+  calendar=$calendar
+  calendar_type=$calendar_type
+fi
+cat > $master_namelist << EOF
+&master_nml
+ lrestart            = $restart
+/
+&master_time_control_nml
+ calendar             = "$calendar"
+ checkpointTimeIntval = "$checkpoint_interval" 
+ restartTimeIntval    = "$restart_interval" 
+ experimentStartDate  = "$start_date" 
+ experimentStopDate   = "$end_date" 
+/
+&time_nml
+ is_relative_time = .false.
+/
+EOF
+fi
+#-----------------------------------------------------------------------------
+
+
+#-----------------------------------------------------------------------------
+# add model component to master_namelist
+add_component_to_master_namelist()
+{
+    
+  model_namelist_filename="$1"
+  model_name=$2
+  model_type=$3
+  model_min_rank=$4
+  model_max_rank=$5
+  model_inc_rank=$6
+  
+cat >> $master_namelist << EOF
+&master_model_nml
+  model_name="$model_name"
+  model_namelist_filename="$model_namelist_filename"
+  model_type=$model_type
+  model_min_rank=$model_min_rank
+  model_max_rank=$model_max_rank
+  model_inc_rank=$model_inc_rank
+/
+EOF
+
+}
+#-----------------------------------------------------------------------------
+
+no_of_models=${#namelist_list[*]}
+echo "no_of_models=$no_of_models"
+
+j=0
+while [ $j -lt ${no_of_models} ]
+do
+  add_component_to_master_namelist "${namelist_list[$j]}" "${modelname_list[$j]}" ${modeltype_list[$j]} ${minrank_list[$j]} ${maxrank_list[$j]} ${incrank_list[$j]}
+  j=`expr ${j} + 1`
+done
+
+#-----------------------------------------------------------------------------
+#
+#  get model
+#
+export MODEL=${bindir}/icon
+#
+ls -l ${MODEL}
+check_error $? "${MODEL} does not exist?"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+#
+# start experiment
+#
+
+rm -f finish.status
+date
+${START} ${MODEL}
+date
+if [ -r finish.status ] ; then
+  check_error 0 "${START} ${MODEL}"
+else
+  check_error -1 "${START} ${MODEL}"
+fi
+#
+#-----------------------------------------------------------------------------
+#
+finish_status=`cat finish.status`
+echo $finish_status
+echo "============================"
+echo "Script run successfully: $finish_status"
+echo "============================"
+#-----------------------------------------------------------------------------
+#-----------------------------------------------------------------------------
+namelist_list=""
+#-----------------------------------------------------------------------------
+# check if we have to restart, ie resubmit
+#   Note: this is a different mechanism from checking the restart
+if [ $finish_status = "RESTART" ] ; then
+  echo "restart next experiment..."
+  this_script="${RUNSCRIPTDIR}/${job_name}"
+  echo 'this_script: ' "$this_script"
+  touch ${restartSemaphoreFilename}
+  cd ${RUNSCRIPTDIR}
+  ${submit} $this_script
+else
+  [[ -f ${restartSemaphoreFilename} ]] && rm ${restartSemaphoreFilename}
+fi
+
+#-----------------------------------------------------------------------------
+# automatic call/submission of post processing if available
+if [ "x${autoPostProcessing}" = "xtrue" ]; then
+  # check if there is a postprocessing is available
+  cd ${RUNSCRIPTDIR}
+  targetPostProcessingScript="./post.${EXPNAME}.run"
+  [[ -x $targetPostProcessingScript ]] && ${submit} ${targetPostProcessingScript}
+  cd -
+fi
+
+#-----------------------------------------------------------------------------
+# check if we test the restart mechanism
+get_last_1_restart()
+{
+  model_restart_param=$1
+  restart_list=$(ls *restart_*${model_restart_param}*_*T*Z.nc)
+  
+  last_restart=""
+  last_1_restart=""  
+  for restart_file in $restart_list
+  do
+    last_1_restart=$last_restart
+    last_restart=$restart_file
+
+    echo $restart_file $last_restart $last_1_restart
+  done  
+}
+
+
+restart_atmo_from=""
+restart_ocean_from=""
+if [ x$test_restart = "xtrue" ] ; then
+  # follows a restart run in the same script
+  # set up the restart parameters
+  restart_from_folder=${EXPNAME}
+  # get the previous from last rstart file for atmo
+  get_last_1_restart "atm"
+  if [ x$last_1_restart != x ] ; then
+    restart_atmo_from=$last_1_restart
+  fi
+  get_last_1_restart "oce"
+  if [ x$last_1_restart != x ] ; then
+    restart_ocean_from=$last_1_restart
+  fi
+  
+  EXPNAME=${EXPNAME}_restart
+  test_restart="false"
+fi
+
+#-----------------------------------------------------------------------------
+
+cd $RUNSCRIPTDIR
+
+#-----------------------------------------------------------------------------
+
+	
+# exit 0
+#
+# vim:ft=sh
+#-----------------------------------------------------------------------------
diff --git a/runscripts_ICON/simulations_overview.txt b/runscripts_ICON/simulations_overview.txt
new file mode 100644
index 0000000..c2144ff
--- /dev/null
+++ b/runscripts_ICON/simulations_overview.txt
@@ -0,0 +1,68 @@
+ICON-NWP simulations with prescribed SST
+
+locked clouds, interactive water vapor
+Temperature (T), and cloud-radiative properties (C) prescribed to 
+values from control simulation (1) or from global warming simulation
+with uniform +4K SST increase (2)
+
+nanw0005: control simulation with interactive clouds to diagnose the cloud properties
+nanw0006: +4K simulation with interactive clouds to diagnose the cloud properties
+nanw0007: locked T1C1
+nanw0008: locked T2C2
+nanw0009: locked T1C2
+nanw0010: locked T2C1
+
+locked clouds and locked water vapor
+nanw0015: T1C1W1
+nanw0016: T1C1W2
+nanw0017: T1C2W1
+nanw0018: T1C2W2
+nanw0019: T2C1W1
+nanw0020: T2C1W2
+nanw0021: T2C2W1
+nanw0022: T2C2W2
+
+Partial Radiative Perturbation Calculation
+nanw0023: T1C1 vs. T1C2 (locked clouds)
+
+regional cloud impacts
+nanw0031: T1C2TR (4K clouds over tropics, CTL clouds over extratropics)
+nanw0032: T1C1TR (CTL clouds over tropics, 4K clouds over extratropics)
+nanw0033: T2C2TR
+nanw0034: T2C1TR
+
+nanw0044: T1C2ML (4K clouds over midlatitudes, CTL clouds over tropics and polar regions)
+nanw0045: T1C1ML (CTL clouds over midlatitudes, 4K clouds over tropics and polar regions)
+nanw0046: T2C2ML
+nanw0047: T2C1ML
+
+nanw0048: T1C2PO (4K clouds over polar regions, CTL clouds over tropics and midlatitudes)
+nanw0049: T1C1PO (CTL clouds over polar regions, 4K clouds over tropics and midlatitudes)
+nanw0050: T2C2PO
+nanw0051: T2C1PO
+
+nanw0052: T1C2NA (4K clouds over North Atlantic, CTL clouds everywhere else)
+nanw0053: T1C1NA (CTL clouds over North Atlantic, 4K clouds everywhere else)
+nanw0054: T2C2NA
+nanw0055: T2C1NA
+
+nanw0056: T1C2TA (4K clouds over tropical Atlantic, CTL clouds everywhere else)
+nanw0057: T1C1TA (CTL clouds over tropical Atlantic, 4K clouds everywhere else)
+nanw0058: T2C2TA
+nanw0059: T2C1TA
+
+nanw0060: T1C2IO (4K clouds over Indian Ocean, CTL clouds everywhere else)
+nanw0061: T1C1IO (CTL clouds over Indian Ocean, 4K clouds everywhere else)
+nanw0062: T2C2IO
+nanw0063: T2C1IO
+
+nanw0064: T1C2WP (4K clouds over western tropical Pacific, CTL clouds everywhere else)
+nanw0065: T1C1WP (CTL clouds over western tropical Pacific, 4K clouds everywhere else)
+nanw0066: T2C2WP
+nanw0067: T2C1WP
+
+nanw0068: T1C2EP (4K clouds over eastern tropical Pacific, CTL clouds everywhere else)
+nanw0069: T1C1EP (CTL clouds over western tropical Pacific, 4K clouds everywhere else)
+nanw0070: T2C2EP
+nanw0071: T2C1EP
+
-- 
GitLab